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OMT.
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Introduction

Mechanical resonators have played a central role in metrology and precise sensing
since the early days of experimental physics. Cavendish for instance has used a tor-
sion balance to measure the elusive gravitational force between two objects of known
mass, accurately measuring for the first time, in modern terms, the gravitational
constant [1]. Nowadays, the possibility to realize ultralight mechanical resonators
has broadly expanded their use. Our ability to measure them with exquisite preci-
sion has turned these objects into sensitive probes for physical phenomena occurring
down to the nanometric scale. In a landmark experiment performed at IBM in 2004,
Dan Rugar and his team have demonstrated that the force exerted by a single elec-
tronic spin [2] could be detected by a micrometric cantilever functionalized with a
magnetic tip, opening the exciting perspective of Magnetic Resonance Force Mi-
croscopy [3–5]. In modern electronics, the comparatively small wavelength of sound
can be exploited to realize acoustic filters or delay lines with a much smaller foot-
print than using purely electromagnetic components. Beyond classical information
technologies, mechanical resonators could be used in quantum devices as platforms
for coupling otherwise incompatible systems such as microwave and optical photons
[6–9], or for storing fragile quantum states in long-lived mechanical oscillations [10].

To leverage the full potential of mechanical systems in quantum computing, their
motion must be controlled at the scale of their zero-point fluctuations. This is pre-
cisely what is achieved in the field of cavity optomechanics, where a mechanical
oscillator is addressed by coupling it to a high-finesse cavity. In such systems, radi-
ation pressure noise exerts a backaction force resulting from the continuous position
measurement. In state-of-the-art experiments, the quantum effects of radiation pres-
sure are made the dominant driving force; this has been successfully implemented in
a wide variety of platforms, spanning from the 40-kg mirrors used to detect gravita-
tional waves at VIRGO and LIGO, down to femtogram nanophotonic structures or
even trapped cold atoms (see fig. 1). This line of research has lead to breakthrough
results such as ground-state cooling [11–13], the preparation of single-phonon states
[14–16], and entanglement generation [17–19].

Importantly, the control over mechanical motion is limited in most systems by
the fact that the optomechanical interaction is linear. To achieve a deeper quantum
control, the addition of an extrinsic nonlinear element is required. In this thesis, we

vii
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Figure 1: Images or illustrations of a variety of mechanical resonators studied in
optomechanics, spanning several order of magnitude of mass. Figure extracted from
Ref. [20].
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couple a tensioned dielectric nanomembrane [21] to a superconducting microwave
cavity. This will allow us to benefit from the rich toolset of circuit quantum elec-
trodynamics, and in particular to make use of the nonlinearities made possible by
the Josephson junction. Such a hybrid electromechanical system could for instance
serve as an on-chip quantum memory [10] with potential storage times in the second
range, or as a quantum-limited force sensor [5].

These possibilities are made possible by having mechanical modes with long co-
herence times. While this key value is moderately high in the original nanomembrane
designs, other mechanical resonators such as crystalline beams [22, 23] significantly
outperform them. However, recent developments in phononic engineering [24, 25]
have reinstated silicon nitride membranes as one of the leaders in mechanical coher-
ence times, with MHz-frequency mechanical modes and quality factors reaching the
billions.

The primary scope of this thesis has been to fabricate and study these res-
onators in the Optomechanics and Quantum Measurements group at the Labora-
toire Kastler-Brossel (LKB), in which silicon nitride membranes had only recently
become a subject of research. The scope of this work is to pave the way for quantum
electromechanical experiments with such mechanical resonators. The design of the
patterned membranes is studied in detail to ensure in particular that a quantum
control over its eigenmodes can be achieved. Through numerical simulations and
experimental measurements, the necessity for precise mode frequency engineering is
demonstrated.

The manuscript is divided into four chapters: chapter 1 provides the theoretical
basis for measuring and controlling mechanical motion, which will provide useful
tools for describing and interpreting the subsequent experiments; chapter 2 pro-
vides details of the first cooling experiment attempted in our group using the origi-
nal nanomembrane design, yielding promising results but emphasizing the need for
state-of-the-art resonators, in particular due to insufficient acoustic isolation; chap-
ter 3 studies the mechanism of loss in membranes, motivating the key design choices
we made, and based on which an optimization study was performed; chapter 4
presents the experimental results regarding the patterned nanomembranes designed
in this thesis; finally, chapter 5 summarizes the main findings, and discusses the
future perspectives enabled by this work.
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Chapter 1

Introduction to opto- and
electromechanics

Today, opto- and electromechanics are mature fields, and their fundamental theoret-
ical tools have been well developed, understood, and experimentally verified. The
coupling between mechanical motion and light, at play in optomechanical systems,
gives rise to a variety of concepts and phenomena: it explains for instance the ex-
istence of fundamental limits on the precision of interferometric measurements [26],
it can be used to cool a mechanical degree of freedom through radiation pressure
[27–29], even down to its quantum ground state [30]. It can also be used to gener-
ate an effective interaction between two light beams at different frequencies via the
effect of Optomechanically Induced Transparency [12].

Nonetheless, several open questions still remain and are the subject of intensive
research. Opto-/electromechanical devices are being used to further our understand-
ing of intrinsic mechanical loss mechanisms [24, 25, 31]; to generate and study deep
quantum behaviors of mechanical motion [10, 16, 32]; to interface quantum informa-
tion platforms by converting optical photons into microwave photons [8, 9, 33]; or to
try to study the effects of gravitationally-induced quantum decoherence in massive
objects [34].

As a result of this research, opto-/electromechanical systems have become excel-
lent platforms for characterizing mechanical resonators and for precisely controlling
their motion. Over the following chapters, we will present mechanical resonators in
various scenarios: they will be coupled to a resonant microwave circuit and char-
acterized in a Mach-Zehnder interferometer; they will be driven coherently and left
to vibrate by thermal fluctuations; their temperature will be gradually reduced as
a result of the electromechanical interaction. The scope of this chapter is to equip
the reader with the underlying concepts necessary for the interpretation of the data
presented subsequently.

In many of the experiments described in this work, the mechanical oscillator is
driven solely by a thermal force, and we measure the resulting Brownian motion.

1



2 CHAPTER 1. INTRODUCTION TO OPTO- AND ELECTROMECHANICS

Figure 1.1: A harmonic oscillator mode, represented by a mass on a spring, is driven
by a thermal force Fth varying randomly with time.

Noise spectra provide a powerful and necessary means to extract useful information
from such random motion, and they can be used to determine key parameters such
as the mechanical mode frequency, dissipation rate, the electromechanical coupling,
and the temperature of the system–which cannot always be assumed to be known
a priori (see chapter 2). Section 1.1 introduces the basics of noise spectra and the
ever important fluctuation-dissipation theorem.

A simple way to measure mechanical resonators is to probe them by interfer-
ometry. In such an experiment, the mechanical motion is transduced into phase
fluctuations of a reflected light beam. If the interferometer is sufficiently sensitive,
then even the thermal motion of the resonator can be observed. In section 1.2,
we apply our description of noise spectra to the light field intensity in a Mach-
Zehnder interferometer, and show that the thermal motion can be measured with a
high signal-to-noise ratio. Interferometry is thus found to be a convenient method
for characterizing mechanical resonators at room temperature, which will be imple-
mented in chapter 4. This scheme does not however enable the control of mechanical
motion, which is necessary to prepare the resonator in its ground state.

To achieve such a state preparation, an electromechanical device can be used,
where the motion of a mechanical resonator is monitored and controlled through a
resonant microwave circuit. Section 1.3, describes such a system, modeled as two
coupled harmonic oscillators. The main results for this model are presented, and
we show how the coherent interaction between light and mechanics can be applied
to reduce the effective temperature of a mechanical mode.

1.1 Thermal motion of a harmonic oscillator

Before describing how to detect and control the motion of a mechanical resonator, let
us start by formally describing its dynamics. In this work, the modes of vibration we
study are coupled to a thermal environment, and as such are always being driven
by a thermal force varying randomly with time, as illustrated in fig. 1.1. The
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ensuing Brownian motion contains information both about the environment and
the oscillator itself, which can be extracted with the right mathematical tools.

1.1.1 Equation of motion of a mode

We model the resonator as a damped and driven harmonic oscillator, with x(t)
describing its time-dependent position. We assume that the oscillator is driven by
two forces: a viscous damping term (∝ ẋ), and an external driving force Fext. The
equation of motion for the position of the oscillator reads

ẍ(t) + Γmẋ(t) + Ω2
mx(t) =

Fext

meff
, (1.1)

where Ωm is the mechanical (angular) resonance frequency, and Γm is the energy
dissipation rate. We take into account the distributed nature of the mode by intro-
ducing an effective mass meff , to indicate that the mass which is displaced does not
correspond exactly to the full mass of the resonator.

It is simple to solve eq. (1.1) in the frequency domain, and so we define the
Fourier transform A[Ω] of a time-domain variable A(t) as

A[Ω] ≡ F [A(t)] ≡
∫ +∞

−∞
A(t)eiΩtdt, (1.2)

and the inverse Fourier transform as

A(t) =

∫ +∞

−∞
A[Ω]e−iΩt

dΩ

2π
. (1.3)

We can now rewrite eq. (1.1) in the frequency domain1:

x[Ω] = χm(Ω)Fext[Ω], (1.4)

where
χm(Ω) ≡

[
meff

(
Ω2

m − Ω2
)
− imeffΓmΩ

]−1
. (1.5)

χm[Ω] is the mechanical susceptibility: it represents the mechanical response to a
monochromatic force applied at a frequency Ω.

In this work, we will repeatedly find ourselves in cases where there is no monochro-
matic drive. Then, the resonator only moves in response to random forces, such as
the thermal driving force Fth, and no explicit expression of either the force or the
position can be given. And yet information can still be extracted from the res-
onator, using another tool: the autocorellation function, which provides a means of

1With the definition of the Fourier transform used here, we can apply the identities F [ẋ(t)] =
−iΩx[Ω] and F [ẍ(t)] = −Ω2x[Ω] to obtain this result.
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describing correlations lying within random noise.

1.1.2 The autocorrelation function

Noise can be seen as a stochastic process modeled by a continuous complex random
variable z(t). It is characterized by its correlation properties, and we can describe
them with the autocorrelation function, which encapsulates interesting features of
the noise, and is defined as2

Czz(t, τ) ≡ 〈z∗(t)z(t+ τ)〉, (1.6)

where τ is a time delay. The notation 〈. . .〉 signifies a time average, defined as

〈A(t)〉 = lim
∆T→∞

1

∆T

∫ ∆T/2

−∆T/2

A(t+ t′)dt′, (1.7)

where ∆T is an arbitrarily large time increment. Note that the time average of any
variable z can always be arranged to be zero by removing its deterministic part.
This leaves the first non-zero moment of noise to be the variance.

Consider for instance Gaussian white noise, which is an example of Markovian
noise: it is completely random, and has no memory of its previous values, such
that z(t) bears no correlation with z(t + τ), ∀τ ∈ R. Then, Czz(t, τ) = δ(t − τ),
δ(t) being the Dirac delta. In more complicated noise forms, some correlations
might arise from the randomness. Take weather, for instance, which is chaotic and
for almost all intents and purposes random, and yet we know that it follows some
predictable patterns: if it is warm today, it will likely be warm tomorrow and a year
from now.

To simplify matters, we will restrict this description to stationary processes, such
that the properties of the noise do not vary with t. In that case, the autocorrelation
only depends on the time lag τ , and Czz(t, t+ τ) = Czz(0, τ) ≡ Czz(τ), and reads

Czz(τ) = 〈z∗(0)z(τ)〉. (1.8)

Note the identity Czz(0) = 〈|z(0)2|〉: Czz(0) is the variance of z. The analysis can
be generalized to quantum systems by replacing the variable z with an operator ẑ
(see e.g. [35]). We will use this approach whenever it is necessary to discuss the
quantum mechanics systems studied in this work.

With Czz, we can quantify the thermal force noise driving the mechanical oscil-
lator without needing to give it an explicit expression. Since the equation of motion
for x, eq. (1.4), is in the frequency domain, it is more convenient to express the noise

2Formally, the autocorrelation function is defined as an ensemble average, but by the ergodic
hypothesis this is equivalent to the definition we use here.
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correlations in that manner as well.

1.1.3 Noise spectral density

An important quantity is the noise spectral density, which can be used to describe
the contribution to the total noise generated in a given frequency interval. It can
be immediately calculated from Czz: the Wiener-Khinchin theorem states that the
noise spectral density is precisely the Fourier transform of Czz.

The Wiener-Kinchin theorem

The statement above can be readily verified: let Szz denote the Fourier transform
of Czz, such that

Szz[Ω] =

∫ +∞

−∞
Czz(t

′)e−iΩt
′
dt′. (1.9)

Conversely, this expression can be inverted, allowing us to re-express Czz as

Czz(τ) =

∫ +∞

−∞
Szz[Ω]eiΩτ

dΩ

2π
. (1.10)

Then, setting τ = 0 in eq. (1.10), we immediately find that∫ +∞

−∞
Szz(Ω)

dΩ

2π
= 〈z∗(0)z(0)〉. (1.11)

This relation tells us that Szz(Ω)dΩ is the contribution to the variance of z in the
frequency range [Ω,Ω + dΩ] [36], i.e. Szz is the noise spectral density (or noise
spectrum), as predicted by the Wiener-Kinchin theorem. Note that, the units of the
noise spectral density are [Szz] = [z2].Hz−1.

Let us return to our Gaussian white noise example with Czz(τ) = δ(τ). Its spec-
tral density is perfectly flat, with Szz(Ω) = 1. Note that this means that Gaussian
white noise has infinite variance, and is therefore not physically meaningful. Nev-
ertheless, white noise can serve as a useful model if we are only considering small
intervals of frequency, as we will below.

Useful identities

1. Alternative definition: From eq. (1.9), an alternative definition of the noise
spectral density can be derived:

2πδ(Ω− Ω′)Szz[Ω] = 〈(z[Ω])∗ z[Ω′]〉. (1.12)
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We can deduce from this relation that the noise spectra of uncorrelated sources
of noise is the sum of their individual spectra.

2. Linear filtering: Suppose there is a variable y[Ω] = f(Ω)z[Ω]. It follows
from eq. (1.12) that

Syy[Ω] = |f(Ω)|2Szz[Ω]. (1.13)

If the transfer function f(Ω) from z to y is known and linear, then the spectrum
of z can be directly inferred by measuring the spectrum of y.

3. Symmetric spectra: In quantum physics, noise spectra can be asymmetric
[35] due to the fact that some operators do not commute (e.g. the ladder
operators). In such a context (see section 1.3) it can be useful to express noise
in terms of symmetrized noise spectra, defined as

S̄zz[Ω] =
Szz[Ω] + Szz[−Ω]

2
. (1.14)

1.1.4 The fluctuation-dissipation theorem

Tying in the notion of noise spectra with the Brownian motion of mechanical os-
cillators, Callen and Welton [37] showed that the channel through which energy is
dissipated by a mode is the same as the one through which its random motion, or
fluctuations, can be driven. This is the fluctuation-dissipation theorem: the two
phenomena are two sides of the same coin. For the damped harmonic oscillator, the
symmetric noise spectrum of the thermal driving force reads

S̄FF [Ω] = 2}Ω

(
nth(Ω) +

1

2

)
Γmmeff , (1.15)

where nth(Ω) ≡ 1/ (exp (}Ω/kBTenv)− 1) is the mean number of thermal quanta
present in the system. This powerful statement extends beyond the simple har-
monic oscillator treated here, and can also apply to fluctuations in the positions of
suspended particles (Brownian motion), the electromagnetic field [37], or the current
originating from resistors (Johnson noise) [36].

The expression for S̄FF given here is semi-classical. If we were to treat the system
in a purely quantum formalism, the commutation relations between the canonical
variables would impose an asymmetry in the positive and negative frequency re-
gions of the spectrum [35], which is lost when the spectrum is symmetrized. In
section 1.3, where the cooling of the harmonic oscillator to the ground state is de-
rived, we do describe the system in the quantum picture, but only consider linear
couplings between harmonic oscillators. In that case, we can satisfy ourselves with
the symmetrized noise spectra.

In the regime where }Ω � kBTenv, the thermal force noise becomes a Gaussian
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white noise:
S̄FF [Ω� kBTenv/}] ≈ 2kBTenvΓmmeff . (1.16)

The force driving the system now being known, we can finally express the noise
spectrum of the position x.

1.1.5 Noise spectrum of the harmonic oscillator

Applying the linear filtering property (eq. (1.13)) to the result of the damped driven
harmonic oscillator (eq. (1.4)) allows us to find the noise spectrum of the position
S̄xx:

S̄xx[Ω] = |χm(Ω)|22}Ω

(
nth(Ω) +

1

2

)
Γmmeff . (1.17)

The thermal force noise thus becomes filtered by the mechanical response function,
giving rise to Lorentzian peaks around Ω ± Ωm, and out-of-resonance noise tails
elsewhere. In fig. 1.2a, we show an example of an experimentally measured spectrum
of a mechanical mode (this mode was measured by interferometry, see section 1.2).
In general, a given mechanical oscillator may present several modes which are usually
uncorrelated, resulting in a series of Lorentzian peaks.

From eq. (1.11), the variance of x reads

〈x2〉 =
}

meffΩm
(nth (Ωm) + 1/2) . (1.18)

Note that the variance of x does not have any dependence on the dissipation rate
Γm, while its spectrum, according eq. (1.17), does. Two effects are at play which
balance each other out. Γm affects both the height of the response and its width,
resulting in a net constant area. This is in agreement with the equipartition theorem,
which states that the mean kinetic energy of the system should be m〈ẋ2〉 ∼ kBTenv.
For a harmonic oscillator with low dissipation, x ≈ x0 cos(Ωmt). It follows that
〈ẋ2〉 = Ω2

m〈x2〉, resulting in a variance of x which is overall independent of Γm.
As T → 0, nth → 0, leaving the system with an irreducible background of

fluctuations corresponding to the zero-point motion of the oscillator. This is the first
truly quantum effect one can observe in a harmonic oscillator–even in its ground
state, it still moves with an RMS amplitude of motion xZP ≡

√
}/2meffΩm. That

would is not the case in a classical system, and in the limit of low temperatures the
two models diverge, as shown in fig. 1.2b.

Equation (1.18) can be read both ways: if we are able to measure the fluctuations
of the position of a mode, we can infer the popoulation nth of the environment
that the mode is coupled to. To complicate matters a little, in this chapter and
the following, we will study cases where the oscillator is coupled to several baths
simultaneously. Then, it will be necessary to talk about the effective resonator
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Figure 1.2: a, Experimentally measured noise spectrum of the position of a mechan-
ical mode, with a central frequency of 1.47 MHz. The spectrum is plotted against
the detuning from the center of the peak. Away from the Lorenztian, the noise
floor does not reach zero as additional sources of noise are usually present in a mea-
surement. b, Quantum (black) and classical (dashed orange) dependencies of the
variance of x with the temperature.

population neff , defined such that

〈x2〉 = 2x2
ZP

(
neff +

1

2

)
. (1.19)

The noise spectrum is thus bountiful with information regarding the mode cen-
tral frequency, mass, dissipation rate, and effective temperature (or population).
The latter property will be particularly interesting to know, as neff is not always
known a priori. For instance, in the next chapter, we will see the example of an
electromechanical cooling experiment where the mechanical occupation is lowered
by coupling the resonator to a microwave circuit, realizing an auxiliary thermody-
namical bath at low temperature.

In such experiments a central problem resides in the measurement of the position
x, which is in practice measured indirectly. The linear filtering property of the noise
spectrum proves useful: if x can be made to affect another directly measurable entity
in a linear fashion, then S̄xx can be inferred and the required information extracted.
For instance, small mechanical displacements can be determined precisely using light
fields. Still, that is not always a trivial task. Interaction between the light field and
the mechanical oscillator can arise, and other source of noise can be introduced to
the system. In the remaining sections of this chapter we present two different ways
to measure the random motion of a mechanical resonator, both of which will be
applied in this work (see chapters 2 and 4). In section 1.2 we show how the thermal
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Figure 1.3: Schematic representation of the relative phase shift of a light beam due
to the displacement of a reflective surface.

motion of a mechanical mode can be measured by optical interferometry, taking into
account the physical limits of such a system.

1.2 Optical measurement of motion

One of the most common ways for measuring the position of a mechanical oscillator
precisely is to reflect light off it, inducing a phase shift which can be measured by
interferometry. In this section, we verify whether the thermal motion of the typical
mechanical oscillator used in this work is sufficiently large to be measured in such a
manner. We check this specifically for the case of a Mach-Zehnder interferometer,
in correspondence with the experiment presented in chapter 4.

1.2.1 Position-dependent phase shift

If a mechanical resonator is displaced by a small distance x from its original position,
then the phase of the reflected beam is correspondingly shifted by δφx (see fig. 1.3),
with

δφx =
4π

λ
x, (1.20)

where λ is the wavelength of the light. In this manner, the information about the
position x is now contained in the phase of the light beam, which can be determined
by interferometry.
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Figure 1.4: Schematic representation of the Mach-Zehnder interferometer. The
sample under study is a mechanically compliant reflective surface on the S branch.
The phase of the S beam is compared to a reference beam reflected off a mirror in the
LO branch. Though a half-wave plate (λ/2) and a polarizing beamsplitter (PBS),
the proportion of power sent into the LO branch with respect to the S branch is set.
A second beamsplitter (BS) recombines the beams and partly sends them into the
PD branch.

1.2.2 The Mach-Zehnder interferometer

A typical interferomety setup is the Mach-Zehnder interferometer depicted in fig. 1.4.
A laser beam is first split into two paths by a beamsplitter (BS). Part of the beam
is sent onto a reflective, mechanically compliant sample on the branch denoted “S”,
and the remainder is sent onto a mirror with fixed but configurable position, called
the local oscillator “LO”. The beams are then recombined and sent into the “PD”
branch by a second BS and finally arrive at a photodiode, which converts the light
intensity into a measurable current. This particular scheme is called a homodyne
detection, characterized by the fact that the beams in S and LO have the same
(homo) carrier frequency (dynamis, power).

Let aS and aLO respectively describe the propagating light fields coming from the
S and LO branches. As they both pass through the beamsplitter, the propagating
light field aPD arriving at the photodiode can be expressed as

aPD =
1√
2

(
aLO + aSe

iϕ
)
. (1.21)

Here, ϕ ≡ φ+ δφx is the accumulated relative phase difference between the sample
and the LO, and comprises both a static phase difference φ and the mechanically-
induced phase fluctuations δφx. The laser beam injected into the interferometer is
assumed to be in a coherent state. We denote its amplitude by the real number
α0. By choosing the first BS to be a polarizing beamsplitter (PBS), the relative
amount of light sent into the S and LO branches can be controlled with a half-wave
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Figure 1.5: Relation between the static phase φ and the laser power PL at the
photodiode, considering only the first line of eq. (1.22), with pSpLO < 1/2. By
choosing specific values of φ, the sensitivity of the interferometer to fluctuations δφ
in the phase varies. If φ is a multiple of π, the phase fluctuations (green box), such
as the ones produced by the small motion of the harmonic oscillator, result in small
fluctuations in the field. Conversely, when φ is a half-integer multiple of π (red box),
the induced fluctuations in PL are maximal.

plate. Thus, let pS be the fraction of the light field arriving at the final PBS from S
(including losses), and pLO from LO.

In the interferometer, our ability to discern the mechanical motion will firstly
be limited by noise of the light field itself, which might have quantum or classical
origins. We express these fluctuations to the first order as aS ≈ pSα0 + δaS and
aLO ≈ pLOα0 + δaLO, where δaLO,S � α0 represent small fluctuations of the field.
We keep here δaLO and δaS as two separate terms, but they can be correlated if the
noise is classical. δa can be further separated in amplitude noise δaP ≡ Re(δa) and
phase noises δaQ ≡ Im(δa).

The laser power at the photodiode PL = }ωL|aPD|2, where ωL is the laser angular
frequency, reads

PL(t)

}ωL
≈ 1

2
α2

0

[
1 + 2pSpLO cosϕ(t)

]
+

α0

[
pSδa

P
S (t) + pLOδa

P
LO(t) + Re

(
(pLOδaS(t) + pSδa

∗
LO(t)) eiϕ(t)

)]
,

(1.22)

neglecting terms of order δa2. The term in first line of the above equation (boxed in
red) contains the mechanical signal that interests us, while the second line regroups
all other noise terms. To recover the influence of the position x, a choice must be
made on the working point of the interferometer by choosing a value for φ. As
shown in fig. 1.5, if φ = (2m− 1/2) π, with m ∈ Z, the induced fluctuations δφx are
transduced maximally to field intensity fluctuations.
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Is is typical in such interferometers to have pS � pLO, enabling us to drop the
terms of order (pS/pLO). For δφx � 1 (i.e. x� λ), the fluctuations δPL = PL−〈PL〉
in the frequency domain read

δPL[Ω] ≈P0pSpLO
4π

λ
x[Ω]+√

}ωLP0

[
pLOδa

P
LO[Ω] +

(
pSδa

Q
LO[Ω]− pLOδa

Q
S [Ω]

)]
,

(1.23)

where P0 ≡ }ωLα
2
0 is the laser power at the input of the interferometer. We note that

the term pSδa
Q
LO is not in general of order pS, since in some cases the fluctuations of

δaQLO vary with pLO, making it a non-negligible contribution; this will be relevant in
chapter 4, but we hereafter drop this term for the purposes of this section.

δPL depends on two terms: the variations of the position x (the signal of interest),
and a collection of noise terms originating from the fluctuations of the light field
itself. With our choice of ϕ, we have become sensitive to δaQS . Irrespective of ϕ, the
amplitude fluctuations of the LO field cause noise in the field.

If we assume all noise terms to be uncorrelated from each other, the noise spec-
trum S̄PP of the power reads

S̄PP [Ω] ≈ P 2
0 p

2
Sp

2
LO

16π2

λ2
S̄xx[Ω] + }ωLP0p

2
LO

(
S̄PLO[Ω] + S̄QLO[Ω]

)
, (1.24)

where S̄P and S̄Q represent the noise spectra of the amplitude and phase quadratures
of the fields, respectively.

As a figure of merit, we can define the signal-to-noise ratio SNR as the ratio
of the height of the mechanical noise peak to the noise floor of S̄PP away from a
mechanical resonance. If the laser is shot-noise limited it only carries the vacuum
fluctuations of the field, and both S̄P and S̄Q are exactly 1/2. From eq. (1.17) the
SNR reads

SNR (dB) ≈ 10 log10

(
p2

S

16π

}cλ
× kBTenv

meffΓmΩ2
m

P0

)
, (1.25)

for kBT � }Ωm, and where c is the speed of light. We note that were the laser not
shot-noise limited, correlations would arise in the fluctuations of the light-fields in
the S and LO branches, complicating matters a little (see chapter 4).

Equation (1.25) shows that to resolve the mechanical motion, low masses and/or
dissipation rates are required for a given mode frequency. In this work, we have the
advantage of working with relatively light (meff ∼ 10 ng) and low-loss (Γm/2π ∼
0.1 Hz) resonators, vibrating around Ωm/2π ∼ 1 MHz. We use a Nd:YAG laser with
λ ≈ 1 µm , and P0 ≈ 30 mW. Typically, we have pS ∼ 10−2 (taking into account
the finite reflectivity of the sample). In those conditions, at room temperature,
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SNR ∼ 45 dB. The thermal motion of the mechanical resonator can be readily
resolved.

In chapter 4 we use this fact to set up an interferometer capable of measuring the
thermal motion of nanomechanical samples. We will find however that the laser is
not limited by shot-noise, and that a modification to the detection scheme is required
to measure the mechanical motion with a high SNR. Optical infererometry, while
convenient for precise characterization, does not offer any possibilities for preparing
the mechanical mode in its ground state (in principle, one can use radiation pressure
to displace or drive the resonator, but nothing beyond that). To do so a reciprocal
interaction between the light field and the resonator mode must be set up. In optics,
this could be achieved by placing the resonator inside an optical cavity; in our case,
we take a similar approach in the microwave domain, for which we need to switch
topics to the field of cavity electromechanics.

1.3 Cavity electromechanics

In this section we study the effects of the coupling between a mechanical mode
and a microwave resonant circuit. We show that in such a system the effective
occupation of a mechanical mode can be reduced to almost 0 when the circuit is
pumped strongly and at the correct frequency.

To derive this result we model the entire system as two coupled harmonic oscil-
lators. To begin with we will consider the intracavity field of a “bare” microwave
resonator, without any mechanical oscillator, to lay the first stone of our model. We
will add the interaction with the mechanical resonator, the effect of a strong pump,
and finally the non-negligible dynamics added to the system by the noise in the light
field.

1.3.1 The intracavity light field of a bare circuit

Let us consider a simple electronic circuit composed of an inductor and a capacitor
in parallel. We know from electronics that, at a specific resonant frequency, the
LC loop can hold a mode of the electromagnetic field, as illustrated in fig. 1.6.
Such a system is readily modeled as a harmonic oscillator. We adopt a quantum
mechanical framework here because it will be necessary later (see section 1.3.5), but
we will simplify to classical quantities whenever appropriate.

Let φ̂ and q̂ be the canonically conjugate variables of the system, describing the
flux and the charge, respectively. The Hamiltonian of the circuit is then

Ĥc =
φ̂2

2L
+
q̂2

2C
, (1.26)

where L is the inductance of the circuit, and C its capacitance. Since this is a
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Figure 1.6: Sketch of a microwave resonant circuit, composed of an inductor and a
capacitor. In red, the electric field lines are shown and in blue, the magnetic field
lines.

harmonic oscillator, we may equivalently model this system using the dimensionless
ladder operators â and â†, defined as

φ̂ =

√
}Z0

2

(
â+ â†

)
, (1.27)

q̂ = −i
√

}
2Z0

(
â− â†

)
, (1.28)

where Z0 =
√
L/C is the circuit impedance. These ladder operators follow the

commutation relation [
â, â†

]
= 1, (1.29)

and the Hamiltonian can be rewritten as

Ĥc = }ωc

(
â†â+

1

2

)
, (1.30)

where ωc = 1/
√
LC is the circuit resonance frequency. In this work, we describe the

dynamics in either the Heisenberg or the interaction pictures, where the operators
are the terms that evolve with time and describe the dynamics. As such, â describes
the intracavity field (formally, the Hamiltonian above is equivalent to a cavity).

If we allow for losses in the system (not included in Ĥc), then the equation of
motion for â(t) is given by the Heisenberg-Langevin equation [38]:

˙̂a(t) = − i
}

[
â, Ĥc

]
− κ

2
â+

N∑
j=0

√
κj âin,j. (1.31)

In general, there can be N channels through which the field can dissipate, and
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Figure 1.7: Illustration of a resonator of frequency ωc, coupled to N ports, with a
coupling κj to the jth port. In most models, one or two ports are chosen as the
input/output ports, and all others are grouped together as a single effective port
through which information is irreversibly lost.

through which noise or coherent driving terms can enter the system. They are
grouped into the final term of the equation, where κj is the decay rate for the jth

port (see fig. 1.7), and âin,j in the corresponding input field operator. Let κ be the
total loss rate, such that κ ≡

∑
j κj.

In this work, the circuit is in reflection, i.e. the input and the output of the
signal pass through the same port. We note that there are several ways in which the
circuit can be read in reflection, detailed in section 1.3.2. Let κc be the coupling rate
at which the signal passes through the readout port, with the associated input field
âin,c. Information exiting through all other ports is considered lost, and we group
all of them as one port with a net internal loss rate κi and an associated input light
field âin,i. Overall, κ = κc + κi, and the equation of motion reads

˙̂a(t) =
(
−iωc −

κ

2

)
â(t) +

√
κcâin,c +

√
κiâin,i. (1.32)

In practice, âin,i will only introduce noise into the system, whereas âin,c may contain
coherent drives sent into the circuit.

We can derive the classical behavior of the circuit by assuming that a strong
drive of frequency ωd is sent into the circuit, i.e. we let âin,c = αine

−iωd 1̂, where 1̂ is
the identity operator. Switching to a frame rotating with ωd, the equation of motion
for the average amplitude of the field α = 〈â〉 reads

α̇ =
(
i∆− κ

2

)
α +
√
κcαin,c, (1.33)

where we have introduced ∆ = ωd−ωc as the detuning of the drive from the circuit
resonance. In the steady state (α̇ = 0), the intracavity field amplitude is

α = χe(∆)
√
κcαin,c, (1.34)
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Figure 1.8: a-b, Two configuration cases for a microwave circuit readout. In (a), we
show the reflection conifguration. A transmission line (green) is capacitively coupled
to the resonant microwave circuit. The input field and the output field are connected
to the same port. In (b), the circuit is in a hanger configuration. A transmission
line (green) is inductively coupled to the circuit, with the input and output fields
being connected to two separate ports. We note that the circuit radiates the field
symmetrically into both directions of the transmission line–in principle, the output
field can be therefore recovered from either port.

where χe is the electric susceptibility, defined as

χe(ω) ≡ [−iω + κ/2]−1 . (1.35)

1.3.2 Input-output formalism

As the field leaks into the readout port a measurable current is generated. The
output of the circuit can be predicted by the input-output relation [35], giving the
output field αout in terms of α and αin. This relation depends on the readout scheme
[20]. Within the context of this work, two main configurations will be presented:
the reflection and the hanger configurations. In both cases the input and output
fields pass through the same circuit port.

