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Abstract 

The microelectronics industry faces many challenges. The major one is to increase the 

performance of computers while reducing their energy consumption. Current computing 

technology has now reached its limits and it becomes thus urgent to propose new paradigms 

for information processing capable of reducing the energy consumption while improving the 

computing performances. Moreover, the human brain, is a fascinating and powerful organ with 

remarkable performances in areas as varied as learning, creativity, fault tolerance. Furthermore, 

with its total 300 billion cells, is able to perform complex cognitive tasks by consuming only 

around 20W. In this context, we investigated a new paradigm called neuromorphic or bio-

inspired information processing.                     

More precisely, the purpose of this thesis was to design and fabricate an ultra-low power 

artificial neuron using recent advances in neuroscience and nanotechnology. First, we 

investigated the functionalities of living neurons, their neuronal membrane and explored 

different membrane models known as Hodgkin Huxley, Wei and Morris Lecar models. Second, 

based on the Morris Lecar model, we designed analog spiking artificial neurons with different 

time constants and these neurons were fabricated using 65nm CMOS technology. Then we 

characterized these artificial neurons and obtained state of the art performances in terms of area, 

dissipated power and energy efficiency. Finally we investigated the noise within these artificial 

neurons, compared it with the biological sources of noise in a living neuron and experimentally 

demonstrated the stochastic resonance phenomenon. These artificial neurons can be extremely 

useful for a large variety of applications, ranging from data analysis (image and video 

processing) to medical aspect (neuronal implants). 

Résumé 

L’industrie de la microélectronique fait face à de nombreux défis dont le principal est celui 

d’augmenter les performances des ordinateurs tout en réduisant leur consommation d’énergie. 

Actuellement, les technologies du traitement d'information ont atteint leurs limites et il devient 

donc urgent de proposer de nouveaux paradigmes capables de réduire la consommation 

d'énergie tout en augmentant la capacité de calcul des ordinateurs. Le cerveau humain est un 

fascinant et puissant organe avec des performances remarquables dans les domaines aussi 

variés que l'apprentissage, la créativité et la tolérance aux fautes. De plus avec ses 300 milliard 

de cellule, il est capable d’effectuer des taches cognitives en consommant 20W. Dans ce 

contexte nous avons investiguer un nouveau paradigme appelé "neuromorphic computing" ou 

le traitement bio-inspiré de l'information. 

Plus précisément, l'objective de cette thèse est de concevoir et de fabriquer un neurone artificiel 

a très faible consommation utilisant les récentes avancées scientifiques dans les neurosciences 

et les nanotechnologies. Premièrement, on a investigué le fonctionnement d'un neurone vivant, 

sa membrane neuronale et nous avons exploré trois différents modèles de membranes connues 

sous le nom de Hodgkin Huxley, Wei et Morris Lecar. Deuxièmement, en se basant sur le 

modèle de Morris Lecar, nous avons réalisé des neurones artificiels analogiques à spike avec 

différentes constantes de temps. Puis ils ont été fabriqués avec la technologie 65nm CMOS. Par 

la suite, nous les avons caractérisés et obtenu des performances dépassant l’état de l’art en terme 

de surface occupée, puissance dissipée et efficacité énergétique. Finalement, on a analysé  et 

comparé le bruit dans ces neurones artificiels avec le bruit dans des neurones biologiques et on 

a démontré expérimentalement le phénomène connu sous le nom de résonance stochastique.  

Ces neurones artificiels peuvent être extrêmement utiles pour une large variété d’application 

allant du traitement de données à l’application médicale. 
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he context and challenges of this thesis are described in the chapter 1. A brief 

introduction of the information processing and its origin are presented. After 

highlighting the challenges to overcome and the various ways to perform the 

data processing, we present our investigated solution, which relies on hardware brain 

inspired approach. An overview of the neuromorphic computing and the major projects 

in this thematic are also presented in the introduction. Finally, the objective and 

challenges of this thesis are highlighted. 

1.1 Information processing 

1.1.1 Introduction to information processing 

There are various ways to process the information. One is realized using manmade 

devices such as computers and the other one is accomplished by living systems for 

instance the brain. The neuronal architecture and the coding used in the brain to process 

the information differ from the conventional computers. The brain is fascinating and a 

powerful living system showing remarkable performance in areas as varied as the 

complexity of the processed information, the fault tolerance, learning, energy 

consumption and regeneration of the signal. Representing 2% of the weight of a human 

body and consuming 20% of the overall average power, the brain is revealed the most 

complex and efficient information processor known today. 

There is a major interest to study the difference between brain and conventional 

computing in order to bridge neuroscience and electronic engineering to develop 

artificial neural networks. This is the purpose of the following sections.  

1.1.2 History of information processing in hardware  

Alan Mathison Turing contributed to several areas such as cognitive science, artificial 

intelligence and mainly to computer science (Beavers, 2013). His theoretical work in 

1936, on the digital computing machine, is now referred as to universal Turing machine 

(Turing, 1936), on which the conventional computer is based. Fundamental idea of a 

universal stored-program computing machine came from Turing and was promoted in 

the United States by John von Neumann and in England by Max Newman. By the end 

of 1945, several groups, including Turing, were devising plans for an electronic stored 

program universal digital computer (a Turing machine in hardware). His talent in the 

information processing and computers was demonstrated when he broke Naval Enigma 

and was the principal designer of the "bombe” : a high-speed code-breaking machine. 

In 1945, he designed the Automatic Computing Engine (ACE). Turing and his group 

pioneered the science of computer programming, writing a library of sophisticated 

mathematical programs for ACE. Finally, the world's first working electronic stored-

program digital computer was developed by Newman in 1948, nevertheless the concept 

of Turing machine was a fundamental influence on this achievement (Copeland, 2004). 

T 
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Since, the progress in electronic and nanotechnology (e.g., transistors, integrated 

circuits, memories, microprocessors) leads to the development of many versions of 

computers. These developments provided the programmable electronic machines 

(computers) that are ubiquitous today. 

 

The information processing is combined of computation and communication. 

Communication moves operands and results around while computation combines 

operands to produce results (Boahen, 2017). In general, information processing can be 

described by two categories of analog and digital. Analog computer (see the upper left 

of Figure 1.1) is the first generation of computer where the computation and the 

communication was carried out with an analog signal. Current computers are digital 

computers (see the lower right of Figure 1.1), which use digital signals to compute as 

well as to communicate. The brain (see the lower left of Figure 1.1), known as the most 

energy-efficient computer, uses analog signals to compute and digital signals to 

communicate. In fact, the addition of information at synaptic level is considered as 

analog computing in the brain. The propagation of information in form of electrical 

impulses also called spikes is considered as digital signals enabling the communication 

in the brain.  

The fourth category (see the upper right of Figure 1.1), which consists of using digital 

signal to compute and using analog signal to communicate, is not yet explored. 

 

 

 

Figure 1.1 Signal choices for communication and computation (Boahen, 2017). 
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1.2 Challenges to overcome 

In the previous paragraph, we have presented briefly the conventional computer and 

the basis of information processing. In this section, some of the most important 

challenges of information processing and computers are presented. The quantity of data 

used, transported and created by sensors and end-user devices (from PCs to tablets and 

smartphones to digital TV), constitutes the digital universe. This one is growing 

exponentially and needs new procedures and systems to deal with data.  

1.2.1 Exponential growth of Big Data 

In our modern era, information processing and the Internet are omnipresent. Social 

media, sensors, enterprise data are all participating to the generation of enormous 

amount of data. According to the International Data Corporation (IDC), this amount of 

data created each year has grown exponentially.  It reached 2.8 zettabytes in 2012 and 

will be around 40 zettabytes in 2020 (see Figure 1.2). 

 

 

Figure 1.2 Exponential evolution of Big Data (Noor, 2014). 

 

The Big data are stored in vast data centers (see Figure 1.3) with enormous power 

consumption. Data centers consume about 3% of the global electricity supply and are 

accounting for about 2 % of total greenhouse gas emissions. In 2015, the world's data 

centers used 416.2 Terawatt-hours of electricity, which was higher than the UK's total 

consumption of about 300 Terawatt-hours. USA data centers consumed about 70 billion 

Kilowatt-hours of electricity in 2014 representing 2% of the country’s total energy 

consumption. That is equivalent to the amount consumed energy by about 6.4 million 

average American homes this year. 
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Figure 1.3 Left: The Facebook server hall in the city of Lulea, Sweden. Right: 

The facilities of the Google data center in Taiwan. 

 

Finally, researchers reported that in 2025, all the world data centers would consume 1/5 

of earth's power. 

The increasing gap between the quantity of generated information and the computing 

possibilities are one of the challenges of the 21st century. Moreover, this implies an 

increase of the power consumption to transfer and process the data, which represents 

another major challenge of the 21st century.  

1.2.2 Limitation of current information processing devices 

The current computing is based on Von Neumann architecture, binary logic and the 

CMOS technology. The Von Neumann (V.N.) architecture drawback known as the 

“Von Neumann bottleneck” is due to the separation between processor and memory. 

These different parts of the microprocessor are connected by communication pathways 

called buses. Therefore, there are multiple paths and constant data traveling across these 

buses resulting in the bottleneck. The memory units also benefit of the technological 

improvement like microprocessors but the address decoding/reading/writing data steps 

are difficult to accelerate. The memory is not able to deliver information as fast as the 

processor is able of handling this information. This phenomenon is strongly accentuated 

when the architecture contains parallel multi-cores. Furthermore, in the paper entitled 

“The chips are down for Moore’s law” published in February 2016, Mitchell Waldrop 

declares, “the semiconductor industry will soon abandon its pursuit of Moore's law. 

Now things could get a lot more interesting” (Waldrop, 2016). This sentence shows 

clearly that the current microprocessor computing technology has now reached some 

limits.  

Another point is the power dissipation of microprocessors, even if the integration 

density continues its exponential growth (which seems difficult due to the end of the 

Moore law), the circuit speed has been kept constant in order to limit the power 

dissipation at 100 W/cm2 (see Figure 1.4). 
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Figure 1.4 (a) The parallel, distributed architecture of the brain is different from the 

sequential, centralized Von Neumann architecture of today’s computers. The trend 

of increasing power density and clock frequencies of processors is headed away 

from the brain’s operating point (Merolla et al., 2014). 

 

Hence, both architecture (V.N.) and devices used in the current information processors 

are reaching physical limits.  

Carver Mead declared about the binary coding that: “We lose a factor of about 100 

because, the way we build digital hardware, the capacitance of the gate is only a very 

small fraction of the capacitance of the node. The node is mostly wire, so we spend 

most of our energy charging up the wires and not the gate. We use far more than one 

transistor to do an operation; in a typical implementation, we switch about 10 000 

transistors to do one operation.” (Mead, 1990). 

In addition, computers, champion for calculation of complex equation, have some 

difficulties to classify/organize/recognize data/patterns in the gray scale. Hence, it is 

time to propose new paradigms of information processing able to reduce the energy 

consumption in a drastic way while improving the performances. Artificial neural 

networks (ANN), computing in the same way as the human brain, could be the answer. 

The need of intelligent computers has pushed researchers to develop the neuromorphic 

computing domain. This part will be presented in following paragraphs with a brief 

introduction of the need of artificial intelligence. 

1.2.3 Need of artificial intelligence 

Artificial Intelligence (AI) could be defined as the desire to emulate the human 

cognitive behavior in order to develop intelligent machines. Many topics are concerned 

by AI such as self-driving cars, drones and robots. Associated with the appropriate 

learning rules, artificial neuron networks could be used in the frame of these 
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applications to realize associative memory, video classifiers or cognitive autonomous 

robots.   

In this context, the technology used to build brain like processors most be energy 

efficient, real time computing and able to analyze, communicate and learn at the human 

brain speed and level. Current AI technologies offer real time computing chips, but with 

high-energy consumption and without human intelligence, which cannot be used for 

intelligent embedded systems. 

1.2.4 Conclusion on possible solutions  

The end of Moore Law for CMOS technology, one of the three pillars of current 

processors impact all the semiconductor industry of 400 billion dollars (WSTS, 2017) 

sales and had changed the direction of research. The ‘International Technology 

Roadmap for Semiconductors’ (ITRS) is becoming ‘International Roadmap for Devices 

and Systems’ (IRDC) implying investigation in both new devices and new systems. In 

fact, to overcome the challenges mentioned before, three approaches can be 

investigated, first is to keep current information processing architecture and to replace 

the CMOS by another revolutionary device. This way has not yet produced any 

satisfying result. The second approach consists to change both the architecture and the 

device of the current information processing. Research on quantum computers is an 

example of this second option where quantum cubes play the role of switches and 

quantum computers replace the conventional computer. This approach can take a long 

time, as the researcher must overcome many challenges since the quantum cube can 

operate at low temperature, which is not yet adapted to our environment. The third 

option is to keep the CMOS technology and change the computation architecture. 
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1.3 Investigated solution 

In conclusion, based on the needs and the challenges to overcome, the alternative 

solution is to propose new paradigms for information processing. In this task, we have 

chosen to take as a model, the most efficient and powerful information processor, the 

brain. 

1.3.1 Human Brain 

The human brain has a massively parallel and reconfigurable architecture, composed 

of, 1011
 neurons and 1015

 synapses (Vuillaume et al., 2013). The brain has 300 million 

synaptic connections in each cm3, which represents the number of stars in the Milky 

Way. The brain, with its total 300 billion cells, is able to perform a cognitive task by 

consuming only around 20W that is 104 times less than the power consumption of 

multicore based supercomputers. 

The brain is a fascinating information processor. As you are reading these words, your 

brain is performing multiple complex cognitive tasks consuming only 20W during a 

millisecond. Moreover, it is capable of imagination, innovation that is beyond any 

supercomputer capabilities. This enigmatic organ has been studied over hundreds of 

years and still need to be investigated. 

1.3.2 Brain information processing and coding 

Based on neuroscience research until now, it is known that the brain uses electrical 

impulses called spikes to transfer information. A parallel is made between the 0 and 1 

in computer science and the spikes in the brain. In fact, the absence of spike is 

considered like 0 and the generation of a spike in the brain as 1. It seems that the brain 

uses both the timing of a spike (time coding) and the frequency of a spike train (rate 

coding) to analyze information. The brain remains a mysterious living system, which 

has proved his efficiency in information processing. It is the key element of the 

neuromorphic computing and artificial intelligence. 
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1.4 Neuromorphic computing  

1.4.1 Neuromorphic computing origins 

In 1990, Carver Mead invented the "neuromorphic computing" term (Mead, 1990). He 

referred to very large-scale integration with analog components that mimicked 

biological neuronal systems as "neuromorphic" systems. The use of neuromorphic 

systems for information processing is the goal of neuromorphic computing. More 

recently, the term of neuromorphic computing includes implementations that are based 

on brain-inspired architecture (Schuman et al., 2017). 

The history of brain-inspired computing starts in 1943 with the Warren McCulloch and 

Walter Pitts neuron. Their work was the first step toward the artificial neural networks 

(ANNs) since a neural network could be simply defined as connected neurons. The 

McCulloch-Pitts neuron model is a simplified mathematical model used to represent 

neural properties (McCulloch and Pitts, 1943). It is based on the existence of a threshold 

voltage for the activation of an action potential. Using their model, it is possible to 

figure out most Boolean logic function. Their neurons operated under the following 

assumptions.  They are binary devices as the input and output is either zero or one. They 

have fixed threshold. They receive inputs from excitatory synapses with identical 

weight. Inhibitory inputs have an absolute veto on excitatory input, if there is even one 

inhibitory input, the neuron will not fire (absolute inhibition). At each time step, the 

neurons are simultaneously updated by their inputs (inhibitory and excitatory 

synapses).  

In 1949, Donald Hebb, considered as the father of neural networks, introduced the 

Hebbian learning rule, which provides the foundation of modern neural network (Wang 

& Raj, 2017). In 1958, Frank Rosenblatt introduced the first perceptron (Wang & Raj, 

2017). The difference between the perceptron of Rosenblatt and the neuron of 

McCulloch-Pitts was: the synaptic weights (can take positive or negative value) and the 

neurons thresholds were variable. There is no absolute inhibitory synapse. The most 

important difference is that the perceptron had a learning rule. In 1970, Marvin L. 

Minsky and Seymour A. Papert published a book entitled "Perceptrons: an introduction 

to computational geometry" which acknowledge the perceptron’s strengths while also 

showing major limitations (Olazaran, 1996). Critics of this book state that since a single 

artificial neuron (one perceptron) is not able of implementing a XOR function, hence 

larger networks have the same issue and this technic must be dropped. It is known that 

this book was the source of many controversies in the field of neural networks and 

artificial intelligence. Since many researchers have continued the research on the neural 

network, a summary of this evolution is presented in Table 1.1. 
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Table 1.1  Major contribution to ANNs development (Wang & Raj 2017). 

 

Researchers from a variety of fields, such as materials science, neuroscience, electrical 

engineering, computer engineering, and computer science are considered as the 

neuromorphic computing community. In our domain, the neuromorphic systems can be 

considered in two categories: software and hardware systems. Artificial neural 

networks (ANNs) used by Google to classify images or playing games with AlphaGo 

is some of the applications of the software field of neuromorphic computing. To 

perform this task, the ANNs use new algorithms allowing these networks to be trained 

and/or learn on their own. The hardware neuromorphic systems are made of neuro-

inspired devices and architecture.  As an example, Truenorth chip is a neuromorphic 

CMOS integrated circuit produced by IBM in 2014 (Merolla et al., 2014). With over a 

million of programmable neurons and over 268 million programmable synapses, it 

overcomes the Von Neumann bottleneck, by handling the memory, computation and 

communication in each of the 4096 cores of this Truenorth chip. However, the energy 

consumption remains still high.  

 

It is worth mentioning that several international research programs such as SyNAPSE, 

the Brain initiative, the Human Brain Project, etc. are investing billions of dollars in 
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neuromorphic computing and systems. In the following paragraphs, we will present 

three of these projects. 

1.4.2 Neuromorphic computing major projects  

A. The SyNAPSE project 

SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics) is a 21 

million dollars project funded by DARPA (DARPA, 2013). The goal of this project 

launched in 2008, was to design a new computer architecture that mimics the brain. It 

had plans to combine the fields of nanoscience, neuroscience and supercomputers with 

the goal of developing devices with cognitive aspects. IBM's Truenorth chip has been 

developed in the frame of this project. 

B. The Brain initiative project  

The brain initiative project was launched in 2013 by the president Obama who declared, 

"It will spark innovation, create jobs, stimulate the economy, treat autism, Alzheimer’s, 

epilepsy and schizophrenia, not to mention stroke, traumatic brain injury and post-

traumatic stress disorder"(Obama, 2013). 

The total investment was about 3.8 billion dollars with the contribution of three federal 

agencies, the National Institutes of Health NIH ($40 million), the National Science 

Foundation NSF ($20 million) and the Defense Advanced Research Projects Agency 

DARPA ($50 million).  Many research institutes have also contributed to this project 

with 60 million dollars from the Allen Institute, 30 million dollars for Brain Science, 

30 million dollars from the Howard Hughes Medical Institute, 28 million dollars from 

the Salk Institute for Biological Studies and 4 million dollars from the Kavli 

Foundation. The timeline of the project is ten years. 

C. The Human Brain Project  

On the other side of the Atlantic, on 28 January 2013, the European Commission 

announced its decision to finance the Human Brain Project, a 10-year project that is 

estimated to cost 1.19 billion euros (HBP, 2013). This project aims to bring together all 

the human brain current knowledge in order to rebuild it, piece by piece, on the strength 

of computer models and simulations. These two European and American projects are 

not competitors, but rather complementary. As Richard Walker, a spokesperson for the 

Human Brain Project, points out, "all the data produced by the American project will 

be in the public domain, and that is a lot of results that can be incorporated into the 

Human Brain Project models" (Figaro, 2013). 

 

Understanding the human brain is one of the greatest scientific challenges facing the 

21st century. If we can rise to this challenge, we can gain profound insights into what 

makes us human, develop new treatments for brain diseases and build revolutionary 
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computing technologies. In the frame of our work, two main applications linked to 

neuromorphic systems are developed. This will be discussed in the next section. 
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1.5 Neuromorphic computing and systems, interests and 

applications 

Neuromorphic computers will gather several advantages such as perform complex 

calculations faster, more power efficiently, and on a smaller footprint than traditional 

Von Neumann architectures. These characteristics provide compelling reasons for 

developing hardware which employs neuromorphic architectures (Schuman et al., 

2017).  

 

This neuro-inspired field will impact two domains, information processors or 

computers and the human health care. Neuromorphic systems will be used in both cases 

to overcome their current limitation and increase their performances. 

 

In the case of computers, you may imagine a smart machine helping you during the 

day-to-day activities. This intelligent computer communicates, learns, make decisions, 

and even advice you based on its resources. Watson is an example of this kind of 

artificial intelligence (Ferrucci et al., 2010).  

 

In the case of human health care, millions of people die due to neurological diseases all 

over the world (Feigin et al., 2017). The idea is to fabricate a neuromorphic system to 

stimulate or even replace the defective brain area. For example, DARPA has launched 

the project RAM (Restore Active Memory- (DARPA, 2014)) to restore the lost memory 

of the injured soldiers. The first results obtained in the frame of this project are reported 

in (Hampson et al., 2018). They have demonstrated the first successful implementation 

in humans of a proof-of-concept system for restoring memory function by facilitating 

memory encoding using the patient’s own neural codes. This idea can also be extended 

to an improvement of a healthy brain in terms of memory and learning, improving our 

intelligence.  

For neurological diseases such as the epilepsy disease, we can imagine an intelligent 

neuromorphic system, playing the role of a "brain pacemaker" which detects the brain 

crises and stimulates in vivo the specific brain area to neutralize the epileptic crises. 

BBC has reported in January 2018 a brain pacemaker used for Alzheimer affected 

patients (Scharre et al., 2018).  

 

In 2015, a primate with spinal cord injury regained control of its paralyzed leg with the 

help of a neuro-prosthetic system called the “brain-spine interface” that bypassed the 

lesion, restoring communication between the brain and the region of the spinal cord. 

They interface legs motor cortex activity with epidural electrical stimulation 

protocols to establish a brain-spine interface that alleviated gait deficits after a spinal 

cord injury in non-human primates (Capogrosso et al., 2016). 
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As described in this section, neuromorphic systems address two major applications 

one in information processing and second in health care. These applications 

demonstrate the interest of the research community and validate the investment in 

this field. 
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1.6 Objective and challenges of thesis  

In order to achieve an efficient neuromorphic system, we have chosen the bottom-up 

approach. This approach corresponds to fabricate an artificial neuron and synapse 

before fabricating an artificial brain inspired system.  

In this context, the main goal of this thesis was to design and fabricate an ultra-low 

power artificial neuron. This is a multidisciplinary work requiring both knowledge in 

neuroscience and electronic field. The challenges to overcome are:  

 

1) Investigate and understand the complex functionality of a living neuron, 

enabling an efficient artificial neuron's design.  

 

2) Design a simple novel architecture with optimized area, enabling the 

fabrication of neuromorphic VLSI systems. 

 

3) Design and fabrication of analog spiking artificial neuron, using conventional 

CMOS technology, enabling a fast dissemination to the industry to fulfill 

current applications. 

 

4) Obtaining ultra-low power consumption for the artificial neuron, responding 

to the problematic concerning the energy consumption of current information 

processing systems.  

 

5) Investigate the noise within the artificial neuron, allowing a comparison to 

the biological sources of noise in a living neuron. 
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n this chapter, the different part of a neuron cell will be identified and the 

functionality of each of these specialized regions will be briefly explained. Next, 

an overview of mathematical models, which attempt to describe the behavior of 

the neuron cell, will be presented. Finally, three biophysical models and their 

simulation results will be described. These models will be used for the design of an 

ultra-low power artificial neuron, which is the basic element of future artificial neural 

networks.  

