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“People worry that computers will get too smart and take over the world, but the real problem is

that they’re too stupid and they’ve already taken over the world.”

Pedro Domingos
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Last but not least, Tony for everything else.

2011 C. GRECO



iii

Table of Contents

Preamble 1

I Scientific synthesis 9

1 Multi-view Clustering: Extending clustering techniques and clustering theory to multi-view

environments 11

1.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Multi-view clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.3 Chapter organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Tackling the issue of confidence in unsupervised multi-view environments . . . . . 15

1.2.1 Optimization approaches to confidence in multi-view environments . . . . . 15

1.2.2 Non-stochastic multi-armed bandit optimization for collaborative clustering 18

1.3 Deep Cooperative Reconstruction in multi-view environments . . . . . . . . . . . . 23

1.3.1 Cooperative reconstruction system . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.2 Weighting the views with smart masks . . . . . . . . . . . . . . . . . . . . . 25

1.3.3 Result analysis and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Information theory based approach of multi-view clustering . . . . . . . . . . . . . 29

1.4.1 Minimum Length description applied to clustering . . . . . . . . . . . . . . 29

1.4.2 Application to collaborative clustering . . . . . . . . . . . . . . . . . . . . . 34

1.4.3 Application to clustering fusion . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4.4 Conclusions on the use of Kolmogorov complexity as a universal multi-view

clustering tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.5 Stability analysis of multi-view clustering . . . . . . . . . . . . . . . . . . . . . . . 41

1.5.1 Reminders on clustering stability . . . . . . . . . . . . . . . . . . . . . . . . 41

1.5.2 Stability applied to multi-view clustering . . . . . . . . . . . . . . . . . . . 42

1.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.6 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Conciliating powerful, but data hungry algorithms with applications where labeled data are

scarce: An attempt at Deep Learning in unsupervised environments 49

2.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1.1 Deep learning in unsupervised environments ? . . . . . . . . . . . . . . . . . 50

2.1.2 Chapter organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Time series analysis of satellite images using unsupervised deep learning methods . 51

2.2.1 The remote sensing context . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.2 Detecting non-trivial changes using joint-autoencoders . . . . . . . . . . . . 54

2.2.3 Case study of the 2011 Tohoku tsunami . . . . . . . . . . . . . . . . . . . . 59

C. GRECO 2011



iv TABLE OF CONTENTS

2.2.4 Time series analysis using an unsupervised architecture based on Gated

Recurrent Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.2.5 Conclusions for remote sensing applications with unsupervised learning . . 74

2.3 Unsupervised deep learning applied to time series of Age Related Macular Degenera-

tion lesions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.3.1 Age Related Macular Degeneration time series . . . . . . . . . . . . . . . . 75

2.3.2 Image preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3.3 Lesion segmentation using W-Nets . . . . . . . . . . . . . . . . . . . . . . . 80

2.3.4 Analyzing the lesion progression using joint-autoencoders . . . . . . . . . . 82

2.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 Retrospective thoughts and research perspectives 89

3.1 The road ahead for clustering related projects . . . . . . . . . . . . . . . . . . . . . 90

3.1.1 Theoretical perspectives for multi-view clustering . . . . . . . . . . . . . . . 90

3.1.2 Applications of multi-view clustering and unsupervised ensemble learning . 90

3.2 From time series analysis to time series prediction . . . . . . . . . . . . . . . . . . 91

3.2.1 Generative adversarial networks for ARMD time series predictions . . . . . 91

3.2.2 Proposing mathematical growth models for ARMD . . . . . . . . . . . . . . 93

3.3 Why fully unsupervised learning might be an illusion, and why we should be okay

with it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3.1 Measuring how smart unsupervised deep learning algorithms really are . . . 95

3.3.2 Is there a massive reinforcement learning bias in all successful unsupervised

learning applications ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4 Introducing supervision in unsupervised environments . . . . . . . . . . . . . . . . 99

3.4.1 Humans in the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4.2 One shot learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

II Curriculum Vitae 103

4 Employement and education 105

4.1 Civil Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Employement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.1 PhD thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.2 Master’s thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Teaching activities 107

5.1 Teachings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Administrative responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1 Module responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.2 Specialties, Majors and double degrees responsibilities . . . . . . . . . . . . 108

5.3 Students follow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Teachings in thematic schools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2011 C. GRECO



0. Preamble 1

6 Research related activities 110

6.1 Students supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.1 PhD students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.2 Interns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.3 Master’s and Bachelor’s thesis . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.4 End of study projects and other research projects . . . . . . . . . . . . . . . 111

6.2 International collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Projects and fundings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Scientific animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 Scientific societies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.2 Program committee memberships . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.3 Workshops and special sessions organization . . . . . . . . . . . . . . . . . . 114

6.4.4 Editorial work and reviewing activities . . . . . . . . . . . . . . . . . . . . . 114

6.5 Elected positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.6 Work groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Scientific production and citation metrics 117

7.1 Journal papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Peer-reviewed international conference papers with proceedings and indexing . . . 118

7.3 Other conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Miscellany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4.1 Oral talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4.2 Thesis Manuscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 Publications by categories and citation metrics . . . . . . . . . . . . . . . . . . . . 121

Bibliography 123

Appendices 141
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8.1.2 Synthèse de recherche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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Abstract

This document is the manuscript presented in order to obtain the Habilitation à Diriger des

Recherches of Sorbonne University (France), prepared at ISEP Engineering School where I am

currently an Associate Professor. My main professional activities of research but also teaching

and administrative work, since after I defended my PhD in November 2016, are described in this

document. Since research is a continuum, it may also contain elements and recalls from previous

works done between 2013 and 2016.

In particular, my main axis of research is unsupervised learning, and in the first part of this

manuscript I describe my contributions centered around two sub-axis: Unsupervised learning in

multi-view environments, and deep learning applied to image processing (satellite and medical)

in cases where no labeled data are available. These two sub-axis form the main chapters of this

document and describe contributions both in terms of applications and theoretical findings. Issues

such as the notion of confidence in unsupervised learning, weakly supervised learning with unreliable

ground-truths, clustering stability, as well as the limitations and future evolutions of unsupervised

learning are discussed in this manuscript.

Context

My interest for research in the field of machine learning started in 2012, when I was an exchange

Master student in South Korea under the supervision of Professor Geun-Sik Jo. This experience

was quickly followed by my enrollment as a PhD student under a short term civil servant contract

at INRA. I prepared my PhD defense between AgroParisTech (Université Paris Saclay) and the

University Paris 13 (now Sorbonne Paris Nord), in the context of the ANR Project COCLICO

(ANR-12-MONU-0001). I spent these 3 years working on unsupervised learning method applied to

remote sensing images with the goal of combining the results of several clustering algorithms to

achieve better results. This duality between contributions related to clustering and contributions

related to remote sensing or image analysis in a broad sense has continued after my PhD defense

and explains why I have these two distinct research axis with unsupervised learning as a common

point between the two.

I was then recruited as an Associate Professor at ISEP in 2016. At ISEP, I pursued my

research on unsupervised learning: I continued my PhD work on multi-view clustering with a more

theoretical orientation. And I also started to further develop my second axis on image analysis using

unsupervised method, which quickly led me to analyzing the potential of deep learning methods in

unsupervised contexts. As you can probably guess, the second axis being more of a hot topic it was

a lot easier to attract money and students to work with me. Furthermore, networking from my PhD

years was useful to get contact in the field of Remote Sensing which gave me a first application

field. And from my colleagues at ISEP I got a second application field in medical images, and in

particular a collaboration with the Clinical Investigation Center (CIC) at Paris 15-20 Hospital. The

strong need for unsupervised methods due to the scarcity of annotated data for both applications,

and the relative quietness of the unsupervised deep learning community probably helped too, and

enabled my students and I too make original proposal in this domain.

In the mean time, I also kept a full membership in team A3-ADA at the Laboratoire d’Informatique

C. GRECO 2011
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de Paris Nord (LIPN), the team in which I prepared my PhD at Paris 13 University. This ongoing

collaboration kept me active in the field of multi-view clustering.

Research at ISEP

ISEP is a private Engineering School with two campuses located in Paris and Issy-Les-Moulineaux

France. Being a private engineering schools, it differs from French Universities in two points:

– As an engineering school, it belongs to the category of les grandes écoles, a French specificity

dating from Napoleon I. Schools belonging to this category are state recognized and deliver

engineering degrees (a 5 years degree equivalent to a Master’s degree but more focused on

practical aspects that can quickly be used in a business context and less on theoretical and

research aspects). Unlike Universities, engineering schools are not allowed to deliver Bachelors,

Masters or PhD degrees. However in the case of the PhD degree, since many of these schools

host a research laboratory, they usually train PhD students in their labs through joint PhD

programs with traditional Universities. This is the case for ISEP which has a research lab

associated with Sorbonne University for PhD programs.

– As a private institution, the professors are not state civil servants and the school is mostly

financially autonomous for both teaching and research, so it receives fewer state funds

compared to public universities that are fully sponsored by the state. However, unlike public

universities, private institutions have no regulations on the students tuition fees. Finally,

private institutions are usually illegible to a low number of state sponsored research grants

which makes it more difficult for local academic to get funds through projects, in a context

that is already very competitive.

L’Institut Supérieur d’Électronique de Paris (ISEP) was funded in 1955 as an associative

structure (Association loi 1905 ). The engineering degrees delivered by ISEP are recognized by the

state and the CTI (Commission des Titre d’Ingénieurs) since 1960. In 2015, ISEP was recognized as

an EESPIG (Établissement d’Enseignement Supérieur Privé d’Intérêt Général), a state recognition

for the school partition in higher education, and for its contributions to national and international

research. It currently graduates around 350 engineers each years in a dozen of specialties linked

with Information Technologies (IT).

ISEP opened its research lab in 2000, with its original research activity focused around mi-

croelectronics. The research lab has evolved a lot since, and is currently structured around 2

teams:

– ECoS (Electronics and Communications Systems): 3 Full Professors (HDR), 7 Associate

Professors.

– DaSSIP (Data Science Signal and Image Processing): 3 Full Professors (HDR), 9 Associate

Professors.

The DaSSIP Team to which I belong works on 3 mains axis: 1) massive and distributed data, 2)

Human-Computer interactions, and 3) Image and signal processing. Within this context, my work

on multi-view clustering was a fit for the first research axis on distributed data. The other part of

my work on unsupervised deep learning was more related to the third axis on image processing: On

2011 C. GRECO
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the one hand, I brought the remote sensing theme to the team and helped foster collaborations with

other academic partners around this subject. On the other hand, ISEP and in particular Professor

Florence Rossant had a long ongoing research collaboration with Paris 15-20 hospital which allowed

me to work with Deep Learning methods in a medical image context as well.

Research at the LIPN in Team A3-ADA

The ”Laboratoire d’Informatique de Paris Nord” (LIPN) is a computer science laboratory who was

founded in 1986 under the joint control of University Paris 13 and the French CNRS (UMR 7030 ).

It hosts 5 teams and around 170 members (around 80 Associate Professors and Full Professors, 8

engineers and administrative staff members, and about 50 PhD students).

The A3 team (Apprentissage Artificiel et Applications) to which I belong focuses its activities

around Artificial Intelligence and Machine Learning. I have been an associate member of the team

between 2013 and 2017, before becoming a full member in 2018. Since the restructuring of A3

in 2020, I am a full member of research pole A3-ADA whose offices are located in the lab main

building of Paris 13 University as well as in the Saint Denis annexe of La Maison des Sciences

Numériques (LaMSN) which is conveniently located across the street from where I live.

The research activities of the ADA pole focus on unsupervised approaches for representations

learning, multi-view and transfer learning. The team members address both fundamental research

as well as more applied research, often supported by academic and industrial projects. Among other

things, team develops collaborative unsupervised learning approaches that were the basis of most of

my PhD thesis work and are now a follow up of the same work. Within this context, my work with

the team is the main pillar of my research axis centered on multi-view clustering.

Structure of the document

This manuscript for my Habilitation à Diriger des Recherches is divided into two main parts.

The first part is my scientific synthesis which describes past, ongoing and future works. As you

could probably see from this preamble, my work on unsupervised learning is divided into two axis

that are quite distinct: Multi-view clustering, and Deep Learning for Unsupervised applications.

They form two distinct chapters of this first part. Each of them starts with a general introduction

of the domain studied and its main open issues. Then, different contributions are presented for the

period 2016–2021. All contributions are discussed with respect to past and future works, as well

as the connections between them. For contributions that are domain specific (medical imaging or

remote sensing for instance), a brief introduction of the application is made before presenting the

actual contributions. Eventually, the first part ends with an open chapter which includes some of

my thoughts on the current state of my research field, and gives information about ongoing and

forthcoming works as well as some avenues of research on the topics that have been addressed so

far and that will probably require my attention in the next years.

The second part describes my resume with an emphasis on publications, teachings, supervised

students, projects, and the scientific animation of the communities I am involved in.
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Chapter 1

Multi-view Clustering: Extending

clustering techniques and clustering

theory to multi-view environments

“If your research is about clustering, then you are an adventurer.”

James M. Keller (WCCI 2018)
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1. Multi-view Clustering: Extending clustering techniques and clustering theory

to multi-view environments

1.1 Chapter Introduction

1.1.1 Clustering

Clustering is a common machine learning task that belongs to the branch of unsupervised learning.

As such, it was originally designed as an exploratory data mining task whose goal is to find data and

objects that are similar, and to regroup them into groups called clusters [1][2]. On the other hand,

it can also be used to detect outliers that don’t fit into any cluster [3][4]. Due to its exploratory

nature, clustering is often used as an alternative to supervised learning and classification for data

sets or problems for which no data have been labeled to train and use the more common supervised

models. This is done under the hypothesis that the data set to explore has underlying structures

that are well-behaved (or ordered enough) to be detected by a clustering algorithm, thus leading to

clusters that will hopefully match real classes of interest. In the best case scenario, a clustering

algorithm is expected to find clusters that can directly be linked to real life classes of interest. If

so, using a clustering algorithm would have spared data scientists a lot of time and money that

should have been spent labeling (often manually) a large number of elements so that it could be

fed to a classification algorithm. However, in practice, we see that in most cases the clusters found

by clustering methods are rarely a great fit with the real classes of interest, and that classification

algorithms will “outperform” clustering methods on real applications if provided with enough

training data. This leads us to an interesting trade-off when tackling a new data science problem:

spending a lot of time labeling data to train a great classification method, or going the fast road

with an exploratory clustering algorithm that will most likely lead to lower quality results. It is

worth mentioning that both the time spent labeling data and the probability of having a lower

quality result will quickly increase as the data set is going to be more complex. Another important

point is that an average clustering result can also be used as a basis to faster labeling data, and

later turn to a classification algorithm.

Figure 1.1: Example of several clustering methods applied to toy data sets.

Ultimately, one can say that the choice of a clustering algorithm should be made knowing

2011 C. GRECO



1.1. Chapter Introduction 13

its internal model (i.e. the way it builds its clusters), because it is this model that will have

to match the underlying data structures that are supposed to be ”well behaved enough” when

we use clustering. To this end, several models have been proposed in the literature for different

types of underlying structures and different ways of building clusters [5]: Density-based clustering

method [6][7][8][9][10][11] search for high density areas of data separated from each others by

lower density areas, and do not assume any shape for the clusters; hierarchical clustering methods

[12][13][14][15][16][17] will regroup similar data and similar group of data using a hierarchical

structure similar to a dendrogram. For this type of clustering too, no assumption is made on

the shape of the clusters; Prototype-based clustering methods will attempt at regrouping data

around set of prototypes that will represent each cluster and may -or may not- have a specific data

distribution expected around them (typically a Gaussian mixture). This last family of clustering

algorithm contains some well known clustering method such as the K-Means algorithm [18][19] and

its variations [20][21][22][23][24] or the Expectation-Maximization method [25] for the Gaussian

Mixture Model (GMM); Spectral clustering methods [26][27] which turn the clustering problem

into a graph partitioning problem based on the dataset similarity matrix.

An example of different clustering methods applied to several data sets is shown in Figure 1.1

to highlight some of the strenghts and weaknesses of the different families of methods.

Classical clustering algorithms that I introduced previously were for most of them nice algorithms

and quite capable of tackling common data sets at the time they were designed. However, as I

started my journey as a scientist in the world of unsupervised learning, I quickly found out that

the clustering algorithms that my professors taught me -and the same ones I teach to my students

nowadays- are in no way designed to handle modern data science problems, and in particular they

struggle with the structure of modern data sets: Images, composite and hybrid data, distributed

data, multi-view data, large datasets, stream datasets, all of these are extremely difficult to tackle

for clustering algorithms. It also makes them interesting problems for datascientists. In this first

chapter, I will mostly focus on my work on clustering applied to multi-view and distributed datasets.

And in Chapter 2, I will focus more on image applications.

1.1.2 Multi-view clustering

We live in a world where data contains attributes of different nature, where information is distributed

across several sites, and where multiple representations can be produced for the same data: Composite

data with groups of features of different natures are ubiquitous, marketing and business host large

client databases with information acquired from multiple sources, social networks are a large and ever

evolving source of distributed data, many science fields such as medicine produce multi-view data

from various acquisition devices, and even machine learning algorithms produce different possible

representations of the same data in fields such as text mining and natural language processing

[28][29].

How can clustering algorithms tackle these problems that they weren’t designed for ? Well, these

problems and this question gave birth to scientific communities working on multi-view clustering,

collaborative clustering, distributed data clustering and unsupervised ensemble learning, all of

which I am part of. Before starting with my contributions, I will make an attempt at explaining the

common points, differences, and overlaps between these communities, as it is in my opinion quite

confusing in the literature:
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– Multi-view clustering [30][31] is concerned with any kind of clustering where the data are split

into different views. It does not matter whether the views are physically stored in different

places, and if the views are real or artificially created. In multi-view clustering, the goal can

either be to build a consensus from all the view, or to produce clustering results specific to

each views.

– Distributed data clustering [32] is a sub-case of multi-view clustering that deals with any

clustering scenario where the data are physically stored in different sites. In many cases,

clustering algorithms used for this kind of task will have to be distributed across the different

sites.

– Collaborative clustering [33][34][35] is a framework in which clustering algorithms work

together and exchange information with a goal of mutual improvement. In its horizontal form,

it involves clustering algorithms working on different representations of the same data, and it is

a sub-case of multi-view clustering with the particularity of never seeking a consensus solution

but rather aiming for an improvement in all views. In its vertical form, it involves clustering

algorithms working on different data samples having similar distributions and underlying

structures. In both forms, these algorithms follow a 2-step process: 1) a first clustering is

build by local algorithms. 2) These local results are then improved through collaboration. A

better name for collaborative clustering could be model collaboration as one requirement for a

framework to qualify as collaborative is that the collaboration process must involve effects at

the level of the local models.

– Unsupervised ensemble learning, or cluster ensembles [36][37][38] is the unsupervised equivalent

of ensemble methods from supervised learning [39]: It is concerned with either the selection

of clustering methods, or the fusion of clustering results from a large pool, with the goal

of achieving a single best quality result. This pool of multiple algorithms or results, may

come from a multi-view clustering context [40], or may just be the unsupervised equivalent of

boosting [41] methods where one would attempt to combine the results of several algorithms

applied to the same data.

1.1.3 Chapter organization

The remainder of this chapter will be centered around multi-view clustering and in particular 3 key

aspects that I have been working on after my PhD thesis:

1. The question of the confidence issue in unsupervised environments. It is indeed difficult to

know which views are reliable, which ones contain noise, and which couples of views may or

may not be complementary, in an exploratory context. Three main approaches are presented

in this manuscript to approach this issues: 1) an optimization method relying on the Karush-

Kuhn-Tucker conditions; 2) An approach based on non-stochastic bandits optimization that

accounts for possibles changes in the quality of the views during the training process; and

3) A method relying on neural networks and mask optimization that was proposed in the

context of an algorithm to reconstruct missing data based on information from other views.

2. The proposal of a universal multi-view clustering method based on a solid information theory

background and which is not constrained to a very limited number of clustering algorithms.

2011 C. GRECO



1.2. Tackling the issue of confidence in unsupervised multi-view environments 15

We also show how this theoretical basis can be used for clustering fusions.

3. And finally, an ongoing work about the extension of the clustering theory of stability from

Shai Ben David et al. [42] to the case of multi-view clustering.

All of the next sections correspond to individual contributions to tackle the aforementioned

issues, with the exceptions of contributions being regrouped in the same section if one is the direct

follow up of the other.

Please note that not all of my contributions will be mentioned in this chapter. Most notably,

incremental contributions transforming existing batch algorithms into their incremental or online

version have been purposefully omitted.

1.2 Tackling the issue of confidence in unsupervised multi-view

environments

A common problem in multi-view environments is the issue of confidence [43][44]. While in supervised

environments it is relatively easy to know which sets of features or which views are the best based

on classification performances, there is no such thing in unsupervised environments. In multi-view

clustering, this problem can translate into the question: ”How should we weight the views ?” [45],

and in collaborative clustering, we usually wonder about ”How do we select the best collaborators ?”

[46].

In the context of my work on multi-view clustering, most of the algorithms I have been working

with -my own, but also the ones of other academics- we usually consider a system where the data

X = {X1, · · · ,XJ} are split into J views. In a collaborative clustering context, the goal is then

to find a solution S = {S1, · · · , SJ} which solves Equation (1.1) below where L(Xj , Sj) is a local

fitness function for each clustering algorithm in each view, C(Si, Sj) is a consensus or agreement

function between local partitions that can be asymmetrical, and each τi,j is the weight determining

the weight of view j for its collaboration with view i.

S∗ = argmax
S

J∑
j=1

L(Xj , Sj) +
∑
i 6=j

τj,i · C(Si, Sj) (1.1)

The difficult part of this problem is of course to determine the right weights τi,j all the while

searching for an optimal solution S∗.

1.2.1 Optimization approaches to confidence in multi-view environments

To solve the problem shown in Equation (1.1), we first proposed to use an optimization process

based on the Karush-Kuhn-Tucker conditions (KKT) [47]. Two contributions were made based on

this solution: In [48] we applied this solution to the case of entropy-based collaborative clustering

[49] and Kohonen-based [50] collaborative clustering [35][51], and in [52] the same problem is

studied under the angle of non-convex optimization with a product instead of the sum inside the

collaborative term.

In both publications, the problem is solved as follows: Finding the optimal T = {τj,i}J×J is

equivalent to maximizing Equation (1.2) below where C(Si, Sj) has been contracted into Cij to
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simplify the notations. We will assume that ∆ is a well behave dissimilarity function so that Cij ≥ 0

is always true.

T ∗ = argmax
T

J∑
i=1

∑
j 6=i

τj,i · Cij (1.2)

We propose the following normalization constraint over the coefficients:

∀i
J∑
j 6=i

(τj,i)
p = 1, p ∈ N∗ (1.3)

The optimization problem then becomes:
T ∗ = argmaxT

∑J
i=1

∑
j 6=i τj,i · Cij

subject to
∑J
j 6=i(τj,i)

p = 1 ∀i

τj,i ≥ 0 ∀(i, j)

(1.4)

The solution of this problem for p > 1 is given by the following proposition.

Proposition 1 Any solution for the system (1.4) for p = 1 verifies:

∀j 6= i, τj,i =

 1
|Cij=maxk Cik| if Cij = maxk Cik
0 otherwise

(1.5)

Proof We solve this problem under the KKT conditions. The five conditions form the following

system:

∀(i, j), i 6= j



(1) τj,i ≥ 0 (primal feasibility)

(2)
∑J
j 6=i τj,i = 1 (primal feasibility)

(3) λj,i ≥ 0 (dual feasability)

(4) τj,i · λj,i = 0 (complementarity slackness)

(5) − Cij − λj,i + νi = 0 (stationnarity)

(1.6)

We fix i. Let us suppose that there is at least one ki so that τki,i > 0. Such ki must exist because

of the primal feasibility condition (2). Then, (4) imposes that we λki,i = 0 and thus we have:

νi = Ciki (1.7)

Then for all other values of j 6= ki two cases are possible:

Case 1: τj,i > 0. In this case, we can use (5) in the same way as we did for k, we obtain: νi = Cij .
Using (1.7), it means that all positive coefficient τj,i have the same dissimilarity value ∆ij with

view i.

Case 2: τj,i = 0. In this case, (5) gives us:

λj,i = Cij − νi = Cij − Ciki (1.8)

And since we have λj,i ≥ 0 due to the dual feasibility, then we need Cij ≥ Ciki , which means

that ki maximizes the consensus value.
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The summary of this proposition is the following: In the context of collaborative clustering, the

results should be better if each individual algorithm collaborates only with the algorithm that has

the most similar solution. If several algorithms have the same most similar solution, then equal

weights should be given to them and a weight of zero to the others.

Proposition 2 Any solution for the system (1.4) for p > 1 verifies:

τj,i =
(Cij)

1
p−1

(
∑J
k 6=i(Cik)

p
p−1 )

1
p

(1.9)

Proof The five KKT conditions form the following system:

∀(i, j), i 6= j



(1) τj,i ≥ 0 (primal feasibility)

(2)
∑J
j 6=i(τj,i)

p = 1 (primal feasibility)

(3) λj,i ≥ 0 (dual feasability)

(4) τj,i · λj,i = 0 (complementarity slackness)

(5) − Cij − λj,i + νi · (p · (τj,i)p−1) = 0 (stationnarity)

(1.10)

Let us begin by considering the case where λj,i 6= 0 in (4). Then, we would have τj,i = 0 and

with (5): Cij = −λj,i ≤ 0. Since the Cij have been defined as non-negative, this case is not possible,

therefore we will only consider the case τj,i 6= 0 and λj,i = 0. Then, with (5), we have:

τj,i =

(
Cij
p · νi

) 1
p−1

(1.11)

From Equation (1.11) and (2), we have:

1 = (p · νi)
−p
p−1

∑
j 6=i

(Cij)
p

p−1 = (νi)
−p
p−1

∑
j 6=i

(
Cij
p

) p
p−1

(1.12)

Then we can write:

νi =

 1∑
j 6=i

(
Cij
p

) p
p−1


− p−1

p

=
1

p

∑
j 6=i

(Cij)
p

p−1


p−1
p

(1.13)

Then by injecting the expression of νi into Equation (1.11), ∀(i, j), i 6= j, p > 1 we have:

τj,i =

 Cij(∑
k 6=i(Cik)

p
p−1

) p−1
p


1

p−1

(1.14)

=
(Cij)

1
p−1

(
∑J
k 6=i(Cik)

p
p−1 )

1
p

(1.15)

This second proposition offers a relaxed form of optimization in which the higher weights are

still given to the most similar views.
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1.2.1.1 Interpretations

Going deeper, we see that the degree to which one algorithm should collaborate with other

collaborators that have dissimilar solutions depends on the degree of normalization p in Equation

(1.3). For p = 1, each algorithm would only collaborate with the algorithm that has the most similar

solution. If several algorithms have the same most similar solution, they would be given the same

weight. When using a higher degree of normalization (Equation (1.9)), the algorithms with the

most similar solutions would still be favored to optimize the likelihood of the global collaborative

framework. But algorithms the solutions of which have a lesser degree of similarity would still be

taken into consideration locally. In fact as p gets higher, the solutions from dissimilar algorithms

would have a heavier and heavier weight, and at some point they would matter just as much as any

other solution. In this later case, when the value of p is high enough, this would be equivalent to

give the same weight to all the algorithms.

An simple interpretation of these results that can be applied to both collaborative and multi-view

clustering is that in the absence of an external supervision (in the sense of supervised learning)

to assess the quality of local views, the only valid quality criterion is to find similar structures

in different views. This is exactly what our two propositions demonstrate by favoring exchanges

between similar views that most likely have similar structures, with the parameter p that can be

use as a ”slack” parameter to give more or less freedom to explore more risky collaborations.

The limitations of this optimization model are quite obvious in the sens that it tend to reduce

the diversity of partitions and views that can benefit from each others. As a matter of fact, while this

conservative search for ”stable structures” across the different views has been shown to be effective

at detecting and neutralizing noisy views, it has also been experimentally proven -including in my

own work [48][53]- that diversity and a clear quality criterion to improve (even an unsupervised

one) are key elements to achieve consensus or collaborative results that do a better job than the

average of the local views [46][54].

1.2.2 Non-stochastic multi-armed bandit optimization for collaborative

clustering

In another contribution, we addressed the problem presented in Equation (1.1) as a bandit opti-

mization problem.

Indeed, whether in multi-view or in collaborative clustering, it is impossible to tell in advance

which views are going to bring useful information before trying to use them: On the one hand, using

information from a good view will quickly improve the results, on the other hand using information

from an average or low quality view will deteriorate the results and cost time before it is detected.

To alleviate this problem, we proposed a contribution [55] in the form of a collaborative peer to

peer clustering algorithm based on the principle of non stochastic multi-arm bandits to assess in

real time which algorithms or views can bring useful information.

The main differences between this proposal and the one from the previous section are the

following: 1) Instead of a purely mathematical optimization, we propose a method based on trial and

errors using the multi-arm bandit algorithm. This method is closer to real cases of collaborations

where it is difficult to know whether a view or algorithm can bring some positive information or not

before trying to communicate. 2) We take into consideration the cost of communications between
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all sites, which is a novelty since none of these earlier work considers the physical architecture of

the collaborative system between data on different sites.

Furthermore, this contribution was focused on the optimization of a dual form of Equation (1.1)

that is also common in multi-view learning: Instead of trying to optimize a function based on a

consensus measure between partitions, we used one based on a divergence function as shown in

Equation (1.16) where ∆(Si, Sj) is a dissimilarity function -once again potentially asymmetrical-

between two local partitions Si and Sj .