The reflection configuration simply consists of a transmission line which capac-
itively couples to the circuit–see fig. 1.8a. This line carries the input field and the
output circuit signal; its behavior is analogous to that of an optical circuit mea-
sured in reflection, and will have the same sort of response. In this configuration
the input-output relation reads

αout = −αin,c +
√
κcα. (1.36)

In the hanger configuration, the circuit is inductively coupled to a transmission
line which carries the information, as shown in figure fig. 1.8b. This is almost equiv-
alent to reading the reflection of a circuit, except that the output signal radiates
symmetrically in both directions of the transmission line, meaning half of the infor-
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Figure 1.9: a-b, The response of a bare harmonic circuit in the reflection configu-
ration, for fixed κ. The reflection coefficient is shown in (a), and the phase of the
reflected signal is shown in (b). Three different cases are considered: η = 0.91, the
undercoupled case depicted by the dashed black line, η = 0.11, the overcoupled case
depicted by the solid black line, and η = 0.5, the critically coupled case depicted by
the solid red line.

mation put out by the circuit is lost. This configuration is nevertheless practical for
measuring several cavities in a series, and is used in this work. For this configuration
the input-output relation reads

αout = −αin,c +

√
κc

2
α. (1.37)

As an example, let us analyze the output signal of a circuit measured in a
reflection configuration. Substituting our result from eq. (1.34), we find that the
reflected power R ≡ |αout/αin|2 reads

R =

∣∣∣∣1− η

i∆/κ+ 1/2

∣∣∣∣2 , (1.38)

where η = κc/κ. The reflected power follows a Lorentzian dip, shown in fig. 1.9a.
The form of the reflected spectrum depends on the newly introduced coupling ratio η,
which compares how much of the intracavity field leaks into the loss ports compared
to the readout port. We can distinguish three cases:

� critical coupling, η = 1/2: in this optimal case, R = 0 on resonance, accom-
panied by a phase flip of π.
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� overcoupled, η < 1/2: the dip in the reflected intensity is shallower than in the
critical coupling case, and in the limit of small η essentially no information
can be obtained by measuring the intensity of the reflected signal. The phase
of the reflected signal on the other hand varies maximally, see fig. 1.9b.

� undercoupled η > 1/2: in that case, most of the intracavity field is dissipated
into the loss port. Note from fig. 1.9 that the undercoupled and overcoupled
cases can produce identical intensity reflection spectra, but with significantly
different behaviors in phase.

In practice it is always better to be a little overcoupled than undercoupled: although
in both cases the variation in the reflected power is reduced compared to the critically
coupled case, more signal leaks into the readout port in the overcoupled case.

This simple and well-known circuit can be to a harmonic oscillator, which gives
rise to rich dynamics. In opto-/electromechanics, the paradigmatic way to induce
this coupling is to fabricate a system where the motion of the mechanical resonator
shifts the resonance frequency of the circuit. This is called dispersive coupling, and
is precisely the scenario studied in this work.

1.3.3 Dispersive coupling

General description

One way to introduce dispersive coupling is to allow one of the capacitor plates of
the microwave circuit to move, thereby varying the circuit frequency inversely with
the plate displacement, as illustrated in fig. 1.10. For a small displacement x from
equilibrium, we can take a perturbative approach, and express ωc as

ωc(x) ≈ ωc(0)−Gx+O(x), (1.39)

whereG ≡ −∂ωc(x)/∂x. Note the sign convention: G is chosen to always be positive,
following [20], and x must therefore be defined accordingly–here, an increase in the
distance between the capacitor plates represents a decrease in x3. In a quantum
framework, replacing x with the operator x̂, the Hamiltonian of the entire system
reads

Ĥem = Ĥc − }Gx̂â†â+ Ĥm, (1.40)

with

Ĥm ≡
p̂2

2meff
+

1

2
meffΩ2

mx̂
2, (1.41)

3Several other dynamics may be present in optomechanical systems: nonlinear terms may play
a relevant role in the dynamics of the system if the fluctuations or the coupling rate are large;
dissipative coupling is also a possibility to induce an interaction between phonons and photons,
wherein the dissipation of the system is dependent on the position of the oscillator [39]. Such cases
are not relevant to this work, and will not be mentioned further.
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Figure 1.10: (Center) Illustration of a dispersively coupled electromechanical sys-
tem with a mechanically compliant capacitor. Below, the typical reflection of the
circuit is shown. If the mobile capacitor plate moves closer to (left) or farther away
from (right) the static capacitor plate by a small distance ∆x, the frequency of the
circuit decreases or increases by G∆x. The drawing is not to scale.

and where p̂ is the momentum operator.
From the Heisenberg-Langevin equations, transforming as before to the frame

rotating with the drive, the equations of motion of the system can be derived to be

˙̂a(t) =
(
i∆ + iGX̂(t)− κ

2

)
â(t) +

√
κcâin,c(t) +

√
κiâin,i(t),

¨̂x(t) + Γm
˙̂x(t) + Ω2

mx̂(t) =
1

meff

(
F̂th(t) + }Gâ†(t)â(t)

)
.

(1.42)

(1.43)

In the steady state, the pumping of the circuit shifts the oscillator’s equilibrium
position from 0 to x̄ ≡ 〈x̂(t)〉. Reciprocally, this displacement results in a shift in the
circuit’s resonance frequency, which we take into account by a corrected detuning
∆̄ ≡ ∆− g2

0|α|2/2Ωm. Here, g0 is the vacuum electromechanical coupling rate, with

g0 ≡ GxZP, (1.44)

and corresponds to the frequency shift of the circuit if the resonator is displaced
by xZP. This often-recurring term is sometimes preferred to G for quantifying the
coupling, as g0 allows a more direct comparison between different electromechanical
systems with distinct geometries.
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Assuming that âin,i is purely a noise term, the steady-state solutions read

x̄ = 2xZP
g0

Ωm
|α|2, (1.45)

α = χe

(
∆̄
)√

κcαin,c. (1.46)

Linearized interaction

Many of the interesting dynamics in an electromechanical circuit occur in the fluc-
tuations around these steady states of the system. To study them, the system must
be strongly pumped. We hence shift our reference frame to the equilibrium of the
mechanical mode, transforming x̂ → x̄1̂ + x̂, where 1̂ is the identity operator, and
|x̂| � x̄. The fluctuations of the mechanical resonator cause small variations in the
field, such that we can write â(t) = α1̂ + δâ(t), with |δâ| � α.

Keeping only the dominant terms in x̂ and δâ, eqs. (1.42) and (1.43) become

δ ˙̂a(t) =
(
−i∆̄− κ

2

)
δâ(t) + iGx(t)α +

√
κcδâin,c(t) +

√
κiδâin,i(t), (1.47)

δ ˙̂a†(t) =
(
i∆̄− κ

2

)
δâ(t)− iGx̂(t)α∗ +

√
κcδâ

†
in,c(t) +

√
κiδâ

†
in,i(t), (1.48)

¨̂x(t) + Γm
˙̂x(t) + Ω2

mx̂(t) =
1

meff

[
F̂th(t) + }G

(
α∗δâ†(t) + αδâ(t)

)]
, (1.49)

where we have included the dynamics of δâ†. In the frequency domain, we find a
set of equations of which we will make consistent use hereafter:

χ−1
e

(
∆̄ + Ω

)
δâ[Ω] = iαGx̂[Ω] +

√
κcδâin,c[Ω] +

√
κiδâin,i[Ω],

χ−1∗

e

(
∆̄− Ω

)
δâ†[Ω] = −iα∗Gx̂[Ω] +

√
κcδâ

†
in[Ω] +

√
κiδâ

†
in,i[Ω],

χ−1
m (Ω)x̂[Ω] = }G

(
αδâ†[Ω] + α∗δâ[Ω]

)
+ F̂th[Ω].

(1.50)

(1.51)

(1.52)

In this set of equations where we only consider small variations around larger aver-
ages, we are left with a linearly interacting system. Crucially, the electromechanical
coupling G is now dressed by the circuit field α: the coupling is enhanced and
linearized by the strong pumping of the circuit.

From eq. (1.52), the mechanical oscillator is driven both by the electrostatic
force and by the thermal Langevin force. As for the fluctuations in the circuit field,
they are driven both by δâin and the motion of the oscillator. Depending on the
experiment, δâin may simply be noise entering the circuit or an additional weak
drive sent into the system. Both of these options will be explored in the following
subsections.

We see that the interaction is two-sided: the motion of the mode causes fluctua-
tions in the field, which in turn induce fluctuations in the motion. This backaction
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effect modifies the dynamics of the resonator, which is at the core of the phenomenon
of electromechanical cooling.

1.3.4 Dynamical backaction

The main result that we derive from eqs. (1.50) to (1.52) is that the response of the
mechanical resonator itself becomes modified as a result of the interaction between
the light and motion. To find the effective response of the resonator we first solve
for x̂ in eqs. (1.50) and (1.51). For simplicity we drop the input field terms δâin,
which do not affect the results of this derivation. Then, the equations of motion for
the intracavity field read

δâ[Ω] = iGχe(∆̄ + Ω)αx̂[Ω], (1.53)

δâ†[Ω] = −iGχ∗e(∆̄− Ω)α∗x̂[Ω]. (1.54)

Plugging these terms into eq. (1.52), we find that the equation of motion for the
position can be written in the form

x̂[Ω] = χeff(Ω)−1F̂th[Ω], (1.55)

where χeff is an effective susceptibility which we can approximate as

χ−1
eff (Ω) ≈ meff

[
−
(
Ω2 − (Ωm + δΩm)2)− iΩ (Γm + Γem)

]
, (1.56)

where δΩm is the electromechanically induced frequency shift and Γem the electrome-
chanical damping rate. We note that this expression for χeff is only valid when δΩm

and (Γm + Γem) are both much smaller than Ωm and κ.
The newly introduced terms δΩm and Γm read

δΩm ≡ g2 ×
[
(∆̄ + Ωm)|χe(∆̄ + Ωm)|2 + (∆̄− Ωm)|χe(∆̄− Ωm)|2

]
, (1.57)

Γem ≡ CΓm

(κ
2

)2 [
|χe(∆̄ + Ωm)|2 − |χe(∆̄− Ωm)|2

]
, (1.58)

where we have introduced the dressed electromechanical coupling rate g = g0α, and
the cooperativity C ≡ 4g2/κΓm. This cooperativity compares the electromechanical
coupling rate both to the mechanical and the electrical dissipation rate. As such, it
essentially serves as a measure for the average number of coherent interactions that
can occur in the system. C is an important parameter which will often appear in
key equations of the electromechanical interaction.

The net result is that the motion of the membrane, causing fluctuations of the
field, can become driven by these very fluctuations. This backaction effect can be
perceived as a modified response to external forces, adding both an in-phase and
a quadrature component. The in-phase term modifies the restoring force acting on
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Figure 1.11: a-b, Shift in (a) the mechanical resonance frequency and (b) the elec-
tromechanical damping rate, for various pumping frequencies ∆̄. For both figures,
various values of κ/Ωm are taken, namely: 0.1 (black), 1 (gray, dashed) and 4 (gray,
dotted). The black curve is representative of the electromechanical device param-
eters presented in chapter 2, with typical values g0 = 1 Hz, Ωm = 500 kHz, and
η = 1/2.

the oscillator, changing its response frequency, effectively softening or hardening the
mechanical “spring”–note that the sign of the change depends on the laser detuning
∆̄. For this reason, this effect has been dubbed the optical spring, shown in fig. 1.11a.
Similarly, the quadrature term given in eq. (1.58) describes the modification to the
mechanical linewidth which can be either positive or negative , as shown in fig. 1.11b.
This term, resulting from the retarded nature of the circuit response, is in phase with
the velocity, and induces an amplification or a damping of the mechanical motion,
as we will see below.

The dynamical backaction is strongly dependent on the ratio κ/Γm. In the so-
called “bad cavity limit”, κ � Γm, the electromechanically induced damping/anti-
damping effects essentially vanish. The intracavity field responds perfectly in-phase
to the mechanical motion. In the opposite regime, called the “resolved sideband
regime” where κ � Γm, the extrema of Γm and all interesting dynamics occur on
the mechanical sidebands of the circuit, around ∆̄ = ±Ωm. At those special points,
it can in general be shown that

Γem

∣∣
∆̄=±Ωm

= ∓CΓm

(
1− 1

ηrsf + 1

)
, (1.59)

where ηrsf ≡ (4Ωm/κ)2 is the resolved sideband factor.
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When pumping (i.e. increasing C) on the blue sideband, the effective damping
rate Γeff ≡ Γem + Γm eventually becomes negative, resulting in self-sustaining os-
cillations, leading to parametric instabilities and chaotic motion [40]. Conversely,
pumping on the red sideband increases the net dissipation rate Γeff . This is partic-
ularly interesting for this work: from the fluctuation-dissipation theorem we know
that inducing dissipation leads to fluctuations of the mechanical motion, and by
extension, as seen in section 1.1.5, on the occupancy of the mechanical mode. As
we will see, the consequence of this dynamical interaction is that the temperature
of the mode can be reduced by pumping the red sideband of the circuit.

1.3.5 Electromechanical cooling

As one might expect from the fluctuation-dissipation theorem, the modification
in the damping rate has consequences for the motion spectrum of the mechanical
resonator. Interestingly, although we have previously found that the dissipation
rate played no role in the RMS fluctuations of the resonator (i.e. did not affect its
temperature), the situation is now different.

To show this, we solve for x̂ in eqs. (1.50) to (1.52), and find

x[Ω] = χ−1
eff (Ω)

(
F̂th[Ω] + F̂cav[Ω]

)
, (1.60)

with
F̂cav[Ω] ≡}Gα∗χe(∆̄ + Ω)(

√
κcδâin,c[Ω] +

√
κiδâin,i[Ω])+

}Gαχ∗e(∆̄− Ω)(
√
κcδâ

†
in,c[Ω] +

√
κiδâ

†
in,i[Ω]).

(1.61)

In a quantum picture, this can be interpreted as photons from the upper and lower
mechanical sidebands being scattered to the circuit resonance frequency by Stokes
resp. anti-Stokes processes. As a result, in addition to the thermal force, the
mechanical mode is also being driven by a cavity force F̂cav, which heats the mode
up. On the other hand, we found in eq. (1.55) that the dissipation rate of the mode is
also modified by the backaction. Let us verify the net effect of the electromechanical
interaction by computing Sx̂x̂, the noise spectrum of x̂, which we can determine from
the linear filtering property (eq. (1.13)).

We recall the spectrum of the thermal force noise given in eq. (1.15). The
spectrum of the cavity force can be determined from the definition of F̂cav. We
assume that the two input field noise terms, δâin,c and δâin,i, are uncorrelated and
Markovian, with a thermal population n̄ ≡ nB(ωc). For both terms, the spectral
autocorrelation has the form [35]

〈(âin[Ω])† âin[Ω′]〉 = 2πn̄δ(Ω− Ω′), (1.62)

〈âin[Ω] (âin[Ω′])
†〉 = 2π(n̄+ 1)δ(Ω− Ω′). (1.63)
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Mechanical resonator EnvironmentMicrowave cavity

Figure 1.12: Illustration of the mechanical resonator (shown as a square), of popu-
lation neff , in an electromechanical cooling experiment. It is coupled to two baths
(shown as circles): the thermal environment, with a population nth � 1, at a rate
Γm, and to the microwave resonator, with an effective population ncn ∼ 1 (derived
below), at a rate Γem.

By evaluating the autocorrelation of the cavity force4 〈Fcav[−Ω]Fcav[Ω
′]〉, we find

that the symmetric cavity noise spectrum reads

S̄cav[Ω] = }2G2|α|2κ
(
n̄+

1

2

)[
|χe(∆̄− Ω)|2 + |χe(∆̄ + Ω)|2

]
. (1.64)

From the linear filtering of noise spectra, the symmetric motion spectrum thus
reads

S̄x̂x̂[Ω] = |χeff(Ω)|2
(
S̄F̂ F̂ [Ω] + S̄cav[Ω]

)
, (1.65)

In the following, we will show that the resulting system is equivalent to fig. 1.12
where the mechanical resonator is coupled to two baths simultaneously. Firstly, as
we have seen up to now, it is coupled to a thermal bath of population nth at a rate
Γm. But the microwave resonator now plays the role of a second bath, of effective
population ncn (different from n̄, and shown below to be of order 1 for our device
parameters), at a rate Γem.

Thermal force noise

From eq. (1.15), based on the fluctuation-dissipation theorem, the thermal force
noise reads:

S̄F̂F̂[Ω] = 2}Ω

(
nth +

1

2

)
Γmmeff . (1.66)

4For a Hermitian operator Ô,
(
Ô[Ω]

)†
≡ Ô[−Ω]
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Its contribution to the fluctuations in position, denoted as 〈x2〉th, can be shown to
read5

〈x2〉th = 2xZP
Γm

Γeff

(
nth +

1

2

)
. (1.67)

Due to the modified susceptibility, we find a different expression for the thermal
mode population neff,th than previously derived: a dependence on the ratio Γm/Γeff

has been acquired. If the pump is on the blue sideband of the circuit (∆̄ = Ωm),
then the mechanical linewidth decreases and the mechanical resonator is heated
up, increasing the thermal population. On the other hand, if the pump is on the
red sideband (∆̄ = −Ωm), neff,th < nth. In the latter case, the effective thermal
population reads

neff,th = nth ×
(

1 + η−1
rsf

1 + C + η−1
rsf

)
. (1.68)

In this context, eq. (1.68) allows us to interpret C as a measure for the cooling
power. As C becomes large, the thermal population tends to zero. This classical
cooling scheme is a well-established result in the field of optomechanics, and has
been demonstrated experimentally by Arcizet et al. [27] some fifteen years ago.

Conventionally, the ground state is defined as having an effective resonator pop-
ulation neff well below 1. Achieving this is therefore conditional on having a suffi-
ciently high cooperativity, specifically C � nth (here, ηrsf ∼ 1). In practice, it can
be challenging to achieve ground-state cooling for low-frequency (below megahertz)
modes at room temperature, and this has only been achieved recently [34]. Most
experiments, those presented in this work included, pre-cool the electromechanical
device to cryogenic temperatures to reduce nth, and ease the requirement for strong
pumping.

Interestingly, as C becomes large, all fluctuations in eq. (1.67) vanish. This is not
a violation of the Heisenberg uncertainty principle however, as the electromechanical
coupling induces an additional noise source to the mechanical system, which adds
fluctuations. This additional term also imposes another requirement for the system
to reach the ground state which must be taken into account.

Cavity backaction noise

From eq. (1.64) we derive the resonator fluctuations induced by the cavity noise,
〈x2〉cav:

〈x2〉cav = 2xZP
Γem

Γeff

(
n̄(1 + 2η−1

rsf ) + η−1
rsf +

1

2

)
, (1.69)

where we have already assumed that the pump is placed on the red sideband.

5For simplicity, we assume that the coupling is weak compared to the mechanical frequency,
such that the optical spring effect is negligible, and δΩm � Ωm.
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For an optical field, n̄� 1 even at room temperature. More attention is required
when dealing with microwave photons, with a typical frequency here on the order
of 5 GHz. At room temperature, n̄ ≈ 8000, making it impossible to study quantum
electromechanics with microwave photons at room temperature. To ensure that
n̄ < 1, quantum electromechanical experiments are performed at temperatures of
about 20 mK.

From eq. (1.69) we can treat the circuit as a thermal bath, coupled to the me-
chanical oscillator at a rate Γem, with an effective population ncn, which reads

ncn ≈ η−1
rsf . (1.70)

Note that the final term 1/2 in eq. (1.69) does not enter in our definition of the
effective population, as seen below.

Effective resonator population

Overall, the fluctuations of the mechanical resonator position read

〈x2〉 ≡ 〈x2〉th + 〈x2〉cav = 2xZP

(
neff +

1

2

)
, (1.71)

where

neff =
Γmnth + Γemncn

Γeff
. (1.72)

This expression confirms our original assertion: the mechanical resonator is coupled
to two baths, at different rates. The evolution of the effective resonator population
is summarized in fig. 1.13. In the limit of strong pumping Γeff → Γem, and the
mechanical resonator thermalizes fully with the microwave resonator.

From eq. (1.72) we find that the sideband resolved factor plays a limiting role
on the minimal value of neff : as C → inf, neff → η−1

rsf . This highlights a second
requirement for an electromechanical device: if it is to be cooled to the ground
state, in addition to reaching C � nth, the system needs to be deeply in the resolved
sideband regime. If ηrsf 6 1, the ground state cannot be reached, independent of
the pumping strength6–for instance, in fig. 1.13, ηrsf = 1, and neff > 1 for any C.

1.4 Summary

In summary, we have presented the reader with the basic tools which can be used
to determine the position of a mechanical oscillator by means of a probing system.

6Other methods exist to achieving the ground state if this condition is not met, see e.g Refs.
[41, 42]. However, these usually require high measurement efficiency, or multiple cavities, and
could not be applied in this work.
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Figure 1.13: Electromechanical cooling of a mechanical resonator coupled to a mi-
crowave resonator which is pumped on its red sideband. For this figure it was
assumed that ηrsf = 1, representative of the experiments in the following chapter.
Represented are the effective population of the resonator (black), and contributions
neff,th added to it by the thermal environment (green, dashed) and the circuit ncn

(black, dashed). For illustrative purposes, n̄ = 10−1 (represented by the red rectan-
gle), although this value is typically even lower in physical experiments.

We have introduced the concept of noise spectra, and described how these can be
used to extract information from a randomly fluctuating mechanical oscillator. To
experimentally obtain this information, we have proposed two schemes. First, we
considered the Mach-Zehnder interferometer, which transduces the position of a
mechanical oscillator into phase fluctuation of a probing laser beam. By analyzing
the various noise sources in such a system, we found that, for a shot-noise limited
laser beam, a signal-to-noise ratio of up to 45 dB could be attained.

To push the accuracy of the detection further and allow a finer control over the
mechanical motion, an electromechanical device, where the mechanical oscillator is
dispersively coupled to a microwave circuit, was then considered. We found that the
interplay between the two resonators causes a backaction effect on the mechanical
oscillator which modifies its response to external forces. As a result, the effective
thermal environment of the oscillator becomes modified. We described how its
average population could brought close to 0 in a sideband cooling experiment. Two
conditions are necessary to achieve this: the cooperativity of the system must be
higher than the thermal population, and the system must be in the resolved sideband
regime. In the following chapter we present an electromechanical device fabricated
and characterized in our group at the beginning of this thesis. The results covered in
this chapter are applied to verify the figures of merit of that device, and a sideband
cooling experiment is presented.
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Chapter 2

First electromechanical
experiments

All the necessary theoretical background having been introduced in the previous
chapter, we now turn our attention to the first set of results obtained in our group
with an electromechanical cavity. This chapter summarizes the work done at the
beginning of this thesis, and which forms the essential part of the work of T. Capelle
who defended his thesis in 2020 [43]. These experiments introduce the physical
system that we work with Their results will serve to motivate the subsequent work
pursued by the author, presented in the following chapters.

We aim to leverage the tools of circuit quantum electrodynamics to achieve a
deep quantum control over a mechanical mode. In the short term, the first milestone
is to initialize the mechanical mode in its ground state through a sideband cooling
process. As discussed in chapter 1 the ability to do so is defined by two parameters:
the cooperativity C and the sideband resolution factor ηrsf . For the mechanical
resonator its mass, frequency, quality factor, and temperature all play a role; as
for the microwave circuit a low dissipation κ and a thermal population n̄ � 1 are
required.

The emphasis placed on these different parameters varies from experiment to
experiment in the literature, producing a veritable zoo of electromechanical devices,
each with their own specialization. A brief overview of the state of the art of these
electromechanical cavities is given in section 2.1. Based on this, we present our
choice of device: it consists of a 100-nm thick silicon nitride membrane, coupled by
electrostatic interaction to a planar LC circuit.

Section 2.2 presents the experiments through which principal parameters of this
electromechanical cavity are extracted. The mechanical resonator is probed by
measuring its thermal spectrum and inducing a coherent response via the effect of
optomechanically induced transparency. We thus find that the mechanical resonator
has a Qf -product of 4.8 × 1013 Hz, and that the vacuum coupling rate is g0/2π =
0.62 ± 0.8 Hz. Section 2.3 then presents a sideband cooling experiment in which

29
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a reduction in the phonon population by several orders of magnitude is achieved.
However, the minimal occupation of the mechanical resonator is only reduce to
approximately 100, relatively far from the ground state.

Section 2.4 discusses the significance of these results. It analyzes in particular
the main limitations to the presented device, and why the ground state could not
be reached. Upon this basis, the improvements on this device that were made by
the author are introduced.

2.1 Silicon-nitride membrane electromechanics

Owing to the generic nature of the dispersive interaction, no fundamental constraint
is imposed either on the shape, size, or frequency of the mechanical resonator. As
a result, a plethora of resonators can be found in the literature of cavity electrome-
chanics. In this section we briefly review the various possible options, and show the
advantages of the system we ultimately opted for: a device based on silicon nitride
(SiN) membranes.

First and foremost, to have the capacity to prepare quantum states of mechanical
motion, the resonator must be in its ground state. If it must be cooled by the opto-
or electromechanical interaction, a necessary (but insufficient) condition is that the
mechanical frequency f ≡ Ωm/2π must be larger than the thermal decoherence rate
[44]. This can be expressed in terms of the so-called Qf -product, which must satisfy

Qf >
kBTenv

h
. (2.1)

Note that higher temperatures also result in low coherence times. Experiments
are therefore often performed in cryogenic environments to ease the requirements
on the device parameters. For cooling at Tenv = 20 mK as in this work, Qf &
109 Hz is theoretically required. This is in fact readily achievable but the Qf -
product still serves as a good figure of merit for the mechanical resonator, and we
will base our choice on this factor. Having long coherence times is conditional for
highly perfomant in quantum memories [10], for coupling incompatible quantum
systems such as for optical-to-microwave photon conversion [6–9], or for studying
non-classical states of motion [16, 45, 46]. Maximizing this product starts with the
right choice of material.

2.1.1 Choosing the mechanical resonator

Crystalline materials are an intuitive choice for obtaining high Q: they can be
almost perfectly cleaved or etched along their flat faces, resulting in low surface
roughness and low loss [49]. Many ground-breaking experiments have been pursued
using for instance quartz [40, 50] (Qf ≈ 1010 Hz in [40]) or silicon [12, 22, 51,
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Figure 2.1: Examples of mechanical resonators. a-d, The scale bars represent 10 µm.
(a) Scanning electron microscope (SEM) image of a silicon nanobeam where the
mechanical and electromagnetic modes are colocalized. The uppermost inset picture
is a zoom of the area in which the fields are localized. The lower inset illustrates the
profiles of the the electromagnetic mode (top) and the mechanical mode (bottom),
respectively. (b) False-colored SEM image of an aluminium plate serving as a
mechanically compliant capacitor in a resonant LC circuit. (c) SEM image of a
mechanically compliant wire (colored in orange), resulting in a variable coupling to
a flux line in a superconducting quantum interference device. Inset is a zoom into one
of the Josephson junctions (JJ) of the circuit. (d) SEM image of a SiN nanobeam.
Inset is a zoom into the clamping point. e, SEM image of a SiN nanomembrane. The
membrane, seen in the center, has dimensions of 1 x 1 mm2. f, Optical micrograph of
a patterned SiN membrane. The white scale bar represents 3 mm. Images extracted
from: (a) Chan et al. [12], (b) Teufel et al. [13], (c) Rodrigues et al. [47] (d)
Verbridge et al. [48], (e) Zwickl et al. [21] (f) Tsaturyan et al. [24].
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52] (Qf ≈ 1015 Hz in [22] at 25 mK)–an example of a Si resonator is shown in
fig. 2.1a. Amongst crystalline materials those exhibiting piezoelectric properties are
interesting [9, 53] (Qf ≈ 1013 Hz in [9]) because they are intrinsically coupled to
electromagnetic fields, which allows for integrated designs. For this reason, metals
are also an interesting materials to make mechanical resonators out of [13, 17, 47, 54]
(Qf ≈ 1012 Hz in [54]). Figure 2.1b shows a microwave cavity where the capacitance
is made of a mechanically compliant aluminium plate; in fig. 2.1c a nonlinear cavity
is shown where the frequency is shifted by mechanically varying the coupling to a
flux line. Other kinds of materials such as carbon nanotubes [55, 56], graphene [57],
or superfluid helium [58] have also demonstrated promising features.

Among the numerous possible platforms the current record holder for the best
Qf -product is, perhaps surprisingly, made from an amorphous dielectric: SiN. The
typical geometries for SiN resonators are thin beams (fig. 2.1d) or membranes
(fig. 2.1e), which can yield moderate Qf -products (for their fundamental modes,
Qf ≤ 1013 Hz [44] at room temperature). Yet in recent years engineered SiN res-
onators have demonstrated quality factors approaching the billions [24], and even at
room temperature Qf > 1014 Hz [31]1; an example of such an engineered resonator
is shown in fig. 2.1f. So far, these engineered resonators have mainly been employed
in the optical domain [59, 60], and no experiments have demonstrated quantum be-
haviors in an electromechanical system. Nevertheless, promising results regarding
the implementation of SiN resonators in microwave circuits have been obtained [6,
61].

Furthermore, it it well understood that mechanical quality factors of systems
limited by two-level-system losses, as is the case for SiN, increase at cryogenic tem-
peratures [9, 62–65]. This suggests that the new generation of engineered SiN res-
onators could significantly exceed the performance of the best crystalline silicon
resonators once cooled to cryogenic temperatures.

SiN resonators can only be found in the form of beams or membranes, due to
the fact that the mechanical properties of SiN only excel when it is clamped and
highly stressed [48, 67, 68] (see chapter 3 for a more detailed discussion). As a
general rule, beams are often used for compact, integrated designs; devices with
membranes on the other hand are larger but modular: their components can be
fabricated and characterized separately before being coupled, allowing each element
to be characterized individually before being implemented. In this work the latter
approach was preferred. We employ membranes, thin square sheets of SiN, with a
typical side length of a millimeter and a thickness of approximately 100-200 nm. An
example of the membranes fabricated for this work is shown in fig. 2.2.

1With such a Qf -product, quantum optomechanics could in principle be studied even at room
temperature, although that has yet to be demonstrated.
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Figure 2.2: (left) Optical micrograph of a SiN membrane fabricated by the op-
tomechanics group of the LKB. Suspended SiN is seen in light blue, and SiN above
Si is seen in magenta. The membrane has a thickness of 200 nm. The black scale
bar represents 0.5 mm. (right) Side view of the mechanical resonator, not to scale.
The Si substrate is about 500-µm thick, whereas the SiN thickness is approximately
100 nm.

Figure 2.3: a, Picture of a SiN membrane within an aluminium box. The membrane
is coupled to the box via a nearby antenna chip. The white scale bar represents 10
mm. Image exctracted from Yuan et al. [66]. b, Illustration of a SiN membrane
coupled to a resonant microwave circuit. Metal is shown in blue. The red beam
indicates a laser beam which simultaneously couples to the membrane, but this
is beyond the scope of this chapter. Image extracted from Andrews et al. [6].
c, Simplified view of a SiN-membrane based electromechanical cavity, in a “flip-chip”
geometry. The metal (in black) on the membrane chip (on the bottom) directly faces
the metal on the separate microwave chip.
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Table 2.1: Summary of various device parameters coupled to SiN membranes. All
cavities in these works were measured below 40 mK. For Refs. [33, 69], we estimate
G by assuming xZP ∼ 1 fm (based on similar systems [66]). In Yuan et al. [66] only
the “loaded” cavity dissipation rate was given, in which loss channels are saturated
by a strong pump. We assume that the unloaded dissipation rate quoted here is an
order of magnitude higher, in accordance with similar works [69].

Microwaves Mechanics Electromechanical
device

κ/2π Γm/2π G
(MHz) (Hz) (MHz.nm−1)

2D circuits

Andrews et al. [6] 1.6 0.42 4
Higginbotham et al. [33] 2.7 11 4

3D cavities

Yuan et al. [66] 0.5 3.5× 10−3 0.6
Noguchi et al. [69] 0.3 1 7

2.1.2 Electromechanical devices with SiN membranes

To couple a SiN membrane to an electromechanical cavity, essentially two approaches
have been taken in the past, differing in the way in which the microwave cavity is
created. One option is to fabricate it from a superconducting metal box (fig. 2.3a).
Inside of it the electromagnetic field can resonate at specific frequencies. The mode
is coupled to an antenna which can address the membrane motion. Alternatively, the
cavity can made of a planar superconducting circuit fabricated on-chip, as illustrated
in fig. 2.3b. In both cases the membrane is fabricated on its own separate chip, and
can be functionalized by the deposition of metal on its surface. The functionalized
area is aligned to the metal plate of a separate chip, which is either the antenna of
the 3D cavity or the capacive plate of the 2D circuit. thereby forming a capacitor
whose capacitance varies with the position of the membrane (for a 3D cavity, that
chip contains the antenna; in the 2D case, it contains the resonant circuit). This
assembly is called a “flip-chip” and is illustrated in fig. 2.3c.

Since the mechanical resonator remains the same in both cases, we can com-
pare them based on the mechanical loss Γm, the microwave loss κ, and the cavity
frequency shift per mechanical displacement2 G. The values of these parameters

2To compare different resonator geometries g0 is in general preferable, but since we only consider
membranes, G is suitable.
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Figure 2.4: (left) Optical micrograph of a lumped-element microwave cavity, from
the sample labelled BM2. Nb is shown in yellow, and the Si substrate in gray. The
feedline is highlighted in green, the inductance in blue, and the capacitor pads in
black. The scale bar represents 150 µm. (right) Equivalent circuit to the cavity,
with the circuit elements colored following the same code as in the image.

for devices found in the literature, for both 2D and 3D systems, are reported in
table 2.1. We find that overall, the 2D and the 3D approaches yield comparable de-
vices, with one exception: in Ref. [66], an exceptionally low mechanical dissipation
is found. That that is not unique to 3D cavities however, and we show below that
a low mechanical dissipation rate can be obtained in 2D circuits as well.

This being said the 2D approach presents the advantage of being more stream-
lined in design, as it does not require an intermediary antenna to couple microwaves
and mechanics. Furthermore, it was expected that using 2D circuits would ulti-
mately yield lower κ, as the field is more strongly confined than 3D cavities, reducing
the participation ratio of the amorphous SiN in microwave losses.

2.1.3 Fabricating the electromechanical device

The design of our microwave circuit is based on the optimized designs of Geerlings
et al. [70]. It is a lumped-element circuit, meaning the inductor and the capacitor
are discrete entities (see fig. 2.4), and the sizes of the individual elements are well
below the microwave photon wavelength. The cavity is addressed through a coplanar
waveguide (CPW) feedline: a metallic strip surrounded by two planes connected to
the ground conducts the signal,. Note that placing the circuit in this manner with
respect to the feedline places it in a hanger configuration.