2.1 Neuron and neuronal membrane 

2.1.1 Glial and neuron cell 

All organs of the human body are composed of cells. The specific functions of cells and 

their interactions determine the functions of organs. This is also true for the most 

sophisticated organ, the human brain. We can define two main types of cells in the 

human brain, glial cells and neurons. This chapter will emphasize on the structure of 

different nervous types of cells, mostly neurons in our case. Glial cells fill the space 

between the neurons maintaining the homeostasis process, make myelin and play a role 

in supporting and protecting nervous tissue providing nutrients and oxygen. They 

eliminate dead cells and fight pathogens.  The exact role of glial cells remain still 

obscure, and it is generally admitted that neurons play a more important role, in 

particular regarding their contribution to produce and transmit the electrical impulses.  

This is the ‘neuron doctrine’ a discovery due to decisive neuro-anatomical work of 

Cajal (Andres-Barquin, 2001).    

There is an impressive number of neurons in the human brain, about 100 billion. 

Neurons are excitable cells and specialized in the reception, integration and 

transmission of information. Information flows in the form of action potential also 

called spike. All the activity of our nervous system is based on the transmission of these 

nerve impulses between neurons. There are various types of neurons, which differ in 

morphology and functionality (Figure 2.1) (Lodish et al, 2000).  

 

I 
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Figure 2.1 Different types of neurons. 

(a) Multipolar interneurons. (b) Motor neuron. 

(c) Sensory neuron (Lodish et al, 2000). 

 

A typical neuron is composed of a cell body and different extensions differing in 

functionality and size. Indeed, four main parts can be identified for one neuron: cell 

body also called soma, axon, dendrites and axonal terminals known as synapses (Figure 

2.2). All these specialized regions constitute a very dense network that allows 

permanent and coordinated exchanges between neurons.  
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Figure 2.2 Neuron internal and external parts. Neuron, neuronal membrane, 

nucleus of cell body, axon, synapse and dendrite. (Bear et al, 2007). 

2.1.2 Neuron cell body and axon 

As we look into the cell body, we can find the cell nucleus (Figure 2.2), which contains 

the DNA. The cell body is the place of synthesis of almost all neuronal proteins and 

membranes molecules (Lodish et al, 2000).  

Almost every neuron has a single axon (Figure 2.2). The diameters of the axon can 

vary from micrometers in certain nerves of the human brain to millimeters in the nerves 

of squid (Lodish et al, 2000). The main function of axon can be assimilated to a one-

way road, which allows the conduction of spikes from the cell body to the axon 

terminals. 

2.1.3 Neuron dendrites and synapses 

The cell body is surrounded by multiple branches, which play the role of a messenger 

receiver. Generally known as dendrites (Figure 2.2), they receive chemical signals 

from other neurons, convert it to electrical impulses, and finally transmit them into the 

cell body. 

The information transfer between two neurons takes place in a specialized region called 

synapse (Figure 2.2). Synapses are located between an axon terminal of a neuron and 

a dendrite of an adjacent neuron. Generally, there are two types of synapses: chemical 

and electrical. The chemical synapses send impulses via neurotransmitters. The 

electrical synapses are like tunnels; ions are transferred via hydrophilic channels also 

called gap junction channels (Figure 2.3).  
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Figure 2.3 Different types of synapses. (A) Electronic synapse. (B) Chemical 

synapse. (Purves et al, 2004) 

2.1.4 Neuronal membrane and ion channels 

The intercellular connections, synapses, consist of a very thin cleft located between two 

fragile membranes. In fact, each membrane surrounds the neuron and forms the outer 

boundary of the neuron cell. Thanks to the fluidity of the membrane, the 

neurotransmitters diffuse across the synaptic cleft allowing the transmission of nerve 

impulses. When the neurotransmitter binds to the receptor, changes in the ion 

permeability of the postsynaptic plasma membrane is involved, leading to the 

membrane electric potential changes at this location. Depending on the type of 

postsynaptic cell, this electric fluctuation can induce an action potential for a neuron, a 

contraction in a muscle or even hormone secretion in case of a gland cell. 

The creation and propagation of action potential is based on the ions flow across their 

plasma membranes highlighting that the neuronal membrane plays a fundamental role 

in the nervous system (Figure 2.2). As mentioned before by delimiting the neuron cell, 

it contains the cytoplasm inside the neuron and maintains certain substances outside the 

neuron. This neuronal membrane is about 5 nm thick. It is composed of two layers of 

lipid molecules with many protein structures embedded in the membrane. Some of 

these proteins called ion transporters or pump channels maintain a gradient (Bear et al, 

2007), i.e. a difference in ionic concentrations between the intracellular space and the 

extracellular space of the neuron cell. Other specific proteins form ion channels, which 

select certain substances that can penetrate through the neuronal membrane (Figure 

2.4). Both ion transporters and ion channels are necessary to describe the generation 

and propagation of action potential. 
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Figure 2.4 Neuronal membrane. Left: comparison of ion transporters with ion 

channels. Right: simplified schematic of the neuronal membrane with principal 

channels and principal ionic concentrations (Na + and K +) (Bear et al, 2007). 

2.1.5 Neuronal membrane and the action potential 

In this part, we will describe the variation of the action potential according to the 

exchange of ionic charges through the neuronal membrane. It is worth mentioning that 

the difference in electric potential between the interior and exterior of a neuron cell is 

called the membrane potential. This term will be used in the next paragraphs.  

At rest, there is a negative potential difference around -65mV between the intracellular 

surface of the neuron membrane and its extracellular surface called the resting potential 

(Bear et al, 2007). This resting potential results from a concentration gradient of sodium 

ions Na + and potassium ions K+ between the inside and the outside of the neuron. In 

fact, in resting state Na+ ions have a higher concentration in the extracellular space than 

the intracellular space. On the contrary, K+ ions have a higher concentration in the 

intracellular space than the extracellular space. For each ion, the reversal potential (also 

known as Nernst potential) is the membrane potential for which there is no net flow of 

that particular ion from one side to another side of the neuronal membrane. At 

equilibrium the Nernst potential for potassium and sodium ions are respectively EK=-

77mVand ENa=+50mV. 

The action potential is characterized by a fast and localized modification of the 

permeability of the neuron's membrane: Na+ enters into the cell using ion channels 

selectively permeable to sodium. The membrane potential takes then a positive value, 

about +40 mV, close to the Nernst potential of sodium (ENa). It is illustrated as the 

depolarization phenomena in Figure 2.5. 
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(B) 

Figure 2.5 The evolution of membrane potential. (A) Neuron and electrodes to 

stimulate and record the neuronal membrane. (B) Injected current and (C) the 

membrane potential evolution in time (Purves et al, 2004). 

 

Then, potassium ions (K+) leave very quickly the cell, passing through dedicated ion 

channels. The membrane potential decreases to a lower value than the resting potential, 

which defined the repolarization and then hyperpolarization sequences. Finally, the 

membrane potential reaches its initial resting state. All these variations of the action 

potential last only a few milliseconds in living cells.  

 

This localized and transient nerve impulse, which is mostly generated in a region of the 

cell body called axon hillock, propagates along the neuron axon. In fact, action 

potentials can originate not only at the axon hillock, but also in the axon initial segment, 

30 to 40μm from the soma and close to the first myelinated segment. In some neurons, 

the action potential even originates at the first node of Ranvier (Figure 2.6), where 

sodium channels are highly concentrated. For both myelinated and unmyelinated axons, 

once the action potential begins in the axon, it is not only propagating toward the nerve 

terminals but also back into the soma and dendrites (Caldwell, 2010).  

The myelination of the axon impacts the propagation speed of an action potential. In 

fact the unmyelinated axon conduction velocities range from about 0.5 to 10m/s, while 

the myelinated axons can conduct at velocities of up to 150m/s (Purves et al, 2004).  
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Figure 2.6 Propagation of action potential in the neuronal membrane. Left:(A) 

Myelinated axon. (B) Action potential propagation. Right: (A) Action potential at t 

= 1ms. (B) Action potential at t = 1.5ms. (A) Action potential at t = 2ms (Purves et 

al, 2004). 

 

Previously, the different regions of a neuron cell were presented. The generation and 

propagation of spike due to the mechanism of ionic channels in the neuronal membrane 

have been defined. In the next section, mathematical models of the neuronal membrane 

will be described. 
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2.2 State of the art: spiking neuron models 

In many fields, science tries to explain the existing phenomena using physical 

equations. This is the case for the neuronal membrane where many scientists try to 

explain the generation of spike using more or less complex mathematical models. 

Several neuronal membrane models have been proposed over the time. These models, 

also called spiking neuron models, are a mathematical description of the generation of 

spikes in cells as a function of the properties of their membrane. They are designed to 

accurately describe biological processes.  

Investigated in 1907 by Lapicque, the Integrate-and-fire (I&F) is one of the most widely 

used models in computational neuron science. Also known as the simplest neuron 

model, it describes relation between the current and the membrane potential. When an 

excitatory current is applied, the membrane voltage increases until it reaches a 

threshold. Since I&F, more complex models had been developed: leaky integrate and 

fire, I&F with adaptation, I&F or burst, quadratic I&F. However, they are not complete 

enough to describe with a good accuracy the complexity of spiking behavior of 

individual neurons in response to excitatory current pulses.  

Models such as FitzHugh Nagumo in 1961, Morris-Lecar in 1981, Hindmarsh Rose in 

1984, Wilson and Izhikevich in 2003, are more efficient to reproduce the neuro-

computational properties of biological spiking neurons. In 2004, a comparison of these 

neuronal models has been investigated by Izikevich (Izhikevich, 2004) (Figure 2.7). 

 

 

Figure 2.7 Comparison of spiking neuronal models (Izhikevich, 2004). 

 

As shown in Figure 2.7 the most attractive and meaningful model is the Hodgkin and 
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Huxley model (HH) proposed in 1952 (Hodgkin and Huxley, 1952). It is the first model 

to describe the generation of one spike based on the experimental studies of the 

neuronal membrane. HH model will be presented in the next section.  

Several mathematical models have been proposed after the Hodgkin-Huxley model in 

order to describe the spiking activity in living membranes. These refined models are 

also based on channel-based equations. Most of these models were designed by 

introducing extra-ionic channels and by adding corresponding terms to the original HH 

equation.  

 

In this work, three neuronal membrane models were investigated. First, the widely 

known and pioneer Hodgkin and Huxley model, which studies the properties of the 

giant squid axon. Second, the Wei model which proposes a precise model for the human 

neuron cell to describe the unification of neuronal spikes. Finally, the Morris-Lecar 

model attracted our attention as it gathers both criteria of biophysically meaningful and 

simplicity. A description of these models and the simulation results are presented in the 

next section. 

2.3  Investigation of biophysical neuron models 

2.3.1  Hodgkin and Huxley model 

In this section, the Hodgkin Huxley model, called HH model, will be investigated. 

Hodgkin, Huxley and Eccles received the 1963 Nobel Prize in Physiology or Medicine 

for their discoveries concerning the ionic mechanisms involved in the initiation and 

propagation of the spike in the peripheral and central portions of the nerve cell 

membrane (Figure 2.8) (Schwiening, 2012). 

 

 

Figure 2.8 The cover of the 1963 Nobel Prize Program. Huxley, left, looks on as 

Hodgkin adjusts a brand-new Tektronix 502A oscilloscope (Schwiening, 2012). 
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As shown in Figure 2.9, they were also the first ones who observed one potential action 

by introducing an electrode into the giant squid axon. The 500μm diameter of this axon 

allows the rapid conduction (the speed increases as the square root of the diameter) of 

action potentials driving a fast response.  

 

      

Figure 2.9 Intracellular recording of the squid giant axon action potential. Left: 

Loligo forbesi, the 60cm long squid. Right: (A) Photomicrograph of an electrode 

inside a squid giant axon. (B) The first intracellular recording of an action potential. 

The sine wave under the spike has a frequency of 500 Hz (Schwiening, 2012).  

 

Based on these in vivo measurements and the results described in Hodgkin and Huxley's 

1952 publication, it is suggested that the electrical behavior of the neuronal membrane 

can be represented by the electrical circuit shown in Figure 2.10. 

 

 

Figure 2.10 The electrical circuit proposed by Hodgkin and Huxley representing 

the neuronal membrane. Currents, potassium conductance (gK) and sodium 

conductance (gNa) varies with the membrane potential. The other components have 

constant values (Hodgkin and Huxley, 1952). 

 

The non-linear differential equations of Hodgkin and Huxley constitute the reference 

model for any other scientist seeking to understand the operation of a neuron. This 

model is important not only because the parameters have a biophysical meaning and 
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are measurable, but also because they allow us to study issues related to synaptic 

integration, dendritic cable filtering, the effects of dendritic morphology, the interaction 

between ionic currents, and other issues related to the dynamics of a neuron and its 

neuronal membrane. 

  

The Hodgkin and Huxley model is defined by four differential equations coupled to 

each other. The target of this paragraph is to explain the link between HH equations 

and their biological meaning.  

Based on the HH electrical circuit shown in Figure 2.10, the total current (𝐼) is the 

result of two main contributions that are the charge of the membrane capacitance (𝐶𝑀) 

and the ion currents (𝐼𝑖𝑜𝑛) crossing the membrane through the ion channels (Eq.2.1). 

The ion currents result from the addition of sodium and potassium currents 

(𝐼𝑁𝑎𝑎𝑛𝑑 𝐼𝐾), and a leakage current (𝐼𝑙) (Eq.2.1). 

 

𝐼 = 𝐶𝑀

𝑑𝑉𝑚

𝑑𝑡
+ 𝐼𝑖𝑜𝑛 

𝐼𝑖𝑜𝑛 = 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝑙 

Eq.2.1 

 

Each of these currents (𝐼𝑁𝑎 ,  𝐼𝐾  and 𝐼𝑙) is determined by a driving force that can be 

conveniently modeled as an electrical potential difference and a coefficient 

permeability that has the dimension of a conductance. As shown in Eq.2.2, the 

potassium current (𝐼𝐾) is equal to the potassium conductance (𝑔𝐾) multiplied by the 

difference between the membrane potential (Vm) and the equilibrium potential of the 

potassium ion also known as Nernst potential (𝐸𝐾 ) (Hodgkin and Huxley, 1952). 

Sodium current (𝐼𝑁𝑎) also depends on the sodium conductance (𝑔𝑁𝑎), the membrane 

potential (E or 𝑉𝑚) and the sodium Nernst potential (𝐸𝑁𝑎). This definition is also true 

for 𝐼𝑙 (expression of 𝐼𝑁𝑎 , 𝐼𝐾  and 𝐼𝑙 in annex). 

 

𝐼𝐾 = 𝑔𝐾(𝑉𝑚 − 𝐸𝐾) Eq.2.2 

 

Hodgkin and Huxley experiment suggests that 𝑔𝐾  and 𝑔𝑁𝑎 , varies with the membrane 

potential and time; but 𝐸𝑁𝑎 , 𝐸𝐾 , 𝐸𝑙, 𝐶𝑀 and 𝑔𝑙 can be considered as constant (values in 

annex).  

The potassium conductance 𝑔𝐾  is defined by the Eq.2.3, where �̅�𝐾  is the maximal 

potassium conductance, 𝑛 is a gating variable ranging between 0 and 1. The gating 

variable n is defined by a first order differential equation depending on two rate 

constants 𝛼𝑛 and 𝛽𝑛, which varies only with 𝑉𝑚 (annex).  

𝑔𝐾 = �̅�𝐾𝑛4 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 

Eq.2.3 
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Sodium conductance 𝑔𝑁𝑎  (expression in annex) is defined in the same way except that 

it depends on other gating variables m and h (Eq.2.4). Where m is associated with 

sodium channel activation and h corresponds to the sodium channel inactivation. The 

expression of their respective 𝛼 and 𝛽 are presented in annex.  

 

Finally, by replacing the expression of each conductance (𝑔𝐾, 𝑔𝑁𝑎 and 𝑔𝑙 ) in their 

respective ionic current (𝐼𝐾 , 𝐼𝑁𝑎  and 𝐼𝑙) and gathering the three gating variables (n, m 

and h) we can obtain the four main equations of HH model (Eq.2.4) (Hodgkin and 

Huxley, 1952). 

 

𝐼 = 𝐶𝑀

𝑑𝑉𝑚

𝑑𝑡
+ �̅�𝐾𝑛4(𝑉𝑚 − 𝐸𝐾 ) + �̅�𝑁𝑎𝑚3ℎ(𝑉𝑚 − 𝐸𝑁𝑎) + 𝑔𝑙(𝑉𝑚 − 𝐸𝑙) 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

Eq.2.4 

 

Based on HH equations previously described the numeric resolution of this model with 

Matlab software, was investigated. The Matlab code of HH model was found in the 

literature (Siciliano, 2012). The constant parameters as well as the equations are 

extracted from (Hodgkin and Huxley, 1952) and the results are presented in the next 

paragraph.  

2.3.1.1 Results of HH model: threshold excitatory current  

The excitability of the neuron is defined as its ability to produce a spike in response to 

a stimulus. The generation of spike depends on the excitatory current and its duration, 

which follows the principle of excitability of the neuron. we define the threshold 

excitatory current as the required current to generate only one spike for a given time. 

Figure 2.11.Left shows a threshold excitatory current with 7μA/cm2  amplitude (Iex) 

and 5ms pulsed duration (Ts). For this excitation, the variation of ionic currents are 

presented versus time in Figure 2.11.Right. The maximum sodium current (INaMax) is 

around -782μA/cm2 and the maximum potassium current (IKMax) is around 822μA/cm2. 

The leakage current (IL) is negligible compared to both INa and IK. 
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Figure 2.11 Generation of one spike with HH model. Left: Membrane voltage for 

a pulsed excitatory current with Iex = 7μA/cm2 and Ts = 5ms. Right: Ionics currents, 

INa  IK and IL. 

 

From this basic behavior, the excitability of the squid's neuronal membrane was 

investigated by increasing the threshold current amplitude and its time duration (Figure 

2.12). In fact, this study was driven to monitor the number of spikes generated in the 

time domain versus the injected excitatory current.  

 

 

A B C 

Figure 2.12 Excitability property of the neuronal membrane for HH model. 

 



2.3 Investigation of biophysical neuron models 

48 

 

The response of the HH model, determined at the threshold excitatory current Iex = 

7μA/cm2 during Ts = 5ms (Figure 2.12.A), was kept as a reference. As we increase Iex 

to 50μA/cm2 and Ts to 14ms, a second spike is generated (Figure 2.12.B). A third 

partial spike is observed for Iex = 100μA/cm2 and Ts = 14ms (Figure 2.12.C).  

This study demonstrates the influence of the amplitude and the duration of the pulsed 

excitatory current in the generation of spikes. To complete this work, we have 

investigated different pulsed currents, in terms of amplitude and pulsed duration, and 

conclude that the number of charges induced into the neuronal membrane is the main 

criteria to obtain a spike train. A detailed result will be presented in a next section 

(2.3.2.3 Injected charge).  

2.3.1.2 Monte Carlo comparison 

In the frame of a collaboration with a team of Salamanca University, a stochastic model 

based on the Monte Carlo (MC) technique was also used to solve HH equations 

(Vasallo et al, 2017). MC model is based on the probabilities for the different ions to 

cross the cell membrane. Sodium, potassium and leakage channels are introduced in the 

model according to the Hodgkin and Huxley equations. As it can be seen in Figure 

2.13, Matlab and Monte Carlo simulations of HH equations are in good agreement.  
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Figure 2.13 Comparison between MC and Matlab solver of HH model for. (a) 

Membrane voltage Vm. (b) Ionics currents INa, IK and ICl. (c) Sodium (m3h) and 

potassium (n4) gating variables. For all cases an excitation of Iapp = 7μA/cm2 and Ts 

= 5ms starting at 10ms is used (Vasallo et al, 2017). 
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Figure 2.13 represents the time variation of membrane voltage, ionic currents, sodium 

(m3h) and potassium (n4) gating variables in response to a pulsed excitatory current 

(Iapp) applied at 10ms with 7μA/cm2 amplitude and 5ms of duration. During the first 

10ms, where Iapp is equal to zero, the neuronal membrane is in a steady state. At the 

onset of Iapp, sodium channels open more rapidly than potassium channels (m3h 

increases, Figure 2.13.c). It induces the flow of sodium ions into the cell, resulting in a 

negative INa (Figure 2.13.b), which leads to the increase of Vm (Figure 2.13.a). The 

rise of Vm will result to the slow opening of potassium channels (shifted n4 increases, 

Figure 2.13.c) leading to the exit of potassium ions from the intracellular space to 

extracellular space and a positive IK arises (Figure 2.13.b). As Vm reaches its peak 

value, around +40mV, sodium channels start to close (m3h decreases, Figure 2.13.c), 

the slow potassium channels are completely open and potassium ions rush out from the 

intracellular space to the extracellular space and the voltage quickly returns to its resting 

value. As the potassium channels are closing slowly, potassium ions continue to leave 

the cell, resulting in a negative overshoot called hyperpolarization. The resting 

membrane potential is slowly restored thanks to the diffusion and leakage channel (ICl). 

During the action potential generation and a short time after the recovery of the steady 

state, it is impossible to stimulate the neuronal membrane in order to fire again. In fact, 

the period from the initiation of the spike to immediately after the peak is referred as 

the absolute refractory period. During this time, the cell cannot produce any new action 

potential.  

The generation of one spike obtained by the Matlab and MC resolution of HH model 

seems to be exactly the same, despite the stochasticity in the MC model. However, a 

closer look at the MC results corresponding to a zoom of INa and IK (inset in Figure 

2.13.b) reveals the presence of fluctuations in the ion currents that is the signature of a 

channel noise (Vasallo et al, 2017). It is interesting to note that the same results have 

been obtained with Matlab and MC for the resolution of HH model.   

 

 



Chapter 2 Neurons modeling 

51 

 

 

Figure 2.14 MC time evolution of various neuronal membrane parameters. (a) 
Membrane voltage Vm for Iapp= 7μA/cm2 and Ts = 14ms. (b) Ionic currents for Iapp = 

7μA/cm2 and Ts = 14ms. (c) Membrane voltage Vm for Iapp = 50μA/cm2 and Ts = 

14ms. (d) Ionic currents for Iapp = 50μA/cm2 and Ts = 14ms. In all cases, the 

excitatory current starts at 10ms (Vasallo et al, 2017). 

 

As described in this section, Hodgkin and Huxley succeeded in describing the 

generation of one spike based on the mechanism of ionic channels present in the 

neuronal membrane. In their model, the neuronal membrane and the neuron cell is a 

simplified version of the reality. In the next section, we will investigate the Wei model 

also based on HH model but with a more detailed description of the neuronal cell. 

2.3.2 Limitation of Hodgkin Huxley model and introduction to Wei model  

Proposed in 2014, Wei model based on HH model describes several types of generation 

of spikes, such as epileptic state named "seizure", stable state called "steady stream" 

and cerebral attack labeled "stroke" (Wei et al, 2014). This model demonstrates that 

these pathological dynamics, as well as normal spiking behavior of neurons, share a 
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unified dynamic underpinning. They extend the HH formalism to uncover a unification 

of neuronal membrane dynamics. The main difference between Wei model and HH 

model lies in their different hypothesis, which is reflected in their respective equations. 

Table 2.1 compares the main equations of Wei model (Eq.2.5) with HH model 

equations (Eq.2.4). 

