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Abstract

English version

Last years have witnessed an increase in the diversity and frequency of network attacks, that
appear more sophisticated than ever and devised to be undetectable. At the same time, cus-
tomized techniques have been designed to detect them and to take rapid countermeasures. The
recent surge in statistical and machine learning techniques largely contributed to provide novel
and sophisticated techniques to allow the detection of such attacks. These techniques have
multiple applications to enable automation in various fields. Within the networking area, they
can serve traffic routing, traffic classification, and network security, to name a few. This thesis
presents novel anomaly detection and classification techniques in IP and mobile networks. At
IP level, it presents our solution Split-and-Merge which detects botnets slowly spreading on the
Internet exploiting emerging vulnerabilities. This technique monitors the long-term evolutions
of the usages of application ports. Then, our thesis tackles the detection of botnet’s infected
hosts, this time at the host-level, using classification techniques, in our solution BotFP. Finally,
it presents our ASTECH (for Anomaly SpatioTEmporal Convex Hull) methodology for group
anomaly detection in mobile networks based on mobile app usages.
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French version

Ces derniéres années ont été marquées par une nette augmentation de la fréquence et de la di-
versité des attaques réseau, qui apparaissent toujours plus sophistiquées et congues pour étre
indétectables. En paralléle, des techniques sont développées pour les détecter et prendre des
contre-mesures rapidement. Récemment, ’essor des techniques statistiques et d’apprentissage
machine ("machine learning") ont permis un développement rapide de techniques innovantes
visant a détecter de telles attaques. Ces techniques ont des applications dans de nombreux
domaines qui gagneraient a étre davantage automatisés. Dans le domaine des réseaux, elles
s’appliquent par exemple au routage et a la classifcation de trafic et a la sécurité des réseaux.
Cette thése propose de nouveaux algorithmes de détection d’anomalies et de classification ap-
pliqués aux réseaux IP et mobiles. Au niveau IP, celle-ci présente une solution Split-and-Merge
qui détecte des botnets qui se propagent lentement sur Internet en exploitant des vulnérabil-
ités émergentes. Cette méthode analyse I’évolution & long-terme de 1'usage des ports applicatifs.
Ensuite, celle-ci aborde la détection d’hoétes infectés par un botnet, cette fois en utilisant des tech-
niques de classification au niveau de I’hote, dans une solution nommée BotFP. Enfin, cette thése
présente notre algorithme ASTECH qui permet la détection d’anomalies brutes dans les séries
temporelles dans les réseaux mobiles, les regroupe en enveloppes convexes spatio-temporelles, et
finalement induit plusieurs classes d’événements.



Chapter 1

Introduction

The diversity and frequency of network attacks have boomed in recent years, and such attacks
appear more sophisticated than ever and devised to be undetectable. At the same time, adaptive
techniques have been designed to detect them as soon as possible and to take rapid countermea-
sures. The recent surge in statistical and ML techniques largely contributed to provide novel and
sophisticated techniques to allow the detection of such attacks. These techniques have multiple
possible implications in any system that would require automation, in many fields. Within the
networking area, they can serve traffic routing, traffic classification, network security, to name a
few. We note that attackers may also leverage data analysis and ML techniques to finely craft
their attacks and mimic normal end-user behaviors, which makes their detection even more com-
plex. In this introduction, we first discuss the needs for appropriate data analysis techniques for
cyber-security (Section. We then present the surge in statistical and Machine Learning (ML)
techniques (Section , and their possible applications to address current challenges on network
security (Section [I.3). We finally introduce our different contributions to the field (Section [1.4)).

1.1 Context and motivation

The nature of anomalies detected in network traffic data is quite diverse [I]. Anomalies range
from outages (including equipment malfunctions and outages from cloud and mobile network
operators) and operational events (including updates and ingress shifts), to unusual end-users
behaviors (including flash crowds and point to multi-point communications) and malicious ones
(including denial of service attacks and malicious scans). Therefore, we rather look at different
granularity levels and range of features to take into account each anomaly type’s peculiarities.
For example, Denial-of-Service (DoS) events may be detected by looking at per-flow volume
anomalies, rather than to per-packet attributes. Network and port scanning may be detected at
the flow-level (or even at the port-level), as each new port or combination of port and target IP
generates a new flow. Finally, botnet detection may be performed at the flow-level and preferably
at the host-level.

Furthermore, even if we focus on the detection of malicious behaviors, we also notice a
wide variety of attacks that require specific detection techniques. The diversity in attackers’
operating modes renders the appropriate detection more difficult. Attacks are also constantly
more sophisticated, as illustrated by the Mirai botnet [2] that launched a massive attack towards
DNS servers of major Internet providers in 2016, cutting access to high-profile websites for
several hours. Beforehand, it reunited nearby 50,000 devices in its bot army, but has not been
detected until too late. Mirai acted like a revolutionary IoT-based malware since the release of
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12 CHAPTER 1. INTRODUCTION

its source code [3]| that led to a huge increase in other botnets’ development. As a matter of
fact, malware that targets Internet-of-Things (IoT) devices is responsible for many Distributed
Denial-of-Service (DDoS) attacks. It exploits the lack of security of connected objects to create
botnets, spreading extremely fast. We expect to see an increase in such IoT attacks, along
with the explosion of IoT devices that could grow up to 125 billion by 2030 [4]. Recently, DDoS
attacks significantly increased in terms of number and duration; indeed, the first half of 2018 saw
seven times more large attacks (higher than 300 Gbps) compared to the same period in 2017, as
noted in a Kaspersky report [5]. Furthermore, these botnets slightly propagate and affect whole
networks without even being noticed, until they reach their real target. Most botnets today are
designed to serve economic ends, as illustrated by Botnet as a Service (BaaS) [6] services that
sold instances of botnets to third parties.

Designed to ensure cyber-security in networks, Intrusion Detection Systems (IDSs) aim to
identify malicious activities and related threats. However, as a matter of fact, some botnets are
not detected during their spreading, but only at the time of the final attack. We specifically
study the case of the Mirai botnet and we invoke several reasons why it has not been detected
soon enough. (i) Current IDSs traditionally work with traffic granularity such as the flow, host,
or packet-level. They do not monitor application ports and thus may miss global changes on the
ports involved during the propagation of botnets. Ports can be scanned to fingerprint the target
machine, to exploit known vulnerabilities, or to communicate with a Command-and-Control
(C&C) server [7]. The sole common denominator for a botnet coming from very distinct sources
and targeting lots of hosts is the port it scans. However, an IDS working on IP addresses would
be unable to notice the anomalous port. (i) Moreover, most IDSs work on small variations of
traffic, generally using sliding windows of several seconds. Therefore, they cannot build long-
term profiles per port and detect major changes in their usage. (iii) IDSs are usually deployed
at a single point in the network, while ISP-scale attacks are only visible by looking at a holistic
view of a wide area network. For these reasons, several botnets like Mirai have not been detected
until too late. It is thus possible to develop dedicated algorithms to detect botnets of these kinds,
but by design, they are not made to adapt to other anomalies types and thus appear deficient
in detecting them. In fact, we have to find a trade-off between the detection accuracy (which is
high if the algorithm is crafted to detect a specific kind of attack) and its scope (which is high
if the algorithm can adapt to variants of such attacks or even other attack types).

This introduces a number of challenges for network security: attackers employ complex tech-
niques to hide and the attacks become more and more sophisticated. There is thus an urgent
need to detect this kind of threat as soon as possible. Dedicated techniques are designed to
prevent systems and networks from being corrupted and to limit harms in the case of an attack.
Cybersecurity researchers and attackers are the two players in this cat-and-mouse fight. The
first ones seek to understand the modus operandi of attackers, sometimes very complex, and
to design robust Intrusion detection systems (IDSs) adapted to constantly evolving attacks. In
return, attackers employ innovative techniques to slip by unnoticed and go through the radar.

1.2 Statistical and ML techniques

In 1959, Arthur Samuel, a pioneer in the field of Machine Learning, introduced it as the field
of study that gives computers the ability to learn without being explicitly programmed: "A
computer can be programmed so that it will learn to play a better game of checkers than can be
played by the person who wrote the program" [8]. Such techniques are designed to solve complex
problems and enable automation in different areas. However, it was initially eschewed due to its
large computational requirements and the limitations of computing power present at that time.
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Due to the recent improvements in computing capacities and ML techniques and in big data
storing and processing, last years have witnessed a large surge of statistical and ML techniques.
Originally, statistical models have also been used to solve problems and enable automation. Like
ML models, such techniques serve anomaly/outlier detection, for example through changepoint
detection algorithms (e.g., based on the z-score metric) or time series decomposition. ML models
are based on statistical learning theories and are classified into four learning paradigms: classi-
fication, regression, clustering, and rule extraction, each of those including several algorithms.

Therefore, both statistical and ML models contribute to the field of data analysis, but with
slightly different purposes [9]. Statistical models require a good understanding of the data and
are designed for inference about the relationships between variables, whereas ML models are
designed to make the most accurate predictions possible. They also work well in conjunction
with each other. In [I0], the authors compare the performances of statistical and ML methods,
for multiple forecasting horizons. According to their results, ML methods need to become more
accurate, requiring less computer time, and be less of a black box. They also demonstrate that
traditional statistical methods are more accurate than ML ones, as they point out the need
to discover the reasons involved and devise ways to reverse the situation. Nevertheless, the
authors specify that their findings are only valid for the specific dataset being used. For more
details about both techniques, Chapter [2] provides extensive background and related work that
are fundamentally related to data analysis applied to network security.