S∗ = argmax
S

J∑
j=1

L(Xj , Sj)−
∑
i 6=j

τj,i ·∆(Si, Sj) (1.16)

1.2.2.1 Multi-armed bandits

The multi-armed bandit problem [56] is a decision problem in which a learning agent (the player)

must repeatedly decide between several machines, each machine i yielding a reward rt,i at time

t. The reward is taken from an unknown distribution Ri. The goal, for the player, is to find a

policy, that is a sequence of choices between machines, which maximizes the sum of rewards over T

repetitions of the game. The usual formulation of the multi-armed bandit problem assumes that

rewards are independent and identically distributed. However, there exists some formulation of the

problem where the i.i.d rewards assumptions does not hold. The exponential weight algorithm for

exploration and exploitation (Exp3) [57], was designed by Auer et al. as a general solution to the

bandit problem where no assumption is made about the distribution of rewards.

Algorithm 1: Exp3 algorithm

γ ∈ [0, 1]
∀i ∈ [0,K], wi,0 = 1
for t from 0 to Tmax do

∀i, pi(t) = (1− γ)
wi(t)∑K
j=1 wj(t)

+
γ

K

choose it with pi(t)
xt = R(it)
x̂t = xt/pi(t)

wi,t+1 = wi,te
γx̂t/K

∀j 6= i, wj,t+1 = wj,t

The reason why we chose to use non-stochastic multi-arm bandits for our collaborative clustering

problem is quite simple: in collaborative clustering due to the lack of supervision, it is impossible to

know in advance which collaboration will be effective or not without trying it. Furthermore, an

algorithm bringing huge gain during an iteration may not be that interesting anymore during the

next run. As such, non-stochastic multi-armed bandits are a perfect tool to explore the optimization

problem of picking the right inter-site collaborations in real time.

1.2.2.2 Exp3 collaborative clustering with the K-Means algorithm

For the modeling of this problem, we assume that the different views and algorithms form a weighted,

un-directed, graph G = (V, T ) in which the set V represents the set of the different views, and T
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is the set of weighted edges highlighting the weighted links between the views: T = {τi,j}(J×J).
As constraints: we assume that each view can only communicate with a limited number of other

views while doing its clustering. This constraint seemed logical to us at the time to ensure that the

algorithm would stop at some point.

Each view begins by performing an initial (local) clustering with the chosen algorithm. After

this initial phase, each view begins to regularly choose another view to request (pull) prototypes

in order to update its local clustering based on the information shared by its peer. The algorithm

stops after each view has performed a finite number of exchanges, or when it has reached a certain

target metric. The critical goal to achieve is of course to select the best possible views to exchange

data with. The confidence matrix T = {τi,j}(J×J) will play this role and for each view i, we have∑J
j 6=i τj,i = 1, the same constraint as we had previously so that the τj,i will contain the probabilities

of exchanging with each other view.

This process is detailed in Algorithm 2, Let R be the maximum number of rounds of the

algorithm. Let Si be the local partition at view i and Ni the number of neighbors at site i.

Algorithm 2: Peer-to-peer Collaborative Clustering algorithm

Si: initial clustering of site i
Ni: set of neighbors of site i
R: Maximum number of rounds
Algorithm SendClustering(Si, Ni)

i = 0
while i < R do

n← select(Ni)
response← send(n,Si)
update(response,n,Ti, S

i)

Algorithm OnClusterReception(Sn, n)
Gi ← update(Gn, n Si)

The two critical functions of this algorithm are the update and select which respectively update

the local clustering depending on collaborative clustering rules, and select a neighbor node to

send information to. This is done without a-priori knowledge of the other views at the beginning.

However each site can learn dynamically from its neighbor by computing the agreement between its

local clustering and its neighbor’s.

This problem can be seen, for each view in the collaborative clustering network, as finding the

most informative and economic neighbors to communicate clustering information to. The final goal

is then to find an acceptable clustering solution in a reasonable amount of time while ignoring

“noisy” neighboring sites who do not contribute efficiently towards correct a clustering of the data.

Therefore, we formalize the problem of identifying the most informative neighbor to exchange data

with as a multi-armed bandit problem, in which we model each site in the collaborative clustering

network as a multi-armed bandit player, and the site’s neighbors as the machines.

Let Si be the clustering of site i, Sj the clustering of site j and k the number of clusters. A

clustering is a matrix of size n× k where n is the number of individuals, where Six,y = 1 if x is in

cluster y in clustering i, 0 otherwise.

In order to model our collaborative clustering problem as an adversarial bandit problem we

need to define a reward function indexed on the agreement between two clusterings. We chose to
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use the probabilistic confusion entropy [58][59] as defined in equation 1.18, as a basis for our reward

function. To compute this entropy we need to compute the confusion matrix Ωi,j of clusterings Si

and Sj , as shown below for K clusters:

Ωi,j =


ωi,j1,1 · · · ω1,Kj

...
. . .

...

ωi,jKi,1
· · · ωKi,Kj

where ωi,ja,b =
|Sia ∩ S

j
b |

|Sia|
(1.17)

This yields the following definition of entropy between sites i and j, where P (Sia) =
|Si

a|
|Si| :

H(Ωi,j) = −
∑
x,y

ωi,jx,y log
ωi,jx,y
P (Si)

(1.18)

As entropy measures the level of agreement between two clustering of the same individual, in our

bandits learning formulation we are rather interested in the gain induced by updating clustering Si

with clustering Sj . Let Si′ be the clustering after the merge and update of Si by Sy. We compute

this gain by the difference in entropy between Si and Sj , and Si′ and Sj . This provides us the

following reward equation:

R(i, j) = 1− H(Ωi′,j)

−log(1/k)
(1.19)

Where k is the number of clusters.

We update each local clustering depending on the level of disagreement between each local (l),

and remote (r) clustering partitions based on the confusion matrix Ωl,r.

Clk(t+ 1) = Clk(t)Ωl,rk,k +

K∑
i 6=k

Cri (t)Ωl,rk,i (1.20)

Where Clk is the local kth prototype of the local site. The new centers then provide means to

compute a new clustering for the local individuals following the K-Means rule [18]:

Si′ = arg min
l,k

||Xl − Ck||2 (1.21)

From there, each site in the network computes an estimate of the global entropy across all sites,

by computing the local mean entropy with all its neighbors. This estimate will eventually reach

either 0.0 or a plateau in the course of the collaboration since our algorithm rewards sites that help

lowering the entropy. This estimate can be used in combination with a threshold parameter α so

that any site with a mean entropy lower than α will stop asking clustering information from its

neighbors. In addition to this threshold, we provide each site with a maximum number of iterations

Rmax in which to ask data from neighbors. If the maximum number of turns is reached before the

alpha threshold then the algorithm stops.

The combination of our peer to peer Collaborative clustering algorithm with the Exp3 algorithm

for non-stochastic bandit learning provides the Exp3 Collaborative K-means algorithm written in

Alg. 3.

This local algorithm proceeds by initializing the local clusters thanks to the K-Means algorithm,

and then proceeds to a pull mode gossiping by requesting clustering information from a neighbor
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Algorithm 3: Exp3 Collaborative K-means algorithm

Let K be the set of clusters
Let Xi be the local data-set
Let S0 be the local clustering at round 0

Let Cl0 = f(Si) the local cluster centers at round 0
γ ∈ [0, 1], α ∈ [0, 1]
∀i ∈ [0, N ], wi,0 = 1
∀i ∈ [0, N ], ai,0 = −log(1/K)

while t ∈ 0..Tmax or
∑N

i ai,t
N < α do

Compute pn(t) as in Alg. 1
Request Grt from neighbor nt chosen from pn(t)

Compute agreement al,t = H(Gnt , S
l
t) Compute Ωl,r as per Eq. 1.17

∀k ∈ K,Clk(t+ 1) = update centers Clk as per Eq. 1.20
St+1 = update clusters based on Xl, Ct+1 as per Eq. 1.21

al,t+1 = H(Ωl,r)
if al,t+1 < al,t then

St+1 = St

r = R(l, r) as per Eq. 1.19
Update wr as in Alg. 1

chosen thanks to the selection probabilities pn(t) (line 7, 8). After the generation of a new clustering

with newly updated centers, the entropy level between this new clustering and the neighbor’s

clustering is computed (line 14). If this new version of the clustering does not provide an improvement

in entropy, then the update is discarded (line 16). In any case the reward is computed and used for

updating the appropriate weight.

The critical part of the algorithm is the computation of the confusion matrix Ω. This operation

has a complexity of O(kn) with k the number of classes and n individuals. Other operations such

as the updates of centers and cluster assignments have complexities proportional to the number of

clusters or the numbers of individuals. This operation happens at each turn of the algorithm, the

number of turns being bounded by the stopping criterion or a limit parameter.

1.2.2.3 Conclusion

This work introduced a different approach to tackle the problem of confidence in multi-view

clustering by using the same theoretical model as non-stochastic multi-armed bandits. It also ended

up with the proposition of a new and original bandit-based collaborative clustering algorithm,

named Exp3 Collaborative K-Means, which allows collaborators in a collaborative clustering set of

sites, to identify the most appropriate site to share information with. This algorithm was applied

to two data sets with various connectivity levels between collaborators, and show that thanks to

the bandit learning component of the algorithm, sites that are providing useful information to

clustering are consistently identified, and privileged in data exchange compared to sites with less

useful information. By doing so, our method achieves better results than already existing purely

mathematical optimization methods that relied only on the diversity between the different sites,

which resulted in a lack of risk taking and lower chances of rapid results improvement.
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1.3 Deep Cooperative Reconstruction in multi-view environments

In the introduction for this chapter, we made the assessment that one basis of multi-view clustering

was that it deals with data that have representations or are split in different views. We also

mentioned a few examples of such databases such as social networks and client databases. In the

previous section, we mentioned the issue of confidence as being a key problem when doing multi-view

clustering. However, in addition to the issue of confidence, there is another major problem when

dealing with multi-view data: In practical applications all data are rarely represented in all views.

This is a significant problem because most multi-view and collaborative clustering frameworks make

the assumption that all objects are in all views.

To tackle this issue, in [60][44] we proposed a method called the Cooperative Reconstruction

System which aims at reconstructing information missing in some views in a multi-view context

using information available in the other views. As an echo to the works presented in the previous

section, our algorithm also proposes an optimization method to weight the views based on their

perceived usefulness to help reconstructing other views. Finally, our method considers privacy issues

and therefore achieves said reconstruction without direct data transfer from one view to another.

This work is relatively close to other works in Deep multi-view learning, most notably the work

of Wang et al. [61] where the authors propose a systems that learns from representations and

features in a multi-view setting where only one view is available at test time, and the work of Ngiam

et al. [62] where the authors propose a system that tries to reconstruct shared representations that

are available from 2 views available at a given time.

1.3.1 Cooperative reconstruction system

1.3.1.1 Formalism

Let X be a set of individuals. Let V0, V1, ..., Vn be a set of views, each in its own feature space

F0,F1, ...,Fn , such that Vi : X → Fi. Let Xi ⊂ X be the subset of individuals visible in view Vi. In

other words Xi is the subset of the population for which data is available in the feature set of view

Vi. We note Vi|j the subset of Vi (in the feature space of Vi) which individuals are also present in Vj .

To its core, the cooperative reconstruction system (CRS) aims at learning, in view i, a recon-

struction function Fi of individuals x /∈ Xi in view Vi, based on information provided by the other

views. Therefore ie: Fi : ∪j 6=iFj → Fi:

x̃u,i = Fi(x ∈ Xj 6=i) (1.22)

This formulation is often used in recommender systems, but in the context of multi-view systems,

it ignores two critical constraints:

1. Data Security: in the context of this paper, data security is defined as the constraint of not

being able to access original data if it is not from its original view. The input space of the

reconstruction function should be different from the concatenation of the other views feature

spaces.

2. Scalability: If a new view is added (rep. removed) to/from the system, how is learning the

new representation affected by this change.
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These two constraints provide new way to formulate the problem:

x̃u,i = Fi(x ∈ Ej 6=i(Xj 6=i)) (1.23)

Where Ei is an encoding function on Fi. This encoding must be designed in such a way that only

the view containing the individual’s original features can reconstruct the values from the encoding.

1.3.1.2 Algorithm

A global representation of our proposed cooperative reconstruction system is shown in Figure 1.2.

Our system is based on several modules: first, to solve the problem of security-friendly information

transfer, the system uses a set of N Autoencoders [63] –with N being the number of views–, to

locally encode data to make them impossible to read from outside of their views. In a way, our

proposal is similar to the architecture proposed in [64], but differs in the sense that we aim at

multi-view reconstruction instead of a single consensus representation.

Figure 1.2: Global representation of our Cooperative Reconstruction System: an example with 3 views.

Let us use Figure 1.2 as a base to explain how our proposed method works. In this example

we consider a system that only contains 3 views, but our architecture is meant to be adaptable.

In this case scenario, we consider a dataset of shared individuals that have representations across

the 3 views, and we have an individual or an object which exists in views 1 and 3, but has no

representation in view 2. From there, the goal of our system is to reconstruct or to predict what

this individual features should be in view 2.

The reconstruction system is made of the following components:

– Autoencoders that are specific to each view. These neural networks typically try to reconstruct

their input data after going through a set of fully connected layers that first compress

the information up to a bottle-neck (encoder part) and then decompress it between the

bottleneck and the output (decoder). This component of the architecture serves two purposes:
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1) Extracting the best representations of the data in each view at the bottleneck, as this is

what autoencoders are good at [63]; and 2) providing a way to encrypt the data before it is

send in the other views [65][66]. A more in depth presentation of how autoencoders work is

proposed in Section 2.2.2.2.

– The links between the views. They are in fact another neural network made of fully connected

layers and whose goal is to translated the features of the view sending information into the

features of the view receiving them.

– A system of masks called ”MWM” for Mask Weighting Method, that we will detail in the next

section (1.3.2). It is basically use to combine the features reconstructed from several views

and to weight them according to the pertinence or confidence granted to each view.

In our example, from Figure 1.2, the original features from views 1 and 3 would go through

their respective encoder to be coded into better features. Then they would be sent to view 2 using

the links that would translate them into code features for view 2. Then the Mask weighting Method

would recombine them into a single code vector in view 2. And finally they would go through the

decoder of view 2 to be reconstructed into the original features of this view.

Since the whole system is basically a big neural network, it is trained by using data that are

shared across all view as a training set. All layers connection weights are optimized using gradient

descent.

1.3.2 Weighting the views with smart masks

As mentioned earlier, the issue of confidence in multi-view environments without supervision is

a constant problem. And this holds true for our proposed cooperative reconstruction system as

well. In the case of this application the issue is to find for each view individually what are the best

combinations of external views to reconstruct the local data. More practically, using the architecture

presented in Figure 1.2, we want to know how to combine the reconstructions provided by the link

networks in order to best reconstruct the local codes.

To solve this issue, our deep cooperative reconstruction system proposed a smart mask system:

We present a method based on a set of scalar vectors Wi = {wi|j , j ∈ [1..N ] \ i} such that wi|j is of

same dimension as vectors of Vi. To get the final output x̃i of the system in the local view i, we use

the following formula:

x̃i =
∑

j∈[1..N ]\i

xi|j ⊗ wi|j (1.24)

with ⊗ the pointwise vector product and xi|j the version of the missing data inferred using data

from the view j.

The coefficients are first initialized using equal weights summing to 1 for all features. Then, they

can be learned using two methods: either using gradient descent on the reconstruction error, or

through an iterative update using the zero of the derivation of this latter error.

The coefficients are first initialized using equal weights summing to 1 for all features. Then, they

can be learned using two methods : either using gradient descent on the reconstruction error, or

through an iterative update using the zero of the derivative of this latter error.
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Figure 1.3: The Masked Weighting Method: here view 2 reconstructs a local code based on information
from views 1 and 3, and it uses the masks previously trained to get the final weighted result.

1.3.2.1 Mask training through gradient descent

As explained earlier, the whole algorithm is trained using samples that are shared across all views.

Using the system output, it is therefore possible to perform a Gradient Descent on the weights of

Wi. The error we used is the mean squared error (MSE) between target data and reconstructed

ones. The computation of the error Ei for the view i can be written as follows:

Ei =
1

|Vi|
∑
xi∈Vi

||xi − x̃i||2 (1.25)

=
1

|Vi|
∑
xi∈Vi

dim(Vi)∑
k=1

(xki − x̃ki )
2

(1.26)

=
1

|Vi|
∑
xi∈Vi

dim(Vi)∑
k=1

(xki −
∑

j∈[1..N ]\i

wki|jx
k
i|j)

2
(1.27)

where xki is the k-th coordinate of the individual xi. The differentiation of Ei w.r.t. the parameters

wki|j of Wi can then be written:

∂E

∂wki|j
=

2

|Vi|
∑
xi∈Vi

xki|j
(
x̃ki − xki

)
(1.28)

This latter formula makes it possible to update the weight wki|j using the usual gradient formula

(wki|j)
new

= (wki|j)
old − ε ∂E

∂wki|j
(1.29)

where ε > 0 is the parameter defining the learning rate of the process. This update process is

performed on every weight until convergence. In practice, the learning is stopped when the norm of

the update value defined in Equation 1.28 goes under a threshold fixed by the user.

1.3.2.2 Iterative update

It is also possible to update weights based on the minimum of Ei found using Equation 1.28, which

after a few developments gives us:
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∂Ei
∂wki|j

= 0

⇒ 2

|Vi|
∑
xi∈Vi

xki|j
(
x̃ki − xki

)
= 0

⇒
∑
xi∈Vi

(
(xki|j)

2
wki|j + xki|j

( ∑
j′∈[1..N ]\{i,j}

wki|j′x
k
i|j′ − x

k
i

))
= 0

⇒ wki|j
∑
xi∈Vi

(xki|j)
2

=
∑
xi∈Vi

xki|j
(
xki −

∑
j′∈[1..N ]\{i,j}

wki|j′x
k
i|j′
)

⇒ wki|j =

∑
xi∈Vi

xki|j
(
xki −

∑
j′∈[1..N ]\{i,j} w

k
i|j′x

k
i|j′
)

∑
xi∈Vi

(xki|j)
2 (1.30)

Equation 1.30 shows that the update of wki|j requires the values of {wki|j′ , j
′ ∈ [1..N ]\{i, j}}.

Thus it is possible to define an iterative update for which the values of {wk,ti|j′ , j
′ ∈ [1..N ]\{i, j}} at

time t are used to obtained wk,t+1
i|j at time t+ 1. This problem being convex, the iterative process is

performed until convergence of the weights.

This weighting method is used because it offers several advantages:

1. With either a noisy external view or a low-quality Link, the weighting coefficients for this

view will converge to a value under 1
N−1 which is the value corresponding to a mean of the

external views. By doing so, the method lowers the impact of the bad reconstruction on the

result.

2. On the opposite, this method will favor views which might greatly improve the final recon-

struction with a weight over 1
N−1 .

3. Contrary to a weighted mean which would assign a single scalar to a view, this method allows

to favor only a subpart of an inferred vector. One can easily imagine that an external view

would only allow to recover parts of the local information. Our weighting method makes it

possible to automatically identify these parts during parameters training.

When Wi has been trained for all the views, the system is ready to use on missing data. An

abstraction of the reconstruction process can be found on Figure 1.4.

1.3.3 Result analysis and conclusions

While we tested our method reconstruction capability on several datasets [60] with varying degrees

of success (see examples with a CIFAR like dataset in Figures 1.5 and 1.6), it was not so much

the quality of the reconstruction itself that we were interested in, but rather if it could be reused

successfully for a subsequent Machine Learning task, be it classification or clustering.

To do so, we applied a random forest algorithm [67] to the original data and the reconstructed

ones. And we compared the difference in term of classification accuracy. We found that most datasets

had less that 3% of difference in classification accuracy (min 2%, avg 5%, max 7.5%) between

the reconstructed and the original data. Furthermore, we also saw that there was no significant

correlation between the reconstruction error and the classification accuracy. This shows that our
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Figure 1.4: Reconstruction process: Identification of a missing item, encoding in the remote view, and
reconstruction in the local view.

method was great at capturing the great underlying structure of the data to reconstruct them,

and that its inability to reconstruct missing elements with a low error was mostly be due to the

impossibility to reconstruct the variance around the core structure especially for features that don’t

have a strong correlation with any other features.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1.5: Sample of the reconstructed images available in the MFDD dataset. Some well reconstructed
examples.

As a conclusion: in a global context of multiplication of multi-view data, we have presented

a new system called the Cooperative Reconstruction System. The purpose of this system is to

reconstruct data missing in some views by using information contained in other views. We do so

without sharing the original data, thus avoiding security issues. To do this, the system relies on three

modules: Autoencoders to encrypt the data under a compressed scalar vector form, fully connected

deep networks -called Links- to decipher an external code in a local view, and the Masked Weighting

Method, a new weighting method to combine all external reconstructions, thus obtaining the final

reconstruction. The Masked Weighting Method has 3 functions: combining external information,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1.6: Sample of the reconstructed images available in the MFDD dataset. Some poorly reconstructed
examples.

reducing the influence of views with information which could hinder the reconstruction process,

and reducing the impact of missing data during the system training process.

As future works, we plan on improving the reconstructions acquired from the external views

through the modification of the inter-view Links. Likewise, because of the potentially high dimen-

sionality, the use of another error than the MSE should be considered (at least for non-image data).

A feature selection process may be added to the system, thus limiting the impact of the noise

features in the original data set. Another possible future extension of this work would be to work on

a lighter architecture that would scale better with large data sets, or to work on an online version

to alleviate the issue of scaling to large datasets.

1.4 Information theory based approach of multi-view clustering

In this section, we present the summary of two contributions that address the issue of clustering as an

information compression problem. These two contributions are directly linked and rely on the same

theoretical background: The first contribution [68] applies the idea of information compression as a

clustering metric in the context of multi-view clustering without merging the partitions (horizontal

collaborative clustering). The second contribution [69] uses the same idea for multi-view clustering

but this time with the goal of merging the partitions into a single result.

1.4.1 Minimum Length description applied to clustering

1.4.1.1 Reminder: Kolmogorov complexity

A long philosophical tradition has investigated the problem of induction. Among the proposed

methodologies, Ockham’s razor is widely used and discussed. This simplicity principle states that,

among all possible hypotheses, only the “simplest” one should be chosen to describe an observation.

A more formal version of this idea has been introduced in computer science by [70] and [71] with

the Minimum Description Length (MDL) principle. This principle states that the best model to

select leads to a maximal compression of observed data. Given a data set and an enumeration of

theories to explain data, the best theory is the one that minimizes the sum of the length (in bits) of

the theory description and the data encoded with the theory.
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The notion of description length originates from algorithmic theory of information and designates

the minimal number of bits needed by a Turing machine to describe an object [72]. This measure is

given by the tool of Kolmogorov complexity. If M is a fixed Turing machine, the complexity of

an object x given an object y on machine M is defined as KM(x|y) = minp∈PM {l(p) : p(y) = x}
where PM is the set of programs on M, p(y) designates the output of program p with argument y

and l measures the length (in bits) of a program. When the argument y is empty, we use the

notation KM(x) and call this quantity the complexity of x.

As we have defined it, the complexity of an object cannot be considered as an intrinsic property

of the object since it depends on a fixed Turing machineM. In order to overcome this weakness, the

invariance theorem enables to define a machine-independent definition of the complexity. Although

such a measure has a major theoretical impact (see for instance [73][74]), we will focus on a

machine-dependent approach in the rest of this paper. Our choice is motivated by three main

reasons exposed thereafter.

First, the universal complexity is not computable, since it is defined as a minimum over all

programs of all machines. By choosing a precise machine, we restrict the research to a minimization

over the set of programs only, which can be relatively simple depending on the chosen machine.

Second, machine dependency is a fundamental property of learning. It is intuitively obvious that

all learners have their own data processing, and thus are naturally biased toward some precise tasks.

For instance, human mind is designed to perceive some regularities in scenes that state-of-the-art

algorithms cannot get, while they are unable to cope with pattern recognition in strings like DNA,

which is now a basic task for a computer program. Since any learning method has a natural bias

toward some kinds of problems, we propose here to interpret this property in terms of machine

dependency: A learning algorithm corresponds to a specific choice of a Turing machine with its

representation bias.

Finally, we have to notice that this assumption is a classical assumption in statistical learning

theory. The restriction of the research space to classes of decision functions (hence classes of Turing

machines) is even the key hypothesis in learning theory and leads to all classical definitions such as

the VC-dimension in supervised learning. From our perspective, this dimension can be considered

as a measure of the restriction impact. Statistical learning relies on this very assumption: because of

the non-calculability of probabilities and in order to prevent overfitting (i.e. to reject distributions

which do not obey the commonly admitted aim of generalization), the assumption of choosing a

restricted set of hypotheses is well accepted in the machine learning field.

1.4.1.2 Notations

We consider a data set X that can be divided into J views so that: X = {X1, · · · ,XJ}. A view

correspond to a restricted version of the dataset. We make the hypothesis that all data points have

a representation in each of the view. Let N be the number of data points.

We consider the collaborative setting in which we have J algorithm (one per view) denoted

A1, · · · ,AJ . We consider these algorithms to be mapping functions from the data space into an

integer: Aj processes the data set Xj and outputs a solution vector Sj ∈ NN . In practice we

consider the number of cluster to be finite and equal to Kj for any algorithm Aj . Please note that

this number can differ from one view to another. Each algorithm Aj is also associated with a set of

parameters θi ∈ Θi. These parameters may also differ from one view to another and depending on
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the type of clustering algorithm used.

In the following, we consider that the machine M is fixed. To make the equations easier to

read, we will omit to specify the machine M in the complexity (hence we will denote by K(x) the

complexity of x on the chosen machine).

1.4.1.3 Local sub-machines

The purpose of the following section is to describe a class of Turing machines which is adapted to

the multi-view setting.

Given multi-view data, the purpose here is to define a parameterized class of Turing machinesM
which generate the data. In a multi-source setting, and without any loss of generality, we consider

that each view is encoded on a tape. We consider that data points are encoded in a given (and

known) order and are separated, in such a way that the content of a tape can be uniquely decoded.

Local clustering (ie. clustering on a single view) can be interpreted as a compression of data based

on external parameters. For instance, a centroid-based clustering (like K-means [18], K-medoids

[75] or GTM [76]) compresses the data by “factorizing” a common position into the center. We

propose to define local sub-machines as machines which take as input a parameter θj and a solution

vector Sj and output the corresponding data. The length of such machines is equal to K(Xj |Sj , θj).
The format of these machines will depend on the nature of the clustering algorithms. It is

noticeable that the framework of algorithmic learning theory authorizes a large class of data

representations (and thus can be used for collaboration between different types of clustering

methods). We provide a couple of examples in the thereafter:

Probabilistic models [68][77]: Clustering algorithms that rely on probabilistic models often try to

model clusters by their density, usually using models such as mixtures of gaussian distributions. For

this family of algorithms, the parameter θ corresponds to the parameters of the distribution. The

solution vector here is the distribution in the mixture to which each point is associated.

In order to actually compute the complexity, we use the property that the complexity of a point

x given a distribution p is upper-bounded by K(x|p) ≤ − log p(x)+O(1). In particular for a mixture

of k distributions (p1, · · · , pk), a point x in a cluster i will be described with a complexity:

K(x|S, θ) = − log pi(x) (1.31)

Prototype-based models [68]: In clustering algorithms such as K-means, K-medoids, GTM, SOM

[50], the parameter θ is the description of the position of the prototypes. Each data point is

represented by its membership to its associated prototype (the association table being given by the

solution vector Sj). The solution vector S corresponds to the solution, hence to the point-prototype

association.

For these algorithms, the complexity K(x|S, θ) can be computed based on the distance between

the data and the prototype.

K(X|S, θ) =

N∑
i=1

K(Xi|µi) +O(1) (1.32)
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It is also possible to model these prototype-based models as probabilistic models with the ad-hoc

variance-covariance matrices. Algorithms based on the K-Means and Fuzzy C-Means algorithms

can for instance easily be modeled as a degenerate gaussian mixture model.

Density-based models [77]: Algorithms such as DBSCAN [9] and OPTICS [11] are more prob-

lematic because they do not rely on any explicit parameter θ. It is however possible to propose

a description of points based on a reordering of the data set, which would then be seen as the

parameter of the algorithm. The density-based models aim to find the better attachment of points

inside the data set. Based on this idea, the computation of the complexity can be done as follows.

We denote by πi the index of the parent of point i in the ordering proposed by a method such

as OPTICS. Exactly as suggested for the prototype-based method, the idea will be to describe the

position of a point by its relative position with respect to a reference point, which is not a prototype

in this case but the parent in the ordering. Points that have no parents (hence first point of a class

in the ordering) are described by their absolute position. The total complexity is then given by:

K(X|S, θ) =

N∑
i=1

K(Xi|Xπi) +O(1) (1.33)

Other models [77]: Clustering algorithms that do not match any of these category are a bit more

difficult to tackle. Beyond the possibility of finding an ad-hoc formulation of the Kolmogorov

complexity, two possibilities exist:

– The least satisfying one is to ignore the model (Sj , θj) all together and thus to consider that

K(Xj |θj , Sj) = K(Xj) +O(1)

– The second solution is to artificially inject prototypes or a density-based models on top of the

existing clustering and to fall back to the computation proposed by either of these models.

1.4.1.4 From global parameters to local views

We propose a decomposition of the global Turing machine into sub-machines, as exposed in Figure 1.7.

In order to make the description more understandable, we invite the reader to think of machines as

actual computer programs and the complexity (also called length) as the length of the program as

written in a fixed programming language.

The j-th local sub-machine is in charge of producing data Xj from the clustering parameter θj

and the solution vector Sj , received as inputs. These parameters were transferred to it from a

global configuration machine which stores the whole configuration (ie. the complete description of

all θjs and Sjs). A splitting operation is needed to transform the output 〈θ1, S1, . . . , θJ , SJ 〉 of the

global configuration machine into the inputs 〈θj , Sj〉 of the local sub-machines. Since we use prefix

codes and the index j of the parameters θj and Sj is explicitly given onto the tape of the global

sub-machine, the complexity of this splitting operation is a constant which does not depend on the

data nor on the parameters.

