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Résumé

Ces dernières années, le domaine de la e-santé a vu un intérêt croissant pour la
définition de systèmes intelligents ayant le but d’accompagner les cliniciens dans
leurs tâches et leurs activités quotidiennes. D’ailleurs, cela inclut de nouveaux sys-
tèmes pour le domaine de la médecine basée sur les preuves. Ce dernier repose
sur le principe de l’évaluation critique des preuves médicales et de la combinaison
de ces preuves de haute qualité avec l’expérience clinique individuelle du praticien
par rapport à la situation d’un patient pour obtenir le meilleur résultat possible.
La plupart des systèmes intelligents proposés visent soit à extraire des informa-
tions sur la qualité des preuves issues des essais cliniques, de directives cliniques
ou des dossiers de santé électroniques, soit à aider dans les processus de prise de dé-
cision, sur la base de cadres de raisonnement. Le travail de cette thèse va au-delà de
l’état de l’art des systèmes d’extraction d’informations actuellement proposés dans
ce contexte. Il utilise des méthodes d’analyse d’arguments pour extraire et classi-
fier les composants d’argumentation (c’est-à-dire les preuves et les conclusions d’un
essai clinique) et leurs relations (c’est-à-dire le support et l’attaque). Un cadre de
fouille d’arguments (Argument Mining) est proposé et amélioré pour intégrer des
informations supplémentaires inspirées par les cadres biomédicaux courants pour
l’analyse des essais cliniques. Ces extensions comprennent la détection des éléments
PICO et un module d’analyse des résultats pour identifier et classer les effets (c’est-
à-dire améliorés, augmentés, diminués, pas de différence, pas d’occurrence) d’une
intervention sur le résultat de l’essai. Dans ce contexte, un jeu de données, com-
posé de 660 résumés d’essais cliniques dans la base de données MEDLINE, a été
annoté, en résultant dans le construction d’un jeu de données étiquetées qui inclut
4198 composants d’argumentation, 2601 relations d’argumentation et 3351 résultats
d’intervention sur cinq maladies différentes (néoplasme, glaucome, hépatite, dia-
bète, hypertension). Diverses approches d’apprentissage automatique et profond
allant des SVM aux architectures récentes basées sur les réseaux de neurones ont
été expérimentées, obtenant un F1 macro de 0,87 pour la détection de composants
d’argumentation et de 0,68 pour la prédiction des relation d’argumentation, surpas-
sant les résultats obtenus pas les systèmes de detection d’arguments dans l’état de
l’art. De plus, une demo d’un système, appelé ACTA, a été développée pour démon-
trer l’utilisation pratique de l’approche basée sur les arguments développée pour
analyser les essais cliniques. Ce système de démonstration a été intégré dans le con-
texte du projet Covid-on-the-Web pour créer des données liées riches et exploitables
sur le Covid-19.
Mots clés: traitement automatique du langage naturel, extraction d’information,
fouille d’arguments
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Abstract

In the latest years, the healthcare domain has seen an increasing interest in the def-
inition of intelligent systems to support clinicians in their everyday tasks and ac-
tivities. Among others, this includes novel systems for the field of Evidence-based
Medicine. The latter relies on the principle of critically appraising medical evidence
and combining high quality evidence with the individual clinical experience of the
practitioner with respect to the circumstances of a patient to achieve the best possi-
ble outcome. Hence, most of the proposed intelligent systems aim either at extracting
information concerning the quality of evidence from clinical trials, clinical guide-
lines, or electronic health records, or assist in the decision making processes, based
on reasoning frameworks. The work in this thesis goes beyond the state-of-the-art
of currently proposed information extraction systems. It employs Argument Mining
methods to extract and classify argumentative components (i.e., evidence and claims
of a clinical trial) and their relations (i.e., support, attack). An Argument Mining
pipeline is proposed and further enhanced to integrate additional information in-
spired by prevalent biomedical frameworks for the analysis of clinical trials. These
extensions comprise the detection of PICO elements and an outcome analysis mod-
ule to identify and classify the effects (i.e., improved, increased, decreased, no differ-
ence, no occurrence) of an intervention on the outcome of the trial. In this context, a
dataset, composed of 660 Randomized Controlled Trial abstracts from the MEDLINE
database, was annotated, leading to a labeled dataset with 4198 argument compo-
nents, 2601 argument relations, and 3351 outcomes on five different diseases (i.e.,
neoplasm, glaucoma, hepatitis, diabetes, hypertension). Various Machine Learning ap-
proaches ranging from feature-based SVMs to recent neural architectures have been
experimented with, where deep bidirectional transformers obtain a macro F1-score
of .87 for argument component detection and .68 for argument relation prediction,
outperforming current state-of-the-art Argument Mining systems. Additionally, a
Proof-of-Concept system, called ACTA, was developed to demonstrate the practi-
cal use of the developed argument-based approach to analyse clinical trials. This
demo system was further integrated in the context of the Covid-on-the-Web project
to create rich and actionable Linked Data about the Covid-19.

Keywords: Natural Language Processing, Information Extraction, Argument Min-
ing
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Chapter 1

Introduction

This chapter explains the underlying motivation of the work presented in this
thesis. It highlights the need to assist with automatic data processing tools the
deliberation of clinicians in their decision making. Further, it elaborates why
Argument Mining methods are good candidates to address this open challenge,
especially in combination with established frameworks for evidence categoriza-
tion, such as PICO. Ultimately, an overview over the structure of the thesis is
given.

1.1 Background and Motivation

Clinical decision making is often intricate to a high degree. As a practitioner examin-
ing a patient, the first challenge comes with the diagnosis, the proper identification
of the disease and its cause given the observed symptoms. Even though after multi-
ple medical tests are conducted, the observed signs and symptoms might not always
be sufficient to identify the exact disease. Similar symptoms can be caused by differ-
ent diseases. For example, fatigue can be caused by physical exertion or emotional
stress, or more serious diseases like anaemia, kidney or liver diseases and autoim-
mune disorders. Moreover, patients can show diverse signs of illness with different
severeness for the same malady. The physician needs to consider all these factors
and interpreting the symptoms to narrow down the set of potential diseases. Then,
the next problem is the prediction of the course of the ailment, the prognosis, as well
as potential treatments. Again, this is a highly complex case-by-case decision. The
physician needs to estimate the potential effectiveness of a treatment based on his
experience and the history and context of the patient. Possible adverse effects and
interdependence of drugs need to be identified. Risks need to be balanced against
benefits. More importantly, this all has to be done with an up-to-date knowledge of
the recent research in the field. To cope with the latter, by the end of the last century,
clinicians relied on narrative review articles from experts. However, the quality of
these articles was volatile [1], and the results could not always be reproduced. It
could not have been taken for granted that the unsystematic conclusions of these
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narrative reviews were synthesized correctly [1, 2]. Thus, over the last decades, the
systematic evaluation of medical evidence became more prominent. In particular,
Evidence-Based Medicine (EBM) emerged to reduce the bias in reports and improve
the quality of medical evidence by defining systematic evaluation standards. The
core principle is a critical appraisal and judicious use of evidence, where high qual-
ity evidence is combined with the individual clinical experience of the practitioner
with respect to the patient’s values to achieve the best possible outcome [3]. Fur-
ther, EBM should facilitate the continuing medical education of clinicians, so that
they consider the results of up-to-date research in their everyday decision making.
Regarding the quality of medical evidence, the focus shifted towards identifying the
best available evidence in an empirical way. Clinical trials are carefully evaluated ac-
cording to critical questions to determine their quality as evidence. These questions
can address the experimental setup and other sources inducing bias. Moreover, the
reported conclusions need to be validated and interpreted. This is what is meant
by the aforementioned critical appraisal. With respect to the physician, who has to
decide how to medicate a patient, this means that the decision has to be taken cog-
nizant of the available evidence, where the evidence from trials or guidelines has to
be compared with the circumstances of the individual patient. The latter means to
decide if the evidence matches the patient’s properties, and potential costs and ben-
efits are reasonable. For this optimal healthcare, EBM should provide the required
scientific framework, from the systematic evaluation of evidence to the assistance in
the decision making process [1–4].

However, the EBM framework comes with some pragmatic downsides. Since
most of the evidence come in the form of clinical trials, the amount of documents
to process is enormous, and the manual evaluation of each trial is a laborious and
time consuming task. Especially with the increasing number of published trials on
the Web, it becomes challenging to effectively acquire and synthesize the available
evidence [5]. Thus, forcing the clinicians’ to allocate even more time for evidence
search in their schedules, which are already loaded with other duties. This rises
the need for systems able to support and ease clinicians’ everyday activities. Ac-
companying the general growing popularity of Artificial Intelligence (AI), there is
an increasing interest in the development of intelligent systems in the healthcare do-
main able to do exactly that: support and ease clinicians’ everyday activities. These
systems deal with heterogeneous kinds of data spanning from textual documents
to medical images to biometrics. Concerning textual documents (e.g., clinical tri-
als, clinical guidelines, and electronic health records), such solutions range from the
automated detection of PICO1 elements [5–7] in clinical studies to evidence-based
reasoning for decision making [8–10]. These applications aim at assisting clinicians
in their everyday tasks by extracting, from unstructured textual documents, the ex-
act information they necessitate and to present this information in a structured way,

1Patient Problem or Population, Intervention, Comparison or Control, and Outcome.
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easy to be (possibly semi-automatically) analyzed. The ultimate goal is to aid the
clinician’s deliberation process [11].

The aforementioned increasing amount of published data on the Web is not only
limited to clinical studies. Other domains face the same challenges of analysing
huge amounts of distributed and unstructured information. Together with advances
in Natural Language Processing and Machine Learning, this growing problem sup-
ported the rise of a new research area called Argument Mining (AM) [12–15]. In AM
the argumentation is analysed from the computational linguistics point of view, i.e.,
dealing with detecting, classifying and assessing the quality of argumentative struc-
tures in text. Furthermore, work in this field aims at developing approaches to aggre-
gate, synthesize, structure, summarize, and reason about arguments in texts. Such
approaches would enable users to search for particular topics and their justifications,
trace through the argument (justifications for justifications and so on), as well as to
systematically and formally reason about argumentation graphs. By doing so, a user
would have a better, more systematic basis for making a decision. However, deep,
manual analysis of texts is time-consuming, knowledge intensive, and thus unscal-
able. To acquire, generate, and transmit the arguments, scalable machine-based or
machine-supported approaches to extract arguments are needed, which can also
support argument-based decision making frameworks with machine-readable struc-
tured data. This means finding causal relationships between concepts described in a
text. To address this, standard tasks in AM comprise the detection of argument com-
ponents (i.e., evidence and claims) and their boundaries in unstructured text, as well
as the prediction of the relations (i.e., attack and support) holding among them. As
described in Chapter 9, Argument Mining methods have been applied to heteroge-
neous types of textual documents. However, only few approaches have applied AM
methods to the medical domain [16–19], despite its natural employment in health-
care applications. As mentioned above, the reasoning stage in clinical argumenta-
tion scenarios have received considerable attention. These applications highlight
the need of clinicians to be supplied with frameworks to process huge quantities of
available data, as they rely on structured data as input. However, limited effort has
been devoted to automatically extract this structured input from textual documents.
Moreover, the demand for this kind of information cannot be directly supplied by
current methods (e.g., clinical document classification [20], clinical question answer-
ing [21], or extractive summarization [22]). As explained at the beginning of this
section, the medical decision making process a physician has to go through is highly
complex and depends on many factors. Consequently, this forms a well-motivated
need to investigate methods able to supply and support these argument-based deci-
sion making frameworks to make them practicably applicable in real scenarios. Ar-
gument mining does exactly that. It automatically detects argumentative structures,
which can be the basis of Evidence-Based Medicine. For instance, the clinical trials
comparing the relative merits of treatments are documents written in unstructured
natural language. Thus, given its aptness to extract argumentative structures from
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unstructured text, AM represents a potential valuable contribution in the healthcare
domain and a powerful tool for extracting this information. Particularly, in supple-
mentary interactions with extraction modules for other medical information, such
as the automated PICO element analysis.

Hence, the goal of this PhD thesis is to start from clinical trials in natural language, define
algorithms to detect and extract their argumentative structure and further aggregate it with
other pertinent clinical information to provide the demanded structured data for analysing
trials.

1.2 Research Questions

The road map for this project consisted of multiple stages. More precisely, each stage
can be broken down into one research question (RQ) addressing different facets:

RQ1: How to adapt models from argumentation theory on large corpora of clin-
ical text for modeling argumentation and outcome-based evidence in Randomized
Controlled Trials? This question addresses the selection of a proper argumentation
framework, and the adaption and extension of it for the medical domain. It further
concerns the specification of which information should be extracted and how the
overall output can be aggregated to be applicable.

RQ2: What computational approaches can be used to analyze arguments and evi-
dence on Randomized Controlled Trials? This research question aims at developing
a methodology for the specifications defined in RQ1. It can be further subdivided
into more particular problems:

• How to define algorithms for automatically identifying arguments in medi-
cal texts? The goal is to detect components of the argument structure. This
comprises challenges like the automated discrimination between argumenta-
tive and non-argumentative text units and the classification of the former into
claims/conclusions and evidence/premises.

• What are suitable intra-argument relation prediction algorithms, to automati-
cally detect the internal structure of arguments? This consists of determining
how the aforementioned argument components are connected to compose the
argument. In particular, it is the identification of the relations that may hold
between the arguments’ premises and conclusion.

• How can the argumentative structure be further aggregated with other (medi-
cal) information about the trial to make the data even more informative? This
mainly addresses the integration of the PICO format, the detailed representa-
tion of observed effects of interventions and the distinction of evidence into
more fine-grained labels.
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RQ3: What is the impact of argumentative structures and PICO elements on evidence-
based deliberation? This question investigates the practical utility of the proposed
approaches and evaluates the benefit for the end user. What exactly can the devel-
oped approaches provide and what not? Where and why do they struggle? And can
their weaknesses be addressed with current means?

1.3 Contributions

The main contributions of the thesis are as follows:

Contribution 1 - Creation of a New Dataset of Annotated Clinical Trial Abstracts
for Argumentative Outcome Analysis First, to address RQ1, a bipolar structured
argumentation model is selected [23] as the basis for the extracted information. Since
the application of tools to mine arguments is very broad and given the variety of
contexts where arguments can appear, a proper high-quality annotated dataset is
needed, which functions as a domain ground-truth to train and evaluate automatic
mining methods. With no domain specific dataset available, the creation of such a
dataset was carried out by applying the aforementioned structured argumentation
model to annotate a new huge resource of Randomized Controlled Trial abstracts.
To the best of my knowledge, this is the largest dataset that has been annotated
within the Argument Mining field on clinical data. The dataset is built from the
MEDLINE database, consisting of 4198 argument components and 2601 argument
relations on five different diseases (neoplasm, glaucoma, hepatitis, diabetes, hyperten-
sion). Furthermore, the annotations of the created dataset were extended to hold in-
formation about the effect an intervention has on an outcome and more fine-grained
evidence labels. The annotation of the effects (i.e., improved, increased, decreased,
no difference, no occurrence) of an intervention on 3351 outcomes is a novel aspect
and an important extension for the adaption of AM on clinical trials. To foster future
research in the area of Argument Mining on clinical trials, the annotation guidelines,
which explain in a detailed way how the data has been annotated, and the annotated
data are freely accessible. The reliability of the dataset is assured by the calculation of
the inter-annotator agreement that measures the degree of agreement in performing
the annotation task among the involved annotators.

Related Publications:

1. Tobias Mayer, Elena Cabrio, and Serena Villata, "Transformer-based Argu-
ment Mining for Healthcare Applications". In Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI), 2020, pp. 2108–2115.

2. Tobias Mayer, Elena Cabrio, Marco Lippi, Paolo Torroni, and Serena Villata,
"Argument mining on clinical trials". In Proceedings of the 7th International Con-
ference on Computational Models of Argument (COMMA), 2018, pp. 137–148.
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3. Tobias Mayer, Elena Cabrio, and Serena Villata, "Evidence type classification
in randomized controlled trials". In Proceedings of the 5th Workshop on Argument
Mining (ArgMining@EMNLP), 2018, pp. 29–34.

4. Tobias Mayer, Santiago Marro, Elena Cabrio and Serena Villata, "Enhancing
Evidence-Based Medicine with Natural Language Argumentative Analysis of
Clinical Trials". In: Artificial Intelligence in Medicine. Elsevier. (under review)

Contribution 2 - Domain-specific Definition of Argument Mining Tasks and their
Extensions and Evaluation for the Analysis of Clinical Trials Second, various
Natural Language Processing methods are evaluated in detail on the created dataset
to answer RQ2. These range from feature-based SVM approaches, which were al-
ready applied in various application domains of AM, to recurrent neural networks
and other neural approach from the related work. In the end, the best perform-
ing methods rely on deep bidirectional transformers combined with task specific
shallow layers to address the AM tasks of component and boundary detection and
relation prediction. These architectures are further utilized to classify the effect on
outcomes in clinical trials. Ultimately, a complete pipeline for processing clinical tri-
als is proposed containing (i) an Argument Mining module to extract and classify
argumentative components (i.e., evidence and claims of the trial) and their relations
(i.e., support, attack), and (ii) an outcome analysis module to identify and classify
the effects (i.e., improved, increased, decreased, no difference, no occurrence) of an
intervention on the outcome of the trial.

Related Publications:

1. Tobias Mayer, Elena Cabrio, and Serena Villata, "Transformer-based Argu-
ment Mining for Healthcare Applications". In Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI), 2020, pp. 2108–2115.

2. Franck Michel, Fabien Gandon, Valentin Ah-Kane, Anna Bobasheva, Elena
Cabrio, Olivier Corby, Raphaël Gazzotti, Alain Giboin, Santiago Marro, To-
bias Mayer, Mathieu Simon, Serena Villata and Marco Winckler, "Covid-on-
the-web: Knowledge graph and services to advance covid-19 research". In
Proceedings of the 19th International Semantic Web Conference (ISWC), 2020, In
press.

3. Tobias Mayer, Elena Cabrio, Marco Lippi, Paolo Torroni, and Serena Villata,
"Argument mining on clinical trials". In Proceedings of the 7th International Con-
ference on Computational Models of Argument (COMMA), 2018, pp. 137–148.

4. Tobias Mayer, Santiago Marro, Elena Cabrio and Serena Villata, "Enhancing
Evidence-Based Medicine with Natural Language Argumentative Analysis of
Clinical Trials". In: Artificial Intelligence in Medicine. Elsevier. (under review)



1.3. Contributions 7

Contribution 3 - Practical Impact and Limitation Analysis Third, to answer RQ3,
the errors of the systems are analysed in an extensive evaluation showing the issues
and remaining challenges of the developed methods. Additionally, an investigation
was undertaken to analyse the general robustness of the underlying bidirectional
transformer model, which attests a relatively reliable handling of input with simple
linguistic variations. Subsequently, general weak points of the transformer model
are highlighted to indicate that this solution is still imperfect. However, its appli-
cability to various real scenarios is demonstrated with a Proof-of-Concept system,
which illustrates the impact of the argumentative information in interplay with the
PICO elements. For instance, this hybrid system can identify when a claim reports
an outcome as being safe or efficient, but also that the associated side effects are clas-
sified as increased, setting the claim into perspective. This combined analysis reveals
more fine-grained categorization of the statements in RCTs.

Related Publications:

1. Tobias Mayer, Elena Cabrio, and Serena Villata, "ACTA A tool for argumenta-
tive clinical trial analysis". In Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI), 2019, pp. 6551–6553.

2. Tobias Mayer, Elena Cabrio, and Serena Villata, "Transformer-based Argu-
ment Mining for Healthcare Applications". In Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI), 2020, pp. 2108–2115.

3. Tobias Mayer, "Enriching Language Models with Semantics". In Proceedings
of the 24th European Conference on Artificial Intelligence (ECAI), 2020, pp. 2917–
2918.

4. Franck Michel, Fabien Gandon, Valentin Ah-Kane, Anna Bobasheva, Elena
Cabrio, Olivier Corby, Raphaël Gazzotti, Alain Giboin, Santiago Marro, To-
bias Mayer, Mathieu Simon, Serena Villata and Marco Winckler, "Covid-on-
the-web: Knowledge graph and services to advance covid-19 research". In
Proceedings of the 19th International Semantic Web Conference (ISWC), 2020, In
press.

5. Tobias Mayer, Santiago Marro, Elena Cabrio, and Serena Villata, "Generat-
ing adversarial examples for topic-dependent argument classification". In Pro-
ceedings of the 8th International Conference on Computational Models of Argument
(COMMA), 2020, pp. 33–44.

6. Tobias Mayer, Santiago Marro, Elena Cabrio and Serena Villata, "Enhancing
Evidence-Based Medicine with Natural Language Argumentative Analysis of
Clinical Trials". In: Artificial Intelligence in Medicine. Elsevier. (under review)
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1.4 Structure

The thesis is organized as follows:

Chapter 2 describes the preliminaries, which are used throughout the thesis. It
provides insights in the context and practices of the applied domain, i.e., evidence-
based medicine. Further, the concepts and challenges in the research field of Argu-
ment Mining and the Natural Language Processing methods employed, which are
adapted to evidence-based medicine in the context of this thesis, are presented.

Chapter 3 introduces the AbstRCT dataset which was created in the context of this
thesis. After devising annotation guidelines, clinical trial abstracts were extracted
via PubMed from the MEDLINE database and annotated with argumentative infor-
mation. The dataset was used for almost all the experiments in this thesis. The first
version of the dataset comprises mainly trials about glaucoma treatments, but also
hepatitis, diabetes and hypertension subsets. In contrast, the second version consists
primarily of trials about neoplasm treatments, where the aforementioned subsets
from version one serve as additional test sets. The dataset comprises three anno-
tation layers. First, annotations about argument components, such as claims and
evidence. Second, argumentative relations between these components, such as at-
tack and support, and third, Effect-on-Outcome, e.g., that an intervention increased
or decreased a certain outcome.

Chapter 4 presents the Argument Mining pipeline for clinical trials I defined. The
approaches addressing the two building blocks, i.e., argument component detection
and relation classification, are introduced. Methods for the argument component
detection include feature-based SVMs with Tree Kernels, RNNs with various word
embeddings and fine-tuned transformer models. The relation classification task is
addressed in two ways, i.e., as a sequence classification and multiple choice prob-
lem. For both approaches various transformer models are compared and evaluated
against reference models from the AM literature. The obtained results are reported
together with an in-depth error analysis.

Chapter 5 subsequently shows my work on a subtask of argument component de-
tection, i.e., evidence type classification. A differentiation of the pieces of evidence
in the dataset set is reasonable, since in EBM the results of a clinical trial are rated
based on various factors. Thus, to model this variety of factors, the pieces of ev-
idence are assigned with specialised evidence type labels, in particular, the more
fine-grained label comparative, significance, side-effect and other. Various classification
models including SVMs and NNs are evaluated on this task.

Chapter 6 introduces the analysis of the results of a clinical trial. Specifically, the
analysis of the effect of an intervention on the observed outcome parameters. This
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Effect-on-Outcome analysis is an extension of the Argument Mining pipeline, where
outcomes mentioned in the argumentative components are detected and their effect
subsequently classified, i.e., if an intervention has Improved, Increased or Decreased the
outcome, or that there was NoDifference, or NoOccurrence of the outcome.

Chapter 7 is about different ways of creating linguistically simple perturbations
ranging from punctuation deletion to various word-based transformations. Their
impact on the robustness of current state-of-the-art Language Model based argu-
ment classification models is evaluated, with respect to both in-domain and cross-
topic performance. The quality of the generated perturbations is assessed in a user
study and the effect of adversarial training for argument classification is empiri-
cally evaluated. Subsequently, other known weaknesses of Language Model based
transformer models, such as the ones employed in the experiments in the preceding
chapters, are highlighted.

Chapter 8 demonstrates the successful applications of the proposed approaches. A
Proof-of-Concept system, ACTA, shows the practical potential as a processing tool
for clinical trials in general, as well as for a concrete healthcare scenario linked to the
Covid-19 health emergency. ACTA is a tool for automatically analyzing clinical trial
abstracts from the argumentative point of view by finding argument components
and their links. Moreover, PICO elements are detected and highlighted. In the con-
text of the Covid-19 pandemic, ACTA was updated including the extension of the
relation classification and it has been employed in the Covid-on-the-Web project.
Furthermore, the output is stored as RDF data through the use of ontologies for data
representation. Within the project, ACTA is integrated in the overall data processing
pipeline to create Linked Open Data.

Chapter 9 presents and discusses the related work in the context of evidence ex-
traction and argumentation-based applications in Evidence-Based Medicine. It fur-
ther sets the work presented in this thesis into perspective by showcasing the related
development in the AM field and pointing out differences to existing approaches.

Chapter 10 concludes the thesis summarizing the contributions and remaining
open questions. Furthermore, perspectives for future applications and further re-
search directions are proposed, as well as potential plans for improvements dis-
cussed.
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Chapter 2

Background

This chapter introduces the preliminaries, which are used throughout the the-
sis. It provides insights in the context and practices of evidence-based medicine.
Further, the concepts and challenges in the research field of Argument Mining
and the Natural Language Processing methods employed, which are adapted to
evidence-based medicine in the context of this thesis, are presented.

In this chapter, the background in which the thesis takes place is explained. In Sec-
tion 2.1, an overview over Evidence-based Medicine is given, which is the domain
Argument Mining is applied to in the context of this thesis. Argument Mining itself
is described in the subsequent Section 2.2, explaining the motivation, tasks and dif-
ficulties of it. The major tasks relevant for the context of the thesis are the argument
component and boundary detection, and the identification of the argumentative re-
lationships between the components. Finally, Section 2.3 gives an overview of the
computational linguistic techniques applied in AM to represent natural language,
ranging from early context-free representations, like bag-of-words, to recent contex-
tualized representations from transformer models.

2.1 Evidence-based Medicine

Evidence-Based Medicine (EBM) is a practice emerged from clinical epidemiology.
The core principle is a critical appraisal and judicious use of evidence, where high
quality evidence is combined with the individual clinical experience of the practi-
tioner with respect to the patient’s values to achieve the best possible outcome [3].

For clinicians the continuing medical education based on new research is of ut-
ter importance. EBM was motivated by the overwhelming increment in published
clinical trials and the associated difficulties of staying up-to-date in the healthcare
decision making. Previously, clinicians relied on narrative review articles from ex-
perts. The quality of these articles was volatile [1] and could have been biased by a
potential conflict of interest, in case where the article was published by a commer-
cial source. Additionally, the results from these narrative reviews were not always
reproducible. It could not have been taken for granted that the literature selection
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was unbiased or the unsystematic conclusions were synthesized correctly [1, 2]. This
deemphasizing of the pathophysiological rationale [24] as sufficient evidence for the de-
cision making process created the foundations for EBM. The practitioner should be
cognizant of the available evidence and carefully take decisions based on the evi-
dence, the patient and own experience. The latter means to decide if the evidence
matches the patient’s properties and if the costs and benefits are reasonable. EBM
should provide the required scientific framework for the systematic evaluation of
evidence and assist in the decision making for an optimal healthcare [1–4]. In short,
EBM consists of these five essential steps:

1. assessment of the clinical problem

2. converting the problem into answerable clinical questions

3. search for the best evidence answering these questions

4. critically appraise the found evidence for validity and usefulness and interpret
what is said about the questions

5. apply the results in an appropriate manner with respect to the patient

Especially relevant for the context of this thesis are the points 2-4. For the second
step, the idea is to ask well-built clinical questions which are answered by the clini-
cal trials [25], such as questions concerning the population, intervention, comparison
intervention, outcomes, time horizon or settings. These questions can be formulated
in a framework called PICO, which stands for Patient or Population, Intervention,
Comparison or Control, and Outcome. Then, to prevent biased search results explicit
inclusion and exclusion criteria are defined, which are search constraints that guar-
antee that all search results consider the inclusion criteria and not the exclusion crite-
ria. Based on this framework and together with the defined inclusion and exclusion
criteria, the literature research in step 3 is conducted. Step 4 concerns one of the
fundamental concepts of EBM, the critical appraisal of the available evidence. The
decisions should be taken from the best patient/population-based evidence, includ-
ing an epidemiological and biostatistical analysis, such as likelihood or odds ratios
and power of diagnostic information [1]. Ideally, there should be multiple trials
targeting the same or similar clinical questions which are evaluated. Contrary to
previous practice, where the overview of these trials was given as a narrative review
without the guarantee for the unbiased systematic consideration of all the available
literature, in EBM a systematic review with a subsequent meta-analysis should be
conducted as a means to provide an overview. A systematic review is a structured
way of processing a collection of clinical trials to limit bias. For this, evidence ta-
bles are filled, where all trials are listed in the rows and the columns describe the
properties of the trials, such as the type of study, sample size, outcomes or patient
demographics. This way, one can see which trials had random allocation of patients,
if it was an independent blind comparison with the control group, or if patients
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were assembled at the same stage of their illness. While a systematic review is a
qualitative analysis, the meta-analysis is quantitative. In the meta-analysis the ob-
served results of multiple trials targeting the same or similar clinical questions are
synthesized with statistical methods. Amongst other things, this can also comprise
a correction of the observed results for publication bias, which means that studies
with positives outcomes tends to be published more often than negative results. In
the end, there should be an assessment of the benefits, costs and potential risks for
patients. Together with this general information, the patient’s context and prefer-
ences, and the individual clinical expertise, the practitioner can take decisions of
how to apply the available evidence with respect to potential treatments to establish
the best course of action for the case under evaluation.

Originally, EBM was thought to be applied by every clinician, but correctly ap-
praising the evidence is tedious and staying up-to-date this way is impossible. Thus,
the recommendation was given to also consider EBM results from others [1]. Never-
theless, the correct and thoroughly collection and evaluation of the evidence is one
of the major downsides of EBM. Reading and extracting the information from every
trial has to be done manually, which is very time consuming and labour-intensive,
especially with the still rapidly growing numbers of clinical trial publications [5].
Logically, many approaches have been conducted to (semi-)automatically assist in
the deliberation process of the clinicians for this work. A detailed overview of these
systems can be found in Chapter 9. Contrary to this previous work, in the context
of this thesis Argument Mining techniques to process clinical trials were developed.
The goal of using Argument Mining is not to help automatically fill evidence tables
or evaluate the risk of bias, which is just one part of the evidence appraisal. Another
part is scrutinizing the conclusions drawn by the authors of a trial and interpreting
the results. This is where Argument Mining can assist by automatically processing
the documents and creating an argumentative representation of the trial(s), which
can support clinicians and practitioners in taking informed decisions.

2.2 Argument Mining

Argumentation and reasoning has become a well established field of Artificial In-
telligence [26]. Argumentation is the process by which arguments are constructed,
compared, evaluated in some respect, in order to establish whether any of them is
warranted. While the reasoning stage and decision support has received consider-
able attention in the medical domain [9, 10], argument-based decision making re-
quires structured input. Most of the time, structured data is not available, raising
the necessity to develop methods to efficiently create structured arguments. One
of the latest advances in artificial argumentation [27], which tackles the aforemen-
tioned problem, is the so-called Argument(ation) Mining (AM) [12–15]. The goal of
AM is to extract and classify argumentative structures from unstructured natural
language text in order to support argument-based decision making frameworks with
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machine-processable structured data. This means finding causal or consequent rela-
tionships between concepts described in a text. Generally, this translates to answer-
ing the why question by explaining the motivations, or finding reasons and counter-
points for certain statements/propositions. Usually, the discussed topics are contro-
versial allowing to find arguments for both sides and constructing an argumentation
graph, where arguments are attacking or supporting each other.

One of the earliest work is argumentative zoning [28], where sentences are clas-
sified for their rhetorical role in a scientific paper, e.g., concerning the comparison
with the scientific background or goals of the presented work. While it does not
target the extraction of the argumentative structure, this classification of zones is
considered a precursor for the AM area [15]. Other early seminal work comprise the
detection of arguments in legal text [29, 30]. These pioneering works introducing
the problem of mining arguments did not have a loud echo in the NLP community
immediately. However, with technical advances overcoming previous limitations in
computationally processing natural language, which are described in detail in the
subsequent section, and allowing to effectively address more complex tasks such as
AM, more and more attention was given to AM [14]. AM itself is a very context-
dependent task, which requires deep Natural Language Understanding (NLU) and
is closely related to Natural Language Inference (NLI), which lead the initial ap-
proaches to be inspired by NLI [31, 32]. Naturally, advances in Machine Learning
and NLP promote the development of new AM techniques.

An AM pipeline consists of multiple tasks. The standard tasks in an AM pipeline
consist in the detection of argument components, i.e., evidence and claims, and the
prediction of the relations, i.e., attack and support, holding among them. The latter
task can be further split into two subtasks, argument sentence detection and com-
ponent boundary detection. The argument sentence detection is an anteceding step
where sentences are classified as being non-argumentative or containing at least one
argument component. Depending on the underlying data and use case, the more
fine-grained classification into evidence and claims can be included in this step. In
the case of being detected as containing arguments, the exact boundaries of the ar-
gument components, also called argumentative discourse units [12], need to be de-
termined, since they do not necessarily span the whole sentence [33]. Both subtasks,
the sentence classification and segmentation, can also be jointly tackled as one prob-
lem, which can be beneficial in some cases. With the argument components being
determined, the next step in an Argument Mining pipeline is the prediction of re-
lations holding between the components to construct the argumentative structure,
i.e., which evidence supports or attacks which claims. This can be goal oriented, as
in the case of argumentation scheme classification. Here, one tries to find the argu-
mentation/rhetorical schemes the argument is composed of, where argumentation
schemes are common types of reasoning patterns [34]. Contrary to that, there is the
structure prediction without targeting a predefined scheme. This means that the re-
lationship of two argument components is classified independently of the remaining
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components. This relationship can also be between an argument and a general claim
of a topic, where the goal is to classify if the argument component is for or against
the given topic. This is similar to stance classification, where the stance of an au-
thor towards a target has to be determined [35]. While most of the proposed work
only tackles certain aspects of the pipeline, the AM pipeline can also be tackled in an
end-to-end manner, where both of the above described steps are solved within one
(neural) architecture [36, 37].

Besides the goal of detecting the argumentative structure in an unstructured text,
many nuanced subtasks has emerged over time. These tasks go beyond the pure
component detection and structure prediction and aim at enriching the structure
with informational features, which can be advantageous for concrete application
scenarios. These subtasks can comprise argument clustering [38], argument rele-
vance [39], argument quality [40, 41], rhetorical figure detection [42] or fine-grained
evidence type classification [43].

As described in the related work (Chapter 9), Argument Mining methods have
been applied to heterogeneous types of textual documents. Given its aptness to au-
tomatically detect in text argumentative structures that are at the basis of evidence-
based reasoning applications, AM represents a potential valuable contribution in the
healthcare domain and a powerful tool for extracting this information. Especially, in
the combination with automated PICO element analysis.

