
HAL Id: tel-03190474
https://hal.science/tel-03190474v1

Submitted on 6 Apr 2021 (v1), last revised 14 Feb 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel anomaly detection and classification algorithms
for IP and mobile networks

Agathe Blaise

To cite this version:
Agathe Blaise. Novel anomaly detection and classification algorithms for IP and mobile networks.
Networking and Internet Architecture [cs.NI]. Sorbonne Université, 2020. English. �NNT : �. �tel-
03190474v1�

https://hal.science/tel-03190474v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
SORBONNE UNIVERSITÉ

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique de Paris
Laboratoire d’informatique de Paris VI

Présentée par

Agathe BLAISE

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITE

Sujet de la thèse :

Novel anomaly detection and classification algorithms for IP and
mobile networks

soutenue le 14/12/2020

devant le jury composé de :

Marco Fiore, IMDEA Networks Rapporteur
Razvan Stanica, INSA Lyon, Inria Rapporteur
Clémence Magnien, CNRS, Sorbonne Université Examinateur
Sahar Hoteit, Univ. Paris Saclay, Centrale-Supélec Examinateur
Aline Carneiro Viana, Inria Saclay Examinateur
Thi-Mai-Trang Nguyen, LIP6, Sorbonne Université Membre invité
Sandra Scott-Hayward, Queen University Belfast Membre invité
Stefano Secci, Conservatoire National des Arts et Métiers Directeur de thèse
Vania Conan, Thales Co-encadrant
Mathieu Bouet, Thales Co-encadrant

THÈSE DE DOCTORAT DE
SORBONNE UNIVERSITÉ

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique de Paris
Laboratoire d’informatique de Paris VI

Présentée par

Agathe BLAISE

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITE

Sujet de la thèse :

Nouveaux algorithmes de détection d’anomalies et de
classification pour les réseaux IP et mobile

soutenue le 14/12/2020

devant le jury composé de :

Marco Fiore, IMDEA Networks Rapporteur
Razvan Stanica, INSA Lyon, Inria Rapporteur
Clémence Magnien, CNRS, Sorbonne Université Examinateur
Sahar Hoteit, Univ. Paris Saclay, Centrale-Supélec Examinateur
Aline Carneiro Viana, Inria Saclay Examinateur
Thi-Mai-Trang Nguyen, LIP6, Sorbonne Université Membre invité
Sandra Scott-Hayward, Queen University Belfast Membre invité
Stefano Secci, Conservatoire National des Arts et Métiers Directeur de thèse
Vania Conan, Thales Co-encadrant
Mathieu Bouet, Thales Co-encadrant

Contents

1 Introduction 11
1.1 Context and motivation . 11
1.2 Statistical and ML techniques . 12
1.3 Data analysis applications to networking . 13
1.4 Contributions and thesis outline . 14

2 Related work 17
2.1 Statistical and machine learning techniques . 17

2.1.1 Statistical learning . 17
2.1.2 ML techniques: paradigms and addressed problems 18
2.1.3 Data collection . 20
2.1.4 Feature design . 21
2.1.5 Performance metrics and model validation 22

2.2 Intrusion detection . 23
2.2.1 Intrusion detection methodologies . 23
2.2.2 Large-scale intrusion detection . 24
2.2.3 Application to botnet detection . 25

2.3 Botnet Detection . 26
2.3.1 Flow-based techniques . 26
2.3.2 Graph-based techniques . 28

2.4 Spatiotemporal anomaly detection in cellular networks 28
2.4.1 Detection of spatiotemporal anomalies . 28
2.4.2 Per-app mobile traffic analysis . 29
2.4.3 Group anomaly detection . 29

2.5 Summary . 30

3 Detection of zero-day attacks 31
3.1 Introduction . 31
3.2 Split-and-Merge Port-centric Network Anomaly Detection 33

3.2.1 Rationale . 33
3.2.2 Features design . 34
3.2.3 Local anomaly detection . 35
3.2.4 Central correlation . 37

3.3 Network traffic datasets . 37
3.4 Evaluation . 38

3.4.1 Normal distribution fitting . 39
3.4.2 Local anomaly detection . 40
3.4.3 Comparison between aggregated and split views 40

5

6 CONTENTS

3.4.4 Last years panorama . 42
3.4.5 Anomaly score distribution . 46
3.4.6 Features and parameters choice . 47
3.4.7 Anomalies classification . 50
3.4.8 Ground-truth . 51

3.5 Complexity and performances analysis . 52
3.5.1 Complexity analysis . 52
3.5.2 Execution performance . 53

3.6 Conclusion . 53

4 Botnet Fingerprinting 55
4.1 Introduction . 55
4.2 Dataset . 57
4.3 Bots Fingerprints . 58

4.3.1 Preliminary example . 58
4.3.2 Methodology . 58
4.3.3 Flow records collection and formatting . 60
4.3.4 Quantification (attribute frequency distributions) 60
4.3.5 Signatures formatting . 63

4.4 Bot Detection . 64
4.4.1 BotFP-Clus . 64
4.4.2 BotFP-ML . 67

4.5 Evaluation . 67
4.5.1 BotFP-Clus . 67
4.5.2 Comparison between BotFP-Clus and BotFP-ML 70
4.5.3 Comparison to state-of-the-art detection techniques 71

4.6 Complexity . 72
4.6.1 Attribute frequency distributions computation 72
4.6.2 Training . 73
4.6.3 Classification . 73
4.6.4 Comparison to other techniques . 73

4.7 Conclusion . 75

5 Group anomaly detection in mobile apps usages 77
5.1 Introduction . 77
5.2 Measurements and dataset . 79
5.3 ASTECH Methodology . 80

5.3.1 Algorithmic approach . 80
5.3.2 Notations . 81

5.4 Time series anomaly detection . 83
5.4.1 Time series decomposition . 83
5.4.2 Detection of raw anomalies . 84

5.5 Group anomalies . 85
5.5.1 Identification of abnormal snapshots . 85
5.5.2 Detection of group anomalies . 86
5.5.3 Fine-grained characterization of group anomalies 86

5.6 Numerical results . 89
5.6.1 Raw anomalies . 90

CONTENTS 7

5.6.2 Group anomalies . 91
5.6.3 Group anomalies classification . 95

5.7 Conclusion . 98

6 Conclusion 99
6.1 Summary of contributions . 99
6.2 Perspectives . 100

6.2.1 Detection of zero-day attacks . 100
6.2.2 Botnet Fingerprinting . 101
6.2.3 Group anomaly detection in mobile app usages 101

Appendix A Virtual network function service chaining anomaly detection 105
A.1 Introduction . 105
A.2 VNF Service Chaining Problematics . 106
A.3 VNF Service Markov Chain . 108
A.4 VNF Service Chain Classification . 109

A.4.1 Normal Behavior Cluster . 109
A.4.2 VNF Chains Classification . 110

A.5 Simulations and Performance Analysis . 111
A.5.1 Evaluation Metrics . 111
A.5.2 Resolution of the Decision Criterion . 111
A.5.3 Classification Results . 113

A.6 Conclusion . 113

Appendix B Botnet Fingerprinting supplementary materials 115
B.1 Observation of bots fingerprints . 115
B.2 Importance of features selection . 115

Bibliography 116

8 CONTENTS

Abstract

English version

Last years have witnessed an increase in the diversity and frequency of network attacks, that
appear more sophisticated than ever and devised to be undetectable. At the same time, cus-
tomized techniques have been designed to detect them and to take rapid countermeasures. The
recent surge in statistical and machine learning techniques largely contributed to provide novel
and sophisticated techniques to allow the detection of such attacks. These techniques have
multiple applications to enable automation in various fields. Within the networking area, they
can serve traffic routing, traffic classification, and network security, to name a few. This thesis
presents novel anomaly detection and classification techniques in IP and mobile networks. At
IP level, it presents our solution Split-and-Merge which detects botnets slowly spreading on the
Internet exploiting emerging vulnerabilities. This technique monitors the long-term evolutions
of the usages of application ports. Then, our thesis tackles the detection of botnet’s infected
hosts, this time at the host-level, using classification techniques, in our solution BotFP. Finally,
it presents our ASTECH (for Anomaly SpatioTEmporal Convex Hull) methodology for group
anomaly detection in mobile networks based on mobile app usages.

9

10 CONTENTS

French version

Ces dernières années ont été marquées par une nette augmentation de la fréquence et de la di-
versité des attaques réseau, qui apparaissent toujours plus sophistiquées et conçues pour être
indétectables. En parallèle, des techniques sont développées pour les détecter et prendre des
contre-mesures rapidement. Récemment, l’essor des techniques statistiques et d’apprentissage
machine ("machine learning") ont permis un développement rapide de techniques innovantes
visant à détecter de telles attaques. Ces techniques ont des applications dans de nombreux
domaines qui gagneraient à être davantage automatisés. Dans le domaine des réseaux, elles
s’appliquent par exemple au routage et à la classifcation de trafic et à la sécurité des réseaux.
Cette thèse propose de nouveaux algorithmes de détection d’anomalies et de classification ap-
pliqués aux réseaux IP et mobiles. Au niveau IP, celle-ci présente une solution Split-and-Merge
qui détecte des botnets qui se propagent lentement sur Internet en exploitant des vulnérabil-
ités émergentes. Cette méthode analyse l’évolution à long-terme de l’usage des ports applicatifs.
Ensuite, celle-ci aborde la détection d’hôtes infectés par un botnet, cette fois en utilisant des tech-
niques de classification au niveau de l’hôte, dans une solution nommée BotFP. Enfin, cette thèse
présente notre algorithme ASTECH qui permet la détection d’anomalies brutes dans les séries
temporelles dans les réseaux mobiles, les regroupe en enveloppes convexes spatio-temporelles, et
finalement induit plusieurs classes d’événements.

Chapter 1

Introduction

The diversity and frequency of network attacks have boomed in recent years, and such attacks
appear more sophisticated than ever and devised to be undetectable. At the same time, adaptive
techniques have been designed to detect them as soon as possible and to take rapid countermea-
sures. The recent surge in statistical and ML techniques largely contributed to provide novel and
sophisticated techniques to allow the detection of such attacks. These techniques have multiple
possible implications in any system that would require automation, in many fields. Within the
networking area, they can serve traffic routing, traffic classification, network security, to name a
few. We note that attackers may also leverage data analysis and ML techniques to finely craft
their attacks and mimic normal end-user behaviors, which makes their detection even more com-
plex. In this introduction, we first discuss the needs for appropriate data analysis techniques for
cyber-security (Section 1.1). We then present the surge in statistical and Machine Learning (ML)
techniques (Section 1.2), and their possible applications to address current challenges on network
security (Section 1.3). We finally introduce our different contributions to the field (Section 1.4).

1.1 Context and motivation

The nature of anomalies detected in network traffic data is quite diverse [1]. Anomalies range
from outages (including equipment malfunctions and outages from cloud and mobile network
operators) and operational events (including updates and ingress shifts), to unusual end-users
behaviors (including flash crowds and point to multi-point communications) and malicious ones
(including denial of service attacks and malicious scans). Therefore, we rather look at different
granularity levels and range of features to take into account each anomaly type’s peculiarities.
For example, Denial-of-Service (DoS) events may be detected by looking at per-flow volume
anomalies, rather than to per-packet attributes. Network and port scanning may be detected at
the flow-level (or even at the port-level), as each new port or combination of port and target IP
generates a new flow. Finally, botnet detection may be performed at the flow-level and preferably
at the host-level.

Furthermore, even if we focus on the detection of malicious behaviors, we also notice a
wide variety of attacks that require specific detection techniques. The diversity in attackers’
operating modes renders the appropriate detection more difficult. Attacks are also constantly
more sophisticated, as illustrated by the Mirai botnet [2] that launched a massive attack towards
DNS servers of major Internet providers in 2016, cutting access to high-profile websites for
several hours. Beforehand, it reunited nearby 50,000 devices in its bot army, but has not been
detected until too late. Mirai acted like a revolutionary IoT-based malware since the release of

11

12 CHAPTER 1. INTRODUCTION

its source code [3] that led to a huge increase in other botnets’ development. As a matter of
fact, malware that targets Internet-of-Things (IoT) devices is responsible for many Distributed
Denial-of-Service (DDoS) attacks. It exploits the lack of security of connected objects to create
botnets, spreading extremely fast. We expect to see an increase in such IoT attacks, along
with the explosion of IoT devices that could grow up to 125 billion by 2030 [4]. Recently, DDoS
attacks significantly increased in terms of number and duration; indeed, the first half of 2018 saw
seven times more large attacks (higher than 300 Gbps) compared to the same period in 2017, as
noted in a Kaspersky report [5]. Furthermore, these botnets slightly propagate and affect whole
networks without even being noticed, until they reach their real target. Most botnets today are
designed to serve economic ends, as illustrated by Botnet as a Service (BaaS) [6] services that
sold instances of botnets to third parties.

Designed to ensure cyber-security in networks, Intrusion Detection Systems (IDSs) aim to
identify malicious activities and related threats. However, as a matter of fact, some botnets are
not detected during their spreading, but only at the time of the final attack. We specifically
study the case of the Mirai botnet and we invoke several reasons why it has not been detected
soon enough. (i) Current IDSs traditionally work with traffic granularity such as the flow, host,
or packet-level. They do not monitor application ports and thus may miss global changes on the
ports involved during the propagation of botnets. Ports can be scanned to fingerprint the target
machine, to exploit known vulnerabilities, or to communicate with a Command-and-Control
(C&C) server [7]. The sole common denominator for a botnet coming from very distinct sources
and targeting lots of hosts is the port it scans. However, an IDS working on IP addresses would
be unable to notice the anomalous port. (ii) Moreover, most IDSs work on small variations of
traffic, generally using sliding windows of several seconds. Therefore, they cannot build long-
term profiles per port and detect major changes in their usage. (iii) IDSs are usually deployed
at a single point in the network, while ISP-scale attacks are only visible by looking at a holistic
view of a wide area network. For these reasons, several botnets like Mirai have not been detected
until too late. It is thus possible to develop dedicated algorithms to detect botnets of these kinds,
but by design, they are not made to adapt to other anomalies types and thus appear deficient
in detecting them. In fact, we have to find a trade-off between the detection accuracy (which is
high if the algorithm is crafted to detect a specific kind of attack) and its scope (which is high
if the algorithm can adapt to variants of such attacks or even other attack types).

This introduces a number of challenges for network security: attackers employ complex tech-
niques to hide and the attacks become more and more sophisticated. There is thus an urgent
need to detect this kind of threat as soon as possible. Dedicated techniques are designed to
prevent systems and networks from being corrupted and to limit harms in the case of an attack.
Cybersecurity researchers and attackers are the two players in this cat-and-mouse fight. The
first ones seek to understand the modus operandi of attackers, sometimes very complex, and
to design robust Intrusion detection systems (IDSs) adapted to constantly evolving attacks. In
return, attackers employ innovative techniques to slip by unnoticed and go through the radar.

1.2 Statistical and ML techniques

In 1959, Arthur Samuel, a pioneer in the field of Machine Learning, introduced it as the field
of study that gives computers the ability to learn without being explicitly programmed: "A
computer can be programmed so that it will learn to play a better game of checkers than can be
played by the person who wrote the program" [8]. Such techniques are designed to solve complex
problems and enable automation in different areas. However, it was initially eschewed due to its
large computational requirements and the limitations of computing power present at that time.

1.3. DATA ANALYSIS APPLICATIONS TO NETWORKING 13

Due to the recent improvements in computing capacities and ML techniques and in big data
storing and processing, last years have witnessed a large surge of statistical and ML techniques.
Originally, statistical models have also been used to solve problems and enable automation. Like
ML models, such techniques serve anomaly/outlier detection, for example through changepoint
detection algorithms (e.g., based on the z-score metric) or time series decomposition. ML models
are based on statistical learning theories and are classified into four learning paradigms: classi-
fication, regression, clustering, and rule extraction, each of those including several algorithms.

Therefore, both statistical and ML models contribute to the field of data analysis, but with
slightly different purposes [9]. Statistical models require a good understanding of the data and
are designed for inference about the relationships between variables, whereas ML models are
designed to make the most accurate predictions possible. They also work well in conjunction
with each other. In [10], the authors compare the performances of statistical and ML methods,
for multiple forecasting horizons. According to their results, ML methods need to become more
accurate, requiring less computer time, and be less of a black box. They also demonstrate that
traditional statistical methods are more accurate than ML ones, as they point out the need
to discover the reasons involved and devise ways to reverse the situation. Nevertheless, the
authors specify that their findings are only valid for the specific dataset being used. For more
details about both techniques, Chapter 2 provides extensive background and related work that
are fundamentally related to data analysis applied to network security.

1.3 Data analysis applications to networking

Data analysis, composed of statistical and ML techniques, has a myriad of possible applica-
tions in the networking field. They include traffic prediction, traffic classification, traffic routing,
congestion control, resource management, fault management, QoS and QoE management, and
network security [11]. In our dissertation, we cover specifically the traffic classification and
network security fields, seeking to provide novel algorithms designed to strengthen network cy-
bersecurity. Traffic classification aims to accurately characterize and categorize network traffic
into a number of classes of interest, according to various features. It enables network oper-
ators to perform a wide range of network operation and management activities, like capacity
planning, differentiation, performance monitoring, or resource provisioning. Generally, network
traffic classification methodologies can be decomposed into four broad categories that leverage
port number, packet payload, host behavior, or flow features, that we study later in Section 2.
Network security intends to protect the network against cyber-threats that may compromise the
network’s availability, or yield unauthorized access or misuse of network-accessible resources.
Therefore, network security is quintessential for network operation and management. In addi-
tion, current IDSs must take into account real-time constraints and manage to process large and
fast-changing datasets.

In addition to network security, data analysis techniques generally enable one to provide a
better characterization of traffic in mobile or IP networks and of the end-users behavior. These
built profiles can help the design of methodologies to automatically detect unusual phenomena
and attacks, but not only. Gaining better knowledge about end-users behaviors can be useful for
resource provisioning or pervasive computing applications.

14 CHAPTER 1. INTRODUCTION

1.4 Contributions and thesis outline

The dissertation discusses several novel anomaly detection techniques in relation to important
fields of networking in association with emerging technologies in it. We thus present such anomaly
detection and classification techniques in three different contexts: the detection of vulnerabilities’
exploitation on the Internet, intrusion detection in IP networks (at enterprise-level), and anomaly
detection cellular networks. On the same occasion, we develop methods that were not exploited
before, by exploring novel points of view. The next three chapters of this manuscript correspond
to each main technique.

First of all, Chapter 2 presents the background and related work of this thesis, first intro-
ducing the state-of-the-art on statistical and machine learning techniques, and then covering the
related work specific to each contribution.

Chapter 3 proposes a technique for the early detection of emerging botnets and newly
exploited vulnerabilities on the Internet, targeting botnets slightly spreading on the Internet not
detected nor mitigated during their spreading. The Mirai botnet attack on September 2016,
or more recently the memcached attack on March 2018, this time with no botnet required,
are but two examples. Such attacks are generally preceded by several stages, including the
infection of hosts or device fingerprinting; being able to capture this activity would allow their
early detection. Our technique, named Split-and-Merge, consists in (i) splitting the detection
process over different network segments, (ii) monitoring at the port-level, with a simple yet
efficient change-detection algorithm based on a modified Z-score measure, (iii) aggregating local
anomalies at a central correlation module to retain only the distributed ones. We argue how our
technique can ensure the detection of large-scale attacks and drastically reduce false positives.

In Chapter 4, we explore another view angle for botnet detection, this time not at the
Internet-level, but in IP networks and more especially in enterprise networks. Recent approaches
supplant flow-based detection techniques and exploit graph-based features, incurring however
in scalability issues, with high time and space complexity. Bots exhibit specific communication
patterns: they use particular protocols, contact specific domains, hence can be identified by
analyzing their communication with the outside. A way we follow to simplify the communication
graph and avoid scalability issues is by looking at frequency distributions of protocol attributes
capturing the specificity of botnets’ behavior. We propose a bot detection technique named
BotFP, for BotFingerPrinting, which acts by (i) characterizing hosts behavior with attribute
frequency distribution signatures, (ii) learning benign hosts and bots behaviors through either
clustering or supervised Machine Learning (ML), and (iii) classifying new hosts either as bots
or benign ones, using distances to labeled clusters or relying on an ML algorithm.

In Chapter 5, we leverage machine learning techniques in cellular networks to analyze
mobile app communications and unleash significant information about the current social and
infrastructure states. A wide variety of events can engender unusual mobile communication
patterns that may be studied for pervasive computing applications, e.g., in smart cities. Among
them, local events (like concerts), national events (like natural disasters), and network outages
can produce anomalies in the mobile access network load. We propose our ASTECH (for Anomaly
SpatioTEmporal Convex Hull) detection methodology that first decomposes cellular data usage
features time series, then detects raw anomalies in the residual components derived from the
decomposition. Our method then aggregates raw anomalies into snapshots first, and groups the
most abnormal ones to form spatiotemporal clusters. We can so unveil details about the mobile
events timeline, their spatiotemporal spreading, and their impacted mobile apps, by clustering
them into broad categories.

In addition, we provide in appendix A the description of research issued from the master

1.4. CONTRIBUTIONS AND THESIS OUTLINE 15

thesis, which covers anomaly detection in service chains of virtual network function. Then,
appendix B provides additional experiments related to our BotFP detection methodology pre-
sented in Chapter 4, and in particular visual comparisons between different scanning processes
and details about the feature selection process that we applied.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

This chapter introduces the concepts, background, and related work that are fundamentally
related to data analysis applied to network security. It reviews the whole process of statistical
and machine learning techniques, passing through their learning paradigms, performance metrics,
and major applications. Then, the next three sections of this chapter follow the structure of the
thesis, each of the sections corresponding to a chapter.

2.1 Statistical and machine learning techniques

Statistical and machine learning (ML) techniques can be leveraged for complex problems arising
in network operation and management [11]. Last years have witnessed a surge of such tech-
niques, thanks to significant improvements in computing capacities and recent advances in data
storing and processing. Applied to network security, data analysis has been widely explored to
develop novel automation and detection techniques. We first describe the theory behind statis-
tical learning models and their relevance to the networking problem. Then we further review
in detail the process for data analysis, which consists in various steps: (i) learning paradigms
and ML techniques, (ii) data collection, (iii) features design, (iv) model evaluation, and (v) ML
applications.

2.1.1 Statistical learning

Originally, ML detection tools rely on statistical learning theories to build their model. There also
exist unsupervised detection tools that use plain statistical approaches; their central assumption
is that the phenomena the most rarely observed are the most likely to be anomalous. In statistical
approaches, the fine analysis of the built statistical profiles of traffic allows one to understand
how the detected anomalous instances differ from the usual behavior; however, they work on a
mono feature basis, thus do not correlate the different features by design. Moreover, statistical
approaches work well combined with other algorithms as they are usually unable to provide
additional information, such as the IP addresses of attackers or the attack root causes; in addition,
they are of practically no computational complexity and easy to implement, which makes them
a wise approach when the detection should operate with limited computational resources.

Hidden Markov models

Hidden Markov Models (HMMs) are based on augmented Markov chains [12]. HMMs consist
of statistical Markov models where the probability functions modeling transitions between the

17

18 CHAPTER 2. RELATED WORK

states are determined in the training phase, contrary to Markov chains where they are set a
priori. HMMs are widely used in pattern recognition, and now tend to be extensively applied to
intrusion detection as well. They generally show excellent performance, although they are not
yet adapted to fit real-world network constraints. Indeed, they require a large amount of time
to model normal behaviors and the false positive rate stands relatively high. In [13], authors
propose an IDS where the payload is represented as a sequence of bytes, and the analysis is based
on an ensemble of HMMs.

Changepoint detection-based techniques

The implicit assumption behind changepoint detection-based techniques is that anomalies induce
significant changes in the probability distribution of feature values. Therefore, these approaches
are quite fit to detect coarse anomalies, which have a significant effect on traffic, as DoS and
DDoS would do. A pioneer work devising an online anomaly detection technique in computer
network traffic using changepoint detection methods is [14]. The algorithm is based on the multi-
cyclic Shiryaev–Roberts detection procedure, which is computationally inexpensive and performs
better than other detection schemes.

For changepoint detection algorithms, the z-score is a well-known and simple statistical met-
ric commonly used to automatically detect sudden changes in time series. More precisely, it is
the measure of how many standard deviations below or above the mean a data point is. Ba-
sically, a z-score equal to zero means that the data point is equal to the mean, and the larger
the z-score, the more unusual the value. An anomaly is detected if the absolute value of the
modified z-score exceeds a given threshold. There also exist algorithms based on variants of this
metric. The modified z-score uses the median and the median absolute deviation (MAD) from
the median, instead of the classical mean and standard deviation respectively, which makes it
outlier-resistant [15]. In addition, the smoothed z-score considers the influence of outliers, i.e.,
the weights of the past samples on the mean and standard deviation, with respect to the current
sample.

Other approaches

Histograms are used to count or visualize the frequency of data (i.e., the number of occurrences)
over bins, which consist of units of discrete intervals. Historically, they have been widely used in
the data and image processing fields. Histogram-based algorithms, also named frequency-based
or counting-based algorithms, rely on histograms containing the bins associated with the values
of their attributes. [16] proposes an alternative approach to feature-based anomaly detection
tools that builds detailed histogram models of the features and identifies deviations from these
models. In addition, building comprehensive histograms is less computationally expensive than
using coarse distribution or graph-based features.

2.1.2 ML techniques: paradigms and addressed problems

Now that we reviewed statistical learning-based approaches, we focus on ML techniques, inves-
tigating the whole ML design pipeline.

Learning paradigms

First, ML techniques can be classified into four learning paradigms:

2.1. STATISTICAL AND MACHINE LEARNING TECHNIQUES 19

Figure 2.1: Learning paradigms that benefit from machine learning: classification and regres-
sion for supervised learning, and clustering and rule extraction for unsupervised learning.

1. Supervised learning techniques learn from a labeled dataset what constitutes either normal
traffic or attacks – there exist different techniques such as SVM-based classifiers, rule-based
classifiers, and ensemble-learning detectors [17].

2. Unsupervised approaches learn by themselves what is normal or abnormal – among them,
MAWILab [18] finds anomalies by combining detectors that operate at different traffic
granularities (the results against the MAWI dataset are in [18]); numerous works compare
themselves to MAWILab, as for instance change-detection techniques [14, 19] (defining an
anomaly as a sudden change compared to a model), and ORUNADA [20] (relying on a
discrete time-sliding window to continuously update the feature space and cluster events).

3. Hybrid or semi-supervised approaches benefit from only a small part of labeled traffic,
meant to be enough to learn from, as proposed in [21].

4. Reinforcement learning (RL) is an iterative process with agents that take actions in order
to maximize the notion of cumulative reward. In the purpose of decision making, the
learning is traditionally based on exemplars from training datasets. The training data in
RL constitutes a set of state-action pairs and rewards (or penalties).

Problem categories

Four broad categories of problems can leverage ML, namely classification, regression, clustering,
and rule extraction, as illustrated in Fig. 2.1. First of all, classification and regression are two
supervised learning approaches; their objective is to map an input to an output based on example
input-output pairs from labeled data. Regression approaches predicts continuous values output,
whereas classification predicts discrete values, consisting in the different labels. Then, clustering
and rule extraction are unsupervised learning techniques: clustering is the task of partitioning
the dataset into groups, called clusters - the goal is to determine grouping among unlabeled data,
while increasing the gap between the groups; rule extraction techniques are designed to identify
statistical relationships in data, by discovering rules that describe large portions of the dataset.

Note that the choice of the learning paradigm strongly depends on the training data. For
example, if the dataset is not labeled, supervised learning cannot be employed and other learning
paradigms must be considered.

20 CHAPTER 2. RELATED WORK

Concrete ML techniques applications.

To illustrate the diversity in ML techniques applications, we provide concrete use cases for each
of the aforementioned learning paradigms:

• Classification techniques are traditionally used in problems that contain labeled datasets,
with two or more distinct classes. Botnet detection is but one example of such cases,
where we can distinguish between malicious and benign flows; this way, the ML algorithm
implicitly learns the inherent characteristics of a bot, and those of a benign host.

• Regression techniques are traditionally used for time series forecasting [22, 23]. The objec-
tive is to construct a regression model able to induce future traffic volume based on previous
instances of traffic. Regression techniques are also employed to assess the impact of the
global network condition on the QoS or QoE [24]. Finally, monitoring Key Performance
Indicators (KPI) in large-scale networks enables the quick detection of network outages
and attacks.

• Clustering techniques are usually employed for outlier detection purposes. In network
cyber-security, many intrusion detection schemes [20] rely on data clustering to highlight
significant deviations compared to usual end-user behaviors.

• Finally, rule extraction techniques, also named association rule mining, are commonly
employed for personalized recommendations. Market Basket Analysis [25] is one of the
key techniques used by large retailers to discover correlations within sets of items. These
techniques are also used by recommendation engines as for Netflix (for personalized movies
recommendation) and Amazon (for suggestions of other articles related to the purchased
one).

2.1.3 Data collection

The process of collecting data to apply and validate a given ML technique is an important step,
but nonetheless difficult. Finding representative data, possibly without bias and labeled is a
non-trivial task. Datasets also vary from one problem to another and from one time period to
the next one.

Data monitoring techniques are classified into active, passive, and hybrid techniques [26].
Active monitoring uses traffic measurement in order to collect relevant data and examine the
state of networks. Such approaches commonly consist in a set of distributed vantage points
hosting measurement tools like ping and traceroute; among them, RIPE Atlas [27] is a global
network of over 10,000 probes that measure Internet connectivity and reachability, used for
instance in [28] where authors identify data-center collocation facilities in traceroute data from
RIPE Atlas built-in measurements, then monitors delay and routing patterns between facilities.
In [29], given an arbitrary set of traceroutes, the authors first spot routing paths changing
similarly over time, then aggregate them into inferred events and collect details to identify its
cause.

In contrast, passive monitoring collects existing traffic and infer the state of networks from
it. Compared to active monitoring, it ensures that the inferred statistics correspond to real traf-
fic and it does not introduce additional overhead due to bandwidth consumption from injected
traffic. Passive monitoring data can be obtained from various repositories, given it is relevant to
the networking problem being studied. Such traces include CDN traces [30], darknets [31], and
network telescope datasets [32, 33]. The latter consists of a globally routed, but lightly utilized

2.1. STATISTICAL AND MACHINE LEARNING TECHNIQUES 21

network prefix - a /8 for the University of California San Diego (UCSD) Network Telescope
Aggregated Flow Dataset [32] and /20 for the Network Telescope dataset from LORIA [33].
Inbound traffic to non-existent machines is unsolicited and results from a wide range of events,
including misconfiguration, scanning of address space by attackers or malware looking for vul-
nerable targets, and backscatter from randomly spoofed DoS attacks. Other examples of passive
data repositories include the Measurement and Analysis on the WIDE Internet (MAWI) Working
Group Traffic Archive [34] and the CTU-13 dataset [35]. We later review these datasets in detail,
respectively in Sections 3.3 and 4.2.

2.1.4 Feature design

Before applying an ML algorithm to the dataset, the collected raw data must be formatted to
cover an adequate set of features. The first phase named Feature Extraction consists in cleaning
the dataset that may contain missing values or noise. In addition, the collected raw dataset may
be too voluminous to be handled. The need for dimensionality reduction is justified by multiple
reasons. First, a large number of features may induce a high computational overhead. Also, a
phenomenon called the curse of dimensionality refers to the sparsity in data increasing with the
number of dimensions, which makes the dataset no more consistent. We first depict the features
traditionally selected for anomaly detection depending on the aggregation level. We then review
the main strategies employed for feature extraction.

Common feature choice

In reality, the feature choice directly depends on the problem formulation (i.e., the detection tar-
get) and thus on the granularity level. The taxonomy of aggregation levels for network anomaly
detection includes payload-based, host behavior-based, and flow feature-based techniques.

Payload-based anomaly detection systems parse the packet payload looking for known ap-
plication signatures. However, this incurs a high computational overhead and requires manual
interventions from humans to monitor the alerts and regularly update the signatures database.
In addition, the payload tends to be systematically encrypted due to privacy concerns. Payload-
based systems usually employ features such as the payload size, but also more complex ones
like specific byte sequences or particular key-words present in the payload that would execute
malicious actions.

Host behavior-based anomaly detection systems compute per-host traffic features to model
behavioral characteristics of hosts. Contrary to payload-based systems, it examines the inherent
characteristics of hosts but also assesses graph-based features by considering hosts as nodes
in a graph, to measure for example the centrality of nodes or the amount and frequency of
traffic exchanged between the nodes. IDSes implemented at the host-level are named Host-based
Intrusion Detection Systems (HIDSes), whereas those at the network-level are named Network-
based Intrusion Detection Systems (NIDSes). Common features used by such systems include
packet counts exchanged between nodes [36], service proximity, activity profiles, session duration,
periodicity [37], and byte encoding [38, 39] or statistical characterization of bytes [40], for each
packet or each flow coming from a host.

Flow feature-based anomaly detection systems aggregate communications on a per-flow basis,
which consists of a 5-tuple made from the protocol, the source and destination IP addresses,
and the source and destination port numbers. It is then a unidirectional exchange of consecutive
packets on the network from a port at an IP address to another port at another IP address
using a particular application protocol, including all packets pertaining to session setup and
tear-down, and data exchange. A feature is an attribute representing unique characteristics

22 CHAPTER 2. RELATED WORK

of a flow, such as the number of packets in a flow, mean packet length, packet inter-arrival
time, flow duration, entropy, to name a few. Entropy basically represents the traffic distribution
predictability and enables one to detect volume-based anomalies such as DoS and DDoS. Flow
feature-based techniques use flow features as discriminators to map flows to classes of interest.

Feature extraction

Two main processes are usually employed to adequately select features. The process of Feature
Selection consists in removing the features that are not relevant or redundant in order to keep only
a limited set of features. The filtering strategy (e.g. information gain), the wrapper strategy
(e.g. search guided by accuracy), and the embedded strategy (selected features are added or
removed while building the model based on prediction errors) are three techniques for feature
selection.

The second process, named Feature projection, projects the data from a high-dimensional
space to a space of fewer dimensions. The variance between each class is accentuated in the re-
sulting space, removing redundancy in data. Both linear and nonlinear dimensionality reduction
techniques exist. The main linear technique is named Principal Component Analysis (PCA),
which finds the directions of maximum variance [41]. The fraction of variance explained by a
principal component is the ratio between the variance of that principal component and the total
variance. The objective is to reduce the dimensionality while keeping a good amount of infor-
mation, so that the cumulative explained variance ratio is close to 100%. PCA may also be used
for traditional outlier detection [42, 43]. Using real traffic traces, [43] demonstrates that normal
traffic data can reside in a low-dimensional linear subspace and form a low-rank tensor. The
anomalies (outliers) should stay outside this subspace. Therefore, tensor-based approaches try
to recover the normal data by separating the low-rank normal data and outlier data from the
noisy traffic data captured, and then detect anomalies by using the outlier data separated.

2.1.5 Performance metrics and model validation

In the case of supervised learning, we are able to compute some metrics to assess the performance
of our classification model. A confusion matrix is a table often used to evaluate the performance
of a classification model [11]. The basic terms are the following (expressed as whole numbers and
not rates): True Positive (TP) is the number of bots correctly classified; True Negative (TN)
is the number of benign hosts correctly classified; False Positive (FP) is the number of benign
hosts incorrectly classified; False Negative (FN) is the number of bots incorrectly classified. This
is a list of rates that are often computed from the confusion matrix for a binary classifier:

• Accuracy, computed as ACC = TP+TN
TP+TN+FP+FN , shows the percentage of true detection

over the total number of instances. High accuracy is required. However, a bias may be
introduced if the dataset is too unbalanced, then we need to consider other metrics.

• True Positive Rate, defined as TPR = TP
TP+FN , also known as recall, shows the percent-

age of predicted malicious instances versus all malicious instances. A high TPR value is
desirable.

• False Positive Rate, computed as FPR = FP
FP+TN , also known as false alarm rate, refers

to the ratio of incorrectly classified benign instances versus all the benign instances. A low
FPR value is desirable. If the dataset is too unbalanced, consider using the precision and
recall instead of the TPR and FPR.

