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Abstract

In this thesis, we study a phenomenon that may be responsible for our memory capacity: the
synaptic plasticity. It modifies the links between neurons over time. This phenomenon is stochas-
tic: it is the result of a series of diverse and numerous chemical processes. The aim of the thesis
is to propose a model of plasticity for interacting spiking neurons. The main difficulty is to find a
model that satisfies the following conditions: it must be both consistent with the biological results
of the field and simple enough to be studied mathematically and simulated with a large number of
neurons.

In a first step, from a rather simple model of plasticity, we study the learning of external signals by
a neural network as well as the forgetting time of this signal when the network is subjected to other
signals (noise). The mathematical analysis allows us to control the probability to misevaluate the
signal. From this, we deduce explicit bounds on the time during which a given signal is kept in
memory.

Next, we propose a model based on stochastic rules of plasticity as a function of the occurrence
time of the neural electrical discharges (Spike Timing Dependent Plasticity, STDP). This model
is described by a Piecewise Deterministic Markov Process (PDMP). The long time behaviour of
such a neural network is studied using a slow-fast analysis. In particular, sufficient conditions are
established under which the process associated with synaptic weights is ergodic.

Finally, we make the link between two levels of modelling: the microscopic and the macroscopic
approaches. Starting from the dynamics presented at a microscopic level (neuron model and its
interaction with other neurons), we derive an asymptotic dynamics which represents the evolution
of a typical neuron and its incoming synaptic weights: this is the mean field analysis of the model.
We thus condense the information on the dynamics of the weights and that of the neurons into a
single equation, that of a typical neuron.

Keywords: Piecewise Deterministic Markov Process, Multi-scale, Mean Field, Spike Timing
Dependent Plasticity, Recurrent Neural Network, Synaptic Plasticity, Memory Lifetime.
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Résumé

Dans cette thèse nous étudions un phénomène susceptible d’être responsable de notre capacité de
mémoire : la plasticité synaptique. C’est le changement des liens entre les neurones au cours du
temps. Ce phénomène est stochastique : c’est le résultat d’une suite de divers et nombreux mé-
canismes chimiques. Le but de la thèse est de proposer un modèle de plasticité pour des neurones
à décharge en interaction. La principale difficulté consiste à trouver un modèle qui satisfait les
conditions suivantes : ce modèle doit être à la fois cohérent avec les résultats biologiques dans le
domaine et assez simple pour être étudié mathématiquement et simulé avec un grand nombre de
neurones.

Dans un premier temps, à partir d’un modèle assez simple de plasticité, on étudie l’apprentissage
de signaux extérieurs par un réseau de neurones ainsi que le temps d’oubli de ce signal lorsque le
réseau est soumis à d’autres signaux (bruit). L’analyse mathématique nous permet de contrôler la
probabilité d’une mauvaise évaluation du signal. On en déduit un minorant du temps de mémoire
du signal en fonction des paramètres.

Ensuite, nous proposons un modèle basé sur des règles stochastiques de plasticité fonction du
temps d’occurrence des décharges électriques neurales (STDP en anglais). Ce modèle est décrit
par un Processus de Markov Déterministe par Morceaux (PDMP en anglais). On étudie le com-
portement en temps long d’un tel réseau de neurones grâce à une analyse lent-rapide. En parti-
culier, on trouve des conditions suffisantes pour lesquelles le processus associé aux poids synap-
tiques est ergodique.

Enfin, nous faisons le lien entre deux niveaux de modélisation : l’approche microscopique et celle
macroscopique. À partir des dynamiques présentées d’un point de vu microscopique (modèle
du neurone et son interaction avec les autres neurones), on détermine une dynamique limite qui
représente l’évolution d’un neurone typique et de ses poids synaptiques entrant : c’est l’analyse
champ moyen du modèle. On condense ainsi l’information sur la dynamique des poids et celle des
neurones dans une seule équation, celle d’un neurone typique.

Mots clefs : Processus de Markov Déterministes par Morceaux, Multi-échelle, Champ Moyen,
STDP, Réseaux de Neurones Récurrents, Plasticité Synaptique, Temps de Mémoire.
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1 Contents

Main notations

General notations

B(E) The Borel sets of E for a metric space (E, d).

1 The indicator function: 1A(x) =

{
1, if x ∈ A
0, otherwise.

δx The Dirac mass at x, for all A ∈ B(E), δA(x) = 1A(x).

∨,∧ x ∨ y = max(x, y) and x ∧ y = min(x, y), defined on page 35.

bxc The floor function bxc is equal to k ∈ Z if k ≤ x < k + 1.

L
=,

E
=

L
= means equality in law and E

= means equality in expectation.

N Number of neurons of the neural network.

V N
t = (V i,N

t )1≤i≤N , describes potentials of neurons 1, · · · , N . In all chapters V i,N
t ∈ {0, 1}.

SNt = (Si,Nt )1≤i≤N ∈ RN+s, the time since the last spike of neurons 1, · · · , N .

WN
t = (W ij,N

t )1≤i≤N , the synaptic weight matrix. W ij,N
t represents the synaptic strength of

the neuron j on the neuron i. In Chapter 2, W ij,N
t ∈ {0, 1}. In Chapter 3, WN

t ∈ E2

defined on page 68. In Chapter 4, W ij,N
t ∈ Z.

||η||TV = η+(X)+η−(X) where η = η+−η− is the Jordan decomposition of the signed measure
η. Defined 140.

αm, αM Bounds on the spiking rates of the neurons at resting potential 0, 0 < αm < αm <∞.

β Jumping rate of V i from 1 to 0 for all i. We usually assume 0 < αm < β < αm <∞.

p± Functions from R+ × {state space of the weight matrix} to [0, 1]. p+ gives the potentia-
tion probability. p− gives the depression probability. For applications, we usually take

p+(s, w) = A+e
−s
τ+ g+(w) and p−(s, w) = A−e

−s
τ− g−(w).

∆w Size of the weight jumps. We usually take ∆w = 1.

Chapter 2

fN The coding level: probability a neuron has to be selective to an external signal, fN ∈ (0, 1),
defined on page 33.

q+ ∈ (0, 1], is the potentiation probability when (W ij,N
t , V i,N

t , V j,N
t ) = (0, 1, 1), defined on

page 34.
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q−,N01 ∈ (0, 1], is the depression probability when (W ij,N
t , V i,N

t , V j,N
t ) = (1, 0, 1), defined on

page 34.

q−,N10 ∈ (0, 1], is the depression probability when (W ij,N
t , V i,N

t , V j,N
t ) = (1, 1, 0), defined on

page 34.

r Number of presentation of the signal to learn, defined on page 34.

hNt =
∑N+1

j=2 W 1j,N
t V j,N

0 is the synaptic current onto the neuron 1, defined on page 35.

K =
∑N+1

j=2 V j,N
0 is the number of neurons selective to the signal to learn, defined on page

35.

hNt,K
L
= (hNt |K), defined on page 35.

hN,yt
L
= (hNt |V 1,N

0 = y) for y ∈ {0, 1}, defined on page 35.

hN,yt,K
L
= (hNt |K,V 1,N

0 = y) for y ∈ {0, 1}, defined on page 35.

V̂ N
t : θ ∈ R+ 7→ 1hNt >θ

, threshold estimator of V 1,N
0 at time t, defined on page 35.

py,Ne For y ∈ {0, 1}, they are type I and II errors: p1,N
e : (t, θ) ∈ R+ × {0, · · · , N} 7→

P(V̂ N
t = 1|V 1,N

0 = 0) and p0,N
e : (t, θ) 7→ P(V̂ N

t = 0|V 1,N
0 = 1). Defined on page 35.

t∗ : (ε, r,N) ∈ (0, 1) × N∗ × N 7→ maxθ∈J0,NK

(
inf
{
t ≥ 1, p0,N

e (t, θ) ∨ p1,N
e (t, θ) ≥ ε

})
is the largest time such that both are smaller thant ε up to time t∗, defined on page 35.

πNK The invariant measure of the Markov chain (hNt,K)t≥1, defined on page 37.

πN∞ =
∑N

K=0 P(K̂ = K)πNK where K̂ =
∑N+1

j=2 V j,N
0 is the limit of the law of (hNt )t≥1,

defined on page 37.

aN , bN Under Assumption 2.9, q−,N01 = aNfN and q−,N10 = bNfN , defined on page 37.

P y,NK The transition matrix of the synaptic current
(
hy,Nt,K

)
−r+1<t≤1

, defined on page 40.

νy,Nt,K =
[
νy,Nt,K (0), νy,Nt,K (1), · · · , νy,Nt,K (K)

]
is the distribution of hy,Nt,K , defined on page 40.

ΛNy , λ
N
i For y ∈ {0, 1}, ΛN0 = 1− fNq−,N01 , ΛN1 = 1− (1− fN )q−,N10 − fNq+ and

∀i, λNi = (1− fN )(ΛN0 )i + fN (ΛN1 )i.

Defined on page 40.

µy,Nt , σy,Nt For y ∈ {0, 1}, µy,Nt = E
[
hy,Nt

]
and (σy,Nt )2 = Var

[
hy,Nt

]
, defined on page 41.

SNRNt =
µ1,Nt −µ0,Nt√
σ1,N
t,K +σ0,N

t

is the SNR at time t, defined on page 41.

Bin(n, p) is the Binomial law of parameters n ∈ N and p ∈ [0, 1].

BinMix(k, g) is the Binomial mixture with mixing distribution g ∈ P([0, 1]) and size parameter
k ∈ N, defined on page 42.
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GNt The cumulative distribution function associated to gNt . Defined on page 42.

gNt ∈ P([0, 1]) such that hNt,K
L
= BinMix(K, gNt ). Defined on page 42.

R ∀Γ ∈ F[0,1], ∀u ∈ R,R(Γ)(u)
def.
= fNΓ

(
u−fN q+

ΛN1

)
+ (1− fN )Γ

(
u

ΛN0

)
. Defined on page

42.

G∗,N The unique fixed point of R. Defined on page 43.

g∗,N The distribution associated to G∗,N . Defined on page 43.

[mN
∞,M

N
∞] is the smallest interval containing the support of g∗,N

MN
ε =

(√
2Var(Y ∗,N )

ε + E
(
Y ∗,N

))
∧MN

∞. Defined on page 54.

[m1,N
t ,M1,N

t ] is the smallest interval containing the support of g1,N
t . Defined on page 54.

mε,N = 1
NfN

(
θε,N +

√
−2 log(ε)θε,N − 2 log(ε)

)
. Defined on page 54.
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∞
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i

, 0, · · · , 0) the elements of both {0, 1}N and RN+ . Defined on page 70.

ε Slow fast parameter in (0, 1). Defined on page 70.
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Lm(X) is the space of measures η on R+×X such that for all t ≥ 0, we have η([0, t]×X) = t,
with X a complete separable metric space. Defined on page 76.
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=
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∫
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νN , ηN ∀(s, ξ) ∈ R+ × PN (Em),

ηN (s, ξ)
def.
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=
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β
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j,N
u− +ηN (Si,N

u− , ξ
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u− , Sj,N

u− , ξ
j,N
u−
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u− , Sj,N

u− , ξ
j,N
u− +νN (Si,N
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u−
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∫
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P∆
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t− jumps to ξi,Nt,∆ and for all j, ξj,N
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∑
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P∆
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α(Ii,N

u−
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∆∈JNi

P∆
u,i

∑
j

[
Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u,∆,i

)
−Ψ
(
V j,N
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j,N
u−
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∫
P(Em)

α
(
I(ξ̃)
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∫
A p
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∫
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P(Em). Defined on page 131.
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Chapter 1

Introduction

In this Introduction, we first present a brief overview of the biology of the brain based on Section
I.2 of the book [73]. Then, we describe some models of synaptic plasticity before presenting the
one we developed in Chapters 3 and 4. We finally introduce the network model of memory that
we consider in Chapter 2. We have opted to end the introduction with a description of this chapter
because it contains a very simplified model quite far from the biology that we present first.

1.1 Some Biology

The two main types of cells in the nervous system are the nerve cells (neurons) and the glial cells
(glia). Understanding the building blocks of the brain is the first step toward its global compre-
hension. In most of the brain modelling field, these blocks are the neurons. Thereby, we do not
consider glia in this thesis but rather models of networks composed of interacting neurons. In
this section, we briefly describe how a plastic neural network biologically works: neurons con-
vey information through action potentials reaching other neurons via synapses whose efficiencies
change over time.

1.1.1 A single neuron

A neuron is an electrically excitable cell with a soma (cell body), an axon and dendrites, see Figure
1.1a. The soma is composed of a nucleus (containing the genes) and an endoplasmic reticulum
(where the protein synthesis occurs). The cell body is the metabolic centre of the neuron giving
rise to short dendrites and one long tubular axon. The dendrites receive the incoming signals from
the other cells when the axon carries electrical signals to other neurons situating from 0.1 mm to
2 m. These electrical signals are called action potentials. There are initiated near the origin of
the axon and propagate along the axon without failure or distortion and with a constant amplitude
around 100 mV. It is an all-or-none impulse regularly regenerated along the axon. This is the
(main) way by which the brain receives, analyses and conveys information. One striking fact is
that the action potentials are very similar over the brain even though they can be initiated by very
different events: “the information conveyed by an action potential is determined not by the form
of the signal but by the pathway the signal travels in the brain” [73]. Then, our brain creates our
sensations from this pathway.

Neural signalling is mainly governed by the electrical properties of the neuron membranes. The
membrane potential of a neuron is defined as the potential difference between inside and outside
the cell which stems from the respective ions concentrations. The majority of these ions are either
potassium ions (K+) or sodium ions (Na+). Their flows in and out the neurons are regulated by
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membrane proteins called ion pumps (active) and ion channels (passive). This potential usually
ranges from around −100 mV to 60 mV (it depends on the neuron considered). Its dynamics is
very complex, ranging from oscillations under the action potential threshold to bursting, see [72,
Sec 7] for more details. In this thesis, we only use the generic dynamics : a neuron is either at rest,
with a potential fluctuating in the interval −80 to −40 mV, until it emits an action potential (also
called spike) defined as a brief (1 ms) increase of around 100 mV of the potential and then a brief
(1 ms) decrease under the resting potential followed by a return to this resting state, see Figure
1.1b. The last part of a spike is called the refractory period. In this manuscript, the following
expression are synonymous: to emit an action potential, to fire a spike, to fire, to spike. Spikes are

(a) (b)

Figure 1.1: (1.1a): Scheme presenting the main actors of neuron communication. (1.1b): Scheme
of a typical action potential of a neuron. (1.1a) is taken from the website [1] and (1.1b) is taken
from wikipedia [131].

the principal way of conveying information between neurons. Signals from the other neurons are
gathered by the dendrites of a neuron. The soma processes these signals and generates an action
potential or not, see the failed initiations in Figure 1.1b. This spike is carried through the axon
until it reaches the axon terminal where the synapses transfer the information to the other neurons.
This information can be noticed by small variations in the postsynaptic membrane potential of
the neurons concerned. If the spiking neuron is excitatory (resp. inhibitory), then the membrane
is depolarised (resp. hyperpolarised) and it is called an excitatory postsynaptic potential (EPSP)
(resp. inhibitory postsynaptic potential (IPSP)). An EPSP (resp. IPSP) is caused by the flow of
positive (resp. negative) ions into the membrane which is called an excitatory postsynaptic current
(EPSC) (resp. inhibitory postsynaptic current (IPSC)). We end this paragraph mentioning that the
sequence of EPSPs precedes the spike of a neuron. Indeed, when the membrane potential reaches
a certain random threshold, a spike is generated. As we have already evoked, even though we
know the mechanisms explaining such a threshold, it depends on parameters making it random
(the thermal motions and fluctuations for example, see Section 9 of [73]).

Even if it goes beyond the scope of this thesis, we would like to mention the current growing
interest in the cells surrounding the neurons: the glia cells. Indeed, their role seems to be much
more important that what biologists expected and may be part of the future brain models, see [36].
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1.1.2 Synaptic Plasticity

Synaptic Signalling

Synapses are “specialised regions that permit chemical or electrical signalling between neurons”
[73]. There exist many types of synapses but the majority are axodendritic ones: synapses com-
posed of an axon terminal ending on a dendritic spine, see Figure 1.1a. Most synapses are chemical
ones. We focus here on these synapses rather than on the electrical ones. They convey informa-
tion via chemical messengers called neurotransmitters. Following an action potential, some vesi-
cles containing neurotransmitters bind the axon terminal membrane and release neurotransmitters
within the synaptic cleft. These neurotransmitters bind the receptors of the postsynaptic side, see
Figure 1.2. We do not want to enter into more details as we do not need it in the following. We
refer to [80] for more details.

Figure 1.2: Scheme of synaptic signalling taken from wikipedia [132].

Synaptic Weight

We gave the basics of how signals are transmitted between neurons. This transmission is variable.
The action potential of a neuron can trigger the release of many neurotransmitters in some of its
synapses as it can release none of them in other synapses. In this thesis, we loosely refer to the
synaptic weight as the (signed) amplitude of the postsynaptic potential following a presynaptic
spike. It depends on the number of postsynaptic receptors (e.g. AMPA), their conductance, etc.
This definition is directional in the sense that the synaptic weight linking the presynaptic neuronA
to the postsynaptic neuron B (denoted by WB←A in what follows) is different from the synaptic
weight linking the neuron B to the neuron A (WA←B). The simplest classification of neurons is
certainly to spare neurons in two groups: the inhibitory versus the excitatory. The main difference
between them is on their effect postsynaptic neurons. This difference is due to the different types
of neurotransmitters they release. As seen previously, excitatory neurons tend to depolarise their
postsynaptic neurons whereas inhibitory neurons tend to hyperpolarise theirs. On a modelling
point of view, the neuron B is inhibitory (resp. excitatory) when all its outgoing synaptic weights
are negative: for any neuron A, WA←B is negative (resp. positive). Finally, we mention that, in
our model, the synaptic weight WA←B takes into account all the axon terminals of the neuron B
connected to a dendritic spine of neuron A (there can be until around a dozen of them).
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Synaptic Plasticity

The synaptic weights depend on the spine shapes and chemical composition, see [112]. Indeed, the
signal transmission depends on the number and density of postsynaptic spine receptors (NMDA
and AMPA) as well as the number of neurotransmitters released by the presynaptic neuron, see
[80]. Formally, the higher these numbers are, the stronger the connection is. Thus, the larger
the synapse is, the bigger these numbers can be and then the stronger the connection is. All of
these parameters change over time making the synaptic weights evolve: this phenomenon is called
synaptic plasticity.

In his book [67], Donald Hebb postulated that memory formation follows three steps: first, synap-
tic plasticity, second, cell assembly formation (strongly connected neurons) and finally, formation
of a phase sequence (series of connected cell assemblies), see [83] for more details. Concerning
synaptic plasticity, Hebb mainly detailed his thoughts on the synaptic strengthening. His postulate
is usually called the Hebb’s rule:
“When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes place in one or both cells so that A’s
efficiency, as one of the cells firing B, is increased.” [67].
However, Hebb did not entered into details on the synaptic weakening which was found experi-
mentally many years later, see [91]. The increase (resp. decrease) of synaptic weights is called
potentiation (resp. depression).

Synaptic plasticity can be separated in different phenomena operating at different timescales:
short-term plasticity, long-term plasticity and synaptic consolidation [102]. Although, long and
short-term plasticity are induced on a similar timescale, which ranges from several seconds to
one minute, long term plasticity persists much longer, about hours to days, whereas short term
plasticity persists from seconds to minutes, see Section 65 of [73].

Concerning synaptic consolidation, it remains from days to entire life and can be induced really
quickly such as with a shock or on a longer timescale like the learning of a poem. Here, we are
interested in the long term plasticity.

Long term plasticity is composed of two phenomena: long term potentiation (LTP) and long term
depression (LTD). Long lasting changes of the synaptic weight were already evoked more than one
century ago by Ramón y Cajal, see [37]. The first experimental evidence of such a plasticity was
shown by Bliss and Lømo on LTP, see [20] . Since then, experimental results showed a dependence
of synaptic plasticity on different parameters such as the firing rate of the presynaptic neuron,
the membrane potential of the postsynaptic neuron, the calcium concentrations, and the precise
spiking times of the pre- and postsynaptic neurons. This list is not exhaustive and more details
are given in [80]. Here, we are interested in the plasticity resulting from the precise spiking times
of the pre- and postsynaptic neurons. It is commonly called Spike-Timing Dependent Plasticity
(STDP).

Spike-Timing Dependent Plasticity (STDP)

STDP is a mechanism inducing synaptic plasticity (LTP or LTD) based on the relative timing of
pairs of pre- and postsynaptic spikes. The repetition of similar (in causality) pairings leads to
synaptic strength changes. STDP is adapted for modelling and such models are often call STDP
rules rather than STDP models. An originality of the STDP phenomenon is that it has not been
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discovered experimentally but rather by a modelling study in [55]. Then, it was experimentally
confirmed some years after in [92, 17] with the classical paradigm: repetition of causal spike pair-
ings (presynaptic spike followed by postsynaptic one) evokes LTP whereas repetition of anticausal
spike pairings (postsynaptic spike followed by presynaptic one) leads to LTD. This is not always
the case: in the electric fish, the rule is inversed, see for instance [13].

We now detail the typical protocol of the experiments showing this kind of plasticity rules, see
[17]. We are interested in the synaptic plasticity from the presynaptic neuron A to the postynaptic
neuron B: WB←A. Let A and B be forced to emit an action potential in a precise manner: for one
minute, every second the neurons A and B spike with a delay ∆t between the spikes (which can
be negative). The excitatory postsynaptic current (EPSC) after these 60 pairings, EPSCafter, is
compared to the initial one (EPSC before the pairings), EPSCinit. The quantity

EPSCafter − EPSCinit
EPSCinit

≈
WB←A
after −WB←A

init

WB←A
init

is plotted in function of ∆t, see Figure 1.3a. We observe that the change of weight has the same
sign as ∆t, thus respecting the causality.

Many questions arise from these experiments. Let us evoke three of them. First, how the effect of
one pairing on the synaptic weights can be modelled? There exist at least three methods to model
these changes: the additive, multiplicative or mixed method. For more details, we refer to [46]
(additive and multiplicative methods are presented in 1.2.2). Then, we can ask if it is enough to
consider pair of spikes from neurons A and B to model plasticity or is it better to consider longer
sequences? For instance, some experiments have been done using triplet of spikes. The results
show an advantage given to potentiation. In the experiment leading to the following results, see
[130], a triplet of spikes is considered: ∆t1 gives the first delay and ∆t2 the second one. When ∆t1
is positive (resp. negative), two (resp. one) spikes of the presynaptic neuron are considered, see
Figure 1.3b. Finally, given the high variability of the results, stochastic models seem reasonable
to use.

(a) (b)

Figure 1.3: (1.3a): Classical experiment to show STDP. (1.3b): Triplet of spikes experiment.
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1.2 Modelling Neural Networks with Synaptic Plasticity

We saw that synaptic plasticity is the result of the neural activity. However, before we get this
knowledge about plasticity, the idea of flexibility in neural networks as well as some properties of
long-term changes were already proposed in 1949 by Hebb [67]. Inspired by his postulates, see
page 13, some mathematical models emerged. Because of the lack of biological understanding
at this time, they are phenomenological models of plasticity in contrast to biophysical ones. In
this section, after giving notations, we present some models of STDP. Then, we illustrate, with the
example of the leaky integrate and fire as neuron model, a way to include a plasticity rule in an
interacting neural network. Finally, we present some mathematical methods used in this thesis to
study such models: timescale separation and mean field approximation.

1.2.1 Notations

In the following, we are interested in modelling neural networks composed of N interacting neu-
rons. We label these neurons from 1 to N . We denote by V i,N

t ∈ R the membrane potential at
time t of the neuron i and V N

t = (V i,N
t )1≤i≤N . The time spent since the last spike of the neu-

ron i is denoted by Si,Nt ∈ R+ and the complete vector is SNt = (Si,Nt )1≤i≤N . We denote by
WN
t = (W ij,N

t )1≤i,j≤N ∈ RN2
the synaptic weight matrix at time t. The strength of the effect of

the neuron j on neuron i at time t is given by W ij,N
t (W i←j,N

t in the previous notation which is
replaced by W ij,N

t in the following). We denote by Ii,Nt the synaptic current defined as

Ii,Nt =
1

N

∑
j

W ij,N
t V j,N

t .

1.2.2 Modelling STDP

On the modelling point of view, some important properties of synaptic plasticity are locality, co-
operativity, competition and the boundedness of the weights, see [93, 57]. Locality means that
the main variables responsible for plasticity are local: closely linked to the synapses. Cooper-
ativity means that the neurons must be simultaneously active in order to give rise to a synaptic
modification. Competition between synapses comes from the fact that resources are finite so that
there should be a balance when weights are modified: when there is a synapse potentiated, some
other synapses should then be depressed. The boundedness property can be justified with a similar
argument. We see how STDP models match with these different properties.

Following the first experiments on STDP, many plasticity models based on the precise spiking
times have been proposed. At the beginning, physicists linked STDP models to rate based ones,
see for instance [79], and highlighted the difference between them. Precise spiking times have then
been showed to play a crucial role in structuring the synaptic weight matrix, see [31, 106, 122].
We give here the general ideas of existing STDP models without entering into the details, see [102]
for a very good review.

We consider a fully connected neural network. Therefore, the synapses for which the neuron
i is the postsynaptic (resp. presynaptic) neuron are given by the weights (W ij,N

t )1≤j≤N (resp.
(W ji,N

t )1≤j≤N ). We denote by (T ik)k∈N∗ the sequence of spiking times of the neuron i. We
consider only pair-based models. This means that as soon as one of the neuron spikes, we only
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consider the pairs that it forms with the last spikes (not the previous ones) of the other neurons.
We detail this kind of rule formally. Each time a neuron spikes, say neuron i at time T ik, we apply
the following plasticity rule to every weight associated to the neuron i:

W ij,N

T ik
= W ij,N

T ik
− + F+

(
Sj,N
T ik
− ,W

ij,N

T ik
−

)
and W ji,N

T ik
= W ji,N

T ik
− − F−

(
Sj,N
T ik
− ,W

ji,N

T ik
−

)
,

where F+ and F− are two functions from R+ ×R to R+ and T ik
− represents the time just before

T ik. Most models have used functions with separable variables, that is to say, for all (s, w) ∈
R+ × R:

F+(s, w) = F+
1 (s)F+

2 (w) and F−(s, w) = F−1 (s)F−2 (w).

The classical functions F+
1 and F−1 are derived from an approximation of the Figure 1.3a. Thus,

for the two parameters τ+, τ− ∈ R+ these functions are given by

F+
1 (s) = F+

1 (0) exp

(−s
τ+

)
and F−1 (s) = F−1 (0) exp

(−s
τ−

)
.

Note that the variable s represents the absolute value of ∆t of Figure 1.3a. Other functions have
been proposed according to experimental results, see for instance [2, 63]. Finally, depending on
the functions F+

2 and F−2 different plasticity rules have been proposed:

• the additive STDP rule, see [79]:

F+
2 (w) ≡ λ and F−2 (w) ≡ λα,

where λ is the learning rate and α is a parameter to create asymmetry between potentiation
and depression,

• the multiplicative STDP rule, see [118]:

F+
2 (w) = λ(1− w) and F−2 (w) = λαw,

where w ∈ [0, 1),

• the power law STDP rule, see [65]:

µ > 0, F+
2 (w) = λwµ and F−2 (w) = λαw.

STDP rules have the first three properties : locality, cooperativity and competition [120]. The
weight boundedness is then ensured either by hard or soft bounds. In the so-called hard bound
models, the weights are forced to be bounded. Models for which weights are bounded autonomously
are called soft bound models, an example of which is the multiplicative STDP model.

These models are usually studied using a slow fast analysis as the weights dynamics is much
slower than the neural dynamics. Hence, the assumption λ � 1 is often used meaning that small
weight changes are assumed to occur at each spike pair. The neural dynamics are discussed in
the next section but it is usually given by modelling spiking times arrival as random variables,
see [79]. However, there are only few models introducing randomness into changes of synaptic
weights in the STDP rule, see [9, 10, 60]. Yet, there are many sources of randomness in synaptic
plasticity, from thermal noise to protein states. We will therefore subsequently look for a simple
plasticity rule which is easy to implement in a neural network model and which assumes that the
evolution of synaptic weights are random while respecting the results of neurobiologists.
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1.2.3 Implementing Plasticity within Spiking Neural Network Models

There exist many single neuron models of the membrane potential that we list in chronological or-
der: Integrate and Fire [84], Leaky Integrate and Fire [77], Hodgkin–Huxley [69], FitzHugh–Nagumo
[43, 103], Morris–Lecar [101], Adaptive exponential integrate-and-fire [22]. This list is of course
not exhaustive. In these models, the dynamics of the membrane potential Vt of a neuron is given
by a differential equation. Sometimes, Vt is coupled to another variable which usually represents
the environment of the neuron or some parts of it such as the states of its ion channels. The equa-
tion on the membrane potential always depends on the input current. It is the principal element
containing neural interaction and also where the plasticity can potentially be implemented. We
give a concrete example of a model of spiking neurons in interaction and show how plasticity
could be implemented in it. In this example, the model described was proposed in [86, 109] and
then a mathematical analysis of it was done in several studies, first with PDE methods [27] and
then with probabilistic ones in [35, 38, 39]. Their common approach bears the name of mean field
approximation. The basic idea of such an approach is detailed in the next section.

Example 1.1. For simplicity and to make clearer the example, we do not include the noise term.

From an external current It : R+ → R, a constant R > 0, a resting potential Vrest ∈ R and a
threshold potential Vjump > Vrest, the Leaky Integrate and Fire (LIF) model is defined as:

V0 = Vrest and ∀t ≥ 0, T
dVt
dt

= −(Vt − Vrest) +RIt

with Vt immediately reset to Vrest when it reaches Vjump.

From this simple model, one can derive the following neural network:

V i,N
0 = Vrest and ∀t ≥ 0, ∀i ∈ J1, NK, T

dV i,N
t

dt
= −(V i,N

t − Vrest) +RĨi,Nt ,

where V i,N
t is immediately reset to Vrest when it reaches Vjump and the synaptic current Ĩi,Nt can

be derived as
Ĩi,Nt =

W

N

∑
j

∑
k

δ0(t− T jk ),

where T jk is the time of the kth spike of the neuron j and W > 0 is the interaction term (excitatory
neural network interacting through a common weight). The membrane potential “kicks” generated
by the spike of another neuron represent the EPSCs previously introduced in Section 1.1.2.

Implementing plasticity in this model can be done by making the weights dynamical and different
one from each other: hence, W becomes Wt ∈ RN2

+ where positivity means that we model a
network of only excitatory neurons. Then, we have to specify the weight dynamics, see Section
1.2.2 for examples. Finally, the synaptic input is now given by:

Ĩi,Nt =
1

N

∑
j

∑
k

W ij
t δ0(t− T jk ).

We do not enter into more details because we do not use such models in the following. However,
it is interesting to note that such models (the one without plasticity) can be approximated at the
macroscopic level using probabilistic tools: at this level, the typical neuron dynamics lies on its
spiking rate.
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The mathematical analysis of neural networks models (in which the neurons are modelled by their
membrane potential) is already complex. That is why simpler single neuron models are usually
considered in neural network models with plasticity. For instance, we previously referred to rate
based models. However, these models cannot take into account STDP as they are a valid de-
scription on the timescale of 100 milliseconds and more, see [79]. Hence, most of the models
implementing STDP make the use of what is called the Poisson neuron model. This model gives
the spiking times of a neuron as the jump times of a Poisson process, see Definition A.4 in the
appendix. This model is convenient as it provides the spiking times necessary to use STDP rules.
Initially, physicists linked this model of spiking neurons to STDP to rate based models of plas-
ticity, see [79]. In this work, Kempter et al., using a timescale separation (plasticity much slower
than the neural dynamics) on a STDP model, obtain a similar rate based model as the one pro-
posed by Linsker in [88]. Nevertheless, they found that an additional term, due to the correlations
of the precise spiking times, was present in the equation. Kempter et al. then studied these cor-
relations and their effect on the spiking rate in the case of two input scenarii, see [78]. The main
difficulty for extending this analysis to more general spiking neuron models is the computation
of the correlations. Moreover, they modelled the dynamics of afferent synapses of one neuron
(the output neuron) connected to N other ones (the input neurons). Hence, their study had to be
extended to recurrent neural networks. It was done in several studies, see [25, 58, 126], using (as
in Kempter et al.) Poisson neurons. These works were then extended in many ways: replacing the
plasticity rule by a probabilistic one in [60], using LIF neurons in [107, 106] and adding intrinsic
noise to the synapses in [122]. This list is not exhaustive but they all use the simplification ob-
tained by Kempter et al.. None of them get an exact limit dynamics from the timescale separation
as they compute the correlations matrix of the spiking times with the approximation method first
proposed in [87], see [126] for further details on this method. Hence, there does not exist rigorous
mathematical analysis of neural networks with STDP. In Chapters 3 and 4, we propose such an
analysis implementing STDP within a neural network model closed to the Poisson neuron model
and introduced in [15].

1.2.4 Mathematical methods: slow fast analysis and mean field approximation

We previously referred to some mathematical methods to analyse models either using a separation
of timescale (slow-fast analysis) or the increasing number of neurons (mean field approximation).
In this section, we detail their main idea and give examples to illustrate them.

Slow-fast analysis

We use slow-fast methods when we can make the assumption of a large difference between the
timescales of two or more variables. When such an assumption is justified (by experiments for
instance), we propose a new model in which this difference appears clearly in the new dynamical
equations. These equations are usually parametrised by a small variable ε. In this new framework,
when ε tends to zero, on the fast timescale, the fast variable “sees” the slow variable as being
constant. On the slow timescale, the slow variable “sees” the fast variable under its stationary
state (if it exists). Therefore, when it exists, the limit of this new dynamical model when ε tends
to zero is then determined: it gives the dynamics of the slow variable in function of the stationary
behaviour of the fast one. Usually, the limit system is simpler than the initial one and thus easier
to handle with. Its analysis can bring new insights in the initial model. We give a really simple
example of such a timescale separation.
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Example 1.2. We take an example presented in [51] (Example 2.2). Let consider two coupled
variables (vεt , w

ε
t )t≥0 ∈ R2, a Brownian motion (Bt)t≥0 and parameters ε > 0, σ ∈ R+ such

that
dvεt = −1

ε
vεt dt+ σ

1√
ε
dBt and dwεt = (vεt )

2dt− wεtdt. (1.1)

Thus, when ε tends to zero, wεt can be approximated by wt, the solution of

dwt
dt

=

∫
R

(v2 − wt)ρ(dv),

where ρ is the invariant measure of the process (vεt )t≥0. Note that this measure does not depend
on ε. Indeed, changing the time scale in equation (1.1) does not modify its invariant measure
and thus, on the timescale u = t

ε , we observe that ρ is also the invariant measure of the process
(vu)u≥0 such that

dvu = −vudu+ σdBu.

The term “approximated” we used here holds in the following sense:

∀δ > 0, ∀T > 0, lim
ε→0

P

(
sup
t∈[0,T ]

‖wεt − wt‖ > δ

)
= 0.

In this example, the limit system is deterministic but it could be stochastic, see the results of
Chapter 3, Theorem 3.16 for instance.

Mean field analysis

The mean field method consists in interpreting a dynamical system from another point of view,
using some “average” behaviour. Like the separation of timescale, it addresses the issue of scale
change. In particular, its aim is to bridge the gap between the microscopic scale and the macro-
scopic one. Here, the scale is determined by the size of the microscopic system: to fix the ideas,
we consider a system with N neurons. As the number of neurons tends to infinity, if the global
effect of the interaction remains finite, one can apply a mean field method and obtain a simplified
model (compared to the finite size neural network when N is large) describing the dynamics of
the neurons’ statistics. We provide an example which gives a first introduction to the models used
in Chapters 3 and 4.

Example 1.3. We model a neural network of N neurons, described by the vector of their states
V N
t ∈ {0, 1}N , and interacting by the mean of one single weight W ∈ R. The dynamics is

summarized by the following reaction:

∀t ≥ 0, ∀i ∈ J1, NK, 0
α
(
W
N

∑
i V

i,N
t

)
−−−−−−−−−−⇀↽−−−−−−−−−−

β
1,

where α is a smooth function from R+ to [αm, αM ] with 0 < αm ≤ αM < ∞. In order to study

this model, we denote by V N
t

def.
=

∑
i V

i,N
t

N the empirical mean of the sequence (V i,N
t )1≤i≤N . In

particular, note that α
(
W
N

∑
i V

i,N
t

)
= α

(
WV

N
t

)
. Then, using the results of the paper of Kang

and Kurtz [75], it can be shown that

∀δ > 0, ∀T > 0, lim
N→+∞

P

(
sup
t≤T
|V N

t − V t| > δ

)
= 0,
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where V 0 = limN→+∞ V
N
0 and satisfies the ODE

dV t

dt
= (1− V t)α(WV t)− βV t.

This model is very rich when splitting the neurons in two subgroups, an excitatory group and an
inhibitory one, giving rise to the use of four typical weights, see [15] for more details.

1.3 A new model of STDP within a neural network (Chapters 3 and
4)

A large amount of studies have been focused on neural networks dynamics with the aim of repro-
ducing biological phenomena. Thereby, there exist many different individual neuron models from
the binary neurons to the adaptive exponential integrate-and-fire, see [56, 72]. As developed in
Section 1.2.3, plasticity can be implemented within these models. Over the last few decades, such
models have been proposed with goal to explain the experimental results as well as going beyond
them. We saw in Section 1.2.3 that there was no rigorous mathematical analysis of models in
which the neural dynamics interplays with spike timing dependent plasticity. Moreover, although
there are a lot of deterministic studies in neural network modelling, with or without plasticity and
mainly using dynamical systems theory, we find much less probabilistic analyses while the brain
is far more stochastic than deterministic.

This is changing thanks to the development of numerous probabilistic models. For example,
Robert and Vignoud recently worked on a rigorous mathematical analysis of numerous plastic-
ity models belonging to a general class of models that they introduced and on which they found
limit dynamics using a separation of timescale method, see [114, 115]. While they analysed the
precise synaptic weight between an input and an output neuron, we propose in this thesis a new
model of STDP involving a neural network interacting through dynamical synaptic weights. First,
we precise our motivations, going beyond the need of a mathematical understanding of plastic
neural networks, while presenting our new model. Then, we give the main results of Chapters 3
and 4.

1.3.1 Motivations for a new model and its description

Motivations

Motivations for proposing such a new model are four folds. First, although the mechanisms in-
volved in plasticity are mainly stochastic (for instance the opening of ion channels or activation
of proteins, see [74]), the majority of studies on STDP are implemented using a deterministic de-
scription or an extrinsic noise source [102, 31, 63]. One exception is the stochastic STDP model
proposed by Appleby and Elliott in [9, 10]. The stochasticity of their model lies in the learning
window size. They analysed the dynamics of the weights of one target cell innervated by a few
Poisson neurons. They performed a fixed point analysis on the dynamics of the weights. This
analysis enabled them to show that multispike interaction (more than two-spike interaction) are
required to get stable competitive weight dynamics. Instead of the window size, we propose to
introduce stochasticity within the STDP curve. Indeed, in the first experiment providing a relation
between spikes’ pair and the strength of plasticity, see [17], the results does not seem deterministic
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but rather probabilistic. Hence, instead of the classical exponential STDP curves combined with
a small increment of the weights each time a spike occurs, we use a probabilistic increment: we
change the weights linked to the spiking neuron according to Bernoulli variables with parameters
given by two functions p+ and p− that depend on the absolute value of the time between the spike
pair considered and the actual weight, thus p+, p− : R+ × R → [0, 1]. Thus, it enables us to be
close to biological experiments [17], see Figure 1.5.

Secondly, most studies are based on numerical analyses. Thus, there is still a need to find a good
mathematical framework, see [52, 89, 107]. Despite previous attempts, rigorous results in plastic
neural network are still lacking. In particular, rigorous timescale separation under the experimen-
tally supported assumption that synaptic plasticity is much slower than neural dynamics and a
mean field analysis of such models does not exist yet. In order to tackle these problems, we opted
for a simple neural dynamics with binary neurons, the probabilistic Wilson-Cowan model [15], in
which we implemented a stochastic STDP rule, see below for the presentation of this rule.

Thirdly, long term plasticity timescale ranges from a few minutes to more than an hour. On the
other hand, a spike lasts a few milliseconds [102]. Thus, there is a need to understand how to bridge
this timescale gap between the synapses level and the network one [45, 136, 128]. Although this
timescale difference has already been exploited in other studies, the long term behaviour of the
limit model remains unclear. The assumption of discrete weights and the probabilistic framework
leads us to a simple Markov chain as limit model.

Finally, the interplay between the dynamics of the weights and the neural dynamics is not yet fully
understood. We think that the mathematical study of biologically plausible model is necessary
to bring the basis of this understanding. The Wilson-Cowan model has been widely studied [21,
15, 89] and reproduces many biological features of a network such as oscillations and bi-stability.
Thus, we obtain a model rich enough to reproduce biological phenomena, simple enough to be
mathematically tractable and easy to be simulated with thousands of neurons.

The new model

We now detail the model more precisely. We study a neural network of N binary neurons,
V N
t ∈ {0, 1}N , connected by weights, WN

t , living on a grid of size ∆w. We obtain a Markov
process by adding the time from the last spikes of neurons, SNt ∈ RN+ . Therefore, we con-
sider the Markov process (V N

t , SNt ,W
N
t )t≥0. The model of individual neuron is a simple binary

chain: the state V i,N
t of the neuron i jumps from 0 to 1 at rate αi(V N

t ,WN
t ) and jumps from 1

to 0 at constant rate β. A spike occurs when one of the components of V N
t jumps from 0 to 1.

When a neuron spikes, say neuron j0, its post- and presynaptic weights can be changed according
to a probability depending on SNt and WN

t : W j0k,N
t is potentiated (incremented of ∆w) with

probability p+(Sk,Nt ,W j0k,N
t ) and W kj0,N

t is depressed (decremented of ∆w) with probability
p−(Sk,Nt ,W kj0,N

t ). This dynamics is represented in Figure 1.4. In Figure 1.4a, the dynamics of
one neuron is plotted. In Figure 1.4b, the dynamics of the time from the last spike of this neuron is
added to the previous plot. Finally, in Figure 1.4c, the dynamics of the weight linking this neuron
to another one is added to the previous plot.
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Figure 1.4: (1.4a): Typical trajectory of (V 1,N
t )t≥0. (1.4b): Typical trajectory of (V 1,N

t , S1,N
t )t≥0.

(1.4c): Typical trajectory of (V 1,N
t , S1,N

t ,W 12,N
t )t≥0.
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Figure 1.5: (1.5a) Mean change of weights in the new model after 60 pairs of spikes with the func-

tions p+(s, w) = A+e
−s
τ+ and p−(s, w) = A−e

−s
τ− where A+=1,A−=0.4, τ−=34ms, τ+=17ms

as in [61]. (1.5b)) Bi-Poo experiment results obtained in [17]. (1.5c)) Classical STDP curve in
deterministic STDP modelling.

1.3.2 Slow-Fast Analysis

In Chapter 3, we study the slow-fast phenomenon. The number N of neurons is fixed. To alleviate
the notations, we do not keep it in the notation. Thus, we study the Markov process (Vt, St,Wt)t≥0

in the context of long term plasticity: synaptic weight dynamics is much slower than the neural
network one. In previous works, see [102], the timescale separation assumption is formally im-
plemented as follows: at each spike pair, every weight linking the spiking neurons is increased
or decreased of a value proportional to the small scaling parameter ε that tends to zero. Hence,
several spike pairs are necessary to observe a macroscopic change of the weights. We propose here
a different approach: at each spike pair, every weight linking the spiking neurons is increased or
decreased of a macroscopic value with a certain probability tending to 0 with ε. This approach can
be discussed but some studies have shown that it would be more realistic as synapses have a finite
number of states and thus should be discrete and not continuous, see [108]. Our scaling parameter
thus influences the jumping probability of weights at each spike pair. The slow-fast analysis then
consists in firstly studying the fast process and its long time behaviour and secondly describing
the slow dynamics on its own timescale. Hence, we first consider the process (Vt, St|Wt ≡ w)t≥0

(fast process) and show that it converges to a unique invariant measure that we denote πw. Then,
we define the scaled process (V ε

t , S
ε
t ,W

ε
t )t≥0 indexed by a small parameter ε ∈ (0, 1) such that

the jumping probability of the weights tends to 0 with ε. Note that the invariant measure of the
fast process (V ε

t , S
ε
t |W ε

t ≡ w)t≥0 is still πw for all ε. We obtain the dynamics of the weights
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depending on this invariant measure in the limit ε tends to zero. Finally, we study the long time
behaviour of this asymptotic dynamics.

Main results (informal)

We assume that ∆w = 1. For every ε > 0, the process (W ε
t )t≥0 takes values in the space

E2
def.
= {w ∈ NN

2

∗ : ∀i, wii = 0}.

When the neuron i spikes, say at time t, we denote by φεi : RN+ × E2 × E2 → [0, 1] the transition
probability of the weights conditionally to the times from the last spikes Sεt− , see Assumptions 3.9
and 3.10. In particular, we show in Proposition 3.11 that assuming one of these two assumptions
leads to the same form of transition probabilities: for all i, there exist bounded functions ϕi such
that

φεi = εϕi + O(ε) .

Then, Theorem 3.16 gives the limit dynamics of (W ε
t )t≥0 when ε tends to zero. This process

converges to the Markov chain (W t)t≥0 ∈ E2 with transition rate function r such that for all
w, w̃ ∈ E2, w 6= w̃,

r(w̃, w) =
∑
i

∫
{0,1}N×RN+

αi(v, w)δ0(vi)ϕi(s, w̃, w)πw(dv, ds)

gives the jump rate from w to w̃. Hence, the generator Cav of (W t)t≥0 is such that for all f in its
domain and w ∈ E2,

Cavf(w) =
∑

w̃∈E2\{w}

(f(w̃)− f(w))r(w̃, w).

Therefore, when ε tends to 0, the process (W ε
t )t≥0 converges to the process (W t)t≥0 which is a

Markov chain on E2 whose transition probabilities depends on the invariant measure of the fast
process.

Once this result is shown, we continue with the study of the long time behaviour of (W t)t≥0. To do
so, we use some properties of the functions ϕi. In particular, we have the following relationship:

∀j 6= i,
∑

w̃ij=wij+1

ϕi(s, w̃, w) = p+(sj , wij) and
∑

w̃ji=wji−1

ϕi(s, w̃, w) = p−(sj , wji).

Hence, using the following notations,

∀w ∈ E2, r+
ij(w)

def.
=

∑
w̃ij=wij+1

r(w̃, w) =

∫
{0,1}N×RN+

αi(v, w)δ0(vi)p+(sj , wij)πw(dv, ds),

r−ij(w)
def.
=

∑
w̃ij=wij−1

r(w̃, w) =

∫
{0,1}N×RN+

αj(v, w)δ0(vj)p−(si, wij)πw(dv, ds),

we obtain a criterion on r+
ij and r−ij for transience and positive recurrence of the chain (W t)t≥0,

see Proposition 3.24. Let us enlighten that if p+ and p− are separable functions (product of a
function depending only on w and a function depending only on s) with exponential dependence
on s, the Laplace transform of πw is natural to use in the definition of r+

ij and r−ij . More generally,
assume that p+ and p− are separable functions with functions on s that can be written as Laplace
transforms of some functions P+/−:

p+/−(s, w) = p
+/−
1 (s)p

+/−
2 (w) where p

+/−
1 (s) = L{P+/−}(s).
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Then, we can transfer this Laplace transform to the one of πw in the transition rates, see Remark
3.35. Therefore, we compute the Laplace transform of πw to study the process (W t)t≥0. Then we
obtain a criterion based on exact computations that we did at the end of the chapter on an exam-
ple. Surprisingly, we observe transience even when p+ < p− and more importantly, simulations
showed that the increasing size of the network seems to prevent divergence of the weights under
weaker assumption than the one needed in the case of only two neurons.