2.3 Natural Language Representations

The idea of processing natural language with machines reaches back until the sec-
ond half of the last century [44]. While in the beginning symbolic rule-based systems
dominated the area, later statistical and Machine Learning based approaches started
to play a more important role [44–46]. The goal of Machine Learning is to train a
mathematical model from a collection of example data to make predictions about
new data based on what was observed in the sample data. One challenge going
along with this is to quantify the data, so the Machine Learning model can use it.
For Natural Language Processing this is a crucial step, since human language is not
encoded in numerical values. Logically, this process of creating a quantified repre-
sentation of natural language is one of the oldest and most prominent problems in
Machine Learning based Natural Language Processing [44, 45]. It is an essential el-
ement in all tasks, such as machine translation, natural language generation or any
other classification problem [45]. Converting language into numbers poses many
challenges. For example, there are many languages which are not only different in
vocabulary, but also have fundamentally different structures [47]. Hence, represen-
tation models for one language might not necessarily be viable for others. Addition-
ally, natural language is highly ambiguous and context dependent. Words can be
expressions of several objects depending on the context. The meaning and conno-
tations of a sentence depend heavily on the context and intend of the speaker [48].
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Even humans speaking the same language can have difficulties understanding each
other. So far, the problem to invent a model that fully understands natural language
has not been solved. It remains one of the grand challenges in NLP.

In the last decade, many impactful approaches have been developed and a lot
of progress was made. In the subsequent section, major approaches to tackle this
problem are introduced.

2.3.1 Context-free Representations

Bag-of-words One of the simplest models to quantify natural language is the so
called bag-of-words (BOW) model. It is a count-based model to represent text as a
document-term matrix. In the base version, each sentence or document is repre-
sented as a vector, where each dimension is a word from the vocabulary, so that the
total number of dimensions in the vector space equals the vocabulary size. The value
of each dimension is the sum of occurrences of the word in the text unit. Depending
on the text size and variety, the vocabulary/vector size can be enormous. To over-
come this problem and reduce the vocabulary, the text can be pre-processed. For
example, stop-words can be filtered out and inflected words can be reduced to their
word stem/root (stemming) or lemma (lemmatisation). Still, for diverse text this can
lead to sparse vectors, meaning that the vectors contains a lot of zeros and many of
the dimensions are meaningless as part of the representation. Moreover, long text
units have naturally higher count numbers of words than shorter text units. This
imbalance of counts can biased the Machine Learning model.

Tf-idf One statistic to create more meaningful vectors and overcoming the text
length bias is term frequency–inverse document frequency (tf-idf). The idea is to weight
words with respect to their occurrence in the text unit (term frequency) and over-
all occurrence in the corpus/collection of documents (inverse document frequency).
The term frequency can be normalized and therefore make the measure text length
independent, by dividing it by the number of total words in a text unit. While the
term frequency is similarly representative to the bag-of-words model, the inverse
document frequency lowers the weights for words which occur often across all doc-
uments and are therefore less representative for a single text unit. Tf-idf is also a
common technique to filter out stop-words by setting a threshold.

N-grams So far, only single words have been considered independent of their sur-
roundings. However, as said before, context plays an important role. While it is
hard to model larger context with just counting occurrences – techniques integrat-
ing context are described in the following section – direct neighbouring words can
be a valuable information which can be included on a count basis. Instead of count-
ing single word occurrences one counts co-occurring word combinations, which can
be useful to disambiguate words or detect negations and model their effect on the
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change of polarity. While, these word combinations, n-grams, can be set to an ar-
bitrary length n, the most common are bi- and trigrams, i.e., combinations of two
and three words. Usually the necessary information to identify a collocation, i.e.,
New York, or a negative context are within the range of the two neighbouring words.
Longer n-grams can, again, lead to sparse representations of vectors and promote
the out-of-vocabulary (OOV) problem, where n-grams occurring in the test set have
not been seeing during training, ergo are not in the vocabulary, and thus have to be
ignored. Similarly to the bag-of-word, which can be interpreted as a unigram model,
tf-idf can be applied to the n-grams. A common technique to further reduce the vec-
tor size is feature extraction. Here, the most representative dimensions important as
features of discrimination for the Machine Learning model are considered. This opti-
mization problem can be either solved following a heuristic search or trial-and-error
strategy. Furthermore, n-grams can be used as a statistical Language Model (LM),
by estimating the probability of a word given the previous context. For simplicity
reasons, one assumes the Markov property. This means that a word at position n
only depends on the last word at position n− 1.

Word Embeddings Previous techniques result in a one hot vector representation of a
word, where all dimensions but one are zero. Only text units longer than one word
have vectors with more than one value. Additionally, the problem of a large fea-
ture space remains, even after feature extraction. For neural networks (NN), the use
of these representations are computationally expensive and inefficient. NNs take
single word vectors as input. Especially for sequence modelling, one hot vector rep-
resentations are highly inefficient, since they are huge and do not contain a lot of
information. A solution to this problem are word embeddings. The idea behind is to
model each word as a dense feature vector of real numbers of size n, usually n is be-
tween 50 and 300. Each word should be represented with these n dimensions. This
means that the Machine Learning model should learn to capture as many properties
of a word as possible within these fixed feature dimensions. For this reason, con-
trary to count-based models where the dimensions are defined by the vocabulary,
the dimensions of word embeddings are not interpretable by humans. This dense
representation provides the capability to integrate the polysemy of words, which are
defined by the context. Also, words with similar meanings should result in similar
vectors1, since they share properties. For example, the vectors of France and Paris
should be in a comparable relation to each other like the vectors of Italy and Rome,
or Japan and Tokio.

Static word embeddings are pre-trained with a neural network and are used as
a look-up table for word features for the actual Machine Learning model, which is
trained to solve a task specific problem. It has the advantage that the word embed-
dings do not need to be trained on the task specific dataset, which might be signifi-
cantly smaller, but come from a more general and representative collection of texts.

1The distance is usually measured as the cosine similarity between vectors.
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Word embeddings can also be pre-trained on domain specific data, such as the med-
ical domain, to better capture the specificities of the desired domain. In general, the
pre-training is conducted on a huge corpus of text. The tasks, the embedding model
has to solve to learn the word representations, can differ depending on the type of
word embedding. Exemplary, one of the first approaches is word2vec [49], where two
tasks are proposed: (i) conditional bag-of-words (CBOW) and (ii) skip-gram predic-
tion. In the latter case, word vectors are learned by predicting context words given
a target word. For CBOW, the task is to correctly predict a target word given context
words in a previously defined window size. Word2vec has the disadvantage that it
only considers the local properties of the context within the given window size dur-
ing training. Subsequent approaches try to also integrate more global information in
the learning process. One example is Global Vectors or GloVe [50], which is based on
aggregated global word word co-occurrence statistics. Similarly to n-grams, both of
the aforementioned word embeddings suffer from the out-of-vocabulary problem.
While domain specific pre-training with a specialised vocabulary can be beneficial,
it does not solve the problem entirely. A different approach to this problem is to
compose the vocabulary of smaller units, i.e., sub-word tokens, as proposed in [51].

In this thesis, it was experimented with various types of these word embeddings
as input representations for NNs and other ML models, each with their own advan-
tages and disadvantages. The full description of the used embedding types, their
advantages and singular properties can be found in Section 4.1.2.

2.3.2 Contextualized Representations

Embeddings can be used as word representation features, which serve as the in-
put for Machine Learning models. They capture the meaning of words better than
count-based approaches. While they do integrate the different readings of a poly-
semic word in pre-training, when they are applied, the surrounding context of each
word is not considered. A word has always the same general word vector indepen-
dent of the actual meaning in a specific context. That is why they are also called
static embeddings. But context is essential for the intended and perceived meaning
of a word. In the case of static embeddings, the hypothesis is that a vector encodes
ideally all meaning variants of a word and the surrounding words with their vectors
push the representation in the vector space in the direction of the correct meaning.
This principle delegates the word sense disambiguation to the Machine Learning
model which uses the word embeddings as input for the classification task, e.g., a
convolutional or recurrent neural network. This is an extra task the Machine Learn-
ing model has to solve besides its main task, allocating parts of the model capacity.
Ideally, the model capacities should be used for the main classification task and not
for word sense disambiguation. To this end, context-aware embeddings are needed,
which select the right meaning of a polysemic word and shift the vector in the corre-
sponding direction before it is fed to the classification model. These dynamic embed-
ding types which take the full or partial context into account are called contextualized
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embeddings.

ELMo One of the first and most prominent models for contextualized embed-
dings is Embeddings from Language Models (ELMo) [52]. It consists of a bi-directional
Language Model meaning that the LM takes the preceding and succeeding context
words into account. The bi-directional LM consists of two uni-directional Language
Models. First, a forward Language Model which processes the input from left to
right, and second, a backward Language Model which processes the input from
right to left. Both LMs consist of stacked Long Short-Term Memory (LSTM) [53]
neural networks, which are a subtype of Recurrent Neural Networks (RNN) with
a memory cell to capture long range dependencies. They are trained separately on
enormous amount of text, both on the same Language Modelling task, which was
already used for statistical Language Modelling, i.e., predicting the next word given
the current word. The two uni-directional output representations are concatenated
to form the final bi-directional representation, where each token has its own repre-
sentation which was created dynamically depending on the surrounding words. The
pre-trained network can be added to any other neural network as a text encoding
block. Also, ELMo eschews the out-of-vocabulary problem, since it is a character-
based model. A similar approach is described in [54], where word representations
are concatenated vectors of hidden states in a character-based bi-directional RNN
Language Model.

ULMFiT While ELMo was a first step towards contextualizing embeddings, the
pre-trained weights are only used to get the embedding of a word. The model for
the downstream classification task itself has still to be trained from scratch. In com-
puter vision, the concept of transfer learning was successfully applied, where a model
learns a specific task and then transfers and reuses this knowledge on other tasks.
For example, a model learns general features on a huge image dataset like ImageNet
during pre-training and is then fine-tuned on a domain specific smaller dataset with
specialized images for a certain task. For NLP, this means to leverage the weights of
a Language Model learned during pre-training for a downstream task. A fine-tuning
technique for efficient transfer learning was first introduced with Universal Language
Model Fine-tuning for Text Classification (ULMFiT) [55]. This next evolution of train-
ing neural networks overcomes the problem of training models from scratch. The
fundamental assumption is that different layers in a model capture features with
different granularity. The lowest layer, for example, captures the most general in-
formation. In the case of language, this general property is the syntactic structure,
while higher layers capture then more semantic related features. This means that
ideally each layer should have an adapted learning rate corresponding to the sensi-
tivity of the model to learn this feature. This distributed encoding of features is then
leveraged in fine-tuning the model, similar to image processing. The existing prob-
lem up to this point was that with fine-tuning the pre-trained weights were changed
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too drastically, throwing away the information learned during pre-training. The
proposed solution in ULMFiT for this was gradual unfreezing. This means that the
fine-tuning becomes an iterative process of unfreezing one layer after another. So,
in the first step the last layer of the model is unfrozen and the model fine-tuned for
one epoch. In the subsequent step, the next lower layer is unfrozen and the model
is further fine-tuned for one epoch. This process is repeated until convergence is
reached. In this way, the model has more training epochs for the more difficult and
task specific features to learn, which are encoded in the higher layers of the model.
The low level features like syntactic structure, which representation should be task
unspecific, are modified in fewer epochs, since of their general validity the weights
should only be changed slightly.

Transformer So far, the presented sequence models are based on recurrent neural
architectures. RNNs come with certain drawbacks. For example, it is hard to cap-
ture long range dependency relations, because the signal has to be passed through
numerous operations/time steps until it reaches the target state to encode the depen-
dency [56]. This sequential nature not only prevents computational parallelization,
but also hinders transmitting the signal, which is stronger diminished the longer it
is passed through the network. Countering this with more hidden dimensions is
not feasible due to memory constraints, which processing longer sequences would
exceed. An impactful approach to model sequences without any recurrent or con-
volutional architectures, solely relying on attention mechanisms, is the transformer
model [57]. This is a stacked encoder-decoder structure, which draws global depen-
dencies only with multi-head attention allowing the decoder to attend to different
words simultaneously for each token. Formally, the transformer is a combination
of an encoder, which maps an input sequence (x1, ..., xn) into a hidden represen-
tation, and a decoder, which translates the hidden representation into a target se-
quence (y1, ..., ym). The encoder consists of N stacked layers, where each layer con-
sists of two sub-layers. The first layer is a multi-head self-attention layer, which
gets concatenated WordPiece token embeddings [58] and positional embeddings of
the input sequence. The second layer is a fully-connected dense layer. Each layer
is surrounded by a residual connection, and the output of the sub-layer is layer
normalized. The attention layer employs Scaled Dot-Product Attention [57], where
each attention function for a set of queries and key, value pairs is projected A-times
in parallel. The decoder consists of the same layers as the encoder plus one extra
multi-head attention layer for the output of the encoder. Since the attention mech-
anism passes all hidden states from the stack of encoders, the decoder can focus on
multiple parts of the input sequence for each processed token. The decoder embed-
dings are shifted by one position, and the attention layer is masked to only attend to
previous positions. The architecture is illustrated in Figure 2.1
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FIGURE 2.1: The transformer model architecture. Figure drawn
from [57].

BERT A significant milestone in NLP founded on the aforementioned concepts
and ideas of contextual representations and transfer learning is Bidirectional Encoder
Representations from Transformers (BERT) [59]. BERT made significant improvements
over state-of-the-art results on 11 NLP tasks, becoming the temporary leader spear-
heading the leaderboard of the General Language Understanding Evaluation (GLUE)
benchmark [60] and pushing the top scores substantially. The characteristic of BERT
is that it is a deeply bi-directional transformer architecture, while previous trans-
former models, like the OpenAI Generative Pre-trained Transformer (GPT) [61] em-
ploy a uni-directional left-to-right architecture. The idea of bi-directionality has been
existing before, but it was first successfully applied to transformers with BERT. Con-
trary to the well established Language Model pre-training task of next word predic-
tion, which is necessarily uni-directional, the authors propose a new task, which is
capable of taking both directions into account. The masked Language Model (MLM)
objective is inspired by the Cloze task [62], where one random word in the input is
masked and the objective is to predict the original masked word. But unlike the next
word prediction task, the MLM objective enables the representation to take advan-
tage of both, the left and the right, context. This is quite similar to the optimization
problem of the CBOW version of Word2vec with the difference that the MLM is not
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limited by a context window size and takes the full context into account. Additon-
ally, BERT is pre-trained with a second task, i.e., the Next Sentence Prediction. This
is motivated with the fact that many NLP downstream tasks, such as Natural Lan-
guage Inference2, test the capability of a model to capture the relationship between
two sentences. Here, as the name lets suggest, the task is to classify two given sen-
tences as following each other or not. Based on the idea of transfer learning, BERT
can be fine-tuned on downstream tasks in an end-to-end manner, which is relatively
inexpensive compared to the pre-training phase.

Many succeeding work is based on the core concepts of BERT. They re-train
BERT on domain specific corpora, such as SciBERT [63] and BioBERT [64], other
languages [65] or cross-lingual data [66]. Other approaches modify the pre-training
procedure to outperform BERT on the GLUE tasks or adapt BERT for other tasks.
For example, the authors of RoBERTa [67] exchange static with dynamic masking,
use larger byte-pair encoding and batches size, and increase the size of the dataset.
In SpanBERT [68], the MLM is extended to mask consecutive words (spans). Both
approaches show improved performance compared with the original BERT. Further-
more, there are approaches infusing more linguistic [69–71] or other domain knowl-
edge, i.e., Enhanced language RepresentatioN with Informative Entities (ERNIE) [72],
which includes knowledge graphs into the pre-training. Here, the MLM is com-
plemented with an entity masking task.

In general, a whole new research field evolved. This BERTology investigates
what and how the attention-based transformer models are actually learning [73, 74]
or how to compress them efficiently [75–77] to save resources during pre-training.
Chapter 7 elaborates more on the robustness and advanced pre-training techniques
of these models. However, developing a new model is more than pre-training. It
requires to find a good architecture and hyper-parameters as well, meaning that the
model has to be trained and re-trained multiple times, which is an extremely com-
putational expensive and power-gulping procedure [78].

2Formerly known as textual entailment.
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Chapter 3

Creation of the AbstRCT Dataset

This chapter introduces the AbstRCT dataset which was created in the context
of this thesis. After devising annotation guidelines, clinical trial abstracts were
extracted via PubMed from the MEDLINE database and annotated with argu-
mentative information. The dataset was used for almost all the experiments in
this thesis. The first version of the dataset comprises mainly trials about glau-
coma treatments, but also hepatitis, diabetes and hypertension subsets. In con-
trast, the second version consists primarily of trials about neoplasm treatments,
where the aforementioned subsets from version one serve as additional test sets.
The dataset comprises three annotation layers. First, annotations about argu-
ment components, such as claims and evidence. Second, argumentative rela-
tions between these components, such as attack and support, and third, Effect-
on-Outcome, e.g., that an intervention increased or decreased a certain outcome.
This chapter describes the results published at the International Conference on
Computational Models of Argument (COMMA-2018) [79] and the European
Conference on Artificial Intelligence (ECAI-2020) [80].

To address AM on clinical trials as a supervised classification problem and experi-
ment with various approaches to extract argumentative information, annotated ex-
amples are required on which the classifier can be trained and evaluated. How-
ever, for AM in the healthcare domain no annotated dataset was available. Thus,
early work of this thesis addressed this problem and covered this gap by creating
a first version of a new annotated dataset of Randomized Clinical Trial abstracts,
with annotations for the different argument components (evidence and claims), the
AbstRCT dataset. The first version of the dataset, AbstRCT v1, with coarse labels con-
tained 919 argument components (615 evidence and 304 claims) from 169 abstracts
comprising 4 different diseases, i.e., glaucoma, hypertension, hepatitis b and diabetes.
The first line of SVM-based experiments was conducted on this collection of trial
abstracts, see Chapters 4.1.1 and 5. Consecutive experiments with neural architec-
tures on AbstRCT v1 showed less promising results, which was attributed to the data
hunger of neural networks and the relatively small size of the dataset. Therefore, in a
second annotation phase, 500 additional trial abstracts were collected, annotated and
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added to the dataset. Moreover, an important part of the argument structure, i.e., the
relation annotation, was missing in the first version of the dataset and thus added
in this second annotation phase. With the addition of the 500 trials, the possibility
of changing the main topic to a more body-part-unspecific disease arose, details are
described in Section 3.1. This was motivated by the necessity to make robust pre-
dictions about the generalizabilty of a model. This way, the topics from AbstRCT v1
could be reused as smaller disease specific subsets functioning as separated test sets
to examine the potential generalizabilty of a trained model. To this newer dataset
with 4198 components and 2601 relations in total is referred to as AbstRCT v2.

Furthermore, after collecting feedback from medical domain experts, I decided to
incorporate information about the observed outcome in the argument structure. I ex-
pected that this additional information makes the argumentative approach to clini-
cal trials more approachable for medical personnel, which usually does not have any
background in argumentation theory, but is very familiar with the meaning and use
of PICO elements. Thus, AbstRCT v2 was annotated in a third phase with Effect-on-
Outcome information. In total, the AbstRCT v2 dataset is composed of the following
three types of annotations:

• Argument Components: Comprising major claims, claims and evidence, where
a major claim is a general statement about properties of treatments or diseases,
a claim a concluding statement, and an evidence/premise an observation or mea-
surement in the study.

• Argumentative Relations: The relations are connecting argumentative com-
ponents to form the graph like structure of an argument. Components can be
either supporting, attacking or partially-attacking other components.

• Effect-on-Outcome: Describes the effect an intervention has on each outcome
(evaluated parameter) of a study. Effects were annotated when they improved,
increased, or decreased, or when there was no difference observable or an out-
come did not occur.

In the following section, the type of data, i.e., Randomized Controlled Trials, and
the collection process is described. Subsequently in Section 3.2, an detailed overview
of the various annotations and phases is given. The inter-annotator agreement (IAA)
for all tasks and cases of disagreement are presented in Section 3.3. Finally in Sec-
tion 3.4, the statistics about both versions of the AbstRCT dataset are detailed.

3.1 Data

In this section, the underlying data contained in the dataset is presented. In par-
ticular, the first part introduces the type of data which was used, i.e., Randomized
Controlled Trials, and gives an understanding of why it was chosen. Subsequently,
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the single phases of the data collection are explained in detail and the specification
for both versions of the dataset are given.

3.1.1 Type of Data

To be in line with EBM guidelines, Randomized Controlled Trials (RCT) were chosen
to be the study types, which would be annotated for creating the dataset. In partic-
ular, I decided to restrict the annotations to the abstracts of the trials following the
argumentation of [5], that "abstracts are the first section readers look at when evaluating
a trial". Also, in related work experiments were limited to trial abstracts, because
practically for literature search, medical researcher just skim through the abstract in
order to evaluate if a study matches the criteria of interest [81]. Moreover, abstracts
are freely accessible, while full text articles may require a paid subscription to un-
lock. The documentation of the study is defined by the CONSORT1 policies, which
guarantee that all necessary information of a clinical trial is stated in the abstract
of the published paper. More specifically, the abstract is structured with multiple
labels: background, objective, methods, results or conclusion. The publication policies
ensure a minimum consensus of provided information, which makes the studies
comparable and ideal for building a dataset.

As stated in Chapter 2.1, EBM builds the decision-making on analysing scien-
tific information from systematic reviews of clinical trials. While clinical trials also
comprise observational studies, in EBM one opts for Randomized Controlled Trials,
which provide more compelling evidence [82] than the observational studies, mak-
ing RCTs the most valuable sources of evidence for the practice of medicine [83]. Al-
beit there are more factors for this decision, one crucial aspect is the random process
of assigning trial participants to at least two comparison groups, which eliminates
selection bias. This randomized allocation of participants allows the use of proba-
bility theory, the likelihood that any difference between the groups was by chance
can be estimated [84] and further exploited in statistical meta-analyses. Generally
in a RCT, one group receives the intervention under assessment, while the other
group, the control group/arm, receives either an established treatment, a placebo or
no intervention at all. The intervention efficacy is determined as a comparison with
respect to the control group(s). Caused by this comparative nature of the underly-
ing data, for AM, this means that the argumentation is also build mostly on relative
statements. Concretely, in the AbstRCT dataset about 70% of the annotated argu-
mentative components contain either an explicitly stated comparison or an implicit
comparison reported as measured values.

1http://www.consort-statement.org/

http://www.consort-statement.org/
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3.1.2 Data Collection

AbstRCT v1

For building the first version of the dataset, the same abstracts were selected, which
were used in the dataset of glaucoma RCT abstracts of Trenta et al. [5]. This dataset is
annotated with PICO elements. Trenta et al. [5] retrieved the RCT abstracts directly
from PubMed2 using three search strategies: (Strategy 1) titles or abstracts contain-
ing the word “Glaucoma” and that specified that the studies were randomized clinical
trials; (Strategy 2) titles containing at least one element of a list of prescription drugs
recognized as those used typically in the treatment of glaucoma or ocular hyperten-
sion and that specified that the studies were randomized clinical trials; and (Strategy
3) titles containing at least one element of a list of surgery procedures, identified as
those typically used in the treatment of glaucoma or ocular hypertension, and that
specified that the studies were randomized clinical trials. Given that in such work
the authors’ goal is different from the primary goals of the thesis – they extract the
above mentioned PICO elements: patient group, intervention and control arms, out-
come measure description and its measurements in the two arms – a new annotation
process for the Argument Mining task is carried out on the same data. Moreover,
given that one goal is to show the portability of the system to RCT abstracts on dif-
ferent diseases, 60 additional abstracts on diabetes, hepatitis and hypertension were
extracted from PubMed, following Strategy 1 in [5].

AbstRCT v2

The second version strongly relies on and extends the previous version of the dataset.
To obtain more training data, 500 additional abstracts were extracted with PubMed
following the same aforementioned strategy. Contrary to AbstRCT v1, for AbstRCT
v2 neoplasm was selected as a topic, assuming that the abstracts would cover exper-
iments over dysfunctions related to different parts of the human body (providing
therefore a good generalization as for training instances). And indeed, the found
trials cover various different types of neoplasm, with breast and lung cancer being
the most prominent types throughout the collected trials. Neoplasm as such can be
either benign or malignant, but the vast majority of articles is about malignant neo-
plasm (cancer). In the context of this thesis, it is still referred to as neoplasm, since
this was the MeSH3 term used for the PubMed query.

2PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) is a free search engine accessing primarily
the MEDLINE database on life sciences and biomedical topics.

3MeSH is a controlled vocabulary thesaurus used for indexing articles in life sciences.

https://www.ncbi.nlm.nih.gov/pubmed/
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3.2 Annotation

In all stages of the dataset creation, annotation was started after a training phase,
where amongst others the component and outcome boundaries were topic of dis-
cussion. Gold labels were set after a reconciliation phase, during which the anno-
tators tried to reach an agreement. While the number of annotators vary for the
three annotation phases (component, relation and Effect-on-Outcome annotation),
the inter-annotator agreement was always calculated with three annotators based
on a shared subset of the data. The third annotator was participating in each train-
ing and reconciliation phase as well.

In the following, the data annotation process of the argument component layer
conducted for AbstRCT v1 and v2, the argumentative relation layer for the whole
dataset of AbstRCT v2, and the Effect-on-Outcome layer also on the whole AbstRCT
v2 is described. More details can be found in the annotation guidelines, which were
released with each version of the dataset. The guidelines defined in [85] for Argu-
ment Mining annotation on persuasive essays serve as a basis for the development
of the AbstRCT annotation guidelines, which are adapted to the clinical trial sce-
nario. The underlying assumption of the guidelines is that a statement or claim is
an assertion that deserves attention [86]. Consequently, to validate if a certain claim
holds under specific conditions, one needs evidence either supporting or attacking
that claim. The guidelines are available together with the AbstRCT v2 dataset here:
https://gitlab.com/tomaye/abstrct.

3.2.1 Argument Components

The argument components as a whole are divided into three parts, one of which are
claims, major claims another, and those which validates their conditions are called
premises, or evidence in the following. In the successive sections, example annotations
of the abstract or parts of it are shown, where claims are written in bold, major
claims are highlighted with a dashed underline, and evidence are written in italics.
An illustration of an annotated abstract is shown in Example 3.2.1. Two annotators
with background in computational linguistics4 carried out the annotation of the 500
abstracts on neoplasm, while the components in AbstRCT v1 were annotated by
three annotators.

Example 3.2.1 Extracellular adenosine 5’-triphosphate (ATP) is involved in the reg-
ulation of a variety of biologic processes, including neurotransmission, muscle con-
traction, and liver glucose metabolism, via purinergic receptors. [In nonrandomized
studies involving patients with different tumor types including non-small-cell lung
cancer (NSCLC), ATP infusion appeared to inhibit loss of weight and deterioration

4In [18], researchers with different backgrounds (biology, computer science, argumentation peda-
gogy, and BioNLP) have annotated medical data for an AM task, showing to perform equally well
despite their backgrounds.

https://gitlab.com/tomaye/abstrct
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of quality of life (QOL) and performance status]. We conducted a randomized clin-
ical trial to evaluate the effects of ATP in patients with advanced NSCLC (stage IIIB
or IV). [...] Fifty-eight patients were randomly assigned to receive either 10 intra-
venous 30-hour ATP infusions, with the infusions given at 2- to 4-week intervals, or
no ATP. Outcome parameters were assessed every 4 weeks until 28 weeks. Between-
group differences were tested for statistical significance by use of repeated-measures
analysis, and reported P values are two-sided. Twenty-eight patients were allocated
to receive ATP treatment and 30 received no ATP. [Mean weight changes per 4-week
period were -1.0 kg (95% confidence interval [CI]= 1.5 to -0.5) in the control group and 0.2
kg (95% CI =-0.2 to +0.6) in the ATP group (P=.002)]1. [Serum albumin concentration de-
clined by -1.2 g/L (95% CI=-2.0 to -0.4) per 4 weeks in the control group but remained stable
(0.0g/L; 95% CI=-0.3 to +0.3) in the ATP group (P =.006)]2. [Elbow flexor muscle strength
declined by -5.5% (95% CI=-9.6% to -1.4%) per 4 weeks in the control group but remained
stable (0.0%; 95% CI=-1.4% to +1.4%) in the ATP group (P=.01)]3. A similar pattern was
observed for knee extensor muscles (P =.02). [The effects of ATP on body weight, muscle
strength, and albumin concentration were especially marked in cachectic patients (P=.0002,
P=.0001, and P=. 0001, respectively, for ATP versus no ATP)]4. [...] This randomized
trial demonstrates that [ATP has beneficial effects on weight, muscle strength, and
QOL in patients with advanced NSCLC]1.

Claims

In the context of RCT abstracts, a claim is a concluding statement made by the author
about the outcome of the study. It generally describes the relation of a new treatment
(intervention arm) with respect to existing treatments (control arm) and is derived
from the described results. An example of a comparative conclusions can be seen in
the Examples 3.2.2 and 3.2.3, where the latter is negated.

Example 3.2.2 [Trabeculectomy was more effective than viscocanalostomy in low-
ering IOP in glaucomatous eyes of white patients.]

Example 3.2.3 [Latanoprost 0.005% is not inferior (i.e., is either more or similarly
effective) to timolol and produces clinically relevant IOP reductions across pedi-
atric patients with and without PCG]

Example 3.2.4 [Brimonidine provides a sustained long-term ocular hypotensive
effect, is well tolerated, and has a low rate of allergic response]

Additionally to the comparative statements, claims can also assert general proper-
ties, e.g., that an intervention was well tolerated or had beneficial effects with re-
spect to an outcome, like in Example 3.2.1 and 3.2.4. These statements can be in a
coordinate structure, which poses the question how to split them. Ideally, the goal
is to make an argument component as small and self-contained as possible. For
coordinated structures, this means to split them into separated components. For
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instance, in Example 3.2.4, this translates to one claim talking about the long-term
ocular hypotensive effect and another one about the low rate of allergic response.
Dividing the conclusions in these smaller claims makes the argumentative structure
more transparent, because it is clear which assertion an evidence supports. While for
a coordination it cannot necessarily be seen at first glance, especially for general out-
comes with multiple aspects like quality of life. In practice, most of these fine-grained
discrimination are prohibited by the syntactic structure of a sentence. Usually con-
junctive and disjunctive coordinations are written in an elliptical manner, as it is
shown in Example 3.2.4. The problem with elliptical coordinate structures is that
dividing them into their single conjuncts, these conjuncts are not self-contained: the
necessary contextual information, usually the omitted subject, is missing, prevent-
ing them to be a stand-alone argument component. This forces the annotators to
treat them as one component increasing the complexity of the subsequent relation
annotation and classification.

Major claims

Major claims are usually defined as a stance of the author in the AM literature. Here,
they are defined more as a general/introductory claim about properties of treatments
or diseases, which is supported by more specific claims. They do not necessarily
occur at the end of an abstract as a final conclusion, but are mostly introduced before
as a general hypothesis to be tested or as an observation of a previous study to be
confirmed. A major claim with the goal of representing an introductory claim is
shown in Example 3.2.1. Given the negligible occurrences of major claims in the
AbstRCT dataset (only 3% of the components are major claims) and the structural
similarity to normal claims, they are merged with claims for the classification task.

Evidence

An evidence in RCT abstracts is an observation or measurement in the study, which
supports or attacks another argument component, usually a claim. Those observa-
tions comprise side effects and the measured outcome of the intervention and control
arm. They are observed facts, and therefore credible without further justifications,
as this is the ground truth the argumentation is based on. Evidence can either state
exact measurements, see for instance Evidence 1-3 in Example 3.2.1, or explicitly ex-
pressed comparisons, as shown in Examples 3.2.5, 3.2.6 and 3.2.8. A common part
in medical argumentation are outcomes which were not observed. For clinical deci-
sion making not only the observed change in outcomes play an important role, but
also the absence of, for example, a side-effect. Section 3.2.3 elaborates more on this
matter. Since these observations of absence are important, they are considered as
evidence in the argumentation, as illustrated in Example 3.2.7.

Example 3.2.5 [Headache, fatigue, and drowsiness were similar in the 2 groups.]
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Example 3.2.6 [Pulse rate was significantly reduced with timolol, but not with latanoprost.]

Example 3.2.7 [No evidence of tachyphylaxis was seen in either group.]

Example 3.2.8 [Dry mouth was more common in the brimonidine-treated group than in
the timolol-treated group (33.0% vs 19.4%)]1, [but complaints of burning and stinging were
more common in the timolol-treated group (41.9%) than in the brimonidine-treated patients
(28.1%)]2.

Example 3.2.9 [Mean (+/-SD) preoperative and 1-year postoperative intraocular pressures
in the 5-fluorouracil group were 26.9 (+/-9.5) and 15.3 (+/-5.8)mm Hg, respectively. In the
control group these were 25.9 (+/-8.1)mm Hg, and 15.8 (+/-5.1) mm Hg, respectively]

Similarly to the aforementioned claims, evidence are often stated as conjunctive
coordinations and it is important that multiple observed measures are annotated as
multiple pieces of the same evidence. Again, the problem of how to divide them into
separated self-contained units arises. In Example 3.2.5, the syntax does not allow
splitting the conjunction and therefore the sentence as a whole is annotated as one
single evidence. Exceptions can be adversative coordinations (e.g., but, except for).
While they are usually also elliptical (see for instance Example 3.2.6), in some cases
they are not and can be seen as a separated evidence, as illustrated in Example 3.2.8.
Here, Evidence 2 is self-contained and can be processed without Evidence 1. In rare
cases, evidence can span multiple sentences, like in Example 3.2.9. As stated before,
the efficacy of an intervention in a RCT is measured as a comparison to the control
group. In Example 3.2.9, each sentence on its own misses the relevant information
to make the comparison from the other group. In terms of argumentation, this is a
linked argument structure, where multiple premises require each other to support
a conclusion. Given the interdependence of the premises in such a structure, it was
decided to annotate them as one component.

3.2.2 Argumentative Relations

In order to identify complex argumentative structures in the data, it is crucial to an-
notate the relations, i.e., directed links connecting the components. Those relations
are connecting argument components to form the argumentation graphs represent-
ing the structure of an argument. Existing approaches in AM try to form a tree
structure with one root node [85]. The approach presented in this thesis is more
data driven, and assumes that a trial abstract contains at least one argument in form
of a tree, where an argument consists of at least one claim which is supported by
at least one evidence. In practice, the average clinical trial in the AbstRCT dataset
has between one and two trees, depending on the number and topic of the claims
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and major claims. In general, the annotated arguments are convergent5 or a combi-
nation of convergent and sequential6 arguments [87]. Removing one evidence does
not weaken the other. Given that claims often have a coordinate structure or make
general statements, i.e., that an intervention was well tolerated, there are various in-
dependent pieces of evidence linked to a single claim making most of the arguments
in the data convergent. In the AbstRCT data, sequential arguments can be seen
mostly in combination with two supporting claims or major claims. There, one claim
supported by evidence supports or attacks another (major) claim. In 19% of the cases,
claims are linked to other (major) claims.

