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Abstract

Question Answering (QA) aims to directly return succinct and accurate answers to natural lan-
guage questions. Passage Retrieval (PR) is deemed to be the kernel of a typical QA system where
the goal is to reduce the search space from a huge set of documents to a few number of relevant
passages, from which the required answer can be found. Although there has been an abundance
of work on this task, it still requires non-trivial endeavor. Recently, community Question An-
swering (cQA) services have evolved into a popular way of online information seeking, where
users can interact and exchange knowledge in the form of questions and answers. The Question
Retrieval (QR) problem in cQA is to certain extent analogue to the PR task in traditional QA.

While passage retrieval matches the user question with the document passages to search for
correct excerpts in response to the user, question retrieval matches the user’s question with the
archived questions to find out those that are semantically similar to the queried one. By the time,
with the sharp increase of community archives and the accumulation of duplicated questions, the
QR problem has become increasingly alarming and it remains more challenging than PR due to
the shortness of the community questions as well as the lexical gap problem. In this thesis, we
tackle both tasks: PR in open domain QA and QR in cQA. We propose different approaches to
improve these critical problems in different languages. For PR, we were mainly based on SVM
and n-grams while for QR, we were opted for neural networks mainly word embeddings and
Long Short-Term Memory (LSTM). We run our experiments on large scale data sets from CLEF
and Yahoo! Answers in different languages to show the efficiency and generality of our proposed
approaches. Interestingly, the obtained results transcend that of other previously proposed ones.

keywords:
Question answering, Passage retrieval, Community question answering, Question retrieval, N-
grams, SVM, Word embeddings, LSTM



Résumé

Les systèmes de questions-réponses (SQR) visent à retourner automatiquement des réponses con-
cises et précises à des questions posées en langage naturel humain. La recherche des passages
(RP) est considérée comme le noyau d’un SQR typique, dont l’objectif est de réduire l’espace
de recherche d’un vaste ensemble de documents à un petit nombre de passages pertinents, à
partir desquels la réponse requise peut être trouvée. Bien que de nombreux travaux aient été ef-
fectués sur cette tâche, des efforts non négligeables restent nécessaires. Récemment, les services
communautaires de questions-réponses (cQR) ont évolué pour devenir un moyen populaire de
recherche d’informations en ligne, où les utilisateurs peuvent interagir et échanger des connais-
sances sous forme de questions et de réponses. Le problème de recherche des questions (RQ)
dans cQR est dans une certaine mesure, analogue à la tâche d’extraction de passages dans les
systèmes de questions-réponses traditionnels.

Tandis que la recherche des passages apparie la question de l’utilisateur avec les passages
de documents pour rechercher les extraits corrects en réponse à l’utilisateur, la recherche des
questions apparie la question de l’utilisateur aux questions archivées pour trouver celles qui sont
sémantiquement similaires à la requête qui a été interrogée. Avec le temps, avec la forte augmen-
tation des archives de la communauté et l’accumulation de questions dupliquées, le problème de
RQ est devenu de plus en plus alarmant et il reste plus difficile que RP en raison de la brièveté
des questions de la communauté ainsi que le problème du trou lexical. Dans cette thèse, nous
abordons les deux tâches: RP dans QR dans le domaine ouvert et RQ dans cQR. Nous proposons
différentes approches pour améliorer ces problèmes critiques dans différentes langues. Pour le
problème de RP, nous sommes principalement basés sur les SVM et les n-grammes, tandis que
pour RQ, nous avons opté pour les réseaux de neurones, principalement les ‘word embeddings’ et
la mémoire à court terme (LSTM). Nous menons nos expériences sur des ensembles de données
à grande échelle de CLEF et Yahoo! Réponses dans différentes langues pour montrer l’efficacité
et la généralité des approches proposées. Fait intéressant, les résultats obtenus transcendent ceux
d’autres proposées précédemment.

Mots-clés:
Questions-réponses, Recherche des passages, les services communautaires de questions-réponses,
Recherche des questions, N-grammes, SVM, Word embeddings, LSTM
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Chapter 1
Introduction

1.1 Question Answering context

With the flourishing of Internet, the World Wide Web (WWW) has become an important knowl-
edge repository and an ubiquitous information tool. The overwhelming plethora of information
on the Web makes it an attractive resource for people to search for information. Nevertheless,
seeking useful and accurate information from such a tremendous repository without efficient
tools is just like looking for a needle in a haystack. Hence, with the sharp increase of informa-
tion, Web search engines such as Google and Yahoo Search have risen as powerful tools to return
valuable information in response to a user’s query.

Although Web search engines have made great strides over the last years, the problem of
effectively searching and locating information on the Internet is still far from being solved. In-
deed, traditional search engines mainly deliver a list of potentially relevant documents and web
pages instead of directly returning the accurate answer. Thus, it is for the user to formulate good
queries, select the appropriate keywords and complete the task of search engines by browsing
through the result list to find the desired answer, which is a tedious task and requires not only an
additional effort but also a considerable loss of time. Furthermore, most current search engines
perform their text search and retrieval using keywords, rather than considering the intent and con-
textual meaning of natural language queries when serving content to users. Such shortcomings
not only hinder the user from getting directly the ultimate answers, but also lead to an overhead
of converting search queries into lists of keywords.

Therefore, in recent years, there has been a burgeoning interest in an exciting Information
Retrieval (IR)-related area that goes beyond simple document retrieval namely, Question An-
swering (QA)(Voorhees, 2001). Unlike IR, QA endeavors in directly providing accurate and
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succinct answers to user’s questions from its knowledge base and it requires advanced Natural
Language Processing (NLP) techniques. Indeed, QA needs to cope with several issues and chal-
lenges, mainly, the huge collection of documents from which the response should be retrieved,
the wide range of question types and how to make a machine understanding the query given in
human natural language. A further challenge is the choice of techniques employed to retrieve
the relevant answers that are most likely to fit the user’s query. Moreover, QA needs to sat-
isfy its domain which can be divided into two categories: closed-domain QA which deals with
questions under a specific domain (for example: computer science, biology, medicine (Abacha
& Zweigenbaum, 2015), etc.) and open-domain QA which deals with general questions in var-
ious domains without any limitation such as in (Fader et al., 2014), (Sun et al., 2015), (Lin et
al., 2018), (Izacard & Grave, 2020) and (J. Lee et al., 2020). Several QA Systems (QAS)s are
available today and they use various approaches (da Silva et al., 2020) but most of them are lan-
guage dependent, cover only a specific domain, and often break down for complicated questions.
Hence, further work in this area is required to try new approaches and enhance the performance
of existing systems.

Despite the fact that there has been a variety of proposed architectures such as (Hirschman &
Gaizauskas, 2001), (Tellex et al., 2003) and (Buscaldi et al., 2010), a typical QAS can be thought
as a pipeline entailing four principle modules: question analysis, document search, passage re-
trieval and answer extraction, where each module has to deal with specific issues and different
technical challenges.

Firstly, the question analysis determines details about the given question such as its type or
class, its focus, and the answer type, which are later used to create the query. Secondly, document
retrieval searches from the collection for a set of potentially relevant documents that are most
likely to contain the appropriate answer to the question. Then, PR is used to retrieve relevant text
snippets called passages from the collection of documents. Finally, answer extraction extracts
candidate answers from the retrieved passages, ranks them and returns the highest ranked one as
the final answer and likewise the output of the QAS. In some cases, a simple extraction might
be not sufficient so, the answer should be formulated or automatically summarized (Chali et al.,
2015).

Over the last decade, with the blooming of Web 2.0 and 3.0, a huge amount of user gener-
ated content has become an essential information resource on the web, including the traditional
Frequently Asked Questions (FAQ) archives and the emerging community question answering
(cQA), such as Yahoo! Answers 1, Stackoverflow 2, Quora 3, LinuxQuestions 4 and Live QnA 5.

1http://answers.yahoo.com/
2http://stackoverflow.com/
3https://fr.quora.com/
4http://www.linuxquestions.org/
5http://qna.live.com/
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CQA are defined by Liu et al. (2008) as platforms that enable users to answer to others users’
questions, where the content is often structured as questions and lists of corresponding answers
associated with metadata such as user chosen categories to questions which are useful for various
tasks like QA. Recently, cQA has become a popular and exciting paradigm that allows people
with various backgrounds to interact and share information and is deemed to deliver quick and
precise answers to complex natural language questions mainly the opinion ones. CQA services
has numerous advantages over the traditional ad hoc information retrieval insofar as, instead of
returning a full list of web documents, a cQA directly returns short and relevant answers proposed
by the community. Additionally, instead of using a set of keywords, the user can express his
information need explicitly and clearly by entering a human natural language question that may
be previously asked by another user. In cQA, users are a part of an online community where they
can contribute by asking questions, giving answers and also voting for the best posts. Unlike
traditional QA, cQA provides users with personalized experience and encourages collaboration
as well as knowledge sharing among users.

Indeed, cQA services build up very large scale archives of previously asked questions and
their corresponding answers. Nonetheless, the information contained within these archives is
rarely exploited, this fact is clearly witnessed by the high redundance of questions and answers
in online communities. Furthermore, many cQA archives lack semantic information and relevant
criteria to browse the archive.

In fact, a user who submits his question may have hundreds of possible answers. Obviously,
it will be very time-consuming and disturbing for information seekers to read all the available
answers and winnow through them all to find the relevant one. Thus, reducing the lag of time
for finding an answer and making full use of the available archives may constitute one of the
major challenges. As the archives grow exponentially, the indexing, searching and extracting
techniques need to keep high efficiency both in time and retrieval results.

1.2 Motivations and problem statement

With the sharp increase of the cQA archives, numerous duplicated questions have been amassed.
Therefore, users cannot easily find the answers they need and consequently post new questions
that already exist in the archives. In order to take full advantage of the huge archives of question-
answer pairs and reduce the time lag required to get a new answer, it is critical to detect the
historical questions that are semantically equivalent to the queried ones. If good matches are de-
tected, the answers to equivalent previous questions can be used to answer the new posted query.
This can avoid the lag time caused by waiting for other users to respond, thus improving user
satisfaction. The task of retrieving semantically equivalent questions to the new queries from
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the cQA archives, known as the Question Retrieval (QR) task, has recently sparked great interest
(Xue et al., 2008; X. Cao et al., 2010; Cai et al., 2011; Singh, 2012; K. Zhang et al., 2014; Nakov
et al., 2017; Ye et al., 2017). Our thesis falls within this context. We tackle the question re-
trieval problem by exploring methods to represent the questions in a way that captures semantic,
syntactic and context information and measure the semantic similarity between questions.

The QR issue in cQA is to certain extent analogue to the PR task in traditional QA. While
PR matches the user’s question with the document’s passages to search for correct excerpts in
response to the user, QR matches the user question with the archived questions to find out those
that are semantically similar to the queried one. As a matter of fact, in cQA, the accuracy of
the returned questions constitutes a big concern for end users. The QR task remains more tricky
than the PR task since the queried question and the archived ones often share very few common
words or phrases.

We emphasize that PR was also tackled in this thesis owing to its importance. PR is deemed
to be the kernel of a typical QAS where the goal is to reduce the search space from a huge set
of documents to a few number of passages. Furthermore, the performance of the entire system
significantly depends on the performance of the PR module. Obviously, a QA cannot find the
right response to a given question, unless the answer exists in one of the retrieved passages.
We study this task in Open domain as the techniques used are not tailored toward a specific
domain. Therefore, in this thesis, we tackle two crucial problems: Retrieving passages (PR) in
open domain QA and retrieving questions (QR) in cQA.

1.3 Research challenges of retrieving passages and questions

PR and QR impose several research challenges faced in this thesis. Retrieving a relevant passage
from a massive document collection is a not trivial task and most existing QASs are still unable
to correctly detect the best related text excerpts with regard to the questions from a repository
even though it contains the correct passages. The main challenges are the big size and the hetero-
geneity of the passages which mostly share few common words with the questions. As we focus
on open domain QA, the questions and the passages are various and not limited to a specific
domain. Another challenge is to understand the meaning of the query and the passages rather
than just consider their keywords.

QR remains more challenging than PR as questions in cQA varies significantly in terms of
vocabulary, length, style, and content quality. Community questions are unformal, usually af-
fected by noise and verboseness, including greetings, spelling errors and incorrect grammar and
punctuation marks. The major challenge is the lexical gap between the queried questions and the
existing ones in the archives (Xue et al., 2008), which constitutes a barricade to traditional Infor-
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mation Retrieval (IR) models since users can formulate the same question employing different
wording. For example, the questions How can I slow down signs of aging naturally? and What
are some home remedies to keep your skin looking younger? have the same meaning but they are
lexically different and then may regarded as dissimilar. The word mismatch is indeed a tricky
problem in cQA since questions in forums are mostly short and similar ones often have sparse
representations with little word overlap. In order to bridge the lexical gap problem in cQA, most
previous attempts focus on improving the similarity measure between questions while it is tricky
to set a compelling similarity function for sparse and discrete representations of words. More-
over, most existing approaches neither take into account the contextual information nor capture
enough semantic relations between words. Language is another big challenge, mainly Arabic
as it is a highly inflected and derivational language. Its morphology, ambiguity and its syntactic
flexibility have usually been reported as real challenges for most NLP tasks.

1.4 Research questions

From the aforementioned challenges, it is worth asking the following questions that we will try
to answer in the current research:

• How to return a correct, precise and concise answer to every question in every language
from any corpus?

• How to enhance the performance of existing QASs, increase the number of correct pas-
sages and ensure their relevance? This leads to the following subquestions:

– Is it possible to build a QAS that can automatically give a precise passage to open
domain questions in different languages?

– Can we jointly train a model on PR and combine different features and get better
performance on our PR task?

• How to improve the QR task to take advantage of the large scale available archives of
community question-answer pairs and reduce the lag of time for delivering an answer? We
refer to this us our main objective for our main task. Then, we consider the following
subquestions:

– Can word embeddings offer high-quality vector representations that capture the se-
mantic and syntactic similarity between the community questions?
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– Can a neural network based model be successful in retrieving semantically similar
questions?

– Is it possible to build a general QR approach that give sufficient precision not only
in English but also in fiendishly difficult languages like Arabic?

1.5 Contributions

The main contributions of this thesis can be summarised as follows:

• We propose a novel approach for retrieving and reranking passages according to their rel-
evance. Our approach relies on a new measure of similarity between a passage and a
question for the extraction of the candidate passages based on the dependency degree of n-
gram words of the question in a given passage. The retrieved passages are re-ranked using a
Ranking SVM model combining different text similarity measures including our proposed
measure as well as other different semantic and lexical features which have already been
proven successful in the Semantic Textual Similarity (STS) task. Our experimental results
demonstrate a comparable performance in different languages with other PR competitive
approaches.

• We explore the use of word embeddings to capture the semantic similarity of the commu-
nity questions. We present a word embedding based approach for the QR task in cQA. The
similarity between the clustered questions is measured based on their weighted continu-
ous valued vectors. We run our experiments on real world data set harvested from Yahoo!
Answers in both English and Arabic to show the efficiency and generality of the proposed
approach. As there is no large Arabic dataset available for the QR task, for our experi-
ments in Arabic, we constructed our Arabic dataset by translating the English collection
using Google Translation, the most widely used free online machine translation tool, with
a careful check of the produced Arabic questions.

• We introduce a deep learning approach based on a Siamese architecture with LSTM net-
works, augmented with an attention mechanism. This latter is an additional layer, which
lets the model give different words different attention while modeling questions. We tested
different similarity measures to compare the final hidden states of the LSTM layers. To
evaluate the proposed approach, we conducted experiments on large-scale datasets in En-
glish and Arabic and the results show that our approach yields significant improvements
on QR.
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1.6 Publications

Our work on the given issues has given rise to several significant publications:

International journals

• Faiz, R., and Othman, N., Retrieving Relevant Passages using N-grams for Open-Domain
Question Answering, International Journal on Artificial Intelligence Tools (IJAIT journal)
(impact factor) 28(7): 1950021, 2019.

• Othman, N., Faiz, R., and Smaili, K., Using Word Embeddings to Retrieve Semantically
Similar Questions in Community Question Answering, International Science and General
Applications (ISGA journal), 2018.

• Othman, N., and Faiz, R.,“A Relevant Passage Retrieval and Re-ranking Approach for
Open-Domain Question Answering,”, EGC. Revue des Nouvelles Technologies de l’Information
vol. RNTI, Ed. Hermann, pages 111-122 , 2016.

• Othman, N., and Faiz, R.,“Question Answering Passage Retrieval and Re-ranking Using
N-grams and SVM”, Computación y Sistemas, ISSN 1405-5546. (Indexed in: Scopus,
Redalyc, E-Journal, e-revist@s, Latindex, DBLP) pages 483–494, 2016.

International conferences

• Othman, N., Faiz, R., and Smaili, K., Manhattan Siamese LSTM for Question Retrieval in
Community Question Answering, In proceedings of In OTM Confederated International
Conferences “On the Move to Meaningful Internet Systems”. Springer, 661-677, Rhodes,
Greece, 22-23 October, 2019.

• Othman, N., Faiz, R., and Smaili, K., Enhancing Question Retrieval in Community Ques-
tion Answering Using Word Embeddings, In proceedings of the 23rd International Con-
ference on Knowledge-Based and Intelligent Information and Engineering Systems (KES),
Elsevier, 485-494, Budapest, Hungary, 4-6 September, 2019.

• Othman, N., Faiz, R., and Smaili K., A Word Embedding based Method for Question
Retrieval in Community Question Answering, In proceedings of the International Confer-
ence on Natural Language, Signal and Speech Processing (ICNLSSP 2017), Casablanca,
Morocco, 05-06 December 2017.
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Book chapter

• Othman, N., and Faiz, R.,“A multilingual approach to improve passage retrieval for auto-
matic question answering”, In International Conference on Applications of Natural Lan-
guage to Information Systems, Springer, pages 127–139, 2016.

Other publications

• Menacer, M. A., Abidi, K., Othman, N., Smaı̈li, K. . Analyse de sentiments des vidéos en
dialecte algérien, In Actes de la 6ème conférence conjointe Journées d’Études sur la Parole
(JEP-TALN2020), Traitement Automatique des Langues Naturelles (TALN, 27e édition),
Volume 2: (pp. 296-304). ATALA, Nancy, France 8-19 Juin, 2020

• Alkhair, M., Meftouh, K., Othman, N., and Smaili, K., An Arabic corpus of fake news:
Harvesting, analyzingand classifying, In proceedings of the 7th International Conference
on Arabic Language Processing (ICALP2019), Springer, 292-302, Nancy, France 16-17
October, 2019

• Ghorbel, H., Faiz, R., Othman, N., Towards Personalized Keyword Search over Rela-
tional Databases, Actes du 37ième Congrès (INFORSID 2019), Hermes-Lavoisier, 187-
199, Paris, France, 11-14 Juin, 2019

• Ghorbel, H., Othman, N., and Faiz, R., Recommendation-based Keyword Search over
Relational Databases, Revue des Nouvelles Technologies de l’Information (EGC 2018),
vol. RNTI, Ed. Hermann, pp.347-352, 2018

1.7 Thesis outline

The rest of this thesis is structured as follows:

• Chapter 2 provides background knowledge on Question Answering and Community Ques-
tion Answering. We define some fundamental concepts and broadly present traditional
Information Retrieval and its limitations. We further overview word vector representations
with a focus on word embeddings and Recurrent Neural Networks.

• Chapter 3 gives a literature review on PR in QA and QR in cQA. In particular, we dis-
cuss the state-of the-art existing techniques, ranging from the statistical, the lexical, the
syntactic, to the semantic approaches.
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• Chapter 4 is devoted to the presentation of the approach proposed for improving the PR
task for open domain question answering. We will give details of our novel n-gram simi-
larity measure and present the different features used for the passage similarity prediction.
A brief introduction on the Ranking-SVM model will be given. We then detail the ex-
periments carried out to validate our proposed approach and we report the main results
compared to those obtained by existing solutions in different languages.

• Chapter 5 goes through the investigation of the use of word embeddings on the perfor-
mance of QR in cQA. We present our proposed approach based on word embeddings and
give the experimental process, datasets and evaluation we used. We also discuss the ob-
tained experimental results in English and Arabic.

• Chapter 6 presented our deep learning approach based on a Siamese architecture with
LSTM networks, augmented with an attention mechanism. This latter is an additional
layer, which lets the model give different words different attention while modeling ques-
tions. We tested different similarity measures to compare the final hidden states of the
LSTM layers. Our experiments conducted with large-scale data sets provide empirical
evidence to validate the application of LSTM to QR in English and Arabic.

• Chapter 7 draws the general conclusions of this research. We recall the findings and re-
search directions studied in this thesis. We highlight its main contributions and discuss
further challenges to be tackled in future works.
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Chapter 2
Background

2.1 Introduction

As the amount of information available on the web and in companies is continuously increasing,
it is becoming more and more difficult to exploit these information resources without resorting
to automation. Thus, the need for search systems has become paramount. In this context, Infor-
mation Retrieval (IR) which is an active and expanding area, has appeared to support the user in
the search process to find the information that fits his need.

In addition to search engines which are the first Information Retrieval System (IRS) and the
most visible applications in the context of IR on the web, many other IRSs and various research
techniques have emerged. Among these systems are the Question Answering Systems (QAS)s
and community Question Answering (cQA) platforms.

This background Chapter is organized as follows: In Section 2.2, we begin by broadly pre-
senting the pillars of QA which are IR, IE and NLP. Then, in Section 2.3, we take a closer
look on QA: we define QA, give the architecture of a typical QAS and look into the best known
state-of-the-art QASs. Section 2.4 introduces cQA. Finally, we overview SVM as well as certain
neural network models which are the key elements for our proposed approaches.

2.2 Overview of the pillars of Question Answering

Indeed, QA lies at the intersection of several fields including in particular NLP, IR and IE. Since
the input of a QAS is a natural language text whether in a query form or in documents, it is
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reasonable to think of exploiting NLP techniques to understand and process this text. Likewise,
as the output of the system is a snippet of text extracted from a vast collection of text documents,
it is natural to consider the use of the techniques of information retrieval and extraction. In this
Section we will define briefly each field while highlighting the main basic concepts.

2.2.1 Natural Language Processing

Natural Language Processing (NLP) is an engineering discipline that is primarily concerned on
the interaction between computers and human language. In other words, it refers to the set of
methodologies and techniques that allow a computer program to understand human language as
it is spoken.

Current NLP research strategies can be classified according to a model that divides the lan-
guage analysis into several separate levels that can largely be studied independently. It is note-
worthy that there is no full agreement on what these levels are exactly or how they are related, but
the generally agreed levels of descriptions are six: phonetics, morphology, phonology, syntax,
semantics, pragmatics and discourse.

• Signal processing: takes as input spoken words and transform them into text (e.g., pho-
netics, phonology).

• Morphological analysis: analyzes individual words into their components and separates
non word tokens, such as punctuation, from the words.

• Syntactic analysis: deals with the structure or grammar of the text sentences.

• Semantic analysis: deals with the meaning assigned to terms in text sentences.

• Pragmatic analysis: aims to determine the meaning of terms in sentences according to
their context.

• Discourse integration: considers that the meaning of a given sentence can depend on the
sentences that precede it and may influence the meanings of the sentences that follow it.

In the case of QASs, some NLP techniques are useful for analyzing the question posed by
a user in human language and the documents returned by the search module and extract text
snippets having similar linguistic features to those derived from the question. These techniques
can also be used for analyzing the most relevant text snippets to identify the final answer. Below,
we list the most common NLP tasks:
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• Tokenization: According to the Standford NLP group, tokenization is the process of chop-
ping running text up into pieces called tokens, using a lexical analysis to identify words by
recognizing punctuation, spaces, special characters, numbers, etc. For example 2.1:

Example 2.1. Tokenizer’s input: Question answering systems give users precise responses
Tokenizer’s output: Question/ answering/ systems/ give/ users/ precise/ responses

Basically, tokenization is necessary to carry out text processing and any error made
at this step may probably induce serious problems at next stages. Although, these tokens
are often loosely referred to words or terms separated by a space character, in reality, the
issue is more than merely identifying words delimited by punctuation or spaces especially
for complex language (e.g., Japanese, Chinese, Hindi). Therefore, a token can be defined
as an instance of a sequence of characters in a document, grouped together as a useful
semantic unit for text processing that should be not only linguistically significant, but also
methodologically useful. Note that a term is a type that is included in the IRS dictionary
whereas a type is the class of all tokens containing the same character sequence.

It is worth nothing that the indexing process for tokenization is often done by an ad-
ditional plug-in component that broadly exists commercial and open-source such as Open
NLP 1.

• Stemming and lemmatization: Owing to grammatical reasons, documents often con-
tain different forms of the same word, such as economy, economically and economist. In
addition, there are classes of related words having similar meanings, such as democracy,
democratic, and democratization. Sometimes, it would be useful for a search for one of
these words to return documents that contain another word in the class. Both stemming
and lemmatization aim to reduce inflectional forms and derivationally related forms of a
word to a common base form. For example 2.2:

Example 2.2. am, are, is→ be
computer, computers, computer’s, computer’→ computer
The result of the following mapping of text will look like:
The boy’s cars are different colors→ the boy car be differ color

Nevertheless, the two terms are not the same, rather they differ in their flavor. Stem-
ming aims to generalize the words with the same stem by returning just one base form for
them according to their morphological variants and often includes the removal of deriva-
tional affixes. This technique is based on algorithms named stemmers using predefined
rules for word reduction. For example 2.3:

1https://opennlp.apache.org/
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Example 2.3. The words “amuse”, “amusement”, “amusing” are reduced to “amus”.

Notice that the most popular algorithm for stemming in english is Porter’s algorithm
(Porter, 1980).

Unlike Stemming, Lemmatization removes inflectional endings properly ensuring that
the root word belongs to the language and returns the dictionary form of a word, which
is known as the “lemma”, using a vocabulary and morphological analysis of words. For
instance, for the token “saw”, stemming may return just “s”, while lemmatization would re-
turn either see or saw regarding the token use (verb or noun). To the best of our knowledge,
indexing process for either stemming or lemmatization can also be done by an additional
plug-in component that exists commercial and open-source.

• Stop Words Removal: According to (Wilbur & Sirotkin, 1992), a stop word can be de-
fined as a word that has the same likelihood of occurring in those documents irrelevant
to a query as in those relevant to the query. In other terms, stop words refer to extremely
common words such as “the”, “is”, “at” which are likely to be of negligible value in the
process of selecting documents matching a user need and thus it is better to filter them out
from the vocabulary entirely.

It is noteworthy that there is no single universal list of stop words. Actually, there are
numerous different lists available which vary in size, and in fact not all NLP tools even use
such a list. Generally, the strategy for identifying stop words is to sort the terms by the
collection’s frequency and then take the most frequent ones often hand-filtered for their
semantic content relative to the domain of the collection. Among the common stop words,
we cite the determiners (e.g., the, a, an, another), the prepositions (e.g., on, in, under, at,
for, by) and the coordinating conjunctions (e.g., and, or, nor, but, so, yet).

2.2.2 Information Retrieval

Definition

Information retrieval (Salton, 1968) is the science concerned with the structure, analysis, orga-
nization, storage, searching, and dissemination of information. It has been explored extensively
since the fifties and in recent years, it has become increasingly important due to the large amount
of accessible information available in a widely distributed form such as the World Wide Web
(WWW). It can be also defined as the discipline of extracting useful knowledge (usually text)
from a large data collection stored in documents, relational databases, or on the WWW in order
to satisfy an information need.
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An IRS is a software program that is able to locate information stored on computer systems
helping the user to find the useful information he needs. More concretely, the purpose of IRSs is
to select all relevant information, for text or graphics entered by a user using the search engine,
from a large collection of information resources.