We fabricate such circuits by evaporating a uniform niobium (Nb) layer on a
bare Si substrate, and patterning the metal by UV lithography–see Ref. [43] for
further details. To ensure that κ to be low the superconducting metal Nb is used,
with a transition temperature of 9.3 K. It is used for instance in Ref. [6] and shown
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Figure 2.5: a, Schematic representation of the electromechanical device, seen
through a cut plane normal to the surface. The diagram is not to scale, and the
ground planes have been omitted for clarity. b-c, Optical micrographs of a metal-
lized SiN membrane (b) and the LC cavity circuit (c) from the sample labeled BM2.
The relevant areas have been colored to correspond to the material color-coding set
by (a). The white scale bars represent 1 mm.
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to allow for high coherence times [71]. The substrate used here is high-resistivity Si
(ρ > 10 kΩ.cm).

The electromechanical device is then fabricated with a flip-chip design: the mi-
crowave circuit chip and the membrane chip are aligned and stacked, giving the
overall structure shown in fig. 2.5a. The alignment of the chips is done using a mask
aligner, such that the metallic pad on the membrane faced (fig. 2.5b) the capaci-
tive plates of the circuit. They are then fixed together with two drops of epoxy on
diagonally opposite corners of the chips. Aluminium pillars approximately 300-nm
thick serve the role of spacers (fig. 2.5c).

As mentioned in the previous section the two main figures of merit for the sys-
tem are the electromechanical coupling G and the Qf -product. To estimate these
parameters Ωm, Γm, κ, and g0 are measured, and the results are given below. The
measurements are taken in a wet Helium-3 cryostat, at a temperature of approxi-
mately 400 mK, unless stated otherwise.

Although the experiments presented below were mainly conducted by T. Capelle
during his PhD thesis, the following sections contain a summary of the main exper-
imental results together with an independent data analysis. The interested reader
is referred to T. Capelle’s PhD thesis for a more detailed description of this work
[43].

2.2 Characterization experiments

Since an electromechanical device cannot be characterized prior to being cooled in
a cryostat, is it difficult to be sure that a coupling between the mechanics and
microwaves has been successfully engineered. A series of characterization mea-
surements checks that the device functions as expected. Firstly, we measure the
frequency and dissipation rate of the microwave cavity. Once this has been done,
further measurements are performed to quantify the electromechanical couplings
and the parameters of the mechanical mode.

2.2.1 Characterizing the cavity resonance

The cavity response is measured using a vector network analyzer (VNA), which
sends a signal into the cavity and measures the reflected field. The spectrum of
the reflected power is shown in fig. 2.6: its presents a series of resonances, charac-
terized by dips of more than 10 dB. We know from finite element simulations that
the microwave circuit only has one resonance frequency in the measured range; all
other measured dips in the signal are attributed to parasitic effects, originating for
instance from standing waves created by impedance mismatches at wire junctions.
To distinguish the circuit resonance from the other parasitic ones, we search for the
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Figure 2.6: Reflection spectrum R of the sample labeled BM2. Several resonance
peaks are present, with the cavity resonance highlighted in red. Inset is a close-up
on the cavity resonance.

one which is coupled to a mechanical mode (section 2.2.2), and we indicate it in red
in fig. 2.6.

In chapter 1 we showed that the reflected power R follows a Lorentzian dip
around the microwave resonance (eq. (1.38)), as shown in the inset of fig. 2.6. We
find a circuit resonance frequency ωc/2π = 9.8 GHz and a linewidth of κ/2π =
2.0 MHz. This corresponds to the frequency around which the cavity was designed
to resonate, although the high number of parasitic neighboring modes prevents us
form affirming this conclusively. This measurement is therefore completed with
another, which searches for the typical mechanical response and ensures that the
considered microwave mode is indeed coupled to the mechanical resonator.

2.2.2 Optomechanically Induced Transparency (determin-
ing Ωm)

To verify the existence of a coupling between the microwaves and the mechani-
cal mode, we induce a response characteristic of electromechanical cavities called
optomechanically induced transparency (OMIT). This is a phenomenon which can
arise when two tones are sent into the circuit. It is formally equivalent to electromag-
netically induced transparency, where a three-level system can be made perfectly
transparent to a readout probe [72]. Here, we give the basic principles and main
predictions of OMIT, and more details can be found e.g. in Refs. [20, 30, 38].
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Ωm

.

Figure 2.7: a, Illustration of the OMIT scheme: a strong pump (orange) is placed
on the mechanical sideband of the cavity, while a weak tone (dark and light gray)
is swept in frequency to probe the cavity response (black). When the two tones are
detuned by the mechanical frequency, a transparency window opens (red). b, Re-
sponse of a weak probe around the circuit resonance. The circuit is pumped at
−776 kHz, corresponding to a mechanical mode. A transparency window opens
when the probe is resonance with the circuit. The reflection is normalized such that
it equals 1 far from resonance. c, Close-up on the central transparency peak from
(b), for two different pump powers. The power is smaller for the light red curve.

In OMIT a strong tone is sent into the red mechanical sideband3 of the circuit
(detuned from resonance by −Ωm), while its response is probed by a weak probe, as
illustrated in fig. 2.7a. If the two tones are detuned by exactly Ωm, a beat note is
created which drives the mechanical mode. This results in a backaction effect: the
driven motion of the oscillator generates mechanical sidebands of the strong tone,
one of which is resonant with the readout probe. This finally results in destructive
interference for the intracavity field at the probe frequency, which is observed by
a complete reflection of the probe from the cavity. It appears as the transparency
window shown in fig. 2.7b.

More precisely, provided Γm � ΓmC � κ and the pump is placed on a mechanical
sideband, it can be shown that the reflected power R around the cavity resonance
reads

R(∆) ≈
∣∣∣∣ C

1 + C

∣∣∣∣2 ×
∣∣∣∣∣ 1

1 + 2i∆
(1+C)Γm

∣∣∣∣∣
2

, (2.2)

where ∆ is the detuning from the cavity resonance. We see that this gives rise to
a Lorentzian peak whose height and width both increase with C. To verify that
we are indeed observing mechanical modes we vary the pump power, from which

3Pumping on the blue sideband is also possible, and results in optomechanically induced am-
plification [20, 73].
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we observe the dependency of the peak width and height on C (fig. 2.7c). The
mode characterized here oscillates at Ωm/2π = 776 kHz. Several other mechanical
modes were found in this manner, and the frequencies were in good agreement with
numerical simulations. Here, the most interesting mode is at Ωm/2π = 480 kHz, as it
has the highest coupling rate to the cavity–we note that this is not the fundamental
mode, which vibrates at a lower frequency still.

2.2.3 Measuring g0

The single-photon coupling rate g0 can be a tricky parameter to measure experi-
mentally, since it is usually dressed by the intracavity field amplitude α, requiring a
careful calibration of the electrical circuit from the circuit to the detector. A more
straightforward and self-calibrating procedure for determining g0 has been proposed
by Gorodestky et al. [74], and we give a brief outline of its principal ideas here.

In an electromechanical cavity the thermal fluctuations in the position of the
resonator result in fluctuations of the circuit resonance frequency ωc. The variance
of ωc reads 〈ω2

c 〉 = 2g2
0nth, where nth is the average thermal phonon population of

the mechanical resonator. We can thus gain direct access to the vacuum coupling
rate by measuring these frequency fluctuations. To do so we send a probe into
the circuit, causing it to acquire a phase noise sideband with a spectrum S̄φφ ∝
g2

0S̄xx. The challenge comes from the fact that we do not measure S̄φφ directly,
but a current noise S̄ii related to the phase noise by some (generally not accurately
known) transfer function. This transfer function depends, among other things, on
the resolved sideband factor ηrsf , the coupling ratio to the cavity η, and the total
amplification of the signal from the cavity to the measurement apparatus.

The principle of the experiment demonstrated in Ref. [74] is to modulate the
phase of the probe such that its spectrum S̄φφ,cal acquires a modulation sideband at
a frequency Ωcal near Ωm. In this manner the calibration tone becomes converted
into a current noise S̄ii,cal by the same transfer function as the mechanical sideband,
and S̄ii/S̄ii,cal ≈ S̄φφ/S̄φφ,cal

4. The phase noise terms can be derived analytically,
and it can be shown that

g2
0 =

Ω2
mφ

2
0〈i2〉

2nth〈i2cal〉
, (2.3)

where φ0 is the amplitude of the phase modulation. We note that for this procedure
to work, the two peaks must not overlap, such that their integrals can be evaluated
independently.

4For the transfer functions of the mechanical and calibration spectra to be identical, the output
current from the cavity must be measured either by direct detection or by homodyne detection.
This allows us demodulate the field and to extract a specific quadrature at the Fourier frequencies
Ωcal and Ωm. Here, we use the analog demodulation function of a vector spectrum analyzer to
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Figure 2.8: a, Calibration (red) and mechanical (yellow) sidebands of the probe.
The filled areas are Gaussian fits. b, Repetition of the spectrum acquisition of (a)
for various cryostat temperatures. The solid black line is a linear fit.

A weak probing tone is thus sent through the electromechanical cavity (slightly
detuned from the red sideband of the cavity), with a phase modulation amplitude
of φ0, at a frequency Ωcal ≈ Ωm. The experimentally measured current noise spectra
of S̄ii and S̄ii,cal are shown in fig. 2.8a. We note that the direct detection scheme for
a microwave experiment requires a specific setting on the vector spectrum analyzer
(VSA), setting a lower limit to the measurement bandwidth to 1 Hz, much above
the mechanical linewidth. For this reason, the peaks appear as Gaussian instead of
a Lorentzian.

Although g0 could in principle be extracted directly from fig. 2.8a, eq. (2.3)
involves the population of the mechanical oscillator, which we cannot assume to be
know a priori (c.f. section 2.3). To increase the accuracy of our estimate in g0 we
vary the base cryostat temperature Tenv and measure the ratio of the peak areas
several times (fig. 2.8b). As those temperatures nth varies linearly with Tenv, which
we leave as a fitting parameter. The error at each data point is estimated using a
bootstrap method. From this dataset we determine that g0/2π = 0.62± 0.8 Hz.

To cool the resonator to its ground state with sideband pupming, the lowest base
temperature possible is desirable so minimize nth. The following measurements are
therefore done in a different cryostat with Tenv ≈ 20 mK. We performed the final
characterization measurement, the measurement of Q, in this environment, since it
strongly depends on Tenv. We assume this does not affect g0 significantly.

extract the intensity modulation component of the signal around the carrier.
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2.2.4 Ringdown measurement of Γm

The mechanical dissipation rate Γm is determined by ringdown measurement, con-
sisting of two phases. In the “driving phase” the membrane motion is driven strongly
at a frequency resonant with the mode of interest. This can be done with a scheme
similar to the OMIT measurement: a pump is set on the mechanical sideband and a
second, weaker tone is placed on resonance with the cavity, generating a beat note
at the mechanical frequency and driving the mode. After a few seconds the weaker
tone is abruptly turned off; during this second “readout phase” the evolution of the
mechanical amplitude is recorded. The height of the measured sideband is propor-
tional to the displacement amplitude x(t), The measurement scheme is summarized
in fig. 2.9a. During the readout phase the amplitude of motion decays exponentially
as x(t) = x(0) exp [−Γefft/2], which can be fit to the data to extract the effective
mechanical dissipation Γeff .

There is a caveat: since the electromechanical cavity is probed on its red side-
band, Γeff depends on the sideband tone power due to electromechanical damping.
In section 1.3.4 (eq. (1.59)) we derived the expression for the effective mechanical
dissipation rate in the presence of a red sideband tone, and found that it varied with
the electromechanical cooperativity C. In principle C is not known a priori, but it
can be determined from the fact that C is proportional to the pump tone power Pin.
Letting KP→C be the proportionality constant, Γeff can empirically be expressed as

Γeff = Γm

[
1 +KP→CPin

(
1− 1

ηrsf + 1

)]
. (2.4)

Γm, which is the ordinate of the asymptote for C � 1, can be robustly extracted
with this method. In addition if Γeff is measured as a function of Pin, C can be
determined as well.

Here, we investigate the mode at Ωm/2π = 480 kHz. We first carry out a series of
ringdown measurements with different pump powers. Three examples of ringdown
curves are given in fig. 2.9b for increasing C, and they are found to be in good
agreement with an exponential decay. As predicted by eq. (2.4), the attenuation
of the mechanical amplitude is stronger for higher C. The extracted Γeff from all
ringdowns are compiled in fig. 2.9c, which we fit with eq. (2.4) to extract Γm. We
found that Γm/2π = 54 mHz, corresponding to Qm = 1 × 108 or a Qf -product of
Qf = 4.8 × 1013 Hz. This is sufficient according to condition (2.1) to reach the
ground state. However, as we show in the following, this is not the only constraint
placed on our system. Despite this extremely low dissipation rate a ground-state
cooling experiment was still far from trivial.
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Figure 2.9: a, Schematic of the two phases of a ringdown sequence. In the “driving
phase” the motion of the mechanical resonator is amplified by sending a pump tone
(red) on the red mechanical sideband of the cavity, with a weaker tone (black) on its
resonance. In the “readout phase” the weak tone is turned off, and the mechanical
amplitude is measured. From yellow to red the pump power increases. b, Examples
of ringdown curves showing the normalized displacement (Disp.) amplitude for
C = 3.3 × 10−2, 14, 1.2 × 102, from yellow to red. The straight lines represent the
theoretically predicted decay of the amplitude exp [−Γefft/2]. c, Extracted Γeff for
various cooperativities C. The continuous black line represents the fit with eq. (2.4).
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Table 2.2: Summary of the device parameters of BM2. The mechanical mode pa-
rameters are given for the mode with the highest measured g0. Here, T = 20 mK.
G is computed assuming xZP ≈ 1 fm.

Microwaves
ωc/2π (GHz) 9.8
κ/2π (MHz) 2.0

Mechanics

Ωm/2π (kHz) 480
Γm/2π (mHz) 54

Q 1× 108

Qf/ (kBTenv/}) 1.8× 104 � 1

Electromechanical device

ηrsf 0.88
g0/2π (Hz) 0.62

G (MHz.nm−1) 0.62

2.2.5 Summary

The measured values for the BM2 device are summarized in table 2.2. In particular,
we verify that the first ground-state cooling condition for the Qf -product (eq. (2.1))
is satisfied–here, we take Tenv = 20 mK which is the typical temperature of a dilution
cryostat. Since the inequality is well verified it is in principle possible to achieve
ground-state cooling with the mechanical modes of SiN membranes. Furthermore,
the electromechanical coupling G is close to the ones reviewed in the literature, and
a cooling experiment can be attempted. However, there already is a conspicuous
complication: κ > Ωm. Thus, the cavity is not in the resolved sideband regime, and
so the minimal possible population that can be achieved is η−1

rsf ≈ 1.1 quanta, as
derived in section 1.3.5.

Nevertheless, cooling the mechanical resonator down to one phonon is already
a promising result and worth attempting. In the following section we present a
sideband cooling experiment where we reduce the temperature of a mechanical mode
by thermalizing it with the microwave circuit.

2.3 Cooling experiments

In chapter 1 we present the theory of how the average population of a mechanical
mode can be reduced, even for high nth. When a strong pump is sent on the red
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sideband of the circuit, the latter acts as an effective cold bath of average population
ncn ≈ η−1

rsf to which the mechanical mode thermalizes. Here, we consider the mode
of the oscillator at Ωm/2π = 480 kHz.

Cooling can be observed when measuring the noise spectrum of the mechanical
mode for varying cooling powers, i.e. for increasing C. The experimental current
noise spectrum S̄ii, measured in A2.Hz−1, can be converted to the mechanical noise
spectrum S̄x̂x̂ provided the measurement chain is well calibrated. In principle this
can be done similarly to the measurement scheme presented in section 2.2.3.

Here a different approach is taken where the noise floor of the signal is used as a
reference. The signal at the output of the device is amplified in a phase-insensitive
manner, allowing us to measure the intensity of the field. The amplification chain
adds a constant amount of noise to the signal, which we express in terms of noise
quanta nampl. This known noise floor can be used to convert the signal from a current
noise back to a mechanical noise spectrum. Appendix A shows how this conversion
can be done; we note that the derivation neglects all the quantum noises in the
mechanical resonator caused by the cavity backaction, as they are assumed negligible
compared to the noise level nampl of the amplification chain. The mechanical noise
spectrum can be written as

S̄x̂x̂[Ω]

2x2
ZP

+ S̄noise =
2

AηΓmC

S̄ii[Ω]

S̄ii[Ωref ]
nampl, (2.5)

where A is the attenuation of the signal between the device and the amplifier,
η ≡ κi/κ ≈ 0.79, and S̄noise is a residual noise floor.

A high-electron mobility transistor was used to amplify the signal with a mea-
sured added noise of nampl = 13 quanta, corresponding to a temperature noise of
4.4 K. The attenuation A is estimated to be approximately 10 dB. The calibrated
noise spectra are shown in fig. 2.10a. With increasing C the integral of these curves
(minus the noise floor) decreases.

In section 1.3.5 we showed that the effective population could be written as

neff = nth ×
(

1 + η−1
rsf

1 + C + η−1
rsf

)
+ η−1

rsf . (2.6)

Figure 2.10b shows the extracted phonon population neff of the mode. We find it to
be in good agreement with this equation. In particular, we report a reduction of the
mode temperature by a factor of approximately 500. However, the ground state is
not reached and the minimal value of neff is approximately 100. The theoretical fit
shows that the pump power should be increased by another factor 100 to approach
the minimal value of neff ≈ η−1

rsf .
There is another glaring problem: for C � 1, neff ≈ 6 × 104, corresponding

to Tenv ≈ 1.4 K, significantly above the base cryostat temperature of 20 mK. This
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Figure 2.10: a, Phonon noise spectra in an electromechanical cooling experiment.
The centers of the peaks are shifted to be centered around 0. The full lines represent
experimental data and the dashed lines are Lorentzian fits to the peaks. From orange
to red we show the spectra for increasing cooperativities C, following the colors of the
data points in (b). b, The data points represent the extracted phonon population.
The full line represents a fit to the data of eq. (2.6).
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effective bath temperature is attributed to mechanical noises in the cryostat itself.
They drive the mechanical mode and constitute a significant challenge for preparing
the mode in its ground state. Its potential resolution is discussed in more detail in
Ref. [43], and is beyond the scope of this work. Here, we use these partial results
as a guide to motivate the improvements on the electromechanical device itself, and
discuss the main points below.

2.4 Discussion

Although the quantum ground state of the mechanical resonator was not reached,
several insights into the requirements for doing so were gained. By the modular
nature of this device, we can discuss most of the properties of the microwave circuit
and of the nanomembrane separately. This section aims to clarify which points can
most readily be improved upon in this system, and to present the direction in which
the project was carried further.

2.4.1 The microwave cavity

The design for the lumped-element microwave cavity was focused on minimizing
κ (or more specifically κi) in a compact resonator; reducing κ increases both ηrsf

and C. Here this might have been a counter-productive approach. Indeed, the
meandering inductance also acts as a parasitic capacitance due to its parallel metal
lines lying close to each other. The equivalent circuit to the cavity may be drawn as
in fig. 2.11. With such a model the effective capacitance of the circuit can be seen
as the summed contribution of a position-dependent capacitance C(x) (where x is
the height of the membrane), and a parasitic capacitance Cpar. If we model C(x) as
a parallel plate capacitor we can write

C(x) =
ε0Apad

x
, (2.7)

where ε0 is the vacuum permittivity, and Apad is the area of the capacitor pads.
Then, the electromechanical coupling reads

G =
Lε0Apad

2x2 [L (ε0Apad/x+ Cpar)]
3/2
. (2.8)

From finite-element simulations [43] the parameters for BM2 are: L = 2.9 nH,
Apad ≈ 6000 µm2, Cpar ≈ 0.8 fF. With these values the variation of the coupling
with the membrane height is plotted in fig. 2.12a. We can distinguish two regimes:
the parasitic capacitance dominates for distances greater than about 1 µm. In this
regime the scaling of G with x becomes is less favorable than for ε0Apad/x > Cpar.
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Figure 2.11: Equivalent circuit to an electromechanical device with an inductance
(green), and capacitance varying with position (blue), and a parasitic capacitance
in parallel (red).

With the device presented in this chapter, we are deeply in the regime where Cpar

dominates.
This problem is partially resolved by reducing the height of the membrane with

a spring mechanism in the chip box. As shown in fig. 2.12b a set of screws is used
to physically push the membrane chip further down. With this method dubbed the
“pushing top”, G was increased tenfold to 6 MHz.nm−1, as can be seen in fig. 2.12a.
This improvement notwithstanding, we remain in the regime where Cpar dominates.

Work was also undertaken to reduce Cpar with optimized inductances but this is
beyond the scope of this work: see [43] (p. 107) for further detail. Here, we turn our
attention specifically to the mechanical resonator. As we will see in the following
chapters significant improvements can be made to the membrane geometry. We
introduce them below.

2.4.2 The mechanical resonator

In addition to the improvements to the microwave cavity, ground state cooling can
be rendered much easier by improving on the mechanical resonator. Importantly,
we found two major obstacles: firstly, the fact that the mode is not thermalized to
the base temperature of the cryostat but to a much higher value of approximately
1.4 K; secondly ηrsf < 1, making it impossible to reach the ground state even in
the limit C � nth. The central concept that is introduced to address these issues
is that of phononic engineering, in the form first introduced in the Schliesser group
[24]. The principle of this engineering is to isolate a mechanical mode in the center
of the membrane, and to surround it with a phononic shielding.
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Figure 2.12: a, Electromechanical coupling G as a function of the membrane-to-
circuit distance, based on eq. (2.8) for the estimated values of the BM2 device. The
red cross indicates the measured value, and the green cross indicates the measured
value with the improvement described in (b). b, Images of the pushing top, with
the sample box opened (top left) and closed (top right). Four setscrews limit the
maximal pushing strength and the chip is mechanically pushed down by four contact
pins. (Below) Cut-plane sketch of the pushing top. Figure (b) extracted from Ref.
[43].
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Acoustic noise isolation with a phononic crystal

We expect firstly that such designs could help thermalize to lower temperatures
and significantly reduce nth. Although the author could find no report of this in
the literature, the consistent discrepancy between the effective mode temperature
and the croystat temperature has been observed in other research groups as well
for sub-MHz mechanical resonators–with some exceptions for wet, vibration-less
cryostats. We hypothesize that this spurious heating arises from a combination
of several uncontrolled noise sources in a laboratory (e.g. vacuum pumps) and
mechanical noise of the cryostat itself. A Bluefors pulse-tube cryostat was used
for the cooling experiment presented here, in which a mechanical element drives
the croygenic fluid through the system, generating audible noise. We expect that
this noise is up-converted through nonlinear effects to the MHz range, driving the
membrane. Phononic shielding [24, 75, 76] could be a potential solution to protect
the mechanical modes from such noises.

High frequency softly-clamped mechanical modes

To increase ηrsf the mechanical frequency can be increased. For the nanomembranes
presented here Ωm can be increased by reducing the side length. However this comes
at the cost of an increased dissipation, linked to the curvature of the mode profile
[77], reducing the vacuum cooperativity C0 = C/α. The phononic engineering
method grants a control over this profile, and can give rise to modes confined to a
small area while maintaining a high Q. This method dubbed “soft clamping” (for
reasons described in the following chapter) gives rise to modes with an overall higher
Qf -product, making it possible to attain high ηrsf without compromising C.

2.5 Summary

In summary, we have presented an electromechanical device comprising a nanome-
chanical silicon-nitride membrane and an on-chip LC circuit. The choice of this
design was based on a brief review of the literature. It was found that silicon-nitride
based resonators could result in some of the highest Qf -products ever measured in
mechanical resonators. Such a property is particularly desirable for high coherence
times in quantum states.

This device was characterized in four experiments aiming to determine its main
parameters: the circuit was probed to determine its response; OMIT and ringdown
measurements were performed to measure the mechanical response; a calibrated
probing of the thermal mechanical motion was performed to determine the elec-
tromechanical coupling rate. They were found to be comparable to similar devices,
with Qf -product of approximately 5× 1013 Hz and G ≈ 0.6 MHz.nm−1. Finally, an
electromechanical cooling experiment was performed by pumping the cavity on the
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red sideband. The temperature of one of the membrane modes was reduced by a
factor 500 using a sideband cooling experiment, but neff < 1 could not be reached.

Several shortcomings of this first device iteration were discussed. In particular,
we mention a significant improvement which can be added to the mechanical res-
onator: phononic engineering, which has been shown to significantly increase the
Qf -product. This could result in a decrease in neff as well. The bulk of the work
pursued in this thesis has been to design, fabricate, and characterize these engi-
neered resonators. The remainder of this manuscript focuses on this aspect. In the
following chapter we present the theoretical background to losses in nanomechanical
oscillators. We detail how phononic engineering improves the quality of mechani-
cal modes in silicon-nitride membranes; following that, the design of the improved
membranes is given, and critical considerations to their optimal functioning are
discussed.
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Chapter 3

Membrane design and simulations

In the previous chapter we found two main limitations to the sideband cooling ex-
periment: the thermal population nth of the mode was too high (or, reciprocally,
the sideband pump power could not be sufficiently increased), and the system was
not in the sideband resolved regime, making it impossible to reach the ground state
even if the limit C � nth had been achieved. To overcome this higher mechan-
ical frequencies Ωm can be considered, all other things being equal, thereby both
increasing ηrsf and decreasing nth.

This being said, we must ensure that an increase in Ωm does not adversely
affect the other device parameters, in particular the Qf -product and the minimal
achievable value for the effective mode population neff . Section 3.1 reviews in detail
the dependence of losses on the membrane geometry, and discusses their origin.
Crucially, we find that Q is limited by the strong bending of the membrane at its
contact points with the substrate. Because of this we show that neither the Qf -
product nor neff can be significantly improved beyond the experiment shown in the
previous chapter, for a plain membrane.

Section 3.2 demonstrates how this issue can be overcome by phononic engineer-
ing of SiN membranes. By patterning the resonators with a phononic crystal, we
are able to engineer mechanical modes localized close to a central defect, avoiding
the dominant loss source in membranes. We give the key design elements of such
patterned membranes which give rise to mechanical modes with utrahigh quality
factors first demonstrated by the K-Labs [24]. We describe the rich dynamics that
develop from this patterning, and how these enable a high degree of control over the
mechanical mode shape. We show that finite-size effects significantly degrade the
reproducibility of the quality factor.

Indeed, section 3.3 finds that these finite-size effects result in a coupling between
the localized modes of interest and lossy parasitic modes. We derive a model of
coupled modes to quantify this coupling. To bypass this problem we suggest a
modified design of the engineered membranes, which are made robust to these kinds
of finite-size effects. Finally, section 3.3 studies how this coupling can be used

53
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to deliberately create symmetric and anti-symmetric normal modes, separated by
several millimeters and with high quality factors.

3.1 Key parameters of SiN nanomembranes

In this section we solve the equations of motion for square SiN membranes, which
we will refer to as “plain membranes”, in contrast to the engineered resonators in-
troduced subsequently. In doing so we derive the dependence of key parameters,
the Qf -product and the minimal effective population neff , on the resonator geome-
try. This analysis will serve as a demonstration that the electromechanical device
presented in the previous chapter cannot be significantly improved by changing the
geometry of the plain membrane (i.e. its thickness, length, or tensile stress). Instead,
other solutions are introduced in the following section.

3.1.1 Quality factor of a harmonic oscillator

For a harmonic oscillator the quality factor Q is defined as

Q ≡ 2π
U

∆U
, (3.1)

where U is the total energy stored in the mode and ∆U is the energy dissipated in
one oscillation cycle. If various loss channels contribute incoherently to the total
loss, then the overall quality factor can be expressed as

Q−1
tot = Q−1

1 +Q−1
2 + ..., (3.2)

where Qi ≡ 2πU/∆Ui is the quality factor associated to the ith loss channel, and
∆Ui the corresponding amount of energy lost per cycle. In a plain membrane there
are several loss channels which need to be considered in order to obtain an accurate
estimate of Q. We give an overview of the main sources of loss below.

3.1.2 Mode profile of a vibrating plate

One of the dominant channels of loss depends on the boundary conditions of
the membrane. To estimate the associated quality factor, we start by deriving the
mode profiles of a plain membrane. We model it as a square vibrating plate with a
thickness h and a side length l, such that h� l. We assume that the plate has an
isotropic tensile stress σ0, is infinite, and is clamped by the anchoring substrate as
shown in fig. 3.1. The out-of-plane displacement u of the plate, for u � h, follows
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Figure 3.1: Schematic representation of the middle cross-section of a “hard-clamped”
vibrating plate. The anchoring substrate is represented in dark gray.

the equation of motion (see chapter 10 of Ref. [78] and its corresponding appendix)[
D

ρh

(
∂4

∂x4
+

∂4

∂y4
+ 2

∂4

∂x2∂y2

)
− σ0

ρ

(
∂2

∂x2
+

∂2

∂y2

)]
u(x, y) = Ω2

mu(x, y), (3.3)

where D = Eh3/12 (1− ν2) is the flexural rigidity of the membrane, E is Young’s
modulus, ν is Poisson’s ratio, and ρ is the mass density. We assume that the
displacement of the membrane is sufficiently small to allow us to neglect nonlinear
terms such as the Duffing term.

Such a system has a “hard-clamped” boundary condition: the displacement at
the border of the plate (x = 0, x = l, y = 0, and y = l) must be zero; furthermore,
the plate at the border must be parallel to the thin film anchored to the substrate.
Formally, these conditions read

u(x, y)|border = 0 (3.4)

n ·∇u(x, y)|border = 0, (3.5)

where n is a vector of unit length normal to the border. The condition (3.5) is the
hard clamping of the plate.

The exact solution to these equations can be calculated analytically. The in-
terested reader is referred e.g. to the Appendix of [77] for its full derivation. The
solutions of u for x ∈ [0, l/2] read

u(0 ≤ x ≤ l/2, 0) ∼ mπΛ

2

[
e−2x/Λl − cos

(mπ
l
x
)]

From eq. (3.5)

+ sin
(πm
l
x
)

From eq. (3.4)

, (3.6)
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Figure 3.2: a, Displacement profile of the fundamental mode of a plate normalized
(Norm.) by the displacement at x = l/2. b, Absolute value of the curvature
of the mode, normalized by the curvature at x = l/2. The cancellation of the
curvature corresponds to a sign change. The values are plotted along the y = 0 line.
c, Normalized curvature of the fundamental mode near the border of the membrane.
The curves were calculated for Λ = 10−1, 10−2, 10−3, from light blue to dark blue.

where m is the number of antinodes, and

Λ ≡

√
Eh2

3σ0l2 (1− ν2)
� 1 (3.7)

is a dimensionless parameter which we discuss in more detail in the following sec-
tion1. For typical sample parameters, Λ ≈ 10−3. The solution is symmetric for
x ∈ [l/2, l] such that u(x+ 1/2) = u(1/2− x).

It can be shown (see the Appendix of [77]) that the frequency of the (m,n)th

mode reads:

Ωm = π

√
σ0(m2 + n2)

ρl2
. (3.8)

With the fixed constraint on the derivative an exponential term of characteristic
length Λl appears, underlined in red in eq. (3.6). This tail at the border of the
membrane is shown in fig. 3.2a where the full solution to the plate equation is
plotted. In the limit of Λl→ 0 the profile converges uniformly to a simple sinusoidal
function. This is not the case for the second derivative of the mode shown in fig. 3.2b:
it is shown in fig. 3.2c that the peaks in the curvature at the borders only converge

1We note that this parameter is conventionally denoted λ in the literature, but the uppercase
was taken here to prevent confusion with the optical wavelength.
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pointwise as Λl → 0, i.e. the peak width reduces while its height increases. This
difference in convergence between the mode profile and its curvature has significant
repercussions on the dissipation of the energy of the mode.

3.1.3 Bending losses

The main contributors to dissipation are losses intrinsic to the membrane material
[79], and depend on the mode’s second derivative; they are referred to as bending
losses. Understanding these losses is key to the rest of this thesis, and we therefore
describe them here in detail. The analysis below follows the derivation of Ref. [77].

The bending quality factor

In high aspect-ratio, high-stress resonators (such as the one described above), most
of the elastic energy of their modes is used to elongate the material, which is a lossless
process [80]. However, the small remaining fraction of the total energy goes into
bending the material, which does cause dissipation. The energy lost per oscillation
cycle is

∆U =
2π

Qintr
Ubend, (3.9)

where Qintr is the intrinsic quality factor of the material and Ubend is the energy
stored in bending. The total stored bending energy density dUbend is the integral
of the local work done during a quarter of an oscillation cycle (i.e. until the plate
bends maximally), and reads

dUbend(r) =

∫ π/2Ωm

0

Re [σ(r, t)] · Re [ε̇(r, t)] dt, (3.10)

where σ is the local tensile stress, ε is the local strain, and r = (x, y, z)T denotes a
point on the plate.

For small displacements the strain is given to the first order2 by [81]

ε(r, t) ≈ (−z)

 ∂2
xx

∂2
yy

2∂2
xy

u(x, y)e−iΩmt. (3.11)

σ relates to ε by

σ(r, t) = Ẽ

1 ν 0
ν 1 0
0 0 (1− ν)/2

 ε(r, t), (3.12)

2This term corresponds to the strain due to bending only. The strain due to elongation, which
is to the second order of u, was neglected.
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where we have introduced the generalized Young’s modulus Ẽ.
Ẽ was introduced by Zener [79] to semi-empirically model losses in elastic media

resulting from internal friction. It has been verified by several experiments [44, 77,
80] to accurately describe the behavior of high aspect-ratio oscillators. We define
Ẽ ≡ E− iE2, where E2 ∈ R+. Typically, E2 � E, and so its effect is to add a small
component to the stress that oscillates with a π/2 phase lag compared to the strain,
inducing a net energy loss. This may be seen as elastic energy being irreversibly
converted into heat and can be interpreted as an internal friction process. We note
that the intrinsic quality factor of the membrane derives from this model, with
Qintr ≡ E/E2.

