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Abstract

Observer-based estimation provides the basis of implementing many important engineering
applications over past decades, especially fault diagnosis of different fields. As the real
physical systems become more and more complex, the requirements of fault diagnosis are
therefore much more important since they are crucial means to maintain the safety and
reliability of system. The corresponding growing demand of nonlinear observer design have
therefore gained increasing consideration as well.

The aim of this thesis is to design a nonlinear observer as part of a diagnostic tool for
continuous-time nonlinear systems with discrete-time measurements. We begin with the
study of observability notions concerning the considered nonlinear systems, following by
the presents of three typical optimization-based nonlinear observers and observer-based
diagnostic methods. Inspired by the existing approaches, a finite memory observer is then
designed for a class of nonlinear systems in the presence of both process and measurement
noises, where a one-step prediction algorithm incorporated with an iterative-update scheme
is performed to solve the integral problem caused by system nonlinearity, and an analysis
of the unbiased estimation property has been proved in both deterministic and stochastic
case. Residuals are employed to implement fault detection cooperated with the CUSUM
algorithm, while a bank of observers are used to realize fault isolation for different sensor
and actuator faults of a considered nonlinear robotic systems. In the second part, a nonlinear
observer based on augmented model is then designed to simultaneously estimate both system
states and unknown inputs. The robustness with respect to the diverse noises is studied, as
well as the study of the minimum amplitude of fault for detection purpose. The EWMA
algorithm was also introduced and analyzed for its performance in fault diagnosis. Moreover,
fault detection and identification of multiple simultaneous sensor and actuator faults are
also performed thanks to the actuator fault estimation and compensation by the proposed
unknown input observer. In the last part of this thesis, a finite memory observer is then
designed for the nonlinear time-varying systems on the basis of the fundamental synthesis
and analyses for linear time-varying systems first, where the detailed proofs and illustration
are studied as well to show the performance of the proposed observer in time-varying case.

Keywords: Observer design; Nonlinear dynamical systems; Fault diagnosis; Unknown
input; Time-varying; Finite memory observer.
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Chapter 1
General Introduction

1.1 Context

Most geometric control design methods for nonlinear systems assume that all state variables
are available for feedback in real time [Rajamani 2017]. Unfortunately, the entire state is
usually too expensive or impossible to measure, and certain form of estimation is necessary.
A common way to solve this problem is to set several sensors in the real physical system and
design an algorithm, so-called observer, whose role is to perform a reliable estimate of the
whole system state through the information provided by the sensors. It is worth to mention
that such an algorithm can exist only if the measurements from the sensors contain enough
amount of information to uniquely determine the system states, which is what we1 said “the
system is observable”. Observer is commonly seen as a “soft sensor”.

Meanwhile, it can be noticed that observer-based estimation provides the basis of im-
plementing many important engineering applications over past decades, especially fault
diagnosis of different fields. As the real physical systems become more and more complex,
more and more system components are involved. The requirements of fault diagnosis are
therefore much more important since they are crucial means to maintain system safety and
reliability, namely to ensure that the system is well functioning. Under such circumstances,
the corresponding growing demand of nonlinear observer design have gained increasing
consideration as well. However, unlike linear time-invariant systems, the design of a stable
observer for nonlinear systems still suffers from a significant lack of general systematic
method despite the existing developed techniques, including Luenberger-like nonlinear ob-
server [Ciccarella et al. 1993, Rajamani 1998], linear matrix inequalities (LMI) [Zemouche
and Boutayeb 2013], high-gain observer [Ahrens and Khalil 2009, Sanfelice 2011, Prasov
and Khalil 2013].

1In this thesis, the word we is often used to refer to my colleagues and myself. Sometimes, we also indicates
that the control and estimation community. The distinction should be clear from the context. However, we
encourage the reader not to read too much into my use of the word we, it is more a matter of personal preference
and style rather than a claim to authority.

1



1.2 Motivations and Objective

1.2 Motivations and Objective

The above context reveals the needs of observer design techniques as well as observer-based
fault diagnosis tool for nonlinear dynamical systems. This motivates me to look for some
contributions to this subject. Meanwhile, when I started my thesis, some preliminary results
about finite memory observer design had already been obtained in the case of time-invariant
linear systems, where the nonlinear and time-varying cases remained to be developed. It then
brought the beginning of my work in this thesis.

In the literature or textbooks of control theory, the general continuous-time dynamical
models for nonlinear systems is under the form

ẋ(t) = f (x(t),u(u))

y(t) = h(x(t),u(t))

where x(t) is the state, u(t) is the control input and y(t) is the measurement at time instant
t. However, it may be worth noting that: If either the state equation or the output equation
has nonlinear terms, then the system is called a nonlinear system. This means that the
measurement equation h(·) of a nonlinear system does not have to be always nonlinear.

As the dynamics of most engineering systems are naturally continuous, e.g., trajectories
of vehicles and flow of electric current, it is therefore more convenient and accurate to model
the physical processes in continuous time with nonlinear differential equations. However,
observations or measurements are usually taken at discrete time instants using digital sensors,
which are massively used in today’s “digital era”. For this reason, the observer designed in
this thesis are investigated based on a discrete-time measurement model.

Note that the purpose of the observer design in this work is to support the fault diagnosis
for practical systems, the considered nonlinear systems should be as close as possible to the
practical one, in which the disturbance and uncertainty is inevitable. The measurement noise,
system uncertainties including process noise and modeling uncertainties are therefore taken
into consideration in this thesis.

In general, most practical systems can be described by time-invariant model, however,
there are some systems that still cannot be modeled by assuming that they are time invariant,
such as aircraft [Cook 2013] and the human vocal tract [Strube 1982]. In the meantime, it
should be noted that the linearization of a time-invariant nonlinear system also (when the
nominal solution is not a constant) gives rise to time-varying systems, and this is actually one
of the chief ways time-varying systems are encountered in system analysis [Kailath 1980].
This is why we also devote part of our efforts to study time-varying systems (linear case and
nonlinear case). The overall scheme is shown in Figure 1.1.
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Chapter 1 General Introduction

Based on the context introduced in section 1.1 and the above presented motivations,
our objective in this thesis is to design a nonlinear observer for a class of continuous-time
nonlinear systems with discrete-time measurements in the presence of measurement noise
and process noise in order to perform fault diagnosis.

1.3 Outline of Manuscript

This manuscript is organized as follows:

Chapter 1 The thesis begins with this chapter by a brief introduction, which presents the
context of this work, the problem statements and the organization of the manuscript.

Chapter 2 A review of the relevant definitions and notations of observability is firstly
recalled in this chapter. Then there follows three typical optimization-based moving
horizon nonlinear observer design techniques. Observer-based fault diagnosis (fault
detection and isolation) is performed at the end of this chapter as well.

Chapter 3 This chapter is devoted to develop a continuous-discrete finite memory observer
for a class of nonlinear systems under the presence of both process noise and measure-
ment noise. The properties of estimation performance have been theoretically proved
and practically validated by simulations. For the diagnosis purpose, the designed
nonlinear observer is used to realize fault detection and isolation of different sensor
and actuator faults of a nonlinear robotic arm system.

Chapter 4 Based on chapter 3, a nonlinear observer with unknown input is proposed in this
chapter by an augmented model. It is then applied to an actuator fault detection and
estimation, where the actuator fault is modeled as unknown input. Moreover, multiple
simultaneous sensor and actuator faults are successfully detected and isolated thanks
to the unknown input estimation.

Chapter 5 A time-varying observer is designed for both linear and nonlinear time-varying
systems in this chapter. The detailed illustration and proofs of the proposed observer
are firstly provided for linear case, then further extended to nonlinear case.

Chapter 6 Conclusions and perspectives are summarized in this final chapter.

A Note on Symbols: In this thesis, we may sometimes use the same alphabet letter,
Greek or Romain symbols representing different variables in different chapters. The specific
meaning needs to be inferred from the context.
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1.3 Outline of Manuscript
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Chapter 2
On Some Nonlinear Observers (NLOs) and
Fault Diagnosis

"If I have seen further, it is by standing on the shoulders of Giants."
- Isaac Newton, 1675

Contents of chapter
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Observability of Dynamical Systems . . . . . . . . . . . . . . . . . . . 6

2.2.1 Observability problem and definitions . . . . . . . . . . . . . . . 7

2.2.2 Observability rank condition . . . . . . . . . . . . . . . . . . . . 8

2.3 Some Optimization-based Nonlinear Observers . . . . . . . . . . . . . 12

2.3.1 Moving horizon observers (MHOs) . . . . . . . . . . . . . . . . 12

2.3.2 Nonlinear observers based on Newton’s method . . . . . . . . . . 13

2.3.3 Nonlinear observers based on Levenberg-Marquardt algorithm . . 17

2.4 Nonlinear Observers with Continuous-Discrete Model . . . . . . . . . 19

2.5 Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Basic definitions / notations and general diagnostic procedure . . 21

2.5.2 Generalized fault diagnosis methods using analytical redundancy 22

2.5.3 Observer-based fault diagnosis methods . . . . . . . . . . . . . . 24

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5



2.1 Introduction

Résumé en français :

Suite aux motivations et contextes introduits dans le chapitre précédent, nous allons présenter
dans ce chapitre quelques observateurs non linéaires et méthodes de diagnostic de défauts
basées sur observateurs. Comme nous l’avons mentionné précédemment, la synthèse d’un
observateur stable pour les systèmes non linéaires est un défi très important depuis des
décennies, et ce défi a été abordé dans la littérature grâce au développement de diverses
techniques de synthèse dans le cadre non linéaire. Il convient de noter que notre objectif
dans ce chapitre n’est pas de fournir un aperçu exhaustif des observateurs non linéaires,
mais plutôt de situer notre contribution et d’introduire une synthèse basée sur l’optimisation,
en particulier des techniques à horizon glissant. En plus, quelques méthodes de diagnostic
à base d’observateur, des définitions/concepts de base mais importants et des étapes de
diagnostic, qui sont nécessaires dans le reste de cette thèse, seront également établis à la fin
de ce chapitre.

2.1 Introduction

Based on the motivations and backgrounds introduced in the previous chapter, we are going to
review in this chapter some nonlinear observers and observer-based fault diagnostic methods.
As we mentioned before, the design of a stable observer for nonlinear systems has been a
significant challenge over the past decades, and this challenge has been addressed in the
literature through the development of various observer design techniques specific to nonlinear
systems. Our intension in this chapter is not to provide an exhaustive overview on nonlinear
observer design, but rather to situate our contribution and introduce some optimization-based
methods, specifically moving horizon techniques. Moreover, some observer-based diagnostic
methods, basic but important definitions/concepts and diagnostic steps, which are needed in
the rest of this thesis, will also be established at the end of this chapter.

2.2 Observability of Dynamical Systems

Consider the following general nonlinear system:

ẋ(t) = f (x,u, t)

y(t) = h(x)
(2.1)

with system state noted as x , [x1, · · · ,xn]
T ∈ M, where M is a smooth manifold of Rn;

u , [u1, · · · ,um]
T ∈U ⊂Rm represents input while y , [y1, · · · ,yp]

T ∈ Y ⊂Rp is output. The
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Chapter 2 On Some Nonlinear Observers (NLOs) and Fault Diagnosis

two mappings f , [ f1, · · · , fn]
T (with f : M×U→M) and h , [h1, · · · ,hp]

T (with h : M→ Y)
are the vectorfields defined on M. Denote x(t,x0,u) as the state solution of system (2.1) at
instant t due to the initial state x0 = x(t0) and the input u over [t0, t], and the corresponding
output is denoted as y(t,x0,u).

2.2.1 Observability problem and definitions

In control theory, observability [Canuto et al. 2018] concerns the problem of how to estimate
the state vector x(t) from incomplete and possibly inaccurate observations (measurements),
collected over a finite time t f − t0 < ∞. The observations on which to rely are the input and
output temporal profiles u(t) and y(t) with t ∈ [t0, t f ]. The following problem is generally
considered:
Observability problem: Given t0, find a final time t f > t0, such that x0 can be uniquely
determined from input u(t) and output y(t) with t ∈ [t0, t f ].

As stated in Nijmeijer and Schaft [2016] and Hermann and Krener [1977], the observ-
ability of systems (2.1) is defined from the indistinguishability concept, which is:

Definition 2.1 (Indistinguishable). For system (2.1), two initial states x1
0 ∈M and x2

0 ∈M
are said to be indistinguishable if for any admissible system input u(t) (for all t > 0), the
corresponding outputs y(t,x1

0,u) and y(t,x2
0,u) are equal.

According to Definition 2.1, the observability definition is then given as:

Definition 2.2 (Observable). For different initial states of system (2.1), if there is no indis-
tinguishable pair {x1

0,x
2
0}, then system (2.1) is said to be observable at x0. Moreover, if the

system is observable at every x ∈M, then we say that system (2.1) is observable.

Note that the observability defined above is a global concept, which means globally
observable. Since our aim afterward is to focus on the rank condition study, the observability
in this case will inherently be a local condition for nonlinear systems, which leads to the
following definitions :

Definition 2.3 (V -Indistinguishable). Given two initial states x1
0 ∈M and x2

0 ∈M, let V be a
subset of M containing x1

0 as well as x2
0, we say x1

0 is V -indistinguishable from x2
0 if for every

admissible input u(t) (all t > 0) whose trajectories x(t,x1
0,u) and x(t,x2

0,u) both remain in V ,
the corresponding outputs y(t,x1

0,u) and y(t,x2
0,u) are the same.

Definition 2.4 (Locally Observable). The system (2.1) is called locally observable at x0 if
there exists a neighborhood W around x0 such that for every neighborhood V ⊂W of x0,
y(t,x1

0,u) = y(t,x2
0,u) implies x1

0 = x2
0. If the system (2.1) is locally observable at each x0,

then we call it locally observable.
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2.2 Observability of Dynamical Systems

Remark 2.1 (Detectability). System (2.1) is said to be detectable if all the unobservable
states are stable.

Notice that another concept, stability (stable), is mentioned in Remark 2.1. It will be
analyzed later according to the specific study case, which means it will not be detailed
here. Please see Nijmeijer and Schaft [2016], Hermann and Krener [1977], Fossard and
Normand-Cyrot [1995] and the references therein for more details if needed. The same
strategy was also used for the concept of controllability (controllable), which is a dual
concept of observability. Roughly speaking, the concept of controllability denotes the ability
to move a system around in its entire configuration space using only certain admissible
manipulations. The exact definition may varies slightly within the framework or the type of
models applied.

So far, we have presented the general and fundamental concepts of observability. As we
known, observability indicates whether or not we can uniquely determine the system state
x(t) from the input u and measurements y = h(x), which can be directly measured. As a
matter of fact, the derivatives of output y = h(x) also contain the information of system state
x(t). This fact leads us to the Lie derivatives-based “rank condition” study for observability
in next subsection.

2.2.2 Observability rank condition

Considering system (2.1), let us assume that input u = uc is constant. Firstly we define

Definition 2.5 (Observation Space). The observation space O for system (2.1) is defined as
the linear vectorial subspace (over R) of functions on M, including output function h ∈ Rp,
and all its repeated Lie derivatives {L 1

fuh,L 2
fuh, · · · ,L k

fuh} with respect to vectorfields
fu = f (x,u) with u = uc being fixed.

According to the definition of Lie derivative, it is easy to see that h = L 0
fuh, then we can

write the observation space O(x,uc) as follows:

O(x,uc) :=


L 0

fuh
L 1

fuh
...

L k
fuh

=


y
ẏ
...

y(k)

 (2.2)

where y(k) represents the k-th time derivative of y. Note dO(x,uc)|x as the differential space
of O(x,uc) and dO(x,uc)|x=x0

as the differential space evaluated at x0. The observability rank
condition is thus denoted as:
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Chapter 2 On Some Nonlinear Observers (NLOs) and Fault Diagnosis

Definition 2.6 (Observability Rank Condition). Suppose u = uc, system (2.1) is said to be
locally weakly observable at x0 if the dimension of dO(x0,uc) equals to n, namely

dim{dO(x,uc)|x=x0
}= rank


dL 0

fuh
dL 1

fuh
...

dL k
fuh

= rank


dy
dẏ
...

dy(k)

= n (2.3)

In addition, the system is said to satisfy the observability rank condition if the above rank
condition (2.3) holds for all x0.

The rank condition states that dO(x0,uc) contains n linearly independent vectors. It
may be worth mentioning that k = n− 1 when the dynamical system is linear thanks to
Cayley–Hamilton theorem, while there does not exist a fixed value k for nonlinear dynamical
system in general. In fact, if we try to see the rank condition from the linear algebraic point
of view, it is easy to understand that it means the kernel of dO(x0,uc) is reduced to the zero
subspace. That is why both the output h and its Lie derivatives L i

fuh (i= 1,2, · · · ,n−1) in the
direction of fu will change as the state x change, this is exactly what we called “observable”.

Remark 2.2. The following remarks are worth mentioning concerning the observability rank
condition in Definition 2.6 :

1. It is only a “local” condition for nonlinear systems.

2. Unlike the linear case, it is only a necessary but “non” sufficient condition to build an
observer for a nonlinear system. It may need to take into account the input properties
in some cases.

Assumption 2.1 (Universal Inputs Assumption). It can be seen that the control input u = uc,
taken as a constant during the entire illustrations above and there is no doubt that input u
will affect the observability of nonlinear system (2.1). However, since the nonlinear systems
considered in this thesis are assumed in the case where control input u are “universal inputs”,
the influence of input u on observability will no longer be detailed here. Please refer to
Hermann and Krener [1977] for a synthesis of this problem.

Up to nowadays, there is still no complete theory that allows to design an observer for
general observable systems. Assumption 2.1 brings us to an interesting class of nonlinear
systems, which are observable in the following sens [Hammouri and Farza 2003]:

Definition 2.7 (Uniformly Observable). If the observability of system (2.1) does NOT depend
on the input control u(t), i.e. all the inputs are universal, then system (2.1) is said to be
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2.2 Observability of Dynamical Systems

uniformly observable. If for any t > 0, input u is universal on [0, t], then system (2.1) is
uniformly locally observable.

So far, the aforementioned part is the general rank condition of observability for general
nonlinear system (2.1). In what follows, we will spend a little bit more space in this section
to show the counterpart of observability rank condition in the cases of linear time-invariant
(LTI) systems and linear time-varying (LTV) systems, which have been known as two typical
linear systems.

Consider the following LTV systems with x ∈ Rn, u ∈ Rm and y ∈ Rp:

LTV systems:

{
ẋ(t) = A(t)x(t)+B(t)u(t)

y(t) =C(t)x(t)
(2.4)

Definition 2.8 (Observability Gramian). System (2.4) is said to be observable at time t0 if
and only if there exists a finite t f > t0 such that Oob(t0, t f ) ∈ Rn×n, defined by

Oob(t0, t f ) :=
∫ t f

t0
Φ

T(θ , t0)CT(θ)C(θ)Φ(θ , t0)dθ (2.5)

is nonsingular. Here, Φ(θ , t0) ∈ Rn×n is so-called state transition matrix from t0 to θ with
θ ∈ [t0, t f ], which satisfies the following differential equation:

dΦ(θ , t0)
dθ

= A(θ)Φ(θ , t0)

Φ(t0, t0) = In In is identity matrix of size n
(2.6)

Remark 2.3. Various methods of calculating state transition matrix Φ(·, ·) can be found in
the literatures, see Kailath [1980] and Chen [1999] for example. It may be worth mentioning
here the properties of state transition matrix Φ(·, ·), which includes

• Φ−1(t2, t1) = Φ(t1, t2) for any t1, t2 ∈ [t0, t f ];

• Φ(t1, t3)Φ(t3, t2) = Φ(t1, t2) for any t1, t2, t3 ∈ [t0, t f ];

• Φ(t, t) = In holds for all t ∈ [t0, t f ];

• Φ(·, ·) is never singular.

For LTV systems (2.4), Definition 2.8 tells us that it is impossible to distinguish the
initial state x1

0 from x2
0 if x1

0− x2
0 lies in the kernel of Oob(t0, t f ). Also, it is easy to see that

the observability gramian matrix Oob(t0, t f ) has the following properties:
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• Oob(t0, t f ) is symmetric;

• For all t f > t0, Oob(t0, t f ) is positive semidefinite;

Suppose the matrices A(·) and C(·) in (2.4) have real-analytic entries, then the observability
rank condition in 2.6 is equivalent as follows

Definition 2.9 (Observability Rank Condition for LTV Systems [Sontag 1998]). System (2.4)
is said to be observable on [t0, t f ] if there exists an arbitrary t ∈ [t0, t f ], so that

dim{dO}= rank


C0(t)
C1(t)

...
Ck(t)

= n for some k (2.7)

with  C0(t) :=C(0) i = 0

Ci+1(t) := Ci(t)A(t)+
d
dt
Ci(t) i≥ 1

Now consider that system (2.4) has the constant parameters A, B and C, namely it
becomes the LTI systems

LTI systems:

{
ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)
(2.8)

Based upon the observability rank condition above for LTV systems, the equivalent
studies for LTI systems (2.8) are easy to obtain as:

Definition 2.10 (Observability Gramian for LTI). System (2.8) is said to be observable if
and only if the following n×n matrix

Oob(t0, t) :=
∫ t

t0
eAT(θ−t0)CTCeA(θ−t0) dθ (2.9)

is nonsingular. It is worth noting that the term eA(θ−t0) in (2.9) is the state transition matrix
Φ(θ , t0) from t0 to θ in the case of LTI systems.

11



2.3 Some Optimization-based Nonlinear Observers

Definition 2.11 (Observability Rank Condition for LTI Systems). System (2.8) is said to be
observable if

dim{dO}= rank


C

CA
...

CAn−1

= n (2.10)

Note that there is no state x involved in the observability rank condition (2.7) and (2.10)
for LTV and LTI systems. It means that unlike the nonlinear case, the observability rank
condition for linear system is global, which is well-known as the “Kalman rank condition”
[Kalman 1963].

2.3 Some Optimization-based Nonlinear Observers

Among all the observer design methods for nonlinear systems, the optimization-based moving
horizon technique is the one on which we are going to focus in this section. More specifically,
this kind of method turns the state estimation problem into an optimization problem, which
generally aims at minimizing the difference between real measurement and the predicted
one obtained by using some suitable algorithms on a predetermined moving time horizon.
Newton’s method and least square method (Levenberg-Marquardt algorithm) are the two
main optimization approaches for the NLOs introduced in this section. For the sake of brevity,
we have included only some of the many techniques and the references listed in this part are
therefore by no means exhaustive.

