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Foreword

In this manuscript, I summarize my career path since I have been recruited as Associate Professor at

ISI/Tunis ElManar University in 2009 and my research contributions in wireless/green communications

at Innov'COM (Sup'Com of Carthage University, Tunisia) and CEDRIC/LAETITIA (CNAM Univer-

sity, France) laboratories. This dissertation is submitted to Conservatoire National des Arts et Métiers

(CNAM) in partial ful�llment of the requirements for the degree of Habilitation à Diriger des Recherches.

The researches have been done depending on several factors, like accepted projects, industrial collab-

orations and opportunities for instance. Thus, I have been doing my best for seeking collaborations and

projects that help to lead fruitful environment. As far as I am concerned, I have had the opportunity to

conduct my researches where I wanted to, thanks to the inspiring environment.

This document does not exhaustively present all my contributions, but I have tried to make this

dissertation the most self-content as possible. Indeed, I selected the most interesting results obtained via

several collaborations, research projects and co-supervision (01 postdoc, 09 PhD and 12 MSc students).

For each contribution, I give the problem addressed, the related works and the main achievements with

theoretical and/or simulation results.

This dissertation is divided into two parts. The �rst one, professional career, summarizes my teaching

and research activities as Associate Professor. This part contains three chapters; the �rst one is my

curriculum vitae, with an exhaustive publication list at this time. The second chapter focuses on my

teaching activities and provides the description of the courses I have taught, with some quanti�ed data

on my teaching service and the third chapter summarizes my research activities. First, my contributions

during my PhD thesis are brie�y reported and the main research paths I have been investigating since

2009 are presented. The second part of the manuscript is dedicated to my scienti�c contributions and

is divided in �ve chapters. The �rst one summarizes my contributions on the design of multicarrier

waveforms towards asynchronous/heteregenous wireless communication systems. The second chapter

focuses on the improvement of the network energy-e�ciency related to the power consumption, through

optimization methods and machine learning tools. The third chapter is dedicated to work on Massive

MIMO systems, where new and interesting �ndings are presented. The fourth chapter comes a bit

aside from the previous studies and deals with indoor localization, but where expertise on mathematical

optimization and machine learning have been re-used. The last chapter is dedicated to the research

perspectives I intended to follow for short, mid and long-term researches.
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Visiting Researcher CEDRIC laboratory/CNAM-Paris, Jan. - Oct. 2018 I have been in-

terested in the development of an experimental testbed to study the capability of the most promising

multi-carrier waveforms to accommodate the requirements of the futures wireless communications. In

this visit, which was granted by the ANR WONG5 project, I collaborated with Prof. Daniel Roviras, Dr.

Hmaied Shaiek and Dr. Cristophe Alexandre. In addition, my collaboration with Prof. Michel Terre took

place with the supervision of Wafa Njima's PhD. Following this visit, we have been granted by CMCU

PHC-TASSILI for the project ATOME5+.

Visiting Researcher CEDRIC laboratory/CNAM-Paris, May - Sep. 2016 I have had the

opportunity to collaborate with Prof. Daniel Roviras's team to investigate new multi-carrier waveform

design addressing the major limitations of the traditional CP-OFDM in challenging new spectrum use

scenarios. During this visit, which was granted by the ANR WONG5 project, I participated with Prof.

Daniel Roviras and Dr. Hmaied Shaiek in the supervision of Dr. Yahia Medjahdi's postdoc.

Invited professor CNAM-Paris, Feb. - Apr. 2016 In the department of Electronique, Electrotech-

nique, Automatique, Mesures (EPN03) of the CNAM school, I have been invited for three months. During

this visit, I have jointly worked with Prof. Daniel Roviras and Dr. Hmaied Shaiek on widely linear equal-

ization for FBMC-OQAM systems via the supervision of Hayfa Fhima's PhD. Moreover, I participated,

with Prof. Michel Terre, in the supervision of Wafa Njima's PhD.

Collaboration with CEA-Leti, Grenoble In 2016, I was studying the WOLA-OFDM waveform.

I collaborated with the Jean-baptiste Dore's team to investigate and compare the performance of the

WOLA-OFDM waveform and the one proposed by CEA-Leti, the BF-OFDM. Our collaboration is pur-

suing, in 2020, with Dr. Dore and Dr. Benoit Miscopin on the study of new outphasing techniques to

enhance the e�ciency-linearity tradeo� of RF transmitters.
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Collaboration with the CentraleSupélec, Renne with Prof. Yves Louet on (1) the evaluation

of global power ampli�er e�ciency with PAPR reduction for post-OFDM MWFs and (2) Impact of se-

lective channels on post-OFDM waveforms for 5G MTCs. These works were done in the framework of

the ANR WONG5 project.

Collaboration with THALES Communications with Dr. Sylvain Traverso on carrying out some

testbed experiments in order to convince evidences of some multicarrier waveforms feasibility using real-

world environment imposing some RF imperfections: RF power ampli�er nonlinearities, IQ imbalance

and mirror-frequency interference and phase noise. I provided results concerning CP-OFDM, WOLA-

OFDM and BF-OFDM, and Dr. Traverso provided �ltered-OFDM's results.

Collaboration with MEDIATRON laboratory of Sup'Com school, Tunis with Prof. Mohamed

Siala and Prof. Fatma Abdelke� on the characterization of a new design of PHYDYAS waveforms, namely

POPS-PHYDYAS, which is based on the mix of the POPS algorithm and the PHYDYAS waveform. this

collaboration took place via the Zeineb Hraiech's PhD.

Invited professor CNAM-Paris, Mar. - Jun 2014 in the framework of the PHC-Utique C3 project,

I participated in the supervision of Hanen Bouahadda's PhD. The scienti�c topic was the study of the

performance of FBMC-OQAM systems in presence of PA nonlinearities.

Visiting Researcher CEDRIC/CNAM-Paris, Sep. - Nov. 2013 In the FP7 EMPHATIC project,

the LAETITIA/CEDRIC team was interested in improving the energy-e�ciency of FBMC-OQAM which

was a good candidate to 5G. In this regard, I was invited in the LAETITIA team to investigate new signal

processing solutions for PA linearization and PAPR reduction addressing the reduction of FBMC-OQAM

systems power-consumption.

1.7.2 Scienti�c seminars and conferences

I participated in the organization of two special sessions in international conferences. Moreover, I was an

invited speaker in a special session on 5G MWFs radio access technology. In 2016, I organized an inter-

national school on advanced MWFs and 5G networks. I have been also involved as Technical Program

Committee member for the IEEE IWCMC 2019 Advances in 5G and Beyond Symposium. In addition, I

gave two seminars in French laboratories.

Invited Speaker Title: Special Session: Post-OFDM waveforms for 5G radio access technology

Event: 14th International Symposium on Wireless Communication Systems

(ISWCS), Bologna, Italy, 2017.

General Chair Title: Winter school: International School on Advanced Waveforms for 5G

Networks

Date and place: 21-23 January 2016, Tunis, Tunisia.

Website: http://www.supcom.mincom.tn/isw5g2016/.
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Special Session

Organizer

Title: PAPR reduction and power ampli�er linearization for energy-e�cient

5G waveforms

Event: 13th International Symposium on Wireless Communication Systems

(ISWCS), Poznan, Poland, 2016.

Title: Post-OFDM waveforms for 5G radio access technology

Event: 14th International Symposium on Wireless Communication Systems

(ISWCS), Bologna, Italy, 2017.

Seminars Title: Linear precoding for energy-e�cient Massive MIMO downlink systems

Date and place: January 2020 at ETIS, ENSEA, Cergy-Pontoise university,

France

Title: RF transmitters with high power e�ciency and linearity ::digital pre-

distortion and PAPR reduction::

Date and place: December 2019 at CEA-Leti, Grenoble, France.

Title: Experimental testbed for Multicarrier Waveforms performance evalua-

tion

Date and place: June 2018 at CentraleSupelec, Renne, France.

1.7.3 Awards

I have been awarded a H2020 Marie Sklodowska-Curie Individual European grant for my ADAM5

project proposal.

1.8 Scienti�c Outreach

Participation to PhD defense committee

Krishna Bulusu: Performance Analysis and PAPR reduction techniques for �lter-bank based multi-

carrier systems with nonlinear power ampli�ers

Date and place: 29/04/2016, CNAM-Paris

Role: Examinator

Reviewer for International Journals (4 per year in average)

IEEE Communication letters

IEEE Wireless Communication letters

IEEE Transaction on Wireless Communications

IEEE transaction on Communications

EURASIP Journal on Advances on Signal Processing

EURASIP Journal on wireless Communications and Networking

Hindawi Wireless Communications and Mobile Computing
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Reviewer for International Conferences

IEEE International Conference on Communications (ICC)

IEEE International Symposium on Wireless Communication Systems (ISWCS)

IEEE International Symposium on Signal, Image, Video and Communications (ISIVC)

IEEE International conference on Wireless Communications and Mobile Computing (IWCMC)

Technical Program Committee member for International Conferences

IEEE International conference on Wireless Communications and Mobile Computing (IWCMC 2019 Ad-

vances in 5G and Beyond Symposium).

Guest Editor for Special Issue in International Journals

Hindawi Wireless Communications and Mobile Computing, Special Issue: Interference Mitigation for

Massive IoT Deployments

1.9 Committee Member

2012-2018 General Secretary of the Tunisian Association for Scienti�c Innovation and Technology

(TASIT)

2013-present PhD Quali�cation Committee Member at Innov'COM laboratory of Sup'Com school

1.10 Certi�cations

Arti�cial Intelligence Certi�cation, CentraleSupelec, Paris, France, 2019.

CISCO CCNA Exploration Certi�cation, Sup'Com, Tunisia, 2009.

1.11 Publications

1.11.1 Submitted international peer-reviewed journals

[SJ1]R. Zayani and D. Roviras, "Low-Complexity Linear Precoding for Low-PAPRMassive MU-MIMO-

OFDM Downlink Systems", submitted to IEEE Open Journal of the Communications Systems (OJ-

COMS), 2020.

1.11.2 Published international peer-reviewed journals

[J19] X. Cheng, R. Zayani, H. Shaiek and D. Roviras, "Analysis and Cancellation of Mixed-

Numerologies Interference for Massive MIMO-OFDM UL", in IEEE Wireless Communications

Letters 2020.

[J18] H. Fhima, R. Zayani, H. Shaiek, D. Roviras, B. S. Chang and R; Bouallegue, "Comparison of

Linear, Widely Linear and Fresh Equalizers for FBMC-OQAM systems with di�erent Numerologies",

submitted to Springer Wireless Personal Communications, 2020.
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[J17] X. Cheng, R. Zayani, H. Shaiek and D. Roviras, "Inter-Numerology Interference Analy-

sis and Cancellation for Massive MIMO-OFDM Downlink Systems", in IEEE Access, vol. 7,

pp. 177164-177176, 2019. doi: 10.1109/ACCESS.2019.2957194.

[J16] R. Zayani, H. Shaiek and D. Roviras, "E�cient Precoding for Massive MIMO Down-

link under PA Nonlinearities", in IEEE Communications Letters.

doi: 10.1109/LCOMM.2019.2924001.

[J15] R. Zayani, H. Shaiek, D. Roviras, "PAPR-aware Massive MIMO-OFDM Downlink", IEEE

Access 2019.

[J14] H. Shaiek, R. Zayani, Y. Medjahdi, D. Roviras, "Analytical analysis of SER for beyond

5G post-OFDM Waveforms in presence of High Power Ampli�ers", IEEE Access 2019.

[J13] W. Njima, R. Zayani, I. Ahriz, M. Terre, R. Bouallegue, "Beyond Stochastic Gradient De-

scent for Matrix Completion Based Indoor Localization", Applied Sciences - Special Issue : IoT

for Smart Cities: 2019, 9, 2414.

[J12] W. Njima, I. Ahriz, R. Zayani, M. Terre, R. Bouallegue, "Deep CNN for Indoor Local-

ization in IoT Sensors Systems", Sensors, 2019.

[J11] R. Zayani, H. Shaiek, D. Roviras. "Ping-Pong Joint Optimization of PAPR Reduction

and HPA Linearization in OFDM Systems", IEEE Transactions on Broadcasting, pp. 1 - 8, 2018,

(doi:10.1109/TBC.2018.2855664).

[J10] R. Zayani, H. Shaiek, X. Cheng, X. Fu, C. Alexandre and D. Roviras, "Experimental Testbed

of post-OFDM Waveforms Toward Future Wireless Networks", IEEE Access 6: 67665-67680

(2018).

[J09] Yahia Medjahdi, Sylvain Traverso, Robin Gerzaguet, Hmaied Shaiek, R. Zayani, David Dem-

mer, Rostom Zakaria, Jean-Baptiste Doré, Mouna Ben Mabrouk, Didier Le Ruyet, Yves Louet, Daniel

Roviras, "Comparative study of waveforms in MTC context", IEEE Access 2017.

[J08]R. Zayani, H. Shaiek, D. Roviras and Y. Medjhadi, "BER analysis of FBMC-OQAM systems

with Phase Estimation Error", IET Communications 10.1049/iet-com.2017.0646.

[J07] R. Zayani, H. Shaiek, D. Roviras and Y. Medjahdi, "Closed-Form BER Expression for

(QAM or OQAM)-Based OFDM System With HPA Nonlinearity Over Rayleigh Fading

Channel", IEEE Wireless Communications Letters, (2015), Volume: 4, Issue: 1, Pages: 38 - 41, DOI:

10.1109/LWC.2014.2365023.

[J06] Maha Cherif Dakhli, R. Zayani, Ridha Bouallegue, "BER Analysis and Compensation for

the E�ects of Polynomial HPA Non-linearity in MIMO OFDM Systems Over Fading Chan-

nel", Springer Wireless Personal Communications 81(1): 133-149 (2015).
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[J05] H. Bouhadda, H. Shaiek, D. Roviras, R. Zayani, Y. Medjhadi and R. Bouallegue, "Theoret-

ical Analysis of BER performance of FBMC-OQAM signals in Nonlinear channel using

Polynomials HPA Model", EURASIP Journal on Advances in Signal Processing 2014, 2014:60 -

doi:10.1186/1687- 6180-2014-60.

[J04] M. Dakhli, R. Zayani and R. Bouallegue, "Theoretical analysis and compensation for the

joint e�ects of HPA nonlinearity and RF crosstalk in VBLAST MIMO-OFDM systems

over Rayleigh fading channel", EURASIP Journal on Wireless Communications and Networking

2014, 2014:61 - doi:10.1186/1687-1499-2014-61.

[J03] O. B. Belkacem, M. L. Ammari, R. Zayani, R. Bouallegue, "On the e�ect of neural network

compensation on MIMO-STBC systems in the presence of HPA nonlinearity", Transactions

on Emerging Telecommunications Technologies (2014) DOI: 10.1002/ett.2837.

Journals published during my PhD thesis

[J02] R. Zayani, R. Bouallegue and D. Roviras, "Adaptive Pre-distortions based on Neural Net-

works associated with Levenberg-Marquardt algorithm for Satellite Downlinks", EURASIP

Journal on Wireless Communications and Networking, Volume 2008 (2008), Article ID 132729, 15 pages

- doi:10.1155/2008/132729.

[J01] R. Zayani and R. Bouallegue, "Pre-Distortion for the compensation of HPA nonlinearity

with neural networks: Application to satellite communications", IJCSNS International Journal

of Computer Science and Network Security (2007) Vol. 7 No.3.

1.11.3 Patents

[P01] R. Zayani, H. Shaiek, D. Roviras, S. Bulusu, "Procédé de mise en forme d'un signal en

vue de son ampli�cation, procédéd'ampli�cation, dispositif de mise en forme, et dispositif

d'ampli�cation associés", November 2016, France, Réf : FR 1660518.

1.11.4 Book chapters

[B01] S. Bulusu, H. Shaiek, D. Roviras , R. Zayani. "Power Ampli�er E�ects and Peak-to-

Average Power Ratio Mitigation", Book Title: "Orthogonal Waveforms and Filter Banks for Future

Communications Systems", pp. 1-20, 2017.

1.11.5 International peer-reviewed conferences with proceedings

[C42] W. Njima, M. Terré, I. Ahriz, R. Zayani and R. Bouallegue, "Localization by inversion of

the Taylor Expansion of the received power", 2019 IEEE 30th Annual International Symposium

on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 2019, pp. 1-6.

[C41] R. Zayani, C. Alexandre, H. Shaiek, D. Roviras. "A Testbed for experimental performance
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evaluation of Multicarrier Waveforms in presence of RF PA", ISWCS2018, August 2018, pp.1,

Lisbon, Portugal.

[C40] Y. Medjahdi, Y. Louet, D. Roviras, S. Traverso, R. Gerzaguet , H. Shaiek, R. Zayani, D. Demmer,

R. Zakaria, J. Doré, M. Ben Mabrouk, D. le Ruyet. "Impact of selective channels on post-OFDM

waveforms for 5G Machine Type Communications", IEEE ISWCS 2018, August 2018, pp.1-5,

Portugal.

[C39] Y. Louet, D. Roviras, H. Shaiek, R. Zayani, "Global power ampli�er e�ciency evalua-

tion with PAPR reduction method for post-OFDM waveforms", IEEE ISWCS 2018, August

2018, pp.1-5, Portugal,

[C38] K. Tani, Y. Medjahdi, H. Shaiek, R. Zayani, D. Roviras, "PAPR reduction of post-OFDM

waveforms contenders for 5G and Beyond using SLM and TR algorithms", IEEE ICT 2018:

104-109.

[C37] H. Fhima, H. Shaiek, R. Zayani, D. Roviras, B. Sens Chang, R. Bouallegue. "Analysis of

Widely Linear Equalization over Frequency Selective Channels with Multiple Interferences",

WiMOB 2018, October 2018, Limassol, Cyprus,

[C36] H. Fhima, B. S. Chang, R. Zayani, H. Shaiek, D. Roviras, R. Bouallegue, "Performance of

Linear and Widely Linear Equalizers for FBMC/OQAM modulation", ICT 2018: 605-609.

[C35] Z. Hraiech, F. Abdelke�, M. Siala, R. Zayani, "On the Performances of POPS-PHYDYAS

Waveforms", VTC Spring 2018: 1-5.

[C34] Bruno S. Chang, Carlos A. F. da Rocha, Hayfa Fhima, R. Zayani, Hmaied Shaiek and Daniel

Roviras, "On the Performance of a Widely Linear SC-FDE System Under Multiple Indepen-

dent Interferences", IEEE PIMRC 2017.

[C30] Hayfa Fhima, R. Zayani, Hmaied Shaiek, Daniel Roviras, Bruno Sens Chang and Ridha Boual-

legue, "Widely Linear equalizer performance with multiple independent interferences", IEEE

ISCC 2017, Crete, Greece.

[C29] W. Njima, I. Ahriz, R. Zayani, M. Terre, R. Bouallegue, "Comparison of Similarity Ap-

proaches for Indoor Localization", Wimob 2017, October 2017, pp.1-5, Rome, Italy,

[C28] W. Njima, I. Ahriz, R. Zayani, M. Terre, R. Bouallegue, "Smart Probabilistic Approach

with RSSI Fingerprinting for Indoor Localization", Softcom 2017, September 2017, pp.1-5, Split,

Croatia,

[C27] I. Ahriz, W. Njima, R. Zayani, M. Terre, R. Bouallegue, "Error Density for indoor lo-

calization based on RSSI �ngerprint", ISWCS 2017, August 2017, pp.1-5, Bologna, Italy.
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[C26] Y. Medjahdi, R. Zayani, H. Shaiek and D. Roviras, "WOLA processing: a useful tool for

windowed waveforms", IEEE ICC 2017, Paris, France.

[C25] R. Gerzaguet, Y. Medjahdi, D. Demmer, R. Zayani, J-B. Dore, H. Shaiek and D. Roviras,

"Comparison of promising candidate waveforms for 5G: WOLA-OFDM, UF-OFDM and

BF-OFDM", in IEEE ISWCS 2017.

[C24] R. Zayani, Y. Medjhadi, H. Shaiek, D. Roviras, "WOLA-OFDM: a potential candidate

for asynchronous 5G", IEEE Globecom 2016, Washington, USA.

[C23] M. Laabidi, R. Zayani, R. Bouallegue: "A Quick Convergence Active Constellation Exten-

sion Projection onto Convex Sets Algorithm for Reducing the PAPR of OFDM System",

AINA Workshops 2016: 439-443

[C22] H. Bouhadda, R. Zayani, H. Shaiek, D. Roviras and R. Bouallegue, "Receiver Technique for

Detection and Correction of Nonlinear High Power Ampli�er Distortion Errors in OFDM

systems", IEEE VTC2015-Spring, 81th Vehicular Technology Conference, Glasgow, Scotland.

[C21] M. Laabidi, R. Zayani, D. Roviras and R. Bouallegue, "PAPR Reduction in FBMC/OQAM

systems Using Active Constellation Extension And Tone Reservation Approaches", IEEE

ISCC 2015 - The Twentieth IEEE Symposium on Computers and Communications, 06-09 July 2015,

Larnaca, Cyprus.

[C21b] M. Laabidi, R. Zayani and R. Bouallegue, "A new tone reservation scheme for PAPR reduc-

tion in FBMC/OQAM systems". IWCMC 2015: 862-867.

[C21c] M. Laabidi, R. Zayani and R. Bouallegue, "A novel multi-block selective mapping scheme for

PAPR reduction in FBMC/OQAM systems". 2015 World Congress on Information Technology and Com-

puter Applications (WCITCA).

[C20] R. Zouari, I. Ahriz, R. Zayani, A. Dziri and R. Bouallegue, "Relevant CIR Parameters selec-

tion for Fingerprinting Based Location Algorithm", IEEE SoftCOM 2015, The 23rd International

Conference on Software, Telecommunications and Computer Networks

[C19] R. Zayani, Y. Medjhadi, H. Bouhadda, H. Shaiek, D. Roviras and R. Bouallegue, "Adaptive

Predistortion techniques for non-linearly ampli�ed FBMC-OQAM signals", IEEE VTC2014-

Spring, 79th Vehicular Technology Conference, Seoul, South Korea.

[C18] H. Bouhadda, H. Shaiek, Y. Medjahdi, D. Roviras, R. Zayani and R. Bouallegue, "Theoret-

ical analysis of BER performance of non-linearly ampli�ed FBMC-OFDM signals", IEEE

ICC 2014, IEEE International Conference on Communication, Sydeny, Australia.

[C17] R. Zouari, R. Zayani, R. Bouallegue, "Indoor localization based on feed-forward Neural

Networks and CIR �ngerprinting techniques", IEEE RWS 2014: Radio and Wireless Symposium,
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271-273.

[C16] S. S. K. Chaitanya Bulusu, H. Shaiek, D. Roviras, R. Zayani, "Reduction of PAPR for

FBMC-OQAM systems using dispersive SLM technique". IEEE ISWCS 2014: the eleventh In-

ternational Symposium on Wireless Communication Systems, August 2014, pp.1-5, Barcelona, Spain.

[C15] M. Dakhli, R. Zayani and R. Bouallegue, "A Theoretical Characterization and Compensa-

tion of Nonlinear Distortion E�ects and Performance analysis using Polynomial Model in

MIMO OFDM Systems under Rayleigh fading channel", IEEE ISCC2013, The Eighteenth IEEE

Symposium on Computers and Communications, July 7 - 10, 2013, Split, Croatia.

[C14] O. B. Belkacem, M. L. Ammari, R. Zayani, R. Bouallegue: "Capacity Analysis of MIMO-

STBC System in the Presence of Nonlinear Distortion and Neural Network Compensator".

ISWCS 2013.

[C13] O. B. Belkacem, R. Zayani, M. L. Ammari, R. Bouallegue, D. Roviras, "Neural Network

equalization for Frequency-Selective Nonlinear MIMO Channels", IEEE ISCC2012, The Sev-

enteenth IEEE Symposium on Computers and Communications (ISCC'12), July 1 - 4, 2012, Cappadocia,

Turkey.

[C12] M. Dakhli, R. Zayani and R. Bouallegue, "Compensation For Nonlinear Distortion IN

MIMO OFDM Systems based on MMSE Receiver", IEEE ICCS'12, International IEEE Confer-

ence on Communication Systems, November 21st to 23rd, 2012, Singapore.

[C11] M. Dakhli, R. Zayani and R. Bouallegue, "A compensation method based on NN at the

transmitter and the receiver level for nonlinear distortion in MIMO OFDM systems using

MMSE receiver", IEEE ISSPIT 2012, IEEE International Symposium on Signal Processing and Infor-

mation Technology: December 12-15, 2012 - Ho Chi Minh City- Vietnam.

[C10] H. Bouhadda, R. Zayani, R. Bouallegue and D. Roviras, "Memory CO-NNPD for the Com-

pensation of Memory Crosstalk and HPA Nonlinearity", EUSIPCO 2011, 19th European Signal

Processing Conference, August 29- September 2, 2011, Barcelone, Spain.

[C09] M. Dakhli, R. Zayani and R. Bouallegue, "Neural Network compensator based MMSE

receiver for HPA nonlinearity in MIMO OFDM systems", MMS2011, 11th Mediterranean Mi-

crowave Symposium (MMS), September 8-10, 2011, Hammamet, Tunisia.

[C08] R. Zayani, R. Bouallegue and D. Roviras, "Crossover Neural Network Predistorter for the

Compensation of Crosstalk and Nonlinearity in MIMO OFDM Systems", IEEE PIMRC 2010,

21st Annual IEEE Int. Symposium on Personal, Indoor and Mobile Radio Communications, September

26-29, 2010, Istanbul, Turkey.

[C07] M. Dakhli, R. Zayani and R. Bouallegue, "On the e�ect of High Power Ampli�er Non-

linearity on MIMO MC-CDMA systems", IEEE ISSPIT 2010, IEEE International Symposium on
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Signal Processing and Information Technology, December 15-18, 2010, Luxor, Egypt.

Communications published during my PhD thesis

[C06] R. Zayani, R. Bouallegue and D. Roviras, "Levenberg-Marquardt learning Neural Net-

work for Adaptive Pre-distortion for time-varying HPA with memory in OFDM systems",

EUSIPCO 2008, 16th European Signal Processing Conference, August 25-29, 2008, Lausanne, Switzer-

land.

[C05] R. Zayani, R. Bouallegue and D. Roviras, "An Adaptive Neural Network Pre-distorter

for nonstationary HPA in OFDM systems", EUSIPCO 2007, 15th European Signal Processing

Conference, September 3-7, 2007, Poznan, Poland.

[C04] R. Zayani and R. Bouallegue, "A Neural Network Pre-Distorter for the Compensation

of HPA Nonlinearity: Application to Satellite Communications", IEEE CCNC 2007, IEEE

Consumer Communications and Networking Conference, January 11-13, 2007, Las Vegas, Nevada, USA.

[C03] R. Zayani and R. Bouallegue, "A Novel Analog Pre-distorter of TWTA non-linearity

in high power satellite transmitters", IEEE WASA2006, International Conference on Wireless Al-

gorithms, Systems and Applications, August 15-18, 2006, XI'AN, CHINA.

[C02] R. Zayani, R. Guedria and R. Bouallegue, "Compensation of the OFDM non-linear distor-

tions by the inverse model method", IEEE ICACT 2006, 8th International Conference on Advanced

Communication Technology, February 20-22, 2006, Phoenix Park, Gangwon Do, Korea.

[C01] R. Zayani, S. Zid et R. Bouallegue, "Simulateur des non-linéarités HPA sur un systeme

OFDM", OHD 2005, 18th Colloque International Optique Hertzienne et Diélectriques, September 6-8,

2005, Hammamet, Tunisie.

1.11.6 Technical project reports

[D06] Y. Medjahdi, S. Traverso, J-B. Dore, H. Shaiek, D. Roviras, R. Gerzaguet, R. Zayani, D. Demmer,

P. Chevalier, Y. Louet, M. Ben Mabrouk, R. Zakaria, D. Le Ruyet, "Critical and comparative study

of waveforms in C-MTC context", Deliverable D2.1, ANR WONG5 project, 2017.

[D05] H. Shaiek, D. Roviras, Y. Medjahdi, R. Zayani, M. Ben Mabrouk, Y. Louet, "Performance of

the candidate waveforms in the presence of power ampli�er", Deliverable D3.1, ANR WONG5

project, 2017.

[D04] Y. Louet, A. Nafkha, H. Shaiek, D. Roviras and R. Zayani, "Overall power budget", De-

liverable D3.3, ANR WONG5 project, 2018.

[D03] J-B. Dore, D. Roviras, H. Shaiek, R. Zayani, S. Traverso, "Choice of the candidate Wave-

forms for the demonstrator", Deliverable D5.1, ANR WONG5 project, 2018.
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[D02] S. Traverso, R. Zayani, H. Shaiek, C. Alexandre, D. Roviras and J-B. Dore, "Waveforms MOd-

els for Machine Type CommuNication inteGrating 5G Networks", Deliverable D5.2, ANR

WONG5 project, 2018.

[D01] R.Zayani, S. Traverso, H. Shaiek, D. Roviras, C. Alexandre, "Experimental testbed of post-

OFDM Waveforms", Deliverable D5.3, ANR WONG5 project, 2019.

1.11.7 Thesis

R. Zayani, "Adaptive Predistortion of HPA nonlinearities using Neural Networks". Ph.D

Dissertation, ENIT, March 2009.



Chapter 2
Teaching activities

2.1 Introduction

In this chapter, I describe my teaching activities that have been dedicated to a variety of students: classes

at the undergraduate or graduate engineering level at ISI/University of Tunis ElManar, and also for

alternating graduate engineering students (in partnership with industry) at CNAM-Paris during or after

business hours. This has allowed me to work with students from a variety of backgrounds who were very

diverse both culturally and linguistically. My courses are mainly concerned with digital communications,

radio-communications and networking.

Section 2.2 summarizes the teaching classes I gave during my PhD while Section 2.3 and Section 2.4

detail my teaching activities since I have been Associate Professor.

The teaching activities1 are separated in lectures (L), directed works (DW) and labworks (LW).

2.2 Teaching during PhD

Although I spent most of my time in preparing my PhD, I tried to maintain a teaching activity in

order to pursue an academic career because of my interest in scienti�c research and my unmitigated

passion for teaching. From 2005 to 2009, I was temporary lecturer at ISI/University of Tunis ElManar.

The studies at ISI comprise two graduations, i.e. Licence and Engineer. The Licence level comprises

3 years denoted (L1, L2 and L3) and the Engineer level 3 years, i.e. ING1, M1 and M2. I had the

opportunity to teach to undergraduate students (L1, L2 and L3) courses involving some fundamentals of

telecommunications and networking. Indeed, I started teaching to students in undergraduate level the

course radiowave propagation and Introduction to telecommunications for L1, Digital data transmission
and TCP/IP Networking for L2 and Computer networks administration for L3. I taught a labwork for

ING1 entitled Communication systems. My teaching time was about 190 HDW per year. It is worth to

mention that I kept some of these fundamentals courses in my next statutory teaching period where some

evolutions have been naturally appeared. Table 2.1 summarizes my teaching experience as temporary

lecturer.
1The amount of hours are given in hour of directed works (HDW), i.e. 1 hour of lecture = 1.5 HDW and 1 HDW = 1

HLW.
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Table 2.1: Teaching activities during PhD.

Period Topic Level Volume (HDW)

2005-2009 Computer networks administration (L/DW/LW ) L3 168

2005-2009 TCP/IP Networking (L/DW/LW) L2 336

2006-2009 Digital data transmission (L/DW ) L2 63

2007-2009 Introduction to telecommunications (L/DW) L1 42

2005-2009 Radiowave propagation (L/DW) L1 84

2006-2009 Communication systems (LW) ING1 63

2005-2009 Total in HDW 756

Teaching description

(i) Computer networks administration

The purpose of this lecture is to give a sound understanding of computer network con�guration, with

a strong emphasis on the management and administration of the network. I taught interconnection,

routing (RIP, OSPF and BGP), network access control (VLAN, ACL, Firewall), NAT, administration

through SNMP and HPOpenView platform. Through networking labs, I gave students the opportunity

of learning further con�guration details and acquire practical knowledge. I was in charge of these

labworks and I built LW exercises using several tools for computer networks management

and supervision.

(ii) TCP/IP Networking

In this course, I taught to students the fundamentals of computer networking, with a strong emphasis on

TCP/IP and the internet model. Indeed, I taught TCP/IP architecture, the internet protocol version 4

(IPv4), addressing and the transport layer (TCP and UDP). In the laboratory works, students exercise

practical con�gurations, like setting up a network, packet captures and protocols analysis. I was in

charge of the labworks and I entirely produced their handout.

(iii) Digital data transmission

I taught to undergraduate students the fundamentals of digital data transmission. I focussed on tech-

niques of PHY and MAC layers. The contents of this course was: data transmission chain overview,

baseband and passband modulations, channel coding, ...

(iv) Introduction to telecommunications

This course aimed at developing the fundamental principles of telecommunication systems and their recent

technological innovations. Speci�cally, Its goal was just to give a synthetic panorama of the telecommu-

nication sector by describing the main elements constituting such a system and the main techniques, in

an introduction level.

(v) Radiowave propagation

This course gave the fundamentals of electromagnetic waves and prorogations. I taught Maxwell's equa-

tions, propagation, uniform plane waves and waveguide.

(vi) Communication Systems

In this labwork, I taught to students the design of transceiver chain through MATLAB or circuit hardware

and real signals, gathering all their knowledge in analog modulaions. The transmission was accomplished

through radio-frequency link. They implemented AM and FM modulator/demodulator using electronic
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devices. Using MATLAB, they implemented channel encoder, digital mapping, multi-tone modulator,

propagation channel and the whole receiver chain.

2.3 Statutory teaching at ISI/University of Tunis ElManar since

2009

Since 2009, I have taught undergraduate and graduate engineering courses at ISI/University of Tunis

ElManar. I recall that the studies are divided into two main parts, 3 years in undergraduate level

(Licence) and 3 years in a Telecommunications and Networking engineering speciality (1st year (ING1),

2sd year M1 and 3rd year M2). I have mainly taught in the department of Communication Systems and

Networking (CSN), where I am committed to create a synergy between teaching and research considering

that they are complementary activities continually supporting each other. Since creating such synergy

requires a good background on telecommunications and networking fundamentals, I have kept some of the

courses that I taught during my PhD with of course some evolutions. After a solid background on these

fundamentals is formed, I devote a signi�cant e�ort to combine research and teaching, whenever possible,

by bringing research into the classroom by teaching recent results to students, especially for graduate

level. For example in the courses radiocommunications and advanced digital communications that I teach
for graduate engineering level (M1 and M2), I try to assign some creative projects to students, which

permit them to implement the studied new algorithms and concepts.

