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RÉSUMÉ EN FRANÇAIS

Cette thèse explore une représentation stochastique des effets des petits tourbillons
sur la circulation océanique à grande échelle. Ce cadre stochastique, appelé modélisa-
tion sous incertitude de position (en anglais: location uncertainty – LU), est dérivé des
lois de conservation physique. Ce modèle repose principalement sur les deux motivations
suivantes: fournir des prévisions d’ensemble plus fiable et plus efficace pour un système
d’assimilation de données et améliorer les variabilités océaniques pour des simulations à
l’échelle climatique.

Cette thèse est principalement construite autours de trois articles publiés (Bauer et al.,
2020a,b; Resseguier et al., 2020a), d’un manuscrit soumis (Brecht et al., 2021) et d’un
manuscrit en préparation (Li et al., 2021). Elle est organisée en huit chapitres avec une
introduction générale et une conclusion. Nous résumons brièvement ci-dessous le contenu
de ces chapitres.

Résumé du chapitre 1 – Préliminaires: calcul stochastique

Dans le premier chapitre, nous présentons brièvement quelques définitions et propriétés
fondamentales du calcul stochastique. Ces formules mathématiques sont largement util-
isées dans cette étude afin de dériver les modèles physiques décrits dans les chapitres
suivants. Des notions générales sur les processus stochastiques et les intégrales stochas-
tiques en dimensions finies sont d’abord présentées. Ensuite, nous décrivons rapidement
l’extension de ces notions en dimensions infinies.

Résumé du chapitre 2 – Transport sous incertitude de position

Afin de tenir compte des effets des petites échelles sur l’évolution de l’écoulement
à grande échelle, une représentation stochastique basée sur un principe de transport
physique a d’abord été introduite par Mémin (2014). Ce principe provient d’une dé-
composition de la vitesse lagrangienne en une composante lisse (en temps) et un terme
très oscillant, nommé comme “bruit” de façon générale dans ce travail.

Ce chapitre explique en détail le modèle aléatoire avec ses propriétés principales en

1



Résumé en français

utilisant les outils de calcul stochastique rappelés dans le premier chapitre. Nous montrons
tout d’abord que le transport d’un traceur aléatoire par l’écoulement stochastique consiste
en un forçage aléatoire multiplicatif correspondant à l’advection du traceur par le bruit
(appelé également bruit de transport), une diffusion hétérogène liée à la variance du bruit
et une advection effective associée à l’inhomogénéité du bruit.

Une caractéristique importante de ce modèle aléatoire est qu’il conserve l’énergie du
traceur pour chaque réalization. Dans ce processus, l’énergie apportée par le bruit est ex-
actement contrebalancée par la perte d’énergie associée à la diffusion. Le terme d’advection
effective rend compte de l’action de l’inhomogénéité spatiale de la composante de bruit
sur le courant à grande échelle en redistribuant localement l’énergie à grande échelle.

Ensuite, un théorème de transport de Reynolds stochastique est également dérivé
afin de décrire le transport eulérien d’un traceur aléatoire dans un volume de contrôle
transporté arbitrairement par l’écoulement.

Le travail présenté dans ce chapitre a été publié dans l’article Bauer et al. (2020a).

Résumé du chapitre 3 – Modèles stochastiques tridimensionnels

Dans ce chapitre, nous decrivons certains modèles d’écoulements tridimensionnels dans
le cadre LU. La dérivation de ces modèles s’appuie essentiellement sur l’expression du
théorème de transport de Reynolds présentée dans le chapitre précédent. Nous présen-
tons d’abord la dérivation des équations stochastiques pour les écoulements à partir des
conservations stochastiques de la masse et de la quantité de mouvement. Afin de faire
quelques comparaisons avec le cadre classique de la simulation aux grandes échelles de la
turbulence, nous présentons un modèle pseudo-stochastique reposant sur une hypothèse
forte de séparation d’échelle. Ensuite, nous dérivons une représentation stochastique de
l’évolution de la vorticité en utilisant le calcul vectoriel classique.

Pour les circulations atmosphériques et océaniques, deux systèmes stochastiques sont
présentés en utilisant l’équilibre hydrostatique classique et les approximations de Boussi-
nesq. Ces modèles seront utilisés afin de dériver plusieurs équations stochastiques quasi-
bidimensionnelles dans le chapitre suivant.

De plus, nous établissons un lien entre le modèle LU et le système Craik-Leibovich. En
particulier, nous montrons que le modèle LU introduit une structuration de l’écoulement
à grande échelle liée à l’action de la composante de petite échelle. Cet effet est généré
par la vitesse statistique (inclus dans le terme d’advection effective) induite par les petits
tourbillons, qui peut être interprétée comme une généralisation de la dérive de Stokes,

2



Résumé en français

et est donc appelée dérive de Itô-Stokes dans ce travail. En fait, de façon similaire à la
dérive de Stokes, cette dérive de Itô-Stokes peut être interprétée comme la différence entre
la moyenne d’ensemble de la vitesse lagrangienne et la moyenne d’ensemble de la vitesse
effective eulérienne.

Enfin, nous effectuons également une connexion avec la paramétrisation Gent-McWilliams
(GM) qui est largement adoptée dans les modèles de circulation générale de l’océan. En
projetant le bruit le long des surfaces isopycnales, la dérive de Itô-Stokes dans le modèle
LU joue un rôle similaire à la vitesse “bolus” introduite dans le schéma GM et la diffusion
du traceur dans le modèle LU est liée à la diffusion iso-neutre introduite dans le schéma
de Redi.

Le travail présenté dans ce chapitre a en parti été publié dans l’article Bauer et al.
(2020a).

Résumé du chapitre 4 – Approximations géostrophiques stochas-
tiques

Dans ce chapitre, nous présentons quelques systèmes stochastiques quasi-bidimensionnelles
décrivant l’évolution des courants mésoéchelle. Outre l’équilibre hydrostatique sur la ver-
ticale qui est présenté dans le chapitre précédent, ce chapitre se concentre sur une autre
approximation importante entre le gradient de pression et les forces de Coriolis. Cet ap-
proximation appélé l’équilibre géostrophique, est principalement lié à l’effet dominant de
la rotation terrestre dans les circulations atmosphériques et océaniques à grande échelle.

Nous dérivons d’abord le système stochastique en rotation des écoulements en eaux peu
profonde (en anglais: rotating shallow water – RSW), qui est une bonne approximation des
équations primitives. Ensuite, nous démontrons la conservation d’énergie pour un système
RSW simplifié. Puis, nous spécifions quelques nombres sans dimension pour adimensionner
le système RSW et le système Boussinesq présenté dans le chapitre précédent.

Par la suite, nous adoptons des approches asymptotiques pour dériver les équations
géostrophiques planétaires (PG) barotropes et quasi-geostrophiques (QG) barotropes en
utilisant le système RSW sans dimension, ainsi que les équations PG et QG primitives
continues sur verticale en utilisant le système Boussinesq sans dimension. Sous le régime
QG, certaines sources et puits de vorticité proviennent de l’interaction des déformations
entre le bruit à petite échelle et le courant à grande échelle. Nous montrons que ces termes
sont importantes pour préserver l’énergie totale de l’écoulement.

3
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Les modèles quasi-bidimensionnels stochastiques ont été testés avec succès dans plusieurs
simulations numériques et certains résultats intéressants sont montrés dans les chapitres
suivants.

Les travaux présentés dans ce chapitre reposent sur l’article publié Bauer et al. (2020a)
et sur le manuscrit Brecht et al. (2021) qui a été soumis.

Résumé du chapitre 5 – Modélisation numérique de l’incertitude

Afin de réaliser des simulations numériques des modèles LU, la structure spatiale (pos-
siblement dynamique en temps) du bruit doit être modélisée à priori. En particulier, nous
explorons la méthode de décomposition spectrale à partir de la base des fonctions propres
de l’opérateur covariance spatiale. Ce chapitre présente quelques méthodes numériques
pour estimer ces fonctions propres empiriques. Nous décrivons d’abord les approches
reposant sur les données, puis détaillons certaines méthodes de paramétrisations auto-
adaptée aux différentes échelles. Le bruit qui en résulte peut être homogène ou hétérogène
en espace et stationnaire ou non-stationnaire en temps.

Nous utilisons en premier lieu l’analyse en composantes principales pour apprendre effi-
cacement la base des fonctions propres stationnaires à partir des données d’une simulation
à haute résolution. En particulier, une dérive de correction sous-maille a été identifiée en
raison du biais provenu de la procédure de sous-échantillonnage des données. Ensuite, pour
relâcher l’hypothèse de stationnarité, nous proposons de mettre à jour en temps les valeurs
propres associées aux fonctions propres contraignant les modes principaux temporels du
bruit avec la dynamique grande échelle.

Nous avons par ailleurs proposé d’estimer les fonctions propres dépendant du temps à
partir des fluctuations de vitesse locales de la simulation courante, avec une renormaliza-
tion de l’amplitude du bruit s’appuyant sur une hypothèse de similitude.

Une autre méthode de paramétrisation vise à adapter à l’équation de transport stochas-
tique à un opérateur de dissipation sous-maille donné tel que l’hypervisocité. L’idée prin-
cipale repose sur l’hypothèse que la diffusion dans les modèles LU peut être identifiée avec
une dissipation sous-maille spécifiée à un facteur près. Ainsi, pour une base orthonormée
fixée comme les ondelettes, les valeurs propres associées sont mises à jour selon le bilan de
dissipation d’énergie. Par conséquent, le forçage aléatoire multiplicatif dans le transport
contrebalance la dissipation numérique au facteur près.

Les travaux présentés dans ce chapitre ont été publiés dans les articles Bauer et al.
(2020a,b); Resseguier et al. (2020a).
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Résumé en français

Résumé du chapitre 6 – Vérification des prévisions d’ensemble
pour la dynamique QG surfacique

Dans ce chapitre, nous détaillons d’abord quelques métriques importantes pour quan-
tifier les compétences de prédiction des prévisions d’ensemble, comme le diagramme de
Talagrand, le “continuous ranked proper score” et le score d’énergy. Nous considérons ici
le modèle QG surfacique comme cas de test. En particulier, nous utilisons les paramétri-
sations stochastiques présentées dans le chapitre précédent afin de comparer leur perfor-
mances en terme de prévisions d’ensemble à temps court.

Nous montrons que le modèle aléatoire proposé, que ce soit avec incertitude homogène
ou hétérogène, fournit des ensembles avec une dispersion plus efficace et réaliste qu’un
modèle classique avec une perturbation aléatoire de la condition initiale. Cette capacité
est surtout importante pour les applications d’assimilation des données. En termes de
fiabilité d’ensemble, nous montrons en sus que les modèles avec des bruits hétérogène
sont meilleurs que ceux avec des bruits homogènes et que les modèles associés à des bruits
non-stationnaires sont meilleurs que ceux avec des bruits stationnaires.

Le travail présenté dans ce chapitre a été publié dans l’article Resseguier et al. (2020a).
Cependant, ce chapitre apporte des élements plus précis quant à l’efficacité de différents
modèles de bruit.

Résumé du chapitre 7 – Etudes numériques du modèle QG barotrope
stochastique

Ce chapitre fournit quelques résultats numériques du système QG barotrope stochas-
tique dérivé dans le chapitre 4. En utilisant un modèle barotrope périodique non visqueux,
nous montrons d’abord que le modèle LU avec des bruits à la fois homogènes et hétérogènes
préserve l’amplitude et la vitesse de propagation de l’onde de Rossby. De plus, nous illus-
trons numériquement que l’introduction du bruit inhomogène induit une structuration de
l’écoulement à grande échelle avec des tourbillons secondaires.

Ensuite, la performance de ce modèle barotrope stochastique est évaluée au moyen
d’une simulation numérique dans le cadre d’une configuration idéalisée – double gyres
entraînés par un vent stationnaire dans un bassin fermé peu profond à moyenne latitude.
Nous nous intéressons ce contexte à la capacité des modèles stochastiques proposés à
représenter correctement les quatre premiers moments statistiques (moyenne, variance,
asymétrie et kurtosis) des écoulements à une résolution grossière. La comparaison de
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distribution statistique par ses quatres moments avec celle prédite par les données de
haute résolution, nous permet de qualifier et de quantifier la prise en compte, par notre
représentation stochastique, des effets des tourbillons de mésoéchelle sur la circulation
grande échelle.

Les travaux présentés dans ce chapitre ont été publiés dans les articles Bauer et al.
(2020a,b).

Résumé du chapitre 8 – Etudes numériques du modèle QG mul-
ticouche stochastique

Un modèle QG multicouche ne nécessite que quelques couches pour générer des in-
stabilités baroclines. Cependant, les effets des tourbillons à mésoéchelle peuvent encore
être absents pour des configurations grossièrement résolues dans le plan horizontal. Dans
ce chapitre, nous continuons nos études sur une circulation double-gyre idéalisée avec un
modèle QG multicouche. En particulier, nous nous concentrons sur la reproduction de
l’écoulement de jet ainsi que sur la prédiction de la variabilité basse fréquence pour le
modèle aléatoire défini sur une maille grossière.

La corrélation spatiale empirique du bruit a d’abord été estimée à partir de données de
simulation de haute résolution. Nous montrons que dans ce contexte la dérive de correction
sous-maille est très importante pour reproduire sur une maille grossière le jet zonale de la
circulation doubles gyres. Une nouvelle méthode de projection a par ailleurs été proposée
pour contraindre le bruit à vivre le long des iso-surfaces de la stratification verticale, et
ainsi améliorer le transfert de l’énergie potentielle vers l’énergie cinétique. Ce bruit non-
stationnaire nous permet en particulier d’améliorer la variabilité intrinsèque du courant
à grande échelle. Cette amélioration est révélée par le biais d’une analyse des transferts
d’énergie et au moyen de critères statistiques.

Le travail présenté dans ce chapitre provient du manuscrit Li et al. (2021) en prépa-
ration de soumission.

Enfin, nous terminons ce mémoire par une conclusion générale en rappelant les résul-
tats principaux de cette thèse. Quelques perspectives sur les travaux de recherche futurs
sont également données.
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INTRODUCTION

Context

Mesoscale eddies contain a significant proportion of ocean energy and have an im-
portant impact on large-scale circulations. They are found everywhere in the ocean, and
are particularly intensive in the western boundary currents like the Gulf Stream and the
Antarctic Circumpolar Current. Unfortunately, to fully resolve these eddies in numerical
simulations, a horizontal resolution of ∼ 10km is required, which is far too expensive
for a large ensemble of realizations or simulations over a long time duration. Neglect-
ing mesoscale eddy effects may lead to strong errors in the evolution of the large-scale
dynamics. Therefore, they need to be properly modeled or parametrized.

A classical parametrization approach is to introduce eddy viscosity in coarse models
to mimic the action of the computationally unresolved scales while simultaneously en-
suring numerical stability by avoiding pile up of energy at the cutoff scale. The explicit
dissipation mechanism is often represented either by a harmonic or biharmonic friction
term with uniform coefficient, or through functional operators (Smagorinsky, 1963; Leith,
1971; Griffies and Hallberg, 2000) that depend on the resolved flow. However, encoding
only large-scale dissipation in coarse models often leads to an excessive decrease of the
resolved kinetic energy (Arbic et al., 2013; Kjellsson and Zanna, 2017). A more widely
adopted approach in global ocean models is the Gent-McWilliams parametrization (Gent
and McWilliams, 1990; Gent et al., 1995; Treguier et al., 1997; Griffies, 1998), in which an
eddy-induced velocity is introduced to flatten isopycnal surfaces and to produce efficient
transfers of mean available potential energy to eddy kinetic energy.

An alternative approach is based on stochastic parametrization (Berloff, 2005; Grooms
and Majda, 2014; Jansen and Held, 2014; Porta Mana and Zanna, 2014; Cooper and
Zanna, 2015; Grooms et al., 2015; Zanna et al., 2017), which aims to introduce energy
backscattering across scales. These models provide a marked benefit in improving the
internal ocean variability, which can be paramount in ensemble forecasting and data
assimilation. As a matter of fact, it is well known that models with poor variability
usually lead to very low spread of the ensemble (Karspeck et al., 2013; Franzke et al.,
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2015). Hence, assimilation systems tend to be over-confident in the model as compared to
the observations (Mitchell and Gottwald, 2012; Gottwald and Harlim, 2013). On the other
hand, to overcome numerical instability brought by introducing random forcing, specific
tuning parameters are often included in these parameterized models. The success of such
tuning methods often do not extend into new flow regimes.

Stochastic parameterization techniques have been proposed for reduced order climate
models based on rigorous homogenization techniques (Franzke and Majda, 2006; Franzke
et al., 2015; Gottwald et al., 2017). These models rely on a scale-separation principle and
introduce a linear stochastic Ansatz model with damping terms for the nonlinear small-
scale evolution equation. The resulting homogenized dynamics are cubic with correlated
additive and multiplicative (CAM) noises. In the absence of scale-separation, the system
usually becomes non-Markovian and incorporates memory terms, as shown in the Mori-
Zwanzig equation (Gottwald et al., 2017).

Alternatively, Mémin (2014) proposed a consistent stochastic framework defined from
physical conservation laws. This derivation keeps the full nonlinearity of the system yet
relies on a strong temporal scale-separation assumption. Within this framework, the La-
grangian velocity is decomposed into a smooth component and a highly oscillating random
field. A stochastic transport principle is subsequently derived using stochastic calculus.
Notably, the resulting evolution of a random tracer includes a multiplicative random forc-
ing, a heterogeneous diffusion and an advection correction due to inhomogeneity of the
random flow component. With these additional terms, a remarkable energy conserva-
tion property along time for any realization of the advected tracer still holds (Resseguier
et al., 2017a). This stochastic transport principle has been used as a fundamental tool
to derive stochastic representations of large-scale geophysical dynamics (Resseguier et al.,
2017a,b,c; Chapron et al., 2018) in which the missing contributions of unresolved processes
are explicitly taken into account. Similar approaches based on the same decomposition
have also been recently proposed by Holm (2015); Cotter et al. (2019a,b); Crisan et al.
(2019); Gugole and Franzke (2019); Holm (2019); Cotter et al. (2020); Gugole and Franzke
(2020).

The performance of such a random model has been evaluated and analyzed in terms
of uncertainty quantification and ensemble forecasting (Resseguier et al., 2020a) for a
surface quasi-geostrophic (SQG) flow. A more efficient spread is produced by the proposed
model compared to a deterministic model with perturbed initial condition. As discussed
above, this ability is essential for data assimilation applications. Recently, a stochastic
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barotropic quasi-geostrophic (QG) model within this setting has been proposed (Bauer
et al., 2020a) to study the structuration effect of the random field on the large-scale
flow. Numerical results illustrate that, the introduction of an inhomogeneous random
component into a propagating monochromatic Rossby wave induces the formation of
extra large vortices. Furthermore, in Bauer et al. (2020b), this stochastic representation
is tested for the coarse simulation of a barotropic circulation in a shallow ocean basin,
driven by a symmetric double-gyre wind forcing. After reaching a turbulent equilibrium
state, a statistical analysis of tracers shows that the proposed random model enables us
to reproduce accurately, on a coarse mesh, the local structures of the first four statistical
moments (mean, variance, skewness and kurtosis) of the high-resolution eddy-resolved
data. Such a numerical evaluation has been extended recently to a wind driven layered
QG system in a closed basin. For different noise models very good results have been
obtained at coarse climatic scale.

Preview of chapters

This thesis is mainly based on three published papers (Bauer et al., 2020a,b; Resseguier
et al., 2020a), one submitted manuscript (Brecht et al., 2021) and one working manuscript
(Li et al., 2021). This thesis is organized in eight chapters with a general introduction and
conclusion. We briefly resume below the content of those chapters.

Summary of chapter 1 – Preliminaries: Stochastic calculus

This chapter reviews some fundamental definitions and properties of stochastic calcu-
lus. These mathematical formulas are widely adopted in this study to derive the physical
models described in the following chapters. Since all these results are well-known, very
few proofs are presented in this chapter. We present general notions on stochastic pro-
cesses and integrals in finite dimensions and then describe the extension of this calculus
to infinite dimensions.

Summary of chapter 2 – Transport under location uncertainty

In order to account for the effects of the small scales on the evolution of the large-
scale flow, a stochastic representation based on a physical transport principle has been
first proposed by Mémin (2014) and then applied by Resseguier et al. (2017a) to different
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geophysical fluid dynamics. This framework arises from a decomposition of the Lagrangian
velocity into a smooth in time component and a highly oscillating term. One important
characteristic of this random model is that it conserves the energy of any transported
tracer. This chapter fully explains the proposed random model with its main properties
using the stochastic calculus tools reviewed in Chapter 1. The work presented in this
chapter has been published in Bauer et al. (2020a).

Summary of chapter 3 – Three-dimensional stochastic models

This chapter reviews some important three-dimensional equations under the location
uncertainty framework. The core of these models is based on the stochastic Reynolds trans-
port theorem, presented in the previous chapter. We first describe briefly the derivation
of the stochastic governing equations of fluid motion, including the stochastic conserva-
tion of mass and of linear momentum. In order to do some comparisons with the clas-
sical large-eddy simulation framework, we present a pseudo-stochastic model based on a
scale-separation assumption. Then a stochastic representation of the vorticity evolution
is derived using classical vector calculus. Later, for large-scale atmospheric and oceanic
circulations, two stochastic primitive systems are presented under the classical hydrostatic
balance and the Boussinesq approximations. These equations will be used to derive several
two-dimensional stochastic equations in the subsequent chapter. In addition, we build a
connection between the proposed random model and the Craik-Leibovich system. In par-
ticular, we show that the effective advection due to the effect of statistical inhomogeneity
of the small-scale flow on the large-scale current, can be considered as a generalization
of the Stokes drift. Finally, a connection with the Gent-McWilliams parametrization is
performed. The work presented in this chapter has been partly published in Bauer et al.
(2020a).

Summary of chapter 4 – Stochastic geostrophic approximations

This chapter reviews some important quasi-two-dimensional stochastic equations. Apart
from the hydrostatic balance in vertical direction presented in the previous chapter, this
chapter focuses on another important approximation in the horizontal direction between
the pressure gradient and the Coriolis forces, the so-called geostrophic balance, which is
mainly due to the dominant rotating effect of the large-scale atmospheric and oceanic
circulations. We first derive the stochastic rotating shallow water (RSW) system, which is
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a good approximation of the primitive equations. Then, the energy conservation of a sim-
plified stochastic RSW system is demonstrated. Latter, we specify some scaling numbers
to adimensionalize the stochastic RSW system and the stochastic simple Boussinesq sys-
tem presented in the previous chapter. Subsequently, asymptotic approaches are adopted
to develop the barotropic planetary geostrophic (PG) and quasigeostrophic (QG) equa-
tions using the non-dimensional RSW system, as well as the stochastic primitive PG and
vertically continuous version of the QG equations using the non-dimensional Boussinesq
system. These resulting two-dimensional models have been successfully tested in several
numerical simulations and some interesting results are outlined in chapters 6, 7 and 8.
The work presented in this chapter are based on the published paper Bauer et al. (2020a)
and on the manuscript Brecht et al. (2021) that has been submitted.

Summary of chapter 5 – Numerical modeling of uncertainty

In order to perform numerical simulations of the proposed random models, the uncer-
tainty field has to be a priori modeled. We explore in particular methods based on the
spectral decomposition defined from the eigenfunction basis of the spatial covariance. This
chapter presents some numerical methods to estimate the empirical orthogonal functions
(EOF). The work presented in this chapter have been published in Bauer et al. (2020a,b);
Resseguier et al. (2020a).

Summary of chapter 6 – Ensemble forecasts verification for SQG
dynamics

In this chapter, we first detail some important metrics to quantify ensemble fore-
casts prediction skills, such as the Talagrand diagram, the continuous ranked proper
score and the energy score. As a test case, a simple geophysical fluid dynamics model –
the stochastic surface quasigeostrophic (SQG) model – is considered. Several stochastic
parameterizations presented in the previous chapter are also compared for short-terms
ensemble forecasts. We show that the proposed random model, under both homogeneous
and heterogeneous uncertainty, provides more efficient ensemble spread than a determinis-
tic model with a perturbation of the initial condition. This ability is in particular essential
for data assimilation applications. The work presented in this chapter has been published
in Resseguier et al. (2020a).
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Summary of chapter 7 – Numerical studies of stochastic barotropic
QG model

This chapter provides some numerical results of the stochastic barotropic QG system
derived in Chapter 4. Using a simple inviscid barotropic model, we first show that the
introduction of inhomogeneous noise induces a structuration of the large-scale flow with
strong secondary vortices. Later, the performance of this stochastic barotropic model is
assessed for the numerical simulation of an idealized wind-driven double-gyre configuration
within an enclosed shallow basin at mid-latitude. We focus then on the ability of the
proposed stochastic models to accurately represent at a coarse resolution the four first
statistical moments (mean, variance, skewness and kurtosis) of the flow. Comparing this
statistical distribution through its four moments to that predicted by the eddy-resolving
data enables us to qualify and quantify the accuracy of our stochastic representation of
mesoscale eddy effects on large–scale circulation. The work presented in this chapter have
been published in Bauer et al. (2020a,b).

Summary of chapter 8 – Numerical studies of stochastic multi-
layer QG model

An approximative QG model requires only few layers to capture the baroclinic insta-
bilities. However, the effects of mesoscale eddies can still be missing for coarse configura-
tions in the horizontal direction. In this chapter, we continue our studies on the idealized
double-gyre circulation yet now with a multi-layer QG model. In particular, we focus on
the reproduction of the meandering jet as well as the prediction of low-frequency variabil-
ity for the proposed random model on a coarse-grid. The work presented in this chapter
is based on the manuscript Li et al. (2021) in preparation for submission.

A general conclusion ends this document in recalling the principal results of this thesis.
Some perspectives on future research works are provided.
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Chapter 1

PRELIMINARIES: STOCHASTIC

CALCULUS

This chapter reviews some fundamental definitions and proper-
ties of stochastic calculus. These mathematical formulas are widely
adopted to derive the physical models described the following chap-
ters. Since all these results are well-known, very few proofs are pre-
sented in this work. We will first present the stochastic processes
and integrals in finite dimensions and then describe the extension
of this calculus to infinite dimensions based on linear analysis.

Abstract

1.1 Finite-dimensional case

This section describes the basics of stochastic calculus in finite dimensions. We first
briefly describe the stochastic processes, paying particular attentions to the standard
Brownian motions. Then, we review a general class of random processes – the real-valued
continuous semimartingales. Later, we adopt such processes to define the Itô integrals. In
particular, we point out some important properties of Itô calculus such as the chain rule.
Finally, we briefly describe the Stratonovich integrals with its related formulas. These
results mainly come from Le Gall (2016); Kunita (1997).

1.1.1 Stochastic process

Let us first recall the general definition of a stochastic process. In the following, let
(Ξ,P) be a probability space with Ξ the sample space and P the probability measure. In
addition, let T be an index set and S be a measurable state space.
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Part I, Chapter 1 – Preliminaries: Stochastic calculus

A stochastic process X is defined as a collection of random variables (Kunita, 1997)
such that

X : (T × Ξ)→ S

(t, ξ) 7→ Xt(ξ), (1.1)

in which ξ 7→ Xt(ξ) is a random variable for each t ∈ T given, and t 7→ Xt(ξ) is called a
realization (or trajectory, path, sample, particle) for each ξ ∈ Ξ given. For simplicity of
notation, the randomness symbol ξ is often dropped in literature; this will be the case in
this work.

A stochastic process can be continuous (T ⊆ R+) or discrete (T ⊆ N+) in time. A
simple class of stochastic process is defined in real space (S ⊆ R). In particular, let us
focus on the continuous real-valued Gaussian process. To this end, we first recall quickly
the real Gaussian random variable. A real random variable X follows the Gaussian (or
normal) distribution N (µ, σ2) with µ ∈ R, σ > 0, if its probability density function (pdf)
is given by

p(x) = 1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
, x ∈ R. (1.2a)

In fact, the expectation and the variance of such Gaussian variable X are respectively
given by

E[X] 4=
∫

Ξ
X(ξ) dP(ξ) =

∫
R
xp(x) dx = µ, (1.2b)

Var(X) 4= E
[
(X − E[X])2

]
= σ2, (1.2c)

and the quantity σ =
√

Var(X) is known as the standard derivation. In particular, if
µ = 0, then X is said to be centered. Further, if σ = 1, then X is termed as a standard
Gaussian variable. Later, a Rd-valued random variable X = (X1, . . . , Xd)T is Gaussian
if and only if the marginal αTX = ∑d

i=1 αiXi is a real-valued Gaussian variable for all
α ∈ Rd. Hereafter, a continuous real-valued stochastic process {Xt}t∈R+ is Gaussian if
X = (Xt1 , . . . , Xtn)T is a Rn-valued Gaussian variable for any t1, . . . , tn ∈ R+ and any
n ∈ N. As a result, all the marginals of a Gaussian process are Gaussian, and any linear
combination of marginals of a Gaussian process is still Gaussian.

A typical example of the continuous real-valued Gaussian processes is the so-called
standard Brownian motion, which is particularly important in the study of stochastic

16



1.1. Finite-dimensional case

differential equations (SDEs). A standard Brownian motion B satisfies the following char-
acteristics:

(i) B starts from zero almost surely (a.s.), i.e. P(B0 = 0) = 1;

(ii) Each path t 7→ Bt is continuous;

(iii) Each time-increment of B is normally distributed, i.e. Bt − Bs ∼ N (0, t − s) for
0 ≤ s ≤ t;

(iv) The time-increment of B over disjoint intervals are independent, i.e. Bt1 , Bt2 −
Bt1 , . . . , Btn −Btn−1 are mutually independent for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn.

Note that two Gaussian variables X and Y are independent if and only if

Cov(X, Y ) 4= E
[
(X − E[X])(Y − E[Y ])

]
= 0. (1.3)

Later, a finite dimensional (S ⊆ Rd) Brownian motion, B = (B1, . . . , Bd)T , is defined
by supposing that each component Bi is a standard Brownian motion and that both
components are independent.

1.1.2 Continuous semimartingale

In the following, let us focus on a general class of the real-valued stochastic processes –
the continuous semimartingale. First of all, as functions of time, some stochastic processes
can be of bounded variation (BV). Let 0 = tn0 < tn1 < · · · < tnpn = t be a partition of the
interval [0, t] for t ∈ R+. A random process X is of BV if

∀ ξ ∈ Ξ, sup
{pn}

pn∑
i=1

∣∣∣Xtni
(ξ)−Xtni−1

(ξ)
∣∣∣ < +∞. (1.4)

In general, most random processes are quite irregular, hence are not of BV. Nevertheless,
they could be of bounded quadratic variation. We recall that a stochastic process X is of
bounded quadratic variation if

〈X,X〉t
P= lim

n→+∞

pn∑
i=1

(
Xn
ti
−Xn

ti−1

)2
, (1.5)

where the limit, if it exists, is defined in the sense of convergence in probability (Le Gall,
2016). A famous class of such random processes is the continuous martingale. A stochastic
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process X is said to be a continuous martingale with respect to (w.r.t.) the process Y if

E
[
|Xt|

]
< +∞, ∀ t ∈ R+ (1.6a)

E
[
Xt | {Yr}r≤s

]
= Xs, ∀ s ≤ t, (1.6b)

where the last equation means that the expected value of the state at time t, under a given
set of past states up to time s, is equal to the state at time s. In particular, a random
process can be a continuous martingale w.r.t. itself when Y = X. A typical example
of such continuous martingale is the Brownian motion B with its well-known quadratic
variation (Le Gall, 2016):

〈B,B〉t = t. (1.7)

Now, we can introduce the continuous semimartingale X, which is defined as a sum of
the process A of BV and the continuous martingale M :

Xt = X0 + At +Mt. (1.8)

A remarkable property of such processes is that they are of bounded quadratic covariation
(or cross variance), which equals to that of their martingale components. Let Xt = X0 +
At +Mt and Yt = Y0 + A′t +M ′

t be two continuous semimartingales with two continuous
martingales M,M ′ and two processes A,A′ of BV, then their quadratic covariation is
given by

〈X, Y 〉t
P= lim

n→+∞

pn∑
i=1

(
Xn
ti
−Xn

ti−1

)(
Y n
ti
− Y n

ti−1

)
= 〈M,M ′〉t. (1.9)

To better understand such quadratic-covariation-rule, we show briefly that if any of the
two processes X or Y is of BV, then their quadratic covariation reduces to zero. For
instance, let us assume that X = A is of BV, then

∣∣∣∣ pn∑
i=1

(
Anti − A

n
ti−1

)(
Y n
ti
− Y n

ti−1

)∣∣∣∣ ≤ sup
i≤pn

∣∣∣Y n
ti
− Y n

ti−1

∣∣∣ pn∑
i=1

∣∣∣Anti − Anti−1

∣∣∣
≤ C(t) sup

i≤pn

∣∣∣Y n
ti
− Y n

ti−1

∣∣∣ P−−−→
n→+∞

0, (1.10)
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1.1. Finite-dimensional case

where the second inequality results from (1.4) and the last convergence (in probability)
is based on the continuity of Y .

Let us highlight that if the decomposition (1.8) exists, then it is unique up to indis-
tinguishability. More precisely, supposing that there exists a second decomposition of X
with Xt = X0 +A′t +M ′

t , then P(At = A′t, ∀ t ∈ R+) = 1 and P(Mt = M ′
t , ∀ t ∈ R+) = 1.

This is the so-called canonical decomposition (Le Gall, 2016) of the semimartingale X.
Indeed, this results from the following theorem:

Theorem 1.1.1 (Canonical decomposition). Let M be a continuous martingale. If M is
also a process of BV with M0 = 0, then Mt = 0, ∀ t ∈ R+ a.s.

Hereafter, we can construct the stochastic integrals using the continuous semimartin-
gales. In the following, we drop the word “continuous” for simplicity.

1.1.3 Itô integrals and formulas

This section describes the Itô representation of stochastic integrals. To this end, we
first define it w.r.t. the martingales and then extended to that w.r.t. the semimartingales.

Let Θ be a (locally) bounded process (Kunita, 1997) and M be a martingale, then the
following integral is well defined and it is also a martingale:

∫ t

0
Θs dMs

P= lim
n→+∞

pn∑
i=1

Θn
ti−1

(
Mn

ti
−Mn

ti−1

)
. (1.11)

Under such definition, Itô integrals satisfy the following properties:

(Associativity)〈 ∫ ·
0

Θs dMs,
∫ ·

0
Θ′s dM ′

s

〉
t

=
∫ t

0
ΘsΘ′s d〈M,M ′〉s, (1.12a)

(Centrality)

E
[ ∫ t

0
Θs dMs

]
= 0, (1.12b)

(Isometry)

E
[( ∫ t

0
Θs dMs

)( ∫ t

0
Θ′s dM ′

s

)]
= E

[ ∫ t

0
ΘsΘ′s d〈M,M ′〉s

]
, (1.12c)

where Θ′ is another bounded process and M ′ is another martingale.
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Part I, Chapter 1 – Preliminaries: Stochastic calculus

In particular, the quadratic variation of the Itô integrals driven by Brownian motions
reduces to 〈 ∫ ·

0
Θs dBs,

∫ ·
0

Θs dB′s
〉
t

=
∫ t

0
Θ2
s ds. (1.13a)

Besides, Equations (1.12b) and (1.12c) give immediately the variance of such process,
namely

Var
[ ∫ t

0
Θs dBs

]
= E

[ ∫ t

0
Θ2
s ds

]
. (1.13b)

More generally, the following Itô integral defined w.r.t. a semimartingale Xt = X0 +
At +Mt (with A of BV and M a martingale) is also a semimartigale:

∫ t

0
Θs dXs =

∫ t

0
Θs dAs +

∫ t

0
Θs dMs, (1.14)

where the first component on the right-hand-side (RHS) is a Stieltjes integral (Kunita,
1997) of BV, whereas the latter component is an Itô integral as defined in (1.11). Fur-
thermore, the quadratic-covariation-rule (1.9) provides the associativity of the previous
Itô integral, that is

〈 ∫ ·
0

Θs dXs,
∫ ·

0
Θ′s dYs

〉
t

=
∫ t

0
ΘsΘ′s d〈M,M ′〉s, (1.15)

where Yt = Y0 + A′t +M ′
t is another semimartingale.

Afterwards, we give two major results of Itô calculus, namely the integration-by-part
formula and the chain rule. Compared to the classical rules for deterministic functions, the
Itô’s integration-by-part formula of two semimartingales includes an additional quadratic
covariation term, it reads:

Theorem 1.1.2 (Itô’s integration-by-part formula). Let X and Y be two semimartingales,
then

Xt Yt = X0 Y0 +
∫ t

0
Xs dYs +

∫ t

0
Ys dXs + 〈X, Y 〉t. (1.16)

Moreover, the chain rule of a function f composed by a semimartingale is provided by
the famous Itô’s formula. In the following, we give these formulas for multi-dimensional
semimartingales . In a simple case when f is smooth and deterministic, this reads:

Theorem 1.1.3 (Itô’s formula I). LetX be a Rd-valued semimartingale. Let f ∈ C1([0, T ])
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1.1. Finite-dimensional case

for any T ∈ R+ and f ∈ C2(Rd), then

f(X t, t) = f(X0, 0) +
∫ t

0

∂f

∂s
(Xs, s) ds+

d∑
i=1

∫ t

0

∂f

∂xi
(Xs, s) dX i

s

+ 1
2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs, s) d〈X i, Xj〉s. (1.17)

Taking its differential yields a SDE. Let us outline that the previous formula only
applies to deterministic functions. Now, if the function f itself is random, a generalized
Itô’s formula (or Itô-Wentzell formula) is required instead. This formula from Kunita
(1997) states that

Theorem 1.1.4 (Generalized Itô’s formula I). Let f(x, t) be C2-process over x ∈ Rd and
C1-semimartingale over t ∈ R+, and let X be a semimartingale taking values in Ω ⊂ Rd.
Then, f(X t, t) is a semimartingale satisfying

f(X t, t) = f(X0, 0) +
∫ t

0
dsf(Xs, s) +

d∑
i=1

∫ t

0

∂f

∂xi
(Xs, s) dX i

s

+ 1
2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(X t, t) d〈X i, Xj〉s

+
d∑
i=1

d
〈 ∫ ·

0

∂f

∂xi
(Xs, ds), X i

〉
t
. (1.18)

where the second term on the RHS, dsf(x, s) 4= f(x, s + ds) − f(x, s), stands for the
forward time-increment of the random function f at a fixed point x ∈ Ω.

We remark that the last quadratic covariation constitutes an additional term compared
to the classical Itô’s formula (1.1.3). This term describes how the random function’s
gradient covaries with the composed process in time.

To summarize this section, the quadratic (co-)variations play a very important roles
in Itô calculus. The generalized Itô’s formula must be adopted as the chain rule when the
composition function itself is random.

