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First, human-driven vehicles will still be present on the road, and it may take decades before all the commercialized vehicles will be fully autonomous and connected. Also, on-board vehicle sensors may provide inaccurate or incomplete data due to sensors' limitations and blind spots, especially in such critical situations. To resolve these issues, the present thesis introduces a novel solution using an off-board Road-Side Unit (RSU ) that has perception sensors and Vehicle-To-Everything (V2X ) communication, to realize fully automated highway on-ramp merging for connected and automated vehicles. Our proposed approach is based on an Artificial Neural Network (ANN ) to predict drivers' intentions. This prediction is used as an input state to a Deep Reinforcement Learning (DRL) agent that outputs the longitudinal acceleration for the merging vehicle. To achieve this, we first show how the road-side unit may be used to enhance perception in the on-ramp zone. We then propose a driver intention model that can predict the behavior of the human-driven vehicles in the main highway lane, with 99% accuracy. We use the output of this model as an input state to train a Twin Delayed Deep Deterministic Policy Gradients (TD3) agent that learns "safe" and "cooperative" driving policy to perform highway on-ramp merging. We show that our proposed decision-making strategy improves performance compared to the solutions proposed previously. (CAV ), peut améliorer considérablement les performances de sécurité lors de l'insertion sur autoroute. Cependant, même avec l'émergence des véhicules CAVs, certaines contraintes clés doivent être prises en compte afin de réaliser une insertion sécurisée sur autoroute. Tout d'abord, les véhicules conduits par des conducteurs humains seront toujours présents sur la route, et il faudra peut-être des décennies avant que tous les véhicules commercialisés ne soient entièrement autonomes et connectés. Aussi, les capteurs embarqués des véhicules peuvent fournir des données inexactes ou incomplètes en raison des limites des capteurs et des angles morts, en particulier dans de telles situations de conduite critiques. Afin de résoudre ces problèmes, la présente thèse propose une nouvelle solution utilisant une unité de bord de route (Road-Side Unit (RSU)) qui dispose de capteurs de perception et de communication Vehicle-To-Everything (V2X ), permettant une insertion entièrement automatisée sur autoroute pour des véhicules connectés et autonomes. Notre approche est basée sur un réseau de neurones artificiels (ANN ) pour prédire l'intention des conducteurs. Cette prédiction est utilisée comme état d'entrée pour un agent Deep Reinforcement Learning (DRL) qui fournit l'accélération longitudinale pour le véhicule qui s'insère. Afin d'y parvenir, nous montrons d'abord comment l'unité Road-Side Unit peut-être utilisée pour améliorer la perception dans la zone d'insertion sur autoroute. Ensuite, nous proposons un modèle de reconnaissance d'intention du conducteur qui peut prédire le comportement des véhicules conduits par des conducteurs humains sur la voie principale de l'autoroute, avec une précision de 99%. Nous utilisons la sortie de ce modèle comme état d'entrée pour entrainer un agent Twin Delayed Deep Deterministic Policy Gradients (TD3) qui apprend une politique de conduite "sûre" et "coopérative" pour effectuer l'insertion sur autoroute.

Nous montrons que notre stratégie de prise de décision améliore les performances par rapport aux solutions proposées dans l'état de l'art. 
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Introduction

Interest in intelligent vehicles research has been growing in the last two decades, which significantly improves transportation security and comfort [START_REF] Ozbilgin | Evaluating the requirements of communicating vehicles in collaborative automated driving[END_REF]. Early DAS 1 were based on proprioceptive sensors, i.e. sensors measuring the internal status of the vehicle, such as wheel velocity, acceleration, or rotational velocity. These enable the control of vehicle dynamics to follow the trajectory requested by the driver in the best possible way. A high level of autonomy is achieved with technologies such as road/lane detection, vehicle detection, and tracking, localization, and mapping. Most current autonomous driving systems are perception-based and rely on a myriad of on-board sensors. However, sensor fusion alone cannot guarantee the safety of AD 2 cars in a complex traffic environment [START_REF] Wang | Multi-sensor fusion in automated driving: A survey[END_REF]. Sharing this on-board data would be beneficial to other vehicles on the road.

Inter-CAV communication is the enabling technology for enhancing efficiency and safety of CAVs; without reliable inter-CAV communications, it is going to be extremely hard to achieve intersection control and collision avoidance. In fact, the NHSTA 3 predicts that effectively applying vehicle-to-vehicle (V2V ) and vehicle-to-infrastructure (V2I ) communications could potentially reduce and/or eliminate up to 80% crashes of any type from non-impairment (NHTSA, 2017) [START_REF] Elliott | Recent advances in connected and automated vehicles[END_REF]. However, the communication requirements for cooperative perception and maneuvering are yet to be understood in detail. Advances in communication technology such as DSRC 4 , Wi-Fi 5 , and LTE 6 have paved the way for connected vehicles, which will bring the intelligent transportation field towards collaborative autonomy.

In full collaborative autonomy, on-board sensors from individual cars and data sharing between connected vehicles are used in conjunction to increase the overall "intelligence" of traffic [START_REF] Ozbilgin | Evaluating the requirements of communicating vehicles in collaborative automated driving[END_REF] [START_REF] Bengler | Three decades of driver assistance systems: Review and future perspectives[END_REF]. The relationship between perception-based autonomy, communicationbased autonomy, and collaborative autonomy is shown in Figure 1.1. Connected and automated vehicle (CAV ) is a transformative technology that has great potential to realize successful autonomous driving. Nevertheless, even with the emergence of such CAVs vehicles, performing fully autonomous driving requires taking into account several essential issues:

• First, vehicle horizon is limited to the range of its sensors (camera, RADAR 7 and LiDAR 8 ). Moreover, the processing of data collected by all sensors in the vehicle demands a lot of computational resources.

• Second, even if vehicle-to-vehicle (V2V ) communication technology allows us to overcome sensors range limitation, it can be used only if all vehicles are equipped with V2V capabilities. This is not the case in the real world because it may take decades before that all the vehicles become connected. Vehicles driven by 7 A sensor for determining the presence and location of an object by measuring the time for the echo of a radio wave to return from it and the direction from which it returns.

8 A sensor that is similar in operation to RADAR but emits pulsed laser light instead of microwaves.

humans will still be present on the road and they cannot be controlled directly.

The behavior of their drivers should be considered by the autonomous vehicle.

• Last but not least, the exploitation of vehicle data using communication technology to improve driving automation requires taking into account current communication technology limitations, namely in particular communication latency.

The connected vehicles (CV ) network relies on the communication of different roadside and on-board sensors, so all the road users can share their real-time information. However, the current CV application is constrained by the resolution of data input [START_REF] Bin | Revolution and rotation-based method for roadside lidar data integration[END_REF].

The CV network requires high-resolution micro traffic data (HRMTD), which means second-by-second real-time traffic data of all individual road users [START_REF] Wu | Automatic ground points filtering of roadside lidar data using a channel-based filtering algorithm[END_REF], [START_REF] Chen | Deer crossing road detection with roadside lidar sensor[END_REF]. Since, as stated above, it takes time to build a whole connected system (especially vehicle-tovehicle communication), supplemental data provided by the roadside infrastructure are required to help the deployment of the CV network [START_REF] Wu | Automatic background filtering and lane identification with roadside lidar data[END_REF]. Automation of complex traffic scenarios is expected to rely on input from a roadside infrastructure to complement the vehicles' environment perception [START_REF] Geissler | Designing a roadside sensor infrastructure to support automated driving[END_REF].

To exploit the advantages of combining CAV vehicle technology with the roadside infrastructure, we study the highway on-ramp merging situation. Although there are lots of driving situations to be considered, the merging task at highway junctions is now recognized as a key task to realize the automated drive on the highway [START_REF] Raravi | Merge algorithms for intelligent vehicles. Next Generation Design and Verification Methodologies for Distributed Embedded Control Systems[END_REF]. Ramp merging is a critical maneuver for road safety and traffic efficiency. According to the US Department of Transportation, nearly 300,000 merging accidents occur every year with 50,000 being fatal [30]. Even, the prototype vehicles of the leading self-driving car company, Waymo, have reportedly been seen unable to merge autonomously [31].

The present thesis answers the following research problematic:

• How the combination of road infrastructure and CAVs vehicles technologies could improve the automated driving level, particularly in highway on-ramp merging?

Problem definition

The present work is part of an industrial research project for the French multinational automobile manufacture Renault S.A. This thesis addresses the use of off-board Road-Side Unit (RSU ), i.e. road infrastructure, with CAV vehicle technologies to perform autonomous highway on-ramp merging. The use case is illustrated in Figure 1.2. The main advantages of such an approach are:

• First, it allows an increased perception that exceeds the limit of embedded vehicle sensors, thanks to the RSU sensors (camera, RADAR, or LiDAR).

• Moreover, it can be used in mixed traffic situation with the presence of humandriven vehicles that does not have V2V communication technologies. This is only possible using road-side unit that owns V2I communication capabilities.

• Last but not least, this configuration offers more computational power at the offboard road-side unit side in comparison to on-board vehicle calculators. This allows to implement more sophisticated algorithms, such as Edge AI 9 models.

The authors also developed a data processing procedure for detecting and tracking vehicle trajectories with a roadside LiDAR sensor. The validation results suggest that the tracking speed matches real driving speed accurately. Authors in [START_REF] Geissler | Designing a roadside sensor infrastructure to support automated driving[END_REF] explore design requirements for a prototype setup of virtual vision or RADAR sensors along one roadside. They modeled cameras with almost perfect detection capabilities, that act as a reference detection frame. Moreover, they modeled detection by RADAR and studied object tracking based on the RADAR detections. The perfect cameras and the generic RADAR sensors have exhibited very similar detection capabilities. They demonstrated also that tracking improves the completeness of detections especially for poor road coverage (e.g. small sensor range) since a vehicle trajectory can still be predicted for some time after the object has left the sensors FoV 11 . Complete traffic detection up to a degree of 99% can be readily achieved with feasible sensor parameters (camera, RADAR or RADAR tracking) in the low traffic density scenario.

Therefore, the authors in [START_REF] Geissler | Designing a roadside sensor infrastructure to support automated driving[END_REF] considered the sensor infrastructure to be an instrument for supporting AD, e.g. in the form of augmenting agent-based vision or for improved traffic orchestration.

Road-Side Unit communication

The road-side unit equipped with stationary sensors obtains object information from mounted stationary sensors: cameras, RADARs, and LiDARs, to provide any assistance to compliant cooperative vehicle. RSU could detect and track vehicles in the road and provides characteristics such as position, heading, and speed for every obstacle using V2X wireless communication technologies. Current V2X systems are based on two main technologies:

• Dedicated short-range communications (DSRC): DSRC is a type of wireless technology developed for the automotive platform, specifically for CAV usage [START_REF] Elliott | Recent advances in connected and automated vehicles[END_REF]. DSRC is the pathway that allows CAVs to communicate with each other and the infrastructure. DSRC uses radio frequencies that lie in a range of the 5.9 GHz band, which is controlled and allocated by the Federal Communications Commission (FCC) 12 . In terms of communication range, DSRC covers a maximum of 500 feet in all weather conditions. IEEE 802.11p, the IEEE standard for DSRC, has been implemented and endorsed by various automotive manufacturers and the U.S.

Department of Transportation.

A DSRC system is composed of the on-board unit (OBU ) and the road-side unit (RSU ) [START_REF] Fang | Introduction and simulation of dedicated short range communication[END_REF]. DSRC can be one of the leading reasons why CAVs will help the traffic congestion caused by the human facet of driving [START_REF] Thomas | dot advances deployment of connected vehicle technology to prevent hundreds of thousands of crashes[END_REF], and the gradual increase of implementing V2V communications for collision avoidance. In DSRC standard, safety messages are sent intermittently with an estimated time period of T = 0.1 s. One significant drawback of DSRC powered V2X communications is its low scalability, i.e. when the number of nearby vehicles is high. Moreover, DSRC is mostly designed for quick transmission of short-range basic safety messages and does not offer high bandwidth and low latency communication channels for more advanced V2X applications such as autonomous driving, especially in high-speed scenarios [START_REF] Elliott | Recent advances in connected and automated vehicles[END_REF].

• Cellular based V2X (C-V2X): An alternative to DSRC is cellular-based V2X (C-V2X ) communications.
What is really promising, and future proof is the 5G C-V2X to benefit from the advantages of each technology and compensate for their drawbacks.

The information to be exchanged between the road-side unit and the CAV vehicle is packed up in the Collective Perception Message (CPM ). Collective Perception (CP)

is the concept of sharing the perceived environment of a station based on perception sensors. The Collective Perception Service aims at enabling intelligent transport system stations (ITS-Ss) to share information about other road users and obstacles that were detected by local perception sensors such as RADARs, cameras, and alike. In that sense, it aims at increasing awareness between ITS-Ss by mutually contributing information about their perceived objects to the individual knowledge base of the ITS-S.

The service does not differentiate between detecting connected or non-connected road users. The CPM message provides generic data elements to describe detected objects in the reference frame of the disseminating ITS-S. The CPM is transmitted cyclically with adaptive message generation rates (minimum message every 100 ms) to decrease the resulting channel load while focusing on reporting changes in the dynamic road environment. Overall, a host-ITS-S should generate CPMs for surrounding objects it detected with sufficient level of confidence [START_REF]Intelligent transport systems (its); vehicular communications; basic set of applications; analysis of the collective perception service (cps)[END_REF]. The ability for RSU to share their local perception using Collective Perception Message (CPM ) and for vehicles to receive such data extends the information that can be exploited for ensuring road safety of CAVs.

Advantages of using Road-Side Unit to support Autonomous

Driving

As stated above, the new generation of the road-side unit can perceive the road environment using its sensors and output perceived objects with their attributes (position, speed . . . ). This information is packed as Collective Perception Message (CPM ) and could be provided to the CAV vehicle through wireless communication technologies (DSRC and

5G C-V2X

). An infrastructure-based solution for autonomous highway on-ramp merging using road-side unit (Figure 1.4.a) is already feasible and would be practical for real-world implementation. Highway on-ramp merging solution based on RSU has the following advantages:

• Computational power: Using RSU offers more computational power at the offboard road infrastructure in comparison to the on-board vehicle calculators. This allows us to implement more sophisticated algorithms, such as Edge AI models.

• Perception range: Using RSU allows an increased perception that exceeds the limits of embedded vehicle sensors. Sensor fusion alone cannot guarantee the safety of the CAVs vehicles in a complex traffic environment, such as the highway on-ramp.

• V2X deployment: Performing autonomous driving in highway on-ramp without RSU requires that all the vehicles present on the road are equipped with V2V capability to provide their states for surrounding vehicles because sensor fusion alone cannot guarantee the full perception of the environment. On the contrary, using RSU based solution requires that only the highway on-ramp zone is equipped with off-board sensors and V2I technology to communicate with CAV vehicle, even in the presence of non-connected vehicles.

• Cost: Without using RSU, the cost of equipping all the vehicles with V2V communication technology is more considerable than the cost of equipping only highway on-ramp infrastructure with the road-side unit.

• Communication latency: Without using RSU, the communication between vehicles through V2V is done in decentralized way. In this case, minimum latency is not guaranteed. When using RSU, information is provided directly from the road-side unit to the merging vehicle. Hence, communication latency is controlled and measurable.

• Security & privacy: Without using RSU, it is difficult to trust messages received from different connected vehicles. When using a RSU based solution, privacy is more guaranteed since the information is provided only by the infrastructure that is managed by a road operator.

• Interoperability: Without using RSU, it is more difficult to deal with interoperability between different car manufacturers. When using RSU, it is easier to ensure interoperability between the road operator, that is responsible for the RSU infrastructure, and each car manufacturer. 

Research challenges

Using infrastructure to support CAVs to perform autonomous highway on-ramp merging can be quite challenging. We can highlight some of the main challenges as follows:

Safety: Before taking into account any performance metric, decision-making at highway on-ramp needs to be safe. Safety is, indeed, the key to any transportation system currently and in the future. In the Intelligent Transportation System (ITS) where vehicles follow their crossing plan, safety would become even more crucial. Therefore, at any point in time after the vehicle has reached the highway on-ramp merging point, the system must be collision-free when the driving policy is tested. Safety could be improved by incorporating a safe controller that evaluates the safety of the autonomous system's action according to some predefined security rules, such as minimal distance to the preceding vehicle.

Human-driven vehicles: Vehicle-to-vehicle (V2V ) communication technology can be used only if all vehicles are equipped with V2V capabilities. This is not the case in the real world because it may take decades so that all the vehicles become connected.

Vehicles driven by humans will still be present on the road. Such vehicles cannot be controlled directly. The behavior of their drivers should be considered by the autonomous driving system. Therefore, a probabilistic model could be used to predict the behaviors of human drivers at the highway on-ramp zone. This information may be used to make a cooperative decision by the autonomous vehicle. The driving policy cooperativeness can be evaluated by the number of emergency brakings performed by the surroundings vehicles after that the autonomous vehicle reaches the on-ramp merging point.

Communication latency: Wireless communication technology (DSRC, 5G C-V2X ) is the enabling technology for enhancing efficiency and safety of CAVs vehicles. However, the communication requirements for cooperative perception and maneuvering are yet to be understood in detail. V2X communication systems consider latency to be the most important performance metric as some applications (such as precrash sensing) require very stringent requirements [START_REF] Mannoni | A comparison of the v2x communication systems: Its-g5 and c-v2x[END_REF]. Hence, the latency must be evaluated when information is communicated through V2X technologies between infrastructure and CAVs vehicles.

We consider that the off-board road infrastructure should provide information to the CAV vehicle by a minimum time of TR=0.5 sec before reaching the merging point.

This estimation is based on the following time constraints:

• 0.4 sec, for the vehicle's dynamic response time [START_REF] Armand | Situation understanding and risk assessment framework for preventive driver assistance[END_REF].

• 0.1 sec, for the communication latency time [START_REF]Vehicular communications : Basic set of applications. part 2: Specification of cooperative awareness basic service[END_REF].

In addition to these main challenges, there might be some minor problems, such as communication data loss and computational requirements from the infrastructure. These problems need to be addressed later when deploying our proposed approach in the real world.

Thereafter, we discuss the contributions of this thesis regarding current state-of-theart.

Research contributions

Against these challenges, the contributions of this thesis are as follows:

• A novel infrastructure-based decision-making strategy to perform autonomous highway on-ramp merging for connected and autonomous vehicles (CAVs). This solution ensures increased perception compared to vehicles' sensors, and more computational power compared to onboard vehicles' calculators. This solution can be used even in the presence of human-driven vehicles (non-CAV ), which is advantageous in terms of deployment cost.

• A directed probabilistic graph model to predict drivers' intentions at highway onramp zone. This model takes into account the contextual situation for each vehicle to estimate the probability of merging or not merging for the vehicle in the merge lane and the probability of yielding or not yielding for the vehicle in the main lane.