My teaching time per year at ISI/University of Tunis ElManar averages 228 HDW. In 2015/2016, I

was in sabbatical where I was released from my regular teaching and responsibilities to focus entirely on

my research/scholarly interests. During this year, I spent time in organizing a winter school and visiting

the CNAM school to participate in some research programmes. Teaching hours are illustrated in Table

2.2.

Table 2.2: Statutory teaching activities.

Period Topic Level Volume (HDW)

Since 2014 Advanced digital communications (L/DW) M2 90

Since 2009 Radiocommunications (L/DW) M1 210

Since 2009 Digital communications (L/DW/LW) M1 294

2009-2011 Wireless networks protocols (L/DW/LW) M1 84

2009-2015 Computer networks administration (L/DW/LW ) L3 360

Since 2009 TCP/IP Networking (L/DW/LW) L2 672

Since 2009 Total in HDW 1710

Teaching description

(i) Advanced digital communications

In 2014, I introduced a lecture on advanced digital communication techniques for the engineer

students in last year. I have taught to the students advanced topics in digital communications. Students

have been provided with up-to-date knowledge of the technologies studied for modern communication

systems and the principles underlying their design. The course has covered two main areas, advanced

multi-carrier waveforms and new MIMO technologies.
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I teach 30 HDW, per year, of lectures.

(ii) Radiocommunications

In this course, students were given a system overview of how radiocommunication systems are built up.

The main emphasis is on digital radiocommunication and the lowest layer, physical layers, and how the

radio channel a�ects design choices. Advanced technologies, like OFDM and MIMO, were taught and

their performance were studied under many radio channel models and in presence of hardware imperfec-

tions.

I am in charge of this course (30 HDW per year in average). I have produced the slides and 5 DWs.

Concerning LW, I have entirely built labworks exercises on MATLAB.

(iii) Digital communications

The course gives a fundamental description to the principles and systems for digital transmission of infor-

mation over channels with Gaussian noise, including detailed analysis of digital carrier modulation for-

mats including assessment of signal-to-noise ratio, bit error rate, and power and bandwidth e�ciency for

amplitude-shift keying (ASK), phase-shift keying (PSK), frequency-shift keying (FSK), and Quadrature-

Amplitude Modulation (QAM). Line codes (NRZ, RZ, AMI, Manchester) and PSD of line codes were

addressed. Moreover, I taught matched �lter receivers and receiver design, transmission bandwidth,

Nyquist pulses, sampling and inter-symbol interference, Gaussian noise, and related error analysis in

symbol detection, coding, convolutional codes, decoding,...

I am in charge of this course and I have produced slides. I teach (42 HDW per year). I produced

the labworks in MATLAB.

(iv) Wireless networks protocols

This course described fundamental concepts and principles on wireless network technologies such as the

IEEE 802.11 wireless LANs and Bluetooth wireless PANs. Concepts regarding WLAN and the IEEE

802.11.x protocols were taught in detail starting from the very basic data communication concepts up

to the analysis of the MAC and routing protocols. Laboratory experiments include tools and techniques

to monitor, measure, and characterize the performance of wireless LANs as well as the use of network

simulation tools to model and evaluate the performance of IEEE 802.11.

(v) Computer networks administration

From 2009 to 2015, I was in charge of this course, which I taught during my PhD (see description in

the previous section), and I have evolved the handout. In particular, I added chapters on tra�c control

via RMON and its corresponding labworks. I taught 2 groups for which 30 HDW per year.

(vi) TCP/IP Networking

This course is the evolution of the one I taught during my PhD. I am in charge of this course, where

some chapters are added such as internet protocol version 6 (IPv6) and routing algorithms, link state

and distance vector routing.

Works supervision experience

Up to now, over 80 highly quali�ed students in their project graduation. These projects concern under-

graduate and graduate levels for di�erent specialities. Speci�cally, they are related to hardware/software

developments including transmission/reception to remote management of industrial and medical systems.

These projects have adopted new technologies integration (GPS, RFID, CPL,....) and tele-informatics

over communication networks. They have been very bene�cial to my students who have gone on to

secure highly sought-after positions in industry. At ISI/University of Tunis ElManar, undergraduate and

graduate students are asked to perform an internship, most often in industry but it can be in an academic

laboratory, in order to obtain their, respectively, Licence (L3) or Engineer degree (M2).
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2.4 Teaching at CNAM-Paris

Since 2018, I have mainly taught graduate engineering students at CNAM-Paris. I teach LW in Digital
Communications 1, Digital Communications 2 and Information theory for alternating graduate students

(M1) in the following specialities :

- Systemes Electroniques, Telecommunications et Informatique (SETI).

- Systemes Electroniques et Signalisation Ferroviaire (SESF).

In these LW for alternating students, I try to create a link between the theory studied in lecture and

some of the practice aspects that students face in their work by giving them some labworks exercises

in the design and evaluation of various components of a digital transceiver through MATLAB or circuit

hardware and real signals.

Furthermore, I am handling, with colleagues (Prof. Daniel Roviras and Dr. Cristophe Alexandre),

a labworks for alternating graduate students (M2, �nal year), as a practical application project, in

radiocommunications where I teach to students hands-on experiences in the design, implementation and

evaluation of some techniques deployed in recent generations of wireless communication systems through

software de�ned radios (SDRs).

In the academic year 2018-2019, I taught lecture in Basics of digital communications 2 (BDC-II) to

students in the International Master of CNAM. This course focused on passband digital communications.

The concepts addressed in this course, which was taught in English, are: (1) Study the QAM, PSK,

FSK and PSD of modulation formats, (2) Design an optimal coherent receiver for an arbitrary digital

modulation format in Gaussian noise, (3) Analyze the bit, symbol, and frame error probabilities for any

arbitrary digital modulation format and (4) Equalization techniques (ZF, MMSE) for frequency selective

channels.

My teaching time at CNAM averages 150 HDW per year that are summarized in Table 2.3.

Table 2.3: Teaching activities at CNAM.

Period Topic Level Volume (HDW)

Since 2018-2019 Basics of digital communications 2 (L/DW) M1 42

Since 2018 Digital communications 1 (LW) M1 98

Since 2018 Digital communications 2 (LW) M1 52.5

Since 2018 Information theory (LW) M1 35

Since 2018 Radiocommunications (Practical project) M2 60

Since 2018 Total in HDW 287.5

2.5 Teaching Material

I have produced course material for multiple educational levels (a package with slides, tutorials and

labworks):

- R. Zayani, Digital communications, M1 level, published locally at ISI/University of Tunis ElManar.

- R. Zayani, Radiocommunications, M1 level, published locally at ISI/University of Tunis ElManar.

- R. Zayani, Basics of digital communications 2, M1 level, published locally at CNAM-Paris.
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- R. Zayani et al., Computer networks administration, L3 level, published locally at ISI/University of

Tunis ElManar.

- R. Zayani et al., TCP/IP Networking, L2 level, published locally at ISI/UniversityTunis ElManar.

- R. Zayani et al., Labworks on Networking, L3 level, published locally at ISI/University of Tunis ElManar.

- D. Roviras, R. Zayani and C. Alexandre, OFDM Project : Radiocommunications, M2 level, published

locally at CNAM-Paris.

2.6 Leadership in educational programmes

During all my teaching activity, I have been fully involved in order to further improve the educational

programme at, especially, the ISI/University of Tunis ElManar where I have taught during my PhD and

then in my tenured associate professorship.

"Atelier Réseaux"

In 2006, I initiated laboratory works in networking ('Atelier réseaux') for undergraduate students (L3

level). I tried to provide to students a global mastering in computer networks. These labs cover various

practical experimentations, such as, setting up a computer network, installation, address con�guration,

troubleshooting, applicative protocol tra�c analysis (FTP, Telnet, SSH, DHCP, ...), network security

policies con�guration (VLAN, ACL, Firewall, ...), network management and supervision (SNMP, RMON,

HPOpenView) and system administration : Windows, Linux.

Laboratory equipment management

I have prepared the LW material containing a package with experimentation descriptions that have been

dispatched between a group of teachers. The management of the laboratory and equipment was also in

my charge.

Participation to ISI engineer curriculum committee

I was involved the ISI engineer curriculum committee for two times, in 2010 and 2016. These reforms aim

at providing innovative training engineer programs with themes of excellence and to create the expertise

adequate to the new digital world.

Participation to engineer degree projects committee

I have participated in many committees and have acted as an examiner on several undergraduate and

graduate engineering's degree projects.



Chapter 3
Research activities

In this chapter, I summarize my research activities. Section 3.1 gives an overview of my research topics,

a summary of my PhD is given in Section 3.2 and Section 3.3 summarizes my research interests and

developed expertise since I have been Associate Professor.

3.1 Research topics

Green wireless communication technologies have received increasing attention due to concerns over the

explosive increase in power-consumption in the information and communications technologies (ICT) sector

and, correspondingly, increasing carbon dioxide (CO2) emissions. Indeed, ICT currently consumes 3% of

the world-wide energy and generates about 2% of the world-wide CO2 emissions [3].

Figure 3.1: Research topics.

Therefore, energy e�ciency in signal processing hardware has been in high demand in order to achieve

this green goal, in particular to contribute to the reduction of both user equipment energy consumption
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resulting in longer battery lifetime, and the base station energy consumption resulting in power saving

and reduced environmental pollution.

Note that the most important part (50-80%) of the total power budget is actually consumed by the

transmit power ampli�er (PA) which has to be operated near its saturation region, generating however

severe nonlinear amplitude-to-amplitude (AM-AM) and amplitude-to-phase (AM-PM) distortions. These

undesirable impairments are very harmful, yielding in-band distortions and out-of-band (OOB) radiation,

which cause signal distortion and adjacent channel interference, respectively.

In the lights of these facts, my research activities have focused, in one hand, on developing a deep

understanding how the radio-frequency (RF) PA a�ects the performance of wireless communication sys-

tems. In another hand, I have been interested in developing new digital processing (DSP) based solutions

aiming at mitigating RF PA impairments jointly with increasing energy-e�ciency. In addition, it is

important that these solutions are of low-complexity in order to enable real-time operation.

The di�erent research topics, which are summarized in Figure 3.1, are described in the following.

Machine Learning for energy-e�cient communications During my PhD (2005-2009), I was

specially studying PA linearization techniques. Indeed, I started working on the development of digital

predistortion (DPD) schemes based on neural network techniques to linearize RF transmitters using the

cyclically pre�xed-orthogonal frequency division multiplexing (CP-OFDM) technology. This latter, which

has been largely adopted by physical layer (PHY) of today's long term evolution advanced (LTE-A), is

very sensitive to PA nonlinear distortions since its time-domain signal has large peak-to-average power

ratio (PAPR).

Advanced Multi-carrier Waveforms (MWFs) with high energy-e�ciency for future WCSs

The need for reducing the energy-consumption has been accentuated by the trends of accommodating,

in addition to enhanced mobile broadband (eMBB), new service regimes that arise with new emerging

applications like machine-type communications (mMTC) (also known as Internet of Things (IoT)), and

ultra-reliable and low latency communications (URLLC). Indeed, future generations of wireless com-

munications will have to cope with high degree of heterogeneity in terms of services and requirements.

Regarding physical layer speci�cations, the major innovation with respect to former standards is to

seek new multicarrier waveforms (MWFs) in order to address the major limitations of the traditional

CP-OFDM in challenging new spectrum use scenarios, like asynchronous multiple access, as well as the

support of mixed numerology. This latter refers to di�erent parameter settings in the MWF such as

subcarrier spacing (SCS), symbol duration and cyclic pre�x (CP) length.

Besides this, the post-OFDM MWFs still su�er from high PAPR of the modulated signal that would

lose their good property in presence of PA. Therefore, high power e�ciency and PA with perfect linearity

are of paramount importance when considering a wireless system with a massive number of low-cost and

low-power MTC/URLLC devices, meaning that each device has to become more energy-e�cient if not

the total energy consumption shall increase.

As far as I am concerned, it is important to study the performance of wireless communication systems

exploiting new MWFs with a particular attention to the energy consumption. Therefore, my research

interests, in this topic, are in two folds: (1) Identifying the most suitable post-OFDM waveforms to

the future wireless communications requirements by analyzing their performance in terms of spectral-

e�ciency, energy-e�ciency, OOB radiation, user asynchronicity and complexity. (2) developing new DSP

solutions, to mitigate RF impairments, that are more adequate to post-OFDM waveforms, through a set

of algorithms and advanced techniques,

Massive MIMO systems : Energy-e�ciency and Hardware-e�ciency One of the most ul-
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timate wireless communication technology is massive multiple-input multiple-output (MIMO), where

the base stations (BSs) have to be equipped with hundreds of individually controllable RF chains. Here,

energy-e�cient hardware becomes indispensable to motivate corresponding energy and cost-e�cient mas-

sive MIMO BS deployments. Therefore, my research activities have been widened to develop DSP so-

lutions for massive MIMO enabling the use of low-end power ampli�ers that are allowed to operate

close to saturation. In particular, I have developed downlink transmission schemes to address the PAPR

reduction problem and the mitigation of nonlinear PA distortions in massive MIMO based wireless com-

munications. Furthermore, I have been interested in investigating advanced optimization approaches

and machine learning tools in order to improve the energy and hardware e�ciencies in massive MIMO

systems.

In addition, the upcoming wireless communication systems are expected to support a wide range

of services with diverse requirements. Therefore, multi-carrier WF based massive MIMO and mixed

numerologies transmission are proposed as solutions. In this regard, I have been interested in studying

the capability of massive MIMO to deal with the spatial multiplexing of users who are sharing the same

bandwidth and are using di�erent numerologies.

Indoor Localization: from matrix completion to deep learning Besides the above topics,

I have been also involved in some works that aim at developing solutions for indoor localization. In

fact, many applications in wireless sensor networks (WSN), such as surveillance, equipment monitoring

and control, target tracking and health monitoring, require the location of sensor nodes. Here, we have

considered the problem in which some unkown sensor nodes determine their own location (position) using

the coordinates of a small number of sensors, called anchor nodes, whose positions are known (obtained by

GPS or by installing them at points with known coordinates). In particular, we have adopted advanced

approaches, such as matrix completion and machine learning, to develop accurate solutions for indoor

localization with an important focus on reducing the computational complexity.

3.2 PhD thesis

3.2.1 Introduction and context

The aim of my PhD was the investigation of new linearization techniques applied to power ampli�er

for broadband radio-communications. In this context, we used feedforward neural networks (NN) based

baseband adaptive predistortion techniques. Indeed, we have considered three power ampli�er models.

The �rst PA is a stationary memoryless travelling wave tube ampli�er (TWTA), whose output signal can

be expressed as

z = Fa(ρ) exp(jFp(ρ) exp(ϕ)) (3.1)

where ρ and ϕ are, respectively, the modulus and phase of the input signal. The memoryless TWTA can

be modeled using Saleh's model [4] whose AM/AM and AM/PM characteristics can be represented as

Fa(ρ) =
αaρ

1 + βaρ2
Fp(ρ) =

αpρ
2

1 + βpρ2
, (3.2)

where αa and βa are the parameters controlling the nonlinear level, and αp and βp are phase displacements.

The second PA model is a nonstationary memoryless TWTA whose parameters (αa, βa, αp and βp) are

time-varying. The third one is an ampli�er with memory modeled, according to Hammerstein, by a

memoryless ampli�er followed by a linear �lter [5] [6]. Indeed, we have presented new NN structures
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which give the best performance for the three power ampli�er models. Equally important, many NN

training algorithms have been deployed and tested in order to identify the most adequate for adaptive

predistortions. This comparison has been conducted through computer simulation for 64 carriers and

16-quadrature amplitude modulation (QAM) OFDM system. It is based on some quality measure (mean

square error (MSE), symbol error rate (SER)), the required training time to reach a particular quality

level, and computation complexity. The chosen adaptive predistortions (NN structures associated with

an adaptive algorithm) have the fastest convergence toward the best performance while performing the

lowest computational complexity.

3.2.2 Contributions of the thesis

Neural Network Predistortion for stationary memoryless TWTA The basic idea proposed is to

identify the PA inverse transfer functions with a feed-forward neural network (see Figure 3.2). Therefore,

by using the indirect learning structure, we aim at obtaining direct estimation of the inverse of the

AM/AM and AM/PM nonlinearity characteristics. In order to do that, two processes, referred to as

Training and Generalization, have to be performed. During the training process (Figure 3.2(a)), indirect

learning architecture (ILA) is applied to obtain direct estimation of the inverse of the AM/AM and

AM/PM nonlinearity characteristics. Using the ILA, the PA output signal is used as NN input while

PA input signal is considered as desired signal. The error calculated between the NN input and output

signals is sent to a learning algorithm that adjusts the NN coe�cients to make the error getting lower

at each iteration. It is worth mentioning that the training process can be performed o�ine since the PA

is stationary. Concerning the generalization process, coe�cients of the trained NN are recopied on the

NNDPD that achieves the predistortion.

Figure 3.2: Block diagrams for training and gen-

eralization of DPD with PA. Figure 3.3: Simultaneous DPD updating.

The neural predistorter was a multi-layer perceptron, which has two inputs, namely the I and Q

components of the input signal complex envelope. The NN has Nh hidden layers and an output layer

with two neurones that are the predistorted signals I and Q. Di�erent structures have been deployed

and compared, starting by one hidden layer with 2 neurons, then increasing progressively the number of

neurons, before testing a network with two hidden layers, and again increasing progressively the number

of neurons on the two layers. Note that activation functions of hidden layers are hyperbolic tangent,

while the ones of the output neurones are linear.

Symbol error rate (SER) metric is a typical performance measure to quantify the capability of the pro-

posed predistortion structures to reduce HPA distortions. Then, Figure 3.8 shows the SER performance
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versus signal to noise ratio (SNR) of many NNDDP's con�gurations for an OFDM system in presence of

a stationary memoryless TWTA operated with an IBO of 8 dB. PD(2, x, 2) represents a NN with one

hidden layer of x neurons, PD(2, x - y, 2) represents a NN with two hidden layers of x and y neurons,

respectively. From these results, we note that all the NNDPDs can reduce the SER compared to the

one without any predistorter. Moreover, a satisfactory performance can be obtained with a NN with one

hidden layer of nine neurones, which is referred to as DPD(2,9,2).

Neural Network Predistortion for nonstationary memoryless TWTA Here, we assume that

the PA parameters are time-varying requiring an improved DPD structure. In this regard, We have

studied an adaptive predistortion architecture that performs simultaneously the estimation of the inverse

PA characteristics in a postdistortion stage and in a simple predistortion one, as shown by Figure 3.3.

It is worth to mention that the initial DPD (i.e., NN coe�cients) can be performed o�ine, and will be

adapted online, regarding the variation of the PA characteristics, using an iterative algorithm. Therefore,

this latter has to be selected with a very wise way because it should provide satisfactory performance

with a reduced complexity. Thus, I have tested and implemented many advanced algorithms [7] with the

NNDPD selected above. Among these algorithms, we �nd gradient descent (GD) back-propagation [8],

GD with momentum (GDm) [9], conjugate gradient (CGF) [10], quasi-Newton (BFG) [11] and Levenberg-

Marquardt (LM) [12].

Figure 3.4 shows, for all methods, the mean square error (MSE) versus the iterations number aver-

aged over 100 simulations. One can note that the MSE in LM decreases much faster toward the best

performance compared the other algorithms. It is important to study the computational complexity of

the di�erent algorithms.

Figure 3.4: MSE vs. iterations number for the

di�erent studied algorithms.

Figure 3.5: Computational complexity required

vs. the MSE goal.

In Figure 3.5, we give the number of operations (Nt�ops) required by each algorithm to reach the

MSE convergence goal. Note that the number of �oating operations, additions and subtractions are one

�op if real and two if complex. Multiplications and divisions count one �op each if the result is real and

six �ops if it is complex.

We can observe, from these results, that LM algorithm performs better than all the other algorithms.
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Although it requires the most signi�cant number of computation per epoch (because of the Hessian ap-

proximation), it requires the lowest computational complexity (Nt�ops) for a given MSE goal. Moreover,

the gain performed by the LM algorithm gets higher as the error goal goes lower.

Neural Network Predistortion for PA with memory In new generations of wireless communi-

cations which use OFDM as modulation scheme, memory e�ects of PA can no longer be ignored due

to the broadband input signal. Consequently, the NNDPD structure should be improved by adding a

tap delay line to deal with this imperfection (memory e�ect). Indeed, we have introduced two NNDPD

structures. They are the following: (1) A fully connected multi-layer NN (FCNN) predistorter with

memory (see Figure 3.6). The tap delay input is connected to nine neurons in the hidden layer. The

output neurons are real and imaginary parts. The fully connected NN aims at simultaneously mitigat-

ing memory and PA nonlinear e�ects. (2) A neural network mimetic structure (see Figure 3.7), which

combines a linear network (LN) and a memoryless nonlinear neural network (NLN). The LN-NLN pre-

distorter is composed of a linear �lter followed by a memoryless neural network, with one hidden layer

of nine neurons, and with two linear output neurons. Using this mimetic scheme (LN-NLN), we realize

separately the memory predistortion with the linear network and the compensation of the memoryless

PA nonlinearities with the nonlinear neural network. A comparative study of these two structures has

been done in terms of performance and complexity. To ensure a good comparison between the di�erent

structures, we have chosen the same length of the tap delay line (4 memory cells). The LM algorithm,

which has given the best performance with the lowest computational complexity, has been considered.

Figure 3.6: Fully connected NN predistorter

structure.

Figure 3.7: Linear network + nonlinear network

predistorter structure.

Figure 3.9 shows the SER performance versus SNR in systems with a linear PA along with nonlinear

memory PA without predistortion and a nonlinear memory PA with NN memoryless predistortion, FCNN

predistortion, and LN-NLN predistortion.

The realistic level of memoryless nonlinear distortions is considered by operating the PA with an IBO

of 7 dB. From these results, we note that the two memory NN structures (FCNN and LN-NLN) are able to

reduce considerably the SER compared to the one without any predistortion. Moreover, one can note that

the mimetic structure (LN-NLN) performs slightly better than the FCNN structure when they are both

trained with LM. Figure 3.10 and 3.11 represent AM/AM curves of the ampli�ed signal versus input

signal without predistortion and predistorted signal versus input signal for two studied predistortions

(memoryless NN PD and LN-NLN).
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Figure 3.8: SER vs. SNR of OFDM system with

predistorter: a 16-QAM modulation is used over

64 subcarriers and IBO=8dB.

Figure 3.9: SER vs. SNR for 16-QAM OFDM

with 64 subcarriers at IBO=7dB.

Figure 3.10: AM/AM curves for memoryless

NNDPD.
Figure 3.11: AM/AM curves for LN-NLN DPD.

Memory e�ects are not taken into account in the memoryless NN PD structure. Thus, we can see on

Figure 3.10 that the AM/AM curve of the concatenated system (memoryless NN PD + HPA) is thicker

than the resulting AM/AM curve of Figure 3.11 obtained with an LN-NLN PD.

Table 3.1 summarizes the results of the comparative study of the two-mentioned structures in terms

of complexity. The variables Nlearn�ops and Nrun�ops are the number of �oating operations that each

structure requires to learn per epoch and to run, respectively, per OFDM sample.

We deduce from Table 2 that the computational complexity of the mimetic structure (LN-NLN) is

much lower than the fully connected one (FCNN) with an approximate ratio of more than 80% in learning

phase and nearly 40% in the generalization phase.
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Table 3.1: Complexity comparison of NN predistorter structures.

Structure Nlearn�ops LRatio Nrun�ops RRatio

LN 57 LN 25

LN-NLN NLN 5059 1 NLN 64 1

Total 5116 Total 89

FullyCNN 32981 6.45 145 1.63

3.3 Research interests since 2009

In this section, I summarize researches I have been leading since 2009. Most of my researches has been fo-

cused on energy-e�cient digital signal processing techniques related to new PHY technologies based future

generation of wireless communications (5G and beyond). Such promising technologies include enhanced

multicarrier waveforms (MWFs) that enable a �exible accommodation of various applications/services

with di�erent requirements, and massive MIMO that employs linear precoding and combining schemes

and o�ers signi�cant gains in terms of spectral- and energy- e�ciencies compared to the traditional

MU-MIMO. In massive MU-MIMO, impairments such as fading, noise, and interference vanish for very

large number of BS antennas. In order to introduce such technologies within 5G based heterogeneous

Figure 3.12: Research activities and their related funding.
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and mass-market applications, a major issue in the design and implementation of radio equipment is

the cost-e�ciency in terms of implementation size, cost and power consumption. On one hand, the cost

and size of individual radio equipment are strongly limited leading to various Dirty-RF impairments

impacting the good properties of the above mentioned technologies. On another hand, facilitating very

dense deployments of wireless communication links to connect over trillion wireless devices will result in

increasing the power consumption of the ICT sector for more than 14% of estimated world-wide power

consumption by 2020 causing 1.4 Giga ton CO2, nearly 2.7% of the global carbon footprint [13] [14].

Thus, I have been dealing with the promising 5G technologies, where low latency, good reliability and

high data rate are of paramount importance while a particular attention has been given to the aspect of

energy consumption. The main focus has been on the radio access network, in particular on the power

ampli�er, which is known for dominating energy consumption in the radio transmitter.

In the following, we present the di�erent research activities, which are illustrated in Figure 3.12 with

their related funding. The structure of the second part of this manuscript will follow the research axes

presented here.

3.3.1 Advanced Multicarrier Waveform design solutions for 5G and Beyond

I have been interested in investigating advanced MWFs to address the major limitations of the traditional

CP-OFDM in challenging new spectrum use scenarios, like asynchronous multiple access, as well as the

support of mixed numerology which allows the service to choose between a set of supported subcarrier

spacing (SCS) and symbol duration. Indeed, I have had major contributions in the ANR WONG5 project

in which notable waveforms have been introduced. Post-OFDM MWFs are basically based on �ltering

or/and windowing processing in either time or frequency domain [15]. Indeed, a �rst class of these MWFs

gathers the ones that adopt a per-subcarrier pulse-shaping to reduce out-of-band (OOB) radiation and

increase relaxed synchronization requirements: o�set quadrature amplitude modulation based �lter-bank

multicarrier (FBMC-OQAM) [16] [17] and �ltered multi-tone (FMT) [18] have been heavily studied.

Generalized frequency division multiplexing (GFDM) [19] employs a circular convolution [20] to directly

apply the �ltering operation on a time-frequency block [21]. Another class of sub-band �ltering-based

waveforms (i.e. apply �ltering at sub-band level over single or multiple resource blocs (RBs)) has been

investigated, where the universal �ltered multicarrier (UFMC) [22], �ltered-OFDM (f-OFDM) [23] and

fast Fourier transform FBMC (FFT-FBMC) [24] and block-�ltered OFDM (BF-OFDM) [25] are the most

studied.

Time-domain windowing can also be a useful tool to achieve the desired enhancements, which permit

to prevent steep changes between two OFDM symbols so as to con�ne OOB emission. In this regard, I

have studied an advanced windowing based multicarrier approach called - weighted overlap and add based

OFDM (WOLA-OFDM) [26], which has been introduced to the 5G-NR as a low-complexity candidate

method (it has nearly computational complexity as the classical CP-OFDM). In addition, WOLA-OFDM

allows transparent design where transmitter (Tx) and receiver (Rx) units use independent waveform pro-

cessing techniques, which will comply with the 3GPP agreement [27]. This work has been published

in [C24].

Furthermore, some alternatives make the use of both �ltering and windowing, such as windowed cyclic

pre�x-based circular-OQAM (WCP-COQAM) [28] where a circularly pulse shaping �lter combined with

a time-domain windowing is applied. In this regard, we have investigated a new MWF design that is

based on the WOLA processing and the circular convolution approach [15] with the Post-doc of Dr.
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Yahia Medjahdi that I co-supervised with Prof. Daniel Roviras. The proposed MWF called- WOLA

based circular o�set quadrature amplitude modulation (WOLA-COQAM) has shown better performance

than the classical windowed based MWFs con�rming the capability of WOLA processing in supporting

asynchronous multi-user access. These works have been performed in the framework of the ANRWONG5

project and published in [C26]. These were my �rst contributions in the WONG5 project, in which I

participated as an associate researcher at CEDRIC laboratory of CNAM University. Indeed, I acted as

visiting researcher in many times. Consequently, I had the opportunity to collaborate with the WONG5's

partners, such as THALES, CEA-Leti and CentraleSupelec. I have been interested to study the ability

of these MWFs to address the di�erent 5G requirements in challenging new spectrum use scenarios,

like asynchronous multi-user access, as well as the support of mixed numerology. Indeed, an exhaustive

analysis and objective comparison of several 5G MWFs in order to identify the most suitable waveform

con�guration to any C-MTC case according to its critical requirements have been carried out with the

Yahia's Post-doc. For instance, several C-MTC key performance metrics such as spectral e�ciency

(SE), out-of-band (OOB) radiations end-to-end latency, robustness to asynchronous multi-user uplink

transmission, PAPR, and transceiver complexity have been assessed in order to identify the most suitable

waveform con�guration to any C-MTC case according to its critical requirements. Note that classical

CP-OFDM served as a reference basis. This work has been published in [J09].

Through this exhaustive evaluation over all 5G MWFs, where pertinent and major discussions have

been carried out with all WONG5's partners, we have shown that: (1) All the studied windowed or

�ltered MWFs can o�er a satisfactory spectral localization (i.e., low OOB radiation) compared to the

traditional CP-OFDM, especially when the guard band (GB), separating the useful and interfering signal

is quite large. Nevertheless, the �ltered WFs o�er the best spectral localization, especially the ones

that adopt a per-subcarrier �ltering, thanks to the good spectral containment of the adopted prototype

�lters. (2) concerning spectral e�ciency (SE), it depends on wether short or long packet sizes. Indeed,

FBMC-OQAM and FMT provide the worst SE performance compared to all other MWFs due to the

bad time-localization of their respective prototype �lters. It is worth to mention that GFDM and WCP-

COQAM o�er better SE performance, despite their long prototype �lters, due to the employed circular

convolution. However, all the investigated MWFs provide the same SE performance when long sequences

scenario (i.e., the �lter impulse response length becomes negligible) is considered. (3) We move now

to the latency, MWFs using a CP have higher latencies compared to other MWFs that do not consider

adding a CP, such as FBMC-OQAM, GFDM and FMT, when for long packet sizes. However, when

packet sizes are very short, OFDM based MWFs (CP-OFDM, WOLA-OFDM, UFMC, f-OFDM, N-

continuous OFDM) have the lowest latencies compared to the other MWFs that are a�ected by the

�ltering-related ramp-up and ramp-down. (4) Most importantly, the robustness of these MWFs to time

and frequency synchronization errors is studied. FBMC-OQAM and FMT, which have the best spectral

localized transmit/receive �lters, provide the best performance. Moreover, FFT-FBMC, f-OFDM and

WOLA-OFDM can provide satisfactory performance compared to the classical CP-OFDM. Finally, BF-

OFDM is more sensitive due to the fact that it uses a basic OFDM receiver. It is worth to point out

that adding the WOLA processing at the receiver side with the BF-OFDM transmitter would perform

excellent performance making them very attractive to C-MTC applications. (5) When coming to the

complexity, WOLA-OFDM provides the lowest level, it is almost the same as CP-OFDM. However,

the computational complexity required by N-continuous OFDM and UFMC is excessively high about

200 times the CP-OFDM/WOLA-OFDM complexity. The other WFs have tolerable computational

complexity, compared to the CP-OFDM/WOLA-OFDM, it is approximately 2 times for BF-OFDM and
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FFT-FBMC, 3 times for FBMC-OQAM and 9 times for GFDM. Finally, this objective comparison would

be useful to identify the most suitable MWF to any C-MTC case according to its technical challenges.

As explained above, FBMC-OQAM o�ers the best spectral localization leading then to the best

performance in supporting asynchronous and mixed numerology transmissions. Nevertheless, it does not

ful�l the robustness requirements when a frequency selective channel is considered. Therefore, one of my

research activities was oriented to study advanced equalization schemes, with Hayfa Fhima's PhD, to

overcome this FBMC-OQAM's drawback. Since FBMC-OQAM is based on a non second order circular

(NSOC) modulation and its signal is a cyclo-stationary one, it motivates the use of widely linear (WL)

and Fresh processing. Then, three di�erent MMSE equalizer schemes have been developed, referred to

as linear (LE), widely linear (WLE) and widely linear Fresh (WL Fresh) equalizers. For the proposed

equalizers, both symbol spaced (SSE) and fractionally spaced (FSE) processing have been evaluated, in

synchronous DL/UL and asynchronous UL scenarios, with mixed numerologies transmissions. These

works have been published in [C36], [C34], [C30] and [J19]. Through these studies, we have

demonstrated that WL Fresh equalizer provides the best performance in synchronous and asynchronous

scenarios, outperforming the classical Linear and WL equalizers.

3.3.2 Nonlinear distortion characterization and machine learning based mit-
igation techniques for energy-e�cient 5G MWFs

Despite the mentioned MWFs advantages, all of them still su�er from the high PAPR of the modulated

signal. This feature has a signi�cant impact on the power-e�ciency of the PA, which is an intrinsic

nonlinear device. Indeed, the PAPR issue leads to the PA saturation and, consequently, output signal

can be a�ected by in-band and out-of-band distortion e�ects [29]. Therefore, the outstanded MWFs lose

rapidly their good frequency localization property when a RF PA is employed. To deal with the high

power peaks of MWF signals and avoid the nonlinear and saturation operating regions of the PA, a large

back-o� can be considered, which results in reduced power-e�ciency and a large amount of the consumed

power is dissipated as heat, since the PA is operated far from its saturation point. Therefore, I have

been interested in studying the performance of the future wireless communications exploiting MWFs in

presence of RF PA impairment, especially when the power-e�ciency is high, by using both analysis and

evaluation through practical scenarios. Equally importantly, I have been interested in developing new

and reliable digital signal processing based solutions coping with the expected 5G requirements, with a

particular focus on mitigating RF PA impairments while reducing the power-consumption, through a set

of new algorithms and advanced techniques. Since 2009, my contributions to researches regarding this

topic have been performed in several research projects, such as the FP7 EMPHATIC, the CMCU-PHC-

Utique C3, the PHC-TASSILI ATOME5+ and the ANR WONG5 projects. Some of these contributions

have been achieved with the PhD students I have co-supervised (see Figure 3.12). In the following, I will

give short description for each investigate issue.