1.1.4 Stratonovich integrals and formulas

For comparison reason, we provide here an alternative representation of the stochastic
integrals, that is the Stratonovich integral. Unlike the Itô integral (1.11), a Stratonovich
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Part I, Chapter 1 – Preliminaries: Stochastic calculus

integral defined w.r.t. a martingale is no more a martingale but a semimartingale:

∫ t

0
Θs◦dMs

P= lim
n→+∞

pn∑
i=1

Θn
ti−1

+ Θn
ti

2
(
Mn

ti
−Mn

ti−1

)
, (1.19)

where the symbol ◦ is often used to denote Stratonovich integrals and highlights explicitly
the difference from Itô integrals. We remark that in most cases, it is possible to convert
Stratonovich integral into Itô integral (and vice versa) when one of those integrals is given,
using the formula (Kunita, 1997):

Theorem 1.1.5 (Stratonovich-Itô-integral-conversion rule). Let Y be a semimartingale,
if in addition, X is also a semimartingale, then the following Stratonovich integral is well
defined: ∫ t

0
Xs◦dYs =

∫ t

0
Xs dYs + 1

2〈X, Y 〉t. (1.20)

Unlike Itô integrals, the Stratonovich integral is defined such that the integration-by-
part formula as well as the chain rule of the classical calculus hold (Kunita, 1997):

Theorem 1.1.6 (Integration-by-part formula II). Let X and Y be two semimartingales,
then

Xt Yt = X0 Y0 +
∫ t

0
Xs◦dYs +

∫ t

0
Ys◦dXs. (1.21)

Theorem 1.1.7 (Itô’s formula II). Let X be a Rd-valued semimartingale. Let f ∈
C2([0, T ]) for any T ∈ R+ and f ∈ C3(Rd), then

f(X t, t) = f(X0, 0) +
∫ t

0

∂f

∂s
(Xs, s) ds+

d∑
i=1

∫ t

0

∂f

∂xi
(Xs, s)◦dX i

s. (1.22)

Theorem 1.1.8 (Generalized Itô’s formula II). Let f(x, t) be C3-process over x ∈ Rd and
C2-semimartingale over t ∈ R+, and let X be a semimartingale taking values in Ω ⊂ Rd.
Then, f(X t, t) is a semimartingale satisfying

f(X t, t) = f(X0, 0) +
∫ t

0
ds◦f(Xs, s) +

d∑
i=1

∫ t

0

∂f

∂xi
(Xs, s)◦dX i

s. (1.23)

where the second term on the RHS, ds◦f(x, s) 4= f(x, s + ds/2)− f(x, ds/2), stands for
the central time-increment of the random function f at a fixed point x ∈ Ω.

Due to these properties the Stratonovich integral is often easier to manipulate in formal
calculation. However, it requires more regular assumptions in both time and space for the

22



1.2. Infinite-dimensional case

random function. In this work, from time to time, it will be interesting to use Stratonovich
notation. For instance, we will adopt it to show the energy conservation for the derived
stochastic models in following chapters. Nevertheless, this work focus mainly on the Itô
calculus setting taking the advantage of martingale property and of explicit expansion
when deriving new stochastic models. As shown in the subsequent section, each term in
a stochastic transport equation can be given a physical interpretation thanks to the Itô
representation.

1.2 Infinite-dimensional case

The previous sections allowed us to define the real-valued stochastic integrals and
formulas in finite dimensions. However, a random process may possibly take values in a
functional space of infinite dimensions. In particular, this section focuses on two typical
Hilbert space-valued processes, the Q-Wiener process and the cylindrical Wiener process,
which play an important role in studying the stochastic partial differential equations
(SPDEs). Before introducing them, let us first review some useful results of spectral
theory of linear operators. These results mainly come from Da Prato and Zabczyk (2014);
Lord et al. (2014).

1.2.1 Spectral theory of linear operators

We recall that a Hilbert space H is a vector space with inner product J·, ·KH and is
complete w.r.t. the induced norm ‖u‖H

4= Ju, uK1/2
H . In particular, any Hilbert space is a

Banach space (complete normed vector space). An interesting example of Hilbert space
is L2(Ω) or (L2(Ω))d. For simplicity, we focus on L2(Ω). Let Ω ⊂ Rd be a domain, then
L2(Ω) is a real Hilbert space with the inner product Ju, vKH

4=
∫
Ω u(x)v(x) dx.

An important property of Hilbert spaces is the orthogonal projection. Let {φn}n∈N
be an orthonormal set in H, i.e. Jφn, φmKH = δnm

1. In addition, if the linear subspace
spanned by {φn}n∈N is dense in H, then the set {φn}n∈N is a complete orthonormal basis
for H such that

u =
∞∑
n=1

Ju, φnKH φn, ‖u‖2
H =

∞∑
n=1

Ju, φnK2
H, ∀u ∈ H. (1.24)

1. δ denotes the Kronecker symbol with δnm =
{

1, n = m,

0, n 6= m.
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Part I, Chapter 1 – Preliminaries: Stochastic calculus

Further, a Hilbert space is separable if it contains a countable dense subset and every
separable Hilbert space has an orthonormal basis.

We now briefly review the bounded linear operators. Let X and Y be two vector
spaces. A function L : X → Y is said to be a linear operator if, ∀u, v ∈ X, ∀α ∈ R,
L(αu+v) = αLu+Lv. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be two Banach spaces. A linear operator
L : X → Y is bounded if for some C > 0, ‖Lu‖Y ≤ C‖u‖X, ∀u ∈ X. Later, L(X, Y )
denotes the set of bounded linear operators. In the case X = Y , we write simply L(X).
In fact, the set L(X, Y ) is a Banach space with norm

‖L‖L(X,Y )
4= sup

u6=0

‖Lu‖Y
‖u‖X

. (1.25)

Therefore, bounded linear operators are continuous: ‖Lu‖Y ≤ ‖L‖L(X,Y )‖u‖X.
An important class of bounded linear operators are the Hilbert-Schmidt operators.

Let G and H be two separable Hilbert spaces with norms ‖·‖G and ‖·‖H respectively. Let
us then define the Hilbert-Schmidt norm for an orthonormal basis {φn}n∈N of G by

‖L‖HS(G,H)
4=
( ∞∑
n=1
‖Lφn‖2

H

)1/2
. (1.26)

Subsequently, the set HS(G,H) 4= {L ∈ L(G,H) : ‖L‖HS(G,H) < ∞} is a Banach space
with the Hilbert-Schmidt norm. As such, an L ∈ HS(G,H) is known as a Hilbert-Schmidt
operator. In the case G = H, we denote its norm by ‖L‖HS for simplicity. In particular,
Hilbert-Schmidt operators are bounded with ‖L‖L(H) ≤ ‖L‖HS.

We now take a look to the Hilbert-Schmidt operators on L2(Ω). Let us first recall that
an integral operator K on L2(Ω) with a bounded kernel k ∈ L2(Ω ×Ω) is defined by

(Ku)(x) 4=
∫
Ω
k(x,y)u(y) dy, x ∈ Ω, u ∈ L2(Ω). (1.27)

In fact, the relationship between the integral operator and the Hilbert-Schmidt operator
on L2(Ω) is provided by the following theorem:

Theorem 1.2.1 (Hilbert-Schmidt integral operator). Any integral operator with kernel
k ∈ L2(Ω × Ω) is a Hilbert-Schmidt operator on L2(Ω). On the other hand, any Hilbert-
Schmidt operator K on L2(Ω) can be written as (1.27) with ‖K‖HS = ‖k‖L2(Ω×Ω).

Let us then present the spectral theory of compact self-adjoint operators. Let X and
Y be two Banach spaces. A linear operator L : X → Y is compact if the closure of
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1.2. Infinite-dimensional case

L(D) = {Lu : u ∈ D} is compact in Y for any bounded set D in X. In particular, the
integral operator K on L2(Ω) with kernel k ∈ L2(Ω × Ω) defined by (1.27) is compact.
Let H be a Hilbert space, an L ∈ L(H) is self-adjoint on H if JLu, vKH = Ju,LvKH for
u, v ∈ H. Back to L2(Ω), if the kernel k ∈ L2(Ω×Ω) is symmetric, i.e. k(x,y) = k(y,x)
for x,y ∈ Ω, then the integral operator K in (1.27) is self-adjoint.

Let L ∈ L(H) and if there exists a non-zero φ ∈ H such that Lφ = λφ, we call
λ an eigenvalue and φ an eigenfunction of L. The major result concerning eigenvalues
of compact self-adjoint operators, such as integral operators on L2(Ω), is the following
Hilbert-Schmidt spectral theorem:

Theorem 1.2.2 (Hilbert-Schmidt spectral). Let L ∈ L(H) be self-adjoint and compact.
Let us consider that L admits a set of eigenfunctions {φn}n∈N on H, associated with a
set of decaying eigenvalues, i.e. ∀n |λn| ≥ |λn+1|. Then, all eigenvalues are real with
λn −−−→

n→+∞
0, the eigenfunctions {φn}n∈N form an orthonormal basis for L and

Lu =
∞∑
n=1

λn Ju, φnKH φn, ∀u ∈ H. (1.28)

Indeed, this infinite-dimensional result can be considered as a generalization of the
spectral decomposition for finite-dimensional matrices.

Finally, we describe the operators of trace class on a Hilbert space H together with the
Mercer’s theorem on L2(Ω). Recall that a linear operator L ∈ L(H) is called non-negative
definite if Ju,LuKH ≥ 0 for any u ∈ H. In particular, if k ∈ L2(Ω × Ω) is a non-negative
definite function, i.e. ∑N

i,j=1 αiαjk(xi,xj) ≥ 0, ∀xi ∈ Ω, ∀αi ∈ R, then the integral
operator K on L2(Ω) with kernel k is non-negative definite. Let H be separable and let
{φn}n∈N be an orthonormal basis. A non-negative definite operator L ∈ H is of trace class
if

Tr L 4=
∞∑
n=1

JLφn, φnKH <∞, (1.29)

where this sum is independent of the choice of the orthonormal basis. In particular, an
operator L ∈ L(H) is of trace class if L is equal to the composition of two Hilbert-Schmidt
operators.

Theorem 1.2.3 (Mercer). Let Ω be a bounded domain, let k ∈ C(Ω̄× Ω̄) be a symmetric
and non-negative definite function and let K be the corresponding integral operator (1.27).
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Part I, Chapter 1 – Preliminaries: Stochastic calculus

Then, K admits eigenfunctions φn with eigenvalues λn > 0 such that φn ∈ C(Ω̄) and

k(x,y) =
∞∑
n=1

λnφn(x)φn(y), ∀x,y ∈ Ω̄, (1.30a)

where the sum converges in C(Ω̄×Ω̄) and Ω̄ is the closure of Ω. Furthermore, the integral
operator K is of trace class such that

Tr K =
∫
Ω
k(x,x) dx =

∞∑
n=1

λn. (1.30b)

1.2.2 Hilbert space-valued process

This section describes the Gaussian processes taking values in a Hilbert space H using
the spectral theory presented in the previous section. In particular, we focus on the Q-
Wiener process and the cylindrical Wiener process.

In a general way, an H-valued stochastic process {Xt}t∈R+ is Gaussian if for any
u ∈ H, the {JXt, uKH}t∈R+ is a real-valued Gaussian process. In particular, Hilbert space-
valued Gaussian processes can be defined by Hilbert space-valued Gaussian variables. An
H-valued random variable X is Gaussian if JX, uKH is a real-valued Gaussian random
variable for all u ∈ H. To introduce the probability distribution of such random variables,
let us define a Banach space L2(Ξ,H) and the covariance operator. L2(Ξ,H) is the set of
H-valued random variables X satisfying

‖X‖L2(Ξ,H)
4=
( ∫

Ξ
‖X(ξ)‖2

H dP(ξ)
)1/2

= E
[
‖X‖2

H

]1/2
<∞. (1.31)

Further, L2(Ξ,H) is a Hilbert space with the inner product

JX, Y KL2(Ξ,H)
4=
∫

Ξ
JX(ξ), Y (ξ)KH dP(ξ) = E

[
JX, Y KH

]
. (1.32)

A linear operator Q : H→ H is the covariance of the H-valued random variables X and
Y if

JQu, vKH = Cov
(
JX, uKH, JY, vKH

)
, ∀u, v ∈ H. (1.33)

Now, let H be separable and let X be an H-valued Gaussian variable with µ = E[X]. Then
X ∈ L2(Ξ,H) and the covariance operator Q of X is symmetric non-negative definite and
of trace class with TrQ = E

[
‖X − µ‖2

H

]
. As such, we denote X ∼ N (µ,Q). Hereafter, an

H-valued process {Xt}t∈R+ is Gaussian if each JXt, uKH is an H-valued Gaussian variable
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1.2. Infinite-dimensional case

for all u ∈ H and t ∈ R+.
We now focus on a particular example of Hilbert space-valued Gaussian processes,

that is the Q-Wiener process. To this end, we assume in the following that Q ∈ L(H) is a
symmetric non-negative definite operator of trace class in H. From Section 1.2.1, the linear
operator Q admits an orthonormal basis {φn}n∈N of eigenfunctions with corresponding
eigenvalues λn ∈ R+ such that ∑n∈N λn <∞. As such, an H-valued stochastic process B
is referred to as a Q-Wiener process if

(i) B0 = 0 a.s.;

(ii) Each path t 7→ Bt is continuous;

(iii) The time increments of B over disjoint intervals are independent;

(iv) Bt −Bs ∼ N
(
0, (t− s)Q

)
for all 0 ≤ s ≤ t.

A remarkable property of the Q-Wiener process is that it can be represented as a linear
combination of the eigenfunctions of Q and standard Brownian motions. This is provided
by the Karhunen-Loève expansion as follows:

Theorem 1.2.4 (Karhunen-Loève expansion). If Q ∈ L(H) is a self-adjoint non-negative
definite operator of trace class in H, then B is a Q-Wiener process if and only if

Bt =
∑
n=1

√
λnφnβ

n
t a.s., (1.34)

where βnt = 1√
λn

JBt, φnKH are the independent and identically distributed (i.i.d.) standard
Brownian motions, the series on the RHS converges in L2(Ξ,H) and the equality converges
in L2(Ξ, C([0, T ]),H) for any T > 0.

Therefore, one can easily show that B ∼ N (0, tQ). For instance, we have

Cov
(
JBt, φnKH, JBt, φmKH

)
=
√
λn E[βnt βmt ]︸ ︷︷ ︸

δnm t

√
λm = tλn. (1.35)

Besides, the quadratic variation of such process can be specified by

〈B,B〉t =
∞∑

n,m=1

√
λnλm 〈βn, βm〉t︸ ︷︷ ︸

δnm t

= t TrQ. (1.36)

In particular, for H = L2(Ω) with a bounded domain Ω, thanks to Theorem 1.2.2, Q can
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be written as an integral operator with a kernel q ∈ L2(Ω ×Ω), namely

(Qu)(x) =
∫
Ω
q(x,y)u(y) dy, u ∈ L2(Ω). (1.37)

Therefore, the two-points covariance of the Q-Wiener process reads

Cov
(
Bt(x), Bt(y)

)
= t q(x,y). (1.38)

In the case that Q = I (i.e. λn = 1, ∀n ∈ N), Q is no more of trace class on
the infinite-dimensional space H. Thus, the previous series (1.34) does not converge in
L2(Ξ,H). Nevertheless, we can extend such Q-Wiener process to the cylindrical Wiener
process by introducing a “larger” Hilbert space I such that H ⊂ I. As such, by a specific
inclusion ι : H→ I, the covariance operator Q = I could be of trace class in I (Da Prato
and Zabczyk, 2014). Formally, we define the cylindrical Wiener process B as a H-valued
process satisfying

Bt =
∞∑
n=1

φnβ
n
t , (1.39)

where {φn}n∈N is any orthonormal basis of H and the series on RHS converges in L2(Ξ, I)
if the inclusion ι : H→ I is a Hilbert-Schmidt operator.

Afterwards, one can define the Itô integrals w.r.t. the Hilbert space-valued Wiener
process, starting from elementary processes and ending up with most complicated pro-
cesses. This procedure is fully developed by Da Prato and Zabczyk (2014). Finally, most
of the properties and formulas in the finite-dimensional case, as presented in Section 1.1.3,
hold in infinite dimensions, yet under modified assumptions.
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Chapter 2

TRANSPORT UNDER LOCATION

UNCERTAINTY

In order to account for the effects of the small-scales on the evo-
lution of the large-scale flow, a stochastic representation based on
a physical transport principle, has been first proposed by Mémin
(2014) and then applied by Resseguier et al. (2017a) to different
geophysical fluid dynamics. This framework arises from a decompo-
sition of the Lagrangian velocity into a smooth in time component
and a highly oscillating term. One important characteristic of this
random model is that it conserves the energy of any transported
tracer. This chapter fully explains the proposed random model with
its main properties using the stochastic calculus reviewed in Chap-
ter 1. The work presented in this chapter has been published in
Bauer et al. (2020a).

Abstract

2.1 Stochastic flow

This section provides a stochastic representation of the flow dynamics termed model-
ing under location uncertainty (LU). Such random model is based on a temporal-scale-
separation assumption of the following stochastic flow:

dX t = v(X t, t) dt+ σ(X t, t) dBt, (2.1)

where X is the Lagrangian particle trajectory defined within the bounded domain Ω ⊂
Rd (d = 2 or 3), v is the large-scale velocity that is both spatially and temporally cor-
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related, and σdBt is the small-scale uncertainty (also called noise) term that is only
correlated in space. This term explicitly describes the flow location uncertainty. The
randomness of such noise is driven by the cylindrical Id-Wiener process Bt, meaning
that each component Bi

t, (i = 1, . . . , d) is a cylindrical Wiener process (see Defini-
tion 1.39) and the components are independent from each other. At each instant t,
the spatial structure of such noise is specified through a deterministic integral opera-
tor σ(·, t) : (L2(Ω))d → (L2(Ω))d with a bounded 1 matrix kernel σ̆ = (σ̆ij)i,j=1,...,d such
that

σ(x, t)f 4=
∫
Ω
σ̆(x,y, t)f(y) dy, ∀f ∈ (L2(Ω))d. (2.2)

Besides, let us introduce another integral operator Q 4= σσT with a matrix kernel q̆ in
the sense that

q̆(x,y, t) 4=
∫
Ω
σ̆(x,x′, t)σ̆T (y,x′, t) dx′, (2.3a)

Q(x, t)f =
∫
Ω
q̆(x,y, t)f(y) dy, ∀f ∈ (L2(Ω))d. (2.3b)

Thanks to Theorem (1.2.1), the fact that the kernel σ̆(·, ·, t) is bounded at time t, im-
plies that the integral operator σ(·, t) is Hilbert-Schmidt on (L2(Ω))d. Thus, the integral
operator Q(·, t) is of trace class on (L2(Ω))d with TrQ(·, t) =

∫
Ω q̆(x,x, t) dx < +∞.

From Definition (2.3a), the integral kernel q̆ is symmetric and is a non-negative definite
function, hence the integral operator Q is self-adjoint, non-negative definite and compact
within the bounded domain Ω.

On the other hand, since Bt is a cylindrical Id-Wiener process and σ is deterministic,
the noise σdBt is a centered (i.e. E[(σdBt)i] = 0, ∀ i = 1, . . . , d) Gaussian process.
Furtherore, the two-points (for x,y ∈ Ω) two-components (for i, j = 1, . . . , d) covariance
of the noise can be deduced from the Itô isometry (1.12c), it reads:

Cov
((
σ(x, t) dBt

)i
,
(
σ(y, t) dBt

)j)
= E

[( ∫
Ω

d∑
k=1

σ̆ik(x,x′, t) dBk
t (x′) dx′

)( ∫
Ω

d∑
l=1

σ̆jl(y,y′, t) dBl
t(y′) dy′

)]

= E
[ ∫

Ω

∫
Ω

d∑
k,l=1

σ̆ik(x,x′, t)σ̆jl(y,y′, t) d
〈
Bk(x′), Bl(y′)

〉
t︸ ︷︷ ︸

δkl δ(x′−y′) t

dx′dy′
]
, (2.4)

1. In practice, one may consider that ∀ i, j = 1, . . . , d, sup(x,y)∈Ω |σ̆i,j(x,y, t)| < +∞, which implies
that σ̆ij(·, ·, t) ∈ L2(Ω ×Ω) within the bounded domain Ω.
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2.1. Stochastic flow

and using the definition (2.3a) of the kernel q̆, the last equality reduces to

Cov
((
σ(x, t) dBt

)i
,
(
σ(y, t) dBt

)j)
= q̆ij(x,y, t) dt. (2.5)

Therefore, as discussed above, the integral operator Q defined in (2.3b) is a well-defined
covariance operator of the noise σdBt, namely

σdBt ∼ N (0,Q dt). (2.6)

We remark that the above differential forms are informal notations of the Itô integrals.
Formally, the stochastic Lagrangian trajectory X is a continuous semimartingale such
that

X t = X0 +
∫ t

0
v(Xs, s) ds︸ ︷︷ ︸

At

+
∫ t

0
σ(Xs, s) dBs︸ ︷︷ ︸

M t

, (2.7)

where the first integral At is a random process of bounded variation (see Definition 1.4)
and the latter, M t ∼ N

(
0,
∫ t

0 Q(·, s) ds
)
, is a continuous martingale (see Definition 1.6).

In particular, if the integral operator σ (as well as its kernel σ̆) is stationary (i.e. inde-
pendent of time), then M t ∼ N (0, tQ) reduces to the Q-Wiener process as presented in
Section 1.2.2. In addition, we assume that the large-scale velocity v itself is a continuous
semimartingale.

Under the LU framework, the noise strength is measured by its variance (or auto-
covariance), denoted as a, which is defined by

a(x, t) 4= q̆(x,x, t). (2.8)

As a result, the global variance over the domain is bounded,
∫
Ω a(x, t) dx = TrQ(·, t) <

+∞. We remark from Equation (2.5) that the variance tensor a has the same unit as a
diffusion tensor (m2 · s−1). In addition, the density of the turbulent kinetic energy (that
has a unit of m2 · s−2) can be specified by 2tr(a)/(2dt).

Note that the previous representation (2.2) is a general way to define the noise in LU
models. In particular, the Mercer’s theorem (1.2.3) ensures that the covariance operator
Q(·, t) at one instant t, admits an orthonormal eigenfunction basis {φn(·, t)}n∈N with the
corresponding eigenvalues λn(t) ≥ 0 such that TrQ(·, t) = ∑

n∈N λn(t) < ∞. Therefore,
one may equivalently define the noise and its variance based on the following spectral

2. Here, tr(a) =
∑d
i=1 aii denotes the trace of the matrix a = (aij)i,j=1,...,d.
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Part I, Chapter 2 – Transport under location uncertainty

decomposition:

σ(x, t) dBt =
∑
n∈N

√
λn(t)φn(x, t) dβnt , (2.9a)

a(x, t) =
∑
n∈N

λn(t)φn(x, t)φTn(x, t), (2.9b)

where βn denotes the i.i.d. standard Brownian motions (see Section 1.1.1). In fact, this
spectral decomposition can be considered as an extension of the Karhunen-Loève expan-
sion (1.34) for a Q-Wiener process.

After introducing mathematically the LU model, let us now outline some remarks
from a physical point of view. Contrary to traditional large-eddy simulation (LES) set-
tings, the decomposition (2.1) corresponds to a temporal decomposition, but not to a
spatial decomposition formulated through spatial filters and/or decimation operators. In
(2.1), the large-scale resolved velocity component v corresponds to a smooth Lagrangian
quantity. The time derivative of the noise term can be informally denoted by σḂt/dt
in a distribution sense. It represents the fast and highly oscillating unresolved velocity
component. In turbulent flows, time and spatial scales are related. In the inertial range,
for three-dimensional turbulent flows, the turnover time ratio for two different scales,
τL/τl ∝ (L/l)2/3, exhibits a direct relation between a change of time scale and a change of
spatial resolution. A coarsening in time yields thus a space dilation. Efficient LES schemes
based on Lagrangian averaging (Meneveau and Katz, 2000) or more specifically on tem-
poral decomposition (2.1) have been assessed on several prototypical flows (Bauer et al.,
2020a,b; Chandramouli et al., 2018; Resseguier et al., 2017b; Yang and Mémin, 2019).
Therefore, for ease of understanding, we will adhere to the vocabulary of LES in the fol-
lowing chapters and refer to the first term as the large-scale/resolved velocity component
of the fluid motion while the second term will be designated as the small-scale/unresolved
velocity component.

Although the unresolved random component is simply a Gaussian field (2.6) by con-
struction, it leads to a multiplicative non-Gaussian noise when incorporated in the trans-
port equations. This will be shown in the subsequent section.

2.2 Stochastic transport operator

This section describes the evolution law of a conserved tracer with extensive property
(e.g. temperature, salinity, buoyancy) transported by the stochastic flow (2.1). In the
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2.2. Stochastic transport operator

following, we first interpret the result in terms of transport operator and then give its
formal derivation.

Under the LU framework, a random tracer Θ transported along the stochastic trajec-
tory X means that

∀ t ∈ R+, Θ(X t+δt, t+ δt) = Θ(X t, t), (2.10)

with δt an infinitely small time variation.
The evolution law of such random tracer can be described by the following stochastic

partial differential equation (SPDE), namely

DtΘ
4= dtΘ + (v? dt+ σdBt) ·∇Θ− 1

2 ∇· (a∇Θ) dt = 0, (2.11)

where dtΘ(x) 4= Θ(x, t+ δt)−Θ(x, t) stands for the (forward) local increment in time of
the tracer Θ at a fixed point x ∈ Ω. Note that this differs from the usual notation “dΘt”
used in stochastic (ordinary) differential equations varying only through a single variable
(usually time).

The SPDE (2.11) encompasses physically meaningful terms. For instance, the third
RHS term is a random forcing related to the tracer’s advection by the unresolved small-
scale flow. This term continuously backscatters random energy to the system (through
its quadratic variation). Let us outline that this resulting advection noise, σdBt ·∇Θ, is
multiplicative (as it depends on the tracer Θ) and non-Gaussian in general.

The last term in (2.11) will be very useful in studying turbulence at large scales. As
defined in (2.8), a is the variance of the noise, hence it is a symmetric non-negative definite
tensor. Therefore, under suitable boundary conditions, the following term describes the
tracer’s dissipation:

∫
Ω

Θ∇· (a∇Θ) dx = −
∫
Ω

(∇Θ)Ta∇Θ dx ≤ 0. (2.12)

This depicts the mixing mechanism due to the action of the unresolved scales. As shown
in Mémin (2014), under a spatially heterogeneous and temporally non-stationary random
field in general, the last term in (2.11) plays a role similar to the functional eddy viscosity
as introduced in many large-scale circulation models (Smagorinsky, 1963; Redi, 1982).
In particular, for a homogeneous, isotropic and stationary random field, in which the
variance tensor a becomes a0Id, the diffusive term boils down immediately to a harmonic
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Part I, Chapter 2 – Transport under location uncertainty

friction term, 1
2a0∇2Θ, with a uniform coefficient a0 to be specified.

As an additional feature of interest, there exists an “effective” advection velocity v?

in (2.11) which is defined as

v?
4= v − 1

2 ∇· a+ σT (∇·σ). (2.13)

This effective drift captures the action of inhomogeneity of the random field on the trans-
ported tracer and the possible small-scale velocity divergence. It is a statistical eddy-
induced velocity of crucial importance, as shown in Chapter 3. Such a correction on the
advection corresponds to the so-called turbophoresis phenomenon associated with small-
scale inhomogeneity. This phenomenon drives inertial particles toward regions of lower
turbulent diffusivity (Reeks, 1983). In our work, it is characterized by the turbophoresis
term 1

2 ∇· a. As shown in Section 3.4, this term can be interpreted as a generalization
of the Stokes drift, which occurs, for example, in the Langmuir circulation (Craik and
Leibovich, 1976; Leibovich, 1980). It is also akin to the velocity correction introduced for
tracer mean transport in oceanic or atmospheric circulation models (Andrews and McIn-
tyre, 1978). Recently, this correction was observed to play a crucial role in the transition
from the viscous layer regime to the logarithmic layer regime in wall bounded turbulent
flows (Pinier et al., 2019).

To sum up, a new stochastic transport operator Dt involving all the above terms has
been introduced in Mémin (2014). Some useful properties of such operator (such as the
product rule) have been well described in Resseguier et al. (2017a). In particular, under
incompressible noise, i.e. ∇·σdBt = 0, the stochastic transport operator per unit of
time, Dt/dt (defined in a distribution sense), is shown to be coincident with the stochastic
material derivative.

In the following, we derive formally this stochastic transport operator. In order to
develop the total variation of the tracer Θ composed with the stochastic trajectory X,
an adequate chain rule needs to be specified. As discussed in Section 1.1.3, if Θ is a
smooth deterministic function, its total differentiation is driven by the Itô formula (1.1.3).
However, in our case the random scalar Θ itself is a (continuous) semimartingale. This
requires, therefore, to compute the differentiation of the composition of two stochastic
processes, hence the generalized Itô formula (1.1.4) is adopted. Applying the differential
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2.2. Stochastic transport operator

form of Equation (1.18) for the random tracer Θ, we have

d Θ(X t, t) = dtΘ(X t, t) +
d∑
i=1

∂Θ
∂xi

(X t, t) dX i
t + 1

2

d∑
i,j=1

∂2Θ
∂xi∂xj

(X t, t) d
〈
X i, Xj

〉
t

+
d∑
i=1

d
〈∂Θ
∂xi

(X, ·), X i
〉
t
. (2.14)

We remark that d Θ(X t, t)
4= Θ(X t+δt, t+ δt)−Θ(X t, t) denotes the total differentiation

of Θ, whereas dtΘ(X t, t)
4= Θ(X t, t + δt) − Θ(X t, t) stands only for its time-increment

as explained before.

The first quadratic variation on the RHS of Equation (2.14) can be immediately de-
termined from decomposition (2.1), as follows

〈
X i, Xj

〉
t

=
〈 ∫ ·

0

(
σ(Xs, s) dBs

)i
,
∫ ·

0

(
σ(Xs, s) dBs

)j〉
t

=
〈 ∫ ·

0

∫
Ω

d∑
k=1

σ̆ik(Xs,y, s) dBk
s (y) dy,

∫ ·
0

∫
Ω

d∑
l=1

σ̆jl(Xs, z, s) dBl
s(z) dz

〉
t

=
∫ t

0

∫
Ω

∫
Ω

d∑
k,l=1

σ̆ik(Xs,y, s)σ̆jl(Xs, z, s) d
〈
Bk(y), Bl(z)

〉
s︸ ︷︷ ︸

δkl δ(y−z) s

dydz

=
∫ t

0

∫
Ω

d∑
k=1

σ̆ik(Xs,y, s)σ̆jk(Xs,y, s) dyds

=
∫ t

0
aij(Xs, s) ds, ∀ i, j = 1, . . . , d. (2.15)

More precisely, the first equality results from the quadratic-covariation-rule (1.9); the
second one comes from the definition of the noise (2.2); the third one is based on the
associativity of Itô integrals (1.12a), and the last one derives directly from the definition
of the variance (2.8).

The last quadratic covariation on the RHS of Equation (2.14) is an additional term
compared to the classical Itô formula (1.1.3). Here, it describes the interaction between
the stochastic flow and the tracer’s gradient. To evaluate this term, let us consider that
the semimartingale Θ itself can be decomposed into (written in differential form):

dtΘ(X t, t) = f(X t, t) dt+
∫
Ω

d∑
k=1

gk(X t,y, t) dBk
t (y) dy, (2.16)

35



Part I, Chapter 2 – Transport under location uncertainty

where f and gk(k = 1, . . . , d) are assumed to be (locally) bounded. As a result, the
quadratic covariation between the stochastic flow and the tracer’s gradient can be specified
in a similar way as in (2.15), namely

〈∂Θ
∂xi

, X i
〉
t

=
∫ t

0

∫
Ω

d∑
j=1

σ̆ij(X t,y, s)
∂gj
∂xi

(X t,y, s) dyds, ∀ i = 1, . . . , d. (2.17)

Substituting the expressions (2.15) and (2.17) in Equation (2.14), we obtain the total
variation of the tracer Θ, that is

d Θ = dtΘ +
( d∑
i=1

vi
∂Θ
∂xi

+ 1
2

d∑
i,j=1

aij
∂2Θ
∂xi∂xj

+
∫
Ω

d∑
i,j=1

σ̆ij
∂gj
∂xi

dy
)

dt

+
∫
Ω

d∑
i,j=1

σ̆ijdBj
t

∂Θ
∂xi

dy, (2.18)

in which the space-time variables (X t, t) are dropped for the sake of simplicity.

In particular, as interpreted by Equation (2.10), the fact that the random tracer Θ is
conserved along the stochastic trajectory leads to d Θ(X t, t) = 0, ∀ t ∈ R+. Thus, one
may specify explicitly the expressions of f and gj by identifying Equations (2.18) and
(2.16), namely

f = −
d∑
i=1

vi
∂Θ
∂xi
− 1

2

d∑
i,j=1

aij
∂2Θ
∂xi∂xj

−
∫
Ω

d∑
i,j=1

σ̆ij
∂gj
∂xi

dy (2.19a)

gj = −
d∑

k=1
σ̆jk

∂Θ
∂xk

. (2.19b)

Indeed, these results are provided by the canonical decomposition (see Theorem 1.1.1) of
the semimartingale Θ. Substituting the expression of gj in Equation (2.18) for the last
term, we have

∫
Ω
σ̆ij
∂gj
∂xi

dy = −
( ∫

Ω
σ̆ijσ̆jk dy

) ∂2Θ
∂xi∂xk

−
( ∫

Ω
σ̆ij
∂σ̆jk
∂xi

dy
) ∂Θ
∂xk

= −aik
∂2Θ
∂xi∂xk

−
( ∫

Ω

∂

∂xi
(σ̆ijσ̆jk) dy︸ ︷︷ ︸

∂aik/∂xi

) ∂Θ
∂xk

+
( ∫

Ω
σ̆jk

∂σ̆ij
∂xi

dy︸ ︷︷ ︸
4=σjk(∂σij/∂xi)

) ∂Θ
∂xk

= −1
2aik

∂2Θ
∂xi∂xk

− 1
2
∂

∂xi

(
aik

∂Θ
∂xk

)
− 1

2
∂aik
∂xi

∂Θ
∂xk

+ σjk
σij
∂xi

∂Θ
∂xk

, (2.20)
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2.3. Energy conservation

in which the summation are again dropped for the sake of simplicity. Sequentially substi-
tuting (2.20) in (2.18), the transport equation of Θ reduces to

0 = dtΘ +
d∑

k=1

(
vk −

1
2

d∑
i=1

∂aik
∂xi

+
d∑

i,j=1
σjk

σij
∂xi

) ∂Θ
∂xk

dt+
d∑

k=1
(σdBt)k

∂Θ
∂xk

− 1
2

d∑
i=1

∂

∂xi

( d∑
k=1

aik
∂Θ
∂xk

)
dt (2.21)

or, equivalently, in a vector form to

dtΘ +
((
v − 1

2 ∇· a+ σT (∇·σ)
)

dt+ σdBt

)
·∇Θ− 1

2 ∇· (a∇Θ) = 0. (2.22)

2.3 Energy conservation

This section reviews one remarkable property of the previously derived stochastic
transport operator. That is, under an isochoric stochastic flow, it preserves along time the
global energy of the random tracer Θ (for any realizations):

dt
∫
Ω

1
2Θ2 dx = 0. (2.23)

In order to compute the evolution of the tracer’s energy in the stochastic framework, the
Itô’s integration-by-part formula (1.1.2) is used:

dt
∫
Ω

1
2Θ2 dx =

∫
Ω

(
ΘdtΘ + 1

2d〈Θ,Θ〉t
)

dx, (2.24)

where the tracer’s quadratic variation can be easily evaluated from (2.22), in the same
way as in (2.15), and reads

〈Θ,Θ〉t =
〈 ∫ ·

0
(∇Θ)TσdBs,

∫ ·
0

(∇Θ)TσdBs

〉
t

=
∫ t

0

d∑
i,j=1

∂Θ
∂xi

( ∫
Ω

d∑
i,j=1

σ̆ikσ̆jk dy
︸ ︷︷ ︸

aij

) ∂Θ
∂xj

ds =
∫ t

0
(∇Θ)Ta∇Θ ds. (2.25)

In fact, this quadratic variation can be interpreted as the increase of tracer energy due to
the advection by the noise.

At the same time, to ensure an isochoric stochastic flow, incompressibility constraints

37



Part I, Chapter 2 – Transport under location uncertainty

on the effective drift ∇·v? = 0 and on the small-scale velocity ∇·σdBt = 0 are required.
These two constraints are detailed in Section 3.1.1. Here, they help us to establish the
strong energy conservation property, that is

dt
∫
Ω

1
2Θ2 dx =−

∫
Ω
∇·
(1

2Θ2(v? dt+ σdBt)
)

dx

+
( ∫

Ω

1
2Θ∇· (a∇Θ) dx︸ ︷︷ ︸

Energy loss by diffusion

+
∫
Ω

1
2(∇Θ)Ta∇Θ dx︸ ︷︷ ︸

Energy intake by the noise

)
dt = 0, (2.26)

in which the divergence theorem and integration-by-parts (over x ∈ Ω) have been used
under ideal boundary conditions (periodic, null normal velocity, etc.). Indeed, Equation
(2.26) can be interpreted as a process where the energy brought by the noise is exactly
counter-balanced by that dissipated by the diffusion term. This result conserves the main
specificity of a transport equation. It explains why we refer to Dt as a stochastic transport
operator.

Moreover, the last equation (2.26) shows energy conservation for each realization of
the random tracer. In particular, the ensemble mean of tracer’s random energy is also
conserved:

d
dtE

[ ∫
Ω

1
2Θ2 dx

]
= 0. (2.27)

Note that the derivative d/dt make senses here, since it is applied to the expectation
of a random process which is deterministic. From the variance’s definition, Equation
(2.27) implies that the loss of energy of the ensemble mean always balances the ensemble
variance:

d
dt

∫
Ω

1
2Var(Θ) dx = − d

dt

∫
Ω

1
2E[Θ]2 dx. (2.28)

As illustrated in Chapter 6, this process is quite useful for uncertainty quantification (UQ).
Since the tracer is continuously randomized while the tracer interacts with the unresolved
scales.