 

Main equations of Wei model Eq.2.5 Main equations of HH model Eq.2.4 

𝐶
𝑑𝑉𝑚

𝑑𝑡
= −𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝐶𝑙 −

𝐼𝑝𝑢𝑚𝑝

𝛾
 

𝐼𝐾 = 𝐺𝐾𝑛4(𝑉𝑚 − 𝐸𝐾) + 𝐺𝐾𝐿(𝑉𝑚 − 𝐸𝐾) 

𝐼𝑁𝑎 = 𝐺𝑁𝑎𝑚3ℎ(𝑉𝑚 − 𝐸𝑁𝑎) + 𝐺𝑁𝑎𝐿(𝑉𝑚

− 𝐸𝑁𝑎 ) 

𝐼𝐶𝑙 = 𝐺𝐶𝑙𝐿(𝑉𝑚 − 𝐸𝐶𝑙) 

𝑑𝑞

𝑑𝑡
= 𝛼𝑞(1 − 𝑞) − 𝛽𝑞𝑞     , 𝑞 = 𝑚, ℎ, 𝑛 

𝐶𝑀

𝑑𝑉𝑚

𝑑𝑡
= −𝐼𝑁𝑎 − 𝐼𝐾 − 𝐼𝑙 

𝐼𝐾 = �̅�𝐾𝑛4(𝑉𝑚 − 𝐸𝐾) 

𝐼𝑁𝑎 = �̅�𝑁𝑎𝑚3ℎ(𝑉𝑚 − 𝐸𝑁𝑎) 

𝐼𝑙 = �̅�𝑙(𝑉𝑚 − 𝐸𝑙) 

𝑑𝑞

𝑑𝑡
= 𝛼𝑞(1 − 𝑞) − 𝛽𝑞𝑞     , 𝑞

= 𝑚, ℎ, 𝑛 

 

Table 2.1 Comparison of Wei model's equations with HH model's equations. 

 

As shown in Table 2.1, the Wei model is essentially based on HH model. The variation 

of the membrane voltage (dVm/dt) is due to similar ionic currents in both models. The 

gating variable in both models have also the same equations. 

However, and contrary to HH model, the Wei model uses differential equations to 

describe the variation of the ionic concentrations. For simplicity, we present Eq.2.6, 

which describes only the potassium concentration outside the cell (𝑁𝐾0
+) and inside 

the cell (𝑁𝐾𝑖
+). Similar equations describe the variation of sodium (𝑁𝑁𝑎0

+, 𝑁𝑁𝑎𝑖
+) and 

leakage concentration (𝑁𝐶𝑙0
+, 𝑁𝐶𝑙𝑖

+) (see annex). 

 

𝑑𝑁𝐾0
+

𝑑𝑡
=

1

𝜏
(𝛾𝛽𝐼𝐾 − 2𝛽𝐼𝑝𝑢𝑚𝑝 − 𝐼𝑑𝑖𝑓𝑓 − 𝐼𝑔𝑙𝑖𝑎 − 2𝐼𝑔𝑙𝑖𝑎𝑝𝑢𝑚𝑝 + 𝛽𝐼𝑘𝑐𝑐2

+ 𝛽𝐼𝑛𝑘𝑐𝑐1)𝜈0 

𝑑𝑁𝐾𝑖
+

𝑑𝑡
=

1

𝜏
(−𝛾𝐼𝐾 + 2𝐼𝑝𝑢𝑚𝑝 − 𝐼𝑘𝑐𝑐2 − 𝐼𝑛𝑘𝑐𝑐1)𝜈𝑖 

 

 

 

Eq.2.6 

 

These novel equations describing the variation of the ion concentrations proposed by 

Wei model allows us to study the individual charge conservation, which was not the 

case for the HH model (global charge conservation). A look into the Table 2.1, also 

shows the presence of an additional current 𝐼𝑝𝑢𝑚𝑝 in Wei model.  

The Nernst potential defined as constant in HH model (see annex) is more accurate in 

Wei model since it varies with time. This is due to the Nernst potential definition 



Chapter 2 Neurons modeling 

53 

 

defined as a ratio of ion concentrations. The Wei model also takes in account the 

variation of the neuron volume and the osmotic pressure due to the gradient of the ionic 

concentration. We can observe the improvements of the Wei model (human neuronal 

membrane) versus HH model (squid neuronal membrane) in the Figure 2.15. 

 

 

Figure 2.15 Comparison of HH model and Wei model schematic for the 

neuron cell (Wei et al, 2014). 

 

Investigation of individual charge conservation with Wei model and global charge 

conservation with HH model enables us to obtain a profound knowledge of the neuronal 

membrane which is essential for the design of an artificial neuron used in neuro-

inspired circuits. In fact, these models, which increase in complexity, give us an 

overview of what is the reality of a biological neuron and set us the important criteria 

to take in account to design a neuro-inspired system.  

 

To facilitate the dissemination of their results, the MATLAB code required to 

reproduce the full model was available and provided by Wei and co-authors. Several 

modification of the Matlab code has been performed in order to obtain a simple neuro-

inspired model. We removed the effects of osmotic pressure, which is not essential for 

our target. In fact, it is not necessary to reproduce all the neuronal phenomena and 

pathological dynamics to design a neuro-inspired circuit. This work targets the main 

and normal biological mechanisms of a neuron cell and the efficient way to reproduce 

it with nano-electronic devices. As mentioned before, Wei model can reproduce 

different spiking states, seizure and spreading depression and normal spike train. 
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According to this, we redefined the variation of intracellular and the extracellular 

volume to reproduce the normal spiking state.  

2.3.2.1 Results of Wei model: threshold excitatory current  

Our first study showed that Wei model can generate one spike with Iex = 7μA/cm2 

during 7ms (Figure 2.16). 

 

 

Figure 2.16 Generation of one spike and gating variables with Wei model. Up: 

One spike is generated for Iex = 7μA/cm2  and Ts = 7ms. Down: Gating variable m3h 

(red) and n4 (green) for Iex = 7μA/cm2  and Ts = 7ms. 

 

However, due to the nonlinear differential equations used in the HH and Wei models, 

it is difficult to determine precisely the threshold current. As it can be seen in (Figure 

2.17), the Wei model generates one spike for different threshold excitatory currents. 

(Figure 2.17.up) shows the generation of one spike with Iex = 5μA/cm2 and Ts = 7ms 

while (Figure 2.17.down) illustrates one spike with Iex = 7μA/cm 2 and Ts = 5ms. 
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Figure 2.17 Generation of one spike with Wei model. Figure.2.17.up: Vm is 

generated for Iex = 5μA/cm2 and Ts = 7ms. Figure.2.17.down: Vm is generated for 

Iex = 7μA/cm2 and Ts = 5ms.  

 

Based on these results, it can be concluded that the threshold edge is not well defined. 

This point needs to be more deeply investigated and another way is needed, to establish 

the boundary. In order to precisely define this value, the effect of injected charge was 

investigated for the Wei model. This choice is based on how the neuronal membrane of 
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the soma changes from a resting state to a spiking state, brought by a slight 

depolarization of the cell body and the charges collected from dendrites.   

2.3.2.2 Injected charge 

As demonstrated before, since it is difficult to determine the threshold excitation of the 

neuron as a function of Iex or Ts, another approach is to determine the threshold 

excitation by the number of injected charges through the membrane (Q), which is 

defined as follows: 

 

Q = Iex. Ts Eq.2.7 

 

In this study, the excitatory current Iex and its duration Ts will vary while the injected 

charges through the membrane, is kept constant. A constant value Q of 49nC/cm2 

obtained with Iex = 7μA/cm2 and Ts = 7ms was chosen as a reference. As Iex varies 

from 3.5μA/cm2, to 7μA/cm2 and 14μA/cm2 and Ts varies from 14ms, 7ms and 3.5ms 

respectively, the neuron generates one spike for these three cases. It can be concluded 

that the variation of Iex and Ts does not influence the generation of spike, as the number 

of charges remains constant (49nC/cm2). Thus it seems that the excitability of the 

neuron is related to the quantity of injected charges Q and therefore depends on the 

product of the excitation current (Iex) by the excitation time (Ts). This new conclusion 

leads us to investigate the excitability of the neuron when Q is variable. Hence, we 

define the on-state (Q1S) corresponding to the minimal quantity of charges for which 

the neuron spikes only once. The work was carried out for different excitatory current 

values. As shown in Figure 2.18, Iex varies from 2μA/cm2 to 8μA/cm2 by steps of 

1μA/cm2. The number of charges decreases as the excitatory current increases. 

Furthermore, as the excitatory current increases the pulsed duration needed to generate 

one spike decreases. 

 

 

Figure 2.18 Variation of injected charges as a function of different excitatory 

currents. 
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This study highlights that the minimum number of charges to obtain one spike is around 

21nC/cm2. As a major conclusion, based on this study, we can determine various 

excitatory currents to generate only one spike. In fact, a wide range of values can be 

used for Iex and Ts parameters of the pulsed excitatory current. 

2.3.3 Power and energy consumption 

One of the main objectives of this thesis is to propose an ultra-low power artificial 

neuron. Therefore, two different methods to determine the power and energy 

consumption of a neuron cell will be presented. The first idea consists in estimating the 

power and energy consumption of one neuron based on the total brain consumption, 

while the second consists in calculating the power and energy consumption based on 

ionic currents obtained by HH model and Wei model.  

2.3.3.1 Power consumption per spike based on brain consumption 

The former method is presented in this paragraph. It is known that the brain represents 

less than 2% of a person's weight and consumes 20% of the body energy (Drubach, 

2000). In addition, the average power consumption of an adult is about 100W (Rigden, 

1996). Hence, the total consumption of the human brain is around 20W. The brain has 

1011 neurons and the overall brain consumption for one second is 20J, hence each 

neuron will consume 200pJ. In case of fast brain activities, each neuron spikes at an 

average frequency of 20Hz, corresponding to the average beta wave frequency 

(Priyanka, 2016). Based on the 20Hz frequency value, we can easily deduce that the 

energy per spike is around 10pJ/spike. This simple calculation corresponds to the 

estimation of energy per spike for a biological neuron from human cortex reported from 

(Poon and Zhou, 2011) and (Lennie, 2003). 

The second method is based on our previous results concerning the excitability of the 

neuronal cell. We have investigated in detail the generation of one spike and its 

corresponding ionic currents (𝐼𝑁𝑎  and 𝐼𝐾) in HH model and Wei model. Based on these 

ionic currents, we can estimate the power and the energy consumption per spike, which 

is presented in the following section. 

2.3.3.2 Power consumption per spike based on ionic currents 

According to the equations presented in the Table 2.2, we define sodium power (𝑃𝑁𝑎) 

and potassium power (𝑃𝐾) for HH model and Wei model. The power consumption for 

each models are based on the ionic currents (𝐼𝑁𝑎  and 𝐼𝐾), the membrane potential (𝑉𝑚) 

and Nernst potentials (𝐸𝑁𝑎  and 𝐸𝐾). Obviously, the overall dissipated power (𝑃𝑑), is 

obtained by the addition of 𝑃𝑁𝑎 and 𝑃𝐾. 
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𝑃𝑊𝑒𝑖 ,𝐻𝐻 (𝑛𝑊. 𝑐𝑚−2) 

𝑃𝑁𝑎 = 𝐼𝑁𝑎(𝑉𝑚 − 𝐸𝑁𝑎) 

𝑃𝐾 = 𝐼𝐾(𝑉𝑚 − 𝐸𝐾 ) 

𝑃𝑑 =  𝐼𝑁𝑎(𝑉 − 𝐸𝑁𝑎) + 𝐼𝐾(𝑉 − 𝐸𝐾) 
 

Table 2.2 Power consumption for HH and Wei model. 

 

The Nernst potentials are constant in the HH model, while the Nernst potentials in the 

Wei model vary as function of the dynamic of the ionic concentrations (annex). The 

resulting power of HH and Wei models are illustrated in Figure 2.19. We observe 

similar shapes for 𝑃𝐾. For both models, the 𝑃𝑑 occurs during 2ms. However the shape 

of 𝑃𝑁𝑎 differs between the two models having an impact on 𝑃𝑑. In addition, the powers 

amplitudes in HH model are much higher than in Wei model. 

 

 
Figure 2.19 Comparison of power consumption in HH model and Wei model. In both 

models 𝑷𝑵𝒂(red), 𝑷𝑲(green) and 𝑷𝒅(blue) are in nW/cm2. Left: Power consumption in HH 

model for Iex = 7μA/cm2 during Ts = 14ms (same as Ts = 7ms). Right: Power consumption 
in Wei model for Iex = 7μA/cm2 during Ts = 7ms.  

We performed a trapeze type integration of 𝑃𝑁𝑎 and 𝑃𝐾 and multiplied these results to 

the surface of the neuronal membrane to determine the energy consumption per spike. 

To define the surface of the neuronal membrane, we consider the shape of the cell body 

to be spherical with a 20μm diameter (Bear et al, 2007). We obtain a neuronal surface 

of 10-6 cm2. Hence, the energy consumption per spike for HH model is 20 fJ/spike and 

3 fJ/spike for Wei model. The energy per spike obtained with the Wei model is less 

than the value obtained with HH model due to the lower amplitude of each ionic power.  

2.3.4 Conclusion on HH and Wei models 

HH model and Wei model reproduce the excitability of the neuronal membrane. For 

both models, we have determined a specific excitatory current for the generation of 
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only one spike. Additionally, we have investigated the influence of the number of 

injected charges on the generation of one spike in the Wei model. We have performed 

the analyses of power and energy consumption of both models, when the neuron spikes 

only once. As described previously both HH and Wei model are based on four nonlinear 

differential equations. These complex models are very useful to calibrate the electronic 

artificial neuron design but due to the high number of parameters, they lead to complex 

electrical circuits with considerable silicon surface (Yu and Cauwenberghs, 2010). 

Thus, a simpler and also biophysically meaningful model, the Morris-Lecar (ML) 

model was investigated. Next section will introduce the Morris Lecar model and some 

results from the simulation. 

2.3.5 Morris-Lecar model 

Catherine Morris and Harold Lecar have investigated the Barnacle muscle fibers. They 

proposed in 1981 a model with only two states variables known as the Morris-Lecar 

(ML) model (Morris and Lecar, 1981). This model describes the voltage oscillations in 

the Barnacle giant muscle fiber based on the membrane voltage 𝑉𝑚 and the potassium 

gating variable  𝑛 . As shown in Eq.2.8, ML model is a system of two non-linear 

differential equations associated with exponential functions. 

 

𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
= 𝐼𝑒𝑥 − 𝐺𝐶𝑎𝑚𝑠𝑠(𝑉𝑚)(𝑉𝑚 − 𝐸𝐶𝑎) − 𝐺𝑘𝑛(𝑉𝑚 − 𝐸𝐾 ) − 𝐺𝐿(𝑉𝑚 − 𝐸𝐿)   

𝑑𝑛

𝑑𝑡
= 𝜆(𝑉𝑚)(𝑛𝑠𝑠(𝑉𝑚) − 𝑛)  

𝑚𝑠𝑠(𝑉𝑚) =
1

2
[1 + 𝑇𝑎𝑛ℎ (

𝑉𝑚 − 𝑉1

𝑉2
))] 

𝑛𝑠𝑠(𝑉𝑚) =
1

2
[1 + 𝑇𝑎𝑛ℎ (

𝑉𝑚 − 𝑉3

𝑉4
))] 

 

𝜆(𝑉𝑚) = 𝜆0𝐶𝑜𝑠ℎ (
𝑉𝑚 − 𝑉3

2𝑉4
)) 

 

 

 

 

Eq.2.8 

 

In these equations, 𝐶𝑚 is the membrane capacitance, 𝐼𝑒𝑥  is the excitatory current, 

𝐸𝐾 , 𝐸𝐶𝑎  and 𝐸𝐿 are the ion equilibrium potentials, 𝐺𝐶𝑎 𝐺𝐾 and 𝐺𝐿 are the calcium (same 

as sodium in HH and Wei model), potassium and leak conductance. The steady-state 

potassium and sodium gating variables are respectively 𝑛𝑠𝑠 and 𝑚𝑠𝑠 while 𝜆0  is the 

reference frequency. Finally, 𝑉1 to 𝑉4 are fitting parameters that can serve for tuning 

the dynamic properties in order to represent different systems of interest.  

 

We have simulated the Morris-Lecar (Waterloo, 2013) model also called “ML original” 

with an available Matlab code. The parameters of “ML original” model are extracted 

from Morris and Lecar, 1981 publication. First, the response of this model in time 
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domain to different constant excitatory current (Iex) was investigated, as shown in 

Figure 2.20.  

 

 
Figure 2.20 Response of ML model to different excitatory current. ML response to a 

continuous excitatory current: 0, 100 and 200pA/cm2. 

 

Additionally Figure 2.21 shows the response of the ML model in frequency domain as 

a function of the excitatory current (Frequency-current or F-I curve). As illustrated by 

the F-I curve (Figure 2.21), without any excitatory current, the membrane voltage is in 

the resting state and an absence of spiking frequency is observed. As the excitatory 

current increases, the spiking frequency increases and reaches a maximum value of 

16Hz. It can be noticed that the ML model spike frequency is around 8Hz for Iex = 

90pA/cm2. As we increase the excitatory current from 120pA/cm2 to 200pA/cm2, the 

spike frequency increases from 14Hz to 16Hz. It saturates around 16Hz for Iex between 

150pA/cm2 and 200pA/cm2. The ML model does not spike for 250pA/cm2 < Iex < 

350pA/cm2. This type of “Frequency versus current” curve correspond to class-1 neural 

excitability, in which action potentials can be generated with arbitrarily low frequency 

that increases in accordance with the excitatory current (Izhikevich, 2007).  
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Figure 2.17 The F-I curve of ML model. 

 

We can conclude that ML model validates the excitability behavior of the neuronal 

membrane and also reproduces the spiking activity of a neuronal cell. Hence, this model 

can be used as a guideline since it is simple enough to be reproduced by a conventional 

electrical circuit. ML model will be more investigated in chapter 3. The analogy 

between the ML equations and the circuit proposed for the artificial neuron will be 

explained.  
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2.4 Conclusion  

In this part, the various specialized regions of a neuron cell were presented. The main 

region responsible in the generation of action potential, the neuronal membrane was 

described. The dynamics of ionic channels present in the neuronal membrane can 

indeed explain the generation of spikes. Ionic channel mechanisms can be described 

with mathematical equations known as neuronal model. An overview of various 

neuronal models was presented in this chapter. In order to understand the complex 

behavior of the neuronal membrane, three of these biophysical models HH, Wei and 

Morris-Lecar were investigated. Each of these neuronal models was studied through 

simulation by Matlab software (and Monte Carlo simulation for HH model). Based on 

results presented in this chapter, the excitability mechanisms of the neuron were 

specified. A precise modulation of the generation of spikes as a function of the charge 

density was performed. This allows us to estimate the power and energy efficiency per 

spike for HH and Wei model.  
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2.5 Annex 

 

Hodgkin Huxley model 

 

Ionic current: 

The ionic current is composed of sodium current (𝐼𝑁𝑎 ), potassium current (𝐼𝐾) and 

leakage current (𝐼𝑙). Their expression are presented as follow 

 

𝐼𝑁𝑎 = 𝑔𝑁𝑎(𝑉𝑚 − 𝐸𝑁𝑎) 

𝐼𝐾 = 𝑔𝐾(𝑉𝑚 − 𝐸𝐾) 

𝐼𝑙 = 𝑔𝑙(𝑉𝑚 − 𝐸𝑙) 

 

Constant parameters:   

The following values are taken from the publication of Hodgkin and Huxley in 1952. 

They are implemented in HH code and simulated with Matlab software.  

𝐶𝑀 ( µ𝐹. 𝑐𝑚−2 ) 1.0 

𝐸𝑁𝑎  ( 𝑚𝑉 ) +55 

𝐸𝐾  ( 𝑚𝑉 ) -72 

𝐸𝑙  ( 𝑚𝑉 ) -49.4 

�̅�𝑁𝑎  ( 𝑚. 𝑚ℎ𝑜. 𝑐𝑚−2 ) 120 

�̅�𝐾  ( 𝑚. 𝑚ℎ𝑜. 𝑐𝑚−2 ) 36 

𝑔𝑙  ( 𝑚. 𝑚ℎ𝑜. 𝑐𝑚−2 ) 0.3 

 

Sodium conductance: 

The sodium conductance depends on gating variables m and h. 

 

𝑔𝑁𝑎 = �̅�𝑁𝑎𝑚3ℎ 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

 

Gating variables and transition rate constants: 

Gating variable n is a dimensionless quantity, comprise between 0 and 1, which 

corresponds to potassium channel activation. The constant 𝛼𝑛 determines the rate at 

which a gating channel switch from closed state to open state, while 𝛽𝑛 is a rate at 

which it switches from an open state to a closed one. The transition rate constants 𝛼𝑛 

and 𝛽𝑛are related to Vm through rather complex exponential functions.  
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Gating variable m is a dimensionless quantity between 0 and 1, which correspond to 

sodium channel activation. 𝛼𝑚 and 𝛽𝑚 represent the transition rate constants. 

 

 

Gating variable h is a dimensionless quantity between 0 and 1, which correspond to 

sodium channel inactivation. 𝛼ℎ and 𝛽ℎ represent the transition rate constants.  

Wei model 

 

Potassium, sodium and chloride concentrations: 

The concentration of each ion type is continuously updated by integrating the relevant 

ion currents and fluxes. As an example, the rate of change of the number of intracellular 

K+ ions, 
𝑑𝑁𝐾𝑖

+

𝑑𝑡
 , is a function of IK and Ipump, as well as cotransport currents Inkcc1 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 

𝛼𝑛(𝑉𝑚) =
0.01(𝑉𝑚 − 10)

1 − exp [
−(𝑉𝑚 − 10)

10 ] 
 

𝛽𝑛(𝑉𝑚) = 0.125exp (−
𝑉𝑚

10
) 

 

 Gating variable n and transition rate constants 𝛼𝑛 and 𝛽𝑛 

 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 

𝛼𝑚(𝑉𝑚) =
0.1(𝑉𝑚 − 25)

exp [
−(𝑉𝑚 − 25)

10 ] − 1 
 

𝛽𝑚(𝑉𝑚) = 4exp (−
𝑉𝑚

18
) 

Gating variable m and transition rate constants 𝛼𝑚 and 𝛽𝑚 

 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

𝛼ℎ(𝑉𝑚) = 0.07exp (−
𝑉𝑚

20
) 

𝛽ℎ(𝑉𝑚) =
1

1 + exp [
−(𝑉𝑚 − 30)

10 ] 
 

 

Gating variable h and transition rate constants 𝛼ℎ and 𝛽ℎ 
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and Ikcc2.  

𝑑𝑁𝐾𝑖
+

𝑑𝑡
=

1

𝜏
(−𝛾𝐼𝐾 + 2𝐼𝑝𝑢𝑚𝑝 − 𝐼𝑘𝑐𝑐2 − 𝐼𝑛𝑘𝑐𝑐1)𝜈𝑖 

𝑑𝑁𝐾0
+

𝑑𝑡
=

1

𝜏
(𝛾𝛽𝐼𝐾 − 2𝛽𝐼𝑝𝑢𝑚𝑝 − 𝐼𝑑𝑖𝑓𝑓 − 𝐼𝑔𝑙𝑖𝑎 − 2𝐼𝑔𝑙𝑖𝑎𝑝𝑢𝑚𝑝 + 𝛽𝐼𝑘𝑐𝑐2 + 𝛽𝐼𝑛𝑘𝑐𝑐1)𝜈0 

 

Potassium concentrations in Wei model 

 

The intracellular Na+ ion number dynamics,  
𝑑𝑁𝑁𝑎𝑖

+

𝑑𝑡
, is modeled based on the 

membrane Na+ current (INa), Ipump, and Inkcc1. 
 

𝑑𝑁𝑁𝑎𝑖
+

𝑑𝑡
=

1

𝜏
(−𝛾𝐼𝑁𝑎 − 3𝐼𝑝𝑢𝑚𝑝 − 𝐼𝑛𝑘𝑐𝑐1)𝜈𝑖 

𝑑𝑁𝑁𝑎0
+

𝑑𝑡
=

1

𝜏
(−𝛾𝛽𝐼𝑁𝑎 + 3𝛽𝐼𝑝𝑢𝑚𝑝 + 𝛽𝐼𝑛𝑘𝑐𝑐1)𝜈0 

 

Sodium concentrations in Wei model 

 

The dynamics of the number of intracellular Cl-, 
𝑑𝑁𝐶𝑙𝑖

−

𝑑𝑡
, is a function of ICl, Inkcc1, 

and Ikcc2. 
 