2.2. INTRUSION DETECTION 23

• Precision, computed as P = TP
TP+FP , refers to the ratio of incorrectly classified benign

instances versus all the benign instances. A high P value is desirable.

• Recall, computed as R = TP
TP+FN , also known as false alarm rate, refers to the ratio of

incorrectly classified benign instances versus all the benign instances. A high R value is
desirable.

• F1-score, computed as F1 = 2 · P ·R
P+R , is defined as the harmonic mean of the precision and

recall. A high F1 value is desirable.

When no ground-truth is available (e.g., in unsupervised learning), we cannot directly assess
the quality of a model. Then we must create ground-truth labels ourselves, for example by
comparing several datasets and mixing various sources.

2.2 Intrusion detection

In this section, we present intrusion detection methodologies and review related work related to
Chapter 3, including the different families for intrusion detection systems (IDSs) and large-scale
IDSs, and those centered around botnet detection. Fig. 2.2 shows the general classification of
intrusion detection systems. We introduce granularity levels in Section 2.1.4, intrusion detection
methodologies in Section 2.2.1, and the different architectures in Section 2.2.2.

Figure 2.2: General classification of Intrusion Detection Systems.

2.2.1 Intrusion detection methodologies

Many algorithms are proposed in the literature for network intrusion detection [44]. We can
classify them into three main families: signature-based, anomaly-based, and hybrid techniques.

24 CHAPTER 2. RELATED WORK

Signature-based, also referred to as knowledge-based or misuse-based, solutions such as Snort [45],
Zeek (formerly Bro) [46], or Suricata [47], rely on a signature database to find attacks that match
given patterns, such as malicious byte sequences or known malware signatures. The first step
consists in building a set of rules based on signatures; large rules databases can be purchased
online and one can also create custom rules. Then, a rule is defined as: the action to apply if
there is a match (e.g., alert, log, pass), the protocol to filter, the source and destination IP
addresses, the port numbers, the traffic direction, and the options (TCP flags, payload size, etc.).
The network administrator then collects the logs produced by the IDS and manually visualizes
the set of produced alerts. Up to now, most companies rely on signature-based IDSs as they
are expressive and understandable by network administrators. Nevertheless, they are not able
to detect zero-day attacks, i.e., attacks exploiting unknown vulnerabilities, for which no patch is
available [48], and the signatures database must be updated regularly.

Anomaly-based approaches attempt to detect zero-day attacks, in addition to known ones.
Compared to signature-based approaches, they require prior learning on data. They model the
normal network traffic and qualify an anomaly as a significant deviation from it, with statistical or
machine learning techniques. In such a case, we talk about anomalies rather than attacks. As ad-
dressed in Section 2.1.2, the methodology to detect anomalies can leverage statistical techniques,
or supervised, unsupervised or semi-supervised ML techniques. BotSniffer [49] utilizes statistical
methods to detect Command-and-Control channels (C&C) botnets, in which bot-infected hosts
listen for attack commands from the attacker via this channel. To detect them, the authors seek
for coincident behaviors among hosts, like messages to servers, network scans, or spam. The
authors in [50] observe changes in feature distributions to identify anomalies. Entropy and/or
volume are such metrics used for this purpose.

Various IDSs systems in the literature propose to combine signature-based or supervised
techniques with unsupervised ones, that we call hybrid systems. They present the advantage of
improving the detection rate and minimizing the false positive rate, inheriting the advantages
of both methods. ADAM [51], which stands for Audit Data Analysis and Mining, is one of the
most popular hybrid IDSs. ADAM has two stages of detection: (i) it builds a set of recurrent
benign instances from attack-free datasets; then (ii) it finds frequent itemsets in connections and
classify them compared to the previous database, into known or unknown attack types or false
alarms. Another approach, [52], proposes a hybrid intrusion detection method, composed of a
misuse detection model based on the C4.5 decision tree algorithm and multiple one-class SVM
models to model the normal behavior. Finally, [53] uses a Self-Organizing Map (SOM) structure
to model normal behavior, and J.48 decision trees for the misuse module.

2.2.2 Large-scale intrusion detection

Coordinated attacks arise in multiple networks simultaneously and include large-scale stealthy
scans, worm outbreaks, and DDoS attacks [54]. Traditional IDSs tend to fail at detecting these
attacks as they commonly monitor only a limited portion of the network. Large-scale IDSs, in-
stead, have a global view over the network, and can better scale by distributing the computational
load between several detection agents. Two large-scale IDS approaches can be identified.

The first IDS approach consists in distributing flow collectors in different subnetworks and
in running a central detection engine against aggregated data, as shown in Figure 2.3a. Raw
packets are transmitted from the flow collectors to the detection engine [55]. Solutions exist
to avoid the collection traffic overhead, as done by Jaal [56], which creates and sends concise
packets summaries to the detector - with Jaal, one reaches a 35 % bandwidth overhead to get
an acceptable true positive rate, which is still important.

2.2. INTRUSION DETECTION 25

(a) Local collection and central detection. (b) Centralized CIDS: local collection and detec-
tion, and central correlation.

Figure 2.3: Two possible approaches for large-scale IDS.

The second IDS approach consists in Collaborative Intrusion Detection System (CIDS), which
is a two-level anomaly detection system where monitors are physically split in the network to
perform local detection. They generate low-level alerts then aggregated to produce a high-level
intrusion report. Three types of CIDSes exist depending on communication architecture:

1. Centralized CIDSes are composed of several monitors that transmit the alerts to a central
correlation engine, as illustrated in Figure 2.3b.

2. Hierarchical CIDSes use a multistage structure of monitors to achieve an increasingly higher
alert aggregation until the alerts reach the top correlation engine.

3. Distributed CIDSes share the detection and correlation tasks between all monitors. This
approach can be set up by a peer-to-peer network.

For instance, [57] presents a centralized CIDS framework composed of IDS clusters imple-
menting both the detection and the correlation; Snort signatures are therein used to detect known
attacks, while an unsupervised learning algorithm detects unknown attacks. [58] proposes a sort
of distributed CIDS, composed of Intrusion Prevention Systems forming rings around the hosts
to protect, in order to collaborate and forward the traffic adaptively depending on their findings.

Inherent in the CIDSs, alert correlation algorithms can be divided into three categories [59]:
(i) similarity-based algorithms, which compute the similarity between an alert and a cluster of
alerts, and based on the result either merge it with the cluster or create a new one; (ii) knowledge-
based algorithms, which rely on a database of attacks definitions; (iii) probabilistic algorithms,
which use similar statistical attributes to correlate attacks.

2.2.3 Application to botnet detection

Flow-based botnet detection

In the past years, several novel algorithms for botnet detection have been proposed, which can
be classified into packet- or flow-based ones and graph-based ones. Among them, [60] compares
the performances of four different approaches: Snort, BotHunter, and two data-mining based
system ones, either based on the packet header/payload or on flows. They run their algorithm
on public datasets, including the Conficker dataset from CAIDA, the ISOT-UVic dataset, and
Zeus botnet datasets from Snort, NETRESEC, and NIMS. As a result, they get detection rates

26 CHAPTER 2. RELATED WORK

approaching up to 100%. BotMark [61] exploits both statistical flow-based traffic features and
graph-based features to build its detection model, then considers similarity and stability between
flows as measurements in the detection. The authors test their algorithm by simulating five newly
propagated botnets, including Mirai, Black energy, Zeus, Athena, and Ares, and achieve 99.94%
in terms of detection accuracy. In [62], the authors create a complete characterization of the
behavior of legitimate hosts that can be used to discover previously unseen botnet traffic. They
employ the ISCX botnet dataset, a publicly available dataset composed of various IRC, P2P,
and HTTP-based botnets. They find that their framework can detect bots in a network with
100% TPR and 8.2% FPR. It is worth noting that the aforementioned algorithms perform their
analysis at the network-level, on traffic generated by botnets. Their objective is to distinguish
between benign hosts and bots, to then draw a confusion matrix and evaluate their classifier.
Then they are not designed to run at an Internet carrier link-level. We later expose in Chapter 3
our wish to analyzing the current trends in Internet traffic over several years, including trends
in terms of botnets.

Port-based detection techniques

A few works specifically focus on port-based detection but they do not apply to CIDS. In [7],
the authors propose a survey of the current methods to detect port scans. [63] aims to show
the correlation between port scans and attacks. [64] examines the period during the release
of a zero-day attack and its patching. Also, [63, 64] analyze port-usage but they do not use
destination ports as the primary key. Actually, this last setting generates a high number of false
positives, which can be mitigated by CIDS as we are doing. In the literature, the numbers of
unique source IP addresses and unique active /24 blocks are used to detect Internet outages [65]
and large-scale spoofing [66].

2.3 Botnet Detection

The last section covered the related work on intrusion detection systems, we now specifically
address the field of botnet detection related to Chapter 4. The word "botnet" comes from
the combination of "robot" and "network". In this display, the attackers infect and control
thousands of machines, then send them malicious commands to execute, like infecting, attacking,
or scanning other hosts. This large zombie network is then a major vector of large-scale attacks
such as phishing DDoS, Trojans, spams, etc. To communicate with bots, cybercriminals use
Command-and-Control (C&C) channels implemented in different ways (the most popular ones
are IRC, HTTP, P2P, and Telnet [67]).

Considering the importance of the matter, an extensive number of works exist in this field.
While traditional approaches rely on statistical and machine learning approaches over per-flow
features, recently studied graph-based approaches analyze the relations between several hosts of
a network.

2.3.1 Flow-based techniques

Flow-based techniques work by removing the packet payload and inspecting the packet header
only [68]. Let us classify them as follows.

2.3. BOTNET DETECTION 27

Statistical methods

BotHunter [69] aims to recognize the infection and coordination dialog that occurs during a
successful malware infection. A similar approach, BotSniffer [49], focuses on the detection of C&C
channels which are essential to a botnet. Therefore it exploits the underlying spatiotemporal
correlation and similarity property of botnet C&C (horizontal correlation). The C&C server uses
to contact every bot at the same time, then each of them uses to undertake some malicious actions
following the C&C commands; these behaviors can be observed simultaneously in a network to
spot a C&C channel, thus an underlying botnet.

BotHunter and BotSniffer perform their evaluation on their own honeynet or on traces authors
built by executing malware binaries. However, these traces are not publicly available and [70]
highlighted the lack of suitable comparisons for botnet detection algorithms due to the lack
of public botnet datasets. Hence the authors a labeled botnet dataset named the CTU-13
dataset [35] (later introduced in Section 4.2), including botnet, normal, and background traffic.
In addition, the authors present two methods to identify botnets in these traces. The first one
named BClus is a botnet detection approach. It creates models of known botnet behavior by
computing features per source IP address, then it uses them to detect similar traffic on the
network. The second one named CAMNEP is a network behavior analysis system that combines
various state-of-the-art anomaly detection methods, such as MINDS, Xu, Lakhina volume, and
Lakhina entropy [71].

Machine learning methods

Machine learning methods include artificial neural networks, support vector machines (SVM),
k -nearest neighbor (k -NN), decision trees and clustering. As seen in Section 2.1.2, ML methods
include supervised, unsupervised, and hybrid learning. Supervised learning techniques encompass
different methods such as SVM-based classifiers, rule-based classifiers, and ensemble-learning
detectors [17]. Due to its excellent generalization performance, Support Vector Machines (SVM)
are used in many security applications [72, 73]. The unsupervised learning technique [74] proposes
an unsupervised learning based ML solution to identifying known and unknown anomalies in IoT,
more especially with auto-encoders; [75] also proposes an unsupervised approach, identifying the
most dissimilar graphs. Finally, hybrid approaches benefit from only a small part of labeled
traffic, meant to be enough to learn from, as proposed in [21].

Other methods

Other methods use various entropy measurements. For instance, [58] proposes a technique to
detect large-scale anomalies in the network traffic, by measuring the deviation between the
profiles of normal traffic and incoming flow records. [70] proposes a behavioral botnet detection
method using Markov Chains to model the different states in the C&C channel. The proposed
method is trained and evaluated using the CTU-13 dataset and gives a 92% F1-measure and a
0.05% false positive rate. The authors in [76] focus on detecting bot-infected machines at the
enterprise-level, by considering the complete DNS activity of a host per hour. They used an
extensive set of features computed over campus DNS network traffic, and as a result, identified
suspicious DNS connections to detect infected machines.

However, flow-based techniques may miss some communication patterns between hosts that
are quite specific to a botnet. Furthermore, working on a per-flow or per-host basis may incur a
high computational overhead.

28 CHAPTER 2. RELATED WORK

2.3.2 Graph-based techniques

Graph-based approaches [77] aim to model the relations between several hosts of a network.
They are studied for various situations, for example, to detect P2P bots [78, 79] or to recognize
DNS traffic from malicious domains [80]. In [81], the authors distinguish between several kinds of
traffic and make groups of flows from: (i) the most frequent 11 destination port numbers used by
TCP and UDP, (ii) all other TCP/UDP destination port numbers, and (iii) ICMP flows. They
use plain and derived features for each of these categories, then they train three unsupervised
learning algorithms on normal traffic with these features. As a result, with k-NN they achieve
over 91% detection rate with around 5% false positive rate. BotGM [75] proposes an unsupervised
graph mining technique to identify abnormal communication patterns and label them as botnets.
The authors first construct a graph sequence of ports for each pair of source and destination IP
addresses, then they compare each graph between them using the Graph-Edit Distance (GED).
As a result, they reach a very good accuracy between 78% and 95%. However, this technique is
very costly as the GED is computed once for each pair of graphs and its computation is known to
be NP-complete. The authors in [82] model network communications as graphs, where hosts are
edges and communications between hosts vertices. They compute graph-based features such as
In-Degree and Out-Degree and diverse centrality measures. They use a hybrid learning method
and test various ML techniques to achieve a good detection rate. However, this technique incurs
a high computational overhead as features are computed over a large communication graph,
e.g., used by shortest paths algorithms computed for centrality measures. Other graph-based
detection methods [83, 84] seem promising, but their complexity is often high, NP-complete as
for [84] and [75], or cubic for [82] (see Section 4.6).

2.4 Spatiotemporal anomaly detection in cellular networks

In this section, we now review the related work on spatiotemporal anomaly detection, per-app
mobile traffic analysis, and group anomaly detection, related to Chapter 5.

2.4.1 Detection of spatiotemporal anomalies

The survey [85] reviews large-scale mobile traffic analysis with respect to social, mobility, and
network aspects. From a social perspective, authors show how the relationships between mobile
traffic and a wide set of social features are addressed in the state of the art. Demographic, eco-
nomical, or environmental factors do influence the way users consume mobile apps indeed. These
factors are classified into four broad categories: users’ interactions, demographics, environment,
and epidemics. The possible relationships between the environment, in terms of both geograph-
ical and temporal features, and the communication structure are also described. Among them,
the authors focus on the detection of special events, ranging from political happenings (e.g., elec-
tions or manifestations) to entertainment occasions (e.g., concerts, sports games) and accidents
(e.g., power outages or exception road congestion).

Authors in [86, 87] propose threshold-based algorithms to detect special events. In [88], au-
thors use the information on residual communication to determine how different geographical
areas are affected by a same unusual event. Using a time series decomposition, they: (i) first
exploit the Seasonal Communication Series (SCS) to segment the city into distinct clusters by
noticing similar patterns of socio-economic activity, and (ii) compare the Residual Communi-
cation Series (RCS) of similar areas to detect local events. Another approach in [89] proposes
a dedicated framework to detect general outlying behaviors, based on the hourly geographical

2.4. SPATIOTEMPORAL ANOMALY DETECTION IN CELLULAR NETWORKS 29

variations of mobile traffic, able to detect national holidays, political happenings, and sports
events. First, it builds snapshots, i.e., representations of the load generated by mobile users at
a given instant. Then, it forms snapshot graphs G(T , E) where T contains the snapshots from
the training set; it computes traffic volume and traffic distribution similarities to perform snap-
shot aggregation. Finally, it uses a hierarchical clustering method into a dendrogram structure
and builds network usage profile categories. Authors so show it can coarsely classify snapshots:
resulting clusters are mapped to network usage profile categories.

Finally, attention is also paid to events that are not the result of social behaviors, but of
natural or human-caused disasters. E.g., in [90], authors focus on emergency situations, using
a dataset containing a bombing, a plane crash, a mild earthquake, and a power outage in the
target region.

2.4.2 Per-app mobile traffic analysis

Up to our knowledge, in the literature, the detection of anomalies such as special events is
not tackled at the app level yet. We believe that analyzing per-app usages can give valuable
details about the nature of events, thus can help finely characterizing them. In the literature,
attention is paid to the app usage for other purposes than special events detection [91, 92,
93, 94]. In [91], authors provide an analysis of spatiotemporal heterogeneity in nationwide
app usage - they notice a large bias between apps (even within the same category, like Chat
or Download) that makes the time series clustering inconclusive, and some heterogeneity even
when looking to activity peaks of individual apps. Authors in [92] investigate the similarities
and differences across different apps using nine features; as a result, they identify several well-
differentiated clusters for each category of apps. In [93], authors design a system able to identify
key patterns of cellular tower traffic by clustering custom pattern identifiers in traffic into five
categories: resident, transport, office, entertainment, and comprehensive, area. They study
time and frequency-domain representations for traffic modeling by analyzing interrelationships
between traffic patterns and using Fourier transform. [94] provides a complete comparative
evaluation of the techniques for signature classification, including Weekday-Weekend, typical
week, median week, etc. Results unveil the diversity of baseline communication activities across
countries, but also evidence the existence of a number of mobile traffic signatures that are
common to all studied areas and specific to particular land uses.

2.4.3 Group anomaly detection

While anomaly detection typically regards data point anomalies, group anomaly detection seeks
to detect anomalous collections of points. Traditionally, Seeded Region Growing (SRG) [95] has
been used in image processing to form regions into which the image is segmented, by group-
ing seeds (i.e., either individual pixels or regions). The Mixture of Gaussian Mixture Model
(MGMM) uses topic modeling for group anomaly detection. Adaptive topics are useful in rec-
ognizing point-level anomalies, but cannot be used to detect anomalous behavior at the group
level. More recently, [96] studies the group anomaly detection problem by discovering anomalous
aggregated behaviors of groups of points. The authors propose the Flexible Genre Model (FGM),
which is able to characterize groups’ behaviors at multiple levels, contrary to traditional topic
models. This detailed characterization enables the detection of various types of group anomalies.
[97] performs group anomaly detection with an emphasis on irregular group distributions (e.g.,
irregular mixtures of image pixels). The authors formulate two deep generative models for group
anomaly detection.

30 CHAPTER 2. RELATED WORK

Other approaches specifically focus on spatiotemporal outlier detection. In [98], the au-
thors review outlier detection for spatiotemporal data, among other things. Considering the
temporal and spatial neighborhood for detecting outliers, they define a spatiotemporal outlier
(ST-Outlier) as a spatiotemporal object whose behavioral attributes are significantly different
from those of the other objects in its spatial and temporal neighborhoods. They propose a
typical spatiotemporal-outlier detection pipeline, taking as input spatiotemporal data composed
of: (i) processing spatiotemporal data, (ii) finding spatial objects, (iii) find spatial outliers,
(iv) verify/track temporal outliers, and (v) producing spatiotemporal outliers, as existing ap-
proaches commonly find spatial outliers and then verify their temporal neighborhood. Many
approaches leverage clustering to compute spatial outliers [99, 100]. Others use distance-based
outlier detection and Voronoi diagrams to establish spatial clusters [101].

2.5 Summary

We draw in this chapter in a synthetic yet wide-enough way the composite field of machine
learning, its recurrent relationships with statistics, with a particular focus on the metrics and
methods we adopt in this thesis. We provide as well a background in the three main areas of
application of the exposed principles and methods to our research. In the next chapters, we
further precise our three contributions in the area, positioning our work with respect to this
state of the art.

Chapter 3

Detection of zero-day attacks

Last years have witnessed more and more DDoS attacks towards high-profile websites, like the
Mirai botnet attack on September 2016, or more recently the memcached attack on March 2018,
this time with no botnet required. These two outbreaks were not detected nor mitigated during
their spreading, but only at the time they happened. Such attacks are generally preceded by
several stages, including infection of hosts or device fingerprinting; being able to capture this
activity would allow their early detection. In this chapter, we propose a technique for the early
detection of emerging botnets and newly exploited vulnerabilities, which consists in (i) splitting
the detection process over different network segments and retaining only distributed anomalies,
(ii) monitoring at the port-level, with a simple yet efficient change-detection algorithm based on
a modified Z-score measure. We argue how our technique, named Split-and-Merge1, can ensure
the detection of large-scale attacks and drastically reduce false positives. We apply the method
on two datasets: the MAWI dataset, which provides daily traffic traces of a transpacific backbone
link, and the UCSD Network Telescope dataset which contains unsolicited traffic mainly coming
from botnet scans. The assumption of a normal distribution – for which the Z-score computation
makes sense – is verified through empirical measures. We also show how the solution generates
very few alerts; an extensive evaluation on the last three years allows identifying major attacks
(including Mirai and memcached) that current Intrusion Detection Systems (IDSs) have not
seen. Finally, we classify detected known and unknown anomalies to give additional insights
about them.

3.1 Introduction

Back in September 2016, the Mirai botnet [2] struck the internet with a massive distributed
denial of service (DDoS) attack. During several months, it spread slowly and reunited nearby
50,000 bots distributed over various parts of the internet, without being noticed. More recently, a
record-breaking DDoS attack hit Github in February 2018 with a new amplification attack vector:
UDP-based memcached traffic [105]. The caching system is supposed to be used internally,
but sometimes runs on servers exposed without any authentication protection; several days
later, most memcached servers have been patched, making the attack not efficient anymore
[106]. Actually, malware targeting Internet-of-Things (IoT) devices and misconfigured servers
are responsible for many Distributed Denial-of-Service (DDoS) attacks [107]. Detecting these

1This work was first presented at IFIP/IEEE IM 2019 [102], then extended for an article published in Else-
vier Computer Networks [103]. In addition, we propose in the book chapter [104] a model to simplify the detec-
tion of large-scale network attacks combining data plane programming with control level collaboration, inspired
from Split-and-Merge.

31

32 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

botnets and exploited vulnerabilities during their spreading could avoid many harms. There
is thus an urgent need to detect this kind of threat as soon as possible, and current anomaly
detection tools appear deficient in this respect.

Ensuring cyber-security in networks, Intrusion Detection Systems (IDSs) monitor network
traffic for malicious activities and related threats. However, as a matter of fact, most botnets go
under the radars for three reasons: (i) Current IDSs work at different traffic granularities, e.g.,
flow, host, or packet. However, they miss global changes on application ports that are involved
during the propagation of botnets. Ports can be scanned to fingerprint the target machine, to
exploit known vulnerabilities, or to communicate with a Command-and-Control (C&C) server [7].
The sole common denominator for a botnet coming from very distinct sources and targeting lots
of hosts is the port it scans. However, an IDS working on IP addresses would be unable to
notice the anomalous port. (ii) Most IDSs work on small variations of traffic, generally using
time-sliding windows of several seconds. Therefore, they cannot build long-term profiles per port
and detect major changes in their usage. (iii) IDSs are usually deployed at a single point in
the network, while ISP-scale attacks are only visible by looking at a holistic view of a wide area
network.

In this chapter, we propose an anomaly detection technique that spots main changes in the
usage of a single port to identify botnets. Intuitively, the most obvious way to identify it is to
observe a sudden rise in traffic towards a port. However, this may not be sufficient as it can be
a well-known vulnerable port, already massively scanned. For example, before the Mirai attack,
many TCP SYN scans targeted the Telnet port whose vulnerabilities were already known and
exploited. Then, when the Mirai attack was actually hitting, one could not observe an increase
in the number of scans targeting this port. Our goal is to detect early stealthy changes in
the behavior of the scans, as an increase in the number of distinct attackers (i.e., source IP
addresses) or an increase in port spoofing, to then spot them as unknown botnets or newly
exploited vulnerabilities, even on ports already scanned before.

In our method, we use features representing particular port usages; large packets batches
picked at a frequency of several days enable us to profile the evolution of features over time, then
statistical measures can spot anomalies in the features time series. A port-based approach may
generate a large number of alarms, as for instance, each ephemeral port used in an arbitrary
manner would produce an anomaly. Therefore, we adopt a collaborative scheme to ensure that
changes in one port are distributed and are not due to random or localized traffic variations.
In our approach, called Split-and-Merge, local detection modules, geographically split in the
network, collect traffic and send anomalies to a central controller in charge of aggregating them,
like a Collaborative IDS (CIDS) [57] would do (Fig. 2.3b). The number of false positives can so
be significantly reduced as only anomalies detected in several places are taken into consideration.
Our contributions differ from existing botnet’s detection approaches given the following reasons.
First, it targets long-term anomaly detection enabling to detect major changes in the use of ports,
and thus underlying botnets. As a matter of fact, current approaches for botnets’ detection
[49, 20, 55, 61, 62, 60, 17, 56, 57, 58, 14, 19, 64, 63] focus on real-time intrusions and may miss
stealthy changes visible at a several days scale. Second, it focuses on destination ports, compared
to other approaches [49, 20, 55, 61, 62, 60, 17, 56, 57, 58, 14, 19] aggregating packets per-flow or IP
address, which thus are not able to detect scans coming from very distinct source IP addresses and
targeting a large variety of destination IP addresses. Third, it leverages several detection modules
geographically split in the network, in order to reduce the number of false positives. While most
IDSs are localized at a single vantage point [49, 20, 18, 17, 61, 60, 19, 14, 64, 63], we explore a
collaborative IDS approach only marginally adopted at the state of the art [55, 56, 57, 58, 62].
Finally, its features are computed over diversity indices, packet size, and TCP flags, using a

3.2. SPLIT-AND-MERGE PORT-CENTRIC NETWORK ANOMALY DETECTION 33

change-point detection system, which is not done in [49, 18, 17, 20, 55, 61, 62, 60, 56, 57, 58, 19,
63, 64]. We refer the reader to the specific state-of-the art addressed in Section 2.2.

For our evaluation, we use the MAWI dataset [34] that provides daily traces of a transpacific
backbone link. The dataset is restricted to a single Internet Service Provider (ISP), hence
corresponds to what could be used at the ISP-level. Differently than the common approach that
uses real traces to generate background traffic, we use the MAWI traces as they are, with the aim
at detecting real attacks from it, providing a better knowledge of the dataset at the same time.
We also use the UCSD Network Telescope dataset that consists of a globally routed, but lightly
utilized /8 network prefix. Inbound traffic to non-existent machines is unsolicited and results
from a wide range of events, including misconfiguration, scanning of address space by attackers or
malware looking for vulnerable targets, and backscatter from randomly spoofed denial-of-service
attacks. This way, we are able to compare the anomalies found in both datasets. We present the
intrusion detection results against known attacks arisen the last three years, not detected by the
MAWILab detection algorithm [108], and we show that we can detect some unknown anomalies
as well; in order to classify anomalies, we observe the simultaneous evolutions of features. We
experimentally show that our algorithm greatly reduces the number of false positives compared
to a single IDS running on the whole dataset. For the sake of reproducibility and further research,
our source code is publicly available at [109].

The remainder of this chapter is organized as follows: Section 2.2 surveys the related work.
Section 3.2 presents our solution detecting distributed changes in port usages, along with the
analysis of its complexity. Section 3.3 introduces the two datasets we leverage for our analysis.
In Section 3.4, we present results from the numerical evaluation, highlighting the benefits Split-
and-Merge can grant in terms of false detection rate and detection accuracy, and also proposing
a classification of the noticed anomalies. Finally, Section 3.6 concludes this chapter.

3.2 Split-and-Merge Port-centric Network Anomaly Detection

We present our anomaly detection proposal, detailing the reference CIDS architecture and the
design of the features.

3.2.1 Rationale

We already anticipated some of our key modeling choices: we aggregate traces based on destina-
tion ports, in a distributed CIDS setting, and target to design features minimizing the degree of
arbitrarity in their choice and interpretation. Our objective is to model the usage of each port, by
computing features each time the same day at the same daytime slot. The features characterize
the port usage, e.g., if it is mainly targeted by port scan or not, if the hosts are numerous or not,
etc. We work on a limited time window over a day, which we assume to represent port usages
this day.

In our reference distributed CIDS setting, several detection module agents run on different
subnetworks so that they can capture each subnetworks’ peculiarities and cover the CIDS network
context completely. Based on the time evolution of the features of a port, the detection modules
detect anomalies and report them to a correlation module. Hereafter we detail the different steps
of our detection module logic, as well as the anomaly aggregation logic of the correlation module.
At each daytime slot, every detection module performs several tasks in a row (each task is then
further detailed in the following subsections).

34 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

Data collection

First, the detection module collects packets in its scope in a single group of Nbatch elements,
and stores packet attributes in lightweight Collection Tables (CTs). For each incoming packet, it
identifies the destination port and updates four key-value CTs and a counter for the given port:
CT1: unique source IP addresses; CT2: unique destination IP addresses; CT3: unique source
ports; CT4: unique size of packets; and Counter: number of SYN packets. Each entry in one
CT (e.g., a source IP address in CT1) is associated with a counter of occurrences.

Features computation

After data collection, a filter is applied on CTs so that only the ports with at least Nmin packets
stored are kept to be analyzed. For every remaining destination port, the detection module
computes some features based on CTs and updates the Features Table (FT) with new values.
The FT constantly contains Ndays entries (we use one day per week in our tests) so that for
every new capture, the former value is deleted and the new one added.

Anomaly detection

Lastly, the local detection module analyzes the port-specific features time series over Ndays in
order to detect an anomaly with a change-detection algorithm. When an anomaly is spotted,
based on a warning threshold Ti on a given feature i, an alert is created and transmitted to the
central correlation module. The collection and detection parameters resumed in Table 3.1 are to
be customized. At the end of the detection process, the correlation module aggregates the alerts
received from all detection modules. It is then able to deduce and qualify an attack by noticing
the distributed alerts.

Notation Definition
Nbatch Number of packets collected per day
Nmin Minimum number of packets per port
Ndays Number of days in the sliding window
Ti Threshold to spot an anomaly for feature i

Table 3.1: Parameter notations.

3.2.2 Features design

To observe an anomaly on a port, looking at the number of packets over time is not sufficient.
Indeed, subtle changes in the nature of packets can happen on a port already massively scanned.
Therefore, we need to design significant features.

Our features choice is resumed in Table 3.2. nbPackets represents the number of packets
stored for this port and enables one to see if a port is suddenly massively used. srcDivIndex and
destDivIndex highlight significant variations in the proportion of unique source and destination
IP addresses. An increase in srcDivIndex may be an attack perpetrated by bots, while its decrease
can indicate an attack led by only a few actors. A rise in destDivIndex may represent a large
number of victims, as a botnet scanning random IP addresses or the whole IPv4 range would
cause. portDivIndex reflects the diversity in source ports, its diminution may represent the usage
of a spoofed port. A variation in the meanSize feature suggests a change in packets nature,
like crafted packets sent by bots. A variation in the stdSize feature can be caused by a change

3.2. SPLIT-AND-MERGE PORT-CENTRIC NETWORK ANOMALY DETECTION 35

in packets nature as well, and in addition, is not easy to fool for an attacker: if it increases,
the diversity among packets is higher, so probably there are suddenly both crafted and regular
packets; if it decreases, the diversity among packets is lower, hence the traffic more specific. This
can be caused by malicious software that kills other processes bound to the same port. Finally,
a variation in perSYN implies an increase or a decrease in the port scan. Therefore each port p
at a given day is characterized by the set of features computed from CTs, shown in Table 3.2.

Feature Computed from Description
srcDivIndex CT1 % of unique source IP addresses
destDivIndex CT2 % of unique destination IP addresses
portDivIndex CT3 % of unique source ports
meanSize CT4 Mean packets size
stdSize CT4 Standard deviation of packets sizes
perSYN Counter % of SYN packets
nbPackets Any CT Number of packets

Table 3.2: Features definition.

We denote the time series of feature i containing N days (i.e., Ndays) for port p as fpi,N =

(xpi,1, ..., x
p
i,j , ..., x

p
i,N), with xpi,j being the value of feature i for port p on day j. Features are

computed at a given frequency, set to once every week in the following simulations (in particular
the same day at the same daytime slot, in order not to be influenced by weekly or daily variations).

Algorithm 1 below shows how to update the FT{ports ∗ features ∗ Ndays} by computing
features by port from packet attributes found in CTs.

Algorithm 1: updateFT(CTs, FT, Nmin)
1: Delete first column of FT and shift others
2: for all port p ∈ ports do
3: if length(CT1[p]) > Nmin then . Check condition on the number of packets
4: for all att ∈ attributes do
5: feature f ← relativeMetric(att) . 1 or 2 features per attribute (e.g., mean and

std for packet size)
6: FT[p][f][currentDay] = CTf [p].apply(f)
7: return FT

3.2.3 Local anomaly detection

Assuming a feature is more or less likely to vary (standard deviation) depending on its type,
and usually around the same (mean) value, the normal distribution logically quite fits as its
distribution. The validity of this assumption is assessed later in Section 3.4.1. We model the
time series fpi,N = (xpi,1, ..., x

p
i,N) over N days as a normal distribution N (µp, σp

2
) of mean µp

and standard deviation σp such that:

µp =

N∑
j=1

xpi,j and σp =

√√√√ 1

N

N∑
j=1

(xpi,j − µp)2. (3.1)

As previously introduced in Section 2.1.1, the Z-score is a well-known simple statistical metric,
commonly used to automatically detect a change in the time series. It is the measure of how

36 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

many standard deviations below or above the mean a data point is, and the larger the Z-score,
the more unusual the value. For the given time series fpi,N = (xpi,1, ..., x

p
i,N) approximated by a

normal distribution N (µp, σp
2
), the Z-score of the new value xpi,N+1 of feature i at time N + 1 is

computed as follows:

Zp
i,N+1 =

xpi,N+1 − µp

σp
. (3.2)

However, the Z-score is computed from the mean, a metric influenced by outliers and es-
pecially extreme values. Alternatively, the modified Z-score uses the median and the median
absolute deviation (MAD) from the median, instead of the classical mean and standard devia-
tion respectively, which makes it outlier-resistant [15].

Given the time series median f̃pi,N , the modified Z-score Mp
i,N+1 of the new value xpi,N+1 of

feature i at time N + 1 is computed as:

Mp
i,N+1 =

0.6745 · (xpi,N+1 − f̃
p
i,N)

median(|xpi,N+1 − f̃
p
i,N |)

(3.3)

An anomaly is detected if the absolute value of the modified Z-score exceeds a threshold Ti.
For all i, we adopt a threshold value of 3.5 as recommended in [15]. Algorithm 2 presents the
anomaly detection process taking place in each local detection module, to detect anomalies from
features time series found in FT.

Algorithm 2: runDetection(FT, Ndays)
1: median← 0
2: mad← 0 . median absolute deviation
3: mZ ← 0 . modified Z-score
4: list anomalies
5: for all port p ∈ FT.ports do
6: for all feature f ∈ FT.features do
7: series← FT[p][f]
8: orderedSeries← quickSort(series)

9: median← orderedSeries[
Ndays+1

2]
10: sum← 0
11: for all value ∈ series do
12: sum← sum + |value - median|
13: mad← sum

Ndays

14: mZ ← 0.6745 · (series[currentDay]−median)
mad

15: if mZ > 3.5 then anomalies.add({p, f})
16: return anomalies

The modified Z-score is used to identify anomalies on all features, except for nbPackets: the
latter is only used to spot emerging ports, i.e., ports that were not in use before. That is, an
anomaly is spotted if at least a given number of packets Nmin is collected on one port for the
first time in Ndays, so that xpi,N+1 ≥ Nmin and xpi,j < Nmin for each jε[1, N].

Once all features of all ports have been analyzed, the detection module sends the content of
the anomalies to the correlation module as alerts. For each alert, the module specifies its ID m,
the anomalous port p, the involved feature i, the time series fpi,N , and the new anomalous value

3.3. NETWORK TRAFFIC DATASETS 37

xpi,N+1. An alert is so defined by a 5-tuple {p,m, i, fpi,N , x
p
i,N+1}. For example, in Fig. 3.1, the

detection module B notices an anomaly on port 89 for feature srcDivIndex. It also provides the
time series of feature fpi,N and xpi,N+1, though not written on the Figure.