2.3.1 Moving horizon observers (MHOs)

The name of moving horizon observers (MHOs) was first used by H. Michalska and D. Q.
Mayne in the early 1990s [Mayne and Michalska 1992, Michalska and Mayne 1993], which
deals with the continuous-time nonlinear systems (2.1) recalled here as:

ẋ(t) = f (x,u) (2.11a)

y(t) = h(x) (2.11b)

where the uniform observability assumption in Definition 2.7 is required and the functions f
and h are assumed locally Lipschitz continuous. Then an on-line approximation of a cost
function J is defined under the form of Euclidean norm, which described the difference
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between the real system output and estimated one over the interval [t1, t2] as:

J(w; t1, t2),
∫ t2

t1
∥h(X(s;w, t1))− y(s)∥2 ds (2.12)

here y(·) is the real system output with the true (but unknown) initial condition x0 at initial
time instant t0. Let X(·;w, t1) represent the solution of (2.11a) passing through state w at
time instant t1, so it is obvious that x(t) = X(t,x0, t0), i.e. y(·) = h(x(·)) = h(X(·;x0, t0)).
The minimization strategy for the cost function (2.12) is well defined using a gradient-based
descent approach on the interval [t−T, t] where there always exists a better estimation w(t)
for state x(t) of each interval in the case of no measurement noise and no model discrepancy
[Michalska and Mayne 1995].

It should be mentioned that the above optimization problem has to be solved at each
sampling time instant, this may present some serious drawbacks in the case that one may
not be able to control the required time to satisfy a given estimation accuracy. However, this
kind of observer design idea establishes a cornerstone for the numerous contributions on
continuous-time nonlinear observer synthesis, such as approaches based Newton’s method
[Moraal and Grizzle 1995, Zimmer 1993a; 1994], which we will get back to detail in
next subsection. Moreover, the improved and developed MHOs were studied and revisited
by Alamir, which the developed ideas are closely connected to those when the real time
implementation of model predictive control is addressed, see Alamir [1999] and Alamir
[2007] for more information.

At the end of this part, we would like to share our opinion on the name “moving horizon
observer (MHO)”: Michalska and Mayne indeed used MHO for their proposed observer,
however this name should not be only dedicated to this single method. We believe that all the
observers synthesis approaches based on a moving horizon technique can be called MHO.
MHO speaks for a class of observers, for instance, finite memory observer is also a kind of
MHO, so are the observers introduced in next section.

2.3.2 Nonlinear observers based on Newton’s method

Newton’s method or in some cases a quasi-Newton method was first introduced for the
observer design to discrete-time systems by Grizzle and Moraal in Grizzle and Moraal [1990]
and then improved in Moraal [1994] and Moraal and Grizzle [1995]. Meanwhile, Zimmer
has also proposed the nonlinear observer design methods for continuous-time systems. In
article Zimmer [1993a], the gradient descent method is applied to deal with the problem of
minimizing a cost function (a large consumption of computation time). In Zimmer [1993b]
and Zimmer [1994], Newton’s method is taken to minimize the cost function by using
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2.3 Some Optimization-based Nonlinear Observers

curvature information (i.e. the second derivative) to take a more direct path than gradient
descent. Let’s take Newton’s method in Zimmer [1994] as an example to explain it in detail.

The considered nonlinear system is described by:{
ẋ = f (x,u)

y = g(x)
(2.13)

where the vectors x, u and the scalar y represent the system state, control input and output
(measurement), respectively.

Assumption 2.2. f and g are twice differentiable on non-empty set S⊂ Rn.

Assumption 2.3. System (2.13) is locally uniformly observable. As introduced in Definition
2.7, “uniformly” means that the control input u is completely accessible.

Consider a strongly observable (2.13) system, an interval I0 := [0,T ] and the output of
the system y(·) on this interval. The goal is to estimate an initial value x0 for x0,∗ (real value),
such that y(t;0,x0) = y(t;0,x0,∗) for all t ∈ I0.

The cost function N is defined by:

N (x0,x0,∗) :=
1
2

∫ T

0

(
y(t;0,x0)− y(t;0,x0,∗)

)2
dt (2.14)

here, x0 is an estimate of x0,∗. Since the system (2.13) is observable, so x0 and x0,∗ are
distinguishable, namely,

N (x0,x0,∗) = 0 ⇔ x0 = x0,∗ (2.15)

Take the partial derivative of (2.14) with respect to x0, we have

D1N (x0,x0,∗) =
∫ T

0

(
y(t;0,x0)− y(t;0,x0,∗)

) ∂y(t;0,x0)

∂x0 dt

=
∫ T

0

(
y(t;0,x0)− y(t;0,x0,∗)

)(∂g
(
x(t;0,x0)

)
∂x

∂x(t;0,x0)

∂x0

)T

dt
(2.16)

If N (x0,x0,∗) is convex near x0,∗, the following equivalence is then valid:

N (x0,x0,∗) = 0 ⇔ D1N (x0,x0,∗) = 0 (2.17)

The common way to check the convexity of N (x0,x0,∗) near x0,∗ is to examine whether
the Hessian matrix

D2
1N (x0,x0,∗) :=

∂ 2N (x0,x0,∗)

(∂x0)2 (2.18)
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is positive-definite at x0 = x0,∗. Fortunately, Lemma 2.1 below gives a necessary and
sufficient condition such that D2

1N (x0,x0,∗) is a Hilbert matrix and thus positive-definite
(see Zimmer [1994] for details).

Lemma 2.1. Given x1 ∈ S, the Hessian matrix D2
1N (x1,x1) is said to be positive define if

and only if the following linearized system is observable in I0 := [0,T ]
ż =

∂ f (x(t;0,x1))

∂x
z

v =
∂g(x(t;0,x1))

∂x
z

(2.19)

Then, Newton’s method is applied to approximate x0,∗. Recall that Newton’s method
generates a sequence of x0 using recursion as

x0
new = x0

old−
(
D2

1N (x0
old,x

0,∗)
)−1

D1N (x0
old,x

0,∗) (2.20)

Note that before applying Newton’s method, one can always check whether D2
1N (x0,x0,∗)

is invertible and by Lemma 2 (omitted here) in Zimmer [1994].
The conditions for terminating the iteration are

N (x0
new,x

0,∗)< κN (x0
old,x

0,∗) (2.21)

Now all the state estimations x(·) over the interval I0 := [0,T ] can be calculated with the
initial value x0

new obtained by (2.20) and (2.21) as follows:

x(t) := X(t;0,x0
new) t ∈ I0 (2.22)

here X(·;0,x0) represents the solution of system (2.13) by the four-order Runge-Kutta (RK4)
method with the initial value x0.
Notation: Given T > 0, for all k ∈ N0, define

Ik := [tk, tk +T ] tk := kT

Without loss of generality, Zimmer’s method can be carried out over an arbitrary interval
Ik,k ∈ N0. Let

η(xk,xk,∗) = xk−
(

D2
1N (xk,xk,∗)

)−1
D1N (xk,xk,∗) (2.23)
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where xk represents the final estimate of xk,∗ at time tk after terminating of iteration. Also

xk,∗ := X(kT ;0,x0,∗)) k ∈ N0

Repeat the above procedure for each interval Ik,k ∈ N0, a sequence of xk is generated
recursively by:

xk := X(kT ;(k−1)T,η(xk−1,xk−1,∗))

= X(T ;0,η(xk−1,xk−1,∗)) k ∈ N
(2.24)

These sequences yield  lim
k→∞
∥xk− x(tk;0,x0,∗)∥= 0

lim
k→∞
∥η(xk,xk,∗)− x(tk;0,x0,∗)∥= 0

(2.25)

if x0 and x0,∗ are close enough.
Finally, the sequence {η(xk,xk,∗)}k∈N will be completed towards a piecewise differen-

tiable function by:{
R+→ Rn

t 7→ xN (t) := X(t;kT,η(xk,xk,∗)) t ∈ [kT,(k+1)T )
(2.26)

The true state x(·) is approximated by (2.26) in the following norm sense:

lim
t→∞
∥x(t)− x(t;0,x0,∗)∥= 0 (2.27)

if x0 and x0,∗ are close enough. Figure 2.1 illustrates the idea described above
This method shows a great performance for nonlinear system (2.13) when there is no

control inputs. However, with the presence of control input u, the convergence has only
been proven for special control input functions [Zimmer 1993b]. Meanwhile, this approach
has already been successfully applied to systems with multiple outputs as well in Zimmer
[1993c], where the cost function in (2.14) need to be defined in a quadratic form like

N (x0,x0,∗) :=
1
2

∫ T

0

(
y(t;0,x0)− y(t;0,x0,∗)

)T (
y(t;0,x0)− y(t;0,x0,∗)

)
dt

Note that the Hessian matrix (2.18) of the cost function (2.14) is required in order to
perform the Newton step of this method, this may be hard to realize in practical or be
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Time

Figure 2.1: The illustration of Zimmer’s method [Zimmer 1994]

impossible to perform when the nonlinear functions f and g are not twice differentiable. This
method is not in general used even though it shows great theoretical significance.

So far, we’ve learned that the cost function in gradient descent method is minimized
by updating the parameter in the steepest-descent direction which can be computationally
expensive if the curvature in different directions is very distinct for the given function.
Meanwhile, the (quasi-) Newton’s methods remedy this problem but show more complexity
due to the calculation of Hessian matrix and performs much worse when the parameters are
far from their optimal values. Is there a method that can acts more like a gradient descent
method when the parameters are far from their optimal value, and acts more like the (quasi-)
Newton’s methods when parameters are close to their optimal value? This brings us to the
Levenberg-Marquardt algorithm in next subsection.

2.3.3 Nonlinear observers based on Levenberg-Marquardt algorithm

Levenberg-Marquardt (L-M) algorithm was first developed by K. Levenberg [Levenberg
1944] in the early 1940’s and then was rediscovered in 1960s by D. Marquardt [Marquardt
1963], which the L-M algorithm adaptively updates the parameter between the gradient
descent method and the Gauss-Newton method. Although many variations of L-M algorithm
have been published during these years [Kanzow et al. 2004, Pujol 2007, Wilamowski and
Yu 2010, Transtrum and Sethna 2012, Bellavia et al. 2018], the observer-related one in
Abdelhedi et al. [2016] is what we are going to discussed in this section.
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2.3 Some Optimization-based Nonlinear Observers

The nonlinear system (2.1) is considered in Abdelhedi et al. [2016], rewritten here

ẋ(t) = f (x,u)

y(t) = h(x)
(2.28)

let us consider L bounded observations collected at regular time interval Te such that the
length of horizon lh = (L− 1)Te. Then the optimization problem can be stated as the
minimization of the following cost function:

J(x) =
1
2

L

∑
k=1

(ytk− ŷtk)
2 (2.29)

where y is the measured output and ŷ is the estimated one. tk is the beginning of the horizon
so that t ∈ [tk, tk+ lh]. We know that (2.29) has an optimum at x if the the following condition
is verified:

dJ
dx

= 0 (2.30)

The function J(xk) in (2.29) may be locally approximated through a second-order Taylor
series expansion as

J(xk+1) = J(xk +dxk)≈ J(xk)+∇J ·dxk +
1
2

dxT
k ·Hess(i, j) ·dxk (2.31)

that is
dJ(xk)≈ ∇J ·dxk +

1
2

dxT
k ·Hess(i, j) ·dxk (2.32)

with

∇J =
∂J
∂x

∣∣∣∣
x=xk

=−2
L

∑
k=1

(ytk− ŷtk)
∂ ŷtk
∂xk

(2.33a)

Hess(i, j) =
∂ 2J

∂xi∂x j
= 2

L

∑
k=1

(
∂ ŷtk(xi)

∂x j

)2

−2
L

∑
k=1

(ytk− ŷtk)
∂ ŷtk

∂xi∂x j
(2.33b)

Apply the condition in (2.30) to (2.32), we get

∇J+Hess(i, j) ·dxk = 0 (2.34)

then we straightly have the state variation dxk as

dxk = xk+1− xk =−Hess(i, j)−1
∇J (2.35)
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It is easy to see that the second term of Hessian matrix in (2.33b) can make the Hessian
matrix negative. Therefore, the main idea of L-M method is to replace the second term of
Hessian matrix by a diagonal matrix, namely

xk+1 = xk− [Hess∗(i, j)+λkI]−1
∇J (2.36)

with

Hess∗(i, j) = 2
L

∑
k=1

(
∂ ŷtk(xi)

∂x j

)2

(2.37)

represents the Hessian matrix in (2.33b) without the second term. λk is called damping
parameter or relaxation coefficient, which actually adjusts the eigenvalues of Hessian matrix.
When λk is a small value, L-M works like Gauss-Newton method while large value of λk

results in a gradient descent like method. The choice of λk in each iteration is simply by
multiplying or dividing a certain multiples of the last iteration in Abdelhedi et al. [2016].
For more information about the best choice for the damping parameter, see Transtrum and
Sethna [2012].

2.4 Nonlinear Observers with Continuous-Discrete Model

As we know, the dynamics of most engineering systems are naturally in continuous time (CT),
such as trajectories of vehicles, flow of electric current etc. It is therefore more convenient
and accurate to modeling the physical processes in continuous time by nonlinear ordinary
differential equations (ODEs). However, observations or measurements are usually taken
by sampling at discrete time (DT) instants since digital sensors are commonly used for
engineering systems in practice. For this reason, a significant amount of observer designs
has been investigated in the literature based on continuous-discrete (CD) modeling over the
past few decades, where the dynamic for systems is expressed based on CT model and the
measurement is described through DT modeling.

Early years, Jazwinski [Jazwinski 1970] presented a CD Kalman filter to deal with the
filtering problem for CT stochastic nonlinear systems with discrete measurements. Then,
Deza et al [Deza et al. 1992] developed the CD high-gain observer with a corrected gain
obtained through the integration of CD Riccati equation. Inspired by these earlier works,
a large number of papers have been published in recent decades, focusing on CD model
based nonlinear observer design subject in both theoretical and practical applied aspects. For
instance, a CD observer is designed in Ali et al. [2016] for the Electro-Hydraulic Actuators
(EHA) system subject to mechanical and hydraulic disturbances. Ling and Kravaris [Ling
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and Kravaris 2019] developed a robust nonlinear CD observer to deal with the multi-rate
sampling measurements by building an inter-sample predictor, which has been proved robust
with respect to perturbations and inherits all the good properties of the CT implementation
as long as the maximum sampling period does not exceed a certain threshold. An efficient
linear matrix inequalities (LMIs)-based tool was built in Dinh et al. [2015] to solve the
problem of observer synthesis for a class of globally Lipschitz systems in small dimensions.
In addition, it is worth mentioning here that there are several research scholars in France
whose works have been realized on observer synthesis based on CD model over years. Their
relative researches widely include from interval observer design [Mazenc and Dinh 2014],
nonlinear observer design [Farza et al. 2014, Mazenc et al. 2015, Farza et al. 2018] to system
stabilization [Mazenc and Fridman 2014, Mazenc and Fridman 2016], observer synthesis for
systems with delayed inputs or measurements [M’Saad and Farza 2009, Tréangle et al. 2019,
Mazenc and Malisoff 2020].

Based upon the aforementioned researches of CD nonlinear observer synthesis and taking
into consideration our intention of diagnostic application, there is no doubt that our interests
in this thesis will be focused on the CD model as well, more precisely, the mathematical
model of the systems considered in our work will be represented by CD model.

2.5 Fault Diagnosis

There are countless literatures and surveys focusing on fault diagnosis [Isermann 1984, Frank
1987; 1990, Frank and Ding 1997, Isermann 2005, Blanke et al. 2006, Ding 2008, Wang et al.
2013, Termeche et al. 2018]. In this section, we intend to introduce some basic but necessary
definitions and notations of fault diagnosis, as well as the general diagnostic steps. However,
one may immediately realize by examining the literatures that the notations or terminology
of this domain is not coherent. The definitions and notations about fault diagnosis given
in this thesis are suggested by the IFAC (International Federation of Automatic Control)
SAFEPROCESS1 Technical Committee [Van Schrick 1997, Isermann and Ballé 1997].
Without being exhaustive, the generalized fault detection and isolation (FDI) method based
on analytical redundancy will also be briefly presented, together with some observer-based
diagnosis approaches at the end of this section.

1https://tc.ifac-control.org/6/4/terminology/terminology-in-the-area-of-fault-management

20

https://tc.ifac-control.org/6/4/terminology/terminology-in-the-area-of-fault-management


Chapter 2 On Some Nonlinear Observers (NLOs) and Fault Diagnosis

2.5.1 Basic definitions / notations and general diagnostic procedure

According to Isermann and Ballé [1997], the engineering terminology fault is defined as “An
unauthorized deviation of at least one characteristic property or parameter of the system from
the acceptable / usual / standard condition”.

As shown in Figure 2.2, one of the most common fault classification is given by the aim
of fault tolerant control [Blanke et al. 2006] as

• Actuator faults: faults that affect (interrupt or modify) the system control inputs.

• Sensor faults: such faults introduce substantial errors to sensor readings.

• Plant faults: faults that change the dynamical I/O properties of systems.

Real System SensorsActuators

Physical Process

u(t)

Actuator faults Sensor faults

Plant faults

Parameter variations;

Noise

y(t)

Figure 2.2: Distinctions of different faults types

Note that a fault modifies or changes the performance (for example: operation mode) of
the component in an unacceptable way. It is worth knowing that through certain fault-tolerant
control, the faulty system may be able to stay operational even with the presence of fault.
In the meantime, another notation failure, which is easily confused with fault, is defined in
Isermann and Ballé [1997] as: A permanent interruption of a system’s ability to perform a
required function under specified operating conditions. Unlike a fault, a failure interprets the
incapability in functional level, which means a system or component is not able to achieve its
function and then must be shut off. Apparently, a failure is an irrecoverable event. In order to
understand the two notations better, it may be useful to recall that one important role of fault
tolerant control is to prevent a fault from causing a failure at the system level.

Let us continue to see what the general diagnostic steps are in order to perform fault
diagnosis. As Isermann stated in Isermann and Ballé [1997], fault diagnosis consists of
determining the type, amplitude, location and occur time of the fault. The diagnostic
procedure follows with fault detection, isolation and identification:

• Fault detection: determine whether there occurs a fault or not; if yes, determine the
time instant of fault occurrence. This step is very important since early fault detection
can possibly prevent the system from a catastrophic failure.
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• Fault isolation: determine in which component the fault is. This step aims to locating
the fault, which means to find out the possible fault candidate(s) that can explain the
undesired behavior of system. Sometimes there is only one unique fault candidate,
unfortunately this case is not always possible. Then the objective of this step need to
get a possible fault set.

• Fault identification and estimation: identify the fault type and maybe estimate the
fault magnitude. This step is also used to see how severe the fault is, then decide
whether to perform fault accommodation or to replace the faulty component directly.

Based upon the above general diagnosis procedure, various approaches and researches
have been proposed then developed during the last two decades. All these fault diagnosis
methods can be broadly categorized into two classes: model-based methods and data driven
methods [Wang et al. 2013]. With no doubt, our contribution lies in the first class, more
specifically, observer-based FDI approach using analytical redundancy, which is going to be
detailed in next subsection.

2.5.2 Generalized fault diagnosis methods using analytical redundancy

As interpreted in Venkatasubramanian et al. [2003], the model-based diagnostic methods
can still be classified into two categories: qualitative and quantitative. We currently show no
interest to the former category in this thesis. On the contrary, the quantitative one is what we
will focus on. Moreover, as most of the quantitative model-based approaches have used, the
general input-output state-space model will be investigated in this thesis.

In the domain of automatic control, different FDI methods may use different kinds of
dynamical models or might have different assumptions regarding the available measurement
information. However, these approaches all follow one common principle: consistency check
[Blanke et al. 2006]. The inconsistency between the actual system behavior and the expected
nominal behavior might show a fault potential. Therefore, some form of redundancy is
required in order to check for consistency. Actually, hardware redundancy and analytical
redundancy are two kinds of redundancies that have been usually used in practical. The
former one asks for multiple hardware equipments (mostly sensors), which has been applied
in mission and safety-critical systems such as digital fly-by-wire flight systems and nuclear
reactors [Kratz 1991, Goupil 2011, Hao and Kinnaert 2017]. The analytical redundancy on
the other hand utilize a mathematical model of the targeted system in cooperate with certain
estimation techniques [Hwang et al. 2010]. The generalized architecture of FDI methods
based on analytical redundancy is shown in Figure 2.3, which is inherited from Isermann
[1984] and Frank [1990]. Note that there are two major techniques within the framework of
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model-based FDI methods: state estimation (parity space approach, observer or filter) and
parameter estimation. Eventually, these methods all end up by generating an “indicator”,
either a residual or the parity. This indicator is exactly the result of the inconsistency check
that we have mentioned before.

The path where our contributions will go through is noted in blue in Figure 2.3, the
related fault diagnosis procedures is equivalently remarked in green on the right side of
Figure 2.3. Observer-based FDI methods will be briefly but accordingly summarized in
the next subsection. As for the rest of approaches such as parity space method, parameter
estimation and filter, please refer to Chow and Willsky [1984], Isermann [1991], Kinnaert
[2003], Almasri et al. [2020] and the references therein.
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Figure 2.3: Generalized architecture of FDI by analytical redundancy [Isermann 1984]
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2.5.3 Observer-based fault diagnosis methods

As model-based FDI methods received considerable attention, observer-based approach is the
most extensively used one among model-based fault diagnosis for decades [Chen et al. 1996,
Hammouri et al. 1999, Shields 2005, Zhang et al. 2013]. The consistency check indicator in
this case is what we usually called residual, which represents the difference between estimate
measurements and the real ones collected through the output of real system. Observer-based
FDI method has been widely used in many fields such as PEM fuel cell [Bougatef et al. 2020],
heat-exchanger/reactor system [Han et al. 2019], continuous stirred tank reactor (CSTR) [Li
et al. 2018], induction motor [Toumi et al. 2012, El Merraoui et al. 2020] etc. Among all
these observer-based applications, there includes unknown-input observer (UIO)-based fault
diagnosis, adaptive observer (AO)-based fault diagnosis, sliding-mode observer (SMO)-based
fault diagnosis etc [Zhang et al. 2016a].

UIO-based fault diagnosis methods play a significant role since the unknown input (UI)
can represent modeling uncertainties, perturbations, faults, etc [Marx et al. 2019], which a
physic system may commonly include. Over past decades, UIOs design for linear systems
has been developed and applied to fault diagnosis by a lot of researchers or scientific group
[Hou and Muller 1994, Johnson et al. 2018, Zhang et al. 2016b, Tan et al. 2008]. As for
nonlinear UIO-based fault diagnosis, Yang et al. presented an approach for actuator FDI
by a designed nonlinear UIO with linearized error dynamics [Yang and Saif 1996]. A new
development based on decomposition techniques are introduced in Koshkouei et al. [2011],
which is constrained by certain conditions. L. Meyer et al. propose in Meyer et al. [2018] an
interval UIO by using the derivative of the output vector under some existence assumptions,
which also intends to separate the UI from interval error bounds. Meanwhile, Zhang et al.
[Zhang et al. 2014] have managed to designed a full-order and reduced-order UIO for one-
side Lipschitz system by the Lyapunov-based linear matrix inequality (LMI) method, which
the asymptotic convergence is guaranteed. In Koenig [2006], an algebraic method is used to
design an observers for nonlinear descriptor systems in presence of UI. As summarized in
Alenezi et al. [2019], the existing UIO design methods can be divided into two categories: (1)
perform state estimation despite the existence of UI (structural decoupling techniques); (2)
estimate both state and UI simultaneously via an augmented observer with some assumptions
on the dynamics of UI. In this thesis, our contribution will take a place in the latter category
in order to perform actuator fault estimation.