The global configuration machine receives as input the local parameters θ1, . . . , θJ and a global

solution vector 〈S1, . . . , SJ〉. The length of this machine corresponds to the description length of

the parameters θ and the cost of a concatenation (hence a constant). The complexity of the local

solutions is measured by the description length of the sub-machine in charge of their generation.
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Figure 1.7: Graphical representation of the generative Turing Machine. A rounded box designates a sub-
machine generating the object; a squared box designates an input; an arrow designates machine
composition (the output of one machine used as input for the other machine. The plate indexed
by J indicates J independent replications as for probabilistic graphical models.

A splitting operation is needed to transform the output 〈θ1, S1, . . . , θJ , SJ〉 of the global

parameter machine into the inputs 〈θj , Sj〉 of the local sub-machines. Since we use prefix codes and

the index j of the parameters θj and Sj is explicitly given onto the tape of the global sub-machine,

the complexity of this splitting operation is a constant which does not depend on the data nor the

the parameters.

The key of collaboration lies in the construction of the local solutions 〈S1, . . . , SJ〉. This

construction relies on a global unknown solution S which might be interpreted as a consensus.

The nature of parameter S will be discussed later: In this section, we only consider it as a global

parameter used for the construction of local solutions. For each view j, a sub-machine computes Sj

from the global solution S. The length of this sub-machine is
∑J
j=1K(Sj |S). Designing the index j

counts as a constant in the complexity and thus is not indicated.

1.4.1.5 Complexity of a machine

The architecture of the described machine is summed up in Figure 1.7. The machines described by

such a schema constitute a parametric machine class given with parameters θ1, S1, . . . , θJ , SJ , S.

The length of a machine in this class, up to an additive constant, is given by:

l(M) = K(S) +

J∑
j=1

K(Xj |Sj , θj) +K(Sj |S) +K(θj) (1.34)

Minimum Description Length principle states that the model chosen to describe data is associated

to the machine of minimal length. As a consequence, the problem of interest for multi-source

clustering in the proposed framework is the following:

minimize
θ1,S1,...,θJ ,SJ ,S

l(Mθ1,S1,...,θJ ,SJ ,S) (1.35)

where l is given in Equation 1.34 and Mθ1,S1,...,θJ ,SJ ,S designates the Turing machine in the

restricted class with indicated parameters.

This minimization problem presents interesting properties: the first one is the genericity of the
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formula in Equation 1.34 which has the exact same form as state of the art methods for multi-source

clustering [33]. It can be divided into a local term, corresponding to the description of local views

individually, and a collaborative term, measuring the inter-view interaction. The collaboration

is done at the solution level, since a collaborative description of data would be too complex and

would be extremely sensitive to noise, and a collaborative description of parameters θj would be

too complex in case of heterogeneous nature of algorithms. Unlike state of the art algorithms in

collaborative clustering, our method allows collaboration between algorithms of any nature and not

between algorithms of a same class while considering both local and global properties.

Another interesting property of this framework is its neutrality toward the question of the

consensus of the views. As discussed in the introduction, two trends emerge in multi-view clustering:

On the one hand, unsupervised ensemble learning aims to converge to a single global solution by

comparing local solutions; on the other hand, collaborative clustering focuses on refining the quality

of local views by exploiting properties of other views. The presented framework performs equally

on both tasks: the global solution S offers a consensus while the local solutions Sj correspond to

refined local solutions. Depending on the context, our method can be used for both tasks, which is

particularly interesting. We will see in the next subsection how the optimization can be done for

both tasks.

As a final remark, we would like to insist on the reverse approach offered by our framework.

Instead of using the available data to infer a model, we propose to use a model to generate the

data. In a way, this approach is very similar to the point of view of generative graphical models.

1.4.2 Application to collaborative clustering

In this section, we explain how we optimize the objective function that we described in in Equa-

tion 1.35. In the scope of this work, we consider only the case where the solutions S1, · · · , SJ

produced by the algorithms are hard partitions. Furthermore, we focus on the case of collaborative

clustering, in the sense that even if it is possible with this framework, we seek to optimize local

partitions in each view rather than finding a consensus solution.

In the optimization process, the complexity K(Sj |S) can be upper-bounded by mini 6=j K(Sj |Si)
since the Si are admissible values for S. With this upper-bound, the solution S is not needed any

longer and can be eliminated from the problem. It is important to note at this point that this change

is a purely mathematical trick and has no real foundation in terms of Turing machine description:

in this setting, a local solution would be constructed from another local solution, but loops are not

prohibited, which is not possible from a physical point of view.

Designing a collaborative algorithm based on the mini 6=j K(Sj |Si) upper-bound is possible, but

the evaluation of the minimum value requires a comparison of all possible local solutions, which

would be extremely costly. We propose to circumvent the problem by considering that the minimal

value of complexity is upper-bounded by the average value of relative complexity:

K(Sj |S) ≤ min
i6=j

K(Sj |Si) ≤ 1

J − 1

∑
j 6=i

K(Sj |Si) (1.36)

This simplification is coherent with the general objective of state-of-the-art methods in which the

collaborative part corresponds to an average consensus measure between local solutions.

From Equation (1.34), the function to optimize therefore becomes:
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S∗ = argmin
S

J∑
j=1

K(Xj |Sj , θj) +
1

J − 1

∑
i 6=j

K(Sj |Si) (1.37)

1.4.2.1 Global approach

Following the model of other collaborative and multi-view algorithms, the optimization of Equation

(1.37) is done in 2 steps [35][49]:

– A local step during which each algorithm Aj processes its local view Xj and produces a first

model M j = 〈θj , Sj〉 based only on the local information. These local models are used as

initial values.

– A global step during which Equation (1.35) is optimized.

The key difficulty of the algorithm lies therefore in the global step, and in particular in the

estimation of the complexity K(Si|Sj). This term is evaluated by defining a generic Turing machine

which transforms a solution vector into another solution vector. The most direct idea for such a

machine is to build a naive mapping from Si to Sj . In general, such a mapping does not have

any noticeable property: in particular, it is neither injective nor surjective. We propose to encode

the mapping as a key-value set 〈(1,Rj,i(1)), . . . , (Kj ,Rj,i(Kj))〉 (where Kj denotes the number

of clusters for algorithm Aj). The function Rj,i is called a rule and associates each cluster index

of Aj into a cluster index of Ai. Such a mapping is often not sufficient to offer a full description of

a transformation from one solution into another: Some exceptions have to be added to describe

the exact transformation. An exception is encoded as a tuple (n, ki) ∈ {1, . . . , N} ×Ki where n is

the data index, ki the cluster index, and N the size of the dataset. An exception overwrites the

transformation rule. An example of such rule mapping and their exceptions with 3 views is shown

in Figure 1.8.

Figure 1.8: Examples of majority rules (on the right) and potential errors to correct (in red)

Using this language of rules and exceptions, we can evaluate the complexity K(Si|Sj) by

measuring the length of the corresponding machine, hence the sum of the complexity of rules and
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the complexity of exceptions, each of them being defined as the sum of the individual complexities

of their components. The complexity of rules is then K (Rj,i) = K(kj) + K(ki) (cluster kj is

transformed into cluster ki, or in pseudo-code: if cluster == kj: return ki) and the complexity

of an exception K(e) = K(n) +K(ki) (n-th point is in cluster ki, or if point == n: return ki).

We choose to encode all elements of a same set with the same number of bits. Any element of a

set of p elements can be encoded on a prefix-machine with K(p) ≤ log p + c bits [72] where c is

a constant. In practice, we do not take the constant into account, since we are only interested in

variations of complexity.

Consequently we choose a machine defined in such a way that the description length K(Si|Sj)
is equal to:

Kj ×
(
logKj + logKi

)
+ |Ej,i| ×

(
logN + logKi

)
(1.38)

where |Ej,i| corresponds to the number of exceptions in the mapping.

In order to define the mapping in practice, we consider the confusion matrix Ωi,j (the same as

in Equation (1.17), but in raw count instead of percentage) that maps the clusters of Si to the

clusters of Sj :

Ωi,j =


ωi,j1,1 · · · ωi,j1,Kj

...
. . .

...

ωi,jKi,1
· · · ωi,jKi,Kj

 where ωi,ja,b = |Sia ∩ S
j
b | (1.39)

where Kj is the number of clusters considered by algorithm Aj . From there an argmax on each line

of Ωi,j in Equation 1.39 gives us the majority mapping rule for each cluster of Ai into a cluster of

Aj . Using this method, a compression is obtained by defining a general mapping transforming all

labels of Si into labels of Sj and correcting the errors afterwards. The time complexity to compute

all the rules between all solutions vectors using this method is in O(N) for solutions vectors of

length N .

Given these elements, optimizing Equation 1.37 consists in searching for the error corrections

that would have the most positive impact on the collaborative term
∑
j 6=iK(Si|Sj) with a minimal

impact on the local term K(Xi|M i). Corrections that do not improve the collaborative term or

have a negative impact are ignored.

1.4.2.2 Description of the algorithm

The local optimization step consists in a parallel run of all local clustering algorithms. Because there

is no collaboration in the local term in Equation 1.35, algorithms can run without any interaction.

We notice that we do not aim to minimize the expression of complexity directly, but we use standard

algorithms instead: The clustering algorithms are seen as research biases for the minimization of

complexity.

The initial solution mapping involves a one-by-one pairing of solutions. The algorithm determines

the rules by selecting the maximal cluster associations based on the confusion matrix (as explained

in the previous section and in Equation 1.39). The time complexity of this step is O(N × J2).

Afterwards, exceptions can be obtained easily (in linear time complexity).

The complete algorithm is detailed in Algorithm 4.

The mapping optimization step is the most complex step, but it is based on a very simple

idea: It consists in searching for the error correction which would have the most significant impact

2011 C. GRECO



1.4. Information theory based approach of multi-view clustering 37

Algorithm 4: SolutionMapping

Input: A set of J clustering solutions S
Output: A set of rules {Rj,i}1≤i,j≤J and exceptions {E}1≤i,j≤J
for i = 1 . . . J do

for j = 1 . . . J do
Compute Ωi,j

for k = 1 . . .Ki do

Rj,i[k]← arg maxl Ω
i,j
k,l

for n = 1 . . . N do
if Rj,i

[
Sj [n]

]
6= Si[n] then Ej,i[n]← Si[n]

return {Rj,i}1≤i,j≤J , {Ej,i}1≤i,j≤J

on the collaborative term
∑
i 6=jK(Sj |Si) with a minimal impact on the local term K(Xj |Sj , θi).

Correction that do not improve the collaborative term or have a negative impact are ignored.

In other word, it consists in removing exceptions one by one from the set {Ej,i}1≤i,j≤J . Removing

an exception results in a single change inside a clustering solution. The system decides to remove

an exception if this deletion leads to a reduction in complexity. Because a deletion modifies the

solutions, the deletion order has importance in this algorithm. This issue is also encountered in

the SAMARAH method [40, 78], a multi-view clustering method that aims at merging clustering

partition.

Thus, the naive algorithm cannot be used here.The key idea we rely on in order to solve the

problem is the independence hypothesis of the data points. Considering that all data points are

described independently, the mapping optimization step can be done on all data points in parallel.

It consists in removing exceptions one by one until no exception removal makes the complexity

decrease. A recursive approach has been chosen to determine a solution for one data with fixed

rules. The proposed algorithm, exposed in Algorithm 5.

Algorithm 5: Mapping Optimization

Input: solution vector for one point: s = {s1, · · · , sJ}, Rules (Ri,j)i,j
Output: corrected vector s, complexity K
E ← {}
for j = 1 · · · J do

for i = 1 · · · J do
if si 6= Rj,i(j) then E ← E ∪ {(j, i)}

K ← ComputeComplexity(s)
for (j, i) ∈ E do

s′ ← s
s′i ← Rj,i(j)
s′,K ′ ← Mapping Optimization(s,(Ri,j)i,j)
if K < K ′ then s← s′

K ← K ′

return s,K

The proposed algorithm removes exceptions one by one in a backtracking process. The advantage
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of backtracking is that it gives an exact solution. Besides, in case two solutions have the same

complexity, the solution with minimal depth in the backtracking tree is selected.

At each step, the algorithm has access to a finite list of exceptions and removes the bad

exceptions: from one step to another, the complexity can only decrease. Because the number of

possible solutions is finite and the total complexity is necessarily non-negative, the algorithm must

converge in a finite number of steps. Hence, no stopping criterion has to be given.

It is important to mention that this resolution system for the case of horizontal collaborative

clustering completely discards the issue of confidence that we mentioned in the previous sections.

Indeed, the equivalent of the view weights in Equation (1.38) is the 1
J−1 that came naturally as

part of the bounding process. As such the views all have the same weights. In a system where the

views could have different weights, the mapping algorithm described in 5 would not work anymore,

and would have to be replaced by a more complex algorithm. As one can see, this is therefore a

strong limitation of this proposal.

1.4.3 Application to clustering fusion

In this subsection, we propose to tackle the problem of clustering fusion in a multi-view context.

This work published in [69], re-uses most of the notions introduced in section 1.4.1 about MLD and

Kolmogorov complexity.

1.4.3.1 Formalism and problem description

Let us consider a data set X = {x1, · · · , xN} of N data points. The Multi-view clustering task

considers that the information regarding to each data point in X comes from multiple sources called

views. After performing a clustering algorithm over each view several partitions are generated. Let

us define this set of partitions as S = {S1, · · · , SJ}.
A partition S is a set of |S | disjoint sets c ∈ X (the Power set of X) called clusters of the data

set X. Let us define an agreement function Ω between two clusters as a mapping Ω : X ×X → [0, 1]

which attains lower values for clusters having a smaller overlap and higher values for clusters sharing

more elements of X. In this work we employ the Jaccard similarity function to measure agreement

between two clusters.

For a point p ∈ X, its cluster in any partition A ∈ S is denoted by NA
p and it is defined as:

NA
p = {x ∈ X |∃c ∈ A ∧ p ∈ c ∧ x ∈ c}

Given a cluster c and a partition B , the function that maps c to the cluster in B with the

largest overlap is called maximum agreement function and it is defined as follows:

ΦB (c) = argmax
e∈B

Ω(c, e) (1.40)

1.4.3.2 Algorithm description

Our goal is to combine several partitions in order to build a final consensus. To this end, in our

method we perform successive pairwise fusion procedures between partitions following a bottom-up

strategy until we reach a single partition. This procedure is depicted in Algorithm 6.

2011 C. GRECO



1.4. Information theory based approach of multi-view clustering 39

Algorithm 6: Main procedure for building the consensus partition.

Input: A set P of m partitions over the data X .
Output: A consensus partition.
Q ← [] /* exceptions after each merge operation */

while |P| > 1 do
A,B ← argmin

A∗,B∗∈P
K(A∗|B∗) +K(B∗|A∗)

C ← merge(A,B ,Q,W )
add C into P
remove A,B from P

/* Solving points marked in last item from Q */

ξD ←last partition’s exceptions added to Q
foreach p ∈ ξD do
ND

p ← argmax
c∈D

WD(p, c)

return D

Without loss of generality, when a fusion step is performed between two partitions A and B , a

new partition C is created. Since the successive partition fusions are performed by following the

maximum agreement criteria between clusters as stated in Equation (1.40), it is possible that some

data points do not fit to this rule and hence be marked as exceptions during the execution of the

merge operation. The set of data points marked as exceptions before the creation of partition C is

denoted by ξC , formally,

ξC = {p ∈ X |NA
p ∩ ΦB (NA

p ) = ∅ ∪ NB
p ∩ ΦB (NB

p ) = ∅} (1.41)

Please note that the exceptions as they are defined in Equation (1.41) are the same set of

exceptions as the one computed for the collaborative approach, and they can be computed using

the same Algorithm 4.

Then, when partition C is created, each point p ∈ ξC receives a weight WC (p, c) for every

cluster c ∈ C . This weight is made up by the relative weights that both source partitions A and

B contribute, namely ωA(p, c) and ωB (p, c). Without loss of generality, the contribution of each

source partition is given by:

ωA(p, c) =

Ω(c,NA
p ) if p /∈ ξA

Ω(c,ΦA(c)) ·WA(p,ΦA(c)) if p ∈ ξA
(1.42)

Thus, the final weight WC (p, c) for each point p ∈ ξC in each cluster c ∈ C is given by:

WC (p, c) =
ωA(p, c)

2
+
ωB (p, c)

2
(1.43)

A more detailed description of this merging process is depicted in Algorithm 7. It is important

to indicate that once a point is marked as an exception, it remains so through all the subsequent

fusions. After the last fusion, each of these exception data points are assigned to one of the final

clusters by picking the one whose membership weight is the highest. This exception resolution is

described between lines 7− 9 in Algorithm 6 where K(A|B) is the simplified writing of K(SA|SB),

the Kolmogorov complexity of partition A knowing partition B as defined in Equation (1.38).
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Algorithm 7: Merge procedure that fuses two partitions into a new one identifying also
problematic points as exceptions.

Input: Partitions A,B ∈ P s.t. |A| > |B |
, list with previous merge exceptions Q and weight function for previously created partitions
W

Output: New partition C and a set of marked points along with their scores ∀c ∈ C .
M← []
foreach a ∈ A do

add ΦB (a) into M[a]

foreach b ∈ B do
/* b can be associated to more than one cluster in A */

add b into M[ΦA(b)]

C ← ∅ /* The new partition to be returned */

foreach a ∈ A do
c← ∅
foreach b ∈M[a] do

c← c ∪ (a ∩ b)
a′ ← a
a← a− b /* updates cluster a */

b← b− a′ /* updates cluster b */

add c into C
/* generating the list of marked points by the current fusion */

ξC ← ∅
foreach a ∈ A do

if |a| > 0 then
add each p ∈ a into ξC

foreach b ∈M[a] s.t. |b| > 0 do
add each p ∈ b into ξC

add ξC into Q
foreach p ∈ ξC and c ∈ C do

WC (p, c) =
ωA(p, c)

2
+
ωB (p, c)

2
return C

1.4.4 Conclusions on the use of Kolmogorov complexity as a universal

multi-view clustering tool

In this section, we have presented a new perspective on the problem that is multi-view clustering.

Inspired by algorithmic information theory, we reduced the problem to a model selection over a

well-defined set of Turing machines. Compared to state of the art methods, our methodology is

based on a well-known theoretical background and does not rely on arbitrary heuristics to define

the objective function to optimize. This makes our model an ideal proposal compatible with any

type of clustering algorithm: In its collaborative version without fusion, it relies on the partitions

and the type of clustering model used, that as we have seen can often be modeled in term of

Kolmogorov complexity. Our model is even stronger for the multi-view consensus form aiming at

merging partitions, where it only relies on the local results and needs absolutely no information on

the type of clustering algorithm that was used.

However, this compression approach to multi-view clustering is not without weaknesses: First

and as we have already mentioned, it does not consider the issue that some views might be noisy
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or simply incompatible. Second, the local machines are not optimal fits for clustering algorithms

outside the family of density based, prototype based and distribution based algorithm. Then, we

have seen that the fusion problem is not that easy to solve, and an expert eye can probably see in

the algorithm than the order in which the clusters and partitions are merged can change the result

depending on the view used a a pivot. Last but not least, this approach relies on the idea that the

process can be done in two steps: local clustering first, collaboration or merging then. While this is

a strength because of the freedom to choose whatever local algorithm we want, it is also a weakness

because it makes it very difficult to make any comparison with other state of the art multi-view

methods that adopt a global framework that skip the local step altogether and goes directly for the

global multi-view clustering (e.g.[79][80][45]).

1.5 Stability analysis of multi-view clustering

In this section, we tackle a more theoretical aspect of multi-view clustering: the question of its

stability [81]. Indeed, for regular clustering, stability is an important notion that if we roughly

explain it, describes the ability of a clustering algorithm to find consistently the same structures

over several samples of the same data. In a way, stability is an unbiased quality measure not of a

clustering partition over a data set, but of a clustering algorithm over a data set.

Since it is a key notion in regular clustering, in this section we gibe some early considerations

and findings as to how this notion may be extended to the case of multi-view clustering under its

different forms. This work done with Pierre-Alexandre Murena and Basarab Matei has not been

published in any review or conference yet, and this section is very heavily inspired from section 15.3

of Pierre-Alexandre’s PhD Thesis [77] which you should read for more in depth details on aspects

of this work that I was not a part of.

1.5.1 Reminders on clustering stability

We begin our analysis by an introduction of the original definition of stability for classical clustering.

The notions exposed in this section are introduced in the original work of Ben David et al. [42].

Please note that while there are similarities in the way we define individual clusters, this formalism

below is not exactly the same as the one defined in section 1.4.3.1.

Let us consider a data space X endowed with a probability measure P . If X is a metric space,

let l be its metric. In the following, let S = {x1, · · · , xm} be a sample of size m drawn i.i.d. from

(X, P,Σ).

A clustering C of a subset X ⊆ X is a function C : X → N which to any of said subset X

associates a solution vector in the form of matching clusters S = C(X). As one can see, this definition

can be linked to the one of clustering partition proposed in 1.4.3.1 with the same formalism, and in

the present case a clustering is a partitioning of the entire data space and not only of the observed

dataset.

Individual clusters are defined by:

Ci = C−1({i}) = {x ∈ X; C(x) = i} (1.44)

Finally, clustering algorithm A is a function that computes a clustering of X for any finite
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sample S ⊆ X, so that A : X → C.
To define stability, we need to compare different clustering solutions, and therefore to define

clustering distance.

Definition 1 (Clustering distance) Let P be a family of probability distributions over some domain

X. Let Σ be a family of clusterings of X. A clustering distance is a function d : P × Σ× Σ→ [0, 1]

that for any P ∈ P and any clusterings C1, C2, C3 satisfies:

1. dP (C1, C1) = 0

2. dP (C1, C2) = dP (C2, C1) (symmetry)

3. dP (C1, C3) ≤ dP (C1, C2) + dP (C2, C3) (triangle inequality)

Please note that clustering distances as we have defined them are not required to satisfy

dP (C1, C2) = 0 ⇒ C1 = C2, which is not true with most clustering distances that are commonly

used.

Earlier, we have introduced stability as the ability of a clustering algorithm to find consistently

the same structures over several samples of the same data. From there and using the notion of

clustering distance defined above, it is possible to formally define clustering stability as follows:

Definition 2 (Stability of a clustering algorithm) Let P be a probability distribution over X . Let d

be a clustering distance. Let A be a clustering algorithm. The stability of the algorithm A for the

sample of size m with respect to the probability distribution P is:

stab(A, P,m) = E
X1∼Pm

X2∼Pm

[dP (A(X1),A(X2))] (1.45)

From there, the stability of algorithm A with respect to the probability distribution P is:

stab(A, P ) = lim sup
m→∞

stab(A, P,m) (1.46)

We say that algorithm A is stable for P , if stab(A, P ) = 0.

1.5.2 Stability applied to multi-view clustering

1.5.2.1 Case of consensus algorithms without an intermediate local step

In the case of multi-view algorithms that don’t have an intermediate local step (i.e. they produce the

final consensus result directly from the different views), all definitions given for regular clustering

remain unchanged. The only difference is that we consider an algorithm that starts from a multi-

view space instead of a single view one. In other word, we consider that the total space X can be

decomposed into the product X1 × · · · × XJ of J views spaces Xj .

1.5.2.2 Case of horizontal collaborative clustering

In the case of collaborative clustering however, things are different since we do not seek a consensus

solution anymore: we are in a multi-view context in which each view tries to improve its own

local clustering by exchanging with the other views. Therefore, we need to redefine the notions of
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clustering algorithm and clustering partitions in this context, and see if the definition of stability

can be adapted.

Since we are still in a multi-view context, we still consider that the total space X can be

decomposed into the product X1 × · · · × XJ of J views spaces Xj .

Definition 3 (Collaborative clustering) A collaborative clustering is defined as a combination of

local clustering in the following sense: A collaborative clustering C of the subset X ⊆ X is a function

C : X → NJ , where the i-th local cluster for view j, denoted Cji is defined as:

Cji = {x ∈ X ; (C(x))
j

= i} ⊆ X (1.47)

A collaborative clustering algorithm A = 〈A1, · · · ,AJ 〉 is a function which computes a collabo-

rative clustering based on local clustering algorithms Cj on Xj .

Definition 4 (Collaborative clustering Algorithm) Let Aj be the set of clustering algorithms on Xj .
Let C be the set of collaborative clusterings on X ⊆ X. And let Σ be the set of finite partitions of

X . Then, a collaborative clustering algorithm is defined as a mapping A1 × · · ·AJ × Σ→ C.
If we consider the whole process with the local and the collaborative step, this simplifies into a

collaborative clustering algorithm A being a function A : X ⊆ X→ C.

It is worth mentioning that in general the projection of the clustering obtained by a collaborative

algorithm onto one of the views j is distinct from the original clustering result obtained by the

local algorithm Aj for the same view: If C = A(X), then in general we have that Cj 6= Aj(Xj).

Definition 5 (Concatenation of local clustering algorithms) The concatenation of local clustering

algorithms A1 to AJ , denoted by
⊕J

j=1Aj is defined as follows: If C is the global clustering induced

by A =
⊕J

j=1Aj on a dataset X, then:

∀x ∈ X,∀j ∈ [1..J ], Cj(xj) =
(
Aj(Xj)

)
(xj) (1.48)

This defines the concatenation of local clustering algorithms as a collaborative algorithm that

does nothing, and produces the exact same results as the ones obtain by the local algorithms Aj .
Since NJ is isomorphic to N, a collaborative clustering can be interpreted as a clustering of

X ⊆ X. Consider the isomorphism νJ : NJ → N, which we will denote ν when the value of J is

obvious. Then, the mapping ν ◦ C is a clustering of X ⊆ X.

Using this equivalence, the notion of clustering distance that we defined previously holds for

collaborative clustering.

Proposition 1 Let X = X1 × · · · ×XJ be a domain, and the dj clustering distance on Xj . We define

the function d : P × S × S → [0, 1] such that dP (C1, C2) = 1
J

∑J
j=1 d

j
Pj

(Cj1, C
j
2). Then d defines a

clustering distance on X . We call it the canonical collaborative clustering distance.

Proof The clustering distance properties follow from the linearity in terms of dj and from the

properties of the local clustering distances.

We now introduce the notion of novelty, a desired property of any collaborative clustering

algorithm to do more than just concatenating the local solutions. This represents the ability of a

collaborative algorithm to produce solutions that could not have been found locally.
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Definition 6 (Collaborative clustering novelty)

Let P be probability distribution over X . The novelty of the algorithm A for the sample size m

with respect to the probability distribution P is

nov(A, P,m) = P
X∼Pm

A(X) 6=
J⊕
j=1

Aj(Xj)

 (1.49)

where A(X) is the global collaborative or multi-view clustering and
⊕J

j=1Aj(Xj) is the

concatenation of all local clusterings.

Then, the novelty of algorithm A with respect to the probability distribution P is

nov(A, P ) = lim sup
m→∞

nov(A, P,m) (1.50)

A satisfies the novelty property for distribution P if nov(A, P ) > 0

Yet, while novelty is a desirable property, in collaborative clustering -and in multi-view clustering

in general-, there is also a need that the results found a the global level after the collaborative step

remain consistent with the local data when projected onto the local views. This leads us to the

notion of consistency:

Definition 7 (Collaborative clustering consistency)

Let P be probability distribution over X . Let d be a clustering distance. Let A be a collaborative

clustering algorithm. The consistency of the algorithm A for the sample size m with respect to the

probability distribution P is

cons(A, P,m) = E
X∼Pm

dP
A(X),

J⊕
j=1

Aj(Xj)

 (1.51)

The consistency of algorithm A with respect to the probability distribution P is

cons(A, P ) = lim sup
m→∞

cons(A, P,m) (1.52)

Intuitively, consistency measures the distance of the global clustering produced by the collabora-

tion to the clustering produced by concatenation of local algorithms.

Two things can be said about novelty and consistency: The first one is that obviously these

notions are very specific to the case of collaborative clustering and unsupervised ensemble learning

(as we will see after), as it is obvious that without intermediary local clusterings, these notions

simply don’t exist. The second thing is that it is noticeable that there is a link between consistency

and novelty, and that novelty is actually a particular case of consistency based on the clustering

distance defined as follows:

∀C1, C2, dIP (C1, C2) = I(C1 6= C2) (1.53)

It can be verified easily that the function dIP is clustering distance.

However, it should be noted that there is no direct link from consistency to novelty. As such,

the intuitive idea that a 0-valued consistency implies equal clusterings (hence no novelty) is wrong.
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As a consequence, consistent algorithms are not necessarily concatenations.

Proposition 2 Let P be probability distribution over X . Let d be a clustering distance. Let A be a

collaborative clustering algorithm.

Then: cons(A, P ) = 0⇒ nov(A, P ) = 0 is incorrect.

Proof Clustering distances do not satisfy dP (C1, C2) = 0⇒ C1 = C2. Lacking this property, the

implication is incorrect.

Coming back to the notion of stability, with Proposition 1 of this section, and Proposition

13 of section 15.3 from Pierre-Alexandre’s PhD Thesis [77] which states that ”If P has a unique

minimizer C∗ for risk R, then any R-minimizing collaborative clustering algorithm which is risk

converging is stable on P”, we can see that the notion of stability as it was defined in Definition

2 holds true for collaborative clustering algorithms and can be treated in the same way when it

comes to stability analysis.

A first result can be shown about the concatenation of clustering algorithms. Proposition 3

below states that a concatenation of local algorithms is stable provided that the local algorithms

are stable.

Proposition 3 Suppose that the local algorithms Aj are stable for distance djPj
. Then the concate-

nation of local algorithms A =
⊕J

j=1Aj is stable for canonical distances.

Proof Let X1 and X2 be two samples drawn from distribution P . Then we have :

dP (A(X1),A(X2)) =
1

J

J∑
j=1

djPj

(
(A(X1))j , (A(X2))j

)
(1.54)

=
1

J

J∑
j=1

djPj

(
Aj(Xj

1),Aj(Xj
2)
)

(1.55)

From the linearity of the expected value, it comes that:

stab(A, P,m) =
1

J

J∑
j=1

stab(Aj , P j ,m) (1.56)

Hence the stability of A.