Generally speaking, an argumentative relation is a directed link from an outgo-
ing node (i.e., the source) to a target node. The nature of the relation can be support-
ing or attacking, meaning that the source argumentative component is justifying or
undermining the target argumentative component. Links can occur only between
certain components: evidence can be connected to either a claim (in 92% of the
cases) or another evidence (in 8% of the cases), whereas claims can only point to
other claims (including major claims). The polarity of the relation (supporting or
attacking) does not limit the possibility to what type of component a component can
be connected. Theoretically, all types of relations are possible between the allowed
combination pairs. Practically, some relations occur rather seldom compared to the
frequency of others. For example, in 78% of the cases when an evidence is linked
to another evidence it is an attack or a partial-attack. In rare cases, components can
be unconnected. This can happen for major claims in the beginning of an abstract,
whose function is to point out a general problem, unconnected to the outcome of the
study itself.

As shown in Example 3.2.3, argument components can contain negations. For
many text mining tasks negation detection and scope resolution are important sub-
tasks, because negations entirely change the meaning of a sentence. Especially in
the biomedical domain, the use of negative assertions (in particular, negating nega-
tive phrases, like not inferior) is abundant [88]. This poses further challenges for the
automatic processing of this kind of text. In the case of AM, negations do also play
an important role. Here, the impact is related rather to the correct classification of
the relation than the correct linking of the components. Failing to correctly detect a
negation can culminate in assigning the wrong polarity label, i.e., attack instead of
support. Again, posing a great challenge for the relation classification part of the AM
pipeline on clinical trials.

The annotation of argumentative relations was carried out over the whole dataset
of RCT abstract in the second annotation phase, including the AbstRCT v1 subset
and the newly collected abstracts on neoplasm for AbstRCT v2.

5A convergent argument consists of a claim, which is supported by independent premises/evi-
dence [87].

6Sequential arguments consists of at least two premises/evidence, where one supports the other, which
is supporting the final claim.
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Attack

A component is attacking another one, if it is (i) contradicting the proposition of the
target component, or (ii) undercutting its implicit assumption of significance, e.g.,
stating that the observed effects are not statistically significant. The latter case is
shown in Example 3.2.10. Here, Evidence 1 is attacked by Evidence 2, challenging
the generality of the prior observation.

Example 3.2.10 [True acupuncture was associated with 0.8 fewer hot flashes per day than
sham at 6 weeks,]1 ←−−−Attack

[but the difference did not reach statistical significance (95% CI,
-0.7 to 2.4; P = .3).]2

Further, an assumption is made that when the trial reports allergic reactions or
other adverse effects, the author as a domain expert knows if these observations
are disproportional or acceptable. So, when an intervention is claimed to be well
tolerated, the evidence reporting these effects is considered as supporting unless the
opposite is clearly stated, e.g., in form of severe or other modifiers.

Partial-attack

The partial-attack is used when the source component is not in full contradiction,
but weakening the target component by constraining its proposition. Those can be
implicit statements about the significance of the study outcome, which usually occur
between two claims, as in Example 3.2.11. Attacks and partial-attacks are identified
with a unique class for the relation classification task, because these relations are
underrepresented in the dataset. In the training set only 2,5% are attack and 12% are
partial-attack relations.

Example 3.2.11 [Sentinel lymph node biopsy is an effective and well-tolerated
procedure.]1 ←−−−−−−−−−Partial−attack

[However, its safety should be confirmed by the results
of larger randomized trials and meta-analyses.]2

Support

Contrary to the attack relations, the support relation is not further subdivided. While
an evidence usually provides support for a certain aspect of the more general claim,
it would have been often ambiguous to distinguish between partially and fully sup-
port relations, especially with respect to the impact of observed adverse effects.
Thus, all statements or observations justifying the proposition of the target com-
ponent are considered as supporting the target (even if they justify only parts of
the target component). In Example 3.2.1, all the evidence support Claim 1. Exam-
ple 3.2.12 showcases this exemplary for Evidence 3.

Example 3.2.12 [Elbow flexor muscle strength declined by -5.5% (95% CI=-9.6% to -
1.4%) per 4 weeks in the control group but remained stable (0.0%; 95% CI=-1.4% to +1.4%)
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Class #outcomes %
Improved 831 25
Increased 765 23
Decreased 782 23
NoDifference 897 27
NoOccurrence 76 2
Total 3351 100

TABLE 3.1: Statistics of the outcome dataset. Showing the numbers
of Improved, Increased, Decreased, NoDifference and NoOccurrence

classes independent of the disease-based subsets.

in the ATP group (P=.01)]3 −−−−→Support [ATP has beneficial effects on weight, muscle
strength, and QOL in patients with advanced NSCLC]1

3.2.3 Effect-on-Outcome

Argumentative structure annotations alone are for most domain-specific AM use
cases sufficient. In the case of EBM, where one wants to facilitate the analysis process
of trials by clinicians, further medical annotations can be beneficial. For this reason,
I decided to annotate the effect an intervention has on an outcome (one of the PICO
elements), e.g., if the outcome was increased, decreased or was not affected. Contrary
to Lehman et al. [89], which also use these three labels7, two extra labels are added
in the here presented work, which I consider essential to fully cover the reports
about an outcome. These labels are (i) the NoOccurrence label, when an outcome,
e.g., a side effect, did not occur, and (ii) the Improved label for cases in which it is
not clear from the text if the beneficial effect is due to a decrease or increase in the
measured value of the outcome. I consider the addition of the NoOccurrence label
important for medical argumentation, even though these reports are less frequent.
For decision-making, it is not only relevant which effects were observed, but also
which (side-)effects did not occur.

Note that I decided to not annotate the data with the other PICO elements.
Firstly, because argumentative components contain information about the trial pop-
ulation only in roughly 1-2% of the cases. And secondly, there exists already a larger
dataset specialised on PICO annotations [6]. Before the annotation of the Effect-
on-Outcome was started, it was assessed whether the argumentative components
contain enough description of those effects to have a comprehensive coverage in the
AbstRCT v2 dataset. Theoretically, following the CONSORT statement [90] authors
should report all PICO elements in the abstract. I found that claims contain approx-
imately in 72% of the cases at least one PICO element (P: 2%, I/C: 51%, O: 47%) and
evidence contain it approximately in 87% (P: 1%, I/C: 27%, O: 72%) of the cases. For
the annotation, explicit mentions of effects on an outcome are considered. From the

7In my work, the significantly from the labels is dropped, because even though the earlier implicit
assumption of significance is made, one does not know beforehand how many of the outcomes are
significant, since the model cannot take components undercutting this assumption into account.
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4198 argument components in AbstRCT v2, 2195 fulfilled this criteria. The others
report either only the measured numerical values of outcomes (704) making the ef-
fect implicit, or general statements without an indication of a trend, e.g., that some
side effect was mild or common. Moreover, many components, especially claims, give
conclusive statements, e.g., that a treatment is safe or efficient, without listing the spe-
cific outcomes. Note that the annotation (and later the classification) is even more
complex as about 50% of the Effect-on-Outcome containing argument components
report either the outcome or the intervention in an abbreviated form. This trend
is similar to the distribution of abbreviations in all argument components, where
about 45% contain an abbreviation of either the intervention, or outcome or both.
The detailed annotation statistic is reported in Table 3.1.

Increased/Decreased

These labels are used when it is stated that the outcome was higher, like in Exam-
ple 3.2.13, or lower after an intervention, like in Example 3.2.13 and 3.2.15. Gen-
erally, it should not contain a sentiment, like better score. In rare cases, where an
outcome was reported as worse, annotation guidelines were set to infer the value,
e.g., a worsened side-effect usually means an increased/more intense and not a de-
crease occurrence. There were only a handful of cases were this was not achievable
without fundamental medical expertise. These examples have been discarded.

NoDifference

An effect on an outcome is labeled as NoDifference, when there was no change in the
outcome or when the two treatments resulted in similar values, i.e., there was no
difference in the outcome between the two treatment arms. The latter case is shown
in Example 3.2.13, where the response rates of both interventions are similar.

Example 3.2.13 Raltitrexed showed similar [response rates]NoDifference to the de
Gramont regimen, but resulted in greater [toxicity]Increased and inferior [quality of
life]Decreased.

NoOccurrence

This label is used when an outcome, usually an adverse effect, was not observed,
as shown in Example 3.2.14. Moreover, this example illustrates the division of co-
ordinate structures in a single component. Contrary to argument components, the
problem with ellipses preventing the division is lower, because the annotation units
are smaller.

Example 3.2.14 No cases of drug-related [neutropenic fever]NoOccurrence,
[sepsis]NoOccurrence, or [death]NoOccurrence occurred.
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Improved

This label is used when the described outcome explicitly had a beneficial effect and
no information if the measured value increased or decreased is provided, like in Ex-
ample 3.2.15. There, two problems come together. First, bleb morphology, like quality
of life, is a general term comprising various subscales, for instance, bleb wall reflec-
tivity, visibility of drainage route or presence of hyper-reflectivity area. Second, the effect
description better does not allow any conclusions about the measured values without
concrete expert knowledge about which subscale should be increased or decreased
to result in a better bleb morphology. Thus, the only certain information, which can
be drawn from this statement, is that the bleb morphology improved.

Example 3.2.15 Ologen resulted in a lower long-term [postoperative IOP]Decreased,
a better [bleb morphology]Improved, and fewer [complications]Decreased.

3.3 Inter-Annotator Agreement

In total for all tasks, three annotators were participating in the initial annotation
process. During the training phase the guidelines were refined in multiple rounds
of discussion between all annotators. After the training phase, where the annota-
tors made themselves familiar with the tasks and the data, in order to validate the
annotations, the inter-rater reliability or inter-annotator agreement was calculated
on a reserved and previously unseen subset of the data. The subset was sampled
randomly from the collected data and each rater annotated the data independently.
While the subsequent full annotation of each subtask was not always conducted
with all three annotators, the corresponding IAA subset was always annotated by
all three annotators and the agreement was calculated respectively.

As the statistical measure for assessing the reliability of the annotations, Fleiss’
kappa [91] was used, a generalization of Scott’s pi. It is suitable for a finite nominal-
scale and contrary to the latter, it can be used for more than two raters. Another
plausible measure would have been Krippendorff’s alpha. While it is more flexible
and allows other scales and missing data, the AbstRCT data is purely nominal and
complete. Furthermore, having a highly imbalanced dataset could lead to instances
being correctly classified by chance. Both measures control this providing a more
reliable agreement score. While Krippendorff’s alpha is based on the observed dis-
agreement corrected for disagreement expected by chance, Fleiss’ kappa considers
the observed agreement corrected for the agreement expected by chance [92]. In
the case of complete nominal data8, both measures are similar in representing the
reliability [92, 93].

8In the AbstRCT dataset, all N observations are assessed by all n raters, which makes the IAA
subsets complete per definitionem.
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Argument Components For this task, the IAA was calculated for token-level an-
notation. This way not only the label mismatch between claim and evidence is consid-
ered, but also the disagreement in boundary annotation. IAA among the annotators
has been calculated on 30 abstracts, resulting in a Fleiss’ kappa of 0.72 for argumen-
tative components and 0.68 for the more fine-grained distinction between claims and
evidence. Both values are higher than 0.61 meaning substantial agreement for both
tasks [94].

Argumentative Relations Contrary to the other tasks reported in this thesis, here,
the IAA was calculated not on token-level but considering each argument compo-
nent as a unit. Annotation was considered as agreed, when both, the relation label
and the assigned target component, were the same. IAA has been calculated on
the same 30 abstracts annotated in parallel by three annotators (the same two an-
notators that carried out the argument component annotation, plus one additional
annotator). The resulting Fleiss’ kappa was 0.62, meaning substantial agreement.

Effect-on-Outcome Similarly to the argument component annotation, the agree-
ment was calculated on token-level. Since the Effect-on-Outcome descriptions occur
only on a subset of the argument components, the number of abstracts included in
the IAA calculation was increased to 47. This resulted in a Fleiss’ kappa of 0.81,
which means almost perfect agreement [94].

3.3.1 Disagreement

In the following, the observed disagreement between the annotators and the associ-
ated difficulties, which were examined in the reconciliation phase, are discussed.

For the argument component annotation, raters disagreed on the exact determi-
nation of the boundaries. For example, conjunctive adverbs like however or in general
can play an important role. In Example 3.3.1, in general is an important modifier
which should be included in the component. Also, for phrases like this suggests, it
can be argued that they are an important part of the argument component, because
they underline the conclusive function of a claim and therefore serve as potential
discriminators, in particular for cases where it is not directly clear if the statement is
an observed outcome or a drawn conclusion. This is mostly the case when no exact
measurement or p-value is stated, as in Example 3.3.2 for instance.

Example 3.3.1 In general, the tolerance to medication was acceptable.

Example 3.3.2 Latanoprost provided greater mean IOP reduction than did Brimoni-
dine.

Further common disagreement was observed between claims and major claims,
which can be very similar in their function as a (general) summary or conclusion.
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This strengthened me in the decision to merge these two labels later in the classifi-
cation. Another common conflict was the annotation of too general or co-referring
components, which would be not self-contained after removing the context.

Concerning the relation annotation, most of the disagreement was not in anno-
tating the relation label, but in assigning the target component, with an exception
for the attack and partial-attack labels. As for the claims and major claims, this fur-
ther endorsed the label merge for classification. Linking components lead to conflict
in cases where multiple claims were very similar. One could either see a sequential
structure if one considers one of the claims less specific, or two separated claims,
which share parts of their evidence. In the reconciliation phase, it was decided
against the latter option to avoid this kind of divergent argument structures.

For the Effect-on-Outcome annotation, one of the main disagreements between
the annotators was regarding how to annotate enumerations separated by a back-
slash (e.g., anthralogia/myalgia); whether to annotate both as one outcome or anno-
tate them as separated entities. It was decided to label them separately. Similar to
this, the coordination of outcomes (e.g., mood, QOL or healthcare utilization) were
also labeled like that, unless the separation implicates losing information related to
the outcomes (e.g., liver and cardiac toxicities).

Another topic of discussion was about the inclusion of extra information/at-
tributes relevant to the outcome or not, i.e., setting the exact boundaries. This led
to further discussion on what is considered relevant information. In the end, it was
decided to only include the tokens that directly affect the semantic of the outcome
(e.g., overall QoL, global QoL scores, emphirreversible toxicity). The tokens left apart
were those that do not change the semantic of such (e.g., severity of other toxicities,
rating of cosmetic results, quality adjusted survival time). A full sentence is provided
in Example 3.3.3.

Example 3.3.3 Ratings of [cosmetic results]Decreased decreased with time, in line with
clinical observations of long-term side-effects of radiotherapy.

As previously discussed, in the dataset there are a few sentences that present two
different polarities at the same time, for instance as shown in Example 3.3.4. Most
of them are a comparison between the intervention and the control group where the
outcome has different results for each. This was the main disagreement between
the annotators, whether to annotate the outcome twice with each different result or
to follow one of the group results. Ultimately, it was decided to always follow the
intervention group results.

Example 3.3.4 Men in the control group had significant increases in
[fatigue scores]NoDifference from baseline to the end of radiotherapy (P=0.013), with
no significant increases observed in the exercise group (P=0.203).

Accordingly, with respect to Example 3.3.4, control group qualifies as the baseline and
exercise group as intervention, meaning that the outcome fatigue scores is annotated as
NoDifference. These cases pose additional challenges to the effect classifier.
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Dataset #Evi #Claim #MajCl #Sup #Att
Neoplasm 2193 993 93 1763 298
Glaucoma 404 183 7 334 33
Hepatitis 80 27 5 65 1
Diabetes 72 36 11 44 8
Hypertension 59 26 9 53 2
Total 2808 1265 125 2259 342

TABLE 3.2: Statistics of AbstRCT v2. Showing the numbers of ev-
idence, claims, major claims, supporting and attacking relations for

each disease-based subset, respectively.

3.4 Dataset Statistics

To summarize, Table 3.2 reports on the total statistics of the argumentative compo-
nent and relation annotation in the AbstRCT v2 dataset. The detailed statistics of the
annotated argumentative components in AbstRCT v1 can also be seen in Table 3.2,
i.e., as the Glaucoma, Hepatitis, Diabetes and Hypertension subset, which come from the
first version of the dataset. Table 3.1 reports on the Effect-on-Outcome annotations
of the final dataset.

Concerning the argumentative annotations, there are about as half as many claims
as evidence for every data split. While the average rate of evidence to claim is 2.2,
the average claim has 1.87 components pointing at it. The difference is due to uncon-
nected pieces of evidence and pieces of evidence pointing at other pieces of evidence,
which are in total 22% of all snippets annotated as evidence. Major claims and attack
relations are not as balanced in their distribution over the various data splits, mostly
because of their rare occurrence in general. As previously stated, the average trial
contains one to two argument graphs in form of trees, with the highest average of
1.98 arguments on the neoplasm subset and the lowest with 1.3 on the hypertension
subset.
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Chapter 4

The Argument Mining Pipeline for
Clinical Trials

This chapter introduces the Argument Mining pipeline for clinical trials I de-
fined. The approaches addressing the two building blocks, i.e., argument com-
ponent detection and relation classification, are introduced. Methods for the
argument component detection include SVMs with Tree Kernels, RNNs with
various word embeddings and fine-tuned transformer models. The relation clas-
sification task is addressed in two ways, i.e., as a sequence classification and
multiple choice problem. For both approaches various transformer models are
compared and evaluated against reference models from the AM literature. The
obtained results are reported together with an in-depth error analysis. This chap-
ter comprises the work published at the International Conference on Computa-
tional Models of Argument (COMMA-2018) [79] and the European Conference
on Artificial Intelligence (ECAI-2020) [80].

As stated in Chapter 2.2, the two standard tasks in AM are the argument compo-
nent detection and the relation prediction/classification. While there are attempts
to model these two tasks end-to-end [36], they are usually tackled separately. In
the context of this thesis, a full Argument Mining pipeline is proposed, which com-
prises both tasks, the argument component detection and relation classification. This
pipeline serves as the basis for further data augmenting extensions, as they are de-
scribed in the Chapters 5 and 6. Figure 4.1 illustrates the proposed pipeline with the
two major stages. The first stage is the identification of arguments within the input
natural language text, in this case a RCT. This step may be further split in two differ-
ent stages such as the detection of argument components (e.g., claim, evidence) and
the identification of their textual boundaries. First experiments focused on the de-
tection of arguments without paying detailed attention to the boundaries. This early
work is presented in Section 4.1.1. Afterwards in Section 4.1.2, later experiments for
detecting argument components, mainly based on neural networks, are showcased
which scrutinize also component boundaries.
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FIGURE 4.1: Illustration of the Argument Mining pipeline on clinical
trials.

The second stage of the pipeline consists of predicting what are the relations,
i.e., attack and support, holding between the arguments identified in the first stage.
This stage is also in charge of predicting, in structured argumentation, the internal
relations between the argument components, i.e., the connection between the evi-
dence and the claim [85]. Section 4.2 explains the investigated ways to determine
the argumentative structure and discussed the results of the different approaches.

4.1 Argument Component Detection

Argument component detection is typically addressed as a supervised text classifi-
cation problem: given a collection of sentences, each labeled with the presence/ab-
sence of an argument component, the goal is to train a Machine Learning classifier
to detect the argumentative sentences. Formally, given a dataset D = {(xj, yj)}N

j=1,
where xj is a sentence and yj is the corresponding label (whether the sentence con-
tains an argument or not), the goal is to learn a discrimination function f : X → Y
to infer the label from the input text. Such a task can be addressed by a variety of
Machine Learning algorithms [13] and is evaluate in Section 4.1.1. Additionally, to
include boundary detection, the argument component detection can be formulated
as a sequence tagging/labeling problem. Here, xj is not a single sentence with one
label, but a sequence of tokens and yj is the sequence of the corresponding labels.
The target labels follow the BIO-tagging scheme, stating for each token that it is ei-
ther the Beginning, Inside, or Outside of an argumentative component. Sequence tag-
ging problems can be addressed with recurrent or attention-based neural networks.
Representative models for both solutions are described in Section 4.1.2

4.1.1 Argument Component Detection with Tree Kernels

The method proposed in this section aims at distinguishing argumentative from
non-argumentative components in natural language clinical trials and classifying
the detected argumentative components into evidence and claims. As the first line
of experiments conducted in the context of this thesis, I decided to rely on an existing
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FIGURE 4.2: Constituency trees for two sentences from the corpus
containing claims. Boxed nodes are common elements between the

two trees.

system and tailor it to cope with the clinical data scenario. More precisely, a refined
version of MARGOT [95] is provided, so that the system is able to detect evidence
and claims from clinical data.

MARGOT for Clinical Trials

MARGOT1 is an online Argument Mining server, which was designed to make Ar-
gument Mining easily accessible outside of the AM research community, and was
trained on a corpus consisting of 547 Wikipedia articles [96, 97]. It was then eval-
uated on datasets coming from diverse genres such as persuasive essays and social
media discussion threads, with encouraging results [95]. MARGOT addresses the
first stage of the Argument Mining pipeline, in particular argument component de-
tection. It carries out both claim and evidence detection, thanks to a SVM classifier
that uses bag-of-words and constituency trees with subset Tree Kernels [98].

As mentioned in Section 2.3, in Natural Language Processing employing bag-
of-words is a very common approach to represent sentences. This solution exploits
lexical information, since each word in the vocabulary is a feature for the classifier,
that is typically a Support Vector Machine. The method can be generalized to n-
grams rather than just words. Despite its simplicity, this approach is often a strong
baseline in Argument Mining [13, 95]. The methodology implemented in MARGOT

1MARGOT: Mining Arguments from Text. http://margot.disi.unibo.it

http://margot.disi.unibo.it


42 Chapter 4. The Argument Mining Pipeline for Clinical Trials

consists instead in a kernel machine that exploits a Tree Kernel (TK) to measure sim-
ilarity between examples, namely between constituency parse trees. The key idea
behind this approach is that the structure of a sentence is typically highly informa-
tive of the presence of an argument, or part thereof, within the sentence itself [99].
TKs aim to compare two trees by considering common fragments. An example of
two constituency parse trees and their shared fragments is illustrated in Figure 4.2.
Different definitions of fragments induce different TK functions [100].

In this line of experiments, as in the original MARGOT implementation, SubSet
Tree Kernel (SSTK) [98] are employed, which offers a reasonable compromise be-
tween expressiveness and efficiency [95]. In SSTK, a fragment can be any sub-tree of
the original tree, which terminates either at the level of pre-terminal symbols or at
the leaves. The kernel between two trees Tx and Tz is evaluated as:

K(Tx, Tz) = ∑
nx∈NTx

∑
nz∈NTz

∆(nx, nz) (4.1)

where NTx (respectively, NTz ) is the set of nodes of tree Tx (respectively, Tz), and
∆(nx, nz) measures the score nodes nx and nz, depending on the chosen definition
of fragments. Given the (tree) kernel function K, the discrimination function f is
defined as:

f (Tx) =
N

∑
i=1

αiyiK(Txi , Tx) (4.2)

where N is the number of support vectors, and αi is the (learned) coefficient of the
i-th support vector. In our case, the problem is formulated as a binary classification
task, i.e., a sentence contains an argument component or not, therefore yi ∈ Y =

{±1}.
A very interesting characteristic of TKs is that the similarity measure implicitly

allows to define a rich and expressive feature space, that basically consists of all the
possible fragments that can be encountered in the parse tree.

Experimental Setup

To experiment with the proposed approach to extract argumentative information
from clinical data, the first version of the AbstRCT corpus was built, with annota-
tions for the different argument components (evidence and claims). This early ver-
sion of the corpus does not comprise annotations of argumentative relations and is
limited to the 169 abstracts mainly about glaucoma, for further details see Chapter 3.
The model was trained on a glaucoma subset comprising 79 abstracts. From the re-
maining 30 abstracts about glaucoma treatments, the first test set was constructed.
The remaining topics, i.e., diabetes, hepatitis and hypertension, provide three addi-
tional out of domain test sets with 20 abstracts, respectively. These four test sets get
finally merged into the fifth, the mixed, test set.

The data was pre-processed (tokenisation and stemming), and the constituency
parse tree for each sentence was computed. Furthermore, the bag-of-words features
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with term frequency–inverse document frequency values were also computed. Tf-
idf assigns higher weights to more distinctive words, thus lowering the impact of
terms that are common among all documents, where in the case of clinical trial ab-
stracts a document corresponds to a sentence. All the pre-processing steps were
performed with Stanford CoreNLP, version 3.5.0.

Experiments were conducted with three different classifiers: (i) SSTK exploiting
constituency parse trees, (ii) SVM with BOW features weighted by tf-idf, (iii) a kernel
machine combining the two approaches. Two datasets were prepared to train two
binary classifiers for each approach: one for claim detection, and one for evidence
detection. Both training sets only differ in the labels, which were assigned to each
sentence.

For tuning the hyper-parameter C (SVM regularization parameter) and the decay
factor for the tree kernel, a grid search using 5-fold cross validation was executed
optimizing for the F1-score. The SVM regularization parameter C was selected from
{0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.3, 1.5, 3, 5, 10, 30, 50} and the decay factor for the
tree kernel from {0.1, 0.4, 0.7, 1.0}. Substituting the SSTK with a Partial Tree Kernel
(PTK) [101] did not improve the results.

Results and Discussion

Evaluation of the models was conducted on multiple datasets, as described in the
previous section. The binary F1-score was computed for the tasks of (1) evidence
detection, (2) claim detection, and (3) argumentative component (evidence or claim)
detection. Results are shown in Table 4.1.

Glaucoma Diabetes Hepatitis HTN Mixed

Evidence

BOW 0.84 0.79 0.74 0.80 0.80
SSTK 0.86 0.79 0.75 0.80 0.80
SSTK + BOW 0.86 0.79 0.75 0.80 0.80

Claim

BOW 0.75 0.68 0.62 0.64 0.65
SSTK 0.79 0.73 0.66 0.70 0.72
SSTK + BOW 0.79 0.74 0.66 0.70 0.72

Argumentative
Component

BOW 0.82 0.74 0.70 0.72 0.74
SSTK 0.86 0.76 0.71 0.74 0.78
SSTK + BOW 0.86 0.76 0.71 0.74 0.78

TABLE 4.1: Results for the glaucoma, diabetes, hepatitis, hyperten-
sion (HTN) and mixed test set on the task of evidence, claim and ar-

gumentative component detection. Results are given in F1 score.

The model behavior is different for claim detection and for evidence detection.
As for claim detection, the best performance is still on the glaucoma set with 0.79
F1 score and 0.75, respectively. But here, the difference between the SSTK and BOW
model is significantly higher. This suggests that claims have a distinctive syntactic
structure which can be learned, and that is useful to distinguish them from non-
argumentative sentences and evidences. This is true also when the test set comprises
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the same topic as the training set and thus the lexical approach should have a natu-
ral advantage. Furthermore, when comparing the results from the glaucoma test set
with the other test sets, the performance of the SSTK does not decrease as strongly
as the one of the BOW model, e.g., -0.07 vs. -0.10 F1 score on the mixed dataset (joint
test set over all domains). Differently from the case of evidence detection, here, the
BOW relies more on specialized medical terminology, which differs with the indi-
vidual test set domain, whereas TKs generalize better on out-of-domain data. The
combined model delivers similar results compared to the pure SSTK model. Again,
as for evidence detection, this suggests that the lexical information representing the
characteristics of claims is also contained in the syntactic representation. For evi-
dence detection, all models performed best on the glaucoma test set. This is intu-
itive, since in that case training and test domains coincide. Comparing the differ-
ent models on this test set, the SSTK performed slightly better with 0.86 F1 score,
but still the difference to the BOW baseline (0.84 F1 score) is only marginal. This
difference becomes even smaller on the hepatitis dataset and vanishes completely
for diabetes and hypertension. Thus, it can be concluded that evidence is not that
highly distinctive with respect to syntactic structure from non-argumentative sen-
tences or claims, while it can be easily identified by lexical information. Moreover,
this lexical information is domain independent, otherwise the performance of the
BOW model would strongly decrease with respect to the SSTK on the other test sets.
Therefore, the distinctive vocabulary is likely to be related to the domain of statistical
evaluation, rather than to medical terminology, as one could expect. These observa-
tions will need further investigation. Interestingly, the combination of the syntactic
(SSTK) and lexical (BOW) approach did not increase the results, meaning that those
two models share the equal amount of information representing the characteristics
of evidence, and that the two models generalize equally well.

The results of the third classification problem, the detection of argumentative
sentences, reflect the above described findings. The best performance for each model
was obtained on the glaucoma set. The SSTK model outperforms the BOW baseline,
but a combination of TKs and BOW does not increase the results. Again, the TK
generalizes better over the different test set domains.

Error Analysis Comparing the outcomes of the experiments for claim and argu-
mentative component detection tasks, the best models for the glaucoma and mixed
test set perform in a comparable range. In theory, the performance for the combined
task should be lower, since the claim detection has a significant lower F1 score than
the evidence detection. This can be explained when looking at the errors made by
the claim classifier. A sizable amount of false positives, sentences which are classi-
fied as containing a claim, but actually do not, were sentences containing evidence.
When merging together evidence and claims into argumentative components, those
false positives become true positives, increasing the overall results.
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1. predicted label: Claim; correct label: NoArgument
The goal of this research is to evaluate efficacy and safety of herbal medicine
as compared to allopathic medicine in patients suffering from hepatitis B.

2. predicted label: NoArgument; correct label: Claim
The authors tested the hypothesis that a valsartan/cilnidipine combination
would suppress the home morning blood pressure (BP) surge ( HMBPS )
more effectively than a valsartan/hydrochlorothiazide combination in pa-
tients with morning hypertension, defined as systolic BP (SBP)≥135 mm Hg
or diastolic BP ≥85 mm Hg assessed by a self-measuring information and
communication technology-based home BP monitoring device more than
three times before either combination’s administration.

3. predicted label: Evidence; correct label: NoArgument
Among 426 participants (53% male, median age 35 years, median CD4 count
19 cells/µL), 31 developed hepatotoxicity (7.3%).

4. predicted label: Evidence; correct label: NoArgument
Overall, there were no significant differences in pregnancy-induced hyper-
tension across supplement groups.

5. predicted label: NoArgument; correct label: Evidence
No patients developed additional resistance mutations throughout the
study period.

TABLE 4.2: Sample classification errors for the argument component
detection using SVMs with a TK.

Error analysis on claim detection indicates that a significant amount of false pos-
itives are sentences describing the objective of the RCT (Table 4.2, Example 1). This
might be due to the comparative nature of the sentences, since comparative state-
ments are common among claims. Many false negatives have complex syntactic
structures (Example 2), where either the whole sentence is a claim, or it contains
multiple fragments with claims. Those complex structures might have been missing
from the training set.

For evidence classification, many sentences describing the participants of the
studies (Example 3) have been misclassified as evidence by all approaches. This
might be due to their sub-clauses containing statistical descriptions, as many pieces
of evidence have too. Similarly, sentences describing the initial condition of the dif-
ferent groups (Example 4) were confused as evidence. The problem here is that
those sentences are highly context-dependent: Example 4 could be a valid evidence,
if the context was the description of the results and not the description of the ini-
tial conditions. There is no way to distinguish those cases without considering a
larger context. Other misclassified evidence are negated sentences like Example 5,
reporting the non-existence of an effect.

4.1.2 Component and Boundary Detection with Neural Architectures

Consecutive experiments with neural networks on the AbstRCT v1 corpus showed
the necessity for a larger dataset, for more details I refer the reader to the discussion
of the results in Chapter 5. To fulfill this requirement, more data was collected and
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annotated, resulting in the release of AbstRCT v2 (see Chapter 3 for more details
about the dataset). Almost tripling the size of the corpus, in the second line of exper-
iments neural networks were applied for the argument component detection. Refor-
mulating the problem as a sequence tagging/labeling task opens the potential to di-
rectly integrate and have a closer look at the boundary detection as well, i.e., which
parts of a sentence are the smallest argumentative units. As I will detail in Chap-
ter 9.2, most of the AM approaches classify the type of component assuming the
boundaries of argument components as given. Thus, to merge the component clas-
sification and boundary detection into one problem, the component detection is cast
as a sequence tagging task, as illustrated in Figure 4.1. Following the BIO-tagging
scheme, each token should be labeled as either being at the Beginning, Inside or
Outside of a component. As there are two component types in AM, this translates
into a sequence tagging problem with five labels, i.e., B-Claim, I-Claim, B-Evidence,
I-Evidence and Outside. To model the temporal dynamics of sequence tagging prob-
lems, usually Recurrent Neural Networks (RNN) are used. In the experiments, dif-
ferent combinations of RNNs are evaluated with various types of pre-trained word
representations, which are introduced in the subsequent section. Each embedding
method is combined with uni- or bidirectional LSTMs or GRUs with and without a
CRF as a last layer. With the rise of attention-based transformer models, I modified
them to suit the sequence tagging problem and overcome the common problems of
recurrent architectures, such as long range dependencies. These were the first ex-
periments on token level classification in AM by fine-tuning different transformer
models.

Word Embeddings

There are two ways to create an input word representation for sequence modelling.
One way is to look up the representation from pre-trained embeddings. This static
method has the advantage that one does not need to train its own embeddings.
However, the vocabulary is limited, and the context of the word is not considered.
State-of-the-art embeddings are generated dynamically from the context of the tar-
get word based on pre-trained Language Models [52, 54, 59]. In the experiments,
both kinds of embeddings are considered. Furthermore, since the AbstRCT data
is from the medical domain containing very specific terminology which might not
be covered in the vocabulary of general word embeddings, different approaches to
overcome this problem were examined.

Static Embeddings As for the static embeddings, GloVe embeddings [50] are com-
monly used. They are based on aggregated global word-word co-occurence statistics
and trained on Wikipedia and the Gigaword 5 corpus. Words are considered to be
the smallest unit. In the experiments, the 100 dimensional version is used. Extended
dependency-based skipgrams, short extvec [102] are trained also on Wikipedia, but



4.1. Argument Component Detection 47

make use of structural information coming from dependency graphs. The embed-
ding size is 300 dimensions. Contrary to these embeddings on word level, fast-
Text [51] embeddings work on a sub-word level and are commonly used to over-
come the out-of-vocabulary problem. They encode sub-word information based
on a character n-gram model, and use position weights to predict words context
dependent. The 300 dimensional version pre-trained on the Common Crawl and
Wikipedia is used. Like fastText, Byte-Pair embeddings BPEmb [103] use sub-word
segments to increase the capability of their vocabulary and might, because of that,
be a better choice for a setting with unusual and specific terminology. Here, the
segmentation is modelled with an iterative merge operation over the most frequent
symbols, where a symbol is the output of the last merge operation starting on char-
acter level. They are trained on Wikipedia and embed words into a 100 dimensional
vector.