By and large, a typical IRS proceeds by query interpretation, document representation, index-
ing, retrieving and ranking. Obviously, a perfect IRS should be capable to return only relevant
documents. But such a system does not exist yet since search statements are often incomplete,
sometimes ambiguous and relevance is a subjective issue and mainly depends on the human
opinion.

According to Saracevic (1975), relevance is the correspondence in context between a docu-
ment and a query. Basically, it is considered as the initial criterion for evaluating an IRS. Owing
to its importance, it has been widely explored by researchers who admit that the relevance judg-
ment is based on the similarity degree between the query’s representation and the document’s
content retrieved by the search engine. It is noteworthy that many types of relevance have been
proposed (Tamine-Lechani & Calabretto, 2008) such as the algorithmic relevance, the topical
relevance, the cognitive relevance.

Google is undoubtedly the most popular search engine in the world. This explains why the
concept of Information Retrieval has become firmly anchored in people’s minds with Google.
However, it is far from being perfect, mainly in terms of information access and management,
which integrate the storage of information as well as the ability to find information process. A
user willing to interact with a system to help him get the information he needs, finds himself
confronted with a huge amount of information which is exponentially increasing and makes him
unable to find the information he looks for.

Information Retrieval vs. Question Answering

QA is similar to IR in the sense that both have the same goal; supporting the user in the selection
process in order to extract from a huge collection of information, relevant answers that fit his
query. However, there are two notable differences between IR and QA. The first one is the form
of the query. In the case of IRSs, the description of the desired information often contains the
words of the documents that interest the user. This is a form of response, while in the QASs, the
query does not just contain the searched words but rather it is a full question.

The second difference is the form of the answer provided by the system. In IRSs, the response
to a given question is indirect in the form of documents in which the user can find direct answers
to his question, while in a QAS, a precise and concise answer is directly returned to the user.
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Despite the above differences, both processes are linked to each other for two major reasons
(Hirschman & Gaizauskas, 2001): First, IR techniques are applied in the QAS for document
search and are further extended to return not only the relevant documents, but also the most rel-
evant passages from the documents. Second, the IR community has developed a methodology
for a conscientious evaluation, the best known of which are the yearly campaigns Text Retrieval
Conference (TREC)2 and Cross Language Evaluation Forum (CLEF)3. Thanks to this methodol-
ogy, numerous researches and advancement in the QA field have spawned.

Basic concepts

Retrieving relevant documents in response to a user request is a common task between IR and
QA and it lies in two main phases: indexing and matching. We examine these latter below.

Indexing for Information Retrieval Indexing, also known as information analysis, consists in
transforming the documents or the query into a set of identifiers and descriptors which represent
their content (Salton & McGill, 1986). Thereby, this task aims to detect the most appropriate
terms (keywords) that are likely to represent the document’s content in a preprocessing step and
thus reduce the volume in which the information is searched.

The result of indexing is a list of terms with generally their related weights which point out
the degree of representativity. These terms are organized in an index structure, called inverted
index. This latter can be viewed as a table that associates words to the documents that contain
them which helps to identify all documents in which a word exists. In order to create this inverted
index, a set of preliminary tasks should be performed, which involves not only extracting the
right and significant descriptors from the documents but also other tasks such as tokenization,
stemming, lemmatization and term weighting.

Term weighting is a crucial step in most of the IR indexing processes as it reflects the im-
portance of a word in a document. It aims at enhancing retrieval effectiveness which depends on
two main functions: words deemed relevant to the user’s query should be retrieved, and words
likely to be irrelevant or even extraneous should be eliminated (Salton & Buckley, 1988).

• Term Frequency: The term frequency (tf) factor is a local weight that represents the
frequency of occurrence of the terms in the document or query text. More concretely, it
underlines the number of times that a specific term occurs in a document. In essence, the
more frequent a term is, the more important it becomes in the document description. The

2http://trec.nist.gov/
3http://www.clef-initiative.eu/
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term frequency denoted as t f (t, d) of the term t in the document d is often calculated as
follows:

tf(t,d) = 1+ log f (t, d) (2.1)

where f (t, d) is the number of occurrences of the term t in the document d.

• The inverse document frequency: The inverse document frequency (idf) is a global
weight that reflects the importance of a word across all the collection of documents. More
precisely, it counts the number of documents in the corpus that contain a term t (Manning
et al., 2008). Basically, the more a term is common in all documents, the less it is discrim-
inatory as it does not allow to distinguish between the documents in the research process,
whereas a term whose frequency is high whithin a small number of documents is more
useful for the selection of documents. Unlike t f , the id f of a rare term is high, while for
a frequent term this value is likely to be low. The inverse document frequency denoted as
id f (t) of the term t in the corpus is calculated as follows:

idf(t) =log N
ni

(2.2)

where N is the size of the collection (the total number of documents in a corpus) and ni is
the number of documents containing the term i.

• Term Frequency-Inverse Document Frequency: Term Frequency-Inverse Document
Frequency (tf-idf) combines the above functions to provide a composite weight for each
term in each document (Manning et al., 2008). It is given by:

t f .id f (t, d) = t f (t, d) × id f (t) (2.3)

This measure assigns to term t a weight in document d that is: greatest when t occurs
several times in a few number of documents, lower when the term occurs either fewer
times in a document, or in many documents and lowest when the term occurs in almost all
documents.

Matching for Information Retrieval Basically, IRSs involve a research process which is
closely linked to the indexing process and aims to identify which set of documents are most
likely to be relevant or similar in content to the user’s query. When the user expresses his need
under a query, the system indexes this latter according to the model of corpus’ indexing. Then,
it looks at the match between the query and the different documents using a similarity measure
between them. Obviously, the higher the similarity value is for a document, the more this latter
is favored and better it is ranked.
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To the best of our knowledge, there are several matching types explored in the literature.
Later, we will present a non exhaustive set of matching types and the main existing approaches
in the context of PR. Several IR models have been proposed in the past to provide the appropriate
matching. In what follows, we address the major three ones.

• Boolean model: The Boolean model is the first model of IR and also the most adopted
one used by many IRSs up until today. The core idea of this model is based on whether
or not the documents include the query terms (Hiemstra, 2009). In essence, boolean logic
operators (e.g., AND, OR, NOT) are used to combine query terms and their corresponding
sets of documents. For instance, combining terms with the AND operator such as the query
political AND security will generate the set of documents that are indexed both with the
term political and the term security. This model is that it is easy to implement and enables
users to control their system by knowing why a document has been retrieved given a query.
However, the main shortcoming of this model is that all terms are equally weighted and
consequently, it does not provide a ranking of retrieved documents.

• Vector space model: The underlying idea of the vector space model, the one which in-
terests us in our search process, is to represent the query and the documents by vectors
of keywords embedded in a dimensional Euclidean space where each word is assigned
a weight calculated during indexing. For instance, the vector of a document D can be
represented as follows:

−→
D


t1 w1,D

t2 w2,D

.. ..

tn wn,D


The search process consists of comparing the vector of the query with those corresponding
to the documents and selects the documents having the closest vectors. This comparison
is based on the use of similarity measures between the query and the document which are
calculated from weights and taking into account only words in common between the query
and the document. The values calculated according to the similarity measures are then
used to rank the returned documents. Among the similarity measures used, we cite the
following which are the most popular ones:

– the scalar product:

sim(d, q) =
∑

ti∈d∩q

((w(ti, d) × w(ti, q)) (2.4)
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– the cosine measure:

sim(d, q) =

∑
ti∈d∩q(w(ti, d) × w(ti, q))√∑

ti∈d w(ti, d)2 ×
∑

ti∈qw(ti, q)2
(2.5)

where w(ti, d) is the weight of the term i in the document d and w(ti, q) the weight of
the term i in the query q.

• Probabilistic model: The core principle of the probabilistic IR model is to estimate the
probability that the document D is relevant for the user giving its query Q. The set of
relevant documents to the query Q is called RQ. Thus, the similarity measure is computed
as follows:

sim(d, q) =
p(d ∈ RQ|d)
p(d ∈ ¯RQ)

=
p(d | d ∈ RQ)
p(d | d ∈ ¯RQ)

(2.6)

where p(d ∈ RQ|d) is the probability that the document’s content description D belongs to
the set of documents that are relevant to the query Q.

• Language model: A language model (LM) assigns a probability distribution to a sequence
of terms, and is typically trained to maximize the likelihood of word input sequences. The
LM provides context to distinguish between words and sentences that sound similar but
mean different things. Formally, the LM objective is presented as follows:

p(t1, ...tn) =
∏

i

p(ti | t1 , ...ti−1) (2.7)

Where ti is a term with the index i in the given sequence. For word-level prediction a term
corresponds to one word or token, whereas for character-level prediction it is one character.

Note that the LM which is based on determining probability based on the count of the
sequence of words can be called as N-gram language model. For example, a LM used to
determine the probability of a sequence of 2 words is called Bigram language model.

2.2.3 Information Extraction

Information Extraction (Poibeau, 2003) is the technology of automatically extracting a set of pre-
cise structured information from text documents and it dates back to the late seventies. Gaizauskas
and Wilks (1998) as well define IE as the activity of extracting a structured information source
from an unstructured (mainly text) information source. This structured source is then used either
for searching or analysis or data-mining techniques, etc. In most cases, this task is based on NLP,
computational linguistics techniques and it is also related to IR and requires learning.
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Although IE has to deal with the natural language, it does not try to understand the text as
a whole but aims to extract text from the relevant elements. The analysis is performed locally,
only parts of the text are considered and the type of information to be extracted is known a priori,
in contrast to IR which returns information dealing with a subject expressed by a query whose
type is not fixed a priori and the analysis covers all the texts from a collection of documents
in a similar and independent manner. Moreover, according to Gaizauskas and Wilks (1998),
IR retrieves relevant documents from collections whereas IE extracts relevant information from
documents. Ultimately, despite some differences, IR and IE can be complementary and give rise
to various applications such as QASs.

Basically, extracting information from a given text requires the application of common sub-
tasks on the input text, such as Named Entity Recognition (NER) and Part of speech tagging
(POST). These latter are defined below:

Categorizing and part of speech tagging:

Part-of-speech tagging, also known as POS tagging or simply POST, refers to the process of
classifying words in a text into their linguistic categories called parts of speech and labeling
them accordingly based on their definitions as well as their context in order to obtain a set of
labels or tags. First automatic taggers have been appeared since 1950 and have been extensively
researched over the past few decades. Tagging has proved useful for numerous tasks such as for
NLP, IR, IE and machine translations. For american english, the most common POST corpora
are the Brown Corpus described in (Ku et al., 1967) and the Penn Treebank corpus (Marcus et
al., 1993). Basically, a word may belong to a grammatical class named part of speech according
to the part it plays in a sentence. In english, there are eight main parts of speech: noun, pronoun,
verb, preposition, determiner, adjective, adverb, conjunction, and interjection. Let’s take a simple
example 2.4 the tagged sentence below:

Example 2.4. “ Then, we extract the syntactic and semantic features from the passages”.
[(’then’, adverb), [(’we’, pronoun), [(’extract’, verb), [(’syntactic’, adjective), [(’and’, conjunc-
tion), [(’semantic’, adjective), [(’features’, noun) [(’from’, preposition), [(’the’, determiner),
[(’passages’, noun)]

Note that the same word can be classified as a noun in a given sentence and as a verb in
another one. For example 2.5, in the example below, plants is a noun in the first sentence and a
verb in the second one.

Example 2.5. Plants/N require water and light.=⇒ Plants is a noun
The farmer plants/V the seeds =⇒ Plants is a verb

19



Chapter 2 : Background

Thus, parts of speech allow to reduce ambiguity in text by indicating the way in which a
word is employed. It is worth noting that POST algorithms fall into two main groups: rule-based
POST and stochastic tagging.

Named entity recognition:

NER, also called entity chunking or entity identification, is an important subtask of IE that aims
to identify and label the atomic elements in running text known as Named Entities belonging
to predefined categories such as the names of persons, organizations, locations, dates quantities,
monetary values, times and percentages. Let’s take the example 2.6 below:

Example 2.6. In 2010, Steve Jobs announced that Microsoft would be making an investment of
150,000 shares in Apple worth about 150 million dollars.
The names entities identified in this sentence are produced in an annotated block of text as fol-
lows:
In [2010]Time, [S teveJobs]Personannounced that

[
Microso f t

]
Organizationwould be making an invest-

ment of 150,000 shares in
[
Apple

]
Organizationworth about 150 million dollars.

In this example, a temporal expression token, a two-token person name and two organization
names where each one is consisting of one token have been detected and classified.

It is worth noting that today there exist several existing NER systems mainly for english that
achieve a high performance.

2.3 Question Answering

In this Section we will take a closer look on QA field; we will define QA and detailed the
architecture of a typical QAS. At last, we will review the main existing QASs.

2.3.1 Definitions

According to the definition given by Ferrucci et al. (2009) published in IBM Research Report,
QA is an application area of computer science which attempts to build software systems that
can provide accurate answers to questions posted by a human in natural language (e.g., english),
while QAS is a software system that provides exact answers to natural language questions for a
range of topics.
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To highlight some advantages made to QASs by merging the above techniques, we will com-
pare QASs with classic IRSs. Firstly, these latter give the user the feeling of having the answer,
but in reality these systems return just a list of documents and it is the job of the user to browse,
sort and filter expecting to find an answer to his query.

Indeed, IRSs result in a considerable loss of time with no guarantee of finding a correct
and adequate answer, while for the QASs the returned answer is the most minimal amount of
information that can fit the need of the user. Hence, he is not supposed to filter the output of the
system. Therefore, these systems facilitate the task for the user and save him time. Secondly,
to query a classic IRS, the user should master its syntax. For example, to query the Google
search engine on the web, you need to enter keywords. If you want that they appear together,
these keywords should be enclosed in quotes. In the QAS, the user is not supposed to master a
specific syntax; he should just enter his question in his natural language. Thirdly, the user of IRSs
assumes that he has good tools to find an answer to a question in any domain. However, when
he focuses on a particular one, these systems often fail to offer him the precise answer to his
question. In contrast, QASs especially those designed to deal with the questions in a particular
domain, can handle it well and therefore return satisfactory answers.

Basically, a QAS can be thought as a pipeline composed of four modules: question analysis,
document search, passage retrieval and answer extraction. It is noteworthy that this is not the
only architecture for a QAS but most existing systems converge toward the same one by further
dividing or combining some components. For instance, Buscaldi et al. (2010) groups document
search and passage retrieval in one search module while Hirschman and Gaizauskas (2001) in-
troduces an architecture with six modules: question analysis, collection preprocessing, candidate
document selection, candidate document analysis, response extraction and result generation.

Figure 2.1 – QAS Architecture

21



Chapter 2 : Background

In Figure 2.1, we present the architecture of a typical QAS given by Tellex et al. (2003) which is
the most popular one and consists of four main modules detailed below.

2.3.2 Architecture

Question analysis

The goal of this module is to process the question given in natural language in order to represent
it in a simple form but with more information such as the question class, the answer type, the
focus, etc. The output is a query that will be the input of the next module which is the document
retrieval. Basically, question analysis has two main tasks:

• Question classification: identifies the type of the input question which is useful for deduc-
ing which information is needed to extract the appropriate answer.

• Question formulation: aims to express the main content of the natural language question.

Natural language questions are classified into numerous categories, some of which are simple
such as:

• Factoı̂d questions: which require a single fact to be returned as a short answer typically
a noun phrase or a simple verb phrase and it is the most widely studied type in QA (e.g.,
who is Georges Clooney married to?, how old is the current president of Tunisia?)

• Yes/ No questions: which just require yes or no as answer (e.g., is Venezuela the most
dangerous country in the world?)

• Definition questions: which require a full definition as answer (e.g., what is NLP?)

• List questions: which require multiple facts as answer (e.g., name the different modules
of a typical QAS, list the American States).

Unlike simple questions, complex questions whose answers are expressed by long and articulated
sentences or even paragraphs, often require multiple different types of information and do not
suppose that a single answer can fit all the information needs. Generally, such questions require
inferencing and synthesizing information from several documents. Among the common types of
complex questions we can cite the following ones:

• Cause/ consequence questions: which require causes or consequences as answer (e.g.,
what are the causes of the Tunisian revolution ?
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• Evaluative or comparative questions: (e.g., what are the differences between the IRS
and the QAS ?)

• Procedural question: (e.g., which are the steps to create a website?)

• Questions about opinion: (e.g., what do people think about the tunisian revolution?).

Document retrieval

The goal of document retrieval module is to reduce the search space for finding an answer from
a huge collection to a smaller set of documents in order to perform deeper analysis. This module
returns a ranked list of documents considered most likely to contain the answer to the question
extracted from a corpus.

Basically, the documents are the initial source from which the answers are extracted. This
source is not limited only to documents but it also involves web pages, databases, knowledge
bases, etc. The type of the information source in the QAS influences the choice of approaches
and techniques to be used. Obviously, the choice of the information source is a key challenge
and it is influenced by the domain, the objective of the system and the resources availability.

Passage retrieval

Passage Retrieval (PR) is a crucial intermediary between document retrieval and answer extrac-
tion. It aims to further reduce the search space from a collection of documents to a fixed number
of passages. As pointed out in (Callan, 1994), passages are portions of a document text and can
be grouped into three types: discourse, semantic and window.

The first type is based on textual units such as sentences, paragraphs, and sections. Semantic
passages are based on the content or the subject of the text while window passages are based
on a sequence of words. In this context, the key challenge is the choice of the passage type.
In addition, a passage should be neither too short nor too long. Indeed, short excerpts may not
contain the answer, and long ones may include additional information that can skew the response
or require more robust extraction modules. For instance, we propose the following examples 2.7
and 2.8 derived from the CLEF2010 dataset.

Example 2.7. Question: What percentage of people in Italy relies on television for information?
=⇒ Passage: In Italy, 80% of the people get their daily information from television. If that
television is not broadcasting all voices, then people do not get the chance to make their own
decisions. That is fundamental to democracy.
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Example 2.8. Question: Why was Perwiz Kambakhsh sentenced to death?
=⇒ Passage: whereas the 23 year-old Afghan journalist Perwiz Kambakhsh was sentenced to
death for circulating an article about women’s rights under Islam, and whereas, after strong
international protests, that sentence was commuted to 20 years imprisonment.

Answer extraction

This module returns the final answer to the question posted by the user after filtering the retrieved
passages. It often involves a ranking step which aims to order the candidate passages returned
by the PR module such that the most relevant ones appear first. Note that answer extraction also
referred to as answer selection depends on several factors, among others: the question complex-
ity and the answer type provided by the question processing module. In some cases, a simple
extraction is not sufficient so, the answer should be well formulated or summarized. For instance,
we can take the same questions associated with the corresponding precise answers as shown in
the examples 2.9 and 2.10 below.

Example 2.9. Question: What percentage of people in Italy relies on television for information?
=⇒ Answer: 80%

Example 2.10. Question: Why was Perwiz Kambakhsh sentenced to death?
=⇒ Answer: for circulating an article about women’s rights under Islam

2.3.3 Evolution of Question Answering systems

Earlier, QASs were mostly domain specific. The first QAS BASEBALL goes back to 1961
(Green Jr et al., 1961). It answered english questions about the baseball games in the american
league for one year. LUNAR (Woods, 1973) as well is another well-remembered early QAS.
It was designed to answer questions about the chemical analyses of lunar rocks and soil gath-
ered by Apollo 11. Then, Spoken dialog systems appear to enable users to ask them verbally
in natural language. For instance, GUS (Bobrow et al., 1977) was a dialog system for airline
reservation using structured database as the knowledge source. However, these systems were
restricted domains and could only deal with structured data.

With the emergence of the Web, QASs likewise became open domain. START (Katz & Lin,
2003) the world’s first Web-based QAS, has been developed at the MIT Computer Science and
Artificial Intelligence Laboratory. In response to English questions, it gives users all over the
world access to multi-media information using a new knowledge annotation approach.

Today, there are a multitude of different QASs being used. One of the most popular ones is

24



Chapter 2 : Background

IBM’s Watson (Ferrucci et al., 2010). It is an open-domain QAS, designed to participate to the
well-known american TV quiz show Jeopardy and actually starts to be used commercially.

Siri (Lohr, 2012), an intelligent mobile personal assistant from Apple, is another famous
commercial spoken QAS giving answers to questions about weather reports, restaurant sugges-
tions, etc. IBM’s Watson and Siri have been implemented in healthcare, marketing, finance and
education.

On the web, Ask.com is one of the most used QASs searching the internet to provide answers
to english questions. It has served millions users within its 15 years of existence. However, most
existing QASs cover only a specific domain and are not able to answer complicated questions.
Added to that, they are mostly language dependent.

2.4 Community Question Answering

Over the last years, the Internet has changed the way people communicate and exchange. CQA
illustrates this change as it emerges as a popular service for users to ask and answer various
questions, interact with each other, and access the previous question-answer pairs for the fulfill-
ment of different information needs. The examples of such community services include Yahoo!
Answers 4, Stackoverflow 5, MathOverflow 6, Quora 7, WikiAnswers 8, LinuxQuestions9, Live
QnA 10, Baidu Zhidao 11, and Google Ejabat 12.

Certain cQAs are general-purpose QA sites such as Yahoo! Answers, the forerunner of
cQA, which accepts open domain questions as long as they do not violate the site’s guidelines.
Focused cQAs have also supported questions and answers that belong to specific subjects such
as programming, mathematics, sport and music. For instance, Stack Overflow, is a popular
community platform that attracts millions of programmers worldwide and allows them to show
their expertise through knowledge sharing activities. Numerous programmers are indeed hired
owing to their important contribution to such sites.

MathOverflow serves as a stack exchange web site for mathematicians allowing them to post
questions, give answers, and rate both, while earning merit points for their activities.

4http://answers.yahoo.com/
5http://stackoverflow.com/
6https://mathoverflow.net/
7https://fr.quora.com/
8wiki.answers.com/
9http://www.linuxquestions.org/

10http://qna.live.com/
11zhidao.baidu.com
12https://ejaaba.com/
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Figure 2.2 – An example of a question thread extracted from Yahoo! Answers

CQA platforms are considered to be automatic systems that take advantage of the collective
intelligence or Wisdom of the Crowd by allowing users in an online community to post questions,
provide answers and also vote for the existing posts and then collectively garner knowledge
and fulfill different information needs. Unlike traditional QA, cQA offers users personalized
experiences within a community and encourages collaboration and knowledge sharing among
users.

Figure 2.2 shows a snapshot of a question thread discussed in Yahoo! Answers, the most
popular cQA, where some key elements are presented such as the posted query, the best answer,
the user voting and the user ratings.

In major cQA systems, we have three main components (Shah & Pomerantz, 2010): a mecha-
nism which enables users to submit their natural language questions which can be either a factoı̂d
or complex, a second mechanism allowing users to submit their answers and a platform to make
easy the exchange and the interaction between the users. Basically, there exist four major differ-
ences between traditional QASs and CQA services (Blooma et al., 2011):

The former difference concerns the question type. In fact, QASs process single-sentence
questions which are particularly fact questions, while cQA services handle multiple-sentence
questions which are composed of two or more sentences. Thus, constructing a QAS over cQA
archives that can handle multiple-sentence questions remains a tricky and challenging task to
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better fit user needs. The second difference is related to the answer source. In fact, while ques-
tions and answers in a cQA service are generated by ordinary users, the producers of automatic
QA content are mainly experts, publishers or journalists. Therefore, they differ in terms of the
content size, structure and vocabulary. The third dissimilarity has to do with the answer qual-
ity, which obviously reflects the quality of the system. Indeed, in cQA services, answers come
from different types of users, with varying knowledge. The quality of these responses depends
on the community that participates and becomes more important when there are several answers
to a given question. The fourth difference concerns the metadata availability. Unlike traditional
QASs, cQA services are rich in metadata such as comments, ratings and authorship. Most of the
studies on cQA services exploited these metadata to ensure high-quality content.

Over times, a huge amount of historical question-answer pairs have been amassed. The com-
munity archives are continuously increasing accumulating duplicated questions. With such a
tremendous amount of data in cQA, users may directly search for relevant previous questions
from the available archives instead of looking through a full list of documents from the Web.
Hence, the corresponding answers to the matched historical questions can be explicitly retrieved
and returned to the user. Therefore, the passage retrieval and answer extraction modules of tradi-
tional QASs can be respectively simplified into question retrieval and answer retrieval modules
in cQA.

The popularity of the cQA services motivates research in this area in order to exploit the
information contained in the community archives by tackling several problems, such as question
retrieval, answer quality evaluation and expert users detection.

There has been a host of work on the problem of question retrieval (Xue et al., 2008; X. Cao
et al., 2010; Cai et al., 2011; Singh, 2012; K. Zhang et al., 2014; Nakov et al., 2017; Ye et al.,
2017; Rücklé, Swarnkar, & Gurevych, 2019; Bae & Ko, 2019) to detect the historical questions
that are semantically equivalent to the new queried ones, in order to reduce the time lag required
to get a new answer, thus improving user satisfaction. If a similar question is detected, its related
answer can be returned as a relevant response to the new posted query.

The task of evaluating the quality of answers in cQA sites has also been subject of wide
interest (Shah & Pomerantz, 2010). Unlike traditional QA, cQA builds on a rich history with
a huge amount of available metadata which is indicative to finding relevant and high-quality
content.

There is also a sub-branch of research using existing best answers to predict certain user
behaviors and detect active expert users (Riahi et al., 2012) in order to direct new questions to
the right group of experts and therefore, new matching questions will no more be missed and
receive a proper answer.
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2.5 Support Vector Machine

Support Vector Machine (SVM) was first introduced in (Cortes & Vapnik, 1995) as a supervised
machine learning method that can be applied for a discriminative regression or classification,
where these latter are performed by determining an optimal separating hyperplane that maxi-
mizes the margin named w between two different classes. More concretely, the basic idea behind
SVM is to output an optimal hyperplane which can categorize new examples according to labeled
training data. Suppose we have a set of training {(xi, yi)}1≤i≤n, where xi ∈Rn is an N-dimensional
vector and yi ∈ {+1,−1} denotes the class label of i-th instance. A simple example of a separable
problem in a two-dimensional space is illustrated in Figure 2.3, where the support vectors (a
subset of training samples) are surrounded by dotted blue circles defining the margin of largest
separation between the two classes.

Figure 2.3 – An illustrative example of a separable problem in a 2 dimensional space

Basically, a hyperplane H is formally introduced as follows:

wT x + b = 0 (2.8)

where b is a parameter called threshold or biais which represents the intercept for the hyperplane
separation. The support vectors are input vectors for which:

wT x + b ≥ 1 if yi =1 (H1)

or

wT x + b ≤ −1 if yi = -1 (H2)

(2.9)

From this, we can deduce a generalized equation of an optimal hyperplane which is the following:
yi(wT xi + b) ≥ 1. Given the distance between H and H1 is:

wT x + b = 1, (2.10)
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the distance between H1 and H2 is set to:
∣∣∣wT x + b

∣∣∣ / ‖w‖ = 1/ ‖w‖. So, the distance between H1
and H2 which represents the margin between positive and negative examples is: 2

‖w‖

Recall that in order to define an optimal hyperplane, we need to maximize the width of this
margin (w). That is to say, we tend to minimize ‖w‖

2 . Thus, given a variable ni ≥ 0 which is
introduced for misclassification errors, the optimization problem can be defined as follows:

min
w,b,n

:
1
2
‖w‖2 + C

1∑
i=1

ni

s.t. : yi(wT xi + b) ≥ 1

(2.11)

where in equation 2.11, the first term denotes the width of the margin while the second term
specifies the cost of the misclassification. The decision function f (x) can be set to:

f (x) = sign(g(x)) (2.12)

where

g(x) =

n∑
i

αiyi(xi.x) + b (2.13)

where αi denotes the weight of training example xi, (αi ≥ 0). Note that the latter equation 2.10
can be rewritten using a kernel function as follows:

g(x) =

n∑
i

αiyik(xi.x) + b (2.14)

Recall that the kernel k is a mathematical mapping function used to map the data into higher
dimensional spaces in expectation that in this new higher-dimensional feature space, the data
might become easily separated or better structured. It is worth noting that thanks to kernel
methods, we can have infinite-dimensional spaces as there is no constraints on the form of this
mapping.