𝑑𝑁𝐶𝑙𝑖
−

𝑑𝑡
=

1

𝜏
(𝛾𝐼𝐶𝑙𝐿 − 𝐼𝑘𝑐𝑐2 − 2𝐼𝑛𝑘𝑐𝑐1)𝜈𝑖 

𝑑𝑁𝐶𝑙0
−

𝑑𝑡
=

1

𝜏
(−𝛾𝛽𝐼𝐶𝑙𝐿 + 𝛽𝐼𝑘𝑐𝑐2 + 2𝛽𝐼𝑛𝑘𝑐𝑐1)𝜈0 

 

Chloride concentrations in Wei model 

 

In these equations τ = 1000 is used to convert second to millisecond. νi and νo are the 

intracellular and extracellular volumes, respectively. β = νi/νo is the ratio of intra-

/extracellular volume. 

 

Nernst potential: 

The reversal potentials of Na+ (ENa), K
+ (EK), and Cl- (ECl) are given by Nernst 

equations: 

 

𝐸𝑁𝑎 = 26.64 ln (
[𝑁𝑎+]0

[𝑁𝑎+]𝑖
) 

𝐸𝐾 = 26.64 ln (
[𝐾+]0

[𝐾+]𝑖
) 

𝐸𝐶𝑙 = 26.64 ln (
[𝐶𝑙−]𝑖

[𝐶𝑙−]0
) 

 

where [.]i and [.]o represent concentrations inside and outside the cell, respectively. 
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Constant parameters: 

The units and description of all parameters used in Wei model are summarized in the 

following table. 

 

Parameters Units Description 

𝐶 1µ𝐹. 𝑐𝑚−2  Membrane capacitance 

𝐺𝑁𝑎  30𝑚𝑆. 𝑐𝑚−2 Maximal conductance of sodium current 

𝐺𝐾
 25𝑚𝑆. 𝑐𝑚−2 Maximal conductance of potassium current 

𝐺𝑁𝑎𝐿
 0.0247𝑚𝑆. 𝑐𝑚−2  Conductance of leak sodium current 

𝐺𝐾𝐿
 0.05𝑚𝑆. 𝑐𝑚−2 Conductance of leak potassium current 

𝐺𝐶𝑙𝐿
 0.1𝑚𝑆. 𝑐𝑚−2 Conductance of leak chloride current 

𝛽0
 7 Ratio of the initial intra-/extracellular 

volume 

𝜌max
 0.8 𝑚𝑀/𝑠 Maximal Na/K pump rate 

𝐺𝑔𝑙𝑖𝑎,𝑚𝑎𝑥
 5 𝑚𝑀/𝑠 Maximal glia uptake strength of potassium 

𝜀𝑘,𝑚𝑎𝑥
 0.25𝑠−1 Maximal potassium diffusion rate 

[𝐾+]𝑏𝑎𝑡ℎ
 3.5𝑔. 𝑚𝑜𝑙−1 Normal bath potassium concentration 

𝜀0
 0.17𝑠−1 Oxygen diffusion rate 

𝛼 5.3𝑔. 𝑚𝑜𝑙−1 Conversion factor 

[02]𝑏𝑎𝑡ℎ
 32𝑚𝑔. 𝐿−1 Normal bath oxygen concentration 

𝑈𝑘𝑐𝑐2
 0.3𝑚𝑀/𝑠 Maximal KCC2 cotransporter strength 

𝑈𝑛𝑘𝑐𝑐1
 0.1𝑚𝑀/𝑠 Maximal NKCC1 cotransporter strength 
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n order to design an original and innovative analog artificial neuron, it was 

necessary to verify the existing solutions at the beginning of this work. To fulfill 

this task, a state-of-the-art of stand-alone artificial neurons in terms of power, 

energy dissipation, and occupied area was provided and presented in the first part of 

this chapter.  

 

In the second part, the analogy between the artificial neuron and the Morris-Lecar 

model will be demonstrated. This artificial neuron can emulate with a good accuracy 

the behavior of living neuron, which we will be referring as "biomimetic neuron".   

It can also, instead of mimicking the biology, provide higher frequency spike rates to 

target large scale bio-inspired networks for the information processing applications. 

This version of the artificial neuron is designated "fast neuron". The biomimetic neuron 

and fast neuron as well as their design parameters will be presented in the third and the 

fourth part of this chapter.  

 

To design an artificial neural network, it is necessary to include synapses between 

neurons, as in biology. Following this idea, we have connected these different artificial 

neurons with simple synapses described in the third part of this chapter to investigate 

phenomena encountered in human brain such as the burst phenomena, which is 

presented in the fifth part.  

 

All these bio-inspired circuits have been fabricated within two different chips 

designated as WetWire and GreyMatter in the TSMC 65nm CMOS technology. We 

performed the characterization of these chips at IEMN laboratory and we will present 

corresponding results in the fifth and sixth part of this chapter. We will conclude on the 

performances of these proposed neuro-inspired circuits and give some perspectives for 

the following chips.  

 

3.1 State of the art of artificial neuron  

In the scope of neuromorphic, computing, different ways are used to fulfill this task 

such as hardware neural networks. Hardware devices, designed to realize artificial 

neural network (ANN) architectures and associated learning algorithms especially 

taking advantage of the inherent parallelism in the neural processing are referred as 

hardware neural networks (HNN) (Misra & Saha, 2010).  

The choice of the technology is driven by the application and the aimed performances. 

It can range from silicon neuron (Indiveri et al., 2011) to all memristor neuron and 

synapse (Pantazi, Woźniak, Tuma, & Eleftheriou, 2016) (La Barbera et al., 2015) and 

even spintronic oscillator neuron (Torrejon et al., 2017). These components often 
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present several strengths as well as several constraints such as complicated circuits, 

immature technology and reliability issues.  

These basic blocks contribute to the hardware realization of artificial neural network 

(HNN). Therefore, artificial neuron represents one of the main building blocks for 

implementing neuromorphic systems (Indiveri et al, 2011). 

 

In our case, an artificial neuron is defined as a hardware implementation of the 

biological neuron. We focus on silicon artificial neuron based on complementary metal 

oxide semiconductor abbreviated as CMOS technology. This technology is 

predominant in micro- and nanoelectronics circuits as microprocessors, 

microcontrollers and other digital logic circuits. CMOS technology is also widely used 

for analog circuits such as image sensors, data convertors and so on.  

 

Beyond these industrialized applications, CMOS technology allows a high-density 

integration of logic functions on a chip and became the most used technology to be 

implemented in very large-scale integration (VLSI) chips. The use of standard 

industrial technology was an important point to reduce the fabrication time of artificial 

neurons using foundries such as Taiwan Semiconductor Manufacturing Company 

(TSMC) and to scale up neural networks with the integration of more than 1000 neurons 

in a hardware neuronal network. 

 

Moreover, it is possible to envisage a hybrid system where a CMOS neuron is 

connected to memristive synapses as illustrated in Figure 3.1 (Yang et al., 2013). 

 

 

 
 

Figure 3.1 Hybrid CMOS memristor circuit. Memristive devices correspond to 

artificial synapses and CMOS circuits correspond to artificial neurons (Yang et al, 

2013).  
 

Analog spiking hardware approach is used to develop general purpose ultra-low power 

and large-scale neural systems. Different laboratories have worked on stand-alone 

analog neuron. The state-of-the-art analog artificial neurons based on their 
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performances in terms of power, energy consumption and area are presented in  Table 

3.1.  

 
 

References Neuron 

type 

CMOS 

node 

Core 

Area 

(µm
2
) 

Spiking 

frequency 

(Hz) 

Power Energy 

(pJ/Spike) 

Indiveri et 

al., 2006 

LIF 0.35 

µm 

2573 200 - 900 

Wijekoon 

and Dudek, 

2008 

LIF 0.35 

µm 

2800 

 

106 8-40 

µW 

8.5-9 

Basu and 

Hasler, 

2010 

Saddle 0.35 

µm 

2740 100 1.74 

nW 

17.4 

Joubert et 

al., 2012 

LIF 65 nm 538 1.9 106 78 µW 41 

Cruz-

Albrecht et 

al., 2012 

LIF 90 nm 442 100 40 pW 0.4 

Table 3.1 State-of-the-art performance of reported stand-alone artificial 

neurons. 

 

As shown in Table 3.1, the common neuron type is Leaky Integrated Fire (LIF - 

presented in the chapter 2), which represents one of the simplest and most widely used 

for such implementations. Based on results reported in Table 3.1, we can conclude that 

the most energy efficient stand-alone neuron was proposed by Cruz-Albrecht in 2012. 

It consumes 40pW and 0.4pJ/spike with a core area of 442 µm2.  

 

These artificial neurons have been investigated. Based on their performances an ultra 

low power artificial neuron has been proposed, with several versions and will be 

presented in the next section.  

3.2 Design of artificial neuron 

There are specific applications such as streaming video compression, which demand 

high volume adaptive real-time processing and learning of large datasets in reasonable 

time and necessitate the use of energy-efficient HNN (Misra & Saha, 2010). To meet 

different applications, several versions of the artificial neuron have been designed in 

this work. The biomimetic neuron mimics the behavior of living neuron by reproducing 

biological action potential and time constants. The fast neuron is designed to generate 
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higher spiking frequencies with minimal core area. These versions of the artificial 

neuron and their corresponding circuits will be explained in the following sections. 

 

The artificial neuron is based on ML model, which is constituted of two non-linear 

differential equations associated with exponential functions. These equations can be 

represented by expressions based on current node summation, as per Kirchhoff’s 

Current Law (KCL). These equations, Eq.3.1 to Eq.3.5 have been investigated in 

chapter 2. 

 

 

The link between the HH model and electronic circuits is not a trivial matter due to the 

use of four non-linear differential equations. On the contrary, the ML model is much 

more attractive for this purpose containing only two state variables: the membrane 

voltage Vm and the potassium gating variable n (Eq.3.1 to Eq.3.5). 

 

Based on the analyzes presented in chapter 2, we have concluded that the main channels 

responsible for generating the spike are the sodium and potassium channels. The 

dynamics of each ionic channel (Na+ and K+), can be reproduced by a single transistor 

(see Figure 3.2) biased in sub-threshold regime (Farquhar and Hasler, 2005) (Hynna 

and Boahen, 2007). 

  

𝐶𝑚

𝑑𝑉𝑚

𝑑𝑡
= 𝐼𝑒𝑥 − 𝐺𝐶𝑎𝑚𝑠𝑠(𝑉𝑚)(𝑉𝑚 − 𝐸𝐶𝑎) − 𝐺𝑘𝑛(𝑉𝑚 − 𝐸𝐾) − 𝐺𝐿(𝑉𝑚 − 𝐸𝐿) 

Eq.3.1 

𝑑𝑛

𝑑𝑡
= 𝜆(𝑉𝑚)(𝑛𝑠𝑠(𝑉𝑚) − 𝑛) 

Eq.3.2 

𝑚𝑠𝑠(𝑉𝑚) =
1

2
[1 + 𝑇𝑎𝑛ℎ (

𝑉𝑚 − 𝑉1

𝑉2
))] 

Eq.3.3 

𝑛𝑠𝑠(𝑉𝑚) =
1

2
[1 + 𝑇𝑎𝑛ℎ (

𝑉𝑚 − 𝑉3

𝑉4
))] 

Eq.3.4 

𝜆(𝑉𝑚) = 𝜆0𝐶𝑜𝑠ℎ (
𝑉𝑚 − 𝑉3

2𝑉4
)) 

Eq.3.5 
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Figure 3.2 General schematic of artificial membrane circuit. 

 

In this approach, we replace the calcium channel defined in the original Morris-Lecar 

model, by the sodium channel in our artificial neuron represented in Figure 3.3. The 

membrane capacitance (Cm) is charged through a PMOS transistor modeling the sodium 

channel (MPNa) and discharged through an NMOS transistor modeling the potassium 

channel (MNK) and the leakage conductance (GL). The leak conductance is in fact an 

NMOS transistor, which enables us to adjust the artificial neuron stability. We will 

discuss this point in the next section. 

 

 

Figure 3.3 Artificial neuron circuit based on the ML model. 

 

This circuit reproduces the generation of one action potential (Vm) through the 

membrane capacitance and the two feedback loops. The membrane voltage (Vm) is 

defined as a voltage across the membrane capacitance and it is also the node 

corresponding to the summing point of the excitatory current (Iex), leakage current, 

positive and negative feedback loop. 

 

A positive feedback loop (through MPNa and MP1/MN1) implements a pull-up network for 

the creation of Vm. The negative feedback loop, which implements a pull-down network, 
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is defined through MNK and the two cascaded inverters MP2/MN2 and MP3/MN3. The time 

constant of the negative-feedback loop is set by capacitance CK. 

3.2.1 Excitatory and inhibitory synapses 

The excitatory current Iex is assumed to be provided by a synaptic circuit which in the 

most rudimentary form can be implemented by a single transistor current source. 

Therefor for the artificial neuron the synaptic circuit is a PMOS transistor. In fact, a 

PMOS transistor can model excitatory synapses through additional sodium channels, 

while conversely, inhibitory synapses would be represented by additional potassium 

channels and NMOS transistors (see Figure 3.4). As widely supported by many works 

(Arthur and Boahen, 2006) in order to introduce plasticity, the excitatory and inhibitory 

post synaptic currents can be controlled by interposing “weight” transistors (VWexc is 

the weight for excitatory synapse and VWinh is the weight for inhibitory synapse). 

 

 

Figure 3.4 Indicative synaptic circuits. 

 

In conclusion, the excitation of the artificial neuron is produced by the PMOS transistor, 

which is considered as the input of the artificial neuron. The membrane voltage of the 

artificial neuron (Vm) is connected to a buffer which is considered as the output of the 

artificial neuron. This part will be more developed in the "fabrication" section. 

 

In the following paragraphs the artificial neuron circuit will be analyzed. This circuit 

analysis is divided in three parts: the drain current model, the static properties of the 

inverters in subthreshold operation and finally the circuit response equation.  
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3.2.2 Drain current model in the sub-threshold regime 

All the transistors used in the artificial neuron are assumed to operate in the deep sub-

threshold regime, with a supply voltage lower than (or equal to) 200mV. Therefore, the 

drain current will have an exponential relation with gate-to-source voltage Vgs. Hence, 

the following expression is suited to model the drain current: 

 

𝐼𝑑𝑠 = 𝐺0 exp (
𝑉𝑔𝑠

𝜂𝑉𝑡
) 𝑉𝑑𝑠  

Eq.3.6 

 

where G0 represents the device conductance with Gn0 for NMOS and Gp0 for PMOS; 

Vds is the drain-to-source voltages,  𝜂  is the subthreshold slope factor and Vt is the 

thermal voltage. The NMOS and PMOS ideality factors are assumed to have the same 

value. 

As it will be proved, the use of such a simple model provides a comfortable medium 

for demonstrating the correlation between the circuit response and the ML model 

equations sufficiently. In addition to that, it allows a straightforward circuit analysis 

that is essential for the implementation effort in the CMOS technology. 

3.2.3 Static properties of inverters in sub-threshold 

The inverters play a central role in the artificial neuron performances. In fact, they are 

the elementary circuits used to reproduce the hyperbolic tangent function (Tanh) 

present in the Morris-Lecar model (see Eq.3.3 and Eq.3.4). 

 

𝑚𝑠𝑠(𝑉𝑚) =
1

2
[1 + 𝑇𝑎𝑛ℎ (

𝑉𝑚 − 𝑉1

𝑉2
))] 

Eq.3.3 

𝑛𝑠𝑠(𝑉𝑚) =
1

2
[1 + 𝑇𝑎𝑛ℎ (

𝑉𝑚 − 𝑉3

𝑉4
))] 

Eq.3.4 

 

A CMOS inverter operating in the sub-threshold regime is illustrated in Figure 3.5.  

 

 

Figure 3.5 Inverter biasing conditions used in the analysis. 
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As shown in Figure 3.5 the input and output voltages are Vin and Vout. The supply 

voltages are presented by Vd and -Vd. By applying the Kirchhoff’s Current Law for the 

output node of this inverter (see Figure 3.5) and expressing currents (Ip and In) as in 

Eq.3.6, the output voltage can be expressed as following: 

 

𝑉𝑜𝑢𝑡 = −𝑉𝑑 . 𝑇𝑎𝑛ℎ [
𝑉𝑖𝑛

𝜂𝑉𝑡
+

1

2
ln (

𝐺𝑛0

𝐺𝑝0
)] = −𝑉𝑑 . 𝑇𝑎𝑛ℎ [ 

𝑉𝑖𝑛 − 𝑉𝑖𝑠𝑣

𝜂𝑉𝑡
 ]

= −𝑉𝑑 . 𝑇𝑎𝑛ℎ [
𝑉𝑞

𝜂𝑉𝑡
] 

 

Eq.3.7 

 

The Tanh in Eq.3.7 can be simplified by using the following expressions where the 

ratio of conductances (Gn0/Gp0) appears: 

 

𝑉𝑖𝑠𝑣 ≅ 𝑉𝑖𝑛|(𝑉𝑜𝑢𝑡=0) = −
𝜂𝑉𝑡

2
𝑙𝑛 (

𝐺𝑛0

𝐺𝑝0
) 

Eq.3.8 

 

As shown in Eq.3.8, Visv represents the input voltage Vin when Vout = 0. It can be either 

positive or negative depending on the conductance ratio.  

 

In order to simplify Eq.3.7, we also use the parameter Vq defined as follows:  

 

𝑉𝑞 = 𝑉𝑖𝑛 − 𝑉𝑖𝑠𝑣  Eq.3.9 

 

The output voltage described in Eq.3.7, shows two important properties of the proposed 

artificial neuron. Primarily, the switching voltages of inverters in this circuit are 

controlled by the conductance ratio. For example, with a ratio of 10 between the NMOS 

and PMOS conductance, the switching threshold can be shifted around 50mV. Hence, 

we can tune the required voltage shifts V1 and V3 in Eq.3.3 and Eq.3.4. Secondarily, in 

order to match the behavior of artificial neuron, the presence of voltage gain is 

necessary. As it has been shown by (Mead, 1989), the high value of the sub-threshold 

slope of MOS transistors (larger than 60 mV/dec) yields a much lower current-voltage 

slope than the one in biology. Hence, to mimic the neuron dynamic and reach the correct 

circuit operation, it is necessary to benefit of the gain brings by the presence of 

inverters. 

In Eq.3.7, the maximum voltage gain Av will be obtained for Vout = 0. This can be 

expressed as: 

 

𝐴𝑣 =
𝑑𝑉𝑜𝑢𝑡

𝑑𝑉𝑖𝑛
|

𝑉𝑖𝑛=𝑉𝑖𝑠𝑣

= −
𝑉𝑑

𝜂𝑉𝑡
 

Eq.3.10 
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According to Eq.3.10, the magnitude of Av can be larger than one for Vd > 𝜂Vt . For an 

𝜂Vt about 35mV to 40mV, a significant voltage gain can be provided when Vd > 70–

80mV. It is worth mentioning that this supply voltage value is close to the Nernst 

potentials encountered in biological cells. This last observation reveals that the artificial 

neuron can be implemented to operate under extremely low supply bias. 

3.2.4 The circuit response analysis  

In this part, we will demonstrate the analogy between the Morris-Lecar equations and 

the artificial neuron response. The artificial neuron and the two summing nodes VGK 

and Vm are presented in Figure 3.6. 

 

 

Figure 3.6 Artificial neuron circuit analyses. 

 

For the sake of simplicity, we consider a symmetrical supply voltage and neglect the 

transistor capacitances. The application of KCL on Vm and VGK nodes allows us to 

obtain the following equations: 

 

𝐼𝐶𝑚 = 𝐼𝑁𝑎 − 𝐼𝐾 + 𝐼𝑒𝑥 − 𝐼𝐿 Eq.3.11 

𝐼𝐶𝑘 = 𝐼𝑝2 − 𝐼𝑛2 Eq.3.12 
 

Where ICm and ICk are respectively the current through the membrane and the potassium 

capacitances. ICm is defined by the drain current of MPNa (INa), the drain current of 

MNK (IK), the excitatory current (Iex) and the leakage current (IL). In the same way, ICk 

results from the drain current of MP2 (Ip2) and the drain current of MN2 (In2). In the 

above equations, we replace all the drain currents by the Eq.3.6 and we obtain the 

following equations: 
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𝐶𝑚

𝑑𝑉𝑚

𝑑𝑡
= 𝐺𝑁𝑎exp (

 𝑉𝑑 − 𝑉𝐺𝑁𝑎

𝜂𝑉𝑡
) (𝑉𝑑 − 𝑉𝑚) 

        −𝐺𝐾 exp ( 
𝑉𝐺𝐾+𝑉𝑑

𝜂𝑉𝑡
) (𝑉𝑚 + 𝑉𝑑) + 𝐼𝑒𝑥 − 𝐼𝐿(𝑉𝑚) 

 

Eq.3.13 

𝐶𝑘

𝑑𝑉𝐺𝐾

𝑑𝑡
= 𝐺𝑝2𝑒𝑥𝑝 (

𝑉𝑑 − 𝑉𝑜𝑢𝑡3

𝜂𝑉𝑡
) (𝑉𝑑 − 𝑉𝐺𝐾) 

                          −𝐺𝑛2exp (
𝑉𝑜𝑢𝑡3 + 𝑉𝑑

𝜂𝑉𝑡
)  (Vd + VGK) 

 

Eq.3.14 

 

where VGNa and VGK correspond to the gate voltages of MPNa and MNK. VGNa is the 

output of the first inverter (MP1/MN1) and Vout3 is the output of the third inverter 

(MP3/MN3). An input/output relation such as Eq.3.7 relates both VGNa and Vout3 to Vm. 

The Eq.3.14 could also be rewritten as follows: 

 

𝑑𝑉𝐺𝐾

𝑑𝑡
= 𝜆(𝑉𝑚) [𝑉𝑑𝑇𝑎𝑛ℎ (

𝑉𝑞2

𝜂𝑉𝑡
) − 𝑉𝐺𝐾 ] 

Eq.3.15 

 

with the reference frequency 𝜆(Vm) : 
 

𝜆(𝑉𝑚) =
2. 𝐶𝑜𝑠ℎ (

𝑉𝑞2

𝜂𝑉𝑡
) . 𝑒𝑥𝑝 (

𝑉𝑑

𝜂𝑉𝑡
) . √𝐺𝑛2𝐺𝑝2

𝐶𝑘
 

Eq.3.16 

 

and parameter Vq2, based on Eq.3.9: 

 

𝑉𝑞2 = 𝑉𝑖𝑛2 − 𝑉𝑖𝑠𝑣2 = 𝑉𝑜𝑢𝑡3 +
𝜂𝑉𝑡

2
𝑙𝑛 (

𝐺𝑛2

𝐺𝑝2
) 

Eq.3.17 

 

the differential equation for VGK (Eq.3.15) is similar to that of the Morris-Lecar model. 

In particular, the time dynamics of VGK are defined by the reference frequency 𝜆(Vm), 

which is related to the circuit parameters through Eq.3.16. The Eq.3.13 could be 

rewritten as the first differential equation of the Morris-Lecar model by introducing the 

parameters mss(Vm) and n : 

 

𝐶𝑚

𝑑𝑉𝑚

𝑑𝑡
= 𝐺𝑁𝑎𝑒𝑥𝑝 (

 2𝑉𝑑

𝜂𝑉𝑡
) 𝑚𝑠𝑠(𝑉𝑚)(𝑉𝑑 − 𝑉𝑚) 

−𝐺𝐾 𝑒𝑥𝑝 ( 
2𝑉𝑑

𝜂𝑉𝑡
)  𝑛 (𝑉𝑚 + 𝑉𝑑) + 𝐼𝑒𝑥 − 𝐼𝐿(𝑉𝑚) 

 

 

Eq.3.18 

 

with the potassium gating variable, n: 

 

𝑛 = 𝑒𝑥𝑝 (
𝑉𝐺𝐾 − 𝑉𝑑

𝜂𝑉𝑡
) 

Eq.3.19 

 

and, 
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𝑚𝑠𝑠(𝑉𝑚) = exp (−
𝑉𝐺𝑁𝑎(𝑉𝑚) + 𝑉𝑑

𝜂𝑉𝑡
) 

Eq.3.20 

 

VGNa and VGK are between −Vd and +Vd therefore mss(Vm) and n are between 0 and 1. 

