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RÉSUMÉ

Les systèmes chaotiques présentent des comportements dynamiques non-linéaires com-
plexes. Leurs propriétés spécifiques, comme l’ergodicité, la propriété de mélange topolo-
gique, les caractéristiques proches de celles d’un signal aléatoire, la forte sensibilité aux
conditions et paramètres initiaux correspondent aux les exigences cryptographiques fon-
damentales des algorithmes de cryptage sécurisés, c’est-à-dire la confusion et la diffusion,
selon la théorie de la sécurité de l’information de Shannon. De ce fait, la cryptographie ba-
sée sur le chaos est un excellent candidat pour la conception de crypto systèmes modernes,
sécurisés et fiables.

Dans cette thèse, les spécificités des systèmes chaotiques, ainsi que les méthodes et
outils pour leur analyse tels les points fixes et périodiques, les attracteurs chaotiques, les
diagrammes de bifurcation, les bassins d’attraction, les exposants de Lyapunov etc, ont
été revus du point de vue de la cryptographie. Grâce à cette analyse, nous avons souligné
que dans le cas des applications cryptographiques, certaines caractéristiques spécifiques
de ces systèmes, comme la chaoticité et la sensibilité aux conditions initiales doivent être
amplifiées, tandis que d’autres caractéristiques comme certaines singularités (points fixes)
doivent être évitées, ou remodelées (densité de probabilité de la fonction chaotique) pour
satisfaire aux critères de sécurité.

Les crypto systèmes basés sur le chaos tirent pleinement parti de la dynamique chao-
tique pour obtenir des performances de confusion et de diffusion satisfaisantes. La confu-
sion signifie une relation complexe entre le texte chiffré, la clé secrète et le texte, tandis
que la diffusion souligne la grande sensibilité du texte chiffré au texte original. Cela si-
gnifie qu’un petit changement dans le texte original (par exemple, un pixel dans l’image
originelle) entraînera une différence significative dans le texte chiffré.

Les crypto systèmes basés sur le chaos peuvent être classés en chiffrement par flux et
chiffrement par blocs. Les chiffrements par blocs chiffrent le texte bloc par bloc pour ob-
tenir de bonnes performances de confusion et de diffusion. Le flux de clés produit par un
Générateur de Nombres Pseudo-Chaotiques (PCNG) est utilisé pour supporter les opéra-
tions de confusion et de diffusion. Un chiffrement par bloc sécurisé nécessite une structure
complexe de confusion et de diffusion et un PCNG cryptographique qui peut générer des
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Résumé

nombres pseudo-chaotiques avec des caractéristiques souhaitées, à la fois chaotiques et
pseudo-aléatoires. En revanche, les chiffrements par flux chiffrent le texte en continu en le
masquant à l’aide de l’opérateur XOR avec un flux de clé généré par un PCNG. Outre la
sécurité, la vitesse élevée est l’autre exigence majeure d’un chiffrement par flux.

Ces dernières années, bien qu’un certain nombre de crypto systèmes basés sur le chaos
aient été proposés dans la littérature, beaucoup d’entre eux se sont avérés vulnérables à
certains types d’attaques. Les problèmes existent principalement dans les aspects suivants :

Pour les chiffrements par blocs basé le chaos, d’une part, des niveaux insuffisants de
confusion et de diffusion font que le processus de confusion et de diffusion doit être itéré
plusieurs fois pour obtenir des performances de sécurité satisfaisantes, ce qui est inefficace
car le message doit être traité plus d’une fois et donc la faible efficacité empêche en principe
les chiffrements par blocs d’être appliqués dans les applications en temps réel. D’autre part,
une stratégie de confusion et de diffusion pas assez complexe laisse une porte ouverte aux
attaquants qui peuvent profiter de ce point faible pour éliminer l’effet de la confusion ou
de la diffusion. Cependant, il a été prouvé qu’un schéma de diffusion uniquement ou un
schéma de confusion uniquement peut être facilement craqué.

Pour les chiffrements par blocs basés sur le chaos et les chiffrements par flux basés
sur le chaos, le PCNG joue un rôle crucial dans leur sécurité, notamment pour le chiffre-
ment par flux dont la sécurité dépend fortement du PCNG cryptographique. Un PCNG est
conçu sur la base d’opérations appropriées sur plusieurs cartes chaotiques. Il doit conser-
ver des caractéristiques chaotiques, i.e. comportement pseudo-aléatoire et forte sensibilité
à la clé secrète (composée des conditions initiales et des paramètres des cartes chaotiques
adoptées), et présenter un comportement pseudo-aléatoire pour aider les chiffrements à ré-
sister à l’attaque en clair choisi, à l’attaque différentielle et à l’attaque statistique. En plus,
un PCNG cryptographique nécessite également à un grand espace clé pour contrecarrer
l’attaque de force brute. Cependant, dans la littérature existante, certains crypto systèmes
publiés basés sur le chaos présentent des failles de sécurité : le flux de clés n’est pas produit
par un PCNG et donc le flux de clés ne possède pas de caractéristiques aléatoires, ce qui
provoque une fuite d’informations de la clé secrète et conduit ainsi à des failles de sécurité.
En outre, certaines PCNGs proposées manquent d’analyse de sécurité complète d’un point
de vue cryptographique. Par conséquent, ces PCNG ne peuvent pas être applicables aux
crypto systèmes.

Pour tous les crypto systèmes basés sur le chaos, il est inévitable que les cartes chao-
tiques utilisées fonctionnant avec précision finie dans les appareils numériques présentent
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une dégradation dynamique. Comme la majorité des cartes chaotiques sont basées sur des
nombres réels, la plupart des PCNGs proposées utilisent les notations à virgule flottante.
Cependant, ce type de données, en particulier format double précision, présente les incon-
vénients d’un coût de calcul élevé et d’une utilisation inefficace des ressources. En outre,
en raison de la haute sensibilité des systèmes chaotiques et de la nature de précision finie
des plates-formes logicielles et matérielles, les erreurs de troncature ou d’arrondi peuvent
entraîner une grande différence dans la périodicité des nombres générés, ce qui peut nuire
à la fiabilité de la sécurité du PCNG.

En résumé, les problèmes évoqués ci-dessus existent principalement dans la stratégie de
confusion et de diffusion, la conception de PCNG cryptographique, et la question de la mise
en œuvre (concernant le type de données des cartes chaotiques utilisées et le problème de
la dégradation dynamique). Ces trois aspects fonctionnent conjointement pour influencer
la qualité d’un crypto système basé sur le chaos.

Dans cette thèse, nous nous concentrons sur la question de l’utilisation de la dyna-
mique chaotique en cryptographie visant à proposer de nouveaux crypto systèmes basés
sur le chaos et de PCNGs qui soient sécurisés et fiables. Les contributions principales sont
résumées ci-dessous.

1. Pour éviter les erreurs de quantification, de troncature ou d’arrondi lors de l’applica-

tion numérique, les cartes chaotiques en une dimension (1D) fréquemment utilisées,

y compris la carte logistique, la carte de la tente asymétrique, la carte chaotique li-

néaire par morceaux (PWLCM) et la carte chaotique d’ordre 3 de Chebyshev ont été

reformulés sur un corps fini de N (N = 32) bits. La dégradation dynamique due à

la précision finie a été analysée en termes de performances statistiques (période et

histogramme) et de la contribution d’espace clé.

Du point de vue de la mise en œuvre, par rapport aux crypto systèmes et PCNGs

les plus fréquents qui utilisent les nombres réels avec une double précision, les nou-

veaux crypto systèmes et PCNG conçus basés sur les cartes chaotiques d’entiers 32

bits reformulées peuvent non seulement réduire les coûts de calcul et les ressources

matérielles, mais également garantir que ces systèmes peuvent être implémentés dans

différentes plates-formes d’exploitation en évitant les problèmes de quantification.

2. Un nouveau chiffrement par flux efficace basé sur le chaos a été développé et évalué

dans [ii,iii]. Il est basé sur un nouveau PCNG sécurisé qui est construit à partir de les

fonctions chaotiques reformulées utilisant des nombres entiers, i.e. la carte logistique,
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la carte de la tente asymétrique et PWLCM. Le PCNG proposé n’utilise que quatre

opérateurs XOR et un mécanisme de multiplexage pour pallier le problème de la

dégradation dynamique. Ce PCNG innovant s’avère efficace et facile à mettre en

œuvre.

Les tests effectués ont confirmé que le PCNG proposé possède de bonnes propriétés

cryptographiques et passe avec succès le test des signaux aléatoires du NIST. En

outre, le chiffrement par flux a été vérifié pour être sûr et fiable.

3. Un crypto système basé sur le chaos sécurisé et robuste basé sur des composants

chaotiques et la S-box de AES (Advanced Encryption Standard) a été proposé dans

[iv]. Il comprend un nouveau PCNG efficace, une diffusion globale et un chiffrement

par blocs.

Premièrement, ce PCNG est fondé sur la carte de la tente asymétrique et la carte

chaotique d’ordre 3 de Chebyshev. Il peut éliminer le danger caché de détériora-

tion de la sécurité causée par la dégradation dynamique et produire le flux de clés

pour le schéma de confusion et de diffusion avec de bonnes caractéristiques cryp-

tographiques, tels le grand nombre de clés pour empêcher l’attaque par force brute,

la haute sensibilité à la clé secrète et le pseudo-aléatoire pour dissimuler la relation

entre la clé secrète, le texte et le texte chiffré.

En second lieu, la diffusion globale adopte une diffusion d’addition horizontale (HVD)

et une diffusion d’addition verticale (VAD) suivie une cat map deux dimensions (2D)

modifiée, qui réalise un bon niveau de diffusion.

De plus, le chiffrement par bloc est basé sur une couche de confusion en utilisant

l’AES S-box et une couche de diffusion qui est construite sur la cat map 2D modi-

fiée et une opération d’addition clé. Il fonctionne en mode de chaînes de blocs de

chiffrement (CBC), ce qui améliore les propriétés de confusion et de diffusion.

Les analyses de sécurité et les résultats expérimentaux ont démontré que le crypto

système proposé basé sur le chaos a des performances de confusion et de diffusion

sécurisées et complexes, et il peut résister aux principales attaques connues avec

succès.

4. Le PCNG est crucial pour la sécurité d’un crypto système basé sur le chaos. En dehors

de cela, un PCNG est essentiellement un Générateur de Nombres Pseudo-Aléatoires

(PRNG). Les PRNG sont des outils importants dans de divers domaines de l’ingé-
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nierie. Ainsi, nous avons proposé une méthode de conception de PRNG universel qui

est fondée sur un couplage innovant exploré en utilisant des cartes chaotiques sur le

champ entier de 32 bits [v].

Cette méthode est fondée sur un couplage innovant. Nous avons analysé des matrices

de couplage efficaces pour les schémas de couplage en 2D et 3D, qui « cassent »

les orbites originales des cartes chaotiques adoptées et rendent leurs périodes très

longues ce qui permet d’améliorer le caractère aléatoire et surmonter efficacement la

dégradation dynamique due à l’implémentation numérique.

De plus, deux méthodes de contrôle de sortie, i.e. des méthodes de contrôle de sor-

tie alternatives et dynamiques, ont été proposées pour augmenter la complexité des

PCNG et améliorer l’imprévisibilité et les caractéristiques aléatoires des nombres

pseudo-aléatoires produits.

En outre, étant donné que les PCNG basés sur le schéma de couplage 2D ont la

faiblesse d’un nombre de clés réduit, une stratégie de conception de PCNG dont

l’espace clé est extensible a été proposée fondée sur la carte de la tente asymétrique.

L’espace clé étendu peut aider le crypto système à améliorer la capacité de résistance

à l’attaque par force brute [vi,vii].

En résumé, nous avons analysé dans cette thèse les problèmes existants dans les crypto-
systèmes basés chaos dans la littérature. Nous avons proposé de nouvelles idées et de nou-
veaux schémas pour les surmonter. Les études réalisées ont démontré la sécurité et la fiabi-
lité des solutions proposées.
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ABSTRACT

Chaotic systems exhibit complex nonlinear dynamical behavior. Their attractive charac-
teristics, such as ergodicity, topological mixing property, random-like behavior, high sensi-
tivity to initial conditions and parameters are highly consistent with the primitive cryptogra-
phic requirements for secure encryption algorithms, i.e. confusion and diffusion, according
to Shannon’s theory of information security, which renders the chaos-based cryptography
an excellent candidate for the designs of secure cryptosystems.

In this thesis, the specificities of chaotic systems, together with the methods and tools
for their analysis such as fixed and periodic points, chaotic attractors, basins of attraction,
bifurcation diagrams, Lyapunov exponents etc have been analyzed and redefined from the
perspective of cryptography. Thanks to this analysis, we have pointed out that for cryptogra-
phic applications, some specific features of these systems, such as chaoticity and sensitivity
to initial conditions must be enhanced, whereas other features related to some singularities
(fixed points and their preimages) must be avoided, or reshaped (e.g. unsatisfactory density
of probability of the chaotic map) to satisfy the security criteria.

Chaos-based cryptosystems take full advantage of chaotic dynamics to achieve satis-
factory confusion and diffusion performances. Confusion means a complex relationship
between the ciphertext, the secret key, and the plaintext, while diffusion underlines the
high sensitivity of the ciphertext to the plaintext. It means a tiny change in the plaintext
will make a significant difference in the ciphertext.

Chaos-based cryptosystems can be classified into block ciphers and stream ciphers.
Block ciphers encrypt the plaintext block by block to achieve high confusion and diffusion
performance. The key stream produced by a pseudo-chaotic number generator (PCNG) is
used to support the confusion and diffusion operations. A secure block cipher requires a
complex confusion and diffusion structure and a cryptographic PCNG which can generate
pseudo-chaotic numbers with desired chaotic features and pseudo-randomness. By contrast,
stream ciphers encrypt the plaintext continuously by masking it using the XOR operator
with a key stream generated by a PCNG. Apart from the security, high speed is the other
major requirement of a stream cipher.

In recent years, although a number of chaos-based cryptosystems have been proposed in
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the literature, many of them have been verified to be vulnerable to certain kinds of attacks.
The problems mainly exist in the following aspects.

For chaos-based block ciphers, firstly, the insufficient level of confusion and diffusion
makes the confusion and diffusion scheme have to be looped a couple of rounds to achieve
a satisfactory security performance, which is inefficient for a block cipher because the
plaintext needs to be scanned more than once. Therefore, the low efficiency hinders the
block ciphers to be applied in real-time applications. Secondly, an insecure and not complex
enough strategy of confusion and diffusion leaves an open door to attackers who can make
use of this drawback to remove the confusion or diffusion effect. However, it has been
proven that a diffusion-only scheme or a confusion-only scheme can be cracked easily.

For both chaos-based block ciphers and stream ciphers, the PCNG plays a crucial role
in their security, especially for the stream cipher whose security depends strongly on the
cryptographic PCNG. A PCNG is designed based on proper operations on multiple chaotic
maps. It should maintain chaotic features, i.e. random-like behavior and high sensitivity to
the secret key (composed by the initial conditions and parameters of the adopted chaotic
maps), and exhibit pseudo-randomness to help the ciphers to resist the chosen-plaintext
attack, the differential attack, and the statistical attack. In addition to this, a cryptographic
PCNG also calls for a large key space to frustrate the brute-force attack. However, in the
existing literature, some published chaos-based cryptosystems have security flaws : the key
stream is not produced by a PCNG and thus the key stream does not possess randomness
features, which causes information leakage of the secret key and thus leads to security
vulnerabilities. Furthermore, some proposed PCNGs lack comprehensive security analy-
sis from a cryptographic point of view. Hence, these PCNGs cannot be determined to be
applicable to encryption systems.

For all chaos-based cryptosystems, it is inevitable that the used chaotic maps operating
with finite precision in digital devices show dynamical degradation. Since the majority of
the chaotic maps are based on real numbers, most of the proposed PCNGs use floating-point
notations. However, this data type, especially the double precision notation, has disadvan-
tages of high computation cost and inefficient resource utilization. Also, due to the high
sensitivity of the chaotic systems and the finite precision nature of software and hardware
platforms, the truncation or round-off errors may cause a big difference in the generated
pseudo-chaotic numbers, which may undermine the PCNG’s security reliability.

To sum up, the problems discussed above mainly exist in the strategy of confusion and
diffusion, the cryptographic PCNG design, and the issue of implementation (regarding the
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datatype of the used chaotic maps and the problem of dynamical degradation). These three
aspects work jointly to influence the quality of a chaos-based cryptosystem.

In this thesis, we focus on the issue of using chaotic dynamics in cryptography aiming
to propose new secure and reliable chaos-based cryptosystems and PCNGs. The main work
is summarized as follows.

1. To avoid the quantization, truncation, or round-off errors in digital devices, the frequently-

used one-dimensional (1D) chaotic maps including the logistic map, the skew tent

map, the piece-wise linear chaotic map (PWLCM), and Chebyshev 3rd order chaotic

map have been reformulated over an N-bit (N=32) finite integer field. The dynamical

degradation caused by the finite precision definition has been analyzed in terms of the

statistical (period length and histogram) performances and key space contribution.

From the perspective of implementation, the new designed cryptosystems and PCNGs

that are built upon the reformulated 32-bit integer chaotic maps can not only reduce

the computational cost and hardware resources, but also ensure that these systems

can be transplanted into different operation platforms without the quantization pro-

blems when compared to the most existing cryptosystems and PCNGs that used the

real numbers with double precision.

2. A novel efficient chaos-based stream cipher has been developed and evaluated in

[ii,iii]. It is based on a newly designed secure PCNG which is built on the reformula-

ted integer chaotic maps, namely, the logistic map, the skew tent map, and PWLCM.

The proposed PCNG only uses four XOR operators and a dynamic output control

mechanism to palliate the problem of dynamical degradation, which is efficient and

easy to implement.

The conducted tests have confirmed that the proposed PCNG possesses good cryp-

tographic properties and passes the NIST randomness test successfully. Also, the

stream cipher has been verified to be secure and reliable.

3. A secure and robust chaos-based cryptosystem based on chaotic components and the

AES (Advanced Encryption Standard) S-Box has been proposed in the work [iv],

which is comprised of a new efficient PCNG, a global diffusion, and a block cipher.

Firstly, this PCNG is based on the skew tent map and the Chebyshev 3rd order chaotic

map. It can remove the hidden danger of deteriorated security caused by the dynami-

cal degradation and produce the key stream for confusion and diffusion scheme with
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good cryptographic features, such as the large key space to prevent the brute-force

attack, the high sensitivity to the secret key and pseudo-randomness to conceal the

relationship between the secret key, the plaintext and the ciphertext.

Secondly, the global diffusion adopts a horizontal addition diffusion (HVD) and a

vertical addition diffusion (VAD) followed by a modified two-dimensional (2D) cat

map, which can accomplish a good diffusion level. In addition, the block cipher is

based on a confusion layer using the AES S-Box and a diffusion layer that is built on

the modified 2D cat map and a key addition operation. It works in the cipher block

chaining (CBC) mode, which enhances the confusion and diffusion properties.

The security analyses and the experimental results have demonstrated that the pro-

posed chaos-based cryptosystem has secure and complex confusion and diffusion

performances, and it can resist the main known attacks successfully.

4. The PCNG is crucial for the security of a chaos-based cryptosystem. Apart from this,

a PCNG is basically a pseudo-random number generator (PRNG). PRNGs are impor-

tant tools involving various engineering fields. Thus, we have proposed a universal

PRNG design framework which is based on an explored smart coupling using chaotic

maps over the 32-bit integer field [v].

For the smart coupling, we have analyzed effective coupling matrices for 2D and

three-dimensional (3D) coupling schemes. They can break the original orbits of the

adopted chaotic maps and make their periods very long, and thus improve the ran-

domness and overcome the dynamical degradation effectively.

In addition, two output control methods, i.e. alternate and dynamic output control

methods, have been proposed to increase the complexity of the PCNGs and enhance

the unpredictability and randomness of the produced pseudo-random numbers.

The smart coupling and the output control method compose the PRNG framework,

based on which different chaotic maps can be chosen in order to design different

PRNGs. NIST test has confirmed the pseudo-randomness of the proposed PRNGs.

The results of the key space test and the key sensitivity test have demonstrated that the

PRNGs also possess excellent cryptographic performances. Thus, the PRNGs (also

can be called "PCNGs") can be used not only in any PRNG required applications,

but also in cryptosystem designs.

Furthermore, considering the PCNGs based on the 2D coupling scheme have the
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weakness of small key space, a key space expandable PCNG strategy has been pro-

posed based on the skew tent map. The expanded key space can help the cryptosystem

to enhance the resistance ability to the brute-force attack [vi,vii].

To end up, this thesis has analyzed the existing problems in the designs of chaos-based
cryptosystems in the literature and has proposed new ideas and schemes to overcome them.
The conducted analyses and tests have demonstrated the security and reliability of the pro-
posed solutions.
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INTRODUCTION

Research Background and Motivation

Nowadays, the rapid development of information and network technology has brought
an era of information explosion. Information security has attracted a high attention. Since
the digital images, offering more visual information, are stored or exchanged via not only
the insecure public channels such as Internet and mobile networks for personal or company
use, but also through satellites in the aerospace domain of research [1], image security has
become a crucial issue of great importance. There is an increasing need for secure and
efficient cryptosystems.

Different from the text message, digital images have intrinsic features such as the
high correlation between the adjacent pixels, bulk data capacity and high redundancy [2].
Amongst the most widely used cryptosystems, AES (Advanced Encryption Standard) and
DES (Data Encryption Standard) are authoritative traditional encryption algorithms that
play an important role in protecting the information security in the world. But owing to
their weak diffusion performance, they are not suitable for image encryption situations [3].
Over the years, chaotic systems appeared as excellent candidates for the designs of secure
image cryptosystems.

Chaotic systems exhibit complex nonlinear dynamics. In the 20th century, chaotic dy-
namics went through the process of being discovered, being studied, and flourishing. Since
1990s, the interesting relationship between chaotic dynamics and cryptography has achie-
ved considerable attention from researchers : the attractive characteristics of chaotic sys-
tems, such as ergodicity, topological mixing property, high sensitivity to initial conditions
and parameters and random-like behavior are highly consistent with the primitive cryp-
tographic requirements for secure encryption algorithms, i.e. confusion and diffusion, ac-
cording to Shannon’s theory of information security. Many chaotic properties have their
corresponding counterparts in traditional cryptosystems and this can be found in Table
1 [4, 5].
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TABLE 1 – A partial list of the relationship between the properties of chaotic system and
cryptosystem

Chaotic property Cryptographic property Description

Ergodicity Confusion The output has the same distribution

for any input

Topological mixing pro-

perty

Confusion The relationship between input and

output is intricate

High sensitivity to initial

conditions and parameters

Diffusion A tiny change in the input can cause

a big difference at the output

Random-like behavior Random-like output Any input can produce a random-

like output

Deterministic systems Deterministic encryption/

decryption algorithm

A deterministic scheme can gene-

rate pseudo-random outputs

Complex nonlinear dyna-

mics

Nonlinear transformation

and complex algorithm

A simple system has a high nonli-

near dynamical complexity

A secure cryptosystem requires a good quality of confusion and diffusion. That means
it demands a nonlinear complex relationship between the ciphered image and the plain
image. It is embodied in a uniformly distributed and random-like ciphered image and a
high sensitivity of the ciphered image to its plain image and secret key, etc.

Nowadays, chaotic systems have been considered to be promising in the research of
image cryptosystems [6]. Many chaos-based cryptosystems have been proposed. They can
be classified into chaos-based block ciphers and chaos-based stream ciphers.

A chaos-based block cipher encrypts the input plaintext block by block. The encryption
scheme uses chaotic components to achieve the confusion and diffusion. The parameters
needed in the encryption come from a key stream which is a pseudo-random sequence
generated by a pseudo-chaotic number generator (PCNG). The level of confusion and dif-
fusion that the encryption algorithm can achieve and the quality of the PCNG are crucial to
the security of a block cipher.

A chaos-based stream cipher encrypts the plaintext continuously by masking it using
the XOR operation with the key stream that is produced by a PCNG. The security of the
stream cipher depends highly on the cryptographic quality of the chaotic key stream. Apart
from the security, high speed is the other main requirement of a stream cipher.

28



Introduction

For both types of cryptosystems, the key stream acts a pivotal role in the encryption
process. It is produced by a PCNG which is designed based on several nonlinear chaotic
maps and can generate pseudo-random numbers with enhanced chaotic features and good
randomness. The initial conditions and parameters of the PCNG constitute the secret key
of the cryptosystem. To ensure security, besides the randomness, the PCNG should have
a large key space to resist the brute-force attack and exhibit high sensitivity to its secret
key. That means, including the large key space, the PCNG should possess both chaotic and
pseudo-random properties.

According to our knowledge, in the literature, although plenty of chaos-based encryp-
tion algorithms have been proposed, many of them have been verified to be vulnerable
to certain kinds of attacks. The drawbacks normally lie in the aspects including insecu-
rity, inefficiency, high consumption of computation time, difficulties of implementation,
etc. More specifically, to pursue high security and robust chaos-based cryptosystems, the
existing problems shown in the following cannot be ignored.

(1) Insufficient level of confusion and diffusion causes inefficiency

Confusion and diffusion are two primitive properties for strong encryption algorithms
proposed by Claude Shanoon [7]. For this, chaos-based block ciphers are designed using
confusion-diffusion scheme. Basically, the good confusion means that the cryptosystem is
able to achieve a complicated relationship between the ciphered image, the plain image,
and the secret key so as to frustrate the attempts to look for redundancies and statistical
patterns by studying the ciphered image. Usually, it can be achieved by the operations of
permutation (permute the order of pixels of the plain image) and substitution (substitute the
plain image to change its original statistical property). Diffusion operations aim to spread
out the influence of each bit of the plain image over as many pixels of the ciphered image
as possible in order to increase the sensitivity of the ciphered image to a tiny change of the
plain image.

Due to the insufficient level of confusion and diffusion, the confusion-diffusion scheme
have to be looped a couple of rounds (iterations) to obtain a satisfactory security level. In
each round (iteration), the whole image has to be scanned more than once, which causes
low efficiency for the encryption algorithm and thus hinders the cryptosystem to be applied
in real-time applications.

(2) Insecure and not complex enough strategy of confusion and diffusion causes an
information leakage of the key stream, even the secret key, leading to insecurity

The confusion and diffusion are insecure and not complex enough, which leaves an
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open door to attackers who can remove the confusion effect or diffusion effect and make it
easy to crack a diffusion-only or permutation-only scheme [8, 9]. In the analysis of confu-
sion or diffusion, it is usually possible that the key space can be reduced and the key stream
can be recovered, which is not resistant to attacks.

(3) The key stream not produced by a PCNG causes the information leakage of the
secret key

The key stream serves the confusion and diffusion operations and it is significant that
the key stream is chaotic and pseudo-random. The PCNG has complex inner dynamics that
can conceal the relationship between the secret key and the produced key stream. However,
many existing designs just use simple mathematical functions or chaotic maps to produce
the key stream. This can be easily cracked if the attackers use small size image with special
features to disclose the relationship between key stream and the secret key. Besides, if
single chaotic maps are used to generate key stream, their functions can be observed by
plotting the generated key stream (x) in the phase space (xn, xn+1). Exposing the chaotic
functions to attackers also leaves a security hazard.

(4) Lack of cryptographic PCNG for encryption purposes

Majority of proposed PCNGs lack comprehensive security analysis from a cryptogra-
phic point of view. Some of them either do not satisfy the randomness test or do not provide
the security analysis such as key space and secret key sensitivity analysis. Thus, we can not
be sure whether these PCNGs have the potential for the design of secure cryptographic
systems [10, 11].

(5) Dynamical degradation of chaotic systems over finite precision platforms

The special features of chaotic systems including random-like behavior and high sensi-
tivity to initial conditions render the latter suitable for designing PCNGs and cryptosystems.

However, the digital devices which operate with finite precision will not support the
theoretical properties of chaotic systems that are exhibited in the infinite precision environ-
ment. Thus, dynamical degradation is inevitable. Due to quantization, truncation or round-
off errors, the used chaotic maps may lose chaotic features owing to the finite precision.
Therefore, they may drop into periodic behavior or even fixed points. As a result, the chao-
tic system has a risk of losing randomness, which damages the reliability of the PCNG and
leads to a security breach of the cryptosystems.

In addition to this drawback, most of the proposed chaos-based cryptosystems use
floating-point numbers. From the hardware perspective, the computation of floating-point
numbers has the disadvantages of slow data transfer and inefficient resource utilization
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when compared to the fixed-point numbers or integer numbers.

To sum up, the problems primarily exist in the strategy of confusion and diffusion (pro-
blems (1) and (2)), PCNG (problems (3) and (4)) and the issue related to implementation
(problem (5)). These three aspects work together to influence the quality of a new proposed
image cryptosystem. The quality includes the security, performance, and ease of imple-
mentation that are exactly the three main criteria to evaluate new cryptosystems proposed
by [4].

Secure cryptosystems are always in demand. It is significant to find efficient methods
to design new secure cryptosystems. To this end, it is important to explore practical modes
for designing cryptographic PCNGs with large key space and good randomness properties.
Also, it is necessary to find proper ways to overcome the dynamic degradation of chaotic
maps to ensure a high reliability of a cryptosystem.

Organization of the thesis and main contributions

In this section, we will talk about the main content of the thesis. In this process, orga-
nization of the thesis and the main contributions will be presented.