2.4 Stratonovich representation

In this section, we give an equivalent expression of the stochastic flow (2.1) and of
the stochastic transport operator (2.22) in Stratonovich form. To this end, the general
Stratonovich-Itô-integral conversion rule (1.20) is first adopted. Applying this formula for
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2.4. Stratonovich representation

each component (i = 1, . . . , d) of the noise yields

(
σ(Xt, t)◦dBt

)i =
(
σ(Xt, t) dBt

)i + 1
2

∫
Ω

d∑
i=1

d
〈
σ̆ij(X,y, ·), Bj(y)

〉
t
dy︸ ︷︷ ︸

I

. (2.29)

Similarly to the previous calculation, to evaluate the above quadratic covariation, I, only
the martingale component Mt of the semimartingale σ̆ij(X,y, t) is required. This can be
determined by the Itô formula (1.1.3), namely

Mt =
∫ t

0

d∑
k=1

∂σ̆ij
∂xk

(Xs,y, s)
( ∫

Ω

d∑
l=1

σ̆kl(Xs, z, s) dBl
s(z) dz︸ ︷︷ ︸

(σ(Xs,s) dBs)k

)
. (2.30)

Substituting (2.30) for the quadratic covariation I in (2.29), we obtain

I = 1
2

∫
Ω

∫
Ω

d∑
j,k,l=1

∂σ̆ij
∂xk

σ̆kl d
〈
Bl(z), Bj(y)

〉
t︸ ︷︷ ︸

δjl δ(y−z) t

dydz

= 1
2

( d∑
k=1

∂

∂xk

( ∫
Ω

d∑
j=1

σ̆ijσ̆kj dy
︸ ︷︷ ︸

aik

)
−

d∑
j=1

∫
Ω
σ̆ij
( d∑
k=1

∂σ̆kj
∂xk

)
dy
)

dt. (2.31)

Subsequently, substituting (2.31) in (2.29), then in (2.1), we deduce an equivalent Stratonovich
representation of the stochastic flow that reads in vector form as

dX t =
(
v − 1

2 ∇· a+ 1
2σ

T (∇·σ)︸ ︷︷ ︸
v?− 1

2σ
T (∇·σ)

)
dt+ σ◦dBt. (2.32)

Afterwards, for a random tracer Θ transported by a Stratonovich flow, one can apply
the generalized Itô’s formula (1.1.8). Thus, substituting (2.32) in (1.23), we deduce a
Stratonovich representation of the stochastic transport operator, that is

Dt◦Θ
4= dt◦Θ +

((
v? − 1

2σ
T (∇·σ)

)
dt+ σ◦dBt

)
·∇Θ = 0, (2.33)

where dt ◦Θ(X t, t)
4= Θ(X t, t + δt/2)− Θ(X t, t− δt/2) stands now for the central time-

increment. In particular, for incompressible small-scale flows, the Stratonovich transport
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Part I, Chapter 2 – Transport under location uncertainty

operator reads
Dt◦Θ

4= dt◦Θ + (v? dt+ σ◦dBt) ·∇Θ = 0. (2.34)

Let us emphasize again that Equation (2.34) is equivalent to Equation (2.22) yet only
under a different representation of the stochastic integrals, in which the Itô advection noise
σdBt ·∇ Θ is a martingale of null ensemble mean, whereas the Stratonovich advection
noise σ◦dBt ·∇Θ is not.

2.5 Conservation of tracer’s moments

This section shows that if a random tracer Θ is transported by the stochastic flow, as
given in (2.11), then the local moments Θp (for p ∈ {1, 2} or p ∈ R+, p ≥ 3) of the tracer
are equally transported:

Dt

(1
p

Θp
)

= 0. (2.35)

In addition, one can consider that, under some incompressible constraints and ideal bound-
ary conditions for both large and small scales, the global moments of tracer are also
conserved:

dt
∫
Ω

1
p

Θp dx = 0. (2.36)

For the sake of simplicity, we first adopt the Stratonovich notation. Since the function
x 7→ xp is itself deterministic and of class C3 for p ∈ {1, 2} or p ∈ R+, p ≥ 3, the classical
Itô’s formula (1.1.7) can be applied:

dt◦
(1
p

Θp
)

= Θp−1 dt◦Θ. (2.37)

From the Stratonovich transport equation (2.33) of the random tracer Θ, we deduce

dt◦
(1
p

Θp
)

= −Θp−1
((
v? − 1

2σ
T (∇·σ)

)
dt+ σ◦dBt

)
·∇Θ

= −
((
v? − 1

2σ
T (∇·σ)

)
dt+ σ◦dBt

)
·∇

(1
p

Θp
)
, (2.38)

which leads to
Dt◦

(1
p

Θp
)

= 0. (2.39)

Therefore, the equivalent Itô transport (2.35) of the local moments can be recovered in
the same way as shown in Section 2.4.
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To demonstrate the conservation of the global moments (2.36), let us denote that
Θ̃ 4= 1

p
Θp and assume that ∇·v? = ∇·σdBt = 0 everywhere in the domain Ω, together

with v? ·n = σdBt ·n = 0 on the boundary ∂Ω, where n stands for the outward pointing
unit normal. Hereafter, the evolution of the global moments is given by

dt
∫
Ω

Θ̃ dx =
∫
Ω

(1
2 ∇· (a∇Θ̃) dt−

(
v? dt+ σdBt

)
·∇ Θ̃

)
dx

=
∫
Ω
∇·
(1

2a∇Θ̃ dt−
(
v? dt+ σdBt

)
Θ̃
)

dx

=
∮
∂Ω
n ·

(1
2a∇Θ̃ dt−

(
v? dt+ σdBt

)
Θ̃
)

dx′, (2.40)

where the last equality comes from the divergence theorem and the latter terms are null
according to the ideal boundary conditions. Moreover, the following argument provides
us the conservation (2.36) of the global moments:

n · (a∇Θ̃) dt =
d∑

i,j=1
niai,j

∂Θ̃
∂xj

dt

=
d∑
j=1

E
[ d∑
i=1

ni(σdBt︸ ︷︷ ︸
= 0

)i(σdBt)j
] ∂Θ̃
∂xj

, (2.41)

where the last equality emerges from the definition (2.8) of the noise variance and the
noise boundary condition.

We remark that the conservation of tracer’s energy, as shown in Section 2.3, can be
then considered as a particular case of (2.36) for p = 2. For future works, it would be
interesting to verify if this conservation laws holds for any real number p ∈ (0, 3), in which
the classical Itô’s formula could not be directly applied to have (2.37).

2.6 Stochastic Reynolds transport theorem

This section reviews the stochastic version of the Reynolds transport theorem (SRTT),
introduced by Mémin (2014), to express time differentiation of integrals over arbitrarily
moving and deforming volumes. In fact, this can be considered as an extension of the
stochastic transport equation derived in Section 2.2.

Let us first remark that the stochastic transport equation (2.11) is derived for La-
grangian coordinates, i.e. following a fluid particle trajectory. It can be translated in
Eulerian coordinates noticing that they are valid for any X t ∈ Ω; then, fixing a point in
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Part I, Chapter 2 – Transport under location uncertainty

the fluid domain such that x = X, it holds:

DtΘ(x, t) 4= dtΘ + (v? dt+ σdBt) ·∇Θ− 1
2 ∇· (a∇Θ) dt = 0. (2.42)

Hereafter, we adopt such Eulerian equation to derive the SRTT in weak formulation.
Let V(t) be a control-volume at any given time t ∈ R+, and ϕ(·, t) ∈ C∞c (Ω) be a test
function with compact support on V(t) i.e. ϕ vanishes outside (including the boundaries)
of V(t). As such, the time-differentiation of the inner product between Θ and ϕ within
the control-volume can be written as

dt
∫
V(t)

Θϕ dx =
∫
Ω

(
ϕ dtΘ + Θ dtϕ+ d〈Θ, ϕ〉t

)
dx, (2.43)

This equality is deduced from the Itô’s integration-by-part formula (1.1.2). Note that both
quantities Θ and ϕ can be assumed to be conserved, i.e. Equation (2.42) holds also for
ϕ. This allows us to specify, in the same way as in (2.25), the last quadratic covariation
term in (2.43), namely

〈Θ, ϕ〉t =
∫ t

0

d∑
k,l=1

∂Θ
∂xk

akl
∂ϕ

∂xl
ds =

∫ t

0
(∇Θ)Ta∇Θ ds. (2.44)

Subsequently, Equation (2.43) reduces to∫
Ω

(
ϕdtΘ−Θ(v? dt+ σdBt) ·∇ ϕ

)
dx+ dt

∫
Ω

(1
2Θ∇· (a∇ϕ) + (∇Θ)Ta∇Θ

)
dx︸ ︷︷ ︸

I

=
∫
Ω

ϕ
(

dtΘ +∇·
(
Θ(v? dt+ σdBt)

))
dx+ I dt, (2.45)

where the last equality comes from the integration-by-part formula (over space) and the
null boundary condition of the test function. Similarly, the second term I can be expanded
as

I =
∫
Ω

d∑
i,j=1

(1
2Θ∂aij

∂xi

∂ϕ

∂xj
+ 1

2Θaij
∂2ϕ

∂xi∂xj
+ ∂Θ
∂xi

aij
∂ϕ

∂xj

)
dx

=
∫
Ω

d∑
i,j=1

ϕ
(
− 1

2
∂

∂xj

(
Θ∂aij
∂xi

)
+ 1

2
∂2

∂xi∂xj

(
Θaij

)
− ∂

∂xj

(
aij

∂Θ
∂xi

))
dx

= −
∫
Ω

ϕ

2

d∑
i,j=1

∂

∂xj

(
aij

∂Θ
∂xi

)
︸ ︷︷ ︸

∇·(a∇Θ)

dx. (2.46)
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Substituting (2.46) in (2.45) then in (2.43), and combing with (2.42), we obtain

dt
∫
V(t)

Θϕ dx =
∫
Ω
ϕ
(
DtΘ + Θ∇· (v? dt+ σdBt)

)
dx. (2.47)

As this relation holds for any test function ϕ with compact support on V(t), the integral
over Ω on the RHS reduces to an integral over V(t). Therefore, the rate of change of a
random scalar quantity Θ transported by the random flow (2.1) within a control-volume
can be written in Eulerian coordinates as follows:

dt
∫
V(t)

Θ dx =
∫
V(t)

(
DtΘ + Θ∇· (v? dt+ σdBt)

)
dx. (2.48)

Let us highlight that such SRTT is a fundamental tool to develop the conservation equa-
tions for fluid motions within the LU framework. This is shown later in Section 3.1.

As a supplement, an equivalent Stratonovich form of the SRTT (2.48) can be derived
using the Stratonovich transport operator (2.33) and repeating the above procedure. The
final result reads

dt
∫
V(t)

Θ dx =
∫
V(t)

(
Dt◦Θ + Θ∇·

(
(v? − 1

2σ
T ∇· σ) dt+ σ◦dBt

))
dx. (2.49)

2.7 General remarks

At the end of this chapter, we address several points, which in our opinion characterizes
the LU framework:

(i) The transport equations derived under the LU framework involves an effective ad-
vection v? independent of the stochastic integral applied, i.e. in both Stratonovich
and Itô setting (see 2.33 and 2.13 respectively).

(ii) The LU framework based on the decomposition (2.1) includes a centered noise by the
definition of Itô integral. Therefore, the mean of the Lagrangian large-scale velocity
component E[v] corresponds to the mean of the Lagrangian fluid velocity E[dX t/dt]
(defined in distribution sense).

(iii) The LU framework conserves the energy for every realization. As shown later for QG
models, this allows us to build dynamics and draw realizations that have exactly the
same energy conservation properties as their deterministic counterpart. This strong
asset of the LU framework enables us to propose efficient schemes for numerical
simulation, analysis and data assimilation of 3D turbulent flows (Chandramouli
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Part I, Chapter 2 – Transport under location uncertainty

et al., 2020; Cintolesi and Mémin, 2020; Kadri Harouna and Mémin, 2017; Resseguier
et al., 2017d; Tissot et al., 2020).

(iv) The derivation of the stochastic models under the LU framework follows exactly the
same path as the deterministic derivation. As shown in subsequent chapters, only
the noise and its amplitude needs to be properly scaled. To oceanographers, this
provides a very interesting and pratical tool for investigating the implication of the
small-scales.

Finally, we summarize the main points of this chapter in the following shaded box.

Noise

σ(x, t) dBt =
∫
Ω
σ̆(x,y, t) dBt(y) dy

=
∑
n∈N

√
λn(t)φn(x, t) dβnt

Variance

a(x, t) =
∫
Ω
σ̆(x,y, t)σ̆T (x,y, t) dy

=
∑
n∈N

λn(t)
(
φnφ

T

n

)
(x, t)

Stochastic Reynolds transport theorem

dt
∫
V(t)

Θ dx =
∫
V(t)

(
DtΘ + Θ∇· (v? dt+ σdBt)

)
dx

Stochastic transport operator

DtΘ
4= dtΘ + (v? dt+ σdBt) ·∇Θ− 1

2 ∇· (a∇Θ) dt

Effective advection drift

v?
4= v − 1

2 ∇· a+ σT (∇·σ)

Summary
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Chapter 3

THREE-DIMENSIONAL STOCHASTIC

MODELS

This chapters reviews some important three-dimensional equations
under the location uncertainty framework. The core of these models
is based on the stochastic Reynolds transport theorem, presented
in the previous chapter. We first describe briefly the derivation of
the stochastic governing equations of fluid motion, including the
stochastic conservation of mass and of linear momentum. In order
to do some comparisons with the classical large-eddy simulation
framework, we present a pseudo-stochastic model based on a scale-
separation assumption. Then a stochastic representation of the vor-
ticity’s evolution is derived using classical vector calculus. Latter,
for large-scale atmospheric and oceanic circulations, two stochastic
primitive systems are presented under the classical hydrostatic bal-
ance and the Boussinesq approximations. These equations will be
used to derive several two-dimensional stochastic equations in the
subsequent chapter. In addition, we build a connection between the
proposed random model and the Craik-Leibovich system. In par-
ticular, we show that the effective advection due to the effect of
statistical inhomogeneity of the small-scale flow on the large-scale
current, can be considered as a generalization of the Stokes drift.
Finally, a connection with the Gent-McWilliams parametrization
is performed. The work presented in this chapter has been partly
published up in Bauer et al. (2020a).

Abstract
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Part I, Chapter 3 – Three-dimensional stochastic models

3.1 Stochastic Navier-Stokes equations

The derivation of governing equations for stochastic flows following a similar strategy
as in the classical framework. In particular, the physical arguments used in the classical
derivation are also adopted here, while the stochastic Reynolds transport theorem (SRTT)
derived in Section 2.6 is applied for the mathematical description of the conservative laws.

3.1.1 Conservation of mass

To derive the stochastic mass equation, we apply the SRTT (2.48) to the random
density ρ, under the conservation constraint dt

∫
V(t) ρ dx = 0. For an arbitrary control-

volume V(t), it reads:

0 =
∫
V(t)

(
Dtρ+ ρ∇· (v? dt+ σdBt)

)
dx, (3.1)

where v? = v− 1
2∇·a+σT (∇·σ). As the previous equation holds for any control volume

V(t), one can infer that

Dtρ+ ρ∇· (v? dt+ σdBt) = 0. (3.2)

In particular, for an incompressible (isochoric) flow, the density variation is quite small in
both time and space, hence the influence of the stochastic transport Dtρ on the mass bal-
ance (3.2) can be ignored. Thus, the stochastic continuity equation can be approximately
written as

∇·(v? dt+ σdBt) = 0. (3.3)

Seperating subsequently the process of bounded variation and the martingale based on
the canonical decomposition (1.1.1), the following continuity equation is recovered:

∇·
(
v − 1

2 ∇· a
)

= 0, ∇·σdBt = 0. (3.4)

The second condition is intuitive and enforces a divergence free random component,
whereas the first constraint imposes a divergence-free condition on the effective advection.
This latter constraint provides a relation between the smooth resolved velocity component
and the divergence of the variance tensor. For homogeneous random fields (such as an
isotropic turbulence) this equation boils down to a classical divergence-free condition on

46



3.1. Stochastic Navier-Stokes equations

the resolved velocity component (as the variance tensor is constant in that case). In some
particular cases, the first condition can be substituted by the sufficient stronger condition
∇·v =∇·∇· a = 0.

We remark that Equation (3.4) ignores the role of the term Dtρ in the mass balance
(3.2). For the sake of simplicity, we assume that Dtρ = 0 in this work. Nevertheless, in
the general case, this term itself can be restricted by thermodynamic laws. Furthermore,
only an incompressible flow is adopted in the following, hence the effective advection drift
reduces to

v? = v − 1
2 ∇· a. (3.5)

3.1.2 Conservation of momentum

This section provides an informal derivation of the stochastic momentum equation for
an isochoric flow. Extended derivations can be found in Mémin (2014); Mikulevicius and
Rozovskii (2004); Resseguier (2017).

According to Newton’s second law, the rate of change of the linear momentum of a
fluid particle equals to the force acting on it. On the other hand, this work only focuses
on the effects of the small scales on the evolution of the large-scale flow, whereas the
transport of the small scales by the large-scales as well as by themself remains unknown.
As such, the change of the large-scale momentum ρv within an arbitrary control-volume
V(t) can be written as

dt
∫
V(t)

ρv dx =
∫
V(t)

(F dt+G dBt) dx, (3.6)

where F and GdBt/dt (in a distribution sense) are respectively the time-smooth compo-
nents and the highly irregular terms of the applied force. From the SRTT (2.48) and the
incompressible constraints (3.4), the LHS of Equation (3.6) simplifies to

dt
∫
V(t)

ρv dx =
∫
V(t)

Dt(ρv) dx. (3.7)

Subsequently, dropping the arbitrary control-volume, we obtain

Dt(ρv) = F dt+G dBt. (3.8)

In particular, if ρ is constant, the LHS reduces to ρDtv. In addition, the forces on the

47



Part I, Chapter 3 – Three-dimensional stochastic models

RHS can be developed following the same physical argument as in the classical derivation.
In a rotating frame, it reads :

F = −ρ(f × v)− ρg −∇p+ µ∇2v, (3.9a)

G dBt = −ρ(f × σdBt)−∇dpσt + µ∇2σdBt. (3.9b)

These forces are due to the gravitation potential, pressure and molecular friction forces
(with the dynamic viscosity µ). The pressure term is split into a continuous pressure p and
a time-uncorrelated random part ṗσt = dpσt /dt. This latter term defined in a distribution
sense describes the pressure fluctuations due to the random velocity component. Note
that the gravity force is continuous in time, whereas the friction force applies both on the
smooth and random velocity components (with ∇2 =∇·∇ the Laplacian operator). For a
fixed observer in a rotating frame, the rate of change of the fluid velocity incorporates the
centripetal acceleration and the Coriolis acceleration as additional terms. The centrifugal
force is included within an effective gravity g. The Coriolis term with parameter f applies
both to the large-scale component of the velocity and to the random small-scale field.

As remarked above, only the large scale momentum ρv is applied in Newton’s law
in (3.6). Once the small-scales σdBt/dt are included in addition, a weak distributional
form must be considered. A more general case can be found in Mémin (2014). Let us
then summarized in the following the stochastic Navier-Stokes equations for isochoric
flow, involving conservation of linear momentum, conservation of mass and the continuity
equation.

(Momentum equation)

Dt(ρv) + ρf × (v dt+ σdBt) = ρg dt−∇(p dt+ dpσt ) + µ∇2(v dt+ σdBt), (3.10a)

(Mass conservation)

Dtρ = 0, (3.10b)

(Continuity)

∇· v? = 0, ∇·σdBt = 0. (3.10c)

This system corresponds to a large-scale description of the flow in which the effect of the
random component is explicitly taken into account. Contrary to traditional Reynolds de-
composition techniques, this method does not rely on the time differentiability assumption
of the velocity fluctuations. The use of stochastic calculus to characterize the random com-
ponent introduces naturally additional terms in the momentum equation. As discussed in
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3.2. Derived stochastic models

Section 2.2, these terms inherently account for several interesting phenomena associated
with fluid flows such as backscattering via the multiplicative noise, large-scale dissipation
through the variance tensor, and turbophoresis effect with the effective advection. We
remark that System (3.10) is incomplete to describe the ocean dynamics. In addition,
equations of state such as potential temperature and salinity are required. A stochastic
version of such equations are derived by Resseguier et al. (2017a), using the SRTT and
the product rule of the stochastic transport operator. For future works, it would be in-
teresting to derive the stochastic governing equations for more complex flows such as a
compressible fluid supporting fast acoustic modes (Vallis, 2017). These models can be
derived in the same way using the general version of the SRTT associated to compressible
random component as presented in Chapter 2.

3.2 Derived stochastic models

In this section, we present two systems of equations derived from the stochastic Navier-
Stokes system (3.10). First, we describe a hybrid model where the stochastic contribution
on the governing equations is modeled by a partial differential equation (PDE) with
random forcing. Then, the three-dimensional stochastic vorticity equation is developed
from the stochastic momentum equation (3.10a) using classical vector calculus.

3.2.1 Pseudo-stochastic equations

This section reviews a LES-like model presented in Bauer et al. (2020a); Cintolesi and
Mémin (2020); Resseguier et al. (2020a). In the stochastic momentum equation (3.10a),
the multiplicative random term, responsible for energy backscattering, ensues from a scale
separation principle between the random fluctuation and the large-scale component. In
fact, if the large-scale component is assumed to be regular enough, formally a process of
bounded variation, Equation (3.10a) can be safely split in terms of a bounded variation
process (see Definition 1.4) and in terms of a martingale (see Definition 1.6). Then, the
previous system simplifies to the following stochastic LES system with a random forcing:

(Momentum equations)
∂v

∂t
+ v? ·∇ v − 1

2 ∇· τ + f × v = g − 1
ρ
∇p+ ν∇2v, (3.11a)
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(Effective advection drift)

v? = v − 1
2 ∇· a, (3.11b)

(Subgrid diffusion tensor)

τ = a∇v, (3.11c)

(Random contributions)

σdBt ·∇ v + f × σdBt = −1
ρ
∇dpσt + ν∇2σdBt, (3.11d)

(Mass equation)

Dtρ = 0, (3.11e)

where ν = µ/ρ is the kinematic viscosity. Under such framework, the momentum equation
(3.11a) is a classical PDE with a random forcing through the density, whereas the mass
conservation (3.11e) remains a SPDE. For the particular case of constant density, together
with the incompressibility constraints (3.10c), the momentum equation is purely deter-
ministic without any random forcing. Nevertheless, the system incorporates a stochastic
balance equation on the pressure contribution dpσt associated to the unresolved random
terms. Also, this system includes the effective advection and the large-scale diffusion
brought by the random component, but loses in the momentum equation the multiplica-
tive random term responsible for energy backscattering. The shape of the dissipation
operator is a priori known. Thus, there is no need to invoke the Boussinesq assumption
to model the Reynolds stress tensor. Note that the variance tensor (and the noise, if re-
quired) can be constructed by drawing inspiration from known LES sub-grid scale models
such as the Smagorinsky model (Chandramouli et al., 2018; Cintolesi and Mémin, 2020;
Kadri Harouna and Mémin, 2017). Such pseudo-stochastic model has been also succes-
sively used to define efficient reduced order models (Resseguier et al., 2017d), in which the
subgrid dissipation is directly defined from the neglected modes. This representation has
the advantage to provide also new diagnosis enabling to quantify local energy dissipation
as well as the effect of the turbulence inhomogeneity on the large-scale flow (Pinier et al.,
2019). This ability is a strong asset of the LU formalism for reduced order modeling.

3.2.2 Stochastic vorticity equation

In this section, we derive the evolution of the three-dimensional vorticity ω = ∇× v
for the large-scale drift v driven by the stochastic momentum equation (3.10a). For the
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3.2. Derived stochastic models

sake of simplicity, we drop here the Coriolis terms. In addition, we assume that ρ = 1 and
g = gk with g the gravity acceleration and k = (0, 0, 1)T the vertical unit vector.

Let us first denote dV t
4= v? dt+σdBt and dPt

4= p dt+ dpσt . Thus, Equation (3.10a)
can be re-written as

dtv + dV t ·∇ v −
1
2 ∇· (a∇v) dt = gk dt−∇dPt + ν∇2(v dt+ σdBt). (3.12)

Taking the curl (∇×) of this equation, we obtain

dtω +∇× (dV t ·∇ v)︸ ︷︷ ︸
I

−1
2∇×

(
∇· (a∇v)

)
︸ ︷︷ ︸

II

dt = ν∇2(ω dt+ ωσdBt), (3.13)

where ∇ ×∇dPt = 0 and ωσ 4= ∇ × σ. In order to expand the term I, let us recall the
following vector calculus identity (for two vectors f , g ∈ R3):

∇(f · g) = (f ·∇)g + (g·∇)f + f × (∇× g) + g × (∇× f). (3.14)

Thus, we have

dV t ·∇ v =∇(dV t · v)− v ·∇ dV t − dV t × ω − v × dΩt, (3.15)

where dΩt
4=∇× dV t. then applying another vector calculus identity

∇× (f × g) = f(∇·g)− g(∇·f) + (g·∇)f + (f ·∇)g, (3.16)

the term I in (3.13) reduces to

I = dV t ·∇ ω − ω ·∇ dV t −∇× (v ·∇ dV t)−∇× (v × dΩt), (3.17)

in which ∇·ω = 0, ∇·dV t = 0 have been used. Let us now expand the last term using
the Levi-Civita symbol, it reads:

∇× (v × dΩt) =
3∑

j,k=1
ε·jk

∂

∂xj

( 3∑
l,m=1

εklmv
l

3∑
n,p=1

εmnp
∂dV p

t

∂xn

)

=
3∑

j,k=1
ε·jk

3∑
l,n,p=1

( 3∑
m=1

εmklεmnp︸ ︷︷ ︸
δkn δlp− δkp δln

)( ∂vl
∂xj

∂dV p
t

∂xn
+ vl

∂2dV p
t

∂xjxn

)
, (3.18)
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or,

∇× (v × dΩt) =
3∑

j,k=1
ε·jk

3∑
l=1

( ∂vl
∂xj

∂dV l
t

∂xk
+ vl

∂2dV l
t

∂xj∂xk
− ∂

∂xj

(
vl
∂dV k

t

∂xl

))

=
3∑
l=1

(
∇vl ×∇dV l

t + vl∇×∇dV l
t︸ ︷︷ ︸

= 0

)
−∇×

(
v ·∇ dV t

)
. (3.19)

Substituting Equation (3.19) in Equation (3.17), we have

I = dV t ·∇ ω − ω ·∇ dV t −
3∑
l=1
∇vl ×∇dV l

t. (3.20)

Let us now expand the term II in (3.13) by

II =
3∑

j,k=1
ε·jk

∂

∂xj

( 3∑
m=1

∂

∂xm

( 3∑
n=1

amn
∂vk

∂xn

))

=
3∑

m=1

( ∂

∂xm

3∑
n=1

amn
∂

∂xn

( 3∑
j,k=1

ε·jk
∂vk

∂xj︸ ︷︷ ︸
∇×v=ω

))
+

3∑
j,k,m=1

∂

∂xm

(
ε·jk

3∑
n=1

∂amn
∂xj

∂vk

∂xn

)

=∇·
(
a∇ω

)
+

3∑
j,k=1
∇·
(
ε·jk

∂a

∂xj
∇vk

)
. (3.21)

Substituting subsequently the expressions of I (3.20) and II (3.21) in Equation (3.13),
the stochastic vorticity equation can be written as

Dtω = ω ·∇ dV t −
3∑

k=1
∇dV k

t ×∇vk + 1
2

3∑
j,k=1
∇·
(
ε·jk

∂a

∂xj
∇vk

)
+ ν∇2(ω dt+ ωσdBt). (3.22)

The first source term on the RHS represents vortex stretching due to both the effective
advection drift v? and the small-scale random flow σdBt. The second source term de-
scribes rotating interactions between the strain rate tensors of the small-scale flow and
the large-scale component. This term has the same form as the baroclinic term in com-
pressible flows. The third term comes mainly from the inhomogeneity of the subgrid scale
mixing. In particular, this term vanishes in an isotropic turbulent model. The last term is
the enstrophy (defined as the energy of the large-scale vorticity) dissipation for both large
and small scales. Note that under such sources and sinks, the enstrophy integrated over
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3.3. Hydrostatic and Boussinesq approximations

the domain is not preserved in time a priori. For future work, it is interesting to verify if
the enstrophy driven by (3.22) remains bounded over a long time interval.

3.3 Hydrostatic and Boussinesq approximations

In general, the oceanic and atmospheric flows are stratified in such a way that the
horizontal density variations are quite small compared to its vertical mean component. In
this case the stochastic Navier-Stokes system (3.10) can be simplified with some approx-
imations. Analogously to the classical framework (Vallis, 2017), the hydrostatic balance
and the Boussinesq approximation will be adopted in this section.

3.3.1 Stochastic hydrostatic primitive equations

This section presents a stochastic version of the hydrostatic primitive equations (Vallis,
2017). First, in large-scale atmospheric and oceanic circulations, the horizontal scale of
the motion is usually much larger than the vertical one. As a result, the horizontal and
vertical momentums are often treated separately. Under LU framework, this reads:

(Horizontal momentum equation)

Dtu+ f × (u dt+ σHdBt) = −1
ρ
∇H(p dt+ dpσt ) + ν∇2(u dt+ σHdBt

)
, (3.23a)

(Vertical momentum equation)

Dtw = −1
ρ

∂

∂z
(p dt+ dpσt )− g dt+ ν∇2(w dt+ σzdBt), (3.23b)

where u (resp. σHdBt) and w (resp. σzdBt) are the horizontal and vertical components
of the three-dimensional large-scale flow v (resp. the small-scale flow σdBt); f is the
Coriolis parameter which is defined either by f = 2Ω̃ sin θ in spherical coordinates (with
the Earth’s angular rotation rate Ω̃ and latitude variable θ), or by f = f0 + βy using the
beta-plane approximation (with constant f0 and β). The horizontal gradient is denoted
by ∇H = [∂x, ∂y]T .

The hydrostatic balance is a first coarse approximation of the large-scale circulation
such that the acceleration term Dtw on the LHS of Equation (3.23b) has a lower order of
magnitude than the terms on the RHS, hence the vertical momentum equation reduces
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to
∂

∂z
(p dt+ dpσt ) = −g dt. (3.24)

According to the canonical decomposition of a semimartingale, the previous equation is
equivalent to

∂p

∂z
= g,

∂dpσt
∂z

= 0. (3.25)

Together with the mass continuity equations, we summarize here the stochastic hydro-
static primitive equations:

(Horizontal momentum)

Dtu+ f × (u dt+ σHdBt) = −1
ρ
∇H(p dt+ dpσt ) + ν∇2(udt+ σHdBt

)
, (3.26a)

(Hydrostatsy)
∂p

∂z
= g,

∂dpσt
∂z

= 0, (3.26b)

(Mass)

Dtρ = 0, (3.26c)

(Continuity)

∇· v? = 0, ∇·σdBt = 0. (3.26d)

The fact that the martingale pressure component dpσt is vertically independent is due to
a strong hydrostatic approximation associated to an hypothesized weak vertical (random)
acceleration Dtw. For future works, it would be worth modifying this hydrostatic balance
by scaling the vertical momentum equation (3.23b) properly based on different levels
of noise. For instance, this procedure is performed for the geostrophic approximation in
Chapter 4. In this work, we keep the simplified primitive system (3.26) to derive the
stochastic shallow water equations. This is detailed in Section 4.1.

3.3.2 Stochastic simple Boussinesq equations

This section reviews a stochastic representation of the simple Boussinesq system (Val-
lis, 2017), which has a bigger validity range than the previous system (3.26). To this end,
let us first decompose the time-smooth pressure component and the density into

p(x, t) = p(z) + p′(x, t), (3.27a)

ρ(x, t) = ρ(z) + ρ′(x, t), (3.27b)
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in which the scalar fields ρ(z) 4= ρb + ρ0(z) and p(z) are stationary components in equi-
librium that depend only on height. The fluctuating components are random functions,
i.e. they depend on the random velocity component. From the random momentum equa-
tion (3.10a), it can be readily inferred that the stationary components are related by the
hydrostatic balance:

∂p

∂z
= −g

(
ρb + ρ0(z)

)
. (3.28)

From the Boussinesq approximation, we assume that the density fluctuation is much
smaller than the stationary component, i.e. |ρ′| � ρb. As such, the random density anoma-
lies are transported by the stochastic flow such that

Dt(ρ− ρb) = 0. (3.29)

Furthermore, the dynamics of density fluctuations can be expressed through the buoyancy
variable b = −g(ρ/ρb), namely

Dtb = 0. (3.30)

Substituting expression (3.27b) for b and introducing the Brunt-Väisälä stratification
frequency N2(z) = −g(∂ρ0/∂z)/ρb, the previous equation can written as

Dtb+N2(w? dt+ σzdBt) = 1
2 ∇· (a·zN

2) dt, (3.31)

where w? is the vertical component of the effective drift v? and a·z stands for the z column
vector of a.

Let us then summarize the so-called stochastic simple Boussinesq equations:

(Momentum equations)

Dtv + fk × (v dt+ σdBt) = bk dt− 1
ρb
∇(p′ dt+ dpσt ) + ν∇2(v dt+ σdBt), (3.32a)

Thermodynamic equation

Dtb+N2(w? dt+ σzdBt) = 1
2 ∇· (a·zN

2) dt, (3.32b)

(Continuity equation)

∇· v? = 0, ∇·σdBt = 0. (3.32c)

Neglecting the friction force terms in the momentum equation yields a stochastic Euler-
Boussinesq model. In comparison to the stochastic Navier-Stokes system (3.10), the buoy-
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ancy term in the momentum equation (3.32a) constitutes an additional random forcing
of the vertical large-scale velocity component. In a similar way as shown in Section 3.2.1,
this system can also be turned into an LES system with a scale-separation assumption
(with the large-scale component of bounded variation). However, in this case the momen-
tum equation retains its random nature due to the buoyancy forcing. From this system of
equations a diverse set of approximated models can be obtained through nondimensional-
ization and power series expansions in terms of small Rossby number (ratio of the inertial
magnitude to Coriolis magnitude) with proper scalings. These developments follow the
same path as in the deterministic setting. However, the noise introduces an additional de-
gree of freedom that must be appropriately accounted for (Bauer et al., 2020b; Resseguier
et al., 2017b,c). Instances of these approximated models include the planetary geostrophic
(PG) model, the quasi-geostrophic (QG) model and the surface quasi-geostrophic (SQG)
model.

3.4 Connection with Craik-Leibovich equations

In ocean dynamics, the wave-current interactions are described by the Craik-Leibovich
system, in which the action of a wave induced velocity, the Stokes drift, produces a so-
called “vortex force” that causes streaking in the flow. This section shows that these results
can be generalized as coming from the statistical inhomogeneity effect of the small-scale
flow component. To this end, we first review briefly the Craik-Leibovich theory (Craik and
Leibovich, 1976; Leibovich, 1980; Holm, 1996) delineating the role played by the Stokes
drift. We then draw a parallel framework between the Craik-Leibovich system and our
stochastic framework leading to a general stochastic Craik-Leibovich system.

3.4.1 Craik-Leibovich equations and Stokes drift

The Craik-Leibovich (CL) equations (see (Craik and Leibovich, 1976; Holm, 1996;
Leibovich, 1980; McWilliams et al., 1997) for different elegant derivations) parametrize
the effect of surface gravity waves on the evolution of the mean current v. It reads:

∂v

∂t
+ v ·∇ v = −∇p̃+ vS × ω, ∇·v = 0, (3.33a)

p̃ = p+ 1
2‖v + vS‖2 − 1

2‖v‖
2, (3.33b)
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3.4. Connection with Craik-Leibovich equations

by recognizing the existence of a vortex force vS × ω, where ω = ∇ × v denotes the
curl of the mean current (i.e. the mean flow vorticity) while p̃ is a modified pressure that
includes the pressure p as well as a correction term due to Stokes drift (velocity) vS.
For a divergence-free large-scale velocity v, the pressure p is the solution of the following
Poisson equation:

−∇2
(
p+ 1

2‖v + vS‖2 − 1
2‖v‖

2
)

=∇·
(
(v·∇)v − vS × ω

)
. (3.34)

The Stokes drift is related to the velocity of the surface waves v′. In CL theory, it is given
by

vS =
(∫ t

t0
v′ds

)
·∇ v′, (3.35)

where the overbar represents a time average over fast variation at fixed Eulerian position.
Leibovich demonstrated that for the specific case of nearly rapid irrotational oscillations
and surface waves with small slope, the Eulerian mean velocity v is related to the La-
grangian mean vL through the Stokes drift velocity vS (Andrews and McIntyre, 1978;
Leibovich, 1980):

v = vL − vS +O(ε4). (3.36)

The vortex force vS × ω acts as a Lamb vector between the mean flow vorticity and
the Stokes drift. The Stokes drift and the associated vortex force term in the momentum
equation have been shown to be the main players in the interaction between the gravity
waves and the mean current. Note that in its various derivations, the Craik-Leibovich
system requires to assume irrotational waves with a weak slope and a divergence free
Stokes drift (Holm, 1996; Leibovich, 1980; McWilliams et al., 2004). Formally, it does
not strictly apply to general interactions between small-scale velocity fluctuations and
the resolved flow. In the following, we show how a stochastic representation enables us to
model such interactions by expressing them as an effect of the inhomogeneity of velocity
fluctuations leading to the emergence of an associated vortex force.

3.4.2 Itô-Stokes drift

In this section we focus on the effective advection drift (3.5) involved in the LU model.
This term unveils the contribution of inhomogeneity at the small-scales as a driver to
trigger large-scale structures in the flow.

In order to interpret the action of the turbophoresis term in (3.5) on the large-scale
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flow, we rewrite the stochastic momentum equation (3.32a) in an equivalent form outlining
the contribution of the effective advection. For reasons that will be made clear in the
following, the turbophoresis term

vs
4= 1

2 ∇· a (3.37)

is, henceforth, referred to as the “Itô-Stokes” drift. In its expanded form, the stochastic
momentum equation (3.32a) reads:

dtv + (v? dt+ σdBt) ·∇ v −
1
2 ∇· (a∇v) dt+ f × (v dt+ σdBt)

= bk dt−∇(p′ dt+ dpσt ). (3.38)

By applying a change of variable in (3.38) from v to v?, assuming a stationary Itô-Stokes
drift, we get,

dtv? +
(

(v? − vs) dt︸ ︷︷ ︸
turbophoresis

+σdBt

)
·∇ v? − 1

2 ∇·
(
a∇(v? + vs)

)
dt︸ ︷︷ ︸

subgrid scales (SGS)

− vs ·∇ σdBt︸ ︷︷ ︸
Itô-Stokes advection

= bk dt−∇dp̃σt − ωs × (v? dt+ σdBt)︸ ︷︷ ︸
Itô-Stokes force

−f × (v? dt+ σdBt)

− f × vs dt︸ ︷︷ ︸
Coriolis Stokes

+vs × (ω? dt+∇× σdBt)︸ ︷︷ ︸
vortex force

, (3.39)

where the curl of effective advection and Itô-Stokes drift are denoted as ∇ × v? = ω?

and ∇× vS = ωs, respectively, and a modified pressure including a Bernoulli head term
and a noise term has been introduced:

dp̃σt = 1
ρb

(p′ dt+ dpσt ) + 1
2
(
(‖v?‖2 + ‖vs‖2)− ‖v? − vs‖2

)
dt+ vs · σdBt, (3.40)

by using the vector identity (3.14). On the RHS of equation (3.39), a Craik-Leibovich
vortex force appears. This force depicts the statistical contribution of the inhomogeneity
carried by the variance of the random field on the large-scale current. Hence, this mo-
mentum equation may be seen as a general stochastic expression of the Craik-Leibovich
system in which the turbophoresis term replaces the Stokes drift associated to wave mo-
tion. This is the reason why we designate this term with the more general descriptive name
of Itô-Stokes drift. This equation still includes a turbophoresis term and a large-scale dis-
sipation. The Coriolis force now includes a correction term that depends on the Itô-Stokes
drift. An advection of the small-scale component by the Itô-Stokes drift also emerges. In
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addition to the vortex force, this stochastic formulation includes another force, referred
to here as the Itô-Stokes force, related to the interaction of the flow with the vorticity of
the Itô-Stokes drift. This force could also be gathered with the Coriolis term to form a
Coriolis force corrected by the Itô-Stokes vorticity. This allows us to notice an interesting
particular case. Given a downward curl of the Itô-Stokes drift and a negligible Coriolis
force in front of the Itô-Stokes force, a correction term appears acting opposite to the
Coriolis force. Note that the Itô-Stokes drift depends on the variance tensor a, which is
defined as the variance of the random displacement (σdBt) divided by a decorrelation
time τ (i.e. a ∝ L2/τ). Thus, the divergence and curl of the Itô-Stokes drift scales as the
inverse of this decorrelation time (i.e.∇·∇·a ∝ 1/τ). They are small for sufficiently large
decorrelation times such as infra gravity or long waves. For gravity waves, the divergence
and curl of the Itô-Stokes drift are negligible only for very regular small-scale inhomo-
geneity such as waves with small slopes. For isotropic random fluctuations, as in isotropic
turbulence, the variance tensor is constant in space and the Itô-Stokes drift cancels. In
that case, the effective advection and the large-scale velocity are identical and there is no
vortex force nor Itô-Stokes force to structure the large-scale flow components. In such a
scenario, the only interaction between the large-scale velocity component and the fluctu-
ations is the large-scale diffusion term and the random advection term. Both of them are
in equilibrium to ensure energy conservation.