1.3 Data analysis applications to networking

Data analysis, composed of statistical and ML techniques, has a myriad of possible applica-
tions in the networking field. They include traffic prediction, traffic classification, traffic routing,
congestion control, resource management, fault management, QoS and QoE management, and
network security [II]. In our dissertation, we cover specifically the traffic classification and
network security fields, seeking to provide novel algorithms designed to strengthen network cy-
bersecurity. Traffic classification aims to accurately characterize and categorize network traffic
into a number of classes of interest, according to various features. It enables network oper-
ators to perform a wide range of network operation and management activities, like capacity
planning, differentiation, performance monitoring, or resource provisioning. Generally, network
traffic classification methodologies can be decomposed into four broad categories that leverage
port number, packet payload, host behavior, or flow features, that we study later in Section
Network security intends to protect the network against cyber-threats that may compromise the
network’s availability, or yield unauthorized access or misuse of network-accessible resources.
Therefore, network security is quintessential for network operation and management. In addi-
tion, current IDSs must take into account real-time constraints and manage to process large and
fast-changing datasets.

In addition to network security, data analysis techniques generally enable one to provide a
better characterization of traffic in mobile or IP networks and of the end-users behavior. These
built profiles can help the design of methodologies to automatically detect unusual phenomena
and attacks, but not only. Gaining better knowledge about end-users behaviors can be useful for
resource provisioning or pervasive computing applications.
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1.4 Contributions and thesis outline

The dissertation discusses several novel anomaly detection techniques in relation to important
fields of networking in association with emerging technologies in it. We thus present such anomaly
detection and classification techniques in three different contexts: the detection of vulnerabilities’
exploitation on the Internet, intrusion detection in IP networks (at enterprise-level), and anomaly
detection cellular networks. On the same occasion, we develop methods that were not exploited
before, by exploring novel points of view. The next three chapters of this manuscript correspond
to each main technique.

First of all, Chapter [2| presents the background and related work of this thesis, first intro-
ducing the state-of-the-art on statistical and machine learning techniques, and then covering the
related work specific to each contribution.

Chapter [3] proposes a technique for the early detection of emerging botnets and newly
exploited vulnerabilities on the Internet, targeting botnets slightly spreading on the Internet not
detected nor mitigated during their spreading. The Mirai botnet attack on September 2016,
or more recently the memcached attack on March 2018, this time with no botnet required,
are but two examples. Such attacks are generally preceded by several stages, including the
infection of hosts or device fingerprinting; being able to capture this activity would allow their
early detection. Our technique, named Split-and-Merge, consists in (i) splitting the detection
process over different network segments, (77) monitoring at the port-level, with a simple yet
efficient change-detection algorithm based on a modified Z-score measure, (iii) aggregating local
anomalies at a central correlation module to retain only the distributed ones. We argue how our
technique can ensure the detection of large-scale attacks and drastically reduce false positives.

In Chapter [4 we explore another view angle for botnet detection, this time not at the
Internet-level, but in IP networks and more especially in enterprise networks. Recent approaches
supplant flow-based detection techniques and exploit graph-based features, incurring however
in scalability issues, with high time and space complexity. Bots exhibit specific communication
patterns: they use particular protocols, contact specific domains, hence can be identified by
analyzing their communication with the outside. A way we follow to simplify the communication
graph and avoid scalability issues is by looking at frequency distributions of protocol attributes
capturing the specificity of botnets’ behavior. We propose a bot detection technique named
BotFP, for BotFingerPrinting, which acts by (i) characterizing hosts behavior with attribute
frequency distribution signatures, (ii) learning benign hosts and bots behaviors through either
clustering or supervised Machine Learning (ML), and (%ii) classifying new hosts either as bots
or benign ones, using distances to labeled clusters or relying on an ML algorithm.

In Chapter [5, we leverage machine learning techniques in cellular networks to analyze
mobile app communications and unleash significant information about the current social and
infrastructure states. A wide variety of events can engender unusual mobile communication
patterns that may be studied for pervasive computing applications, e.g., in smart cities. Among
them, local events (like concerts), national events (like natural disasters), and network outages
can produce anomalies in the mobile access network load. We propose our ASTECH (for Anomaly
SpatioTEmporal Convex Hull) detection methodology that first decomposes cellular data usage
features time series, then detects raw anomalies in the residual components derived from the
decomposition. Our method then aggregates raw anomalies into snapshots first, and groups the
most abnormal ones to form spatiotemporal clusters. We can so unveil details about the mobile
events timeline, their spatiotemporal spreading, and their impacted mobile apps, by clustering
them into broad categories.

In addition, we provide in appendix [A] the description of research issued from the master
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thesis, which covers anomaly detection in service chains of virtual network function. Then,
appendix [B| provides additional experiments related to our BotFP detection methodology pre-
sented in Chapter [ and in particular visual comparisons between different scanning processes
and details about the feature selection process that we applied.



16

CHAPTER 1. INTRODUCTION



Chapter 2

Related work

This chapter introduces the concepts, background, and related work that are fundamentally
related to data analysis applied to network security. It reviews the whole process of statistical
and machine learning techniques, passing through their learning paradigms, performance metrics,
and major applications. Then, the next three sections of this chapter follow the structure of the
thesis, each of the sections corresponding to a chapter.

2.1 Statistical and machine learning techniques

Statistical and machine learning (ML) techniques can be leveraged for complex problems arising
in network operation and management [II]. Last years have witnessed a surge of such tech-
niques, thanks to significant improvements in computing capacities and recent advances in data
storing and processing. Applied to network security, data analysis has been widely explored to
develop novel automation and detection techniques. We first describe the theory behind statis-
tical learning models and their relevance to the networking problem. Then we further review
in detail the process for data analysis, which consists in various steps: (i) learning paradigms
and ML techniques, (7i) data collection, (i) features design, (iv) model evaluation, and (v) ML
applications.

2.1.1 Statistical learning

Originally, ML detection tools rely on statistical learning theories to build their model. There also
exist unsupervised detection tools that use plain statistical approaches; their central assumption
is that the phenomena the most rarely observed are the most likely to be anomalous. In statistical
approaches, the fine analysis of the built statistical profiles of traffic allows one to understand
how the detected anomalous instances differ from the usual behavior; however, they work on a
mono feature basis, thus do not correlate the different features by design. Moreover, statistical
approaches work well combined with other algorithms as they are usually unable to provide
additional information, such as the IP addresses of attackers or the attack root causes; in addition,
they are of practically no computational complexity and easy to implement, which makes them
a wise approach when the detection should operate with limited computational resources.

Hidden Markov models

Hidden Markov Models (HMMs) are based on augmented Markov chains [12]. HMMSs consist
of statistical Markov models where the probability functions modeling transitions between the
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states are determined in the training phase, contrary to Markov chains where they are set a
priori. HMMs are widely used in pattern recognition, and now tend to be extensively applied to
intrusion detection as well. They generally show excellent performance, although they are not
yet adapted to fit real-world network constraints. Indeed, they require a large amount of time
to model normal behaviors and the false positive rate stands relatively high. In [13], authors
propose an IDS where the payload is represented as a sequence of bytes, and the analysis is based
on an ensemble of HMMs.

Changepoint detection-based techniques

The implicit assumption behind changepoint detection-based techniques is that anomalies induce
significant changes in the probability distribution of feature values. Therefore, these approaches
are quite fit to detect coarse anomalies, which have a significant effect on traffic, as DoS and
DDoS would do. A pioneer work devising an online anomaly detection technique in computer
network traffic using changepoint detection methods is [14]. The algorithm is based on the multi-
cyclic Shiryaev—Roberts detection procedure, which is computationally inexpensive and performs
better than other detection schemes.

For changepoint detection algorithms, the z-score is a well-known and simple statistical met-
ric commonly used to automatically detect sudden changes in time series. More precisely, it is
the measure of how many standard deviations below or above the mean a data point is. Ba-
sically, a z-score equal to zero means that the data point is equal to the mean, and the larger
the z-score, the more unusual the value. An anomaly is detected if the absolute value of the
modified z-score exceeds a given threshold. There also exist algorithms based on variants of this
metric. The modified z-score uses the median and the median absolute deviation (MAD) from
the median, instead of the classical mean and standard deviation respectively, which makes it
outlier-resistant [15]. In addition, the smoothed z-score considers the influence of outliers, i.e.,
the weights of the past samples on the mean and standard deviation, with respect to the current
sample.

Other approaches

Histograms are used to count or visualize the frequency of data (i.e., the number of occurrences)
over bins, which consist of units of discrete intervals. Historically, they have been widely used in
the data and image processing fields. Histogram-based algorithms, also named frequency-based
or counting-based algorithms, rely on histograms containing the bins associated with the values
of their attributes. [L6] proposes an alternative approach to feature-based anomaly detection
tools that builds detailed histogram models of the features and identifies deviations from these
models. In addition, building comprehensive histograms is less computationally expensive than
using coarse distribution or graph-based features.

2.1.2 ML techniques: paradigms and addressed problems

Now that we reviewed statistical learning-based approaches, we focus on ML techniques, inves-
tigating the whole ML design pipeline.

Learning paradigms

First, ML techniques can be classified into four learning paradigms:
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Figure 2.1: Learning paradigms that benefit from machine learning: classification and regres-
sion for supervised learning, and clustering and rule extraction for unsupervised learning.

1. Supervised learning techniques learn from a labeled dataset what constitutes either normal
traffic or attacks — there exist different techniques such as SVM-based classifiers, rule-based
classifiers, and ensemble-learning detectors [17].