The thesis focuses on the issue of using chaotic dynamics to the design of secure chaos-
based cryptosystems and PCNGs.

For this, Chapter 1 firstly introduces the basis of nonlinear dynamics and chaotic sys-
tems. Chapter 2 gives the introduction to chaos-based cryptography. Also we make a detai-
led literature analysis and discuss the existing problems as well as current solutions.

The main contributions are summarized as follows.

(1) Use integer arithmetic to overcome the problems caused by floating-point notation

In Chapter 3, to avoid the quantization, truncation or round-offs operations encountered
in software or hardware applications, the commonly used one-dimensional (1D) chaotic
maps, including logistic map, skew tent map, piece-wise linear chaotic map (PWLCM)
and Chebyshev 3rd order chaotic map, are reformulated over an N-bit (N=32) integer field.
This not only guarantees the reproducibility of chaotic iterations over any kind of operation
platforms with different decimal precision, but also decreases the utilization of hardware
resources when compared to the floating-point notation.

(2) Propose a new secure stream cipher

Redefining the chaotic maps over a finite integer field only cannot remove the dyna-
mical degradation. To palliate this problem, in Chapter 4, we introduce an original PCNG
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scheme which is based on the logistic map, PWLCM and skew tent map. It only uses four
XOR operations and a dynamic output control method, which is easy to implement. The
proposed PCNG has good cryptographic properties and it can pass the NIST randomness
test successfully. Based on this PCNG, a new efficient stream cipher is proposed. This
stream cipher shows good statistical and security properties.

(3) Design a new secure and robust chaos-based image cryptosystem (block cipher)
with good confusion and diffusion properties

Insufficient level of confusion and diffusion in the encryption algorithm is dangerous
for the security of a cryptosystem. In Chapter 5, a secure robust cryptosystem based on
chaotic components and the AES S-Box is proposed, which contains an efficient PCNG, a
global diffusion and a block cipher. The PCNG, defined over a finite field, eliminates the
risk of deteriorated security resulting from the dynamical degradation when chaotic maps
defined on real numbers are numerically implemented. The global diffusion increases ef-
fectively the diffusion properties among the pixels of an image. The block cipher composed
of the AES S-Box works in cipher block chaining (CBC) mode, which reinforces the per-
formances of confusion and diffusion.

The proposed chaos-based cryptosystem can resist the main known attacks in the lite-
rature successfully, and it is suitable for practical implementations.

(4) Explore a new smart chaotic coupling method for pseudo-random number generator
(PRNG) design

A PCNG is important for the security of chaos-based cryptosystems. It is primarily a
PRNG. PRNGs are essential tools in a great number of applications. Chapter 6 investigates
a new smart coupling for PRNG designs. The PRNG schemes have been proposed based
on the smart coupling structure and two output control methods, i.e. alternate and dynamic
output control methods. Different coupling combinations of the chaotic maps and two out-
put control methods are integrated into a family of PRNGs. Furthermore, a key expandable
strategy is presented for expanding the key space to improve the cryptosystem’s resistance
to the brute-force attack.

The proposed PRNGs can produce pseudo-random numbers with good cryptographic
properties and they can be used in any designs of stream ciphers or block ciphers for en-
cryption purposes. In addition to this, it also can be applied in PRNG required applications.

Finally, Chapter 7 concludes the thesis and gives the perspectives of this subject.
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CHAPITRE 1

NONLINEAR DYNAMICS AND CHAOTIC

SYSTEMS

1.1 Introduction

Chaotic systems exhibit special complex nonlinear dynamic behavior. First of all, the
major discoveries in the history of chaotic dynamics will be briefly presented in Section
1.2. Then, we will give the fundamentals of nonlinear dynamical system related to chaotic
systems in Section 1.3. After that, Section 1.4 is focused on chaotic systems. Although,
up to now, there is not a universally agreed mathematical definition of the chaotic system,
three well accepted definitions, that is Li-Yorke, Devaney and Smale definitions, will be
introduced in Section 1.4.1. They describe chaotic dynamics from different perspectives for
revealing its specific properties. In addition to the definitions, some typical features appear
to be important in the study of complex chaotic dynamics. And they will be discussed in
detail in Section 1.4.2. After that, several representative low-dimensional chaotic maps will
be analyzed in Section 1.5.

1.2 Historical perspective of chaotic dynamics

Chaotic dynamics is considered to be the third major discovery of physics in the 20th
century together with the relativity theory and quantum mechanics. Similar to the previous
two revolutions, chaos also breaks the canon of Newtonian mechanics. The most passionate
advocates of the new science once said : "Relativity, quantum mechanics and chaos are
three things in the twentieth-century that science will always remember" [12, 13].

The first discovery of chaotic behavior can be dated back to 1890 when Poincaré, a
French mathematician, conducted an in-depth study on the three-body problem. He found
that in the there-body problem, the interaction between them showed huge complexity, and
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it had no accurate solutions. Besides, by applying relevant knowledge of dynamics and to-
pology, he discovered that, within a certain range, the solution of the three-body problem
was random [14]. This finding indicated that even in a certain (deterministic) system, the
trajectory of the system might be extremely unstable, and any slight change in the initial
condition would lead to completely different results. This is the first time that many scien-
tists begin to realize that there might exist inherent randomness, i.e. chaotic dynamics, in a
deterministic system [15, 16].

The 1960s and 1970s were an era of rapid development in the field of chaotic dynamics
research. Around 1960, based on the study of the stability of motion in the Hamiltonian sys-
tem, Kolmogorov, Arnold and Moser proposed the famous KAM theorem in hamiltonian
mechanics, which laid the foundation for chaos theory [17].

In 1963, Lorenz published an influential paper called “Deterministic nonperiodic flow”
in “Journal of the Atmospheric Sciences”. In this paper, he proposed a three-dimensional
(3D) autonomous system to describe weather change. This is the famous Lorenz system
which is the first chaos model with a mathematical description. He found the evolution
of weather was closely related to the initial conditions. In other words, in a deterministic
dynamical system, a slight change in the initial condition will cause a significant difference
in the output, which is exactly the typical feature of chaos : high sensitivity to the initial
condition. He also gave a beautiful metaphor known as “butterfly effect” to describe this
behavior [18].

In 1964, Sharkovsky proposed the famous theorem about the coexistence of cycles with
different periods in a continuous map of an interval into itself, and he gave also the period
ordering [19]. In addition, Hénon proposed a two-dimensional (2D) discrete-time dynamic
system, that’s Hénon map, which is one of the most studied chaotic maps. In 1971, D.Ruelle
and F.Takens published a famous paper "On the essence of turbulence", which used chaos
to explain the nature of turbulence for the first time. They found that the dynamic system
has a particularly complex new attractor and they coined it as “strange attractor". Also, they
introduced it into the dissipative system and proved that the motion related to this strange
attractor is chaotic [20].

Also, in the study of turbulence, Smale discovered a "horseshoe" structure, that is
“Smale horseshoe attractor” [21]. It can be seen as taking two arbitrary points on a dough
and the dough is stretched and then folded continuously, which makes it intricately nested
in itself and thus forms the Smale horseshoe attractor. This figurative metaphor reveals the
complex nature of the chaotic system. This is another important chaotic attractor after the
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Lorenz attractor.

In the paper of “Period three implies chaos”, Li and Yorke initiated "chaos". Since then,
“chaos” has been officially used in the research field [22].

In 1976, May.R published a paper "Simple mathematical models with very complicated
dynamics" in "Nature" [23]. In the paper, he analyzed a prey-predator model, i.e. logistic
map that was firstly studied by P.J. Myrberg [24]. Also, he pointed out that period-doubling
bifurcation and chaos existed in such an apparently simple 1D map. Then, two years later,
Feigenbaum proposed two universal constants that lead from period-doubling bifurcation
to chaos : the convergence constant δ and the scaling constant α, which laid the foundation
for the study of the chaotic behavior of 1D maps.

In 1989, from the perspective of topology, Devaney gave another mathematical defi-
nition of chaos, which indicated that a chaotic system should have sensitivity to initial
condition, topological transitivity and periodic point density [25,26]. Up to now, the Deva-
ney definition, the horseshoe chaos proposed by Smale and the chaos definition proposed
by Li-Yorke are regarded as the three alternative definitions of chaos.

Since the 1990s, the study of chaotic dynamics has developed rapidly. A number of
research work has been done to investigate the theoretical properties of chaotic systems
[27–30]. Nowadays, theory of chaos is important not only in the field of meteorology,
turbulence and biology, but also in many other disciplines, such as mathematics, physics
[31], chemistry [32], economics [33, 34], sociology, philosophy, engineering, information
science, etc.

1.3 Fundamentals of nonlinear dynamical system

A dynamical system is described by a mathematical model in which the explaining
functions represent the evolution of a solution with time and, sometimes, with other va-
rying parameters. If a dynamical system can be described using a set of linear functions,
it is considered to be a linear dynamical system. However, most phenomena in nature are
nonlinear. A nonlinear dynamical system is used to describe a physical model that can be
represented by a set of nonlinear equations such as algebraic, differential, integral, functio-
nal, difference, or abstract operator equations [35]. In reality, nonlinear dynamical systems
can depict a great variety of scientific and engineering phenomena. The theory of nonlinear
dynamical system is very important to analyze and solve the problems in various disci-
plines including but not limited to mathematics, physics, chemistry, biology, economics,
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medicine, and engineering. In this chapter, we just focus on the fundamentals related to
chaotic systems and pay special attention to some features which are particularly important
from the prospective of cryptography applications.

1.3.1 Continuous-time system

Most continuous-time nonlinear dynamical systems can be described by a differential
equation :

ẋ = f (x, t; p) , t ∈ [t0,∞) (1.1)

where x = x (t) is the state of the system that usually belongs to a bounded region Ωx ⊂ Rr,
where n denotes the dimension of state variable x ; the initial time is t0 and the initial
condition is x0 = x (t0) ∈ Ωx ; p ⊂ Rm is the vector of system parameters that usually
varies within a bounded range and often there is m 6 r ; f is a nonlinear or piece-wise
linear function that depicts explicitly a specified system defined by physical, technological
or other reasons.

1.3.2 Discrete-time system

Different from the continuous-time system where the states vary by continuous time, the
discrete-time system, also called the discrete system or map, has its states only at regularly
distributed instants. A discrete-time nonlinear dynamical system can be described by a
difference equation or a map :

xn+1 = f (xn, n; p) , n = 0, 1, 2... (1.2)

where n is the time index ; n = 0 means the initial time ; x0 is the initial condition for the
state x. Other notations are similarly defined as those in the continuous-time system (1.1).

In a discrete-time system, the current state xn is the iteration result of its previous state
xn−1 by function f and the previous one xn−1 also has same mode with xn−2, so that the
state of the system can be presented by the initial condition x0 :

xn = f (xn−1) = f[2] (xn−2) = ... = f[n] (x0)

= f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(x0) (1.3)

where symbol ” ◦ ” denotes the composition of two functions.
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We shall see in the following chapters that, in the chaos-based cryptosystems, in theory,
both continuous-time and discrete-time systems can be used. However, in reality, digital
operating platforms cannot support the continuous nature of the system variables, or si-
gnals. So, to perform the continuous-time system on digital devices, discretization of the
continuous states or discrete approximations of the system have to be applied. In addition,
finding the solutions of differential functions costs computational capacity and hardware
resources [11]. By contrast, the discrete-time systems accomplish by iterative functions
defined over a discrete time domain. Hence, there are no discretization operations and no
heavy computational burden. Thus, discrete systems are more suitable to cryptosystem ap-
plications. In this work, we choose to cope with the discrete chaotic maps for encryption
design. In the following, we will mainly deal with the discrete systems, but the typical
examples using continuous-time systems will be introduced as well in this chapter.

1.3.3 Notions of dynamical system

• Autonomous and Nonautonomous

Definition 1.1. [35] A nonlinear system (1.1), (1.2) is said to be autonomous, if its descri-

bing function f is independent explicitly on time (t in (1.1), n in (1.2)). In this case,

ẋ = f (x; p) (1.4)

xn+1 = f (xn; p) (1.5)

Otherwise, if the describing function f depends explicitly on time, i.e, (1.1), (1.2), the system

is said to be nonautonomous.

It should be noted that, f is not the same function for the continuous system (1.4) and
discrete system (1.5).

In this thesis, the dynamical systems we adopted for cryptography are all autonomous.

• Phase space

Phase space, also called state space, represents the entire space that comprises all states
(x in (1.1),(1.4) and (1.2),(1.5)) of a dynamical system. For an n-dimensional system, the
phase space expands by its evolving states x. For a 1D discrete system, phase space can be
constructed by the iteration states in the space (xn, xn+1), and the graph shown in the phase
space coincides with the graph of the 1D function.
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• Orbit

The evolution of a dynamical system is embodied in a trajectory of the states traveled
from the initial state x0 in the phase space. This trajectory is called an orbit of the system.
The dynamics of the system can be observed by its orbits in phase space.

• Deterministic system

A dynamical system is deterministic, if there is a unique consequence to every change
of the system’s parameters or initial conditions. Otherwise, it is stochastic or random, if
there exists more than one possible consequence for a change in its parameters or initial
conditions according to some probability distribution [35].

Chaotic system is deterministic, which indicates different orbits started from different
initial conditions will never intersect (in infinite precision conditions). In other words, it
guarantees the uniqueness of the evolution of a system for a given initial condition. This
property links chaotic dynamics and cryptography : due to the deterministic dynamics,
unique chaotic sequence can be only generated by a chaotic system using unique speci-
fic initial condition and parameters. This corresponds the uniqueness of the key stream
(pseudo-random numbers from a PCNG) to a specified secret key (initial conditions and
parameters).

• Fixed point

Fixed point, also called equilibrium point and invariant point, of a dynamical system
is an equilibrium state xfp. According to [36], there are the following definitions and theo-
rems.

Definition 1.2. If f is a function and f(c) = c, then c is a fixed point (xfp) of f .

For the continuous time system (1.4),

f (xfp; p) = 0 (1.6)

For the discrete time system (1.5), if it describes a 1D chaotic map, the fixed points are
the intersections of f (x; p) with the function f (x) = x, meaning the orbits remain locked
at the fixed point despite the iteration evolving. That is,

xfp = f (xfp; p) (1.7)

Theorem 1.3. Let I = [a, b] be a closed interval and f : I → I be a continuous function.

Then f has a fixed point in I .
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Proof. If f(a) = a or f(b) = b, then xfp = a or b. If f(a) 6= a and f(b) 6= b. Let

g(x) = f(x) − x. As f(a) 6= a and f(a) ∈ [a, b], f(a) > a. Likewise, f(b) < b. Hence,

g(a) = f(a) − a > 0 and g(b) = f(b) − b < 0. Since g(x) is the difference of continuous

functions, it is a continuous function. According to the Intermediate Value Theorem (Bol-

zano Theorem) 1, there exists c ∈ [a, b] such that g(c) = 0. But g(c) = f(c)− c = 0 so that

f(c) = c. Thus, xfp = c. Theorem 1.3 has been proven to be true.

Theorem 1.3 states that if a dynamical system can be described by a continuous function
which maps in a closed invariant set, it has at least one fixed point.

Theorem 1.4. Let xfp be a fixed point of a function f . f is differentiable at xfp and suppose

its derivative f ′(x) is continuous. If |f ′(xfp)| < 1, then there exists an open interval U

containing xfp such that whenever x is in U , then f [n](x) converges to xfp and xfp is said

to be a stable fixed point. If |f ′(xfp)| > 1, then there exists an open interval containing xfp
such that all points in the interval that are not equal to xfp must leave the interval under

iteration of f .

Loosely speaking, if the nearby orbits of the fixed point evolve toward it, the fixed point
is stable or attractive ; if they move away from it, it is said to be unstable or repulsive.

In the design of chaos-based cryptosystem, both the stable and unstable fixed points
must be avoided carefully. Otherwise, the orbits can be locked into the fixed points and
lose the chaotic properties, which is an undesired behavior when applying chaotic systems
to cryptography.

Definition 1.5. The point x is an eventually fixed point of a function f if there exists N

such that fn+1(x) = fn(x) whenever n > N .

Definition 1.5 states that there exist a type of points that are eventually fixed points.
This type of points are preimages (backward iterates) of the fixed points. An example can
be found in the logistic map ((1.13) in Section 1.5.1) : xn+1 = f(xn) = µxn(1 − xn). If
µ = 4, the point xn = 0 is an unstable fixed point, while its preimages xn−1 = 1 and
xn−2 = 1

2 are not fixed points. But f(1) = 0 and f [2](1
2) = 0. So after one iteration, point

xn−1 = 1 is fixed at 0 ; after two iterations, point xn−2 = 1
2 is fixed at 0. Likewise, the point

1
4 also leads to the fixed point 3

4 after one iteration. Their orbits can be seen in Figure 1.1.

1. Weisstein, Eric W. "Bolzano’s Theorem." From MathWorld–A Wolfram Web Resource. https ://math-
world.wolfram.com/BolzanosTheorem.html
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FIGURE 1.1 – Preimages of the unstable fixed points

Theoretically, in the logistic map, one fixed point (xfp) corresponds to two preimages.
These two preimages correspond to 22 preimages. Therefore, one fixed point (xfp) has
2+22 +23 +24 + ...+2n (n backward iterations) preimages, and all of them will lead to the
fixed point (xfp). If the initial condition of a chaotic map accidentally (randomly) coincides
with one of the preimages of xfp, after a number of iterations, its orbit will be eventually
locked into xfp. Since huge amount of preimages of the fixed point exist, ensuring chaotic
behavior while avoiding all the preimages is quite a tricky task. This is not specific only for
the logistic map, since the majority of 1D chaotic maps show similar cases.

• Periodic point

Definition 1.6. For a discrete dynamical system (1.5), the point x is a periodic point of f

with period k if f [k](x) = x. In other words, a point is a periodic point of f with period

k if it is a fixed point of f [k]. The periodic point x has prime period k0 if f [k0](x) = x and

f [n](x) 6= x whenever 0 < n < k0. That is, a periodic point has prime period k0 if it returns

to its starting place for the first time after exactly k0 iterations of f [36].

Definition 1.7. The set of the iterates started with a periodic point x is called a periodic

orbit or a periodic cycle [36].

Definition 1.8. The point x is eventually periodic of a function f with period k if there

exists N such that f [n+k] = f [n](x) whenever n > N [36].
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• Limit cycle

Limit cycle is a closed periodic orbit of a continuous dynamical system. It can be seen
in the phase space. Figure 1.2 shows the different type of limit cycles, where (a) is an inner

limit cycle, (b) an outer limit cycle, (c) a stable limit cycle, (d) an unstable limit cycle, (e)
and (f) saddle limit cycles.

FIGURE 1.2 – Different type of limit cycles 2

• Torus

A torus is also a closed curve in the phase space of a continuous dynamical system. It
corresponds to a quasi-periodic motion that shows a coexistence of multiple incommensu-
rate frequencies.

FIGURE 1.3 – A simple torus 3

2. Reference [35]
3. https : //commons.wikimedia.org/wiki/Category : Torus#/media/F ile : SimpleT orus.svg
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• Attractor

In the nonlinear dissipative dynamical system, the volume of phase space formed by the
state evolution decreases with time [37]. The orbits in the phase space (S) may eventually
converge to a subset A ⊂ S that is referred as an attractor. Strictly speaking, according
to [38], there are following definitions :

Definition 1.9. A set A is an invariant set by f if f(A) = A.

Definition 1.10. A closed invariant set A is an attracting set if an arbitrary small neigh-

borhood U of A exists such that f(U) ⊂ U and f [n](x) → A, when n → ∞ for any

x ∈ U .

Definition 1.11. An attractor is an attracting set which is topologically transitive, i.e. if for

any two open sets U, V ⊂ A, a positive integer k exists such that f [k](U) ∩ V 6= ∅, or

equivalently a point p ∈ A exists the orbit of which is dense in A.

Definition 1.12. The basin of attraction D(A) (or simply the basin) of an attracting set A

is the open set of all the points x such that f [n](x)→ A, when n→∞.

Typically, the basic attractor can exhibit different geometries such as fixed point, perio-
dic point, torus, and strange attractor.

• Strange attractor.

A strange attractor is a complex attractor that shows sensitivity to its initial conditions
with a fractal geometry. It is a typical characteristic of chaotic dynamics [35]. We will have
detailed discussions in Section 1.4.2.

1.4 Fundamentals of chaotic dynamics

1.4.1 Definitions

Chaotic dynamics exhibits a random-like behavior. This kind of randomness is not indu-
ced by an external random input, but by the system itself. Unlike other known deterministic
systems, the orbit of a chaotic system is unpredictable in a long term. Although chaotic be-
havior is disordered apparently, it has an ordered structure inside.

Chaotic dynamics is a ubiquitous phenomenon in nature. However, there is no univer-
sally agreed definition of chaos so far. The existing definitions given in mathematical terms
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describe chaos from different perspectives. Among them, three well accepted ones are Li-
Yorke definition, Devaney definition and Smale definition that describe chaos from orbits
aspect, topological aspect and geometrical aspect respectively.

In 1975, Tianyan Li and his supervisor James Yorke gave the first definition of chaos
and they also coined the term "chaos".

Li-Yorke Definition [22] A continuous map f : I → I is called chaotic in the sense of
Li and Yorke if it satisfies :

(1) for any k = 1, 2, 3..., f has periodic points ;

(2) there exists an uncountable subset S ⊂ I with the following conditions :

(a.) ∀ x, y ∈ S, lim
n→∞

inf
∣∣∣f [n] (x)− f [n] (y)

∣∣∣ = 0 ;

(b.) ∀x, y ∈ S, x 6= y, lim
n→∞

sup
∣∣∣f [n] (x)− f [n] (y)

∣∣∣ > 0 ;

(c.) ∀x ∈ S, y is a periodic point of f , ∀ y, lim
n→∞

sup
∣∣∣f [n] (x)− f [n] (y)

∣∣∣ > 0.

This definition indicates that a deterministic system can exhibit periodic or aperiodic
behavior using different initial conditions. Any two different aperiodic orbits can be very
close to each other and can move away from each other. Any aperiodic orbit cannot be
approximated by a periodic orbit, that is, there exists no asymptotic periodic point in this
area.

Devaney Definition [25, 26] A continuous map f : S → S, where S is generally a
compact and invariant set in Rn, is said to be chaotic if :

(1) f displays a sensitive dependence on initial conditions, namely, ∃ ε > 0, ∀x and its
neighborhood U , there exists x, y ∈ U , n ∈ Z+ that satisfies

∣∣∣f [n] (x)− f [n] (y)
∣∣∣ > ε ;

(2) f is transitive on S, namely, for any pair of nonempty open sets U ⊂ S and V ⊂ S,
there is an integer k ∈ Z+, and satisfies

f [k] (U) ∩ V 6= ∅ ;

(3) the periodic points of f are dense in S.

The sensitivity of f to its initial conditions means two very close points x and y, under
the influence of f , will move away from each other within the attractor. Thus, the chaotic
orbit is unpredictable in a long term. Notice that, it is unnecessary that all the points close
to x should be evolving separately from x, but there must exists at least one such point.

The topological transitivity means that for any point in any set U , under the influence
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of f , it can appear in any other set V . This implies the chaotic orbits are ergodic.
The periodic point density seems a paradox of chaos since a random-like evolution in

time is based on the existence of a dense distribution of periodic points, which are unstable
and determine the complex dynamics of chaotic nonlinear dynamical systems. However,
this property just reveals the chaotic behavior is not completely disordered, but it contains
order in an apparent disorder.

In Devaney’s definition, the sensitivity to initial conditions and the topological transiti-
vity indicate chaotic dynamics has randomness features, and meanwhile, the periodic point
density implies chaotic dynamics has regularity inside.

Smale Definition S. Smale introduced a "Smale horseshoe map" to define chaos geo-
metrically. This map describes a class of chaotic maps f of the square that transform from
its definition region S to itself. This process is squishing the square in a direction first, and
then stretching it into a long strip in other direction, and then folding the strip into S in a
shape of horseshoe, which can be described in Figure 1.4.

FIGURE 1.4 – Smale horseshoe map 4

The nonlinear operations of stretching and folding lead to a topological mixing which
makes the dynamical orbit exhibit complex behavior in the phase space. Stretching makes
orbits evolve separately and folding makes the points in separated orbits possible to be
close to each other. Continuous stretching and folding in the phase space make the orbits
interwoven and entangled, separated and assembled, thus this can completely hides the
initial conditions and also all the connections between the past states and the future states.
Eventually the map will exhibit chaotic behavior. In addition, mixing makes a small area
element undergo considerable distortions and it is wrapped densely over the attractor. Thus,
mixing implies ergodicity, i.e. the orbits of a chaotic system will pass close to nearly all the
dynamical states in its attractor [37]. Smale definition also graphically explains the chaotic
features proposed in Li-Yorke and Devaney definitions.

4. https : //en.wikipedia.org/wiki/Horseshoemap#/media/F ile : SmaleHorseshoeMap.svg
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1.4. Fundamentals of chaotic dynamics

1.4.2 Features

Although there is no unified definitions, chaos has been widely acknowledged that it
possesses a commonly accepted concepts and properties.

High sensitivity to initial conditions and parameters

A typical feature of chaotic dynamics is its high sensitivity to initial conditions and
parameters : two similar (close without being identical) initial conditions or parameters
can give rise to two dramatically different future orbits. Thus, an arbitrary small change
or perturbation of the current state may cause significantly different future behavior. This
phenomenon is known as "butterfly effect", a famous metaphor that was firstly proposed by
Lorenz, who used the flapping wing of a butterfly to represent a small change in the initial
conditions of a dynamical system, and this flapping would cause a chain of events that may
greatly alter the future weather meaning the evolving orbits would change significantly
[39].

Lorenz system is a simplified model of the Earth atmosphere. Due to the large sequence
and limited computing power in 1960s, he split the large data into subsequences with smal-
ler sizes and initiated the next subsequence with the previous result with a lower precision.
However, he noticed that the model did not duplicate the expected evolution. A simulation
of this behavior based on Lorenz system can be found in Figure 1.5, where y0 is the initial
condition of a variable (y) in Lorenz map (1.12).
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FIGURE 1.5 – Numerical simulation of the sensitivity to initial conditions in Lorenz system.
A tiny change in 4-digit or 5-digital precision will cause qualitatively different orbits as
system evolves.
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The high sensitivity behavior also can be observed in discrete chaotic maps. For ins-
tance, in the logistic map (1.13), if there is a tiny difference in the initial conditions (x0), as
can be seen from Figure 1.6, the produced chaotic sequences will exhibit a big difference
as the system evolves.
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FIGURE 1.6 – Numerical simulation of the sensitivity to initial conditions in the logistic
map (1.13). The initial conditions differing by 10−14 will cause a big difference in the
produced sequences as the system evolves.

It should be noticed that chaotic systems, being deterministic, are short-term predictable
within a certain allowable small tolerance. However, due to the high sensitivity to initial
conditions, chaotic systems are long-term unpredictable. This is the crucial distinction with
the general nonlinear deterministic dynamical systems where the future behavior can be
predicted from the initial condition.

Therefore, this property can allow to distinguish chaotic system from other determinis-
tic dynamical systems [35].

Positive Lyapunov exponent

The high sensitivity existed in chaotic systems can be evaluated by the positive Lya-
punov exponents. Lyapunov exponent is an important measure to qualitatively and quan-
titatively describe the characterization of a dynamical behavior. It measures the average
exponential rate of divergence of nearby orbits. A positive Lyapunov exponent indicates
the system is chaotic and the larger this value is, the stronger the chaotic performance is.

Considering a chaotic system f, there is an initial condition x0 and a nearby point x0 +δ0

as shown in Figure 1.7. After n iterations, the states evolving from these initial conditions
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1.4. Fundamentals of chaotic dynamics

may separate by δn. If the orbit travels exponentially fast, approximately, δn satisfies :

δn ≈ δ0e
nλ (1.8)

where λ is the Lyapunov exponent.

FIGURE 1.7 – Representation of Lyapunov exponent estimation by tracing two orbits ({x0,
x1, ..., xi, ..., xn} and { x′

0, x′
1, ..., x′

i, ..., x′
n}) evolving from a pair of nearby initial conditions

(x0 and x′
0) differing by δ0

Thus, Lyapunov exponent (λ) can be estimated by

λ = lim
n→∞

lim
δ0→0

1
n

ln δn
δ0

(1.9)

For 1D discrete chaotic maps xn+1 = f(xn), recalling (1.3), that is xn = f (xn−1) =
f [2] (xn−2) = ... = f [n] (x0), Lyapunov exponent (λ) can be further deduced by :

λ = lim
n→∞

lim
δ0→0

1
n

ln δn
δ0

= lim
n→∞

lim
δ0→0

1
n

ln
∣∣∣∣∣f [n] (x0 + δ0)− f [n] (x0)

δ0

∣∣∣∣∣
= lim

n→∞

1
n

ln
∣∣∣(f [n]

)
′ (x0)

∣∣∣
(1.10)

Since

(
f [n]

)
′ (x0) = df [n] (x)

dx

∣∣∣∣∣
x=x0

= f
′ (xn−1) f ′ (xn−2) · · · f ′ (x0) =

n−1∏
i=0

f
′ (xi),
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then

λ = lim
n→∞

1
n

ln
∣∣∣∣∣
n−1∏
i=0

f
′ (xi)

∣∣∣∣∣ = lim
n→∞

1
n

n−1∑
i=0

ln
∣∣∣f ′ (xi)

∣∣∣ (1.11)

According to Lyapunov exponent (λ) calculated in (1.10), (1.11), λ < 0 indicates the
orbits started from two nearby points will converge to a stable equilibrium after multiple
iterations, which corresponds to the fixed point or the periodic point ; λ > 0 indicates the
nearby points will move away from each other, which means a chaotic motion ; λ = 0
means the bifurcation points that imply a collision or a change of stability ( i.e. appearance
or disappearance of periodic or chaotic orbits).