3.4.3 Stochastic Craik-Leibovich equations

In the following we show how Equation (3.39) can be connected with the Craik-
Leibovich equation. First, Equation (3.39) can be simplified with additional assumptions
on the inhomogeneity of the small-scale component. Given the incompressibility condition
on the effective advection, ∇·v? = ∇·(v − vS) = 0, and an incompressible large-scale
flow, we infer an incompressible Itô-Stokes drift ∇·vS = 0. In this case, the summation
of the SGS contribution on v? and the turbophoresis term gives:

−1
2 ∇· (a∇v

?)− (vS·∇)v? = −1
2

d∑
i,j=1

∂xi∂xj (aijv?), (3.41)

and the Itô-Stokes diffusion term reads:

−1
2 ∇·

(
(a∇)vs

)
= −1

2

d∑
i,j=1

∂xi∂xj
(
aijvs

)
+
(
vs·∇

)
vs.ωs (3.42)
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The last term of this equation can be written:

(
vs·∇

)
vs = 1

2∇(‖vs‖2)− vs × ωs. (3.43)

Equation (3.39) can thus be written as

dtv? + (v? dt+ σdBt) ·∇ v? −
1
2

d∑
i,j=1

∂2

∂xi∂xj

(
aij(v? + vs)

)
dt

︸ ︷︷ ︸
SGS

−vs ·∇ σdBt︸ ︷︷ ︸
noise advection

= bk dt−∇
(
dp̃σt + 1

2‖vs‖
2 dt

)
− ωs ×

(
(v? + vs) dt+ σdBt

)
︸ ︷︷ ︸

Itô-Stokes force

− f × (v? dt+ σdBt)− f × vs dt︸ ︷︷ ︸
Coriolis Stokes

+vs × (ω? dt+∇× σdBt)︸ ︷︷ ︸
vortex force

. (3.44)

Coriolis and Itô-Stokes forces can be gathered to get a Coriolis effect modified by the
Itô-Stokes drift yielding,

dtv? + (v? dt+ σdBt) ·∇ v? −
1
2

d∑
i,j=1

∂2

∂xi∂xj

(
aij(v? + vs)

)
dt

︸ ︷︷ ︸
SGS

− vs ·∇ σdBt︸ ︷︷ ︸
noise advection

= bk dt−∇
(
dp̃σt + 1

2‖vs‖
2 dt

)
− (ωs + f)×

(
(v? + vs) dt+ σdBt

)
︸ ︷︷ ︸

Coriolis and Itô-Stokes force

+ vs × (ω? dt+∇× σdBt)︸ ︷︷ ︸
vortex force

. (3.45)

When the Itô-Stokes drift term is sufficiently smooth (with a negligible curl) – which
together with the null divergence, implies that vs is quasi-harmonic, i.e. ∇2(vs) ≈ 0, we
obtain:

dtv? + (v? dt+ σdBt) ·∇ v? −
1
2

d∑
i,j=1

∂2

∂xi∂xj

(
aij(v? + vs)

)
dt

︸ ︷︷ ︸
SGS

−vs ·∇ σdBt︸ ︷︷ ︸
noise advection

= bk dt−∇
(
dp̃σt + 1

2‖vs‖
2 dt

)
− f ×

(
(v? + vs) dt+ σdBt

)
dt︸ ︷︷ ︸

Coriolis and Stokes

+ vs × (ω? dt+∇× σdBt)︸ ︷︷ ︸
vortex force

. (3.46)
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As previously described in Section 3.2.1, these equations can be written in an LES de-
terministic form (assuming v? is a finite variation process) through a decomposition in
terms of martingale and finite variation terms. For the large-scale velocity component this
yields (from (3.45)) a momentum equation of the form,

∂v?

∂t
+ v? ·∇ v? − 1

2

d∑
i,j=1

∂2

∂xi∂xj

(
a(v? + vs)

)
= bk −∇

(
p̃+ 1

2‖vs‖
2
)
− f × (v? + vs)︸ ︷︷ ︸

Coriolis and Stokes

+ vs × ω?︸ ︷︷ ︸
vortex force

, (3.47)

which recovers the CL form (3.33) with a pressure term

p̃ = p′ + 1
2‖v

? + vs‖2 − 1
2‖v

?‖2 = p′ + 1
2‖v‖

2 − 1
2‖v

?‖2, (3.48)

accounting for the kinetic energy of the Stokes drift. This pressure term corresponds to
the pressure correction terms found in (Harcourt, 2015; Holm, 1996; McWilliams et al.,
1997).

In the original CL theory, the Stokes drift is identified with the residual velocity of
the fast orbital motion of the waves. It arises from a linear perturbation theory and
can be defined (in the assumption of small surface wave slope and nearly irrotational
wave motion) as the difference between the Lagrangian flow velocity of a fluid element
and the averaged Eulerian flow velocity at a fixed point. In our stochastic framework,
it corresponds, instead, to a statistical correction resulting from inhomogeneity of the
small-scale. The quasi-harmonic assumption used to get the original CL system does not
truly correspond to the usual small slope wave assumption supporting the CL derivation
(Leibovich, 1980). However, the small slopes assumption can be shown to yield negligible
Stokes drift curl for idealized monochromatic linear waves – for long period waves the
Itô-Stokes drift curl is negligible and for high frequency the waves amplitude must be
very small.

As discussed previously, this quasi-harmonic assumption considers either a sufficiently
large decorrelation time for the variance of the velocity fluctuations or velocity fields with
sufficiently smooth inhomogeneity. Within the hypotheses pertaining to the derivation of
the Craik-Leibovich equations from the LU framework (i.e deterministic v? and stationary
quasi-harmonic Itô-Stokes drift), the effective advection v? can be associated to the mean
Eulerian component whereas v is, by definition, a smooth Lagrangian velocity component.
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Without these assumptions, we get the more generalized system (3.39) in which the small-
scale component interacts with itself through a Lamb vector involving the curl of the Itô-
Stokes drift. It is important to stress that this general stochastic CL equation is equivalent
to the Euler momentum equations (3.38). This link between the stochastic Euler equations
and the Craik-Leibovich equations clearly shows the potential impact of inhomogeneity
of the small-scale random field in shaping large-scale structures such as Langmuir cells.
Let us remark that for the buoyancy equation (3.32b) or the transport of any scalar no
particular changes needs to be done in our setting. These transport equations involve the
effective advection v? which includes the Itô-Stokes drift correction.

The principal consequence of the connection between the Craik-Leibovich system and
the stochastic system (3.32a) is that in the latter, the explicit inclusion of the vortex
force is not necessary to trigger secondary circulations. In the stochastic setting, such
circulations require only a small-scale velocity component with an appropriately defined
Itô-Stokes drift. This constitutes a simpler procedure than considering an LES representa-
tion with an explicit vortex force and the accompanying associated modifications (Coriolis
modification; fluctuation-fluctuation interaction; modified pressure, etc.).

Furthermore, for accurate noise models (learned, for instance, from high resolution
data), one might expect not only to reproduce complex interactions between the mean
current and the surface waves but also interactions coming from sufficiently persistent
small-scale inhomogeneity (for example, these small-scales could be triggered by the in-
ternal waves that arise due to interaction of the bathymetry with tidal waves). In that
respect, in our setting, the traditional Stokes drift of the CL system can be interpreted
as a particular instance of small-scale inhomogeneity arising from gravity surface waves
and wind forcing.

3.5 Connection with Gent-McWilliams parametriza-
tion

This section shows briefly how the LUmodel can be connected with the Gent-McWilliams
(GM) parametrization (Gent and McWilliams, 1990; Gent et al., 1995) which is widely
adopted in global ocean models. To this end, let us first explain the principles of such
scheme. As we known, the deformation radius in the ocean is at most of the order of 100
km. This makes big challenges for global ocean models in resolving the baroclinic instabil-
ities. In particular, the effects of the mesoscale eddies must be modeled or parametrized
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in coarse-resolution ocean models. However, many SGS processes such as most of the
diffusion-like parameterizations are not successful in this case. In fact, baroclinic instabil-
ity produces the major transfers of available potential energy (APE) to eddy kinetic energy
(EKE) by flattening density surface. This is quite different from pure mixing procedure. In-
stead of a diffusion-type parametrization, the so-called Gent-McWilliams parametrization
is more recommended in ocean modeling. This scheme proceeds by including a so-called
bolus velocity vGM

4= (uGM, wGM)T to the large-scale currents. This bolus velocity is basi-
cally defined from the isoneutral slope vector s 4= −(κGM∇Hρ)/(∂ρ/∂z) with a diffusion
coefficient κGM (of unit m2 · s−1) to be tuned (could be space-time depended). It reads

uGM = −∂(κGMs)
∂z

, wGM =∇H · (κGMs). (3.49)

As such, the bolus velocity effectively advects the density field and with the chosen signs,
leads to a reduction of the frontal slope, and substitutes the effect of baroclinic instability.
The strength of the effect is controlled by the parameter κGM. Furthermore, one can verify
that the bolus velocity is divergence-free, i.e. ∇·vGM = 0. Indeed, this adiabatic property
should be preserved by numerical discretization. Under the GM scheme, the governing
equation of a transported tracer Θ (could be potential temperature, salinity or passive
tracers) is given by

∂Θ
∂t

+∇·(vΘ) = −∇· (vGMΘ), ∇·v = 0. (3.50)

Furthermore, as shown in Griffies (1998), the choice (3.49) corresponds to a specific anti-
symmetric tensor aGM satisfying vGM = −∇· aGM such that

aGM = κGM


0 0 −sx
0 0 −sy
sx sy 0

 , (3.51)

where (sx, sy)T = s. Subsequently, Equation (3.50) can be re-written as

∂Θ
∂t

+∇·(vΘ) =∇·(aGM∇Θ), (3.52)

in which the antisymmetric properties ∇· ∇· aGM = 0 and tr(aGMHΘ) = 0 (with H
the Hessian matrix) have been used. In addition, both divergence-free and antisymmetry
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ensure that all tracer moments are conserved.

Let us now go back to our stochastic framework. We first define an isopycnal projector
as follows:

P(x, t) 4=
(
Id −
∇ρ(∇ρ)T

|∇ρ|2
)
(x, t). (3.53)

Such projector satisfies immediately

P∇ρ = 0, PT = P, P2 = P. (3.54)

Let us then consider an initial noise σ0dBt with σ0 a priori modeled or parametrized.
Applying the projector P for such noise σ0dBt leads to a new noise σdBt aiming at
flattening density surfaces, that is

σdBt = P(σ0dBt), σdBt ·∇ ρ = 0. (3.55)

From the variance’s definition (2.8) and the projection property (3.54), one can show that
the diffusive flux of density cancels, i.e. a∇ρ = 0. Thus, the evolution of density reduces
to

∂ρ

∂t
+∇·

(
ρ(v − vs)

)
= 0, ∇·(v − vs) = 0. (3.56)

Unlike the GM scheme, the Itô-Stokes drift in our settings is not divergence-free after
projection, yet the stochastic continuity equation ensures the adiabatic background. On
the other hand, the transport of tracer Θ remains a SPDE, namely

dtΘ +
(
(v − vs) dt+ σdBt

)
·∇Θ− 1

2 ∇· (a∇Θ) = 0. (3.57)

As shown in Section (2.2), the last term diffuses the tracer, since the variance a is
purely symmetric and positive semidefinite. Nevertheless, energy lost by the diffusion
balances with the energy brought by the third random forcing term (see Section 2.3). The
statistical-induced velocity vs is more general than the bolus velocity, in the sense that it
is not necessary divergence-free, yet the effective advection drift v − vs is. Note that the
above procedure holds for the buoyancy variable:

∂b

∂t
+∇·

(
b(v − vs)

)
+N2(w − ws) = 0. (3.58)

In the classical case, Treguier et al. (1997) suggested that the GM parameterization at the
oceanic boundaries should include along-boundary eddy-induced velocity and residual flux
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of buoyancy. Quasigeostrophic theory is used to satisfy these constraints in their works.
When there is more than one active/passive tracer, GM scheme is often combined

with Redi isoneutral diffusion (Redi, 1982; Griffies et al., 1998). Under a small angle
approximation, |s| � 1, the Redi diffusion tensor aR takes the form

aR = κR


1 0 sx

0 1 sy

sx sy |s|2

 . (3.59)

One can immediately see that aR is symmetric positive semidefinite with positive coef-
ficient κR. Combining such isoneutral diffusion with the GM scheme gives the following
transport equation for tracer Θ:

∂Θ
∂t

+∇·(vΘ) =∇·
(
(aGM + aR)∇Θ

)
, (3.60)

in which the term with the antisymmetric aGM flattens the isopycnals and release the
APE while conserving all tracer moment, whereas the term with the symmetric aR only
diffuses along the isopycnals but does not enforce them to flatten out, this term does not
change the APE and dissipates all tracer moment except the mean.

On the other hand, the link between the LU model and the isoneutral diffusion have
been described by Mémin (2014). For instance, one can consider a simple case in which
the initial noise σ0dBt is isotropic and divergence-free, hence the corresponding variance
tensor reduces to a constant diagonal matrix a0 = αId with α > 0. As such, after applying
the projector P for σ0dBt, the variance becomes

a = Pa0PT = αP. (3.61)

Subsequently making the small angle approximation |s| � 1, the Redi diffusion tensor
(3.59) is recovered, i.e. a = aR with κR = α related to the strength of the initial noise. Let
us outline that, unlike the GM-Redi scheme (3.60) (which is based on a decomposition of
a mixing tensor into antisymmetric and symmetric parts), by constraining an isopycnal
noise (3.55), the LU scheme (3.57) includes separately a Redi-like diffusion through the
noise variance and a GM-like advection through the Itô-Stokes drift. For future works, it
would be important to clarify that such parametrization leads to an efficient conversion
of APE to EKE in a slimily way as in Gent and McWilliams (1990).
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Chapter 4

STOCHASTIC GEOSTROPHIC

APPROXIMATIONS

This chapter reviews some important two-dimensional stochastic
equations. Apart from the hydrostatic balances in vertical direc-
tion presented in the previous chapter, this chapter focus on an-
other important approximation in the horizontal direction between
the pressure gradient and the Coriolis forces, this is the so-called
geostrophic balance, which is mainly due to to the dominant rotat-
ing effect of the large-scale atmospheric and oceanic circulations.
In the following, we first derive the stochastic rotating shallow wa-
ter (RSW) system, which is a good approximation of the primitive
equations. Then, the energy conservation of a simplified stochastic
RSW system is demonstrated. Latter, we specify some scaling num-
bers to adimensionalize the stochastic RSW system and the stochas-
tic simple Boussinesq system presented in the previous chapter.
Subsequently, asymptotic approaches are adopted to develop the
barotropic planetary geostrophic (PG) and quasigeostrophic (QG)
equations using the non-dimensional RSW system, as well as the
stochastic primitive PG and vertically continuous version of the
QG equations using the non-dimensional Boussinesq system. These
resulting two-dimensional models have been successfully tested in
several numerical simulations and some interesting results are out-
lined in Chapters 6, 7 and 8. The work presented in this chapter
are based on the published paper Bauer et al. (2020a) and on the
manuscript Brecht et al. (2021) that has been submitted.

Abstract
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Part I, Chapter 4 – Stochastic geostrophic approximations

4.1 Stochastic rotating shallow water equations

In this section, we derive the rotating shallow water equations under LU, denoted
as RSW-LU, following the classical strategy presented in Vallis (2017). In particular, we
demonstrate one important characteristic of the RSW-LU, namely it preserves the total
energy of the large-scale flow.

Let us note that a pseudo-stochastic formulation of the shallow water equations under
LU in a non-rotating frame was first proposed by Mémin (2014). Here we provide a full
stochastic model.

4.1.1 Derivation of single layer model

The RSW-LU is derived mainly from the stochastic hydrostatic primitive equations
(3.26) dropping the viscous terms. First, integrating vertically the hydrostatic balance
(3.26b) from 0 to z (see Figure 4.1) under a constant density ρ0, we have

p(x, y, z, t) = p0(x, y, t)− ρ0gz, (4.1)

dpσt (x, y, z, t) = dpσt (x, y, 0, t), (4.2)

where p0 denotes the pressure at the bottom of the basin (z = 0). Following Vallis (2017),
we assume that the weight of the overlying fluid is negligible, i.e. p(x, y, η, t) ≈ 0 with η the
height of the free surface, leading to p0 = ρ0gη. This allows us to rewrite Equation (4.1)
such that for any z ∈ [0, η] we have

p(x, y, z, t) = ρ0g
(
η(x, y, t)− z

)
. (4.3a)

Subsequently, the pressure gradient forces in the horizontal momentum equation (3.26a)
reduce to

− 1
ρ0
∇H

(
p dt+ dpσt

)
= −g∇Hη −

1
ρ0
∇Hdpσt , (4.3b)

which do not depend on z according to Equations (4.3a) and (4.2). Therefore, the accel-
eration terms on the LHS of Equation (3.23a) must not depend on z, hence the shallow
water momentum equation can be written as

DHt u+ f ×
(
u dt+ σHdBt

)
= −g∇Hη dt− 1

ρ0
∇Hdpσt , (4.4)

68



4.1. Stochastic rotating shallow water equations

where DHt is the horizontal stochastic transport operator defined as

DHt u
4= dtu+

(
(u− us) dt+ σHdBt

)
· ∇Hu−

1
2∇H ·

(
aH∇Hu

)
dt, (4.5)

with us
4= 1

2∇H ·aH the two-dimensional Itô-Stokes drift. Note that the three-dimensional
variance tensor a consists of a horizontal component aH, a vertical component azz and

a cross component aHz such that a =
aH aHz

aTHz azz

 . Let us outline that Equation (4.4)

is valid only when the cross component aHz is vertically independent, i.e. ∂aHz/∂z = 0.
This assumption is satisfied for noise that do not depend on the vertical coordinate. One
may also consider that the horizontal small-scale flow σHdBt is spatially uncorrelated
with the vertical small-scale flow σzdBt, i.e. aHz = 0.

In order to derive the shallow water mass equation, let us first integrate vertically
the continuity equation (3.26d) from the bottom topography ηb to the free surface η (see
Figure 4.1):

(w − ws)|z=η − (w − ws)|z=ηb = −h∇H · (u− us), (4.6a)

σdBt|z=η − σdBt|z=ηb = −h∇H · σHdBt, (4.6b)

where h = η− ηb denotes the thickness of the water column. On the other hand, a small
vertical (Eulerian) displacement at the top and the bottom of the fluid leads to a variation
of the position of a particular fluid element (Vallis, 2017):

(
(w − ws) dt+ σdBt

)∣∣
z=η = DHt η, (4.6c)(

(w − ws) dt+ σdBt
)∣∣
z=ηb

= DHt ηb. (4.6d)

Combining Equations (4.6), we deduce a stochastic mass equation, then together with
the stochastic momentum equation (4.4), we fully obtain a general formulation of the
RSW-LU system, namely

(Momentum equation)

Dtu+ f ×
(
udt+ σdBt

)
= −g∇η dt− 1

ρ0
∇dpσt , (4.7a)

(Mass equation)

Dth+ h∇·
(
(u− us) dt+ σdBt

)
= 0. (4.7b)

Note that the horizontal symbol H is dropped in (4.7), as well as in the following (except
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Part I, Chapter 4 – Stochastic geostrophic approximations

for three-dimensional equations), for the sake of simplicity.

Figure 4.1 – Illustration of a single-layered shallow water system (inspired by Vallis (2017)),
h is the thickness of a water column, η is the height of the free surface, ηb is the height of the
bottom topography, H is the background thickness and ∆η is the fluctuation of free surface
height w.r.t. the background thickness. As a result, we have h = η − ηb and η = H + ∆η.

4.1.2 Extension to multi-layer model

Following Vallis (2017), the previous single layered RSW-LU system can be extended
to a multi-layered model. A layered model is an idealized model for the stratified ocean
dynamic, in which the fluid flow is represented as a finite number of moving layers, stacked
one upon another and each having a uniform density. It is also assumed that the pressures
and velocities are effectively layer-averaged quantities. Suppose now we have N moving
layers, the dynamic pressure in the n-th layer can be determined by vertical integrations
of hydrostatic balances, namely

pn = −
N∑
i=n

ρ0g
′
iηi, ηn = −

n∑
i=1

hi, g′n = g
ρn+1 − ρn

ρ0
, (4.8)

where g′n denotes the reduced gravity across the interface between the n-th layer and
(n + 1)-th layer; ηn stands for the interface displacements and hn is the layer thickness.
Let us consider that in the interior of each layer, the ocean dynamic is modeled by the
RSW-LU (4.7), then by integration over each layer, the following multi-layer stochastic
shallow water system is recovered:

(Momentum equation)

Dnt un + fk ×
(
un dt+ (σdBt)n

)
= − 1

ρn
∇
(
pn dt+ (dpσt )n

)
, (4.9a)

(Mass equation)

Dnt hn + hn∇·
(
(un − (us)n) dt+ (σdBt)n

)
= 0. (4.9b)

70



4.1. Stochastic rotating shallow water equations

In particular, this stacked model can be considered as a vertical discretization of the
three-dimensional stochastic Boussinesq equation (3.32) with the buoyancy variable at
each interface defined by

bn = pn+1 − pn
ρ0(Hn +Hn+1)/2 , ∀n = 1, . . . , N − 1. (4.10)

4.1.3 Energy conservation

The single layer system (4.7) is a general formulation to describe the shallow water
fluid motion transported by the stochastic flow. However, it is quite difficult to handle the
energy and higher order moments of such system without any information of the noise
σdBt and of the random pressure component dpσt . In the following, let us consider a
simplified RSW-LU system in which the noise is in geostrophic balance with the random
pressure term. This type of constraint can be rigorously derived considering a strong
hydrostatic balance for the martingale pressure term with ∂dpσt /∂z = 0. The considered
system reads:

(Momentum equation)

Dtu+ f × udt = −g∇η dt, (4.11a)

(Mass equation)

Dth+ h∇· u dt = 0, (4.11b)

(Continuity equations)

∇· σdBt = 0, ∇·us = 0, (4.11c)

(Geostrophic noise)

f × σdBt ≈ −
1
ρ0
∇dpσt . (4.11d)

Note that for a sufficiently small noise (σ ≈ 0), this system reduces to the classical RSW
system, in which the stochastic transport operator weighted by the unit of time, Dt/dt,
reduces to the material derivative. More importantly, this simplified RSW-LU system
preserves the global energy of the large-scale flow (for any realizations):

dt
∫
A
E(x, t) dx = 0, E 4= ρ0

2 h|u|
2︸ ︷︷ ︸

KE

+ ρ0
2 gh

2︸ ︷︷ ︸
PE

, (4.12)

where |u|2 = u ·u and x = (x, y) ∈ A with A ⊂ R2 a bounded horizontal area. We recall
that for the shallow water system (Vallis, 2017), the kinetic energy density (KE) and the
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Part I, Chapter 4 – Stochastic geostrophic approximations

potential energy density (PE) are derived from the vertical integrations over the whole
water column, i.e. KE =

∫ h
0 (ρ0/2)|u|2 dz and PE =

∫ h
0 (ρ0/2)gz dz.

In order to demonstrate the energy conservation more concisely, we adopt an equivalent
Stratonovich representation of the simplified RSW-LU system (4.11) using the conversion
presented in Section 2.4. It reads:

Dt◦u+ f × u dt = −g∇h dt, (4.13a)

Dt◦h+ h∇· u dt = 0, (4.13b)

∇· σ◦dBt = 0, ∇·us = 0, (4.13c)

f × σ◦dBt ≈ −∇dpσt , (4.13d)

where the Stratonovich horizontal transport operator is defined by

Dt◦u
4= dt◦u+

(
(u− us) dt+ σ◦dBt

)
·∇ u. (4.13e)

For algebraic simplicity, the constant density ρ0 is assumed to be 1, as well as the bottom
is assumed to be flat, i.e. h = η.

As shown in Section 1.1.4, Stratonovich integrals are defined such that the integration-
by-part formula (1.1.6) of ordinary calculus holds. In particular, for two random tracers
f and g, we have

dt◦(fg) = f dt◦g + g dt◦f. (4.14)

Therefore, the antisymmetric Stratonovich transport operator (4.13e) satisfies immedi-
ately

Dt◦(fg) = gDt◦f + f Dt◦g. (4.15)

Applying this rule for PE (4.12) together with the mass equation (4.13b), we obtain

Dt◦PE = ghDt◦h = −2PE ∇· u dt. (4.16)

Similarly, from both mass equation and momentum equation in (4.13), we derive the
evolution of KE (4.12):

Dt◦KE = hu · Dtu+ 1
2 |u|

2 Dt◦h

= −1
2u ·∇ (gh2) dt− 1

2h|u|
2 ∇· u dt, (4.17)
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4.2. Geostrophic approximations

noting that u · (f × u dt) = 0 yields

Dt◦KE + (u ·∇ PE + KE ∇· u) dt = 0. (4.18)

Subsequently, we deduce the evolution of the density of total energy:

Dt◦E +
(
E∇· u+∇·(uPE)

)
dt = 0. (4.19)

Expanding the Stratonovich transport operator (4.13e) together with the continuity equa-
tions (4.13c), the previous equation can be re-written as

dt◦E +∇·
((

(u− us) dt+ σ◦dBt
)
E + uPE

)
= 0. (4.20)

If the fluid domain has zero boundary conditions (e.g. the normal velocities vanishes on
each wall or there are no boundaries at all as on the sphere), then one can show that the
total energy is invariant in time:

dt◦
∫
A
Edx = −

∮
∂A

(
E
(
(u− us) dt+ σ◦dBt

)
· n+ PEu · ndt

)
dl = 0, (4.21)

where ∂A and n denote the area boundaries and the unit normal vector, respectively.

4.2 Geostrophic approximations

In order to derive properly the stochastic geostrophic equations, some scaling numbers
are required. This section details the typical scales of variables for both the stochastic shal-
low water equations (4.7) and the stochastic Boussinesq equations (3.32). In particular, a
scaling number for the random noise and its variance is necessary in order to quantify the
additional degree of freedom brought by the noise and its variance. The resulting non-
dimensional RSW-LU system is useful to develop the barotropic PG and QG equations,
whereas the non-dimensional primitive system allows us to derive the three-dimensional
PG and QG equations in the subsequent sections.

4.2.1 Non-dimensional stochastic shallow water equations

Let us now scale properly the geostrophic balance for the stochastic rotating shallow
water equations (4.7). To this end, we first adimensionalize the basic variables as

x = L x̂, u = U û, t = T t̂, f = f0 f̂ , (4.22a)
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Part I, Chapter 4 – Stochastic geostrophic approximations

where the capital letters are used for the scales of variables and •̂ stand for non-dimensional
variables. In the following, only the advection time scale T = L/U is adopted. In addition
to these classical scaling numbers, the horizontal variance tensor a, which characterizes
the strength of uncertainty, is also required and scaled as

a = A â. (4.22b)

As mentioned in Section 2.1, since a has the unit of a diffusion tensor (m2 · s−1), one may
consider that A is proportional to UL up to a factor ε, i.e. A = ε UL. This factor ε, first
introduced by Resseguier et al. (2017b), is defined as

ε = T σ

T

TKE
MKE , (4.22c)

where T σ is the correlation time scale of the small-scale component. The mean kinetic
energy scale (MKE) is given by U2 and the turbulent kinetic energy scale (TKE) is defined
by A/T σ. As such, the horizontal noise σdBt can be scaled as

σdBt =
√
εL σ̂dB t̂. (4.22d)

In fact, the greater this scaling number ε, the larger the variance tensor, hence the stronger
the uncertainty. As shown in subsequent sections, using different levels of noise in the
stochastic system allows us to model different physical regimes of the large-scale flow.

Let us now review two important non-dimensional numbers – the Rossby number
(Ro) and the Burger number (Bu). These numbers are particularly useful in geostrophic
approximations. The Rossby number is introduced to measure the ratio between the mag-
nitude of the inertial acceleration (u ·∇u) and the magnitude of the Coriolis acceleration
(fk × u):

Ro = U

f0L
. (4.22e)

Therefore, a small Rossby number characterizes the dominant effect of earth rotation on
the fluid. In particular, it is the case for most of large-scale oceanic circulations with the
typical value Ro ≈ 10−2. The Burger number measures the squared ratio between the
scale of deformation radius Ld and the scale of motion:

Bu = L2
d

L2 , (4.22f)
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4.2. Geostrophic approximations

where the deformation radius in shallow water fluids is given by Ld =
√
gH/f0, and

measures the ratio between buoyancy and rotation effects. The deformation radius gives
the typical size of oceanic eddies.

In order to ensure the geostrophic approximation in the stochastic momentum equation
(4.7a), fk × (u dt + σdBt) ≈ −∇H(gη + dpσt ), the free surface height η = H + ∆η (see
Figure 4.1) and the random pressure dpσt necessarily scale as

η = H + f0UL

g
η̂ = H

(
1 + Ro

Bu
η̂
)
, (4.22g)

dpσt =
√
εf0L

2 dp̂σt̂ . (4.22h)

Substituting these expressions (4.22) in (4.7), we obtain the non-dimensional RSW-LU
system, that is

(Momentum equation)

Ro D̂εt̂û+ f̂k ×
(
û dt̂+

√
ε σ̂dB t̂

)
= −g∇̂η̂ dt̂−

√
ε ∇̂dp̂σ

t̂
, (4.23a)

(Mass equation)

B−1u Ro D̂εt̂ η̂ + (1 + B−1u Ro η̂)∇̂ ·
(
(û− ε ûs) dt̂+

√
ε σ̂dB t̂

)
= 0, (4.23b)

where D̂ε
t̂
u
4= dt̂u +

(
(û − ε ûs) dt̂ +

√
ε σ̂dB t̂

)
· ∇̂u − (ε/2)∇̂ ·

(
â∇̂u

)
dt̂. These non-

dimensional equations will be latter used to derive both the stochastic barotropic PG and
QG equations.

4.2.2 Non-dimensional stochastic primitive Boussinesq equations

We now describe the non-dimensional representation of the stochastic Boussinesq equa-
tions (3.32) without viscous terms. Apart from the scaling numbers presented in (4.22),
let us introduce some additional scales for the vertical variables and the cross tensor com-
ponents in the three-dimensional equations. The scaling number of the large-scale vertical
velocity can be simply deduced from the continuity equation (3.32c), namely

w = δ U ŵ, δ
4= H

L
� 1. (4.24a)

To ensure the geostrophic approximation, the time-smooth pressure component needs to
be scaled as

p = f0UL p̂. (4.24b)
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The classical hydrostatic relation gives us a specific buoyancy scale, that is

b = f0UL

H
b̂,

∂b̂/∂ẑ

N2 = O(B−1u Ro). (4.24c)

In particular, to keep the assumption of flat isopycnal (small variation of stratifications) in
the QG theory, Resseguier et al. (2017b) proposed to scale the ratio between the vertical
scale and the horizontal scale of the noise as follows:

σ̂zdBt̂

σ̂HdB t̂

= O(δB−1u Ro), (4.24d)

which implies
σzdBt = (

√
εB−1u RoH) σ̂zdBt̂. (4.24e)

Subsequently, one can deduce the following scales for the cross components and vertical
part of the variance tensor. They read, respectively

aHz = (εB−1u RoUH) âHz, azz =
(
ε δ (B−1u Ro)2UH

)
âzz. (4.24f)

Substituting these expressions (4.24) together with (4.22) in (3.32), we obtain the non-
dimensional stochastic Boussinesq system, which reads:

(Momentum equations)

Ro D̂ε
t̂û+ f̂k ×

(
û dt̂+

√
ε σ̂HdB t̂

)
= −∇̂H

(
p̂ dt̂+

√
ε dp̂σt̂

)
, (4.25a)

(Hydrostatic equation)

δ2 Ro D̂ε
t̂ŵ = b̂ dt̂− ∂

∂ẑ

(
p̂ dt̂+

√
ε dp̂σt̂

)
, (4.25b)

(Continuity equations)

∇̂H · (û− ε ûs) + ∂

∂ẑ

(
ŵ − εB−1u Ro ŵs

)
= 0, (4.25c)

∇̂H · σ̂HdB t̂ + B−1u Ro
∂

∂ẑ
σ̂zdBt̂ = 0, (4.25d)

(Thermodynamic equation)

B−1u Ro D̂ε
t̂ b̂+

((
ŵ − 2εB−1u Ro ŵs

)
dt̂+

√
εB−1u Ro σ̂zdBt̂

)
= 0, (4.25e)
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where the non-dimensional stochastic transport operator D̂ε
t̂
in three dimensions is defined

as

D̂ε
t̂
u
4= dt̂u+

((
û− ε

2(∇H · âH + B−1u Ro
∂âHz
∂ẑ

)
)

dt̂+
√
ε σ̂HdB t̂

)
· ∇̂Hu

+
((
ŵ − ε

2B
−1u Ro (∇̂H · âHz + B−1u Ro

∂âzz
∂ẑ

)
)

dt̂+
√
εB−1u Ro σ̂zdBt̂

)∂u
∂ẑ

− ε

2
(
∇̂H · (âH∇̂Hu) + B−1u Ro

(
∇̂H · (âHz

∂u

∂ẑ
) + ∂

∂ẑ
(âHz∇̂Hu) + B−1u Ro

∂

∂ẑ
(âzz

∂u

∂ẑ
)
))

dt̂.

As such, one can use the non-dimensional system (4.25) to derive the stochastic, vertically
continuous, three-dimensional PG, QG and SQG equations under specific assumptions.

4.3 Stochastic planetary geostrophic equations

This section describes the formal derivation of the stochastic PG equations following
the same strategy as in Vallis (2017). To this end, we make the following assumptions:

(i) The Rossby number is small, i.e. Ro � 1;

(ii) The scale of motion is significantly larger than the deformation scale, i.e. Bu � 1.
In particular, we consider Bu = O(Ro);

(iii) The location uncertainty is moderate, i.e. ε = O(1) or εRo = O(Ro).

Let us show the derivation in the barotropic case using the non-dimensional RSW-LU
(4.23). We first expand the prognostic variables u and η in power series of a small Rossby
number:

û = û(0) + Ro û(1) + R2o û(2) + · · · , η̂ = η̂(0) + Ro η̂(1) + R2o η̂(2) + · · · , (4.26)

where •(i) denotes the i-th order quantity in the Rossby number. Substituting subsequently
these expressions in (4.23) leads to

Ro
(
D̂ε(0)
t̂
û(0) + f̂k × û(1) dt

)
+ f̂k × (û(0) dt̂+

√
ε σ̂dB t̂)

= −∇̂(η̂(0) dt̂+
√
εdp̂σ

t̂
)− Ro ∇̂η̂(1) dt̂+O(R2o), (4.27a)

B−1u Ro D̂ε(0)
t̂
η̂(0) +

(
1 + B−1u Ro η̂(0)) ∇̂ · ((û(0) − ε ûs) dt̂+

√
ε σ̂dB t̂

)
+ Ro ∇̂ · û(1) dt̂ = B−1u O(R2o), (4.27b)
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where D̂ε(0)
t̂

4= dt̂u+
(
(û(0)− ε ûs) dt̂+

√
ε σ̂dB t̂

)
· ∇̂u dt̂− (ε /2)∇̂ · (â∇̂u) dt̂. Using the

PG assumption (i) and (iii) together with the canonical decomposition (1.1.1), the lowest
order system of equations (4.27) reduce to

f̂k × û(0) = −∇̂η̂(0), f̂k × σ̂dB t̂ = −∇̂dp̂σ
t̂
, (4.28a)

D̂ε(0)
t̂
η̂(0) +

(
1 + η̂(0)) ∇̂ · ((û(0) − ûs) dt̂+

√
ε σ̂dB t̂

)
= 0. (4.28b)

Note that with a given random pressure dpσt , the previous equations constitute a closed
system. Supposing now that the Rossby number goes to zero (Ro → 0) and using the
scalings (4.22), we recover the following (dimensional) stochastic PG equations:

(Mass equation)

Dth+ h∇·
(
(u− us) dt+ σdBt

)
= 0, (4.29a)

(Geostrophic balances)

fk × u = −∇η, fk × σdBt = −∇dpσt , (4.29b)

where η = h+ηb (see Figure 4.1). In particular, if f = f0 is constant, then the geostrophic
balances (4.29b) provides divergence-free flow components, i.e.∇·u =∇·us =∇·σdBt =
0. Thus, the mass equation (4.29a) simplifies to a pure (stochastic) transport equation,
Dth = 0.

Let us outline that the previous system (4.29) is only valid under moderate uncertainty.
When the uncertainty becomes strong, both large-scale geostrophic balance and mass
equation must be modified. In particular, let us consider that ε = O(Ro). From the
non-dimensional equations (4.27), we obtain a modified geostrophic balance including a
diffusion term and the Itô-Stokes drift:

fk × u− 1
2
∑
i,j=1,2

∂2(aiju)
∂xi∂xj

= −g∇η, ∇·∇· (ah) = 0. (4.30)

These equations do no longer evolve in time due to the strong uncertainty and are thus
of limited interest. However, they resemble to the equations of the Ekman layer and
might find some applications in such a context, with a different interpretation of such
stationary model. On the other hand, if the uncertainty is sufficiently small, in particular
for ε = O(R2o), then the classical PG equations will be recovered, namely

fk × u = −g∇η, ∂h

∂t
+∇·(hu) = 0. (4.31)
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This explains why we only adopt the moderate uncertainty assumption (iii) in this work.
We remark that following a similar strategy as above, a three-dimensional PG model can
be derived from the non-dimensional stochastic Boussinesq equations (4.25). The final
governing equations under moderate uncertainty read:

(Thermodynamic equation)

Dtb+N2
(
(w − ws) dt+ σzdBt

)
= 1

2 ∇· (a·zN
2) dt, (4.32a)

(Geostrophic balances)

fk × u = −∇Hη, fk × σdBt = −∇Hdpσt , (4.32b)

(Hydrostatic balances)
∂p

∂z
= b,

∂dpσt
∂z

= 0, (4.32c)

(Continuity equations)
∂

∂z
(w − ws) =∇H · (u− us),

∂

∂z
σzdBt = −∇H · σHdBt, (4.32d)

where the first buoyancy equation is driven by a three-dimensional stochastic transport
operator Dt.