According to (Suzuki et al., 2002), SVM provides some advantages over other learning al-
gorithms such as decision trees and maximum entropy method since it offers a high generaliza-
tion performance even with high dimension feature vectors. Additionally, unlike other learning
methods it has a few parameters to set and can also manage kernel functions without increasing
computational complexity.

2.6 Word Embeddings

Word embeddings, also known as distributed representations of words refer to a set of machine
learning algorithms to build continuous word vectors based on their contexts in a sizeable corpus
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using shallow neural networks. They learn a low-dimensional vector for each vocabulary term,
where the similarity between the word vectors can capture the semantic and syntactic similarities
between the corresponding words. Word embeddings also acquire more complex relationships
like gender, tense, geography. A typical example for the analogies that can be discovered using
vector arithmetics: king − man + woman = queen. Interestingly, the generated vectors can be
manipulated arithmetically just like any other numerical vector.

Global Vectors (GLOVE) is a powerful word embedding model proposed by (Pennington et
al., 2014). It relies on constructing a global co-occurrence matrix of words in the corpus, where
the embedding vectors are based on the analysis of co-occurrences of words in a window. It is
based on two main steps. The former one is the construction of a co-occurrence matrix from
a training corpus. The second step is the factorization of the constructed matrix in order to get
vectors.

Word2Vec, proposed by (Mikolov, Chen, et al., 2013), is the most popular model to learn
word embeddings using shallow neural network. It has proven in (Naili et al., 2017) that Word2vec
can outperform GLOVE with sizeable text collection in different languages. Basically, word2vec
aims to train a model on the context on each word, so similar words will have similar numer-
ical representations using either of two model architectures namely, Continuous Bag-of-Words
model (CBOW) and Skip-gram. The former one is trained to predict a current word given its
context, while the second does the inverse predicting the contextual words given a pivot word in
a sliding window.

2.6.1 CBOW model

The CBOW model predicts the center word given the vector representation of its surrounding
words using continuous bag-of-words representation of the context, hence the name CBOW. For
example, for the context guy, attempt, over, puddle, fall, CBOW is able to predict from these
words, the center word jump. Figure 2.4, illustrates the CBOW principle which includes three
layers according to the data process, namely input layer, project layer and output layer.

• The input layer represents the context as a bag of words.

• The hidden layer corresponds to the projection of the input words into the weight matrix
of the model which contains all the words of the vocabulary.

• The output layer receives the weighted sum of inputs and performs the Softmax calcula-
tions to output probabilities for the target words from the vocabulary.
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Figure 2.4 – Continuous bag-of-word and Skip-gram models (Mikolov, Chen, et al., 2013)

CBOW works as follows: Each word in the context is projected into the model weight matrix
which will be projected on the output layer. Then, the model compares its output with and each
word of the context in order to correct its representation based on the back propagation of the
error gradient. The latter consists in correcting errors according to the importance of elements
that causes these errors such as the model weights. The goal of CBOW is to find the probability
of a word occurring in a context. Let consider a corpus with a sequence of words w1,w1, . . .wT .
The window is defined by parameter c, where c words at the right and left of our target word. The
context vectors are summed and used to predict the target. Formally, CBOW aims to maximize
the following objective function formula:

1
T

T∑
t=1

logP(wt |
∑

−c≤ j≤c, j,0

wt+ j) (2.15)

2.6.2 Skip gram model

Skip gram does the inverse of CBOW as shown in Figure 2.4. For a given word, it predicts
the context from which it is derived based on the three layers: input layer, hidden layer and
output layer. The input layer of this network is presented by one single vector that corresponds
to a single word instead of a bag of words like in CBOW. In the input layer, the network is
fed as a one hot input vector. It then produces a hidden state which is in turn transformed into
probabilities using Softmax. For Skip gram, each context is predicted independently given the
target. Given a sequence of training words w1,w1, . . .wT , the objective of the Skip-gram model
is to maximize the average log probability:

1
T

T∑
t=1

∑
−c≤ j≤c, j,0

logP(wt+ j | wt) (2.16)
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The probability is defined as a Softmax, where uw is the target embedding vector for w and
vw is a context embedding vector. The softmax is used to obtain the posterior distributions of
words, which is a multinomial distribution. The following softmax definition is employed for
skip-gram, while for CBOW the target and context vectors should be swapped:

p(wc | wt) =
exp(vT

wc
uwt)∑W

w=1 exp(vT
wuwt)

(2.17)

Nevertheless, Softmax is expensive to use as a loss function, since computing the gradient
has a complexity proportional to the vocabulary size W. In order to overcome this problem,
Mikolov, Sutskever, et al. (2013) proposed two solutions namely, Negative sampling (NEG) and
Hierarchical softmax (H-Softmax), which is a O(log2 W) algorithm for estimating Softmax. The
objective of these two functions is to optimize the calculation of the output vectors. The ba-
sic intuition behind negative sampling is to update only a sample of the set of output vectors,
while Hierarchical softmax is based on the Huffman coding which is based on a lossless data
compression algorithm.

2.6.3 CBOW vs. Skip gram

According to (Mikolov, Chen, et al., 2013), each one of these models has its own advantages.
CBOW does not rise substantially when we increase the window. Additionally, it allows for a
better modeling of frequent words, while Skip gram allows to have a better modeling of infre-
quent words. Interestingly, Skip gram allows to better capture semantic relationships in small
learning corpora while CBOW performs better with sizeable data than Skip-gram.

2.7 Variants of Neural Networks

Artificial Neural Networks (ANN) have been developed to simulate the human brain. A Neural
Network “is a massively parallel distributed processor made up of simple processing units, which
has a natural propensity for storing experiential knowledge and making it available for use”,
(Haykin, 1994). The aim of a neural network is to learn to recognize patterns in data.

The neural networks are composed of multiple artificial processing units, called Neurons. As
shown in Figure 2.5, a neuron receives a number of inputs, sums up the weighted values and uses
an activation function to output a numeric value.

Formally, a neuron is represented by the function fn, where n is a specific neuron, ϕ denotes
an activation function, ~w is a vector of weights leading to the neuron and ~x is a vector of input
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Figure 2.5 – A model of an artificial neuron (Haykin, 1994)

values.

fn = ϕ(
n∑

i=1

xiwi j) (2.18)

When multiple neurons receive the same inputs, they form a Single Layer Perceptron (SLP) like
in Figure 2.5. If neurons in a layer send their outputs to other neurons, we say that multiple layers
form a feed-forward neural network, called a Multi Layer Perceptron (MLP) as shown in Figure
2.6. So, an SLP consists only of an input and an output Layer, while an MLP has also a number
of hidden layers in between.

The activation function (such as a log function, a sigmoid function, or a hyperbolic tangent)
is used to introduce non-linearities in the network by transforming linear combinations into non-
linear ones and solve hard problems. The training of neural networks aims to determine a good
estimation of parameters (weights) for maximizing a neural network’s accuracy. To perform this
learning process, a method named Backpropagation is employed.

Backpropagation is based on a gradient descent 13 optimization algorithm (Hochreiter, 1998)
to adjust the weight of neurons by calculating the gradient of the loss function where the goal is to
minimize that loss. The loss function, composing of several parameters (weights), has a global
minimum point as well as multiple local minima. The backpropagation algorithm attempts to
determine the global minimum of the loss function, by iterating the following steps:

• Perform a forward pass in the network: feed the network with a training instance and
calculate all neurons’ output by passing neurons’ output to their successive neurons.

• Compute the loss signal and propagate it backwards in the network, by updating all the
weights in order to decrease the error.

13Gradient descent is an optimization algorithm that uses an iterative process to minimize a given cost function.
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Figure 2.6 – An example of a multi layer perceptron

Many variants and adaptations of ANNs have arisen over the years, with widely varying
properties such as RNN and LSTM.

2.7.1 Recurrent Neural Networks

Unlike feedforward NNs which accept only a fixed size input and output and have no sense of
state to consider previous events, RNN can operate over sequential input and produce sequential
output. Interestingly, RNN can handle a variable-length sequence input owing to a recurrent
hidden state whose activation at each time depends on that of the previous time. Figure 2.7
illustrates what a simple RNN looks like.

The Figure 2.7 shows a vanilla RNN being unrolled into a full network. For instance, if the
input sequence is a sequence of 4 words, the network would be unrolled into a 4-layer neural
network; one layer for each word.

xt is the input at time step t. For instance, xi could be a one-hot vector corresponding to i-th
word of a text sequence.

ht denotes the hidden state and also the memory of the network at time step t. ht is computed
based on the previous hidden state and the input at the current step.

The updates to a hidden-state vector ht are calculated via:
ht = σ(Uxt + Wht−1) (2.19)

ot = so f tmax(Vht) (2.20)

Where σ is a sigmoid function, W is an input to hidden weight matrix, U and V represent the

34



Chapter 2 : Background

Figure 2.7 – An unrolled recurrent neural network (Vinyals et al., 2015)

weight of neurons and ot is the output at time step t. For example, to predict the next word in a
sentence, it would be a vector of probabilities across the vocabulary.

Similar to traditional NNs, RNN uses a backpropagation algorithm for the training. However,
In RNN, the weight of neurons is shared by all time steps in the network and then the gradient
at each output depends on both the current and previous time step calculations. For instance, in
order to calculate the gradient at time t = 6, we have to backpropagate 5 steps and sum up the
gradients. This process is known as Back Propagation Through Time (BPTT).

In RNN, the weight of neurons parameters are shared by all time steps in the network and so
the gradient at each output depends on the current and previous time step calculations.

Unfortunately, Vanilla RNNs usually have a serious problem when it comes to capture long-
term dependencies while training these networks because the gradients tend to either vanish or
explode. This is known as the vanishing gradient problem (Bengio et al., 1994). This problem
arises due to the product of the same weights several times during back-propagation. In order to
solve the vanishing gradient problem, a variant of RNNs with gated cells called LSTM, has been
proposed.

2.7.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a variant of RNN proposed by (Hochreiter & Schmidhu-
ber, 1997) to solve the vanishing gradient problem faced while training vanilla RNNs with BPTT,
when capturing long-distance dependencies in sequential data. LSTM resolves the BPTT prob-
lem by ensuring that a constant error is maintained to make the RNN learn over long time steps.
LSTM achieves this owing to its gated cells which are integrated to reduce the multiplication of
the gradient problem, and make the RNN more efficient in long-term memory tasks. Figure 2.8
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Figure 2.8 – An LSTM cell architecture (Hochreiter & Schmidhuber, 1997)

shows that an LSTM architecture is based on four main components namely, the memory cell
(c), the input gate (i), the output gate (o), and the forget gate (f).

The cell states and the different gates constitute the core of LSTM. A cell state performs as
a memory to store, read, and remove information according to the decisions made by the input,
output, and forget gates that open or close, and each memory cell corresponds to a time-step.
The gates regulate the information flow and pass the information based on the weights which are
trained by a recurrent learning process.

Given input vector xt, hidden sate ht and memory state ct, the updates in LSTM are performed
as follows:

it = sigmoid(Wixt + Uiht−1 + bi) (2.21)

ft = sigmoid(W f xt + U f ht−1 + b f ) (2.22)

c̃t = tanh(Wcxt + Ucht−1 + bc) (2.23)

ct = it � c̃t + ft � ct−1 (2.24)

ot = sigmoid(Woxt + U0ht−1 + b0) (2.25)

ht = ot � tanh(ct) (2.26)

where it, ft, ot are input, forget, and output gates at time t, respectively. Wk, Uk are LSTM
parameterized weight matrices, bk represents the bias vector for each k in {i, f , c, o} and (�)
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represents an element-wise product of matrices, known as the Hadamard product which is simply
an entrywise multiplication. Unlike the common matrix product, the Hadamard product is a
binary operation that takes two matrices of the same dimensions and returns another matrix of
the same dimension, where each element i, j is the product of elements i and j of the original two
operands as shown in the example 2.11.

Example 2.11. The Hadamard product for a 3 × 3 matrix A with a 3 × 3 matrix B is a 3 × 3
matrix as follows:

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ×


b11 b12 b13

b21 b22 b23

b31 b32 b33

 =


a11b11 a12b12 a13b13

a21b21 a22b22 a23b23

a31b31 a32b32 a332b33



where the Hadamard product is associative, commutative and distributive over addition.

2.8 Conclusion

QA lies at the intersection of several fields including in particular NLP, IR and IE. Indeed, it
exploits NLP techniques to understand and process the question posted by the user in natural
language. Then, it resorts to the techniques of IR and IE in order to search and extract a brief
snippet of text from a huge document collection and return it as an output of the system answer-
ing the user’s question. QA has attracted so much attention and has been subject of an abundant
work since the appearance of the concept. Although, there has been a variety of proposed archi-
tectures, a typical QAS can be thought as a pipeline entailing four principle modules: question
analysis, document search, passage retrieval and answer extraction where each module has spe-
cific challenges to deal with and has also been extensively explored by researchers in order to
reach higher performance, speed and accuracy. From our study, we have deduced that PR is the
key component in a typical QAS, thus we will focus on this latter to enhance the performance of
existing QASs. Likewise, question retrieval is the core of cQAs.

In this Chapter, we have presented QA as well as cQA elucidating their basic concepts and
the key related fields. We have also given the general architecture of a typical QAS, detailed
its different modules, and cited some examples of well known QASs. We also shed light on the
emerging cQA and mentioned the most well known community platforms as well as the main
related challenges.

In the next Chapter, we will give an overview of main related works on passage retrieval and
question retrieval and highlight their limitations.

37



Chapter 3
Related work on passage retrieval and
question retrieval

3.1 Introduction

Passage retrieval (PR) is considered as one of the key components in a typical QAS and has
been widely studied over the years. Similarly, question retrieval (QR) is a core problem in cQA
and remains more challenging than PR due to the shortness of the community questions and the
lexical gap problem. The problem of finding semantically similar questions is not a new research
area and it is closely related to PR. By the time, with the sharp increase of community archives
and the accumulation of duplicated questions, this problem became a real challenge. Hence in
this chapter, we discuss the main work done till date in the crucial tasks of PR in QA and QR in
cQA.

3.2 Related work on passage retrieval and ranking in QA

Existing works on PR use and combine different approaches, where the aim is to reduce the
search space from a huge collection of documents to a fixed number of relevant passages and
improve the performance of QASs . Basically, any QAS may virtually consist of two main high-
level components: retrieval and selection (Echihabi & Marcu, 2003). In our work, we focus
on both starting by retrieving a fixed number of passages that are most likely to answer the
user’s question, and then given the retrieved passages we try to re-rank them in order to return
the top ranked passage from a ranked list of relevant passages. In this section, we review the
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most important approaches in the literature related to passage retrieval and ranking for answer
selection.

3.2.1 Lexical matching

A quantitative evaluation was conducted by Tellex et al. (2003) of different PR algorithms applied
to QA based on lexical matching. The evaluated systems are the following:

• The BM25 system (Robertson et al., 1996) employed a PR algorithm based on a sliding
window on the document to detect the passages. Then, a score is assigned to each passage
based on the proposed Okapi BM25 similarity between the question and the passages.

• The MultiText system (Clarke et al., 2000) employed a density-based PR algorithm that
favors short passages containing terms with high id f values. In this algorithm, each pas-
sage is a window that begins and ends with a question term, and its score is based on both
the number of query terms in the passage and the window size.

• IBM system (Ittycheriah et al., 2000) computed a linear combination score based on the
following distance measures for the passage: the matching words measure which sums the
id f values of passage words that overlap with the question, the thesaurus match measure
which calculates the id f values of query words whose WordNet 1 (Fellbaum, 1998) syn-
onyms occur in the passage, the mismatch words measure which sums the id f values of
words that appear only in the query, the dispersion measure which considers the number of
words in the passage between matching query terms, and the cluster words measure which
counts the number of words that appear adjacently in the question and as well as in the
passage.

• The Mitre system (Light et al., 2001) used the top 10 documents returned by the AT&T
search engine and ranks each passage according to the number of words that occur in both
the passage and the query.

• SiteQ system (G. G. Lee et al., 2001) used a PR algorithm which calculates the score of a
passage by summing the weights of its individual sentences. The weight of a sentence is
based on query term density.

• ISI system (Hovy et al., 2001) employed an algorithm which ranks passages according to
their similarity to the query by weighting different features: match of proper names, match
of question terms and match of stemmed words.

1WordNet is a large-scale lexical database of english with over 70,000 entries, structured as a semantic network
with terms linked by the traditional ISA connections including many types of links such as hypernym, antonym,
holonym, and meronym connections.
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• IR-n Alicante system (Llopis & Vicedo, 2002) used a PR algorithm which calculates the
normalized cosine similarity between query words and the passage taking into account the
number of occurrences of a term in both the passage and the query as well as their id f
values.

This quantitative evaluation revealed that the choice of the applied document retrieval engine
affects the performance of PR algorithms. The best evaluated algorithms used density-based
measures for scoring question terms and boolean querying schemes perform well in the con-
text of QA task. However, all the mentioned algorithms process each term of the question as
an independent symbol and take into account neither the order of words nor their dependency
relations. Therefore, many irrelevant passages share the same query terms with those which are
correct but the dependency relations between these terms may be different from those existing
in the question. In order to address this limitation, there have been several attempts to consider
term dependencies such as (Srikanth & Srihari, 2002). In most cases, bigrams were used to re-
place unigrams with the simple assumption that two adjacent terms are related. Nevertheless,
dependencies not only occur between adjacent words but may also exist between distant words.
Within this context, Gao et al. (2004) proposed a general dependence language model to relax
adjacency constraint, where a hidden variable called “linkage” was integrated to model the term
dependencies within the query as an acyclic planar undirected graph.

3.2.2 Syntactic matching

Some studies relied on the syntactic matching, particularly the syntactic dependencies instead of
simple keywords. Therefore, two main approaches were used, namely strict matching and fuzzy
relation matching.

The former one searches for an exact matching between the dependency relationships of the
question and those of a passage. For example, authors in (Katz & Lin, 2003) resorted to this
approach using ternary expressions (e.g., <subject, relation, object>) to deal with two critical
phenomena that cannot be simply handled by linguistically QAS: semantic symmetry and am-
biguous modification. A relation is semantically symmetry if there exist three words w1, w2 and
w3 where S (R(w,w1)) = S (R(w2,w)) = 1. In other words, we can swap the subject and the
object and still have correct relations. For example, the answers to the questions “What do frogs
eats?” and “What eats frogs?” are likely to contain the keywords “frog” and “eat”. As “eat” is a
semantically symmetry relation, both (eat (frog, x)) and (eat(x, frog)) may be found in the cor-
pus which cause confusion. Many other verbs could cause the same problem such as beat, visit,
meet, etc. Otherwise, a word w, involving a relation R, is an ambiguous modifier if there exist
at least two words w1 and w2 in the same local context as w, where the two relations R(w,w1)
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and R(w,w2) are correct: S (R(w,w1)) = S (R(w,w2))=1. For instance, for the sentence “The
planet’s largest volcanoes”, the adjective “largest” causes ambiguity between (largest, planet)
and (largest, volcanoes). That is to say, given passages with similar lexical content containing
the adjective “largest”, we cannot easily know which head noun this adjective is modifying.

The second approach relied on a fuzzy relation matching, searching for a non exact matching
between the dependency relationships of the question and those of a passage. In this context,
Cui et al. (2005) used a dependency parser to extract typed relations and generate dependency
trees that relate to the question and the passages where nodes represent words and edges denote
the relations labels. Then, the paths between nodes and edges are extracted and their matching
scores are measured. The matching score of a candidate sentence is considered as the probability
of translating its relation path to that of the question. Nonetheless, this process requires a relation
mapping model which can be acquired by two statistical methods: one based on mutual informa-
tion (MI) and the other based on expectation maximization (EM). Added to that, this approach
requires a training set for learning which is not always available.

The major shortcoming of syntactic matching is the need of a syntactic parser which is not
always available in every language. It also requires adaptation and the performance of QAS
significantly depends on the performance of the analyzer.

3.2.3 Semantic matching

Several works based on semantic matching have been proposed in the past using semantic re-
sources to generate semantic relations or semantic annotations for the query and the passages.
For instance, Tari et al. (2007) used various entity recognizers along with semantic relatedness
based on MeSH 2 ontology and UMLS 3 semantic network to verify the relevance of candidate
passages. Recognition of entities was applied for the candidate passages using a statistical learner
to identify keywords with entity classes of interest. Unlike semantic similarity which is the relat-
edness of a pair of terms that belong to the same class, (e.g., a is-a relation), semantic relatedness
refers to terms that are related but do not necessarily belong to the same class. This approach is
based on the hypothesis that using only the general keywords as well as their expanded forms in
the queries could significantly affect the precision of retrieval since many terms can be related to
one general keyword but they are not all relevant to the input question.

Ofoghi and Yearwood (2009) proposed another semantic matching based approach, where

2Medical Subject Headings thesaurus is a controlled vocabulary produced by the U.S. the National Library of
Medicine.

3Unified Medical Language System is a thesaurus of biomedical concepts designed and maintained by the US
National Library of Medicine. It consists of knowledge sources and a set of software tools and it also provides
facilities for NLP.
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they assessed the impact of using semantic class overlap evidence in the PR effectiveness of QAS.
They employed FrameNet 4 frames to capture the semantic class of each term in the question as
well as in the passages. To this purpose, two methods were tested: The first one combines passage
scores got from a baseline PR system with those obtained through correspondence of semantic
classes. The second one integrates the correspondence of semantic classes in computing the
score of the retrieved passages.

Bilotti et al. (2010) have carried out a general rank-learning framework for passage ranking
for QA using linguistic and semantic features. The framework analyzes the question and checks
of complex and deep linguistic and semantic constraints over keywords and represents them as
an annotation graph. These constraints involve named entity features and features derived from
semantic role labeling. Nevertheless, the inconvenience of this method is that it relies on manual
design of features.

Within the same context, Araki and Callan (2014) proposed an annotation similarity model
to improve passage ranking for QA. Historical fact validation is a subtask introduced by authors
to indicate whether a candidate sentence gives historically correct information according to a
reference to Wikipedia as a reliable information sources. A three-stage passage ranking model
is built for historical fact validation. The former stage is document retrieval using query com-
prising all raw words in the sentence to guarantee high recall. The second stage is PR which
doesn’t involve any type of annotation, where each retrieved document is segmented into a re-
stricted number of passages by a fixed-length window. Note that tf-idf was used for retrieving
in both stages. The third stage is passage ranking where a list of annotation is involved and two
similarity models were combined: a bag-of-words similarity model and an annotation similarity
model. To the best of our knowledge, this is the first work using linguistic and knowledge-based
resources in passage ranking in an unsupervised manner. Notwithstanding the fact that it has
shown promise in terms of precision and MRR, it suffers from a sparseness problem of semantic
arguments as only a few number of semantic role annotations is produced by the system. The
major shortcomings of this approach is the difficulty of mapping and matching predicates and
arguments to model relations and the dependence of the result on the relevance of the retrieved
passages, thus it would be better to moved up the approach into the initial process of selecting
passages candidates.

Although these semantic matching based approaches allow to detect genuine passages, they
require semantic resources (e.g., FrameNet) which mostly cover neither all domains nor all terms.

4http://framenet.icsi.berkeley.edu/

42



Chapter 3 : Related work on passage retrieval and question retrieval

3.2.4 Syntactic and semantic matching

Further attempts have been made in combining both semantic and syntactic matching in the con-
text of PR to take advantage of both techniques. In this context, Laurent et al. (2005) developed
the well known commercial system QRISTAL 5 based on syntactic and semantic analysis of the
text to perform multi criteria indexing and answer extraction. Based on information get from
the analysis of passages, numerous indexes are made such as domain index, keyword index,
index concept, etc. Then, when the user asks his question, this latter is analyzed in a deeper
way than that established for the passages because the question is usually short and ambiguous.
Once this analysis is done, the indexes are consulted as well as the top ranked blocks relative
to these indexes are reanalyzed, but this time with computing a weight for each sentence for the
classification of answers. This weight is based on the number of words and named entities in
this sentence, the presence or absence of the response type corresponding to the question and the
agreement between the themes and the domains.

In addition, InSicht is a QAS implemented for German based on a deep syntactico-semantic
analysis of questions and documents (Hartrumpf, 2005). Documents are first analyzed using a
syntactico-semantic parser WOCADI 6 and each sentence is represented by a semantic network.
Likewise, the question is analyzed by the same parser and represented by a semantic network
pointing out some additional information such as the question type, the focus, etc. Subsequently,
query expansion is applied to generate equivalent semantic networks for the purpose of finding
implicit answers, utilizing among others, paraphrase rules and lexico-semantic relations (e.g.,
synonymy, hyponymy). Semantic networks are further simplified and normalized. Finally, the
simplified semantic network of the question as well as the question type are used for the matching
task. Therefore, the system returns German passages as candidate answers which will be then
the input of the answer selection module.

Within the same context, Shen and Lapata (2007) utilized syntactic information under depen-
dency relation paths and FrameNet semantic roles. More precisely, the predicates relative to the
question as well as the passages (e.g., verbs, nouns, adjectives) are defined and for each frame,
the related semantic roles are produced which can be then represented as a complete bipartite
graph where each frame element is connected to the possible semantic roles allowed by the pred-
icate. Then, the similarity between a question and its candidate answer is calculated by matching
their predicates and semantic role assignments which are represented by graphs. Thus, the task
can be modeled as a graph matching problem.

5A QAS based on NLP developed with the support of ANVAR (Agence nationale de valorisation de la recherche)
and the European Commission (TRUST , IST-1999-56416), cf.

6WOrd ClAss based Disambiguating is a syntactico-semantic parser that transforms articles into semantic net-
works
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Severyn et al. (2013a) applied a learning to rank model to learn complex patterns, for in-
stance, learning the relational semantic structures which appear in questions as well as their
passages. To this end, the learning to rank algorithm was fed a tree representation derived from
a representation of the question and answer passage pair following the approach in (Severyn &
Moschitti, 2012) using both shallow syntactic trees and relational nodes (i.e., those matching the
same words in the question and in the passages). Then, a large baseline for passage re-ranking
was established with a larget sample of different features. To establish relational links (Severyn
et al., 2013b) between a question and a passage, focus classifiers based on kernel methods were
implemented to be merged with a named entity recognizer (NER). The focus classifier identified
the term of the query to be linked to the named entities of the passage according to the compati-
bility of their categories. For example, a named entity of type PET is compatible with a category
of a question asking for an ANIMAL. Even though this method is efficient, it relies on a large
set of semantic topic models such as WordNet and word alignment which require a deep study
on how to exploit them at their best.

Besides, in (Moschitti & Quarteroni, 2011), supervised discriminative models such as Sup-
port Vector Machine (SVM) which learn to rank sentences taking advantage from examples of
question and answer pairs, were studied by applying structural kernel functions as powerful gen-
eralization methods to exploit syntactic and semantic structures. SVM is a supervised learning
model that was largely applied in the context of ranking passages and it will be overviewed in the
next Chapter. Sequence kernels were modeled for words and part-of-speech tags which capture
lexical semantics and syntactic information. Then, tree kernels were applied to encode deeper
syntactic and semantic information. Although this approach has shown significant feasibility
which is due to the SVM method which makes the learning algorithm robust even to numer-
ous irrelevant features, it remains computationally expensive due to the application of SVM and
kernel methods.