1.3.3 Mean Field Analysis

In Chapter 4, we study the largeN asymptotic behaviour of the Markov process (V N
t , SNt ,W

N
t )t≥0

where for all i, αi(V N
t ,WN

t ) = α
(

1
N

∑
jW

ij,N
t V j,N

t

)
with α a strictly positive and bounded

function. In particular, we are interested in the dynamics of new variables X1,N
t , . . . , XN,N

t de-
scribing the neural network such that for all i,

ξi,Nt =
1

N

∑
j

δ
(V j,Nt ,Sj,Nt ,W ij,N

t )
∈
{

probability measures on {0, 1} × R+ × Z︸ ︷︷ ︸
def.
= Em

}
def.
= P(Em)

is an empirical measure and Xi,N
t = (V i,N

t , Si,Nt , ξi,Nt ) ∈ E = {0, 1} × R+ × P(Em). The
empirical measure obtained from these variables is denoted by µNt . Finally, we denote by I the
function from the space of the measures on Em to R+ such that for such a measure ξ,

I(ξ) =

∫
w v ξ(dv, ds, dw).

In particular, I(ξi,Nt ) is the average synaptic current onto the neuron i at time t.

Main results (informal)

Assume that for all T > 0, in the large N asymptotic, the empirical measures (µN )N∈N∗ on
P(DE [0, T ]) (càdlàg functions from [0, T ] to E, see Definition 3.15) converge in law (see Defini-
tion A.1 in the appendix) to a deterministic measure µ∗ ∈ P (DE [0, T ]). Moreover, assume that
for all t ≥ 0, µ∗t and ξ∗t admit densities of class C1 in s and in particular at time t = 0, for all
w ∈ Z, the following densities satisfy the boundary conditions for µ∗0 almost all ξ∗0 ,

ξ∗0
0(0, {w}) = 0

ξ∗0
1(0, {w}) =

∫
R+×P(Em)

α
(
I(ξ′)

)ξ∗00(s′, {w})
ξ∗0

0(s′,Z)
µ∗0({0}, s′, dξ′)ds′,

where we use the abuse of notation

µ∗t ({v}, ds, dξ) = µ∗t ({v}, s, dξ)ds and ξ∗t
v(ds, {w}) = ξ∗t ({v}, s, {w})ds.

Then, we conjecture (in Conjecture 4.18) that a typical neuron X∗t = (V ∗t , S
∗
t , ξ
∗
t ), with law µ∗t ,

satisfies the following McKean-Vlasov stochastic differential equation (SDE):

1. dS∗t = dt,
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2. ξ∗t admits a density in s such that
dξ∗t

0

dt (s, {w}) = −∂sξ∗t 0(s, {w}) + βξ∗t
1(s, {w})−

∫
P(Em) α

(
I(ξ′)

) ξ∗t 0(s,{w})
ξ∗t

0(s,Z)
µ∗t ({0}, s, dξ′)

ξ∗t
0(0, {w}) = 0,


dξ∗t

1

dt (s, {w})= −∂sξ∗t 1(s, {w})− βξ∗t 1(s, {w})

ξ∗t
1(0, {w}) =

∫
R+×P(Em) α

(
I(ξ′)

)p−(S∗t ,w)ξ∗t
0
(s′,{w+1})+(1−p−(S∗t ,w))ξ∗t

0(s′,{w})
ξ∗t

0(s′,Z)
µ∗t ({0}, s′, dξ′)ds′,

3. At rate β1{V ∗
t−

=1}, (V ∗t− , S
∗
t− , ξ

∗
t−) jumps to (0, S∗t− , ξ

∗
t−),

4. At rate α
(
I(ξ∗t−)

)
1{V ∗

t−
=0}, (V ∗t− , S

∗
t− , ξ

∗
t−) jumps to (1, 0, ν+(ξ∗t−)) where

ν+(ξ∗t−)({v}, A, {w}) =

∫
A
p+(s, w − 1)ξ∗t−({v}, s, {w − 1})ds

+

∫
A

(1− p+(s, w))ξ∗t−({v}, s, {w})ds

for all ({v}, A, {w}) ∈ B(Em).

We give some details on this limit system. The first and second points are the drift terms and both
last points are the jump terms. The drift on ξ∗t is composed of three parts. First, the linear increase
of s which is the term in −∂s. Second, the mass transport from ξ∗t

1 to ξ∗t
0 at rate β. Finally,

the mass transport from ξ∗t
0 to ξ∗t

1 at a rate depending on µ∗t with the reset of s in 0 giving the
boundary condition in s = 0 for ξ∗t

1.

1.4 Plasticity and memory (Chapter 2)

The role played by synaptic plasticity in the processes of memory formation and maintenance
has been shown in many experiments from several years now, see [99] and [111]. However,
synaptic plasticity does not seem to be the only mechanism responsible for memory. Some other
mechanisms are put forward such as intrinsic neuron mechanisms, see [125], or stabilization of
the memory at the network level, see [100]. The idea of the network level memory is implemented
in the Hopfield model in which memories are attracting states of the neural dynamics: these states
are recurrently visited and by this way, their trace is enhanced. After a presentation of various
models of memory taking roots in the Hopfield model [70], we give more details on the model we
use in Chapter 2 and our results.

1.4.1 Network Models of Memory

One of the most important question in neuroscience is about the neural code. How does the
brain represent, store and then restore signals? Since the discovery of synaptic plasticity and its
implication in memory, many memory models have been proposed. A lot of work has been done
from the proposal of what is called the Hopfield model [70] in 1982. Hopfield gave rise to this
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model by applying the networks of threshold automata (NTA) to memory problems. There exist
many variant of this model and more importantly, it is at the basis of many research on the topic of
memory retrieving and memory capacity. This research diverged in two different branches. In the
first one, models are based on a fixed synaptic weight matrix in which a given number of stimuli
are stored, see [133, 70, 54, 127]. The second branch, see [49, 85, 48, 129, 42, 117, 16], followed
the work of Amit and Fusi [5] in which they proposed a model to study the memory capacity of a
plastic neural networks. We give the main ideas of these two branches.

ANN models

One of the most studied aspect of memory is the associative memory: capacity to recall an infor-
mation when it is presented again entirely or partially. We can refer to the Pavlovian reflex as a
famous example. Associative memory is usually modelled by attractor neural networks (ANN)
in which the signals (or stimuli) to learn generate neural activity patterns. These signals are ef-
fectively learnt as soon as their corresponding neural activity patterns are stable fixed points of
the neural network dynamics. This dynamics is governed by a synaptic weight matrix. Thus, the
information is stored in this matrix. The function of the patterns which determines this matrix is
the main difference between the various ANN models. Among the most famous, we can quote
the models of Willshaw [133], Hopfield [70] and Amari [3]. The question that naturally arises is:
how many patterns can be stored by such models? Physicists as well as mathematicians studied
extensively this problem, especially on the Hopfield model. A capacity of 0, 14N (where N is
the size of the network) was put forward by physicists in [6] whereas rigorous results were proved
on the lower bound of this capacity: it has been successively proved to be superior to 0, 056N in
[104], 0, 071N in [90] and 0, 084N in [124]. Much better results have been found in the sparse
neural coding case: a small proportion of neurons are activated by external signals. In this case,
the memory capacity has been shown to scale as N2

(logN)2
, see [64] and references therein. Similar

results have been found in models with plasticity.

SNR analysis of Plastic Models of Memory

How to simply model memory formation and how to test it? In the second branch of memory
models, the general framework consists in considering a sequence of independent random signals
presented to the network thereby changing its structure such that at least the last signals are re-
membered. Plasticity rules are responsible for modifying the structure and signal theory methods
are used to test the quality of the learning. The retrieval criteria proposed in [5, 49, 48, 117, 16] are
similar and based on a signal to noise ratio (SNR) analysis. There is no neural dynamics in these
models and their differences lie in the weight dynamics that we detail in the following paragraph.
In order to compute the SNR, a memory signal of a stored memory is defined. We assume that a
sequence of memories are stored at different times that we denote by (tl)l∈N. Let us consider the
memory stored at time tk. It is the overlap between the actual weights, noted (wjt )1≤j≤N , and the
possible weight changes induced by the kth signal, noted (∆wj

tk
)1≤j≤N . For all t ≥ tk, we denote

it by Zt,k:

Zt,k =
1

N

N∑
j=1

wjt∆w
j
tk
. (1.2)

This signal is noisy as the presented stimuli are random as well as the weight dynamics. The SNR
is then the expectation of the signal divided by its standard deviation. In this framework, the SNR
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is a quantity that theoretically measures the trace of a signal. Here, by theoretically we mean that
there is no direct link between this SNR and any specific retrieval process. The only test that could
be done on this quantity is to compare it to its asymptotic value in time. We could then for instance
use a threshold estimator of the signal trace: when the SNR is above the threshold, the signal is
still in memory, and below this threshold, the signal is not in memory anymore.

Now, we deal with the differences between these models. First, except from [5] where the synaptic
weights depend on the neural interpretation of the signal, in other models, there is no neural
network considered and only N weights are modelled. The binary synapse models give poor
capacity results except when the coding level (probability that a neuron is selective to a signal) is
of the order of log(N)

N (sparse coding), see [5]. Moreover, this capacity can be improved, without
sparse coding, either by adding internal states to the weights (which can be called metaplasticity)
see [49], or by partitioning the synapses into subgroups with different levels of plasticity, see
[117]. However, considering multi-states synapses does not seem to give better results than the
binary case, except under really specific conditions on the parameters, see [48]. Finally, in [16],
defining the weight dynamics using a decay kernel, they found much more efficient models. There
is a general review on these models proposed in [47].

1.4.2 Model and Results

Motivations

First, the SNR is defined in different ways depending on the application. The definition used here
refers to the one used in signal detection theory. The idea behind this quantity is to measure the
ability to separate the signal from the surrounding noise. In general, it is linked to the probability
of error in distinguishing the signal from the noise. In the current framework, it is related to the
probability of answering correctly to the question: have you ever seen this signal before? The prin-
cipal advantage of the SNR is to be easily tractable and then adapted to a rigorous mathematical
analysis, see [82] for such an analysis in the case of only synaptic weight dynamics.

However, it does not provide a way of retrieving the signal (or the pattern activity generated by the
signal) as the ANN models do. The SNR analysis is not the only possibility to get information on
the memory of the signal left. Several other methods have been proposed based on global variables
in order to compute the memory capacity, see [85] and [42] for example. Similarly to the SNR,
they do not give precise information on the memory retrieval.

The first study providing such an analysis is [8] by extending the model of [5]. Using a similar
idea as ANN, they computed what they called a retrieval probability. Then, a precise analysis of
the same model has been done in [41] in the large N asymptotic. In order to compute the proba-
bility of error, both [8] and [41] used strong assumptions. In [8] they used Gaussian assumption
and independence between the synaptic currents. In [41] they assumed that the synapses are inde-
pendent. Therefore, there does not exist rigorous analysis of the memory lifetime in the Amit-Fusi
model. Moreover, in the SNR analysis previously proposed, the asymptotic value in time of the
standard deviation of the memory signal is used instead of the time dependent standard deviation.
However, it is not obvious that for any time this standard deviation is of the same order (in N ) as
its asymptotic (in time). Finally, the SNR is based on the synaptic current received by only one
neuron and then get rid of the difficulty generated by correlations.

In Chapter 2, we extend the previous mathematical results on the Amit-Fusi model on many points:
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we compute the exact variances of the synaptic currents, we find the spectrum of the transition
matrix of the synaptic current and of the weight matrix and finally, we give a lower bound on the
time that a simple threshold estimator of the neural activity spend below a given probability of
error.

Model and Results

We present here the model and, in an informal way, the results obtained in Chapter 2. The model
is designed according to a learning protocol. The two components of this model are the neural
network of N neurons, described by the neuron potentials (V N

t )t∈Z ∈ {0, 1}N , and the weight
matrix without the diagonal terms, (WN

t )t∈Z ∈ {0, 1}N(N−1). The time is discrete as the vari-
ables evolve upon the presentation of a sequence of external signals. The signals or stimuli (we
use both terms in the following) modify the neural network. This change leads to probabilistic
modifications of the synaptic weights.

The external signals are assumed to be random, independent and identically distributed (i.i.d.) as
well as their neural responses (V N

t )t∈Z. We denote by fN ∈ (0, 1) the coding level such that

∀i ∈ J1, NK, P
(
V i,N
t = 1

)
= 1− P

(
V i,N
t = 0

)
= fN .

Knowing V N
t and WN

t we have for all i 6= j:

• if (V i,N
t , V j,N

t ,W ij,N
t ) = (1, 1, 0), P

(
W ij,N
t+1 = 1

)
= q+,

• if (V i,N
t , V j,N

t ,W ij,N
t ) = (1, 0, 1) (resp. (0, 1, 1)), P

(
W ij,N
t+1 = 0

)
= q−,N10 (resp. q−,N01 ).

Adding the assumption that at time t = 0, the network has reached its stable state (in law), ends
the description of the Amit-Fusi model introduced in [5].

In this framework, we study how to measure the ability of this model to keep in memory a given
signal. We propose to change the protocol in order to test the effect of multiple presentation of a
given signal to learn. Thus, we denote by r ∈ N∗ the number of times this signal is presented and
V N

0 ∈ {0, 1}N its neural response. We assume that (V N
−r,W

N
−r) is in its stable state (in law) and

that V N
t = V N

0 for t ∈ {−r + 1, · · · , 0}.

Our results hold on the synaptic currents onto the neurons. Indeed, in order to measure the ability
of the network to remember the signal to learn, we compute the estimation of its neural response
at time t > 0, that is to say after the presentation of some other signals that are noise for the one
to learn. This estimation is based on the synaptic currents that would be obtained if the signal to
learn is presented again at time t > 0. We denote by (hNt )t∈Z such a sequence of synaptic currents
onto the neuron 1:

hNt =

N∑
j=2

W 1j,N
t V j,N

0 .

Denoting by (hNt,K)t∈N∗ the process such that hNt,K = hNt knowing that
∑N

j=2 V
j,N

0 = K, we
show in Chapter 2 that this process is Markov and satisfies
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Proposition 1.4. (Proposition 2.12)
The spectrum of the transition matrix PNK of

(
hNt,K

)
t≥1

is

Σ
(
PNK
)

=
{

(1− fN )(ΛN0 )i + fN (ΛN1 )i, 0 ≤ i ≤ K
}
,

where ΛN0 = 1− fNq−,N01 and ΛN1 = 1− (1− fN )q−,N10 − fNq+.

Moreover, we show that

Proposition 1.5. (Proposition A.11)

The spectrum of the transition matrix MN
V,W of

(
V N
t ,
(
W 1j,N
t

)
2≤j≤N

)
t≥1

is

Σ
(
MN
V,W

)
= {λNi , 0 ≤ i ≤ N} ∪ {0},

where λNi has multiplicity
(
N−1
i

)
and 0 has multiplicity 2N−1(2N − 1).

For y ∈ {0, 1}, denoting by (hy,Nt )t∈N∗ the process such that hy,Nt = hNt knowing that V 1,N
0 = y,

we obtain

Proposition 1.6. (Proposition 2.15)
The expectations and variances of h0,N

t and h1,N
t satisfy:

E
[
h0,N
t

]
= NfN

(
µ∗,N − µ0,N (λN1 )t−1

)
, with µ0,N =

(
1− (1− q−,N01 )r

) f2
Nq

+

1− λN1
,

E
[
h1,N
t

]
= NfN

(
µ∗,N + µ1,N (λN1 )t−1

)
, with µ1,N =

(
1− (1− q+)r

)(
1− f2

Nq
+

1− λN1

)
,

Var
[
hy,Nt

]2
= E

[
hy,Nt

]
(1− E

[
hy,Nt

]
) + f2

NN(N − 1)
(
C∗,N0 + Cy,N1 (λN1 )t−1 + Cy,N2 (λN2 )t−1

)
,

where C∗,N0 , Cy,N1 and Cy,N2 are constants depending on the parameters and µ∗,N =
f2N q

+

1−λN1
.

Finally, the main results and contributions of this Chapter is the following.

Main Results - Contributions (informal)

For any fixed error ε ∈ (0, 1), there is an unbounded set of couples (N, r) ∈ N∗2 for which we
control the time that the signal estimation error spends above ε, see Theorem 2.27. An explicit
formula of this time is given in Remark 2.28 for fixed potentiation and depression probabilities.
Another formula of this time is given in Theorem 2.30 for depression probabilities depending on
N . In particular, assuming that the depression probabilities are proportional to the coding level
fN , we obtain that this time is of order 1

f2N
.





Chapter 2

A Mathematical Analysis of Memory Lifetime

in a simple Network Model of Memory

We study the learning of an external signal by a neural network and the time to forget
it when this network is submitted to noise. The presentation of an external stimulus to
the recurrent network of binary neurons may change the state of the synapses. Multi-
ple presentations of a unique signal leads to its learning. Then, during the forgetting
time, the presentation of other signals (noise) may also modify the synaptic weights.
We construct an estimator of the initial signal using the synaptic currents and define
by this way a probability of error. In our model, these synaptic currents evolve as
Markov chains. We study the dynamics of these Markov chains and obtain a lower
bound on the number of external stimuli that the network can receive before the initial
signal is considered as forgotten (probability of error above a given threshold). Our
results hold for finite size networks as well as in the large size asymptotic and they are
based on a finite time analysis rather than large time asymptotic. We finally present
numerical illustrations of our results.

The main results of this chapter have been published in Neural Computation [68].

2.1 Introduction

Amit and Fusi proposed in [5] a model to study the memory capacity of neural networks. The
main novelty of their work was the online learning and forgetting of a sequence of random signals.
Indeed, in previous models (e.g. [133] or [70]), signals are stored in a fixed weight matrix. This
matrix is determined as a function of signals to learn. These models are called associative or
attractor neural network (ANN) models: a stimulus is said to be stored if its neural representation
is an attractor of the neural dynamics. The maximum storage capacity of ANN models have
been widely studied. Gardner and Derrida computed this capacity for the optimal synaptic weight
matrix in [54]. They showed that maximal storage is obtained for sparse coding. Moreover, there
have been studies of the robustness to noise in the synaptic weight matrix and in the initial input.
Sommer and Dayan proposed Bayesian retrieval processes for a stochastic version of the Willshaw
model in [119]. However, beyond the maximum number of stimuli learnt, blackout catastrophe
(forgetting of all memories) appears in ANN models. One way of avoiding this blackout is to
allow the plasticity of the synapses.

The following experimental protocol is introduced in [5]: a neural network, with both binary
synapses and binary neurons, receives and learns new random stimuli while forgetting the previous
ones. Every signal may affect the synaptic weights. After a certain amount of time, the first

31
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stimulus is presented again (priming) and the ability of the network to recognize it is questioned:
how many stimuli can be presented before it forgets the initial signal? To provide an answer, Amit
and Fusi ([5]) performed a signal-to-noise ratio (SNR) analysis. The signal under consideration
is the sum of the synaptic currents onto one neuron when the network receives the priming. As
Gardner and Derrida found in the case of the ANN models in [54], Amit and Fusi concluded
that the coding of the stimuli needs to be sparse in order to optimise the storage capacity. They
proposed a scaling of the coding level fN (probability that a neuron is selective to a signal) as a
function of the size N of the network. According to their retrieval criterion, the optimal coding
level is on the order of fN ∼ log(N)

N . In the large N asymptotic, what they called the storage
capacity is then on the order of 1

f2N
for depression probabilities proportional to fN .

Extensions and approaches different from SNR have then been studied. First, Brunel, Carusi and
Fusi studied a different protocol in [23]: they fixed the number of random stimuli and presented
them randomly multiple times. Their analysis relied on the comparison of two quantities: the mean
potentiation (MP) and the intra-class potentiation (ICP). MP is the mean of synaptic weights. ICP
is the mean of synaptic weights among synapses involved in the learning of a stimulus. Intuitively,
when ICP is much larger than MP, the trace of a stimulus in the synaptic weights is still non neg-
ligible. They found two possible loading regimes, a low-loading (resp. high-loading) regime with
a memory capacity on the order 1

fN
(resp. 1

f2N
). Dubreuil, Amit and Brunel did in [41] a deeper

analysis of the multiple presentations model introduced in [23] and the one shot learning model
of [5], in the asymptotic N large and fN small. Then, Elliott considered in [42] the mean number
of signals presented before the synaptic current crosses a fixed threshold: the mean first passage
time (MFPT). More complex and biologically plausible models have been proposed and analysed
numerically in the following studies, see [7, 98, 135]. Finally, to the best of our knowledge, the
first article to present a precise way to retrieve stimuli is [8]. In this article, they insisted on the role
played by the synaptic correlations and proposed a way to compute numerically an approximation
of the distributions of the synaptic currents. It enables them to introduce a new retrieval criterion
based on what they called the retrieval probability.

Inspired by this last article, we study here a statistical test based on the synaptic currents. In
particular, we study the probability of error associated to this test. Such an error has been studied
before under some additive assumptions on the distribution of synaptic currents. Amit and Huang
did a numerical analysis with a Gaussian approximation in [8]. In [41], Dubreuil et al. gave
analytical results on the probability of no error in the large N asymptotic, assuming independence
of the synapses (which leads the synaptic currents to follow Binomial distributions). Here, we
perform an analytical study of this error without such approximations and we manage to control
it by extending previous analytical studies of [5, 8] on some points. First, we give properties
of the synaptic current process such as the spectrum of its transition matrix (Propositions 2.10
and 2.12) and the exact expectations and variances of the synaptic currents (Proposition 2.15).
Moreover, we study the case of multiple presentations of the signal to be learnt. Finally, we give
in Remark 2.28 and Theorem 2.30 explicit bounds on the time during which a given signal is kept
in memory (probability of error below a given threshold). These results deal with a broader range
of depression probabilities than in the previous studies. We summarize our asymptotic results in
Remark 2.31.

This chapter is organised as follows. We expose the model and the statistical test in Section 2.2.
After learning one specific signal, the network is submitted to random signals responsible for
its forgetting. The statistical test consists in estimating (using a threshold estimator) the initial
signal from the presynaptic inputs caused by priming. We measure whether the signal is still
in memory by computing the error associated to this test. After the formal definition of this
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error, the main results are presented. Then, Section 2.3 is devoted to the presentation of the
results. The main result consists in deriving a lower bound on the maximum number of stimuli
one can present while reasonably remembering the initial signal. This derivation relies on the
fact that, asymptotically, as time goes to infinity, synaptic currents converge in law to a Binomial
mixture (Corollary 2.23). We assume that, before learning, the synaptic currents follow their
stationary distributions. Afterwards, the learning phase splits the network in two groups: the
neurons activated by the signal and the others. Then, during the forgetting phase, the laws of the
synaptic currents of these two groups are shown to remain Binomial mixtures with an explicit
dynamics on their mixing distributions (Proposition 2.19). We evaluate the probability of error
of the statistical test and the maximum number of stimuli one can present before the test fails
(Remark 2.28 and Theorem 2.30). The computations are based on estimates on the support and on
the tail of the mixing distributions. The short proofs follow the statement of the results whereas
Section 2.4 is devoted to the long proofs. Finally, we perform numerical simulations in Section 2.5.
We give in Appendix A.2 a beginning of the study of the weights matrix dynamics which is based
on the Kronecker products of square matrices of dimension 2.

2.2 The model and the estimator

First, we present the neural network model and the protocol followed for learning and forgetting.
Then, we define the estimator, derive the equations describing the dynamics of the synaptic cur-
rents and detail the main assumptions. Finally, we present typical numerical simulations at the end
of this section.

2.2.1 The neural network and the protocol

In order to ease the introduction of the different variables, we suggest the reader to see the model
as describing an experiment on a person’s ability to learn a stimulus. In particular, we ask for how
long a learnt signal can persist in memory when the person is exposed to some other signals which
we term as noise.

Let us assume that we present a sequence of external stimuli to a network ofN +1 neurons. Thus,
we sum over N external synaptic currents to get the total synaptic current onto one neuron. We
do not study the dynamics of the membrane potential nor the firing rate of neurons, but rather we
consider their neural activities that we note V N

t ∈ {0, 1}N+1 at time t. Hence, the neurons do
not have their own dynamics but instead they follow the dynamics of the signals. We say that
the neuron i is selective (resp. not selective) to a signal presented at time t if its neural response
is V i,N

t = 1 (resp. V i,N
t = 0). We assume that a given signal uniquely determines the neural

response, see [23] for a study of learning similar neural activity patterns. Therefore, we refer in an
equivalent way to stimulus/signal or neural response in the following. Signals are assumed to be
random and we denote by (· · · , V N

−1, V
N

0 , V N
1 · · · ) the corresponding sequence. We call t the time

at which the tth signal after V N
0 is shown. We assume that for different values of t, the vectors V N

t

are independent and identically distributed (i.i.d.) with values in {0, 1}N+1. Moreover, for each t,
the components V 1,N

t , · · · , V N+1,N
t of V N

t are themselves i.i.d. with Bernoulli distribution with
parameter fN :

∀t, ∀i ∈ J1, N + 1K, fN = P
(
V i,N
t = 1

)
= 1− P

(
V i,N
t = 0

)
.
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The synaptic weight from neuron j to neuron i at time t is denoted by W ij,N
t . It can only take two

values W− < W+ and we denote by WN
t = {W ij,N

t , i 6= j} ∈ {W−,W+}N(N+1) the matrix
of synaptic weights. We consider a plasticity rule which can be viewed as a classic Hebbian rule.
The law of WN

t+1 only depends on WN
t and V N

t . The corresponding transition probabilities are

• P
(
W ij,N
t+1 = W+ |W ij,N

t = W−, (V i,N
t , V j,N

t ) = (1, 1)
)

= q+,

• P
(
W ij,N
t+1 = W− |W ij,N

t = W+, (V i,N
t , V j,N

t ) = (0, 1)
)

= q−,N01 ,

• P
(
W ij,N
t+1 = W− |W ij,N

t = W+, (V i,N
t , V j,N

t ) = (1, 0)
)

= q−,N10 .

The transition probabilities not mentioned here and involving the change of state of a synaptic
weight are equal to zero. For example, P

(
W ij,N
t+1 = W− |W ij,N

t = W+, (V i,N
t , V j,N

t ) = (0, 0)
)

=

0. In order to simplify the notation and without loss of generality, we set:

W− = 0 (weak synapse) and W+ = 1 (strong synapse).

Moreover, in order to avoid critical cases, we also assume that

fN ∈ (0, 1) and q−,N01 , q−,N10 , q+ ∈ (0, 1]. (2.1)

The parameters q−,N01 and q−,N10 represent respectively the homosynaptic and heterosynaptic de-
pressions, see [23].

We now give the protocol to learn and then forget a signal. We denote by V N
0 the signal to be learnt.

Before presenting it, we assume that the network has received a lot of random signals thereby
driving the law of the synaptic weight matrix in its “stable” state at time t = −r + 1 (we prove
in Proposition 2.8 that there is a unique invariant measure for the weight matrix). The learning
phase consists in performing r presentations of V N

0 . In order to be consistent with the previous
description, the sequence of presented stimuli is then (· · · , V N

−r, V
N

0 , · · · , V N
0︸ ︷︷ ︸

r times

, V N
1 , V N

2 · · · ) that

is V N
t = V N

0 for t ∈ J−r+1, 0K. The presentation of the subsequent signals leads to the forgetting
of V N

0 .

Notation 2.1. We note (Ω,F ,P) the probability space on which the Markov process (V N
t ,WN

t )t∈Z
is defined.

Remark 2.2. The model presented slightly differs with the model introduced by Amit and Fusi
in [5]: it allows multiple presentation of the initial signal.

2.2.2 Presentation of the estimator

We study the consistency through time of the response of one neuron to the initial signal. To do
so, we consider the previous protocol. After the repetitive presentation of V N

0 , the signal has left
a certain footprint in the matrix WN

1 . This trace is subsequently erased by the presentation of the
following signals. How much information from a stimulus learnt is left at time t? As an answer,
we define an estimator of this stimulus and compute the error associated to it. At time t, this
estimation is done from the observation of the synaptic currents onto neurons when presenting
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again V N
0 : this current onto the neuron i is

∑
j 6=iW

ij,N
t V j,N

0 . This is a fictive presentation. By
fictive, we mean that the synaptic weights do not change following this fictitious presentations. In
this framework, neurons are similar. Hence, in order to simplify the notation and without loss of
generality, our study focuses on neuron i = 1. We denote by hNt ,

hNt
def.
=

N+1∑
j=2

W 1j,N
t V j,N

0 , (2.2)

the synaptic current onto neuron 1 when presenting again V N
0 at time t. Note that the process(

hNt
)
t≥0

strongly depends on the initial number K of active neurons

K
def.
=

N+1∑
j=2

V j,N
0 . (2.3)

We denote by hNt,K the process equal in law to hNt knowingK, hNt,K
L
=
(
hNt |K

)
. The process hNt,K

is Markovian, see Proposition 2.5.

Remark 2.3. We thus study the probability of error associated to the estimator of only one neuron
response. We are currently studying the extension to the estimation of the entire stimulus, see
Appendix A.2 for the first results.

The estimator

We define a threshold estimator V̂ N
t : J0, NK → {0, 1} such that V̂ N

t (θ) = 1hNt >θ
with the

associated probability of errors:

p0,N
e (t, θ)

def.
= P

(
V̂ N
t (θ) = 1 | V 1,N

0 = 0
)

= P
(
hNt > θ | V 1,N

0 = 0
)
,

p1,N
e (t, θ)

def.
= P

(
V̂ N
t (θ) = 0 | V 1,N

0 = 1
)

= P
(
hNt ≤ θ | V 1,N

0 = 1
)
.

Notation 2.4. We denote by hy,Nt :
L
=
(
hNt | V 1,N

0 = y
)

and hy,Nt,K :
L
=
(
hNt | V 1,N

0 = y, K
)
.

The probability of error p0,N
e (t, θ) = P(h0,N

t > θ) (resp. p1,N
e (t, θ) = P(h1,N

t ≤ θ)) corresponds
to the probability that the estimator responds positively (resp. negatively) to the priming presented
at time t > 0 whereas the neuron was not activated (resp. activated) initially. We aim at evaluating
these errors: for fixed ε ∈ (0, 1), we estimate the largest time t∗ such that both p0,N

e and p1,N
e are

smaller than ε up to time t∗,

t∗(ε, r,N)
def.
= max

θ∈J0,NK

(
inf
{
t ≥ 1, p0,N

e (t, θ) ∨ p1,N
e (t, θ) ≥ ε

})
, (2.4)

where x ∨ y = max(x, y) and x ∧ y = min(x, y).

Main Results - Contributions (informal)

For any fixed error ε ∈ (0, 1), there is an unbounded set of couples (N, r) ∈ N∗2 for which we
show the existence of a threshold θε,r,N ∈ {0, 1, . . . , N} ensuring

t∗(ε, r,N) ≥ inf
{
t ≥ 1, p0,N

e (t, θε,r,N ) ∨ p1,N
e (t, θε,r,N ) ≥ ε

}
≥ t̂(ε, r,N),
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where an explicit formula of t̂ is given in Remark 2.28 for fixed potentiation and depression prob-
abilities. Another formula of t̂ is given in Theorem 2.30 for depression probabilities depending on
N . In particular, assuming that the depression probabilities are proportional to the coding level
fN , we obtain that t̂(ε, r,N) is on the order of 1

f2N
.

The proofs of the results presented in Section 2.3 rely on the study of the Markov chains
(
hNt,K

)
t≥1

and
(
hy,Nt,K

)
t≥1

.

Proposition 2.5. The chains
(
hNt,K

)
t≥1

and
(
hy,Nt,K

)
t≥1

are Markovian. At the end of the learning

phase, we have

hN1,K
L
= hN−r+1,K + V 1,N

0 Bin
(
K − hN−r+1,K , 1− (1− q+)r

)
− (1− V 1,N

0 )Bin
(
hN−r+1,K , 1− (1− q−,N01 )r

) (2.5)

where, conditionally on hN−r+1,K , the two Binomial random variables are independent. And during
the forgetting phase, for all t ≥ 1:

hNt+1,K
L
= hNt,K + V 1,N

t

[
Bin

(
K − hNt,K , fNq+

)
− Bin

(
hNt,K , (1− fN )q−,N10

)]
− (1− V 1,N

t )Bin
(
hNt,K , fNq

−,N
01

)
(2.6)

where, conditionally on hNt,K , the three Binomial random variables are independent.

The Markov chains
(
hy,Nt,K

)
t≥1

for y ∈ {0, 1}, satisfy the equation (2.5) with V 1,N
0 = y and the

equation (2.6).

Proof. In order to study the jump from hNt,K to hNt+1,K , we count the synapses that potentiate and
the ones that depress upon presenting a signal V N

t . From the definitions (2.2) and (2.3) of hNt and
hNt,K , we only need to consider the K synapses W 1j,N

t with j ≥ 2 such that V j,N
0 = 1. Among

these synapses, at time t, there are hNt,K strong synapses and K − hNt,K weak synapses. Given

V 1,N
t and hNt,K , every synapse evolves independently following a Bernoulli law.

Equation (2.5) follows from the fact that from time −r + 1 to 1:

• if V 1,N
0 = 0, every strong synapse is r times candidate to depression so it has probability

1− (1− q−,N01 )r to depress,

• if V 1,N
0 = 1, every weak synapse is r times candidate to potentiation so it has probability

1− (1− q+)r to potentiate.

Equation (2.6) follows from the fact that between time t ≥ 1 and t+ 1:

• if V 1,N
t = 0, the probability that a strong synapse depresses is fNq

−,N
01 ,

• if V 1,N
t = 1, the probability that a weak synapse potentiates is fNq+ and the probability

that a strong synapse depresses is (1− fN )q−,N10 .
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By definition of hy,Nt,K , the chain satisfies equation (2.5) with V 1,N
0 = y and equation (2.6).

Corollary 2.6. Assume that (2.1) holds. Then, for all K ∈ J0, NK, the Markov chain (hNt,K)t≥1

admits a unique invariant measure πNK with support in J0,KK. Moreover, for any initial condi-
tion hN0,K , the Markov chain (hNt,K)t≥1 converges in law to πNK . In addition, the chain

(
hNt
)
t≥1

converges in law to πN∞ =
∑N

K=0 P
(
K̂ = K

)
πNK where K̂ =

∑N+1
j=2 V j,N

0 .

Proof. By (2.1), the Markov chain
(
hNt,K

)
t≥1

is irreducible and aperiodic on a finite state space.

Thus, it admits a unique invariant measure towards which it converges.

Let K̂ =
∑N+1

j=2 V j,N
0 . From the Bayes’ formula we get that for all l ∈ J0, NK,

lim
t→∞

P
(
hNt = l

)
= lim

t→∞

(
N∑
K=0

P
(
K̂ = K

)
P
(
hNt,K = l

))
=

N∑
K=0

P
(
K̂ = K

)
πNK (l).

Remark 2.7. The Markov chains
(
h0,N
t,K

)
t≥1

and
(
h1,N
t,K

)
t≥1

have the same transition matrix as(
hNt,K

)
t≥1

. They differ by their distribution at time t = 1. Hence, they both converge to πNK .

Moreover, both
(
h0,N
t

)
t≥1

and
(
h1,N
t

)
t≥1

converge in law to πN∞.

Proposition 2.8. Under the assumption (2.1), the process
(
V N
t ,WN

t

)
t≥1

converges to its unique
invariant measure. We denote it by ρN∞.

Proof. Same argument as for Corollary 2.6.

We now give the main assumptions.

Assumption 2.9.

2.9.1
(
V N

0 ,WN
−r+1

) L
= ρN∞ and in particular hN−r+1,K , h

0,N
−r+1,K , h

1,N
−r+1,K

L
= πNK .

2.9.2 Assume that lim
N∞

fN = 0 and lim
N∞

NfN = +∞.

2.9.3 Let q−,N01 = aNfN and q−,N10 = bNfN with aN , bN : N ∈ N∗ → R such that aN , bN both
converge in [0,+∞). However, we assume that at least one of the two limits is not 0 and

lim
N∞

q−,N01 = lim
N∞

q−,N10 = lim
N∞

b2N
NfNaN

= lim
N∞

bN
NfN

= 0, lim
N∞

NfNaN = +∞.

We consider a general paradigm in which before receiving the stimulus V N
0 , many stimuli have

already been sent (· · · , V N
−r−2, V

N
−r−1, · · · ). We assume that the process

(
V N
t WN

t

)
t≤−r+1

has
reached its invariant measure at time t = −r + 1 by Assumption 2.9.1. Then, one key parameter
is the coding level fN . We assume that it depends on N in the analysis of the large N asymptotic:
Assumption 2.9.2. This assumption refers to sparse coding as fN tends to 0. An additional con-
straint put forward is that the mean number of selective neurons, NfN , needs to be large enough:
Assumption 2.9.2. In this context, we are interested to see how the dependence onN of the depres-
sion probabilities can affect the memory lifetime, see Assumption 2.9.3. This assumption gives
conditions on the large N asymptotic behaviours of the depression probabilities.
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2.2.3 First illustrations

In this subsection, we illustrate the dynamics of
(
hy,Nt,K

)
t≥0

and
(
hNt,K

)
t≥0

. In particular, we are

interested in the effects of the coding level fN on these synaptic currents. Let us assume that the
signal V N

0 is of sizeK = bNfNc, where the floor function bxc is equal to k ∈ Z if k ≤ x < k+1.
Let us have a look at the expected size of jumps of hNt,K from the formulas (2.5), (2.6).

For t = 1, E
[
hN1,K − hN−r+1,K |hN−r+1,K , V

1,N
0 = 0

]
= −hN−r+1,K(1− (1− q−,N01 )r),

E
[
hN1,K − hN−r+1,K |hN−r+1,K , V

1,N
0 = 1

]
= (K − hN−r+1,K)(1− (1− q+)r),

∀t ≥ 1, E
[
hNt+1,K − hNt,K |hNt,K

]
= (K − hNt,K)f2

Nq
+ − hNt,KfN (1− fN )(q−,N10 + q−,N01 ).

From these equations, we note that the average jump size strongly depends on fN . When fN is
close to 1, the reception of V N

0 has a large impact on the weight matrix, easy to detect. However,
the following average jump size are close to the initial one. Thus, as soon as some other stimuli
are presented, the initial signal is forgotten: the distributions of h0,N

t,K and h1,N
t,K quickly overlap.

Conversely, when fN is close to 0, the average jump size is significantly different between the
learning (relatively big jumps) and the forgetting (relatively small jumps) phases. As a conse-
quence, the convergence to the stationary distribution, and thus forgetting, is slower. However, the
learning still occurs: the initial jump is still big. In order to illustrate these phenomena, we plot
simulation results obtained with a high coding level, fN = 0.8 in Figure 2.1, and a low coding
level, fN = 0.1 in Figure 2.2.

Figure 2.1a shows that the size of jumps is effectively big for fN = 0.8, just after learning as well
as during forgetting time. Figure 2.1b illustrates the separation between the initial distributions
of h0,N

t,K and h1,N
t,K . Indeed, at time t = −r + 1 = 0, both h0,N

0,K and h1,N
0,K follow the invariant

measure plotted in black. Then, after the reception of V N
0 , the distribution of h0,N

1,K is shifted to the

left and the distribution of h1,N
1,K to the right. Initially, the signal is learnt because the distributions

are well separated, see Figure 2.1b. Figures 2.1c and 2.1d exhibit the fast overlapping of these
two distributions. Indeed, following the learning phase, the reception of new stimuli makes the
two distributions converge back quickly to the invariant distribution. At time t = 5, the signal is
already forgotten.

Figure 2.2 illustrates the advantages of a low coding level. Indeed, even at time t = 20, the
two distributions do not overlap a lot and they remained uni-modal. This makes the choice of a
threshold estimator reasonable. Moreover, such an estimator allows a tractable analysis.
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Figure 2.1: (2.1a): A typical trajectory of hNt,800. (2.1b): The distributions of h0,N
1,800 and h1,N

1,800

and the invariant measure πN800. (2.1c),(2.1d): The distributions of h0,N
t,800 and h1,N

t,800 at time t = 3

and t = 5. Parameters: r = 1, N = 1000, K = 800, fN = 0.8, q+ = 0.8, q−,N01 = 0.8 and
q−,N10 = 0.2.

2.3 Results

In this section, we present our results. First, we give the spectrum of the transition matrix of the
chains (h0,N

t,K )t≥1 and (h1,N
t,K )t≥1, see Notation 2.4, and their expectations and variances at any time

t ≥ 1. Then, we expose some properties satisfied by the distributions of h0,N
t,K and h1,N

t,K , and their
invariant measure πNK . They are the key to the proof of our main results, Theorems 2.27 and 2.30,
which are presented in the last part of this Section.

2.3.1 Spectrum and SNR analysis

Spectrum

Let P y,NK be the transition matrix of the synaptic current
(
hy,Nt,K

)
−r+1<t≤1

. We denote by

νy,Nt,K =
[
νy,Nt,K (0), νy,Nt,K (1), . . . , νy,Nt,K (K)

]
the distribution of hy,Nt,K . We can then write νy,N1,K = νy,N0,KP

y,N
K = νy,N−r+1,K

(
P y,NK

)r
.
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Figure 2.2: (2.2a): The distributions of h0,N
t,K and h1,N

t,K at time t = 1 and the invariant measure πN100.

(2.2b): The sum of the two distributions h0,N
t,K and h1,N

t,K for t ∈ [1, 20]. The colour bar gives the

probability values. Parameters: r = 1, N = 1000, K = 100, fN = 0.1, q+ = 0.8, q−,N01 = 0.8,

and q−,N10 = 0.2.

Proposition 2.10. The spectra of P 0,N
K and P 1,N

K are

Σ
(
P 0,N
K

)
=

{(
1− q−,N01

)i
, 0 ≤ i ≤ K

}
and Σ

(
P 1,N
K

)
=
{(

1− q+
)i
, 0 ≤ i ≤ K

}
.

Proof. The dynamics give for all j > i, P 0,N
K,ij = P 1,N

K,ji = 0. So the matrices are triangular. Their
spectra are given by the diagonal elements:

∀i, P 0,N
K,ii = (1− q−,N01 )i and P 1,N

K,ii = (1− q+)i.

In the following, we use the

Notation 2.11. We denote by ΛN0 = 1− fNq−,N01 , ΛN1 = 1− (1− fN )q−,N10 − fNq+ and

∀i ∈ J0, NK, λNi = (1− fN )(ΛN0 )i + fN (ΛN1 )i.

Proposition 2.12. The spectrum of the transition matrix PNK of
(
hNt,K

)
t≥1

is

Σ
(
PNK
)

=
{
λNi , 0 ≤ i ≤ K

}
.

This proposition is proved in Section 2.4.2.

We deduce from Proposition 2.12 the rate of convergence of the law of hNt,K .

Corollary 2.13. For all 0 ≤ K ≤ N , the sequence of the distributions of the synaptic currents,(
νNt,K

)
t≥1

, converges exponentially fast to the unique invariant measure πNK . In particular, there

exists cN ∈ R+ such that the distance in total variation between νNt,K and πNK satisfies:

∀t ≥ 1, ‖νNt,K − πNK‖TV
def.
=

1

2

K∑
l=0

|νNt,K(l)− πNK (l)| ≤ cN (λN1 )t.

We discuss, in the second paragraph of Section 2.6, the role played by this eigenvalue λN1 in our
main results.
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SNR Analysis

We propose to extend the previous SNR analysis done in [5, 116, 8]. The memory signal used
here is neuron specific: we associate to each neuron a memory signal. It refers to the memory
of the first stimulus. For the neuron 1, it is obtained from equation (1.2) by replacing wjt∆w

j
0 by(

W 1j,N
t V j,N

0 |V 1,N
0 = 1

)
minus

(
W 1j,N
t V j,N

0 |V 1,N
0 = 0

)
:

ZNt,K = h1,N
t,K − h

0,N
t,K . (2.7)

Notation 2.14. From the notations

µy,Nt
def.
= E

[
hy,Nt

]
and (σy,Nt )2 def.

= Var
[
hy,Nt

]
,

we define the SNR at time t as:

SNRNt
def.
=

µ1,N
t − µ0,N

t√
σ1,N
t,K + σ0,N

t

. (2.8)

In the previous article, they used the large time asymptotic value of the variance and do not give
the explicit one. Here, we give an explicit formula of µy,Nt and (σy,Nt )2.

Proposition 2.15. Under Assumption 2.9, the expectations and variances of h0,N
t and h1,N

t satisfy:

µ0,N
t = NfN

(
µ∗,N − µ0,N (λN1 )t−1

)
, with µ0,N =

(
1− (1− q−,N01 )r

) f2
Nq

+

1− λN1
, (2.9)

µ1,N
t = NfN

(
µ∗,N + µ1,N (λN1 )t−1

)
, with µ1,N =

(
1− (1− q+)r

)(
1− f2

Nq
+

1− λN1

)
,

(2.10)

(σy,Nt )2 = µy,Nt (1− µy,Nt ) + f2
NN(N − 1)

(
C∗,N0 + Cy,N1 (λN1 )t−1 + Cy,N2 (λN2 )t−1

)
, (2.11)

where C∗,N0 , Cy,N1 and Cy,N2 are constants depending on the parameters and µ∗,N =
f2N q

+

1−λN1
.

Moreover, in the case aN = a and bN = b, the standard deviations stay of the same order of their
large time asymptotic value that we denote by σ∗,N and which satisfies:

(σ∗,N )2 = fNN(σ∗,N1 )2 + f3
NN

2(σ∗,N2 )2,

where (σ∗,N1 )2 ≈N∞ q+

q++a+b
and (σ∗,N2 )2 ≈N∞ a2(q+)2

2(q++a+b)3
.

By this proposition, we justify the use of σ∗,N instead of σy,Nt for the computation of the SNR in
the largeN asymptotic. It was not obvious. Indeed, if one looks individually at the time-dependent
terms of σy,Nt , they show the possibility of a term in N2f2

N instead of N2f3
N . What saves us is

that maxt≥1{(λN2 )t − (λN1 )2t} scales in fN , see the proof in Section 2.4.2.

2.3.2 Binomial Mixture

The proofs of the results on the spectrum, the SNR and the main results are based on the various
properties of the synaptic currents’ dynamics that are presented in this section.
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We denote by F[0,1] the set of cumulative distribution functions associated to the set P([0, 1]) of
probability measures on [0, 1].

Definition 2.16. The distribution of X is said to be a Binomial mixture with mixing distribution
g ∈ P([0, 1]) and size parameter K, denoted by BinMix(K, g), if

∀j ∈ J0,KK, P (X = j) =

(
K

j

)∫ 1

0
uj(1− u)K−jg(du).

Remark 2.17.

• X L
= BinMix(K, g) is equivalent to X|Y L

= Bin(K,Y ) where Y is a random variable
independent of the Binomial and with law g. Indeed

P (X = j) =

∫ 1

0
P(X = j|Y = u)g(du) =

(
K

j

)∫ 1

0
uj(1− u)K−jg(du).

We use both notations X L
= BinMix(K, g) and X L

= BinMix(K,Y ).

• The law of X is fully characterized by the moments E(Y ),E(Y 2), · · · ,E(Y K). Hence, if

g̃ ∈ P([0, 1]) is such that ∀k ∈ J0,KK,
∫ 1

0 u
kg̃(du) =

∫ 1
0 u

kg(du), then BinMix(K, g̃)
L
=

BinMix(K, g).

First, we show that the set of Binomial mixtures is stable by the Markov chain hNt,K : assume that

hNt,K
L
= BinMix(K, gNt ) for some gNt ∈ P([0, 1]), then there exists a probability gNt+1, function of

gNt , such that hNt+1,K
L
= BinMix(K, gNt+1). Moreover, denoting byGNt the cumulative distribution

function associated to gNt , we show that for all t ≥ 1, GNt+1(x) = R(GNt )(x) where

Notation 2.18. For all Γ ∈ F[0,1] and u ∈ R,R is defined by

R(Γ)(u)
def.
= fNΓ

(
u− fNq+

ΛN1

)
+ (1− fN )Γ

(
u

ΛN0

)
.

Proposition 2.19. Let us assume that hN−r+1,K
L
= BinMix(K, gN−r+1), for gN−r+1 ∈ P([0, 1]).

Then for all t ≥ 1, ∃gNt , g0,N
t , g1,N

t ∈ P([0, 1]) such that hNt,K
L
= BinMix(K, gNt ) and hy,Nt,K

L
=

BinMix(K, gy,Nt ) for y = 0, 1. Moreover, at time t = 1,

GN1 (u) = fNG
N
−r+1

(
u− 1

(1− q+)r
+ 1

)
+ (1− fN )GN−r+1

(
u

(1− q−,N01 )r

)
, (2.12)

G1,N
1 (u) = GN−r+1

(
u− 1

(1− q+)r
+ 1

)
and G0,N

1 (u) = GN−r+1

(
u

(1− q−,N01 )r

)
, (2.13)

and ∀t ≥1, GNt+1(u) = R(GNt )(u) and Gy,Nt+1(u) = R(Gy,Nt )(u). (2.14)

Finally, we deduce that

hNt
L
= BinMix(N, fNg

N
t ) and hy,Nt

L
= BinMix(N, fNg

y,N
t ). (2.15)

The equations of (2.15) derive from the application of the
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Lemma 2.20. Assume K L
= Bin (N, fN ) and conditionally on K, X is independent of K with

law Bin (K, p), then X L
= Bin (N, fNp).