4.4 Stochastic quasi-geostrophic equations

We describes in this section the formal derivation of the stochastic QG equations. To
this end, we make the following assumptions:

(i) The Rossby number is small;

(ii) The scale of motion is similar to that of the deformation scale. In particular, we
assume Bu = O(1) or B−1u Ro = O(Ro);

(iii) The location uncertainty is moderate;

(iv) The variations of Coriolis parameter are small, namely |βL| < |f0|.

Note that the second assumption (ii) differs from that in the PG case. In fact, from Equa-
tion (4.22g), it means that the variations of stratification under the QG approximation
are small.
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4.4.1 Derivation of barotropic model

We first derive the barotropic QG equations following a similar strategy as in the
PG case 4.3. According to the additional assumption (iv), the non-dimensional Coriolis
parameter f̂ on beta-plane can be specified by

f̂ = f̂0 + Ro β̂ŷ. (4.33)

Expanding this expression in the non-dimensional system (4.23), we have

Ro D̂ε(0)
t̂
û(0) + f̂0k × (û(0) dt̂+

√
ε σ̂dB t̂)

+ Ro k ×
(
β̂ŷ(û(0) dt̂+

√
ε σ̂dB t̂) + f̂0û

(1) dt̂
)

= −∇̂(η̂(0) dt̂+
√
ε dp̂σt̂ )− Ro ∇̂η̂(1) dt̂+O(R2o), (4.34a)

B−1u Ro D̂ε(0)
t̂
η̂(0) + (1 + B−1u Ro η̂(0))∇̂ ·

(
(û(0) − ε ûs) dt̂+

√
ε σ̂dB t̂

)
+ Ro ∇̂ · û(1) dt̂ = B−1u O(R2o), (4.34b)

where D̂ε(0)
t̂

is defined as in the PG case. Using the QG assumption (i)–(iii), the zeroth
order equations reduce to

f̂0û
(0) = ∇̂⊥η̂(0), f̂0σ̂dB t̂ = ∇̂⊥dp̂σt̂ (4.35a)

∇̂ · (û(0) − ε ûs) = 0, ∇̂ · σ̂dB t̂ = 0, (4.35b)

where ∇⊥ 4= (−∂/∂y, ∂/∂x)T . Combining these two results, we obtain

∇̂ · û(0) = ∇̂ · ûs = ∇̂ · σ̂dB t̂ = 0. (4.35c)

Subsequently, by differencing (4.34) and (4.35), we deduce the first order equations,
namely

D̂ε(0)
t̂
û(0) + k ×

(
β̂ŷ(û(0) dt̂+

√
ε σ̂dB t̂) + f̂0û

(1) dt̂
)

= −∇̂η̂(1) dt̂, (4.36a)

B−1u D̂ε(0)
t̂
η̂(0) + ∇̂ · û(1) dt̂ = 0. (4.36b)

In order to close the system, we need to eliminate the first order quantities û(1) and η̂(1).
Taking first the vertical curl (k · ∇×) of Equation (4.36a), we deduce an evolution law
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4.4. Stochastic quasi-geostrophic equations

for the relative vorticity, defined as ω̂(0) 4= ∂v̂(0)/∂x̂− ∂û(0)/∂ŷ. It reads:

D̂ε(0)
t̂
ω̂(0) + β̂(v̂(0) dt̂+

√
ε σ̂ydBt̂) + ∇̂ · û(1) dt̂ = ε Ŝ1 dt̂+

√
ε Ŝ2 dBt̂, (4.37a)

in which some source and sinks of vorticity emerged such that

S1
4= tr

(
∇⊥uTs∇uT

)
+ 1

2 ∇·
(∂a
∂x
∇v − ∂a

∂y
∇u

)
, (4.37b)

S2 dBt
4= −tr

(
∇⊥(σdBt)T∇uT

)
. (4.37c)

Substituting (4.36b) in (4.37a), as well as introducing the Coriolis correction into the
transport operator, we obtain a single equation, that is

D̂ε(0)
t̂

(ω̂(0) + β̂ŷ − f̂0Bu η̂(0)) = ε (Ŝ1 − 2β̂v̂s) dt̂+
√
ε Ŝ2 dBt̂. (4.38)

Moreover, the large-scale geostrophic balance in (4.35a) allows us to define a lowest order
stream function ψ̂(0) 4= η̂(0)/f̂0 such that

û(0) = ∇̂⊥ψ̂(0), ω̂(0) = ∇̂2ψ̂(0). (4.39)

Therefore, Equation (4.38) can be re-written as

D̂ε(0)
t̂

(∇̂2ψ̂(0) + β̂ŷ − f̂ 2
0B−1u ψ̂(0)) = ε (Ŝ1 − 2β̂v̂s) dt̂+

√
ε Ŝ2 dBt̂. (4.40)

Finally, restoring the dimensions with (4.22), we get the stochastic barotropic QG equa-
tions:

(Potential vorticity equations)

Dtq =
∑
i=1,2

J
(
(σdBt)i − uis dt, ui

)
− 1

2 ∇·
( ∂a
∂x⊥i
∇ui

)
dt− β∂ai2

∂xi
dt, (4.41a)

q = ∇2ψ + βy − ψ

L2
d

, (4.41b)

(Continuity equations)

u =∇⊥ψ, σdBt =∇⊥ϕdBt, ∇·us = 0, (4.41c)

where J(f, g) denotes the Jacobian determinant of the vector composed of the two func-
tions f and g with J(f, g) = (∂f/∂x)(∂g/∂y) − (∂g/∂x)(∂f/∂y), ψ = (g/f0)η, ϕdBt =
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dpσt /f0 and ψs are respectively the large-scale, the small-scale and the Itô-Stokes stream
functions. We remark that the stochastic system (4.41) is valid only under moderate un-
certainty. Resseguier et al. (2017c) shows that beyond this scaling the geostrophic balance
is eventually modified and includes correction terms to isobaric velocities.

In Chapter 7, the stochastic barotropic QG system (4.41) is used to study the struc-
turation effect of the small-scale random field on the large-scale flow. In addition, such
random model under additional forcing and damping is also adopted for analyses of long-
term statistical predictions.

Unlike the classical QG model, (4.41) involves sources of PV. For instance, the first
term on the RHS of (4.41a) has a similar form as the additional term introduced in the
barotropic Leray α-model studied in Holm and Nadiga (2003). In fact, it can be interpreted
as the rotating interaction between the strain vectors (McWilliams, 1984; Weiss, 1991)
of the large-scale flow and the small-scale flow component. This antisymmetric source
term cancels when the two strain vectors are collinear. We highlight in the following their
contributions to the conservative energy budget.

4.4.2 Energy conservation

To demonstrate the conservation of total energy for (4.41), we first express this system
in an equivalent Stratonovich representation in a similar way as presented in Section 2.4.
The Stratonovich form of system (4.41) reads:

u =∇⊥ψ, us =∇⊥ψs, σ◦dBt =∇⊥ϕ◦dBt, (4.42a)

Dt◦(∇2ψ − Fψ) + β
∂

∂x
(ψ dt+ ϕ◦dBt) = dt◦S, (4.42b)

dt◦S
4= tr

(
∇⊥uTs∇uT

)
︸ ︷︷ ︸

4=S1

dt − tr
(
∇⊥(σ◦dBt)T∇uT

)
︸ ︷︷ ︸

4=S2◦dBt

, (4.42c)

where F 4= 1/L2
d. Remember that the total energy of barotropic QG system is defined as

E =
∫
A

(1
2‖∇ψ‖

2 + 1
2Fψ

2
)

dx. (4.43)

We remark that the terms involving β in (4.42b) make no direct contribution to the energy
budget (Vallis, 2017). For the sake of simplicity, we drop them in the following. Let us
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now compute the time evolution of the total energy (4.43) for the system (4.42):

dt◦E =
∫
A

(
(dt◦∇ψ) ·∇ ψ + Fψdt◦ψ

)
dx = −

∫
A
ψdt◦(∇2ψ − Fψ) dx

=
∫
A
ψ
(
(u− us) dt+ σ◦dBt

)
·∇

(
∇2ψ − Fψ

)
dx︸ ︷︷ ︸

I

−
∫
A
ψdt◦S dx, (4.44)

in which the integration-by-parts formula is used under close impermeable boundary
condition (uniform ψ along the boundary) or under periodic boundaries. The first term
(I) can be further manipulated using the incompressible constraints (4.41c) such that

I =
∫
A
ψ∇·

((
(u− us) dt+ σ◦dBt

)(
∇2ψ − Fψ

))
dx

= −
∫
A
∇ψ ·

(
(u− us) dt+ σ◦dBt

)(
∇2ψ − Fψ

)
dx

= −
∫
A
∇ψ · (−us dt+ σ◦dBt)(∇2ψ − Fψ) dx. (4.45)

Notice that until this step, we show that without any noise, the classical barotropic QG
system conserves well the total energy. Let us then expand the contribution of the random
source term in (4.44) as follows:

−
∫
A
ψS2◦dBt dx =

∑
i=1,2

∫
A
ψ
∂σ◦dBt

∂x⊥i
·∇ ui dx

=
∑
i=1,2

∫
A
∇·
(
ψ
∂σ◦dBt

∂x⊥i
ui
)

dx

= −
∫
A

(∇ψ)T (u·∇⊥)σ◦dBt dx

=
∫
A
∇⊥ ·

(
u(∇ψ)T

)
σ◦dBt dx

=
∫
A
∇ψ · σ◦dBt∇2ψ dx+

∫
A

(
u ·∇⊥ (∇ψ)T

)
σ◦dBt dx︸ ︷︷ ︸

II

, (4.46)

where the last term in the previous equation is null through (4.42a). Indeed,

II =
∫
A

(
u ·∇⊥ (∇ψ)T

)
∇⊥ϕ◦dBt dx

= −
∫
A
∇⊥ ·

(
u ·∇⊥ (∇ψ)T

)
ϕ◦dBt dx

=
∫
A
∇⊥ ·

(
u⊥ ·∇ (∇ψ)T

)
ϕ◦dBt dx

=
∫
A

(
tr
(
∇⊥(u⊥)T∇(u⊥)T

)
+ (u⊥·∇)(∇⊥ ·∇ ψ)

)
dx = 0. (4.47)
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Similarly, one can show that for the other source/sink term S1 (of bounded variation) in
(4.44), we have

−
∫
A
ψS1 dx = −

∫
A
∇ψ · us∇2ψ dx. (4.48)

Substituting the expressions (4.48), (4.46) and (4.45) in Equation (4.44), the evolution of
the total energy reduces to

dt◦E =
∫
A
Fψ∇ψ · (σ◦dBt − us dt) dx

=
∫
A
∇·(Fψ∇⊥ψ)(ϕ◦dBt − ψs dt) dx

=
∫
A

(F∇ψ ·∇⊥ ψ + Fψ∇·∇⊥ψ)(ϕ◦dBt − ψs dt) dx = 0. (4.49)

Therefore, the stochastic barotropic QG equations (4.42), proposed in this work, conserves
along time the total energy for any realizations. As we can see, the energy of the source
processes compensates the increase of energy due to the advection of the resolved flow
by the unresolved one. Besides, both large-scale and small-scale geostrophic balances and
the divergence-free condition of the Itô-Stokes drift play important roles in this energy
conservation. This result is consistent to that found for the simplified RSW-LU system
(4.11).

4.4.3 Extension to multi-layer and primitive models

In a very similar way as for the multi-layered shallow water system (4.9), there is a
straightforward generalization of the stochastic QG equations in terms of a N -layered
model. The layered PV are defined as

q1 = ∇2ψ1 + βy − f2
0

g′1H1
(ψ1 − ψ2), (4.50a)

qn = ∇2ψn + βy − f2
0

g′nHn
(ψn − ψn+1) + f2

0
g′n−1Hn

(ψn−1 − ψn), ∀ 1 < n < N, (4.50b)

qN = ∇2ψN + βy + f2
0

g′N−1HN
(ψN−1 − ψN ). (4.50c)

The evolution of such PV and the continuity equations are given by

Dnt qn =
∑
i=1,2

J
(
(σdBt)in − (us)in dt, uin

)
− 1

2 ∇·
(∂an
∂x⊥i
∇uin

)
dt− β∂(ai2)n

∂xi
dt, (4.50d)

un =∇⊥ψn, (σdBt)n =∇⊥(ϕdBt)n, ∇·(us)n = 0. (4.50e)
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The numerical implementation of a three layer QG model is presented in Chapter 8, to
illustrate numerically that the proposed random model (4.50) allows us to better repre-
sent high-resolution ocean internal variability on a very coarse mesh. Let us note that
the layered PV (4.50) can be considered as a vertical discretization of the (vertically)
continuous three-dimensional PV. Following a similar strategy as in the barotropic case,
the three-dimensional QG model (Resseguier et al., 2017b) can be derived from the (non-
dimensional) stochastic simple Boussinesq equation (4.25). The final governing equations
under moderate uncertainty read:

(Potential vorticity equations)

Dtq =
∑
i=1,2

J
(
(σdBt)i − uis dt, ui

)
− 1

2 ∇·
( ∂a
∂x⊥i
∇ui

)
dt− β∂ai2

∂xi
dt, (4.51a)

q = ∇2ψ + βy + ∂

∂z

( f 2
0
N2

∂ψ

∂z

)
, (4.51b)

(Continuity equations)

u =∇⊥ψ, σdBt =∇⊥ϕdBt, ∇·us = 0. (4.51c)

Hereafter, an elliptic PDE can be constituted by assuming that the interior PV in (4.51)
is zero and imposing two boundary conditions in a semi-infinite vertical domain:

∇2ψ + ∂

∂z

( f 2
0
N2

∂ψ

∂z

)
= 0, (4.52a)

∂ψ

∂z
= b, (z = 0), (4.52b)

ψ = 0, (z → −∞), (4.52c)

with a constant stratification N . The above elliptic problem can be solved in horizontal
Fourier space, which gives the inversion relationship between the surface buoyancy and
the surface stream function:

ψ̂ = f0

N

b̂

‖k‖
, (4.53)

where •̂ stands for the Fourier transform coefficient and ‖k‖ =
√
k2
x + k2

y denotes the
modulus of two-dimensional wave vectors. Taking the inverse Fourier transform together
with a stochastic transport of buoyancy at the ocean surface as well as the continuity
equations, we recover the stochastic surface quasi-geostrophic (SQG) equations studied
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by Resseguier et al. (2017b,c, 2020b):

(Buoyancy equations)

Dtb = 0, b = N

f0
(−∇2)1/2ψ, (4.54a)

(Continuity equations)

u =∇⊥ψ, σdBt =∇⊥ϕdBt, ∇·us = 0. (4.54b)

Note that this simple model describes surface flow due to a buoyancy transport. One
of it’s advantages is that it constitutes a two-dimensional model that captures essential
properties of three-dimensional solutions on the surface. It was found by Resseguier et al.
(2017b) that, compared to classical models, the proposed stochastic SQG model was
more accurate in predicting the extreme events and in diagnosing the frontogenesis and
filamentogenesis. In Chapter 6, the ensemble forecasting skills of this random model based
on different type of noises are compared to that of a classical model randomized through
its initial condition. For future work, it would be interesting to derive some new coupled
stochastic models based on multiple space-time scales (Pedlosky, 1984; Grooms et al.,
2011). For instance, we may expect that a stochastic PG-QG coupled model would enhance
the mesoscale eddies representation in the PG model and that a stochastic SQG-QG
coupled model would permit to represent some sub-mesoscale eddies in a QG model.
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Chapter 5

NUMERICAL MODELING OF UNCERTAINTY

In order to perform a numerical simulation of the LU models, the
uncertainty field has to be a priori modeled. We explore in particu-
lar methods based on spectral decompositions (2.9) defined from the
eigenfunction basis of the spatial covariance. In practice, we work
with a finite set of eigenfunctions of the small-scale Eulerian velocity
fluctuations rather than with the Lagrangian displacements. This
chapter presents some numerical methods to estimate the empiri-
cal orthogonal functions (EOF). We first describe the data-driven
approaches and then detail some scale-aware parametrization meth-
ods. The work presented in this chapter have been partly published
in Bauer et al. (2020a,b); Resseguier et al. (2020a).

Abstract

5.1 Data-driven approaches

Data-driven approaches are presented in this section to estimate empirical basis func-
tions. The first method is based on the so-called proper orthogonal decomposition (POD)
method where the covariance is assumed to be quasi-stationary. We propose in Section
5.1.2 a second approach which introduces time-dependent weight coefficients into the
spectral decomposition.

5.1.1 Off-line learning of EOF from high-resolution velocity

Let us consider a set of velocity snapshots {vo(x, ti)}i=1,...,Nt that have been a pri-
ori coarse-grained from high-dimensional data using a low-pass filter, such as the sharp
spectral filter or Gaussian filter (Pope, 2000).
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We describes briefly the snapshot POD method (Sirovich, 1987). Let v′o = vo − vto be
the fluctuation snapshots with the overbar denoting temporal average. The corresponding
temporal covariance tensor is defined as C = (cij)i,j=1,...,Nt such that

cij = 1
Nt

〈v′o(·, ti),v′o(·, tj)〉Ω
4= 1
Nt

∫
Ω
v′o(x, ti) · v′o(x, tj)dx. (5.1a)

The eigenvalues and their associated eigenfunctions can be estimated from the following
eigen problem:

CB = ΛB, (5.1b)

where Λ = (λi)i=1,...,Nt is the set of decaying eigenvalues, i.e. λ1 ≥ λ2 ≥ . . . ≥ λNt ≥ 0, and
B = (bij)i,j=1,...,Nt , bij = bi(tj) is a complete set of orthogonal eigenvectors. The temporal
modes {bi}i=1,...,Nt are then normalized such that

bi(t)bj(t)
t = λiδij, (5.1c)

While the spatial modes {φi}i=1,...,Nt given by

φi(x) = bi(t)v′o(x, t)
t
, (5.1d)

are orthonormal:
〈φi,φj〉Ω = δij. (5.1e)

From this spectral decomposition, each snapshot can be reconstructed by

v(x, tj) = vto(x) +
Nt∑
i=1

bi(tj)φi(x). (5.1f)

In addition, we suppose that such a set of empirical eigenfunctions has a complete (or
direct) decomposition (Mémin, 2014; Resseguier et al., 2017d) such that the fluctuations
v′ of the large-scale current lives in a subspace spanned by {φi}i=1,...,M0−1, and the small-
scale random drift σdBt/∆t with a sufficiently small time step ∆t lives in the residual
subspace spanned by {φi}i=M0,...,M1 with M0 < M1 ≤ Nt such that

1
∆tσ(x)dBt ≈

M1∑
m=M0

√
λmφm(x)ξm, (5.2a)

where ξm are i.i.d. standard Gaussian variables. The corresponding variance tensor is then
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given by
1

∆ta(x) ≈
M1∑

m=M0

λmφm(x)φT

m(x). (5.2b)

We remark that the resulting eigenfunctions φm in (5.2) are optimal in terms of the
kinetic energy of the data (Holmes et al., 1996). Hereafter, such a POD approach depends
only on two parameters: M0 and M1 pointing to the first and last modes of the noise.
The choice of these parameters depends on the energy ratio γ0, respectively γ1, with
0 < γ0 < γ1 < 1, that needs to be captured by the largest, respectively the smallest,
spatial scales of the random flow component. More precisely, let us first introduce the
so-called relative information content (RIC) of the eigen decomposition:

RIC(m) =
∑m
i=1 λi∑Nt
i=1 λi

, m = 1, . . . , Nt. (5.3a)

Suppose that the largest structure of the random flow is required to contain the ratio γ0

of the total energy of the fluctuations, the first truncated mode is then determined by

M0 = min{m | RIC(m) ≥ γ0}, (5.3b)

as shown in Figure 5.1. Analogously, the last truncated mode M1 can be found with a
given ratio γ1 for the smallest structure. In practice, this latter can be defined empirically.

1 M
0

M
1

0

0

1

Figure 5.1 – Illustration of the spatial modes truncation for the random velocity, within
the spectrum of the corresponding eigenvalues.

Now, the problem boils down to choose adequately the ratio γ0. One possible solution
is to estimate it by comparing the kinetic energy spectrums, between the ensemble of ob-
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servation data {vo(x, ti)}i=1,...,Nt and an extra collection of snapshots {vLR(x, ti)}i=1,...,Nt ,
obtained from a simulation of the coarse-resolution benchmark model ∆LR. The parameter
γ0 is approximated by the proportion of the partial energy, accumulated up to the first
wavenumber κ0 for which the two temporally averaged spectrums start to deviate (c.f.
Figure 5.2):

γ0 ≈
∑
κ≤κ0 Êo

t

(κ)∑
κ≤κc Êo

t

(κ)
, (5.3c)

where Êo denotes the instantaneous kinetic energy spectral density of the observations,
and κc

4= π/∆LR stands for the theoretical effective cutoff.

0 c

Figure 5.2 – Illustration of the time-averaged kinetic energy spectrums. The wavenumber
κ0 is searched as the first point where the observation and the deterministic coarse-
simulation derivate, in order to estimate γ0 from (5.3c).

Furthermore, Equation (5.1d) reveals that the proposed spatial modes are represented
as a linear combination of the instantaneous observed velocity fields. Thus, the result-
ing small-scale velocity σdBt/∆t has the same boundary and divergence conditions as
the large-scale drift v. In the following, we provide an important remark concerning the
coarse-graining procedure that need to be considered before performing the previous POD
method.

Correction drift derived from coarse-graining procedure

Let us recall from Chapter 2 that the LU model is based on a temporal–scale–
separation assumption where the noise term σdBt has a much smaller time scale than
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the smooth component v. Thus, a natural idea would consist in applying the previous
POD approach to the temporal fluctuations of the high-resolution snapshots (denoted as
vl):

v′l = vl − vlt. (5.4)

However, this would lead an issue. Considering that {φil}i are the resulting EOFs satisfying
〈φil,φ

j
l 〉Ω = δij, in order to use these EOFs for the construction of noise on the coarse

grid, a coarse-graining procedure is still required, i.e. φL = Fφl, where F denotes for a
grid-scale filtering operation. As a consequence, we lost the orthogonality of EOFs, i.e.
〈φiL,φ

j
L〉Ω 6= δij.

An alternative way consists in estimating the basis functions directly on the coarse
grid and is described by the following procedure:

v′l = vl − vlt

= Fvl︸︷︷︸
vL

+(1−F)vl −Fvl + (1−F)vl
t

=
(
vL − vLt

)
+ (1−F)vl − (1−F)vl

t
, (5.5)

or,
v′L = Fv′l =

(
vL − vLt

)
+ F

(
(1−F)vl

)
−F

(
(1−F)vl

t)
, (5.6)

where the first two terms on the RHS depends on space-time, yet the last term depends
only on space. Let us highlight that if F is not a projector (as in the case of Gaussian
filtering), i.e. F2 6= F , then the last two terms are not null in theory. In practice, one
may consider to apply the POD procedure on the subsampled versions of vL − vLt to
get a set of EOFs defined on the coarse grid, and to keep the subsampled version of
−F(1−F)vl

t as a correction of bias. In Chapter 8, this correction term is included in the
numerical simulation of the wind-driven double-gyre circulation. The results show that
this term plays a dominant role in reproducing the meandering jet for coarse resolution
simulations.

5.1.2 Updated EOF by matching temporal modes

The previous POD procedure is an efficient off-line learning method, yet it relies on
a strong stationary assumption, and thus leads to a sequence of random velocity fields
with no temporal connection with the resolved dynamics. In the following, we propose
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a novel approach that introduces a time-dependent weight coefficient αm(t) in the POD
representation. In this approach, the instantaneous random velocity at each time t is now
defined as

1
∆tσ(x, t)dBt ≈

M1∑
m=M0

√
λmφm(x)√αm(t)ξm, (5.7a)

with the corresponding variance tensor given by

1
∆ta(x, t) ≈

M1∑
m=M0

λmφm(x)φT

m(x)αm(t). (5.7b)

Indeed, such a weighting provides an energy re-distribution of the spatial modes at each
time step. The weighting principle proposed here consists in selecting from the reference
data the set of time instances that match to the large-scale structures of the current
simulation. To be more specific, let us consider a current velocity field vc(x, t) at a given
time t of the current simulation. The projection coefficient bc1 of the current fluctuation
v′c on the first spatial mode φ1 is defined by

bc1(t) = 〈v′c(·, t),φ1〉Ω, (5.8a)

where the fluctuation v′c at one position are obtained by subtracting a local average of
the current field around that position, and where 〈u,v〉Ω

4=
∫
Ω
u ·vdx denotes the L2(Ω)-

inner product. As illustrated in Figure 5.3, a collection of matching instants is constructed
by identifying the current projection bc1 to the time series of the first temporal mode
{b1(s)}s=1,...,Nt subject to a consistent condition of its time increments:

S(t) =
{
s
∣∣∣ |b1(s)− bc1(t)| ≤ ε; ∆s[b1]∆t[bc1] ≥ 0

}
, (5.8b)

where ε is a sufficiently small threshold and ∆t[b]
4= b(t) − b(t − ∆t) stands for the

temporal variation of b at time t. This aims at selecting the events corresponding to the
same projection coefficient and the same sign of the time increment. The weight coefficient
αm for each mode m = M0, . . . ,M1 is then fixed from the sample variance:

αm(t) = 1
|S(t)| − 1

∑
s∈S(t)

(bm(s)− µm(t))2, µm(t) = 1
|S(t)|

∑
s∈S(t)

bm(s), (5.8c)

where |S| stands for the sample size. These time dependent coefficients allows us to slave
a set of modes on some dominant modes. Note that we present here only with the first
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mode. However, this technique could be extended to a vector of dominant modes in
order to select more complex turbulent events. Let us also outline that the boundary
and divergence conditions of the random flow (5.7a) remain the same in this weighting
method.

1 N
t

0

b
1

 l

Figure 5.3 – Illustration of mode matching principle: Selection of a sample set of time
based on (5.8b) corresponding to potential events matching the large-scale configuration
of the current simulation.

5.2 Parameterization methods

We present in this section some noises that are not anymore defined from the data but
instead parameterized. To this end, we describe two different kinds of spatial structure for
the noise – homogeneous and heterogeneous. The first one is easy-to-implement. It is in
particular adapted to turbulent flows with homogeneous small-scale features. On the other
hand, the heterogeneous noise has more physical meaning for large-scale atmospheric and
oceanic circulations.

5.2.1 The homogeneous stationary model

From the general definitions (2.2) and (2.8), a homogeneous noise means that its corre-
lation operator σ is a convolution operator. In addition, to ensure that the homogeneous is
incompressible, another convolution by a divergence-free projector, P 4= Id− (∇2)−1∇∇T

(d = 2 or 3), is required:

σ(x)dBt =
(
P ? σ̃ ? dBt

)
(x), (5.9)
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where σ̃ is a convolution kernel of the small-scale flows and the symbol ? denotes the
convolution operation. In a simplified case with d = 2, Resseguier et al. (2017b) proposed
an isotropic model defined through a random stream function:

σ(x) dBt =∇⊥H
(
ϕ̆ ? dBt

)
(x), (5.10)

where ∇⊥H = [−∂y, ∂x]T denotes the perpendicular gradient and ϕ̆ ? dBt stands for the
random stream function with its convolution kernel ϕ̆. As shown in Mémin (2014), both
isotropy and incompressibility of the noise (5.10) result in a (constant) diagonal variance
tensor a0I2 with the eddy-viscosity-like coefficient a0 and the two-dimensional identity
matrix I2. As discussed at the end of Section 4.1.3, for the RSW-LU system (4.7) un-
der geostrophic noise, f × σHdBt ≈ −∇Hdpσt , one can identify, for a constant Coriolis
parameter f0, the random pressure dpσt with the proposed random stream function by
dpσt = 1

f0
ϕ̆ ? dBt. In practice, the convolution kernel ϕ̆ is specified by three parameters: a

fixed omni-directional spectrum slope s, a band-pass filter fBP with support in the range
of two wavenumbers κm and κM , and an eddy-viscosity-like coefficient a0. In fact, the
Fourier transform of the random stream function ϕ̆ ? dBt can be defined as:

˘̂ϕ ? dBt(k) 4= A√
∆t
fBP (‖k‖) ‖k‖−α ξ̂t(k) with α = (3 + s)/2, (5.11)

where ·̂ denotes the Fourier transform coefficient, ξt is a space-time white noise, and A

is a constant to ensure E
∥∥∥σdBt

∥∥∥2
= 2a0∆t with ∆t the size of one time stepping. In

the simulations, the maximal wavenumber κM of the noise can usually be chosen as the
effective resolution cutoff, the minimal wavenumber can be set to κm = κM/2, and the
theoretical spectrum slope of two-dimensional (resp. three-dimensional) flow is given by
s = −3 (resp. s = −5/3). The noise strength parameter a0 is a free parameter that be
tuned.

5.2.2 On-line learning of EOF from resolved velocity

The data-driven estimation of EOFs (Section 5.1.1) previously described constitute
quite efficient procedures. However, fine-scale observation data, coming either from direct
measurements or from high-dimensional simulations, are not always available. Therefore,
Bauer et al. (2020a) proposed an alternative approach in which some local fluctuations,
called pseudo-observations (PSO), are generated directly from a coarse-grid simulation.
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Then, the singular value decomposition (SVD) is applied on those PSO to estimate a set
of time-varying EOFs; the noise associated with its variance tensor is then built in the
same way as in (5.2). Finally, the magnitude of the noise and variance should be scaled
down to smaller scales based on a similarity analysis (Kadri Harouna and Mémin, 2017).
In the following, we describe in more details both the generation of PSO and the scaling
technique.

Generation of pseudo-observations

Without loss of generality, we present here the generation of PSOs in a three-dimensional
case. Let us consider a nx × ny × nz low-resolution stochastic simulation. The main idea
consists in building some PSOs by sliding a local window containing nw points (with nw
be an odd integer) in each direction (x, y, z) over the spatial grid for each velocity com-
ponent. More precisely, for each time step t and at every grid point xi,j,k, we first list the
n3
w values of each velocity component contained in the window centered at that point:

I(xi,j,k, t)
4=
{
v(xp,q,r, t)

∣∣∣∣ |p− i| ≤ nw − 1
2 , |q − j| ≤ nw − 1

2 , |r − k| ≤ nw − 1
2

}
. (5.12)

Note that appropriate boundary conditions (replication, periodicity, etc.) are adopted
when looking at a point on the border. Then, for one point xi,j,k, we pick randomly
(following a discrete uniform law) no values (with no ≥ n3

w) in the set I(xi,j,k, t). These no
values are the so-called PSOs in the local window centered at the point xi,j,k. Repeating
subsequently this procedure for all the grid points (i.e. ∀ i = 1, . . . , nx, j = 1, . . . , ny, k =
1, . . . , nz), a global PSO matrix of size 3np × no (with np

4= nxnynz be the total number
of grid points) can be construct:

V L
4=



u1
1 · · · uno1
... · · · ...
u1
np · · · unonp
v1

1 · · · vno1
... · · · ...
v1
np · · · vnonp
w1

1 · · · wno1
... · · · ...
w1
np · · · wnonp



, (5.13)
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where uij denotes the i-th observation (i = 1, . . . , no) of the u-component at the j-th point
(j = 1, . . . , np). Thus, each row of V L contains an ensemble of PSOs at a given point and
each column of V L can be seen as one realization of the vector field. The subscript L
denotes the fact that the PSOs are obtained at the window scale L which is coarser than
the simulation scale l with L = nw l. Further down we will introduce a scaling to “transfer”
the observations from L to l.

Spectral representation of observation-scaled fluctuations

Let us now subtract the row-averages of V L to get the fluctuations, denoted as V ′L,
within each window:

V ′L = V L − 〈V L〉, (5.14)

where 〈·〉 stands for the ensemble mean over the no PSOs. Applying the SVD on these
fluctuations V ′L, we then obtain a 3np×no matrix Φ of the left singular vectors (where the
columns of Φ are mutually orthonormal) and a no×no diagonal matrix Σ of the singular
values such that V ′L = ΦΣΨT (with Ψ the right singular vectors matrix). As such,
the two-points covariances of the fluctuation velocity can be estimated by the following
3np × 3np matrix:

CL
4= 1
no − 1V

′
L(V ′L)T = ΦΣ̃Σ̃TΦT (5.15)

≈ E
[(
vL − E[vL]

)
(x, t)

(
vL − E[vL]

)T
(y, t)

]
, (5.16)

where Σ̃ 4= Σ/
√
no − 1 and the matrix CL is of rank no − 1 due to the subtraction

(5.14). Let us note that (5.14) is based on the assumption that ensemble average can be
approximated by local space average. With that assumption, the columns of Φ are also
the eigenvectors of CL associated to the eigenvalues Λ 4= diag(Σ̃Σ̃T ). Let φi be the i-th
column of Φ and λi be the i-th coefficient of Λ, for i = 1, . . . , no−1. The random velocity
fluctuations and their one-point covariances can be written as

v′L(x) =
no−1∑
i=1

√
λiφi(x)ξi, cL(x) =

no−1∑
i=1

λiφi(x)φT

i (x). (5.17)

Let us outline that these fluctuations correspond intrisically to a virtual observation at
scale L and must be scaled down to the simulation scale l = L/nw.
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Scale-aware modulation of the amplitude

Kadri Harouna and Mémin (2017) proposed a self-adapted scaling method using large-
scale information at each time step. This scaling reflects the fact that variances of inde-
pendent random variables are observed at some large scales L, can be injected at a smaller
scale l up to the factor (l/L)2/3. In our case, this factor reduces hence to n−2/3. We re-
member that the variance tensor a of the noise σdBt corresponds to the variance of
fluctuations velocity up to a decorralaton time τl, namely

a = τl n
−2/3cL. (5.18)

Now all we need is the small-scale characteristic time τl. In order to define this character-
istic time, let us first define a (small) velocity scale Ul by

Ul
4= n−1/3 ‖tr1/2(cL)(x)‖, (5.19)

where the norm could be ‖ · ‖2 or ‖ · ‖∞. Together with the numerical time-step ∆t given
by classical Courant-Friedrichs-Lewy (CFL) condition, this gives a numerical small-scale
length, δl = Ul∆t. Applying again the turbulence-power-law (Kadri Harouna and Mémin,
2017), the characteristic time can be estimated by

τl =
( l
δl

)2/3
∆t =

( l
Ul

)2/3
(∆t)1/3. (5.20)

Finally, one realization of the noise corresponding to the variance (5.18) is given by

σdBt = √τl n−1/3v′L. (5.21)

5.2.3 Random forcing derived from subgrid scales dissipations

In this section, we propose a new energy-budget-based stochastic subgrid model. In
practice, large-scale fluid dynamics models involve dissipation operators called subgrid
scales (SGS) models. They stabilize the numerical simulations and mimic the action of
the unresolved small scales by draining the energy at high wavenumbers. Simple SGS
models often take the form of classical Laplacian operator or of higher-order hyperviscosity
operators (typically, some power of a Laplacian). Let us consider the dynamics of a fluid
property q, which is assumed to be transported up to a dissipation operator L and a
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stochastic forcing η:
Dq
Dt = L[q] + η, (5.22)

where D/Dt = ∂/∂t + v·∇ stands for the material derivative operator and the random
forcing η is a centered process uncorrelated in time.

Similarly as shown in Section 2.3, through Itô calculus, a conservation of the ensemble
mean of energy, E[

∫
Ω

1
2q

2 dx], would imply:

0 = d
dtE

[ ∫
Ω

1
2q

2 dx
]

= E
∫
Ω

(
q

dq
dt + 1

2
d
dt〈q, q〉t

)
dx = E

∫
Ω

(
qL[q] + dt

2 (H[q])2
)

dx, (5.23)

in which
(H[q])2(x, t) 4= E

[
η2(x, t) | q(·, t)

]
(5.24)

denotes the variance of random forcing η conditioned on field q at time t and 〈q, q〉t
stands for the quadratic variation of q. In order to maintain a desired amount of energy
dissipation, we introduce a scaling factor ζ > 0 in the previous balance, namely

∫
Ω
q
(
− 2ζ

dtL[q]
)

dx =
∫
Ω

(H[q])2 dx. (5.25)

Now, for a given dissipation operator L, we aim at building a noise η which satisfies the
desired balance (5.25). If L is a negative auto-adjoint operator (which is generally the
case), we can define an operator H such that

−2ζ
dtL = HH?, (5.26)

where H? is the adjoint of operator H. More precisely, for the Laplacian, biharmonic or
higher-order hyperviscosity operators, this operator H is defined respectively as

H[q] 4=



ζ̃α∇q if L[q] =∇·(ααT∇q),

ζ̃ ∇· (α∇q) if L[q] = −∇·
(
α∇

(
∇· (α∇q)

))
,

ζ̃α∇(∇2)pq if L[q] = α2(∇2)2p+1q,

ζ̃α(∇2)pq if L[q] = −α2(∇2)2pq,

(5.27)

where ζ̃ =
√

2ζ/dt and p is a positive integer, α is a constant and α stands for a matrix
which depends possibly on space.

In particular, for a specific deterministic subgrid tensor L, if the conditional variance
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integral of random forcing,
∫
Ω(H[q])2 dx, can be set to the integral

∫
Ω ‖H[q]‖2 dx, it is pos-

sible then to control the energy dissipation satisfying the desired balance (5.25). Indeed,
in that case, we have:∫

Ω
(H[q])2 dx =

∫
Ω
‖H[q]‖2 dx =

∫
Ω
q(H?H)[q] dx =

∫
Ω
q
(
− 2ζ

dtL[q]
)

dx. (5.28)

Nevertheless, to simulate the random forcing, knowing its global variance is not enough.
We also need to model its spatial structure (e.g. the local variation of the variance, its
spatial correlations). In this purpose, we express the noise on a convenient orthonormal
basis of L2(Ω) denoted {ek}k≥0:

η(x, t) =
∑
k≥0

λk(t)ek(x)ξk, ξk ∼ N (0, 1), (5.29)

where the eigenvalues are updated in time by

λk(t) =
∫
Ω
‖H[q]‖(x, t)ek(x) dx. (5.30)

Thus, by definition of H and by the Parseval theorem, the conditional variance integral
of random forcing is given by

∫
Ω

(H[q])2 dx =
∫
Ω
E
[
η2(x, t) | q(·, t)

]
dx =

∑
k≥0
|λk|2 =

∫
Ω
‖H[q]‖2 dx. (5.31)

Therefore, Equation (5.28) is valid and the random forcing η defined by (5.29) and (5.30)
satisfies the objective energy balance (5.25). We remark that like the advection noise
(σdBt ·∇ q) in the LU transport equation (2.11), the random forcing η defined by (5.29)
is also multiplicative and non-Gaussian, as their eigenvalues in (5.30) depends on each
realizations of q.