As examined in [Heffes 1966, Toda and Patel 1978], observer-based (all model-based
methods) diagnosis method will be affected to divergence due to the accumulation of model-
ing uncertainties. Furthermore, state estimation based on infinite memory (i.e. all the process
history) may result in the insensitivity to recent measurements which might have the clues
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of a fault in incipient stage [Graton et al. 2014]. Thus, the corresponding researches like
fading filter [Sorenson and Sacks 1971] and finite memory observer are naturally explored.
Finite memory observer (FMO) was first proposed by Medvedev [Medvedev and Toivonen
1992] for linear system in the deterministic framework, which indicates that this observer
is extremely efficient for state estimation. Afterwards, the robustness and sensitivity of this
approach were addressed by Nuninger [Nuninger et al. 1998] and Graton [Graton et al. 2014].
Researchers in Kratz’s team have then continued to synthesize this observer in fault diagnosis
of linear system [Thuillier et al. 2018] and hybrid system [Kajdan et al. 2006]. All these
previous researches of finite memory observer for linear systems reveal that this specific
moving horizon technique provides a great potential in state estimation as well as in fault
diagnosis. Well, this is how this moving horizon technique has successfully attracted our
attention and then became the foundation of our contribution in this thesis.

2.6 Conclusion

In this chapter, after briefly recalling the observation problems of nonlinear systems followed
by different observability definitions and observability rank condition, we then passed to
present some typical optimization-based observer synthesis for continuous-time nonlinear
systems using moving horizon techniques, such as Newton’s method based and least square
method based. However, it should be noted that this bibliography review is not exhaustive
but accordingly introduced. Meanwhile, the researches on nonlinear observer design with
continuous-discrete model are being reviewed in order to see which type of model is com-
monly used for the application-oriented observer synthesis. At the end part of this chapter,
the basic but necessary definitions and procedures of fault diagnosis are established together
with a brief review of the observer-based fault diagnosis methods.

Through the studies of different types (algorithm-wise or application-wise) of nonlinear
observers, we realize that among these existing methods, “half” of them have a theoretical
significance but are really hard to apply in practical while the other “half” are ale to be well
applicable but show no theoretical significance. Indeed, the nonlinear observer design still
has a long way to go and luckily we are going to begin our first step on this road in next
chapter. It may be a small step, at least we have already begun.
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Chapter 3
Nonlinear Continuous-Discrete Finite
Memory Observer (CD-FMO) Design

“If we knew what it was we were doing, it would not be called research, would it?”
- Albert Einstein
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3.1 Introduction

Résumé en français :

Nous venons de voir au chapitre précédent que l’observateur joue un rôle important dans
la réalisation d’un diagnostic performant. L’évolution technologique et numérique permet
des communications et des interactions de plus en plus nombreuses entre les différents
composants constituant les processus industriels, ou systèmes industriels, qui deviennent
ainsi de plus en plus complexes. Il est aujourd’hui très important de pouvoir assurer un
fonctionnement efficace à ces processus, c’est-à-dire assurer le diagnostic de défaut. Ce
besoin de diagnostic sûr est devenu un problème important pour les processus industriels ainsi
que un sujet de recherche à la mode. Inspiré d’approches existantes, nous allons concevoir
dans ce chapitre un observateur non linéaire pour une classe de systèmes non linéaires
modélisés par un modèle continu-discret (CD) en présence de bruit de processus et de bruit de
mesures. L’observateur développé sera construit sur la méthodologie réalisée pour le système
linéaire ayant abouti à la conception de l’observateur à mémoire finie (FMO) [Nuninger et al.
1998]. Nous démontrerons les propriétés de l’erreur d’estimation dans le cas déterministe
alors que les mêmes études pour le cas stochastique seront réalisées par simulations de Monte
Carlo (MC). La stratégie du choix de la longueur de la fenêtre d’observateur sera également
donnée en fonction de la variance de l’erreur d’estimation. Concernant l’application, les
résidus classiques sont générés pour implémenter la détection des défauts par l’algorithme
de la somme cumulée (CUSUM), qui permet de détecter efficacement de petites dérives
sur la moyenne. Finalement, un banc d’observateur est utilisé pour réaliser la localisation
des défauts capteurs et/ou défauts actionneurs pour un bras robotique. Les résultats des
simulations montreront que la méthode proposée fournit une détection de défaut assez
efficace. La robustesse de cet observateur non linéaire vis-à-vis des bruit de mesure est
également étudiée dans ce chapitre.

3.1 Introduction

We can see from the previous chapter that state observer plays an important role in fault
diagnosis over the past decades. As the real engineering systems turn into more and more
complex, not only the corresponding demand of observer design is growing but also the fault
diagnosis for complex nonlinear systems have gained increasing consideration. Inspired
by these existing approaches, we aim in this chapter to develop a continuous-discrete finite
memory observer (CD-FMO) for a class of nonlinear dynamical systems modeled by ordinary
differential equations (ODEs) with discrete measurements. The nonlinear systems under
consideration are at least locally Lipschitz, which guarantees the existence and uniqueness
of solution at each time instant. The proposed nonlinear CD-FMO uses a finite number of
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collected measurements to estimate the system state in the presence of measurement noise.
Besides, a one-step prediction algorithm incorporated with an iterative-update scheme is
performed to solve the integral problem caused by system nonlinearity, and an analysis of the
numerical integration approximation error is given. The properties of estimation performance
have been further proved in deterministic case and been analyzed by Monte Carlo (MC)
simulation in stochastic cases. It’s worth noting that the presented method has a finite-time
convergence while most nonlinear observers are usually asymptotically convergent. Another
advantage is that the proposed CD-FMO has no initial value problem. For the application
purpose, residuals are generated to implement fault detection cooperated with Cumulative
Sum (CUSUM) algorithm, while a bank of CD-FMOs is adopted to realize fault isolation for
different sensor and actuator faults of the considered nonlinear robotic arm. The robustness
and effectiveness of the proposed approach are illustrated via the simulation results.

3.2 Nonlinear CD-FMO Design

At first, a description of the nonlinear system is made, then the design of the proposed
nonlinear CD-FMO together with an iterative update algorithm for numerically approximating
integration due to the nonlinearity of system. In addition, we also give a detailed proof of the
finite-time convergence. The criteria of how to choose the window length is also stated in the
end of this section.

3.2.1 Problem statement

We consider a class of continuous-discrete nonlinear systems described by the following
state-space equations:

ẋ(t) = Ax(t)+Bu(t)+Φ(x)+Gω(t) (3.1a)

y(k) =Cx(k)+ v(k) (3.1b)

where x ∈ Rn, y ∈ Rp and u ∈ Rq are continuous state vector, discrete measurement vector
and continuous input vector, respectively. Ts is the sampling period of measurement (i.e.
∃k ∈ N | t = k×Ts). A ∈ Rn×n, B ∈ Rn×q, G ∈ Rn×n and C ∈ Rp×n are known matrices.
The nonlinearity Φ(x) is a nonlinear function with respect to state x. Φ(x) is at least locally
Lipschitz, i.e.

∥Φ(a)−Φ(b)∥ ≤ κ∥a−b∥ (3.2)
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where Lipschitz constant κ > 0. Vectors v and ω represent Gaussian measurement noise
and Gaussian process noise, respectively, and v and ω are independent with the following
properties:

E[ω(t)] = 0 (3.3a)

E[ω(t1)ωT(t2)] = Q ·δ (t1− t2) (3.3b)

E[v(k)] = 0 (3.3c)

E[v(k1)vT(k2)] = R ·δk1,k2 (3.3d)

here δ (·) is Dirac delta function and δi, j is Kronecker delta function. It should be noted
that the continuous-discrete systems like (3.1) naturally exist when continuous process are
measured via digital sensors. Without loss of generality, we are going to present a nonlinear
observer design where the estimation instant is synchronized1 with the measurements instant
since it is exactly what is needed under the background of diagnosis. The proposed CD-FMO
will be detailed in next subsection. Before we start, we introduce the following remark first:

Remark 3.1. The authors in [Kou et al. 1973] have proven that the observability of a
nonlinear dynamical system is a necessary condition that there exists a finite-time observer
for the system.

We are able to conclude from this remark that if we can build a finite-time observer for a
nonlinear system, then this nonlinear system is observable.

3.2.2 Formulation of CD-FMO

Suppose that at each frozen time instant t, the discrete measurements are collected in the
interval [t− τi, t], where τi = i×Ts, and i = 0,1, ...,L−1. Here L is called window length.

Use the square matrix exponential e−At as a factor and integrating (3.1a), we can give the
relation between the states in two different time instant t and t− τi as:

x(t) = eAτix(t− τi)+
∫ t

t−τi

eA(t−θ)Bu(θ) dθ +
∫ t

t−τi

eA(t−θ)
Φ(x(θ)) dθ

+
∫ t

t−τi

eA(t−θ)Gω(θ) dθ

(3.4)

1The proposed nonlinear CD-FMO also works well for the case that the estimation instant is not synchronized
with measurement instant.
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Then, pre-multiply (3.4) by the matrix Ce−Aτi and taking into account the measurement
equation (3.1b) at time instant t− τi, we obtain:

Ce−Aτix(t) = y(t− τi)− v(t− τi)+αt−τi,t +βt−τi,t + γt−τi,t (3.5)

with

αt−τi,t =
∫ t

t−τi

CeA(t−τi−θ)Bu(θ) dθ (3.6a)

βt−τi,t =
∫ t

t−τi

CeA(t−τi−θ)
Φ(x(θ)) dθ (3.6b)

γt−τi,t =
∫ t

t−τi

CeA(t−τi−θ)Gω(θ) dθ (3.6c)

Applying (3.5) with (3.6) for each measurement in the time window [t− τL−1, t], then a
finite number of augmented measurements can be expressed in terms of system state x(t) as
following linear equation:

YL−VL =WLx(t) (3.7)

where

YL =


y(t− τ0)+αt−τ0,t +βt−τ0,t

y(t− τ1)+αt−τ1,t +βt−τ1,t
...

y(t− τL−1)+αt−τL−1,t +βt−τL−1,t

 ;

WL =


Ce−Aτ0

Ce−Aτ1

...
Ce−AτL−1

 ; VL =


v(t− τ0)− γt−τ0,t

v(t− τ1)− γt−τ1,t
...

v(t− τL−1)− γt−τL−1,t

 .

It is straightforward that the noise component VL has zero mean, i.e. E(VL) = 0. Then
the variance matrix P (see Appendix A for detailed presentation) is block symmetric as

P = E
(
(VL−E(VL))(VL−E(VL))

T
)
= E

(
VLV T

L
)

=


S0 S0 · · · S0

S0 S1 · · · S1
...

... . . . ...
S0 S1 · · · SL−1

+


R 0 · · · 0

0 R . . . ...
... . . . . . . 0
0 · · · 0 R


(3.8)
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where the block elements Sk (k , min[i, j] = 0,1, ...,L−1) represent the following integral
calculation [Medvedev 1994]:

Sk =
∫ 0

−τk

CeAsGQGTeATsCT ds

Now, the state estimation x̂(t) at time instant t can be obtained by minimizing the
following cost function for (3.7):

J(x) =
1
2
∥YL−WLx(t)∥2

P−1 (3.9)

with the solution in the sense of least-squares as:

x̂(t) = argmin J(x) =
(
W T

L P−1WL
)−1

W T
L P−1ŶL

= Ω
−1
L W T

L P−1ŶL

(
ΩL ,W T

L P−1WL

) (3.10)

where

ŶL =


y(t− τ0)+αt−τ0,t + β̂t−τ0,t

y(t− τ1)+αt−τ1,t + β̂t−τ1,t
...

y(t− τL−1)+αt−τL−1,t + β̂t−τL−1,t

 (3.11a)

β̂t−τi,t =
∫ t

t−τi

CeA(t−τi−θ)
Φ(x̂(θ)) dθ (3.11b)

It can be seen that the existence condition of x̂(t) in (3.10) is given by the existence of
matrix Ω

−1
L . This condition is then given by the rank of matrix WL, i.e., rank(WL) = n =

dim(x), which is guaranteed by the following assumption:

Assumption 3.1. The pair (A,C) is observable.

According to (3.10)-(3.11), we obtain the analytical form of state estimation x̂(t) for
considered nonlinear systems (3.1). The calculation of two integral terms αt−τi,t and β̂t−τi,t

in (3.11a) are then detailed afterward.

3.2.2.1 Analytical calculation of the integral αt−τi,t

It is obvious to see from (3.6a) that all the elements contained inside the integral are known
and it is easy to have an analytical solution by some useful softwares with symbolic com-
putation such as Maple, Mathematica, etc. If the mathematical expression of input u(t) at
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each instant is unknown, we can still get the solution by putting the element u(t) as a factor
of integral under the assumption that u(t) is sampled as zero-order hold and thus remains
to be constant between two consecutive sampling instants, which is usually true since most
controllers of actual systems are digital computers in practice.

3.2.2.2 Iterative algorithm for solving the integral β̂t−τi,t

In order to compute β̂t−τi,t , we might note that it is impossible to have an exact analytical
solution. Since we can see from (3.11b) that there is the term “Φ(x̂(θ))” in the integral. In
order to analytically calculate β̂t−τi,t , we must know the exact trajectory of “x̂(θ)” between
instant t− τi and t, which unfortunately is what we seek to know (via the estimation x̂(t) in
(3.10)). Hence, a one-step prediction together with iterative-update algorithm is designed to
obtain the approximate solution of β̂t−τi,t by Newton-Cotes formulas [Atkinson 1989].

In each time window [t− τL−1, t], we define the measurement set ZL = {y(t− τi); i =
0,1, · · · ,L−1} and estimation set XL = {x̂(t−τ j); j = 1, · · · ,L−1}. It should be noted here
that there is no case j = 0 since all the elements in X̂L are obtained by previous window and
x̂(t− τ0) = x̂(t) is exactly what we aim to estimate by current window. Therefore, a one-step
prediction of state x at instant t, noted as x̂∗(t), has been performed by using the tangent
slope ˙̂x(t−∆t) with a small time interval ∆t = Ts as:

x̂∗(t) = x̂(t−∆t)+ ˙̂x(t−∆t)∆t

= x̂(t−Ts)+ ˙̂x(t−Ts)Ts

= x̂(t− τ1)+ [Ax̂(t− τ1)+Bu(t− τ1)+Φ(x̂(t− τ1))]Ts

(3.12)

x̂∗(t) is then iteratively updated by (3.10) - (3.11), which makes the final estimation x̂(t) after
all iterations. The iterations are stopped when there is no significant change between two
consecutive iterations or the maximum iteration numbers Nmax has been reached, namely

x̂(t)− x̂∗(t)≤ ε or m≥ Nmax (with acceptable error)

Furthermore, the first-order Newton-Cotes formulas, which yields trapezoidal rule, is
employed in this paper to numerically approximate the integral term β̂t−τi,t in (3.11a). For
the purpose of reducing the massive computing burden in each iteration, we notice from
(3.11b) that β̂t−τi,t can be divided as follows by the Segment Addition Postulate [Nomizu
and Sasaki 1994] for integral calculus:

β̂t−τi,t = β̂t−τi,t−τ1 + β̂t−τ1,t (3.13)
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with

β̂t−τi,t−τ1 =
∫ t−τ1

t−τi

CeA(t−τi−θ)
Φ(x̂(θ)) dθ (3.14a)

β̂t−τ1,t =
∫ t

t−τ1

CeA(t−τ1−θ)
Φ(x̂(θ)) dθ (3.14b)

let
g(x̂(θ)) =CeA(t−τi−θ)

Φ(x̂(θ)) (3.15)

we know that the previous estimation set {x̂(t− τ j)}( j = 1, · · · ,L−1) is unchanged during
each iteration of updating x̂∗(t), which leads to g(x̂(t − τ j)) by (3.15) unchanged. As a
consequence, β̂t−τi,t−τ1 by (3.14a) also remains the same at each iteration. Therefore, as it is
shown in Figure 3.1, we only need to recalculate the term β̂t−τ1,t in (3.13) at each iteration. In
this way, the unnecessary calculation burden caused by iteration can be dramatically reduced
when using Newton-Cotes formulas to calculate the numerical integration.

 1,it t    1,t t
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Time / s

Figure 3.1: Calculation framework of β̂t−τi,t in each interval [t− τi, t]

For the sake of overall understanding, the summarized algorithm of the proposed nonlinear
observer CD-FMO is shown in Algorithm 1.

3.2.3 Estimation property of CD-FMO

Theorem 3.1. If nonlinear system (3.1) satisfies Assumption 3.1, in the case of noise-free
and fault-free, the property of estimation by presented CD-FMO are unbiased

x̂(t) = x(t) t ∈ [L×Ts,+∞)
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Algorithm 1 The implementation of nonlinear CD-FMO algorithm
1: Initialization: at each time instant t, given the iteration threshold ε , the maximum

number of iteration Nmax, the measurement set ZL = {y(t− τi)} with i = 0,1, · · · ,L−1
and the previous estimation set XL = {x̂(t− τ j)} with j = 1, · · · ,L−1.

2: Calculate g(x̂(t− τ j)) for each member in XL by (3.15).
3: Compute integral β̂t−τ j,t−τ1 in (3.14a) by Newton Cotes.
4: One-step prediction: using x̂(t−τ1) to perform a one-step prediction of x(t) via (3.12),

noted as x̂∗(t).
5: Updating by iteration:
6: for each iteration m = 1 : Nmax do
7: Calculate g(x̂∗(t)) with the x̂∗(t) predicted in step 3.
8: Calculate β̂t−τ1,t in (3.14b) by Newton Cotes formulas.
9: Calculate the entire integral β̂t−τi,t via (3.13).

10: Update x̂∗(t) to x̂(t) via (3.10):
11: if x̂(t)− x̂∗(t)≤ ε or m≥ Nmax then
12: Terminate the iteration, go forward to step 17.
13: else
14: Reset m = m+1, x̂∗(t) = x̂(t), return to step 7.
15: end if
16: end for
17: Moving the time window: reset t = t +Ts, and go back to step 1 for next time instant.

Proof. In the case noise-free and fault-free, according to (3.1)-(3.7), the proposed CD-FMO
(3.10) can be rewritten for the deterministic case as following:

x̂(t) =
(
W T

L WL
)−1

W T
L ŶL

= Λ
−1
L

L−1

∑
i=0

{
e−ATτiCT

(
y(t− τi)+αt−τi,t + β̂t−τi,t

)} (3.16)

with

ΛL =W T
L WL =

L−1

∑
i=0

e−ATτiCTCe−Aτi (3.17)

then, as stated in (3.5) and regardless of noise term v(t− τi), y(t− τi) can be given as:

y(t− τi) =Ce−Aτix(t)−αt−τi,t−βt−τi,t (3.18)
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by replacing the term y(t− τi) in (3.16) by (3.18) and taking into account (3.17), we have

x̂(t) = Λ
−1
L

L−1

∑
i=0

{
e−ATτiCT

(
Ce−Aτix(t)−βt−τi,t + β̂t−τi,t

)}
= Λ

−1
L

L−1

∑
i=0

{
e−ATτiCTCe−Aτix(t)

}
+Λ

−1
L

L−1

∑
i=0

{
e−ATτiCT

(
β̂t−τi,t−βt−τi,t

)}
= x(t)+Λ

−1
L

L−1

∑
i=0

{
e−ATτiCT

(
β̂t−τi,t−βt−τi,t

)}
(3.19)

In order to prove Theorem 1, we know that the following equivalence can be obtained
directly:

x̂(t) = x(t) ⇔ ∥x̂(t)− x(t)∥= 0 t ∈ [L×Ts,+∞) (3.20)

from (3.19), the norm of x̂(t)− x(t) can be therefore expressed as follows:

∥x̂(t)− x(t)∥=

∥∥∥∥∥Λ
−1
L

L−1

∑
i=0

{
e−ATτiCT

(
β̂t−τi,t−βt−τi,t

)}∥∥∥∥∥
≤

L−1

∑
i=0

∥∥∥Λ
−1
L e−ATτiCT

(
β̂t−τi,t−βt−τi,t

)∥∥∥ (3.21)

then, based upon (3.6b) and (3.11b), by using Lipschitz condition (3.2), the matrix norm
properties and the triangle inequality for integrals [Rudin 2015], (3.21) can be further derived
as:

∥x̂(t)− x(t)∥ ≤
L−1

∑
i=0

∥∥∥∥Λ
−1
L e−ATτiCT

∫ t

t−τi

CeA(t−τi−θ) [Φ(x̂(θ))−Φ(x(θ))] dθ

∥∥∥∥
≤

L−1

∑
i=0

∫ t

t−τi

∥∥∥Λ
−1
L e−ATτiCTCeA(t−τi−θ) [Φ(x̂(θ))−Φ(x(θ))]

∥∥∥ dθ

≤ L
∫ t

t−τL−1

∥∥∥Λ
−1
L e−ATτL−1CTCeA(t−τL−1−θ) [Φ(x̂(θ))−Φ(x(θ))]

∥∥∥ dθ

≤ L
∫ t

t−τL−1

∥∥∥Λ
−1
L e−ATτL−1CTCeA(t−τL−1−θ)

∥∥∥∥Φ(x̂(θ))−Φ(x(θ))∥ dθ

≤ L
∫ t

t−τL−1

∥∥∥Λ
−1
L e−ATτL−1CTCeA(t−τL−1−θ)

∥∥∥κ ∥x̂(θ)− x(θ)∥ dθ

≤ L
∫ t

L×Ts

∥∥∥Λ
−1
L e−ATτL−1CTCeA(t−τL−1−θ)

∥∥∥κ ∥x̂(θ)− x(θ)∥ dθ

≤ 0+L
∫ t

L×Ts

∥∥∥Λ
−1
L e−ATτL−1CTCeA(t−τL−1−θ)

∥∥∥κ ∥x̂(θ)− x(θ)∥ dθ

(3.22)
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then, the Gronwall inequality [Bellman 1943] yields

∥x̂(t)− x(t)∥ ≤ 0 · e
∫ t

L×TsL
∥∥∥Λ
−1
L e−ATτL−1CTCeA(t−τL−1−θ)

∥∥∥κ dθ

≤ 0
(3.23)

hence,
∥x̂(t)− x(t)∥ ≤ 0 ⇒ ∥x̂(t)− x(t)∥= 0 ⇒ x̂(t) = x(t)

The proof is completed. �

Remark 3.2. Theorem 3.1 states that x̂(t) = x(t) is always true when t ≥ L×Ts, that is

(1) The proposed CD-FMO is a dead-beat observer in the case of noise-free and fault-free,
the finite-time convergence is L×Ts (one window-size).

(2) There is no estimation when t < L× Ts. In other words, there is no initial value
problem (IVP) for the presented nonlinear observer, which gives us another advantage
for application in physics or other sciences.