From eqs. (3.10) to (3.12) the bending energy Ubend reads

Ubend =
Eh3

24 (1− ν2)

∫ l

0

∫ l

0

(
∂2u

∂x2
+
∂2u

∂y2

)2

dxdy, (3.13)

= Λσ0h×
π2(m2 + n2)

2

(
1 + Λ

(m2 + n2)π2

4

)
× A2, (3.14)

where A is the amplitude of the mode3. The losses in the system ∆U = 2πUbend/Qintr,
as seen in eq. (3.13), are thus proportional to the square of the mode’s mean cur-
vature. This results in two distinct terms which were boxed in eq. (3.14): the term
in red, which we will refer to as “edge loss”, originates from the hard clamping con-
dition (3.5), while the one in blue comes from the condition (3.4). Crucially, edge
loss is the dominant term and varies as Λσ0 ∝

√
σ0: although the curvature peaks

become thinner with increasing σ0 the induced losses still increase. On the other
hand, the remaining term varies as Λ2σ0 which does not depend on σ0. This is to
be expected: a mode subject only to the condition (3.4) has a profile resembling a
simple sine function (see eq. (3.6)) which only varies with l.

From eq. (3.1) the total energy of the system must be evaluated to evaluate Q.
By conservation of energy U = Uelong + Ubend, where Uelong is the elongation energy
which reads

Uelong =
σ0h

2

∫ l

0

∫ l

0

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)
dxdy,

= σ0h×
(m2 + n2)π2

2
× A2.

(3.15)

From eqs. (3.14) and (3.15) Ubend/Uelong is of order Λ, and so U ≈ Uelong. The quality
factor associated to the bending loss Qb of the (m,n)th mode can thus be calculated

3The reader may notice that several terms are missing from eq. (3.13), namely ∂2xxu∂
2
yyu −(

∂2xyu
)2

. These correspond to the Gaussian curvature of the mode, and from Green’s theorem
their integral is exactly zero [77].
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Figure 3.3: Variation of Qintr with the thickness for SiN membranes. The gray
dashed line represents the thickness for which surface and volume losses contribute
equally to the Qintr.

from eqs. (3.1), (3.14) and (3.15). It reads

Qb =
Qintr

Λ

(
1 + Λ

(m2 + n2)π2

4

)
−1. (3.16)

For low mode orders the red term is dominant, and Qb ≈ Qintr/Λ. This can be taken
advantage of to fabricate high-Q resonators even if Qintr is low. To maximize Qb it
is thus desirable to increase the aspect ratio of the resonator as much as possible,
and to push σ0 to its limit4. We note that Λ ≈ Ubend/Uelong, and therefore represents
“the ratio of the bending energy to the elongation energy for the fundamental mode”
[77]. It quantifies how much more energy is stored in lossless elongation rather than
dissipative bending–Λ is often referred to as the “dissipation dilution factor”.

However, this equation does not tell the whole picture and a more detailed
description of Qintr is required. Indeed, this term was treated up to here as a constant
but it has been shown to depend on the membrane thickness as well, modifying the
scaling of Qb.

Thickness dependence of Qintr

Qintr can be modeled as an incoherent sum of losses arising both from the surface
(with a quality factor Qsurf) of the resonator and from its bulk (Qvol) [44, 82]. Qintr

4In practice, SiN can be deposited with σ0 up to 1.4 GPa. This value can be pushed close to
the ultimate yield limit of approximately 6 GPa by stress engineering [76], but cannot be applied
in this work as it can only be implemented in string resonators.
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then reads
Q−1

intr = Q−1
vol +Q−1

surf . (3.17)

Yasumura et al. [82] found that in thin SiN beams Qsurf could be well described
by Qsurf(h) = βh, where β ∈ R+. The meta-analysis by Villanueva and Schmid [44]
found that this description applied to plain SiN membranes as well, and estimated
that β = 60± 40 nm−1 at room temperature. Conversely, Qvol was found to be con-
stant with Qvol = (2.8± 0.2)× 104. The overall behavior of Qintr for SiN membranes
is summarized in fig. 3.3.

For the thin membranes (h < 100 nm) considered in this work, surface losses
dominate and Qintr ≈ βh. In that regime the dependence Qb on h is removed, and
we remain with

Qb ∝ l
√
σ0. (3.18)

We note that although fig. 3.3 seems to indicate that higher membrane thicknesses
are desirable to increase Qintr, overall ∂Qb/∂h ≤ 0. Being in the surface-loss domi-
nated regime remains preferable.

In sections 3.2 and 3.3 we employ numerical simulations to determine the dis-
placement and curvature profiles of various mechanical modes, from which we can
extract Qb. We first apply them to a plain membrane to verify the accuracy of such
simulations. This allows us to to compare the numerical results with the theoretical
predictions from above.

Numerically computing Qb

The numerical calculations in this work are done using the finite-element solver
COMSOL Multiphysics. The file used to the simulations presented below can be
accessed in the Zenodo repository of Ref. [83]5.

To compute ∆U , from eq. (3.14), the curvature of a mode must be precisely
determined. This is particularly challenging due to the sharp features that arise
near the borders. For numerical efficiency we assume that the system has two lines
of symmetry, and only model a quarter of the membrane shown in fig. 3.4a. Also
shown is a further division of the membrane into a “border region” and an “inner
region”. This distinction is made to ensure that the sharp curvature features are
well resolved; we define the boundary between the two regions to lie at a distance
3Λl away from the border, slightly larger than the typical peak width Λl. The
purpose of such a distinction is to enable us to mesh the border region with a much
finer resolution than the inner region. We thus mesh the border region with a dense
regular square mesh and leave COMSOL to mesh the inner region adaptively, setting
only the maximal size limit–the minimal size corresponding to the border mesh size.

The quality factor is evaluated using eq. (3.1). We compute U from the max-
imal kinetic energy, which is simpler to compute than the elongation energy (by

5Found under the filename “SiN membrane opt dimless.m”.
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Figure 3.4: a, Typical meshing for a plain membrane geometry, highlighting the
definition of the inner region (yellow), and the outer region (red). The dashed
lines indicate the reflection symmetry axes assumed for the model. b, We compare
the error in our estimation of Qb relative to the theoretical Qtheory calculated from
eq. (3.16) for different border (B.) and inner (I.) mesh sizes. The inner mesh size
corresponds to the maximal mesh size allowed, while the border mesh size is the
universal size of all squares in that region. The red point corresponds to the border
mesh size value while the inner mesh size is varied. The dashed lines indicate
Qb = Qtheory. For this simulation Λl = 30 µm was taken.

conservation of energy, the two are the same). We thus take

U =
1

2
ρhΩ2

m

∫ l

0

∫ l

0

u2(x, y)dxdy. (3.19)

We made the following convergence test: we progressively reduce first the border
mesh size then the maximal inner mesh size, to verify that the computed value for
Qb converges. In fig. 3.4b we find that the simulated value of Qb arrives to within
less than 2% of the theoretically predicted value for border mesh sizes below Λl/10.
The inner mesh size could be left relatively large (above 6Λl) with little influence
on the convergence of Qb.

Applying such a technique for realistic parameters such as a stress σ0 = 1 GPa
and an aspect ratio l/h = (1 mm/100 nm) would be highly challenging, since the
width of the curvature peak Λl ≈ 1 µm is very hard to resolve in a finite element
simulation. However, assuming that a Qb,ref has been computed at a reference
Λref (maintaining Λref � 1), we can use the known scaling of Qb with Λ given by
eq. (3.16) to express it as

Qb = Qb,ref
Λref

Λ
. (3.20)

We expect this method to be of use for calculating the quality factor of low-Λl
mechanical resonators which meet the following criteria: their modes are subject to
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Figure 3.5: Schematic illustration of phonons “leaking” from the mode (the energy
density is depicted in red) into the surrounding substrate. Shown here is a cross-
section of a vibrating plate similar to the one in fig. 3.1.

the boundary condition (3.5) and the mode profile can be assumed independent of
Λl.

3.1.4 Radiation losses

A separate but coequal contribution to mechanical losses is attributed to acoustic
radiation into the substrate. We will refer to it as “radiation loss”, in keeping
with the nomenclature from Ref. [44], although they have equivalently been labeled
clamping losses, anchor losses, or tunneling losses. These arise from a finite acoustic
impedance mismatch between the membrane and the surrounding substrate, which
is in practice not infinite and possesses a finite mass. Thus, energy can be irreversibly
transferred away from the resonator, reducing Qtot.

Radiation losses have been studied actively in SiN resonators, and several com-
plementary descriptions have been offered as to their origin:

� Jöckel et al. [84] showed that strong losses appear when the membrane modes
are resonant with substrate modes, indicating that they become coupled and
share their loss channels.

� Radiation losses were modeled by Wilson-Rae as phonons tunneling into the
bulk of the surrounding substrate [85], depicted in fig. 3.5.

� It was later verified that the rate of this tunneling depends on the “overlaps
between the resonator mode and the free modes of the substrate” [86].

For a plain membrane the associated quality factor Qrad can be approximated as
[44]

Qrad ≈ ζ
ρS
ρ

1.5ς3 n2m2

(n2 +m2)3/2

l

h
, (3.21)
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where ς =
√

(ES/σ0)(ρ/ρS) is the ratio of the phase velocities (“acoustic mismatch”)
and ρS and ES are the density and Young’s modulus of the substrate, respectively.
ζ ∈ [0, 1] is a phenomelogical term that accounts for the mounting conditions of the
substrate in the experiment. Equation (3.21) predicts that higher-order modes are
less affected by radiation losses than the lower-order modes, which was confirmed
by the measurements of [44].

The parameter ζ merits further discussion as it has been shown to vary strongly
under different experimental conditions. If the chip mounting conditions are not
systematically controlled, ζ is left to vary freely and eq. (3.21) becomes a fruitless
approach to quantifying radiation losses. It has been shown that ζ is maximal if the
sample was resting freely on the experimental table, held in place only by gravity
[87]. In comparison, a factor 10 reduction in ζ was observed when the sample is
fixed in place by double-sided tape. We assume that these results, measured for SiN
beams, similarly apply to SiN membranes, as these variations in ζ relate more to the
condition of the substrate rather than the resonator shape–although we note that
the precise value of ζ depends on the mode shape. Thus, we consider that ζ can be
held constant for constant chip mounting conditions. More sophisticated phononic
shielding schemes [76, 88] can make radiation losses negligible, and in subsequent
SiN designs, discussed in section 3.2, Qrad will not be a limiting factor to Qtot.

The radiation and bending losses are the only two main sources of loss consid-
ered in this chapter. Further dissipation can occur by gas damping, due to elastic
collisions with gaseous molecules. That case is treated empirically in the following
chapter, but it is beyond the scope of the present analysis, as it is almost always
negligible in typical experimental conditions. Thus, the total quality factor Qtot can
be evaluated and we can verify how the Qf -product and the minimal neff vary with
the membrane geometry.

3.1.5 Scaling of the parameters with the membrane
geometry

To summarize, the dominating losses in a plain SiN membrane can be described by

(Qtot)
−1 = (Qb)−1 + (Qrad)−1 . (3.22)

The scaling of the various quality factors is summarized in table 3.1, as well as their
values for typical parameters. We estimate that under ideal clamping conditions
and for typical sample parameters, Qrad > 2Qb, and

Qf ≈ 1.5× 1012 Hz. (3.23)

We note that the value for Qtot measured for a plain membrane at cryogenic tem-
peratures (section 2.2.4) exceeds the room-temperature Qf -product by a factor 50,
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Table 3.1: Summary of the scaling of the various quality factors for the fundamental
mode, m = n = 1. Estimated values are given for typical sample parameters:
h = 100 nm, l = 1 mm, σ0 = 1 GPa, ρ = 3200 kg.m−3, and E = 270 GPa. The Si
parameters are taken to be ρS = 2300 kg.m−3, and ES = 170 GPa. Qb is determined
from eqs. (3.16) and (3.17) and Qrad from eq. (3.21).

Quality factor Scaling Estimated value (×106)
Qb l

√
σ0 6± 4

Qrad l/
(
h
√
σ3

0

)
14 (ζ = 1)

Qtot - 4± 2

in agreement with similar experiments [66, 89].
In the limit of thin membranes where Qrad is higher, Qtot ∼ Qb. We then find

that the Qf -product of the fundamental mode cannot be increased by varying the
resonator parameters (h or l). It could still be increased with higher σ0, but a tensile
stress significantly beyond 1 GPa cannot be achieved in SiN nanomembranes. This
sets an upper limit to the room-temperature Qf -product for such resonators to
Qf ≈ 2× 1012 Hz.

Another parameter remains to be described, namely the mean population of a
mechanical mode in a sideband cooling experiment neff . The expression for this term
was derived in chapter 1, and for nth > C � ηrsf (representative of the experiment
described in section 2.3) we find

neff ≈
nth

C
. (3.24)

Both nth and C depend on the resonator geometry, and we show in Appendix B that
in the ideal case where Qrad � Qb and the parasitic capacitance of the microwave
circuit can be neglected,

neff ∝ h. (3.25)

In practice, h can be made a factor 10 lower than the 100 nm used here. While the
ensuing reduction in neff is significant is it ultimately insufficient to reach the ground
state (in chapter 2, the minimal achieve value for neff was 100). From this study we
find that none of the key parameters of a plain SiN membrane can be sufficiently
improved, and the ground state in the experimental conditions of chapter 2 cannot
be reached.

Several solutions have been suggested to overcome the present impasse, and at
their core lies the idea of mode shape engineering. We found that both sources of
loss (bending and radiation), although they have different origins, are both related
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to the clamping condition of the membrane to its anchoring substrate. In particular,
Qb, given in eq. (3.16), is dominated by edge losses (the red term) which results in
the scaling Qb ∝ Λ−1. If the hard clamping condition were absent the remaining
term would result in the more favorable scaling Qb ∝ Λ−2. In the following, we show
how phononic engineering techniques can be applied to remove the hard clamping
boundary condition (3.5) altogether, and render both edge losses and radiation losses
negligible.

3.2 Phononic crystal membrane design

Several approaches have been taken in the past to reduce either or both of the
main loss channels discussed above. For instance, a proposed solution has been to
attach a resonator to the substrate by means of thin tethers, instead of clamping
it directly. The so-called “free-free” resonator [90] or the trampoline resonator [91,
92] are instances of such an implementation–they are shown in fig. 3.6a and b. If
the tethers are judiciously positioned and shaped the quality factor of the resonator
is increased. Another approach has been to implement phononic shielding in the
substrate, as shown in fig. 3.6c. This limits radiation losses by engineering a spectral
stop-band at the relevant frequency range [75].

The most successful approaches to date have combined both of the ideas dis-
cussed above. In many modern approaches a phononic crystal structure is directly
embedded within the beams [76] or the membranes [24] themselves–examples of
such resonators are shown in fig. 3.6d and e. In those cases, similarly to a photonic
crystal, a periodic modulation of the material density is introduced by means of
which a localized state of motion can be created close to a central defect of the
structure. This ensures that the displacement is minimal at the border of the res-
onator, thereby suppressing bending losses. Furthermore, Ghadimi et al. [76] have
shown for 1D resonators that this patterning also fulfills its role as a phononic shield,
simultaneously reducing radiation losses.

Owing to their strong localization, the frequencies of the modes of interest are
increased. In addition, the quality factors that can be obtained with such res-
onators approach 109 at room temperature [24, 31], and have exceeded this value
even in modest cryogenic environments [93]. Such ultracoherent phononic crys-
tal membranes were therefore chosen as a replacement for the plain membranes in
our electromechanical device. We note that such membranes have yet to be mea-
sured at sub-kelvin temperatures. Their properties in such environments are still
to be determined, making such a study valuable beyond ground-state cooling ex-
periments. From the predicted increase of Q at cryogenic temperatures, it can be
anticipated that these new resonators will significantly outperform plain membranes.
The phononic shield is further expected to act as an attenuator for noise sources
originating from the laboratory environment. In this section, we present the working
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Figure 3.6: Optical micrographs of engineered resonators. a, “Free-free” resonator
which minimizes the coupling of the resonator mode to the substrate modes. A
central oscillating slab is anchored to the substrate by 4 tethers placed near the
nodes of the oscillation mode. The scale bar represents 20 µm. Image extracted
from [90]. b, Trampoline resonator. A central membrane, oscillating out of plane,
is anchored to the substrate by four thin tethers. The scale bar represents 100 µm.
Image extracted from [91]. c, A phononic crystal structure in the substrate which
reduces the radiation loss of a central membrane. The scale bar represents 0.5 cm.
Image extracted from [75]. d, A phononic shield integrated within a SiN nanobeam,
suppressing radiation losses. The scale bar represents 5 µm. Image extracted from
[76]. e, Micrograph of a phononic shield SiN membrane fabricated by the author,
based on the design from [24]. The scale bar represents 1 mm.
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principles of these membranes, and list the key design considerations necessary to
achieve ultrahigh quality factors.

3.2.1 Engineering bandgaps in periodic structures

A cornerstone discovery in wave engineering was the appreciation that the properties
of waves could be altered by introducing modulations in the propagation medium.
Non-interacting waves propagating through a medium can be described by their
direction and their wavenumber, summarized by the wavevector k. In infinite ho-
mogeneous media the frequency ω of a wave is given by the linear relationship
ω = c|k|, where c is the speed of the wave. Crucially, c depends both on the type of
wave and on the properties of the propagation medium itself. For electromagnetic
waves c depends on the refractive index, and for mechanical waves c ∝ 1/

√
ρ [94].

The dispersion relation becomes more complex when the speed of the wave is
not constant throughout the propagation medium, for instance due to local vari-
ations in ρ for mechanical waves. In the special case where the wave velocity is
modulated periodically, several eigenenfrequencies can exist for a given wavevector.
This gives rise to the well-known concept of band diagrams. In analogy to the peri-
odic arrangement of atoms in solids, such periodic materials are also called crystals.
For electromagnetic waves a periodic modulation of the refractive index results in a
photonic crystal (PhC); for mechanical waves modifying the density of the material
gives rise to a phononic crystal (PnC). The solutions to the motion of a wave in
such a medium can be found with the Bloch theorem. It states that any solution
to the wave equation must follow the periodicity of the medium. This theorem was
originally developed to describe the behavior of charge carriers in semiconductor
crystals, where the periodic modulation of the electric potential leads to band struc-
tures for the charge carriers. It has since then been fruitfully applied to periodic
media for electromagnetic [95, 96] and acoustic [97] waves, but also to systems like
ultracold atom lattices [98] or lattices for polaritons [99]. A major source of in-
terest of PhCs or PnCs is the fact that for specific crystal structures, intervals of
frequency can exist where no solution is allowed: these are called bandgaps, and
they can be employed to engineer localized states of motions whose properties can
be finely tailored.

For mechanical vibrations a simple way to generate the required periodicity in
the propagation constant is to modulate ρ. Here, we restrict our analysis to two-
dimensional systems as these are a good approximation to the high aspect-ratio
resonators used in this work. We thus consider a uniform sheet of material into
which a periodic array of holes has been punched, resulting in a honeycomb array
of pads bound together by thin tethers, shown in fig. 3.7.

Interestingly, if a defect is introduced in the periodic structure, localized states
of motion can arise, which are of particular interest here. In 2D, there are 5 different
periodic lattice structures to choose from: square, hexagonal, oblique, rhombic, and
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Figure 3.7: Illustration of a a few cells of an infinite 2D hexagonal PnC. The material
is represented in gray and red, and is patterned with circular holes. The resulting
structure is an array of pads connected by thin tethers (colored in red).

rectangular6. An imperative of the PnC lattice is that it must present a bandgap;
if this condition is not met, localized states of motion cannot be generated. Square
and hexagonal lattices are common structures for PnCs, and it has been shown that
both of these structures can give rise to large bandgaps [101]. Rhombic lattices
have also been predicted to exhibit bandgaps [102], although such structures have,
to the author’s knowledge, not been studied experimentally. Since hexagonal lattices
have been predicted to exhibit larger bandgaps than square lattices [101] and have
been extensively studied in SiN membranes [24, 25, 103], this lattice type will be
studied in this work as well. The hexagonal lattice can be described fully by a lattice
constant b and a hole radius r, and we show its primitive unit cell in fig. 3.8a. Note
that the rectangular cell shown here is not the primitive cell of the lattice, and was
introduced for numerical convenience.

We numerically compute the band diagram for this structure using COMSOL.
The simulation is run in two steps to encompass all effects of the holes in the plane.
First, the in-plane stress and material deformation are left to reach a steady state
from a uniform distribution of the tensile stress, with σ0 = 1 GPa. This stationary
study step is important, as the resulting non-uniform redistribution of stress and the
deformation of the material affects the propagation of the wave. Shown in fig. 3.8b
is the result of the stationary study, showing the stress distribution in a PnC cell:
the stress is more than twice as high in the tether regions than in the pads.

6Other arrangements, such as fractal-like structures [100], have been proposed, but they are
beyond the scope of this work
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Figure 3.8: a, Primitive unit cell of a hexagonal lattice. b, Von Mises stress distri-
bution for one unit cell of the PnC, with an initial isotropic stress σ0 = 1 GPa, and
where the material deformation has been allowed to reach the steady state. A rect-
angular unit cell is used in the computations. c, The irreducible Brillouin zone of a
hexagonal lattice, where b1 and b2 are the primitive reciprocal lattice vectors. The
points of high symmetry Γ, K, and M are indicated, with the red path representing
the sweep in k followed for numerical simulation of band diagrams.

Afterwards, the eigenfrequencies of the structure are calculated, using the peri-
odicity condition for the displacement vector u(r)

u(r) = uke
ik·r, (3.26)

where uk is the displacement profile within a single unit cell. The periodicity is
defined by the wavevector k which is set by the user. The simulation finds all the
eigenfrequencies corresponding to a user-specified value of k. To obtain a band
diagram a sweep over several values of k is made. It must be ensured that spe-
cific points in phase space are crossed to encompass all the relevant features of the
bandgap. The information that is sought is the width of the bandgap, defined as
the frequency difference between the minimum of the upper band and the maximum
of the lower band. We know that all extrema are found by including the points of
high symmetry of the reciprocal lattice in our sweep, which are:

Γ : (0, 0), (3.27)

K : (4π/3b, 0), (3.28)

M : (π/a, π/
√

3b). (3.29)

At these points the energy eigenstates become degenerate and avoided crossings
appear, and the band-gap is minimal. The irreducible Brillouin zone as well as the
high-symmetry points are represented in fig. 3.8c.

The set of eigenfrequencies are grouped in the band diagram shown in fig. 3.9a.
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Figure 3.9: a, Simulated band diagram for a PnC with a hexagonal unit cell with
b = 160 µm, r = b/4 µm, and σ0 = 1 GPa. The modes highlighted in red are
in-plane modes with high velocities. The area highlighted in blue is the inferred
quasi-bandgap. b-c, Displacement (Disp.) profile of a single unit cell, for: (b) an
out-of-plane crystal mode, and (c) an in-plane crystal mode. The unit cell at rest
is shown as a black contour.

For the simulation that is reported here, b = 160 µm and r = 40 µm were chosen
to ensure the appearance of a band gap in the MHz range, as in [24]. The Matlab
script used for running this COMSOL simulation can be found in Ref. [83]7. For
clarity, we will refer to all of the modes that appear in this diagram as “crystal
modes”, as they represent the frequencies at which the PnC membrane can vibrate.

A striking feature of this diagram is that it is not fully open: there are, for
wavevectors close to the Γ point, modes of high dispersion velocity that can propa-
gate in the entire frequency range. This is in agreement with the simulations of [101],
where it was demonstrated that a full bandgap can only be opened if the radius r
of the holes is of the same order as the thickness h of the membrane. Here, we have
r/h = 4 × 104. These modes have no impact on the relevant dynamics of our sys-
tems however, as we will only consider transverse vibrations akin to the membrane
mode shown in fig. 3.9b. In fact, all modes highlighted in black in fig. 3.9a vibrate
out-of-plane, whereas the high-dispersion crystal modes shown in red oscillate en-
tirely in-plane. A typical mode profile for an in-plane mode is shown in fig. 3.9c.
For all intents and purposes, the PnC possesses a quasi bandgap to all transverse
oscillations, which we infer to be centered at 1.55 MHz with an opening of 15% of
the bandgap’s central frequency.
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Figure 3.10: a, Illustration of a PnC membrane used in simulations, possessing
a central defect. SiN is depicted in yellow. b, Frequency spectrum of the PnC
membrane, with b = 160 µm, r = 40 µm, and Λl ≈ 1.6 µm. Each vertical line
represents a mode found in COMSOL. We distinguish four types of modes, namely:
crystal modes (black), defect modes (red), vertical edge modes (cyan), and horizontal
edge modes (dashed, dark blue). c-f, Selected examples of displacement (Disp.)
profiles for: (c) crystal modes, (d) defect modes, (e) vertical edge modes, and (f)
horizontal edge modes. The white scale bars represent 1 mm. This figure is adapted
from Ref. [104].
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3.2.2 Localized defect states in PnC membranes

Through this bandgap for out-of-plane motion the PnC can be exploited to engineer
localized states. Indeed, any defect introduced to the PnC will break its periodicity
and support a unique set of modes. If the geometry of the defect is such that some
of its eigenfrequencies lie within the bandgap, then the resulting “defect modes”
will be confined to that region. To study these defect modes, a SiN membrane is
structured with a hexagonal lattice of holes, following the design first introduced by
Tsaturyan et al. [24], and shown in fig. 3.10a. In the center of the membrane the
holes are displaced, creating a defect in the PnC.

The defect modes of a PnC membrane are found by numerical simulation with
COMSOL. We take as before b = 160 µm and r = 40 µm, with a membrane side
length of approximately 2.8 mm × 3.1 mm as in our physical samples. The value for
b that we choose is consistent with the fact that a Nb pad deposited on the defect
should have approximately the same area as in chapter 2. The process for choosing
the side length of the membrane is discussed in section 3.3.

To obtain the spectrum of the membrane we run a two-stage simulation as before.
The file used for these simulations can be found in Ref. [83]8. For this simulation
the curvature peaks do not need to be resolved since we are only looking for the
mode spectra and approximate profiles. We can take σ0 = 1 GPa (Λl ≈ 1.6 µm),
representative of our samples.

It was a priori expected that the spectrum would have an overall high mode
density with a clearly distinguishable region of low mode density, populated only by
defect modes. The resulting spectrum of the membrane, shown in fig. 3.10b, fails
to match these expectations. Indeed, it presents a complex distribution of modes,
and it is not immediately obvious where the bandgap should be located, judging
solely from the mode density. The spectrum only becomes tractable when the mode
profiles are analyzed and categorized in detail. The rich dynamics hidden behind this
spectrum, studied throughout this section, will reveal some crucial considerations
to which one must pay particular attention when designing a PnC membrane.

In fig. 3.10b we have highlighted a region of the spectrum in blue for further
reference. Outside of this region, the simulated mode profiles are delocalized over
the entire membrane, which we therefore infer to be crystal modes, with selected
examples shown in fig. 3.10c. This behavior is distinct from that of the modes
within the blue region, which are strongly localized to a specific area of the mem-
brane. As expected we find the defect modes localized to the central defect area of
the membrane, as shown in fig. 3.10d–we have labeled the first few modes D1 to
D5. However, two other types of modes appear localized near the borders of the
membrane: first, we find modes localized to the vertical borders of the membrane
shown in fig. 3.10e, which we refer to as vertical edge modes (VEMs); similarly, we

7Found under the filename “SiN PnC Honeycomb A hexagonal recip space”.
8Found under the filename “SiN PnC membrane asym spectum.m”.
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find a set of modes confined to the horizontal borders of the membrane, and such
horizontal edge modes (HEMs) are shown in fig. 3.10f.9

We explicitly distinguish VEMs ans HEMs as they are both spectrally and spa-
tially distinct. These edge modes arise from finite-size effects, due to the sudden
break in the crystal pattern near the borders. Note that the VEMs and HEMs
shown here do not respect a mirror symmetry; that is a deliberate choice intended
to produce a realistic spectrum, because the PnC structure in physical systems is
never perfectly centered with respect to the membrane. Here, the PnC structure is
shifted away from the center by 5 µm in both the x- and y-directions, corresponding
to the approximate off-centering we measure in physical systems (see chapter 4 for
more details).

Importantly, all of the modes within the blue region are localized states of motion.
We therefore conclude that region to be the bandgap of the PnC. It is centered
around 1.5 MHz and spans approximately 17% of the central frequency, in good
agreement with the simulated band diagram for an infinite PnC.

We note a further crucial point, which is that in fig. 3.10b some of the labels
for defect modes (namely, D1, D4, and D5) are not placed below a single mode
line. That is because at those frequencies, it is impossible to uniquely identify
the defect modes; due to the fact that edge modes exist at similar frequencies to
those defect modes, the latter hybridize with the former, resulting in normal modes.
For the normal modes the vibration is no longer localized to the central defect of
the membrane, but “leaks” towards its edges. This feature is discussed further in
section 3.2.5.

This preliminary simulation helps us to understand the behavior of the membrane
in more detail. Ultimately, we wish to obtain a value for the quality factor of the
defect modes, and in particular of the one with the lowest frequency D1, by virtue
of its resemblance to the (1, 1) mode of a plain membrane. It is furthermore the
mode being primarily studied in contemporary applications of PnC membranes [4,
19, 25, 32, 60, 93]. To estimate the losses of D1, the curvature profile needs to be
simulated in detail.

3.2.3 The curvature profile of defect and edge modes

As we have done in section 3.1.3 only a quarter of the membrane is simulated, for
numerical efficiency. An example of a cut of its displacement profile is shown in
fig. 3.11a, with a typical curvature peak width taken as Λl ≈ 16 µm for illustration
purposes. In stark contrast to the (1, 1) mode of similar frequency, the displacement
amplitude of D1 is attenuated by the PnC. The profile envelope is well fitted by an
exponential function of characteristic decay length 0.2 mm We also compare D1 to

9The denomination “edge mode” is only related to the position at which they are localized, as
is not meant to be a reference to topological transport. The PnC structure studied here does not
fulfill the specific conditions required for the edge modes to propagate directionally [105, 106].
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Figure 3.11: a-b, Displacement (a) and curvature (b) of the D1 mode (filled light
blue) and the (1, 1) mode of a plain membrane with the same frequency (green),
along the y = 0 line. The red region represents a hole in the PnC along that line,
in which no data for D1 can be obtained. In black, the VE1 mode of the PnC
membrane is plotted along the y = 2.5 × (

√
3b/2) line, where it possesses an anti-

node. The data are normalized (Norm.) by the square root of the corresponding
mode energy. The data is acquired for Λl ≈ 16 µm, with b = 160 µm and r = b/4.
In (a), serving as a guide to the eye, the dark blue line represents an exponential
decay. c, Curvature of D1 and VE1 near the border of the membrane.
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Figure 3.12: Displacement (Disp.) amplitude of D1 for Λl ≈ 30 µm (black) and for
Λl ≈ 1 µm (blue, dashed). For these plots, all parameters were kept fixed except for
σ0, which was taken as 1 MPa and 1 GPa, respectively. The red region represents a
hole in which no data can be acquired.

VE1, which we find to have a similar attenuation through the PnC. For simplicity,
the geometry of the membrane was chosen such that no coupling could occur between
D1 and VE1 in this simulation, nor in the one described in section 3.2.4. The manner
in which this is done is described in section 3.3.2.

We computed from these profiles the curvature of D1, VE1, and the (1, 1) mode,
which we show in fig. 3.11b. For DM1, the curvature is not maximal at the bor-
ders as is the case for a plain membrane, but peaks at the center of the membrane
and steadily diminishes towards the borders. Note that there still remains a peak in
curvature at the edges even for the defect mode, although it is several orders of mag-
nitude smaller than the curvature maximum. For this reason, this sort of membrane
patterning has been nicknamed “soft clamping” [24], since the hard clamping condi-
tion (3.5) has been removed. In the section below, we verify the advantages of this
technique by numerically simulating Q for D1 and VE1 based on the displacement
and curvature profiles.

3.2.4 Computing Qb of D1 and VE1

To compute Qb for a PnC membrane mode a similar approach to the one described
in section 3.1.3 could be taken: the mode profile and curvature can be computed at
high Λl and then, to obtain its value for real parameters, Q could then be scaled
accordingly10. This would allows us to resolve the peaks in the curvature profile and
accurately compute Q for VE1. For a plain membrane this technique works because
the mode profile is independent of Λl, for sufficiently small values of Λ. It is not
the case for PnC membranes however, owing to the fact that when Λl is scaled up,

10The conversion equation would be slightly more complicated than eq. (3.18), since we could
no longer assume edge losses to be dominant.
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Figure 3.13: a, Geometry of the COMSOL model of a PnC membrane. We divide
it into three regions. The border region is shown here as the R3 region. We split
the inner region into two, shown as the R1 and R2 regions. The width of the border
region is greatly exaggerated, for clarity. b, Computed Q with respect to the mesh
size. The mesh size is progressively reduced first in R1, then R2, and finally R3. Qb

is computed for D1 (dots) and for VE1 (triangles). The dashed red lines indicate
the values for the mesh size which were taken in one region, when meshing the next
one.

which can in practice only be done by lowering σ0
11, the non-uniform distribution

of stress resulting from the PnC structure causes the mode profile to vary, as shown
in fig. 3.12. This poses a conundrum: the profile of PnC membrane modes can only
be accurately computed if Λl ≈ 1 µm (corresponding to real samples), but then
the curvature peaks can no longer be resolved. As a result, the Q of hard-clamped
modes such as VE1 cannot be computed accurately. We choose to prioritize accurate
computations of Q for defect modes, and therefore a value of Λl representative of real
samples, with Λl ≈ 1 µm and σ0 = 1 GPa, is taken for all subsequent simulations.

As mentioned above numerically computing the quality factor of these modes
requires a finer meshing in the regions where the curvature is at its highest. For PnC
membranes there are two such regions: near the central defect and in the border.
For numerical efficiency, we therefore divide the COMSOL modes into three areas,
meshed separately, labeled R1 (the inner region), R2 (the inner defect region), and
R3 (the border region), as shown in fig. 3.13a.