This result is rather intuitive, since the concatenation corresponds to a collaborative algorithm

that does nothing. From this point of view, it is expected that the unmodified results of stable local

algorithms will remain stable. More interestingly, using the notion of consistency, the same result

can be applied to get a more generic result:

Theorem 1 Let A = 〈A1, · · · ,AJ〉 be a collaborative clustering algorithm. Then the stability of A
relatively to the canonical distance is upper-bounded as follows:

stab(A, P ) ≤ cons(A, P ) +
1

J

J∑
j=1

stab(Aj , P j) (1.57)
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Proof Let X1 and X2 be two samples drawn from distribution P . Since the canonical distance

satisfies the triangular inequality, we have:

dP (A(X1),A(X2)) ≤ dP

A(X1),

 J⊕
j=1

Aj
 (X1)

 (1.58)

+ dP

 J⊕
j=1

Aj
 (X1),

 J⊕
j=1

Aj
 (X2)

 (1.59)

+ dP

 J⊕
j=1

Aj
 (X2),A(X2)

 (1.60)

Then, by taking the expected value of this expression, we obtain:

stab(A, P,m) ≤ 2× EX∼Pm

dP
A(X),

 J⊕
j=1

Aj
 (X)

 (1.61)

+ EX1,X2∼Pm

dP
 J⊕

j=1

Aj
 (X1),

 J⊕
j=1

Aj
 (X2)

 (1.62)

which is the result we wanted.

This result has the advantage of being generic since it makes no assumption on the nature of the

collaboration process. It also has the direct consequence that any consistent collaborative algorithm

working from stable local results is stable for the canonical distance. However, this corollary is

quite limited since the consistency assumption is extremely strong and does not apply to most

practical cases where the collaborative process is expected to find results that differ from the simple

concatenation of the local results from each views.

1.5.2.3 Case of unsupervised ensemble learning

Finally, we move to the case of unsupervised ensemble learning where several clusterings are to be

merged into a single consensus clustering. It is obvious from this definition that we have a hybrid

situation between the case of consensus clustering without intermediate results and the case of

horizontal collaborative clustering that we have presented earlier.

Nevertheless, it is easy to see that unsupervised ensemble learning is closer to collaborative

clustering with notions such as novelty and consistency being relevant here. As such, all definitions,

propositions and theorems defined for collaborative clustering can be applied to the case of

unsupervised ensemble methods with the main following differences:

– The total data space considered is
∏J X, the original data space X duplicated into the J

views.

– Since an unsupervised ensemble method A produces a single partition, a specific distance

function must be defined to compare A and a concatenation of local results
⊕J

j=1Aj as these

are not objects of the same nature here. This can easily be done by duplicating the consensus

partition J times.
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Please note that for the second difference, going the other way by merging the local solutions

instead of concatenating them is a bad idea.

1.5.3 Conclusion

The results presented in this section have been done with the goal of presenting a unified theoretical

framework from stability in an unsupervised multi-view context. As you can see, this is a very

preliminary work that does not yet yields results that can be used in practice.

Nevertheless, it is our hope that as this work advances we may be able to practically analyze

the dozens of multi-view algorithms and collaborative framework that exist in the literature so that

we can know where they stand regarding the important property that is stability. Indeed, most

of classical clustering methods have been deeply analyzed from a theoretical point of view: their

convergence properties, complexity, deterministic nature, and stability are known properties that

are useful to pick a clustering algorithm. However, many of these properties still remain barely

scratched from most of what has been proposed in multi-view clustering, especially for horizontal

collaborative clustering and the many available methods for clustering fusion and unsupervised

cluster ensembles.

1.6 Chapter Conclusion

In this chapter, I have presented 5 years of work on clustering techniques in multi-view environments

after my PhD thesis. During these years, through several collaborations and with the help of PhD

students, several aspects of this field have been tackled.

First we have tackled the issue of confidence in multi-view clustering. We have used several

approaches all with the pros and cons. The purely mathematical approach using KKT optimization

[47] was effective in the sense that it favors the stability of the structure found. But we saw it

also completely undermines the principle of multi-view learning by discouraging the search for

novel results that couldn’t be found locally. Furthermore, some of our subsequent works [53] have

empirically confirmed that this approach based solely on the notion of inter-view partition similarity

was not the most effective one. The non-stochastic multi-armed bandit approach [57] on the other

hand has the advantage of allowing a lot more exploration and take into consideration the potentially

changing usefulness of the views through the learning process. The main inconvenient of this second

approach was its complexity and difficulty to scale with a large number of view.

We tackled the issue of view confidence and usefulness from another angle with the deep cooper-

ative reconstruction system [60]. With this algorithm we approached the problem of reconstructing

missing data based on information from other views. By doing so, we saw that it is possible

to optimize the weight given to each view in deep learning processes simply by using gradient

back-propagation. The results for the reconstructed data were not always as impressive as we had

hoped. But it is worth mentioning that all reconstructed data led to good scores for subsequent

classification tasks, thus highlighting that despite average reconstructions the latent representations

were most likely correct.

We have then presented an information theory based approach for multi-view clustering [68]. It

relies on the notion of Kolmogorov complexity and clustering being a compression task. Using this

principle, we have shown how the Kolmogorov complexity of given partitions can be computed using
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different formulations depending on the family of clustering algorithm that was used to produce these

results. By using such representations and combining it with different error resolutions algorithms,

we have shown how this idea can be efficiently used for both multi-view clustering and unsupervised

ensemble learning (clustering fusion).

Finally, we worked on the extension of the notion of clustering stability to multi-view applications.

As you have seen, these are still preliminary results. Regardless, it is my strong opinion that this

work is important, as it should help many people working in multi-view clustering to know what

are the properties of their algorithms: are they stable ? Can they produce novel results compared

with the local views ? And many other questions.

Progresses have been made, and I hope that all these works can be useful to other people in the

community. Nevertheless, it is easy to see that there is still a lot to do and that scholars working on

clustering are indeed adventurers: multi-view or not, clustering remains a difficult machine learning

specialty where everything is ill-defined (when not downright quirky), where results are difficult to

evaluate and compare, and where the simple problem of picking a clustering algorithm for a new

task is difficult.

Within this context, it seems to me that -while I hope that all contribution of this manuscript

will be useful,- the continuation of our work on stability is something that must be done as this

might allow to lift the fog that surrounds multi-view unsupervised learning by providing some extra

clues at the properties of algorithms available in the literature.
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Chapter 2

Conciliating powerful, but data hungry

algorithms with applications where

labeled data are scarce: An attempt at

Deep Learning in unsupervised

environments

“Deep Learning makes no sense for unsupervised applications. You should definitely work on fuzzy

quantum topological collaborative clustering through optimal transport. I foresee promising

applications and great findings!”

A visionary colleague (2017)
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2.1 Chapter Introduction

2.1.1 Deep learning in unsupervised environments ?

By the end of my PhD thesis, most of my work had been focused on multi-view clustering aspects

and I had a somewhat limited experience with applications in the field of remote sensing. At the

time, it is fair to say that I was not really knowledgeable about state of the art algorithms for

image processing. And yet, I had a real interest for this field, especially with Deep Learning being

on the rise: Deep neural networks based on convolutional neural networks [82] such as VGGNet

[83], Inception [84] and ResNet [85][86] were all the rage at this time. And in a word where GPU

were becoming more common, the deep learning rising tide had already pretty much destroyed

everything done by any other family of machine learning algorithms: Medical image analysis for

disease detection [87], facial recognition [88], video analysis for autonomous driving [89], gesture

recognition [90], handwriting recognition [91], and many more; Deep Learning and neural networks

were everywhere and were dominating everything when it came to image or video analysis.

Like with more regular datasets, my modest experience with image analysis had been mostly

unsupervised. And all of sudden, my publications about multi-view clustering for satellite image

analysis [92][93][49][94] felt small. After all, I was facing the best machine learning algorithms of

their time equipped with variants of the K-Means algorithm [18] applied to segments extracted

using watersheds [95]. Yet, the more I was reading about these top-notch deep learning methods,

the more it became apparent to me that nearly all of these methods were designed for supervised

learning tasks and required enormous amounts of carefully chosen and labeled data to produce the

great results that we were all so proud of. And so I wondered: What do we do when we don’t have

labeled data ? Can we do clustering with deep learning algorithms ? Can it find interesting things

in images if you don’t feed it thousands of examples of what is interesting and what is not ? Except

for the lonely W-Net algorithm [96] for unsupervised image segmentation and clustering (and it

came out only in 2017), I did not find much answers in the literature. Of course, there were also the

autoencoders [63] that had been around for a while, butthey are mostly dimensionality reduction

algorithms and don’t do clustering or predictions on their own.

To sum up, in one hand I had antiquated clustering algorithms that were not great for image

processing, and on the other hand I had the mighty and powerful deep learning algorithms that

despite their performances would not work for my unsupervised problems because I had no labeled

data to feed them. As for my peers, they had varying views on the subject of unsupervised deep

learning ranging from ”It cannot be done” and ”We people of unsupervised learning are not concerned

by your deep networks”, to weird interpretations of Pr. Yann Le Cun’s cake analogy on self-supervised

learning1 and that such unsupervised deep madness -if possible- would most certainly result in

creating Skynet2. I was eager to prove them wrong. And thus began my journey to figure out if it

was possible to do some Deep Learning image analysis in unsupervised environments.

1https://medium.com/syncedreview/yann-lecun-cake-analogy-2-0-a361da560dae
2https://en.wikipedia.org/wiki/Skynet_(Terminator)
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2.1.2 Chapter organization

Unlike the previous chapter in which each section was a contribution or a group of subsequent

contributions, the organization of this chapter is different. We follow a thematic organization:

Section 2.2 features contributions made for remote sensing applications, and Section 2.3 introduces

some more contributions in the field of medical image analysis.

Like for the previous chapter, not all contributions are detailed in this manuscript.

2.2 Time series analysis of satellite images using unsupervised

deep learning methods

Most elements presented within this section are part of the work realized with my former PhD

student Ekaterina Kalinicheva and can also be found in her PhD thesis manuscript [97]. This

work was also part of a broader involvement of ISEP within the CES Détection des changements

génériques3 (expert committee on detecting generic changes) led by Professor Pierre Gançarski.

2.2.1 The remote sensing context

2.2.1.1 Introduction to remote sensing

With the development of satellite technologies and the improvements in various space programs, it is

now possible to acquire images from pretty much anywhere in the world thanks to the ever increasing

number of Earth observation satellite on orbit around Earth. This gave birth to powerful tools for

Earth observation which allow the study of any area of interest at any time and without direct

physical interaction. It goes without saying that remote sensing as a science advanced in parallel

with the progresses in image processing algorithms, including the rise of deep learning algorithms:

While only several decades ago, remote sensing image analysis was a difficult, time-consuming and

a manual task; nowadays, image processing algorithms suited for image processing make it possible

to analyze the image data using computer in no time.

While they can involve either aircraft, drones or satellites, remote sensing images are still most

commonly acquired by artificial satellites with various sensors on board. The sensors on board these

satellites can be divided into two categories: active and passive. Active instruments use their own

source of energy to interact with an object, while passive instruments use the energy emitted from

a natural source, in particular, from the sun.

Active sensors usually refer to Synthetic Aperture Radar (SAR) that measures the surface

roughness. The main idea of this approach is to measure surface back-scattering: the portion of the

radar signal that is redirected back by the target.

Passive sensors on the other hand are mostly made of optical sensors that measure the amount

of sun energy reflected by the target. It is this type of sensor that is used in this section. From these

optical sensors, we exploit different radiation wavelengths or frequencies from the electromagnetic

spectrum (some of which match with visible colors). Figure 2.1 shows the electromagnetic spectrum

with the corresponding wavelengths.

3https://www.theia-land.fr/ceslist/ces-detection-des-changements-generiques/
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Figure 2.1: Electromagnetic spectrum.

The spectrum is divided in different spectral ranges: We distinguish the visible spectrum (the

radiation perceived by human eye), infrared, ultraviolet, etc. The Earth surface reflects different

types of radiation, depending on its coverage. Figure 2.2 shows that vegetation absorbs the visible

radiation and reflects near-infrared radiation, and it is the same for bare soil. At the same time,

water surfaces reflects all the visible wavelengths.

Figure 2.2: Spectral signatures of the water, green vegetation and soil within the different windows of the
electromagnetic spectrum.

Every satellite image acquired by an optical sensor is characterized by:

– Its number of spectral bands. By contrast with RGB images, satellite images can have more

than 3 bands.

– Its spectral resolution: the spectral width of each spectral band or the capacity of sensor to

define fine wavelength intervals for each band.

– A spatial resolution: the pixel size of each band.

– A radiometric resolution: the range of image bits. It reflects the capacity of an instrument to

distinguish differences in object reflectance.
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We distinguish between mono-, multi- and hyperspectral images: Monospectral images contain a

unique spectral band and the image pixels are characterized by a single value. Multispectral images

contain from 3 to 10 spectral bands, while for hyperspectral images their number is higher that

10. Their pixels are characterized by vectors of radiometric values from each band. Monospectral

images usually contain a single panchromatic band. In the meantime, multispectral images should

have at least green, red and near infrared (NIR) bands as they are the most informative.

Finally, it is worth mentioning that Deep Learning has already revolutionized the analysis of

remote sensing images in several ways. The most straightforward one is that it makes hand-crafted

feature design and selection unnecessary. This is all the more interesting with increasing spectral and

temporal resolutions since it allows alleviating the conception of specific attributes between bands or

epochs. The second one is that the division of a standard processing pipeline into feature extraction,

classification, and regularization steps becomes probably obsolete. Deep Learning algorithms do it

all.

2.2.1.2 Challenges of satellite images

Compared with regular RGB images, satellite images present a number of challenges that make

them particularly difficult to tackle:

– Multispectral images tend to contain more than 3 channels. Because of this, all algorithms

designed for RGB images need to be modified to take into account the extra channels. But

these extra-channels also mean that visualizing these images can be tricky and require the

use of specific software. This can also make result interpretation more difficult in some cases.

– Satellite images especially recent ones can be huge and reach sizes that make them difficult

to handle by image processing algorithms without clipping them or having a lot of RAM

and computation power. This and the extra-channels can be a problem for high complexity

algorithms.

– They have all sorts of defects and issues: cloud masking part of the images, shadows projected

by buildings, optical distortions due to atmospheric conditions, over-saturated pixels due to

high reflectance objects, etc. While some of these problems can be solved or diminished in

prep-processing, many will remain in the final images.

– Satellite images contain lots of objects, and different scales of objects and areas that may

or may not be interesting depending on the application [93]. This makes any segmentation

process difficult, especially if it is unsupervised, because the scale of interest has to be defined:

Are wee looking for city areas or individual houses ? Are we searching for vegetation areas, or

do we want to sort out different types of vegetation ?

Finally, it is worth mentioning that while there is an abundance of available satellite images,

very few of them are provided with labels. The reason for that are quite simple and have been

discussed above: First these images present many different objects at different scales. And as such,

labeling them greatly depend on the application and is a task that often must be done manually

and by experts of whatever we are looking to detect. This means a costly and time consuming

pre-processing to label these images. Second, due to the variety of landscapes, different image

resolutions, and various seasonality effects, data that have been labeled or model that have been
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train on given images can rarely be used for other images with slightly different landscapes. As a

result, unless you either tackle data from a pre-existing project or you have time, money and people

to manually label images and produce a ground-truth, a new project with remote sensing images

often means that you won’t be able to use supervised learning algorithms. Finally, even when they

are available there is always a reliability issues with the produced ground-truth [98], as these are

-again- difficult images and experts tend to not always agree as to what should be labeled how.

In this context, having image processing algorithms that work in an unsupervised environment

becomes handy.

2.2.1.3 Satellite image time series

Satellite image times series (SITS) are used for numerous applications: the analysis and preservation

of the stability of ecosystems, the detection of phenomena such as deforestation and droughts, the

study of economical and urban development of cities and agglomerations, the analysis of vegetation

states and changes for different agricultural purposes, etc.

All of these applications were made possible thank to the regular acquisition of satellite images

of the same areas from programs such as SPOT-5 or Sentinel. However, in addition to the challenges

mentioned with individual remote sensing images, time series add their own challenges that can

make change detection, time series analysis and time series prediction even more difficult:

– The temporal resolution of satellite image time series can vary greatly from one mission to

another, and the time between exploitable images may not be constant (irregular acquisition

or simply cloudy images).

– Many areas will have strong seasonality effects which can lead to drastic changes in landscape

(vegetation changes for instance, or snow in extreme cases). But some of these seasonal changes

can also take the form of a constant cloud cover during several months in tropical areas with

a wet season. In a best case scenario, at least the luminosity will vary between images.

– All the artifacts and defects mentioned for single images will still happen but may vary from

image to images: shadows and saturated pixels will not be the same depending on the time of

the year an image was taken and also depending on the weather conditions.

2.2.2 Detecting non-trivial changes using joint-autoencoders

In this subsection, we tackle the problem of detecting non-trivial changes between two remote

sensing images of a time series. This work is extracted from some of our published work [99] and

proposes an unsupervised neural network based on auto-encoders that can detect non-trivial changes

between two consecutive images of the series.

2.2.2.1 Problematic and State of the art

As we have mentioned in the introduction, satellite image times series are difficult data to tackle.

In particular, many applications concerning these time series require to detect specific changes

between images. This is however a difficult task because of the need to define what a “meaningful”

or “non-trivial” change is, and because satellite image time series are known to be riddled with all

sort of seasonal changes and defects that we have already mentioned. In our case, our goal is to
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detect changes in urban areas (road or building construction for instance), or changes in land cover

(e.g.: forest being replaced by crops), all the while ignoring all seasonal changes in the vegetation,

as well as changes in luminosity and other artifacts between two images. As such, in this work, we

define a non-trivial change all the changes in land cover that are not caused by seasonal effects

(vegetation changes), lighting issues or artifacts.

Different algorithms for change detection have been proposed in the literature. For example,

in [100] the authors use PCA and hybrid classification methods to detect changes in urban areas.

On the other hand, in [101] the authors propose a siamese neural network for supervised change

detection in open source multi-spectral images. In [102], the authors propose a supervised change

detection architecture based on based on U-Nets [103]. Similarly, in [104], the authors propose

another and better supervised architectures based on convolutional neural networks (CNN) and

that shows very good performance to separate trivial changes from non-trivial ones. As one can see,

the main issue with these methods is that they are all supervised and need labeled data.

A few unsupervised methods exist in the literature for change detection, but many of them are

primitive (based on image differences and thresholds) and can hardly be applied to high resolution

remote sensing images with complex objects. For this reason, in this state of the art, we will

only mention the few ones that are related to satellite image analysis. To improve the quality of

unsupervised change detection between two images, the fusion of results from different algorithms is

often proposed [105]. At the same time, automatic methods for selection of changed and unchanged

pixels are used to obtain training samples for a multiple classifier system [106]. Following this paper,

the authors of [107] propose the improved backpropagation method of a deep belief network (DBN)

for change detection based on automatically selected change labels. In this work, the authors use

an RBM-based (Restricted-Boltzmann Machines) model to learn the transformation model for a

couple of VHR co-registered images. RBM is a type of stochastic artificial network that learns

the distribution of the binary input data. It is considered to be simpler than convolutional and

autoencoder-based neural networks, and works very well with Rectified Linear Units activation

functions [108].

Nevertheless, classic change detection approaches do not separate trivial (seasonal) changes

from non-trivial ones (permanent changes and changes that do not follow seasonal tendency). This

weakness can drastically complicate the interpretation of change detection results for regions with

high ratio of vegetation areas. In fact, when analyzing two images belonging to different seasons

of the year, almost all the area will be marked as change and further analysis will be needed to

identify meaningful changes (non-trivial).

In [109], a regularized iteratively weighted multivariate alteration detection (MAD) method for

the detection of non-trivial changes is proposed. This method was based on linear transformations

between different bands of hyperspectral satellite images and canonical correlation analysis. However,

the spectral transformation between multi-temporal bands was too complex. For these reasons,

deep-learning algorithms which are known to be able to model non-linear transformations, have

proved their efficiency to solve this problem and have been proposed as an improvement of this

architecture in [110].

Alternatively, in [111], the authors propose a non-neural network-based, but still unsupervised,

approach which relies on following segmented objects through time. This approach is very interesting

but remains difficult to apply for cases where the changes are too big from one image to another.
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Our approach described in Section 2.2.2.3 re-uses some of the abilities and ideas from the RBM

architecture proposed in [110] and updates it by using the advantages of autoencoders (on which

we give a few reminders in Section 2.2.2.2 below).

2.2.2.2 Autoencoders

The original autoencoders was introduced by Hinton et al. [63]. The principle of the autoencoder

is that this fully unsupervised network take some data or an image as an input, and attempts to

reconstruct it at the output. It is a network with fully connected layers (at least in the original

version) made of two main parts: An encoder in which the number of nodes is slowly reduced

until we reach a bottleneck. And a decoder which is built in a symmetrical fashion to the encoder.

The learning is done using simple back-propagation of the difference between the expected output

and the predicted output. This clever principle shown in Figure 2.3 has several advantages: The

information compression caused by the bottleneck often results in the removal of noise between the

original image and the reconstructed one. Robust features can often be extracted at the bottleneck

of the network, features which can then be used for clustering or classification. And finally, and this

is important for our applications, autoencoders are particularly good at learning textures.

Figure 2.3: Basic architecture of an autoencoder made of an encoder going from the input layer to the
bottleneck and the decoder from the bottleneck to the output layers.

Among the different neural network models, autoencoders have found application in many

domains. In image processing, autoencoders are widely used for image segmentation [112][103],

image compression [113], image reconstruction [114], for feature extraction [115, 116] and clustering

[117][118].

2.2.2.3 Proposed architecture for non-trivial change detection

For our non-trivial change detection problem, we take advantage of the autoencoder ability to learn

robust features and to map textures. Our proposal is the following: We will train a joint-autoencoder
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to predict an image Imn+1 based on the image Imn, (and Imn based on Imn+1 in the other

direction), see Figure 2.4. The autoencoder will learn all seasonal changes and global changes in

luminosity from one image to another simply by mapping the textures since autoencoders are good

at it. Some of the artifacts should also be removed by its denoising ability. And from there, we

simply exploit its inability to do anything much than mapping common textures so that it won’t be

able to map and reconstruct all of the non-trivial changes that we are interested in.

Figure 2.4: Joint Autoencoder

In other words, with use both the strength of the autoencoder to map texture so that we can

get rid of seasonal changes (in the vegetation for instance) and we use the weakness that it can’t

predict the future so that the non-trivial changes will show up in places the autoencoder has a high

reconstruction error.

It is worth mentioning that many approaches rely on the analysis of image differences. We tried

this approach with regular autoencoders [119], and while we achieved some results, it was overall

less good than the joint approach from the original images.

The full architecture of our model is shown in Figure 2.5. The detailed steps of the algorithm

are the following:

1. We start with a pre-training phase where the autoencoder is not joint yet: a single autoendoer

is pre-trained based on patches of Imn and Imn+1. At this step, all patches are used for

self-reconstruction and there is no reconstruction from one image to the other yet. The goal

of this step is to pre-train the network with the various textures.

2. The auto-encoder pre-trained during the previous phase is duplicated and joint as shown in

Figure 2.4. This is the fine-tuning phase where Imn tries to predict Imn+1 and vice-versa.

3. Once the network is trained comes the reconstruction phase: From Imn the autoencoder

builds Im′n+1 and from Im′n+1 we get Im′n.

4. The reconstruction error (RE) map is computed between each image and the autoencoder

prediction. Then, an average error map is built from the reconstruction error of Im′n and

Im′n+1.

5. Finally, we apply Otsu thresholding [120] to build the final map of non-trivial changes.

C. GRECO 2011



58

2. Conciliating powerful, but data hungry algorithms with applications where
labeled data are scarce: An attempt at Deep Learning in unsupervised

environments

For a time series of size S, the training in step 1 should be done on the full series and not only

each pair of images, and steps 2 to 5 should be repeated for all pairs of images so that all binary

change maps of non-trivial changes can be built.

Figure 2.5: Full architecture: unsupervised detection of non-trivial changes.

Different variant of this architecture presented in the table below have been used in several of

our publications [121][99][122] for change detection or for the clustering of the non-trivial changes

we detected. For all architectures, the Mean square error (MSE) of the reconstruction is used for

the back-propagation process. All convolution layers, except for the last layer of the decoder part,

have batch normalization. The most common parameters for all convolutional layers were: kernel

size=3, stride=1, padding=1. The patch size p2 may vary depending on the resolution of the image.

AE type Fully-conv. AE Conv. AE Conv. AE + DEC

en
co

d
er

Conv(B, 32)+ReLU Conv(B, 32)+ReLU
Conv(B, 32)+ReLU Conv(32, 32)+ReLU Conv(32, 32)+ReLU
Conv(32, 32)+ReLU Conv(32, 64)+ReLU Conv(32, 64)+ReLU
Conv(32, 64)+ReLU Conv(64, 64)+ReLU Conv(64, 64)+ReLU

Conv(32, 64)+`2 Lin(64× p2, 12× p2)+ReLU Maxpool(p)
Lin(12× p2, 2× p2)+`2 Lin(64× p2, 32× p2)+ReLU

Lin(32× p2, 4× p2)+`2

d
ec

o
d
er

Lin(4× p2, 32× p2)+ReLU
Lin(2× p2, 12× p2)+ReLU Lin(32× p2, 64× p2)+ReLU

Conv(64, 64)+ReLU Lin(12× p2, 64× p2)+ReLU Unpooling(p)
Conv(64, 32)+ReLU Conv(64, 64)+ReLU Conv(64, 64)+ReLU
Conv(32, 32)+ReLU Conv(64, 32)+ReLU Conv(64, 32)+ReLU

Conv(32, B)+Sigmoid Conv(32, 32)+ReLU Conv(32, 32)+ReLU
Conv(32, B)+Sigmoid Conv(32, B)+ reLU

Table 2.1: Model architectures with B the number of bands and p the patch size. Models 1 and 2 are for
change detection, and model 3 is for clustering.

Our experiments applied to SPOT-5 images of the French city of Montpellier have shown

fully convolutional joint-autoencoders (1st column of Table 2.1) and simple convolutional joint-

autoencoders (2nd column of the same table) to have overall similar performances, with a slight
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performance edge for simple convolutional joint-autencoder due to its higher number of parameters,

and better training times for the fully convolutional model.

2.2.3 Case study of the 2011 Tohoku tsunami

In this subsection, we present a case study of the previously presented change detection method

applied to the case of the 2011 Tohoku tsunami [122].

If you are interested, there are other applications of more or less advanced machine learning to

damage surveys of geohazards [123][124][125][126], however many of them heavily rely on supervised

learning or the intervention of human experts as part of the active process of image analysis.

A broad review of remote sensing based approaches for damage assessment after the Tohoku

tsunami is available in [127]. And another quite exhaustive review focusing on Machine Learning

and artificiel intelligence methods applied to this particular disaster is proposed in [128].

2.2.3.1 Dataset

The 2011 earthquake off the Pacific coast of Tohoku was the result of a magnitude 9.1 undersea

mega-thrust earthquake that occurred on Friday March 11th of 2011 at 2:46 p.m. local time (JST).

It triggered powerful tsunami waves that may have reached heights of up to 40 m and laid waste to

coastal towns of the Tohoku’s Iwate Prefecture, traveling up to 5 km inland in the Sendai area [129].

The goal of our case study was to see if our previously proposed change detection deep learning

could be used on a real scenario: In this case we wanted to map de damages caused by the Tohoku

tsunami. To this end, we used images from the ASTER program. We kept the Near-Infrared, Red

and Green bands with a resolution of 15 m.

The optical images we used are from March 19th 2011, November 29th 2010 and July 7th 2010

(Figure 2.6), see Table 2.2 and where chosen for different reasons: The march 19th image was the

first available image for this area after the disaster and is cloud free. As for the two other images,

the one from November 29th was the first available before the disaster but is quite cloudy, so we

had to seek an earlier image hence the image from July 7th 2010.

The correction level of the images is 1C—reflectance of the top of atmosphere. It means that

reflectance values are not corrected for the atmospheric effects.

Table 2.2: Images characteristics.

Date Clouds Program Resolution H × W , pixels

Imb1 24/07/2010 <1%, far from the coast
Imb2 29/11/2010 ≈15%, over the coast ASTER 15 m 2600× 1000
Ima 19/03/2011 none

The first difficulty was therefore to choose what to do with the before images: On the one hand

the November image with clouds was closer and had the advantage of having similar states of

vegetation than the March one. On the other hand, the July image was clearer but had a very

different vegetation, dry rivers and a different summer reflectance that may affect the detection of

the damages. The details can be seen in Figure 2.7. It seemed to us that both images had their

advantages, but that the November should have been our priority in the absence of clouds. Since

our algorithm cannot used two “before” images anyways, we decided to combine the two images by
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using masks that would replace cloud areas from the November 2010 image by elements of the July

2010 image.

Figure 2.6: Images taken over the damaged area, (a) 7 July 2010, (b) 29 November 2010, (c) 19 March 2011.

Figure 2.7: ASTER images taken on (a) July 2010 and (b) November 2010. Image (a) was taken in sunny
conditions that caused much higher pixel values for urban area pixels (zoomed) than for image
(b). For example, the value of the same pixel of this area is equal (83, 185, 126) for (a) and (37,
63, 81) for (b). Moreover, a great part of image (b) is covered by clouds and their shadow.
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2.2.3.2 Adding clustering on top of change detection

To detect the changes damages caused by the tsunami, we used the same joint-autoencoder principle

than the one proposed in the previous section: the goal was to ignore seasonal changes and to detect

the damages as non-trivial changes. However, for this application there was an extra step that

we were interested in: sorting the damages into different categories, or in other words running a

clustering algorithms on the detected non-trivial change areas. This leads us to the architecture

process shown in Figure 2.8.