Dynamic Embeddings Moving to the dynamically generated embeddings, Em-
beddings from Language Models (ELMo) [52] are generating the representation of a
word by contextualizing it with the whole input sentence. They use a bi-directional
LSTM to independently train a left-to-right and right-to-left character-based LM.
The vectors of these models are concatenated to form a single contextualized repre-
sentation of the input word. For the here presented work, the ELMo model trained
on PubMed was used to have a model which is trained on the same type of data
as the target data, i.e., the AbstRCT corpus. For the same reason, the on PubMed
trained Contextualized String Embeddings (FlairPM) [54], another character-based
Language Model, were used. There exists also a general one (FlairMulti) trained
on a mix of web content, Wikipedia, subtitles and news, which was used as a di-
rect comparison to investigate the impact of domain specific pre-training. In these
embeddings, word representations are concatenated vectors of hidden states in the
bidirectional RNN Language Model. A word with its context sentence is given as
input into the LM. To encode the word into a contextualized representation, the for-
ward hidden state of the last character of the word and the backward hidden state of
the first character of the word are concatenated. The third dynamic embedding are
Bidirectional Encoder Representations from Transformers (BERT) [59]. Here, the bi-
directional representation is learned jointly with a transformer architecture, which
will be described later in this section. The Language Model considers sub-words
and position of the word in the sentence to give the final representation of a word.
BERT is pre-trained on a concatenation of the BooksCorpus and English Wikipedia.
For the experiments, the BERTbase model was used, which encodes words into a 768
dimensional vector.

Recurrent Neural Networks

As already mentioned, sequence tagging is the task of assigning a label to each token
of an input sequence. To model the temporal dynamics of such sequences, Recurrent
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Neural Networks are usually used. Those networks take information from past time
steps into account. The sequence of vectors is processed one by one and the hidden
state of a previous time step functions as the memory for the already processed se-
quence. Naturally, this repeated process of concatenating the whole memory state
with the current state and passing in through an activation function, leads to an
information loss over longer distances. That is why RNNs have only a short-term
memory. To counter this effect, gates are integrated into the RNN to regulate the
information flow, i.e., which information is relevant to keep and which can be dis-
carded. The two most commonly used gated RNN architectures nowadays are the
LSTM [53] and GRU [104]. The LSTM is a cell consisting of three gates (forget, in-
put and output gate) and outputting two vectors (cell state and hidden state). The
cell state routes the information flow in the LSTM, while the hidden state is used to
calculate the model predictions. Concerning the various gates, the input gates deter-
mines which part of the input vector of the current step is relevant. The forget gate
regulates the information with respect to what is kept in the memory. The output
gate is responsible for the hidden state output. Contrary to the LSTM, the newer
GRU has only two gates, i.e., a reset gate and an update gate, but builds on the same
principles as the LSTM. The update gate has a similar function as the forget and
input gate of the LSTM. It determines which parts of the current input are relevant
and which information should be kept in the memory. The reset gate decides which
information from the previous step should be forgotten. Since the hidden state of a
GRU take both roles, the transfer of memory information and providing the hidden
state for calculating the prediction, an output gate as for the LSTM is not required. In
a direct comparison, the GRU requires fewer computations, but generally the perfor-
mance of both architectures is similar and might only differ for certain tasks. For this
reason, both model architectures are included in the here presented experiments.

As previously mentioned the tagging scheme used to encode the label informa-
tion is the BIO-tagging scheme. This means that ideally after a B-token an I-token
should follow. Modelling these constraints falls under structured prediction. Here,
token-wise classification is not done independently of each other, but the full struc-
ture is predicted context dependent as a multivariate probability distribution. Usu-
ally, statistical graphical models are used to represent the distribution and to infer
the most probable sequence of labels. In general, there are two families. One, gener-
ative models, such as the Hidden Markov model (HMM), which model the problem
as a joint distribution P(y, x). And two, discriminative models, such as Conditional
Random Fields (CRF) [105], which model the problem as a conditional probability
distribution P(y|x). In the context of this thesis, CRFs are used, since they yield
higher performance due to not having the need to model the distribution of P(x).
CRFs can be seen as a sequential extension of the Maximum Entropy model [105].
Simply speaking, they consider the predicted label of the other time steps and de-
code into the most probable sequence of labels. For this reason, a CRF is build on
top of the RNN to enforce structured predictions in the here presented experiments.
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Transformer Models

Transformer architectures have recently advanced the state-of-the-art for multiple
NLP tasks [59, 61]. As described in Chapter 2.3, a transformer [57] is a combina-
tion of an encoder, which maps an input sequence (x1, ..., xn) into a hidden repre-
sentation, and a decoder, which translates the hidden representation into a target
sequence (y1, ..., ym). The encoder consists of N stacked layers, where each layer
consists of two sublayers. The first layer is a multi-head self-attention layer, which
gets concatenated WordPiece token embeddings [58] and positional embeddings of
the input sequence. The second layer is a fully-connected dense layer. Each layer is
surrounded by a residual connection, and the output of the sub-layer is layer nor-
malized. The attention layer employs Scaled Dot-Product Attention [57], where each
attention function for a set of queries and key, value pairs is projected A-times. The
decoder consists of the same layers as the encoder plus one extra multi-head atten-
tion layer for the output of the encoder. The decoder embeddings are shifted by one
position, and the attention layer is masked to only attend to previous positions.

Transformers can be used as features to an RNN, but also have the possibility to
fine-tune the pre-trained model on a target dataset. Hence, for the experiments BERT
is used feature-based as embeddings for the RNN, but also as a transfer learning
model using fine-tuning. By the time of the experiments, there were already various
pre-trained models available for the latter method. Beside the original BERT, which
is pre-trained on the BooksCorpus and English Wikipedia, BioBERT [64] is pre-
trained on large-scale biomedical corpora outperforming the general BERT model in
representative biomedical text mining tasks. The authors initialize the weights with
the original BERT model and train on PubMed abstracts and full articles. Therefore,
the vocabulary is the same as for the original BERT. Contrary to that, SciBERT [63]
is trained from scratch with an own vocabulary. While SciBERT is trained on full pa-
pers from Semantic Scholar it also contains biomedical data, but to a smaller degree
than BioBERT. The uncased SciBERT model was chosen, meaning that the capital-
ization of words is ignored. As it was the case for the original BERT, the uncased
model of SciBERT performs slightly better for sentence classification tasks than the
cased model.

Originally, BERT was not designed for sequence tagging. Thus, to make it appli-
cable for the argument component detection, I extended the transformer with task
specific layers. For fine-tuning on the sequence tagging task, the hidden state repre-
sentation of each word of the transformer is taken and fed into shallow layer build
on top of the transformer. For this shallow layer different variants were examined.
First, a dense layer mapping directly into the label space. Second, a CRF to enforce
structured predictions. Third, a combination of a (bi-directional) GRU/LSTM and
CRF similar to the aforementioned architecture to evaluate the various word em-
beddings.
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Experimental Setup

For sequence tagging, each of the above mentioned embeddings were combined
with either (i) a GRU, (ii) a GRU with a CRF, (iii) a LSTM, or (iv) a LSTM with a
CRF. Additionally, the best performing static and dynamic embeddings were con-
catenated and evaluated as if they were one embedding. The Flair [54] PyTorch
NLP framework version 0.4.1 was used for implementing the sequence tagging task.
For BERT, the PyTorch implementation of huggingface2 version 2.3 is used. Hyper-
parameter tuning was done with hyperopt3 version 0.1.2. The learning rate was
selected from {0.05, 0.1, 0.15, 0.2}, RNN layers {1, 2}, hidden size {32, 64, 128, 256},
dropout {0.1, 0.2, 0.5}, and batch size from {8, 16, 32}. The RNNs were trained over
100 epochs with early stopping and SGD optimizer. For fine-tuning the BERT model,
the uncased base model (Bertbase) is employed with 12 transformer blocks, a hidden
size of 768, 12 attention heads, a learning rate of 2e-5 with Adam optimizer for 3
epochs. The same configuration was used for fine-tuning Sci- and BioBERT. For
SciBERT, the uncased model with the SciBERT vocabulary is used. For BioBERT,
version 1.1 was selected. Batch size was 8 with a maximum sequence length of 256
sub-word tokens per input example.

The neoplasm part of the AbstRCT corpus was split such that 350 abstracts are
assigned to the train, 50 to the development, and 100 to the test set. Additionally, the
first version of the dataset was used to create two extra test sets, both comprising 100
abstracts. The first one includes only glaucoma, whereas the second is a mixed set
with 20 abstracts of each disease in the dataset (neoplasm, glaucoma, hypertension,
hepatitis and diabetes), respectively.

Results and Discussion

The results for the best performing RNN models and the best performing embed-
ding combinations are shown in Table 4.3. Results are given on all three test sets
in micro and macro multi-class F1-score and for claim and evidence, respectively.
Comparing the static word embeddings, fastText with a BiGRU and a CRF is the
best performing combination, where extvec is only slightly worse and is usually bet-
ter for evidence classification. For the dynamic embeddings coming from LMs, the
ones trained on the medical domain corpus, i.e., FlairPM and ELMo, show similar
performances with a macro F1-score of .68 on the neoplasm test set. They have the
edge over the non-specialized LMs like BERT with .66 or FlairMulti with .63 macro
F1-score. Concatenating static and dynamic embeddings does not bring a notable
difference, when taking all test sets into account.

2https://github.com/huggingface/transformers
3https://github.com/hyperopt/hyperopt

https://github.com/huggingface/transformers
https://github.com/hyperopt/hyperopt
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Generally, evidence scores are higher than claim scores, leading to the conclusion
that claims are more diverse than evidence. This is coherent with the findings from
the previous experiments on argument component detection described in the pre-
ceding section. One explanation for this observation is that, since natural language
reports of measurements in clinical trials vary mostly only in the measured param-
eter and its values, a distinctive lexical pattern can be learned. This assumption is
further supported by the aforementioned experiments with the SVMs. There, the
BOW feature was shown to carry more distinctive information for evidence than for
claims, i.e., there has to be some significant evidence-specific lexical patterns. The
detailed results for this are reported in Table 4.1. On the other side, claims can be
made about almost everything, which reduces the number of useful lexical cues. As
shown with the Tree Kernels, structural features can be a good indicator and trans-
former models do capture structural information in the lower layers, but apparently
this is not sufficient enough to reach the detection rate of evidence.

Another observation is that the performance of the models trained on neoplasm
data do not significantly decrease for test sets on other disease treatments. This fact
supports the choice of a more general high level disease type like neoplasm for train-
ing the models. The performance for many model combinations even increases on
the glaucoma test set. The glaucoma test set comprises only a handful of different
glaucoma treatments and is therefore less diversified than the neoplasm or mixed
test sets. This is ideal with respect to the application of such models, where clini-
cians will compare studies for a specific disease treatment. Looking at the main dif-
ference in the results, fine-tuning BERT outperforms all other model combinations,
where the version with a BiGRU and CRF is the best performing model. Fine-tuning
without any kind of sequence modelling on top of it results in worse performance.
Especially with respect to the validity of BIO sequences, where disproportionately
many invalid sequences are generated. This is not useful when extracting the com-
ponents based on BIO-scheme. The direct comparison between the various options
for the sequence modelling shallow layer on top of the transformer are illustrated ex-
emplary for the BERTbase model in Table 4.4. The most notable difference is achieved
by adding a CRF. As explained earlier, this forces the model to consider all labels
of a sequence instead of making an independent prediction for each token. Inter-
estingly, adding a uni-directional GRU or LSTM between the transformer and the
CRF does not increase the overall results. One the contrary, it even lowers the per-
formance on some test sets. Replacing the uni-directional with a bi-directional RNN
increases the performance only slightly with respect to having no RNN at all. Re-
calling why transformers were invented, the attention mechanism is supposed to not
suffer from the same problem of transmitting long distance information as it is the
case for recurrent models. Interpreting the results, this means that the transformer
part actually captures the necessary information for the classification task, while the
sequence modelling of the RNN becomes redundant. The only marginal increase of
the bi-directional GRU is most likely more due to the increase in trainable network
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Neoplasm Glaucoma Mixed
f1 F1 C-F1 E-F1 f1 F1 C-F1 E-F1 f1 F1 C-F1 E-F1

dense layer .82 .60 .69 .83 .77 .55 .63 .80 .80 .57 .65 .83
CRF .89 .84 .78 .90 .90 .85 .81 .89 .90 .85 .79 .90
GRU+CRF .89 .84 .78 .90 .88 .80 .81 .87 .89 .81 .78 .90
LSTM+CRF .88 .65 .73 .89 .87 .63 .78 .86 .88 .64 .76 .88
BiGRU+CRF .89 .85 .78 .90 .89 .86 .76 .89 .90 .88 .81 .91
BiLSTM+CRF .89 .80 .77 .89 .90 .81 .82 .88 .89 .81 .79 .90

TABLE 4.4: Comparison of various architectures for the shallow layer
extension of BERT for the sequence tagging task. Results are given in
micro F1 ( f1) and macro F1 (F1). The binary F1 for claims are reported

as C-F1 and for evidence as E-F1.

parameters than the actual recurrent architecture. In a direct comparison between
GRU and LSTM, both RNN types deliver results in a comparable range, where the
GRU does seem to show more reliable results. For example, the .65 macro F1-score
on the neoplasm test set for the uni-directional LSTM is due to the complete failure
of correctly detecting B-Claim tokens, which the GRU counterpart does not strug-
gle with. Similar observations were found for the bi-directional variants. Here, the
BiLSTM misclassifies B-tokens as I-tokens of the correct component type. This trans-
lates into a lower macro F1-score, because this is the average score over all labels,
while the C- and E-F1 remain comparable, because they are weighted scores and
the confusion of B- and I-tokens of the same type does not influence this score as
strongly as the macro score.

Comparing the specialized with the general models, Bio- and SciBERT show a
better performance than the general BERT model, where the cased BioBERT tends to
be more reliable for the out of domain test data. This is in line with the findings that
the cased transformer model works better for tasks like Named Entity Recognition
(NER), which is also a sequence tagging task. The difference on the AbstRCT data is
marginal: while for NER the casing of a word is relevant, for argument component
detection it does not seem to be a sensitive information.

Error Analysis Despite the CRF, common mistakes for the sequence tagger are in-
valid BIO sequences. Especially when there are multiple components in one sen-
tence, the tagger tends to mislabel B- tokens as I- tokens. This is due to the natural
imbalance between B- and I- tokens. Training the sequence tagging without the
BIO scheme using only claim and evidence as labels, poses problems when multiple
components are following each other in the text. They would be extracted as one
single component instead. This is a common case in concluding sentences at the end
of a study, which strikingly often comprise multiple claims. Further experiments
could go in the direction of weighted loss functions like focal loss to overcome this
problem. Notable mistakes arise for determining the exact component boundaries.
Especially in the case of connectives, e.g., however, which have sometimes nothing
but a conjunctive function, and in other cases signal a constraint of a previous state-
ment. Similar to the aforementioned TK-based SVM, the mistake of misclassifying
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the description of the initial state of the participant groups as an observation of the
study and therefore an evidence remains, see Example 4.1.1.

Example 4.1.1 (predicted label: Evidence; correct label: NoArgument)
There were no significant differences in pregnancy-induced hypertension across supplement
groups.

In the study abstract these descriptions occur usually relatively close to the actual
result description, which means that adding information of the position in the text
will not avoid this error. While only some abstracts are structured, the full study
report does usually have separated sections. This structure can be exploited when
analysing full reports, and in the simplest case one would analyse only the sections
of interest.

4.2 Relation Classification

After the argument component detection, the next step is to determine which rela-
tions hold between the different components (Figure 4.1). Valid BI tag sequences
from the previous step are extracted, which are then considered to be the argumen-
tative components of one RCT. Those sequences are phrases and do not necessarily
correspond to full sentences. The list of components then serves as input for the
relation classification. The relation classification task can be tackled with different
approaches. The option applied in this line of experiments is to treat it as a sequence
classification problem, where the sequence consists of a pair of two components, and
the task is to learn the relation between them. Contrary to approaches which try to
build up pre-defined structures, such as argumentation schemes, here, the linking of
each component is done independently without the constraint of a final argument
structure, see Chapter 2.2. For this purpose, self-attending transformers are em-
ployed, since these models are dominating the benchmarks for tasks which involve
classifying the status between two sentences [59]. Treating it as a sequence classi-
fication problem opens up two options to model the problem: (i) jointly modelling
the relations by classifying all possible argumentative component combinations or
(ii) predicting possible link candidates for each entity and then classifying the rela-
tion only for plausible entity pairs. In the literature, both methods are represented.
Therefore, both ways of solving the problem are evaluated. The here conducted
experiments investigate various transformer architectures and compare them with
state-of-the-art AM models, i.e., the Tree-LSTM based end-to-end system from Miwa
and Bansal [106] as evaluated for AM by Eger et al. [36], and the multi-objective
residual network of Galassi et al. [107].
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Sequence Classification

For option (i), a list of all the contained components is created for each abstract,
respectively. From this list each component is exhaustively paired with all possi-
ble other components, resulting in n− 1 component pairs per component, where n
is the length of the list. As the model architecture, bi-directional transformers [59]
are employed, which consists of an encoder and decoder which themselves consists
of multi-head self-attention layer each followed by a fully-connected dense layer.
Contrary to the sequence tagging transformer, where each token of the sequence
has a representation which is fed into the classification layer, for sequence classifica-
tion a pooled representation of the whole sequence is needed. This representation is
passed into a linear layer with a softmax which decodes it into a distribution over the
target classes. In the case of relation classification, the input does not consist of a sin-
gle sentence, as it was the case for sequence tagging, but of the component pair sep-
arated by a special token. Similar to single sentence classification, the single pooled
representation (of the component pair) is then passed to the classifying layer. Given
that the partial-attack and attack labels are merged, because of their rare occurrences,
this results in a three class classification problem (Support, Attack and NoRelation).
In the following, this type of transformer is referred to as SentClf. Using this ar-
chitecture one component can have relations with multiple other components, since
each component combination is classified independently. There are various ways in
constraining pre- or post-processing of the component pairs to eschew creating di-
vergent argument structure. Treating it as a multiple choice problem is another way
to implicitly limit the created structure to be convergent.

Multiple Choice

In a multiple choice setting (MultiChoice) the possible links are predicted taking the
other combinations into account. This problem formulation is employed to address
(ii), i.e., first finding possible link candidates and subsequently classifying plausible
combinations as attack or support.

In particular, each component (source) is given the list of all the other compo-
nents as possible target relation candidates and the goal is to determine the most
probable candidate as a target component from this list. This problem definition cor-
responds to the grounded common sense inference problem [108]. To model compo-
nents which have no outgoing link to other components, the noLink option is added
to the choice selection. As an encoder for phrase pairs, various BERT models, which
are explained in the transformers section, are evaluated, just as for the SentClf task.
With respect to the neural transformer architecture, a multiple choice setting means
that each choice is represented by a vector Ci ∈ RH, where H is the hidden size of the
output of an encoder. The trainable weight is a vector V ∈ RH whose dot product
with the choice vector Ci is the score of the choice. The probability distribution over
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all possible choices is given by the softmax, where n is the number of choices:

Pi =
eV·Ci

∑n
j=1 eV·Cj

(4.3)

Since the softmax considers the score (dot product) of each choice, the order of the
choices is ignored and does not bias the model. This step only provides a measure
of how likely it is that the two components have a relation without specifying which
type of relation it is. Subsequently, for each abstract, the component combination
with the highest score of having a link between them is passed into a linear layer to
determine which kind of relation is holding between the two components, i.e., Attack
or Support. The MultiChoice model is trained jointly with two losses, i.e., one for the
multiple choice task and one for for the relation classification task. To have a fair
comparison with the SentClf, the predictions of the MultiChoice are translated into
all possible combinations between components (n2− n combinations for a list length
of n), which is precisely the same what the SentClf is evaluated on. Concretely, this
means that all component pairs, but the one with the highest score in the multiple
choice step of the MultiChoice model which is passed to the relation classification
step, are classified as having noRelation.

Linear Models

Furthermore, experiments with linear options for link prediction, such as matrix
or tensor factorization were conducted. Those methods are widely used on graph
data, e.g., knowledge graphs, to discover new links between existing nodes [109].
The matrix or tensor representation of the graph data is decomposed and a model
specific scoring function, which assigns a score to each triple4, is minimized, like a
loss function in neural architectures. The goal was to combine those graph-based
embeddings and enrich the nodes with linguistic features/embeddings to learn hy-
brid graph embeddings for relations and discover new links between arguments.
The tested linear models are: TuckER [110], TransE [111] and ComplEX [109]. Un-
fortunately, those models did not learn a meaningful relation representation. This
might be due to the relatively small graph data, which can be constructed from the
AbstRCT corpus. In the literature, the smallest dataset these models have been ex-
perimented on has around 93k triples [112], whereas the AbstRCT dataset has less
than 20k.

4.2.1 Experimental Setup

For fine-tuning the BERT model, the uncased base model with 12 transformer blocks,
a hidden size of 768, 12 attention heads, a learning rate of 2e-5 with Adam opti-
mizer was used. The pre-trained models were fine-tuned for 3 epochs. The same

4A triple consists of a subject (source node), a predicate (labeled edge between nodes) and an object
(target node).
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Method Neoplasm Glaucoma Mixed
Tree-LSTM .37 .44 .39
Residual network .42 .38 .43
BERT MultiChoice .58 .56 .55
BioBERT MultiChoice .61 .58 .57
SciBERT MultiChoice .63 .59 .60
BERT SentClf .62 .53 .66
BioBERT SentClf .64 .58 .61
SciBERT SentClf .68 .62 .69
RoBERTa .67 .66 .67

TABLE 4.5: Results of the relation classification task, given in macro
F1-score.

configuration was used for fine-tuning Sci- and BioBERT. Similar to the sequence
tagging, for SciBERT, the uncased model with the SciBERT vocabulary was chosen,
while BioBERT is a cased model. For BioBERT, version 1.1 is used. Additionally, the
freshly released RoBERTa [67], another newer model, which outperforms BERT on
the General Language Understanding Evaluation (GLUE) benchmark, was add to
the selection of models. There, the BERT pre-training procedure is modified by ex-
changing static with dynamic masking, using larger byte-pair encoding and batches
size, and increasing the size of the dataset. For RoBERTa, the number of epochs for
fine-tuning was increased to 10, as it was done in the original paper. The best learn-
ing rate was 3e-5 on the SentClf task. The number of choices for training the multiple
choice model was set to 6. Batch size was 8 with a maximum sequence length of 256
sub-word tokens per input example. Dataset splits were exactly the same as for the
sequence tagging task, i.e., a neoplasm training set of 350 abstracts, a neoplasm de-
velopment set with 50 abstracts, a neoplasm test set with 100 abstracts, a glaucoma
test set with 100 abstracts and a mixed test set comprising 20 abstracts of neoplasm,
glaucoma, hypertension, hepatitis and diabetes, respectively.

4.2.2 Results and Discussion

The results for relation classification are shown in Table 4.5. Results are given on all
three test sets in macro multi-class F1-score.

The Tree-LSTM based system performed the worst with a F1-score of .37. This can
be explained by the positional encoding in the persuasive essay dataset being more
relevant than for clinical trials. There, components are likely to link to a neighboring
component, whereas in the RCT dataset the position of a component only partially
plays a role, and therefore the distance in the dependency tree is not a meaning-
ful feature. Furthermore, the authors specify that their system does not scale with
increasing text length [36]. Especially detailed reports of measurements can make
RCT abstracts quite long, such that this system becomes not applicable for this type
of data. The residual network [107] performed better with a F1-score of .42. The main
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problem here is that it learns a multi-objective for link prediction, relation classifi-
cation and type classification for source and target component. Each task allocates
capacities in the network. In the proposed AM pipeline the latter classification step
is already covered by the sequence tagger and therefore unnecessarily repetitive at
this step. Similar to sequence tagging, one can see a notable increase in performance
when applying a BERT model. Comparing the specialized and general BERT model,
the Bio- and SciBERT increase the performance by up to .06 F1-score. Interestingly,
RoBERTa delivers comparable results even though it is a model trained on general
data. The speculations are that parts of the web crawl data which was used to train
RoBERTa contain PubMed articles, since they are freely available on the web. Inde-
pendently of that, RoBERTa shows more reliable results when looking at the perfor-
mance on the out of domain test sets. While SciBERT, as the best performing system
on the in-domain test set, drops .06 points on the glaucoma test set, RoBERTa stays
almost the same and only drops from .67 to .66 F1-score. Looking at the difference
between the MultiChoice and SentClf architectures, the SentClf delivers better re-
sults, but the drawback is that this technique tends to link components to multiple
components. Since most of the components in the AbstRCT corpus have only one
outgoing edge, it creates a lot of false positives, i.e., links which do not exist. A prob-
lem with the MultiChoice is also the noLink. Since the input requires a sentence pair,
but noLink means there is no second component, only the source component is fed
into the classifier. It was meant to detect components, mostly claims, that are root
nodes in the argument graph. Practically, the model could not learn a meaningful
pattern to recognize those root nodes efficiently. While the AbstRCT dataset con-
sists of only study abstracts for practical reasons, the pipeline can be applied on full
text articles as well. Alas, a quantitative analysis on full articles cannot be provided
due to missing annotated data. In preliminary experiments on full articles, a notable
increase of false positives in the relation classification was observed, which is the ex-
pected consequence of an increased number of components. Furthermore, with the
number of components rising in the double-digit range, the multiple choice archi-
tecture loses its predictive power. Further investigations to determine the exact limit
of this architecture applied on full text articles is left to future work when annotated
data is available.

Error Analysis Concerning link prediction, general components like the difference
was not statistically significant are problematic, since it could be linked to most of the
components/outcomes of the trial. Here, a positional distance encoding could be
beneficial, since those components are usually connected to the previous compo-
nent. In general, most of the errors in the MultiChoice architecture were made in the
multiple choice part by predicting a wrong link and not at the stage of classifying
the relation type. Interestingly, comparing the two domain adapted models, Bio-
and SciBERT, there were no regular errors, which allows any conclusion about the
advantages or disadvantages of one model.
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FIGURE 4.3: Confusion matrices of the predictions on the test set
(neoplasm, glaucoma, mixed) of the relation classification task.

Looking at the confusion matrices, all tested SentClf models show a higher mis-
classification towards the NoRelation class. The confusion matrices of the SciBERT
SentClf on all three test sets are shown exemplary in Figure 4.3. It can be further
observed that the model could not learn a meaningful representation of the under-
represented Attack class. Most of the attack relations were not detected and classified
as NoRelation. Similarly, the Support relation was mostly not confused as Attack, but
as NoRelation. These false negative errors indicate that the model is overly focusing
on the NoRelation class. This is in line with the observations from the MultiChoice
approach, that the problem is in the multiple choice part, i.e., finding the right links
between components.

Concerning the learned representation of the relation classes, both transformer
approaches have in common the problem of dealing with negations and limitations
or associating the polarity of a measurement and therefore confusing support and
attack, which might indicate that the model learns rather linguistic patterns than a
deeper understanding of the components and their relations. This would be in line
with the examination of Niven and Kao [113], which applied BERT to the Argument
Reasoning Comprehension Task (ARCT) [113] and found that the transformer is a
strong learner for linguistic cues, but not for argument comprehension.

Example 4.2.1 [more research about the exact components of a VR intervention

and choice of outcomes to measure effectiveness is required]
Support−−−−→
Attack

[Conducting

a pragmatic trial of effectiveness of a VR intervention among cancer survivors is
both feasible and acceptable]

Example 4.2.2 [this did not translate into improved progression-free survival (PFS)
or overall survival] Attack−−−−→

Support
[The addition of gemcitabine to carboplatin plus pacli-

taxel increased treatment burden, reduced PFS time, and did not improve OS in
patients with advanced epithelial ovarian cancer]
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Example 4.2.1 shows two claims with a limiting/attacking relation, which was
wrongly classified as supporting. Concerning the polarity of an outcome, in Exam-
ple 4.2.2, not improving progression-free survival (PFS) corresponds to a reduced PFS
time, while for other factors reducing the value means it is beneficial and therefore
improving some study parameter. This problem was also observed by Green [51],
which found that the warrants for biomedical augmentation are often implicit. In the
context of RCTs, for instance, the implicit warrant is that a certain value needs to be
reduced to improve the overall result. Here, the inclusion of external expert knowl-
edge is crucial to learn these fine nuances and compensate for the implicit warrant
to correctly identify the relation. In this sense, the polarity of a measurement can-
not be learned from textual features alone. Especially in the medical domain, where
complex interrelationships are often implicitly presumed and therefore are impos-
sible to capture with a model trained solely on character-based input. Phrases like
increased the blood pressure by X or showed no symptom of Y can connote different mes-
sages depending on the context. Future work needs to consider this challenge of
incorporating external expert knowledge. While I do not think this is a problem
limited to a special domain, I consider it greatly important for understanding and
representing medical text.
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Chapter 5

Evidence Type Classification

This chapter introduces a subtask of argument component detection, i.e., evi-
dence type classification. A further classification of the evidence is worthwhile,
because in EBM the results of a clinical trial are rated based on various factors.
Hence, to model this variety, the pieces of evidence in the AbstRCT dataset are
assigned with specific evidence type labels, in particular, the more fine-grained
label comparative, significance, side-effect and other. Various classification mod-
els including SVMs and NNs are evaluated on this task. This chapter comprises
the work published at the Argument Mining workshop co-located with EMNLP-
2018 [43].

The evidence from RCTs can be manifold and the ability to automatically extract the
arguments proposed therein can be of valuable support for clinicians and practition-
ers in their daily evidence-based decision making activities. Given the peculiarity
of the medical domain and the required level of detail, the standard approach to
argument component detection in AM, as it was applied in the preceding chapter,
is not fine-grained enough to fully support such activities. As a consequence, in
my work the detected argument components are enriched with more information.
In this chapter, a more fine-grained annotation scheme is proposed to distinguish
different kinds of evidence in RCTs, so that fine-grained evidence-based decision
making activities are supported. This is defined as a subtask of the argument com-
ponent identification and called evidence type classification. The distinction among
different kinds of evidence is crucial in evidence-based decision making as different
kinds of evidence are associated to different weights in the reasoning process. For
example, the recommendation based on aggregated evidence described by Hunter
and Williams [8]1 builds upon preference settings, which are determined by the type
of evidence. As it is further discussed in Chapter 9.1.2, detecting and evaluating
comparisons are targets of high interest and common precursor tasks in the domain.
To extract this information, which is contained in but not expressed with the coarse
argument component labels, I propose four new classes of evidence for RCT (i.e.,

1This approach is described in detail in Chapter 9.1.1.
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comparative, significance, side-effect, and other). Previous work on evidence classifica-
tion [97] tackled the problem on Wikipedia based data, dividing the evidence into
study, anecdotal and expert evidence. While this taxonomy could be applied on a
higher level in the decision making process if other evidence is considered, such as
personal experience of the practitioner, it is not applicable for the here presented
type of data or clinical trials in general. Additionally to the presented work and re-
sponding to the feedback from medical experts, the argument components are fur-
ther aggregated with the Effect-on-Outcome, which is described in Chapter 6.

To address evidence type classification, a supervised approach is proposed and
tested on a set of RCT abstracts on different medical topics. Section 5.1 describes
the annotation scheme and the rationale behind the choice of labels. Subsequently,
the proposed methods are presented in Section 5.2, and results are discussed in Sec-
tion 5.3.

5.1 Annotation Scheme

This work was conducted before the data collection and extension of the AbstRCT
dataset to version 2 (see Chapter 3). Thus, the fine-grained annotations and the
experiments based on it comprise only the abstracts from the first version of the
AbstRCT dataset containing 169 abstracts in total.

As a quick reminder, an evidence in a RCT is an observation or measurement in
the study, which supports or attacks another argument component, usually a claim.
They are observed facts, and therefore credible without further justifications, since
this is the ground truth the argumentation is based on. The coarse evidence label
comprises indiscriminately observations like side effects and the measured outcome
of the intervention and control arm. Example 5.1.1, evidence are in italic, underlined
and surrounded by square brackets with subscripts, while claims are in bold.

Example 5.1.1 To compare the intraocular pressure-lowering effect of latanoprost with that
of dorzolamide when added to timolol. [. . . ] [The diurnal intraocular pressure reduction
was significant in both groups (P < 0.001)]1. [The mean intraocular pressure reduction
from baseline was 32% for the latanoprost plus timolol group and 20% for the dorzolamide
plus timolol group]2. [The least square estimate of the mean diurnal intraocular pressure
reduction after 3 months was -7.06 mm Hg in the latanoprost plus timolol group and -
4.44 mm Hg in the dorzolamide plus timolol group (P < 0.001)]3. Drugs administered in
both treatment groups were well tolerated. This study clearly showed that [the additive
diurnal intraocular pressure-lowering effect of latanoprost is superior to that of
dorzolamide in patients treated with timolol]1.

Different reports of the experimental outcomes as evidence can be observed in this
example. Those can be results without concrete measurement values (see Evidence
1), or exact measured values (see Evidence 2 and 3). Different measures are anno-
tated as multiple evidence. The reporting of side effects and negative observations
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are also considered as evidence. To further distinguish evidence into finer classes,
one first has to reflect which purpose the labels should fulfill. Traditionally evidence-
based medicine focuses mainly on the study design and risk of bias, when it comes
to determining the quality of the evidence. As stated by Bellomo and Bagshaw [114],
there are also other aspects of the trial quality, which impinge upon the truthfulness
of the findings and should be considered in the critical appraisal of evidence and in-
terpretation of the results. As a step forward, the dataset annotation was extended,
specifying four classes of evidence, which are the most prominent in the AbstRCT
data and assist in assessing these complex quality dimensions, like reproducibility,
generalizability or the estimate of effect:

• comparative: when there is some kind of comparison between the control and
intervention arms (Table 5.1, Example 2), supporting the search for similarities
in outcomes of different studies, which is an important measure for the repro-
ducibility. Due to the comparative nature of RCTs, this label is more frequent
than the others.

• significance: for any sentence stating that the results are statistically significant
(Table 5.1, Example 3). Many comparative sentences also contain statistical in-
formation. However, this class can be seen more as a measure for the strength
of beneficial or potentially harmful outcomes.