Strange attractor

In a usual dynamical system, normally, an attractor is an invariant set with integer di-
mensions that implies a bounded region where the trajectory of a dissipative dynamical
system is asymptotically localized. It means the final state of motion. All the other points
in phase space will converge to the attractor.

However, by contrast, the attractor in chaotic system can be different from the above
one. In chaotic system, there exist two contrary motions : on one hand, the dissipation plays
a stabilizing role on the whole to shrink the trajectories ; on the other hand, from a local
perspective, due to the extreme sensitivity of the chaotic system to its initial conditions,
adjacent orbits repel and separate from each other. Thus, in the entire phase space, distant
orbits converge to a limited range (i.e. chaotic attractor), while locally, the orbits move
apart from each other. In this way, the chaotic orbit can move closer, and then move apart,
and then fold back to move closer, and then separate. Repeating infinitely this movement
(convergence and divergence) forms a complex structure : strange attractor.

Strange attractor is originally termed by D.Ruelle and F.Takens [20]. The word "strange"
is based on not only the trajectory knotty discussed above, but also the complex structure
and specific properties of the chaotic attractors that will be detailed in the following subsec-
tion. In other words, a strange attractor is a bounded attractor which, on one hand, shows
high sensitivity to initial conditions, and on the other hand, is a kind of dense set and thus
cannot be decomposed into two invariant subsets covered by disjoint open sets [35]. It re-
flects a seemingly ordered geometric structure in phase space of a chaotic orbit, while in
time evolution, the orbit exhibits a random-like behavior. Strange attractor is often used to
characterize chaotic dynamics. But it should be noted that not all strange attractors imply
chaotic dynamics [40].
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1.4. Fundamentals of chaotic dynamics

For illustration, consider a well-known strange attractor "Lorenz strange attractor" in
Lorenz system which is a simplified model of convection in the atmosphere defined by
three ordinary differential equations :

ẋ = σ (y − x)
ẏ = ρx− y − xz
ż = xy − βz

(1.12)

where x, y, z are three variables and parameters σ, ρ and β are all positive values. When
σ = 10, ρ = 28, β = 8

3 , the system is chaotic.

The Lorenz strange attractor in time series is plotted in Figure 1.8, where the evolving
states seem disordered.
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FIGURE 1.8 – Time series of each variable

However, the Lorenz strange attractor in phase space shown in Figure 1.9 displays a
specific shape. Especially, in x − z phase space (see Figure 1.9(c)), the strange attractor
shows the famous "butterfly" shape. Nevertheless, although it looks like it has a pattern,
the orbits never intersect in the 3D phase space and it is completely arbitrary that the orbit
travels in the "butterfly".

A strange attractor has a complex structure. The complexity of chaotic dynamics and
strange attractor has a strong link to fractal that is characterized with non-integer dimension
and self-similarity. In addition, the complexity is also embodied in the finite Kolmogorov-
Sinai entropy that is another important feature of chaotic systems and strange attractors.
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FIGURE 1.9 – Strange attractor of Lorenz system

Fractal and self-similarity

A fractal is a special set that does not look like the Euclidean set such as point, line,
and plane, etc. A fractal has a fractional dimension and a certain self-similarity. Fractal was
first coined by Mandelbrot who studied fractals of Julia set and Mandelbrot set that showed
a beautiful symmetry and self-similarity as shown in Figure 1.10 : a portion of the figure
has the same structure and complexity as the entire picture.

A chaotic dynamical systems sometimes exhibit fractal structure. Typical examples can
be found in the bifurcation diagram of logistic map (see Equation (1.13) in the following

5. Reference [41]

50



1.5. Paradigms of chaotic maps

(a) Julia set (b) Mandelbrot set

FIGURE 1.10 – Fractal in Julia set and Mandelbrot set 5

Section 1.5.1) in Figure 1.11 where µ is the parameter and xn stands for the states when
the number of iterations (n) is n→∞, and in the phase space of Hénon map (see Equation
(1.20) in the following Section 1.5.5) in Figure 1.12 where its state is represented by (x, y).

Chaotic dynamics has the universally accepted characteristics including the detailed
aforementioned ones : high sensitivity to initial conditions, positive Lyapunov exponent,
strange attractor and complex dynamics, fractal and self-similarity. There also exist other
criteria for chaotic system such as finite Kolmogorov-Sinai entropy, positive topological
entropy, continuous power spectrum, etc. Here, we just have discussed the most distinct
and important features of chaotic dynamics in this subsection.

1.5 Paradigms of chaotic maps

Chaotic dynamics is ubiquitous in nature and chaotic behavior can be found in many
physical systems and mathematical maps.

There are the well-known continuous-time maps : Lorenz map, Chen system, Van de
Pol system, Rössler system, Duffing system, etc. However, compared to discrete maps, they
are not suitable to be applied in cryptography for the reasons that have been discussed in
Section 1.3.2. For discrete chaotic maps, their rich dynamics and the advantage of ease
of implementation act as the good qualities that make them suitable for cryptosystem im-
plementation. Meanwhile, we should note that, they cannot be applied in cryptosystems
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(a) Bifurcation diagram (period-three window
marked in red boxes)

(b) Enlarged area of the top red box of (a)

(c) Enlarged area of the middle red box of (a) (d) Enlarged area of the bottom red box of (a)

FIGURE 1.11 – Fractal existed in the bifurcation diagram of logistic map (self-similarity)

alone. Because the discrete chaotic maps also have the disadvantages of short periodic or-
bits under finite precision digital implementations and easily recognized functions, which
will lead to insecurity. But, the drawbacks can be overcome by proper operations based on
multiple discrete chaotic maps, for instance, coupling different chaotic maps [42], mixing
chaotic orbits [43], and using linear feedback shift register (LFSR) technique [44], et etc.

Thus, we focus on several typical discrete chaotic maps in this section. In the following
chapters (Chapter 3, 4, 5, 6), based on the discrete chaotic maps, we will reformulate them
and design efficient coupling scheme to develop PCNGs for chaos-based cryptosystems.
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(a) Strange attractor
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FIGURE 1.12 – Fractal existed in the strange attractor of Hénon map (self-similarity)

1.5.1 Logistic map

Logistic map is one of the most studied chaotic maps among the simplest nonlinear
maps and it appears frequently in the chaos-based cryptosystem designs. Logistic map is
a simplified predator-pray model which is firstly studied by P.J. Myrberg [24] and then
popularized by Robert May [23]. Its function is :

xn+1 = f(xn) = µxn (1− xn) , xn ∈ [0, 1] (1.13)

where xn is the state of n-th iteration, x0 is the initial condition, and µ ∈ (0, 4] is the control
parameter.

Bifurcation diagram shows the behavior of a dynamical system with respect to the para-
meters. Bifurcation diagram of logistic map has been shown in Figure 1.11. It corresponds
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to the diagram of Lyapunov exponents by varying parameter µ (see Figure 1.13). When
µ = 4, the logistic map has the biggest Lyapunov exponent that is approximately equal to
0.6928, which implies it reaches the highest chaotic dynamics. Therefore, in the following,
we choose µ = 4 for the logistic map.
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FIGURE 1.13 – Lyapunov exponents dia-
gram
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FIGURE 1.14 – Logistic map

The equation of the logistic map can be seen in the phase space (µ = 4) shown in blue
in Figure 1.14 where the red curve shows the iterated orbit.

Let xn+1 = xn, i.e. x = f(x) = µx(1 − x), the fixed point xfp of the map can be
found : xfp = 0 and xfp = µ−1

µ
. According to Theorem 1.4, the stability can be examined

by the derivative f ′(x) = µ−2µx. Hence, when µ = 4, logistic map has two unstable fixed
points : xfp = 0 and xfp = 3

4 (the intersections of the blue solid curve of logistic function
and the cyan dashed line of the bisector xn+1 = xn shown in Figure 1.14).

If the logistic map is iterated 400 times, the trajectory can be illustrated by Figure 1.15,
from which we can observe that the trajectory appeared in the area near to the value 0
and 1 seems denser than that appeared in the middle area (xn ∈ [0.2, 0.8]). More visually,
according to Figure 1.16 which plots 4000 successive produced numbers (xn) marked with
"∗", it obviously demonstrates that the density of marks is higher in the band where xn near
to value 0 and 1 than in the middle range (xn ∈ [0.2, 0.8]).
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FIGURE 1.15 – A trajectory of the logistic
map
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The distribution of the sequence produced by the logistic map has been investigated ma-
thematically by Ulam et von Neumann [45] and A.Lasota et M.C.Mackey [46]. According
to their works, the probability density of the produced numbers of logistic map is

ρ (x) = 1
π
√
x (1− x)

(1.14)

If we plot ρ(x) as a function of x in Figure 1.17, we can observe clearly that the produ-
ced numbers have a bigger probability to locate near to 0 and 1 than in the middle region.
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FIGURE 1.17 – Probability density function
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FIGURE 1.18 – Histogram

The histogram of the iterated sequence with the length of 105 produced by the logistic
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map in 1000 classes is shown in Figure 1.18. It can be seen that that the distribution of
the produced sequence is highly consistent the density diagram (Figure 1.17), and it is not
uniformly distributed in the definition region [0, 1].

In summary, the logistic map has the largest positive Lyapunov exponent when µ = 4,
which implies chaotic behavior and indicates it can be used in chaos-based cryptosystem
design. However, the density analysis and the histogram have shown that the produced
sequence does not exhibit uniform distribution, which implies that the logistic map can not
be regarded as a pseudo-random source for encryption purposes. Therefore, as we explained
in the beginning of this section, the logistic map cannot be used alone in a cryptosystem
design unless there are additional components and proper operations to palliate the above
drawbacks existing in the logistic map.

1.5.2 Skew tent map

Skew tent map is derived from the classical tent map but it achieves better statistical
performances. Skew tent map defined in real domain (0, 1) is given by Equation (1.15).

xn+1 = fs (xn−1, p) =


xn

p
, 0 6 xn < p

1−xn

1−p , p 6 xn 6 1
(1.15)

where {xn, n = 1, 2, 3, ...} represents the state and p ∈ (0, 1) is the control parameter.
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FIGURE 1.19 – Skew tent map
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The skew tent map for a given parameter value p is displayed in Figure 1.19, where
there exist two unstable fixed points : xfp = 0 and xfp = 1

2−p .

The bifurcation diagram is plotted in Figure 1.20, from which we can find that although
there exists a small blank area, the skew tent map shows excellent chaoticity in its definition
region. Note that, the blank area is corresponding to the unstable point xfp = 1

2−p . Since
p ∈ (0, 1), xfp = 1

2−p ∈ (1
2 , 1). Thus, the area appears in the region (0.5, 1) [29]. The good

chaoticity also can be verified by its Lyapunov exponent diagram shown in Figure 1.21 :
the Lyapunov exponents by varying parameters (p) are always positive and the maximum
value 0.6973 is achieved when p = 0.5. At this parameter, the chaoticity of the skew tent
map is equivalent to that of the logistic map.

FIGURE 1.20 – Bifurcation diagram of skew
tent map
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FIGURE 1.21 – Lyapunov exponents by pa-
rameter p

It has been verified that the produced sequences of the skew tent map obeys the uniform
invariant distribution and the probability distribution function is ρ(x) = 1 [47, 48]. Figure
1.22 shows a trajectory (400 iterations) of the skew tent map indicating that the trajectory
seems distributed evenly in the phase space. In addition, the histogram of a produced se-
quence with the length of 105 has been plotted in Figure 1.23, which shows more visually
that the skew tent map has much better statistical uniformity than the logistic map.
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FIGURE 1.22 – A trajectory of the skew tent
map
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FIGURE 1.23 – Histogram of a sequence pro-
duced by skew tent map

1.5.3 Piece-wise linear chaotic map (PWLCM)

Piece-wise linear chaotic map (PWLCM) refers to a family of maps and skew tent
map is also a piece-wise linear chaotic map. But, in this thesis, "PWLCM" specifies the
following map with 4 slopes :

xn+1 = fp (xn−1, pp) =



xn

pp
, 0 6 xn < pp

xn−pp

0.5−pp
, pp 6 xn < 0.5

1−pp−xn

0.5−pp
, 0.5 6 xn < 1− pp

1−xn

pp
, 1− pp 6 xn 6 1

(1.16)

where {xn, n = 1, 2, 3, ...} represents the iteration state and pp ∈ (0, 0.5) is the control
parameter.

PWLCM for a given parameter pp is displayed in Figure 1.24, where there are four
unstable fixed points : xfp = 0, pp

0.5+p ,
1−pp

1.5−pp
, 1

1+pp
.

Bifurcation diagram and Lyapunov exponent diagram have been plotted in Figure 1.25
and Figure 1.26, which have demonstrated the good chaotic property of PWLCM. The
minimum Lyapunov exponent is equivalent to that of the logistic map when µ = 4 and
skew tent map when p ≈ 0.5, while the maximum Lyapunov exponent value is 1.386 that
is obtained when pp ≈ 0.25. Thus, PWLCM has stronger chaoticity than logistic map and
skew tent map.
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FIGURE 1.24 – PWLCM

A trajectory of PWLCM is shown in Figure 1.27. The histogram shown in Figure 1.28
(105 number of xn in 1000 classes) indicates that the produced sequences of PWLCM have
an approximate uniform distribution which also can be seen in the histogram of skew tent
map (see Figure 1.23). In the work of [30], the authors have derived and determined the
invariant density of a type of piece-wise linear maps with 3 slopes, which also can indicate
the good uniformity property of piece-wise linear chaotic maps than the chaotic maps with
nonlinear derivatives, e.g. logistic map, to some extent.

FIGURE 1.25 – Bifurcation diagram of
PWLCM
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FIGURE 1.26 – Lyapunov exponents of
PWLCM
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FIGURE 1.27 – A trajectory of PWLCM
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FIGURE 1.28 – Histogram of a sequence pro-
duced by PWLCM

1.5.4 Chebyshev chaotic map

Chebyshev map is also a 1D typical chaotic map. It is defined over the real domain
[−1, 1] :

xn+1 = cos [γ arc cos (xn)] , xn ∈ [−1, 1] (1.17)

where the initial condition x0 and the state xn vary in [−1, 1] ; γ is the parameter that
determines the order of the map. Depending on different γ, Chebyshev map in first to
fourth orders, noted by Tγ, γ = 1, 2, 3, 4, 5, are presented as follows :

xn+1 = T1 (xn) = xn

xn+1 = T2 (xn) = 2x2
n − 1

xn+1 = T3 (xn) = 4x3
n − 3x

xn+1 = T4 (xn) = 8x4
n − 8x2

n + 1

xn+1 = T5 (xn) = 16x5
n − 20x3

n + 5xn

(1.18)

Chebyshev maps from 2nd order to 5th order can be seen in Figure 1.29.

Bifurcation of the above Chebyshev maps is shown in Figure 1.30, which indicates
the chaotic dynamics may occur when the order of the map γ > 2. This can be verified
by the Lyapunov exponent diagram shown in Figure 1.31. The chaoticity increases as the
parameter γ increases.
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FIGURE 1.29 – Chebyshev maps

FIGURE 1.30 – Bifurcation diagram of che-
byshev map
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FIGURE 1.31 – Lyapunov exponents by pa-
rameter γ
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FIGURE 1.32 – Density diagram
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FIGURE 1.33 – Histogram of 3rd order Che-
byshev chaotic map

The probability density function of Chebyshev chaotic maps is [49] :

ρ (x) = 1
π
√

1− x2
, x ∈ [−1, 1] (1.19)

It is obvious that Chebyshev chaotic maps do not obey the uniform distribution. Figure
1.32 displays the probability density function. Besides, this conclusion also can be drawn
from the histogram of 3rd order Chebyshev map shown in Figure 1.33.

Considering the 3rd order Chebyshev map possesses relatively higher Lyapunov ex-
ponent compared with 2nd order map and lower computational consumption compared
with 4th order map and 5th order map. We choose the 3rd order Chebyshev map in our
works.

1.5.5 Hénon map

The Hénon map is a 2D discrete-time chaotic map [50] which exhibits a horseshoe
structure. It is defined by :

 xn+1 = −ax2
n + yn + 1

yn+1 = bxn
(1.20)

where a and b are the real parameters. When a = 1.4 and b = 0.3, the Hénon map displays
a strange attractor in the phase space that has been shown in Figure 1.12(a).

If b = 0.3 is fixed and a varies in the range of [0, 1.5], the bifurcation diagram has been
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shown in Figure 1.34. The estimated Lyapunov exponents have been plotted in Figure 1.35
which corresponds to its behaviour (chaotic or periodic) with respect to the parameter a,
and is coherent with the bifurcation diagram shown in Figure 1.34.

FIGURE 1.34 – Bifurcation diagram of Hé-
non map
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FIGURE 1.35 – Lyapunov exponents of Hé-
non map

1.5.6 Lozi map

Based on Hénon map, a French mathematician René Lozi proposed an piece-wise linear
version chaotic map : Lozi map [51] : xn+1 = −a |xn|+ yn + 1

yn+1 = bxn
(1.21)

where a and b are real parameters.

Lozi map is a simplified version of Hénon map, but it has good chaotic performance.
The strange attractor when a = 1.7, b = 0.5 is shown in Figure 1.36

1.5.7 Arnold’s cat map

Arnold’s cat map, one of the famous 2D chaotic maps, is a mixing discrete map which
performs an area preserving stretch and fold mapping named after V.Arnold who demons-
trated its mixing effects using an image of a cat [52]. It is often used in the chaos-based
cryptosystem for image permutation purposes.
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FIGURE 1.36 – Attractor of Lozi map

The original form of this map is :

 xn+1

yn+1

 =
1 1

1 2

 xn

yn

 (mod 1) (1.22)

where xn, yn ∈ [0, 1] ; (xn, yn) is the original position that is mapped into a new position
(xn+1, yn+1).

The Lyapunov exponents (λ) can be obtained by calculating the eigenvalues (σ) of the
cat matrix [53] : ∣∣∣∣∣∣1− σ 1

1 2− σ

∣∣∣∣∣∣ = σ2 − 3σ + 1 = 0,

so

σ± = 3±
√

5
2 .

Hence, two Lyapunov exponents (λ1, λ2) are

λ1 = ln (σ+) = ln

(
3 +
√

5
2

)
> 0

λ2 = ln (σ−) = ln

(
3−
√

5
2

)
< 0

where the positive λ1 has implied the cat map is chaotic.
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The determinant of the cat matrix

1 1
1 2

 is 1, which indicates that it is a area-preserving

transformation.

The effect of Arnold’s cat map on a unit square has been shown in Figure 1.37, from
which we can find that there are two operations that cause chaotic behavior, i.e. stretching
((xn, yn) multiplied by the cat matrix makes (xn+1, yn+1) larger) and folding (modulus ope-
ration (mod 1) makes (xn+1, yn+1) back to the unit square).

FIGURE 1.37 – Effect of Arnold’s cat map

Arnold’s cat map can be discretized and extended to the 2D integer domain [54] :

 xn+1

yn+1

 =
1 u

v 1 + u× v

 xn

yn

 (mod M) (1.23)

where xn, yn, xn+1, yn+1, u, v ∈ {0, 1, ...,M − 1} and M ∈ Z+.

This form has attracted lots of attention since it can be used directly in an image en-
cryption algorithm to accomplish permutation in an image of size M ×M . However, the
quantization of Arnold’s cat map causes that the 2D cat map (1.23) has a finite period,
which may be a weakness in cryptography [54, 55]. In addition, for the equation (1.23),
when (xn, yn) = (1, 1), the used parameters u and v can be easily retrieved by tracing the
position (xn+1, yn+1) = (1 + u, v + 1 + u × v), and that is a weakness for the encryption
algorithm Also, it has a fixed point problem, which means the element (pixel from the plain
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image to be encrypted) at the first position ((0, 0) in (1.23)) keep unchanged regardless the
number of iterations, i.e. if (xn, yn) = (0, 0), (xn+1, yn+1) = (0, 0) and the following itera-
tions will be fixed at (0, 0). Thus, adopting the 2D cat map in cryptography for permutation
needs to overcome the above problems to ensure security.

1.6 Conclusion

Chaotic behavior is ubiquitous in nature. It was firstly discovered in the late 19th and
early 20th centuries, and then deemed to be the third major discovery of physics in the
20th century. Nowadays, chaotic dynamics plays an important role in many fields, from
mathematics and physics to engineering and cryptography.

Chaos is a special phenomenon in dynamical systems. In this chapter, firstly, we sum-
marized the influential discoveries in the history of chaos which made the chaos theory
come to light gradually. Secondly, we introduced the fundamentals of nonlinear dynamical
systems that is relevant to chaotic dynamics. Then, concentrating on chaotic systems, three
definitions have been discussed : Yi-Yorke definition describes chaotic behavior from or-
bits aspect ; Devaney definition is a relatively widely acknowledged definition that points
out that the high sensitivity, transitivity and dense periodic points constitute the kernel of
the chaotic dynamics ; Smale definition gives a geometrical description of chaotic dynamics
that explains the chaotic motion and the above two definitions. In addition to the definitions,
chaotic features were discussed. Chaotic dynamics has it own specific features. The most
typical ones have been discussed in this chapter, such as high sensitivity to initial conditions
and parameters, positive Lyapunov exponent, strange attractor, fractal and self-similarity.

Chaotic maps can be classified to continuous-time maps and discrete-time maps on
one hand. In practical applications, digital devices will not support the infinite precision
continuous nature. Since the discrete-time chaotic maps achieve chaotic dynamics though
iterative chaotic maps, they do not need discretization and do not have the heavy computa-
tional burden when compared to the continuous-time systems. Discrete-time chaotic maps
are more suitable to be directly applied in cryptosystems.

On the other hand, there are high-dimensional and low-dimensional discrete-time chao-
tic maps. We adopt the low-dimensional ones in our work due to their rich chaotic proper-
ties and ease of implementation. In the last section, we presented several low-dimensional
chaotic maps which are also commonly used in the design of chaos-based cryptosystems.
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CHAPITRE 2

CHAOS-BASED CRYPTOGRAPHY

2.1 Introduction

In the previous chapter, we have introduced the basis of chaotic dynamics theory and se-
veral low-dimensional chaotic maps that are widely used in the chaos-based cryptosystems.
In this chapter, we first give the introduction to the chaos-based cryptosystem in Section 2.2
which includes cryptography, cryptosystem, chaos-based cryptosystem and the common
cryptographic attacks. Then the state of the art of the chaos-based cryptosystems will be
discussed in detail in Section 2.3. The literature analysis focuses on the confusion-diffusion
structured chaos-based encryption schemes and PCNG designs. After that, we will elabo-
rate the existing problems and solutions. Finally, Section 2.4 concludes this chapter.

2.2 Introduction to chaos-based cryptosystem

2.2.1 Cryptography

Cryptography is a technique for ensuring the information security. It hides the confiden-
tial information into an unreadable form by encryption in order to protect the information
from being intercepted by potential enemies, hackers or the public so that only authorized
receivers or users can recover the information correctly by decryption.

The encryption and decryption can be described by Figure 2.1. The plaintext is the
confidential message. Encryption is a certain algorithm that uses the secret key to camou-
flage the plaintext to hide the true message, and then outputs the ciphertext. In the process
of decryption, only the correct secret key can decrypt the ciphertext to recover the plaintext.
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Plaintext Plaintext

Encryption Decryption

CiphertextCiphertext

Secret key Secret key

FIGURE 2.1 – Encryption and decryption

2.2.2 Cryptosystem

The secret key for encryption and decryption can be the same or different. This depends
on the type of cryptosystems. Typically, cryptosystems can be classified into two types :
symmetric-key (private-key) algorithm and asymmetric-key (public-key) algorithm.

Symmetric-key algorithms use the same secret key for encryption and decryption, and
the secret key needs to be securely protected. While different keys serve the asymmetric-
key algorithm : usually, one key is publicly known and there are two different private keys
serving encryption and decryption. Asymmetric-key cryptosystems are slow, and thus they
are usually used to deal with small amount of data, such as secret key agreement, digital
signature, and authentication, etc. The most widely used asymmetric-key cryptosystem is
RSA (Rivest–Shamir–Adleman encryption algorithm). By contrast, symmetric-key crypto-
systems are fast and efficient, and they are more suitable for tackling large amounts of data
at a high speed [4]. In this thesis, we focus on the symmetric-key cryptosystem.

The symmetric-key cryptosystem contains the cryptographic components, such as plain-
text, ciphertext, key space, and their relationships, which can be described formally by the
following mathematical notation and figure 2.2 [56] .

A cryptosystem is a five-tuple (P,C,K,E,D) and it satisfies the following conditions :

1. P is a finite set of possible plaintexts ;

2. C is a finite set of possible ciphertexts ;

3. K, the key space, is a finite set of possible keys ;

4. E and D represent the sets of all possible encryption and decryption rules respecti-
vely and both are related to K and P ;

5. For each key k ∈ K, there is an encryption rule e(k, p) ∈ E and a corresponding
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decryption rule d(k, c) ∈ D, such that d(k, e(k, p)) = p ∈ P .

Encryption Decryption

p

p ϵ P

c = e (k, p)

c ϵ C

e ϵ E

Public channel
p = d (k, c)

d ϵ D

k

k ϵ K Secure channel

p ϵ P

FIGURE 2.2 – Cryptographic elements in a symmetric-key cryptosystem

2.2.3 Chaos-based cryptosystem

According to the existing literature, most of the chaos-based cryptosystems are symmetric-
key cryptosystems. For simplicity, the term of chaos-based cryptosystem used in the follo-
wing means the symmetric-key chaos-based cryptosystem, unless otherwise specified.

Chaos-based cryptosystems adopt the chaotic elements in the process of key generation,
and encryption and decryption algorithms, which can be described in Figure 2.3.

DecryptionEncryption

Plaintext Plaintext

Chaos-based 

encryption

Chaos-based 

decryption

CiphertextCiphertext

PCNG

Channel

PCNG

Key stream Key stream

Secret key Secret key

FIGURE 2.3 – Scheme of the chaos-based cryptosystem

In a chaos-based cryptosystem, plaintext (original message) is encrypted into the unrea-
dable ciphertext by the chaos-based encryption algorithm with a secret key. In this process,
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the PCNG, controlled by the secret key, provides the key stream for the encryption algo-
rithm. At the authorized receiver (user), the plaintext can be recovered by decrypting the
ciphertext with the identical secret key.

In the process of encryption and decryption, chaotic components play an important role
not only in producing cryptographic key stream for encryption and decryption algorithms,
but also in achieving a good confusion and diffusion quality in encryption algorithm. For
this, the PCNG should be able to produce pseudo-random numbers as the key stream that
exhibits good randomness and has high sensitivity to the secret key (also called “seed” for
a PRNG). Also, the confusion and diffusion operations should be sufficient and complex
enough to ensure the high security of a cryptosystem.

According to the different encryption concepts, the chaos-based cryptosystems can be
further classified into stream ciphers and block ciphers.

Stream ciphers encrypt the plaintext by applying the XOR (exclusive OR) operation
between the plaintext and the key stream continuously. This is an one-time pad process,
which means the key stream produced by a certain secret key only can be used once for
encryption algorithm. In the process of decryption, the plaintext can be recovered using
XOR operation between the cipertext and the identical key stream. The security of a stream
cipher depends strongly on the performances of the PCNG. A reliable PCNG should have
a large key space, high sensitivity to the secret key and pseudo-random properties. Security
and high speed performance are the main requirements of a good stream cipher.

Block ciphers encrypt the plaintext block by block. They obey the Shannon’s theory
of information security that requires a high level of confusion and diffusion properties for
a secure cryptosystem. The block cipher based on confusion and diffusion scheme can
be described by Figure 2.4. In the encryption process, the secret key is used to control
the PCNG to generate the key stream (Kc, Kd) for confusion and diffusion operations.
The confusion and diffusion can be repeated rc and rd times respectively and the whole
confusion-diffusion operation also can be repeated r times to meet the security require-
ments.

Confusion means using of transformations to complicate dependence of the statistics
of the ciphertext on the statistics of the plaintext. Diffusion aims to spread the influence of
a single element of the plaintext over as many elements of the ciphertext as possible [57].

Considering the input plaintext is an image, the confusion means the relation between
the secret key, the plain image and the cipher image is complex and concealed. In general,
the confusion layer contains permutation operations which are used to relocate the pixel
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Plaintext

Confusion layer

CiphertextCiphertext

PCNG

Diffusion layer

Kc Kd

rc rd

r

Secret key

FIGURE 2.4 – Scheme of the confusion-diffusion in chaos-based cryptosystem

positions and substitution operations which change the pixel values. The diffusion layer
focuses on how to spread the influence of each bit of the plain image to the ciphered one
in order to change the statistical properties of the plain image and ensure that the ciphered
images encrypted from the similar plain images are totally different even if their plain
images are just a tiny (one bit) different [7, 58, 59].