2. Unsupervised approaches learn by themselves what is normal or abnormal — among them,
MAWILab [I8] finds anomalies by combining detectors that operate at different traffic
granularities (the results against the MAWI dataset are in [18]); numerous works compare
themselves to MAWILab, as for instance change-detection techniques [14] [19] (defining an
anomaly as a sudden change compared to a model), and ORUNADA [20] (relying on a
discrete time-sliding window to continuously update the feature space and cluster events).

3. Hybrid or semi-supervised approaches benefit from only a small part of labeled traffic,
meant to be enough to learn from, as proposed in [21].

4. Reinforcement learning (RL) is an iterative process with agents that take actions in order
to maximize the notion of cumulative reward. In the purpose of decision making, the
learning is traditionally based on exemplars from training datasets. The training data in
RL constitutes a set of state-action pairs and rewards (or penalties).

Problem categories

Four broad categories of problems can leverage ML, namely classification, regression, clustering,
and rule extraction, as illustrated in Fig. 2.1 First of all, classification and regression are two
supervised learning approaches; their objective is to map an input to an output based on example
input-output pairs from labeled data. Regression approaches predicts continuous values output,
whereas classification predicts discrete values, consisting in the different labels. Then, clustering
and rule extraction are unsupervised learning techniques: clustering is the task of partitioning
the dataset into groups, called clusters - the goal is to determine grouping among unlabeled data,
while increasing the gap between the groups; rule extraction techniques are designed to identify
statistical relationships in data, by discovering rules that describe large portions of the dataset.

Note that the choice of the learning paradigm strongly depends on the training data. For
example, if the dataset is not labeled, supervised learning cannot be employed and other learning
paradigms must be considered.
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Concrete ML techniques applications.

To illustrate the diversity in ML techniques applications, we provide concrete use cases for each
of the aforementioned learning paradigms:

o C(lassification techniques are traditionally used in problems that contain labeled datasets,
with two or more distinct classes. Botnet detection is but one example of such cases,
where we can distinguish between malicious and benign flows; this way, the ML algorithm
implicitly learns the inherent characteristics of a bot, and those of a benign host.

e Regression techniques are traditionally used for time series forecasting [22], 23]. The objec-
tive is to construct a regression model able to induce future traffic volume based on previous
instances of traffic. Regression techniques are also employed to assess the impact of the
global network condition on the QoS or QoE [24]. Finally, monitoring Key Performance
Indicators (KPI) in large-scale networks enables the quick detection of network outages
and attacks.

e Clustering techniques are usually employed for outlier detection purposes. In network
cyber-security, many intrusion detection schemes [20] rely on data clustering to highlight
significant deviations compared to usual end-user behaviors.

e Finally, rule extraction techniques, also named association rule mining, are commonly
employed for personalized recommendations. Market Basket Analysis [25] is one of the
key techniques used by large retailers to discover correlations within sets of items. These
techniques are also used by recommendation engines as for Netflix (for personalized movies
recommendation) and Amazon (for suggestions of other articles related to the purchased
one).

2.1.3 Data collection

The process of collecting data to apply and validate a given ML technique is an important step,
but nonetheless difficult. Finding representative data, possibly without bias and labeled is a
non-trivial task. Datasets also vary from one problem to another and from one time period to
the next one.

Data monitoring techniques are classified into active, passive, and hybrid techniques [26].
Active monitoring uses traffic measurement in order to collect relevant data and examine the
state of networks. Such approaches commonly consist in a set of distributed vantage points
hosting measurement tools like ping and traceroute; among them, RIPE Atlas [27] is a global
network of over 10,000 probes that measure Internet connectivity and reachability, used for
instance in [28] where authors identify data-center collocation facilities in traceroute data from
RIPE Atlas built-in measurements, then monitors delay and routing patterns between facilities.
In [29], given an arbitrary set of traceroutes, the authors first spot routing paths changing
similarly over time, then aggregate them into inferred events and collect details to identify its
cause.

In contrast, passive monitoring collects existing traffic and infer the state of networks from
it. Compared to active monitoring, it ensures that the inferred statistics correspond to real traf-
fic and it does not introduce additional overhead due to bandwidth consumption from injected
traffic. Passive monitoring data can be obtained from various repositories, given it is relevant to
the networking problem being studied. Such traces include CDN traces [30], darknets [31], and
network telescope datasets [32), 33]. The latter consists of a globally routed, but lightly utilized
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network prefix - a /8 for the University of California San Diego (UCSD) Network Telescope
Aggregated Flow Dataset [32] and /20 for the Network Telescope dataset from LORIA [33].
Inbound traffic to non-existent machines is unsolicited and results from a wide range of events,
including misconfiguration, scanning of address space by attackers or malware looking for vul-
nerable targets, and backscatter from randomly spoofed DoS attacks. Other examples of passive
data repositories include the Measurement and Analysis on the WIDE Internet (MAWTI) Working
Group Traffic Archive [34] and the CTU-13 dataset [35]. We later review these datasets in detail,

respectively in Sections and

2.1.4 Feature design

Before applying an ML algorithm to the dataset, the collected raw data must be formatted to
cover an adequate set of features. The first phase named Feature Eztraction consists in cleaning
the dataset that may contain missing values or noise. In addition, the collected raw dataset may
be too voluminous to be handled. The need for dimensionality reduction is justified by multiple
reasons. First, a large number of features may induce a high computational overhead. Also, a
phenomenon called the curse of dimensionality refers to the sparsity in data increasing with the
number of dimensions, which makes the dataset no more consistent. We first depict the features
traditionally selected for anomaly detection depending on the aggregation level. We then review
the main strategies employed for feature extraction.

Common feature choice

In reality, the feature choice directly depends on the problem formulation (i.e., the detection tar-
get) and thus on the granularity level. The taxonomy of aggregation levels for network anomaly
detection includes payload-based, host behavior-based, and flow feature-based techniques.

Payload-based anomaly detection systems parse the packet payload looking for known ap-
plication signatures. However, this incurs a high computational overhead and requires manual
interventions from humans to monitor the alerts and regularly update the signatures database.
In addition, the payload tends to be systematically encrypted due to privacy concerns. Payload-
based systems usually employ features such as the payload size, but also more complex ones
like specific byte sequences or particular key-words present in the payload that would execute
malicious actions.

Host behavior-based anomaly detection systems compute per-host traffic features to model
behavioral characteristics of hosts. Contrary to payload-based systems, it examines the inherent
characteristics of hosts but also assesses graph-based features by considering hosts as nodes
in a graph, to measure for example the centrality of nodes or the amount and frequency of
traffic exchanged between the nodes. IDSes implemented at the host-level are named Host-based
Intrusion Detection Systems (HIDSes), whereas those at the network-level are named Network-
based Intrusion Detection Systems (NIDSes). Common features used by such systems include
packet counts exchanged between nodes [36], service proximity, activity profiles, session duration,
periodicity [37], and byte encoding [38, [39] or statistical characterization of bytes [40], for each
packet or each flow coming from a host.

Flow feature-based anomaly detection systems aggregate communications on a per-flow basis,
which consists of a 5-tuple made from the protocol, the source and destination IP addresses,
and the source and destination port numbers. It is then a unidirectional exchange of consecutive
packets on the network from a port at an IP address to another port at another IP address
using a particular application protocol, including all packets pertaining to session setup and
tear-down, and data exchange. A feature is an attribute representing unique characteristics
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of a flow, such as the number of packets in a flow, mean packet length, packet inter-arrival
time, flow duration, entropy, to name a few. Entropy basically represents the traffic distribution
predictability and enables one to detect volume-based anomalies such as DoS and DDoS. Flow
feature-based techniques use flow features as discriminators to map flows to classes of interest.

Feature extraction

Two main processes are usually employed to adequately select features. The process of Feature
Selection consists in removing the features that are not relevant or redundant in order to keep only
a limited set of features. The filtering strategy (e.g. information gain), the wrapper strategy
(e.g. search guided by accuracy), and the embedded strategy (selected features are added or
removed while building the model based on prediction errors) are three techniques for feature
selection.

The second process, named Feature projection, projects the data from a high-dimensional
space to a space of fewer dimensions. The variance between each class is accentuated in the re-
sulting space, removing redundancy in data. Both linear and nonlinear dimensionality reduction
techniques exist. The main linear technique is named Principal Component Analysis (PCA),
which finds the directions of maximum variance [4I]. The fraction of variance explained by a
principal component is the ratio between the variance of that principal component and the total
variance. The objective is to reduce the dimensionality while keeping a good amount of infor-
mation, so that the cumulative explained variance ratio is close to 100%. PCA may also be used
for traditional outlier detection [42], 43]. Using real traffic traces, [43] demonstrates that normal
traffic data can reside in a low-dimensional linear subspace and form a low-rank tensor. The
anomalies (outliers) should stay outside this subspace. Therefore, tensor-based approaches try
to recover the normal data by separating the low-rank normal data and outlier data from the
noisy traffic data captured, and then detect anomalies by using the outlier data separated.