Remark 2.21. First, we note that gNt does not depend on K. This is crucial for the proof of
Theorems 2.27 and 2.30. Then, let the assumptions of the previous Proposition hold and denote
by Y N

t a random variable with distribution gNt . Knowing Y N
t , we have hNt,K

L
= Bin

(
K,Y N

t

)
. In

particular, the mean synaptic current is given by E
(
hNt,K

)
= KE

(
Y N
t

)
= KP

(
W 1j,N
t = 1

)
.

Indeed, E
(
hNt,K

)
is the mean number of strong synapses W 1j,N

t (with j such that V j,N
0 = 1) at

time t.

Finally, we show thatR is contracting and characterises πNK .

Proposition 2.22. The applicationR acting on F[0,1] is contracting for the norm L1(0, 1). More-
over, there exists a unique G∗,N ∈ F[0,1] invariant forR.

Propositions 2.19 and 2.22 are proved in the Section 2.4.1.

Corollary 2.23. LetG∗,N be the unique fixed point of R and g∗,N its associated distribution. The
invariant measure πNK of the Markov chain hNt,K satisfies

πNK = BinMix(K, g∗,N ).

We deduce that the invariant measure πN∞ of hNt is given by

πN∞ = BinMix
(
N, fNg

∗,N) .
Finally, the smallest interval [mN

∞,M
N
∞] containing the support of g∗,N verifies

supp(g∗,N ) ⊂
[
mN
∞,M

N
∞
] def.

=

[
0,

fNq
+

1− ΛN1

]
. (2.16)

Proof. Let g∗,N ∈ P([0, 1]) be a probability distribution such that its cumulative distribution func-
tion G∗,N satisfies R(G∗,N ) = G∗,N . Then, by Proposition 2.19, BinMix(K, g∗,N ) is invariant
for
(
hNt,K

)
t≥1

. The result on πN∞ follows from Corollary 2.6.

Now, let [mN
∞,M

N
∞] be the convex envelop of the support of g∗,N , then supp(g∗,N ) ⊂ [mN

∞,M
N
∞] ⊂

[0, 1]. Thus by the equationR(G∗,N ) = G∗,N , we get

mN
∞ = mN

∞ΛN0 ∧
(
mN
∞ΛN1 + fNq

+
)
, and MN

∞ = MN
∞ΛN0 ∨

(
MN
∞ΛN1 + fNq

+
)
.

As ΛN0 = 1 − fNq−,N01 < 1, the first equation implies that 0 ≤ mN
∞ ≤ mN

∞ΛN0 so mN
∞ = 0. The

second equation implies that MN
∞ = MN

∞ΛN1 + fNq
+, thus MN

∞ = fN q
+

1−ΛN1
.

Remark 2.24. Propositions 2.19, 2.22, and the first part of Corollary 2.23 are in [8] with q−,N10 =
0 and r = 1. We prove them here with a different method.



Chapter 2. A Mathematical Analysis of Memory Lifetime in a simple Network Model of Memory 44

2.3.3 Main results

We end this section devoted to the presentation of results by the main results. The learning and
the forgetting phases are both described by the Markov chains (hy,Nt,K )−r+1≤t≤1 and (hy,Nt,K )t≥1.
The previous part of this Section gave us enough information on these chains to propose a precise
control on their overlapping. This overlap is directly link to the probability of error associated to
the estimator defined in Section 2.2.

Under Assumption 2.9.1, hN−r+1,K follows its invariant distribution πNK , a Binomial mixture by

Corollary 2.23. Thus, by Proposition 2.19, the processes (hy,Nt,K )t≥1 follow also Binomial mixtures.
Combining the inequality provided by Lemma 2.25, inequalities on Binomial tails (Lemma 2.26)
and a control on the tail of the mixing distribution g∗,N and on the support of g1,N

t , we prove
Theorem 2.27.

Lemma 2.25. Under Assumption 2.9.1, for all θ ∈ J0, NK, P
(
h0,N
t > θ

)
≤ P

(
πN∞ > θ

)
.

Proof. The proof is recursive and relies on the functional equation for the cumulative distribution
of the synaptic currents (2.13) under Assumption 2.9.1. From (2.14), we have for all x ∈ [0, 1],
G0,N

1 (x) = G∗,N
(

x
ΛN0

)
≥ G∗,N (x). Then,

G0,N
2 (x) = fNG

0,N
1

(
x− fNq+

ΛN1

)
+ (1− fN )G0,N

1

(
x

ΛN0

)
≥ fNG∗,N

(
x− fNq+

ΛN1

)
+ (1− fN )G∗,N

(
x

ΛN0

)
= G∗,N (x),

and so forth so that for all t ≥ 1 and x, G0,N
t (x) ≥ G∗,N (x). It implies that for all K, θ ∈ N,

P
(

BinMix(K, g0,N
t ) > θ

)
≤ P

(
BinMix(K, g∗,N ) > θ

)
, which ends the proof.

Lemma 2.26. Let SN
L
= Bin(N, p). Then, for all ε ∈ (0, 1)

P (SN ≥ Np(1 + ε)) ≤ exp

(−Np ε2

2 + ε

)
, (2.17)

P (SN ≤ Np(1− ε)) ≤ exp

(−Np ε2

2

)
. (2.18)

Proof. We use the method of [29]. Let SN be the sum of X1, X2, · · · , XN which are independent
Bernoulli random variables of parameter p.

For all ε ∈ (0, 1), u ∈ R+,

P (SN ≥ Np(1 + ε)) = P
(

euSN ≥ eNp(1+ε)u
)
≤ E

(
euSN

)
eNp(1+ε)u

=

∏N
i=1 E

(
euXi

)
eNp(1+ε)u

≤ (1 + p(eu − 1))N

eNp(1+ε)u
≤ eNp(e

u−1)

eNp(1+ε)u
= eNp(e

u−1−(1+ε)u).

The minimum of the last term is reached for u = log(1 + ε) so

P (X > Np(1 + ε)) ≤
(

eε

(1 + ε)1+ε

)Np
= exp

(
Np
(
ε− (1 + ε) log(1 + ε)

))
.
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From the inequality, ∀z > 0, log(1 + z) ≥ 2z
2+z , we obtain (2.17). In order to show (2.18), we

proceed with the same method and use the inequality log(1 + z) ≥ z
2

2+z
1+z whenever −1 < z ≤

0.

Theorem 2.27. For y ∈ {0, 1}, let (hy,Nt )t≥1 be the solutions of (2.5) with V 1,N
0 = y and (2.6).

Let us assume that Assumptions 2.9.1 and 2.9.2 hold and that q−,N01 and q+ are fixed in (0, 1] and
q−,N10 in [0, 1].

Then, for all 0 < ε < 1 and r ∈ N∗, there exists N(ε, r) ∈ N such that for all N ≥ N(ε, r), there
exist θε,N ∈ J0, NK and t̂(ε, r,N) such that for all 1 ≤ t ≤ t̂(ε, r,N),

P
(
h0,N
t > θε,N

)
∨ P

(
h1,N
t ≤ θε,N

)
≤ ε.

This theorem is proved in Section 2.4.3.

In particular, we have t∗(ε, r,N) ≥ t̂(ε, r,N). This result relies on the study of the mixing
distributions g∗,N and g1,N

t . Thanks to Lemma 2.25, we know that as long as g1,N
t is far enough

from g∗,N , the probability of error,

P
(
h0,N
t > θ

)
∨ P

(
h1,N
t ≤ θ

)
≤ P

(
BinMix(K, g∗,N ) > θ

)
∨ P

(
BinMix(K, g1,N

t ) ≤ θ
)
,

is small enough. This condition appears as an inequality depending both on the time and the
accepted error ε. As long as this inequality holds, there exists a threshold θ such that the probability
of error is below ε for all previous times. We give in the following Remark an explicit formula for
the lower bound t̂ on t∗ for any couple (ε, r).

Remark 2.28. Recall thatMN
∞ = fN q

+

1−ΛN1
,m1,N

1 = 1−(1−q+)r,MN
ε =

fN q
+

(
1+q−,N01

√
2fN

ε(1−λN2 )

)
fN q++(1−fN )(q−,N01 +q−,N10 )

,

ΛN0 = 1− fNq−,N01 , ΛN1 = 1− fNq+ − (1− fN )q−,N10 and λN2 = fN (ΛN1 )2 + (1− fN )(ΛN0 )2.

We proved that under Assumptions 2.9.1 and 2.9.2, for all ε, r, N ≥ N(ε, r) (N for which the
two conditions given by (2.30) are satisfied), there exists θε,N ∈ J0, NK and t̂ such that for all

1 ≤ t ≤ t̂(ε, r,N), P
(
h0,N
t > θε,N

)
∨ P

(
h1,N
t ≤ θε,N

)
≤ ε.

In particular, if q−,N01 , q−,N10 , q+ ∈ (0, 1]

t̂(ε, r,N)− 1 =

⌊
log
(

2
√
−2 log( ε

2
)NfNMN

∞−4 log( ε
2

)

NfN (m1,N
1 −MN

∞)

)
log(ΛN1 )

⌋
∧
⌊ log

(
f2N q

+q−,N01

(1−ΛN1 )(ΛN0 −ΛN1 )(m1,N
1 −M∞)

)
log(ΛN1 )

⌋
,

and if q−,N10 = 0, t̂(ε, r,N)− 1 =
⌊ log

((√
MN
ε NfN+

√
−2 log( ε2 )

)2
− 3

2 log(ε)

NfN

)
log(ΛN0 )

⌋
.

Example 2.29. We give here a detailed result for a particular choice of parameters. Let q+ =

q−,N01 = 1, q−,N10 small enough, and fN =
q−,N10

3+q−,N10

. Explicit computations give

t̂(ε, r,N) =

⌊ log
(

1
9

)
∨ log

(√
−2 log( ε

2
)NfN−16 log( ε

2
)

3NfN

)
log (1− 4fN )

⌋
.
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For instance, for q−,N10 = 0.005 we get fN = 0.00167 and

t̂(ε = 0.001, r = 1, N = 2.105) = 246 and θε,N = 122.

We also give a formula when the depression probabilities depend on N in Theorem 2.30.

Theorem 2.30. Assume Assumptions 2.9.1, 2.9.2 and 2.9.3 are satisfied. Then, for all ε ∈ (0, 1),
r large enough, there exists N(ε, r) ∈ N such that for all N ≥ N(ε, r),

t̂(ε, r,N) = tNc +

⌊
log (C(ε, r,N))

log(ΛN0 )

⌋
,

with tNc defined in (2.28) and C(ε, r,N) ∈ (0, 1) satisfies log(C(ε,r,N))
fN

→ +∞. Moreover, if

lim aN , and lim bN exist and are finite, log(C(ε,r,N))

log(ΛN0 )
is on the order of 1

f2N
.

This theorem is proved in Section 2.4.3.

We note that log(ΛN0 ) = log(1 − aNf
2
N ) ≈N∞ −aNf2

N . Concerning C(ε, r,N) (and then
t̂(ε, r,N)), it mainly depends on the different large N asymptotic of aN and bN . We detail in
Remark 2.31 the different large N asymptotic of t̂(ε, r,N).

Remark 2.31. In the large N asymptotic (under Assumptions 2.9.2 and 2.9.3), we can compute
the terms equivalent to t̂ in the different aN , bN cases (a ∈ R+

∗ and b ∈ R+):

conditions on aN , bN and r t̂(ε, r,N) for large N

bN → +∞, bN = O(aN ) , ∀r
log

(√
bN
aN

+2

√
− log( ε2 )bN
q+NfN

)
f2NaN

aN , bN → +∞ of same order, ∀r −
log
(

1− aN
aN+bN

)
2f2NaN

aN = O(bN ) , bN → +∞, ∀r 1
2f2N bN

aN → +∞, bN → b ∈ R+, ∀r
− log

√ q+(
(1−(1−q+)r)∧ q+

q++b

)
aN

+2

√
− log( ε2 )(q++b)

q+NfN


f2NaN

aN → 0, bN → b > 0, ∀r > r0
1

2f2N (q++b)

aN = a, bN → 0 ou bN = 0, ∀r > r0 −
log

(
q+

(1−(1−q+)r)(q++a)

)
2f2Na

aN = a, bN = b, ∀r > r0 −
log
(

1− a
q++a+b

)
2f2Na

Table 2.1: The large N equivalent of t̂(ε, r,N) in function of aN and bN .

Remark 2.32. Note that we have also proved the following result:

For every ε > 0 and N large enough, there exists r0 such that, if the initial signal is presented
at least r0 times, then it is well memorized after at least t̂(ε, r,N) presentations of noisy signals.

Moreover, in the large r asymptotic, h0,N
1,K

L
= δ0 (dirac in 0) and h1,N

1,K
L
= δK (dirac in K). Thus,

the initial error is null. However, the t̂ increases with r until reaching a threshold value which is
given by the expression of Remarks 2.28 and 2.31 replacing the quantities m1,N

1 by 1.
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2.4 Proofs

2.4.1 Proofs linked with the Binomial Mixture behaviour

Proof of Proposition 2.19

Notation 2.33. Let g be a distribution on R with cumulative distribution function G. For all
a, b ∈ R, we denote by g(a,b) the distribution associated to the cumulative distribution function
G(a,b) such that

∀u ∈ R, G(a,b)(u) = G

(
u− b
a− b

)
.

Proposition 2.19 relies on the following

Lemma 2.34. Let Z be a mixture of Binomial Z = BinMix(K,YZ). Let 0 ≤ b < a < 1.
Conditionally on Z, consider two independent Binomial distributions Bin(Z, a) and Bin(K −
Z, b) and define X = Bin(Z, a) + Bin(K − Z, b). Then

X
L
= BinMix (K,YX) with YX = (a− b)YZ + b. (2.19)

In particular, GX(u) = GZ,(a,b)(u), where GX (resp. GZ) is the cumulative distribution function
of X (resp. Z).

Proof. Let Ũ , (Ui)1≤i≤K , (Vi)1≤i≤K , (ηi)1≤i≤K and (Wi)1≤i≤K be i.i.d. random variables fol-
lowing the uniform law on [0, 1]. By the first point of Remark 2.17, Z is the sum of (Zi)1≤i≤K
i.i.d. Bernoulli of parameter YZ = G−1

Z (Ũ). Thus, we obtain that conditionally on Z,

X =

K∑
i=1

Zi1{Vi≤a}︸ ︷︷ ︸
L
=Bin(Z,a)

+

K∑
i=1

(1− Zi)1{ηi≤b}︸ ︷︷ ︸
L
=Bin(K−Z,b)

where the Binomials are independent. Then, let consider ∀i, Zi = 1{Ui≤G−1
Z (Ũ)}. Thus,

X =

K∑
i=1

1{Ui≤G−1
Z (Ũ)}1{Vi≤a} +

K∑
i=1

1{Ui>G−1
Z (Ũ)}1{ηi≤b},

=
K∑
i=1

1{Ui≤G−1
Z (Ũ),Vi≤a}⋃{Ui>G−1

Z (Ũ),ηi≤b}. (2.20)
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Ui

Vi, ηi

b

a

G−1
Z (Ũ) 1

1

0

Figure 2.3: In gray, the domain to which the couple (Ui, Vi, ηi) needs to belong to from equa-
tion (2.20).

For all Borel set D ⊂ [0, 1]3, P ((Ui, Vi, ηi) ∈ D) = V (D) where V (D) is the volume of D. Let

Wi
L
= U ([0, 1]), then P ((Ui, Vi, ηi) ∈ D) = P (Wi ≤ V (D)) . In Figure 2.3, we put Vi and ηi on

the same axis as they do not depend one on the other so that the volume

V
({
Ui ≤ G−1

Z (Ũ), Vi ≤ a
}⋃{

Ui > G−1
Z (Ũ), ηi ≤ b

})
is equal to the sum of the tow grey areas. We deduce that

X =
K∑
i=1

1{Wi≤b+(a−b)G−1
Z (Ũ)} =

K∑
i=1

1{
GZ

(
Wi−b
a−b

)
≤Ũ
} =

K∑
i=1

1{GX(Wi)≤Ũ},

with GX(w) = GZ,(a,b)(w). We conclude that (2.19) is satisfied.

We now prove of Proposition 2.19:

Proof of Proposition 2.19. We first show (2.12) and (2.14) for hNt,K , then the rest follows.

At t = 1, from equation (2.5) we get

L
(
hN1,K |V 1,N

0 = 1, hN−r+1,K

)
= Bin

(
hN−r+1,K , 1

)
+ Bin

(
K − hN−r+1,K , 1− (1− q+)r

)
L
(
hN1,K |V 1,N

0 = 0, hN−r+1,K

)
= Bin

(
hN−r+1,K , (1− q−,N01 )r

)
.

Applying twice Lemma 2.34 with (a, b) = (1, 1−(1−q+)r) and then (a, b) = (1−(1−q−,N01 )r, 0),
we obtain, using Notation 2.33,

L
(
hN1,K |V 1,N

0 = 1, hN−r+1,K

)
L
= BinMix

(
K, g−r+1,(1,1−(1−q+)r)

)
L
(
hN1,K |V 1,N

0 = 0, hN−r+1,K

)
L
= BinMix

(
K, g−r+1,(1−(1−q−,N01 )r,0)

)
.
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Thus,

P
(
hN1,K = j|hN−r+1,K

)
= P

(
V 1,N

0 = 1
)
P(hN1,K = j|V 1,N

0 = 1, hN−r+1,K)

+ P
(
V 1,N

0 = 0
)
P(hN1,K = j|V 1,N

0 = 0, hN−r+1,K)

=

(
K

j

)∫ 1

0
uj(1− u)K−j

(
fNg−r+1,(1,1−(1−q+)r)(du) + (1− fN )g−r+1,(1−(1−q−,N01 )r,0)

(du)
)
,

which enables us to get (2.12).

Now, assume that hNt,K
L
= BinMix(K, gNt ), for some fixed t ≥ 1. Then, by equation (2.6),

L
(
hNt+1,K |V 1,N

t = 1, hNt,K

)
= Bin

(
K − hNt,K , fNq+

)
+ Bin

(
hNt,K , 1− (1− fN )q−,N10

)
,

L
(
hNt+1,K |V 1,N

t = 0, hNt,K

)
= Bin

(
hNt,K , 1− fNq−,N01

)
,

where the Binomials are independent conditionally on hNt,K . Applying twice Lemma 2.34, first

with (a, b) = (1− (1− fN )q−,N10 , fNq
+) and then with (a, b) = (1− fNq−,N01 , 0), we get

L
(
hNt+1,K |V 1,N

t = 1
)
L
= BinMix

(
K, g

t,(1−(1−fN )q−,N10 ,fN q+)

)
L
(
hNt+1,K |V 1,N

t = 0
)
L
= BinMix

(
K, g

t,(1−fN q−,N01 ,0)

)
.

Hence, hNt+1,K
L
= BinMix

(
K, fNgt,(1−(1−fN )q−,N10 ,fN q+)

+ (1− fN )g
t,(1−fN q−,N01 ,0)

)
, and we

deduce that hNt+1,K
L
= BinMix(K, gNt+1) with GNt+1(x) = R(GNt )(x).

For the processes
(
hy,Nt,K

)
t≥0

, we proceed exactly with the same method with the fact that V 1,N
0 =

y in Proposition 2.5.

Finally, equations of (2.15) derives from the application of Lemma 2.20.

Proof of Proposition 2.22

Proof. 1. The mapR is a contraction

Let Γ1,Γ2 ∈ F[0,1]. We recall that ΛN1 = 1− (1− fN )q−,N10 − fNq+, ΛN0 = 1− fNq−,N01 .

‖R(Γ2)−R(Γ1)‖L1(0,1)

≤
∫ 1

0
fN

∣∣∣∣Γ2

(
u− fNq+

ΛN1

)
− Γ1

(
u− fNq+

ΛN1

)∣∣∣∣+ (1− fN )

∣∣∣∣Γ2

(
u

ΛN0

)
− Γ1

(
u

ΛN0

)∣∣∣∣ du
= fN

∫ 1−(1−fN )q−,N10

fN q+

∣∣∣∣Γ2

(
(u− fNq+)

ΛN1

)
− Γ1

(
(u− fNq+)

ΛN1

)∣∣∣∣ du
+ (1− fN )

∫ ΛN0

0

∣∣∣∣Γ2

(
u

ΛN0

)
− Γ1

(
u

ΛN0

)∣∣∣∣ du
= fNΛN1

∫ 1

0
|Γ2 (u)− Γ1 (u)| du+ (1− fN )ΛN0

∫ 1

0
|Γ2 (u)− Γ1 (u)| du

=
(
fNΛN1 + (1− fN )ΛN0

)︸ ︷︷ ︸
λN1

‖Γ2 − Γ1‖L1(0,1).
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As λN1 < 1, the mapR acting on F[0,1] is strictly contracting in L1(0, 1).

2. Existence and uniqueness of a fixed point

We now prove the second point of the Lemma. For all Γ0 ∈ F[0,1], by contraction ofR, (Rn (Γ0))n≥0

is a Cauchy sequence for the L1(0, 1) norm. By completeness of L1(0, 1), this sequence converges
to some Γ ∈ L1(0, 1). It remains to prove that Γ can be chosen in F[0,1]. First, any limit Γ is non
decreasing almost everywhere. Define G∗,N (x) = lim

y→x+
Γ(y). The function G∗,N is càdlàg and

satisfies for every x ≤ 0, G∗,N (x) = 0 and for every x ≥ 1, G∗,N (x) = 1. Thus G∗,N ∈ F[0,1]

and R(G∗,N ) = G∗,N . Finally, the uniqueness of G∗,N is deduced from the fact that R is strictly
contracting.

2.4.2 Proofs of SNR and Spectrum results

Spectrum: proof of Proposition 2.12

Lemma 2.35. Let X and Y be two random variables in [0, 1] with cumulative distribution func-
tions GX and GY . We assume that there exist η ∈ [0, 1], a, ā ∈ [0, 1) and b, b̄ ∈ (0, 1] with
a+ b ≤ 1, ā+ b̄ ≤ 1 such that

GY (u) = ηGX

(
u− a
b

)
+ (1− η)GX

(
u− ā
b̄

)
. (2.21)

Then ∀k ∈ N, E
[
Y k
]

= ηE
[
(a+ bX)k

]
+ (1− η)E

[
(ā+ b̄X)k

]
.

Proof. First, note that GX
(
u−a
b

)
is the cumulative distribution function of a + bX . Second, for

all random variables U, V,W , we have

GU (z) = ηGV (z) + (1− η)GW (z) =⇒ E[Uk] = ηE[V k] + (1− η)E[W k].

This last result is obtained by differentiation, multiplication by zk and integration. It ends the
proof of the lemma.

In the proof below, we use the classical convention
(
i

j

)
= 0 when j > i or j < 0.

Proof of Proposition 2.12. We denote by νNt,K =
[
νNt,K(0), νNt,K(1), . . . , νNt,K(K)

]
the distribu-

tion of hNt,K . Its transition matrix PNK =
(
P ij,NK

)
0≤i,j≤K

can be derived from Proposition 2.5:

P ij,NK = (1− fN )

(
i

i− j

)
(fNq

−,N
01 )i−j(1− fNq−,N01 )j

+ fN

i∑
l=0

(
i

l

)
((1− fN )q−,N10 )l(ΛN1 + fNq

+)i−l
(
K − i
j − i+ l

)
(fNq

+)j−i+l(1− fNq+)K−j−l.

Let us define the two matrices P̃NK and QNK such that for all 0 ≤ i, j ≤ K:

P̃ ij,NK = fN

(
j

i

)
(ΛN1 )i(fNq

+)j−i + (1− fN )δij(Λ
N
0 )i and Qij,NK =

(
K

i

)(
i

j

)
(−1)i−j .
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Then, assuming that νNt,K
L
= BinMix(K, gNt ) and denoting by UNt =

[
U0,N
t , U1,N

t , . . . , UK,Nt

]
with Uk,Nt =

∫
ukgNt (du), we get by definition 2.16: νNt,K = UNt Q

N
K . Moreover, by Lemma 2.35

we have UNt+1 = UNt P̃
N
K . Finally, by definition we have νNt+1,K = νNt,KP

N
K , so we obtain:

νNt+1,K = UNt+1Q
N
K = UNt P̃

N
KQ

N
K = UNt Q

N
K(QNK)−1P̃NKQ

N
K = νNt,K(QNK)−1P̃NKQ

N
K = νNt,KP

N
K .

A straightforward computation shows that QNKP
N
K = P̃NKQ

N
K . Thus PNK and P̃NK have the same

spectrum. Finally, P̃NK is a triangular matrix with λNi as diagonal elements.

SNR: proof of Proposition 2.15

From equation (2.14), we can link the associated cumulative distribution function Gy,Nt+1 to the
previous oneGy,Nt . From this result and Lemmas 2.35 and 2.36, we can derive a simple expression

of the first two moments of gy,Nt and an expression of (σy,Nt,K )2 = Var
[
hy,Nt,K

]
.

We remind a classical result, see Theorem 4.4.7 in [28].

Lemma 2.36. (Conditional variance identity) For any two random variables X and Y ,

VarX = E(Var(X | Y )) + Var(E(X | Y ))

provided that the quantities are finite.

Remark 2.37. Recall thatX L
= BinMix(N, fNgx) is equivalent toX|Yx L= Bin(N, fNYx) where

Yx is a random variable with distribution gx. So, Lemma 2.36 reads

Var [X] = E
[

Var [X|Yx]︸ ︷︷ ︸
NfNYx(1−fNYx)

]
+ Var

[
E [X|Yx]︸ ︷︷ ︸
NfNYx

]
= N

(
fNE [Yx]− f2

NE[Yx
2
]
) +N2f2

N Var [Yx] .

We now prove Proposition 2.15.

Proof of Proposition 2.15. We denote by Y ∗,N a random variable with distribution g∗,N and by
Y y,N
t the random variables with distributions gy,Nt . From Assumption 2.9.1 and Corollary 2.23, for

all t ≥ 0, L
(
hy,Nt

)
= BinMix

(
N, fNg

y,N
t

)
. Thus, with notation 2.14 and from Remark 2.37:

µy,Nt = NfNE
[
Y y,N
t

]
, (2.22)(

σy,Nt

)2
= NfN

(
E
[
Y y,N
t

]
− fNE

[
(Y y,N
t )2

])
+N2f2

N

(
E
[
(Y y,N
t )2

]
− E

[
Y y,N
t

]2
)
.

(2.23)

We now compute E
[
Y y,N
t

]
and E

[
(Y y,N
t )2

]
. To do so, we use Lemma 2.35 and the equations of

Proposition 2.19. From (2.13) and (2.14), we obtain

E
[
Y 0,N

1

]
= (1− q−,N01 )rE

[
Y 0,N
−r+1

]
E
[
Y 1,N

1

]
= 1− (1− q+)r + (1− q+)rE

[
Y 1,N
−r+1

]
E
[
Y y,N
t+1

]
= fN

(
fNq

+ + ΛN1 E
[
Y y,N
t

])
+ (1− fN )ΛN0 E

[
Y y,N
t

]
= λN1 E

[
Y y,N
t

]
+ f2

Nq
+.
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We find that

E
[
Y y,N
t

]
=
(
E
[
Y y,N

1

]
− E

[
Y ∗,N

])
(λN1 )t−1 + E

[
Y ∗,N

]
and E

[
Y ∗,N

]
=

f2
Nq

+

1− λN1
.

From Assumption 2.9.1, we have E
[
Y y,N
−r+1

]
= E

[
Y ∗,N

]
, so

E
[
Y 0,N

1

]
− E

[
Y ∗,N

]
= −

(
1− (1− q−,N01 )r

)
E
[
Y ∗,N

]
(2.24)

E
[
Y 1,N

1

]
− E

[
Y ∗,N

]
=
(
1− (1− q+)r

) (
1− E

[
Y ∗,N

])
. (2.25)

This ends the proof for the expectations. We now evaluate the second order moments in order to
compute the variances using (2.23).

E
[
(Y 0,N

1 )2
]

= (1− q−,N01 )2rE
[
(Y 0,N
−r+1)2

]
E
[
(Y 1,N

1 )2
]

= (1− q+)2rE
[
(Y 1,N
−r+1)2

]
+ 2(1− q+)r

(
1− (1− q+)r

)
E
[
Y 1,N
−r+1

]
+
(
1− (1− q+)r

)2
E
[
(Y y,N
t+1 )2

]
= fN

[
(fNq

+)2 + 2fNq
+ΛN1 E

[
Y y,N
t

]
+ (ΛN1 )2E

[
(Y y,N
t )2

]]
+ (1− fN )(ΛN0 )2E

[
(Y y,N
t )2

]
= λN2 E

[
(Y y,N
t )2

]
+ 2f2

Nq
+ΛN1 E

[
Y y,N
t

]
+ f3

Nq
+2
.

Thus

E
[
(Y ∗,N )2

]
=
f3
Nq

+2
+ 2f2

Nq
+ΛN1

f2N q
+

1−λN1
1− λN2

.

Then, introducing the notation γ
def.
=

2f2N q
+ΛN1

λN1 −λN2
, we find

E
[
(Y y,N
t+1 )2

]
− γE

[
Y y,N
t+1

]
= λN2

(
E
[
(Y y,N
t )2

]
− γE

[
Y y,N
t

])
+ f3

Nq
+2 − γf2

Nq
+.

Thus,

E
[
(Y y,N
t )2

]
=
(
E
[
(Y y,N

1 )2
]
− γE

[
Y y,N

1

]
−
(
E
[
(Y ∗,N )2

]
− γE

[
Y ∗,N

]))
︸ ︷︷ ︸

Cy,N2

(λN2 )t−1

+ γ
(
E
[
Y y,N

1

]
− E

[
Y ∗,N

])
︸ ︷︷ ︸

Cy,N1

(λN1 )t−1 + E
[
(Y ∗,N )2

]︸ ︷︷ ︸
C∗,N0

.

We conclude the proof using equation (2.23). For their exact computation, one can use Assump-
tion 2.9.1 which gives E

[
(Y y,N
−r+1)2

]
= E

[
(Y ∗,N )2

]
.

We now show the second point which deals with comparing σy,Nt to its large time asymptotic value
σ∗,N . To do so, we use Taylor expansions in fN to derive the leading terms of (σy,Nt )2. We first
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rewrite σy,Nt :

(σy,Nt )2 = µy,Nt (1− µy,Nt ) + f2
NN(N − 1)

(
C∗,N0 + Cy,N1 (λN1 )t−1 + Cy,N2 (λN2 )t−1

)
= (σ∗,N )2 +NfN

({
E
[
Y y,N

1

]
− E

[
Y ∗,N

]
− fNCy,N1

}
(λN1 )t−1 − fNCy,N2 (λN2 )t−1

)
+N2f2

N

({
Cy,N1 − 2E

[
Y ∗,N

]
(E
[
Y y,N

1

]
− E

[
Y ∗,N

]
)
}

(λN1 )t−1

+ Cy,N2 (λN2 )t−1 − (E
[
Y y,N

1

]
− E

[
Y ∗,N

]
)2(λN1 )2(t−1)

)
= (σ∗,N )2 +NfN

({
(E
[
Y y,N

1

]
− E

[
Y ∗,N

]
)(1− γfN )

}
(λN1 )t−1 − fNCy,N2 (λN2 )t−1

)
+N2f2

N

({
(γ − 2E

[
Y ∗,N

]
)(E

[
Y y,N

1

]
− E

[
Y ∗,N

]
)
}

(λN1 )t−1

+ Cy,N2 (λN2 )t−1 − (E
[
Y y,N

1

]
− E

[
Y ∗,N

]
)2(λN1 )2(t−1)

)
def.
= (σ∗,N )2 +NfN 1

y
+N2f2

N 2
y
.

The aim is thus to check that for all time t we have (σy,Nt )2 − (σ∗,N )2 = ON∞(fNN + f3
NN

2).
To do so, we show that 1

y
= ON∞(1) and 2

y
= ON∞(fN ).

First, for all i ≥ 1, 0 ≤ λNi ≤ 1. Then, 1 − γfN ≈N∞ 1 and Cy,N2 = ON∞(1), so 1
y

=
ON∞(1).

Second, γ − 2E
[
Y ∗,N

]
= ON∞(fN ) so from equalities (2.24) and (2.25), we have:{

(γ − 2E
[
Y ∗,N

]
)(E

[
Y y,N

1

]
− E

[
Y ∗,N

]
)
}

(λN1 )t−1 = ON∞(fN ).

Then, C0,N
2 = ON∞(f2

N ) and (E
[
Y 0,N

1

]
− E

[
Y ∗,N

]
)2 = ON∞(f2

N ), so we deduce that 2
0

=

ON∞(fN ).

Finally, C1,N
2 = ON∞(1) and (E

[
Y 0,N

1

]
− E

[
Y ∗,N

]
)2 = ON∞(1) with the same leading term:

C1,N
2 − (E

[
Y 1,N

1

]
− E

[
Y ∗,N

]
)2 = ON∞(fN ).

We conclude the proof with the computation of the maximum of t ∈ R+ 7→ (λN2 )t−(λN1 )2t ∈ R+

which is maximal in

tmax =
log
(

log(λN2 )

2 log(λN1 )

)
2 log(λN1 )− log(λN2 )

.

We obtain

(λN2 )tmax = exp

(
−1 +

(b+ q+)2

4(a+ b+ q+)
fN + O(fN )

)
(λN1 )2tmax = exp

(
−1− (b+ q+)2

4(a+ b+ q+)
fN + O(fN )

)
.

So

(λN2 )tmax − (λN1 )2tmax ≈N∞ e−1 (b+ q+)2

2(a+ b+ q+)
fN .

Thus, 2
1

= ON∞(fN ) which ends the proof.
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2.4.3 Proofs of Theorems on Memory Lifetime

Proof of Theorem 2.27

Proof of Theorem 2.27. The proof follows these lines: from Lemma 2.25 we have that P
(
h0,N
t > θ

)
is inferior or equal to πN∞ (]θ,+∞[). Hence, we propose a threshold θ based on the measure πN∞
such that πN∞ (]θ,+∞[) ≤ ε and then we bound the time before which P

(
h1,N
t ≤ θ

)
≥ ε.

We split πN∞ (]θ,+∞[) in two terms. We recall that πN∞ = BinMix
(
K, g∗,N

)
withK L

= Bin (N, fN )
and [0,MN

∞] is the smallest interval containing the support of g∗,N . So

πN∞ (]θ,+∞[) =

∫ MN
∞

0
P (Bin (K,u) > θ) g∗,N (du) =

∫ MN
∞

0
P (Bin (N, fNu) > θ) g∗,N (du)

≤ P
(
Bin

(
N, fNM

N
ε

)
> θ
)

+

∫ MN
∞

MN
ε

g∗,N (du).

The second equality comes from the following property: assume K L
= Bin (N, fN ) and condi-

tionally on K, X is independent of K with law Bin (K, p), then X L
= Bin (N, fNp). Let Y ∗,N

be a random variable with distribution g∗,N . We propose a value for MN
ε using the Bienaymé-

Tchebytchev inequality:

MN
ε =

(√
2Var (Y ∗,N )

ε
+ E

(
Y ∗,N

))
∧MN

∞ ⇒
∫ MN

∞

MN
ε

g∗,N (du) ≤ ε

2
.

We first fix θε,N such that P
(
Bin

(
N, fNM

N
ε

)
≥ θε,N + 1

)
≤ ε

2 . To do so, we apply Lemma 2.26
with ε =

θε,N+1

NfNMN
ε
− 1 and obtain:

θε,N =

⌊
NfNM

N
ε +

√
−2 log

( ε
2

)
NfNMN

ε − log
( ε

2

)⌋
.

We now bound the probability of error P
(
h1,N
t ≤ θε,N

)
. Let [m1,N

t ,M1,N
t ] be the smallest inter-

val containing the support of g1,N
t . Then, we get:

P
(
h1,N
t ≤ θε,N

)
=

∫ M1,N
t

m1,N
t

P (Bin (K,u) ≤ θε,N ) g1,N
t (du) ≤ P

(
Bin

(
N, fNm

1,N
t

)
≤ θε,N

)
.

Using Lemma 2.26 with ε = 1− θε,N

NfNm
1,N
t

, we get

P
(

Bin
(
N, fNm

1,N
t

)
≤ θε,N

)
≤ exp

−
(
NfNm

1,N
t − θε,N

)2

2NfNm
1,N
t

 .

Using the inequality
√
x+
√
y ≥ √x+ y for all x, y > 0, we obtain that if

NfNm
1,N
t ≥ θε,N +

√
−2 log(ε)θε,N − 2 log(ε) (2.26)
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then P
(
h1,N
t ≤ θε,N

)
≤ ε. Let us define mε,N

def.
= 1

NfN

(
θε,N +

√
−2 log(ε)θε,N − 2 log(ε)

)
.

Using the bound θε,N ≤
(√

NfNMN
ε +

√
−2 log( ε

2
)

2

)2

we get

NfNmε,N +
3

2
log(ε) =

(√
θε,N +

√
−2 log(ε)

2

)2

≤
(√

MN
ε NfN +

√
−2 log(

ε

2
)

)2

.

(2.27)
We now find m1,N

t . From equation (2.14) and the definition ofR (see Notation 2.18), we have

∀t ≥ 1, m1,N
t+1 = m1,N

t ΛN0 ∧ (m1,N
t ΛN1 + fNq

+).

We note that for N large enough such that m1,N
t > fN q

+

ΛN0 −ΛN1
≥MN

∞, we have

fNq
+

1− ΛN1
= MN

∞ < m1,N
t ΛN1 + fNq

+ < m1,N
t ΛN0 < m1,N

t .

Denoting by tNc = inf{t ∈ N∗,m1,N
t ≤ fN q

+

ΛN0 −ΛN1
}, we obtain

m1,N
t =

((
m1,N

1 −MN
∞

)
(ΛN1 )(t∧tNc )−1 +MN

∞

)
(ΛN0 )

(t−tNc )1
t>tNc . (2.28)

Let us now consider q+, q−,N01 and q−,N10 fixed in (0, 1]. By definition, MN
ε ≤MN

∞, hence

NfNmε,N ≤
(√

MN
∞NfN +

√
−2 log

( ε
2

))2

− 3

2
log(ε).

Therefore, the inequality (2.26) holds true as long as

t− 1 ≤

⌊ log
(

2
√
−2 log( ε

2
)NfNMN

∞−4 log( ε
2

)

NfN (m1,N
1 −MN

∞)

)
log(ΛN1 )

⌋
∧ tNc


+

with (x)+ = x1x≥0. (2.29)

But m1,N
1 = 1− (1− q+)r ≥ q+ and both fN q

+

ΛN0 −ΛN1
and MN

∞ = fN q
+

fN q++(1−fN )(q−,N01 +q−,N10 )
tends to

0 with increasing N so there exists N(ε, r) such that for all N ≥ N(ε, r) we can remove “( )+”
in the inequality (2.29): that is to say for all N ≥ N(ε, r) such that,

2
√
−2 log( ε2)NfNMN

∞ − 4 log( ε2)

NfN (m1,N
1 −MN

∞)
< 1 and m1,N

1 >
fNq

+

ΛN0 − ΛN1
.

Using the fact that for all ε ∈ (0, 1),
√
−2 log( ε2) ≤ −2 log( ε2) and m1,N

1 ≥ q+ we get the two
following conditions on N :

2 exp

(
−NfN (m1,N

1 −MN
∞)

4(
√
NfNMN

∞ + 1)

)
< ε and

fNq
+

fNq+ + (1− fN )q−,N10 − fNq−,N01

< q+. (2.30)

In the particular case q−,N10 = 0, we have MN
∞ = 1 so the dynamics of m1,N

t is simply m1,N
t =

m1,N
1 (ΛN0 )t−1. We compute E

(
Y ∗,N

)
and Var

(
Y ∗,N

)
using Lemma 2.35 and equation (2.14):

E
(
Y ∗,N

)
=

f2
Nq

+

1− λN1
=

fNq
+

fNq+ + (1− fN )(q−,N01 + q−,N10 )
, Var

(
Y ∗,N

)
=
f5
N (1− fN )q+2

q−,N01

2

(1− λN1 )2(1− λN2 )
.
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Hence,

MN
ε =

fNq
+
(

1 + q−,N01

√
2fN

ε(1−λN2 )

)
fNq+ + (1− fN )(q−,N01 + q−,N10 )

. (2.31)

We note that 1− λN2 ≈N∞ 2fN (q−,N01 + q−,N10 ), so MN
ε converges to 0 with increasing N . Thus,

by inequality (2.27), there exists a N(ε, r) such that for all N ≥ N(ε, r), mε,N < 1. We conclude
that for all N ≥ N(ε, r), the inequality (2.26) holds true as long as

t− 1 ≤
⌊

log
((√MN

ε NfN+
√
−2 log( ε

2
)
)2
− 3

2
log(ε)

NfN

)
log(ΛN0 )

⌋
> 0.

Proof of Theorem 2.30

Proof. We use the results proved in the proof of Theorem 2.27. From the dynamics of m1,N
t given

by equation (2.28) and the bound m1
tNc
≥ m1,N

1 ∧MN
∞, we obtain that the inequality (2.26) is

satisfied as long as

t− 1 ≤ tNc +


 log

(
mε,N
m1

tNc

)
log(ΛN0 )




+

≤ tNc +


 log

(
mε,N

(m1,N
1 ∧MN

∞)

)
log(ΛN0 )




+

. (2.32)

We can remove “( )+” in the last inequality if there exists N0 such that

∀N ≥ N0,
mε,N

(m1,N
1 ∧MN

∞)
< 1.

Using the inequality (2.27), we deduce that this is the case if

C(ε, r,N) =

√
MN
ε

m1,N
1 ∧MN

∞
+ 2

√√√√ − log( ε2)(
m1,N

1 ∧MN
∞

)
NfN

< 1. (2.33)

From the previous computation of MN
ε , see equation (2.31), we obtain

MN
ε

MN
∞

=

(
1− (1− fN )aN

q+ + (1− fN )(aN + bN )

)(
1 + aNfN

√
2fN

ε(1− λN2 )

)
.

Thus, we compare the three terms (recalling that m1,N
1 = 1− (1− q+)r)

aN
q+ + aN + bN

, aNfN

√
2fN

ε(1− λN2 )
and

− log( ε2)

((1− (1− q+)r) ∧MN
∞)NfN

.

First, (1− λN2 ) ≈N∞ 2f2
N (aN + bN + q+). Then, we have to separate the different cases:
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• If bN tends to +∞, both MN
ε and MN

∞ converge to 0. Hence, (1− (1− q+)r) ∧MN
∞ = MN

∞

and the Assumption 2.9.3 , in particular lim
N∞

q−,N01 = lim
N∞

q−,N10 = lim
N∞

b2N
NfNaN

= lim
N∞

bN
NfN

= 0,

enables us to conclude that if bN = O(aN ), C(ε, r,N) ≈N∞
√

bN
aN

+ 2
√
− log( ε

2
)bN

q+NfN
→ 0, else,

C(ε, r,N) ≈N∞
(

1− aN
aN+bN

)
so the inequality (2.33) holds true for any r and for a N large

enough.

• If aN tends to +∞ and not bN , then MN
ε converges to 0 and MN

∞ converges to 1 (resp. q+

q++b
)

if bN converges to 0 (resp. b). Thus, C(ε, r,N) converges to 0 with large N and for any r, the
inequality (2.33) is satisfied.

• If aN tends to 0 and bN converges to b > 0, then MN
ε converges to MN

∞. Then, there exists r0

such that (1− (1− q+)r0) ∧MN
∞ = MN

∞. Using the assumption lim
N∞

aNNfN = +∞ we have

for all r ≥ r0, C(ε, r,N) ≈N∞
(

1− aN
q++b

)
.

• In all other cases, MN
ε and MN

∞ converges to a value in (0, 1). Moreover, MN
ε < MN

∞ so there
exists r0 such that for all r ≥ r0, (1− (1− q+)r0) ∧MN

∞ > MN
ε , so C(ε, r,N) converges in

(0, 1) with large N .

2.5 Simulations

Our code follows these lines. We draw V N
0 and K =

∑N+1
j=2 V j,N

0 . We simulate a trajectory of
hNt,K long enough to be under the invariant measure. We perform r presentations of the signal

to be learnt and then compute the trajectories of hy,Nt,K , y ∈ {0, 1}. We reiterate this procedure

NMC = 107 times to get an approximation of the distributions of h0,N
t,K and h1,N

t,K .

The result of Theorem 2.27 is interesting for large values of NfN (small errors) combined with
a small fN (non-negligible t̂). In this context, we need to compute many trajectories before the
synaptic currents cross a reasonable threshold θ.

In Figure 2.4a, the top (resp. bottom) roughly represents the distribution of h1,N
t,K (resp. h0,N

t,K ).

Before time t = 50, the distribution of h0,N
t is highly concentrated in 0. Indeed, looking carefully

to Figure 2.4a, we can observe a residue of this high probability (dark blue) for very weak synaptic
currents until time t = 65, see also Figure 2.5a. This concentration drastically reduces the contrast
of the plot. That is why the time axis starts at t = 50 in Figure 2.4a. This figure shows that a
threshold θ around one hundred is a good choice: it seems to maximises the time for which the
threshold estimation holds true. With this threshold, the numerical errors p0,N

e (t, θ) and p1,N
e (t, θ)

does not exceed 10−4, see Figure 2.4b, before time 15. It is coherent with t̂ plotted in Figure 2.4c.
Indeed, the time t̂ is equal to 12 for errors on the order of 10−4, see Figure 2.4c. Moreover, in
Remark 2.31, the result t̂ is a maximum between two times. The second one does not depend on
the error ε (it is called tNc in the proof of Theorem 2.27, see equation (2.28)). This explains the
plateau starting at an error just before 10−3 in Figure 2.4c. Indeed, for this set of parameters and
ε large enough, the time t̂ is equal to tNc . Finally, in Figure 2.4d, we note that p0,N

e is above p1,N
e

for small values of t. Then, around time t = 70, p1,N
e increases quickly until a value close to one

whereas p0,N
e stays below 10−2. This is because the majority of the mass of the distribution of h0,N

t,K
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Figure 2.4: (2.4a) The sum of the distributions of h0,N
t,K and h1,N

t,K . The colour bar gives the proba-

bility values. (2.4b) (resp. (2.4d)) The numerical errors p0,N
e (t, θ) and p1,N

e (t, θ) on a short (resp.
large) timescale. (2.4c) t̂ as a function of ε on the logarithmic to the base ten scale. Parameters:
θ = 117, N = 20 000, fN = 0.05, q+ = q−,N01 = 0.5, q−,N10 = 0.05, r = 3.

stays less than θ. On the other hand, most of the mass of the distribution of h1,N
t,K crosses θ around

time t = 70. So, the error p1,N
e becomes large. We present the histograms of the distributions of

the synaptic currents at certain times.
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Figure 2.5: (2.5a) Histograms of the distributions of h0,N
t at different times. (2.5b) Histograms

of the distributions of h1,N
t at different times. (2.5c) Distributions of hy,N1 just after the learning

phase and the invariant measure. (2.5d) Distributions of hy,Nt at t = 70 and the invariant measure.
Parameters: N = 20 000, fN = 0.05, q+ = q−,N01 = 0.5, q−,N10 = 0.05, r = 3.

We note again that the invariant measure is concentrated around small values. This enables the
post learning distribution of h0,N

1 to have a small variance, see Figures 2.5a and 2.5c. However, the
variance of this distribution increases quickly. In particular, the distribution of h0,N

t has a multi-
modal shape with a high proportion of the mass staying near 0 for more than 50 presentations after
learning. On the other hand, the distribution of h1,N

t keeps a unimodal shape with a variance de-
creasing at the beginning, then increasing before decreasing again, see Figure 2.5b. Distributions
stay well separated approximately until time t = 70, see Figure 2.5d.