� Theoretical characterization of nonlinear distortion e�ects in MWFs based systems

A theoretical characterization of nonlinear distortion e�ects, in OFDM and FBMC transmission

systems, has been addressed during the PhD of Hanen Bouhadda and with my personal contri-

bution, supported in part by the C3 project and in part by EMPHATIC project, receiving fund

by, respectively, the PHC-Utique and the FP7 EC ICT. In this investigation, we have adopted

Bussgang's theorem showing that the in-band distortion e�ects on the decision variables can be

characterized by means of a complex gain and an additive Gaussian term with zero-mean and
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suitable variance. Then, we have introduced analytical expressions for the gain and the variance,

where a new approach has been developed leading to performing these expressions for any simulated

or measured PA model. Consequently, closed-form analytical expressions have been derived and

illustrated to evaluate the bit-error-rate (BER) performance using OFDM with rectangular pulse

shaping as well as well-localized �lter-bank based multicarrier (FBMC) running under an additive

white Gaussian noise (AWGN) or a frequency-�at fading Rayleigh channels. These works have

been, respectively, published in [J05] and [J07].

Then, in the framework of the WONG5 project, we focussed our attention on developing an universal

approach to make this study feasible for any 5G MWF. In collaboration with Prof. Daniel Roviras,

Dr. Hmaied Shaiek and Dr. Yahia Medjahdi, we have presented further discussions and comparisons

on di�erent waveforms: CP-OFDM, WOLA-OFDM, UFMC, f-OFDM and FBMC/OQAM and we

have provided insights on the impact of in-band NLD caused by RF PA. This investigation has

been presented in [J14] where simulation and theoretical results are shown to be in agreement

for di�erent MWFs and various IBO values.

� Machine Learning for green communications: High PA E�ciency and Linearity

In order to improve PA linearity and e�ciency, two complementary solutions have to be deployed

in MWF based systems. These latter are grouped into two categories including PAPR reduction

and PA linearization.

Concerning PA linearization, digital predistortion (DPD) has drawn most of the attention among all

the studied methods. Although its simplicity, it has proven to be e�ective providing a good trade-

o� between e�ciency, linearity and implementation complexity and has been the main focus of my

conducted works. My previous conducted studies on the �eld of DPD were limited to SISO-OFDM

systems. We pursued my investigations on DPD based energy-e�ciency solutions considering MIMO

technology and post-OFDM MWFs. Furthermore, We have been interested in designing DPD

using machine learning approaches. In particular, We have developed some low-complexity and

highly-e�cient neural network (NN) architectures to deal with DPD and its issues. A �rst issue

encountered in DPD is that its e�ciency can be a�ected by the RF crosstalk generated between

transmission/reception paths when MIMO techniques are considered. To overcome this problem,

We introduced, in papers [C08] and [C10], crossover neural network predistorter (CO-

NNPD) models to compensate simultaneously for RF crosstalk and PA nonlinearities while taking

into account the memory e�ect in MIMO-OFDM systems.

Due to the similarity between OFDM and post-OFDM MWFs, it is natural to consider employing

DPD to compensate amplitude and phase nonlinear distortions of MWF signals. However, some

of the post-OFDM MWFs, like the FBMC-OQAM, have a di�erent signal structure compared

with OFDM. Therefore, directly applying the DPD schemes of OFDM systems to FBMC-OQAM

systems may be not very e�ective. To deal with this issue, we considered the investigation of the PA

nonlinearity e�ects mitigation in FBMC-OQAM systems. First, we showed that the classical DPD

scheme performs worse with the FBMC-OQAM system when compared to the OFDM one. Such

degradation can be explained by the fact that this DPD, which aims to compensate simultaneously

the amplitude and phase nonlinearities, is not able to compensate perfectly the phase error. Indeed,

AM/AM distortion can only be perfectly tackled when the PA is operated far from the saturation,

otherwise the predistorted ampli�er exhibits a residual AM/AM distortion that a�ects the correction

of the AM/PM distortion. In the regard to get e�cient DPD, my e�orts were deployed to build



CHAPTER 3. RESEARCH ACTIVITIES 38

a new NN based DPD scheme around the concept of separating the compensation of the phase

and amplitude distortions. By using the proposed scheme, it was shown that OFDM and FBMC-

OQAM systems reach the same performance showing that a higher attention must be paid for phase

correction in �ltered MWFs like FBMC. This work has been published in [C19].

On the other hand, the MCM techniques su�er from high PAPR which is one of the most cru-

cial issues that need to be solved e�ectively with a reasonable complexity. Indeed, when a PA

non-linearity is taken into account, the good frequency localization property provided by the post-

OFDM MWFs is severely compromised due to the spectral regrowth, thereby hampering much

of its attractive appeal to be promising candidate for future wireless communications. In order

to advance this, we must opt for PAPR reduction techniques, in order to operate the PA more

e�ciently without damaging the performance of the MCM techniques. Hence, I have been in-

terested in developing algorithms for PAPR reduction, which are based on probabilistic approach

and adding signal methods. I have been �rst interested in reducing the PAPR of FBMC-OQAM

signals with the Mounira Laabidi's PhD. Indeed, FBMC-OQAM has an overlapping structure and

the classical methods applied for OFDM cannot be directly applied to FBMC-OQAM. Then, we

have introduced, in [C21b] and [C23], new overlapped tone reservation (TR) and ac-

tive constellation (ACE) by extending, respectively, the classical TR and ACE with taking into

consideration the overlapping structure of FBMC-OQAM signals. joint TR and ACE has been

put-forward in [C21]. Coming to the proposed probabilistic schemes, we have introduced in

[C21c] a novel multi-blocks selective mapping (MB-SLM), where it has been shown that

the PAPR reduction performance achieved with FBMC-OQAM is similar to the one of OFDM,

if the signal overlapping structure of the former is well exploited. More recently, I pursued this

investigation, in the framework of the WONG5 project, to study new PAPR reduction schemes

for other post-OFDM MWFs (published in [C38]), like WOLA-OFDM, UFMC and f-OFDM,

that have been good promising candidates for the futures wireless systems. In addition, a global

power ampli�er e�ciency evaluation with PAPR reduction has been presented in [C39] for

post-OFDM MWFs.

� Joint approach for PAPR reduction and PA linearization In conventional systems, PAPR

reduction and linearization techniques have been optimized separately and applied independently.

I started focusing on their association aiming at avoiding mutual e�ects in order to enhance in-

teroperability. I have introduced a joint approach for PAPR reduction and PA linearization that

consists in a really synergistic combination of the two operations in order to improve power ampli�er

e�ciency and linearity. Its key idea was to synthesize only one correction signal in a Ping-Pong

manner between PAPR reduction and DPD. The proposed Ping-Pong joint optimization approach

provides signi�cant improvement, compared to conventional association schemes, in ful�lling OOB

requirements and preserving low in-band distortion while preserving excellent energy-e�ciency of

the system. The proposed approach, which was a part of the ANR WONG5 project, has been

�rst patented [P01] and then published in [J11].

� Experimental tesbed of post-OFDM Multi-carrier Waveforms toward 5G and beyond

networks It has been encouraged to concentrate on more careful and thoughtful design, evalua-

tions, realizations and comparison of CP-OFDM waveform and its most promising enhancements,

i.e., WOLA-OFDM and BF-OFDM especially in experimental testbed. In the framework of the

ANR WONG5 project, I was in charge of the development of an experimental testbed to study
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the capability of new multicarrier waveforms to accommodate 5G requirements. Testbed experi-

ments were done with an implementation of CP-OFDM and its most promising enhancements, i.e.,

WOLA-OFDM and BF-OFDM, with con�gurable universal software radio peripherals (USRPs)-

based software de�ned radio prototype. These experiments were done in a realistic laboratory-like

environment, where capabilities of the selected waveforms to accommodate 5G requirements are

evaluated while focusing on the optimization of the energy e�ciency. On one hand, I have provided

details and deign guidance to improve energy-e�ciency and robustness of the studied waveforms

through new approaches of DPD and PAPR reduction in the presence of real RF PA. In partic-

ular, I focused on the mitigation of in-band and OOB non-linear distortions and their e�ects on

power spectrum density (PSD) and bit-error-rate (BER), respectively. It has been demonstrated

that the combination of PAPR reduction and DPD allows the transmitter to signi�cantly improve

the spectrum localization without sacri�cing the in-band and OOB waveform quality, while achiev-

ing high power-e�ciency, thus operating the PA very close to its saturation region, as well. On

another hand, I addressed the impact of the lack of synchronism between transmitters on the per-

formance of the selected waveforms, which is of special relevance for future 5G MTC applications.

Experimental results show that BF-OFDM and WOLA-OFDM would permit the accommodation

of 5G requirements when RF PA issues are tackled. In some speci�c scenarios, ideal spectrum

utilization can be realized by these waveforms, using only one tone as guard band while keeping

good energy-e�ciency. This work was the subject of one conference paper [C41] and one

peer-reviewed journal [J10].

3.3.3 Massive MIMO Networks: Energy and Hardware e�ciency

Massive MIMO, also known as large-scale multi-user (MU) MIMO, has been recognized as the most

promising technology for future generations of wireless communications because it is the most ultimate en-

ablers of enhanced energy-e�ciency (EE) and spectral-e�ciency (SE). Within the H2020 MSCA ADAM5

project, I have been interested in two investigation issues related to massive MIMO systems.

� Linear Precoding for Energy-E�cient Massive MIMO The deployment of massive MIMO

systems is attractive if the RF chains consist of inexpensive hardware components. Moreover, it

is important to study the realistic massive MIMO systems with non-ideal hardware components,

which may induce hardware impairment. Therefore, in the framework of the H2020 MSCA ADAM5

project, I am paying particular attention to this aspect of SE and EE in massive MIMO as well as

hardware impairment mitigation to meet future WCS's requirements. Especially, the main focus

was in the RF PAs which represent the dominating energy-consumption (50 − 80%) in the RF

chains. Indeed, signals generated by massive MU-MIMO precoders su�er from the high PAPR,

independently of whether single-carrier or multi-carrier transmission is adopted. Accordingly, the

nonlinearity of the RF PA, which is the main hardware impairment and is expected to be low-

cost and energy-e�cient component to enable cost- and energy-e�cient massive MU-MIMO BS

deployments, yields harmful in-band distortion and OOB radiation.

First, I have developed a PAPR-aware downlink transmission scheme in an OFDM-based massive

MU-MIMO. Linear precoding of data and peak-cancelling signals (PCSs) were employed to reduce

the PAPRs of the transmitted signals by exploiting the excess degrees-of-freedom (DoFs) provided

by equipping the base station (BS) by a large number of transmit antennas. Speci�cally, we designed

PCSs to be added to the frequency-domain precoded data signals, with the goal of reducing the
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PAPRs of their time-domain counterpart signals. Most importantly, the added PCSs have to lie in

the null-spaces of their associated MIMO channel matrices such that they do not cause any multi-

user interference (MUI). In this regard, an e�cient algorithm was developed, which was based on

di�erent data and PCSs precoders, and the corresponding achievable PAPR reduction and bit-

error-rate (BER) performance are analyzed. Moreover, to optimize a tradeo� between performance

and complexity, linear precoders based on matrix polynomials (M-POLY) and gradient-iterative

approaches (published in [J15]) are studied for both data and PCSs precoding. Simulation

results reveal that these latter provide similar performance as the regularized zero-forcing (RZF)

and orthogonal projection null-space (OPNS) based data and PCSs precoders, while they need

much lower computational complexity. The substantial PAPR reduction provided by the proposed

algorithm o�ers interesting insights for the design of energy-e�cient massive MU-MIMO-OFDM

systems. This work has been submitted to the peer-reviewed IEEE Open Journal of

the Communications Society (OJ-COMS) [SJ2].

Second, I have investigated the compensation of the PA nonlinear distortion (NLD) in massive

MIMO downlink systems. I have introduced a PA-aware precoding approach that exploits the

high-dimensional DoFs, allowed by equipping the base station (BS) by a high number of antennas,

and performs the precoded signals that when ampli�ed and passed through the channel, guar-

antee excellent transmission quality. Speci�cally, we formulate the proposed PA-aware precoding

approach as a simple convex optimization problem which enables e�cient, low-complexity, and re-

liable algorithm implementations. The simulation results demonstrate the strong potential of the

proposed approach in terms of improving the link quality and reducing the required computational

complexity. This work has been published in [J16].

� Meta-Learning model for PA NLD mitigation in Massive MIMO systems Despite the

better performance, in terms of BER and computational complexity, provided by the aforemen-

tioned algorithm compared to the ones proposed in literature, its computational complexity is still

needed to be e�ectively reduced. Therefore, via the MSc internship of Miss Samar Chebbi, we

are investigating approaches to complement traditional machine learning (ML) methods, like the

meta-learning (learning to learn) approach, with the aim to obtain lower complexity. It consists in

developing a meta-learning model capable of being generalized with a new channel con�guration

that has never been learned during learning, avoiding the adaptation of the model.

� Inter-Numerology Interference Analysis and Cancellation for Massive MIMO-OFDM

The extremely diverse service requirements is an important challenge for the upcoming 5G wireless

communication technologies. OFDM-based massive MIMO and mixed numerologies transmission

are proposed as solutions. In the framework of the ADAM5 project, I have investigated with Xinying

Cheng, a PhD student I co-supervise with Prof. Daniel Roviras, the use of spatial multiplexing of

users, sharing the same bandwidth, whose associated numerologies are di�erent. We �rst introduced

a precoding design that aims to manage the mixed numerologies spectrum sharing (SS) transmission.

Then, we analysed the inter-numerology interference (INI) and derive the theoretical expressions of

its radiation pattern in massive MIMO-OFDM downlink systems. We demonstrate that by using the

proposed precoding scheme and considering two groups of users using two di�erent numerologies, INI

appears only in frequency selective channels. Besides, the transmission of users using numerology

with large subcarrier spacing (SCS) is always with the best quality, only users using the numerology

with small SCS su�er from INI. In that case, INI increases due to the di�erence in SCS, channel
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selectivity and power allocation. Based on the derived INI closed-form expressions, the precoding

scheme was improved and a new INI cancellation scheme was introduced. Our analysis has shown

that the INI theoretical model matches the simulation results, and the introduced INI cancellation

e�ciently mitigates the INI and enhances the performance of massive MIMO-OFDM systems. This

study was applied to downlink and uplink scenarios that have been published in two peer-

reviewed journals [J17] and [J18], respectively.

3.3.4 Indoor Localization: From Matrix Completion to Deep learning

I started this theme by the co-supervision of the Raida Zouari's PhD with Prof. Ridha Bouallegue at

ENIT school. I pursued my investigation in this �eld with my collaboration with Prof. Michel Terre

via the supervision of the Wafa Njima's PhD. These studies aim at developing some advanced signal

processing solutions for indoor localization. Moreover, we have been interested in developing some deep

learning approaches to o�er good localization accuracy with low complexity. My contributions on this

theme are summarized below:

� Matrix Completion Based Indoor Localization Here, we consider the case where few num-

ber of sensors (anchor nodes) whose coordinates are known by installing them at known positions,

and the rest unkown nodes, have to determine their own coordinates using measured inter-sensor

distances and anchor nodes coordinates. Since, in IoT, sensors are not capable of high-power trans-

mission which would be unable to make measurements with all nodes, the trilateration would not be

able to o�er good performance. Then, as a �rst contribution, we have proposed an approach based

on matrix completion theory to enhance the trilateration based indoor localization. Speci�cally, the

proposed indoor localization scheme is formulated as a simple optimization problem which enables

e�cient and reliable algorithm implementations. Many approaches, like Nesterov accelerated gradi-

ent (Nesterov), Adaptative Moment Estimation (Adam), Adadelta, Root Mean Square Propagation

(RMSProp) and Adaptative gradient (Adagrad), have been implemented and compared in terms

of localization accuracy and complexity. This work has been published in a peer-reviewed

journal [J13] where we demonstrated that the Adam optimizer outperforms all other methods in

terms of localization accuracy and computational complexity.

� Deep Convolutional Neural Network (CNN) for Indoor Localization in IoT-Sensor Sys-

tems In order to reduce the complexity of the �ngerprinting approach, we have been interested

in developing a localization framework that shifts the online prediction complexity to an o�ine

preprocessing step, based on Convolutional Neural Networks (CNN). Motivated by the outstanding

performance of such networks in the image classi�cation �eld, the indoor localization problem is for-

mulated as 3D radio image-based region recognition. It aims to localize a sensor node accurately by

determining its location region. 3D radio images are constructed based on Received Signal Strength

Indicator (RSSI) �ngerprints. This work has been published in a peer-reviewed journal

[J12] where we have shown that, when considering the trade-o� between localization accuracy and

computational complexity, our proposed method outperforms other popular approaches.
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Chapter 4
Multicarrier Waveform Design for 5G and

Beyond

4.1 Introduction

The future/�fth generation (5G and beyond) mobile communications are expected to enhance, signi�-

cantly, major key performance indicators (KPIs), such as spectral e�ciency, power consumption, latency,

connection density, low cost terminals and mobility. Moreover, the future standard should support various

new service regimes with di�erent and often diverging requirements, presenting serious challenges on 5G

commercial deployments [25]. The IMT-20201 vision de�nes the usage scenarios into three broad groups

of use cases as enhanced mobile broadband (eMBB) where applications require ultra large bandwidth and

spectral e�ciency, massive machine type communications (mMTC) (also known as Internet of Things

(IoT)) where a tight requirement for device battery life and complexity, and ultra-reliable and low latency

communications (URLLC). These versatile services require critical capability objectives such as 20Gbits/s

peak data rate, 106 devices/km2 connection density, ultra high energy e�ciency, low cost terminals, 1ms

latency and mobility up to 500km/h [30]. Nevertheless, these challenges are di�cult to be addressed by

the traditional cyclically pre�xed orthogonal frequency division multiplexing (CP-OFDM) and its low

peak-to-average power ratio (PAPR) variant discrete Fourier transform spread OFDM (DFT-s-OFDM),

which have consequently shaped the success of the today's 4G LTE2.

Thus, the CEDRIC/LAETITIA team of the CNAM University, where I am associate researcher, has

been interested in studying advanced multi-carrier waveforms (MWFs) to overcome the major limitations

of the CP-OFDM in challenging new spectrum use scenarios, like asynchronous multiple access, mixed

numerology, which allows the service to choose between a set of supported subcarrier spacing (SCS) and

symbol duration, while improving their power consumption, signi�cantly. Indeed, within the research

projects PHYDYAS [31] and EMPHATIC, spurred on by the work of Prof. Maurice Bellanger, the

CEDRIC/LAETITIA team developed recognized expertise in new MWF design, initially on �lter-bank

based multi-carrier modulations (FBMC) [32], then other waveforms like the fast Fourier Transform

FBMC (FFT-FBMC) [24], studied within the framework of the ANR WONG5 project.

1International Mobile Telecommunication for 2020 and beyond
2Long-Term Evolution
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In this context, I have been involved in many research projects and have supervised some PhD/Master

students with the CEDRIC/LAETITIA team. I was in charge of 1) the energy-e�ciency enhancement

of the studied waveforms, 2) the study and proposition of new MWF design adapted to 5G critical MTC

systems and 3) the development of an experimental testbed to evaluate the capability of the notable

MWFs to accommodate 5G requirements.

This chapter aims to provide a complete picture of the ongoing 5G MWFs I studied and overviews

the main researches I developed in work on MWF design. It is organized as follows: Section 6.3 presents

preliminary concepts and reveals the 5G waveform design requirements. Section 6.4 provides a brief

description of major MWF candidates for 5G and beyond. Author's contribution related to MWF design

is presented in Section 5.5. A summary comparison of the MWFs key features is given. Section 5.6

summarizes author's contribution related to equalization for FBMC-OQAM. Finally, the outputs of these

contributions are resumed in Section 6.5.

4.2 Fundamentals of the 5G MWF design

4.2.1 Preliminary concepts

In a typical communication system, the transmitter maps every modulated information point from the

message space into the signal space whereas the receiver does the reverse operation [33]. The signal space

is the time-frequency plane where time and frequency constitute its coordinates [34]. The waveform

de�nes the physical shape of the signal that carries the modulated information. When considering a

multicarrier scheme, the structure in signal space relies on N simultaneously-transmitted subcarriers,

regularly spaced by ν0 in frequency. The transmitted signal is given by

x(t) =

+∞∑
m=−∞

N−1∑
n=0

Xmnfmn(t), (4.1)

and the received symbol X̂m0n0
, located in time index m0 and subcarrier index n0 can be found by the

projection of the received signal y(t) onto the corresponding receive function gm0n0
(t) as

X̂m0n0
=< y(t), gm0n0

(t) >=

∫
t

y(t)g∗m0n0
(t)dt, (4.2)

where

- Xmn denotes the m-th transmitted symbol of the n-th subcarrier, which represents the random part of

the waveform. One may choose Xmn from a set of a modulation symbols or a part of it, e.g., its real or

imaginary part [35].

- fmn(t) and gm0n0
(t) denotes, respectively, the synthesis function, which maps Xmn into the signal space,

and the analysis function. They are obtained by a prototype �lter, respectively ptx and prx, translated

in both time and frequency, constructing two Gabor systems [35] [36] [37] [38] when they are given by

equations (4.3) and (4.4), respectively.

fmn(t) = ptx(t−mτ0)e
j2πnν0t, (4.3)

and

gm0n0
(t) = prx(t−m0τ0)e

j2πn0ν0t, (4.4)

where τ0 denotes the symbol spacing in time.
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Note that pulse shaping �lters (known as prototype �lters) have an important e�ect on the signal

characteristics since they de�ne how the energy is spread over the time and frequency domains. Thus,

the amount of energy transferred from the transmitter to the receiver is determined by both transmit and

receive �lters [33]. The coordinates of the �lters form a two-dimensional structure in the time-frequency

plane are known as lattice [39] [40]. In addition, they identify the structure of the multicarrier scheme, i.e.,

orthogonal, bi-orthogonal, or non-orthogonal [41] [39] by �nding out the correlation between the points

in the lattice. Di�erent shapes can be associated to the lattice geometry, either regular or hexagonal [42].

Moreover, additional dimensions, like space domain, can be included in the lattice.

4.2.2 The Baseline for 5G MWF Discussion: CP-OFDM and MWF design
requirements

CP-OFDM is the dominant multicarrier modulation scheme that is currently being deployed in many

standards such as the downlink of 4G LTE and the IEEE 802.11 family [43]. In OFDM systems, the

spectrum is used in a very e�cient manner due to the orthogonally overlapped subcarriers, allowing

�exible frequency assigning.

The new radio for 5G and beyond is expected to support a variety of new services beyond the user

centric communications to more machine type communications, as discussed in Section 7.1. Looking at

the 5G requirements and asking the question if OFDM still suitable? Let us talk about strengths and

weaknesses of OFDM. First of all, the best strength is its simplicity. It is FFT based which is very

e�cient and its single tap equalization for frequency selective channel that is really awesome. Second, it

is fast, it supports wide bandwidth and MIMO. OFDM naturally supports MIMO in a way it is almost

designed with MIMO. It is also very resilient, handling the interference in a multipath environment by

ensuring circularity of the channel (thanks to the CP) and by enabling easy frequency-domain equalization

(FDE). However, a major weaknesses of OFDM is related to the fact that it is power-hungry. It has high

PAPR and it needs a linear or linearized power ampli�er; with new methods like digital predistortion

(DPD) [7] and envelope tracking (ET) [44], we can make it much better but this could be the strongest

drawback for multicarrier schemes. Another critical issue is related to the fact that it is noisy, which

is very important for a lot of 5G use cases. It has very large side lobes (i.e., high out-of-band (OOB)

emissions), called low spectrum agility. Actually, with the FFT we got basically about at most 30 dB

attenuation in the side lobes and we really need at least 60 or 70 dB or more, if we want to intersperse

tra�c within 5G mMTC. We need those side lobes to be really low to avoid adjacent channel interference

(ACI). Typically, OOB emissions are reduced by various windowing/�ltering approaches along with the

guard band allocation [45] to meet the spectral mask requirements of the various standards. 3GPP LTE

standard uses 10% of total bandwidth as guard bands to handle this problem, decreasing unfortunately

the spectral e�ciency. Finally, it is also very sensitive to carrier frequency o�set (CFO). Furthermore, a

big downfall of OFDM is the uplink interference [26]. In fact, with the OFDMA, we need all the signals

coming up to the base station are lined-up. Although the use of the CP, it cannot be too big for spectral

e�ciency purpose. It cannot be able to support asynchronous communications in a connected network

with millions, if not billions, of devices in 5G mMTC. Moreover, it seriously su�ers from its limited

�exibility and the unfriendly coexistence with di�erent numerologies for various channel conditions and

use cases.

In the diagram depicted in Figure 4.1, we can rearrange these strengths and weaknesses and want to

group them as can be better shared between all 5G use cases. For eMBB, we see the ability to retain and
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really improve upon the needs to support MIMO and to be a wide bandwidth even wider bandwidth like

100MHz. Furthermore, it needs to solve the sensitivity to CFO, UL access and its power-hungriness. For

mMTC, there is a lot of issues: we need to make sure that it is still simple and even make it simpler. It

also needs to solve the large side lobes, asynchronous UL access and the power-hungry problems. Finally,

for URLLC, we de�nitely need to solve sensitivity and the large side lobes.

Figure 4.1: 5G MWF design Requirements.

Therefore, numerous MWFs are proposed taking into account all these considerations for the upcoming

5G and beyond standards. The major waveform candidates are classi�ed and discussed thoroughly in the

following sections.

4.3 Major MWF candidates for 5G and beyond

Filtering approach is used to enhance the capability of multi-carrier techniques to support asynchronous

access to fragmented spectrum. The �ltering-based MWF can either be subcarrier-wise or subband-wise.

In the following, I give a brief description of the major studied �ltered MWFs.

4.3.1 Subcarrier-Wise Filtering

FBMC-OQAM

FBMC has been proposed as an alternative to CP-OFDM o�ering better frequency localization and

�exible access to the available resources. Indeed, contrary to OFDM's rectangular �lter, FBMC uses

well-frequency localized �lters (like PHYDYAS [31] or IOTA [46]) to o�er excellent spectral containment

(i.e., better adjacent channel leakage performance). The duration of the prototype �lters is usually a

multiple of the FFT size (L = KN), where K is called the overlapping factor. Here, we exploit polyphase

�lter-banks [47] for pulse shaping, reducing side lobes e�ectively and having better spectrum agility.

Furthermore, Nyquist constraints on the prototype �lter combined with o�set-quadrature amplitude

modulation (OQAM) have to be used in order to ensure orthogonality between adjacent symbols and

adjacent subcarriers while keeping maximum spectral e�ciency. OQAM is used wherein it is actually not

orthogonal in complex domain but it is orthogonal in real domain so it provides staggering of "in-phase"

and "quadrature-phase" components in both time and frequency domains, and imaginary intrinsic inter-

ference is occurred which is orthogonal to the real transmitted symbols. Moreover, no more than one
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subcarrier is required as guard band to support e�ectively asynchronous (i.e., non-orthogonal) transmis-

sions [45]. Nevertheless, the equalization is more di�cult without the use of CP. Furthermore, the biggest

challenges is that the MIMO integration and pilot design with FBMC-OQAM are not straightforward as

in CP-OFDM due to the non-orthogonality in the complex domain [48].

In this dissertation, we consider FBMC-OQAM with PHYDYAS prototype �lter withK = 4, the most

commonly used. Note that new form of FBMC, which is called Lapped-OFDM, uses the sine prototype

�lter with K = 2. Interested readers are referred to [49] for more details.

GFDM

Similar to FBMC, generalized frequency division multiplexing (GFDM) [21] [19] applies subcarrier-wise

�ltering. However, GFDM performs a time-frequency �ltering over data blocks. A data block contains

a set of symbols transmitted over a group of NA consecutive sub-carriers over NB time-slots and thus

is composed of NT = NA × NB symbols. From this implementation perspective, it is equivalent to a

DFT-s-OFDM3 signal [50], which also explains lower PAPR compared to CP-OFDM. Since the �lters for

pulse shaping are circularly convoluted over a data block, GFDM is a nonorthogonal transmission scheme

because of symbols overlap in both time and frequency, generating inter and intra data blocks interference.

Note that a CP is appended in each block in order to avoid inter block interference. Furthermore, GFDM

requires successive interference cancellation (SIC) algorithms at the receiver, making its complexity quite

high. Similar to FBMC-OQAM, MIMO integration and pilot design is not straightforward. Moreover,

the block-wise transmission causes latency making it not suitable for short burst transmission.

It is worth to mention that a new transceiver design is needed for subcarrier-wise �ltering based MWFs

(FBMC and GFDM), and there is no backward compatibility with 4G LTE.

4.3.2 Subband-Wise Filtered MWF

UFMC

Alcatel-Lucent Bell Laboratories [51] is the major proponent of the universal �ltered multicarrier (UFMC)

[52], which is also referred to UF-OFDM in the literature. UFMC can be seen as a compromise between

�ltred-OFDM (detailed in next subsection) and FBMC, where a �ltering operation is applied to a group

of successive subcarriers instead of the subcarrier-wise �ltering of FBMC. The key-idea of UFMC is that

each resource block (RB) has its corresponding transmit �lter with a passband larger than the FBMC

prototype �lter one, leading thus to a shorter impulse response. In typical UFMC systems, each symbol

at the output of the IFFT is �ltered and zero padding (ZP) [53] is then used to absorb the �lter transient

response. Here, no CP is used and the transitions regions (i.e., ramp-ups and ramp-downs) provide a

soft ISI protection. Then, the symbols are not circularly convoluted with the channel leading to a more

complicated receiver [54]. This latter uses a FFT of twice the size of IFFT used at the transmitter.

It is worth to point out that the circular convolution can be obtained by collecting additional samples

corresponding to the length of the ZP and using an overlap-and-add process [53]. Then, the FFT size

becomes identical to the IFFT used at the transmission side.

UFMC has shorter �lter lengths compared to subcarrier-wise �ltering making it more suitable for

short packet and low-latency transmissions. Furthermore, UFMC is suitable for all existing OFDM-

related techniques like MIMO, channel estimation/equalization, pilot design, synchronization, PAPR

3Discrete Fourier transform spread orthogonal
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reduction [45].

f-OFDM

In �ltered-OFDM (f-OFDM) [55], the �ltering granularity is more �exible than UFMC. Further details on

several �lters are given in [17]. The partition in the time-frequency grid is adjusted based on the di�erent

channel conditions and use cases. Then, f-OFDM is more suitable for the use of di�erent numerologies

(such as bandwidth, sub-carrier spacing, CP duration, and transmission time interval) [56] compared to

UFMC with the cost of increased complexity. Contrary to UFMC, f-OFDM maintains the CP leading to

a better immunity against the ISI and lower complexity at the receiver. Furthermore, f-OFDM di�ers to

UFMC by adopting identically IFFT/FFT sizes and matched �ltering at the receiver. f-OFDM has the

advantage of having well frequency-localization, providing low OOB emissions, allowing asynchronous

transmission, supporting di�erent numerologies and o�ering high SE (i.e., requiring less number of guard

tones). Although f-OFDM cannot o�er excellent spectral containment as per-subcarrier �ltered MWFs

due to the shorter �lter length utilization, it has the advantage to be compatible to MIMO and does not

require any SIC algorithm. Nevertheless, its main drawback, compared to the classical CP-OFDM, is the

complexity.

FFT-FBMC

FFT-FBMC scheme has been proposed within the WONG5 project [24], which aims at overcoming the

FBMC intrinsic interference [57] [58]. FFT-FBMC utilizes a data precoding process in a subcarrier-wise

manner using an IFFT [24]. Then, with the aid of the subcarrier-wise IFFT/FFT precoding/decoding

and the CP insertion, the interference coming from the same subcarrier can be removed using a sim-

ple equalization. Furthermore, a new transmission strategy is adopted, together with a well-frequency

localized prototype �lter, in order to avoid the interference coming from adjacent subcarriers [24].

In FFT-FBMC proposal, a data stream of MN/2 is divided into M blocks of N/2 data complex

samples. Then, each block of N/2, corresponding to each subcarrier k ∈ {0, 1, ...,M − 1}, is fed to a N -

IFFT operation. The N/2 data samples are alternately fed to the �rst and last N/2 bins of the N -IFFT.

When the subcarrier index k is odd (resp. even), the symbols are fed to the �rst (resp. last) N/2 bins.

After that, a CP is appended to the N -IFFT output that feds to a FBMC modulator of M carriers in

the given subcarrier k.

Most importantly, the complex orthogonality is guaranteed in FFT-FBMC and single-tap equalization

can be performed, as shown in [59]. Indeed, MN/2 channel frequency response coe�cients, weighted by

coe�cients depending on the used prototype �lter, represent the equivalent equalizer coe�cients.

BF-OFDM

Block-Filtered OFDM (BF-OFDM) is a precoded �lter-bank multi-carrier modulation that has been

studied in [60] [61] [62]. As in FFT-FBMC, the precoding stage is performed by means of IFFT and

the �ltering operation is applied with a polyphase network (PPN). Nevertheless, this precoding strategy

results in a complex receiver scheme. In order to tackle this issue, BF-OFDM slightly increases the

transmitter complexity in order to rely on a low-complex CP-OFDM like receiver through the insertion

of a �lter pre-distortion stage at the transmitter side [25]. Here, each data block of N/2 samples is

pre-equalized before going to the IFFT precoding operation. The pre-equalizer coe�cients depend on
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the frequency response of the used prototype �lter. Note that the BF-OFDM receiver is just a simple

OFDM one (i.e., only a FFT is used).

4.4 Contributions to related MWF design

Despite the e�ectiveness of the previously mentioned MWF class to handle most of the 5G challenges, they

are not suitable for low-latency communications and short packet transmission due to the long prototype

�lters (i.e., long ramp-up/down of MWF signal leads to a loss in spectral e�ciency). In addition, the

complexity of these �ltered MWFs makes them not very attractive to 5G and beyond. Besides, time-

domain windowing based CP-OFDM processing, can also be a useful tool to advance the 5G waveform

development.