Remark 3.3. It is clear that Theorem 3.1 shows the unbiased estimation property of the
proposed CD-FMO in deterministic case. In stochastic case, namely in the presence of the
process noise and measurement noise, the unbiased property

E(x̂(t)− x(t)) = 0 or E(x̂(t)) = x(t) (3.24)

can also be demonstrated in the similar manner, see Appendix B for more details.

3.2.4 Analytical choice of the window length L

As it is shown in (3.10) and (3.11), at each time instant t, the state estimation x̂(t) is related to
the window length L. Thus, it is necessary to interpret how to select an appropriate window
length L. Here we are going to explain this by defining the “minimal length Lmin" and
“maximal length Lmax", as it has been shown in [Graton et al. 2014].

3.2.4.1 Minimal length Lmin

The minimal window length Lmin is chosen to assure the existence of the proposed CD-FMO
by (3.10). As we have already discussed before, this condition is then given by the rank
of matrix WL, i.e., rank(WL) = n = dim(x), which is already guaranteed by Assumption
3.1. However, Lmin is just used to valid the Assumption 3.1, it is definitely not the optimal
window length, as showed in the latter subsection.
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3.2.4.2 Maximal length Lmax

Here it should be noticed that, theoretically speaking, there is no maximum window length
Lmax for CD-FMO. The greater the length L, the better the estimation x̂(t), which is reasonable
since the amount of measurement information augments as the window length increases.
However, after a certain size, the contribution of additional information by increasing window
length is not significant enough to decrease estimation error. Therefore in this chapter, we
take “the maximum eigenvalue of covariance matrix Σx̃” of estimation error x̃ = x̂− x as an
indicator to select maximum window length Lmax. Given a selected threshold of estimation
error tolerance ϒTol, Lmax is defined as:

Lmax = argmin
L
{max(eig(Σx̃))≤ ϒTol} (3.25)

which is the smallest window length when the largest eigenvalue of Σx̃ is smaller than error
tolerance threshold ϒTol. This part will be further analyzed in next section with an illustrative
example.

3.3 Illustrative Example: a Single-link Robot

In this section, we consider a nonlinear single-link robotic arm, which has an elastic joint
rotating in a vertical plane [Zhang et al. 2008]. The nonlinear state-space model is described
here as:

ẋ(t) = Ax(t)+Bu(t)+Φ(x)+Gω(t)

y(k) =Cx(k)+ v(k)

with x = [x1 x2 x3 x4]
T. Here, components x1 and x3 are the displacement of link and

rotor respectively while components x2 and x4 represent the velocity. The measurement
noise v ∼N (0,R) and the process noise ω(t) = 0. The initial conditions for the robotic
arm system is x(0) = (1 1 1 1)T. The input control u(t) = 2sin(2t), which is the torque
provided by the motor. All the other related matrices are given as:

A =


0 1 0 0
− k

Jl
− fl

Jl

k
Jl

0

0 0 0 1
k

Jm
0 − k

Jm
− fm

Jm

; B =


0
0
0
1

Jm

; Φ(x) =


0

−mgl
Jl

sinx1

0
0

;
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C =

 1 0 0 0
0 0 1 0
0 0 0 1

; R =

 4×10−4 0 0
0 4×10−4 0
0 0 9×10−4

.

the simulation scenario is performed according to the parameters shown in Table 3.1.

Table 3.1: Physical parameters (in SI units)

elastic constant k = 2 link mass m = 4

viscous friction coefficient for motor fm = 1 motor inertia Jm = 1

viscous friction coefficient for link fl = 0.5 link inertia Jl = 2

mass center l = 0.5 link inertia gc = 9.8

3.3.1 Selection of the window length L

As shown in (3.25), we take “max(eig(Σx̃))” as an indicator to select Lmax. It can be seen
from Figure 3.2 that the maximum eigenvalue of Σx̃ is asymptotically convergent as window
length L increases, which indicates that the estimation performance provided by the presented
CD-FMO well improves while the window length augments. After window length L1 = 13,
the decrease of the curve is much less significant, which is normal since there is few additional
information can be provided by increasing the window length. This is also why the proposed
observer is called “finite memory”. Nevertheless, starting from L2 = 20, the curve shows a
slight trend of going up, which is a normal phenomenon because the approximation error
of Newton-Cotes formulas (used in (3.11a) for integral term β̂t−τi,t) will also get bigger as
L increases. In order to get a better diagnosis performance, we choose L = 15 for all the
analysis and diagnosis later in this chapter, which is well between L1 and L2.
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Figure 3.2: Convergence of covariance Σx̃ with window length L increases
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3.3.2 Numerical integration approximation error analysis

In order to perform state estimate via (3.10), we choose trapezoidal rule to approximate the
integral term β̂t−τi,t in (3.11a), so it is necessary to give the approximation error bound. We
recall the following lemma:

Lemma 3.1. Given a definite integral I =
∫ b

a f (x)dx, the approximation error of trapezoidal
rule is[Atkinson 1989]

O(I) =−(b−a)3

12
f ′′(η), η ∈ [a,b]

We can have the following expression of x̂(t) by rewriting (3.10),

x̂(t) =
(
W T

L P−1WL
)−1

W T
L P−1ŶL

= Λ
−1
L

L−1

∑
i=0

e−ATτiCTR−1
(

y(t− τi)+αt−τi,t + β̂t−τi,t

)
together with (3.11b) and (3.15), we extract the integral term related to β̂t−τi,t and noted as:

Bt−τi,t = Λ
−1
L

L−1

∑
i=0

e−ATτiCTR−1
(∫ t

t−τi

g(x̂(θ)) dθ

)
we can see from Bt−τi,t that the calculation of approximation error by using trapezoidal rule
can be divided into two steps:

1. Calculate the upper approximation error bound |O(Int)| with Int =
∫ t

t−Ts
g(x̂(θ)) dθ .

2. Calculate cumulative error bound Γnc as i varies in the summation ∑
L−1
i=0 .

For Step 1, the bound of approximation error O(Int) can be given by Lemme 3.1 as:

|O(Int)| ≤ T 3
s

12
max

θ∈[t−Ts,t]

∣∣g′′(x̂(θ))∣∣
from the expression (3.15), we can get the first and second derivatives of g as following:

g′(x̂(θ)) =
dg(x̂(θ))

dθ
=−CeA(t−τi−θ)AΦ(x̂(θ))+CeA(t−τi−θ)dΦ(x̂(θ))

dx̂
dx̂(θ)

dθ

g′′(x̂(θ)) =
d2g(x̂(θ))

dθ 2 =
dg′(x̂(θ))

dθ
=CeA(t−τi−θ)A2

Φ(x̂(θ))

−2CeA(t−τi−θ)A
dΦ(x̂(θ))

dx̂
dx̂(θ)

dθ
+CeA(t−τi−θ) d

dθ

(
dΦ(x̂(θ))

dx̂
dx̂(θ)

dθ

)
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By calculating the norm of g′′ together with the parameters defined at the beginning of
this section, we have

|O(Int)| ≤ 2.5228×10−6 , ζt−Ts,t

For Step 2, we can directly get the cumulative error bound Γnc as i varies in the summation

∑
L−1
i=0 as follows:

Γnc ≤ 0+ζt−Ts,t +2ζt−Ts,t + · · ·+(L−1)ζt−Ts,t

=
L(L−1)

2
ζt−Ts,t

= 2.6489×10−4 (L = 15)

meanwhile, the maximum element of standard deviation (SD) σ of measurement noise, noted
as σmax, is given by:

σσ
T = R ⇒ σ = R1/2 =

 2×10−2 0 0
0 2×10−2 0
0 0 3×10−2

 ⇒ σmax = 3×10−2

It is obvious that Γnc≪ σmax, which means that the approximation error for numerical
integration is drowned in measurement noise. As a result, we can conclude that our estimation
is correct with window length L = 15.

3.3.3 State estimation performance

It can be clearly seen from Figure 3.3 that four-dimensional system state x is reconstructed
correctly under the presence of measurement noise, the proposed CD-FMO provides great
performance of state estimation. Besides, Figure 3.3 also depicts how the accuracy of state
estimation getting much better as window length L getting longer, which is another consistent
result with respect to Figure 3.2.

3.3.3.1 Unbiased estimation property analysis in stochastic case

The unbiased estimation property of presented CD-FMO in stochastic case is evaluated by
root-mean-square error (RMSE) criteria together with monte carlo (MC) simulation, where
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Figure 3.3: State estimation x̂ with different window length L

RMSE is defined as:

RMSE =

√√√√ 1
Nmc

Nmc

∑
i=1

(x̂(i)− x)2

here, Nmc represents MC simulation times. The state estimation by running multiple MC
simulation is therefore defined in the average sense:

E(x̂(t)), x̂mean =
1

Nmc

Nmc

∑
i=1

x̂(i)

Let Nmc take the values 100 and 500 respectively. By taking the component x1 as an
example, it can be seen from Figure 3.4 that during the MC simulations, the estimation upper
and lower bounds of x̂ is quiet small, which means that the state estimation by proposed
CD-FMO varies within a small range around real state x in the presence of measurement
noise. Moreover, the estimation x̂mean obtained with Nmc = 500 is closer to true value than
the one by Nmc = 100, which is logical since MC simulation performed a series of repeated
random sampling of Gaussian measurement noise, the larger the sampling size, the closer the
mean value of noise is to zero.

The unbiased estimation property has also been examined by the RMSE with different
Nmc in Figure 3.5. We can see that the RMSEs are close to zero, meanwhile the RMSE of
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Figure 3.4: Upper (lower) bound and mean of x̂1 between Nmc = 100 and Nmc = 500

Nmc = 500 is smoother than the one Nmc = 100. This means that the results obtained by two
criteria are consistent.
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Figure 3.5: RMSE comparison between Nmc = 100 and Nmc = 500

To summarize what has been mentioned above, we have established by monte carlo
simulation that state estimation given by the presented nonlinear observer CD-FMO in the
stochastic case is also unbiased, i.e. E(x̂(t)− x(t)) = 0. This property provides a good
precondition for the fault diagnosis after-step.
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3.3.3.2 Robustness analysis with respect to measurement noise

We are going to analyze the robustness of CD-FMO against measurement noise through three
scenarios shown in Table 3.2. Measurement noise varies from σ to 0.5σ and 1.5σ (±50%)
respectively while the parameter setting of observer doesn’t change, which means that the
proposed observer (3.10) has an inconsistency between y(·) in (3.11a) and noise parameter
P.

Table 3.2: Different scenarios of SD for measurement noise

Measurement noise settings CD-FMO parameter settings
Scenario 1 SD = 0.5σ SD = σ

R = σ2

P = diag(R ,R , · · · ,R)
Scenario 2 SD = σ

Scenario 3 SD = 1.5σ

By taking x1 as an example, it can be seen from Figure 3.6(a) that the state estimations x̂1

can still well follow the trajectory of true state x1 even if the measurement noise has ±50%
variations, which shows the robustness of CD-FMO with respect to measurement noise. In
addition, we can see from the RMSEs in Figure 3.6(b) that state estimation of Scenario 1 is
better than Scenario 2. It is logical because of the following reason: we have chosen L = 15
for the considered robotic arm system.
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Figure 3.6: Robustness analysis in different measurement noise scenarios

In fact, CD-FMO with L= 15 in Scenario 2 has already performed a little bit role of “filter”
for this nonlinear system. As shown in Figure 3.2, when L = 15, max(eig(Σx̃)) = 0.0157,
while the minimum noise level in this case (minimum non-zero value of σ ) is 0.02, i.e.
σmin = 0.02. The fact of max(eig(Σx̃))≤ σmin means that the largest dispersion of estimation
is still smaller than the minimum noise level, which is the performance of a filter. Accordingly,
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when we use the same window length for an even more lower noise level, i.e. Scenario 1, the
presented CD-FMO will still perform as a filter, maybe filter even more. That is why we get
a better estimation even when CD-FMO “over-estimate” the real noise level.

3.4 Application to Fault Diagnosis

In this section, we are going to apply the proposed CD-FMO to perform the fault diagnosis
of the considered nonlinear single-link robotic arm system. In order to deal with all faults in
the same simulation launch, we suppose that each fault only occurs during certain period
[Tfs,Tfe], therefore we use the following function to characterize the fault duration:

Π(t,Tfs,Tfe) = H(t−Tfs)−H(t−Tfe)

where H(·) is Heaviside step function. In this paper, we injected two kinds of typical faults:

1. Sensor bias: a sudden bias is one of the abrupt sensor faults, which is modeled as:
yf = y+Π(t,Tfs,Tfe)I∆

• A bias on y1 (F1): I = Iy1 = [1 0 0]T; ∆ = ∆y1 = 0.15; fault period [Tfs,Tfe] =

[0.5s,1.0s].

• A bias on y2 (F2): I = Iy2 = [0 1 0]T; ∆ = ∆y2 = 0.15; fault period [Tfs,Tfe] =

[2.0s,2.5s].

• A bias on y3 (F3): I = Iy3 = [0 0 1]T; ∆=∆y3 =−0.15; fault period [Tfs,Tfe] =

[3.5s,4.0s].

2. Actuator fault: the actuator fault is modeled as: uf = Π(t,Tfs,Tfe)(1− ρ)u where
ρ ∈ [0,1] describes control loss level. ρ = 0 means there is no actuator fault whereas
ρ = 1 signifies that the control is completely lost.

• Actuator fault (F4): ρ = 0.6; [Tfs,Tfe] = [5.0s,5.5s].

3.4.1 Fault detection

In this section, residuals are chosen as fault indicators and it is defined as:

r(t) = y(t)−Cx̂(t)

with t = k×Ts, which checks the consistency of real measurements of system and measure-
ments estimated by the proposed CD-FMO. We use both residual r and the Cumulative Sum
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(CUSUM) of r for the reason that CUSUM algorithm is well-known as the efficiency of
detecting small change in the mean of a sequence. As introduced in [Montgomery 2013]
in the case of control chart case, the upper CUSUM G+(k) and lower CUSUM G−(k) of
residuals sequences r(k) (with mean µr and SD σr) are defined as:G+(k) = max{0,G+(k−1)+ r(k)−µr−K}

G−(k) = min{0,G−(k−1)+ r(k)−µr +K}

with the starting value G+(0) = G−(0) = 0. The detection criterion is:

G+(k)> H or G−(k)<−H

In order to quickly detect the small shift in mean, the parameters of CUSUM algorithm is
set as: K = 1

2σr and H = 3σr. In the presence of measurement noise, CUSUM algorithm
can improve the performance of diagnosis. For example in Figure 3.7(a), the change of
residual r1 is not very obvious during fault F3 occurs, but it can be clearly seen from the
CUSUM of r1 in Figure 3.7(b). CUSUM can also help to detect the incipient fault such as
F4 more quickly, as shown in Figure 3.7(a) and Figure 3.7(b). Fault signature of residual
r and fault detection instant Td with respect to different faults are therefore given in Table
3.3. These results reveal that the proposed CD-FMO has a good and effective performance in
both sensor and actuator fault detection for the single-link robotic arm.

Table 3.3: Fault signature for different faults

Different
Faults

Start Instant Tfs

(vertical dash line)
End Instant Tfe

(vertical solid line)
Signature

Detect Instant Td
r1 r2 r3

F1 0.5s 1.0s 1 0 1 0.5s
F2 2.0s 2.5s 0 1 1 2.0s
F3 3.5s 4.0s 1 0 1 3.5s
F4 5.0s 5.5s 1 0 1 5.05s

3.4.2 Fault isolation

It can be obviously seen from Table 3.3 that fault F2 is isolable as it has a unique fault
signature [0,1,1]. On the other hand, the remaining three faults F1, F3 and F4 can not be
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isolated because of the identical fault signature [1,0,1]. Hence in this subsection we aim
at solving this problem by using Generalized observer scheme (GOS) [Frank 1987] with
another additional observer (CD-FMO 2), while CD-FMO 1 is the same as the previous part.
The structure of a bank of CD-FMO is illustrated in Figure 3.8. CD-FMO 2 is constructed by
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Figure 3.7: Residual r and the CUSUM of r

choosing subset measurements y1 and y3, then the corresponding model parameter changes
from C to C13, where C13 is composed by the first and third rows of C. Here, state estimation
provided by CD-FMO 2 is noted as x̂′, therefore the residual in this case is

r′(t) = y(t)−Cx̂′(t)
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Figure 3.8: The scheme for a bank of CD-FMO

The results of r′ are shown in Figure 3.9(a)-3.9(c), respectively. It shows that all the faults
can be detected by residual r′2 while F1 and F3 are also detected by r′1 and r′3. By comparing
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Figure 3.9: GOS of CD-FMOs and residual r′ of CD-FMO 2

the fault signature obtained by CD-FMO 1 and CD-FMO 2 in Table 3.4, we can obviously
see that the three indistinguishable faults F1, F3 and F4, which have identical fault signature
[1,0,1] by CD-FMO 1, become isolable with [1,1,0], [0,1,1] and [0,1,0] by CD-FMO 2. It
means that by applying the GOS structure, the presented CD-FMO can also accomplish the
objective of fault isolation effectively.
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Table 3.4: Fault signature by CD-FMO 1 and CD-FMO 2

Different Faults
Fault Signature

CD-FMO 1
Fault Signature

CD-FMO 2
r1 r2 r3 r′1 r′2 r′3

A bias on y1 (F1) 1 0 1 1 1 0
A bias on y2 (F2) 0 1 1 0 1 0
A bias on y3 (F3) 1 0 1 0 1 1

Actuator fault (F4) 1 0 1 0 1 0

3.5 Conclusion

In this chapter, a nonlinear observer has been proposed to perform state estimation and fault
diagnosis for a class of continuous-discrete nonlinear dynamical systems. The performance
of state estimation is excellent and can be significantly improved by choosing a larger window
length. Also the presented approach has a finite-time convergence, which is a great advantage
from the perspective of FDI. Simulations have illustrated that the proposed method provides
a quite effective fault detection for sensor and actuator faults, which can also show the
robustness of this nonlinear observer against the measurement noise. Meanwhile, by using
the bank of observers, we are able to deal with the isolation of faults with identical fault
signature. It is very worth noting that the proposed observer structure can also be apply to
the following cases:

• Estimation instant is not synchronized with measurement instant, i.e. we are able to
obtain the state estimation x̂(t) with t ∈ (kTs,(k+1)Ts);

• The sampling period of measurement is not a constant, i.e. Ts ̸= constant.

The work in this chapter has been published in Zhang et al. [2020]. During the devel-
opment and synthesis of CD-FMO in this chapter, the following questions have been also
raised in our mind as the perspectives:

1. Can we further perform fault estimation for the actuator fault? Since the actuator serves
as the controller of system, where a faulty actuator may make the plant uncontrollable,
it is obviously not enough to just detect that there exists an actuator fault.

2. What if a sensor fault and an actuator fault occur at the same time? How can we
provide more evidences to help locating or isolating the multiple simultaneous faults.

49



3.5 Conclusion

3. Instead of having a time-invariant system, what if the considered nonlinear system
(3.1) is time-varying? It is worth noting that the linearization of a time-invariant
nonlinear system often (when the nominal solution is not a constant) gives rise to
time-varying systems, and this is actually one of the chief ways time-varying systems
are encountered in system analysis.

As we have always believed, there are no problems, only solutions. Let’s find the solutions to
the above three problems in the rest chapters of this thesis.
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Chapter 4
Continuous-Discrete Unknown Input FMO
Design: Actuator Fault Estimation

“Any intelligent fool can make things bigger and more complex. It takes a touch of genius
and a lot of courage to move in the opposite direction.”

- Albert Einstein
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4.1 Introduction

Résumé en français :

Afin de répondre aux deux premières questions posées à la fin du chapitre précédent, nous
allons construire dans ce chapitre un observateur à mémoire finie (CD-UI-FMO) en temps
continu et à mesures discrètes pour les systèmes non linéaires dynamiques avec une entrée
inconnue. Les systèmes non linéaires considérés sont toujours au moins localement Lipschitz
et représentés par des équations différentielles ordinaires (ODEs) avec des bruits de processus
et des bruits de mesure. Le CD-UI-FMO proposé est conçu par un modèle augmenté dans
le but d’estimer simultanément les états du système et les entrées inconnues. La preuve
de l’estimation non biaisée dans le cas déterministe est la même que celle dans le chapitre
précédent, et elle sera également montrée via des simulations de Monte Carlo (MC) dans
le cas stochastique. De plus, les observateurs non linéaires présentés sont appliqués avec
succès à la détection et l’estimation de défaut actionneur pour un bras robotique à l’aide de
l’algorithme à moyenne mobile avec pondération exponentielle (EWMA). Les résultats de la
simulation mettent en évidence l’efficacité de l’approche proposée dans ce chapitre.

4.1 Introduction

In order to answer the first two questions raised at the end of the precedent chapter, we intend
to design a continuous-discrete unknown input finite memory observer (CD-UI-FMO) for
dynamical nonlinear systems with unknown input in this chapter. The nonlinear systems
under consideration are still at least locally Lipschitz and represented by ordinary differential
equations (ODEs) with process noise while measurements are sampled at discrete-time
instants with measurement noises. By an augmented model, the proposed CD-UI-FMO is
designed with the aim to simultaneously estimate system states and unknown inputs. The
unbiased estimation property appears to remain the same as the previous chapter and it will be
shown via Monte Carlo (MC) simulations as well in stochastic case. Moreover, the presented
nonlinear observer are successfully applied to an actuator fault detection and estimation for a
single-link joint robotic arm incorporating with the exponentially weighted moving average
(EWMA) algorithm. Illustrative simulation results highlight the effectiveness of the proposed
approach in this chapter.