Note that in our implementation, the time series are composed of one value picked each week
at the same hour. This enables one to avoid variations in the time series due to seasonality,
without introducing any additional mechanism that would induce an increased complexity. As a
future work, we could also refine our methodology so that it also takes into consideration trend
variations.

3.2.4 Central correlation

The correlation module receives low-level alerts from all detection modules. The distinction
between localized (noticed in one subnetwork) and distributed (noticed in several subnetworks)
alerts is made here. As we are searching for distributed attacks, the correlation module groups
the low-level alerts to keep only the ones reported by at least k subnetworks; we set k = 2 in this
work. In the example of Fig. 3.1, several detection modules send alerts to the correlation module;
among them, two subnetworks report a change in the portDivIndex feature on port 23. Hence
the correlation module induces an anomaly on this port. It is even better if similar anomalies
have been noticed on the same port for several features.

We define the Anomaly Score (AS) as the number of anomalies noticed for one port by all
monitors and for all features; e.g., if for one port, a monitor detects anomalies on two features
and another on six features, the AS is 8. The correlation module is able to compute the AS
after having received alerts from all monitors during the same time slot. When it identifies top-
level anomalies, it warns all detection modules about the anomalous ports. Thus they are able to
analyze these ports as a priority next time. Ad-hoc actions can also be taken, as a function of the
programmability of the local network, such as port blocking, mirroring, deep-packet-inspection,
for the sake of reporting in a possible further detailed analysis.

3.3 Network traffic datasets

The WIDE project provides researchers with daily traces of a transpacific link, named the MAWI
archive [34]. Traces are collected between their network and the upstream ISP. Each file contains
15 minutes of traffic flows, captured between 14:00:00 and 14:15:00 local time. This represents
usually between 4 and 10 GB of traffic for one file. Before being released, traces are anonymized
so that no personal information can be extracted. Specifically, the application data is removed
and IP addresses are scrambled with a modified version of tcpdpriv following two principles:
1) it is collision-free so that there is a one-to-one mapping between IP addresses before and
after anonymization; 2) it is prefix-preserving so that if two IP addresses share k bits before
anonymization, the two anonymized IP addresses will also share k bits. This enables one to
retrieve the subnetworks after anonymization.

In addition, the Center for Applied Internet Data Analysis (CAIDA) provides the UCSD
Network Telescope dataset [32]. It consists of a globally routed, but lightly utilized /8 net-
work prefix, that is, 1/256th of the whole IPv4 address space. It contains a few legitimate hosts;
inbound traffic to non-existent machines - so-called Internet Background Radiation (IBR) - is un-
solicited and results from a wide range of events, including misconfiguration, scanning of address
space by attackers or malware looking for vulnerable targets, backscatter from randomly spoofed
denial-of-service attacks, and the automated spread of malware. CAIDA continuously captures
this anomalous traffic discarding the legitimate traffic packets destined to the few reachable IP

38 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

Figure 3.1: Architecture example. Local modules run at different points in the network and
send alerts to the central correlation module. The controller will then be able to keep only dis-
tributed ones. Here it spots an anomaly on port 23 for feature portDivIndex, coming from two
different places.

addresses in this prefix. They provide two types of files: raw data stored into pcap files for the
ongoing month, and hourly FlowTuple files for the last 13 years – that we used. Note that this
dataset does not contain several subnetworks as the MAWI one does. Thus the number of false
positives (i.e., detecting an attack targeting only this subnetwork but not the whole Internet)
may be higher. The objective of using this second dataset is to evaluate the efficiency of our
method as of detected botnets and, most of all, to compare the anomalies found in each of the
datasets and to study the common ones.

Note that by default, we refer to the MAWI dataset when we do not specify which one we
use. As the UCSD dataset only contains one vantage point, we do not use it for all experiments,
instead we use it to cross-check the anomalies found in the MAWI dataset since there is no
ground-truth.

3.4 Evaluation

In this section, we evaluate the performance of the Split-and-Merge detection process using
real traffic traces. First, we aim to validate our assumption that the feature data is normally
distributed around its median. We also analyze the results to adequately determine the features
and parameters. Finally, we look at the anomalies found during the last three years and aim to
classify them. The source code used for the detection and evaluation is available in [109].

3.4. EVALUATION 39

(a) Normal distribution
based on mean.

(b) Normal distribution
based on median.

(c) Log-normal distribu-
tion based on mean.

(d) Log-normal distribu-
tion based on median.

Figure 3.2: Empirical CDF of the MSE between the true distribution and the regression.

3.4.1 Normal distribution fitting

It is important to empirically assess the validity of a key Split-and-Merge assumption, which is
that the features data is expected to be normally distributed around the median. Indeed, we use
the modified Z-score to support the detection logic.

It is well known from the state of the art that Internet traffic exhibits a power-law behavior
[110] for the packet counts. Among Split-and-Merge features, we consider the nbPackets feature
only to characterize ports’ behavior (for the ports with sufficient traffic). Moreover, other features
represent diversity indices, attributes means, and standard deviations.

To assess the assumption that normal distribution is a well fit for the nbPackets feature,
and that it is better than the power-law distribution, we compute the mean square error (MSE)
between the measured and synthetically generated histogram [111], for each tuple of port and
feature so that:

MSE =
1

Nbins

Nbins∑
b=1

[Hp
i,N (b)− Ĥp

i,N (b)]2 (3.4)

where Hp
i,N denotes the normalized histogram of the N days time series fpi,N of feature i and

port p, Ĥp
i,N the histogram with matching mean and standard deviation, and Nbins the number

of bins in the histograms. The latter is chosen according to Sturges’ rule stating that the number
of bins K should be equal to K = 1 + 3.322(log10(N)) with N the number of samples. Using
this method, we used 4 bins for 10 samples.

Given the several thousands of ports to analyze each day for each feature, the Cumulative
Distribution Function (CDF) represents the cumulative probability for one feature to reach a
given MSE by taking into account all ports. We plot the empirical CDF of the MSE by considering
four different regressions: a normal distribution with matching mean and standard deviation in
Fig. 3.2a, a normal distribution with matching median and median absolute deviation in Fig.
3.2b, a log-normal distribution with matching mean and standard deviation in Fig. 3.2c, and a
log-normal distribution with matching median and median absolute deviation in Fig. 3.2d. The
reported results are those for 2016 traffic (we observe similar results in 2017 and 2018).

We observe that: (i) the regression using the log-normal distribution gives far worse results
than the normal distribution; (ii) for the normal distribution, the regression using the median
and the median absolute deviation gives a better approximation than the one with the mean and
the standard deviation; (iii) for the normal distribution, all features produce more or less the
same MSE.

By using a normal distribution, we found out that the MSE is very low for all features, which
is an empirical validation of this assumption.

40 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

(a) Normal distribution based on mean. (b) Normal distribution based on median.

Figure 3.3: Empirical CDF of the chi-squared test between the true distribution and the re-
gression.

In addition to this approach comparing the MSE of both distributions, the chi-squared test
is commonly used to test association of variables in two-way tables where the assumed model of
independence is evaluated against the observed data. It is used to test whether observed data
differ significantly from theoretical expectations. Fig. ?? shows hereafter the p-value for the
chi-squared distribution: (i) between the real distribution and the normal distribution based on
mean and standard deviation (Fig. ??), and (ii) between the real distribution and the normal
distribution based on median and median standard deviation (Fig. ??).

From these figures we can draw the same conclusions than for those using the MSE, that is:
(i) the normal distribution based on median is fitter than the one based on mean, and (ii) all
features have more or less the same p-value.

3.4.2 Local anomaly detection

This section gives the outcome of several local detection modules running simultaneously, each
of them being situated in a MAWI subnetwork. We pick each Thursday from March 31 to Oct.
20, 2016. Thresholds Ti for an anomaly are all set to 3.5. The minimum number of packets Nmin

is set to 20. The number of days we chose is Ndays = 10. We will tune these two last values later
in Section 3.4.6.

Fig. 3.4 gives an example of the modified Z-score evolution for the srcDivIndex feature on port
TCP/3389. On Sept. 29, the absolute value of the modified Z-score is over the threshold for four
detection modules situated in different subnetworks, resulting in an anomaly. The subnetwork F
contains only a few points because most of the time, there is little (fewer packets than Nmin) or
no traffic on port 3389 in this subnetwork. The same explanation applies to subnetworks that
do not appear at all in the legend.

3.4.3 Comparison between aggregated and split views

In this experiment, we compute the number of alarms for each feature considering two ap-
proaches: (i) an aggregated view where an anomaly is observed considering the traffic from all
subnetworks aggregated, (ii) a split view where only distributed anomalies (i.e., seen in at least
two subnetworks) are conserved. The results are presented in Table 3.3 for 2016, while similar
findings have been observed in 2017 and 2018. We observe that the number of anomalies – thus
the number of false positives – is significantly lower with the split view.

3.4. EVALUATION 41

Figure 3.4: Evolution of the modified Z-score in 5 subnetworks for feature srcDivIndex on port
3389 over time (2016).

Feature Aggregated view Split view
srcDivIndex 11,376 101
destDivIndex 11,409 96
portDivIndex 11,375 102
meanSize 10,978 91
stdSize 10,549 67
perSYN 851 98

Table 3.3: Number of anomalies for both approaches (2016).

Figure 3.5: Number of anomalies for feature srcDivIndex. In aggregated view, the score is 1 if
there is an anomaly on the whole traffic, else 0. In split view, it is the number of anomalous
subnetworks.

The example of feature srcDivIndex is shown in Fig. 3.5, with the number of anomalies
expressed in logarithmic scale. With a split view, we observe that considering only distributed
alerts considerably diminishes the number of anomalies to deal with. Indeed, the number of
anomalies for a single variation (score of 1) is 100 times higher than for a distributed variation
(score of 2), decreasing the number of alerts from 3,918 to 66.

42 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

3.4.4 Last years panorama

In this subsection, we launch the anomaly detection process on a large period to examine the
type of anomalies we can detect. We describe hereafter the main anomalies arisen these last
three years, in the MAWI dataset and the UCSD dataset.

In the MAWI dataset

Fig. 3.6a (2016), 3.6b (2017), and 3.6c (2018) show the number of ports with a given anomaly
score each day, highlighting the main anomalies arisen these last three years. In all cases, we
observe very few alarms each day, which is quite convenient for the network administrator, as too
numerous alerts is considered as one reason why IDS are underused. Furthermore, none of these
anomalies have been detected by MAWILab. Also, we tag events observed in both datasets
with a red frame in Fig. 3.6. Note also that lots of ports score 5 anomalies, as a significant
variation on one port in one subnetwork generates simultaneous alerts for all features (except
for the feature perSYN that gives poor results as shown later in Section 3.4.6), i.e., 5 alerts. We
therefore describe the main anomalies, whose anomaly score is the highest, and we also indicate
if we retrieved these anomalies in the UCSD dataset.

2016 period. Eight noticeable scores appear in Fig. 3.6a depicting this first period.
i) The 19-score on Feb. 19 is a scan prior to the DROWN attack [112], exploiting a vulnera-

bility in Secure Sockets Layer version 2.0 (SSLv2) (CVE-2016-0800).
ii) The 17-score on May 19 corresponds to an exploit on port 6379 Redis, an in-memory key-

value store used as a database or a cache. This day, numerous IP addresses with different source
port numbers targeted this port. It could be a botnet or numerous different hosts scanning for
vulnerable devices. Indeed, Redis servers do not require authentication by default and therefore
are easy victims of this type of scan. Also, this happens only a few days after buffer overflow
vulnerabilities were discovered, leading to arbitrary code execution (CVE-2016-8339, CVE-2016-
10517).

iii) Once again, the 20-score on June 30 corresponds to an exploit on port 6379. This day,
a large SYN scan is observed coming from the same source IP address and targeting numerous
hosts in several ASes of MAWI. This is either a large scan targeting the whole IPv4 space,
through a tool like ZMap [113] that performs Internet-wide network scans in under 45 minutes,
or someone trying to penetrate the MAWI network. This anomaly has been detected with a
score of 4 in the UCSD dataset.

iv) The IoT Mirai botnet [2] is a major attack arisen in 2016. First, Mirai infected hosts
send TCP SYN packets to random IP addresses on Telnet ports 23 and 2323, except those on
a blacklist. Hosts whose Telnet port is open send back an SYN/ACK packet. Then, infected
hosts try to establish a Telnet connection to them using a hard-coded list of credentials, and
send the credentials to another server if it is successful. From there, a separate program executes
architecture-specific malware. The victim is now infected and listens for attack commands from
the C&C server, then starts scanning to infect other hosts. This is how Mirai spread into
connected objects and form a worldwide army of bots. Indeed, the 26-score on Aug. 4 corresponds
to the Mirai scan on port 23 and the 28-score on Sept. 15 relates to port 2323. Numerous Mirai
variants exploit vulnerabilities on other ports later in 2016, as evidenced by the 29-score on
Dec. 8 on port 7547, the 20-score on Dec. 22 on port 23231, and the 20-score on Dec. 29 on port
6789. The attack has been detected in the UCSD dataset with a score of 4 for port 2222, of 5
for ports 23 and 7547, and of 6 for ports 2323 and 6789.

2017 period. Nine noticeable scores appear in Fig. 3.6b showing anomaly detection results
in 2017.

3.4. EVALUATION 43

(a) In 2016.

(b) In 2017.

(c) In 2018.

Figure 3.6: Anomaly scores for the MAWI dataset (number of anomalies for one port, taking
into account all features and all monitors). In the coloured squares are given the numbers of
ports with this anomaly score this day. Events detected in both datasets are tagged with a red
frame.

i) A 19-score on Jan. 5 highlights a scan on port 8291, carried out by Hajime bots. Ha-
jime [114] is an IoT worm revealed only a few days after the release of the source code for Mirai.
The botnet is continuously evolving, taking advantage of newly released vulnerabilities. At the
beginning of 2017, the efficient SYN scanner implementation scans for open ports 5358 (WS-
DAPI) [115]. In the same way Mirai did on port 23, the extension module tries to exploit the
victim using brute-force shell login. This anomaly has been detected with a score of 6 in the
UCSD dataset.

ii) The 17-score on March 16 corresponds to a massive scan on port 993 which deals with
secure IMAP (IMAPS). This day, a massive scan coming from the same IP address from port
993 as well has been observed. It may be a ZMap scan, or an attacker trying to infiltrate the
MAWI network specifically. Indeed, IMAPS belongs to the list of ports scanned by default by

44 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

Nmap [116] and is permanently stuck with the vulnerabilities in SSL 3.0.
iii) The June 1 a 19-score is observed, corresponding to a new IoT botnet spreading and

exploiting a vulnerability in security cameras [117], several days after the researcher Pierre Kim
released a vulnerability analysis report on GoAhead and other OEM cameras. This anomaly has
been detected with a score of 6 in the UCSD dataset.

iv) The 30-score, 26-score, and 24-score, respectively on Aug. 3, Aug. 10, and Aug. 17 cor-
respond to a sensible drop in the scan perpetrated by Mirai on port 23. This may be due to
the Internet of Things (IoT) Cybersecurity Improvement Act of 2017 [118], adopted on Aug. 1,
2017. The latter seeks to improve the security of internet-connected devices, so that devices do
not contain any known security vulnerabilities and are conceived using standard protocols. It
also claims that the eventual patches should be applied even retroactively, which can explain the
scan drops. These changes have also been noticed in the UCSD dataset, producing anomalies
with scores of 4 and 5.

v) The 27-score on Dec. 21, and 15-score and 16-score on Dec. 28 involve ports 37215 and
52869, that received numerous scans from the newest version of Satori (a Mirai variant) [119].
These anomalies have been detected in the UCSD dataset with scores of 4 and 5.

2018 period. Nine noticeable scores appear in Fig. 3.6c depicting the 2018 year. Compared
to previous years, large scores are much rarer this time. Indeed, the maximum AS is up to
19, compared to 29 and 30 respectively in 2016 and 2017. We can still identify several main
anomalies.

i) On Feb. 8 and March 8, exploits on port 81 are noticed. These days, almost the same
IP address launched TCP SYN scans from the same source port number, targeting numerous
MAWI subnetworks. This may be once again an Internet-wide network scan (e.g., by ZMap) or
an attacker that targets the MAWI dataset specifically.

ii) The 16-score on Feb. 15 is actually a scan on port 5555. It comes from the ADB.Miner
botnet, which identifies Android devices with Android Debug Bridge turned on, to control them
and make them execute commands [120]. Hence, this day, numerous IP addresses sent SYN
packets to various hosts in the MAWI network using different source port numbers, as seen for
the Mirai botnet in 2016. This anomaly has been detected in the UCSD dataset with a score of
4.

iii) The 12-score on March 1 corresponds to the memcached attack on port 11211. Prior to the
huge DDoS attack towards Github, large TCP SYN scans across the world targeted port 11211
in order to identify memcached servers exposed without any authentication protection (CVE-
2018-1000115). The anomaly observed this day is a mark of this large scan. These changes have
also been noticed in the UCSD dataset, producing anomalies with scores of 4 and 5.

iv) The 18-score on Apr. 5 corresponds to a large scan on port 2000 coming from various
source IP addresses with different source port numbers, and targeting many IP addresses from
several ASes in the MAWI dataset. Cisco Skinny Call Control Protocol (SCCP) is often bound
to this port, allowing terminal control for voice over IP. This scan is symptomatic of an IoT
botnet, willing to exploit the few vulnerabilities disclosed last years for this protocol, and maybe
IoTroop [121].

v) The 19-score on Apr. 5 highlights a scan on port 8291, carried out by Hajime bots. In
May 2018, it exploits a vulnerability (CVE-2018-7445) published 13 days before. First, infected
hosts scan random IP addresses on port 8291 to identify MikroTik devices. Once the bot has
identified one device, it tries to infect it with a public exploit package sent via port 80 or an
alternate port. If successful, the device infects new victims in turn under the same protocol. This
day, as for the Mirai botnet, our program saw many IP addresses targeting the MAWI network
on port 8291, using various source port numbers. This anomaly has been detected with a score

3.4. EVALUATION 45

of 4 in the UCSD dataset.
vi) On Apr. 26 and March 3, two anomalies on port 23 are detected. We observe that

these days, meanSize considerably rises while srcDivIndex and destDivIndex fall. The number
of packets is also lower than usual. Thus it looks like there are fewer malicious scans towards
this port these days. Actually, botnets tend to use alternate ports because vulnerabilities are
progressively patched and devices are armed against possible exploits on port 23. These changes
have also been noticed in the UCSD dataset, producing anomalies with scores of 4 and 5.

vii) On June 28, a 16-score is stored for port 60001, probably corresponding to a Trojan
named Trinity. It first connects to one of 11 IRC servers on UnderNet. The Trojan then joins
a chat room and waits for commands to attack individual agents on the channel. The noticed
anomaly probably results from that trojan, that we identified coming from two different IP
addresses.

viii) On Sept. 6, a 16-score anomaly is observed on port 8000. Several days before, the
possibility for an unauthenticated attacker to exfiltrate sensitive information about the network
configuration (network SSID and password) has been made possible by an information disclosure
in Netwave IP camera (CVE-2018-11653 and CVE-2018-11654). This anomaly has been detected
in the UCSD dataset with a score of 4.

In the UCSD Network Telescope dataset

Fig. 3.7a (2016), 3.7b (2017) and 3.7c (2018) show the number of ports with a given anomaly
score each day, highlighting the main anomalies found these last years in the UCSD dataset. Once
again, we frame common anomalies (found in both datasets) in red, and describe the anomalies
detected uniquely in this one hereafter.

2016 period. Several noticeable scores appear in Fig. 3.7a showing anomaly detection
results in 2016.

i) On Feb. 18, we observe many scans targeting destination ports from 36242 to 36560 (even
numbers only), producing 6-score anomalies. The scans probably come from a botnet, because
the source and destination IP addresses are very diverse. It is hard to determine the nature of
these scans, because they target registered ports with no known vulnerabilities. It may be a
stealthy scan technique to first determine if the host is up, to then focus on some ports showing
vulnerabilities (as the Reaper botnet does, cf. [122]).

ii) On March. 17 and 24, a decrease in the scans targeting the range 36242-36560 is observed,
producing 6-score anomalies.

iii) Once again, several scans targeting the range 19328-19454, producing 6-score anomalies
have been noticed on Dec. 1.

iv) On Dec. 8, an anomaly is detected with a score of 5, highlighting a scan performed by Mirai
on port TCP/2222, running Rockwell Automation ControlLogix whose several vulnerabilities are
known [123]. The MAWI dataset contains traffic from a backbone link, and port 2222 may also
be used as an alternative port for SSH, producing noise in data. This may explain why we did
not detect the scan in the MAWI dataset.

2017 period. Several noticeable scores appear in Fig. 3.7b showing anomaly detection
results in 2017.

i) A 6-score anomaly on Jan. 5 highlights a scan on port TCP/27017 that runs MongoDB. A
few days later, it has been reported and confirmed that many unsecured MongoDB databases have
been scanned and vandalized around the world [106]. This attack affects only those databases
which maintain default configurations, which leaves the database open to external connections
via the Internet. We observe also a scan of the same nature on Feb. 16.

46 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

ii) We observe on March. 30 several scans targeting destination ports 88, 443, 3389, 6666,
and 54313, coming from very distinct source IP addresses and with no flags (a network scanning
technique known as Inverse TCP Flag Scanning). All of these ports present known vulnerabilities.
A vulnerability on port 54313 to exploit a Netis Router Backdoor has been detected and exploited
by botnets back in Aug. 2016[124]. We did not find any information about a botnet targeting
all these ports conjointly in the literature, thus we assume it is a small-scale attack.

iii) A 6-score on May. 18 highlights a scan on port TCP/445 that runs Server Message Block
(SMB) known for its "EternalBlue" vulnerability. On May. 17, the recent WannaCry ransomware
takes advantage of this vulnerability to compromise Windows machines [125].

iv)A 6-score on Oct. 12 highlights a scan on port 20480, probably from the Reaper bot-
net targeting a sequence of destination ports including 20480 [122]. However, instead of doing
aggressive, asynchronous SYN scans for open Telnet ports, Reaper performs a more elaborate,
conservative TCP SYN scan on a series of different ports, one IP at a time, targeting uncom-
mon ports. Only after the first wave of scans on the victim, a second wave starts consisting of
potential IoT web service ports: 80, 81, 82, 83, 84, 88, etc.

v) As in 2016, we observe a decrease in the scans targeting the range 19328-19454, producing
6-score anomalies on Dec. 7 and 14.

2018 period. Several noticeable scores appear in Fig. 3.7c showing anomaly detection
results in 2018.

i) A 6-score on May. 17 highlights a scan on port TCP/8000, performed by the Satori botnet
exploiting a buffer overflow vulnerability, tracked as CVE-2018-10088 [126]. The exploit could
be used by remote attackers to execute arbitrary code by sending a malformed package via ports
80 or 8000. The upsurge of malicious scanning activity has been observed on June 15 but we
could think that we detected a preliminary scan campaign from Satori developers. Moreover,
this scan was probably not targeting the whole IPv4 range because we did not detect it in the
MAWI dataset.

ii) A 6-score on May. 17 highlights a scan on port TCP/445, a port known for its "Eternal-
Blue" vulnerability exploited by Wannacry. We noticed at this time an important increase in
the botnet scan activities.

iii) A 6-score on Aug. 2 highlights a scan on port TCP/37215, a port used by Huawei
HG532 routers. At the end of July, an IoT hacker identifying himself as "Anarchy" claimed
to have hacked about 18000+ Huawei routers [127]. It works by exploiting an already known
vulnerability which CVE is 2017-17215, used in Satori.

3.4.5 Anomaly score distribution

The last subsection shows that there are only a few emerging anomalies, and a lot more with
small anomaly scores. We can so wonder which anomalies are greater enough to be analyzed.
Fig. 3.8 shows the mean anomaly score occurrence per day in logarithmic scale for each year. For
the MAWI dataset (Fig. 3.8a), for 6 features, we observe different levels of 6 items, e.g., AS from
1 to 6 are close to 10, then from 7 to 12 close to 0.3, then the number of anomalies progressively
declines. Once again, the occurrence AS = 5 is high because a given variation on one port in one
subnetwork generates one anomaly per feature, except for perSYN. For next evaluations, we set
the threshold to define an anomaly either to 6 or 12, depending on if we want to detect a large
variety of anomalies or only significant ones. For the UCSD dataset (Fig. 3.8b), we observe a
very low number of significant anomalies, i.e., with a score at least equal to 4. For the MAWI
dataset, we observed a decrease starting from AS = 7 (thus at least two impacted subnetworks)
and not 4, probably because it contains more false positives due to traffic generated by internal

3.4. EVALUATION 47

(a) In 2016.

(b) In 2017.

(c) In 2018.

Figure 3.7: Anomaly scores for the UCSD Network Telescope dataset (number of anomalies for
one port, taking into account all features and all monitors). In the coloured squares are given
the numbers of ports with this anomaly score this day. Events detected in both datasets are
tagged with a red frame.

(a) For the MAWI dataset. (b) For the UCSD dataset.

Figure 3.8: Occurrences of each anomaly score during the last three years, showing a low num-
ber of significant anomalies.

hosts (while there is no such traffic in the UCSD dataset).

3.4.6 Features and parameters choice

In this subsection, we aim to refine the detection accuracy by analyzing how the features and
the parameters impact the results.

48 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

Feature selection

We use two metrics to determine which features are the most useful in the anomaly detection
process. The two following experiments are made on the whole traffic from 2016 to 2018. For
both, a large number of anomalies, i.e., with an AS > 6 is first considered, then only major ones,
i.e., with an AS > 12.

F-Test based feature selection: F-Test is a statistical test used to compare between
models, here between the input (features) and the output (anomaly detection results). It is
useful in feature selection as we get to know the significance of each feature in improving the
model. First, the anomalies are generated by launching our solution, and only the ones whose
AS is higher than T are kept. Then, we observe the impact of each variation of features on the
detected anomalies. Table 3.4 gives the results of the F-Test applied to the produced anomalies,
for each feature variation. We observe that the perSYN feature, which scores 0.114 / 0.009 and
0.152 / 0.039 respectively for an increase and a decrease, has the least impact on the results.

Feature F-Test score (T = 6) F-Test score (T = 12)
+srcDivIndex 0.269 0.136
-srcDivIndex 0.689 1.000
+destDivIndex 0.599 0.378
-destDivIndex 1.000 0.610
+portDivIndex 0.633 0.188
-portDivIndex 0.648 0.899
+meanSize 0.321 0.158
-meanSize 0.932 0.463
+stdSize 0.692 0.302
-stdSize 0.478 0.825
+perSYN 0.114 0.009
-perSYN 0.152 0.039

Table 3.4: F-Test scores per feature, among anomalies whose AS is higher than T. The higher
the F-Test score of a feature is, the greater impact the feature has on final results.

Number of absolute variations: we analyze for each anomaly whether the variations of
features are distributed in several subnetworks, i.e., if the feature only rises or decreases in several
subnetworks. This kind of variation is wanted as it means a distributed change, and not some
random, differing variations. In Table 3.5 is given the number of absolute anomalies, i.e., where
one given feature is only rising in several subnetworks, or decreasing in several subnetworks. We
observe that the perSYN feature contains a majority of random variations, contrary to other
features.

We can induce from these two experiments that the perSYN feature has the lowest impact on
final results and does not often rise or decrease in the majority of subnetworks. This observation
is interesting as this feature is widely used in TCP SYN scan detection algorithms.

Parameters tuning

Our algorithm has four parameters (see Table 3.1). In this subsection, we evaluate and discuss
the impact of the key ones: the window size (Ndays) and the minimum number of packets on one
port (Nmin).

3.4. EVALUATION 49

Feature # absolute variations (T = 6) # absolute variations (T = 12)
srcDivIndex 318 12
destDivIndex 296 17
portDivIndex 334 16
meanSize 260 14
stdSize 211 7
perSYN 154 6

Table 3.5: Number of absolute variations per feature (either rise in several subnetworks, or de-
crease in several subnetworks), among anomalies whose AS is higher than T.

Figure 3.9: Median MSE (between the true and the normal distribution) per feature, with the
window size (Ndays) varying.

(a) Varying the number of days in the model
(Ndays).

(b) Varying the minimum number of packets on
one port (Nmin).

Figure 3.10: Number of anomalies depending on a parameter for diverse thresholds (2016).

Number of days in the window (Ndays): first, we wonder how the number of elements
in the time-window impacts the validity of a normal distribution based on the median. For each
feature, we compute the median MSE (for all ports) between the true distribution and the normal
distribution based on the median, by making Ndays vary. The result is shown in Fig. 3.9. We
observe that the more days in the model, the more normally distributed the set of data, making
the model with 20 days the best approximation. However, it may be possible to find a trade-off
between a good approximation and a minimized time execution and memory allocation.

50 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

Looking at the anomaly detection results can also give evidence about the appropriate window
size. The objective is to find an optimal window size that is not too large, but still gives
a satisfactory detection accuracy. In Fig. 3.10a is shown the number of anomalies in 2016
depending on the threshold (minimum AS value) for diverse Ndays values. We observe that 10
days (in green) enable us to see all substantial anomalies, i.e., with an AS higher than 12. We
keep Ndays = 10 for the following simulations to minimize the window size.

Minimum number of packets on one port (Nmin): this time, we show the number of
anomalies in 2016 depending on the threshold (minimum AS value) for diverse Nmin values in
Fig. 3.10b. We observe that for a threshold higher than 12, the number of anomalies is the same
no matter Nmin. It means that anomalies happen most of the time on ports with a sufficient
amount of traffic (more than 100 packets). Therefore we choose Nmin = 100 to limit the number
of ports to deal with, hence reducing the time execution and memory allocation.

To complete the study, Fig. 3.11 shows the number of ports to deal with in each subnetwork
in 2016, by making Nmin vary. With Nmin = 100, the maximum amount of ports to analyze is
around 6,000 for subnetwork E, which is quite reasonable.

Figure 3.11: Number of ports to analyze in every subnetwork, with the minimum number of
packets per port (Nmin) varying.

3.4.7 Anomalies classification

We define a set of commonly-called ‘expert rules’ with some conditions about the evolution of the
features. For each characteristic, the variation has to be noticed in at least two subnetworks, while
the opposite variation must not be noticed in any subnetwork. For example, if the characteristic
is -srcDivIndex, an anomaly is verified if srcDivIndex decreases in at least two subnetworks (-
srcDivIndex ≥ 2) and if it does not rise in any subnetwork (+srcDivIndex = 0). Furthermore,
the feature portDivIndex is not self-speaking and thus not used in the classification. Nonetheless,
this feature gives additional information about the likelihood for the source port to be spoofed or
not. Therefore, if portDivIndex rises in at least two subnetworks while it does not decrease in any
subnetwork, then the source port may be randomly chosen. If the exact opposite is observed, the
port may be spoofed. In addition, the perSYN feature is not used for the classification either,
because of its small impact on the results (see Section 3.4.6).

In Table 3.6 are given several classes of anomalies observed in the last few years, followed
by their characteristics. They are ordered so that the most specific rules override the lower
ones. Some anomalies referring to attacks are identified, such as "forged packets", "large scan"
probably launched with ZMap, "DDoS attack", "targeted scan", "botnet scan" and "botnet

3.4. EVALUATION 51

expansion" that kills other processes bound to a port. There are also anomalies caused by a
drop in malicious activities, such as "normal packets" and "less botnet scan".

Only significant anomalies (whose AS > 12) are kept to be classified. The fact that some
anomalies do not belong to any class is not worrying, as it means a port whose nature evolves
rapidly, rather than a port targeted by one clearly identified attack. We observe a nature of
traffic seemingly different between 2016 and 2018, with a majority of scans and DDoS attacks in
2016 and more normal activity in 2018.

Classes and characteristics 2016 2017 2018
More normal packets
+meanSize,+stdSize 1 5 12

More forged packets
-meanSize,-stdSize 0 1 1

Large scan
-srcDivIndex,+destDivIndex,-meanSize 3 5 0

DDoS
+srcDivIndex,-destDivIndex 6 1 3

Botnet scan
+srcDivIndex,+destDivIndex,-meanSize 5 2 6

Botnet expansion
+srcDivIndex,+destDivIndex,-stdSize 2 2 2

Targeted scan
-srcDivIndex,-destDivIndex 1 2 4

Less botnet scan
-srcDivIndex,-dstDivIndex,+meanSize,+stdSize 0 5 3

Total 18/21 23/32 31/40

Table 3.6: Definition of classes and their characteristics, with their occurrences each year.

3.4.8 Ground-truth

Since we are detecting anomalies on a long-term scale and based on destination port numbers,
we are not able to compare our work to other intrusion detection systems on a fair basis. We are
only comparing our results to the MAWILab database, showing that it did not detect the main
anomalies that we identified, either in the MAWI dataset or the UCSD dataset. Moreover, as a
matter of fact, we focus on detecting major botnets and attacks arisen these last years and we
do not benefit from a labeled dataset of a several-year period.

Nevertheless, we attempted to provide a retrospective analysis of the major botnets and at-
tacks arisen between 2016 and 2018. The literature in this field is not prolific so we combined
different attack data sources [128, 129] to create the list; we then evaluated whether we de-
tected them using different datasets. Table 3.7 hereafter references the IoT and malware botnets
reported between 2016 and 2018, and the anomaly score of the event in case we detected it.

The false detection rate is computed as the number of benign events classified as malicious
over the total number of benign events. However, we do not have labeled data in the available
datasets and thus it is not feasible to compute the false positive rate. For instance, we cannot
distinguish between a false positive and a small attack that targets only this network and that is
not referenced as a botnet. However, we estimate hereafter the number of unknown anomalies,

52 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

Botnet Port Year MAWI dataset UCSD dataset
Mirai (IoT botnet) 23 2016 X(26/54) X(5/6)
Mirai (IoT botnet) 2323 2016 X(28/54) X(6/6)
Mirai (IoT botnet) 7547 2016 X(29/54) X(5/6)
Mirai (IoT botnet) 6789 2016 X(20/54) X(6/6)
Mirai (IoT botnet) 2222 2016 X X(5/6)
Mirai (IoT botnet) 23231 2016 X(20/54) X

Hajime (Malware botnet) 5358 2017 X(19/54) X(6/6)
Reaper (IoT botnet) 20480 2017 X X(6/6)
Satori (IoT botnet) 37215 2017 X(27/54) X(4/6)
Satori (IoT botnet) 52869 2017 X(17/54) X(5/6)

ADB.Miner (IoT botnet) 5555 2018 X(19/54) X(4/6)
Memcached (Malware botnet) 11211 2018 X(12/54) X
Hajime (Malware botnet) 8291 2018 X(19/54) X(4/6)

Satori (IoT botnet) 8000 2018 X X(6/6)
Total 11/14 detected (TPR = 78.6%) 12/14 detected (TPR = 85.7%)

Table 3.7: List of the most impactful botnets reported these last three years, and their AS at-
tributed by our Split-and-Merge system, in case we detected it, for two datasets.

defined as major detected anomalies that are not part of a known botnet. For the MAWI dataset,
we consider as major anomalies those starting from an anomaly score (AS) of 12 (therefore the
equivalent of 2 subnetworks impacted with 6 anomalous features); for the UCSD dataset, which
only contains one vantage point, we consider as major anomalies those with an AS of 6 (i.e.,
with all features anomalous). We count 71 (respectively 22, 25, and 24 in 2016, 2017, and 2018)
unknown anomalies for the MAWI dataset and 26 (respectively 14, 9 and 3 in 2016, 2017, and
2018) for the UCSD dataset.

As a result, we detected a slightly higher number of anomalies in the UCSD dataset: this
happens likely because it is less noisy and only contains unsolicited traffic. On the contrary, the
MAWI dataset shows the advantage of containing proportionally less unknown anomalies. This
is likely due to the several subnetworks in the MAWI dataset; this enables one to discard the
local anomalies (i.e., seen in only one subnetwork), which are caused by occasional traffic peaks
and may be considered as false alerts, and to keep only distributed anomalies.

3.5 Complexity and performances analysis

3.5.1 Complexity analysis

To evaluate the scalability of our algorithm, we provide the space and time complexity analysis
of each step. Table 3.8 hereafter aims at simplifying the notations to express the complexity.