2.1.5 Performance metrics and model validation

In the case of supervised learning, we are able to compute some metrics to assess the performance
of our classification model. A confusion matrix is a table often used to evaluate the performance
of a classification model [11]. The basic terms are the following (expressed as whole numbers and
not rates): True Positive (T'P) is the number of bots correctly classified; True Negative (T'N)
is the number of benign hosts correctly classified; False Positive (F'P) is the number of benign
hosts incorrectly classified; False Negative (F V) is the number of bots incorrectly classified. This
is a list of rates that are often computed from the confusion matrix for a binary classifier:

e Accuracy, computed as ACC = TP+17:]€JJ££ZJ\3[+FN’
over the total number of instances. High accuracy is required. However, a bias may be
introduced if the dataset is too unbalanced, then we need to consider other metrics.

shows the percentage of true detection

o True Positive Rate, defined as TPR = TPTJF%, also known as recall, shows the percent-
age of predicted malicious instances versus all malicious instances. A high T PR value is
desirable.

e Fulse Positive Rate, computed as FFPR = F;l%, also known as false alarm rate, refers
to the ratio of incorrectly classified benign instances versus all the benign instances. A low
F PR value is desirable. If the dataset is too unbalanced, consider using the precision and
recall instead of the TPR and FPR.
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e Precision, computed as P = TPT-|-7PFP’ refers to the ratio of incorrectly classified benign
instances versus all the benign instances. A high P value is desirable.

e Recall, computed as R = TP::-%’ also known as false alarm rate, refers to the ratio of

incorrectly classified benign instances versus all the benign instances. A high R value is
desirable.

e F'1-score, computed as F'1 =2- %,

recall. A high F'1 value is desirable.

is defined as the harmonic mean of the precision and

When no ground-truth is available (e.g., in unsupervised learning), we cannot directly assess
the quality of a model. Then we must create ground-truth labels ourselves, for example by
comparing several datasets and mixing various sources.

2.2 Intrusion detection

In this section, we present intrusion detection methodologies and review related work related to
Chapter [3] including the different families for intrusion detection systems (IDSs) and large-scale
IDSs, and those centered around botnet detection. Fig. shows the general classification of
intrusion detection systems. We introduce granularity levels in Section [2.1.4] intrusion detection
methodologies in Section [2.2.1] and the different architectures in Section [2.2.2

Intrusion Detection Systems
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Anomaly
-based
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Figure 2.2: General classification of Intrusion Detection Systems.

2.2.1 Intrusion detection methodologies

Many algorithms are proposed in the literature for network intrusion detection [44]. We can
classify them into three main families: signature-based, anomaly-based, and hybrid techniques.
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Signature-based, also referred to as knowledge-based or misuse-based, solutions such as Snort [45],
Zeek (formerly Bro) [46], or Suricata [47], rely on a signature database to find attacks that match
given patterns, such as malicious byte sequences or known malware signatures. The first step
consists in building a set of rules based on signatures; large rules databases can be purchased
online and one can also create custom rules. Then, a rule is defined as: the action to apply if
there is a match (e.g., alert, log, pass), the protocol to filter, the source and destination IP
addresses, the port numbers, the traffic direction, and the options (TCP flags, payload size, etc.).
The network administrator then collects the logs produced by the IDS and manually visualizes
the set of produced alerts. Up to now, most companies rely on signature-based IDSs as they
are expressive and understandable by network administrators. Nevertheless, they are not able
to detect zero-day attacks, i.e., attacks exploiting unknown vulnerabilities, for which no patch is
available [48], and the signatures database must be updated regularly.

Anomaly-based approaches attempt to detect zero-day attacks, in addition to known ones.
Compared to signature-based approaches, they require prior learning on data. They model the
normal network traffic and qualify an anomaly as a significant deviation from it, with statistical or
machine learning techniques. In such a case, we talk about anomalies rather than attacks. As ad-
dressed in Section [2.1.2] the methodology to detect anomalies can leverage statistical techniques,
or supervised, unsupervised or semi-supervised ML techniques. BotSniffer [49] utilizes statistical
methods to detect Command-and-Control channels (C&C) botnets, in which bot-infected hosts
listen for attack commands from the attacker via this channel. To detect them, the authors seek
for coincident behaviors among hosts, like messages to servers, network scans, or spam. The
authors in [50] observe changes in feature distributions to identify anomalies. Entropy and/or
volume are such metrics used for this purpose.

Various IDSs systems in the literature propose to combine signature-based or supervised
techniques with unsupervised ones, that we call hybrid systems. They present the advantage of
improving the detection rate and minimizing the false positive rate, inheriting the advantages
of both methods. ADAM [51], which stands for Audit Data Analysis and Mining, is one of the
most popular hybrid IDSs. ADAM has two stages of detection: (i) it builds a set of recurrent
benign instances from attack-free datasets; then (4i) it finds frequent itemsets in connections and
classify them compared to the previous database, into known or unknown attack types or false
alarms. Another approach, [52], proposes a hybrid intrusion detection method, composed of a
misuse detection model based on the C4.5 decision tree algorithm and multiple one-class SVM
models to model the normal behavior. Finally, [53] uses a Self-Organizing Map (SOM) structure
to model normal behavior, and J.48 decision trees for the misuse module.

2.2.2 Large-scale intrusion detection

Coordinated attacks arise in multiple networks simultaneously and include large-scale stealthy
scans, worm outbreaks, and DDoS attacks [54]. Traditional IDSs tend to fail at detecting these
attacks as they commonly monitor only a limited portion of the network. Large-scale IDSs, in-
stead, have a global view over the network, and can better scale by distributing the computational
load between several detection agents. Two large-scale IDS approaches can be identified.

The first IDS approach consists in distributing flow collectors in different subnetworks and
in running a central detection engine against aggregated data, as shown in Figure Raw
packets are transmitted from the flow collectors to the detection engine [55]. Solutions exist
to avoid the collection traffic overhead, as done by Jaal [56], which creates and sends concise
packets summaries to the detector - with Jaal, one reaches a 35 % bandwidth overhead to get
an acceptable true positive rate, which is still important.
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Figure 2.3: Two possible approaches for large-scale IDS.

The second IDS approach consists in Collaborative Intrusion Detection System (CIDS), which
is a two-level anomaly detection system where monitors are physically split in the network to
perform local detection. They generate low-level alerts then aggregated to produce a high-level
intrusion report. Three types of CIDSes exist depending on communication architecture:

1. Centralized CIDSes are composed of several monitors that transmit the alerts to a central
correlation engine, as illustrated in Figure

2. Hierarchical CIDSes use a multistage structure of monitors to achieve an increasingly higher
alert aggregation until the alerts reach the top correlation engine.

3. Distributed CIDSes share the detection and correlation tasks between all monitors. This
approach can be set up by a peer-to-peer network.

For instance, [57] presents a centralized CIDS framework composed of IDS clusters imple-
menting both the detection and the correlation; Snort signatures are therein used to detect known
attacks, while an unsupervised learning algorithm detects unknown attacks. [58] proposes a sort
of distributed CIDS, composed of Intrusion Prevention Systems forming rings around the hosts
to protect, in order to collaborate and forward the traffic adaptively depending on their findings.

Inherent in the CIDSs, alert correlation algorithms can be divided into three categories [59):
(i) similarity-based algorithms, which compute the similarity between an alert and a cluster of
alerts, and based on the result either merge it with the cluster or create a new one; (i) knowledge-
based algorithms, which rely on a database of attacks definitions; (%ii) probabilistic algorithms,
which use similar statistical attributes to correlate attacks.

2.2.3 Application to botnet detection
Flow-based botnet detection

In the past years, several novel algorithms for botnet detection have been proposed, which can
be classified into packet- or flow-based ones and graph-based ones. Among them, [60] compares
the performances of four different approaches: Snort, BotHunter, and two data-mining based
system ones, either based on the packet header/payload or on flows. They run their algorithm
on public datasets, including the Conficker dataset from CAIDA, the ISOT-UVic dataset, and
Zeus botnet datasets from Snort, NETRESEC, and NIMS. As a result, they get detection rates
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approaching up to 100%. BotMark [61] exploits both statistical flow-based traffic features and
graph-based features to build its detection model, then considers similarity and stability between
flows as measurements in the detection. The authors test their algorithm by simulating five newly
propagated botnets, including Mirai, Black energy, Zeus, Athena, and Ares, and achieve 99.94%
in terms of detection accuracy. In [62], the authors create a complete characterization of the
behavior of legitimate hosts that can be used to discover previously unseen botnet traffic. They
employ the ISCX botnet dataset, a publicly available dataset composed of various IRC, P2P,
and HTTP-based botnets. They find that their framework can detect bots in a network with
100% TPR and 8.2% FPR. It is worth noting that the aforementioned algorithms perform their
analysis at the network-level, on traffic generated by botnets. Their objective is to distinguish
between benign hosts and bots, to then draw a confusion matrix and evaluate their classifier.
Then they are not designed to run at an Internet carrier link-level. We later expose in Chapter
our wish to analyzing the current trends in Internet traffic over several years, including trends
in terms of botnets.

Port-based detection techniques

A few works specifically focus on port-based detection but they do not apply to CIDS. In [7],
the authors propose a survey of the current methods to detect port scans. [63] aims to show
the correlation between port scans and attacks. [64] examines the period during the release
of a zero-day attack and its patching. Also, [63] 64] analyze port-usage but they do not use
destination ports as the primary key. Actually, this last setting generates a high number of false
positives, which can be mitigated by CIDS as we are doing. In the literature, the numbers of
unique source IP addresses and unique active /24 blocks are used to detect Internet outages [65]
and large-scale spoofing [66].

2.3 Botnet Detection

The last section covered the related work on intrusion detection systems, we now specifically
address the field of botnet detection related to Chapter ] The word "botnet" comes from
the combination of "robot" and "network". In this display, the attackers infect and control
thousands of machines, then send them malicious commands to execute, like infecting, attacking,
or scanning other hosts. This large zombie network is then a major vector of large-scale attacks
such as phishing DDoS, Trojans, spams, etc. To communicate with bots, cybercriminals use
Command-and-Control (C&C) channels implemented in different ways (the most popular ones
are IRC, HTTP, P2P, and Telnet [67]).