Therefore, we have been interested in investigating new MWFs based on advanced windowing tech-

niques. In the framework of the WONG5 project, we �rst investigated a MWF based on new windowing

approach, introduced recently and called Weighted Overlap and Add (WOLA) processing [63]. The

studied low-complexity waveform WOLA-OFDM, which is presented in [C24], allows transparent de-

sign where transmitter (Tx) and receiver (Rx) units use independent waveform processing techniques,

complying with the 3GPP agreement [27]. Then, a new MWF approach based on the WOLA process-

ing and a circular convolution approach has been introduced via the supervision of the Post-doc of Dr.

Yahia Medjahdi I co-supervised with Prof. Daniel Roviras. The proposed MWF called WOLA based

circular o�set quadrature amplitude modulation (WOLA-COQAM) [C26] has shown better performance

than the classical windowed based MWFs con�rming the capability of WOLA processing in supporting

asynchronous multi-user access.

Through the collaboration with the WONG5's partners, THALES, CEA-Leti and CentraleSupelec,

we have carried out, in [J09], an exhaustive analysis and objective comparison of these studied MWFs

with several other 5G MWFs in order to identify the most suitable waveform con�guration to any 5G use

case according to its critical requirements. Our WOLA approach has been shown to be very e�ective in

MWF design enabling �exible multiple access to fragmented spectrum with relaxed synchronicity.

In the following, I give an overview of the studied MWFs based on WOLA processing and a summary

of its performance assessment and comparison.

4.4.1 WOLA-OFDM

Since a large part of OOB emission of CP-OFDM is caused by the discontinuity between adjacent OFDM

symbols in time-domain, a natural and straightforward way to reduce these indiserable OOB emissions

is to avoid the traditional usage of rectangular pulse shape. Then, windowing schemes to smooth the

time-domain signal transitions seem promising approaches. Therefore, the WOLA-OFDM has gained

a great interest along this line of study due to its low computational complexity. At the transmitter

side, the time-domain WOLA-OFDM symbol is cyclically extended with cyclic pre�x and cyclic su�x.

Then, the smooth transition of the last samples of a given symbol and the �rst samples of the next

symbol is provided by a time-domain windowing. Here, the Meyer root raised-cosine (RRC) [64] has

been considered, which combines the RRC time-domain pulse with the Meyer auxiliary function. In

order to have similar overhead as in CP-OFDM, to comply within standards, adjacent symbols are

overlapped in the edge transition regions (see Figure 2 in [26]). Furthermore, WOLA-OFDM presents a

spectral e�ciency (SE) loss of WTX samples, cyclic su�x length, per packet compared to CP-OFDM.
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The WOLA-OFDM SE expressed in bit per second per Hertz is given by equation (4.5).

ηWOLA =
SN

S(N +NCP) +WTX
η

S→∞−−−−→ S

N +NCP
, (4.5)

where S is the total number of transmitted symbols, η is the modulation e�ciency (including both modu-

lation order and coding rate) andN the number of active subcarriers. When S is large, the WOLA-OFDM

SE tends to the one of CP-OFDM.

In addition to the transmit windowing, the WOLA processing, initially introduced by Qualcomm

Incorporated [63], is applied to aid the suppression of asynchronous inter-user interference (i.e. adjacent

non-orthogonal signals). It is performed through two steps: First, the receiver takes N + 2WRX samples

(WRX denotes the window edge size), which correspond to the samples of one WOLA-OFDM symbol.

Then, these samples are windowed. In the second step, the overlap and add processing (see Figure 3

in [26]) is applied to minimizes the windowing e�ects on the useful data, creating the useful N samples

from the N + 2WRx ones.

It is worth emphasizing that the applied receive window is independent of the one applied at the

transmitter, complying with the 3GPP agreement [25].

4.4.2 WOLA-COQAM

We have been interested in investigating the combination of the WOLA processing with a �ltering ap-

proach. Such combination can be very promising to handle most of the 5G challenges previously men-

tioned. Here, we consider a subcarrier-wise �ltering, due to its good frequency localization, together with

a burst truncation in order to reduce the SE loss caused by long prototype �lter, making the transmission

suitable to low-latency communications. In addition, a circular convolution [20] [65] is adopted to main-

tain smooth transition at the burst edges while removing the overhead signal. Then, the circular-OQAM

(COQAM) signal, de�ned in a block interval m ∈ [0,KN − 1], is expressed as,

xCOQAM [m] =

N−1∑
n=0

2K−1∑
k=0

ak [n] g̃ (m− kN/2) ej
2π
N n(m−D

2 )ejϕn,k , (4.6)

where, the �lter g̃ stands for circular convolution (see Figure 1 in [15]) with the prototype �lter g of

length KN = D + 1. More precisely, g̃ is obtained by the periodic repetition of duration KN of g [65],

so that,

g̃ (m) = g (mod [m,KN ]) (4.7)

Note that the prototype �lter g is originally designed for FBMC-OQAM systems. This means that the

input data symbols ak [n] are real-valued, since the orthogonality only applies to the real �eld. The phase

term ϕn,k at subcarrier n and symbol index k can be expressed as π
2 (n + k). It is introduced on both

transmitter and receiver side, in order to make the intrinsic interference purely imaginary-valued thus

orthogonal to the useful data which is real-valued. A CP is then added in order to avoid multi-path

channel interference. Thanks to circular convolution, the continuity of CP-COQAM signal is maintained

inside a given CP-COQAM block. Then, a windowing is needed to enhance the spectral containment by
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smoothing the inter-block discontinuities. Finally, the WOLA processing, previously explained, is also

applied to suppress inter-user interference resulting from the mismatched FFT capture window. It is

worth to mention that the �rst window part [0, 2WRX ] applied at the receiver must be symmetrical w.r.t

the point
(
WRX ,

1
2

)
, correctly recover the weighted data samples.

4.4.3 Summary of MWFs performance assessment and comparison

In this section, I provide a summary of the comparative performance study of the major MWF candidates

for 5G and beyond. In addition to the MWFs described above (FBMC-OQAM, GFDM, UFMC, f-

OFDM, FFT-FBMC, BF-OFDM, WOLA-OFDM and WOLA-COQAM), other promising MWFs, studied

in literature, have been considered in this comparative study in order to give a complete and clear picture

of the ongoing MWF discussions and put in perspectives the main advantages and drawbacks of these

solutions. These MWFs are : �ltered multi-tone (FMT) [18] and windowed cyclic pre�x based circular-

OQAM (WCP-COQAM) [65]. Note that CP-OFDM is kept as a MWF reference basis. I classify and

compare all of these MWFs regarding a given system model and several KPIs, such as OOB emissions,

robustness to time and frequency synchronization errors, transceiver complexity and end-to-end PHY

latency.

The tradeo� between frequency localization and time localization should be well optimized in order

to address di�erent challenges future mobile access networks will have to face. Indeed, frequency local-

ization is important to allow relaxed synchronization transmissions across adjacent subbands with better

adjacent channel leakage performance. On the other hand, the time localization is critical for low latency

applications where longer �lter/window durations are not suitable for URLLC.

All �ltered and windowed MWFs granted lower OOB emissions compared to CP-OFDM (see Figure

4.2). The subcarrier-wise �ltering based MWFs, like FBMC-OQAM and FMT, provide the best frequency

localization, especially in the far-end PSD, compared to the other MWF candidates. They provide the

fastest spectrum decaying and only one subcarrier guard is necessary to achieve very low PSD levels, as

depicted in Figure 4.3. Note that Lapped-OFDM has lower PSD performance than the aforementioned

MWFs due to the shorter prototype �lter (K = 2 instead of K = 4 in FBMC-OQAM). Although GFDM

is based on subcarrier-wise �ltering approach, it does not have excellent frequency localization due to the

abrupt transition between GFDM blocks caused by the rectangular window shape in the time domain.

WCP-COAM and WOLA-COQAM, despite the time-domain transition between signal blocks, provides

better OOB emissions performance compared to GFDM thanks to the performed time-domain windowing.

Furthermore, subband-wise �ltered MWFs lead to a better time localization with the cost of increasing

the OOB emissions compared to the subcarrier-wise �ltered MWFs. BF-OFDM and FFT-FBMC provide

very good spectral con�nement thanks to the adopted �lter-bank approach. The performance of UFMC

and f-OFDM, where a �lter is applied to a group of subcarriers, are very similar. We move now to

low-complexity MWF based on time-domain windowing, the WOLA-OFDM, o�ers satisfactory OOB

emissions performance (about 20dB compared to CP-OFDM), but its far-end PSD performance remains

moderate.

Spectral e�ciency4, which is highly a�ected by the window/�lter duration, the shape of the �lter, and

extra overheads, depends on wether short or long packet sizes. Indeed, well frequency-localized MWFs

(FBMC-OQAM and FMT) provide the worst SE performance, in case of very short packet transmissions,

due to the long prototype �lters. However, this class of MWFs reduces the need for guard bands and

4SE analysis corresponding to the major 5G MWFs is given in [J09]
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Figure 4.2: PSD comparison. Figure 4.3: PSD edge comparison.

hence leading to a good occupation of the frequency band. Although the long prototype �lters adopted

by GFDM and WCP-COQAM, they o�er better SE performance thanks to the circular convolution. It

is worth empathizing that, in case of long packet transmissions (i.e., the �lter impulse response length

becomes negligible), all the studied MWFs provide almost the same SE performance.

Figure 4.4: Asynchronous scenario.

MWFs using a GI/CP have higher latencies compared to other MWFs that do not consider adding

a GI/CP, such as FBMC-OQAM, GFDM and FMT, when for long packet sizes. However, when packet

sizes are very short, OFDM based MWFs (CP-OFDM, WOLA-OFDM, UFMC, f-OFDM) have the lowest

latencies compared to the other MWFs that are a�ected by the �ltering related ramp-up and ramp-down.

On another hand, GI-less MWFs provide bad BER performance in multipath fading channel and complex

receivers are required since the traditional FDE is not straightforward. Moreover, the MIMO deployment,

which is a key technology for high throughput, is not feasible in MWFs like FBCM-OQAM and GFDM

because of the non-orthogonality in complex domain.

In order to evaluate the capability of the studied MWFs to support asynchronous transmissions, we

consider a scenario with two co-existing users sharing the available frequency as shown in Figure 4.4. The

colored area and the non colored area correspond to time/frequency resources allocated to, respectively,
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Figure 4.5: Per-subcarrier NMSE against TO.
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Figure 4.6: Per-subcarrier NMSE against CFO.

the user of interest (UOI) and interfering user. The UOI occupies 7 resource blocks (RBs) and there are

7 RBs for the interfering user on each side of the UOI. A guard-band, δf , between two users is separating

the frequency bands of both users and a timing o�set (delay error [µs]) is given to create asynchronism.

According to the results illustrated in Figures 4.5 and 4.6, one can note that well frequency-localized

MWFs are robust against carrier frequency o�set (CFO) and timing o�set (TO) that reduce ICI and

adjacent channel interference (ACI) in a multiple access environment. FBMC-OQAM and FMT, which

have the best spectral localized transmit/receive �lters, provide the best performance. Moreover, FFT-

FBMC, f-OFDM and WOLA-OFDM can provide satisfactory performance compared to the classical

CP-OFDM. Finally, BF-OFDM performs worse due to the fact that it uses a basic OFDM receiver. Note

that adding the WOLA processing at the receiver side with the BF-OFDM transmitter would provide

excellent performance making them very attractive for 5G and beyond.

Finally, when coming to the complexity5, WOLA-OFDM provides the lowest level, it is almost the

same as CP-OFDM. However, the computational complexity required by UFMC is excessively high

about 200 times the CP-OFDM/WOLA-OFDM complexity. The other MWFs have tolerable computa-

tional complexity, compared to the CP-OFDM/WOLA-OFDM, it is approximately 2 times for BF-OFDM

and FFT-FBMC, 3 times for FBMC-OQAM and 9 times for GFDM. A summary of the main advan-

tages/disadvantages of these major MWF candidates is provided in Table 4.1.

5Complexity analysis corresponding to the major 5G MWFs is given in [J09]
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Table 4.1: The major 5G MWF candidates
MWF Design features Advantages Disadvantages

CP-OFDM no �lter-

ing/windowing,

orthogonality in

complex domain

Simple FDE, Easy MIMO integration, Flex-

ible frequency assignment, Low implemen-

tation complexity

High OOB emission, Sensitive to asyn-

chronous transmissions, high power con-

sumption

WOLA-OFDM Tx/Rx window-

ing, orthogonality

in complex do-

main

All advantages of CP-OFDM, Lower OOB

emissions compared to CP-OFDM, Good

robustness against TO and CFO

High power consumption

UFMC RB Tx �ltering,

orthogonality in

complex domain

Good frequency localization, Shorter �lter

length compared to subcarrier-wise oper-

ations (i.e., FBMC-OQAM and GFDM),

Feasible MIMO integration

No immunity to ISI due to lack of CP,

Higher receiver complexity due to increased

FFT size

f-OFDM SB Tx/Rx �lter-

ing, orthogonality

in complex do-

main

Flexible �ltering granularity, Better fre-

quency localization, Shorter �lter length

compared to subcarrier-wise operations

(i.e., FBMC-OQAM and GFDM), Compat-

ible with MIMO

Very high implementation complexity, High

latency for long bursts

FFT-FBMC RB Tx/Rx �lter-

ing, orthogonality

in complex do-

main

Very good frequency localization, Good

robustness against TO and CFO, Lower

implementation complexity (compared to

FBMC-OQAM, GFDM and f-OFDM),

Compatible with MIMO

Higher complexity implementation than

CP-OFDM/WOLA-OFDM

BF-OFDM RB Tx �ltering,

orthogonality in

complex domain

Very good frequency localization, Good

robustness against TO and CFO, Lower

implementation complexity (compared to

FBMC-OQAM, GFDM and f-OFDM),

Receiver-like OFDM, Compatible with

MIMO

Lower robustness against TO and CFO

than FFT-FBMC and WOLA-OFDM

WCP-

COQAM

SC Tx/Rx �lter-

ing, orthogonality

in real domain

Flexible design, Low latency for long

bursts, Good immunity to ISI due to cir-

cular convolution

Higher latency for short bursts, Challeng-

ing MIMO integration and pilot design,

Higher implementation complexity than

CP-OFDM

WOLA-

COQAM

SC Tx/Rx �lter-

ing, Rx window-

ing, orthogonality

in real domain

All advantages of WCP-COQAM, Good ro-

bustness against TO and CFO

Higher latency for short bursts, Challenging

MIMO integration and pilot design, High

implementation complexity

FBMC-OQAM SC Tx/Rx �lter-

ing, orthogonality

in real domain

Best frequency localization (i.e., lowest

OOB emissions), Good spectral e�ciency

(no guard band or CP), Robust against

Doppler e�ect, Suitable for asynchronous

transmission

MIMO integration and pilot design are not

straightforward, No immunity to ISI due to

lack of CP, High implementation complex-

ity

GFDM SC Tx/Rx �lter-

ing, no orthogo-

nality

Flexible design, Low latency for long

bursts, Reduced PAPR (depending on the

block size)

Higher latency for short bursts, MIMO in-

tegration and pilot design are not straight-

forward,High implementation complexity

4.5 Contributions to related equalization for FBMC-OQAM

As explained above, FBMC-OQAM is shown to o�er the best spectral localization among all the post-

OFDM MWFs, thanks to the adopted �lter-bank approach, providing then the best performance in

supporting asynchronous and mixed numerologies transmissions. Besides, it o�ers high spectrum ef-

�ciency since it avoids the use of CP and large guard bands. Furthermore, the orthogonality in real

domain is guaranteed thanks to the use of the OQAM modulation. Consequently, it is sensitive to ISI

and then it does not ful�l the robustness requirements when a frequency selective channel is considered.

To overcome this problem, via the Hayfa Fhima's PhD, I co-supervised with Prof. Daniel Roviras, we

had been interested in studying advanced equalization schemes to handle this FBMC-OQAM's issue.

One can remark that FBMC-OQAM is based on a non second order circular (NSOC) modulation [66]
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and its signal is a cyclo-stationary one [67, 68]. Then, an application of widely linear (WL) [69] and

FREquency SHift (FRESH) [70�72] processing makes a lot of sense. Indeed, these latter have been

shown to enhance the performance of the traditional linear equalizers. In this regard, we have studied

three di�erent MMSE equalizer schemes, referred to as linear (LE), widely linear (WLE) and widely

linear FRESH (WL FRESH) equalizers. For the developed equalizers, both symbol spaced (SSE) and

fractionally spaced (FSE) processing have been evaluated, in synchronous DL/UL and asynchronous UL

scenarios, with mixed numerologies transmissions.

In the following, I give a brief description of the studied equalizers as well as their expressions followed

by their performance comparison. In order to assess their performance, we consider a system with two

users using the same kind of modulation, either rectilinear (R) or quasi-rectilinear (QR) while using

di�erent numerologies. Let us recall that R modulations correspond to mono-dimensional modulations

such as M-pulse amplitude modulation (M-PAM), whereas QR modulations are complex modulations

corresponding, after a simple de-rotation operation, to a complex �ltering of a R modulation [67].

4.5.1 Basics of LE, WLE and WL FRESH equalizers

Since the LE [73], [74], [75], uses only the information carried by the autocorrelation matrix of the received

signal yp(l), it results in a vector wLE ∈ C1×Le (Le is the equalizer length) which is given by

wLE = rxeypR
−1
yp
, (4.8)

where rxeyp
= E[xe(n)yH

p (l)], which has a dimension of 1 × Le, is the inter-correlation vector between

the transmit sample xe(n) and the equalizer input; and Ryp = E[yp(l)y
H
p (l)] ∈ CLe×Le denotes the

auto-correlation matrix.

In WLE [76], [74], [77], we exploit the information carried by both the auto-correlation and pseudo-

autocorrelation matrices. Indeed, in the case of an improper modulation, it has been shown that

the pseudo-autocorrelation matrix contains energy. Therefore, taking into consideration the pseudo-

autocorrelation matrix in the design of the equalizer would result in better performance [66] than the

classical LE. Then, the WLE vector, w̃WL ∈ C1×2Le , can be given by

w̃WL = rxeỹp
R−1

ỹp
, (4.9)

where the inter-correlation vector rxeỹp
∈ C1×2Le uses the equalizer input in its widely linear version (i,e,

ỹp(l) = [yT
p (l),y

∗
p(l)]

T ). Besides, Rỹp ∈ C2Le×2Le is the new auto-correlation matrix considering the WL

signal ỹp(l). This matrix can be represented by

Rỹp = E[ỹp(l)ỹ
H
p (l)] =

[
Ryp Cyp

C∗
yp

R∗
yp

]
, (4.10)

where Cyp = E[yp(l)y
T
p (l)] represents the pseudo-autocorrelation matrix (∈ CLe×Le) of the signal yp.

When coming to WL FRESH equalizer, it exploits the cyclo-stationarity properties of rectilinear and

quasi-rectilinear signals (i.e., the correlation between the spectral components of the signal) [67, 68, 70,

71]. It means that the auto-correlation and the pseudo-autocorrelation matrices of the received signal,

called RI(t, τ) and CI(t, τ), are periodic in time [71]. Hence, they can be represented as Fourier series
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expansions, given as follows [78]

RI(t, τ) =
∑
αi

Rαi

I (τ)ej2παit (4.11)

CI(t, τ) =
∑
βi

Cβi

I (τ)ej2πβit. (4.12)

Here, Rαi

I (τ) and Cβi

I (τ) are de�ned, respectively, as the non-conjugate and conjugate cyclic correlation

functions. Likewise, αi and βi are called the Second Order (SO) non conjugate and conjugate cyclic

frequencies of the signal, which are given by
αi =

i

T1
for i ∈ Z

βi = ±2δf +
i

T1
for i ∈ Z,

where δf stands for the guard band between the user of non interest (UNOI) and the user of interest

(UOI) and T1 is the symbol duration corresponding to UNOI.

For the sake of simplicity and without loss of generality, we consider only one set of couple of cyclic

frequencies (±α1,±β1), where the greater amount of energy is located. Therefore, the corresponding WL

FRESH equalizer is depicted by Figure 4.8 where observation vector is z̃p(l) = [zT1 (l), z
T
2 (l), z

T
3 (l), z

T
4 (l), z

T
5 (l), z

T
6 (l)]

T ,

where zi(l) = [zi(lT0), zi(lT0 − Te), ..., zi(lT0 − (Le − 1)Te)]
T , for i = 1, .., 6.

zi(l), i ∈ {1, 3} are the frequency shifted versions of the received signal yp(l); this shift is done via the use

of the cyclic frequencies +α1, 0 and −α1, respectively. Likewise, zi(l), i ∈ {4, 6} represents the frequency

shifted version of the received signal complex conjugate y∗
p(l) and that is done by the use of the following

conjugate cyclic frequencies +β1, 0 and −β1. Therefore, the studied WL FRESH equalizer is given by

w̃WLFresh = rxez̃pR
−1
z̃p
, (4.13)

where rxez̃p ∈ C1×6Le is the inter-correlation vector corresponding to the Fresh version of the equalizer

input (i.e., z̃p(l)). Besides, Rz̃p = E[z̃p(l)z̃Hp (l)] is a matrix ∈ C6Le×6Le , and it is de�ned as the auto-

correlation matrix of the signal z̃p(l).

4.5.2 Application to rectilinear signal case

In order to clearly show the performance of the studied equalization schemes, we started �rst by using

M-PAM modulation, representing a class of rectilinear modulations. Here, we consider two users, UOI

and an interferer user (UNOI) sharing the same frequency band with a guard band of δf . The UNOI's

symbol duration is twice the UOI one (i.e., T1 = 2T0). Also, the pulse shaping �lters of the two users

(UOI and UNOI) are chosen to be rectangular ones.

Figure 4.7 shows the performance of the di�erent equalizers, i.e., LE, WLE and WL FRESH, in

terms of guard-band values. Results are obtained for frequency selective channel whose coe�cients are

chosen randomly and kept constant during the transmission of 104 symbols and
Eb

N0
= 20 dB. For the

Fresh equalizer the SO non conjugate and conjugate cyclic frequencies are chosen to be α1 = 1
T1

and

β1 = 2δf+
1
T1
. As expected [69] [73], we note, from results depicted in Figure 4.7, that the LE has the worst

performance compared to WLE andWL FRESH. Furthermore, the WL FRESH equalizer outperforms the

WLE because of the cyclo-stationarity characteristic of the transmitted signals. In addition, interesting
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Figure 4.7: MSE Performance system with respect

to GB (δf ) in SSE mode: the UNOI symbol dura-

tion is twice the UOI one (T1 = 2T0).
Figure 4.8: Widely linear Fresh

equalization scheme.

and new �nding compared to the existing literature can be highlighted. There are notches in the WLE

curve when δf =
i

4T0
in which the WLE performance increases. This can be explained by the fact that

rectilinear SO cyclic frequencies are αi =
i

T1
and βi = ±2δf +

i

T1
and since the WLE exploits the energy

contained at the null conjugate frequency; i.e., βi = 2δf +
i

T1
= 0 ⇔ δf =

i

2 T1
. As T1 = 2T0, then it

performs better when δf =
i

4 T0
.

We move now to the WL Fresh equalizer where another interesting and new remark can be added. The

WL FRESH equalizer has also notches when δf = i
8T0

= i
4T1

. This can be explained in the same manner

as previously. Indeed, as the most energetic conjugate SO cyclic frequencies are equal to βi = ±2 δf +
i
T1
,

after frequency shifting equal to ±β1, the most energetic conjugate cyclic frequencies become located at

frequencies βi ± β1 = ±4δf + i
T1

which are null for δf =
i

4 T1
=

i

8 T0
.

4.5.3 Application to FBMC-OQAM

We consider a FBMC system having two users (UOI and UNOI) with quasi-rectilinear (QR) modulation

of type OQAM, with two di�erent numerologies. The system with Numerology 1 is considered as the

UOI and it has M1 = 64 sub-carriers, whereas the second system (UNOI) with the second numerology

has twice the number of UOI's sub-carriers, meaning M2 = 2×M1 = 128. ∆t is the time shift between

the two user signals, describing the asynchronism between the UNOI and UOI. δf denotes the guard

band between the two users. The modulation is chosen to be 64−OQAM.

Down-Link "DL" case

In this case, we consider that the BS serves simultaneously the two users (i.e., ∆t = 0). We activate only

5 SCs for the UOI (using numerology 1) and 8 SCs for the UNOI (using numerology 2). The δf is chosen

to be equal to the one UOI sub-carrier spacing (δf =
Fe

M1
). Since only the UOI subcarriers in the edge

of the band are a�ected, we study the performance of the di�erent equalizers in rejecting the interference

caused by the UNOI. The BER performance of the studied equalizers in symbol spaced mode (SSE) mode
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Figure 4.9: BER performance over a frequency selective channel with 8 taps.

as well as in fractionally spaced (FSE) mode are presented in Figures. 4.9.a and 4.9.b, respectively.

We note from these results that the WL FRESH equalizer outperforms both the LE and WLE whereas

the worst behavior is provided by the LE. This is true for both SSE and FSE cases. When the number

of samples per symbol, P , increases, the WLE and WL Fresh equalizer performances increase, and the

WL Fresh gives always the best performance.

Up-Link "UL" case

In this case, users (UOI and UNOI) can communicate asynchronously with the BS (i.e., ∆t can be

di�erent from 0). Figures 4.10.(a) and 4.11.(a) show the performance of the classical LE for each active

UOI's sub-carrier in the synchronous (∆t = 0) and asynchronous (∆t = T1

2 ) cases, respectively. In the

same way, Figures 4.10.(b) and 4.11.(b) represent the behavior of the WLE while the behavior of the WL

FRESH equalizer is given in Figures 4.10.(c) and 4.11.(c).
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Figure 4.10: Equalizers performances in term of MSE when UOI and UNOI are synchronous.

From these results, we can deduce that for all equalizer cases, only the SCs in the edge are a�ected by

the interferer, in contrast to the SCs in the middle of the band. This remark remains true independently

to the δf and asynchronism time range. Moreover, one can note that 1) LE has the worst performance

either in synchronous or asynchronous case, even for SCs in the middle of the UOI's band, 2) WLE

and WL-FRESH provide excellent performance for SCs in the middle of the UOI's band regardless of

the δf and asynchronicity, 3) WLE and WL-FRESH o�er better performance for the SCs at the edge
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of the UOI's band, where a slight gain for WL-Fresh, 4) With WLE and WL-FRESH, the performance

corresponding to SCs at the edge are not sensitive to asynchronicity, thanks to the excellent frequency

localisation of FBMC-OQAM.
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Figure 4.11: Equalizers performances in term of MSE when UNOI is asynchronous with half an UNOI

symbol period

4.6 Outputs

The combined outputs of the work on 5G MWFs described in Section 5.5 (MWF design based on the

WOLA processing) and in Section 5.6 (channel equalization related to FBMC-OQAM) are resumed

bellow.

We also mention the joint work with Prof. Siala and Prof. Abdelka� (Mediatron, Sup'Com, Tunisia)

published in [C35], which is not detailed here. Even though this work falls into the design of MWFs, we

addressed the problem of the optimization and adaption of waveforms, it will discussed in the perspectives.



Chapter 5
NLD characterization and mitigation

techniques for energy-e�cient 5G MWFs

5.1 Introduction

As explained in the previous chapter, all the MWFs su�er from the high PAPR making them very

sensitive to power ampli�er (PA) nonlinear distortion (NLD). Indeed, the PA, which has to be low-cost,

low-size and energy-e�cient, causes in-band and out-of-band distortions, damaging the good qualities of

the advanced MWFs, in particular frequency localization. It is then primordial to study the performance

of the aforementioned MWFs in presence of nonlinear PA. Therefore, as a �rst contribution, we have

introduced theoretical study of the impact of nonlinear PA on the performance of the MWFs. Speci�cally,

we have introduced analytical expressions of the MWF BER/SER via a theoretical characterization of

the PA NLD. Furthermore, we have shown that OQAM signaling based MWFs, like FBMC-OQAM, are

more sensitive to phase error than the ones that adopt QAM signaling. A summary of this contribution

is given in Sections 6.2 and 6.3. These contributions are performed in part in the framework of the

FP7 EMPHATIC project and in another part via the supervision of Mrs Hanen Bouhadda's PhD, in the

framework the PHC-Utique C3 project.

In order to tackle the PA NLD's issues and enhance the energy-e�ciency of the studied MWFs, we

have been interested in investigating new digital signal processing solutions based on PAPR reduction and

DPD techniques, which are more adequate to new MWFs than the classical ones studied for OFDM. Since

�ltered MWFs have di�erent signal structure (i.e., overlapping signal structure), a direct application of

traditional techniques cannot be e�ective and new schemes are desirable. Section 6.4 and 5.5 synthesis the

developed works related to DPD and PAPR reduction, respectively. These contributions are performed

via the supervision of the PhDs of Mrs Hanen Bouhadda ans Mrs Mounira Laabidi.

Moreover, a new joint optimization approach of PAPR reduction and DPD is presented in Section 5.6,

showing better performance than the classical combination scheme. Section 6.5 details an experimental

testbed conceived for studying the capability of the most promising MWFs to accommodate 5G require-

ments. A great emphasis is put on the MWF energy-e�ciency enhancement using the studied PAPR

reduction and DPD techniques. These two latter contributions were performed in the framework of the

ANR WONG5 project and via the supervision of three Master students (Miss Yasmine Ben A�a, Miss

61
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Xinying Cheng and Miss Xtina Fu). Finally, the outputs of these contributions are resumed in Section

7.4.

5.2 Sensitivity of (OQAM or QAM)-based OFDM systems to

phase estimation error

In OQAM based OFDM systems, like FBMC-OQAM, the subcarrier orthogonality is satis�ed only in the

real domain. Speci�cally, each subcarrier is modulated in OQAM where the real and imaginary values

are time staggered by half a symbol duration [17]. In such system, emitted data is real (real or imaginary

part of the complex symbols) and an imaginary intrinsic-interference occurs in the transmission process.

This interference, which is caused by the data symbols transmitted in the neighborhood area in the

time-frequency domain, is imaginary and orthogonal to the useful real emitted data. Then, the detection

process is easily performed when the channel is �at fading or slowly selective [79]. Contrary to classical

OFDM systems, the performance of FBMC-OQAM is more sensitive to phase error which can be occurred

by the ampli�cation of the transmitted signal using nonlinear PA or by channel estimation error. Thus,

we have been interested in providing an universal theoretical analysis for the impact of phase error on the

BER performance of MWFs based on either QAM or OQAM processing. In particular, we have derived

the exact BER of M-OQAM/QAM by considering the Gaussian intrinsic-interference approximation.

These BER expressions can be evaluated without any numerical integration method.

The received data at subcarrier n0 and instant m0, is expressed, in OFDM case, by

rm0,n0 = hm0,n0(a
I
m0,n0

+ jaQm0,n0
) + wm0,n0 , (5.1)

where aIm0,n0
and aQm0,n0

denote, respectively, the in-phase and the quadrature components of the trans-

mitted complex symbol, wm0,n0 is the Gaussian noise term with variance σ2
w and hm0,n0 = αejθ is the

complex channel coe�cient, which is assumed to be slow-varying Rayleigh �at-fading, where the ampli-

tude α follows the Rayleigh probability density function with an average fading power ν = E[α].
While in FBMC-OQAM case, it is expressed by

rm0,n0 = hm0,n0(am0,n0 + jum0,n0) + wm0,n0 , (5.2)

where am0,n0 and um0,n0 denote, respectively, the real-valued transmitted data and the intrinsic-interference.

Given a channel estimate ĥ = α̂ejθ̂, where the phase estimate error ψ = θ− θ̂ and assuming a perfect

amplitude estimation α̂ = α, because this latter represents the same contribution as in the classical

OFDM. Then, the in-phase (aIm0,n0
) and quadrature (aQm0,n0

) components or real-valued (am0,n0
) data and

intrinsic-interference (um0,n0
) could interfere when, respectively, OFDM or FBMC-OQAM are considered.

The input of the decision device, in OFDM case, is given by

r = (aIcos(ψ)− aQsin(ψ)) +
w

ĥ
. (5.3)

While in FBMC-OQAM case, it is given by

r = (acos(ψ)− usin(ψ)) +Re

{
w

ĥ

}
. (5.4)

For concise expressions and without loss of generality, the subscript of subcarrier and time index are

removed.
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Lemma 1: the BER conditioned on α, u and ψ for M-QAM/OQAM (OFDM/FBMC) is given by

BERM−QAM (α, u, ψ) =

ξ∑
i=1

wiQ

(
[aicos(ψ)− äiusin(ψ) + bi]α

σw

)
(5.5)

where ξ =
∑ 1

2 log2(M)

l=1 2l−1
√
M
2 , äi denotes the sign of ai and the coe�cients wi, ai and bi are listed in [J08].

Proof: is given in paper [J08]

Note that, in OFDM case, u ∈ {−
√
M + 1,−

√
M + 2, ...,−1, 1, ...,

√
M − 2,

√
M − 1} while in FBMC-

OQAM case, u denotes the intrinsic-interference issued from the transmultiplexer impulse response

coe�cients given by
+∞∫
−∞

fm,n(t)g
∗
m0,n0

(t). Here, the synthesis function is given by fmn(t) = ptx[t −

nT/2]ej
2π
T m(t−D

2 )ejφm,n where φm,n = π/2(m + n) − πmn and the delay term D = L − 1 depends

on the length of the prototype �lter ptx[t]. According to [80], the prototype �lter is designed such that

the intrinsic-interference term is orthogonal to the useful data, i.e., jum0,n0
is pure imaginary-valued. Let

us call
+∞∫
−∞

fm,n(t)f
∗
m0,n0

(t) as χ∆m,∆n (where ∆m = m0−m and ∆n = n0−n), which can be calculated

assuming null data except the considered symbol (m0, n0) where a unit impulse is applied [79]. Then

χ∆m,∆n can be derived as

χ∆m,∆n =

+∞∫
−∞

ptx(t)ptx(t−∆nT/2)× ej
2π
T ∆p(D

2 −m)ejπ(∆m+m0)∆ne−j π
2 (∆m+∆n), (5.6)

where ptx(t) is the prototype �lter impulse response.

Since the most part of the energy of the impulse response is localized in a restricted set around the

considered symbol (denoted by Ωm0,n0
), the intrinsic-interference jum0,n0

can be expressed as

jum0,n0
=

∑
(m,n)∈Ωm0,n0

am,nχ∆m,∆n (5.7)

The coe�cients jum0,n0
represent the sum of many independent and identically distributed random vari-

ables. They are depicted by Table I in [81] where the PHYDYAS prototype �lter with overlapping factor

set to K = 4 is considered. Here, we note that the resulting interference term is a sum of at least twenty

independent random variables where the distribution of each of these variables depends on the modula-

tion order. Based on the central limit theorem, the probability distribution of the intrinsic-interference

can be approximated by a zero-mean Gaussian random variable with a variance σ2
u = (log2(M)2 − 1)/3.