We observe a good correlation between the mss(Vm) function of the artificial neuron and 

the Tanh function of the Morris-Lecar model. 

 

As shown in Eq.3.19, n is simply related to VGK. Assuming a small VGK, the first order 

approximation of n would be: 

 

𝑛 = 𝑒𝑥𝑝 (
−𝑉𝑑

𝜂𝑉𝑡
) exp (

𝑉𝐺𝐾

𝜂𝑉𝑡
) ≈ exp (−

𝑉𝑑

𝜂𝑉𝑡
) (1 +

𝑉𝐺𝐾

𝜂𝑉𝑡
) 

Eq.3.21 

 

Eq.3.21 demonstrates a linear relation between n and VGK, which allows us to replace 

VGK by n and rewrite Eq.3.15, as follows: 

 

𝑑𝑛

𝑑𝑡
=  𝜆(𝑉𝑚)[𝑛𝑠𝑠(𝑉𝑚) − 𝑛] 

Eq.3.22 

 

Hence, the equation of ICK of the artificial neuron (Eq.3.14) matches the second 

differential equation (Eq.3.2) of the Morris-Lecar model. Based on Eq.3.13 and Eq.3.14 

we can conclude that the dynamic behavior of the artificial neuron is described by the 

currents INa, IK, Ip2, In2 and the two time constants, which are associated with Cm and 

Ck.   

 

The static power and the energy dissipation of the artificial neuron are described in the 

following paragraph and results will be presented in the next section. The static power 

is the product of the supply voltage (+/−Vd) by the leakage currents flowing through 

the inverters, the leak conductance (if present), the MPNa and MPK. The dynamic power 

is defined as the additional energy dissipation during spiking activity. It is related to the 

charge and discharge of the capacitances Cm and Ck. 

 

In conclusion, we have demonstrated the analogy between the artificial neuron response 

and the Morris-Lecar model. Our approach is based on the use of a simple sub-threshold 

drain current model (Eq.3.6), the assumption of equal slope factors for PMOS and 

NMOS and a linearization step. This analytical model was used as a guideline for circuit 

design and was complemented by more rigorous circuit simulations presented in the 

next section. 
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3.3 Design of biomimetic neuron 

In order to design the biomimetic neuron and to define its design parameters, we had to 

choose the appropriate bioinspired neuronal model, which enables us to obtain a simple 

circuit with state-of-the-art performance (energy, power consumption and area). For 

example, Rasche and Douglas (Rasche & Douglas, 2000) describe an analog 

implementation of Hodgkin–Huxley model with 30 adjustable parameters, which 

required 4mm2 area for a single neuron. This does not correspond to our objectives.  

In chapter 2, we have investigated neuronal models with four state variables (Hodgkin 

Huxley model and Wei model) and two state variables (Morris-Lecar). In order to 

design a simple circuit, we have chosen the Morris-Lecar model to be the principal 

neuronal model and we developed the artificial neuron based on this neuronal model. 

Nevertheless, as we wanted to reproduce also the biological aspect of a living neuron, 

we choose the Wei model as my reference model.  

The Wei model enables us to extract the main parameters involved in the human neuron 

spiking behavior. In the next sections, we will describe my methodology to use both 

models leading to the design of the biomimetic artificial neuron. 

3.3.1 Design of biomimetic neuron: comparison with the Wei model  

For some applications, the neuron dynamics should be compatible with the biological 

neuron one. The Wei model allows describing a wide range of neuronal activities. It 

unifies neuronal dynamics from usual spikes to seizures, enabling our understanding of 

the brain and defining what is essential in the control of pathological states (Wei et al., 

2014). Two main criteria have been investigated, the shape of the spike and the 

excitatory response of the biological neuron.  

First, parameters like spike width (SW), peak width (PW), threshold voltage (Vth), 

resting potential (Vrest), absolute refractory period (ARp), spiking frequency (F) and 

peak-to-peak amplitude (Vpp) were extracted from the reference model proposed by 

Wei et al (Wei et al., 2014). The entire design of the biomimetic neuron relies on these 

parameters. Clearly, the biomimetic neuron must represent the same characteristic.  

The second criterion is to understand the excitatory behavior seen in the biological 

neuron. This point was investigated in chapter 2 by varying the amplitude (Iex) and the 

width (Ts) of the excitatory current. It was verified that the combination of these 

parameters resulted in a similar spiking frequency and enabled a precise modulation of 

the number of spikes.  

 

Thus, we concluded that the excitability of the neuron depends on the amount of 

injected charge (Q) and this parameter was chosen to compare the Wei model with the 

artificial neuron. Since the Wei model parameters are defined by unit area, while those 
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of the circuit are defined for a whole neuron, a normalization coefficient is needed to 

compare the different models. This coefficient is defined as follows: 

 

𝜉 =
𝐼𝑒𝑥

𝐶𝑚
⁄                                                 Eq.3.23 

 

where Iex and Cm are respectively the excitatory current and the membrane capacitance. 

Using these two different criteria, we adjust the design of the artificial neuron, in order 

to obtain the same behavior of a biological neuron and designed the biomimetic neuron.  

 

Two circuits have been designed for the biomimetic neuron, one with 6 transistors and 

another one with 8 transistors. The shape of sodium current (INa) and potassium current 

(IK) as well as their spike response are illustrated in Figure 3.7 (biomimetic with 6 

transistors) and Figure 3.8 (biomimetic with 8 transistor).  Both reproduce the spike 

shape observed in the biological neuron. However, a difference is observed in the 

output response while the same excitatory current (Iex = 1pA, Ts = 10ms, Q  = 10fC 

and 𝜉 = 80A/F) is used. The biomimetic neuron with 8 transistors (see Figure 3.8) 

produces three spikes while the biomimetic neuron with 6 transistors produces one 

spike (see Figure 3.7).  

 

Figure 3.7 Response of the biomimetic neuron with 6 transistors to a pulsed 

current. With Iex = 1pA and Ts = 10ms. I(VddK1) corresponds to the potassium 

current (IK);  I(Vddna1) corresponds to the sodium current (INa). The action 

potential is in blue V(vmem6Tr) and the excitatory current is I(Iex1) in pink. 
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Figure 3.8 Response of the biomimetic neuron with 8 transistors to a pulsed 

current. With Iex = 1pA and Ts = 10ms. I(Ik) corresponds to the potassium current 

(IK) and I(Ina) corresponds to the sodium current (INa). The action potential is in 

blue V(vmem) and the excitatory current I(Iex) is in pink. 

 

In the previous section, we have presented the analogy between the artificial neuron 

and ML neuronal model. We simulated the biomimetic circuit with LTspice and 

Cadence software. The results of these simulations have been compared with the Wei 

model, which enabled us to choose the set of design parameters for the biomimetic 

neuron. These parameters are presented in the Table 3.2 and Table 3.3. 
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MP1 MP2 MP3 MPNa 

400nm 580nm 120nm 600nm 

MN1 MN2 MN3 MNK 

120nm 120nm 650nm 1.83μm 

Cm CK 

50fF 100fF 

 

 

Biomimetic neuron circuit with 8 

transistors 

 

Table 3.2 Biomimetic circuit parameters with 8 transistors. All Transistor have 

a gate length of Lg = 65nm.  

 
 

MP1 MP2 MPNa 

720nm 720nm 1.44μm 

MN1 MN2 MNK 

120nm 120nm 1.44μm 

Cm CK 

50fF 100fF  
Biomimetic neuron circuit with 6 

transistors 
 

Table 3.3 Biomimetic circuit parameters with 6 transistors. All Transistor have a 

gate length of Lg = 65nm. 

 

As mentioned before in these circuits the excitatory current (Iex) is produced by a 

PMOS transistor with a gate length of Lg = 65nm and a gate width of w = 120nm. The 

main difference between these two biomimetic circuit beside the number of used 

transistors remains in the flexibility to modulate the threshold voltage. The threshold 

voltage is modulated with the first inverter (MP1/MN1). In the circuit with 6 transistors 

the first inverter is also connected to the potassium transistor (MNK). The circuit with 

8 transistors enables an independent modulation of the threshold voltage due to the 

presence of a third inverter (MP3/MN3) connected to the potassium transistor. Hence it 

offers the possibility to adjust with accuracy the threshold voltage of the spike around 

-50mV, without impacting the potassium transistor. Hence, we have chosen the design 

of the biomimetic neuron with 8 transistors to be fabricated and from here now we will 

analyze the results from this biomimetic neuron. 
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3.3.2 Comparison between biological neuron and biomimetic circuit 

In this part, we will compare the response of the biomimetic neuron (8 transistors) to 

the Matlab resolution of the Wei model for the same normalization coefficient ξ = 

20A/F. The Wei model simulation will be referred as the biological neuron. As shown 

in Figure 3.9, one spike is obtained for both neurons. In this case, the amount of 

injected charge for the biological neuron and the biomimetic neuron are respectively Q 

= 35nC/cm2 and Q' = 2.5fC. This number of charges is obtained for two different 

excitatory currents: Iex = 20μA/cm2 during Ts = 1.75ms in the case of the biological 

neuron and Iex' = 1pA during Ts' = 2.5ms for the biomimetic neuron. This first result 

indicates that similar behaviors are observed and the study was continued with higher 

injected charges.  As illustrated in Figure 3.10, we observe the generation of two 

spikes. In this case the amount of injected charge for the biological neuron and the 

biomimetic neuron are respectively Q = 175nC/cm2 and Q' = 5fC. The corresponding 

excitatory current for the biological neuron is Iex = 20μA/cm2 during Ts = 8.75ms and 

Iex' = 1pA during Ts' = 5ms for the biomimetic neuron. A good agreement is also 

noticed in this case. 

 

 

       

Figure 3.9 One spike in response to an excitatory pulse. Biological neuron (up) 

response to injected charge of Q = 35nC/cm2 and biomimetic neuron response (down) 

to injected charge of Q' = 2.5fC pulse of excitatory current with ξ = 20A/F. One 

spikes is generated for both neurons. 
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Figure 3.10 Two spikes in response to an excitatory pulse. Biological neuron 

response (up) to injected charge Q = 175nC/cm2 and biomimetic neuron response 

(down) to injected charge of Q' = 5fC a pulse of excitatory current with ξ = 20A/F. 

Two spikes are generated for both neurons. 

 

Three spikes are obtained as shown in Figure 3.11, for Q = 200nC/cm2 and Q' = 10fC 

with Iex = 20μA/cm2 during Ts = 10ms in the case of the biological neuron and Iex' = 

1pA during Ts' = 10ms for the biomimetic neuron. As illustrated in Figure 3.9 to 

Figure 3.11, the peak-to-peak amplitude (Vpp) is around 130 mV, in the range between 

40 mV and -90 mV that respect the biasing of the biological neuron as it is a constraint 

between ENa = 55mV and EK = -94mV. 
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Figure 3.11 Three spikes in response to an excitatory pulse. Biological neuron 

response (up) to injected charge Q = 200nC/cm2 and biomimetic neuron response 

(down) to injected charge of Q' = 10fC to a pulse of excitatory current with ξ = 20A/F. 

Three spikes are generated for both neurons. 

 

As illustrated in Figure 3.9 to Figure 3.11 similar responses are obtained for both 

biomimetic neuron and biological neuron. For both neurons, the ratio of excitatory 

current and membrane capacitance, i.e. the normalizing coefficient, is 𝜉  =20A/F. 

Therefore, we demonstrate the precise modulation of the number of spikes for both 

biomimetic artificial and biological neuron with the same normalizing coefficient. As 

shown in the above figures, as we increase the amount of injected charge (Q and Q') 

the number of spikes increases. This validates the second criteria mentioned before: the 

amount of the injected charge plays a central role in the excitatory behavior of the 

neuron. 

In the next paragraph, we will compare the extracted parameters from the spike 

obtained with the biological neuron to the spike obtained with the biomimetic neuron. 

As reported in Table 3.4, the resting potential (Vrest) and the threshold voltage (Vth) for 

both neurons are respectively -70mV and -50 mV. We obtain the same values with the 

cadence simulation of the biomimetic neuron. 
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  Parameters 
Vrest (mV) 

 

Vth (mV) 

 

Vpp_max(mV) 

 

ARp (ms) 

 

Biological 

neuron 
-70 -50 120 4 

Biomimetic 

neuron  

 

Adjustable 

-70 

 

Adjustable 

-50 

 

Adjustable 

120 

 

Adjustable 

3.5 
 

Table 3.4 Spiking characteristics for constant ξ. The spike generated from 

biological neuron (Wei neuron) is compared to the one from biomimetic neuron. 

Same normalization coefficient ξ = 20A/F is used for both neurons. 

 

The design of the biomimetic neuron is flexible as we can adjust the parameters 

presented in the Table 3.4. As mentioned before, Vrest is modulated with the leak 

conductance, the Vth is adjust with the first inverter, Vpp varies with the drain bias  and 

ARp depends on the excitatory current. 

The peak width (PW) is defined at the threshold voltage (Vth) of the neuron while the 

spike width (SW) is defined at the minimum point (Minpoint) of the spike (see Figure 

3.12).  

 

Figure 3.12 Spike, peak width (PW) and spike width (SW). 

 

A comparison of PW and SW of the biological neuron and the biomimetic neuron is 

reported in Table 3.5.  
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 For 1 spike 

in Figure 3.9 

For 2 spikes 

in Figure 3.10 

For 3 spikes 

in Figure 3.11 

Spike 

parameters 

PW 

(ms) 

SW 

(ms) 

PW 

(ms) 

SW 

(ms) 

PW 

(ms) 

SW 

(ms) 

Biological 

neuron  

1.15 10 1.21 4.35 1.25  4.35 

Biomimetic 

neuron 

1.28  7.7 1.26 3.56 1.25   3.44 

 

Table 3.5 Comparison of Peak Width (PW) and SW (Spike Width) between the 

spike of biological and biomimetic neuron.  

 

As shown in Table 3.5, the peak width and the spike width of both neurons are similar. 

These close comparisons between these parameters validate the similarity between the 

biomimetic neuron and the biological neuron in terms of spike shape and excitatory 

response to an external stimulation. Therefore, we validate the first criteria mentioned 

previously; reproduce the exact shape of the spike based on defined parameters. These 

results validate the design of the biomimetic neuron patterned from Wei model. 
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3.4 Design of fast neuron 

As shown in the previous section for biomimetic neuron, we choose to take in account 

two different criteria in order to generate action potentials similar to those in living 

neuron. For the design of the fast neuron, our purpose was to achieve a higher spiking 

frequency rate and a better energy efficiency with a compact design in order to build 

networks with several thousands of artificial neurons. These performances are obtained 

by trading off the biological accuracy for higher frequency and reduced silicon area. 

These targets were reached by reducing the value of the capacitances Cm and CK of one 

order of magnitude. Reducing the capacitances values affect the time constant of the 

spike and the frequency of the circuit. A satisfying spike shape was obtained even 

though we removed the leak and the third inverter of the artificial neuron. The reduction 

of the number of inverters will reduce the design flexibility of the artificial neuron 

concerning the threshold voltage as described before in the biomimetic section. 

These modifications are the main characteristics of the fast neuron. The fast neuron is 

composed of few elementary devices: two inverters (MP1/MN1 and MP2/MN2), sodium 

and potassium transistors (MPNa and MNK), membrane and potassium capacitances (Cm 

and CK). The schematic of the fast neuron as well as the design parameters are 

illustrated in Table 3.6. 

 
 

MP1 MP2 MPNa 

300nm 360nm 400nm 

MN1 MN2 MNK 

600nm 120nm 1.2μm 

Cm CK 

4fF 8fF 

 

Fast neuron circuit with 6 transistors 

 

Table 3.6: Fast circuit parameters with 6 transistors. All transistor have a gate 

length of Lg = 65nm. 

 

The fast neuron with design parameters presented in Table 3.6 was simulated and 

reproduces the excitability of the neuron with a reduced silicon footprint and a higher 

frequency performance. The shape of the generated spikes and the excitability of the 

neuron are still satisfying as illustrated in Figure 3.13. The spike amplitude is between 

-100mV and 60mV with following biasing for the fast neuron circuit: VDD = 100mV, 

VSS = -100mV and the excitatory current of Iex = 40pA during Ts = 200μs. 
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Figure 3.13 The Fast neuron circuit response to a pulsed excitation. Spike train 

for an excitatory current of Iex=40pA during Ts=200μs. 

 

The spike width for the fast neuron is SW = 16μs. The peak width is defined at the 

threshold voltage (in this case Vth = -20mV), which corresponds to PW = 5μs. We 

observe a three orders of magnitude difference between SW and PW of the fast neuron 

versus the biomimetic ones (In the biomimetic neuron: PW = 1.25ms and SW = 3.44ms 

for three spikes). The resting potential Vrest is -90 mV. We observe a 20mV difference 

as we compare the Vrest of the fast neuron (-90mV) to the Vrest of biomimetic neuron (-

70mV).  There is 30mV difference between the Vth of the fast neuron (-20mV) and the 

Vth of the biomimetic neuron (-50mV). Therefore, the shape of the spike is slightly 

different from the biological spike. Nevertheless, the excitatory response remains the 

same. 

 

The fabricated biomimetic neuron with the design parameters presented in Table 3.2 

and the fast neuron with the design parameters presented in Table 3.6 as well as their 

corresponding performances will be presented in the following sections. 
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3.5 Fabrication of artificial neurons  

The neuro-inspired circuits described in the previous sections have been designed and 

fabricated using TSMC 65nm CMOS process in the LP option. The test chip was called 

WetWire and its dimensions were 1.2mm x 2.1mm. The WetWire chip contains a 

variety of neuron circuits including different designs of the biomimetic (with and 

without leak conductance) and fast neuron, different versions of connected biomimetic 

to biomimetic neuron and finally connected biomimetic neuron to fast neuron called 

also tonic-Burst circuit. The connection of these neurons is made through excitatory 

and inhibitory synapses. Without accounting for the output driving buffer or protection 

circuitry, the area occupied by the biomimetic neuron is 200μm2. This value decreases 

radically for the fast neuron with 35μm2
  due to its low Cm and CK values. In fact, the 

capacitors dominate the area utilization, 65% for the fast and 70% in the biomimetic 

neuron. The fabricated chip is shown in Figure 3.14. The biomimetic neuron and fast 

neuron (referred as simplified neuron) are illustrated on the photographed of WetWire 

chip (Figure 3.14.a).  

 

 

a 

 

 
 

 
 

 

c 
 

 
b 

Figure 3.14 a: Die photographs of the fabricated WetWire chip. The highlighted 

DUTs, each one sized 450 x 250μm, refer to the two neuron circuit variants: 

biomimetic (core size: 200 μm2) and fast or simplified (core size: 35 μm2). Figure 

3.14.b: all 18 circuits of the WetWire chip with their respective input and output 

pads. Figure 3.14.c: fabricated biomimetic neuron and its 8 pads. 
 

All these circuits were designed with external biasing pads as shown in Figure 3.14.b. 

The excitation was implemented with on-chip trans-conductance, a PMOS transistor 

(w = 120nm Lg = 65nm). This trans-conductance is externally biased through VIN and 
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VDD_T pads (see Figure 3.14.b and Figure 3.16). The VIN pad is connected to the 

gate of the PMOS as the VDD_T pad is connected to the source of the PMOS transistor 

(see Figure 3.16). The output signal was monitored through an on-chip unity gain 

output buffer designed to ensure that the frequency response of the neuron circuit would 

not be affected (see Figure 3.15). 

 

  

Figure 3.15 Left: Buffer for the biomimetic neuron Right: Buffer for the fast 

neuron.  
  

The output buffer featured independent DC supply through the VDDANA and ISSANA 

pads (see Figure 3.15 and Figure 3.16). These independent DC supplies enable 

accurate power consumption measurements while the neuron’s bias pins were not ESD 

protected. We will describe the result of these characterizations in the following 

sections. 

In summary, as shown in the Figure 3.16, the VIN pad corresponds to the excitatory 

input, connected to the gate of the PMOS trans-conductance. VDD and VSS are 

respectively the drain and the source bias of the artificial neuron. The VDD_T pad 

corresponds to the source of the PMOS trans-conductance.  

 

 

 
 

Figure 3.16 The fabricated biomimetic neuron and fast neuron (left). The 

schematic of biomimetic neuron and fast neuron (right) connected to the buffer. As 

shown, 7 pads must be biased in order to characterize these artificial neurons. 
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VDDANA and ISSANA are pads to bias the artificial neuron's buffer. The output signal 

is observed from the VOUT pad, which corresponds to the membrane voltage (Vmem). 

These eight pads (except the VOUT) are biased in order to characterize the neuron 

circuit. The detailed set up of the test bench will be presented in the next section.  
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3.6 Characterization of Wet Wire chip  

3.6.1 Test bench of WetWire chip 

The experimental test bench as shown in Figure 3.17 was constituted of several 

instruments. For the neuron excitation, we used a Keysight 33500B series waveform 

generator, which biases the VIN pad. The Keithley 2636A system source meter has 

been used to bias VSS. Two Agilents SMU (E5273A and E6263A) containing two 

channels, are used to bias VDD, VDD_T, VDDANA and ISSANA pads. The Agilent 

SMU supplies used for biasing these pads also enabled us to perform the measurement 

of the average current with nominal 500fA accuracy. The values used for biasing the 

biomimetic and fast neuron are reported in the Table 3.6.  

 

Biasing Pads VIN VDD VDD_T VDDANA ISSANA VSS 

Biomimetic 

neuron 

≤200mV 200mV 200mV 300mV -43μA 0V 

Fast neuron ≤200mV 200mV 200mV 300mV -400μA 0V 
 

Table 3.6 Bias for the biomimetic and fast neuron of the Wet Wire chip. 

 

The VIN varies between 0 to 200mV. For VIN = 0, the PMOS transistor is open and 

thus the neuron spikes with a maximal frequency. In contrary, for VIN = 200mV, the 

PMOS transistor is completely closed and the neuron does not spike. The output signal 

issued from the buffer was monitored by ROHDE & SCHWARZ oscilloscope 500MHz 

5GSa/s, in order to perform frequency, amplitude and spike width measurements. 
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The WetWire test bench. 

 
 

Under probe measurements. Biomimetic neuron under probes. 

 

Two Agilents SMU (E5273A and 

E6263A) connected to VDD, VDD_T, 

VDDANA and ISSANA pads. 

 

 

One Keithley 2636A connected to VSS. 

Figure 3.17 Photographs of the test bench. 
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3.6.2 Pulsed characterization of biomimetic and fast neuron 

In this part, we will demonstrate experimentally the generation of spikes with the 

biomimetic and the fast neuron and compare the biomimetic spike to the spike obtained 

by Wei model. The aim of this part is to verify that the injection of different amount of 

charges leads to the generation of different number of spikes from the artificial neuron. 

The input excitation, VIN is defined with two levels as follows: VIN_High corresponds 

to the maximal value of the pulse and VIN_low is the minimal value of the pulse. The 

Keysight generator enables us to define the duration of this pulse (Tp).  

 

VIN_High_200mV Vin_Low_36mV 

 

Figure 3.18 Biomimetic neuron circuit generates one spike Tp = 4ms. 

 

As shown in Figure 3.18 to Figure 3.20, the biomimetic neuron generates 

experimentally one, two and three spikes for different values of VIN_Low, which 

corresponds to different excitatory currents. The excitation current IE corresponding to 

VIN_Low = 36mV Figure 3.18, is less than 1pA and it increases as the VIN_Low 

decreases from 36mV to 25mV.  
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Vin_High_60mV Vin_Low 30mV 

 

Figure 3.19 Biomimetic neuron circuit generates two spikes Tp = 6ms. 