• • A formulation of the highway on-ramp merging scenario as a reinforcement learning problem with a reward function that motivates the merging vehicle to merge with similar speed as its preceding vehicle and at midway distance regarding the first preceding and the first following vehicle.

• A new driving architecture that incorporates main lane driver intention prediction as input state to Twin Delayed Deep Deterministic Policy Gradients (TD3) agent that performs autonomous highway on-ramp merging. Moreover, a safe controller is proposed to evaluate the safety of the control action according to some predefined security rules. 

Thesis outline

The remainder of this thesis is organized as follows:

In Chapter 2, we explore the existing methods for motion modeling and drivers' behavior estimation in the highway on-ramp scenario. We discuss each method and show its limitations. We also review the existing solutions that were proposed for decision-making in the merging problem. These works studied the highway on-ramp merging problem using either classical deterministic methods such as slot-based and optimal-control or novel deep reinforcement learning algorithms such as deep deterministic policy gradient (DDPG). We show the limitations of each proposed methods.

In chapter 3, we show how the infrastructure could, due to its increased perception range, support autonomous driving by estimating drivers' intentions. We propose an off-board model to predict the intention of the driver at the main lane and the driver at the merge lane. We review the different probabilistic classifiers that are used to train this model. We then compare the performances of these classifiers for predicting drivers' intentions at the highway on-ramp. We show that this off-board model can reach a prediction accuracy higher than 99% and can provide prediction information in real-time.

Finally, we give a comparison between such off-board implementation and on-board vehicle's model.

In chapter 4, we show how the driver intention model could be used with a deep reinforcement learning agent to improve decision-making at the highway on-ramp. We first review preliminaries on continuous state-action reinforcement learning algorithms:

DDPG and the twin delayed deep deterministic policy gradient (TD3). We then formulate the highway on-ramp merging problem as a reinforcement learning framework.

The proposed approach is trained and validated using a traffic simulator with real-world traffic-conditions. The results are discussed. A safe controller is a key component for ensuring convergence of the deep reinforcement learning agent. Also, the use of the driver intention model as input to the TD3 agent, that outperforms the DDPG agent, allows learning safe and cooperative autonomous driving policy.

Chapter 5 concludes the work presented in this thesis and outlines possible improvements in the future.

Chapter 2

State-of-the-Art

Introduction

Although CAVs vehicles technology could enable safe autonomous driving, it will take time to build a whole connected system (especially vehicle-to-vehicle communication) [START_REF] Wu | Automatic background filtering and lane identification with roadside lidar data[END_REF]. Meanwhile, vehicles driven by human drivers will be present in the road even with the emergence of CAVs vehicles. These vehicles cannot be controlled directly. Hence, autonomous driving systems should take into consideration the behaviors of such vehicles. Many works studied the problem of drivers' intentions recognition and behaviors' prediction in the highway on-ramp situation. In the following, we will review the existing models and methods that were proposed to estimate drivers' intentions and behaviors in such a driving situation. We will show how each approach could be used and discuss the limitations of each proposed solution.

Moreover, many works have focused on centralized and decentralized approaches for coordinating connected and autonomous vehicles (CAVs) in highway on-ramp merging situations. These works are either classical rule-based approaches that include heuristics, optimal control, and model predictive control, or novel reinforcement learning-based methods. As for drivers' intention recognition, we will review the details of each decisionmaking method that was proposed and discuss their limitations.

Drivers' intentions estimation

Many works studied the problem of drivers' intentions recognition in highway on-ramp situation.

Reference [3] proposes a model that analyzes the acceptability for merging a vehicle at highway junctions, for the driver driving in the main car lane (cf. Although the proposed work analyses the acceptability of the driver in the main lane, it did not model the behavior of the vehicle in the merge lane. Besides that, the model was trained and tested with a traffic simulator that provides only simulated data obtained by five drivers who experimented with the merging scenario. This model should be further trained and validated using real-world data before it could be used in the real world.

Besides, the parameters of the trained model varied from one driver to another. Hence, the accuracy and parametric form of the model depend on each driver's driving style. This is a key limitation when using such a model with a real merging assistance system that considers the driver's acceptability.

Reference [4] estimates drivers' intentions using a probabilistic graphical model (PGM ) that organizes historical data and latent intentions and determines predictions (cf. Fig-

ure 2.
2). The most important part of this method is to understand the cause-effect relationship between previous states and intention. To simplify and abstract this dependency, the authors applied a probabilistic graphical model. There are three kinds of nodes in this proposed model: (1) state nodes, which are the time-to-arrival for each car;

(2) an intention node, which is either "Yield" or "Not Yield"; (3) speed nodes, which contain the speed history of the target vehicle. V n is the current speed, V i is the speed at the previous time step; T m , T h are the current time-to-arrival for merging and host car respectively; I is the latent intention which needs to be estimated [4].

The probability of the merging car's Yielding or Not Yielding to the autonomous car is calculated using Bayes rules:

P (I | V, T m , T h ) α P (V, T m , T h | I). P (I) (2.1)
Although this model has better performance when it is combined with the Adaptive Cruise Control (ACC1 ) compared to other control methods that do not include historical driver's data and latent intentions, it shows a failure rate of 7.6% when it is tested on the I-80 highway on-ramp of the NGSIM2 database that is used in our thesis. This is a high failure rate for such driving systems where safety is the most critical performance metric. This is due, either, to the fact that the model uses the time to arrive for the merging car (T m ) and that of the host car (T h ), which is neither measured directly by sensors nor which can be observed by human drivers. Otherwise, it can be due to the use of historical data (speed) for current intention estimation, which makes it dependent on each driver's driving style.

References [START_REF] Marczaka | Key variables of merging behaviour: empirical comparison between two sites and assessment of gap acceptance theory[END_REF], [START_REF] Tien | Modeling gap choice behavior at urban expressway merging sections[END_REF], and [START_REF] Hou | Modeling mandatory lane changing using bayes classifier and decision trees[END_REF] analyze and explore the theory of gap acceptance for merging behavior. The principle of the gap acceptance theory is that a driver assesses an offered gap (distance or time between two vehicles on the main road that it is driving next to).

In this assessment, the gap is compared to a so-called "critical gap": if the offered gap is larger than the critical gap, the gap will be accepted, otherwise it is rejected, and the driver will look for another offered gap. The critical gap depends on the characteristics of the traffic participant, the vehicle, and the road, and can be expressed either in time or in distance.

Reference [START_REF] Marczaka | Key variables of merging behaviour: empirical comparison between two sites and assessment of gap acceptance theory[END_REF] proposes a model for accepting or rejecting a gap during a merging maneuver. This stochastic model of gap rejection and acceptance was obtained by applying logistic regression analysis of the merging behavior, to express the probability of accepting or rejecting a gap as a function of the distance towards the end of the acceleration lane, the length in meters of the offered gap, the difference in speed between the putative leader and the putative follower, and the difference in speed between the merging vehicle and the putative follower. The predictive power of the model, assessed on two real data-sets, is 98%.

Reference [START_REF] Tien | Modeling gap choice behavior at urban expressway merging sections[END_REF] analyzes and models gap choice behavior taking account of the effects of Empirical analysis showed that mainline traffic conditions significantly affect the proportion of gap choice. "Yield" choice can be observed more frequently in traffic conditions with high mainline speeds, while "chase" choice can be observed mostly in congested traffic conditions. The gap choice behavior was modeled by applying the binary logit model. Generally, it is found that relative speed, clearance between mainline vehicles and merging vehicles, traffic conditions, acceleration lane length, and remaining distance to the end of the acceleration lane are the most significant influencing factors. This model has an accuracy of 97%. The proposed model is limited only to the acceleration lane located in the middle of the expressway carriageways.

Authors of [START_REF] Hou | Modeling mandatory lane changing using bayes classifier and decision trees[END_REF] propose a lane-changing assistance system that advises drivers of safe gaps for making mandatory lane changes at lane drops. Their model uses five factors or dimensions that were found to affect a driver's merging decision, which is considered to be an input variable. These factors are shown in Figure 2.4 and are defined as follows:

• ∆V lead (m/s) is the speed difference between the lead vehicle in the target lane and the merging vehicle.

• ∆V lag (m/s) is the speed difference between the lag vehicle in the target lane and the merging vehicle.

• D lead (m) is the gap distance between the lead vehicle in the target lane and the merging vehicle.

• D lag (m) is the gap distance between the lag vehicle in the target lane and the merging vehicle.

• S (m) is the distance from the merging vehicle to the beginning of the merge lane. The publicly available NGSIM vehicle trajectory dataset that consists of traffic conditions approaching congestion and congested conditions was used for model development and testing. This dataset is also used in our thesis. The best results is obtained when both Bayes and decision-tree classifiers were combined into a single classifier using a majority voting principle. The prediction accuracy was 94.3% for "non-merge" events and 79.3% for "merge" events. In a lane change assistance system, the accuracy of "nonmerge" events is more critical than merge events. Misclassifying a "non-merge" event as a "merge" event could result in a traffic crash, whereas misclassifying a "merge" event as a "non-merge" event would only result in a lost opportunity to merge. Sensitivity analysis performed by assigning higher misclassification cost for "non-merge" events resulted in even higher accuracy for "non-merge" events but lower accuracy for "merge" events. The cost of misclassification can be treated as a surrogate to driver conservativeness. The greater the cost, the more conservative or less aggressive a driver is in working toward the gap to change lane. Hence, the accuracy of the proposed model is limited to 96.7% and is very sensitive regarding the cost of "non-merge" misclassification.

As stated above, a model based on the theory of gap acceptance can only be used in the auxiliary acceleration lane. Therefore, it is more adapted for congested traffic and low-speed scenario. Such a model cannot be used in high-speed highway scenario since it cannot predict drivers' behaviors in the merge lane, before that the merging vehicle reaches the auxiliary acceleration lane. This is mandatory in the high-speed scenario to have a sufficient time lapse for decision-making. Moreover, the critical gap is obtained using an analytic model that assumes a probabilistic distribution of the critical gap values for the population of drivers. Hence, this model depends on the characteristics of the traffic participant, which differs from one driver to another. Using such model in practice expects that all the drivers behave in exactly the same way, which is not true in the real world.

Reference [START_REF] Kondyli | Driver behavior at freeway-ramp merging areas[END_REF] studies driver behavior at the freeway-ramp merging areas to understand the merging process from the driver's perspective. The data collection undertaken for their study entails observations of thirty-one participants driving an instrumented vehicle and simultaneous video observations of the freeway during experiments. The merging maneuvers were categorized as "free", "cooperative" and "forced" merge, depending on the degree and the type of observed interaction between the ramp and the freeway vehicle. Merging maneuvers during both uncongested and congested conditions were observed. In uncongested conditions, participants were involved in 273 maneuvers as the ramp vehicle and 109 as the through vehicle. In congested conditions, participants were involved in 42 maneuvers as the ramp vehicle and 3 maneuvers as the through vehicle.

In uncongested conditions, the participants performed all types of merging maneuvers, the majority of which were "free" maneuvers. When participants received cooperation, usually it was through deceleration rather than lane-changing. In congested conditions, "free" merges were not observed while participants were involved mostly with "cooperative" rather than "forced" merging. In almost all cases, the interacting vehicles would decelerate, possibly because gaps were not available on the inside lane due to dense traffic conditions.

Also, this work studies the effect of geometry and ramp design on merging. Observations of the participants merging on the four ramp junctions shown in Figure 2.5 revealed interesting findings related to their merging positions and speeds. It was found that compared to "parallel-type" on-ramps drivers used a higher percentage of the acceleration lane length on the "tapered" on-ramps before merging. It was also found that the average merging speed is higher in "tapered" than "parallel" type ramps and the observed variation is also higher.

Moreover, this work identifies the driver's behavior for each participant involved in the experiment. Three types of driver behavior were considered: "aggressive", "average" and "conservative" behavior. For this task, the actual observed driver behavior was evaluated considering both qualitative and quantitative factors based on the field observations. The average age group for the entire sample falls between 35 and 45 years old. The "aggressive" drivers are in the 25-35 years old group, whereas "average" and "conservative" drivers are in the older group [START_REF] Thomas | dot advances deployment of connected vehicle technology to prevent hundreds of thousands of crashes[END_REF][START_REF]Cellular v2x communications towards 5g[END_REF][START_REF]Intelligent transport systems (its); vehicular communications; basic set of applications; analysis of the collective perception service (cps)[END_REF][START_REF] Mannoni | A comparison of the v2x communication systems: Its-g5 and c-v2x[END_REF][START_REF] Armand | Situation understanding and risk assessment framework for preventive driver assistance[END_REF][START_REF]Vehicular communications : Basic set of applications. part 2: Specification of cooperative awareness basic service[END_REF][START_REF] Marczaka | Key variables of merging behaviour: empirical comparison between two sites and assessment of gap acceptance theory[END_REF][START_REF] Xie | Collaborative merging behaviors and their impacts on freeway ramp operations under connected vehicle environment[END_REF][START_REF] Ng | Discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes[END_REF][START_REF] Hosmer | Applied Logistic Regression[END_REF][START_REF] Friedman | Bayesian network classifiers[END_REF]. Also, the majority of men fall into the "aggressive" and "average" driver types, and women are more often found in the "conservative" driver type category.

Although this study was based on instrumented vehicle observations, it gives results in statistical form. It does not propose a specific parametric or analytic model for predicting drivers' intentions and behaviors at the on-ramp merging situation. Therefore, it cannot be implemented and used in the real world. Reference [START_REF] Sarvi | Microsimulation of freeway ramp merging processes under congested traffic conditions[END_REF] describes a microsimulation program developed to study freeway ramp merging phenomena under congested traffic conditions. The results of extensive macroscopic and microscopic studies are used to establish a model for the behavior of merging drivers. It proposes a theoretical framework for modeling the ramp and freeway lag driver acceleration-deceleration behavior. The acceleration-deceleration profile of ramp vehicles in acceleration lanes is much more complicated than the types of behavior described by conventional car-following models. In fact, it shows that the fundamental psychophysical concept of car-following models (Driver Response (t + T) = Sensitivity factors(t) * Stimulus(t), where t is the time, and T is the reaction time) remains appropriate, provided that the stimuli can be well specified. Three stimuli affect ramp driver behavior: speed relative to the freeway leader, speed relative to the freeway lag vehicle, and the distance from the freeway leader. Also, a theoretical framework for modeling the acceleration-deceleration behavior of a freeway lag vehicle (approaching the ramp area from the freeway) is then built. In congested traffic situations, four stimuli are considered for evaluating the freeway lag vehicle driver response: relative speed regarding the freeway leader, relative speed regarding the ramp vehicle, spacing regarding the freeway leader, and spacing regarding the ramp vehicle.

To overcome the major limitation of most of the existing microscopic simulation models that employ a global car-following model to capture the acceleration characteristics of drivers in all driving situations, the authors of reference [START_REF] Sarvi | Microsimulation of freeway ramp merging processes under congested traffic conditions[END_REF] propose a Freeway Merging Capacity Simulation Program (FMCSP) capable of modeling the complex acceleration characteristics of ramp drivers in the acceleration lane and the significant interaction of ramp vehicles and freeway vehicles in congested conditions. A C++ programming platform and a periodic sampling method at intervals of 0.05 s is used for this microsimulation model. The FMCSP simulation includes the merging section and the upstream/downstream sections. The validation of FMCSP was performed at both microscopic and macroscopic levels using the traffic flows and lane-changing maneuvers observed at the Hamazaki-bashi merging section (Japan). In the microscopic analysis, trajectories from the FMCSP were compared with those from the field data (Fig. 2.6). for the simulated vehicles before and after the merging process are consistent with the observed slopes. Also, the average speeds of the ramp vehicle and its freeway leader, the average time (headway) between the ramp vehicle and its freeway leader, and the lanechanging maneuvers of vehicles are in good agreement between simulation and real-world data. Finally, the developed simulation program was applied successfully to investigate a variety of freeway and ramp merging strategies. These strategies could reduce the high incident risk involved in lane-changing maneuvers.

Although the proposed framework models accurately the acceleration-deceleration behavior and shows good consistency with real-world data, it is limited only to the auxiliary acceleration lane of the on-ramp situation and under congested traffic situations. It has not been designed for high-speed highway on-ramp. Moreover, the framework is an analytical model which has a deterministic form. Hence, it cannot model uncertainties relative to drivers' behaviors diversity. A probabilistic model is more adapted for Modeling the behavior of on-ramp merging drivers.

Reference [START_REF] Dou | Gated branch neural network for mandatory lane changing suggestion at the on-ramps of highway[END_REF] uses a gated branch neural network (GBNN ) for mandatory lane changing Results show that as the number of neurons increases, the accuracy of "non-merge" events increases and achieves the highest value of 97.7% at 384 neurons. The accuracy of "merge" events is not the highest at that point, but still has a good value of 96.3%.

Since the accuracy of "non-merge" events is prior due to its relation to driving safety, 384 neurons are chosen. Hence, the proposed gated branch neural network (GBNN ) algorithm achieves limited accuracy in predicting both "non-merge" events (97.7%) and "merge" events (96.3%), outperforming the state-of-the-art binary classifiers reported in MLC applications.

Although the proposed model gives good accuracy, it is designed for congested situations. Moreover, it can be used only in the auxiliary acceleration lane and cannot predict drivers' behaviors at any point from the merge lane to be used for high-speed on-ramp merging scenarios.

Decision making

In recent years, many works have focused on either centralized or decentralized approaches for coordinating connected and autonomous vehicles (CAVs) in highway onramp merging situations.

Classical methods

Authors of reference [START_REF] Marinescu | On-ramp traffic merging using cooperative intelligent vehicles: A slot-based approach[END_REF] use the idea of a slot-based approach that employs cooperation between vehicles within the main motorway as well as between motorway and on-ramp vehicles to achieve a highly efficient merging. A slot based traffic management system (TMS) is based on the concept of slot S which is defined as S = {z, p, t, b}, where z represents the size of the slot, p represents its position (including the lane number) at time t and b the predefined behaviour as a constant speed. It is the task of the TMS to generate slots at a specific frequency and to provide the slot information to vehicles using vehicle-to-infrastructure (V2I ) communication. The slot generation frequency determines the headway between slots. During the "journey" of a slot along the motorway, the slot's occupancy status can vary between "free" and "occupied". The occupancy status of a slot is required when a vehicle wants to change its slot. This necessitates both knowing that the target slot is not currently occupied by another vehicle as well as knowing that another vehicle is not on its way to moving into that slot, as depicted in Figure 2.9. As such, the slot information is extended to S = {z, p, t, b, o}, where o represents the occupancy status of a slot. Merging on-ramp traffic with the slot-based traffic on the main road requires an algorithm that performs a mapping of on-ramp vehicles to empty slots on the main road. This is achieved in two phases: slot selection and moving into the slot. In the first phase, a suitable slot needs to be selected. Such a slot must be empty and located on the first lane of the motorway. Furthermore, at the time of selection, the distance between the selection point and the actual point where the roads merge must be large enough to allow the on-ramp vehicle to get into the slot before the actual merging point is reached. A road-side unit (RSU ) is located at the slot selection point and acts as a proxy between vehicles on the main road and the on-ramp vehicles. The RSU can sense the location of vehicles on the main road and can coordinate with them using V2V communication to determine suitable slots. When such slots are found, the RSU marks them as occupied for on-road vehicles, effectively blocking any attempt of any vehicle on the main road to move into that slot. On-ramp vehicles communicate with the RSU using V2I communication and request a slot. Once such a slot becomes available, the RSU communicates the slot information to the vehicle.