Theorem 1: The closed-form BER expression for an uncoded M-(QAM or OQAM) over Rayleigh

fading channel is given by

BERrayleigh
M−OQAM (ψ) =

1

8

ξ∑
i=1

wi

1− 1√
π

κ∑
j=1

βj
ai cosψ − äi

√
2σ2

uxj sinψ + bi√
(ai cosψ − äi

√
2σ2

uxj sinψ + bi)2 + 2σ2
w

 (5.8)

where βj = (2κ−1κ!
√
π)/(κ2 [Hκ−1(xj)]

2
) and xj are, respectively, the weights and zeros of the κ-order

Gauss-Hermite polynomial (Hκ(x) = (−1)κex
2 dκ

dxκ e
−x2

). The tables containing the values of βj and xj
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Figure 5.1: BER performance of FBMC-OQAM in presence of phase o�set, Rayleigh �at fading channel

can easily be found in literature ( [82], Table (25.10), p. 924), or can be obtained numerically using

numerical computation softwares, such as MATLAB.

Proof: See details of mathematical development in paper [J08].

Figures 5.1.a and 5.1.b provide the FBMC-OQAM BER performance with 16-OQAM and 64-QAM,

respectively. We clearly observe a degradation of the BER performance when a phase rotation error oc-

curs, showing that the e�ect of the intrinsic-interference is harmful even at low SNR. The analytical curves

are obtained by using equation (5.8) and compared to the ones obtained by simulations. We observe from

these �gures a good agreement between both simulated and theoretical performance curves which are

very close. It is worth to mention that the quadrature order of the Gauss-Hermite approximation in

equations (5.8) was κ = 20. According to these results, one can note the e�ectiveness of the Gaussian

intrinsic-interference approximation in the evaluation of FBMC-OQAM performance in presence of phase

error and when a Rayleigh fading channel is considered.

5.3 PA NLD characterization and theoretical performance anal-

ysis for 5G MWFs

In order to derive a statistical characterization of the decision variables at the input of decision devices,

we �rst describe the input and output signals of the nonlinear power ampli�er. The MWF modulated

symbol stream (given in equation (4.1)) has a complex envelop x(t) = xI(t)+ jxQ(t) that can be written,

using the polar coordinates, as

x(t) = ρ(t)ejϕ(t), (5.9)

where ρ(t) and ϕ(t) are the modulus and phase of x(t), respectively. As a general formulation, the

ampli�ed signal at the output of a memoryless nonlinear PA can be expressed as

z(t) =
[
Fa(ρ(t))e

jFp(ρ(t))
]
ejϕ(t)

= S(ρ(t))ejϕ(t),
(5.10)
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where Fa(.) and Fp(.) denote the AM/AM and AM/PM conversions, respectively, and

S(ρ(t)) = Fa(ρ(t)) exp(jFp(ρ(t))) (5.11)

is the complex soft envelop of the ampli�ed signal z(t).

For any MWF signal, when the number of subcarriers, N , is su�ciently large, the input signal x(t) is

assumed to be a zero mean complex Gaussian random process. According to the Bussgang theorem [83],

z(t) can be written as

z(t) = K0x(t) + d(t), (5.12)

where d(t) is an additive zero-mean (non-Gaussian) noise having variance σ2
d and uncorrelated with x(t)

and K0 is a constant complex gain.

According to [84], the NLD parameters K0 and σ2
d can be computed theoretically as

K0 =
1

2
E
[
∂S(ρ)

∂ρ
+
S(ρ)

ρ

]
(5.13)

and

σ2
d = E(|d(t)|2) = E

(
|S(ρ)|2

)
− |K|2 E(ρ2) (5.14)

Note that the analytical computation of the NLD parameters, K0 and σ2
d, depends on the S(ρ). In [84],

only closed-form expressions for SEL model have been introduced, which are expressed as

K0 =

(
1− e−

A2
sat
σ2

)
+

1

2

√
π
A2

sat

σ2
erfc

(√
A2

sat

σ2

)
, (5.15)

and

σ2
d = σ2

(
1− e−

A2
sat
σ2 −K2

0

)
, (5.16)

where σ2 denotes the input signal power and Asat is the saturation amplitude at the output of the

SEL model. Nevertheless, for more complicated expressions of S(ρ) (e.g., SSPA and TWTA models) or

measured PA, the derivation of closed-form expressions for the NLD parameters is not straightforward

and no such expressions have been introduced in literature. Therefore, via the supervision of Mrs Hanen's

PhD, we investigated a new approach, based on polynomial approximation of the PA characteristics, that

allows an universal derivation of K0 and σ2
d for any modeled or measured PA. This work was supported

by the PHC-Utique C3 project.

The proposed approach aims at approximating the complex soft envelop S(ρ) of the ampli�ed signal

by using a polynomial model with odd and even coe�cients, which can be written as

z(t) =

L∑
l=1

alx(t)|x(t)|l−1

= ejϕ
L∑

l=1

alρ
l,

(5.17)

where the new expression of S(ρ) can be given by
∑L

l=1 alρ
l.

The above theoretical expressions of K0 and σ2
d (equations (5.15) and (5.16)) involve the computation

of the expectation of ρl (l is a positive integer). This expectation is equivalent to calculate the l-th
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derivation of the moment-generating function (MGF) [85].

Lemma 2: The NLD parameters K0 and σ2
d can be given by

K0 = a1 +

√
π

8

L∑
l=2,leven

(l + 1)alσ
l−1

l−2
2∏

i=0

(2i+ 1) +
1

2

L∑
l=3,lodd

(l + 1)al

(√
2σ
)l−1

(
l − 1

2

)
! (5.18)

and

σ2
d =

L∑
l=1

|al|22lσ2ll!− 2|K0|2σ2 +

√
4π

2

L∑
l,n=1,l ̸=n,(l+n)odd

Re[ala
∗
n]σ

l+n

l+n−1
2∏

i=0

(2i+ 1)

+ 2

L∑
l,n=1,l ̸=n,(l+n)even

Re[ala
∗
n]
(√

2σ
)l+n

(
l + n

2
)! (5.19)

Proof: is given in paper [J05]

It is worth to mention that K0 and σ2
d are function of the standard deviation of the PA input signal

σ that depends on the PA operating point (input back-o� (IBO)) and can be written as σ = Asat√
10IBO/10

.

Considering that the nonlinearly ampli�ed signal passes through a radio channel, the demodulated data

at time instant m0 and subcarrier n0 is given by

rm0,n0
= K0hm0,n0

(am0,n0
+ jum0,n0

) + hm0,n0
dm0,n0

+ wm0,n0
, (5.20)

where hm0,n0
indicates the channel coe�cient corresponding to the subcarrier m0 and instant n0.

Remark 1: the instantaneous signal-to-noise ratio (SNR) after equalization remains the same for OFDM

and FBMC-OQAM, as explained in [J07]. It can be expressed as

γ =
|K0|2|h|2σ2

|h|2σ2
d + σ2

w

(5.21)

Note that, in case of FBMC-OQAM, σ2 = 2Pa, Pa is the average power of the information-bearing real

symbol a.

Lemma 3: With nonlinear PA, the closed-form BER expression of an uncoded M-(QAM or OQAM)

based OFDM over AWGN channel (hm0,n0
= 1) is given by

BERAWGN =
2(
√
M − 1)√

M log2(M)
erfc

(√
3 log2(M)|K0|2σ2

(M − 1)(σ2
w + σ2

d)

)
(5.22)

Proof: is given in paper [J05].

Theorem 2: With nonlinear PA, the closed-form BER expression of an uncoded (QAM or OQAM

based) OFDM over quasi-static frequency-�at Rayleigh channel is given by

BERRayleigh = a(1− 2√
π

+∞∑
n=0

+∞∑
k=0

(−1)k+n(
√
b)2n+1

k!n!(2n+ 1)
(
σ2
w

ν
)k+1 (γc)

n+k+3/2

n+ k + 3/2

2F1(k + 2, n+ k + 3/2;n+ k + 5/2; 1),

(5.23)
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(a) AWGN channel,M = 16, ϕ0 = π/6.
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Figure 5.2: BER vs Eb/N0 for M-ary (QAM or OQAM) based OFDM, N = 64, PA: Saleh's TWTA

model.

where 2F1(., .; .; .) denotes the Hypergeometric function, (a,b) are modulation-speci�c constants, e.g.,

(a = 2(
√
M−1)√

Mlog2(M)
and b = 3log2(M)

(M−1) ) for M-QAM, γc = |K0|2σ2 and ν is the channel average fading power.

Proof: is given in paper [J07].

Figure 5.2.a and 5.2.b show the BER performance of a non-linearly ampli�ed FBMC-OQAM and OFDM

signals transmitted over, respectively, AWGN channel and �at-fading Rayleigh one. We can clearly note a

very good agreement between the Monte-Carlo simulation results and those obtained analytically (equa-

tions (5.22) and (5.23)) for both FBMC-OQAM and OFDM systems. It is worth to mention that the

in�nite series, in equation (5.23), can be truncated to n = 10 and k = 50 terms with negligible loss in

precision.

5.4 Adaptive Digital Predistortion for PA linearization

Baseband adaptive digital predistortion (DPD) is the most promising solution to compensate of the

nolinearities and memory e�ects of the PA. The DPD consists in adding a processing unit before the PA

such that the resulting system DPD plus PA is linear (up to the PA saturation). The DPD's characteristics

are the inverse of the ones of the PA. Speci�cally, the DPD applies an expansion, in the PA compression

zone, on the input signal in order to compensate the loss of gain and it must also apply a phase shift

of opposite quantity of the one introduced by the PA. Typically, the DPD is adaptive, i.e., capable to

update the coe�cients of the DPD following the time-varying PA characteristics.

The common adopted hardware implementation combines a digital signal processor (DSP) and a �eld

programmable gate array (FPGA) to realize the adaptive DPD architecture (see Figure 5.3). The DPD

function is performed by the FPGA that provides implementation structure highly parallelized while

the adaptation process is realized by the DSP which is more adequate for complex algorithm derived

in sequential form. In Figure 5.3, the DPD architecture requires a feedback loop to take a part of the

ampli�ed signal and to demodulate it. After a synchronization and a power normalization processes, the

new input and output signals permit to update the DPD function. The feedback loop contains a coupler,
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Figure 5.3: DPD architecture.
Figure 5.4: Simpli�ed DPD architec-

ture.

an attenuator, a mixer and analog to digital converters (ADC). Here, we consider the indirect learning

architecture (ILA) which has been shown to be the most promising one.

The DPD is expected to provide good linearization performance and low cost. The DPD complexity

cost represents both the computational complexity of the DPD function and the identi�cation processing,

which depends on the updating algorithm and the number of coe�cients of the DPD function. For the sake

of simplicity and without loss of generality, we consider, in the following, the simpli�ed DPD architecture

given in Figure 5.4.

Several mathematical models have been proposed for DPD modeling, which serve for PA modeling.

These mathematical models, which are derived from the Volterra Series model, are Memory polynomial

(MP) [86], generalized memory polynomial (GMP) [87], Laguerre-Volterra model [88], Kautz-Volterra

model [89] and dynamic-deviation-reduction (DDR) Volterra model [90]. The review of the di�erent

methods for predistortion is not the main object of this dissertation and the interested reader is referred

to [91].

Volterra based models are able to compensate both nonlinearity and memory e�ects of NL PA. Nev-

ertheless, other techniques exist for synthesizing NL systems. Among them we have chosen a Neural

Network (NN) implementation of the DPD, which has great capability to learn any arbitrary nonlin-

ear input-output relationships from corresponding data [7]. Indeed, we have widely investigated DPD

based on real-valued multi-layer perceptron (MLP) whose input signal consists of Cartesian in-phase and

quadrature phase (I/Q) components. This NN structure is capable to compensate e�ectively both non-

linearity and memory e�ects [92]. Most importantly, this NN structure is able to compensate, together

with the memory PA nonlinearity, other hardware imperfection like I/Q imbalance, DC o�set [93]. In

the following, I give enhanced DPD architectures that, in one hand, are able to take into consideration

crosstalk between antennas in MIMO systems (Subsection 5.4.1) and, in another hand, are more adequate

to OQAM based MWFs (Subsection 5.4.2), like FBMC-OQAM, which are more sensitive to phase error

than classical OFDM.

5.4.1 Crossover Neural Network Predistorter for the compensation of mem-
ory crosstalk and PA nonlinearity in MIMO-OFDM systems

Via the supervision of Hanen Bouhadda's master internship, we have proposed a new crossover NN

predistorter with memory (MCO-NNDPD) architecture capable to compensate both PA nonlinearity

and memory crosstalk e�ects in MIMO-OFDM transmitters.

In order to assess the performance of the proposed architecture (Figure 5.5), the MIMO multiplexer
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Figure 5.5: CO-NNPD and nonlinear crosstalk in

MIMO-OFDM transmitter.

Figure 5.6: MCO-NNPD based on a MLP neural

network.

adopted is the space time block coded (STBC) 2 ∗ 2 proposed by Alamouti [94]. Note that the crosstalk

is the result of interferences occurring between the di�erent paths in the same low-size integrated circuit.

This crosstalk can be linear or nonlinear, in the �rst case, it will be tackled by the receiver equalizer. But

in the second case the crosstalk, which is generated before the PAs (i.e., ampli�ed in nonlinear manner),

is much more harmful and it cannot be eliminated by the receiver. Then, the PA output a�ected by the

memory crosstalk can be modeled as

z1 = f1 (y1 + F (y2))

z2 = f2 (y2 + F (y1)) (5.24)

where f1 and f2 are the PA transfer functions corresponding, respectively, to antenna 1 and antenna 2, F

denotes the memory crosstalk which represents the �ltered part of the signal from the other branch. Here

a low-pass �lter with four poles is considered as {0.3162, 0.153, 0.1, 0.07}. The proposed NN structure is

illustrated in Figure 5.6. It has two inputs (x1 and x2) where each one is scattered to I and Q components

and then connected to a tap delay line on each branch. All the outputs of the two tap delay lines are

fully connected to all neurones of the �rst NN hidden layer. Then, we have four outputs representing

the I and Q components of the output signals (y1 and y2). The training algorithm adopted was the

Levenberg-Marquardt (LM) one (see equation (5.26)).

Figure 5.7 shows the performance of several NN predistorter con�gurations on the considered STBC-

MIMO-OFDM system with a Saleh's TWT ampli�er [4] operated at an IBO of 7dB, in presence of memory

crosstalk. We present the BER performance of the conventional/memoryless CO-NNPD (studied in [C08])

compared to the proposed MCO-NNPD (TD5,n1-n2,4), where TD5 denotes the tap delay line of length

5 while n1 and n2 represent the number of neurones in, respectively, the �rst and second hidden layers.

The BER performance of linear PA case serves as a benchmark.
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Figure 5.7: BER vs Eb/N0, STBC MIMO

OFDM system, BPSK modulation, 512 subcar-

riers, IBO of 7dB, Rayleigh channel.

Figure 5.8: Second DPD scheme

5.4.2 Adaptive Predistortion adapted to FBMC-OQAM Systems

Due to the similarity between OFDM and FBMC-OQAM systems, it is natural to consider employing

DPD to compensate amplitude and phase nonlinear distortions of FBMC-OQAM signals. However,

FBMC-OQAM systems have a di�erent signal structure compared with OFDM, for example, it is more

sensitive to the phase distortion than OFDM signal. Therefore, I have been interested in investigating a

new predistortion scheme based on the concept of separating the compensation of the phase and amplitude

distortions.

Classical/First DPD scheme

The �rst technique is the one studied in [7] for OFDM systems (see Figure 5.4). It consists in two neural

network (NN) units. The �rst one, NNDPD, realizes directly the predistortion function by applying

deformations on the transmitted signal such that the resulting system is linear. The second, NNupdate,

is updated regularly, using a training algorithm, according to the variation of the PA. Then, the coe�-

cients of the NNupdate are transferred to the NNDPD using a simple copy. The NNDPD response can

approximate simultaneously the inverse transfer functions of the nonlinear PA (AM/AM and AM/PM).

The NN structure considered was a feedforward multilayer perceptron (MLP) neural network, which has

two inputs, namely the I and Q components of the input signal, two linear output neurons that are the

predistorted signals (I and Q) and one hidden layer with ten nonlinear neurons. The activation function,

fa(.) used for the hidden layer is an hyperbolic tangent, while the output layer is linear. It is well known

that each neuron in the network is composed of a linear combiner and an activation function which gives

the neuron output as

xoutl,j = fa

(
Nl−1∑
i=0

wl,j,ix
in
l−1,i + bl,j

)
, (5.25)

where wl,j,i is the weight which connects the i-th neuron in layer l − 1 to the j-th neuron in layer l, bl,j
is the bias term, and xinl−1,i denotes the i-th component of the input signal to the neuron.

The weights of the NNupdate are adjusted using Levenberg-Marquardt (LM) algorithm, which has

shown, in [7], to exhibit a very good performance with both a lower computational complexity and a
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Figure 5.9: SER vs SNR for OFDM/FBMC system, IBO=6dB, 64 subcarriers, AWGN channel

faster convergence speed than other algorithms studied in literature. The LM algorithm was designed to

approach second order training speed and the update of weights is as follows

w
(t+1)
l,j,i = w

(t)
l,j,i −

[
JTJ+ µI

]
JTe, (5.26)

where e is the error vector, J is the Jacobian matrix which contains the �rst derivatives of e w.r.t. the

weights and biases, and µ is the training rate.

The symbol error rate (SER) performance of the classical DPD scheme over OFDM and FBMC-

OQAM systems in presence of amplitude and phase distortions with a Saleh's TWTA operated at an

IBO of 6dB are depicted in Figure 5.9.a. One can also note that this DPD scheme can reduce considerably

the SER compared to the performance without any DPD correction. Nevertheless, it performs worse with

FBMC-OQAM modulation when compared to the OFDM one. Such degradation can be explained by the

fact that this DPD, which aims to compensate simultaneously the amplitude and phase nonlinearities, is

not able to compensate perfectly the phase error. Indeed, the predistorted ampli�er exhibits a residual

AM/AM distortion, which can only be perfectly compensated as far as the input power is lower than the

saturation power, a�ects the correction of the AM/PM distortion.

Proposed/Second DPD scheme

With that technique (Figure 5.8) the predistortion aims to compensate separately amplitude distortion

and phase distortion by using two NNs. The �rst one (NN1) identi�es the inverse AM/AM conversion and

the second one (NN2) identi�es the inverse AM/PM conversion. The two NNs have the same structure

as the ones used in the �rst scheme, where each one has �ve neurons in the hidden layer in order to keep

the same computational complexity. The transfer functions and training algorithm are also the same as

described above.

The SER performance of the proposed DPD scheme for OFDM and FBMC-OQAM are given in

Figure 5.9.b. Comparing the di�erent curves, we clearly note an excellent match between the performance

provided by the second predistortion scheme for both OFDM and FBMC-OQAM systems. We can note

from these results that this DPD scheme is able to compensate perfectly the phase error due to the

nonlinear PA.
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5.5 PAPR reduction techniques for 5G MWFs

In MWF based communication systems, the PAPR reduction remains one of the most challenges that

need to be tackled e�ectively. Numerous PAPR reduction techniques have been proposed for the classical

OFDM, such as clipping [95], Tone Reservation (TR) [96], Selective Mapping (SLM) [97], Active Constel-

lation Extension (ACE) [98], Partial Transmit Sequence (PTS) [99], Tone Injection (TI) [100], and block

coding [101]. Review of these techniques is out of the scope of this dissertation and interested readers

are referred to [102] and [103].

However, a direct application of the aforementioned PAPR reduction techniques proposed for OFDM

to �ltered MWFs is not e�ective due to their overlapping structure. Therefore, we have been interested

in investigating improvements of these classical methods to be able to take into account the overlapping

structure of the �ltered MWFs. Indeed, contrary to the classical symbol-wise optimization methods, the

proposed schemes optimize the PAPR with taking into account the whole interval upon which the �ltered

MWF symbol got spread. In this regard, two methods have been considered in our study, TR and SLM,

which are the most promising ones. The performance of the proposed improved TR/SLM schemes are

assessed through FBMC-OQAM since it has the most pronounced overlapping symbol structure.

5.5.1 Dispersive SLM based PAPR reduction in FBMC-OQAM systems

The dispersive SLM (DSLM) algorithm is summarized bellow,

Step 1-Initialization: Given M complex input symbol vectors {Xm}M−1
m=0 and U uniformly distributed

phase rotation vectors {Φ(u)}U−1
u=0 ∈ {−1, 1} of length N . We initialize m = 0

Step 2-Phase rotation: Compute U phase rotated version of the m-th symbol Xm, obtaining {X(u)
m =

Xm ⊙ Φ(u)}U−1
u=0 .

Step 3-FBMC-OQAM modulation: Apply FBMC-OQAM modulation for all pattern of the m-th

symbol vector with taking into account K− 1 previous symbols, where K is being the adopted prototype

�lter length, to obtain xm(t)(u)
U−1

u=0

Step 4-PAPR calculation: Compute the PAPR of the modulated signals xm(t)(u)
U−1

u=0 on [mT,mT +KT ]

interval time, giving U PAPRs.

Step 5-Selection: Select the vector which gives the lowest PAPR to this symbol,Φ(um), and send

X
(um)
m = Xm ⊙ Φ(um).

Step 5-Increment: Increment m by 1 and go to Step 2.

The performance of the above algorithm is depicted in Figure 5.10. One can note that the provided

PAPR reduction is quite similar to that of the OFDM with the classical SLM. Nevertheless, for high

values of U there is a performance gap between OFDM and FBMC-OQAM. Without taking into account

the memory e�ect of FBMC-OQAM (step 3 of the proposed algorithm), this gap should be signi�cantly

larger.

5.5.2 Dispersive TR based PAPR reduction in FBMC-OQAM systems

In the TR scheme, iterative clipping and �ltering approach is considered. The total N subcarriers are

partitioned into R peak reduction tones (PRTs) and N−R data subcarriers. Symbols in PRTs are chosen

such that time-domain FBMC-OQAM signal has a low PAPR. These PRTs do not carry any useful
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Figure 5.10: CCDF of PAPR comparison of DSLM

and classical SLM schemes in FBMC-OQAM with

N = 64 and U = [2, 4, 8].

Figure 5.11: CCDF of PAPR comparison of DTR

and classical TR schemes in FBMC-OQAM with

N = 64 and PRT set R = [4, 8, 16].

information and are orthogonal to the data subcarriers, making the data recovery trivial.

Unlike to the traditional TR, which adopts symbol-wise optimization, the proposed dispersive TR

(DTR) takes into account the overlap of the past symbols, when optimizing the PRTs entries for the

m-th symbol. Again, the considered prototype �lter is the PHYDYAS one with an overlapping factor

K = 4.

The DTR algorithm is as follows

Step 1-Initialization: Given a PRT location set B, generateM complex input symbol vectors {Dm}M−1
m=0

and put zeros in the PRT locations (i.e., Cm is initially set to zero). We initialize m = 0. The input

symbols in frequency domain can be expressed as

Xm[n] = Dm[n] +Cm[n] =

{
Cm, if n ∈ B
Dm, if n ∈ Bc

, (5.27)

Step 2-FBMC-OQAM modulation: Apply FBMC-OQAM modulation for all pattern of the m-th

symbol vector with taking into account K − 1 previous symbols, obtaining xm(t).

Step 3-Peak-cancelling signal optimization: Compute the optimal values of of PRTs subject to

argmin
Cm

[∥xm(t) + ϱ(Cm)∥] , m ∈ [mT,mT +KT ] , (5.28)

where ϱ denotes FBMC-OQAM modulation. Note that the optimal Cm) can be obtained by solving equa-

tion (5.28) using convex optimization algorithms such as Quadratically constrained quadratic programs

(QCQP), gradient search [104], projection onto convex sets (POCS) [105], etc.

Then, the input symbol vector is updated as

Xm = Dm +Cm (5.29)

Step 4-Increment: Increment m by 1 and go to Step 2.

From results in Figure 5.11, one can observe the strong capability of the proposed DTR method in

reducing the PAPR of FBMC-OQAM. Its performance are quite close to those obtained by classical TR

for OFDM.
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5.6 Ping-Pong Joint Optimization (P2JO) for PAPR reduction

and PA linearization

As explained above, the two complementary techniques of PAPR reduction and PA linearization have

to be deployed in order to improve both PA linearity and e�ciency. In conventional systems, these

solutions are optimized separately and applied independently. Indeed, designers start focusing on their

association aiming at avoiding mutual e�ects in order to enhance interoperability, achieving an optimal

performance. In literature, di�erent schemes have been studied where PAPR reduction is followed by

predistortion [106] [107] [108], These schemes showed attractive improvements in e�ciency and linearity

when both digital pre-processing techniques are combined. Furthermore, in [108], authors proposed a

method to control the DPD-avalanche [109] by limiting the peaks generated from the digital predistorter.

Another approach has been widely studied in [109] [110] [111] [112] [113], it consists in including PAPR

control as a constraint in the estimation of the predistortion parameters.

In the framework of the ANRWONG5 project, we have been interested in investigating new solution to

tackle this issue. In this regard, we have introduced a new and promising concept to optimize jointly PAPR

reduction and PA linearization that aims at creating a good synergy between the two techniques in order

to provide optimal performance. The proposed approach synthesises, in a Ping-Pong manner, only one

correction signal that takes into account the PAPR reduction and PA linearization allowing then better

trade-o� between PA e�ciency and linearity, compared to classical combinations studied in literature. In

this work, the clipping control based tone reservation (CC-TR) method, which is commonly used and is

adopted in DVB-T2 systems [114], is considered for PAPR reduction. It can obtain a moderate PAPR

reduction with little degradation of bit-error-rate (BER) performance [115]. While for PA linearization,

the neural network based DPD is an excellent for the PA linearization [7]. The proposed Ping-Pong Joint

Optimization (P2JO) approach takes bene�t from the fact that a common vision of PAPR reduction and

PA linearization techniques is possible since they can be formulated as adding signal techniques, thanks

to Bussgang theorem [83].

5.6.1 Classical combination of PAPR reduction and DPD by adding signal

Let us consider x as the signal issued from a MWF modulation (Figure 5.12). After scaling the signal

to the desired PA back-o�, using γ0, we can generate a PAPR reduction signal cpapr using CC-TR

technique [116] [117]. Then, the low-PAPR signal, expressed as

ypapr = y0 + cpapr, (5.30)

will serve to generate a predistortion signal cdpd. Then, the signal at the input of the PA can be given by

y = ypapr + cdpd (5.31)

We recall that we consider the CC-TR to generate the PAPR reduction signal where many iterations

are needed for a given OFDM symbol. While, we execute only one time the considered neural network

to obtain the predistortion signal. This combination scheme, considered in [106] [110] as a dynamic

joint approach for PAPR reduction and predistortion, will be considered, in this work, as the classical

combination and will serve as a reference to show how our proposed approach will achieve better trade-o�

between PA linearity and e�ciency.
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Figure 5.12: Principle of classical combination of

PAPR reduction and predistortion by adding signal. Figure 5.13: Ping-Pong Joint Optimization by

adding signal.

Table 5.1: P2JO Parameters

i Current iteration index

maxIter Maximum number of iteration

A Clipping level

Sd Identity matrix of order N with zeros at positions in R
Sr Identity matrix of order N with zeros at positions in Rc

γ0 Scaling factor to control the PA Back-o�

5.6.2 Proposed P2JO algorithm

The key idea is to synthesize the additional signal c for PAPR reduction and predistortion in a Ping-Pong

manner and iteratively (Figure 5.13). In this technique, we:

1) add the PAPR reduction signal scaled by a factor µ1 ≤ 1,

2) add the predistortion signal scaled by a factor µ2 ≤ 1,

3) repeat steps 1) and 2) until we reach the desired performance.

Using this approach, we create a good synergy between the two operations in order to avoid mutual

e�ects leading to a better trade-o� between PA e�ciency and linearity. Table P2JO describes the

proposed P2JO algorithm and Table 5.1 contains a list of parameter de�nitions to be used in the algorithm.

It is worth to mention that the proposed algorithm has been published in patent [P01].

5.6.3 P2JO performance assessment

In order to study the capability of the proposed approach, an uncoded OFDM system with N=256

subcarriers and using 16-QAM modulation with Gray mapping. The number of reserved tones is set

to be 32, randomly selected over the bandwidth of the OFDM signal. The oversampling factor is set

to 4 that guarantees a good PAPR approximation [118]. The considered PA is the Saleh's TWTA.

The optimal clipping threshold Asat is de�ned according to [115]. For the P2JO algorithm, we recall

that, for PAPR reduction, we consider the CC-TR method, where its peak-cancelling signal, during

each iteration, is extremely smaller than that of the original clipping noise. In order to keep a maximal

performance of power e�ciency and push the predistortion to o�er its best performance, µ1 should be

adaptive when considering optimized TR PAPR reduction methods with adaptive peak-cancelling signal

level, like in [115] [119]. Three values of µ2 have been considered, 10−2, 3× 10−2 and 5× 10−2, to clearly

show how we can take into consideration the mutual e�ect between TR PAPR reduction and DPD by

the proposed iterative Ping-Pong approach. In the following, µ%P2JO refers to the use of the P2JO
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P2JO: The P2JO approach

1: Set the minimum EVMmin, the reserved tone set R, the initial clipping level Asat

and the maximal iteration number maxIter.

2: Set i = 0, the time-domain signal of the 0th iteration y0 = x,

where x is the original OFDM symbol.

3: TR : calculate the clipping noise, using the OFDM signal at iteration i and its clipped version (mathbfȳi), as wi = ȳi − yi

calculate the peak-cancelling signal cpapr,i = IFFT (Sr × FFT (wi))

4: DPD : calculate the predistortion signal cdpd,i = ydpd,i − yi

where ydpd,i is the predistorted version of yi signal.

5: Update the signal yi+1 = yi + µ1c
papr,i + µ2c

dpd,i

6: Calculate the ampli�ed signal zi+1 = S(|yi+1|)exp(∠yi+1)

7: Calculate Xi+1 = Sd × FFT (yi+1)

8: Calculate the error vector magnitude EVM i+1 =
√

E[Xi+1−X0]
E[X0] ,

if
(
EVMmin < EVM i+1 < EVM i & i < maxIter

)
, set i = i+ 1

and go to step 3).

otherwise, choose yi+1 as the transmitted signal and terminate the loop.

9: End.

algorithm where µ2 = µ× 10−2. It is worth to note that, when µ2 = 1,the P2JO converges to the same

performance obtained by the classical approach.

Figure 5.14 shows the BER performance of the µ%P2JO in presence of nonlinear Saleh's TWTA op-

erated at outpout back-o� (OBO) of 2.5dB, 3dB and 3.5dB and an AWGN channel. 'classical TR+DPD'

and 'w/o corr' denotes, respectively, the classical approach and the OFDM system without any correc-

tion. One can note that the µ%P2JO outperforms the classical scheme in all cases, we note for a BER of

4× 10−3, a SNR gain of 1dB, 2.5dB and 11dB at, respectively, OBOs of 3.5dB, 3dB and 2.5dB. In order

to show the impact of µ2 on the P2JO performance, Figure 5.15 shows BER performance of 1%P2JO,

3%P2JO and 5%P2JO. We can clearly see that the more µ2 is decreased, the more the performance

is improved. This can be explained by the fact that the mutual e�ect between TR PAPR reduction

and DPD is better considered when µ2 is lower. To have a clear comprehension of the P2JO algorithm

convergence speed, Figure 5.16 shows EVM performance versus iteration number for di�erent values of

OBOs. It can be observed that, when lower value of µ2 is considered, the EVM decreases slowly and

ensures a better convergence towards a lower EVM. At OBO of 2.5dB, 1%P2JO converges to an EVM

of 9% in 100 iterations, while 5%P2JO converges to an EVM of 11.3% in only 20 iterations.

To study the e�ect of the proposed approach on the OOB emission, the PSD and the adjacent

channel power ratio (ACPR) are considered. As depicted in Figure 5.17, the OOB emission reduction in

the neighboring channels based on µ%P2JO outperforms those of the classical approach. Furthermore,

Table 5.2 gives the ACPR performance of the P2JO approach compared to the classical one with Saleh's

TWTA operating at OBOs of 2.5, 3, 3.5 and 4 dB. As can be observed, the schemes based on 1%P2JO

provide an ACPR gain of 2dB compared to the classical approach.
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Figure 5.14: BER performance of an OFDM system

with R = 32 for 16-QAM, Saleh's TWTA.
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Figure 5.15: BER performance of an OFDM system

with R = 32 for 16-QAM, Saleh's TWTA.
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system with R = 32 for 16-QAM, Saleh's TWTA.
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Table 5.2: ACPR [dB] performances of an OFDM system with R = 32

OBO [dB] 4 3.5 3 2.5

1%P2JO -30.13 -28.78 -26.98 -24.88

5%P2JO -29.08 -27.83 -26.12 -24.20

CL TR+DPD -28.37 -26.91 -24.82 -22.84

w/o corr. -21.13 -20.53 -19.28 -18.24
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5.7 Experimental testbed of Multi-carrier Waveforms for Het-

erogenous Networks

Figure 5.18: Overall architecture.

In the framework of the ANR WONG5 project, I have been in charge of the development of an

experimental testbed to study the capability of new multi-carrier waveforms to accommodate 5G re-

quirements. Experiments, which were done in a realistic laboratory-like environment, were performed

with an implementation of the classical CP-OFDM and the most promising psot-OFDM MWFs, i.e.,

WOLA-OFDM and BF-OFDM, with con�gurable universal software radio peripherals (USRPs)-based

software de�ned radio (SDR) prototype. These experiments have been crucial to convince evidences of

advanced MWF technology feasibility using real-world environment imposing some RF imperfections, like

RF PA nonlinearities, IQ imbalance and mirror-frequency interference, phase noise and A/D converter

nonlinearities.