3.2.5 Contextual matching

Otherwise, some works used the context of words as a simple intuition for ranking passages. For
instance, Toba et al. (2010a) proposed a contextual approach for passage selection which aims
to find the supporting word context from question and candidate passages during the passage
selection using the techniques of state-of-the art QASs i.e., Open Ephyra 7, JIRS 8, and the
Semantic Vectors 9 open source packages. This latter is an open source package that can be
employed to create context vectors of word concepts in a specific domain and apply random

7http://www.ephyra.info
8http://sourceforge.net/projects/jirs/
9http://semanticvectors.googlecode.com/

44



Chapter 3 : Related work on passage retrieval and question retrieval

projections of words in the collection of documents to implement word space methodology. In
semantic vectors, words are represented as vectors where those having related meanings are
in close proximity. Then, the random projection is called to build the term vectors as well as
the documents vectors (Widdows & Ferraro, 2008). This approach has improved the empirical
performance of the passage selection but only in a specific domain due to the nature of the
semantic vectors applied.

Within the same context, Yen et al. (2013) introduced a machine learning-based QA frame-
work which integrates context-ranking model named (CRM) that re-rank the passages retrieved
from the initial retrieval engine to find the appropriate answers. The given model uses contextual
features of proper names combined in an SVM model to determine whether a candidate passage
is relevant to the query type. More precisely, each named-entity word in the passage is detected
and centralized to extract the corresponding context features in a fixed-size window, namely the
form of the word, its part-of-speech tag, its named entity class, its match degree with the question
terms and its token class. However, in the proposed framework, the performance of the model is
highly dependent on the question classification. We emphasize that our passage re-ranking model
is broadly inspired from this work to the extent that we use SVM to incorporate different features
extracted from the passages, nonetheless, unlike Yen et al. (2013), we are constrained neither by
Named Entity words nor by a fixed-size window. We are going beyond a simple detection of
the NE class, the form and the part-of-speech tag of the word to calculate lexical, semantic and
n-gram similarity measures.

3.2.6 N-grams

Other works were going beyond the simple lexical matching, resorting on a different model
for the purpose of PR called n-grams (Majumder et al., 2002), which refers to sequences of
consecutive items (characters or words) extracted from a given text. N-grams is a powerful and
fast tool that does not deal with terms as independent symbols but it takes into account the simple
dependency between them. In this context, Radev et al. (2005) developed a probabilistic method
for Web-based Natural Language QA. The process is as follows: the web documents are first
retrieved by a search engine are segmented into passages. Then, these latter are ranked using a
score based on n-grams calculated as follows:

S core =
w1

∑N1
i=1(t fi × id f j) + w2

∑N2
j=1 t f j + w3

∑N3
K=1 t fk

normalized Factor
(3.1)

where Ni(i = 1, 2, 3) is the total number of occurrences of unigram, bigram, and trigram in a
passage, wi(i = 1, 2, 3) is the linear combination of weights assigned according to the importance
of n-grams, t fi denotes the term frequency of the i-gram. id f measures the rarity of a unigram.
Normalized Factor is a normalization factor that depends on the passage size.
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In addition, Correa et al. (2010b) proposed an n-gram based PR system designed for QA
using JIRS 10 (JAVA Information Retrieval System) described in (Gómez et al., 2007). This
system first indexes and segments the set of documents into snippets and then extracts candidates
passages using keywords. Subsequently, it introduces an n-gram based model to select and rank
the most relevant passages. Once had the n-grams of both the question and the passages, a
similarity measure is applied to compare them favoring the passages containing more query n-
grams and longer ones. In their work, the similarity between a passage and the question is given
by:

S im(p, q) =

∑n
j=1

∑
x∈Q h(x, P j)∑n

j=1
∑

x∈Q h(x,Q j)
(3.2)

where Q j denotes the set of j-grams of the question, P j denotes the set of j-grams of the passage,
j = [1..n] with n is the number of terms of the question and h(x, P j) represent the weight for the
j-gram x. This weight is set to:

h(x, P j) =


|x|∑

k=1

Wx ifx ∈ Q j

0 otherwise

(3.3)

where wk is the weight of a term k of the n-gram x depending on the number of passages nk in
which the term occurs and N denotes the total number of passages. This weight is determined as
follows:

wk = 1 −
log(nk)

1 + logN
(3.4)

The same approach was followed by Buscaldi et al. (2010) with a difference in the applied
n-gram model. This latter is used to measure the similarity between the question and the pas-
sages considering the n-grams of the passages existing in the question and their proximity. The
passages having more n-grams in common with the question and whose n-grams are closer are
favored. The weight of an n-gram is divided by the distance between this latter and the n-gram
of maximum weight.

3.3 Summary

A QAS can be viewed as an embedded passage retrieval process bookended by IR and NLP
techniques that allow to understand the human question, on the front end, and post-retrieval, to

10http://sourceforge.net/projects/jirs/
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locate relevant answers. Owing to its importance, PR has been widely studied by researchers
over recent years using various different approaches.

In this Chapter, we have reviewed the major state-of-the-art PR approaches ordered by the
matching type adopted: lexical, syntactic, semantic, contextual matching and n-grams. Regard-
ing the former matching type, a quantitative evaluation of different PR algorithms applied to QA
realized by Tellex et al. (2003) has shown that the DR module affects the performance of PR
algorithms as PR and DR are dependent to each other.

Additionally, we have deduced that the best algorithms studied used density-based measures
for scoring question terms and also, boolean querying schemes performed well in the context of
QA task. However, all the mentioned algorithms process each term of the question as an indepen-
dent symbol and do not consider the order of words and their dependency relations. Therefore,
many irrelevant passages share the same query terms with those which are correct but the de-
pendency relations between these terms are different from those existing in the query. In order
to overcome this shortcoming there have been several attempts to consider term dependencies
such as (Srikanth & Srihari, 2002). In most cases, bigrams are used to replace unigrams with the
basic assumption that two adjacent terms are related, but dependencies not only occur between
adjacent words but may also exist between distant words. Furthermore, numerous works has re-
lied on syntactic matching, in particular syntactic dependencies instead of simple keywords. As
a matter of fact, two main approaches were used: strict matching and fuzzy relation matching.
The major shortcoming of these approaches is the need of a syntactic parser which is not always
available for any languages. Besides, it requires adaptation and the performance of QAS depends
on the performance of the analyzer.

Moreover, works based on semantic matching relied on semantic resources to generate se-
mantic relations or semantic annotations for the query and the passages. Notwithstanding these
approaches allow to detect genuine answers, they require semantic resources which mostly cover
neither all domains nor all terms. In order to exploit the benefits of both approaches, there have
been an abundance of works combining semantic and syntactic matching in PR. Other works re-
sorted to n-gram technique to retrieve passages which goes beyond the above mentioned simple
lexical matching. The strength of n-grams which refer to sequences of consecutive items is that it
does not deal with terms as independent symbols but it takes into account the simple dependency
between them. Recall that we will resort to this powerful technique in our PR model. Besides,
most context-based approaches lack flexibility as they often did not allow words to belong to
more than a topic and they are more adequate to some questions than others. Added to that, such
approaches are often highly dependent on the question classification module and cover only a
specific domain due to the nature of the semantic vectors applied.

On the other hand, most context-based approaches lack flexibility as they often did not al-
low words to belong to more than a topic and they are more adequate to some questions than
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others. Added to that, such approaches are often highly dependent on the question classification
and cover only a specific domain due to the nature of the semantic vectors applied. Regarding
pattern-based approaches, most of them require a lot of training data and the identification of
the candidate answers is a-high precision- task which is always easy neither for all cases, nor
for all languages. Otherwise, SVM was successfully applied in ranking passages, but the major
inconvenience of this technique is that it is essentially a binary classifier, which requires dividing
multiclass into numerous binary categories. Most existing multiclass SVM models (P.-C. Wu et
al., 2008) could not yet offer an efficient time performance. Moreover, SVM need a large training
set which contains sufficient examples for answer selection and also the choice of the features
used in such classifiers is a critical task.

3.4 Related work on question retrieval in cQA

The problem of QR has been intensively approached in recent years in order to improve user
satisfaction by reducing the time lag required to get an answer. It is assumed that the associated
answers to the similar questions can respond to the new query. Traditional QR research mostly
focuses on factoı̂d questions which differ from open questions in that they are direct and rarely
include noise. However, the open questions posted on community forums are generally not
grammatically correct, neither formal, and result in noisy texts. In community forums, similar
questions can widely vary in length, vocabulary, style, and content quality, which makes the
problem of QR a challenging one mainly due to the word mismatch issue.

3.4.1 Basic Models

Among the basic models, we briefly present the most used ones for the question retrieval task
namely, Vector Space Model, Okapi BM25Model, Query Likelihood Language Model and Trans-
lation Model.

Vector Space Model:

The Vector Space Model referred to as VSM has been extensively used for the VSM task to
calculate the cosine similarity between questions (Duan et al., 2008; X. Cao et al., 2010). A
widely used variation of VSM model sets the similarity score of query q and question d as
follows:

S imVS M(q, d) =

∑
t∈q∩d wq,twd,t

WqWd
(3.5)
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where wq,t and wd,t determine respectively the IDF of a term t in the collection and captures the
T F of a term t in the question d. They are calculated as follows:

wq,t = ln(1 +
N
d ft

) (3.6)

wd,t = 1 + ln(t ft,d) (3.7)

while Wq and Wd are calculated as follows:

Wq =

√∑
t

w2
q,t (3.8)

Wd =

√∑
t

w2
d,t (3.9)

The main limitation of VSM is that it favors short questions. As shown in equation 3.5, short
questions having small Wd will obtain higher similarity scores when other conditions are equal.
However, cQA services can handle a wide range of questions not limited to factoı̂d ones.

Okapi BM25Model:

In order to address the shortcoming of VSM, Okapi BM25 (BM stands for Best Matching) model
takes into consideration the question length (Jeon et al., 2005). Okapi BM25 is the most widely
applied model among a family of Okapi retrieval models proposed by (Robertson & Walker,
1994) which has proven significant performance in several information retrieval tasks. Basically,
Okapi BM25 is one of the most robust and effective retrieval functions used to rank questions
according to their relevance to a given query. One well-known version of Okapi BM25 model
(X. Cao et al., 2010) is given in equation 3.10 below:

S imBM25(q, d) =
∑

t∈q∩d

wq,twd,t (3.10)

where

wq,t = ln(
N − d ft+0.5

d ft + 0.5
)
(k3 + 1)t ft,q

k3 + t ft,q
(3.11)

wd,t =
(k1 + 1)t ft,d

Kd + t ft,d
(3.12)

Kd = k1(1 − b + b
Wd

WA
) (3.13)

In these latter equations, k1, b, and k3 are parameters. Wd denotes the question length or the
number of words of the question d and WA represents the average question length in the entire
collection. Note that in this model, the parameter b determines the influence of question length
on similarity score.
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Query Likelihood Language Model:

The Query Likelihood Language Model (QLLM) is a language model widely used in information
retrieval (Zhai & Lafferty, 2004) where the key idea is to construct for each question a language
model, and then rank the questions according to the probability P(d | q) which is estimated as
the likelihood that a question is relevant to the query. Using Bayes’ rule, the probability of a
question, given a search query is calculated as follows:

P(d | q) =
P(q | d)P(d)

P(q)
(3.14)

It is worthwhile to note that the probability of the search query P(q) can be ignored since it is
the same for all questions. The prior probability of a candidate question P(d) is often considered
as uniform, and therefore, it can also be ignored. According to the Language Modeling approach,
the archived questions are ranked by the probability that a search query would be considered as
a random sample from the respective question model. The multinomial unigram language model
is the most commonly used way to realize this. We have:

P(q | Md) = KqΠt∈V P(t | Md)t ft,d (3.15)

where Kq = Ld!/(t ft1,d!t ft2,d!...t ftM ,d!) is the multinomial coefficient for the query q, and Lq =∑
1≤i≤N t fti,q is the query length given the term frequencies t f in the query vocabulary N. Note that

the multinomial coefficient which is often removed from the calculation since it is a constant for
a particular query. However, QLLM model might not be effective when there are few vocabulary
between q and d. For example, ”What are the home remedies for yellow teeth?” and ”I want to
whiten my teeth naturally, what should I do?” are two semantically similar questions but only
have few vocabulary overlaps which lead to a poor similarity estimation for QLLM.

Translation Model:

The translation model referred to as TM takes advantage of word-to-word translation probabil-
ities in the language modeling framework to overcome the vocabulary mismatch problem faced
by QLLM. Existing work (Duan et al., 2008; Xue et al., 2008) demonstrates that TM obtains sig-
nificant performance for QR. Following the TM based approach presented by (Jeon et al., 2005),
the ranking score S imT M(q, d) of a query q and a question d is calculated as follows:

S imT M(q, d) =
∏
t∈q

(1 − λ)
∑
w∈d

T (t | w)Pml(w | d) + λPml(t | Coll) (3.16)

where T (t | w) represents the probability that a word w is the translation of word t. In the retrieval
task, the latent topic information was often ignored when computing the semantic similarity be-
tween questions. In order to enhance the performance of the TM model for QR, (G. Zhou et
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al., 2011) proposed a topic model that captures the latent topics in the content of questions in
modeling the translation of phrases. The semantic similarity based latent topics is then com-
bined with the translation-based language model into a unified framework. Another line of work
on translation models focused on extending the word-based translation model to incorporate se-
mantic concepts and exploring different strategies to learn the translation probabilities between
words and concepts using the cQA archives (Singh, 2012). However, the main limitation of this
approach is the need of huge training corpora which is so costly to create. Besides, machine
translation model usually works less well for language pairs with great grammatical differences
and very different word order.

3.4.2 Category information:

Certain cQA services such as Yahoo! Answers often organize questions into a hierarchy of cat-
egories which offer useful extra knowledge for question retrieval. For instance, the subcategory
”Environment.conservation” is a child category of “Environment” in Yahoo! Answers hierarchy
of categories. A user, when posting a question is required to pick out a category label for its query
from a predefined list of categories. The questions belonging to the same category or subcategory
are often related to the same general subject. In order to simplify the basic idea behind category
information in QR, we give the following query q: “could you recommend best destinations for
honey moon in Europe ?”, where the user is interested in destinations particularly in Europe.
Therefore, the question d “could you recommend best destinations for honey moon in Asia?” is
not relevant to the first question q, despite the fact that the two questions are syntactically close.
Thus, the connection between the question q and the category “Travel.Europe,” might promote
the questions ranking in that category and then enhance the QR performance.

To the best of our knowledge, there are only two attempts that have exploited the available
category information for question retrieval. In the first one, (X. Cao et al., 2009) consider two
different approaches to using categories for improving the performance of language-model based
QR. The former approach resorted to classifiers to calculate the probability of a query belong-
ing to different categories. Then, this probability is employed to set the ranking returned by
the language model. Nevertheless, the experiments showed that this approach led to a slight
improvement in language model. The second approach relied on a two-level smoothing model,
where a category language model is calculated and then smoothed with the entire question col-
lection. Hence, the question language model is smoothed with the category model. Although this
second approach has proven to significantly improve the performance of the LM for QR, the use
of category information was restricted to the LM. In order to overcome this limitation, authors
in (X. Cao et al., 2010), proposed a general approach named category enhanced retrieval model
to exploit category information that can be applied to any QR model. The basic idea is that basi-
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cally, the more a category is related to a given query q, the more likely that this category includes
questions similar to q. The given approach ranks a historical question d based on a combination
of two relevance similarity scores: a global relevance score denoted as Sq,cat(d) which represents
the similarity between query q the d ’s category (cat(d)), and a local relevance score denoted
as Sq,d between q and d within d’s category. The final similarity score is then calculated after
normalizing both the global relevance and the local relevance scores as follows:

S imCI(q, d) = (1 − β)N(S q,d) + βN(S q,cat(d)) (3.17)

where β is the weighting parameter and N(S q,d) is the normalization function.

3.4.3 Syntactic Tree Matching

The major reason that makes the QR task notoriously complex, is that the questions posted by
community users in human natural language have different lexical, syntactic and semantic fea-
tures. For instance, the questions “How can I learn Chinese in a short period?” and “Are there
any fast methods of learning Chinese in a few weeks?” are semantically similar asking for the
same matter but it is difficult for an automatic system to detect the similarity between these two
questions since they neither share many common words nor have the same syntactic structure,
which make it difficult for an automatic system to detect the similarity between these two ques-
tions. Accordingly, the basic techniques based the bag of-word (BoW) approach such as VSM
and QLLM may become ineffective and work poorly. Therefore, in these circumstances, more
robust methods based on syntactic or semantic features become essential and strongly required.
Within this context, (Wang et al., 2009) introduced a syntactic tree matching (STM) approach to
find similar questions using syntactic features. In nutshell, given the parsing trees T1 of search
a query q and T2 of a question d, the similarity score between T1 and T2 trees is computed as
follows:

S imS T M(q, d) =
S (T1,T2)

√
S (T1,T1)S (T2,T2)

(3.18)

S (T1,T2) =
∑
r1∈T1

∑
r2∈T2

M(r1, r2) (3.19)

where M(r1,r2) denotes the matching score of two nodes r1 and r2 calculated as follows:

M(r1,r2) =

 δr1δr2λ
S r1+S r2µDr1+Dr2 if r1 and r2 are terminals

δηr1
δηr2
λ2ηµn[2−(1+nc(r1))(Dr1+Dr2 )] × F otherwise

(3.20)

where in this equation, δr1 represents the importance of node r1 in the tree T1, while S r1 and
Dr1 denote respectively the size and the depth of the tree fragment with the root node r1. Note
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that S r1 is defined by the number of nodes that the tree fragment includes and Dr1 represents the
level of the tree fragment root in the global syntactic parsing tree. nc(r1) means the total number
of children of the node r1. λ is a parameter representing the preference between size and depth
while µ is another parameter denoting the total number of matched tree fragments. The function
F in the above equation is computed as follows:

F =

nc(r1)∏
j=1

M(ch(n1, j), ch(n2, j)) (3.21)

where ch(n, j) in this function denotes the jth child of node n in the tree.

3.4.4 Latent Semantic Indexing

Latent Semantic Indexing (LSI), also known as Latent Semantic Analysis (LSA) (Deerwester et
al., 1990), is a widely used approach in natural language processing, that supposes that there is
somehow a latent structure in term usage that is usually hidden due to the variability in word
choice. The basic idea behind the LSI model is to analyze relationships between a collection of
documents and the terms they contain by mapping them to a latent semantic space made by the
set of concepts related to the documents and terms. The retrieval task can be performed using
vectors obtained from the truncated SVD which is utilized to estimate the word usage structure
through documents. This approach attempts to overcome the lexical gap problem in information
retrieval by employing statistically derived conceptual indices rather than individual terms. (Qiu
et al., 2013) relied on LSI to improve QR in cQA by proposing a model based on LSI with
tensor analysis called LSTI, which can detect word associations among various parts of cQA
triples simultaneously. The core idea of the proposed model is to not consider the question as a
whole like in the previous cited models, but rather consider the real components of a question.
Accordingly, the question can be represented with a triple form ≺ question title, question content,
answer content �. More concretely, for a collection of cQA triples, ≺ qi, ci, ai � (i = 1. . . k),
where qi is the question and ci and ai denote respectively the content and answer of the question
and K is the number of singular values of entries, a 3-order tensor D ∈ RK×3×T is used to represent
the collection of T terms. Given a search query q and a candidate question d, their corresponding
triples respectively Dq ∈ R

1×3×T and Dd ∈ R
1×3×T will be projected to term space. The similarity

score is then calculated as the normalized Forensics inner product of their projection matrices.
Although LSTI has proven effective in helping overcome the semantic gap problem in QR, this
model faces the problem of data sparsity in term space since the size of a tensor in LSTI is larger
than a term document matrix in LSI.
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3.4.5 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is a popular generative probabilistic model
that describes how text data are generated, in terms of topics. The basic idea is that every doc-
ument is about several topics and that each word in the document can be associated with one of
these topics. Topic models allow to compute how much the document is about the considered
topics by calculating topic proportions for every document and producing list of words as topic
representation.

Within this context, (Cai et al., 2011) proposed a topic model integrated with the category
information into the process of detecting the latent topics in the content of questions and calculate
the semantic similarity between questions based on the latent topic information. To solve the
word mismatch problem, a translation-based language model was used to extract knowledge
from question answer pairs which are collected from a cQA platform. A latent topic model was
employed to derive knowledge from the distribution of words and categories in cQA archives
assuming that the two knowledge are complementary.

Ji et al. (2012) have proposed an approach to question retrieval based on the question-answer
topic model which uses LDA to learn the latent topics underlying the text of question-answer
pairs. Nonetheless, their topic model is designed at word level, and thereby the topics in the
model are not general and expressive enough.

Chen et al. (2016) reported a more general approach to alleviate the lexical gap problem in
QR. They present a hybrid approach that blends certain language modelling techniques, namely
the basic query-likelihood language model, the translation-based language model, and their pro-
posed semantics-based language model. The semantics of each question was presented by a
probabilistic topic model which employs local and global semantic graphs for detecting the hid-
den interactions among entities (e.g., places, people and concepts) in question-answer pairs.

By and large, the major shortcoming of topic modeling schemes, such as LDA and LSA, is
that they need to make modifications when applied on short texts through aggregation strategies.
Indeed, short texts carry limited context information, which leads to sparsity problems when
applying conventional topic models.

3.4.6 Neural Networks

Recent works on QA focused on the representation learning for questions, relying on an emerg-
ing model for learning word representations in a low-dimensional vector space called Word Em-
beddings. Word embedding models turn words into vectors, where the similarity between the
word vectors reveals the semantic and syntactic similarities between the corresponding words.
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Lately, there has been burgeoning interest in word embeddings which have been shown to achieve
impressive performance in several NLP tasks (Turian et al., 2010; Collobert et al., 2011), in
particular for question retrieval (G. Zhou et al., 2015). The main advantage of these emergent
unsupervised learning models is that they do not require expensive annotation, but can be derived
from a large-scale unannotated collection. They can then be applied in tasks where only small
amounts of labeled data are available.

Distributed representation of words as continuous vectors has been recently addressed by
Mikolov, Sutskever, et al. (2013) who presented powerful neural network models to learn word
representations, including two unsupervised models learned from huge corpora namely, the skip-
gram model and the continuous bag-of word model. There has been further a host of work
examining the task of learning word representations such as (Maas et al., 2011; Huang et al.,
2012). However, major previous works are mainly based on the word co-occurrence information
and therefore the yielded word vectors cannot detect the relationship between two semantically
equivalent terms if they have little context information. In order to improve learned word em-
beddings, Yu and Dredze (2014) proposed the use of a prior knowledge contained in semantic
resources, while C. Xu et al. (2014) proposed to incorporate knowledge graphs into the learn-
ing process assuming that it gathers useful relational knowledge that encodes the relationship
between entities and categorical knowledge that encodes the properties of entities. Otherwise,
G. Zhou et al. (2015) was the first work to learn continuous word embeddings with metadata of
category information within cQA corpora for the QR task.

Since we believe that the word representation is crucial for the QR task and inspired by the
success of the latter model, we rely on word embeddings to detect semantically similar questions
in cQA. Along with the popularization of word embeddings owing to its capacity to produce
distributed representations of words, various neural network architectures such as Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN) and Long Short-Term Memory
(LSTM) have proven to be efficient in extracting higher-level features from constituting word
embeddings. For instance, Dos Santos et al. (2015) used CNN along with bag-of-words (BOW)
representations of the questions to compute the cosine similarity scores. Within the same con-
text, Mohtarami et al. (2016) proposed a bag-of-vectors approach using CNN and attention-based
LSTM to capture the context and semantic similarity between the community questions and rank
them accordingly. LSTM model was also employed in (Romeo et al., 2016) with an atten-
tion mechanism to detect long dependencies in community questions. Interestingly, the weights
learned by the attention model were utilized for picking up significant segments and thus enhanc-
ing syntactic tree-kernel models. More recently, Kamineni et al. (2018) turned the QR task into
a binary classification problem using a combination of LSTM and a contrastive loss function to
effectively memorize the long term dependencies. In our work, we resorted to a Siamese adapta-
tion of LSTM (Mueller & Thyagarajan, 2016) for pairs of variable-length sentences, which has
accomplished excellent outcomes in the semantic text similarity task and inspired us in our QR
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problem.

Despite being effective and suitable for complex NLP problems, NNs has some downfalls
to go along with its benefits. The most known shortcoming of NNs is debuggability due to
their black box nature, that is to say we do not know how and why our NN came up with a
certain output. Thus, if something fails, it is hard to debug and fix the problem. Indeed, when
you have features that are human interpretable like Decision trees, it is easier to understand the
source of a problem. Moreover, NNs mostly require large datasets for training which can make
computational requirement sometimes prohibitive.

3.4.7 Summary

Finding semantically similar questions can not only help to exploit the information available in
the tremendous community archives but also be an intermediate step in QA. QR aims to reduce
the lag time incurred by waiting for new answers, thus improving user satisfaction. Over time,
the task of QR has been approached by numerous researches in different ways. The ultimate goal
of the research was to address the lexical gap problem between the questions in cQA.

In this section, we reviewed the main proposed approaches to address the QR task grouped
by the employed model. Early works relied on the basic models, such as Vector Space Model,
Okapi BM25Model, Query Likelihood Language Model and Translation based Model. However,
such models mostly do not take into account the question length and usually do not operate
well for language pairs with great grammatical differences and very different word order. Other
works made use of the category information assuming that the questions belonging to the same
category or subcategory are often related to the same general subject but, the use of category
information was restricted to the language model. In addition, some attempts have been made
relying on syntactic features to find similar questions using syntactic features. Nevertheless, such
an approach requires a parser, which is not always available for any language, and its outcome
significantly depends of that of the parser which mostly cannot derive deep and complex syntactic
structures. There has also been a host of works investigating the use of topic modeling in the QR
task mainly LSI and LDA. Although topic models have proven effective to overcome the semantic
gap problem, the major limitation of such models is that they need significant modifications
when applied on short texts through aggregation strategies. Moreover, short texts carry limited
context information, which leads to sparsity problems when applying conventional topic models.
Otherwise, more recent works relied on NNs which become be all and end all of most NLP tasks.
Notwithstanding their outstanding outcomes, NNs require a huge amount of training data, which
can make computational requirement sometimes prohibitive, and suffer from two major issues,
namely interpretability and debuggability due to their black box nature.
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It is worth mentioning that work on cQA has mostly been carried out for other languages
than Arabic due to a lack of available Arabic resources. Lately, a promising Arabic QR approach
was proposed by Mohtarami et al. (2016) who made use of text similarities at both sentence and
word level based on word embeddings. The similarities were computed between new and previ-
ous question, and between the new question and the answer related to the previous question. A
tree-kernel-based classifier was used in (Barrón-Cedeno et al., 2016) where authors relied on su-
pervised and unsupervised models that operated both at sentence and chunk levels for parse tree
based representations. A supervised learning approach was employed in (Malhas et al., 2016)
where learning-to-rank models were trained over word2vec features and covariance word em-
bedding features derived from the training data. More recently, the given task was addressed by
Romeo et al. (2017) using advanced Arabic text representations built by applying tree kernels to
constituency parse trees along with word embeddings and different text similarities. A selection
model based on an attention mechanism in an LSTM network was integrated to identify the most
important text pieces and then filter out noisy subtrees from the question syntactic trees.