• side-effect: captures all evidence reporting any side-effect or adverse drug ef-
fect to see if potential harms outweigh the benefits of an intervention (Table
5.1, Example 4).

• other: all the evidence that do not fall under the other categories, like non-
comparative observations, risk factors or limitations of the study (too rare oc-
currences to form new classes). Especially the latter can be relevant for the
generalizability of the outcome of a study (Table 5.1, Example 5).

Comparative structures are important means in scientific communication and an
essential part of clinical trials. Thus, previous work in the domain [115, 116] inves-
tigated ways of automatically detecting and evaluating these structures (for more
details, see Chapter 9.1.2). Since all comparisons related to the outcomes of a study
are covered within the argumentative components, it naturally made sense to create
this more fine-grained label to highlight these comparative structures. In combination
with the Effect-on-Outcome and PICO element detection, comparisons are found,
marked, evaluated and put in a structured format, to ease querying and analysing
such data. Concerning the significance class, this label is related to the statistical sig-
nificance and generalizability of a trial. Only statistical significant outcomes should
be considered to draw conclusions from a trial. Moreover, this class comprises state-
ments that an observation did not reach statistical significance. Even more important
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1. Claim: Brimonidine provides a sustained long-term ocular hypotensive effect, is
well tolerated, and has a low rate of allergic response.

2. Comparative: The overall success rates were 87% for the 350-mm2 group and 70%
for the 500-mm2 group (P=0.05).

3. Significance: All regimens produced clinically relevant and statistically significant
( P < .05 ) intraocular pressure reductions from baseline.

4. Side-effect: Allergy was seen in 9 % of subjects treated with brimonidine.
5. Other: Risk of all three outcomes was higher for participants with chronic kidney

disease or frailty.

TABLE 5.1: Sample of the positive classes represented in the corpus
for evidence type classification (Claim, Comparative, Significance, Side-

effect, other).

than statistical significance, which states that the observed effect on an outcome was
not by chance, is clinical significance or estimate of effect. Clinical significance sets
the study results into perspective. Is the expected benefit of an intervention worth
the risks coming along with this intervention? Are the costs and the required effort
proportional to what is gained? These estimates can be determined on a general
level, e.g., if a treatment should be recommended in clinical guidelines, but also on
an individual level for each patient case. Evaluating the trade-off is a highly com-
plex task, even for experienced practitioners. Many factors and circumstances come
into playing a role. Modelling and automatically evaluating this is even harder and
requires vast domain knowledge. Thus, the goal of the thesis is not to make the
decision for the practitioners, but to provide as much adjuvant information as pos-
sible. With the previous two labels targeting other desiderata, the side-effect label
should contribute to the question of clinical significance. This label is a means to
highlight potential risks, which is important for the evaluation of a treatment. Even
statements about the non-existence of adversarial effects are valuable sources of in-
formation and thus, are contained within this label. It would have been preferable
to have more classes like this targeting the estimate of effect. There are also reports
about risk factors and limitations of a study in the data. Unfortunately, the amount
of these is too small to justify separate classes. In a taxonomy, these labels should be
distinctively included, however, given that the objective was also to practically ap-
ply this annotation scheme on the data and build a functioning classifier, this forced
the decision of merging them into the other class.

Dataset Topic #abstract #comp. #sign. #side-eff. #other
Training set glaucoma 79 151 83 65 10
Test set glaucoma, diabetes, 90 160 98 79 33

hepatitis, hypertension

TABLE 5.2: Statistics on the evidence type dataset showing the class
distributions.

As previously stated, the annotations were executed on the first version of the Ab-
stRCT corpus. Table 5.2 shows the statistics of the obtained dataset. With 49%
and 43% respectively, the comparative is evidently the dominant class in the dataset.
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While the significance and side-effect labels are within a comparable range to each
other, the other class is underrepresented from a machine learning point of view,
which is expected given the definition of this class. As for the dataset creation, three
raters have annotated the data after a training phase. In line with previous and sub-
sequent annotation phases, the inter-annotator agreement has been calculated with
three annotators on a previously unseen subset of the data. For the evidence type
annotation, this subset consisted of 10 abstracts comprising 47 evidence, resulting
in a Fleiss’ kappa of 0.88, attesting the reliability of the guidelines and the obtained
dataset.

5.2 Experimental Setup

In work contemporary to the approach I present in this chapter, I addressed the ar-
gument component detection as a supervised text classification problem [79]: given
a collection of sentences, each labeled with the presence/absence of an argument
component, the goal is to learn a discrimination function f : X → Y to infer the label
from the input text. For the first step of the AM pipeline, i.e., the argument compo-
nent classification, I decided to rely on an existing system and to tailor it to cope with
the clinical data scenario. More precisely, an existing system, i.e., MARGOT [95],
is re-trained to detect evidence and claims from clinical data (for more details, see
Chapter 4.1.1). To this end, SubSet Tree Kernels (SSTK) [98] were used, which of-
fer a reasonable compromise between expressiveness and efficiency [95]. In SSTK, a
fragment can be any sub-tree of the original tree, which terminates either at the level
of pre-terminal symbols or at the leaves. Data was pre-processed (tokenisation and
stemming), and the constituency parse tree for each sentence was computed. Fur-
thermore, the bag-of-words features with tf-idf values were also computed. All the
pre-processing steps were performed with Stanford CoreNLP (version 3.5.0). The ex-
periments were conducted with different classifiers and feature combinations. Two
datasets were prepared to train two binary classifiers for each approach: one for
claim detection, and one for evidence detection. Both training sets only differ in the
labels, which were assigned to each sentence. 5-fold cross validation was performed
optimizing for the F1-score. The model was evaluated on the test set in Table 5.2
obtaining 0.80 and 0.65 F1-score for evidence and claim detection respectively.

As a step forward – after the distinction between argumentative (claims and ev-
idence) and non-argumentative sentences – I addressed the task of distinguishing
the different types of evidence. It was cast as a multi-class classification problem.
For that SVMs2 with a linear kernel were used. Since SVMs were designed for bi-
nary classification they do not natively support multi-class classifications. There are
different strategies to transform the multi-class into a binary classification problem:
(i) ONEVSREST, and (ii) ONEVSONE. The first strategy trains one classifier for each
class, where the negative examples are all the other classes combined, outputting

2scikit-learn, version 0.19.1
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a confidence score later used for the final decision. The second one trains a classi-
fier for each class pair and only uses the correspondent subset of the data for that.
Both strategies were evaluated in the experiments. As features for the SVM, lexical
ones, like tf-idf values for bag-of-words, n-grams and the MedDRA3 dictionary for
adverse drug effects were selected. The models were compared against a random
baseline, based on the class distribution in the training set and a majority vote clas-
sifier, which always assigns the label of the class with the highest contingent in the
training set. In later experiments, these models were compared against neural re-
current architectures for sentence classification. Here, the input is encoded via word
embeddings and subsequently passed through a GRU. The full text representation
from the GRU is passed through a final linear layer for classification. Different en-
coding methods for the input were evaluated, e.g., static word embeddings consid-
ering full words (GloVe) and sub-words (FastText), and contextualized embeddings
(ELMo). As for the argument component classification, the models were evaluated
on different test sets with respect to the weighted average F1-score for multi-class
classification. Here, the score is weighted by the support, which is the number of
true instances for each label. The first dataset consists only of the glaucoma data,
and the second one comprises all the other maladies in the dataset as well (see Ta-
ble 5.2).

5.3 Results and Discussion

The experiments were conducted in two application scenarios. In the first scenario,
the evidence type classifier was tested on the gold standard annotations of evidence
in the RCT dataset. This excludes all claims and non-argumentative sentences from
the experiments. In the second scenario, the whole pipeline is tested: the evidence
type classifier is run on the output of the aforementioned argument component clas-
sifier. For the neural architectures, the component classifier is integrated directly.
This translates into a six class classification problem, where contrary to the gold
standard approach, the claim and non-argumentative classes are considered. Simi-
lar to the antecedent argument component classification and established practice
for SVMs, the best feature combinations were selected. In both scenarios, the best
feature combination was a mix of bag-of-words and bigrams. The dictionary of ad-
verse drug effects did not increase the performance. Together with the fact that the
data contains just a small group of reoccurring side-effects, this suggests that the
expected discriminative information from the dictionary is captured within the uni-
and bigram features. This might change for bigger datasets with a broader range of
adverse effects.

Results For the evidence type classifier on gold standard annotations, the obtained
results regarding the different multi-class strategies did not differ significantly, as

3https://www.meddra.org/

https://www.meddra.org/
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can be observed in Table 5.3. The results of the random baseline, the SVM with the
best feature combination, and neural models are reported in Table 5.4.

Dataset Strategy glaucoma combined.
Gold standard ONEVSREST .80 .73

ONEVSONE .79 .74
whole pipeline ONEVSREST .71 .65

ONEVSONE .71 .66

TABLE 5.3: Results of the two multi-class strategies for the evidence
type classifier (SVM with best features) in weighted f1-score.

For the classification on the evidence gold standard, the SVM performed best
achieving a F1-score of .80 and .74, respectively for the glaucoma and combined test
set. Reviewing the best n-grams, they contain very specific medical terminology,
explaining the performance difference between the two test sets. As a possible fu-
ture extension, another pre-processing step with better abstraction capability, e.g.,
substituting concrete medical related terms with more general tags, could provide
benefits for the trained model on the out-of-domain task. Interestingly, the neural
models do not perform as well as the SVM. This might be due to the lack of training
data. Since NNs learn patterns for all classes jointly, they require more training data
than a SVM, which casts the problem into multiple binary problems and therefore
has a better class specific discrimination capability given the bigger size of negative
samples for each binary task. This changes for the classification over all argumen-
tative labels. Here, the F1-score of the SVM is .71 for the glaucoma and .66 for the
combined test set, which is lower than the ones from the neural networks. Adding
the two classes tripled the size of the training data from 309 to 945 examples, so that
the NNs could start unfolding their power. For the SVM, as expected, the errors of
the argument component classifier have an impact on the performances of the sec-
ond step lowering the results with respect to the performance on gold standard, but
that setup corresponds to a more realistic scenario.

Dataset Method glaucoma combined.
Gold standard RANDOM .33 .32

MAJORITY .27 .26
N-GRAMS .80 .74
GLOVE .60 .41

FASTTEXT .75 .60
ELMO .73 .57

whole pipeline RANDOM .38 .38
MAJORITY .38 .39
N-GRAMS .71 .66
GLOVE .73 .65

FASTTEXT .78 .70
ELMO .80 .71

TABLE 5.4: Results of the argument component detection on Ab-
stRCT v1 (weighted average F1-score).
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As for the comparison of the various word embeddings, GloVe embeddings resulted
in the lowest F1-score with .73, which is only marginally higher than the n-gram
based SVM. In line with the observations in Chapter 4.1.2, the sub-word based fast-
Text and the contextualized ELMo encode the input text with a comparable quality,
where ELMo is only marginally better. Concerning the generalizabilty and transfer
capabilities for the out of domain test set, a notable drop in performance is registered
for all word embeddings. While also the SVM shows the common decreased in per-
formance for out of domain data, the magnitude of the dip is not as great as for the
neural network. This could be explained with the hypothesis that a certain amount
of examples are clearly identifiable also for the out of domain data. But given that
the performance dip is consistent over all embedding types, even for the higher per-
forming ones, the more likely explanation is that for low data scenarios, SVMs are
still a competitive solution.

Error Analysis As shown in Figure 5.1, side-effects were often confused as compara-
tive. Certain types of side-effect comprise comparisons of side-effects between the two
groups. This includes statements of the non-existence of adverse reaction. The struc-
ture and wording of those sentences are very similar to correct comparative examples
and only differ in the comparison criteria (side-effect vs. other measurement), see
Examples 5.3.1 and 5.3.2 as instances of this misclassification. Furthermore, compar-
ative and significance labels were often confused. As explained earlier, comparisons
can also state information about the statistical significance and could therefore be-
long to both classes, see Example 5.3.3. A possible solution to overcome this problem
in the future could be a multi-label approach to assign more than one attribute to a
piece of evidence.

Example 5.3.1 (predicted label: Comparative; correct label: Side-effect)
Headache, fatigue, and drowsiness were similar in the 2 groups.

FIGURE 5.1: Normalized confusion matrix of the predictions of the
SVM for evidence type classification on the combined test set.
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Example 5.3.2 (predicted label: Comparative; correct label: Side-effect)
The number of adverse events did not differ between treatment groups, with a mean (SD) of
0.21 (0.65) for the standard group and 0.32 (0.75) for the intensive group (P=0.44).

Example 5.3.3 (predicted label: Significance; correct label: Comparative)
The clinical success rate was 86.2% in the brimonidine group and 81.8% in the timolol
group, making no statistically significant difference between them (p=0.817).

To summarize, the proposed fine-grained labels are an important step towards
structuring the extracted evidence. For instance, they can be used to associate differ-
ent weights to the single pieces of evidence in the reasoning process of an argument-
based decision system. Further, they carry valuable information for clinicians who
want to get an overview of a clinical trial. They make the provided information more
detailed and allow filtering for certain categories, e.g. side-effects, which becomes
even more handy with the subsequently described analysis of outcomes.
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Chapter 6

Effect-on-Outcome Analysis

This chapter introduces the analysis of the results of a clinical trial. Specifically,
the analysis of the effect of an intervention on the observed outcome parameters.
In the following, this is called the Effect-on-Outcome extension of the Argument
Mining pipeline. To this end, outcomes mentioned in the argumentative compo-
nents are detected and their effects are classified to assess if an intervention has
Improved, Increased or Decreased the outcome, or that there was NoDifference,
or NoOccurrence of the outcome.

So far, the Argument Mining pipeline spans the detection of components and
their boundaries, their classification in (fine-grained) classes, and the argument struc-
ture prediction. This already gives a good overview of the clinical trial. However,
crucial information about the results of a study are still only available in a human-
readable format. Thus, in this chapter, I propose a way of analysing the effects of
interventions encoded in the argument components in a way that it can be easily
translated into machine-processable data. As described in Chapter 2.1, in EBM PICO
elements play an important role. Hence, integrating PICO elements in the argumen-
tative structure seemed the next logical step in expanding the pipeline. The first step
towards this was taken in the context of the ACTA demo system, which is described
in detail in Chapter 8.1. With the EBM-NLP dataset [6] being freshly released, there
was a sizable resource available, which could be used to train models for PICO el-
ement extraction. Technically, the PICO element extraction can be formulated as a
sequence tagging problem, similar to the argument component detection. Already
having a sequence tagging architecture at hand and with the new EBM-NLP dataset
available, a PICO extraction model was trained, achieving a F1-score of 0.73 on the
EBM-NLP test set for coarse labels. The model was trained jointly on the coarse label
version of the dataset, providing a tool to predict participant, intervention and out-
come candidates in an RCT. Intervention and the comparison intervention1 are not
considered as two separated labels, since they comprise the same vocabulary and
the right label is based on the function in the trial, which cannot always be inferred

1As a quick reminder, in clinical trials researchers aim at comparing a (new) intervention (the I in
PICO) against established (comparison) interventions or placebos (the C in PICO).
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from single isolated sentences. This would require a more sophisticated analysis of
the whole abstract. Nevertheless, the additional information provided in form of
PI(C)O elements resulted in positive feedback from medical experts, which encour-
aged me to deeper entwine PICO information with the argument graph.

With ACTA, the PICO detection was not specifically targeted at argumentative
components. During the detection, the abstract as a whole is annotated with the ele-
ments independently of the found arguments. This was done mainly because infor-
mation about the population is usually not available in argumentative components,
i.e., approximately 1-2% contain information about the trial population. Thus, pro-
cessing only the argumentative components in the PICO detection would have basi-
cally circumvented the extraction of information about the trial participants, which
is not desirable.

With a first approach to PICO detection, the next step is to analyse the effect an
intervention has on an outcome. As shown in Chapter 9.1.2, finding comparative
sentences was motivated by the fact that the aspect of comparing interventions with
respect to a certain outcome is an imperative part of EBM practice. Hence, an auto-
matic analysis of the Effect-on-Outcome would add to the versatility of the applica-
tion of the AM pipeline, not only as additional information for the practitioner, but
also to create a richer structured input for argumentation-based assistance systems,
as described in Chapter 9.1.1. For these reasons, as an extension of the classic Ar-
gument Mining pipeline, an automatic outcome analysis is integrated to enrich the
arguments with valuable medical information and leverage this way the advantages
of both domains.

The proposed method how the outcome analysis is addressed is introduced in
Section 6.1 and the specifications of the experimental setup are stated in Section 6.2.
Subsequently, in Section 6.3 the results are presented and observed problems dis-
cussed.

FIGURE 6.1: Illustration of the full Argument Mining pipeline with
the outcome analysis extension.
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6.1 Outcome Analysis Pipeline

Based on the annotation guidelines for the AbstRCT dataset, argumentative com-
ponents should contain all mentions of Effect-on-Outcome, which are either in a
comparative form or stated with respect to only one of the interventions. For this
reason, the outcome analysis extension of the pipeline processes only phrases which
were classified as argumentative components in the first step of the AM pipeline,
and not every sentence of the abstract. In general, the outcome analysis is a pipeline
itself with two major parts. First, an outcome detection, which finds and extracts the
outcomes of an argumentative component, and second, an effect classifier, which
predicts which consequence was seen for each outcome after an intervention. The
role in the overall AM pipeline and the two parts of the outcome analysis are illus-
trated in Figure 6.1.

Similar to the argument component and PICO element detection, the outcome
detection is treated as a sequence tagging task with the BIO-tagging scheme, result-
ing in a three class classification problem (B-Outcome, I-Outcome and NoOutcome).
In accordance with previous experiments, the same transformer architecture for se-
quence tagging is employed with various alternatives for the pre-trained weights.
After the classification step in this part of the pipeline, valid BI-sequences are ex-
tracted from the prediction results, which are considered to be the outcomes re-
ported in a component. Each outcome is paired with the component it occurred
in and serves as input for the effect classifier. Sentences with multiple detected
outcomes generated multiple inputs, one for each detected outcome. Given this
bipartite input, the problem is similar to the aforementioned relation classification,
namely to sequence classification. Thus, the effect classifier follows the SentClf ap-
proach from Chapter 4.2. Differently from the three class relation classification, in
this case, it is a five class (i.e., Improved, Increased, Decreased, NoDifference, NoOccur-
rence) classification problem.

6.2 Experimental Setup

Experiments are conducted with the same pre-trained transformer model types as
for relation classification, i.e., BERTbase, BioBERT and SciBERT (cased and uncased),
with the exception of RoBERTa. For both parts of the pipeline, i.e., the outcome de-
tection and effect classifier, the same type of transformer is employed. As for the
sequence tagging architecture the LSTM combination with a CRF was chosen for the
experiments, because the difference between the LSTM and GRU approaches were
only marginal for the argument component detection. The outcome pipeline imple-
mentation was done with the same Python, PyTorch and transformer versions as the
previous experiments (see Chapter 4.1.2 and 4.2). Both transformer models of the
pipeline are of the same type and initialized with the same pre-trained weights. The
Effect-on-Outcome annotations are converted into two datasets, one for each part of
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the pipeline. The first one in a CoNLL format for token-wise labels, and the second
one in csv format, where each outcome-component pair is listed. This results in mul-
tiple entries, if a component contains more than one outcome. The fine-tuning of the
models is done separately, each task on its own dataset version. The learning rate
was set to 2e-5 with Adam optimizer and the models were fine-tuned over 3 epochs
with a batch size of 32 and a maximal sequence length of 128 tokens. Token-wise
evaluation is done on the full pipeline output, which is reconverted to CoNLL for-
mat to compare against the gold labels, taking the propagated error from the first
pipeline part into account. The annotated dataset was split into a train and test set
(80% and 20%, respectively) respecting the class distribution of the overall dataset in
both subsets. Given the size of the dataset and that fact that the annotations are im-
balanced with respect to certain classes (see Section 3.2), it is not feasible to maintain
three test sets and ensure at the same time that they have the same size, as done for
experiments on the AM pipeline (see Section 4.1.2), i.e., 100 abstracts each. Whilst it
would be indeed interesting to see the effects the comparison of three different test
sets offer, test sets with different sizes do not allow for a fair comparison.

6.3 Results and Discussion

The results for the outcome analysis pipeline are shown in Table 6.1. Results are
given on the test set in macro multi-class F1-score and as a binary F1-score for each
of the five classes separately.

Model F1 Improved Increased Decreased NoDiff NoOcc
BERT (cased) .62 .69 .65 .66 .75 .00

BERT (uncased) .72 .72 .70 .72 .72 .50
BioBERT .75 .74 .74 .77 .76 .54

SciBERT (cased) .75 .71 .71 .73 .71 .65
SciBERT (uncased) .80 .81 .75 .81 .85 .59

TABLE 6.1: Results for the outcome analysis pipeline, given in overall
macro F1 and label-wise binary F1-score.

The baseline BERTbase models perform the worst, with an interesting and unex-
pectedly worse performance of the cased model, in contrast with prior observations
that the cased model performs better for case sensitive tasks [59], like NER. Appar-
ently, the BERTbase cased model is not capable of fully learning a representation of all
classes, since the NoOccurrence class was not predicted a single time, resulting in an
F1-score of 0. Indeed, this class is underrepresented with respect to the other classes,
but still, the other models were able to learn some patterns for it.

Similarly to the relation classification results, one can observe an increase in per-
formance on the specialized Bio- and SciBERT models compared to the general BERT
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model. In a direct comparison of the cased versions2 of these two specialised mod-
els, the overall result is the same with .75 F1-score. In the binary evaluation, BioBERT
is slightly better with the exception of the NoOccurrence class. The SciBERT cased
model performs the best with .65 F1-score. The motivation behind the usage of cased
models was to deal with outcome abbreviations, which are usually uppercase letters
and relatively common in the data (45% of the argumentative components contain
abbreviations). However, from the results no definite positive effect can be observed
for cased models. In fact, these models seem to be unstable for underrepresented
classes. Overall, SciBERT uncased is the best performing model with .80 macro F1-
score. It also outperforms the rest of the approaches in every F1-score measured
except for the NoOccurrence category, where the cased version has higher score. This
category, in particular, suffers from sensitivity to class imbalance given that only
2% of the annotated data is labeled as such. For the other classes, the binary F1-
scores are in a comparable range to each other, where the most prominent class in
the annotated data, i.e., NoDifference with 27%, has consistently the highest or sec-
ond highest score. Besides the noOccurrence class, the Increased class has always the
second lowest scores. Even for the best performing model, the difference compared
to the worse performing models is not as massive as for the other classes. Notable in
the confusion matrix, visualized in Figure 6.2, the classifier tends to wrongly predict
it as Improved, which is a closely related class.

FIGURE 6.2: Confusion matrix of the predictions on the test set of the
outcome classification.

2BioBERT is a cased model.
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Error Analysis With respect to the source of error in the pipeline, the two pipeline
parts cause different observable errors in the overall output. Being a binary classifier,
the first part, the outcome detection, is the only part which predicts the negative class
label (referred to as O in the confusion matrix). The second part, the effect classifier,
assigns effect class labels (e.g., Increased/Decreased) to outcomes, which were found
by the outcome detection module. Consequently, the impact of the propagated error
from the first part of the pipeline can be observed in the confusion matrix in Fig-
ure 6.2. Effect classes are mostly not misclassified as other effect classes, but as the
negative class O. This is reflected in a stronger coloration in the horizontal direction
for the predicted O label in the confusion matrix. Since the only part in the pipeline
which is responsible for the negative O label is the outcome detection, this means
that the error occurred in the first part of the pipeline. Accordingly, confusion of
effect class labels are errors of the second part of the pipeline, i.e., the effect classifier.

One of the most common mistakes of the models is the incomplete detection of
outcomes. In many cases, the outcome to classify includes other words that comple-
ment it. For example, the outcome to detect in the sentence in Example 6.3.1 is levels
of VEGF, while the model only catches VEGF.

Example 6.3.1 The levels of VEGF PredictedSpan
CorrectSpan were significantly lower.

Another common mistake occurs with the sentences that compare different results
for the same outcome, the model does not have a clear reference point to perform a
correct prediction. This can be seen in Example 6.3.2.

Example 6.3.2 In G1 / G2 , respectively, improvement/deterioration of QoL Decreased
Improved cor-

related with better or poorer intake Decreased
Improved or nutritional status Decreased

Improved .

If the reference point is the group study G1, the model should classify QoL as Im-
proved, while should be Decreased for G2. The same applies to intake and nutritional
status. In reality, the model confuses the reference points and predicts QoL as Im-
proved and the rest as Decreased. For future work, an approach where the outcome is
linked to the reference point by the model could be worth exploring.

Furthermore, it is found that the model is effectively tagging outcomes in such a
way that the predicted labels are different from the true labels, but can be considered
as correct nonetheless.

Example 6.3.3 Excess limb size Decreased
Decreased ( circumference and water displacement Decreased

NoOutcome)

and excess water composition Decreased
Decreased were reduced significantly.

The sentence in Example 6.3.3 has the outcomes Excess limb size and excess water
composition as true outcomes, both labeled as Decreased. The model detects and clas-
sifies those outcomes correctly, but also adds the outcomes circumferences and water
displacement, predicting the label Decreased which could be plausible labels, but were
not annotated as such, since coordinations should be broken down in the smallest
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possible units. However, in this case, they are not self-sustained on their own. Cir-
cumferences alone misses additional information, namely that it is the circumferences
of limbs. An opposite case can be observed for modifiers, like serious or severe, which
are not included in the outcome prediction, although they carry essential informa-
tion.

To summarize this chapter, an extension of the Argument Mining pipeline was
presented, i.e., the Effect-on-Outcome module. This module analyses the effect an
intervention has on an outcome. To this end, in a first step, outcomes are detected
in the argument components and subsequently examined in the effect classifier. For
both parts of the pipeline, various transformer models were compared against each
other. While in the preceding sections and chapters various errors of these models
are discussed, the reasonable suspicion arose, particularly in Chapter 4.2, that the
transformer models do not learn a deep understanding of the underlying semantics,
especially for argument components and their relations. To investigate this further, I
decided to explore possible manipulations of the input data with respect to changes
in the prediction behaviour of the model. These results are presented in the follow-
ing chapter.
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Chapter 7

Robustness and Weaknesses of
Transformer Models

As shown in previous chapters, whilst the employed LM based transformer mod-
els are pushing the state-of-the-art results, the question arose what exactly they
are learning. To investigate the capability of those models to cope with vari-
ational input, this chapter introduces different ways of creating linguistically
simple perturbations ranging from punctuation deletion to various word-based
transformations. Their impact on the robustness of current state-of-the-art Lan-
guage Model based argument classification models is evaluated, with respect to
both in-domain and cross-topic performance. The quality of the generated per-
turbations is assessed in a user study and the effect of adversarial training for
argument classification is empirically evaluated. Subsequently, other known
weaknesses of LM based transformer models are highlighted. This chapter com-
prises the work published at the International Conference on Computational
Models of Argument (COMMA-2020) [117] and the European Conference on
Artificial Intelligence (ECAI-2020) [118].

In the last years, several empirical approaches have been proposed to tackle Ar-
gument Mining tasks, e.g., argument classification, relation prediction, argument
synthesis. These approaches, as those presented in this thesis, rely more and more
on Language Models (e.g., BERT) to boost their performance. However, these Lan-
guage Models require a lot of training data, and size is often a drawback of the
available Argument Mining data sets. The goal of the experiments presented in this
chapter is to assess the robustness of these Language Models for low-resource tasks.
One of these is the AM subtask of topic-dependent argument classification, where
the goal is to find relevant arguments for a given topic or claim from heterogeneous
sources. This task is currently addressed by employing state-of-the-art deep learn-
ing methods, that recently benefit from pre-trained Language Models like BERT [59].
As described in Chapter 2.3, the idea underlying LM pre-training is to learn a task-
independent understanding of natural language in an unsupervised fashion, from
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vast amounts of unlabeled text. After learning this general knowledge about a lan-
guage, the model is then fine-tuned on tasks where the amount of available anno-
tated data is significantly smaller. While the datasets used for the GLUE benchmark
comprise still a decent amount of examples, AM datasets are considerably smaller in
size. For instance, one of the biggest currently available AM datasets, i.e., the UKP
Sentential Argument Mining Corpus [119], contains a little bit more than 25k exam-
ples, whereas the Stanford Natural Language Inference (SNLI) dataset [120] com-
prises over 570k examples, which is more than 20 times the size of the AM dataset.
However, AM is a very context-dependent task and requires deep Natural Language
Understanding with respect to the component detection and even more for the struc-
ture prediction. For the latter, the model does not only need to learn how argu-
mentative statements look like, but also to which concepts and circumstances they
exactly refer to. Moreover, the model needs to discover and learn the connection
between two components to comprehend their interdependent meaning and infer
their relationship to each other. In this context, the definition of Argument Mining
algorithms, as targeted in the research questions in Chapter 1, extends to the analysis
of how well the pre-trained NLU capabilities of the proposed model scale for fine-
tuning on tasks with fewer resources available, such as argument classification. To
this end, this chapter examines the vulnerability of argument classification models
to adversarial attacks and adversarial training as a way of improving the robust-
ness of a model. To address these issues, the efficiency of simple linguistic attacks
against topic-dependent argument classification models based on LM pre-training
are evaluated. Whilst this task is not explicitly addressed in the aforementioned AM
pipeline for clinical trials, it could be used to formalize inter-trial debates about spe-
cific treatments. The argument classification subtask was chosen, because the topic
domain and data structure of the AbstRCT dataset pose challenges, which make the
evaluation of robustness on this dataset impractical. For example, linguistic changes
in a sentence, which seem semantic preserving to the medical layman, can indeed
impact and alter the pathological or therapeutic meaning. Moreover, adding pertur-
bations to the sequence tagging input is hard. Perturbations are supposed to be mi-
nor change which preserve semantics, e.g., adding or replacing one word, which can
cause a change in the prediction. Changing one single label in a sequence of labels,
where the prediction of the label sequence is dependent on all states of the sequence
(structured prediction), might not be a fruitful undertaking. Again, most of the pro-
posed perturbation techniques are not easily applicable to the medical domain, as
these changes could cause the (medical) meaning of a sentence to be altered, which
perturbations should not do. Consequently, the verification of the preservation of
semantics in this case would be cumbersome, because it would require trained med-
ical experts to evaluate. To eschew this risk of changing semantics, I decided to
evaluate the model on a task, where a quality control of the generated perturbations
is feasible. For these reasons, the closest AM task, where BERT was state-of-the-art,
was chosen, which is topic-dependent argument classification. Here, similarly to the
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relation classification, the problem is a sequence classification task with the goal to
determine the relation (argument for or against) between two input phrases. Thus,
the obtained insights can give a general idea about the robustness of the underlying
model to simple linguistic changes. Moreover, the human evaluation of the preser-
vation of semantics can be done by non-medical experts, since the used datasets
are about more general issues, commonly known or at least comprehensible for the
reader.

Formally, these simple linguistic changes which generate a set of perturbed sen-
tences from the dataset are called perturbations. In particular, in this work, eight
different types of perturbations are generated ranging from punctuation deletion to
various word-based transformations, i.e., substitution or insertion, preserving the
semantics of the sentence. The purpose of these attacks is to make the model more
robust with adversarial training. The way the approaches are evaluated to assess
and improve the robustness of argument classification models is twofold: on the
one side, the success rate of each perturbation type is evaluated on a model trained
without any adversarial examples, and on the other side, the improvement in perfor-
mance is measured on the original test set after augmenting the training data during
adversarial training. As previously stated, the experimental setting relies on two
standard datasets in Argument Mining, namely the UKP Sentential Argument Mining
Corpus [119], and the IBM Debater: Evidence Sentences dataset [121].

Despite recent breakthroughs in modelling Natural Language Understanding,
the employed neural architectures still lack interpretability. They are black boxes
for which it is hard to determine what they exactly learn or are receptive for. In
this context, it was found that Deep Neural Networks (DNN) are vulnerable to ad-
versarial attacks; small changes to the input which fool the model into predicting a
wrong label. Originally, crafting adversarial examples and attacking DNNs stems
from the image processing domain [122–124]. Most of the employed methods there
are gradient-based. These techniques cannot be easily adopted in the Natural Lan-
guage Processing domain. Images consist of pixels, which are represented as real
value vectors: it is possible to slightly change the pixel values in a way which ma-
nipulates the gradients in a forward pass of a model to change the prediction, while
the image is still perceived as unchanged to a human. On the other hand, modifying
a sentence in a way that a human will not notice that change is almost impossible.
The main problem here is that while pixel values are represented in a continuous
space, words – that can also be represented in a continuous space in the form of
real value vectors, i.e., embeddings, – are in a discrete space per se. Theoretically,
one could find a vector in the embedding space which changes the prediction of
a model, but constructing this vector from a discrete space of words is impossible
in most of the cases. So, the recommended option is to create a perturbation on a
linguistic level in the target sentence. But, as said before, adding a word is most
likely perceived by a human, contradicting the idea of an unnoticeable difference.
Furthermore, adding even a single word might drastically change the semantics of
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a sentence. Given these two challenges, adversarial examples in the NLP domain
need to be carefully designed. Due to the nature of the problem, only limited work
on the perceivability has been done so far. The main work focuses on semantic pre-
serving techniques accepting that the perturbation might be noticed by the human
eye [125].

A strategy to generate adversarial examples are black-box approaches. Contrary
to white-box approaches, they do not need any model specific knowledge except the
input and output. Recent black-box approaches comprise methods concatenating,
editing or substituting words in the input sentence [125]. There are also approaches
which work on changing the underlying syntax by creating paraphrases [126]. In
the context of this thesis, I also experimented with this automatic paraphrasing tech-
nique to generate adversarial examples. While this is a highly interesting topic, for
the argument classification datasets the produced paraphrases were ungrammatical
most of the time. So, I decided not to further pursue this kind of perturbation and
exclude them from the experiments. An intuitive way of creating perturbations is
to replace words with semantically similar alternatives, e.g., synonyms. Alzantot
et al. [127] employ an approach where they replace each word of a sentence until
the prediction changes. For some of the presented perturbations, the same tech-
nique of replacing words with semantically similar alternatives is applied, but with
a different strategy: only one word at a time is replaced minimizing the risk of pro-
ducing a meaningless sentence. Moreover, also adverbs are added which change
the semantics, strictly speaking, but do not change the label from argumentative to
non-argumentative. Concerning the model which is attacked in the experiments,
previous work has shown that self-attentive models are more robust than recurrent
architectures [128]. While in this work the authors used a white-box approach to pre-
cisely aim at weak points of the self-attending model, I decided to pursue a model
independent black-box strategy. The generated adversarial examples lay the foun-
dation to evaluate the robustness of argument classification models and to improve
it with adversarial training. Previous work on adversarial attacks in the AM do-
main [129] considers the Argument Reasoning Comprehension Task (ARCT) [113].
Here, given a claim, a reason and two warrants, the task is to determine the correct
warrant. The authors found that the original dataset contains an uneven distribu-
tions of linguistic cues over the warrants, which the investigated model seems to
learn [129], meaning that the correct warrant can be identified by learning these
cues. To counter this imbalance, they created a perturbation for each data point (a
claim C, a reason R, a correct warrant W and distractor warrant D). They negate the
claim and invert the label (the identifier of the correct warrant) for each data point:
For each R ∧ (W ∧ ¬D) =⇒ C, they add R ∧ (¬W ∧ D) =⇒ ¬C to the dataset.
Since by the definition of the task R and W must be true to imply C, this is a logi-
cally correct transformation. While most of the negated claims already existed in the
data, the remaining claims were negated manually. Contrary to the work proposed
in this chapter, the perturbation is created manually and aims more at evaluating
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the deeper comprehension of the logic of the argument and the learned inference
than the flexibility of the model to handle linguistic variations of the input. Still, this
is an interesting approach, showing that BERT cannot capture this deeper level of
comprehension of arguments.