The testbed overall architecture, which is realized with Transmitter (Tx) and Receiver (Rx), is il-

lustrated in Figure 5.18. The baseband components are software-based and implemented using MAT-

LAB/C++ and they realize the digital algorithms, e.g., waveform generation, QAM modulation, channel

equalization, demodulation, etc. Concerning SDR-hardware, two separate USRP devices, NI-USRP-

2942R, are used as transmitter and receiver, integrating digital/IF/RF units [120]. The synchronization

of USRP modules is ensured using an external clock from Marconi Instruments 2051 Digital and Vector

Signal Generator. This external clock provides 10 MHz clock signal which is transmitted to the two US-

RPs, which is crucial for proper operation of MWFs. The RF PA is a SSPA PE15A4017 from Pasternack

with a bandwidth of 20 MHz to 3 GHz and 27dB Gain [121].

Most importantly, a real-time SDR implementation is ensured by considering a speci�c computer

con�guration, interested readers are referred to [122]. The link performance results were provided for two

scenarios : DL and UL following the experimentation cases.

Scenario 1 corresponds to interference free DL with nonlinear ampli�cation. We provided details and

deign guidance to improve EE-related power ampli�cation and robustness of the studied MWFs through

PAPR reduction and DPD techniques. Since BF-OFDM has overlapping signal structure, we introduced
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Figure 5.19: PSD performance of di�erent WFs us-

ing SLM (V=8) and DPD.
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Figure 5.20: PSD performance of di�erent WFs us-

ing TR (R=16) and DPD.

modi�ed TR and SLM techniques that are more adequate to BF-OFDM than the classical ones. The key

idea is, when reducing the PAPR of the current symbol x(i), we take into consideration the tail of the

previous optimized symbol x(i− 1). We move to DPD, it is based on the well-known polynomial model

based inverse learning architecture (ILA) [7].

Figures 5.19 and 5.20 depict measured PSD performance comparison of the studied MWFs when

SLM and TR are, respectively, performed with DPD. One can clearly see the signi�cant gain provided

by WOLA-OFDM and BF-OFDM compared to CP-OFDM, especially for IBO of 6dB. We can also note

that BF-OFDM outperforms WOLA-OFDM due to the better spectrum containment provided by the

subband �ltering used by BF-OFDM. Further, BT-Gaussian based BF-OFDM [60] provides slightly better

performance than PHYDYAS based BF-OFDM. For an IBO of 6dB, the CP-OFDM PSD performance

is almost as the one in linear case. As explained in chapter 4, its PSD localization is worse compared to

WOLA-OFDM and BF-OFDM.

Figure 5.21 compares measured BER of di�erent MWFs when the RF PA is operated at an IBO of 3

and 6dB. Again, we can note that WOLA-OFDM and BF-OFDM provide almost the same performance

as the classical CP-OFDM when PAPR reduction is performed by SLM/TR. At an IBO of 6dB, BER

performance provided by all waveforms is very close to the one performed in linear case. It is worth

mentioning that BER �oor related to the demonstrator noise �oor is not observable for BER > 10−5,

which represents a signi�cant BER range for wireless communications standards.

Scenario 2 de�nes an asynchronous UL transmission case. We addressed the impact of the lack of

synchronism between transmitters on the performance of the selected MWFs, which is of special rele-

vance for future 5G mMTC applications. We provided further discussions and comparisons of the selected

waveforms CP-OFDM,WOLA-OFDM and BF-OFDM, with corresponding parameter selections. Here,

we consider a scenario with two co-existing users sharing the available frequency band as illustrated in

Figure 4.4. The user of interest (UoI) occupies 7 resource blocks (RBs), about 1.1 MHz bandwidth from

2.0020 to 2.0031 GHz. The interferer user occupies, on each side of the user of interest, 7 RBs of 1.1

MHz bandwidth. A guard-band δf between the two users is separating the frequency bands of both users

and a timing o�set is given to create asynchronism. In order to well assess the performance of these
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Figure 5.21: BER performance of di�erent WFs us-

ing SLM and DPD, 16-QAM.

0 20 40 60 80 100 120 140 160 180 200

subcarrier index

-40

-35

-30

-25

-20

-15

-10

N
M

S
E

 [d
B

]

CP-OFDM

WOLA-OFDM

BF-OFDM PHY

BF-OFDM BT

195 200 205

-24

-23

-22

-21

-20

-19

-18

-17

Figure 5.22: scenario 2: NMSE performance of dif-

ferent WFs when ∆t = 106µs and δf = 4.883KHz.

waveforms, we measure the NMSE on the decoded symbols of the UOI. Per-subcarrier NMSE (Figure

5.22) is assessed versus guard band for ∆t = 106µs for 1/2 symbol duration.

From results illustrated in Figure 5.22, we clearly show that the inter-user interference level depends

on the chosen MWF. CP-OFDM exhibits the worst performance due to its bad frequency response

localization. Furthermore, we note that the interference level decreases slowly as the spectral distance

between the victim subcarrier and the interferer ones increases.

We move to WOLA-OFDM, we can observe better performance compared to CP-OFDM. Its achieved

interference level, in the middle of the bandwidth, is lower (approximately −34dB) compared to CP-

OFDM scheme. These good results are related to the WOLA processing applied at the receiver that is

able to suppress inter-user interference resulting from the mismatched FFT capture window.

Concerning BF-OFDM, it provides better protection to the edge subcarriers (in the vicinity of inter-

ferer subcarriers) compared to both CP-OFDM and WOLA-OFDM. In such region, the NMSE varies

from −16dB when δf = 4.883KHz to −24dB when δf = 39.06KHz for BF-OFDM scheme while it varies

from −14.2dB to −23dB for WOLA-OFDM scheme when the same band is considered. However, the

gain of BF-OFDM for the inner subcarriers is marginal compared to CP-OFDM. This is a direct conse-

quence of the BF-OFDM receiver which is no more than the classical CP-OFDM receiver (i.e., a simple

FFT). Thus, BF-OFDM could be more interesting than WOLA-OFDM when few number of RBs will be

considered for the UOI.
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5.8 Outputs

The outputs related to work on NLD characterization and mitigation techniques to enhance the energy-

e�ciency of 5G MWFs are summarized bellow.



Chapter 6
Massive MIMO: Energy E�ciency and

Hardware E�ciency

6.1 Introduction

To support the exponential growth in data tra�c demand and simultaneously o�er ubiquitous connectiv-

ity, researchers have been interested in designing new revolutionary wireless communication technologies.

One of the most promising solutions to increase spectral, energy and hardware e�ciencies by orders-of-

magnitude is massive MU-MIMO [123], which is also known as large-scale MU-MIMO. However, massive

MU-MIMO precoders exhibit signals with high PAPR, independently of whether single-carrier or multi-

carrier transmission are adopted [124]. Accordingly, the nonlinearity of the radio frequency (RF) PA,

which is the main hardware impairment and is expected to be low-cost and energy-e�cient component

to enable cost- and energy-e�cient massive MU-MIMO BS deployments, yields harmful in-band distor-

tion and out-of-band emissions. Furthermore, massive MU-MIMO should support mixed numerologies

spectrum sharing (SS) transmissions, expected for 5G and beyond. Therefore, I have been interested in

investigating: 1) the PAPR reduction problem as well as the compensation of PA nonlinearities in mas-

sive MU-MIMO based systems, leading then to highly energy-e�cient systems and 2) the introduction of

new precoding schemes to make massive MU-MIMO much more �exible, satisfying the extremely diverse

service requirements.

This chapter exposes the main researches I conducted, within the H2020 MSCA ADAM5 project, to

tackle the aforementioned massive MU-MIMO issues. Section 6.2 summarizes the technical contributions

related to PAPR reduction problem. Several new methods, which have been developed, will be presented

and compared in terms of performance and complexity. In Section 6.3, I move toward PA nonlinearity

compensation in massive MU-MIMO. A new approach will be presented and compared to the most studied

ones in literature. Section 6.4 is devoted to the work developed via the supervision of Xinying Cheng's

PhD on the analysis and cancellation of inter-numerology interference (INI) in massive MIMO systems.

Finally, Section 6.5 summarizes the outputs of these contributions.

82
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6.2 Low-Complexity Linear Precoding for PAPR reduction in

Massive MU-MIMO-OFDM Downlink Systems

In order to improve the PA e�ciency, which leads to the global system energy-e�ciency improvement, MU

precoders that generate signals with low-PAPR would be of great interest. This will enable low-cost, low-

size and power-e�cient hardware implementations in massive MU-MIMO-OFDM systems. Indeed, some

previous works have studied low-PAPR precoders for massive MU-MIMO-OFDM [125] [126] [127]. All of

these methods exploit the excess DoFs and the large null-space o�ered by the massive MIMO downlink

channel to perform low-PAPR precoding. These methods can achieve substantial PAPR reduction but

with scarifying high computational complexity. In [J15], we present an approach to perform jointly

MU Precoding and PAPR reduction, which was formulated as a simple convex optimization problem

and solved online via gradient descent (GD) approach. Speci�cally, we design peak-canceling signals

(PCSs) to be added to the frequency-domain precoded data signals, with the goal of reducing the PAPRs

of their time-domain counterpart signals. Most importantly, the added PCSs have to lie in the null-

spaces of their associated MIMO channel matrices such that they do not cause any MU interference

(MUI) and OOB radiation. Furthermore, we introduced the MU-PP-GDm [J15] algorithm that aims

to minimize alternately the objective functions with respect, respectively, to the MU precoding and

PAPR reduction. This process is repeated over many iterations to achieve the desired MUI and PAPR

performance. The MU-PP-GDm, which can be seen as an alternate approach using gradient-iterative

method based linear precoding, has been shown to achieve satisfactory PAPR performance with lower

computational complexity than the other previous works [125] [126] [127], especially when the number

of users is su�ciently high. In addition, to optimize the tradeo� between performance and complexity,

we have studied linear precoders based on matrix polynomials (M-POLY) approaches for both data

and PCSs precoding [SJ1]. The key idea is to approximate the matrix inverse by a matrix polynomial

decomposition with J terms, where the approximation accuracy can be guaranteed with very few terms.

This approach was �rst studied for large-scale MIMO in [128] and then widely studied, for massive MIMO

downlink related- power/spectral e�ciency [129] [130] [131] and security [132] [133], where the polynomial

coe�cients are optimized using tools from random matrix theory [134].

In order to assess the performance of the di�erent proposed precoding schemes, we assume the down-

link of a typical single-cell massive MIMO-OFDM where the BS is equipped with Mt transmit antennas

and serves Mr single-antenna user terminals (UTs) over a frequency-selective channel, where Mt ≫ Mr.

Let N denotes the total number of OFDM tones and sn ∈ CMr×1, which is chosen from a complex-valued

constellations A, denotes the signal vector containing the information symbols associated with the n-th

subcarrier for Mr users, where n = 1, ..., N indexes the OFDM tones. The PAPRs of the generated time-

domain signals are high, hence a performance degradation in presence of power-e�cient RF PAs. To

overcome this problem, the BS generates frequency-domain peak cancelling signals (PCSs) to reduce the

PAPRs of the time-domain transmitted signals and to prevent severe PA distortions. These PCSs should

be constrained to lie in the null-spaces of the MIMO channel matrices such that they do not damage

neither the transmission quality of the Mr users through the N subcarriers (i.e., guaranteeing excellent

MUI and capacity) nor the spectrum purity. In typical OFDM systems, a guard-band is considered in

order not to disturb the transmission in adjacent bands. Then, we specify some unused subcarriers at

both sides of the used band. These latter will serve to ensure that the proposed low-PAPR precoder does

not generate any spectrum regrowth and to obtain a good approximation of the PAPR of the oversampled

time-domain OFDM sysmbols. Therefore, the set of tones available are divided into two sets χ and χc,
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where the subcarriers in set χ are used for data transmission and the subcarriers in its complementary set

χc are used for guard-band. Moreover, we set sn = 0Mr×1 for n ∈ χc such that no signal is transmitted

on the guard-band. The frequency-domain signal vector, xn ∈ CMt×1, ∀n, transmitted by the BS over

the n-th subcarrier through the Mt antennas, is given by

xn =
√
αWnsn +

√
βVnrn, (6.1)

where rn ∈ CMt×1 denotes the PCS vector for the n-th subcarrier. Wn ∈ CMt×Mr andVn ∈ CMt×Mt are,

respectively, the data and PCS precoding matrices for the n-th OFDM subcarrier. It is worth pointing

out that the design of the precoded signals {xn,∀n}, which collects the precoded data dn = Wnsn and

PCS cn = Vnrn vectors, is the main scope of this section.

The PCS precoding matrix Vn has rank Mt −Mr, i.e., Mt −Mr dimensions of the Mt-dimensional

space spanned by the Mt BS antennas are exploited for PAPR reduction, which represent the projection

onto the null-spaces of the MIMO channel matrices. The data and PCS precoding matrices are normalized

as tr{WnW
H
n } = Mr and tr{VnV

H
n } = Mt −Mr, ∀n. Note that α is a normalization factor designed

to obtain an average transmit power, allocated to the information-carrying signal for each user, equal to

Pu (i.e., it can be written as α = Pu

Mr
). β is dedicated to control the power allocated to all PCS signals,

which can be optimized to perform an optimal trade-o� between PAPR reduction and signal-to-noise

ratio (SNR) gap.

After precoding, the Mt-dimensional vectors {xn,∀n} are reordered to Mt transmit antennas for

OFDM modulation, according to the following one-to-one mapping[
xt
1, ...,x

t
Mt

]T
= [x1, ...,xN ] . (6.2)

Here, the xt
mt

∈ C1×N denotes the frequency-domain vector to be transmitted though the mt-th antenna.

The time-domain signals {atmt
,∀mt} are obtained by applying an inverse discret Fourier transform (IDFT)

to {xt
mt

}. Then, a cyclic pre�x (CP) is added to the time-domain samples of each antenna in order to

avoid inter-symbol interference (ISI).

For the sake of clarity and without loss of generality, we specify the wireless channel's input-output

relation in frequency-domain only. Therefore, the vectors collecting the signals received by the Mr users

at the n-th subcarrier can be expressed as

yn = Gnxn + bn, n ∈ χ (6.3)

where bn ∈ CN
(
0Mr

, σ2
b IMr

)
denotes the Gaussian noise vectors with σ2

b represents the noise variance

at one user. Note that Gn = K1/2Hn ∈ CMr×Mt is the MIMO channel matrix associated with the

n-th OFDM subcarrier. Thereby, K = diag{κ1, ..., κMr
} denotes the path-losses from the BS to the Mr

users. Furthermore, the wireless channel is assumed to be frequency-selective and modeled as a tap delay

line with Lc taps. The time-domain channel response matrices Ht
l , l = 1, ..., Lc, have i.i.d. circularly

symmetric Gaussian distributed entries with zero mean and unit variance. The frequency-domain MIMO

channel associated to the n-th OFDM subcarrier, Hn ∈ CMr×Mt , is obtained as

Hn =

Lc∑
l=1

Ht
le

−j2πln
N . (6.4)

6.2.1 Computing peak-canceling signals (PCSs)

In this subsection, we discuss how to design the optimal frequency-domain PCSs {rn}, in equation (6.1),

to perform the best PAPR reduction performance. The key idea consists in �tting, iteratively, these
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PCSs to their associated time-domain clipping-noise signals. These latter are computed by clipping the

time-domain signals {atmt
}, at each antenna. Thereby, we compute �rst the precoded data {Wnsn,∀n}

that satisfy GnWnsn = sn,∀n ∈ χ. Then, we compute the clipped signals {atmt
} as follows

āmt
(k) =

{
amt(k), if |amt(k)| < λ

λejϕ(k), if |amt(k)| > λ
, (6.5)

where amt
(k) = |amt

(k)|ejϕ(k), ϕ(k) is the phase of amt
(k) and λ denotes the clipping threshold. In order

to have the best PAPR reduction, λ has to be de�end as follows [119]

λ =

√
σ2
aln

(
N

|χ|

)
(6.6)

where σ2
a denotes the variance of the modulated signal at each antenna.

Finally, the original frequency-domain clipping-noise associated to the mt-th transmit antenna is

etmt
= DFT (āmt

− amt
). Here, the vector en, associated to the n-th subcarrier, is collected from the Mt

vectors
(
et1, e

t
2, ..., e

t
Mt

)
.

In order not to damage the transmission quality (i.e., perfect MUI), the added PCSs {rn} are con-

strained to lie in the null-spaces of their associated MIMO channel matrices such that they do not disturb

the signals received by Mr users through the |χ| active subcarriers. In addition, rn has to respect the

out-of-band constraint such that it has to be set to zero on the guard-band, as shown by the following

equation {
rn = en, n ∈ χ

rn = 0Mt×1, n ∈ χc.
(6.7)

Thereby, the precoded version cn = Vnrn is added to the precoded data instead of en, as shown in

equation (6.1), where Vn represents the n-th MIMO channel null-space.

Due to the reconstruction of the precoded PCSs from their projections onto the MIMO channel null-

spaces and the active data subcarriers in χ, it is obvious that the considered PCSs, at each iteration, can

be smaller than their associated clipping noises when the traditional clipping and control (CC) method is

employed in massive MIMO-OFDM systems. Hence, a regularization factor is needed in order to generate

the optimal PCSs, leading then to a fast convergence toward the optimal solution. The regularization

factor can be calculated using least-square approximation (LSA), as explained in [135]. It is de�ned as

pn =

∑
mt

|cn||en|∑
mt

|cn|2
, n ∈ χ (6.8)

Using such regularization factor, the amplitudes of PCSs, cn, generated by LSA, almost equal to those

of the original clipping noise en. Then, we transmit pnVnrn instead of Vnrn. Obviously, it may reduce

the number of iterations to achieve the optimal PAPR reduction.

6.2.2 Linear Data and PCS Precoders for low-PAPR massive MIMO-OFDM

In this section, I describe two developed algorithms that consist of iterative CC method with the peak-

canceling signals constrained in the null-spaces of the associated MIMO channel matrices. The goal is

to design signals {xn} which satisfy the MU precoding (i.e., in-band and out-of-band constraints) and
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meanwhile their time-domain signals have low PAPR. It is worth noticing that the proposed formulation

can perform the PAPR reduction problem and the MU precoding, jointly (1st algorithm) or separately

(2sd algorithm). Note that MU precoding and PAPR reduction are using two orthogonal spaces (beam-

forming space for data transmission and null-space for PAPR reduction). Therefore, we developed two

algorithms that are summarized in subsection 6.2.3 and 6.2.4 ,respectively.

6.2.3 1st Algorithm: Gradient-iterative method based MU-PP-GDm algo-
rithm

In order to reduce the computational complexity required for data and PCS precoders, the algorithm MU-

PP-GDm, which is introduced in [J15], adopts gradient-iterative method for data and PCS precoding.

Here, the null-spaces of channel matrices {Vn} are computed using the singular value decomposition

(SVD) as explained in [J15], where the {Vn} are of dimension Mt × (Mt −Mr) instead of Mt ×Mt.

Furthermore, MU-PP-GDm aims at computing rn such that Vnrn is very close to en. thereby, it is

equivalent to �nd the solution r̃n according to the following simple convex optimization problem, in

equation (6.9), with taking into consideration in-band and out-of-band constraints.

minimize
{r̃n}

G(rn) = ∥Vnrn − en∥22, n ∈ χ

subject to

{
sn = Hndn, n ∈ χ

en = 0(Mt−Mr)×1, n ∈ χc
(6.9)

In this algorithm [J15], the joint MU precoding and PAPR reduction is achieved by alternately

repeating the PAPR reduction process using the CC method, restoring the restrictions on the PAPR

reduction signal components using null-spaces of MIMO channels and performing MU precoding. To

make the problem tractable, the equality constraint sn = Hndn, is relaxed as

minimize
{r̃n,d̃n}

J(dn, rn) = F (dn) +G(rn), n ∈ χ

subject to

{
d̃n = 0Mt×1, n ∈ χc

r̃n = 0(Mt−Mr)×1, n ∈ χc
(6.10)

The search directions of the steepest descent method at the iterate d
(l)
n and r

(l)
n are determined

by the negative gradient of J at, respectively, d(l)
n (denoted by −∇l

dJ(d
(l)
n , r

(l)
n )) and r

(l)
n (denoted by

−∇l
rJ(d

(l+1)
n , r

(l)
n )), where

∇l
dJ(d

(l)
n , r(l)n ) =

2

Ldn

HH
n

(
Hnd

(l)
n − sn

)
, n ∈ χ (6.11)

and

∇l
rJ(d

(l+1)
n , r(l)n ) =

2

Lrn

Vn
H
(
Vnr

(l)
n − e(l+1)

n

)
, n ∈ χ (6.12)

where Ldn
= 2σ2

max(Hn) and Lrn = 2σ2
max(Vn) are the Lipschitz constants [136] for, respectively,

∥Hndn − sn∥22 and ∥Vnrn − en∥22.
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The details of the proposed MU-PP-GDm is summarized in Table Algorithm1. It is followed by

a computational complexity analysis of that algorithm. The complexity is expressed in terms of the

number of �oating point operations (FLOPs). Here, we consider one FLOP as one scalar complex

multiplication [137] and neglect the computational complexity of matrix and vector additions. Speci�cally,

we consider the number of complex multiplications required at the BS for generating τ precoded data and

PCS vectors, where τ is the number of transmit symbols generated in one channel coherence interval.

Algorithm1: The MU-PP-GDm algorithm

Given a set of N modulated complex symbols {sn}.
1: Initialize x

(1)
n = 0Mt×1,

e
(1)
n = 0(Mt−Mr)×1,

dx(0)
n = 0Mt×1,

Lxn = 2σ2
max(Hn), Len = 2σ2

max(V
0
n),

and set the maximal iteration number Niter

and the momentum term µ

2: for l=1,...,maxIter do

3: dx(l)
n = 2

Lxn
HH

n

(
Hnx

(l)
n − sn

)
+ µdx(l−1)

n , ∀n ∈ χ

4: x(l+1)
n = x

(l)
n − dx(l)

n , ∀n ∈ χ

5: at(l+1)
mt = IFFT

(
x
t(l+1)
mt

)
, ∀mt = 1...Mt

6: et(l+1)
mt = FFT

(
ā
t(l+1)
mt − a

t(l+1)
mt

)
7: rt(l+1)

n = r
t(l)
n − 2

Lrn
Vn

H
(
Vnr

(l)
n − e

(l+1)
n

)
, ∀n ∈ χ

8: pn =
∑

k |Vnr
(l+1)
n ||e(l+1)

n |∑
k |Vne

(l+1)
n |

2 , ∀n ∈ χ

9: x(l+1)
n = x

(l+1)
n + pnVnr

(l+1)
n , ∀n ∈ χ

10: end for

11: return {x̃n = x
(Niter+1)
n }

Hence, using the MU-PP-GDm algorithm only matrix-vector multiplications are performed and no

matrix inversion or matrix-matrix multiplication is required. One can observe that the precoded data

vector dn can be expressed as

d(l)
n =

{
HH

n sn, l = 1

HH
n (Hnd

(l−1)
n ), 2 ≤ l ≤ Niter,

(6.13)

where l denotes the iteration index.

Hence, it requires τ |χ|MtMr(2Niter − 1) FLOPS to compute the precoded data vectors for τ |χ| data
symbols. Concerning PCS precoding, τ

[
|χ|
(
Mt(Mt −Mr) +M2

t

)
+ 2MtNlog(N)

]
complex multiplica-

tions are required at each iteration. Thereby, the overall complexity required by MU-PP-GDm to compute

both data and PCS precoded vectors is given by equation (6.14).

CMU−PP−GDm = τNiter

[
2MtNlog(N) + 2|χ|M2

t − 2|χ|MtMr

]
(6.14)
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6.2.4 2sd algorithm: disjoint MU precoding and PAPR reduction

Contrary to the 1st algorithm, which performs jointly MU precoding and PAPR reduction, this algorithm

aims at performing, �rst, MU precoding and then PAPR reduction over the iterative CC method. The

algorithm is summarized in Table Algorithm2.

Algorithm2: disjoint MU precoding and PAPR reduction

Given a set of N modulated complex symbols {sn ∈ CMr×1}.
1: Set dn = 0Mt×1, n = 1, ..., N , the maximal iteration number Niter

2: Compute the precoded data vector dn = Wnsn, ∀n ∈ χ

3: Initialize x
(1)
n = dn, ∀n

4: for l=1,...,maxIter do

5: at(l)mt = IFFT
(
x
t(l)
mt

)
, ∀mt = 1...Mt

6: et(l)mt = FFT
(
ā
t(l)
mt − a

t(l)
mt

)
7: r(l)n = e

(l)
n , for n ∈ χ and r

(l)
n = 0Mt×1, for n ∈ χc

8: pn =
∑

mt
|Vnr

(l)
n ||e(l)

n |∑
mt

|Vnr
(l)
n |

2 , ∀n ∈ χ

9: x(l+1)
n = x

(l)
n + pnVnr

(l)
n , ∀n ∈ χ

10: end for

11: return {x(Niter+1)
n }

Looking at the proposed algorithm, it computes the precoded data vectors in Step 2, the clipping-

noises in Steps 5 and 6 and its constrained version in Step 7. Finally, it updates, in Step 9, the transmitted

frequency-domain precoded vectors {xn} by adding the scaled precoded PCS vectors {pnVnrn}. One

can note that its computational complexity is dominated by Steps 2, 5, 6 and 9. In the following three

subsections, we analyze the computational complexity of the proposed algorithm using di�erent data and

PCS precoder designs, to compute {Wnsn} (Step 2) and {pnVnrn} (Step 9).

Table 6.1 summarizes the three studied methods in, respectively, subsections 6.2.4.A, 6.2.4.B and

6.2.4.C.

Table 6.1: Summary of the three studied methods for data and PCS precoders.

Data precoding PCS precoding Total complex-

ity

RZF-OPNS Computation of Wn using ma-

trix inversion as in (6.15)

Complexity is given in (6.16)

Computation of Vn using ma-

trix inversion as in (6.17)

Complexity is given in (6.18)

is given in (6.19)

POLY-POLY-

Horner

Computation of Wn us-

ing M-POLY as in (6.20)

dn is computed using Horner's im-

plementation as in (6.28)

Computation of Vn us-

ing M-POLY as in (6.25)

cn is computed using Horner's im-

plementation as in (6.29)

is given in (6.30)

POLY-OPNS Computation of Wn us-

ing M-POLY as in (6.20)

dn is computed using Horner's im-

plementation as in (6.28)

Computation of Vn using matrix inver-

sion as in (6.17) Complexity is given in

(6.18)

is given in (6.31)
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A. RZF data and OPNS PCS precoders (RZF-OPNS)

For data precoding, the regularized zero-forcing (RZF) precoder is the most widely used solution for the

optimization problem in (6.35), which is given by

Wn = HH
n

(
HnH

H
n + ξ1IMr

)−1
, ∀n (6.15)

where ξ1 is a regularization constant.

It can be seen that the computational complexity required, in one channel coherence interval, for

data precoding using RZF is comprised of the complexity required for computing one precoding matrix

and τ precoded data vectors, for each active subcarrier. Generating such precoding matrix requires, for

|χ| active subcarriers,
(
2MtM

2
r +M3

r

)
|χ| FLOPs. Then, τ |χ|MtMr FLOPs are required to perform the

vector-matrix multiplications and to generate τ |χ| precoded data vectors. Finally, the total computational

complexity required by RZF data precoder is

CRZF =
(
2MtM

2
r +M3

r + τMtMr

)
|χ| (6.16)

Concerning PCS precoder at the n-th subcarrier, the PCS is designed to lie into the null-spaces of

the estimated channels between all Mr users and the BS. Then, the OPNS Vn is given by

Vn = IMt
−HH

n

(
HnH

H
n

)−1
Hn, ∀n (6.17)

which has rank Mt −Mr and exists only if Mr < Mt.

To compute the precoding matrices {Vn} for all activated subcarriers in χ, which are computed

one time in one coherence interval, we require
(
3MtM

2
r +M3

r

)
|χ| FLOPs. In the loop of the proposed

algorithm, the computing of τ PCS precoded vectors entails 1) the computing of the clipping noises {en}
by the operation clipping and control and the N -point IDFT, which has a complexity of 2MtNlog(N)

FLOPs and 2) the projection of {en} onto the channel null-space matrices {Vn} that requires |χ| matrix-

vector multiplications with a complexity of M2
t |χ| FLOPs. Hence, the total complexity is

COPNS = Niter

(
|χ|M2

t + 2MtNlog(N)
)
, (6.18)

where Niter denotes the maximal iteration number.

The overall complexity of the algorithm when using RZF and OPNS for, respectively, data and PCS

precoding is given by equation (6.19).

CRZF−OPNS = |χ|
(
5MtM

2
r + 2M3

r

)
+ τ

[
MtMr|χ|+Niter

(
M2

t |χ|+ 2MtNlog(N)
)]

(6.19)

B. M-POLY based data and PCS precoders (POLY-POLY-Horner)

In order to mitigate the high computational complexity imposed by the previous methods, while achieving

good performance, we propose to replace the matrix inversion and matrix-matrix multiplication by matrix

polynomial decompositions (M-POLY) to compute the precoded data and PCS vectors.

The proposed M-POLY data precoder, Wn, for the n-th subcarrier has the form

Wn =
1√
Mt

H̄H
n

J∑
i=0

wi

(
H̄nH̄

H
n

)i
, (6.20)
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where H̄n = 1√
Mt

Hn and w = [w0, ..., wJ ]
T contains the real-valued coe�cients of the M-POLY data

precoder, which have to be optimized. It has been shown in [128] [133] that, for Mr,Mt → ∞, the

optimum coe�cients w do not depend on the fast channel �uctuations and can be computed using

results from random matrix theory and free probability theory [138] [139]. The optimal coe�cient vector

w minimizes the average mean square error (MSE) between transmitted and received data corresponding

to all users. Using the solution provided in [128], a closed-form expression for the optimum coe�cients

is de�ned as

wopt = γΞ−1Φ, (6.21)

where the elements of matrix Ξ and vector Φ are, respectively, given by

[Ξ]m,n = B1B2ξ
(m+n) + (1−B1B2)ξ

(m)ξ(n) +B2σ
2
b ξ

m+n−1, (6.22)

and

[Φ]m = ξ(m), (6.23)

where B1 and B2 are de�ned as B1 = Tr(KP) and B2 = Tr((KP)
−1

). Here, P denotes the diagonal

power allocation matrix and ξ(m) represents the m-th order moment of the sum of the eigenvalue of

matrix H̄nH̄
H
n , which is de�ned in closed-form by [ [128], Theorem 2]

ξ(m) =

m−1∑
i=0

(
m

i

)(
m

i+ 1

)
δi

m
, (6.24)

when Mr,Mt → ∞ with their ratio δ =Mr/Mt being constant. Finally, γ is a normalization factor such

that Tr(WnW
H
n ) = 1 holds.

For the PCS precoding, the proposed M-POLY precoder is given by

Vn = IMt
− H̄H

n

(
Q∑
i=0

vi
(
H̄nH̄

H
n

)i)
H̄n, (6.25)

where v = [v0, ..., vQ] are the real-valued coe�cients of the M-POLY PCS precoder, which have to be

optimized. The optimization goal is the minimization of asymptotic average PCS (PAPR reduction

process) leakage caused to all users. The corresponding optimization problem is formulated as [133]

minimize
{v}

βE
[
Tr(GnVnV

H
n GH

n )
]

subject to Tr(VnV
H
n ) = 1/δ − 1. (6.26)

The solution of the formulation in (6.26) is provided in [ [133] Theorem 2] and the optimal coe�cient

vector vopt is given by

vopt = Σ−1Θ, (6.27)

where [Σ]m,n = ξm+n+1 + ϵξm+n and Θ = [ξ2 + ϵξ, ..., ξQ+2 + ϵξQ+1], where ϵ is chosen such that

Tr(VnV
H
n ) = 1/δ − 1

One can note that coe�cient vector wopt and vopt does not depend on channel estimates, and hence,

can be calculated o�-line using equations (6.21) and (6.27).
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One e�cient way to calculate the precoded data and precoded PCS vectors, via the M-POLY precoding

scheme, is when using Horner's rule [140]. First, the precoded data vectors, {dn}, can be obtained as

dn =
H̄H

n√
Mt

(
w0sn + w1H̄nH̄

H
n

(
sn +

w2

w1
H̄nH̄

H
n

(
sn +

w3

w2
H̄nH̄

H
n sn...

)))
, (6.28)

where, we �rst multiply sn with matrix H̄H
n , then we multiply the result with the channel matrix H̄n

and �nally add sn to the resulting vector. This operation is performed J times and the resulting vector

is multiplied by H̄H
n . It can be shown that in order to compute all the precoded data vectors associated

to all activated subcarriers, it results in a total complexity of τ(2J + 1)MtMr|χ|.
Using the same way as in (6.28), we can compute {cn} using equation (6.29).

cn = rn −
(
v0H̄

H
n H̄n

(
rn +

v1
v0

H̄H
n H̄n (rn + ...)

))
, (6.29)

where, cn is e�ciently calculated by �rst multiplying rn with the channel matrix H̄n, then the re-

sulting vector is multiplied with H̄H
n . After adding rn to the latter resulting vector, we repeat these

operations Q times. This leads to a complexity of 2(Q + 1)MtMr|χ|. Therefore, with taking into

consideration of computing the clipping noises by the clipping and control approach and the N -point

IDFT, the computational complexity to compute τ precoded PCS vectors, over Niter iterations, is

τNiter(2MtNlog(N) + 2(Q+ 1)MtMr|χ|).
Hence, the overall complexity needed by the proposed algorithm when using the M-POLY approach

to compute both the precoded data and PCS vectors is given by equation (6.30).

CPOLY−POLY = τ [(2J + 1)MtMr|χ|+Niter(2MtNlog(N) + 2(Q+ 1)MtMr|χ|)] (6.30)

C. M-POLY data and OPNS PCS precoders (POLY-OPNS)

An alternative to the above mentioned methods is to compute the precoded data vectors using M-POLY as

given by equation (6.28) and compute the precoded PCS vectors using the OPNS precoder as explained

in subsection (6.2.4). Thereby, the overall computational complexity required by this POLY-OPNS

precoding scheme is given by equation (6.31).