In order to illustrate the role played by the parameter r, we plot the distributions just after the
learning phase for different values of r.
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Figure 2.6: (2.6a) Distributions of h0,N
1 , just after learning, for different values of r and the in-

variant measure. (2.6b) Distributions of h1,N
1 , for different values of r and the invariant measure.

(2.6c) The sum of the distributions of h0,N
t and h1,N

t for r = 5. (2.6d) The sum of the distri-
butions of h0,N

t and h1,N
t for r = 30. The colour bar gives the probability values. Parameters:

NMC = 106, N = 20 000, fN = 0.1, q−,N01 = q−,N10 = 0.01 and q+ = 0.05.

Because of the parameters choice, the distributions of h0,N
1 are close to the invariant measure πN∞

whereas the distributions of h1,N
1 are further from it, see Figures 2.6a and 2.6b. Moreover, the

forgetting is really slow. However, if we want the signal to be learnt correctly with such a small
q+, then r has to be high enough. This shows the need of a large r in view of a slow forgetting.
Figures 2.6c and 2.6d show well the difference brought by a higher value of r: the separation
between the two distributions is clearer.
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2.6 Discussion

We provide a mathematical framework to study the memory retention of random signals by a
recurrent neural network with binary neurons and binary synapses. We thus consider a paradigm
linking synaptic plasticity and memory: a stimulus is remembered as long as its trace in the synap-
tic weights is strong enough. In order to measure the memory of a stimulus, we study the synaptic
current onto one neuron during the presentation of this stimulus. First, we compute the spectrum
of the transition matrix of the Markov chain associated to the synaptic current. This enables us
to conclude that the eigenvalues are strictly different whatever the parameters are. In particular,
we can compute the rate of convergence of the chain to its invariant measure, see Corollary 2.13.
Then, we carry on the work done by [8] on the dynamics of the distributions of the synaptic cur-
rent and their invariant distribution. This leads us to control the form of these distributions. Their
properties give enough information to find a lower bound on the time a neuron keeps a good esti-
mate on its response to the first stimulus and hence remembers it. We measure the quality of this
estimation by performing a statistical test based on the observation of the synaptic current onto
one neuron. We define an error associated to this test which depends on two distributions: the dis-
tribution of the synaptic current knowing that the neuron was selective to the initial signal and the
distribution knowing that the neuron was not selective. Finally, unlike previous studies, we take
into account the possibility that heterosynaptic and homosynaptic depressions scale differently in
the network size N and we consider the role of presenting several times a signal in the learning
phase.

We use the model presented by [5] because of its relative simplicity and its consideration of
synapse correlations. Their study focused on the first two moments of the synaptic current. It
leads to a result on the memory capacity of the network which depends on a global variable, the
so-called signal-to-noise ratio (SNR). In particular, they studied the SNR in the large N asymp-
totic. They obtained a large SNR when the coding level fN is low and the depression probabilities
are proportional to fN : q−,N01 ∝ q+fN and q−,N10 ∝ q+fN . The lowest coding level possible fN is
on the order of log(N)

N and it gives a memory capacity on the order of −1
log(λN1 )

∼N∞ 1
f2N

. In [116, 8],

they assumed that q−,N10 = 0 and showed the same result using a Gaussian approximation of the

synaptic currents. Under the same assumption as in [5]
(
q−,N01 , q−,N10 ∝ q+fN and fN → 0

)
, our

result also predicts a forgetting time on the order of −1
log(ΛN0 )

∼N∞ 1
f2N

, see Theorem 2.30. More-
over, we give a result for depression probabilities not depending on N and our result link the
probability of error to the parameters. Note the presence of ΛN0 in our result rather than λN1 in
previous studies. This difference comes from our different measure of memory lifetime. The SNR
analysis is based on the convergence of the means of the synaptic currents whereas our retrieval
criterion requests the knowledge of their entire distributions. Indeed, we search for a memory
lifetime obtained with a control on the errors p0,N

e and p1,N
e . We conjecture that we could prove

similar result as ours with λN1 rather than ΛN0 . Finally, our results do not necessarily need the large
N asymptotic. Nevertheless, in this asymptotic, the expression of t̂ simplifies, see Remark 2.31.

In this study, we assume that learning is generated by the divergence of the distributions of the
synaptic currents h0,N

t and h1,N
t from their invariant distribution, see Figure 2.7. The main role of

the number of signal presentations (r) is to separate these two distributions. Indeed, the larger the
r, the more separated the support of the mixing distributions g0,N

1 and g1,N
1 are. In our proofs, we

compare g1,N
t to g∗,N after showing that as long as g1,N

t is far enough from g∗,N it is far enough
from g0,N

t , see Lemma 2.25. As a consequence, the expression of t̂ is an increasing function of
m1,N

1 −MN
∞, and so of r.
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Figure 2.7: Illustration of the notations used in the proofs. Both distributions of h0,N
t (orange) and

h1,N
t (blue) converge to the unique stationary distribution πN∞ (black). The convergence speed of
h1,N
t is first ΛN1 and then ΛN0 .

Let us now discuss the roles of the coding level, the potentiation and depression probabilities.
They affect both learning and forgetting. The coding level directly affects the number of synapses
candidate to depression and potentiation. Indeed, looking at an individual synapse, its probability
to potentiate is f2

Nq
+ and its probability to depress is fN (1 − fN )(q−,N10 + q−,N01 ). Thus, when

the coding level is close to one, the fluctuations are important and seem to cause a fast forgetting
as shown in the illustrations of Section 2.2. Therefore, we used a low coding level, see Assump-
tion 2.9.2. This choice slows down the forgetting. However, fN cannot be too small because it is
detrimental to the learning phase as the distance between the two conditional distributions depends
on fN . More particularly, it depends on NfN which then need to be large enough, see Assump-
tion 2.9.2. The last parameters we can tune are the potentiation and depression probabilities. As
for fN , there is a compromise between their role in learning and forgetting. Indeed, in order to
promote learning, they need to be close enough to one but on the contrary, small probabilities
reduce the forgetting rate. So we propose to take a potentiation probability (q+) on the order of
1, to learn quickly, and small depression probabilities, to forget slowly. Potentiation increases the
synaptic currents so it leads to a shift of the distribution of h1,N

t to the right and for the same
reasons, depression results in a shift of the distribution of h0,N

t to the left. Therefore, smaller de-
pression than potentiation implies that the distribution of h1,N

t is significantly shifted to the right
whereas the distribution of h0,N

t is slightly shifted to the left. In view of learning, the initial sepa-
ration between distributions can be limited if the invariant distribution πN∞ is already concentrated
on high values of synaptic currents. As there are two depression probabilities, this situation can
be avoided by choosing one probability big enough and the other one smaller. For example, when
depression probabilities depend on N under Assumption 2.9.3, both q−,N10 and q−,N01 converge to
0. If they both converge too fast (aN and bN converge to 0), the invariant measure is concentrated
around one and no learning is possible. However, if either aN or bN does not converge to 0, then
the invariant measure is not concentrated around 0 and learning is possible. Then, depending on
the different large N asymptotic of aN and bN , we computed the different memory lifetime sum-
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marized in Table 2.1. The best memory lifetimes are on the order of 1
f2N

and are obtained when aN
(resp. bN ) converges to 0 and bN (resp. aN ) converges to a constant in R+ (resp. R+

∗ ) or (aN , bN )
converges to constants in R+

∗ ×R+. Thus, if we want to increase the memory lifetime beyond this
order, we seem to need a more complex model.

Our study is valid for a classic learning, which needs multiple stimulus presentations, but also for
a one shot learning. This last one is possible only with a specific choice of parameters. Indeed,
when presenting a stimulus, the synaptic weights between selective neurons need to be potentiated
with a high probability (high q+). When presenting other stimuli, these same weights need to have
a very small probability of undergoing depression (low q−,N01 and q−,N10 ). As a result, following the
presentation of a stimulus, selective neurons develop strong links and then these connections take
time to disappear. Thus, the experiment associated with this model would focus on recognition
memory. A well-known experiment in this field was carried out by [121]. He showed that humans
are able to recognize up to 10,000 images, presented only once, with 90 percent success rate.

Many perspectives can be studied as a follow-up to this study. First, the analysis carried out on
the synaptic current onto one neuron could be extended to the entire vector of synaptic currents.
The correlations between synaptic weights would then play a major role. In addition, the model
could be completed in order to get closer to biology. Indeed, the formation of synaptic memory is
far more complex than in our model. In particular, the link between the dynamics of the neurons
and the synaptic weight is missing. Improving the model in this direction could be done by con-
sidering more structured and complex external signals, adding neural layers and a more realistic
membrane potential neural dynamics. In the literature, adding synaptic states does not seem to be
successful as the authors stated in [48, 71], whereas meta-plastic transitions brought better SNR
results [49, 117, 16]. Adding neural dynamics in such models would be a next challenging step.
Nevertheless, the model analysed here illustrates well the trade-off between the plastic and the
stable characteristics of memory. Indeed, learning implies changes of synaptic weights (plasticity)
as well as mechanisms which maintain them (stability). In mathematical terms, stability is related
to the minimal convergence rate and plasticity refers to the sensibility to disturbance. We see that
there is a compromise: the more a dynamics is sensitive to disturbances, the less it is stable and
vice-versa.





Chapter 3

Slow-Fast Analysis of a New Stochastic STDP

model

Abstract

Thought to be responsible for memory, synaptic plasticity has been widely studied in the past
few decades. A plasticity mechanism often used to model synaptic plasticity is the Spike-Timing-
Dependent Plasticity (STDP). There is a huge literature on STDP models. Their analyses are
mainly based on numerical work when only a few has been studied mathematically. Here, we pro-
pose a new stochastic STDP rule with discrete synaptic weights. It provides a new framework for
using probabilistic tools for an analytical study of plasticity. Moreover, it is biologically plausible
and can be easily simulated with thousands of neurons. Based on the assumption that the plasticity
is slow compared to the neural network dynamics, we perform a separation of timescale. This sep-
aration enables us to derive an equation for the weight dynamics based on the invariant measure
of the neural dynamics. The study of long-term behaviour of the weights gives us conditions for
its transience and positive recurrence. We illustrate these conditions on simple cases in which we
can derive the exact dynamics of the weights thanks to the computation of the Laplace transform
of the invariant measure of the fast process. These calculations put forward some counter intu-
itive results. This model attempts to answer the need for understanding the interplay between the
weight and neural dynamics.

65
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3.1 Introduction

At the beginning, plasticity models were based on firing rates [18]. Later on, as suggested by
Hebb in his book [67] published in 1949, the crucial role of precise spiking times has been proven
experimentally. First in vitro at the end of the twentieth century by Markram et al. in [92] and
Bi and Poo in [17], and then in vivo in many cortical areas and different species, see [24] and
references therein. This type of plasticity was named Spike-Timing-Dependent Plasticity (STDP)
by Song et al. in [120]. Following such a breakthrough, numerous STDP models emerged and
their studies helped understanding this plasticity mechanism.

In the earliest studies, the need of bounding the synaptic weights emerged. Different methods have
been proposed: from the hard bounds when the weight modification does not depend on its current
value (additive STDP) to the soft bounds when this evolution depends on the value of the synaptic
weight (multiplicative STDP), see Section 1.2.2 for more details. In the context of one neuron
connected to multiple presynaptic neurons, hard bounding leads to the formation of groups of
weights at the two extremal bounds with competition between the weights (bimodal distribution),
whereas soft bounding leads to a unimodal distribution of the weights, see for instance [79, 120,
118, 78, 65].

In particular, in [79] and [78], a separation of timescales is used. Indeed, long term plasticity
is induced on a timescale that ranges from a few minutes to more than one hour. On the other
hand, a spike lasts for a few milliseconds [102]. Hence using this timescale difference, the weight
dynamics can be simplified by using the averaged behaviour of the neural system. More recently,
timescale separation method has been used in numerical study of different recurrent neural net-
works models. In [58] and [59], the authors have shown the emergence of a network structure and
its functional implications. In [107], the authors put forward the need of the precise spiking times
for the assembly formation and stability, especially when the spiking rates stay rather constants,
see [106]. Despite all these previous works, there is still a need to understand how to bridge this
timescale gap between the synapse level and the network one, see [45, 136, 128].

Unfortunately, there is still a lack of rigorous mathematical analyses of such systems. Among
deterministic analyses, Perthame et al. analysed the plasticity between populations of LIF neu-
rons interacting through their average activities in [110]. Stochastic studies of STDP models are
proposed in [52] and more recently in [114] and [115]. Contrary to the latter, we study the plastic-
ity within a neural network rather than the dynamics of a single synaptic weight and its pre- and
postsynaptic neurons.

In this chapter, we present and study our new STDP rule which is implemented in the well-known
stochastic Wilson-Cowan model of binary spiking neurons presented in [15]. More precisely, be-
cause of the plasticity rule, our model is a Piecewise Deterministic Markov Process (PDMP) [33]
and [34] whereas it is a pure point process in [15]. This model is new on three main points. First,
instead of a deterministic STDP rule, we introduce a stochastic one: the weights do not change at
each spike pair but rather may change or not according to a certain probability depending on the
spike pair. Second, the size of the weight jumps is fixed. Our synaptic weight are then discrete
as suggested in [108]. Thus, the usual separation of timescale using the assumption of arbitrarily
small weight jumps is not possible. Instead, we assume that the probability of such jumps is arbi-
trarily small. Third, the effect of the spike of a given neuron on the other ones persists for a few
milliseconds (as long as the neuron is in state 1) as it was found experimentally. Indeed, it depends
on the receptors but the order of magnitude is the millisecond, see [14] for instance.
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Thanks to the simplicity of the neural network model, we can perform a mathematical analysis
of the Markov process composed of the following three components: the synaptic weight matrix,
Wt, the times since the last spike of the neurons, St, and the neuron states or potentials, Vt.
In particular, assuming that the synaptic dynamics of the weight, Wt, is much slower than the
neural network one, (Vt, St), we perform a separation of timescales to obtain the limit dynamics
of the weights using results proved by Kurtz in [81]. We show that this dynamics is a Markov
chain on the discrete space of weights. Its transitions depend on the invariant measure of the fast
process for the current synaptic weight matrix. Once this result is established, we precise the long
time behaviour of this chain: conditions of transience and positive recurrence are obtained. In
particular, we can use the Laplace transform of the stationary distribution of the fast process to
check these conditions. Simulations enable us to illustrate our results and to go beyond them. In
particular, we show counter intuitive results such as the divergence of the weights when the STDP
curve of potentiation always “wins” against the one of depression. Therefore, this work presents
a new biologically plausible model that can be studied mathematically and easily simulated with
thousands of neurons.

This chapter is organised as follows. Section 3.2 is devoted to the presentation of the model as well
as the introduction of notations. The definition of the generator of the process enables us to explain
more formally how the timescale separation is studied. This study is detailed in Section 3.3. First,
we show in Proposition 3.8 the exponential convergence of the fast process to its unique invariant
measure. Then, we give the main result of this chapter: under the slow-fast assumption, we obtain
in Theorem 3.16 the dynamics of the limit process. This result tells us that the limit dynamics
of the weights is a non-homogeneous in space Markov chain with kernel transition depending
on the invariant measure of the fast process. Once this dynamics is obtained, we study its long
time behaviour in Section 3.4. We give simple and intuitive conditions for transience and positive
recurrence in Proposition 3.24. After bounding the jump rate of individual weights in Proposition
3.28, we propose a simple condition on the parameters for an example in Proposition 3.31. In
the second part of Section 3.4, we show how to compute the Laplace transform of the invariant
measure of the fast process, first within a toy minimal model with 2 neurons in Lemma 3.36 and
in the general case in Proposition 3.39. Finally, we illustrate our results and go beyond them with
simulations in the Section 3.5. In particular, we illustrate the divergence of the weights when the
potentiation STDP curve is below the depression one for all value of spike pair delay. Moreover,
the stability analysis shows that increasing the size of the network seems to stabilise it. For a
fixed set of parameters except the number N of neurons, if the condition of positive recurrence is
satisfied for N = 2, then, for a larger network, N > 2, the weight chain seems to be also positive
recurrent. More generally, the set of parameters leading to positive recurrence of the chain for
N = 2 seems to be included in the one for N > 2.

3.2 Presentation of the model and notations

In this chapter, the size N of the network is fixed. To alleviate the notation, we do not mark any
parameter with the exponent N .

The model

We use the well-known stochastic Wilson-Cowan model of spiking neurons (see [15] for an anal-
ysis with fixed synaptic weights) in which we implement a stochastic STDP rule. We study a net-
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work of N binary neurons, Vt ∈ {0, 1}N , all-to-all connected via the matrix of synaptic weights

Wt belonging to the grid (∆wZ)N
2

where ∆wZ def.
= {m∆w : m ∈ Z} and ∆w > 0. For all

1 ≤ i, j ≤ N , the weight W ij
t represents the effect on the neuron i of a spike emitted by the

neuron j at time t. For all 1 ≤ i ≤ N , we denote by W i
t = (W 1i

t , · · · ,WNi
t ) the vector of the

postsynaptic weights of the neuron i. A neuron is either excitatory, all its postsynaptic weights are
positive, or inhibitory, all its postsynaptic weights are negative. We say that the neuron i spikes
at time t if V i jumps from 0 to 1 at time t, that is V i

t = 1 and V i
t− = 0. One notes Sit ∈ R+ the

time spent since the last spike of the neuron i. The dynamics studied in this chapter is a Piecewise
Deterministic Markov Process (PDMP). We describe it now.

• The deterministic part between the jumps is very simple, the variables Sit increase linearly
with time:

∀t ≥ 0,∀i, dSit = dt.

• For any i, the neuron i jumps from state 0 to state 1 at rate αi (Vt,Wt). The function αi is
defined on {0, 1}N ×RN2

and takes value in [αm, αM ], with 0 < αm ≤ αM . At the spiking
time t,

– the potential V i
t jumps from 0 to 1,

– the clock Sit is reset to 0,

– the presynaptic weights (W ij
t−)j 6=i are potentiated with probability p+(Sj

t− ,W
ij
t−),

– the postsynaptic weights (W ji
t−)j 6=i are depressed with probability p−(Sj

t− ,W
ji
t−).

Here the functions p+ and p− are defined on R+ ×∆wZ with values in [0, 1]. Potentiation
and depression consist of a change of ±∆w in the synaptic weight. We assume moreover
that p+(s,−∆w) = p−(s,+∆w) = 0, that is the signs of the synaptic weights do not
change.

• Finally, the potentials of the neurons jump from 1 to 0 at constant rate β > 0; at these
instants, neither the synaptic weights nor the clocks are modified. Without loss of generality,
we assume that

0 < αm < β < αM <∞. (3.1)

We can summarize the previous explanations by giving the dynamics of the potential V i
t and then

the plasticity rule. The potential V i
t follows the reaction

0
αi(Vt,Wt)−−−−−−⇀↽−−−−−−

β
1. (3.2)

When the neuron i spikes at time t, then Sit is reset to 0 and for all j 6= i:

P(W ij
t = W ij

t− + ∆w) = p+(Sj
t− ,W

ij
t−) and P(W ji

t = W ji
t− −∆w) = p−(Sj

t− ,W
ji
t−).

From the definition of the model, we see that the weights are discrete. In the following, we assume
that every neuron is excitatory and without loss of generality, we set ∆w = 1 and W0 belongs to
the space E2 such that:

E2
def.
= {w ∈ NN

2
s.t. ∀i, wii = 0 and ∀i 6= j, wij > 0}. (3.3)
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Remark 3.1. The synaptic weights between two different neurons are positive, so we consider an
all-to-all connected network of excitatory neurons. Extending some of our results to inhibitory-
excitatory neurons without more mathematical work is possible, see Remark 3.18. Also, we note
that W ii

t is null for all i and t.

Finally, let us remark that the process (Vt,Wt)t≥0 is not Markovian but the process (Vt, St,Wt)t≥0

is Markovian.

We now study the continuous time Markov process (Vt, St,Wt)t≥0 ∈ E
def.
= E1 × E2 where

E1
def.
= {0, 1}N × RN+ and E2 is defined in (3.3). Here, the difference of timescales between the

weight dynamics and the neural network one has piloted the definitions of E1 and E2.

Notation 3.2. We denote by (Ω,B(E),P) the probability space on which the Markov process
(Vt, St,Wt)t≥0 is defined.

Generator of the process

For all w ∈ E2, assuming that Wt− = w, we denote by Aiw the accessible states of Wt after the
spike of neuron i at time t,

Aiw
def.
=
{
w̃ ∈ E2 : ∀j 6= i, w̃ij ∈ {wij , wij + 1}, w̃ji ∈ {wji, wji − 1} and k 6= i, w̃jk = wjk

}
.

We denote by φi : RN+ × E2 × E2 → [0, 1] the transition of W conditionally to the vector St−:
for all (s, w̃, w) ∈ RN+ × E2 × E2,

φi(s, w̃, w) = P (Wt = w̃|Wt− = w, St− = s)

= 1Aiw
(w̃)

∏
j 6=i

([
(w̃ij − wij)p+(sj , wij) + (1− (w̃ij − wij))(1− p+(sj , wij))

]
(3.4)[

(wji − w̃ji)p−(sj , wji) + (1− (wji − w̃ji))(1− p−(sj , wji))
])
.

Remark 3.3. We obtain this transition using the fact that the weight changes are independent one
to each other.

In this chapter, when we refer to continuous or more regular functions, the regularity properties
hold on the continuous variable St living on RN+ . Although the domain of the operators we use can
be larger, we consider their restriction to the space of continuous and bounded functions on the
same state space. This means that if we note D(C) the largest domain of definition of the operator
C acting on functions on E, we will consider D(C) = D(C) ∩ Cb(E).

We denote by (C, D(C)) the generator of the complete process (Vt, St,Wt)t≥0 where D(C) is the
domain of definition of C. Thus, C is given by: for all f ∈ D(C) and (v, s, w) ∈ E,

Cf(v, s, w) =
∑
i

∂sif(v, s, w) +
∑
i

δ1(vi)β[f(v − ei, s, w)− f(v, s, w)]

+
∑
i

δ0(vi)αi(v, w)
[
f(v + ei, s− siei, w)− f(v, s, w)

]
φi(s, w,w)

+
∑
i

δ0(vi)αi(v, w)

∑
w̃ 6=w

[
f(v + ei, s− siei, w̃)− f(v, s, w)

]
φi(s, w̃, w)

 ,
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where we denote by ei = (0, · · · , 0, 1︸︷︷︸
i

, 0, · · · , 0) the elements of both {0, 1}N and RN+ .

Remark 3.4. We note that D(C) contains the space of bounded and continuously differentiable
functions C1

b (E).

We have split the generator into four terms to facilitate their interpretation. It contains three inter-
acting dynamics:

• the dynamics of the time since the last spike (first term),

• the neural dynamics (second and third term),

• the dynamics of the weights (last term).

We moreover assume that the synaptic weight dynamics is slow compared to the neural net-
work dynamics. As seen in the introduction, this assumption is experimentally supported, Thus,
(Vt, St)t>0 evolves on a faster timescale than (Wt)t>0. This assumption can be written more
formally as:

∀i ∈ J1, NK,
∑
w̃ 6=w

φi(s, w̃, w)� φi(s, w,w). (3.5)

Typically, this means that for small ε ∈ (0, 1), we have
∑̃
w 6=w

φi(s, w̃, w) ≈ ε and φi(s, w,w) ≈
1− ε. This timescale difference is studied in Section 3.3.2. The fast part of the process is studied
in Section 3.3.1.

3.3 Slow-fast analysis

First, we show that the fast process has a unique invariant measure. The synaptic weight dynamics
is then derived as a function of this invariant measure under the slow-fast assumption.

3.3.1 The fast process invariant measure

Notations

In this subsection, we fix a weight matrix W0 = w ∈ E2 and assume that p+ ≡ p− ≡ 0. We
deduce that Wt ≡ w and study the two first components (Vt, St) of the process (Vt, St,Wt)t≥0.
Hence, for all w ∈ E2, its generator (Bw, D(Bw)) is given by: for any f ∈ D(Bw) and (v, s) ∈
E1,

Bwf(v, s) =

N∑
i=1

∂sif(v, s) +

N∑
i=1

δ1(vi)β[f(v − ei, s)− f(v, s)]

+
N∑
i=1

δ0(vi)αi(v, w)[f(v + ei, s− siei)− f(v, s)]. (3.6)

The process (Vt, St)t≥0 is a classic PDMP with two components: a discrete one, Vt ∈ {0, 1}N ,
and a continuous one, St ∈ RN+ . A typical trajectory of one of its coordinates is illustrated in
Figure 3.1.



71 3.3. Slow-fast analysis

0 2 4 6 8
time (ms)

0

1

2

3

4

5

Figure 3.1: A typical trajectory of V 1
t in blue and S1

t in red.

Notation 3.5. We denote by (Pt,w)t≥0 the transition probability kernel of the process (Vt, St)t≥0.
In particular, for all x ∈ E1, A ∈ B(E1) and w ∈ E2, we have

Pt,w(x,A) = P((Vt, St) ∈ A|(V0, S0,W0) = (x,w)).

For a measure µ on E1, a function f ∈ Cb(E1), a Borel set A ∈ B(E1) and x ∈ E1, we use the
classical notations:

µPt,w(A) =

∫
E1

Pt,w(y,A)µ(dy) and Pt,wf(x) =

∫
E1

f(y)Pt,w(x, dy).

Finally, we introduce the number of jumps of the processes.

Notation 3.6. Let (N i
t,w)t≥0 be the number of jumps of the process (V i

u, S
i
u)u≥0 between the times

0 and t. This counter can be formally defined with a family (ζi(du, dz))1≤i≤N of N Poisson
random measures on R2

+ with intensity dudz (see Definition A.5 in the appendix),

N i
t,w =

∫ t

0

∫
R+

1{
z≤αi(Vu− , w)1{

V i
u−

=0

}} + 1{
z≤β1{

V i
u−

=1

}}ζi(du, dz).

Convergence of the fast process to its invariant measure

We use the classical Doeblin condition, given by (3.7), to prove the exponential convergence to
the unique invariant measure. Under the Doeblin condition, a simple and short proof shows that
the probability transition kernel of a Markov process in a general metric state space is contracting.
This condition is very useful when the state space is compact or when a compact set of the state
space is uniformly accessible from any of its element, see [97, Thm 16.0.2] and [11]. We give the
associated Doeblin Theorem. Its proof can be found in [50, Thm 11] and in [26, Thm 2.3], we
recall it here for completeness. Then, we show that the process (Vt, St)t≥0 satisfies the Doeblin
condition.

In what follows, we use the Jordan decomposition of the signed measures and their total variation,
see Definition A.2 in the appendix.
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Theorem 3.7. (Doeblin Theorem) Let (Yt)t≥0 be a Markov process on a measurable set (X,X ).
Its Markov transition kernel is denoted by (Pt)t≥0. Assume that there exist T > 0, κ ∈ (0, 1) and
a probability measure ν on X such that for all x ∈ X ,

inf
x∈X

PT (x, ·) ≥ κν(·). (3.7)

Then, the process (Yt)t≥0 admits a unique invariant measure µ∞.

Moreover, denoting by γ = − log(1− κ) > 0, we have for all probability measure µ on X ,

‖µPt − µ∞‖TV ≤ 2e−γb
t
T
c.

Proof. Let µ1 and µ2 be two probability measures on X such that ‖µ1 − µ2‖TV > 0. One has,

‖(µ1 − µ2)+‖TV = ‖(µ1 − µ2)−‖TV =
1

2
‖µ1 − µ2‖TV .

We denote µ̂ = µ1−µ2
1
2
‖µ1−µ2‖TV

. Then, µ̂+, µ̂− are probability measures.

From the triangle inequality and (3.7), we get that for any Borel set A of X ,

|µ̂PT |(A) = |µ̂+PT − µ̂−PT |(A) ≤ |µ̂+PT − κν|(A) + |κν − µ̂−PT |(A)

≤ µ̂+PT (A)− κν(A) + µ̂−PT (A)− κν(A).

In particular, for A = X we obtain that

‖µ̂PT ‖TV ≤ ‖µ̂+PT ‖TV + ‖µ̂−PT ‖TV − 2κ‖ν‖TV = 2(1− κ).

We deduce that
‖µ1PT − µ2PT ‖TV ≤ ‖µ1 − µ2‖TV (1− κ).

The space of signed measures embedded with the norm ‖·‖TV is a Banach space, see [4, Rk
1.7]. Thus, for any initial probability measure µ, the sequence (µPnT )n≥0 converges to a unique
invariant probability measure (fixed point of PT ) that we denote by µ∞. Moreover, from the semi
group property of (Pt)t≥0 we have that for all t ≥ 0,

µ∞PtPT = µ∞Pt+T = µ∞PTPt = µ∞Pt.

Thus, µ∞Pt is also invariant for PT and by uniqueness of µ∞, we have µ∞Pt = µ∞. Hence, µ∞
is also invariant for Pt for all t ≥ 0. We conclude that for all t, denoting by n =

⌊
t
T

⌋
, we have

‖µPt − µ∞‖TV = ‖µPt − µ∞Pt‖TV ≤ ‖µPt−nT − µ∞Pt−nT ‖TV (1− κ)n ≤ 2(1− κ)n.

Proposition 3.8. For all w ∈ E2, the process (Vt, St)t≥0 with generator Bw defined in (3.6)
converges exponentially fast to its unique invariant measure πw.

Proof. For all T > 0, we find a probability measure with support on (1, · · · , 1) × [0, T ]N such
that the Doeblin condition can be derived for PT,w.

For any sequence t1, · · · , tN ∈ (0, T ), for all x = (v, s) ∈ E1 and (V0, S0) = x, (VT , ST )
belongs to (1, · · · , 1)×∏N

i=1[0, ti] as long as for all i:
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• if V i
0 = 1, the neuron i jumps exactly twice in [T − ti, T ] and does not jump in [0, T − ti),

• if V i
0 = 0, the neuron i jumps exactly once in [T − ti, T ] and does not jump in [0, T − ti).

Note that (VT , ST ) ∈ (1, · · · , 1)×∏N
i=1[0, ti] can be obtained in many other ways but the one we

give is sufficient to get what we need:

Px
(

(VT , ST ) ∈ (1, · · · , 1)×
N∏
i=1

[0, ti]
)
≥ Px

(⋂
i

{
N i
T−ti,w = 0, N i

T,w −N i
T−ti,w = vi + 1

})
.

The right term is strictly positive as, by assumption (3.1), the jump rates are bounded by strictly
positive constants. Moreover, it does not depend on the initial value S0 = s because the jump
rates does not depend on St. Thus, we can fix S0 = (0, · · · , 0) for instance, and then define the
measure ν̃ on E1 such that ν̃

(
E1 \ (1, · · · , 1)× [0, T ]N

)
= 0 and

ν̃
(

(1, · · · , 1)×
N∏
i=1

[0, ti]
)

= min
v∈{0,1}N

P(v,(0,··· ,0))

(⋂
i

{
N i
T−ti,w = 0, N i

T,w −N i
T−ti,w = vi + 1

})
.

Thus, ν̃(E1) ∈ (0, 1) and we conclude, denoting by ν the probability measure ν
def.
= ν̃

ν̃(E1) , that
for all A ∈ B(E1), x ∈ E1,

PT,w(x,A) ≥ ν̃(E1)ν(A). (3.8)

Applying Theorem 3.7 ends the proof.

3.3.2 The slow process limit dynamics

We first introduce all the notations indexed by ε that we need to then give the main result and its
proof.

Notations indexed by ε

We recall the main assumption: the synaptic weight dynamics is slow compared to the network
dynamics, in the sense that the process (Vt, St)t≥0 changes fast compared to (Wt)t≥0. Hence, in
order to make a slow fast analysis, we replace the function φi defined by (3.4) by two families φεi
of functions indexed by ε ∈ (0, 1). With these notations, we can give a rigorous sense to (3.5).
The first family is obtained by changing the functions p+ and p− in the definition (3.4) of φi.

Assumption 3.9. Let us assume that the functions p+ and p− are of order ε. With a slight abuse
of notation, we denote by εp+ and εp− these functions, that is we consider φεi defined by (3.4)
where p+ and p− have been replaced by εp+ and εp−:

φεi (s, w̃, w) = 1Aiw
(w̃)

∏
j 6=i

([
(w̃ij − wij)εp+(sj , wij) + (1− (w̃ij − wij))(1− εp+(sj , wij))

]
[
(wji − w̃ji)εp−(sj , wji) + (1− (wji − w̃ji))(1− εp−(sj , wji))

])
.

The second family is obtained from the model described in Section 3.2 by drawing a Bernoulli
variable of parameter ε at each spiking time of a neuron. If this variable is equal to one, then the
weights jump as described by the model, otherwise the weights do not jump.
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Assumption 3.10. Let us assume that we keep the initial functions p+, p− and define for all
ε ∈ (0, 1), for all s ∈ RN+ ,

∀w̃ 6= w, φεi (s, w̃, w) = εφi(s, w̃, w) and φεi (s, w,w) = 1− ε(1− φi(s, w,w)).

The following Proposition holds either under Assumption 3.9 or Assumption 3.10. In what fol-
lows, we only use the results of this Proposition and thus, we just have to assume that one of
these two Assumptions holds. In particular, this Proposition gives some general properties of the
functions φεi .

Proposition 3.11. Under Assumption 3.9 or 3.10, φεi satisfies the following properties.

For all s ∈ RN+ , φεi (s, ·, ·) is a transition kernel on E2 such that for all w̃, w ∈ E2,∑
w̃ 6=w

φεi (s, w̃, w) = Rεi (s, w) = 1− φεi (s, w,w), (3.9)

where for all (s, w) ∈ RN+ × E2, Rεi (s, w) = O(ε). As for the functions φi, φεi is null except on
the set Aiw. Moreover, there exist functions ϕi and Kε

i such that for all w̃ 6= w, s ∈ RN+ ,

φεi (s, w̃, w) = εϕi(s, w̃, w) +Kε
i (s, w̃, w), (3.10)

where for all (s, w̃, w) ∈ RN+ × E2 × E2, Kε
i (s, w̃, w) = O(ε). Finally, for all j 6= i,∑

w̃∈Aiw,
w̃ij=wij+1

ϕi(s, w̃, w) = p+(sj , wij) and
∑
w̃∈Aiw,

w̃ji=wji−1

ϕi(s, w̃, w) = p−(sj , wji). (3.11)

Proof. First, under Assumption 3.9, denoting by Eij
def.
= (δikδjl)1≤k,l≤N , for all (s, w) ∈ RN+ ×

E2, we have

φεi (s, w + Eij , w) = εp+(sj , wij)
(
1− εp−(sj , wji)

) ∏
k 6=i,j

(
1− εp+(sk, wik)

)(
1− εp−(sk, wki)

)
,

φεi (s, w − Eji, w) =
(
1− εp+(sj , wij)

)
εp−(sj , wji)

∏
k 6=i,j

(
1− εp+(sk, wik)

)(
1− εp−(sk, wki)

)
.

Thus, φεi (s, w + Eij , w) = εp+(sj , wij) + O(ε) and φεi (s, w − Eji, w) = εp−(sj , wji) + O(ε).
For all other w̃ ∈ Aiw such that w̃ 6= w, the jump from w to w̃ corresponds to at least two changes
in the synaptic weights and thus, φεi (s, w̃, w) = O(ε).

Therefore, we define the functions Kε
i by, for all j 6= i,

Kε
i (s, w + Eij , w) = φεi (s, w + Eij , w)− εp+(sj , wij),

Kε
i (s, w − Eji, w) = φεi (s, w − Eji, w)− εp−(sj , wji),

and Kε
i (s, w̃, w) = φεi (s, w̃, w) for all other w̃ 6= w.

Finally, we define the functions ϕi by: for all j 6= i, s ∈ RN+ , w ∈ E2,

ϕi(s, w + Eij , w) = p+(sj , wij), ϕi(s, w − Eji, w) = p−(sj , wji), (3.12)

and ϕi(s, w̃, w) = 0 for all w̃ ∈ Aiw \
⋃
j{w + Eij , w − Eji}.

We conclude that, under Assumption 3.9, with such functions ϕi and Kε
i , all the equations (3.9),

(3.10) and (3.11) hold. The proposition is thus satisfied for Assumption 3.9.

Under Assumption 3.10, we have ϕi = φi and the proposition is trivially satisfied.
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Remark 3.12. Under Assumption 3.9 or 3.10, there exists ϕM ∈ R+ such that for all i,∑
w̃ 6=w

ϕi(s, w̃, w) ≤ ϕM .

In what follows, we assume that either Assumption 3.9 or Assumption 3.10 holds.

We now highlight the difference of timescale in the new generator Cε which is the same as C with
φεi instead of φi. For all f ∈ D(Cε) and (v, s, w) ∈ E,

Cεf(v, s, w) =
∑
i

∂sif(v, s, w) +
∑
i

δ1(vi)β[f(v − ei, s, w)− f(v, s, w)]

+
∑
i

δ0(vi)αi(v, w)
[
f(v + ei, s− siei, w)− f(v, s, w)

]
φεi (s, w,w)︸ ︷︷ ︸

1−Rεi (s,w)

+
∑
i

δ0(vi)αi(v, w)
( ∑
w̃ 6=w

[
f(v + ei, s− siei, w̃)− f(v, s, w)

]
φεi (s, w̃, w)︸ ︷︷ ︸

εϕi(s,w̃,w)+Kε
i (s,w̃,w)

)
.

We denote by Bnet, Bsyn, Bεr and Bε↑ the following operators:

Bnetf(v, s, w) =
∑
i

∂sif(v, s, w) +
∑
i

δ1(vi)β[f(v − ei, s, w)− f(v, s, w)]

+
∑
i

δ0(vi)αi(v, w)
[
f(v + ei, s− siei, w)− f(v, s, w)

]
Bsynf(v, s, w) =

∑
i

δ0(vi)αi(v, w)
∑
w̃ 6=w

[
f(v + ei, s− siei, w̃)− f(v, s, w)

]
ϕi(s, w̃, w),

Bεrf(v, s, w) =
∑
i

δ0(vi)αi(v, w)
∑
w̃ 6=w

[
f(v + ei, s− siei, w̃)− f(v, s, w)

]
Kε
i (s, w̃, w),

Bε↑f(v, s, w) = −
∑
i

δ0(vi)αi(v, w)
[
f(v + ei, s− siei, w)− f(v, s, w)

]
Rεi (s, w).

(3.13)

Thus, one has
Cε = εBsyn + Bnet + Bε↑ + Bεr .

On this timescale, the network evolves at “speed” 1 and the plasticity at “speed” ε. We introduce
the accelerated system

(V ε
t , S

ε
t ,W

ε
t ) = (Vt/ε, St/ε,Wt/ε).

Its generator is

1

ε
Cε = Bsyn +

1

ε

(
Bnet + Bε↑ + Bεr

)
. (3.14)

In the following, we shall use some operators acting only on the fast variables and others only on
the slow variables. To do so, we introduce

Notation 3.13. We denote by B1
net : D(B1

net) ⊂ Cb(E1) → Cb(E) and B2
syn : D(B2

syn) ⊂
Cb(E2) → Cb(E) two operators such that for all (v, s, w) ∈ E, for all f1 ∈ D(B1

net) and
g2 ∈ D(B2

syn),

B1
netf1(v, s, w) = Bnetf(v, s, w) and B2

syng2(v, s, w) = Bsyng(v, s, w),

where the functions f and g are defined by

∀(v, s) ∈ E1, ∀w ∈ E2, f(v, s, w) = f1(v, s) and g(v, s, w) = g2(w). (3.15)
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Remark 3.14. In particular, with these notations, we obtain that for f1 ∈ D(B1
net) and g2 ∈

D(B2
syn), f and g defined by (3.15),

Cεf(v, s, w) =
N∑
i=1

∂sif1(v, s) +
∑
i

δ1(vi)β[f1(v − ei, s)− f1(v, s)]

+
∑
i

δ0(vi)αi(v, w)
(
f1(v + ei, s− siei)− f1(v, s)

)
φεi (s, w,w)

+
∑
i

δ0(vi)αi(v, w)
(
f1(v + ei, s− siei)− f1(v, s)

) ∑
w̃ 6=w

φεi (s, w̃, w)

= B1
netf1(v, s, w),

and
Cεg(v, s, w) = (εBsyn + Bεr)g(v, s, w) = εB2

syng2(v, s, w) + Bεrg(v, s, w).

We introduce the notation νε,g2t as the rest term

νε,g2t =

∫ t

0

1

ε
Bεrg(V ε

u , S
ε
u,W

ε
u)du.

We prove with Theorem 3.16 that νε,g2t tends to 0 with ε.

Using these notations, the two following processes

εf(V ε
t , S

ε
t ,W

ε
t )−

∫ t

0
Cεf(V ε

u , S
ε
u,W

ε
u)du = εf1(V ε

t , S
ε
t )−

∫ t

0
B1
netf1(V ε

u , S
ε
u,W

ε
u)du

g(V ε
t , S

ε
t ,W

ε
t )−

∫ t

0

1

ε
Cεg(V ε

u , S
ε
u,W

ε
u)du = g2(W ε

t )−
∫ t

0
B2
syng2(V ε

u , S
ε
u,W

ε
u)du+ νε,g2t

are martingales for the natural filtration of the process (V ε
t , S

ε
t ,W

ε
t )t≥0.

Let us note that for allw ∈ E2, f1 ∈ D(Bw), the operatorBw defined by (3.6) satisfiesBwf1(v, s) =
B1
netf1(v, s, w). We previously showed that (Vt, St)t≥0 converges to its unique invariant measure

πw. Hence, we can expect that, as ε tends to 0, the fast part quickly reaches its stationary distribu-
tion (which depends on the current weights) and drives the weight jumps. As soon as the weights
change, the network will reach a new stationary distribution instantaneously and so forth.

We end this section of notations by giving the same following definitions as in [81].

Definition 3.15. Let X be a complete separable metric space.

We denote by Lm(X) the space of measures η on R+ × X such that for all t ≥ 0, we have
η([0, t]×X) = t.

We denote by DX [0,+∞) the space of càdlàg functions (right continuous with left limits) from
[0,+∞) to X .

We introduce the occupation measure associated to the process (V ε
t , S

ε
t )t≥0: for all t ≥ 0, A ∈

B(E1),

Γε([0, t], A)
def.
=

∫ t

0
1A(V ε

u , S
ε
u)du.

Hence, for each ε, Γε ∈ Lm(E1).
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Theorem 3.16. Assume that for any ε ∈ (0, 1), the initial condition (V ε
0 , S

ε
0,W

ε
0 ) have the same

law with compact support K0 ⊂ E. Then, as ε tends to 0, (Γε,W ε
t )t≥0 converges in law to

(Γ,W t)t≥0 in Lm(E1)×DE2 [0,+∞), where

1. (W t)t≥0 is a pure jump process on E2 with generator Cav defined for all g2 ∈ D(Cav) by

Cavg2(w) =

∫
E1

B2
syng2(v, s, w)πw(dv, ds). (3.16)

2. Γ(du, dv, ds) = πWu
(dv, ds)du.

The proof of this theorem is based on Theorem 2.1 of [81]. We recall it here for the sake of clarity.

Theorem 3.17. Let M1 and M2 be complete, separable metric spaces, and set M = M1 ×M2.
For each n, let (Xn

t , Y
n
t )t≥0 be a stochastic process with sample paths in DM [0,+∞) adapted to

a filtration {Fnt }. Assume that (Y n
t )t≥0 satisfies the compact containment condition, that is, for

each ε > 0 and T > 0, there exists a compact K ⊂M2 such that

inf
n

P(Y n
t ∈ K, t < T}) > 1− ε,

and assume that (Xn
t )t≥0,n∈N is relatively compact (as a collection of M1-valued random vari-

ables). Suppose there is an operator A : D(A) ⊂ Cb(M2) → Cb(M1 × M2) such that for
f ∈ D(A) there is a process εn,f for which,

f(Y n
t )−

∫ t

0
Af(Xn

u , Y
n
u )du+ εn,ft

is a {Fnt }-martingale. Let D(A) be dense in Cb(M2) in the topology of uniform convergence on
compact sets. Suppose that for each f ∈ D(A) and each T > 0, there exists p > 1 such that

sup
n

E
[∫ T

0
|Af(Xn

t , Y
n
t )|pdt

]
< +∞ and lim

n→∞
E

[
sup
t≤T
|εn,ft |

]
= 0.

Let Γn be the Lm(M1)-valued random variable given by

Γn([0, t], B) =

∫ t

0
1B(Xn

u )du.

Then (Γn, Y n
t )t≥0 is relatively compact in Lm(M1) × DM2 [0,+∞), and for any limit point

(Γ, Yt)t≥0 there exists a filtration {Gt} such that

f(Yt)−
∫ t

0

∫
M1

Af(x, Yu)Γ(du, dx)

is a {Gt}-martingale for each f ∈ D(A).

In particular, we apply this Theorem in the special case of Example 2.3 given in the same article.

Proof of Theorem 3.16. Let (εn)n≥0 be a sequence in (0, 1) converging to 0 with n. In STEP 1,
we show that the sequence of processes ((Γεn ,W εn

t )t≥0)n∈N is relatively compact in Lm(E1) ×
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DE2 [0,+∞). Moreover, as n tends to infinity, for any limit point (Γ,W t)t≥0, and g2 ∈ D(B2
syn),

the process

g2(W t)−
∫ t

0

∫
E1

B2
syng2(v, s,W u)Γ(du, dv, ds) (3.17)

is a {Gt}-martingale where Gt = σ{Γ([0, u], H),W u : u ≤ t,H ∈ B(E1)}. In STEP 2, similarly
as Example 2.3 in [81], we characterize this limit by showing that

Γ(du, dv, ds) = πWu
(dv, ds)du. (3.18)

Hence, by uniqueness of πw for all w ∈ E2 (see Proposition 3.8), we deduce that the unique solu-
tion to the martingale problem (3.17) with initial condition L(W ε0

0 ) is the process (W t)t≥0 with
initial law L(W ε0

0 ) and generator Cav given by (3.16). As this limit does not depend on the choice
of the sequence (εn)n∈N, we conclude on the convergence of the process ((Γε,W ε

t )t≥0)0<ε<1 to
(Γ,W t)t≥0 when ε tends to 0.

STEP 1:

This step relies on the three main properties that we enumerate here and then show in the following.

1. The process (W εn
t )t≥0 satisfies the compact containment condition that is for each η > 0

and T > 0, there exists a compact set Kη
T ⊂ E2 such that:

inf
n

P(∀t ∈ [0, T ],W εn
t ∈ Kη

T ) ≥ 1− η.

2. For each t ≥ 0, the collection of E1-valued random variables (V εn
t , Sεnt )t≥0, n∈N is rela-

tively compact. In fact, we show that for each η > 0, there exists a compact set Cη of E1

such that:
inf

t≥0, n∈N
P ((V εn

t , Sεnt ) ∈ Cη) ≥ 1− η.

Relative compactness follows by Prohorov’s Theorem.

3. For each g2 ∈ D(B2
syn), there exists a process (νεn,g2t )t≥0 for which

g2(W εn
t )−

∫ t

0
B2
syng2(V εn

u , Sεnu ,W
εn
u )du+ νεn,g2t

is a {Fεnt }-martingale where (Fεnt )t≥0 is the natural filtration of (V εn
t , Sεnt ,W

εn
t )t≥0.

Moreover, for each g2 ∈ D(B2
syn) and each T > 0,

sup
n∈N

E
[∫ T

0
|B2
syng2(V εn

u , Sεnu ,W
εn
u )|2du

]
<∞ (3.19)

and

lim
n→∞

E

[
sup

0≤t≤T
|νεn,g2t |

]
= 0. (3.20)

We give some useful notations before dealing with the technical details of the proof. For all
w ∈ E2, we denote by ‖w‖∞ = maxi,j{|wij |}. We denote by

wM = sup
(v,s,w)∈K0

‖w‖∞ and sM = sup
(v,s,w)∈K0,1≤i≤N

si.
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We show the first point. To do so, we use the fact that the weights jump a finite number of times
within a finite time interval, and this for all εn. For all m ∈ N, we denote by Rm the subset of

E2 such that Rm
def.
= {w ∈ E2 : ‖w‖∞ ≤ m+ wM}. Therefore, we want to show that for each

η > 0 and T > 0, there exists m large enough to have for all n ∈ N:

P(∀t ∈ [0, T ],W εn
t ∈ Rm) ≥ 1− η. (3.21)

We denote by (N εn
t,slow)t≥0 the number of jumps on [0, t] of the process (W εn

u )0≤u≤t. From the
definition of 1

εn
Cεn and Remark 3.12, we deduce that the jump rate of the process (W εn

t )t≥0 is

bounded by rM
def.
= NαMϕ

M > 0. Then, we denote by (N t,slow)t≥0 the counting process with
constant jump rate equals to rM and with the same randomness as (N εn

t,slow)t≥0. Thus, we have
for all t, n,

∀ω ∈ Ω, N εn
t,slow(ω) ≤ N t,slow(ω).