By progressively reducing the mesh size of these regions we can converge towards
the predicted value of Qb for D1. In fig. 3.13b we find that for D1 Qb converges
to approximately 1.5 × 107, for a frequency of 1.436 MHz. As expected, R2 is the
region which is most important to computing this value, and Qb remains almost
constant when varying R1 and R3. For comparison, the quality factor of VE1, with

11Λl only depends on the parameters σ0 and h. In principle, h could be varied, but in practice this
causes the 2D approximation to break down in COMSOL, and nonphysical results are obtained.



3.2. PHONONIC CRYSTAL MEMBRANE DESIGN 77

10-6 10-5

Λl (µm)

105

106

107

108

Q
b

Figure 3.14: Variation of Qb with the dissipation dilution factor Λl, for D1. The
simulation was run by varying σ0, keeping all other parameters. The blue points are
the simulated data while the black line represents a fit with 1/Λ2. The dashed red
line represents typical sample parameters.

a frequency of 1.415 MHz, is also computed. For that mode, no mesh refinement
causes significant changes in Q. We note that even for the smallest mesh sizes
considered in the R3 region, corresponding to the limits of the computer memory
used for these simulations, the curvature profile near the membrane borders was
poorly resolved. Thus, the computed value of Qb ≈ 4× 106 can only be considered
as an upper estimate for the quality factor of VE1–the same applies to all VEMs
studied in the following sections.

With this we have obtained a principal parameter for PnC membrane modes:
for D1,

Qf ≈ 2× 1013 Hz, (3.30)

which is a factor 10 improvement over the fundamental mode of plain membranes.
By varying the tensile stress in the simulation we can vary Λl and verify the induced
variation in Q. In fig. 3.14, we check that in the vicinity of typical sample parameters
(in which the variation in material deformation is negligible), Q indeed follows the
ideal scaling

Qb ∝
Qintr

Λ2
∝ σ0b

2

h
, (3.31)

as expected for a soft-clamped mode. Qb has a stronger dependence on σ0 and the
typical mode confinement length b. It has furthermore acquired a dependence on h
in the regime where Qintr is dominated by surface losses.

With this modified scaling of Q, similar to a plain membrane (section 3.1.5), we
can compute the variation of the minimal value of neff with the membrane geometry.
Assuming that the mode frequency follows a similar scaling to a plain membrane



78 CHAPTER 3. MEMBRANE DESIGN AND SIMULATIONS

(Ωm ∝ 1/b), we can find this scaling by following a similar derivation to the one
shown in Appendix B. As a reminder,

neff ∝
Ωmmeff

Q
. (3.32)

For a PnC membrane, compared to a plain membrane of the same frequency, Q is
significantly higher (meff does not change substantially, see chapter 4). The minimal
effective population is thus smaller by a factor 10 in PnC membranes; we note that
for lower frequency plain membrane modes, that is not the case (see section 3.4).
From eq. (3.31) we find that neff follows the scaling

neff ∝
h2

b
. (3.33)

neff thus scales more favorably with the membrane thickness than before (before,
neff ∝ h), and has acquired an additional dependence on the mode confinement
length b. Thus, both the Qf -product and neff acquire a more favorable scaling
with geometrical parameters which we can control. Comparing a PnC membrane
(Ωm ≈ 1.5 MHz, Q ≈ 1.5× 107) to the plain membrane studied in the last chapter
(Ωm ≈ 0.5 MHz, Q ≈ 4× 106), neff is expected to remain almost the same, provided
the environment temperature does not change. For any significant improvement to
be observed, h needs to be reduced, and at its minimal value of 10 nm, a hundredfold
reduction in neff can be expected.

As a consistency check, to check that the PnC membrane behaves as expected,
we ask a further question: does the quality factor depend on the number of PnC
unit cells surrounding the defect? We might expect Q to increase monotonously, and
eventually reach an asymptote in the limit of wide PnCs. However, this seemingly
simple question reveals an important behavior of the PnC membrane. If it is not
taken in account, this leads to a significant degradation of the defect mode Q.

3.2.5 A “final” consistency check

To check the dependence of Q with the phononic shield width, we sweep the hor-
izontal length of the membrane. As the membrane size increases, an increasing
number of unit cells of the PnC can be accommodated. The vertical length then is
accordingly adjusted to create a membrane shape as close to a square as possible.
It is always ensured that an odd integer number of unit cells can be fitted within
the membrane (see fig. 3.15a).

The resulting values of Qb are shown in fig. 3.15b. For clarity, two values are
plotted: the total quality factor and Qb,inner, the computed quality factor by integrat-
ing the curvature only in the inner (R1 and R2) regions. This allows us to separate
the contribution of edge loss from the total bending loss. Qb does not seem to vary
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Figure 3.15: a, Examples of simulated membrane sizes for (from smallest to largest)
7, 9, and 13 unit cells either side of the defect. The number of unit cells in the
x−direction is increased, and the unit cells in the y−direction are adjusted to ensure
the membrane shape is as close as possible to a square. b, The mode profile and
curvature are computed for different phononic shield length. The dashed gray line
shows the value computed for Qb,inner. c, Displacement (Disp.) profile of the mode
for the point highlighted in red. The white scale bar represents 1 mm.

with any discernible trend and almost always stays significantly below Qb,inner. Only
punctually, e.g. for a length of 13 or 19 unit cells, does the quality factor approach
the predicted value of 1.5 × 107. We note that at low nx, Qb,inner increases slightly
because the distinction between inner and border regions becomes invalid.

Surprisingly, increasing the number of unit cells does not seem to increase Qb.
In fact, the answer as to why Qb is much lower than Qb,inner has a different origin:
fig. 3.15c shows that when Q is low the D1 mode is not only vibrating near the
center of the membrane, but also presents significantly displacement near the vertical
borders of the membrane. In fact, we identify the mode shown here as a linear
combination between D1 and (in this case) VE1. We note that the specific points
at which this combination occurs is strongly dependent on a geometric parameter
of the membrane called the margin M , discussed further in section 3.3.2. The figure
shown here thus only serves to illustrate the mode combination effect, and is not
meant to describe the general behavior of PnC membranes.

This linear combination of D1 and a VEM can be attributed to a coupling
between defect and edge modes, resulting in a hybridization of the two. The origin
of this coupling is that D1, despite being separated from the edge mode by the PnC,
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still possesses finite overlap with the VEMs. We recall at this stage our observation
in fig. 3.10b, where we found that D1 (along with D4 and D5) was split into two
or more separate modes at distinct frequencies. This behavior is typical of mode
hybridization and further supports the coupling hypothesis.

Following this logic, if the frequency of the edge mode were far from that of the
defect mode, then no hybridization could occur and the coupling would no longer
pose any problem. Failing to do so would result in a normal mode which would
be hard clamped, and the benefit of the PnC would be lost. In fact, we see that
the lower estimate on the simulated quality factor of D1 is similar to the predicted
Qb = 4×106 for hard-clamped modes. We study the coupling mechanisms of various
modes further to test our hypothesis quantitatively. This will allow us to discern the
circumstances in which the coupling results in hybridization, and propose a strategy
to ensure that such an event can be deliberately avoided. This will guarantee an
optimal operation of SiN membranes.

3.3 Mode coupling in PnC membranes

As we saw in fig. 3.10 the difference in frequency between defect and edge modes can
be small, and in fig. 3.15 we found a mode which appears as a linear superposition of
D1 and VE1. If such a hybridization occurs in a physical sample the entire purpose
of the PnC would be defeated: the resulting modes would present non-negligible
displacement near the border of the membrane, reintroducing the dominant edge
loss in Qb. In this section we begin by studying the coupling mechanisms between
different modes to verify in which conditions these events can occur, and which
measures can be taken to prevent them. Finally, we show that these mechanisms
can be applied to fabricate multi-defect high-Q modes which are localized at two
distant location simultaneously.

3.3.1 Coupling of lossy harmonic oscillators

Let us consider two modes which are coupled at some finite rate γ. We model
them as coupled point masses. Let x1 and x2 denote the positions with respect to
equilibrium of the two oscillators, and let their respective natural frequencies and
the energy dissipation rates be Ω1,2 and Γ1,2. The equations of motion of these two
oscillators read

ẍ1(t) + Γ1ẋ1(t) + Ω2
1x1(t) + γ2x2(t) = 0, (3.34)

ẍ2(t) + Γ2ẋ2(t) + Ω2
2x2(t) + γ2x1(t) = 0. (3.35)

In the regime where Γ1,2 � γ � Ω1,2, the normal mode frequencies Ω± can be
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Figure 3.16: a, Variation of Ω+ (full line) and Ω− (dashed line) with respect to the
detuning between the natural frequencies. The red and orange lines show Ω = Ω1

and Ω = Ω2, respectively. b, Similarly, variation of Γ+ (full line) and Γ− (dashed
line). In blue, we show Ωsel (a) and Γsel (b) for γ/Ω1 = 10−3. c, Quality factor Q
with respect to the detuning between the natural frequencies. From top to bottom,
γ/Ω1 = 10−3, 5× 10−3, and 10−2. The dashed horizontal line indicates Ω1/Γ̄.
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written as

Ω2
± =

1

2

(
Ω2

1 + Ω2
2 ±

√
(Ω2

1 − Ω2
2)

2
+ 4γ4

)
. (3.36)

See Appendix C for the derivation of this result. As simulated in section 3.3.2 and
measured in chapter 4, Γ1,2 ≈ 10 Hz and γ > 1 kHz. The variation of Ω± with
respect to the detuning between the natural frequencies in shown in fig. 3.16a.

Furthermore, we find in Appendix C that there are two possible regimes for the
system depending on the relative magnitude of γ with respect to |Ω1 − Ω2|. When
γ2 � |Ω2

1−Ω2
2| we enter the small detuning regime and the modes become hybridized.

In that case the energy is almost equally distributed between the two oscillators,
and we must express the new normal modes in terms of a linear superposition of x1

and x2. In the basis {x1, x2}, the eigenvectors x± read

x± ≈
1√
2

(
±1
1

)
. (3.37)

Crucially, the dissipation rates Γ± of these hybridized mode are the same, and tend
to the same average Γ̄:

lim
(Ω2

1−Ω2
2)/γ2→0

Γ± = Γ̄ =
1

2
(Γ1 + Γ2) , (3.38)

Using the full expression for Γ±, given in Appendix C and plotted in fig. 3.16b, we
determine how the detuning between the defect and the edge mode affects losses,
for various values of γ and assuming Γ1 < Γ2. We only consider the mode with
the highest quality factor–in the limit of weak coupling, this is simply the defect
mode. In fig. 3.16c we show how the quality factor Q can degrade by reducing the
detuning between Ω1 and Ω2. We define the quality factor of the mode of interest as
Q = Ωsel/Γsel, where Ωsel and Γsel are its frequency and dissipation rate. The values
of Ωsel and Γsel are indicated in fig. 3.16a and b. The span over which the reduction
in quality factor is significant increases with γ. Its minimum however does not, since
it always tends to the limit of eq. (3.38). Thus, for any finite value of γ, when the
detuning becomes sufficiently small, the modes hybridize and the coupling rate only
affects the width of the dip.

With our damped harmonic oscillator model, we find that so long as there is a
coupling rate γ > 0, normal modes can form and significantly degrade the quality
factor of the highest-Q mode. This strong coupling only occurs when γ2 & |Ω2

1−Ω2
2|.

Regarding defect and edge modes, to quantify the magnitude of the hybridization
problem, the coupling rate between the two must be extracted, to determine to which
extent this parasitic effect can become a handicap. In the following we compute γ
by numerical simulation and using the model derived here.



3.3. MODE COUPLING IN PNC MEMBRANES 83

3.3.2 Numerical analysis of edge mode coupling

To extract the coupling rate γ between edge and defect modes by means of a nu-
merical simulation, the frequency difference between the two must be varied. We
accomplish this by varying the distance between the last row of holes of the PnC
and the border of the membrane, i.e. the “margin” M of the membrane shown
in fig. 3.17a. As M increases the size of the effective region in which edge modes
are confined increases, lowering their frequency as shown in fig. 3.17b; conversely,
the induced redistribution of static stress increases the stress in the defect region,
thus raising the frequency of defect modes. We note that since a large amount
of simulations were required to obtain these figures, the mesh was kept relatively
coarse, resulting in a slight disagreement between the quality factor obtained here
of Qb ≈ 107 and the value quoted previously of 1.5 × 107. This discrepancy does
not affect our conclusions for these results.

The presence of coupling between the modes is evidenced by the appearance
of avoided crossings in the frequency. We conclude it to be at the origin of the
unexpected variation in Q in fig. 3.15. We compute the coupling rate γ between
D1 and the various nearby edge modes from these splittings. To do so, we assume
that at the minimal distance between the frequencies at the avoided crossings, the
frequency difference is equal to 2γ (cf. eq. (3.36)). The calculated values are given
in table 3.2 and γ/2π is always in the 4-12 kHz range, consistent with the findings
of Ref. [4]. We note that crossings 5 − 7 correspond to HEMs, which we see from
fig. 3.17b to be more strongly influenced by variations in the margin that the VEMs.

Table 3.2: Estimated γ between the lowest frequency defect mode and the edge
modes shown in fig. 3.17b, following the same mode indexing.

Mode index γ/2π
(kHz)

0 5.4
1 4.1
2 6.2
3 8.6
4 11.5
5 4.7
6 5.0
7 5.9

The effect on the quality factor shown in fig. 3.17c is as predicted by the theory
of coupled oscillators: the quality factor of D1 is strongly degraded at the avoided
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Figure 3.17: a, Illustration of part of a PnC membrane to illustrate the margin M . It
is exaggerated here for clarity. b, As the marginM is increased the detuning between
the defect mode frequency (shown in navy blue) and the edge mode frequencies
(shown in gray) decreases. When the detuning becomes small with respect to the
coupling rate, an avoided crossing can be observed, marked by the vertical gray
lines numbered 0 to 7, in order of occurrence. c, At these crossing points the quality
factor Q of the defect mode dips significantly. The figure is taken from Ivanov et
al. [104]. The simulations were run with σ0 = 1 GPa.

crossings. Since the edge mode quality factors are much lower that that of D1 at
high stress, the quality factor of the resulting normal mode is essentially that of the
edge modes.

To address this problem we suggest the following approach, which we proposed in
Ref. [104]: “to maximize the defect mode Q, one could in principle fine-tune M to a
specific value where the frequency difference between the defect mode and all VEMs
is well above the coupling rate. This is a challenging and non-reproducible approach
because of the high accuracy in M that is required, which exceeds the possibilities
of the currently employed fabrication method [see chapter 4]. Furthermore, any off-
centering of the PnC pattern with respect to the membrane window will multiply the
number of edge modes as the symmetry is broken. Another option is to reduce the
coupling between VEMs and the defect mode by increasing the size of the membrane,
and, correspondingly, of the PnC. However, since the spectral density of edge modes
is proportional to the membrane side length and the coupling never strictly cancels,
the risk of hybridization scales poorly with the PnC size. For this reason, we suggest
a third method, robust to errors in microfabrication, which will ensure reproducibly
high quality factors for D1. Its principle is to engineer the frequencies of the VEMs
to be far from that of D1, ensuring that even with micro-fabrication errors, they are
always sufficiently separated.” The modified membrane design we propose below is
a way to bypass edge mode coupling problems.
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3.3.3 Edge mode engineering

The second generation of membranes, illustrated in Fig. 3.18a, bypasses the problem
of spectral crossings by engineering the frequencies of the VEMs. It possesses an
“edge guard”, i.e. its vertical borders are patterned with supplementary arrays of
holes near the anti-nodes of the VEMs, to reduce their masses. This results in a
shift toward higher frequencies of the VEMs, as shown in the simulated spectrum
in Fig. 3.18b. As a result, D1 is no longer split into several peaks but appears as
a single mode. Conversely, D2-D5 are spectrally adjacent to edge modes and do
split–D4 and D5 are near the frequencies of HEMs, and are thus not influenced by
the edge guard; they retain the same behavior as in our previous iteration of PnC
membranes. We follow the same analysis as before to verify the properties of the
edge guarded membrane.

First, we compute the dependence of the quality factor of D1 on the margin
M . Since the VEMs are at higher frequencies, the first crossing event occurs at
higher values of M in the second generation, as shown in fig. 3.18c. Accordingly,
the quality factor of D1 is more robust to variations in M over a larger span, and
for margins up to 25 µm, it remains at its maximal value (see fig. 3.18d). Note that
the anti-crossings due to HEMs are still present at the same frequencies, as the edge
guard does not affect them.

Next, the variation of the quality factor against the phononic shield length is
computed, and we report our results in fig. 3.18e. As before we separate losses from
the inner region and losses from the border or R3 region. From this data we find
that the total quality factor is well fitted by the function:

Q−1
b = Q−1

b,inner +Q−1
0 e−Cnx , (3.39)

where nx is the number of unit cells either side of the defect, and Q0 and C are fit
parameters. This heuristic equation is intended to be representative of the fact that
edge losses become increasingly negligible with increasing nx. From the fit we find
Qb,inner ≈ 1.5×107, in agreement with our previous simulations, Q0 = 6.2×105, and
a = 0.47 per unit cell. We furthermore verified that the dependence of Qb on nx
was robust to variations in M , by repeating the simulation for M = 10, 20, 30 µm,
producing good fits to eq. (3.39) with the same value for Qb,inner each time.

We find from these tests that we recover the optimal quality of the soft-clamped
PnC membrane, robust to micro-variations in the margin of the membrane. This
robustness is required for the fabrication of PnC membranes because, as we discuss
in the following chapter, the typical error in M makes it impossible to reproducibly
fabricate a fist generation PnC membrane with high Q. We define our membrane
side length based on these results: based on fig. 3.18c we choose M = 20 µm, and
from fig. 3.18e we choose a PnC length of 17 unit cells. This ensures that we avoid
edge mode coupling and are within 10% of the asymptotic value of Qb,inner. This
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D1 D2 D3 D4 D5

Figure 3.18: a, Illustration of an “edge guarded” membrane, featuring additional
arrays of holes on the vertical sides of the membrane, colored in red. b, Spectrum
of the second generation membrane. c-d, As we vary the margin M , we compute
(c) the frequency and (d) the quality factor of the defect mode (in navy blue) and
nearby edge modes (in light gray). These results, reproduced from Ref. [104], were
computed with σ0 = 1 GPa. The light gray vertical lines indicate the frequencies of
the anti-crossing events in the absence of an edge guard. e, Estimated quality factor
for varying length of the phononic shield. The red line represents a fit to the data
with eq. (3.39), the black points are the computed data with edge guarding, the
gray dashed line represents the fitted value for Qb,inner using eq. (3.39), and the gray
points are the computed data in the absence of an edge guard. For both simulations,
M = 30 µm.



3.3. MODE COUPLING IN PNC MEMBRANES 87
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Figure 3.19: Schematic of the normal modes of two coupled spring masses. (left)
The symmetric mode, and (right) the anti-symmetric mode.

results in a designed membrane size of 2.84 mm × 3.08 mm.

3.3.4 Double-defect membranes

Coupling dynamics have thus far been studied as a parasitic effect, which is detri-
mental to the reproducibility of high-Q PnC membranes. The flexibility of the PnC
structure allows us to also draw a practical application from it: the embedding of
identical defects within the PnC. Since two identical defects would the same spec-
trum of defect modes, coupling inevitably arises. In the small detuning regime,
the modes would hybridize into symmetric and anti-symmetric normal modes which
are delocalized over both defects. We can illustrate them in 1D for instance as in
fig. 3.19. Crucially, these normal modes arise, in theory, even if the distance between
the defects is large, as we found in section 3.3.1. Anti-symmetric mechanical modes
have for example been used to couple to nonlinear circuit quantum electromechan-
ics elements [16, 107] or to two photon cavities of different frequencies [33], or for
scanning-force microscopy [5]. Having two distant antinodes can be practical, es-
pecially in hybrid systems where the samples must be protected from the probing
beam; this is the case in electro-optomechanical systems for instance, where optical
photons can be damaging to the superconducting circuity. To assess the practicality
of this design, we numerically estimate the achievable coupling rates of the defect
modes to gauge how close they must be to each other for significant mode hybridiza-
tion to occur. The simulations which we did here were closely followed by a more
detailed study published by the Schliesser Lab [4].

Here, we only focus on D1 modes: let D1+ be their symmetric hybridization, and
D1− the anti-symmetric hybridization, shown in fig. 3.20a. We create a distance
between the two defects by displacing them in opposite directions along the x−axis
of an edge guarded PnC membrane, as shown in fig. 3.20b. Note that there are two
distinct configurations. For a distance corresponding to an odd number of unit cells,
the system has a mirror symmetry. If that number is even, the symmetry is broken.
For each separation distance we numerically extract the displacement profile and
the frequency of D1+ and D1− (shown in fig. 3.20c). Interestingly, the frequency
can switch signs. We attribute this behavior to a phase flip of π of the coupling rate
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Figure 3.20: a, Simulated mode profiles of the D1+ (left) and the D1− (right) modes.
The white scale bars are 0.5 mm. b, Illustration of two possible configurations for
the defects. The separation can be equivalent to an odd number of unit cells, shown
left, with a separation of 1 unit cell. Alternatively, the separation can be even, shown
right with a separation of 4 unit cells. In the latter case, the symmetry is broken,
and the center of the membrane is indicated by a red cross. The membrane, with a
total length of 17 unit cells, is here only shown partially. c, Frequency (Freq.) of the
D1+ (blue) and D1− (red) modes for varying dimer separation distances. d, Relative
displacement of the center of the right defect with respect to the left defect, for D1+.
e, Extracted coupling rate γ , with an exponential fit to guide the eye (dashed blue
line).

as the mode profile overlaps are varied. The file used for these simulations can be
accessed in Ref. [83]12. Let x1 be the displacement at the center of the left defect, and
x2 the displacement at the center of the right defect. We quantify the hybridization
of the D1 mode with the relative displacement δ of D1+ at the center of one of the
defects, compared to the other one. Let δ ≡ min (x1/x2, x2/x1), which is plotted in
fig. 3.20d. For even separations where the symmetry is broken, δ significantly dips.
Still, even for a distance of 11 unit cells δ > 0.9. This confirms the possibility of
producing low-mass, high-Q hybridized modes with their two antinodes separated
by several millimeters, in accordance with the findings of [4].

From this data the coupling rate can be determined: from eqs. (C.7) and (C.9),
it can be shown that γ satisfies the equation

2γ2δ = |Ω2
+ − Ω2

−| −
√
|Ω2

+ − Ω2
−|2 − 4γ2, (3.40)

12Found under the filename “SiN PnC Membrane dimer.m’.
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where Ω+ and Ω− are the frequencies of D1+ and D1−, respectively. This equation
can be numerically solved, and we have employed the Newton method for doing so.
The extracted values of γ are shown in fig. 3.20e, from which we find that for the
lowest distance γ/2π ≈ 60 kHz. The coupling rate as a function of distance is well
described by an exponentially decreasing function.

3.4 Concluding remarks

In summary, we have verified the dependence of the key parameters of SiN nanomem-
branes, the Qf -product and the minimal value of neff , with the membrane geometry.
To do so, we first described the main dissipation channels of loss in such resonators,
namely bending and radiation loss. We have found that a plain SiN membrane is
not an ideal mechanical resonator for a cryogenic sideband cooling experiment due
to a poor scaling of the key parameters. The main limiting factor was found to be
the hard-clamping condition, which induces a strong bending of the mode profile at
the resonator borders and causes significant energy dissipation. We thus turned to
an alternative approach: mode shape engineering, through which states of motion
can be localized to a central defect embedded within a phononic crystal. In this
manner, the hard-clamping condition was softened, and the resulting defect mode
of interest was predicted to benefit from a tenfold increase of its Qf -product, for
typical sample parameters. Furthermore, we checked that the scaling of Q for de-
fect modes was more favorable with the dissipation dilution factor Λ than for plain
membranes. As a result, Q can be increased by reducing the membrane thickness
h, potentially increasing Qf by another factor 10. At those extreme aspect ratios,
neff is also expected to decrease by up to a factor 100.

However, these improvements are limited by the fact that due to finite-size
effects, spurious hard-clamped modes arise and can couple to the defect modes,
thereby negating the benefit of the phononic crystal. We found that by engineering
the frequencies of the parasitic edge modes with an “edge guard”, such hybridization
issues could be altogether bypassed, and we could ensure the defect modes remain
softly clamped.

Finally, the possibility of mode coupling in a PnC membrane is taken advantage
of for alternative membrane designs [4] to generate hybridized soft clamped modes.
The two antinodes of the hybrid modes can be separated in a controlled manner over
almost a millimeter The various PnC membrane designs presented and analyzed in
this chapter were fabricated in our group, and the following chapter presents the
characterization of those samples and the main conclusions we could draw from
them.
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Chapter 4

Membrane fabrication and
characterization

In this chapter we present the fabrication and characterization of phononic crystal
(PnC) membranes, introduced in chapter 3. They are distinguished from plain
membranes by the addition of a hexagonal lattice of holes. This gives rise to a
spectral band-gap, and when a geometrical defect is added to the PnC structure, to
localized states of motion.

A large part of the work done during this thesis has been to develop a fabrication
protocol for PnC membranes. Despite having been fabricated in the Schliesser
Laboratory prior to this work [24], the transfer of recipes is seldom a trivial task. In
addition, the LKB has historically little cleanroom fabrication expertise, requiring
us to effectively work from scratch to develop the recipe. Section 4.1 summarizes
this experience, presenting the main difficulties and success criteria for releasing PnC
membranes. The limits to the fabrication precision are also emphasized, discussing
to which extent they determine the reproducibility of high-Q defect modes.

To measure the properties of PnC membranes, there are different possible ap-
proaches. In chapters 1 and 2, we have described how to characterize a plain mem-
brane by coupling it to a microwave circuit. In principle the same method could
be applied to PnC membranes. However, the electromechanical device can only
be characterized below 300 mK, which is prohibitively time-consuming: from its
fabrication to its characterization, each device would require several days of work.
This makes it cumbersome to incrementally vary the designs, as is often required
when developing a fabrication procedure. Furthermore, we are here only interested
in the properties of PnC membranes, which are the main topic of this chapter.
Room temperature measurements are sufficient to obtain the necessary informa-
tion. Section 4.2 presents an optical interferometry setup built during the course
of this thesis. It is used for characterizing membranes accurately and conveniently.
Three experiments are used to obtain the necessary information: the measurements
of thermal spectra of the various modes, of their profiles, and of their quality factor.

91
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Section 4.3 describes the methods used to perform these experiments.
In the analysis of chapter 3 we showed how a PnC structure could result in a

spectral band-gap and in a set of localized high-Q defect modes. We further noted
how due to finite-size effects, another set of localized modes we called edge modes
arose, which could significantly degrade the quality factor of the defect modes. We
proposed that the parasitic effects of the vertical edge modes (VEMs) could be
negated by the implementation of an “edge guard”: an additional array of holes
placed along the vertical borders of the membrane. Section 4.4 verifies that the
measured properties of the PnC membranes agree with our simulations. Due to
fabrication micro-errors, defect and edge mode coupling is not expected to be a
systematic effect. Rather, we expect to observe it as a reduction of the average
defect mode quality factor. Several membranes of both types, with and without the
edge guard, are measured to determine the net benefit of the edge guard.

As a practical application of mode coupling effects through the PnC, as in
Ref. [4], we studied in the previous chapter how two localized defect states could
become coupled to one another. We found that coupling rates as high as 60 kHz
could be obtained. In such systems hybridized states could be formed even when
the PnC defects were separated by approximately 2 mm. Section 4.5 presents these
dimer membranes.

Section 4.6 review the results of this chapter.

4.1 Fabrication procedure

The addition of the PnC holes to the silicon nitride (SiN) membranes presents a
significant challenge from a fabrication standpoint. It resulted in what would become
more than a year of work to converge onto a recipe which could yield clean, high-Q
membranes. In this section, we present our fabrication procedure for these PnC
nanomembranes. We highlight in particular the lessons we drew from the (many)
failed attempts and the essential steps we found necessary to obtain a fabrication
yield of about 50%.

4.1.1 Wafer details

The samples presented in this work are fabricated from 4-inch Si wafers purchased
from Si-Mat [108]. Nova [109] and Sil’Tronix [110] wafers were also bought at the
start of this thesis for comparative tests, but eventually Si-Mat wafers were kept
throughout for consistency. The surface of the wafers is parallel to the (100) crystal
plane and is polished to ensure low roughness. On both sides of the wafers a thin
layer layer of SiN is deposited by Si-Mat by low-pressure chemical vapor deposition
(LPCVD). The Si substrate has a thickness of approximately 525 ± 25 µm and a
resistivity superior to 10 kΩ.cm, while the SiN thickness is approximately 100 nm.
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Tensile stress is generated during the LPCVD of SiN by using the difference in
thermal expansion coefficients between SiN and Si to strain the former. Using this
method, the maximally achievable stress is around 1.4 GPa. In this case it was
specified to exceed 0.8 GPa.

4.1.2 Releasing free-standing PnC membranes

The fabrication of plain membranes is a procedure requiring only common cleanroom
equipment. While they can be fragile, with sufficient experience one can obtain a
yield so reproducibly close to unity that SiN membranes have become commerically
available [21]. In our group, such membranes could be readily fabricated even prior
to this thesis. While PnC membranes present significant challenges, and their fab-
rication requires a more sophisticated setup (detailed in the following section), the
main fabrication steps remain generally speaking the same:

1. (Figure 4.1a) The wafers are diced into 3 cm × 3 cm chips for convenient
handling, enabling the simultaneous fabrication of up to 9 membranes. The
fabrication thus begins with a diced chip of Si coated with SiN on both sides.
For further reference we define the side of the chip on which the membrane
will lie as the “frontside”, and the other one as the “backside”.

2. (Figure 4.1b) A square of SiN is removed on the backside by UV lithography.
This procedure involves coating the SiN with a photosensitive resist, can be
removed by a developed if insolated with UV light. A focused laser beam
is scanned over the chip’s surface to recreate the design shown in fig. 4.1e
(additional grooves are added to the chip for subsequent cleaving into smaller
chips). The photoresist is developed, and the pattern is transferred to the SiN
by etching the exposed part through reactive ion etching (RIE).

3. (Figure 4.1c, for PnC membranes only) The frontside is patterned with the
PnC structure shown in fig. 4.1f by UV lithography .

4. (Figure 4.1d) A free-standing membrane is released on the fontside by etching
the substrate through the backside. This is done in a hot potassium hydroxide
(KOH) bath (see section 4.1.3). SiN is not etched by KOH, allowing it to act
as a hard mask.

For a more detailed step-by-step fabrication procedures of plain and PnC membranes
see Appendix D.

Steps 3 and 4 in particular present some challenges when fabricating PnC mem-
branes because of their increased fragility. Below, we specify some additional details
of the fabrication. Without taking them into consideration, it was found impossible
to successfully and reproducibly release PnC membranes.
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Figure 4.1: a, Illustrated side view of a typical Si chip used in fabrication. On
both the “frontside” and the “backside” of it, a thin layer of SiN is deposited. The
drawing is not to scale. b, After the RIE a window into the backside SiN is etched.
c, For PnC membranes the frontside SiN is additionally patterned with the PnC
structure by UV lithography and RIE. d, Plane cut illustration of a fully released
PnC membrane. e, Illustration of the backside lithography pattern, featuring a
central rectangle which will form the membrane, surrounding rectangles for cleaving
grooves (not shown in (b)), and a label to ensure correct orientation. Inset is a
zoom on the label. f, Illustration of the frontside lithography pattern, featuring the
PnC with a defect and alignment squares. The alignment squares are to be used in
electromechanical experiments.
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4.1.3 Additional fabrication details

Frontside PnC pattern

An intuitive approach to fabricating PnC membranes could have been to structure
a pre-released membrane with the array of holes, i.e. to follow the fabrication steps
above in the order 1-2-4-3. In a paper published previously in our group [111]
a similar procedure was successfully performed to partially pattern a pre-released
SiN membrane with a photonic crystal of 300 nm holes by RIE (100 times smaller
than the PnC holes). However, the samples in that work were fabricated at the
C2N cleanroom, which was closed for the duration of this thesis. We attempted
to reproduce the recipe in our own cleanroom as a first attempt, but this proved
unsuccessful and the integrity of the membranes could not be preserved. One rea-
son for this failed attempt may have been that we were not able to reproduce the
fabrication parameters exactly as the machines were different. We therefore pattern
the frontside with the PnC before the release, following the recipe of [24] based on
which other groups fabricate PnC membranes as well [25, 112].

Anisotropic substrate etch

The etching of Si in liquid KOH is anisotropic: it is etched 400 times faster along
the (100) crystal plane than along the (111)-plane [113]. We therefore select the
substrate surface to be parallel to the (100) plane, ensuring that the net etch di-
rection is normal to the surface. Due to the anisotropic etch the resulting Si block
has a trapezoidal shape with a 54.7° angle between the (100) and the (111) planes,
illustrated in fig. 4.2a.

In a bath of hot KOH diluted to a concentration of approximately 30% with
deionized water and heated to 85°C, Si is etched at approximately 80 µm per hour.
We measured the etch rate by using a profilometer by determining the depth of
the etch after a few hours in the bath. During most of the KOH etch, the liquid
is homogenized with a magnetic stirrer to minimize temperature and concentration
gradients. We found that failing to do so would result in an asynchronous membrane
release.

To ensure that only the backside of the substrate is etched by the KOH while
avoiding its edges and fronstide, a Polytetrafluoroethylene (PTFE) holder is used,
as shown in fig. 4.2b, sealing the chip with two stages of rubber O-rings. The edges
are protected by the outermost O-ring, and the frontside is protected by rubber
bands directly in contact with the chip, as shown in fig. 4.2c. A hole in the holder
allows the KOH to etch the backside. As discussed below, some problems arose with
such a holder which have led to a slight modification of the etching configuration.
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(111) plane

(100) plane

KOH

Figure 4.2: a, Plane cut illustration of a plain membrane indicating the (100) and
the (111) etching planes. The angle between the two planes is 54.7°. b, Photograph
of the PTFE holder used for etching plan SiN membranes. The lid is on the right.
Black rubber bands ensure water-tightness at several stages. c, Schematic cross-
section of the PTFE holder. The rubber bands are indicated as black circles. At
the backside of the chip, a hole in the holder allows the KOH to etch the Si.
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Holder troubles

Because of the elasticity of PTFE the holder warps over time, creating leaks which
allow the KOH to reach the frontside. Interrupting the etch prematurely (after
less than an hour) reveals that is this happens, the KOH etches the frontside Si as
evidenced by the black marks shown in fig. 4.3a. After allowing the etch to reach
near completion in such a case, we found that the membrane became released on
both sides simultaneously. This resulted in a non-uniform etching front, shown in
fig. 4.3b. This would eventually give rise to long isolated strips of Si which remained
attached to the SiN (fig. 4.3c), parallel to which the latter would preferentially tear.
In dozens of fabrication attempts we have never observed a case where this frontside
etching successfully released a membrane1. We hypothesize that the reason for this
is that the partial etching of the frontside Si releases some areas of the SiN before
the rest. This redistributes the stress such that it locally exceeds the yield stress of
SiN, tearing the membrane upon release.