CPOLY−OPNS = |χ|(3MtM
2
r +M3

r ) + τ
[
(2J + 1)MtMr|χ|+Niter(2MtNlog(N) + |χ|M2

t )
]

(6.31)

6.2.5 Performance Evaluation

In this section, we carry out simulations to illustrate the performance of the considered low-PAPR massive

MU-MIMO-OFDM system. We consider an uncoded OFDM with N = 512 subcarriers (i.e., the number

of DFT/IDFT points) and use a spectral map χ, in which |χ| = 128 subcarriers are used for data

transmission. We recall that we specify some unused subcarriers at both ends of the used band. These

latter serve, in one hand, to ensure that the proposed low-PAPR precoder does not generate any spectrum

regrowth. In another hand, it corresponds to L = 4-oversampling in the time-domain in order to measure

the PAPR levels accurately. A 16-QAM with Gray mapping is considered. Note that we adopt the

suboptimal power allocation P = K−1/2 and instead of transmitting {sn}, we transmit {Psn}. Moreover,

the wireless channel is assumed to be frequency-selective as modeled in (6.4) with Lc = 8 taps. All

presented results are averaged over 1000 channel realizations.
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Complexity-Performance Tradeo� of M-POLY Data and PCS Precoders

We start by evaluating the performance of the studied M-POLY data and PCS precoders in order to iden-

tify the values of J and Q (see equations (6.20) and (6.25)) that ensures a good complexity-performance

tradeo�. To this end, we consider a massive MU-MIMO-OFDM system with Mt = 500 antennas at the

BS and serving Mr = 100 single-antenna users to be in a case where the precoding complexity is an

issue. In Figure 6.1, we depict the normalized mean square error (NMSE) for the studied M-POLY data

and PCS precoders for di�erent values of J and Q. One can note that the performance of the M-POLY

precoders quickly improves as the number of terms of the two polynomials J and Q increase. Moreover,

they can achieve a NMSE of −35dB when J = 5 and Q = 3, which can be a su�cient performance

needed in practical systems. It is worth to point out that choosing larger values for J and Q gives bet-

ter performance, however doing so requires more computational complexity. Furthermore, This latter is

more sensitive to Q than to J because of the computing of the precoded PCSs depends on the number

of iterations as shown by equation (6.30). That is why we vary J from 0 to 10 while Q from 0 to only 3.
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Figure 6.1: NMSE of M-POLY precoding (with dif-

ferent J and Q) for Mt = 500, Mr = 100, Niter = 5

and 16-QAM.
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Figure 6.2: BER of RZF-OPNS precoding and M-

POLY precoding (with di�erent J and Q) for Mt =

500, Mr = 100, Niter = 5 and 16-QAM.

Figure 6.2 shows more directly the relationship between the user performance and M-POLY orders J

and Q. Hence, we show the bit error rate (BER) versus the signal-to-noise ratio (SNR) for the studied

M-POLY data and PCS precoders for di�erent values of J and Q and compare them to those of RZF-

OPNS precoders. Indeed, we assume that the channel is perfectly known, in order to be in a regime where

the RZF-OPNS based data and PCS precoders are perfect (i.e., the RZF achieves excellent transmission

quality and the OPNS does not leak any interference) and it serves as a reference. Again, we can see

that the M-POLY precoders quickly approaches the performance of the RZF-OPNS precoders as the

polynomial orders J and Q increase, and they achieve similar performance to the RZF-OPNS precoders

when J = 5 and Q = 3. The proposed M-POLY precoders never outperform the RZF-OPNS ones, which

is natural since M-POLY precoding is an approximation of RZF-OPNS.

In the following, we will use these polynomial orders (J = 5 and Q = 3) to, �rst, compare the

computational complexity of the M-POLY data and PCS precoders with the other studied precoders.
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Then, we evaluate its performance in terms of PAPR reduction and hence its capability to make us able

to operate the power ampli�ers with lower IBO. This will enhance the ampli�er e�ciency and then the

global energy e�ciency of the studied massive MU-MIMO-OFDM system.

Computational complexities comparison

We start by comparing the computational complexities of the four studied data and PCS precoders,

the 'RZF-OPNS', 'MU-PP-GDm' and 'POLY-OPNS' precoders with that the proposed 'POLY-POLY-

Horner' precoder based on the Horner's implementation rule.

According the aforementioned closed-form expressions (see section 6.2.2) and the con�guration given

in section 6.2.5, it is possible to numerically assess the complexities of the studied data and PCS precoders.

In particular, Figs. 6.3 and 6.4 show the computational complexity (in GigaFLOPs) versus the number

of users in the cell. Here, the number of BS antennas was assumed to be constant Mt = 500, the number

of iterations is �xed to Niter = 5 and the channel coherence interval is �xed to τ = 1 and τ = 10 in

Figs. 6.3 and 6.4, respectively. For the given setting, the performance gains in terms of PAPR reduction

of the studied precoders are substantial and almost similar. Regarding these results, one can note that

the M-POLY data and PCS precoders have a substantial lower computational complexity than the other

precoders for Mr < Mt/5. However, even for larger Mr the POLY-POLY-Horner based precoders still

have lower computational complexity than the precoders based on matrix inversion like 'RZF-OPNS'

and 'POLY-OPNS'. Furthermore, they are preferable as they do not incur the stability issues that may

arise in the implementation of the large-scale matrix inversions required for RZF and/or OPNS. It is

worth to mention that the 'MU-PP-GDm' algorithm that adopts an alternate data and PCS precoding

becomes more interesting (i.e., it has lower computational complexity) than the POLY-POLY-Horner

based precoders when the number of users is very large. The break-even point, where 'MU-PP-GDm'

outperforms the M-POLY based precoders, is at Mr < Mt/5.
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Figure 6.3: Computational complexity of di�er-

ent linear precoders for a system with Mt = 500,

Niter = 5 and τ = 1.
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ent linear precoders for a system with Mt = 500,

Niter = 5 and τ = 10.
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Performance Evaluation : PAPR reduction

In this subsection, we discuss the convergence rate of the two proposed algorithms based on a sequential

design, where the RZF-OPNS, POLY-OPNS and POLY-POLY-Horner are considered, and an alternate

design spanned by the MU-PP-GDm approach. Figure 6.5 shows the average PAPR versus the number

of iterations for di�erent numbers of users. In order to simplify the presentation of results, we plot only

the performance of the 'POLY-POLY-Horner' which are similar to the ones given by RZF-OPNS and

POLY-OPNS. From these results, we can �rst note that POLY-POLY-Horner based precoding yields a

larger PAPR reduction gain than the MU-PP-GDm. It can achieve, with only 5 iterations, an average

PAPR of 2.8dB, 3dB and 4.5dB when the number of user is, respectively, Mr = 25, Mr = 100 and

Mr = 250. Moreover, The PAPR reduction gain is reduced when the number of users is increased and

this result is expected because of the null-space, onto which the PCSs are projected, is reduced.

0 10 20 30 40 50

Iteration index

1

2

3

4

5

6

7

8

9

A
ve

ra
ge

 P
A

P
R

 [d
B

]

POLY-POLY J=5, Q=3, Mr=25
POLY-POLY J=5, Q=3, Mr=100
POLY-POLY J=5, Q=3, Mr=250
MU-PP-GDm, Mr=25
MU-PP-GDm, Mr=100
MU-PP-GDm, Mr=250

Figure 6.5: Convergence rate of PAPR of sel�sh
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for Mt = 500.
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Again to evaluate the e�ciency of the proposed M-POLY precoding based algorithm in terms of PAPR

reduction, Figure 6.6 depicts the complementary cumulative distribution function (CCDF) of the PAPR

with di�erent iteration numbers. One can note that the two proposed algorithm o�er substantial PAPR

reduction compared with the conventional RZF without any PAPR reduction. Indeed, at CCDF of 1%,

it achieves a gain of 6.2dB, 6.6dB and 7.1dB when 5, 10 and 20 iterations are, respectively, performed.

This is a substantial PAPR reduction gain with low computational complexity spanned by few number

of iterations, motivating then the use of low-cost and low-size radio frequency (RF) components in future

wireless massive MU-MIMO-OFDM systems. In the following, we address how this translates to multiuser

radio link performance under nonlinear PA units.

Performance Evaluation : multiuser radio link bit error rate (BER)

Here, we evaluate and analyze the multiuser radio link bit error rate (BER) of the proposed POLY-

POLY-Horner based precoding and the conventional RZF precoders without PAPR reduction, in the case

where both exhibit the same antenna transmit power. Figure 6.7 shows the uncoded BER performance
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versus the SNR. The RZF precoder with ideal PA units (denoted by RZF ideal PA) is regarded as a

benchmark. In order to clearly show the gain achieved by reducing the PAPR of the transmitted signals,

we assume that the PAs are ideally linearized, they behave as soft envelope limiter (SEL), such that only

the distortions caused by the saturation exist. It can be clearly seen that the performance of the involved

low-PAPR precoder surpasses that of the classical RZF, in all cases. The bene�t of using the low-PAPR

precoder is especially clear from moderate to relatively high SNR. With an IBO of 1dB, the proposed

low-PAPR precoder achieves a SNR gain of 4.5dB, compared to the RZF, at BER of 2× 10−2 with only

5 iterations. When increasing the IBO, e.g. 3dB, the proposed low-PAPR precoder has signi�cantly

better performance, very close to those of ideal massive MIMO-OFDM, from moderate to high SNR.

Accordingly, the loss of performance due to in-band distortions cannot be compensated by increasing

the number of transmit antennas but it needs advanced signal processing techniques (e.g., low-PAPR

precoders).
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Figure 6.7: BER of M-POLY precoders (with di�erent IBO) for Mt = 500, Mr = 100 and 16-QAM, in

presence of ideally linearized PA.

6.3 PA-aware Massive MIMO DL systems

In addition to PAPR reduction, a digital predistortion (DPD) technique based PA linearization is pri-

mordial. In this regard, some approaches have been introduced, in recent literature, which aim at

compensating for PA nonlinear behaviour in massive MIMO systems [141] [142] [1]. Nevertheless, the

implementation of high-precise DPDs is not suitable for massive MIMO systems due to the large number

of DPD modules, which are computationally impractical. In [1], a low-complexity architecture based

DPDs have been proposed, which updates the precoder to compensate the gap in performance due to

the low-precision related DPDs. In [142], authors proposed a DPD based solution that requires only

one DPD component per user to linearize an arbitrary number of PAs enabling then the reduction of

the complexity associated to the linearization of the di�erent used PAs. Nevertheless, the associated

computational complexity is still unsatisfying, limiting its practical application in massive MU-MIMO.

In this regard, I have been interested in investigating an extremely low-complexity solution, that
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does not require any DPD, in order to enable ultra-low latency and highly energy-e�cient massive MU-

MIMO communications. Moreover, the proposed solution should take into consideration both PAPR

reduction and DPD. Then, we have introduced, in [J16], a PA-aware precoding approach that exploits

the high dimensional DoFs and designs the precoded signals that, when ampli�ed and passed through the

channel, guarantee excellent transmission quality. Furthermore, a new formulation have been proposed

for the PA-aware precoding approach. It consists in a simple convex optimization problem which enables

e�cient, low-complexity and reliable algorithm implementation. The developed algorithm is referred to

as MU-PNL-GDm.

In order to evaluate the performance of the proposed approach, we adopted a single carrier massive

MU-MIMO system where the BS has Mt RF PAs and serves Mr users. The resulting ampli�ed signals

are given by

y = [f1(x1), f2(x2), ..., fMt(xMt)]
T
= F (x) (6.32)

where fmt
(.) denotes the nonlinear ampli�cation operation of the mt-th PA. Finally, the input-output

relationship of the MU-MIMO dwnlink system with nonlinear PAs can be denoted as

r = Hy + b (6.33)

The AM/AM and AM/PM conversions are modelled by the modi�ed Rapp model [143] proposed by the

3GPP for the New Radio (NR) evaluation.

6.3.1 Existing PA linearization techniques: DPD Concept and Solutions

Two indirect learning architectures (ILAs) based on DPD, that were studied in [1], are considered for

the used massive MU-MIMO system (see Figure 6.8). The �rst ILA, referred to as ILA1, the DPD-PA

Figure 6.8: (a) Conventional DPD for massive MU-MIMO downlink ILA 1. (b) Precoding-aware DPD

solution ILA2 [1]. (c) The proposed MU-PNL-GDm, combines MU precoding and PA nonlinearities

compensation [2].

structure is duplicated for each RF chain in the massive MU-MIMO transmitters and associated algorithm

is deployed to update independently each DPD. Here, the conventional zero-forcing (ZF) precoding scheme

is considered, where the corresponding precoder is W = HH
(
HHH

)−1
. Using this classical ILA1, a

high-precise, i.e. high complexity, DPD structure is required to extend the operation of the PA into

weakly nonlinear region, but its practical application for massive MIMO is limited due to the associated

computational complexity. In order to enable the use of low-complexity DPD, an improved ILA is

proposed [1], which referred to as ILA2. The key idea consists in �nding the appropriate MU precoder

for the adopted DPD. Therefore, the classical ILA1 is modi�ed by incorporating the channel matrix and

adaptive ZF precoder (R) in the feedback path as shown in Figure 6.8.(b) and we update the precoder
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parameter (i.e., W coe�cients) by copying the new estimate parameter of R. Here, the model parameter

R is estimated using an iterative algorithm, where the search direction of the steepest descent method at

the iterate Rk is determined by the negative gradient of the cost function ∥Rr−x∥2. Then, the precoder
matrix is adjusted as

Rk+1 = Rk − λ× 2 (Rkrk − xk) r
H
k (6.34)

where λ is the updating rate.

6.3.2 Proposed Joint MU Precoding and Energy-E�ciency enhancement Al-
gorithm

The key idea is to compute the precoded symbols x that satisfy Hy = s. Here, we formulate a simple

convex optimization problem by minimizing the mean square error (MSE) between the intended signal s

and the ampli�ed precoded signal y through the channel H as follows

minimize
ẋ

E
[
∥s−HF (x)∥2

]
subject to E

[
∥x∥2

]
≤ Pt (6.35)

The problem in (6.35) is not straightforward to address directly because of the nonlinear operation

induced by PAs. Since PA input signals are complex Gaussian, one can decompose the nonlinear signal

at the PA output into a linear function of the PA input and an uncorrelated distortion term, by using

the well-known Bussgang theorem [144]. Then, we can write the ampli�ed signal in (6.32) as

y = Qx+ d (6.36)

where Q = diag ([q1, q2, ..., qMt ]) is the Mt ×Mt square diagonal matrix with elements of {qmt} on the

diagonal. Note that qmt
is the mt-th PA complex gain and dmt

stands for the added zero-mean distortion

noise with variance σ2
d. As we explained in [J05], these NLD parameters (qmt

and σ2
d) can be analytically

computed for any measured or modelled PA.

Substituting (6.36) in (6.33), we have

r = HQx+Hd+ z (6.37)

Then, the optimization method in (6.35) can be rewritten as

minimize
ẋ

J(x) = ∥HQx+Hd− s∥22

subject to ∥x∥22 ≤ Pt (6.38)

The considered optimization problem leads to e�cient, yet �exible implementation for massive MU-

MIMO based systems by avoiding the use of DPDs and enabling low-complexity �rst order algorithm that

only requires matrix-vector multiplications [J16]. The search directions of the steepest gradient descent

(GD) method at the iterate x(l+1) is determined by the negative gradient of the cost function J at x(l),

which is given by

∇xJ(x
(l)) = 2QHHH

(
HQx(l) +Hd(l) − s

)
(6.39)
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The precoded vector is adjusted as given by (6.40). Here, the gradient descent with momentum (GDm)

is considered.

x(l+1) = x(l) −∆x(l) (6.40)

where ∆x(l) = λ∇xJ(x
(l),d(l)) + µ∆x(l−1). The proposed algorithm, referred to as MU-PNL-GDm, is

summarized as follows

Algorithm: The MU-PNL-GDm algorithm

Given a set of Mr modulated complex symbols s.

1: Initialize x(1) = 0Mt×1, d
(1)
n = 0(Mr)×1, ∆x(0) = 0Mt×1,

and set the maximal number of iterations maxIter,

the learning rate λ and the momentum coe�cient µ

2: for l=1,...,maxIter do

3: ∆x(l) = 2λQHHH
(
HQx(l) +Hd(l) − s

)
+ µ∆x(l−1)

4: x(l+1) = x(l) −∆x(l)

5: Adjustment of the power of x(l+1) to the desired IBO.

6: d(l+1) = F (x(l+1))−Qx(l+1)

7: end for

8: return x(maxIter+1)

6.3.3 Performance assessment and comparison

Table 6.2 shows the MUI and complexity comparison for three di�erent values of IBO (0dB and 3dB).

According to these results, one can note that ILA1 can only outperform the EZF (see paper [J16]) in

the case when we operate the PA quite far from its saturation region (i.e, IBO=3dB). Otherwise, for low

values of IBO, it has the worst MUI performance. The PA input and output are assumed to obey the

memoryless modi�ed Rapp model [143] with parameters G = 16, Vsat = 1.9, p = 1.1, A = −345, B = 0.17

and q = 4 [143]. One can note that by using DPD in the classical way does not have a great interest when

the IBO is low. Note that ILA2 and the proposed MU-PNL-GDm, which exploits the excessive DoFs in

massive MU-MIMO, provide very good and satisfying performance achieving gains of about 15 and 10dB

over the classical ILA1 and EZF, for IBO=0 and 3dB. It is worth to mention that the achieved gain is

more pronounced when IBO goes lower. Most importantly, we note that the proposed MU-PNL-GDm

scheme requires about 55% of the computational complexity needed by ILA2, when achieving the same

MUI performance.

6.4 Analysis and Cancellation of Inter-Numerology Interference

in Massive MIMO-OFDM Downlink Systems

An essential step, which brings more �exibility in the communication system, is the mixed numerologies

proposed in 5G New Radio (NR) [145]. Mixed numerologies structures are also included in the 3GPP

NR standardization and are widely studied in literature [146] [147] [148] [149] [150]. Although, the usage

of mixed numerologies signi�cantly improves the system �exibility, there is a lot of interference between

users using di�erent numerologies and the occurred inter-numerology interference (INI) a�ects the system
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Table 6.2: Complexity and MUI [dB] performance comparison: 16-QAM, Mt = 100, Mr = 10,

IBO=0dB IBO=3dB

Scheme Niter MUI Complexity Niter MUI Complexity

EZF - -25.41 127800 - -29.87 127800

ILA1 - -23.39 137200 - -35.03 137200

ILA2 3 -43.11 206100 2 -44.65 179400

MU-PNL-GDm 6 -40.11 118800 5 -42.15 99000

performance. In [151], authors investigated the INI problem in SISO-OFDM system and underlined its

causes related system parameters, such as subcarrier spacing (SCS), number of activated subcarriers,

power, etc. Furthermore, a theoretical model was developed in [152] as a function of frequency spacing

between numerologies, overlapping windows and channel frequency response, in SISO Windowed-OFDM

system. Recently, authors in [153] [154] dealt with mixed numerologies spectrum sharing (SS), where users

are sharing the same time/frequency resources. Unlike in non-overlapping mixed numerologies system, it

is impossible to avoid interference using windowed/�ltered waveforms. In this regard, a new transceiver

design considering a mixed numerologies SS system for classical MIMO-OFDM was introduced in [154].

To the best of our knowledge, no previous work has studied the INI issue in massive MU-MIMO-

OFDM system in the open literature. Furthermore, it is still not yet clear how massive MU-MIMO-OFDM

systems behave when mixed numerologies SS transmission is considered. Again within the framework of

the H2020 ADAM5 project and via the supervision of Cheng's PhD, I co-supervise with Prof. Daniel

Roviras, we have been interested in investigating this INI issue for massive MU-MIMO-OFDM in downlink

and uplink scenarios. Through this investigation, new and interesting �ndings have been highlighted,

having great di�erence to the ever proposed SISO-OFDM and classical MIMO-OFDM systems. Indeed, a

new transmission/reception strategy has been proposed for DL/UL scenario enabling �exible management

of MN SS transmission. Moreover, a theoretical INI model has been built for each scenario, which

could be a valuable tool to guide 5G system design and parameter selection. Besides, e�cient INI

cancellation schemes have been developed making massive MU-MIMO-OFDM very attractive to future

WCSs [J17][J18].

6.4.1 Proposed transmission strategy

We assume a DL scenario, where the Mr users can be divided into NUM groups using NUM numerolo-

gies, represented by index num, where num = 1, ..., NUM . Nnum and CPnum represent, respectively,

the IFFT/FFT size and CP size of group num. For the sake of simplicity and without loss of general-

ity, we present, in this section, results corresponding to two users (Mr = 2) belonging to two di�erent

numerologies (num ∈ {1, 2}). Consequently, we have two channel frequency responses corresponding to

the two numerologies, denoted by H̄(num) ∈ CMr×Mt×Nnum . Besides, synchronization is achieved over

the least common multiplier (LCM) methods [154] [148] [152], where N1 = N × N2, CP1 = N × CP2,

where N = 2i and i is an integer. x(1)
mt and x

(2,n)
mt are OFDM-modulated symbols on the mt-th transmit

corresponding, respectively, to user 1 and user 2. The length of x(1) is N times the length of x(2,n) and

all symbols are aligned.

To enable �exible management of INI, a new transmission strategy is considered, where we consider
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Figure 6.9: System model of the massive MIMO OFDM downlink with two di�erent numerologies: Mt

transmit antennas at the BS, two single-antenna terminals, two blocks illustrate two di�erent numerologies

with OFDM of N1 and N2 subcarriers.

two ZF based linear precoding branches [155], one for each numerology. Looking at branch one (dash-

line block) in Figure 6.9, the �rst line of matrix S(1) is the data information vector s(1) for user 1 in

numerology 1, while the second line is set to zero aiming to protect user 2. Also, in the second branch

(solid-line block), matrix S(2) contains data vector s(2) for user 2 and null-vector is prepared for user

1. Then, each data stream is precoded using ZF, which is designed to cancel completely the Intra-NI

between users using the same numerology. Nevertheless, INI between users using di�erent numerologies

can be occurred and the received signal of user 1 (y1) and the n-th received signal of user 2 (y2,n) can

be, respectively, given by

y1[n1] = s1[n1] + ini(2,1)[n1] + b1[n1], n1 = 1, ..., N1, (6.41)

and

y2,n[n2] = s2,n[n2] + ini(1,2)n [n2] + b2,n[n2], n2 = 1, ..., N2, (6.42)

where ini(2,1) is INI from numerology 2 to numerology 1 while ini(1,2)n represents INI from numerology 1

to n-th numerology 2 symbol. b1 and b2,n are receiver noises whose entries are i.i.d circularly-symmetric

complex Gaussian distribution with zero-mean and σb2 variance. Thus, the goal is to derive theoretical

expressions for these INIs, which will be given in the following.

6.4.2 INI Analysis

Corollary 1: No INI is occurred by large numerology to small one in MN SS massive MU-MIMO-OFDM.
An immunity is given to small numerology whether the IFFT/FFT sizes, SCS, channel selectivity, power
allocation are, thanks to the ZF based proposed transmission strategy. Thus, we have

ini(1,2)n = 0 n = 1, ..., N. (6.43)

Proof: see [J17].
Corollary 2: By using the proposed transmission strategy in MN SS massive MIMO-OFDM, users using
large numerology (i.e. larger IFFT/FFT size) are not totally protected. Where the total INI is the
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summation of INI caused by N modulated symbols in numerology 2 and is expressed as

ini(2,1) =

N∑
n=1

ini(2,1)n , (6.44)

where ini(2,1)n denoted the INI caused by the n-th symbol in numerology 2. Its expression, at the n1-th

subcarrier in numerology 1 is expressed as

ini(2,1)n [n1] =

N1∑
n′
1=1

N2∑
n2=1

En(n1, n
′
1)Z(n

′
1, n2)

Mt∑
mt=1

hf
(1)
1,mt

[n′1]v
(2,n)
mt

[n2], (6.45)

where:

v
(2,n)
mt is the frequency-domain precoded vector corresponding to antenna mt, as shown in Figure 6.9,

hfmr,mt
is the channel frequency response between transmitting antenna mt and user mr,

En ∈ CN1×N1 =


G

(2)
1 W

(2)
1 for n = 1,

G
(2)
2 ID(2)

n W
(2)
3 for n = 2, ..., N.

(6.46)

Z = G
(2)
2 W

(2)
2 ∈ CN1×N2 ,

G
(2)
1 =

[
0N1×CP1 DFTN1

]
∈ CN1×(N1+CP1),

G
(2)
2 = DFTN1

∈ CN1×N1 ,

W
(2)
1 =

[
IDFTN1

0CP1×N1

]
∈ C(N1+CP1)×N1 ,

W
(2)
3 = IDFTN1

∈ CN1×N1 ,

ID(2)
n =

 0T1×(N1/2) 0T1×(N1/2)

IT2 0T2×(N1−T2)

0T3×(N1/2) 0T3×(N1/2)

 ∈ CN1×N1 ,

for matrix ID(2)
n , we have

T1 = N1 − (N − n+ 1)(N2 + CP2),

T2 =

{
N2 + CP2 +D for n = 2, ..., N − 1

N2 + CP2 for n = N,

T3 =

{
(N − n)(N2 + CP2)−D for n = 2, ..., N − 1

(N − n)(N2 + CP2) for n = N.

(6.47)

Interested readers are referred to [J17].

Remark 1: In a constant channel (i.e., hf (1)1,mt
[n1] = hf

(2)
1,mt

[n2])), transmission of user 1's data is per-
formed with excellent performance. Then, we have

ini(2,1)n [n1] = 0 (6.48)
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Proof: see [J17].
In contrast to SISO and classical MIMO systems, massive MIMO is able to support mixed numerologies

and no INI is generated when the channel is �at-fading. This �nding is valid only for massive MIMO

when the proposed transmission strategy is employed.

Remark 2: Channel selectivity and di�erence between N1 and N2 increase the ini(2,1).
In frequency-selective channel case, vector hf

(1)
1,mt

can be obtained through the interpolation of vector

hf
(2)
1,mt

, where N − 1 values are added between every two points. Accordingly, we have

hf
(1)
1,mt

[(n2 − 1)N + 1] = hf
(2)
1,mt

[n2], (6.49)

where n2 = 1, ...N2.

Therefore, the di�erence between hf
(1)
1,mr

[n1] and hf
(2)
1,mr

[n2] is closely related to the channel selectivity

and the di�erence between N1 and N2. The higher selectivity and di�erence between N1 and N2 are, the

higher di�erence between the two channel frequency responses, leading to greater interference.

Remark 3: Power allocation for di�erent users has a direct in�uence on the power of interference ini(2,1).
Here, a simple power allocation scheme is adopted. The power allocated to the mr-th user (pmr

) is

proportional to the inverse of its path-loss
√
κmr

. Then, the greater large-scale fading in user mr leads to

greater transmitting power for that user. This means, if user 2 is farther away from the BS, i.e. κ2 < κ1,

user 1 receive more INI because of the increased transmitting power for user 2.

Table 6.3: NMSE (dB) of user of interest with interfering numerology and di�erent channels
User of

Interest

user1 (N1 = 1024) user2

(N2 = 512)

user2

(N2 = 256)

Interfering

User

user2(N2 =

512)

user2(N2 =

256)

user1(N1 = 1024)

Lc = 1 -300 -300 -300 -300

Lc = 2 -52 -48 -300 -300

Lc = 8 -42 -37 -300 -300

Lc = 18 -38 -33 -300 -300

In order to check the accuracy of the derived theoretical INI expressions, we depict in Tables 6.3

and 6.4 NMSE performance for two di�erent scenarios, when (p1 = p2) or not. Looking at Table 6.3,

we can verify that 1) transmission for user 2 which uses small IFFT/FFT size is always with the best

quality (NMSE value of around -300 dB), no matter what IFFT/FFT size or channel selectivity. 2)

numerology 2 with small IFFT/FFT size does not su�er from the INI from numerology 1 in case of

constant channel. Contrary, in frequency-selective channel case, user 1 su�ers more INI from numerology

2 when the di�erence between IFFT/FFT size increases. Meanwhile, we can note that the more selective

the channel is, the worse is the user1's performance. 3) If we consider a more realistic scenario with the

long time evolution (LTE) path-loss model given in [156], user 1 su�ers greater INI with the growth of

path-loss on user 2, as shown in Table 6.4. When N1 = 1024, N2 = 512 and Lc = 8, there is degradation

of 20 dB when κ1/κ2 = 20 dB compared to κ1/κ2 = 0 dB. This degradation increase to 23 dB and 26 dB

when κ1/κ2 = 23 dB and κ1/κ2 = 26 dB. Moreover, It can be seen also that, after the INI cancellation

implemented at the BS, transmission of user 1 performs as well as user 2, reaching -300 dB for all values

of path-losses.
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Table 6.4: NMSE values before and after INI cancellation
User of

Interest

user1 (N1 = 1024)

Interfering

User

user2(N2 = 512) user2(N2 = 256)

κ1/κ2 (dB) original (dB) corrected

(dB)

original (dB) corrected

(dB)

20 -22 -300 -18 -300

23 -19 -300 -14 -300

26 -16 -300 -11 -300
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Figure 6.10: BER performance with and without INI cancellation on user 1: N1 = 1024, N2 = 256,

κ1/κ2 = 0, 20, 23 and 26 dB.

6.4.3 INI cancellation

As explained above, the transmission corresponding to any numerology is a�ected only by INI coming

from smaller numerology (i.e., users using smaller IFFT/FFT size). Therefore, the proposed INI can-

cellation scheme aims at adding correcting signal to each numerology's data such that, after precoding

and propagating through the channel, the reception is with the best quality. With the aid of the derived

INI expressions, it is straightforward to calculate in advance the total INI coming from all other users

using smaller numerology and calibrate the transmitted data (i.e., pre-cancel the INI). Speci�cally, the

computation of INI always starts from numerology with the smallest IFFT/FFT size. Numerology with

the largest IFFT/FFT size can be corrected by suppressing INIs from all the other numerologies.

For example, when considering two users, instead of transmitting s1, we transmit s̃1 = s1 − ini(2,1). This

change permits to improve the transmission of user 1 while it does not damage the transmission of user 2.

Note that In the cancellation process, the estimated ini(2,1) of equation (6.45) can be computed over only

several subcarriers on numerology 2 (over a window of length L subcarriers), having the most amount of

energy.

Figure 6.10 shows the BER performance of user 1 with and without INI cancellation. One can note

that the performance of user 1 is signi�cantly declined when the path-loss of user 2 increases. For

example, we can compare κ1/κ2 = 0 dB and κ1/κ2 = 26 dB. When Eb/N0 = −3 dB, user 1 can achieve
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BER ≤ 10−6 when κ1/κ2 = 0 dB while the BER of user 1 is larger than 10−4 when κ1/κ2 = 26 dB.

Also, in Figure 6.10, the BER performance with INI cancellation is presented for user 1 and user 2

with di�erent path-loss on user 2. N1 = 1024, N2 = 512. All the dash lines represent the BER after

the implementation of the cancellation algorithm introduced in section IV. It can be observed that the

algorithm improves the performance of user 1 under di�erent path-loss cases. After the cancellation, user

1 and user 2 have a negligible BER loss, even when κ1/κ2 = 26 dB. We can also observe a slight BER

mismatch when the path-loss of user 2 becomes great (the dash-blue curve), which is mainly caused by

the introduced INI cancellation power pini. However, as we explained above, this e�ect is negligible.

6.5 Outputs

The combined outputs of the work on Massive MIMO described in Section 6.2 (PAPR reduction), in

Section 6.3 (PA NLD mitigation) and in Section 6.4 (INI analysis and cancellation) are summarized

bellow.



Chapter 7
Indoor Localization: From Matrix

Completion to Deep Learning

7.1 Introduction

In addition to our contributions related to communication technology toward 5G and its emerged appli-

cations, I have been interested in researches concerning localization, which is among the most challenging

issues related to IoT/mMTC. The position information can be used for target tracking, surveillance ap-

plications, guiding autonomous vehicles, etc. The outdoor localization is performed by global positioning

system (GPS) which is not adequate for indoor environment. Therefore, several indoor localization meth-

ods have been developed where the receive signal strength indicator (RSSI) from wireless access point

(anchor node) has attracted lots of attention due to its easy acquisition. These methods are mainly based

on Trilateration [157] and Fingerprinting [158].

Using trilateration, a node (object) determines its coordinates via a geometric method that exploits

inter-sensor distances and the coordinates of anchor nodes (installed at known positions). However, it

does not achieve good localization precision when it is applied to a few number of available measurement

distances to neighboring nodes. This is related to the fact that IoT sensors are not capable of high-power

transmission which would not allow measurements with all anchor nodes. As a �rst contribution, we in-

vestigated the matrix-completion approach to enhance the performance of the trilateration by completing

the matrix containing the inter-nodes distances. The developed work is synthesized in Section 7.2.

Fingerprint based localization can achieve high accuracy but needs to pay heavy computational com-

plexity for similarity evaluation of the measured �ngerprint to a �ngerprints' database constructed o�ine,

making it not adequate for a real-time localization. As a second contribution, we developed a localiza-

tion framework based on a deep convolutional neural network (CNN) where the localization problem is

formulated as radio image-related region classi�cation. In Section 7.3, I give an overview of classical

similarity evaluation methods and their performance and then I emphasise the development of the CNN

framework. Finally, the outputs of these contributions are resumed in Section 7.4.

105
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7.2 Matrix Completion based Trilateration for indoor localization

In order to enhance the trilateration method, a high number of pairwise distances between sensors is

required. However, obtaining the complete matrix of distances, called Euclidean distance matrix (EDM),

is not straightforward, leading to an incomplete pair-wise distance information. Then, a matrix comple-

tion approach is of paramount importance to recover the real EDM from the incomplete one, making the

trilateration more interesting and precise. The proposed scheme employs mathematical concepts based

on sparse representation and matrix completion theories. Speci�cally, the proposed indoor localization

scheme is formulated as a simple optimization problem which enables e�cient and reliable algorithm

implementations.

7.2.1 System model

In order to assess the performance of our approach, we considered a system (Figure 7.1) where each sensor

node uses two steps to compute its position: 1) Re�ne and complete the Euclidean distance matrix and

2) Compute the coordinates by using the classical trilateration process.

The Euclidean Distance Matrix, referred to as X, contains the distance information between each pair

of sensor nodes, which can be built through RSSI measurements.

The value of RSSI can be calculated in dBs as

Rml = pe − κml + xσc
, (7.1)

where pe denotes the transmission power, xσc is a Gaussian random variable with zero mean and variance

σ2
c , which describes the random shadowing e�ects, and κml represents the path-loss in dBs which can be

obtained using the the log normal shadowing propagation model [159], given by

κml = κ0 + 20log10(f) + 10ϱlog10(
d
d0

), (7.2)

where κ0 is the path-loss value at a reference distance d0, ϱ is the path-loss exponent, f is the used

frequency in MHz, and d is the distance between the m-th and l-th nodes.