As a consequence, given a numerical dissipation L together with a chosen orthonormal
basis {ek}k≥0, it is always possible to define a noise (5.29) that respects the assumed energy
balance (5.25). However, Equation (5.25) constitutes only a global balance. Indeed, locally
in space, the variance of random forcing is

(H[q])2 =
∑
k≥0
|λk|2|ek|2 6=

(∑
k≥0

λkek
)2

= ‖H[q]‖2. (5.32)

Moreover, we have
‖H[q]‖2 6= qH?H[q] = q

(
− 2ζ

dtL[q]
)
. (5.33)
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The choice of the fixed basis {ek}k≥0 in this model is of crucial importance, as it influences
in particular the variance heterogeneity and the correlation lengths of the random forcing.
In order to be close to a local energy balance, basis functions with small supports are more
adpated. This enables us to restrain the inequality (5.32) and makes it closer to an equality.
For instance, Fourier modes have a large support and would lead to a homogeneous random
forcing with a constant variance. In this case, the inequality (5.32) would be (H[q])2 =

1
|Ω|
∫
Ω ‖H[q]‖2 dx 6= ‖H[q]‖2(x, t). In contrast a basis of regularized Dirac functions ek(x) =

δ(x−xk), defined on the grid points xk, have near zero-measure supports. The inequality
(5.32) would hence become an equality. Nevertheless, such an infinitesimally small basis
function support would induce an almost zero correlation length of random forcing, which
makes no sense physically. According to such analysis, wavelet basis seems a promising
trade-off and will be used in Chapter 6.

Let us summarize here the above method from the LU viewpoint. The goal is to define
the multiplicative advection noise η = − 1

∆tσdBt ·∇ q in such way that the corresponding
LU diffusion term ∇·(a∇q) corresponds (up to a scaling factor ζ) to the numerical dissi-
pation L[q]. In this purpose, the noise η is expressed by (5.29) with a given orthonormal
basis {ek}k≥0. The eigenvalues λk in (5.29) are adapted along time according to (5.30) and
(5.27). The stochastic transport of q is finally described by Equation (5.22). As such, the
energy brought by the noise amounts to ζ times the one losts by the dissipation L[q]. From
the construction of the multiplicative noise, it is difficult to recover explicitly the additive
velocity noise 1

∆tσdBt and the variance tensor a, hence it is hard to specify the Itô-Stokes
drift 1

2 ∇· a (included in v?) in general. However, this term vanishes in some particular
cases. For instance, this is true if the coefficient α of the Laplacian/biharmonic operator
in (5.27) is constant in space. We remark that, so far, we used this energy-budget-based
method for a transported scalar. For future work, this method could be further explored
in more general situations such as the momentum equation in the Boussinesq system
(3.11a) or for the potential vorticity in the QG equation (4.51a) including sources and
sinks terms.
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Chapter 6

ENSEMBLE FORECASTS VERIFICATION

FOR SQG DYNAMICS

In this chapter, we first review some important metrics to quan-
tify ensemble forecasts skills, such as the Talagrand diagram, the
continuous ranked proper score and the energy score. As a test
case, a simple geophysical fluid dynamics – the stochastic surface
quasi-geostrophic (SQG) model – will be considered. After present-
ing it, several stochastic parameterizations described in the previous
chapter will be compared for short-term ensemble forecasts. We will
show that the proposed random model, under both homogeneous
and heterogeneous uncertainty, is more efficient than a determinis-
tic model with a perturbation of the initial condition. This ability is
in particular essential for data assimilation applications. The work
presented in this chapter has been partly published in Resseguier
et al. (2020a). This chapter brings more precise views on the fore-
cast efficiency of different noise models.

Abstract

6.1 Metrics for ensemble forecasts

This section is a short summary about existing verification ensemble tools. More de-
tailed review can be found in (Hamill and Colucci, 1997; Weigel, 2012). In the following,
let {qo1, . . . , qoN} be a set of N -observations and {(q1

1, . . . , q
M
1 ), . . . , (q1

N , . . . , q
M
N )} be an

ensemble of M -members with qmn being the m-th ensemble member of the n-th forecast.
Note that N can represent either the spatial points or times steps of the observations.
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6.1.1 Talagrand diagram

A Talagrand diagram (TD, also called rank histogram) is a technique used to check the
reliability of an ensemble forecast or a set of quantile. The idea consists in checking the
availability of the N observations in a set of rank r. The sets of rank are built from rank
statistics which is the sorted ensemble {(q(1)

1 , . . . , q
(M)
1 ), . . . , (q(1)

N , . . . , q
(M)
N )} (Anderson,

1996; Hamill and Colucci, 1997):

∀ (m,n) ∈ {1, . . . ,M} × {1, . . . , N}, rm = 1
N

N∑
n=1

P̂
(
q(m−1)
n ≤ qon < q(m)

n

)
, (6.1)

where P̂ is the estimated probability of ranking an observation between two sorted en-
semble members.

A calibrated ensemble should result in a flat histogram. However, a flat histogram does
not guarantee a calibrated ensemble (Hamill, 2001). A flat histogram mostly indicates that
the ensemble and observation are sampled from a common distribution. A U-shaped rank
histogram corresponds to an underdispersion or to a conditional bias (Hamill, 2001) of the
ensemble members. A dome-shaped histogram shows, on the contrary, an overdispersion
of the ensemble. A non-symmetric histogram is the footprint of bias.

6.1.2 Mean squared error and mean ensemble variance

A necessary condition for ensemble reliability is that the mean squared error (MSE)
of the ensemble mean forecast is close to the mean ensemble variance (MEV, also called
mean squared dispersion), up to an ensemble size-dependent scaling factor (Stephenson
and Dolas-Reyes, 2000; Weigel, 2012):

1
N

N∑
n=1

(
Ê[qn]− qon

)2
︸ ︷︷ ︸

MSE

≈ M + 1
M

( 1
N

N∑
n=1

V̂ar[qn]︸ ︷︷ ︸
MEV

)
(6.2)

where Ê and V̂ar are the empirical estimators of the ensemble mean and variance:

Ê[q] 4= 1
M

M∑
m=1

qm, V̂ar(q) 4= 1
M − 1

M∑
m=1

(
qm − Ê[q]

)2
. (6.3)

In fact, Equation (6.2) is used to diagnose if the ensemble mean error matches the ensemble
spread dispersion. However, it is a necessary but not sufficient condition of ensemble
reliability in the sense that any forecast system not satisfying (6.2) is unreliable, yet a
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forecast system satisfying (6.2) is not necessarily reliable. Further metrics have to be used
to determine the ensemble reliability.

6.1.3 Continuous ranked proper score

Let us now review some forecast proper scores. A proper score is negatively oriented,
such that a lower score indicated a better ensemble forecast. A proper score converging
to zero means that the observation cannot be distinguished from the ensemble members.

A typical proper score used for ensemble model evaluation is the continuous ranked
proper score (CRPS). The CRPS is defined as the integrated squared difference between
the cumulative forecast and observation distribution (Hersbach, 2000):

CRPS(F, qo) =
∫
R

(
F (B)−H(B − qo)

)2
dB, (6.4)

where F is the cumulative distribution function (CDF) of the point-wise random process q
(represented by the ensemble) andH is the Heaviside function (equals to one if qo ≤ B and
zero otherwise). Thus, the CRPS represents the distance between the Heaviside function
and the distribution of the random variable q.

This Heaviside function represents the inequality between an ensemble member and
the observation. In particular, Hersbach (2000) proposed an easy-to-implement estimator
of the CRPS, namely

ĈRPS(F̂ , qo) =
M∑
m=1

α(m)
(m
M

)2
+

M−1∑
m=0

β(m)
(
1− m

M

)2
(6.5a)

with

α(m) =


0 if qo ≤ q(m)

qo − q(m) if q(m) < qo ≤ q(m+1)

q(m+1) − q(m) if q(m+1) < qo

(6.5b)

and

β(m) =


q(m+1) − q(m) if qo ≤ q(m)

q(m+1) − qo if q(m) < qo ≤ q(m+1)

0 if q(m+1) < qo

, (6.5c)

where q(0) = −∞, q(M+1) =∞ and {q(1), . . . , q(M)} is the sorted ensemble forecast.
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6.1.4 Energy score

The previous CRPS is a point-wise (in space or/and time) score, hence cannot summa-
rize the whole uncertainty of the ensemble in one value in a multivariate case. Therefore,
to perform the evaluation of our ensemble in a multivariate case, the CRPS will not be
enough. Although the mean CRPS can be used, it would miss some information. Instead,
a generalized form of the CRPS is required. Following (Gneiting and Raftery, 2007), a
possible generalization of the CRPS is the energy score (ES), which is defined as

ES(F, qo) = EF‖q − qo‖ −
1
2EF‖q − q

′‖, (6.6)

where the observation qo, the random variable q and the CDF F are both multivariate,
and ‖q‖ = (∑N

n=1(qn)2)1/2 is the Euclidean norm of q. In particular, an estimator of the
ES is given by

ÊS(F̂ , qo) = 1
M

M∑
m=1
‖qm − qo‖ − 1

2M2

M∑
m=1

M∑
m′=1
‖qm − qm′‖. (6.7)

6.2 Model configurations

High-resolution (HR) deterministic SQG simulations of test flows will provide refer-
ences to which we will compare random simulations performed at a lower resolution. For
this purpose, the high-resolution (5122) simulation outputs will be projected onto the
space of low-resolution (1282) fields. Each HR buoyancy field will be filtered (through
a low-pass spectral filter) and subsampled to a low-resolution. We will refer to these
projected fields as “observations” and denote them bo. For all simulations, a standard
hyper-viscosity scheme has been introduced (Held et al., 1995):

Dtb = α∇8b dt, (6.8)

with a positive coefficient α proportional to M−8
x where Mx denotes the grid size (i.e. 128

or 512). The domain size is a square box Lx×Ly = 1000 km ×1000 km and the boundary
conditions are double periodic. We recall from Equation (4.54) that the horizontal velocity
u is related to the buoyancy b in Fourier space through the usual SQG relation:

û = ik⊥
b̂

N‖k‖
, (6.9)
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where the constant stratification is set to N = 3f0 with the Coriolis frequency f0 fixed to
be 1.028× 10−4 s−1, which corresponds to a latitude of 45◦.

Several simulations of these models have been performed based on two types of initial
condition (IC) and on various parametrizations of uncertainty. A first type of initial buoy-
ancy field, denoted as “Vortices IC”, is shown in Figure 6.1 (a). As shown in Resseguier
et al. (2017b), this field consists of a spatially smooth buoyancy field with two warm
elliptical anticyclones (positive buoyancy) and two cold elliptical cyclones (negative buoy-
ancy). Another type of initial buoyancy field, denoted as “Spectral IC”, is shown in Figure
6.1(b). It is a homogeneous Gaussian random field generated from a spectrum of buoy-
ancy with a prescribed slope equals to −5/3. This slope corresponds to the power law
of a developed SQG turbulence. In both cases, the amplitude of the buoyancy is set to
B0 = 10−3 m s−2.

Vortices IC Spectral IC

Figure 6.1 – Two initial buoyancy (m s−2) fields. Left: a smooth field with four given
vortices (cyclones in blue and anti-cyclones in red); Right: a homogeneous Gaussian field
generated from a −5/3 spectrum.

As in the study Resseguier et al. (2017b), we focus on the first-month forecast of
the smooth initial field (Vortices IC in Figure 6.1). Figure 6.2 shows the reference HR
simulation for this first month. After two weeks, filament instabilities (Lapeyre, 2017)
create developed turbulence. In this work, we also study the free-decaying SQG turbulence
flow initialized by a rough field (Spectral IC in Figure 6.1). The evolution of free-decaying
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turbulence can be seen in Figure 6.3. A part of the initial energy is dissipated by the
deterministic subgrid tensor. However, a part of this initial energy cascades to the larger
scales by creating larger vortices from the merging of small vortices.

Figure 6.2 – Buoyancy (m s−2) after various days of advection for the usual SQG model
at resolution 5122, based on the Vortices IC.

Several coarse resolution ensembles have been forecasted with both initial buoyancy
fields of Figure 6.1. Two ensembles rely on randomly perturbed initial condition (PIC)
and four others are driven by different dynamics under LU. Specifically, the small-scale
velocity noises in those LU models have been generated using different approaches: a
homogeneous isotropic stationary model based on Fourier basis (described in Section
5.2.1), a heterogeneous stationary model based on the POD procedure of the HR velocity
(described in Section 5.1.1) and two heterogeneous non-stationary models based on the
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Figure 6.3 – Buoyancy (m s−2) after various days of advection for the usual SQG model
at resolution 5122, based on the Spectral IC.
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learning procedure of EOFs from the coarse resolution pseudo-observations (described in
Section 5.2.2) and on the subgrid scale dissipation-adapted noise (described in Section
5.2.3). In the following, these four random models are denoted as “LU-FFT”, “LU-POD”,
“LU-PSO” and “LU-SGS” respectively. For the LU-FFT model, the small-scale energy
is specified by the diffusion coefficient a0 = 18 m2 s−1 (see Equation 5.11). In addition,
the spectrum slope s is fixed to be −5/3 corresponding to the SQG dynamics. For more,
information on the values of these parameters, one can refer to Resseguier et al. (2017b).
For the LU-POD model, under Vortices IC (resp. Spectral IC), we used Nt = 740 (resp.
500) HR snapshots with uniform time steps of half an hour to train the spatial modes, and
we kept only the modes fromM0 = 5 (resp. 3) toM1 = 105 (resp. 103) as the EOFs of the
noise (see Equation 5.2a). This choice has been operated through the strategy described
in Section 5.1.1. We remark that the quasi-stationary assumption of the covariance in
the snapshot POD method cannot be fully satisfied under these purely dissipated test
cases. This corresponds thus to an inexact stationary assumption on the considered time
frame. For the LU-PSO model, we build nO = 20 pseudo-observations by sliding a 3× 3
window over each grid point (see Equation 5.13). Besides, a circular boundary condition
is adopted when looking at a point on the border. For the LU-SGS model, we fixed the
“symmlet” wavelet basis (Daubechies, 1992) with five vanishing moments and updated
the eigenvalues in time according to the buoyancy dissipation budget (5.30)–(5.27). In
particular, in the Vortices IC case, we have forecasted five ensembles with five different
values (10%, 20%, 30%, 40%, 50%) of the scaling factor ζ. For instance, Figure 6.4 shows us
that for a given resolution, when the scaling factor ζ increases (i.e. when the noise variance
counter-balances a larger part of the numerical dissipation), more and more small-scale
structures are presented in the physical field. Hereafter, we set ζ = 50% in the LU-SGS
model when comparing with other random models. For the benchmark ensembles provided
by the PIC models, the similar sampling methods FFT and PSO are adopted, yet the
obtained small-scale random fields are used only at the initial time.

A first comparaison of the ensemble solutions provided by these random models is given
by Figure 6.5 (under Vortices IC), in which we have first computed the buoyancy spec-
trum of each snapshot and for each ensemble member, then taken the ensemble (over 30
realizations) and the time (over the last 20 days) mean of these spectrums, i.e. E

[
|b̂|2

]t
(κ).

The results show that both LU models produce higher energy of buoyancy than the PIC
model at the high wavenumbers, hence better in resolving the small-scale features. In
particular, the ensemble mean spectrum of the LU-SGS scheme are much closer to that of

110



6.2. Model configurations

LU-SGS (10%) LU-SGS (20%) LU-SGS (30%)

LU-SGS (40%) LU-SGS (50%) Observation

Figure 6.4 – Comparison of one realization of the buoyancy field after 17 days of advection,
according to various energy scaling factor in LU-SGS. We remember that the observation
is coarse-grained from the HR buoyancy field.
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the reference. As expected, when the scaling factor ζ increases, the results become even
better.
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Figure 6.5 – Comparaison of the ensemble (over 30 realizations) and time (over the last
20 days) mean of the buoyancy spectrums for different random models (top) and for the
LU-SGS model under various energy factors (bottom); on the right zoom of the left plots
for the high wavenumbers. Note that “PIC” (top) stands here for the PIC-FFT model
and the dashed lines (left) describe the -5/3 power law.

6.3 Short-term ensemble forecast

Once the ensembles have been produced by the models introduced previously, we can
measure the quality of ensemble forecasts by the easy-to-implement criterions presented
in Section 6.1. As described by Stephenson and Dolas-Reyes (2000), typically in meteoro-
logical applications, the number of ensemble members is of the order of 10–100, whereas
the rank of the observation/forecast states is of the order of 103–107. In our case, we have
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M = 30 ensemble members for each forecast system. In the following, unless specifically
indicated, we consider that each system has N = 1282 forecasts. Indeed, each instanta-
neous buoyancy field with 1282 spatial points describes the phase of each system. Thus,
bm(xn, t) denotes the m-th ensemble member of the n-th forecast at day t.

In Figures 6.6, we compare the criterion (6.2) produced by different random models.
For Vortices IC, all models produce low errors during the first 10 days and high errors
during Day 17 to Day 24. In this case, LU-SGS and LU-PSO show in particular a better
matching between the MSE of mean forecast and the ensemble spread. Furthermore, in
the LU-SGS method, when the factor ζ augments, both the spreading and the ensemble
errors increase. For Spectral IC, all ensemble models tend to a stationary state much more
faster. In this case, LU-SGS and LU-PSO exhibit still better matching between MSE and
MEV. In both cases, heterogeneous noise models behave better than the homogeneous
ones.

Vortices IC LU-SGS Spectral IC
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Figure 6.6 – Comparisons of ensemble forecasts for different stochastic models based on the
two tested IC. Left: The difference between the MSE of mean forecast and mean ensemble
variance; Middle: Using the empirical noise (5.2.3) with wavelet basis and various energy
scaling factors under Vortices IC; Right: Results under Spectral IC. Note that all these
results are normalized by the amplitude of the buoyancy, i.e. B0 = 10−3 m s−2.

Another evaluation of the ensembles dispersion have been carried out through Tala-
grand diagrams. As shown in Table 6.1, for Vortices IC, the method applying an homo-
geneous perturbation on the initial condition (PIC-FFT) is extremely underdispersive.
LU-FFT, LU-POD and PIC-PSO formed a flatter and higher U-shaped underdispersive
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profile. The ensemble dispersion is still underestimated. Nevertheless, LU-PSO estimates
show the flatter histograms, and LU-SGS with 50% energy allocated to the numerical
dissipation provides a slight overdispersion. From Table 6.2, we observe that for Spectral
IC, both LU-PSO and PIC-PSO with only initial perturbations provide almost perfect
ensemble spread, but the best one is obtained for LU-SGS. In the same way as for the
previous criterion, for this case, the Talagrand diagrams seems to converge more rapidly
toward a stationary state.

As explained above, distinct models yield distinct spreading based criterions (6.2)
and Talagrand diagrams. Nonetheless, these two criterions are only necessary but not
sufficient conditions to assess the ensemble reliability. An objective analysis needs hence
to rely on others metrics such as proper scores. To begin, we first evaluate the numerical
results with the CRPS (see Section 6.1.3). Applied on ensemble of spatio-temporal fields,
maps of CRPS can be represented at each fixed time step as in Figures 6.7 and 6.8 (for
the Vortices IC case). As expected we observe on all those maps that the normalized
CRPS is relatively high on small-scale structures and low on the center of each vortices.
Indeed, turbulent structures are obviously more difficult to reproduce accurately. These
four figures suggest that PIC-FFT is the worst model since it has the largest CRPS values.
Instead, the LU-PSO and LU-SGS models provide the smallest CRPS; revealing hence
that they make fewer local errors at these advection times. Figures 6.9 and 6.10 plot
the CRPS maps corresponding to Spectral IC. In this case, the CRPS structures are first
small and spread over the spatial domain. Then, these small-scale CRPS structures merge
and create larger structures of higher intensity. The merging is due to the inverse energy
cascade of SQG turbulence (Lapeyre, 2017) which aggregates together the badly resolved
small-scale turbulence structures. The resulting large vortices have chaotic trajectories.
The difficulty for the coarse models to track these trajectories yield high CRPS values in
the centers of those vortices. Nevertheless, the LU-PSO and LU-SGS models still provide
much better results than the other random models.

The previous analysis describes the variability of the CRPS in time and space. How-
ever, the global evaluation of a model requires to summarize the CRPS information.
Figure 6.11 summarizes the models’ performances by representing each CRPS by one box
plot. In this way, we can directly check the statistical variability of CRPS values over one
CRPS map. For Vortices IC, the model PIC-FFT has the biggest spread of CRPS and
it has the highest CRPS median and mean after 30 days of advection. Therefore, Figure
6.11 confirms that the model PIC-FFT has the worst uncertainties quantification (UQ)
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Day 10 Day 20 Day 30

LU-FFT

LU-POD

LU-SGS

LU-PSO

PIC-FFT

PIC-PSO

Table 6.1 – Talagrand diagrams of different random models on some forecast days under
Vortices IC.
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Day 5 Day 11 Day 17

LU-FFT

LU-POD

LU-SGS

LU-PSO

PIC-FFT

PIC-PSO

Table 6.2 – Talagrand diagrams of different random models on some forecast days under
Spectral IC.
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LU-FFT LU-POD LU-PSO

LU-SGS PIC-FFT PIC-PSO

Figure 6.7 – Normalized CRPS of different random models after 15 days of advection
under Vortices IC.
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LU-FFT LU-POD LU-PSO

LU-SGS PIC-FFT PIC-PSO

Figure 6.8 – Normalized CRPS of different random models after 20 days of advection
under Vortices IC.
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LU-FFT LU-POD LU-PSO

LU-SGS PIC-FFT PIC-PSO

Figure 6.9 – Normalized CRPS of different random models after 5 days of advection under
Spectral IC.
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LU-FFT LU-POD LU-PSO

LU-SGS PIC-FFT PIC-PSO

Figure 6.10 – Normalized CRPS of different random models after 10 days of advection
under Spectral IC.
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skill. After 20 and 30 days of advection, the models LU-FFT and LU-POD obtain the
lowest CRPS median, whereas the models LU-PSO and LU-SGS have the lowest CRPS
mean. Moreover, LU-SGS provides the lowest spread CRPS. As shown in Figure 6.12,
for Spectral IC, PIC-FFT is always the worst with still the highest mean, median and
spread at different time steps. After a short advection of 10 days, models LU-PSO and
LU-SGS have the lowest mean, median and spread of CRPS. At a later time the other
LU techniques show only slightly higher mean, median and spread than LU-SGS.
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Figure 6.11 – Box plot of the normalized CRPS computed on the ensemble at each spatial
points for each models at different time step of advection under Vortices IC. Each box
plot displays the following information: the median (blue line inside the box), the lower
and upper quartiles (contour blue lines), any outliers (blue points) computed using the
interquartile range, and the minimum and maximum values (black lines) that are not
outliers. In addition, the mean CRPS (red point) is added for each box.

In order to analyze the multivariate structure of the error between the ensemble and the
reference, Figures 6.13 and 6.14 illustrate, respectively, the normalized mean CRPS and
the normalized energy scores (see Section 6.1.4) of advection times. There, the analyzed
multivariate structure is the spatial structure of the random fields. These two figures
show that the model PIC-FFT has the highest mean CRPS and energy score under both
initial conditions. Thus, this model provides the worst UQ skill with multivariate spatially
ensemble. The model PIC-PSO has lower mean CRPS and energy score after two weeks of
advection for Spectral IC and after three weeks for Vortices IC. In fact, for Spectral IC, the
large-scale structures has formed after two weeks, hence PIC-PSO makes less error with
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Figure 6.12 – Box plot of the normalized CRPS computed on the ensemble at each spatial
points for each models at different time step of advection under Spectral IC.

the reference. Nevertheless, during the first week of advection, PIC-PSO has high CRPS
and energy score. Within this period the small-scale structures are present and are not
well reproduced by PIC-PSO. Thus, in this case, PIC-PSO is clearly less efficient than the
models LU-POD, LU-PSO and LU-SGS. For Vortices IC, the model PIC-PSO has higher
CRPS and energy score in the period 16 to 20 days of advection. During this period, some
small-scale structures are produced and well resolved by the simulations. After this period,
the two proper scores of PIC-PSO decrease probably due to the bifurcation phenomenon
described in Resseguier et al. (2020a). Figures 6.13 and 6.14 suggest that the models
LU-PSO and LU-SGS provide the weakest error. Indeed, during the major part of the
simulation and for both initial conditions, these models show the lowest proper scores. In
particular, the two proper scores of the LU-SGS method reveal that it is the most efficient
ensemble model according to this metric.

We now consider proper scores where the temporal structures are considered instead
of the spatial ones. For Vortices IC, Figure 6.15 reflects that the model PIC-FFT has the
highest normalized energy score. On the edges of the centers of the vortices, this model
encompasses the worst temporal structures. The models LU-POD, LU-PSO and LU-SGS
seem to perform better and the latter is the best one. Moreover, these results hold for
Spectral IC as well, which are illustrated by Figure 6.16.
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Vortices IC Spectral IC
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Figure 6.13 – Normalized CRPS of the spatial multivariate ensemble for each models on
all time steps under both initial conditions.
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Figure 6.14 – Normalized energy score of the spatial multivariate ensemble for each models
on all time steps under both initial conditions.
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LU-FFT LU-POD LU-PSO

LU-SGS PIC-FFT PIC-PSO

Figure 6.15 – Normalized energy score of the temporal multivariate ensemble for each
models at each spatial points under Vortices IC.
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LU-FFT LU-POD LU-PSO

LU-SGS PIC-FFT PIC-PSO

Figure 6.16 – Normalized energy score of the temporal multivariate ensemble for each
models at each spatial points under Spectral IC.
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6.4 Conclusion

For this numerical study, ensemble forecast skills have been assessed through a set of
verification tools. Table 6.3 summarizes validation scores estimated for each UQ model.
Talagrand diagram is an evaluation of the calibration behavior of an ensemble, while
proper scores focus on dispersion and errors between univariate or multivariate ensembles
and references. Each verification score has his own specificity, it is essential to be aware
of their properties to select the most suitable measure (see Section 6.1). Also, to avoid
miss-election of ensemble methods, the assessment of a number of scoring rules is advised.
In Table 6.3, the PIC methods obtained the lowest overall verification scores. In contrast,
LU-PSO and LU-SGS models present the best performances. Therefore, we recommend
one of this method for UQ tasks, and we strongly advice to avoid relying only on initial
conditions randomization.

To summarize this chapter, in terms of UQ skills, the heterogeneous noise models are
better than the homogeneous noise models, and the non-stationary noise models are better
than the stationary noise models. Nevertheless, the higher UQ skills of these more com-
plicated methods also come with a slightly higher computational cost. The performances
of LU-POD should be also relativized as they have been run here on two non-stationary
examples. For stationary models at climatic scale such models may perform better. We
will see however that the introduction of dynamics-adapted non-stationary features for
the noise enables to improve the performances of POD noises.

Model MSE TD CRPS ES
LU-FFT 5 5 4 4
LU-POD 4 4 3 3
LU-PSO 2 2 2 2
LU-SGS 1 1 1 1
PIC-FFT 6 6 6 6
PIC-PSO 3 3 5 5

Table 6.3 – Rank of model performance by different scores. MSE: Mean squared error;
TD: Talagrand diagram; CRPS: Continuous ranked proper score; ES: Energy score. The
rank numbers 1 to 6 represent from the best to the worst accuracy.
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Chapter 7

NUMERICAL STUDIES OF STOCHASTIC

BAROTROPIC QG MODEL

This chapter provides some numerical results of the stochastic
barotropic quasi-geostrophic (BQG) system derived in Chapter 4.
Using a simple inviscid BQG model, we first show that the in-
troduction of inhomogeneous noise induces a structuration of the
large-scale flow with strong secondary vortices. This corresponds to
a simple numerical illustration of the effects described in Chapter
3. Latter, the performance of this stochastic barotropic model is
assessed for the numerical simulation of an idealized wind-driven
double-gyre configuration within an enclosed shallow basin at mid-
latitude. We focus then on the ability of the proposed stochastic
models to accurately represent at a coarse resolution the four first
statistical moments (mean, variance, skewness and kurtosis) of the
flow. Comparing this statistical distribution through its four mo-
ments to that predicted by the eddy-resolving (higher resolution)
data enables us to qualify and quantify the accuracy of our stochas-
tic representation of mesoscale eddy effects on large–scale circula-
tion. The work presented in this chapter have been published in
Bauer et al. (2020a,b).

Abstract

127



Part II, Chapter 7 – Numerical studies of stochastic barotropic QG model

7.1 Deciphering the role of small-scale inhomogene-
ity for inviscid BQG

In this section we aim at comparing, for a barotropic quasi-geostrophic stochastic
model (BQG-LU), the effect of the isotropic homogeneous noise (5.2.1) with a null Itô-
Stokes drift and the inhomogeneous noise (5.1.1) built from a scale similarity assumption.
Following the conclusions of Chapter 3, for the first noise, no large-scale secondary struc-
turation should be observed as no Itô-Stokes drift is associated whereas in the second case
the Itô-Stokes drift is non-zero and should impact the large-scale solution.

The non-dimensionalized simulation of the BQG-LU system (with β = Ld = 1)
for the two types of noise are initialized with the same monochromatic Rossby waves,
ψ(x, t = 0) = 0.1 cos(2x) (which is a solution of the deterministic BQG system). The ge-
ometry is defined as a uniform 128× 128 Cartesian grid within a double periodic domain
[0, 2π]× [0, 2π]. Hence, all prognostic variables, such as the stream function ψ, the relative
vorticity ξ = (∇2 − I/L2

d)ψ, the vector noise σdBt and the variance tensor a are dou-
ble periodic. To discretize spatially the vorticity equation (4.41a), we employ Arakawa’s
nine-point conservative scheme (Arakawa and Lamb, 1977, 1981), together with second
order centered finite differences for the stochastic and diffusion terms. For time-stepping
of the large-scale time-correlated terms in (4.41a), we use a strong stability preserving
third order Runge Kutta (RK3) scheme (Gottlieb, 2005) with a Courant-Friedrich-Lewy
(CFL) number of 1/3. The time-uncorrelated terms in (4.41a) are integrated in the final
step of the RK3 scheme using the Euler-Maruyama scheme (Gugole and Franzke, 2019;
Pavliotis and Stuart, 2008). To invert the Helmholtz equation associated to the stream-
function (4.41b), an efficient Fast Fourier Transform (FFT) solver (Press et al., 2007) is
adopted.

The objective here, in addition to the study of the structuration effect by the small-
scales, is to assess experimentally the preservation of the large-scale initial Rossby wave for
the stochastic system with both noise models. In the inhomogeneous case, at each time we
uniformly draw no = 20 pseudo-observations by sliding a n2

w = 3×3 window over the grid,
with circular boundary conditions. Both noise models are fixed to a similar amplitude.
To that end, the homogeneous noise amplitude is fixed with a0 ≈ 2.85 × 10−5, which is
determined by the mean amplitude of the inhomogeneous (and time varying) noise. The
other parameters are chosen as: kM = π/∆ with ∆ the grid spacing, km = kM/2 and
s = −3. The vorticity evolution for each noise is plotted in Figures 7.1 and 7.2.
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Figure 7.1 – BQG-LU evolution for the homogeneous stationary model over a period of
t = 1000 adimensional time and a 128× 128 spatial grid.
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Figure 7.2 – BQG-LU evolution for the heterogeneous non-stationary model over a period
of t = 1000 adimensional time and a 128× 128 spatial grid.
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Figure 7.3 – Fourier spectra of the temporal series of a fixed grid point for the deterministic
BQG, BQG-LU with homogeneous noise and BQG-LU with inhomogeneous noise; on the
right zoom of the left plots.

As can be observed, both noises lead to stable solutions. The initial monochromatic
wave can still be seen in both simulations in Figures 7.1 and 7.2. The monochromatic
wave can also be seen in the Fourier spectrum of the temporal signal associated to a given
point of the grid (see Figure 7.3). The deterministic BQG and the BQG-LU for both
noises have a strong common frequency peak corresponding to this monochromatic wave.
In the homogeneous case, for which the Itô-Stokes drift is null, we observe a statistically
homogeneous solution with no particular structuration of the flow. This can be observed
visually in Figure 7.1 or infered from the Fourier spectra in Figure 7.3. We clearly see
the superposition of the monochromatic wave with a homogeneous noise pattern active at
all scales. In contrast, for the inhomogeneous case, after a spin-up time of approximately
t = 200, the apparition of large vortices can be observed in Figure 7.2. These patterns
correspond to the secondary peak on the energy spectrum at slightly lower frequency than
the monochromatic initial wave as observed in the RHS of Figure 7.3. They correspond
to slower events. These vortices remain stable for a while then disappear and reappear
with a longer time periodicity. This structuration is stable along time and still conserves
the large scale Rossby waves. Note that due to energy conservation, a part of the energy
of the monochromatic wave is redistributed to the secondary vortex structure (as see in
Figure 7.3).

7.2 Stochastic barotropic wind-driven circulations

The wind–driven circulation is a classical simplified problem in oceanography (Vallis,
2017), which produces qualitatively realistic patterns of mesoscale eddies in approximate
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geostrophic equilibrium. A particular circulation (Greatbatch and Nadiga, 2000) living
in a highly turbulent regime under weak dissipation of potential enstrophy leads to a
stationary four–gyre structure in a long–time average sense.

In this work, we use a single-layer QG formulation to study the wind-driven circulation
in an oceanic basin following (Vallis, 2017). Under this regime, the dimensional barotropic
vorticity equation (BVE) can be written as:

∂ω

∂t
+ J(ψ, ω) + β

∂ψ

∂x
= F +D, (7.1a)

∇2ψ = ω, (7.1b)

where ω =∇×u = ∂xv−∂yu is the relative (or kinematic) vorticity (henceforth, referred
to as vorticity) with k = [0, 0, 1]T . The geostrophic velocity u can be defined by a stream
function ψ such that u = ∇⊥ψ = [−∂yψ, ∂xψ]T . The nonlinear advection is transformed
into a Jacobian operator which is defined as J(ψ, ω) = ∂xψ∂yω−∂yψ∂xω. The linear term
β∂xψ describes the advection of β-planetary vorticity. An active tracer in this case is given
by the potential vorticity (PV) defined as q = ω + βy.

On the right-hand side (RHS) of (7.1a), F = ∇ × τ/(ρH) is a forcing which adds
vorticity into the gyres, due to the wind stress τ over the ocean surface, where ρ and
H are respectively (resp.) the basic fluid density and depth of the basin. An idealized
double-gyre wind stress (Greatbatch and Nadiga, 2000; San et al., 2011, 2013), defined
only in zonal direction, is used in this work within the basin Ω = [0, L]× [−L,L], that is

τ = [τ0 cos(πy
L

), 0]T , (7.2)

where τ0 is the magnitude of the wind. This form of wind stress (San et al., 2011, 2013)
represents the meridional profile of easterly trade winds, mid-latitude westerlies, and polar
easterlies from south to north over the ocean basin.

The boundary layer friction D can be interpreted either as a linear drag for the Ekman
layer as presented in the Stommel problem (Stommel, 1948), an eddy viscosity term as
presented in the Munk problem (Munk, 1950), or a combination of the two (Fox-Kemper,
2005). In this work, we are more interested in the Munk model, by assuming that the
ocean has a flat-bottom. The eddy viscosity that we will discuss in the following will be
either harmonic D = ν2∇2ω or biharmonic D = −ν4∇4ω, with a uniform coefficient ν2
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(of unit m2s−1) or ν4 (of unit m4s−1).
To simplify the problem, one may scale the equation (7.1a) by comparing each term to

the dominant β-effect (Vallis, 2017). The leading order is given by the Sverdrup balance
between the rotation and wind forcing, i.e. β∂xψ ≈ |F |, which provides a characteristic
size of velocity:

V = τ0

ρH

π

βL
. (7.3a)

This leads to the following scaling of time, vorticity and stream function:

t = L

V
t′, ω = V

L
ω′, ψ = V Lψ′, (7.3b)

where the variables with prime symbol (′) are adimensionalized.
The thickness of the Munk boundary layer can be then quantified by the balance

between the β-effect and friction (Munk, 1950). For instance, β∂xψ ≈ ν2∇2ω gives us a
harmonic-boundary-layer scale, that is

δ2 =
(
ν2

β

)1/3

. (7.3c)

Similarly, β∂xψ ≈ ν4∇4ω gives us a biharmonic-boundary-layer scale:

δ4 =
(
ν4

β

)1/5

. (7.3d)

The nonlinear advection term J(ψ, ω) is smaller than the linear terms. Nevertheless, the
nonlinear effect may still be important in the boundary layer, especially in the western
one. To measure its strength, one may define a β-Rossby number (denoted as Rβ) as the
ratio of the size of the nonlinear term to the β-effect:

Rβ = V

βL2 . (7.3e)

Using these scaling numbers (7.3a)–(7.3e) for (7.1a), the dimensional BVE reduces to its
adimensional form as:

∂ω′

∂t′
+ J(ψ′, ω′) + 1

Rβ

∂ψ′

∂x′
= 1

Rβ

sin(πy′) + 1
Rβ

D, (7.4)

with D = (δ2/L)3∇2ω′ or D = −(δ4/L)5∇4ω′ resulting from (7.3c) or (7.3d), respectively.
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The adimensional PV is written as q′ = Rβω
′ + y′, and the Poisson equation (7.1b) is

invariant under this adimensionalization, i.e. ∇2ψ′ = ω′. For the sake of readability, in
the following we drop the prime for all the adimensional variables.

To close the problem, we need one initial condition – that will be discussed in Section
7.3.1 – and two boundary conditions. The first boundary condition is imposed by the
no-normal-flow condition due to the forcing form:

ψ|∂Ω = 0, i.e. u|x=0,L = v|y=−L,L = 0, (7.5a)

where ∂Ω denotes the basin’s boundary. The second one depends on the chosen eddy
viscosity form. For a harmonic friction, i.e. D = (δ2/L)3∇2ω, we impose

ω|∂Ω = 0, (7.5b)

while for a biharmonic friction, i.e. D = −(δ4/L)5∇4ω, we set

ω|∂Ω = 0 and ∂2ω

∂n2

∣∣∣∣∣
∂Ω

= 0, (7.5c)

where ∂2

∂n2 denotes for the second derivative in normal direction. Note that in both cases,
together with the no-normal-flow condition, we get a free-slip condition

∂2ψ

∂n2

∣∣∣∣∣
∂Ω

= 0, i.e. ∂v
∂x

∣∣∣∣∣
x=0,L

= ∂u

∂y

∣∣∣∣∣
y=−L,L

= 0, (7.5d)

with no horizontal shear on each boundary. Finally, we remark that the Munk model (7.4)
depends only on two parameters, which are Rβ and δ2/L (resp. δ4/L).