When this problem is addressed by fabricating a new holder, a different problem
arises: air pockets form between the chip and the holder, from which bubbles of
air can escape and rupture the membranes, significantly reducing the yield. This
happens in the span of a few seconds. Figure 4.3d-f show three snapshots of such
an event. To prevent this the pressure conditions on both sides of the wafer need to
be controlled to prevent any in- or outflow of liquid or air. An air channel can be
installed in the PTFE holder to do so, maintaining an atmospheric pressure within
the air chamber–this solution is seen in some commercial holders for thin-film release
[114].

However, to avoid these issues altogether, we ultimately decided to etch the
membranes by immersing them freely in the KOH bath without any particular
PTFE protection of the frontside from the liquid. To do so, we coat the frontside
with a resin called ProTEK PSB, marketed as a “spin-on replacement for silicon
nitride or silicon oxide wet etch masks” [115]. The ProTEK plays the role of a hard
mask during the KOH etch and is applied uniformly to the frontside prior to the wet
etch. This coating is removed at the end of the fabrication procedure in a Piranha
solution, a mixture of sulfuric acid and hydrogen peroxide. We note that Brewer,
the provider for ProTEK, sells a removing agent for the coating but it could not be
obtained in Europe.

We designed a new PTFE holder for this procedure, shown in fig. 4.4, intended
only to prop the chip vertically with a set of v-grooves cut into the holder. The
chips are kept upright to minimize viscous drag normal to the membranes as the
holder is immersed into or removed from a bath. The sample chips are thus never
removed from the holder prior to the end of the fabrication. A PTFE screw keeps

1Some PnC membrane release procedures do employ frontside etching [112], but this requires
several phases of etching to ensure that only the last few µm of Si are etched through the frontside,
and is not employed here.
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Figure 4.3: a, Frontside optical micrograph of a membrane after a prematurely inter-
rupted etch. The Si surface, normally a reflective gray (as in the bottom right corner
of the image) turns granular and black if the holder is not sufficiently waterproof.
b, Backside optical micrograph of the etching front shortly before release. Non-
uniformity is apparent and the openings at the PnC holes are evidence of frontside
etching. c, Optical micrograph of a backside view of the etching front, at a later time
than (b). The Si remains attached to the SiN in long thin parallel stripes, along
which the SiN preferentially tears. The most prominent tearing axes are highlighted
with the red dotted lines. For (a)-(c), the scale bar is 0.5 mm. d-f, Snapshots
taken during a KOH etch of the backside of the sample chip. The partially etched
membrane of interest is bordered with a red line in all pictures, showing how, within
a few seconds a bubble escapes from its center and tears it away. The scale bars are
approximately 3 mm.
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Figure 4.4: Photograph of the vertical sample holder. The samples are held upright
by v-grooves, and fixed in place by a screw on the top.

the chips in place to prevent them from floating off due to the effervescence of KOH
or piranha. A PTFE lid prevents the excessive evaporation of KOH. Note that the
use of PTFE is necessary as it reacts neither with the strong bases (KOH) nor the
acids (Piranha solution) involved in this fabrication procedure.

PnC membrane yield

A positive result is considered as a membrane with absolutely no tears. If as little
as a single tether was torn, the sample was discarded. With the recipe provided
here a yield of about 45% could be obtained–we note that due to the fragility of the
membranes, there is a certain dependence on the experience of the manipulator. In
fig. 4.5 we show the final product: PnC membranes made from SiN, both with and
without an edge guard. In this chapter these two membrane designs will be primarily
studied, changing only the configuration of the central defects in section 4.5. For
further reference we will call the design shown on the left of fig. 4.5 a “generation 1”
membrane, and the other one (with an edge guard) a “generation 2” membrane.

Estimated uncertainty in the geometrical parameters

Three parameters are systematically verified for which a good control is necessary:
the lattice parameter b, the hole size r, and the membrane margin M (defined
as the shortest distance from the outermost hole in the PnC to the border of the
membrane). Errors in b and r originate solely from the laser lithography machine. A
preliminary calibration was run to account for over-development. When correcting
for this, a precision to less than 0.5 µm could be obtained in b and r.
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Figure 4.5: Optical micrographs of fabricated SiN membranes, structured with a
hexagonal lattice PnC. (Left) The membrane has no additionnal patterning on its
vertical edges, contrary to (Right), where a series of holes is added.

On the other hand M is determined by two principal factors: the size of the
membrane itself and the centering of the PnC structure within the membrane. Due
to the etching angle during the etching of the KOH, any error in the estimation of the
membrane thickness results in an error of the membrane size. Furthermore, a typical
error of approximately 2 µm is found in the centering of the pattern, with an overall
measured imprecision in M of approximately 5 µm. After these characterizations,
the mechanical properties of the samples are measured in an optical interferometer.

4.2 Experimental Setup

An optical interferometry setup was developed over the course of this thesis, which
needed to meet a series of requirements necessary for the complete characterization
of PnC membranes:

1. Vacuum: The membranes must be placed in vacuum to ensure that resid-
ual gas damping does not significantly reduce the mode Q. The influence of
pressure on Q is discussed further in section 4.4.3.

2. Interferometer: As derived in chapter 1, the detection must be shot-noise
limited, i.e. the measured classical noise must be significantly lower than its
quantum fluctuations. This is crucial for resolving the thermal motion of the
membrane with high signal-to-noise and for measuring a mode’s displacement
profile (see section 4.4.2).
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Figure 4.6: Schematic representation of the interferometer used in this work, com-
prising three main indicated parts: 1. the vacuum chamber in which the sample
lies, 2. the interferometer stage, and 3. the laser intensity modulation stage.

In addition, the setup must allow for the measurement of more than one mem-
brane without opening the vacuum chamber. Cycling the vacuum takes a
significant amount of time and degrades the membrane performance. Several
membranes are therefore fabricated on one chip in batches of up to 9 (varying
with the yield). In practice, it must thus be possible cover a surface greater
than 20 mm × 20 mm by sweeping the laser position.

3. Mode driving: A precise method for measuring the Q of a mechanical mode
is the ringdown measurement (as shown in chapter 2). A resonant driving of
the membrane modes is required for this.

Based on these considerations, we built the optical setup illustrated in fig. 4.6.
It comprises three main parts: the vacuum chamber (discussed in section 4.2.1), the
interferometer stage (section 4.2.2), and the laser intensity modulation stage (sec-
tion 4.2.3). In the following, the important details concerning these three essential
parts and how they address the requirements listed above, are discussed.

4.2.1 The vacuum chamber

The vacuum chamber consists of a simple aluminium cylinder with an optical view-
port, illustrated in fig. 4.7a. Originally, the vacuum was formed by a single pumping
bank consisting of a primary pump and a turbomolecular (turbo) pump. The pres-
sure in this system can be reduced to less than 10−5 mbar in two steps: the primary
pump first reduces the pressure to approximately 10−2 mbar, at which point the
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Figure 4.7: a, Schematic representation of the vacuum system, pumped in parallel
by a primary and turbomolecular (turbo) pump bank, and an ion pump. The red
beam indicates the optical access of the chamber to the sample. Pump icon made
by Freepik from www.flaticon.com. b, Pressure evolution in a typical pumping cycle
using only the primary and turbo pumps.

turbo pump is activated, further reducing the pressure. As seen in fig. 4.7b, reach-
ing the necessary vacuum for measuring PnC membranes (see section 4.4.3) took up
to two days of continuous pumping.

Furthermore, the turbo pump was suspected to be a significant source of me-
chanical noise. To prevent it from degrading the precision of our measurement,
an additional vibrationless ion pump (Agilent Vaclon Plus 40 L/s, Diode) was in-
stalled. Ultimately, the turbo pump was not found to be problematic in terms of
noise, but the ion pump was nevertheless kept as it significantly accelerated the
pumping process. With this, pressures as low as 10−6 mbar could be reached by
pumping overnight and samples could be characterized in rapid succession. We note
that these pressures correspond to the upper boundaries of the ion pump’s working
range, significantly reducing its lifetime.

Thus, this vacuum setup successfully satisfies the first requirement of the system.
However, it adds a complication: the translation stages required to scan an area of
20 mm× 20 mm take up much more space than available inside the vacuum chamber,
making it impossible to move the samples themselves. Furthermore, it is difficult to
displace the chamber as a whole, as it is heavy and rigidly connected to the ion pump
(the latter condition is necessary for maximizing the pumping power). We thus take
the approach of displacing the laser spot itself by setting the interferometer on a
translation stage.
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Figure 4.8: (left) Photograph of the monolithic interferometer. The beam path
in drawn in red, and the visible parts of the translation stages are contoured in
green. (right) Schematic representation of the interferometer shown left. Lenses
have been omitted for clarity. Although this setup looks very similar to a Michelson
interferometer, it can be shown to be formally equivalent to a Mach-Zehnder due to
the λ/4 plates in front of the sample and the LO.

4.2.2 A shot-noise limited optical interferometer

Monolithic translation

If the interferometer is to be displaced as a whole, particular care must be taken to
prevent the loss of the laser alignment. It was therefore constructed monolithically in
a Thorlabs [116] cage system shown in fig. 4.8. The cage is held by a set of translation
stages (Newport M-426 with LTA-HL actuator) which can displace the laser spot
over up to 25 mm × 25 mm–these can be controlled remotely, for automatic data
acquisition. To prevent excessive torque, the interferometer was designed to have
its center to gravity placed as near to the translation stages as possible (see fig. 4.8).
Note that since it is impossible to access the sample holder once the vacuum chamber
is sealed, it is ensured that almost all alignment degrees of freedom for the optical
path can be adjusted from the interferometer itself.

The setup shown here is formally identical to the Mach-Zehnder interferometer
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Figure 4.9: PSD of the laser noise with the noise eater off (red) and on (blue).

discussed in chapter 1, with the addition of a second photodiode at its output.

Balanced homodyne detection theory

At the output of the final beam splitter (BS) of a Mach-Zehnder interferometer, we
showed in chapter 1 (section 1.2.2) that the spectrum of the laser power measured by
the photodiode varies linearly with the position noise spectrum S̄xx of the sample.
Ultimately, we predicted that a shot-noise limited detection could readily resolve
the mechanical noise peak with a signal-to-noise ratio SNR ≈ 45 dB.

In this work, we use a Nd:YAG laser with a wavelength of 1064 nm. Bypassing
the interferometer, we first characterize the power spectral density (PSD) of the
laser, shown in fig. 4.9. We find a peak exceeding the noise floor by over 20 dB
around 600 kHz, whose origin we attribute to relaxation oscillations of the laser.
The laser itself has a noise eater feature which reduces this noise peak significantly.
For the following the noise eater is in fact deactivated in order to have a clear
classical noise source for reference.

To prevent a reduction in the SNR due to classical noise, a “balanced detection”
scheme is used. It consists in rejecting the amplitude noise of the laser by exploiting
the correlations that are maintained throughout the beam path. To do so, the
light intensity from both output branches of the BS must be measured, as shown in
fig. 4.8. As in chapter 1, a half-wave plate is added before the first polarizing beam
splitter (PBS), to allow us to select the amount of power headed toward the sample.

It can be shown that the experimental scheme is formally equivalent to the Mach-
Zehnder interferometer illustrated in fig. 4.10. In the following analysis both output
branches of the final PBS are considered, labeled + and −. Their respective light
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Figure 4.10: Schematic representation of a balanced homodyne detection, simplified
to a Mach-Zehnder interferometer.

fields a+ and a− read

a±(t) =
1√
2

(
aLO(t)± aS(t)eiϕ

)
. (4.1)

Note that a+ ≡ aPD as defined in chapter 1. To ensure the detection is maximally
sensitive to mechanically-induced phase fluctuations, the static phase difference be-
tween the S and LO branches is kept at a half-integer multiple of pi. This is done
by fixing the LO end mirror to a piezo-electric transducer (PZT). The static phase
is thus locked around ϕ ≈ π/2 with a feedback loop.

Similarly to the derivation in chapter 1 we find that the fluctuations of the light
power δP± = }ωL (|a±|2 − 〈|a±|2〉) at the photodiodes read

δP±[Ω] ≈ ±P0pSpLO
4π

λ
x[Ω]+√

}ωLP0

[(
pLOδa

P
LO[Ω] + pSδa

P
S [Ω]

)
±
(
pSδa

Q
LO[Ω]− pLOδa

Q
S [Ω]

) ]
,

(4.2)
where x denotes the fluctuations of the mechanical mode around its equilibrium
position, δaP and δaQ are the fluctuations in the amplitude and phase quadratures
of the fields in the LO and S branches (as indexed), ωL is the laser angular frequency,
and P0 is the laser power at the input of the interferometer.
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At this stage, to fully understand the contribution of noise to the signal, the
field fluctuations must be expressed in terms of their classical and quantum com-
ponents. Importantly, the classical noise of all field terms is correlated because it
originates from the same laser noise. It therefore scales with the laser power of the
corresponding branch. On the other hand, the quantum noises are uncorrelated; To
express this, we write the quadrature fluctuation terms in general as:

δa
P/Q
S/LO[Ω] =

√
P0pS/LOδa

P/Q
class [Ω] + δa

P/Q
q,S/LO[Ω], (4.3)

where δa
P/Q
class , of spectrum S̄

P/Q
class , is the classical field amplitude noise (common to S

and LO) and δa
Q/P
q,S/LO, of spectrum S̄

P/Q
S/LO, represents the fluctuations of the field of

quantum origin. Note that δa
P/Q
class is the noise normalized for a flux of one photon

per second; thus, S̄
P/Q
class is made independent of the input laser power P0. In the

expression above, we have neglected the dephasing associated to the propagation of
the beam along the S/LO path. This is a safe assumption for the typical Fourier
frequency of 1 MHz considered here, given that a difference in length between S and
LO of 300 m would be required to dephase the beam modulation by π.

With this, the readout signal can be expressed more succinctly. Upon arriving
at the photodiodes the laser power becomes converted into a photocurrent i± ≡
β±P±, where β± are the power-to-current conversion factors (assumed constant in
the frequency range of interest) and P± = }ωL|a±|2. The key step to a balanced
detection comes from taking the difference between these two currents ∆i = i+− i−,
which to the leading order of pLO (we measure below that pS ∼ 10−2, while pLO ∼ 1)
reads

∆i[Ω] =βΣP0pSpLO
4π

λ
x[Ω]+√

}ωLP0pLO

(
β∆δa

P
LO[Ω] − βΣδa

Q
q,S[Ω]

)
+

δielec[Ω],

(4.4)

where βΣ = β+ + β−, β∆ = β+ − β−, and δielec is the noise added by the electronic
components of the measurement chain. If the detection is perfectly balanced (β+ =
β−) the classical noise (boxed in red) is totally rejected. Al terms in this equation
are assumed uncorrelated from one another.

For a laser with large classical amplitude noise, δaPLO ≈
√
P0pLOδa

P
class. Since, in

practice, β+ and β− are always slightly different, a residual amount of classical noise
remains. Letting S̄elec be the added electronical noise spectrum, the noise spectrum
S̄ii of ∆i reads
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(4.5)

Characterizing the interferometer

To vary β+ and β− finely, instead of tweaking the photodiode gain, the amount of
light power that is sent in each photodiode is varied. This is done by rotating the
half-wave plate that is placed just before the final PBS (see fig. 4.8)–note that this
is impossible in a Mach-Zehnder scheme, but it works here. The effect of rotating
the plate is shown in fig. 4.11: when the system in poorly balanced (i.e. most of the
power is sent into one of the photodiode branches), the classical noise peak exceeds
the noise floor over a large frequency interval; when β∆ is minimized, the noise peak
is suppressed by over 20 dB. In the frequency range 1.3-1.8 MHz (highlighted in
fig. 4.11) relevant for the PnC membranes presented in this work, we may conclude
that the classical amplitude noise lies well below the noise floor.

With the laser turned off S̄elec is measured, shown in fig. 4.11. For P0 = 30 mW,
the electronic noise floor lies less than a factor 2 below the laser noise floor in the
frequency interval of interest. This indicates that the SNR is reduced by approxi-
mately 3 dB compared to our theoretical estimates. SNR was still found sufficiently
high for the purposes of this work.

We measure that if P0 = 30 mW, 300 µW return from the sample. This includes
the reflectivity of SiN, which is approximately 10% for a thickness of 100 nm. From
this we extract pS ≈ 10−2. Conversely, we measure a return power from the LO of
25 mW, giving pLO ≈ 83 %.

Equation (4.5) underlines that there is a fundamental difference between the
scaling of the current noise induced by S̄class and the one induced by S̄QS : the former
scales with P 2

0 , whereas the latter only scales with P0. This gives us a means
to verify whether the classical noise is sufficiently rejected: we measure how the
noise-floor level scales with the laser power. For clarity, we normalize the data by
the laser power such that a quantum-limited noise floor would not vary in height
with P0. This independence of the noise floor height is precisely what we observe
in fig. 4.12a in the frequency interval of interest. Note that for all these spectra
the “dark spectrum” at P0 = 0 mW was subtracted, allowing us to only compare
contributions to the PSD from the laser noise.

We use the residual classical amplitude noise to compare its scaling with the “test
noise floor” in the frequency range of interest. In fig. 4.12b, we plot the variation
both of the height of the classical noise and of the mean of the test noise floor. We
find that the scaling of the classical noise with the laser power is in good agreement
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Figure 4.11: PSD of the interferometer when the balancing is poorly optimized (red),
and when β∆ is minimized (green). In addition, we show the electronic noise floor
of the setup, measured with the laser turned off (black). The blue area indicates
the frequency range of interest for characterizing the PnC membranes presented in
this work. Here, P0 = 30 mW.

Figure 4.12: a, Laser noise spectrum per laser power, for varying optical power at
the input of the inerferometer. From gray to black, P0 = 4 mW, 7.5 mW, 16 mW.
The red area highlights the classical noise peak, and the blue area represents the
test noise floor, in the frequency interval of interest. b, Variation of the classical
noise height (red) and of the mean of the test noise floor (blue). The the red line is
a linear fit to the red points, and blue line is the mean of all the blue points. The
error bars for the test noise floor data represent its standard deviation. For both
figures, the spectrum at P0 = 0 mW was subtracted.
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with a linear fit S̄ii/P0 ∝ P0. Conversely, we find the test noise floor S̄ii/P0 to be
independent of the laser power. We thus conclude that the detection in the interval
of interest is shot-noise limited.

An additional advantage of this, as shown in chapter 1, is that the SNR increases
with the laser power, which is not the case if classical noise is dominant. Here
we found that a laser power of 5 mW in the S branch produced a sufficient SNR
(pS = 10−2); attempting to increase it further produced excessive detrimental effects
such as mechanical frequency drifts. In this system, the thermal motion of SiN
membrane can be resolved (see section 4.4.1). In some cases however, it is preferable
to drive the mode, and strongly increase its amplitude of motion. That is particularly
desirable for the measurements of the quality factor by ringdown, where the mode
needs to be resonantly driven. To do so, we show in the following section that the
laser itself can be used, using radiation pressure as a driving force.

4.2.3 Driving the mechanical motion

Optical driving of mechanical modes

In principle, a mode can be driven by any vibration source provided the drive is
resonant with the mode frequency and coupled to it by some means. We can use
the radiation pressure induced by the laser beam on the membrane by the reflection
of photons off its surface. By modulating the laser power, radiation pressure can
serve as a resonant drive. Here, we verify whether the induced amplitude of motion
can be made to significantly exceed the thermal fluctuations for typical laser powers.

Suppose a laser of power P is reflected off dielectric of reflectivity R. The force
exerted is then

Frad = 2
RP

c
, (4.6)

where c is the speed of light in vacuum. If this force oscillates monochromatically
at Ωm, in resonance with a mechanical mode, the induced steady-state amplitude of
oscillations is

x̄ =
Frad

ΓmΩmmeff
, (4.7)

which we find directly from the equation of motion of a harmonic oscillator (eq. (1.4)).
As found in eq. (1.19), the RMS amplitude of thermal motion xth at high temper-

atures is xth ≈ xZP

√
2nth, where xZP is the RMS amplitude of the zero-point motion

of the mode. For typical resonator parameters (meff ∼ 10 ng, Ωm ∼ 1.5 MHz),
xth ≈ 2 pm at room temperature (in agreement with the measurements in sec-
tion 4.4.2). For a thickness of 100 nm, the membrane has a reflectivity R ∼ 0.1.
Thus, for an incident power of 5 mW on the membrane, x̄/xth ∼ 104. Radiation
pressure-induced ringdowns should thus be appropriate to obtain a precise mea-
sure of Q, provided the laser power can be modulated at MHz frequency with an
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Figure 4.13: Principle of the AOM. The incident beam is shown in red 1: mechanical
absorber. 2: Piezoelectric actuator. 3: Acoustic wave. 4: 0th order beam (green).
5: 1st order beam (violet). ©By Wikimedia Commons User:Ximeg / CC BY-SA
3.0

amplitude of several mW. There are several ways to do so; here, an acoutso-optic
modulator (AOM) is used.

Acousto-optic modulation of the laser power

An AOM, schematically represented in fig. 4.13, essentially acts as a diffraction grat-
ing which can be switched on at will using an electric current. Using a piezoelectric
actuator, a mechanical wave propagates through a transparent crystal. This pro-
duces a periodic modulation of the refractive index which diffracts the beam. If the
incident beam is well aligned with respect to the crystal (the incidence angle is near
the Brewster angle), then it is possible to get most of the power to go into the 1st

order and effectively cancel the 0th order–for simplicity, we neglect other diffraction
orders, as the power that goes into them is small. We can thus effectively turn the
0th order beam off by switching all the power to the 1st order.

The intensity of the 0th order can be reduced further by passing twice trough
the AOM. The experimental setup for the modulation stage is shown in fig. 4.14a,
with a simplified schematic representation in fig. 4.14b. A strong current oscillating
at 85 MHz is sent to the AOM, and a mixer further modulates the amplitude of
those oscillations with a square signal. For a modulation at 10 kHz the power
of the 0th order is shown in fig. 4.14c. Note that the power does not follow the
square modulation perfectly due to thermal effects; although this reduces the driving
amplitude, ringdown measurements can still be successfully made, as shown in the
following section.

With this, all of the main components of the measurement setup have been pre-
sented. They were found sufficient for the purposes of this work to fully characterize
PnC membranes, namely to obtain the mode spectra, their profiles and to measure
their quality factor. For this, we use the three methods presented below.
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Figure 4.14: a, Picture of the modulation setup. The path of the incident beam is
shown in red, and that of the 0th order beam is shown in green, with the AOM turned
ON. The 1st order beam is not shown, for clarity. b, Schematic representation of the
setup shown in (a), when the AOM is turned ON (i.e. the laser beam is switched
off). c, Power variation of the 0th order, while varying the power of the electric
current sent to the AOM Modulating at 10 kHz. The measured data is shown in
black, and the ideal variation is shown in blue.
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Figure 4.15: a, Optical micrograph of a PnC membrane of a generation 1 design. In
yellow, the SiN is freely standing, and in light blue it is lying above Si. The points
indicate the positions at which the spectra of (b) are measured. b, Three different
spectra of the mechanical motion, taken at various points on the membrane.

4.3 Experimental methods

The output current from the interferometer i∆ is here measured with a signal ana-
lyzer (SA, model MXA-N9020A). It takes the Fourier transform of i∆ to obtain spec-
tral information about the signal. In doing so, the continual thermal motion of the
membrane can already be discerned with a shot-noise limited detection. However,
to extract complete information about the system, a little more work is required.
In particular, we wish to clarify what is meant by a membrane’s thermal spectrum
and how it can be used to reconstruct images of the mode profiles. Finally, with
the SA, the quality factor of a mode can be measured, and the protocol used in this
work, the ringdown, is detailed.

4.3.1 Measuring the spatially-dependent thermal spectrum

Let us consider a generation 1 membrane (without an edge guard), shown in fig. 4.15a.
When we acquire a thermal spectrum with a bandwidth of 30 Hz, at different po-
sitions on the membrane (indicated on fig. 4.15a), significantly different results are
obtained. For instance, fig. 4.15b shows the spectra at three points: two within
the central defect, and one near the horizontal border; none of them are identical.
The origin of this difference is attributed to the fact that the spectrum of a PnC
membrane varies significantly with the position of the laser beam–there is no point
at which all modes simultaneously present significant displacement.
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It is particularly important in this work to find the full list of modes, as we
wish to study the relationship between defect and edge modes. Several spectra
must therefore be compiled. We do so by measuring spectra at various points on
the membrane. They are grouped into 4 categories, based on their location: on
the defect, along the horizontal borders, along the vertical borders, and within the
PnC. For each measurement category, a single intermediary spectrum is produced
by taking the maximal value of the displacement noise at each frequency. The inter-
mediary spectra are finally superposed to produce the final “compiled” spectrum,
discussed further in section 4.4.1.

The data of fig. 4.15b allow us to verify whether our prediction for SNR (es-
timated to be 45 dB) was correct. Its definition is the ratio of the height of the
mechanical peak to the noise floor. A few points must be noted to compare theory
and experiment:

� The measurement is taken with a bandwith of 30 Hz, much larger than the
mechanical linewidth of 0.15 Hz (see section 4.4.3). This is done for conve-
niency to accelerate measurements, but comes at the cost of a 23 dB reduction
of SNR.

� SNR was calculated assuming perfect interference contrast. In practice, the
contrast is around 50%, which is equivalent to a reduction of pS by a factor 2.
From our definition of SNR (eq. (1.25)), this reduces it by a further 6 dB.

� Finally, the electronic noise floor lies at approximately 3 dB below the shot-
noise floor, reducing SNR by that amount.

Overall, we would expect the mechanical peak to exceed the noise floor by approxi-
mately 13 dB. Here, our maximal SNR is closer to 10 dB. We attribute the remaining
discrepancy to the detection inefficiency of the photodiodes.

For these measurements, having the interferometer on a translation stage is es-
sential. The idea of compiled measurements and position-dependent spectra can be
extended, as demonstrated in Ref. [117], to reconstruct the displacement profile of
the various modes of the PnC membrane.

4.3.2 Measuring the mode profile

We image the profile of a mode by plotting the amplitude of the thermal motion
of a mode as a function of the position by raster scanning over the desired surface.
However, the high mode density of a PnC membrane can make it difficult to clearly
identify the modes from their frequency. Mechanical frequency drifts caused by
temperature fluctuations in particular make this process challenging.
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Figure 4.16: a, Optical micrograph of a generation 1 membrane, highlighting by
the red rectangle the area over which the raster scan discussed in this section is
performed. b, Frequency of the fundamental mode of a PnC membrane, at approx-
imately 209 kHz, as a function of the laser position index. c, Temperature of the
sample holder over the course of a scan.

Correcting thermal drifts

To illustrate this difficulty, we first track the frequency of a single membrane mode
as we raster scan over the area indicated in fig. 4.16a–notice that the area slightly
exceeds the membrane width. At each point of the grid we measure the thermal
spectrum and extract its maximum near 209 kHz, the frequency of the (1, 1) mode
of the PnC membrane. The result of this measurement is shown in fig. 4.16b.

The figure reveals a problem: the frequency of the mode can vary by more than
100 Hz over the course of the scan, exceeding the typical frequency difference between
the bandgap modes. We furthermore distinguish two time scales: a slow drift present
over the entire duration of the scan, and a rapid periodic drift. Using a thermistor
attached to the sample holder, we find that its temperature follows that frequency
drift closely, as shown in fig. 4.16c. Note that the two are not perfectly correlated.
We attribute the slower frequency drift to changes in the room temperature as the
scan can take upwards of ten hours (depending on the resolution). On the other
hand, the faster drift is attributed to the fact that the membrane is not heated
when the laser exceeds its borders, allowing the temperature to lower; when the
laser returns on the membrane on the following pixels, the temperature increases
again, and so on.

The problem caused by the temperature drift is clarified when considering modes
within the PnC bandgap. Figure 4.17a shows the frequencies of three modes around
1.4 MHz (near the central frequency of the D1 mode). By eye it is relatively clear
which mode is which, but for a computer the task is more complicated. Indeed,
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Figure 4.17: a, Frequency of three modes near 1.4 MHz as a function of the
laser position index. Three modes were identified “by eye”, and shown in red,
green, and blue. b, Corrected frequency of the modes shown in (a). The laser
position dependence of the frequency is removed by dividing by the frequency of the
fundamental mode, shown in fig. 4.16b.

they cannot be indexed by order of appearance as the modes are not systematically
detected at each pixel (e.g. at nodes or outside of the membrane boundaries). More
complicated forms of pattern recognition would be required.

On the other hand, we notice that they all drift in the same manner and, impor-
tantly, follow the same drift as the (1, 1) mode. We hypothesize that all modes have
the same dependence on temperature which can be factored out by using a mode as
the reference “thermometer mode”. The (1, 1) mode here serves this purpose. We
find that by normalizing all the modes by the position-dependent frequency of the
thermometer mode, the drift is effectively canceled. They become easily identifiable,
even by a computer (see fig. 4.17b). Note that both the slower and faster drifts have
been rejected.

In fig. 4.17b, a straightforward frequency interval selection algorithm can be
applied to identify which mode is which. The mode profile can then be reconstructed
and the results of such measurements are discussed in section 4.4.2. From the
measured current fluctuations the physical amplitude of the displacement can be
obtained with some careful calibrations, as detailed below.

Calibrating the data to a physical displacement

If the position of the LO is swept over a large distance, we find from eq. (1.22) that
the measured DC current varies sinusoidally with an amplitude

iamp = 2βΣP0pSpLO, (4.8)
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neglecting noise terms. From this, the quantity βΣP0pSpLO can be readily solved for,
and substituted in eq. (4.5) to find that

S̄xx[Ω] = S̄ii[Ω]× λ2

8π2i2amp

, (4.9)

dropping again all noise terms. In practice, the high-frequency component of the
signal is measured with the SA, while low-frequency component is measured on a
separate branch of the measurement chain; thus, an additional conversion factor is
needed. The electronics setup was often modified for the purpose of optimization and
the conversion of the data to meters was not deemed crucial for its interpretation.
For this reason, to conversion was only done once in section 4.4.2 to obtain am
estimate of the RMS amplitude of the thermal fluctuations of the defect modes.

Finally, we measure the quality factor of the defect modes. In principle this
can directly be done by measuring the thermal spectrum and extracting from it the
linewidth of the mode of interest. For low mechanical linewidths, a more precise
method is to drive the mode resonantly and to monitor the decay of the amplitude
of motion over time. This is called a ringdown measurement, detailed below.

4.3.3 Ringdown measurement of the quality factor

The ringdown protocol is similar to the one presented for an electromechanical
device in chapter 2: in the initial “driving phase” the mode is driven resonantly
by modulating the laser power; in the following “readout phase” the modulation
is turned off and the amplitude of the mechanical noise peak is monitored as a
function of time. A typical ringdown curve obtained in such a manner is shown
in fig. 4.18. The resulting measurement exceeds the noise floor by over 40 dB and
the decay in mechanical amplitude can be readily distinguished. As in chapter 2,
Q can be extracted by fitting this curve with a decaying exponential, following
x(t) ∝ exp (−Ωmt/2Q).

With the presented setup, all requirements for the interferometric system are
fulfilled: up to 9 membranes can be measured by pumping the vacuum chamber
only once, and the full thermal spectrum, mode profiles, and quality factors can be
extracted. In the following section, the results for a batch of PnC membranes of
both generations are presented.

4.4 Results for defect and edge modes

In this section we demonstrate that, as predicted in chapter 3, the D1 mode hy-
bridizes with one or more VEMs in a generation 1 membrane, but that this effect
is negated in generation 2 membranes. This is achieved via the measurement of
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Driving phase

Readout phase

Figure 4.18: Ringdown measurements of a PnC membrane mode at 1.11 MHz follow-
ing a forced resonant excitation with an AOM (driving phase). When the AOM is
turned off, the resonator motion is left to naturally relax to a thermal state (readout
phase).

thermal spectra and mode profiles.
Furthermore, the principal goal of canceling hybridization evens was to ensure

that the bending quality factor Qb of the defect modes approaches its theoretically
maximal value, with a particular emphasis on D1. Here, we verify that this goal is
achieved and is in good agreement with numerical predictions. All membranes in
this section have b ≈ 160 µm, r ≈ 40 µm, M ≈ 20 µm.

4.4.1 Measured thermal spectra

We first consider the spectrum of a generation 1 membrane. Following the method
described in section 4.3.1, thermal spectra are acquired at the 13 points indicated in
fig. 4.19a. They are divided into the four specified categories: defect, vertical border,
horizontal border, and PnC. This amount of points was found to be sufficient to
include all modes of interest. We compared our results with the COMSOL simulation
presented in chapter 3 (fig. 4.19b), and the compiled measured spectrum is shown in
fig. 4.19c. The two are only in qualitative agreement; we attribute the discrepancies
to microscopic differences in the geometry between the simulated model and the
realized sample. However, they do not significantly affect the conclusions of this
work.