After the on-ramp vehicle has received a suitable slot, the moving into the slot phase commences. For this purpose, the vehicle creates a virtually identical slot clone, the only difference being that the cloned slot is located on the on-ramp rather than on the main road. The vehicle then moves into the cloned slot before the merging point is reached.

Right before the merging point, the original and cloned slot are in perfect alignment and the vehicle performs a lane change towards the first lane of the main road and changes its target slot to the original slot, moves into this slot, and finishes the merging procedure.

This process is described in Figure 2.10. The slot-based merging algorithm was evaluated and compared against a simulation of human drivers as performed by VISSIM's Wiedemann '99 model3 . The efficiency of the merging was evaluated concerning:

• Throughput: the maximum number of vehicles that can merge from the on-ramp into the main road within an hour.

• Delay: the average delay experienced by vehicles on the on-ramp is calculated as the difference between the average travel time and the ideal travel time (no other vehicles in the network).

under:

• Medium traffic conditions: main road flow of 3600 vehicles/hour.

• Heavy traffic conditions: main road flow of 4700 vehicles/hour.

Under medium traffic conditions, the slot based driving without cooperation achieves a 41% increase in throughput when compared to human drivers. Slot-based driving with cooperation performs better and achieves a 106% increase in throughput compared to human drivers. The two algorithms perform even better under heavy traffic conditions compared to human drivers: 230% and 452% increase for slot-based driving without and with cooperation respectively. For manual drivers, the delay increases exponentially concerning the on-ramp flow. For the two slot-based driving algorithms the delay remains small and increases slightly as the on-ramp flow increases. The traffic on the main road increases the delay for human drivers but has very little effect on the other two slot-based approaches, thanks to the high throughput and efficient merging of the slot-based approach.

Although the slot-based approach increases traffic efficiency and achieves very high throughput and low delay on the highway on-ramp, it has many majors limitations.

First, the slot-based driving model assumes that all vehicles on the road have identical capabilities and are equipped with RADAR, DGPS 4 , wireless communication and are (semi)-autonomous. This assumption is not true in the real world since human-driven vehicles that are not equipped with such requirements will still be present in the road for decades. Moreover, the model validation does not take into account either real communication limits such as latency or fault tolerance issues such as malfunctioning vehicles.

Last but not least, the approach was tested and validated using only simulator data.

Real-world data from an on-ramp merging situation is mandatory to validate the slotbased approach.

Ramp metering is a common method used to regulate the flow of vehicles merging into freeways to decrease traffic congestion [START_REF] Mizuta | Ramp metering: A proven, cost-effective operational strategy -a primer[END_REF]. Ramp meters are traffic signals installed Depending on the existing infrastructure, constraints, or objectives of the ramp metering program, various ramp metering approaches may be used. The following is a high-level overview of commonly used control approaches for ramp metering:

• Single or Multi-Lane Metering: Single lane metering allows only one vehicle to enter the freeway during each signal cycle. Multi-lane metering requires two or more lanes to be provided on the ramp and a signal head dedicated to each lane. After the stop bar, the lanes are required to merge into a single lane before merging onto the freeway.

• Single or Dual Release Metering: One vehicle per green (or single release metering), operates with a shorter green time than with two vehicles per green (or dual release) approach. The dual release allows for two vehicles to enter the freeway each cycle but requires a longer green time. The dual release metering approach usually increases ramp capacity under metering.

• Freeway-to-Freeway Connections: Ramp metering on freeway-to-freeway ramps is less common due to the high travel speeds and the perceived increased potential for vehicle collision because of vehicle queues where drivers may not expect them.

Geometric constraints also exist such as limited sight distance along a curved roadway and limited provisions to provide the required storage for queued vehicles on-ramps. Freeway-to-freeway metering, if possible, can significantly improve the ability to manage traffic on a freeway because a greater share of entering traffic is controlled by meters.

• Bypass Lanes: Bypass lanes allow a specific class of vehicle (usually an HOV 5 , a bus or, in some locations, a truck) to avoid delay at ramp meters and have the right of way to merge directly on to the freeway.

Although it has been shown that ramp metering aims at improving the overall traffic flow and safety on freeways, several challenges are associated with its usage. First, ramp metering is not possible in all ramp metering locations due to the configuration and structure of their ramps. Because ramp metering requires space for vehicles to merge into mainline traffic and to wait in a queue, not all ramp configurations are suitable for ramp metering. Moreover, despite the benefits of ramp metering, there are monetary costs for deploying and maintaining ramp metering systems.

Authors of reference [START_REF] Torres | Automated and cooperative vehicle merging at highway on-ramps[END_REF] address the problem of optimally coordinating CAVs at merging roadways by ramp metering to achieve smooth traffic flow without stop-and-go driving.

They propose an analytical closed-form solution using "Hamiltonian" analysis for vehicle coordination under the hard constraint of collision avoidance. They formulate the problem of optimal vehicle coordination at merging roadways in terms of fuel consumption under the hard constraint of collision avoidance, and then to derive online a closed-form solution in a centralized fashion (cf. Figure 2.12).

Figure 2.12: Merging roads with connected and automated vehicles controlled by a centralized controller [START_REF] Torres | Automated and cooperative vehicle merging at highway on-ramps[END_REF].

Let N (t) = {1,...,N (t)} be the queue associated with the control zone. They model each vehicle i, i∈ N (t), as a point mass moving along a specified lane with a state equation:

ẋi = f (t, x i , u i ), x i (t 0 i ) = x 0 i (2.2)
where t ∈ R + is the time, x i (t), u i (t) are the state of the vehicle and control input, u 0 i is the time that vehicle i enters the control zone, and x 0 i is the value of the initial state. For simplicity, they assume that each vehicle is governed by a second order dynamics:

ṗi = v i (t) vi = u i (t) (2.3)
where p i (t), v i (t), and u i (t), respectively, denote the position, speed and acceleration/deceleration (control input), respectively, of each vehicle i. Fuel consumption is expressed by the use of the polynomial metamodel as a function of the speed, v, and control input, u: ḟv = ḟcruise + ḟaccel (2.4) where t ∈ R + is the time, ḟcruise =q 0 +q 1 .v(t)+q 2 .v 2 (t)+q 3 .v 3 (t) estimates the fuel consumed by a vehicle traveling at a constant speed v(t), and ḟaccel =u(t).(r

0 +r 1 .v(t)+r 2 .v 2 (t))
is the additional fuel consumption caused by acceleration u(t). The polynomial coefficients q n , n=0,...,3, and r m , m = 0, 1, 2 are calculated from experimental data. The objective was to solve an optimization problem for each vehicle in the queue separately:

min u i 1 2 t m i t 0 i u 2 i dt
Subject to : (2), ( 4) ∀i ∈ N (t).

(2.5)

For the analytical solution and online implementation of the problem, authors apply Hamiltonian analysis. This approach yields the optimal solution as long as the control input and speed of each vehicle is within the imposed limits. From the condition 2.5 and the state equations 2.3, the "Hamiltonian" function was formulated for each vehicle i ∈ N (t) as follows:

H i (t, x(t), u(t)) = L i (t, x(t), u(t)) + λ T .f i (t, x(t), u(t)) (2.6) 
Thus

H i (t, x(t), u(t)) = 1 2 u 2 i + λ P i .v i + λ v i .u i (2.7)
where λ P i and λ v i are the co-state components. The necessary condition for optimality is:

∂H i ∂u i = u i + λ v i = 0 (2.8)
and the optimal control is given by:

u i + λ v i = 0, i ∈ N (t).
(2.9)

The effectiveness of the efficiency of the analytical solution was validated by simulating the merging scenario under MATLAB. The authors considered four case studies: (1) coordination of 4 vehicles, 2 for each road, (2) coordination of 30 vehicles, 15 for each road, (3) coordination of 30 vehicles assuming the vehicles on the secondary road reach the control zone at a lower speed of 11.2 m/s, and (4) coordination of 30 vehicles that enter the control zone with 29 m/s. In particular, optimal vehicle coordination improves overall fuel consumption by 52.7% for the case study 2, and 48.1% for the case study 3 compared to the baseline scenario. The total travel time is also improved by 7.1%, and 13.5% respectively. For case 4, the authors considered a scenario where the vehicles enter the control zone at 29 m/s. The maximum and minimum speed limits inside the control zone were specified to be equal to 31.3 m/s and 22.4 m/s respectively. In this case, however, the controller was unable to satisfy the safety constraints within the length of the control zone and the speed limits.

Although the proposed approach allows the vehicles to merge without creating congestions under the hard constraint of collision avoidance, it has some major limitations.

First, it cannot satisfy safety merging in high-speed scenarios where the vehicles enter the control zone at 29 m/s with a speed range of [22.4 m/s, 31.3 m/s], which is the most critical situation at highway on-ramp. Moreover, the feasibility of the solution must be investigated. The control action is based on an analytic form solution that includes the dynamic model of each vehicle in the control zone. This approach is deterministic: it assumes that all the vehicles are connected, autonomous and equipped with this control strategy. This is far from the real-world situation, and cannot handle uncertainties related to other vehicles dynamics and behaviors.

Reference [START_REF] Okuda | Design of automated merging control by minimizing decision entropy of drivers on main lane[END_REF] proposed a new control strategy for merging tasks at highway junctions based on a predictive control model in which the decision entropy of drivers in the main lane was explicitly considered to be the cost function. The acceptance model is expressed as the stochastic discrete model which outputs the binary variables representing that the driver accepts or rejects the merging car based on the physical relationship between cars and using a logistic regression model. On the other hand, the motion model expresses the motion control aspect of the driver of Car E, such as acceleration or deceleration. 5-fold cross-validation is applied to evaluate the estimation performance of this model using a virtual environment for data collection which is a driving simulator. The model shows an average success rate of 75.6%.

The control strategy for the merging task was developed to minimize the decision entropy of the driver in the main lane considering the safety constraint. This control strategy is realized by the model predictive control (MPC), which minimizes:

J(t) = K k=1 N i S i (k|t) (2.10)
where t is current time, k is predicted time index in the horizon, and i is the car index.

K is the length of the predicted horizon, and N is the number of cars driving in the main lane. The cost function J(t) evaluates the accumulated entropy (= S i (k|t)) of the acceptance state of drivers in the main lane over predicted horizon. Due to the nonlinearity of the formulated MPC problem, it is difficult to find the solution in real-time by standard nonlinear optimization computation. To overcome this problem, authors adopted a randomized model predictive control (RMPC) approach. Simulation results confirmed that the proposed method can produce more smooth merging speed pattern to the drivers in the main lane.

Although this work proposes the design of an advanced driver assistance system with cooperative behavior, it has major limitations. First, since the entropy function is nonlinear, the computational burden is an important problem in the implementation and must be addressed. The authors claim that the computational time must be dramatically shortened by using the code optimization, vectorization, and/or parallel computation technique. Moreover, authors assume that information (position and velocity) of cars in the main lane are measurable or given by vehicle-to-vehicle (V2V ) communication although they are not explicitly controllable by the controller implemented on the merging car. This assumption implies that all vehicles present on the road are connected, which is not the case in the real world. Last, the proposed solution was trained and validated using only a virtual environment for data collection under a driving simulator. Using real-world driving data is mandatory before exploiting such a driving assistance system in the real world.

Reference [START_REF] Xie | Collaborative merging behaviors and their impacts on freeway ramp operations under connected vehicle environment[END_REF] proposed an optimization-based ramp control strategy that can effectively coordinate all merging vehicles in freeway on-ramp situations and substantially improve safety and efficiency. A nonlinear optimization model was developed to optimally coordinate the movements of freeway and ramp vehicles in a complex and realistic setting. The model takes the second-by-second accelerations of all vehicles as the decision variables and tries to maximize the total speed of all vehicles over the next short period. It also ensures that when a vehicle arrives at the merging point, the distance headways between it and adjacent vehicles are greater than a minimum value to guarantee safety. A decision interval of 10 seconds is considered. This interval is further divided into 10 1-second decision steps. At the beginning of each 1-second decision step, each vehicle needs to decide its acceleration rate, which is a decision variable of the above optimization model. By optimizing these acceleration rates, the optimal control model aims to maximize the total speed of all merging vehicles in each decision step subject to the following constraints:

• Ensure that each vehicle maintains a non-negative speed that is no greater than the speed limit.

• Ensure that the distance between two consecutive vehicles in the same lane must be greater than a minimum value.

• Ensure that any pair of freeway and ramp vehicles maintains a safe distance at the end of the decision interval. This is achieved by projecting ramp vehicles onto the freeway using the merging point as the reference.

• Limit the acceleration rate changes of each vehicle between two consecutive time steps to prevent aggressive driving behaviors.

• Ensure that each vehicle maintains an acceleration rate that is within a limit range at each time step.

To evaluate to what extent the optimal control model can improve traffic operations at freeway on-ramps, a simulation platform was developed integrating VISSIM6 , MAT-LAB, and the Car2X module7 in VISSIM. The proposed optimal ramp control strategy was solved using the MATLAB optimization toolbox. Three case studies are conducted to validate the effectiveness of the developed optimal control model and the simulation platform. The proposed optimal control algorithm was further compared with a donothing strategy and a gradual speed limit strategy for controlling a typical freeway on-ramp. Various levels of freeway and on-ramp traffic flows are considered: low traffic flow, medium traffic flow and heavy traffic flow. These three ramp control strategies were compared in terms of average delay time, average speed, and traffic throughput.

When either the freeway or the on-ramp traffic flow is low, there is no significant difference among the three control strategies in terms of throughput. This is likely because ramp vehicles can all find a safe gap to join the freeway without causing long-standing queues. For the remaining considered scenarios, the optimal control strategy substantially outperforms the other two strategies. When the freeway traffic is heavy and the on-ramp traffic is light, the gradual speed limit strategy performs even worse than not considering any control. This gradual speed limit strategy works when the freeway traffic flow is low and the on-ramp has a medium to heavy traffic.

Although the results demonstrate the potential effectiveness of the proposed optimizationbased ramp control strategy, this control strategy is based on a strict assumption that all vehicles are connected via Dedicated Short-Range Communications (DSRC), and controlled automatically by the control strategy (no human drivers). This assumption is not true in the real world. Moreover, the model was validated using only simulation tools that model traffic participants. Using real-world traffic data and considering non-connected vehicles are mandatory before using such a control strategy in the real world.

Reinforcement learning based methods

All previous works are classical rule-based approaches that include heuristics, optimalcontrol, and model predictive control. These methods require accurate modeling of the environment, where calculations are a burden. Moreover, most of these approaches assume that all the vehicles are connected and autonomous. Hence, they cannot handle uncertainties and unforeseen situations, which is not practical in real-world situations.

Recently, studies investigate automated on-ramp merging using reinforcement learning.

In reference [START_REF] Wang | Autonomous ramp merge maneuver based on reinforcement learning with continuous action space[END_REF], authors formulate the high-speed (29 m/s) merging problem within a reinforcement learning framework that treats state-space and action-space as continuous as in a real-world situation. Since in the on-ramp merging problem, it is difficult to prescribe an accurate model of the environment with a state transition matrix, the authors resort to Q-learning, a model-free approach, for finding an optimal driving policy. A Q-function was used to evaluate the long-term return G(s,a) based on the current and next step information (s,a,r,s'). Q(s,a) is called the action-state value and is approximated by neural networks for this use case where both state-space (driving environment) and action space (vehicle control) are continuous. Authors design the format of the Q-function approximator as a quadratic function to ensure that there is always a global optimal action for a given state at every moment. The state-space was defined to include the dynamics of the ego vehicle, the gap-front vehicle, and the gap-back vehicle. The continuous state-space is therefore defined as:

s = (v ev , p ev , v gf v , p gf v , v gbv , p gbv ) (2.11)
where v ev and p ev are the speed and position of the ego vehicle; v gf v and p gf v are the speed and position of the gap front vehicle; v gbv and p gbv are the speed and position of the gap back vehicle. The action space is the vehicle longitudinal control (e.g. acceleration or deceleration). After the reinforcement learning agent takes an action in a given state, its impact on the environment is fed back as an immediate reward. The effect is reflected by the smoothness, safeness, and promptness of the merging maneuver.

Smoothness represents the comfort of the merging maneuver and was measured by the absolute value of the acceleration. The safeness was estimated by the distance to the surrounding vehicles. The promptness was assessed by the time that the ego vehicle will take to complete the merging process, where the current vehicle speed was used to account for the contribution of promptness in the immediate reward. Consequently, the composition of the immediate reward was expressed by equations:

R(s, a) = R 1 (acceleration) + R 2 (distance) + R 3 (speed) (2.12) R 1 (acceleration) = f 1 * abs(acceleration) (2.13) R 2 (distance) = f 2 * g 2 (distance) (2.14) R 3 (speed) = f 3 * speed (2.15)
where f 1 , f 2 and f 3 are factors accounted for each part of reward. The quadratic format of Q-function approximator was specified as follows:

Q(s, a) = A(s) * (B(s) -a) 2 + C(s) (2.16) 
where A, B and C are trainable parameters and designed with the neural network structure with environment state as inputs. An illustration is shown in Figure 2.14.

There are two graphs concealed in this form of the Q-function approximator. One is the graph for obtaining an optimal action (a*=B(s)) in a given state, where B(s) is learned based on the current state s. The other is the graph for calculating the Q-value for a given state and action. In the learning process, Q-network is updated with the following loss function. The training procedure is set to 1,600,000 steps, during which around 8,000 ramp vehicles are performed ramp merging behavior. Figure 2.16 shows the total reward (named single total reward) of all the 8000 vehicles in the simulation. Although the authors propose a reinforcement learning approach to learn a safely, smoothly, and timely driving policy, their approach has some limitations and unrealistic considerations.

Loss = n i=1 (r + γ • max a Q(s , a , θ) -Q(s, a, θ)) 2 i (2.
First, the method to select an appropriate gap is done in a deterministic way by estimating the arrival time to the merging section of the ego vehicle and of the other vehicles on the highway. The authors did not show details about how this estimation was made, because it is difficult in the real world to estimate arrival time due to the varying dynamics and behaviors of each vehicle on the road.