On the other hand, concerning the stochastic BQG equation (4.41), let us first recall
the scaling of variance tensor and small-scale flow (see Section 4.2.1 for details):

a = εV La′, σdBt =
√
εLσdB′t. (7.6)

In addition, only moderate uncertainty (ε ∼ 1) is adopted for the present work. Under such
an assumption, the final dimensionless stochastic barotropic vorticity equation (SBVE)
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in Stratonovich notation is written as

Dε
t
◦ω + 1

Rβ

∂

∂x
(ψ dt+

√
ε ϕ◦dBt) = 1

Rβ

(F +D) dt+ dt◦Sε, (7.7a)

Dε
t
◦ω

4= dt◦ω + J
(
(ψ − ε ψs) dt+

√
ε ϕ◦dBt, ω

)
, (7.7b)

dt◦Sε =
∑
i=1,2

J(ε uis dt−
√
ε σ◦dBi

t, u
i). (7.7c)

To close the problem, we assume that the small-scale component σdBt and the Itô-Stokes
drift us have the same boundary conditions as the large-scale current u, given in (7.5a)
and (7.5d).

7.3 Numerical simulations of SBVE

In the following, we discuss and compare the respective numerical simulations of the
BVE (7.4) and the SBVE (7.7). The main motivation here is to numerically assess if the
proposed random model reproduces well the long-term statistics of the high resolution
(eddy-resolving) simulation.

7.3.1 Model configurations

All the models have been discretized with the same numerical schemes. As detailed
in Appendix 8.3, a staggered Arakawa C-grid (Arakawa and Lamb, 1977) has been con-
sidered. In that respect, the nonlinear Jacobian terms in the governing equations are
discretized using Arakawa’s 9-points conservative scheme (Arakawa and Lamb, 1981). To
invert the Poisson equation (7.1b) associated to the stream function, an efficient discrete
sine transform solver (Press et al., 2007) is adopted. For the time-stepping, the 3rd order
Runge-Kutta scheme (Gottlieb, 2005) with a CFL number of 1/3 is considered for BVE.
As presented by Cotter et al. (2019a), for the SBVE we used a similar time integration
scheme.

In all the configurations we fix the basin length to L = 1 and the Rossby number to
Rβ = 0.062. For the high resolution eddy-resolving model, a regular mesh with 256× 512
cells with uniform grid spacing ∆HR = 0.004 and a five times wider harmonic boundary
layer δ2 = 0.02 have been used. We consider a quiescent state as the initial condition,
that is ψ(x, t = 0) = 0,∀x ∈ Ω. For such an initial condition, the dominant Sverdrup
balance between the forcing and rotation leads to a symmetric PV field during a short
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period. As the nonlinear inertial term becomes more and more important, a symmetry
breaking phenomena occurs (at t ≈ 2), which can be observed from the time series of
the global kinetic energy in Figure 7.4. This so-called spin-up period is then followed by
a dissipation stage (up to t ≈ 5) of the very high enstrophy that has been produced
during the spin-up. Immediately after, the flow dynamics becomes rapidly turbulent. The
three subsequent snapshots in Figure 7.4 illustrate this vigorous eddying nature. At coarse
resolution, the subgrid dissipation model is defined through a biharmonic friction term
with a grid-dependent uniform coefficient. The estimated values of δ4 at coarse resolutions
64× 128, 32× 64 and 16× 32 are, respectively, 0.026, 0.040 and 0.049.

Figure 7.4 – Instantaneous snapshots of PV and time series of the global energy and
enstrophy, provided by the eddy-resolving BVE at resolution 256×512. The global energy
is defined by E(t) = 1

2
∫
Ω
(u2 + v2)dx and the global enstrophy is defined by Z(t) =

1
2
∫
Ω
ω2dx. The plots show their graph normalized by their temporal maxima.

The numerical simulations of the SBVE are performed using both the POD (denoted
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as SBVEPOD) technique and Mode Matching (denoted as SBVEMM) approach. As shown in
Figure 7.5, by introducing randomness into the initial symmetric double-gyre circulation,
the symmetry breaking state is reached much earlier for the SBVE simulations, than for
the BVE. Hereafter, in order to compare the different models and to reduce the spin-up
errors, we use the coarse-grained version of one specific eddy-resolving snapshot (after
t = 5) as the initial condition for all coarse model runs. In other words, the BVE and the
SBVE at each coarse resolution are simulated from the very same initial field, in which
the spin-up period is accounted for at the eddy-resolving resolution. An instantaneous
illustration of the small-scale random stream function, denoted as ψr

4= 1
∆tϕdBt, and the

Itô-Stokes stream function ψs, is shown in Figure 7.6. It appears that both ψr and ψs

based on MM are stronger and more regular than those based on POD.

7.3.2 Long-term prediction of statistics

Although we are working in a turbulent regime, the statistics of the large-scale tracers
ψ and q tend to reach a statistical steady state equilibrium. As shown in Greatbatch and
Nadiga (2000), a robust four-gyre structure is characterized in time-averaged circulation,
as long as the dissipation is sufficiently weak. Here, a weak dissipation means that the
boundary layer size δ2 or δ4 has a smaller order than the so-called Rhines scale

√
Rβ

(Vallis, 2017). However, this does not indicate that the flow dynamics are under resolved.
Note that in under resolved simulations, the contour lines of the averaged tracers would
be oscillating. On the other hand, increasing the explicit dissipation up to the order of
Rhines scale, would result in a conventional double-gyre.

In this work, apart from the mean structure, we are also interested in the eddy energy
distributions and higher order moments of the tracers, such as skewness and kurtosis.
These two standard moments of a probability distribution characterize the asymmetry
and extreme events, respectively. They are particularly informative when the distribution
is non-Gaussian.

More precisely, the first four central moments of ψ are defined by

m1[ψ] = ψ
t
, mk[ψ] = (ψ −m1[ψ])kt, k = 2, 3, 4, (7.8a)

where the superscript (k) denotes the power, while the subscript (k) denotes the order
of the moment order. Similarly, the central moments of q as function of the prognostic
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Initial symmetry: q(t = 0.5)

Symmetry breaking: q(t = 2.2)

After symmetry broken: q(t = 3.1)

Figure 7.5 – Instantaneous snapshots of PV provided by different models at resolution
64 × 128. The associated large-scale velocity field is indicated here by the black arrows.
Note that these velocity values are located on the PV-grid (see Figure 8.23) through linear
interpolations.
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Figure 7.6 – Instantaneous snapshots of the small-scale random stream functions ψPOD
r ,

ψMM
r and the Itô-Stokes stream functions ψPOD

s , ψMM
s , resp. provided by the SBVEPOD and

the SBVEMM at resolution 64× 128. The associated small-scale random velocity 1
∆tσdBt

is indicated here by the black arrows. Note that these velocity fields are located on the
ψ-grid (see Figure 8.23) through linear interpolations.

variable ω are defined by

m1[q] = Rβm1[ω] + y, mk[q] = Rk
βmk[ω], k = 2, 3, 4. (7.8b)

The skewness s (resp. kurtosis k) of ψ reduces to

s[ψ] = m3[ψ]
(m2[ψ])3/2 , k[ψ] = m4[ψ]

(m2[ψ])2 − 3, (7.8c)

where algebraic manipulations ensure that the kurtosis of the Gaussian distribution is
zero. The skewness (resp. kurtosis) of q is given by

s[q] = s[ω], k[q] = k[ω]. (7.8d)

We remark from (7.8) that the skewness and kurtosis of both tracers ψ and q are not
defined at boundaries, since the second moments are zero there. In addition, the eddy
kinetic energy (EKE) and the eddy potential enstrophy (EPE) are provided through
second order moments by:

EKE = 1
2(m2[u] +m2[v]), EPE = 1

2m2[q]. (7.8e)
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In the following, theses statistics are computed for both BVE and SBVE at resolution
64×128, 32×64 and 16×32. Before discussing the results, the convergence of each statistic
at each resolution is quantified. This can be done by progressively increasing the time
interval, and computing a global error of the statistics between two adjacent intervals.
More precisely, let us consider a point-wise statistic f obtained for a sufficiently long
interval [t0, t1] (where t1 depends on the resolution considered) with a uniform partition
of increment δt. We propose to measure the convergence by a relative global error ε̃
between the subintervals [t0, t] and [t0, t− δt]:

ε̃(ft)
4= ‖ft − ft−δt‖2

‖ft1‖2
, (7.9)

where ‖ · ‖2 = 〈·, ·〉Ω stands for the L2(Ω)-norm, and ft(x),∀x ∈ Ω, denotes the local-
in-time point-wise statistics associated to the interval [t0, t]. In practice, we initiate this
procedure from a reasonable intermediate instant tc ∈ [t0, t1], and t0 is a fixed time after
the spin-up (set to t0 = 20 in this work, c.f. Figure 7.4) and the time increment has been
fixed to δt = 0.1. A statistic is considered to be converged, as soon as the time series of
relative global errors reaches a stable low error level. As shown in Figure 7.7, we observe
that the convergence to an error less than 1% for resolutions 256× 512, 64× 128, 32× 64,
and 16× 32 is reached approximatively after the time 140, 250, 350 and 500, respectively.
We note that the coarser the resolution, the longer it takes to get converged statistics.
This is even more pronounced for higher moments. This is likely due to higher values of
the turbulent viscosity which prevent the flow to visit freely its attractor and enforce it
to stay for a much longer time in the attraction basin of the equilibrium points (Chapron
et al., 2018). Note also that as observed therein, the convergence time for SBVE is shorter
for all resolutions studied here (not shown). Therefore, we choose to use for all simulations
the slowest convergence time (i.e. the one computed for BVE).

Hereafter, we focus on the comparisons of the statistics obtained for the different
coarse models. To build a reference (REF) for each resolution, we directly subsample the
statistics computed on the eddy-resolving data - i.e. we do not smooth them in order not
to lower their energy. Figure 7.8 shows that at the coarsest resolution 16×32, the four-gyre
structure is captured for both models, yet the two outer gyres predicted by SBVE are more
enhanced and closer to the reference, compared to those obtained by BVE. Since the scale
parameters are fixed, the major contribution comes from the stochastic representation
of the mixing effects incorporated through the eddy-resolving data. A more accurate
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Figure 7.7 – Time series of the relative errors of the statistics by progressively increasing
the time interval. In each row, the left plot shows the statistical errors of the stream
function (or velocity), and the right one shows that of the PV. In each column, the results
correspond, from top to bottom, to resolutions 256× 512, 64× 128, 32× 64, and 16× 32.
Note that in both cases, the first (adimensioned time) interval on which we compute the
statistics is set to be [20, 80]; this interval is progressively augmented with a time step of
0.1. The Y -axis values describe the converging percentage of one statistic w.r.t. its global
(over the spatial domain) value performed at previous instant.
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nonlinearity is produced such that a stronger distortion of the PV field between inner and
outer gyres is observed. From Figure 7.9, we observe that compared to BVE, SBVEMM

produces higher eddy energy in the front between the outer and inner gyres, and higher
eddy enstrophy in the region between the two inner gyres. However, both coarse models do
not produce enough energy flux in the western and eastern boundary layers. In particular,
the too low tracers’ variance in the eastern boundary layers leads to markedly higher
skewness and kurtosis than those observed in the reference. Nevertheless, the introduction
of randomness enables us to increase the internal variability of the tracers. For instance,
as shown in Figures 7.10 and 7.11, the region with extreme values of skewness and kurtosis
is significantly reduced for SBVEMM when compared to BVE. As the resolution increases,
it can be noticed from Figures 7.12 and 7.13 that the local structures of the PV statistics
provided by SBVEMM, qualitatively converges to the reference.

In order to provide a more quantitative comparison, we propose here a global per-
formance index, measured by the root mean squared error (RMSE) with an a-posteriori
normalization to ensure a similar error level of the different statistics. Given a statistic f
with reference fREF, the normalized RMSE is defined as

RMSE(f) =
1
|Ω|‖f − fREF‖2

max
x∈Ω
|fREF(x)| . (7.10)

Table 7.1 compares the results of the different models at the coarsest resolution 16×32.
The proposed stochastic model shows a clear improvement of all the statistics w.r.t. the
references. This improvement is particularly noticeable for the higher moments. For in-
stance, compared to BVE, SBVEMM has 35.87% and 39.26% less errors in skewness and
kurtosis of the stream function (SF), respectively. The mode matching strategy, SBVEMM,
performs better than the POD strategy, SBVEPOD, for all moments, although the latter
already reduces the BVE error of the first and second moments (with an improvement of
9, 7% for the SF mean and 12, 6% for EKE). Both SBVEMM and SBVEPOD reach very simi-
lar errors in terms of EKE and EPE (with an improvement above 10% for both quantities)
and SBVEMM is more efficient in reducing errors in the third and fourth moments. These
results highlight the benefits that are brought by properly incorporating, into large-scale
simulations, the effects of the small-scale flow component through its statistical distribu-
tion. From Table 7.2 and 7.3 we see that these RMSEs improvements still hold as the
resolution is increased. The improvements at resolution 64 × 128 in terms of EKE and
EPE are still noticeable (25%). The third order moment of SF continues to improve (20%)
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Figure 7.8 – Contour plots of the time-average fields at resolution 16× 32. The top three
plots depict the SF with contour interval (CI) of 0.2, and the bottom three show PV with
CI of 0.1. In each panel, the first one is REF, the second one is SBVEMM and the third
one is BVE.
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Figure 7.9 – Contour plots of the time-variance fields at resolution 16× 32. The top three
plots depict EKE with CI of 30, and the bottom three show EPE with CI of 0.025. In
each panel, the first one is REF, the second one is SBVEMM and the third one is BVE.
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Figure 7.10 – Contour plots of the time-skewness fields at resolution 16 × 32. The top
three plots depict third-order SF moment with CI of 0.15, and the bottom three show
third-order PV moment with CI of 0.15. In each panel, the first one is REF, the second
one is SBVEMM and the third one is BVE. The visualized quantity is not defined on the
boundary of both fields.
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Figure 7.11 – Contour plots of the time-kurtosis fields at resolution 16×32. The top three
plots depict fourth-order SF moment with CI of 0.25 within [0, 4.5] and of 0.5 within [5, 8],
and the bottom three show fourth-order PV moment with CI of 0.5 within [0, 4.5] and of
1 within [5, 10]. In each panel, the first one is REF, the second one is SBVEMM and the
third one is BVE. The visualized quantity is not defined on the boundary of both fields.
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Average of potential vorticity (qt)

Eddy potential enstrophy (EPE)

Figure 7.12 – Contour plots showing the qualitative convergence of the statistics for
SBVEMM. The top three plots describe the averaged PV with CI of 0.1, and the bottom
three show EPE with CI of 0.025. In each panel, the first one stands for BVE 256× 512,
the second one is SBVEMM 64× 128 and the third one is SBVEMM 32× 64.
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Skewness of potential vorticity (s[q])

Kurtosis of potential vorticity (k[q])

Figure 7.13 – Contour plots showing the qualitative convergence of the statistics for
SBVEMM. The top three plots depict the PV-skewness with CI of 0.15, and the bot-
tom three show the PV-kurtosis with CI of 0.5 within [0, 4.5] and of 1 within [5, 10]. In
each panel, the first one is BVE 256× 512, the second one is SBVEMM 64× 128 and the
third one is SBVEMM 32× 64. The visualized quantity is not defined on the boundary of
both fields.

147



Part II, Chapter 7 – Numerical studies of stochastic barotropic QG model

while for the fourth order moments the improvement is less significant. Both SBVEMM and
SBVEPOD improve also the first order moments at resolution 32× 64 (at almost the same
rate as for the coarsest resolution) and 64× 128 (with a smaller decreasing of the errors).

Model
RMSE

ψ
t

qt EKE EPE s[ψ] s[q] k[ψ] k[q]

BVE 0.245 0.091 0.111 0.148 0.499 0.406 0.782 0.806
SBVEPOD 0.221 0.082 0.097 0.132 0.489 0.390 0.624 0.758
SBVEMM 0.197 0.075 0.098 0.131 0.320 0.325 0.475 0.631

Table 7.1 – Comparison of the normalized RMSEs between different models at resolution
16× 32 with Rβ = 0.062 and δ4 = 0.049 fixed. The lowest errors are highlighted in bold.

Model
RMSE

ψ
t

qt EKE EPE s[ψ] s[q] k[ψ] k[q]

BVE 0.108 0.061 0.073 0.122 0.190 0.166 0.218 0.155
SBVEPOD 0.094 0.056 0.064 0.116 0.161 0.146 0.182 0.122
SBVEMM 0.089 0.055 0.058 0.107 0.161 0.136 0.181 0.106

Table 7.2 – Comparison of the normalized RMSEs between different models at resolution
32× 64 with Rβ = 0.062 and δ4 = 0.040 fixed. The lowest errors are highlighted in bold.

Model
RMSE

ψ
t

qt EKE EPE s[ψ] s[q] k[ψ] k[q]

BVE 0.075 0.028 0.036 0.055 0.087 0.039 0.068 0.035
SBVEPOD 0.073 0.024 0.034 0.047 0.080 0.036 0.061 0.031
SBVEMM 0.069 0.023 0.027 0.041 0.068 0.034 0.061 0.029

Table 7.3 – Comparison of the normalized RMSEs between different models at resolution
64× 128 with Rβ = 0.062 and δ4 = 0.026 fixed. The lowest errors are highlighted in bold.

In addition to the discussions above, it is also important to show if the SBVE on
coarse mesh can reproduce the temporal correlation behaviors of the reference (Gugole
and Franzke, 2019). To this end, the autocorrelation functions (ACF) for the time series
of the global stream function is adopted. More precisely, this ACF is defined as

ACF(τ) =

(
Ψ(t)−Ψt

)(
Ψ(t+ τ)−Ψt

)t
σ2

Ψ

, (7.11)
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where τ stands for a time-lag, Ψ(t) = 1
|Ω|
∫
Ω
ψ(x, t)dx is the global stream function at time

t, and σΨ is the (temporal) standard deviation of Ψ. Figure 7.14 shows that compared to
the BVE at each coarse resolution, both SBVEPOD and SBVEMM capture better the ACF
of the reference. For instance, they have smaller decorrelation time scales compared to
the BVE. Besides, the best results are provided by the mode matching method, which is
consistent with our previous conclusions.
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Figure 7.14 – Comparison of the autocorrelation functions (ACF) of the global stream
function between different models, at resolution 16 × 32, 32 × 64 and 64 × 128. All the
ACFs are calculated from t = 20 to t = 100.

7.4 Conclusions

The action of the velocity fluctuations towards large-scale flow structuration is first
demonstrated on a simple inviscid BQG model. The randomized system still conserves
the Rossby wave structure, while introducing secondary vortices. On the contrary, a ho-
mogeneous isotropic noise conserves only the primary wave structure. This is a strong
indication of the predominant role played by inhomogeneity of the small-scale velocity on
shaping coherent large-scale structures in turbulent flows as first wonderfully intuited by
Phillips (1977).

In order to quantify the accuracy of the proposed random model, a statistical analysis
of the flow tracers has been performed for a single-layered wind-driven QG model. As
expected, compared to a classical coarse model, the proposed stochastic model better
represents the nonlinearity at the resolved scales while properly dissipating the unresolved
scales, leading hence to a balanced correction of excessive dissipation and the continuous
increase of internal variability. As a result, it reproduces better on a coarse mesh, the local
structures of the distribution of eddy-resolving tracers. Although the idealized barotropic
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model used in this work cannot describe quantitatively the real ocean, they do in fact
produce qualitatively realistic patterns of large-scale flow in the major basins of the world,
as illustrated in Vallis (2017).
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Chapter 8

NUMERICAL STUDIES OF STOCHASTIC

MULTI-LAYER QG MODEL

As we know, unlike the primitive models, an approximative QG
model requires only few layers to capture the baroclinic instabili-
ties in practice. However, the effects of mesoscale eddies can still
be missing for coarse configurations in the horizontal direction. In
this chapter, we continue our studies on the idealized double-gyre
circulation yet now with a multi-layer QG model. In particular, we
focus on the reproduction of the meandering jet as well as the pre-
diction of low-frequency variability for coarse-grid LU models. The
work presented in this chapter is based on the manuscript Li et al.
(2021) in preparation for submission.

Abstract

8.1 Model configurations and simulations

In this study, we apply our stochastic framework to the Quasi-Geostrophic Coupled
Model (Q-GCM) described by Hogg et al. (2003), which has been intensively assessed and
whose results are well documented in the literature. This Q-GCM differs from many QG
models in that it is a coupled model between the ocean and the atmosphere. The model
characteristics are illustrated in Figure 8.1. In particular, a mixed layer is included in
order to take account the exchanges of heat and momentum between the ocean and the
atmosphere. As a result, an explicit diabatic term due to Ekman pumping of sea surface
temperature (SST) is involved in the dynamical system.

This work will only focus on the dynamics of ocean component. Nevertheless, the mixed
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Figure 8.1 – Illustration of the Quasi-Geostrophic Coupled Model (Q-GCM) from Hogg
et al. (2003) (see details in http://www.q-gcm.org).

layer in the ocean-only mode can still be retained with a simple stationary modeled wind
stress. The whole stochastic coupled model will nevertheless be used in future work. Under
the LU scheme, the evolution of the mixed layer temperature Tm reads:

DtTm = (Dm + Fm) dt, (8.1)

where the surface layered noise σdBt,1, Itô-Stokes drift us,1 and variance tensor a1,
are incorporated in the stochastic transport DtTm. The large-scale mixed-layer veloc-
ity is given by um = 1

f0
∇⊥p1 + 1

f0Hm
τ⊥. On the RHS of (8.1), the dissipation term is

Dm = K2∇2Tm−K4∇4Tm with K2 (resp. K4) the Laplacian (resp. biharmonic) diffusion
coefficient. The second term, Fm = w0(T1+Tm)

2Hm − F0
ρ0CpHm

, describes the exchange of upper
layer heat due to the diabatic effect of Ekman pumping, together with the imposed heat
forcing at the surface, where F0 is the positive upward heat flux and Cp is the specific
heat capacity of the ocean.

Once the SST is updated, we then recover a vertical entrainment (or forcing), w1 =
−∆mT

2∆1T
w0, across the mixed layer embedded in the surface layer with the Ekman pumping

w0 = 1
f0
∇×τ with the wind stress τ a priori modeled. Together with a linear drag at the
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bottom layer, wN = δek
2f0
∇2pN (with Ekman layer thickness δek), the stochastic governing

equation of the forced and damped PV of layer k = 1, . . . , N reads

Dtqk = (Dk + Fk) dt+ dSt,k, Fk = − f0

Hk

(wk − wk−1), (8.2)

where the source/sink terms are defined in (4.41a) and the dissipation Dk for the vorticity
takes the same form as for the SST, i.e. Dk = A2

f0
∇4pk − A4

f0
∇6pk. The ocean dynamic

pressure can be then inverted from the previous updated PV, namely

qk = 1
f0
∇2pk + f0

Hk

(ηk − ηk−1) + βy, (8.3)

where η is the perturbed interface height (see Figure 4.1) and the inversion is carried
out with a Fast Fourier Transform (FFT) method (see details in Hogg et al. (2003)). In
this work, a conservative flux form is adopted for both the evolution of PV (8.2) and
of SST (8.1). These are detailed in Appendix 8.3. As for the time integration, we keep
the classical Leapfrog scheme for the large-scale variables and then include the additional
variations due to the LU flux.

Two types of noise will be studied for this model. The first one is based on the eddy-
resolving (5 km) data and built from the off-line learning procedure presented in Section
5.1.1. Let us highlight that the corrected drift derived from the bias ensuing from the
coarse-graining process has been included in all the LU coarse models. The following
results show the significant improvement in the jet enforcing brought by adding this
correction term. Besides, another type of noise defined from a projection is also tested
in this work. It is based on similar ideas as those developed for the three-dimensional
case (3.54). Under the QG framework, we propose to constraint the noise σdBt along
the iso-surfaces of the stratification through a layered two-dimensional projector Pk such
that

σ̃kdBt = Pk(σkdBt), Pk = I2 −
∇Θk(∇Θk)T
‖∇Θk‖2 , Θk = f0

Hk

(ηk − ηk−1). (8.4)

The common parameters for all the simulations are listed in Table 8.1, whereas the pa-
rameters corresponding to different configurations are specified separately in 8.2. In Hogg
et al. (2004), a set of eddy-resolving simulations of the wind-driven circulation have been
presented to diagnose the variability of the model in terms of the parameters. In this
work, our aim is to improve the variability of low-order models limited by low Reynolds
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numbers associated to coarse grids, particularly in the case that the baroclinic instabil-
ity could not be resolved. To that end, several coarse-resolution (at least the same order
of the deformation radius) models are simulated and compared. Before this, let us first
explain the two types of eddy-resolving data on which we rely. As illustrated by Figure
8.2, the dynamics without including the SST evolution is mainly characterized by a long
meandering jet in each layers. On the other hand, as shown in Figure 8.3, the inclusion of
the additional forcing coming from the SST evolution produces much more variabilities
inside the gyres. Furthermore, an opposite PV gradient is observed in the second layer.
Both of these two configurations are then interesting for our study of coarse-resolution
models. Since we can simply focus on the ability of different coarse models to reproduce
the jet with the first configuration and diagnose more sepcifically the variability inside
the gyres using the latter test case.

Parameters Value Description
X × Y (3840× 4800) km Domain size
Hk (350, 750, 2900) m Mean layer thickness
Hm 100 m Mixed layer thickness (fixed)
Tk (287, 282, 276) K Potential temperature structure
ρ 1000 kg m3 Density
g′k (0.025, 0.0125) m s−2 Reduced grativity
δek 2 m Bottom Ekman layer thickness
τ0 2× 10−5 m2 s−2 Wind stress magantitude
αbc 0.2 Mixed boundary condition coefficient
A2 0 m2 s−1 Laplacian viscosity coefficient
K2 100 m2 s−1 Temperature diffusion coefficient
f0 9.375× 10−5 s−1 Mean Coriolis parameter
β 1.754× 10−11 (m s)−1 Coriolis parameter gradient
Ld (39, 22) km Baroclinic Rossby radii

Table 8.1 – Common parameters for all the models.

Resolution ∆x (km) Timestep ∆t (s) Viscosity (m4 s−1)
5 600 2.0× 109

40 1200 5.0× 1011

80 1440 5.0× 1012

120 1800 1.0× 1013

Table 8.2 – Values of grid varying parameters. Note that the value of K4 for SST is fixed
to the same value as the biharmonic coefficient A4.
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Figure 8.2 – Instantaneous (Year 60) snapshot of PV of the eddy-resolving (5 km) simu-
lation without SST evolution.
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Figure 8.3 – Instantaneous (Year 60) snapshot of PV of the eddy-resolving (5 km) simu-
lation with SST evolution.
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For the first configuration, the two components of the POD (velocity) noise in the
upper layer are illustrated on the top of Figure 8.4, whereas the projection-based noise
is shown on the bottom. Note that in both cases, the correction drift due to the bias
associated to the coarse-graining process (see Section 5.1.1) is included. We observe the
structure of such noises is mostly localized around the jet area and along the western
boundary, which are well informed from the fast fluctuations of the eddy-resolving data.
Besides, from the definition of the projection (8.4), the latter noise corresponds to a ver-
tically linear combination of the POD noise, hence it includes combination of barotropic
and baroclinic structures. This will be further detailed latter. With such noises, some
snapshots of PV provided by the LU coarse simulations (40 km and 80 km) are shown
in Figure 8.5. In addition, to enable a simple first comparison, the results of correspond-
ing (i.e. with the same parameters) deterministic low-resolution (denoted as LR in the
following) simulations are included. As we can see, both LU coarse models enable us to
reproduce the zonal jet and the meridional perturbation of the zero contour. The latter
result relies majorly on the non-linear eddies effect. On the other hand, the LR simula-
tions produce a symmetric structure w.r.t. the basin center. In particular, at the 80 km
resolution, we observe only a dominant wave structure stuck to the western boundary
layer due to an over-dissipation effect. The deterministic coarse resolution flows are al-
most stationary. The LU-POD-P model produces more small-scale fluctuations in many
places at each coarse resolution. Later, the jet enhancement effect in LU coarse models
will be diagnosed and analyzed more precisely.

Similarly for the second configuration, the POD noise with its projected version are
build from the data with the SST evolution. As shown in Figure 8.6, these noises are
stronger than those in the previous configuration, as the entrainment driven by the evo-
lution of the SST increases the variability of the eddy-resolving data, hence more local
fluctuations are transferred to the noise in each layer. Subsequently incorporating these
uncertainties in the proposed random dynamical model (8.2) together with the stochastic
transport of SST (8.1), some very interesting results are recovered, as demonstrated in
Figure 8.7. First, the improvements seen the previous test case still hold here, namely the
zonal jet is reproduced and perturbed in both LU coarse models. In addition, the variabil-
ity of the gyres seems also to be enhanced in this case. The instantaneous structures of
the PV field from LU coarse simulations are much closer to the reference eddy-resolving
snapshots 8.3, compared to the deterministic LR model.
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Figure 8.4 – Instantaneous (Year 60) snapshots of upper layer velocity noises (40 km). The
LU-POD is learned from eddy-resolving data without SST evolution. The LU-POD-P is
build from the projection (8.4) of the LU-POD. The lengths of arrows are adjusted by a
factor of 3.

8.2 Diagnostic of low-frequency variability

In this section, we explore in depth the prediction of the low-frequency variability
for the LU coarse models. To this end, we perform our studies from two points of view:
statistical predictions and energetic analyzes. The first one is inspired from the previous
study presented in Section 7.3.2 by qualifying some statistical structures of interest such
as the temporal mean, and by quantifying some meaningful statistical measures such as
the RMSE of some prognostic variables. The latter one is inspired from the works of Hogg
et al. (2004); Hogg and Blundell (2006) with some diagnostics of eddies energy and of
energy transfers. The two subsequent sections describe these aspects respectively. For a
comparison reason, we keep the classical coarse model (LR) as a benchmark.

8.2.1 Statistical predictions

This section describes the qualitative and the quantitative predictions of the long-term
statistics provided by the LU coarse models. Unlike the barotropic test case presented
in Section 7.3.2, we only focus on the temporal mean for the multi-layer QG system.
However, we will not analyze the results layer by layer. Instead, we prefer to perform
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Figure 8.5 – Comparison of instantaneous (Year 60) snapshot of upper-layer PV for coarse-
model simulations without SST evolution. The lengths of arrows are adjusted by a factor
of 3.

159



Part II, Chapter 8 – Numerical studies of stochastic multi-layer QG model

0 1000 2000 3000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0 1000 2000 3000
0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

Figure 8.6 – Instantaneous (Year 60) snapshots of upper layer velocity noises (40km). The
LU-POD is learned from eddy-resolving data with SST evolution. The lengths of arrows
are adjusted by a factor of 3.

a vertical decomposition, since qualifying the barotropic and baroclinic effects are more
meaningful in such a system.

As described by Hogg et al. (2003), we can re-formulate the N -layered QG model in
vector form with q = (q1, . . . , qN)T and p = (p1, . . . , pN)T such that

f0q = ∇2p+ f0βy − f 2
0Ap, (8.5)

where A ∈ RN × RN denotes the vertical stretching tensor defined by

A =



1
H1g′1

−1
H1g′1

−1
H2g′1

1
H2

(
1
g′2

+ 1
g′1

)
−1
H2g′2

. . . . . . . . .

−1
HNg

′
N−1

1
HNg

′
N−1


. (8.6)

We next assume that the tridiagonal matrix A admits N right eigenvectors Rm, N left
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Figure 8.7 – Comparison of instantaneous (Year 60) snapshot of upper-layer PV for coarse-
model simulations with SST evolution. The lengths of arrows are adjusted by a factor of
3.
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eigenvectors LT

m and N eigenvalues λm (m = 1, . . . , N) such that

ARm = λmRm, LT

mA = λmL
T

m, (8.7)

where Lm and Rm are orthogonal, i.e. LT

m · Rm when m 6= n. However, LT

m 6= Rm in
general, since A is not symmetric. From the structure of matrix A, all the eigenvalues
are real and positive, i.e. λm ≥ 0. Note that the dimensions of λm are 1/c2

m with the
phase speed cm and the dimensions of f 2

0λm are 1/r2
m with the deformation radius rm. In

particular, λ1 = 0 corresponds to the barotropic mode and λm, m > 1 to the (m− 1)-th
baroclinic mode.

We then expand the layered pressure vector p in terms of the right eigenvectors Rn.
It reads

p =
N∑
n=1

p̃nRn, (8.8)

where p̃n denotes the vertical mode coefficients. Multiplying Equation (8.8) by LT

m, we
have

LT

m · p =
N∑
n=1

p̃nL
T

m ·Rn = p̃m(LT

m ·Rm), (8.9)

which leads to
p̃m = LT

m

LT

m ·Rm

· p. (8.10)

Let us define the mode-to-layer conversion matrix Cm2l and the layer-to-mode conversion
matrix C l2m respectively by

Cm2l(l,m) 4=
[
cl,m

]
= Rm(l), Cl2m(m, l) 4=

[
c̃m,l

]
= LTm(l)
LT

m ·Rm

. (8.11)

As a result, one can convert bidirectionally the pressure vector between the layer’s and
mode’s coordinate by

p̃ = C l2mp, p = Cm2lp̃, (8.12)

or, equivalently written in component form by

p̃m =
N∑
l=1

c̃m,lpl, pl =
N∑
m=1

cl,mp̃m. (8.13)

Therefore, the time-averaged modal pressure p̃t equals to the projection coefficient of the
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time-averaged layered pressure pt:

p̃
t
m =

N∑
l=1

c̃m,lp
t
l . (8.14)

Hereafter, the time average of the modal pressures for the LU-POD and LU-POD-P
models as well as the LR models without the SST evolution are computed from year 60
to 180 using 2920 snapshots. In particular, a directly subsampled temporal mean of the
eddy-resolving data is considered as the reference (REF) in the following. From Figure
8.8, we observe from the reference that both barotropic and baroclinic modes characterize
the meandering jet. Then, we can clearly see that the LU-POD and LU-POD-P at 40 km
enable to reproduce qualitatively the local structures of both vertical modes, predicted
by the reference. Conversely, the classical LR model can only capture the stationary
solution – the symmetric double-gyre. In fact, the two gyres are in that case completely
separated. We remark that these results also hold for resolutions 80 km and 120 km, as
demonstrated in Figures 8.9 and 8.10. We believe these results are very encouraging within
the perspective of global ocean models run at climatic scales ( >100 km). Subsequently, an
analogue procedure is performed for all the coarse-resolution models in the configuration
including the evolution of SST. For instance, the results of the barotropic mode and of
the 1st baroclinic mode (at 40 km, 80 km and 120 km) are provided by Figures 8.11, 8.12,
8.13 and a conclusion consistent with the previous test case is recovered.

Afterwards, we quantify the variability of the coarse models using some metrics pro-
posed by Grooms et al. (2015). In order to evaluate the accuracy of the time-mean f

t

and the standard derivation σf for a variable of interest f , one can first adopt their
root-mean-squares (RMS), namely

RMS of σf =
( 1
|Ω|

∫
Ω
σ2
f dx

)1/2
, (8.15a)

where |Ω| denotes the domain size. Subsequently, with a given reference standard deriva-
tion σfref (in our case, we considered the one defined from a direct subsampling of the high-
resolution standard derivation), one may quantify the root-mean-square errors (RMSE)
between σf and σfref , that is

RMSE of σf =
( 1
|Ω|

∫
Ω

(σf − σfref)2 dx
)1/2

. (8.15b)
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Figure 8.8 – Comparison of mean (from 60 yrs to 180 yrs) contour of vertical pressure modes for
coarse-model (40 km) simulations without SST evolution. The matplotlib.colors.SymLogNorm
class is used with linthresh fixed to be 0.3 and the contour interval is fixed to be 0.05 (m2s−2).
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Figure 8.9 – Comparison of mean (from 60 yrs to 180 yrs) contour of vertical pressure modes for
coarse-model (80 km) simulations without SST evolution. The matplotlib.colors.SymLogNorm
class is used with linthresh fixed to be 0.3 and the contour interval is fixed to be 0.05 (m2s−2).
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Figure 8.10 – Comparison of mean (from 60 yrs to 180 yrs) contour of vertical pressure modes for
coarse-model (120 km) simulations without SST evolution. The matplotlib.colors.SymLogNorm
class is used with linthresh fixed to be 0.3 and the contour interval is fixed to be 0.05 (m2s−2).
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Figure 8.11 – Comparison of mean (from 60 yrs to 180 yrs) contour of vertical pressure modes
for coarse-model (40 km) simulations with SST evolution. The matplotlib.colors.SymLogNorm
class is used with linthresh fixed to be 0.3 and the contour interval is fixed to be 0.1 (m2s−2).
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Figure 8.12 – Comparison of mean (from 60 yrs to 180 yrs) contour of vertical pressure modes
for coarse-model (80 km) simulations with SST evolution. The matplotlib.colors.SymLogNorm
class is used with linthresh fixed to be 0.3 and the contour interval is fixed to be 0.1 (m2s−2).
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Figure 8.13 – Comparison of mean (from 60 yrs to 180 yrs) contour of vertical pressure modes
for coarse-model (120 km) simulations with SST evolution. The matplotlib.colors.SymLogNorm
class is used with linthresh fixed to be 0.3 and the contour interval is fixed to be 0.1 (m2s−2).
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Note that such formula holds for the time mean f
t. Let us then introduce the pattern

correlation (PC) and the relative entropy between the coarse models and the reference:

PC of σ2
f =

∫
Ω σ

2
fσ

2
fref

dx
(
∫
Ω σ

4
f dx)1/2(

∫
Ω σ

4
fref

dx)1/2 , (8.15c)

Dispersion = 1
|Ω|

∫
Ω

(σ2
fref

σ2
f

− 1− log(
σ2
fref

σ2
f

)
)

dx, (8.15d)

Entropy = 1
|Ω|

∫
Ω

1
2

(
(f t − f tref)2

σ2
f

+
σ2
fref

σ2
f

− 1− log
(σ2

fref

σ2
f

))
dx. (8.15e)

Basically, from these definitions, we can say that a coarse model with high variability will
have high correlation but low entropy for both temporal mean and standard derivation.
Conversely, a coarse model with poor variability will lead to a large entropy. In the fol-
lowing, we apply these metrics to the layer pressures and the interface height deviations
using the different coarse-resolution simulations. Table 8.3 shows the results for the con-
figuration without the SST evolution. In this case, the LR model has an infinite dispersion
and entropy due to an almost zero variability. Compared to the LU-POD, the projected
noise enables to increase significantly the internal variability. However, the upper layer
correlation remains low. Instead, in the other test case including the SST evolution, the
variability of both coarse models are improved. The LU-POD-P always provides the best
results. In particular, let us outline that at the coarsest resolution of 120 km, the two LU
models provide significant improvements compared to the LR model for all the metrics, as
illustrated in Table 8.8 for the pressure fields and in Table 8.9 for the height fields. Similar
conclusions can be drawn for the other resolutions. These measure values are then inte-
grated vertically and summarized in Figure 8.14. One can clear see that the improvement
of LU models in prediction of variability are resolution-awared.

8.2.2 Energetic diagnosis

This section provides another diagnosis of the low-frequency variability based on some
time series analysis of global energy (over space). Note that all the time series in this
section are provided by a 5th order Butterworth 2-years low-pass filter.