Notation Definition
p Number of packets collected in the subnetwor
a Number of attributes per collected packet
p′ Number of ports after applying Nmin filter
f Number of features
l Number of anomalies during one time slot
ni Number of entries in CTi (for feature i)

Table 3.8: Complexity notations.

3.6. CONCLUSION 53

Data collection

Space complexity : the program stores a attributes per packet, hence the complexity is O(a·p).
Time complexity : packets are collected on the fly, and packets’ attributes are instantly stored.

Therefore the execution of the algorithm is near real-time.

Features computation (see Algorithm 1)

Space complexity : the memory space needed to compute features from attributes is O(1) for
all features, i.e., the three diversity indices, the mean, the standard deviation, the percentage,
and the number of packets. Therefore, the total space complexity is O(f).

Time complexity : first, we need to parse ports and compute a set of features for each one. The
feature computations, i.e., three diversity indices, a mean, a standard deviation, a percentage,
and a counter, multiplied by the number of ports, generates a total complexity of O(p′ ·

∑f
i=1 ni).

Anomaly detection (see Algorithm 2)

Note that steps 2 and 3 can be merged to avoid parsing twice each tuple of ports and features.
Space complexity : the median computation requires to order values using quick sort, whose

memory space allocated is logarithmic: O(log(Ndays)). Then, one needs to store values for the
median, the median absolute deviation, the modified Z-score, and the anomalies. These values
are updated for each feature and port, thus the space complexity is O(3 + l).

Time complexity : The time complexity for the quick sort needed to compute the median is
O(Ndays · log(Ndays)).

Finally, as a << p, the total space complexity for all steps is equal to O(p+ log(Ndays)). The
total time complexity is O(p′ ·

∑f
i=1 ni +Ndays · log(Ndays)).

Both space and time complexity directly depend on Nmin (which determines the number of
ports p′ to deal with) and on Ndays. That is why, in the following evaluations, we better minimize
these values, while keeping a good detection rate.

3.5.2 Execution performance

We performed our experiments on a 2017 MacBook Pro with 2.3 GHz Intel Core i5 Processor and
16GB RAM. The time spent to detect anomalies depends on the number of analyzed ports, thus
on Nmin, the minimum number packets on a port to consider it. We consider here the UCSD
dataset, composed of 152 days picked from 2016 to 2018, each one containing one million packets.
The learning phase (building per-port profiles) and the detection phase (computing the Z-score)
are run simultaneously. In fact, we dispose of a sliding window, thus the model is updated each
time and the detection is made on the updated model on the fly. In total, it took 6,390 seconds
to run the full algorithm (i.e., the learning and detection phases) on 152 days, covering 17,152
ports and one subnetwork.

3.6 Conclusion

In this chapter, we presented Split-and-Merge, our method that leverages statistics to detect
main changes in the usage of application ports. The port-based anomaly detection algorithm
that we propose is able to detect known and unknown attacks targeting connected objects and

54 CHAPTER 3. DETECTION OF ZERO-DAY ATTACKS

servers around the world. Early stages of the attacks, namely the exploited vulnerabilities, can
be detected beforehand. The empirical results obtained applying our method to real traces are
very promising, since our algorithm detected a number of world-wide attacks from 2016 to 2018.
In contrast, current IDSs, among which the notorious MAWILab, have not detected them. We
evaluated the scalability of our algorithm by computing its complexity in terms of space and
time. Moreover, we showed that our algorithm produces a very low number of false positives.
We demonstrated the validity of our statistical model assumptions, showing how leveraging
on distribution analysis of features we can refine the detection accuracy by analyzing how the
parameters and features impact the results. We provide a classification of the detected attacks
given expert rules by analyzing jointly the evolution of the features.

We then studied the large trends in terms of botnets and exploitation of vulnerabilities these
last years, by inspecting IP traffic. A complementary angle of view for botnet detection consists
in detecting botnet’s infected hosts within its own network, for example in enterprise networks.
The next chapter presents the classification of end-hosts either as a bot or benign host, based on
their behavioral characteristics and communications within hosts and with the outside.

Chapter 4

Botnet Fingerprinting

Efficient bot detection is a crucial security matter and widely explored in the past years. While
in the previous chapter we focused on the macro detection of botnets exploiting novel vulner-
abilities to expand themselves, we aim in this chapter to detect botnet-infected hosts within a
given network that we would like to monitor, for instance in an enterprise network. For botnet
detection, recent approaches supplant flow-based detection techniques and exploit graph-based
features, incurring however in scalability issues, with high time and space complexity. Bots ex-
hibit specific communication patterns: they use particular protocols, contact specific domains,
hence can be identified by analyzing their communication with the outside. A way we follow
to simplify the communication graph and avoid scalability issues is by looking at frequency dis-
tributions of protocol attributes capturing the specificity of botnets’ behavior. We propose a
bot detection technique named BotFP1, for BotFingerPrinting, which acts by (i) characterizing
hosts behavior with attribute frequency distribution signatures, (ii) learning benign hosts and
bots behaviors through either clustering or supervised Machine Learning (ML), and (iii) classi-
fying new hosts either as bots or benign ones, using distances to labeled clusters or relying on
a ML algorithm. We validate BotFP on the CTU-13 dataset, which contains 13 scenarios of
bot infections, connecting to a Command-and-Control (C&C) channel and launching malicious
actions such as port scanning or Denial-of-Service (DDoS) attacks. Compared to state-of-the-art
techniques, we show that BotFP is more lightweight, can handle large amounts of data, and
shows better accuracy.

4.1 Introduction

Back in September 2019, the French cyber police freed over 850,000 computers from a botnet
named Retadup [132]. The worm spread through malicious email attachments, then installed
cryptomining software on infected machines. Over nearly a million infected hosts mined Minero
cryptocurrency, reaping a huge amount of money – that is often the first reason for attackers
to handle a botnet. Retadup is also suspected of being used in several ransomware attacks and
data thefts. At the end of 2019, hackers also mass-scan for Docker vulnerability (Docker admin
port TCP/2376) to mine Monero cryptocurrency [133]. 2019 saw an increase of up to 55% of
IoT malware attacks like Retadup [134]. Hence quickly detecting botnets is a major concern.

Botnet early detection is crucial to limit harms as soon as possible. However, bots often mimic
normal traffic and hide their payload characteristic by encryption. Recently they are also more

1This work was first presented at IEEE/IFIP NOMS 2020 [130], then extended in a article published in
IEEE Transactions on Network and Service Management [131].

55

56 CHAPTER 4. BOTNET FINGERPRINTING

likely to use HTTP rather than IRC to be confounded with classic web traffic. Also, HTTP
being a widely-used protocol, firewalls seldom block it, contrary to IRC [135]. Furthermore,
dynamic ports and run-time protocol changes enable botnets to bypass signature-based firewalls
and intrusion detection systems (IDS). For robust detection systems, several flow-based botnet
detection approaches [69, 49, 70, 70] were recently proposed, working without packet payload
information. Differently than flow-based detection, other recently proposed botnet detection
approaches consist in characterizing and analyzing relationships between hosts in the network,
with techniques commonly referred to as graph-based anomaly detection [75, 81, 82]. However,
these techniques suffer from high time and space complexity, as they need to compute complex
features over very large graphs.

In this chapter, we propose a lightweight bot detection technique named BotFP that builds
signatures modeling the behaviors of hosts in a network. These signatures reflect the commu-
nication pattern of each host, to highlight the differences between normal hosts and bots. In
particular, we account for the fact that a botnet performs various kinds of actions; one can
simultaneously infect and scan other hosts, perform click fraud, launch DDoS attacks, actions
that can be qualified by finely analyzing IP addresses, TCP and UDP port numbers and ICMP
types and codes. Then, we aim at accurately defining what constitutes bot and normal commu-
nications based on the signatures of labeled hosts; we propose a clustering variant (BotFP-Clus)
- classifying new hosts based on their distances to labeled clusters - and a supervised machine
learning variant (BotFP-ML) - for which we evaluate three different supervised ML classification
approaches.

For our evaluation, we use the CTU-13 bot traffic dataset [35], containing 13 scenarios of
different botnet samples. In each scenario, a specific malware sample is executed, which used
several protocols and performed different actions. We first learn from a training set what consti-
tutes normal communications and malicious behaviors, based on the distribution of IP addresses
and port numbers used by hosts. We compare our two approaches, BotFP-Clus and BotFP-ML,
in terms of bot detection performances and complexity. We demonstrate that the former enables
us to detect all bots with a better recall and a reduced complexity. Then, we show that, while
having a comparable or lower time complexity than the state of the art bot detection techniques,
we outperform them all with a recall from 84% to 100% and a precision from 75% to 93%, de-
pending on the method. We also show that using an adaptive quantification based on the volume
of traffic enhances the results. For the sake of reproducibility and further research, we made the
source code publicly available at [136].

The remainder of this chapter is organized as follows: Section 4.2 introduces the dataset
we used. We refer the reader to the specific related work section addressed in 2.3. Section 4.3
presents the data processing methodology, as well as our rationale about looking at per-host
fingerprints to describe host communications. In Section 4.4, we introduce two signature-based
algorithms to detect bots, namely BotFP-Clus, based on a clustering technique, and BotFP-
ML, composed of various supervised machine learning techniques; while Section 4.3 describes to
the computation of attribute distribution signatures, in Section 4.4 we introduce two different
techniques based on the aforementioned signatures. In Section 4.5, we numerically evaluate
the proposals, discussing the performance in terms of precision and recall. In Section 4.6, we
qualify the space and time complexity of BotFP, and we compare it to other recent bot detection
methods. Finally, Section 4.7 concludes this chapter.

4.2. DATASET 57

4.2 Dataset

In this section, we describe the dataset we leverage for identifying characteristics inherent to
botnets.

We used the publicly available CTU-13 dataset [70] containing 13 scenarios of bot infections.
Different botnet malware samples are executed in a virtual network to mimic the behavior of an
infection that is spreading. Each scenario contains between 294 and 508 hosts, including 1 to
10 bots, and there are 4923 hosts in total. Table 4.1 below draws the main characteristics for
each scenario; it describes if hosts used IRC, P2P, or HTTP protocols and if they sent spam,
did Click-Fraud (CF), port scanning (PS), or DDoS attacks. This dataset is widely used for the
already discussed recent bot detection methods [75, 81, 82].

Id Duration (hrs) # bots Bot Activity
1* 6.15 1 Neris IRC, SPAM, CF
2* 4.21 1 Neris IRC, SPAM, CF
3 66.85 1 Rbot IRC, PS
4 4.21 1 Rbot IRC, DDoS
5 11.63 1 Virut SPAM, PS
6* 2.18 1 Menti PS
7 0.38 1 Sogou HTTP
8* 19.5 1 Murlo PS
9* 5.18 10 Neris IRC, SPAM, CF, PS
10 4.75 10 Rbot IRC, DDoS
11 0.26 3 Rbot IRC, DDoS
12 1.21 3 NSIS.ay IRC, P2P
13 16.36 1 Virut HTTP, SPAM, PS

Table 4.1: Characteristics of the botnet scenarios. The scenarios included in the test set are
marked by the symbol *.

To evaluate the performances of our bot detection method, we used scenarios 1, 2, 6, 8, and
9 for the test set, and other scenarios for the training set, as recommended by the authors of the
CTU-13 dataset [70]. Note that the bot species are different in the training and test sets, i.e.,
we do not test our algorithm on the same bot malware that we learned from.

The CTU-13 dataset is widely used for bot detection and contains malware samples from
botnets still spreading, but we also found it interesting to explore the latest datasets from the
stratosphere project [137]. In particular, the IoT-23 dataset [138] contains 23 samples of IoT
network traffic, each one being either malicious or benign. In addition, the Malware Capture
Facility Project [139] contains 342 long-term botnet captures, captured from 2015 until now.
However, traces from these datasets are not labeled on a per-flow level, and in addition, they
contain either captures from botnets or from benign hosts, but no mixed captures are needed
to run the algorithm. Therefore, the application of our algorithm to IoT-23 is not pertinent, in
particular its learning phase which normally trains on flows both from bots and benign hosts
and labeled as such. Nevertheless, we report in the appendix (Chapter B) a visual comparison
between three scanning events, one from each dataset, showing similarities and differences. In
the following, we focus on the CTU-13 dataset because it has labeled flows and is used as a
reference dataset by many existing methods at the state of the art we can so compare to.

58 CHAPTER 4. BOTNET FINGERPRINTING

4.3 Bots Fingerprints

In this section we first describe some typical behaviors of bots, then we introduce our bot
detection technique BotFP, detailing the different processing steps, including the flow records
collection, the bot fingerprints computation, and the signatures formatting.

4.3.1 Preliminary example

Fig. 4.1 gives an example of dissimilar histograms for a benign host and a bot, for three attributes
namely SportTCP, DportUDP and DipUDP; in this example, histograms are made of 32 regular
bins (each bin aggregating multiple attribute values) and are normalized with respect to the
number of packets. SportTCP for the benign host are in the range [49152, 61000] and [1025,
5000] for the bot, which indicates a first difference in the ephemeral ports thus the OS (all bots
from the dataset display this characteristic). Looking to DportUDP does not show any anomaly,
as both hosts show a high usage of UDP/53 which runs DNS. We thus expect to find one single
IP address corresponding to the DNS server in DipUDP, but we found a multitude of them for
the bot. Thus, it is not a classic DNS usage, but in fact an attempt of port scanning. This
example illustrates why it is important to not only compare attributes one to one but also to
take into account correlations among attributes.

Figure 4.1: Histograms showing the frequency distributions of attributes (SportTCP,
DportUDP, and DipUDP respectively) for a benign host in blue/left (147.32.84.17 from sce-
nario #1) and a bot in red/right (147.32.84.165 from scenario #1).

4.3.2 Methodology

The primary goal of our bot anomaly detection algorithm, BotFP, is to label bots as such,
avoiding false positives. Let Sip, Dip, Sport, and Dport represent respectively the source and

4.3. BOTS FINGERPRINTS 59

the destination IP addresses, the source, and the destination port numbers, of a layer-4 flow.
Fig. 4.2 depicts the BotFP steps, through a trace example.

Figure 4.2: Description of the processing steps of our solution. We first select flow records
(step 1) that are in the host network and group them by such addresses (step 2). Signatures
σSip of each host are defined as the concatenation of the frequency distributions of each at-
tribute (step 3). The training phase consists in learning what constitutes either malicious or
benign signatures hosts (step 4). Finally, we classify hosts from the test set, with a supervised
learning algorithm that considers their distance to signatures of previously labeled hosts (step
5).

1. Flow records collection: flow records are first collected to form a dataset. We split the
dataset into two distinct sets: one for training and one for testing.

2. Host network Sip filtering and grouping: from flow records, we select the ones whose
Sip is in the host network and group them by such addresses.

3. Quantification (attribute frequency distributions computation): signatures of each host,
denoted σSip, are defined as the concatenation of the normalized frequency distributions
of each attribute. TCP, UDP, and ICMP flows are characterized separately to better take
into account each protocol specificity.

4. Offline training: this phase consists of learning from the training set what constitutes
either malicious or benign host signatures. Different methods can be used to do so, includ-
ing clustering algorithms, supervised learning algorithms, or neural networks. We further
describe two approaches we propose, namely BotFP-Clus and BotFP-ML, in Section 4.4.
This step is optional and does not apply in the case of an unsupervised learning algorithm.

60 CHAPTER 4. BOTNET FINGERPRINTING

5. Online classification (distances computation): finally, we classify hosts from the test set
either as benign or bot, through a learning algorithm consistent with the previous step.
We compute the distance between one labeled host from the training set and one host to
classify from the test set.

Table 4.2 defines the key parameters we use, as well as the notations for the variables of the
algorithm.

Notation Definition
m Minimum number of packets per host for one protocol
b Number of intervals (bins) in the frequency distributions
ε Density in the clustering algorithm
aji Frequency distribution of attribute i for host j
σj Signature of host j

Table 4.2: Notations.

4.3.3 Flow records collection and formatting

Flow records are first collected to form a dataset (step 1 in Fig. 4.2). We split the dataset into
two distinct sets: one for training and one for testing. We name the training set as T and the
test set as E . We select only flows whose Sip belongs to the host network prefix and group them
by such addresses (step 2 in Fig. 4.2). As we search for internal bots, we exclude source IP
addresses belonging to external Internet networks.

4.3.4 Quantification (attribute frequency distributions)

To characterize the hosts’ behavior, let A be the set of attributes used to characterize a host.
In this work, we consider 9 attributes in total, discriminating between TCP, UDP and ICMP
packets, as follows (following CTU-13 notations): SportTCP, DportTCP, DipTCP, SportUDP,
DportUDP, DipUDP, TypeICMP, CodeICMP and DipICMP

2.
Let aji denote the attribute vector for attribute i and host j, representing the attribute

frequency distribution, i.e., the ratio of packets received for attribute i over its attribute range.
More precisely, each attribute vector contains b bins, where aji [k] is the value of the kth bin of
attribute i for host j. For each attribute, a bin aggregates the attribute occurrences over the
possible attribute range (e.g., many successive port numbers grouped together in a bin) available
for the specific attribute (e.g., TCP source port), in a way that depends on a bin aggregation
policy as detailed hereafter.

In practice, to avoid statistically negligible attributes to influence the detection logic, it makes
sense to set the attribute vectors with a too low number of TCP packets exiting a host j to null
values, i.e., aji [k] = 0 ∀k and for all TCP-type attributes i. Let m denote such a minimum
number of packets threshold, that we later numerically assess.

Let σj denote the signature of node j – keeping in mind that a host is uniquely identified
by its Sip (we use σSip instead of σj in the figures). It is built as the concatenation of all its

2Note that in the CTU-13 dataset, the used notation for the ICMP type is SportICMP and for the ICMP
code is DportICMP.

4.3. BOTS FINGERPRINTS 61

attribute vectors; it can then be expressed as:

σj =

|A|n

i=1

aji = aj1 ‖ a
j
2 ‖ · · · ‖ a

j
|A| (4.1)

where ‖ represents the concatenation operator between vectors. The result of the concatena-
tion is therefore one single array σj of |A| × b entries.

Quantification technique

Let us further clarify how the attribute frequency distributions can be aggregated in a set of
bins. To compute the attribute vector, b bins are used to cover the attribute range, say [0, max];
e.g., for source and destination port numbers, max is equal to 65536, and for destination IP
addresses, it is equal to 232. It makes sense to set b as a power of 2, as port numbers and IP
addresses are typically organized into ranges of powers of 2 (e.g., reserved ports are in [0, 1023]
and ephemeral ports in [49152, 65536], while IPv4 addresses are denoted by 4 Bytes).

We consider two different ways to aggregate bins.
Regular bins: attribute range intervals are uniformly distributed, of a fixed bin width set

to max/b. Fig. 4.2 (step 3) shows an example of attribute frequency histogram for attribute
SportTCP: the attribute range corresponds to the possible TCP source port numbers used by the
Sip host. The example shows a regular partition of the attribute range; e.g., with a bin width
set to 4096, the number of bins is 16.

Adaptive bins: intervals are chosen depending on the amount of traffic. Intuitively, the
more density of information there is, the more sensitive (small) the step should be. Thus we aim
to define the individual bin width so that we equalize the occurrences over the different bins,
i.e., it is always the same for all the bins, each bin having potentially a different bin width. To
do so, we first start with the highest attribute granularity (e.g., 65536 for the port number), and
compute the frequency distribution for all hosts. Then, we sum up the obtained vectors across
all hosts. At this point, we are able to define individual bin steps so that the occurrences are
evenly distributed across bins; this operation can be done for instance taking the cumulative
distribution function and evenly dividing the probability range from 0 to 1 in the number of
desired bins. We repeat this process for all the attributes.

Fig. 4.3 illustrates the computation of adaptive bins for the SportTCP attribute. We first
compute the number of unique values for very small bins as shown in Fig. 4.3a, then we divide
the cumulative sum by a fixed number of regular sampling intervals and compute adaptive bins
so that each of them contains the same number of packets, as shown in Fig. 4.3b.

The number b of bins and the bin aggregation strategy (regular vs. adaptive bins) are to be
assessed experimentally.

Observable bot behavior and attributes

Let us report on the observable behaviors for TCP, UDP and ICMP attributes from traces we
could have access to. To get a visual representation of such behaviors, we propose in Appendix
B fingerprints of infected hosts highlighting their specific malicious activities. First, we observe
uncommon behaviors specific to a botnet for TCP flows:

• destination ports (DportTCP) usually range between 0 and 1023. These service ports are
associated with given services by the Internet Assigned Numbers Authority (IANA) [140],
e.g., TCP/80 typically runs HTTP and TCP/443 HTTPS. However, bots show different

62 CHAPTER 4. BOTNET FINGERPRINTING

(a) Number of unique values using 1000 bins.
(b) Cumulative sum and definition of 20 adaptive
bins.

Figure 4.3: Example partitioning in 20 adaptive bins based on the traffic load, for attribute
SportTCP.

usage of destination ports: they are usually diverse and represent services often targeted by
attackers such as TCP/25 (SMTP) or TCP/23 (Telnet), vulnerable to spam and attacks.
We also observe some exotic destination port numbers used to access proxies that host the
C&C server.

• source ports (SportTCP) are often ephemeral ports, allocated automatically from a pre-
defined range by the IP stack software. The range recommended by IANA is 49152 to
65535, while many Linux kernels use the port range 32768 to 61000. FreeBSD has used
the IANA port range since release 4.6. Previous versions, including the Berkeley Software
Distribution, use ports 1025 to 5000 as ephemeral ports. Microsoft Windows Operating
Systems (OS) until Windows XP used the range [1025, 5000] for ephemeral ports, while
they use the IANA range now.

We observe that bots rarely use the IANA recommended range, but rather the [1025, 5000]
range. This obviously depends on the OS of the infected host. A report from Kaspersky
Labs [5] shows that Linux and Windows botnets represent respectively 95.75% and 4.25%
of all botnets, which is very different from the OS distribution for regular devices (not
bots), probably because bots infect vulnerable devices including connected objects.

• destination IP addresses (DipTCP): not all subnetworks are covered, but only some specific
ones are contacted by normal hosts. Among them, it is common to observe addresses
in the same range of the source IP address, private networks including 192.168.0.0/16,
and cloud service subnetworks, mostly Google ones, often contacted for Google Analytics
and similar collateral services. Destination IP addresses cover a larger space for bots than
for normal nodes, in the case of spam for example. Looking to the AS details in the
whois database [141] also gives additional information, such as the age of the domain or
its originated country.

There are specific botnet behaviors also for UDP flows:

• UDP destination ports (DportUDP) are associated to particular services by IANA, as for
TCP. In the case of UDP, we often observe a fixed destination port set to 53. It represents
connections to the local DNS server as UDP/53 typically runs DNS.

4.3. BOTS FINGERPRINTS 63

• UDP source ports (SportUDP) are used for ephemeral ports as for TCP, their range depends
on the OS implementation. We notice that the range for ephemeral ports used by bots is
often different than for common hosts.

• there is usually a fixed destination IP address (DipUDP) that represents the DNS server IP
address.

Finally, ICMP flows also show specific botnet behaviors:

• the ICMP type (TypeICMP) indicates the type of ICMP message and gives a global informa-
tion about the kind of message (e.g., 0 for Echo Reply and 3 for Destination Unreachable)
as specified in RFC2780 [142]. We often observe only a small amount of ICMP packets. In
the case of a botnet, we sometimes observe many ICMP messages with uncommon types
and codes, consisting of a Ping Flood or an ICMP DoS attack.

• the ICMP code (CodeICMP) represents the ICMP sub-type and gives additional context
information for the message (e.g., if the type is 3, the code can be 0 if the destination
network is unreachable or 1 if the destination host is unreachable, etc).

• the hosts frequently reply to destination IP addresses (DipICMP) that targeted them, with
messages like "port unreachable" if it was a port scanning. The number of such packets is
low for benign hosts and larger for bots.

Looking to attributes individually enables us to retrieve some botnets’ behaviors, but it is
even better to analyze these attributes together. Actually, sometimes it is the combination of
two attributes that makes a host behavior abnormal.

4.3.5 Signatures formatting

As shown in Fig. 4.2 (step 4), the training phase deals with flows from the training set through
several modules. Data preparation is accomplished through pre-processing and dimensionality
reduction. In the pre-processing phase, signatures of hosts belonging to the internal network are
computed as described in the previous step. Finally, we reduce the dimensionality of the space
by finding the directions of maximal variance, in order to reduce the spatial complexity. Thus
we project the dataset into the new dimensional space.

Removing the less significant hosts

The threshold m is the minimum number of packets per host and protocol to consider it. We
analyze the distribution of the number of packets per host to better understand its impact. The
distribution is a long-tailed one, with hosts with a very high number of packets (up to 200,000
packets per host). Therefore, Fig. 4.4 shows the Probability Distribution Function (PDF) of
the number of TCP packets per host, only from 0 to 1500 packets per host, avoiding very
large outliers. The plot is about TCP, while UDP and ICMP exhibit the same distribution.
Eliminating hosts with less than m packets has a minor impact on the results, as we notice that
after removing hosts with less than 150 packets, the number of hosts goes from 4923 to 1933,
which represents only 0.7% of removed traffic in terms of numbers of packets (from 13,342,675
to 13,295,640 packets). We could miss very stealthy bots using the filter, but we assume that
bots have to be a minimum active to be efficient (including attacks, scans, and communications
with the C&C server).

To choose its exact value, we evaluate the impact of parameter m on the bot detection results
in Section 4.5.1.

64 CHAPTER 4. BOTNET FINGERPRINTING

Figure 4.4: PDF of the number of TCP packets per host, and (in red, right axis) possible m
threshold values and corresponding traffic volume ratio.

Dimensionality Reduction

After the pre-processing step, the signatures contain |A| × b columns, with b the number of bins
and |A| = 9. Our purpose is to reduce the number of columns, by restricting the scope to the
most meaningful ones. We reduce the dimensionality of the space working with the Principal
Component Analysis (PCA) technique. PCA is applied on hosts from the training set T , thus
on a matrix of size (|T |, |A|×b). PCA reduces the number of components of the already smallest
dimension, then |A| × b must be smaller than T to reduce the number of features. Therefore, it
is not applicable if |A| · b is larger than |T |.

PCA finds the directions of maximum variance. The fraction of variance explained by a
principal component is the ratio between the variance of that principal component and the total
variance. Our goal is to reduce the dimensionality while keeping a good amount of information,
so that the cumulative explained variance ratio is close to 100%. Fig. 4.5 hereafter shows the
cumulative explained variance ratio vs. the number of factors, with b = 128. To get 99% of
the variance ratio, we can reduce the factor number by ten, approximately, keeping around 150
and 200 factors respectively for regular and adaptive bins, over the 1152 original factors. These
values vary with the number of bins: for each of them, we need to choose the right number of
factors. For all values of b, we notice that we can reach 99% of the variance ratio by using 9
times fewer factors.

4.4 Bot Detection

In this section, we introduce two different bot detection techniques for BotFP that we designed for
the training and the classification. BotFP-Clus relies on clustering as described in our previous
work [130], and BotFP-ML relies on other supervised machine learning (ML) techniques.

4.4.1 BotFP-Clus

Training

Clustering algorithms are designed to group similar vectors into clusters and identify isolated
ones as outliers. The similarity between two vectors is evaluated using a distance function
like the Euclidean distance. Two vectors are defined as similar if they are close to each other,
else dissimilar. We use as clustering algorithm DBSCAN (Density-Based Spatial Clustering of

4.4. BOT DETECTION 65

Figure 4.5: Explained variance vs. number of factors, for PCA applied with b = 128. The
factor number equals to 1 if only one feature is used, while it is close to 103 if all (|A| × b =
9× 128 = 1152) features are used.

Applications with Noise) [143], because it presents the advantage of discovering clusters without
knowing the number of clusters in advance, which fits our needs. In addition, it works well on
our data because clusters have close densities. DBSCAN uses two parameters:

• ε specifying the radius of a neighborhood with respect to some point. Every point situated
within a distance ε from a point p is a neighbor of p; 3

• minPts which defines the minimum number of points in a radius ε to form a cluster.

DBSCAN defines a cluster as the maximal set of points where every pair of points p and q
are within a distance ε from each other, and considers points that do not belong to any cluster
as outliers. In our solution, DBSCAN is used in a slightly different manner as illustrated in
Step 4 of Fig. 4.2. We set minPts to 1 in order to consider singleton clusters as well. Then
DBSCAN is applied on the vectors of σj from the training set to build clusters of similar host
signatures. Using clusters instead of singular hosts enables us to filter abnormal hosts and get
more consistent data. This also reduces the number of coordinates to store.

Let C be the set of clusters obtained applying DBSCAN on the training set. Each cluster
c ∈ C contains several attributes:

• a set Hc of hosts belonging to the cluster;

• its position Pc defined as the centroid of the set of signatures {σ1, σ2, ..., σN} of hosts in
Hc, computed as Pc = (σ1 + σ2 + ...+ σN) / N ;

• a label identifying the nature of the cluster c, i.e., malicious or benign, denoted Lc.

The nodes that are bots are known from the ground truth of the training set. The cluster
is identified as a bot cluster if it contains at least one bot, else it is benign.

Lc =

{
‘bot’ if Hc contains a bot node
‘benign’ otherwise

(4.2)

3The metric that we use for the computation of the distance between two hosts in DBSCAN is the `1-norm
defined as ||σh||1 = |σh[1]| + ... + |σh[n]|: this distance is robust and does not vary with the number of bins, as
the cumulative sum of all elements stays equal. We consider it better than the `2-norm – defined as ||σh||2 =√

|σh[1]|2 + ...+ |σh[n]|2 which increases with the number of bins.

66 CHAPTER 4. BOTNET FINGERPRINTING

One may find the above condition to label bot clusters too strong. However, our tests showed
that by appropriately tuning ε, one can get a good clustering solution. A good setting we found
is an ε set to 300 and 512 adaptive bins, giving that bot clusters always contain one bot at
maximum, except one case with two bots, and hence they did not contain any normal host.
Thus it appears sufficient to label a cluster as a bot if it contains at least one bot. About the
cluster density, we notice that other clusters contain up to 2400 hosts (all of them benign), but
most of the time only one or several ones.

Classification

We classify hosts from the test set based on their distance to the set of labeled clusters C. For
a host h ∈ E , if the closest cluster is labeled as bot, h will be classified as a bot. If the closest
cluster is benign, h will be classified as benign too. Let dist() be a function measuring the
distance between a signature and a cluster, c∗ is the closest cluster such that dist(σh, Pc∗) =
minc[dist(σh, Pc)]. Then hosts are classified based on the label of c∗.

Lh =

{
‘bot’ if Lc∗ = ‘bot’
‘benign’ otherwise

(4.3)

Note that the classification is based on a nearest neighbor approach. One could think that a
host with an atypical signature, distant from a benign cluster but also very different from other
bots, could be classified as benign. However, we found that all hosts to classify are quite close to
a labeled cluster, and that the dataset does not contain atypical hosts. Fig. 4.6 hereafter shows
the distribution of the distances between the hosts to classify and the closest cluster. We found
that the maximal of such distances is around 0.055, which is about two times the mean value.
This means that there are no really hosts whose signature is atypical and that would be very far
from all clusters.

Figure 4.6: Histogram showing the distribution of the distances between the hosts to classify
and the closest cluster.

In case of another dataset that would contain more sparse data and atypical hosts, one could
refine our technique to classify as "anomaly" the hosts whose signature is quite far from all
labeled clusters.

4.5. EVALUATION 67

4.4.2 BotFP-ML

Several techniques can be used to learn from the training set what constitutes signatures either
from benign hosts or from bots, then classifying hosts from the test set based on that knowledge.
We evaluate four such techniques for BotFP : (i) Logistic Regression, used to predict the proba-
bility of a binary dependent variable, (ii) Support Vector Machines (SVM), which, given labeled
training data, output an optimal hyperplane which categorizes new examples, (iii) Random For-
est, which creates a forest with a number of decision trees, and (iv) Multilayer Perceptron (MLP)
classifier, which can be thought as a deep artificial neural network, composed of an input and
output layers, and an arbitrary number of hidden layers.

Supervised learning algorithms and neural networks take into account hyperparameters that
must be tuned to obtain the best results of classification. Grid search [144] is used for model
tuning, it builds and evaluates a model for every combination of hyperparameters specified, then
selects the best one to improve a given evaluation metric. We used it by favoring the recall
criterion. The hyperparameters are different according to the type of classifier. For instance,
with SVM and logistic regression, the parameter C controls the sparsity: the smaller C, the
fewer features selected. Another parameter common for both these algorithms is the penalty,
which is used to specify the norm used in the penalization (regularization or noise variance).

4.5 Evaluation

In this section, we evaluate the performance of BotFP. We first propose an evaluation of the
method BotFP-Clus, tuning its parameters including DBSCAN ε, the number of bins b, and
the type of bins. We then analyze and compare BotFP-Clus and BotFP-ML performances and
we select a set of best solutions. Finally, we compare them to other state-of-the-art detection
techniques. Note that the source code for BotFP is available in [136]. The subnetwork address
needs to be set up, then the reader can run the learning phase (learning the normal and malicious
behaviors of the network and tuning the key parameters), and then launch the detection process.

4.5.1 BotFP-Clus

BotFP-Clus is our proposal relying on labeled clusters of similar hosts behaviors. We apply it
on the CTU-13 dataset, following the methodology presented in Sections 4.3 and 4.4.

We analyze the results as a function of the three key parameters to be chosen for BotFP-
Clus: the minimum number of packets threshold (m), the number of bins (b), and the ε DBSCAN
parameter. We proceed as follows: first, we show precision and recall results as a function of
m to find a reasonable choice; second, we elaborate on the impact of ε, and identify one good
setting. We also show the benefit of using adaptive bins rather than regular ones.

Fig. 4.7a and 4.7b respectively show the precision and the recall of BotFP-Clus, for 512
adaptive bins, ε in [0.1× b, 0.2× b, ..., b], and m varying in [50, 100, 150, 200]. We observe that
for all m values, the recall is very high, reaching 100% in many settings. It is important to note
that the precision is directly correlated with the minimum number of packets threshold: the
higher m and the higher the precision.

For the following experiments, to favor the recall, we choose m = 150, because the precision
is almost as high as for m = 200, but the recall is more often equal to 100%. Fig. 4.8 shows
for regular bins the precision (Fig. 4.8a), the recall (Fig. 4.8b), the F1-score (Fig. 4.8c) and the
number of clusters (Fig. 4.8d). Fig. 4.9 shows for adaptive bins the precision (Fig. 4.9a), the

68 CHAPTER 4. BOTNET FINGERPRINTING

recall (Fig. 4.9b), the F1-score (Fig. 4.9c) and the number of clusters (Fig. 4.9d). Multiple ε
values (DBSCAN parameter) are tested in [0.1× b, 0.2× b, ..., b].

(a) Precision. (b) Recall.

Figure 4.7: Impact of parameter m on the precision and recall, for 512 adaptive bins.

(a) Precision. (b) Recall. (c) F1-score. (d) Number of clusters.

Figure 4.8: Regular bins: precision, recall, F1-score and number of clusters (BotFP-Clus).

(a) Precision. (b) Recall. (c) F1-score. (d) Number of clusters.

Figure 4.9: Adaptive bins: precision, recall, F1-score and number of clusters (BotFP-Clus).

DBSCAN ε choice

We use the `1-norm as distance function; it increases linearly with the number of elements in the
vector. Therefore, taking the parameter m as a constant, we can establish a general relationship
between ε and b, that is why we chose ε as a fraction of b in Fig. 4.8 and 4.9.

A large value of ε may produce too large clusters resulting in false positives, while a too small
value may overfit the data and miss bots. One way to choose a good value for ε can be to take

4.5. EVALUATION 69

the one for which the recall and precision are the highest; overall, we favor the recall as we want
to detect the most bots as possible. For regular bins, εreg = 0.4× b seems the best choice as the
recall is high and we get an acceptable precision and F1-score. For adaptive bins, the best value
is εad = 0.5× b, with the highest recall and a quite good F1-score, for all values of b.