We note that evidence of mode hybridization between defect and edge modes
can already be discerned from the thermal spectra: around the frequency of the
label D1 in fig. 4.19c we find several peaks in the spectrum of the defect category
where there should be only one. Conversely, modes labeled D2 and D3 present no
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D1

D2D3

Figure 4.19: a, Optical micrograph of a PnC membrane of a generation 1 design. In
yellow, the SiN is freely standing, and in light blue it is lying above Si. The points
correspond to the various locations where the membrane spectra are measured,
and their colors indicate their category: defect (red), vertical border (light blue),
horizontal border (dark blue), and PnC (black). b, Simulated spectrum near the
PnC bandgap. c, Compiled spectrum, consisting overall of 4 intermediary spectra,
with colors corresponding to the measurement point category. In (b) and (c) the
simulated bandgap is highlighted in light blue. Figure adapted from [118].

signs of such splitting.
Similarly, we characterize the spectrum of a generation 2 design, measuring the

thermal spectra at the points indicated in fig. 4.20a. Numerical simulations pre-
dicted that the effect of an edge guard would be to push the frequencies of VEMs
higher (see fig. 4.20b). Indeed, in the experimentally measured spectrum shown
in fig. 4.20c this is precisely what we observe. Conversely, the frequencies of both
defect modes and HEMs remain essentially unaffected. From this spectrum and in
particular the central frequency of D1, we determine by comparison with numerical
simulations that σ0 ≈ 1.05 GPa.

In generation 2 membranes D1 is spectrally isolated from all other modes. Now,
only a single peak appears in the central defect. Thus, a correlation is observed
between the splitting of a defect mode and the presence of VEMs in its spectral
vicinity. However, we can also observe from fig. 4.20c that the defect mode splitting
is not a systematic effect: modes D2 and D3 remain single peaks, although they are
neighbored by VEMs. The stochasticity of hybridization events is discussed further
in section 4.4.3. Before addressing this point we aim to conclusively demonstrate
that the peak splitting is due to a hybridization of the defect modes with VEMs. We
do this in the following by reconstructing the displacement profile of the membrane
eigenmodes.
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D1

D2
D3

Figure 4.20: a, Optical micrograph of a PnC membrane of a generation 2 design. In
yellow, the SiN is freely standing, and in light blue it is lying above Si. The points
correspond to the various locations where the membrane spectra are measured, and
correspond in color to the spectra in (b) and (c). b, Simulated spectrum near the
PnC bandgap. c, PSD spectrum of the membrane shown in (a), consisting overall
of 4 spectra, measured at the vertical borders (cyan), the horizontal borders (blue),
the defect (red), and within the PnC (black). In (b) and (c), the simulated bandgap
is highlighted in light blue. Figure adapted from [118].

4.4.2 Measured mode profiles

We first consider a generation 1 membrane where the D1 mode and VEMs can
become hybridized. We begin by measuring the tomographies of various modes in
a small region around the central defect area. This allows us to image the defect
mode profiles with high resolution (pixel size 10 µm × 10 µm) in one night of
measurements. In fig. 4.21, the tomographies (converted to meters) of defect modes
D1 to D4 are shown and found to be in good agreement with theory.

Interestingly, we can extract the effective mass of the various modes from this
data. The RMS amplitude of the thermal motion is xth = xzp

√
2nth. By definition

of the zero-point fluctuations the effective mass reads

meff =
kBTenv

Ω2
mx

2
th

, (4.10)

assuming kBTenv � }Ωm. The extracted values for meff , extracting xth from the point
of maximal displacement, are given in fig. 4.21. They are in qualitative agreement
with the results of [25]; Ref. [24] gives an effective mass for the D4 mode of 16 ng
for a membrane thickness of h = 35 nm, which corresponds to an effective mass of
45 ng for h = 100 nm (assuming meff ∝ h), for an agreement of 71%. In comparison,
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Label

D1

D2

D3

D4

Measured SimulatedFreq. (MHz)

1.469

1.555

1.573

1.621

Eff. mass (ng)

5.9

11.2

7.5

37.9

Figure 4.21: Mode shape tomographies of the first few defect modes of a generation 1
membrane. Each experimentally measured image is shown next to the simulated
profiles computed in COMSOL, for comparison. From the maximal displacement of
each mode, the effective (Eff.) mass can be calculated using eq. (4.10).

the mass of the fundamental mode of a plain membrane (of similar frequency to D1)
is approximately 10 ng.

A mode profile scan was then repeated over a wider area (the same as in fig. 4.16a)
to measure the displacement profiles over an entire strip of the membrane. We do
this to simultaneously image defect modes and VEMs. In section 4.4.1 we found
several frequencies around 1.42 MHz where significant displacement in the defect
could be observed. With fig. 4.22 we confirm that those modes are linear superpo-
sitions of VEMs with D1. We note that the symmetry of the system is broken, as
evidenced by the fact that hybridizations of D1 with a VEM on the left and right
of the membrane are not degenerate. For reference, the profiles of the fundamental
mode of the membrane, of a VEM mode on its own, of D2, and of D3 are also shown.

These mode profiles confirm that we have understood the behavior of the most
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VEM (left)

(0, 0) mode

D1 + VEM (right)

D1 + VEM (left)

D2

D3

Label TomographyFreq. (MHz)

0.207

1.447

1.573

1.555

1.474

1.469

Figure 4.22: Mode shape tomographies for various modes of a generation 1 mem-
brane. The scan is taken over the entire width of the resonator to measure the
hyibridization between VEMs and D1.
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relevant eigenmodes of PnC membranes. Furthermore, the appearance of mode
hybridization has conclusively been observed. Following the analysis in chapter 3,
non-negligible displacement of a mode near the border of the membrane is accom-
panied by a strong reduction in the bending quality factor Qb. In the following we
therefore measure its value to quantify the importance of border loss in physical
samples of generation 1 and 2 membranes.

4.4.3 Measured Qb

The total quality factor Qtot is extracted with a ringdown. To determine Qb, it
must first be isolated from the other sources of loss such that Qtot ≈ Qb. The
other dominant loss channels are radiation loss and residual gas damping. We note
that in principle, only edge modes are affected by the former since defect modes
are protected by the phononic shielding. It has been shown that radiation loss can
be minimized by leaving the chip to rest freely on its holder in the interferometer,
without being fixed to it with any sort of glue or tape [87].

Residual gas damping on the other hand arises from elastic collisions with gaseous
molecules (H2O for instance), dissipating the mode energy. To ensure that this
effect is negligible compared to bending loss, we verify the dependence of Qtot on
the chamber pressure. This will allow us to determine the pressure below which we
must operate to ensure that bending loss is dominant. In that regime, results can
be directly compared to simulations and the effect of an edge guard on the defect
mode Q can be quantitatively studied.

Pressure dependence of the quality factor

Residual gas damping has an associated Qgas, such that

Q−1
tot ≈ Q−1

b +Q−1
gas. (4.11)

Bianco et al [119] distinguish two regimes for gas damping: the free-molecule regime
where the gas can be considered as an ensemble of non-interacting particles, and the
viscous regime where molecule-molecule collisions occur more often than molecule-
membrane interactions. In the free-molecule regime where the pressure is low, Qgas ∝
1/p, whereas in the viscous regime Qgas ∝ 1/

√
p. We can thus identify which regime

we are in based on the scaling of Qtot with the pressure; it is necessary to be in the
free-molecule regime to ensure that gas damping is minimal.

In fig. 4.23a, we record Qtot as a function of the chamber pressure in a full
cycle. We first raise then lower the pressure, cycling between a few nanobar and
10−2 mbar. The pressure is controlled by progressively manually closing or opening
either the valve leading to the ion pump or to the turbo pump. A transition region
around 10−4 mbar is found where the scaling of Qtot changes: for lower pressures
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Figure 4.23: a, Variation of the quality factor Qtot of D2 (at 1.53 MHz), when raising
(green) and lowering (blue) the vacuum chamber pressure p. The lines represent fits
to the data with eq. (4.11), for two regimes: the full line corresponds to the free-
molecule regime, for p ≥ 10−4 mbar where Qgas ∝ 1/p; the dashed line follows the
viscous regime model where Qgas ∝ 1/

√
p. b, Frequency (Freq.) drift of the mode,

with the same color coding as (a).

the variation of the quality factor is consistent with the free-molecule model (Qgas ∝
1/p), while for higher pressures the scaling is in good agreement with the viscous
model (Qgas ∝ 1/

√
p). With the free-molecule model we extract Qb = 5.7 × 106.

At the lowest pressures reached by the vacuum chamber (5 × 10−6 mbar), residual
gas damping contributes less than 10% to the total losses. We therefore conduct all
measurements at a few nanobar, such that gas damping does not significantly affect
our conclusions.

In principle, the mode frequency should also vary with the chamber pressure and
scale differently in the two pressure regimes. We track these changes in fig. 4.23b,
but find that the frequency monotonously decreases for the entire duration of the
measurement cycle (which takes up to half an hour). This indicates that phenomena
other than gas collisions are causing a frequency drift; from the short timescale of
such a measurement and the magnitude of the drift, we attribute it mainly to heating
by laser absorption rather than to room temperature fluctuations (which occur over
several hours, and cause a drift of approximately 100 Hz.°C−1).
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Figure 4.24: a-b, Collected values of Q from 10 different membranes of generation
1 (a) and 2 (b), for D1 (yellow), D2 (light green) and D3 (dark green). The
crosses of the corresponding color are centered at the mean frequency and quality
factor and indicate their standard deviation. Above, the simulated spectrum of
the corresponding design indicates the frequencies of the defect modes (red), VEMs
(green), and PnC modes (black). The mode highlighted by the red cross was used
for the mode profiling in fig. 4.22. Figure adapted from [104].

Edge guard vs no edge guard

The improvement of PnC membranes owed to the edge guard is quantified by com-
paring the quality factors of a generation 1 membrane to those of generation 2.
However, as anticipated in section 4.4.1, there is a subtlety: edge modes are not
systematically resonant with the nearby defect modes. We recall that in the numer-
ical simulations of chapter 3, we found that the occurrence of hybridization strongly
depends on the margin M . A given VEM and defect mode are only resonant at a
specific value of M , with a tolerance inferior to 5 µm–the precision of our fabrication
recipe. Consequently, micro-fabrication uncertainties can result in large sample-to-
sample fluctuations of Qb. We expect a good PnC membrane design to be robust
to fabrication uncertainties, ensure that hybridization never occurs, and result in a
high reproducibility of the defect mode Qb. To verify this, we measure Qb of the
defect modes for 10 membranes of each generation.

The measured values for Qb of the first three defect modes of generation 1 mem-
branes are shown in fig. 4.24a. Note that the highlighted point in the figure, corre-
sponding to the sample with one of the lowest Qs for D1, also corresponds to the
sample for which hybridization with edge modes was observed in section 4.4.2. The
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Table 4.1: Exctracted results from fig. 4.24, comparing the mean quality factor and
its standard deviation (St. Dev.) for both membrane designs.

Generation 1 Generation 2

Label
Q St. Dev. Q St. Dev.

(×106) (×106) (×106) (×106)
D1 3.9 2.2 7.2 2.0
D2 10 1.0 6.4 4.6
D3 9.6 1.0 3.2 2.6

lowest measured quality factors, of the order of 106, are consistent with the upper
estimate for Qb of VE1 computed in chapter 3 (4× 106). Ringdown measurements
of Q were done for generation 2 membranes as well. They are shown in fig. 4.24b.

The extracted mean values for Qb of defect modes from both generations are
reported in table 4.1. For D1, the average value increases by almost a factor 2.
In addition, while 1/10 generation 1 samples arrive within 50% of the simulated
Qb = 1.5× 107, 5/10 samples achieve this for generation 2. The quality factors are
also in good agreement with the values quoted in Ref. [24] (between 107 and 2×107).
We note that this has the collateral effect of reducing the average Q for D2 and D3,
which are not aimed to be optimized in generation 2. It could be suggested that
depending on the defect mode of interest, the edge guard design could be tweaked to
optimize the desired Q. For the D1 mode of a generation 2 membrane, the average
Qf -product is

Qf ≈ 1.0× 1013 Hz. (4.12)

We have been primarily interested in verifying that the fabricated design for PnC
membranes is optimal, by studying in detail their thermal spectra and the coupling
of defect modes to edge modes. As such, coupling was regarded as a parasitic
effect. However, as shown by Catalini et al. [4] and as described in chapter 3,
the fact that the PnC does not perfectly decouple the various modes from one
another can be put to practical use. Indeed, a set of “dimer” modes (following
the nomenclature of Ref. [4]) can be engineered by embedding several defects into
the PnC. Hybrid modes separated by large distance can thus be engineered. In
the following section, we present the experimental measurements of such dimer
membranes and the comparison of these results with theory.

4.5 Results for dimer membranes

As described in chapter 3, the number of localized states of motion can be multiplied
by increasing the number of defects in the PnC. Since there remains a finite overlap
between the modes, they are coupled and become hybridized. This results in a new
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Figure 4.25: a, Optical micrographs of dimer membranes, for a dimer separation
of 1, 3, and 5 unit cells (from left to right). The red points indicate the locations
where the thermal spectra were measured. b, Measured compiled thermal spectra
in the central defect area, for the membrane design which lies directly above them.
The red area highlights the two D1 modes which become the D1+ and D1− modes
when hybridized.

set of normal modes localized to two distant defects. Here, we place the defects
along a straight line on the membrane, varying their relative distance to vary the
coupling rate, as shown in fig. 4.25a–of course, this distancing can be done along
any axis, and could be used to fine-tune the coupling rate, as in Ref. [4]. Here,
we wish to extract the coupling rate γ between the two fundamental defect modes,
requiring us to measure their frequency and relative displacement amplitude. To do
so, we already have all the tools at our disposal: by measuring the thermal spectra
and the mode tomographies, all the necessary data can be extracted.

4.5.1 Measured thermal spectra and mode profiles

As before we measure the compiled thermal spectra. Since we do not consider edge
modes for the purposes of this study, only the areas around the central defects are
included. We show the compiled spectra for various dimer distances in fig. 4.25b.
We restrict out study to the D1+ and D1− modes, the symmetric and antisymmetric
normal modes ensuing from a coupling between two D1 modes. As expected, the
frequency splitting is reduced when the dimer distance increases.

Figure 4.26 shows the experimentally measured mode profiles for a dimer sep-
aration of 3 unit cells. We find them to be in good agreement with numerical
simulation. With the current tomography method, the phase of the displacement
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Label Measured SimulatedFreq. (MHz)

1.376

1.393

1.478

1.497

D1+

D3+

D3-

D1-

0.5

Figure 4.26: Mode profiles of a dimer membrane with a separation of 3 units cells,
compared to their simulated profiles. Note that the absolute value of the displace-
ment (Disp.) is measured for the mode profiles, while the simulated profiles take
both positive and negative values to show the symmetry (or antisymmetry) of the
modes.
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Figure 4.27: a, Difference between the frequency of the symmetric mode Ω+ and the
antisymmetric mode Ω−. b, Measured values of δ for the highest frequency mode.
For the points colored in red, an upper estimate on δ is given. c, Extracted values
of the coupling rate γ based on the data in (a) and (b). The red points represent
an upper estimate on γ. In all plots the dashed blue lines indicate the simulated
values from chapter 3.

cannot be determined as we can only measure its absolute value. Nevertheless, sym-
metric and antisymmetric modes can be still identified from their frequency. As seen
in chapter 3, the dimer separation determines the mode order: for an odd number of
unit cells separating the defects, the antisymmetric mode has the highest frequency,
while the opposite is true for an even number. In phase-sensitive detection schemes
(which would require separate readout and driving laser beams), such a comparison
with numerical simulations would not be necessary. From these mode profiles, the
relative displacement amplitude of the modes can be measured. This allows us to
determine γ.

4.5.2 Determining the dimer coupling rate

As derived in Appendix C and discussed in the previous chapter, the coupling rate
γ can be obtained from the frequencies of the normal modes of a system Ω+ and
Ω−. We must also measure δ̃, the ratio of the displacement on the center of one
defect to the displacement on the center of the other. To always have a value below
1, we take δ = min(δ̃, 1/δ̃). These parameters verify the equation

2γ2δ = |Ω2
+ − Ω2

−| −
√
|Ω2

+ − Ω2
−|2 − 4γ2, (4.13)
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from which γ can be extracted.
We measure Ω+ − Ω− and show the results in fig. 4.27a: good agreement is

found with the numerical simulations of chapter 3. Odd distances between the
dimers were here not measured as the coupling was predicted to be low. In addition
to measuring the mode frequencies, we measure δ for the highest frequency mode
only (it is identical for both modes), shown in fig. 4.27b. For some samples, the
mode detuning was too high to measure δ, and each mode appeared localized to a
single defect. In these cases we take as an upper estimate for the displacement on
the other defect the noise floor, giving an upper estimate for δ. These are indicated
by red points in fig. 4.27b. Note that for both |Ω+ −Ω−| and δ, significant dips are
occasionally measured which are not predicted by simulations. We attributed these
departures from the ideal situation to microfabrication uncertainties. Larger dimer
separations are expected to reduce the sample robustness to geometric fluctuations.
Still, even for distances of 11 units cells (1.8 mm), the modes were hybridized with
δ ≈ 0.3.

We evaluate γ for this data by solving eq. (4.13) with the Newton method. The
extracted values are shown in fig. 4.27c: the maximal coupling rate is γ/2π ≈ 60 kHz,
in close agreement with the numerical simulation of chapter 3.

4.6 Concluding remarks

To summarize, we have shown how PnC membranes are fabricated and characterized
in our group. With a monolothic and mobile interferometer, the full thermal spectra
of PnC membranes were obtained and their mode profiles accurately measured. We
have verified that the PnC membrane designs introduced in the previous chapter
behaved as simulated: we were able to spectrally isolate the fundamental defect
mode from all others through an edge guard; as a result, the average Qb of the
mode increased by a factor 2, arriving to within 50% of the simulated value. These
results were published in [118].

The difference in nature between defect and edge modes makes this result all
the more necessary due to the fact that edge modes are “hard-clamped”. Here,
an ideal setup ensured that radiation loss was negligible compared to bending loss.
However, in a number of experiments this is not the case. The relative degradation
in the quality factor of defect modes is then exacerbated if they become hybridized
with edge modes. An example of this is the electromechanical device presented in
chapter 2, where the membrane chip was fixed in place with droplets of epoxy–this
was shown in Ref. [87] to increase radiation loss by up to a factor 10 compared to a
design similar to the one used in this chapter.

With the current membrane parameters (σ0 = 1 GPa, b = 160 µm, h = 100 nm),
we have obtained Qf ≈ 1.0 × 1013 Hz at room temperature. In comparison, the
fundamental mode of a plain membrane is expected to have Qf ≈ 2 × 1012 Hz ne-
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glecting radiation loss, a factor 5 lower. Importantly, this value for PnC membranes
is a lower bound: firstly, Qf can be increased by modifying the membrane aspect
ratio, as discussed above; secondly, we measured in chapter 2 that, in a cryogenic
environment, Qf = 5 × 1013 Hz for plain membranes, consistent with findings in
the literature. With the same “cryogenic boost”, the Qf -product of PnC mem-
branes is expected to increase by another order of magnitude. In future work, PnC
membranes should be measured in a cryogenic environment to verify this estimate.

Furthermore, such a measurement would help determine another key parameter,
namely the minimal achievable value of neff , the effective population of a mode in
a sideband cooling experiment. neff has no physical meaning in the interferometer
discussed in this chapter. In future work it should be verified whether the optimized
PnC membrane design has helped to reduce it, ideally to a value below 1. This can
be achieved by cooling the mechanical mode in an electromechanical cavity.

Finally, we have studied an application of mode couplings in PnC membranes:
the coupling of two separate defect modes. The non-zero overlap between the two
resulted in defect modes, with coupling rates up to γ/2π = 60 kHz, and presenting
significant hybridization even for distances exceeding 1.8 mm. As a result, symmetric
and antisymmetric normal modes arose.

Both of the “practical” membrane designs, namely generation 2 membranes and
dimer membranes, pave the road for further advances in the project, towards ground-
state cooling of mechanical motion, and the preparation of non-classical phononic
states. In the following and final chapter, we discuss the conclusions of this work, the
outlook following from our results, and the partial progress made towards achieving
these goals.



Chapter 5

Conclusion and outlook

Throughout the previous chapters, we have interested ourselves in developing a
MHz-frequency mechanical resonator. Our aim was to assert its suitability first of
all in an electromechanical sideband cooling experiment. We aimed in particular
to increase the Qf -product and decrease the smallest achievable mode population
neff , for any mode of our choosing. The minimal requirement for these values is
Qf > 109 Hz (at 20 mK) and neff < 1. Plain silicon nitride (SiN) membranes were
found in chapter 2 to be suboptimal for this task, despite having Qf ≈ 5× 1013 Hz,
because neff & 100 even at the highest cooling powers. The principal limitation in
the presented experiment was that the membrane mode was being driven by external
laboratory noise, raising the effective mode temperature to approximately 1.4 K.

In this final chapter, we summarize our findings and discuss the outlooks that are
enabled by this work. In particular, section 5.1 discusses potential further progress
on single-defect PnC membranes and how they may be incorporated in an electrome-
chanical experiment. With such samples, the ground state for a SiN membrane mode
appears to be within reach. The next goal after achieving this is to prepare highly
non-classical states of motion, which can prove useful in a number of domains. Their
applications range from precision sensing to quantum information or fundamental
coherence studies. Finally, section 5.2 proposes possible approaches for generating
such states with SiN membranes.

5.1 Single-defect PnC membranes

Chapter 3 demonstrated that in nanomembranes the quality factors of their eigen-
modes could be increased significantly could be increased significantly by localizing
them away from the membrane borders. Through numerical simulations, we found
that in the absence of a specific mode engineering strategy, hybridization of the
defect mode with a set of parasitic “edge modes” would in practice strongly limit
the achievable quality factor. With this in mind, an “edge guard” was introduced
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Figure 5.1: (left) Current design of the PnC membrane. (right) Optimized PnC
membrane design, tweaking the shape of the central defect and of the PnC holes
to optimize the mode profile. SiN is shown in gray, and the scale bar represents
200 µm. The author thanks L. Najera for his help with this figure.

to render the defect mode of interest robust to parasitic effects.
To experimentally verify the performance of the edge guard design, we charac-

terized a large sample of PnC membranes by optical interferometry. We ensured
the detection to be shot-noise limited to be able to measure the thermal motion of
the various membrane eigenmodes. We thus reconstructed the spectrum of motion
of the membrane, and asserted that the edge guard isolated the fundamental defect
mode from any neighboring edge mode. Furthermore, by tracing the amplitude of
motion of the defect mode as a function of position, we confirmed that in the absence
of the edge guard, edge and defect modes hybridized. Ringdown measurements of
Q demonstrated that this reduced the quality factor of defect modes by up to an
order of magnitude. This also allowed us to verify that the measured values were in
good agreement with numerical simulation. For edge-guarded PnC membranes the
Qf -product exceeded that of plain membranes by a factor 10, for h ≈ 100 nm. Ac-
cording to our estimations presented in chapter 3, this is still insufficient for reaching
the ground state in an environment of temperature 1.4 K.

However, the phononic shielding around the defect modes should also serve to
isolate them from technical noise, the cause of the excessively high environment
temperature. We expect that this should help the mode thermalize with the cryo-
stat’s base temperature of 20 mK. Although we do not expect a reduction of neff

with the presented samples, ground state cooling might still be made possible by
this shielding.
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Figure 5.2: Scanning electron microscope image of a metalized PnC membrane. SiN
is shown in dark yellow, and Nb is shown in blue. The scale bar represents 300 µm.
Image courtesy of T. Capelle [43].

Two avenues are being considered to further improve the PnC membrane design.
In essence, there are two elements of the membranes can be changed: the structure
of the PnC itself (including the central defect) or the geometrical parameters of
the membrane as a whole. Considering the former, the PnC was here chosen solely
on the basis of matching the bandgap frequency to the resonance frequency of the
central defect. However, further improvements can be made to optimize the mode
shape, and reduce its curvature. As discussed in chapter 3, this would help improve
on Qf or neff . A computer algorithm based on quadratic gradient-free optimization
searches for the optima of these parameters by tweaking the shapes of the pads and
tethers. For instance, neff is expected to decrease by a factor 2 with the optimized
design shown in fig. 5.1.

The second avenue which can be explored is to increase membrane aspect-ratio.
As found in chapter 3, Qb for defect modes scales with the membrane geometry as
Qb ∝ σ0b

2h−1, where b is the PnC lattice parameter and σ0 the tensile stress. Thus,
even at a constant frequency (constant σ0, b) Qf can still be increased by reducing
h; in the literature, values as low as h ≈ 10 nm have been employed [32]. With
this modification, a hundredfold improvement in Qb can be expected compared to
plain membranes. As shown in chapter 3, reducing h by a factor 10 also reduces the
minimal value for neff by a factor 100, making it in principle possible to reach the
ground state even if the mode temperature is 1.4 K.

These suppositions can only be verified in a sideband cooling experiment. For
this we need to couple a PnC membrane to a resonant microwave circuit, similar to
the experiments of chapter 2. The work required to achieve this is substantial, in
particular because a new fabrication protocol needs to be established. Prior to the
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end of this thesis, some progress towards it had already been made: fig. 5.2 shows an
image of a PnC membrane whose surface has been functionalized by the deposition
of a Nb pad. Electromechanical cavities have already been fabricated with such
samples but no microwave resonance could be measured. We suspect that polluting
residues degraded the quality of the microwave resonance to an unmeasurable level.
Further development on the fabrication protocol is required before positive results
can be obtained. Once this has been achieved, an outstanding goal of the experiment
will be to cool the fundamental defect mode and attempt to prepare it in its ground
state.

While the zero-point motion of a harmonic oscillator is clearly a display of its
quantum mechanical behavior, the resulting state can still be described with a purely
positive Wigner function–this function can be interpreted as a classical probability
distribution in phase space. Its interpretation no longer holds for non-Gaussian
states, whose Wigner function can present some negativities [120]. Examples of
such highly non-classical states include Fock states, containing exactly n phonons,
or Schrödinger cat states (a superposition of two coherent states).

Preparing a mechanical resonator in non-Gaussian states is an important scien-
tific milestone. Fundamentally, macroscopic quantum superpositions could be used
to study gravitationally-induced decoherence mechanisms [121]. From a more ap-
plied perspective, non-Gaussian states are key for increasing the precision of force
sensors beyond the standard quantum limit [122]; they could also be taken advan-
tage of in quantum computing. In the following section we present some possible
approaches to preparing an ultrahigh-Q SiN membrane mode in such a non-Gaussian
quantum state.

5.2 Preparing non-Gaussian states of motion

Importantly, non-Gaussian states cannot be generated using only the electrome-
chanical cavity presented in this work. The interaction is completely linear and the
mechanical states produced by this system are always Gaussian if the initial state
(here, thermal or vacuum) is Gaussian. A nonlinear element must be therefore in-
troduced, and broadly speaking, there are two approaches to do so. The first one
consists of coupling a mechanical element directly to a nonlinear resonator such as
an artificial atom; the second requires the addition of an extrinsic nonlinearity, such
as a single-photon emitter or detector. Both of these options are briefly presented
below.

5.2.1 Direct coupling

This first approach lends itself well to the study of mechanical resonators fabri-
cated with piezoelectric materials. Indeed, their intrinsic coupling to electric signals
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Figure 5.3: a, (Top) Optical micrograph of the top view of the BAR, on which the
piezoelectric disk (diameter 200 µm) and the Josephson Junctions (JJ) of the qubit
can be seen. (Bottom) Schematic of the BAR resonator. indicating the localization
of the phonon mode (not to scale) energy. Images extracted from Chu et al. [15].
b, (Top left) SEM image of the aluminium plate and the DB bias line. (Bottom
left) SEM image of the aluminium plate and the charge qubit, seen from the top.
(Right) Electric diagram of the electromechanical device, showing the aluminium
plate (blue) and the Cooper-pair box (red box). Images extracted from [16].

and their typically high frequencies allow a resonant coupling with superconducting
qubits, with transition frequencies in the GHz range. A recent example of such
a system came from the Schoelkopf Laboratory in Yale [15]: a frequency-tuneable
qubit was strongly coupled to the phonon mode of a bulk acoustic resonator (BAR)
using a piezoelectric disk. This device is illustrated in fig. 5.3a. When the qubit
transition frequency was made resonant with the mechanical mode, single excita-
tions were transferred from the former to the latter. In this manner, n-phonon Fock
states were prepared [10].

Achieving the same kind of control over the state of an ultrahigh-Q mechan-
ical resonator operating in the MHz range would have important consequences in
quantum sciences and technologies. For instance, the lifetime of a quantum memory
based on a high-Q SiN membrane such as the one described in chapter 2, if thermal-
ized at 10 mK, would exceed 1 second1. Such low frequency resonators are also very
effective in force sensing applications [4]. Finally, some collapse models predict that
gravitationnal decoherence could become the dominant decoherence mechanism in
low-frequency, ultrahigh-Q mechanical systems (see Chapter 6 of M. Gely’s thesis
[123] and Ref. [121]).

However, creating an interface between a superconducting qubit operating in the
GHz range and a conventional mechanical resonator with a MHz resonance frequency
is a significant challenge. A first experimental breakthrough in this direction has

1The thermal decoherence time is given by (Γmnth)
−1

.
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been demonstrated by the Lehnert laboratory [16]. In this experiment represented
in fig. 5.3b, a thin aluminium plate is coupled to a superconducting qubit without
resorting to the piezoelectric effect. A DC-bias needs to be applied to the vibrating
plate to achieve this. By splitting the opposite electrode in two, the antisymmetric
motion of the first-order mechanical mode gives rise to a differential charge offset
across the qubit. By employing a highly non-linear qubit known as a Cooper-pair
box, a sizable shift of the qubit transition frequency induced by the presence of
a single phonon in the mechanical resonator could be observed. This effect was
used to prepare mechanical states with sub-Poissonian probability distribution in
the Fock basis. In principle, the dimer membrane presented in chapter 4 could be
employed in a similar scheme, which would allow the use of mechanical resonators
with significantly higher Qf -products. The principal limitations to the experiment
of Ref. [16] were the low coherence properties of the Cooper-pair box caused by a
high sensitivity to environmental charge noise. In the following section, we explore
alternative approaches where a standard electromechanical system is employed in
conjunction with a remote non-linear resource.

5.2.2 Extrinsic nonlinearity

Release-and-catch

Another strategy consists of keeping the electromechanical system linear, but con-
necting it via standard microwave transmission lines to a remote nonlinear resource.
For instance, a single photon source was used by the Lehnert group [124] to excite a
single-phonon state using the optomechanical interaction, with a state fidelity up to
83%. The advantage of such a modular approach is that the electromechanical and
qubit systems can be packaged. Everything is only connected in the final stage of the
experiment. However, the fidelity achievable in this “release-and-catch” approach is
directly limited by losses in the transmission line between the photon source and the
electromechanical system. In such a scheme, photon loss mixes the desired mechan-
ical state with the initial Gaussian state. A “heralded state preparation” described
in the following is an advantageous strategy which remains modular but is robust
to photon losses.

Heralding

The principle of a detection-based preparation of non-Gaussian states is that instead
of measuring the field quadrature with a homodyne detection (e.g. â + â†), the
photon number â†â is measured. Such a protocol was demonstrated to produce
single-phonon states in the optical domain by the Gröblacher group [14]. A similar
experiment could be performed in the microwave domain as well.

The principle of a heralded detection has been outlined e.g. in Ref. [14], and is
summarized below. It is a detection-based protocol which uses the measurement to
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Figure 5.4: (More details in the main body) a-c, Principle of a herladed detection in
electromechanics, in analogy to a purely optical system. The protocol is performed
in three steps: (a) the sideband cooling interaction, (b) the two-mode-squeezing
interaction, and (c) the detection of the output light field using a photon counter.
For each step, the electromechanical interaction, the analogous optical component,
and the resulting mechanical state (including the Wigner function) are shown. The
index “m” after a ket indicates that it describes the Hilbert space of the phonon.

project the oscillator into the desired state using the measurement backaction. We
propose to illustrate the protocol in analogy with a purely optical scheme, where a
Fock-|1〉 state is prepared for a photon field.

The protocol starts by initializing the mechanical mode into the ground state.
In electromechanics, this is achieved through the sideband cooling interaction; in
the optical domain one would place a beamsplitter in front of the beam to ensure
that its output is a vacuum state (fig. 5.4a). In chapter 1, we expressed the Hamil-
tonian of the electromechanical cavity in terms of the position x̂ of the mode. This
was consistent with the quadrature measurements presented throughout this the-
sis. Here, it will be more instructive to use the phonon ladder operator m̂, with
x̂ ≡ xZP

(
m̂+ m̂†

)
. In the presence of a pump, the interaction becomes linearized.

The resulting effective Hamiltonian of the system depends on the frequency of the
pump [20]: if it is on the blue mechanical sideband, we obtain what is known as the
“two-mode-squeezing Hamiltonian” Ĥtms. In the interaction picture it reads

Ĥtms = }g
(
δâ† m̂† + δâm̂

)
, (5.1)
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where δâ represents fluctuations around the mean intracavity field.
Since the mechanical mode is in its ground-state, only the term boxed in red

is permitted. It describes the simultaneous excitation of a photon on cavity reso-
nance and of a phonon. If that interaction is applied, the mechanical state cannot be
written independently of the intracavity field. We express the state of the electrome-
chanical system as |ψ〉em, which initially reads |ψ〉em = |00〉 (both the mechanical
mode and the cavity mode are in their ground states). If a short blue pulse (of
duration τ � 1/g) is sent into the cavity, the joint state reads

|ψ〉em ∝ |00〉+ p1/2|11〉+ p|22〉+O
(
p3/2

)
, (5.2)

where p� 1 is the excitation probability. The mechanical mode is still mostly in its
ground state, but with a small probability a phonon has been excited; its creation is
accompanied by the generation of a photon resonant with the cavity. In the optical
domain, a weakly pumped optical parametric oscillator can be used to generate
a similar state (fig. 5.4b). The generated photon travels down the measurement
chain and can be measured with the “click” of a detector. Through this click the
mechanical state is immediately projected onto the Fock-|1〉 state (fig. 5.4c). The
protocol is probabilistic (there is a probability p of generating a phonon), but the
“click” of the detector heralds the successful preparation of the system in the desired
state.

The overall performance of this protocol can be characterized by the preparation
fidelity of the Fock-|1〉 state on successful events. The overall fidelity is governed by
three factors:

1. The probability of having one photon in the emitted wave packet, p. It is
related to photon losses between the cavity and the detector.