In the first place, the jet velocity are calculated from the magnitude of the maximum
eastward velocity. In the configuration without SST (8.15), both LU-POD and LU-POD-P
at resolutions bigger than the deformation radius, produce from the very beginning higher
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Layer Model RMSE of pt RMSE of σp PC of σ2
p Dispersion Entropy

1
LR 0.57 0.34 0.02 ∞ ∞

LU-POD 0.44 0.33 0.04 393 200
LU-POD-P 0.44 0.31 0.07 37 20

2
LR 0.16 0.20 0.09 ∞ ∞

LU-POD 0.14 0.19 0.11 292 147
LU-POD-P 0.14 0.16 0.30 18 9

3
LR 0.05 0.19 0.13 ∞ ∞

LU-POD 0.05 0.18 0.20 293 147
LU-POD-P 0.05 0.16 0.64 18 9

Table 8.3 – Domain-averaged measures of skill for layer pressures provided by different coarse
models (40 km) without SST evolution. The RMS errors are measured in m2s−2, the remaining
columns are dimensionless. The RMS of pt and σp for the reference is (0.96, 0.16, 0.05)m2s−2

and (0.35, 0.20, 0.20)m2s−2 respectively. Here, “∞” means that the value is bigger thanO(1016).

Layer Model RMSE of pt RMSE of σp PC of σ2
p Dispersion Entropy

1
LR 1.27 1.20 0.34 179 93

LU-POD 0.97 1.18 0.30 71 37
LU-POD-P 0.97 1.06 0.43 14 8

2
LR 0.57 1.01 0.47 394 199

LU-POD 0.49 0.97 0.51 76 39
LU-POD-P 0.48 0.85 0.80 13 7

3
LR 0.26 1.01 0.63 639 320

LU-POD 0.22 0.96 0.85 96 48
LU-POD-P 0.22 0.82 0.94 14 7

Table 8.4 – Domain-averaged measures of skill for layer pressures provided by different coarse
models (40 km) with SST evolution. The RMS errors are measured in m2s−2, the remaining
columns are dimensionless. The RMS of pt and σp for the reference is (2.32, 0.76, 0.26)m2s−2

and (1.38, 1.13, 1.07)m2s−2 respectively.

Interface Model RMSE of ηt RMSE of ση PC of σ2
η Dispersion Entropy

1
LR 44 19 0.37 36 275

LU-POD 32 19 0.28 33 140
LU-POD-P 32 18 0.31 14 75

2
LR 37 16 0.52 32 169

LU-POD 32 16 0.50 27 125
LU-POD-P 32 15 0.54 12 74

Table 8.5 – Domain-averaged measures of skill for interface height provided by different coarse
models (40 km) with SST evolution. The RMS errors are measured in m, the remaining columns
are dimensionless. The RMS of ηt and ση for the reference is (106, 54)m and (24, 23)m respec-
tively.
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Layer Model RMSE of pt RMSE of σp PC of σ2
p Dispersion Entropy

1
LR 1.32 1.28 0.18 598 312

LU-POD 0.84 1.21 0.30 96 50
LU-POD-P 0.84 1.07 0.48 14 8

2
LR 0.60 1.02 0.47 2916 1466

LU-POD 0.48 0.98 0.66 95 48
LU-POD-P 0.47 0.83 0.85 12 6

3
LR 0.25 1.04 0.49 9644 4825

LU-POD 0.22 0.99 0.91 149 75
LU-POD-P 0.22 0.82 0.88 15 8

Table 8.6 – Domain-averaged measures of skill for layer pressures provided by different coarse
models (80 km) with SST evolution. The RMS errors are measured in m2s−2, the remaining
columns are dimensionless. The RMS of pt and σp for the reference is (2.32, 0.76, 0.26)m2s−2

and (1.38, 1.12, 1.07)m2s−2 respectively.

Interface Model RMSE of ηt RMSE of ση PC of σ2
η Dispersion Entropy

1
LR 48 21 0.12 140 575

LU-POD 30 20 0.16 36 137
LU-POD-P 30 19 0.18 20 91

2
LR 40 19 0.32 103 375

LU-POD 32 17 0.47 30 134
LU-POD-P 32 15 0.49 16 88

Table 8.7 – Domain-averaged measures of skill for interface height provided by different coarse
models (80 km) with SST evolution. The RMS errors are measured in m, the remaining columns
are dimensionless. The RMS of ηt and ση for the reference is (106, 53)m and (24, 23)m respec-
tively.

Layer Model RMSE of pt RMSE of σp PC of σ2
p Dispersion Entropy

1
LR 1.32 1.31 0.21 1.2×104 6240

LU-POD 0.84 1.20 0.29 97 50
LU-POD-P 0.84 1.08 0.43 17 10

2
LR 0.59 1.01 0.50 8.7×104 4.4×104

LU-POD 0.47 0.98 0.66 97 49
LU-POD-P 0.47 0.84 0.84 14 7

3
LR 0.25 1.04 0.47 1.9×105 9.5×104

LU-POD 0.22 0.99 0.91 158 79
LU-POD-P 0.22 0.83 0.88 18 9

Table 8.8 – Domain-averaged measures of skill for layer pressures provided by different coarse
models (120 km) with SST evolution. The RMS errors are measured in m2s−2, the remaining
columns are dimensionless. The RMS of pt and σp for the reference is (2.31, 0.76, 0.26)m2s−2

and (1.38, 1.12, 1.07)m2s−2 respectively.
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8.2. Diagnostic of low-frequency variability

Interface Model RMSE of ηt RMSE of ση PC of σ2
η Dispersion Entropy

1
LR 48 22 0.10 3376 3426

LU-POD 32 21 0.12 45 121
LU-POD-P 31 20 0.13 28 84

2
LR 39 22 0.30 2640 2651

LU-POD 33 17 0.42 42 168
LU-POD-P 32 16 0.44 27 113

Table 8.9 – Domain-averaged measures of skill for interface height provided by different coarse
models (120 km) with SST evolution. The RMS errors are measured inm, the remaining columns
are dimensionless. The RMS of ηt and ση for the reference is (106, 53)m and (24, 23)m respec-
tively.
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Figure 8.14 – Bar-plots of statistical measures of pressures for different models (with SST)
in terms of resolutions.
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jet magnitude than the LR. Afterwards, both coarse models converge into a stationary
jet state. We remark that the LU-POD and LU-POD-P are often in opposite phase. For
the other test case including the SST (8.16), the jet magnitude is increased for all models
in comparison to the previous results.
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Figure 8.15 – Time series of ocean jet velocity provided by different coarse models (without
SST). The typical order of the reference is 0.4.
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Figure 8.16 – Time series of ocean jet velocity provided by different coarse models (with
SST). The typical order of the reference is 0.5.

Further, we use the KE decomposition proposed by Hogg and Blundell (2006), in which
the large-scale velocity u is first decomposed into u + u′ with u filtered by the 2-years
low-pass filter and u′ the residual velocity. Subsequently, the layered kinetic energy is also
decomposed into two eddy kinetic energy (EKE) by

KEk = ρHk

2|Ω|

∫
Ω
|u|2 dx︸ ︷︷ ︸

Standing EKE

+ ρHk

2|Ω|

∫
Ω
|u′|2 dx︸ ︷︷ ︸

Transient EKE

. (8.16)

This procedure is performed in the configuration with the SST evolution. As illustrated on
the top of Figure 8.17, when the horizontal resolution is similar to the largest baroclinic
deformation radius, the transient EKE are beyond the standing EKE for each model. In

174



8.2. Diagnostic of low-frequency variability

particular, the POD-LU-P behaves the best at such resolutions, in the sense that much
more EKE is produced at 40 km compared to the others. As shown on the bottom of this
figure, all the systems produce more standing EKE than transient EKE. Nevertheless, the
LU-POD-P seems always the best with even higher transient EKE than standing EKE of
the LR system at resolution 80 km.
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Figure 8.17 – Time series of the standing eddy KE and the transient eddy KE provided
by different coarse models (with SST). The standing EKE are described by solid lines
whereas the transient EKE are presented by dashed lines.

To understand the source of EKE produced by the LU coarse models (particularly for
the LU-POD-P), we further diagnose the transfers of energy between different parts of
the system (Hogg and Blundell, 2006):

N∑
k=1

∂KEk
∂t

=−
N−1∑
k=1

∂PEk
∂t︸ ︷︷ ︸

PE exchange

+ ρ

∫
Ω
u1τ

xdx︸ ︷︷ ︸
Wind forcing

−ρ
N−1∑
k=1

∫
Ω
g′kηkwk dx︸ ︷︷ ︸

Buoyancy forcing

−1
2ρδekf0

∫
Ω

(u2
N + v2

N )dx︸ ︷︷ ︸
Bottom drag

−
N∑
k=1

A4ρHk

∫
Ω

(uk∇4uk + vk∇4vk)dx︸ ︷︷ ︸
Dissipation

+ · · · , (8.17)

where the RHS terms in the first line are the source of KE, whereas the terms in the last
line are the sinks. Note that for the configuration without SST, the buoyancy forcing term
cancels as w1 = 0. We remark that the previous equation is not complete in describing
all the energy transfers for the LU framework. For future work, it would be interesting to
estimate numerically these contributions in the energy transfers.

Figure 8.18 shows the results of the previous energy decomposition for both coarse
models without the evolution of SST at different resolutions. Compared to the LR model,
both LU coarse models provide higher equilibrium between the wind forcing and the
dissipation. From Equation (8.17), this mainly results from a higher magnitude of the
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dynamic u in each layer. In particular, as demonstrated in Figure 8.19, the LU-POD-P
model produces higher energy transfers from PE to KE at each resolution. Otherwise, in
the test case with SST forcing, the higher source of KE for LU-POD-P results also from
the sum of PE exchange and the buoyancy forcing, as illustrated in Figure 8.20.
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Figure 8.18 – Time series of contributions to the rate of kinetic energy for different coarse
models (without SST). From top to bottom: 40 km, 80 km and 120 km; From left to right:
LR, LU-POD, LU-POD-P.

Finally, we give an overview of the energy backscattering provided by the LU mod-
els. From a basic knowledge of the QG turbulence theory (McWilliams, 2006), like two-
dimensional turbulence, there are both inverse-energy and forward-enstrophy inertial-
range turbulent cascades under the ideal inviscid framework. However, introducing only a
dissipation mechanism like the hyperviscosity while keeping the invariant external forcing
like the wind level for coarse models often leads to an excessive decrease of the resolved KE
(Arbic et al., 2013; Kjellsson and Zanna, 2017) in numerical simulations. As shown in Fig-
ure 8.21, at different resolutions without the SST coupling, both LU models improve the
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Figure 8.19 – Time series of the rate of change of KE and of the negative rate of change
of PE for different coarse models (without SST). From top to bottom: 40 km, 80 km and
120 km; From left to right: LR, LU-POD, LU-POD-P.
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Figure 8.20 – Time series of contributions to the rate of kinetic energy for different coarse
models (with SST). From top to bottom: 40 km, 80 km and 120 km; From left to right:
LR, LU-POD, LU-POD-P.
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8.3. Conclusion

time- and layer-averaged spectrums of KE over all wavenumbers compared to those of the
LR models. Indeed, the introduction of the non-linear convection by the noise (including
the correction drift) reduces the amount of energy dissipated at small scales and allows to
backscatter them to the large scales. In particular, the lower the resolution is, the greater
amount of large-scale KE is brought by the random models. As illustrated in Figure 8.22,
similar results are found for the test case including the SST forcing. In that latter case,
the LU-POD-P models, with a noise along the iso-surfaces of vertical stratification, in-
volves an additional SST random forcing that brings an higher KE backscattering than the
stationary noises models (LU-POD) at both resolutions. This seems to highlight the im-
portance of the non-stationary characteristic of the noise brought by the iso-stratification
projection. Inspired by Scott and Arbic (2007); Zanna et al. (2017), to better interpret
the energy transfert across scales, the spectral contributions of each terms in Equation
(8.17) can further be explored. This will be performed in a subsequent work.
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Figure 8.21 – KE spectral density averaged in time (from 60 yrs to 75 yrs using 366
snapshots) and in layers provided by different models (without SST). The HR one is
provided by the eddy-resolving (5 km) simulation data. Note that the computational
method presented by Durran et al. (2017) is adopted in these two-dimensional spectrums
and that the isotropic wavenumbers are normalized by 1/π while the KE spectral density
are normalized by π.

8.3 Conclusion

In this work, the LU model has been successfully implemented in a well established
QG dynamical core. We considered here a random flow built from high-resolution data.
An additional subgrid correction drift has been introduced in the random flow due to
the bias ensuing from the coarse-grained procedure. This non intuitive term seems quite
important in the reproduction of the meandering jet within the wind-driven double-gyre
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Figure 8.22 – KE spectral density averaged in time (from 60 yrs to 75 yrs) and in layers
provided by different models (with SST).

circulation. Further, a projection method has been proposed to constrain the noise to
live along the iso-surfaces of the vertical stratification. The resulting noise enables us to
improve the intrinsic variability of the large-scale current. From some statistical studies
and energy analysis, this improvement is well demonstrated.

Appendix: Spatial discretization of the LU terms

In this appendix we detail the numerical discretization (in space) of the LU additional
terms in Equations (8.2) and (8.1). For simplicity, let us denote, u̇ = 1

∆tσdBt−us, in the
following. The prognostic variables are discretized in the Arakawa C–grid, as illustrated
from Fig.A1, where the large–scale geostrophic velocities are discretized by ui,j+1/2 =
− 1
f0∆(pi,j+1−pi,j) and vi+1/2,j = 1

f0∆(pi+1,j−pi,j). The partial free-slip boundary condition of
pressure field, ∂2

nnp = −(α/∆)∂np (with α positive constant), deduces the ghost southern
and northern boundary values of the zonal velocitiy:

u(0) = 1− α/2
1 + α/2u

(1), u(n+1) = 1− α/2
1 + α/2u

(n), (8.18)

with the same results for the meridional components at western and eastern boundaries.
The small-scale velocity, u̇, is assumed to have the very same boundaries. As mentioned
before, all the LU terms can be re-written in a flux form such that it can be discretized
by

∇·F |i,j = 1
∆

(
F x |i+1/2,j − F x |i−1/2,j + F y |i,j+1/2 − F y |i,j−1/2

)
. (8.19)
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Figure 8.23 – Illustration of the discretized grid. The small-scale zonal (meridional) ve-
locity, u̇ (v̇) locates at the same position as the large-scale one, u (v).

LU flux in the PV evolution

In the evolution of PV, the LU flux can be decomposed into, F = F ad+F df+F so+F si,
where F ad = −u̇q, F df = 1

2a∇q, F so = −(u · ∇⊥)u̇ − a∇f and F si = 1
2(∂xa∇v −

∂ya∇u) are, respectively, the flux of advection, diffusion, source and sink. We give the
corresponding discretized form of each flux in the following.

Advection flux We propose to use a conservative advection form that corresponds
exactly to the 9-points Arakawa Jacobian scheme, i.e. ∇·(uq) = 1

f0
J(p, q). It reads:

F x
ad = −

(2
3u

xyqx + 1
3u

xqd
y

)
, F y

ad = −
(2

3v
yxqy + 1

3v
xqd

y

)
, (8.20)

where the averaging operations are defined by qxi+1/2,j = 1
2(qi,j + qi+1,j), qyi,j+1/2 = 1

2(qi,j +
qi,j+1) and qdi+1/2,j+1/2 = 1

2(qi,j + qi+1,j+1). More precisely, the explicit expressions of our

181



Part II, Chapter 8 – Numerical studies of stochastic multi-layer QG model

advection flux are

F x
ad |i+1/2,j = − 1

12

(
(u̇i,j+1/2 + u̇i+1,j+1/2 + u̇i,j−1/2 + u̇i+1,j−1/2)(qi,j + qi+1,j)

+ 1
2(u̇i,j+1/2 + u̇i+1,j+1/2)(qi,j + qi+1,j+1)

+ 1
2(u̇i,j−1/2 + u̇i+1,j−1/2)(qi,j + qi+1,j−1)

)
, (8.21a)

F x
ad |i−1/2,j = − 1

12

(
(u̇i−1,j+1/2 + u̇i−1,j−1/2 + u̇i,j−1/2 + u̇i,j+1/2)(qi,j + qi−1,j)

+ 1
2(u̇i−1,j+1/2 + u̇i,j+1/2)(qi,j + qi−1,j+1)

+ 1
2(u̇i−1,j−1/2 + u̇i,j−1/2)(qi,j + qi−1,j−1)

)
, (8.21b)

F x
ad |i,j+1/2 = − 1

12

(
(v̇i−1/2,j+1 + v̇i−1/2,j + v̇i+1/2,j + v̇i+1/2,j+1)(qi,j + qi,j+1)

+ 1
2(v̇i+1/2,j+1 + v̇i+1/2,j)(qi,j + qi+1,j+1)

+ 1
2(v̇i−1/2,j+1 + v̇i−1/2,j)(qi,j + qi−1,j+1)

)
, (8.21c)

F x
ad |i,j−1/2 = − 1

12

(
(v̇i−1/2,j + v̇i−1/2,j−1 + v̇i+1/2,j−1 + v̇i+1/2,j)(qi,j + qi,j−1)

+ 1
2(v̇i+1/2,j + v̇i+1/2,j−1)(qi,j + qi+1,j−1)

+ 1
2(v̇i−1/2,j + v̇i−1/2,j−1)(qi,j + qi−1,j−1)

)
. (8.21d)

Diffusion flux We discretize our diffusion flux component F x
df = 1

2

(
axx∂xq + axy∂yq

)
and F y

df = 1
2

(
axy∂xq + ayy∂yq

)
by

F x
df |i+1/2,j = 1

8∆

(
(axxi,j+1/2 + axxi,j−1/2 + axxi+1,j+1/2 + axxi+1,j−1/2)(qi+1,j − qi,j)

+ 1
2(axyi,j + axyi+1,j)(qi,j+1 − qi,j−1 + qi+1,j+1 − qi+1,j−1)

)
, (8.22a)
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F x
df |i−1/2,j = 1

8∆

(
(axxi−1,j+1/2 + axxi−1,j−1/2 + axxi,j+1/2 + axxi,j−1/2)(qi,j − qi−1,j)

+ 1
2(axyi−1,j + axyi,j )(qi−1,j+1 − qi−1,j−1 + qi,j+1 − qi,j−1)

)
, (8.22b)

F y
df |i,j+1/2 = 1

8∆

(
(ayyi+1/2,j + ayyi−1/2,j + ayyi+1/2,j+1 + ayyi−1/2,j+1)(qi,j+1 − qi,j)

+ 1
2(axyi,j + axyi,j+1)(qi+1,j − qi−1,j + qi+1,j+1 − qi−1,j+1)

)
, (8.22c)

F y
df |i,j−1/2 = 1

8∆

(
(ayyi+1/2,j−1 + ayyi−1/2,j−1 + ayyi+1/2,j + ayyi−1/2,j)(qi,j − qi,j−1)

+ 1
2(axyi,j−1 + axyi,j )(qi+1,j−1 − qi−1,j−1 + qi+1,j − qi−1,j)

)
. (8.22d)

We use the same approximation of the advection flux for the sources and the same ap-
proximation of the diffusion flux for the sinks.

Discretization of LU flux in the SST evolution

In the evolution of SST, the LU flux is decomposed in two terms, F ad = −u̇T and
F df = 1

2a∇T . In the following, the index (i, j) stands for the T -grid.

Advection flux Only central-winding is adopted for the SST advection:

F x
ad |i+1/2,j = −1

2 u̇i+1/2,j(Ti,j + Ti+1,j), (8.23a)

F x
ad |i−1/2,j = −1

2 u̇i−1/2,j(Ti−1,j + Ti,j), (8.23b)

F y
ad |i,j+1/2 = −1

2 v̇i,j+1/2(Ti,j + Ti,j+1), (8.23c)

F y
ad |i,j−1/2 = −1

2 v̇i,j−1/2(Ti,j−1 + Ti,j). (8.23d)
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Diffusion flux Only central-interpolation is adopted for the SST diffusion:

F x
df |i+1/2,j = 1

2

(
axxi+1/2,j(Ti+1,j − Ti,j) + 1

8(axyi+1/2,j+1/2 + axyi−1/2,j+1/2)

(Ti,j+1 − Ti,j−1 + Ti+1,j+1 − Ti+1,j−1)
)
, (8.24a)

F x
df |i−1/2,j = 1

2

(
axxi−1/2,j(Ti,j − Ti−1,j) + 1

8(axyi−1/2,j+1/2 + axyi−1/2,j−1/2)

(Ti−1,j+1 − Ti−1,j−1 + Ti,j+1 − Ti,j−1)
)
, (8.24b)

F y
df |i,j+1/2 = 1

2

(
ayyi,j+1/2(Ti,j+1 − Ti,j) + 1

8(axyi−1/2,j+1/2 + axyi+1/2,j+1/2)

(Ti+1,j+1 − Ti−1,j+1 + Ti+1,j − Ti−1,j)
)
, (8.24c)

F y
df |i,j−1/2 = 1

2

(
ayyi,j−1/2(Ti,j − Ti,j−1) + 1

8(axyi−1/2,j−1/2 + axyi+1/2,j−1/2)

(Ti+1,j − Ti−1,j + Ti+1,j−1 − Ti−1,j−1)
)
. (8.24d)
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CONCLUSION

In this thesis, we have explored a stochastic representation of the small-scale effects on
the large-scale oceanic circulation. This stochastic framework, called modeling under loca-
tion uncertainty (LU), is derived from the classical physical conservation laws and arises
from a decomposition of the Lagrangian velocity into a time-smooth component and a
highly oscillating noise term. Using some fundamental stochastic calculus, a stochastic
partial differential equation (SPDE) is found to describe the evolution law of a random
tracer transported along the stochastic Lagrangian trajectory. Compared to the classi-
cal transport equation associated to the deterministic material derivative operator, this
SPDE involves a new stochastic transport operator that includes three additional terms: A
multiplicative random forcing corresponding to the tracer’s advection by the noise, which
backscatters energy to the system; A tracer’s dissipation depicting the mixing mechanism
due to the action of the small scales, which plays a role similar to the eddy viscosity
introduced in many large-scale circulation models; An effective advection term capturing
the small-scale inhomogeneity action over the large-scale current, which redistributes the
large-scale energy. One important characteristic of this SPDE is that it preserves in time
the global energy of the random tracer for any realizations. In this process, the energy
brought by the noise is exactly counter-balanced by the energy loss caused by the dif-
fusion. A stochastic Reynolds transport theorem (SRTT) is derived from this stochastic
transport to describe the Eulerian transport of random tracers within arbitrary moving
and deforming control-volumes.

The resulting SRTT combined with physical conservation laws allows us to derive the
stochastic hydrostatic primitive equations and the stochastic simple Boussinesq equations.
Using this latter, we have shown that the proposed LU model introduces large-scale
flow structuration caused by the action of the small-scale flow component. This effect
is generated by the statistical eddy-induced velocity (appeared in the effective advection
term), associated to the noise inhomogeneity, which can be interpreted as a generalization
of the Stokes drift and is hence referred to in this work as Itô-Stokes drift. In fact, this
Itô-Stokes drift relies on the difference between the ensemble mean of Lagrangian fluid
velocity and the mean of the Eulerian effective velocity. With this analogy and proper
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assumptions, we have shown that the derived stochastic Boussinesq dynamics encompasses
the classical Leibovich system unveiling a vortex force responsible of the emergence of
secondary circulations. However, this stochastic system is not restricted to wave current
interactions and is capable of accounting for more complex interactions between the large-
scale current and the small-scale fluctuations. In addition, we have briefly interpreted the
proposed LU model in terms of the Gent-McWilliams (GM) parametrization that is widely
used in many global ocean models. By projecting the noise along the isopycnal surfaces
(iso-surfaces of density or of buoyancy), the Itô-Stokes drift in LU scheme plays a similar
role as the so-called bolus velocity introduced in the GM scheme and the tracer’s diffusion
through the noise variance can be connected with Redi-like isoneutral diffusion.

In order to simplify the governing equations of the oceanic (and atmospheric) large-
scale circulations, some vertical and horizontal approximations are adopted for the derived
stochastic primitive and Boussinesq systems. A resulting stochastic shallow-water model
under geostrophic noise is demonstrated to conserve the total energy. Through scaling and
asymptotic small parameter power expansion different stochastic versions of the planetary
geostrophic (PG), the quasigeostrophic (QG) and the surface quasigeostrophic (SQG)
models have been explicitly obtained. In these derivations, the noise amplitude needs to
be properly scaled. This additional degree of freedom compared to the deterministic case
provides an interesting and practical tool for investigating the implication of the small-
scale components of the flow. Under the QG regime, additional vorticity sources arise from
the interaction of the strains between the small-scale noise and the large-scale current.
These terms have shown to be essential for the total energy conservation of the flow. In
this thesis, these simplified two-dimensional and/or layered stochastic models have been
tested in different configurations through several numerical simulations.

To perform the numerical simulation of the LU models on coarse meshes, we have in
particular explored various types of noises – homogeneous/heterogenous and stationary/non-
stationary, using different approaches – data-driven/parameterized. In the data-driven
models, the proper orthogonal decomposition (POD) procedure has been adopted to learn
efficiently the stationary eigenfunction basis of the velocity noise from data of an eddy-
resolving simulation. In particular, a subgrid correction drift has been identified due to
the bias ensuing from the coarse-graining procedure of the high-resolution data used to
perform the POD. To release the strong stationary assumption of this approach, we pro-
posed to update-in-time the noise EOFs by by matching the noise’s principal temporal
modes with the large-scale dynamics. This novel method consists in selecting from the
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reference data the set of time instances that match the large-scale structures of a coarse-
resolution simulation. In addition to homogeneous and stationary noise expressed on a
set of Fourier modes of high wavenumbers as proposed in Resseguier et al. (2017b), two
new parameterizations of heterogeneous non-stationary noises have been used. The first
one consists in estimating time-dependent EOFs from local velocity fluctuations gener-
ated directly from the coarse on going simulation, together with a rescaling of the noise
amplitude based on a similarity assumption. However, this method comes with a slightly
higher computational cost, since the singular value decomposition (SVD) procedure has
to be performed on the local fluctuations at each time step. The latter method is designed
for a stochastic transport equation of passive tracers with a given subgrid scale dissipation
operator, such as Laplacian, biharmonic or hyperviscosity operator. The main idea relies
on the assumption that the variance diffusion in LU models can be identified with the
subgrid dissipation up to a scaling factor. As such, for a given orthonormal basis such as
wavelet, the associated eigenvalues are updated according to a desired energy dissipation
balance. The resulting transport noise counter-balances then the numerical dissipation
removed by the subgrid scales up to a prescribed scaling factor. However, it is difficult in
that case to recover explicitly the velocity noise and its variance tensor, only the random
advection term is specified.

For numerical validations, we have first used the random SQG model to study short-
terms ensemble forecasting skills predicted by different LU noise models, using some
classical metrics such as Talagrand diagrams, the continuous ranked proper score and the
energy score. As a result, we have shown that the proposed LU models provide higher
ensemble spread and more reliable forecast than the classical random model built from
perturbation of the initial condition (PIC). This highlights that LU models are able to
overcome the underdispersive issue (Mitchell and Gottwald, 2012; Franzke et al., 2015)
of the PIC models without tuning any “inflation” parameters classically introduced to
increase the ensemble covariance (Anderson and Anderson, 1999). This ability is in par-
ticular of crucial importance for data assimilation applications in geophysical sciences
such as meteorology or oceanography. Furthermore, in terms of ensemble reliability, we
concluded that the LU heterogeneous noise models are better than the homogeneous noise
models and the non-stationary noise models are better than the stationary ones.

Numerical simulations of the barotropic QG model under LU has been then assessed.
In the test case of a simplified Rossby wave, we have shown that the proposed random
model with both homogeneous and heterogeneous noises preserve the magnitude and
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the propagation speed of the wave. Besides, we have illustrated numerically that the
inhomogeneous noise together with the Itô-Stokes drift induces a structuration of the
large-scale flow with strong secondary vortices.

In another viscous double-gyre configuration driven by an ideal steady wind within
an enclosed shallow basin, we have performed long-terms statistical analysis for different
coarse models. Compared to a deterministic coarse model, the LU model better repre-
sents the nonlinearity at the resolved scales while properly dissipating the unresolved
scales, hence leading to a balanced correction of excessive dissipation and to an improve-
ment of internal variability. Both stationary and non-stationary noise models enable us
to reproduce qualitatively and quantitatively on a coarse mesh the statistical distribution
of the large-scale tracers, predicted by the eddy-resolving simulation data. In addition,
the non-stationary noise based on the temporal-mode-matching approach provides better
performances in most of the statistics.

Finally, the proposed LU model has been implemented in a well established multi-
layered QG dynamical core (Hogg et al., 2004). The empirical spatial correlation of the
small-scale noise has been first estimated from eddy-resolving simulation data. In par-
ticular, the non intuitive subgrid correction drift has been found to be very important
in reproducing on a coarse mesh the meandering jet of the double-gyre circulation. In
addition, a new projection method has been proposed to constrain the noise living along
the iso-surfaces of the vertical stratification, in order to improve the transfer of available
potential energy toward the kinetic energy. The resulting non-stationary noise enables
us to improve the intrinsic low-frequency variability of the large-scale current. This im-
provement has been well demonstrated through a transfer analysis and some statistical
criterion. We have highlighted that both stationary and non-stationary noise models pro-
vide significant improvements at ocean climatic scale (resolution beyond 100 km) in terms
of variability metrics, compared to a corresponding deterministic coarse model. At that
resolution, the effects of the mesoscale eddies within the ocean basin at the midlatitude
(of deformation radius around 30∼40 km) are better represented by the LU models, even
though the baroclinic instability can not be fully resolved.

In future work, we believe that this study may have three interesting prospective axes
– models, noises and assimilations. First, the encouraging numerical results presented in
this thesis encourage us to implement the proposed random model on more complex and
realistic flow configurations. A following study for a three-layered atmosphere and three-
layered ocean coupled QG model (Hogg et al., 2003) is already in progress. Including
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random forcing into the bottom layer of the atmosphere leads to both to an unsteady
wind stress and the random diabatic forcing due to Ekman pumping of the sea surface
temperature (SST) in both atmospheric and oceanic mixed layers. Thus, it will be in-
teresting to verify the response of the ocean dynamics in terms of variability and energy
to these highly variable forcings, and particularly to compare the results to a stationary
wind forced ocean dynamics as well as to an unforced dynamics. Instead of the idealized
double-gyre circulation, a southern ocean channel configuration (Hogg and Blundell, 2006;
Grooms et al., 2015) can be further adopted to investigate the intrinsic variability of the
Antarctic Circumpolar Current (ACC). Such configuration could be completed with the
topography prescribed by Hogg and Blundell (2006). In that test case, we could compare
the statistical prediction skills of the LU coarse models to that of the different GM pa-
rameterizations presented in Grooms et al. (2015). The stochastic primitive Boussinesq
models, either with the NEMO (Lévy et al., 2010; NEMO team, 2016) or MITgcm (Mar-
shall et al., 1997b,a; Campin et al., 2020) codes could then be tested for global ocean
circulations with different noises as presented in this work. However, in that case the
random pressure term in the LU model has to be a priori modeled or computed based on
proper scalings of hydrostasy. These efforts aim at progressively going toward the study
of stochastic IPCC-class ocean models and to confirm whether relevant stochastic flow
models may contribute to improve them.

Another possible research axis focuses on the improvement of the noise modeling.
New data analysis techniques could be explored in practice to estimate the dynamics of
the small-scale noise, first from eddy-resolving simulation data, then from high-resolution
satellite data. Techniques relying on the spectral analysis of the Koopman operator (Mezić,
2013; Giannakis, 2019; Gugole and Franzke, 2020) could be contemplated for that pur-
pose. Investigations on the constitution of the random term from high frequency waves
generated by surface waves or through internal waves will also be conducted. The per-
formance of the resulting random models will be assessed and analyzed again in terms
of forecasting. The objective will consist in evaluating their ability to characterize the
long-terms impacts of some small-scale events.

On the other hand, one possible parametrization method based on the classical linear
stability analysis (Smith, 2007; Vallis, 2017) of the resolved dynamics could be investigated
and tested. The motivation consists always in designing adequate noises that provide ef-
ficient conversion from the mean available potential energy (MAPE) to the eddy kinetic
energy (EKE) through baroclinic instabilities. For instance, we could first linearize the
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QG equation around the local means of velocity and of potential vorticity (PV) gradi-
ent. Substituting subsequently a plane-wave solution into that linearized equation and
solving the resulting eigenvalue problem, will allow us to obtain a set of normal modes
(eigenfunctions) associated with their frequencies (eigenvalues). Then, in order to repre-
sent the noise terms, we may select some modes and frequencies of the fastest growing
waves according to the rate of conversion from MAPE to EKE. This rate can be calcu-
lated from the QG energy budget equation. We expect that such linear stability analysis
could provide a good estimate of the characteristic time and locations for the small-scale
noise. However, the computational cost associated to such a procedure has to be carefully
considered. Nevertheless, this could provide us a very interesting parameterization of the
small-scale velocity components. Moreover, we have to keep in mind that data are not
always available.

Finally, we have a strong interest on the coupling of random dynamical models with
high-resolution satellite image observation through the use of ensemble data assimilation
procedures, particularly through the particle filtering (Bain and Crisan, 2008; Cotter
et al., 2019b). The data assimilation technique proposed will benefit from the natural
multiscale analysis framework associated to data-driven noise models. The objective will
be to devise efficient data assimilation procedures in high-dimensional space through the
proposed random model. As such, this modeling provides an efficient mean to sample the
dynamics along meaningful directions, construct reduced order models but also to smooth
the data on a dynamical ground. In the first place, we could adopt the hierarchical particle
filter (Wikle and M., 2007; Van Leeuwen, 2009) for the LU coarse simulations using
the Q-GCM dynamical cores and the eddy-resolving simulation data. This will allow us
to reduces the assimilation complexity and to rely on different algorithms for different
parts of hierarchy. Later, for higher-dimensional problem such as the stochastic primitive
Boussinesq system, we could consider some Markov chain Monte Carlo (MCMC) methods
such as Metropolis-Hastings (Robert et al., 2004; Van Leeuwen et al., 2019).
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Résumé : Cette thèse explore une représentation stochas-
tique de l’effet des petites échelles sur la circulation océanique
grande échelle. Ce modèle stochastique, appelé modélisation
sous incertitude de position (LU), résulte d’une décomposi-
tion de la vitesse en une composante lisse en temps et d’un
terme de bruit très oscillant. Trois avantages principaux de ce
modèle aléatoire sont soulignés dans cette thèse : il introduit
une structuration des écoulements à grande échelle par l’in-
homogénéité du bruit ; il fournit un système de prévision d’en-
semble fiable et améliore la variabilité interne des modèles
océaniques à résolution grossière.
Nous avons d’abord dérivé plusieurs modèles dynamiques
aléatoires à partir du calcul stochastique et des lois de conser-
vation physique. Nous avons démontré que certains modèles
aléatoires conservent l’énergie. Dans ces modèles, une vi-
tesse statistique induite par les petits tourbillons, et associée
à l’inhomogénéité du bruit, est interprétée comme une géné-
ralisation de la dérive de Stokes. Nous avons montré que la
dynamique stochastique dérivée contient un terme de forçage
dit “force vortex” qui conduit à l’émergence de circulations se-
condaires. Cet effet est illustré numériquement par le cas test
simple d’une onde de Rossby barotrope.
Nous avons ensuite proposé différents types de bruits - homo-
gènes / hétérogènes et stationnaires / non stationnaires, en
utilisant différentes méthodes - guidées par les données ou
paramétrées. Pour les validations numériques nous avons uti-

lisé une dynamique quasi-géostrophique surfacique pour étu-
dier les capacités de prévision d’ensemble à court terme as-
sociés à différents modèles de bruit. En utilisant certaines mé-
triques classique de prévision ensembliste, nous avons mon-
tré que les modèles LU fournissent une dispersion d’ensemble
plus élevée ainsi que des prévisions plus fiables que les mo-
dèles aléatoires construits à partir de la perturbation de la
condition initiale. De plus, nous avons conclu que les modèles
de bruit hétérogènes sont meilleurs que les modèles homo-
gènes et les modèles de bruit non-stationnaires plus perfor-
mant que les modèles stationnaires.
Dans ce travail, des simulations numériques des circulations
double-gyres forcées par le vent sont également évaluées.
Dans le cas barotrope, nous avons montré que les modèles LU
permettent de reproduire qualitativement et quantitativement
sur un maillage grossier la distribution statistique à temps long
et à grande échelle des traceurs, prédite par les données de
haute résolution. Dans le cas multicouche, nous avons mon-
tré que la dérive de correction sous-maille, résultant de la
procédure de sous-échantillonnage des données s’avère être
très importante pour reproduire le jet zonal sur un maillage
grossier. Nous avons mis en évidence que les modèles LU
améliorent à l’échelle climatique océanique la variabilité intrin-
sèque à basse fréquence du courant à grande échelle. Cette
amélioration a été démontrée par l’analyse du transfert d’éner-
gie et de certains critères statistiques.

Title: Stochastic modeling and numerical simulation of ocean dynamics

Keywords: Stochastic modeling, dynamical system, ocean variability, data-driven model, uncertainty quantification, ensemble

forecasting

Abstract: This thesis explores a stochastic representation of
the small-scale effects on the large-scale oceanic circulation.
This stochastic model, called modeling under location uncer-
tainty (LU), arises from a velocity decomposition into a time-
smooth component and a highly oscillating noise term. Three
major benefits of such random model are outlined in this the-
sis: it introduces large-scale flow structuration by the noise in-
homogeneity; it provides a reliable ensemble forecasting sys-
tem and it improves internal variability of coarse-resolution
ocean models.
We first derived several random dynamic models from
stochastic calculus and physical conservation laws. Some re-
sulting random models are demonstrated to conserve the
energy. In these models, a statistical eddy-induced velocity,
associated to the noise inhomogeneity, is interpreted as a
generalization of the Stokes drift. We have shown that the
derived stochastic dynamics encompasses the vortex force
which leads to the emergence of secondary circulations. This
effect is numerically illustrated from a simple test case of the
barotropic Rossby wave.
We then proposed various types of noises - homoge-
neous/heterogenous and stationary/non-stationary, using dif-
ferent approaches - data-driven/parameterized. For numerical

validations, we used the surface quasi-geostrophic dynamics
to study short-terms ensemble forecasting skills predicted by
different noises models. Using some classical metrics for en-
semble forecasts, we have shown that the LU models pro-
vide higher ensemble spread and more reliable forecast than
the random models built from perturbation of the initial condi-
tion. In addition, we concluded that the heterogeneous noise
models are better than the homogeneous ones and the non-
stationary noise models are better than the stationary ones.
In this work, numerical simulations of the wind-driven double-
gyre circulations are also assessed. In the barotropic case, we
have shown that the LU models enable us to reproduce quali-
tatively and quantitatively on a coarse mesh the long-term sta-
tistical distribution of the large-scale tracers, predicted by the
eddy-resolving simulation data. In the multi-layered case, we
have found that the subgrid correction drift, ensuing from the
coarse-graining procedure of the high-resolution data, is very
important in reproducing on a coarse mesh the meandering
jet. We have highlighted that the LU models improve the intrin-
sic low-frequency variability of the large-scale current at ocean
climatic scale. This improvement has been well demonstrated
through the energy transfer analysis and some statistical crite-
rions.
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