Due to the limitation of radio communication range, some RSSI measurements corresponding to

di�erent sensor nodes are missing. Thus, the matrix X is incomplete (only a small number of X entries

are available) and can be a�ected by noise, leading then to an ine�ective localization precision. This

incomplete EDM can not e�ectively serve for localization and it should be completed.

7.2.2 Problem formulation

Let us de�ne the matrix Xtrue as the complete real EDM. Our goal is to reconstruct the complete

distance matrix from incomplete and noisy data. The problem of recovering a low rank matrix from a

small number of known entries is known as minimizing the matrix rank. Due to the non convexity and

non linearity of the matrix rank [160], its minimization cannot be solved numerically. Inspired from the

theory of Compressed Sensing (CS), Candes and Recht proposed to replace the rank function by the

nuclear norm [161]. The optimization problem can be formulated as min
X̂

||X̂||∗

s.t. x̂ij = xij where i, j ∈ ω
, (7.3)
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Figure 7.1: Algorithm details considering the sensor network consisting of 7 sensor nodes from which 3

are anchors [J13]

where ω is the set of known entries.

Let us de�ne n is the total number of sensor nodes (anchor and unknown nodes) placed in the indoor

environment withm nodes with known positions named 'Anchor nodes' and (n−m) sensors with unknown

positions. We denote by Ui the i-th unknown node, where i = 1, 2, ..., (n −m) and Aj the j-th anchor

node, where j = 1, 2, ...,m. X, which is the (n × n) Euclidean distance matrix, can be partitioned as

given by equation (7.4).

X =

[
X11 X12

X21 X22

]
, (7.4)

where: X22 contains the exact distances between each pair of anchors. Its entries are {dAjA′
j
= ||CAi

−
CAj

||2}, which are the pairwise distance between anchor node (Aj) and anchor node (A′
j). Note that

CAj ∈ R3 denotes the location coordinates of anchor node j.

X11 is the (n−m)× (n−m) distance sub matrix between each pair of unknown nodes.

X12 and X21, where X12 = X21
T , are the distance sub matrices between each pair of anchors and

unknown nodes.

It is worth to mention that X11, X12 and X21 are obtained from RSSI measurements using the log normal

shadowing propagation model given by equation(7.2).
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Given the real Euclidean distance matrix is of low rank (r << n) and taking into account that

observations can be a�ected by noise, the constraint in (7.3) can be relaxed and the optimization problem

can be given by

min
X̂

λ× ||X̂||∗ + ||H⊙ (X̂−X)||2F , (7.5)

where λ is a tunable parameter, ||.||F is the Frobenius norm, ||X̂||F =
√∑n

i=1

∑n
j=1 |x̂ij |2, and H is n×n

a matrix whose entries are

hij = hji =

1 if (i, j) ∈ ω

0 otherwise
, (7.6)

Let us denote the objective function as

J(X̂) = f(X̂) + λ× l(X̂), (7.7)

where f(X̂) = ||H⊙ (X̂−X)||2F and l(X̂) = ||(1−H)⊙ X̂||∗.
It is worth to point out that the formulated optimization problem can be e�ectively solved via iterative

gradient descent (GD) method and its variants. Then, we developed a simple and e�cient algorithm based

on many optimization approaches, which are described in the next Subsection. The developed algorithm

is summarized in Table 7.1, where V(t) is the update matrix and index t refers to the number of update

iteration.

Table 7.1: The proposed algorithm for matrix completion

1. Input: X, H, number max of iterations

2. Initialization: X̂(0), t

3. while t <number max of iterations

Update X̂:

X̂(t+1) = X̂(t) −V(t), (7.8)

t = t+ 1

end

4. Return X̂

7.2.3 Optimization through GD and its variants for Matrix Completion

In this work several optimization methods were deployed and tested to solve the given optimization

problem (i.e., �nd the update matrixV(t) at each iteration), Gradient descent (GD), Nesterov accelerated

gradient (NAG), Adaptive Gradient (Adagrad), Root Mean Square Propagation (RMSProp), Adadelta

and Adaptive Moment Estimation (Adam). Interested readers to these algorithms are referred to [162].
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Here, we discard the class of algorithms that are computationally very expensive for high dimensional

data sets, e.g. the second-order Newton's method [7]. In the following, I give the expression of V(t)

related to each method.

Gradient descent (GD)

Gradient descent is an iterative method that aims to �nd local minimum of di�erentiable cost functions

[162]. It is the most common �rst-order optimization algorithm in machine learning and deep learning.

GD is based on updating each element of matrix X̂(t) in the direction to optimize the objective function

J(X̂(t)). The new parameter V(t) can be adjusted as

V(t) = α∇(J(X̂(t))), (7.9)

where α denotes the learning rate from range (0, 1) and ∇(J(X̂(t))) refers to the gradient of the cost

function with respect to the matrix entries. Its computation is detailed in [163] and the update matrix

is given by

V(t) = α× (2×H⊙ (X̂(t) −X(t)) + λ× (1−H)⊙ (X̂(t) · ((X̂(t))T · X̂(t) + ϵ× I)−0.5)), (7.10)

where ϵ is a regularization parameter.

Note that this update matrix contains two components, referred to asU(t) = α×(2×H⊙(X̂(t)−X(t))

and W(t) = λ× (1−H)⊙ (X̂(t) · ((X̂(t))T · X̂(t) + ϵ× I)−0.5)). In the following, the update of U(t) will

be done using GD while the update of W(t) will be performed using some advanced methods.

Nesterov accelerated gradient (NAG)

To update W(t) with NAG [162], we use the following rule

W(t) = µ×W(t−1) + λ×∇(l(X̂(t) − µ×W(t−1))), (7.11)

where µ is an updating rate factor. The mathematical derivation are detailed in [163], obtaining

W(t) = µ× (1−H)⊙ (X̂(t−1) · ((X̂(t−1))T · X̂(t−1) + ϵ× I)−0.5)

+ λ× (1−H)⊙ (Ŷ(t) · ((Ŷ(t−1))T · Ŷ(t−1) + ϵ× I)−0.5), (7.12)

Adaptive Gradient (Adagrad)

Adagrad [162] update rule is as

W(t) =
1√

G(t) + ϵ× I
⊙E(t), (7.13)

where

E(t) =
δl(X̂(t))

δX̂(t)

= (1−H)⊙ (X̂(t) · ((X̂(t))T · X̂(t) + ϵ× I)−0.5), (7.14)

and the memory of squared gradients over time

G(t) =

t∑
i=1

(E(i))2, (7.15)

It is worth to point out that no learning rate is needed.
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Root Mean Square Propagation (RMSProp)

RMSProp [164] uses only recent past gradients computed in a restricted time. Here, we compute the

local average of previous (E(t))2 as

G̃(t) = ρ×G(t−1) + (1− ρ)× (E(t))2, (7.16)

Then, we apply the update

W(t) =
1√

G̃(t) + ϵ× I
⊙E(t), (7.17)

Adadelta

Adadelta [164] update rule is as follow:

� we compute gradient E(t) as in equation (7.14).

� we compute the local average G̃(t) of previous (E(t))2

� we compute new term accumulating prior updates ( Momentum : acceleration term)

Z(t) = ρ× Z(t−1) + (1− ρ)× (W(t−1))2, (7.18)

� Then, we apply the update

W(t) =

√
Z(t) + ϵ× I

α
√
G̃(t) + ϵ× I

⊙E(t). (7.19)

Adaptive Moment Estimation (Adam)

The Adam [165] update rule consists of the following steps.

� Compute second gradient moment with local accumulation ( Adadelta/RMSProp)

N(t) = β1 ×N(t−1) + (1− β1)× (E(t))2, (7.20)

� Compute the �rst gradient moment

M(t) = β2 ×M(t−1) + (1− β2)×E(t), (7.21)

� Compute bias-corrected �rst moment and second moment estimate

N̂(t) =
N(t)

1− β1
, (7.22)

M̂(t) =
M(t)

1− β2
, (7.23)

� Update parameters

W(t) =
M̂(t)√

N̂(t) + ϵ× I
. (7.24)
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7.2.4 Simulation results and Discussion

We consider a wireless sensor network of n = 45 sensor nodes with m = 10 of them are anchors and 35

are unknown nodes, placed in an area of 400 m2 (i.e. 20 m × 20 m). The sensor nodes (anchors and

unknown nodes) are randomly placed in the studied area. The shadowing propagation model parameters

are ϱ = 3.23, pe = 20 dBm, d0 = 1 m, and f = 2.4 GHz.

For evaluating the studied solutions based on GD and its variants combined with the trilateration

process, we de�ne the following Localization error metric

errorloc =
||Ĉ−C||2
n−m

, (7.25)
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(c) sigma shadowing = 5

Figure 7.2: Algorithms' performances

To verify that trilateration guarantees better localization accuracy when more distance information

is provided, we �rstly, apply the trilateration with observed distances only. We can easily notice that it

introduces the worst localization accuracy compared to tested combinations in both noisy and noiseless

environments (Figure 7.2). The localization accuracy is much better when we use a complete EDM than

using only the observed distances. Moreover, to apply the trilateration process, at least 3 detected anchors

are needed. If this is not the case, the sensor node cannot be localized. This problem can be solved when

using a compete EDM containing all pairwise distances. Therefore, the combination of matrix completion

technique and trilateration is highly recommended.

The performances of GD and NAG in terms of localization accuracy are very close. So that, their

CDF are superimposed for each sigma shadowing value. Adagrad exhibits worse performance than the

other optimization methods. This is due to the fact that, it accumulates the squared gradients in the

denominator. So, the sum of positive terms keeps growing and the learning rate becomes very small, thus

making the algorithm no longer able to ensure updates in order to reach a lower minimum.

Instead of accumulating all past squared gradients, RMSProp and Adadelta use a window of size (ρ)

of accumulated past gradients. RMSProp improves a little bit the localization error compared to those

introduced by Adagrad in a noiseless environment. But, the result is still worse than those obtained by

GD and NAG. The performances of RMSProp and Adagrad are quite close in a noisy environment. They

exhibits almost the same CDF performance (Figure 7.2).

Adadelta performs slightly better than GD and NAG for sigma shadowing = 0 and 2. We notice

that Adadelta is more a�ected by noise than other algorithms. Indeed, it provides the best localization

accuracy when σc = 0 and its performance decreases when σc is higher. In this latter case, Adam, GD

and NAG are better than Adadelta in terms of EDM reconstruction error, localization accuracy and
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convergence speed. Adam is better compared to other algorithms considering the tradeo� between the

localization accuracy and convergence speed. Indeed, it has the fastest convergence speed toward the

lowest EDM reconstruction error, performing the best localization accuracy. Its localization mean error

is 1.2 m and 2.6 m when, respectively, σc = 2 and σc = 5. As mentioned before, these results have been

done on 10 simulations and the variance is about 0.1 m for each value of sigma shadowing. Therefore,

we recommend Adam for such indoor localization schemes.

7.3 RSSI Fingerprinting based Indoor Localization

RSSI �ngerprinting technique is based on two phases: o�ine and online. During the o�ine phase, a

radio map is constructed. For known positions named 'reference positions', RSSI measurements received

from all access points (APs) are associatred to real coordinates of the location, constructing the 'training

database' or the 'radio map'. In the online phase, the test �ngerprint is used to estimate the user's

location. This technique can be of great interest, especially when used with advanced approaches like

similarity evaluation and Neural Networks (NN).

7.3.1 Similarity Evaluation based Indoor Localization

This method consists in comparing the test �ngerprint to the whole training base, in order to associate it to

the average position of the K-Nearest Neighbors (KNN) [166]. Therefore, di�erent similarity evaluation

metrics together with di�erent methods of combining the locations of neighbors are possible. In this

subsection, we give a comparative study of several combinations of these similarity evaluation and position

estimation methods in performing good localization accuracy.

Similarity Evaluation

Numerous similarity evaluation metrics have been tested, which can be divided into to categories: (1)

deterministic methods including the Euclidean distance and the Manhattan distance, (2) probabilistic

methods including the Gauss distance and the Kernel method. Let us note by o = (o1, o2, ..., oD) the

test �ngerprint containing received RSSI from D APs and ol = (ol1, ol2, ..., olD) the training �ngerprint

corresponding to D APs at position l.

The Euclidean distance: It is based on the Minkowski distance of order p [167] and the similarity

metric is de�ned as

S(o, ol) =

√√√√ D∑
d=1

(od − old)
2
, (7.26)

where oj denotes the received RSSI from the d-th AP at a test location and olj is the he received RSSI

from the d-th AP at the l-th training location.

The Manhattan distance: The similarity metric is de�ned as [168]

S(o, ol) =

D∑
d=1

|od − old|, (7.27)

The Gauss method: The similarity metric depends on the detected APs [169]. To compare a test

�ngerprint o to a training �ngerprint ol, we can consider three cases: 1) the AP is detected in the
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training and test phases, 2) the AP is not detected in the test phase and 3) the AP is not detected in

the training phase. In case 1, the probability of the training �ngerprint to match the test �ngerprint is

given by

Pexp = M

√√√√ M∏
m=1

e
−
(

om−olm
σ0

)2

, (7.28)

whereM is the number of detected APs in the training and test phases and σ0 is an adjustable parameter.

In case 2 and 3, coe�cients of penalty are considered for, respectively, T APs not detected in test phase

and N APs not detected in training phase. These coe�cients are, respectively, given by

PpenT =

T∏
t=1

e
−
(

ot−min(ol)

σ0

)2

, (7.29)

and

PpenN =

N∏
n=1

e
−
(

oln−min(o)

σ0

)2

. (7.30)

The two coe�cients of penalty are combined to a single penalty, given by

Ppen = T+N
√
PpenT × PpenN . (7.31)

Then, the probability of similarity, P , computed for each training �ngerprint is de�ned as

P (o, ol) =
√
Ppen × Pexp (7.32)

Note that D =M + T +N .

The Kernel method: A probability of similarity is assigned to each training �ngerprint using the Kernel

Gaussian. The probability of similarity is given by [170]

P (o, ol) =
1

2πσ2
0

D∏
d=1

e
− (od−old)2

2σ2
0 (7.33)

Position Estimation

Concerning the estimation of the position, which is expressed using latitude and longitude as ct =

(latt, longt), corresponding to the t-th test �ngerprint. This position is computed by combining the

positions corresponding of training �ngerprints corresponding to the K-nearest neighbors. Three combi-

nation methods are used: 1) simple average which consists in averaging the coordinates of the neighbors'

locations. 2) weighted average, where we assign a weight to each neighbor's location as given by

latitude =

∑K
k=1 latituek.w(k)∑

k w(k)
(7.34)

and

longitude =

∑K
k=1 longitudek.w(k)∑

k w(k)
, (7.35)

where the weight can be assimilated to the distance between test and training �ngerprints w(k) =

1/S(o, ol) or their probability of similarity w(k) = P (o, ol). And 3) using Nadaraya Watson Kernel
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Table 7.2: Mean error corresponding to the di�erent combinations.

Simple average Weighted average Nadaraya estimator

Euclidean distance 5.51m 5.5m 5.59m

Manhattan distance 5.38m 5.25m 5.4m

Gauss method 7.63m 7.7m 7.81m

Kernel method 5.51m 5.9m 5.59m

estimator [171] that calculates the coordinate ct (latitude or longitude)of the test �ngerprint o using

coordinates of K training �ngerprints, given by

E(ct/o) =

∑K
k=1 ckG(o− ok)∑K
k=1G(o− ok)

, (7.36)

where G(o− ok) is the Kernel function given by

G(o− ok) =
1

(2π)D/2
e(−

1
2 (o−ok)

D.(o−ok)) (7.37)

Performance assessment

Di�erent combinations of the aforementioned similarity evaluation and position estimation metrics are

tested. The location error locerror corresponding to all the combinations are given in Table 7.2. The

location error is given by

locerror =
√

(latest − latr)2 + (lonest − lonr)2, (7.38)

where latest and lonest are the estimated coordinates, and latr and lonr are the real coordinates of the

test �ngerprint.

Looking to these results, one can note that the Nadaraya estimator has almost the worst performance

in estimating the real coordinates. Furthermore, the weighted average is the best position estimation

metric with deterministic similarity evaluation metrics (Euclidean and Manhattan distances) and the

simple average is the best with the probabilistic metrics (Gauss and Kernel methods). Most importantly,

the best results in terms of mean location error is obtained when using the Manhattan distance for

similarity evaluation and the weighted average of K-nearest neighbors for the position estimation. It is

worth to mention that these results were obtained for K = 5-Nearest Neighbors, which is identi�ed to be

the most suitable for the tested con�guration.

7.3.2 Deep CNN for Indoor Localization

We deal with the issue of indoor localization in the context of IoT networks as a 3D radio image-

�ngerprint-based location recognition problem. Motivated by the outstanding performance of CNN in

image classi�cation problems, it is used with taking into account the correlation between di�erent RSSI

measurements to predict the position of a given node. We propose to split the studied environment into

regions, "classes", limited in space, and we construct radio images from measured RSSI �ngerprints,

which are used as the CNN input data to predict the region index to which belongs the desired node.
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Figure 7.3: The structure of the radio images [J12].

Radio Image Construction

After collecting RSSI values from M APs during a time interval T , forming a 2D radio image. Then, a

kurtosis is computed, which serves as the third dimension of the 3D radio image. Speci�cally, we put T

measured RSSI values from M APs in the two �rst dimensions, and we put the computed kurtosis values

in the third dimension. The kurtosis is de�ned by Karl Pearson as the fourth moment [172]. Rmt is the

t-th RSSI value received from the m-th AP, where m = 1, 2, ...,M and t = 1, 2, ..., T . For a given sensor

node, the kurtosis is calculated as follows

kurmk =
1

T
×

T∑
t=1

(
Rmt − µk

σk
)4, (7.39)

where

µk =

∑M
m=1Rmk

M
, (7.40)

and

σk =

∑M
m=1R

2
mk

M
, (7.41)

Then, the size of each realization is of (M × T × 2) (Figure 7.3). Constructed radio images needed

to be classi�ed and organized, so each image is labeled q, q = 1, 2, ..., Q. Then, N realizations of

each sensor node should belong to the associated class. Images are organized into Q folders labeled

class1, class2, ..., classQ, each contains the appropriate 3D radio images.

To �nd a sensor's position, after acquiring RSSI values and doing the preprocessing of the data, a radio

image is constructed having the same dimension and structure of those used for training. This image
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Figure 7.4: An example of a CNN architecture with two convolution layers, one pooling layer and one

fully-connected layer [J12].

is fed to the trained model in order to predict the region to which the sensor node belongs. For this,

probabilities are assigned to each class, and the predicted class is the one that corresponds to the highest

probability.

Deep CNN Architecture Overview

The deep CNN includes specialized NN layers, where each layer ensures a speci�c function. Here, the

structure of the CNN designed for region recognition consists of convolutional layers and pooling layers

followed by one or more fully-connected layers. The CNN takes radio images as input and the classes'

labels as outputs. The architecture of a CNN is given in Figure 7.4.

In the training phase, the backpropagation algorithm is used. The weights w are updated iteratively

in order to reduce the cross-entropy loss function, between the initial prediction (estimated class) and

the label (real class). The aforementioned optimisation methods have been adopted, such as the classical

SGD [162], RMSProp [164] and Adam [165]. SGD is the most common �rst order optimization algorithm

in machine learning and deep learning. RMSProp and Adam are �rst order gradient-based optimization

of stochastic objective function algorithms. They are advanced methods used to optimize the learning

process registered by SGD employing an adaptive learning rate.

Comparison of the Indoor Localization Accuracy of Di�erent Approaches

The proposed indoor localization method based on CNN using RSSI �ngerprinting is evaluated and

compared to standard methods, like trilateration and classical MLP neural networks. All methods use

the RSSI information to localize a speci�c sensor node. For the trilateration technique, it is based on

pairwise distances between APs and the node to be localized, requiring at least three known pairwise

distances. Traditional MLP NN, referred to as "Classic NN", which is a neural network composed of

Fc fully connected (FC) layers. Many architectures have been deployed and tested in order to identify

the best one, providing the best localization accuracy. Using the "Classical NN", the best localization

accuracy 84.75% is obtained with Fc = 2 hidden layers with, respectively, 100 and 200. The number of

output neurones is 120 corresponding to the number of regions/classes. Then, a deep CNN is deployed
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Table 7.3: Comparison of the accuracy associated with di�erent algorithms using a grid of size 2 m × 2 m

and 10 anchors.

Indoor Localization Technique Accuracy (%)

Trilateration 30

Classic NN 84.75

CNNLocWoC 91.57

CNNLocWC 94.13

Table 7.4: The deep learning network architectures used.

Deep Learning Algorithm Network Architecture

Classic NN FC(100)

FC(200)

FC(120)

CNNLocWoC Conv(200,2)

Max-pooling(2,2)

Conv(120,2)

FC(120)

CNNLocWC Conv(200,2)

Max-pooling(2,2)

Conv(300,2)

FC(120)

either with kurtosis or not, referring to as CNNLocWC and CNNLocWoC, respectively. Again, many

architectures have been deployed and tested in order to identify the best one for each case. The identi�ed

architectures are given in Table 7.4.

In order to show the capability of the CNN based solutions, we give in Table 7.3 the localization

accuracy comparison of the studied methods.

We clearly note that the classical trilateration provides the worst localization accuracy compared to

the other tested solutions based on neural networks. The "Classic NN" is associated with good localization

accuracy, but it is less accurate than the localization methods based on CNN. This latter provides the best

localization accuracy. When used with kurtosis, only 5.84% of classes were wrongly estimated, con�rming

the ability of deep CNNs in providing very good performance for indoor localization.

7.4 Outputs

The outputs related to work on indoor localization are summarized bellow.
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Chapter 8
Research perspectives

In this chapter, I give the research paths I intend to follow during the next 5 years. My future works

will be strongly correlated with the studies conducted within the framework of the two research projects,

the H2020 MSCA ADAM5 (2018-2020), in which I am the principal researcher, and the PHC-TASSILI

ATOME5+ (2019-2022), in which I am in charge of supervising PhD students. Furthermore, I also plan

to develop other activities in parallel, for which a preliminary analysis has already been carried out. At

the end of this chapter, some longer-term perspectives are highlighted. Figure 8.1 gives an overview of

the intended research perspectives with an expected time-line.

Figure 8.1: Research perspectives.

119
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8.1 Optimization of Energy-E�ciency toward future wireless com-

munications 6G

While the 5G is rolling out, academic and industrial researchers have started work on the sixth gen-

eration of the radio-mobile network. 100 times faster than 5G, with improved coverage and available

everywhere including in space, 6G [173], whose emergence is expected in ten years, should also �nalize

the reliability of 5G services (eMBB, mMTC, URLLC) with taking into consideration very low latency

and energy consumption. Furthermore, 6G should meet the requirements of future emerging applications

(autonomous cars, connected devices also autonomous,...), which require high level of autonomy and have

a great awareness of the environment and knowledge of the activities and needs of users. Autonomous

and intelligent communication systems have the potential to improve overall system performance and

reduce the workload associated with con�guring and managing communication systems. 6G will o�er

new digital technology perspectives. Nevertheless, the complexity of the future 6G will exceed the current

technology capabilities as well as conventional optimization approaches. Then, a fundamental evolution

towards technologies like multi-carrier waveforms and massive MIMO is of paramount importance. In

this regard, my research project is to reinforce the development of the composite of two timely concepts,

Massive MIMO, �exible multi-carrier waveforms, the most promising direction in 6G wireless communi-

cations, where energy-e�ciency, low latency, good reliability and high data rate are of crucial importance.

The contribution of my previous work in this context is obvious, leading then to a fruitful contribution.

8.1.1 Study of Hardware Imperfection in Multi-carrier/Multi-antenna based
6G systems

The implementation of a multi-standard communication system with very wide spectral bands, all with

low energy consumption, reduced size and low cost, is not without consequences for the terminal. Indeed,

building compact and low-cost radio equipment implies non-ideal hardware (HW) quality. Then, various

RF impairments could take place in the used radio transceiver, such as oscillator phase noise, mirror-

frequency interference due to IQ mismatch, Tx Leakage due to an adjacent antenna and non-linear

distortion due to power ampli�er (PA). We are talking about radio imperfections generated by the radio

frequency (RF) chain, known as "Dirty-RF" [174]. In addition, crosstalk between antennas may occur,

a�ecting then the transmission quality. These imperfections, which are often neglected, have detrimental

e�ects on massive MIMO communications with multi-carrier waveforms.

In my previous works [J16], the study was limited to the PA non-linearities. A �rst objective is to

study the impact of Dirty-RF on massive MIMO performance with taking into account the optimization of

the multi-carrier waveform as a function of the propagation channel (delay spread, time-varying,...) and,

on the other hand, of the type of non-linear imperfections caused by the RF chain. The second objective

is the development of reliable digital signal processing based solutions to mitigate RF impairments on

both the transmitter and receiver sides of 6G communication systems. This will enable extensive use of

low-cost and low-power components.
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8.1.2 Optimization and adaptation of MWFs toward future wireless commu-
nications 6G

As explained in Chapter 4, all the MWF design-related research works are motivated by the fact that

perfect orthogonality, recommended by all the pioneering works on OFDM, is not su�cient to guarantee

excellent performance, in presence of time and frequency dispersions, commonly encountered in cellular

radio-mobile systems. Taking this fact into account, a part of research works [175] have focused on opti-

mizing the localization in time and frequency of the adopted waveforms, with however relaxing the perfect

orthogonality of these waveforms. Nevertheless, satisfying both of antagonistic constraints of perfect or-

thogonality and good localization is not without impacts on the system performance which remains quite

low and disappointing to ful�ll the requirements of practical radio-mobile networks. Furthermore, the fre-

quency localization metric remains a purely intuitive criterion and does not lead to increased robustness

against channel dispersions. Another part of research works aim at reducing the inter-symbol interference

and inter-carrier interference, often in a context of identical waveforms at emission and reception. How-

ever, doing that has a dramatically impact on the limitation of degrees of freedom in the optimization of

practical communication systems. Few works deal with di�erent waveforms in transmission and reception,

with, however, a preservation of a strict orthogonality, referred to as biorthogonality [40,175�177].

In 2018, I collaborated with a research team in Mediatron laboratory of Sup'Com school, which

have proposed a new approach of waveform optimization [178�181]. The proposed approach, referred

to as POPS (Ping-pong Optimized Pulse Shaping), permit an e�ective optimization of waveforms for

any channel propagation statistics, with relaxing the constraints of identical waveforms in emission and

reception. In my research project, the POPS approach will be judiciously used to perform the adaptive

waveform communications (AWC).

In this regard, a �rst research activity will be about the modeling of arti�cial imperfections, in terms

of time and frequency dispersions, caused by the new 5G+/6G applications. A second part consists in

optimizing batteries (or dictionaries) for each service of interest, with taking into account the considered

channel statistics. Then, I intend to study the real-time estimation of propagation statistics, during

communication, with the application of the most suitable waveform pairs. In this context, I will study

the reduction of pilot contamination in massive MIMO systems, in order to simplify the coherent detection

of pilot symbols (referred to as Pilot Aided Channel estimation-PACE), known at the receiver side. If

the pilots are su�ciently close in time and frequency (applied to OFDM), the impulse response of the

transmission channel can be reconstructed in two-dimensions (2D) through interpolation. In the context

of massive MIMO, the principle of channel estimation via interpolation can be extended to spatial domain,

leading to a 3D implementation in the grid of PACE pilots.

On the other hand, the pilot contamination problem in massive MIMO, adopting time-division duplex

(TDD), can limit their expected capacity performance. For channel reciprocity, in TDD mode, the channel

state information (CSI) is obtained at the base station (BS) when transmitting in the uplink. The channel

coherence interval is generally not very large to enable the use of orthogonal pilot sequences in di�erent

cells. The non-orthogonal pilots of adjacent cells contaminate the pilots of the cell of interest. Thus,

the channel estimation at each BS contains the channel information of mobile terminals (MTs) in the

other cells, together with the ones of its own users. Consequently, when the BS combines linearly the

received signal in order to decode the transmitted symbols of its own MTs, it also combines linearly the

symbols of users of adjacent cells, leading to an inter-cell interference. This latter does not vanish by

increasing the number of BS antennas, even to in�nity [182, 183]. One goal will be the implementation
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of 3D PACE for the channel estimation in massive MIMO applied to MWFs. Then, we will investigate

the pilot decontamination in massive MIMO, with di�erent MWFs, by extending the blind equalization

techniques studied in SISO to multi-cell massive MIMO [184] in order to reduce the e�ects of channel

estimation error caused by the pilot contamination. Moreover, we will investigate the impact of the pilot

distribution on the PAPR.

8.2 Meta-Learning for Energy-E�ciency enhancement in Massive

MIMO systems

In the framework of the H2020 MSCA ADAM5 project, we have developed algorithms [J15, J16] to

improve the energy-e�ciency related to power ampli�cation in massive MIMO systems. Several opti-

mization methods have been deployed and compared in terms of performance and complexity. All these

methods o�er good performance but their complexities remains a major problem to be solved, especially

when the channel is fast time-varying and the number of users is large enough.

Figure 8.2: Meta-model for energy-e�ciency enhancement in massive MIMO systems.

In order to overcome this problem, we are investigating a new advanced approach to complement

traditional machine learning (ML) methods, the meta-learning [185] (learning to learn) approach, which

allows lower complexity. The aim is to develop a meta-learning model capable of being generalized with a

new con�guration that has never been learned during learning (like a new channel matrix, for example).

Speci�cally, we propose to use two neural networks (NN precoder and Meta-NN, as shown by Figure

8.2). The �rst one, the NN Precoder, which can be generalized for any data streams (si ∈ CMr × 1) for
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a given channel con�guration, is used to generate the precoded data vector (xi ∈ CMt × 1) such that

when nonlinearly ampli�ed and then propagated through the channel, the received data symbols is very

similar to the transmitted ones. Note that the NN-Precoder is executed N times per channel coherence

time interval, Tc (see Figure 8.2). The second NN, the Meta-NN, is used to generate the weights of

the NN-Precoder corresponding to a channel con�guration. Meta-NN, which can be generalized for any

channel con�guration, is then executed only one time per channel coherence time. Doing that, we avoid

the adaptation of the NN-Precoder and the corresponding computational complexity when the channel

changes and we use instead a generalization of the Meta-NN. Preliminary results have been obtained

showing that the proposed meta-model provides the same BER performance as the algorithm, proposed

in [J16], but with a lower computational complexity of one order of magnitude.

In this regard, I initiated a collaboration with researchers from the CEDRIC/VERTIGO team, spe-

cialists in the �eld of machine learning. This collaboration was initiated by the supervision of the Samar

Chebbi's master internship (ongoing) and should be pursued by the supervision of a PhD.

8.3 ML-aided Multi-carrier Waveform parameters selection for

Future Heterogeneous Network towards 6G

The studied MWFs have shown to overcome the limitations of the today's OFDM technique in supporting

asynchronous communications and enabling �exible accommodation of various applications/services with

di�erent requirements. From the �exibility perspective, ultra reliability, low latency, high security, high

spectral e�ciency, high energy e�ciency, and low complexity are some example requirements of di�erent

service types. Therefore, di�erent optimizations need to be done for meeting some of these requirements

together while providing complete satisfaction for all users simultaneously. The aim is to develop machine

learning approach to help base stations to decide on the waveform parameters of each user using channel

information (random maximum excess delay, random maximum Doppler e�ect, and random service type

(eMBB, uRLLC, or mMTC)). The MWF parameters can be the numerology parameters (the subcarrier

spacing CP duration, slot duration, maximum allowed bandwidth,... ), the number of numerologies, the

waveform processing technique (windowing, �ltering, ...). Three performance metrics (SINR, spectral

e�ciency, and �exibility) will be considered.

8.4 Knowledge-driven Machine Learning for radio access man-

agement optimization in Massive MIMO systems

In communication systems, mathematical models for performance's optimization are often available mak-

ing then the adoption of deep learning more �exible than a purely data-driven approach. Indeed, the

optimization of these theoretical models is sometimes incompatible with real-time wireless communi-

cations, i.e., the complexity and the time to do so might not be compatible with fast time-varying

wireless communication scenarios (e.g., user joins/leaves the network, the channel realizations change,

time-varying hardware impairments, and so on); In this regard, my project is to study new approaches

of machine learning which capitalize on the availability of these theoretical models to reduce the amount

of empirical data required and thus the learning complexity. The key idea is to complement purely

data-driven machine learning, such as knowledge-driven machine learning [186].
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The objective is to develop knowledge-driven machine learning approach, to complement purely data-

driven ML, in order to solve radio access problems in networks with massive connectivity and di�erent QoS

requirements, which is essential in beyond 5G and the future 6G. The work will be dedicated to the �eld

of radio resource management for real-time energy-e�ciency maximization in multi-user massive MIMO

networks. The goal is to allocate the transmit powers of the users to maximize the network's bit/Joule

energy-e�ciency, which is de�ned as the ratio between the system sum achievable rate and the total

network power consumption. Here, power ampli�er imperfection will be considered, where a model to

formulate the energy-e�ciency optimization problem is available, but the presence of interference-related

PA distortion makes it too complex to be globally solved at an a�ordable computational complexity.

This is especially problematic when the optimization is performed in fast time-varying channel because

it causes a considerable complexity overhead that prevents the use of real-time implementations.

8.5 System-wide optimisation: Machine learning and distributed

intelligence

As a long-term perspectives, I intend to investigate e�ective ML approaches to achieve global system

optimization. A possible global optimization may include the resource allocation policy at the base sta-

tions. Routing strategy to be applied to the di�erent �ows crossing the network, scheduling policies

in the switches, and transport protocol parameters can also be jointly optimized for the speci�c con-

text. Nevertheless, such multi-dimensional optimization, which is an interesting task, is impossible to

solve directly in real-time using traditional optimization methods. Therefore, I believe that ANN based

knowledge-driven deep learning can indeed help the development of an innovative scalable approach to

the above problem. This multi-level model is a very advanced topic.

8.6 Conclusion

All of the aforementioned research perspectives represent, in one hand, the evolution of some existing

works and, on the other hand, investigating new directions, characterizing my future research activities.

These six proposals include developments concerning signal processing for 6G multi-carrier and multi-

antenna communications, optimization of energy e�ciency, hardware imperfection problems, resource

allocation and machine-learning.
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