Moreover, The ego vehicle is supposed to be equipped with a suite of sensors including LiDAR, RADAR, camera, a digital map, DGPS 8 and IMU 9 , and can gather the vehicle dynamic information of its own and its surrounding vehicles within a vicinity of 150 m that was also assumed to be accurate enough to meet the implementation requirements.

These assumptions are far from the realistic situations where the observation range may 8 Differential Global Positioning System. 9 Inertial Measurement Unit.

be partially occluded and the measurements are shortened, imprecise, or inaccurate.

Moreover, Authors said that the optimal action is selected using B(s) network (cf. Figure 2.14). However, they did not show either how the network is trained as in the actor-critic algorithm and what guarantees the optimality of the selected action.

Last but not least, the authors did not show results details when testing the trained driving policy, such as the average merging speed. Moreover, they did not show details about the effects of merging on the other vehicles present on the road, such as the emergency brakings performed by the gap back vehicle. Such detail evaluates the cooperativeness of the learned driving policy.

The authors of reference [START_REF] Nishi | Merging in congested freeway traffic using multipolicy decision making and passive actor-critic learning[END_REF] present a method for freeway merge based on multipolicy decision-making coupled with a reinforcement learning technique called passive actorcritic (pAC), which learns with less knowledge of the system and without active exploration. Multi-policy decision-making (MPDM ) is a method to select the best policy in a set of applicable policies. Authors present a novel MPDM algorithm that utilizes pAC. MPDM determines control input by selecting a policy among multiple candidates using the scores of each policy. While the previous MPDM algorithm requires forward simulation to score each policy candidate, their proposed algorithm scores the candidates without the simulation, instead of using state values estimated with pAC. The pseudo-code of MPDM with pAC is shown in Algorithm 1. It populates the set Π of available policies. A score c for each candidate, which is calculated using state value estimated with pAC, is added to the set of scores C. Finally, the policy associated with the minimum score is returned as the best policy.

Algorithm 1 MPDM Policy Selection with pAC.

1.

Set Π of available policies.

2.

C ← ∅.

3.

for π ∈ Π do 4.

Set current state: X k ← x.

5.

Calculate score of a policy π learned by pAC:

6. c ← Vi (X k ). 7. C ← C ∪ {< π,c>}. 8.
end for 9.

Choose the best policy π * ∈ Π : π * ← argmin π∈Π C. 10. return π * While the actor-critic method usually operates using samples collected actively in the environment, pAC finds a converged policy without exploration. Instead, it uses samples of passive state transitions and a known control dynamics model. The pAC follows the usual two-step approach of actor-critic: a state evaluation step (critic), and a policy improvement step (actor):

• 1) Critic: Estimates the Z-value and the average cost from the linearized Bellman equation using samples under passive dynamics.

• 2) Actor: Improves a control policy by optimizing the Bellman equation given the known control dynamics model, and the Z-value and cost from the critic.

The authors then apply Algorithm 1 to the problem of properly merging into a freeway.

The algorithm learns a policy and a state value function to merge into a predetermined spot using pAC on a collected data set in advance. The algorithm then determines a merging spot from a set of candidates and control input with the learned model when an autonomous vehicle is driving on a merging ramp. They model the merging problem using a 3-car system as shown in Figure 2.17 The figure 2.17.b shows a typical freeway-merge situation. In this situation, there are three possible mergeable spots: Spot-1, 2, and 3. The pAC is utilized to learns the policy for merging into one of these spots, and the corresponding value function for that state is obtained. The best policy is then selected as in Algorithm 1. The value function learned to merge into a predetermined spot can be used to calculate the score of any spot candidate because the MDP is the same and only the states are different between these candidates.

The authors evaluated the performance of their proposed approach with numerical experiments and real-world congested traffic data (NGSIM ). The pAC with the neural network achieved 97% success rate on the numerical experiments. In the real traffic data, pAC with the neural network achieved 93% by combining an approximate nearest neighbor to mitigate data imbalance and sparseness. Evaluating on real-world congested traffic data, the combined MPDM with pAC achieved a 92% success rate, which is comparable to merging success when the spot is selected by human drivers. The success rate of the proposed method is much higher than that of merging into a fixed spot specified in advance.

Although the novelty of the proposed approach and his good success rate, it has some limitations. First, it considers only congested freeway conditions. High-speed merging is a more critical driving scenario that should be considered to test this solution.

Moreover, the passive actor-critic algorithm requires data under passive dynamics and accurate dynamics model of the vehicle. This control model should be known accurately in advance, which may increase the complexity when implementing this approach. Last, their approach selects the policy based on the assumption that surrounding vehicles behave in the same way on average. This assumption is far from reality where each driver has different behavior and driving style. Authors admit that the approach would not be able to cope with situations when a surrounding vehicle deviates significantly from the average, and this is also an important future challenge to consider.

The authors of reference [START_REF] Bouton | Cooperation-aware reinforcement learning for merging in dense traffic[END_REF] present a reinforcement learning approach to learn how to interact with drivers with different cooperation levels. They focus on dense traffic situations where cars drive slowly (around 5 m/s) and very close to each other (the gaps can be below 2 m). The merging scenario was modeled as a Partially Observable Markov decision process (POMDP). The complete state of the environment consists of the collection of the individual states of each vehicle present. The physical state of each vehicle corresponds to distance to the merge point, longitudinal velocity, acceleration, and cooperation level (c). The behavior is characterized by this parameter c, and the state of the ego vehicle (the controlled agent) does not contain this behavior parameter.

The authors assume that the ego vehicle has limited sensing capabilities and cannot measure the internal states of other vehicles. Hence, the observation is restricted as illustrated in Figure 2.18 to the longitudinal position and velocity of four neighbor cars: the front neighbor of the ego vehicle, the vehicle right behind the merge point, the rear neighbor, and front neighbor of the projection of the ego vehicle in the main lane. Authors propose a simple belief updater, that is acting as if the cooperation level was binary although it can take a continuous value. The belief at time t is composed of the fully observable part of the state, o t , and θ i for i = 1...n, where n is the number of observed drivers. θ t i represents the probability that vehicle i has a cooperation level of 1. At time t + 1, the ego vehicle observes o t+1 and updates its belief on the cooperation level of vehicle i as follows: The proposed approach was simulated under a dense traffic environment (average speed of 5 m/s). The reinforcement learning (RL) policy without access to information on the cooperation level had 2% collisions at test time and the RL policy that has information about cooperation level (either directly or through the prediction given by the belief state) performed similarly with around 0.6% collisions. Authors said that previous works have shown that only relying on deep RL is not sufficient to achieve safety.

θ i t+1 = P r(o t+1 |o t , c i = 1)θ i t P r(o t+1 |o t , c i = 1)θ i t + P r(o t+1 |o t , c i = 0)(1 -θ i t ) (2.
Moreover, they claimed that the deployment of those policies would require the addition of a safety mechanism.

Although the study confirms that an autonomous agent can benefit from reasoning about the interaction with other drivers, it has some main limitations. First, the authors consider only urban driving environments with dense traffic where the vehicle speeds are around 5 m/s. It would be more interesting and safety-critical if they used and validated their approach in the high-speed highway scenario, which is more critical. Moreover, the driver cooperation level was approximated using a simple binary state predictor, which might not represent accurately how human drivers behave in the real world. Authors admitted that it is mandatory to consider more complex filtering techniques such as multi-hypothesis filters, interacting multiple models, or data-driven approaches to estimate the driver cooperation level from observation. Another key limitation of this approach is the use of a Deep Q-Network, which provides only discrete action control. This is not practical for real-world implementation where the state-action space is continuous. Last, the authors use a basic sparse reward that penalizes collision and gives a bonus for successful merging. The reward design did not consider some essentials safety criteria such as distance from the front and the rear vehicles.

The work conducted in reference [START_REF] Lin | Decision-making and control for freeway on-ramp merging using deep reinforcement learning[END_REF] studies high-speed on-ramp merging decisionmaking and control for an automated vehicle using deep reinforcement learning. It The authors design a reinforcement learning framework such as the environment state is composed of the distance to the merging point, velocity and acceleration of the merging vehicle projection, two preceding vehicles, and two following vehicles. The action of the reinforcement learning framework is the acceleration control input to the merging vehicle, while the reward is designed to motivate the vehicle to merge midway between the preceding and the following vehicles, with the same speed as the first preceding vehicle.

The reward gives a bonus for successful merging, and penalize collision, stop, and hard braking of the first following vehicle.

The proposed DRL framework trained the merging vehicle for 1 million simulation time steps wherein a reasonable convergence of the cumulative episode reward was observed.

The trained policy was tested for another 1 million simulation time steps. Table 2 Table 2.2 shows that the trained policy resulted in zero stops during testing. Additionally, the average speed is 24.22 m/s, which is relatively high. This means that the trained agent sought to minimize the travel time. The merging vehicle made only 1 collision. However, it caused the first following vehicle to brake emergently 197 times.

Although this work proposes a decision-making and control solution via DDPG, it has main limitations that do not allow it to be used in the real world. First, the trained policy did not eliminate all the collision cases. As safety for the learned policy is not guaranteed, authors admit that trajectory prediction or a safe controller may be needed to exclude unsafe actions. Moreover, the trained driving policy shows many hard brakings performed by the first following vehicle during the evaluation of the model (1.161%), although the reward penalizes such maneuvers. This means that the learned policy is not cooperative with humans' driven vehicles, even if their behaviors are implicitly considered in the reward function through the hard braking penalty. Hence, a deep reinforcement learning framework is unable to learn implicitly a "cooperative" driving policy.

To summarize, many works studied the highway on-ramp merging problem using either classical deterministic methods such as slot-based and optimal-control or novel deep reinforcement learning algorithms such as DDPG. Yet, no previously work has shown perfect performances that allow the implementation of such systems in the real world.

Conclusion

We surveyed the different approaches proposed for drivers' intentions estimation in a highway on-ramp situation. These approaches are summarized in the following As shown in Table 2.3, the best accuracy was obtained using the theory of gap acceptance or the Gated branch neural network. These techniques can be used only in the auxiliary acceleration lane under congested traffic. Yet, no previously work has proposed a prediction model that can be implemented at the off-board infrastructure, and which uses real-world traffic data.

We also reviewed the different methods that were proposed for decision-making at the highway on-ramp situation. These methods are summarized in Table 2.4. As shown in this table, the first works that were proposed for highway on-ramp decision-making were classical rules-based approaches that include heuristics, optimal-control, and model predictive control. These methods require accurate modeling of the environment, where calculations are a burden. Moreover, they cannot handle uncertainties and unforeseen situations, which is not practical in real-world situations. Recently, studies investigate automated merging using deep reinforcement learning. Although these methods learn driving policy directly from trial-and-errors without the need for an accurate system model, they did not guarantee safe and cooperative driving using only reward formulation. Yet, no previously work has shown perfect performance for highway on-ramp merging so that it allows the implementation of such driving systems in the real world.

Method Limitations [START_REF] Marinescu | On-ramp traffic merging using cooperative intelligent vehicles: A slot-based approach[END_REF] Slot-based approach -Assumes that all the vehicles are autonomous.

-Tested and validated using only simulation data.

[11] Ramp metering -Not adapted to all ramp locations.

-Monetary cost.

Rules-based methods [START_REF] Torres | Automated and cooperative vehicle merging at highway on-ramps[END_REF] Analytical solution using Hamiltonian analysis -Cannot satisfy safety merging at high-speed scenario (29 m/s). -Control action based on deterministic model that cannot handles uncertainties.

[13] Predictive control model -Computational burden. -Assumes that all the vehicles are connected.

-Tested and validated using only simulation data.

[42] Optimization-based ramp control strategy -Assumes that all the vehicles are autonomous and connected. -Tested and validated using only simulation data.

[14] Q-learning -Gap selection using deterministic method.

-Vehicle perception range is not realistic. -Some implementation and results details are not shown. -Uses basic sparse reward.

[17] Deep deterministic policy gradient (DDPG)

-Did not eliminate all the collision cases.

-Many hard brakings performed by the first follower vehicle.

Table 2.4: Decision-making methods at highway on-ramp situation.

Drivers' intentions model

A survey of existing methods for motion prediction was cited in [START_REF] Lefevre | A survey on motion prediction and risk assessment for intelligent vehicles[END_REF]. These approaches for motion modeling and prediction were classified into three levels with an increasing level of abstraction as shown in Figure 3.1. These models remain the most commonly used motion models for trajectory prediction and collision risk estimation in the context of road safety. The models are more or less complex depending on how fine the representation of the dynamics and kinematics of a vehicle is, how uncertainties are handled, whether or not the geometry of the road is taken into account,etc.

Since these models only rely on the low-level properties of motion (dynamic and kinematic properties), Physics-based motion models are limited to short-term (less than a second) motion prediction. Typically, they are unable to anticipate any change in the motion of the car caused by the execution of a particular maneuver (e.g. slow down, turn at a constant speed, then accelerate to make a turn at an intersection) or changes caused by external factors (e.g. slowing down because of a vehicle in front).

Maneuver-based motion models:

Maneuver-based motion models represent vehicles as independent maneuvering entities, i.e. they assume that the motion of a vehicle on the road network corresponds to a series of maneuvers executed independently from the other vehicles. A maneuver is defined as "a physical movement or series of moves requiring skill and care". Trajectory prediction with Maneuver-based motion models is based on the early recognition of the maneuvers that drivers intend to perform. If one can identify the maneuver intention of a driver, one can assume that the future motion of the vehicle will match that maneuver. Thanks to this a priori, trajectories derived from this scheme are more relevant and reliable in the long term than the ones derived from Physics-based motion models.

In practice, the assumption that vehicles move independently from each other does not hold. Vehicles share the road with other vehicles, and the maneuvers performed by one vehicle will necessarily influence the maneuvers of the other vehicles. Inter-vehicle dependencies are particularly strong at road intersections, where priority rules force vehicles to take into account the maneuvers performed by the other vehicles. Disregarding these dependencies can lead to erroneous interpretations of the situations, and affects the evaluation of the risk.

3. Interaction-aware motion models: Interaction-aware motion models represent vehicles as maneuvering entities that interact with each other, i.e. the motion of a vehicle is assumed to be influenced by the motion of the other vehicles in the scene. Taking into account the dependencies between vehicles leads to a better interpretation of their motion compared to the Maneuver-based motion models. As a result, it contributes to a better understanding of the situation and more reliable evaluation of the risk.

The Interaction-aware motion models are the most comprehensive models proposed so far in the literature. They allow longer-term predictions compared to Physics-based motion models, and are more reliable than Maneuver-based motion models since they account for the dependencies between vehicles. However, this exhaustiveness has some drawbacks: computing all the potential trajectories of the vehicles with these models is computationally expensive and not compatible with real-time risk assessment.

Regarding the characteristics and limitations of each model, we observe that the "Interactionaware" motion model is the best suited to predict drivers' behaviors from the off-board infrastructure. The RSU could perceive vehicles data resulting from vehicles dynamics (position, speed, etc.) using its sensors and data related to maneuvers performed by drivers (throttle position, brake, etc.) through V2X communication messages. The processing of this data allows to extract the driving contextual situation such as the relative distance and the relative speed between vehicles. This implicitly explains the interaction between drivers at the highway on-ramp to estimate their intentions probability and to have a long-term prediction.

We propose to use a directed graphical model with factored states to estimate drivers' intentions. The decision of merging on highways is determined mainly by a set of contextual parameters that drivers perceive, such as the distance to the merging point and the relative speed from the vehicle inserted. Using factored states allows reducing calculation burdens. Figure 3.2 shows the model structure for the vehicle in the merge lane and the vehicle in the main highway lane (first lane as illustrated in Figure 3.3). The network is composed of three layers: vector X which contains the vehicle data (mainly dynamic data), vector C which contains the vehicle situation context, and finally, the output I which is the intention probability of merging or not merging for the vehicle's driver. • Vector X: contains the vehicle states: position, speed, acceleration. This information can be retrieved in real-time by the road-side unit (RSU ) using, either its sensors (camera, RADAR, or LiDAR) that exceeds the limit of embedded vehicle sensors, or (V2I ) communication.

• Vector C: contains the features of the local situation context. These features are extracted from the merge lane (X m ) and the main lane (X l ) vehicles states. The function that outputs C m (resp. C l ) vector can be expressed mathematically as a Dirac distribution δ Cm (resp. δ C l ), with X m and X l as input arguments:

δ Cm (X m , X l ); δ C l (X m , X l )
The features of this vector for the vehicle in the merge lane (resp. main lane) are summarized in table 3.1, and illustrated in Figure 3.3.

Merge lane Main lane

Feature C 1 C 1 Distance from the merging point C 2 C 2 Speed C 3 C 3 Acceleration C 4 C 4
Relative distance between the vehicle in the main lane and the vehicle in the merge lane

C 5 C 5
Relative speed between the vehicle in the main lane and the vehicle in the merge lane

C 6 C 6
Relative acceleration between the vehicle in the main lane and the vehicle in the merge lane

C 7 C 7
Relative distance from the vehicle above the merging point in the main lane

C 8 C 8
Relative speed from the vehicle above the merging point in the main lane

C 9 C 9
Relative acceleration from the vehicle above the merging point in the main lane • Vector I: contains the intention's probability of "merging" or "not merging" for the vehicle in the merge lane (I m ), and the intention's probability of "passing" or "not passing" for the vehicle in the main lane (I l ). The probability of "merging" (resp. "passing") is deduced from the situation context vector Pr 1 (I m /C m ) (resp.

Pr(I l /C l )). An output probability of I m (resp. I l ) with a value close to 1 means that the vehicle in the merge lane (resp. the main lane) has the intention to "merge" (resp. "pass") before the vehicle in the main lane (resp. the merge lane) at the highway on-ramp.

Probabilistic classifiers

Since drivers behaviors and intentions are highly random, stochastic and non-deterministic, different probabilistic classifiers were used to predict this intention and identify the merged vehicle: Classic logistic regression (LRM ) is used as a discriminative classifier [43][44]. The Naïve-Bayes model (NB) and two of its variants (the Tree Augmented Naïve-Bayes (TAN ) and the General Bayesian Network (GBN )) are used as generative classifiers [START_REF] Friedman | Bayesian network classifiers[END_REF]. Moreover, the k-Nearest Neighbors classifier (KNN ) and the Artificial Neural Network (ANN ) are included in this comparison.

Logistic regression

Logistic regression is a discriminative regression model. A discriminative algorithm simply categorizes a given input (C vector). Discriminant classifiers directly model the posterior P r(I/C) (intention I) or learn a direct model from the input to the output.