 

As it can be noticed, Tp increases from 4ms in Figure 3.18 to 10ms in Figure 3.20. 

Hence, we can conclude that the overall injected charge increases, which modulates 

precisely the generation of spikes as we expected. In fact, as described in chapter 2, we 

have demonstrated the precise modulation of the number of spikes based on the injected 

charge, which is also demonstrated experimentally in this part. 

 

Vin_High_200mV Vin_Low 25mV 

 

Figure 3.20 Biomimetic neuron circuit generates three spikes Tp = 10ms. 

 

The output waveform of the fast neuron is shown in Figure 3.21. In this case, for an 

excitatory current IE = 150pA, the fast neuron generates a spike train with a spike width 
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around 40μs and a peak-to-peak amplitude of 112mV. In fact, the fast neuron frequency 

is higher than the one in the biomimetic neuron. 

IE = 150pA 

 

Figure 3.21 Example of output waveform for fast neuron. Pulsed VIN resulting 

in constant current excitation IE = 150pA. 

 

In this section, we have demonstrated the ability of these artificial neurons to be 

externally excited using an amount of charge Q, as in biology. 

3.6.3 Comparison of biomimetic pulsed characterization with Wei model 

To validate the design of a biomimetic neuron, which provides physiological spikes, 

we will compare the spikes of the biomimetic neuron to the ones issued from Wei 

model. In Figure 3.22, the spike of the Wei model (Matlab simulation) is compared to 

the spike obtained with the fabricated biomimetic neuron (Fab_circuit). In both cases, 

the excitation pulse is applied during the same period T'' = 10ms. The excitatory 

currents applied in to the simulation and in to the Fab_circuit are respectively Iex = 

20μA/cm2 and Iex' = 1pA. Based on these values, we defined a normalization 

coefficient, as the ratio of the excitatory current and the membrane capacitance. We 

obtain 20A/F for both cases with Cm  = 1μF/cm2  for the simulation and Cm' = 50fF for 

the Fab_circuit. The peak-to-peak amplitude of the spike from the Wei model varies 

and have a maximal value of Vppmax= 120mV and minimal value of Vppmin= 97mV. For 

the biomimetic neuron (Fab_circuit), the peak-to-peak amplitude remains constant at 

Vpp = 122mV. The peak-to-peak values are thus similar. The spike width in both cases 

are SW = 4ms. 
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Vin_High_200mV Vin_Low_25mV  

 

Figure 3.22 Comparison between Wei model and fabricated biomimetic circuit. 

Left: Wei model. Right: biomimetic circuit (Fab_circuit). 

 

Before presenting in detail the performance of the biomimetic and the fast neuron, we 

will present the results issued from the oscillatory neuron and the tonic burst circuit of 

the WetWire chip.  

3.6.4 Characterization of oscillatory neuron 

The oscillatory neuron (or unstable neuron) is designed to spike without any excitation, 

as it does not have a resting state due to the absence of an inhibitory synapse. The bias 

of the oscillatory neuron pads are VDD = 200mV, VSS = 0mV, VDDANA = 300mV, 

ISSANA = -400μA, VDD_T = 200mV, VIN = 0V. The resulting spikes shown in 

Figure 3.21 have a frequency of 3.42kHz and peak-to-peak amplitude of 182mV. 

 

Figure 3.23 Spike train of oscillatory neuron. 
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3.6.5 Characterization of tonic-burst circuit  

The so-called tonic-burst circuit will generate a particular spiking mode of neurons 

called bursting (Fox, Rotstein, & Nadim, 2016). It leads to a particular generated pattern 

consisting of fast spiking separated by intervals of quiescence. In order to emulate the 

bursting mode, we consider the schematic shown in Figure 3.24.  

 

Figure 3.24 Schematic for the tonic-burst circuit. 

 

This tonic burst schematic is based on the association of a biomimetic neuron (referred 

as “low frequency” –LF- Neuron in Figure 3.24) with a Fast neuron (referred to high 

frequency –HF- Neuron in Figure 3.24). A key point stands in the different dynamics 

obtained by the HF and LF neurons. The HF neuron is connected to the LF neuron 

through an excitatory synapse. However, the LF neuron is connected to the HF neuron 

through an inhibitory synapse. This tonic-burst circuit behaves following this principle. 

First, the HF neuron is firing when an excitatory current is applied. Then, due to the 

connection between HF and LF neuron through an excitatory synapse, the membrane 

capacitance of the LF neuron integrates the synaptic current induced by every HF 

neuron spike. When the LF neuron membrane potential reaches its threshold, it starts 

to fire with spike duration much higher than the HF neuron ones. Because of the 

inhibitory synapse between these two neurons, the HF neuron is quickly inhibited. 

Finally, when the LF neuron repolarizes, the HF neuron depolarizes and fires again. 

This cycle holds as long as HF neuron is excited (see Figure 3.24). This circuit was 

implemented on WetWire chip under the name of " tonic_burst_h_top_DUT". The 

biases for this circuit are reported in the Table 3.7. 

 

ISSANA_BF ISSANA_HF VDD VDD_T 

 

VDDANA VSS 

 

VIN_HF  

 

-42μA -42μA 200mV 200mV 300mV 0V <200mV 

Table 3.7 Bias values for the tonic-burst circuit also identified as 

tonic_burst_h_top_DUT on the Wetwire chip. 

 

The spike generation of HF and LF neurons as a function of the input excitation 

VIN_HF is shown in Figure 3.25. The output spikes of HF and LF neuron are 

represented by Vout_HF and Vout_LF, respectively. 
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VIN_HF 

 

Vout_HF 

 

Vout_LF 

            

HF generates no spikes 

for VIN_HF = 83mV 

 

HF generates 6 spikes for 

VIN_HF = 82mV 

 

HF generates 10 spikes 

for VIN_HF = 62mV 

 

HF generates 15 spikes 

for VIN_HF = 35mV 

 

HF generates 20 spikes 

for VIN_HF = 16mV 

 

 

Figure 3.25 Experimental spikes for the HF and LF neurons used in neuronal 

networks to emulate bursting mode. The first signal is VIN_HF, the second one is 

Vout_HF and the third one is Vout_BF. The number of spikes of HF neuron increases 

as VIN_HF decreases. 
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When VIN_HF is lower than 82mV, the HF neuron begins to generate spikes (six 

spikes). The number of spikes increase from 10, 15 and 20 respectively according to 

the decrease of VIN_HF as follows: VIN_HF = 62, 35 and 16mV (see Figure 3.26). In 

Figure 3.25, we have reported the variation of the number of spikes for the HF neuron 

in function of the excitatory input (VIN_HF).  

It must be underlined that in this circuit design, the excitatory current for the HF neuron 

increases as VIN_HF decreases. By this way, it results in the increase of the number of 

spikes observed at the output of the HF neuron. A maximum of 26 spikes is reached for 

VIN_HF = 0V.  

 

 
Figure 3.26 Spikes in tonic burst circuit. Number of spikes as a function of 

VIN_HF. 

 

3.6.6 Biomimetic and fast neuron performance 

This part is dedicated to the study of the biomimetic and fast neurons performance. In 

order to perform this analysis, both the spike frequency and the corresponding average 

power consumption (including the static and dynamic parts) have been measured as a 

function of the excitation current. The static power refers to a zero-excitation condition, 

while dynamic power consumption is deduced from the consumption under constant 

excitation, which induces a spiking mode. The excitability of the biomimetic neuron is 

shown in Figure 3.27. The minimal observed frequency is around 20Hz. As expected, 

the firing rate and power consumption increase with the excitatory current.  
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Figure 3.27 Spike frequency and power consumption over the excitation current 

for the biomimetic neuron. 

 

For Iex  = 120pA, a maximal spike frequency of 1.2kHz was obtained with a total 

dissipated power of 90pW. According to (Izhikevich, 2007), this biomimetic neuron is 

categorized as a Type I neuron. The energy efficiency of the circuit is deduced from the 

power dissipation and frequency measurements. In Figure 3.28, it is plotted as a 

function of the excitation current for two cases: (i) when the whole average power 

(static and dynamic - blue line) is taken into account and (ii) when the standby power 

(i.e., power consumption at zero excitation current) is subtracted (red line).  

 

 

Figure 3.28 Energy efficiency vs. excitation current for the biomimetic neuron 

when the DC power is included or not from energy estimation. 

 

For excitation current higher than 30pA, the dissipated energy per spike is roughly 

constant and therefore independent of the spike frequency. An energy efficiency value 

of 40fJ/spike is obtained when considering the dynamic power consumption. It is worth 

mentioning that this value is several orders of magnitude lower than the energy 
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efficiency of actual biological neuron, as it is estimated around the 10pJ range, from 

the ATP consumption in (Attwell & Laughlin, 2001) (Lennie, 2003) (Poon & Zhou, 

2011) and our estimation in chapter 2. This low energy dissipation obtained for the 

proposed artificial neuron can be interesting for spiking neuron networks applications 

needing the integration of a large number of neurons. 

Concerning the fast neuron, a spike frequency as high as 26kHz was obtained with a 

total power consumption of 105pW for excitation current Iex = 150pA. The power 

consumption and spike frequency are illustrated in Figure 3.29 as a function of the 

excitation current.  

 

 

Figure 3.29 Spike frequency and power consumption vs. excitation current for 

the fast neuron. 

 

As already discussed, the main objective of this work was to minimize the energy 

dissipation: the circuit simulation predicted a value in the fJ/spike range. The energy 

efficiency was determined from measurements of the total dissipated power along with 

the spike frequency. The energy efficiency of the fast neuron is illustrated as a function 

of the excitation current in Figure 3.30. 
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Figure 3.30 Energy efficiency vs. excitation current measured for the fast 

neuron. 

 

The curves demonstrate that the energy efficiency does not significantly depend on the 

output spiking frequency and the experimental dissipation reaches values as low as 

3fJ/spike when only the dynamic power is considered. 
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3.7 Introduction to GreyMatter chip 

The ‘GreyMatter’ chip has been fabricated in TSMC 65nm technology in order to 

enable a precise characterization of the elementary circuits of the artificial neurons. As 

shown in Figure 3.31, it contains various elementary circuits: inverters with different 

widths, buffer of biomimetic neuron, buffer of fast neuron, a standalone biomimetic 

neuron and fast neuron without ESD protection. The artificial neuron without ESD 

protection allows the accurate estimation of the current induced into the circuit.  In this 

case, unlike the WetWire chip, we have a direct access to the exact value of the 

excitation current. For the WetWire chip, we had to de-embed the value of the induced 

current due to the diodes protections in order to estimate the exact value of the 

excitatory current. We have used the GreyMatter's biomimetic and fast neuron to 

perform a noise analysis, which will be presented in chapter 4. In this section, we will 

present the buffer characterization, which will allow us to characterize the artificial 

neurons in chapter 4. 

  

 

Figure 3.31 ‘GreyMatter’ chip with 9 circuits. 

 



Chapter 3 Analog artificial neuron 

109 

 

In order to determine the correct biasing of the biomimetic and fast neuron buffer, we 

varied the input of the buffer (VIN) from 0 to 200mV with a step of 50mV and extracted 

the mean value of the output of the buffer (VOUT). This analyze has been performed 

for various values of VDDANA and ISSANA (see Figure 3.32). 

 

 

Figure 3.32 Biomimetic buffer output for various biasing.  

The black line is obtained with VDDANA = 400mV, ISSANA = -43μA.The blue line 

is obtained with VDDANA = 300mV, ISSANA = -43μA. The red line is obtained 

with VDDANA = 200mV, ISSANA = -43μA. 

 

In both cases, we had to adjust the biasing of the buffer in order to achieve the output 

gain of one. Based on this method we have reported in Table 3.8 the new bias values 

for the GreyMatter buffers and compare it to the WetWire buffer. 

 

Buffer Biomimetic neuron Fast neuron 

Biasing VDDANA ISSANA VDDANA ISSANA 

WetWire chip 300mV -43μA 300mV -400μA 

GreyMatter chip 610mV -58μA 560mV -560μA 

Table 3.8 Comparison of buffer biases of ‘WetWire’ and ‘GreyMatter’ 

 

These values are important to obtain the right spike amplitude of the biomimetic and 

fast neuron of the ‘Wet Wire’ and ‘Grey Matter’ chip. 

In order to estimate the variability of the sub-threshold transistors in 65nm technology, 

we have considered different test benches to characterize the inverters and their 

corresponding NMOS and PMOS transistors individually. We have observed around 

50% variability for the NMOS transistor and the PMOS transistors. The further 
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investigation of this point was out of the scope of this thesis and we will not detail this 

point. 
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3.8 Conclusion  

In this chapter, we have presented the state-of-the-art standalone artificial neurons in 

order to evaluate the performance of the existing versions. We analyzed the neuronal 

membrane, which enables us to design and fabricate two standalone artificial neurons 

with state of the art performances in terms of power consumption, energy efficiency 

and area as reported in Table 3.9.  

An energy efficiency (excluding the DC power) of 3fJ/spike for the fast neuron and 

40fJ/spike for the biomimetic neuron has been extracted. An improvement of two 

orders of magnitude below the state of the art energy efficiency in (Cruz-Albrecht, 

Yung, & Srinivasa, 2012) has been achieved, associated to a silicon area decreasing by 

more than one order of magnitude. This is a very encouraging result in the road to 

diminish the power consumption of spiking neural networks. 

 

Table 3.9 State-of-the-art performances of reported stand-alone artificial 

neurons. The energy efficiency is presented including the DC power. 

 

We have connected these ultra-low power artificial neurons with specific synapses and 

investigated the burst-spiking mode. We have characterized the WetWire and 

GreyMatter chips. The output spike of the biomimetic neuron was similar to the one in 

the biological neuron as we expected. In contrary, the frequency obtained for both 

neurons circuits was less than expected from cadence simulations. In fact, we expected 

to obtain 1MHz for the fast neuron, which wasn't achieved. The fast neuron was retro 

simulated in cadence and the excitatory current obtained was higher than the current 

obtained experimentally. This point will be investigated in future work by studying the 

sub-threshold NMOS and PMOS transistors of the GreyMatter chip. We have also 

observed a variability of 70% for the frequency in the spiking train delivered by the fast 

neuron. This point will also be investigated in future work. Nevertheless, this variability 

can be interesting for specific spiking neural network, where a sparse system needs to 

be investigated. Obviously, this variability must be controlled for applications, which 

require a precise frequency and a uniform spiking neural network. We have also 

observed an increase of the experimental excitatory current due to the presence of the 

room light, therefore all the measurements have been performed in the dark 

environment to avoid this fluctuation. 
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4.1 Noise in brain  

npredictable fluctuations and disturbances that are not part of a signal, called 

noise, are present in the brain. It is known that the brain is a noisy 

environment with different sources of noise. In fact, stochastic behavior is 

observed at different stages in the nervous systems (see Figure 4.1) (Faisal, Selen, & 

Wolpert, 2008). Bottom stages such as voltage-gated ion channels and neurotransmitter 

release mechanisms (see Figure 4.1.b) as well as top stages like motor neurons, where 

noise impacts the entire neuron response (see Figure 4.1.c), constitute these different 

stages. This noisy activity of neurons introduces some stochastic properties of the brain 

information processing. This stochastic behavior impacts many aspects of brain 

function, including probabilistic decision-making, perception, memory recall, short-

term memory, attention, and even creativity (Rolls & Deco, 2010).  

 

 

Figure 4.1 Overview of the behavioral loop and the stages at which noise is 

present in the nervous system.  

a. Sources of sensory noise include the transduction of signals. This is exemplified 

here by a photoreceptor and its signal amplification cascade. b. Sources of cellular 

noise include the ion channels of excitable membranes, synaptic transmission and 

network interactions. c. Sources of motor noise include motor neurons and muscle. 

In the behavioral task shown (catching a ball), the nervous system has to act in the 

presence of noise in sensing, information processing and movement (Faisal, Selen, 

& Wolpert, 2008). 

 

U 
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For instance, in 2015, Stanford neuroscientists revealed that noisy neurons are critical 

for learning (Engel, Chaisangmongkon, Freedman, & Wang, 2015). Based on these 

findings, it is obvious that noise plays an important role in the brain function. 

Hence, in this chapter, the impact of the noise on the artificial neuron response will be 

investigated. First, the membrane voltage fluctuations of the biomimetic and fast 

neuron will be studied. Second, the response of the biomimetic neuron to an excitatory 

synaptic noise will be analyzed. Finally, the stochastic resonance phenomena within 

the biomimetic neuron will be investigated. 
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4.2 Membrane voltage fluctuations of the artificial neurons 

4.2.1 Noise and membrane voltage fluctuations 

Noise in neurons causes membrane voltage fluctuations (MVF) even in the absence of 

synaptic inputs. The most dominant source of such noise is channel noise (Faisal, Selen, 

& Wolpert, 2008). Channel noise is defined as the thermodynamic fluctuations in the 

gating channel ions which produce probabilistic gating behavior (Faisal, White, & 

Laughlin, 2005). In this section, the membrane voltage fluctuations of the artificial 

neuron at resting state (when the neuron does not spike) will be presented. This 

phenomenon has been widely investigated in biological neurons (Destexhe, Rudolph, 

Fellous, & Sejnowski, 2001) (Richardson, 2004). A standard deviation (SD) of 4mV 

has been observed for the MVF of the biological neuron (Destexhe, Rudolph, Fellous, 

& Sejnowski, 2001).  

 

The aim of this study is to compare the artificial neuron and the biological neuron in 

terms of membrane voltage fluctuations. Another objective is to show that the artificial 

neuron source of noise in the resting state is mainly thermal. Hence, assuming an 

equivalent circuit of the neuron composed by a conductance in parallel with a 

capacitance, the standard deviation of the membrane voltage fluctuations, SD, will be 

simply given by:  

 

𝑆𝐷 = √
𝐾𝑇

𝐶𝑚
 

 

Eq.4.1 

 

In this expression, SD is the RMS noise voltage while K, T and Cm are the Boltzmann 

constant (K = 1.38 10-23J.K-1), the room temperature (T = 300K) and the membrane 

capacitance respectively. Based on Eq.4.1, we calculated the thermal noise standard 

deviation for the biological neuron, artificial biomimetic and artificial fast neuron (see 

Table4.1). 
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Neuron Cm  SD   

Biological neuron 100pF 6.43μV 

Artificial biomimetic 

neuron 

50fF 0.27mV 

Artificial fast neuron 4fF 1.01mV 

Table 4.1: Membrane capacitance and the theoretical standard deviation of 

biomimetic and fast neuron. 

 

The thermal noise in the biological neuron with a 100pF membrane capacitance is less 

than 10μV, which is much lower than the voltage fluctuations measured on biological 

neurons. Studies have shown that the membrane voltage noise in the case of cultured 

neuronal cells is about 0.1mV (Diba, 2004). In this case, only few synapses are 

connected to the neuron, and this noise could be referred to as the intrinsic noise of the 

cell. If a higher number of synapses are connected to the cell, the total neuron noise is 

estimated to be around few millivolts (4mV) as reported by (Destexhe, Rudolph, 

Fellous, & Sejnowski, 2001) where the number of synaptic connections of one neuron 

is around 104.  

 

These experimental data show that (i) the membrane voltage noise in biological neurons 

is very high as compared with fluctuations due to thermal noise, and  (ii) a significant 

part of the membrane voltage noise in living neurons is due to the synaptic noise, that 

is to say the noise generated by the synaptic activity.  

4.2.2 Artificial neuron membrane voltage fluctuations test bench  

The artificial neuron of the WetWire chip and the artificial neuron of GreyMatter chip 

contains 8 pads (see Figure 4.2.up). As shown in the schematic (see Figure 4.2.down) 

the artificial neuron is biased via VDD and VSS, the excitation PMOS transistor is 

biased via VDD_T, VIN and the buffer is biased via VDDANA, ISSANA and VSS. 

The membrane voltage VOUT is observed at the buffet output. 
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Figure 4.2 Artificial neurons circuits and schematic. 

Figure 4.2.up: The artificial neuron of GreyMatter chip (left) and WetWire chip 

(right).  

Figure 4.2.down: The biomimetic neuron pads (left) and its schematic (right).  

 

The test bench of the membrane voltage fluctuations is illustrated in Figure 4.3. A 

Keithley 4200-scs is connected to VDD, VDDANA, ISSANA and VSS. Two Keysight 

33500B are connected to VIN and VDD_T, respectively. The output of neuron was 

connected to both ROHDE & SCHWARZ oscilloscope 500MHZ-5GSa/s and a 

National Instrument chassis (NI PXIe-1073). 
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Figure 4.3 Test bench of the membrane voltage fluctuations. 

 

The NI through the LabVIEW software enables us to acquire data in a variable period 

of time. This point will be detailed in the next section concerning the synaptic noise 

analysis where the acquisition time becomes a critical issue. Different Matlab codes 

were developed to analyze the data of the membrane voltage fluctuations.  

4.2.3 Artificial neuron membrane voltage fluctuations at resting state 

In this section, we will present the mean and standard deviation of the membrane 

voltage for the biomimetic and fast neuron at different resting states. Four cases are 

defined to characterize and determine specifically the membrane voltage fluctuations 

at resting state: disconnected neuron (case 1), disconnected trans-conductance (case 2), 

connected neuron (case 3) and neuron off (case 4). These different cases are also 

defined to experimentally investigate the influence of the buffer. In the following 

paragraphs, we will explain the biasing conditions used for each of these cases: 

 

Case 1: Disconnected neuron 

To obtain the disconnected neuron, the artificial neuron (biomimetic or fast) is off, by 

disconnecting VIN, VDD_T and VDD (VIN= VDD_T= VDD= NC). The VSS remains 

at 0V. The buffer is on, with VDDANA = 300mV and ISSANA = -400μA for the fast 

neuron and VDDANA = 300mV and ISSANA = -43μA for the biomimetic neuron. The 

artificial neuron does not generate any spikes, as it is not biased. For simplification, we 

will refer to this biasing as case 1. 
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Case 2: Disconnected trans-conductance  

As described in chapter 3, the trans-conductance is a PMOS transistor that injects an 

excitatory current to the artificial neuron when VIN and VDD_T are correctly biased. 

In this case, VIN and VDD_T are open (VIN = VDD_T = NC). The buffer is on. The 

remaining pads of the artificial neuron are VDD = VSS = 0V. In this case, the neuron 

does not generate any spikes. For simplification, we will refer to this biasing as case 2. 

 

Case 3: Connected neuron   

To obtain the connected neuron VIN and VDD_T are open (VIN = VDD_T = NC). The 

buffer is on. The artificial neuron is biased with VDD = 200mV and VSS = 0V. In this 

case, the neuron does not generate any spikes. For simplification, we will refer to this 

biasing as case 3. 

 

Case 4: Neuron off 

In this case, the biasing of the artificial neuron (biomimetic or fast) are VIN = VDD_T 

= VDD = 200mV and VSS = 0V. The buffer is set to be on. Obviously for this set up 

the trans-conductance is completely closed (due to VIN = VDD_T = 200mV) and the 

neuron does not generate any spikes. For simplification, we will refer to this biasing as 

case 4. The test bench and instruments used for these four cases remain the same. The 

test bench with the pads value in the case 4 for the biomimetic neuron is illustrated in 

the Figure 4.4. 

 

 

 
 

Figure 4.4 Membrane voltage fluctuations test bench in case 4 for the 

biomimetic neuron. 

We have applied these four cases to the biomimetic neuron and extracted the probability 

density function (PDF) as a function of the membrane voltage (VOUT) in Figure 4.5.  
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Figure 4.5 Probability density function of the biomimetic neuron at different 

resting states. Bio 1, Bio 2, Bio 3 and Bio 4 correspond to the respective case 1, case 

2, case 3 and case 4 biasing. 

 

The corresponding mean and standard deviation for each case of the biomimetic neuron 

are extracted from the PDF and are presented in Table 4.2.  