3.5 Conclusion

In this Chapter, we have reviewed the main related work on PR and QR in the context of QA and
we have discussed the different models applied to solve these crucial and challenging problems
in open domain QA and cQA. Our literature review reveals the widespread attention drawn to
QA as well as the abundance of work on the given tasks which reflect their criticality. We devote
the next Chapters to presenting out technical contributions.
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Chapter 4
Combining multiple features for passage
retrieval in open domain QA

4.1 Introduction and motivations

Basically, a common QAS involves a four-modules pipeline (Tellex et al., 2003) namely, question
analysis, document retrieval, passage retrieval and answer extraction, where each module has to
deal with different challenges. Chiefly, Passage Retrieval (PR) is advocated as the key component
of a typical QAS (Krikon et al., 2012) since it allows to reduce the search space from a vast
collection of documents to a fixed number of passages. PR is an Information Retrieval (IR)
application that returns snippet of texts named passages which are relevant to the user query
rather than returning a full list of documents. Obviously, a correct answer to a posted question
can be found only when it already exists in one of the retrieved passages. In addition, it has
been proved that the performance of the PR module significantly affects that of the whole system
(Tellex et al., 2003). Hence, several approaches have been developed for the purpose of PR in
order to improve the performance of the QA task, as shown in the previous Chapter. However,
most proposed methods are no more than simple adaptations of classical document retrieval
engines which are not especially devoted to QA (Buscaldi et al., 2010) and consequently cannot
ensure high passage relevance.

As a matter of fact, the task of determining not only a correct but also a relevant answer to
a human natural language question over a sizable document collection is far from being easy,
and still requires a non-trivial endeavor. Most existing QASs were developed for closed domains
with limited capabilities and were unable to deliver correct answers to all given questions from
a huge repository even though this later contains the correct answers. Thus, we suppose that if
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we improve the PR engine of QASs by increasing the number of relevant passages, we could
probably enhance the whole performance and increase the chance of obtaining a relevant answer.
Moreover, ranking passages is also deemed to be a laborious subtask at the end of the PR module,
which aims to re-rank the retrieved passages such that the most relevant ones appear first.

In order to enhance the performance of existing QASs and ensure the relevance of the re-
turned passages, we propose a new PR and ranking approach for an open domain QAS. Specifi-
cally, our contributions include a novel n-gram based method to retrieve passages for QA based
on the degree of closeness or dispersion of the n-gram words of the question in the passage (Faiz
& Othman, 2019). Another contribution is to better re-rank the passages using a Ranking SVM
model that combines a set of text similarity measures which constitute the features (Othman &
Faiz, 2016b). These latter include our proposed n-gram measure as well as other lexical, syntac-
tic and semantic features which have already shown promise in the Semantic Textual Similarity
task (STS) at *SEM 2013 (Buscaldi et al., 2013). We intend to automatically return the top
ranking passage as the most relevant response to a given question stated by the user.

The rest of this Chapter is structured as follows. In Section 4.2, we introduce our approach
and we detail its different steps. In Section 4.3, we move on to the description of our experimental
study carried out to validate our work by means of the CLEF dataset. We compare our results
with those of similar solutions performing the same task and we discuss our findings. Finally, in
Section 4.4 concluding remarks are outlined.

4.2 Description of the proposed PaROD approach

The intuition behind our approach is to reduce the search space relying on n-gram structures
by retrieving the top 10 passages that are most likely to fit the user’s question (Othman & Faiz,
2016b). The number of retrieved passages is set at 10 as most of existing PR systems take values
close to 10 as a happy medium between a big and small number. However, n-gram seems not
enough to guarantee high relevance since it only relies on a simple dependency between terms.
Thus, we tend to better rank the retrieved passages using a Ranking SVM model which combines
additional lexical and semantic similarity measures in order to output the top ranking one, as the
most relevant passage to the input question. In this Section, we describe our approach which is
basically composed of three main components: question preprocessing, PR and passage ranking.
Figure 4.1 depicted the overall architecture of the proposed Passage Retrieval for Open Domain
QA approach referred to as PaROD. In what follows, we detail its different components mainly,
passage extraction and passage ranking concerned with our contributions.
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Figure 4.1 – Global architecture of the PaROD approach

4.2.1 Question preprocessing

Preprocessing is a crucial step in NLP tasks to assess and improve the quality of text data in order
to ensure the reliability and validity of the statistical analysis. Basically, it intends to skip useless
information and extract the terms that may be valuable in the retrieval process. The output of
our question preprocessing module should be a formal query generated by preprocessing and
analyzing the question posted by the user and extracting the useful terms. This query is obtained
by following a few steps: The question is first cleaned by replacing the accented characters with
non accented ones and eliminating some special characters such as {$, £, &, §}, punctuation
marks as well as question words such as “who”, “what” and “which” which are not useful for the
search and therefore they are not included in the query. Letters are lowercased while dates are
replaced by the token date and numerical digits are normalized to the token num.

Then, the question text is chopped up into tokens using a lexical analysis, where a token
can be defined as an instance of a sequence of characters in a document, grouped together as a
useful semantic unit for text processing that should be not only linguistically significant, but also
methodologically useful.

We therefore remove the stop words which refer to extremely common words such as “the”,
“is”, “at” which are likely to be of negligible value in the process of selecting documents match-
ing a user need and thus it is better to filter them out from the vocabulary entirely. Thereafter,
the terms will be sorted by collection frequency taking the most frequent ones.

We emphasize that stemming is recommended for question preprocessing in order not to
loose passages containing question stems. We remind that stemming is a popular NLP technique
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that aims to reduce words to their root form by returning just one base form for them according
to their morphological variants, including the removal of derivational affixes. Thus, at the end of
the question preprocessing module, we obtain a query formally defined as follows:

Q =
{
t1, t2, ..., tq

}
(4.1)

where t denotes a separate term of the query Q and q represents the number of query terms.

4.2.2 Passage extraction

The passage extraction module is a key component in our approach and it consists of two main
phases: In the first one named Candidate Passage Extraction, we extract all passages containing
at least one of the question terms. Then, in the second phase named Relevant Passage Extraction,
we filter the extracted candidate passages in order to keep the potentially relevant ones using n-
gram structure.

4.2.2.1 Candidate Passage Extraction:

The extraction of candidate passages entails three main steps described below, namely collection
indexing, term weighting and candidate passage filtering.

Collection Indexing: The document collection should be in advance splitted into paragraphs
called passages. In order to index the collection, for each passage, we store its id, number and
text and other related information such as its document name. Note that the same question pre-
processing steps were applied to passages to obtain a set of indexed passages. We denote by
T (P) =

{
t1, t2, ..., tp

}
the sequence of p terms obtained by pre-processing a passage P. Subse-

quently, we give a frequency to each passage term in order to calculate the maximum frequency
and the term weights. Once the passages are indexed, the terms are stored in the inverted index
as shown in Table 4.1.

Table 4.1 – An excerpt of the inverted index

term Id term term frequency number of passages passages frequency

in all passages containing the term num ◦ term/passage

1 variable 3 3 1509 1514 1723 1 1 1

2 include 5 4 65 198 818 1319 1 2 1 1

..
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The query and the passage will be modeled as vectors containing the terms as well as their
frequencies as given below:

−→
Q


t1 t f1

t2 t f2

.. ..

tq t fq


−→
P


t1 t f1

t2 t f2

.. ..

tp t fp


where t denotes a separate term and t f represents its frequency in the query or the passage.

Term Weighting: In order to calculate the weight of the query terms, we test two formulas.
The first one is a variant of the standard formula based on the t f and id f criteria:

w(ti, q) = (
t f (ti, q)

maxt f (t j, q)
) × log(

N
n(ti)

) (4.2)

where t f (ti, q) is the frequency of the term i in the query and maxt f (t j, q) is the maximum fre-
quency of the terms in the query. This ratio helps to favor the most frequent terms. Indeed, it
is equal to 1 (maximum value) for the most frequent term and equal to 1/maxt f (t, q) (minimum
value) for the least frequent one. The second argument is a ratio between the total number N of
passages in the collection and n(ti) is the number of passages containing the term i. This ratio
helps to favor the most discriminated terms in the passages. The second formula 4.3 tested is the
one used in (Correa et al., 2010b):

w(ti, q) = 1 −
log(n(ti))
1 + logN

(4.3)

This formula does not take into account the frequency of words but it only considers their dis-
criminating power between passages. Thus, a term found in a single passage will have a maxi-
mum weight as the ratio value in the formula is low. Candidate passages are those that contain
at least one of the query terms. To identify them, we just need to look for the query terms in
the inverted index, where for each term the list of related passages is recorded, and take the
intersection of these passages. The candidate passages are defined as follows:

Pc = {P1, P2, ..., Pn} (4.4)

where Pi is a candidate passage and n is the number of candidate passages. Note that the weight
of the candidate passage terms is calculated by the same way as the query terms.

Candidate Passage Filtering: In order to filter the candidate passages, we calculate the simi-
larity between each one and the question using the similarity measure given in formula 4.5 that
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only considers words in common between the query and the passage as follows:

s(p, q) =

∑
ti∈p∩q w(ti, q)∑

ti∈q w(ti, q)
(4.5)

The candidate passages are then ranked according to their similarity scores and their number (n)
will be reduced to (nb). More concretely, we only keep the top nb passages having the higher
similarity scores. We denote by Cp(q) = {P1, P2, ..., Pnb} the set of nb returned filtered passages.
where s(p1, q) ≥ s(p2, q)≥ ... ≥ s(pnb, q).

Recall that we attempt to reduce the overall system complexity in terms of time and space
and allow for a deeper analysis which was not possible before because of the massive size of the
collection. Whence, the number nb should be fixed trying to find a happy medium between a big
and a small number. On one hand, a big nb does not meet the goal mentioned above, but it has
the advantage of keeping passages that may be semantically relevant but are misclassified as they
share very few words with the query. On the other hand, a small number can reduce the system
complexity but with a strong chance of ignoring some passages. In view of this, we propose to
set the number nb to 100 as an average number of candidate passages.

4.2.2.2 Relevant Passage Extraction:

The extracted passages returned by the previous phase, until then, have only a few question
words. However, we believe that this criterion is not good enough to assess the passage relevance.
Thus, we propose to go beyond a simple verification of word occurrences by exploiting other
selection criterion such as the presence of word sequences, their length and their dependence. To
this end, we resort to n-gram technique which can not only deal with a massive amount of data
but also with its heterogeneity and it is further independent of language. Our methodology for
extracting relevant passages is composed of the following parts:

N-gram generation: We just focus on the common n-grams between the question and the
passage. Thus, the common terms between a question and a passage are first identified and then,
their corresponding n-grams are derived. The vector

−→
Tc of common terms between the question

and the passage is built by browsing through the terms of the question and checking for each of
them if it is also a term of the passage to add it in the vector. This latter is defined by:

−→
Tc


t1 p1Q [p11, .., p1m]
t2 p2Q [p21, .., p2m]
.. ..

tn pnQ [pn1, .., pnm]


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where ti is the term i in common between the question and the passage and i={1..n}. n
denotes the number of the question terms, piQ denotes the position of the term i in the question,
pi j is the position j of the term i in the passage and j={1..m}. m is the number of terms in the
passage. These positions will be useful to construct the n-grams of the question and the passage.
Thereafter, the n-grams of the question are constructed by browsing the vector

−→
Tc and grouping

the terms having successive positions in the question. These question n-grams are defined by a
vector

−−−−→
NGQ. Similarly, the n-grams of the passage are constructed and defined by a vector

−−−−→
NGP

using the vector
−→
Tc.

−−−−→
NGQ


ngQ1
ngQ2
..

ngQq


−−−−→
NGP


ngP1

ngP2

..

ngPp


where q and p denote the number of n-grams in the question and the passage, respectively.

This straightforward intuition for the construction of the n-grams of the question and the
passage are given in the pseudo-algorithms 1 and 2 (Faiz & Othman, 2019).

Algorithm 1 An algorithm for constructing the question n-grams
Input:
The set of common terms and their positions in the question: {(t1, p1),. . . , (tn, pn)}
Output:
The number of n-grams of the question: q
The set of n-grams of the question : {ng1, . . . , ngq}

q=1 ; ng(q)=t1;
for i = 2→ n do

if pi = pi−1 + 1 then
// check if ti−1 and ti is a bi-gram in a question
ng(q)← ng(q) + ti; // concatenate ti with the n-gram q

else
q++; // increment the number of n-grams
ng(q)← ti ; // add ti to the new n-gram q

end if
end for
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Algorithm 2 An algorithm for constructing a passage n-grams
Input:
The set of common terms and their positions in the passage: {(t1, [p11,...,p1m])],..., (tn,
[pn1,...,pnm])}
Output:
The set of n-grams of a passage : {ng1, . . . , ngp}

p=1 ; ng(p)=t1;
for i = 2→ n do

if (pi∗ = pi∗−1 + 1) then
// * represents any number from 1 to m
// check if ti−1 and ti is a bi-gram in the passage
ng(p)← ng(p) + ti; // concatenate ti with the n-gram p

else
p++; // increment the number of n-grams
ng(p)← ti ; // add ti to the new n-gram p

end if
end for

N-gram Weighting: The weight of each n-gram of the question is calculated on the basis of
its length and the sum of its term weights according to formula 4.6:

w(ngQ) = l ×
∑

ti∈terms(ngQ)

w(ti, q) (4.6)

where l is number of terms contained in the n-gram (ngQ).

Indeed, the multiplication of the weights sum by the n-gram length can foster adjacent words
over the independent ones in the similarity calculation. We believe that grouped terms are more
significant and less ambiguous than separate ones. Therefore, a term that belongs to an n-gram
should have a greater weight than an independent one. The weights of terms belonging to a
common n-gram in question and passage are then re-inforced by a factor proportional to n; the
length of the n-gram l.

As for the passage n-grams, they are weighted regarding their similarity degree with those
of the question. We give a cumulative weight to the passage by browsing through the question
n-grams and at each question n-gram either its full weight or a lower one is added to the passage
weight. In other words, if a question n-gram occurs in the passage, its whole weight will be
added to the total weight, while if it is divided in the passage into smaller subset of n-grams,
called sub-n-grams, a lower weight will be added to the cumulative weight. This lower weight
should be fixed according to the number of sub-n-grams. We emphasize that three possible cases
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may arise:

• Case 1: The n-gram of the query is one of the passage n-grams: ngQi ∃ ngP j, ngP j ∈ NGP

• Case 2: The query n-gram combines several passage n-grams; it is included in the union of
a subset of passage n-grams: ngPP ⊂ NGP, ngQi ⊂ (

⋃
ngP j ∈ ngPP) where ngPP denotes

some subset of NGP.

• Case 3: The query n-gram is a sub-n-grams of some passage n-gram: ngQi ∈ ngP j, ngP j ∈

NGP

Let w be the weight to add to the passage when we browse through the question n-grams ngQ.
In the cases 1 and 3, ngQ exists in the passage, so the additional weight w is calculated using the
formula 4.7:

w(ngP) = w(ngQ) = l ×
∑

ti∈terms(ngQ)

w(ti, q) (4.7)

where l denotes the length of the n-gram ngQ and w(ti, q) is the weight of its term ti. In the case
2, ngQ is divided into sub n-grams in the passage, let sng be the number of these sub n-grams.
In this case, the additional weight w is computed using the formula 4.8:

w(ngP) =
w(ngQ)

sng
=

l
sng
×

∑
ti∈terms(ngQ)

w(ti, q) (4.8)

Passim Similarity Measure: Our proposed passage similarity measure referred to as Passim
between a passage and a question is no more than the ratio between the weight of the passage and
that of the question (Faiz & Othman, 2019). The passages are ordered according to this measure
scores in order to return those having the highest values. The final passage weight is a sum of
partial weights calculated at each step to be added to the total passage weight. The next step
corresponds to the verification of the occurrence of an n-gram of the question into the passage
and the underlying weight is given by the following formula 4.9:

w(P) =

q∑
i=1

li

sngi
×

∑
t∈terms(ngQi)

w(t, q) (4.9)

where q is the number of the question n-grams. The weight of a passage is calculated including
sngi which denotes the number of sub-n-grams in the passage corresponding to the question n-
gram i. The number sngi is calculated during the constitution of the n-grams of the question
and the passage using the pseudo-algorithm 3. The basic intuition behind this latter is to browse
through the common terms between the question and the passage where n denotes their number,
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and for each question n-gram, which can be thought as terms having successive positions in the
question, we verify if it also represents an n-gram in the passage, otherwise, we check if the given
question n-gram is divided into sub-n-grams in the passage and we calculate their number. Note
that pqi denotes the position of the ith term in the question while ppim denotes the mth position
of the ith term in the passage. As for the weight of the question, it is calculated according to
formula 4.10:

w(Q) = l(Q) ×
∑

ti∈(Q)

w(ti, q) (4.10)

where l(Q) is the number of the question terms and w(ti, q) is the weight of a question term.
w(Q) is the same as the weight of an n-gram when the n-gram NGQ is the question. k = l(Q)
represents the number of the question terms and sng = 1 since all terms are grouped together and
form a uni-gram.

The similarity between a question Q and some passage P is defined as the ratio between
w(P), the weight of n-grams in the passage, and w(Q), the weight of n-grams in the question as
given in 4.11:

Passim(p, q) =
w(P)
w(Q)

(4.11)

Obviously, this similarity is maximum when all the terms of the question are grouped in the
passage.

In a nutshell, our strategy for retrieving passages is different from the existing ones based on
n-grams. Firstly, the given process of n-gram extraction extract only common n-grams between
the question and the passages with different sizes, instead of extracting all n-grams for all n
possible gram values of the question and the passage, as in (Buscaldi et al., 2010) and (Correa
et al., 2010b), or all the n-grams of size n, as in (Radev et al., 2005). Thus, no additional step
is required to select common n-grams from all the extracted ones. Secondly, for the weight of
n-grams, both the sum of the terms weight and their lengths are considered like in (Radev et
al., 2005), while (Correa et al., 2010b) and (Buscaldi et al., 2010) consider only the sum of the
terms. Thirdly, the passage similarity measure is calculated from the weights of the question
n-grams. A total passage weight is built by browsing the question n-grams, keeping the weight
of an n-gram if it is totally included in the passage and reducing the weight of an n-gram if it is
divided into smaller n-grams in the passage.
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Algorithm 3 An algorithm for calculating the sub-n-grams related to an n-gram of the question
in the passage

1: Input:
2: The set of terms and their positions in the question and in the passage {(t1,pq1

[pp11,...,pp1m]),..., (tn,pqn [ppn1,..., ppnm]) }
3: Output:
4: The set of n-grams of the question {ngq1, . . . , ngqq}

5: The number of n-grams of the question q
6: The number of n-grams in each sub-n-gram of the question {sng1,. . . ,sngq}

7: The set of n-grams of the passage {ngp1, . . . , ngpp}

8: q=1 ; ngq(q)=t1 ; sng(q) = 1 ;
9: p=1 ; ngp(p)=t1 ;

10: for i = 2→ n do
11: if (pqi= pqi−1+1) and (ppi∗ = ppi−1∗ + 1) then
12: ngq(q)← ngq(q) + ti ; // concatenate ti with the n-gram q
13: ngp(p)← ngp(p) + ti ; // concatenate ti with the n-gram p
14: else
15: if (not(pqi= pqi−1+1) and (ppi∗ = ppi−1∗ + 1)) then
16: q++ ; // increment the number of n-grams of the question
17: ngq(q)← ti ; // add ti to the new n-gram q
18: ngp(p)← ngp(p) + ti ;// concatenate ti with the n-gram p
19: sng(q)← 1 ;
20: end if
21: if ((pqi= pqi−1+1) and not((ppi∗ = ppi−1∗ + 1))) then
22: p++ ; // increment the number of passage n-grams
23: ngp(p)← ti ; // add ti to the new n-gram p
24: ngp(q)← ngp(q) + ti ; // concatenate ti with the n-gram q
25: sng(q) ++ ;
26: end if
27: if (not (pqi= pqi−1+1) and not( (ppi∗ = ppi−1∗ + 1))) then
28: q++ ; // increment the number of the question n-grams
29: ngq(q)← ti ; // add ti to the new n-gram q
30: p++ ; // increment the number the passage n-grams
31: ngp(p)← ti ; // add ti to the new n-gram p
32: sng(q)← 1 ;
33: end if
34: end if
35: end for
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In order to elucidate the idea of Passim measure we propose a simple example 4.1, where
we consider the following terms of a question Q and those of a passage P:

Example 4.1. Q(terms)= trade, ammonium, nitrate, fertilizers, hampered, European, Economic, Com-
munity.

P(terms)= ammonium, nitrate, essential, ingredient, variety, products, some, intended, use, fertil-
izers, others, explosives, reason, divergencies, national, provisions, classification, content, European,
Economic, Community, regulations, controlling, marketing .

The corresponding vector
−→
Tc of common terms between the question and passage is set to:

−−−−−−−→
Tc(Q, P)= ammonium, nitrate, fertilizers, European, Economic, Community.

From this latter we can derive:
−−−−−−−→
NGQ(Q) =[ammonium nitrate fertilizers][ European Economic Community]

and
−−−−−−−→
NGP(P) =[ammonium nitrate][fertilizers][European Economic Community].

In this example,
−−−−→
NGQ is composed of two n-grams so we have two partial passage weights to

calculate. The first question n-gram is divided into two sub n-grams in the passage so, sng equals
2 while the second one is exactly equal to a passage n-gram so, sng equals 1. Thus, given 1.766
and 1.524 the term weights of ngQ1 and ngQ2 respectively, w1(P) =

l(ngQ1)
sng1
×
∑

t∈terms(ngQ1) w(t, q) =

(3/2) × 1.766 while w2(P) =
l(ngQ2)

sng2
×

∑
t∈terms(ngQ2) w(t, q) = (3/1) × 1.524. Therefore, the total

passage weight will be equal to the sum of w1(P) and w2(P), while the weight of the question will
be set to: w(Q) = l(Q) ×

∑
ti∈(Q) w(ti, q) = 8 × 4.924 where 4.924 is the result of the sum of query

terms weight.

4.2.3 Passage ranking

Since the n-gram technique can only ensure simple dependencies between terms, it cannot guar-
antee that the retrieved passages are highly relevant. We accordingly suggest integrating other
powerful similarity measures combined by means of a Ranking SVM model. This model com-
bines different text similarity measures that constitute the features (Othman & Faiz, 2016a). We
emphasize that the passage ranking model consists of two phases: training and testing, as de-
picted in Figure 4.1.

In both phases, the different similarity measures are calculated for each passage and then
these latter are entered into the RankSVM which will re-rank the passages given their feature
values. Only the passage ranked first by our model will be returned by the system as the most
relevant answer to a given user’s question. During the first phase, a set of annotated passages
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entered in the passage re-ranking model where each passage is labeled either 1 (right) or -1
(wrong), while in the testing phase, the passages are not labeled as they are those extracted by
our PR module. In what follows, we present the different used features and we give an overview
on the RankSVM model.

4.2.3.2 Feature Extraction:

In addition to Passim, we integrated in our ranking model other features which have shown suc-
cess in the Semantic Textual Similarity task (Buscaldi et al., 2013)(STS) at *SEM 2013 which
aims at determining the degree of similarity between pairs of text sentences. Among the intro-
duced features, we pick out WordNet-based Conceptual Similarity, Named Entity Overlap, Edit
distance. We have adapted these features to the context of QA, where the sentence pairs become
pairs of passage-question. Basically, what is expected from the additional features retained for
ranking is to take into account the semantic relationships, the syntactic structures and the named
entities containing in passages in order to improve the ranking, ensure more passage relevance
and enhance the n-gram-based passage extraction module. Note that the more we add features,
the higher the program complexity is. Hence, we have mainly resorted to syntactic and semantic
features to ensure answer relevance (Keikha et al., 2014) since at this stage, similarity measures
based on term frequencies are insufficient to ensure high passage relevance. The given used
features are briefly described below.

WordNet-based Conceptual Similarity: The question q and a passage p are first analysed
in order to extract all the corresponding WordNet synsets. For each one, we keep only noun
synsets and group them respectively into the set of synsets of the question called Cq and that of
the passage named Cp. If the synsets belong to another POS categories such as verb, adjective,
pronoun, we seek their derivational related forms to obtain a related noun synset and we add it
in the corresponding set of synsets.

Example 4.2. For example, the word “playing” in WordNet is associated to synset (v)play#2,
which has two derivationally related forms: synsets (n)play#5 and (n)play#6. These latter are
the synsets that should be added to the synset set.

Given Cp and Cq the sets of concepts contained in a passage p and the question q, with∣∣∣Cp

∣∣∣≥∣∣∣Cq

∣∣∣, WordNet-based Conceptual Similarity between p and q is set to:

ss(p, q) =

∑
c1∈Cp

max
c2∈Cq

s(c1, c2,)∣∣∣Cp

∣∣∣ (4.12)
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where s(c1, c2) is a conceptual similarity measure calculated using a variation of the Wu-
Palmer formula (Z. Wu & Palmer, 1994), called ProxiGenea (genealogical proximity) introduced
by Dudognon et al. (2010). We will employ the third version of this measure named ProxiGenea
since it has outperformed the other ones in the Semantic Textual Similarity task (Buscaldi et al.,
2012). This latter is defined as follows:

pg3(c1, c2) =
1

1 + d(c1) + d(c2) − 2d(c0)
(4.13)

where c0 denotes the most specific concept that is present both in the synset path of c1 and c2

and d denotes the function returning the depth of a given concept which constitutes the number
of nodes between a concept and the root in the WordNet taxonomy (see Figure 4.2 for details).

Figure 4.2 – Illustration of depth calculation

Example 4.3. In order to elucidate the principle of this measure, we suggest a simple exam-
ple where we propose to calculate WordNet-based conceptual similarity between the following
sentences:

• Sentence 1: After the tornado hit the town, there was little left standing.

• Sentence 2: The city was partially evacuated after the storm.

The two sentences are analyzed and pos tagged to extract all the corresponding noun WordNet
synsets. For each pair of nouns, we calculate the ProxiGenea measure as shown in Table 4.2
below. For instance, the terms town and city have similar meaning so they are assigned a high
proxigenia value equal 0.900. In our example, the WordNet-based conceptual similarity value
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will be set to:

ss(p, q) =

∑
c1∈Cp

max
c2∈Cq

s(c1, c2,)∣∣∣Cp

∣∣∣ =
0.900 + 1.000 + 0.571 + 0.857

4

Table 4.2 – Proxigenia similarity between two concepts
After the tornado hit the town there was little left standing
/IN /DT /NN /VBD /DT /NN /EX /VBD /JJ /NN /VBG

The /DT - - - - - - - - - - -
city /NN - - 0.316 - - 0.900 - - - 0.737 -
was /VBD - - - 0.500 - - - 1.000 - - 0.800
partially /RB - - - - - - - - - - -
evacuated /VBN - - - 0.571 - - - 0.400 - - 0.500
after /IN - - - - - - - - - - -
the /DT - - - - - - - - - 0.528 -
storm /NN - - 0.857 - - 0.375 - - - - -

Named Entity Overlap: A Named Entity Recognizer(NER) is used such as that implemented
by (Finkel et al., 2005), which is composed by 7 classes: Organization, Person, Money, Time,
Location, Percent, Date. Thereafter, a per-class overlap measure is computed considering the
class of each named entity. For instance, “Tunis” as a Location does not correspond to “Tunis”
as an Organization. This similarity measure is calculated as:

ONER(p, q) =
2 ∗

∣∣∣Np ∩ Nq

∣∣∣∣∣∣Np

∣∣∣ +
∣∣∣Nq

∣∣∣ (4.14)

where Np and Nq are the sets of named entities detected in p and q.