4.2 CD-UI-FMO Design

For the sake of clarity, it should be noting that some notations may be changed in this chapter
even if they represent the same variables compared to those in the previous chapter.
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4.2.1 Problem statement

Let us consider the same class of nonlinear systems (3.1) as in precedent chapter with process
noise and measurement noise, while another term is added to represent the unknown input. It
is therefore modeled by the following state space equation: Consider the original system

Ẋ(t) = A0X(t)+B0u(t)+Φ(X)+Fξ (t)+G0ωX(t)

y(k) =C0X(k)+ v(k)
(4.1)

where X(t) ∈ RnX , u(t) ∈ Rnu and y(k) ∈ Rny are respectively continuous-time state vector,
continuous-time input vector and discrete-time measurement vector, ∃k ∈ N | t = k×Ts, Ts

is the sampling period of measurements. A0 ∈ RnX×nX , B0 ∈ RnX×nu , G0 ∈ RnX×nωX and
C0 ∈ Rny×nX are known matrices. The term ξ (t) represents the unknown input, F ∈ RnX×nξ

is referring as the unknown input distribution matrix. The nonlinearity Φ(X) is a nonlinear
function with respect to state X . Finally, the mutually independent vectors ωX ∈ RnωX and
v ∈ Rny respectively represent process noise and measurement noise, which assume to be
zero mean Gaussian noises, namely:

E[ωX(t)] = 0

E[ωX(t1)ωT
X (t2)] = QX ·δ (t1− t2)

E[v(k)] = 0

E[v(k1)vT(k2)] = R ·δk1,k2

here, δ (·) is Dirac delta function and δi, j denotes Kronecker delta function. The proposed
CD-UI-FMO for nonlinear systems (4.1) will be detailed under the following assumptions:

Assumption 4.1. The nonlinear function Φ(X) satisfies the Lipschitz condition with Lipschitz
constant κ as follow:

∥Φ(a)−Φ(b)∥ ≤ κ∥a−b∥

Assumption 4.2. The dynamic of unknown input ξ (t) is given as:

ξ̇ (t) = Dξ ωξ (t)

where Dξ ∈ Rnξ×nω
ξ is the noise distribution matrix and ωξ (t) ∈ Rnω

ξ , which is also inde-
pendent of v, is zero mean Gaussian process noise for ξ with properties as follows:

E[ωξ (t)] = 0

E[ωξ (t1)ω
T
ξ
(t2)] = Qξ ·δ (t1− t2)
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4.2.2 Mathematical model for CD-UI-FMO

Based on (4.1) and the dynamic of unknown input ξ (t) in Assumption 4.2, an augmented
model can be built as follows:

ẋ(t) = Ax(t)+Bu(t)+φ(x)+Gω(t) (4.2a)

y(k) =Cx(k)+ v(k) (4.2b)

with

x(t) =

[
X(t)
ξ (t)

]
; A =

[
A0 F
0 0

]
; B =

[
B0

0

]
; φ(x) =

[
Φ(X)

0

]

ω(t) =

[
ωX(t)
ωξ (t)

]
; G =

[
G0 0
0 Dξ

]
; C =

[
C0 0

]
; Q =

[
QX qT

q Qξ

]
.

where the Lipschtiz condition in Assumption 4.1 is well-preserved for φ(x) according to
the definition of the norm. The augmented process noise ω(t) is also Gaussian with the
covariance Q, i.e.

E[ω(t)] = 0

E[ω(t1)ωT(t2)] = Q ·δ (t1− t2)

Note that the covariance term q in matrix Q equals to zero when the UI process noise ωξ

is uncorrelated with the state process noise ωX , i.e. when correlation coefficient ρωξ ωX = 0.
The proposed CD-UI-FMO will be designed based upon the mathematical model (4.2) in

next subsection. Before we start, the remark and assumption of observability are recalled
again as follows:

Remark 4.1 ([Kou et al. 1973]). The observability of a nonlinear system is a necessary
condition that there exists a finite-time observer.

Assumption 4.3. The pair (A,C) is observable.

4.2.3 Formulation of CD-UI-FMO

At each frozen time instant t, suppose that the discrete measurements are collected at L time
instants t− τi with i = 0,1, ...,L−1. It is evident that [t− τL−1, t] determines a time window
where window length is L.

Firstly, both side of (4.2a) are pre-multiplied by an matrix exponential integrating factor
e−At . Then, by directly integrating and rearranging, the relation of states between two
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different time instant t and t− τi can be given as:

x(t) = eAτix(t− τi)+
∫ t

t−τi

eA(t−θ)Bu(θ) dθ +
∫ t

t−τi

eA(t−θ)
φ(x(θ)) dθ

+
∫ t

t−τi

eA(t−θ)Gω(θ) dθ

(4.3)

then, we obtain the following equation via left multiplying the matrix Ce−Aτi to (4.3) and
taking into account the measurement equation (4.2b) at time instant t− τi:

Ce−Aτix(t) = y(t− τi)− v(t− τi)+αt−τi,t +βt−τi,t + γt−τi,t (4.4)

with

αt−τi,t =
∫ t

t−τi

CeA(t−τi−θ)Bu(θ) dθ (4.5a)

βt−τi,t =
∫ t

t−τi

CeA(t−τi−θ)
φ(x(θ)) dθ (4.5b)

γt−τi,t =
∫ t

t−τi

CeA(t−τi−θ)Gω(θ) dθ (4.5c)

By applying equation (4.4) for every instant within the time window [t− τL−1, t], a finite
number of concatenated measurements can be denoted with respected to the system state x(t)
as the following linear equation:

YL =WLx(t)+VL (4.6)

where

YL =


y(t− τ0)+αt−τ0,t +βt−τ0,t

y(t− τ1)+αt−τ1,t +βt−τ1,t
...

y(t− τL−1)+αt−τL−1,t +βt−τL−1,t

 ;

VL =


v(t− τ0)− γt−τ0,t

v(t− τ1)− γt−τ1,t
...

v(t− τL−1− γt−τL−1,t

 ; WL =


Ce−Aτ0

Ce−Aτ1

...
Ce−AτL−1

 .

It is evident that the noise term VL has zero mean, i.e. E(VL) = 0. According to the
properties of ω(t) and v(k), together with Fubini’s theorem and the shifting property of the
Dirac delta function, the covariance matrix P, which is block symmetric, may be computed
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as the following form (see Appendix A for more details):

P = E
(
(VL−E(VL))(VL−E(VL))

T
)

=


S0 S0 · · · S0

S0 S1 · · · S1
...

... . . . ...
S0 S1 · · · SL−1

+


R 0 · · · 0

0 R . . . ...
... . . . . . . 0
0 · · · 0 R


(4.7)

where the block elements Sk (k , min[i, j] = 0,1, ...,L−1) represent the following integral
[Medvedev 1994]:

Sk =
∫ 0

−τk

CeAsGQGTeATsCT ds

Using the method of least-squares, the state estimation x̂(t) at time instant t is obtained
from the solution of (4.6) as follows:

x̂(t) =
(
W T

L P−1WL
)−1

W T
L P−1ŶL (4.8)

with

ŶL =


y(t− τ0)+αt−τ0,t + β̂t−τ0,t

y(t− τ1)+αt−τ1,t + β̂t−τ1,t
...

y(t− τL−1)+αt−τL−1,t + β̂t−τL−1,t

 (4.9a)

β̂t−τi,t =
∫ t

t−τi

CeA(t−τi−θ)
φ(x̂(θ)) dθ (4.9b)

4.2.4 Unbiased estimation property of CD-UI-FMO

Note that the formulation of CD-UI-FMO from (4.3) to (4.9) is very similar to CD-FMO
in the previous chapter. Therefore, for the sake of brevity, please refer to section 3.2.3 and
Appendix B for the theoretical proofs of unbiased estimation property in deterministic case
and in stochastic case.

4.3 Application to a Single-link Flexible Joint Robotic Arm

The dynamics (4.1) cover a broad class of systems with unknown input, and the proposed
CD-UI-FMO is validated in this section through a single-link flexible joint robotic arm.
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4.3.1 Nonlinear augmented continuous-discrete state-space model

The state-space model is described by (4.1) where components X1 and X3 are the displacement
of link and rotor respectively while components X2 and X4 represent the velocity. The control
input u(t) = 2sin(t), which represents the torque provided by the motor. The unknown input,
ξ (t) =−0.5sin(t), represents two different kinds of actuator fault in this example, which is
injected during 0.15s∼ 0.35s. The standard derivation (SD) for all the process noise are set
as σpX = σpξ

= 0.01, i.e. QX = 0.012 ·I4 and Qξ = 0.012. The noise distribution matrices G0

and Dξ are set to the identity matrix with proper dimensions. The matrices and parameters
are set as follows with the physical parameters shown in Table 4.1:

A0 =


0 1 0 0
− k

Jl
− fl

Jl

k
Jl

0

0 0 0 1
k

Jm
0 − k

Jm
− fm

Jm

; Φ(X) =


0

−mlgc
Jl

sinX1

0
0

; B0 = F =


0
0
0
1

Jm

;

QX =σ
2
pX
·I4 =


0.012 0 0 0

0 0.012 0 0
0 0 0.012 0
0 0 0 0.012

; Qξ =σ
2
pξ
= 0.012; G0 =

 1 0 0
0 1 0
0 0 1

;

Dξ = 1; C0 =

 1 0 0 0
0 0 1 0
0 0 0 1

; R = σmσ
T
m =

 0.00022 0 0
0 0.00022 0
0 0 0.00032

.

Table 4.1: Physical parameters (in SI units)

elastic constant k = 2 link mass m = 4
viscous friction coefficient for motor fm = 1 motor inertia Jm = 1
viscous friction coefficient for link fl = 0.5 link inertia Jl = 2
mass center l = 0.5 link inertia gc = 9.8

Then, an augmented model can be constructed for CD-UI-FMO according to (4.2) as

Augmented Model:

{
ẋ(t) = Ax(t)+Bu(t)+φ(x)+Gω(t)

y(k) =Cx(k)+ v(k)
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4.3 Application to a Single-link Flexible Joint Robotic Arm

with

x(t) =

[
X(t)
ξ (t)

]
; A =

[
A0 F
0 0

]
; B =

[
B0

0

]
; φ(x) =

[
Φ(X)

0

]
; ω(t) =

[
ωX(t)
ωξ (t)

]
;

G =

[
G0 0
0 Dξ

]
; Q , σpσ

T
p =

[
QX qT

q Qξ

]
; C =

[
C0 0

]
; R , σmσ

T
m.

In next subsection, we will evaluate by simulations the performances of CD-UI-FMO
on the unbiased state estimation property, the actuator fault (unknown input) detection and
estimation based upon this augmented model in stochastic case, which includes the presence
of measurement noise and process noise.

4.3.2 Optimal window length selection

As shown in Figure 4.1, with the augmented model, the variance of the estimation error
x̃ = x− x̂ by the proposed CD-UI-FMO decreases asymptotically as the window length
increasing. Meanwhile, it can also be seen in Figure 4.1 that the speed of the convergence
became slower compared to the estimation error with the nominal model described as follows

Nominal Model:

{
Ẋ(t) = A0X(t)+B0u(t)+Φ(X)+G0ωX(t)

y(k) =C0X(k)+ v(k)

0 2 4 6 8 10 12 14 16 18 20
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m
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Augmented Model
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Y: 0.02169
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Y: 0.04003

Figure 4.1: Convergence of the estimation error as window length L increasing

Since the nominal model does not need to deal with the unknown input during the state
estimation while the CD-UI-FMO by the augmented model perform the state estimation and
UI estimation in the same time, it seems logical that the convergence speed of the estimation
error slows down. L = 10 will be chosen in the rest of this chapter if it is not indicated.
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4.3.3 Residuals comparison between different models

Give the notation of residual as r(t) = y(t)−Cx̂(t), the residuals obtained by the nominal
model and the augmented model are shown in Figure 4.2 - Figure 4.4 in the presence of the
unknown input. By examining the figures, we can see that the unknown input injected during
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Time (second)

-5

0

5

r 1

#10-4

Nominal Model Augmented Model Zero

Figure 4.2: Residual r1 comparison between nominal model and augmented model
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Figure 4.3: Residual r2 comparison between nominal model and augmented model
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Figure 4.4: Residual r3 comparison between nominal model and augmented model

0.15s∼ 0.35s causes a significant bias on r2, a slight mean shift on r3 and no influence at all
on r1 when using the nominal model. According to the given UI distribution matrix F , we
can see that the unknown input ξ has only been distributed to the fourth component ẋ4. Then
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4.3 Application to a Single-link Flexible Joint Robotic Arm

through the matrices A0 and C0, we know that r1 is not sensible to the UI injection in this
example. The different influence level on r2 and r3 is caused by the numerical sensitivity
coefficient, which will be theoretically studied in the future work. On the other hand, it is
shown that the residuals are well centered around zero when using the proposed CD-UI-FMO,
which appears to be normal since the UI is simultaneously estimated by the augmented state.

4.3.4 Unbiased estimation performance in stochastic case

The unbiased estimation performance will be illustrated in two aspects: using one single
Monte Carlo (MC) run to show the convergence of estimation accuracy through different
window length L; using multiple Monte Carlo simulations show the unbiased performance of
both system state and unknown input estimations.

4.3.4.1 State and UI estimations by different window length

Let us firstly see the state estimations of x2 in Figure 4.5 and UI estimations in Figure 4.6,
it is quite obvious that the estimation performance has been significantly improved as the
window length L increases, which means that the estimation accuracies converge with the
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Figure 4.5: State estimations of x2 through different window length L
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Figure 4.6: UI estimations through different window length L
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augment of window length L, as depicted in Figure 4.1. This is only logical since the longer
the window length L is, the more amount of information it will contain in each horizon, and
therefore the better estimations we will obtain. Indeed, “information amount” can be said as
the key essence of the moving horizon techniques introduced in previous chapter.

On the other hand, it seems that the same conclusions can not been straightforwardly
drawn to the state estimations of components x1, x3 and x4 shown in Figure 4.7 - Figure 4.9.
As a matter of fact, it is necessary to notice that these three components (x1, x3 and x4) are
exactly the states we measured (see matrices C and C0). This means that the informations of
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Figure 4.7: State estimations of x1 through different window length L
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Figure 4.8: State estimations of x3 through different window length L
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Figure 4.9: State estimations of x4 through different window length L
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these three states can be obtained at all sampling instants, and it is absolutely normal to have
a good estimation performance on these three components even if the window length is set
as L = 1. Moreover, since L = 1 is “long” enough to have good estimations on x1, x3 and
x4, when we employ L≥ 1, the filter role with respect to the noises can be seen as well by
examining Figure 4.7 - Figure 4.9 (see subsection 3.3.3.2 of Chapter 3).

4.3.4.2 Unbiased state and UI estimations by MC simulations

As studied in previous chapter, we are going to perform multiple Monte Carlo simulations in
this subsection to illustrate the unbiased estimation property of the proposed CD-UI-FMO in
stochastic case, namely

¯̂x , E(x̂(t)) = x(t) t ∈ [L×Ts,+∞)

with

E(x̂(t)) =
1

Nmc

Nmc

∑
i=1

x̂(i)

here, Nmc represents Monte Carlo simulation times. Nmc = 500 runs of Monte Carlo sim-
ulations have been performed to the nonlinear system with unknown input and the state
estimation results are shown in Figure 4.10 - Figure 4.13. It can be seen by examining
the figures that the original system states, with the presence of both noises (process and
measurement) and unknown input, are well estimated around the true value with no bias after
performing 500 runs of MC simulations.

Among the 500 different state estimations obtained by 500 runs of MC simulation, let
us take the one with maximum dispersion above true state value as the upper bound of the
estimations while the one with the maximum dispersion below the true state value is taken as
the lower bound. In stochastic case, these two bounds happen to define an state estimation
envelope where all the possible estimations are supposed to be within this envelope.

Now let us examine Figure 4.10 - Figure 4.13 again, it can be seen that the estimation
upper and lower bounds of the proposed CD-UI-FMO are within a very small range, which
means that even with the noises and UI, all the possible state estimations by CD-UI-FMO
vary within a small range around real state x. This might be another verification of sufficient
estimation precision of the proposed observer.

Finally, the unbiased estimation performance of the unknown input (actuator fault)
ξ =−0.5sin(t) can be seen from Figure 4.14. The expectation of ξ̂ with 500 runs of MC
simulation is well located around the true value.
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Figure 4.10: Expectation ¯̂x1 and upper and lower bound of x̂1 with Nmc = 500
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Figure 4.11: Expectation ¯̂x2 and upper and lower bound of x̂2 with Nmc = 500
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Figure 4.12: Expectation ¯̂x3 and upper and lower bound of x̂3 with Nmc = 500
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Figure 4.13: Expectation ¯̂x4 and upper and lower bound of x̂4 with Nmc = 500
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Figure 4.14: Expectation ¯̂
ξ with Nmc = 500

4.3.5 Robustness with respect to measurement and process noises

In this section, the robustness of CD-UI-FMO with respect to measurement noise and process
noise is analyzed through different scenarios in Table 4.2, which the standard derivation of
measurement noise (SDm) and process noise (SDp) vary±50% while the noise configurations
of CD-UI-FMO doesn’t change. The robustness analysis intends to see whether the proposed
CD-UI-FMO has the ability to resist noise variations without adapting its noise configuration.

Table 4.2: Different scenarios of process noise and measurement noise

Noises scenarios of actual system CD-UI-FMO parameter settings

Scenario 0 (S0) SDm = σm; SDp = σp

SDm = σm; R = σmσT
m

SDp = σp; Q = σpσT
p

Scenario 1 (S1) SDm = 0.5σm; SDp = 0.5σp

Scenario 2 (S2) SDm = 1.5σm; SDp = 0.5σp

Scenario 3 (S3) SDm = 0.5σm; SDp = 1.5σp

Scenario 4 (S4) SDm = 1.5σm; SDp = 1.5σp

By performing Nmc = 500 runs of MC simulations with L = 10, the state estimation
performance as well as the RMSEs are respectively shown in Figure 4.15 and Figure 4.16. The
robustness of CD-UI-FMO can be well validated by examining these figures. Furthermore, it
can be seen from the RMSEs in Figure 4.16 that estimation performance of Scenario S1 is
always better than Scenario S4 since “overestimate” the real noises level is always better than
“underestimate” the noises level for CD-UI-FMO. In the meantime, the RMSEs amplitudes
also decrease one by one from “top” to “bottom” due to the filter performance explicated in
subsection 3.3.3.2 of Chapter 3.
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Figure 4.15: Robustness analyses of x̂ via different noise scenarios
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Figure 4.16: RMSE of x̂ via different noise scenarios
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It can be seen from Figure 4.17 that the unknown input estimation by CD-UI-FMO is
robust as well facing different noise scenarios.
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Figure 4.17: Robustness analyses of UI ξ̂ via different noise scenarios

4.3.6 Performance with correlation coefficient ρωξ ωX ̸= 0

The above analyses is performed when the state process noise ωX and unknown input process
noise ωξ are uncorrelated, i.e. ρωξ ωX = 0. What will happen when ρωξ ωX ̸= 0 ?
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Figure 4.18: State estimation with correlated process noise
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Figure 4.19: UI estimation with correlated process noise
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Let us take ρωξ ωX = 0.1, in which case the process noise covariance matrix Q is no longer
diagonal. Take the unmeasured component x2 as a representative of state estimation, the
performance of both state and UI estimations are shown in Figure 4.18 and Figure 4.19 with
L = 3 and Nmc = 500. It seems that the performance of CD-UI-FMO remains good even
with the correlated process noises, which can be consider as another efficient performance.

Now, let us only see Figure 4.6 and Figure 4.14 for the UI estimations obtained by the
proposed CD-UI-FMO. On the one hand, the UI estimation in Figure 4.6 based on just
one single run of MC simulation turns out to be a little bit noisy. Even though it can be
improved by augmenting the window length L, the compute time and calculation burdens
will augmented as well. On the other hand, the UI estimation performance in Figure 4.14 is
indeed great due to the multiples runs of Monte Carlo simulations, however one of the major
disadvantages of MC simulation is also the computer time. In addition, the UI in this thesis
represents an actuator fault (without loss of generality). As previously introduced in Chapter
2 (see subsection 2.5.1), the first step of fault diagnosis procedure is fault detection, which is
required to be as quick as possible. Apparently in this case, we do not want to perform fault
detection neither after “multiple MC simulations” nor “with a super large window length L”.
This brings us to the exponentially weighted moving average (EWMA) algorithm introduced
in next part, which trades off between fault estimation and fault detection effectiveness.

4.3.7 Actuator fault diagnosis by the EWMA algorithm

The exponentially weighted moving average (EWMA) [Cisar et al. 2010] algorithm is
employed in this subsection to perform fault detection and estimation thanks to its well-
known efficiency and filtering ability when facing small shifts. Compared to the previously
used Cumulative Sum (CUSUM) algorithm, which is the sum of the entire process history,
a weighted sum of the recent history would be more meaningful for the purpose of fault
estimation (filtering). Furthermore, it might be worth noting that CUSUM algorithm uses the
cumulative sum of the shift signal to detect the fault while EWMA uses directly the fault
signal itself to perform the fault detection.

The following notations of EWMA are firstly defined: the upper control limit (UCL),
center line (CL) and lower control limit (LCL) are defined as follows:

UCL = µtarget +n ·σtarget

√
λ

2−λ
[1− (1−λ )2i]

CL = µtarget

LCL = µtarget−n ·σtarget

√
λ

2−λ
[1− (1−λ )2i]

(4.10)
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where i represent the sampling numbers (observations), the mean and SD values of the target
data are respectively noted as µtarget and σtarget. n is used to represent the control limits (with
respect to σtarget) of the target data while the weighted constant is represented by λ .

4.3.7.1 Actuator fault detection and estimation

Without the loss of generality, the target data is shown in Figure 4.20, which is the estimated
actuator fault ξ̂ obtained by CD-UI-FMO. Under the usual three-sigma rule, the detection by
CUSUM is also shown in Figure 4.21. However, as mentioned before, CUSUM performs the
fault detection by the cumulative sum of mean deviations and does not directly process the
target data (actuator fault), we are going to use EWMA algorithm in next step.
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Figure 4.20: Actuator fault estimate by CD-UI-FMO
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Figure 4.21: Actuator fault detection by CUSUM

In order to use the EWMA algorithm to deal with the estimated actuator fault ξ̂ with
i = 500 data, the target mean and SD values are set as µtarget = 0 and σtarget = 0.0517,
which obtains by CD-UI-FMO under the same parameter configuration as in Figure 4.20
but fault-free (ξ = 0). The control limits n = 3 (three-sigma rule), the weighted constant
λ = 0.2.
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It is shown in Figure 4.22 that the detection of actuator fault starting instant is 0.157s
with a delay of 0.007s since the real fault occurring instant is 0.15s. It is worth mentioned
here that in this example five consecutive alarm points is used as decision rule for detecting
pattern, “less than five consecutive points” is said to be a false alarm. It should be noted that
the detecting pattern of false alarm can be adapted accordingly for actual physical systems
[Montgomery 2013].
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Figure 4.22: EWMA detection alarm of actuator fault ξ =−0.5sin(t)

Compared to CUSUM in Figure 4.21, the fault starting instant seems the same, however,
with EWMA, we also get the processed (filtered) fault estimation shown in Figure 4.23
thanks to the smooth factor λ . The examination of Figure 4.20 and Figure 4.23 makes it
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Figure 4.23: Estimation of actuator fault ξ =−0.5sin(t) via EWMA

clear that the proposed CD-UI-FMO in cooperation with the EWMA algorithm performs a
great fault estimation of the unknown actuator fault ξ in noisy environments thanks to the
efficiency and robustness of EWMA algorithm and CD-UI-FMO.