Considering the importance of the matter, an extensive number of works exist in this field.
While traditional approaches rely on statistical and machine learning approaches over per-flow
features, recently studied graph-based approaches analyze the relations between several hosts of
a network.

2.3.1 Flow-based techniques

Flow-based techniques work by removing the packet payload and inspecting the packet header
only [68]. Let us classify them as follows.
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Statistical methods

BotHunter [69] aims to recognize the infection and coordination dialog that occurs during a
successful malware infection. A similar approach, BotSniffer [49], focuses on the detection of C&C
channels which are essential to a botnet. Therefore it exploits the underlying spatiotemporal
correlation and similarity property of botnet C&C (horizontal correlation). The C&C server uses
to contact every bot at the same time, then each of them uses to undertake some malicious actions
following the C&C commands; these behaviors can be observed simultaneously in a network to
spot a C&C channel, thus an underlying botnet.

BotHunter and BotSniffer perform their evaluation on their own honeynet or on traces authors
built by executing malware binaries. However, these traces are not publicly available and [70]
highlighted the lack of suitable comparisons for botnet detection algorithms due to the lack
of public botnet datasets. Hence the authors a labeled botnet dataset named the CTU-13
dataset [35] (later introduced in Section , including botnet, normal, and background traffic.
In addition, the authors present two methods to identify botnets in these traces. The first one
named BClus is a botnet detection approach. It creates models of known botnet behavior by
computing features per source IP address, then it uses them to detect similar traffic on the
network. The second one named CAMNEP is a network behavior analysis system that combines
various state-of-the-art anomaly detection methods, such as MINDS, Xu, Lakhina volume, and
Lakhina entropy [71].

Machine learning methods

Machine learning methods include artificial neural networks, support vector machines (SVM),
k-nearest neighbor (k-NN), decision trees and clustering. As seen in Section ML methods
include supervised, unsupervised, and hybrid learning. Supervised learning techniques encompass
different methods such as SVM-based classifiers, rule-based classifiers, and ensemble-learning
detectors [I7]. Due to its excellent generalization performance, Support Vector Machines (SVM)
are used in many security applications [72,[73]. The unsupervised learning technique [74] proposes
an unsupervised learning based ML solution to identifying known and unknown anomalies in IoT,
more especially with auto-encoders; [75] also proposes an unsupervised approach, identifying the
most dissimilar graphs. Finally, hybrid approaches benefit from only a small part of labeled
traffic, meant to be enough to learn from, as proposed in [21].

Other methods

Other methods use various entropy measurements. For instance, [58] proposes a technique to
detect large-scale anomalies in the network traffic, by measuring the deviation between the
profiles of normal traffic and incoming flow records. [70] proposes a behavioral botnet detection
method using Markov Chains to model the different states in the C&C channel. The proposed
method is trained and evaluated using the CTU-13 dataset and gives a 92% Fl-measure and a
0.05% false positive rate. The authors in [76] focus on detecting bot-infected machines at the
enterprise-level, by considering the complete DNS activity of a host per hour. They used an
extensive set of features computed over campus DNS network traffic, and as a result, identified
suspicious DNS connections to detect infected machines.

However, flow-based techniques may miss some communication patterns between hosts that
are quite specific to a botnet. Furthermore, working on a per-flow or per-host basis may incur a
high computational overhead.
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2.3.2 Graph-based techniques

Graph-based approaches [77] aim to model the relations between several hosts of a network.
They are studied for various situations, for example, to detect P2P bots [78, [79] or to recognize
DNS traffic from malicious domains [80]. In [81], the authors distinguish between several kinds of
traffic and make groups of flows from: (i) the most frequent 11 destination port numbers used by
TCP and UDP, (i) all other TCP/UDP destination port numbers, and (i) ICMP flows. They
use plain and derived features for each of these categories, then they train three unsupervised
learning algorithms on normal traffic with these features. As a result, with k-NN they achieve
over 91% detection rate with around 5% false positive rate. BotGM [75] proposes an unsupervised
graph mining technique to identify abnormal communication patterns and label them as botnets.
The authors first construct a graph sequence of ports for each pair of source and destination IP
addresses, then they compare each graph between them using the Graph-Edit Distance (GED).
As a result, they reach a very good accuracy between 78% and 95%. However, this technique is
very costly as the GED is computed once for each pair of graphs and its computation is known to
be NP-complete. The authors in [82] model network communications as graphs, where hosts are
edges and communications between hosts vertices. They compute graph-based features such as
In-Degree and Out-Degree and diverse centrality measures. They use a hybrid learning method
and test various ML techniques to achieve a good detection rate. However, this technique incurs
a high computational overhead as features are computed over a large communication graph,
e.g., used by shortest paths algorithms computed for centrality measures. Other graph-based
detection methods [83, 84] seem promising, but their complexity is often high, NP-complete as
for [84] and [75], or cubic for [82] (see Section [4.6).

2.4 Spatiotemporal anomaly detection in cellular networks

In this section, we now review the related work on spatiotemporal anomaly detection, per-app
mobile traffic analysis, and group anomaly detection, related to Chapter [5]

2.4.1 Detection of spatiotemporal anomalies

The survey [85] reviews large-scale mobile traffic analysis with respect to social, mobility, and
network aspects. From a social perspective, authors show how the relationships between mobile
traffic and a wide set of social features are addressed in the state of the art. Demographic, eco-
nomical, or environmental factors do influence the way users consume mobile apps indeed. These
factors are classified into four broad categories: users’ interactions, demographics, environment,
and epidemics. The possible relationships between the environment, in terms of both geograph-
ical and temporal features, and the communication structure are also described. Among them,
the authors focus on the detection of special events, ranging from political happenings (e.g., elec-
tions or manifestations) to entertainment occasions (e.g., concerts, sports games) and accidents
(e.g., power outages or exception road congestion).

Authors in [86l, 87] propose threshold-based algorithms to detect special events. In [88], au-
thors use the information on residual communication to determine how different geographical
areas are affected by a same unusual event. Using a time series decomposition, they: (i) first
exploit the Seasonal Communication Series (SCS) to segment the city into distinct clusters by
noticing similar patterns of socio-economic activity, and (%) compare the Residual Communi-
cation Series (RCS) of similar areas to detect local events. Another approach in [89] proposes
a dedicated framework to detect general outlying behaviors, based on the hourly geographical
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variations of mobile traffic, able to detect national holidays, political happenings, and sports
events. First, it builds snapshots, i.e., representations of the load generated by mobile users at
a given instant. Then, it forms snapshot graphs G(7,E&) where T contains the snapshots from
the training set; it computes traffic volume and traffic distribution similarities to perform snap-
shot aggregation. Finally, it uses a hierarchical clustering method into a dendrogram structure
and builds network usage profile categories. Authors so show it can coarsely classify snapshots:
resulting clusters are mapped to network usage profile categories.

Finally, attention is also paid to events that are not the result of social behaviors, but of
natural or human-caused disasters. E.g., in [90], authors focus on emergency situations, using
a dataset containing a bombing, a plane crash, a mild earthquake, and a power outage in the
target region.

2.4.2 Per-app mobile traffic analysis

Up to our knowledge, in the literature, the detection of anomalies such as special events is
not tackled at the app level yet. We believe that analyzing per-app usages can give valuable
details about the nature of events, thus can help finely characterizing them. In the literature,
attention is paid to the app usage for other purposes than special events detection [91], 92]
93, 94]. In [9I], authors provide an analysis of spatiotemporal heterogeneity in nationwide
app usage - they notice a large bias between apps (even within the same category, like Chat
or Download) that makes the time series clustering inconclusive, and some heterogeneity even
when looking to activity peaks of individual apps. Authors in [92] investigate the similarities
and differences across different apps using nine features; as a result, they identify several well-
differentiated clusters for each category of apps. In [03], authors design a system able to identify
key patterns of cellular tower traffic by clustering custom pattern identifiers in traffic into five
categories: resident, transport, office, entertainment, and comprehensive, area. They study
time and frequency-domain representations for traffic modeling by analyzing interrelationships
between traffic patterns and using Fourier transform. [94] provides a complete comparative
evaluation of the techniques for signature classification, including Weekday-Weekend, typical
week, median week, etc. Results unveil the diversity of baseline communication activities across
countries, but also evidence the existence of a number of mobile traffic signatures that are
common to all studied areas and specific to particular land uses.

2.4.3 Group anomaly detection

While anomaly detection typically regards data point anomalies, group anomaly detection seeks
to detect anomalous collections of points. Traditionally, Seeded Region Growing (SRG) [95] has
been used in image processing to form regions into which the image is segmented, by group-
ing seeds (i.e., either individual pixels or regions). The Mixture of Gaussian Mixture Model
(MGMM) uses topic modeling for group anomaly detection. Adaptive topics are useful in rec-
ognizing point-level anomalies, but cannot be used to detect anomalous behavior at the group
level. More recently, [96] studies the group anomaly detection problem by discovering anomalous
aggregated behaviors of groups of points. The authors propose the Flexible Genre Model (FGM),
which is able to characterize groups’ behaviors at multiple levels, contrary to traditional topic
models. This detailed characterization enables the detection of various types of group anomalies.
[97] performs group anomaly detection with an emphasis on irregular group distributions (e.g.,
irregular mixtures of image pixels). The authors formulate two deep generative models for group
anomaly detection.
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Other approaches specifically focus on spatiotemporal outlier detection. In [9§], the au-
thors review outlier detection for spatiotemporal data, among other things. Considering the
temporal and spatial neighborhood for detecting outliers, they define a spatiotemporal outlier
(ST-Outlier) as a spatiotemporal object whose behavioral attributes are significantly different
from those of the other objects in its spatial and temporal neighborhoods. They propose a
typical spatiotemporal-outlier detection pipeline, taking as input spatiotemporal data composed
of: (i) processing spatiotemporal data, (ii) finding spatial objects, (iii) find spatial outliers,
(iv) verify /track temporal outliers, and (v) producing spatiotemporal outliers, as existing ap-
proaches commonly find spatial outliers and then verify their temporal neighborhood. Many
approaches leverage clustering to compute spatial outliers [99) [100]. Others use distance-based
outlier detection and Voronoi diagrams to establish spatial clusters [101].