Edit distance: Edit distance is a similarity measure that quantifies how dissimilar two strings
or text fragments are by calculating the minimum number of operations needed to transform one
string into the other. Numerous variants of edit distance using different operations exist. One of
the most common one, that we have applied, is called Levenshtein distance. The edit distance is
defined as follows:

simED(p, q) = 1 −
Lev(p, q)

max(|p| , |q|)
(4.15)

where Lev(p, q) is the Levenshtein distance between the passage and the question.
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Figure 4.3 – Distance matrix for the edit distance

Example 4.4. We propose to calculate the edit distance between two simple words SPARTAN
and PART. To this end, we suggest to create a matrix where we represent all possible combina-
tions of one set of entities with another as shown in Figure 4.3 where D[i, j] is the edit distance
between the substring of a string A of length i and the substring of B of length j. Note that
the base case edit distance values denote just the length of the sub-strings while the inductive
cases represent the minimum edit distance between two strings. Two possibilities may arise,
depending on the last characters in the two strings. If the last characters are equal, then D[i, j]

will be equal to D[i−1, j−1]. Otherwise, if the characters are not equal, then D[i, j] will be equal
to 1 + min(D[i, j−1],D[i−1, j],D[i−1, j−1]). The steps of the transformation of the term SPARTAN into
PART are detailed in Table 4.3.
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Table 4.3 – Transformation steps of ”SPARTAN” into ”PART”

step comparison edit necessary total editing
1 “S” to “ ” delete: +1 edit “S” to “ ” in edit
2 “P” to “P” no edits necessary! “SP” to “P” in 1 edit
3 “A” to “A” no edits necessary! “SPA” to “PA” in 1 edit
4 “R” to “R” no edits necessary! “SPAR” to “PAR” in 1 edit
5 “T” to “T” no edits necessary! “SPART” to “PART” in 1 edit
6 “A” to “T” delete: +1 edit “SPARTA” to “PART“ in 2 edits
7 “N” to “T” delete: +1 edit “SPARTAN” to “PART” in 3 edits

The last case of the matrix reveals the minimum number of edits needed to transform the first
word into the other. We just need to climb following the arrows in the matrix to discover the dif-
ferent edits which are presented in the above Table. Thus, the Edit distance value corresponding
to our example will be set to:

simED(A, B) = 1 −
Lev(p, q)

max(|p| , |q|)
= 1 − (

3
7

)

where the maximum length of the two string equals 7.

4.2.4 Ranking SVM model

This subsection briefly point out the main idea of RankSVM which we have applied in our
approach. It is worth noting that in our case, the RankSVM model receives a file containing a
list of the k passages retrieved by the PR module and their corresponding values of the different
features. The output of RankSVM consists of a list of scores of the candidate passages. Each
score is a fraction between 0 and 1. The final output of our system should be the passage having
the highest score. We set a threshold value for the final score to be 0.15 as it has been chosen
by many authors for the final ranking result. If the highest score value exceeds 0.15, we answer
the question. Otherwise, we choose not to return any answer to the question rather than giving a
wrong answer.

Ranking Support Vector Machine, referred to as RankSVM, is a ranking version of the SVM
model introduced by Herbrich et al. (1999) to solve the ranking problem in a supervised manner.
The underlining idea behind this popular machine learning method is to transform the ranking
problem into pairwise classification and then learn a prediction ranking function using the SVM
intuition. By and large, the algorithm works in two passes. In the first one, it classifies the
different pairs of objects while in the second pass, it ranks test queries.
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The problem of extending an SVM to RankSVM is formally defined as follows: Assume that
there exists an input space X∈Rn, where x∈ X denotes an object and n represents the number
of features. Further assume that there exists an output space of ranks or categories denoted by
labels Y = {r1, r2, .., rq} where q is the number of ranks. We suppose that there exists a total
order between the ranks rq� rq−1� .. r1 where � represents a preference relationship. Note
that there is a set of ranking functions f∈ F where each one points out the preference relations
between instances. For example, if xi� x j, then f (xi)� f (x j). Now, suppose that we have a set
of ranked instances denoted by S = (xi; yi) from the space X × Y . The objective is to determine
the best function f from F that minimizes a given loss function. This rank learning problem has
been formalized by Herbrich et al. (1999) to turn the rank problem into a binary classification
problem. We further assume that w is a weight vector that corresponds to the ranking linear
function: fw(x) = (w, x) which can score and rank the instances.

To elucidate the main idea of this problem, we suggest the following example 4.5 which
explains how to adapt the SVM classifier for pairwise classification to the ranking problem.

In fact, the differences between two instances at different levels xi and x j, in the same group
are expressed as new feature vectors defined as xi − x j, (e.g., x1 − x2, x1 − x3 and x3 − x2). Thus,
the original training dataset S is turned into a new training dataset S ′:

Example 4.5. Suppose that we have two different groups of objects which can represents docu-
ments associated with two distinct queries in the feature space. We further suppose that there are
three possible ranks: definitely relevant (r3), partially relevant (r2), and irrelevant (r1). The giv-
ing problem is illustrated in Figure 4.4. It is noteworthy that only objects belonging to the same
group can be comparable such as x1, x2 and x3. The objects can be scored by the weight vector
and ranked with the function by projecting them into the vector and sorting them according to
the obtained scores.

As mentioned above, in order to handle this ranking problem with SVM we should transform
it into a pairwise classification. Figure 4.5 illustrates the transformation of the ranking problem
in Figure 4.4 into a linear SVM classification. Thus, the original training dataset S is turned
into a new training dataset S ′ which is set to:

(x1
i − x2

i , z)z =

 + 1 y1 � y2

− 1 y2 � y1 (4.16)

where x1 and x2 denote the first and second instances, y1 and y2 represent their ranks and z
denotes their labels which can be either positive (z = +1) or negative (z = −1). Note that this
transformation of the space is possible thanks to kernel functions (e,g., linear kernel, polynomial
kernel, sigmoid kernel).
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Figure 4.4 – Illustration of the Ranking problem

Figure 4.5 – Transformation of the ranking problem to pairwise classification

Back to our example, the new instances resulting from the transformation are: x1− x2, x1− x3,
x2 − x3, x2 − x1, x3 − x2, x3 − x1. The labels assigned to these latter are respectively: 1, 1, 1, -1,
-1, -1. As shown in Figure 4.4, the instances x1 − x2, x1 − x3 and x2 − x3 are positive while the
other ones are negatives.

Basically, the learning of RankSVM is formalized as the following Quadratic Programming
problem given in equation 4.17:

minw,ξ
1
2
‖w‖ + C

m∑
i=1

ξi

s.t. : yi(w, x1
i − x2

i ) � 1 − ξi

ξi � 0

i = {1...m}

(4.17)
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where x1
i and x2

i represent respectively the first and the second instances in a pair of feature
vectors for a given query, ‖w‖ denotes the margin of the hyperplane, ξi is a slack variable, C � 0
is a coefficient that represents a trade-off between training error and margin and m denotes the
number of training instances.

We point out that RankSVM has been successfully applied in the context of IR, in particular
to document retrieval (Y. Cao et al., 2006). In our work, we adapt this learning to rank method
to passage retrieval in order to re-rank the retrieved passages.

4.3 Experimental evaluation

4.3.1 Datasets

In our experiments, we have tested our approach using the dataset provided in the context of the
ResubliQA task proposed by CLEF. For the evaluation of our passage extraction module, we
used the dataset provided in the ResPubliQA 2009 exercise (Peñas et al., 2010) which aims to
retrieve paragraphs from the test collection to answer a given question picked out from a set of
500 questions. On the other hand, to assess the applicability of the whole approach, we used the
resources provided in the ResPubliQA 2010 exercise (Peñas et al., 2010). The objective of this
exercise is to return either paragraphs or exact answers as system output to a set of 200 different
questions over two test collections. As we work on passages, the given datasets ought to be
the most appropriate ones to evaluate our PR approach. We have realized our experiments with
different languages to prove that our approach is language independent. Moreover, this choice
allows the comparison of our results with those obtained by other systems for the same task.
Both datasets of these exercises are briefly described below.

4.3.1.1 Description of the ResPubliQA CLEF collections

ResPubliQA 2009 collection The ResPubliQA 2009 includes JRC-Acquis 1, which is a par-
allel text corpus currently available in 22 different languages. For each language, the number
of documents is almost equal to 23000. For the ResPubliQA task, a subset of the JRC-Acquis
collection is used where only corpora for the 8 following languages are considered: Bulgarian,
German, English, Spanish, French, Italian, Portuguese, Romanian. For each language, roughly
10700 documents are used. Notice that the documents in the collection are organized in an XML

1JRC-Acquis is an approximation of the Acquis Communautaire (AC) which represents the entire body of Eu-
ropean Union (EU) laws applied in the the EU Member States, collected between 1950 and 2006, available in
https://ec.europa.eu/jrc/en/language-technologies/jrc-acquis

77



Chapter 4 : Combining multiple features for passage retrieval in open domain QA

format where each one has a title and is subdivided into paragraphs marked with ≺ p � tag. Ad-
ditionally, each document consists of two parts: a header and a body of text divided into sections
(text, annex, and signature). The question pool is a set of 500 independent questions grouped
in an XML file. These questions fall into five types: factual, definition, reason, purpose and
procedure.

ResPubliQA 2010 collection ResPubliQA 2010 collection includes two sets of multilingual
parallel documents: a subset of JRC-Acquis and a small portion of the EUROPARL 2 collection.
A small subset of the Europarl has been created with parallel documents in all the 9 languages
included in the track. The subset consists of approximately 50 parallel documents per language.
The question set consists of a pool of 200 more complex questions in 9 different Languages.
The question categories used in this track are the following: factoı̈d, definition, reason-purpose,
procedure, opinion and other. The distribution of these questions types in the collection is given
in Table 4.4.

Table 4.4 – Distribution of question types
Question type Total number of questions
DEFINITION 32

FACTOID 35
REASON/PURPOSE 33

PROCEDURE 33
OPINION 33
OTHER 34

Total 200

4.3.1.2 Evaluation of the passage extraction module

We evaluated our passage extraction engine in 3 languages: English, Spanish and French. Note
that only few systems have been tested in french due to its ambiguity. Indeed, three partici-
pants have performed their tests in french: University Politecnica Valencia SPAIN (Correa et
al., 2010b), Synapse Developpment France and LIMSI-CNRS-2 France (Moriceau et al., 2009).
Their systems are named, respectively NLEL, SYNA and ILES.

The first experiments are carried out on:

• 10713 documents
2Europarl is a collection of the Proceedings of the European Parliament dating back to 1996. It involves text

translations of the 11 official languages of the European Union, available in: http://www.europarl.europa.eu/
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• 338 questions

• 1388818 passages derived from the document collection

• 100 passages used from those returned by the search model

• 10 passages returned by the n-gram model

In order to set the number of passages returned by the system, we have considered that we want
to reduce the number of passages and increase the number of questions with correct answers.
Obviously, a high number of passages, even if the number of questions is high too, cannot well
judge the performance of the system. In addition, this number is not fixed in the same way in
all systems, but most of them take values close to 10. For instance, the system Multitex (Clarke
et al., 2000) returns 10 passages, (Ofoghi et al., 2006) and (Verberne et al., 2008) considered 10
passages and (Ofoghi & Yearwood, 2009) considered 10, 15 and 20 passages. We have thereby
chosen to return for each question 10 passages.

4.3.1.3 Evaluation of the passage ranking module

In order to verify the applicability of our passage ranking module, we ought to calculate the
different text similarity measures for the 10 passages returned by the passage extraction module
and integrate them as features using the RankSVM model. Notice that this model consists of two
phases: training and testing. In both phases, the features are extracted for each passage and then
these latter are entered into the RankSVM to be automatically ranked, and only the top ranking
passage will be returned by the system as an output which represents the most promising answer
to a given user’s question.

During the training phase, a set of labeled passages were entered in the passage ranking model
where each passage can be labeled either +1 (right) or -1 (wrong). In fact, for the training, we
employed a judgment set manually annotated by CLEF organizers which contains a list of labeled
answer candidates. Note that the training receives ResPubliQA2009 english question/answer
pairs while in testing, we use the english JRC-Acquis and Europarl collections as well as the
question pool proposed in ResPubliQA2010.

The test experiments are carried out on:

• 200 questions

• 10763 documents

• 1404393 passages derived from the document collection
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• 10 passages returned by the passage extraction module

4.3.2 Evaluation setup

4.3.2.1 Evaluation of the passage extraction module

To evaluate the performance of our passage extraction module, we developed our approach
PaROD in Java using Eclipse environment using the open source system JIRS 3 (JAVA Infor-
mation Retrieval System) described in (Gómez et al., 2007). We employed the package allowing
the management of the database storing the JIRS inverse file in the indexing step. We have
developed our processes of indexing and search using those of JIRS and adapting them to our
needs.

The passage extraction module takes as input both the document collection and the questions,
and returns as output an XML file containing the passages selected to answer a given question
picked out by the user. In Figure 4.6, we give an example of XML file returned by our passage
extraction engine where the selected question is between two tags: <question id= “0002”> and
</question>.

The selected passages are put between two tags < passage > and < /passage > under the
tag < passages >. Each passage of the list of returned passages is put between < passage >

and < /passage > and is identified by an id and a number n which denotes its number in the
document collection.

3http://sourceforge.net/projects/jirs/
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Figure 4.6 – Example of an XML file returned by our PR engine containing the candidate pas-
sages that may answer the user’s question

In the given exercise, CLEF has produced 2 baselines 4 to judge the correctness of the pas-
sages. 11 teams have participated in this task. Each participant submitted an XML file containing
for each question the associated passage returned by his system. These answers were evaluated
by the campaign organizers to generate an XML file containing judgments for all questions,
where a passage identified by a p id and a doc id of the < answer >, is either correct if the
value of the attribute judgment = “CORRECT” or incorrect if the value of the attribute judgment
=“INCORRECT”.

We recovered the XML files judged for the participants and the XML files judged by both
baselines in order to combine all the questions that have correct answers in one XML file. From
this latter we generated two files, one contains the questions which will be the system input, and
the other contains the correct answers for each question.

4.3.2.2 Evaluation of the passage ranking module

In order to rank the passages, we resorted to the open source S V Mlight5, which is an imple-
mentation of Vapnik’s SVMs for the problems of pattern recognition, regression and learning a

4A baseline is an evaluation of the QA exercise, made by the organizers of the competition and which serves
as a basis for comparing the results of the participants. The answers to questions for the baselines are obtained by
applying a search model and the difference between the two baselines consists of using a stemming technology.

5http://svmlight.joachims.org/
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ranking function. Note that the optimization algorithms employed in SVM light are presented
in (Joachims, 2002). Endowed with scalable memory requirements, this algorithm is able to
efficiently handle problems with thousands of support vectors.

Recall that RankSVM receives as input two files (train and test) with similar structures, where
each line represents the different values of the features corresponding to one passage. Each fea-
ture value denotes the similarity between a passage and the question having a given id. Each par-
ticipant in the paragraph selection task has submitted an XML file containing for each question
the associated passage returned by his system. These answers were evaluated by the campaign
organizers to generate an XML file containing judgments for all questions. A given passage
that includes the right answer information is considered as a correct example and incorrect one
otherwise. We have combined the different judgement files in one XML file containing for each
question the different proposed answers for the participant systems and the related judgements.

The output of the RankSVM model is a list of scores related to the 10 retrieved passages
from the passage extraction module. The passage having the highest score rank is then identified
given its id and returned by the whole system as a relevant answer to the user’s question.

We emphasize that most of the features applied in our ranking model are those proposed in the
Semantic Textual Similarity task (Buscaldi et al., 2013)(STS) at *SEM 2013, namely WordNet-
based Conceptual Similarity, Named Entity Overlap and Edit distance and our N-gram based
Similarity. Indeed, the implementation of these features require a set of resources described
below.

• WordNet-based Conceptual Similarity: This semantic feature is based on WordNet
which is an online lexical reference system, where word forms are represented in their fa-
miliar orthography while word meanings are represented by synonym sets called synsets.
Each synset consists of a list of synonymous words or collocations 6 and pointers that
describe the relations between this synset.

We used WordNet Version 3.0, which is the latest version available for download from
the WordNet site 7.

• Named Entity Overlap: This feature relies on the use of Stanford Named Entity Recog-
nizer 8 (Finkel et al., 2005) which is a Java implementation of a NER.

This implementation offers well-designed feature extractors for NE recognition as well
as several options for defining feature extractors. Good named entity recognizers for en-
glish are included with the download, which is composed by 7 classes: Organization,

6A collocation is a group of words that usually go together (e.g., ’take in’, ’heavy rain’)
7http://wordnet.princeton.edu/contact
8http://nlp.stanford.edu/software/CRF-NER.shtml
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Person, Money, Time, Location, Percent, Date.

• Edit distance: This feature is based on the Levenshtein distance algorithm, where the
source code to implement this distance is freely available 9.

4.3.3 Evaluation metrics

We emphasize that we are mainly based on the evaluation metrics used in CLEF for PR and
selection tasks. The metrics used for the empirical evaluation of the performance of the passage
extraction engine are the following:

• The accuracy @10: which is defined as the percentage of right answers compared to the
total number of questions (in our case the accuracy is measured for the first 10 positions).

Accuracy =
Nr

N
(4.18)

where N denotes the number of questions and Nr denotes the number of questions correctly
answered.

• The number of questions having correct passages ranked first.

• The Mean Reciprocal Rank (MRR) which denotes the multiplicative inverse of the rank
position of the first correct answer, and it is defined as follows:

MRR =
1
N
×

N∑
1=1

1
Ri

(4.19)

where N represents the number of questions and Ri denotes the rank of correct answer to
the question i.

In order to evaluate the performance of the whole approach, we were based on the following
measures proposed by CLEF:

• The c@1 measure which was introduced as the major evaluation measure for both passage
and answer selection tasks. The formula of c@1 is set to:

c@1 =
1
n

(nR + nU
nR

n
) (4.20)

where nR denotes the number of questions correctly answered, nU represents the number of
questions unanswered and n is the total number of questions. This measure is interpreted
as follows:

9http://www.sanfoundry.com/java-program-implement-levenshtein-distance-computing-algorithm/
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1. A system that returns an answer to all the questions receives a score equals to the
accuracy measure since in this case nU = 0, so, c@1 = nR

n .

2. The unanswered questions add value to c@1 only if they do not reduce considerably
the accuracy (i.e., nR/n) achieved by the system for all the questions. That is to say,
a system can achieve a great c@1 value if it can replace some NoA answers by the
correct one.

3. A system that does not answer any question (i.e., gives only NOA answers) obtains
a c@1 value equal to 0 as nR=0 in both sides.

• #NoA: the number of questions unanswered.

• #R: the number of questions answered correctly.

• #W: the number of questions answered wrongly.

• #NoA R: the number of questions unanswered where a right candidate answer is discarded:
In this case, the system chooses to leave the question unanswered (pessimistic behavior).

• #NoA W: the number of questions unanswered with wrong candidate answer.

• #NoA Empty: the number of questions unanswered with empty candidate: in which no
candidate answer was given.

• Overall accuracy: the accuracy calculated over all assessed answers.

In Table 4.5, we summarize the main techniques reported by participants, namely nlel (Correa
et al., 2010a), bpac (Nemeskey, 2010), dict (Sabnani & Majumder, 2010), elix (Agirre et al.,
2010), iles (Agirre et al., 2010), ju c (Pakray et al., 2010), uaic (Iftene et al., 2010), uiir (Toba
et al., 2010b) and uned (Rodrigo et al., 2010). We remarked that by almost half of the systems
that have reported the used retrieval model have employed Okapi BM25 10, while other reported
models have resorted to Lucene 11. Note that some systems (ie., bpac, dict, elix, nlel, uaic, uiir,
uned) have submitted two runs with a few differences in the implementation of the techniques
used in both runs.

10Okapi BM25, also referred to as BM25, is a ranking function used by search systems in information retrieval to
rank matching documents according to their relevance to a search query.

11Lucene is a free open source information retrieval software library, originally written in Java that works with
text fields within document files.
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Table 4.5 – Methods used by participating systems

System name Retrieval Model Linguistic Unit which is indexed

words Lemmas Stems N-grams Chunks/phrases

nlel Distance Density,
N-gram Model,
BM25

x x

bpac Okapi BM25 x x

dict x

elix BM25 x

iles x

ju c Apache Lucene x x x x

uaic Lucene x

uiir x

uned BM25 x

4.4 Results and discussion

As the passage extraction process greatly depends on the search step, we have tested two search
models as indicated so far in order to select the best one and consider it in our n-gram model. The
best model is the one that returns the correct candidates among the searched passages for most
questions. The tested models were the tf-idf weighting mentioned in formula 4.2 and the model
proposed by (Correa et al., 2010b) mentioned in formula 4.3. Out of a total of 198 questions, the
latter returned 183 correct passages in the first 10 positions while the first one returned only 171
correct passages. Therefore, we apply the second search model in our system.

Recall that the idea behind our Passim formula is to keep the adjacent words of the question
in the passage thanks to the factor (li/sngi). The more grouped the words are, the higher the
weight will be. Through our experiments, we found that the importance degree of this factor in
the similarity calculation affects the results. Therefore, we used a parameter α ∈ [0.1] to set the
level of importance of this factor. We considered (li/sngi) α instead of (li/sngi) in the similarity
formula. We tested different α values using the complete gold standard from CLEF 2010 as the
development data. for the three languages, we obtain the best MRR values with α =0.1. For
instance, we report in Figure 4.7 the results obtained in french, where the different curves for
each of the evaluation criteria i.e, the MRR and the correct number of passages in the 10 first
positions, show best values where α =0.1. So, we use this value in calculating the similarity
measure Passim.

We now present the empirical results yielded by our approach compared to those obtained
by NLEL System (Correa et al., 2010b) which includes a PR model based on n-grams. It was

85



Chapter 4 : Combining multiple features for passage retrieval in open domain QA

Figure 4.7 – The variation of the MRR and the number of correct passages according to the
variation of the α value

ranked first in the CLEF PR track for French and Spanish and second for English language. The
results presented in Table 4.6 show that our approach gives better results than NLEL for the 3
languages on all criteria. PaROD succeeds in answering a significant percentage of questions,
with a difference equals 14% questions more than NLEL for English and 16% for both French
and Spanish languages. We get more answers in the first position with a difference between 15
and 26 questions. For the remainder of the positions, for both systems, the number of questions
is more important for the top positions. Besides, the MRR value obtained by PaROD is greater
in the first positions and lower in the last ones. We can then deduce that our Passim measure is
not only faster but also more efficient than that of NLEL.

Table 4.6 – Comparison between the PR module of PaROD and NLEL

Language English French Spanish
System PaROD NLEL PaROD NLEL PaROD NLEL

Percentage of questions having correct 84 78 80 76 81 77
passages in the first 10 positions
Percentage of questions having a correct 51 44 47 42 48 44
passage in the first position
Accuracy @10 0.849 0.784 0.804 0.760 0.811 0.754
MRR 0.451 0.385 0.409 0.365 0.410 0.371

Considering the overall approach, Table 4.7 presents the results yielded by our system run
compared to the other previously described systems performing the same task of selecting the
most relevant passage to answer a given question.
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Table 4.7 – Comparison between PaROD and similar systems

System Accuracy c@1 #R #W #NoA #NoA R #NoA W

PaROD 0.76 0.85 152 23 25 0 0
uiir101PSenen 0.72 0.73 143 54 3 0 3
bpac102PSenen 0.68 0.68 136 64 0 0 0
dict102PSenen 0.67 0.68 117 52 31 17 14
bpac101PSenen 0.65 0.65 129 71 0 0 0
elix101PSenen 0.65 0.65 130 70 0 0 0
nlel101PSenen 0.64 0.65 128 68 4 2 2
uned102PSenen 0.65 0.65 129 71 0 0 0

In comparison to other related systems performing the same Paragraph selection task, PaROD
shows superior performance in terms of accuracy and c@1 measures with a significant accuracy
score equal to 0.74 and a higher c@1 score equal to 0.83. It is worth-noting that since the
proposed c@1 value is greater than the accuracy score, the use of our no answer criterion was
appropriate and has allowed to obtain a greater c@1 value. We mention that out of 99 com-
plex questions, PaROD succeeds to answer 48 questions, where most of the unanswered and
incorrectly answered questions were opinion or cause ones.

However, there is scope for further experiments on larger datasets to determine the threshold
value for the ranking final score. It is worth noting that we have chosen not to deliver any
candidate answer for unanswered questions, neither correct nor incorrect, thus, the number of
unanswered questions is equal to the number of NoA Empty=25.

Although the paragraph selection task is just a PR, the major difference from pure IRs is to
add the option of leaving the question unanswered in the validation step. Accordingly, this task
allows posting complex questions and evaluating them in a simple way.

We emphasize that we have tested the overall approach using the english corpora as we
have resorted to the english versions of major used tools deemed to achieve higher performance
such as the english version of WordNet Lexical Database and the named entity recognizer for
English. Obviously, we can also evaluate our approach in other languages merely by integrating
multilingual tools.

4.5 Conclusion

In this Chapter, we have described our proposed approach for retrieving and ranking passages in
the context of open domain QA and presented our experimental study based on CLEF datasets in
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order to evaluate its performance. Our experimentation results have shown that our approach is
competitive and multilingual giving motivating results compared to other state-of-the-art systems
in different languages. We have proved that our proposed similarity measure based on n-gram
structure named Passim is efficient as our passage extraction engine based on this latter has
outperformed the system ranked first in CLEF PR exercise. We have gone beyond a simple
extraction of passage list to deduce the most relevant one to the user’s question. We have further
demonstrated that integrating different similarity measures using RankSVM model, allows to
better re-rank the retrieved passages and ensure the relevance of the passage delivered in response
to a given natural language question. In the next Chapter, we will dig into a more challenging
and crucial problem in cQA, namely question retrieval problem.
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Chapter 5
Learning word embeddings for question
retrieval in community QA

5.1 Introduction

Over the last years, with the boom of Web 2.0, the world has witnessed a large spread of user-
generated content, which became a important information source on internet. This brings wide
attention to the emerging concept of community Question Answering (cQA), which provides
platforms for people with different backgrounds to share knowledge in the form of questions and
answers. However, community services have rapidly built up huge archives of question-answer
pairs that are continuously increasing accumulating duplicated questions. Therefore, users can
hardly find the good answers and consequently post new queries that already exist in the archives.

In order to reduce the time lag required to get a new answer, it is critical to automatically
search the community archive to check if equivalent questions have previously been posted. If a
similar question is found, its associated answer can be directly returned as a relevant answer to
the new query. Numerous studies have been recently done along this line as shown in Chapter 3,
with the aim of answering new questions with past answers. Question retrieval (QR) is indeed
a non trivial task facing several challenges as questions in cQA vary significantly in terms of
vocabulary, length, structure and content quality. The major challenge is the word mismatch
between the queried questions and the archived ones since users can phrase the same question
using different wording. Word mismatch means that similar questions can be formulated such
that they have different, but related words. For instance, the questions: How can I slow down
signs of aging naturally? and What are some home remedies to keep your skin looking younger?

have almost the same meaning but include different words and then may regarded as dissim-
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ilar. Most previous works on QR focus on enhancing the similarity measure between questions
while it is difficult to set a compelling similarity function for discrete and sparse word repre-
sentations. Recent efforts in word representations, have led to the rise of the emerging word
embeddings, which have shown promise in various NLP tasks (G. Zhou et al., 2015; Musto et
al., 2016; Esposito et al., 2020). Motivated by the tremendous success of these models, we
propose a word embedding-based approach to retrieve similar questions in cQA.

This Chapter is structured as follows: In Section 5.2, we present our proposed word embed-
ding based approach to improve the QR task and we detail its different components. In Section
5.3, we describe the experimental setup and discuss the obtained results in both English and
Arabic. The final Section includes concluding remarks.