Hence,

P(∀t ∈ [0, T ],W εn
t ∈ Rm) ≥ P(N εn

T,slow < m) ≥ P(NT,slow < m) →
m→+∞

1.

Taking mη such that P(NT,slow < mη) ≥ 1−η and Kη
T

def.
= Rmη ends the proof of the first point.

We show the second point. To do so, we use the reset of the time from the last spike and the fact
that the probability of having no spike in [0, T ] decreases with T . For all T > 0, n ∈ N, for each
t ≤ T ,

P((V εn
t , Sεnt ) ∈ {0, 1}N × [0, sM + T ]N ) = 1

and for each t > T ,

P((V εn
t , Sεnt ) ∈ {0, 1}N × [0, sM + T ]N ) = 1− P(∃i, Si,εnt > sM + T ).

We denote by (N i,εn
t,fast)t≥0 the number of jumps of the process (V i,εn

u , Si,εnu )0≤u≤t. We can com-
pare these counting processes to the family ((N i

t,fast)t≥0)1≤i≤N which are independent counting
processes with jump rate αm and the same randomness as (N i,εn

t,fast)t≥0. Thus, by assumption (3.1),
for all i, t, n,

∀ω ∈ Ω, N i,εn
t,fast(ω) ≥ N i

t,fast(ω).

Therefore, as Si,εnt is reset to 0 when the neuron i spikes (jump of V i,εn
t from 0 to 1), the first reset

of Si,εnt occurs only after V i,εn
0 + 1 jumps of V i,εn

t . Hence,

P(∃i, Si,εnt > sM + T )

= P
(
∃i,1{t>T+sM}

(
N i,εn
t,fast −N

i,εn
t−sM−T,fast

)
+ 1{T+sM−Si,εn0 < t ≤T+sM}

N i,εn
t,fast ≤ V

i,εn
max(0,t−sM−T )

)
≤ P

(
∃i,1{t>T+sM}

(
N i,εn
t,fast −N

i,εn
t−sM−T,fast

)
+ 1{T+sM−Si,εn0 < t ≤T+sM}

N i,εn
t,fast ≤ 1

)
≤ P(∃i,N i,εn

T,fast ≤ 1) ≤ P(∃i,N i
T,fast ≤ 1) ≤ NP(N1

T,fast ≤ 1) →
T→+∞

0.

We denote by T η = inf{t ≥ 0 : P(N1
t,fast ≤ 1) ≤ η

N }. Hence, definingCη = {0, 1}N×[0, sM +
T η] ends the proof of the second point.
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We show the third point. In the following, for all g2 ∈ D(B2
syn), we define g ∈ D(Cεn) such that

for all (v, s, w) ∈ E, g(v, s, w) = g2(w) and we denote by

νεn,g2t =

∫ t

0

1

εn
Bεnr g(V εn

u , Sεnu ,W
εn
u )du.

Thus, from the definition of the process (V εn
t , Sεnt ,W

εn
t )t≥0, we have that

g(V εn
t , Sεnt ,W

εn
t )−

∫ t

0

1

εn
Cεng(V εn

u , Sεnu ,W
εn
u )du

= g2(W εn
t )−

∫ t

0
B2
syng2(V εn

u , Sεnu ,W
εn
u )du+ νεn,g2t

is a {Fεnt }-martingale, see Remark 3.14.

Using the bound given in Remark 3.12 and the boundedness of g2, we obtain that for all (v, s, w) ∈
E,

|B2
syng2(v, s, w)| =

∣∣∣∑
i

δ0(vi)αi(v, w)
∑
w̃ 6=w

(g2(w̃)− g2(w))ϕi(s, w̃, w)
∣∣∣

≤ 2‖g2‖∞
∣∣∣∑

i

δ0(vi)αi(v, w)
∑
w̃ 6=w

ϕi(s, w̃, w)
∣∣∣

≤ 2‖g2‖∞ϕM
∣∣∣∑

i

δ0(vi)αi(v, w)
∣∣∣ ≤ 2‖g2‖∞ϕMNαM .

Hence, we deduce that (3.19) holds true.

We obtain (3.20) similarly. Indeed, using the fact that only a finite number of states w̃ ∈ E2 are
reachable from any w ∈ E2, we have for all (v, s, w) ∈ E,

| 1

εn
Bεnr g(v, s, w)| = |

∑
i

δ0(vi)αi(v, w)
∑
w̃ 6=w

(g(w̃)− g(w))
1

εn
Kεn
i (s, w̃, w)|

≤ 2‖g‖∞αM
∑
i

∑
w̃ 6=w

1

εn
|Kεn

i (s, w̃, w)| = O(1) .

Thereby, νεn,g2t = O(1).

From these three points, we can apply Theorem 3.17 to the sequence ((Γεn ,W εn
t )t≥0)n≥0 and we

obtain (3.17) and (3.18). It ends the STEP 1.

STEP 2:

Similarly as before and as in Remark 3.14, for all f1 ∈ C1
b (E1) ⊂ D(B1

net),

εnf1(V εn
t , Sεnt )−

∫ t

0
B1
netf1(V εn

u , Sεnu ,W
εn
u )du (3.22)

is a {Fεnt }-martingale. When n tends to infinity, the first term tends to 0. For the second term, we
apply Lemma 1.5 a) of [81]. It gives that along an appropriate subsequence, that we still denote
by (εn)n for simplicity, we have∫ t

0
B1
netf1(V εn

u , Sεnu ,W
εn
u )du =

∫ t

0

∫
E1

B1
netf1(v, s,W εn

u )Γεn(du, dv, ds)

→
n→∞

∫ t

0

∫
E1

B1
netf1(v, s,W u)Γ(du, dv, ds).
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Thus, by equation (3.22), the limit term of the last equation is a martingale.

Since it is continuous and of bounded variation, it must be constant, see Proposition 1.2 [113].
Hence, as the limit is null when t tends to 0, we get that for all t almost surely∫ t

0

∫
E1

B1
netf1(v, s,W u)Γ(du, dv, ds) =

∫ t

0

∫
E1

BWu
f1(v, s)Γ(du, dv, ds) = 0.

Since for all n ∈ N we have that Γεn ∈ Lm(E1), then by Lemma 1.4 in [81] we deduce that
there exists a process γu on the set of probability measure on E1 such that for every function
f1 ∈ C1

b (E1),∫ t

0

∫
E1

BWu
f1(v, s)Γ(du, dv, ds) =

∫ t

0

∫
E1

BWu
f1(v, s)γu(dv, ds)du = 0.

Thus, we have for dt-almost every u ∈ R+,∫
E1

BWu
f1(v, s)γu(dv, ds) = 0.

From Proposition 3.8, for each u ≥ 0, the unique probability measure satisfying the previous
equation is πWu

and hence, for all u ≥ 0,

γu = πWu
.

We deduce that, as n tends to infinity, for any limit point (Γ,W t)t≥0, we have Γ(du, dv, ds) =
πWu

(dv, ds)du and

g2(W t)−
∫ t

0

∫
E1

B2
syng2(v, s,W u)πWu

(dv, ds)du (3.23)

is a {Gt}-martingale for any g2 ∈ D(B2
syn) where Gt = σ{πWu

(H),W u : u ≤ t,H ∈ B(E1)}.
Therefore, (W t)t≥0 is uniquely defined as the process with generator (Cav, D(Cav)) such that for
all g2 ∈ D(Cav),

Cavg2(w) =

∫
E1

B2
syng2(v, s, w)πw(dv, ds)

and initial condition W 0
L
= W ε0

0 . The uniqueness of the limit point (Γ,W t)t≥0 enables us to
conclude on the convergence of ((Γεn ,W

εn
t )t≥0)n∈N to (Γ,W t)t≥0 when n tends to∞.

Remark 3.18. All the previous results hold if we take into account inhibitory neurons. Indeed,
we never use the positivity of the weights in this subsection. However, for inhibitory neurons to be
realistic, their postsynaptic weights should follow the opposite plasticity rule: p+ and p− should
be multiplied by the sign of the weight. With such a model of inhibitory neurons, similar results
as the following one (holding on the long time behaviour of the weight limit dynamics) can be
obtained, see Remark 3.41.
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3.4 Long time behaviour: conditions for recurrence and transience

Plasticity models have evolved interacting with neurobiologists’ discoveries. For instance, mod-
els based on STDP confirmed the need of homeostasis in order to regulate the evolution of the
weights: preventing from their divergence or extinction, see [137] for instance. Indeed, Hebbian
learning suffers from a positive feedback instability and leads to all neurons wiring together, see
for example [136]. Synaptic scaling and metaplasticity are the main homeostatic mechanisms used
in models through different ways, see [134]. In our model, we do not have such mechanisms, like
hard or soft bounds. Nevertheless, we can show that the weights stabilize under appropriate con-
ditions. We propose to compare the process (W t)t≥0 to slightly different ones in order to bound
its jump rate. Then, we show how to use the Laplace transform of πw to study the long time
behaviour of (W t)t≥0.

3.4.1 General condition on the rates and parameters

In our case, the process (W t)t≥0 takes values in the countable state E2, is a Markov process
and is non-homogeneous in space and homogeneous in time. As underlined in [96], Lyapunov
techniques are well adapted to analyse the long time behaviour of such processes. In particular,
we use here the Foster’s Theorem, see Theorem A.10 in the appendix [96, Thm 2.6.4].

From Theorem 3.16, we are interested in the dynamics of the process (W t)t≥0 with generator Cav
such that for all f ∈ D(Cav),

Cavf(w) =

∫
E1

∑
k

δ0(vk)αk(v, w)

∑
w̃∈E2

(
f(w̃)− f(w)

)
ϕk(s, w̃, w)

πw(dv, ds)

=
∑
w̃∈E2

(
f(w̃)− f(w)

)
r(w̃, w),

where r is the Q-matrix (see [62, Rk 5.3]) of (W t)t≥0, r(w,w)
def.
= −∑w̃ 6=w r(w̃, w) and

∀w̃ 6= w, r(w̃, w)
def.
=

∫
E1

∑
k

δ0(vk)αk(v, w)ϕk(s, w̃, w)πw(dv, ds).

Notation 3.19. In the following, we use the notations:

∀i 6= j,∀w ∈ E2, r+
ij(w)

def.
=

∑
w̃∈Aiw

w̃ij=wij+1

r(w̃, w) and r−ij(w)
def.
=

∑
w̃∈Ajw

w̃ij=wij−1

r(w̃, w).

Moreover, we denote by R+ and R− the square matrices of size N , null on the diagonal and such
that R+ = (r+

ij)1≤i 6=j≤N and R− = (r−ij)1≤i 6=j≤N . Finally, we denote by · the scalar product
between two square matrices A and B:

A ·B =
∑

1≤i,j≤N
AijBij .
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Remark 3.20. From Proposition 3.11,

r+
ij(w) =

∫
E1

δ0(vi)αi(v, w)p+(sj , wij)πw(dv, ds) = E
[
1{V iw=0}αi(Vw, w)p+(Sjw, w

ij)
]
,

(3.24)

r−ij(w) = E
[
1{V jw=0}αj(Vw, w)p−(Siw, w

ij)
]

(3.25)

where (Vw, Sw)
L
= πw.

Moreover, under Assumption 3.9, the jumps of the process (W t)t≥0 are restricted to ±Eij at rate
r±ij(w) for all i 6= j.

A natural assumption in order to ensure the irreducibility and aperiodicity of the embedded chain
of the process (W t)t≥0 is

Assumption 3.21. Assume that p+ (resp. p−) is strictly positive on R+×N∗ (resp. R+×N∗\{1}).

In particular, this assumption gives

Lemma 3.22. Assume that Assumption 3.21 holds. Then, there exist 0 < rm ≤ rM < ∞ such
that

∀w ∈ E2, rm ≤ |r(w,w)|≤ rM .

Proof. First, for all w ∈ E2, |r(w,w)|≤ NαMϕM def.
= rM <∞.

Second,

|r(w,w)| =
∫
E1

∑
k

δ0(vk)αk(v, w)

∑
w̃ 6=w

ϕk(s, w̃, w)

πw(dv, ds)

≥ αm max
l

{∑
k

∫
E1

δ0(vk)
(
p+(sl, wkl) + p−(sl, wlk)

)
πw(dv, ds)

}
def.
= rm > 0

where strict positivity is obtained from Assumption 3.21.

Definition 3.23. Let (Xt)t≥0 be a stochastic process with jumps. The embedded chain of (Xt)t≥0

is the chain (Xτn)n∈N where (τn)n∈N∗ is the sequence of the jumping times of (Xt)t≥0 and τ0 = 0.

Proposition 3.24. Assume that Assumption 3.21 holds. Then, we have the two following results.

1. Using Notation 3.19, we assume that

lim
w∈E2,
‖w‖→+∞

(R+(w)−R−(w)) · w = −∞. (3.26)

Then, the embedded Markov chain associated to the process (W t)t≥0 is positive recurrent.
Moreover, the process (W t)t≥0 converges to a unique invariant measure.

2. Assume that
lim
w∈E2,
‖w‖→+∞

(R+(w)−R−(w)) · w = +∞.

Then, the embedded Markov chain associated to the process (W t)t≥0 is transient. Moreover,
the process (W t)t≥0 is also transient.
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Proof. First, from the assumption of strict positivity of p+ and p− we have that for all i 6= j and
w ∈ E2, r(w + Eij , w) > 0 and if wij > 1, r(w − Eij , w) > 0. Thus, the embedded chain of
(W t)t≥0 is irreducible and aperiodic.

Then, we use the Foster’s Theorem, see Theorem A.10 in the appendix. We apply this theorem to
the embedded chain of (W t)t≥0: (W τn)n≥0 where τ0 = 0 and (τn)n∈N∗ is the sequence of the
jumping times of (W t)t≥0. By Lemma 3.22, we have for all w ∈ E2,

0 < rm < |r(w,w)|< rM <∞.

Thus, the transition kernel Q of the embedded chain is given by Q(w̃, w) = r(w̃,w)
|r(w,w)| for all w̃ 6=

w ∈ E2 and Q(w,w) = 0. Then, for all function f on E2, for all w ∈ E2,

E
[
f(W τn+1)− f(W τn) |W τn = w

]
= Qf(w)− f(w) =

Cavf(w)

|r(w,w)| .

Let f(w) =
∑

i,j(w
ij)2 for w ∈ E2, then,

Cavf(w) =
∑
w̃

∑
i,j

(
(w̃ij)2 − (wij)2

)
r(w̃, w) =

∑
i,j: i 6=j

∑
w̃

(
(w̃ij)2 − (wij)2

)
r(w̃, w)

=
∑

i,j: i 6=j

 ∑
w̃∈Aiw, w̃ij=wij+1

(2wij + 1)r(w̃, w) +
∑

w̃∈Ajw, w̃ij=wij−1

(−2wij + 1)r(w̃, w)


≤ N(N − 1)rM +

∑
i,j: i 6=j

2wij(r+
ij(w)− r−ij(w)).

For R ∈ R+, we denote B(R) = {w ∈ E2 : ‖w‖∞ ≤ R}. From (3.26), the last term converges
to −∞ when ‖w‖∞ tends to infinity. Hence, there exists R0 and γ < 0 such that for all w ∈
E2 \B(R0), Cavf(w) ≤ γ and thus

Qf(w)− f(w) =
Cavf(w)

|r(w,w)| ≤
γ

rM
< 0.

Moreover, for all W τn ∈ B(R0), we know that W τn+1 ∈ B(R0 + 1) so that f(W τn+1) ≤
N2(R0 + 1)2. Thus,

E
[
f(W τn+1) |W τn = w

]
=

∑
w̃∈B(R0+1)

f(w̃)Q(w̃, w)

≤ N2(R0 + 1)2
∑

w̃∈B(R0+1)

Q(w̃, w) = N2(R0 + 1)2 <∞.

Hence, by Foster’s Theorem A.10, the Markov chain (W τn)n∈N∗ is positive recurrent. From
aperiodicity and irreducibility of the chain, we have by Theorem 2.1.6 of [96] that this chain
converges to its unique invariant measure.

Transience is obtained in the same way using Theorem 2.5.15 of [96].

Finally, passing from the embedded chain to the process is obvious since the process is non explo-
sive, see Theorem 3.5.1 in [105] for instance.

Corollary 3.25. Assume that Assumption 3.21 holds, then we have the two following results.
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1. Assume that there exists γ < 0 such that for all i, j,

lim
wlim→+∞

(
sup
w∈E2,

wij=wlim

r+
ij(w)− r−ij(w)

)
= γ.

Then, the embedded Markov chain associated to the process (W t)t≥0 is positive recurrent.
Moreover, the process (W t)t≥0 converges to a unique invariant measure.

2. Assume that there exists γ > 0 such that for all i, j,

lim
wlim→+∞

(
inf
w∈E2,

wij=wlim

r+
ij(w)− r−ij(w)

)
= γ.

Then, the embedded Markov chain associated to the process (W t)t≥0 is transient. Moreover,
the process (W t)t≥0 is also transient.

This corollary incites us to study of r+
ij and r−ij in order to get information on the long time be-

haviour of the process (W t)t≥0.

Remark 3.26. From the previous proposition and Remark 3.20, we note that it is not obvious
that the condition p+(ŝ, ŵ) < p−(ŝ, ŵ) for all (ŝ, ŵ) ∈ R+ × N∗ is sufficient for the recurrence.
Indeed, we observe the divergence of some weights under that condition in the simulations, see
Figure 3.4.

We now bound the functions r+
ij and r−ij . To this aim, we use a classical coupling method and

compare the number of jumps of (Vt, St)t≥0 to the associated processes where the rate αi are
replaced by the minimal rate αm or the maximal rate αM . In what follows, we define, for all
j, the processes (V t,j , St,j)t≥0 and (V t,j , St,j)t≥0 in E1. Their N coordinates are independent.
The dynamics of these coordinates are driven by similar generators that we denote by Bα for
α ∈ {αm, αM} and such that for all f ∈ D(Bα), (v̂, ŝ) ∈ {0, 1} × R+,

Bαf(v̂, ŝ) = ∂ŝf(v̂, ŝ) + βδ1(v̂)
[
f(0, ŝ)− f(1, ŝ)

]
+ αδ0(v̂)

[
f(1, 0)− f(0, ŝ)

]
. (3.27)

The index j means that the dynamics of their jth coordinate is different from the others. The
jth component (V j

t,j , S
j
t,j)t≥0 is driven by the generator Bαm whereas the other components are

driven by the generator BαM . The jth component (V
j
t,j , S

j
t,j)t≥0 is driven by the generator BαM

whereas the other components are driven by the generator Bαm .

We compute the invariant measure of these processes.

Proposition 3.27. The unique invariant probability measure µα associated to the generator Bα is

µα(dv̂, dŝ) =
β

α+ β
δ0(v̂)

αβ

α− β (e−βŝ − e−αŝ)dŝ+
α

α+ β
δ1(v̂)βe−βŝdŝ. (3.28)

Moreover, for all j, the processes (V t,j , St,j)t≥0 and (V t,j , St,j)t≥0 converge respectively to their
unique invariant measure that we denote by πj and πj:

πj = µ⊗(j−1)
αm ⊗ µαM ⊗ µ⊗(N−j)

αm and πj = µ⊗(j−1)
αM

⊗ µαm ⊗ µ⊗(N−j)
αM

. (3.29)
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Proof. First, according to assumption (3.1), for α ∈ {αm, αM} we have α 6= β. From Proposi-
tion 3.8, a process with generator Bα converges to its unique invariant measure µα. Moreover, as
the dynamics of discrete part of the process does not depend on the continuous one, we easily get
that µα({0},R+) = β

α+β and µα({1},R+) = α
α+β . Thus, the measure µα can be written as:

µα(v̂, dŝ) =
β

α+ β
δ0(v̂)µ0

α(dŝ) +
α

α+ β
δ1(v̂)µ1

α(dŝ)

with
∫
R+ µ

0
α(dŝ) =

∫
R+ µ

1
α(dŝ) = 1. Moreover, it is an invariant measure if and only if

∀f ∈ D(Bα), 〈Bαf, µα〉 = 0.

Thanks to functions f well-chosen, we get a closed system of equations on the Laplace transforms
of µ0

α and µ1
α. For y ∈ {0, 1}, we denote by eyλ(v̂, ŝ) = e−λŝδv̂(y). We thus obtain:

〈Bαeyλ, µα〉 =
β

α+ β

∫
R+

Bαeyλ(0, ŝ)µ0
α(dŝ) +

α

α+ β

∫
R+

Bαeyλ(1, ŝ)µ1
α(dŝ) = 0.

Using the definition of Bα given by (3.27), we get
β

α+β

∫
R+(α+ λ)e−λŝµ0

α(dŝ) = α
α+β

∫
R+ βe

−λŝµ1
α(dŝ)

β
∫
R+ αµ

0
α(dŝ) = α

∫
R+(β + λ)e−λŝµ1

α(dŝ).

But
∫
R+ µ

0
α(dŝ) =

∫
R+ µ

1
α(dŝ) = 1. Therefore,
∫
R+(α+ λ)e−λŝµ0

α(dŝ) = α
∫
R+ e

−λŝµ1
α(dŝ)∫

R+ e
−λŝµ1

α(dŝ) = β
(β+λ) ⇔ µ1

α(ŝ) = βe−βŝ.

Hence, 
∫
R+ e

−λŝµ0
α(dŝ) = αβ

(α+λ)(β+λ) ⇔ µ0
α(s) = αβ

α−β (e−βŝ − e−αŝ)

µ1
α(ŝ) = βe−βŝ.

We thus obtain a probability measure candidate to be invariant for the generator Bα. We finally
check this last point showing that for all f ∈ D(Bα) we have 〈Bαf, µα〉 = 0. To do so, we
compute the two right hand side terms of

〈Bαf, µα〉 =
β

α+ β

∫
R+

Bαf(0, ŝ)µ0
α(dŝ) +

α

α+ β

∫
R+

Bαf(1, ŝ)µ1
α(dŝ). (3.30)

By integration by parts we obtain that∫
R+

Bαf(0, ŝ)µ0
α(dŝ) =

αβ

α− β

∫
R+

(
α[f(1, 0)− f(0, ŝ)] + ∂sf(0, ŝ)

)
(e−βŝ − e−αŝ)dŝ

= αf(1, 0)− αβ
∫
R+

f(0, ŝ)e−βŝ

and ∫
R+

Bαf(1, ŝ)µ1
α(dŝ) = β

∫
R+

(
β[f(0, ŝ)− f(1, ŝ)] + ∂sf(1, ŝ)

)
e−βŝdŝ

= β2

∫
R+

f(0, ŝ)e−βŝdŝ− βf(1, 0).
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We deduce with equation (3.30) that Eµα [Bαf ] = 0 which completes the proof of the first point.

The second point of the proposition is a consequence of the first one as the processes (V t,j , St,j)t≥0

and (V t,j , St,j)t≥0 are vectors with independent components driven by generators Bα with α ∈
{αm, αM}.

From these notations, we can show the

Proposition 3.28. Assume that for all ŵ ∈ N∗, p+(·, ŵ) and p−(·, ŵ) are decreasing and differ-
entiable functions. Thus, for all i, j with i 6= j, we have

r+
ij(w)− r−ij(w) ≤ E

[
1{V ij=0}αi(V j , w)p+(S

j
j , w

ij)
]
− E

[
1{V jj=0}αj(V j , w)p−(S

i
j , w

ij)
]
,

r+
ij(w)− r−ij(w) ≥ E

[
1{V ii=0}αi(V i, w)p+(Sji , w

ij)
]
− E

[
1{V ji=0}αj(V i, w)p−(Sii, w

ij)
]
,

(3.31)

where for all k, (V k, Sk)
L
= πk and (V k, Sk)

L
= πk.

Proof. The idea is to show that for all w ∈ E2, the difference r+
ij(w) − r−ij(w) can be bounded

using the processes (V t,j , St,j)t≥0 and (V t,j , St,j)t≥0. We only present the proof of the upper
bound of r+

ij − r−ij . The lower bound can be obtained exactly in the same way.

We denote by P t,j the transition kernel of (V t,j , St,j)t≥0 and Bj its generator. Then, we have for
all f ∈ D(Bj),

πwP t,jf − πwf =

∫ t

0
πwBj P u,jfdu =

∫ t

0
πwP u,j Bjfdu.

Moreover, as πw is invariant for the process with generator Bw, we have πwBwf = 0 for all
f ∈ D(Bw). Noting that D(Bw) = D(Bj) we have for all f ∈ D(Bw),

πwP t,jf − πwf =

∫ t

0
πw(Bj − Bw)P u,jfdu =

∫ t

0
πwP u,j(Bj − Bw)fdu. (3.32)

Now, for all j and i 6= j, we define the two functions f+
ij and f−ij such that for all (v, s) ∈ E1,

f+
ij (v, s)

def.
= δ0(vi)αi(v, w)p+(sj , wij) and f−ij (v, s)

def.
= δ0(vj)αj(v, w)p−(si, wij),

and we show that (Bj − Bw)(f+
ij − f−ij ) ≥ 0. Indeed, we compute

Bwf+
ij (v, s) =

N∑
k=1

∂skf
+
ij (v, s) +

∑
k

δ1(vk)β[f+
ij (v − ek, s)− f+

ij (v, s)]

+
∑
k

δ0(vk)αk(v, w)[f+
ij (v + ek, s− skek)− f+

ij (v, s)]

= δ0(vi)αi(v, w)p+′(sj , wij) + δ1(vi)βp+(sj , wij)− δ0(vi)αi(v, w)2p+(sj , wij)

+ δ0(vj)αj(v, w)δ0(vi)αi(v, w)
(
p+(0, wij)− p+(sj , wij)

)
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and similarly

Bwf−ij (v, s) = δ0(vj)αj(v, w)p−
′
(si, wij) + δ1(vj)βp−(si, wij)− δ0(vj)αj(v, w)2p−(si, wij)

+ δ0(vi)αi(v, w)δ0(vj)αj(v, w)(p−(0, wij)− p−(si, wij)).

Bjf+
ij (v, s) = δ0(vi)αi(v, w)p+′(sj , wij) + δ1(vi)βp+(sj , wij)− αmδ0(vi)αi(v, w)p+(sj , wij)

+ δ0(vj)αMδ0(vi)αi(v, w)(p+(0, wij)− p+(sj , wij)).

Bjf−ij (v, s) = δ0(vj)αj(v, w)p−
′
(si, wij) + δ1(vj)βp−(si, wij)− αMδ0(vj)αj(v, w)p−(si, wij)

+ δ0(vi)αmδ0(vj)αj(v, w)(p−(0, wij)− p−(si, wij)).

Thus, we note that the term of transport and the one of jump of the potential from 1 to 0 cancel
when computing (Bj − Bw)(f+

ij − f−ij ). We finally obtain that

(Bj − Bw)(f+
ij − f−ij )(v, s)

= δ0(vj)(αM − αj(v, w))
(
δ0(vi)αi(v, w)(p+(0, wij)− p+(sj , wij)) + αj(v, w)p−(si, wij)

)
− δ0(vi)(αm − αi(v, w))

(
δ0(vj)αj(v, w)(p−(0, wij)− p−(si, wij)) + αi(v, w)p+(sj , wij)

)
.

Under the assumption that p+ and p− are decreasing functions with respect to their first variable,
we obtain that for all (v, s) ∈ E1, w ∈ E2,

(Bj − Bw)(f+
ij − f−ij )(v, s) ≥ 0.

We deduce from equation (3.32) that for all t ≥ 0,

πwP t,j(f
+
ij − f−ij )− πw(f+

ij − f−ij ) ≥ 0.

Taking the large time limit in this inequality, we deduce from Proposition 3.27 the upper bound
given in the first line of (3.31).

We obtain the lower bound by similar computations with (V t,j , St,j)t≥0 instead of (V t,j , St,j)t≥0.
It ends the proof.

Corollary 3.29. Assume that Assumption 3.21 holds. Then, the process (W t)t≥0 is positive re-
current if for all i, j

lim
wlim→+∞

sup
w∈E2,

wij=wlim

(
E
[
δ0(V

i
j)αi(V j , w)p+(S

j
j , wlim)

]
−E

[
δ0(V

j
j)αj(V j , w)p−(S

i
j , wlim)

] )
< 0,

and it is transient if

lim
wlim→+∞

inf
w∈E2,

wij=wlim

(
E
[
δ0(V i

i)αi(V i, w)p+(Sji , wlim)
]
−E

[
δ0(V j

i )αj(V i, w)p−(Sii, wlim)
] )

> 0.

We now consider a special case where the functions p+ and p− have factorized expressions:
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Assumption 3.30. There exist parameters A+, A− ∈ (0, 1), τ+, τ− ∈ R+
∗ , and functions g+ :

N∗ → 1
A+

and g− : N∗ → 1
A−

with g−(1) = 0 and for any w > 1, g−(w) > 0, such that

p+(ŝ, ŵ) = A+e
−ŝ
τ+ g+(ŵ) and p−(ŝ, ŵ) = A−e

−ŝ
τ− g−(ŵ). (3.33)

This assumption is satisfied by the classical functions used in STDP modelling. They match very
well with the experimental results obtained in [17].

Proposition 3.31. Grant Assumption 3.30. Then, the process (W t)t≥0 converges to its unique
invariant measure if

lim
wlim→+∞

α2
M (β − αm)g+(wlim)A+τ+ (αM (αMτ+ + 1)− β(βτ+ + 1)) (αmτ− + 1)(βτ− + 1)

α2
m(αM − β)g−(wlim)A−τ− (β(βτ− + 1)− αm(αmτ− + 1)) (αMτ+ + 1)(βτ+ + 1)

< 1.

(3.34)

Moreover, it is transient if

lim
wlim→+∞

α2
m(αM − β)g+(wlim)A+τ+ (αm(αmτ+ + 1)− β(βτ+ + 1)) (αMτ− + 1)(βτ− + 1)

α2
M (αm − β)g−(wlim)A−τ− (αM (αMτ− + 1)− β(βτ− + 1)) (αmτ+ + 1)(βτ+ + 1)

> 1.

Proof. It is an application of Corollary 3.29. We present the computations only for the positive
recurrent case. We find that for all i 6= j, w ∈ E2,

r+
ij(w)− r−ij(w) ≤ αME

[
δ0(V

i
j)p

+(S
j
j , w

ij)
]
− αmE

[
δ0(V

j
j)p
−(S

i
j , w

ij)
]

= αMP(V
i
j = 0)E

[
p+(S

j
j , w

ij)
]
− αmP(V

j
j = 0)E

[
p−(S

i
j , w

ij)
]

= αM
β

αm + β

∫
R+

p+(ŝ, wij)µαM ({0, 1}, dŝ)

− αm
β

αM + β

∫
R+

p−(ŝ, wij)µαm({0, 1}, dŝ),

where µα is defined in Proposition 3.27 and satisfies:

µα({0, 1}, dŝ) =
αβ

α2 − β2

(
αe−βŝ − βe−αŝ

)
dŝ.

We conclude with the following computations:

r+
ij(w)− r−ij(w) ≤ αM

β

αm + β

αMβ

α2
M − β2

∫
R+

A+e
−ŝ
τ+ g+(wij)

(
αMe

−βŝ − βe−αM ŝ
)
dŝ

− αm
β

αM + β

αmβ

α2
m − β2

∫
R+

A−e
−ŝ
τ− g−(wij)

(
αme

−βŝ − βe−αmŝ
)
dŝ

≤ α2
Mβ

2

(αm + β)(α2
M − β2)

A+g
+(wij)

(
αM

β + 1
τ+

− β

αM + 1
τ+

)

− α2
mβ

2

(αM + β)(α2
m − β2)

A−g
−(wij)

(
αm

β + 1
τ−
− β

αm + 1
τ−

)
.

Then, the limit (3.34) gives the result by applying Corollary 3.25.
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In this section, we propose a method to verify the conditions for the convergence of the limit
process (W t)t≥0 given by Proposition 3.24, see Proposition 3.28 and Corollary 3.29. We applied
these results in Proposition 3.31 where we give explicit conditions in function of the parameters
of the model on an example. This is the first time, to our knowledge, that such conditions can
be given without adding any homeostatic mechanism and without any inhibitory neurons. With
the latter, our model becomes ready to use, being aware of the criticizes that we present in the
Discussion, see Section 3.6. In the following, we propose another method to test the conditions
given in Proposition 3.24 using the Laplace transform of the invariant measure of the fast process
πw.

3.4.2 Condition using the Laplace transform

We begin with two notations.

Notation 3.32. We denote by CN+ the elements of CN with positive real part. We denote by L{ρ}
the Laplace transform of the measure ρ on RN+ . It is defined by:

∀λ = (λ1, · · · , λN ) ∈ CN+ , L{ρ}(λ) =

∫
RN+

e−λ·sρ(ds),

where λ · s =
∑N

k=1 λ
ksk.

Remark 3.33. Although the general definition of the Laplace transform lies on λ ∈ CN+ , in the
following, we only use λ ∈ RN+ .

Notation 3.34. We denote by νvw the marginal in v of the distribution πw

∀w ∈ E2, ∀v ∈ {0, 1}N , νvw
def.
= πw({v},RN+ ).

In Proposition 3.39, we give a way to compute νvw and we show that νvw > 0 for all v, w.

Moreover, we denote by πvw the law of πw conditionally to v

∀w ∈ E2,∀v ∈ {0, 1}N , πvw(ds)
def.
=

πw({v}, ds)
νvw

.

Under Assumption 3.30, we can easily simplify the expressions of r+
ij and r−ij using the Laplace

transforms of πvw. Using (3.24) and (3.25), one has

r+
ij(w) =

∑
v

δ0(vi)αi(v, w)

∫
RN+

p+(sj , wij)νvwπ
v
w(ds)

=
∑
v

δ0(vi)αi(v, w)

∫
RN+

A+e
− sj

τ+ g+(wij)νvwπ
v
w(ds)

=
∑
v

δ0(vi)αi(v, w)g+(wij)A+ν
v
wL{πvw}(0, · · · , 0,

1

τ+︸︷︷︸
j

, 0, · · · , 0),

r−ij(w) =
∑
v

δ0(vj)αj(v, w)g−(wij)A−ν
v
wL{πvw}(0, · · · , 0,

1

τ−︸︷︷︸
i

, 0, · · · , 0).

(3.35)

Assumption 3.30 makes appear immediately the Laplace transform of the measures πvw. In fact, it
can also be used under more general assumptions.
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Remark 3.35. More generally, under some simple assumptions, we can get explicitly the dynamics
of the weights which is a Markov process on E2 with jump rates depending on the Laplace trans-
form of πw. Suppose that for all i and w̃, w ∈ E2, there exists Φi

(w̃,w) such that ϕi(s, w̃, w) =

L{Φi
(w̃,w)}(s) =

∫
RN+

e−λ·sΦi
(w̃,w)(λ)dλ. Then, from Fubini’s theorem

Cavf(w) =
∑
w̃∈E2

(f(w̃)− f(w))

(∑
v∈I

νvw
∑
i

δ0(vi)αi(v, w)

∫
RN+
L{Φi

(w̃,w)}(s)πvw(s)(ds)

)

=
∑
w̃∈E2

(f(w̃)− f(w))

(∑
v∈I

νvw
∑
i

δ0(vi)αi(v, w)

∫
RN+

Φi
(w̃,w)(λ)L{πvw}(λ)(dλ)

)
.

In the same spirit, suppose that for all ŵ ∈ N∗ there exist P+
ŵ and P−ŵ such that p+(·, ŵ) =

L{P+
ŵ }(·) and p−(·, ŵ) = L{P−ŵ }(·), then

r+
ij(w) =

∑
v

δ0(vi)αi(v, w)νvw

∫
R+

P+
wij

(λ)L{πvw}(0, · · · , 0, λ︸︷︷︸
j

, 0, · · · , 0)dλ,

r−ij(w) =
∑
v

δ0(vj)αj(v, w)νvw

∫
R+

P−
wij

(λ)L{πvw}(0, · · · , 0, λ︸︷︷︸
i

, 0, · · · , 0)dλ.

All these previous special cases show that the Laplace transform of both πw and its marginals
is a tool adapted to compute the (r±ij)1≤i 6=j 6=i≤N . By this way, we obtain information on the
long term behaviour of (W t)t≥0 through Corollary 3.25. In the following, we give a method to
compute these Laplace transforms and in particular, we apply this method in the toy model with
two neurons.

An example with two neurons

In this paragraph, we consider a toy model with two neurons. With this very simple setting, we can
describe in details a method efficient to obtain the Laplace transforms of the four probability mea-
sures on R2

+: (πvw)v∈{0,1}2 . Method that we extend to the general case (N neurons) in Proposition
3.39.

The basic idea of the method is to use the definition of the invariant measure πw

∀f ∈ D(Bw),
∑

v∈{0,1}2

∫
R+2
Bwf(v, s)νvwπ

v
w(ds) = 0. (3.36)

with some well-chosen functions f making appear the Laplace transforms.

In the following, for all x, y ∈ {0, 1}, the shorter notation xy will be used instead of (x, y). Using
the previous decomposition of the measure πw, see Notation 3.34, we denote by Υπw the vector
of the Laplace transforms of νvwπ

v
w

∀λ1, λ2 ∈ R+, Υπw(λ1, λ2) =


ν00
w L{π00

w }
(
λ1, λ2

)
ν01
w L{π01

w }
(
λ1, λ2

)
ν10
w L{π10

w }
(
λ1, λ2

)
ν11
w L{π11

w }
(
λ1, λ2

)
 .
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Lemma 3.36. Let λ = (λ1, λ2) ∈ R2
+. There exist matrices M(λ), invertible for any λ, M1(λ1)

and M2(λ2) invertible for λ1 > 0, λ2 > 0, such that

M(λ)Υπw(λ) =


0

α2(00, w)ν00
w L{π00

w }(λ1, 0)
α1(00, w)ν00

w L{π00
w }(0, λ2)

α1(01, w)ν01
w L{π01

w }(0, λ2) + α2(10, w)ν10
w L{π10

w }(λ1, 0)

 , (3.37)

M1(λ1)Υπw(λ1, 0) =


0
0

α1(00, w)ν00
w

α1(01, w)ν01
w

 and M2(λ2)Υπw(0, λ2) =


0

α2(00, w)ν00
w

0
α2(10, w)ν10

w

 .

Moreover, νw
def.
= (νijw )i,j∈{0,1} is the invariant probability measure of the Markov process (Vt)t≥0

with infinitesimal generator (also called Q-matrix, see [62, Rk 5.3]),

Q
def.
=


−α2(00, w)− α1(00, w) β β 0

α2(00, w) −α1(01, w)− β 0 β
α1(00, w) 0 −α2(10, w)− β β

0 α1(01, w) α2(10, w) −2β

 .
In addition, for all i, j ∈ {0, 1}, νijw 6= 0.

Proof. First, we show the last point. Recall that w is fixed and so the process (Vt)t≥0 is Markov.
By assumption (3.1), (Vt)t≥0 is irreducible and aperiodic. Moreover, it takes values in the finite
state space {0, 1}N . Thus, by a classical Markov chain ergodic theorem, see for example Theorem
2.1.6 in [96], it converges in law to its unique invariant measure νw. By irreducibility of the
process, it turns out that for all i, j ∈ {0, 1}, νijw 6= 0. Finally, from the definition of Bw (3.6), we
obtain the infinitesimal generator Q of the Markov process (Vt)t≥0.

We now show the first point. Let us use the following functions

∀λ = (λ1, λ2), ∀ṽ ∈ {0, 1}2, eṽλ(v, s) = e−(λ1s1+λ2s2)δṽ(v).

Evaluating the relation (3.36) in f = eṽλ, we obtain that

∀ṽ ∈ {0, 1}2,
∑

v∈{0,1}2

∫
R+2
Bweṽλ(v, s)νvwπ

v
w(ds) = 0. (3.38)

We then compute Bweṽλ(v, s) for all ṽ. For ṽ = (0, 0), we obtain

Bwe00
λ ((0, 0), s) =

(
− α1(00, w)− α2(00, w)− (λ1 + λ2)

)
e−λ

1s1−λ2s2 ,

Bwe00
λ ((0, 1), s) = Bwe00

λ ((1, 0), s) = βe−λ
1s1−λ2s2 ,

Bwe00
λ ((1, 1), s) = 0.

Hence, with equation (3.38) we get∑
v∈{0,1}2

∫
R+2
Bwe00

λ (v, s)νvwπ
v
w(ds) = 0

⇔(
− α1(00, w)− α2(00, w)− (λ1 + λ2)

)
ν00
w L{π00

w }(λ) + βν01
w L{π01

w }(λ) + βν10
w L{π10

w }(λ) = 0.
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After computations for all ṽ ∈ {0, 1}2, we get equation (3.37) with

M(λ) =


α2(00, w) + α1(00, w) −β −β 0

0 α1(01, w) + β 0 −β
0 0 α2(10, w) + β −β
0 0 0 2β

+ (λ1 + λ2)I4.

We obtain the matricesM1 andM2 evaluating equation (3.37) on λ = (λ1, 0) and λ = (0, λ2) and
using the fact that for all v ∈ {0, 1}2, L{πvw}(0, 0) = 1:

M1(λ1) =


α2(00, w) + α1(00, w) −β −β 0

−α2(00, w) α1(01, w) + β 0 −β
0 0 α2(10, w) + β −β
0 0 −α2(10, w) 2β

+ λ1I4

and

M2(λ2) =


α2(00, w) + α1(00, w) −β −β 0

0 α1(01, w) + β 0 −β
−α1(00, w) 0 α2(10, w) + β −β

0 −α1(01, w) 0 2β

+ λ2I4.

Finally, from assumption (3.1), for all λ1, λ2 ∈ R+, M(λ) is an upper triangular matrix with
strictly positive diagonal elements and for λ1 > 0, λ2 > 0, the matrices M1(λ1) and M2(λ2) are
strictly diagonally dominant matrices. Thereby, these three matrices are invertible. In λ = (0, 0)
we have Υπw(0, 0) = νw.

Remark 3.37. We note that using equation (3.37), we can obtain the Laplace transform of πw
from the knowledge of Υπw(λ1, 0) and Υπw(0, λ2). We use this idea in the proof of Proposition
3.39.

Under Assumption 3.30 (p+ and p− are exponential), this lemma enables us to compute for i, j 6=
i ∈ {1, 2}, r+

ij and r−ij following these steps. First, we find the kernel of Q which gives us
the vector νw. Then, we compute the inverse of the matrices M1(λ1) and M2(λ2) to obtain the
vectors Υπw(0, λ2) and Υπw(λ1, 0). We finally deduce the r±ij from equation (3.35),

r+
12(w) = A+

[
α1(00, w)ν00

w L{π00
w }
(

0,
1

τ+

)
+ α1(01, w)ν01

w L{π01
w }
(

0,
1

τ+

)]
= A+

[
α1(00, w)Υ1

πw

(
0,

1

τ+

)
+ α1(01, w)Υ2

πw

(
0,

1

τ+

)]
r−12(w) = 1[2,+∞[(w

12)A−

[
α2(00, w)Υ1

πw

(
1

τ−
, 0

)
+ α2(10, w)Υ3

πw

(
1

τ−
, 0

)]
r+

21(w) = A+

[
α2(00, w)Υ1

πw

(
1

τ+
, 0

)
+ α2(10, w)Υ3

πw

(
1

τ+
, 0

)]
r−21(w) = 1[2,+∞[(w

21)A−

[
α1(00, w)Υ1

πw

(
0,

1

τ−

)
+ α1(01, w)Υ2

πw

(
0,

1

τ−

)]
.

From the (r±ij)i,j 6=i∈{1,2} and applying Corollary 3.25, we can determine the long time behaviour
of the process (W t)t≥0 in function of the parameters. We used these computations for numerical
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applications in Section 3.5.1. Moreover, under Assumption 3.9, the (r±ij)i,j 6=i∈{1,2} are exactly the
jumping rates of (W t)t≥0, see Remark 3.20.

A last application of this lemma is to obtain explicitly πw. After inverting the matrix M(λ),we
obtain the Laplace transform of πw. Unfortunately, inverting it gives too long formulas to be
shown here. We give more details on the form of πw in Appendix A.3.

General results on the Laplace transform of the invariant measure (fast process)

We perform similar computations as in Lemma 3.36 but now with a generalN : for all λ ∈ RN+ , we
compute the matrices M (N)(λ) and (M

(N)
l (λl))1≤l≤N . The linear systems obtained are however

more complicated in this generalisation. Therefore, we need to introduce some new notations.

First, let (v1, · · · , v2N ) be an enumeration of {0, 1}N such that

k ≥ l ⇒
N∑
i=1

vik ≥
N∑
i=1

vil . (3.39)

We will see that such an enumeration makes the matrixM (N)(λ) upper triangular. As an example,
this property is satisfied in the case N = 2, see the proof of Lemma 3.36. Then, for all λ ∈ RN+ ,

we define |λ| def.=
∑N

i=1 λ
i.

Notation 3.38. For all λ ∈ RN+ , for any sequence l1, l2, · · · , ld ∈ J1, NK, d ≤ N , we define
λ̂l1,··· ,ld ∈ RN+ such that

∀i ∈ {l1, · · · , ld}, λ̂il1,··· ,ld = 0 and ∀i ∈ J1, NK \ {l1, · · · , ld}, λ̂il1,··· ,ld = λi.

Finally, we denote by

λ̌l
def.
= λ̂1,··· ,l−1,l+1,··· ,N = (0, · · · , 0, λl, 0, · · · , 0).

Following Lemma 3.36 in two dimension, we obtain the following one.

Proposition 3.39. For all λ ∈ RN+ , the Laplace transform Υπw(λ) is a linear combination of the
finite family

(
L{πvkw }(λ̌l)

)
1≤k≤2N

1≤l≤N
.

Morover, the elements of this family satisfy

∀1 ≤ l ≤ N, Υπw(λ̌l) = M
(N)
l (λl)−1Θl,

where the matrices M (N)
l and the vectors Θl are defined as follows: for all 1 ≤ j, k ≤ 2N ,

M
jk,(N)
l (λl) = δ0(vlk)αl(vk, w)δvj (vk + el) ∀k < j

M
jj,(N)
l (λl) =

(∑N
i=1 δ1(vij)β + δ0(vij)αi(vj , w)

)
+ λl

M
jk,(N)
l (λl) = −∑N

i=1 δ1(vik)βδvj (vk − ei) ∀k > j
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and for all 1 ≤ j ≤ 2N ,

Θj
l =

2N∑
k=1

δ0(vlk)αl(vk, w)δvj (vk + el)ν
vk
w .

Moreover, νw
def.
= (νijw )i,j∈{0,1} is the invariant probability measure of the Markov process (Vt)t≥0

with infinitesimal generator

Qjk =
N∑
i=1

δ1(vik)βδvj (vk−ei)+δ0(vik)αi(vk, w)δvj (vk+ei) and Qjj = −
∑
k 6=j

Qjk. (3.40)

In addition, for all 1 ≤ k ≤ 2N , νvkw 6= 0.

Proof. We prove the first assertion showing that for all l1, l2, · · · , ld ∈ J1, NK, d ≤ N − 1, v ∈
{0, 1}N , L{πvw}(λ̂l1,··· ,ld) is a linear combination of

(
L{πvlw }(λ̂l1,··· ,ld,ld+1

)
)

1≤l≤2N

ld+1∈J1,2N K\{l1,··· ,ld}

.

We conclude the first point by recurrence. We then show how to compute the elements of the
family

(
L{πvkw }(λ̌l)

)
1≤k≤2N

1≤l≤N
. Finally, we find the matrix Q satisfying (3.40).

By definition of πw, we have

∀f ∈ D(Bw), πwBwf =

2N∑
k=1

∫
RN+
Bwf(vk, s)ν

vk
w π

vk
w (ds) = 0, (3.41)

where (Bw, D(Bw)) is the generator of the process (Vt, St,Wt ≡ w)t≥0, see (3.6). Let us take
f(v, s) = e−λ·sg(v) which gives

Bwf(v, s) =

N∑
i=1

δ0(vi)αi(v, w)
[
e−λ·(s−s

iei)g(v + ei)− e−λ·sg(v)
]

+
N∑
i=1

δ1(vi)β[e−λ·sg(v − ei)− e−λ·sg(v)]

− (
N∑
i=1

λi)︸ ︷︷ ︸
|λ|

e−λ·sg(v).