Figure 2.8: Unsupervised detection of non-trivial changes and clustering.

To do so, we used Deep Embedding clustering (DEC) [118], a clustering technique that seeks

clusters from the bottleneck nodes of autoencoders. The main steps of the DEC algorithm are

the following:

1. Pre-train an AE model to extract robust features from the patches of concatenated images in

an embedding space.

2. Initialize the centers of clusters by applying classical K-Means algorithm [18] on extracted

features.

3. Continue training the AE model by optimizing the AE model and the position of the centers

of clusters, so the last ones are better separated. Perform label update every q iterations.

4. Stop when the convergence threshold t between labels update is reached (usually t = 0.5%).

In our case, we used two of the autoencoder architectures described in Table 2.1 that share a

common training of their convolutional layers: the joint fully convolutional joint-autoencoder is

used for the change detection part (column 1), and the DEC version of the regular autoencoder is

used for the clustering part (column 3).

To detect the changes on 15 m resolution ASTER images we use patch size p = 7 pixels that was

chosen empirically. In the case if images were perfectly aligned, p = 5 would be enough, but since

we have a relatively important shift in these data, we add margins by using larger patches.

As we have two before images, we pre-train the model on the patches extracted from 3 images

with the cloud mask applied (the cloud mask is extracted automatically with the K-Means algorithm
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using 2 clusters on the encoded images). Once the model is stabilized, we fine-tune it for 2 couples

of images Imb1 / Ima and Imb2 / Ima and we calculate the RE for both couples in order to produce

change maps CMb1,a and CMb2,a. We replace the masked part of CMb2,a by CMb1,a to obtain the

final change map CMb,a. We combined the results of two couples of images as the results produced

by Imb2/ Ima are a priory more correct as the acquisition dates of the images are closer than for

Imb1 / Ima. It is explained by the fact that the seasonal changes and other changes irrelevant to

the disaster are less numerous.

During the last step we perform the clustering of obtained change areas to associate the detected

changes to different types of damage (flooded areas, damaged constructions, etc.).

2.2.3.3 Results

Figure 2.9: (a) Extract of the original post-disaster image (b) Clustering results with 4 clusters from the
DEC algorithm. On the left is the post-disaster image, on the right the clustering with the
following clusters: (1) In white, no change. (2) In blue, flooded areas. (3) In red, damaged
constructions. (4) In purple, other changes.
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The results of our proposed method are shown in Figure 2.9 where we show a projection of the

result on the coastal area of interest that was used as an application area. In this image, the blue

cluster matches for flooded area, the red cluster destroyed buildings, and the purple cluster is other

types of changes that we weren’t able to assigned to any obvious type of damage.

Obviously we had no ground truth to check the accuracy of our prediction, but we tried to make

one for a few coastal areas. The results can be seen in Figures 2.10, 2.11, 2.12 and 2.13 where we

focus on some clusters: flooded areas and destroyed buildings. In these figures, we also compare

our method with the K-Means algorithm applied to the same original bottleneck features as the

ones used by the DEC algorithm (DEC is actually initialized using KMeans) and with an improved

version of the RBM model from [110].

Figure 2.10: Change detection results. (a) image taken on 29 November 2010, (b) image taken on 19 March
2011, (c) ground truth, (d) average RE image of the proposed method, (e) proposed method
CM, (f) RBM.

C. GRECO 2011



64

2. Conciliating powerful, but data hungry algorithms with applications where
labeled data are scarce: An attempt at Deep Learning in unsupervised

environments

Figure 2.11: Change detection results. (a) image taken on 7 July 2010, (b) image taken on 19 March 2011,
(c) ground truth, (d) average RE image of the proposed method, (e) proposed method CM,
(f) RBM.

Figure 2.12: Clustering results, flooded area. (a) image taken on 7 July 2010, (b) image taken on 19 March
2011, (c) ground truth, (d) K-Means on subtracted image, (e) K-Means on concatenated
encoded images, (f) DEC on concatenated encoded images.
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Figure 2.13: Clustering results, destroyed constructions. (a) image taken on 7 July 2010, (b) image taken
on 19 March 2011, (c) ground truth, (d) K-Means on subtracted image, (e) K-Means on
concatenated encoded images, (f) DEC on concatenated encoded images.

These experiments have highlighted some of the strengths and weaknesses of our proposed meth-

ods.

First, we saw that despite being unsupervised, our algorithm is very strong to detect non-

trivial changes even with relatively low quality images that are far apart in time, as well as cloud

coverage issues and changes in luminosity. We achieve an accuracy around 85% [122] which is

comparable with supervised methods from the state of the art. This is a very strong point with an

unsupervised algorithm.

Then, we also saw that the clustering phase had more mixed results, which was to be expected

from an unsupervised approach. This is due to several phenomena:

– The small errors from the change detection step were propagated to the clustering step.

– It is very difficult for an unsupervised method to find clusters that perfectly match expected

expert classes. Our proposed method was good enough to detect flooded areas; however

damaged constructions were a lot more difficult to detect and resulted in the creation of a

cluster that mixed the modified shoreline and damaged constructions.

– As mentioned previously, the ground truth was built from investigation report and manual

labeling of the focus areas which means that our ground truth is far from perfect outside of

these focus areas.

However, despite these difficulties, our proposed pipeline relying on joint-autoencoders for

change detection and the DEC algorithm for the clustering part achieve very good results for water

detection, and fair results for damaged constructions detection with high recall results.

Finally, while the application area and the data quality are different, it is worth putting our

results into perspective while comparing them with the ones from [126] where the authors proposed

a state-of-the-art method for the same application of the Tohoku tsunami. The main differences are

that (1) they use a supervised neural network and thus require labeled data, which we do not, and
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(2) they have higher quality satellite images of a different area that are not publicly available. Still,

our unsupervised method achieved comparable results with them both visually and quantitatively

[122].

2.2.4 Time series analysis using an unsupervised architecture based on Gated

Recurrent Units

In this subsection, we go beyond the simple analysis of changes between two images. We propose a

method [130] to study full time series. Our method is a clustering technique aiming at analyzing

and sorting different types of change behaviors in image time series. It was originally designed for

satellite image time series, but we see no reason why this could not be adapted to other types of

image time series.

2.2.4.1 Global architecture

The architecture we propose was originally develop to segment non-trivial change behavior through

time. But when combined with more regular space-time segmentation methods [111], it can identify

spatio-temporal entities in satellite image time series and associate them to 3 different types of

temporal behaviors: : no change area, seasonal changes and non-trivial changes. No change areas

are mostly presented by spatio-temporal entities that have the same spectral signature over the

whole SITS, such as city center, residential areas, deep water, sands, etc. Trivial (seasonal) changes

correspond to cyclic changes in vegetation prevailing in the study area. Finally, non-trivial change

areas are mostly represented by permanent changes such as new constructions, changes caused by

some natural disasters, crop rotations and the vegetation that do not follow the overall seasonal

tendency of the study area. Furthermore, as we have explained earlier non-trivial changes are

basically outliers that don’t follow the general trend, and as such in our approach we propose to

cluster them into several categories.

The proposed approach is composed of several steps. Let RS be a time series of S co-registered

images Im1, Im2, ..., ImS acquired at timestamps T1, T2, ..., TS . The algorithm steps are the

following (See Figure 2.14 for a graphical summary):

– We start by applying the bi-temporal non-trivial change detection algorithm that we presented

in Section 2.2.2.3 to every couple of consecutive images Imn-Imn+1 (n ∈ [1, S]). However, the

changes detected by doing so are contextual to each pair of images. It is therefore necessary to

refine the S − 1 binary change maps CM1,2, CM2,3, ..., CMS−1,S over the whole series using

logical constraints that can discriminate 3 types of changes: false-positive changes, one-time

anomalies and real changes (see Section 2.2.4.2), only the later of which we are interested in.

– We extract the spatio-temporal change areas by applying the change masks to the correspond-

ing images of the time series.

– Then we perform image segmentation within these change areas to obtain changing objects.

– Afterwards, the change objects located in the same geographic area are grouped in temporal

evolution graphs [131][111].
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– Finally, we cluster the obtained graphs using the features extracted from the change areas.

We use a summarized representation of graph structure - synopsis - as input sequences of

hierarchical agglomerative clustering [13].

Figure 2.14: Proposed framework for time series clustering of change behaviors.

2.2.4.2 Detecting contextual changes

Since we have already detailed how the joint-autoencoder for non-trivial change detection works,

we jump directly to the analysis of these changes in a multi-temporal context. Please note that

bi-temporal non-trivial changes can be interpreted as contextual anomalies [132] as they depend on

the overall change tendency in the couple of images considered. Their interpretation might therefore

change when moving from bi-temporal to a multi-temporal context.

To introduce multi-temporal context when detecting changes that appear between timestamps

Tn and Tn+1, we propose to check if the detected change polygons (areas of changes) have been

detected in other change maps, see Figure 2.15.

If a change polygon Pch does not have spatial intersection with any polygon(s) of CMn−1,n+1,

it may belong to different types of temporal behavior:

– If Pch does not have any spatial intersection with any polygon(s) from CMn−1,n, it is marked

as false positive (FP) as it was most likely caused by some image defaults or was wrongly

detected by the algorithm.

– If Pch has a spatial intersection with any polygon(s) from CMn−1,n and with polygon(s) in at

least one other change map of the series, it is marked as a part of an irregular change process.

– Finally, if Pch has intersection only with polygon(s) from CMn−1,n and does not have any

intersection with polygons from other change maps, it is marked as a one time anomaly

that happened at timestamp Tn. In this case, all change polygons from CMn−1,n that have

intersection with Pch are also marked as one time anomalies.

Note that here we use a threshold tint that defines the minimum percentage of spatial intersection

of Pch with other change polygon(s), otherwise, it is considered that there is no intersection.

Our model works under the hypothesis that every change process belonging to the same

geographical location is continuous. For example, if a pixel i, j has been classified as change in

CM1,2, CM2,3 and CM4,5, it should be also marked as change in CM3,4 (see Figure 2.16).
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Figure 2.15: Correction of detected bi-temporal contextual anomalies accordingly to multi-temporal context.

Once the correction in done for the whole time series, we apply the union of change maps

CMn−1,n and CMn,n+1 to extract the change areas for every image Imn. Obviously, we apply only

one change map for the first and last images of the SITS.

2.2.4.3 Building the evolution graphs

The next step is to segment the different objects in the detected change areas. First, all change

masks CMn,n+1 are applied with the matching images Imn-Imn+1. Then, since each image (except

the first and last one) have two masks, the segmentation is done within the union of the two change

masks.

To do so, we use a graph-based tree-merging segmentation algorithm [133] due to its ability

to produce relatively large segments without merging different classes together. Large segments

facilitate further construction and interpretation of evolution graphs as the shapes of some change

segments may have important variations from one image to another when they are over-segmented.

It is worth mentioning that no-change areas can also be segmented at this point (using any of

the timestamps as a reference) to fill in the blanks and achieve a full 3D segmentation.

Based on the segments, we build the evolution graphs by adapting the method proposed in

[131] and [111] (see Figure 2.17 for an example). The initial approach is the following: given a

SITS and its associated segmentation, we choose a set of objects that corresponds to the spatial

entities we want to monitor. This set of objects is used as bounding boxes. A bounding box can

come from any timestamp and is connected to the objects covered by its footprint in the previous

and next timestamps. A bounding box and the objects connected to it form an evolution graph.
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Figure 2.16: Transformation of a discontinuous change process into a continuous one. (a)- discontinuous
change process, (b)- corrected blue polygons correspond to detected change objects, red
polygons are added to transform a discontinuous change process into a continuous one.

Each evolution graph can have only one bounding box and has to be continuous. Every object of a

graph represents a node and overlapping values between two objects at two consecutive time-stamps

are the edges. Objects at timestamp Tn can be connected only to objects from Tn−1 or Tn+1,

a timestamp that contains a bounding box can only have a single object corresponding to this

bounding box.

Figure 2.17: Example of an evolution graph (Guttler et al. 2017 [131])

In our method, we construct evolution graphs in such a manner that every graph contains only

coherent information. In other words, every bounding box is connected only to its best matching

segments comparatively to neighbor bounding boxes and each segment can belong only to one

or no evolution graph. In order to construct graphs that contain only objects belonging to the

same phenomena, we use different parameters for the construction of evolution graphs that are

independent of one another: at least τ1 percent of the object should be inside the bounding box

footprint, and the intersection with the object should represent at least τ2 percent of the bounding

box footprint:

τ1 =
Pix(O) ∩ Pix(BB)

Pix(BB)
(2.1)

τ2 =
Pix(O) ∩ Pix(BB)

Pix(O)
(2.2)

The first parameter τ1 is the most important and allows to select only the objects that are covered

the most by BB footprint. The second parameter τ2 is used to keep the objects filling only certain

percentage of the footprint.

Due to pixel shift and to some false positive changes, we may observe many parasite objects in
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the evolution graphs. These objects usually correspond to crop fields. If a timestamp of an evolution

graph is solely made of a parasite object, it can influence further graph interpretations. To minimize

the number of parasite objects, we introduce a parameter τ3 that represents minimum ratio of

coverage between two consecutive timestamps.

τ3 =

∑q
1 Pix(On+1

i )∑r
1 Pix(Onj )

, (2.3)

where q and r are the number of objects at timestamps Tn+1 and Tn respectively, Pix(On+1
i ) is

i-th object at timestamp Tn+1 and Pix(Onj ) is j-th object at timestamp Tn.

2.2.4.4 Graph synopsis and feature extraction

Table 2.3: Feature extraction model.

Feature extraction

en
co

d
er

Conv(B,32)+ReLU
Conv(32,32)+ReLU
Conv(32,64)+ReLU
Conv(64,64)+ReLU

MaxPooling(kernel=3, stride=3)
Conv(64,128)+ReLU
Conv(128,128)+ReLU
MaxPooling(kernel=3)
Linear(128,64)+ReLU
Linear(64,32)+ReLU
Linear(32,f)+`2-norm

d
ec

o
d
er

Linear(f,32)+ReLU
Linear(32,64)+ReLU
Linear(64,128)+ReLU
UnPooling(kernel=3)
Conv(128,128)+ReLU
Conv(128,64)+ReLU

UnPooling(kernel=3, stride=3)
Conv(64,64)+ReLU
Conv(64,32)+ReLU
Conv(32,32)+ReLU
Conv(32,B)+ReLU

To cluster the extracted evolution change graphs, we compute each graph synopsis as in [111].

A synopsis summarizes each graph’s information and makes it possible to compare them with each

other. A synopsis Q is defined as a sequence of the same length as the corresponding evolution

graph. Each timestamp Tn of sequence Q contains the aggregated values of graphs objects at this

timestamp. The influence of each object at the aggregated value at timestamp Tn is proportional to

its size and calculated as follows:

Qn =

∑r
1 Pix(Onj ) · vj∑r

1 Pix(Onj )
(2.4)
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where Qn is the synopsis value at timestamp Tn, Pix(Onj ) is the size of a j-th object at timestamp

Tn (j ∈ [1, r], where r is the total number of objects within the evolution graph E at timestamp

Tn) and vj is the corresponding mean of object value.

The feature are extracted using a deep convolutional denoising autoencoder the architecture of

which is presented in Table 2.3. These encoded features are used to represent the synopsis. The

extraction steps are the following:

1. We extract patches of size p for every pixel of every image of SITS to train convolutional AE

model.

2. We divide the extracted patch dataset into training set and validation set (67% and 33%).

The validation set is used for early stopping and prevent overfitting [134].

3. We train the AE model in such manner that every patch from the training dataset is firstly

encoded in a feature vector and then is decoded back to the initial patch. We use the mean

square error of the patches reconstruction to optimize the model at each iteration.

4. The early stopping algorithm is applied at every epoch and check the loss value when fitting

the validation set. If the validation loss does not improve during a given number of epoch, the

model is considered stable and the training is stopped.

5. We use the encoding part of the AE to encode every patch of SITS change areas in a feature

vector.

2.2.4.5 Graph Clustering using GRU and hierarchical agglomerative clustering

In the presented framework, we propose to use Gated Recurrent Units (GRU) [135] combined with

autoencoders to extract features from the graphs of different objects in a time series, and then

hierarchical agglomerative clustering [13] to cluster the obtained evolution graphs.

GRU is a recurrent neural networks-based (RNN) type of neural network that is able to process

time series in order to extract some meaningful information. Unlike many other approaches for time

series analysis, RNN is able to deal with varying sequence lengths.

Figure 2.18: The classical RNN model.

In general, recurrent neural networks are built as follows: let X = {x1, x2, ..., xn, ..., xS} be a

sequence composed of S timestamps. the network computations are realized in such way that each

timestamp Tn is associated with a hidden state hn (see Figure 2.18) which represent the accumulative
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value of the previous hidden states of the sequence. The final hidden state hS characterizes the

whole sequence and is used afterwards as series descriptors for classification or clustering. The main

problem of RNN is that the value of each hidden state hn depends only on the value of previous

hidden state hn−1, hence, RNN networks may suffer from a long term memory problems caused by

vanishing gradient and does not consider long term dependencies. To solve this issue, more complex

Long Short-Term Memory (LSTM) networks were introduced [136]. Contrary to RNN, LSTM

contains input, output and forget gates as well as memory cell cn at each timestamp that makes it

possible to retain meaningful information from all previous steps and, as a consequence, the value of

hn depends on all previous hidden states of the sequence and not only on hn−1. Later, to facilitate

the computation and implementation of the LSTM model, GRU networks were developed [135]

for Natural Language Processing (NLP) tasks. GRU contains only update and reset gates thus

allowing the model to be trained faster with a lower memory consumption. GRU were successfully

adapted for remote sensing applications and proved to give a higher accuracy than LSTM networks

in this research area [137][138, 139]. Originally recurrent neural networks were not able to capture

spatial information. However, convolutional recurrent neural networks were later introduced [140]

and are able to process videos or image time series.

Back to our original problem, in our case we want to cluster the graph synopsis that we have

previously built. To do so, we use a GRU autoencoder (GRU AE) which combines the advantages

of an autoencoder architecture with time series analysis properties: During the encoding pass, GRU

AE extracts the accumulated hidden state of the sequence hS at the last timestamp. The last

hidden state is then self-concatenated S times (see [141]) and passed to the decoding part that

aims to reconstruct the inversed initial sequence Xinv = {xS , ..., xn, ..., x2, x1}. As it is usually

recommended to set hidden state size large (>100), we add fully-connected layers before the GRU

AE bottleneck to compress the size of hidden state to ameliorate the further clustering results. The

overall GRU AE schema is presented on Figure 2.19. Finally, we apply hierarchical clustering to

the bottleneck of GRU AE to obtain the associated change clusters.

Figure 2.19: GRU AE clustering model.

As the input sequences have varying length, some data preparation is necessary, so the GRU is

able to correctly process it. Data preparation is performed for every training batch individually,

after the input GRU dataset has been created. For every batch Bi, we perform the following steps

(see Figure 2.20):

1. We define the maximum sequence length d of Bi.
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2. We zero-pad the end of all the sequences of Bi, so they have the same length d.

3. The padded sequences are passed to the encoder, for each sequence its final hidden state hS

is obtained.

4. As indicated before, we use the cloned hS as the input of GRU layer in the decoding part,

where hS is repeated S times.

5. We apply the inverted padding mask to the cloned hS sequence that is fed to GRU layers of

the decoder.

6. The output of the decoder should resemble to the inverted padded input sequence.

Figure 2.20: Padding of data sequences. In this example, the initial sequence x1, x2, x3 has the length of
3 timestamps and the maximum sequence length per batch is d = 5. For the simplicity of
representation, we do not consider the number of features of each sequence.

While the padding of the encoder input sequence allow us to proceed batches with varying

length sequences, the padding of the decoder input improves the model quality, especially, it lowers

the influence of sequence lengths on the extracted encoded features.

We do not divide the sequence data into training and validation datasets as the nature of some

change sequences may be unique. For these reason, we control the training loss changes between

two consecutive epochs to prevent the model over-fitting.

The model configuration is presented in Table 2.4, where f is number of features of the input

sequences, hidden size is the length of hidden state vector, d is the maximum sequence length per

batch, f hidden is the size of encoded hidden state vector.

Table 2.4: GRU model.

Sequence feature extraction

en
c. GRU(f,hidden size, dropout=0.4) (2 layers)

Linear(hidden size,f hidden)+`2-norm

d
ec

.

Linear(f hidden,hidden size)+ReLU
Repeat hidden state d times

Apply inversed padding mask
GRU(hidden size,f, dropout=0.4) (2 layers)

2.2.4.6 Result example

In Figure 2.21 below, we show an example of a graph built on a Sentinel-2 dataset with images from

the French city of Montpellier taken between 2005 and 2008 as the city was building a stadium.
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Figure 2.21: Example of an evolution graph: construction of a Stadium.

2.2.5 Conclusions for remote sensing applications with unsupervised learning

As you have seen in this section, we have shown that it is indeed possible to process remote sensing

images with deep learning algorithms in an unsupervised context. We have seen both the strength

of this type of approach for change detection using joint autoencoders, but also the limits both in

term of practical application as the cluster mapping to the real classes is complex, and with the

analysis of full time series where the architecture is very complex and prone to error accumulation.

Regardless, despite the fact that there no state of this art for this problem, we obtained

encouraging results and provided a new a unique framework for the end-to-end change detection

and modeling in satellite image time series. Furthermore, while our method has many steps, our

computation times remain reasonable.

A more complete conclusion will be given in Section 2.4 which will analyze the contributions

made in this chapter and put the results of this section into perspective with the ones of similar

algorithms applied to medical images that are presented in the next section.

2.3 Unsupervised deep learning applied to time series of Age

Related Macular Degeneration lesions

Since we managed to show that it was possible to use deep learning in an unsupervised context

successfully for applications in the field of remote sensing, we wanted to know if it was possible to

do the same in the field of medical imaging. Indeed, these two types of images share many common
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features: lighting, blur and distortion issues, different scales of interest with complex structures,

alignment problems, saturated pixels, etc. However, medical images are also different and simpler

in several ways: they are small, they have less channels, the variety of objects is lower, and when it

comes to time series analysis, evolution usually go one way.

Luckily for me, ISEP has a long standing collaboration with the Clinical Imaging Center 1423

of Paris Quinze-Vingts Hospital for the study of various eye disease pathologies through image

processing techniques. As such, this section will show some adaptations of the previously presented

algorithms as well as some novel ideas applied to medical images. This work was done in collaboration

with Florence Rossant and Michel Pâques through internships and 2 ongoing PhD thesis.

2.3.1 Age Related Macular Degeneration time series

Dry age-related macular degeneration (ARMD or sometimes AMD), a degenerative disease affecting

the retina, is a leading cause of intractable visual loss. It is characterized by a centrifugal progression

of atrophy of the retinal pigment epithelium (RPE), a cellular layer playing a key role in the

maintenance of the photoreceptors. In Figure 2.22, we show a simplified schema of the human eye

structure.

Figure 2.22: Schema of the eye structure

Since ARMD first appear in the central part of the eye (the macula) which contains the

highest density of photoreceptors, partial blindness may rapidly occur as the disease progresses.

The disease may be diagnosed and monitored using fundus photographs: ophthalmologists can

observe pathological features such as drusen that occur in the early stages of the ARMD, and evaluate

the geographic atrophic (GA) progression in the late stages of degeneration (see Figure 2.23).
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(a) Pair 1: before (b) Pair 2: before (c) Pair 3: before

(d) Pair 1: after (e) Pair 2: after (f) Pair 3: after

Figure 2.23: 3 of pairs of images acquired six months apart, the geographic atrophic lesions are the bright
areas. The green arrow in (f) shows a new lesion.

Automatic analysis of fundus images with dry ARMD is of high medical interest [142] and this has

been an important research field for two decades, for diagnosis [143] or follow up [144, 145] purposes.

Imaging modalities are most often color eye fundus images [146][147][148], fundus autofluorescence

(FAF) [149][150][145], and, to a lesser extent, confocal scanning laser ophthalmoscopy (cSLO) in

infrared (IR), or optical coherence tomography (OCT) [151]. In our study, we process cSLO images

in IR as this modality is comfortable for the patient, and it has higher resolution and higher contrast

than color imaging, an older technology.

Figure 2.23 shows three pairs of consecutive images, taken at 6-month intervals. The lesions

(GA) are the brighter regions in the fundus and around the optical disk. Automatic processing

to follow up these areas is obviously very challenging given the quality of the images: uneven

illumination, saturation issues, illumination distortion between images, GA poorly contrasted with

retinal structures interfering (vessel, optical disk), blur, etc. The difficulty also lies in the high

variability of the lesions in terms of shape, size, and number. The lesion boundary is quite smooth

in some cases (b and e) and very irregular in others (a and d). At any time, new spots can appear

(as shown by the green arrow between c and f) and older lesions can merge. All these features make

the segmentation task very difficult, and especially long and tedious to perform manually. It is

worth noting that even experts cannot be sure of their manual delineation in all cases.

Studying the ARMD lesions evolution is of great interest to ophthalmologists as the existing

models for the disease progression are rather crude and the underlying phenomenons causing

age-related macular degeneration have not been fully identified yet. As such, studying the growth

pattern of the lesions can be very useful not only to better understand the disease progression, build

predictive models, but also to assess the effectiveness of potential trial drugs. The main difficulty so

far for any of these applications lies in the numerous issues mentioned in the previous paragraph

which make the images very difficult to tackle: Even experienced ophthalmologists often disagree

on where the lesion start and stop in these images. As such, there are very few reliable datasets

that are labeled and can be used for supervised learning.
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2.3.1.1 State of the art on change detection and disease progression applied to ARMD

The common point between all the applications that we have mentioned earlier is that they deal

with the progression of the lesions through time. In other word, we are back to a change detection

problem in an image time series. Since this type of image is simpler than satellite images (in the

sense that they contain a lot less classes of interests), there are two ways to tackle the problem that

are commonly found in the literature:

– The segmentation first approach: All images are segmented individually and we use the

segmentations as a basis to observe the disease progression.

– The Difference approach which consists in comparing pairs of images using different methods.

It is this approach that we used for remote sensing images in the previous section.

First Approaches Applied to ARMD and Other Eye Diseases: In [146], the authors proposed an

approach where they first segment all healthy regions to get the lesions as the remaining areas.

This approach requires segmenting separately the blood vessels, which is known to be a difficult

task. This method involves many steps and parameters that need to be supervised by the user.

In [145], Ramsey et al. proposed a similar but unsupervised method for the identification of ARMD

lesions in individual images: They use an unsupervised algorithm based on fuzzy c-means clustering.

Their method achieves good performances for FAF images, but it performs less well for color

fundus photographs. We can also mention the work of Hussain et al. [152] in which the authors are

proposing another supervised algorithm to track the progression of drusen for ARMD follow-up.

They first use U-Nets [103] to segment vessels and detect the optic disc with the goal of reducing

the region of interest for drusen detection. After this step, they track the drusen using intensity

ratio between neighbor pixels.

Other traditional more machine learning approaches have also been used for GA segmentation

such as the k-nearest neighbor classifiers [150], random forests [148] ([67]), as well as combinations of

Support Vector Machines and Random Forests [153]. Feature vectors for these approaches typically

include intensity values, local energy, texture descriptors, values derived from multi-scale analysis

and distance to the image center. Nevertheless, these algorithms are supervised: they require training

the classifier from annotated data, which brings us back to the difficulty of manually segmenting

GA areas.

Related to other medical images, in [154] the authors show that the quantization error (QE)

of the output obtained with the application of Self Organized Maps [50] is an indicator of small

local changes in medical images. This work is also unsupervised but has the defaults that the SOM

algorithm cannot provide a clustering on its own and must be coupled with another algorithm such

as K-Means [18] to do so. Furthermore, since there is no feature extraction done, this algorithm

would most likely be very sensitive to the lighting and contrast issues that are present in most eye

fundus time series. Lastly, the use of SOM based methods on monochromatic images is discouraged

since no interesting topology may be found from a single attribute.

Finally, the literature also contains a few user-guided segmentation frameworks [155][156] that

are valuable when it is possible to get a user input.

Differential Approaches Applied to ARMD: The following works are most related to our proposed

algorithm as they are unsupervised algorithms applied to various eye disease images, including
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ARMD: In [157], Troglio et al. published an improvement of their previous works realized with

Nappo [158] where they use the Kittler and Illingworth (K&I) thresholding method. Their method

consists of applying the K&I algorithm on random sub-images of the difference image obtained

between two consecutive eye fundus images of a patient with retinopathy. By doing so, they obtain

multiple predictions for each pixel and can then make a vote to decide the final class. This approach

has the advantage that it compensates for the non-uniform illumination across the image; however,

it is rather primitive since it does not actually use any Machine Learning and rely on different

parameters of the thresholding method to then make a vote. To its credit, even if it achieves a

relatively weak precision, it is fully unsupervised like our method. In [147], the authors tackle a

similar problematic to ours where they correct eye fundus images by pairs, by multiplying the second

image by a polynomial surface whose parameters are estimated in the least-squares sense. In this

way, illumination distortion is lessened and the image difference enhances the areas of changes.

However, the statistical test applied locally at each pixel is not reliable enough to get an accurate

map of structural changes.

As one can see, quite a few method exist in the literature. Table 2.5 summarizes these different

approaches, plus some other from fields other than medicine: it specifies whether or not they are

supervised (and need labeled data), if they are based on segmentation first on individual images or

on pairs of images, their main underlying principle, and their original field of application.

Authors Supervised Images Used Algorithm Application
Troglio et al. [157][158] No Pairs K&I Thresholding ARMD

Marrugo et al. [147] No Pairs Image correction ARMD
Köse et al. [146] semi Individual Raw segmentation ARMD

Ramsey et al. [145] No Individual Fuzzy C-Means ARMD
Hussain et al. [152] Yes Individual U-Nets ARMD

Burlina et al. [159][160] Yes Individual pre-trained CNN ARMD
Kanezaki et al. [161] No Individual CNN Image Processing

Sublime et al. [99][122] No Pairs Joint-AE & KMeans Remote Sensing
Celik et al. [162] No Pairs PCA & KMeans Remote Sensing

Table 2.5: Summary of the state-of-the-art methods for change detection.