5.2 Description of the proposed WEKOS approach

The intuition behind our proposed approach for QR, called WEKOS (Word Embedding, Kmeans
and COSine based approach), is to turn words in a community question into continuous low-
dimensional vectors (Othman et al., 2019a). Unlike traditional methods which represent ques-
tions as Bag Of Words (BOWs), we suggest representing each question as a Bag of-Embedded-
Words (BoEW) in a continuous space. The word embeddings are learned in advance using the
continuous bag-of-words (CBOW) model (Mikolov, Chen, et al., 2013). The word vectors of a
given question are weighted and averaged to get an overall representation of the question. We
resort to the K-means clustering algorithm to create clusters from the collection of related ques-
tions. We believe that Kmeans provides a good strategy to reduce the data dimensionality and
decrease the runtime cost of the search and ranking tasks. Therefore, each query is matched
against the questions contained within its closest cluster rather than the entire collection of ques-
tions. The cosine similarity is employed to calculate the similarity between the average of the
word vectors corresponding to the queried question and that of each existing question in the given
cluster. The previous questions are thereafter ranked according to their cosine similarity scores
in order to return the top ranking question as the most relevant one to the new posted query. As
depicted in Figure 6.1, the WEKOS approach consists of five modules detailed below namely,
question preprocessing, word embedding learning, embedding vector weighting, question clus-
tering and question ranking.

5.2.1 Question preprocessing

Text preprocessing is a keyl task in NLP to evaluate and improve the quality of text data in
order to ensure the validity and reliability of the statistical analysis. Our question preprocessing
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Figure 5.1 – WEKOS pipeline for question retrieval in cQA

module intends to filter the human natural language questions and extract the useful terms in
order to represent them in a standard way. Basically, this module encompasses text cleaning,
tokenization, stopwords removal and stemming. Punctuation marks, non letters, diacritics, and
special characters such as &, #, $ and £are removed. English letters are lowercased while dates
are normalized to the token date and numerical digits are normalized to the token num. At the
end of the preprocessing module, we obtain a set of filtered queries, each of which is formally
defined as follows:

q =
{
t1, t2, ..., tQ

}
(5.1)

where t represents a separate term of the query q and Q denotes the number of query terms. As
for the Arabic question collection, aside from the aforementioned tasks, orthographic normal-
ization is required to reduce noise and ambiguity in the Arabic text data. This task comprises
Tachkil removal (ignoring arabic short vowels), Tatweel removal (deleting stretching symbol),
and Letter normalization (variant forms to one form conversion). Indeed, certain spelling variants
are sometimes inconsistently misued by Arabic writers, such as the Hamza; some may ignore it
or employ a wrong Hamza variant. Whence, we normalize to one standard variant as follows:
"



@ , @



,

�
@ ,



ð , Z , 
ø \ are normalized to " @\. For example, people always write �

è
�

ððQÖÏ @ instead
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of �
èZðQÖÏ @ . We then normalize it as follows: �

è @ðQÖÏ @ . In this way, words containing miswritten
Hamzas will not be ignored.

5.2.2 Word embedding learning

This module is based on the use of word embeddings to build continuous word vectors based
on their contexts in a huge corpus using shallow neural network. Word embeddings learn a
low-dimensional vector for each vocabulary term in which the similarity between the word vec-
tors can capture the syntactic and semantic similarities between the corresponding words. Basi-
cally, there exist two main types of word embeddings namely Continuous Bag-of-Words model
(CBoW) and Skip-gram model. The former one consists in predicting a current word given its
context, while the second does the inverse predicting the contextual words given a target word
in a sliding window. It is worth noting that, in our approach, we consider the CBOW model
(Mikolov, Chen, et al., 2013) to learn word embeddings, since it has proven through experiments
to be more efficient and performs better with sizeable data than Skip-gram.

As depicted in Figure 5.6, the CBOW model predicts the center word given the representation
of its surrounding words using continuous bag-of-words representation of the context, hence the
name CBOW.

Figure 5.2 – Overview of the Continuous Bag-of-Words model.

The context vector is got by averaging the embeddings of each contextual word while the
prediction of the center word w0 is obtained by applying a softmax over the vocabulary V .

The goal of CBOW is to find the probability of a word occurring in a context. Let’s consider
a corpus with a sequence of words {w1,w2, ...,wT }. The context vectors are summed and used to
predict the target. Formally, CBOW aims to maximize the following objective function formula:
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1
T

T∑
t=1

logP(wt |
∑

−c≤ j≤c, j,0

wt+ j) (5.2)

Where T denoted the number of words in the corpus, wt is a current word and c is the size of the
context window. In practice, the size of the window is a random number which has a non-trivial
effect on the resulting vector similarities.

5.2.3 Embedding vector weighting

The continuous word vectors of the questions are weighted using TF-IDF, which is one of the
most commonly used term weighting schemes in IR systems owing to its simplicity and effec-
tiveness. Each embedding word is multiplied by the TF-IDF of the word it represents. Recall
that TF-IDF is a statistic weighting function that helps to estimate the importance of a word
based on its relative frequency in a specific document and the inverse proportion of documents
containing the word over the entire document collection. The TF-IDF weighting allows to have
a suitable text representation for question comparison. As we work on questions, we adapt the
basic TF-IDF function to our QA context by replacing documents with questions.

Given a question collection C, a word w and a question q, TF-IDF is defined as follows:

t f id f (w, q,C) = t f (w, q)∗id f (w,Q) = fw,q∗ log(
|C|

d fw,C
) (5.3)

where fw,q is the number of times w appears in a question q, |C| is the size of the question
collection and d fw,C is the total number of questions that contain the word w.

TF-IDF was utilized to estimate the importance of a word not only in a particular question,
but also in the full question collection. Indeed, some common words may appear several times
in questions but they are not relevant as key-concepts to be indexed or searched. Intuitively, rare
words that are common only in a single or few number of questions tend to have high scores
while those which occur frequently in questions will be assigned low scores.

The weighted embedding vectors of the query words are averaged to obtain the average vector
Vq of the queried question as follows:

Vq =

∑|V |
i=1(υwi × t f id f (wi, q,C))∑|V |

i=1 t f id f (wi, q,C)
(5.4)

where υwi is the embedding vector of the word wi generated by word2vec and |V | is the number
of word vectors in a given question q . Similarly, for each historical question, we compute its
average vector Vd.
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5.2.4 Question clustering

In order to achieve good performance, we propose to group similar questions together looking for
the centers of each question cluster. We opt for the Kmeans (Hartigan & Wong, 1979) clustering
algorithm, which is a popular unsupervised learning algorithm for data clustering, known for its
simplicity and speed. The basic idea of the kmeans algorithm is to group items into k clusters of
greatest possible distinction, where each item belongs to the cluster with the nearest mean. The
clusters are represented by their centroı̈ds. An item is considered to be in a particular cluster if
it is closer to that cluster’s centroı̈d than any other centroı̈d. Formally, K-means can be viewed
as a heuristic algorithm to minimize the following objective function, known as squared error
function:

J =

k∑
j=1

n∑
i=1

‖ x( j)
i − c j ‖

2 (5.5)

Where ‖ x( j)
i − c j ‖

2 is a chosen distance measure between a data point and the cluster center c j.
k is the number of clusters and n is the number of cases.

The main algorithmic steps for k-means clustering are the following:

1. Randomly select K cluster centers (centroı̈ds).

2. Assign each item to the group that has the closest centroı̈d according to the chosen distance
function

3. When all objects have been assigned, recalculate the positions of the K centroı̈ds.

4. Repeat steps 2 and 3 until convergence is achieved and the centroı̈ds no longer move.

Although the kmeans process can always terminate, it does not necessarily find the most opti-
mal configuration, corresponding to the global objective function minimum. The algorithm also
significantly depends on the initial randomly selected cluster centers. Therefore, it can be run
multiple times to reduce this effect.

In our approach, the distance calculation in K-means refers to the Euclidean distance. The
one single parameter we need to set is K. Note that text clustering was performed at question
level where the averaged word embeddings of the questions are feeded to kmeans.
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5.2.5 Question ranking

The similarity between a query and a previous question in the vector space is calculated as the
cosine similarity between their vectors q and d as follows:

CosS im(d, q) =
q.d

‖ q ‖2 . ‖ d ‖2
(5.6)

where q and d are the average of the word vectors of the queried question and the historical ques-
tion, respectively. Each query is compared to the questions contained within its closest kmeans
cluster instead of the entire community question collection. Questions are ranked according to
their cosine similarity scores based on their weighted vectors in order to deliver the top ranking
questions having the maximum score, as the most relevant ones to the new query. It is worthwhile
to mention that the cosine similarity measure is a typical function that was widely used in previ-
ous work on word embeddings and has proven to be significantly effective in identifying closest
words occurring in similar contexts and detecting their semantic similarity (Kenter & De Rijke,
2015; Levy et al., 2015).

5.3 Experiments

5.3.1 Datasets

Our experiments were conducted using the dataset released by (W.-N. Zhang et al., 2016) for QR
evaluation. In order to construct the dataset, the authors harvested questions from all categories in
the well-known Yahoo! Answers community platform, and then randomly splitted the questions
into two subsets while maintaining their distributions in all categories. The former set represents
the question repository for question search containing 1,123,034 questions, while the second set
is the test set containing 252 original queries and 1624 manually annotated related questions.
Annotators were hired to label the questions with “relevant” if a candidate question is considered
semantically similar to the query or “irrelevant” otherwise. In case of conflict, a third annotator
will make the decision for the final result. For example, in Table 5.1, Q2 and Q3 can be considered
as relevant to Q1 and their answers will then be used to answer the queried question Q1, while
Q4 is labeled with irrelevant as it is not expected to satisfy Q1 .
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Table 5.1 – An example of question retrieval

Query
Q1- How to make a java chip?
Relevant
Q2- Can you help me to make my own Starbucks
Java mint Starbucks Java mint Frappuccino?
Q3- Does anyone have a mint frappuccino recipe?
Irrelevant
Q4- How do you make a java web application?

Note that the questions in the test data do not overlap with those in the retrieval data. The
number of similar questions related to each original query varies from 2 to 30.

The questions in the collection have different structures and belong to diverse categories in-
cluding Business and Finance, Travel, Entertainment and Music, Computers and Internet, Sports,
Beauty and Style, Pets, Health, Games and Recreation, Home and Garden, Society and Culture,
etc. As shown in Histogram 5.3, the major categories including the largest proportions of ques-
tions are Travel, Pets, Health, Sports.

Figure 5.3 – Question distribution across different categories

The questions varies from 1 to 20 words as shown in the pie charts in Figures 5.4 and 5.5 for
English and Arabic respectively.
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Figure 5.4 – Distribution of questions’
length for the English collection
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Figure 5.5 – Distribution of questions’
length for the Arabic collection
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We remark that Arabic questions are mostly shorter that the English ones mainly due to
internal voweling which can denotes passive constructors. For example, the phrase “He was
dismissed” can be translated to one single Arabic word " É�

	
¯\. Tables 5.2 and 5.3 give examples

of queries and their corresponding similar questions from the test sets in English and Arabic
respectively. As can be seen in the tables 5.2 and 5.3, although the related questions are similar
to the original queries asking for the same subject, they are worded differently.

Table 5.2 – An example of community questions from the English test set.

Query: I often feel restless, uneasy, loss memory,
lack of concentration, lose my temper. Why?

Category: Health care
Topic: Memory loss
Related - I get short memory loss what should I do?
questions - What to do when you are restless?

- How can I improve my concentration and my
memory or any mental exercise?
- What is the best way to sharpen my brain?
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Table 5.3 – An example of community questions from the Arabic test set.
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Category: Pets
Topic: Puppy training
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To train the word embeddings, we used another sizeable data set extracted from cQA sites,
namely the Yahoo! Webscope dataset1, including 1,256,173 questions with 2,512,345 distinct
words. As there is no large Arabic dataset available for the question retrieval task, for our exper-
iments in Arabic we used the same English collection translated using Google Translation, the
most-widely used free online machine translation tool. The Arabic data set contains the same
number of questions as the English collection. The Arabic translated Yahoo! Webscope dataset,
includes 2,512,034 distinct words, a bit fewer than the English set. Data preprocessing was per-
formed before the experiments using NLTK 2. After the preprocessing, the English corpus has
been reduced by almost 15% and the Arabic one by nearly 20%. Note that the parameters of
word2vec and Kmeans as well as kmeans were fixed using a parallel development set of 217
queries and 1317 annotated questions.

5.3.2 Evaluation metrics

In order to evaluate the performance of our proposed QR approach, we used Mean Average
Precision (MAP) and Precision@n (P@n) as they are widely used for evaluating the QR task
for cQA. In particular, MAP is the most commonly used metric in the literature estimating that
the user is interested in getting several relevant questions for each original query. MAP rewards
methods that not only return relevant results early, but also allow for a good ranking of the
results. Given a set of queried questions Q, MAP denotes the mean of the average precision for
each queried question q and it is set as follows:

MAP =

∑
q∈Q AvgP(q)
| Q |

(5.7)

1The Yahoo! Webscope dataset Yahoo answers comprehensive questions and answers version 1.0.2, available at
“http://research.yahoo.com/Academic Relations”

2https://www.nltk.org/
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where AvgP(q) is the mean of the precision scores after each relevant question q is

AvgP =

∑
r P@r

R
(5.8)

where r is the rank of each relevant question, R is the total number of relevant questions, and
P@r is the precision of the top-r retrieved questions.

Precision@n calculates the proportion of the top-n retrieved questions that are relevant to the
given query. Given a set of queries Q, P@n is the proportion of the top n retrieved questions that
are relevant to the queries and it is defined as follows:

P@n =
1
| Q |

∑
q∈Q

Nr
N

(5.9)

where Nr is the number of relevant questions among the top N ranked list returned for a query
q. Note that in our experiments, we calculated P@10 and P@5. In order to fix the window size,
we used the Accuracy which returns the proportion of correctly classified questions as relevant
or irrelevant:

Accuracy =
Nc

Q
(5.10)

with Q being the total number of queried questions and Nc the number of correctly classified
questions.

Recall was also used for our evaluation, which returns the proportion of relevant similar
questions that have been retrieved over the total number of relevant questions.

5.3.3 Word embedding learning and clustering

We trained our word embeddings on the whole Yahoo! Webscope dataset using word2vec in
order to represent the words of the training data as continuous vectors which capture word-
meaning and context. The training parameters of word2vec were set after numerous tests. For
the English dataset, the word2vec parameters were set as follows:

• Size=300: feature vector dimension. We tested different values in the range [50, 400] but
did not get significantly different precision values. The best precision was achieved with
size=300.

• Sample=1e-4: this is the down sampling ratio for the words that are very redundant in the
corpus.
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• Negative samples =25: the number of noise words

• min-count=1 : minimum number of words which we set to 1 to make sure we do not throw
away anything.

• Context window=10: number of words considered around the pivot word. Considering
that the window size is a crucial parameter for improving the accuracy of the retrieval
method, we tested different window sizes and report the accuracy values obtained when
querying the word embeddings generated with Skip-gram and CBOW models. Figure 5.6
shows that with our English corpus, CBOW outperforms Skip-grams in terms of accuracy
and for both models, the optimal window size is 10. As a matter of fact, large windows
tend to capture more context and topic information but increase the runtime needed to
train the model while small windows tend to capture more information about the word
itself, so picking out the optimal window size can improve the accuracy and reduce the
computational time.
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Figure 5.6 – Accuracy variations according to window size for CBOW and Skip-gram models
with fixed dimensional vector model (size=300) for the English collection

For the Arabic dataset, the training configuration parameters of word2vec were set after many
tests as follows:

• Size=300: We tested different values in the range [50, 400] but did not get significant
difference. The best precision was reached with size=300.

• Sample=1e-5

• Negative samples =15
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• min-count=1 : We set the minimum number of words to 1 to not throw away anything.

• Context window=5: The window size is an important parameter affecting the resulting
vectors, we tested different window sizes and report the accuracy values obtained when
querying the word embeddings generated with both Skip-gram and CBOW models. Fig-
ure 5.6 shows that with our Arabic corpus, CBOW outperforms Skip-grams in terms of
accuracy and for both models, the optimal window size is 5. So, we set the context win-
dow to 5 in order to reduce the runtime required to train word2vec.
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Figure 5.7 – Accuracy variations according to window size for CBOW and Skip-gram models
with fixed dimensional vector model (size=300) for the Arabic collection

The number of clusters K is a crucial parameter to our approach, used for clustering the
vocabulary of words. The clusters are used to obtain the question representations and
matching. It is worth noting that fixing k is challenging as we need to make a trade-
off between cluster quality, memory and runtime to create the clusters. After performing
several experiments with this parameter by varying it in the range of [25, 200], we observed
that the best results were reached with K equals 100 as as will be shown later in the Results
Subsection (See Figures 5.8 and 5.9). Hence, we reported our results with this setting of
the K parameter.

5.3.4 Results and discussion

We compare the performance of our approach WEKOS with different competitive state-
of-the-art QR models tested by Zhang et al. in (W.-N. Zhang et al., 2016), on the same
English dataset. The compared models are the following:

– TLM (Xue et al., 2008): A translation based language model which merges a translation-
based language model with a query likelihood approach for the language model, for
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the question and the answer parts respectively. TLM incorporates word-to-word
translation probabilities learned by using different sources of information.

– ETLM (Singh, 2012): An entity based translation language model, which is an ex-
tension of TLM where the main difference is the substitution of the word translation
by entity translation in order to integrate semantic information within the entities.

– PBTM (G. Zhou et al., 2011): A phrase based translation model which relies on
machine translation probabilities, based on the assumption that question retrieval
should be performed at the phrase level. PTLM learns the probability of translating
a sequence of words in a previous question into another word sequence of words in
a query.

– WKM (G. Zhou et al., 2013):A world knowledge based model which incorporates
the Wikipedia knowledge into the questions by deriving the concept relationships
that allow to detect related topics between the queries and the historical questions.
WKM used Wikipedia as an external resource to add the estimation of the term
weights to the ranking function. A concept thesaurus was created based on the se-
mantic relations extracted from Wikipedia. The semantic relations are then leveraged
to improve the question similarity in the concept space.

– M-NET (G. Zhou et al., 2015): A continuous word embedding based model, which
integrates the category information of the questions to obtain a category based word
embedding, estimating that the word representations belonging to the same category
should be semantically equivalent.

– ParaKCM (W.-N. Zhang et al., 2016): A key concept paraphrasing based approach
which explores the translations of pivot languages and expands questions with the
paraphrases. It assumes that paraphrases can offer additional semantic connection
between the key concepts in the queried question and those of the previous ones.

In Table 5.4, we summarize the main retrieval models on which the compared models are
based.

Table 6.1 compares the performance of WEKOS with the aforedescribed models on the
English Yahoo! Answers dataset. From Table 6.1 , we can see that PBTM outperforms
TLM which proves that capturing contextual information in modeling the translation of
phrases as a whole or consecutive sequence of words is more effective than translating sin-
gle words independently. This is mainly because there is a dependency between adjacent
words in a phrase.

ETLM, an extension of TLM, performs as good as PBTM which demonstrates that re-
placing the word translation with entity translation for question ranking can improve the
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Table 5.4 – Overview of the compared models

Model name Retrieval Model Level based retrieval model

TLM Translation based Language Model Word

ETLM Translation based Language Model Entity

PBTM Translation based Language Model Phrase

WKM World Knowledge based Model Concept

M-NET Continuous Word Embedding based
Model

Word

ParaKCM Key Concept Paraphrasing based
Model

Concept

Table 5.5 – Results comparing performance of WEKOS with other models on the English Yahoo!
Answers dataset

TLM ETLM PBTM WKM M-NET ParaKCM WEKOS WEKOS
without TF-IDF

P@5 0.3238 0.3314 0.3318 0.3413 0.3686 0.3722 0.4338 0.3431
P@10 0.2548 0.2603 0.2603 0.2715 0.2848 0.2889 0.3647 0.2736
MAP 0.3957 0.4073 0.4095 0.4116 0.4507 0.4578 0.5036 0.4125

performance of the translation language model. Although, both ETLM and WKM rely on
Wikipedia as an external knowledge resource, WKM employs wider information from the
knowledge source. Particularly, WKM creates a Wikipedia thesaurus, which derives the
concept relationships (e.g. synonymy, polysemy, hypernymy, and associative relations)
based on the structural knowledge of Wikipedia. The different relations in the thesaurus
are considered according to their importance to expand the queries and then enhance the
traditional similarity measure for QR. However, the performance of WKM and ETLM
are constrained by the low coverage of the Wikipedia concepts on the various community
questions. M-NET, based on continuous word embeddings performs well owing to the
integration of metadata of category information in the learning process to encode the prop-
erties of words, from which similar words can be grouped according to their categories.
The best performance in terms of precision and was achieved by ParaKCM, a key con-
cept paraphrasing based approach which explores the translations of pivot languages and
expands queries with the generated paraphrases for question retrieval.

The results illustrate that our approach WEKOS outperforms in English all the com-
pared methods on all criteria by returning a good number of relevant questions among the
retrieved ones early. One possible reason is that context-vector representations learned by
word2vec can effectively address the lexical gap problem by capturing semantic relations
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between question words, while most of the other methods do not capture enough infor-
mation about semantic equivalence. We can admit that the text representation given by
bag-of-embedded words is more efficient and meaningful than traditional bag-of-words
models which can detect neither semantics nor positions in text. This significant perfor-
mance shows that the use of word embeddings along with TF-IDF weighting and cosine
similarity is effective in the question retrieval task. Nonetheless, we found out that some-
times, our approach fails to retrieve similar questions: Out of 252 test questions, only 12
questions get P@10 values equal to zero. Most of these questions contain misspelled query
terms. For example, questions containing the mistaken term sofwar cannot be retrieved for
a query including the term software. Such a case reveals that our approach fails to address
some lexical disagreement problems. Moreover, there are few cases where WEKOS is
unable to detect semantic equivalence. These cases mostly include questions having one
single similar question and most words of this latter do not appear in a similar context with
those of the queried question, such as: Which is better to aim my putter towards, the pole
or the hole? and How do I aim for the target in golf?. Obviously, further experiments with
the dimensions of the embeddings are needed to improve the obtained results.

In addition, we tested our approach with and without TF-IDF weighting (In Table 6.1,
WEKOS and WEKOS without TF-IDF respectively) to investigate its effect on the question
retrieval results. Through our experiments, we can deduct that the use of TF-IDF allows
to increase the P@5, P@10 and the MAP values. A possible reason behind this is that TF-
IDF can detect questions that make frequent use of specific words and figure out if they are
relevant in the question. We can say that the discriminatory power of TF-IDF enables the
retrieval engine to capture relevant questions that could likely be similar to the new query.
Nevertheless, in certain cases, a word can be relatively common over the whole collection
but still holds some importance throughout the question like the words date and system.
Such common words get a low TF-IDF score, and thus are pretty much ignored in the
search process. Moreover, TF-IDF doesn’t take into account synonymy relations between
terms. For instance, if a user posted a question including the word dwelling, TF-IDF would
not consider community questions that might be similar to this query but instead use the
word bungalow. TF-IDF can not resolve the lexical ambiguity problem which is frequent in
a community collection of informal and heterogeneous questions where the same concept
may be expressed in various ways. Note that the computational complexity of TF-IDF is
O(nm), where n is the total number of words and m is the total number of questions in the
corpus. For large collections like yours, this could present an escalating problem.

Table 6.4 illustrates the performance of WEKOS on the Arabic dataset.

As shown in Table 6.4, WEKOS had relatively good performance in Arabic, where the
MAP has not exceeded 0.2916. We can say that the major reason for this is that the word
embedding based model ignores the morphological structure of Arabic words. Indeed, the
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Table 5.6 – Question retrieval performance of WEKOS on the Arabic dataset

WEKOS WEKOS
without TF-IDF

P@5 0.3444 0.2545
P@10 0.2412 0.1933
MAP 0.4144 0.2916

nature of the Arabic language as an inflectional and a morphologically rich language 3

with high character variation has a significant impact on how influential a dataset is for
delivering good word embeddings. Accordingly, exploiting the word internal structure is
important to detect semantically similar words. For instance, the most similar words to
" Éª

	
¯\ are all variants of the same word such as " É«A

	
¯ , Éª

	
®

	
J� ,

	
àñÊª

	
®K
 , A

	
JÊª

	
¯ , Éª

	
®

	
K\ .

Consequently, enriching word embeddings with their main grammatical information
(such as the word, person, number, gender, tense, case) could allow to produce more
meaningful embeddings that capture morphological, context and semantic similarities. In-
terestingly, in terms of recall, we get 0.4677 and 0.3828 values for English and Arabic
respectively, which implies that the number of omitted relevant questions is not big.

We fine-tuned the parameter k within 25 to 200 for the English and Arabic corpora.
We observed that the more the k value increases, the more the clustering execution time
increases, the more the search time decreases.
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Figure 5.8 – Accuracy variations according to the number of clusters k for the English dataset

As shown in Figures 5.8 and 5.9, the accuracy reaches 0.4877 and 0.3780 for the En-
glish and Arabic datasets respectively, with k=100 and then continues to slightly hover
over these values but does not much increase. Therefore, we set k to 100 as an estimated

3Morphologically Rich Languages (MRLs) refer to languages in which significant information concerning syn-
tactic units and relations is expressed at word-level

105



Chapter 5 : Learning word embeddings for question retrieval in community QA

50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

Number of clusters k

A
cc

ur
ac

y

Kmeans

Figure 5.9 – Accuracy variations according to the number of clusters k for the Arabic dataset

value for both datasets to avoid increasing the clustering runtime. Obviously, further ex-
periments are needed to determine the optimal k value that satisfies the trade-off between
cluster quality and runtime. Despite being linear, fast and simple, the major drawback of
the kmeans algorithm is its non-deterministic nature because it requires to pre-specify the
number of clusters and it randomly selects the initial centroı̈ds.

Thus, hierarchical clustering might be a good alternative clustering approach since it
does not imply to pre-specify the number of clusters the way that k-means does.

5.4 Conclusion

In this Chapter, we addressed the challenging problem of question retrieval which is of
significant importance to real-world cQA services. In order to solve the word mismatch
between community questions, we proposed a word embedding based approach named
WEKOS. Overall, the question words are embedded in a continuous space using word2vec
and treated as a bag of embedded words. The produced word vectors are learned using
the CBOW model and weighted based on the frequency of the words. We relied on the
cosine similarity to calculate the similarity between the questions based on their vector-
based word representations. K-means was applied on word embeddings to decrease the
data dimension and improve the performance of the approach. Experiments conducted on
large-scale cQA datasets in English and Arabic showed the effectiveness of the proposed
approach in both languages in detecting similar questions even if they share few common
words. The experimental results demonstrate that WEKOS achieves better results com-
pared to other competitive methods. We have shown evidence that the TF-IDF weighting,
though simple, can enhance the search efficiency as well as the quality of the retrieval re-
sults. In the next Chapter, we will dig further into the question retrieval problem trying to
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improve it with a more effective approach relying on deep learning techniques.
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Chapter 6
Attentive Siamese LSTM for question
retrieval in cQA

6.1 Introduction

In this Chapter, we still focus on the problem of question retrieval (QR) in cQA which
aims to retrieve from the community archives the previous questions that are semantically
equivalent to new queries. Recall that the major challenges in this crucial task are the
shortness of the questions as well as the word mismatch problem as users can formulate
the same query using different wording. For instance, the questions How can we relieve
stress naturally? and What are some home remedies to help reduce feelings of anxiety?
like in Arabic, '? ù
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have nearly the same meaning but include different words and therefore may be viewed as
different.

While numerous attempts have been made to address this problem, most existing meth-
ods relied on the bag of-words (BOWs) representations which are constrained by their
specificities that put aside the word order and ignore syntactic and semantic relationships.
As shown in Chapter 3, recent successes in QR have been yielded using Neural Networks
(NNs) (Dos Santos et al., 2015; Romeo et al., 2016; Mohtarami et al., 2016; Kamineni et
al., 2018) which use a deep analysis of words and questions to take into consideration the
semantics as well as the structure of questions in order to predict the semantic text simi-
larity. Motivated by the tremendous success of these powerful models, in this Chapter, we
propose an approach based on NNs in order to enhance the performance of our WEKOS
approach and improve the QR task by more effectively detecting the semantic similarity
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between the questions. We propose a new deep learning approach based on a Siamese ar-
chitecture with LSTM networks, augmented with an attention mechanism. This latter is an
additional layer, which lets the model give different words different attention while mod-
eling questions. The semantic similarity between pairs of questions was predicted using a
textual similarity measure. To evaluate the proposed approach, we conducted experiments
on large-scale datasets in English and Arabic.