In the following, Section 7.1 discusses the methodology and background for ad-
versarial attacks in NLP, with a subsequent focus on adversarial training on the ar-
gument classification task. The experimental settings are later detailed, including
the used datasets and the generated perturbations, in Section 7.2, and the obtained
results of the conducted experiments are discussed in Section 7.3. Subsequently, to
round up the analysis, Section 7.4 highlights other observed weaknesses of trans-
former models.

7.1 Adversarial Attacks for Natural Language Processing

In this section, the terminology is introduced and an overview of the methodology
for adversarial attacks on deep neural networks for NLP is given. For this work, I
closely follow the definitions given in [124, 125] and explain which setting I chose
for the topic-dependent argument classification task.

Perturbation: A perturbation is a minor change to the test input example for the
DNN. The goal is to change the prediction of the model, while the modification of
the input example should not be perceived by humans. As previously mentioned,
the notion of being imperceptible by humans is not as easily applicable to text, be-
cause most of the time a change in characters or even words is more obvious to
human judgment than a slight adjustment to pixel values. Thus, for NLP the point
of perceivability is rather interpreted as preserving the semantics of the original sen-
tence with being still grammatical as a further constraint. Both of these constraints
are challenging NLP tasks by themselves and have not been fully solved so far. As a
consequence, automatically generated perturbations might violate these constraints
raising the necessity for a human evaluation of the generated perturbations.

Granularity of Perturbation: The notion of granularity follows the thought above.
While slight changes in single characters might not be that perceivable and preserve
semantics as well as syntax, deleting, inserting or replacing words is a different level
of perturbation. Even changes on sentence level are possible, e.g., paraphrasing or
even adding whole sentences as it was done for attacking reading comprehension
models [130]. For the argument classification task, the majority of the perturba-
tions are on word level, since the goal is to evaluate the robustness of the targeted
DNN Language Model against comparatively simple linguistic attacks. Also one
character-based method is employed and as aforementioned, unsuccessful experi-
ments with sentence-level perturbations were conducted, i.e., automatic paraphras-
ing.
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Adversarial Example: An adversarial example x′ is a perturbation of an input ex-
ample x, where the modification indeed changes the prediction Y of the model, so
that y′ 6= y.

Attack Target: An adversarial attack can be targeted to change only specific labels
in a multi-class classification setting. For argument classification, there is no neces-
sity to specifically target the attacks against a certain label for two reasons: first,
argument classification is usually limited to a two or three class classification prob-
lem, and second I do not want to make any assumptions about the architecture of
the attacked model, leading us to the next point.

Model Knowledge: There are different strategies to generate adversarial examples
depending on the availability of knowledge about the DNN the attacks are aimed at.
White-box approaches have access to all the information of the model, e.g., architec-
ture, (hyper-) parameters, loss and activation functions, training data, or confidence
scores. On the contrary, the black-box approaches have only access to the input and
output of a model [131]. Everything between is unknown. Given that it was the
best performing model in previous experiments (Chapter 4), BERT was selected as a
specific model to attack. But since there are and will be other self-attending architec-
tures based on Language Model pre-training, I do not want the perturbations to be
limited to only BERT and decided to go for a black-box approach ignoring valuable
information like the attention scores.

Adversarial Training: Currently, the only defense strategy against adversarial at-
tacks is adversarial training where the DNN is re-trained with adversarial exam-
ples [122, 125]. One strategy is also to include inputs which are unlikely to occur
naturally. This defense strategy aims at reducing the “fundamental blind spots” [123]
of a model making the model more robust against divers input. With respect to NLP
and specifically to argument classification, this means that including ungrammatical
examples in training the model is justified. After all, argument classification is based
on representations of full sentences, which are created from word level representa-
tions independent of the grammaticality of the sentence.

Evaluation Metric: The evaluation of adversarial attacks can be measured by the
degree it decreases the performance of a DNN. I decided against it, because it can-
not be ensured that each input example has the same number of generated pertur-
bations, which thus might bias the results. Another prominent way to evaluate the
perturbation efficiency is the success rate, which is used here as the evaluation met-
ric. The success rate is the percentage of adversarial examples over the number of
generated perturbations.
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Robustness: In the terminology of this thesis, robustness refers to the ability of a
model to correctly classify unseen test data from the same domain as the training
data. Contrary to that, it is referred to generalizability as the concept of being able
to exploit the already acquired knowledge in a new domain. For argument classi-
fication, this means that when training and test set talk about the same topics, e.g.,
abortion, adversarial attacks are testing robustness. For the case when the test set con-
tains topics which are never seen during training, this falls under the (cross-topic)
generalizability of a model. The main goal of adversarial training is to increase the
robustness of a model, not its generalizability.

7.2 Experimental Setup

This section describes i) the datasets used for training and testing and the attacked
DNN, ii) the different types of generated perturbations, and iii) a qualitative evalua-
tion of the perturbations through a user study.

7.2.1 Data and Target Model

As previously mentioned, the application domain for the adversarial attacks in this
work is topic-dependent argument classification. For this task, there are two ma-
jor datasets available: 1) The UKP Sentential Argument Mining Corpus [119], which
is a collection of 25,492 sentences annotated as an ArgumentFor (Arg+), ArgumentA-
gainst (Arg-) or NoArgument (NoArg) to a specific topic. The dataset comprises 8
different topics, i.e., abortion, cloning, death penalty, gun control, marijuana legalization,
minimum wage, nuclear energy and school uniforms, and 2) the IBM Debater: Evidence
Sentences [121], which is a collection of sentences from online debate portals anno-
tated with evidence (Arg) or no evidence (NoArg) in regard to one of the 118 topics.
Following existing experimental setups from the literature [38, 121], the training set
comprises 83 topics (4,065 sentences) and the test set 35 (1,718 sentences).

Self-attentive transformer models like BERT [59], which use LM pre-training,
have become a mighty tool for many NLP tasks. As stated above, this also applies to
Argument Mining. Following recent state-of-the-art approaches to topic-dependent
argument classification [38] and with respect to the experiments conducted for the
previously described AM pipeline, the adversarial attacks were evaluated on the
BERTbase model. The input for BERT consists of the input sentence concatenated
with the topic. As introduced before, the perturbations are black-box methods not
taking advantage of model specific knowledge, e.g., attention score, contrary to pre-
vious approaches on adversarial attacks on self-attentive models. Thus, they can be
easily transferred to other architectures in the future.

Two lines of experiments were conducted. The first one to test the success rate
of the perturbations, and the second one to evaluate adversarial training. For both
lines, training and performance evaluation was based on the code provided by Reimers
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et al. [38]. Hyper-parameters for fine-tuning the models were also replicated without
any changes. The only difference is that I do not split the training data into a devel-
opment set, since no parameters are tuned. For both lines of experiments, there
are three different scenarios: 1) a model where the train (80%) and test (20%) sets
comprise all eight topics of the UKP dataset (UKP all); 2) the leave-one-out training
(UKP x-topic), where seven topics of the UKP dataset were used for training and the
eighth is used for testing. In total, this results in eight different models. The results
in this scenario are reported as the average over the eight models; 3) in the last sce-
nario, a model is trained on the IBM dataset with the train-test split described above
(IBM x-topic).

For the first line of experiments, i.e., perturbation evaluation, the success rate of
a perturbation is evaluated on a model trained without any adversarial examples.
Only perturbations from the test set are considered in calculating the success rate.
For each perturbation, a label-wise success rate is calculated. For the second line
of experiments, i.e., adversarial training, only perturbations of the training set are
considered for augmenting the training data. Every model was re-trained under
the same conditions as before, but with the only difference being the augmented
training data. The evaluation of an adversarially trained model is done on the same
unmodified test set as the normally trained counterpart to guarantee comparability.

7.2.2 Perturbation Types

In the following, the eight different methods are introduced, which were used to
generate perturbations for given input examples. The perturbation generation meth-
ods are based on word or token types. Hence, the number of generated pertur-
bations per input example varies. To give an idea of the order of magnitude, the
average number of generated perturbations for each test set of the two datasets is
reported.

Named Entities (NE) The first proposed method consists of replacing a named en-
tity in the input sentence. To achieve this, a list of named entities is constructed
for each of the four standard categories, i.e., PER, LOC, ORG, MISC, present in the
CoNLL 2003 Shared Task dataset for named entity recognition [132]. Using this list,
for each NE present in the original sentence one new perturbation is generated re-
placing the entity with a different entity from the same category. In order to preserve
the semantics, pre-trained word embeddings (fastText) are employed as a means of
distance, and the closest neighbours is selected. If the original input sentence does
not contain a NE, no perturbations are generated. Accordingly, the average number
of generated perturbations per input sentence varies. On the UKP dataset an aver-
age of 3.11 perturbations per sentence is produced. The IBM dataset contains more
NEs per sentence, therefore the produced number of perturbations per example is
higher, namely 10.15.
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Example 7.2.1 Original sentence: According to FBI statistics, 46,313 Americans were mur-
dered with firearms during the time period of 2007 to 2011.
Adversarial attack: According to U.S. Bureau of Investigation statistics, 46,313 Ameri-
cans were murdered with firearms during the time period of 2007 to 2011.

Adjectives This method is similar to the list-based attack proposed by Alzanot et
al. [127], where words in the input sentence are replaced with a word from a list of
semantically similar words. Contrary to the aforementioned work, only one word
per perturbation is replaced. Specifically, adjectives are exchanged with their syn-
onyms, e.g., big with large, producing one perturbation example for each adjective
in the sentence. The synonyms were taken from the WordNet interface in the NLTK.
Here, the average perturbations generated per sentence are more similar in the two
datasets. For the UKP dataset, a sentence has on average 2.12 adjectives, while for
the IBM dataset 2.9 perturbations per sentence are generated.

Example 7.2.2 Original sentence: A big part of it may have to do with the fact that mari-
juana today is much stronger than it was in previous generations.
Adversarial attack: A large part of it may have to do with the fact that marijuana today is
much stronger than it was in previous generations.

Punctuation This is the only modification of a sentence on character-level. Here,
all the punctuation, e.g., “.” or “,”, is removed from the original input sentence.
Naturally, this method provides one perturbation per sentence.

Scalar Adverbs This method is about adding or replacing emphasising modal ad-
verbs, such as considerably, or trigger words for scalar implicature, such as compar-
atively or largely. They are added before a verb or an adjective. As will be shown
in succeeding sections, the positioning algorithm needs to be improved, since some
adverbs should be placed only after the word, while others should be placed only
before the word or can take both positions. The average amount of perturbations
generated per input sentences is around 3.94 for the UKP dataset and 4.67 for the
IBM one.

Example 7.2.3 Original sentence: It is possible to fuel nuclear power plants with other fuel
types than uranium.
Adversarial attack: It is totally possible to fuel nuclear power plants with other fuel types
than uranium.

Nouns Similar to the proposed adjectives method, this list-based attack exchanges
a noun with its hyponym. Again, only one word per perturbation is replaced pro-
ducing one perturbation example for each noun in the sentence. This method gener-
ated an average of 12.19 perturbations per sentence on the UKP dataset, whilst the
number increases to 17 for the IBM dataset.
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Example 7.2.4 Original sentence: When it comes to infertile couples, should not they be
granted the opportunity to produce clones of themselves?
Adversarial attack: When it comes to infertile couples, should not they be granted the chance
to produce clones of themselves?

Conjunctions This method consists of adding adverbial conjunctions, such as fur-
thermore or nonetheless, at the beginning of the input sentence. If the sentence already
begins with an adverbial conjunction, the sentence is skipped. This attack delivers
an average of 2.69 perturbations per sentence on the UKP dataset and 2.88 on the
IBM.

Example 7.2.5 Original sentence: Government data show that about one in 12 death row
prisoners had a prior homicide conviction.
Adversarial attack: Furthermore, Government data show that about one in 12 death row
prisoners had a prior homicide conviction.

Speculative Adverbs They are modal adverbs related to the possibility property
of verbs. This method is similar to the aforementioned scalar adverbs perturbation.
Another list-based attack where modal adverbs related to the possibility property of
verbs, such as certainly, are added directly before a verb. In this case, an average of
1.67 perturbations per sentence is obtained on the UKP dataset and 1.75 on the IBM.

Example 7.2.6 Original sentence: Even the gateway effect — the theory that cannabis leads
to other drugs — was discarded long ago.
Adversarial attack: Even the gateway effect — the theory that cannabis indeed leads to other
drugs — was discarded long ago.

Topic Alternatives Previous work has shown that including the topic in the BERT
input increases the performance of the model [38]. Thus, exchanging the topic with
alternatives is a relevant perturbation to evaluate. For each topic in the two datasets,
a list of alternatives was created. For example, arms limitation for gun control or cap-
ital punishment for death penalty. While on average 4.25 alternatives per topic were
created for UKP dataset, for the IBM dataset on average, there were 2.75 alternatives
per topic.

7.2.3 User Study: Quality of Generated Perturbations

As an additional evaluation criteria of the generated perturbations, a user study was
conducted about the preservation of semantics between the original sentence and the
sentence after the modification. Both versions of a sentence were presented to the
user and the user was asked if the two sentences 1) have the same meaning, 2) do not
share the same meaning, or 3) if the transformed sentence is not meaningful, where
“not meaningful” could mean either that the sentence has become ungrammatical or
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that it does not make sense anymore. For each answer option, there was also a text
field giving the possibility to voluntarily provide a justification of their decision. In
total, 72 pairs of sentences were presented to each participant comprising every type
of perturbation, but the topic alternative and punctuation deletion. The topic alter-
natives were excluded from the study, because the topic is an independent part of
the model input and does not modify the grammaticality or semantics of a sentence.
Same holds for the deletion of punctuation, which only changes the semantics of a
sentence in some rare case of rhetorical questions. Moreover, the participant think-
ing of proper punctuation might have shifted their focus from the actual task, i.e.,
semantic similarity. The sentence length of each pair of sentences was controlled
to have a difference of maximum one standard deviation from the mean sentence
length of the sentences in the dataset. Participants in the user study were mainly
non-native speakers with a higher educational degree (Master degree or Ph.D.) and
a fluent level of English. In total, 31 people completed the questionnaire. The results
are shown in Table 7.1.

Perturbation Type %
Named Entities 71.30
Adjectives 61.04
Scalar Adverbs 42.67
Nouns 47.47
Spec. Adverbs 57.82
Conjunctions 93.68

TABLE 7.1: Results of the user study: percentage of how often each
perturbation type was perceived as preserving the original meaning.

The perturbation method with the highest percentage of preserving the meaning
of the sentence, i.e., 93.68%, is adding conjunctive adverbs. Naturally, this barely
impacts the meaning of a single sentence. For the NE replacement, 71.3% of the peo-
ple found the exchange as meaningful. The main criticism was that the new named
entity, especially when they were acronyms, was unknown to the participant. Over-
all, employing word embeddings as a distance criteria to select NEs of the same
type preserves the meaningfulness in most cases. Replacing an adjective with its
synonym was in 61.04% of the cases found to be meaningful. While for the other
cases, it was reported that the selected synonym was not suitable for the given con-
text. Similar feedback was gathered for the hyponym replacement of nouns. Here,
in 52.53% of the cases the selected noun did not fit the context, as either being too
specific or unrelated to the topic. Inserting speculative adverbs was perceived as
not changing the meaning of a sentence in 57.82% of the cases. A main observa-
tion reported by the participants is the change in credibility or certainty of the men-
tioned studies and other evidence, e.g., changing facts to opinions. Indeed, this does
change the semantics of a sentence, but with respect to an argument classifier the
uncertainty of an evidence does not matter as much as that it is correctly detected
as being an argument. From this point of view, one can make an argument that this
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aspect of change in semantics can be neglected in the particular case of argument
classification, while it should be considered as changing the semantics in other AM
tasks, where certainty plays a role. Compared with the other perturbation types,
adding and replacing scalar adverbs caused with 57.33% the most cases of changes
of a meaning of a sentence. The participants found that this transformation often
breaks the grammaticality of a sentence. A future challenge is to find the right place
to insert such adverbs, because some of them can either precede the target word or
come only after it. Moreover, one has to consider if a target word can scale. For
example, genetic, mandatory or guilty cannot be compared. There is no such thing as
fairly mandatory. Future work in this research direction needs to address this point.

7.3 Results and Discussion

In this section, the results of the two lines of experiments are presented and dis-
cussed. First, the success rates for each perturbation type, and second, the adversar-
ial training.

7.3.1 Adversarial Attacks

Table 7.2 reports on the success rate (the percentage) of adversarial examples over
the total of generated perturbations.

Perturbation Type UKP all UKP x-topic IBM x-topic
Arg+ Arg- NoArg Arg+ Arg- NoArg Arg NoArg

Named Entities 7.06 7.30 2.02 6.14 7.22 2.30 1.51 0.18
Adjectives 10.90 10.02 6.70 12.16 10.37 5.89 3.79 0.03
Punctuation 8.86 9.74 4.21 10.41 10.61 4.34 2.78 0.19
Scalar Adverbs 5.87 7.15 3.41 7.39 7.57 3.29 2.01 0.08
Nouns 13.91 14.56 7.35 15.08 14.65 7.6 8.43 0.53
Spec. Adverbs 6.31 6.89 2.99 7.49 6.82 2.53 1.42 0.06
Conjunctions 5.87 7.29 4.33 9.66 9.52 4.56 3.64 0.4
Topic Alternatives 0.81 1.33 0.29 1.07 1.13 0.41 1.14 0.08

TABLE 7.2: Label-wise success rate of each perturbation type on the
different test scenarios.

Looking at the in-domain test scenario, i.e., UKP all, one can observe that the
Arg- label is more affected by the attacks than the Arg+ label, with exception of the
adjectives. The adjective and noun replacement have the highest success rates in
attacking the models. For adjectives, this could be explained with the fact that they
usually carry sentiments whose perception might differ if they appear in a pro- or
con-argument. For nouns, the replacement with hyponyms has the highest success
rate, but given that in the human evaluation only in 47.47% of the cases the pertur-
bation was perceived as meaningful, the results cannot be considered with respect
to this perturbation as fully reliable.

Overall, the positive classes, Arg+, Arg- and Arg, showed to be more vulnera-
ble to attacks than the no argument class. Usually, the structure of the task at hand,
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which features in the data one tries to learn, is associated with the positive class.
Meaning that the complementary class does not necessarily contain a distinctive
pattern in the feature space, because it contains everything which is not wanted.
Hence, it cannot be as efficiently attacked as the learned patterns for the positive
classes. Unexpectedly, deleting the punctuation resulted in a comparatively high
success rate, which is counter-intuitive, because one would not consider the punctu-
ation to have a high impact on the model. This would translate to the model seeing
meaning more in punctuation than actual meaning-carrying words, which is against
any idea of Natural Language Understanding. And indeed, after reviewing the at-
tention scores of the model, I found that, contrary to my expectations, the model
tends to attend to punctuation. This further reinforces the suspicion that the model
is not learning a deep semantic representation, because it does not comprehend the
task as it was intended. The abstraction of finding correlations between the input
symbols and the target labels to encode concepts and circumstances occurring in the
world was not successful. This observation needs to be confirmed at a larger scale,
though. Exchanging the topic with alternative wording resulted in an insignificant
success rate not affecting the model. Concerning the cross topic evaluation, the UKP
x-topic shows partially higher vulnerability than its in-domain counterpart. Since
cross domain is the harder task, the confidence scores are lower for unseen test data,
and with that the overall performance compared to in-domain models. A less con-
fident model is easier to attack, explaining the higher success rates. Interestingly,
the IBM x-topic is not as vulnerable to attacks as the UKP x-topic model. Again,
as can be noticed in Table 7.3, the overall performance of the IBM model is higher.
Since in both cases the same model architecture is employed, the only difference
is the data. The IBM dataset seems to be more structurally uniform than the UKP
dataset, explaining why test performance is higher and the success rate of attacks
lower. Another point supporting this is that the exchange of NEs, which the IBM
dataset contains more per sentence than the UKP one, barely changes the classifica-
tion of an input example. This connotes that, in the case of the IBM data, NEs are
not as important for the model justifying that they can be exchanged without los-
ing the argumentative function of a sentence. Even though this further justifies the
named entity perturbation method, it is ineffective in this case. Overall, BERT-based
topic-dependent argument classification models are relatively robust against minor
changes to the input, but still vulnerable to a certain degree. In roughly 5-10% of the
cases, adding a meaning preserving word changes the prediction of the model.

7.3.2 Adversarial Training

The most common strategy to defend from adversarial attacks and make a model
more robust is adversarial training. This is covered in the second line of experiments,
whose results are reported in Table 7.3.

For the in-domain scenario (UKP all), one can observe an increase of .07 points in
F1-score compared to the model trained without adversarial examples. This shows
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UKP all UKP x-topic IBM x-topic
standard training .73 .60 .77
adversarial training .80 .59 .78

TABLE 7.3: Results in macro F1 for models with and without adver-
sarial training.

that adding linguistic variants of the training data helps in predicting unseen test
data from the same domain. Intuitively this makes sense, arguments are often rephrased
differently or are re-used as targets for undercutting, for example. With respect to
BERT, this raises questions. In the aforementioned experiments on perturbation ef-
ficiency, it was seen that BERT seems to be quite robust against the adversarial at-
tacks. Also, in previous works, models based on Language Model pre-training ad-
vanced the state-of-the-art, which was said to be due to the Natural Language Un-
derstanding capabilities learned during pre-training. Accordingly, this should mean
that slight variations of the input are covered by the Language Model. The increase
in performance with adversarial training shows that this supposed NLU capability
is either not fully utilized or blurred during fine-tuning, or was limited in the first
place. I assume it is a mixture of both, since other experiments in different domains
show that BERT-like models are more robust than recurrent networks [128], but also
that the Language Modelling capabilities of self-attentive models are limited [133,
134]. Even if the success rates of the perturbations are only between 5-10%, added
up these make quite a number of examples, which BERT is vulnerable to. Adding
these linguistic variations to the training data, though, boosts the NLU capabilities
making the model more receptive for them. Note that this way the training data is
increased by roughly a factor of twenty. This indeed shows that adversarial training
helps in-domain predictions and improves the robustness of a model, as intended.
Table 7.4 shows examples where adversarial training corrected the model prediction.

topic sentence pred1 pred2

gun control Five women are murdered with guns every NoArg Arg+
day in the United States.

school Up to now, this uniform is still in use, Arg+ NoArg
uniforms making it the oldest uniform in history.

Even in the case of nonfatal conditions, such
abortion as Down syndrome, parents may be unable to Arg- Arg+

care for a severely disabled child.
I find this reasoning absolutely ridiculous,

cloning since a person is a person despite their genetic Arg- Arg+
source or if artificially created.

TABLE 7.4: Examples where adversarial training improved the model
prediction. pred1 model prediction before adversarial training, pred2
model prediction after adversarial training, which is also the true la-

bel.
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A justified doubt coming up here is the question of overfitting, i.e., did the ad-
versarial training really help in NLU or did it just improve learning the dataset? In the
latter case, one would see a decline in cross domain evaluation, because the model
is overly focused on in-domain specific features. As can be seen in Table 7.3, the
cross domain performance is not dropping significantly with adversarial training.
Both models are still in an acceptably similar range compared with their normally
trained counterpart. The UKP x-topic loses 0.01 F1-score, while the IBM model even
shows a slight increases of roughly .01 F1-score. Meaning that the generalizability of
the models is preserved, ergo they did not overfit on the training domain. So, why
is it that adversarial training helps in-domain, but does not improve the cross domain per-
formance? At this point, we need to go back again to the aforementioned distinction
between robustness and generalizability. On the one hand, robustness is more re-
lated to the ability to understand language in the sense of linguistic flexibility; being
able to understand differently worded phrases about the same thing. Generalizabil-
ity, on the other hand, is the ability of a model to transfer and apply already learned
patterns to a new domain. In this case, an increase in performance for the models
tested on cross topics would be related to the generalizability. While depending on
the application scenario, generalizability and robustness have a strong overlap, and
one has to carefully distinguish them for Argument Mining. Usually, cross domain
in AM means that the model should be able to detect arguments for a topic unseen
during training. Assuming the new topic is not somehow related to the topics seen
during training, this means, the model has to infer everything associated with a
given input sentence and decide if this can be an argument related to the topic or
not. The problem is one can only conditionally infer new arguments from existing
arguments in the semantic space. If the two arguments are structurally similar to a
certain degree (or use similar key components), it is possible. But finding new argu-
ments for an unseen domain is beyond Language Modelling. It requires also a deep
understanding of knowledge and common sense. Especially the latter two cannot
be efficiently learned from word co-occurrences alone [118, 134]. As a result, it is not
surprising that augmenting training data with alternative wording of the data does
not improve generalizability. After all, the examples added for adversarial training
are mostly noise with respect to the new unseen test domain; noise, which is not
negatively affecting the generalizability of the BERT model.

7.4 Known Weaknesses of Transformer Models

As described in Chapter 2.3, a whole field of research has been developed analysing
the inner functioning of the attention mechanisms of transformer models [135]. This
goes far beyond than just the evaluation of robustness. This research has discovered
various weak spots of BERT-based models. In the following, various points together
with proposed improvements are presented.
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Shortly after the work I presented in this chapter, Ribeiro et al. [136] proposed a
task-agnostic methodology for testing NLP models. There, NLP models should be
tested for certain changes in the input, i.e., perturbations. In line with my findings,
they found that current transformer models struggle with changes of locations and
person names. They also evaluated the vulnerability to paraphrasing and discov-
ered that contemporary commercial transformer models are far way from solving
this problem. Moreover, they cannot capture temporal changes of verbs, e.g., chang-
ing is to used to be, and negations, where the latter was also observed in the error
analysis of the relation classification and Effect-on-Outcome in the Chapters 4.2 and
6.3.

Contemporary transformer models surpass the performance of non-expert hu-
mans making the GLUE benchmark no longer a suitable metric to reflect the im-
provements models make [137]. The newer SuperGLUE [137] benchmark comprises
harder tasks like reading comprehension, common sense reasoning or textual en-
tailment to better quantify the performance of the understanding. While for most
tasks the leaders of the GLUE benchmark also performed reasonably well [133],
they are significantly worse than humans on the causal reasoning task [138] and
co-reference dependent reading comprehension [139], where the human baseline is
at 100% accuracy. Besides a deep understanding of the discourse, these problems
require common sense and world knowledge. It has been shown that BERT-based
models in the higher layers do capture some kind of semantic abstraction [73] and
the performance of the models on the aforementioned tasks is also high. But some
questions arise, e.g., how well do these models understand the interactions in a dis-
course and how much common sense and world knowledge can be learned from
just word co-occurrences? and more importantly, how can the major limitation of
being trained only with character-based features be enhanced to capture more of
this information? One option is to include semantic information in the training pro-
cess, where semantic information can either mean world knowledge from knowl-
edge bases or integrating discourse and semantic role information. Additionally to
the aforementioned problems of understanding the discourse, knowledge depen-
dent tasks, like fine-grained relation classification or entity typing, pose challenges
for models trained solely on contextual character-based features. For example in
Bob Dylan wrote Blowin’ in the Wind in 1962, it is hard to determine if Bob Dylan
is a writer or songwriter without knowing that Blowin’ in the Wind is a song. This
knowledge is available in Knowledge Bases (KB). The semantic web is full of struc-
tured world knowledge, which can be exploited. One approach to incorporate such
external knowledge into Language Models is Enhanced language RepresentatioN with
Informative Entities (ERNIE) [72]. The idea is to stack a knowledge encoder consisting
of multiple aggregators on top of the encoder layers of a transformer model, where
the knowledge encoder fuses knowledge graph embeddings with the contextualized
embeddings into one united feature space. As a first step, named entity mentions in
the text are aligned with their KB entries. The aligned named entities are represented
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with knowledge graph embeddings using TransE [111]. Each aggregator takes the
contextualized token embeddings from the transformer encoder and the entity em-
beddings and feeds them into a multi-head self-attention layer, respectively. An in-
formation fusion layer integrates the different representations coming from the two
self-attention layers into one feature space. The output embeddings for each token
and entity are the input for the next aggregator. The output of the last aggregator
is used as the final embedding representation. For more details I refer the reader to
the original paper [72]. Like BERT, the pre-training for ERNIE is done with cloze test
like tasks1. Similar to the masked Language Model, they employ a knowledge mask-
ing task, where either one entity of the entity alignment is replaced with a random
entity, a token-entity alignment is masked, or the alignment stays unchanged. For
ERNIE 1.0 the pre-training comprises MLM, next sentence prediction (same as for
BERT) plus the knowledge masking task, while ERNIE 2.0 consists of more tasks.
Adding only the knowledge masking to the pre-training, ERNIE 1.0 significantly
outperforms BERT on entity typing and relation classification datasets while still
delivering comparable results on GLUE. With ERNIE being a first step towards in-
tegrating heterogeneous information coming from world knowledge databases, the
next step is to inject common sense knowledge in a similar fashion. There are avail-
able resources providing this knowledge to a certain extend, e.g., ConceptNet [140]
or ATOMIC [141] in form of cause and effect relations. Moreover, in direct relation to
the work of this thesis, integrating world knowledge or common sense could mean
explicitly modelling the implicit warrants, as discussed in Chapter 4.2.

One approach to include contextual semantics to Language Modelling is Sem-
BERT [70], motivated by the semantically incomplete answer spans of BERT on the
Stanford Question Answering Dataset (SQuAD), where single semantic discourse
units were broken down and only parts were classified as the answer to the ques-
tion. A similar problem was observed for incomplete outcome span detection in the
outcome analysis pipeline in Chapter 6.3. A problem shown for SQuAD was, for ex-
ample, answering How many people does the Greater Los Angeles Area have? with 17.5
million instead of over 17.5 million. To overcome this problem, the authors integrated
information from Semantic Role Labeling (SRL) in the sequence encoding. As a first
pre-processing step, the input sentences are annotated with a semantic role labeler.
Each token is assigned a list of labels, where the length of the list is the number of
semantic structures output by the semantic role labler. The embeddings of each se-
mantic role label are learned via a BiGRU and subsequently fed into a linear layer to
obtain one joint representation for each word in the sequence. In parallel, the sub-
word level representations from the BERT encoder are converted to word-level using
a CNN with max pooling to match the token length of the SRL output. The contex-
tualized and semantic embeddings are concatenated to form the final embedding.
While the BERT encoder is initialized with pre-trained weights, the weights for the

1As explained in Chapter 2.3, cloze tests are fill-in-the-blank tests, which require an understanding
of the context and are commonly used in language learning.
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BiGRU are learned during fine-tuning on a specific task. SemBERT outperformed
the existing models on GLUE and SQuAD2.

Another way to inject discourse knowledge is discourse-aware semantic self-
attention [71], which replaces the basic multi-head self-attention block in the trans-
former encoder. Here, the motivation comes from integrating discourse information
into reading comprehension to better understand interactions, causation and tem-
poral sequences in the text. For example, given the context: Jacob frequently visits
Jeff and Kenny, who are serving time in a juvenile hall. Jacob initially threatens them, un-
til eventually Jeff commits suicide. To answer Why did Jeff commit suicide? one needs
to understand that the suicide is caused (until eventually) by Jacob threatening Jeff
(them). For this, structured knowledge about entity co-reference and their seman-
tic roles are required as much as information about the discourse relations between
text sequences. To learn all this information, the proposed self-attention gets three
additional inputs3, which are represented by one embedding vector, respectively:
1) semantic role label; similar to the aforementioned approach, embeddings for the
semantic roles are learned. 2) discourse relation label; following 15 fine-grained dis-
course relation sense types from the Penn Discourse Tree Bank annotation scheme,
such as causation or contrast. 3) label of the co-reference cluster; where tokens re-
ferring to the same entity are assigned to the same cluster. Using these linguistic
annotations, the model outperforms the same model with the basic self-attention by
+3.43 Rouge-L on NarrativeQA reading comprehension. Concerning the impact of
the individual linguistic information, the authors found that information about the
SRL improves who and when questions, while information about the discourse rela-
tions is beneficial to answer why and where questions. Why questions in particular
are relatively close to AM tasks, which further supports the integration of discourse
information in AM models as it was done in [142], who showed that discourse parser
features can contribute in argument parsing.

Similar to the discourse-aware semantic self-attention, ERNIE 2.0 [69] takes ad-
vantage of information about the discourse relations. One of the added tasks for
pre-training with respect to the previous version, is the discourse relation classifi-
cation task. Here, the model has to predict the marker, e.g., but, for an explicit dis-
course relation between two sentences. Together with the continual learning strategy
and the other added pre-training tasks related to lexical, structural and semantic in-
formation, ERNIE 2.0 shows significant improvement compared with the previous
version.

Therefore, I consider the addition of semantics to LMs trained on only contex-
tualized character-based features an important and inevitable step towards Natural
Language Understanding and AM in particular. Especially with respect to common

2While later models like XLNet and RoBERTa outperform SemBERT, they still do not consider se-
mantic information. The proposed approach to inject semantics can be implemented in these LMs as
well.