Comparison between regular and adaptive bins

We observe that formatting the data by handling adaptive bins gives more consistent results and
eases the process of clustering. Fig. 4.8b shows the recall for regular bins: we observe that the
recall values are quite unstable even with high ε values. For adaptive bins (Fig. 4.9b) on the
contrary, the recall oscillates between 85% and 100% (i.e., between 0 and 2 undetected bots) for
ε starting from 150 and all values of b, which is quite stable.

Only looking to the recall is not sufficient, we also need to know the precision (number of
false positives). We observe that using adaptive bins (Fig. 4.9a) presents a far higher precision
compared to regular ones (Fig. 4.8a).

For these two reasons, we could confirm the intuition that using adaptive bins grants a more
accurate view and therefore leads to better results.

General observations

Let us draw further observations from these preliminary results.

• Benefits of clustering

In Fig. 4.8 and 4.9, ε = 0 is equivalent to not clustering the data, i.e., comparing each host from
the test set to labeled hosts from the training set. Fig. 4.8b and 4.9b show that the recall never
reaches 100% in this case, no matter b and the quantification technique, as the classification
is too specific and we overfit the data. However, increasing ε (then forming larger and larger
clusters) enables one to detect all bots in some setups.

Clustering the data also reduces the complexity of the classification, by limiting the number
of comparisons to do: we compare hosts from the test set to a limited set of clusters, rather than
to all hosts from the training set.

• Number of bins b

The number of bins b is the third parameter to choose, which determines our suggested ε
values as above discussed. The objective is to find a setup with a recall equal to 100% (i.e., all
bots detected) and a precision as low as possible.

Using adaptive bins, the recall reaches 100% for nearly all values of b. However there is a
strong correlation between b and the precision: the higher b, the higher the precision (thus the
lower the number of false positives). Therefore the best solution is reached for a high number of
bins (b = 512), for which the recall is equal to 100% and the precision is high.

• Number of clusters

Finally, Fig. 4.8d and 4.9d show the number of clusters respectively for regular and adaptive
bins. This shows the benefits in clustering the data: 550 clusters for b = 512 (Fig. 4.9d) is
approximately 60% less than the 910 initial hosts.

70 CHAPTER 4. BOTNET FINGERPRINTING

4.5.2 Comparison between BotFP-Clus and BotFP-ML

We compare BotFP-Clus and BotFP-ML in terms of precision, recall and F1-score. For the
former, we use the εreg = 0.4b and εad = 0.5b settings identified in the previous section. For
the latter, we tune the hyperparameters with Gridsearch by favoring the recall. In addition, we
show in Appendix B the most relevant features in the classification process.

Fig. 4.10 and 4.11 compare the precision, the recall and the F1-score for BotFP-Clus and
BotFP-ML, respectively for regular and adaptive bins, and for b between 8 and 1024.

Let us look first into BotFP-ML algorithms. For Random Forest, both for regular and
adaptive bins, the precision and recall values are too unpredictable and varying with b. For
SVM, it is also too varying for adaptive bins, but for regular ones the precision and the recall are
very high (both 93%) starting from b = 256. For the MLP classifier and Logistic Regression, the
precision and recall values for both types of bins are quite high for all values of b. The recall for
the MLP classifier is higher for adaptive bins, reaching 90% for 64 bins. For Logistic Regression,
there is no notable difference between the use of regular and adaptive bins. In all cases, the
recall never reaches 100% no matter b (or with very low precision), which means that there are
still some undetected bots.

For BotFP-Clus, the precision is very low for regular bins. We observe a correlation between
b and the precision and recall: the higher b, the lower the precision and the higher the recall.
Thus we may opt for the BotFP-Clus with a high value of b. In particular, for 512 and 1024 bins,
the recall reaches 100% (i.e., all bots detected) and 55 to 75% precision. Actually, a precision
equal to 75% represents very few false positives: 4 benign hosts classified as bots, out of the 712
benign ones.

To sum up, we selected four best-performing solutions summed up in Table 4.3 according to
the parameter we want to favor. Grey cases show the values for which a given parameter is the
best one across all solutions. Let us further comment on the following goals:

• Maximize true bot detection: We recommend BotFP-Clus with 512 adaptive bins, for which
the recall is equal to 100% and the precision to 75%. Contrary to others, this method
enables to detect all bots while keeping a good precision;

• Balance the precision and the recall, thus maximize the F1-score: BotFP-SVM with a linear
kernel and 256 regular bins is ideal in this case. The recall and the precision are both equal
to 93%. Moreover, this method does not require to compute adaptive bins, therefore is
more lightweight than others in this respect;

• Minimize the memory usage: BotFP-MLP with 32 adaptive bins best suits this goal. As
b is lower than 256 (see Section 4.3.5), we can apply PCA beforehand to keep only 50 out
of the 288 initial factors. The recall and the precision are still good, both equal to 84%.
Note that we obtain exactly the same precision and recall values as without applying PCA.
Therefore this solution is efficient and above all very lightweight;

• Maximize precision: One may choose to favor a high precision, i.e. a low false detection
rate (FDR) defined as FDR = 1−precision, especially in production environments where
administrators want to receive as few alerts as possible. In this case, we recommend BotFP-
Clus with 512 adaptive bins and ε = 0.1b instead of the ε value previously tuned to favor
the recall. Using this setting, the precision is equal to 100%, the recall to 85%, and the
F1-score to 93%.

4.5. EVALUATION 71

(a) Precision. (b) Recall. (c) F1-score.

Figure 4.10: Regular bins: precision, recall and F1-score for both approaches.

(a) Precision. (b) Recall. (c) F1-score.

Figure 4.11: Adaptive bins: precision, recall and F1-score for both approaches.

Table 4.4 shows the confusion matrix for scenarios 1, 2, 6, 8, 9 from the test set, for the
best cases that we identified, i.e. the BotFP-Clus algorithm with b = 512 adaptive bins and
εad = 0.5× b, the BotFP-MLP algorithm with b = 32 adaptive bins, the BotFP-SVM algorithm
with b = 256 regular bins, and the BotFP-Clus algorithm with b = 512 adaptive bins and
εad = 0.1× b For BotFP-Clus and εad, we detected bots from all scenarios (1 bot for scenarios 1,
2, 6, 8, and 10 bots for scenario 9), which makes the recall equal to 100%. In total, we labeled
9 benign hosts as bots, which results in a very high precision equal to 74%. For BotFP-MLP, 2
bots have not been detected, while it remains 2 false positives. For BotFP-SVM, there are only
3 false positives, but it remains one undetected bot. For BotFP-Clus and εad = 0.1 × b, there
are no false positives as we favor the precision, but there are 5 undetected bots.

4.5.3 Comparison to state-of-the-art detection techniques

We now compare the four selected BotFP settings to other state-of-the-art detection methods,
namely BClus [70], CAMNEP [70], BotHunter [69], BotGM [75] and [82] described in Section 2.3.

To compare BotFP to other methods, we compute the accuracy for scenarios from the test
set, as proposed in [70]. Table 4.5 reports the results for each solution and all scenarios from the
test set, as proposed in [70]. Our results are very competitive as we reach an accuracy between
97% and 100% with the MLP classifier, SVM, and BotFP-Clus, while other algorithms provide
an accuracy between 30% and 95%. Only [82] achieves up to 100% accuracy for scenario #9 but
it tested only that one and trained on the 12 other scenarios. Note also that our algorithm has

72 CHAPTER 4. BOTNET FINGERPRINTING

Solution Bins type ε b Precision Recall F1-score PCA Complexity
BotFP-Clus adaptive 0.5× b 512 74% 100% 80% X low
BotFP-MLP adaptive 0.5× b 32 85% 85% 85% X high
BotFP-SVM regular 0.4× b 256 93% 93% 93% X medium
BotFP-Clus adaptive 0.1× b 512 100% 85% 80% X low

Table 4.3: Summary of the best solutions according to the detection performance to favour.

Id TP TN FP FN
1 1 164 3 0
2 1 131 0 0
6 1 112 0 0
8 1 163 4 0
9 10 133 1 0

(a) BotFP-Clus, b = 512
adaptive bins (εad).

Id TP TN FP FN
1 1 166 0 0
2 0 131 0 1
6 1 111 1 0
8 1 164 1 0
9 9 134 0 1

(b) BotFP-MLP, b = 32
adaptive bins.

Id TP TN FP FN
1 1 166 0 0
2 1 131 0 0
6 1 111 1 0
8 1 165 2 0
9 9 134 0 1

(c) BotFP-SVM, b = 256
regular bins.

Id TP TN FP FN
1 1 166 0 0
2 0 131 0 1
6 1 111 0 0
8 1 165 0 0
9 7 134 0 3

(d) BotFP-Clus, b = 512
adaptive bins (ε = 0.1b).

Table 4.4: Confusion matrix for scenarios from the test set, for four BotFP settings.

far lower complexity (cf. Section 4.6).

Metrics Recall Precision Accuracy
Algorithm 1 2 6 8 9 1 2 6 8 9 1 2 6 8 9

BClus [70] (2014) 0.4 0.3 <0.0 0.1 0.1 0.5 0.6 0.4 0.2 0.4 0.5 0.5 0.4 0.3 0.4
CAMNEP [70] (2014) 0 <0.0 <0.0 <0.0 <0.0 <0.0 0.8 0.9 0.9 0.9 0.5 0.4 0.4 0.5 0.5
BotHunter [69] (2007) 0.01 0.02 0.06 0 0.02 0.8 0.9 0.98 0 0.9 0.4 0.3 0.38 0.42 0.4
BotGM a [75] (2017) X X X X X X X X X X 0.91 0.78 0.95 0.89 0.83

Graph-based MLb [82] (2019) X X X X 1 X X X X 0.91 X X X X 1
BotFP-Clus (b = 512) 1 1 1 1 1 0.25 1 1 0.2 0.91 0.98 1 1 0.97 0.99
BotFP-MLP (b = 32) 1 0 1 1 0.9 1 0 0.5 0.5 1 1 0.98 0.99 0.98 0.99
BotFP-SVM (b = 256) 1 1 1 1 0.9 1 1 0.5 0.33 1 1 1 1 1 0.99

BotFP-Clus (b = 512 - ε = 0.1b) 1 0 1 1 0.7 1 1 1 1 1 1 1 1 1 0.99

Table 4.5: Recall, precision and accuracy of different algorithms compared to BotFP.

aNote that BotGM [75] did not provide per-scenario recall and precision values; however, they provided
ROC curves showing a TPR (recall) equal to 80% for FPR=0, but we have no information about which sce-
nario they used for this plot.

bThe training was done on 12 scenarios (including 1, 2, 6 and 8) and the evaluation only on scenario 9.

4.6 Complexity

We qualify the space and time complexity of BotFP, considering its three steps: attribute fre-
quency distributions computation, training, and classification. We consider that the classification
takes all the elements in the test set E , even if hosts may also be processed individually in practice.
We also compare it to other recent bot detection methods.

4.6.1 Attribute frequency distributions computation

First, we need to compute the fingerprint σj for all hosts.
Space complexity. Given a host and |A| attributes, we need to store arrays of b bins for all

the attributes, then the per-host space complexity is equal to O(|A| · b). The overall process is

4.6. COMPLEXITY 73

a one-shot operation over all hosts, resulting in a complexity O(|T
⋃
E| · |A| · b). In our setting

we have |A| = 9, which can be reduced to |A′| = 1 when using PCA.
Time complexity. For a given host i, the computation of each attribute vector comes

with |ai| entry readings, before bin aggregation, thus the worst-case time complexity is equal to
O(|A| ·maxi|ai| · |T

⋃
E|).

4.6.2 Training

The training phase depends on the implemented supervised learning algorithm. For BotFP-Clus,
the training consists of building host clusters from the training set, each host being characterized
by its fingerprint σj .

Space complexity. For BotFP-MLP, a one-dimensional neuron input array grows linearly
with the number of neurons, which send their outputs as inputs to a given neuron [145], thus
O(h) with h the number of neurons. The space complexity of BotFP-SVM is around O(|T |2)
[146]. For BotFP-Clus, DBSCAN presents a space complexity of O(k|T |), where k is a fixed
memory cost to store the positions and labels of each among the |T | points, their labels and the
neighbors of the current point.

Time complexity. For BotFP-MLP, the time complexity of the training (backpropagation)
for a single iteration is O(|T | · |A| · b · hk), for k hidden layers containing h neurons. For BotFP-
SVM, the time complexity of the training is O(|T |2 · |A| · b) [147]. For BotFP-Clus, DBSCAN
presents a worst-case time complexity of O(|T |2) (without the use of an accelerating index
structure). For each point of the database, we have to visit each other point to query their
neighborhood.

4.6.3 Classification

For BotFP-ML, the classification technique depends on the implemented supervised learning
algorithm. For BotFP-Clus, the classification determines the closest cluster to each host to
classify, and assign its label to the host.

Space complexity. For testing as well, BotFP-MLP presents a worst-case space complexity
of O(h) with h the number of neurons. The test space complexity for a linear SVM is O(|E|)
[148]. For BotFP-Clus, we have to store the positions of all clusters. Also for each host, we need
to store the distance between its signature and each cluster. Therefore the total space complexity
is O(|C| · |A| · b+ |E| · |C|).

Time complexity. For a trained MLP, the overall complexity of the classification (forward
propagation) is O(|E|·|A|·b) [149]. For a trained SVM, the overall complexity of the classification
is O(|E|3) [147]. For BotFP-Clus, we need to parse all hosts from the test set, then to compare
each of them to all clusters with a `1-norm, thus the time complexity is equal to O(|A| ·b · |E|·|C|).

4.6.4 Comparison to other techniques

The time complexity of BotFP feature computation is therefore linear with the number of nodes,
then the training is linear for BotFP-Clus, quadratic for BotFP-SVM and up to exponential for
BotFP-MLP. For classification, if one considers that it would in practice run in runtime on a
per host basis (i.e., |E| = 1), BotFP-Clus and BotFP-MLP are linear with the number of hosts,
knowing that |C| < |T |, hence very competitive; and BotFP-SVM time complexity is cubic.

Let us compare the time complexity of our method to recent bot detection techniques [75, 82],
for each main step:

74 CHAPTER 4. BOTNET FINGERPRINTING

Features computation: BotGM [75] creates graphs of communications between two hosts as
features to feed their algorithms. The time complexity is thus O(|P| · |EP | · ln(|VP |)) with P the
set of IP addresses pairs, EP the set of edges per pair (i.e., the set of source-destination port
pairs per IP pair) and VP the set of vertices per pair (i.e., each communication from one pair to
another). For [82], graphs of communications for all possible source-destination IP addresses are
computed, which generates a complexity of O(|P| · ln(|V|)) with |V| the set of vertices between
each edge in |P|. Then the complexity needed to compute features over the graphs is different
depending on the feature, and is up to quadratic for features like Betweenness Centrality. Both
[75] and [82] compute features for each pair of hosts, while we work on individual hosts which
thus implies linear instead of quadratic processing.

Algorithm Features Training Classification
BotGM [75] O(|P| · |EP | · ln(|VP |)) X O(|P|2 ·max(n1, n2)3)

Graph-based ML [82] O(|P| · ln(|V|)) O((|T |+ k) · |A| · b+ |A| · b · k · |T |) O(|E|)
BotFP-Clus (512 adaptive bins) O(|A| ·maxi|ai| · |T

⋃
E|) O(k|T |) O(|A| · b · |E| · |C|)

BotFP-MLP (32 adaptive bins) O(|A′| ·maxi|ai| · |T
⋃
E|) O(|A′| · b · |T | · hk) O(|A′| · b · |E|)

BotFP-SVM (256 regular bins) O(|A| ·maxi|ai| · |T
⋃
E|) O(|A| · b · |T |2) O(|E|3)

Table 4.6: Time complexity of different bot detection algorithms.

Training: [75] uses an unsupervised method thus does not require training. For [82], tech-
niques used for training are quite heavy as they use unsupervised (mainly clustering algorithms
including k -Means which is NP-hard) then unsupervised (various classifiers) learning algorithms
which are heavy too. Looking at the classification results of their algorithm, we assess that
they better use k-Means followed by DecisionTree. k-Means is known to have a quadratic time
complexity O(|T |2), and the standard decision-tree has a time complexity of O(|A| · b · k · |T |),
with N the number of training examples and d the depth of the decision tree.

Classification: The classification step in [75] is very costly, they compute for each possible
pair of graphs (O(|P|2) the GED which is NP-hard [150]. Thus the total time complexity is
O(|P|2 · max(n1, n2)3) with n1 and n2 the number of elements in the two graphs to compare.
They compute these distances for each possible pair of graphs, then |P|2 times with n the number
of graphs. Classification in [82] consists of the same process as training, i.e., unsupervised then
supervised learning algorithms. The training and classification phases are simultaneous in k-
Means and Decision Tree, thus their time complexity is simply O(|E|).

Hereafter, Table 4.6 compares the time complexity for recent bot detection techniques, namely
[75, 82], and ours.

Above all, BotFP is quite lightweight with respect to recent bot detection techniques: it
deals with features consisting in vectors, easy to compute, and not graphs. For BotFP-Clus, the
training is very lightweight, then the classification consists in computing inexpensive `1-norm
distances. For BotFP-MLP and BotFP-SVM, the training is a bit more complex and depends on
the number of layers and nodes. However, as for other algorithms, the training is made only once
then the classification step is quite lightweight. It is hard to establish the exact time complexity
of other algorithms [75, 82] because we do not know the details of their implementations. We
know that [75] works on every possible pair of nodes then draws expensive graphs, and once again
studies every possible graph combination. Also, [82] uses expensive centrality measurements.

4.7. CONCLUSION 75

4.7 Conclusion

Botnet attacks are constantly more sophisticated, and this is expected to get even worse with the
massive increase of connected objects and virtualized infrastructures. Therefore the quick identi-
fication of such bots is crucial to Internet security. Our technique BotFP focuses on the detection
of botnets that infect thousands of machines and perform malicious actions such as launching
port scanning and DDoS attacks. We propose an attribute frequency distribution design to
characterize the hosts’ communication, where bots exhibit specific behaviors. We design two
BotFP variants for the training and classification. BotFP-Clus clusters similar host signatures
of each host to group similar instances of traffic, hence avoiding data overfitting and reducing
the complexity. BotFP-ML applies a supervised ML algorithm to learn from the signatures and
detect new bots. The detection results are very promising, since BotFP detected all bots from
the CTU-13 dataset with very few false positives, outperforming alternative techniques at the
state of the art. With both techniques, BotFP achieves an accuracy close to 100% while being
very lightweight compared to graph-based techniques. The said variant is chosen according to
the parameter we want to favor, such as a high recall or precision, a low complexity, a small
number of features.

This chapter ends our two contributions to botnet detection, the first one at the ISP carrier-
level and the second one at the network-level. The next chapter goes one step further in network
anomaly detection, but this time working on two dimensions strongly impacting the character-
ization of the elements, not only time but also space. Working on cellular network traffic data,
the objective is to identify and model spatiotemporal characteristics of per-mobile application
usages, and to propose a methodology to automatically detect unusual phenomena that may
occur in a city. In this context, we are able to detect a wider variety of events and not only
botnets.

76 CHAPTER 4. BOTNET FINGERPRINTING

Chapter 5

Group anomaly detection in mobile
apps usages

Analyzing mobile apps communications can unleash significant information about the current
social and infrastructure states. A wide variety of events can engender unusual mobile commu-
nication patterns that may be studied for pervasive computing applications, e.g., in smart cities.
Among them, local events, national events, and network outages can produce anomalies in the
mobile access network load. We focus on the detection of such anomalies by decomposing cellular
data usage features time series, then detecting first raw anomalies and then grouping them in
a spatiotemporal convex hull, further refining the anomaly detection logic, using an algorithmic
approach we propose. We can so unveil details about mobile events timeline, their spatiotempo-
ral spreading, and their impacted apps, by clustering them into broad categories. We apply our
technique to extensive real-world data and open source our code. By linkage with ground-truth
special events that happened in the observed period, we show how our methodology is able to
detect them. We also evidence the existence of five main categories of anomalies, characterizing
them. Finally, we study how the nature of impacted apps evolves temporally and spatially during
an event.

5.1 Introduction

Through mobile apps, a telecom operator can witness a wide variety of anomaly events hap-
pening, ranging from local (e.g., football matches or concerts) to national events (e.g., political
happenings), passing through network outages at both access and Internet/cloud levels, and app
updates and failovers. Often, the detection of such events can allow reconfiguring the network
to work around the negative effect a given event can have in terms of infrastructure overload
and app interruption. Understanding the spatiotemporal characteristics of mobile app usages
anomaly and related impacted apps can therefore be useful for both the mobile network operator
and application providers.

First, the network operator can anticipate the demands specific to a special event known to
happen in advance, and take into account its spatiotemporal dynamics (e.g., during a match
there is more traffic around the stadium, while before and after it, the supporters coming from
and going back home being split in different neighborhoods). Knowing in advance the typology
of impacted mobile app related to a given category of events can support efficient resource
allocation. For instance, it can be useful to allow more bandwidth for streaming apps during
bank holidays and lock-downs. The operator can also distinguish between known and unknown

77

78 CHAPTER 5. GROUP ANOMALY DETECTION IN MOBILE APPS USAGES

events, and in the latter case can understand the root causes and take countermeasures.
Second, understanding and predicting per-app spatiotemporal traffic peaks can serve existing

and forthcoming pervasive computing applications [151, 87]. For example, navigation systems
could avoid predicted congested areas, and social apps could lead people to or away from the
crowds. Other apps include emergency plans, accident or crime zone prediction, and the inference
of points of interest. The characterization of neighborhoods based on mobile app usages could
also allow for real-time maps exploitable for the advertisement or construction industries.

In this chapter, we propose a group anomaly detection methodology named ASTECH for
Anomaly SpatioTEmporal Convex Hull. We define a 3-step algorithm that isolates and groups
raw singleton (per: app, cell, time-slot, feature) anomalies as follows:

• It decomposes the features time series, extracts the residual component, and detects anoma-
lies as usage drops and peaks through the use of z-score.

• Anomalies are thus grouped into snapshots, that represent the network state at a given
place and time. Upon spatiotemporal categorization of anomalies, it groups the abnor-
mal snapshots both spatially and temporally to get spatiotemporal convex hulls, we call
group anomalies. This enables us to qualify them, unveiling details about their timeline,
spatiotemporal spreading, and impacted apps.

• It applies a further clustering to the set of detected group anomalies, to partition them
into categories.

We apply it to extensive real-world data collected by a major mobile network operator in a
medium-size city from France over three months. We show how our algorithm is able to detect
known and unknown anomalies impacting the mobile traffic data during these three months. In
particular, leveraging on additional ground-truth event information, we evidence the existence of
five categories of anomalies: local events, national events, outages, bank holiday, and app updates.
We also found specific typologies of impacted apps for each category inducing a traffic increase.
For the sake of reproducibility, our source code is publicly available at [152].

The contributions can be summarized as follows.

• We propose a novel methodology to detect group anomaly in mobile apps usage data and
classify them via per-app profiles. Contrary to previous approaches, the information about
app profiles enables us to classify events in addition to detecting them.

• As a result, we are able to identify and group the anomalies which impacted mobile traffic
in a given area during a given period. Such anomalies include local events, national events,
app failovers or updates, Internet outages, and bank holidays. We rely on three main
characteristics to characterize an event: the variation of traffic (i.e., more or less traffic
than usual), its spatial spreading, and the list of impacted apps during the event.

• We map a specific set of impacted apps to a given category of anomaly. For events impacted
by a single app due to failovers or updates, we simply map the specific app to the category of
events. Other events usually cover a whole set of impacted apps. In this set, we investigate
if there is a recurrent subset of apps impacted by a given category of events, i.e., if there
is a typology of abnormal apps specific to each category. For local and national events, a
specific typology was observed depending on the event category, for example messaging and
streaming apps for matches; however, there is no typology for bank holidays and Internet
outages as there is less traffic than usual thus all of the apps are (more or less) impacted.

5.2. MEASUREMENTS AND DATASET 79

• We study the evolution of the sets of impacted apps for a given event, through different
places and times. As per iii), for a category of events there is a specific impacted apps
typology, however, they vary depending on the time and place for a given event. We
observed two distinct patterns of temporal variations depending on the event category: for
bank holidays, there is a rotation between break/commuting and working hours; for local
events, we observe a commuting pre/post event regime, and another regime with messaging
and streaming apps during the event. We identified no specific pattern of spatial variations.

The chapter is organized as follows. Section 5.2 introduces the dataset we employed in our
study. In Section 5.3, we describe our methodology. In Section 5.4 we focus on the extraction
of raw anomalies through time series decomposition. Section 5.5 presents how we extract and
refine group anomalies. In Section 5.6, we present results from the numerical evaluation, with a
detailed characterization of detected events. Finally, Section 5.7 concludes the chapter.

5.2 Measurements and dataset

In this section, we describe the dataset we employed.

Figure 5.1: Simplified 2G/3G/4G network with passive probes.

Our dataset was collected at the mobile core for user sessions by Orange, a major European
mobile operator, in the frame of the CANCAN project [153]. These data, collected at the
Gateway GPRS Support Node, allow knowing the app used during an Internet connection (e.g.,
mail, video streaming, VoIP, gaming) and the amount of data consumed. Raw data are organized
in TCP sessions with timestamps and cell locations of the start and end of the session. We
aggregate the TCP sessions per 30-minute timeslots, for each Voronoi cell (composed of co-
located base stations), each app, and each feature. Our final data set is thus composed of a set
of time series (see Section 5.3.2). Fig. 5.1 shows all capture points of the probe; in our collection,
we monitor Orange France traffic only, i.e., seen at Gi/SGi and Gx/Gy interfaces.

The dataset describes the mobile traffic generated by the Orange subscriber base in the area
around Saint-Denis, a medium-size city from France. It covers almost 3 months, from Mar.
16, 2019, to June 6, 2019. The time frame allows capturing the vast majority of mobile traffic
dynamics, which are known to occur over weekly timescales, while avoiding that the dataset size
becomes unmanageable.

80 CHAPTER 5. GROUP ANOMALY DETECTION IN MOBILE APPS USAGES

5.3 ASTECH Methodology

In this section, we introduce our methodology to detect group anomalies from mobile app usage
data, which we name ASTECH for Anomaly SpatioTEmporal Convex Hull detection. We present
the network model and the main parameters used.

5.3.1 Algorithmic approach

For the sake of presentation, let us illustrate our methodology with the reference map of the space
covered in our tests, the city Saint-Denis (Paris suburbs); it is a medium-sized city containing
various land uses including a residential area in the north district, a large employment area (called
La Plaine Saint-Denis) in the south section, and the Stade de France (a national stadium). First
and foremost, we compute the Voronoi tessellation from the list of the antennas’ coordinates.
The Voronoi tessellation of a set of points is dual to its Delaunay triangulation, so that each
cell in the diagram is adjacent to its neighbors. Fig. 5.2 depicts the Voronoi tessellation of the
studied area. The color of each cell of the diagram varies with the number of packets during the
3-month period that we study, from yellow for the smallest number of packets to purple for the
largest one, and passing through green then blue.

Figure 5.2: Voronoi tessellation of the Saint-Denis area. The color gradient represents the
amount of packets accounted in the cell over the 3-month period.

Different variables and dimensions characterize spatiotemporal mobile app usage data: be-
sides space and time interval (structured in Voronoi cells and 30’ slots in our setting), based
on which one can aggregate both temporally and spatially, apps can be grouped together, and
that as a function of multiple features. In order to scale with these dimensions while taking
into consideration useful variables for anomaly detection, we propose the following algorithmic
3-stage approach:

• Step 1: Time series decomposition, extraction of residual component and anomaly detec-
tion;

5.3. ASTECH METHODOLOGY 81

• Step 2.1: Aggregation of multi-source anomalies into snapshots;

• Step 2.2: Detection of group anomalies via a spatiotemporal grouping of abnormal snap-
shots;

• Step 3: Classification of group anomalies into several categories through feature-based
clustering.

Figure 5.3: ASTECH processing steps. Step 1: collection of time series, one for each unique
app, feature, and Voronoi cell; extraction of the residual component over which a change point
detection (z-score) algorithm is applied to collect sudden time series changes leading to a set of
anomalies. Step 2.1: anomalies are aggregated into snapshots, then Step 2.2 only the most
abnormal ones are aggregated into spatial groups, which are in turn grouped into spatiotem-
poral groups that we call group anomalies. Finally, Step 3 provides the categorization of such
group anomalies through three super-features, by using the k-means clustering algorithm.

Fig. 5.3 depicts the group anomaly detection methodology steps as well as its four compo-
nents. We then describe each step in detail in the following two sections. We describe hereafter
and in Table 5.1 the notations we use in the chapter.

5.3.2 Notations

Let Φ be a set of n distinct base stations (BSs) on the Euclidean place R2. At a given antenna site,
there are in practice several co-located antennas that cover different frequencies and especially
2G, 3G, and 4G: we assimilate such a group of co-located antennas to one single BS in this work.

The Voronoi diagram is a standard cell model for cellular networks; let V (Φ) denote a sub-
division of the plane into n cells such that: (i) each cell contains exactly one BS; (ii) letting
z ∈ R2 be a variable space point that lies within a given cell of BS Xi ∈ Φ, then the polygon
representing all locations on the plane closer to Xi than to any other point in Φ can be formed

82 CHAPTER 5. GROUP ANOMALY DETECTION IN MOBILE APPS USAGES

Variable Description
Φ Set of n distinct base stations

V (Φ) Voronoi diagram of Φ

F Set of features
A Set of apps
T Set of timeslots
yfc,a Time series for feature f , Voronoi cell c and app a
Rf

c,a Residual component of time series for feature f , cell c and app a
Rf

c,a Residual component of time series yfc,a
Y Set of original time series
R Set of residual components from original time series
A Set of anomalies
σc,t,∗ Snapshot of Voronoi cell c at timeslot t and traffic variation ∗ in {+,−}

Γ Set of group anomalies

Table 5.1: Notations

by imposing that |z −Xi| < |Xj −Xi| ∀Xj ∈ Φ,∀Xi ∈ Φ|Xi 6= Xj . The Voronoi cell of the BS
Xi can so be denoted by:

ci := {z ∈ R2 : |z −Xi| ≤ min
Xj∈Φ

|Xj −Xi|} (5.1)

Two Voronoi regions are said to be 1-order neighbors if they share boundaries of the Voronoi
region.

Let T be the set of time slots1, and A be the set of apps that can be associated with each
session by the provider. We compute features on a per app (a ∈ A) and per cell (c ∈ V (Φ)) basis;
the features f in F we use are: the number of users; the uploaded traffic volume, measured as
the total number of uploaded packets; the downloaded volume, measured as the total number of
downloaded packets.

It is worth noting that we also tested the round-trip-time as an additional feature; however,
its consideration in the group anomaly detection methodology revealed having no impact, be-
cause noticeable round-trip-time variations are much more seldom events than traffic volume
and number of users dynamics. Also note that the apps can be detected by the mobile network
operator via application port, Deep Packet Inspection, or fingerprinting techniques; in our tests,
thousands of apps are used - to limit the number, we selected the top 40 apps totaling 80% of
the traffic volume2.

1In our tests, we use 30-minute time-slots in the period from Mar. 16, 2019, to June 6, 2019, where n =
4320.

2The list of selected apps from the most to the least used one is: Default HTTP 80, TLS, Facebook, iCloud
Storage, iCloud command, Encrypted Videos, Google API, SnapChat, WhatsApp, Facebook Stream, Google
Web, Instagram Videos, Web Advertising, Mail Microsoft, Youtube TLS, Apple Web, Apple push, Twitter,
Google Play Store, Web Audience, Google NAV, Spotify, MMS, Other 443, e-Commerce, LinkedIn, Spotify,
Youtube, Twitter Videos, browser downloads, iMessage Certificate, Facebook Messenger, HTTPS MAIL,
Google+CDN, Images Web, NewsPaper, Web Microsoft, SIRI, Weather, Mail Google.

5.4. TIME SERIES ANOMALY DETECTION 83

5.4 Time series anomaly detection

We further develop our methodology to detect raw anomalies from feature-based time series. We
first decompose time series into several components (sect. 5.4.1). We then apply process the resid-
ual component derived from the decomposition to detect raw single-ton anomalies (sect. 5.4.2).

5.4.1 Time series decomposition

For each app a ∈ A and each Voronoi cell c in V (Φ), we denote the time series of feature f in F
as: yfc,a = {yfc,a,0, y

f
c,a,1, ..., y

f
c,a,n}. Let Y be the set of time series y, defined for each feature f

in F , each Voronoi cell c in V (Φ) and each app a in A.

Y = {yfc,a},∀f ∈ F,∀c ∈ V (Φ), ∀a ∈ A (5.2)

The decomposition of time series [154] is the process of deconstructing a time series into
several components, each representing one among many possible underlying pattern categories.
A trend component and a cycle component are usually combined into a single trend-cycle com-
ponent (often called the trend). We adopt a conventional set of three components, as follows:

• T f
c,a(t), the trend-cycle component at time t, which reflects the long-term progression of

the series (the secular variation), while the cyclical component reflects repeated but non-
periodic fluctuations. The trend component may be linear or non-linear.

• Sfc,a(t), the seasonal component at t, reflecting seasonality (seasonal variation). A seasonal
pattern exists when a time series is influenced by seasonal factors. Seasonality occurs over
a fixed and known period (e.g., the day of the week, the hour of the day).

• Rf
c,a(t), the residual component at t, which describes random, irregular influences. It

represents the residual or remainder of the time series after the other components are
removed.

Two types of decomposition are commonly used. The additive decomposition is:

yfc,a(t) = T f
c,a(t) + Sfc,a(t) +Rf

c,a(t) (5.3)

while the multiplicative decomposition is written as:

yfc,a(t) = T f
c,a(t)× Sfc,a(t)×Rf

c,a(t). (5.4)

The additive decomposition is appropriate if the magnitude of the seasonal fluctuations does
not vary with the level of the time series. When the variation in the seasonal pattern appears
to be proportional to the level of the time series, then a multiplicative decomposition is more
convenient [155]. In our case, we use the additive decomposition because we do not experience
a strong trend-cycle component that would significantly amplify the whole signal.

Decomposition technique

Let us review the main techniques for time series decomposition, to then justify the one we use.
The classical time series decomposition method originated in the 1930s, and widely used then,

is the Moving Average (MA) one [154]. It is used as the basis of many time series decomposition
methods. It uses as metric to qualify the trend-cycle at t the average value of the time series,
and that for k periods of time. Observations that are nearby in time are also likely to be

84 CHAPTER 5. GROUP ANOMALY DETECTION IN MOBILE APPS USAGES

close in value. Therefore, the average eliminates some of the randomness in the data, leaving a
smooth trend-cycle component. This technique does not fit well data containing outliers. The
trend component is computed as the moving average over the time series, then in the case of an
outlier, the trend gets very high during a whole sliding window after the beginning of the outlier.
This may perpetrate false positives, i.e., a very high amount of traffic, then an artificial drop in
traffic (see more details in subsection 5.6.1).

Another time series decomposition techniques are those using month-granularity metrics
such as X11 and SEATS. The X11 method originated in the US Census Bureau and Statistics
Canada [155], and the SEATS ("Seasonal Extraction in ARIMA Time Series") decomposition
was developed at the Bank of Spain and is now widely used by many government agencies [156].
The procedure works only with quarterly and monthly data, thus hourly, daily or weekly data
would require an alternative approach.

Finally, another time series decomposition technique is the Seasonal and Trend decomposition
using LOESS (STL) [157]. LOESS stands for LOcally Estimated Scatterplot Smoothing. This
method estimates nonlinear relationships by combining multiple regression models based on k-
nearest-neighbor models. It fits simple models, such as linear least squares regression, to localized
subsets of the data that confer the flexibility of nonlinear regression. Taking into account the
locality thus describes the deterministic part of the variation in the data, point by point. It
presents several advantages over the MA, X11, and SEATS decomposition methods:

• Unlike X11 and SEATS, STL handles any type of seasonality, not only monthly and quar-
terly data.

• The change rate for the seasonal component as well as the smoothness of the trend-cycle
can be chosen by the user.

• Contrary to other methods, STL can be robust to outliers, so that unusual observations do
not affect the estimates of the trend-cycle and seasonal components. This alternative STL
version uses LOWESS [158] (Locally Weighted Scatterplot Smoothing), that re-weights
data when estimating the LOESS using a data-dependent function. Using the robust
estimation allows the model to tolerate larger anomalies in the original signal.