4.3.7.2 Minimum detection amplitude analyses

A ramp-shape actuator fault is injected to find out the minimum actuator fault amplitude for
EWMA to detect with n= 3 and λ = 0.2 while µtarget = 0 and σtarget = 0.0517. The detection
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alarm by EWMA is shown in Figure 4.24, in which the detection instant is t = 0.168s.
Meanwhile, as shown in Figure 4.25, the corresponding actuator fault estimated via EWMA
at t = 0.168s is ξ̂min = 0.0504, which is said to be the minimal detection amplitude. As a
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Figure 4.24: EWMA detection alarm of ramp-shape actuator fault
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Figure 4.25: Minimal amplitude estimate by EWMA

matter of fact, if we substitute the parameter configuration value into the UCL and LCL
defined in (4.10), we can calculate the detection bound as

ξ
λ=0.2
bound = µtarget±n ·σtarget

√
λ

2−λ
[1− (1−λ )2i]

= 0±3 ·0.0517

√
0.2

2−0.2
[1− (1−λ )2×500]

=±3 ·0.0517

√
1
9

= 0.0517

it is straightforward that
ξ̂min ≈ ξ

λ=0.2
bound = 1 ·σtarget

Let us inject a constant actuator fault ξmin = 0.055 during 0.15s ∼ 0.35s to test the
obtained minimal amplitude. The fault detection results are shown in Figure 4.26 and Figure
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4.27. We can see that the detection instant has a delay of 0.013s and also the detection alarm
is not “steady”, it all seems normal since it is the minimal fault amplitude.
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Figure 4.26: EWMA detection alarm of minimum amplitude (λ = 0.2)
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Figure 4.27: Minimal amplitude validation by EWMA (λ = 0.2)

Note that the parameter λ determines the rate at which “older” data enter into the
calculation of the EWMA statistic. By the choice of weighting factor λ , the EWMA
algorithm can be designed sensitive to a even small fault. For instant, if we take λ = 0.1 for
actuator fault ξmin = 0.055, the detection alarm is shown in Figure 4.28, which becomes very
“neat”. However, the detection instant has a 1ms more delay which appears logical since a
smaller value of λ gives more weight to older data.
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Figure 4.28: EWMA detection alarm of minimum amplitude (λ = 0.1)

72



Chapter 4 Continuous-Discrete Unknown Input FMO Design: Actuator Fault Estimation

In fact, when λ = 0.1, the detection bound becomes as

ξ
λ=0.1
bound = µtarget±n ·σtarget

√
λ

2−λ
[1− (1−λ )2i]

= 0±3 ·0.0517

√
0.1

2−0.1
[1− (1−λ )2×500]

=±3 ·0.0517

√
1

19
= 0.0356 < ξmin = 0.055

that’s why the detection alarm in Figure 4.28 is much more better than Figure 4.26 for
actuator fault ξmin = 0.055. In order to further prove this, an actuator fault ξ ∗ = 0.04 is used
as

ξ
λ=0.1
bound < ξ

∗ < ξ
λ=0.2
bound

It can be clearly seen from Figure 4.29 and Figure 4.30 that a detection alarm with 0.011s
delay is provided when λ = 0.1 while there is no detection with λ = 0.2 as the alarms are
always followed immediately by no alarms.
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Figure 4.29: Detection alarm of ξ ∗ = 0.04 with λ = 0.2
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Figure 4.30: Detection alarm of ξ ∗ = 0.04 with λ = 0.1
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Note that the EWMA control chart is very effective and can be designed by the configura-
tion of the value of λ as well as control limit n, which there is no explicit formula of the best
λ for a specific fault. It is possible to choose these parameters differently according to the
practical requirements, such as noise level or fault-tolerant criteria.

4.4 Simultaneous actuator and sensor faults diagnosis

The proposed CD-UI-FMO in this chapter can also be used to provide more evidences
for locating or isolating the simultaneous sensor and actuator faults. In order to show this
performance, the following different multiple simultaneous faults (MSF) and single fault
(SF) scenarios are used during 0.15s∼ 0.35s:

1. MSF1: Sensor fault ∆y1 = 0.01 (a bias on y1) & Actuator fault ξ =−0.4;

2. MSF2: Sensor fault ∆y2 = 0.01 (a bias on y2) & Actuator fault ξ =−0.4;

3. MSF3: Sensor fault ∆y3 =−0.01 (a bias on y3) & Actuator fault ξ =−0.4;

4. SF1: Sensor fault ∆y1 = 0.01 (a bias on y1);

5. SF2: Sensor fault ∆y2 = 0.01 (a bias on y2) ;

6. SF3: Sensor fault ∆y3 =−0.01 (a bias on y3);

7. SF4: Actuator fault ξ =−0.4.

In the meantime, the following two fault patterns are defined according to the fault shape
reflected on residuals r(t) = y(t)− ŷ(t):

• Peak (p): the fault is reflected on residuals as the form of a peak;

• Bias (b): the fault is reflected on residuals as the form of a bias or shift.

CD-FMO (proposed in Chapter 3) with nominal model and CD-UI-FMO with augmented
model are used to perform the fault diagnosis for the above three MSF scenarios, and the
residuals r(t) are respectively as

r(t) = y(t)− ŷ(t) =

{
y(t)−C0X̂(t) CD-FMO (with Nominal Model)

y(t)−Cx̂(t) CD-UI-FMO (with Augmented Model)

The resulting residuals obtained for different scenarios are respectively given from Figure
4.31 to Figure 4.37 and then summarized in Table.4.3.
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By examining the residuals of the upper left part of Table.4.3, one may notice that if
we only use the fault signature of CD-FMO, the multiple simultaneous faults MSF1 and
MFS2 can not at all be isolated from each other since they have the same signature [1,1,1].
Let us now take into account the fault pattern as well, with which seems that MSF1 can
be distinguished from MSF2 since the fault pattern on r3 is “p&b” for MSF1 and “b” for
MSF2. However, we still need more evidences to answer the following questions: Is it a
multiple simultaneous faults? a sensor fault? an actuator fault? This brings us to the proposed
CD-UI-FMO in this chapter.

Table 4.3: Multiple Simultaneous Faults Diagnosis by CD-UI-FMO

Scenarios
Fault Signature (Pattern)

CD-FMO
Fault Signature (Pattern)

CD-UI-FMO
r1 r2 r3 r1 r2 r3

MSF1 1 (p) 1 (p&b) 1 (p&b) 1 (p) 1 (p) 1 (p)
MSF2 1 (p) 1 (p&b) 1 (b) 1 (p) 1 (p) 0
MSF3 0 1 (p&b) 1 (p&b) 0 0 1 (p)

SF1 1 (p) 1 (p) 1 (p) 1 (p) 1 (p) 1 (p)
SF2 1 (p) 1 (p) 0 1 (p) 1 (p) 0
SF3 0 1 (p) 1 (p) 0 0 1 (p)
SF4 0 1 (b) 1 (b) 0 0 0

The residuals obtained by using CD-UI-FMO is given in the upper right part of Table.4.3.
It can be seen that all the pattern “b” disappear while there only remains fault pattern “p” for
MSF1, MSF2 and MSF3. Since CD-UI-FMO is designed to estimate the unknown input
of systems, we can’t help but thinking that the pattern “b” might represent an actuator fault
while “p” signifies a sensor fault. The reason why pattern “b” disappears on residual is that
the actuator fault is estimated and compensated by CD-UI-FMO.

This diagnosis result can be confirmed by the results of using CD-UI-FMO to diagnose
the four single faults SF1-SF4, which are in the lower right part of Table.4.3. The signature
[0,0,0] for SF4 confirms that the compensated fault by CD-UI-FMO in MSF1-MSF3 is
indeed actuator fault. Moreover, the fact that the signatures for SF1-SF3 are the same as
MSF1-MSF3 proves there are also sensor faults in MSF1-MSF3. More specifically, according
to the distinguished signatures [1,1,1],[1,1,0] and [0,0,1], it can be known that there is sensor
fault ∆y1 in MSF1, ∆y2 for MSF2 and ∆y3 for MSF3. So far, the detection and isolation of the
multiple simultaneous faults are realized with the aid of proposed CD-UI-FMO.
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Figure 4.31: Residual r under the presence of MSF1
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Figure 4.32: Residual r under the presence of MSF2
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Figure 4.33: Residual r under the presence of MSF3
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Figure 4.34: Residual r under the presence of SF1
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Figure 4.35: Residual r under the presence of SF2
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Figure 4.36: Residual r under the presence of SF3
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Figure 4.37: Residual r under the presence of SF4

4.5 Conclusion

A nonlinear unknown input finite memory observer has been developed in this chapter for a
class of nonlinear Lipschitz systems with the aim of providing simultaneous unknown input
and state estimations in the presence of both process and measurement noises. The unbiased
estimation property can be proved theoretically and has also been fully verified in detail by
Monte Carlo simulations in stochastic case. Additionally, the proposed method has been
applied to implement actuator fault detection and estimation for a single-link robotic arm
with the aid of the EWMA algorithm. Finally the proposed CD-UI-FMO is successfully used
to perform fault diagnosis for multiple simultaneous sensor and actuator faults. The state
and unknown input estimations accuracy and the effectiveness of fault diagnosis are well
illustrated via the simulation results.
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Chapter 5
Continuous-Discrete FMO Design for
Nonlinear Time-Varying (NLTV) Systems

“If you thought that science was certain, well, that is just an error on your part.”
- Richard P. Feynman
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5.1 Introduction

Résumé en français :

Dans ce chapitre, nous continuons à répondre à la troisième question posée à la fin du chapitre
3, qui concerne la synthèse d’observateur à mémoire finie pour une classe de systèmes non
linéaires variant au cours du temps. À notre connaissance, l’observateur à mémoire finie
n’a été conçu pour aucun système en temps-continu et à temps-variant, ni pour les systèmes
linéaires en temps-continu, ni pour les systèmes non linéaires. Nous allons donc présenter la
synthèse d’observateur à mémoire finie en commençant par des systèmes continus linéaires
variant au cours du temps, une extension aux systèmes non linéaire sera ensuite réalisée sur
la base du cas linéaire et de ce qui a été réalisé dans Chapitre 3.

Un observateur à mémoire finie sera tout d’abord développé pour les systèmes linéaires
à temps-variant en présence de bruit de processus et bruit de mesure. Nous démontrerons
que l’observateur proposé est le meilleur estimateur non-biaisé parmi tous les estimateurs
linéaires. De plus, une formulation séquentielle de la variance de l’erreur d’estimation en
fonction de la longueur de fenêtre sera également montrée, ce qui conduit naturellement à une
stratégie pour sélectionner une longueur optimale. Un exemple numérique sera fourni pour
vérifier les démonstrations théoriques dans le cas linéaire. L’observateur proposé sera ensuite
étendu aux systèmes non linéaires par une brève démonstration et un exemple numérique à
la fin de ce chapitre.

5.1 Introduction

In this chapter, we continue to deal with the third question raised at the end of Chapter 3,
which requires to design a finite memory observer for a class of continuous-discrete nonlinear
time-varying (CD-NLTV) systems. As far as we know, the finite memory observer (FMO) has
not (yet) been designed for any continuous time-varying system, neither for continuous linear
time-varying (LTV) systems, nor for nonlinear time-varying (NLTV) systems. Therefore,
we choose to illustrate our design method by beginning with continuous-discrete linear
time-varying (CD-LTV) systems, then a further extension to NLTV systems will be carried
out based upon the CD-LTV case and what has been realized in Chapter 3.

A robust finite memory observer will be firstly developed for the CD-LTV systems in
the presence of both process and measurement noises. It is going to be theoretically proved
that the state estimation is unbiased and has the smallest dispersion among all the linear
estimators, namely best linear unbiased estimator (BLUE). In addition, a sequential form of
the estimation error variance with respect to window length will be demonstrated as well,
which naturally leads to be a theoretical strategy of selecting the window length. A numerical
simulation example will be provided to verify the aforementioned theoretical proofs for
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CD-LTV systems. Finally, the proposed observer will be extended to the CD-NLTV systems
through a brief demonstration and a numerical example at the end of this chapter.

5.2 FMO Design for CD-LTV Systems (CD-LTV-FMO)

5.2.1 Problem statement and preliminaries

Let us consider the following continuous-time LTV systems with discrete measurements:

ẋ(t) = A(t)x(t)+B(t)u(t)+ω(t) (5.1a)

y(k) =C(tk)x(tk)+ v(k) (5.1b)

where x ∈ Rn, y ∈ Rp and u ∈ Rq are continuous state vector, discrete measurement vector
and continuous input vector, respectively. Without loss of generality, we assume that we
have a constant sampling period of measurement Ts, i.e. ∃k ∈ N | tk = k× Ts. In the
meantime, A(·) ∈ Rn×n, B(·) ∈ Rn×q and C(·) ∈ Rp×n are known matrices and are functions
of time. Vectors v and ω represent Gaussian measurement noise and Gaussian process noise,
respectively. v and ω are independent with the following properties:

E[ω(t)] = 0 (5.2a)

E[ω(t1)ωT(t2)] = Q ·δ (t1− t2) (5.2b)

E[v(k)] = 0 (5.2c)

E[v(k1)vT(k2)] = R ·δk1,k2 (5.2d)

where δ (·) is Dirac delta function and δi, j is Kronecker delta function. The proposed observer
will be detailed in next section under the following assumptions:

Assumption 5.1. The matrix A(·) is piecewise continuous or at least satisfies the integral
condition (see Coddington and Levinson [1987]).

Assumption 5.2. The pair (A(·),C(·)) of CD-LTV systems (5.1) is observable.

Meanwhile, Definition 2.8 and Remark 2.3 in Chapter 2 are recalled here:

Definition 5.1 (Observability Gramian). The pair (A(·),C(·)) is said to be observable at
time t0 if and only if there exists a finite t f > t0 such that Oob(t0, t f ) ∈ Rn×n, defined by

Oob(t0, t f ) :=
∫ t f

t0
Φ

T(θ , t0)CT(θ)C(θ)Φ(θ , t0)dθ
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is nonsingular. Here, Φ(θ , t0)∈Rn×n is the state transition matrix from t0 to θ with θ ∈ [t0, t f ],
which satisfies the following differential equation:

dΦ(θ , t0)
dθ

= A(θ)Φ(θ , t0)

Φ(t0, t0) = In In is identity matrix of size n

This means that for any unknown initial state x(0), there exists a finite t f > t0 so that it is
possible to determine x(0) by knowing inputs u and outputs y.

Remark 5.1. It may be worth recalling here some properties of state transition matrix Φ(·, ·)
as follows [Chen 1999, Kailath 1980] :

• Φ−1(t2, t1) = Φ(t1, t2) for any t1, t2 ∈ [t0, t f ];

• Φ(t1, t3)Φ(t3, t2) = Φ(t1, t2) for any t1, t2, t3 ∈ [t0, t f ];

• Φ(t, t) = In holds for all t ∈ [t0, t f ];

• Φ(·, ·) is never singular.

• Given x(t0) at any time t0, the state at any other time t is given by the mapping:
x(t) = Φ(t, t0)x(t0).

5.2.2 CD-LTV-FMO formulation

At each frozen time instant t, suppose that the discrete measurements are collected at L time
instants t− τi with i = 0,1, ...,L−1. It is evident that [t− τL−1, t] determines a time window.

By using the state transition matrix Φ(t, t − τi), the state mapping between x(t) and
x(t− τi) can be obtained as [Kailath 1980]:

x(t) = Φ(t, t− τi)x(t− τi)+
∫ t

t−τi

Φ(t,θ)B(θ)u(θ) dθ +
∫ t

t−τi

Φ(t,θ)ω(θ) dθ (5.3)

Then, both sides of (5.3) are left multiplied by a coefficient matrix C(t−τi)Φ
−1(t, t−τi),

which gives

C(t− τi)Φ
−1(t, t− τi)x(t) =C(t− τi)x(t− τi)

+
∫ t

t−τi

C(t− τi)Φ
−1(t, t− τi)Φ(t,θ)B(θ)u(θ) dθ

+
∫ t

t−τi

C(t− τi)Φ
−1(t, t− τi)Φ(t,θ)ω(θ) dθ

(5.4)
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Take into consideration the measurement equation (5.1b) at time instant t − τi, then
rearrange with the properties of Φ(·, ·) in Remark 5.1, we have

C(t− τi)Φ(t− τi, t)x(t) = y(t− τi)+α[t−τi,t]−β[t−τi,t] (5.5)

with

α[t−τi,t] =
∫ t

t−τi

C(t− τi)Φ(t− τi,θ)B(θ)u(θ) dθ

β[t−τi,t] = v(t− τi)−
∫ t

t−τi

C(t− τi)Φ(t− τi,θ)ω(θ) dθ

Now we write equation (5.5) for every instant t− τi with i = 0,1, ...,L− 1 in the time
window [t− τL−1, t], a finite number of concatenated measurements can be denoted with
respected to the system state at instant t, namely x(t), as the following linear equation:

YL(t) =WL(t)x(t)+VL(t) (5.6)

where

YL(t) =


y(t− τ0)+α[t−τ0,t]

y(t− τ1)+α[t−τ1,t]
...

y(t− τL−1)+α[t−τL−1,t]

 ;

WL(t) =


C(t− τ0)Φ(t− τ0, t)
C(t− τ1)Φ(t− τ1, t)

...
C(t− τL−1)Φ(t− τL−1, t)

 ; VL(t) =


β[t−τ0,t]

β[t−τ1,t]
...

β[t−τL−1,t]

 .

It is evident that the noise term VL(t) has zero mean, that’s E(VL(t)) = 0. In a manner
similar to the calculation in Appendix A, the variance matrix PL(t) can be computed as
follows [Medvedev 1994]:

PL(t) = E
(
(VL(t)−E(VL(t)))(VL(t)−E(VL(t)))

T
)
= E

(
VL(t)V T

L (t)
)

=


S0(t) S0(t) · · · S0(t)
S0(t) S1(t) · · · S1(t)

...
... . . . ...

S0(t) S1(t) · · · SL−1(t)

+


R 0 · · · 0

0 R . . . ...
... . . . . . . 0
0 · · · 0 R


(5.7)
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where the block elements Sk(t) (k , min[i, j] = 0,1, ...,L− 1) represents the following
integral:

Sk(t) =
∫ t

t−τk

C(t− τk)Φ(t− τk,θ)QΦ
T(t− τk,θ)CT(t− τk) dθ

Using the method of least-squares, the state estimation x̂L(t) at time instant t could be
directly obtained from the least-squares solution of (5.6) as follows:

x̂L(t) = argmin
1
2
||YL(t)−WL(t)x(t)||2P−1

L (t)

=
[
W T

L (t)P−1
L (t)WL(t)

]−1
W T

L (t)P−1
L (t)YL(t)

(5.8)

so far we obtain the analytical form of the finite memory observer for continuous-time LTV
systems with discrete noisy measurements.

5.3 Estimation Error Properties Analyses: “BLUE”

In this section, we are going to theoretically prove by two steps that the proposed CD-
LTV-FMO is the best linear unbiased estimator (BLUE) for the continuous-discrete linear
time-varying systems.

5.3.1 Unbiased estimation proof

Theorem 5.1. Let εL(t) = x̂L(t)− x(t), t ≥ L× Ts, represents the estimation error of the
proposed observer (5.8), then in the case of fault-free, we have:

E[εL(t)] = 0

Var(εL(t)) =
[
W T

L (t)P
−1
L (t)WL(t)

]−1

Proof. First of all, the following equation can be directly obtained according to (5.5)

y(t− τi) =C(t− τi)Φ(t− τi, t)x(t)−α[t−τi,t]+β[t−τi,t] (5.9)

Let ρi with i = 1,2, · · · ,L−1 represents the i-th column of matrix P−1
L (t), namely

P−1
L (t), [ρ1(t),ρ2(t), · · · ,ρL−1(t)] (5.10)
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Consider rewriting x̂(t) in (5.8) as follows:

x̂L(t) = Ω
−1
L (t)

L−1

∑
i=0

{
Φ

T(t− τi, t)CT(t− τi)ρi(t)
[
y(t− τi)+α[t−τi,t]

]}
(5.11)

where

ΩL(t),W T
L (t)P−1

L (t)WL(t) =
L−1

∑
i=0

Φ
T(t− τi, t)CT(t− τi)ρi(t)C(t− τi)Φ(t− τi, t) (5.12)

Substitute y(t− τi) in (5.11) with (5.9), then rearrange it with (5.12) as

x̂L(t) = Ω
−1
L (t)

L−1

∑
i=0

{
Φ

T(t− τi, t)CT(t− τi)ρi(t)
[
C(t− τi)Φ(t− τi, t)x(t)+β[t−τi,t]

]}
= Ω

−1
L (t)ΩL(t)x(t)+Ω

−1
L (t)

L−1

∑
i=0

{
Φ

T(t− τi, t)CT(t− τi)ρi(t)β[t−τi,t]
}

= x(t)+Ω
−1
L (t)

L−1

∑
i=0

{
Φ

T(t− τi, t)CT(t− τi)ρi(t)β[t−τi,t]
}

= x(t)+Ω
−1
L (t)W T

L (t)P−1
L (t)VL(t)

which yields
εL(t) = x̂L(t)− x(t) = Ω

−1
L (t)W T

L (t)P−1
L (t)VL(t) (5.13)

Since only the noise term VL(t) in εL(t) is stochastic and VL(t) is independent of the other
terms, it is then straightforward that

E[εL(t)] = Ω
−1
L (t)W T

L (t)P−1
L (t)E[VL(t)] = 0 (5.14)

we know that (Ω−1
L (t))T = Ω

−1
L (t) and (P−1

L (t))T = P−1
L (t) are symmetric, then

Var(εL(t)) = E[(εL(t)−E[εL(t)])(εL(t)−E[εL(t)])
T] = E[εL(t)εT

L (t)]

= E[Ω−1
L (t)W T

L (t)P−1
L (t)VL(t)V T

L (t)P−1
L (t)WL(t)Ω−1

L (t)]

= Ω
−1
L (t)W T

L (t)P−1
L (t)E[VL(t)V T

L (t)]P−1
L (t)WL(t)Ω−1

L (t)

= Ω
−1
L (t)W T

L (t)P−1
L (t)PL(t)P−1

L (t)WL(t)Ω−1
L (t)

= Ω
−1
L (t)ΩL(t)Ω−1

L (t)

= Ω
−1
L (t)

(5.15)

The proof is completed. �
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It may be worth to compare the above unbiased proof for time-varying systems with the
proof of Theorem 3.1 in Chapter 3 and the one in Appendix B for nonlinear time-invariant
systems, which appears to base on the same “spirit” through different “manners”.

Corollary 5.1. From Theorem 5.1, it can be easily conclude that in the case of noise-free
(without process noise and measurement noise) and fault-free, the proposed observer has the
following estimation property :

x̂L(t) = x(t) t ≥ L×Ts

Remark 5.2. According to Theorem 5.1 and Corollary 5.1, it may be worth noting that
the performance of the proposed observer doesn’t depend on the initial condition. The fact
of no initial value problem (IVP) gives the presented observer another advantage for real
applications.

Note that the proposed observer (5.8) is the least square solution of linear equation (5.6),
which is the linear combination of YL(t). We have also proved that it is an unbiased linear
estimator in both deterministic and stochastic case. Now we are going to give in the next
subsection the variance property of the estimation error.