Both stream ciphers and block ciphers require a good quality key stream, which empha-
sizes the important role that PCNG plays in the security of a cryptosystem. The PCNG, also
called chaotic generator or chaotic PRNG, is designed based on several nonlinear chaotic
maps and can generate pseudo-random numbers with enhanced chaoticity and good ran-
domness.

2.2.4 Cryptographic attacks

Cryptanalysis and cryptography constitute cryptology.

When performing cryptanalysis on a cryptosystem, there is a general assumption that
the cryptanalyst knows exactly the encryption algorithm and how it works. In other words,
the cryptanalyst knows everything about the cryptosystem except the secret key. This as-
sumption is reasonable, since encryption algorithms have to be sold to multiple users in
the market and thus the encryption algorithm is easy to be known by public. Consequently,
reverse engineering is always possible to reveal all details on how a cipher works [4].

According to [56], there are four known attacks on cryptosystems that are listed as
follows.

1. Ciphertext-only attack : the attacker only has some cipheretexts.

2. Known-plaintext attack : the attacker only has some pairs of plaintexts and the cor-
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responding ciphertexts.

3. Chosen-plaintext attack : the attacker has temporary access to the encryption process
and he can encrypt some specific plaintexts to obtain their corresponding ciphertexts.

4. Chosen-ciphertext attack : the attacker has temporary access to the decryption pro-
cess and he can use some specific ciphertexts in decryption to obtain their corresponding
plaintexts.

For the attacker, the last two attacks are easier than the others and are possible. Thus,
if a cryptosystem can resist the chosen-plaintext/ciphertext attack, they can resist all above
attacks and the cryptosystem can be considered to be secure.

Apart from the above four types of attacks, there are common attacks as well : brute-
force attack, statistical attack, and differential attack.

Brute-force attack works by trying every possible secret key with the hope of eventually
finding the correct one. As the key space increases, the amount of computational time
for the attacker to obtain the secret key increases drastically. Thus, a large key space is
demanded to make the brute-force attack impractical.

Statistical attack aims to extract the relationships between the plain image and the ci-
phered image by exploiting the statistical weaknesses in a cryptosystem. According to
Shannon’s theory of information and communication, it is possible to break many types
of cryptosystems by statistical attack [60]. Statistical attack can be thwarted if the ciphered
image shows a uniform distribution and no statistical correlation between ciphered image,
plain image and the secret key. Thus, the redundancy in plain image should be dissipated
by diffusion, and meanwhile, the complexity relationship between ciphered image, plain
image and secret key should be increased by confusion operation.

Differential attack studies how differences in the plaintext can affect the resultant dif-
ference at the ciphertext. It abuses pairs of plaintext and corresponding ciphertext to seek
for the secret key using reduced amount of time. In other words, adversary can make a
small change in the plaintext and then trace this difference to observe whether the cipher-
text exhibits non-random behavior or other properties or relations between plaintext that
can be exploited to recover the secret key. Differential cryptanalysis is a general form of
cryptanalysis and it is primarily applicable to block ciphers, but also to stream ciphers and
cryptographic hash functions. To defeat the differential attack, the ciphertext should have a
high sensitivity to even a tiny change in the plaintext.

For all these attacks, the objective is to obtain the secret key, which is a vital component
for a secure cryptosystem. The importance of the secret key also can be found in the Kerck-
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hoff’s principle that goes as "A cryptographic system should be secure even if everything
about the system, except the key, is public knowledge", which means that the security of
cryptosystem totally depends on the secret key. That indicates, even the attackers get ac-
cess to the whole communication system except the secret key and they try to explore the
relation between system and plaintext or secret key, they are highly unlikely to succeed
even though they experiment with lots of plaintext or other ways. For this purposes, good
confusion and diffusion properties must be satisfied.

2.3 State of the art

Most existing conventional encryption methods, such as Advanced Encryption Stan-
dard (AES), Data Encryption Standard (DES), International Data Encryption Algorithm
(IDEA), Rivest–Shamir–Adleman algorithm (RSA) cannot provide expected high speed in
encryption applications owing to their heavy burden of computational complexity. Also, the
insufficient diffusion level of the above methods is not suitable to encrypt the digital image
and video that have a big data size and a strong correlation between pixels [61, 62]. There-
fore, it is necessary to find new secure image encryption methods to improve the security
of modern cryptosystems.

The perfect nature of chaotic dynamics, such as random-like behavior, high sensitivity
to initial conditions and aperiodicity make it an excellent candidate for cryptography. In
1989, Robert and Matthews investigated the logistic map in cryptography for the first time
[63]. Since then, applying chaotic dynamics for image encryption purposes has attracted
the attention of many researchers. Over the last decades, many chaos-based cryptosystems
have been proposed in the literature.

Confusion-diffusion strategy and PCNG design are two crucial and indivisible compo-
nents in chaos-based image cryptosystems. To make things more clearly, section 2.3.1 will
discuss the chaos-based cryptosystems but puts the emphasis on the confusion-diffusion
schemes ; since PCNGs have a tight relationship with stream ciphers, section 2.3.2 will talk
about the research status of PCNGs. In the research field of chaos-based image encryption
algorithm, some existing problems and solutions will be discussed in section 2.3.3.

73



Partie , Chapitre 2 – Chaos-based cryptography

2.3.1 Chaos-based image cryptosystem

In 1998, Fridrich adopted a 2D chaotic map to construct a permutation-diffusion cipher
structure that conforms to the confusion-diffusion concept. Fridrich’s structure could elimi-
nate the visual redundancy among pixels and proved that chaotic dynamics was applicable
for image encryption purposes [64]. Since then, the confusion-diffusion concept based on
chaotic systems has been considered as an efficient method with research potential in image
cryptosystems [58, 59].

As discussed in Section 2.2.3, the confusion operation contains permutation and substi-
tution operations ; the diffusion operation focuses on spreading the influence of each bit in
the plain image to the cipher image. Based on this concept, various approaches have been
proposed in the recent years.

Generally, the permutation can be achieved commonly by the following three methods.

The first type of permutation is based on sorting [65, 66]. That means the encryption
algorithms permute the image pixels according to the order of sorting a chaotic sequence
whose length is contingent upon the size of the plaintext. However, if the plaintext is very
large, this kind of permutation will have a disadvantage of heavy computational burden.

The second method exists in the bit-level confusion. This kind of cryptosystems works
in bit-level instead of pixel-level. That means, the pixels of original input plain image are
converted from integers to bits, and then the permutation can be accomplished by shif-
ting bits positions. Another advantage of this kind of permutation is that the bit-level per-
mutation can change the pixel value so that it can achieve a diffusion effect at the same
time [44, 67–69]. But, if an image is in a size of R × C (R : rows and C : columns) and
each pixel is in 8-bit, bit-level permutation requires 8 times of R×C operations to shift the
bit positions, which requires a considerable computation power especially when the plain
image is very large.

The third type of method permutes the image based on the 2D discrete chaotic maps,
such as Arnold’s cat map [70], Standard map [71] and Baker map [72]. However, they have
low secret key space and one can recover the image after a certain number of map iterations
[73]. Also, they have the fixed point problem : for Arnold’s cat map and Standard map, the
pixel at the position (1, 1) is fixed ; for Baker map, the pixels at the position (1, 1) and
(N,N) (last pixel position) both remain unchanged after any number of iterations. These
weaknesses will be very helpful for cryptanalysts or attackers to identify key vulnerabilities
and break encryption systems [74,75]. As an improvement, 3D maps have been introduced
in [71, 76–78] ; the modified cat map and standard map have been proposed to overcome
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the above mentioned problems [44, 71, 74].

For substitution purposes, substitution box (S-box), a type of basic nonlinear element in
encryption algorithm, is the core of the famous AES and DES encryption algorithms [79].
Due to the properties such as non-linearity, differential uniformity and strict avalanche
criterion, S-box has been considered to be an important tool in substitution operations [80].
Based on different algorithms on diverse chaotic maps, many new constructed S-boxes
have been proposed [81–83]. In [84], a new structure of S-box based on logistic map and
tent map is used in an image encryption system, where the plain image is divided into
groups and dynamic S-box strategy is applied for different groups. In [85], a new image
encryption scheme is designed based on a compound chaotic map and a strong S-box that
is constructed by a logistic-since system. Authors in [86] have proposed two chaotic S-
box schemes that are based on discrete chaotic maps using floating-point arithmetic and
fixed-point arithmetic.

According to the different ways that how a slight change affects the ciphertext, most of
the proposed diffusion algorithms can be categorized into two types.

The first type is : a slight change in the plaintext directly affects the ciphertext though
the diffusion operations [74, 87]. But changing the pixel in different positions leads to dif-
ferent diffusion performance. Thus, usually, it needs more than one round of the diffusion
operation, which causes computational consumption.

The second type is : a slight change in the plaintext first changes the initial conditions
or parameters of the chaotic system in order to utilize the high sensitivity of chaotic system
to achieve a huge different key stream, and then the changed key stream leads to a totally
different ciphertext. That means, key stream for confusion-diffusion depends on not only
the secret key, but also the original plain image. Thus, it should have a high resistance to
chosen-plaintext attacks [88–90]. Some papers achieve this objective by relating statistical
value (e.g. the sum of all pixels of an image) of the plain image to the secret key so as to
change the key stream [91]. But there exists a risk of collision : the key stream may keep
unchanged when pixels are changed but it results in the same statistical value.

Apart from these effective techniques and methods, the strategy of how to use them
properly for a secure and robust image cryptosystem is an important issue. A good stra-
tegy is a good synergism of confusion and diffusion. In [92], a cryptosystem based on
confusion-diffusion structure is proposed that uses a new constructed S-box based on a
chaotic sine map for substitution, Hénon map for permutation and the hyper chaotic Lü
map for producing the key stream. This permutation operates in bit-level, which accom-
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plishes the diffusion effect simultaneously. Paper [93] has proposed a chaotic system that
integrates the well-known 1D chaotic maps in a power-exponential structure two by two.
The confusion-diffusion works in a sorting method based on the different chaotic systems.
In [94], a symmetric color image encryption is developed based on tent map, Chebyshev
map and piecewise linear chaotic map using a simultaneous confusion-diffusion operation
that integrates the confusion and diffusion operations into a stage and makes them interact
each other for higher diffusion property.

In addition, other encryption strategies have been brought out for the sake of high secu-
rity and efficiency. Dependent diffusion and the aforementioned simultaneous confusion-
diffusion have been presented in the literature, where the stage of confusion and diffu-
sion can interact each other to improve the resistance capacity to attacks [2, 74, 94]. Plain
image related encryption algorithm makes the generated dynamic key stream depending
on both secret key and input plain image to achieve high cryptosystem’s sensitivity to
plaintext by creating different key streams for different input images [80, 95–98]. Self-
adaptive methods divide a plain image into parts and make them encrypt each other in turn,
which also can bring big differences in the ciphered image if the original plain image is
slightly modified [99, 100]. Hash functions are designed to improve the security of crypto-
systems [101, 102].

Not only the chaotic maps, other techniques also can incorporate chaotic dynamics for
encryption purposes, for instance, DNA encoding [103, 104], compressed sensing [105–
107], quantum coding [108], fractional Fourier transform [109], wavelet transform [110,
111], random grids [112] and elliptic curve ElGamal [113]. Also, hash function But all
in all, chaotic dynamics is the pivotal component that is the core idea for the chaos-based
encryption algorithms.

2.3.2 Pseudo-chaotic number generator

Different from the true random number generators (TRNGs) that come from the natural
phenomena that are hard to control and utilize, PRNGs are easier to generate and reproduce
pseudo-random numbers. Pseudo-random numbers are not true random, but look random.
They are generated by a PRNG which is a deterministic system and each produced num-
ber uniquely depends on its previous one (called "seed"). If the initial seed is known, the
pseudo-random sequence can be reproduced. This is an important feature since, in cryp-
tosystem, the identical key stream must be reproduced in decryption algorithm using the
identical secret key of the encryption process. Besides, pseudo-random numbers should

76



2.3. State of the art

exhibit the highly similar statistical behavior as the true random numbers. The typical pro-
perties of pseudo-random numbers are uniform distribution, independence between two
pseudo-random sequences produced by different seeds, and long periods [114]. There are
commonly used test suites for evaluating the randomness property of a produced pseudo-
random sequence, such as NIST (National Institute of Standard and Technology) test [115],
TestU01 [116], ENT and DIEHARD [117]. Among them, NIST test suite is the most fre-
quently used in the cryptographic applications.

PCNG is a chaotic PRNG. Since PCNGs generate a pseudo-random sequence as the
key stream for the encryption algorithm, a properly designed PCNG has a crucial influence
on the security of a cryptosystem, especially for the stream ciphers.

The initial conditions and parameters of the PCNG constitute the secret key of a cryp-
tosystem. According to Kerckhoffs’ principle and Shannon’s information security theory,
the PCNG is crucial to the security of a cryptosystem and it should possess a large key
space and be able to produce the key stream with pseudo-randomness and high sensitivity
properties in order to ensure a high level of resistance to the common attacks.

In general, low-dimensional chaotic maps have the advantages of simple structure and
relatively easy implementation, but they cannot be used alone to design PCNGs owing to
their uneven distribution orbits with low periodicity and small key space. Nevertheless, a
proper method of combining low-dimensional chaotic maps has been proven to be efficient
for PCNG design. To enhance the chaotic property and increase the unpredictability, based
on several low-dimensional chaotic maps, many effective approaches have been proposed.

Basically, a PCNG can be achieved in a cascade structure or a parallel structure. A cas-
cade structure can enhance chaotic property using the idea that the output of one chaotic
map is the input of the another chaotic map. But this structure has limited contribution to
enlarging the key space and it can accumulate the errors caused by dynamical degradation
over finite precision platforms [118]. A parallel structure means the adopted chaotic maps
are arranged in parallel. It can expand the key space effectively because the initial condi-
tions and parameters for each adopted chaotic maps can be a part of the secret key [119].
But it needs further methods to integrate the multiplex chaotic sequences and enhance the
chaotic property. To this end, many effective methods have been proposed and they are
discussed in the following.

Coupling method has been proven to be efficient to design PCNGs. It makes the em-
ployed chaotic maps interact with each other’s behavior (orbit) and, in this way, the non-
linear behavior can be greatly complexified. Based on tent and logistic maps, O.Garasym
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et al. explored a chaotic coupling method with topology network to design PCNG [42].
R. Lozi brought out a weak coupling approach to hide the chaotic functions and enhance
the chaotic dynamics [120]. M.Sahari et al. proposed a PCNG for a color image encryp-
tion algorithm by coupling PWLCM and an enhanced 2D logistic maps [121]. C.Zhu et
al. presented a PCNG based on a coupled logistic-tent chaotic system that gained a wider
parameter range and better chaotic features [122]. O.Jallouli et al. [123] designed and im-
plemented two stream ciphers working on 32-bit based on three discrete chaotic maps :
PWLCM, skew tent map and logistic map. The first stream cipher adopts a weak coupling
scheme [120] to couple the chaotic maps, while the second one uses a binary diffusion
matrix to achieve a good coupling effect. These two coupling methods work with a multi-
plexing technique, which makes the proposed stream ciphers robust to generate uniformly
distributed and pseudo-random featured ciphered image. Furthermore, mixing is another
effective strategy to integrate the multiplex chaotic sequence. R. Hamza proposed a PCNG
based on a combination of the three coordinates of the Chen chaotic orbits and it adop-
ted the approach of cascading and mixing the orbit samples to overcome the degradation
problem during the finite precision computations [43]. In [44], the authors implemented a
robust PCNG for a block cipher by connecting skew tent map and PWLCM map in parallel,
and in this PCNG, a linear feedback shift register (LFSR) was designed to ensure very large
periods for all generated sequences.

In addition, other techniques also can be found in the existing literature. A new form
of the power-exponential chaotic structure for encryption purpose was presented in [93]. It
can integrate 1D chaotic maps to achieve good chaotic behavior, but needs a considerable
computational consumption. In paper [124], authors proposed a new PCNG scheme based
on coupled map lattice with time-varying delay and used it to achieve a simple image
encryption that could resist the differential attack. Y.Zhang divided the AES S-box into
four zones to form a 3D S-box. Two pseudo-random key streams could be generated based
on this cubic S-box depending on the two different binary orders in each integer value of a
piece-wise linear chaotic sequence. The key streams passed the randomness test and applied
into two image encryption schemes [125,126]. Based on the logistic map, Garcia-Bosque et
al. proposed a bitwise PCNG that changed the parameters dynamically and could pass the
NIST test [127]. In the encryption scheme in [128], quantum chaotic map was utilized to be
the random source of the key stream. A generalized fractional order chaotic systems based
on logistic map and Chen map were designed as PCNG for secure stream ciphers [129,130].
Based on the ISAAC (indirection, shift, accumulate, add, and count) cipher and XOR shift
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generators, authors in [131] proposed a fast PCNG which used the chaotic iterations to
combine the above components.

Notice that, PCNG is first and foremost a pseudo-random number generator (PRNG). In
addition to being useful in cryptography field, PCNG also can be used in many PRNG nee-
ded situations. PRNG is widely acknowledged as a vital component for a plethora of appli-
cations that involve diverse fields, such as numerical simulations, communication systems,
sampling, entertainment, decision making, numerical analysis, control theory, etc [11].
Some of the most commonly used PRNGs are based on numerical methods, for instance,
linear congruential generator (LGG), mid-square method generator, lagged Fibonacci ge-
nerator, and linear feedback shift registers-based generator (LFSR) . However, many of
these systems have been proven to be insecure and biased owing to their correlations or
short periods. What’s worse, their heavy computational requirements make them hardware
unfriendly and thus they are not a good choice to many applications [132,133]. By contrast,
due to the ease of implementation and nonlinear complex behavior, PCNG is more efficient
than the numerical PRNG. Therefore, the significance of studying PCNG is not only that
it is a vital part of the cryptography, but also that it can be used as a PRNG to play an
important role in various fields.

2.3.3 Existing problems and solutions

Although many chaos-based image cryptosystems have been proposed, some of them
do not possess the high security as they claimed and they have been proven to be vulnerable
to certain kinds of attack.

F.Mousa et al. [75] analyzed the security of a chaos-based image cryptosystem [74]
which used the logistic map to perform the dependent diffusion and demonstrated its dif-
fusion effect can be removed because its argument is exposed in the ciphered image. As a
result, key space has been reduced and permuted version of the ciphered image could be
recovered, which made the brute-force attack and chosen plaintext attack possible. But if
the encryption process is iterated twice (two rounds), the system [74] can be considered to
be secure. Actually, multiple rounds of an encryption scheme can increase the encryption
complexity and increase the security to some extent, but consequently, it will cause low
efficiency [134]. However, there also exists evidence that has proven multiple rounds of an
encryption scheme can not ensure absolute security. Authors of [135] cracked an encryp-
tion scheme [136] by differential attack even if it has the multi-round encryption strategy.
The problem of [136] existed in its encryption scheme whose security merely depended on
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its permutation key instead of all of the keys, which made the key space greatly reduced.
Thus, beside the low efficiency shortcoming, multiple rounds cannot ensure a high security.

In a positive turn of events, an increasing number of papers aim to design efficient and
secure cryptosystems using only one-round encryption. But the existing problems cannot
be ignored. In [137], the secret key has been divided into two groups for chaotic system and
rectangular transformation permutation. However, [138] has indicated that the rectangular
transformation does not work for all pixels, and [139] has proven that the secret key for
permutation can be recovered by using square test images and this scheme can be cracked
by brute-force attack and chosen-plaintext attack. Paper [140] has pointed out the weakness
of [141] : a parameter depends purely on the average intensity of a plain image, and then
[140] has broken the image of [141] effectively by a collision-based inference algorithm.
Authors of [142] has been able to obtain an equivalent secret key of [143] and has cracked
[143] using the chosen-plaintext attack. [144] has demonstrated that [145,146] have design
defects in confusion and diffusion, and the avalanche effect are not complex enough which
allows the attacker to reveal the key stream and break the system by the chosen-plaintext
attack. Paper [147] has broken the scheme in [148] using differential attack, since [148]
can be degraded to a diffusion-only algorithm and permutation-only algorithm. In addition
to this, owing to incomprehensive consideration in security, cryptosystems proposed in
[149–152] have been proved not resistant to chosen-plaintext attack by papers [153–156]
correspondingly.

Taking a deeper look in these insecure cryptosystems, we can find that they have the
following primary problems : (1) insufficient confusion and diffusion requires multiple
rounds leading to low efficiency, which hinders these schemes to be applied in real-time
applications [74, 75, 136] ; (2) insecure and not complex enough confusion and diffusion
may leak the information of the key stream or even the secret key [137–143] and the ef-
fect of confusion or diffusion can be removed by cryptologist leading to the diffusion-only
or confusion-only scheme that can be easily cracked [140, 141, 144–148] ; (3) key stream
without cryptographic features can expose the secret key [137–143]. The above three pro-
blems call for effective solutions : a secure and complex confusion and diffusion strategy,
and a cryptographic key stream that can protect the secret key. As for the latter, a PCNG
that can generate pseudo-chaotic key stream with good randomness and chaotic properties
is an excellent approach. Many PCNGs with larger Lyapunov exponent have been propo-
sed, but not all of them can be applied to encryption applications because some of them
lack cryptographic analysis [11].
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Other than the above discussed problems and solutions, there exists a crucial issue re-
garding to all the chaos-based image cryptosystems : dynamical degradation encountered
in chaotic systems over finite precision implementation platforms.

A great majority of the well-known chaotic maps are defined using real numbers. Ba-
sed on these chaotic maps, most of the proposed PCNGs work in continuous-space domain.
However, chaotic orbits produced by finite precision platforms will not exhibit the ideal in-
finite chaotic behavior due to the quantization in the digital devices, as a result, it is inevi-
table that the dynamical degradation will occur [11]. What’s worse, due to the quantization,
truncations or round-offs in digital implementations, the adopted chaotic maps using real
numbers may lose chaotic features, even may drop into periods or fixed points. As a result,
the PCNG has a high risk of losing randomness, which damages the reliability of the PCNG
and leads to a security breach of a chaos-based cryptosystem. In addition to this drawback,
from the hardware perspective, the computation of floating-point numbers (especially the
double precision notation) has the disadvantages of slow data transfer and inefficient re-
source utilization when compared to the fixed-point numbers and integer numbers [133].

To solve these problems, a digital chaotic system with finite precision has been pro-
posed in [157]. Also, fixed-point solutions have been investigated in [133, 158]. [133] has
examined the finite precision effect of the skew tent map using the fixed-point notation and
has proposed a binary PCNG based on a crossed-coupled skew tent map scheme that works
using 40 bits with 32 bits of fraction length. [158] has introduced a fixed-point hardware
realization (FPGA) of a PCNG based on the logistic map using 45 bits bus size. Due to
the arithmetic operations of fixed-point numbers are same as integer arithmetic, from the
hardware implementation perspective, fixed-point numbers and integers have the advan-
tages of higher data transfer and more efficient resource utilization when compared to the
floating-point numbers. S.El Assad has proposed number of works in chaos-based cryp-
tography including efficient PCNGs, secure stream ciphers and block ciphers, based on
multiple low-dimensional chaotic maps that are reformulated over a positive integer field
with 32 bits precision [44, 58, 123, 159]. Also, H.Li et al. proposed a PCNG based on the
logistic map, PWLCM and skew tent map using 32-bits positive integers [119].

2.4 Conclusion

In this chapter, the basis of the chaos-based cryptosystem has been introduced. We focus
on the symmetric-key encryption algorithm, present the chaos-based confusion-diffusion
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encryption scheme and give the common cryptographic attacks. From the literature analysis
we made in this chapter, many effective techniques have been proposed for chaos-based
cryptosystems and PCNG designs. However, the existing problems cannot be ignored. Low
efficiency and insecurity are caused by the insufficient and not complex confusion-diffusion
operations, and not well-used PCNGs. Besides, a crucial issue concerning the reliability of
PCNG and security of a chaos-based cryptosystems is how to overcome the dynamical
degradation of chaotic maps encountered in the finite precision implementations.

The good performance of a new chaos-based cryptosystem is not only dependent on
one component. A secure and efficient encryption scheme is a result of the synergy bet-
ween each parts (PCNG, confusion-diffusion scheme, encryption algorithm). Thus, desi-
gners devoted to chaos-based image cryptosystems cannot neglect the importance of every
component. To solve the existing problems and design secure chaos-based cryptosystem,
we first redefine four well-known 1D chaotic maps over an integer field in Chapter 3 since
using integers is a good solution to eliminate the security breach caused by the quantization,
round-off errors over finite platforms and it is more hardware friendly and efficient than
floating-point numbers and fixed-point numbers. Then, a new PCNG with simple structure
will be designed for a chaotic stream cipher in Chapter 4. It can overcome the dynamical
degradation and achieve good cryptographic properties (large key space, high sensitivity to
the secret key and pseudo-randomness). After that, a novel secure chaos-based cryptosys-
tem including an inner block cipher will be proposed in Chapter 5. There is no doubt that
PCNG is a crucial component in a chaos-based cryptosystem. A PCNG is also a PRNG
that plays an important role in various fields and applications. To explore a new coupling
method to design PRNG over an integer field, a new smart coupling will be developed in
Chapter 6. Besides, based on the new coupling scheme, a family of PRNGs will be evalua-
ted.
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CHAPITRE 3

ONE-DIMENSIONAL CHAOTIC MAPS

OVER A FINITE INTEGER FIELD

3.1 Introduction

Image encryption algorithms are defined on finite set of integers, while the chaotic
maps are defined using real numbers. L.Kocarev has pointed out that this is an important
difference between chaotic dynamics and image encryption [57]. Thus, the PCNG based
on integers will be more appropriate for image encryption.

In this chapter, 1D chaotic maps include logistic map, skew tent map, PWLCM, and
Chebyshev 3rd order chaotic map will be reformulated over an N-bit (N=32) finite integer
field in Section 3.2. It will overcome the quantization and round-off errors which arise
when the chaotic maps using real numbers are numerically implemented. Thus, deviation
caused by finite precision of digital devices is eliminated in the produced chaotic numbers.
Consequently, the PCNGs based on these maps have a high reliability to be applied over
different platforms regardless of the finite precision. In addition, compared to the floating-
point and fixed-point notations, integer definitions have the advantages of reduced resource
utilization, higher data transfer and ease of implementation, which are much more efficient
and hardware friendly.

However, dynamical degradation is inevitable in the finite precision implementation. In
the literature, some works used integer chaotic maps [44, 102, 160, 161], but they did not
analyze the dynamical degradation of the redefined maps. From the cryptographic perspec-
tive, this chapter gives a more complete analysis of the reformulated chaotic maps. Effect
of finite precision will be discussed in Section 3.3. Furthermore, key space of cryptosys-
tems depends on the precision of the used chaotic maps. For the reformulated chaotic maps,
the finite precision determines the key space when they are used for encryption purposes.
Hence, the key space contribution of the reformulated chaotic maps will be analyzed in
Section 3.4.
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3.2 Reformulated chaotic maps over an integer field

3.2.1 Logistic map

The logistic map (1.13) for µ = 4 redefined over the N-bit finite field is given as below :

X(n+ 1) =


b
X(n)×

(
2N −X(n)

)
2N−2 c, if X(n) 6= 3

4 × 2N and 2N

2N − 1, if X(n) = 3
4 × 2N or 2N

(3.1)

where X is the generated chaotic sequence ; X(n) is the n−th number in X and 1 6

X(n) 6 2N − 1 ; N = 32 ; b·c means the nearest integer that is not bigger than the element
in it.

The reformulated logistic map has been shown in Figure 3.1, where there is one fixed
point shown in the region of [1, 2N − 1], that is 3

4 × 2N (marked with a small red circle).
Equation (3.1) already avoids the fixed point and also gets around the problem of fixed point
preimages (explained in Chapter 1). This can prevent the orbits from reaching undesirable
states (fixed point or its preimages) if the latter have been accidentally (randomly) selected
as initial conditions, and will ensure pseudo-chaotic properties.

FIGURE 3.1 – Reformulated logistic map
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3.2.2 Skew tent map

The reformulated skew tent map is defined as follows :

X(n+ 1) =



b2N × X(n)
P
c, if 0 < X(n) < P

b2N × 2N −X(n)
2N − P c, if P < X(n) < 2N

2N − 1, otherwise

(3.2)

where the notations are similar to those in the logistic maps ; P is the control parameter
ranging in [1, 2N − 1].

The reformulated skew tent map can be seen in Figure 3.2, where there is one unstable
fixed point shown in the small red circle. The value of this point is related to the control
parameter P . To avoid this value, Equation (3.2) can be modified by :

X(n+ 1) = X(n+ 1)− 1, ifX(n+ 1) = X(n)

FIGURE 3.2 – Reformulated skew tent map
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3.2.3 Piece-wise linear chaotic map (PWLCM)

Reformulating the piece-wise linear chaotic map (PWLCM) in the N-bit finite field is :

X(n+ 1) =



b2N × X(n)
P
c , if 0 < X(n) < P

b2N × X(n)− P
2N−1 − P

c , if P < X(n) < 2N−1

b2N × 2N − P −X(n)
2N−1 − P

c , if 2N−1 < X(n) < 2N − P

b2N × 2N −X(n)
P

c , if 2N − P < X(n) < 2N

2N − 1, otherwise

(3.3)

where the notations are similar to those in the logistic map ; P ∈ [1, 2N−1−1] is the control
parameter of PWLCM.