We apply the robust STL decomposition to the time series denoted yfc,a with the periodicity
set to 7 × 48 = 336 (for 7 days multiplied by 48 30-minute timeslots in a day), to take into
account the hourly and daily seasonality occurring during one week. We then retain the residual
component Rf

c,a of yfc,a in order not to be influenced by seasonal and trend variations. The
whole set of residual components computed from the set Y of time series is written R. Using
the residual component rather than the original one can: (i) first, avoid seasonal anomalies, e.g.,
positive anomalies during rush hours; (ii) second, accentuate anomalies when framed in their
context. We develop such benefits in Sect. 5.6.1.

5.4.2 Detection of raw anomalies

We detect the activity peaks and drops in the Rf
c,a time series using the z-score metric[15].

It compares the original signal versus its z-score, and tags elements whose absolute values are
greater than the threshold as anomalies. The algorithm exploits the principle of dispersion: if
a new data point is a given x number of standard deviations away from some moving mean, it
is marked as an anomaly. It takes three parameters as inputs: the threshold τ , computed as
the z-score at which the algorithm produces an anomaly; the lag l, computed as the number of

5.5. GROUP ANOMALIES 85

past samples in the one-week sliding window. We set τ to 3.5 as recommended in [15]. As we
use time series with a 30-minute granularity in the weekly seasonality, the lag is equal to 48 ×
7 = 336.

Let Z(t) be the z-score at time t computed as:

Z(t) = (|Rf
c,a(t)| − Rf

c,a)/ν, (5.5)

with Rf
c,a and ν respectively the mean and standard deviation computed over the list of Rf

c,a

values from t − 1 − l to t − 1. If |Z(t)| is strictly greater than τ , an anomaly can be denoted
by the 5-tuple (t, c, f, a, Z(t)) as composition of several attributes: its intensity equal to Z(t)
which can be positive or negative (i.e., there is respectively an increase or a drop in the given
app usage), the timeslot t, the Voronoi cell c, the feature f and the app a.

Note that we handle time series only above a given number of non-null samplings. For
example, some cells (like those covering the stadium stands) are active only when an event
occurs. If there are too few values in the time series, the learning period is not relevant and this
may produce false positives. We then apply the z-score only when the learning period contains
at least 30 values (out of the 336 timeslots during one week), corresponding to 15 hours coverage
on the week-wide window. We chose 30 as the least value because, the side cases with 30 quasi-
consecutive non-null samplings (15 hours) can cover one full day, or two long evenings, which
we esteem sufficient enough for detecting only major anomalies lasting hours. By applying this
filter, we go from 848,688 to 92,940 anomalies, eliminating those ones that were caused due to
too few values in the time series.

The set of raw anomalies A found by applying the z-score on the set of residual time series
R is thus:

A = {(t, c, f, a, Z(t)) ∀t ∈ T if |Z(t)| > τ},
∀ Rf

c,a(t) ∈ R, c ∈ V (Φ), f ∈ F, a ∈ A
(5.6)

We refer to the elements of A as raw anomalies because related to a single app and not yet
grouped, which is covered by the next steps.

5.5 Group anomalies

In this section, we present our methodology to detect group anomalies, meant as groups of
raw anomalies that are spatiotemporally adjacent, i.e., they form what we call a ‘convex hull’of
anomalies adjacent in time and space. First, we pass through a grouping into ‘snapshots’, then
grouped in turn spatially and temporally to form group anomalies.

5.5.1 Identification of abnormal snapshots

A snapshot is defined as a group of anomalies pertaining to the same timeslot t and Voronoi
cell c. We distinguish between snapshots of positive and negative anomalies, i.e., the anomalies
whose z-score is respectively positive and negative. A snapshot σc,t,∗ is thus defined by four
elements:

• the Voronoi cell c;

• the timeslot t (30-minute in our tests);

• the operator ∗ in {+,−}, respectively for positive and negative anomalies;

86 CHAPTER 5. GROUP ANOMALY DETECTION IN MOBILE APPS USAGES

• the set of impacted apps denoted Σc,t,∗.

Our objective is to identify ‘abnormal snapshots’, we mean as those ones with an abnormally
high number of anomalies. To identify extreme values in our dataset, we use the interquartile
range on the snapshot cardinality. Above a threshold we set to the conventional 1.5 times the
interquartile range, we spot snapshots with an abnormally high number of anomalies in a given
cell as abnormal ones.

5.5.2 Detection of group anomalies

Our objective is to identify group anomalies, defined as a group of abnormal snapshots in a
spatiotemporal convex hull, that is a compact spatiotemporal area of adjacent cells and time
slots: we group together abnormal snapshots that are close in terms of space and time. We
propose a 2-phase grouping process: (1) group nearby abnormal snapshots at the same timeslot
to create spatial groups, then (2) group spatial groups which are temporally close in order to
form spatiotemporal events, the so-called group anomalies.

Phase 1: Creation of spatial groups. The goal of this phase is to form groups of nearby
abnormal snapshots at timeslot t. Phase 3 below shows the recursive process to form spatial
groups at t from the set of abnormal snapshots {Σ}t,∗. The function Get_spatial_groups starts
from an abnormal snapshot, then applies a region growing algorithm which recursively inspects
all of the cells in its neighborhood which are also abnormal, then their own abnormal neighbors,
etc, until there are no more abnormal neighboring cells to study. The function in charge of
recursively finding all of the recursive neighbors of a cell is denoted Get_neighbors. It takes
into account: the set of abnormal snapshots St,∗ at t of sign ∗, the neighbors to study N (i.e.,
if they belong to an abnormal snapshot, we add them to the given group), the list studied of
cells which have already been inspected (whether they belong to an abnormal snapshot or not)
and the dictionary D which contains the cells in V (Φ) as keys and their neighbors in Voronoi
diagram as values. We then repeat the operation for abnormal snapshots at t which are not yet
grouped.

Phase 2: Creation of group anomalies. This phase consists in grouping spatial groups
at successive timeslots into spatiotemporal group anomalies. Phase 4 depicts the function
Get_group_anomalies grouping spatial groups to form group anomalies. The objective is to
group spatial groups at two successive timeslots that have at least one Voronoi cell in common.
If a group at t does not have any cell in common with a group anomaly occurring at t− 1, then
we initialize a new group. From the set of spatial groups G, we obtain the set of group anomalies
denoted Γ. Each group anomaly γ ∈ Γ is defined by: its starting timeslot tstart, its end timeslot
tend and the list cells of the sets of impacted cells, one for each intermediate timeslot.

5.5.3 Fine-grained characterization of group anomalies

A precise characterization of the detected group anomalies is needed to understand possible
usages. We identified several broad categories of anomalies (including local events, national
events, outages, bank holidays, app updates), however, we lack ground-truth labels. Therefore
we chose to apply a clustering algorithm to the set of group anomalies, of positive and negative
anomalies separately. Clustering algorithms are designed to group similar vectors into clusters
and identify isolated ones as outliers. The similarity between two vectors is commonly evaluated
using a distance function like the Euclidean distance. Two vectors are defined as similar if they
are close to each other, else dissimilar.

5.5. GROUP ANOMALIES 87

Phase 1: Creation of spatial groups
function Get_neighbors(St,∗,N , studied,D) . Get all related neighbors of a given cell

new neighbors to study new ← ∅
for neighbor n ∈ N do

if n ∈ abnormal snapshots St,∗ then
studied.add(n)
new.add(D[n]− studied) . We add all of the neighbor’s neighbors to inspect them

later
if new is empty then

return studied
else

return get_neighbors(St,∗, new, studied,D)

function Get_spatial_groups(St,∗) . Get the spatial groups Gt at t from the set of
abnormal snapshots St,∗

spatial groups Gt ← ∅
dictionary D: key = cell, value = cell’s neighbors
for abnormal snapshot σc,t,∗ ∈ St,∗ do

neighbors← get_neighbors(St,∗,D(c), ∅,D)
if ∃ g ∈ Gt so that ∃ n ∈ neighbors belonging to g then

g.extend(neighbors)
else
Gt.add(Spatial_group(t, neighbors))

return Gt

Phase 2: Creation of group anomalies
function Get_group_anomalies(G) . Form group anomalies Γ from the set of spatial
groups G

group anomalies Γ← ∅
for spatial group g ∈ G do

cell_in_common← None
for c ∈ g.cells do

if not cell_in_common then
for group anomaly γ ∈ Γ do

if g.timeslot == γ.end_time + 30’ and c ∈ γ.list_cells[−1] then
cell_in_common← c
γ.update(g.cells, g.timeslot)
break

if not cell_in_common then
Γ.append(Group_anomaly(g.time_slot, g.cells))

return group anomalies Γ

88 CHAPTER 5. GROUP ANOMALY DETECTION IN MOBILE APPS USAGES

Figure 5.4: 3 super-features to classify group anomalies: (i) spatial spreading, (ii) profile of
impacted apps, (iii) variations in mobile traffic; and 6 broad categories of events.

(a) MA decomposition. (b) STL decomposition. (c) Robust STL decomposition.

Figure 5.5: Comparison of time series decomposition techniques: MA, STL, robust STL in a
6-week period.

To cluster group anomalies, we use the k-means clustering algorithm. Unlike density-based
clustering algorithms as DBSCAN and OPTICS that require the maximal density between data-
points, k-means only takes the number of clusters as parameter, which is equal to the number of
categories. It first divides the input points into k initialization groups, then it associates points
with the closest cluster according to the center point of each cluster. Our goal is to find a match
between clusters resulting from k-means and the broad categories of events that we identified.

Fig. 5.4 illustrates the three super-features we leveraged on to classify group anomalies and
the categories of events we observe. We first evaluate the group sparsity (super-feature 1 in the
figure), to determine if the group is rather localized (happening in a specific place) or distributed
(happening in many far places at the same time). Then we estimate whether the group covers
rather a single app or a whole set of apps (super-feature 2). These two first super-features are
determined by continuous variables, i.e., the group can be more or less sparse, and more or less
split among a group of apps, as meant by the arrows in the figure. The last super-feature is the
sign of the traffic variation (super-feature 3), i.e., whether it is a group of positive or negative
anomalies. This time, this super-feature is binary. According to these three super-features, the
list of attributes in the k-means algorithm includes:

• for super-feature 1, the weighted spatial 2D barycenter of the impacted cells for the

5.6. NUMERICAL RESULTS 89

Figure 5.6: Timeline of the football match between France and Iceland on March 25, 2019 in
Stade de France. Colored cells on the map represent abnormal snapshots at a given instant. A
group of adjacent cells of the same color represents a spatial group. Two spatial groups that
share at least one cell at two consecutive timeslots form what we call a group anomaly, rep-
resented by the same color. New spatial groups at a given instant have a different color.

anomaly;

• for super-feature 2, the parts represented by the 2 most recurrent apps in the set of
anomalies and a one-hot encoded vector containing the 3 most recurrent apps during the
given anomaly;

• we leverage on super-feature 3 for clustering of positive and negative anomalies, sepa-
rately.

From the combination of super-features in Fig. 5.4, we spot six broad categories of group
anomalies: local event, national event, app update, app malfunction, operator outage/bank
holiday, and local outage. Note that there are eight possible combinations from the set of super-
features, however, we labeled only six groups categories as the two combinations made from
"localized/unique app/positive" and "localized/unique app/negative" were never observed and
not quite relevant.

In order to get satisfying results for the clustering, we retain only major group anomalies,
using ad-hoc thresholds for the anomalies’ spatial spreading. Then, after the clustering, we map
unclassified groups (i.e., below the threshold) to spot anomalies occurring at the same time to
classify a larger range of anomalies.

5.6 Numerical results

In this section, we test the ASTECH detection methodology against data related to the Saint-
Denis area, in France, for the period from Mar. 16 to June 6, 2019. We first analyze raw
anomalies (related to Step 1 in Fig. 5.3, Section 5.4), then group anomalies (related to the other
Steps, Section 5.5). Finally, we classify and characterize the found group anomalies. The source
code used for the detection and evaluation is available in [152].

90 CHAPTER 5. GROUP ANOMALY DETECTION IN MOBILE APPS USAGES

5.6.1 Raw anomalies

We present results justifying Step 1 of our methodology.

Time series decompositions (MA, STL, robust STL)

Fig. 5.5 illustrates the decomposition of the time series composed of the number of WhatsApp
downloaded packets overtime, using three decomposition techniques: Moving Average (MA)
(Fig. 5.5a), Seasonal-Trend Decomposition using Loess (STL) (Fig. 5.5b), and robust STL
(Fig. 5.5c).

As previously discussed in Section 5.4.1, MA can be influenced by extreme values (i.e., strong
anomalies) and thus may perpetrate false anomalies during a whole sliding window after a large
outlier: in Fig. 5.5a, there is a large increase in traffic on May 23 due to a football match at Stade
de France; then the trend component is abnormally large during one whole week after this large
outlier. The seasonal component is computed by applying a convolution filter to the data (to
remove the seasonality) and by computing the average of this smoothed series for each period:
in Fig. 5.5a, we notice that it is usually large on Saturday because of the large outlier produced
by the football match on a single evening.

With STL, the seasonal component changes over time at a rate controlled by the user. There-
fore, we observe in Fig. 5.5b that the seasonal component is impacted during a couple of Saturdays
next to the Saturday of the match. The trend is also lightly impacted by the large outlier. Fi-
nally, some drops in traffic occur on Saturday evenings before and after the match in the residual
series, which are false positives induced by the match.

With respect to the robust STL decomposition (using LOWESS), in Fig. 5.5c, the trend
component is not impacted by the outlier, the seasonal component is recomputed each week and
thus the residual component does not contain any false positive. Given that we observe these
patterns for every time series in the dataset, as anticipated we choose the robust STL as it proved
to be robust against outliers.

Advantages in using the residual signal

As seen in Section 5.4.1, we handle the residual component instead of the original one in our
analysis. This presents several advantages. First, we avoid anomalies caused by seasonality, i.e.,
anomalies produced by seasonal variations like traffic peaks during rush hours and traffic drops
during weekends. In addition, this enhances sudden traffic variations and makes the anomalies
more visible (i.e., the z-score of the detected anomalies is even greater when using the residual
component). Table 5.2 shows the number of positive anomalies, i.e., anomalies whose z-score is
greater than the threshold τ , and the number of negative anomalies, i.e., anomalies whose z-score
is lower than −τ . τ has been set to 3.5 (cf. Section 5.4.2). We observe less positive anomalies
when using the residual series rather than the observed one, as anomalies during rush hours are
less visible when put in the context. Therefore using the residual component significantly reduces
the number of false positives. On the contrary, there are no negative anomalies when using the
observed component, for all time series (no matter the feature, the app, and the Voronoi cell).
This means that there is no significant drop in the original series. If we lower τ to 1.5, we notice
drops at night, when there is almost no traffic anymore, but still no drops during bank holidays
and massive outages. However, using the residual series enables one to emphasize these variations
and thus to produce negative anomalies during outages and bank holidays. We observe 137,954
negative anomalies using the residual component. In total, we spotted 782,092 anomalies, which
represents 2.8% of the total number of values in the time series equal to 27,498,240.

5.6. NUMERICAL RESULTS 91

Component # of positive anomalies # of negative anomalies
Observed 915,710 0
Residual 644,138 137,954

Table 5.2: Number of positive and negative anomalies, respectively for the observed and resid-
ual components.

(a) For local events.
(b) For national events.

(c) For app updates.

Figure 5.7: ρe coefficient of each app for different categories e of groups of positive anomalies.

5.6.2 Group anomalies

We analyze group anomalies built from raw anomalies.

Representation of a given event

Fig. 5.6 represents the timeline of the football match between France and Iceland in Stade
de France on Mar. 25, 2019, generating group anomalies. First, in (a), at 19:00, before the
match, we observe several impacted cells centered around the stadium. The colored Voronoi
cells represent cells whose snapshot is abnormal at that time (i.e., with an abnormally high
number of anomalies). At that time there are two spatial groups composed of adjacent cells of
the same color (blue and grey). The most impacted apps are messaging apps (like WhatsApp and
Messenger) and streaming ones (like iCloud Streaming and Storage). In (b), two hours later, at
21:00, we observe spatial groups of the same blue and grey colors: they represent the evolution
in time of the same two group anomalies. The number of impacted cells slightly increases as
the match starts, while the nature of the impacted apps remains the same. In (c), two hours
later, the match is ending and supporters go back home. We then observe new group anomalies:
groups of a different color appear, spread out in the city, and not centered around the stadium
anymore. This time, the most impacted apps are transit and navigation apps (like Uber, Google
Maps).

92 CHAPTER 5. GROUP ANOMALY DETECTION IN MOBILE APPS USAGES

(a) For bank holidays. (b) For outages.

Figure 5.8: ρe coefficient of each app for different categories e of groups of negative anoma-
lies.

Typology characterization of abnormal apps

We now investigate whether there is a typology of the impacted apps specific to each category
of events (e.g., local event, national event). Our first intuition is to study for each category the
support of each app. The support of app a for category e is computed as the ratio of instances
from e that contain at least one anomaly produced by app a. However, there may be a correlation
between the app popularity (i.e., the number of packets for the given app) and the number of
anomalies produced by this app. Therefore the support of a given app may be high because
the app is highly used in general (thus often produces anomalies), and not because it is highly
impacted during this category of group. Therefore, instead of computing the support of app a,
we use the following probability term for the group category e: Pr(a ∈ A | e)/Pr(a ∈ A).

This way, we measure how it is likely that a belongs to the set of impacted apps knowing that
the category of events is e ∈ E, where E is the set of categories, divided by the probability that
a belongs to the set of impacted apps no matter the category of events. We now measure, for
a category e of events, the average of the aforementioned metric for all events of this category.
We define the rarity coefficient ρe for the category e of events as:

ρe =
1

|E|
∑
e∈E

{
Pr(a ∈ A | e)

Pr(a ∈ A)

}
(5.7)

Fig. 5.7 shows the value of the ρe coefficient for each app within each category e of groups of
positive anomalies. The color of each bar represents the category of app, as defined by Orange.
During local events (Fig. 5.7a), a whole subset of apps is impacted, including streaming, web,
and chat apps. During national events (Fig. 5.7b), the subset of impacted apps is composed of
NewsPaper and Twitter (Web). During app updates (Fig. 5.7c), there is clearly a single impacted
app which is Apple push. Therefore for groups of positive anomalies, we can induce a typology
of the impacted apps for each category of groups. Local events (matches or concerts), national
events (like the Notre-Dame de Paris fire), and app updates have a different signature, each one
being represented by a specific set of apps.

Fig. 5.8 shows, for each category e of groups of negative anomalies, the ρe coefficient of
each app. We observe that during bank holidays (Fig. 5.8a), all apps are (more or less) impacted
because they are less used than usual. The three most impacted apps are LinkedIn, Mail Mi-
crosoft, and Spotify as they are widely used during working days. For outages (Fig. 5.8b), the
most impacted apps come from Google as Google API and Google Web. Therefore, contrary to
groups of positive anomalies, we do not notice a specific typology for groups of negative anoma-
lies. Actually, all apps are lightly impacted during network outages and bank holidays as there
is a bit less traffic than usual.

5.6. NUMERICAL RESULTS 93

Spatiotemporal pattern analysis of abnormal apps

We study for a given event how the sets of impacted apps evolve in time and space. The Jaccard
distance [159] between Σc,t1,∗ and Σc,t2,∗ measures the dissimilarity between the sets of impacted
apps from two snapshots of a same group, at two distinct timeslots t1 and t2:

dist(Σc,t1,∗,Σc,t2,∗) =
|(Σc,t1,∗ ∪ Σc,t2,∗)− (Σc,t1,∗ ∩ Σc,t2,∗)|

|Σc,t1,∗ ∪ Σc,t2,∗|
(5.8)

Similarly, the Jaccard distance between Σc1,t,∗ and Σc2,t,∗ measures the dissimilarity between
the sets of impacted apps from two snapshots of a same group at t, in two distinct cells c1 and
c2:

dist(Σc1,t,∗,Σc2,t,∗) =
|(Σc1,t,∗ ∪ Σc2,t,∗)− (Σc1,t,∗ ∩ Σc2,t,∗)|

|Σc1,t,∗ ∪ Σc2,t,∗|
(5.9)

Following the evolution of such distances through time and space enables one to identify
temporal and spatial patterns for the evolution of the sets of impacted apps for any group.
Fig. 5.9a and Fig. 5.9b show the temporal evolution of the sets of impacted apps respectively
for the match on Apr. 27 in cell Cornillon Stade and during Easter on Apr. 22 from 07:30 to
19:00 in cell Saint-Denis canal. Fig. 5.10 shows an example of the spatial evolution of the
sets of impacted apps for the concert on May 13, 2019 at 00:30. The heatmaps are matrices of
Jaccard distances between every possible combination of times for a given cell for the temporal
evolution, and of cells for a given time for the spatial one. The darkest areas highlight two sets
of very similar impacted apps.

We first investigate the spatiotemporal evolution of local events such as concerts and matches.
For the temporal evolution (Fig. 5.9a), we observe that the sets of impacted apps are very close
to each other during the heart of the match, i.e., between 19:00 and 00:00. Before and after
the match, the dissimilarity is greater. We find this pattern for a majority of local events: the
similarity within sets of apps slightly increases, then is stable during the event, then slightly
decreases at the end of the event. For the spatial evolution (Fig. 5.10), we observe some cells
very similar to one another and quite dissimilar to the others. Some cells located around the
stadium (the ones covering the stands) are very similar in terms of impacted apps in comparison
to those farther away in the suburbs.

We then study the spatiotemporal evolution of bank holidays. For the temporal evolution
(Fig. 5.9b), we notice an interesting pattern: first, we note some dark squares during commuting
hours; the time ranges [08:00; 09:30], [12:30; 14:00], and [17:30; 19:00] exhibit very similar sets of
apps, including mostly Spotify and social networks. Then, the working hours [09:30; 12:30] and
[13:00; 16:00] exhibit very similar sets of apps, with mail servers and LinkedIn mainly impacted.
This heatmap shows drops in usage during Easter; meaning that these apps are less used than
during normal working days. We observed this pattern for a majority of groups happening during
bank holidays. For the spatial evolution, we do not observe any specific pattern in this case.

To sum up, we show that what our algorithm detects is the exceptional behavior from users,
that we consider anomalous. We can then observe through these visualizations the extent in time
and space of these types of behaviors, and for example notice localized events, their timeline,
population displacement, etc.

Spatiotemporal spreading

Fig. 5.11 shows the number of groups with a given mean number of impacted cells over time (on
the x-axis) and a given duration (on the y-axis). The width of the circle gives the number of such

94 CHAPTER 5. GROUP ANOMALY DETECTION IN MOBILE APPS USAGES

(a) During the match on Apr. 27 in cell Cornillon
Stade. The pink square highlights the heart of the
match, while the impacted apps are very close to
each other.

(b) During Easter in cell Saint-Denis canal. Green
squares highlight dark areas showing similar pat-
ters during different commuting hours, while blue
ones highlight similar patterns during different
working hours.

Figure 5.9: Heatmap of the Jaccard distances between every possible combination of two
timeslots.

Figure 5.10: Heatmap of the Jaccard distances between every possible combination of two
cells, on May 13, 2019 at 00:30.

5.6. NUMERICAL RESULTS 95

groups for each couple of coordinates, in logarithmic scale. The smallest circle represents one
group of anomalies, while the largest one around 2,000 groups. This representation enables one
to distinguish between insignificant groups (e.g., with one targeted cell on average and lasting
one timeslot) and meaningful groups (e.g., spatially and/or temporally distributed).

For groups of positive anomalies (Fig. 5.11a), we observe that the group anomalies the most
spatially and temporally distributed (upper right on the figure) are mostly known events (in-
cluding 7 local events, 2 national events, and 2 app updates) and 3 unknown events. Overall,
we notice that the most relevant characteristic of known events (i.e., not labeled as unknown) is
the spatial spreading (i.e., the mean number of impacted cells over time on the x-axis). In fact,
strictly above 3 impacted cells on average, most events are known. We later use this value in
order to retain only the most meaningful events. We notice that such known events are more
or less temporally distributed, between 1 and 11 timeslots, thus the temporal spreading is not a
sufficient criterion for retaining the meaningful events.

For groups of negative anomalies (Fig. 5.11b), the events labeled as bank holiday distinguish
themselves through their high mean number of impacted cells. In addition, the three groups
labeled as outage are also recognizable and only 1 unknown event exceeds two average impacted
cells. We retain the group anomalies with at least 2.8 impacted cells on average. This time,
known events that are spatially spread last at least 2 timeslots (i.e., 1 hour) most of the time.

We use these two thresholds the remaining of the chapter to retain only the most meaningful
group anomalies, both for positive and negative ones.

(a) For groups of positive anomalies. (b) For groups of negative anomalies.

Figure 5.11: Group anomaly duration vs. mean number of impacted cells.

5.6.3 Group anomalies classification

Table 5.3 sums up the whole list of group anomalies that we detected in our dataset, containing
mobile traffic data in Saint-Denis during the period from Mar. 16, 2019, to June 6, 2019. For
each group we indicate: the date, the name, the broad category (i.e., the ground-truth label), and
the number of the k-means cluster to which it belongs (see next paragraph). Table 5.3a covers
the groups of positive anomalies, with at least 3 impacted cells on average. We detected the
totality of the events that took place at the national stadium during this period [160], including
the UEFA football match between France and Iceland, the final game of the French football
cup, and the Metallica concert. In addition, we detected the Notre-Dame de Paris fire and app
updates from Apple push. We detected 3 unidentified anomalies as well. Table 5.3b lists groups
of negative anomalies, with at least 3 impacted cells on average. We detected all of the bank

96 CHAPTER 5. GROUP ANOMALY DETECTION IN MOBILE APPS USAGES

Date Event Ground-truth label #cluster

Mar. 25 17:30→00:00 UEFA match local event c1
Apr. 9 16:00→17:00 Apple Push notification app update c2
Apr. 15 19:00→22:30 Notre-Dame de Paris fire national event c3
Apr. 15 20:00 Notre-Dame de Paris fire national event c3
Apr. 24 16:30→18:30 Apple Push notification app update c2
Apr. 27 16:00→23:30 French football cup local event c1
Apr. 28 00:00→02:00 French football cup local event c1
Apr. 28 01:30→02:00 French football cup local event c1
May 12 15:00→22:00 Metallica concert local event c1
May 12 22:30→01:00 Metallica concert local event c5
May 13 01:00 Metallica concert local event c6
May 15 09:30 Unidentified unknown c7
May 15 15:00→18:30 Unidentified unknown c7
May 23 18:00→19:00 Unidentified unknown c7

(a) Groups of positive anomalies, with k = 7 clusters.

Date Event Ground-truth label #cluster

Apr.15 12:00 Orange outage outage c1
Apr.15 12:00 Orange outage outage c1
Apr.22 07:30→10:00 Easter bank holiday c2
Apr.22 10:00→19:00 Easter bank holiday c2
Apr.22 11:00 Easter bank holiday c2
Apr.22 07:00→16:00 Easter bank holiday c2
May 1 07:00→16:00 Labour Day bank holiday c2
May 1 14:30→15:30 Labour Day bank holiday c2
May 1 15:30→19:30 Labour Day bank holiday c2
May 8 07:30→09:30 VE Day a bank holiday c2
May 8 08:00→11:30 VE Day bank holiday c2
May 8 11:00→12:30 VE Day bank holiday c2
May 8 12:00→14:00 VE Day bank holiday c2
May 8 14:00→19:00 VE Day bank holiday c2
May 8 19:00 VE Day bank holiday c2
May 27 12:00 Unidentified unknown c1
May 29 18:30 Unidentified unknown c1
May 30 07:00→12:00 Ascension day bank holiday c2
May 30 07:30→08:30 Ascension day bank holiday c2
May 30 07:30→16:30 Ascension day bank holiday c2
May 30 14:00→17:30 Ascension day bank holiday c2
May 30 17:30→19:30 Ascension day bank holiday c2
May 30 18:30→20:00 Ascension day bank holiday c2
June 2 01:00 Unidentified unknown c3
June 2 20:30 Unidentified unknown c4
June 3 22:00 Unidentified unknown c3

(b) Groups of negative anomalies with k = 4 clusters. a: Victory in Europe Day.

Table 5.3: List of group anomalies detected in Saint-Denis from Mar. 16 to June 6, 2019, for
those ones respectively containing at least 3 or 2.8 impacted cells on average over time.

5.6. NUMERICAL RESULTS 97

(a) For groups of positive anomalies. (b) For groups of negative anomalies.

Figure 5.12: Homogeneity, completeness and V-measure values depending on the number k of
clusters in the k-means algorithm.

holidays occurring during this period and in particular Easter, Labour Day, Victory in Europe
Day, and Ascension Day. We also detected an outage on the Orange 4G network on Apr. 15 [161].
Finally, there are 5 anomalies that we could not identify. The unidentified anomalies on June 2
and 3 could be related to the massive outage from Google Cloud [162].

We now perform the clustering operation on the most meaningful events that we retained
above the ad-hoc thresholds for the group spatial spreading defined in Section 5.6.2. Given
the knowledge of the ground-truth class assignments of the samples, three key related metrics
reflect the quality of a clustering operation: the homogeneity, the completeness, and the V-
measure. The homogeneity is a measure of the ratio of samples of a single class pertaining to a
single cluster. The fewer different classes included in one cluster, the better. The completeness
measures the ratio of the member of a given class that is assigned to the same cluster. The
V-measure is computed as the harmonic mean of the homogeneity, and the completeness. We
choose the number k of clusters in the k-means algorithm so that the V-measure is the largest.
Fig. 5.12 shows the homogeneity, completeness and V-measure values depending on k. For the
groups of positive anomalies (Fig. 5.12a), we set k to 7 for which the homogeneity equals 0.796,
the completeness 0.757, and the V-measure 0.776. Note that if we do not know the number of
clusters (i.e., the ground-truth labels) in advance, we are not able to tune k. Nevertheless, the V-
measure is quite high starting from 4 clusters, hence the k value is not essential to get satisfying
results. For the groups of negative anomalies (Fig. 5.12b), unsurprisingly the clustering is not
efficient as we concluded earlier that there is no specific typology of impacted apps for the groups
of negative anomalies, and outages as bank holidays are spatially distributed. We can use the
ground-truth on bank holidays to distinguish between both categories of groups. Nevertheless
in Table 5.3b we set the clusters numbers for k = 4 clusters for which the V-measure is equal to
0.68, the homogeneity to 0.78 and the completeness to 0.6.

To understand the composition of the 7 k-means clusters for groups of positive anomalies
(while there are 4 ground-truth labels in our dataset), we indicate the cluster numbers assigned
to the groups by k-means in the last column of Table 5.3a. The homogeneity equals 1, thus in-
stances from different classes never pertain to the same cluster. However, local events (especially
matches) are split into four different clusters. The first one concerns groups covering the whole
match, while the three other ones represent groups at the end of the match when supporters go
back home (around 01:00). These latter groups involve only one or two transit apps like Uber

98 CHAPTER 5. GROUP ANOMALY DETECTION IN MOBILE APPS USAGES

and Google Navigation, thus look like the app update cluster which covers a single app. Finally,
the categories national event, app update and unknown are well separated into three dedicated
clusters. For the groups of negative anomalies (Table 5.3b), four distinct clusters give the highest
V-measure value: the first cluster includes the totality of outages as well as three bank holidays
similar to outages. The second one contains all other bank holidays and some unknown events.
Finally, the two last clusters cover the remaining unknown events.

5.7 Conclusion

Getting a better understanding of the spatiotemporal dynamics of the group anomalies occurring
in a city can help to anticipate the load for such events. We analyzed 3-month real-world mobile
traffic data in which we detected the two matches and the concert that occurred in the studied
area, the Notre-Dame de Paris fire, a network outage, and the four bank holidays happening
during this period.

Our main contributions can be summarized as follows:
(i) We showed that there exist specific typologies of impacted apps depending on the anomaly

category. We found that local events rather impact streaming and messaging apps, national
events impact NewsPaper and Twitter apps, and updates impact the Apple push app. However,
for groups of negative anomalies (like outages or bank holidays), no specific typology was identi-
fied as the anomalies consist of slight decreases in traffic compared to normal working days, thus
all apps are (more or less) impacted.

(ii) We identified two distinct patterns of temporal variations for the sets of impacted apps:
one for local and national events where the similarity slightly increases, then is stable during
the anomaly, and slightly decreases at the end; and the other for bank holidays composed of
an alternation of commuting/break hours and working hours. We found no explicit evolution
pattern in space, but most of the time the Voronoi cells are more or less dissimilar from one
another.

(iii) We categorized these group anomalies through a k-means clustering operation applied
to a set of super-features composed of the sign of traffic variations, the spatial spreading, and
the profile of impacted apps. We apply a clustering operation to the detected groups of positive
anomalies (whose categories are local event, national event, app update and other) and another
to the ones of negative anomalies (whose categories are Internet outages and bank holidays). In
the best case, the V-measure reaches 0.8 for groups of positive anomalies, which means that the
clustering is 80% correct compared to the ground-truth labels, and 0.7 for groups of negative
anomalies.

This concludes our contribution to exploring possible applications of anomaly detection to
networking. The next chapter concludes this dissertation.

Chapter 6

Conclusion

In this thesis entitled “Novel anomaly detection and classification algorithms for IP and mobile
networks”, we presented three detection systems for network security, traffic prediction, or perva-
sive computing purposes: Split-and-Merge, BotFingerPrinting, and ASTECH. We conclude this
thesis by giving a summary of our contributions (Section 6.1) and proposing several perspectives
for each of them (Section 6.2).

6.1 Summary of contributions

Each of our contributions provides new insights into anomaly detection and classification ap-
proaches, and their relevance to networking. In Split-and-Merge, we provided a technique for the
early detection of emerging botnets that are slightly spreading on the Internet to infect other
hosts. Our technique aims to split the detection process over different network segments to retain
only the distributed anomalies at the correlation module. We used a simple yet efficient change-
detection algorithm based on a modified Z-score measure to monitor the usage of application
ports. We argued how our technique can ensure the detection of large-scale zero-day attacks and
drastically reduce false positives. As a result, we detected numerous known and unknown attacks
targeting connected objects and servers around the world. Our port-based methodology to de-
tect zero-day attacks, which was presented to the scientific community [102], then extended into
a journal article [103], led us to the following question: how could we design a complementary
approach, which would now detect botnets directly at the network-level?

We then focused on detecting botnet infected hosts, this time directly within a given network,
for example at the enterprise-level. The quick identification of such bots is crucial to Internet
security; botnet attacks are constantly more sophisticated, and this is expected to get even
worse with the massive increase of connected objects. Our technique BotFP aims to detect
botnet infected-hosts through a histogram-based algorithm that models host communication,
where bots exhibit specific behaviors. Two BotFP variants are compared for the training and
classification steps. Both techniques are very lightweight compared to graph-based techniques
and achieved accuracy close to 100%. We may consider several parameters to favor, such as a
high recall or precision, a low complexity, a small number of features, to choose the given BotFP
variant. We first presented our approach to the scientific community [130], then extended it into
a journal article [131].

Finally, we directed our attention to cellular traffic data, for the purpose of finely character-
izing the timeline of events occurring in a city, in terms of volume of anomalies and impacted
services. Getting a better understanding of such phenomena can help to anticipate the load for

99

100 CHAPTER 6. CONCLUSION

such events. We proposed our ASTECH detection solution that aims to detect per-mobile app
anomalies grouped into spatiotemporal convex hulls. As a result, we identified broad categories
of events through a clustering operation applied to a set of super-features, including national
events, local events, service updates and malfunctions, bank holidays, and Internet outages. We
also revealed typologies of impacted services depending on the category of event and identi-
fied different patterns of temporal and spatial variations for the set of impacted services. Our
approach was described and evaluated on 3-month real-world data, in a journal article that is
currently under revision [163].

All of these detection systems are available to the scientific community; we make all our code
publicly available.

6.2 Perspectives

This section concludes our dissertation and presents the future works that we identified for each
of our contributions.