5.3.2 Smallest variance proof

Theorem 5.2. The proposed observer has the smallest variance (least dispersion) among
all the other unbiased linear estimator. That is to say, if x̂∗(t) is another unbiased linear
estimation of linear equation (5.6), let ε∗(t) = x̂∗(t)− x(t), then

Var(ε∗(t))≥Var(εL(t)) = Ω
−1
L (t)

Proof. Since x̂∗(t) is another unbiased linear estimation of (5.6), then let x̂∗(t) = A (t)YL(t)
where A (t) ∈ Rn×pL represents the linear combination. ε∗(t) is then calculated as

ε
∗(t) = x̂∗(t)− x(t)

= A (t)YL(t)− x(t)

= A (t) [WL(t)x(t)+VL(t)]− x(t)

= [A (t)WL(t)− In]x(t)+A (t)VL(t)

since E[VL(t)] = 0 and x̂∗(t) is another unbiased linear estimation, i.e. E(ε∗(t)) = 0, then

E(ε∗(t)) = [A (t)WL(t)− In]x(t) = 0 ⇒ A (t)WL(t) = In (5.16)
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which yields
ε
∗(t) = A (t)VL(t) (5.17)

Now let us suppose the linear combination A (t) has the following form

A (t) = Ω
−1
L (t)W T

L (t)P−1
L (t)+Γ(t) (5.18)

where Γ(t) ∈ Rn×pL is a non-zero matrix. Then,

A (t)WL(t) = Ω
−1
L (t)W T

L (t)P−1
L (t)WL(t)+Γ(t)WL(t)

= Ω
−1
L (t)ΩL(t)+Γ(t)WL(t)

= In +Γ(t)WL(t)

(5.19)

according to equation (5.16), we obtain

Γ(t)WL(t) = 0 (5.20)

Calculate the variance of estimation error ε∗(t) based on (5.17) and (5.20) as follows

Var(ε∗(t)) = E
[
ε
∗(t)ε∗T(t)

]
= A (t)E

[
VL(t)V T

L (t)
]
A T(t)

=
[
Ω
−1
L (t)W T

L (t)P−1
L (t)+Γ(t)

]
PL(t)

[
Ω
−1
L (t)W T

L (t)P−1
L (t)+Γ(t)

]T
= Ω

−1
L (t)W T

L (t)P−1
L (t)PL(t)P−1

L (t)WL(t)Ω−1
L (t)+Γ(t)ΓT(t)

+Ω
−1
L (t)W T

L (t)P−1
L (t)PL(t)ΓT(t)+Γ(t)PL(t)P−1

L (t)WL(t)Ω−1
L (t)

= Ω
−1
L (t)ΩL(t)Ω−1

L (t)+Γ(t)ΓT(t)+0+0

= Ω
−1
L (t)+Γ(t)ΓT(t)+0+0

=Var(εL(t))+Γ(t)ΓT(t)

(5.21)

we know that Γ(t)ΓT(t) is a positive semi-definite matrix, then it is obvious that Var(ε∗(t))
exceeds Var(εL(t)) by a positive semi-definite matrix, namely

Var(ε∗(t))≥Var(εL(t))

The proof is completed. �

For continuous-time LTV systems (2.4), it is well known that Kalman filter (KF) is also
one of the optimal estimators under certain conditions. This means that the variance of
estimation error Σ(t) by KF described by the following continuous-time Riccati equation
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(CT-RE), will converge to Cramér-Rao Lower Bound (CRLB).

CT-RE: Σ̇(t) = A(t)Σ(t)+Σ(t)AT(t)−Σ(t)CT(t)R−1C(t)Σ(t)+Q(t) (5.22)

In the meantime, for continuous-discrete LTV systems like (5.1), we should not include
the R term in (5.22) because we are integrating P between measurement times, during
which we do not have any measurements. Another way of looking at it is that in between
measurement times we have measurements with infinite covariance (R = ∞), so the R-related
term on the right side of (5.22) goes to zero. This gives us the following CD-RE for the
time-update variance equation of CD Kalman filter [Simon 2006]:

CD-RE: Σ̇(t) = A(t)Σ(t)+Σ(t)AT(t)+Q(t) (5.23)

The variance comparison between the proposed CD-LTV-FMO and KF will be later given
in the simulation section by an numerical example of LTV system.

5.4 Optimal Window Length Selection Strategy

There follows the section in which we are going to provide a window length selection strategy
by showing how to determine “the minimal length" Lmin and “the maximum length" Lmax, as
been also used in Graton et al. [2014].

First of all, let Lmin is chosen to guarantee the possibility that the proposed observer (5.8)
exists, which depends whether the matrix multiplication term W T

L (t)P−1
L (t)WL(t) in (5.8) is

invertible. This means that each column of matrix WL(t) should be linearly independent.
Nonetheless, this condition will always been satisfied thanks to Assumption 5.2. Therefore,
Lmin should be chosen to make sure that Assumption 5.2 is validated.

Since the variance of state estimation error Var(εL(t)) depends on L, we are therefore
going to show the idea of selecting Lmax by studying how does L has an influence on
Var(εL(t)), the estimation performance indicator of the proposed observer. Let us note

εL(t) = x̂L(t)− x(t)

εL+1(t) = x̂L+1(t)− x(t)
(5.24)

where x̂L(t) and x̂L+1(t), as illustrated in Figure 5.1, respectively represent the estimations
with different window length,
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Note that the related variances of εL(t) and εL+1(t) can be expressed as

Var(εL(t)) = Ω
−1
L (t) =

[
W T

L (t)P−1
L (t)WL(t)

]−1

Var(εL+1(t)) = Ω
−1
L+1(t) =

[
W T

L+1(t)P
−1
L+1WL+1(t)

]−1 (5.25)
           

           
             0  Lt 1  Lt               2t    1t    t          Time 

 
 

window length: L 

window length: L+1 

𝑥𝐿(𝑡) 
  

𝑥𝐿+1(𝑡) 
  

Figure 5.1: Illustration of state estimations x̂(t) with different window length L

In order to give the sequential formulation between Ω
−1
L (t) and Ω

−1
L+1(t), decompose the

matrices WL+1(t) and PL+1(t) based on (5.6) and (5.7) as follows

WL+1(t) =

[
WL(t)

w(t− τL)

]
PL+1(t) =

[
PL(t) η(t)
ηT(t) rT(t)r(t)

]
(5.26)

where

w(t− τL) =C(t− τL)Φ(t− τL, t)

rT(t)r(t) = SL(t)+R

η(t) = [S0(t),S1(t), · · · ,SL−1(t)]T
(5.27)

Since PL+1(t) and PL(t) are positive-definite and invertible, the Schur complement of
PL(t) in PL+1(t), namely

S(t) := PL+1(t)\PL(t)

= rT(t)r(t)−η
T(t)P−1

L (t)η(t)
(5.28)

is positive-definite (see Appendix C) and then invertible. Since rT(t)r(t) and ηT(t)P−1
L (t)η(t)

in (5.28) are all symmetric matrices, S(t) is thus symmetric as well. Therefore, the inverse of
S(t) is symmetric positive-definite and it can then be decomposed via Cholesky decomposition
[Higham 2009] as

S−1(t) =U(t)UT(t) (5.29)

89



5.4 Optimal Window Length Selection Strategy

where U(t) is a lower triangular matrix with positive diagonal entries. Use the block-wise
inversion [Zhang 2010], the inverse of PL+1(t) can be obtained as

P−1
L+1(t) =

[
P−1

L (t) 0
0 0

]
+

[
−P−1

L (t)η(t)
I

]
U(t)UT(t)

[
−ηT(t)P−1

L (t) I
]

(5.30)

according to (5.26) and (5.30), we can then write ΩL+1(t) as

ΩL+1(t) =W T
L+1(t)P

−1
L+1WL+1(t)

=
[
W T

L (t) wT(t− τL)
]{[P−1

L (t) 0
0 0

]
+

[
−P−1

L (t)η(t)
I

]

U(t)UT(t)
[
−ηT(t)P−1

L (t) I
]}[ WL(t)

w(t− τL)

]
=W T

L (t)P−1
L (t)WL(t)+D(t)DT(t)

= ΩL(t)+D(t)DT(t)

(5.31)

with
D(t) =

[
−W T

L (t)P−1
L (t)η(t)+wT(t− τL)

]
U(t) (5.32)

then, the Sherman-Morrison-Woodbury identity [Press et al. 2007] yields

Ω
−1
L+1(t) =

[
ΩL(t)+D(t)DT(t)

]−1

= Ω
−1
L (t)−Ω

−1
L (t)D(t)

[
I +DT(t)Ω−1

L (t)D(t)
]−1

DT(t)Ω−1
L (t)

(5.33)

It can be clearly seen from (5.33) that state estimation error variance of the proposed
CD-LTV-FMO, i.e. Ω

−1
L (t), satisfies the matrix riccati equation with respect to window

length L. Based on the properties of RE stated in De Souza et al. [1986], the variance will
asymptotically converge to a minimal value as the window length L increases. That means
when L increases to a certain size, the estimation error will no longer decrease, which seems
reasonable since the amount of information brought by increasing the window length is not
significant any more. Hence, Lmax can be decided either by the maximum tolerance on the
dispersion of estimation or by the L chosen when the following condition meets:

Ω
−1
L+1(t)≈Ω

−1
L (t)

.
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5.5 Numerical Example

Consider a continuous-time LTV system [Kailath 1980], described by a state-space model as

ẋ(t) = A(t)x(t)+B(t)u(t)+ω(t)

y(k) =Cx(tk)+ v(k)

with the other parameters settings are as follows:

A(t) =

(
−4/t −2/t2

1 0

)
; B(t) =

(
1
0

)
; Q = σpσ

T
p =

(
1×10−5 0

0 1×10−5

)
;

u(t) = sin(20t); C(t) = (0 1); R = σ
2
m =

(
2×10−5

)2
.

Before all the analyses, we firstly determine the state transition matrix as:

Φ(t,θ) =

(
−θ 2t−2 +2θ 3t−3 −2θ t−2 +2θ 2t−3

θ 2t−1−θ 3t−2 2θ t−1−θ 2t−2

)

which one can check it by calculating dΦ(t,θ)
dt and verifying that it is certainly equal to

A(t)Φ(t,θ).

5.5.1 Influence of window length L

It can be seen that the proposed CD-LTV-FMO (5.8) depends on the window length L. The
influence of L is going to analyses through different aspects with the given example.

5.5.1.1 Variance of estimation error with respect to L

As theoretically proved in (5.15), the estimation variance of the proposed CD-LTV-FMO
is Ω

−1
L (t), it can been clearly seen from Figure 5.2(a) that at any time instant t, Ω

−1
L (t)

converges asymptotically while window length L augments.
Now let us note ΣL(t) = (x(t)− x̂(t))(x(t)− x̂(t))T as the practical estimation variance at

each instant t calculated by the numerical simulation, the same convergence with respect to
window length L can then be found in Figure 5.2(b). Comparing to 5.2(a), the “roughness” of
ΣL(t) at beginning (when L = 2) is due to the numerical computation in the presence of noises.
Take t = 0.3s as an example, a detailed comparison between ΣL(t) and Ω

−1
L (t) with respect to

window length L is shown in Figure 5.2(c). In the steady phase, ΣL(t) = Ω
−1
L (t) is validated,

which means Ω
−1
L (t) is surely validated as the variance of the proposed CD-LTV-FMO.

91



5.5 Numerical Example

(a
)

C
on

ve
rg

en
ce

of
th

eo
re

tic
al

va
ri

an
ce

Ω
−

1
L
(t
)

ov
er

L
(b

)
C

on
ve

rg
en

ce
of

pr
ac

tic
al

va
ri

an
ce

Σ
L
(t
)

ov
er

L

0
2

4
6

8
10

12
14

16
18

20
W

in
d
ow

le
n
gt

h
L

(t
=

0:
3s

)

0510

MaxEigenvalue

#
10

-4

T
h
eo

re
ti
ca

l:
+
!

1
L

(t
)

P
ra

ti
ca

l:
'

L
(t

)

(c
)

V
ar

ia
nc

e
co

m
pa

ra
si

on
w

ith
re

sp
ec

tt
o

L
w

he
n

t=
0.

3s

Fi
gu

re
5.

2:
C

on
ve

rg
en

ce
of

va
ri

an
ce

w
ith

di
ff

er
en

tw
in

do
w

le
ng

th
L

92



Chapter 5 CD-FMO Design for Nonlinear Time-Varying (NLTV) Systems

5.5.1.2 Estimation performance with respect to L

As depicted in Figure 5.3 and Figure 5.4, the influence of window length L on the state
estimation performance can be examined by comparing with true state. The longer the
window length L is, the better the estimation is. Meanwhile, as usual, the window length L
apparently has more impact on the state component without measurement since the measured
state has enough amount of significant information and the unmeasured one mainly obtains
the information by augmenting window length L.
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Figure 5.3: x̂1 over window length L
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Figure 5.4: x̂2 over window length L

5.5.2 Cramér-Rao Lower Bound (CRLB) verification

As stated above in (5.22) and (5.23), the estimate variance of Kalman filter for LTV systems,
which describes as the solution of Riccati equation, will converge to Cramér-Rao lower
bound. As shown in Figure 5.5, the estimate variance ΣL(t) of the proposed CD-LTV-FMO
is compared to both the CT-KF and CD-KF through the solutions of Riccati equation. By
examining Figure 5.5, we see that the estimate variance ΣL(t) gets more and more closer
(converge) to the CRLB as the window length L increases.
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As a matter of fact, the proposed CD-LTV-FMO can be seen as a Kalman filter when the
estimate variance no longer significantly changes as the window length L gets longer, namely
Ω
−1
L+1(t)≈Ω

−1
L (t). In this case, thanks to the property of KF, the proposed CD-LTV-FMO is

again validated as “BLUE”.
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Figure 5.5: Estimate variance comparison with respect to KF by Riccati equation

5.5.3 Unbiased estimation performance via MC simulations

In order to evaluate the state estimation performance in stochastic case, we employ Monte
Carlo (MC) simulations to check the unbiased property of the proposed observer, which is
defined as

¯̂x(t), E [x̂L(t)] =
1

Nmc

Nmc

∑
i=1

x̂(i)L

where Nmc is the number of MC runs. Let us set window length L = 6 and Nmc = 500. It can
be seen by Figure 5.6 and Figure 5.7 that after performing 500 runs of MC simulations, the
estimation expectation ¯̂x2(t) is well rebuilt at the true value of state. Meanwhile, the upper
and lower bounds of the sate estimation by the presented observer are also established in
Figure 5.7, which are very close to the true state and vary in a quite small range.
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Figure 5.6: Expectation and bounds (upper / lower) of x1 (LTV)
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Figure 5.7: Expectation and bounds (upper / lower) of x2 (LTV)

The RMSE (root-mean-square error) is further used as another measure of the differences

between estimations and true value, which is defined as RMSE =
√

1
Nmc

∑
Nmc
i=1(x̂

(i)
L − x)2.

According to different window length and different numbers of MC runs, we establish
six simulation scenarios, as shown in Table.5.1.

Table 5.1: MC simulation scenarios with respect to L and Nmc

Nmc = 100 (N1) Nmc = 500 (N2)
L = 2 (L1) “L1N1" “L1N2"
L = 6 (L2) “L2N1" “L2N2"

L = 10 (L3) “L3N1" “L3N2"

The RMSEs for different scenarios are depicted in Figure 5.8 and Figure 5.9. Through
the examination of figure, the estimation performance may be analyzed in two aspects. On
the one hand, seeing that there are three pairs of curves in the figure, the conclusion of
“the longer the window length is, the better the estimations are" can be drawn immediately
by comparing the RMSEs of the three pairs. This is by the way another evidence for the
influence of window length.
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On the other hand, examine the two different RMSEs of each pair, it can be obviously
seen that how the increase of MC simulation times improves the state estimation accuracy,
which appears to be reasonable since the more MC simulation times, the less uncertainty
caused by process and measurement noises.
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Figure 5.8: RMSE of x̂1 with different L and different Nmc (LTV)
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Figure 5.9: RMSE of x̂2 with different L and different Nmc (LTV)

5.6 FMO Design for CD-NLTV Systems (CD-NLTV-FMO)

Based on what we have designed above, the aim in this section is to extend the proposed
CD-LTV-FMO to a class of continuous-discrete nonlinear time-varying (CD-NLTV) systems.

5.6.1 CD-NLTV-FMO formulation

The considered CD nonlinear time-varying (CD-NLTV) systems are described as

ẋ(t) = A(t)x(t)+B(t)u(t)+ f (x, t)+ω(t) (5.34a)

y(k) =Cx(tk)+ v(k) (5.34b)
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where x ∈ Rn, y ∈ Rp and u ∈ Rq are continuous state vector, discrete measurement vector
and continuous input vector, respectively. The sampling period of measurement is Ts, i.e.
∃k ∈N | tk = k×Ts. In the meantime, A(·) ∈Rn×n, B(·) ∈Rn×q and C(·) ∈Rp×n are known
matrices and are functions of time. The Gaussian measurement noise v and Gaussian process
noise ω are independent with the properties described in (5.2). The nonlinearity f (x, t) is at
least locally Lipschitz with respect to x, i.e.

∥ f (a, t)− f (b, t)∥ ≤ κ∥a−b∥ (κ is Lipschtiz constant)

The continuous-discrete finite memory observer for NLTV systems, i.e. CD-NLTV-FMO,
is then designed by the similar manner as the linear time-varying case based on Assumption
5.1, Assumption 5.2, Definition 5.1 and Remark 5.1.

Consider the time window [t − τL−1, t], use the state transition matrix Φ(t, t − τi) to
express the state mapping between x(t) and x(t− τi) as:

x(t) = Φ(t, t− τi)x(t− τi)+
∫ t

t−τi

Φ(t,θ)B(θ)u(θ) dθ +
∫ t

t−τi

Φ(t,θ)ω(θ) dθ

+
∫ t

t−τi

Φ(t,θ) f (x(θ),θ) dθ

(5.35)

both sides of (5.35) are left multiplied by a coefficient matrix C(t− τi)Φ
−1(t, t− τi), then

take into consideration the measurement equation (5.34b) at time instant t− τi and rearrange
with the properties of Φ(·, ·) in Remark 5.1, we have

C(t− τi)Φ(t− τi, t)x(t) = y(t− τi)+α[t−τi,t]−β[t−τi,t]+ γ[t−τi,t] (5.36)

with

α[t−τi,t] =
∫ t

t−τi

C(t− τi)Φ(t− τi,θ)B(θ)u(θ) dθ

β[t−τi,t] = v(t− τi)−
∫ t

t−τi

C(t− τi)Φ(t− τi,θ)ω(θ) dθ

γ[t−τi,t] =
∫ t

t−τi

C(t− τi)Φ(t− τi,θ) f (x(θ),θ) dθ

Write equation (5.36) for every instant in time window [t− τL−1, t], a concatenated measure-
ments can be denoted as the following linear equation:

YL(t) =WL(t)x(t)+VL(t) (5.37)
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where

YL(t) =


y(t− τ0)+α[t−τ0,t]+ γ[t−τ0,t]

y(t− τ1)+α[t−τ1,t]+ γ[t−τ1,t]
...

y(t− τL−1)+α[t−τL−1,t]+ γ[t−τL−1,t]

 ;

WL(t) =


C(t− τ0)Φ(t− τ0, t)
C(t− τ1)Φ(t− τ1, t)

...
C(t− τL−1)Φ(t− τL−1, t)

 ; VL(t) =


β[t−τ0,t]

β[t−τ1,t]
...

β[t−τL−1,t]

 .

It can be seen that the noise term VL(t) is the same as the LTV case, so the variance
matrix PL(t) remains the same as in (5.7).the least-squares solution of (5.6) as follows:

x̂L(t) = argmin
1
2
||YL(t)−WL(t)x(t)||2P−1

L (t)

=
[
W T

L (t)P−1
L (t)WL(t)

]−1
W T

L (t)P−1
L (t)ŶL(t)

(5.38)

with

ŶL(t) =


y(t− τ0)+α[t−τ0,t]+ γ̂[t−τ0,t]

y(t− τ1)+α[t−τ1,t]+ γ̂[t−τ1,t]
...

y(t− τL−1)+α[t−τL−1,t]+ γ̂[t−τL−1,t]


γ̂[t−τi,t] =

∫ t

t−τi

C(t− τi)Φ(t− τi,θ) f (x̂(θ),θ) dθ

Note that the calculation method for the integral term γ̂[t−τi,t] is the same as the one
proposed in subsection 3.2.2.2 of Chapter 3. As a matter of fact, the CD-NLTV-FMO design
idea can be referred as a combination of the CD-FMO designed in Chapter 3 and the FMO
desgned for CD-LTV systems in section 5.2.

5.6.2 Numerical simulation

Consider adding a nonlinearity term f (x, t) to the numerical example in section 5.5 while the
other matrices and parameters remain unchanged:

f (x, t) =

(
0.1t

sin(x1)

)
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5.6.2.1 Influence of window length L

The same as the CD-FMO design for nonlinear systems in Chapter 3, the theoretical estimate
variance of the nonlinear time-varying (NLTV) systems (5.34) cannot be currently given
in this thesis. However, the practical estimate variance ΣL(t) = (x(t)− x̂(t))(x(t)− x̂(t))T

numerically calculated by simulations at each instant t is given in Figure 5.10, from which
we can still see the convergence of variance influenced by the size of window L.

Figure 5.10: Practical variance ΣL(t) of CD-NLTV-FMO with respect to L

In the meantime, the comparison of state estimation through different window length L
can be seen in Figure 5.11 by performing a single run of MC simulation, the convergence with
respect to L depicted in Figure 5.10 is once again verified by state estimation performance.
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Figure 5.11: State estimation of CD-FMO-NLTV influenced by L

Note that we obtain the same convergence results as for the LTV systems case in the
previous section. In next subsection, we are going to compare the estimate variance with the
nonlinear Kalman filter, more specifically first-order extended Kalman filter (EKF), by the
solution of the Riccati equation.
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5.6.2.2 Comparison with the estimate variance of EKF

According to Simon [2006], the Riccati equations stated in (5.22) and (5.23) becomes as
follows for the first-order EKF estimate variance P(t) of nonlinear time-varying systems
(NLTV) (5.34a), noted as

ẋ(t) = A(t)x(t)+B(t)u(t)+ f (x, t)+ω(t), g(x,u, t,ω)

CT-RE: Ṗ(t) = F(t)P(t)+P(t)FT(t)−P(t)CT(t)R−1C(t)P(t)+Q(t)

CD-RE: Ṗ(t) = F(t)P(t)+P(t)FT(t)+Q(t)

where

F(t) =
∂g
∂x

∣∣∣∣
x̂(t)

= A(t)+
∂ f
∂x

∣∣∣∣
x̂(t)

The estimate variance ΣL(t) of the proposed CD-NLTV-FMO is compared to both the
first-order CT-EKF and CD-EKF through the solutions of Riccati equation in Figure 5.12.
The same performance can be seen as in Figure 5.5. However, the estimation accuracy for
NLTV systems is not as great as LTV systems due to the approximation of the nonlinearity.
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Figure 5.12: Estimate variance comparison with respect to EKF by Riccati equation
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5.6.2.3 Unbiased estimation performance via MC simulations

The multiple MC simulations are run to test the unbiased property of CD-NLTV-FMO. The
state estimation expectations and bounds with Nmc = 500 and L = 6 are shown in Figure
5.13 and Figure 5.14. Meanwhile the RMSE of different scenarios in Table.5.1 are shown in
Figure 5.15 and Figure 5.16. By examining these figures, we can conclude that the proposed
CD-NLTV-FMO shows a good performance.
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5.7 Conclusion

This chapter is dedicated to design a robust observer for continuous-discrete linear time-
varying systems in noisy environment. The proposed approach has been proved unbiased
and has the smallest estimation variance compared to other linear estimators. Furthermore,
the presented observer also benefits from the finite time convergence and no initial value
problem, which turns out to be an important consideration for practical applications. Like
other moving horizon methods, the influence of window length has also been analysed both
theoretically and practically, which a strategy of choosing the window length by dispersion
tolerance are also provided. Monte Carlo simulations are used to examine and verify the
performance of the proposed method, which appears to be robust and effective. It may be
worth noting here that the presented observer framework also works well when sampling
period is not a constant. At the last part, the proposed observer has been extended to the
nonlinear time-varying systems through a brief demonstration and a numerical example is
employed to test the performance of CD-FMO-NLTV.
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Chapter 6
Conclusions and Future Research

This thesis set out to design a nonlinear observer for a class of dynamical systems, which
are modeled by continuous-time nonlinear ordinary differential equations and are measured
at discrete-time instant, and to use the proposed observer to perform fault diagnosis. A
graphical representation of the structure of this thesis is given in Figure 6.1. In this final
chapter, we will review the result conclusions of the work in this thesis, as well as discuss
directions for future research.