The function of PWLCM can be seen in Figure 3.3, where three unstable fixed points
have been identified. To avoid the fixed point, Equation (3.3) can include :

X(n+ 1) = X(n+ 1)− 1, ifX(n+ 1) = X(n)

FIGURE 3.3 – Reformulated PWLCM

86



3.3. Effect of finite precision

3.2.4 Chebyshev chaotic map

Here below is the Chebyshev 3rd order chaotic map reformulated over the N-bit finite
field :

X(n+1) =


2N − 1, if X(n) = 0 or 1

2 × 2N or 2N

b2−2N+2
[
4×

(
X(n)− 2N−1

)3
− 3× 22N−2 ×

(
X(n)− 2N−1

)]
+ 2N−1c,

otherwise
(3.4)

where the notations are similar to the logistic map.

The delayed phase space of this map is shown in Figure 3.4, where there exists one
fixed point : 1

2 × 2N that has been avoided by Equation (3.4).

FIGURE 3.4 – Reformulated Chebyshev 3rd order chaotic map

3.3 Effect of finite precision

Chaotic systems exhibit infinite period orbits in analog communication or ideal infinite
precision situations. However, in reality, digital device with finite precision will not support
the infinite feature of chaos. When chaotic systems are applied in digital implementation,
effect of finite precision is inevitable. It leads to the dynamical degradation in chaotic sys-
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tems : the orbits become periodic or even locked into fixed points ; their distribution and
correlation property will be deteriorated.

The period of cycle thus obtained is usually greatly smaller than the total number of
states of the finite notation. Figure 3.5 shows a typical orbit that falls into a cycle in digital
chaotic system.

X0 X1 ... Xk-1 Xk

Xk+1

Xk+c-1

...

FIGURE 3.5 – Orbit of a chaotic system with finite precision

— The orbit is :X0, X1, ..., Xk−1, Xk, Xk+1, ..., Xk+c−1. The length of the orbit is k+c.
— Transient part of the orbit is formed by : X0, X1, ...Xk−1. The transient length is k ;
— Cycle part of the orbit is formed by : Xk, Xk+1, ...Xk+c−1. The period length is c.

If a chaotic map is defined over an integer field with N bits and its states vary between
1 and 2N − 1, the theoretical maximum length of the orbit is 2N − 1. But it is improbable
to get this number.

3.3.1 Period analysis in different precision N

There is no doubt that a trajectory of a chaotic system with finite precision will fall
into a cycle. If the length of the cycle is 1, it means the trajectory is locked to a fixed
point. In other words, the period of the orbit is 1. To analyze the periods of the above
four reformulated chaotic maps, for each map, 100 different initial conditions (X(0)) have
been randomly created by MATLAB. For each initial condition, their transient lengths and
period lengths have been calculated and recorded in Figure 3.6.
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(a) Logistic map
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(b) Skew tent map
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(c) PWLCM
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(d) Chebyshev 3rd order chaotic map

FIGURE 3.6 – Transient length and period length tested in the above reformulated integer
chaotic maps (N = 32)
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With the N = 32 bit finite precision, all the test sequences have shown the periodicity.
According to Figure 3.6, the detected period of PWLCM i.e. 240808, is almost 10 times
longer than the maximum period of logistic map, i.e. 18675, and Chebyshev 3rd order
chaotic map, i.e. 24508. The detected minimum period of skew tent map, i.e. 11286999,
is almost 100 times longer than the period of PWLCM. The detected transient lengths of
skew tent map are also much larger than the others’. Therefore, we can observe that the
skew tent has relatively long transient length and period. This is more consistent with the
characteristic requirements of random numbers.

3.3.2 Histogram

Histograms shown in Figure 3.7 reveal the distribution properties of each sequence
generated by each chaotic map. For each sequence, 2×106 values are produced but the first
106 are discarded as transient and the rest 106 are plotted in 1000 classes in the histograms,
where the red curves are the average values in each 10 classes.

According to Figure 3.7, we can observe that the piece wise linear maps, including
skew tent map and PWLCM, show much better uniform distribution than the logistic map
and Chebyshev 3rd order chaotic map. Furthermore, skew tent map has the best uniformity
than the other maps.

In addition, it appears that these histograms have similar distribution properties with
those of the original chaotic maps defined using reals (Figure 1.18, 1.23, 1.28, 1.33). There
seems no distinct different distribution caused by the finite precision. However, if the pre-
cision decreases to N = 16 bits, the effect of finite precision becomes more obvious.

When N = 16 bits, a chaotic sequence is generated by the logistic map (3.1) with
the length of 106. Its histogram plotted in 1000 classes has been shown in Figure 3.8. The
length of the orbit is 149 which is quite smaller than 216. Due to the dynamical degradation
caused by finite precision, the numbers generate by logistic map only distributed discretely
in the histogram instead of covering all the statistical intervals. This result correspond to
the period analysis in Section 3.3.1. This effect can be reduced by increasing the finite
precision (e.g. in Figure 3.7(a), the distribution with 32−bit precision seems more dense
than Figure 3.8). But the bad effect of finite precision can not be completely eliminated.
Figure 3.6(a) has indicated that even the trajectory produced with 32−bit precision, it will
still fall into a cycle eventually.
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(b) Skew tent map
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(c) PWLCM
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(d) Chebyshev 3rd order chaotic map

FIGURE 3.7 – Histograms of the above reformulated integer chaotic maps (red curve in the
figure represents the averages of each 100 classes)
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FIGURE 3.8 – Histogram of a sequence generated by logistic map with N = 16 bits finite
precision (Initial condition X(0) = 8323 is created randomly)

3.4 Key space contribution

The key space of an encryption system should be large enough to resist the brute-force
attack. According to the existing literature, the key space of a cryptosystem should be equal
or bigger than 2128 [7].

Unlike the statistical and security performances, which only can be tested after com-
pleting the design of a PCNG, key space needs to be taken into account when we are
conceiving a new PCNG scheme for cryptosystems.

Initial conditions and parameters of a chaotic map constitute the key space. The pre-
cision of the chaotic maps directly affects the key space. For logistic map and Chebyshev
3rd order chaotic map, only N bits initial conditions can serve as key space, while for the
skew tent map and PWLCM, other than their N bits initial conditions, N bits and N − 1
bits control parameters can be counted into key space as well. Thus, skew tent map and
PWLCM can provide 2N and 2N − 1 for the key space, which are almost twice that of the
logistic map and Chebyshev 3rd order chaotic map.
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3.5 Conclusion

In this chapter, we have introduced the reformulated functions of logistic map, skew
tent map, PWLCM and Chebyshev 3rd order chaotic map over the N−bit (N = 32) finite
integer field. The original chaotic maps have been historically defined over a real domain
using real numbers. If they are adopted for encryption purposes, initial conditions should be
set carefully to avoid preimages of the fixed points since these initial conditions will make
the evolving chaotic orbits fall into fixed points eventually. In contrast, initial conditions
of the reformulated chaotic functions can be randomly selected, since they are defined
over a finite integer field using discrete values. We have avoided the fixed points in the
reformulated chaotic map definition and therefore, have overcome the problem caused by
their preimages.

Finite precision will give rise to dynamical degradation and thus the produced sequence
by the chaotic maps with finite precision will fall into a period/cycle. What a good key
stream demands is a very long period and a uniform distribution of the output pseudo-
chaotic sequence. Thus, the effect of finite precision has been analyzed in terms of period
and histogram aspects. According to the test results, it can be seen that the skew tent map
has longest periods and the best uniform distribution performance among the four chaotic
maps. Followed by the skew tent map, it is the PWLCM that shows the similar property
with skew tent map, but from periodicity and distribution perspective, it is slightly less
prominent than the skew tent map.

The chaotic maps that will be used in a design of a cryptosystem. The precision of
the chaotic maps determines the key space. Key space should be large enough to resist
the brute-force attack. The key space contributions of the logistic map, skew tent map,
PWLCM and Chebyshev 3rd order chaotic map are N , 2N , 2N − 1 and N respectively.

In the following chapters, we will use these finite integer field redefined 1D chaotic
maps to design secure and robust encryption algorithms and PCNGs.
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CHAPITRE 4

PROPOSED CHAOS-BASED STREAM

CIPHER

4.1 Introduction

PCNG using parallel structure can increase the key space. In this chapter, we will pro-
pose a new simple and efficient PCNG in parallel structure and then apply it to the design
of a secure stream cipher. The PCNG works over the 32 bit finite field and it is based on
three discrete chaotic maps, that is, PWLCM (3.3), skew tent map (3.2) and logistic map
(3.1). Only four XOR operators are adopted in this scheme to mix these 1D chaotic maps
to form the intermediate chaotic outputs as well as the decision samples which operate co-
operatively under a dynamic output control mechanism to generate the final pseudo-chaotic
sequence. The produced pseudo-chaotic sequence is the key stream for the stream cipher.

In the following, the proposed PCNG and the stream cipher are described in Section
4.2 ; in Section 4.3, performance analyses of the PCNG in terms of computational perfor-
mance and statistical analysis are given in Section 4.3.1 ; Section 4.3.2 presents the crypta-
nalytic analysis results of the stream cipher including key space analysis, uniformity test,
entropy test, correlation analysis and key sensitivity analysis. Finally, we draw the conclu-
sion in Section 4.4.

4.2 Proposed stream cipher

The proposed stream cipher is achieved by using XOR operation to mask the plaintext
with the key stream provided by the PCNG. The core of the stream cipher is the new
designed PCNG.

The scheme of the proposed PCNG is presented in Figure 4.1. It is based on three
classical discrete chaotic maps : Fp[Xp(n − 1)] , Fs[Xs(n − 1)] and Fl[Xl(n − 1)],
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namely PWCLM (3.3), skew tent map (3.2) and logistic map (3.1) with N = 32 bits. They
operate in parallel to produce chaotic numbers, and then these numbers are processed by
XOR operators (denoted by ⊕) and a dynamic output control mechanism to form the final
output sequence that is the key stream for the stream cipher. Chapter 3 has demonstrated
that all these original maps are chaotic but exhibit poor dynamic properties for encryption
purposes when taken alone.

Fp[Xp(n-1)]

Fs[Xs(n-1)]

Fl[Xl(n-1)]

Xp(n)

Xs(n-1)

Xl(n)

Xp(n-1)

Xl(n-1)

Xs(n)

S1(n)

S2(n)

S3(n)

Xth(n)

X(n)Secret Key

FIGURE 4.1 – The proposed PCNG scheme for the stream cipher

The secret key of the PCNG contains the initial conditions of the PWLCM, skew tent
map and logistic map that are Xp(0), Xs(0), Xl(0) respectively and the parameters of
PWLCM and skew tent map that are Pp and Ps. Notice that, Xp(0), Xs(0), Xl(0), Ps are
integers in the the range of [1, 2N−1] while Pp is integer in the range of [1, 2N−1−1]. S1(n),
S2(n), S3(n) are three intermediate outputs that come from the following expressions :

S1 (n) = Xp (n)⊕Xs (n)

S2 (n) = Xs (n)⊕Xl (n)

S3 (n) = Xp (n)⊕Xs (n)⊕Xl (n)

(4.1)

The usage of the convertible XOR operators can improve the chaotic characteristics
effectively in comparison with the single original chaotic maps. The final output X(n)
is controlled by the a decision sample Xth(n) with two thresholds Th1 and Th2, where
Xth(n) can be considered as a dynamic parameter to switch between S1(n), S2(n), S3(n) :

X (n) =


S1 (n) , if 0 < Xth (n) < Th1
S2 (n) , if Th1 < Xth (n) < Th2
S3 (n) , otherwise

(4.2)
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where Xth = S1 (n)⊕S2 (n) = Xp (n)⊕Xl (n) and Th1 = 0.8× 2N , Th2 = 0.9× 2N .

This kind of dynamic output control is designed to increase the scheme complexity and
enhance the randomness

4.3 Performance analysis

In this section, we will discuss the performance of the proposed stream cipher. All
simulations are conducted in MATLAB (R2017b) on a computer of Intel Core i-7-3770
CPU in Windows 7 Professional, 64-bit operating system with 3.4GHz processor, 8 GB
RAM.

4.3.1 Performance analysis of the proposed PCNG

Firstly, performance of the proposed PCNG is evaluated in terms of computational per-
formance and statistical analysis. Histogram, χ2 test and NIST test have been adopted to
analyze the statistical properties. All these tests are used to explore and verify the crypto-
graphic and randomness performances of the proposed PCNG.

Computational performance

The execution time of an algorithm not only depends on the complexity of an algo-
rithm, but is affected significantly by the programming language, operating environment,
code optimization, etc. It will cause biased result if we compare two algorithms that ope-
rate using different programming language in different operating environments. Thus, here,
for evaluating the computational performance, we give below the results in terms of ave-
rage bit rate (Mbps) and average NCpB (Number of needed Cycles to generate one Byte)
which can provide relatively fair results. For that, we generate 100 chaotic sequences with
length of 31250 samples in each sequence using 100 different secret keys. Then the average
generation time of these 100 sequences is calculated.

The bit rate and NCpB are given by the following relations :

Bit Rate (Mbps) = Generated data size (Mbits)
Average genertion time (s)

NCpB = CPU speed (Hz)
Bit Rate (Byte/s)

(4.3)
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The obtained results of the proposed PCNG and other PCNGs simulated in the similar
environment are shown in Table 4.1, from which we can find our PCNG has achieved a
higher speed than the others.

TABLE 4.1 – Time consuming results
PCNG Bit Rate (Mbps) NCpB

Proposed PCNG 17.679 1539
Ref. [10] 1.7 9411
Ref. [162] 0.49 45714

Actually, if analyzing the proposed PCNG, from the perspective of computational com-
plexity, the major time consuming component is existed in the iterations of three chaotic
maps (PWLCM, skew tent map and logistic map). However, the iterations of chaotic maps
are indispensable parts in any PCNG designs. In other words, it is a common method to
choose three chaotic maps to design PCNGs, and thus, roughly speaking, these PCNGs
cost equivalent execution time. Thus, the remaining components of a PCNG determine its
computational performance. In our PCNG scheme, except for the chaotic maps, only four
basic and low-cost XOR operators and a simple and easily implemented dynamic output
control mechanism are used. They can enhance the complexity of PCNG effectively but not
spend lots of time. Hence, the proposed PCNG scheme is considered to be efficient.

Furthermore, the proposed PCNG operates in 32-bit, while most of the PCNGs in li-
terature use double precision notation which is in 64-bit. Thus, our PCNG occupies redu-
ced resources and are more hardware efficient for computation, which is also beneficial to
achieving a good computational performance.

Statistical analysis

The PCNG is responsible for providing key stream for the stream cipher. The key stream
must exhibit randomness to ensure that the attackers cannot find the rule of the key stream
and never be able to derive the secret key. Thus, firstly, the basic rule of PCNG in statistical
analysis is that the generated chaotic sequences should have a uniform distribution. And,
then the chaotic sequences should pass the randomness test.

(1) Histogram and χ2 test
As can be seen from Figure 4.2(a), the generated chaotic sequence is uniformly distri-

buted by its histogram, where 107 chaotic samples X have been plotted in 1000 statistical
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classes and the red curve in the figure shows the average values in every 10 classes (an inter-
val). When we zoom in a part of Figure 4.2(a), for instance, the range of [3×109, 3.5×109],
and then plot its histogram in Figure 4.2(b), we can find that the partial histogram is qualita-
tively similar to the whole histogram of Figure 4.2(a). Note that, in Figure 4.2(b), to reveal
the partial histogram more clearly, we divide each class of Figure 4.2(a) into 10 classes,
which is equivalent to the original sequence in Figure 4.2(a) being drawn in the histogram
of 10000 classes, and then a part of it has been magnified.
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(a) Histogram
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(b) Enlarged histogram

FIGURE 4.2 – Histogram of the produced key stream

Furthermore, to verify whether the output variable X follows the uniform law, we eva-
luate the probability density as follows.

Suppose there is a sequence (x) with a large number of values x(1), x(2), ..., x(i), ..., x(n)
taken by a given variable X . An approximate representation of the distribution law that X
follows can be obtained by a histogram of the sequence x in 10 classes. For this, using
MATLAB, we execute the following operations :

(a) using function "[nelements, centers] = hist(X)" to determine the centers of the
classes obtained by diving the interval [min(x),max(x)] into a given number of classes,
for instance, 10 classes, with the same length (l), where the notation min(x) and max(x)
mean the minimal value or the maximal value of the sequence x and l = max(x)−min(x)

10 , and
the number of elements (nelements) in each class.

(b) the heights (heights) of the rectangles of the histogram are obtained by

heights = (nelements/n)/l.
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(c) the histogram can be drawn by the function bar(centers, heights).

The areas of the rectangles of the histogram give the approximations of the probability
P (X ∈ I), where I is one of the classes. The heights of the rectangles mean the approxi-
mations of the probability density law followed by the variable X .

If the variable X follows the uniform law, i.e. U(min(X),max(X)) = U(1, 232 − 1),
the probability density should be 1

max(X)−min(X) = 1
232−2 ≈ 2.3283× 10−10, so the heights

should be 2.3283× 10−10.

After applying the operations described above on the produced key stream, the approxi-
mation of the probability density of the output variable X has been shown in Figure 4.3,
which has confirmed that the produced key stream follows the uniform law.
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FIGURE 4.3 – The approximation of the probability density of the key stream X

In addition, χ2 test has been used to assert its uniformity more precisely. The experi-
mental value of χ2 test is calculated as below :

χ2
exp =

Nc−1∑
i=0

(Oi − Ei)2

Ei
(4.4)

where Nc is the number of classes chosen (here Nc = 1000), Oi is the number of obser-
ved samples in the i − th class and Ei is the expected number of samples in a uniform
distribution. Here, we generate 3125000 chaotic samples, hence Ei = 3125000/1000. The
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experimental value χ2
exp equals to 961.0874 which is smaller than the theoretical value

χ2
th(Nc − 1, α) = 1073.6427 obtained for a threshold α = 0.05 of χ2 distribution. This has

confirmed the uniformity of the generated chaotic sequence.

(2) Uniformity test in binary level
In addition, the calculation of the number of bit 0 and bit 1 in the binary conversion of

the output sequence X provides the binary perspective to analyze its randomness. Convert
the sequence X from decimal integers to binary elements first, then separate it into 100
bit streams. So, each bit stream contains 3125000 × 32/100 = 106 bits. After that, we
calculate the number of 0 and 1 in each bit stream. The result shown in Figure 4.4 has
indicated that the proportions of bit 0 and bit 1 are symmetrically distributed around the
optimal value 50%. Meanwhile, the mean value of 100 proportions of bit 0 and bit 1 among
all bit streams are 49.993% and 50.007% respectively.
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FIGURE 4.4 – Proportion of bit 0 and 1 in binary bit stream

Hence, the proposed PCNG can pass the statistical analysis not only in decimal level,
but also in binary level. It shows highly similar properties with random numbers.

This test corresponds to the first test in NIST randomness test. Applying the following
NIST test depends on the passing of this test.

(3) NIST test
NIST (National Institute of Standard and Technology) test suite is a standard to assess

randomness of sequences. It contains 15 independent statistical tests for revealing various
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deviations from random behavior [115].

In the NIST test results report, P-value greater than a predefined significance level α
means the sequence pass the test. P-value is equal to 1 meaning the sequence has a perfect
randomness, and it is equal to 0 meaning the test sequence is completely non-random. In
the NIST standard, α = 0.01 is suggested. P-value> 0.01 means the sequence would be
considered to be random with a confidence of 99%. Otherwise, the sequence is non-random
with a confidence of 99%.

The range of accepted proportion is determined using the confidence interval defined
as follows :

p̂± 3
√
p̂ (1− p̂)

n

where p̂ = 1− α and n is the sample size (the number of tested sub-sequences) [115].

Here, we apply the NIST test on the produced sequence (3125000 × 32bits= 100 sub-
sequences ×106 bits), that is n = 100. Thus, proportions should be in the acceptable inter-
val [96.00%, 102.00%].

The results in Table 4.2 have demonstrated that the chaotic sequence has passed the
NIST test successfully.

TABLE 4.2 – P-value and Proportion results of NIST test
Test P-value Proportion(%) Result
Frequency 0.936 100.000 Pass
Block-frequency 0.817 99.000 Pass
Cumulative-sums 0.117 99.500 Pass
Runs 0.350 99.000 Pass
Longest-run 0.163 97.000 Pass
Rank 0.475 100.000 Pass
FFT 0.554 99.000 Pass
Non-overlapping template 0.511 98.845 Pass
Overlapping template 0.637 99.000 Pass
Universal 0.335 98.000 Pass
Approximate entropy 0.063 99.000 Pass
Random-excursions 0.411 98.790 Pass
Random-excursions-variant 0.371 99.283 Pass
Serial 0.232 99.000 Pass
Linear-complexity 0.740 100.000 Pass
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4.3.2 Security analysis of the proposed stream cipher

Key space analysis

A large secret key space of a cryptosystem is necessary to resist the brute-force attack
and it is considered to be secure if the key space is equal or greater than 2128 [7].

The secret key of this stream cipher depends on the input values of the proposed PCNG
which contains first the initial conditions for the three chaotic maps : Xp(0), Xs(0), Xl(0)
and then the control parameters Pp and Ps for PWLCM and skew tent map. Thus, the key
size is :

|K| = |Xp (0)|+ |Xs (0)|+ |Xl (0)|+ |Pp|+ |Ps| = 159 bits

where |Xp (0)| = |Xs (0)| = |Xl (0)| = |Ps| = 32 bits, |Pp| = 31 bits.

Therefore, the key space of the proposed stream cipher is 2159, which is large enough
to resist the brute-force attack.

Histogram and χ2 test

We tested 5 images (Airfield, Baboon, Boat, Lena, Pepper) with different sizes and
features (the sizes of images can be found in Table 4.3). The ciphered images should be
uniformly distributed to resist the statistical attack. We analyze the distribution of plain
and ciphered image in Figure 4.5, where the plain images are shown in Figure 4.5(a),
4.5(e), 4.5(i), 4.5(m), 4.5(q) and their corresponding histograms in gray or RGB color plane
are displayed in Figure 4.5(b), 4.5(f), 4.5(j), 4.5(n), 4.5(r). Their ciphered images (Figure
4.5(c), 4.5(g), 4.5(k), 4.5(o), 4.5(s)) are uniformly distributed in every color plane, which
are shown in Figure 4.5(d), 4.5(h), 4.5(l), 4.5(p), 4.5(t).
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(e) Baboon
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FIGURE 4.5 – Plain and ciphered images and their histograms

In addition, the χ2 test is applied using (4.4) to assert the uniformity of the ciphered
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images but with different parameters : Nc = 256, Ei = imagesize/Nc, α = 0.05, which
give the theoretical value χ2

th(255, 0.05) = 293.2478. For each image, 100 different secret
keys have been applied to repeat this test. Table 4.3 has displayed the average experimen-
tal χ2

exp test results, which are all smaller than χ2
th(255, 0.05), and thus the results have

confirmed the uniformity of the ciphered images.

TABLE 4.3 – Results of the χ2 test and entropy test
Image Size χ2

exp Entropy :H(P) Entropy :H(C)

Airfield 512× 512× 1 255.7314 7.1206 7.9993
Baboon 256× 256× 3 258.1894 7.7073 7.9991
Boat 512× 512× 1 255.0322 7.1914 7.9993
Lena 512× 512× 3 256.0950 5.6822 7.9998
Pepper 512× 512× 3 252.3005 7.6698 7.9998

Entropy test

The information entropy is used to evaluate uncertainty and randomness properties in a
message. The image pixel values are in the range of [0, 255]. In a robust cipher algorithm,
the occurrence probability of any pixel value should be the same or almost the same. The
random behavior of the ciphered image can be evaluated using the information entropy
given by :

H (C) =
Q−1∑
i=0

Pro (ci)× log2
1

Pro (ci)
(4.5)

where H(C) is the entropy of the ciphered image C, Pro(ci) is the occurrence number of
ci in each level (i=0,1,2. . . 255), and Q = 256 = 28 is the number of levels.

Therefore, ideally, each level should have equal occurrence probability Pro(ci) =
1/Q = 2−8. In this case, the information entropy is maximal :

Hideal (C) =
255∑
i=0

2−8 × log2256 = 8.

We have calculated the information entropy for each plain image (H(P )) and the ave-
rage entropy for the ciphered image (H(C)) over 100 entropy results accomplished by 100
secret keys. From the obtained results shown in Table 4.3, we remark that all average infor-
mation entropy of the ciphered images is close to the above mentioned optimal value.
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Correlation analysis

Image has an intrinsic feature that is the high correlation between pixels. A secure
cryptosystem should break this relationship. To test the correlation between two adjacent
pixel, 8000 pairs of adjacent pixels have been selected randomly in horizontal (H), vertical
(V) and diagonal (D) directions respectively from the plain image and its corresponding
ciphered image. Then the correlation coefficient (ρxy) of each pair is calculated by Equation
(4.6).

ρxy =
∑Np
i=1 [(xi − x) (yi − y)]√∑Np

i=1 (xi − x)2
√∑Np

i=1 (yi − y)2
(4.6)

where Np = 8000 is the number of the randomly selected pairs of adjacent pixels ; xi, yi
are pixel values of i− th pair, and x, y are the mathematical expectations.

Correlation coefficients ρxy of each plain image have been calculated in each direction
(H, V, D). For each test image, 100 different secret keys are created to encrypt the plain
image into 100 ciphered images, and then we calculate the correlation coefficients in each
ciphered image and find the average value to represent the correlation coefficient of ciphe-
red image. Table 4.6 has shown the results obtained in each direction H, V, D in plain and
ciphered images. In addition, Figure 4.6 gives the correlation diagram of image Pepper in
H, V, D directions of the plain and ciphered images separately. Table 4.4 and Figure 4.6
have revealed that the adjacent pixels are highly correlated to each other in the plain image
and the stream cipher can break this correlation effectively.

TABLE 4.4 – Correlation coefficient results

Image
Plain image Ciphered image

H V D H V D

Airfield 0.9396 0.9422 0.9052 0.0041 −0.0029 0.0032
Baboon 0.9540 0.9348 0.9177 −0.0020 −0.0028 0.0013
Boat 0.9384 0.9711 0.9215 −0.0005 −0.0036 0.0010
Lena 0.9753 0.9854 0.9648 0.0009 0.0013 0.0026
Pepper 0.9622 0.9654 0.9542 0.0033 0.0008 −0.0001
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FIGURE 4.6 – Correlation between adjacent pixels of Pepper in horizontal (H), vertical
(V) and diagonal (D) directions in plain and ciphered image

Key sensitivity analysis

A robust stream cipher should have high sensitivity to the secret key. This property
can be measured by calculating the Hamming distance (DH) (4.7) between two ciphered
imagesC1 andC2 which have been encrypted from the similar plain images but their secret
keys are only one bit different from each other.

DH (C1, C2) = 1
|lb|
×
|lb|∑
k=1

(C1 [k]⊕ C2 [k]) (4.7)

where |lb| is the bit length of the image under processing.

For each test image, C1, C2 are encrypted by one bit different (the position of the dif-
ferent bit is randomly selected) secret keys. 100 different secret keys are used to repeat
this experiment and the average DH over 100 DHs are shown in Table 4.5. As we can see,
the obtained DHs are close to the optimal value 50% indicating that the probability of bit
changes between each pairs of ciphered images is 50%.

We also adopted two common methods to measure the cryptosystem’s sensitivity to the
secret key : the number of pixels change rate (NPCR) and the unified average changing
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intensity (UACI), which are defined by Equation (4.8), (4.9).

NPCR = 1
M1 ×M2 ×M3

×
M1∑
u=1

M2∑
v=1

M3∑
w=1

D [u, v, w]× 100%

D [u, v, w] =

 0, if C1 [u, v, w] = C2 [u, v, w]
1, if C1 [u, v, w] 6= C2 [u, v, w]

(4.8)

UACI = 1
M1 ×M2 ×M3 × 255 ×

M1∑
u=1

M2∑
v=1

M3∑
w=1
|C1 − C2| × 100% (4.9)

where C1 and C2 are the same as defined in Equation (4.7). The test image size is M1 ×
M2 ×M3. u, v, w indicate the pixel C1[u, v, w] or C2[u, v, w] is at the position of u − th
row, v − th column and w − th plane.

The average results of NPCR and UACI over 100 different secret keys given in Table
4.5 are close to the optimal values of NPCR and UACI that are 99.6094% and 33.4635%
respectively, which has demonstrated that the cryptosystem is sensitive to its secret key.

TABLE 4.5 – Hamming distance and NPCR/UACI results
Image DH(%) NPCR(%) UACI(%)

Airfield 49.9902 99.5983 33.4537
Baboon 49.9902 99.5976 33.4505
Boat 49.9902 99.5983 33.4335
Lena 49.9939 99.5981 33.4599
Pepper 49.9939 99.5981 33.4666

4.4 Conclusion

In this chapter, we developed, implemented and evaluated a novel efficient stream ci-
pher based on a new proposed secure PCNG. The PCNG is built on three discrete chao-
tic maps, namely, PWLCM, skew tent map and logistic map, using XOR operators and a
dynamic output control mechanism. The XOR operators and the dynamic output control
mechanism can increase the complexity and enhance the randomness of the PCNG effec-
tively. The proposed PCNG works over a 32-bit finite integer field which uses reduced
hardware resources and can operate more efficiently with high reliability when compared
to the PCNGs defined using 64-bit double precision real numbers.
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4.4. Conclusion

The obtained experimental results have proven that the PCNG can generate chaotic
numbers with excellent randomness characteristics. The stream cipher based on this PCNG
has shown very good cryptographic properties. The proposed PCNG can be used not only
in any design of new stream ciphers, block ciphers or other cryptosystems, but also in any
other pseudo-random generator required applications.