2.5 Summary

We draw in this chapter in a synthetic yet wide-enough way the composite field of machine
learning, its recurrent relationships with statistics, with a particular focus on the metrics and
methods we adopt in this thesis. We provide as well a background in the three main areas of
application of the exposed principles and methods to our research. In the next chapters, we
further precise our three contributions in the area, positioning our work with respect to this
state of the art.



Chapter 3

Detection of zero-day attacks

Last years have witnessed more and more DDoS attacks towards high-profile websites, like the
Mirai botnet attack on September 2016, or more recently the memcached attack on March 2018,
this time with no botnet required. These two outbreaks were not detected nor mitigated during
their spreading, but only at the time they happened. Such attacks are generally preceded by
several stages, including infection of hosts or device fingerprinting; being able to capture this
activity would allow their early detection. In this chapter, we propose a technique for the early
detection of emerging botnets and newly exploited vulnerabilities, which consists in (i) splitting
the detection process over different network segments and retaining only distributed anomalies,
(#1) monitoring at the port-level, with a simple yet efficient change-detection algorithm based on
a modified Z-score measure. We argue how our technique, named Split-and—Merg@ﬂ can ensure
the detection of large-scale attacks and drastically reduce false positives. We apply the method
on two datasets: the MAWI dataset, which provides daily traffic traces of a transpacific backbone
link, and the UCSD Network Telescope dataset which contains unsolicited traffic mainly coming
from botnet scans. The assumption of a normal distribution — for which the Z-score computation
makes sense — is verified through empirical measures. We also show how the solution generates
very few alerts; an extensive evaluation on the last three years allows identifying major attacks
(including Mirai and memcached) that current Intrusion Detection Systems (IDSs) have not
seen. Finally, we classify detected known and unknown anomalies to give additional insights
about them.

3.1 Introduction

Back in September 2016, the Mirai botnet [2] struck the internet with a massive distributed
denial of service (DDoS) attack. During several months, it spread slowly and reunited nearby
50,000 bots distributed over various parts of the internet, without being noticed. More recently, a
record-breaking DDoS attack hit Github in February 2018 with a new amplification attack vector:
UDP-based memcached traffic [I05]. The caching system is supposed to be used internally,
but sometimes runs on servers exposed without any authentication protection; several days
later, most memcached servers have been patched, making the attack not efficient anymore
[106]. Actually, malware targeting Internet-of-Things (IoT) devices and misconfigured servers
are responsible for many Distributed Denial-of-Service (DDoS) attacks [I07]. Detecting these

!This work was first presented at IFIP/IEEE IM 2019 [102], then extended for an article published in Else-
vier Computer Networks [103]. In addition, we propose in the book chapter [I04] a model to simplify the detec-
tion of large-scale network attacks combining data plane programming with control level collaboration, inspired
from Split-and-Merge.
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botnets and exploited vulnerabilities during their spreading could avoid many harms. There
is thus an urgent need to detect this kind of threat as soon as possible, and current anomaly
detection tools appear deficient in this respect.

Ensuring cyber-security in networks, Intrusion Detection Systems (IDSs) monitor network
traffic for malicious activities and related threats. However, as a matter of fact, most botnets go
under the radars for three reasons: (i) Current IDSs work at different traffic granularities, e.g.,
flow, host, or packet. However, they miss global changes on application ports that are involved
during the propagation of botnets. Ports can be scanned to fingerprint the target machine, to
exploit known vulnerabilities, or to communicate with a Command-and-Control (C&C) server [7].
The sole common denominator for a botnet coming from very distinct sources and targeting lots
of hosts is the port it scans. However, an IDS working on IP addresses would be unable to
notice the anomalous port. (i) Most IDSs work on small variations of traffic, generally using
time-sliding windows of several seconds. Therefore, they cannot build long-term profiles per port
and detect major changes in their usage. (i) IDSs are usually deployed at a single point in
the network, while ISP-scale attacks are only visible by looking at a holistic view of a wide area
network.

In this chapter, we propose an anomaly detection technique that spots main changes in the
usage of a single port to identify botnets. Intuitively, the most obvious way to identify it is to
observe a sudden rise in traffic towards a port. However, this may not be sufficient as it can be
a well-known vulnerable port, already massively scanned. For example, before the Mirai attack,
many TCP SYN scans targeted the Telnet port whose vulnerabilities were already known and
exploited. Then, when the Mirai attack was actually hitting, one could not observe an increase
in the number of scans targeting this port. Our goal is to detect early stealthy changes in
the behavior of the scans, as an increase in the number of distinct attackers (i.e., source IP
addresses) or an increase in port spoofing, to then spot them as unknown botnets or newly
exploited vulnerabilities, even on ports already scanned before.

In our method, we use features representing particular port usages; large packets batches
picked at a frequency of several days enable us to profile the evolution of features over time, then
statistical measures can spot anomalies in the features time series. A port-based approach may
generate a large number of alarms, as for instance, each ephemeral port used in an arbitrary
manner would produce an anomaly. Therefore, we adopt a collaborative scheme to ensure that
changes in one port are distributed and are not due to random or localized traffic variations.
In our approach, called Split-and-Merge, local detection modules, geographically split in the
network, collect traffic and send anomalies to a central controller in charge of aggregating them,
like a Collaborative IDS (CIDS) [57] would do (Fig. [2.3b). The number of false positives can so
be significantly reduced as only anomalies detected in several places are taken into consideration.
Our contributions differ from existing botnet’s detection approaches given the following reasons.
First, it targets long-term anomaly detection enabling to detect major changes in the use of ports,
and thus underlying botnets. As a matter of fact, current approaches for botnets’ detection
[49. 201, 55| 61, [62], 60, 17, 56l 57, 68|, 14, 19] 64] 63] focus on real-time intrusions and may miss
stealthy changes visible at a several days scale. Second, it focuses on destination ports, compared
to other approaches [49, 20}, 55, [61], 62, [60], 17, 56|, 57, 58, 14, [19] aggregating packets per-flow or IP
address, which thus are not able to detect scans coming from very distinct source IP addresses and
targeting a large variety of destination IP addresses. Third, it leverages several detection modules
geographically split in the network, in order to reduce the number of false positives. While most
IDSs are localized at a single vantage point [49, 20} (18| 17, [61], [60L 19, [14], 64, [63], we explore a
collaborative IDS approach only marginally adopted at the state of the art [55, 56], 57, 58|, [62].
Finally, its features are computed over diversity indices, packet size, and TCP flags, using a
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change-point detection system, which is not done in [49] 18| (17, 20, 55| [61), 62} 60, 56, 57, 58, 19]
63, [64]. We refer the reader to the specific state-of-the art addressed in Section .

For our evaluation, we use the MAWTI dataset [34] that provides daily traces of a transpacific
backbone link. The dataset is restricted to a single Internet Service Provider (ISP), hence
corresponds to what could be used at the ISP-level. Differently than the common approach that
uses real traces to generate background traffic, we use the MAWTI traces as they are, with the aim
at detecting real attacks from it, providing a better knowledge of the dataset at the same time.
We also use the UCSD Network Telescope dataset that consists of a globally routed, but lightly
utilized /8 network prefix. Inbound traffic to non-existent machines is unsolicited and results
from a wide range of events, including misconfiguration, scanning of address space by attackers or
malware looking for vulnerable targets, and backscatter from randomly spoofed denial-of-service
attacks. This way, we are able to compare the anomalies found in both datasets. We present the
intrusion detection results against known attacks arisen the last three years, not detected by the
MAWILab detection algorithm [I08], and we show that we can detect some unknown anomalies
as well; in order to classify anomalies, we observe the simultaneous evolutions of features. We
experimentally show that our algorithm greatly reduces the number of false positives compared
to a single IDS running on the whole dataset. For the sake of reproducibility and further research,
our source code is publicly available at [I09].

The remainder of this chapter is organized as follows: Section [2.2] surveys the related work.
Section [3.2] presents our solution detecting distributed changes in port usages, along with the
analysis of its complexity. Section introduces the two datasets we leverage for our analysis.
In Section [3:4] we present results from the numerical evaluation, highlighting the benefits Split-
and-Merge can grant in terms of false detection rate and detection accuracy, and also proposing
a classification of the noticed anomalies. Finally, Section [3.6] concludes this chapter.

3.2 Split-and-Merge Port-centric Network Anomaly Detection

We present our anomaly detection proposal, detailing the reference CIDS architecture and the
design of the features.

3.2.1 Rationale

We already anticipated some of our key modeling choices: we aggregate traces based on destina-
tion ports, in a distributed CIDS setting, and target to design features minimizing the degree of
arbitrarity in their choice and interpretation. Our objective is to model the usage of each port, by
computing features each time the same day at the same daytime slot. The features characterize
the port usage, e.g., if it is mainly targeted by port scan or not, if the hosts are numerous or not,
etc. We work on a limited time window over a day, which we assume to represent port usages
this day.