In sections 2.3.3 and 2.3.4, we present two of our contributions that explore both the segmentation

first and the difference approach using deep learning methods in an unsupervised context.

2.3.1.2 ARMD Dataset presentation

Our images whose main characteristics can be found in Table 2.6 were all acquired at the Quinze–

Vingts National Ophthalmology Hospital in Paris, in cSLO with IR illumination. This modality has

the advantage of being one of the most common and cheapest legacy method of image acquisition

for eye fundus images, thus allowing to have lots of images and to follow the patients for several

years. However, it is infrared only and therefore all images are monochromatic and may contain

less information than images acquired from other techniques with multiple channels (that are less

common for this type of exam and more difficult to find in numbers).
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Number of patients 15
Number of image time series 18

Average number of images per series 13
Total number of images 336

Acquisition period 2007–2019
Average time between two images 6 months

Table 2.6: Description of the data.

Patients have been followed-up during a few years, hence we have a series of retinal fundus images,

sometimes for both eyes (hence the number of series and patients being different in Table 2.6),

showing the progression of the geographic atrophies. The average number of images in each series

is 13. The images are dated from 2007 for the oldest to 2019 for the most recent. All pictures are in

grayscale and vary greatly in size, but the most common size is 650× 650 pixels.

As mentioned previously, we notice many imperfections such as blur, artifacts and, above all,

non-uniform illumination inside the images and between them (see Figure 2.24). All images were

spatially aligned with i2k software 4.

2.3.2 Image preprocessing

Regardless of the approach, segmentation first, or difference based, a first preprocessing step was

necessary.

To solve this issue, we first use a new method to compensate for illumination distortion between

the images (not published yet). This algorithm is based on an illumination/reflectance model and

corrects all images of a series with respect to a common reference image. Uneven illumination

generally remains present in every processed image (Figure 2.24), but the smooth illumination

distortions are compensated. The calculus of the absolute value of the difference between two

consecutive images demonstrates the benefit of this algorithm (Figure 2.24, last column).

(a) (b) (c)

(d) (e) (f)

Figure 2.24: Example of illumination correction. The three images on the top row represent the two original
consecutive images (a) and (b), and their raw difference in absolute value (c); on the bottom
row: the same images after illumination correction (d) and (e), and the new difference (f).

4https://www.dualalign.com/retinal/image-registration-montage-software-overview.php
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Then, we have another problem to solve: as one can easily see, the area of useful data does

not fill the entire image which is surrounded by black borders. The automatic detection of these

black zones in each image gives a mask of the useful data, and the intersection of all masks the

common retinal region where changes can be searched for. As can be seen in Figure 2.25, we solve

this problem by using the Inpainting function of the library scikit-image [163] to complete this

background. This inpainting function is based on the biharmonic equation [164][165], and it exploits

the information in the connected regions to fill the black zones with consistent gray level values.

Figure 2.25: From left to right: Original image in false colors, cropped image, cropped image with inpainting

2.3.3 Lesion segmentation using W-Nets

This section presents some results achieved during the Clément Royer’s internship [166].

2.3.3.1 From U-Nets to W-Nets

Figure 2.26: The W-Net architecture we used on our ARMD images: Both reconstruction and N-cut loss
functions are shown

As mentioned in the introduction, our goal was to propose a segmentation method that could be

applied to pre-processed images of ARMD patient, with the goal that these segmentations could be

used as a basis for further analysis, if they are good enough.

With that in mind, we quickly search for a deep learning method that in an unsupervised context

could segment the image and correctly form a cluster that would contain the regions that we are

interested in: the geographic atrophies. Because U-Nets [103] were used in the literature for on
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ARMD lesions [152], we quickly decided to try applying W-Nets [96] to our images, since this is the

unsupervised equivalent of U-Nets.

The main architecture of W-Nets is shown in Figure 2.26. This network belongs to the family of

autoencoders and alternatively optimizes 2 loss functions until convergence: The reconstruction loss

over the whole network (which is normal for an auto-encoder), and a soft N-cut loss function which

is used for the segmentation part.

2.3.3.2 Results

Figure 2.27: Row 1: original image in false colors; Row 2: ground truth; Row 3: W-Net result

Figure 2.28: Row 1: original image in false colors; Row 2: ground truth; Row 3: W-Net result

In Figure 2.27, we show an example of some of the results achieved by our proposed W-Net. In

this Figure, we show mostly examples where the result was satisfactory compared with the lesion
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segmentation suggested by the ophthalmologists.

On the other hand, in Figure 2.28, we show some cases where W-Nets results are a lot less

good. Several explanations are possible: Too difficult textures resulting in a failed segmentation

process is the first that comes to mind. Another one can be a too big variance of textures thus

making it difficult to have a pure cluster with only the lesion. Our team has actually investigated

this second possibility since the number of cluster is a well-known problem in clustering: increasing

the number of cluster helped a lot with achieving better results, but at the cost of having to add

some supervision to decide which clusters to merge in order to find the healthy and sick areas.

On average, we found that W-Nets had a precision around 90% and a recall around 85%

on average when applied to all images of all series. Theses results are very encouraging for an

unsupervised method and the scores were probably slightly lowered by difficulties to segment the

first images of the series that often have one or both eyes with no lesion, or nothing easy to spot.

2.3.4 Analyzing the lesion progression using joint-autoencoders

In this subsection, we propose to apply the change detection algorithm presented in Section 2.2.2.3

to the case of ARMD images with the goal of detecting the evolution of the lesions between two

medical check-up exams [167]. Thus in this section, we consider pairs of images.

2.3.4.1 Algorithm

Let us consider a series of M images representing the progression of ARMD in a patient’s eye.

After the pre-processing and once the images have been aligned and cropped, all images from the

same series have the same number of N useful patches. From there, to pre-train or network, we

sample

⌊
N

M

⌋
of the patches for every image hence, regardless of the size of the series, we use a

total of N patches. This allows us to build a unique autoencoder AE that works for all pairs in the

series, and to prevent overfitting.

As an example, for a series of 16 images and 600 × 600 useful patches per image, we would

randomly sample 1
16 of all possible patches for each image of the series (22,500 patches per image),

and use a total of 360,000 patches to pre-train our network.

When processing the patches, our network applies a Gaussian filter in order to weight the pixels

by giving more importance to the center of the patch in the RE calculus.
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Figure 2.29: Joint Autoencoder architecture for ARMD

From there, we use the same procedure with a joint-autoencoder as with remote sensing images

[99]: We first pre-train the network with a single autoencoder. We then duplicate this autoencoder

to create the joint-autoencoder that we fine-tune in both temporal direction. Finally, we compute

the average reconstruction error in both direction, and we apply Otsu thresholding [120]. With

that, our hope is that this architecture shown in Figure 2.29 will find the lesion growth between the

two images highlighted by the reconstruction error.

The architecture for the joint-autoencoder model is shown in Table 2.7 and is a fully convolutional

autoencoder model. We used kernels of size 3, and a padding and stride of 1. As one can see, the

network is noticeably smaller than the ones we used in Table 2.1; this is due to the simpler nature

of the images, their smaller size and also a larger patch size due to difference in the resolution

compared with remote sensing images.

Fully-Conv AE for ARMD

en
co

d
er Conv(B,16)+ReLU

Conv(16,16)+ReLU
Conv(16,32)+`2-norm

d
ec

o
d
er Conv(32,16)+ReLU

Conv(16,16)+ReLU
Conv(16,B)+ReLU

Table 2.7: Joint-autoencoder architecture for lesion evolution analysis in ARMD patients.

2.3.4.2 Results

The detailed results are available in the journal version of this work [168], but this section gives a

few key ideas of what we observed.

First, when working with pairs of images instead of individual images, it was quite obvious

that the ground truths proposed by expert ophthalmologists had flaws: When we tried to build the

change maps using the difference between the proposed expert segmentations we noticed quite a

few inconsistencies that went unnoticed with individual images such as shrinking lesions (which is
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not possible), holes in the middle of the lesions, inconsistent growth and so forth. In particular, the

area around the optic nerve was particularly plagued with the issues, so much that we decided to

discard this area for our evaluation (see Figure 2.31(d) where it is clearly visible).

Then, while we knew that the ground-truth had many issues, it is fair to say that the dice

indexes were significantly lower than for the W-Net algorithm. With an average precision of 0.32,

an average recall of 0.35 and an average F1 Score of 0.31, it is fair to say that our results were

not great. It is difficult to this day to say if the problem came from reliability issues with the

ground-truth, if it was the algorithm, or both.

Finally, the images below show some visual results so that the reader can make its own mind

on the results. In our opinion, these results are still quite satisfactory, and as one can see they are

better than these achieved by concurrent algorithms proposed by Celik et al. [162] -that are still

quite good-, or by Kanezaki et al. [161] which are extremely noisy compared to the results of the

two other methods.

As mentioned before, it can be seen from some of these figures that the ground-truth built

by subtracting the doctor’s segmentations are not always reliable: This is for instance the case in

Figure 2.32, where both Celik approach and our method seem to achieve something closer to the

truth.

(a) Corrected Image from Oc-
tober 2017

(b) Corrected Image from
June 2018

(c) Proposed ground truth

(d) Asako Kanezaki’s ap-
proach, F1 score =
0.15

(e) Turgay Celik’s approach,
F1 score = 0.35

(f) Our Fully Convolutional
AE, F1 score = 0.4

Figure 2.30: Comparison example of the three methods on patient 005.
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(a) Corrected Image from
April 2017

(b) Corrected Image from
October 2017

(c) Proposed ground truth

(d) Asano Kanezaki’s ap-
proach, F1 score = 0.17

(e) Turgay Celik’s ap-
proach, F1 score =
0.43

(f) Our Fully convolutional
AE, F1 score = 0.43

Figure 2.31: Comparison example of the three methods on patient 001.

(a) Corrected Image from
November 2017

(b) Corrected Image from
May 2018

(c) Proposed ground truth

(d) Otsu thresholding, F1
score = 0.05

(e) Turgay Celik’s ap-
proach, F1 score =
0.253

(f) Our Fully convolutional
AE, F1 score = 0.38

Figure 2.32: Comparison example of the three methods on patient 010.

The results presented here have been obtained with parameters p = 13 (patch size) and σ = 12

(Gaussian weights) for patients with large lesions, and p = 7 and σ = 5 for patients with smaller
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lesions. Our experiments indeed showed that different parameters gave the best results depending

on the size of the lesions.

2.4 Chapter Conclusion

In this chapter, I have presented several works and applications that involved the use of deep

learning methods in unsupervised contexts. In particular, the problem of change detection and time

series analysis have been analyzed for applications in remote sensing and medical imaging.

My goal was to study the possibility of using strong deep learning methods for applications

where no labeled data were available. With that in mind, it is my opinion that this chapter has

shown that it is indeed possible to use deep learning methods for unsupervised learning tasks, albeit

with some limitations that I will discuss now.

This chapter has two main components present in all the neural networks I have presented:

convolutional layers which is not really a surprise for applications in image processing, and the

autoencoder principle which remains key for the learning process of unsupervised networks. As for

the main contribution of this chapter, it is the joint-autoencoder for change detection, which is also

a core component of our GRU-based time series analysis framework.

Strangely enough, this “joint-autoencoder for change detection” contribution is an exploit of the

autoencoder weakness and inability to accurately predict an image at time t+ 1 based on image t

(because it can only properly map the recurrent textures of majority classes). While I am quite

proud of this contribution, I can’t help but find it disturbing that the core idea of this method relies

solely on a neural network weakness rather than its strengths. One may wonder what guarantees

we have that all interesting changes are within the minority classes of textures, but also what the

risks are that the network will sometimes make better than expected predictions of the future (if

we buff it enough for instance) and will thus miss the changes. Indeed, our work offers no answers

to these questions.

The second important contribution of this chapter is the unsupervised image time series analysis

framework. We have shown that even for complex time series like remote sensing images, it is possible

to efficiently combine neural networks with clustering and graph approaches (graph synopsis) to

produce very satisfactory results. However, we have also seen that the architecture to do so is quite

complex -and somewhat heavy- as it uses 3 different autoencoders: The joint-autoencoder for binary

change detection, another autoencoder for feature extraction, and a third one combined with GRU

for the clustering. While these autoencoders share common convolutional structures, it remains

extremely heavy in term of training (procedure and training time), and there is a high risk of error

accumulation after each step.

This chapter has also put an accent on applications with the Tohoku tsunami case study and the

eye fundus images for ARMD lesions. From these, we have seen that the models we have proposed

-but also deep learning models in general- can sometimes struggle with real applications. As we have

mentioned in the introduction of Chapter 1, when it is applied to real problems we usually expect

unsupervised learning to find clusters that match the real classes: damaged building and flooded

areas for the tsunami, healthy areas and lesions for ARMD. However, unsupervised algorithms have

no notions of these classes, and in particular deep learning algorithms based on autoencoders relies

only on patterns and textures. As a result, the results can sometimes be less good than expected. We
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can also mention the difficulty to know in advance what will work (or not) for a given application:

For instance the change detection joint-autoencoder had truly amazing results for complex remote

sensing time series, but was just above average when applied to ARMD images that seemed simpler.

And on the other hand, W-Nets were absolutely unpractical when we tried them on our satellite

images time series, but worked very well for ARMD.

We can say after this chapter that there are solutions to use deep learning methods in un-

supervised environments, and that these methods will still do better that the non deep-learning

based approaches that are often still state-of-the-art. They also have the advantage that they don’t

need the huge amount of labeled data that is necessary to supervised neural networks to attain

their top performances: a few images without labels are fairly enough for the unsupervised neural

networks we have presented. However, the lack of supervision has a cost in term of performances.

It also induces the risks of finding clusters that have no practical use for real applications. And

finally, recycling an architecture from one application to another might be even less reliable than

with supervised methods. This also opens the question of using weakly supervised method, we will

discuss this point some more in Chapter 3 as this is part of some promising future works.

Ultimately, we can conclude that deep learning solutions exist for unsupervised contexts, that

they work well at providing preliminary results that can be exploited. But that it is also likely

that tuning these networks to achieve “good enough” results will take more time than with their

supervised counterparts, and also that caution is advised when re-using an algorithm that was

designed for another problem. Last but not least, it is my opinion that if labeled data are available,

supervised neural networks should be preferred as they will almost always give better results.
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Retrospective thoughts and research

perspectives

“The cake is a lie”

Portal (2007)
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3.1 The road ahead for clustering related projects

In Chapter 1, I presented some of my contributions related to multi-view clustering. To be fairly

honest, it is difficult to deny that this axis on multi-view clustering will probably have a lower

priority than the deep learning one in the years to come. There are multiple reasons for this: I

have been working on this subject since the beginning of my PhD thesis and I’d rather move on to

something else, the funds and students to work on this topic are harder to find, and the lack of

concrete applications makes it less enjoyable. Nevertheless, they are a few things that I can see as

closing perspectives to this work and that I will briefly sum up in this section.

3.1.1 Theoretical perspectives for multi-view clustering

The work presented in Section 1.5 shows some of our preliminary results about what could become

a theory of stability for multi-view clustering. This work is novel and yields a real potential to

sort out the properties of the many algorithms that have been proposed for multi-view clustering,

collaborative clustering, distributed clustering and unsupervised ensemble learning. Indeed, it is

currently impossible to know how these methods behave by other means than empirical observations.

What we have done so far was a translation of the formalism proposed by Ben David et al. [42]

from regular clustering to multi-view clustering, and exploring what basic theorems and properties

we could figure out from this basis. What we should have done is to clearly separate the different

cases between multi-view, collaborative, distributed and ensemble applications. The mistake that

slowed us down was to try to come out with a global theory while it is almost certain that each

case is different. Our future works shall take the inverse approach of starting from a clear specific

case and try to generalize from it. With time, I am confident that we could come to results and

properties that are more impactful and could even help guiding the way future algorithms should

be designed.

3.1.2 Applications of multi-view clustering and unsupervised ensemble learning

The second part of my future works regarding multi-view clustering and unsupervised ensemble

learning concerns applications for the analysis of text corpuses, with two specific applications in

mind: Unsupervised recommender systems and the fusion of multi-view representations of text

data [29, 69]. This will be a continuity of my collaboration with Associate Professor Juan Zamora

from the Pontifical Catholic University of Valparaiso in Chile and could be done through the

CONICYT-FONDECYT funds that we acquired recently (see Section 6.3). Our goal would be to

greatly reduce the complexity of state of the art unsupervised partition merging algorithms that

nowadays rely on the use of the graph-cut algorithm through multiple views [45, 80], which is

extremely slow with large datasets and multiple views. It is our hope that by using Kolmogorov

complexity [72] and the method presented in Section 1.4.3 we could reduce the complexity of the

graph by first merging the clusters and views that present the lowest number of conflicts.

These projects are also subject to the evolution of the covid-19 pandemia and -to a certain

extent- me getting the habilitation for which I write this manuscript: the CONICYT-FONDECYT

funds we secured are restricted to scholar exchanges and joint Master or PhD students.
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3.2 From time series analysis to time series prediction

In Chapter 2, I presented several contributions related to image time series analysis and change

detection. It seems to me that the obvious follow-up to these works would be to move towards time

series predictions. And it is part of my research perspectives in the coming years, in particular with

medical images for the study of different pathologies. While there are also possibilities with remote

sensing images (deforestation, ice caps melting, urbanization, etc.), it seems to me that the lower

number of classes in medical images makes them easier to study from a prediction outlook, and

it is also in my opinion easier to propose statistical growth models for the classes of interest in

medical images. Furthermore, many patterns in landcover evolution may be a lot more random

and influenced by human interventions that are impossible to predict. On the other hand, disease

progression tends to follow specific pathways with less of randomness involved. Furthermore, medical

doctors tend to agree that ARMD is a disease that should be easy to follow.

Within this context, one objective of Clément Royer’s PhD thesis -that I co-advise with Florence

Rossant and Michel Pâques- is to study the growth patterns of Age Related Macular Degeneration

(ARMD), with the goal of being able to predict how the lesions will evolve after a certain number

of months, and eventually to propose statistical growths models. These predictions could in turn be

used to assess the efficiency of experimental treatments and drugs. Obviously I mention ARMD

because it is one of my ongoing project, but the same types of predictive models could be used on

other pathologies such as cancer tumors for instance.

3.2.1 Generative adversarial networks for ARMD time series predictions

Since I work mostly in unsupervised environments, some leads that I plan to explore for predictive

models include Generative Adversarial Networks (GAN) [169], a recent family of neural networks

specialized in generating output distributions as close as possible from their input, and that have

turned out to be great at creating fake images [170][171]. The principle of GANs is to have two

neural networks contesting against one another: the generator which from a known training set

or distribution, tries to create new data resembling the original ones or following the distribution;

and the discriminator which tries to discriminate fake generated data from original ones or those

following a known distribution. From there, the two networks improve theirs models by competing

against each other, and the “science of using GANs” relies on choosing the proper task that the

generator should try to mimic depending on the intended final application.

Examples of GANs being used for time series predictions of future images or future videos

frames already exist in the literature [172][173], and have even been applied to medical images [174]

for tasks such as brain tumor growth predictions [175]. However, while GANs had originally being

designed for unsupervised applications, most of the current successful prediction implementations

are supervised and required labeled data.

It means that there is a room for the development of unsupervised algorithms using the principle

of GANs for time series predictions. Using the power of GANs to generate realistic images, it is

our team goal to be able to generate images of what a lesion and its evolution could look like after

a given number of months. Promising couplings that could do this include: GANs with LSTMs

[136] (with existing project about this coupling in supervised learning1) and autoencoders [63] with

1https://www.researchgate.net/project/S-LSTM-GAN-Shared-recurrent-neural-networks-with-adversarial-training
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GANs.

Finally, it is worth mentioning that in case we could not find a clever idea to achieve a fully

unsupervised GAN based framework for time series prediction, there is the possibility to use a

semi-supervision process involving the results of the W-Nets segmentations presented in Section

2.3.3 and some doctor’s manual segmentations as training data.

To conclude on this idea of using GANs for time series predictions: These networks seems to

be a necessary tool for their ability to generate realistic images, which is something we need to

make predictions on how the lesions may evolve. The first things that we would have to test is

the ability a simple GAN to produce realistic images that look like ARMD lesions, and to see if

ophthalmologists could be fooled by these. Then, we also want to take advantage of the fact that

GANs are more than just neural networks, they are also a deep learning framework that can be

applied to existing neural networks. It means that there are many ways to apply them to other

neural networks with the goal of enhancing their abilities.

3.2.1.1 Generative Adversarial Networks as a powerful enhancement tool for existing networks

As we have just mentioned, GANs can be used as networks of their own that generate realistic

images. Beyond what we already discussed, they have other useful applications in image processing

or pre-processing: Image denoising [176], image upscaling to a better resolution [177], or even image

transformation from one format (or image modality) to a different one [178].

But more importantly, GANs are also a learning framework that binds well with other networks

and can improve the way they learn, and ultimately lead to better results. This way of using GANs

is certainly something that I want to explore in the future:

– It has been shown that using an autoencoder as a generator within a GAN framework achieves

better results than the regular auto-encoding process [170][179][180]. Instead of being simply

trained from its reconstruction error, the autoencoder is also trained against a discriminator,

which makes the results more realistic, especially when it comes to complex images. This type

of architecture is interesting in the sense that it is a GAN but with the possibility of using

latent features at the bottle-neck of the autoencoder used as generator.

– In the same vein, the training W-Nets within a GAN framework have also shown to greatly

improve the results [181, 182]. This can be explained by W-Nets being complex autoencoders

has shown in Figure 2.26. As such, adding a discriminator helps to reconstruct better images

that are never really considered by the user as W-Nets usually only return the segmentation

and not the reconstructed images. By having better a reconstruction, the network has better

latent features, and therefore a better segmentation.

– Similar improvements [183] have been detected when combining CycleGANs [184] with U-Nets

[103].

As one can see, this offers quite a few possibilities to improve several of the methods proposed

in this manuscript both for medical and remote sensing images, with the goal of making them

more robust. But more importantly, there are a lot of possibilities to develop new and original

deep neural unsupervised frameworks based on GANs that may reach performances that are more

acceptable for end-user applications.
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3.2.2 Proposing mathematical growth models for ARMD

Despite being the leading cause of vision loss of those over the age of 65 in the industrialized

world, and while some models and underlying mechanisms have been studied in animals [185], the

mechanisms and growth patterns for humans are still poorly understood. What is known is that a

first lesion will appear and grow from the center area of the macula, and then other lesions will

appear in other areas (apparently at random) around the initial lesion and around the optical nerve

area. The lesions will grow and merge as they start entering in contact with one another.

In my opinion it would be interesting to propose statistical models for these growth patterns,

perhaps starting with simple gaussian mixture models. This would be useful in complementing the

neural network approaches for several reasons: First neural networks tend to be black boxes and

most likely won’t help explain the underlying mechanisms for the disease even if we manage to

get accurate predictions. Second, having a statistical model for the lesions could be beneficial to

propose better neural generative models. Finally, we can take the problem the other way around

and imagine that we could use the images or segmentations produced by neural networks (GAN,

W-Net or otherwise) to figure out the model and tune its parameters.

In turn, having accurate predictions and growth models could help with finding the underlying

biological causes by indicating the physicians what structures to look at and when.

3.3 Why fully unsupervised learning might be an illusion, and

why we should be okay with it

When we think about machine learning, the first thing that comes to mind is often artificial

intelligence. Somehow, it is a common opinion that data scientists and scholars that work on

Machine Learning will produce the intelligent machines of tomorrow. This led many people from

the field -myself included-, to wonder how “intelligent” are the algorithms that other people and

myself are working on. Afterall, neural networks were designed with the idea of mimic the human

brain, and while they are certainly a leap forward in artificial intelligence, they have so far failed to

achieve the higher level of cognition that have been predicted since the end of the 90s. This raises

several questions that many people in the field are interested in: Are we doing it wrong when we

develop these so called AI ? What does ”understanding” mean for current AI algorithms [186] ? Are

these algorithms really intelligent, or just particularly good at certain tasks ? How do they compare

to humans ?

In this section, I share some of my personal thoughts on the matter, and in particular I develop

some ideas to study the specific case of unsupervised learning when it comes to assessing the so

called intelligence of machine learning and AI algorithms.

Before focusing on the case of unsupervised learning, let us take a look at the algorithms that

could be considered state of the art in artificial intelligence. When we talk about achievements

in artificial intelligence, the first program that comes to the mind of data scientists and common

people alike is generally AlphaGo, the computer program developed by DeepMind to play Go and

that beat the Grand Champion Lee Sedol in 2016 2, becoming the first AI to manage such a feat

for the game of Go. This was an extraordinary achievement at the time because unlike chess which

2https://www.bbc.com/news/technology-35785875
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has “only” 1050 state spaces and would require a tree of size 10123 to learn it by brute force, the

game of Go features 10172 state spaces and would require a game tree of size 10360 to do the same.

As such, it was long considered that the game of Go could not be “brute forced” by an AI, thus

making AlphaGo a true achievement and an example of the power and intelligence of deep neural

networks. If we now look at how AlphaGo was trained, it was mostly done by feeding it a large

amount of human games to use as examples. It is therefore a supervised algorithm. A subsequent

and better version of AlphaGo called AlphaGo Zero [187] was on the other hand what we call

a “self-trained” algorithm: Instead of feeding it humans games or human data to learn from, it

learned by playing millions of games against itself. DeepMind, that was later acquired by Google,

detailed how AlphaGo and its subsequent improvements worked and it can roughly be summed

up as follows: A “policy network” selects the next move to play based on a combination of smart

and dynamic game tree exploration and move immediate gain evaluation. A second network called

the “Value network” assesses who the current winner might be and attempts to learn how the

opponent plays. In other words, AlphaGo is still a tree exploration algorithm that chooses his

moves based on stastistics, but it does it in a very smart way by exploring the game tree on the

fly, and also by considering the opponent style to guess what he may or may not play. Explained

like that it is unclear if AlphaGo itself was any smart at all, or if all the credits should be given to

its creators intelligence. And to be fairly honest, I don’t think it is possible to see anything about

the intelligence of an AI based on board games. Especially with a game as complex as Go, due to

the depths of the game tree and the nature of the game, you can’t tell if any move by the AI is

genius, normal, sub-optimal, or just nonsensical. And it is the ability to detect these small quirks

and mistakes that can really help us to determine how smart an AI really is.

Luckily, there is a lesser known cousin of AlphaGo developed by the same company DeepMind,

and which plays a game for which such quirks, mistakes and weird moves are a lot easier to detect.

AlphaStar 3 is an AI that plays the real time strategy game Starcraft II by Blizzard Entertainment,

thus raising the difficulty even higher than with the game of Go with elements such as real time

strategy analysis, economy management, exploration tasks and fog of war, unit composition choices,

as well as unit micro-management during battle. As a Starcraft player since 1999 (reaching my

peak level in the top 10% European ELO ranking in late 2011) and scholar working in the field of

Machine Learning, I could not pass this possibility of analyzing how smart an AI really is. Very

much like AlphaGo, AlphaStar is a self-trained algorithm [188] that uses several agents. And also

like AlphaGo, it did beat the grand champions of Starcraft 2 (albeit after the equivalent of 200

years of training against itself). But, and this is what is interesting about AlphaStar, it sometimes

looses and when watching many of its games it is possible to spot some of these quirks I mentionned

earlier. I won’t enter into technical details that won’t speak to people that don’t know Starcraft

II, but in many occasions it is possible to see it when AlphaStar is thrown off (or taken off guard)

by something that takes it out of what it knows: it starts to act weirdly and make decisions and

moves that make absolutely no sense. In some occasions, some players have even spotted AlphaStar

doing what is colloquially known as “derping”, meaning that it moments it was stuck in loops of

contradictory instructions, or sequences of instructions that were very reminiscent of what could

be observed with old AI following simple decision trees. Furthermore, despite hundreds of years

of learning, some of the basic defense mechanics used by even average human players have either

3https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning
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never been learned or have been discarded as not optimal enough by AlphaStar.

In my opinion, AlphaStar is certainly the most advanced AI these day, and it is the one that

does the most complicated tasks. I am extremely impressed by what it is capable of, and by the

perfect execution of whatever it decides to do. And yet, from what I could observe, it cannot be

qualified as “smart”, nor is it capable of creativity since experiences have proven that it cannot solve

simple situations (that an average human player could easily solve), if it has never encountered a

similar enough situation before. Furthermore, its AI nature is also often displayed by inexplicable

quirks, even if said quirks don’t often result in the AI losing. And so, we can probably conclude that

2 of the smartest and well-known AI these days, AlphaGo and AlphaStar are not actually intelligent.

And there is even more disturbing: both of these are supervised neural networks ! Indeed, even if

they are self-trained against themselves, the game moves are still being labeled as winning or losing

moves. And so, we see that these very advanced AI are in fact advanced Bayesian decisions trees

that are very deep indeed due to the humongous training process they went through (and which is

far beyond human capability), but that ultimately are not that intelligent. We can therefore wonder

what we could say about the unsupervised algorithms that are not even given a specific thing to

learn, and are left to find things on their own without even a reward system when they do great.

Of course, my research is much less advanced than DeepMind: I do multi-view clustering and

image analysis. However the questions of what the algorithms I am working on actually learn, and

how smart they are, is no less valid. And once again, in unsupervised learning, you don’t even tell

your algorithm what it is supposed to learn. In the next two subsections, I will present some of

my ideas related to the (lack of) intelligence of unsupervised learning, how smart it really is, the

impossible things we expect from it, and why it sometimes works.

3.3.1 Measuring how smart unsupervised deep learning algorithms really are

To have an idea of how smart unsupervised deep networks could be, let us consider 3 examples

from this manuscript:

– The deep cooperative reconstruction system from Section 1.3.

– The joint-autoencoders for non-trivial change detection proposed in Section 2.2.2.