Notice that, our proposed stream cipher is based on the combination of three different
chaotic maps. Besides, we have also tested other combinations but they could not pass the
statistical tests. For instance, if the PCNG is based on three skew tent maps (different initial
conditions and parameters), even if the skew tent map has the best uniformity distribution,
longest period, and largest key space among all the maps that we have analyzed in Chapter
3, the produced key stream shows special patterns in the phase space, which means the
relation between X(n)−X(n+ 1) (X means the key stream) is not completely concealed.
Also, this combination cannot pass the NIST test ("block frequency test", i.e, numbers of
bit 0 and bit 1 are not equal in test block in the NIST test). If the PCNG uses two skew tent
maps and one PWLCM, the produced key stream shows the similar problems when three
skew tent maps are adopted. If the PCNG is based on three logistic maps, its key space is
too small (296) and the produced key stream is not uniformly distributed. Since the adopted
discrete chaotic maps have their own shortcomings, such as short period, non-uniformity,
the specific relation between x(n) − x(n + 1) (x denotes the original chaotic sequence),
etc, if the same maps are used in the PCNG, they exhibit similar dynamics and show cor-
relation between each other, and their own shortcomings cannot be greatly overcome by
chaotic dynamics generated by other maps. Hence, using same maps are strongly not re-
commended. The proposed PCNG has chosen the most appropriate combination among the
four reformulated chaotic maps in Chapter 3.
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CHAPITRE 5

PROPOSED SECURE AND ROBUST

CHAOS-BASED IMAGE CRYPTOSYSTEM

5.1 Introduction

In this chapter, we design, realize and evaluate a new secure cryptosystem based on a
new proposed PCNG, a global diffusion and a block cipher in cipher block chaining(CBC)
mode. The proposed PCNG, defined over a finite field, is based on the discrete Chebyshev
3rd order chaotic map (Equation (3.4)) coupled with a pseudo-random number generator
(PRNG) and a discrete skew tent map (Equation (3.2)). It can remove a hidden danger of
deteriorated security caused by the dynamical degradation encountered in numerical imple-
mentation of chaotic maps defined on real numbers. The global diffusion uses a horizontal
addition diffusion (HAD) and a vertical addition diffusion (VAD) followed by a modified
2D cat map. The block cipher in CBC mode is based on a confusion layer using the AES
S-Box, followed by a diffusion layer built on the modified 2D cat map and a key addition
operation. The global diffusion enhances the diffusion process of the block cipher.

In the following sections, Section 5.2 describes the proposed cryptosystem, and the
performance analyses are given in Section 5.3. Finally, we draw the conclusion in Section
5.4.

5.2 Proposed cryptosystem scheme

5.2.1 Encryption process

The encryption process of the proposed chaos-based cryptosystem is shown in Fi-
gure 5.1. The new proposed PCNG, controlled by the secret key, provides pseudo-chaotic
samples as the key stream for the encryption process that contains a global diffusion ope-
ration and a block cipher.
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FIGURE 5.1 – Encryption process

The global diffusion is carried out to enhance the diffusion properties. Firstly, the whole
input plain image is processed by the global diffusion operation which includes a diffusion
layer based on a horizontal addition diffusion (HAD) followed by a vertical addition diffu-
sion (VAD) and a permutation layer based on a modified 2D cat map. In this process, the
parameters (Kg_p) required by the modified 2D cat map are provided by the PCNG. The
global diffusion can be repeated rg times. After that, the output image of global diffusion is
split into blocks with 16 bytes (4× 4 bytes) size per block. Then, the block cipher in CBC
mode is applied to each block consecutively. The kernel of the block cipher is the block
encryption algorithm E(.) which contains a confusion layer based on the AES (Advanced
Encryption Standard) S-Box [163], a diffusion layer based on a modified 2D cat map and
a key addition operation (XOR). The parameters (Kp, Kc) required by the modified 2D cat
map and XOR operator are fed by the PCNG. The block cipher operation can be repeated
r times to obtain the final ciphered image.

5.2.2 Proposed PCNG

The new proposed PCNG is described in Figure 5.2. It produces the required pseudo-
chaotic samples, i.e. key stream, for confusion-diffusion process and it works in a fixed
finite precision of N bits (N = 32). It consists of two discrete chaotic maps, i.e. the Cheby-
shev 3rd order chaotic map Fc and the skew tent map Fs, and a Pseudo-Random Number
Generator (PRNG) which is used to expand the period of Fc and enhance its uniformity.
The PRNG uses a parameter "Seed" to control the produced numbers.

Recalling the equations of Chebyshev 3rd order chaotic map (Fc) defined by Equation
(3.4) and the skew tent map (Fs) defined by Equation (3.2) in Chapter 3, the secret key in

114



5.2. Proposed cryptosystem scheme

Fc[Xc(n-1)]
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Xs(n)

X(n)

Secret Key

FIGURE 5.2 – Pseudo-chaotic number generator (PCNG)

Figure 5.2 is formed by two initial values of Fc and Fs :Xc(0) andXs(0), and two control
parameters : P and Seed. Note that the first 100 iterations of the PCNG are discarded to
reach randomness.

Hence, the key size (|K|) is |K| = |Xc(0)| + |Xs(0)| + |P | + |Seed| = 128 bits with
|Xc(0)| = |Xs(0)| = 32, |P | = 32 and |Seed| = 32. Therefore, the key space is 2128,
which is large enough to make brute-force attack infeasible.

5.2.3 Global diffusion

Global diffusion works on the whole image aiming at enhancing the diffusion properties
of the cryptosystem. In this section, firstly, we will describe the diffusion layer based on the
HAD and VAD, and secondly, we will present the permutation layer based on the modified
2D cat map.

Diffusion layer based on HAD and VAD

The diffusion layer, introduced by Tasnime O. et al. [164], operates on a horizontal
addition diffusion (HAD) followed by a vertical addition diffusion (VAD). The HAD and
VAD operations are described by Figure 5.3 and Equations (5.1) and (5.2). In these equa-
tions, I represents the input plain image of size Sr × Sc (Sr : number of rows, Sc : number
of column) and L is the bits number of a pixel.
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FIGURE 5.3 – Horizontal addition diffusion (HAD) and vertical addition diffusion (VAD)

HAD [I (i, j)] =


I (i, j) + I (i, j − 1) mod 2L for 1 ≤ i ≤ Sr and 2 ≤ j ≤ Sc

I (i, j) + I (i− 1, Sc) mod 2L for 2 ≤ i ≤ Sr and j = 1

I (i, j) + I (Sr, Sc) mod 2L for i = j = 1
(5.1)

V AD [I (i, j)] =


I (i, j) + I (i− 1, j) mod 2L for 2 ≤ i ≤ Sr and 1 ≤ j ≤ Sc

I (i, j) + I (Sr, j − 1) mod 2L for i = 1 and 2 ≤ j ≤ Sc

I (i, j) + I (Sr, Sc) mod 2L for i = j = 1
(5.2)

Notice that if the image to be processed has three color planes, such as an RGB color
image, three planes are laid out from left to right horizontally as a matrix described by
Figure 5.4 and this matrix is processed by HAD and VAD. This operation will enhance the
diffusion property among the different color planes.

Permutation layer based on the modified 2D cat map

The permutation layer is based on a modified 2D cat map, which rearranges the pixels’
positions on the image processed after HAD and VAD. The applied modified 2D cat map
is derived from the Arnold’s cat map and it is defined by the following equations [44] :

 xnew

ynew

 = mod
A0 ×

 x

y

+
 rl + rc

rc

 ,
 M

M

+
 1

1

 (5.3)
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FIGURE 5.4 – HAD and VAD for processing an image with three color planes

The cat map matrix A0 is defined as :

A0 =
 1 u

v 1 + u× v

 (5.4)

The determinant of A0 is 1, indicating each original position (x, y) in the image of size
M ×M is permuted to another position (xnew, ynew) uniquely. The parameters u,v,rl and
rc, in the range of [0,M − 1], form the dynamic key (Kg_p). rl,rc are added to overcome
the fixed-point problem of Arnold’s cat map. [ 1 1 ]T is to ensure the subscript indices in
MATLAB implementation start from 1.

Now, to speed up the calculus, Equation (5.3) is written as follows [44] :

Mrnew = mod(Mr + u×Mc + Rl + Rc,M) + JM
Mcnew = mod(v ×Mc + (1 + u× v)×Mc + Rc,M) + JM

(5.5)

where Mrnew, Mcnew are the new row and column indices of permuted pixel positions
while Mr and Mc are the original row and column indices with the following form :

Mr =


1 1 · · · 1
2 2 · · · 2
...

... . . . ...
M M · · · M

 ; Mc =


1 2 · · · M

1 2 · · · M
...

... . . . ...
1 2 · · · M

 (5.6)
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JM is a square matrix of sizeM×M and its elements are all 1 ; Rl = rl×JM , Rc = rc×JM .

The dynamic parameters u,v,rl,rc are fed by the PCNG and their values change for
each encryption round. We consider here one sample by parameter, thus, for rg rounds, the
global diffusion needs 4× rg PCNG samples in total.

In order to determine the optimal value of rg, we measure the diffusion performance
by calculating Hamming distance (DH) between two ciphered images (C1, C2) which have
been encrypted from two plain images (I1, I2) that are just the LSB (Least Significant Bit)
different.

DH(C1, C2) = 1
|lb|

|lb|∑
k=1

(C1 [k]⊕ C2 [k]) (5.7)

where |lb| is the bit length of the image : |lb| = M ×M × Plane × L. "Plane" is the
number of color planes of an image (for a gray image, Plane = 1 ; for an RGB color
image, Plane = 3).

We have tested 8 gray and color images with different sizes and features as shown in
Figure 5.5. For each plain image (I1), 24 altered pixel positions are selected in the similar
manner as in the work done by Tasnime O. et al. [164] to change the LSB (I2). After rg
rounds of global diffusion, 24 pairs of C1 and C2 are obtained. Then, 24 DHs have been
calculated by Equation (5.7) and the average DHs for each image versus rg have been
given in Figure 5.6 and Table 5.1. We observe that, for rg ≥ 2, DH is very close to 50%
(the probability of a bit change) which is the optimal value meaning the best diffusion level
for one bit change in the plain image.

(a) Airfield (b) Baboon (c) Boat (d) Goldhill (e) Lena (f) Pepper (g) White (h) Black

FIGURE 5.5 – Eight test images with different sizes and features
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FIGURE 5.6 – Mean DH versus the round times rg in global diffusion(%)

TABLE 5.1 – DH versus the round times rg in global diffusion(%)
Image Size rg=1 2 3 4 5

Airfield 512× 512× 1 45.8481 50.1021 49.9879 49.9999 49.9902
Baboon 256× 256× 3 46.6437 50.1096 49.9041 50.0074 49.9766
Boat 512× 512× 1 45.8429 50.1051 49.9842 49.9996 49.9768
Goldhill 512× 512× 3 44.8466 49.9274 49.6480 49.9336 49.8998
Lena 512× 512× 3 44.8565 49.9304 49.6417 49.9277 49.9010
Pepper 512× 512× 3 44.8582 49.9305 49.6470 49.9280 49.8978
White 512× 512× 1 48.2026 50.0967 49.9925 49.9854 49.9853
Black 512× 512× 1 43.2300 50.0813 49.9846 50.0007 49.9924

5.2.4 Block cipher

After the global diffusion, the diffused image is split into blocks of size 4 × 4 bytes
each. And each block is processed by the block encryption algorithm E(.) in CBC mode
as shown in Figure 5.7(a). The ciphering process can be repeated r times to obtain the best
security performances.
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In terms of the CBC mode, Pj ,Cj are the j− th input plain block and its corresponding
output ciphered block. In the encryption process shown in Figure 5.7(a), it operates as
follows,

Cj = E(Pj ⊕ Cj−1)

which means, Cj is formed by applying encryption algorithm E(·) on the result of an XOR
operation between Pj and its former ciphered block Cj−1, where j = 1, 2..., Nb, and Nb

is the number of blocks of the processed image. If r = 1, after Nb plain blocks have been
successively processed by E(·) in CBC mode, all Cj (j = 1, 2, ..., Nb) blocks constitute
the final ciphered images. If r = 2, Cj (j = 1, 2, ..., Nb) is regarded as the plain block Pj
and repeat the CBC mode for the second round. Similar working mode when r = 3, 4, ... It
should be noticed that, for the first block, when r = 1, C0 = IV , where IV (Initialization
Vector) is a predefined pseudo-random sequence in the length of 16 bytes. The decryption
process of CBC mode is shown in Figure 5.7(b). Each plain block can be recovered by

Pj = Cj−1 ⊕D(Cj)

where the decryption algorithm D(·) is the reverse of the encryption process E(·).

Pj

Cj-1

E(·)

Cj

Pj+1

E(·)

Cj+1

...

(a) encryption process

Cj

...
D(·)

Cj-1

Cj+1

D(·)

Pj Pj+1

(b) decryption process

FIGURE 5.7 – CBC mode

In E(·), the first component is AES S-Box, the "SubBytes" step in the AES encryption
algorithm, which consists of two mathematical transformations : a multiplicative inverse g
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in the Finite Galois Field GF(28) and an invertible affine transformation f [163]. It is a byte
nonlinear transformation : S(p_old) = f(g(p_old)) : p_old → p_new, by which each old
byte p_old can be replaced by a new substitution byte p_new. In our program, we apply the
functions g and f to each number in the range of [0x00, 0xff ] to obtain the S-box mapping
(S) between each value in [0x00, 0xff ]. So, in our block cipher, each input pixel p_old
of the S-box can be easily and immediately transformed to its corresponding output pixel
p_new by the S-box mapping.

Then, the modified 2D cat map (Equation (5.5)) is used to permute the pixels’ positions
aiming to reinforce the diffusion effect. Here, each parameter u, v, rl, rc of the dynamic
key Kp is in the range of [0, 3] (2 bits for each parameter, 8 bits for Kp). Finally, XOR
operator is applied between pixels of the output block from the modified 2D cat map and
a dynamical key Kc to fulfill a masking task. Kp and Kc are fed by the PCNG and their
values are changed for each block and for each round r. In one round, for each block, Kp

needs 8 bits taking up 1/4 of the PCNG sample (X(n)) and Kc requires 16 bytes taking
up 4 PCNG samples, so each encrypted block needs (1/4 + 4) PCNG samples. Thus, the
block cipher requires in total d(1/4+4)×r×Nbe PCNG samples, where Nb is the number
of blocks of the processed image.

To sum up, in E(·), S-box and the modified 2D cat map changes and relocates all pixels
and their positions in block. Besides, the application of XOR masking operator reinforces
the confusion level, leading to almost no original input block information retained after
E(·). Furthermore, each ciphered block is affected by its plain block and its former ciphered
block, which makes that even the identical input plain blocks can be encrypted into different
ciphered blocks. In this method, it is impossible for attackers to attempt block replay and
to build a code book. Therefore, this architecture is expected to have excellent security
performances.

5.2.5 Decryption process

The operations done in the decryption process are the inverse of those carried out in
the encryption process as described in Figure 5.8. The only difference with the encryption
process is that here we need to produce all the required PCNG samples before deciphering.
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FIGURE 5.8 – Decryption process

5.3 Performance analysis

Hereafter, we quantify the performance of the proposed cryptosystem. First, we eva-
luate its performances against the statistical attacks, and then, we analyze its security from
the perspectives of confusion and diffusion properties, the robustness and computation time
performances. All the simulations have been implemented in MATLAB(2017b) on a stan-
dard computer of Intel Core i7-3770 CPU in Win 7, 64-bit operating system with 3.4 GHz
processor 8GB RAM.

5.3.1 Statistical analysis of the PCNG

Histogram and χ2 test

The generated pseudo-chaotic samples should have an uniform distribution. To test this
feature, we have generated 3125000 PCNG samples and then the corresponding histogram
(using 1000 classes) has been drawn in Figure 5.9, where the red curve shows the average
values in every 10 classes. We can find that the PCNG produced sequence seems uniformly
distributed in the definition region.

In addition, we have plotted the approximation of the probability density of the pro-
duced key stream in Figure 5.10 as we have done in "Section 4.3.1-Statistical analysis-(1)
Histogram and χ2 test", which has demonstrated that the key stream follows the uniform
law.

To assert the uniformity, we recall Equation (4.4) in Chapter 4 for the χ2 test. The
obtained experimental value (χ2

exp) is equal to 999.44 which is smaller than the theoretical
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value χ2
th (Nc − 1, α) = 1073.64 obtained for a threshold α = 0.05, which can confirm the

uniformity of the generated chaotic sequence.

FIGURE 5.9 – Histogram of the produced key stream
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FIGURE 5.10 – The approximation of the probability density of the key stream

123



Partie , Chapitre 5 – Proposed secure and robust chaos-based image cryptosystem

Uniformity test in binary level

In addition, we divide the produced sequence into 100 binary sub-sequences in which
we calculate the proportion of bits 0 and 1. The obtained results are shown in Figure 5.11.
As we can see, the distributions of bits 0 and 1 are close to the optimal value 50%.
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FIGURE 5.11 – Proportion of numbers of bit ′0′ and ′1′

NIST test

We apply NIST test on the previous produced sequence (3125000 × 32 bits = 100 bit
streams×106 bits). The obtained results in Table 5.2 have shown that the generated chaotic
numbers have passed the NIST test successfully.

All the obtained results up to now have demonstrated that the proposed PCNG can
produce pseudo-random numbers efficiently, thus it is able to resist statistical attacks.

5.3.2 Security analysis of the cryptosystem

In the proposed encryption scheme, the global diffusion enhances the diffusion effect
by HAD and VAD algorithm which spread the pixels’ influence in the plain image, and the
modified 2D cat map reinforces this property by relocating the pixels. From Figure 5.6 and
Table 5.1, we have observed that for rounds rg ≥ 2, the achieved diffusion level on the
whole image is very good. In addition, the block cipher in CBC mode improves the diffu-
sion effect. The confusion effect of the cryptosystem is achieved here by the AES S-Box
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TABLE 5.2 – P-values and Proportion results of NIST test
Test P-value Proportion result
Frequency test 0.494 98.000 passed
Block-frequency test 0.720 99.000 passed
Cumulative-sums test 0.491 98.000 passed
Runs test 0.679 99.000 passed
Longest-run test 0.924 99.000 passed
Rank test 0.911 100.000 passed
FFT test 0.883 100.000 passed
Nonperiodic-templates 0.566 99.115 passed
Overlapping-templates 0.225 99.000 passed
Universal 0.554 96.000 passed
Approximty entropie 0.046 98.000 passed
Random-excursions 0.446 98.904 passed
Random-excursions-variant 0.164 99.513 passed
Serial test 0.339 98.500 passed
Linear-complexity 0.419 100.000 passed

which is a robust nonlinear function. Moreover, each plain block is encrypted under dif-
ferent parameters and thus even identical plain blocks will be encrypted into different ones,
which increases the encryption keys’ space substantially and also enhances the security.

Key space has been analyzed in section 5.2.2. In the following, we analyze the confu-
sion and diffusion properties of the proposed cryptosysteme of Figure 5.1 for rg=1, r=1.

Confusion property

Good confusion demands a high sensitivity of the ciphered image to the secret key, and
makes the statistical relation among the secret key, the plain image and the ciphered image
so complex that it is hard for the attacker to recover the secret key even though he has
obtained plenty of plain-ciphered images pairs.

In the following, we conduct the experiments based on 8 plain images Ii (i = 1, 2, ..., 8
represents the indices of images) of Figure 5.5. For each image, 100 different secret keys
produced randomly are used to generate 100 ciphered image Ci,j , where i = 1, 2, ..., 8
represents the indices of images and j = 1, 2, ..., 100 indicates the indices of secret keys.
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(1) Hamming distance
Hamming distance is given by Equation (5.8).

DH(I, C) = 1
|lb|

|lb|∑
k=1

(I [k]⊕ C [k]) (5.8)

where I is the plain image ; C is the ciphered image ; |lb| is the number of bit in the test
image.

Here, for each plain image Ii (i = 1, 2, ..., 8), 100 DHs has been calculated between
Ii and Ci,j(j = 1, 2, .., 100) and then the average DH has been obtained. The DH results
for each test image have been shown in Table 5.3. They are very close to the optimal value
50%, which indicates that the probability of bit changes between each ciphered image and
its plain image is 50%. Thus, the complexity between secret key, plain image and ciphered
image is achieved.

TABLE 5.3 – Statistic test results
Image Size DH(%) χ2

exp Entropy :H(P) Entropy :H(C)

Airfield 512× 512× 1 49.9975 254.8931 7.1206 7.9993
Baboon 256× 256× 3 50.0046 252.1045 7.7073 7.9991
Boat 512× 512× 1 49.9976 255.4712 7.1914 7.9993
Goldhill 512× 512× 3 50.0032 252.7116 7.6220 7.9998
Lena 512× 512× 3 49.9978 258.0559 5.6822 7.9998
Pepper 512× 512× 3 50.0006 257.2954 7.6698 7.9998
White 512× 512× 1 50.0012 255.4313 0 7.9993
Black 512× 512× 1 49.9949 253.2374 0 7.9993

(2) Histogram and χ2 test
The uniform distribution of a ciphered image is a basic condition to resist statistical

attacks. Figure 5.12(a), 5.12(e) represent the plain images of Lena and Goldhill. Their his-
tograms in RGB color plane are shown in Figure 5.12(b), 5.12(f), which reflects their color
compositions. The corresponding ciphered images Figure 5.12(c), 5.12(g) are uniformly
distributed in each color plane as shown in Figure 5.12(d), 5.12(h). We can observe that
even for White and Black images Figure 5.12(i), 5.12(m), their ciphered ones shown in
Figure 5.12(j), 5.12(n) appear to be random and their corresponding histograms shown in
Figure 5.12(k), 5.12(o) have uniform distribution.
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(a) Lena (b) Histogram (c) Ciphered image (d) Histogram of ciphered
image

(e) Goldhill (f) Histogram (g) Ciphered image (h) Histogram of ciphered
image

(i) White (j) Ciphered image (k) Histogram of ciphered
image
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(l) Correlation in ciphered
image

(m) Black (n) Ciphered image (o) Histogram of ciphered
image
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(p) Correlation in ciphered
image

FIGURE 5.12 – Plain and ciphered Lena/Goldhill/White/Black images and their histo-
grams

To assess their uniformity accurately, the χ2 test is applied using Equation (4.4) with
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different parameters : Nc = 256, Ei = (M ×M × Plane)/K, α = 0.05. Thus,the theo-
retical value is χ2

th (255, 0.05) = 293.2478. The values shown in Table 5.3 are the average
experimental values χ2

exp calculated based on 100 ciphered images (Ci,1, Ci,2, ..., Ci,100),
which has confirmed the uniformity of the ciphered images.

(3) Information entropy test
Information entropy test is adopted here to evaluate uncertainty and randomness proper-

ties in the ciphered images. According to Equation (4.5) in Section 4.3.2. We have calcula-
ted the information entropy for each plain image (H(P )) and the average entropy (H(C))
values based on 100 ciphered image (Ci,1, Ci,2, ..., Ci,100). From the obtained results shown
in Table 5.3, we remark that the information entropy values of the ciphered images are close
to the ideal value, i.e. 8.

(4) Correlation analysis
In order to test the correlation between two adjacent pixels, 8000 pairs of adjacent pixels

have been selected randomly in horizontal (H), vertical (V) and diagonal (D) directions res-
pectively from the plain image and its corresponding ciphered image. Then the correlation
coefficient (ρxy) of each pair is calculated by Equation (4.6).

The correlation coefficient of each plain image (Ii) of Figure 5.5 and the average cor-
relation coefficient of its corresponding ciphered images (Ci,1, Ci,2, .., Ci,100) have been
calculated. In Table 5.4, we give the results obtained for R,G,B color planes in each direc-
tion (H, V and D). We also show the correlation of image Pepper in three directions of
the plain and ciphered images separately in Figure 5.13. For White and Black images, their
correlation in H, V, D directions of the ciphered image are presented in Figure 5.12(l) and
Figure 5.12(p). Table 5.4 and Figure 5.13 have demonstrated the adjacent pixels are highly
correlated to each other in the plain image but appear uncorrelated in the ciphered image.

Diffusion property : against the chosen-plaintext attack

In the chosen plaintext attack (differential attack), difference analyses are applied bet-
ween ciphered images which are encrypted by a certain number of plain images (just 1 bit
difference from each other). To resist these attacks, a high plaintext sensitivity is required.
This is the diffusion property which assesses how a small change in the plain text affects
the corresponding ciphered one. In addition, similar cryptanalysis approach can be applied
to secret keys in order to derive the derive the secret key and crack the cryptosystem. Thus,
a secure cryptosystem should be highly sensitive to even one bit change in the plain image
or in the secret key.
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TABLE 5.4 – Correlation coefficient values
Image Size

Plain image Ciphered image
H V D H V D

Airfield 512× 512× 1 0.93994 0.94185 0.90514 0.00146 0.00025 0.00039

Baboon 256× 256× 3
R 0.95387 0.93427 0.91779 0.00022 0.00073 0.00141
G 0.88427 0.85596 0.81150 0.00102 -0.00125 0.00003
B 0.92882 0.92848 0.89313 0.00021 -0.00153 0.00032

Boat 512× 512× 1 0.93748 0.97129 0.92198 0.00047 -0.00252 0.00124

Goldhill 512× 512× 3
R 0.97764 0.97647 0.95983 -0.00059 0.00031 -0.00133
G 0.98196 0.98501 0.97002 -0.00089 -0.00171 0.00052
B 0.98444 0.98646 0.97345 -0.00089 0.00003 -0.00157

Lena 512× 512× 3
R 0.97524 0.98533 0.96489 -0.00028 0.00229 -0.00107
G 0.96666 0.98009 0.95345 -0.00184 -0.00069 0.00190
B 0.93391 0.95554 0.91848 0.00160 -0.00181 -0.00105

Pepper 512× 512× 3
R 0.96236 0.96537 0.95416 0.00023 -0.00006 0.00046
G 0.97951 0.97945 0.96490 0.00099 0.00040 0.00037
B 0.96577 0.96333 0.94436 0.00011 -0.00256 -0.00039

White 512× 512× 1 - - - -0.00105 -0.00146 0.00152
Black 512× 512× 1 - - - 0.00017 -0.00176 -0.00203

(1) Hamming distance

Plaintext sensitivity can be measured using Hamming distance (see Equation (5.7))
between two ciphered images C1 and C2 which are encrypted from two plain images with
only one bit difference.

For each image of Figure 5.5, the pixels at 21 positions have been chosen in turn to
change their LSBs, and then after the encryption process, 21 DH values have been compu-
ted by Equation (5.7). For each position, the DHs of the eight test images (blue points) and
their average values (red line) are shown in Figure 5.14. We observe that for each position,
the average DH over images is close to the optimal value 50%. Moreover, the maximum
DH is equal to 50.145% and the minimum one is equal to 49.8598% which are near to the
theoretical optimal value. In Figure 5.15, we compare the diffusion property of the pro-
posed cyptosystem with the AES-CBC algorithm. As we can see, the obtained diffusion
results are excellent compared to the AES-CBC one.

(2) NPCR and UACI tests

We also use two parameters to measure the cryptosystem’s sensitivity on the plaintext
and the secret key : the Number of Pixels Change Rate (NPCR) and the Unified Average
Changing Intensity (UACI), which are commonly used by researchers and defined by Equa-
tion (4.8) and Equation (4.9).
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(a) Plain image
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FIGURE 5.13 – Correlation between adjacent pixels of Pepper in three directions (H, V,
D) in plain and ciphered image
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FIGURE 5.14 – Hamming distance
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FIGURE 5.15 – Comparison with AES-CBC

For each test image, the plain image has been encrypted into the ciphered one C1.
The pixels at 21 different positions have been changed their LSBs in turn and 21 ciphered
images C2 have been obtained after the cryptosystem. The average values of NPCR, UACI
for plaintext sensitivity analysis have been calculated in Table 5.5. To analyze the secret
key sensitivity property, we have changed the LSB of each inner secret key (Xc(0), Xs(0),
P , Seed) in turn to obtain the ciphered image C2. The average NPCR and UACI results
over each inner secret key have been given in Table 5.5. The test results in Table 5.5 are all
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close to the optimal values of NPCR and UACI that are 99.6094% and 33.4635%.

TABLE 5.5 – NPCR and UACI results

Image Size
Plaintext sensitivity Secret key sensitivity

NPCR(%) UACI(%) NPCR(%) UACI(%)

Airfield 512× 512× 1 99.6088 33.4770 99.6169 33.4505

Baboon 256× 256× 3 99.6109 33.4493 99.6044 33.5260

Boat 512× 512× 1 99.6119 33.4680 99.6150 33.4143

Goldhill 512× 512× 3 99.6102 33.4808 99.6097 33.4764

Lena 512× 512× 3 99.6097 33.4573 99.6062 33.4672

Pepper 512× 512× 3 99.6071 33.4543 99.6076 33.4601

White 512× 512× 1 99.6097 33.4707 99.6150 33.4323

Black 512× 512× 1 99.6113 33.4676 99.6106 33.4162

Here, we also compare the security of our proposed cryptosystem with other bench-
marks from the literature in terms of the confusion and diffusion properties, see Table 5.6,
5.7. It can be observed that our cryptosystem has achieved similar results compared to other
benchmark cryptosystems.