In our reference distributed CIDS setting, several detection module agents run on different
subnetworks so that they can capture each subnetworks’ peculiarities and cover the CIDS network
context completely. Based on the time evolution of the features of a port, the detection modules
detect anomalies and report them to a correlation module. Hereafter we detail the different steps
of our detection module logic, as well as the anomaly aggregation logic of the correlation module.
At each daytime slot, every detection module performs several tasks in a row (each task is then
further detailed in the following subsections).



34 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

Data collection

First, the detection module collects packets in its scope in a single group of Np.ten €elements,
and stores packet attributes in lightweight Collection Tables (CTs). For each incoming packet, it
identifies the destination port and updates four key-value CTs and a counter for the given port:
CT1: unique source IP addresses; CT2: unique destination IP addresses; CT3: unique source
ports; CT4: unique size of packets; and Counter: number of SYN packets. Each entry in one
CT (e.g., a source IP address in CT1) is associated with a counter of occurrences.

Features computation

After data collection, a filter is applied on CTs so that only the ports with at least N,.;, packets
stored are kept to be analyzed. For every remaining destination port, the detection module
computes some features based on CTs and updates the Features Table (FT) with new values.
The FT constantly contains Ngqys entries (we use one day per week in our tests) so that for
every new capture, the former value is deleted and the new one added.

Anomaly detection

Lastly, the local detection module analyzes the port-specific features time series over Ngqys in
order to detect an anomaly with a change-detection algorithm. When an anomaly is spotted,
based on a warning threshold 7; on a given feature 4, an alert is created and transmitted to the
central correlation module. The collection and detection parameters resumed in Table are to
be customized. At the end of the detection process, the correlation module aggregates the alerts
received from all detection modules. It is then able to deduce and qualify an attack by noticing
the distributed alerts.

‘ Notation | Definition

Nyateh Number of packets collected per day
Npin Minimum number of packets per port
Ndays Number of days in the sliding window

T; Threshold to spot an anomaly for feature i

Table 3.1: Parameter notations.

3.2.2 Features design

To observe an anomaly on a port, looking at the number of packets over time is not sufficient.
Indeed, subtle changes in the nature of packets can happen on a port already massively scanned.
Therefore, we need to design significant features.

Our features choice is resumed in Table 3.2l nbPackets represents the number of packets
stored for this port and enables one to see if a port is suddenly massively used. srcDivindexr and
destDivIndexr highlight significant variations in the proportion of unique source and destination
IP addresses. An increase in srcDivinder may be an attack perpetrated by bots, while its decrease
can indicate an attack led by only a few actors. A rise in destDivindexr may represent a large
number of victims, as a botnet scanning random IP addresses or the whole IPv4 range would
cause. portDivindex reflects the diversity in source ports, its diminution may represent the usage
of a spoofed port. A variation in the meanSize feature suggests a change in packets nature,
like crafted packets sent by bots. A variation in the stdSize feature can be caused by a change
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in packets nature as well, and in addition, is not easy to fool for an attacker: if it increases,
the diversity among packets is higher, so probably there are suddenly both crafted and regular
packets; if it decreases, the diversity among packets is lower, hence the traffic more specific. This
can be caused by malicious software that kills other processes bound to the same port. Finally,
a variation in perSYN implies an increase or a decrease in the port scan. Therefore each port p
at a given day is characterized by the set of features computed from CTs, shown in Table

‘ Feature ‘ Computed from ‘ Description ‘
srcDivinder | CT1 % of unique source IP addresses
destDivindex | CT2 % of unique destination IP addresses
portDivinder | CT3 % of unique source ports
meanSize CT4 Mean packets size
stdSize CT4 Standard deviation of packets sizes
perSYN Counter % of SYN packets
nbPackets Any CT Number of packets

Table 3.2: Features definition.

We denote the time series of feature i containing N days (i.e., Ngqys) for port p as ff?N =
(:L'il, ...,xf,j, ...,x*ZN), with xgj being the value of feature i for port p on day j. Features are
computed at a given frequency, set to once every week in the following simulations (in particular
the same day at the same daytime slot, in order not to be influenced by weekly or daily variations).

Algorithm [I| below shows how to update the FT{ports x features * Ngqys} by computing
features by port from packet attributes found in CTs.

Algorithm 1: updateFT(CTs, FT, Ny,in)
1: Delete first column of FT and shift others
2: for all port p € ports do

3: if length(CT1[p|) > Npin then > Check condition on the number of packets
4: for all att € attributes do
5 feature f < relativeMetric(att) > 1 or 2 features per attribute (e.g., mean and

std for packet size)

FT[p][f][currentDay| = CT f|[p|.apply(f)
7: return FT

2

3.2.3 Local anomaly detection

Assuming a feature is more or less likely to vary (standard deviation) depending on its type,
and usually around the same (mean) value, the normal distribution logically quite fits as its
distribution. The validity of this assumption is assessed later in Section We model the
time series fﬁ N = (:Uf 15 ...,wf’ y) over N days as a normal distribution N (7, ap2) of mean uP

and standard deviation o? such that:

N

N

1

pP = fo,j and o = N Z(If’j — uP)2. (3.1)
j=1 j=1

As previously introduced in Section the Z-score is a well-known simple statistical metric,
commonly used to automatically detect a change in the time series. It is the measure of how
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many standard deviations below or above the mean a data point is, and the larger the Z-score,
the more unusual the value. For the given time series f?’ = (z f 1reees J:f ~) approximated by a

normal distribution A (1, 0?”), the Z-score of the new value 2
computed as follows:

PN+ of feature 7 at time N + 1 is

b — P
x; I
D i, N+1
ZiNy1 = o (3.2)
However, the Z-score is computed from the mean, a metric influenced by outliers and es-
pecially extreme values. Alternatively, the modified Z-score uses the median and the median
absolute deviation (MAD) from the median, instead of the classical mean and standard devia-
tion respectively, which makes it outlier-resistant [15].
Given the time series median fl‘f‘j ~» the modified Z-score ij ~n41 of the new value :):z N41 Of
feature ¢ at time N + 1 is computed as:

0.6745 - (2 _ fP
( i, N+1 fz,N) (33)

M vy = =

N+1 .

' medzan(|mﬁNH - ff?N’)

An anomaly is detected if the absolute value of the modified Z-score exceeds a threshold T;.
For all 4, we adopt a threshold value of 3.5 as recommended in [I5]. Algorithm [2| presents the
anomaly detection process taking place in each local detection module, to detect anomalies from
features time series found in FT.

Algorithm 2: runDetection(FT, Nyqys)

1: median < 0
2: mad < 0 > median absolute deviation
3 mZ <0 > modified Z-score
4: list anomalies
5. for all port p € FT.ports do
6: for all feature f € FT.features do
7 series <— FT[p][f]
8: orderedSeries < quickSort(series)
- . 1 Ngayst1
9: median < orderedS emes[+]
10: sum 0
11: for all value € series do
12: sum < sum + |value - median|
13: mad <— #:y%s
4 e 0.6745 - (semes[cu;:jgtDay] — median)
15: if mZ > 3.5 then anomalies.add({p, f})

16: return anomalies

The modified Z-score is used to identify anomalies on all features, except for nbPackets: the
latter is only used to spot emerging ports, i.e., ports that were not in use before. That is, an
anomaly is spotted if at least a given number of packets Ny, is collected on one port for the
first time in Ngqys, so that z N1 = Nimin and z¥ ;< Nmin for each je[l, N].

Once all features of all ports have been analyzed the detection module sends the content of
the anomalies to the correlation module as alerts. For each alert, the module specifies its ID m,
the anomalous port p, the involved feature 7, the time series ff ~» and the new anomalous value
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x£N+1. An alert is so defined by a 5-tuple {p, m,1, ffN’ng-H}' For example, in Fig. the
detection module B notices an anomaly on port 89 for feature srcDivindex. It also provides the
time series of feature f/'y and 7 v, , though not written on the Figure.

Note that in our implementation, the time series are composed of one value picked each week
at the same hour. This enables one to avoid variations in the time series due to seasonality,
without introducing any additional mechanism that would induce an increased complexity. As a
future work, we could also refine our methodology so that it also takes into consideration trend
variations.

3.2.4 Central correlation

The correlation module receives low-level alerts from all detection modules. The distinction
between localized (noticed in one subnetwork) and distributed (noticed in several subnetworks)
alerts is made here. As we are searching for distributed attacks, the correlation module groups
the low-level alerts to keep only the ones reported by at least k subnetworks; we set k = 2 in this
work. In the example of Fig. [3.1] several detection modules send alerts to the correlation module;
among them, two subnetworks report a change in the portDivindex feature on port 23. Hence
the correlation module induces an anomaly on this port. It is even better if similar anomalies
have been noticed on the same port for several features.

We define the Anomaly Score (AS) as the number of anomalies noticed for one port by all
monitors and for all features; e.g., if for one port, a monitor detects anomalies on two features
and another on six features, the AS is 8. The correlation module is able to compute the AS
after having received alerts from all monitors during the same time slot. When it identifies top-
level anomalies, it warns all detection modules about the anomalous ports. Thus they are able to
analyze these ports as a priority next time. Ad-hoc actions can also be taken, as a function of the
programmability of the local network, such as port blocking, mirroring, deep-packet-inspection,
for the sake of reporting in a possible further detailed analysis.