This model solves the problem P r(I/C) directly. It is based on the logistic function that is a sigmoid function, that takes any real input t, t ∈ R, and an output which takes a value between zero and one. For the logit function, this is interpreted as log-odds input and output probabilities:

t = logit(P r) = ln( P r 1 -P r ) P r ∈]0; 1[ (3.1)
The logistic function σ(t) is defined as follows:

σ(t) = e t 1 + e t = 1 1 + e -t (3.2)
Suppose that t is a linear function of a single explanatory variable C (situation context vector). We can then express t as follows: t = β 0 + β 1 C, and the logistic function can be written as:

P r(I/C) = 1 1 + e -β 0 +β 1 C (3.3)
1 Pr denotes probability.

Note that Pr(I/C) is interpreted as the probability that the driver's intention I corresponds to a "merge" rather than "Yield". The parameters [β 0 , β 1 ] can be determined either for maximizing the conditional likelihood on the training data set or to minimize training error [START_REF] Ng | Discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes[END_REF][44]. 

Naïve-Bayes

Tree Augmented Naïve-Bayes

The Tree Augmented Naïve-Bayes (TAN ) allows tree-like structures to be used 

General Bayesian Network

The General Bayesian Network (GBN ) is an unrestricted Bayesian network. In general Bayesian network, all nodes treat as a normal node and can have a present node and also be a child node of some attribute node. K2 and Hill Climb (HC) algorithms are adopted to generate the GBN. K2 algorithm is a simple and fast algorithm, a kind of greedy algorithm. It starts with a given ordering of the nodes. Hill Climb algorithm starts from an empty or random network. If there is no information on the conditional probability distribution of the data in the network structure learning is required. An important element in the network structure learning is actual sample data for each event.

GBN can have reasoning ability throughout the network structure learning based on the actual sample data. A typical method for structural learning is the score-based learning, which is used to learn the general Bayesian network for our use case (Figure 3.6). This method is to maximize the score according to the degree of matching of generated network and actual data [START_REF] Chung | General bayesian network approach to health informatics prediction: Emphasis on performance comparison[END_REF]. 

K-Nearest Neighbor

The K-Nearest Neighbor (KNN ) is one of the classification techniques using a machine learning algorithm. The KNN is known as a simple but robust classifier and produced high-performance results even for complex applications. The KNN uses a distance of features in a dataset to determine the data belongs to which group. The close distance between features means the features in the same group while the long distance between features means that the features in the different groups. Therefore KNN is a nonparametric procedure to determinate the appropriate group which close in Euclidian distance [START_REF] Ni'am Fuad | Brainwave classification for brain balancing index (bbi) via 3d eeg model using k-nn technique[END_REF]. For our use case, that means that all the data sets should be stored at the road-side unit (RSU ) to use such classifier for drivers' intentions estimation, which is more complex and expensive in terms of hardware requirement.

Artificial Neural Networks

In recent times, artificial neural networks (ANN ) have become a popular and helpful model for classification, clustering, pattern recognition, and prediction in many disciplines. ANN are one type of model for machine learning (ML) and have become relatively competitive to conventional regression and statistical models regarding usefulness. Nowadays, ANN are mostly used for universal function approximation in numerical paradigms because of their excellent properties of self-learning, adaptivity, fault tolerance, non-linearity, and advancement in input to an output mapping. ANN can learn by example like people. In some cases, ANN can be designed for a specific application like data classification or pattern recognition through the learning process, such as predicting drivers' intentions for our use case. An architecture of a typical NN is showed in Figure 3.7. Neural network (NN ) layers are independent of one another; that is, a specific layer can have an arbitrary number of nodes. This arbitrary number of nodes is called a bias node. The bias nodes are always set as equal to one. In analogy, the bias nodes are like the offset in linear regression given as; y = a.x + b, where "a" is the coefficient of independent "x" and then "b" is called slope. A bias major function is to provide a node with a constant value that is trainable, in addition to the normal inputs received by the network node. Importantly, a bias value enables one to move the activation function either to the right or the left, which can be analytical for ANN training success. When the NN is used as a classifier, the input and the output nodes will match input features and output classes. However, when the NN is used as a function approximation, it generally has an input and an output node. However, the number of designed hidden nodes essential greater than those of input nodes [START_REF] Isaac Abiodun | State-of-the-art in artificial neural network applications: A survey[END_REF]. For our highway on-ramp drivers' intentions prediction, a neural network with an input layer of 9 nodes, a single hidden layer of 24 nodes, and an output layer of 12 nodes are used. 

Results

Each classifier is used to evaluate the probability for both vehicles in the main lane and the merge lane at each instant. The merging vehicle ID is then predicted by choosing the highest probability. Each model was evaluated five times for each different set of test data in a form of 5-fold cross-validation [START_REF] Nishi | Merging in congested freeway traffic using multipolicy decision making and passive actor-critic learning[END_REF]. To evaluate the performance of each classifier, we average the Accuracy, Precision, Recall and F1 score metrics of each 5-fold test. These parameters are defined as follows:

Accuracy = T P + T N T P + F P + F N + T N (3.4) 
P recision = T P T P + F P (3.5)

Recall = T P T P + F N (3.6) F 1 Score = 2 × Recall × P recision Recall + P recision (3.7) 
Where: TP, TN, FP and FN are the true positives, true negatives, false positives and false negatives respectively.

The results of each classifier are summarized in Table 3 From Table 3.2, the discriminative classifiers LRM and the Artificial Neural Network (ANN ) give the best performances over the generative classifiers (NB, TAN and GBN ) and KNN classifier. In fact, the average accuracy and precision of LRM and ANN classifiers are above 99%, which is a good ratio regarding the state-of-the-art. These average values show that the model outputs high prediction accuracy and precision for all the test sets, and it is not overfitting. Naïve Bayes, which is the simplest generative classifier, yields slightly lower performances (around 92%). Unlike LRM classifier, the Artificial Neural Network may have different structures. The used neural network contains one single hidden layer of 24 nodes and an output layer of 12 nodes. The performances of this classifier can be improved using a more complex structure such as more hidden layers and more nodes. The accuracy and the precision of the ANN were around 96% when we previously used only 12 nodes in the hidden layer and 6 nodes in the output layer.

Thereby, It has the advantage of being a more flexible classifier compared to the LRM classifier, which has a fixed structure and limited performance. However, ANN has the drawback of having more complex implementation regarding required computing power and memory storage. Moreover, ANN explainability must be verified. Some existing deployed systems and regulations make the need for explanatory systems urgent and timely. With impending regulations like the European Union's "Right to Explanation" [START_REF] Goodman | European union regulations on algorithmic decision-making and a" right to explanation[END_REF], there has been a recent explosion of interest in interpreting the representations and decisions of black-box models. Concerning the Recall criteria, both the LRM and ANN classifiers show good values. This means that in all the situations where the vehicle in the merge lane takes priority and merges before the main lane vehicle, we can predict most of these situations accurately to use such information for decision-making strategy.

Finally, the F1 score takes both FALSE positives and FALSE negatives into account.

The negative prediction refers to the intention to "pass" for the vehicle in the main lane (model outputs 0), while the positive prediction refers to the vehicle intention to "not pass" at the main lane (model outputs 1). Good value for the F1 score means that the model can, also, predict the intention accurately for the vehicle in the main lane. The accuracy of "pass" events is more safety critical than "not pass" events. Misclassifying a "pass" event as a "not pass" event may motivates the merge lane vehicle to take priority, and could result in a traffic crash, whereas misclassifying a "not pass" event as a "pass" event would only result in a lost opportunity to merge. Table 3 To ensure that this model can be used in practice by the off-board road-side unit, the true intention prediction must be provided earlier than the arrival of the merge lane vehicle at the merging point. Therefore, we calculate the time to arrive at the merging point for the vehicle in the merge lane (T m ), and the time to arrive at the merging point for the vehicle in the main lane (T l ) at the instant when the model outputs the first TRUE intention prediction of the driver (cf. Figure 3.10). To use the intention's prediction for decision making, we estimate that it must be provided to the CAV before a minimum time of T R =0.5 sec, based on the following time requirements:

• 0.4 sec, for the vehicle's dynamic response time [START_REF] Armand | Situation understanding and risk assessment framework for preventive driver assistance[END_REF].

• 0.1 sec, for the communication latency [START_REF]Vehicular communications : Basic set of applications. part 2: Specification of cooperative awareness basic service[END_REF].

The values of the time to arrive at the merging point when the model outputs the first TRUE prediction are shown in Figure 3.10 for the ANN classifier. For each one of the previously classifiers, we notice that the model predicts the intention of the vehicles before they reach the on-ramp merge point by a mean of 3.96 sec for the vehicle in the merge lane, and 4.08 sec for the vehicle in the main lane, which we estimate to be sufficient for decision making. Moreover, the model predicts the intention below the vehicle response time (T R ) only in three prediction episodes: one corresponds to a vehicle following another vehicle that changes the main lane close to the merging point, while the two other cases correspond to a vehicle that follows immediately the merging vehicle in the merge lane. These cases may be solved by extending the proposed model to predict the intention of the follower vehicle in the main lane and the merge lane.

In short, the performance metrics show the best values for the LRM and ANN classifiers that offer an accuracy and precision of around 99% for predicting drivers' intentions at the highway on-ramp merging situation. The model is robust for predicting both the main lane and the merge lane vehicles' intentions. Also, we demonstrated that the proposed method predicts the intention before a time interval sufficient for decision making.

Driver intention model extension

To get a higher prediction time horizon, we extend the driver intention model to the follower vehicle at the main lane (see Figure 3.11). The model for the follower vehicle is composed of:

• Vector X f : contains the vehicle states: position, speed, acceleration.

• Vector C f : contains the features of the local situation context, which are summarized in Table 3.4.

Follower model Feature C 1

Distance from the merging point

C 2 Speed C 3 Acceleration C 4
Relative distance from the vehicle in the merge lane

C 5
Relative speed from the vehicle in the merge lane

C 6
Relative acceleration from the vehicle in the merge lane

C 7
Relative distance from the vehicle in the main lane

C 8
Relative speed from the vehicle in the main lane

C 9
Relative acceleration from the vehicle in the main lane • Vector I f : contains the intention of the follower vehicle. An output probability with a value close to 1 means that the follower vehicle has the intention to "pass" before the vehicle in the merge lane at the highway on-ramp.

As for the main lane vehicle and the merge lane vehicle, we calculate the output for the follower vehicle's model using previous classifiers. The results are summarized in the From Table 3.5, the performances of the follower vehicle model are lower than the previous model. The best accuracy is obtained when using LRM, KNN, and ANN classifiers,

and it has the value 97% that is, 2%, lower than the accuracy for the vehicle in the main lane below the merging point. To improve prediction performance, we proposed combining the best three classifiers (LRM, KNN, and ANN ), where each classifier vote according to its output. The method, then, selects the prediction with the majority vote. From the table, we notice that the combination method average the performance metrics that were fluctuated when using each individual classifier. When combining the best classifiers, better performance values are obtained, that may be exploited later for decision making.

Extending the driver's intention model to the follower vehicle at the main highway lane aims to increase the prediction time horizon before that the merge lane vehicle reaches the on-ramp merging point. To check that, figure 3.12 shows the values of the time to arrival at the merging point for the first True prediction of the follower vehicle model.

We notice that the model predicts the intention above the vehicle response time (T R ).

The model predicts the intention of the follower vehicle before it reaches the on-ramp merging point by a mean of 8.38 sec. 

On-board driver intention model

To compare the performances of the proposed off-board model with its on-board counterpart, we trained and tested an on-board model that predicts drivers' intentions at the highway on-ramp situation (cf. The on-board model of each vehicle is composed of:

• Vector X: contains the vehicle states: position, speed, acceleration.

• Vector C: contains the features of the local situation context, which are summarized in Table 3 • Vector I: contains the intention of the vehicle. It outputs the probability of "merging" or "not merging" for the merge lane vehicle, and the probability of "passing"

or "not passing" for the main lane vehicle (cf. This comparison allows us to confirm that the off-board unit that uses communication and sensors at the highway on-ramp can predict drivers' behaviors more accurately than the classic embedded implementation, independently from the used probabilistic classifiers or the drivers' driving styles.

Conclusion

In summary, off-board drivers' intentions model provides prediction accuracy greater than 99% using either Logistic Regression Model (LRM ) or Artificial Neural Network (ANN ). This model can be implemented on the road-side unit (RSU ), and can provide prediction information in real-time for decision making.

In contrast to the embedded model, the off-board model can predict drivers' behaviors more accurately, independently from the used probabilistic classifiers or the drivers' driving styles, as was shown in section 3.4.2.2. Implementing such a model at the roadside unit allows learning the intentions and behaviors of drivers at the highway on-ramp using a data-driven approach rather than a deterministic analytic form or an embedded model, that may depend on each driver's style.

In the next chapter, we show how the prediction provided by this off-board model could be used to improve the decision making of the autonomous vehicle at the highway on-ramp merging scenario.

Chapter 4

Decision making 4.1 Introduction

Classical rule-based approaches for decision making that include heuristics, optimalcontrol, and model predictive control require accurate modeling of the environment, where calculations are a burden. Besides, they cannot handle uncertainties and unforeseen situations, which is not practical in the real world. Reinforcement learning (RL) methods are more adapted for real-world situations such as highway on-ramp merging, where there are uncertainties relatives to drivers' behaviors and vehicles' dynamic models. In this chapter, we present a novel architecture that combines the previous driver intention model with a deep reinforcement learning framework that performs autonomous highway on-ramp merging "safely" and "cooperatively".

We first review the theoretical framework of deep reinforcement learning. We then formulate the high-speed highway on-ramp merging as a RL problem. We will combine the deep RL agent with a safe controller and the driver intention model. Our solution is tested and validated using the traffic simulator "SUMO". We show that our new architecture accelerates learning of the deep RL agent, improves safety performance and learns a cooperative autonomous driving policy.

Preliminaries on reinforcement learning

The RL problem for maximizing the long-term reward while operating in an environment can be represented as a Markov Decision Process (MDP). Formally, an MDP is represented by the tuple <S, A, T, R>, where S is the set of states, A is the set of actions, and T(s t , a t , a t+1 ) represents the stochasticity in the underlying environment and provides the probability of transitioning from state s t to state s t+1 on taking action a t (cf. R(s t , a t ) represents the reward obtained on taking action a t in state s t . The RL problem is to learn a policy that maximizes the long-term reward from experiences without knowing the exact model of transitions and rewards. An experience is defined as a tuple (s t , a t , s t+1 , r t ) and, typically, learning occurs over a batch of experiences (referred to as an episode) that ends when s t+1 is a terminal state. Q-learning represents the value function for being in state s t and taking action a t :

Q(s t , a t ) =E s t+1 ,rt [ r t +γ.max a t+1 Q(s t+1 , a t+1 )] (4.1) 
where the expectation, E is over the stochasticity in the environment concerning transitions and also reward.

Recently, a novel deep reinforcement learning algorithm, called the deep deterministic policy gradient (DDPG) [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF], has achieved good performances in many simulated continuous control problems. In DDPG, we have a critic function Q parameterized by θ Q that approximates the state-action-value function. We also have an actor µ parameterized by θ µ that outputs the deterministic action in a continuous space given the current state. Let N denote the size of the batch of total experiences e i = (s i , a i , s i+1 , r i ), i = 1...N collected in an episode. The critic is updated by minimizing the loss:

L = 1 N N i=1 (y i -Q(s i , a i |θ Q )) 2 (4.2)
where:

y i = r i + γ.Q (s i+1 , µ (s i+1 |θ µ )|θ Q ) (4.3)
where Q and µ are target networks parameterized by θ Q and θ µ respectively. The parameters of these target networks are made to slowly track the parameters of the original networks:

θ ← τ θ + (1 -τ ) θ , with τ 1.
The purpose of this is to avoid making targets y i non-stationary, and improve the stability of updates. Next, the actor policy µ is updated by using the sampled policy gradient:

∇ θ µ J ≈ 1 N i ∇ a Q(s, a|θ Q )| s=s i ,a=µ(s i ) ∇ θ µ µ(s|θ µ )| s i (4.4)
When learning from low dimensional feature vector observations, the different components of the observation may have different physical units (for example, positions versus velocities) and the ranges may vary across environments. The DDPG addresses this issue by adopting a recent technique from deep learning called batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF].

This technique normalizes each dimension across the samples in a mini-batch to obtain zero-mean and unit variance. Besides, a major challenge of learning in continuous action spaces is exploration. An advantage of off-policy algorithms such as DDPG is that we can treat the problem of exploration independently from the learning algorithm. In [START_REF] Uhlenbeck | On the theory of the brownian motion[END_REF],

an exploration policy µ was constructed by adding noise sampled from a noise process N to the actor policy:

µ(s t ) = µ(s t |θ µ t ) + N (4.5)
In the present work, N will be chosen as an "Ornstein-Uhlenbeck" process to generate temporally correlated exploration noise for exploration's efficiency in physical control problems with inertia, such as vehicle dynamic control. This allows to better explore the effects of control actions on the vehicle's behavior.

The DDPG algorithm is summarized below: first initialize the actor and critic networks, their targets and the replay buffer (lines 1 to 3). At each time step of each episode, select and execute action according to equation 4. Sample a random mini-batch of N transitions (s i ,a i ,r i ,s i+1 ) from R. 12:

Set

y i = r i + γ.Q (s i+1 , µ (s i+1 |θ µ )|θ Q ).

13:

Update critic θ Q by minimizing the loss:

L = 1 N N i=1 (y i -Q(s i , a i |θ Q )) 2 14:
Update the actor θ µ policy using the sampled policy gradient:

∇ θ µ J ≈ 1 N i ∇ a Q(s, a|θ Q )| s=s i ,a=µ(s i ) ∇ θ µ µ(s|θ µ )| s i 15:
Update the target networks:

θ Q ← τ θ Q + (1 -τ )θ Q θ µ ← τ θ µ + (1 -τ )θ µ 16:
end for 17: end for

Twin Delayed DDPG (TD3)

While DDPG can achieve great performances sometimes, it can suffer from the function approximation errors which lead to overestimated values and suboptimal policies. Thus, the twin delayed deep deterministic policy gradient (TD3) algorithm [START_REF] Fujimoto | Addressing function approximation error in actor-critic methods[END_REF] was proposed to address this problem. It borrows the idea of double Q-learning to build an additional Q network, and take the minimum value between the pair of Q networks when setting the target Q value. It also suggests delaying the target network update steps. Twin Delayed DDPG (TD3) is an algorithm that addresses the following DDPG issues:

• Overestimation Bias: The TD3 uses Clipped Double-Q Learning, where it learns two Q-functions Q 1 and Q 2 and takes the minimum between the two estimates, to give the target update of our Clipped Double Q-learning algorithm:

y i = r i + γ.min j=1,2 Q j (s i+1 , µ (s i+1 )) (4.6)
With Clipped Double Q-learning, the value target cannot introduce any additional overestimation over using the standard Q-learning target.