TABLE 5.6 – Comparison on confusion property

Cryptosystem
Confusion χ2 test Entropy

Correlation coefficient

in ciphered image

DH (%) χ2
exp H(C) H V D

Proposed scheme

(Lena in RGB)
49.9978 258.0559 7.9998

R -0.00028 0.00229 -0.00107

G -0.00184 -0.00069 0.00190

B 0.00160 -0.00181 -0.00105

Proposed scheme

(Lena in gray)
49.9999 253.6835 7.9993 0.00176 -0.00093 0.00167

Lena in Ref. [165] - -

7.9993 R -0.0131 0.0142 -0.0044

7.9994 G -0.0007 -0.0167 -0.0145

7.9993 B 0.0036 0.0083 -0.0214

Lena in Ref. [108] - - 7.9976 0.0018 0.0040 -0.0006

Lena in Ref. [113] 7.9993 0.0019 -0.0024 0.0011

test image in Ref. [166] - - 7.9973 -0.00048 0.00277 0.00096

Lena in Ref. [167] - - 7.9987 -0.0115 -0.0032 0.0047

test image in Ref. [168] - - 7.9983 -0.0056 0.0044 0.0089
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TABLE 5.7 – Comparison on diffusion property

Cryptosystem
Diffusion Plaintext sensitivity Key sensitivity
DH (%) NPCR(%) UACI(%) NPCR(%) UACI(%)

Proposed scheme
(Lena in RGB)

49.9944 99.6097 33.4573 99.6062 33.4672

Proposed scheme
(Lena in gray)

50.0079 99.6080 33.4925 99.6100 33.4763

Lena in Ref. [93] -
R 99.5941 33.471 - -
G 99.614 33.4784 - -
B 99.6383 33.4211 - -

Lena in Ref. [98] -
R 99.6091 33.4678 99.6089 33.4589
G 99.6099 33.4577 99.6089 33.4598
B 99.6090 33.4608 99.6085 33.4624

Lena in Ref. [108] - 99.6086 33.4507 99.5972 30.7214
Lena in Ref. [113] - 99.6113 33.4682

Lena in Ref. [167] -
R 99.79 33.56 - -
G 99.85 35.64 - -
B 99.86 36.06 - -

test image in Ref. [168] - 99.4566 33.1561 - -

5.3.3 Robustness analysis

Since the ciphered image may suffer from noise interference and data loss during trans-
mission, the image cryptosystem should be robust against noise attacks and corrupted data.
Here, we analyze its robustness in terms of the ability to resist salt and pepper noise pertur-
bation and occlusion attack.

The ciphered Lena image has been added the salt and pepper noise in three intensities
of 0.01, 0.05 and 0.1 that are shown in Figure 5.16(a),5.16(b),5.16(c), and their correspon-
ding recovered images are given in Figure 5.16(d),5.16(e),5.16(f). We can observe that the
quality of the recovered image decreases with the increase of noise intensity. However, the
recovered image can still be identified, which shows that the proposed image cryptosystem
has a good robustness for resisting noise attack.

What’s more, the cryptosystem should be capable of resisting the occlusion attack. To
evaluate this property, the ciphered Lena image has been submitted to the occlusion attack
from different positions in the image with different data loss size. The test results can be
found in Figure 5.17.
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(a) Intensity of 0.01 (b) Intensity of 0.05 (c) Intensity of 0.1

(d) Recovered image (e) Recovered image (f) Recovered image

FIGURE 5.16 – Robustness against salt and pepper noise

(a) 1/16 data loss at upper left cor-
ner

(b) 1/16 data loss at middle (c) 1/16 data loss at lower right
corner
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(d) Recovered image from above (e) Recovered image from above (f) Recovered image from above

(g) 1/4 data loss at upper left cor-
ner

(h) 1/4 data loss at middle (i) 1/4 data loss at lower right cor-
ner

(j) Recovered from above (k) Recovered from above (l) Recovered from above

FIGURE 5.17 – Robustness against occlusion attack

As shown in Figure 5.17, Figure 5.17(a), 5.17(b), 5.17(c) represent the ciphered Lena
image with 1/16 (128×128) pixels loss in the upper left corner, middle, lower right corner.
The recovered image are given in Figure 5.17(d), 5.17(e), 5.17(f). Also, the ciphered image
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with 1/4 (256 × 256) data loss are displayed in Figure 5.17(g), 5.17(h), 5.17(i), and their
corresponding recovered images are shown in Figure 5.17(j), 5.17(k), 5.17(l), respectively.
It can be seen that the recovered images can be recognized even if a quarter of the ciphered
image is lost, which demonstrates the high robustness of the proposed image cryptosystem.

5.3.4 Computation time analysis

The encryption time of an image cryptosystem is influenced by many factors, such
as programming language, operating environment, code optimization, etc. Thus, it is im-
possible to obtain an explicit comparison results from different algorithms running in dif-
ferent environments. For these reasons, Encryption Throughput (ET) and Number of nee-
ded Cycles per Byte (NCpB) defined by Equation (5.9) and (5.10) have been adopted to
evaluate the encryption speed of the proposed cryptosystem. For that, the encryption time
in Equation (5.9) is calculated by averaging 100 encryption times using 100 different secret
keys. Table 5.8 shows the ET and NCpB of the proposed cryptosystem compared to other
encryption systems running in similar environments.

ET = Imagesize(Byte)
EncryptionT ime(second) (5.9)

NCpB = CPUSpeed(Hertz)
ET (Byte/s) (5.10)

TABLE 5.8 – ET and NCpB results
Cryptosystem ET(MBps) NCpB

Proposed 0.045 77385.32
Ref. [169] 0.035 95367.43
Ref. [94] 0.213 15641.21

According to [96, 99], the computation time of an image cryptosystem mainly consists
in the iterations of chaotic maps and the real number arithmetics and quantization. The pro-
posed cryptosystem does not cost time in quantization since the proposed PCNG has been
defined over a finite field. However, the iterations are still the most time consuming opera-
tion. This can be observed from Figure 5.18 which displays the encryption time percentage
of each component of the proposed cryptosystem for Lena image with size 512 × 512.
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Because of the repetitions of 2D cat map for each block in the block cipher and the itera-
tions of PCNG, the 2D cat map in the block cipher accounted for almost a half of the total
computing time, followed by the PCNG which takes another 20%.

22%

14%

3%

6%

44%

13%

PCNG

HAD&VAD in global diffusion

Cat map in global diffusion

S-Box in block cipher

Cat map in block cipher

XOR in block cipher

FIGURE 5.18 – Encryption time percentage of each component of the proposed cryptosys-
tem for Lena image with size 512× 512

5.4 Conclusion

In this chapter, a secure robust cryptosystem based on chaotic components and the AES
S-Box is proposed, which contains an efficient PCNG, a global diffusion and a block cipher.
The PCNG defined over a finite integer field eliminates the risk of deteriorated security re-
sulting from the dynamical degradation when chaotic maps defined on real numbers are
numerically implemented. The HAD and VAD with the modified 2D cat map in global dif-
fusion increase effectively the diffusion properties among the pixels of an image. The block
cipher composed of the AES S-Box, the modified 2D cat map and an XOR masking opera-
tor works in CBC mode, which reinforces the confusion and diffusion performances. The
security analyses of the experimental results have demonstrated that the proposed image
encryption system can resist successfully the main known attacks in the literature and it is
suitable for practical implementations.
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CHAPITRE 6

EXPLORING A SMART COUPLING OF

CHAOTIC MAPS FOR NEW

PSEUDO-RANDOM NUMBER

GENERATORS (PRNGS)

6.1 Introduction

As can bee seen from Chapter 4 and Chapter 5, PCNG plays a significant role in the
security of a cryptosystem. Basically, a PCNG in a chaos-based cryptosystem is first and fo-
remost a pseudo-random number generator (PRNG), but apart from the randomness, these
PRNGs should meet the security requirements, such as a large secret key space and the
high sensitivity to the secret key (seed of a PRNG). Besides the encryption field, PRNG is
also a vital component for a plethora of applications. In this chapter, for highlighting the
pseudo-randomness of the generated numbers, we use a more common and familiar term
"PRNG" to describe the "PCNG" appeared in the previous chapters.

PCNGs designed in Chapter 4 and Chapter 5 used specific chaotic maps to produce
randomness. This chapter will propose a chaos-based PRNG design framework based on
a smart chaotic maps coupling and output control structures. This PRNG framework can
employ different 1D chaotic maps to produce a huge number of pseudo-random sequences
with good cryptographic properties.

In the proposed PRNGs, the coupling model, defined over the integer field, aims at
breaking the original orbits (that exhibit short periods) generated by single chaotic maps
and thus lengthen the periods, boost the dynamic behavior and improve the randomness.
Two types of chaotic generator output control approaches, i.e. alternate output control and
dynamic output control, following the coupling model are designed to enhance the ran-
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domness and unpredictability of the PRNGs. In addition, to improve their cryptographic
property to resist the brute-force attack, a key space expandable strategy will be presented
in this chapter.

In the following sections, we will introduce the chaotic maps coupling model in two
dimensions and three dimensions, and analyze the coupling performance in Section 6.2 and
Section 6.3. Then, PRNG schemes based on the coupling model and two types of output
control methods will be introduced and evaluated in Section 6.4. After that, Section 6.5 will
give the key space expandable scheme and its performance analysis.

The kernel of the PRNGs is the chaotic coupling model that is inspired by the idea of
ultra-weak coupling over a real number domain in the work of Professor René Lozi [120].

Firstly, we recall the model of ultra-weak coupling in [120]. It works on the continuous
field using floating-point and fixed-point notations according to the ordinary (IEEE-754)
precision standard. Using an example of a symmetric tent map which is noted as

f : xn+1 = 1− 2 |xn| (6.1)

where the n−th iterate xn is in the range of [−1, 1]. Using the ultra-weak coupling scheme
to couple two tent maps, it can be described as follows :

 xn+1

yn+1

 = A ·

 f (xn)
f (yn)

 (6.2)

where A is the coupling matrix :

A =
1− ε1 ε1

ε2 1− ε2


The coupling constant ε = (ε1, ε2) varies from (0, 0) to (1, 1), and the coupling coeffi-

cients sum per line is 1. If ε = (0, 0), the maps are completely decoupled ; ε = (1, 1) means
the maps are fully cross coupled. In the Lozi’s study in [120], constant ratio between ε1 and
ε2 is fixed to 2, that is : ε2 = 2ε1.

The parameters ε1 and ε2 are very small ( ε1 = 10−7 for floating-point numbers or
ε1 = 10−14 for double precision numbers) but the authors aimed to verify that even ultra
small coupling parameter can render the chaotic map a very long period one and thus they
offered a good technique for PRNG design.

An example of the implementation of this ultra-weak coupling is based on four-dimensional
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(4D) coupling :


x1
n+1

x2
n+1

x3
n+1

x4
n+1

 = A ·


f (x1

n)
f (x2

n)
f (x3

n)
f (x4

n)

 (6.3)

where the coupling matrix A is :

A =


1− 3ε1 ε1 ε1 ε1

ε2 1− 3ε2 ε2 ε2

ε3 ε3 1− 3ε3 ε3

ε4 ε4 ε4 1− 3ε4


and ε1 = 10−14, ε2 = 2ε1, ε3 = 3ε1, ε4 = 4ε1.

This is an ultra weak coupling, since the parameter ε = (ε1, ε2, ε3, ε4) is very small.
For the generated sequence xl, (l = 1, 2, 3, 4), its orbit exhibits an gradually accumulated
perturbation when compared to the original chaotic orbit created by the tent map (Equation
(6.1)). The difference (absolute values) of two orbits can be observed by Figure 6.1, which
indicates the coupling works even if the parameter ε is extremely small.
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FIGURE 6.1 – Difference between the orbit x1 produced by the coupling scheme (6.3) and
the original chaotic orbit produced by the tent map (6.1). n is the number of iterations ; the same
initial conditions as in the Lozi’s work : x1

0 = 0.330, x2
0 = 0.3387564, x3

0 = 0.50492331, x4
0 = 0.0
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However, because of this tiny difference, if we plot sequence x1 in the phase space
(x1
n, x

1
n+1) in Figure 6.2, the function of tent map still can be recognized. This is not a

big problem to PRNG design if it is not used for encryption purposes, but it is indeed a
drawback for encryption purposes because the information leakage of the chaotic function
will be very helpful for attackers to crack a cryptosystem.

FIGURE 6.2 – x1 in the phase space (x1
n, x

1
n+1)

To hide the function and increase the unpredictability, a sampling strategy has been
proposed in his work [120] to control the output yq (q = 1, 2, 3, ...) :

yq =


x1
n, if x4

n ∈ [T1, T2]

x2
n, if x4

n ∈ [T2, T3]

x3
n, if x4

n ∈ [T3, 1]

(6.4)

with T1 = 0.998, T2 = 0.9987, T3 = 0.9994.
In this condition, approximately 1000 iterates of x1, x2, x3 and x4 can output one chaotic

number yq. The histogram diagram of a produced sequence y distributed in 1000 intervals
is shown in Figure 6.3(a), which indicates y has a uniform distribution. Besides, according
to Figure 6.3(b) which displays the produced sequence y in the phase space (x1

n, x
1
n+1), we

can find that Equation (6.4) is able to conceal the function of the chaotic map effectively.
In summary, Lozi’s ultra-weak coupling is able to couple chaotic maps for PRNG de-
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FIGURE 6.3 – Performance of the output sequence y (length of y is 998930 which is produ-
ced by 109 iterations of x1, x2, x3, x4 ; the initial condition is : x1

0 = 0.330, x2
0 = 0.3387564, x3

0 =
0.50492331, x4

0 = 0.0.)

sign. But it is necessary to combine with a sampling strategy to generate pseudo-random
numbers. However, the disadvantage of ultra-weak coupling is that the function of chaotic
map is exposed in the phase space, which is insecure for encryption purposes. The sam-
pling strategy also has a drawback of low productivity, because for the 4D scheme, each
chaotic map xl, (l = 1, 2, 3, 4) has to iterate approximately 103 times to produce only one
pseudo-random number.

In Lozi’s ultra-weak coupling scheme, the coupling parameter is extremely small if
compared to the chaotic numbers that vary in real domain [−1, 1]. Thus, the coupling is
ultra-weak. However, if using this idea in the 32-bit integer finite field, even a very small
coupling parameter will lead to a big difference in the produced sequence. Hence, the cou-
pling is no longer "ultra-weak". This will be presented in the following sections.

6.2 Two-dimensional coupling

Hereafter, a new coupling matrix defined over the 32-bits integer field will be proposed.
The overall dynamics is a combined effect of each parameter in the coupling matrix. We
will get started with the two-dimensional (2D) coupling.

The 2D coupling structure is shown in Figure 6.4.
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FIGURE 6.4 – 2D coupling structure

The coupling process can be described as

 X1 (n)
X2 (n)

 = A×

 F1 [X1 (n− 1)]
F2 [X2 (n− 1)]

 (6.5)

where F1 and F2 are 1D chaotic functions ; X1(n), X2(n) represent the states of the
system in chaotic regime ; the current states X1(n) and X2(n) are the coupled results of
the previous states X1(n− 1), X2(n− 1) ; X1, X2 stands for the produced sequence.

A general coupling matrix A is given as below :

A =
e1 e2
e3 e4

 (6.6)

where the coupling parameters e1, e2, e3, e4 areNe-bit integers in the range of
[
1, 2Ne − 1

]
.

Here, Ne = 5.
Since the coupling scheme aims to increase the randomness features of the produced

sequence X1 and X2, the basic condition of randomness is the uniform distribution pro-
perty of X1 and X2. χ2 test can be used to evaluate the uniformity (see Equation (4.4)).
Thus, hereafter, we use the χ2 experimental values χ2

exp to evaluate the uniformity of X1
and X2.

Generally, if e1, e2, e3, e4 are randomly created plenty of times to form different cou-
pling matrix A, most of the formed A can make the output sequences X1 and X2 possess
uniformity. However, in a few of particular relations between e1, e2, e3, e4, X1 and X2 are
not uniformly distributed and they exhibit some special patterns.

To find an effective coupling matrix, we analyze the relation among the coupling para-
meters.

(1) First test form of A
Firstly, we consider a particular case, that is e1 = e2 = e3 = e4. In this case, X1 and
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X2 are same sequences.
The most widely-used logistic map and skew tent map are chosen to serve as F1 and

F2 to analyze the coupling. The output sequences X1 and X2 are in the length of 2× 106,
but the the first 106 values are considered as transient and removed. The analysis of the
design steps will be explained hereafter.

Figure 6.5(a) shows the χ2
exp results (calculated using Equation (4.4)) versus e1, from

which we can find out that no matter what e1 is, X1 cannot pass the χ2 test. This finding
also can be demonstrated by the histogram and the phase space diagram (when e1 = 2Ne−
1) shown in Figure 6.5(b) and Figure 6.5(c) : the generated sequences in these coupling
parameters are not uniformly distributed and they can display special patterns related to the
generating functions (original chaotic maps) in the phase space (X1(n), X1(n+ 1)).

Furthermore, all the generated sequences have short periods, which can be seen in Table
6.1. Thus, the combination of the coupling parameters when e1 = e2 = e3 = e4 is not
suitable for randomness purposes.

Therefore, this type of A using the coupling parameters e1 = e2 = e3 = e4 is not
suitable to be applied to PRNG design for the following reasons : (1) it cannot ensure the
uniformity ofX1, X2 ; (2) it causes special patterns in the phase space (X1(n), X1(n+1)) ;
(3) the period ofX1 is too short, which has indicated that it cannot overcome the dynamical
degradation caused by the finite precision.
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FIGURE 6.5 – Performance of the output sequence X1 1

TABLE 6.1 – Periods of X1 when e1 = e2 = e3 = e4 (using the same conditions with Figure 6.5)

e1 period e1 period e1 period e1 period e1 period

1 20810 8 16340 15 22452 22 12513 29 23266

2 25997 9 36113 16 7868 23 22349 30 41103

3 47777 10 19774 17 13276 24 919 31 2934

4 16119 11 2540 18 17519 25 11003

5 8215 12 5842 19 4239 26 1348

6 9751 13 24918 20 12531 27 27749

7 46672 14 7467 21 1840 28 6819

(2) Second test form of A
If the coupling parameters have the relation : e2

e1 = e4
e3 , the coupling performance is

still unsatisfactory. As an example, when A =
1 7

4 28

, histogram diagrams and the phase

space portraits of X1, X2 are shown in Figure 6.6.
According to Figure 6.6(a) and Figure 6.6(b), sequences X1, X2 do not exhibit unifor-

mity. More precisely, their corresponding χ2 test experimental values χ2
exp are 2.1092×104

and 1.9052× 104 which are much larger than the theoretical value χ2
theo = 1.073× 103. In

1. The initial conditions and parameters are generated randomly in MATLAB. Initial condition for lo-
gistic map is 1139372832, and the initial condition and parameter for skew tent map are 3540669105 and
3136394681 respectively.
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6.2. Two-dimensional coupling

addition, particular patterns shown in the phase space portraits (see Figure 6.6(c), Figure
6.6(d)) have indicated that the produced X1, X2 do not possess randomness property after
the coupling scheme. Furthermore, we have detected that the period of X1, X2 is 50759
which is too short to be a pseudo-random sequence.
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FIGURE 6.6 – Performance of the output sequence X1, X2 2

If the coupling parameters are in other ratios that satisfy the equation e2
e1 = e4

e3 , X1, X2
have the similar performance to those shown in Figure 6.6. Obviously, the relation of e2

e1 =

2. The length ofX1, X2 is 2×106 but the first 106 is regarded as transient and removed ; initial conditions
and parameters for chaotic maps are chosen randomly ; initial condition for logistic map is 1139372832 ; the
initial condition and parameter for skew tent map are 3540669105 and 3136394681 respectively.
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e4
e3 includes the case of e1 = e2 = e3 = e4. To sum up, if the coupling is linear dependent,
i.e. det(A) = 0, the coupling matrix A cannot increase the randomness of X1, X2.

(3) the final form of A
To avoid the linear dependent coupling and enhance the sensitivity of X1, X2 to the

parameter in coupling matrix A, the final form of A using only one parameter (e) is given
as below :

A =
(2Ne + 1)− e e

2e (2(2Ne − 1) + 1)− 2e

 (6.7)

where te coupling parameter e ∈ [1, 2Ne − 1] ; Ne = 5 ; the constants (2Ne + 1) and
(2(2Ne−1)+1) are the smallest values to make sure all parameters in A are positive integers ;
notice that, (2Ne + 1) (odd number) instead of (2Ne − 1 + 1) (even number) set here is to
avoid appearing both even values ( (2Ne − 1 + 1) and e) in the first row of A. Because
from the binary multiplication perspective, for any multiplicand, an even multiplier leads
to supplemental zeros added to the end of the significant bits, which will increase the ratio
of bit 0 to bit 1. For example, if the multiplier is 2 (”10” in binary), the product is the
multiplicand that is left shifted by one bit, and if the multiplier is 16 (”10000” in binary),
the product is the multiplicand that is left shifted by four bit. If the coupling matrix A is
fixed and the first row of A is [16, 16] (e = 16, and (2Ne− 1 + 1) instead of (2Ne + 1) in A),
the output value X1(n + 1) is the low N bits of the sum of X1(n) left-shifted 4 bits and
X2(n) left-shifted 4 bits. Thus, the least 4 significant bits all are 0, which has bad effect on
the randomness of X1. The bad effect can be accumulated as the length of X1 increases.
Thus, this process will make redundant bits 0 added in the coupling output data, which does
not serve the purpose of increasing the randomness of the coupling scheme’s output. Using
constant (2Ne + 1) is able to minimize this drawback.

Coupling performance in terms of histogram, χ2 test, phase portrait and period detection
based on the different combinations (F1, F2) have been evaluated and the results have been
summarized in Table 6.2.

Firstly, let us consider the uniformity of the produced sequences X1 and X2. The his-
togram results shown in Table 6.2 have indicated that almost all coupling combinations
render the distribution of X1, X2 uniform except for the couplings of "LL" and "LC" (the
notations of "LL" and "LC" are shown in Table 6.2). Visually, histogram of X1 produced
by the coupling "LS" has been shown in Figure 6.7(a), which has roughly demonstrated
the uniform distribution. Other couplings that have passed the histogram test have the si-
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milar diagrams. While, the histogram of X1 that is produced by the coupling "LC" has
been shown in Figure 6.7(b), which reveals this coupling can increase the uniformity of the
sequence generated by the original chaotic map but can not ensure a uniform distribution
of the coupled outputs X1, X2. The histogram of coupling "LL" has similar diagram.

TABLE 6.2 – Coupling performance 3

Couplings F1 F2
Histogram

and χ2 test
Phase space Period detection

X1 X2 X1 X2 X1 X2

LL Logistic Logistic × × X X no period detected

LS Logistic Skew tent X X X X no period detected

LP Logistic PWLCM X X X X no period detected

LC Logistic Chebyshev 3rd order × × X X no period detected

SL Skew tent Logistic X X X X no period detected

SC Skew tent Chebyshev 3rd order X X X X no period detected

SP Skew tent PWLCM X X X X no period detected

SS Skew tent Skew tent X X X X no period detected

(a) Histogram of X1 of the coupling "LS" (b) Histogram of X1 of the coupling "LC"

FIGURE 6.7 – Histogram

3. The initial conditions (IC) and parameters are chosen randomly (Ps, Pp is the parameter of skew tent
map and PWLCM respectively) for the chaotic maps are : (1) logistic : IC1=1139372832, IC2=809731856 ;
(2) skew tent map : IC1=3540669105, Ps1=3136394681, IC2=3543597725, PS2=4148523159 ; (3)
PWLCM : IC=2067014358, Pp=1875378875 ; (4) Che3 : IC=893224612. The length of X1, X2 is 106.
For the test of period detection, the length of X1, X2 is 108.
Marker ”X” (or ”×”) means the produced sequences pass (or do not pass) the corresponding test in the table.
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More precisely, to test the performance of uniform distribution, χ2
exp test results of dif-

ferent coupling combinations versus parameter e have been displayed in Figure 6.8, from
which we can observe that most of the combinations have shown good uniformity because
their χ2

exp values are smaller than the χ2
theo value (i.e. 1073.64 shown in red curve), except

for the coupling of "LL" and that of "LC". Most of the χ2
exp values of coupling "LL" and

coupling "LC" are bigger than the χ2
theo value. Besides, we can also find that the χ2

exp va-
lues of couplings "LL" and that of "LC" calculated in X2 are smaller than those in X1.
That is because, in the coupling matrix A, the multipliers that produce X2 are bigger than
those to produce X1. Bigger multipliers lead to a more complex multiplication operation,
which can make the products more complex and thus have better uniformity (random-like)
behavior.

Secondly, the coupling must "hide" the function of the original chaotic functions in
the phase space. The sequences X1 generated by the representative couplings "LS" and
"LC" have been plotted in the phase space in Figure.6.9(a) and Figure.6.9(b) respectively.
Figure 6.9 has verified that, regardless of the different coupling combinations of the original
chaotic maps, the coupling method using matrix A shown in Equation (6.5) and (6.7), is
able to hide the generating function effectively.
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FIGURE 6.8 – χ2
exp results versus the coupling parameter e

(a) X1 from coupling "LS" (b) X1 from coupling "LC"

FIGURE 6.9 – X1 in the phase space

Thirdly, no period is detected among all these generated sequences. Compared to the
short period caused by the effect of finite precision shown in Section 3.3.1 in Chapter 3, the
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coupling method (Equation (6.5), (6.7)) can render the output sequence X1 and X2 longer
period to minimize the dynamical degradation.

In summary, the uniformity of the couplings "LL" and "LC" are not satisfactory owing
to their both nonlinear derivative generating functions. The piece-wise linear functions (e.g.
skew tent map and PWLCM) possess better uniformity than the nonlinear derivative func-
tions (e.g. logistic map and Chebyshev 3rd order chaotic map), and this property can im-
prove the overall uniformity of the coupled output sequence. But it’s certain that this cou-
pling method can improve the uniformity, hide the generating function and break the effects
of finite precision effectively.

6.3 Three-dimensional coupling

Based on the analysis of 2D coupling matrix, an original 3D coupling matrix is proposed
and it is described as below :

FIGURE 6.10 – 3D coupling structure

where F1, F2, F3 stand for chaotic maps ; X1, X2, X3 are the produced chaotic se-
quences ; X1(n), X2(n), X3(n) means the n−th iterated states of X1, X2, X3.

The coupling matrix A is defined as follows :

A =


2(2Ne − 1) + 1− e1− e2 e1 e2

2e1 4(2Ne − 1) + 1− 2e1− 2e2 2e2
3e1 3e2 6(2Ne − 1) + 1− 3e1− 3e2


(6.8)

where two coupling parameters e1, e2 ∈
[
1, 2Ne − 1

]
, and Ne = 5 bits.
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The coupling algorithm can be described by :


X1 (n)
X2 (n)
X3 (n)

 = A×


F1 [X1 (n− 1)]
F2 [X2 (n− 1)]
F3 [X3 (n− 1)]

 (6.9)

As in the 2D coupling case, here different chaotic maps are combined to do the 3D
coupling. The performance of different coupling combinations have been evaluated in terms
of uniformity test (histogram and χ2 test), phase space analysis and period detection. The
results have been shown in Table 6.3.

TABLE 6.3 – Coupling performance of the produced sequence X1 4

Couplings F1 F2 F3
Histogram

and χ2 test
Phase space Period detection

LLL Logistic Logistic Logistic X X no period detected

LSP Logistic Skew tent PWLCM X X no period detected

SPC Skew tent PWLCM
Chebyshev

3rd order map
X X no period detected

SPS Skew tent PWLCM Skew tent X X no period detected

SSS Skew tent Skew tent Skew tent X X no period detected

Firstly, compared to the uniformity performance of 2D coupling summarized in Table
6.2 where coupling combinations "LL" and "LC" composed by nonlinear chaotic maps
function cannot pass the uniformity test, Table 6.3 has shown that all the listed 3D cou-
plings, including the combination of "LLL" whose chaotic map is the function with non-
linear derivative, are now able to pass the uniform distribution test. Thus, in the aspect of
uniformity, 3D coupling can ensure uniform distribution property of the produced sequence
X1, X2, X3 for any chaotic maps coupling combinations.

Taking the coupling combination "SPC" as an example, histogram ofX1 is displayed in
Figure 6.11, which has demonstrated its uniformity. Note that, X2, X3 produced by "SPC"
as well as any X1, X2, X3 produced by other coupling combinations in Table 6.3 show
the highly similar diagrams. Furthermore, the χ2 test has been applied to the produced
X1, X2, X3. The experimental χ2 values χ2

exp versus the coupling parameter (e1, e2) have

4. X2, X3 show the same performance ; length of X1, X2, X3 is 106 ; for the test of period detection,
length of X1, X2, X3 is 108.
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been calculated and plotted in Figure 6.12, from which we can find that any (e1, e2) can
pass the χ2 test and thus ensure the uniformity of the produced X1, X2, X3.
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FIGURE 6.12 – χ2
exp results in the coupling "SPC" versus the coupling parameter (e1, e2) 6

6. each χ2
exp value is the average of ten χ2

exp values obtained by repeating the coupling process ten times
using ten randomly generated initial conditions.
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Secondly, as can be seen from Figure 6.13 which has displayed the phase portrait of
X1, the 3D coupling scheme can hide the generating function of the used chaotic maps
effectively.