Hence, by equation (3.41) we obtain that

πwBwf =

2N∑
k=1

N∑
i=1

δ0(vik)αi(vk, w)g(vk + ei)

∫
RN+

e−λ·(s−s
iei)νvkw π

vk
w (ds)︸ ︷︷ ︸

ν
vk
w L{π

vk
w }(λ̂i)

+
2N∑
k=1

∫
RN+

e−λ·sνvkw π
vk
w (ds)︸ ︷︷ ︸

ν
vk
w L{π

vk
w }(λ)

[(
N∑
i=1

δ1(vik)β[g(vk − ei)− g(vk)]− δ0(vik)αi(vk, w)g(vk)

)

− |λ|g(vk)

]
= 0.
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Taking g(v) = −δvj (v) in the previous equation, we find that

2N∑
k=1

νvkw L{πvkw }(λ)

[
|λ|δvj (vk) +

N∑
i=1

δ1(vik)β[δvj (vk)− δvj (vk − ei)] + δ0(vik)αi(vk, w)δvj (vk)︸ ︷︷ ︸
def.
= Mjk,(N)(λ)

]

=
2N∑
k=1

N∑
i=1

αi(vk, w)δ0(vik)δvj (vk + ei)ν
vk
w L{πvkw }(λ̂i)︸ ︷︷ ︸

def.
= Λj(λ)

.

(3.42)

Thus, denoting by M (N) = (M jk,(N))1≤j,k≤2N and Λ = (Λj)1≤j≤2N , we have

∀λ ∈ RN+ , M (N)(λ)Υπw(λ) = Λ(λ). (3.43)

In particular, we note that

M jk,(N)(λ) = 0 ∀k < j

M jj,(N)(λ) =
(∑N

i=1 δ1(vij)β + δ0(vij)αi(vj , w)
)

+ |λ|

M jk,(N)(λ) = −∑N
i=1 δ1(vik)βδvj (vk − ei) ∀k > j.

Hence, thanks to the enumeration property (3.39), M (N) is upper triangular with strictly positive
terms on the diagonal, it is thus invertible.

Now, take a sequence l1, l2, · · · , ld ∈ J1, NK, d ≤ N − 1. We have from equation (3.43)

M (N)(λ̂l1,··· ,ld)Υπw(λ̂l1,··· ,ld) = Λ(λ̂l1,··· ,ld).

Using equation (3.42), we get

Λj(λ̂l1,··· ,ld) =
2N∑
k=1

[ ∑
i∈J1,NK\{l1,··· ,ld}

δ0(vik)αi(vk, w)δvj (vk + ei)ν
vk
w L{πvkw }(λ̂l1,··· ,ld,i)

+
∑

i∈{l1,··· ,ld}

δ0(vik)αi(vk, w)δvj (vk + ei)︸ ︷︷ ︸
M
′jk,(N)
l1,··· ,ld

νvkw L{πvkw }(λ̂l1,··· ,ld)
]

(3.44)

Hence, we can decompose Λ(λ̂l1,··· ,ld) as follows:

Λ(λ̂l1,··· ,ld) = Λl1,··· ,ld(λ) +M
′(N)
l1,··· ,ldΥπw(λ̂l1,··· ,ld),

where Λl1,··· ,ld(λ) depends on λ only through
(
L{πvkw }(λ̂l1,··· ,ld,i)

)
i∈J1,NK\{l1,··· ,ld},1≤k≤2N

. Note

that thanks to the enumeration property (3.39) of the set {0, 1}N and the Dirac measures δvj (vk +

ei), we have that M ′jk,(N)
l1,··· ,ld = 0 for all k ≥ j.
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Thus, we obtain that[
M (N)(λ̂l1,··· ,ld)−M

′(N)
l1,··· ,ld

]
Υπw(λ̂l1,··· ,ld) = Λl1,··· ,ld(λ).

Eventually, we show that M (N)(λ̂l1,··· ,ld) −M
′(N)
l1,··· ,ld is invertible for all λ. Denoting by K =

{l1, · · · , ld}, we have for all k,∑
j 6=k
|M jk,(N)(λ̂l1,··· ,ld)−M

′jk,(N)
l1,··· ,ld |

=
∑
j>k

|M ′jk,(N)
l1,··· ,ld |+

∑
j<k

|M jk,(N)(λ̂l1,··· ,ld)|

=
∑
j 6=k

(∑
i∈K

δ0(vik)αi(vk, w)δvj (vk + ei) +
N∑
i=1

δ1(vik)βδvj (vk − ei)
)

≤
∑
j 6=k

N∑
i=1

(
δ0(vik)αi(vk, w)δvj (vk + ei) + δ1(vik)βδvj (vk − ei)

)
=

N∑
i=1

δ0(vik)αi(vk, w) + δ1(vik)β = Mkk,(N)(λ̂l1,··· ,ld)− |λ̂l1,··· ,ld |

< |Mkk,(N)(λ̂l1,··· ,ld)︸ ︷︷ ︸
>0

−M ′kk,(N)
l1,··· ,ld︸ ︷︷ ︸
=0

|.

Hence, for all |λ̂l1,··· ,ld | > 0, M (N)(λ̂l1,··· ,ld) −M
′(N)
l1,··· ,ld is invertible as a strictly dominant di-

agonal matrix. Using the fact that for all v ∈ {0, 1}N , L{πvw}(0, · · · , 0) = 1, we conclude by
recurrence that there is a unique way to express each L{πvw}(λ), v ∈ {0, 1}N , as a linear com-
bination of the terms of the family

(
L{πvkw }(λ̌l)

)
1≤l≤N,1≤k≤2N

. It ends the proof of the first
point.

Then, the second point is obtained by evaluating equation (3.43) in λ̌l. For all 2N ≥ k ≥ j ≥ 0,
M

jk,(N)
l (λl) = M jk,(N)(λ̌l). For all 0 ≤ k ≤ j ≤ 2N , M jk,(N)

l (λl) corresponds to the second
term of the right hand side of equation (3.44) where we replace i by l. Thus,

M
jk,(N)
l (λl) = δ0(vlk)αl(vk, w)δvj (vk + el) ∀k < j

M
jj,(N)
l (λl) = M jj,(N)(λ̌l) =

(∑N
i=1 δ1(vij)β + δ0(vij)αi(vj , w)

)
+ λl

M
jk,(N)
l (λl) = M jk,(N)(λ̌l) = −∑N

i=1 δ1(vik)βδvj (vk − ei) ∀k > j.

Then, Θl is obtained from the first term of the right hand side of equation (3.44) by replacing i by
l. As previously, for all l, M (N)

l is invertible as a strictly dominant diagonal matrix.

We finally show the last point. The dynamics of the process (Vt)t≥0 does not depend on (St)t≥0.
Moreover, thanks to assumption (3.1), (Vt)t≥0 is irreducible and aperiodic on the finite state space

{0, 1}N so it converges in law to its unique invariant measure νw
def.
= (νvkw )1≤k≤2N ∈ (0, 1)2N .

For j, k in {1, · · · , 2N}, by evaluating the relation (3.6) in v = vk with the specific function
f(·, s) = δvj (·), we obtain that for all k 6= j,

Bwf(vk, s) =
∑
i

δ1(vik)βδvj (vk − ei) + δ0(vik)αi(vk, w)δvj (vk + ei) = Qjk,
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and for k = j,
Bwf(vj , s) =

∑
i

−δ1(vij)β − δ0(vij)αi(vj , w) = Qjj .

Remark 3.40. As seen in Lemma 3.36, the νv
k

w can be found by computing the null space of the
transition matrix of the process (Vt)t≥0 alone.

Remark 3.41. Adding inhibitory neurons modelled as in Remark 3.18 will not fundamentally
change the previous results. Indeed, with such a model, the dynamics of the weights of inhibitory
neurons is the exact opposite to the excitatory ones, and as they live on Z− instead of Z+, both
dynamics are equivalent: they will diverge or be positive recurrent under the same conditions.
However, the parameter range for which the chain is positive recurrent should be larger thanks to
the inhibition that reduces the spiking rates.

3.5 Simulations

As shown in Proposition 3.39, we can find the Laplace transform of πw, the invariant measure of
the fast process. However, inverting it analytically for a network of N neurons, with a large N ,
requires heavy computations: we have to deal with square matrices of size 2N . Hence, we apply
our results in a network of 2 neurons and then simulate a bigger network.

3.5.1 Application of our results

First, we give the main assumptions of this subsection on the functions p+, p− and αi as well as
some biologically coherent parameters. Then, we apply our results to a network of two neurons.

Biologically coherent parameters:

We suppose that Assumption 3.30 holds with g+ = g− ≡ 1. Then, there exists A+, A− ∈ [0, 1]
and τ−, τ+ ∈ R+

∗ such that

∀(ŝ, ŵ) ∈ R+ × N∗, p+(ŝ, ŵ) = A+e
− ŝ
τ+ and p−(ŝ, ŵ) = A−e

− ŝ
τ− 1[2,+∞[(ŵ).

Here, we also assume that for all i, αi is a sigmoid function α of the synaptic current onto the
neuron i and with parameters σ ∈ R+, θ ∈ R: for all (v, w) ∈ {0, 1}N × E2,

αi(v, w) = α

∑
j

wijvj

 where for all x ∈ R+, α(x) =
αM − αm

1 + e−σ(x−θ) + αm.

The network is fully described by parameters: ε,A+, A−, τ−, τ+, σ, θ, β, αm and αM . The time
of influence of a spike is of the order of 10 milliseconds whereas the time of a spike is of the
order of 1 millisecond (∼ means of the order of ), so we take β∼0.1 ms−1. The firing rates of
the neurons are bounded by αm∼0.01 ms−1 and αM∼1 ms−1. The form of the sigmoid is given
by σ determining the slope and θ giving the antecedent of αM+αm

2 , see Figure 3.2b. Then, the
plasticity parameters are in the following range: τ+/− ∈ [1, 50], A+/− ∈ [0, 1], see Figure 3.2a
for an example. Finally, the scaling parameter ε ∼ 0.01 because experimentally, the STDP curve
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Figure 3.2: (3.2a): Functions p+(·, ŵ) and p−(·, ŵ) with parameters
A+=0.8, A−=0.4, τ−=2τ+=34 ms. (3.2b): Sigmoid function α with parameters
αm = 0.01 ms−1, αM = 1 ms−1, σ = 0.3, θ = 20.

used here is obtained after around one hundred repetitions of spike pair, see Figure 1.5c for an
approximation (STDP curve) of the experimental results obtained in [17].

An example with two neurons

We consider here the case N = 2. We assume that Assumption 3.9 holds. The functions ϕi are
then given by (3.12) in the proof of Proposition 3.11. In this case, for all i, j 6= i ∈ {1, 2}, r+

ij

(resp. r−ij) is the jump rate of wij to wij +1 (resp. wij−1). These jumps are the only one possible
for the process (W t)t≥0, see Remark 3.20. We compute the jumping rates as detailed just after
Lemma 3.36.

We first show the validity of our timescale separation by comparing in Figure 3.3a the weight
distributions obtained with a Monte Carlo method on

1. the trajectories of the process (V ε
t , S

ε
t ,W

ε
t )t≥0,

2. the trajectories of the process (W t)t≥0 (simulated using the rates obtained from the Laplace
transform of πw).

We observe quite a good match for simulations of 104 trajectories (NMC = 104), see Figure
3.3b.

We next study the divergence or not of the process. To do so, we find two sets of parameters:
one set of parameters for which theoretically, from Proposition 3.24, the weight chain should be
positive recurrent, and another one for which the chain should be transient. We describe these two
sets of parameters now. Figures 3.4 and 3.5 are presented as two columns. The parameters for
both columns are identical except that A+ = 0.3 for the first column and A+ = 0.2 for the second
column. The other parameters are:

αm = 0.01ms−1, β = 0.5ms−1, αM = 1ms−1, A− = 0.6,

τ− = 34ms, τ+ = 17ms, σ = 0.3, θ = 20 and ε = 0.01. (3.45)

We plot the functions p+ and p− in Figure 3.4. In order to study the divergence or not of the
process, we plot the difference r+

12 − r−12, see Figures (3.5a) and (3.5b). We surprisingly find that
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Figure 3.3: (3.3a) In blue: distribution of the process (W t)t≥0 at time t = 3s obtained from 104

trajectories simulated using the the Laplace transform. In red: distribution of the process (W ε
t )t≥0

at time t = 3s obtained from 104 trajectories of the process (V ε
t , S

ε
t ,W

ε
t )t≥0. (3.3b) Distance in

norm L1 between the two distributions through time. Parameters are the same as Figure 3.2 with
β = αM = 1 ms−1, αm = 0.05 ms−1 and ε = 0.01.
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Figure 3.4: (3.4a), (3.4b): plots of the functions p+(·, w) and p−(·, w > 1). Parameters are given
in (3.45) plus on the left, A+ = 0.3 and on the right, A+ = 0.2.

for some set of parameters, p− has to be “significantly” above p+ for the process (W t)t≥0 to be
positive recurrent, see Figure 3.4. Moreover, in the case of transience, the more probable way of
weight divergence is when its symmetric weight is small enough. For example, if both weights
are large enough, they both decrease until the moment their trajectories separate: one continues its
descent and the other starts to increase. We illustrate this phenomenon on Figure 3.5g.

According to the simulations, we find a good agreement between the long time behaviour (positive
recurrence or transience) predicted by our criterion given by Proposition 3.24. Indeed, Figure
3.5 shows the agreement between the theory (using the Laplace transform) and the initial neural
network. In Figures (3.5a) and (3.5b), the heatmaps give the areas where the process is called
back to 0 (negative areas) and the one where it diverges (positive areas). We observe that the
maximal values of the function w 7→ (R+(w) − R−(w)) · w are obtained for w = (1, w12) and
w = (w21, 1). Therefore, we plotted the function w21 7→ (R+(1, w21) − R−(1, w21)) · (1, w21)
for both set of parameters in Figures 3.5c and 3.5d. We deduce from Proposition 3.24 that the
process should be positive recurrent (resp. transient) for the set of parameters corresponding to
the right (resp. left) figures. This is effectively the case when we simulate the trajectories of the
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Figure 3.5: Parameters are given in (3.45) plus on the left, A+ = 0.3 and on the right, A+ = 0.2.
(3.5a), (3.5b): heatmaps of the functionw = (w12, w21) 7→ w12(r+

12(w)−r−12(w))+w21(r+
21(w)−

r−21(w)). (3.5c), (3.5d): plots of the function w21 7→ (R+(1, w21)−R−(1, w21)) ·(1, w21). (3.5e),
(3.5f): typical trajectories of (W ε

t )t≥0 for (W 12,ε
0 ,W 21,ε

0 ) = (100, 0). (3.5g), (3.5h): typical
trajectory of (W ε

t )t≥0 for (W 12,ε
0 ,W 21,ε

0 ) = (100, 100).

process (V ε
t , S

ε
t ,W

ε
t )t≥0 with these two different sets of parameters, see Figures (3.5e) to (3.5h).

3.5.2 Beyond our results

In the previous subsection, we used a method, based on the Laplace transform, to check positive
recurrence or transience for a network with 2 neurons. Here, we wonder whether the parameters
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implying positive recurrence for a network with 2 neurons would imply positive recurrence for a
network with more neurons. We tested with 100 neurons and realized that the network seems to
prevent the weight escape when the number of neuron increases. If it is the case, it would mean
that the computations in order to ensure positive recurrence could be done on a simple 2 neuron
network, which is really an easy task.

We use the previous parameters (3.45) plus different values of A+, in order to see whether the
weights diverge or not in a network of N equals 100 neurons. We note that contrary to Figure
3.5, for A+ = 0.3 the mean of the weights stays bounded and converges to a value near 0.8, see
Figure 3.6a. In order to test divergence, we tried different initial weight matrices. The time to
reach the limit value is the longest in the case where there is one line of big weights and the others
are in state one, see Figure 3.6a. Changing only the parameter A+, we observe on Figure 3.6 that
the weights seem to diverge for parameters A+ ≥ 0.6. Hence, in the case of N = 100 neurons,
divergence requires a stronger potentiation probability than in the case of N = 2 neurons. This
is counter intuitive as we would expect the weights to be more pushed by the other neurons when
the number of neurons becomes larger, thus diverging more easily.
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Figure 3.6: Mean of the weights through time. The parameters for all figures are identical except
that A+ = 0.3 in (3.6a), A+ = 0.5 in (3.6b) and A+ = 0.6 in (3.6c). We stopped the simulations
after 2 106 jumps of the weights in (3.6a) and (3.6c) and after 6 106 jumps to (3.6b). The other
parameters are: αm = 0.01ms−1, β = 0.5ms−1, αM = 1ms−1, A− = 0.6, τ− = 34ms,
τ+ = 17ms, σ = 0.3, θ = 20 and ε = 0.01.

Remark 3.42. We have chosen 100 neurons for plotting constraints. It is easy to simulate the
process with thousands of them.

3.6 Discussion

Results

Based on a well known neural network model, we added plasticity in order to get insight on the
combined neurons-weights dynamics. We could analyse plasticity on the slow timescale of the
weight dynamics compared to the neuron dynamics, thus providing a simplified model. The latter
gives the weight dynamics under the stationary distribution of the fast process and is a continuous
time Markov jump process on the infinite state space of weights with non homogeneous in space
jump rates. Such processes are hard to deal with and current results are given in [96]. Moreover,
even if we proved the existence and uniqueness of the invariant measure of the fast process, we
were not able to express it explicitly. Nevertheless, we managed to study the long time behaviour
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of the limit dynamics of the weights. First, we give a general condition on positive recurrence and
transience of the limit chain. This condition is obtained by comparing (using a coupling method)
the fast process to simpler processes using the bounds on the neuron jump rates. Second, we
overcome the difficulty of the unknown invariant measure using its Laplace transform instead.
Indeed, we give a method to compute it and more importantly, we give a simple way to use it in
order to determine the jump rates of the limit dynamics of the weights. We used this method in
an example with 2 neurons which works pretty well even for not too big difference of timescale
between the neural network and the weights (ε = 0.01). The problem is nevertheless quickly
harder when the number of neurons becomes larger. Indeed, the computations of the Laplace
transform consists in inverting a 2N square matrix for a given weight matrix and as soon as the
latter change, we need to invert a new 2N square matrix again. Such computations risk to become
too heavy to be finished in reasonable time delays. A hope would be that the study in the N = 2
neurons case be sufficient for larger N . That seems the case according to our simulations, but we
did not prove it yet. Thus, our study gives more insights in dealing with the long time behaviour
of the weights in STDP models, especially in recurrent excitatory neural networks.

Limitations of our model and future work

We are aware that the individual neuron model considered in this work is far from the biologi-
cal reality. It is simple in order to perform a rigorous and mathematical study of the plasticity.
Some questions raise when we try to understand it from a biological point of view. For instance,
what does β represent? In our model, β is linked to two things: the time over which one neuron
influences the others and, because the neuron cannot spike while being in state 1, 1

β is the mean
duration of a spike. Thus, we should add another variable in order to take into account these two
phenomena separately. Moreover, the binary model of the neurons’ potential is a drastic simpli-
fication. Indeed, neurons are usually described through their membrane potential. Replacing the
binary potentials by continuous ones would make the mathematical analysis harder. In particular,
the study of the invariant measure (if it exists and is unique) of the fast process is complex. Fi-
nally, testing (with simulations) whether the network can reproduce some well known biological
phenomena has not been done in this chapter. For example, the learning capacity of the network,
the dependence on the postsynaptic potential of plasticity, the presence of bidirectional and unidi-
rectional connectivity could be tested at least numerically.

Conclusion

We propose a new view on STDP models. In contrast with usual tiny deterministic weight jumps,
in our model, the weights have some weak probability to make a “big” jump. Thus, instead of
being continuous, our weights are discrete. Associated to the time since the last spikes and the
neural network state, we get a Markov process. We simplified it thanks to a separation of timescale
and found simple conditions of positive recurrence. This work opens up a new framework to study
plasticity which we hope will give rise to more mathematical results on plasticity in the future.





Chapter 4

Mean Field Analysis of the Stochastic STDP

model

Abstract

The large number of elements (ionic channels, synapses, neurons, etc.) makes any attempt to
obtain an exact model of the brain or even parts of it doomed to failure. Here, using a mean-field
approach on a neural network model with plastic interaction, we take into account the large number
of neurons in each cortical zone to propose a local simplification of the activity of a typical neuron.
We study a well known phenomenon called Spike-Timing-Dependent Plasticity (STDP) which is
implemented within a probabilistic Wilson-Cowan neural network model. The neural network is
then described by N triplets composed of the neuron potential, the time since its last spike and its
N incoming synaptic weights. Based on this initial description, we describe the neural network
with new variables that ease performing a mean field approximation. In the asymptotic of a large
neuron number, the typical neuron is described by a stochastic process with three components:
the first two ones are the same as in the initial description and the last one is the probability
distribution of the state of the presynaptic neurons (triplet detailed just above) replacing the N
weights by the weight incoming onto the postsynaptic neuron concerned. Therefore, we conjecture
the limit system which is still quite complex. To the best of our knowledge, this is the first time
that a mean field analysis is performed on a plastic neural network model with STDP.

105
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4.1 Introduction

During the last few decades, synaptic plasticity has been widely studied and its interplay with
neural networks is still full of mysteries with many fascinating questions on the network structure
formation, its stability and its function, see [100, 106, 24]. On the modelling point of view, one
of the most studied phenomena of plasticity is the so-called Spike-Timing-Dependent Plasticity
(STDP), see Section 1.1.2. The implementation of STDP in a neural network model has already
been done in many previous studies, see for example [94, 95, 59, 107]. However, rigorous math-
ematical analysis of such complex interaction has not yet been done. One natural mathematical
method to use is the well known mean field approximation which has already been used to analyse
some interacting neural networks without plasticity, see for instance [35, 39, 44, 40, 30]. In this
chapter, we present the mean field limit of a probabilistic Wilson-Cowan neural network model in
which neurons interact through a stochastic STDP rule.

The first difficulty is to find what is the neural network description suitable for such a mean field
analysis. In recent studies, a short term memory model has been analysed with a mean field method
in [53]. In their model, the neural interaction is homogeneous which is not the case in our model.
This is the main reason of the study difficulty: the heterogeneity of the interaction combined with
their dynamics. Indeed, usually McKean-Vlasov limit equations are naturally derived in networks
where the interaction is assumed to be homogeneous, see [123]. However, when it is not the case,
the first difficulty is to determine this limit. The second difficulty is to study this limit and the
third one is to show the convergence to this limit. In this work, we do not deal with these two
difficulties and focus only on the first one by assuming the convergence in order to conjecture the
limit dynamics that matches with our analytical computations. We perform numerical simulations
to illustrate our results.

This chapter is organised as follows. In Section 4.2, we first present the microscopic model (initial
neural network description) before presenting the first hints on the macroscopic model. In particu-
lar, we introduce new variables describing the neural network from which we perform a mean field
analysis in Section 4.3. Hence, the latter is devoted to the derivation of the limit equation from
the analysis of the empirical measure of the new neural network description. In the first part, we
study the simpler case of interaction without plasticity before adding the plasticity rule in a second
part. Thereby, a McKean-Vlasov equation is conjectured on a typical neuron which is composed
of: the neuron state, the time from its last spike and the distribution of the triplets composed of
the presynaptic neuron states, their time since their last spike and their synaptic weights onto the
typical neuron. We finally perform numerical simulations on these last equations in Section 4.4.

4.2 Presentation of the model

The model is a special case of the one studied in Chapter 3. The main restriction here is the
special form of the spiking rate: in this chapter, we assume that αi(V N

t ,WN
t ) = α(Ii,Nt ) where

Ii,Nt = 1
N

∑
jW

ij
t V

j
t is the global incoming synaptic current. We start with a presentation of the

microscopic model involving Poisson measures (see Definition A.5 in the appendix). Then, we
introduce the corresponding macroscopic model.
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4.2.1 The microscopic model

We recall the main features of the model. We study a network of N binary neurons, V i,N
t ∈

{0, 1}, all-to-all connected. The interactions are characterized by the synaptic weights matrix
WN
t ∈ ZN2

. Note that we no more assume in this chapter that the diagonal elements W ii,N
t

are null. In particular, we assume that the dynamics of the diagonal elements is similar to the
one of W ij,N

t for i 6= j. This last assumption simplifies the mean field analysis. In any case,
the macroscopic behaviour of the network is not affected by the choice of one weight when the
number N of presynaptic neurons tends to infinity. The weight 1

NW
ij,N
t represents the effect on

the neuron i of a spike emitted by the neuron j at time t. At time t, we denote Si,Nt ∈ R+ the
time spent since the last spike of the neuron i. The process we are interested in is a Piecewise
Deterministic Markov Process (PDMP). The deterministic part between the jumps is very simple,
the variables (Si,Nt )1≤i≤N increase linearly with time: dSi,Nt = dt. The jump of the neuron i
from 0 to 1 is called a spike of the neuron i and occurs at rate α(Ii,Nt ) where

Ii,Nt
def.
=

1

N

∑
j

W ij,N
t V j,N

t (4.1)

and α : R → [αm, αM ] is a strictly positive and bounded function. At the time t of a spike of
neuron i, Si,Nt is reset to 0 and the weights jump as follows:

• W ij
t− →W ij

t− + 1 with probability p+(Sj
t− ,W

ij
t−),

• W ji
t− →W ji

t− − 1 with probability p−(Sj
t− ,W

ji
t−),

where p+ and p− are functions from R+ × Z to [0, 1]. Finally, the potentials V i,N
t of the neurons

jump from 1 to 0 at constant rate β > 0; at these jumping times, neither the synaptic weights nor
the times Si,Nt are modified. We also call this jump: return to the resting potential. Without loss
of generality and as in Chapter 3, we assume that 0 < αm < β < αM <∞.

In order to represent the jumps of the dynamics, we introduce (ζi(du, dz, dθ))i=1,··· ,N a family of
N independent Poisson measures on R2

+ × [0, 1]2N with intensity dudzdθ where

dθ
def.
=

N∏
k=1

dθ+
k

N∏
k=1

dθ−k .

Thus, this model can be written in the following form: for any i, j ∈ J1, NK,

V i,N
t = V i,N

0 +

∫ t

0

∫
E(N)

1{
z≤α
(
Ii,N
u−

)
1
{V i,N
u−

=0}

} − 1{
z≤β1

{V i,N
u−

=1}

}ζi(du, dz, dθ)

Si,Nt = Si,N0 + t−
∫ t

0

∫
E(N)

Si,N
u− 1

{
z≤α
(
Ii,N
u−

)
1
{V i,N
u−

=0}

}ζi(du, dz, dθ)

W ij,N
t = W ij,N

0 +

∫ t

0

∫
E(N)

1{θ+j ≤p+(Sj,N
u−

,W ij,N

u−
)}1
{
z≤α
(
Ii,N
u−

)
1
{V i,N
u−

=0}

}ζi(du, dz, dθ)
−
∫ t

0

∫
E(N)

1{
θ−i ≤p−(Si,N

u−
,W ij,N

u−
)
}1{

z≤α
(
Ij,N
u−

)
1
{V j,N
u−

=0}

}ζj(du, dz, dθ),

(4.2)
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where we use the notation E(N) def.= R+ × [0, 1]2N .

We can now detail the probability space we use thereafter. We denote Y N
t = (Y 1,N

t , · · · , Y N,N
t )

such that for all i, Y i,N
t =

(
V i,N
t , Si,Nt , (W ij,N

t )1≤j≤N
)
. In the following, we consider the prob-

ability space (Ω,F ,P) equipped with the filtration

FNt
def.
= σ({Y N

0 , ζ1([0, a1]×A1), · · · , ζN ([0, aN ]×AN ) : ∀i ai ∈ [0, t], Ai ∈ AN})
where AN = B(E(N)).

We end the description of the microscopic model by giving the assumptions on the initial condi-
tions.

Assumption 4.1. The triplets
(
V 1,N

0 , S1,N
0 , (W 1j,N

0 )1≤j≤N
)
, · · ·,

(
V N,N

0 , SN,N0 , (WNj,N
0 )1≤j≤N

)
are i.i.d. at time t = 0 with law κN0 . Moreover, the law ρ0 of Si,N0 is absolutely continuous with
respect to the Lebesgue measure λ. The density is assumed to be bounded.

Under this assumption, the neural network possesses two important properties that are extensively
used throughout this chapter. First, the times from the last spike are almost surely distinct.

Lemma 4.2. Grant Assumption 4.1. Consider the process Y N
t solution of (4.2). Then, for any

t ≥ 0 and for all i 6= j ∈ J1, NK, we have almost surely Si,Nt 6= Sj,Nt .

Proof. By assumption, for all i, the law of Si,N0 admits a density and hence, the (Si,N0 )0≤i≤N are
almost surely distinct. Between the jumps of (V i,N

t )0≤i≤N from 0 to 1, we have d(Si,Nt −Sj,Nt ) =
0. Finally, the probability that two different neurons spike at the same time is zero.

Second, their laws stay absolutely continuous with respect to the Lebesgue measure.

Lemma 4.3. We denote ‖ρ0‖∞ the upper bound of ρ0 and we assume that Assumption 4.1 holds.
Then, for any t ≥ 0, the law ρt of Si,Nt also admits a density. In particular, for any A ∈ B(R+),

ρt(A) ≤ (αM + ‖ρ0‖∞)λ(A).

Proof. We have for all A ∈ B(R+), t > 0,

P(Si,Nt ∈ A) = P(Si,Nt ∈ A ∩ [0, t[) + P(Si,Nt ∈ A ∩ [t,+∞[).

First, denoting A− t = {x ∈ R+, x+ t ∈ A}, one has{
Si,Nt ∈ A ∩ [t,+∞[

}
⊂
{
Si,N0 ∈ A− t

}
.

Thus,

P
(
Si,Nt ∈ A ∩ [t,+∞[

)
≤ P

(
Si,N0 ∈ A− t

)
≤ ‖ρ0‖∞λ(A− t) = ‖ρ0‖∞λ(A).

Second, the event
{
Si,Nt ∈ A ∩ [0, t[

}
means that the last spike of the neuron i occurred at a time

in t−A. The probability of this event is less than the probability that there is at least one spike of
the neuron i in t−A. So, one has,

P(Si,Nt ∈ A ∩ [0, t[) ≤ E
[
1− exp

(
−
∫
t−A

1{V i,Nu =0}α(Ii,Nu )du

)]
≤ E

[∫
t−A

α(Ii,Nu )du

]
≤ αMλ(t−A) = αMλ(A).
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We end this section with notations used for the jumping times and for the probability measure
spaces.

Notation 4.4. We denote by
T = {T1, T2, · · · } (4.3)

the sequence of the jumping times of (µNt )t≥0. They correspond to the instants at which one of the
V i,N
t changes (from 0 to 1 or from 1 to 0).

We denote by
τ = {τ1, τ2, · · · } ⊂ T (4.4)

the sequence of the spiking times, that is the instants at which one of the V i,N
t jumps from 0 to 1.

Notation 4.5. Let (G,G) be a measurable space. We denote by P(G) the set of probability mea-
sures on this space. We equip this space with the total variation distance:

∀µ, ν ∈ P(G), dTV (µ, ν)
def.
= sup{|µ(A)− ν(A)|, A ∈ G}.

We denote by B(P(G)) the collection of Borel sets of the metric space (P(G), dTV ).

Moreover, we call “set of empirical measures of the order N on (G,G)” the set of atomic proba-
bility measures on G with N distinct atoms of weight 1

N . We denote by PN (G) this set.

4.2.2 Towards the macroscopic model

In the following, with a slight abuse of notation, we also call neuron the process describing the
neuron. Starting from the microscopic model, we wish to describe the macroscopic model ob-
tained when the number of neurons tends to infinity. To do so, we are going to identify the
neurons X1,N

t , · · · , XN,N
t allowing us to obtain effectively the limit dynamics. The neuron i,

Xi,N
t , includes at least the potential of the neuron V i,N

t . We wish that the family of neurons
X1,N
t , · · · , XN,N

t has the following property: XN
t = (Xi,N

t )1≤i≤N is a Markov process. This re-
quires that the incoming synaptic current Ii,Nt on the neuron i, defined by (4.1), can be computed
easily from the state of the neuron i. Moreover, the description of the dynamics of Ii,Nt requires
the knowledge of the distribution of the couples (V j,N

t , Sj,Nt )1≤j≤N . Thus, for each neuron i, we
consider the empirical distribution ξi,Nt of the triplets (V j,N

t , Sj,Nt ,W ij,N
t )1≤j≤N .

Definition 4.6. The empirical measure

∀i = 1, · · · , N, ξi,Nt
def.
=

1

N

∑
j

δ
(V j,Nt ,Sj,Nt ,W ij,N

t )
.

is a random variable on the space of probability measures on

Em
def.
= {0, 1} × R+ × Z. (4.5)

In particular, with Notation 4.5, we have that for all ω ∈ Ω, ξi,Nt (ω) ∈ PN (Em).

Defining the function I : P(Em)→ R by

∀ξ ∈ P(Em), I(ξ)
def.
= Eξ(WV ) =

∫
Em

wv ξ(dv, ds, dw), (4.6)

we note that the knowledge of ξi,Nt is enough to obtain the incoming synaptic current Ii,Nt =

I(ξi,Nt ).
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Remark 4.7. We want to emphasize the following point: the knowledge of (ξj,Nt )1≤j≤N is suffi-
cient to evaluate the spiking rates of the neurons. However, the measures (ξj,Nt )1≤j≤N are empir-
ical distributions and do not contain the labels of the presynaptic neurons. Precisely, as soon as
one neuron, say neuron i0, has a jump of V i0,N

t , we have to propagate this jump (and its potential
consequences, such that a reset of Si0,Nt and changes in the synaptic weights) to every (ξj,Nt ). For
any j, we know that one atom of ξj,Nt corresponds to the neuron i0 but we have to find it. Thanks
to Lemma 4.2, we recognize this atom with the value Si0,Nt .

Therefore, we can now give the new description of the neural network.

Definition 4.8. The neurons are described by the following triplets

∀i = 1, · · · , N, Xi,N
t

def.
= (V i,N

t , Si,Nt , ξi,Nt ).

We show in Proposition 4.12 that XN
t

def.
= (X1,N

t , · · · , XN,N
t ) is a Markov process.

Remark 4.9. By Assumption 4.1, the measures ξ1,N
0 , · · · , ξN,N0 have the same law. Also, this

assumption added to the fact that the variables V i,N
t , Si,Nt , W ij,N

t have for all i, j, the same
dynamics, implies that for all i and t ≥ 0, the ξi,Nt are equal in law. We conclude this remark
with the crucial following point: using Assumption 4.1, we deduce that the law of XN

t is ex-
changeable (or symmetric), which means that for any permutation σ of {1, · · · , N}, Xσ,N

t =

(X
σ(1),N
t , · · · , Xσ(N),N

t ) has the same law as XN
t .

Under Assumption 4.1, we obtainX1,N
0 , · · · , XN,N

0 fromN independent draws of the κN0 law. We
already have the dynamics of (V i,N

t )1≤i≤N and (Si,Nt )1≤i≤N . In order to describe the dynamics
of the neural network composed of X1,N

t , · · · , XN,N
t , the only dynamics left is the one of the

(ξi,Nt )1≤i≤N : for all i = 1, · · · , N,

ξi,Nt = ξi,N0 +

∫ t

0

∫
E(N)

1

N

∑
(Ṽ ,S̃,W̃ )∈supp(ξi,N

u−
)

{
(
1{S̃=Si,N

u−
}

[
δ(

1,0,W̃+1
{θ+
i
≤p+(S

i,N

u−
,W̃ )}

−1
{θ−
i
≤p−(S

i,N

u−
,W̃ )}

) − δ(0,S̃,W̃ )

]
+
∑
j 6=i

1{S̃=Sj,N
u−
}

[
δ(
Ṽ ,S̃,W̃+1

{θ+
j
≤p+(S

j,N

u−
,W̃ )}

) − δ(Ṽ ,S̃,W̃ )

])
1{

z≤α
(
Ii,N
u−

)
1
{V i,N
u−

=0}

}ζi(du, dz, dθ)
+
∑
j 6=i

1{S̃=Sj,N
u−
}

[
δ(

1,0,W̃−1
{θ−
i
≤p−(S

i,N

u−
,W̃ )}

) − δ(0,S̃,W̃ )

]
1{

z≤α
(
Ij,N
u−

)
1
{V j,N
u−

=0}

}ζj(du, dz, dθ)
+
∑
j

1{S̃=Sj,N
u−
}

[
δ(

0,S̃,W̃
) − δ(1,S̃,W̃ )

]
1{

z≤β1
{V j,N
u−

=1}

}ζj(du, dz, dθ)}.
As explained in Remark 4.7, as soon as one neuron spikes, say neuron i, we recognize it in the
other ξj,Nt with the value of Si,Nt .

4.3 Study of the empirical measure and its limit

Now that we have defined the new variables describing the neural network, we analyse its asymp-
totic dynamics when the number of neurons tends to infinity. To do so, we study the empirical
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measure associated to the new neural network description which is defined on a space that does
not depend on N . We first show that, as a time dependent variable, this probability measure is a
Markov process. Then, we give the main result of this chapter: our conjecture on the limit dynam-
ics of a typical neuron. We end by performing computations that explain why our conjecture is
reasonable, first in the case without plasticity and then with plasticity.

4.3.1 The empirical measure

Definition 4.10. The empirical measure

µNt
def.
=

1

N

∑
i

δ
Xi,N
t

=
1

N

∑
i

δ
(V i,Nt ,Si,Nt ,ξi,Nt )

(4.7)

is a random probability measure over the space of probability measures on

E
def.
= {0, 1} × R+ × P(Em). (4.8)

Hence, for all ω ∈ Ω, µNt (ω) ∈ PN (E) ⊂ P(E).

In the following, we keep in mind the randomness of µNt and (ξi,Nt )1≤i≤N and we alleviate the
notations by referring to the outcomes ω ∈ Ω only when it helps understanding. From the defini-
tion of (µNt )t≥0 and the ones of (ξ1,N

t )t≥0, · · · , (ξN,Nt )t≥0, we note that they have the same joint
law on V and S,

Remark 4.11. For all i ∈ J1, NK and t ≥ 0, we have by Definitions 4.6 and 4.10, for all (A,B) ∈
B({0, 1} × R+),

µNt (A,B,P(Em)) = ξi,Nt (A,B,Z).

In what follows, we denote this property by: µNt (·, ·,P(Em)) = ξi,Nt (·, ·,Z).

Proposition 4.12. The random process (µNt )t≥0 is a Markov process on PN (E).

Proof. The process (µNt )t≥0 is a PDMP on PN (E) which is described below.

We first give the law of the jumping times T = {T1, T2, · · · } of (µNt )t≥0. They correspond to the
times at which one of the V i,N changes (see Notation 4.4). Then, we give the flow between these
times and finally, we give the transition kernel.

Law of the components of T and τ

We denote by λJ : PN (E)→ [αmN,αMN ] the jump rate of (µNt )t≥0

∀t ≥ 0 λJ(µNt )
def.
=
∑
i

α(Ii,Nt )1{V i,Nt =0} + β1{V i,Nt =1}.

Note that λJ(µNt ) only depends on V and W and is constant between the jumps.

Thus, the time Tk+1−Tk between two jumps is exponentially distributed with parameter λJ(µNTk).
At time Tk+1, we denote jk+1 the label of the neuron such that

V
jk+1,N
Tk

6= V
jk+1,N
Tk+1

.
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We have

P (jk+1 = i) =
α(Ii,NTk )1{V i,NTk =0} + β1{V i,NTk =1}

λJ(µNTk)
.

If V jk,N
Tk

= 0, the time Tk+1 is a spiking time and belongs to τ .

To alleviate the notations, if a jumping time Tk+1 is a spiking time, say τ`, we simply denote by
q` the label of the spiking neuron.

Flow between jumps

Between the jumps of (µNt )t≥0, the flow is very simple and is given by

∀Tk ≤ t < Tk+1, µNt =
1

N

∑
i

δV i,NTk , Si,NTk
+t−Tk, 1

N

∑
(Ṽ ,S̃,W̃ )∈supp(ξi,N

Tk
)

δ(Ṽ , S̃+t−Tk, W̃)


.

Transition kernel

For all t ∈ {T1, T2, · · · }, we first detail the jumps of the variables in the support of the em-
pirical measures (ξj,N

t− )1≤j≤N and then give the jumps of (µNt )t≥0. As noted in Remark 4.7,
attention is drawn to the fact that we cannot label the support of the (ξj,Nt )1≤j≤N with the same
labels as the support of µNt . Therefore, we have to find a way to access the right triplets to
change when µNt jumps. For instance, when the neuron i jumps, we have to change all the
δ

(V i,Nt ,··· ) by δ
(1−V i,Nt ,··· ) in all the empirical measures (ξj,Nt )j . In order to access to the triplet

(V i,N
t , Si,Nt ,W ji,N

t ) ∈ supp(ξj,Nt ), we go through the (V, S,W ) in the support of ξj,Nt and keep
the only one (see Lemma 4.2) with S = Si,Nt .

Each time a neuron spikes, we draw 2N i.i.d. random variables with uniform law on [0, 1]. At time
t = τk, we denote them by (U l,k+ )1≤l≤N and (U l,k− )1≤l≤N . At this time, we have the following
jumps of the empirical measures.

• Let (Ṽ , S̃, W̃ ) ∈ supp

(
ξqk,N
τ−k

)
. If S̃ = Sqk,N

τ−k
, by Lemma 4.2 Ṽ = 0 and then

(Ṽ , S̃, W̃ ) →
(

1, 0, W̃ + 1{Uqk,k+ ≤p+(S
qk,N

τ−
k

,W̃ )} − 1{Uqk,k− ≤p−(S
qk,N

τ−
k

,W̃ )}

)
.

If S̃ = Sl,N
τ−k

, l 6= qk,

(Ṽ , S̃, W̃ ) →
(
Ṽ , S̃, W̃ + 1{U l,k+ ≤p+(Sl,N

τ−
k

,W̃ )}

)
.

• For all j 6= qk, for all (Ṽ , S̃, W̃ ) ∈ supp

(
ξj,N
τ−k

)
, if S̃ = Sqk,N

τ−k
, by Lemma 4.2 Ṽ = 0 and

then
(Ṽ , S̃, W̃ ) →

(
1, 0, W̃ − 1{Uj,k− ≤p−(Sj,N

τ−
k

,W̃ )}

)
.
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Now, let t ∈ {T1, T2, · · · } \ τ and assume that the neuron returning to its resting potential is the
neuron j0. For all j, let (Ṽ , S̃, W̃ ) ∈ supp

(
ξj,N
t−

)
such that S̃ = Sj0,N

t− , by Lemma 4.2 Ṽ = 1

and then
(Ṽ , S̃, W̃ ) →

(
0, S̃, W̃

)
.

We now give the transition kernel of (µNt )t≥0. For any t ∈ {T1, T2, · · · },

• if t /∈ {τ1, τ2, · · · }, with probability β∑
i 1{V i

t−
=1}

1{V j0,N
t−

=1} the measure leaves the state

µNt− to jump to

µNt = µNt− +
1

N

[
δ

(0,S
j0,N

t−
,ξ̂
j0,N
t,j0

)
− δ

(1,S
j0,N

t−
,ξ
j0,N

t−
)

]
+

1

N

∑
j 6=j0

[
δ

(V j,N
t−

,Sj,N
t−

,ξ̂j,Nt,j0
)
− δ

(V j,N
t−

,Sj,N
t−

,ξj,N
t−

)

]
,

where

ξ̂j,Nt,j0
def.
= ξj,N

t− +
1

N

∑
(1,S

j0,N

t−
,W̃ )∈supp(ξj,N

t−
)

(
δ(

0,S
j0,N

t−
,W̃
) − δ(

1,S
j0,N

t−
,W̃
)).

• if t ∈ {τ1, τ2, · · · }, with probability
α(I

j0,N

t−
)∑

i α(Ii,N
t−

)1{V i
t−

=0}
1{V j0,N

t−
=0}, the measure leaves the

state µNt− to jump to

µNt = µNt− +
1

N

[
δ

(1,0,ξ̊
j0,N
t )

− δ
(0,S

j0,N

t−
,ξ
j0,N

t−
)

]
+

1

N

∑
j 6=j0

[
δ

(V j,N
t−

,Sj,N
t−

,ξ̌j,Nt,j0
)
− δ

(V j,N
t−

,Sj,N
t−

,ξj,N
t−

)

]
where

ξ̊j0,Nt
def.
= ξj0,N

t− +
∑
l 6=j0

1

N

∑
(Ṽ ,Sl,N

t−
,W̃ )∈supp(ξ

j0,N

t−
)

(
δ(
Ṽ ,Sl,N

t−
,W̃+1

{Ul,k+ ≤p+(S
l,N

t−
,W̃ )}

)
− δ(

Ṽ ,Sl,N
t−

,W̃
))

+
1

N

∑
(0,S

j0,N

t−
,W̃ )∈supp(ξ

j0,N

t−
)

(
δ(

1,0,W̃+1
{Uj0,k+ ≤p+(S

j0,N

t−
,W̃ )}

−1
{Uj0,k− ≤p−(S

j0,N

t−
,W̃ )}

)
− δ(

0,S
j0,N

t−
,W̃
)),

ξ̌j,Nt,j0
def.
= ξj,N

t− +
1

N

∑
(0,S

j0,N

t−
,W̃ )∈supp(ξj,N

t−
)

(
δ(

1,0,W̃−1
{Uj,k− ≤p

−(S
j,N

t−
,W̃ )}

) − δ(
0,S

j0,N

t−
,W̃
)).

4.3.2 Conjecture on the limit process dynamics

We are interested in finding the possible deterministic limit processes (µ∗t )t≥0 of (µNt )t≥0 when
N tends to infinity, for the weak topology. To do so, for T > 0, we consider the empirical
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measures on DE [0, T ], the space of càdlàg functions from [0, T ] to E, see the Definition 3.15
in Chapter 3. Defining Xi,N = (Xi,N

t )0≤t≤T and X∗ = (X∗t )0≤t≤T with L(X∗t ) = µ∗t , we
denote µN = 1

N

∑N
i=1 δXi,N and µ∗ = L(X∗). Thereby, we consider the convergence in law of

(µN ) ∈ P(DE [0, T ]) where we recall that

E = {0, 1} × R+ × P
(
{0, 1} × R+ × Z

)
.

The spaceDE [0, T ] is equipped with the usual Skorohod J1 topology. We also consider a distance
d on DE [0, T ] with the two properties: first d induces the Skorohod J1 topology; second, the
space (DE [0, T ], d) is a separable and complete space (i.e a Polish space). The existence of such
a distance is proved in Billingsley [19, Sec 12]. We also use the property: if a space G is Polish,
then P(G) equipped with the associated weak convergence, is also Polish [76, Thm 17.23].
Assuming that a limit µ∗ ∈ P(DE [0, T ]) is deterministic, i.e. L(µN ) →N∞ δµ∗ , the aim of this
chapter is to find the system satisfied by any limit point which satisfies

∀Ψ ∈ Cb(E),

E
[∫ T

0
〈µNu ,Ψ〉du

]
→N∞ E

[∫ T

0
〈µ∗u,Ψ〉du

]
=

∫ T

0
〈µ∗u,Ψ〉du. (4.9)

Indeed, knowing 〈µ∗t ,Ψ〉 for all Ψ ∈ Cb(E) is sufficient to determine the measure µ∗t . Hence, we
restrict ourselves to the study of E〈µNt ,Ψ〉 for Ψ in Cb(E). Thereby, we are looking for the limit
equation of a typical neuron that we denote X∗t = (V ∗t , S

∗
t , ξ
∗
t ) with law µ∗t .

Assumption 4.13. Assume that for all T > 0, the empirical measures of the system (µN ) ∈
P(DE [0, T ]) converges in law to a (deterministic) probability measure, µ∗ ∈ P(DE [0, T ]), when
N tends to infinity. In particular, the limit (4.9) holds.