6.2.1 Detection of zero-day attacks

The objective of this work is to detect the early apparition of botnets, newly exploited vulner-
abilities, and other diverse attacks within a given network. However, we noticed that we could
obtain a comprehensive list of major botnets that emerged last years by coupling different data
sources. For example, some preliminary scans target a limited IPv4 range only and thus are
visible only on some datasets. As a result, we found that some attacks detected in one real
traffic source (the MAWI dataset), containing both attack traffic and background traffic, were
not found in another source containing only attack or unsolicited traffic (the UCSD dataset). We
thus believe that it would be interesting in future work to leverage these different data sources
in order to describe the landscape of major attacks and botnets in recent years.

As further work, we also plan to implement our proposal in a Software-Defined Networking
(SDN) environment, using a controller and several switches running the algorithm. This way,
the identified attacks could be mitigated, for example by patching the appropriate services or
with network programming. These last years, numerous works have been undertaken for net-
work built-in measurements. As discussed in our book chapter[104], network programmability
and emerging technologies such as SDN and Network Functions Virtualization (NFV) can ad-
vance techniques for intrusion detection and protection. Combining data plane programming
with control-level collaboration, we would propose a model to simplify the detection of large-
scale, distributed network attacks. This model would simultaneously reduce the system overhead
through direct mitigation at the network edge, and would enrich the detection process with cor-
roboration of evidence from distributed sources. We also identified that a large range of attacks
could be detected at the host-level, with no need for collaboration between hosts. We would then
look to programmable network monitoring techniques that enable stateful data-plane designs in
which it is possible to manipulate packet processing. We would then propose a collaborative
SDNFV-based IDPS model that leverages programmable networks for local detection with col-
laboration between ISPs. This enables a system that combines both detection at the host-level
and collaboration between hosts to detect large-scale attacks.

6.2. PERSPECTIVES 101

6.2.2 Botnet Fingerprinting

In our BotFingerPrinting algorithm, we showed that using only the information about 5-tuple
flows is a very insightful way to characterize the communications of a host and enables us to
efficiently detect bots. We plan as future work to consider additional features including: the
payload size, as crafted packets from bots usually have a lower size than usual packets; the
TCP flags, e.g., to detect SYN flood; the inter-packet time; the duration of the flows, e.g., the
connection to the C&C server might be persistent; and DNS features inspired from [76].

Another meaningful improvement to our system would consist in developing a real-time imple-
mentation of our algorithm, which would require a shift from our current offline implementation
to an online algorithm. The survey [164] on big data for network traffic monitoring and analysis
gives us keys for doing so. Our model would thus run on a sliding time windows basis so that
the model regularly updates. The major challenge is to design efficient mechanisms for online
analysis of large streams of measurements. The key challenges associated with big data involve
data volume, velocity, veracity, and variety. We might need to adapt our approach, favoring the
versions of BotFingerPrinting that rely on lightweight features, and learning and classification
algorithms with low computational complexity.

6.2.3 Group anomaly detection in mobile app usages

As for BotFingerPrinting, we plan to develop an online algorithm based on our existing system
detecting group anomalies in cellular traffic data. Previous steps for doing so would consist
in assessing the minimal learning period required to get relevant results, for two key steps of
our algorithm, the time series decomposition, and the quartiles and interquartile computations.
These computations currently need to learn on the whole data period, i.e., three months. We
would also need to choose between stream and batch processing to handle large amounts of data
regularly updated. Stream processing is the process of being able to almost instantaneously
analyze data that is streaming from one device to another, whereas batch processing is the
processing of a large volume of data all at once.

In addition, we would like to extend our algorithm by grouping anomalies even disconnected
between each other, i.e., not falling under the same convex hull. Another further work is running
the analysis on a geographically larger coverage, with broader tessellation units than the base
station Voronoi cell.

Finally, we would also like to explore supervised and semi-supervised learning approaches to
enhance the performances of our algorithm. Data labeling typically requires human intervention,
which may be very costly and fastidious if there is a large amount of data. Labeling only a subset
of data with semi-supervised techniques is thus very practical, while significantly increases the
performances compared to no labels at all.

102 CHAPTER 6. CONCLUSION

Publications

International Journals with peer review

• A. Blaise, M. Bouet, V. Conan and S. Secci, "Detection of zero-day attacks: An unsuper-
vised port-based approach," in Elsevier Computer Networks, vol. 180, pp. 107391, Oct.
2020.

• A. Blaise, M. Bouet, V. Conan and S. Secci, "Botnet Fingerprinting: A Frequency Dis-
tributions Scheme for Lightweight Bot Detection," in IEEE Transactions on Network and
Service Management, vol. 17, no. 3, pp. 1701-1714, Sept. 2020.

International conferences with peer review

• A. Blaise, M. Bouet, V. Conan and S. Secci, "BotFP: FingerPrints Clustering for Bot
Detection," IEEE/IFIP Network Operations and Management Symposium (NOMS), Bu-
dapest, Hungary, 2020, pp. 1-7.

• A. Blaise, M. Bouet, S. Secci and V. Conan, "Split-and-Merge: Detecting Unknown Bot-
nets," IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Ar-
lington, VA, USA, 2019, pp. 153-161.

• A. Blaise, S. Wong, A.H. Aghvami, "Virtual network function service chaining anomaly
detection," International Conference on Telecommunications (ICT), Saint-Malo, France,
2018, pp. 411-415.

Book chapters

• A. Blaise, S. Scott-Hayward, S. Secci, "Scalable and Collaborative Intrusion Detection and
Prevention Systems Based on SDN and NFV," in: J. Rak, D. Hutchison (eds) Guide to
Disaster-Resilient Communication Networks. Computer Communications and Networks.
Springer, Cham.

Under review

• A. Blaise, M. Bouet, V. Conan and S. Secci, "Group anomaly detection in mobile app
usages: a spatiotemporal convex hull methodology," submitted to IEEE Transactions on
Mobile Computing.

103

104 CHAPTER 6. CONCLUSION

Appendix A

Virtual network function service
chaining anomaly detection

Network function virtualization (NFV) and virtual network function (VNF) service chaining are
receiving significant attention from both academics and industry. However, most of the attentions
has been concentrated on delivering the flexible network architecture and optimization of VNF
placement across the network infrastructure. In this chapter, we focus on an important aspect
of the network after its architecture is formed and its VNF placements are optimized. This
aspect is related to the efficiency and effectiveness of VNF provisioning, the lack of visibilities
on the location of VNF, the flexibility of VNF placement, and the VNF splitting into multiple
sub-functions. This can be considered as a security issue covering the anomalies of the VNF
orchestration and placement during the operation. We propose a VNF service chain anomalies
detection method based on the Markov chain property in order to ensure the correctness of VNFs
backward and forward placement and the K-means classification of VNF sequence patterns. This
method identifies the patterns of the VNF service chaining sequence in correct behavior. This
work is not just observing the existing network behavior, it also can be extended to identify the
correctness of the sequence order of a new VNF service chaining request1.

A.1 Introduction

Fifth-generation (5G) telecommunication systems have focused on building an advanced flexible
network architecture that is enabled by network function virtualization and software-defined
mobile networking. This newly designed network architecture and infrastructure is: (i) expected
to have a flexible radio access network (RAN) and to provide the necessary adaptability for
handling fluctuations in traffic demands, (ii) aimed to support variable network workload, to
provide elasticity of the network resources provisioning and deprovisioning in an autonomic
manner based on virtualization, and (iii) intended to deliver an independent control of the
logical network slices and to provide isolated network resources for tenants serving their plethoric
network services.

However, the network service deployment and provisioning are traditionally coupled with
network topology and physical network resources. Planning the whole provision and further the
deployment processes requires a significant amount of time. Presently, programmable network
technologies (e.g., OpenFlow, YANG and NETCONF, etc.) enable the network service deploy-
ment and provisioning, moving into a new era of decoupling with network topology and physical

1This work is issued from the master thesis and was presented at IEEE ICT 2018 [165]

105

106APPENDIX A. VIRTUAL NETWORK FUNCTION SERVICE CHAINING ANOMALY DETECTION

resources, dynamically creating network service chains on-the-fly [166, 167] and wholesaling mul-
tiple level services and network slices to the horizontal and vertical industry customers. A typical
example of a network slice tenant would be a vehicle manufacturer or the performing art industry.
Nevertheless, a traditional example is a mobile virtual network operator (MVNO) as a tenant.

Furthermore, this new generation of programmable networks opened the Pandora box of
telecommunication network infrastructure, allowing the global cloud providers and their cus-
tomers to easily become international mobile service providers. On the other hand, this pro-
grammable network introduces a number of security issues and threats to the telecommunication
network. For instance, such behaviors like fast-flux malicious network function chaining re-
quests [168], overloading virtual machine resources, and forcing virtual infrastructure providers
(VIP) to create or move other tenant network functions to other virtual machines, are more likely
to happen. These security issues could adversely reduce the overall network performance.

We propose a machine learning approach to detect anomalies and to identify the non-
conforming patterns of network function generation in the network that can limit and/or throttle
the overall network performance. This method is based on a decision-making process to confirm
backward and forward VNFs in the right sequence. Precisely, a basic feature of this process is
to identify known or unknown anomalous patterns of network functions chaining with sliding
windows, whose outcome can trigger an alert to the administrator or even isolate the network
function chaining immediately. Various clustering algorithms can be utilized for examining the
scatter of different emerging patterns compared to the training set. A pattern recognition al-
gorithm will be considered to identify the normalities and anomalies of the VNFs sequences or
requests.

This chapter is organized as follows. Section A.2 discusses the virtual VNF service chaining
properties, the formulation of the problem, and the possible scenarios of network function split.
Section A.3 details the detection techniques under Markov chain. Section A.4 gives the pattern
detection techniques under K-Means. Section A.5 presents the outcomes of our simulations.
Finally, Section A.6 concludes.

A.2 VNF Service Chaining Problematics

VNF service chaining [169, 170] takes an important role in delivering the 5G services. For
instance, mobile service provider (MSP) provides a Network Slice as a Service (NSaaS) [171]
to a vertical industry tenant. This tenant network slice has a number of different VNF service
chains that can be picked from the network slice service catalog. These VNF service chains are
the combination of a logical sequence of VNFs or instances of VNFs that provide an end-to-end
network service. However, after the network slices are deployed, VNFs can be relocated due to
runtime optimization or scale in and out purposes. Even a single network function could be
divided into various locations, depending on the characteristics of the network functions and on
the runtime network conditions. Especially, in runtime, the VNF service chain could dynamically
relocate a specific VNF to another network node due to self-optimization adapting to the traffic
demand. Furthermore, a VNF could be split into parallel or series forms in runtime. Fig. A.1
shows an example of a typical VNF service chain and network function split into parallel and
series forms.

Nonetheless, these processes can be inadequately executed by a malicious tenant, and there-
fore the lack of visibilities in the virtual network infrastructure is a major issue. For instance,
there is a possibility that a malicious tenant non-stop creates and terminates VNF in the VNF
service chain until one of the virtual machine overloads and triggers the self-optimization process.
This process might produce a side effect to reduce the overall MSP network performance and

A.2. VNF SERVICE CHAINING PROBLEMATICS 107

Figure A.1: VNF Service chaining splitting

computation power. In order to limit such malicious acts from tenants, we must increase the
visibility of the virtual network infrastructure and continuously observe the tenant and tenant’s
VNF service chain behaviors. Therefore, we propose a method to ensure that the function before
and function after are adequately placed in the VNF service chain and we set up a runtime
observation of the VNF service chain behavior based on a sliding window approach when scale in
and out or function split processes take place. Fig. A.2 illustrates a network infrastructure with
6 VNFs and 4 VNF service function chains. Based on this topology, the first phase algorithm
is to analyze each VNF locally. The video optimizer (VO) is always placed before the session
border controller (SBC) but the software firewall (SF) would not be appropriately placed before
the SBC. In fact, there is an implicit sequence and logical order relationship between VNFs.
Therefore, we can rule out the possibilities of SF being placed before SBC and consider such a
chain as malicious, based on the chains we know as correct. In this chapter, we propose a two-
phase algorithm to resolve this side effect: the first phase is to ensure the logical place of each
VNF in the sequence of the service chain, and the second phase is to obtain the overall behavior
of the VNF service chain based on the result of the first phase algorithm. In a software-defined
network, the SDN controller has an overview of the whole network and communicates with the
other VNFs so that it can easily classify the type and number of network functions and is able
to know when new functions are added and old ones removed.

Figure A.2: VNF Service chaining network example

108APPENDIX A. VIRTUAL NETWORK FUNCTION SERVICE CHAINING ANOMALY DETECTION

A.3 VNF Service Markov Chain

A Markov chain is a discrete stochastic process. The Markov property is memoryless so that the
future status of the system is only dependent upon the system’s present state and is independent
of the history of previous events. We apply the Markov chain backward and forward properties
to the VNF service chain. Each VNF representing a state in the Markov chain, two transition
matrices are used to reflect the link probabilities between the VNFs. By processing with a sliding
window, we evaluate the relations between the VNFs and obtain the relevancy of the whole chain.
Let G = (S,E) be a graph with a set of states (or VNFs) and edges. Let S = {s1, s2, .., sn} be
the set of VNFs in the network with n the number of VNFs. Each VNF si is considered as a
state in the Markov chain. With each pair of states (si, sj) there are given:

• the probability fij that the VNF sj is situated right forward of the VNF si in a given chain,

• the probability bij that the VNF si is situated right backward of the VNF sj in a given
chain.

The numbers fij , called the forward transition probabilities, and the numbers bij , called the
backward transition probabilities, can be arranged in matrices like

F =

f11 f12 . . . f1n

f21 f22 . . . f2n
...

...
. . .

...
fn1 fn2 . . . fnn

 , B =

b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn

The transition matrices F and B are stochastic matrices so that each fij and bij satisfies∑

j
fij =

∑
j
bij = 1, fij ≥ 0 and bij ≥ 0 (A.1)

The standard deviation of the probability vectors fij , j = 1, ..., n and bij , j = 1, ..., n has to
be large enough to get significant results. Then these vectors must not be fully random but they
are intentionally composed of some components very close to 0, some very close to 1 and the
leftovers following a Dirichlet distribution verifying

x1, ..., xK where xi ∈ (0, 1) and
∑K

i=1
xi = 1. (A.2)

A probability fij close to 0 means that the jth VNF has nearly no chance of being located
right forward of the ith VNF whereas a probability close to 1 implies that it is very likely to
happen. In the implementation of the algorithm, we first built the F matrix as described above.
Then to simplify the algorithm, we build the B matrix such as

B = ‖F T ‖. (A.3)

B being the transpose of F implies that fij = bji. Basically, the probability for VNF sj to
be located right backward of the VNF si equals the probability for VNF si to be located right
forward of the VNF sj . Then we can compute the norm of the result in order to have vectors
whose sum of the components is equal to 1. We define the probability pair p(c) for the current
VNF c positioned between the forward VNF f and the backward VNF b as

p(c) = [B[b][c], F [c][f]]. (A.4)

A.4. VNF SERVICE CHAIN CLASSIFICATION 109

p(c) reflects the weights of the associations between VNF c and VNF b, and between VNF
c and VNF f . As a result, the probability pair is used to determine the behavior of each VNF.
Let chk be a VNF service chain which can be visualized as a Markov chain where k is the index
of the chain. This chain is an ordered list of VNFs which belong to the state space S. Each VNF
may appear in the chain or may not. We define VN,k the vector containing all the probability
pairs of the N VNFs in the chain chk. Algorithm 5 is the calculation of the vector VN,k for a
chain chk of N VNFs.

Phase 1: Calculate VN,k

procedure Calculate_V(chk)
N ← size(chk)
list VN,k

for VNF c in chain chk do
VN,k.add(p(c))

return VN,k

A.4 VNF Service Chain Classification

The VNF Service Markov Chain enables us to get an overall vision of the link probabilities
between the VNFs of a given chain. Intuitively, the highest the probabilities are in the vector
VN,k of a chain, the more relevant the chain is. Given this vector, the chain can be classified
either as normal or abnormal. Any classification algorithm can be applied and we chose K-means
as it is an unsupervised machine learning algorithm that aims at grouping correlated data into
clusters [172]. In this case, it notifies the network administrator in case of a new abnormal
VNF chain identified. Continuously monitoring K-means algorithm [173] is used to keeping
analyzing the network behavior. The initialization phase consists in building the cluster of the
probabilities vectors of the normal chains. To simplify the notation, we name these clusters
the normal behavior clusters. Then the dataset used for K-means is the outputs of the Markov
chain algorithm applied to the normal chains. The normal chains are the initial chains existing
in the networks, created by the network administrators themselves before any scalability and
optimization operations. The second phase involves the classification of new VNF chains, that
are either automatically created to scale the traffic in the network or can be new chains requested
by users. Here, K-means evaluates the distance between the cluster and the probability vector
of a given chain to classify it.

A.4.1 Normal Behavior Cluster

Let C be a set of m VNF service chains known as correct. The size of each chain, i.e., the number
of VNFs on each chain, may vary.

C = {ch1, ..., chk, ..., chm}, 1 < k < m. (A.5)

The algorithm 6 hereafter seeks to build the normal behavior clusters depending on their size
following 3 steps:

1. We compute the vector VN,k for each chain chk of N VNFs in C.

110APPENDIX A. VIRTUAL NETWORK FUNCTION SERVICE CHAINING ANOMALY DETECTION

2. We dispose of a set of pairs (two-dimensional array) named vectors which associate a size
(i.e., the number of VNFs in the chain) with a list containing all the vectors VN,k of the
chains of that size. It is necessary to distinguish between sizes because K-means algorithm
has to be applied to vectors of the same size.

3. K-means aims at minimizing an objective function known as squared error function. For
each value of N , given the data set (VN1,1, VN2,2, ..., VNf ,f), the function is given by

E(N) =
∑f

l=1
‖XN − VN,l‖2 , (A.6)

where XN is the cluster center of the chains of N VNFs. We then get a set of pairs named
clusters which associate each value of N to the cluster center XN .

Phase 2: Apply K-means
procedure K_means(C)

2-D array vectors
for chain chk in chains C do

N ← size(chk)
VN,k ← calculate_V(chk)
vectors[N].add(VN,k)

2-D array clusters
for N in vectors do

clusters[N]← KMeans(vectors[N], nb_clust = 1)

return clusters

A.4.2 VNF Chains Classification

Let T be the new dataset made of the VNF service chains that we need to classify as normal or
abnormal. Using a similar method as in [174], a chain chk of N VNFs is considered as normal
if its probabilities vector VN,k belongs to the cluster XN of normal behavior, otherwise, it is
abnormal. The chain is normal if the Euclidean distance between its vector and the cluster
center is small enough, so smaller than a decision criterion DCN such as

d(VN,k, XN) ≤ DCN , DCN > 0 (A.7)

The decision criterion depends on the number N of VNFs in the vector XN . As a matter of
fact, the most elements the chain contains, the highest the Euclidean distance will be, as we can
see in this equation representing the Euclidean distance between two points p and q

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2

for an n-dimensional space (A.8)

It is not possible to find a mathematical formula for the decision criterion versus the number
N of VNFs in the chain. The experimental results are presented in Section A.5. Let’s assume
that the outcome of DCN is a function depending on the number N of VNFs. For each chain

A.5. SIMULATIONS AND PERFORMANCE ANALYSIS 111

chk of N VNFs in T , let Mk be the binary decision for the chain chk. The value of Mk is true if
the chain is considered as malicious, otherwise it is false.

Mk =

{
True if d(VN,k, XN) > DCN

False otherwise
(A.9)

Using a set of chains C known as normal, we can classify a set T of chains as presented in
the Algorithm 7 below.

Phase 3: Classify chains T
procedure classify(C, T)

clusters← K_means(C)
binary decisions M
for chain chk in T do

N ← size(chk)
VN,k ← calculate_V(chk)
dist← distance(VN,k, clusters[N])
Mk ← bool(dist > DCN)
M .add(Mk)

return M

A.5 Simulations and Performance Analysis

A.5.1 Evaluation Metrics

A confusion matrix [175] is a table often used to evaluate the performance of a classification
model. Let’s now define the most basic terms, which are whole numbers and not rates. True
Positive (TP) is the number of malicious chains correctly classified. True Negative (TN) is
the number of normal chains correctly classified. False Positive (FP) is the number of normal
chains incorrectly classified. False Negative (FN) is the number of malicious chains incorrectly
classified.

A.5.2 Resolution of the Decision Criterion

For the first simulation, we only work on the chains C known as normal and used to build our
model, we don’t need to classify anything yet. We aim to find the correct decision criterion so
that we get good results. We saw in Section A.4 that the criterion depends on the number N of
VNFs, then we could write it DCN . Let D be the Euclidean distance from point VN,k to cluster
XN .

D = d(VN,k, XN) (A.10)

Let’s plot D versus the number of VNFs N in the chain, so D(N), to see the shape of this
function. D can be obtained by applying a transformation on the points of a cluster to obtain
a cluster-distance space. The number of VNFs has to be large enough to get a significant view
of the shape of the curve. It has been arbitrarily set to 15. The number of chains C known as
normal and useful to build the model has to be chosen larger than the number of VNFs to get
at least one chain for each number of VNFs. The number of chains is then set to 30.

112APPENDIX A. VIRTUAL NETWORK FUNCTION SERVICE CHAINING ANOMALY DETECTION

Figure A.3: Distance as a function of the number of VNFs in the chain

As observed in Figure 3, the Euclidean distance between a point VNk and the cluster XN

versus the number of VNFs seems to be a linear function so that

D(N) = a×N + b (A.11)

We determine the values of the two following constants

• a the slope such as

a =

∑n
i=1(Ni − N̄)(Di − D̄)∑n

i=1(Ni − N̄)2
(A.12)

• b the intercept (or constant term) such as

b = D̄ − a× N̄ (A.13)

Some tools allow one to estimate a and b values by providing a set of discrete values. For
our part, we used the Linear Regression library from Scipy designed for Python. The decision
criterion DCN equals to the average Euclidean distance up to a positive constant C such as
DCN = a×N + b+ C.

Fig. A.4a shows the TPR against the FPR. This type of graph has been inspired by the
Receiver Operating Characteristic (ROC) curves that are used to assess models for a binary
target in supervised learning [176]. We seek a high True Positive Rate (TPR) and a low False
Positive Rate (FPR), so the optimal coordinates are (0, 1). We make C vary then select the
value for which we get the closest to the optimal point.

To this end, we vary the value of constant C from 0 to 1.2 with a step of 0.1, and for each
value of C we plot the point whose the x-axis is the FPR and the y-axis the TPR. The goal is
to find the smallest Euclidean distance between a point and the point of coordinates (0, 1). As
shown in Fig. A.4b, the best results are found for C between 0.4 and 0.6. We refine the values of
C by making it vary between 0.4 to 0.6 with a step of 0.02 and we plot the results in Fig. A.4b.
Among these values, the smallest distance has been found for C = 0.48.

The final equation for the decision criterion is then

DCN = a×N + b+ 0.48 (A.14)

A.6. CONCLUSION 113

(a) C varying from 0 to 1.2 (b) Zoom for C varying from 0.4 to 0.6

Figure A.4: True Positive Rate (TPR) for different values of C.

A.5.3 Classification Results

In this subsection, we use the algorithm to classify a set of chains. The number of initial chains
and the number of normal and abnormal chains to be classified are all set to 60 to correctly
feed the algorithm and to find an acceptable cluster. Each chain contains between 4 and 20
VNFs, each VNF is split between 1 and 3 instances and one chain can go through any of the
instances. To rely on a practical 5G configuration, we assume that there are only a few chains,
whose functions have pretty often the same relations between them and are split into different
instances depending on the network resources. Therefore we created the first matrix so that
each function in the chain is strongly related (i.e., with a large probability, here higher than
0.5) to one or two other functions, is slightly related to some other functions (here the third of
the remaining functions with probabilities following a Dirichlet distribution) and is never related
(i.e with a probability equal to 0) to the leftover functions. The second matrix is equal to the
transpose of the first matrix. Now, we create two types of new chains: some relevant normal
chains based on the transition matrices and some random malicious chains. The goal of the
simulation is to correctly classify the most chains as possible, either normal or abnormal. The
number of iterations is set to 100 to get precise results.

Fig. A.5 shows the precision and the accuracy rates, the TPR and the FPR versus the number
of VNFs in the network. The precision and the accuracy rates are very good as they are greater
than 85 % for any number of functions. Furthermore, we observe that the accuracy, the TPR
and the FPR are related and that all the rates depend on the number of VNFs. For a low number
of VNFs, the FPR is low at the cost of the lowest TPR. This means that we have fewer false
alarms but also fewer anomalous chains are detected. On the contrary, for a large number of
functions, i.e., from 12 functions, the FPR increases as well as the TPR. This could be better in
our case as we want to detect the most anomalous chains as possible.

A.6 Conclusion

Virtualization, containerization, and softwarization increase the network programmability and
agility that make the network provisioning and the deployment moving into a new era. The
network self-optimization and network resource scale in and out on-the-fly might introduce a
new type of threat and produce an unknown side effect to the virtual network infrastructure.

114APPENDIX A. VIRTUAL NETWORK FUNCTION SERVICE CHAINING ANOMALY DETECTION

Figure A.5: Precision rate, accuracy rate, FPR and TPR versus the number of VNFs

Furthermore, the software-defined network induces a lack of visibility that increases the difficulty
to prevent attacks. Therefore, we need a pro-active method to reduce the risks by constantly
observing the VNF service chains and tenant provisioning behavior. In this chapter, we developed
a two-step method for detecting anomalies in the VNF service chains. The first step uses Markov
chains to ensure that the VNFs before and after are in the right sequence order. The second step
applies K-means classification on observing the whole VNF service chain behavior. Moreover,
our K-means classifier evaluation produces high accuracy in detecting anomalies. As a result, the
algorithm can easily identify the normal and abnormal behaviors of the VNF service chains. We
recommend updating the transition matrices values after the classification of new chains to gain
a better outcome in the classification. The proposed model also shows that the accuracy and
the precision rates are directly proportional to the number of VNFs in a service chain. Finding a
more accurate way to determine the decision criterion, either mathematically or experimentally
with a better regression, would also provide us better results.

Appendix B

Botnet Fingerprinting supplementary
materials

B.1 Observation of bots fingerprints

Fig. B.1a shows a typical example of a bot (147.32.84.165) from scenario #1 of CTU-13, where
each point is representing one flow (bots from scenarios #2 and #6 show a similar behavior);
through the graphs, we can infer its actions: scanning or spamming (looking to the whole range
of IP addresses targeted), infection of other hosts by searching for their vulnerabilities (looking
to the used destination ports corresponding to many vulnerable services), communication with
the C&C server via a proxy. We also observe regular connections to the C&C server, using the
exotic TCP/65000 port and the IRC protocol. Finally, the range for ephemeral ports is different
from quite unusual, neither the range recommended by IANA or the typical Linux range.

Fig. B.1b is an example of an infected host (192.168.100.111) from scenario #17 of IoT-
23, performing several malicious activities; its behavior is close to hosts from scenarios #5, 7
from CTU-13 which performed port scanning. For this host, we observe usual TCP and UDP
connections, but also port scanning: targeting port 8081 (alternative HTTP port) with the hard-
coded source port number 17576, 80 and 8080 with source port 18088, 52869 (service Universal
Plug and Play) with source port 18344, and 37215 (Huawei HG532 router port) with source port
17832, targeting the whole range of IP addresses. We observe that both hosts are performing
network scanning: targeting specific ports known for their vulnerabilities and targeting the whole
range of IPv4 addresses. We notice also some differences between both hosts: they did not run
the same Operating System, as the range for ephemeral ports is different. Also, we do not observe
C&C communications for the second host.

Fig. B.1c shows the fingerprinting of an infected host (10.0.2.111) from capture 112_2 from
Malware Capture Facility Project. The host has normal TCP and UDP connections, but we also
observe an ICMP DoS using a large variety of ICMP codes (noted destination ports in the graph)
and targeting the DNS servers hosted at 8.8.4.4 and 8.8.8.8. Its behavior is similar to hosts
from scenarios #4, 10, 11 from CTU-13 performing ICMP DoS.

B.2 Importance of features selection

To better understand the peculiarities of bots communications that enable us to detect them,
we observe the most meaningful features in the classification process.

Once the linear SVM is fit to the data, with 256 regular bins (and the C parameter set to 100

115

116 APPENDIX B. BOTNET FINGERPRINTING SUPPLEMENTARY MATERIALS

(a) Host 147.32.84.165 from scenario #1 of
CTU-13 performing network scanning.

(b) Host 192.168.100.111 from scenario #17
of IoT-23 performing port scanning.

(c) Host 10.0.2.111 from capture 112_2 of
Malware Capture Facility Project.

Figure B.1: Fingerprinting of infected hosts.

according to Gridsearch), it creates a line or a hyper-plane which separates the data into classes.
It uses support vectors to maximize the distance between two classes, and the weights obtained
represent the vector coordinates which are orthogonal to the hyper-plane and their direction
indicates the predicted class.

Table B.1 shows the ranking of the most meaningful attributes with, for each of them, the
number of bins that have a weight not null, the sum of all per-bin weights, and the mean weight
per bin. TypeICMP has the most significant impact of all attributes. It represents the type of
ICMP message which, for a botnet, is often set to 3 for "Destination Unreachable" or to 8 for
"Echo Request". The second and the third most important ones are DipTCP and DipUDP, as
during botnet spam or scan, nearly all destination IP addresses are targeted instead of some
selected ASes. SportUDP and DportUDP follow, actually UDP is often used only for DNS, and
in the case of a botnet is very differently used. Finally, the values of SportTCP, DportTCP,
DportICMP and DipICMP have nearly no impact on the results.

B.2. IMPORTANCE OF FEATURES SELECTION 117

Attribute Number of bins
with a weight > 0

Sum of weights
for all bins

Mean weight
per bin

TypeICMP 148 0.8517 0.0058
DipTCP 60 0.5328 0.0089
DipUDP 52 0.3371 0.0058
SportUDP 41 0.1663 0.0041
DportUDP 100 0.1264 0.0013
SportTCP 43 0.0046 0.0001
DportTCP 10 0.0327 0.0032
CodeICMP 50 0.0014 2.8843 ·10−5

DipICMP 5 0.0013 0.0003

Table B.1: Ranking of the attributes according to their importance in the classification, for
BotFP-SVM with 256 regular bins.

118 APPENDIX B. BOTNET FINGERPRINTING SUPPLEMENTARY MATERIALS

Bibliography

[1] Anukool Lakhina, Mark Crovella, and Christiphe Diot. Characterization of network-wide
anomalies in traffic flows. In Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement - IMC '04. ACM Press, 2004.

[2] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, Deepak
Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick
Sullivan, Kurt Thomas, and Yi Zhou. Understanding the Mirai botnet. In Proceedings of
the USENIX Security Symposium (USENIX Security), pages 1093–1110, 2017.

[3] Github. Mirai source code. https://github.com/jgamblin/Mirai-Source-Code/, 2016.

[4] ATLAS. Netscout threat intelligence report. https://www.netscout.com/threatreport,
2019.

[5] Kaspersky. DDoS attacks in Q2 2019. https://securelist.com/ddos-report-q1-2019/
90792/.

[6] Wentao Chang, An Wang, Aziz Mohaisen, and Songqing Chen. Characterizing botnets-
as-a-service. In Proceedings of the 2014 ACM conference on SIGCOMM - SIGCOMM '14.
ACM Press, 2014.

[7] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Surveying port scans and their
detection methodologies. The Computer Journal, 54(10):1565–1581, April 2011.

[8] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3(3):210–229, jul 1959.

[9] Gianluigi Folino and Pietro Sabatino. Ensemble based collaborative and distributed intru-
sion detection systems: A survey. Journal of Network and Computer Applications, 66:1–16,
May 2016.

[10] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. Statistical and
machine learning forecasting methods: Concerns and ways forward. PLOS ONE,
13(3):e0194889, mar 2018.

[11] Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, Sara Ayoubi, Nashid Shahriar,
Felipe Estrada-Solano, and Oscar M. Caicedo. A comprehensive survey on machine learning
for networking: evolution, applications and research opportunities. Journal of Internet
Services and Applications, 9(1), 2018.

[12] Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in Hidden Markov Models.
Springer New York, 2005.

119

https://github.com/jgamblin/Mirai-Source-Code/
https://www.netscout.com/threatreport
https://securelist.com/ddos-report-q1-2019/90792/
https://securelist.com/ddos-report-q1-2019/90792/

120 BIBLIOGRAPHY

[13] Davide Ariu, Roberto Tronci, and Giorgio Giacinto. HMMPayl: An intrusion detection
system based on hidden markov models. Computers & Security, 30(4):221–241, jun 2011.

[14] Alexander G. Tartakovsky, Aleksey S. Polunchenko, and Grigory Sokolov. Efficient com-
puter network anomaly detection by changepoint detection methods. IEEE Journal of
Selected Topics in Signal Processing, 7(1):4–11, Feb 2013.

[15] Boris Iglewicz and David Hoaglin. How to detect and handle outliers. In Ph.D. Edward
F. Mykytka, editor, The ASQC Basic References in Quality Control: Statistical Techniques,
volume 16. 1993.

[16] Andreas Kind, Marc Stoecklin, and Xenofontas Dimitropoulos. Histogram-based traffic
anomaly detection. IEEE Transactions on Network and Service Management, 6(2):110–
121, jun 2009.

[17] Ming-Yang Su, Gwo-Jong Yu, and Chun-Yuen Lin. A real-time network intrusion detection
system for large-scale attacks based on an incremental mining approach. Computers &
Security, 28(5):301–309, jul 2009.

[18] FukudaLab. MAWILab database. http://www.fukuda-lab.org/mawilab, 2019.

[19] Christian Callegari, Stefano Giordano, and Michele Pagano. Entropy-based network
anomaly detection. In Proceedings of International Conference on Computing, Networking
and Communications (ICNC), 2017.

[20] Juliette Dromard, Gilles Roudiere, and Philippe Owezarski. Misc and scalable unsuper-
vised network anomaly detection method. IEEE Transactions on Network and Service
Management, 14(1):34–47, 2017.

[21] Wei Lu and Hengjian Tong. Detecting network anomalies using CUSUM and EM clustering.
In Advances in Computation and Intelligence, pages 297–308. 2009.

[22] Yi Li, Hong Liu, Wenjun Yang, Dianming Hu, andWei Xu. Inter-data-center network traffic
prediction with elephant flows. In NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium. IEEE, apr 2016.

[23] Zhitang Chen, Jiayao Wen, and Yanhui Geng. Predicting future traffic using hidden markov
models. In 2016 IEEE 24th International Conference on Network Protocols (ICNP). IEEE,
nov 2016.

[24] Muslim Elkotob, Daniel Grandlund, Karl Andersson, and Christer Ahlund. Multimedia
QoE optimized management using prediction and statistical learning. In IEEE Local Com-
puter Network Conference. IEEE, oct 2010.

[25] Yen-Liang Chen, Kwei Tang, Ren-Jie Shen, and Ya-Han Hu. Market basket analysis in a
multiple store environment. Decision Support Systems, 40(2):339–354, aug 2005.

[26] Giuseppe Aceto, Alessio Botta, Pietro Marchetta, Valerio Persico, and Antonio Pescapé. A
comprehensive survey on internet outages. Journal of Network and Computer Applications,
113:36–63, jul 2018.

[27] Ripe atlas. https://atlas.ripe.net.

http://www.fukuda-lab.org/mawilab
https://atlas.ripe.net

BIBLIOGRAPHY 121

[28] Alexandros Milolidakis, Romain Fontugne, and Xenofontas Dimitropoulos. Detecting net-
work disruptions at colocation facilities. In IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications. IEEE, apr 2019.

[29] Marco Di Bartolomeo, Valentino Di Donato, Maurizio Pizzonia, Claudio Squarcella, and
Massimo Rimondini. Discovering high-impact routing events using traceroutes. In 2015
IEEE Symposium on Computers and Communication (ISCC). IEEE, jul 2015.

[30] Philipp Richter, Ramakrishna Padmanabhan, Neil Spring, Arthur Berger, and David Clark.
Advancing the art of internet edge outage detection. In Proceedings of the Internet Mea-
surement Conference 2018. ACM, oct 2018.

[31] Karyn Benson, Alberto Dainotti, K. C. Claffy, and Emile Aben. Gaining insight into AS-
level outages through analysis of internet background radiation. In 2013 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, apr 2013.