– The W-Net from Section 2.3.3 that we used for the automated segmentation of ARMD lesions.

The deep reconstruction system mostly relies on the principle of information compression

and encoding coupled with a weighting mask system to optimize the reconstruction. There is no

intelligence here, just a purely mathematical optimization process using gradient descent. However,

if we take a look at Figure 1.6 that shows some failed reconstructions on the MNIST-like dataset

dataset and if we consider that a random forest algorithm was able to correctly identify what

numbers these were supposed to be, we can safely assume that in this experiment both the deep

reconstruction network and the random forest algorithm clearly had a different intrepretation than

us of what numbers should look like. Not only it is unclear what these algorithms actually learned

about number representation, but it is clear that whatever it was wasn’t intelligent at all.

Moving on to the joint-autoencoders, we clearly explained that the key principle of this method

to detect non-trivial changes was to look for areas of the reconstructed images where the algorithm

was making mistakes. By construction, this neural network is not intelligent. The principle is smart

and it works relatively well, but the network itself has no intelligence in it.
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Finally, we end up with the most interesting case: The W-Net that we used for the automatic

segmentation of ARMD lesions. This is an interesting case in the sense that unlike the two other

networks, this one is typically what we expect of a neural network in an unsupervised learning

context: We expect it to find something very specific (a lesion, a tumor, cats, cars, etc.) in images

but without us telling it what it is supposed to find, simply because we did not have the time or

money to have someone feeding it thousands of examples of whatever it is supposed to find should

look like. Given that we are talking about medical applications, and even if ARMD is not a life

threatening condition that should be operated, I came up with the following question: Is asking a

W-Net where the lesions are in a medical image the equivalent of asking a 5 years old kid what he

or she finds interesting in the same image ? Let us consider this comparison for a moment. The

5 years old kid and the W-Net have many things in common when it comes to detecting ARMD

lesions (or any kind of lesions for that matter):

– Both of them have a good visual abilities to analyze shapes and textures (granted that the

convolutional layers of the W-Net have been well configured).

– Both of them can draw stuffs -with perhaps the W-Net being slightly better- and could inpaint

whatever it is they find interesting in the image.

– Neither of them has any idea about what an ARMD lesion is, or should look like.

And so after discussing this problem with colleagues that actually work with children to study

their cognitive abilities to solve algorithmic problems, we thought that it could actually be an

interesting experiment to do. The goal would be to assess the mental age of the W-Net algorithm

compared with human children by assessing from what age the cognitive bias and external knowledge

(which is a form of supervision) of human beings would make them better than W-Nets at figuring

out what could be interesting in these eye fundus images. The protocol would be relatively easy to

design to have a fair comparison; different age groups would be given the same images than the

W-Net during its training process. And after letting them look at all of them, we would simply ask

them the same thing than to the W-Net: ”paint the elements of the images that you find remarkable,

and regroup similar elements within the same color”. I am actually genuinely curious to see what

the result of such experiment would be, and if some of the misidentifications by younger children

would be the same as the ones made by W-Nets. It is certainly a kind of experiment I look forward

to do in the next years and that could shed some light on the “intelligence” of unsupervised deep

learning methods for this type of task.

3.3.2 Is there a massive reinforcement learning bias in all successful

unsupervised learning applications ?

From what has been discussed so far in this section, it could appear that unsupervised learning

is doomed to failure when it comes to solve real problems. And yet, there are many works (not

only from this manuscript) that show that it can achieve fair to good results for many real tasks.

So, one may wonder what it is that makes deep learning work fine in unsupervised settings when

it seems that these algorithms are not only hardly intelligent, but are also seemingly left totally

unsupervised to figure things on their own. But are they really left on their own and unsupervised ?
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Figure 3.1: The cake analogy, by Yann Le Cun

In his original cake analogy (see Figure 3.1), Professor Yann Le Cun explained that unsupervised

learning was most of the machine learning cake, that supervised learning was the icing, and pure

reinforcement learning the cherry on top of the cake. If this analogy is true, given what we currently

see with unsupervised learning publication, then I think that this particular cake is a black forest

cake. If you are not familiar with it, it has cherries on top of it, but also inside of it.

I believe that everyone working with unsupervised learning algorithms (deep or not) already

had this experience where we, or one of our student, spent days or weeks tuning the parameters of

an algorithm until it gave good results for the applications of our choice. And perhaps some of us

wondered why the results were improving slowly but surely as new parameters, objective functions

or configurations were tested (See Figure 3.2 for an illustration).

Figure 3.2: Is the network getting better ? Is Clément getting better ? Or is Clément unknowingly doing
reinforcement learning on the network architecture and parameters ?

I choose to call this a “hidden reinforcement learning bias”, but you could say it is just manual

evolutionary optimization of the parameters, or human guidance of the algorithm. In my opinion it

cannot be qualified as evolutionary optimization of the parameters since it is impossible to define
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an objective function without labeled data. The reward here comes from the user (or algorithm

architect), so it has to be reinforcement learning. Whatever the case, it is my strong belief that

the secret of many successful unsupervised algorithms is to have a human in the loop that more or

less conscientiously guide the algorithm: successful pieces of architectures and parameter settings

are rewarded and kept for ulterior attempts, and unsuccessful ones are discarded. And we keep

improving the architecture through trials and errors based on the user impression of the algorithm

result’s quality. I call it a “hidden reinforcement learning bias” not only because it looks like manual

reinforcement learning, but also because the moment we have an external user giving a feedback

on whether a result is good or not and changing the architecture to improve things, then we

have introduced a bias and we are not in a fully unsupervised setting anymore. The algorithm is

unsupervised, but the setting is not since many hyper-parameters are guided via reinforcement

learning.

Since I have observed this type of algorithm guidance to achieve better results with my own

algorithms and with these of my students (See Figure 3.2 again), I took the time to document it for

the ARMD lesion segmentation algorithm: I asked one of my interns working on W-Nets to keep

track of all the changes he made to his network architecture during his 5 months internship and to

keep a record of the dice indexes as the unsupervised network was seemingly getting better and

better. The results are shown in Figure 3.3 and clearly demonstrate the phenomenon of manual

guidance of the algorithm through external supervision, as well as trials and errors to modify the

architecture. While we can probably ignore the very first point which was a preliminary result,

there is a 11 points gain on the F1-score between the second set of parameters tried and the one

that was finally kept.

Figure 3.3: Example of manual optimization – Evolution of the F1-score through 17 iterations of the W-Net
architecture: Layer drop-out was added for model 6, models 11 and 12 were an attempt at doing
more epochs and adding extra clusters (to be merged later), and models 16 and 17 had modified
pooling layers.

It is worth mentioning that while such a bias exist for both deep and regular unsupervised

learning algorithm, the problem is probably worst in the case of Deep Learning where the number

of parameters, types of layers, filters, types of activation functions and many others, leave a lot

of room for improvement between the results of an architecture that was taken right off the shelf,

and one that was carefully tuned towards providing good results for the “unsupervised” target
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application. This raises a certain number of questions :

– Is this type of supervised manual reinforcement learning cheating ? I believe that everyone

does it, in particular when it comes to publishing and because of the pressure to beat the

other methods. The real conundrum is to decide whether or not it is fair to do it only for

the method we want to promote, or if it should also be done for the methods with which we

compare our algorithm. One the one hand, the comparison seems unfair if we don’t do it. On

the other hand, if we change the architecture of competing method, then we are not making a

comparison with the exact network from the algorithm we cited.

– Can we still call our method “unsupervised” when it is obvious that we introduce some

supervision in the form of algorithm guidance ? And does a fully unsupervised application

really exist ?

– Can we quantify the trade-off between spending time doing this type of architecture opti-

mization, or deciding to spend time labeling the data and go for a supervised algorithm

?

To the first question, I have the beginning of an answer: in many cases when you try to publish

a new unsupervised algorithm for real applications, you have to do an unfair comparison with a

plethora of supervised methods, and you have to use supervised indexes which your algorithm was

not designed to optimize in the first place (and quite often with ground-truths that you don’t

have). Otherwise no-one actually believes that your algorithm works. It is therefore only fair that

we manually tune our proposed methods to be more competitive. As for comparison between

unsupervised methods, well, I believe the right thing to do would be to try to tune all of them for

fairer comparisons.

I have no clear answer at this stage for the other two questions, but I think that these should be

studied seriously, and that because we are having these questions, we should consider the importance

of keeping at least a bit of supervision in unsupervised environments.

3.4 Introducing supervision in unsupervised environments

3.4.1 Humans in the loop

As we have seen before, it is difficult for fully automated (unsupervised) methods to provide fully

satisfactory results in term of accuracy for real applications. Indeed, applications such as client

segmentation require a high accuracy to be satisfactory, land cover analysis in remote sensing is

also a high precision task, and when it comes to medical image segmentation it is also extremely

important to have very high quality results. For all of these applications, a fine quality control

through visual analysis of human operators is required in order to assess the genuine performance

of the methods. Furthermore, we have mentioned many times the issue of the lack of ground-truth,

and reliability issues when this ground truth exists. As a consequence, we may question the quality

of these methods, and it is obvious that human intervention remains necessary at some point.

The benefit of human experts has already been assessed in various domains. Nevertheless,

involving a large amount of human analysis should be avoided due to reproducibility and fairness

issues that we have mentioned in the previous section. It therefore seems that the main research
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challenge is to find the minimal conceivable amount of human involvement. There is actually a

research field called crowd-sourcing which revolves around -given a set of human experts- estimating

or weighting their individual contribution and relevance [189] to take the final decision [190], or to

refine accuracy assessment results [191].

Several levels of human intervention can be considered and are detailed thereafter.

3.4.1.1 Human intervention before the unsupervised learning process

Human intervention before the learning can take two forms: data pre-processing and quality control;

or the introduction of a few labeled data in a process known as semi-supervised learning.

Data pre-processing and quality control is extremely important before any unsupervised learning

task since we know in advance that these algorithms tend to be less effective than their supervised

counterpart. As such, a pre-assessment of the data is an important step to rule out any quality

issue that could negatively affect the results, but also to detect if the data are a good fit or not for

the algorithms that we have chosen. Indeed, the introduction of Chapter 1 about clustering clearly

explained how these algorithms have models that match with specific distributions only. As for deep

learning algorithms applied to images, it should be obvious to anyone that a human intervention is

necessary to set up the patch size and eventually modify the first convolutional layers depending on

the image resolution and quality.

Semi-supervised learning [192] is another possible human intervention that could happen before

running the algorithm and would involve labeling a few data and feeding them to the algorithm.

While this idea has proved useful to improve clustering results [193], in practice it requires to have

algorithms that are compatible with this type of learning. This is not the case for most clustering

and unsupervised deep learning algorithms. In the same way that supervised learning algorithms

have been adapted to be able to benefit from a few extra unlabeled data, it would be interesting to

proposed way of adapting unsupervised algorithms to do the same with a few labeled data.

Finally, self-supervision is another process that can be useful as a pre-training step to guide

an unsupervised algorithm. The principle of self-supervision is to have a supervised algorithm

learning to predict a subset of the data (or features), using the rest of the data (or features). It can

therefore be seen as a specific case of unsupervised learning where the goal is to train the network

to recognize what the final user really cares about inside the data. It is for instance widely used in

language processing to predict the next word in a sentence without any supervised learning. Within

this framework of learning, the human intervention would consist in choosing which part of the

data to withhold and how to best guide the self-supervision process to learn what is most relevant.

While they have encounter a great success [194][195][196], these methods are so far also limited to

enhancing supervised learning algorithms. Very much like semi-supervision, rethinking unsupervised

algorithms -and even unsupervised frameworks- could be useful to benefit from the advantages of

these techniques.

3.4.1.2 Human intervention during the learning process

This is obviously the most interesting research perspective, and one that we have already mentioned

in section 3.3.2 where we have shown how human intervention helps a lot at finding the best

architecture and parameters.
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A more clever solution that could be automated would be to use the principle of Active Learning

(AL) [197], another type of semi-supervised learning, where an oracle (a human here) guides the

algorithm through the learning process. Unlike in passive learning (and in the process we discussed

in section 3.3.2), it is the learner (the algorithm) that actively seeks answers from the oracle, thus

making the process a lot more effective.

Once again, such active learning techniques would blur some more the line between unsupervised

and supervised learning. But since most practical applications seems to involve very much supervised

expectations, it may be a necessary evil. Furthermore, these techniques have proved effective for

supervised learning [198], and have been shown to reduce the number of data needed to train deep

learning networks [199].

3.4.1.3 Human intervention after the learning process

As we have been discussing since the beginning of this manuscript, when it comes to unsupervised

learning and real applications there is one human interaction that can’t be avoided regardless of

the quality of the results: mapping the clusters to classes of interest.

This task is relatively easy when the number of clusters is small, identical to the number of

classes and if they match well. It is a whole other story when the number of cluster increases and

when we have mismatches as indexes such as cluster purity and entropy tend to become less reliable

to make enlighten decisions [200]. It is therefore my opinion that while this post-learning human

intervention is necessary and can even be useful to rate the quality of the result, it is too late to

improve anything at this stage. Useful human intervention to improve the quality of the results

should therefore come earlier in the process.

It is however important to mention that while post-learning human intervention is too late to

improve an unsupervised learning process, it is still common to have human intervening after for

a process called “pseudo-labeling” [201, 202]. In this case, unsupervised learning can be seen as a

pre-processing step requiring human intervention before the use of a supervised algorithm. The

idea is simple: The clusters or segments produced by the unsupervised algorithm are processed by a

human user that samples the most reliably annotated data that will then be fed to a supervised

algorithm [203]. Combined with transfer learning from other labeled datasets [204], this type of

technique is very common but still suffer from many difficulties: the manual sampling of enough

reliable pseudo-labeled data is a difficult task and mistakes may result in error amplification during

the classification process. As for the transfer learning task, while progresses have been made, it still

remains difficult and it is an active research area, especially for deep learning algorithms.

3.4.2 One shot learning

Aside from putting humans on the loop, there is another lead that could be exploited to improve

upon unsupervised learning algorithms. One of the human brain greatest ability is that it can learn

about a new object or concept even if it sees it only once. The equivalent of this ability in Machine

Learning is a field called One shot learning [205]. Like for the human brain, the idea is that each

class of object could be learned only based on a single labeled example which should give the best

and the most generalized description of the class it represents.

Very much like semi-supervised learning or active learning, using such techniques would require

significant modifications of the existing algorithms, or even to redesign them entirely. It is however
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undeniable that adding even low quality one shot learning abilities to an unsupervised algorithm

would help greatly to achieve clustering results that are more stable, and also allow for an automatic

cluster to class mapping without human intervention. It is my opinion that if one shot learning can

improve results quality at a low cost (one labeled example per class is a cheap price), if it solves the

problem of clustering stability, and if it reduces the amount of required human intervention, then it

is the most promising research perspective to get closer to efficient self-supervised algorithms.
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Chapter 4

Employement and education

4.1 Civil Status

M. Jérémie SUBLIME Born on May 29th, 1989

French Nationality

Home Address :

3 Mail Jean Zay

La Plaine St Denis

93210 Saint Denis

Associate Professor at ISEP

Work Address :

ISEP, Office L303

10 rue de Vanves,

92130 Issy Les Moulineaux.

Tel.: (33)-1 49 54 52 19

email: jeremie.sublime@isep.fr

4.2 Employement

09/2016–Now : Associate Professor at ISEP

Data Science Department, Member of LISITE, Team DaSSIP

01/2018–Now : Researcher at Laboratoire d’Informatique de Paris Nord

Member of team A3, Research group ADA, LIPN - CNRS UMR 7030

11/2016–12/2017 : Associate Researcher at Laboratoire d’Informatique de Paris Nord

Member of team A3, LIPN - CNRS UMR 7030

09/2015–08/2016 : Teaching Assistant at University Paris 13 – Institut Galilée

Associate PhD student,Member of team A3, LIPN - CNRS UMR 7030

10/2013–08/2016 : PhD student at AgroParisTech/INRA

Member of team LINK, INRA - UMR MIA 518

04/2011–08/2011 : R&D Intern at Astrium EADS

4.3 Education

11/2016 : PhD in applied Computer Science

AgroParisTech (Université Paris-Saclay) - France

10/2013 : Engineer’s degree in Software Engineering, HCI Major

EISTI Cergy - France

08/2013 : Master of Computer Science and Information Engineering

Inha University - South Korea
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4.3.1 PhD thesis

My PhD thesis subject was ”Contributions to collaborative clustering and its potential applications

on very high resolution satellite images”. I defended it on November 9th 2016, in front of the

following jury:

Dr. Michael Aupetit, HDR QCRI – Hamad Bin Khalifa University Reviewer

Pr. Younès Bennani Université Paris 13 Thesis co-Director

Pr. Antoine Cornuéjols AgroParisTech Thesis Director

Pr. Pascale Kuntz Polytech’Nantes, Université de Nantes Reviewer

Pr. François Yvon Université Paris-Saclay Examiner, Jury President

4.3.2 Master’s thesis

My Master’s thesis subject was ”A Genetic Algorithm with Constraint Sastisfaction Problems for

multi-objective Optimization in Workflow Scheduling”. I defended it in Spring 2013, in front of the

following examination committee:

Pr. Sang-Chul Lee Inha University Examiner

Pr. Geun-Sik Jo Inha University Academic Advisor

Pr. Min-Seok Song Inha University Examiner
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Chapter 5

Teaching activities

5.1 Teachings

Course Level Project TP TD CM
2020–2021

ISEP Analyse de données∗ ING2 - 2× 21 - 2× 21
ISEP BDD & Technos web ING1 51 - - 4
IPP Datastream Processing∗ M2 - 8 - 4

2019–2020
ISEP Analyse de données∗ ING2 - 21 - 21
ISEP BDD & Technos web ING1 40 - - 4
IPP Datastream Processing∗ M2 - 8 - 4

2018–2019
ISEP Analyse de données∗ ING2 - 21 - 21
ISEP Programmation web∗ ING2 40 - - 6
ISEP Machine Learning∗ ING3 - - 21 -

UPSaclay Datastream Processing∗ M2 - 6 - 3
2017–2018

ISEP Analyse de données∗ ING2 - 21 - 21
ISEP BDD & Technos web∗ ING1 51 - - 4
ISEP Java & Algorithmique ING1 - - - 2× 13.5
ISEP Machine Learning∗ ING3 - - 21 -

UPSaclay Datastream Processing∗ M2 - 6 - 3
ISEP Introduction to Data Science∗ B3 - 9 - 6

2016–2017
ISEP Analyse de données∗ ING2 - 21 - 21
ISEP Java & Algorithmique ING1 - 2× 35 - 2× 12
ISEP BDD & Technos web ING1 50 - - -

2015–2016
UP13 Bases de données avancées M1 - 27 - 3
UP13 Python et robotique L1 - 20 15 -

2014–2015
UP13 Applications Web M2 - 36 - 15
UP13 Génie Logiciel L2 - - 9 -

Total : 232h 316h 66h 233h

This table contains all the courses I taught since I started as a Teaching Assistant and then as

an Associate Professor at ISEP. Courses marked with an ”∗” were taught in English, and all others

in French.

The naming conventions for courses and student levels are the following: L for licence (French

equivalent of the bachelor’s degree in 3 years), M for Master, ING for Engineer students (year 3

to 5 of higher education in France), and B for Bachelor students (exchange students from foreign

universities in most cases). Any of these letters will be followed by a number indicating which year
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of study is considered: For instance “M1” is the first year of Master’s degree.

5.2 Administrative responsibilities

5.2.1 Module responsibilities

Table 5.1 below shows the module I was in charge of. While it does not necessarily involve actually

teaching in the module, this type of responsibility includes:

– Creating or updating the program of the course.

– Creating or validating the exams and projects for the course.

– Managing and often recruiting the different professors, teachers and teaching assistants.

– Being the interface between the students, the administrative staff and the heads of department

for this module.

Module Name Level Students ECTS Period

ISEP Analyse de données ING2 30 5 Spring 2021
IPP Datastream Processing M2 35 2.5 Spring 2021
ISEP Analyse de données ING2 45 5 Fall 2020
ISEP Analyse de données ING2 30 5 Spring 2020
IPP Datastream Processing M2 39 2.5 Spring 2020
ISEP Analyse de données ING2 59 5 Fall 2019
ISEP Analyse de données ING2 74 5 Spring 2019

UPSaclay Datastream Processing M2 45 2.5 Spring 2019
ISEP Analyse de données ING2 71 5 Fall 2018
ISEP Analyse de données ING2 71 5 Fall 2018

UPSaclay Datastream Processing M2 42 2.5 Spring 2018
ISEP Java & Algorithmique ING1 184 6 Spring 2018
ISEP Analyse de données ING2 61 5 Fall 2017
ISEP Java & Algorithmique ING1 127 6 Spring 2017
ISEP Analyse de données ING2 59 5 Fall 2016
UP13 Applications Web M2 41 4 Fall 2014

Table 5.1: Module responsibilities

5.2.2 Specialties, Majors and double degrees responsibilities

– 09/2019–Now - Head of the Data Intelligence Major (responsable de parcours) at ISEP.

– 09/2017–10/2020 - Head of the Business Intelligence Major (responsable de parcours) at ISEP.

– 10/2017–Now - ISEP coordinator for the Data Science Master of Paris Saclay University and

then from Paris Polytechnic Institute (IPP).

In September 2017, I took over Pr. Raja Chiky as the Head of the Business Intelligence Major

at ISEP. In engineering schools, major correspond to specialties that students choose for their last

2 years before graduation. Heads of majors are generally tasked with articulating and updating
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mandatory and optional courses that are given within their majors, and with defining eventual

prerequisites to join in their major. Other responsibilities include the validation of internships,

semesters abroad and “alternance programs” (co-op programs) followed by students of the major,

as well as individual career counseling. In September 2019, the Business Intelligence Major became

the Data Intelligence Major with an update of the program that among other things included a

stronger focus on Artificial Intelligence and Machine Learning, and the possibility for alternance

students (co-op students) to join in this major.

My role as ISEP coordinator for the Data Science Master of Paris Saclay and Paris Polytechnic

Institute revolves around participating in the selection process, attending various meetings, taking

charge of one module (Data Stream Processing, see Table 5.1), participating in internship defenses

for 5 students every year, and being the interface between ISEP and the Master for credits and

diploma validations.

5.3 Students follow-up

The list below gives an account of the engineer students I followed each year that were in a part-time

cursus with 50% of their time spent in companies (co-op students). This type of follow-up includes

the reading of quarterly reports about the work done in their companies, and at least 2 meetings per

year with them and their corporate tutor to discuss progresses, and assess the adequation between

the student professional project, the courses they follow, and the tasks assigned to them in their

company.

Miss Salma Mrassi Alternance SNCF 09/2019–Now

M. Timothée Pionnier Alternance ORANGE 09/2019–Now

Miss Nelly Lahmar Alternance SFR - Altice 09/2018–09/2020

M. Nikola Milojic Contrat Pro. BNP Paribas 09/2018–09/2019

M. Ilyas Bentayeb Alternance SFR 09/2016–09/2019

M. Nikola Milojic Alternance SFR 09/2016–08/2018

5.4 Teachings in thematic schools

– July 2019 - Invited Professor at the Transilvania University of Brasov (Roumania) for the

MLASS 2019 summer school on Deep Learning.

– December 2016 - Invited Professor at the Sidi Mohamed Ben Abdellah University of Fès

(Morocco) for the ETA’16 Fall school on Deep Learning and Data Science.

– June 2015 - Tutorial on collaborative clustering applications given at the FOCOLISE summer

school organized by the ICube laboratory in Strasbourg.
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Chapter 6

Research related activities

6.1 Students supervision

6.1.1 PhD students

12/2020 – Now : Miss Nan Ding

– Subjet : Segmentation of the Eye DuraMater for 3D Modeling of Axons and Optic Nerves

– Thesis Directors : Pr. Florence Rossant (30%) & Pr. Michel Pâques (10%)

– Thesis Advisors : Dr. Hélène Urien (50%) & Dr. Jérémie Sublime (10%)

– Fundings : IHU FOReSIGHT scholarship (50%) and ISEP scholarship (50%)

11/2020 – Now : M. Clément Royer

– Subject : ARMD progression analysis using deep learning methods

– Thesis Directors : Pr. Florence Rossant (40%) & Pr. Michel Pâques (10%)

– Thesis Advisor : Dr. Jérémie Sublime (50%)

– Fundings : Sorbonne University doctoral contract

10/2017 – 09/2020 : Miss Ekaterina Kalinicheva [graduated]

– Subject : Unsupervised Satellite Image Time Series Analysis using Deep Learning Techniques

– Thesis Director : Pr. Maria Trocan (40%)

– Thesis Advisor : Dr. Jérémie Sublime (60%)

– Fundings : Sorbonne University doctoral contract

– Remarks : 9 co-publications

01/2016 – 12/2018 : M. Denis Maurel [graduated]

– Subject : Contributions to inter-views communications applied to collaborative learning

– Thesis Director : Pr. Raja Chiky (20%)

– Thesis Advisors (after december 2016): Dr. Jérémie Sublime (50%) et Dr. Sylvain Lefebvre

(30%)
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– Fundings : ISEP scholarship

– Remarks : 4 co-publications

6.1.2 Interns

04/2020 – 09/2020 : M. Clément Royer (M2, Sorbonne University)

– Sujet : ARMD evolution analysis using unsupervised deep learning methods

– Advisors : Pr. Florence Rossant & Dr. Jérémie Sublime

– Fundings : XV-XX Hospital research funds

– Remarks : Integrated as a PhD student

09/2019 – 02/2020 : M. Guillaume Dupont (ING2, ISEP)

– Subject : Deep learning techniques applied to the study of ARMD medical time series

– Advisors : Pr. Florence Rossant & Dr. Jérémie Sublime

– Fundings : ISEP Internship scholarship

– Remarks : 2 co-publications

07/2019 – 12/2019 : M. Matthieu Pombet (ING2, ISEP)

– Subject : Machine Learning and Data Mining to identify programming beginners? strategies

when solving programming exercises

– Advisors : Dr. Patrick Wang, Dr. Ilaria Renna & Dr. Jérémie Sublime

– Fundings : ISEP Internship scholarship

6.1.3 Master’s and Bachelor’s thesis

03/2019 – 07/2019 : M. Ken Chen (B4, Nanjing University of Aeronautics and Astronautics)

– Subject : Kolmogorov complexity based collaborative clustering

– Advisor : Dr. Jérémie Sublime

– Context : Exchange student, Bachelor’s thesis

6.1.4 End of study projects and other research projects

10/2020 – 02/2021 : M. Corentin Le Guevel, M. Clarence Lacombe, M. Sunny Raj Mangu, M.

Jérémie Mear & M. Thibaut Eschoua (ING3, ISEP)

– Subject : Assessing the percentage of vegetation in French cities using Deep Learning on

remote sensing images

– Advisors : Dr. Jérémie Sublime

– Context : End-of-study project
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10/2020 – 02/2021 : M. Baudouin Naline, M. Gégoire Fessard, M. Mingyang Li & M. Zheqi He

(ING3, ISEP)

– Subject : ID picture analysis using Neural Networks

– Advisors : Dr. Jérémie Sublime

– Context : End-of-study project

04/2019 – 06/2019 : M. Evander Deocariza-Nee (B4, Stanford University)

– Subject : N-grams Naive Bayes Classifier for Block-Based Programming Exercises Analysis in

Educational Data Mining

– Advisors : Dr. Patrick Wang, Dr. Ilaria Renna & Dr. Jérémie Sublime

– Context : Stanford University Overseas Study Program in Paris, Research project

10/2018 – 02/2019 : M. Alexandre Gay, M. Mathieu Hinh, M. François Robard & Miss Yue Zhao

(ING3, ISEP)

– Subject : Breaking reCAPTCHAv2 using Convolutional Neural Networks

– Advisors : Dr. Jérémie Sublime

– Context : End-of-study project

10/2018 – 02/2019 : M. Renaud Saggio, M. Loann Barraud, M. Ke Fang, Miss Syrine Radhouane

& M. Quentin Lucas (ING3, ISEP)

– Subject : Study of various methods for image segmentation

– Advisors : Dr. Jérémie Sublime

– Context : End-of-study project

09/2018 – 12/2018 : M. Yizhi Li (B3, Beijing University of Posts and Telecommunications)

– Subject : Machine learning for satellite imagery analysis

– Advisors : Dr. Jérémie Sublime & Miss Ekaterina Kalinicheva

– Context : Exchange student, Research project

6.2 International collaborations

I have an ongoing collaboration with Associate Professor Juan Zamora Osorio from the Pontifical

Catholic University of Valparaiso in Chile. Our joint work is concerned with application of informa-

tion theory based multi-view clustering to text corpuses. Such applications include text corpuses

multi-view segmentation, text recommander systems, and more theoretical work on unsupervised

ensemble learning. Professor Juan Zamora visited me at ISEP in January 2019 (1 week) and
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November 2019 (2 weeks), and our collaboration resulted in a conference paper being published and

a grant from the CONICYT-FONDECYT program that should allow me to visit if the Covid-19

pandemic situation improves.

I am also working on a regular basis with Assistant Professor Pierre-Alexandre Murena from

Aalto University (Helsinki, Finland). This is a joint research collaboration with Basarab Matei

from Sorbonne Paris North University and it resulted in several of the results presented in this

manuscript about clustering stability and other theoretical aspects of multi-view clustering.

6.3 Projects and fundings

Project “Institut Hospitalo-Universitaire FOReSIGHT” (2021–2023): ISEP and the 15-20

Hospital Clinical Imaging center participated in this call and proposed a project to study various

eye pathologies such as glaucoma with Machine Learning methods. Through this project, we funded

half a PhD scholarship for Miss Nan Ding.

Chilean grant CONICYT-FONDECYT, project 11200826, (2021–2023): This project carrier is

the Pontifical Catholic University of Valparaiso in Chile, and I am officially involved in it as a

foreign expert invited on the project. The grants accounts for 62 millions Pesos (66ke) that can be

spent in travel expanses for invited professors, or for interns and PhD students. The main thematic

of the project revolves around text recommendation systems and is an application of my work on

multi-view clustering with Associate Professor Juan Zamora Osorio.