From this assumption, we can link the laws ξ∗ and µ∗ using the

Notation 4.14. Any probability measure ξ in P(Em) can be split into the following form

∀(v,A,w) ∈ {0, 1} × B(R+)× Z, ξ({v}, A, {w}) = δ0(v)ξ0(A, {w}) + δ1(v)ξ1(A, {w}),

where ξ0 and ξ1 are positive measures on R+ × Z having respectively the masses∑
w∈Z

∫
R+

ξ({0}, ds, {w}) and
∑
w∈Z

∫
R+

ξ({1}, ds, {w}).

Moreover, for all x, y ∈ {0, 1}, we denote by δx ⊗ ξy the measure such that

∀(v,A,w) ∈ {0, 1} × B(R+)× Z, δx ⊗ ξy({v}, A, {w}) def.= δx(v)ξy(A, {w}).

Finally, when µ∗t and ξ∗t admit densities in s, we use the abuse of notation

µ∗t ({v}, ds, dξ) = µ∗t ({v}, s, dξ)ds and ξ∗t
v(ds, {w}) = ξ∗t

v(s, {w})ds.

Remark 4.15. By application of the strong law of large numbers, we get the two following results.
First, Assumptions 4.1 and 4.13 imply that S∗0 has law ρ0 (which admits a density). Second,
Assumptions 4.1 and 4.13 associated to the Remark 4.11 implies that for µ∗0 almost all ξ∗0

ξ∗0(·, ·,Z) = µ∗0(·, ·,P(Em)) = L(V ∗0 , S
∗
0).

Moreover, the evolution equations on X∗t , that are detailed in the next conjecture, imply that we
expect the previous equation still hold for all t ≥ 0 (see Consequence 4.26), for µ∗t almost all ξ∗t :

ξ∗t (·, ·,Z) = µ∗t (·, ·,P(Em)) = L(V ∗t , S
∗
t ).
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Some regularity is needed on the functions α and p± for the process to converge. For instance, in
order to prove the uniqueness of the limit process, we expect the function α to be Lipschitz. As
the study of the convergence goes beyond the scope of this chapter, we only assume the weaker
assumptions we need for our computations to hold:

Assumption 4.16. The functions ξ 7→ α(I(ξ)) and for all w ∈ Z, s 7→ p±(s, w), are bounded
continuous functions.

Our computations concerning the dynamics of E〈µNt ,Ψ〉 enables us to conjecture the limit mea-
sure dynamics. In order to make this conjecture a theorem, we still need to prove the convergence
as N tends to infinity of some terms of this dynamics. It will be explained in further details just
after Proposition 4.23 for one term and just before Conjecture 4.25 for another one. Our conjecture
concerns the dynamics of the typical neuron (X∗t )t≥0. In particular, it exposes the PDE that we
expect to be satisfied by the density of ξ∗t in s and requires the compatibility

Assumption 4.17. Assume that for all t ≥ 0, ξ∗t admits a density of class C1 in s and in particular
at time t = 0, for all w ∈ Z, the following densities satisfy the boundary conditions for µ∗0 almost
all ξ∗0 ,

ξ∗0
0(0, {w}) = 0

ξ∗0
1(0, {w}) =

∫
R+×P(Em)

α
(
I(ξ′)

)ξ∗00(s′, {w})
ξ∗0

0(s′,Z)
µ∗0({0}, s′, dξ′)ds′,

.

We are now in position to give the conjecture on the limit process. We denote µ∗t = L(X∗t ) =
L(V ∗t , S

∗
t , ξ
∗
t ).

Conjecture 4.18. Assume that Assumptions 4.1, 4.13, 4.16 and 4.17 hold.
Then, the limit process (V ∗t , S

∗
t , ξ
∗
t )t≥0 satisfies the following McKean-Vlasov SDE:

1. dS∗t = dt,

2. ξ∗t admits a density in s such that
dξ∗t

0

dt (s, {w}) = −∂sξ∗t 0(s, {w}) + βξ∗t
1(s, {w})−

∫
P(Em) α

(
I(ξ′)

) ξ∗t 0(s,{w})
ξ∗t

0(s,Z)
µ∗t ({0}, s, dξ′)

ξ∗t
0(0, {w}) = 0,


dξ∗t

1

dt (s, {w})= −∂sξ∗t 1(s, {w})− βξ∗t 1(s, {w})

ξ∗t
1(0, {w}) =

∫
R+×P(Em) α

(
I(ξ′)

)p−(S∗t ,w)ξ∗t
0
(s′,{w+1})+(1−p−(S∗t ,w))ξ∗t

0(s′,{w})
ξ∗t

0(s′,Z)
µ∗t ({0}, s′, dξ′)ds′,

3. At rate β1{V ∗
t−

=1}, (V ∗t− , S
∗
t− , ξ

∗
t−) jumps to (0, S∗t− , ξ

∗
t−),

4. At rate α
(
I(ξ∗t−)

)
1{V ∗

t−
=0}, (V ∗t− , S

∗
t− , ξ

∗
t−) jumps to (1, 0, ν+(ξ∗t−)) where

ν+(ξ∗t−)({v}, A, {w}) =

∫
A
p+(s, w − 1)ξ∗t−({v}, s, {w − 1})ds

+

∫
A

(1− p+(s, w))ξ∗t−({v}, s, {w})ds

for all ({v}, A, {w}) ∈ B(Em).
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We give some details on this limit system. The first and second points are the drift terms and both
last points are the jump terms. The drift on ξ∗t is composed of three parts. First, the linear increase
of s which is the term in −∂s. Second, the mass transport from ξ∗t

1 to ξ∗t
0 at rate β. Finally,

the mass transport from ξ∗t
0 to ξ∗t

1 at a rate depending on µ∗t with the reset of s in 0 giving the
boundary condition in s = 0. Note that this system of equations involves the law of its solution:
(X∗t )t≥0 is thus a McKean–Vlasov process. The process (X∗t )t≥0 solves the SDE

X∗t = X∗0 +

∫ t

0
b(X∗u, µ

∗
u)du+

∫ t

0

∫
R+

h(X∗u− , z)ζ
∗(dz, du)

where ζ∗ is a Poisson measure on R+×R+ with intensity dzdu, the probability measure µ∗u is the
law of the process X∗u, and the functions b and h are defined according to the previous Conjecture:

h(X∗u− , z) =
(

1,−S∗u− , 0
)
1{

z≤α
(
I(ξ∗

u−
)
)
1{V ∗

u−
=0}

} + (−1, 0, 0)1{
z≤β1{V ∗

u−
=1}

}
b(X∗u, µ

∗
u) =

(
0, 1,−∂sξ∗u + βδ0 ⊗ ξ∗u1 − βδ1 ⊗ ξ∗u1 + δ1 ⊗ ν−,1(S∗u, ξ

∗
u, µ
∗
u)− δ0 ⊗ ν0(ξ∗u, µ

∗
u)
)

where ν0 and ν−,1 are defined respectively in (4.22) and (4.30). Note that the process (X∗t )t≥0

lives on the peculiar space E = {0, 1} × R+ × P(Em) which contains the space of measures on
Em. We first study the case without plasticity in Section 4.3.3 and then with plasticity in Section
4.3.4.

4.3.3 The case without plasticity

The purpose of this section is to conjectured the evolution equations of the typical neuron (X∗t )t≥0

from the ones of finite size neural network (XN
t )t≥0, when p+ ≡ p− ≡ 0 (without plasticity).

To do so, we first give the notations and definitions we need to: first, derive the infinitesimal
generator of (µNt )t≥0 and second, derive the dynamics of E〈µNt ,Ψ〉where Ψ is a test function with
properties described below. Then, we study in detail the most complex terms of this dynamics.
Finally, we conjectured the dynamics of any limit point (X∗t )t≥0.

Definitions and notations

First, we define a space suitable for our following computations.

Notation 4.19. We denote by C1,1
b (E) the space of functions from E to R that are bounded, con-

tinuously differentiable with respect to their second variable, Fréchet differentiable (see Definition
A.6) with respect to their third variable and finally, both these derivatives are bounded.

The Fréchet derivative with respect to the third variable is defined on the larger space of the signed
measure on Em, M(Em), equipped with the total variation norm, ‖·‖TV , whose definition is
given in the appendix, Definition A.2. In particular,

(
M(Em), ‖·‖TV

)
is a Banach space, see [4,

Rk 1.7], enabling us to define the Fréchet derivative of Ψ ∈ C1,1
b (E). For all Ψ ∈ C1,1

b (E), for
all (v, s, ξ) ∈ E and h ∈ M(Em), we denote by ∂ξΨ(v, s, ξ) · h the Fréchet derivative of Ψ at
(v, s, ξ) in the direction h (see Definition A.6).

Second, we define two applications, ηN and νN , in order to ease the writing and reading processes.
The application ηN is used to describe the jumps of the empirical measures ξ1,N

t , · · · , ξN,Nt when
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a neuron jumps from 1 to 0. The application νN is used to describe the jumps of ξ1,N
t , · · · , ξN,Nt

when a neuron spikes (jump of a neuron from 0 to 1).

Notation 4.20. The symbol E
= refers to the equality between the expectations of two random vari-

ables:
E [X] = E [Y ] ⇔ X

E
= Y.

We denote by ηN and νN two operators associating to a pair (s, ξ) ∈ R+×PN (Em) the following
signed measures on Em:

ηN (s, ξ)
def.
=

1

N

∑
(1,s,w̃)∈supp(ξ)

[
δ(

0,s,w̃
) − δ(

1,s,w̃
)]

and
νN (s, ξ)

def.
=

1

N

∑
(0,s,w̃)∈supp(ξ)

[
δ(

1,0,w̃
) − δ(

0,s,w̃
)].

Remark 4.21. Let t be any spiking time of the neuron i, i.e. V i,N
t− = 0 and V i,N

t = 1. Then,
according to Lemma 4.2, for every j, there is a unique (ṽi, s̃i, w̃i) in the support of ξj,N

t− such that
s̃i = Si,Nt . So, νN (Si,N

t− , ξj,N
t− ) is a signed measure with two atoms.

νN (Si,N
t− , ξj,N

t− ) =
1

N
δ(1,0,w̃i) −

1

N
δ(

0,Si,N
t−

,w̃i
).

Similarly, at a time t when V i,N
t− = 1 and V i,N

t = 0, there is a unique (ṽi, s̃i, w̃i) in the support of
ξj,N
t− such that s̃i = Si,Nt and ηN (Si,N

t− , ξj,N
t− ) is a signed measure with two atoms

ηN (Si,N
t− , ξj,N

t− ) =
1

N
δ(

0,Si,N
t−

,w̃i
) − 1

N
δ(

1,Si,N
t−

,w̃i
).

We define here ηN and νN only on PN (Em), the set of empirical measures of order N over Em.
Indeed, with the changes occurring when passing to the large N limit, these measures will no
longer be required. New ones are defined on the all spaces P(Em) later on, see Propositions 4.22
and 4.23.

Third, we define the derivative of any probability measure ε on R+ by

∀φ ∈ C1
b (R+) with bounded derivative, 〈−ε′, φ〉 def.= 〈ε, φ′〉. (4.10)

Finally, let us define for all ξ ∈ P(Em) and t ≥ 0, the probability measure ξ ⊕ t such that

∀(v,A,w) ∈ B({0, 1}, [t,+∞[,Z), (ξ ⊕ t)({v}, A, {w}) = ξ({v}, A− t, {w}).

Generator of (µNt )t≥0

We now look for the generator of the Markov process (µNt )t≥0. We describe the generator only on
the set of functions Φ ∈ Cb(P(E)) for which there exists ψ ∈ C1,1

b (Em) such that

∀µ ∈ P(E), Φ(µ) = 〈µ, ψ〉.
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We split the generator into the drift term and the jump term using the equality 1 = 1t<T1 +1t≥T1 .
Let µ0 ∈ PN (E) such that µ0 = 1

N

∑
i δ(vi,si,ξi) with (v1, s1, ξ1), . . . , (vN , sN , ξN ) are in E. Let

Ψ ∈ C1,1
b (E), then

〈µNt − µ0,Ψ〉 = 〈1t<T1µNt − µ0,Ψ〉+ 〈1t≥T1µNt ,Ψ〉

=
1

N

∑
i

(
Ψ
(
vi, si + t, ξi ⊕ t

)
1t<T1 −Ψ

(
vi, si, ξi

))
+ 〈1t≥T1µNt ,Ψ〉

=
1

N

∑
i

(
Ψ
(
vi, si + t, ξi ⊕ t

)
−Ψ

(
vi, si, ξi

))
︸ ︷︷ ︸

D

+ 〈1t≥T1µNt ,Ψ〉 −
1

N

∑
i

Ψ
(
vi, si + t, ξi ⊕ t

)
1t≥T1︸ ︷︷ ︸

J

.

Thereby, we obtain that the drift term satisfies

lim
t→0

E D

t
= lim

t→0

1

N

∑
i

E
[
Ψ
(
vi, si + t, ξi ⊕ t

)]
−Ψ

(
vi, si, ξi

)
t

=
1

N

∑
i

∂sΨ
(
vi, si, ξi

)
+ ∂ξΨ

(
vi, si, ξi

)
· (−∂sξi)

=

∫
P(Em)

∂sΨ (v, s, ξ) + ∂ξΨ (v, s, ξ) · (−∂sξ)µ0(dv, ds, dξ),

where −∂sξ is the derivative defined as in (4.10).

For the jump term J , when we take the limit as t tends to 0 in
E J
t , the only term left is the one

due to the first jump at time T1. Indeed, all the other terms are of order t or more. We thus obtain
that

lim
t→0

E J
t

=
1

N

∑
i

1{vi=1}β

{[
Ψ
(

0, si, ξi + ηN (si, ξi)
)
−Ψ

(
1, si, ξi

)]
+
∑
j 6=i

[
Ψ
(
vj , sj , ξj + ηN (si, ξj)

)
−Ψ

(
vj , sj , ξj

)]}

+
1

N

∑
i

1{vi=0}α(I(ξi))

{[
Ψ
(

1, 0, ξi + νN (si, ξi)
)
−Ψ

(
0, si, ξi

)]
+
∑
j 6=i

[
Ψ
(
vj , sj , ξj + νN (si, ξj)

)
−Ψ

(
vj , sj , ξj

)]}
.

In the previous equation, by adding and removing the missing terms in the sums inside the braces,



119 4.3. Study of the empirical measure and its limit

we get

lim
t→0

J =
1

N

∑
i

1{vi=1}β

{[
Ψ
(

0, si, ξi + ηN (si, ξi)
)
−Ψ

(
1, si, ξi + ηN (si, ξi)

)]
+
∑
j

[
Ψ
(
vj , sj , ξj + ηN (si, ξj)

)
−Ψ

(
vj , sj , ξj

)]}

+
1

N

∑
i

1{vi=0}α(I(ξi))

{[
Ψ
(

1, 0, ξi + νN (si, ξi)
)
−Ψ

(
0, si, ξi + νN (si, ξi)

)]
+
∑
j

[
Ψ
(
vj , sj , ξj + νN (si, ξj)

)
−Ψ

(
vj , sj , ξj

)]}
.

Dynamics of E〈µNt ,Ψ〉

From the Markov property of the process (µNt )t≥0, we deduce that for all Ψ ∈ C1,1
b (E),

〈µNt ,Ψ〉
E
= 〈µN0 ,Ψ〉+

∫ t

0

∫
E

(
∂sΨ(v, s, ξ) + ∂ξΨ(v, s, ξ) · (−∂sξ)

)
µNu (dv, ds, dξ)du

+

∫ t

0

∑
i

1{V i,N
u−

=1}
β

N

{
[
Ψ
(

0, Si,N
u− , ξ

i,N
u− + ηN (Si,N

u− , ξ
i,N
u− )

)
−Ψ

(
1, Si,N

u− , ξ
i,N
u− + ηN (Si,N

u− , ξ
i,N
u− )

)]
+
∑
j

[
Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u− + ηN (Si,N

u− , ξ
j,N
u− )

)
−Ψ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)]}
du

+

∫ t

0

∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

{
[
Ψ
(

1, 0, ξi,N
u− + νN (Si,N

u− , ξ
i,N
u− )

)
−Ψ

(
0, Si,N

u− , ξ
i,N
u− + νN (Si,N

u− , ξ
i,N
u− )

)]
+
∑
j

[
Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u− + νN (Si,N

u− , ξ
j,N
u− )

)
−Ψ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)]}
du.

We finally get that

〈µNt ,Ψ〉
E
= 〈µN0 ,Ψ〉+

∫ t

0

∫
E

(
∂sΨ(v, s, ξ) + ∂ξΨ(v, s, ξ) · (−∂sξ)

)
µNu (dv, ds, dξ)du

+

∫ t

0

∫
R+×P(Em)

β
[
Ψ
(

0, s, ξ + ηN (s, ξ)
)
−Ψ

(
1, s, ξ + ηN (s, ξ)

)]
µNu ({1}, ds, dξ)du+ 1

+

∫ t

0

∫
R+×P(Em)

α
(
I(ξ)

)[
Ψ
(

1, 0, ξ + νN (s, ξ)
)
−Ψ

(
0, s, ξ + νN (s, ξ)

)]
µNu ({0}, ds, dξ)du+ 2

(4.11)
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where 1 and 2 are the most complex elements:

1
def.
=

∫ t

0

∑
i

1{V i,N
u−

=1}
β

N

∑
j

[
Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u− + ηN (Si,N

u− , ξ
j,N
u− )

)
−Ψ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)]
du,

(4.12)

2
def.
=

∫ t

0

∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

∑
j

[
Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u− + νN (Si,N

u− , ξ
j,N
u− )

)
−Ψ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)]
du.

(4.13)

Drift term due to the returns to resting potential

When a neuron returns to its resting potential state 0, the total variation of the jumps of the empir-
ical measures (ξ1,N

t )1≤i≤N , · · · , (ξN,Nt )1≤i≤N are of order 1
N . Hence, as N tends to infinity, the

limit of the term 1 depends on the Fréchet derivative of Ψ. The direction of this derivative de-
scribes the way some of the mass of the measure ξ∗ is transported. This transport can be described
informally as follows: between time t = 0 and time t = ε small, for all s, w, a proportion βε of
the mass of ξ∗0 that was in (1, s, w) is transported to (0, s, w).

Proposition 4.22. Under Assumptions 4.1 and 4.13, for all Ψ ∈ C1,1
b (E),

lim
N→∞

1 E
=

∫ t

0

{∫
E
∂ξΨ(v, s, ξ) · (βδ0 ⊗ ξ1 − βδ1 ⊗ ξ1)µ∗u(dv, ds, dξ)

}
du. (4.14)

Proof. By Lemma 4.2, for all j, the support of ξj,N
u− almost surely does not possess two points with

the same second coordinate. Hence, we have the following upper bound, for all s ∈ R+, almost
surely,

‖ηN (s, ξj,N
u− )‖TV ≤

2

N
. (4.15)

We write the term of 1 which is between square brackets using the Fréchet derivative:

Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u− + ηN (Si,N

u− , ξ
j,N
u− )

)
−Ψ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)
= ∂ξΨ(V j,N

u− , Sj,N
u− , ξ

j,N
u− ) ·

(
ηN (Si,N

u− , ξ
j,N
u− )

)
+ ON∞

(
‖ηN (Si,N

u− , ξ
j,N
u− )‖TV

)
.

Hence, we have:

1 E
=

∫ t

0

∑
i

1{V i,N
u−

=1}
β

N

∑
j

[
∂ξΨ(V j,N

u− , Sj,N
u− , ξ

j,N
u− ) ·

(
ηN (Si,N

u− , ξ
j,N
u− )

)
+ ON∞

(
‖ηN (Si,N

u− , ξ
j,N
u− )‖TV

)]
du.

Thus, with the upper bound (4.15), we obtain that

1 E
=

∫ t

0

∑
i

1{V i,N
u−

=1}
β

N

∑
j

[
∂ξΨ(V j,N

u− , Sj,N
u− , ξ

j,N
u− ) ·

(
ηN (Si,N

u− , ξ
j,N
u− )

)]
du+ ON∞(1).
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Now, by linearity of ∂ξΨ and inverting the sums, we get

1 E
=

∫ t

0

1

N

∑
j

[
∂ξΨ(V j,N

u− , Sj,N
u− , ξ

j,N
u− ) ·

(∑
i

1{V i,N
u−

=1}βη
N (Si,N

u− , ξ
j,N
u− )

)]
du+ ON∞(1).

From Remark 4.11, for all j and u ≥ 0, ξj,N
u− and µNu− have the same support in V and S, and

from Lemma 4.2, these supports areN almost surely distinct points. Hence, almost surely, for any
function f : R+ × Z→ R+,

∀j,
∑
i

∑
(1,Si,N

u−
,w̃)∈supp(ξj,N

u−
)

f(Si,N
u− , w̃) =

∑
(1,s̃,w̃)∈supp(ξj,N

u−
)

f(s̃, w̃).

We deduce that almost surely,∑
i

1{V i,N
u−

=1}βη
N (Si,N

u− , ξ
j,N
u− ) =

∑
i

β

N

∑
(1,Si,N

u−
,w̃)∈supp(ξj,N

u−
)

[
δ(

0,Si,N
u−

,w̃
) − δ(

1,Si,N
u−

,w̃
)]

=
β

N

∑
(1,s̃,w̃)∈supp(ξj,N

u−
)

[
δ(

0,s̃,w̃
) − δ(

1,s̃,w̃
)]

=βδ0 ⊗ ξj,Nu− ({1}, ·, ·)− βδ1 ⊗ ξj,Nu− ({1}, ·, ·),
where we used Notation 4.14. We deduce that

1 E
=

∫ t

0

{∫
E
∂ξΨ(v, s, ξ) · (βδ0 ⊗ ξ1 − βδ1 ⊗ ξ1) µNu (dv, ds, dξ)

}
du+ ON∞(1).

The application ξ 7→ ξ1 is bounded continuous. Thus, as Ψ ∈ C1,1
b (E), the application

(s, v, ξ) 7→ ∂ξΨ(v, s, ξ) · (βδ0 ⊗ ξ1 − βδ1 ⊗ ξ1)

is bounded continuous. We conclude that under Assumption 4.13,

lim
N→∞

1 E
=

∫ t

0

{∫
E
∂ξΨ(v, s, ξ) · (βδ0 ⊗ ξ1 − βδ1 ⊗ ξ1)µ∗u(dv, ds, dξ)

}
du.

Drift term due to action potentials

As N tends to infinity, the limit of the term 2 also gives a drift term for ξ∗. This term is more
difficult to deal with because the spiking rates, (1{V i,Nt =0}α(Ii,Nt ))1≤i≤N , depend on the actual

state of the neural network XN
t . Informally, the limit of the term 2 represents the following

mass transport on the probability measures: between time t = 0 and time t = ε small, for all
s, w, a proportion ε

∫
P(Em)

α(I(ξ̃))
µ∗0({0},s,P(Em))µ

∗
0({0}, s, dξ̃) of the mass of ξ∗0 that was at (0, s, w) is

transported to (1, [0, ε], w).

Proposition 4.23. We assume that Assumptions 4.1 and 4.16 hold. For all Ψ Fréchet differentiable
with respect to its third variable:

2 E
=

∫ t

0

∫
E
∂ξΨ(v, s, ξ) ·

(
δ1 ⊗ ν1(ξ, µNu−)− δ0 ⊗ ν0(ξ, µNu−)

)
µNu−(dv, ds, dξ)du+ ON∞(1).

where ν0 and ν1 are defined in the proof: equations (4.18) and (4.19).
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Proof. By Lemma 4.2, for any j, the support of ξj,N
u− almost surely does not contain two atoms

with the same S. Furthermore, we have assumed that α is bounded. Thus, we have the following
upper bounds, for all i, j ∈ J1, NK, almost surely,

‖α(Ii,N
u− )νN (Si,N

u− , ξ
j,N
u− )‖TV ≤

2αM
N

. (4.16)

Using the Fréchet derivative as previously, from (4.13), we obtain:

2 E
=

∫ t

0

1

N

∑
j

[
∂ξΨ(V j,N

u− , Sj,N
u− , ξ

j,N
u− ) ·

(∑
i

1{V i,N
u−

=0}α(Ii,N
u− )νN (Si,N

u− , ξ
j,N
u− )

)]
du

+ ON∞(1).

We now look at the term between round brackets, it gives the direction of the Fréchet derivative.
It is a measure on Em. For all j, we denote

2.a
def.
=
∑
i

1{V i,N
u−

=0}α(Ii,N
u− )νN (Si,N

u− , ξ
j,N
u− )

=
∑
i

1{V i,N
u−

=0}α(Ii,N
u− )

1

N

∑
(0,Si,N

u−
,w̃)∈supp(ξj,N

u−
)

[
δ(

1,0,w̃
) − δ(

0,Si,N
u−

,w̃
)]

=
1

N

∑
i

1{V i,N
u−

=0}α(Ii,N
u− )

[
δ(1,0) ⊗

(∑
w̃∈Z

1{(0,Si,N
u−

,w̃)∈supp(ξj,N
u−

)}δw̃

)
− δ

(0,Si,N
u−

)
⊗
(∑
w̃∈Z

1{(0,Si,N
u−

,w̃)∈supp(ξj,N
u−

)}δw̃

)]
.

But
∑

w̃∈Z 1{(0,Si,N
u−

,w̃)∈supp(ξj,N
u−

)}δw̃ is the conditional law ξj,N
u− ({0}, Si,N

u− , ·). This incites us to

define for any w ∈ Z, the Radon-Nikodym derivative s 7→ dξ0(·,{w})
dξ0(·,Z)

(s) which is well defined
as ξ0(·, {w}) is absolutely continuous with respect to ξ0(·,Z). Thereby, we define the function
γξ : R+ × Z→ [0, 1] such that

∀(s, w) ∈ R+ × Z, γξ(s, w) =
dξ0(·, {w})
dξ0(·,Z)

(s). (4.17)

Note that the for all A ∈ B(R+), we have

ξ0(A, {w}) =

∫
A
γξ(s, w)ξ0(ds,Z).

As ξ0(A, {w}) ≤ ξ0(A,Z), we deduce that taking γξ ≤ 1 is legitimate (γξ is unique up to a
ξ0(·,Z) null set). In particular, we obtain that∑

w̃∈Z
1{(0,Si,N

u−
,w̃)∈supp(ξj,N

u−
)}δw̃ =

∑
w̃∈Z

γ
ξj,N
u−

(Si,N
u− , w̃)δw̃.

Thereby, using the measure µNu−({0}, ·, ·) = 1
N

∑
i 1{V i,N

u−
=0}δ(Si,N

u−
,ξi,N
u−

)
, we obtain that

2.a =
∑
w̃∈Z

1

N

∑
i

1{V i,N
u−

=0}α(Ii,N
u− )γ

ξj,N
u−

(Si,N
u− , w̃)

(
δ(1,0,w̃) − δ(0,Si,N

u−
,w̃)

)
=
∑
w̃∈Z

∫
R+×P(Em)

α(I(ξ̃))γ
ξj,N
u−

(s, w̃)
(
δ(1,0,w̃) − δ(0,s,w̃)

)
dµNu−({0}, ds, dξ̃).
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This last equation incites us to define the two following measures. For all probability measures
ξ ∈ P(Em) and µ ∈ P(E), we define ν0(ξ, µ) and ν1(ξ, µ) the measures on R+ × Z such that
for all (A,w) ∈ B(R+)× Z,

ν0(ξ, µ)(A, {w}) def.=

∫
P(Em)

∫
A
α
(
I(ξ̃)

)
γξ(s, w)µ({0}, ds, dξ̃), (4.18)

ν1(ξ, µ)(A, {w}) def.= 1{0∈A}ν
0(ξ, µ)(R+, {w}). (4.19)

Hence, we deduce that

2.a = δ1 ⊗ ν1(ξj,N
u− , µ

N
u−)− δ0 ⊗ ν0(ξj,N

u− , µ
N
u−)

and then

2 E
=

∫ t

0

1

N

∑
j

∂ξΨ(V j,N
u− , Sj,N

u− , ξ
j,N
u− ) · 2.a du+ ON∞(1)

E
=

∫ t

0

∫
E
∂ξΨ(v, s, ξ) ·

(
δ1 ⊗ ν1(ξ, µNu−)− δ0 ⊗ ν0(ξ, µNu−)

)
µNu−(dv, ds, dξ)du+ ON∞(1).

From this result, under Assumption 4.13, as N tends to infinity, we expect E 2 to converge to∫ t

0

{∫
E
∂ξΨ(v, s, ξ) · (δ1 ⊗ ν1(ξ, µ∗u)− δ0 ⊗ ν0(ξ, µ∗u)) µ∗u(dv, ds, dξ)

}
du. (4.20)

This convergence does not hold a priori because the functions

(v, s, ξ) 7→ ∂ξΨ(v, s, ξ) · [δ1 ⊗ ν1(ξ, µNu )− δ0 ⊗ ν0(ξ, µNu )] (4.21)

are not a priori continuous. We expect to show this convergence using a sequence (indexed by N )
of continuous functions both getting closer and closer to (4.21) and converging to

(v, s, ξ) 7→ ∂ξΨ(v, s, ξ) · [δ1 ⊗ ν1(ξ, µ∗u)− δ0 ⊗ ν0(ξ, µ∗u)].

Remark 4.24. If for all u ≥ 0, µ∗u admits a density in s, then for all (A, {w}) ∈ B(R+)× Z and
ξ ∈ supp(µ∗u) (µ∗u has mass only on ξ with density in s, see Consequence 4.26), we have

ν0(ξ, µ∗u)(A, {w}) =

∫
A

∫
P(Em)

α
(
I(ξ̃)

)ξ0(s, {w})
ξ0(s,Z)

µ∗u({0}, ds, dξ̃),

ν1(ξ, µ∗u)(A, {w}) = 1{0∈A}ν
0(ξ, µ∗u)(R+, {w}).

(4.22)

Equation on µ∗t

We denote by µ∗t = L(X∗t ) = L(V ∗t , S
∗
t , ξ
∗
t ). We have seen previously that under Assumption 4.1,

for all i, j and u ≥ 0, we have almost surely

‖νN (Si,N
u− , ξ

j,N
u− )‖TV ≤

2

N
and ‖ηN (Si,N

u− , ξ
j,N
u− )‖TV ≤

2

N
.
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Thus, under Assumption 4.13, taking the limit as N tends to infinity in equation (4.11), we obtain
that

lim
N→∞

〈µNt ,Ψ〉
E
= 〈µ∗0,Ψ〉+

∫ t

0

∫
E
∂sΨ(v, s, ξ)µ∗u(dv, ds, dξ)du

+ lim
N→∞

∫ t

0

∫
E
∂ξΨ(v, s, ξ) · (−∂sξ)µNu (dv, ds, dξ)du

+

∫ t

0

∫
R+×P(Em)

β
[
Ψ
(

0, s, ξ(s, ξ)
)
−Ψ

(
1, s, ξ(s, ξ)

)]
µ∗u({1}, ds, dξ)du+ lim

N→∞
1

+

∫ t

0

∫
R+×P(Em)

α
(
I(ξ)

)[
Ψ
(

1, 0, ξ
)
−Ψ

(
0, s, ξ

)]
µ∗u({0}, ds, dξ)du+ lim

N→∞
2 .

It is reasonable to expect that the expectation of the term with the weak derivative−∂sξ converges,
when N tends to infinity, to∫ t

0

∫
E
∂ξΨ(v, s, ξ) · (−∂sξ)µ∗u(dv, ds, dξ)du.

Then, from Propositions 4.22 and 4.23, we can formulate

Conjecture 4.25. Assume that Assumptions 4.1, 4.13 and 4.16 hold. Then, the dynamics of µ∗t is
given by:

• L(X∗0 ) = limN→∞ L(X1,N
0 ) = µ∗0 and in particular S∗0 is distributed by ρ0 which is

absolutely continuous with respect to the Lebesgue measure,

• for all t ≥ 0, for all Ψ ∈ C1,1
b (E) (continuously differentiable with respect to its sec-

ond variable and Fréchet differentiable with respect to its third variable), and using Nota-
tion 4.14,

〈µ∗t ,Ψ〉 = 〈µ∗0,Ψ〉+

∫ t

0

∫
E

(
∂sΨ(v, s, ξ) + ∂ξΨ(v, s, ξ) · (−∂sξ)

)
µ∗u(dv, ds, dξ)du

+

∫ t

0

{∫
R+×P(Em)

β
[
Ψ
(

0, s, ξ
)
−Ψ

(
1, s, ξ

)]
µ∗u({1}, ds, dξ)

}
du

+

∫ t

0

{∫
E
∂ξΨ(v, s, ξ) · (βδ0 ⊗ ξ1 − βδ1 ⊗ ξ1)µ∗u(dv, ds, dξ)

}
du

+

∫ t

0

{∫
R+×P(Em)

α
(
I(ξ)

)[
Ψ
(

1, 0, ξ
)
−Ψ

(
0, s, ξ

)]
µ∗u({0}, ds, dξ)

}
du

+

∫ t

0

{∫
E
∂ξΨ(v, s, ξ) · (δ1 ⊗ ν1(ξ, µ∗u)− δ0 ⊗ ν0(ξ, µ∗u)) µ∗u(dv, ds, dξ)

}
du.

(4.23)

We deduce from this conjecture that the joint law of the two first components of ξ∗t and µ∗t would
then be equal for all t.

Consequence 4.26. Grant Conjecture 4.25. Then, for all t ≥ 0,

ξ∗t (·, ·,Z) = µ∗t (·, ·,P(Em)).
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Proof. For all ξ∗0 ∈ supp(µ∗0), we have µ∗0(·, ·,P(Em)) = ξ∗0(·, ·,Z). Then, we show that
(µ∗t (·, ·,P(Em)))t≥0 and (ξ∗t (·, ·,Z))t≥0 have the same dynamics, which enables us to conclude
the proof. First, in equation (4.23), taking a function Ψ which depends only on v and s, we obtain
the dynamics of (µ∗t (·, ·,P(Em)))t≥0:

〈µ∗t ,Ψ〉 =〈µ∗0,Ψ〉+

∫ t

0

∫
E
∂sΨ(v, s)µ∗u(dv, ds, dξ)du

+

∫ t

0

{∫
β [Ψ(0, s)−Ψ(1, s)]µ∗u({1}, ds, dξ)

}
du

+

∫ t

0

{∫
α
(
I(ξ)

)
[Ψ(1, 0)−Ψ(0, s)]µ∗u({0}, ds, dξ)

}
du.

(4.24)

Second, taking Ψ depending only on ξ in equation (4.23), we obtain that

〈µ∗t ,Ψ〉 − 〈µ∗0,Ψ〉

=

∫ t

0

{∫
E
∂ξΨ(ξ) ·

[
βδ0 ⊗ ξ1 − βδ1 ⊗ ξ1

+ δ1 ⊗ ν1(ξ, µ∗u)− δ0 ⊗ ν0(ξ, µ∗u)− ∂sξ
]
µ∗u(dv, ds, dξ)

}
du.

Working on the right hand side term, we obtain

〈µ∗t ,Ψ〉 − 〈µ∗0,Ψ〉 = E [Ψ(ξ∗t )]− E [Ψ(ξ∗0)] =

∫ t

0
E
[
∂ξΨ(ξ∗u) ·

(dξ∗u
du

)]
du

and then deduce that

∀φ ∈ C1
b (Em) with bounded derivative,

〈ξ∗t , φ〉 = 〈ξ∗0 , φ〉+

∫ t

0
〈−∂sξ∗u, φ〉du+

∫ t

0
β〈δ0 ⊗ ξ∗u1 − δ1 ⊗ ξ∗u1, φ〉du

+

∫ t

0
〈δ1 ⊗ ν1(ξ∗u, µ

∗
u)− δ0 ⊗ ν0(ξ∗u, µ

∗
u), φ〉du.

(4.25)

Evaluating this last equation for a function φ depending only on v and s gives us the dynamics of
ξ∗t (·, ·,Z). We obtain exactly the same equation as (4.24):

• using (4.10), we have for all u ∈ [0, t], 〈−∂sξ∗u, φ〉 = 〈ξ∗u, ∂sφ〉,

• as for all s in the support of ξ ∈ P(Em),
∑

w∈Z γξ(s, w) = 1, we obtain that (see (4.18)
and (4.19) for the definitions of ν0 and ν1) for all A ∈ B(R+):

ν0(ξ, µ)(A,Z) =

∫
P(Em)

∫
A
α
(
I(ξ̃)

)
µ({0}, ds, dξ̃),

ν1(ξ, µ)(A,Z) = 1{0∈A}

∫
P(Em)

∫
R+

α
(
I(ξ̃)

)
µ({0}, ds, dξ̃).
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The typical neuron dynamics

When µ∗t admits a density in s, we use the abuse of notation µ∗t ({v}, ds, dξ) = µ∗t ({v}, s, dξ)ds.

Consequence 4.27. Grant Conjecture 4.25 and Assumption 4.17. Then, we have

• dS∗t = dt.

• ξ∗t admits a density in s that satisfies the following equations,
dξ∗t

0

dt (s, {w}) = −∂sξ∗t 0(s, {w}) + βξ∗t
1(s, {w})−

∫
P(Em) α

(
I(ξ′)

) ξ∗t 0(s,{w})
ξ∗t

0(s,Z)
µ∗t ({0}, s, dξ′)

ξ∗t
0(0, {w}) = 0,


dξ∗t

1

dt (s, {w}) = −∂sξ∗t 1(s, {w})− βξ∗t 1(s, {w})

ξ∗t
1(0, {w}) =

∫
R+×P(Em) α

(
I(ξ′)

) ξ∗t 0(s′,{w})
ξ∗t

0(s′,Z)
µ∗t ({0}, s′, dξ′)ds′.

• At rate β1{V ∗
t−

=1}, (V ∗t− , S
∗
t− , ξ

∗
t−) jumps to (0, S∗t− , ξ

∗
t−).

• At rate α
(
I(ξ∗t−)

)
1{V ∗

t−
=0}, (V ∗t− , S

∗
t− , ξ

∗
t−) jumps to (1, 0, ξ∗t−).

Proof. Both the first two and last two points are clear with Conjecture 4.25. We detail the third
point. First, from the regularity assumption on the density in s of µ∗t , Consequence 4.26 tells
us that ξ∗t admits a density C1 in s and satisfies (4.25). Using Remark 4.24, we thus obtain by
integration by parts the following equations on the density functions s 7→ ξ∗t

v(s, {w}):

dξ∗t
0

dt
(s, {w}) =− ∂sξ∗t 0(s, {w})− δ0(s)ξ∗t

0(0, {w}) + βξ∗t
1(s, {w})

−
∫
P(Em)

α
(
I(ξ′)

)ξ∗t 0(s, {w})
ξ∗t

0(s,Z)
µ∗t ({0}, s, dξ′),

dξ∗t
1

dt
(s, {w}) =− ∂sξ∗t 1(s, {w})− δ0(s)ξ∗t

1(0, {w})− βξ∗t 1(s, {w})

+ δ0(s)

∫
R+×P(Em)

α
(
I(ξ′)

)ξ∗t 0(s′, {w})
ξ∗t

0(s′,Z)
µ∗t ({0}, ds′, dξ′).

By integrating the previous equations on s ∈ [0, ε] and making ε tends to 0 we obtain the equations
with conditions at boundaries s = 0 of the corollary.

4.3.4 The case with plasticity

We now deal with the synaptic weight jumps. As soon as a neuron spikes, several different synaptic
weight jumps are possible. We denote by JNi the possible increments of the weights when the
neuron i spikes

JNi = {A = (akl)1≤k,l≤N : aii ∈ {−1, 0, 1} and ∀k, l 6= i, ail ∈ {0, 1}, aki ∈ {0,−1}, akl = 0}.
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For all ∆ ∈ JNi , we denote by P∆
t,i the probability that the weight matrix be incremented by ∆

conditionally to XN
t . In order to ease its understanding, we express it with the weight matrix WN

t

rather than using the empirical measures (ξi,Nt )1≤i≤N :

P∆
t,i =

[
∆ii(1 + ∆ii)

2
p+(Si,N

t− ,W ii,N
t− )

(
1− p−(Si,N

t− ,W ii,N
t− )

)
+
(
1− |∆ii|

)(
p+(Si,N

t− ,W ii,N
t− )p−(Si,N

t− ,W ii,N
t− )

+
(
1− p+(Si,N

t− ,W ii,N
t− )

)(
1− p−(Si,N

t− ,W ii,N
t− )

))
+

∆ii(∆ii − 1)

2
p−(Si,N

t− ,W ii,N
t− )

(
1− p+(Si,N

t− ,W ii,N
t− )

)]
∏
k,l 6=i

(
∆ilp+(Sl,N

t− ,W
il,N
t− ) + (1−∆il)

(
1− p+(Sl,N

t− ,W
il,N
t− )

))
(
−∆kip−(Sk,N

t− ,W ki,N
t− ) + (1 + ∆ki)

(
1− p−(Sk,N

t− ,W ki,N
t− )

))
.

After the spike of the neuron i at time t and assuming the weights are incremented of ∆ ∈ JNi at
this time, ξi,N

t− jumps to ξi,Nt,∆ and for all j, ξj,N
t− jumps to ξj,Nt,∆,i such that

ξi,Nt,∆ = ξi,N
t− +

1

N

∑
(0,Si,N

t−
,W̃ )∈supp(ξi,N

t−
)

(
δ(1,0,W̃+∆ii) − δ(0,Si,N

t−
,W̃ )

)
+
∑
l 6=i

1

N

∑
(Ṽ ,Sl,N

t−
,W̃ )∈supp(ξi,N

t−
)

(
δ

(Ṽ ,Sl,N
t−

,W̃+∆il)
− δ

(Ṽ ,Sl,N
t−

,W̃ )

) (4.26)

ξj,Nt,∆,i = ξj,N
t− +

1

N

∑
(0,Si,N

t−
,W̃ )∈supp(ξj,N

t−
)

(
δ(1,0,W̃+∆ji) − δ(0,Si,N

t−
,W̃ )

)
. (4.27)

For all Ψ ∈ C1,1
b (E), we now have

〈µNt ,Ψ〉
E
= 〈µN0 ,Ψ〉+

∫ t

0

∫
E

(
∂sΨ(v, s, ξ) + ∂ξΨ(v, s, ξ) · (−∂sξ)

)
µNu (dv, ds, dξ)du

+

∫ t

0

∑
i

1{V i,N
u−

=1}
β

N

{[
Ψ
(

0, Si,N
u− , ξ

i,N
u− + ηN (Si,N

u− , ξ
i,N
u− )

)
−Ψ

(
1, Si,N

u− , ξ
i,N
u−

)]
+
∑
j 6=i

[
Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u− + ηN (Si,N

u− , ξ
j,N
u− )

)
−Ψ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)]}
du

+

∫ t

0

∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

∑
∆∈JNi

P∆
u,i

{[
Ψ
(

1, 0, ξi,Nu,∆

)
−Ψ

(
0, Si,N

u− , ξ
i,N
u−

)]

+
∑
j 6=i

[
Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u,∆,i

)
−Ψ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)]}
du.

We complete the sum (last term) by adding and removing the term

E

[∫ t

0

∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

∑
∆∈JNi

P∆
u,i

[
Ψ
(

0, Si,N
u− , ξ

i,N
u,∆,i

)
−Ψ

(
0, Si,N

u− , ξ
i,N
u−

)]
du

]
.
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We obtain

〈µNt ,Ψ〉
E
= 〈µN0 ,Ψ〉+

∫ t

0

∫
E

(
∂sΨ(v, s, ξ) + ∂ξΨ(v, s, ξ) · (−∂sξ)

)
µNu (dv, ds, dξ)du

+

∫ t

0

∑
i

1{V i,N
u−

=1}
β

N

{[
Ψ
(

0, Si,N
u− , ξ

i,N
u− + ηN (Si,N

u− , ξ
i,N
u− )

)
−Ψ

(
1, Si,N

u− , ξ
i,N
u−

)]
+
∑
j 6=i

[
Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u− + ηN (Si,N

u− , ξ
j,N
u− )

)
−Ψ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)]}
du

+

∫ t

0

∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

∑
∆∈JNi

P∆
u,i

{[
Ψ
(

1, 0, ξi,Nu,∆

)
−Ψ

(
0, Si,N

u− , ξ
i,N
u,∆,i

)]

+
∑
j

[
Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u,∆,i

)
−Ψ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)]}
du

(4.28)

We then denote by

3 =
∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

∑
∆∈JNi

P∆
u,i

[
Ψ
(

1, 0, ξi,Nu,∆

)
−Ψ

(
0, Si,N

u− , ξ
i,N
u,∆,i

)]
(4.29)

and

4 =
∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

∑
∆∈JNi

P∆
u,i

∑
j

[
Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u,∆,i

)
−Ψ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)]
.

The depression term

We first deal with the term 4 which describes the depression of the weights.

Proposition 4.28. Then, for all u ≥ 0,

4 E
=

∫
∂ξΨ(v, s, ξ) · [δ1 ⊗ ν−,1(s, ξ, µNu )− δ0 ⊗ ν0(ξ, µNu )] µNu (dv, ds, dξ) + O(1) .

where ν−,1 is defined in the proof, see (4.30).

Proof. First, by Lemma 4.2, we have almost surely for all i, j,

‖ 1

N

∑
(0,Si,N

u−
,W̃ )∈supp(ξj,N

u−
)

(
δ(1,0,W̃+∆ji) − δ(0,Si,N

u−
,W̃ )

)
‖TV ≤

2

N
.

Then, we use Fréchet derivative to obtain that

Ψ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u,∆,i

)
−Ψ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)
= ∂ξΨ

(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)
·
( 1

N

∑
(0,Si,N

u−
,W̃ )∈supp(ξj,N

u−
)

(
δ(1,0,W̃+∆ji) − δ(0,Si,N

u−
,W̃ )

))
+ O

(
1

N

)
.
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We deduce by linearity that

4 =
1

N

∑
j

∂ξΨ
(
V j,N
u− , Sj,N

u− , ξ
j,N
u−

)
·

(∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

∑
(0,Si,N

u−
,W̃ )∈supp(ξj,N

u−
)

∑
∆∈JNi

P∆
u,i

(
δ(1,0,W̃+∆ji) − δ(0,Si,N

u−
,W̃ )

)
︸ ︷︷ ︸

4a

)
+ O(1) .

But for any function f on {1, 0,−1} we have for all i 6= j,∑
∆∈JNi

P∆
u,if(∆ji) =

∑
∆∈JNi ,∆ji=−1

P∆
u,if(−1) +

∑
∆∈JNi ,∆ji=0

P∆
u,if(0)

= p−(Sj,N
u− ,W

ji
u−)f(−1) + (1− p−(Sj,N

u− ,W
ji
u−))f(0),

and for i = j,∑
∆∈JNj

P∆
u,jf(∆jj)

= p−(Sj,N
u− ,W

jj
u−)(1− p+(Sj,N

u− ,W
jj
u−))f(−1) + p+(Sj,N

u− ,W
jj
u−)(1− p−(Sj,N

u− ,W
jj
u−))f(1)

+
(

(1− p−(Sj,N
u− ,W

jj
u−))(1− p+(Sj,N

u− ,W
jj
u−)) + p+(Sj,N

u− ,W
jj
u−)p−(Sj,N

u− ,W
jj
u−)
)
f(0).

In 4a , the term for i = j is of order 1
N . Hence, we obtain that

4a +O
( 1

N

)
=
∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

∑
(0,Si,N

u−
,W̃ )∈supp(ξj,N

u−
)

[
p−(Sj,N

u− , W̃ )
(
δ(1,0,W̃−1) − δ(0,Si,N

u−
,W̃ )

)
+
(
1− p−(Sj,N

u− , W̃ )
)(
δ(1,0,W̃ ) − δ(0,Si,N

u−
,W̃ )

)]
=
∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

∑
W̃∈Z

1{(0,Si,N
u−

,W̃ )∈supp(ξj,N
u−

)}

[
p−(Sj,N

u− , W̃ )
(
δ(1,0,W̃−1) − δ(0,Si,N

u−
,W̃ )

)
+
(
1− p−(Sj,N

u− , W̃ )
)(
δ(1,0,W̃ ) − δ(0,Si,N

u−
,W̃ )

)]
=
∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

∑
W̃∈Z

γ
ξj,N
u−

(Si,N
u− , W̃ )

[
p−(Sj,N

u− , W̃ )
(
δ(1,0,W̃−1) − δ(0,Si,N

u−
,W̃ )

)
+
(
1− p−(Sj,N

u− , W̃ )
)(
δ(1,0,W̃ ) − δ(0,Si,N

u−
,W̃ )

)]
.