6.1 Conclusions

The main conclusions of this thesis, which are drawn based on the obtained results, are
summarized as follows in two aspects:

Nonlinear observer design

• Time-invariant: inspired by the existing optimization-based nonlinear observer design
methods and the observer-based fault diagnosis approaches illustrated in Chapter 2, we
have first devoted Chapter 3 to develop a continuous-discrete finite memory observer
(CD-FMO) for a class of nonlinear dynamical time-invariant systems the presence of
process and measurement noise, where a one-step prediction algorithm incorporated
with an iterative-update scheme is performed to solve the integral problem caused
by system nonlinearity, and an analysis of the unbiased estimation property has been
proved in both deterministic and stochastic case.

• Unknown input: since there still remains a lack of study on nonlinear continuous-
discrete observer design with the presence of unknown input, process and measurement
noises at the same time, which serves as the motivation of the presented work in
Chapter 4, where a CD-UI-FMO is constructed based upon an augmented model
aiming to simultaneously estimate system state and UI of a noisy process with noisy
measurements. The unbiased property of CD-FMO remains for the CD-UI-FMO case.
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Chapter 6 Conclusions and Future Research

• Time-varying: As for time-varying systems, an observer has been designed for both
linear and nonlinear cases in Chapter 5, respectively called CD-LTV-FMO and CD-
NLTV-FMO. A detailed proofs are provided for linear case while the formulation has
been further extended to nonlinear case and illustrated by a given example.

Fault diagnosis

• Detection,isolation and estimation: for the application purpose, residuals generated
by the proposed CD-FMO are employed in Chapter 3 to implement fault detection
cooperated with the CUSUM algorithm, while a bank of CD-FMOs is adopted to
realize fault isolation for different sensor and actuator faults of a considered nonlinear
robotic systems. In the meantime, the proposed CD-UI-FMO structure in Chapter 4
has been applied to actuator fault estimation when the actuator fault is modeled as an
unknown input of systems.

• Multiple simultaneous faults detection and identification: thanks to the unknown
input estimation ability of CD-UI-FMO, fault detection and identification have been
performed in Chapter 4 as well for multiple simultaneous sensor and actuator faults as
the actuator fault has been estimated and compensated by CD-UI-FMO.

The above mentioned conclusions have been verified and validated by numerical simulations
in this thesis. The provided results showed the good performance on both state estimation
and fault diagnosis, as well as efficiency and robustness with respect to diverse noises.

6.2 Future Research

Even though my PhD journey is going to end very soon, my research is still going on. There
still remains much research to be done in the future as the succession and continuity of the
work in this thesis. These future research directions are also going to be listed in two aspects
as follows:

Observer design aspect

• Analytical form of the estimate variance: it can be seen that the variance of esti-
mation error obtained by CD-LTV-FMO in Chapter 5 are theoretically demonstrated
by (5.15) and validated through simulations for linear time-varying systems. As for
nonlinear case, the variance are shown by simulations while the analytical form of
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6.2 Future Research

estimate variance has not yet given, which refers to the proposed CD-FMO in Chapter
3, the CD-UI-FMO in Chapter 4 and the CD-NLTV-FMO in Chapter 5.

• Incomplete or missing measurements: missing measurements are a common occur-
rence in practical physical system and can cause a significant effect on system behavior.
The proposed nonlinear finite memory observer is supposed to be robust with respect
to the measurement missing thanks to the role of term “τi” in the formulation structure.
It will be analyzed and validated in detail in the future.

• Extension to general nonlinear systems: since we have already built the observer
for a class of nonlinear systems (3.1) and for time-varying nonlinear systems (5.34), it
might be possible to extend the presented method to general nonlinear systems under
the form x̂ = f (x,u, t) by using the first-order or second-order Taylor expansion around
x = x̂(t) at each instant t.

Fault diagnosis aspect

• Detection sensitivity analyses with respect to different fault and noises: in order
to analyze the diagnostic performance according to different parameter configuration,
it is then necessary to study the sensibility of the chosen fault indicator (for instance,
the generated “residual” is used as fault indicator in this thesis) vis-a-vis different
fault and noises. This type of study can help us theoretically analyze in advance the
minimum fault detection amplitude with the known configuration parameters.

• Integrate with the qualitative model-based diagnosis methods: qualitative model-
based diagnosis methods sometimes cannot give a correct diagnosis of failures. For
example, fault tree (FT) will give false diagnosis when the true failure component is
not the one whose failure rate is the highest. Since the failure rate is based on historical
data and the current scenario may be more complex. To ensure more correct diagnosis
results, one has to use other real-time information, where the proposed observer might
give some help with it. It will make a significant improvement if the proposed observer
can share information with the qualitative model-based methods.

This above non-exhaustive list forms our future research directions.
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Appendix A
Calculation of the noise variance matrix P

This appendix presents the detailed calculation of the noise variance matrix P in equation
(3.8) of chapter 3.

A note on notation

Three dots between delimiters (parenthesis, brackets, or braces) means that the quantity
between the delimiters is the same as the quantity between the previous set of identical
delimiters in the same equation. For example,

(A+BCD)+(· · ·)T = (A+BCD)+(A+BCD)T

A+[B(C+D)]−1 E [· · · ] = A+[B(C+D)]−1 E [B(C+D)]

According to the definition of Variance and zero mean, i.e. E(VL) = 0, we have

P = E
{
[VL−E(VL)] [VL−E(VL)]

T
}

= E
{

VLV T
L
}

= E




v(t− τ0)−

∫ t
t−τ0

CeA(t−τ0−θ)Gω(θ) dθ

v(t− τ1)−
∫ t

t−τ1
CeA(t−τ1−θ)Gω(θ) dθ

...
v(t− τL−1−

∫ t
t−τL−1

CeA(t−τL−1−θ)Gω(θ) dθ)


· · ·


T

,


p0,0 p0,1 · · · p0,L−1

p1,0 p1,1 · · · p1,L−1
...

... . . . ...
pL−1,0 pL−1,1 · · · pL−1,L−1


, (pi, j) ∈ RL×L

(A.1)
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Appendix A: Calculation of the noise variance matrix P

where the elements pi, j are indexed by 0 ≤ i ≤ L− 1 and 0 ≤ j ≤ L− 1. Using the noise
properties of w and v in (3.3), we know that pi, j satisfy

pi, j = E

([
v(t− τi)−

∫ t

t−τi

eA(t−τi−θ1)Gω(θ1) dθ1

][
· · ·
]T

(i← j;θ1←θ2)

)

= E
([
· · ·
][

v(t− τ j)
T−

∫ t

t−τ j

ω
T(θ2)GTeAT(t−τ j−θ2)CT dθ2

])
, 1 − 2 − 3 + 4

(A.2)

with

1 = E
(
v(t− τi)v(t− τ j)

T)= Rδi, j =

0 if i ̸= j

R if i = j
(A.3a)

2 = E
(

v(t− τi) ·
∫ t

t−τ j

ω
T(θ2)GTeAT(t−τ j−θ2)CT dθ2

)
= 0 ∀i, j (A.3b)

3 = E
(∫ t

t−τi

eA(t−τi−θ1)Gω(θ1) dθ1 · v(t− τ j)

)
= 0 ∀i, j (A.3c)

4 = E
(∫ t

t−τi

CeA(t−τi−θ1)Gω(θ1) dθ1 ·
∫ t

t−τ j

ω
T(θ2)GTeAT(t−τ j−θ2)CT dθ2

)
(A.3d)

Note that term 4 in the above equation needs to be deduced. In order to derived 4 ,
the following corollary of Fubini’s theorem is introduced first

Corollary 1. Given a rectangle ∆ := [a,b]× [c,d], let f (x) be defined in a≤ x≤ b and g(y)
be defined in c≤ y≤ d. Then, if f and g are continuous, we have

∫∫
∆

f (x)g(y) dxdy =
(∫ b

a
f (x) dx

)(∫ d

c
g(y) dy

)
Applying Corollary 1 to (A.3d), we obtain

4 = E
(∫ t

t−τi

CeA(t−τi−θ1)Gω(θ1) dθ1 ·
∫ t

t−τ j

ω
T(θ2)GTeAT(t−τ j−θ2)CT dθ2

)
= E

(∫ t

t−τi

∫ t

t−τ j

CeA(t−τi−θ1)Gω(θ1)ω
T(θ2)GTeAT(t−τ j−θ2)CT dθ2 dθ1

)
=
∫ t

t−τi

∫ t

t−τ j

CeA(t−τi−θ1)GE
(
ω(θ1)ω

T(θ2)
)

GTeAT(t−τ j−θ2)CT dθ2 dθ1

=
∫ t

t−τi

∫ t

t−τ j

CeA(t−τi−θ1)GQδ (θ1−θ2)GTeAT(t−τ j−θ2)CT dθ2 dθ1

(A.4)
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Appendix A: Calculation of the noise variance matrix P

Since the Dirac delta function is even, then δ (θ1− θ2) = δ (θ2− θ1). Furthermore, the
shifting property of Dirac delta function is recalled as follows:

Corollary 2 ([Hassani 2009]). For any real or complex valued continuous function f on R,
the Dirac delta satisfies the shifting property

∫ b

a
f (x)δ (x− x0) dx =

 f (x0) if a < x0 < b

0 otherwise

Then, let k , min[i, j] = 0,1, ...,L−1, Corollary 2 allows us to continue deriving (A.4)
as follows

4 =
∫ t

t−τi

∫ t

t−τ j

CeA(t−τi−θ1)GQδ (θ1−θ2)GTeAT(t−τ j−θ2)CT dθ2 dθ1

=
∫ t

t−τi

∫ t

t−τ j

CeA(t−τi−θ1)GQδ (θ2−θ1)GTeAT(t−τ j−θ2)CT dθ2 dθ1

=
∫ t

t−τk

CeA(t−τk−θ1)GQGTeAT(t−τk−θ1)CT dθ1

substitution−−−−−−→
s=t−τk−θ1

=
∫ 0

−τk

CeAsGQGTeATsCT ds ∀i, j

(A.5)

Let Sk =
∫ 0
−τk

CeAsGQGTeATsCT ds, based upon (A.1)-(A.5), we finally obtain

P =


S0 S0 · · · S0

S0 S1 · · · S1
...

... . . . ...
S0 S1 · · · SL−1

+


R 0 · · · 0

0 R . . . ...
... . . . . . . 0
0 · · · 0 R

 (A.6)

Note that block matrix P is symmetric, which is only logic since it is a variance matrix.
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Appendix B
Proof of the unbiased estimation property
of the CD-FMO in stochastic case

This appendix intends to give a detailed proof that the state estimation of the proposed
CD-FMO (3.10) in Chapter 3 is unbiased in stochastic case, namely

E(x̂(t)− x(t)) = 0 t ∈ [L×Ts,+∞) (B.1)

First of all, let Ki with i = 0,1, · · · ,L−1 represents the i+1th column of the inverse of
variance matrix P−1 in (3.8) as follows

P−1 , [K0,K1, · · · ,KL−1] (B.2)

Recall the proposed CD-FMO here as in (3.9) and (3.10)

x̂(t) = argminJ(x) =
(
W T

L P−1WL
)−1

W T
L P−1ŶL (B.3)

where

ŶL =


y(t− τ0)+αt−τ0,t + β̂t−τ0,t

y(t− τ1)+αt−τ1,t + β̂t−τ1,t
...

y(t− τL−1)+αt−τL−1,t + β̂t−τL−1,t

 ; WL =


Ce−Aτ0

Ce−Aτ1

...
Ce−AτL−1


with

β̂t−τi,t =
∫ t

t−τi

CeA(t−τi−θ)
Φ(x̂(θ)) dθ (B.4a)

Rewrite the CD-FMO (B.3) as follows

x̂(t) = Ω
−1
L W T

L P−1ŶL

= Ω
−1
L

L−1

∑
i=0

{
e−ATτiCTKi

[
y(t− τi)+αt−τi,t + β̂t−τi,t

]} (B.5)
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Appendix B: Proof of the unbiased estimation property in stochastic case

with

ΩL =W T
L P−1WL =

L−1

∑
i=0

e−ATτiCTKiCe−Aτi (B.6)

from (3.5) and (3.6) we have

y(t− τi) =Ce−Aτix(t)+ v(t− τi)−αt−τi,t−βt−τi,t− γt−τi,t (B.7)

where

βt−τi,t =
∫ t

t−τi

CeA(t−τi−θ)
Φ(x(θ)) dθ (B.8a)

γt−τi,t =
∫ t

t−τi

CeA(t−τi−θ)Gω(θ) dθ (B.8b)

replace y(t− τi) in (B.5) by (B.7), we obtain

x̂(t) = Ω
−1
L

L−1

∑
i=0

{
e−ATτiCTKi

[
Ce−Aτix(t)+ v(t− τi)−βt−τi,t− γt−τi,t + β̂t−τi,t

]}
, 1 + 2 + 3

(B.9)

with

1 = Ω
−1
L

L−1

∑
i=0

{
e−ATτiCTKiCe−Aτix(t)

}
(B.6)
= x(t) (B.10a)

2 = Ω
−1
L

L−1

∑
i=0

{
e−ATτiCTKi [v(t− τi)− γt−τi,t ]

}
→ E

(
2
)
= 0 (B.10b)

3 = Ω
−1
L

L−1

∑
i=0

{
e−ATτiCTKi

[
β̂t−τi,t−βt−τi,t

]}
(B.10c)

According to (B.9) and (B.10), the following mathematical expectation is given

E(x̂(t)− x(t)) = E
(

2 + 3
)
= E

(
3
)

= E

(
Ω
−1
L

L−1

∑
i=0

{
e−ATτiCTKi

[
β̂t−τi,t−βt−τi,t

]})

= Ω
−1
L

L−1

∑
i=0

{
e−ATτiCTKiE

[
β̂t−τi,t−βt−τi,t

]} (B.11)
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Appendix B: Proof of the unbiased estimation property in stochastic case

Before we go any further, let us write the first-order Taylor series of the nonlinear term
Φ(x̂) at the point x̂ = x as follows

Φ(x̂)≈Φ(x)+
dΦ

dx

∣∣∣∣
x
· (x̂− x) (B.12)

since x is not stochastic, it is then straightforward that

E [Φ(x̂)−Φ(x)] =
dΦ

dx

∣∣∣∣
x
·E(x̂− x) (B.13)

write (B.11) with (B.4a), (B.8a) and (B.13) as

E(x̂(t)− x(t)) = Ω
−1
L

L−1

∑
i=0

{
e−ATτiCTKiE

[
β̂t−τi,t−βt−τi,t

]}
= Ω

−1
L

L−1

∑
i=0

{
e−ATτiCTKiE

(∫ t

t−τi

CeA(t−τi−θ) [Φ(x̂(θ))−Φ(x(θ))] dθ

)}
= Ω

−1
L

L−1

∑
i=0

{
e−ATτiCTKi

∫ t

t−τi

CeA(t−τi−θ)E [Φ(x̂(θ))−Φ(x(θ))] dθ

}
= Ω

−1
L

L−1

∑
i=0

{
e−ATτiCTKi

∫ t

t−τi

CeA(t−τi−θ) · dΦ

dx

∣∣∣∣
x
·E(x̂(θ)− x(θ)) dθ

}
(B.14)

Note that t ∈ [L×Ts,∞), let us take the norm for both side of (B.14), we have

∥E(x̂(t)− x(t))∥=

∥∥∥∥∥Ω
−1
L

L−1

∑
i=0

{
e−ATτiCTKi

∫ t

t−τi

CeA(t−τi−θ) · dΦ

dx

∣∣∣∣
x
·E(x̂(θ)− x(θ)) dθ

}∥∥∥∥∥
≤

L−1

∑
i=0

{∥∥∥∥Ω
−1
L e−ATτiCTKi

∫ t

t−τi

CeA(t−τi−θ) · dΦ

dx

∣∣∣∣
x
·E(x̂(θ)− x(θ)) dθ

∥∥∥∥}
≤

L−1

∑
i=0

{∫ t

t−τi

∥∥∥∥Ω
−1
L e−ATτiCTKiCeA(t−τi−θ) · dΦ

dx

∣∣∣∣
x
·E(x̂(θ)− x(θ))

∥∥∥∥ dθ

}
≤ L

∫ t

t−τL−1

∥∥∥∥Ω
−1
L e−ATτL−1CTKiCeA(t−τL−1−θ) · dΦ

dx

∣∣∣∣
x
·E(x̂(θ)− x(θ))

∥∥∥∥ dθ

≤ L
∫ t

t−τL−1

∥∥∥∥Ω
−1
L e−ATτL−1CTKiCeA(t−τL−1−θ) · dΦ

dx

∣∣∣∣
x

∥∥∥∥∥E(x̂(θ)− x(θ))∥ dθ

≤ L
∫ t

L×Ts

∥∥∥∥Ω
−1
L e−ATτL−1CTKiCeA(t−τL−1−θ) · dΦ

dx

∣∣∣∣
x

∥∥∥∥∥E(x̂(θ)− x(θ))∥ dθ

(B.15)
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then, the Gronwall inequality [Bellman 1943] yields

∥E(x̂(t)− x(t))∥ ≤ 0 · eL
∫ t

L×Ts

∥∥∥Ω
−1
L e−ATτL−1CTKiCeA(t−τL−1−θ)· dΦ

dx |x
∥∥∥ dθ

≤ 0
(B.16)

hence,

∥E(x̂(t)− x(t))∥ ≤ 0 ⇒ ∥E(x̂(t)− x(t))∥= 0 ⇒ E(x̂(t)− x(t)) = 0

The proof is completed.
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Appendix C
Proof of the “positive definiteness” for the
Schur complement S(t) := PL+1(t)\PL(t)

In order to prove S(t) = rT(t)r(t)−ηT(t)P−1
L (t)η(t) in (5.28) is positive-definite, let us

firstly note PL+1(t) in (5.26) as follows

PL+1(t) =

[
PL(t) η(t)
ηT(t) rT(t)r(t)

]
note as−−−−→ M=

[
A B
C D

]
(C.1)

then we need to prove that when M and A are positive-definite and invertible, the Schur
complement of A in M, i.e. A\M= D−CA−1B, are positive-definite.

Since M and A are positive-definite and invertible, then det(M)> 0 and det(A−1)> 0.
Therefore, the following equation naturally holds[

A−1 0
−CA−1 I

][
A B
C D

]
=

[
I A−1B
0 D−CA−1B

]
(C.2)

Take the determinant on both sides of (C.2) as

det(A−1)det(M) = det(D−CA−1B) (C.3)

Since det(M)> 0 and det(A−1)> 0, we then obtain from (C.3) that

det(D−CA−1B)> 0 (C.4)

namely,
S(t) = rT(t)r(t)−η

T(t)P−1
L (t)η(t)> 0 (C.5)

which proves that the Schur complement of PL(t), S(t), is positive-definite.
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Tingting ZHANG

Observateur à mémoire finie pour les systèmes non linéaires à temps continu et à
mesures discrètes : application au diagnostic

Résumé : L’objectif de cette thèse est de développer un observateur non linéaire pour un outil de
diagnostic pour des systèmes non linéaires à temps continu et à mesures discrètes. Ce mémoire débute
par l’étude de notions d’observabilité faisant le point sur l’observation de ces systèmes. Nous enchaînons
ensuite par l’analyse d’observateurs non linéaires obtenu par optimisation, puis nous présentons les
méthodes de diagnostic à l’aide d’observateurs. Un observateur à mémoire finie est ensuite synthétisé
pour détecter et localiser les défauts capteurs et actionneurs d’une classe de systèmes non linéaires en
présence à la fois de bruit de processus et de bruit de mesures. De plus, un observateur non linéaire
est également construit sur un modèle augmenté pour estimer simultanément les états du système et les
entrées inconnues. Une étude de robustesse vis à vis des divers bruits a été menée, ainsi que l’étude de
la définition des défaut d’amplitude minimale pour la détection. L’utilisation de l’algorithme EWMA a
également été introduit pour ses performance en détection. Multiple défauts simultanés ont été détectés et
identifiés dans cette partie. À la fin de cette thèse, un observateur à mémoire finie est développé pour les
systèmes non linéaires à temps variants.
Mots-clés : synthèse d’observateurs, systèmes non linéaires, diagnostic de défauts, temps-variant, entrée
inconnue, observateur à mémoire finie

Finite memory observer design for continuous-time nonlinear systems with
discrete-time measurements: application to diagnosis

Abstract: The aim of this thesis is to design a nonlinear observer as a diagnostic tool for continuous-time
nonlinear systems with discrete-time measurements. We begin with the study of some observability notions
concerning the considered nonlinear systems, following by the presents of three typical optimization-based
nonlinear observers and observer-based diagnostic methods. Inspired by the existing approaches, a finite
memory observer is then designed for a class of nonlinear systems in the presence of both process and
measurement noises in order to perform fault detection and isolation of sensor and actuator faults. In the
second part, a nonlinear observer based on augmented model is then designed to simultaneously estimate
both system states and unknown inputs. The robustness with respect to the diverse noises is studied, as
well as the study of the minimum amplitude of fault for the detection. The EWMA algorithm was also
introduced and analyzed for its performance in detection. Multiple simultaneous faults are also detected
and identified in this part. At the end of this thesis, a finite memory observer is designed for the nonlinear
time-varying systems on the basis of the fundamental synthesis for linear time-varying systems.
Keywords: observer design, nonlinear dynamical systems, fault diagnosis, time-varying, unknown input,
finite memory observer

Laboratoire PRISME
INSA Centre Val de Loire (Campus de Bourges)
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