ANR project COCLICO, ANR-12-MONU-0001, (2012–2016): “COllaboration, CLassification, In-

crémentalité et COnnaissances”. This project funded my PhD thesis and some of my early post-

graduation works. The goal of the project was to develop collaborative and incremental machine

learning methods that could be applied to remote sensing images. The partners involved were: the

ICube and LIVE laboratory (Strasbourg University), the LIPN (University Paris 13), AgroParisTech

and the UMR ESPACE DEV (University Montpellier 2).

6.4 Scientific animation

6.4.1 Scientific societies

– 08/2019 – Now : Member of the European Neural Network Society (ENNS).

– 09/2017 – Now : Member of the “Société Savante Francophone en Apprentissage Machine”

(SSFAM)

– 02/2017 – 2019 : Member of the CES (expert committee) “Détection de changements dans les

images à haute fréquence” from Theia

– 07/2015 – Now : Member of the International Neural Network Society (INNS).

– 09/2014 – 09/2016 : Member of the “Société Francophone de Classification” (SFC)

C. GRECO 2011



114 6. Research related activities

6.4.2 Program committee memberships

– IJCNN 2021 : Program Committee member

– ICONIP 2020 : Adjunct Program Committee member

– FSDM 2019 : Session Chair for the Data Mining session

– IJCNN 2019 : Program Committee member

– ICONIP 2018 : Adjunct Program Committee member

– WCCI 2018 : Program Committee member and Session Chair

– ICONIP 2017 : Adjunct Program Committee member

– IJCNN 2017 : Adjunct Program Committee member

6.4.3 Workshops and special sessions organization

– Journées dl2t “Deep Learning, Teledetection, Temps” (THEIA - CES Détection/ CNRS -

PEPS) – November 2017: Host and co-organizer.

– Websys 2017 : PC member for the special session on “Intelligent Processing of Multimedia in

Web Systems”.

– IJCNN 2017 : Organizing member of the “Autonomous Learning in Machine Learning”

Workshop.

– ICONIP 2016 : Organizing member of the “Topological and Graph Based Clustering Methods”

special session.

– SoCPaR 2015 : Organizing member of the “Incremental Machine Learning” special session.

– IJCNN 2015 : Organizing member of the “Learning from multiple learners” Workshop.

6.4.4 Editorial work and reviewing activities

I am a topic editor and member of the reviewer board for the MDPI Journal of Imaging.

Most of my reviewing activities can be verified through my Publon profile. The table below

summarizes them for the period 2016–2020. Please note that only journal reviews are indicated

in this table as well as in Figure 6.1. My reviewing activities for conferences are not listed simply

because I don’t keep track of all conferences for which I have made reviews. Nevertheless, I can

probably mention at least ICONIP, IJCNN and ICANN for which I have been doing reviews every

year for a while now.
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Journal Editor Reviews Impact Factor SJR quartile

Knowledge and Information Systems Springer 21 2.936 Q2
Remote Sensing MDPI 19 4.509 Q1
Sensors MDPI 6 3.275 Q2
Signal, Image and Video Processing Springer 5 1.794 Q2
Pattern Recognition Elsevier 3 7.196 Q1
Applied Sciences MDPI 3 2.474 Q3
Transactions on Computational Social Systems IEEE 2 3.29 Q2
PLoS ONE PLoS 2 2.74 Q1
Transactions on Geoscience and Remote Sensing IEEE 1 5.855 Q1
Biomedical Optics Express OSA 1 3.921 Q1
Computational Intelligence Wiley 1 1.196 Q3
Engineering Applications of Artificial Intelligence Elsevier 1 4.201 Q1
Future Generation Computer Systems Elsevier 1 6.125 Q1
ISPRS International Journal of Geo-Information MDPI 1 2.239 Q3
Knowledge-Based Systems Elsevier 1 5.921 Q1

Figure 6.1: My yearly journal reviews between 2016 and 2021

Other administrative activities

6.5 Elected positions

Elected Secretary at the “Comité Social et Économique” (Economic and Social Council) of

ISEP (12/2018 – Now): This is a 4-year elected position in a committee at the interface between

ISEP employees, ISEP direction board and the administration board. This committee is made of 5

elected employees and 2 members of the direction board. It deals with various issues such as working

conditions, health and security issues, the school social policy, employees wellbeing, as well as the

organization of various social events. Due to the covid-19 pandemic and administrative changes in

collective agreements at ISEP, the two first years have been both busy and very enriching in term

of skill acquisition.

Elected Professor (non-voting) at ISEP Administration Board (12/2019 – Now): This is a 2-year

position that allows two professors and an administrative staff member to attend the meeting of
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the Administration Board, without voting rights. For me, it is an interface position between the

professors and the administrative board, and which is complementary with my other mandate at

the Economic and Social Council.

Elected PhD student at the “Conseil Scientifique et Pédagogique” (Scientific and Pedagogic

Council) of Doctoral School ABIES (01/2015 – 12/2016)

Elected PhD student at the Laboratory board of AgroPariTech UMR MIA 518 (01/2015 – 12/2015)

6.6 Work groups

Member of the AI committee at ISEP (09/2017–now): This committee was tasked with reforming

ISEP courses related to Artificial Intelligence and Machine Learning, and in particular to propose

an introductory class to Artificial Intelligence available to all engineering students without any

prerequisites. Other tasks for this groups included a better coordination between the different

statistics, data analysis and machine learning classes, as well as a reflexion on equipping ISEP

with Deep Learning ready solutions (in the form of GPU-equipped computers, but also external

computing platforms) for both students and research staff. My implication in this work gorup is due

both to my research activities in Deep learning, but also my position as head of a major specialized

in Data Science. To this day, I am still in charge of defining and updating the configuration for all

ISEP computers equipped with high speed GPUs, in close collaboration with the IT department.

Member of Doctoral School ABIES workgroup on good practices for advising PhD students

(01/2016–06/2017): At the end of my PhD studies, I join this grouped composed of PhD students,

young new associate professors and experienced full professors (I switched from the PhD group to

the associate professor group when I graduated). The goal of this workgroup was to tackle various

difficulties that one may encounter when advising PhD students. There was a particular focus on

new Associate Professors that were co-advising or advising solo for the first time, but also on conflict

management between advisors, as well as between PhD students and advisors. Another point of

interest was on the different “advisory styles” and their compatibility with students personality and

also sometimes with other advisors using different styles. We came up with some idea, guidelines

and good practices that we hope can make the experience more enriching for the PhD students,

and also more enjoyable for everyone.
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Chapter 7

Scientific production and citation

metrics

This chapter regroups all of my publications since the beginning of my graduate studies. Most

of them can be authentified and found on my dblp profile. The PDF files for nearly all of them are

available from my webpage.

When available, the ranking CORE 2020 for the conferences, and the impact factor (IF) or

the scimagojr quartile (SJR) for the journal papers, are mentioned next to each publication.

Furthermore, my name is in bold in all authors lists, and the students that participated to any

scientific production while under my supervision (PhDs or interns) are in italic.

7.1 Journal papers

1. Jérémie Sublime: The 2011 Tohoku Tsunami from the Sky: A review on the evolution of

Artificial Intelligence Methods for Damage Assessment. In MDPI - Geosciences 11 (3) 133,

2021. (SJR : Q2)

2. Guillaume Dupont, Ekaterina Kalinicheva, Jérémie Sublime, Florence Rossant and Michel

Pâques: Analyzing Age-Related Macular Degeneration Progression in Patients with Geo-

graphic Atrophy Using Joint Autoencoders for Unsupervised Change Detection. In MDPI -

Journal of Imaging 6(7) 57, 2020. (SJR : Q2)

3. Ekaterina Kalinicheva, Jérémie Sublime and Maria Trocan: Unsupervised Satellite Image

Time Series Clustering Using Object-Based Approaches and 3D Convolutional Autoencoder.

In Remote Sensing 12(11), 2020. (IF : 4.509, SJR : Q1)

4. Ekaterina Kalinicheva, Dino Ienco, Jérémie Sublime and Maria Trocan: Unsupervised Change

Detection Analysis in Satellite Image Time Series using Deep Learning Combined with Graph-

Based Approaches. In IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing (IEEE JSTARS), 13: 1450-1466 (2020). (IF : 3.827, SJR : Q1)

5. Jérémie Sublime, Guénaël Cabanes and Basarab Matei: Study on the Influence of Diversity

and Quality in Entropy Based Collaborative Clustering. Entropy 21(10): 951 (2019). (IF :

2.494, SJR : Q2)

6. Jérémie Sublime and Ekaterina Kalinicheva: Automatic Post-Disaster Damage Mapping

Using Deep-Learning Techniques for Change Detection: Case Study of the Tohoku Tsunami.

Remote Sensing 11(9): 1123 (2019). (IF : 4.509, SJR : Q1)

7. Jérémie Sublime, Basarab Matei, Guénaël Cabanes, Nistor Grozavu, Younès Bennani and

Antoine Cornuéjols : Entropy Based Probabilistic Clustering, Pattern Recognition 72: 144-157,
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2017. (IF : 7.196, SJR : Q1)

8. Jérémie Sublime, Andrès Troya-Galvis, and Anne Puissant: Multi-scale analysis of very high

resolution satellite images using unsupervised techniques. Remote Sensing, Volume 9(5):495,

2017. (IF : 4.509, SJR : Q1)

9. Jérémie Sublime, Nistor Grozavu, Guénaël Cabanès, Younès Bennani, and Antoine Cornuéjols:

From Horizontal to Vertical Collaborative Clustering using Generative Topographic Maps.

International Journal of Hybrid Intelligent Systems, Volume 12-4, 2016.

10. Sonia Yassa, Jérémie Sublime, Rachid Chelouah, Hubert Kadima, Geun-Sik Jo and Bertrand

Granado: A Genetic Algorithm for Multi-Objective Optimization in Workflow Scheduling

with Hard Constraints. International Journal of Metaheuristics, 2013.

7.2 Peer-reviewed international conference papers with

proceedings and indexing

1. Denis Maurel, Sylvain Lefebvre and Jérémie Sublime: Deep Cooperative Reconstruction with

Security Constraints in multi-view environments. In 20th IEEE International Conference on

Data Mining (ICDMW’2020), MDSM Workshop, 2020.

2. Guillaume Dupont, Ekaterina Kalinicheva, Jérémie Sublime, Florence Rossant and Michel

Pâques: Unsupervised Change Detection using Joint Autoencoders for Age-Related Macular

Degeneration Progression. In: The 29th International Conference on Artificial Neural Networks,

ICANN (2) 2020. (Core : B)

3. Juan Zamora and Jérémie Sublime: A New Information Theory Based Clustering Fusion

Method for Multi-view Representations of Text Documents. In: The 22nd HCI International

Conference, HCII 2020 (14) 2020: 156-167.

4. Ekaterina Kalinicheva, Jérémie Sublime and Maria Trocan: Change Detection in Satellite

Images Using Reconstruction Errors of Joint Autoencoders. In: The 28th International

Conference on Artificial Neural Networks, ICANN (3) 2019: 637-648. (Core : B)

5. Jérémie Sublime: Incremental Collaborative Clustering using Information Theory and Infor-

mation Compression. In: Fuzzy Systems and Data Mining (FSDM 2019), Kitakyushu, Japan,

2019.

6. Ekaterina Kalinicheva, Jérémie Sublime and Maria Trocan: Object-Based Change Detection

in Satellite Images Combined with Neural Network Autoencoder Feature Extraction. In: IEEE

International Conference on Image Processing Theory, Tools and Applications IPTA 2019,

Istanbul, Turkey, 2019.

7. Ekaterina Kalinicheva, Jérémie Sublime and Maria Trocan: Neural Autoencoder for Change

Detection in Satellite Image Time Series. In: The 25th IEEE International Conference on

Electronics, Circuits and SystemsIEEE ICECS 2018, Bordeaux, France.
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8. Pierre-Alexandre Murena, Jérémie Sublime, Basarab Matei and Antoine Cornuéjols: An

Information Theory based Approach to Multisource Clustering. In IJCAI-ECAI 2018 :2581-

2587, Stockholm, Sweden. (Core : A*)

9. Jérémie Sublime and Sylvain Lefebvre: Collaborative Clustering through Constrained Net-

works using Bandit Optimization. In IEEE International Joint Conference on Neural Networks,

IJCNN 2018. (Core : A)

10. Jérémie Sublime, Denis Maurel, Nistor Grozavu, Basarab Matei and Younès Bennani: Op-

timizing exchange confidence during collaborative clustering. In IEEE International Joint

Conference on Neural Networks, IJCNN 2018. (Core : A)

11. Denis Maurel, Jérémie Sublime and Sylvain Lefebvre: Incremental Self-Organizing Maps

for Collaborative Clustering. In: The 24th International Conference on Neural Information

Processing (ICONIP 2017), Guangzhou, China, 2017. (Core : A)

12. Jérémie Sublime, Basarab Matei and Pierre-Alexandre Murena: Analysis of the influence of

diversity in collaborative and multi-view clustering. In IEEE International Joint Conference

on Neural Networks, IEEE IJCNN’17), Anchorage, Alaska, USA, 2017.(Core : A)

13. Jérémie Sublime, Younès Bennani and Antoine Cornuéjols: Collaborative-based multi-scale

clustering in very high resolution satellite Images. The 23rd International Conference on

Neural Information Processing (ICONIP 2016), Kyoto, Japan: in Lecture Notes in Computer

Science, LNCS Springer, Proc. of ICONIP’16, 2016. (Core : A)

14. Jérémie Sublime, Nistor Grozavu, Younès Bennani and Antoine Cornuéjols: Vertical Collabo-

rative Clustering using Generative Topographic Maps. In: The 7th International Conference

on Soft Computing and Pattern Recognition (SoCPaR’15), Fukuoka, Japan, 2015.

15. Jérémie Sublime, Younès Bennani and Antoine Cornuéjols: Collaborative Clustering with Het-

erogeneous Algorithms. IEEE International Joint Conference on Neural Network, (IEEE IJCNN’15),

Killarney, Ireland, 2015. (Core : A)

16. Jérémie Sublime, Andrès Troya-Galvis, Younès Bennani, Pierre Gançarski and Antoine Cor-

nuéjols: Semantic Rich ICM Algorithm for VHR Satellite Images Segmentation. International

Association for Pattern Recognition (IAPR), International Conference on Machine Vision

Applications (MVA’15), Tokyo, Japan, 2015.

17. Jérémie Sublime, Younès Bennani and Antoine Cornuéjols: A New Energy Model for the

Hidden Markov Random Fields. The 21th International Conference on Neural Information

Processing, Kuching, Sarawak, Malaysia, in Lecture Notes in Computer Science, LNCS

Springer, Proc of ICONIP’14, 2014. (Core : A)

7.3 Other conferences

1. Ekaterina Kalinicheva , Jérémie Sublime and Maria Trocan: Analysis of Objects Evolution

in Satellite Image Time Series Transformed with Neural Network Autoencoders. In the First
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International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI),

Barcelona, Spain, 2019.

2. Denis Maurel, Jérémie Sublime and Sylvain Lefebvre: Cartes Auto-Organisatrices Incrémen-

tales appliquées au Clustering Collaboratif. In Extraction et Gestion des Connaissances,

EGC 2018, St Denis, France, 2018

3. Jérémie Sublime: Smart view selection in Multi-view Clustering. In SIS 2017 - Statistics and

data Science, Firenze, Italia

4. Pierre-Alexandre Murena, Jérémie Sublime, Basarab Matei and Antoine Cornuéjols: Collabo-

rative clustering based on Algorithmic Information Theory. In Conférence sur l’Apprentissage

Automatique ( CAp’17), Grenoble, France, 2017

5. Jérémie Sublime, Nistor Grozavu, Guénaël Cabanes, Younès Bennani and Anntoine Cornuéjols:

Collaborative learning using topographic maps. In AAFD&SFC’16, at Marrakech, Morocco,

2016.

6. Jérémie Sublime, Younès Bennani and Antoine Cornuéjols: A Compactness-based Iterated

Conditional Modes Algorithm For Very High Resolution Satellite Images Segmentation,

Extraction et Gestion des Connaissances 2015 (EGC’15), Luxembourg, 2015.

7. Jérémie Sublime, Younès Bennani and Antoine Cornuéjols: Un nouveau modèle d’énergie pour

les champs aléatoires de Markov cachés. In SFC’14, Société Francophone de Classification,

Rabat, Morocco, 2014.

8. Jérémie Sublime, Sonia Yassa and Geun-Sik Jo: A genetic algorithm with the concept of

viral infections to solve hard constraints in workflow scheduling. Conference of the Korean

Intelligent Information Society (KIIS’12), Seoul, 12/2012

7.4 Miscellany

7.4.1 Oral talks

1. Seminary on ”Unsupervised analysis of Satellite images time series using deep learning

techniques”, L2TI, Sorbonne Paris North University, May 2019.

2. Invited talk on ”Travaux en IA à l’ISEP sur l’imagerie satellite (ongoing research at ISEP on

satellite images)”, ISEP, March 2019.

3. Denis Maurel and Jérémie Sublime: Seminary on ”Deep Cooperative Reconstruction with

Security Constraints”, LIPN, Sorbonne Paris North University, December 2018.

4. Seminary on ”Unsupervised learning for multi-source applications and satellite image process-

ing”, LINK, AgroParisTech, March 2018.

5. Seminary on ”Unsupervised learning for multi-source applications and satellite image process-

ing”, LRI, Université Paris Sud, February 2018.
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6. Seminary on ”Collaborative clustering and its applications”, LTCI, Telecom ParisTech, April

2017.

7. Invited talk on ”Collaborative-based multi-scale clustering in very high resolution satellite Im-

ages”. In: Collaboration, classification, connaissances et données de l’environnement Workshop,

SAGEO’16, Nice, December 2016.

7.4.2 Thesis Manuscripts

1. Jérémie Sublime: Contributions to collaborative clustering and its potential applications

on very high resolution satellite images. (Contributions au clustering collaboratif et à ses

potentielles applications en imagerie à très haute résolution). PhD Thesis, University of

Paris-Saclay, France, 2016.

2. Jérémie Sublime: A Genetic Algorithm with Constraint Sastisfaction Problems for multi-

objective Optimization in Workflow Scheduling. Master’s Thesis, Inha University, 2013.

7.5 Publications by categories and citation metrics

The table below sorts my publications by category and by research axis:

Multi-view clustering Deep Learning & Imaging Others

Q1 journals 1 4 -
Other journals 2 2 1

A and A* conferences 6 2 -
B conferences - 2 -
Other intnl. conferences 4 3 -
Minor conferences 4 3 1

The figure below shows the evolution of my publications between 2012 and 2020.
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The table below was build from my Google Scholar web page based on my data from April

6th 2021. It is a summary of common metrics that can be linked to a scholar profile to assess the

impact of his publications. I took 2012 as the year for my first publication and 2014 as the year for

my first cite.

Publications 37
Cites 186
h-index [206] 8
g-index [207] 12
m-index (since 2012) 0.89
i-10 8
Cites/Year (since 2014) 22.38
Cites/Paper 5.03
Authors/Paper 3.19
Cites/Author 51.0
Papers/Author 15.37
Kardashian Index 0.28
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8.1 Résumé en français

8.1.1 Résumé

Ce manuscrit d’Habilitation à diriger des recherches est la synthèse de mes travaux réalisés depuis

2016 en tant qu’enseignant-chercheur à l’ISEP et chercheur au LIPN dans l’équipe A3-ADA. J’y

présente mes travaux autour de mon thème central de recherche : l’apprentissage non-supervisé.

Ces travaux s’articulent autour de 2 grands axes : l’apprentissage non-supervisé dans un contexte

multi-vue, et l’apprentissage non-supervisé profond. Ces deux axes découlent directement de mes

travaux de thèses sur le clustering collaboratif appliqué aux images satellite à haute résolution.

Mes travaux en apprentissage multi-vue non-supervisé abordent des thématiques telles que la

confiance et la pondération des vues dans les environnements non-supervisés, les données manquantes

dans un contexte multi-vue, mais aussi des aspects de modélisation du clustering multi-vue afin

de théoriser des éléments tels que la stabilité de ce type de méthodes, mais aussi leur capacité à

apporter de la nouveauté tout en gardant une cohérence avec les données locales.

Mes travaux sur l’apprentissage profond dans un cadre non-supervisé découlent quant à eux du

constat que la majorité des méthodes d’apprentissage profond les plus performantes sont supervisées

et nécessitent d’importants volumes de données annotées pour leur entrâınement. Or, quand on

regarde les applications concrètes en imagerie, on s’aperçoit que dans la plupart des cas, ces

données annotées ne sont pas disponibles (ou le sont trop tard), sont coûteuses à produire, et que

les modèles une fois entrâınés sont difficilement transférables. J’aborde donc dans mes travaux

des architectures d’apprentissage profond adaptées à des contextes non-supervisés. A travers des

applications en imagerie satellite (étude d’urbanisation, cartographie automatique de dégâts de

catastrophes naturelles, etc.), ainsi qu’en imagerie médicale (étude de pathologies de l’oeil), mes

travaux se sont intéressés à des architectures originales et ont pu en étudier les points forts et les

limites.

8.1.2 Synthèse de recherche

Ma thèse ayant porté sur du clustering multi-vue et collaboratif appliqué à des données d’imagerie

satellite, mes travaux ont conservé cet ancrage et s’appuient sur deux axes de recherche avec comme

point commun l’apprentissage non-supervisé :

– L’apprentissage non-supervisé multi-vue, avec quelques travaux explorant les thématiques

connexes du clustering distribué et de l’apprentissage par ensemble non-supervisé.

– L’analyse d’images, et notamment l’utilisation de l’apprentissage profond dans des contextes

non-supervisés pour de l’analyse de séries d’images satellites ou médicales.

Sur l’axe clustering multi-vue, après que ma thèse ait été centrée sur la proposition de nouvelles

méthodes collaboratives et multi-vue permettant de diversifier les types d’algorithmes pouvant

travailler ensemble, je me suis intéressé à la problématique d’évaluer la fiabilité des vues en contexte

non-supervisé. Pour celà, j’ai proposé des méthodes d’optimisation mathématique permettant de

pondérer le poids des vue, mais aussi de l’optimisation à partir de bandits non-stochastiques pour

tenir compte d’une qualité pouvant varier pendant l’entrainement. Enfin, des méthodes basées sur
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l’apprentissage profond ont également été proposées pour la reconstruction des données manquantes

et l’évaluation automatique de la fiabilité des vues.

Le second volet de mes travaux sur le clustering multi-vue est plus théorique avec notamment la

proposition d’utiliser la théorie de l’information et la complexité de Kolmogorov comme base pour

des méthodes de clustering multi-vue ou des méthodes d’ensembles non-supervisées. D’autre part,

je m’intéresse également -dans le cadre de travaux en cours- au portage des notions de stabilité

et d’algorithme risque minimisant proposées par Shai Ben David pour clustering classique, vers

le clustering multi-vue où ces propriétés n’ont pas du tout été étudiéees. D’autres notions que

la stabilité ont également été étudiées: l’apport de nouveauté dans un contexte multi-vue, et la

consistance entre les modèles locaux dans les vues avec un modèle global multi-vue. Des liens ont

pu ainsi être découverts liant la stabilité, la nouveauté et la consistance dans un cadre multi-vue.

Enfin, dans le cadre d’une collaboration avec l’Université Pontificale Catholique de Valparaiso,

certains de mes travaux en clustering multi-vue ont été repris pour faire de la classification de

corpus de textes en combinant des représentations multiples (word2vec, n-grams, tf-idf, etc.).

Sur l’axe apprentissage profond et imagerie, je me suis intéressé à l’utilisation de l’apprentissage

profond sur des applications d’imageries pour lesquelles peu d’images annotées sont disponibles

ce qui rend impossible le recours aux techniques supervisées. J’ai notamment participé à des

travaux sur les séries d’images satellites dans lesquels nous nous sommes intéressés à la détection

de changements non-triviaux (constructions, changement de couverture des sols, mais pas les

changements saisonniers), en ayant notamment recours à l’utilisation d’auto-encodeurs joints

(convolutifs) appliqués à des pairs d’images et à une astuce sur l’erreur de reconstruction des

auto-encodeurs qui ne peuvent en principe pas prédire ces changements non-triviaux ce qui les

rend donc détectables à la reconstructions. De la détection de changements, nous sommes passés à

l’analyse de séries complètes en couplant des modèles de type GRU (Gated recurrent units) avec

des auto-encodeurs et des méthodes de synopsis basés sur les graphes pour faire du clustering de

la couverture des sols et des changements sur des séries entières, le tout de manière totalement

non-supervisée.

Ces travaux ont par la suite été appliqués à plusieurs cas pratiques: détection des suivi des

évolutions urbaines sur les villes de Montpellier et Rostov, l’analyse des images du tsunami de

Tohoku en 2011, mais ont surtout fait l’objet d’un portage dans le domaine médical. Nous avons

en effet ré-appliqué avec succès l’algorithme de détection des changements non-triviaux sur des

images de DMLA afin d’analyser l’évolution de la maladie examen après examen. Ce portage en

médical ayant permis d’obtenir des financement et de démarrer des thèses, d’autres travaux sont

actuellement en cours sur ce domaine, notamment en segmentation d’image non-supervisée en 2D

et en 3D.

8.1.3 Projet de recherche à 4 ans

Mon projet de recherche à 4 ans s’articulera toujours autours des 2 axes évoqués précédemment,

avec cependant une probabilité forte de sortir de l’apprentissage non-supervisé pur, afin d’aller plus

vers des méthodes semi-supervisées, d’apprentissage actif ou de One-short Learning.

La première partie de mon projet à 4 ans va s’articuler autours des 2 encadrements de thèse

démarrés cette année dans le cadre d’une collaboration entre l’ISEP et le centre Hospitalier des

XV-XX :
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– La première thèse porte sur l’évolution de la DMLA et est la continuité directe de mes

travaux sur les séries d’images. Il s’agira ici de passer de l’analyse simple de séries, à la

proposition de modèles prédictifs, toujours dans un contexte non-supervisé faute d’images

annotées en nombre et fiabilité suffisante. Les pistes envisagées évoluent notamment autours

de l’utilisation de GAN (réseaux adversariaux génératifs) pour générer les images des futures

lésions, probablement en les combinant avec des modèles récurrents de type LSTM. En cas de

difficultés à avoir des modèles totalement non-supervisés, un guidage à partir de segmentations

des lésions acquises via des W-Net est envisagé.

– La seconde thèse porte sur le glaucome et notamment la segmentation des axiomes de la lame

criblée de l’oeil à partir d’image OCT en coupe sous plusieurs angles. Ces images présentent

des difficultés importantes du fait de la faible qualité des images, de leur non-continuité et

la aussi du manque de données annotées. Les modèles probables pour ces données seront

très probablement des W-Nets, possiblement combinés avec des réseaux récurrents là aussi,

notamment si les non-continuités des coupes ne permettent pas de faire directement de

segmentation 3D. Enfin, le recours au GAN n’est pas exclu pour améliorer la qualité de

certaines images.

Sur ces deux sujets, une autre thématique importante sera l’interprétabilité des réseaux profonds

utilisés, notamment de manière à pouvoir faire le lien avec des mécanismes sous-jacents des deux

maladies. En effet, les mécanismes de la DMLA sont notoirement mal connus et avoir un modèle

prédictif qu’on pourrait soit expliquer soit accoler à un modèle de croissance mathématique serait

un véritable plus. L’apprentissage profond, et encore plus en non-supervisé n’étant pas connu pour

son interprétabilité, il y a ici un travail de recherche très important auquel j’espère pouvoir apporter

mes contributions.

Sur l’imagerie satellite, les modèles prédictifs sont moins envisageables du fait du nombre beau-

coup plus important de classes par rapport aux images médicales, et c’est donc plutôt l’introduction

de connaissance humaine extérieur qui va m’occuper ces prochaines années, avec notamment la

modification d’algorithmes pour pouvoir faire de l’apprentissage semi-supervisé ou de l’apprentissage

actif. En effet, s’il est actuellement possible de donner quelques données non-annotées à des al-

gorithmes d’apprentissage profond supervisés, il n’est à l’inverse pas possible de donner quelques

données annotées aux algorithmes non-supervisés. Ce serait pourtant un vrai plus pour guider les

clusters vers des classes d’intérêt et augmenter ainsi la qualité des résultats. L’apprentissage en

une fois (one shot learning) serait également une bonne solution d’amélioration des algorithmes

d’apprentissage profond afin de diminuer leurs besoins en images annotées, tout en ne mettant pas

une pression trop forte sur des opérateurs humains.

Concernant l’axe clustering, j’ai déjà évoqué la poursuite de mes travaux sur la stabilité dans

un contexte multi-vue. Celà se ferait toujours en collaboration avec l’Université Paris 13 et Aalto

University (Helsinki). Ayant obtenu un financement FONDECYT-CONICYT au Chili pour 3 ans,

je compte également poursuivre mes travaux d’application de méthodes multi-vue ou d’ensemble

pour les systèmes de classification ou de recommandations. Nous travaillons notamment en ce

moment sur la proposition d’une méthode d’apprentissage par ensemble non-supervisée reposant

sur la théorie de l’information. Il est à noter que les financements obtenus devant concerner des

échanges de chercheur, et des co-encadrements de stagiaires et de doctorants, ils sont conditionnés
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à l’évolution de l’épidémie de covid-19, et à l’obtention d’une demie-bourse de thèse supplémentaire

dans le cas d’un recrutement de doctorant.

Enfin, plusieurs collègues de l’ISEP travaillant sur des thématique de signal m’ont fait part de

leur intérêt sur l’utilisation de l’IA pour la future 6G. Des demandes de financement sont en cours.

Si elles sont acceptées, elles donneront lieu de mon côté au développement de réseaux de neurones

profonds pour de l’analyse et du traitement de signal en temps réel.
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