Hence, we deduce that

4a =
∑
W̃∈Z

∫
P(Em)

∫
R+

α(I(ξ̃))γ
ξj,N
u−

(s̃, W̃ )
[
p−(Sj,N

u− , W̃ )
(
δ(1,0,W̃−1) − δ(0,s̃,W̃ )

)
+
(
1− p−(Sj,N

u− , W̃ )
)(
δ(1,0,W̃ ) − δ(0,s̃,W̃ )

)]
µNu−({0}, ds̃, dξ̃) +O

( 1

N

)
.
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This incites us to define the following measure. For all triple (s, ξ, µ) ∈ R+ × P(Em) × P(E),
we denote by ν−,1(s, ξ, µ) the measure on R+ × Z such that for all (A, {w}) ∈ B(R+)× Z,

ν−,1(s, ξ, µ)(A, {w}) def.= 1{0∈A}

∫
P(Em)

α
(
I(ξ̃)

)
p−(s, w + 1) γξ(s̃, w + 1)µ({0}, ds̃, dξ̃)

+ 1{0∈A}

∫
P(Em)

α
(
I(ξ̃)

)
(1− p−(s, w)) γξ(s̃, w)µ({0}, ds̃, dξ̃),

(4.30)

where we used the definition of γξ given by (4.17). Thereby, using the function ν0 defined in
(4.18), we get

4a = δ1 ⊗ ν−,1(Sj,N
u− , ξ

j,N
u− , µ

N
u−)δ0 ⊗ ν0(ξj,N

u− , µ
N
u−) + O(1) .

We finally obtain that

4 E
=

∫
∂ξΨ(v, s, ξ) · [δ1 ⊗ ν−,1(s, ξ, µNu )− δ0 ⊗ ν0(ξ, µNu )] µNu (dv, ds, dξ) + O(1) .

It ends the proof.

Under Assumption 4.13, it is reasonable to expect that, as N tends to infinity, E 4 converges to∫
∂ξΨ(v, s, ξ) · [δ1 ⊗ ν−,1(s, ξ, µ∗u)− δ0 ⊗ ν0(ξ, µ∗u)] µ∗u(dv, ds, dξ).

As noted in the remark given just after Proposition 4.23, this convergence does not hold a priori
because the functions

(v, s, ξ) 7→ ∂ξΨ(v, s, ξ) · [δ1 ⊗ ν−,1(s, ξ, µNu )− δ0 ⊗ ν0(ξ, µNu )] (4.31)

are not a priori continuous. We expect to show this convergence using a sequence (indexed by N )
of continuous functions both getting closer and closer to (4.31) and converging to

(v, s, ξ) 7→ ∂ξΨ(v, s, ξ) · [δ1 ⊗ ν−,1(s, ξ, µ∗u)− δ0 ⊗ ν0(ξ, µ∗u)].

The potentiation term

Now, for the term 3 describing potentiation, see (4.29), we need to assume that Ψ is linear in its
third variable ξ.

Proposition 4.29. Under Assumptions 4.1, 4.13 and 4.16 we find that for all u ≥ 0, for all
Ψ ∈ C1,1

b (E) linear in its third variable ξ,

lim
N→∞

3 E
=

∫
E
α
(
I(ξ)

)[
Ψ
(

1, 0, ν+(ξ)
)
−Ψ

(
0, s, ξ

)]
µ∗u({0}, ds, dξ),

where ν+ is defined in the proof, see (4.32).
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Proof. By linearity of Ψ in its third variable, we obtain that

3 =
∑
i

1{V i,N
u−

=0}
α(Ii,N

u− )

N

∑
∆∈JNi

P∆
u,i

[
Ψ
(

1, 0,
∑

∆∈JNi

P∆
u,iξ

i,N
u,∆

)
−Ψ
(

0, Si,N
u− ,

∑
∆∈JNi

P∆
u,iξ

i,N
u,∆,i

)]
.

and then by definition of ξi,Nu,∆, see (4.26), we have

∑
∆∈JNi

P∆
u,iξ

i,N
u,∆ = ξi,N

u− +
1

N

∑
(0,Si,N

u−
,W̃ )∈supp(ξi,N

u−
)

∑
∆∈JNi

P∆
u,i

(
δ(1,0,W̃+∆ii) − δ(0,Si,N

u−
,W̃ )

)
+
∑
l 6=i

1

N

∑
(Ṽ ,Sl,N

u−
,W̃ )∈supp(ξi,N

u−
)

∑
∆∈JNi

P∆
u,i

(
δ

(Ṽ ,Sl,N
u−

,W̃+∆il)
− δ

(Ṽ ,Sl,N
u−

,W̃ )

)
.

Noting the second term of the right hand side of the last equation is of order 1
N , we deduce that

∑
∆∈JNi

P∆
u,iξ

i,N
u,∆ +O

( 1

N

)
= ξi,N

u− +
∑
l 6=i

1

N

∑
(Ṽ ,Sl,N

u−
,W̃ )∈supp(ξi,N

u−
)

p+(Sl,N
u− , W̃ )

(
δ

(Ṽ ,Sl,N
u−

,W̃+1)
− δ

(Ṽ ,Sl,N
u−

,W̃ )

)
=

1

N

∑
(Ṽ ,S̃,W̃ )∈supp(ξi,N

u−
)

p+(S̃, W̃ )δ(Ṽ ,S̃,W̃+1) +
(
1− p+(S̃, W̃ )

)
δ(Ṽ ,S̃,W̃ )

= ν+(ξi,N
u− )

where

ν+(ξ)({v}, A, {w}) =

∫
A
p+(s, w− 1)ξ({v}, ds, {w− 1}) +

∫
A

(1− p+(s, w))ξ({v}, ds, {w}).
(4.32)

But p+ takes values in [0, 1] so using the triangular inequality, ξ 7→ ν+(ξ) is continuous. We can
then conclude using Assumption 4.13.

Justifying Conjecture 4.18

We are now in position to detail why Conjecture 4.18 is reasonable. Under Assumptions 4.1, 4.13
and 4.16, by makingN tends to infinity in equation (4.28) and using the result of Proposition 4.28,
we should get the following dynamics of µ∗t :

• L(X∗0 ) = limN→∞ L(X1,N
0 ) = µ∗0 and in particular S∗0 is distributed by the ρ0 law which

is absolutely continuous with respect to the Lebesgue measure,
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• using Notation 4.14 we have, for all t ≥ 0, for all Ψ ∈ C1,1
b (E),

〈µ∗t ,Ψ〉 = 〈µ∗0,Ψ〉+

∫ t

0

∫
E

(
∂sΨ(v, s, ξ) + ∂ξΨ(v, s, ξ) · (−∂sξ)

)
µ∗u(dv, ds, dξ)du

+

∫ t

0

(∫
R+×P(Em)

β
[
Ψ
(

0, s, ξ
)
−Ψ

(
1, s, ξ

)]
µ∗u({1}, ds, dξ)

)
du

+

∫ t

0

{∫
E
∂ξΨ(v, s, ξ) · (βδ0 ⊗ ξ1 − βδ1 ⊗ ξ1)µ∗u(dv, ds, dξ)

}
du

+

∫ t

0

(∫
R+×P(Em)

α
(
I(ξ)

)[
Ψ
(

1, 0, ν+(ξ)
)
−Ψ

(
0, s, ξ

)]
µ∗u({0}, ds, dξ)

)
du

+

∫ t

0

(∫
E
∂ξΨ(v, s, ξ) · [δ1 ⊗ ν−,1(s, ξ, µ∗u)− δ0 ⊗ ν0(ξ, µ∗u)] µ∗u(dv, ds, dξ)

)
du,

(4.33)

where ν−,1 is defined in (4.30) and ν0 is defined in (4.18).

With the same arguments as the one used in Consequence 4.26, one has that for all t ≥ 0,

ξ∗t (·, ·,Z) = µ∗t (·, ·,P(Em)).

Then, from Conjecture 4.18, µ∗t is assumed to admit a density C1 in s. Therefore, the last equation
tells us that ξ∗t admits a density C1 in s. Hence, with the same arguments as in Consequence 4.26
but with equation (4.33), we have:

d

dt
ξ∗t = −∂sξ∗t + β

(
δ0 ⊗ ξ∗t 1 − δ1 ⊗ ξ∗t 1

)
+ δ1 ⊗ ν−,1(S∗t , ξ

∗
t , µ
∗
t )− δ0 ⊗ ν0(ξ∗t , µ

∗
t ).

From this equation and Remark 4.24, we thus obtain the following equations on the density func-
tions s 7→ ξ∗t

v(s, {w}):

dξ∗t
0

dt
(s, {w}) = −∂sξ∗t 0(s, {w})− δ0(s)ξ∗t

0(0, {w}) + βξ∗t
1(s, {w})

−
∫
P(Em)

α
(
I(ξ′)

)ξ∗t 0(s, {w})
ξ∗t

0(s,Z)
µ∗t ({0}, s, dξ′),

dξ∗t
1

dt
(s, {w}) = −∂sξ∗t 1(s, {w})− δ0(s)ξ∗t

1(0, {w})− βξ∗t 1(s, {w})

+ δ0(s)

∫
R+×P(Em)

α
(
I(ξ′)

)
ξ∗t

0(s′,Z)

[
p−(S∗t , w)ξ∗t

0
(s′, {w + 1})

+ (1− p−(S∗t , w))ξ∗t
0(s′, {w})

]
µ∗t ({0}, ds′, dξ′).

By integrating the previous equations on s ∈ [0, ε] and making ε tends to 0, we obtain the equations
with conditions at boundaries s = 0 of the conjecture.

4.4 Numerical comparison with the neural network

We simulate the stochastic STDP model. In particular, we illustrate our results by comparing the
simulation of the finite size neural network versus the simulation of the limit system.
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We simulate N neurons X1,∗
t , · · · , XN,∗

t having the same dynamics as X∗t , except that instead of
µ∗t , we use µ∗,Nt = 1

N

∑
i δXi,∗

t
. Hence, we do not need to compute µ∗t . For instance, we use the

ξi,∗t to compute the Ii,∗t = I(ξi,∗t ). For more details on the code, see Appendix A.4. The results
obtained with these simulations are compared with those obtained with the simulation of the finite
size neural network: (V i,N

t , Si,Nt ,W ij,N
t )1≤i,j≤N,t≥0. We compare the expectations over time of

the synaptic weights, of the time since the last spikes and of the potentials, see Figures 4.2 and
4.3. Moreover, we compare, at the end of the simulation, the distributions of the intensities of the
incoming currents onto the neurons (Figure 4.3), the distributions of the time since the last spikes
and the one of the potentials (Figure 4.1).

We use a sigmoid for the function α and the classical STDP curves for p+ and p−,

α(x) =
αM − αm

1 + eσ(θ−x)
+ αm and p+/−(s, w) = A+/−e

− s
τ+/− 1Jwmin,wmaxK(w),

with the following parameters:

N = 5000, αm = 0.05, αM = β = 1, τ+ = 1.5 ms, τ− = 2 ms, A+ = 0.8, A− = 0.6,

dt = 0.05 ms, σ = 1.5, θ = 0, wmax = 10, wmin = −10.

The simulations show a very good match between the initial network and the limit one.
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Figure 4.1: Distributions of the time from last spikes for neurons in state 0 in (4.1a) and for neurons
in state 1 in (4.1b), at final time t = 500ms.
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Figure 4.2: Expectation over time of the potentials (4.2a) and of the time from last spikes (4.2b)
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Figure 4.3: (4.3a): Expectation over time of the weights. (4.3b): Distribution of the synaptic
currents onto the neurons.

4.5 Discussion

In this chapter, we introduced the averaging parameter 1
N in the synaptic currents. Because of

the dependence between the neurons, in the large N asymptotic, the expectation of these currents
is not sufficient: we need their law. It can be obtained from the law of the presynaptic weights.
Considering the system composed of new variables (potentials, times from last spike, vector of the
incoming weights) and its empirical measure, we can find a closed system of equations. Under the
assumption that this empirical law converges to a measure as N tends to infinity, we conjecture
the dynamics of any limit point. The typical neuron dynamics is solution to a McKean-Vlasov
SDE on the space {0, 1} × R+ × P(Em) where P(Em) is the space of probability measures on
{0, 1}×R+ ×Z. We illustrated this limit dynamics with simulations by comparing the finite size
neural network to the mean field limit system. There is a good match between the two.

To the best of our knowledge, this mean field analysis is the first one done on a network of inter-
acting neurons with plasticity. It opens the door to new mathematical questions. After showing
our conjecture holds true, the next steps are: show that the limit system has a unique solution and
then show the tightness of the empirical measures to conclude on their convergence in law to a
unique deterministic limit measure. Finally, studying the limit system would give insight in the
model and a particularly interesting study would be its long time behaviour. Improving the actual
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code for simulation is an important step in order to help the theoretical study.





Chapter 5

Conclusion and Perspectives

In this thesis, we propose the mathematical analysis of memory lifetime in a model of neural
network with plasticity (Chapter 2) as well as the long time behaviour (Chapter 3) and the mean
field approximation (Chapter 4) of a new model of STDP. In both models, the synaptic weight
changes are stochastic. The mathematical analysis of plastic neural network models using this
kind of randomness (in plasticity rule) is quite new in this field and this is the main objective of
this thesis. We summarise our results on both models and give some perspectives in continuity
with our work.

Chapter 2

Chapter 2 is devoted to the mathematical analysis of the model proposed by Amit and Fusi in [5].
In particular, we studied the synaptic current distribution dynamics of the neurons selective or not
to a given signal. The progressive overlapping of these two distributions is responsible for the
forgetting of the signal. Using a Chernoff type inequality, we can control this overlap and then the
probability that the neuron misevaluates the signal.

In order to go beyond our results, it would be interesting to understand the structure created by the
learning of a signal on the entire network. Indeed, our analysis focuses only on one neuron and
its incoming synaptic weights, the natural next step is to study the N neurons case and thus the
N2 synaptic weights. This is difficult in part because of the correlations. We think that using the
Kronecker product, such as in Appendix A.2, is one of the possible key of this work. Moreover,
we did not answer an interesting question which is: what is the scaling of fN (the coding level
of the signals) in N that maximises the time to forget the signal? Also, does it exist a better
estimator than the simple threshold one? Finally, the main advantage of this model is its simplicity
allowing its mathematical analysis. This simplicity is obtained at the expense of its reality. We
give some ideas to remedy to this lack of biological realism. For example, the neural dynamics
is imposed by the external signals whereas a more interesting model would take into account a
more realistic interacting neuron dynamics. This would for example enables the memories to be
replayed (without the need of any external signal) in order to maintain them. For instance, a
time continuous neural dynamics would open many possibilities of study: changing the synaptic
plasticity rules, proposing a new readout procedure based on richer information extracted from the
past activity of the neurons. Poisson and Hawkes processes are good candidates in order to model
the neural dynamics, see [30] for a presentation of Hawkes processes used in neuroscience. Two
other changes of the model can be interesting to study: add a dependence between the external
signals and add some neural layers modelling for example how the external signal leads to a neural
representation of it in order to store it.
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Chapters 3 and 4

In Chapters 3 and 4, we introduced a new stochastic STDP model that we implemented in a well
known neural network model. This model is more complex than the one of Chapter 2. The neu-
ral network is composed of N binary probabilistic Wilson-Cowan neurons and discrete synaptic
weights following a stochastic STDP rule. We analysed this model under two different asymptotic
approaches: we first assumed that the plasticity is infinitely slow compared to the neural dynamics
and then, we assumed that the number of neurons tends to infinity (changing a bit the model by
dividing by N the weights in the synaptic current formula). The natural next step is to combined
the two in order to obtain an even simpler approximation of the model. We did not do it in this
thesis but it is not obvious that the two limits permute.

In Chapter 3, we showed the convergence of the slow process (the synaptic weights) to a limit
process of which we have studied the long time behaviour. We proposed two techniques leading to
conditions for positive recurrence or transience of the limit chain. The first one consists in coupling
the limit process with two other ones. These two processes have independent components with
similar dynamics that are determined by the extremal values of the limit process jumping rates.
We think that the processes used for the bounding in this method can be improved to get much
better bounds. The second uses of the Laplace transform of this invariant measure. In particular,
we show how to compute this transform for any N using the Laplace transforms of the marginals
of the invariant measure. Inverting the Laplace transform in two dimension is already hard in our
case because the formulas are not easy to handle with. We used the Fokker-Planck equation to
obtain it in the Appendix A.3.

In the continuity of this work, it would be very interesting to test the learning capacity of our
model and also to compare it with real biological data. Also, we could simplify a bit this model by
deleting the potentials and modelling the synaptic current using the weights W and the time from
the last spikes S instead of the potentials V .

In Chapter 4, after defining new variables describing the neural network (from the initial descrip-
tion) adapted to the mean field analysis and assuming that its empirical law converges to a certain
deterministic law in the large N asymptotic, we conjecture the McKean-Vlasov limit dynamics of
this law. This conjecture is based on computations done on the dynamics of the empirical measure.
We did not show yet rigorously the convergence of some term of this dynamics. The conjectured
dynamics is particularly hard to handle with as it deals with laws on a space of measures. We nev-
ertheless managed to compare the finite size neural network to the limit system using simulations
and obtained a good match.

The natural questions arising from this chapter are multiple. First, the existence and uniqueness
of the limit dynamics has to be studied. Then, the convergence as well as the propagation of chaos
have to be shown. Finally, analysing the limit system is a challenging step maybe enabling us to
understand a part of the weight structure formation.





Chapter A

Appendix

A.1 Definitions

A.1.1 Convergence in law (or weakly)

Definition A.1. (See for instance equation (10) in [19]) Let X be a metric space and X its Borel
sets and consider probability measures µN and µ on X . Then, µN converges in law (or weakly)
to µ if and only if

∀f ∈ Cb(X),

∫
X
f(x)µN (dx)→N∞

∫
X
f(x)µ(dx).

A.1.2 Variation of signed measures

We first give some definitions on the space of signed measures on a measurable space, see [4, Thm
1.6 and Rk 1.7] for more details.

Definition A.2. Let (X,X ) be a measurable space equipped with a signed measure η. One asso-
ciates to η the (unique) pair of positive measures η+ and η− defined for any A ∈ X by

η+(A) = sup{η(B), B ∈ X , B ⊂ A}
η−(A) = sup{−η(B), B ∈ X , B ⊂ A}.

The Jordan decomposition of the signed measure η writes

η(A) = η+(A)− η−(A).

The variation |η| of the signed measure η is defined, for all A ∈ X , by

|η|(A)
def.
= η+(A) + η−(A).

We deduce the total variation of η as

‖η‖TV def.
= |η|(X) = η+(X) + η−(X).

The space of signed measures embedded with the norm ‖·‖TV is a Banach space.
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A.1.3 Around Poisson

The first part of this section is taken from the book [62, Sec 4.2.1].

We first introduce non-degenerate point processes.

Definition A.3. (Point process) A point process on R+ with an infinite number of (strictly) positive
jump instants without accumulation point, is a process (Nt)t≥0 with values in N, vanishing at 0,
non-decreasing, right continuous, with unit jumps, and with infinite limit: for 0 ≤ s ≤ t <∞,

0 = N0 ≤ Ns ≤ Nt = Nt+ , Nt −Nt− ∈ {0, 1}, lim
t→∞

Nt =∞.

This kind of random object has two other equivalent descriptions, to which it makes implicit
reference. We give the jump instants description, the other one being the inter-arrivals description.
Let (Tn)n≥1 be the sequence of positive random variables increasing to infinity,

0 < T1 < T2 < · · · <∞, lim
n→∞

Tn =∞,

such that the Tn are the jump instants of (Nt)t≥0. Then (Nt)t≥0 is given by their counting process:

Nt =
∑
n≥1

1{Tn≤t}.

What follows is taken from the book [32, Sec 2.1]. An (inhomogeneous) Poisson process of time-
varying rate λt > 0 (λ. is as regular as needed) is a point process satisfying the two following
conditions. The number of points within disjoint intervals are independent and in each finite
interval (ai, bi], this number has a Poisson distribution of intensity

∫ bi
ai
λxdx. Formally,

Definition A.4. (Nt)t≥0 is said to be a Poisson process of time-varying rate λt > 0 if it is a point
process such that

1. for all k ≥ 1, t0 = 0 < t1 < · · · < tk, the random variables
(
Ntk −Ntk−1

)
, . . . , (Nt1 −N0)

are independent,

2. in each finite interval (ai, bi], the number of points has a Poisson distribution of intensity∫ bi
ai
λxdx: for all k ∈ N,

P (Nbi −Nai = k) =
(
∫ bi
ai
λxdx)k

k!
e
−
∫ bi
ai
λxdx.

The Poisson neuron is a spiking neuron model where the spiking times of a neuron is obtained
from the jump instants of a Poisson process.

We now generalise this definition by giving the definition of a Poisson random measure. This
definition is taken from the book [12, Def A.1].

Definition A.5. Let (E, E) be a measurable space and µ a σ− finite measure on this space. A (ho-
mogeneous) Poisson point measureN with intensity µ(dh)dt on R+×E is a

(
R+×E,B(R+)⊗E

)
-random measure defined on a probability space (Ω,F ,P) which satisfies the following properties:

• N is a counting measure: ∀A ∈ B(R+)⊗ E ,∀ω ∈ Ω, N(ω,A) ∈ N ∪ {+∞}.
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• ∀ω ∈ Ω, N(ω, {0} × E) = 0: no jump at time 0.

• ∀A ∈ B(R+)⊗ E , EN(A) = ν(A), where ν(dt, dh) = µ(dh)dt.

• If A and B are disjoint in B(R+) ⊗ E and if ν(A) < +∞, ν(B) < +∞, then the random
variables N(A) and N(B) are independent.

A.1.4 Fréchet differentiation

We recall the notion of Fréchet differentiation. We use the definition given in [66, p.6].

Definition A.6. Let F and G be two Banach spaces embedded with the norms ‖·‖F and ‖·‖G.
Let D be an open set of F . We say that ϕ : D → G is Fréchet differentiable in y ∈ D if there
exists a linear bounded operator L(y) : h ∈ F 7→ L(y)h ∈ G such that for all h ∈ F satisfying
y + h ∈ D, we have

‖ϕ(y + h)− ϕ(y)− L(y)h‖G ≤ ρ(‖h‖F , y),

where ρ(‖h‖F , y) satisfies ρ(‖h‖F ,y)
‖h‖F → 0 when ‖h‖F → 0. We call L(y) the Fréchet derivative of

ϕ in y and L(y)h the Fréchet differential of ϕ in y in the direction h.

We say that ϕ is Fréchet differentiable on D if for all y in the interior of F , ϕ is Fréchet differen-
tiable in y.

A.1.5 Semigroup Theory and Probability Theory

This section is taken from the book [62, Sec 6.1].

A transition kernel P is a measurable mapping

x ∈ E 7→ P (x, ·) = P (x, dy) ∈ P(E).

A transition kernel P = (P (x, dy))x∈E can be identified with the operator f 7→ Pf on L∞

defined by

∀x ∈ E, Pf(x) =

∫
E
f(y)P (x, dy).

One can also be interested in the adjoint of P , denoted P ∗ defined on the dualM(E) of L∞ by

∀µ ∈M(E), ∀f ∈ L∞, P ∗µf = µPf =

∫ 2

E
f(y)P (s, dy)µ(dx).

From this definition, one can define a Markov process as follows.

Definition A.7. A process (Xt)t≥0 with values in E is a Markov process if there exists a family
(Pt)t≥0 of Markovian kernels Pt = (Pt(x, dy))x∈E such that, for all s, t ≥ 0 and A ∈ B(E),

P
(
Xs+t ∈ A|(Xθ)0≤θ≤s

)
= Pt(Xs, A).

The Pt are called the transition kernels of the process. In particular, for f bounded we have

E [f(Xt)|X0 = x] = Ptf(x)
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and Pt(x, dy) is the conditional law of Xt given X0 = x. The Chapman-Kolmogorov equation
satisfied by the transition kernels Pt leads to the semi-group property of (Pt)t≥0

∀t, s ≥ 0, Pt+s = PtPs

This semi-group is characterized by its left derivative at 0.

Definition A.8. The infinitesimal generator of the Markov process, or of its semigroup, is the
operator defined by A : f ∈ D(A) ⊂ L∞ 7→ Af ∈ L∞ such that

∀x ∈ E, Af(x) = lim
t→0

Ptf(x)− f(x)

t
= lim

t→0

E [f(Xt)]− f(x)

t
.

where D(A) is composed of the functions for which this limit exists. It characterizes the law of
the evolution of the Markov process.

A.1.6 Markov chains

This definition is taken from the book [105, Sec 3.4].

Definition A.9. [96, Def ] Let (Xt)t≥0 be a Markov chain minimal (chain that dies after explosion)
on a countable state space Σ. We say that a state i is transient if

Pi

( ∞∑
t=1

1{Xt=i} =∞
)

= 0.

We say that a state i is recurrent if

Pi

( ∞∑
t=1

1{Xt=i} =∞
)

= 1.

We denote by Ti the random variable giving the first passage time to state i,

Ti
def.
= inf{t ≥ 0 : Xt = i},

where inf ∅ def.= ∞. A recurrent state i is said to be positive recurrent if Ei[Ti] is finite and it is
said to be null recurrent otherwise.

We say that (Xt)t≥0 is irreducible if every state of Σ communicates with each other:

∀i, j ∈ Σ,∃t1, t2 > 0, Pi(Xt1 = j) > 0 and Pj(Xt2 = i) > 0.

This theorem is taken from the book [96, Thm 2.6.4].

Theorem A.10. (Foster’s criterion) An irreducible Markov chain (Xn)n≥0 on a countable state
space Σ is positive recurrent if and only if there exist a positive function f : Σ → R+, a finite
non-empty set A ⊂ Σ and ε > 0 such that

∀x ∈ Σ \A, E [f(Xn+1)− f(Xn)|Xn = x] ≤ −ε,
∀x ∈ A, E [f(Xn+1)|Xn = x] <∞.
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A.2 Kronecker Product for Memory Lifetime

We can generalise Proposition 2.12. Instead of computing the spectrum of PNK , we study the

spectrum of the transition matrix MN
V,W of

(
V N
t ,
(
W 1j,N
t

)
2≤j≤N

)
t≥1

. In the following we use

the notation W 1,N
t =

(
W 1j,N
t

)
2≤j≤N

.

We denote by

• v1, · · · , v2N an enumeration of {0, 1}N ,

• pNvk = P
(
V N
t = vk

)
,

• MN
vk

is the 2N−1 × 2N−1 transition matrix of
(
W 1,N
t

)
t≥1

knowing that V N
t = vk,

• MN
W is the 2N−1 × 2N−1 transition matrix of

(
W 1,N
t

)
t≥1

. Thus, MN
W =

∑2N

k=1 p
N
vk
MN
vk

.

The form of MN
V,W is:

MN
V,W =


pNv1M

N
v1 pNv2M

N
v1 . . . pNv

2K
MN
v1

pNv1M
N
v2 pNv2M

N
v2 . . . pv

2K
MN
v2

...
... . . .

...
pNv1M

N
v
2N

pNv2M
N
v
2N

. . . pNv
2N
MN
v
2N


︸ ︷︷ ︸

22N−1×22N−1 matrix

Proposition A.11. The spectrum of MN
V,W is

Σ
(
MN
V,W

)
= Σ

(
MN
W

)
∪ {0} = {λNi , 0 ≤ i ≤ N} ∪ {0},

where λNi has multiplicity
(
N−1
i

)
and 0 has multiplicity 2N−1(2N − 1).

First, let prove a lemma useful for the proof of the proposition. It is based on the Kronecker
product properties and the following 2× 2 matrices:

M00 = I2, M01 =

[
1 0

q−,N01 1− q−,N01

]
, M10 =

[
1 0

q−,N10 1− q−,N10

]
, M11 =

[
1− q+ q+

0 1

]
.

Definition A.12. Let A ∈ Rm×n and B ∈ Rp×q. Then, the Kronecker product (or tensor product)
of A and B is defined as the matrix

A⊗B =


a11B · · · a1nB
a21B · · · a21B

... · · · ...
am1B · · · amnB

 ∈ Rmp×nq. (A.1)

Lemma A.13. With the notation ⊗nM = M ⊗M ⊗ . . .⊗M︸ ︷︷ ︸
n times

, we have

MN
W =(1− fN )⊗N−1 ((1− fN )M00 + fNM01︸ ︷︷ ︸

M0

)

+ fN ⊗N−1 ((1− fN )M10 + fNM11︸ ︷︷ ︸
M1

)
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Proof. By recurrence on the number of synapses we look at. For one synapse, the transition
matrix is (1− fN )M0 + fNM1. In order to find the matrix for one more synapse given the matrix
for n synapses, we add the value of the new synapse at the end of the previous enumeration:
en = (enk)1≤k≤2n where enk ∈ {0, 1}n becomes en+1 such that for all 1 ≤ k ≤ 2n, en+1

k = (0, enk)
and en+1

2n+k = (1, enk).

The transition probabilities of the synapses of W 1,N
t are independent knowing V 1,N

t . Hence, we
condition by V N

t and thus, we can split in two the transition matrix Mn,N
W of n synapses of W 1,N

t .
For all 1 ≤ n ≤ N − 1,

Mn,N
W

def.
= fNM

n,N
1,W + (1− fN )Mn,N

0,W ,

where Mn,N
y,W is the transition matrix knowing that V N

t = y. The recurrence assumption is the

following. Assume that for a 1 ≤ n ≤ N − 2, y ∈ {0, 1}, Mn,N
y,W = ⊗nMy. Then, by indepen-

dence of the transition probabilities of the synapses knowing V 1,N
t and the fact that the transition

probability matrix of the (n+ 1)th knowing that V N
t = y is My, we get

Mn+1,N
y,W = My ⊗Mn,N

y,W ,

which ends the proof.

We now prove the previous Proposition.

Proof of Proposition A.11. First, as the number of collinear vectors of the matrix is 2N−1(2N −1)
thus

dim
(
Ker

(
MN
V,W

))
≥ 2N−1(2N − 1).

So, 0 ∈ Σ(MN
V,W ) and has multiplicity at least 2N−1(2N − 1).

Then, we show that Σ(MN
V,W ) \ {0} ⊂ Σ(MN

W ). Let u =

 u
1

...
u2N

 ∈ R22N−1
, with ui ∈ R2N−1

,

and λ ∈]0, 1] such that:

(MN
V,W )T u = λ u ⇔ ∀i, pNvi

2N∑
k=1

(MN
vk

)Tuk︸ ︷︷ ︸
ũ

= λ ui ⇔ ∀i, j, uipNvj = ujpNvi .

Thus, combining the two last equalities gives 2K∑
k=1

(MN
vk

)T pNvk


︸ ︷︷ ︸

MN
W

ui = λui ⇒ Σ(MN
V,W ) \ {0} ⊂ Σ(MN

W ).

Conversely, assume there exists x ∈ R2N−1
such that

(∑2N

k=1(MN
vk

)T pNvk

)
x = λx. Then, defining

u such that for all i, ui = pNvix, this vector u checks

(MN
V,W )T u = λ u ⇒ Σ(MN

W ) ⊂ Σ(MN
V,W ) \ {0}.
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We conclude that,

Σ
(
MN
V,W

)
= Σ

(
(MN

V,W )T
)

= Σ
(
MN
W

)
∪ {0} = {λNi , 0 ≤ i ≤ N} ∪ {0}.

Finally, we find the multiplicity of these eigenvalues. We denote by e0 = [1 1]T and e2 = [0 1]T ,
so:

MT
0 e0 = e0 = MT

1 e0, M
T
0 e2 = ΛN0 e2 and MT

1 e2 = ΛN1 e2 + fNq
+e0

Now, we denote by ui,N =

(
u1
i,N , . . . , u

(Ni )
i,N

)
the sequence of vectors that can be written as the

Kronecker product of i vectors e2 and (N−i−1) vectors e0. For example, u1
i,N = ⊗ie2⊗N−1−ie0.

We compute the matrix MN
W in this basis using the linearity of the Kronecker product:

(MN
W )Tuji,N = (1− f)⊗N−1 M

T
0 u

j
i,N + f ⊗N−1 M

T
1 u

j
i,N

= (1− f)(ΛN0 )iuji,N + f

[
(ΛN1 )iuji,N +

i−1∑
k=0

∑
l

αk,lu
l
k,N

]

=

(1− f)(ΛN0 )i + f(ΛN1 )i︸ ︷︷ ︸
λNi

uji,N + f
i−1∑
k=0

∑
l

αk,lu
l
k,N

Where αk,l ∈ {0, (fq+)i−k}. Hence, in this basis, (MN
W )T is upper triangular with λNi on the

diagonal with multiplicity
(
K−1
i

)
, it ends the proof on Σ

(
MN
V,W

)
.

In hindsight, denoting by M i,N
W the transition matrix of (W i,N

t )t≥1, we note that it can be written
using the Bayes’ formula as

M i,N
W =

∑
v∈{0,1}N

P(V N
t = v)

[
(1− vi)⊗k 6=i

(
(1− vk)M00 + vkM01

)
+ vi ⊗k 6=i

(
(1− vk)M10 + vkM11

)]
.

A.3 Invariant measure of the fast process in dimension 2

Using the same argument as in Lemma 4.3, we can show that πw admits a density in s and we
write for all (v, s) ∈ {0, 1}2 × R2

+ and a fixed w,

πw(v, ds) =

4∑
k=1

δvk(v)pk(s
1, s2)ds1ds2 with

∫
R2
+

pk(s
1, s2)ds1ds2 = νvkw .

Moreover, we assume that for all i, αi(v, w) = α(
∑

j w
ijvj). We denote by α0 = α(0), α1 =

α(w12) and α2 = α(w21). We denote by D(1,1)f(u) = ∂s1f(u) + ∂s2f(u).

The Fokker-Planck equation on the invariant measure obtained from the generator Bw, see (3.6),
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gives

D(1,1)p1(s) = β(p2(s) + p3(s))− 2α0p1(s)− δ0(s1)p1(s)− δ0(s2)p1(s)

D(1,1)p2(s) = −(β + α1)p2(s) + βp4(s) + δ0(s2)
(
− p2(s) + α0

∫
R+

p1(s)ds2
)
− δ0(s1)p2(s)

D(1,1)p3(s) = −(β + α2)p3(s) + βp4(s) + δ0(s1)
(
− p3(s) + α0

∫
R+

p1(s)ds1
)
− δ0(s2)p3(s)

D(1,1)p4(s) = −2βp4(s) + δ0(s2)
(
− p4(s) + α2

∫
R+

p3(s)ds2
)

+ δ0(s1)
(
− p4(s) + α1

∫
R+

p2(s)ds1
)
.

Hence, denoting by

A =


−2α0 β β 0

0 −α1 − β 0 β
0 0 −α2 − β β
0 0 0 −2β

 and p =


p1

p2

p3

p4

 ,
we get, for all s such that both s1 6= 0 and s2 6= 0,

D(1,1)p = Ap (A.2)

with the following boundary conditions

p1(0, s2) = 0 , α0

∫
R+

p1(s1, θ)dθ = p2(s1, 0),

p1(s1, 0) = 0 , α0

∫
R+

p1(θ, s2)dθ = p3(0, s2),

p2(0, s2) = 0 , α1

∫
R+

p2(θ, s2)dθ = p4(0, s2),

p3(s1, 0) = 0 , α2

∫
R+

p3(s1, θ)dθ = p4(s1, 0).

(A.3)

We make a change of variable in order to solve equation (A.2). Let φ : R+ × R+ → D such
that φ(s1, s2) = (u, v) = (s1, s2 − s1) and D = {(x, y), x ∈ R+, y ∈ R : y ≥ x}. Therefore,

we search pk such that pk(s) = fk(φ(s1, s2)) = fk(u, v) and we get with f =


f1

f2

f3

f4

 and ∀u 6=

0, u 6= v:

∂uf = Af ⇔ ∃ g(v) =


g1(v)
g2(v)
g3(v)
g4(v)

 , f(u, v) = eAug(v).

After computing the exponential of the matrix A, we modify the functions g2 and g3 as follows
(we keep the same name for simplicity):

g2 ← g2 −
β

α1 − β
g4 and g3 ← g3 −

β

α2 − β
g4.
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We finally obtain that the pk have the following form:

p1(s1, s2) = e−2α0s1g1(s2 − s1) +
β

2α0 − α1 − β
e−(α1+β)s1g2(s2 − s1)

+
β

2α0 − α2 − β
e−(α2+β)s1g3(s2 − s1)

+
β2(α1 + α2 − 2β)

(α1 − β)(α2 − β)(2α0 − 2β)
e−2βs1g4(s2 − s1).

p2(s1, s2) = e−(α1+β)s1g2(s2 − s1) +
β

α1 − β
e−2βs1g4(s2 − s1),

p3(s1, s2) = e−(α2+β)s1g3(s2 − s1) +
β

α2 − β
e−2βs1g4(s2 − s1),

p4(s1, s2) = e−2βs1g4(s2 − s1).

We now use the Laplace transforms and the boundary conditions. The first column of (A.3) gives

0 = g1(s2) +
β

2α0 − α1 − β
g2(s2) +

β

2α0 − α2 − β
g3(s2) +

β2(α1 + α2 − 2β)

(α1 − β)(α2 − β)(2α0 − 2β)
g4(s2),

0 = g1(−s1)e−2α0s1 +
β

2α0 − α1 − β
g2(−s1)e−(α1+β)s1 +

β

2α0 − α2 − β
g3(−s1)e−(α2+β)s1

+
β2(α1 + α2 − 2β)

(α1 − β)(α2 − β)(2α0 − 2β)
g4(−s1)e−2βs1 ,

0 = g2(s2) +
β

α1 − β
g4(s2)

0 = g3(−s1)e−(α2+β)s1 +
β

α2 − β
g4(−s1)e−2βs1 .

(A.4)

The second column of (A.3) gives

α2L{p3}(λ1, 0) =

∫
e−λ

1s1p4(s1, 0)ds1 =

∫
e−(λ1+2β)s1g4(−s1)ds1,

α1L{p2}(0, λ2) =

∫
e−λ

2s2p4(0, s2)ds2 =

∫
e−λ

2s2g4(s2)ds2,

α0L{p1}(λ1, 0) =

∫
e−λ

1s1p2(s1, 0)ds1

=

∫
g2(−s1)e−(λ1+α2+β)s1 +

β

α1 − β
g4(−s1)e−(λ1+2β)s1ds1,

α0L{p1}(0, λ2) =

∫
e−λ

2s2p3(0, s2)ds2 =

∫
e−λ

2s2g3(s2) +
β

α2 − β
g4(s2)ds2.

We denote by g−k and g+
k the functions from R+ to R such that gk(s) = g+

k (s)1R+(s)+g−k (−s)1R−(s).
We deduce that

L{g−4 }(λ1) = α2L{p3}(λ1 − 2β, 0),

L{g+
4 }(λ2) = α1L{p2}(0, λ2),

L{g−2 }(λ1) = α0L{p1}(λ1 − α2 − β, 0)− βα2

α1 − β
L{p3}(λ1 − α2 − β, 0),

L{g+
3 }(λ2) = α0L{p1}(0, λ2)− βα1

α2 − β
L{p2}(0, λ2).
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We saw how to compute the Laplace transforms in dimension 2 in Lemma 3.36. We obtain that

g4(y) =


c+

14 e
−βy + c+

24 e
−(2β+α1)y ,∀ y ∈ R+

c−14 e
−βy + c−24 e

α2y ,∀ y ∈ R−

g3(y) =


c13 e

−λ13y + c23 e
−λ23y + c33 e

−βy + c43 e
−(α1+2β)y , ∀ y ∈ R+

− β
α2−β e

(β−α2)yg4(y) , ∀ y ∈ R−

g2(y) =


− β
α1−β g4(y) ,∀ y ∈ R+

c12 e
λ12y + c22 e

λ22y + c32 e
−α1y + c43 e

(α2+β−α1)y ,∀ y ∈ R−

where

λ12 =
2α0 − α1 − β +

√
(2α0 − α1 − β)2 + 4α1β

2

λ22 =
2α0 − α1 − β −

√
(2α0 − α1 − β)2 + 4α1β

2

λ13 =
2α0 + α2 + β +

√
(2α0 + α2 + β)2 + 4α2β

2

λ23 =
2α0 + α2 + β −

√
(2α0 + α2 + β)2 + 4α2β

2

and the constants depend on the parameters. These constants are unfortunately not clear enough
to be written here. The function g1 is obtained from g2, g3 and g4 using equation (A.4).

A.4 Code of Chapter 4

We simulate N neurons X1,∗
t , · · · , XN,∗

t having the same dynamics as X∗t , except that instead of
µ∗t we use µ∗,Nt = 1

N

∑
i δXi,∗

t
. Hence, we do not need to compute µ∗t . For instance, we use the

ξi,∗t to compute the Ii,∗t = I(ξi,∗t ). The neuron i satisfies the following equations

• L(Xi,∗
0 ) = µ∗0, has weight only on ξ such that ξ(·, ·,Z) = µ∗0(·, ·,P(Em)), and Si,∗0 with

law ρ0 admitting a density.

• dSi,∗t = dt.

• ξi,∗t admits a density in s and satisfies the following equation where we used µ∗,Nt instead
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of µ∗t with µ∗,Nt = 1
N

∑
i δ(V i,∗t ,Si,∗t ,ξi,∗t )

:

∂tξ
i,∗
t

0
(s, w) = −∂sξi,∗t

0
(s, w) + βξi,∗t

1
(s, w)− ξi,∗t

0
(s, w)

1
N

∑
k α(I(ξk,∗t ))1{V k,∗t =0,Sk,∗t =s}

1
N

∑
l 1{V l,∗t =0,Sl,∗t =s}︸ ︷︷ ︸

a0t (s)

ξi,∗t
0
(0, w) = 0,

∂tξ
i,∗
t

1
(s, w) = −∂sξi,∗t

1
(s, w)− βξi,∗t

1
(s, w)

ξi,∗t
1
(0, w) =

∆t
N

∑
k α(I(ξk,∗t ))

[
p−(Si,∗t )ξi,∗t

0
(Sk,∗t , w + 1) + (1− p−(Si,∗t ))ξi,∗t

0
(Sk,∗t , w)

]
1
N

∑
l 1{V l,∗t =0,Sl,∗t =Sk,∗t }

.

(A.5)

• At rate β1{V i,∗
t−

=1}, (V i,∗
t− , S

i,∗
t− , ξ

i,∗
t− ) jumps to (0, Si,∗

t− , ξ
i,∗
t− ).

• At rate α(I(ξi,∗
t− ))1{V i,∗

t−
=0}, (V i,∗

t− , S
i,∗
t− , ξ

i,∗
t− ) jumps to (1, 0, ξi,∗t ) with

ξi,∗t ({v}, A, {w}) =

∫
A
p+(s, w−1)ξi,∗

t− ({v}, ds, {w−1})+
∫
A

(1−p+(s, w))ξi,∗
t− ({v}, ds, {w}).

We use a simulation with a fixed ∆t time step instead of following exactly the jumping times one
by one. In addition, two-dimensional histograms are used for the measures ξi,∗t

0
and ξi,∗t

1
. For

the continuous variable s, we use a grid of size ∆t starting from 0 and ending in ms = Ms∆t
(ms = 15ms in the simulations of Section 4.4) withMs ∈ N. It is also necessary to choose bounds
for synaptic weights, we denote wmin, wmax ∈ Z such that W ij,N

t ∈ Jwmin, wmaxK. Finally,
thereafter, we denote by m∗t = (m1,∗

t , · · · ,mN,∗
t ) and a0

t = (a0
t (0), a0

t (∆t), · · · , a0
t (Ms∆t)) the

vectors such that for any mN∗:

mk,∗
t =

⌊
Sk,∗t (1− V k,∗

t )

∆t

⌋
and a0

t (m∆t) =

∑
k α(I(ξk,∗t ))1{mk,∗t =m}∑

l 1{ml,∗t =m}
.

In order to discretize the equations given in (A.5), an explicit Euler scheme is used to estimate the
derivatives: for a function u : (t, s) 7→ u(t, s),

∂tu(t, s) =
u(t+ ∆t, s)− u(t, s)

∆t
and − ∂su(t, s) =

u(t, s−∆t)− u(t, s)

∆t
.

Initial conditions

The probability measures ξi,∗0 are initially identical and distributed with the laws described in what
follows. These laws admit a densities in s that we approximate with histograms. We have to be
careful with boundary conditions in s = 0. We ensure that these conditions are initially satisfied.
The laws proposed are closed to the one obtained after a long time of simulation.

We draw the initial variables as follows: with 0 < pv < 1,
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1. We draw the potentials from the Bernoulli distribution of parameter pv, V i,∗
0
L
= Bern(pv),

2. We draw the Si,∗0 such that V i,∗
0 = 0 from the distribution LogNormal(x, y), and then we

compute m1,∗
0 , · · · ,mN,∗

0 and a0
0(0), · · · , a0

0(Ms),

3. we define ξi,∗0 = (δ0 ⊗ ξi,∗0

0
+ δ1 ⊗ ξi,∗0

1
)⊗ U({wmin, · · · , wmax}) where

ξi,∗0

0
(·,Z)

L
= LogNormal(x, y) and ξi,∗0

0
(·,Z)

L
= E

(
ξi,∗0

1
(0,Z)

)
with

ξi,∗0

1
(0, w) = ∆t

∑
m

a0
0(m)ξi,∗0

0
(m∆t, w),

4. Finally, we draw the Si,∗0 such that V i,∗
0 = 1 from the distribution E

(
ξi,∗0

1
(0,Z)

)
.

From t = 0 to t = ∆t

We describe how to pass from t = 0 to t = ∆t, and then we perform the same computations to
pass from t = ∆t to t = 2∆t and so forth.

1. We compute the Ii,∗0 (initially all the same and deterministic).

2. We draw the jumping times τ i,∗0 from the exponential distributions of parameters

α(Ii,∗0 )1{V i,∗0 =0} + β1{V i,∗0 =1}.

3. We compute m∗0 = (m1,∗
0 , · · · ,mN,∗

0 ) and a0
0 = (a0

0(0), · · · , a0
0(Ms)) where for all m ∈ N:

mk,∗
0 =

⌊
Sk,∗0

∆t

⌋
and a0

0(m) =

∑
k α(I(ξk,∗0 ))1{mk,∗0 =m}∑

l 1{ml,∗0 =m}
.

We compute the terms due to the drift of the ξi,∗∆t. For all m ∈ J0,MsK:

ξi,∗∆t

0
(m∆t, w) = ξi,∗0

0
((m− 1)∆t, w) + ∆tβξi,∗0

1
((m− 1)∆t, w)

−∆tξi,∗0

0
((m− 1)∆t, w)a0

0(m− 1)

ξi,∗∆t

0
(0, w) = 0,

ξi,∗∆t

1
(m∆t, w) = ξi,∗0

1
((m− 1)∆t, w)(1−∆tβ)

ξi,∗∆t

1
(0, w) = ∆t

∑
k

α(I(ξk,∗0 ))1{mk,∗0 ≥1}∑
l 1{ml,∗0 =mk,∗0 }

[
p−(Si,∗0 )ξi,∗0

0
(mk,∗

0 ∆t, w + 1)

+ (1− p−(Si,∗0 ))ξi,∗0

0
(mk,∗

0 ∆t, w)
]

= ∆t
∑
m

∑
k α(I(ξk,∗0 ))1{mk,∗0 ≥1,mk,∗0 =m}∑

l 1{ml,∗0 =m}

[
p−(Si,∗0 )ξi,∗0

0
(m∆t, w + 1)

+ (1− p−(Si,∗0 ))ξi,∗0

0
(m∆t, w)

]
= ∆t

∑
m

a0
0(m)

[
p−(Si,∗0 )ξi,∗0

0
(m∆t, w + 1) + (1− p−(Si,∗0 ))ξi,∗0

0
(m∆t, w)

]
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4. If τ i,∗0 < ∆t and V i,∗
0 = 0, for all m ∈ J0,MsK,

ξi,∗∆t({v},m∆t, {w}) = p+(m∆t)ξi,∗0 ({v},m∆t, {w−1})+(1−p+(m∆t))ξi,∗0 ({v},m∆t, {w}).

5. We compute
Si,∗∆t = (Si,∗0 + ∆t)1{τ i,∗0 ≥∆t} + (∆t− τ i,∗0 )1{τ i,∗0 <∆t},

6. We make jump the potentials of the neurons i such that τ i,∗0 < ∆t.

7. We compute the elements that we keep in memory at each time step : expectations of the
potentials, of the time from last the spike, of the presynaptic weights, distribution of the
synaptic current input...
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