• Variance: Besides the impact of variance on overestimation bias, high variance estimates provide a noisy gradient for the policy update. This is known to reduce learning speed as well as hurt performance in practice. Since target networks can be used to reduce the error over multiple updates, and policy updates on high-error states cause divergent behavior, then the policy network should be updated at a lower frequency than the value network, to first minimize error before introducing a policy update. TD3 algorithm proposes delaying policy updates until the value error is as small as possible. The modification is to only update the policy and target networks after a fixed number of updates (d) to the critic. By sufficiently delaying the policy updates, TD3 limits the likelihood of repeating updates concerning an unchanged critic. The less frequent policy updates that do occur will use a value estimate with lower variance, and in principle, should result in higher quality policy updates.

• Bootstrap off similar state-action pairs: When updating the critic, a learning target using a deterministic policy is highly susceptible to inaccuracies induced by function approximation error, increasing the variance of the target. This induced variance can be reduced through regularization. TD3 enforces the notion that similar actions should have similar value. While the function approximation does this implicitly, the relationship between similar actions can be forced explicitly by adding a small amount of random noise to the target policy and averaging over mini-batches. This makes the modified target update: Yet, no previously published work has used the TD3 algorithm for autonomous highway on-ramp merging.

y i = r i + γ.min j=1,2 Q j (s i+1 , µ (s i+1 ) + ) (4.
Algorithm 2 TD3 algorithm 1: Randomly initialize the two critic networks Q 1 (s,a|θ Q 1 ), Q 2 (s,a|θ Q 2 ) and actor µ(s|θ µ ) with weights θ Select action a t = µ(s t |θ µ t ) + N according to the current policy and exploration noise.

Q 1 , θ Q 2 and θ µ . 2: Initialize target network Q 1 , Q 2 and µ with weights θ Q 1 ←θ Q 1 , θ Q 2 ←θ Q 2 ,

9:

Execute action a t and observe reward r t and observe new state s t+1 . 10:

Store transition (s t ,a t ,r t ,s t+1 ) in R.

11:

Sample a random mini-batch of N transitions (s i ,a i ,r i ,s i+1 ) from R. 12:

ã ← µ (s i+1 ) + , ∼ clip(N (0, σ), -c, +c) 13:

Set y i = r i + γ.minQ j=1,2 (s i+1 , ã|θ Q j ).

14:

Update critic θ Q j=1,2 by minimizing the loss:

L = 1 N N i=1 (y i -Q j (s i , a i |θ Q j )) 2 15:
if t mod d then 16:

Update the actor policy θ µ using the sampled policy gradient:

∇ θ µ J ≈ 1 N i ∇ a Q 1 (s, a|θ Q 1 )| s=s i ,a=µ(s i ) ∇ θ µ µ(s|θ µ )| s i 17:
Update the target networks:

θ Q 1 ← τ θ Q 1 + (1 -τ )θ Q 1 θ Q 2 ← τ θ Q 2 + (1 -τ )θ Q 2 θ µ ← τ θ µ + (1 -τ )θ µ 18: end if 19:
end for 20: end for

Highway on-ramp merging modeling

In our highway on-ramp merging problem, the merging vehicle should find an appropriate gap according to its time to arrive at the merging point and then execute proper actions to merge safely and smoothly. There is uncertainty in other drivers' behaviors and potentially in their interactions with the merging vehicle. Also, vehicles driven in the main highway lane are of various types (car, bus, truck...etc.), and have different dynamic models depending on their manufacturer. Since control actions at one time-step have an impact on the subsequent steps to achieve safe on-ramp merging, and there is transitional uncertainty between each action, RL is an ideal model for the problem of highway on-ramp merging.

The merging vehicle (vehicle of interest) is connected and automated. As was assumed in [START_REF] Lin | Decision-making and control for freeway on-ramp merging using deep reinforcement learning[END_REF], the decision for the highway on-ramp merging is determined only by the projection of the merging vehicle in the main lane (V m ) and only the two preceding vehicles (P 1 , P 2 ) and the two following vehicles (F 1 , F 2 ) in the main lane, as illustrated in Figure 4.2. Also, we assume that the merging vehicle is fully informed about the states of the surrounding vehicles using its sensors, V2V communication, and the road-side unit (RSU)1 [2][32]. This makes our environment state fully observable even in the presence of non-automated and non-connected vehicles in the main highway lane. We consider that the RL agent learns a policy that controls the merging vehicle in a zone starting from 100 m distance before the beginning of the acceleration lane, which is the required distance to perform a complete stop from maximum speed (29 m/s)2 and at maximum deceleration (-5 m/s 2 )3 . The control of the merging vehicle ends (20 m) after the end of the acceleration lane (the merging point in Fig. 4.2), which has a total length of (50 m) 4 . That means that the policy will be trained to find an appropriate gap, execute proper merging maneuvers and make proper car-following actions as vehicles on the highway usually do.

The set of states (S), set of actions (A) and set of rewards (R), of the highway onramp merging deep reinforcement agent are given by:

• State S: Each state s ∈ S is a tuple: < d m , v m , a m ,..., d F 2 , v F 2 , a F 2 > where d m , v m ,
a m are, respectively, the distance between the merging vehicle projection and the merging point, the speed of the projected merging vehicle and the acceleration of the projected merging vehicle.

d i , v i , a i (i ∈ {P 2 , P 1 , F 1 , F 2 
}) are, respectively, the relative distance, the relative speed and the relative acceleration between vehicle i and the merging vehicle projection.

• Action A: Each action a ∈ A is a tuple <a> where a is the longitudinal acceleration control input to the merging vehicle. The acceleration control input for the merging vehicle is strictly within [-5 m/s 2 , 3 m/s 2 ], which is the same normal acceleration range of a main road vehicle [START_REF] Bouton | Cooperation-aware reinforcement learning for merging in dense traffic[END_REF].

• Reward R: Each reward r ∈ R is defined as:

if the merging vehicle V m is at the acceleration lane (reward zone in Figure 4.2):

r = -0.05.( |d F 1 -d P 1 | |d F 1 + d P 1 | + |v P 1 -v m | 10 ) (4.9) 
if V m is within 100 m before the acceleration lane (as illustrated in Figure if V m performs a collision and the episode ends:

r = -1 (4.13)
The reward term in equation (4.9) motivates the merging vehicle to merge midway between the preceding vehicle and the following vehicle to maximize the safety distance, by minimizing the ratio between the distance from the midway point (

|d F 1 -d P 1 | 2 
) and the available gap (

|d F 1 +d P 1 | 2 
). Also, it motivates merging with the same speed as the preceding vehicle by minimizing the speed difference

(| v P 1 -v m |)
, and normalizing by a speed difference of 10 m/s.

Experimental setup

In order to train the autonomous highway on-ramp merging agent, we create the highway As was proposed in [START_REF] Bouton | Cooperation-aware reinforcement learning for merging in dense traffic[END_REF], we introduce a cooperation level C ∈ [C min ; 1], which is a 4.5 Results

Using a safe controller

In RL, techniques for selecting actions during the learning phase are called exploration/ exploitation strategies. Most exploration methods are based on heuristics, rely on statistics collected from sampling the environment or have a random exploratory component (e.g., Ornstein-Uhlenbeck process noise). However, most of those exploration methods are blind to the risk of actions [START_REF] Garcia | A comprehensive survey on safe reinforcement learning[END_REF] and can become expensive, particularly when learning on a physical platform such as a robotic platform [START_REF] Garcia | Safe exploration of state and action spaces in reinforcement learning[END_REF]. For example, while training a highway driving agent, use of unguided exploration could frequently lead to collision or near-miss scenarios. This may result in simulation resets, thus slowing down the learning process. Additionally, even after convergence, due to the function approximation by the Q-network, the trained agent may choose a non-safe maneuver [START_REF] Nageshrao | Autonomous highway driving using deep reinforcement learning[END_REF]. In order to address these issues, we add a safe controller (SC) that evaluates the control action (a) outputted by the DDPG agent according to some predefined security rules, and provides alternative safe action (a s ) if these rules are not respected. In these cases, the safe action (a s ) replaces the agent control action (a) also in Algorithms 1 and 2. The SC is a key component that is used both while learning and during the exploitation phase. For the highway on-ramp merging use-case, we propose that the safe action (a s ) is obtained according to the following rules:

• Rule 1:

a s = 0 m/s 2 if ((v m > v limit ) & (a m > 0)) • Rule 2: a s = a min if ((d p 1 -T min .v P 1 ) > d min ) • Rule 3: a s = a max if (v m < v rcmnd )
Rule 1 prevents the vehicle from exceeding the highway speed limit (v limit ). We tested the trained policy for another 1 million simulation time steps and recorded the total number of episodes and the number of stops, collisions, and successes. We also recorded the emergency brakings times wherein the merging vehicle decelerates to -9 m/s strategy. Yet, such a solution cannot be implemented in a real-world system.

Using the driver intention model

As shown before, a deep RL agent with a safe controller cannot learn, implicitly, a safe and cooperative driving policy. To improve the performance of the proposed DDPG-SC agent, we improve our architecture by incorporating a model that predicts the behavior of the vehicle below the merging point at the main highway lane (cf. Figure 3.3), with the assumption that this may increase the cooperativeness, hence safety, of the merging vehicle regarding the vehicle at the main highway lane. We use the driver's intention model (DIM ) with the same architecture as stated in section 3.2. This model is trained by the artificial neural network using SUMO environment, where it shows same performance values as in Table 3.2. Our proposed DRL architecture is given in When adding the intention estimation as an input state to the DDPG agent (DDPG-SC-I ), the number of collisions drops to zero (unlike the DDPG-SC agent that did not include driver intention estimation). Moreover, the number of emergency brakings drops to only 3 cases (8 cases when we use the DDPG agent without driver intention estimation). When the driver's intention is added as an input state and in the reward (DDPG-SC-IR), the collision case disappears. However, the number of emergency brakings and the average merging speed increase, which means that the agent learns a more aggressive driving policy. This is because the complexity of the reward objective increased after adding a negative penalty concerning the driver's intention, compared to the previous reward formulation where the agent learns only safety-related policy. When We conclude that adding a driver intention prediction as an input state to the DDPG agent improves safety performance by eliminating collision cases and reducing the number of emergency brakings. Moreover, training is, 55%, faster than a DDPG agent that does not consider the driver intention model. The driver model outputs the intention and provides it as an input state to the DDPG-I (resp. TD3-I ) agent. The DDPG-I (resp. TD3-I ) agent then outputs a control action that will be checked by the safe controller to be replaced if it does not respect safety rules. To check and validate the performance of these agents, we tested each trained policy for 1 million simulation time steps and recorded the total number of successful episodes, the number of stops, and the number of collisions. We also recorded the emergency brakings times wherein the merging vehicle decelerates to -9 m/s 2 . The testing results are summarized in Table 4.6 below.

From table 4.6, there are 1 collision and 8 emergency brakings for 8015 merging episodes when using the DDPG agent, even with the midway safety criteria in the reward function. As was shown in section 4.5.2, the number of collisions drops to zero and the number of emergency brakings drops to only 3 cases when adding the intention estimation as an input state to the DDPG-I agent. The TD3 agent shows no collision and only 2 cases of emergency brakings, which is better than its counterparts: DDPG and DDPG-I. When adding a driver's intention as an input state to the TD3-I agent, the learned policy shows neither collision nor emergency brakings cases. This is the best safety performances compared to all the trained agents. Moreover, the has an average speed of 25.35 m/s, which is higher than the average speed of DDPG and TD3 agents. This means that the TD3-I driving policy is the most adapted for high-speed highway on-ramp scenario.

In short, we conclude that the TD3 algorithm gives better performance than its counterpart DDPG in all cases. Adding the driver's intention is a key component for accelerating convergence and learning "safe" and "cooperative" autonomous driving policy.

Conclusion

This chapter presented a novel architecture for autonomous highway on-ramp merging.

First, using a safe controller (SC) is a key component to ensure convergence during training, and reduces the risk of collisions after deploying an autonomous driving agent in the real world, as was shown in section 4.5.1. This safe controller checks the action provided by the DRL agent according to some predefined safety rules, and replaces the unsafe actions.

Then, section 4.5.2 presented a novel architecture that combines the prediction provided by the driver intention model (DIM ) as an input state to the deep deterministic policy gradient (DDPG) agent. This approach accelerates the convergence of the learned autonomous driving policy by 55%. Moreover, it eliminates the collision cases and reduces the number of emergency brakings maneuvers. This means that using a driver's model that feeds the DRL agent is a key element to learn a "safe" and "cooperative" autonomous driving policy.

Finally, section 4.5.3 presented the use of the Twin Delayed DDPG (TD3) algorithm that was not used yet for high-speed highway on-ramp merging. The TD3 outperforms the DDPG algorithm, and eliminates all the collisions and emergency brakings cases, when combined with the driver intention model (DIM ).

In summary, an architecture that combines a driver's model implemented at the offboard road-side unit, and provides intention prediction as input to a TD3 agent implemented at the on-board vehicle, could perform autonomous highway on-ramp merging "safely" and "cooperatively".

Chapter 5

Conclusions and future work

In this thesis, we proposed a novel architecture for autonomous high-speed highway on-ramp merging. Highway on-ramp is one of the riskiest and challenging situations for autonomous driving. Our new approach is based on the collaboration between the off-board road infrastructure and the on-board vehicle's autonomous driving system to achieve safe and cooperative highway on-ramp merging, even in the presence of nonconnected human-driven vehicles. Although some previous works have proven that the road infrastructure has an increased perception range, and it may be a key support for autonomous driving (AD), yet no work has studied how the road infrastructure could be used to improve autonomous driving for connected and autonomous vehicles.

In chapter 3, we proved how a probabilistic model, implemented at the off-board roadside unit, could be used to predict drivers' intentions at the highway on-ramp, with an accuracy that exceeds 99%. This model was trained and validated using real-world data provided by the road infrastructure (NGSIM database). The main advantage of using such a data-driven model at the off-board infrastructure is that it learns the intentions of drivers for a specific driving situation (highway on-ramp) and geographic location.

Therefore, the prediction provided by the model is robust concerning the variety of drivers' behaviors, regardless of the used probabilistic classifier. The comparison between such an off-board model and its on-board counterpart confirms the importance of using road infrastructure to increase perception range and predict drivers' intentions accurately. Also, we demonstrated that this prediction can be provided from the road-side unit to the autonomous vehicle at the merge lane in real-time considering current V2X communication latency and vehicle's dynamic. This driver's model can be extended to the follower driver at the main lane to increase the prediction time horizon.

In chapter 4, we proposed a new architecture for autonomous highway on-ramp merging that combines the off-board driver intention model with an on-board deep reinforcement learning agent. First, we proved that a continuous action-state reinforcement learning framework is the most adapted for such a driving scenario where there is uncertainty in other drivers' behaviors and their dynamic models. We showed that using a safe controller (SC) is a key component to ensure convergence during training, and reduces the risk of collisions after deploying an autonomous driving agent in the real world. The safe controller checks the action provided by the DRL agent according to some predefined safety rules and replaces the unsafe actions. Then, we presented a novel architecture that combines the prediction provided by the driver intention model (DIM ) as an input state to the deep deterministic policy gradient (DDPG) agent. This approach accelerates the convergence of the learned autonomous driving policy by 55%. Moreover, it eliminates the collision cases and reduces the number of emergency brakings maneuvers. This means that: "classic deep reinforcement learning approach does not learn, implicitly, a cooperative driving policy. Using a driver's model that feeds the DRL agent is a key element to learn "safe" and "cooperative" autonomous driving policy". A comparison between the twin delayed deep deterministic policy gradient (TD3) and DDPG algorithms shows that the TD3 effectively outperforms the DDPG agent, although it needs more training steps. Using driver's model intention as input state to the TD3 agent shows zero collisions and emergency brakings cases, which is the best performances so far.

When taken together, this thesis presented a novel solution for using the road infrastructure with V2X communication to improve the performances of autonomous driving systems, even with the presence of human-driven vehicles. The novel architecture combines a data-driven driver's model at the off-board infrastructure that provides information to a TD3 agent at the vehicle's on-board to perform autonomous high-speed highway on-ramp merging, "safely" and "cooperatively".

Future Work

In the scope of this thesis, we studied our novel solution at the highway on-ramp situation, which is one of the riskiest and dangerous scenarios for autonomous driving systems. Future work may be dedicated to applying our approach to various other challenging scenarios, such as properly entering roundabouts, dealing with intersections, and other driving situations.

A.1 Creating the Network in netedit

Open netedit and create a new network by selecting File→New Network or using the shortcut Ctrl + N. Make sure that Network is selected.

Enter Edge Mode by selecting Edit→Edge mode, using the shortcut E or by clicking on the button. In Edge Mode, make sure that Chain is selected. This will facilitate creating multiple nodes and their connecting edges with fewer clicks.

Nodes are created by clicking on empty spaces (when in Edge Mode). Insert 3 nodes 
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Figure 1 . 1 :

 11 Figure 1.1: The role of perception and communication in the autonomy of vehicles [1]: the merge of advanced autonomous technology with communication technology leads to collaborative autonomy.

Figure 1 . 2 :

 12 Figure 1.2: Highway on-ramp merging for connected and autonomous vehicles using off-board Road-Side Unit (RSU ) with CAVs vehicles technologies.

Figure 1 . 3 :

 13 Figure 1.3: Vehicles' trajectories extraction using the 360-degree (rotating) LiDAR [2].

Figure 1 . 4 :

 14 Figure 1.4: Autonomous highway on-ramp merging: a. Using RSU, b. Without using RSU.

  The training and testing of this model are done using existing probabilistic classifiers and real-world database. The comparison of these classifiers' performances shows the best values for the Logistic Regression Model classifier (LRM) and the Artificial Neural Network (ANN) classifier, which yields accuracy and precision of around 99% for predicting drivers' intentions in highway on-ramp merging situation. The obtained results outperform the existing models proposed in the literature. The proposed method predicts the intention earlier than 0.5 sec before reaching the highway on-ramp merging point, which is sufficient time for decisionmaking regarding communication latency and the vehicle's dynamic delay. In short, an off-board unit that uses V2X communication and sensors in the highway on-ramp can predict drivers' behaviors more accurately than the on-board vehicle's model, independently from the used probabilistic classifiers and drivers' driving styles.

Figure 2 . 2 .

 22 A), using a Bayesian network and logistic regression based on the observation of the driving data on a driving simulator.

Figure 2 . 1 :

 21 Figure 2.1: Modeling and analysis of acceptability for merging vehicle at highway junction [3].

Figure 2 . 2 :

 22 Figure 2.2: Probabilistic graphical model of the social behavior of an autonomous vehicle:V n is the current speed, V i is the speed at the previous time step; T m , T h are the current time-to-arrival for merging and host car respectively; I is the latent intention which needs to be estimated[4].

  mainline traffic conditions, acceleration lane length, and the reactions of merging vehicles to the traffic in the mainline. The gap choice is classified into three patterns considering the reactions of merging vehicles to the mainline's adjacent gap at the decision point, as illustrated in Figure 2.3.