 

The membrane voltage mean value varies from -183mV in the case 1, when only the 

buffer is on, to -180mV in the case 4, where the neuron is biased without any excitation 

current. The standard deviation varies from 0.36mV in the case 1 to 0.23mV in the case 

4. As we compare these experimental values to the theoretical standard deviation value 

(0.27mV for the biomimetic neuron presented in Table 4.1), we can conclude that as 

expected (see Table 4.1) the biomimetic membrane voltage fluctuations is mainly 

thermal. 
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Additionally, the standard deviation observed in biological neuron (4mV) is higher than 

the one in the biomimetic neuron.  Based on this experiment, we can also conclude that 

in the resting state the observed noise in the artificial neuron is due to the thermal noise. 

The impact of the buffer noise has been also investigated using the noise matrix 

technique. We demonstrated that the noise of the buffer is negligible compared to the 

noise of the artificial neuron. The same analyses have been performed for the fast 

neuron and results are presented in Figure 4.6 and Table 4.3.   

  

Case VIN 

(mV) 

VDD 

(mV) 

VDD_T 

(mV) 

Mean 

(mV) 

Standard Deviation 

(mV) 

1 NC NC NC -183.2 0.36 

2 NC 0 NC -181.6 0.35 

3 NC 200 NC -180.6 0.37 

4 200 200 200 -180.6 0.23 
 

Table 4.2 The four resting state cases, mean and standard deviation of 

membrane voltage fluctuations for the biomimetic neuron. Not Connected (NC) 

corresponds to disconnected biases, in all these cases the buffer is on with VDDANA 

= 300mV and ISSANA = -43μA.  
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Figure 4.6 Probability density function of the fast neuron at different resting 

states. fast 1, fast 2, fast 3 and fast 4 corresponds to the respective case 1, case 2, 

case 3 and case 4 biasing. 

 

Figure 4.6 shows the probability density function of the fast neuron for different cases. 

As shown in Figure 4.6 and Table 4.3, the membrane voltage mean value of the fast 

neuron varies from -114mV in the case 1 to -105mV in the case 4. The standard 

deviation is around 0.4mV. This experimental standard deviation value is slightly less 

than the theoretical standard deviation calculated from the Eq.4.1 of 1mV. 

 

Case VIN 

(mV) 

VDD 

(mV) 

VDD_T 

(mV) 

Mean 

(mV) 

Standard Deviation 

(mV) 

1 NC NC NC -114,2 _ 

2 NC 0 NC -106,9 0,39 

3 NC 200 NC -105,6 0,41 

4 200 200 200 -105,6 0,41 
 

Table 4.3 The four resting state cases, mean and standard deviation of the 

membrane voltage fluctuations for the fast neuron. Not Connected (NC) 

corresponds to disconnected biases, in all these cases the buffer is on with VDDANA 

= 300mV and ISSANA = -400μA.  

In conclusion, for the fast neuron, the standard deviation mostly does not change for 

these different cases. However, the membrane voltage mean value is more impacted 

than the standard deviation, with 10mV variation between case 1 and case 4.  
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The PDF of case 1, for both fast neuron and biomimetic neurons, corresponds to the 

minimum mean voltage value compared to other cases. The mean value increases for 

both neurons respectively from case 2, case 3 to case 4 where the maximum mean value 

of the membrane voltage is obtained. 

4.2.4 Artificial neuron near threshold membrane voltage fluctuations  

It is interesting to investigate the membrane voltage fluctuations of the artificial neuron 

near its threshold. The near threshold state is obtained by biasing the trans-conductance 

with VINmin, which is defined as the minimum value for VIN when the neuron does 

not spike. This value for the biomimetic neuron is around VINmin = 69.8mV. We have 

compared the probability density function for VIN = 180mV to the VINmin as 

illustrated in Figure 4.7. 

 

 

Figure 4.7 Probability density function at near threshold for biomimetic 

neuron. 

 

For VIN = 180mV, we observe a mean and standard deviation of respectively -

180.5mV and 0.23mV. This standard deviation corresponds to 192K in terms of 

temperature of noise (Eq.2.1). For VINmin = 69.8mV, both mean and standard 

deviation, increase to respectively -174.2mV and 0.40mV. This standard deviation 

corresponds to 580K in terms of temperature of noise. 
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For the fast neuron the VINmin is 58mV, the probability density function of the fast 

neuron is illustrated in Figure 4.8.  

 

 

Figure 4.8 Probability density function at near threshold for fast neuron. 

 

For VIN = 180mV, we observe a mean and standard deviation of respectively -

104.5mV and 0.36mV. This standard deviation corresponds to approximately 38K in 

terms of temperature of noise.  For VINmin = 58mV both mean and standard deviation, 

increase to respectively -62.7mV and 1mV. This standard deviation corresponds to 

approximately 252K in terms of temperature of noise. In this case, the standard 

deviation of the fast neuron corresponds to the value of 1mV obtained by the theory. 

These experiments demonstrate that as both biomimetic and fast neuron approach their 

threshold, their mean and standard deviation increases. However, the low noise 

temperature obtained in the case of the fast neuron remains obscure: the uncertainty of 

the capacitance value and the validity of a simple C-G circuit for such a complicated 

circuit could be investigated for a deeper analysis of these results.  

4.3 Synaptic noise in artificial neuron 

In the brain, neurons are subjected to an intense synaptic bombardment (Destexhe, 

Rudolph, & Paré, 2003). The synaptic noise is composed of many uncorrelated Poisson 

pulse trains and some correlated ones. Based on the central limit theorem (CLT), which 

establishes that in most situations when independent random variables are added their 

properly normalized sum tends toward a normal distribution, we can assume that the 

sum of injected noise to a neuron cell is equivalent to a Gaussian voltage noise.  
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To investigate this effect on our artificial neuron, this synaptic noise was reproduced 

by adding a Gaussian noise on the excitatory synapse. As explain in Chapter 3, the 

excitatory synapse of the artificial neuron is the PMOS trans-conductance. The 

Gaussian noise is applied on the gate of PMOS. Due to the non-linearity of the trans-

conductance (sub-threshold mode), the drain-source noise current (I(t)) is composed of 

a DC and variable part as follows:  

 

𝐼(𝑡) = 𝐼0 + 𝜎𝐼𝐵(𝑡) Eq.4.2 

 

where σI  is the standard deviation and B(t) is a Gaussian process defined as follows: 

 

𝐸[𝐵(𝑡)] = 0 Eq.4.3 

𝐸[𝐵(𝑡)𝐵(𝑡 − τ)] = exp (−
τ

τc
) 

Eq.4.4 

𝐹𝑐 = 1 / (2π. τc) Eq.4.5 

 

where Fc is the cutoff frequency of the Gaussian noise source. This cutoff frequency 

was chosen (Fc = 100kHz) to be larger than the neuron cutoff frequency (Fn = 2kHz), 

hence the Gaussian noise is approximately a white noise.  

This noise current (I(t)) is then integrated by the membrane capacitance of the artificial 

neuron as follows: 

 

𝑉(𝑡) =
1

𝐶
∫ 𝐼(𝑡)𝑑𝑡 =

1

𝐶
(𝐼0𝑡 + σI𝑊(𝑡))

𝑡

0

 
 

Eq.4.6 

 

where W(t) is the standard Wiener process that is defined as follows: 

 

𝑊(𝑡) = ∫ 𝐵(𝑡)𝑑𝑡
𝑡

0

 
Eq.4.7 

 

In fact, V(t) can be considered as a Brownian motion with drift and therefore: 

 

𝜇𝑣 = 𝐸[𝑉(𝑡)] = 𝐼0𝑡 Eq.4.8 

σ𝑣 = 𝑣𝑎𝑟(𝑉(𝑡)) =
2σ𝐼

2τc𝑡

𝐶2  

 

Eq.4.9 
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Let Tth be the first time V (t) reaches the spike threshold value Vth, then:  

 

It can be shown (Capasso, 2011) that the hitting time Tth  follows the inverse 

Gaussian distribution hence: 

 
 

𝑇𝑡ℎ~𝐼𝐺(
𝐶𝑉𝑡ℎ

𝐼0
,
𝐶2𝑉𝑡ℎ

2

2σI
2𝜏𝑐

)} 
Eq.4.11 

 

In this chapter, the membrane voltage and the inter spike interval (ISI) distributions of 

the artificial neuron under a Gaussian noise excitation will be investigated.  

4.3.1 Input noise characterization 

We have characterized the generated noise from the Keysight 33500B to validate its 

Gaussian nature. In fact, the Keysight will be used as the source of the noise and it is 

necessary to verify the nature of its generated noise signal.  

The input noise has a bandwidth of 100kHz with an offset value of 20mV. This noise 

was analyzed for two acquisition times window: first, short acquisition time of 13s and 

second, long acquisition time of 30min. For each acquisition time two level of noise 

was investigated: Vin Noise = 28.40mVrms which is considered as a low level of noise 

for our artificial neuron and Vin Noise = 45.45mVrms considered as high level of noise. 

We used a sampling frequency of 200kHz in the LabVIEW program to extract the 

noise. 

For the short acquisition, the noise was extracted during 13s over 11 trials. To 

investigate the effect of time on the noise, we have extracted the 11th trials one hour 

after the acquisition of the 10th trials. Figure 4.9.up and Figure 4.9.down shows the 

superimposed number of occurrences and the probability density function (PDF) of the 

11 noise trials for Vin Noise = 28.40mVrms and Vin Noise = 45.45mVrms, 

respectively. 

  

 

𝑇𝑡ℎ = inf {𝑡|𝑉(𝑡) = 𝑉𝑡ℎ} 

 

Eq.4.10 
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Figure 4.9 Histogram and PDF for short acquisition. Figure 4.9.up: 11 trials 

superimposed for Vin Noise = 28.40mVrms. Figure 4.9.down: 11 trials 

superimposed for Vin Noise = 45.45mVrms. 

 

We calculated the half width at half maximum of each of these probability density 

functions. We found that it corresponds to the injected RMS value, as expected. For 

example, for Vin Noise = 45.45mVrms, the half maximum of the PDF (max value of 

PDF multiplied by e-1/2) is about 36. Based on this value, the half width at the half 

maximum is about 45mVrms, which corresponds to the input noise. 

We have extracted several parameters: the mean value (M), the standard deviation (SD), 

the variance (VAR) and the median (MED) for each trial. These parameters remain 

constant with same value for each trial. The mean and median are equal to 0.02V, which 

corresponds to the 20mV offset value, of the injected noise. The standard deviation is 
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around 4.2mV and the variance varies around 17μV. 
 As we increase the noise signal 

from 28.40mVrms to 45.45mVrms, the standard deviation increases from 4.2 mV to 

6.7mV and the variance changes from 17μV to 45μV. The mean and median remain 

around 0.02V. 

 

To perform the long acquisition, we have extracted 180 consecutive trials (the 

acquisition time of each trial is 10s) of the noise and rebuild the noise signal which has 

an acquisition time of 30min. Figure 4.10.up shows the number of occurrences and the 

PDF of the noise for Vin Noise = 28.40mVrms during 30min. Figure 4.10.down shows 

the number of occurrences and the PDF of the noise for Vin Noise = 45.45mVrms 

during 30min.  

 

 

Figure 4.10 Histogram and PDF for long acquisition. 

Figure 4.10.up: Vin Noise = 28.40mVrms during 30min 

Figure 4.10.down: Vin Noise = 45.45mVrms during 30min 
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Same values are obtained for the maximum value of the PDF, during 30min and 10s. 

The extracted noise parameters (mean, standard deviation, variance and median) of 

these two levels of noise also remain constant during the 30min acquisition. These 

parameters have the same values as the parameters obtained for the short acquisition. 

Based on these results, we conclude that the generated noise is a Gaussian noise.  

As we compare the parameters obtained from the short acquisition to the long 

acquisition, we conclude that the acquisition time does not impact the input noise. This 

study validates that, the Gaussian noise generated from the Keysight 33500B remains 

uniform in time, which is an important point, as we will see in next paragraphs. In the 

next paragraphs, we will study the response of the artificial neuron to a synaptic noise 

of a Gaussian nature. 

4.3.2 Biomimetic neuron DC characterization 

In order to analyze experimentally the response of the artificial neuron to a synaptic 

noise excitation, a DC characterization was first carried out. Due to the variability 

observed before, we define a set of criteria to choose the best circuit for the noise 

analysis. The DC characterization enables us to extract parameters, which allow an 

accurate noise measurement. The DC characterization has been carried out for 30 

biomimetic circuits present on the GreyMatter chip. Four parameters of each artificial 

neuron have been considered in the DC characterization as follows:  

 

1) The maximal frequency (Fmax)  

2) The membrane voltage (VOUT) when VIN = 0V 

3) The peak-to-peak amplitude of the spike (mVpp) 

4) The minimal value for VIN which the neuron does not generate spike 

(VINmin)  

 

Based on these four parameters, we define the best circuit for a biomimetic neuron if it 

presents: 

 

1)  Fmax < 2kHz 

2)  VIN = 0V => VOUT = Vrest (the VOUT  is at resting state). 

3) 100mV ≤ mVpp ≤ 200mV 

4) VINmin ≥10mV  

 

Based on the DC characterization, only 10 biomimetic neurons displayed these four 

satisfying parameters and therefore were chosen to carry out the noise analysis.  
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4.3.3 Synaptic noise test bench 

The synaptic noise test bench is composed of a Keithley 4200-scs, a Keysight 33500B, 

a ROHDE & SCHWARZ oscilloscope RTM2054 500MHZ-5GSa/s and a National 

Instrument NI PXIe-1073 (see Figure 4.12). The Keithley 4200-scs is connected to 

VDD, VDD_T, VDDANA, ISSANA and VSS. The VDD_T and VDD are equal to 

200mV. The buffer is in on state with VDDANA = 610mV and ISSANA = -58μA. The 

VSS is set to zero (see Figure 4.12).  

The Keysight 33500B is connected to the input of the biomimetic neuron (PMOS gate) 

to generate the Gaussian noise (Vin Noise). The Gaussian noise has an offset value 

equal to the VINmin. As explained in the previous section, the VINmin is extracted 

from the DC characterization.  

 

 

 

Figure 4.12 Synaptic noise test bench. 

 

The output of neuron (VOUT) is connected to both ROHDE & SCHWARZ 

oscilloscope RTM2054 500MHZ-5GSa/s and a National Instrument NI PXIe-1073. 

The NI via the LabVIEW program enables us to acquire data’s in a variable period of 

time. In fact, in this measurement due to the stochastic behavior of the spike train the 

acquisition time becomes an important factor. We have developed different LabVIEW 

and Matlab programs to analyze the output data of the artificial neuron excited by the 

Gaussian synaptic noise. 



Chapter 4 Noise in artificial neurons 

135 

 

Figure 4.13 illustrates the response of the biomimetic neuron (VOUT) to the Gaussian 

noise (Vin Noise) during 200ms. The orange curve is the injected Gaussian noise with 

Vin Noise = 10mVrms and an offset value of 20mV. For this low level of noise the 

biomimetic neuron response is extremely variable. The generated stochastic spike 

shown in Figure 4.13, has an amplitude of VOUT = 124mVpp and a 24Hz frequency, 

which varies according to the acquisition time. 

 

 

Figure 4.13 Response of biomimetic neuron to the low level of Gaussian noise. 

 

As the level of noise (Vin Noise) increases, the response of the biomimetic neuron 

becomes less stochastic and more periodic as shown in Figure 4.14. 

 

 

Figure 4.14 Response of biomimetic neuron to the high level of Gaussian noise. 

 

A spiking frequency of 175Hz with an amplitude of VOUT = 128mVpp is generated 

from the biomimetic neuron for an injected noise of Vin Noise = 22.73mVrms. 

 

Vin Noise 

VOUT 

VOUT 

Vin Noise 
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For these biasing values, the noise measurement has been carried out for two different 

categories: short acquisition, long acquisition. The sampling rate of 5kHz that 

corresponds to a sampling time of 200μs is used for these categories.  

The time acquisition of the membrane voltage is 13s for the short acquisition. This time 

increases to 30min for the long acquisition. In fact, the biomimetic neuron spike train 

is extremely stochastic as shown in Figure 4.13 for low levels of injected noise. For 

this specific case, we have observed interspike intervals (ISI) as long as 40s. Hence, we 

developed a LabVIEW program to enable us to increase the time acquisition according 

to the observed ISI and the level of injected noise.  

 

Several analyses have been performed for these two categories. First, the spike 

extraction with different time duration, using the National Instrument (NI PXIe-1073). 

Second, the extracted spikes are analyzed with developed Matlab codes to first detect 

the spike and then extract the interspike intervals known as ISI. Third, different ISI 

parameters such as the mean, the standard deviation and the variance are extracted. 

Forth, the histogram and the probability density function of the obtained ISI are plotted 

for different noise levels. Finally, different distribution fits such as gamma, inverse 

Gaussian, exponential and Poisson are investigated and compared to obtained results. 
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4.3.4 Spike detection and ISI 

For the noise analysis, we extract the membrane voltage also called spike train of the 

biomimetic neuron for different levels of excitatory Gaussian noise. The spike train 

enables us to detect the occurrence time of each spike, also called spike detection, in 

the spike train. Figure 4.15.up shows the spike train for an injected noise of 

19.31mVrms and Figure 4.15.down shows the spike detection during 6s.  

 

 

 

Figure 4.15 Spike train and ISI. 

Figure 4.15.up: Resulting spike train for Vin Noise = 19.31mVrms.  

Figure 4.15.down: Detected spikes with red lines. 

 

The spike detection enables us to define the interspike intervals (ISIs) of one spike train. 

In fact, Matlab inserts a red line (Figure 4.15.down) for each detected spike and its 

occurrence time (ti). We define the ISIN as the consecutive subtraction (tN+1-tN) of the 

occurrence time of Nth spike (tN) and Nth+1 spike (tN+1). For instance, ISI1 is resulted 

from the subtraction of t2-t1 as shown in Figure 4.15.down. Based on this definition, 

we extracted the overall ISI of one spike train. Obviously, in a spike train with 100 

spikes there is 99 ISIs. 
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4.3.5 Short acquisition  

In this part, the injected Gaussian noise to the PMOS gate varies from 29.55mVrms to 

51.1mVrms during 10s. As described before, we have extracted the spike train of each 

noise level and extracted its corresponding ISI. For each noise level, we define six 

parameters of the ISI as follows: 

 M : is the mean value of the ISI. 

 SD : is the standard deviation of ISI. 

 VAR : is the variance of ISI. 

 K: is the ratio of mean to standard deviation of ISI, known as the shape 

parameter. 

 Θ : is the ratio of the mean to the shape parameter, known as the scale 

parameter. 

 CV: is the ratio of the standard deviation to the mean value of ISI, known as 

the coefficient of variation. 

 

These parameters can determine the distribution function of the ISI. For instance in a 

Poisson process, the coefficient of variation is CV = 1 (Pachitariu, Brody, Jun, & 

Holmes, n.d.). 

The shape parameter K and the scale parameter Θ are used to define the gamma 

distribution. 

We will also introduce other parameters to define the inverse Gaussian distribution in 

the following paragraphs. 

These parameters of ISI are illustrated for each noise level in Figure 4.16. 

 

Figure 4.16 ISI parameters corresponding to the injected noise to the PMOS 

gate for an acquisition time =10s. 

 

In this part, the injected Gaussian noise on the PMOS source varies from 27.27mVrms 

to 51.1mVrms during 10s. The ISI parameters are illustrated in Figure 4.17. 
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Figure 4.17 ISI parameters corresponding to the injected noise to the PMOS 

source for an acquisition time =10s. 

 

The ISI parameters obtained from the injected noise on the PMOS gate and the PMOS 

source are similar. Hence, we will focus on the injected noise on the PMOS gate in the 

next paragraphs. The mean (M), standard deviation (SD), variance (VAR), scale 

parameter (Θ) and coefficient of variation (CV) decrease as the noise level increases. 

The shape parameter (K) increase as the noise levels increase, it saturates around 10 in 

both cases. 

In this experiment, the first level of noise for both cases was 25mVrms but as shown in 

Figure 4.18 (noise on PMOS gate) and Figure 4.19 (noise on PMOS source) this level 

of noise is not enough to generate spikes. 

 

Figure 4.18 Spike train for Vin Noise = 25mVrms on PMOS gate. 
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Figure 4.19 Spike train for Vin Noise = 25mVrms on PMOS source. 

 

This value varies from circuit to circuit due to the variability of the artificial neuron. 

Another important point is the statistic of the spike train when the noise level is low. 

As it can be seen in Figure 4.20 for an injected noise of 27.27mVrms on the PMOS 

gate, we obtain only 4 spikes during 13s. 

 

Figure 4.20 Spike train for Vin Noise = 27.27mVrms on PMOS gate. 

 

Due to this poor statistic for this low noise level, we have developed another LabVIEW 

program in order to increase the acquisition time, which will be presented in the next 

section. 
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4.3.6 Long acquisition 

The long acquisition characterization enables us to obtain an improved statistic for the 

low level of noise. In order to obtain this long acquisition, we have developed a new 

LabVIEW program to acquire 180 consecutive spike trains of 10s. We have also 

developed a Matlab code in order to rebuild the totality of these 180 spike trains. Figure 

4.21.a shows the spike train of a biomimetic neuron for high levels of noise during 

120s. Each change of color corresponds to one spike train of 10s as illustrated in Figure 

4.21.a. 

 

 

 

Figure 4.21.a Rebuild spike train over 120s. 

 

Figure 4.21.b is obtained from another biomimetic neuron and shows the rebuild spike 

train of 180 consecutive spike trains excited by a low level of noise (Vin Noise = 

27.27mVrms) during 30min. 
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Figure 4.21.b Spike train for Vin Noise= 27.27mVrms on PMOS gate during 

30min. 

 

It is worth mentioning that the development of these programs was a key step in the 

experimental analyze of the noise. This achievement is fundamental in order to observe 

and analyze the behavior of the artificial neuron when it is excited with a low level of 

noise. 

Using these developed tools, we have varied the level of injected noise from 

27.27mVrms to 30.68mVrms by a step of 1.13mVrms on the PMOS gate of the 

biomimetic neuron. The rebuild spike train for each noise level is illustrated in Figure 

4.22.  
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For each level of noise, we have reported in Table 4.4 the number of spike, the number 

of ISI, the bin width and the number of bins for an acquisition time of 30min.  

 

 

 

 

Figure 4.22 Rebuild spike train for different noise levels. The Vin noise varies 

from 27.27, 28.40, 29.54 to 30.68, respectively. 
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Noise on 

PMOS gate 

(mVrms) 

Number of 

spike 

Number of 

ISI 

Bin 

width 

(s) 

Number of Bin 

27.27 140 139 50 11 

28.40 408 407 10 17 

29.54 1094 1093 0.5 43 

30.68 14 815 14 814 0.02 141 

 

Table 4.4 Spike train data for long acquisition. 

 

We have extracted the ISI parameters of each of these spike train as shown in Figure 

4.23. 

 

 

Figure 4.23 Experimental ISI parameters for different levels of noise injected to 

the PMOS gate during 30min. 

 

The median, lambda (λ) and mu (μ) parameters were added and plotted as a function of 

noise in Figure 4.24. Where λ also called scale parameter is defined as follows: 

 

λ =  
𝑚𝑒𝑎𝑛(𝐼𝑆𝐼)3

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝐼𝑆𝐼)
  

Eq.4.13 

  

and μ is the location parameter equal to the mean value of ISI. 
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Figure 4.24 Experimental ISI parameters for different levels of noise on PMOS 

gate during 30min.     

  

A Matlab code was developed to investigate the probability density function (PDF) of 

the obtained ISIs.  