FIGURE 6.13 – Phase space of X1 generated by "SPC" 7

In addition, no period has been detected among the generated sequences. Hence, the 3D
coupling also can minimize the dynamical degradation caused by the finite precision and
lengthen the period over the finite field effectively.

6.4 PRNG scheme based on chaotic coupling

Section 6.2 and Section 6.3 have proven that the coupling scheme (Figure 6.4, Figure
6.10) can greatly improve the randomness of the sequences that are generated by the origi-
nal chaotic maps. Based on the coupling method, a chaos-based PRNG design framework
will be presented in this section. Using the proposed framework, a new family of PRNG
schemes can be put forward.

7. X2, X3 show the highly similar diagrams ; initial conditions (IC) and parameters(P) for the chao-
tic maps are chosen randomly ; (1) skew tent map :IC=1318743397, P=3916945839 ; (2) PWLCM :
IC=1125663524,P=260726438 ; (3) Chebyshev 3-order chaotic map : IC=1701137509 ; e1=14 ; e2=17.
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6.4. PRNG scheme based on chaotic coupling

To increase the complexity and unpredictability of PRNGs, two types of output control
methods will be proposed in the following and they will be applied to the sequences
X1, X2, X3 to form the final pseudo-random numbers.

6.4.1 Two types of output control

Alternate output control

The first type of output control is named as "alternate output control". It selects each
number between X1(n) and X2(n) (and X3(n) if it is based on 3D coupling) alternatively
to form the final pseudo-random sequence X . The alternate output control concept can be
described by Figure 6.14.

(a) for 2D coupling scheme

(b) for 3D coupling scheme

FIGURE 6.14 – Alternate output control

The alternate output control method obeys a fixed rule to form the final output X . It
selects X1(n) and X2(n) (and X3(n), if it is based on 3D coupling scheme) in turn by an
equal probability (50% for 2D coupling, 33.33% for 3D coupling).

Dynamic output control

It is preferable if there is a more complicated selection mode to increase its complexity
and unpredictability. Thus, the dynamic output control is a good option.
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Dynamic output control method can be described by Figure 6.15. This idea came from
the work [120,170] and it has been used to increase the randomness property of the PRNG
design [123, 159]. We have also used this kind of output control method in Chapter 4.

FIGURE 6.15 – Dynamic output control

Dynamic output control method selects X1(n) and X2(n) according to a decision
sample Xth(n) with a threshold Th. Xth(n) can be considered as a dynamic parameter to
switch between X1(n) and X2(n). This can be achieved by :

X (n) =

X1 (n) if Xth (n) > Th

X2 (n) otherwise
(6.10)

6.4.2 PRNG based on two-dimensional coupling

The PRNG using alternate output control method and dynamic output control method
are described in Figure 6.16.

(a) using alternate output control method
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(b) using dynamic output control method

FIGURE 6.16 – PRNG scheme based on 2D coupling

where F1, F2 means two chaotic maps. In Figure 6.16(a), X(n) is formed by selecting
X1(n) and X2(n) in turn alternatively. While in Figure 6.16(b), X(n) is formed by Equa-
tion (6.10), where Xth(n) = X1(n)⊕X2(n) (⊕ is an XOR operator) and Th = 0.7× 2N

(N = 32).

Security test

If PRNG is used in cryptography, besides the randomness property, security perfor-
mance becomes the primary requirement. A large key space and high sensitivity to secret
key are two important security properties of a PRNG.

Firstly, the key space of a cryptosystem should be bigger than 2128 to resist the brute-
force attack. Initial conditions and parameters of the used chaotic maps and the coupling
parameter (e) constitute the secret key. Recalling the different coupling combinations in
Table 6.2, the key spaces are calculated in Table 6.4. Only the couplings "SP" and "SS"
meet the key space requirement. Thus, these two couplings can be chosen to design the
PRNG. Note that, other couplings also can be used to design PRNGs, but they need to be
paralleled to enlarge the key space.

Secondly, the sensitivity to secret key can be evaluated by the Hamming distance (DH) :

DH (X, Y ) = 1
|lb|
×
|lb|∑
k=1

(X [k]⊕ Y [k]) (6.11)

where X , Y are two produced sequences whose secret keys are just one bit different. The
bit length of X , Y is |lb|. ⊕ denotes the XOR operator.

Here, 100 randomly generated secret keys have been used to produce 100 output se-
quences X . Changing one bit randomly in each secret key produces a corresponding se-
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quence Y . DH has been calculated between each pair of X and Y . The average DH over
100 DHs has been computed for the coupling "SP" and "SS" in Table 6.4. DH = 50% is
the optimal value meaning the bit change probability is 50%. DHs recorded in Table 6.4
are very close to 50% demonstrating that the high sensitivity of the produced sequence X
to even a tiny change in the secret key has been achieved.

TABLE 6.4 – Security test results

Couplings Key space
Key sensitivity (DH (%))

Alternate output control Dynamic output control

LL 269 × - -

LS 2101 × - -

LP 2100 × - -

LC 269 × - -

SL 2101 × - -

SC 2101 × - -

SP 2132 X 50.0010 X 50.0009 X

SS 2133 X 49.9996 X 50.0000 X

Statistical test

Statistical tests including uniformity (histogram and χ2 test), phase portrait, period de-
tection and NIST randomness test have been performed and the results of the couplings
"SP" and "SS" have been summarized in Table 6.5 and Table 6.6. The NIST test results of
the coupling "SS" have been shown in Table 6.7.

TABLE 6.5 – Statistical test results (alternate output method)
Couplings Histogram χ2

exp Phase space Period detection NIST test

SP X 1010.22 X X no period detected X

SS X 1003.04 X X no period detected X

TABLE 6.6 – Statistical test results (dynamic output method)
Couplings Histogram χ2

exp Phase space Period detection NIST test

SP X 1008.27 X X no period detected X

SS X 995.87 X X no period detected X
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TABLE 6.7 – NIST test results(coupling "SS")

Tests
Alternate output control Dynamic output control

Result
P-value Proportion(%) P-value Proportion(%)

Frequency 0.456 97.000 0.035 96.000 Pass

Block-frequency 0.868 100.000 0.658 99.000 Pass

Cumulative-sums 0.630 98.000 0.263 97.000 Pass

Runs 0.182 99.000 0.024 99.000 Pass

Longest-run 0.760 97.000 0.637 99.000 Pass

Rank 0.304 99.000 0.012 100.000 Pass

FFT 0.817 99.000 0.494 99.000 Pass

Non-overlapping template 0.524 99.034 0.451 98.993 Pass

Overlapping template 0.616 99.000 0.779 99.000 Pass

Universal 0.276 100.000 0.122 100.000 Pass

Approximate entropy 0.740 100.000 0.514 100.000 Pass

Random-excursions 0.535 99.167 0.606 98.542 Pass

Random-excursions-variant 0.449 99.074 0.422 99.537 Pass

Serial 0.269 98.500 0.332 100.000 Pass

Linear-complexity 0.475 100.000 0.384 98.000 Pass

All these test results have demonstrated that both the alternate output method and dy-
namic output method can produce pseudo-random sequences.

6.4.3 PRNG based on three-dimensional coupling

Based on the 3D coupling (Figure 6.10, Equation (6.8)), the PRNG scheme is shown in
Figure 6.17. It has the similar definitions with Figure 6.16.

(a) using alternate output control method
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(b) using dynamic output control method

FIGURE 6.17 – PRNG scheme based on 3D coupling

Security test

According to Table 6.8 which clearly shows the key space and secret key sensitivity of
different coupling combinations, the PRNG scheme of Figure 6.17 can provide lager key
space when compared to the PRNG using 2D coupling shown in Figure 6.16. In addition,
the obtained DHs, using the same test method described for Table 6.4, have demonstrated
the high sensitivity of the PRNGs to their secret key.

TABLE 6.8 – Security test results

Couplings Key space
Key sensitivity (DH (%))

Alternate output control Dynamic output control

LLL 2101× - -

LSP 2164X 49.9989 X 49.9996 X

SPC 2164X 49.9983 X 49.9998X

SPS 2196X 50.0001 X 49.9987X

SSS 2197X 50.0006 X 50.0004 X

Statistical test

Similar to Table 6.5 and Table 6.6 when we were analyzing the PRNGs based on 2D
coupling scheme, the statistical test results shown in Table 6.9 and Table 6.10 have proven
that the PRNG (Figure 6.17) based on 3D coupling scheme (Figure 6.10) using either output
method (alternate output control or dynamic output control) can produce pseudo-random
numbers. The NIST randomness test results of the couplings "SPC" and "SSS" have been
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shown in Table 6.11 and Table 6.12, which have demonstrated the satisfactory randomness
of the produced pseudo-random sequence X .

TABLE 6.9 – Statistical test results (alternate output method)
Couplings Histogram χ2

exp Phase space Period detection NIST test

LSP X 1012.66 X X no period detected X

SPC X 1001.82 X X no period detected X

SPS X 992.58 X X no period detected X

SSS X 1001.87 X X no period detected X

TABLE 6.10 – Statistical test results (dynamic output method)
Couplings Histogram χ2

exp Phase space Period detection NIST test

LSP X 1019.48 X X no period detected X

SPC X 999.17 X X no period detected X

SPS X 997.09 X X no period detected X

SSS X 992.73 X X no period detected X

TABLE 6.11 – NIST test results (coupling "SPC")

Tests
Alternate output control Dynamic output control

Result
P-value Proportion(%) P-value Proportion(%)

Frequency 0.760 98.000 0.437 100.000 Pass

Block-frequency 0.834 98.000 0.817 99.000 Pass

Cumulative-sums 0.385 99.000 0.812 99.500 Pass

Runs 0.304 100.000 0.401 99.000 Pass

Longest-run 0.154 100.000 0.999 99.000 Pass

Rank 0.554 98.000 0.059 98.000 Pass

FFT 0.475 97.000 0.596 100.000 Pass

Non-overlapping template 0.477 99.000 0.459 98.986 Pass

Overlapping template 0.851 99.000 0.972 99.000 Pass

Universal 0.740 100.000 0.367 100.000 Pass

Approximate entropy 0.983 100.000 0.401 99.000 Pass

Random-excursions 0.486 99.590 0.310 99.254 Pass

Random-excursions-variant 0.377 99.180 0.336 99.171 Pass

Serial 0.749 99.500 0.477 98.500 Pass

Linear-complexity 0.798 99.000 0.055 99.000 Pass
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TABLE 6.12 – NIST test results (coupling "SSS")

Tests
Alternate output control Dynamic output control

Result
P-value Proportion(%) P-value Proportion(%)

Frequency 0.182 98.000 0.817 99.000 Pass

Block-frequency 0.202 99.000 0.040 98.000 Pass

Cumulative-sums 0.623 98.500 0.429 98.500 Pass

Runs 0.514 100.000 0.575 98.000 Pass

Longest-run 0.335 98.000 0.779 98.000 Pass

Rank 0.401 100.000 0.798 98.000 Pass

FFT 0.401 97.000 0.437 98.000 Pass

Non-overlapping template 0.495 99.068 0.512 99.095 Pass

Overlapping template 0.067 99.000 0.011 99.000 Pass

Universal 0.046 100.000 0.596 99.000 Pass

Approximate entropy 0.059 99.000 0.936 99.000 Pass

Random-excursions 0.735 97.817 0.451 99.632 Pass

Random-excursions-variant 0.416 98.413 0.350 99.101 Pass

Serial 0.400 99.000 0.374 99.000 Pass

Linear-complexity 0.514 99.000 0.699 99.000 Pass

6.5 Key space expandable PRNG

The PRNG based on 2D coupling is limited to 2133 that is achieved by using the cou-
pling combination "SS" (coupling two skew tent map). Many other combinations have to
operate in parallel structure to obtain a larger key space. Although, in general, the PRNG
based on 3D coupling can provide larger key space, collision of equivalent secret key over
a finite field is inevitable, which will shrink the effective key space and thus bring security
risks. Furthermore, with the development of computer technology, computing speed is ra-
pidly increasing. Thus, a larger key space is expected to prevent the brute-force attack and
ensure a high security of a cryptosystem.

For this, a new key space expandable PRNG scheme is proposed in this section. This
scheme not only expands the key space of the PRNG leading to an enhanced immunity
against the brute-force attack, but also increases the system’s complexity and security per-
formance.

Taking the 2D coupling "SS" with dynamic output method as an example, the proposed
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key space expandable PRNG scheme is shown in Figure 6.18.

FIGURE 6.18 – Key space expandable PRNG scheme

where Fs1, Fs2 are two skew tent maps.

For Fs1 and Fs2, their corresponding initial conditions are X1(0) and X2(0). Their
parameters are P11, ..., P1j and P21, ..., P2j , where j is the number of parameters used in
each skew tent map, and j = 1, 2, 3, 4, ... The parameters are used one by one in Fs1 and
Fs2. That is, when j = 1, P11 is the only parameter of Fs1 and P21 is the only parameter
of Fs2 (i.e. coupling "SS" in Section 6.4.2) ; when j = 2, P11, P12 are used in turn in Fs1,
and P21, P22 are used in turn in Fs2 ; similarly, when j = 4, P11, P12, P13, P14 and P21,
P22, P23, P24 are used in turn in Fs1 and Fs2. All the initial conditions and parameters
compose the secret key of the PRNG.

Security test

For different j, the key size is calculated as :

|Kj| = |X1 (0)|+ |P11| × j + |X2 (0)|+ |P21| × j + |e| (6.12)

where the size of the initial conditions (|X1(0)|,|X2(0)|) and parameters (|P11|,|P21|) for
Fs1 and Fs2 are N = 32 bits, and the size of coupling parameter (|e|) is Ne = 5 bits.

We have calculated the key space for j = 1, 2, 3, 4 and the results have been listed in
Table 6.13. The key spaces of the PCNGs have been expanded effectively, which enhance
the resistance to brute-force attack.

In addition, key sensitivity is evaluated by DH for j = 1, 2, 3, 4. Using the same cal-
culation method described for Table 6.4, the obtained DHs shown in Table 6.13 are very
close to 50%, which have confirmed the high sensitivity of the PRNGs to their secret key.

163



Partie , Chapitre 6 – Exploring a smart coupling of chaotic maps for new pseudo-random number
generators (PRNGs)

Statistical test

The results are similar to the previous conducted experiments regarding to the statistical
test. The test results shown in Table 6.13 have demonstrated that the produced sequences by
the PRNG scheme of Figure 6.18 can pass the uniformity test (histogram and χ2 test), hide
the used chaotic function in phase space and exhibit longer period. NIST test results when
j = 2, 3, 4 have been shown in Table 6.14 and Table 6.15. All the results have confirmed
the good randomness and higher security (larger key space) of the proposed PRNG scheme.

TABLE 6.13 – Security and statistical test results

j
Security test Statistical test

Key space
Key sensitivity

(DH(%))

Histogram

and χ2 test
Phase space Period detection NIST test

1 2133 X 50.0000 X 995.87 X X no period detected X

2 2197 X 49.9996 X 1012.47 X X no period detected X

3 2261 X 49.9991 X 993.92 X X no period detected X

4 2325 X 49.9995 X 994.28 X X no period detected X

TABLE 6.14 – NIST test results (j=2,3)

Test
j=2 j=3

Result
P-value Proportion(%) P-value Proportion(%)

Frequency 0.163 98.000 0.049 100.000 Pass

Block-frequency 0.091 100.000 0.798 100.000 Pass

Cumulative-sums 0.790 98.500 0.471 100.000 Pass

Runs 0.163 98.000 0.616 97.000 Pass

Longest-run 0.097 98.000 0.122 100.000 Pass

Rank 0.851 99.000 0.475 98.000 Pass

FFT 0.851 99.000 0.154 100.000 Pass

Non-overlapping template 0.534 98.980 0.478 99.014 Pass

Overlapping template 0.276 100.000 0.868 98.000 Pass

Universal 0.616 100.000 0.554 96.000 Pass

Approximate entropy 0.616 99.000 0.575 99.000 Pass

Random-excursions 0.477 98.148 0.589 98.134 Pass

Random-excursions-variant 0.465 99.691 0.378 98.756 Pass

Serial 0.281 99.500 0.278 100.000 Pass

Linear-complexity 0.103 98.000 0.043 97.000 Pass
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TABLE 6.15 – NIST test results (j=4)

Test
j=4

Result
P-value Proportion(%)

Frequency 0.575 100.000 Pass

Block-frequency 0.740 98.000 Pass

Cumulative-sums 0.319 100.000 Pass

Runs 0.182 99.000 Pass

Longest-run 0.658 98.000 Pass

Rank 0.575 98.000 Pass

FFT 0.798 100.000 Pass

Non-overlapping template 0.488 99.101 Pass

Overlapping template 0.419 99.000 Pass

Universal 0.596 99.000 Pass

Approximate entropy 0.514 100.000 Pass

Random-excursions 0.342 98.713 Pass

Random-excursions-variant 0.256 98.856 Pass

Serial 0.304 99.000 Pass

linear-complexity 0.437 100.000 Pass

Note that the proposed PRNG scheme (Figure 6.18) is not restricted to the working
mode described above. It can be considered as a flexible framework which can be used to
produce much more different pseudo-random sequences. The flexibility can be seen in the
following aspects : (1) any number of j can be chosen to design the PRNG ; (2) it holds
not only for the skew tent map, the coupling scheme is also suitable for coupling different
piecewise linear chaotic maps ; (3) for the output control, other control methods are also
applicable (e.g. output X1(n), X2(n) alternatively ; using XOR operation between a circular
shifted X1 and X2).

6.6 Conclusion

PRNG plays an important role not only in the security of a cryptosystem, but also in
other various engineering fields. In this chapter, we have proposed a smart coupling of
chaotic maps over a finite integer field, and based on the coupling method, a new family of
PRNGs has been investigated.

Our coupling method is inspired by the idea of ultra-weak coupling that is defined over
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a real continuous number field. However, due to the fact that the coupling is quite weak, the
chaotic function still can be recognized by analyzing the output of the coupling structure
in a phase space. This is a security drawback when the coupling structure is applied in a
cryptosystem.

The ultra-weak coupling structure cannot be copied to an integer number field directly.
However, if the coupling is defined in the integer number field, a tiny change in the coupling
matrix will lead to a big difference in the produced sequence. Thus, the coupling matrix has
been analyzed in detail in this chapter and finally we have proposed effective 2D and 3D
coupling matrices in the 2D and 3D coupling schemes. The statistical experiment results
have indicated that 2D and 3D coupling schemes can improve the randomness of the used
chaotic maps effectively and overcome the drawback of leakage of chaotic map’s function
existed in the real domain defined ultra-weak coupling structure.

Based on the 2D and 3D coupling schemes, a family of PRNGs have been proposed.
Different chaotic maps coupling combinations can compose the PRNG. In addition, alter-
nate and dynamic output control methods have been presented to increase the complexity
of the PRNGs and enhance the unpredictability and randomness of the produced pseudo-
random sequences. Conducted security and statistical test results have verified the high
reliability of applying the proposed PRNGs in cryptosystems or other PRNG required ap-
plications.

Besides, considering the key space is a limit of using 2D coupling scheme to PRNG de-
sign and it is not easy to figure out the precise effective key space, a key expandable PRNG
strategy has been proposed. The expanded key space not only enhances the resistance abi-
lity of cryptosystems to the brute-force attack, but also increases complexity of the PRNG
and improves the random-like features of the produced pseudo-random sequences.

Furthermore, all PCNGs employ the reformulated chaotic maps over the 32-bit finite
integer field, which overcomes the security problems caused by applying the floating-point
numbers to the finite precision digital software/hardware situations. Thus, they ensure the
good performance of the pseudo-random numbers over different platforms and a high re-
liability of the PRNGs.
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CHAPITRE 7

CONCLUSION AND PERSPECTIVES

7.1 Conclusion of contributions

In this thesis, we focus on the issue of using chaotic dynamics in cryptography aiming
to design secure and reliable chaos-based cryptosystems and PRNGs.

Chaotic dynamics is a special behavior in nonlinear dynamical system. The natural ad-
vantages of the chaotic system, namely complex property, random-like behavior and high
sensitivity to initial conditions and parameters, make it very suitable for cryptographic ap-
plications.

In Chapter 1, we have introduced the fundamentals of chaotic dynamics, which, on
one hand, explained the excellent chaotic features such as complex dynamics, random-
like behavior and high sensitivity to the initial conditions that are suitable for encryption
purposes, and on the other hand, analyzed the singularities such as fixed points, periodic
points that should be avoided carefully in cryptosystem design.

The basis of chaos-based cryptosystems and the state of the art have been analyzed in
Chapter 2. In the literature analysis, we have discussed the existing problems and solutions.
However, we are still facing many problems regarding to the security of cryptosystems that
need to be solved, such as insufficient confusion and diffusion properties, insecure and not
complex enough confusion and diffusion strategy, undependable key stream and PCNG, the
dynamical degradation problem, etc. To overcome the existing problems and enhance the
security of cryptosystems, effective methods and secure chaos-based cryptosystems have
been proposed in this thesis. The contributions can be summarized as follows.

Firstly, in Chapter 3, four widely used discrete chaotic maps (logistic map, skew tent
map, PWLCM and Chebyshev 3rd order chaotic map) have been redefined over a finite
integer field, which is used to overcome the security breach caused by applying quantiza-
tion, truncation or round-off approaches to the real number defined chaotic maps to satisfy
the finite precision nature of the digital devices. The 32-bit finite precision is used, which
not only makes the proposed cryptosystems or PCNGs can be implemented in different
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platforms and guarantees the reliability of the systems, but also uses reduced hardware
resources since the proposed schemes are more hardware friendly when compared to the
most existing cryptosysytems that used the real number with double precision.

Chaotic maps with finite precision will definitely show dynamical degradation (finite
period orbits). To overcome this drawback, a secure PCNG with ease of implementation
has been proposed in Chapter 4. Based on the PCNG, a new efficient stream cipher has
been developed. The conducted experiment results have verified the efficiency and security
of the stream cipher.

A new secure and robust chaos-based image cryptosystem based on confusion and dif-
fusion concept has been proposed in Chapter 5. It works with a global diffusion operation
and a block cipher which is based on the AES S-box. The key stream, provided by a new de-
signed PCNG, exhibits good security and randomness. Attackers cannot find the secret key
by analyzing the key stream. This system has excellent confusion and diffusion properties,
which possesses highly resistance to the common attacks.

The importance of PCNG has been embodied in the previous two chapters. Apart from
the vital function that PCNG plays in the chaos-based cryptosystems, PCNG is basically a
PRNG. PRNGs are important tools in plethora of applications involving various research
and engineering fields. In Chapter 6, we have proposed a more reliable PRNG framework
which is mainly based on a smart coupling structure and a output control method. The
smart coupling can break the original orbits of the used chaotic maps, lengthen the period to
minimize the bad effect of finite precision and make the output sequence possess uniformity
and randomness property. Two output control methods, i.e. alternate output method and
dynamic output method, have been introduced to select the sequences produced by the
coupling structure to generate the final pseudo-random numbers. This operation increases
the complexity and unpredictability of the PCNG. The security tests and statistical tests
have been applied to the proposed PRNGs. The obtained results have demonstrated the
excellent performances in terms of security and randomness of the PRNGs. Furthermore,
the key space is a limit when 2D coupling structure is used in PRNG design. A key space
expandable PRNG strategy has been described in this chapter. It can enlarge the key space
effectively, which gives a solution to using 2D coupling to PRNG design and increase
greatly the resistance to the brute-force attack.
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7.2 Perspectives of future work

For the future work, the following lists several suggestions based on the proposition
presented in the thesis.

The proposed PCNGs, the chaos-based stream cipher and the chaos-based block cipher
in the thesis are implemented by MATLAB. But MATLAB cannot give the dependable
time consumption performance of the proposed systems, especially in the case of calcula-
ting the big integer numbers that we used. Therefore, although the fully theoretical analyses
and conducted simulations results have confirmed the good performance of the proposed
systems, further hardware implementations are expected to verify their computational per-
formance.

Besides, for the period detection of the proposed PRNGs in Chapter 6, theoretically, due
to enhanced complex dynamics achieved by the coupling scheme and the output control
operations, PRNGs can produce pseudo-random sequences with very long periods. But
restricted by the software implementation, we can only verify that there is no period in the
produced pseudo-random sequences up to 108 length (3.2 × 109 bit length). The period
of the produced sequences by the proposed PRNGs can be tested using other operation
environments in order to provide definite evidences that the PRNGs can generate pseudo-
random sequences with extremely long period.

In addition, in this thesis, we focused on using chaotic dynamics in improving the se-
curity of symmetric-key encryption algorithm. But the chaotic features also can be used in
asymmetric-key encryption systems. Chebyshev polynomials, for instance, possess chaotic
characteristics and semigroup property. We only analyzed and used Chebyshev 3rd order
map in our work, but it is worthy more work in exploring its attractive characteristics in the
design of asymmetric-key encryption algorithms.

Furthermore, in the study of information security, chaotic dynamics also play a promi-
sing and active role in the research of fractional PCNG design, cryptographic hash function
(message digest), steganography and watermarking technique,etc. With the high develop-
ment of information technology and computer science, computing speed will become faster
and faster, which accelerates the cryptanalysis advances and that will render any crypto-
graphic mechanism or algorithm insecure. Therefore, facing increasingly huge amount of
confidential information, it is a significant subject to establish a better dialogue between
chaos and information security, and to explore more efficient and secure technology to
ensure information security.
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Résumé : Les systèmes chaotiques présentent des 
comportements dynamiques non-linéaires 
complexes. Ils possèdent des propriétés spécifiques, 
à la fois déterministes et pseudo-aléatoires, qui les 
rendent prometteurs pour la conception d’algorithmes 
de chiffrement sécurisé. Les crypto systèmes basés 
sur le chaos peuvent être classés en chiffrement par 
flux et chiffrement par blocs. La conception d’un 
Générateur de Nombres Pseudo-Chaotiques (PCNG) 
présentant des propriétés pseudo-aléatoires et 
chaotiques imposées est cruciale pour la sécurité 
d'un crypto système. Cependant, des niveaux 
insuffisants de confusion et de diffusion dans 
l’algorithme de cryptage utilisant un PCNG pas assez 
performant conduisent à des failles de sécurité. La 
conception de cartes chaotiques à partir d’une 
fonction de variables réelles peut menacer la fiabilité 
d'un crypto système basé sur le chaos. 
Pour cette raison nous proposons des cartes 
chaotiques reformulées sur un corps fini de nombres 
entiers codés sur 32 bits. Cela permet  de surmonter  

les problèmes d'erreur de quantification et optimise 
ainsi l'utilisation des ressources informatiques. De 
plus, nous proposons deux nouveaux algorithmes 
de chiffrement, le premier est basé sur le 
chiffrement par flux utilisant un PCNG efficace. Le 
second est un chiffrement robuste par blocs qui est 
fondé sur des composants chaotiques et la S-box 
de l’Advanced Encryption Standard (AES). Ce 
dernier algorithme présente d'excellentes propriétés 
de confusion et de diffusion. Les propriétés 
statistiques ainsi que les cas tests standards de 
cryptage d’images ont été vérifiés pour les deux 
algorithmes qui se sont avérés être sûrs et fiables. 
En outre, un Générateur de Nombres Pseudo-
Aléatoires (PRNG) basé sur un schéma de 
couplage de fonctions chaotiques innovant a été 
proposé. Les excellentes propriétés statistiques et 
chaotiques du générateur sont conservées pour un 
large choix de paramètres couplés. Le générateur 
proposé peut donc être utilisé pour des applications 
cryptographiques ou toutes applications nécessitant 
un PRNG. 

 

Title : Nonlinear dynamics, applications to chaos-based encryption 

Keywords : nonlinear dynamics, chaotic system, chaos-based cryptosystem, encryption algorithm, 
stream cipher, block cipher, pseudo-random number generator (PRNG) 

Abstract :  Chaotic systems are known to exhibit 
complex nonlinear dynamics. They present both 
random-like and deterministic features, which render 
chaos-based encryption very promising for the 
design of secure cryptosystems. Chaos-based 
cryptosystems can be classified into stream ciphers 
and block ciphers. A well designed pseudo-chaotic 
number generator (PCNG) with enhanced chaotic 
features and pseudo-randomness plays a crucial role 
in the security of a chaos-based cryptosystem. 
However, an insufficient level of confusion and 
diffusion in the encryption algorithm and unreliable 
PCNGs may lead to a security breach. Meanwhile, 
the adopted real number domain defined chaotic 
maps may menace the reliability of a chaos-based 
cryptosystem.  

In this thesis, the chaotic maps under investigation 
have been reformulated over a finite N-bit (N=32) 
integer field, which overcomes the quantification 
problems and reduces the resource utilization. In 
addition, a new stream cipher based on an efficient 
PCNG and a robust block cipher based on chaotic 
components and the S-box of Advanced Encryption 
Standard (AES) with excellent confusion and 
diffusion properties have been proposed. Both have 
been verified to be secure and reliable. 
Furthermore, a pseudo-random number generator 
(PRNG) framework based on a newly designed 
smart coupling of chaotic maps has been explored. 
It has good flexibility and can be used in 
cryptographic or other PRNG required applications.  
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