Figure 2 . 3 :

 23 Figure 2.3: Classification of gap choice [5].

Figure 2 . 4 :

 24 Figure 2.4: Schematic illustrating input variables [6].

Figure 2 . 5 :

 25 Figure 2.5: Geometric Characteristics of Tapered Entrance Ramps on I-95 at (a) J.T. Butler NB-WB Approach, and (b) J.T. Butler SB-EB Approach, and Parallel Entrance Ramps on I-95 at (c) Phillips NB, and (d) Baymeadows NB [7].

Figure 2 . 6 :

 26 Figure 2.6: Comparison of observed and simulated trajectories at Hamazaki-bashi. (Left) Ramp lane 1. (Right) Ramp lane 2. [8]

Figure 2 .

 2 Figure 2.6 shows a comparison between the simulated and observed trajectories of vehicles for ramp lanes 1 and 2 respectively. Each pair of lines in this figure represents the ramp vehicle and its freeway lead vehicle. The slopes of the trajectory lines (speeds)

(

  MLC) suggestions in highway on-ramp situation. The real-world data-set U.S. Highway 101 (US 101) and Interstate 80 (I-80) are utilised from the Federal Highway Administration's Next Generation Simulation (NGSIM) program. The architecture of GBNN is shown in Figure 2.7. It is composed of two stages. Stage I is for data pre-processing and stage II includes a compact neural network. In the first stage, 16 features are extracted as inputs to the algorithm as listed in Table 2.1.
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 27 Figure 2.7: Data flow and architecture of the proposed GBNN [9].

Figure 2 .

 2 Figure 2.8 shows the effects of different correlation methods on the "non-merge" accuracy and "merge" accuracy.

Figure 2 . 8 :

 28 Figure 2.8: Comparison of different correlation methods (Pearson, Kendall/Spearman, and random), which are used for setting the weights of gate, on the effects of the prediction accuracy of "non-merge" and "merge" events [9].

Figure 2 . 9 :

 29 Figure 2.9: The slot-changing problem [10].

Figure 2 . 10 :

 210 Figure 2.10: On-ramp merging [10].

  on freeway on-ramps to control the frequency at which vehicles enter the flow of traffic on the freeway. Ramp metering reduces overall freeway congestion by managing the amount of traffic entering the freeway and by breaking up platoons that make it difficult to merge onto the freeway. As seen in Figure2.11, vehicles traveling from an adjacent arterial onto the ramp form a queue behind the stop line.

Figure 2 . 11 :

 211 Figure 2.11: Ramp metering configuration [11].

  At first, the model of the driving behavior of the human-driven cars (Car E in Figure 2.13) in the main lane was developed. The model consists of two kinds of models; one reflects the decision-making of the driver whether to accept or reject the merging car (acceptance model), and the other one represents whether to accelerate or decelerate (motion model) based on the decision-making.

Figure 2 . 13 :

 213 Figure 2.13: Observation of the driving behavior in the main lane [13].

Figure 2 . 14 :

 214 Figure 2.14: Graph of the Q-function approximator [14].
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 17 

  )where r+γ • max a Q(s , a , θ) is called the target Q-value and Q(s,a,θ) is called the predicted Q-value. θ is a set of Q-network parameters. When the agent is trained based on equation 2.17, stability issues and correlations in the observed sequence are factors affecting the learning performance. Hence, experience replay and a second Q-network techniques were used to alleviate the problem. The step-by-step learning procedure is shown in Figure 2.15.

Figure 2 . 15 :

 215 Figure 2.15: Reinforcement learning procedure [14].

Figure 2 . 16 :

 216 Figure 2.16: Curve of single total rewards of ramp vehicles [14].

  .a. The state of the problem is sufficiently modeled using the following variables: X = [dx 12 , dv 12 , dx 10 , dv 10 ] T where dx ij and dv ij denote the horizontal signed distance and relative velocity between cars i and j ∈ [0, 1, 2]. The state cost is designed to motivate Car-0 to merge midway between Car-1 and Car-2, and with the same velocity as Car-1.

Figure 2 .

 2 Figure2.17: a) The 3-car system for merging. Merging vehicle (Car-0) should ideally merge midway between the following vehicle (Car-2) and leading vehicle (Car-1). dx 10 and dv 10 denote Car-0's relative position and velocity from Car-1. b) A typical freewaymerge situation. There are three mergeable spots: Spot 1, 2, and 3. The merging vehicle needs to determine a spot from a set of the candidates and controls input to merge[START_REF] Nishi | Merging in congested freeway traffic using multipolicy decision making and passive actor-critic learning[END_REF].

Figure 2 . 18 :

 218 Figure 2.18: Illustration of the vehicles observed by the ego vehicle. The observation vector (or feature vector) contains information on the position and velocity of the observed vehicles [16].

18 )Equation 2 .

 182 18 consists of simulating forward the previous state with the two possible hypothesis: c i = 1 and c i = 0, and comparing the outcome with the current observation. Authors propose to use this belief state as input to the Deep Q-network (DQN ) reinforcement learning policy.

  considers no vehicle to everything (V2X) wireless communication and the merging vehicle relies on its sensors to obtain the states of other vehicles and the road information to merging from on-ramp to the main road. The authors use the deep deterministic policy gradient (DDPG) method to train the merging policy. DDPG assumes a deterministic policy and outputs continuous actions for decision-making and control. The merging environment is created in the Simulation of Urban Mobility (SUMO) simulator, where a control zone is defined for the merging vehicle that is 100 m to the merging point on the on-ramp and 50 m from the merging point on the main road, as shown in Figure2.19.

Figure 2 . 19 :

 219 Figure 2.19: Schematic for merging [17].

methods [ 15 ]

 15 Passive actor-critic (pAC) -Used only in congested freeway conditions. -Requires accurate model for the control dynamic of the vehicle. -Expectation that surrounding vehicles behave in the same way on average. Reinforcement learning [16] Deep Q-Network with cooperation level -Used only in urban driving environments with dense traffic. -Simple binary state predictor to estimate the driver cooperation level. -Provides only discrete action control.

Figure 3 . 1 :

 31 Figure 3.1: Motion modeling overview [18].

Figure 3 . 2 :

 32 Figure 3.2: Directed graphical model used for drivers' intentions estimation at the highway on-ramp merging situation.

Figure 3 . 3 :

 33 Figure 3.3: Contextual vector for the vehicle in the merge lane and the vehicle in the main lane.

A

  Naïve-Bayes (NB) is a classifier that learns from training data the conditional probability of each attribute C i (resp. C i ) given the class label I m (resp. I l ). Classification is then done by applying Bayes rule to compute the probability of I m (resp. I l ) given the particular instance of C 1 ,...,C 9 (resp. C 1 ,...,C 9 ), and then predicting the class with the highest posterior probability. This computation is rendered feasible by making a strong independence assumption: all the attributes C i (resp. C i ) are conditionally independent given the value of the class I m (resp. I l ). By independence means probabilistic independence, that is, C i (resp. C i ) is independent of C j (resp. C j ) given I m (resp. I l ) whenever Pr(C i |C j ,I m ) = Pr(C i |I m ) (resp. Pr(C i |C j ,I l ) = Pr(C i |I l )) for all possible values of i and j ∈ {1:9}, whenever Pr(I m ) > 0 (resp. Pr(I l ) > 0). A Naïve-Bayes (NB) is a simple structure where the classification node is the parent node of all other nodes as shown in Figure 3.4. That is to say the intention for the vehicle in the merge lane (resp. main lane) is the parent for the contextual situation features. No other connections are allowed in a Naïve-Bayes structure.

Figure 3 . 4 :

 34 Figure 3.4: Naïve-Bayes structure.

  to represent dependencies among attributes. In a tree-augmented naïve bayesian (TAN ) network, the class variable has no parents and each attribute has as parents the class variable and at most one other attribute. Let C m = {C 1 ,...,C 9 ,I m } (resp. C l = {C 1 ,...,C 9 ,I l }) represents the node set for the vehicle in the merge lane (resp. main lane), where I m (resp. I l ) is the classification node of the data. The algorithm for learning TAN classifiers [45] first learns a tree structure over C m \I m (resp. C l \I l ), using mutual information tests conditioned on C m (resp. C l ). It then adds a link from the classification node to each feature node, similar to a Naïve-Bayes structure (i.e. the classification node is a parent of all other nodes)(cf. Figure 3.5).

Figure 3 . 5 :

 35 Figure 3.5: Tree Augmented Naïve-Bayes structure.

Figure 3 . 6 :

 36 Figure 3.6: General Bayesian Network structure.

Figure 3 . 7 :

 37 Figure 3.7: A typical neural network architecture.

3. 4

 4 Experimental Evaluation 3.4.1 Training Dataset The proposed model was trained and validated using the Next Generation Simulation (NGSIM) [19], which provides vehicle trajectories and supporting data. The data used to train our model correspond to vehicles' trajectories on a segment of interstate 80 in Emeryville (San Francisco), California collected between 4:00 p.m. and 4:15 p.m. on April 13, 2005. Data represent travel on the northbound direction of Interstate 80 in Emeryville, California. This data was collected using video cameras mounted on a 30-story building, Pacific Park Plaza, which is located in 6363 Christie Avenue and is adjacent to the interstate freeway I-80.

Figure 3 .

 3 Figure 3.8 provides a schematic illustration of the location for the vehicle trajectory dataset. The site was approximately 1650 feet in length, with an on-ramp at Powell Street.
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 38 Figure 3.8: Study area schematic and camera coverage [19].

Figure 3 . 9 :

 39 Figure 3.9: Data preprocessing to identify the merging vehicle ID.
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 310 Figure 3.10: Time to arrival at the merging point when the ANN model outputs the first TRUE intention's prediction.

Figure 3 . 11 :

 311 Figure 3.11: (a) The follower vehicle's intention model (b) Context situation vector.

Figure 3 . 12 :

 312 Figure 3.12: Time to arrival for the first True prediction of the follower vehicle's model.

Figure 3 .

 3 [START_REF] Okuda | Design of automated merging control by minimizing decision entropy of drivers on main lane[END_REF]. This model uses only embedded data of the subject vehicle. The data about the vehicle in the other lane (either the main lane or the merge lane) is not available in the case of a non-connected car, and cannot be perceived directly by autonomous vehicle due to the limited perception range of their sensors at the highway on-ramp. In contrast, when using an off-board solution, data about vehicles are available either by communication (V2I ) or by road-side unit (RSU ) of second generation.

Figure 3 . 13 :

 313 Figure 3.13: On-board highway on-ramp driver intention model.

Figure 3 .

 3 [START_REF] Wang | Autonomous ramp merge maneuver based on reinforcement learning with continuous action space[END_REF]. The probability of each vehicle is totally uncorrelated from the probability of the other vehicle.The prediction output of each vehicle's intention is determined by a probability threshold of 50 %.

Figure 3 . 14 :

 314 Figure 3.14: Definition of vector I: (a) I m ="merging", I l ="not passing" (b) I m ="not merging", I l ="passing"

Figure 4 .

 4 1).

Figure 4 . 1 :

 41 Figure 4.1: The Reinforcement Learning Framework [20].

7 )∼

 7 clip(N (0, σ), -c, +c)(4.8) where the added noise is clipped to keep the target close to the original action.The TD3 algorithm is summarized below: As for the DDPG algorithm, first initialize the actor, the two critic networks, their targets and the replay buffer (lines 1 to 3). At each time step of each episode, select and execute action according to equation 4.5 (lines 8 to 9). Afterward, observe and store the environment transition (line 10). After sampling a random mini-batch (line 11), add a small amount of random noise to the target policy (line 12) according to equations 4.7 and 4.8, in order to bootstrap of similar state-action pairs. Then, calculate the target (line 13) by taking the minimum of the two Q-function according to equation 4.6 for reducing overestimation bias. Update the critic network according to equation 4.2 (lines 14). At each d steps (for reducing variance), update the actor network according to equation 4.4 (line 16). Finally, update the target networks smoothly (line 17).
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 42 Figure 4.2: Highway on-ramp merging modeling.

--

  if V m reaches the end of the control zone (success) and the episode ends: if V m performs a stop and the episode ends: r = -0.5 (4.12)

  scenario under the environment SUMO (Simulation of Urban MObility, see Appendix A). We use SUMO, an open-source, microscopic traffic simulator, for its ability to handle large, complicated road networks at a microscopic (vehicle-level) scale, as well as easily query, control, and extend the simulation through TraCI (see Appendix B), which will be used in our thesis. As a microscopic simulator, SUMO provides several car-following and lane-change models to dictate the longitudinal and lateral dynamics of individual vehicles[START_REF] Kheterpal | Flow: Deep reinforcement learning for control in sumo[END_REF]. Under SUMO, we created a highway on-ramp situation with similar geometry as the highway on-ramp section of US Interstate Highway I-80 in Emeryville (San Francisco), California, USA, as illustrated in Figure4.3.

Figure 4 . 3 :

 43 Figure 4.3: Ramp merge (a) simulated scenario under SUMO and (b) real-world location schematic.

Figure 4 . 4 :

 44 Figure 4.4: The simulation framework.

Rule 2 ensures

 2 that the merging vehicle performs a minimum deceleration (a min ) to keep a relative gap from the preceding vehicle (d p 1 ) above a minimum-safety distance of d min = 40 m for a minimum time to collision of T min = 2 s. Last but not least, Rule 3 ensures that the merging vehicle performs a maximum acceleration (a max ) until speed reachs at least a recommended speed v rcmnd = 22.5 m/s. These values are based on the standard of the US Department of Transportation [62].In order to show the role of safe controller for ensuring convergence of the RL agent, we train a DDPG agent and then add a safe controller (SC) that provides alternate safe actions. The DRL architecture used for the autonomous highway on-ramp driving is given in Figure1.4.a: vehicles' state information including the merging vehicle (V m ) and its surrounding vehicles (F 1 , F 2 , P 1 and P 2 ) is provided as inputs to the DDPG agent.The DDPG agent outputs a longitudinal acceleration control action (a). For the DDPG agent with a safe controller (DDPG-SC in Figure1.4.b), the safe controller checks if this action respects safety requirements. If not, it outputs an alternative control action (a s ) to the merging vehicle that respects security rules stated above, and which is as close as possible to the DDPG's action (a).

Figure 4 . 5 :

 45 Figure 4.5: DRL architecture (a) DDPG agent and (b) DDPG agent with safe controller (DDPG-SC).

Figure 4 .

 4 Figure 4.6 shows the average undiscounted reward (over 100 episodes) when we train the DDPG agent without the safe controller (DDPG), and with the safe controller (DDPG-SC).

Figure 4 . 6 :

 46 Figure 4.6: Average undiscounted reward over 100 episodes during training

Figure 4 .

 4 Figure 4.7.b: vehicles' state information is provided to the DDPG agent and to the Driver Intention Model (DIM). The driver model outputs the intention and provides it as an input state to the DDPG agent. The DDPG agent then outputs a control action that will be checked by the safe controller (SC) and replaced if it does not respect safety rules. The intention (I l ) of the driver below the merging point in the main lane, provided by the model DIM, is used as a new input to the DDPG agent. Hence, the state tuple becomes s = < d m , v m , a m ,..., d F 2 , v F 2 , a F 2 , I l >. Moreover, the intention can be considered in the reward function by assigning a negative reward (-0.5) when

Figure 4 . 7 :

 47 Figure 4.7: Vehicle architecture: (a) DDPG agent with safe controller (DDPG-SC) (b) DDPG agent with safe controller and driver intention model (DDPG-SC-I)

Figure 4 . 8 :

 48 Figure 4.8: Average undiscounted reward over 100 episodes during training

4. 5 . 3

 53 Using the Twin Delayed Deep Deterministic Policy Gradient (TD3) agentWhile DDPG algorithm achieves better performance when combining with the driver's intention estimation, it can suffer from the function approximation errors which lead to overestimated values and suboptimal policies. As stated earlier, the twin delayed deep deterministic policy gradient (TD3) algorithm was proposed to address these issues for continuous state-action control problems. Yet, no previously published work has used the TD3 algorithm for autonomous highway driving. In order to check the performances of such an algorithm for highway on-ramp merging, we train and compare four autonomous agents:• DDPG: DDPG agent without driver's intention estimation. The input state is s= [d i , v i , a i ] where i ∈ {m, P 2 , P 1 , F 1 , F 2 }• DDPG-I: DDPG agent with the main lane driver's intention estimation (I l ) provided by the off-board road-side unit. The input state is s= [d i , v i , a i ; I l ] where i ∈ {m, P 2 , P 1 , F 1 , F 2 } • TD3: TD3 agent without driver's intention estimation. The input state is s = [d i , v i , a i ] where i ∈ {m, P 2 , P 1 , F 1 , F 2 }• TD3-I: TD3 agent with the main lane driver's intention estimation (I l ) provided by the off-board road-side unit. The input state is s= [d i , v i , a i ; I l ] where i ∈ {m, P 2 , P 1 , F 1 , F 2 }The architecture of each agent is illustrated in Figure4.9. As shown in Figure4.9.a: vehicles' state information including the merging vehicle (V m ) and its surrounding vehicles (F 1 , F 2 , P 1 and P 2 ) is provided as an input to the DDPG (resp. TD3) agent. The DDPG (resp. TD3) agent outputs a longitudinal acceleration control action. The safe controller checks if this action respects safety requirements. If not, it outputs an alternative control action to the merging vehicle that respects security rules, and resembles as closely as possible the DDPG's (resp. TD3's) action. In order to improve the performance of the proposed agents (DDPG, TD3), we incorporate the driver's intention model (DIM ) as stated in section 4.5.2. Our proposed DRL architecture becomes as shown in Figure4.9.b: vehicles' state information is provided to the DDPG-I (resp. TD3-I ) agent at the on-board vehicle unit, and to the Driver Intention Model at the off-board road-side unit.
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 49245 Figure 4.9: Vehicle architecture: (a) Agent with safe controller (DDPG, TD3) (b) Agent with safe controller and driver intention model (DDPG-I, TD3-I )

Figure 4 .

 4 Figure 4.10 below shows the average undiscounted reward (over 100 episodes) for each agent. As was shown in section 4.5.2, the DDPG-I agent converges, 55%, faster with greater finals values and fewer fluctuations at the end of training, and that when using

Figure 4 . 10 :

 410 Figure 4.10: Average undiscounted episode reward during training.
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  aka Junctions) by clicking on three different places at the white blank space. After inserting the last Node, press <ESC> to unselect that last node. Now we want to rename our recently inserted Junctions and Edges (which get arbitrary id's when created) and also make our simple network prettier, by aligning all nodes. To do so, enter Inspect Mode by selecting Edit Inspect mode, using the shortcut I or by clicking on the button. communicate with the simulation. They have the same interface as the static traci. calls but you will still need to start the simulation manually for them: B.6 Controlling the same simulation from multiple clients To connect with multiple clients, the number of clients must be known in advance and specified with sumo option -num-clients ¡INT¿. Also, the connection port must be known to all clients. After deciding on a port it can be made available to the clients via arguments or configuration files. A free port can be obtained by One client may use method traci.start() to start the simulation and connect to it at the same time while the other client only needs to connect. After establishing client order, each client must continuously call simulationStep to allow the simulation to advance:
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Table 2 .