2. The inefficiency (1 − P [click|1]). It gives the rate of false negative events:
the probability of missing a click of the detector when a photon is emitted
by the source. It is related to photon losses between the detector and the
measurement apparatus.

3. The dark count (P [click|0]). It gives the rate of false positive events: the
probability of measuring a click from the detector in the absence of an emitted
photon. Its origin is discussed in section 5.2.3.

The infidelity (1 − F ) of the state is roughly given by the ratio of the noise to the
signal. The signal is given by the probability of having a photon in the emitted
wavepacket reduced by the inefficiency; the noise on the other hand is given by the
dark count. Therefore, the infidelity reads

1− F =
P [click|0]

pP [click|1]
. (5.3)
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Figure 5.5: Illustration of the basic principle of the SMPD. The device comprises
three elements: the buffer mode, the qubit, and the waste mode. A photon entering
the buffer mode can be transduced into a photon in the waste mode, simultaneously
exciting the qubit. The reverse is not possible due to the strong coupling of the
waste mode to a lossy reservoir, preventing any spurious waste mode population.
Figure adapted from [125].

Note the presence of the dark count rate P [click|0] on the numerator. Even in the
presence of finite photon losses (pP [click|1] < 1), the fidelity can be made arbitrarily
large if the dark count rate is sufficiently low. In this sense, heralding schemes are
said to be robust against photon losses.

Although low dark-count-rate photon detectors are available off-the-shelf in the
optical domain, detecting the faint energy associated to microwave photons is much
more challenging. Through a collaboration with the group of Zaki Leghtas at
LPENS, a low dark-count single microwave photon detector (SMPD) based on su-
perconducting qubits has been developed.

5.2.3 Counting single microwave photons

Several methods exist for counting single photons, but for brevity only the working
principle of the SMPD developed with the group of Z. Legthas is discussed here.
The interested reader is refered to Ref. [125] for further details.

The detector consists of three elements, shown in fig. 5.5: two harmonic os-
cillator modes, called the buffer and the waste, of frequency ωb and ωw; and a
two-level-system (TLS) formed by an artificial atom of transition frequency ωq. The
Hamiltonian of such a system is highly nonlinear and contains many interaction
terms. However, similarly to what we did for in the electromechanical Hamilto-
nian, specific terms can be amplified by pumping the qubit at the correct frequency.
Here, the pump frequency is set to ωL = ωw + ωq − ωb. The pumped system is well
described by the effective Hamiltonian

ĤSMPD = χb̂σ̂†ŵ† + χ∗b̂†σ̂ŵ, (5.4)
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Figure 5.6: Three characterization experiments of the SMPD. a, The photon count-
ing efficiency is tested by varying the amplitude bin of the buffer pulse, and recording
the average qubit population pe. b, The duration of the buffer pulse tb is varied and
the variation of the efficiency of the detector is determined. c, The dark count of
the detector is extracted by measuring pe for varying pump pulse durations in the
absence of a buffer pulse. Figure adapted from [125].

where b̂ (ŵ) is the annihilation operator describing the buffer (waste) mode, σ̂ is
the annihilation operator for the qubit, and χ is the three-wave mixing rate. ĤSMPD

can be interpreted in the following manner: if a photon enters the buffer cavity,
then it can be transferred into the waste cavity by simultaneously exciting the qubit
(as described by the term boxed in red). The qubit thus acts as the witness of
the photon’s passage. The state of the qubit can then be read at the end of the
sequence by measuring the qubit-dependent shift of the waste cavity frequency. Note
that this only works if the qubit is initialized in its ground state first. To prevent
the reciprocal behavior (b̂†σ̂ŵ) which allows the qubit to relax, the waste cavity is
strongly coupled to a dissipative bath. Thus, any incoming excitation is immediately
damped in the environment, maintaining the waste in the ground state at all times.

The SMPD was characterized in the following manner:

� A “test run” of the detection is first made (fig. 5.6a). The SMPD is activated
by the strong pump, and a short buffer tone of varying power bin is sent into
the buffer cavity. Afterwards, the pump is turned off and the state of the
qubit is probed. For each value of bin, the average population pe of the qubit
is recorded against the probability p of having a photon in the buffer pulse.
The slope at the origin of the resulting curve is a measure of the efficiency
P [click|1].

� This experiment is repeated for varying buffer pulse duration tb and the detec-
tor efficiency is recorded (fig. 5.6b). We find that the detector has an optimal
functioning point for tb ≈ 2 µs. The corresponding maximal efficiency ηmax is

ηmax ≈ 0.58. (5.5)
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For shorter buffer pulse durations the detector efficiency is limited by the finite
bandwidth of the buffer cavity, which doesn’t accommodate for the spectral
width of the incoming pulse. For longer tb the buffer pulse duration exceeds
the natural relaxation time of the qubit. The qubit eventually relaxes back
into its ground state and reduces the measurement efficiency.

� Finally, the dark count of the SMPD is determined (fig. 5.6c). This is achieved
by measuring whether or not the detector has “clicked” in the absence of a
buffer pulse, for varying pump duration tp (corresponding to the activation
period of the detector). We find that the SMPD has a base dark count prob-
ability of 3× 10−3 due to an improper ground-state initialization of the qubit.
As tp increases, so does the dark count, initially at a rate Γmin

dc ≈ 1.4 ms−1.
For short pump durations, the dark count probability reads

P [click|0] = 3× 10−3 + Γmin
dc tp. (5.6)

We attribute the increase of the dark count over time to thermal excitations of
the qubit. This rate is an order of magnitude lower than comparable devices
reported prior to this publication [126–129].

For a pump duration of the order of the microsecond and an optimal buffer pulse
duration, assuming p ∼ 10−1, a state fidelity above 90% can be expected.

5.3 Concluding remarks

To summarize, in this thesis we have developed phononic engineering techniques for
SiN nanomembranes. These will prove crucial for reaching the quantum regime of
an electromechanical resonator with unprecedented coherence properties; we showed
them to significantly outperform the non-optimized resonators measured in chap-
ter 2. Since we measured plain SiN membrane modes to have lifetimes of the order
of 30 s at cryogenic temperatures, we can expect ultralong coherence times for PnC
membrane modes. The assembly of the electromechanical device with patterned
membranes is ongoing. It will be measured in a dedicated dilution cryostat which
arrived in the laboratory towards the end of 2020. In this manner, we will also
be able to verify if the phononic shielding of PnC membrane modes helps them
thermalize closer to the cryostat temperature.

Such a hybrid system is ideally suited for leveraging superconducting qubits
as a nonlinear resource. It will allow us to prepare the membrane modes in non-
Gaussian states characterized by negativities in the Wigner function. Heralding
protocols, which exploit the backaction of the field measurement in the Fock-state
basis, constitute a reliable method to prepare such nonclassical states. By developing
a low dark-count-rate single-photon detector in collaboration with LPENS, we have
demonstrated all the groundlaying elements to perform such an experiment.
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These experiments are of interest for fundamental physics, as they could lead
to the first study of gravitational decoherence mechanisms. Beyond this they can
be used for quantum information technologies, where the mechanical resonator can
play the role of highly sensitive force probes or quantum memories with long storage
times.
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Appendix A

Calibrating the resonator
population

Here, we derive the method for calibrating the PSD of the probe sidebands based
on a reference noise quantity, following the principles described in [35]. Specifically,
we compare the magnitude of the mechanical noise to the measurement noise floor,
assumed known. It is added to the signal by the amplification chain.

In the sideband cooling experiment of chapter 2, a phase-insensitive amplifica-
tion chain is used to directly amplify the amplitude of the complex field δâ. Both
quadratures of the field are thus amplified and it naturally follows from quantum
mechanics that the amplifier must also contribute a minimal amount of noise [35]. In
practice, the added noise from the amplification chain is some 20 times higher than
this minimum. The amplification noise can be calibrated separately (see Ref. [43]),
and we will use that fact to link the measured current noise spectrum S̄ii to the
mechanical noise spectrum S̄xx. Quantum noises in S̄x̂x̂ are here neglected since
they are significantly smaller than the classical noise added by the amplifier.

We model the measurement chain as a three-step process, illustrated in fig. A.1.

1 2 3

S
A

Figure A.1: Simplified measurement chain of the electromechanical signal until it
reaches the spectrum analyzer (SA). The steps 1-3 are described in the main body.
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The steps indicated in the figure represent key transitions in the signal, and are as
follows:

1. The signal leaves the cavity. We find from eq. (1.50) that the intracavity
field fluctuations, for ∆̄ = −Ωm and for frequencies Ω near the mechanical
resonance frequency Ωm, reads

δâ[Ω] ≈ 2iαG

κ
x̂[Ω], (A.1)

where the input field terms have been neglected. From the input-output for-
malism for a hanger cavity (as applicable to section 2.3), δâout =

√
κc/2δâ.

The output field noise spectrum S̄ââ,out then reads

S̄ââ,out =
ηΓmC

2

S̄x̂x̂[Ω]

2x2
ZP

. (A.2)

2. The signal is amplified. We assume that, before reaching the first amplifier,
the signal is attenuated by a factor A. The amplifier then amplifies Sââ and
adds a certain amount of noise to the signal, which can be described in terms
of an added amount of noise quanta nampl. The expression for the amplified
noise spectrum Sââ,ampl reads

S̄ââ,ampl[Ω] = G
(
AS̄ââ,out + nampl

)
, (A.3)

where G is the gain of the amplifier.

3. The signal reaches the measurement device. From the amplifier to the mea-
surement device (which is in this case a spectrum analyzer), the total signal
may be additionally amplified or attenuated. Finally, we measured a current,
which is related to the amplified field by

S̄ii[Ω] = K(Ω)×
(
AηΓmC

2

S̄x̂x̂[Ω]

2x2
ZP

+ nampl

)
, (A.4)

where K is a transfer function encompassing the effect of any subsequent
attenuation or amplification, as well as the conversion factor from the light
field noise to the current noise.

Note that eq. (A.4) is valid so long as no significant amount of noise is added to
the system after the first amplifier. This is usually true, as in a measurement chain,
if G is sufficiently large the noise added by any subsequent device is negligible.

Considering the noise spectrum at a frequency Ωref 6= Ωm, such that S̄x̂x̂[Ωref ] ≈ 0,



153

then S̄ii[Ωref ] ≈ K(Ωref)nampl. Assuming that K(Ωref) ≈ K(Ωm), we can write

S̄ii[Ω] ≈ S̄ii[Ωref ]

nampl
×
(
AηΓmC

2

S̄x̂x̂[Ω]

2x2
ZP

+ nampl

)
, (A.5)

which can be readily solved for S̄x̂x̂[Ω].



154 APPENDIX A. CALIBRATING THE RESONATOR POPULATION



Appendix B

Scaling of the effective population

Based on the derived scaling of losses in chapter 3, we derive in this appendix how
the effective membrane population neff in a sideband cooling experiment depends
on the membrane parameters. We consider the tensile stress σ0, the side length l,
and the thickness h. In particular, we wish to find how neff can be reduced for a
given intracavity field amplitude α. For simplicity, we neglect all quantum effects
since the ground state is not reached. neff can then be taken as the effective thermal
population derived in eq. (1.68). For C � 1 + η−1

rsf , the effective population reads

neff ≈
nth

C
. (B.1)

Recalling that nth ≈ kBTenv/}Ωm, C ≡ 4g0α
2/κΓm, we obtain the following

expression:

neff ≈
kBTenv

}Ωm
× κΓm

4g2
0α

2
. (B.2)

The vacuum coupling rate implicitly depends on the resonator geometry as well,
since g0 ≡

√
}/2meffΩm (∂ωc/∂x). The resonator population then reads

neff ≈
kBTenvκ

2}2α2
× Γmmeff ×

(
∂ωc

∂x

)−2

. (B.3)

In eq. (B.3), only the terms boxed in red depend on the relevant parameters.
Indeed, if we model the capacity of the microwave circuit as a parallel plate capacitor,
ωc ∝

√
x, and ∂ωc/∂x = ωc/2x. Since ωc is defined independently of the membrane

design, ∂ωc/∂x is independent of the geometric parameters.
In chapter 3, we derived the following scalings:

� Γm ∝ l−2. We obtain this scaling from the relation Γm = Ωm/Q. Considering
only bending losses, Q ∝ l

√
σ0, and Ωm ∝

√
σ0/l.
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� meff ∝ l2.

In terms of geometric parameters, we can thus write

neff ∝ h. (B.4)

This follows from the fact that a thinner membrane is lighter, and has a higher
susceptibility to the cavity backaction.



Appendix C

Coupled damped harmonic
oscillators

In this Appendix, we derive the eigenvectors, eigenfrequencies, and losses for two
coupled harmonic oscillators, modeled as point masses. Let Ω1 (Ω2) denote the
frequency of the first (second) oscillator, and Γ1 (Γ2) denote the energy dissipation
rate of the first (second) oscillator. Furthermore, let X1 (X2) be the position of the
first (second) oscillator. Let γ be the rate at which the two oscillators exchange
energies. The equations of motion of the system, derived from Newton’s second law,
are

Ẍ1(t) + Γ1Ẋ1(t) + Ω2
1X1(t) + γ2X2(t) = 0, (C.1)

Ẍ2(t) + Γ2Ẋ2(t) + Ω2
2X2(t) + γ2X1(t) = 0. (C.2)

We assume that the two masses undergo harmonic oscillations. We hence take
the following Ansatz for their solutions: X1,2(t) = X̄1,2e

iΩ̃t, where Ω̃ is a complex
eigenfrequency. The equations of motion can be then be written in the following
matrix form:

MX̄ = 0, (C.3)

where X̄ =
(
X̄1, X̄2

)T
. The 2x2 matrix M is given by:

M =

(
−Ω̃2 + Ω2

1 + iΓ1Ω̃ γ2

γ2 −Ω̃2 + Ω2
2 + iΓ2Ω̃

)
. (C.4)

The system admits nontrivial solutions (i.e. X 6= 0) if det
(
M
)

= 0.

157



158 APPENDIX C. COUPLED DAMPED HARMONIC OSCILLATORS

C.1 Eigenfrequencies

To solve this equation, we explicitly separate the eigenfrequency into its real and
imaginary components: Ω̃ = Ω + iΓ/2. Because high quality factor resonators are
exclusively studied throughout this work, we assume that Ω > γ � Γ, and treat Γ
as a perturbation parameter. Separating the equation det

(
M
)

= 0 into its real and
imaginary terms yields the two following equations:

Ω4 − Ω2
(
Ω2

2 + Ω2
1

)
+ Ω2

1Ω2
2 − γ4 ≈ 0 (C.5)

Γ
(
2Ω2 − Ω2

2 − Ω2
1

)
− Γ2

(
Ω2 − Ω2

1

)
− Γ1

(
Ω2 − Ω2

2

)
≈ 0. (C.6)

In eq. (C.5), only the terms of O (Ω4) were kept; in eq. (C.6), only terms of O (ΓΩ2)
were kept. From eq. (C.5), two eigenfrequencies are found:

Ω2
± =

1

2

(
Ω2

1 + Ω2
2 ±

√
(Ω2

1 − Ω2
2)2 + 4γ4

)
. (C.7)

From the terms inside the square root, two regimes stand out which are distinguished
by the relative weight of γ with respect to the difference between the two natural
frequencies. In the large detuning regime where γ2 � |Ω2

1−Ω2
2|, the eigenfrequencies

are restored to the natural frequencies Ω1 and Ω2. On the other hand, in the
small detuning regime where γ2 � |Ω2

1 − Ω2
2|, the eigenfrequencies are separated

symmetrically around the average of the natural frequencies, with Ω2
+ − Ω2

− = 2γ2.
Substituting eq. (C.7) into eq. (C.6), the dissipation rates of the normal modes

can be found. They read

Γ± =
Γ1

(
Ω2
± − Ω2

2

)
+ Γ2

(
Ω2
± − Ω2

1

)
(Ω2
± − Ω2

2) + (Ω2
± − Ω2

1)
. (C.8)

In the small detuning regime, Γ+ and Γ− converge to the same value, which is the
average of the natural dissipation rates: 2Γ± → Γ1 + Γ2. In the large detuning
regime, the two values tend to the natural dissipation rates, here Γ+ → Γ1 and
Γ− → Γ2.

C.2 Eigenvectors

The eigenvectors can be found by substituting eq. (C.7) into eq. (C.3). For this
calculation, we neglect any term O(Γ) and above, as they add minimal corrections
to the result. Let X± denote the eigenvectors of the system, which read

X± = N±

(
±2γ2√

(Ω2
1 − Ω2

2) + 4γ4 ∓ (Ω2
1 − Ω2

2)

)
(C.9)
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where N+ and N− are normalization factors ensuring that the norms of the eigen-
vectors are 1. In the small detuning limit, the modes become hybridized and the
eigenvectors can in that case be written as

X± =
1√
2

(
±1
1

)
, (C.10)

In the large detuning coupling, the modes become independent and can be written
as

X+ =

(
1
0

)
(C.11)

X− =

(
0
1

)
. (C.12)
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Appendix D

Fabrication recipes

D.1 Plain SiN membrane fabrication

Here, we present the detailed step-by-step fabrication procedure for releasing plain
SiN membranes. The relevant fabrication steps are illustrated in fig. D.1, and re-
ferred to below.

� The entire 4-inch wafer is coated with a lithography resist (AZ 5214), serving
as a protective mask, and baked at for 1’30” (T = 110°C).

� (Figure D.1a) The wafer is diced into individually handled 3 cm × 3 cm chips.

For each chip:

� (Preliminary cleaning) Ultrasound acetone bath for 10’ (T = 50°C), followed
by a rinse in isopropanol (IPA) and drying with a nitrogen gun.

� The side of the chip on which the membranes will be fabricated is chosen and
labeled as the “frontside”. The other side is the “backside” (see fig. D.1a). The
frontside is typically the side of the wafer which is coated in the protective
resist, although an optical inspection is made to ensure that there are no
apparent defects.

� (Figure D.1b) AZ 5214 E (positive UV lithography resist) is spun on the
frontside (4000 rpm, acceleration 1000 rounds.min−2).

� The sample is baked on a hot plate for 1’30” (T = 110°C).

� The previous two steps are repeated for the backside.

� Backside lithography on an MJB4 mask aligner to define the windows (see
figure D.1b). In soft contact mode, exposition for 10’.
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� The resist is developed in AZ 726 MIF for 30’.

� Rinsing in deionized (DI) water and drying with a nitrogen gun.

� (Figure D.1c) Dry etching of SiN using reactive ion etching (RIE). A combina-
tion of O2 and CHF3 is used to etch the SiN with high selectivity to Si (10:1)
[130], with an etch rate of about 31 nm/min.

� (Figure D.1d) Ultrasound acetone bath for 10’ (T = 50°C), followed by a rinse
in isopropanol (IPA), and drying with a nitrogen gun.

� (Figure D.1e) KOH dip (T = 85°C, concentration 30%) with stirring at
200 rpm, in the waterproof holder. The etch rate is approximately 80 µm/hour.

� When approximately 50-40 µm of Si remain, the stirring is halted.

� The end of the etch is marked by the end of the effervescent release of H2

bubbles. The sample is transferred to a DI water bath of the same temperature
as the KOH and rinsed.

� Rinsing in IPA and drying with a nitrogen gun.

� (Final cleaning) Dip in 3:1 piranha (3H2SO4 +H2O2) for 20’.

� (Figure D.1f) Rinsing in DI water, then IPA and drying with nitrogen gun.
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PR

KOH

Si

SiN (frontside)

SiN (backside)

Figure D.1: (See the main body for additional details) Illustration of the key steps
of the plain membrane fabrication. Blue: SiN; gray: Si; red: photoresist (PR).
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D.2 Patterned SiN membrane fabrication

The text included in the following was published by the author in an open-source
journal for sharing cleanroom fabrication recipes [118]. It details the fabrication of
a PnC nanomembrane made from SiN.



Fabrication of patterned silicon nitride nanomembranes at the LKB 

Edouard Ivanov1, Thibault Capelle1, Thibaut Jacqmin1, Samuel Deléglise1, and Antoine 
Heidmann1 

1 Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de  
France,  75005  Paris,  France 

Thin silicon nitride nanomembranes are attracting growing attention following a novel 
fabrication method which consists in patterning them with a phononic crystal. In engineering 
the vibrational mode profile, the dominant mechanisms of loss, radiation loss and intrinsic 
material loss, are simultaneously addressed and mitigated. The fabrication method employed 
by the optomechanics group at the Laboratoire Kastler Brossel is presented here; in particular, 
we only employ basic lithography techniques and wet etching processes. 
 
Keywords: lithography, soft clamping, phononic crystal, silicon nitride, wet etch, KOH  
 

FABRICATION PROCESS 
In this report, we present the process used by 

the optomechanics group at the Laboratoire 
Kastler Brossel for fabricating ‘soft-clamped’ 
silicon nitride (SiN) membranes [1]. The (100) Si 
wafers were bought from Si-Mat [2], with 
stoichiometric SiN deposited on both sides of the 
Si by low-pressure chemical vapor deposition.  
Two kinds of wafers are currently used in our work, 
and the method described below has been tested 
on both kinds: the first is a 500 µm thick Si wafer, 
with intrinsic resistivity (𝜌 > 10 000 Ω.cm), and 
layers of 100 nm of SiN; the other is a 300 µm tick 
Si wafer, with a resistivity of 𝜌 ≈ 1 − 30 Ω.cm, and 
a SiN thickness of 35 nm. 

As with most fabrication methods reported by 
other groups for SiN membranes, patterned or 
otherwise, the fabrication process is based on the 
wet etching of the Si frame in a warm KOH bath. 
KOH possesses a high selectivity of SiN to Si, and 
SiN can thus be used as a hard mask to locally etch 
the Si at a high rate. This property can be used for 
fabricating various shapes of anchored 
membranes or strings of SiN [1,3-5].  

Releasing an unpatterned SiN membrane by 
itself is a relatively straightforward process, with 
high yield and high margin of error. Conversely, it 
has repeatedly been observed that the release of 
a membrane patterned in such a way than thin 
structures exist within it requires more meticulous 
handling of the samples [3,6]. Moreover, the 

addition of air holes in the SiN membrane (see 
Figure 1) adds another channel for the KOH to 
etch the Si, which must absolutely be blocked for 
the release to be successful. Several approaches 
involve the use of watertight PEEK holders, 
protecting the membrane side [1,3].  

Here, we present an alternative etching 
process which differs slightly from the usual 
approach to release these PnC structures; the 
membrane side is protected, rather than by an 
external holder, by a thick layer of photoresist 
lying on the surface on the chip for the duration of 
the KOH etch. 

 
 

 
Figure 1- Optical micrograph of a patterned 
SiN membrane. 
In yellow, the freely standing SiN; in blue, the SiN 
above Si; in black, air holes. The black scale bar 
represents 1 mm. 



The bought wafers are initially diced into 3 cm 
× 3 cm chips, before being bathed in an 
ultrasound bath of hot acetone, at 50°C. After 
each acetone bath, a chip is systematically rinsed 
in isopropanol before drying with N2. The 
procedure is then as follows, illustrated in figure 2: 

• Step 1: a single chip is rinsed as above. 

• Step 2: before any further procedure, the side 
of the chip on which the membrane will be 
fabricated (the frontside) is covered with a 
protective coating of photoresist AZ 5214 E. 
The frontside is chosen based on best surface 
cleanliness. The resist is then spun onto the 
other side of the chip (the backside), and a 
window is patterned by h-line laser lithography 
(on the Microtech Laserwriter LW405C). The 
developer used is AZ 726 MIF.  

• Step3: the SiN window on the backside is 
etched by reactive ion etching (RIE) involving a 
mixture of CHF3 and SF6 gases.  

• Step 4: the sample is cleaned in a hot 
ultrasound acetone bath, followed by a dip in 
IPA.  

• Step 5: resist is spun onto the frontside, which 
is patterned with the phononic crystal structure 
by laser lithography.  

• Step 6: the SiN on the frontside is etched by RIE  

• Step 7: another acetone/IPA cleaning cycle is 
undergone. 

• Step 8: for the duration of the KOH etch, the 
frontside is protected with a thick photoresist 
unaffected by KOH: ProTEK PSB [7]. 

• Step 9: the Si is etched in a KOH bath, with a 
concentration of approximately 30%. The etch 
consist of two phases: first, the KOH is heated 
to 85°C, into which the sample is dipped, held 
by a Teflon holder keeping it vertical during the 
duration of the etch (see Figure 3). To ensure 
homogeneity throughout the liquid, the KOH is 
stirred with a magnetic stirrer at 200 rpm. When 
an estimated less than 50 µm of Si remain, the 
temperature is decreased to 75°C to reduce 
the amount of H2 bubbles generated, and the 
stirring is interrupted.  

• Step 10: after the KOH etch is fully finished and 
the SiN membranes are fully released (which 
can be judged by eye), the samples are 
transferred to a in a piranha solution (with a 

H2O2:H2SO4 ratio of 1:4) in order to remove the 
ProTEK. The process is finalized by a dip in 
deionized (DI) water, and IPA. 

• (Optional) Step 11: in case the piranha etch was 
not successful in fully etching the Protek, a 
second, stronger piranha etch is undergone, 
with a H2O2:H2SO4 ratio of 1:1. 
 

 
 

 

Figure 2- Illustrated fabrication process. 
Blue: SiN; gray: Si; red: photoresist (PR); green: 

ProTEK PSB (PTK) 

The precision in the width and height of the 

membrane window was of the order 1 µm, with an 

accuracy of the order of 1 µm, and good 

reproducibility from one bath to another. The 

centering of the PnC pattern was also determined, 

by measuring the distance of an outermost hole to 

the membrane border and comparing that to its 

design value. We found a precision in that 

distance of 2 µm, with an accuracy of 2 µm. 

 

 

 

 

 

 

 

 

 

 

 

  

   
  

  

   



 

ADITIONNAL REMARKS 

• Step 9: the empty Teflon holder is heated in the 

KOH until the temperature of 85°C is reached, 

to prevent a temperature dip when the sample 

is inserted. When 85°C are reached, the holder 

is removed from the solution, the chip is 

loaded, and the holder is finally returned to the 

solution.  

The verticality of the Teflon holder is employed 

to minimize viscous drag normal to the 

membrane surface during manipulations in the 

KOH; it serves as a way to ensure that the H2 

bubbles generated by the KOH etch do not 

affect with excessive force onto the membranes 

as well. Once the chip is loaded onto the 

holder, it is never removed until the process is 

fully terminated. 

• Step 10: After the membranes are released, the 

sample is treated as delicately as possible. Any 

dip in a solvent or DI water simply consists of 

gently lowering down the holder into the 

solution, and letting is clean by diffusion for 

approximately 10 minutes. 
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Appendix E

Symbol list

Table E.1: List of the most important symbols found
throughout this manuscript.

Symbol Meaning

General terms

SOO Noise spectral density of O
S̄OO Symmetric noise spectral density, S̄OO[Ω] = SOO[−Ω] + SOO[Ω]

Mechanical resonator

x̂, x Position operator or variable
p̂, p Momentum operator or variable
meff Effective mass of a continuous mode
Γm Energy dissipation rate
Ωm Natural angular frequency
χm Mechanical susceptibility, χ−1

m (Ω) = meff [(Ω2 − Ω2
m)− iΓmΩ]

Tenv Temperature of the resonator’s environment
nth Mean number of thermal quanta, nth(Ω) = 1/ (exp (}Ω/kBTenv)− 1)
xzp RMS displacement of the zero-point motion,

xzp =
√
}/2meffΩm

Ĥm Hamiltonian of the mechanical resonator, Ĥm = p̂2/2meff +meffΩ2
mx̂

2/2

Silicon nitride membrane

E Young’s modulus

Ẽ Generalized Young’s modulus, Ẽ = E − iE2

σ0 In-plane stress
σ Stress vector
ε Strain vector
ρ Density
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h Membrane thickness
l Membrane side length
ν Poisson’s ratio
u Displacement profile of a mode

Λ Dissipation dilution factor, Λ =
√
Eh2/3(1− ν2)σ0l2

U Total energy of a mode
Ubend Bending energy of a mode
Uelong Elongation energy of a mode
Q Quality factor, Q = 2πU/∆U or Q ≈ Ωm/Γm

Qintr Intrinsic quality factor, Qintr = E/E2

Qb Quality factor associated to bending losses
Qrad Quality factor associated to radiation losses
∆U Energy loss per cycle of a mode, ∆U = 2πUbend/Qintr

Phononic crystal membrane

b Lattice parameter of the phononic crystal
r Radius of the holes
M Margin, distance between the last hole in the phononic crystal and the

membrane border
γ Coupling rate for dimers
Ω± Frequency of the symmetric resp antisymmetric normal modes of a dimer

membrane

Microwave circuits and optics

C Circuit capacitance
L Circuit inductance
â, a Resonant circuit ladder operator, or the intracavity light field
α Average amplitude of the intracavity light field

ωc Circuit resonance frequency, ωc = 1/
√
LC

Ĥc Circuit Hamiltonian, Ĥc = }ωc

(
â†â+ 1/2

)
ωd Driving frequency
κi Internal dissipation rate
κc Dissipation rate to the coupled readout port (coupling rate)
χe Electrical susceptibility, χ−1

e (ω) = iω + κ/2
∆ Detuning between the driving tone and the cavity resonance, ∆ = ωd−ωc

λ Optical wavelength
f Optical frequency
SNR Signal-to-noise ratio of an interferometer
ε0 Vacuum permittivity

Electromechanical device

G Frequency shift per displacement, G = ∂ωc/∂x
g0 Single-photon coupling rate, g0 = xzpG
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g Dressed coupling rate, g = g0α
C0 Single-photon cooperativity, C0 = 4g2

0/κΓm

C Dressed cooperativity, C = C0α
2

Ĥem Hamiltonian of the electromechanical device, Ĥem = Ĥc + Ĥm − }Gâ†âx̂
∆̄ Corrected laser detuning, ∆̄ = ∆− g2/2Ωm

δΩm Electromechanically-induced frequency shift of the mechanical mode
Γem Electromechanically-induced mechanical dissipation
Γeff Effective mechanical dissipation, Γeff = Γm + Γem

χeff Effective mechanical susceptibility,

χ−1
eff (Ω) = meff

[
−
(
Ω2 − (Ωm + δΩm)2)+ iΩΓeff

]
ηrsf Resolved sideband factor, ηrsf = (4Ωm/κ)2

ncn Added mechanical population by the dynamical backaction
neff Effective mean mechanical population, neff = (Γmnth + Γemncn) /Γeff
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Optimization of silicon nitride membranes for hybrid

superconducting-mechanical circuits

Abstract: In this thesis, we study an engineered mechanical oscillator coupled to a
microwave cavity. In a preliminary experiment, microwave photons were used as a cold
bath to reduce the temperature of the mechanical oscillator by a factor 500. We present
several improvements to the membranes which should enable us to cool them down to
their quantum ground state. In particular, we explore the rich physics of phononic
bangaps to isolate an ultrahigh-quality-factor membrane mode from decoherence chan-
nels, a technique known as “soft-clamping”. Using a quantum-limited interferometer
able to resolve the membrane’s Brownian motion, we reconstruct the profiles of the
membrane modes. Thanks to this setup we identify a set of parasitic membrane modes
which significantly degrade the quality factor of the soft-clamped modes. Specific mode
engineering strategies are therefore implemented to ensure the optimal performance of
the softly-clamped membranes. Once integrated in an electromechanical cavity, the
optimized membranes developed over the course of this thesis should operate deep in
the quantum regime. We discuss the perspectives of preparing nonclassical states of
motion by exploiting superconducting qubits as a nonlinear resource. In particular, we
propose a scheme which could achieve this using a single microwave-photon detector,
developed in collaboration with LPENS. This hybrid electromechanical system could
be used to store fragile quantum states on the scale of seconds, to measure minute
forces with unprecedented precision, or to study the boundary between the quantum
and the classical worlds.

Keywords: electromechanics, silicon nitride, MEMS, cryogenics, electromechanical
cooling, ground state, nonclassical state, non-Gaussian, mechanics, spectral engineer-
ing, phononic crystal, decoherence, interferometry

Résumé : Dans cette thèse, nous étudions un résonateur mécanique optimisé qui
est couplé à une cavité micro-ondes. Au cours d’une expérience préliminaire, des
photons micro-ondes sont employés comme bain froid pour réduire la température de
l’oscillateur mécanique d’un facteur 500. Nous introduisons plusieures améliorations à
ces membranes dans l’optique de les refroidir jusqu’à leur état quantique fondamental.
En particulier, nous explorons la physique riche des bandgaps phononiques pour isoler
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un mode de facteur de qualité ultra-élevé de ses canaux de décohérence, une méthode
connue sous le nom de “soft-clamping”. Avec un interféromètre limité quantiquement
et capable de résoudre le mouvement Brownien des membranes, nous reconstruisons le
profil des modes de la membrane. Grâce à cette expérience, nous identifions un groupe
de modes parasitiques qui dégradent fortement le facteur de qualité des modes “soft-
clamped”. Des stratégies d’optimisation du profil spectral sont donc implémentées pour
assurer la performance optimale des membranes “soft-clamped”. Une fois intégrées
dans une cavité électromécanique, les membranes optimisées qui ont été développées
au cours de cette thèse devraient opérer profondément dans le régime quantique. Nous
discutons des perspectives pour préparer des états de mouvement non-classiques qui ex-
ploitent la nonlinearité des qubits supraconducteurs. Nous proposons en particulier une
méthode pour réussir cela en utilisant un détecteur de photons micro-ondes uniques,
qui a été développé en collaboration avec le LPENS. Un tel système electromécanique
hybride pourrait être utilisé pour stocker des état quantiques fragiles à l’échelles des
secondes, pour mesurer avec une précision sans précédent des forces infimes, ou encore
pour sonder la frontière entre les mondes classiques et quantiques.

Mots clés : electromécanique, nitrure de silicium, MEMS, cryogénie, refroidissement
electromécanique, état fondamental, état non-classique, état non-Gaussien, mécanique,
optimisation spectrale, crystal phononique, décohérence, interférométrie.
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