3.3 Network traffic datasets

The WIDE project provides researchers with daily traces of a transpacific link, named the MAWI
archive [34]. Traces are collected between their network and the upstream ISP. Each file contains
15 minutes of traffic flows, captured between 14:00:00 and 14:15:00 local time. This represents
usually between 4 and 10 GB of traffic for one file. Before being released, traces are anonymized
so that no personal information can be extracted. Specifically, the application data is removed
and [P addresses are scrambled with a modified version of tcpdpriv following two principles:
1) it is collision-free so that there is a one-to-one mapping between IP addresses before and
after anonymization; 2) it is prefix-preserving so that if two IP addresses share k bits before
anonymization, the two anonymized IP addresses will also share k bits. This enables one to
retrieve the subnetworks after anonymization.

In addition, the Center for Applied Internet Data Analysis (CAIDA) provides the UCSD
Network Telescope dataset [32]. It consists of a globally routed, but lightly utilized /8 net-
work prefix, that is, 1/256th of the whole IPv4 address space. It contains a few legitimate hosts;
inbound traffic to non-existent machines - so-called Internet Background Radiation (IBR) - is un-
solicited and results from a wide range of events, including misconfiguration, scanning of address
space by attackers or malware looking for vulnerable targets, backscatter from randomly spoofed
denial-of-service attacks, and the automated spread of malware. CAIDA continuously captures
this anomalous traffic discarding the legitimate traffic packets destined to the few reachable TP
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Figure 3.1: Architecture example. Local modules run at different points in the network and
send alerts to the central correlation module. The controller will then be able to keep only dis-
tributed ones. Here it spots an anomaly on port 23 for feature portDivindez, coming from two
different places.

addresses in this prefix. They provide two types of files: raw data stored into pcap files for the
ongoing month, and hourly FlowTuple files for the last 13 years — that we used. Note that this
dataset does not contain several subnetworks as the MAWI one does. Thus the number of false
positives (i.e., detecting an attack targeting only this subnetwork but not the whole Internet)
may be higher. The objective of using this second dataset is to evaluate the efficiency of our
method as of detected botnets and, most of all, to compare the anomalies found in each of the
datasets and to study the common ones.

Note that by default, we refer to the MAWI dataset when we do not specify which one we
use. As the UCSD dataset only contains one vantage point, we do not use it for all experiments,
instead we use it to cross-check the anomalies found in the MAWI dataset since there is no
ground-truth.

3.4 Evaluation

In this section, we evaluate the performance of the Split-and-Merge detection process using
real traffic traces. First, we aim to validate our assumption that the feature data is normally
distributed around its median. We also analyze the results to adequately determine the features
and parameters. Finally, we look at the anomalies found during the last three years and aim to
classify them. The source code used for the detection and evaluation is available in [109].
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Figure 3.2: Empirical CDF of the MSE between the true distribution and the regression.

3.4.1 Normal distribution fitting

It is important to empirically assess the validity of a key Split-and-Merge assumption, which is
that the features data is expected to be normally distributed around the median. Indeed, we use
the modified Z-score to support the detection logic.

It is well known from the state of the art that Internet traffic exhibits a power-law behavior
[110] for the packet counts. Among Split-and-Merge features, we consider the nbPackets feature
only to characterize ports’ behavior (for the ports with sufficient traffic). Moreover, other features
represent diversity indices, attributes means, and standard deviations.

To assess the assumption that normal distribution is a well fit for the nbPackets feature,
and that it is better than the power-law distribution, we compute the mean square error (MSE)
between the measured and synthetically generated histogram [I11], for each tuple of port and
feature so that:

1
Nbins

Nbins o
MSE = Z [HzN(b) - HffN(b)F (3.4)
b=1

where H ; denotes the normalized histogram of the N days time series f7; of feature ¢ and

port p, H 5 y the histogram with matching mean and standard deviation, and Np;ps the number
of bins in the histograms. The latter is chosen according to Sturges’ rule stating that the number
of bins K should be equal to K = 1+ 3.322(log;,(N)) with N the number of samples. Using
this method, we used 4 bins for 10 samples.

Given the several thousands of ports to analyze each day for each feature, the Cumulative
Distribution Function (CDF) represents the cumulative probability for one feature to reach a
given MSE by taking into account all ports. We plot the empirical CDF of the MSE by considering
four different regressions: a normal distribution with matching mean and standard deviation in
Fig. a normal distribution with matching median and median absolute deviation in Fig.
[3:2D] a log-normal distribution with matching mean and standard deviation in Fig. and a
log-normal distribution with matching median and median absolute deviation in Fig. The
reported results are those for 2016 traffic (we observe similar results in 2017 and 2018).

We observe that: (i) the regression using the log-normal distribution gives far worse results
than the normal distribution; (i) for the normal distribution, the regression using the median
and the median absolute deviation gives a better approximation than the one with the mean and
the standard deviation; (7i) for the normal distribution, all features produce more or less the
same MSE.

By using a normal distribution, we found out that the MSE is very low for all features, which
is an empirical validation of this assumption.
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Figure 3.3: Empirical CDF of the chi-squared test between the true distribution and the re-
gression.

In addition to this approach comparing the MSE of both distributions, the chi-squared test
is commonly used to test association of variables in two-way tables where the assumed model of
independence is evaluated against the observed data. It is used to test whether observed data
differ significantly from theoretical expectations. Fig. 77 shows hereafter the p-value for the
chi-squared distribution: (i) between the real distribution and the normal distribution based on
mean and standard deviation (Fig. ??), and (ii) between the real distribution and the normal
distribution based on median and median standard deviation (Fig. 77?).

From these figures we can draw the same conclusions than for those using the MSE, that is:
(i) the normal distribution based on median is fitter than the one based on mean, and (i) all
features have more or less the same p-value.

3.4.2 Local anomaly detection

This section gives the outcome of several local detection modules running simultaneously, each
of them being situated in a MAWI subnetwork. We pick each Thursday from March 31 to Oct.
20, 2016. Thresholds T; for an anomaly are all set to 3.5. The minimum number of packets Np,in
is set to 20. The number of days we chose is Ny,ys = 10. We will tune these two last values later
in Section [3.4.61

Fig. [3-4]gives an example of the modified Z-score evolution for the srcDivInder feature on port
TCP/3389. On Sept. 29, the absolute value of the modified Z-score is over the threshold for four
detection modules situated in different subnetworks, resulting in an anomaly. The subnetwork F
contains only a few points because most of the time, there is little (fewer packets than Ny,;,) or
no traffic on port 3389 in this subnetwork. The same explanation applies to subnetworks that
do not appear at all in the legend.

3.4.3 Comparison between aggregated and split views

In this experiment, we compute the number of alarms for each feature considering two ap-
proaches: (i) an aggregated view where an anomaly is observed considering the traffic from all
subnetworks aggregated, (ii) a split view where only distributed anomalies (i.e., seen in at least
two subnetworks) are conserved. The results are presented in Table for 2016, while similar
findings have been observed in 2017 and 2018. We observe that the number of anomalies — thus
the number of false positives — is significantly lower with the split view.
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Figure 3.4: Evolution of the modified Z-score in 5 subnetworks for feature srcDivindez on port
3389 over time (2016).

Feature H Aggregated view ‘ Split view \

srcDivIndex 11,376 101
destDivindex 11,409 96
portDivindex 11,375 102
meanSize 10,978 91
stdSize 10,549 67
perSYN 851 98

Table 3.3: Number of anomalies for both approaches (2016).

s Aggregated view Split view
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Figure 3.5: Number of anomalies for feature srcDivindex. In aggregated view, the score is 1 if
there is an anomaly on the whole traffic, else 0. In split view, it is the number of anomalous
subnetworks.

The example of feature srcDivindez is shown in Fig. with the number of anomalies
expressed in logarithmic scale. With a split view, we observe that considering only distributed
alerts considerably diminishes the number of anomalies to deal with. Indeed, the number of
anomalies for a single variation (score of 1) is 100 times higher than for a distributed variation
(score of 2), decreasing the number of alerts from 3,918 to 66.
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3.4.4 Last years panorama

In this subsection, we launch the anomaly detection process on a large period to examine the
type of anomalies we can detect. We describe hereafter the main anomalies arisen these last
three years, in the MAWI dataset and the UCSD dataset.

In the MAWI dataset

Fig. (2016), [3.6b| (2017), and (2018) show the number of ports with a given anomaly
score each day, highlighting the main anomalies arisen these last three years. In all cases, we
observe very few alarms each day, which is quite convenient for the network administrator, as too
numerous alerts is considered as one reason why IDS are underused. Furthermore, none of these
anomalies have been detected by MAWILab. Also, we tag events observed in both datasets
with a red frame in Fig. [3.6] Note also that lots of ports score 5 anomalies, as a significant
variation on one port in one subnetwork generates simultaneous alerts for all features (except
for the feature perSYN that gives poor results as shown later in Section , i.e., b alerts. We
therefore describe the main anomalies, whose anomaly score is the highest, and we also indicate
if we retrieved these anomalies in the UCSD dataset.

2016 period. Eight noticeable scores appear in Fig. depicting this first period.

i) The 19-score on Feb. 19 is a scan prior to the DROWN attack [112], exploiting a vulnera-
bility in Secure Sockets Layer version 2.0 (SSLv2) (CVE-2016-0800).

i1) The 17-score on May 19 corresponds to an exploit on port 6379 Redis, an in-memory key-
value store used as a database or a cache. This day, numerous IP addresses with different source
port numbers targeted this port. It could be a botnet or numerous different hosts scanning for
vulnerable devices. Indeed, Redis servers do not require authentication by default and therefore
are easy victims of this type of scan. Also, this happens only a few days after 