3Linguistic annotation is a pre-processing and relational annotations spanning multiple sentences
are projected from paragraph-level to token-level.
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sense, world knowledge and co-referential discourse, current contextualized repre-
sentations cannot solve the challenges of general language understanding alone. The
latter, as was discussed throughout the preceding chapters, is decisively important
for AM, since it is such a highly complex problem. Again, a shallow understanding
based on symbol patterns is not sufficient to fully solve the challenges posed by the
definition of the problem. The task is to encode concepts and circumstances occur-
ring in the world in such a way that the (Machine Learning) model can infer the
causal relationship between two argumentative statements and is able to transfer
this learned knowledge to leverage it on new data. This requires a deep semantic
understanding of both statements, their interactions and following consequences.
As I said previously in this chapter, I think that the abstraction of the current (trans-
former) models does not reach fully into a deep semantic space. They are limited to
a mapping of input symbols into a predefined space and learning the distance units
and meaning of this space on their own. With respect to the context of this thesis,
especially in the medical domain, interrelationships are often implicitly presumed
and not explicitly mentioned in the text. This world knowledge has to be externally
added to the model, because it is impossible to capture with a model trained solely
on character-based input in an unsupervised way. In my opinion, an approach with-
out any additional information about the discourse, common sense or world knowl-
edge, cannot capture all properties of communication. Language is after all just a
tool to transfer information based on observation, consensus and experience in so-
cial interaction of the speakers. All these factors play an important role in arguing
and debating, which makes them relevant for the tasks of AM and should therefore
not be ignored. Thus, I agree with Niven and Kao [129], that the current transformer
models are strong learners of linguistic cues, but cannot solve AM tasks satisfacto-
rily beyond a certain point, since they simply cannot comprehend all facets of the
argument(-ation), yet.
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Chapter 8

Proof-of-Concept and Impact

This chapter introduces the ACTA system and its applications in concrete health-
care scenarios linked to the Covid-19 health emergency. ACTA is a tool for au-
tomatically analyzing clinical trial abstracts from the argumentative point of
view by finding argument components and their links. Moreover, PICO ele-
ments are detected and highlighted. In the context of the Covid-19 pandemic,
ACTA was updated including the extension of the relation classification and it
has been employed in the Covid-on-the-Web project. Furthermore, the output is
stored as RDF data through the use of ontologies for data representation. Within
the project, ACTA is integrated in the overall data processing pipeline to create
Linked Data. This chapter comprises the work published at the International
Joint Conference on Artificial Intelligence (IJCAI-2019) [143] and the Interna-
tional Semantic Web Conference (ISWC-2020) [144].

In Chapter 2.1 it was said that one aspect is that Argument Mining can assist in scru-
tinizing the conclusions drawn by the authors of a trial. Creating an argumentative
representation of the trial(s) can support clinicians and practitioners in interpreting
the results and take informed decisions. The other scenario where AM could help
is based on the rising popularity of argument-based decision making in medicine,
as discussed in Chapter 9.1.1, where AM extracts the structured data from unstruc-
tured text required for these types of decision support. Both are eminently applica-
tion oriented objectives. Thus, to demonstrate the feasibility and benefit of the pro-
posed AM pipeline on clinical trials, a demo system was developed, called ACTA1.
ACTA stands for Argumentative Clinical Trial Analysis and is, as the name suggests,
a tool to automatically analyse the argumentative information of clinical trials. It
may be seen as the first step of a pipeline ending with evidence-based decision mak-
ing frameworks in healthcare applications, as those illustrated in Chapter 9.1.1. The
main purpose of it is to support the decision making process in EBM, by visual-
izing trial abstracts. The displayed summarized information about PICO elements
and contained arguments should facilitate literature exploration. Hence, ACTA in-
tegrates the web interface for literature research with PubMed, which allows the

1http://ns.inria.fr/acta/

http://ns.inria.fr/acta/
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user to query biomedical literature as usual. After the query the user can choose
the documents to be analysed and run the pipeline on the selected articles. The
argumentative components are then automatically extracted and the links between
the components established. In the base version of ACTA, the argument structure
prediction does not comprise the relation classification and only unlabeled links are
predicted, where the task is formulated as a multiple choice problem, as described in
Section 4.2. Besides the argumentative information, ACTA extracts PICO elements
from the trial abstract. As mentioned several times, PICO elements play an impor-
tant role in EBM, especially as a source of information to appraise literature. Hence,
adding a PICO element detection module to ACTA was an essential step towards
adapting the AM pipeline for the needs in the medical domain. The PICO element
detection module provides information about the mentioned participant, interven-
tion and outcomes of a study. As a hybrid tool, ACTA conveys information in a form
the medical user is familiar with and might thus be more likely to be accepted. After
all, the objective of ACTA is to give a condensed yet valuable overview of clinical
studies to assists in the deliberation process.

At the moment of writing, a potential application of ACTA by Inserm2 is dis-
cussed. Inserm (Institut national de la santé et de la recherche médicale) is the French
National Institute of Health and Medical Research. It is the number one applicant
of patents in Europe in the pharmaceutical sector and takes the second place in the
SCImago Institutions Rankings3 for best research institution in the health sector be-
hind the National Institutes of Health in the United States4. As a prestigious public
scientific and technological institute it is involved in an entire range of activities re-
sulting alone in 2019 in 11,700 publications5, which are 36,5% of all biological and
medicine papers worldwide. To assess the publications of their researchers and have
a better overview of what their research is about, ACTA is discussed as a potential
tool. While this application scenario goes beyond decision support for EBM which
I had in mind when developing ACTA, it is an unforeseen but worthwhile use case.
This further demonstrates the versatility and practicality of AM techniques in the
broader context of (medical) research.

In Section 8.1, the original base version, presented as a demo at the International
Joint Conference on Artificial Intelligence 2019 [143], is introduced. In Section 8.2,
a first updated version with additional features, which was applied on the CORD-
19 dataset [145] in the context of the Covid-on-the-Web project [144], is presented
together with the objectives of Covid-on-the-Web project itself.

2https://www.inserm.fr/
3https://www.scimagoir.com/
4https://www.scimagoir.com/rankings.php?sector=Health&year=2019
5https://www.inserm.fr/en/about-inserm/inserm-glance

https://www.inserm.fr/
https://www.scimagoir.com/
https://www.scimagoir.com/rankings.php?sector=Health&year=2019
https://www.inserm.fr/en/about-inserm/inserm-glance
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FIGURE 8.1: The ACTA main page.

8.1 ACTA

The ACTA tool [143] is designed to support doctors and clinicians in identifying
the document(s) of interest about a certain disease, and in analyzing the main ar-
gumentative content and PICO elements. ACTA automatically analyses the textual
abstract(s) of clinical trials that the user provides, and it detects in the text the ar-
gumentative components, i.e., evidence and claims, together with their relations. In
addition, the identification of PICO elements in the abstracts is included. ACTA re-
turns the user with the argumentative structure identified in the selected abstract(s),
under the form of a navigable graph whose nodes are the argumentative compo-
nents. PICO and argumentation elements are highlighted in the textual abstract with
different colors.

The main features are illustrated in detail in Section 8.1.1. ACTA employs Argu-
ment Mining methods to identify the argumentative structure of textual clinical trial
abstracts, which are described in Section 8.1.2.

8.1.1 Main Features

ACTA goes beyond the basic keyword-based search in clinical trial abstracts, and
it empowers the clinician with the ability to retrieve the main claim(s) stated in the
trial, as well as the premises (or evidence) linked to this claim. As a result, the clin-
ician does not need to read the whole abstract, but is provided with a structured
"summary" of the abstract under the form of a graph. More precisely, ACTA pro-
vides clinicians with the following facilities: Search options for PubMed, a custom
text input option, the argumentative analysis together with the PICO element detec-
tion, and an option to download the results in form of a json file. Figure 8.1 shows
the ACTA main page, which is the entry point for the user.
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FIGURE 8.2: Illustration of PubMed search interface in ACTA.

Search on PubMed

PubMed6 is a free search engine accessing primarily the MEDLINE database of refer-
ences and abstracts on life sciences and biomedical topics. Given the importance of
this search engine in the healthcare domain, the possibility to search for a (set of) ab-
stract(s) directly on the PubMed catalogue is included in ACTA, through their API.
This way, the mode of inquiry is unchanged and the user can keep using the familiar
terminology, including MeSH7, to express the query similar to the advanced search
builder from PubMed. The interface is shown exemplary for the query "randomized
controlled trial[Publication Type] neoplasm[MeSH Terms] quality of life[MeSH Terms]" in
Figure 8.2. This query pattern was also used to extract the RCTs for the second ver-
sion of the AbstRCT dataset, as mentioned in Chapter 3. It specifies that the clinical
study has to be a Randomized Controlled Trial about interventions for neoplasm
with quality of life being one of the measured outcomes. The AND connectors be-
tween the single search parameters are added automatically by calling the API. OR
connectors have to be specified manually.

After the search is executed, the results are listed below the search bar. The
contained information for each entry comprises all the relevant information, such
as the PubMed ID, authors and publication date, as provided in a search directly
on PubMed. Moreover, each result directly links to the document entry page in
PubMed. When the search results are shown, the user can select one or more ab-
stracts to address the argumentative analysis. As an alternative to the PubMed
search, the user has the option to directly enter a trial abstract or other text in an
input field to get analyze with ACTA.

6https://pubmed.ncbi.nlm.nih.gov/
7As mentioned earlier, MeSH is the vocabulary thesaurus used for indexing biomedical articles.

https://pubmed.ncbi.nlm.nih.gov/
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Argumentative Analysis and PICO Elements

As soon as the free text is entered or the abstract(s) is selected from the PubMed
search result list, the user can run the argumentative analysis by pressing the analyse-
button. This will forward the user to the result navigator and the visualization of the
abstract. In a panel on the left side, all documents, which were selected in the pre-
ceding step in the PubMed search, are listed with their PubMed IDs (PMID). This
can be seen in Figure 8.3, where five documents were selected to be analysed from
the research results. By clicking on one, the respective document is visualized. The
result is visualized to the user under the form of an argumentative graph (middle
of the window) where the nodes are the evidence and the claims automatically de-
tected in the abstract, together with their links. The nodes are annotated with their
type and ID. The textual content of the argumentative component is shown, when
the user hovers over a node, this is illustrated in Figure 8.3. In addition, the full
text of the abstract is shown on the right side of the graph together with other meta
information about the selected document, i.e., the PMID, title and authors. There,
the user also finds the download-button. By clicking on it, the currently visualized
document is downloaded with all annotations in a json file. Furthermore, under the
displayed abstract, the user finds the options to highlight evidence and claims with
different colors in the abstract. This is shown in the upper screenshot in Figure 8.4,
where evidence are marked in yellow and claims in blue. The highlighting colors
match the colors of the nodes in the argument graph. Besides the highlighting of
the argumentative components, the detected PICO elements can be accentuated, as
presented in the lower screenshot in Figure 8.4. There, the found participants/pop-
ulation of a study are marked in green, e.g., patients with advanced epithelial ovarian
cancer. All interventions (including the comparison intervention) are colored in red.
As explained in Chapter 6, for practical reasons, it is not distinguished between in-
tervention and comparison intervention. Sticking with the example in Figure 8.4,
this means that both, platinum plus paclitaxel and gemcitabine, are highlighted in red.
The final PICO element, the outcomes (progression-free survival, overall survival and
objective response in the case of the example in Figure 8.4), are accentuated with a
purple background. The user can switch between both illustration modes with the
highlight-buttons. Additionally to this pictured information, both types of results,
the argument components and the PICO elements, are listed as tables below, de-
picted in Figure 8.5. This gives a more structured way of showcasing the informa-
tion, which comes in handy specially for the PICO elements. At the current stage,
the PICO elements are listed in the order they occur in the abstract. They are not
yet filtered and duplicates or very similar expressions may be listed. For example in
Figure 8.5, Topical photodynamic therapy (PDT) with aminolevulinic acid (ALA) and 5%
imiquimod cream and ALA-PDT and imiquimod 5% cream are the same intervention,
but are listed separately. Future work could try to develop a method to merge sim-
ilar elements into one expression. First rudimentary steps towards this were taken,
as described in the Section 8.2, but are still far away from grouping together related
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FIGURE 8.3: Multiple screenshots to illustrate the different function-
alities of ACTA and the visualization of the argument graph returned

to the user.
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FIGURE 8.4: Screenshots showing the highlight options for the anal-
ysed document in ACTA.

or identical elements successfully. To give a reference of the difficulty of this task,
the authors introducing the used dataset of PICO elements report results lower than
majority voting for the detection of redundant information [6]. Especially combined
treatments, such as ALA-PDT, are challenging to discriminate from other combined
treatments, e.g., ALA-PDT plus imiquimod.

8.1.2 Experimental Setting and Results

For the argumentative component classification and boundary detection, the Ab-
stRCT dataset with 500 abstracts of randomized controlled trials on neoplasm treat-
ments was used. The relation annotations are used for the link prediction task in the
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FIGURE 8.5: Screenshot showing the displayed argumentative and
PICO information in ACTA.

base version of ACTA. In the later updated version, described in Section 8.2, the rela-
tions types, i.e., Attack and Support, are considered, too. Since ACTA was developed
shortly after the first experiments with the BERTbase model, it resembles the exper-
imental design described in Chapter 4.1.2: The argument component detection is
treated as a sequence tagging problem with the BIO-tagging scheme. At the time of
development the SciBERT pre-trained weights were not yet published. Thus, the ap-
plied model is the BERTbase model with a shallow layer for sequence tagging, which
in this case consists of a BiGRU and a CRF. The entire model is fine-tuned achieving
a macro F1-score of .85 on the neoplasm test set, as reported in Chapter 4 Table 4.3.

The same method is applied to train the model for the PICO element extraction.
As data, the EBM-NLP dataset [6] with coarse labels is used. Coarse labels are popu-
lation, intervention and outcome. The fine-grained labels naturally provide more infor-
mation, for example, Age and Sample size are more expressive than just population. On
the other hand, the outcome distinction between physical health and mental impact,
seemed too particular for the application scenario with ACTA. Moreover, they are
harder to learn. The creators of the dataset report a difference in performance of .40
F1-score with their baseline model (BiLSTM+CRF) in the fine-grained labeling task
for participants and interventions. This decrease in performance would drastically
reduced the practical use of the demo system. Thus, since PICO element detection
is not a trivial task, to find the right balance between performance and informa-
tion content, the coarse labels were selected. Accordingly, the model was trained
to jointly predict the participant, intervention and outcome candidates for a given
input. Dataset splits were the same as in the original paper, with the difference that
sentences containing less than 10 WordPiece tokens [58] were ignored. The BERTbase
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model achieves .73 F1-score on the test set. Some of the challenging cases and errors
can be seen in the lower screenshot in Figure 8.4. For example, the misclassification
of date spans as reports of population: between 2002 and 2004. Further, specifications
of doses of drug interventions, e.g., gemcitabine 800 mg/m(2), which are an important
detail, cause complications and are not always added by the classifier.

Regarding the prediction of the links between argumentative components, it is
treated as a multiple choice problem, similar to the Situations With Adversarial Gen-
erations (SWAG) task [108], where one has to select the correct target sentence for
a sentence-pair from a list of possible candidates. This way it is ensured that each
source component has a maximum of one link to a target component. I considered
this important for the targeted argumentation graph, which allows one outgoing
edge per node at most to eschew divergent argument structures. As seen for the
SentClf approach in Chapter 4.2, divergent structures are most of the time false pos-
itives, but not as common as expected. For training, the multiple choice BERTbase

model, compare with Chapter 4.2, is fine-tuned for three epochs with an Adam op-
timizer and a learning rate of 3e-5, resulting in .79 F1-score for the binary evaluation
of the link prediction. As explained in Chapter 4.2, the multiple choice model was
later developed further to include the relation classification.

At the current stage, ACTA is only apt to analyse English documents. Given the
lack of AM datasets in the medical domain in different languages, no training data
is available for other languages. This could be bypassed with zero-shot learning
attempts. However, this still requires a multilingual test set for evaluation, which
is at the current moment not available. Nevertheless, the feedback from exhibiting
the demo system at the International Joint Conference on Artificial Intelligence was
promising and encouraged me to deeper entwine AM methods with elements rele-
vant for EBM, as it was done, for example, with the Effect-on-Outcome in Chapter 6.
Other extensions and improvements of the pipeline, which were left for future work
in the published paper of the base version, were addressed in the context of the
Covid-on-the-Web project, which is described in the next section.

8.2 Covid-on-the-Web Project

With the Coronavirus infection disease (Covid-19) spreading in the spring of 2020,
the Wimmics research team8, where I am part of as a doctoral student, decided to
join the effort of many scientists around the world who harness their expertise and
resources to fight the pandemic and mitigate its disastrous effects. A new project,
called Covid-on-the-Web, was initiated with the goal to facilitate the access, query-
ing and information processing of COVID-19 related literature for biomedical re-
searchers. To this end, tools were adapted/re-purposed and combined to publish,
as thoroughly and quickly as possible, a maximum of rich and actionable Linked

8https://team.inria.fr/wimmics/

https://team.inria.fr/wimmics/
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Data about the coronavirus. Since it was a user-oriented project, the main motivat-
ing scenarios were identified through a need analysis of the collaborating biomed-
ical institutions, i.e., the French Institute of Medical Research (Inserm), the French
National Cancer Institute (INCa) and the Antibes and Nice Hospitals. The main sce-
narios addressed with the provided Linked Data are:
Scenario 1: Helping clinicians to get argumentative graphs to analyze clinical trials
and make evidence-based decisions.
Scenario 2: Helping hospital physicians to collect ranges of human organism’s sub-
stances (e.g., cholesterol) from scientific articles, to determine if the substances’ lev-
els of their patients are normal or not.
Scenario 3: Helping missions heads from a Cancer Institute to collect scientific arti-
cles about cancer and coronavirus to elaborate research programs to deeper study
the link between cancer and coronavirus.

In this section, the pipeline developed as part of this project to create Linked Data
from the CORD-19 dataset is presented. A superficial view on the pipeline structure
with its various components and functions is given. Subsequently, the creation of the
argumentative RDF subgraph with ACTA is detailed and an example showcased.

8.2.1 Covid-on-the-Web RDF dataset

In just a few weeks, several tools were deployed to analyze the COVID-19 Open
Research Dataset (CORD-19) [145], that in the first versions already gathered over
50,000 full-text scientific articles related to the coronavirus family. In this context,
also ACTA was applied and improved on the occasion. Besides my work on ACTA,
the vast expertise in the team in the management of data extracted from knowledge
graphs, both generic or specialized, allowed to enrich the CORD-19 dataset from
different sources. In particular, DBpedia Spotlight [146], Entity-fishing9 and NCBO
BioPortal Annotator [147] were used to extract Named Entities from the CORD-19
articles, and disambiguate them against Linked Open Data (LOD) resources from
DBpedia, Wikidata and BioPortal ontologies.

LOD is the freely available part of Linked Data, which is structured data on the
Web. Linked Data is an essential part of the Semantic Web, which aims at making the
Web data machine-readable to allow semantic queries and reasoning. The Semantic
Web is the shift in paradigm away from representing what exists on the Web, i.e.,
in form of URLs, towards representing one the Web what exists. This can be enti-
ties, concepts or properties (resources), which are identified by an Uniform Resource
Identifier (URI) or Internationalized Resource Identifier (IRI). The properties of re-
sources, which characterize them, are modeled as relations, which are defined in on-
tologies. Each relationship of a resource is described with a triple (subject, predicate,
object). For example, the triple <dbr:Paris><dbo:country><dbr:France> represents
the fact that Paris is located in France. This triple is given in the RDF schema, which

9https://github.com/kermitt2/entity-fishing

https://github.com/kermitt2/entity-fishing
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is the standard model for data interchange on the Web. The dbr and dbo are prefixes
that encapsulate the full URI, e.g., dbr is short for http: // dbpedia. org/ resource/ .
The standard query language for RDF is SPARQL. (SPARQL) endpoints serve as in-
terfaces to query the data. Since the goal of the Covid-on-the-Web project was to
create Linked Data about the coronavirus, the information gathered by tools, like
ACTA, needed to be converted. To this end, the Morph-xR2RML10 platform, which
is a tool that maps relational or non relational databases to RDF, turned the result
of the mining tools into the Covid-on-the-Web RDF dataset and a public SPARQL end-
point 11 was deployed to serve it. Particular attention was paid to comply with the
open and reproducible science goals, and the FAIR principles12 [148]. This openness
of the data and code will allow contributors to advance the current state of knowl-
edge on this disease which is impacting the worldwide society.

For the manipulation of the knowledge graph and the visualization and explo-
ration, the Corese13 [149] and MGExplorer [150] platforms were integrated. These
visualization techniques are meant to help users understand the relationships avail-
able in the results. Specifically, the MGExplorer and the enclosed notebooks, which
transform query results into other data structures like Dataframes, bring the poten-
tial of these technologies to other fields, e.g., the biomedical and medical ones. All
these tools are fused into one integration pipeline [144], as depicted in Figure 8.6.
The genericity of the basic tools allow the later application of the resources to a
wider set of scenarios. In the current state, this pipeline facilitates the extraction

FIGURE 8.6: Illustration of the Covid-on-the-Web [144] pipeline, its
services and applications.

and visualization of information from the CORD-19 dataset through the production
and publication of a continuously enriched LOD knowledge graph. It is intended
to engage in a sustainability plan aiming to routinely ingest new data and monitor
knowledge base evolution so as to reuse updated models. For example, before the
pandemic the SARS-Cov-2 entity was not existing in Wikidata. Moreover, since the
emergence of the COVID-19, the unusual pace at which new research has been pub-
lished and knowledge bases have evolved raises critical challenges. Therefore, the

10https://github.com/frmichel/morph-xr2rml/
11https://covidontheweb.inria.fr/sparql
12Fair: findability, accessibility, interoperability, and reusability
13https://project.inria.fr/corese/

http://dbpedia.org/resource/
https://github.com/frmichel/morph-xr2rml/
https://covidontheweb.inria.fr/sparql
https://project.inria.fr/corese/
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knowledge graph is updated with newer releases of the CORD-19 dataset, and the
extraction and disambiguation models to stay current with the latest development.

Overall, the increasing COVID-19 literature is of interest for health organisations
and institutions to extract and intelligently analyse information on a disease which
is still relatively unknown and for which research is constantly evolving. This neces-
sarily leads to debates and numerous controversies regarding the origin, diagnosis
and treatment of the disease [151]. What researchers need are tools to help them get
convinced that some hypotheses, treatments or explanations are indeed relevant or
effective, etc. Exploiting argumentative structures while reasoning on named enti-
ties can help address these user’s needs and so reduce the number of controversies
or at least offer the possibility to get informed. This combination of argumentative
structure, PICO elements and named entites, is a unique feature with respect to other
aggregated COVID-19 related datasets, such as CORD-19-on-FHIR14, KG-COVID-
1915 or CKG-COVID-1916, which all focus on biomedical ontologies.

8.2.2 CORD-19 Argumentative Knowledge Graph

As can be seen in Figure 8.6, the Covid-on-the-Web RDF dataset consists of two
major knowledge graphs: the CORD-19 Named Entities Knowledge Graph (CORD19-
NEKG) and the CORD-19 Argumentative Knowledge Graph (CORD19-AKG). The elab-
orated creation of the former will be skipped, since it is not related to the main topic
of this thesis. For more details, I refer the interested reader to our paper published
at the International Semantic Web Conference 2020 [144]. The main focus of this sec-
tion will be the re-purposing of ACTA to annotate the CORD-19 dataset resulting in
the CORD19-AKG. In general, the base functions of ACTA are the same as described
in Section 8.1. It retrieves the main claim(s) stated in the trial, as well as the evi-
dence linked to this claim, and the PICO elements. The first notable difference is the
extension of the link prediction to include proper relation types. Other differences
comprise the change of the pre-trained transformer weights and the alignment and
linking of the output to ontologies.

Practically, each abstract of the CORD-19 dataset was analyzed by ACTA and
translated into RDF to yield the CORD-19 Argumentative Knowledge Graph. The pipeline
consists of four steps: (i) the detection of argumentative components, i.e. claims and
evidence, (ii) the prediction of relations holding between these components, (iii) the
extraction of PICO elements, and (iv) the production of the RDF representation of
the arguments and PICO elements.

Component Detection Corresponding with Section 8.1, this is a sequence tagging
problem, where the adapted transformer with the RNN/CRF layer is employed.

14https://github.com/fhircat/CORD-19-on-FHIR
15https://github.com/Knowledge-Graph-Hub/kg-covid-19/
16https://github.com/usc-isi-i2/CKG-COVID-19

https://github.com/fhircat/CORD-19-on-FHIR
https://github.com/Knowledge-Graph-Hub/kg-covid-19/
https://github.com/usc-isi-i2/CKG-COVID-19


8.2. Covid-on-the-Web Project 111

Contrary to the original version, here, the weights in BERT are initialized with spe-
cialised weights from SciBERT [63], which is pre-trained on full papers from Se-
mantic Scholar and biomedical data, and provides an improved representation of
the language used in scientific documents such as in CORD-19. Alas, since there is
no reference CORD-19 subset that has been manually annotated and could serve as
ground truth, it is hardly possible to evaluate the quality of the models used to ex-
tract argumentative structures on the CORD-19 dataset. Thus, the performance on
the AbstRCT dataset is reported as displayed in Chapter 4 Table 4.3, where SciBERT
delivers a .87 macro F1-score on the neoplasm test set. As a final step, the compo-
nents are extracted from the predicted label sequences.

Relation Classification As previously mentioned, this is one of the major changes
to the ACTA pipeline. The multiple choice model for link prediction was replaced
by a model considering the types of relations. As defined in Chapter 3, two types
of relations can hold between argumentative components. The attack relation holds
when one component is contradicting the proposition of the target component, or
undercutting its implicit assumption of significance, i.e., stating that the observed
effects are not statistically significant. The support relation holds for all statements or
observations justifying the proposition of the target component (even if they justify
only parts of the target component). Determining which relations hold between the
components is treated as a three-class sequence classification problem, where the se-
quence consists of a pair of components, and the task is to learn the relation between
them, i.e. support, attack or no relation. This corresponds to the SentClf approach ex-
plained in Chapter 4.2. As for the sequence tagging task, the SciBERT transformer is
used to create the numerical representation of the input text, and combined with a
linear layer to classify the relation. The model is fine-tuned on the AbstRCT dataset
for argumentative relations resulting in .68 f1-score on the neoplasm test set (com-
pare with Chapter 4 Table 4.5).

PICO Element Detection The same architecture as for the component detection is
employed. The model is still trained on the EBM-NLP dataset [6] to jointly predict
the participant, intervention and outcome candidates for a given input. Also here
the SciBERT pre-trained weights are used. Contrary to the base version of ACTA,
where the whole abstract is annotated, for the application on the CORD-19 dataset,
only the argumentative components are annotated with the PICO elements they con-
tain. This change was done, since the Argumentative Knowledge Graph is supposed
to focus on the contained arguments, while the Named Entities Knowledge Graph
holds information about the (full text) document. As mentioned in Section 8.1, PICO
elements can occur multiple times in various forms through out the trial abstract. By
annotating each argument component with its contained PICO elements, a redun-
dant overall list as it was the case in the base version is avoided. However, the
problem of aligning the various appearance of the elements still remains. Since this
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is not a straightforward task, the most practical approach seemed to link each PICO
element to concepts in the Unified Medical Language System (UMLS), which is a
controlled vocabulary for a standardized communication of biomedical concepts.
This way, it does not solve redundancy detection, but facilitates structured queries,
which is after all a fundamental keystone of the Covid-on-the-Web RDF dataset. The
linking is done via the ScispaCy [152] entity linker. Annotation bodies are the UMLS
concept identifiers (CUI) and semantic type identifiers (TUI). These outcome ele-
ments have been further enriched by the Effect-on-Outcome as described in Chap-
ter 6. With this, the queries can be even more advanced.

RDF Representation To represent the extracted information in a standardized way
for interchange on the Web, proper ontologies had to be selected. In particular,
the CORD-19 Argumentative Knowledge Graph draws on the Argument Model On-
tology (AMO)17, the SIOC Argumentation Module (SIOCA)18 and the Argument
Interchange Format19. AMO20 is an ontology describing arguments following Toul-
min’s model of argument [86]. Each argument identified by ACTA is modelled as
an amo:Argument to which argumentative components (claims and evidence) are con-
nected. The claims and evidence are themselves connected by support or attack re-
lations (sioca:supports/amo:proves and sioca:challenges properties respectively).
The SIOCA module was used complementary to cover for the attack relations, which
are not defined in AMO the way they are needed to describe the output of ACTA.
Finally, AIF was used as a third ontology to include the textual description of the ar-
gument components and achieve compatibility with the Argument Web [153]. Fol-
lowing these ontologies, Listing 8.1 sketches a shortened example of one argument
(lines 7-11) and one evidence (lines 13-18). The first line of the resource is the URI,
for the document this is line 7 and for the evidence line 13. In line 8 one can see
that the resource in line 7 is an amo:Argument occurring in the resource (document),
which URI is stated in line 9. The argument contains an evidence (line 10), where
the last digit is the component ID (0), and a claim (line 11). For reasons of clarity
the remaining evidence 1-5 are not listed. However, evidence 0 is presented exem-
plary. Line 14 specifies the type in all three ontologies, i.e., that it is a amo:Evidence,
sioca:Justification and aif:I-node. Line 15 refers to the resource the evidence oc-
curs in. Line 16 holds the actual text of the evidence, i.e., what was extracted by
ACTA. The last two lines describe the relation of the evidence to the claim, which
in this case is a support relation modeled as sioca:supports and amo:proves. Ad-
ditionally to the argumentative information, the PICO elements are added to the
annotation bodies with their UMLS CUI and TUI, as described above.

17http://purl.org/spar/amo/
18http://rdfs.org/sioc/argument#
19http://www.arg.dundee.ac.uk/aif#
20https://sparontologies.github.io/amo/current/amo.html

http://purl.org/spar/amo/
http://rdfs.org/sioc/argument#
http://www.arg.dundee.ac.uk/aif#
https://sparontologies.github.io/amo/current/amo.html
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1 @prefix prov: <http ://www.w3.org/ns/prov#>.
2 @prefix schema: <http :// schema.org/>.
3 @prefix aif: <http ://www.arg.dundee.ac.uk/aif#>.
4 @prefix amo: <http :// purl.org/spar/amo/>.
5 @prefix sioca: <http :// rdfs.org/sioc/argument#>.
6

7 <http ://ns.inria.fr/covid19/arg/4 f8d24c531d2c33496 ...>
8 a amo:Argument;
9 schema:about <http ://ns.inria.fr/covid19 /4 f8d24c531d2c33496 ...>;

10 amo:hasEvidence <http ://ns.inria.fr/covid19/arg/4 f8d24c531d2c33496 .../0 >;
11 amo:hasClaim <http ://ns.inria.fr/covid19/arg/4 f8d24c531d2c33496 .../6 >.
12

13 <http ://ns.inria.fr/covid19/arg/4 f8d24c531d2c33496 .../0>
14 a amo:Evidence , sioca:Justification , aif:I-node;
15 prov:wasQuotedFrom <http ://ns.inria.fr/covid19 /4 f8d24c531d2c33496 ...>;
16 aif:formDescription "17 patients discharged in recovered condition ...";
17 sioca:supports <http ://ns.inria.fr/covid19/arg/4 f8d24c531d2c33496 .../6 >;
18 amo:proves <http ://ns.inria.fr/covid19/arg/4 f8d24c531d2c33496 .../6 >.

LISTING 8.1: Example representation of argumentative components
and their relation in RDF.

Data Extraction Since the CORD-19 is a mainly automatically created dataset, it
contains errors, like cut off or empty abstracts. Hence, regarding the extraction of the
data, only the abstracts longer than ten sub-word tokens were processed by ACTA
to ensure meaningful results. Inputs were tokenized with the BERT tokenizer, where
one sub-word token has a length of one to three characters. In total, almost 30,000
documents matched this criteria in CORD-19 v7, on which the first complete pub-
lished dataset was based, and 68,000 in CORD-19 v47, which is the latest version the
pipeline was applied on at the time of writing. ACTA was deployed on a 2.8GHz
dual-Xeon node with 96GB RAM. The data was split into batches of 5,000 docu-
ments, processing each batch took approximately 3 hours. The output JSON docu-
ments were loaded into MongoDB and translated to the RDF model using Morph-
xR2RML. The translation to RDF was carried out on the same machine as above, and
took approximately 10 minutes. In compliance with the open science principles, all
the scripts, configuration and mapping files involved in the pipeline are provided in
the project’s Github repository 21 under the terms of the Apache License 2.0, so that
anyone may rerun the whole processing pipeline (from articles mining to loading
RDF files into Virtuoso OS).

To sum up, this section described the data and software resources provided by
the Covid-on-the-Web project with an extra focus on the contribution of the ACTA
system developed in the context of this thesis. Various tools to process, analyze
and enrich the CORD-19 dataset, were adapted and combined to make it easier for
biomedical researchers to access, query and make sense of COVID-19 related liter-
ature. The output of the pipeline is published as a Linked Data knowledge graph
describing the named entities mentioned in the CORD-19 articles and the argumen-
tative graphs they include. On top of this knowledge graph, other members of the
project adapted and deployed several tools providing Linked Data visualizations,
exploration methods and notebooks for data scientists. Through active interactions

21https://github.com/Wimmics/CovidOnTheWeb/

https://github.com/Wimmics/CovidOnTheWeb/
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(interviews, observations, user tests) with institutes in healthcare and medical re-
search, it is ensured that the Covid-on-the-Web pipeline is guided by and aligned
with the actual needs of the biomedical community. This proves the (re-)usability of
the work presented in this thesis as a means to assist in documentary research and
thus, in the deliberation process of clinicians, which was the initial goal.
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Chapter 9

Related Work

This chapter presents and discusses the related work in the context of evidence
extraction and argumentation-based applications in Evidence-Based Medicine.
It further sets the work presented in this thesis into perspective by showcasing
the related development in the AM field and pointing out differences to existing
approaches.

This section highlights various approaches to (semi-)automatically assist in the clin-
ical decision making process or other procedures in EBM. In particular, Section 9.1.1
introduces various argumentation-based approaches, which have been employed to
evaluate medical evidence or provide decision support. Section 9.1.2, presents ap-
proaches targeting automated evidence extraction and its precursors. Subsequently
in Section 9.2, an overview over recent developments in the relevant Argument Min-
ing fields, i.e., component detection, relation classification and evidence type classi-
fication, is provided.

9.1 Applications in Evidence-based Medicine

9.1.1 Argumentation-based Decision Support

Argumentation-based decision making is becoming increasingly prominent in health-
care applications. Several formal frameworks have been proposed to tackle the is-
sues of reasoning upon clinical evidence and detecting possible conflicts in medical
knowledge bases [8–10, 19, 154]. Different kinds of data can be explored in this con-
text, e.g., clinical trials, clinical guidelines, electronic health records, combined with
the patient and clinician preferences and the specific constraints raised by the par-
ticular medical branch taken into account. The general aim of such approaches is
to support clinicians and practitioners in taking informed decisions. However, the
main limitation of these approaches is that they assume the availability of structured
information, e.g., in the form of databases or knowledge bases.