 

Figure 4.25.a and Figure 4.25.b illustrates the spike train obtained with Vin Noise = 

29.54mVrms during 30min and the probability density function (PDF) of ISI 

corresponding to this spike train. Figure 4.25.c shows the PDF of ISI during 10s.   
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a 

 

b 

 

c 

Figure 4.25: a: spike train with Vin Noise = 29.54mVrms during 30min.  

b: Complete PDF of ISI obtained from this spike train as function of ISI (0 < ISI < 

20s). c: Zoom on the PDF (0 < ISI < 10s) 
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Using the fit function of Matlab, we have compared several distribution functions with 

the measurements (see Figure 4.26 and Figure 4.27). These distribution functions are: 

Gamma, Inverse Gaussian and Exponential. Figure 4.26 compares the probability 

density function of ISI to these distributions for Vin Noise = 29.54mVrms.  

 

 

Figure 4.26 Comparison of PFD of ISI to several distributions. Vin Noise = 

29.54mVrms on PMOS gate during 30min. 

 

Same comparison is illustrated in Figure 4.27 for Vin Noise = 30.68mVrms. 

 

 

Figure 4.27 Comparison of PFD of ISI to several distributions. Vin Noise = 

30.68mVrms on PMOS gate during 30min. 

 

Based on these results, we can assume that the probability density function follows 

different distributions as the level noise increases. For low levels of noise 
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(29.54mVrms) it seems to follow the Exponential and the Gamma fit. In fact as 

illustrated in Figure 4.28, the Gamma distribution reproduces the Exponential 

distribution when the shape factor k = 1. 

 

 

Figure 4.28 Gamma distribution (Pachitariu, Brody, Jun, & Holmes, n.d.). 

 

Beyond a certain level of noise considered as high level of noise (30.68mVrms for the 

PMOS gate and 28.40mVrms for the PMOS source) the artificial neurons response 

tends to the inverse Gaussian distribution. 

 

 

Figure 4.29 Comparison of PFD of ISI to several distributions. Vin Noise = 

28.40mVrms is injected on PMOS source during 30min. 

 

This point is put in evidence in Figure 4.29 when a maximum noise of Vin Noise = 

28.40mVrms is applied to the PMOS source of the biomimetic neuron. 

  



Chapter 4 Noise in artificial neurons 

149 

 

4.3.7 Simulation of biomimetic neuron response to the synaptic noise 

We have analyzed the spike train of the biomimetic neuron for different level of 

Gaussian noise using LTspice simulations. It enables us to extract the injected current 

to the membrane capacitance of the biomimetic neuron for different level of injected 

noise on the PMOS gate. The Gaussian noise level varies from 27mVrms to 100mVrms. 

To obtain a Gaussian noise in LTspice, we use the random function (rand (time*1e6)) 

and injected to the PMOS gate of the biomimetic neuron. For instance, to simulate a 

27mVrms Gaussian noise, we use the following expression (E.4.1) in LTspice: 

 

Vin Noise = Vrms * SQRT(12/6) * ( rand(time*1e6) + rand(A+ time*1e6) 

+ rand(B+ time*1e6) + rand(C+ time*1e6) + rand(D+ time*1e6) + rand(E+ 

time*1e6) -3) 

 

E.4.1 

Where A, B, C, D and E are respectively 1.1e9, 2.07e9, 3.05e9, 4.06e9 and 5.08e9. 

The Vrms is the RMS noise value (here Vrms = 27mVrms). This Gaussian noise has a 

150mV offset value, which is the minimum value of Vin (injected signal to PMOS gate) 

when the neuron does not generate spikes. The response of the biomimetic neuron to a 

27mVrms noise and the average injected current is illustrated during 100ms in Figure 

4.30. Only one spike was generated during 100ms. 

 

 

Figure 4.30 Response of the biomimetic neuron (blue curve) under Vin Noise = 

27mVrms (green curve) and injected average current of 738.73fA (red curve). 

This figure is obtained after 100ms. 

 

This spike train is obtained with 10μs resolution. It is worth mentioning that with this 

time resolution and an acquisition time of 30min (as performed in the experimental 

Spike 

Current 

Noise 
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part), the extracted spike data will occupy 8Go of memory. Hence, we have chosen to 

reduce the acquisition time in function of the level of noise.  

 

Gaussien Noise 

on PMOS gate 

(mVrms) 

Acquisition 

time 

Spike 

frequency 

Average of 

current 

RMS of 

current 

27 60s 3Hz to 30Hz 738.73fA 813.65fA 

30 30s 40Hz 783.23fA 881.02fA 

40 25s 176.09Hz 982.12fA 1.21pA 

50 20s 252.3Hz 1.25pA 1.76pA 

60 15s 355Hz 1.63pA 2.67pA 

70 12s 412.32Hz 2.11pA 3.94pA 

80 10s 505.90Hz 2.65pA 5.63pA 

90 8s 758.85Hz 3.20pA 9.15pA 

100 5s 834Hz 4.11pA 17.9pA 

Table 4.7 Spike train and current parameters obtained with simulation. 

 

The acquisition time, spike frequency, average current and RMS current are reported 

in Table 4.7 for distinctive level of noise. 

 

Figure 4.31 shows the extracted ISI parameters of the biomimetic spike train for Vin 

Noise =27mVrms to Vin Noise=100mVrms. 

 

 

Figure 4.31 ISI parameters obtained with simulation. 
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Figure 4.32 and Figure 4.33 compare the PDF of ISI for Vin Noise = 27mVrms and 

Vin Noise = 100mVrms with different distributions (same figure for other level of noise 

are presented in annex).  

 

 

Figure 4.32 Comparison of PDF of ISI obtained with simulation to several 

distribution functions. Vin Noise = 27mVrms is injected on PMOS gate during 

60s. 

 

 

Figure 4.33 Comparison of PDF of ISI obtained with simulation to several 

distribution functions. Vin Noise = 100mVrms is injected on PMOS gate during 

5s. 

 

The inverse Gaussian and Gamma distribution seems to correspond to the PDF of 

obtained ISI for different level of noise expected the very low level of noise 

(27mVrms).  
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Figure 4.34 μ and λ obtained from the Matlab fit. 

 

The fit parameters of the inverse Gaussian are illustrated in Figure 4.34 and 

corresponds to the μ and λ obtained from the ISI. 
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4.4 Stochastic resonance in the artificial neuron 

4.4.1 Stochastic resonance history 

After studying the membrane voltage fluctuations, which corresponds to the noise of 

artificial neuron in resting state and the response of the artificial neuron to an excitatory 

synaptic noise, we will investigate in this section the phenomenon of the stochastic 

resonance.  

  

Historically, stochastic resonance has been defined as a paradoxical phenomenon as 

induced noise enhances the overall performance of the nonlinear system. Since 1980, 

when stochastic resonance was introduced in statistical physics, the concept has 

evolved and has been observed throughout diverse scientific fields, ranging from 

biological systems to nonlinear physical systems (McDonnell & Abbott, 2009). 

Stochastic Resonance (SR) has been studied in three different fashions, the first focused 

on physical and mathematical descriptions of SR (Jung, 1993), the second investigated 

SR in electronic systems and its potential applications (Harmer, Davis, & Abbott, 

2002), and the last have dedicated their research to study SR in biology (Faisal, Selen, 

& Wolpert, 2008), (McDonnell & Ward, 2011). It is worth mentioning, combining 

these different aspects of SR phenomenon opens tantalizing perspectives, from the 

development of new families of sensors to brain research enabling bioinspired 

processing and medical applications. From a neuroscience point of view, SR is 

ubiquitous in neural systems and plays a major role in facilitating the information 

processing. These stochastic resonance features have been demonstrated both 

experimentally and theoretically from the complete organism (crayfish, paddlefish and 

human) to neural networks and the unitary cell (shark multimodal sensory cell, 

hippocampal model, cat cortex model) (McDonnell & Ward, 2011). 

 

4.4.2 Simulation response of biomimetic neuron to stochastic resonance 

The SR phenomenon is observed with LTspice simulation with a resolution time of 

10μs. In fact to obtain the SR phenomena it is necessary to combine a sub-threshold 

signal (VS) (here sinusoidal signal) with a broadband noise (VN) (see Figure 4.36). 

The resulting combined signal (VSN) is injected to the PMOS gate of the trans-

conductance (see Figure 4.36). In Figure 4.35 the simulated combined signal VSN = 

6mVrms with VS = 10mVpp (10Hz frequency and an offset of 150mV) is illustrated. 

For this low level of noise, the artificial neuron generates only one spike for each 

negative period of VS. As we increase the level of noise (VSN), the number of spike 

will increase. This part will be presented in detail in the next section (experimental 

investigation of SR). 
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Figure 4.35 LTspice simulation of SR. 

4.4.3 Stochastic resonance test bench and biomimetic neuron response 

In order to experimentally demonstrates the stochastic resonance in the biomimetic 

neuron (from the WetWire chip), the test bench is constituted of a Keithley 4200-scs, 

two Keysight 33500B-30MHz and a ROHDE & SCHWARZ oscilloscope RTM 2054 

500MHZ-5GSa/s (see Figure 4.36). The Keithley is used to bias the biomimetic neuron 

(VDD = 200mV, VSS = 0mV), the excitatory trans-conductance (VDD_T = 200mV) 

and the buffer of biomimetic neuron (VDDANA = 300mV, ISSANA = -43μA).  

 

 

 

Figure 4.36 Test bench of stochastic resonance. 
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For this experiment, the Keysight is used to generate both a sub-threshold sinusoidal 

signal (VS) of weak amplitude and weak frequency (10mVpp, 10 Hz) with an offset 

value of 110mV and a broadband noise (VN). The resulting combined signal is called 

VSN and is injected to the input of the neuron, which is the gate of the PMOS trans-

conductance (see Figure 4.36). The output of neuron (VOUT), which corresponds to 

the membrane voltage after the buffer, is connected to R&S oscilloscope. 

In this condition, and without significant noise amplitude, the biomimetic neuron stayed 

in its resting state since VSN was below than the firing threshold as shown in Figure 

4.37.a. A spiking firing pattern arose as VN increased with a timing distribution that 

varies as a function of the sinusoidal signal rhythm and noise magnitude (Figure 

4.37.b). Increasing, furthermore, VN increased the sensitivity of the biomimetic neuron 

to the weak excitatory signal and its response was enhanced as shown in Figure 4.37.c. 

These results clearly highlight the stochastic resonance phenomenon as observed in 

biology (Hänggi, 2002).  

 

Based on the recording of VOUT for 1s which corresponds to ten times the period of 

VS, the statistical firing probability, as defined in (Chen, Saïghi, Buhry, & Renaud, 

2010) is obtained by dividing the 1s recording in 10 parts. Each part is divided in 10 

and the corresponding number of spikes is counted. The number of spikes is summed 

for each 0.1s and illustrated in Figure 4.37.d. 

 

From the extracted histogram, the signature of the deterministic sinusoidal signal can 

be recovered.  
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a b 

 

 

c d 

Figure 4.37 biomimetic neuron response for VS = 10mVpp with 10Hz frequency 

and different VN and VSN levels. a) VN= 11.36mVrms, VSN= 5.28mVrms. b) VN= 

45.45mVrms, VSN=  13.50mVrms. c) VN = 68.18mVrms, VSN = 19.85mVrms. d) 

Statistical firing probability of biomimetic neuron in response to sinusoidal wave. 

The noise and signal amplitude are respectively VN = 600mVpp and VS =10mVpp. 

4.4.4 Stochastic resonance and biomimetic neuron error probability 

Stochastic resonance is observed under sinusoidal signal (see Figure 4.38.Left) as well 

as square signal (Figure 4.38.Right).  

In order to define the error probability of the biomimetic neuron, Vm was recorded for 

various levels of induced noise during 1s. Each period of sub-threshold signal VS is 

divided in two states: the active state and resting state. The active state corresponds to 

the biomimetic neuron excitation for the half-negative period of VS. The active state is 

referred as 1 in Figure 4.38. The resting state is defined when biomimetic neuron is 

excited during the half-positive period of VS. The resting state is referred as 0 in Figure 

4.38.  
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Figure 4.38 Detecting states: Left: sinusoidal signal detected using stochastic 

resonance phenomena with error. Right: square signal detected using stochastic 

resonance phenomena without error. 

 

As illustrated in Figure 4.38 an active state is detected when the biomimetic neuron 

generates at least one spike on a given period. Errors occur when detection is made 

during a resting state or when no spike occurs during an active state (see Figure 

4.38.Left). The error probability is defined as the ratio of the total number of errors 

divided by twenty, corresponding to 10 periods of VS. 

 

 

Figure 4.39 Error probability of biomimetic neuron as a function sinusoidal 

signal+noise level. 

 

As described by Figure 4.39, the error probability decreases when the input noise is 

increased. It reaches the optimal value of 5% and degrades as VSN goes beyond 
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20mVrms. The optimal VSN in order to achieve lowest error detection is around 

15mVrms. 

4.4.5 Stochastic resonance and biomimetic neuron signal to noise ratio, power 

and energy consumption 

Output spikes of the biomimetic neuron in time domain (VOUT) were exported and 

analyzed with Advanced Designed System (ADS) software. Power spectral density has 

been analyzed allowing us to determine the signal to noise ratio (SNR) considering a 

noise bandwidth equal to 5kHz. As illustrated in Figure 4.40, SNR exhibits a maximum 

value of 22.4dB for VN = 35.7mVrms. The SNR exhibits a maximum at intermediate 

levels of added noise, hence experimentally demonstrating the stochastic resonance 

phenomenon.  

 

 

Figure 4.40 SNR as a function of noise levels. 

 

Further measurements illustrate the power consumption of biomimetic neuron in 

Figure 4.41 as a function of noise levels. The standby power consumption stands lower 

than 57pW independently of the noise level. The standby power is around 54.5pW. A 

slight increase is observed at the beginning of detection, which corresponds to the initial 

detection state (corresponding to number one in Figure 4.41).  
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Figure 4.41 Power consumption as a function of added noise level for different 

detection states. 

 

The initial state is defined when biomimetic neuron generates only one spike in the 

active state of VS. When increasing VN, the number of generated spikes is rising (13 

spikes for VN= 26mVrms). It is obvious that the overall power consumption is mainly 

due to biomimetic neuron’s standby power; such a low value demonstrates the 

biomimetic neuron's power efficiency for detection applications. The energy efficiency, 

for initial detection (number one in Figure 4.41), was estimated from the dynamic 

power (subtracting the standby power); in this case the biomimetic neuron encodes sub-

threshold sinusoidal frequency of 10Hz; energy efficiency lower than 100fJ/spike is 

achieved. Such energy efficiency, compared to other stand alone artificial neuron (see 

chapter 3), is roughly one order magnitude lower than the state of the art. 

4.4.6 Conclusion and perspectives on stochastic resonance 

This work investigated and demonstrated the classical stochastic resonance 

phenomenon experimentally within the context of a biologically realistic artificial 

neuron. Ultra-low power consumption has been demonstrated while performing 

detection activity (between 54pW and 57pW). Considering more natural signals 

(Faisal, Selen, & Wolpert, 2008), (Duan, Chapeau-Blondeau, & Abbott, 2014) (such as 

electrical fields generated by predators or prey, lights, sounds, etc.) and biologically 

relevant sources of noise (synaptic noise, motor noise, colored noise, etc.) will enable 
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to evolve stochastic facilitation and information processing within the biomimetic 

neuron. Furthermore, producing connected biomimetic neuron networks which 

demonstrate SR can be very promising and is currently under study. Finally, biomimetic 

neuron's biological features imply brand-new investigation of SR phenomenon, where 

a hybrid system of connected artificial neurons to biological neurons is studied, and 

aiming new biomedical applications.   
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4.5 Annex 

Simulation results of biomimetic response to the synaptic noise: 

 

Comparison of PDF of ISI obtained with simulation to several distribution 

functions. Vin Noise = 27mVrms is injected on PMOS gate during 60s. 

 

 

Comparison of PDF of ISI obtained with simulation to several distribution 

functions. Vin Noise = 30mVrms is injected on PMOS gate during 30s. 

 

 

Comparison of PDF of ISI obtained with simulation to several distribution 

functions. Vin Noise = 40mVrms is injected on PMOS gate during 25s. 
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Comparison of PDF of ISI obtained with simulation to several distribution 

functions. Vin Noise = 50mVrms is injected on PMOS gate during 20s. 

 

 

Comparison of PDF of ISI obtained with simulation to several distribution 

functions. Vin Noise = 60mVrms is injected on PMOS gate during 15s. 

 

 

Comparison of PDF of ISI obtained with simulation to several distribution 

functions. Vin Noise = 70mVrms is injected on PMOS gate during 12s. 
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Comparison of PDF of ISI obtained with simulation to several distribution 

functions. Vin Noise = 80mVrms is injected on PMOS gate during 10s. 

 

 

Comparison of PDF of ISI obtained with simulation to several distribution 

functions. Vin Noise = 90mVrms is injected on PMOS gate during 8s. 

 

 

 

Comparison of PDF of ISI obtained with simulation to several distribution 

functions. Vin Noise = 100mVrms is injected on PMOS gate during 5s. 
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5.1 General conclusion 

ature remains the best source of innovation. Many researchers have been 

inspired by nature and fabricate novel devices and systems to ensure a better 

life. In the 21st century, a growing need of intelligent systems with high-

energy efficiency is emerging as described in chapter 1. The most important challenge 

is to continue to increase the computing performance of our computers while 

controlling their energy consumption. The heating of the processors not only 

jeopardizes their efficiency, but could also, if the current trend continues, create an 

energy shortage. Information and communication technologies consume nearly 10% of 

the worldwide energy generated and the cloud represents the fifth most electricity-

consuming country after the USA, China, Russia and Japan. This energy consumption 

will not stop growing in the coming years due to the increase of generated data, which 

must be processed and stored. Moreover, the problem of the processors power 

dissipation has induced manufacturers since 2005 to take an important step: stop 

increasing the clock frequency of processors and turn to multi-core architectures. 

Finally, the miniaturization of components will inexorably lead to the emergence of 

defects that cannot be avoided. 

 

Based on these issues and the need of ultra-low power intelligent systems, we have 

investigated one of the principal unities of the brain, the neuronal cell and build the first 

block of an intelligent neuromorphic system, the artificial neuron. This work is a step 

toward very large-scale hardware networks of neuronal circuits known as Hardware 

Neuronal Networks (HNN). We proposed in this work a high-energy efficient and 

simple artificial neuron with a conventional CMOS technology to be the foundation of 

a future high energy efficient HNN. 

 

This thesis is a multidisciplinary work; it targets the design and fabrication of an ultra-

low power artificial neuron with 65nm CMOS technology. In order to achieve this goal, 

the chapter 2 is dedicated to understand the electrophysiology of a neuron cell. We 

verified the excitability of the neuron based on different neuronal membrane models 

and studied the spikes generation as a function of the charge density. This study allowed 

us to estimate the power and energy efficiency per spike for neuronal models such as 

Hodgkin Huxley (HH) and Wei model.  

 

Both HH and Wei model are based on four nonlinear differential equations (four state 

variables). These complex models lead to complex electrical circuits with considerable 

silicon surface. Thus, we investigated in chapter 2 the biophysically meaningful Morris-

Lecar model as it represents a simpler model with only two nonlinear differential 

equations (two state variables). 

N 
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The chapter 3 presents the analogy between the two states variable Morris-Lecar model 

and the designed artificial neuron. The four states variables Wei model enabled us to 

adjust the parameters of this artificial neuron to obtain a bio-inspired neuron referred 

as the biomimetic neuron. Additionally, in the chapter 3, we present a simple version 

of the artificial neuron called the fast neuron. The characterization of various 

manufactured artificial neurons and neuronal circuits such as the oscillatory neuron and 

the tonic burst neuronal circuit is also presented in chapter 3.  

 

It is worth mentioning that the biomimetic neuron core occupies 200μm2 and a maximal 

spike frequency of 1.2kHz was obtained with a total dissipated power of 90pW. An 

energy efficiency (including the DC power) of 78.3fJ/spike is obtained for the 

biomimetic neuron, reaching values as low as 40fJ/spike when only the dynamic power 

is considered. 

 

The fast neuron has a higher frequency and smaller area in comparison to the 

biomimetic neuron. It reaches a spike frequency as high as 26kHz with a core area of 

35μm2. The total power consumption of the fast neuron is 105pW. An energy efficiency 

(including the DC power) of 4fJ/spike is extracted and the power dissipation reaches 

values as low as 3fJ/spike when only the dynamic power is considered. 

 

Based on these reported values, state-of-the-art performances were achieved in this 

work, as the artificial neuron is 1000 times more energy efficient than a living neuron. 

Additionally, it represents the state-of-the-art in terms of power, energy efficiency and 

area compared to previous works on the stand alone artificial neuron. 

 

In chapter 4, various distinct noise analysis based on the noise phenomena observed in 

one living neuron were investigated. In fact, the membrane voltage fluctuation, the 

synaptic noise and the stochastic resonance, which occurs in the brain neuronal system, 

were studied within our artificial neuron.  

 

Concerning the membrane voltage fluctuation investigation, we conclude that: (i) the 

membrane voltage noise in biological neurons is very high as compared with 

fluctuations due to thermal noise, and (ii) that a significant part of the membrane 

voltage noise in living neurons is due to the synaptic noise. This remains true as we 

compare the membrane voltage fluctuation of the artificial neuron to the living neuron.  

 

Concerning the synaptic noise analysis, we injected a Gaussian noise to the PMOS 

excitatory transconductance of the biomimetic neuron to reproduce the synaptic noise 

both experimentally and in Ltspice simulation. Different spike trains were obtained 
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from the biomimetic neuron as a function of different levels of injected Gaussian noise. 

We extracted the interspike intervals (ISI) from these spike trains and their probability 

density function (PDF) for short and long acquisition time windows. Based on the 

experimental data it seems that the PDF of ISI follows different distributions as the 

level of noise increase. For low levels of noise, it seems to follow the Exponential and 

the Gamma distribution while for higher level of noise it seems to follow the Inverse 

Gaussian distribution. Based on the simulation data and for high level of noise, the PDF 

of ISI follows Gamma distribution as well as Inverse Gaussian distribution.  

 

Concerning the stochastic resonance analysis, we demonstrated experimentally the 

classical stochastic resonance phenomenon within the biomimetic neuron. Ultra-low 

power consumption has been obtained in the frame of detection activity (between 54pW 

and 57pW). The energy efficiency was estimated from only the dynamic power and it 

is lower than 100fJ/spike for the initial detection (when the neuron spike only once for 

the negative period of the sinusoidal signal). The artificial neuron high-energy 

efficiency is an important point for detection applications. 
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5.2 Perspectives 

The perspectives of this work are divided in two categories, the computing and the 

biomedical aspect.  

 

For the computing aspect, and precisely for the hardware neural networks (HNNs) part, 

the aim is to develop an energy efficient neuromorphic system, able to communicate, 

learn and take decision like the brain. This hardware neural networks target the neuro-

inspired computation of information with low costs and high-energy efficiency 

compared to artificial neural networks (ANNs). In this context, we have developed an 

artificial neuron with high-energy efficiency and small footprint enabling a high level 

of integration in future hardware neural networks. We have observed 70% variability 

in our artificial neuron due to the use of CMOS transistors in sub-threshold regime. 

This variability must be taken in account for future designs of the hardware neural 

networks. Additionally, future work on artificial synapses regarding the learning and 

the memory must be carried out to obtain intelligent HNNs. 

 

From the biomedical aspect, the aim as mentioned in the chapter 1 is to fabricate a 

neuromorphic system, which is able to stimulate (preventing epileptic crises and 

slowing the Alzheimer disease) or even replace the defective brain area in case of 

injuries and neurodegenerative diseases. In this context, the perspective of this work is 

to connect the artificial neuron (the biomimetic neuron) to a living one and study the 

possibility of their communication while fabricating the interface system. Moreover, 

investigating the noise in this hybrid system is necessary due to the noisy activity of the 

living neuron cell. The biological features of the biomimetic neuron enable a brand-

new investigation of SR phenomenon where a hybrid system of connected artificial 

neurons to biological neurons is studied, aiming new biomedical applications. 

Furthermore, design and fabricate HNNs that communicates, stimulate and even inject 

drugs to the specific neuronal network of a human brain can be imagined as a long-term 

perspective. 
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