 2 

1: Features extracted from NGSIM for modelling an MLC at on-ramps of highways

[START_REF] Dou | Gated branch neural network for mandatory lane changing suggestion at the on-ramps of highway[END_REF]

.

Table 2 .

 2 .2 summarizes the total number of episodes and the numbers of stops, collisions, successes, and the emergency brakings times wherein the merging vehicle decelerates to -9 m/s 2 .

	Total number of episodes	16975
	Number (%) of stops by merging vehicle	0 (0%)
	Number (%) of emergency brakings by first following vehicle	197 (1.161%)
	Number (%) of collision involving merging vehicle	1 (0.006%)
	Number (%) of successful episodes	16024 (99.994%)
	Average speed of merging vehicle	24.22 m/s

2: Testing results

[START_REF] Lin | Decision-making and control for freeway on-ramp merging using deep reinforcement learning[END_REF]

.

table :

 : 

	Approach	Limitations
	[3] Bayesian network and logistic regression (87% accuracy)	-Trained and validated using only simulator data. -Dependencies on driver's driving style.
	[4] Probabilistic Graphical Model (PGM ) (92.4% success rate)	-Dependencies on estimating the time to arrival to the merging point. -Dependencies on driver's driving style.
	[41][5][6] The theory of gap acceptance	-Used only in the auxiliary acceleration
	(98% accuracy)	lane.
	[7] Statistical form	-Not a parametric nor an analytic model.
		-Used only in the auxiliary acceleration
	[8] Theoretical framework for modeling	lane.
	freeway ramp merging behavior	-Analytical form that cannot model
		drivers' behaviors diversity and uncertainties.
	[9] Gated branch neural network (GBNN ) (97.7% accuracy)	-Used only in congested situations. -Used only in the auxiliary acceleration lane.

Table 2.3: Drivers' intentions estimation approaches at highway on-ramp situation.

Table 3 .

 3 

1: Vector C features.

Table 3 . 2 :

 32 .2. Models' performances.

	Classifier Accuracy Precision Recall F1 Score
	LRM	99.59 %	99.67 % 99.37 % 99.52 %
	NB	92.54 %	91.95 % 90.85 % 91.27 %
	TAN	98.37 %	98.28 % 97.82 % 98.05 %
	GBN	97.11 %	96.09 % 96.94 % 96.47 %
	KNN	96.52 %	97.93 % 94.24 % 95.92 %
	ANN	99.17 %	99.63 % 98.40 % 99.01 %

Table 3 . 3 :

 33 .3 contains a comparison between the accuracy of our proposed model trained by ANN and LRM classifiers and the previous state-of-the-art approaches. The accuracy of our proposed off-board model outperforms all previously proposed solutions. Models' accuracy.

	LRM	ANN	Ref. [3] Ref. [6] Ref. [9]
	Accuracy 99.59 % 99.17 %	87%	96.7%	97.7 %

Table 3 . 4

 34 

: Vector C features for the follower vehicle.

Table 3 .

 3 5. 

	Classifier Accuracy Precision Recall F1 Score
	LRM	97.38 %	96.86 % 91.12 % 93.59 %
	NB	92.20 %	86.87 % 78.02 % 81.27 %
	TAN	90.42 %	92.61 % 61.87 % 68.70 %
	GBN	93.28 %	97.21 % 70.39 % 80.24 %
	KNN	97.66 %	95.01 % 94.40 % 94.39 %
	ANN	97.27 %	93.61 % 94.23 % 93.26 %
	Combined 97.66 %	96.01 % 94.10 % 94.21 %

Table 3 .

 3 

5: Performance of the follower vehicle's model.

Table 3 . 6 :

 36 .6. These are the only on-board parameters available for describing drivers' behaviors. Vector C features for on-board model.

	Merge lane Main lane	Feature
	C 1	C 1	Distance from the merging point
	C 2	C 2	Speed
	C 3	C 3	Acceleration

Table 3 . 7 :

 37 On-board main lane model's performances.

	Classifier Accuracy Precision Recall F1 Score
	LRM	83.08 %	83.28 % 88.44 % 85.73 %
	NB	74.99 %	72.93 % 92.16 % 80.73 %
	TAN	80.20 %	77.18 % 93.27 % 84.36 %
	GBN	80.29 %	77.47 % 92.91 % 84.39 %
	KNN	78.05 %	80.17 % 81.86 % 80.92 %
	ANN	73.01 %	70.10 % 97.80 % 81.20 %
	Classifier Accuracy Precision Recall F1 Score
	LRM	82.33 %	79.15 % 81.63 % 79.65 %
	NB	67.66 %	60.74 % 85.82 % 69.80 %
	TAN	79.43 %	76.51 % 78.71 % 76.43 %
	GBN	79.14 %	76.13 % 78.27 % 76.06 %
	KNN	80.63 %	77.99 % 77.50 % 77.29 %
	ANN	74.21 %	93.24 % 72.57 % 79.69 %

Table 3 . 8 :

 38 On-board merge lane model's performances.The accuracy of the on-board model is lower than the accuracy of the off-board model by more than 15%. The other performance metrics are, also, far lower than the previous model. This is due to the lack of information about the vehicle in the other lane, and the dependency of the on-board model to the driving style, which varies from one driver to another. Furthermore, accuracy changes considerably from one probabilistic classifier to another, in contrast to the off-board model where accuracy was approximately constant for all the classifiers.

  5 (lines 8 to 9). Afterward, observe and store the environment transition (line 10). Then, update the critic network according to equations 4.2 and 4.3 (lines 11 to 13) and update the actor network according to equation 4.4 (line 14). Finally, update the target networks smoothly (line 15). Randomly initialize critic network Q(s,a|θ Q ) and actor µ(s|θ µ ) with weights θ Q and θ µ . 2: Initialize target network Q and µ with weights θ Q ←θ Q , θ µ ←θ µ . Execute action a t and observe reward r t and observe new state s t+1 . 10: Store transition (s t ,a t ,r t ,s t+1 ) in R. 11:

		Algorithm 1 DDPG algorithm
	1: 3: Initialize replay buffer R.
	4: for episode = 1, M do
	5: Initialize a random process N for action exploration.
	6: Receive initial observation state s 1 .
	7: for t = 1, T do
	8:	Select action a t = µ(s t |θ µ t ) + N according to the current policy and exploration
		noise.
	9:	

  θ µ ←θ µ .

	3: Initialize replay buffer R.
	4: for episode = 1, M do
	5: Initialize a random process N for action exploration.
	6: Receive initial observation state s 1 .
	7: for t = 1, T do
	8:

Table 4 . 2 :

 42 The DDPG and DDPG-SC agents were trained for 1 million simulation time steps with the parameters in Table4.2, which were used for autonomous driving on the highway[START_REF] Bouton | Cooperation-aware reinforcement learning for merging in dense traffic[END_REF] [START_REF] Lin | Decision-making and control for freeway on-ramp merging using deep reinforcement learning[END_REF]. DDPG agent training parameter values using for algorithm 1.

	Target network update coefficient τ	0.001
	Reward discount factor γ	0.99
	Actor learning rate	0.0001
	Critic learning rate	0.001
	Experience replay memory size R	400000
	Mini-batch size N	64
	Ornstein-Uhlenbeck σ	0.1
	Ornstein-Uhlenbeck Θ	0.05

Table 4 . 3

 43 2 . The training results are summarized in the following Table4.3.

	Total number of episodes	8015
	Number of stops	0 (0 %)
	Number of collisions	1 (0,000125 %)
	Number of emergency brakings by F 1	8 (0,001 %)
	Number of successful episodes	8014 (99,98 %)
	Average speed	23.4 m/s
	Average gap from midway	23.2 m
	Average speed difference from P 1 (v P 1 )	10.5 m/s

: DDPG-SC agent testing results From Table

4

.3, there are 1 collision and 8 emergency brakings for 8015 merging episodes, despite the midway safety criteria in the reward function. This means that a simple deep reinforcement learning approach cannot learn a safe and cooperative driving

Table 4 . 4 :

 44 DDPG agents testing results

Table 4 . 6 :

 46 Agents testing results

	TD3-I agent

Adaptive Cruise Control (ACC) is an available cruise control system for road vehicles that automatically adjusts the vehicle speed to maintain a safe distance from vehicles ahead.

 2 Next Generation Simulation: a database which provides vehicle trajectories and supporting data.

Originally formulated in 1974 by Rainer Wiedemann. This model is known for its extensive use in the microscopic multi-modal traffic flow simulation software, VISSIM.

The world's most advanced and flexible traffic simulation software.

A module of VISSIM for network simulations.

Vehicle's identifier

The off-board Road-Side Unit (RSU) contains its sensors (camera, RADAR) and has the V2I communication capabilities.

 2 Speed limit at the highway on-ramp section of US Interstate Highway I-80 in Emeryville (San Francisco), California,

USA.3 The maximum normal deceleration range of a main road vehicle

[START_REF] Shridhar | Acceleration-deceleration behaviour of various vehicle types[END_REF].4 Geometry of the highway on-ramp section of US Interstate Highway I-80 in Emeryville (San Francisco), California, USA.
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CAV

Connected Autonomous Vehicles CV Chapter 3

Drivers' intentions estimation

Introduction

Despite connected and autonomous vehicles (CAVs) technology may improve driving safety and efficiency, it takes time to build a whole connected system (especially vehicleto-vehicle communication). Human-driven vehicles, that cannot be controlled directly, will be present on the road. Their behaviors should be taken into account by the autonomous driving system at the highway on-ramp. Since the infrastructure increases the perception range and the reliability compared to on-board vehicle sensors [2][32],

we propose to use an off-board model to predicts drivers' intentions at the highway onramp. This model should be implemented in the road-side unit (RSU ).

For that, we will first review the different probabilistic classifiers that will be used to train this model. We will then train and validate it using a real-world database that extracts vehicles' information at the highway on-ramp through infrastructure sensors.

The performances of these classifiers will be discussed and compared. The real-time application of this approach will be then validated. Finally, a comparison between such off-board implementation and an on-board model will be provided.

scalar parameter controlling the reaction to the merging vehicle state when it is on the acceleration lane. C = 1 represents a driver who slows down to yield to the merging vehicle if he/she predicts that the merging vehicle will arrive ahead of time. C = C min represents a driver who is less cooperative regarding the merging vehicle. This model relies on estimating the time to reach the merge point (TTM) for the car in the main lane (T T M l ) and the car in the merge lane (T T M m ), to decide whether or not the merging vehicles should be considered. Once the time to merge for both vehicles has been estimated, three cases are considered:

T T M l , the vehicle in the main lane takes into account the merging vehicle by considering its projection in the main lane as its front vehicle.

• If T T M m >= C . T T M l , the vehicle in the main lane ignores the merging vehicle and follows its standard behavior.

• In the absence of or at a distance from the merging vehicle, the driver in the main lane follows his/her standard behavior.

Simulation parameters are summarized in the intention of the driver in the main lane changes near to the on-ramp merging zone.

This motivates the DDPG agent to learn a cooperative merging policy regarding the behavior of the human driver in the main highway lane. We thus trained and compared three DDPG agents:

• DDPG-SC: DDPG agent with safe controller. This agent is considered as the classic approach of reference, and the baseline performance.

• DDPG-SC-I: DDPG agent with safe controller and driver intention as an input state.

• DDPG-SC-IR: DDPG agent with safe controller and driver intention as an input state and in the reward, by assigning a negative value as stated above.

These agents were trained using the same parameters as in Table 4.2 and were compared with the results obtained by the previous agent (DDPG-SC). is 50% slower than the first DDPG-SC agent. This is because the complexity of the reward objective increased after adding a negative penalty concerning driver's intention.

As the DDPG-SC-I agent, the average reward has also a greater final value (-0.8 in Fig. 4.8) and fewer fluctuations than the DDPG-SC agent.

To compare and validate the performances of each agent, we tested each one during 1 million steps. The results are summarized in Table 4.4, and are compared to the simulator built-in controller. From this table, the simulator shows a very high number of emergency braking (204 cases), and a very high average speed (28 m/s), which means that a rule-based controller does not guarantee meaningful merging policy. The classic RL approach (DDPG-SC agent) shows better results over the simulator's controller.

In chapter 3, we presented a model that predicts the intentions of "Yield" or "Merge"

for the drivers at the highway on-ramp. This driver's model may be further improved and extended to predict deeper human behaviors' information such as time to arrive at the merge point, speed, and acceleration profiles. Such information may be used for decision making to improve safety performances. Moreover, the proposed model can be used for other driving scenarios like, as was mentioned, roundabouts and intersections.

In each driving case, the context situation vector of the driver's model should be adapted by choosing the appropriate features (For example distance from the intersection point, relative speed from the vehicle at the roundabout...etc.). The model may be further improved by incorporating information provided by the V2X communication messages, such as the position of the accelerator or the brake position. Such information cannot be perceived directly by the road-side unit. However, it may greatly improve the accuracy and robustness of the prediction. Finally, the driver's model can be extended to the followers drivers at the main lane to increase the prediction horizon and improve the performance of the decision.

In chapter 4, the deep reinforcement learning framework presented in this thesis can be used for other driving situations by adapting the state vector. For example, when using our approach for intersections, the state vector of the DRL agent should contain information about the traffic-light system and the presence or absence of vehicles on the other lanes. For each driving situation, the geometry and scenario should be created on the simulation tool, and the DRL agent should be trained. Moreover, the RL reward presented in our thesis contains safety-related term only, which is the main performance criteria for driving systems. Reward formulation may be further improved by incorporating terms to reduce the acceleration jerk and to improve fuel consumption.

Since we proposed to use communication hybridization in section 1.1.2, the approach presented in this thesis may be further simulated and validated using a more advanced simulation environment that includes deeper V2X communication details such as current DSRC and 5G C-V2X limitations (latency, data loss ...etc.). Also, more sophisticated vehicles' dynamic models may be used so that the DRL agent learns better driving policy during the exploration phase.

The big challenge is, of course, to test our decision-making strategy deployed on real connected and autonomous vehicles (CAV ) with a real road-side unit (RSU ).

Appendix A

SUMO simulator

The details below were extracted from the official "SUMO" website: https:\\sumo.dlr.de\docs\Tutorials\Hello World.html [START_REF]Tutorials/Hello World[END_REF].

"Simulation of Urban MObility", or "SUMO" for short, is an open-source, highly portable, microscopic, multi-modal traffic simulation. It allows us to simulate how a given traffic demand which consists of single vehicles moves through a given road network. The simulation allows us to address a large set of traffic management topics [START_REF]Tutorials/Hello World[END_REF]. It is purely microscopic: each vehicle is modeled explicitly, has an own route, and moves individually through the network. Simulations are deterministic by default but there are various options for introducing randomness.

To perform a very basic simulation in SUMO, it is required to have at least the following elements (files):

In SUMO a street network consists of nodes (junctions) and edges (streets connecting the junctions). In this tutorial, we will use "netedit" to create our basic net.

Routes are defined by connecting edges and assigning Vehicles that pass through them.

In this tutorial, we will use netedit to create this.

The SUMO Configuration file is where certain options and all files (Network, Route, etc.) are being listed so that SUMO can find and use them.

In Inspect mode you can select different type of elements, such as Nodes and Edges. If an element is selected, its properties will appear on the left side. Let's rename (change their id) the nodes to "1", "2" and "3" (from left to right) and the edges to "1to2" and "out" (also left to right).

Replace the position (pos) of the nodes with the following values:

Our very basic network is done! We just need to save it . Use File → Save Network (Ctrl + S) or File → Save Network As (Ctrl + Shift + S) and give it a proper name (such as "helloWorld.net.xml").

Do not close netedit yet, the demand still needs to be generated.

A.2 Demand Generation in netedit

Now, select the Demand supermode in netedit.

A.2.1 Creating a Route

Enter Route Mode by selecting Edit → Route mode, using the shortcut R or by clicking on the button.

Creating a route is as simple as clicking on the Edges that will compose it. When selecting an Edge, its color will change.

• Selected Edge

• Possible selectable edges

After selecting all the edges that will compose the desired route, click on Create route. Do not close netedit yet.

A.2.2 Adding a vehicle

A.3 Visualizing in sumo-gui

We will open "sumo-gui" from netedit. To do so, go to Edit → Open in sumo-gui (Ctrl + T). This will open sumo-gui and load our recently created network and demand files.

As soon as sumo-gui opens, let's save the SUMO configuration file (that relates the network and demand files) . File → Save Configuration (Ctrl + Shift + S). Give it a proper name (such as "helloWorld.sumocfg").

Now you can close netedit if you wish.

Before starting the simulation, make sure that the Delay ( ) is set to at least 80 ms, otherwise, the simulation would happen very fast and we would not be able to see our only vehicle in our tiny network.

Click on Run (Ctrl + A) to start the simulation.

Appendix B Interfacing TraCI from Python

The details below were extracted from the official "SUMO" website: https:\\sumo.dlr.de\docs\TraCI\Interfacing TraCI from Python.html [START_REF]TraCI/Interfacing TraCI from Python[END_REF].

TraCI is the short term for "Traffic Control Interface". Giving access to a running road traffic simulation, it allows to retrieve values of simulated objects and to manipulate their behavior "on-line". The TraCI commands are split into the 13 domains gui, lane, poi, simulation, trafficlight, vehicletype, edge, inductionloop, junction, multientryexit, polygon, route, person and vehicle, which correspond to individual modules [START_REF]TraCI/Interfacing TraCI from Python[END_REF].

B.1 importing traci in a script

To use the library, the <SUMO HOME>/tools directory must be on the python load path. This is typically done with a stanza like this:

This assumes that the environment variable SUMO HOME is set before running the script. Alternatively, you can declare the path to sumo/tools directly as in the line

B.2 First Steps

In general it is very easy to interface with SUMO from Python: The values retrieved are always the ones from the last time step, it is not possible to retrieve older values.

B.4 Context Subscriptions

Context subscriptions work like subscriptions in that they retrieve a list of variables automatically for every simulation stop. However, the do so by setting a reference object and a range and then retrieving variables for all objects of a given type within range of the reference object.

TraCI context subscriptions are handled on a per module basis. That is you can ask the module for the result of all current subscriptions after each time step. In order to subscribe for variables you need to the domain id of the objects that shall be retrieved If you prefer a more object oriented approach you can also use connection objects to