For example, Longo and Hederman [10] investigate defeasible reasoning on the
breast cancer recurrence prediction. A knowledge base of 277 breast cancer patients
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serves as a basis to construct structured defeasible arguments, which are then evalu-
ated for argument justification status using acceptability semantics. The knowledge
base consists of attributes about the patient, such as age, tumor size, applied irradi-
ation and recurrence of cancer. They argue that clinicians prefer a decision-making
support system, which delivers explanations rather than just numerical values and
that property of explainability is provided with argument-based frameworks.

Another approach to find contradicting conclusions, Qassas et al. [19] propose
an argumentation scheme based approach to analyse clinical discussions. The moti-
vation is to help discover weak points, such as missing evidence, invalid reasoning
and hidden assumptions in the debate about the choice of treatment. As mentioned
in Chapter 2.2, argumentation schemes can be target of the argumentative structure
prediction. Highlighting conflicting diagnostic hypotheses applying these schemes
is an example of a meaningful use case, which is not the case for analysing single
clinical trials.

Moving to the argumentation approaches on clinical trials, Craven et al. [9] ap-
ply assumption-based argumentation (ABA) [155] to clinical trials of breast cancer
drugs. To this end, statements in the trial are translated into logical sentences and
bigger arguments. An OWL ontology for the medical domain is created and ground
rules for the argumentation are derived from it. While clinical trials do indeed serve
as a fruitful source to create these logical sentences, which allow the automation
of the decision making process, the creation of the proper data structure is labour-
intensive and done manually so far. Same applies for the creation of the ontology.
In the paper only 57 papers were annotated giving an idea of the amount of work
which is necessary for the translation into logical sentences. A different aspect of
clinical trials is targeted by Hunter and Williams [8, 154]. They propose a framework
to represent and synthesize knowledge from clinical trials, which they call evidence
aggregation. The knowledge comes in the form of inductive and meta arguments,
where inductive arguments are propositions that one treatment is superior, equiv-
alent or inferior to another one with respect to a certain indicator/outcome given
an evidence. Meta arguments are counterarguments weakening the inductive argu-
ments, e.g., that an evidence was not statistically significant or the trial setup con-
tains flaws. From this, an argument graph is constructed. Based on the preference
criteria, such as outcomes and their magnitude, and evidence quality, the argument
graph is evaluated to determine which treatment is superior. With respect to the au-
tomatic processing pipeline of trials described in this thesis, the final data structure
provided is relatively close to what is required for this argumentation framework.
Claims and evidence with the added information about Effect-on-Outcome fulfill
the requirements as inductive arguments, while some of the evidence (types), i.e.,
evidence stating that an effect is statistically not significant, are meta arguments. To-
gether with other information about the trial setup (possible meta arguments – see
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the next section for examples of automatic extraction) most of the necessary informa-
tion for this argumentation approach can be extracted automatically from unstruc-
tured text. This further demonstrates the relevance of the work presented in this
thesis, complementing the application scenarios discussed in Chapter 8.

9.1.2 Automated Analysis of Clinical Trials

Besides the aforementioned argument-based approaches, various other works exist
analysing and processing the information of clinical trials. Most of them do not have
the goal of providing structured data for argumentation frameworks, but rather offer
a way of automatically extracting or distilling knowledge about the trials in human
readable form. Therefore, only few of them produce structured data which can be
reused in argumentation frameworks.

Comparisons are a crucial part of the scientific exchange and communication.
Usually, the newly proposed method is compared with an established method to
demonstrate the benefits and/or superiority. As described in Section 2.1, in the
medical domain comparative studies are the prevalent type of considered studies,
where researchers evaluate the effectiveness, risks and side-effects of a drug com-
pared with a control intervention. Accordingly, reports of clinical trials are rich on
comparative statements. Therefore, early work focused on the detection and extrac-
tion of these comparative structures. Park and Blake [115] propose an approach to
automatically detect comparison claims in full-text scientific articles, achieving a .74
F1-score. They experiment with semantic and syntactic features in Naive Bayes, SVM
and Bayesian networks. The lexical features comprise handcrafted dictionaries cap-
turing characteristic of comparative sentences. For example, if a sentence contains
any directed verbs, inflections marking a comparisons, like "better", or other cues,
like "above" or twice of. While handcrafted features used to be a common component
in early Machine Learning in NLP, I decided against developing own features, be-
cause at least for lexical information, most of the characteristics should be covered
by the bag-of-words model, which was used for the first experiments. With neural
networks and their automatic feature extraction from word embeddings or with the
attention-based transformers at latest, lexical features became obsolete. As syntactic
features, the authors developed rules for the dependency graphs, which is intuitive
since in the case of comparative structures syntax can be a distinctive characteristic.
This observation, together with the subsequently described approach, which also
utilizes syntactic information, further affirmed the choice of syntax-based Tree Ker-
nels for the experiments on argument component detection, as described in Chap-
ter 4.1.1. As anticipated, Gupta et al. [116] do pattern matching on the output of
syntactic structure and dependency parsers to extract comparison structures from
biomedical texts. They work on gene expression studies, similar to the AbstRCT
dataset they work only on the abstracts of RCTs, and achieved a F1-score of .87 for
comparison sentence identification. Contrary to the previous approach, the pattern
matching allows also the identification of the entities involved in the comparison
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and their aspects. The deeper analysis of a comparison, such as entities and aspects,
are an important step towards the automatic information extraction and formaliza-
tion of clinical trials. Earlier to Gupta et al. [116], Fiszman et al. [156] tackled this task
with under-specified semantic interpretation. The goal was to identify the entities in
comparative sentences and express one entity A in terms of the other entity B, e.g.,
A is superior to B. Based on handcrafted linguistic patterns, the comparative con-
structions are processed and automatically analysed. The authors state that approx-
imately 30-40% of drugs and comparative statements are not recognized this way.
Compared to the Argument Mining task on clinical trials, comparative structures are
important, but only cover parts of the desired information. Moreover, comparisons
can occur as either being a conclusive statement or an observation of experimental
outcomes. Without the argumentative distinction related to their credibility, i.e., the
classification into evidence and claims, decisive information relevant for the overall
decision making is missing. However, the aspect of comparison with respect to a
certain outcome is an imperative part of EBM practice. Thus, the addition of the
Effect-on-Outcome analysis to the Argument Mining pipeline is of utter importance.
Driven by the same motivation, recently, Lehman et al. [89] proposed an approach to
infer if a study provides evidence with respect to a given intervention, comparison
intervention and outcome. Additionally to the classification of the whole document,
the model returns a sentence from the document supporting the classification re-
sult. These rationals [157], which are mostly comparative sentences, are important
evidence which support the classification result in a human readable way. This ap-
proach is similar to the one presented in this thesis in the sense that the overall goal
is to determine the effect an intervention has on an outcome and provide evidence
for it. Contrary to the here presented approach, they focus more on finding one ra-
tional, which is called an argument component in the AM context, objective oriented
for the given prompt. A prompt consists of three PICO elements, i.e., the interven-
tion, the comparison intervention and one specific outcome. In the context of EBM
a prompt can be considered as a well-built clinical questions [25]. The authors ex-
periment with neural networks, in particular with GRUs and attention mechanisms.
Two possible architectures are proposed. Firstly, a pipeline approach, where the
evidence is detected in a first step. Contrary to argument component detection pre-
sented in Chapter 4.1.2, they classify complete sentences without segmenting them
further, which is an essential part in Argument Mining [33]. Subsequently, the found
evidence are used to classify the document with respect to the given prompt, i.e., a
document states that the outcome in the prompt was either significantly increased/de-
creased by the intervention with respect to the comparison intervention or that there
was no significant difference1. The second proposed approach is an end-to-end archi-
tecture trying to learn both information jointly, where they achieve a F1-score of .52
for the document classification. The F1-score is relatively low, because they conduct

1For the reasons mentioned in Section 3.2.3, I deviate from this annotation scheme by having a
wider spectrum of outcome status.
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a document wide target oriented search for a specific evidence, which is an (unnec-
essarily) challenging task. The AM pipeline is setup in the opposite direction, where
the first step is to find evidence in the form of an argumentation graph, which is hu-
man readable and then, in a subsequent step, enrich these graphs with information
about the contained PICO elements, e.g., if an outcome was increased. This data-
driven approach has multiple advantages over the work proposed in [89]. First, it
requires less computational capacities, because the pipeline is run once for each trial
and not x-times for every single prompt (usually one wants to have information
about more than one outcome). Secondly, additionally to the outcome description,
the argumentation graph contains outcome unspecific information, which is rele-
vant in judging the results of a study. For example, limitations of the study where
the authors state that their findings need further confirmation.

As explained in Chapter 2.1, in search for relevant evidence, practitioners of EBM
use a specialised framework called PICO, which stands for Patient Problem or Popu-
lation, Intervention, Comparison or Control, and Outcome. Searching for relevant trials
and finding meaningful answers is a time consuming and laborious task for clini-
cians. Automating this process of evidence collection from documents could unbur-
den the clinicians substantially. Besides the work proposed in this thesis, there have
already been other systems assisting in automatic evidence extraction. Contrary to
my work, they focus more on assisting in the semi-automatic completion of evidence
tables instead of interpreting the results. One early example for this is ExaCT [158].
The system extracts information containing PICO elements based on a SVM. It was
designed to search full text articles, but was limited by the scarce training data avail-
able. Whereas nowadays, there is the EBM-NLP dataset [6], which is a collection
of considerable size of sentences annotated with PICO elements. Similarly, Jin and
Szolovits [7] propose a NN based on word2vec embeddings, a LSTM and a CRF to
classify sentences as belonging to a certain PICO category. Regarding finer token-
level classification, Trenta et al. [5] proposed a maximum entropy classifier to mine
characteristics of randomized clinical trials in form of PICO elements. Their corpus
comprises 99 manually annotated abstracts, which are used as a basis to start the Ab-
stRCT data collection. The importance of PICO elements is undeniable and strongly
motivates the aforementioned work. That is why the PICO element detection mod-
ule is integrated in ACTA, which was made possible by the release of the sizeable
EBM-NLP dataset.

Another system facilitating the evidence gathering process is RobotReviewer [159,
160], which summarizes the key information of a clinical trial. These key informa-
tion comprise the interventions, trial participants and risk of bias, where the latter
is related to finding potential design flaws of the studies. Flaws in the study design
can mean to check if participant groups were randomly allocated, or if the study
was double-blinded. So neither participants nor medical personnel knew who was
given the intervention or comparison intervention. The tool is open source2 and was

2Available here: https://github.com/ijmarshall/robotreviewer.

https://github.com/ijmarshall/robotreviewer
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recently updated to use BERT embeddings (SciBERT) to keep up with the current de-
velopment in NLP.

With respect to AM, one of the few studies in focusing on the biomedical do-
main was presented by Green [16, 18, 161], who proposed argumentation schemes
and inter-argument relations for the annotation of arguments in research articles.
Yet, such annotation schemes are only partially applicable for argument extraction
in RCT abstracts and the proposed work is purely of theoretical nature. Accordingly,
before AbstRCT no huge annotated dataset for AM was available for the healthcare
domain. There exists a dataset of contradicting claims [162], which was created using
research abstracts of studies considered in systematic reviews related to cardiovas-
cular diseases, but this dataset does not contain the corresponding evidence backing
those claims. Furthermore, Blake [163] proposes a claim framework for biomedical
literature to reflect how the authors communicate their findings. Claims are clas-
sified into explicit, implicit, correlation, comparison and observation. While this is
an interesting facet for evaluating the qualitative side, for the mining approach pro-
posed in this thesis this distinctions are unnecessary, since their function in the argu-
mentative structure does not differ. However, it is a promising direction for future
research addressing the evaluation of an argument’s strengths in this domain.

9.2 Argument Mining

As stated in Chapter 2.2, Argument Mining comprises various subtasks by now.
Due to the increasing size and diversity of tasks, this section limits its overview of
the related work to the subtasks which are relevant for the direct context of this
thesis. These are two standard tasks – (i) the identification of arguments within the
text and the identification of their textual boundaries, and (ii) the prediction of the
relations holding between the arguments identified in the first stage – and evidence
type classification. For these tasks different methods have been employed, ranging
from Support Vector Machines over Naïve Bayes classifiers to Neural Networks.

While AM methods have been applied to heterogeneous types of textual docu-
ments, e.g., persuasive essays [85], scientific articles [28], Wikipedia articles [164],
political speeches and debates [165], and peer reviews [166], most of the approaches
consider only single aspects of the Argument Mining pipeline. Few approaches con-
sider the whole AM pipeline in different application scenarios. In particular, Stab
and Gurevych [85] propose a feature-based Integer Linear Programming approach
to jointly model argument component types and argumentative relations in persua-
sive essays. Differently from the AbstRCT data, essays have exactly one major claim
each. The authors impose the constraint such that each claim has no more than
one parent, while no constraint holds for the methods presented in this thesis. Due
to the independent pairwise classification, this can lead to an undesirable diver-
gent argument structure in the case of the relation classification using the SentClf
method, as described in Chapter 4.2. In contrast with this approach, Eger et al. [36]
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present neural end-to-end learning methods in AM, which do not require the hand-
crafting of features or constraints, using the persuasive essays dataset. They employ
a TreeLSTM on dependency trees [106] to identify both components and relations
between them. The core idea of TreeLSTMs is to leverage the recurrent nature of
the LSTM on the tree structure. The bidirectional structure of the TreeLSTM propa-
gates information from the leaves to the root node and vice-versa. In particular, the
employed TreeLSTM from Miwa and Bansal, which Eger et al. evaluated for AM,
consists of three layers. A shared embeddings layer, a word sequence layer and a
dependency tree layer. The sequence layer consisting of a BiLSTM which is respon-
sible for the token-wise entity/argument component detection, while the TreeLSTM
layer is responsible for the relation classification. Both layers share the same word
embedding layer and the sequence layer further forwards the token-wise hidden
state output of the BiLSTM to each node in the dependency tree. The key point is
that the tree-structured LSTM-RNN (TreeLSTM) allows shared weight matrices for
same-type children. More details about this approach can be found in [106]. For the
application of this TreeLSTM to AM, they decouple component and relation classifi-
cation labels, which are jointly learned, using a dependency parser to calculate the
features. In the pipeline proposed in this thesis, not only the label spaces but also the
two classification tasks are decoupled, in line with the claim in [36] that decoupling
component and relation classification improves the performance. Furthermore, the
same work addresses component detection as a multi-class sequence tagging prob-
lem [167]. Differently from their approach, which does not scale with long texts as
it relies on dependency tree distance, the approach proposed in this thesis is using
distance independent attention mechanisms to counter this problem. In addition,
whilst persuasive essay components are usually linked to components close by in
the text, in the AbstRCT dataset links may span across the whole RCT abstract. The
joint learning is achieved by sharing weights among the different tasks, and the se-
quence tagging is done independently of the context. Finally, in [36], each word is a
feature, while most of the methods evaluated in this thesis opt for sub-word level.

Ajjour et al. [168] proposed a deep learning approach for segmentation of text
into argument units. Here, the task is, again, formulated as a sequence tagging
problem, where a label is assigned to each token following the BIO-tagging scheme.
The authors only tackle the argument unit segmentation (argumentative vs non-
argumentative) without the further classification of the components. Contrary to
the performed five class argument component detection, this translates to a three
class classification problem, i.e., Arg-B, Arg-I and Arg-O. The best performing model
consists of two BiLSTM, where one is using word embeddings and the other syntac-
tic, structural and pragmatic input features (one-hot vectors). Both BiLSTM outputs
are concatenated and put through a dense layer before it is passed to another (up-
per) BiLSTM. The output of the last (upper) BiLSTM is used in the final classification
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layer. The authors noted an decreased number of invalid BI sequences with the addi-
tion of the second (upper) BiLSTM. In later work, Spliethover et al. [169] further in-
vestigated this architecture with minor changes: they used solely one BiLSTM with
word embeddings as input features and tested the efficacy of the second (upper)
BiLSTM. Moreover, they investigated the effects of adding various attention layers.
The results did not show any major changes in performance with respect to adding
the second (upper) BiLSTM. Also, the addition of attention layers did not improve
the results. In line with these observations, no stacked RNNs or attention layers are
added for the sequence tagging architectures evaluated for argument component
detection in this thesis. The idea is to reduce the number of invalid BI sequences not
with a second (upper) RNN layer, but with a CRF, as described in Chapter 4.1.2.

Recent approaches for link prediction rely on pointer networks [170] where a
sequence-to-sequence model with attention takes as input argument components
and returns the links between them. In these approaches, neither the boundary de-
tection task nor the relation classification one are tackled. Another approach to link
prediction relies on structured learning [107]. The authors propose a general ap-
proach employing structured multi-objective learning with residual networks, simi-
lar to approaches on structured learning on factor graphs [171]. Here, the component
classification, link prediction and relation classification are learned jointly, where the
boundaries of the components are assumed to be already set. The model takes the
source and target component plus a distance encoding as an input and outputs the
labels for the components, the binary label if a link between the components ex-
ists and the label of the relation. Architecture-wise, both components are encoded
with GloVe and fed into BiLSTM layers followed by dense layers for dimensionality
reduction. The residual network serves the purpose to connect neurons in distant
layers and communicate representations skipping intermediate layers. The model
consists of three classifiers, one for each problem. For the relation classification, this
approach is considered as a baseline, because they classify all possible component
combinations similar to the SentClf setup. Contextualized word embeddings did
find their way into the AM community. Contemporaneous to my first experiments,
Reimers et al. [38] addressed topic-dependent argument classification with contex-
tualized word embeddings achieving .63 F1-score. Here, the goal is to classify a sen-
tence given a topic as either being an argument for or against the topic, or not being
an argument. This problem of sentence classification is in line with the other tasks,
where BERT was shown to have an outstanding performance. In Chapter 7 of this
thesis, this approach is analysed for its robustness. Another approach employing
BERT published after I finished my work on the relation classification is AMPER-
SAND [172]. There, the authors address the AM tasks of component classification
and structure prediction in a dialogical setting. They leverage BERT for intra- and
inter-turn relation classification. First, they fine-tune the pre-trained BERT model
on distant-labeled data to compensate for the relatively small size of the actual tar-
get dataset. Subsequently, this fine-tuned BERT is further fine-tuned on the actual
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dataset for relation classification. Additionally to the single BERT prediction, they
train a XGBoost Classifier with categorical discourse relations of the components as
features to predict the argumentative relations. The final relation is determined in
an ensemble method with both classifiers. This is another example supporting the
integration of discourse information in transformer models, which was discussed in
Chapter 7.4. Another interesting approach proposed by the authors, which could be
applicable in future work for the relation prediction across multiple clinical trials, is
a candidate target selection to reduce the false positives created by the exhaustive
combination of all argument components. With respect to the medical domain, con-
trary to the proposed summarization-based selection, for cross trial relations PICO
elements might be a better limiting category. However, the last two discussed ap-
proaches have in common that they assume argument components as given, and
boundary detection is not considered, which is different from my approach. The
work presented in this thesis is the first work to create a sequence tagging model for
component classification and boundary detection utilizing the power of pre-training
transformer models. In line with the work of Reimers et al., first experiments consid-
ered the BERTbase [59] model to address parts of the AM pipeline. Further, contrary
to this preliminary work and the above mentioned related work, various contex-
tualized Language Models and architectures are employed and evaluated on each
task to span the full AM pipeline as well as the outcome analysis. In later work,
Niven and Kao [129] apply BERT to the Argument Reasoning Comprehension Task
(ARCT) [113], but found that the high performance of BERT is due to unevenly dis-
tributed linguistic cues. The problem ARCT poses is that given a claim, a reason
and two warrants, the correct warrant needs to be selected. To solve this task a deep
comprehension of the presented argument is necessary, which the authors deny that
BERT has learned it.

Concerning the evidence classification little work has been done. Rinott et al. [97]
tackled this problem on Wikipedia based data, dividing the evidence into study, anec-
dotal and expert evidence. This taxonomy is not applicable to all types of data, i.e.,
clinical trials, since all of the documents are studies. For this reason, a more fine-
grained taxonomy adapted for clinical trials was developed, as described in Chap-
ter 5. With regards to the general structure of scientific publications, there has been
work analysing it from the perspective of discourse structure [173, 174]. Based on
this, Kirschner et al. [175] proposed a combined annotation scheme where the two
argumentative relations (support and attack) are complemented with two discourse
relations from Rhetorical Structure Theory [176] (sequence and detail). The detail
relation is used, if a component gives more information about another component
without argumentative reasoning, for instance in the case of definitions. The authors
annotated full-text articles from educational research. In this context definitions oc-
cur more often and the addition of this relation can be justified, but in the context
of RCT abstracts this relation becomes obsolete, since definitions are not given in
an abstract. Further, as Green [161] observed, many arguments in the biomedical
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domain have implicit warrants. Thus, even for a full-text analysis of clinical trials,
the benefit of this relation needs to be evaluated. Concerning the sequence relation,
this is used when argument components belong together and require each other, for
instance to support a conclusion. This corresponds to the linked argument structure
mentioned in Chapter 3. Since pieces of evidence that fall under this category in
the AbstRCT dataset occurred next to each, it was decided to annotated them as one
argument component instead of introducing the sequence relation.
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Chapter 10

Conclusion and Future
Perspectives

Clinical decision making is often intricate to a high degree. Especially with the grow-
ing number of published medical studies on the Web, the selection, assessment and
application of these trials as relevant evidence for the decision making becomes a
challenging and laborious task. This sets the need for systems to (semi-)automatically
assist in processing this huge amount of data. While there are decision support sys-
tems, they require structured data, extending the demand from processing the data
into a human-readable format to extracting and preparing the data into a machine-
readable format. The work in this thesis addressed these two major problems: (i) the
problem of researching clinical evidence; for this, an automated approach was pro-
posed to supply clinicians with valuable information about clinical trials. In particu-
lar, this thesis presented an Argument Mining approach for processing and analysing
clinical trials with respect to their argument components, such as claims and evi-
dence, and the relations (attack or support) between them. (ii) the demand of struc-
tured data for the aforementioned decision support systems; additionally to the
acquired argumentative information, the results of a trial are further put into a
machine-readable format by additionally aggregating the argumentative structure
with further medical information in form of PICO elements and the Effect-on-Outcome
analysis.

In particular, to provide these solutions, the research questions introduced in
Chapter 1 were addressed resulting in the following contributions:

1. Creation of the AbstRCT Dataset The dataset was created from a collection of
RCT abstracts from the MEDLINE database via PubMed. A bipolar argumentation
scheme for argument components, such as claims and evidence, and their relations,
i.e., support and attack, was applied to annotate the collected data. The conducted
annotation study is portrayed in Chapter 3. Besides the annotated argumentative
information, the Effect-on-Outcome scheme was developed and the dataset subse-
quently annotated with it. The latter scheme focuses on the medical information
content of the argument components, for example, it encodes that an intervention
increased or decreased a certain outcome. The data annotation resulted in a Fleiss’
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kappa of 0.68 for argument components and 0.62 Fleiss’ kappa for the relations.
The effects on the outcomes associated to the identified argumentative components
showed a Fleiss’ kappa of 0.81, all representing at least substantial agreement and
thus attesting the reliability of the created dataset. In total, the second version of
the AbstRCT dataset contains 660 abstracts spanning the topics of neoplasm (500
abstracts), glaucoma (100 abstracts), hepatitis b, diabetes and hypertension (20 ab-
stracts each).

2. Domain-specific Argument Mining and Outcome Analysis Pipeline The the-
sis introduced a full Argument Mining pipeline with an outcome analysis extension.
The development described in Chapter 4 started with first experiments with feature-
based SVMs on Tree Kernels to classify sentences into either argumentative, claim or
evidence. The evidence are further subdivided into the more fine-grained labels com-
parative, significance, side-effect and other to provide a better structure with regards to
the reasoning process in argumentation-based systems or filtering/querying for spe-
cific information. Subsequently, a full AM pipeline was developed considering both,
the detection of argument components and their boundaries, and the argumentative
structure prediction. For the former, a sequence tagging approach was employed
combining a domain specific BERT model with a GRU and CRF on top to identify
and classify argument components. The relation classification task was cast as multi-
ple choice problem and was compared with recent transformer models for sequence
classification. The proposed approach significantly outperformed standard base-
lines and previous state-of-the-art AM systems with an overall macro F1-score of
.87 for component detection and .68 for relation prediction. The Effect-on-Outcome
analysis introduced in Chapter 6 presents a major extension of the aforementioned
AM pipeline. There, outcomes mentioned in the argumentative components were
detected and their effect subsequently classified, i.e., if an intervention has Improved,
Increased or Decreased the outcome, or that there was NoDifference, or NoOccurrence
of the outcome. The experiments relied on the second annotation scheme in the Ab-
stRCT dataset, mentioned above. The introduced pipeline for this analysis consists
of two parts. First, an outcome detection module and second, an effect classifier. The
former employed a sequence tagging approach to detect mentioned outcomes. For
this, the same sequence tagging architecture as for the argument component detec-
tion was used. The effect classifier subsequently classifies the extracted outcomes
with respect to the aforementioned labels. This task was cast as sequence classifica-
tion and thus, the same architectures as for the relation classification were employed.
The pipeline achieves a macro F1-score of .80 for Effect-on-Outcome classification.

3. Proof-of-Concept and Limitation Analysis In an extensive evaluation the er-
rors of the system were analysed highlighting the shortcomings of the employed
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architectures and methods, especially with regards to the classification of argumen-
tative relations. Additionally, an investigation was undertaken to analyse the gen-
eral robustness of the underlying bidirectional transformer model in Chapter 7. To
this end, different ways to produce meaningful adversarial examples were investi-
gated. The quality of the generated perturbations was assessed in a user study and
the effect of adversarial training for argument classification was empirically evalu-
ated. The obtained results attest a relatively reliable handling of input with simple
linguistic variations (in 5-10% of the cases the perturbation of the input changed
also the prediction of the model). Furthermore, general weak points of the trans-
former model were highlighted to indicate that this solution is still imperfect. How-
ever, the applicability of the work proposed in this thesis was demonstrated with a
Proof-of-Concept system (ACTA) in Chapter 8, which illustrated the impact of the
argumentative information in interplay with the PICO elements. For instance, this
hybrid system can identify when a claim reports an outcome as being safe or effi-
cient, but also that the associated side effects are classified as increased, setting the
claim into perspective. This combined analysis reveals more fine-grained catego-
rization of the statements in RCTs. Its re-usability was further shown in the context
of the Covid-on-the-Web project, where it was adapted and integrated in a pipeline
creating Linked Data. In the resulting argumentative knowledge graph both, the
PICO elements and the argument components, are represented with ontologies to
enable semantic queries. This is an important step towards machine-readable data
to support an automated analysis of trials. While an automated analysis of trials
seems like it could harbour the risk that decisions concerning a patient’s treatment
might be automated, this was not the final objective. The methods proposed in my
thesis particularly serve the purpose to provide assistance for a clinician to take in-
formed decisions with respect to the current development in research. The final
choice of treatment has to be made by the clinician after a case specific evaluation
of the presented information, together with the patient’s preferences. The extracted
arguments for or against certain treatment options do not only help in taking this
decision, but also in explaining the decision in a reasonable way to the patient. For
the latter, especially a visualization, as for instance provided by the ACTA system,
can bring the decision closer to the patient. After all, one goal of Argument Mining
is to make cumulative information more accessible, which was ultimately shown to
be achieved by the work presented in this thesis.

In brief, the research conducted in the context of this thesis showed how to em-
ploy and develop Argument Mining methods for the medical domain, in particular
clinical trials. As the field is still evolving, and to foster future research in the area
of Argument Mining on clinical trials, also with respect to the (medical) analysis
of observed outcomes, the AbstRCT dataset was made available together with the
source code of the experiments. I believe the above listed contributions of my work
are valuable input to motivate the community to build upon this work and spur the
reuse and adaptation of the dataset.
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Future Perspectives

While important concepts have been carved out in my work, it leaves space for fur-
ther research directions and future improvements.

First, concerning the choice of model architectures, throughout this thesis several
weaknesses of the employed Language Model based transformer models have been
discovered showing that the current pre-trained models achieve impressive results,
but are not the final answer. Especially for sequence/relation classification, there
is potential to further enhance the classifier. With the employed SentClf approach
there is a high rate of false negatives (i.e., relations that have been wrongly pre-
dicted as NoRelation). Also, the multiple choice approach could not solve the prob-
lem satisfactorily. The classification of argumentative relations requires a deeper
understanding and encoding of both, the source and the target, component into a
reusable representation in a semantic space. There, the models need to learn to in-
fer the causal or consequent relationship between two components based on their
representations. Furthermore, the learned relation should be abstract enough to be
able to be transferred and leveraged on similar cases in new data. This is where cur-
rent transformer models reach their limits. As it has been contemplated by Bender
and Koller [135], shown for argument comprehension in [129] and discussed in the
Chapters 4.2 and 7, the suspicion is that the model rather learns linguistic patterns or
cues than a real semantic understanding. A model could predict a relation correctly,
but it cannot explain the reasoning why the two linked components are in a rela-
tionship, since the required warrants are not explicitly mentioned in the text. This
classification on signals purely from character-level/symbolic input can be effective
until a certain point, where the relation can be inferred from explicit mentions in the
text. Nevertheless, in Chapter 7 it has been shown that even strong learners of this
type of patterns, i.e., current LM based transformer models, are vulnerable to slight
changes in the textual input and can benefit from adding semantic or discourse in-
formation into the training process. Specifically for AM, the integration of discourse
knowledge was shown to be beneficial [142, 172]. Further, the performance of these
models was shown to be unreliably for cases where an understanding of concepts,
procedures and their interactions in the world is presupposed by the speaker/writer,
such as for causal reasoning or argument comprehension. Human communication
is based on agreed facts about the world, e.g., that a water body of a certain size is
not a lake anymore, but a sea or an ocean. These facts about the world can only be
partially learned from text alone in an unsupervised way by current state-of-the-art
NLP models. Moreover, these facts function as warrants in scientific argumentation
and are mostly implicitly presumed in the biomedical domain [161]. Thus, I suggest
that this knowledge has to be induced externally. For instance, for the application of
AM in the medical domain, the argumentative relation classification module could
be revamped in future work to integrate expert domain knowledge and explicitly
model presumed warrants, which could infuse reasons into the learning process.
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These could be established interrelations of medical concepts in form of ontologies
or knowledge bases. For example, that quality of life has various subscales, one of
which can be incontinence, which lowers the quality of life. Thus, it would help in
the prediction of relations when an evidence talks about incontinence and the claim
about quality of life. Surely Language Model proponents would argue that this can
be all learned from enough textual data. However, this information must first be
in the raw data, second it needs to be encoded properly into the model with all
its implicit consequences (which is where current models struggle and this is why
I think it has to be added from an external source), and third fetched in the right
context of application. The right meaning for the right context in the latter part is
supposed to be usually determined by enhancing certain signals during fine-tuning,
which is a supervised task. Thus, if the information is not present in the training
data for fine-tuning, and the model is not able to abstract it somehow otherwise, the
signal might be too weak to impact the classification. Furthermore, an ontological
or knowledge base approaches could be exploited with regards to the explainability
of the implicit reasoning process involved in decision of the classifier. For example,
Green [161] proposed to model scientific publications as knowledge bases and de-
rive arguments from these KBs based on argumentation schemes formulated in the
logical programming language Prolog, and Longo and Hederman [10] justify their
work with knowledge bases for the prediction of breast cancer recurrence with the
obtained explainability of the decision. While these, especially the former argumen-
tation schemes, deliberately model the detailed relationship between arguments, it
necessitates a reliable formalization of unstructured text into knowledge bases, sim-
ilar to the need for structured data of the decision support frameworks presented
in Chapter 9.1.1. However, the output of such an approach would be explainable,
which is definitely desirable as a the long term goal.

Additionally, the point of an enriched model for relationships between argu-
ments becomes even more decisive when expanding the relation prediction from
the intra-argument level, as it was done in this thesis, to the inter-argument level,
i.e., relations between multiple trials. While in theory the existing intra-argument
relation models can be applied also for the inter-argument relation classification, the
results would probably be worse. As shown in Chapter 4, the proposed models had
troubles learning a good representation of the attack relations resulting in the highest
rate of misclassification. Inter-argument relations are naturally more controversial.
Thus, they contain more contradicting/attacking relations, which proper identifi-
cation suffers from the insufficiently learned representation of such. Furthermore,
as has been also proposed by [172], the combinations of the components should be
limited to reduce the numbers of false positives, which is naturally increased when
classifying all possible combination of all argument components across turns/doc-
uments. In general, the inter-argument relation prediction task can be thought of as
a user guided clustering tool of arguments about the same disease with the aim to
automatically identify, for instance, possible controversies among the conclusions of



130 Chapter 10. Conclusion and Future Perspectives

multiple RCTs evaluating related treatments for a certain disease. To develop inter-
argument relation annotations to evaluate the model performance, the underlying
clinical trials must examine the same interventions for the same disease. To this end,
the AbstRCT was probed to estimate the feasibility of inter-argument annotations.
Given that the neoplasm topic was selected for its high diversity, the direct draw-
back is its scarcity of trials with similar setups. Even the relatively narrow glaucoma
subset does not contain enough similar trials to have a sizeable amount of annota-
tions to properly evaluate Machine Learning models. However, this leaves this topic
as a far-reaching future research direction together with the extension of the analysis
to the full text of clinical studies. The latter extension would provide the capability
to better capture inconsistencies within one single trial. As it has been noticed in the
literature [177], sometimes RCT abstracts contain a more positive reporting of the
main findings of the article than what stated in the full text. Employing Argument
Mining methods to automatically identify these instances of misrepresentation and
distortion of the results in RCTs is a challenging and crucial research line for health-
care intelligent applications.

Furthermore, my work has shown that there are synergies between the different
extracting modules, such as evidence types, PICO elements or effect on outcomes.
Future work could go into the direction of further integrating other methods to distill
even more information. For instance, more fine-grained types of claims could be
beneficial, similar to how it was done for evidence in Chapter 5. A framework for
claims in clinical trials, as it was for example proposed for other biomedical articles
by Blake [163], would be beneficial for the qualitative evaluation of the arguments.
Also with respect to the aforementioned inter-argument relations, the type of a claim
can be of valuable information.

Overall, the work described in this thesis addresses only one of many facets in
Evidence-based Medicine, i.e., the detection and preparation of evidence. The syn-
thesis with other facets, similar to as it was done in this thesis with the integration
of the PICO framework and outcome analysis, can broaden the area of application.
In particular, future work can go further into the direction of interconnecting the
provided evidence with existing tools or frameworks for the qualitative evaluation
of it, such as RobotReviewer, the aforementioned claim framework or the argument-
based decision support systems described in Section 9.1.2. Nevertheless, the process
of searching, selecting, appraising and properly applying evidence in EBM is highly
complex and thus, the (semi-)automated detection and evaluation of relevant evi-
dence remains an important line of research in Evidence-based Medicine.
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