[32] CAIDA. UCSD Network Telescope Aggregated Flow Dataset. https://www.caida.org/
data/passive/telescope-flowtuple.xml, 2020.

[33] Mehdi Zakroum, Abdellah Houmz, Mounir Ghogho, Ghita Mezzour, Abdelkader Lahmadi,
Jerome FranCois, and Mohammed El Koutbi. Exploratory data analysis of a network tele-
scope traffic and prediction of port probing rates. In 2018 IEEE International Conference
on Intelligence and Security Informatics (ISI). IEEE, nov 2018.

[34] MAWI. MAWI working group traffic archive. http://mawi.wide.ad.jp/mawi/, 2019.

[35] Stratosphere Lab. The CTU-13 Dataset. A Labeled Dataset with Botnet, Normal and
Background traffic. www.stratosphereips.org/datasets-ctu13.

[36] Paola Bermolen, Marco Mellia, Michela Meo, Dario Rossi, and Silvio Valenti. Abacus:
Accurate behavioral classification of p2p-TV traffic. Computer Networks, 55(6):1394–1411,
apr 2011.

[37] Dominik Schatzmann, Wolfgang Mühlbauer, Thrasyvoulos Spyropoulos, and Xenofontas
Dimitropoulos. Digging into HTTPS. In Proceedings of the 10th annual conference on
Internet measurement - IMC '10. ACM Press, 2010.

[38] Patrick Haffner, Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. ACAS. In
Proceeding of the 2005 ACM SIGCOMM workshop on Mining network data - MineNet '05.
ACM Press, 2005.

[39] Justin Ma, Kirill Levchenko, Christian Kreibich, Stefan Savage, and Geoffrey M. Voelker.
Unexpected means of protocol inference. In Proceedings of the 6th ACM SIGCOMM on
Internet measurement - IMC '06. ACM Press, 2006.

[40] Alessandro Finamore, Marco Mellia, Michela Meo, and Dario Rossi. KISS: Stochastic
packet inspection classifier for UDP traffic. IEEE/ACM Transactions on Networking,
18(5):1505–1515, oct 2010.

[41] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemomet-
rics and Intelligent Laboratory Systems, 2(1-3):37–52, aug 1987.

https://www.caida.org/data/passive/telescope-flowtuple.xml
https://www.caida.org/data/passive/telescope-flowtuple.xml
http://mawi.wide.ad.jp/mawi/
www.stratosphereips.org/datasets-ctu13

122 BIBLIOGRAPHY

[42] Tarem Ahmed, Mark Coates, and Anukool Lakhina. Multivariate misc anomaly detection
using kernel recursive least squares. In IEEE INFOCOM 2007 - 26th IEEE International
Conference on Computer Communications. IEEE, may 2007.

[43] Kun Xie, Lele Wang, Xin Wang, Gaogang Xie, Jigang Wen, Guangxing Zhang, Jiannong
Cao, and Dafang Zhang. Accurate recovery of internet traffic data: A sequential tensor
completion approach. IEEE/ACM Transactions on Networking, 26(2):793–806, apr 2018.

[44] Monowar H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network anomaly detection:
Methods, systems and tools. IEEE Communications Surveys & Tutorials, 16(1):303–336,
2014.

[45] Cisco. Snort - network intrusion detection & prevention system. https://www.snort.org/,
2018.

[46] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
Networks, 31(23-24):2435–2463, Dec 1999.

[47] Suricata | open source ids / ips / nsm engine. https://suricata-ids.org/.

[48] Antonio Gonzalez Pastana Lobato, Martin Andreoni Lopez, Igor Jochem Sanz, Alvaro A.
Cardenas, Otto Carlos M. B. Duarte, and Guy Pujolle. An adaptive real-time architec-
ture for zero-day threat detection. In IEEE International Conference on Communications
(ICC), 2018.

[49] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer: Detecting botnet command and
control channels in network traffic. In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2008.

[50] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using traffic
feature distributions. In Proceedings of the conference on Applications, technologies, archi-
tectures, and protocols for computer communications - SIGCOMM. ACM Press, 2005.

[51] Daniel Barbará, Julia Couto, Sushil Jajodia, and Ningning Wu. ADAM. ACM SIGMOD
Record, 30(4):15–24, dec 2001.

[52] Gisung Kim, Seungmin Lee, and Sehun Kim. A novel hybrid intrusion detection method
integrating anomaly detection with misuse detection. Expert Systems with Applications,
41(4):1690–1700, mar 2014.

[53] Ozgur Depren, Murat Topallar, Emin Anarim, and M. Kemal Ciliz. An intelligent intrusion
detection system (IDS) for anomaly and misuse detection in computer networks. Expert
Systems with Applications, 29(4):713–722, nov 2005.

[54] Chenfeng Vincent Zhou, Christopher Leckie, and Shanika Karunasekera. A survey of co-
ordinated attacks and collaborative intrusion detection. Computers & Security, 29(1):124–
140, Feb 2010.

[55] Praveen Kumar Shanmugam, Naveen Dasa Subramanyam, Joe Breen, Corey Roach, and
Jacobus Van der Merwe. DEIDtect: towards distributed elastic intrusion detection. In
Proceedings of the ACM SIGCOMM workshop on Distributed cloud computing (DCC),
2014.

https://www.snort.org/
https://suricata-ids.org/

BIBLIOGRAPHY 123

[56] Azeem Aqil, Karim Khalil, Ahmed O.F. Atya, Evangelos E. Papalexakis, Srikanth V.
Krishnamurthy, Trent Jaeger, K. K. Ramakrishnan, Paul Yu, and Ananthram Swami.
Jaal: Towards network intrusion detection at isp scale. In Proceedings of the International
COnference on emerging Networking EXperiments and Technologies - (CoNEXT), 2017.

[57] Dinesh Singh, Dhiren Patel, Bhavesh Borisaniya, and Chirag Modi. Collaborative IDS
framework for cloud. International Journal of Network Security, 18:699–709, 2015.

[58] J. Francois, C. Wagner, R. State, and T. Engel. SAFEM: Scalable analysis of flows with
entropic measures and SVM. In 2012 IEEE Network Operations and Management Sympo-
sium. IEEE, apr 2012.

[59] Seyed Ali Mirheidari, Sajjad Arshad, and Rasool Jalili. Alert correlation algorithms: A
survey and taxonomy. In Cyberspace Safety and Security, pages 183–197. 2013.

[60] Fariba Haddadi, Duc Le Cong, Laura Porter, and A. Nur Zincir-Heywood. On the effec-
tiveness of different botnet detection approaches. In Information Security Practice and
Experience, pages 121–135. Springer International Publishing, 2015.

[61] Wei Wang, Yaoyao Shang, Yongzhong He, Yidong Li, and Jiqiang Liu. BotMark: Auto-
mated botnet detection with hybrid analysis of flow-based and graph-based traffic behav-
iors. Information Sciences, 511:284–296, feb 2020.

[62] Javier Álvarez Cid-Fuentes, Claudia Szabo, and Katrina Falkner. An adaptive framework
for the detection of novel botnets. Computers & Security, 79:148–161, nov 2018.

[63] S. Panjwani, S. Tan, K.M. Jarrin, and M. Cukier. An experimental evaluation to determine
if port scans are precursors to an attack. In 2005 International Conference on Dependable
Systems and Networks (DSN), 2005.

[64] Chia-Nan Kao, Yung-Cheng Chang, Nen-Fu Huang, I Salim S, I-Ju Liao, Rong-Tai Liu,
and Hsien-Wei Hung. A predictive zero-day network defense using long-term port-scan
recording. In 2015 IEEE Conference on Communications and Network Security (CNS),
Sep 2015.

[65] Andreas Guillot, Romain Fontugne, Philipp Winter, Pascal Mérindol, Alberto Dainotti,
and Cristel Pelsser. Chocolatine: Outage detection for internet background radiation. In
Network Traffic Measurement and Analysis Conference (TMA), 2019.

[66] Alberto Dainotti, Karyn Benson, Alistair King, kc claffy, Michael Kallitsis, Eduard Glatz,
and Xenofontas Dimitropoulos. Estimating internet address space usage through pas-
sive measurements. ACM SIGCOMM Computer Communication Review, 44(1):42–49, dec
2013.

[67] Muhammad Mahmoud, Manjinder Nir, and Ashraf Matrawy. A survey on botnet archi-
tectures, detection and defences. I. J. Network Security, 17:264–281, 2015.

[68] Muhammad Fahad Umer, Muhammad Sher, and Yaxin Bi. Flow-based intrusion detection:
Techniques and challenges. Computers & Security, 70:238–254, sep 2017.

[69] Guofei Gu, Phillip Porras, Vinod Yegneswaran, and Martin Fong. BotHunter: Detecting
malware infection through ids-driven dialog correlation. In Proceedings of the USENIX
Security Symposium. USENIX Association, 2007.

124 BIBLIOGRAPHY

[70] S. García, M. Grill, J. Stiborek, and A. Zunino. An empirical comparison of botnet detec-
tion methods. Computers & Security, 45:100–123, 2014.

[71] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-wide traffic
anomalies. ACM SIGCOMM Computer Communication Review, 34(4):219, oct 2004.

[72] Xuefeng Bai, Tiejun Zhang, Chuanjun Wang, Ahmed A. Abd El-Latif, and Xiamu Niu. A
fully automatic player detection method based on one-class SVM. IEICE Transactions on
Information and Systems, E96.D(2):387–391, 2013.

[73] Ahmed A. Abd El-Latif, Bassem Abd-El-Atty, Wojciech Mazurczyk, Carol Fung, and
Salvador E. Venegas-Andraca. Secure data encryption based on quantum walks for 5g
internet of things scenario. IEEE Transactions on Network and Service Management,
17(1):118–131, mar 2020.

[74] Randeep Bhatia, Steven Benno, Jairo Esteban, T. V. Lakshman, and John Grogan. Un-
supervised machine learning for network-centric anomaly detection in IoT. In Proceedings
of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intel-
ligence for Data Communication Networks - Big-DAMA '19. ACM Press, 2019.

[75] Sofiane Lagraa, Jerome Francois, Abdelkader Lahmadi, Marine Miner, Christian Hammer-
schmidt, and Radu State. BotGM: Unsupervised graph mining to detect botnets in traffic
flows. In Proceedings of the Cyber Security in Networking Conference (CSNet). IEEE, 2017.

[76] Manmeet Singh, Maninder Singh, and Sanmeet Kaur. Detecting bot-infected machines
using DNS fingerprinting. Digital Investigation, 28:14–33, mar 2019.

[77] Sudipta Chowdhury, Mojtaba Khanzadeh, Ravi Akula, Fangyan Zhang, Song Zhang, Hugh
Medal, Mohammad Marufuzzaman, and Linkan Bian. Botnet detection using graph-based
feature clustering. Journal of Big Data, 4(1), may 2017.

[78] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov.
BotGrep: Finding P2P Bots with Structured Graph Analysis. In Proceedings of the
USENIX Security Symposium, pages 95–110, 2010.

[79] Hongling Jiang and Xiuli Shao. Detecting p2p botnets by discovering flow dependency in
c&c traffic. Peer-to-Peer Networking and Applications, 7(4):320–331, jun 2012.

[80] Futai Zou, Siyu Zhang, Weixiong Rao, and Ping Yi. Detecting malware based on DNS
graph mining. International Journal of Distributed Sensor Networks, 2015:1–12, 2015.

[81] Weikeng Chen, Xiao Luo, and A. Nur Zincir-Heywood. Exploring a service-based nor-
mal behaviour profiling system for botnet detection. In Proceedings of the IFIP/IEEE
Symposium on Integrated Network and Service Management (IM). IEEE, 2017.

[82] Abbas Abou Daya, Mohammad A. Salahuddin, Noura Limam, and Raouf Boutaba. A
graph-based machine learning approach for bot detection. In Proceedings of the IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), 2019.

[83] Jing Wang and Ioannis Ch. Paschalidis. Botnet detection based on anomaly and community
detection. IEEE Transactions on Control of Network Systems, 4(2):392–404, jun 2017.

BIBLIOGRAPHY 125

[84] Patrick Kalmbach, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid. Themis: A
data-driven approach to bot detection. In IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2018.

[85] Diala Naboulsi, Marco Fiore, Stephane Ribot, and Razvan Stanica. Large-scale mobile
traffic analysis: A survey. IEEE Communications Surveys & Tutorials, 18(1):124–161,
2016.

[86] Julián Candia, Marta C González, Pu Wang, Timothy Schoenharl, Greg Madey, and
Albert-László Barabási. Uncovering individual and collective human dynamics from mobile
phone records. Journal of Physics A: Mathematical and Theoretical, 41(22):224015, may
2008.

[87] Francesco Calabrese, Francisco C. Pereira, Giusy Di Lorenzo, Liang Liu, and Carlo Ratti.
The geography of taste: Analyzing cell-phone mobility and social events. In Lecture Notes
in Computer Science, pages 22–37. Springer Berlin Heidelberg, 2010.

[88] Blerim Cici, Minas Gjoka, Athina Markopoulou, and Carter T. Butts. On the decomposi-
tion of cell phone activity patterns and their connection with urban ecology. In Proceedings
of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing
- MobiHoc '15. ACM Press, 2015.

[89] Diala Naboulsi, Razvan Stanica, and Marco Fiore. Classifying call profiles in large-scale
mobile traffic datasets. In IEEE INFOCOM 2014 - IEEE Conference on Computer Com-
munications. IEEE, apr 2014.

[90] James P. Bagrow, DashunWang, and Albert-László Barabási. Collective response of human
populations to large-scale emergencies. PLoS ONE, 6(3):e17680, mar 2011.

[91] Cristina Marquez, Marco Gramaglia, Marco Fiore, Albert Banchs, Cezary Ziemlicki, and
Zbigniew Smoreda. Not all apps are created equal. In Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies. ACM, nov 2017.

[92] Ying Zhang and Ake Årvidsson. Understanding the characteristics of cellular data traffic.
In Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations,
challenges, and future design - CellNet '12. ACM Press, 2012.

[93] Fengli Xu, Yong Li, Huandong Wang, Pengyu Zhang, and Depeng Jin. Understanding
mobile traffic patterns of large scale cellular towers in urban environment. IEEE/ACM
Transactions on Networking, 25(2):1147–1161, apr 2017.

[94] Angelo Furno, Marco Fiore, Razvan Stanica, Cezary Ziemlicki, and Zbigniew Smoreda.
A tale of ten cities: Characterizing signatures of mobile traffic in urban areas. IEEE
Transactions on Mobile Computing, 16(10):2682–2696, oct 2017.

[95] R. Adams and L. Bischof. Seeded region growing. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(6):641–647, jun 1994.

[96] Liang Xiong, Barnabás Póczos, and Jeff Schneider. Group anomaly detection using flexible
genre models. In Proceedings of the 24th International Conference on Neural Information
Processing Systems, 2011.

126 BIBLIOGRAPHY

[97] Raghavendra Chalapathy, Edward Toth, and Sanjay Chawla. Group anomaly detection
using deep generative models. InMachine Learning and Knowledge Discovery in Databases,
pages 173–189. Springer International Publishing, 2019.

[98] Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. Outlier detection for tem-
poral data: A survey. IEEE Transactions on Knowledge and Data Engineering, 26(9):2250–
2267, sep 2014.

[99] D. Birant and A. Kut. Spatio-temporal outlier detection in large databases. In 28th
International Conference on Information Technology Interfaces, 2006. IEEE, 2006.

[100] Tao Cheng and Zhilin Li. A multiscale approach for spatio-temporal outlier detection.
Transactions in GIS, 10(2):253–263, mar 2006.

[101] Nabil R. Adam, Vandana Pursnani Janeja, and Vijayalakshmi Atluri. Neighborhood based
detection of anomalies in high dimensional spatio-temporal sensor datasets. In Proceedings
of the 2004 ACM symposium on Applied computing - SAC '04. ACM Press, 2004.

[102] Agathe Blaise, Mathieu Bouet, Stefano Secci, and Vania Conan. Split-and-Merge: detecting
unknown botnets. In Proceedings of the IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2019.

[103] Agathe Blaise, Mathieu Bouet, Vania Conan, and Stefano Secci. Detection of zero-day
attacks: An unsupervised port-based approach. Computer Networks, 180:107391, oct 2020.

[104] Agathe Blaise, Sandra Scott-Hayward, and Stefano Secci. Scalable and collaborative in-
trusion detection and prevention systems based on SDN and NFV. In Computer Commu-
nications and Networks, pages 653–673. Springer International Publishing, 2020.

[105] Akamai. Memcached UDP reflection attacks. https://blogs.akamai.com/2018/02/
memcached-udp-reflection-attacks.html, 2018.

[106] TechRepublic. Massive ransomware attack takes out 27,000 mongodb servers.
https://www.techrepublic.com/article/massive-ransomware-attack-takes-out-
27000-mongodb-servers/, 2017.

[107] An Wang, Wentao Chang, Songqing Chen, and Aziz Mohaisen. Delving into internet
DDoS attacks by botnets: Characterization and analysis. IEEE/ACM Transactions on
Networking, 26(6):2843–2855, 2018.

[108] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. MAWILab: Com-
bining diverse anomaly detectors for automated anomaly labeling and performance bench-
marking. In Proceedings of the International COnference on emerging Networking EXper-
iments and Technologies (Co-NEXT), 2010.

[109] Github. Source code for Split-and-Merge detection algorithm. https://github.com/a-
blaise/split-and-merge, 2019.

[110] Aniket Mahanti, Niklas Carlsson, Anirban Mahanti, Martin Arlitt, and Carey Williamson.
A tale of the tails: Power-laws in internet measurements. IEEE Network, 27(1):59–64, jan
2013.

https://blogs.akamai.com/2018/02/memcached-udp-reflection-attacks.html
https://blogs.akamai.com/2018/02/memcached-udp-reflection-attacks.html
https://www.techrepublic.com/article/massive-ransomware-attack-takes-out-27000-mongodb-servers/
https://www.techrepublic.com/article/massive-ransomware-attack-takes-out-27000-mongodb-servers/
https://github.com/a-blaise/split-and-merge
https://github.com/a-blaise/split-and-merge

BIBLIOGRAPHY 127

[111] Mehmet Celenk, Thomas Conley, John Willis, and James Graham. Predictive network
anomaly detection and visualization. IEEE Transactions on Information Forensics and
Security, 5(2):288–299, jun 2010.

[112] Nimrod Aviram. DROWN Attack. https://drownattack.com/, 2016.

[113] Eric Wustrow Zakir Durumeric and J. Alex Halderman. ZMap: Fast internet-wide scanning
and its security applications. In Proceedings of the USENIX Security Symposium (USENIX
Security), 2013.

[114] Sam Edwards and Ioannis Profetis. Hajime: Analysis of a decentralized internet worm
for IoT devices. https://security.rapiditynetworks.com/publications/2016-10-16/
hajime.pdf, 2016.

[115] Symantec. Hajime worm battles mirai for control of the internet of things.
https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-
internet-things, 2017.

[116] Nmap. Nmap: the network Mapper. https://nmap.org/, 2018.

[117] Netlab360. New threat report: A new IoT botnet is spreading over http 81 on
a large scale. http://blog.netlab.360.com/a-new-threat-an-iot-botnet-scanning-
internet-on-port-81-en/, 2017.

[118] US Congress. Internet of Things (IoT) Cybersecurity Improvement Act of 2017. https:
//www.congress.gov/115/bills/s1691/BILLS-115s1691is.pdf, 2017.

[119] Netlab360. Warning: Satori, a Mirai branch is spreading in worm style on port 37215
and 52869. http://blog.netlab.360.com/warning-satori-a-new-mirai-variant-is-
spreading-in-worm-style-on-port-37215-and-52869-en/, 2017.

[120] Netlab360. ADB.Miner: More information. http://blog.netlab.360.com/adb-miner-
more-information-en/, Feb 2018.

[121] CheckPoint. IoTroop botnet: The full investigation. https://research.checkpoint.com/
iotroop-botnet-full-investigation/, 2018.

[122] Radware. Why the world is under the spell of IoTReaper. https://blog.radware.com/
security/2017/10/iot_reaper-botnet/, 2017.

[123] US CERT. Ics advisory (icsa-13-011-03), rockwell automation controllogix plc vulnerabil-
ities. https://www.us-cert.gov/ics/advisories/ICSA-13-011-03, 2019.

[124] SANS ISC InfoSec Forums. Surge in exploit attempts for netis router backdoor
(udp/53413). https://isc.sans.edu/forums/diary/Surge+in+Exploit+Attempts+for+
Netis+Router+Backdoor+UDP53413/21337/, 2017.

[125] FireEye. Smb exploited: Wannacry use of "eternalblue". https://www.fireeye.com/blog/
threat-research/2017/05/smb-exploited-wannacry-use-of-eternalblue.html, 2017.

[126] Radware. Satori iot botnet variant. https://security.radware.com/ddos-threats-
attacks/threat-advisories-attack-reports/satori-iot-botnet/, 2018.

https://drownattack.com/
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-internet-things
https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-internet-things
https://nmap.org/
http://blog.netlab.360.com/a-new-threat-an-iot-botnet-scanning-internet-on-port-81-en/
http://blog.netlab.360.com/a-new-threat-an-iot-botnet-scanning-internet-on-port-81-en/
https://www.congress.gov/115/bills/s1691/BILLS-115s1691is.pdf
https://www.congress.gov/115/bills/s1691/BILLS-115s1691is.pdf
http://blog.netlab.360.com/warning-satori-a-new-mirai-variant-is-spreading-in-worm-style-on-port-37215-and-52869-en/
http://blog.netlab.360.com/warning-satori-a-new-mirai-variant-is-spreading-in-worm-style-on-port-37215-and-52869-en/
http://blog.netlab.360.com/adb-miner-more-information-en/
http://blog.netlab.360.com/adb-miner-more-information-en/
https://research.checkpoint.com/iotroop-botnet-full-investigation/
https://research.checkpoint.com/iotroop-botnet-full-investigation/
https://blog.radware.com/security/2017/10/iot_reaper-botnet/
https://blog.radware.com/security/2017/10/iot_reaper-botnet/
https://www.us-cert.gov/ics/advisories/ICSA-13-011-03
https://isc.sans.edu/forums/diary/Surge+in+Exploit+Attempts+for+Netis+Router+Backdoor+UDP53413/21337/
https://isc.sans.edu/forums/diary/Surge+in+Exploit+Attempts+for+Netis+Router+Backdoor+UDP53413/21337/
https://www.fireeye.com/blog/threat-research/2017/05/smb-exploited-wannacry-use-of-eternalblue.html
https://www.fireeye.com/blog/threat-research/2017/05/smb-exploited-wannacry-use-of-eternalblue.html
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/satori-iot-botnet/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/satori-iot-botnet/

128 BIBLIOGRAPHY

[127] Avira. 18000 routers taken hostage in less than a day. https://blog.avira.com/18000-
routers-taken-hostage-in-less-than-a-day/, 2018.

[128] PentaSecurity. Top 5 botnets of 2017. https://www.pentasecurity.com/blog/top-5-
botnets-2017/, 2017.

[129] ZDNet. A decade of malware: Top botnets of the 2010s. https://www.zdnet.com/article/
a-decade-of-malware-top-botnets-of-the-2010s/, 2019.

[130] Agathe Blaise, Mathieu Bouet, Vania Conan, and Stefano Secci. Botfp: Fingerprints
clustering for bot detection. In Proceedings of the IEEE/IFIP Network Operations and
Management Symposium (NOMS), 2020.

[131] Agathe Blaise, Mathieu Bouet, Vania Conan, and Stefano Secci. Botnet fingerprinting:
A frequency distributions scheme for lightweight bot detection. IEEE Transactions on
Network and Service Management, 17(3):1701–1714, sep 2020.

[132] ZDnet. Avast and french police take over malware botnet and disinfect 850,000 comput-
ers. https://www.zdnet.com/article/avast-and-french-police-take-over-malware-
botnet-and-disinfect-850000-computers/.

[133] ZDNet. A hacking group is hijacking docker systems with exposed api endpoints. https:
//www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml.

[134] Mid-year update: 2019 sonicwall cyber threat report. https://blog.sonicwall.com/en-
us/2019/07/mid-year-update-2019-sonicwall-cyber-threat-report/.

[135] Basil AsSadhan, Abdulmuneem Bashaiwth, Jalal Al-Muhtadi, and Saleh Alshebeili. Anal-
ysis of p2p, IRC and HTTP traffic for botnets detection. Peer-to-Peer Networking and
Applications, 11(5):848–861, jul 2017.

[136] Source code for BotFP algorithm. https://github.com/BotFP/botFP-detection, 2020.

[137] Stratosphere Lab. Stratosphere Research Laboratory. https://
www.stratosphereips.org/.

[138] Stratosphere Lab. Aposemat IoT-23. https://www.stratosphereips.org/datasets-
iot23.

[139] Stratosphere Lab. Malware Capture Facility Project. https://www.stratosphereips.org/
datasets-malware.

[140] Service name and transport protocol port number registry. https://www.iana.org/
assignments/service-names-port-numbers/service-names-port-numbers.xhtml,
2013.

[141] Whois domain lookup. www.whois.com/whois/.

[142] IANA. Internet control message protocol (icmp) parameters. https://www.iana.org/
assignments/icmp-parameters/icmp-parameters.xhtml.

[143] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, pages 226–231, 1996.

https://blog.avira.com/18000-routers-taken-hostage-in-less-than-a-day/
https://blog.avira.com/18000-routers-taken-hostage-in-less-than-a-day/
https://www.pentasecurity.com/blog/top-5-botnets-2017/
https://www.pentasecurity.com/blog/top-5-botnets-2017/
https://www.zdnet.com/article/a-decade-of-malware-top-botnets-of-the-2010s/
https://www.zdnet.com/article/a-decade-of-malware-top-botnets-of-the-2010s/
https://www.zdnet.com/article/avast-and-french-police-take-over-malware-botnet-and-disinfect-850000-computers/
https://www.zdnet.com/article/avast-and-french-police-take-over-malware-botnet-and-disinfect-850000-computers/
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://blog.sonicwall.com/en-us/2019/07/mid-year-update-2019-sonicwall-cyber-threat-report/
https://blog.sonicwall.com/en-us/2019/07/mid-year-update-2019-sonicwall-cyber-threat-report/
https://github.com/BotFP/botFP-detection
https://www.stratosphereips.org/
https://www.stratosphereips.org/
https://www.stratosphereips.org/datasets-iot23
https://www.stratosphereips.org/datasets-iot23
https://www.stratosphereips.org/datasets-malware
https://www.stratosphereips.org/datasets-malware
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
www.whois.com/whois/
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

BIBLIOGRAPHY 129

[144] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research (JMLR), 2012.

[145] Gursel Serpen and Zhenning Gao. Complexity analysis of multilayer perceptron neural
network embedded into a wireless sensor network. Procedia Computer Science, 36:192–197,
2014.

[146] Yong Hou and Xue Feng Zheng. SVM based MLP neural network algorithm and application
in intrusion detection. In Artificial Intelligence and Computational Intelligence, pages 340–
345. Springer Berlin Heidelberg, 2011.

[147] Abdiansah Abdiansah and Retantyo Wardoyo. Time complexity analysis of support vector
machines (svm) in libsvm. International Journal of Computer Applications, 2015.

[148] Gaurav Sharma and Frederic Jurie. A novel approach for efficient SVM classification with
histogram intersection kernel. In Procedings of the British Machine Vision Conference
2013. British Machine Vision Association, 2013.

[149] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski, Andrew Y.
Ng, and Kunle Olukotun. Map-reduce for machine learning on multicore. In Proceedings
of NIPS, 2006.

[150] Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou.
Comparing stars. Proceedings of the VLDB Endowment, 2(1):25–36, 2009.

[151] M. Satyanarayanan. Pervasive computing: vision and challenges. IEEE Personal Commu-
nications, 8(4):10–17, 2001.

[152] Source code for special events detection. https://github.com/a-blaise/ASTECH/tree/
main.

[153] Cancan project - content and context based adaptation in mobile networks. https://
cancan.roc.cnam.fr/.

[154] C. H. P. Gifford and F. R. Macaulay. The movements of interest rates, bond yields and
stock prices in the united states since 1856. The Economic Journal, 49(194):312, jun 1939.

[155] John C. Musgrave Julius Shiskin, Allan H. Young. The x-11 variant of the census method
ii seasonal adjustment program. Technical report, Bureau of the Census, U.S. Department
of Commerce, 1967.

[156] Victor Gómez and Agustin Maravall. Programs tramo and seats, instructions for the user.
Technical report, Banco de España, 1996.

[157] Jean E. McRae Robert B. Cleveland, William S. Cleveland and Irma Terpenning. STL: A
seasonal-trend decomposition. Journal of Official Statistics, 6(1):3–73, 1990.

[158] William S. Cleveland. LOWESS: A program for smoothing scatterplots by robust locally
weighted regression. The American Statistician, 35(1):54, feb 1981.

[159] Paul Jaccard. Étude comparative de la distribution florale dans une portion des alpes et
du jura. 1901.

https://github.com/a-blaise/ASTECH/tree/main
https://github.com/a-blaise/ASTECH/tree/main
https://cancan.roc.cnam.fr/
https://cancan.roc.cnam.fr/

130 BIBLIOGRAPHY

[160] Past events - they occurred at the stade de france. https://www.stadefrance.com/en/
ticket/archives, 2020.

[161] Marie Turcan. Panne chez orange : des problèmes de connexion internet et 4g sur toute la
france. https://www.numerama.com/tech/481172-panne-chez-orange-des-problemes-
de-connexion-internet-et-4g-sur-toute-la-france.html, 2019.

[162] Jonathan Shieber. Google cloud is down, affecting numerous applications and
services. https://techcrunch.com/2019/06/02/google-cloud-is-down-affecting-
numerous-applications-and-services/.

[163] Agathe Blaise, Mathieu Bouet, Vania Conan, and Stefano Secci. Group anomaly detection
in mobile application usages: a decomposed time-series methodology. Submitted to IEEE
Transactions on Mobile Computing.

[164] Alessandro D'Alconzo, Idilio Drago, Andrea Morichetta, Marco Mellia, and Pedro Casas.
A survey on big data for network traffic monitoring and analysis. IEEE Transactions on
Network and Service Management, 16(3):800–813, sep 2019.

[165] Agathe Blaise, Stan Wong, and A. Hamid Aghvami. Virtual network function service
chaining anomaly detection. In 2018 25th International Conference on Telecommunications
(ICT). IEEE, 2018.

[166] Gabriel Brown. Service chaining in carrier networks. Heavy Reading, White Paper, 2015.

[167] C. Pignataro J. Halpern. Service function chaining (sfc) architecture, rfc-7665, 2015.

[168] Sandeep Yadav, Ashwath Kumar Krishna Reddy, A. L. Narasimha Reddy, and Suprana-
maya Ranjan. Detecting algorithmically generated domain-flux attacks with DNS traffic
analysis. IEEE/ACM Transactions on Networking, 20(5):1663–1677, oct 2012.

[169] T. Nadeau P. Quinn. Problem statement for service function chaining, rfc-7498, 2015.

[170] Barbara Martini and Federica Paganelli. A service-oriented approach for dynamic chaining
of virtual network functions over multi-provider software-defined networks. Future Internet,
8(4):24, jun 2016.

[171] Xuan Zhou, Rongpeng Li, Tao Chen, and Honggang Zhang. Network slicing as a ser-
vice: enabling enterprises' own software-defined cellular networks. IEEE Communications
Magazine, 54(7):146–153, jul 2016.

[172] Lizhong Xiao, Zhiqing Shao, and Gang Liu. K-means algorithm based on particle swarm
optimization algorithm for anomaly intrusion detection. In 2006 6th World Congress on
Intelligent Control and Automation. IEEE, 2006.

[173] Ming Hua, Man Ki Lau, Jian Pei, and Kui Wu. Continuous k-means monitoring with low
reporting cost in sensor networks. IEEE Transactions on Knowledge and Data Engineering,
21(12):1679–1691, dec 2009.

[174] R. Kumari, Sheetanshu, M. K. Singh, R. Jha, and N.K. Singh. Anomaly detection in
network traffic using k-mean clustering. In 2016 3rd International Conference on Recent
Advances in Information Technology (RAIT). IEEE, mar 2016.

https://www.stadefrance.com/en/ticket/archives
https://www.stadefrance.com/en/ticket/archives
https://www.numerama.com/tech/481172-panne-chez-orange-des-problemes-de-connexion-internet-et-4g-sur-toute-la-france.html
https://www.numerama.com/tech/481172-panne-chez-orange-des-problemes-de-connexion-internet-et-4g-sur-toute-la-france.html
https://techcrunch.com/2019/06/02/google-cloud-is-down-affecting-numerous-applications-and-services/
https://techcrunch.com/2019/06/02/google-cloud-is-down-affecting-numerous-applications-and-services/

BIBLIOGRAPHY 131

[175] Tuan A Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi, and Mounir Ghogho.
Deep learning approach for network intrusion detection in software defined networking. In
2016 International Conference on Wireless Networks and Mobile Communications (WIN-
COM). IEEE, oct 2016.

[176] Michael H Ferris, Michael McLaughlin, Samuel Grieggs, Soundararajan Ezekiel, Erik
Blasch, Mark Alford, Maria Cornacchia, and Adnan Bubalo. Using ROC curves and AUC
to evaluate performance of no-reference image fusion metrics. In 2015 National Aerospace
and Electronics Conference (NAECON). IEEE, jun 2015.

	Introduction
	Context and motivation
	Statistical and ML techniques
	Data analysis applications to networking
	Contributions and thesis outline

	Related work
	Statistical and machine learning techniques
	Statistical learning
	ML techniques: paradigms and addressed problems
	Data collection
	Feature design
	Performance metrics and model validation

	Intrusion detection
	Intrusion detection methodologies
	Large-scale intrusion detection
	Application to botnet detection

	Botnet Detection
	Flow-based techniques
	Graph-based techniques

	Spatiotemporal anomaly detection in cellular networks
	Detection of spatiotemporal anomalies
	Per-app mobile traffic analysis
	Group anomaly detection

	Summary

	Detection of zero-day attacks
	Introduction
	Split-and-Merge Port-centric Network Anomaly Detection
	Rationale
	Features design
	Local anomaly detection
	Central correlation

	Network traffic datasets
	Evaluation
	Normal distribution fitting
	Local anomaly detection
	Comparison between aggregated and split views
	Last years panorama
	Anomaly score distribution
	Features and parameters choice
	Anomalies classification
	Ground-truth

	Complexity and performances analysis
	Complexity analysis
	Execution performance

	Conclusion

	Botnet Fingerprinting
	Introduction
	Dataset
	Bots Fingerprints
	Preliminary example
	Methodology
	Flow records collection and formatting
	Quantification (attribute frequency distributions)
	Signatures formatting

	Bot Detection
	BotFP-Clus
	BotFP-ML

	Evaluation
	BotFP-Clus
	Comparison between BotFP-Clus and BotFP-ML
	Comparison to state-of-the-art detection techniques

	Complexity
	Attribute frequency distributions computation
	Training
	Classification
	Comparison to other techniques

	Conclusion

	Group anomaly detection in mobile apps usages
	Introduction
	Measurements and dataset
	ASTECH Methodology
	Algorithmic approach
	Notations

	Time series anomaly detection
	Time series decomposition
	Detection of raw anomalies

	Group anomalies
	Identification of abnormal snapshots
	Detection of group anomalies
	Fine-grained characterization of group anomalies

	Numerical results
	Raw anomalies
	Group anomalies
	Group anomalies classification

	Conclusion

	Conclusion
	Summary of contributions
	Perspectives
	Detection of zero-day attacks
	Botnet Fingerprinting
	Group anomaly detection in mobile app usages

	Appendix Virtual network function service chaining anomaly detection
	Introduction
	VNF Service Chaining Problematics
	VNF Service Markov Chain
	VNF Service Chain Classification
	Normal Behavior Cluster
	VNF Chains Classification

	Simulations and Performance Analysis
	Evaluation Metrics
	Resolution of the Decision Criterion
	Classification Results

	Conclusion

	Appendix Botnet Fingerprinting supplementary materials
	Observation of bots fingerprints
	Importance of features selection

	Bibliography