This Chapter is structured as follows: In Section 6.2, we present our proposed Siamese
LSTM based approach to improve the QR task and we detail its different components. The
experiments and the obtained results are outlined in Section 6.3. The final Section sums
up the Chapter and contains concluding remarks.

6.2 Description of the proposed ASLSTM approach

In order to improve the QR task, we propose an Attentive Siamese LSTM approach for
question retrieval, referred to as ASLSTM to retrieve the semantically similar questions
in cQA (Othman et al., 2019b). As illustrated in Figure 6.1, our approach is composed of
three main modules namely, question preprocessing, word embedding learning and Man-
hattan LSTM (MaLSTM).

Figure 6.1 – ASLSTM pipeline for question retrieval in cQA

The basic principle underlying the ASLSTM approach is to map every question word
token in to a fix-sized vector.

The word vectors of the questions are therefore fed to the Siamese LSTM with the aim
of representing them in final hidden states encoding semantic meaning of the questions. An
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attention mechanism is integrated in the Siamese architecture to determine which words
should give more attention on than other words over the question. Community questions
are then ranked by means of the Manhattan similarity function based on the vector repre-
sentation of each question. A previous posted question is considered to be semantically
equivalent to a queried question if their corresponding LSTM representations lie close to
each other according to the Manhattan similarity measure. The historical question with the
highest Manhattan score will be returned as the most similar question to the new posted
one. The components of ASLSTM are detailed below.

6.2.1 Question preprocessing

Pre-processing is important to make the question collections cleaner and easier to process.
Our question preprocessing module aims to filter the natural language community ques-
tions and extract the useful terms in order to represent them in a formal way. It is worth
mentioning that the tasks of this module are exactly the same as those of the preprocessing
module of the WEKOS approach described in Chapter 5. We remind that the prepro-
cessing module comprises text cleaning, tokenization, stopwords removal and stemming.
Punctuation marks, non letters, diacritics, and special characters are removed. English
letters are lowercased while dates are normalized to the token date and numerical digits
are normalized to the token num. For the Arabic question collection, in addition to the
aforementioned tasks, orthographic normalization was applied, including Tachkil removal,
Tatweel removal, and Letter normalization.

6.2.2 Word Embedding Learning

We remind that word embeddings are low-dimensional vector representations of words,
learned by harnessing large amounts of text corpora using shallow neural networks. The
use of word embeddings was relevant in our WEKOS approach and has allowed to ef-
fectively detect the syntactic and semantic similarities between words. Particularly, we
resorted to the Continuous Bag-of-Words (CBOW) model which has proven to outperform
Skip gram on our datasets. Recall that CBOW consists in estimating a pivot word accord-
ing to its context using a window of contextual words around it, while Skip gram does
the inverse predicting the contextual words given a current word in a sliding window. In
our word embedding learning module, we map every word into a fix-sized vector using
Word2Vec pretrained on an external corpus.
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6.2.3 Attentive Siamese Manhattan LSTM

6.2.4 LSTM

Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997), is a powerful type
of RNN widely used in deep learning, and has proven its capacity to capture long-term
dependencies and model sequential data. Interestingly, LSTM helps prevent the vanish-
ing gradient problem (Hochreiter, 1998) which is the main limitation of RNN. Gradient
descent is an optimization algorithm that uses an iterative process to minimize a given
function and improve the deep learning. The basic intuition is to adjust the weights of
the model by determining the error function derivatives according to each member of the
weight matrices in the model. To minimize the total loss, the gradient descent updates each
weight in proportion to the derivative of the error with respect to that weight. LSTM is en-
dowed with a memory cell that is capable of maintaining its state over time, and internal
mechanisms called gates to regulate the information flow. The major reason for relying
on LSTM in our approach is its proven performance in handling variable-length sequential
data.

Given input vector xt, hidden sate ht and memory state ct, the updates in LSTM are
performed as follows:

it = sigmoid(Wixt + Uiht−1 + bi) (6.1)

ft = sigmoid(W f xt + U f ht−1 + b f ) (6.2)

c̃t = tanh(Wcxt + Ucht−1 + bc) (6.3)

ct = it � c̃t + ft � ct−1 (6.4)

ot = sigmoid(Woxt + U0ht−1 + b0) (6.5)

ht = ot � tanh(ct) (6.6)

where it, ft, ot are input, forget, and output gates at time t, respectively. Wk, Uk are LSTM
parameterized weight matrices, bk represents the bias vector for each k in {i, f , c, o} and (�)
denotes an element-wise product of matrices, known as the Hadamard product which is an
entrywise multiplication.
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6.2.5 Siamese Manhattan LSTM

The overall aim of our Siamese Manhattan LSTM model referred to as Siamese MaLSTM
is to compare a pair of questions to decide whether or not they are semantically equivalent.
We used the Siamese LSTM (Mueller & Thyagarajan, 2016) architecture which is known
to have identical sub-networks LSTMleft and LSTMright that are passed vector represen-
tations of two sequences and return a hidden state encoding their semantic meaning.

Figure 6.2 – General architecture of the Siamese MaLSTM model

Note that we decided to use LSTM for each sub-network, but it is also possible to swap
LSTM with GRU (Gated Recurrent Unit). GRU is a variation on the LSTM, also aiming to
solve the vanishing gradient problem which comes with a standard RNN. GRUs are almost
similar to LSTMs in terms of design, although they have two gates, namely reset gate and
update gate. Reset gate determines how to combine new input with previous memory while
update gate is what input gate and forget gate were in LSTM, determining how much of
the previous state to keep.

Although GRUs have less parameters and then might take less time to train, LSTMs
empirically remember longer sequences than GRUs and usually outperform them in tasks
requiring modeling long-distance relations. This is the reason why we opted for LSTM
rather than GRU.

In our work, Siamese LSTM was adapted to the context of question retrieval, that is to
say, the sentence pairs become pairs of questions.

LSTM learns a mapping from the space of variable length sequences din and encode the
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input sequences into a fixed dimension hidden state representation drep. More concretely,
each question represented as a word vector sequence (e.g., Q1 is represented by x1, x2, x3)
is fed into the LSTM, which updates, at each sequence-index, its hidden state. The final
state of LSTM for each question is a drep-dimensional vector, denoted by h in figure 6.2,
which holds the inherent semantic meaning of the question.

Unlike vanilla RNN language models which predict next words, the given network
rather computes the similarity between pairs of sequences. A major feature of the Siamese
architecture is the shared weights across the sub-networks, which reduce not only the num-
ber of parameters but also the tendency of overfitting. Once we have the two vectors that
capture the underlying meaning of each question, the semantic similarity between the ques-
tions is computed using the following Manhattan similarity function:

y = exp(− ‖ h(le f t) − h(right) ‖1) (6.7)

Note that since we have an exponent of a negative, the Manhattan function scores will
be between 0 and 1. It is worth mentioning that we tested different similarity metrics,
namely Manhattan, cosine and Euclidean distances and the best results were obtained with
the Manhattan distance as will be seen later in the next section.

6.2.6 Attention Mechanism

Attention mechanism with Neural networks have recently achieved tremendous success in
several NLP tasks (P. Zhou et al., 2016; Chorowski et al., 2015; K. Xu et al., 2015). We
assume that every word in a question contributes to the meaning of the whole question but
the words do not have equal influential information. Thus, we should assign a probability
to every word to determine how influential it is to the entire question. Note that we adopted
an attention mechanism as in (Yang et al., 2016). Siamese LSTM model employs only the
last hidden states of sequence pair e.g. h(a)

4 and h(b)
5 , which may ignore some information.

To remedy this problem, in our attention layer, we used all hidden states H = {h1, h2, ..., hT },
where hi is the hidden state of the LSTM at time step i summarizing all the information
of the question up to xi and T denotes the length of the question. The general architecture
of the proposed Siamese Manhattan LSTM model augmented with an attention layer is
illustrated in Figure 6.3, where the different constituent layers are shown from the input
(question words) to the output (similarity score).

Note that α(a) and α(b) denote the weights of LS T Ma and LS T Mb, respectively. Basi-
cally, the attention mechanism measures the importance of a word through a context vector
uh. It computes a weight αi for each word annotation hi according to its importance. The
final question representation r is the weighted sum of all the word annotations using the
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Figure 6.3 – General architecture of our Siamese Manhattan LSTM model with attention mech-
anism

attention weights, computed by equation 6.10. In the attention layer, a context vector uh is
introduced, which is randomly initialized and can be viewed as a fixed query, that allows
to identify the informative words.

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (6.8)

αi =
exp(eT

i uh)∑T
i=1 exp(eT

t uh)
,

T∑
i=1

αi = 1 (6.9)

r =

T∑
i=1

αihi, r ∈ R2L (6.10)

where Wh, bh , and uh are the learnable parameters with Wh is a weight matrix and bh is a
bias vector used to project each context vector into a common dimensional space.

6.3 Experiments

6.3.1 Datasets

In order to evaluate our propose approach, we performed experiments using the same
dataset described in the previous Chapter released by (W.-N. Zhang et al., 2016) for eval-
uation. The questions of the community collection were harvested from all categories in
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the popular Yahoo! Answers community platform, and then were randomly splitted into
two sets while maintaining their distributions in all categories.

Recall that the first set is a question repository for question search containing 1,123,034
questions, while the second is the test set containing 252 queries and 1624 manually an-
notated related questions, where the number of relevant questions related to each original
query varies from 2 to 30. The community questions in the collection are in various struc-
tures, different lengths and belonging to diverse categories e.g., Health, Sports, Computers
and Internet, Diet and Fitness, Pets, Travel, Business and Finance, Entertainment and Mu-
sic, Education and Reference, etc.

For our experiments in Arabic, we resorted to the same English collection translated
using Google Translation, as there is no large Arabic dataset available for the question
retrieval task. The Arabic collection includes exactly the same number of questions as
the English set. In order to train word2vec for Arabic, we resorted to a sizeable data set
from cQA sites, namely the Yahoo!Webscope dataset 1, translated into Arabic including
1,256,173 questions with 1 2,512,034 distinct words.

For Siamese LSTM training, we employed the publicly available Quora Question Pairs
dataset 2. The given collection encompasses 400,000 samples of question duplicate pairs,
where each sample has a pair of questions along with ground truth about their correspond-
ing similarity (1: similar, 0: dissimilar). A small excerpt of the train set is shown in 6.4,
where in each row of the file, we have the unique identifier of the pair of questions “id”,
the first question id “qid1” and the second question id “qid2”, the content of the first ques-
tion “question1”, the content of the second question “ question2” and their corresponding
similarity “is duplicate” which can take values either 1 or 0; 1 if the pair are similar or 0 if
they are not. A set of 40,000 pairs was employed for validation. The Quora test set was or-
ganized as pairs of questions as shown in Figure 6.5, where in each row, we find the unique
identifier of the pair of questions “test id”, the content of the first question “question1” and
the content of the second question “question2”.

Following the same format, we organized our test set as pairs of questions to be directly
fed into MaLSTM as shown in Figure 6.6, where each original question is associated with
its similar questions as a set of pairs.

It is worth noting that data preprocessing was performed using Python NLTK.

1The Yahoo! Webscope dataset Yahoo answers comprehensive questions and answers version 1.0.2, available at
“http://research.yahoo.com/Academic Relations”

2www.kaggle.com/quora/question-pairs-dataset.
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Figure 6.4 – A small excerpt of the train set

Figure 6.5 – A small excerpt of the Quora test set

6.3.2 Word Embedding Learning

For English word embedding training, we resorted to the publicly available word2vec vec-
tors 3, with dimensionality of 300, that were trained on 100 billion words from Google
News. Since no Arabic version of Google News vectors yet exists, we train the translated
Yahoo!Webscope dataset using the CBOW model, as it has proven through experimenta-
tion to be more efficient and performs better than Skip-gram with our data. The training
parameters of the CBOW model on the Arabic collection were set after several tests as
follows:

3https://code.google.com/p/word2vec/
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Figure 6.6 – A small excerpt of our test set

– Size=300: feature vector dimension. Note that we tested different values in the range
[50, 500] but did not get significant difference in terms of precision values. The best
precision was reached with size=300.

– Sample=1e-4: down sampling ratio for the words that are very redundant in the
corpus.

– Negative samples=25: number of noise words

– min-count=1: minimum number of words which we set to 1 to make sure we do not
throw away anything.

– Context window=5: fixed window size.

6.3.3 LSTM Training

During LSTM training, we applied the Adadelta method (Zeiler, 2012) for weights
optimization to automatically decrease the learning rate. Gradient clipping was also
used with a threshold value of 1.25 to avoid the exploding gradient problem (Pascanu
et al., 2013). Our LSTM layers’ size is 50 and embedding layer’s size is 300. We
employed the back propagation and small batches of size equals 64, to reduce the
cross-entropy loss and we resorted to the Mean Square Error (MSE) as a common
regression loss function for prediction. We trained our model for several epochs
to observe how the results varied with the epochs. We found out that the accuracy
changed with the variation of the number of epochs but stabilized after epoch 25.
The given parameters were set based on several empirical tests; each parameter was
tuned separately on a development set to pick out the best one. For implementing
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our model we used Keras4 and Scikit-learn5. Note that we used the same LSTM
configuration for both languages (English and Arabic).

6.3.4 Evaluation Metrics

To evaluate our approach, we used Mean Average Precision (MAP), Precision@n
(P@n) and Recall as they are the most widely used metrics for assessing the per-
formance of question retrieval in cQA. We remind that MAP assumes that the user
is interested in finding many relevant questions for each query and then rewards
methods that not only return relevant questions early, but also get good ranking of
the results. Precision@n gives an idea about the classifier’s ability of not labeling
a positive sample as a negative one. It returns the proportion of the top-n retrieved
questions that are equivalent. Recall is the measure by which we check how well the
model is in finding all the positive samples of the dataset. It returns the proportion
of relevant similar questions that have been retrieved over the total number of rel-
evant questions. We also used Accuracy, which returns the proportion of correctly
classified questions as relevant or irrelevant.

6.3.5 Results and Discussion

In order to test the performance of ASLSTM, we compare it against our previous
approach called WEKOS as well as the competitive state-of-the-art question retrieval
methods tested by Zhang et al. in (W.-N. Zhang et al., 2016) on the same dataset.
The methods being compared are recalled below:

* WEKOS (Othman et al., 2019a): A word embedding based method which
transforms words in each question into continuous vectors. The questions are
clustered using Kmeans and the similarity between them was measured using
cosine similarity based on their weighted continuous valued vectors.

* TLM (Xue et al., 2008): A translation based language model which uses a
translation-based language model with a query likelihood approach for the
question and the answer parts respectively. TLM integrates word-to-word
translation probabilities learned by using different sources of information.

* ETLM (Singh, 2012): An entity based translation language model, which is
an extension of TLM where the major difference is the replacement of the word

4https://keras.io/
5https://scikit-learn.org
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translation with entity translation in order to integrate semantic information
within the entities.

* PBTM (G. Zhou et al., 2011): A phrase based translation model which uses
machine translation probabilities assuming that QR should be performed at the
phrase level. PTLM learns the probability of translating a sequence of words
in a historical question into another word sequence of words in a given query.

* WKM (G. Zhou et al., 2013): A world knowledge based model which inte-
grates the knowledge of Wikipedia into the questions by deriving the concept
relationships that allow to identify related topics between the queries and the
previous questions. A concept thesaurus was built based on the semantic rela-
tions extracted from Wikipedia.

* M-NET (G. Zhou et al., 2015): A continuous word embedding based model,
which integrates the category information of the questions to get a category
based word embedding, supposing that the representations of words belonging
to the same category should be semantically equivalent.

* ParaKCM (W.-N. Zhang et al., 2016): A key concept paraphrasing based ap-
proach which explores the translations of pivot languages and expands queries
with the paraphrases. It assumes that paraphrases give additional semantic
connection between the key concepts in the queried question and those of the
historical ones.

Table 6.1 gives a comparison of the performance of ASLSTM against the aforemen-
tioned models on the English Yahoo! Answers dataset. The results in Table 6.1,
show that PBTM outperforms TLM which demonstrates that detecting contextual
information in modeling the translation of entire phrases or consecutive word se-
quences is more effective than translating separate words, as there is a dependency
between adjacent words in a phrase.

Table 6.1 – Question retrieval performance comparison of different models in English.

TLM ETLM PBTM WKM M-NET ParaKCM WEKOS ASLSTM
P@5 0.3238 0.3314 0.3318 0.3413 0.3686 0.3722 0.4338 0.5033
P@10 0.2548 0.2603 0.2603 0.2715 0.2848 0.2889 0.3647 0.4198
MAP 0.3957 0.4073 0.4095 0.4116 0.4507 0.4578 0.5036 0.5799

ETLM performs as well as PBTM, which proves that entity translation is more effi-
cient than the word translation for ranking and could enhance the performance of the
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translation language model. WKM is based on Wikipedia as an external knowledge
resource to derive the concept relationships, but its performance is limited by the
low coverage of the Wikipedia concepts on the diverse users’ questions. ParaKCM
achieves good precision by exploring the translations of pivot languages and expand-
ing queries with the produced paraphrases for question retrieval. M-NET, also based
on word embeddings, performs well owing to the use of metadata of category infor-
mation to derive the properties of words. WEKOS based on word embedding too
along with TF-IDF weighting and kmeans, achieves comparable results and further
proves that the use of word embeddings get benefits from dense word representation
and mitigate the negative impact of word mismatch by capturing semantic relations
between words, while the other methods mostly do not capture enough information
about the semantic similarity.

As illustrated in Table 6.1, our proposed approach ASLSTM outperforms in En-
glish all the compared methods on all criteria by successfully returning a significant
number of similar questions among the retrieved ones. This good performance in-
dicates that the use of Siamese LSTM along with attention mechanism Manhattan
similarity is effective in the QR task. Word embeddings allow to obtain an efficient
input representation for LSTM, capturing syntactic and semantic information in a
word level. Interestingly, our approach does not require an extensive feature genera-
tion owing to the use of a pre-trained model. The results show that our Siamese based
approach performs better than translation and knowledge based methods, which pro-
vides evidence that the question representations made by the Siamese LSTM sub-
networks can learn the semantic relatedness between pairs of questions and then
are more adequate for representing questions in the question similarity task. The
Siamese network was trained using backpropagation-through-time under the MSE
loss function which compels the LSTM sub-networks to detect textual semantic dif-
ference during training. A key virtue of LSTM is that it can accept variable length
sequences and map them into fixed length vector representations which can over-
come the length and structure’s problems in cQA.

Another significant finding is the effectiveness of the attention mechanism which
was able to improve the performance of the approach. We assume that the attention
mechanism managed to boost the similarity learning process by assigning a weight
to each element of the question. This weights will then allow to compute which
element in the sequence the neural network should more attend.

Wekos averages the weighted embeddings, which is one of the most simple and
widely used techniques to derive sequence embedding but it leads to losing the word
order, while in our approach, the LSTMs update their state to get the main context
meaning of the text sequence in the order of words. The goal of the Siamese archi-
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tecture is to learn a function which can map a question to an appropriate fixed length
vector which is favor for similarity measurement. Interestingly, it offers vector rep-
resentation for a very short text fragment that should grasp most of the semantic
information in that fragment.

In order to properly assess the MaLSTM model performance on our similarity
prediction problem, we plot training data vs validation data accuracy and loss using
the Matplotlib library. The training history of the model is often used to diagnose
its behavior and to check whether it is a good fit for the data or could perform better
with a different configuration. The loss is computed on training and validation and
it shows how well the model is doing for these two sets. It denotes the sum of the
errors made for each instance in training or validation sets. Loss is often used to
determine the best parameter values for the given model. Obviously, the lower the
loss, the better a model is. Once we find the optimized parameters, the accuracy
is used to evaluate how accurate our model’s prediction is compared to the true
data. The training accuracy shows how much the model learns to map the input and
output, while the validation accuracy tells about its generalizing ability. For instance,
a decreasing validation accuracy means low generalization over the training data.

Figure 6.7 – Epochs vs loss of MaLSTM
on the English dataset

Figure 6.8 – Epochs vs loss of MaLSTM
on the Arabic dataset

From Figures 6.7 and 6.8 which depict the training and validation set loss against
the number of epochs 6, we can see that for both English and Arabic there is no con-
siderable difference between the training and validation loss. The training loss keeps
decreasing after every epoch which means that the model is learning to recognize the
specific patterns. Similarly, the validation loss continues to decrease reaching 0.132

6Epoch is when the full dataset is passed both forward and backward through the neural network only once. It
usually contains a few iterations
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and 0.129 for English and Arabic respectively thus, our model is generalizing well
on the validation sets. We can say that we have a good fit since both the train and
validation loss decreased and leveled off around the same points.

Figure 6.9 – Epochs vs Accuracy
of MaLSTM on the English dataset

Figure 6.10 – Epochs vs Accuracy
of MaLSTM on the Arabic dataset

From the plots of accuracy given in Figures 6.9 and 6.10, we observe that we
get about 82% and 81% accuracy rate on the validation data for English and Ara-
bic respectively. The model has comparable consistent accuracy on both train and
validation sets. Both training and validation accuracy continue to increase without a
sudden decrease of the validation accuracy, indicating a good fit. Therefore, we can
admit that, whilst the performance on the training set is slightly better than that of the
validation set in terms of both loss and accuracy, the model has converged to a stable
value without any typical overfitting signs such as the continuous improvement of
the training performance, while validation performance worsens.

It is worth mentioning that the accuracy used in the epochs-accuracy plots, is the
binary accuracy calculated by Keras, and it implies that the threshold is set at 0.5 so,
everything above 0.5 will be considered as correct.

We utilized the Manhattan distance which forces the LSTM model to entirely
detect the semantic differences during training. In practice, our results are fairly
stable across different similarity functions, namely cosine and Euclidean distances.
We found that the Manhattan distance has outperformed them on both the English
and Arabic datasets as depicted in Tables 6.2 and 6.3 which demonstrates that it is
the most relevant measure for the case of high dimensional text data.

The cosine distance has outperformed the Euclidean distance which proves that
it is better at catching the semantic of the questions, considering that the direction of
the text points can be thought as its meaning, texts with similar meanings will have
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Table 6.2 – Comparison between similarity
measures on the English dataset

P@5 Recall
Manhattan 0.5033 0.5477

Cosine 0.3893 0.4345
Euclidean 0.3393 0.3843

Table 6.3 – Comparison between similarity
measures on the Arabic dataset

P@5 Recall
Manhattan 0.3702 0.4146

Cosine 0.2562 0.3006
Euclidean 0.2062 0.2506

similar cosine score. Another reason is that Cosine distance is calculated using the
dot product and magnitude of each vector. Thus, it is only affected by the words
the two vectors have in common, whereas the Euclidean measure has a term for
every dimension which is non-zero in either vector. We can therefore say that the
Cosine distance has meaningful semantics for ranking texts, based on mutual term
frequency, whereas Euclidean distance does not.

Moreover, we remarked that ASLSTM could find the context mapping between
certain expressions mostly used in the same context such as bug and error message
or also need help and suggestions. In addition, ASLSTM was able to retrieve sim-
ilar questions containing certain common misspelled terms like recieve instead of
receive, but it failed to capture other less common spelling mistakes like relyable or
realible instead of reliable. Such cases show that our approach can address some
lexical disagreement problems. Furthermore, there are few cases where ASLSTM
fails to detect semantic equivalence, including queries having only one similar ques-
tion and most words of this latter do not appear in a similar context with those of the
query .

Table 6.4 – Question retrieval performance of ASLSTM in Arabic

WEKOS ASLSTM
P@5 0.3444 0.3702

P@10 0.2412 0.2872
MAP 0.4144 0.4540
Recall 0.3828 0.4146

Table 6.4 shows that our approach outperforms in Arabic the best compared sys-
tem which gives evidence that it can also perform well with complex languages.

Nevertheless, a major limitation of our approach is that it ignores the morpho-
logical structure of Arabic words. As a matter of fact, the Arabic language is a
morphologically-rich and complex language which expresses multiple levels of in-
formation at the word level. The variation in character forms appearing in hand-
written Arabic has a notable impact on the generation of word embeddings. There-
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fore, harnessing the word internal structure is crucial to capture semantically similar
words.

Accordingly, endowing word embeddings with grammatical information such as,
the person, gender, number and tense could help to obtain more meaningful embed-
dings that detect morphological and semantic similarity. In terms of recall, ASLSTM
reaches 0.4136 for Arabic which implies that the number of omitted similar ques-
tions is not big. Interestingly, unlike traditional RNNs, Siamese LSTM is able effec-
tively handle the long questions and learn long range dependencies thanks to its use
of memory cell units that can store information across long input sequences. Never-
theless, for very long sequences, LSTM might fail to compress all information into
its representation. Thus, the integration of the attention mechanism was relevant to
let the model attend to all past outputs and give different words different attention
while modeling questions.

6.4 Conclusion

In this Chapter, we have presented an attentive Siamese LSTM based approach, aim-
ing at solving the question retrieval problem, which is of great importance in real-
world cQA. For this purpose, we suggested using Siamese LSTM to capture the se-
mantic similarity between the community questions. Our significant innovation was
to add an attention mechanism to let the model give different attention to different
words while modeling questions.

Siamese neural network architecture and attention mechanisms are notable re-
cent trends in deep learning and have proven to achieve outstanding results in several
tasks such as semantic textual similarity and machine translation. Our ASLSTM ap-
proach was among the few attempts to integrate Siamese architecture and attention
mechanism in the question retrieval problem. For instance, (Homma et al., 2016)
used GRU network instead of LSTM in their Siamese architecture to encode each
question, and tested different distance measures to predict equivalence based on the
question vector outputs of the neural network. A Siamese architecture without at-
tention mechanism was used by Kamineni et al. (2018), who combined LSTMs and
CNNs where the LSTM layer was used to learn representations for a given pair of
questions and the CNN layer was employed for matching these representations and
predict if they are semantically similar. Romeo et al. (2017) integrated an attention
mechanism in the LSTM network as a selection model in their tree- kernel-based
ranker to identify the most important text pieces in questions and then filter out
noisy subtrees from their syntactic trees.
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Experiments on large scale Yahoo! Answers datasets showed that our ASLSTM
proposed approach can successfully improve the question similarity task in English
and Arabic and outperform some competitive methods evaluated on the same dataset.
Interestingly, we showed that Siamese LSTM is capable of modeling complex se-
mantics and covering the context information of question pairs. However, a major
limitation was the ignorance of the morphological structure of Arabic words. Fur-
thermore, while it could address some lexical disagreement problems, our approach
wasn’t able to retrieve similar questions containing non-common misspelled terms.
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Chapter 7
Conclusion

7.1 Contributions and limitations

In this thesis, we have presented our contributions in the field of Question Answering
(QA), which has been subject of tremendous interest over the years as it has become
a major asset to the user and a real challenge in many application areas such as
e-commerce, distance learning and mobile search.

We have addressed two critical matching problems in open domain QA and com-
munity QA (cQA), namely passage retrieval (PR) and question retrieval (QR). PR
is deemed to be the key component of a typical QA system, aiming to reduce the
search space from a huge collection of documents to a fixed number of passages.
Importantly, the performance of this component highly impacts that of the entire
system. Most existing approaches tackling this problem were developed for closed
domain with limited capacities, and they are no more than simple adaptations of
classical document retrieval engines which are not especially devoted to QA and
consequently cannot ensure high precision.

In order to improve the PR task, we proposed a novel PR and ranking approach
for open domain QA named PaROD. Our contributions include a new n-gram based
method for PR based on the degree of closeness or dispersion of question n-gram
words in the passage. The extracted passages are re-ranked using a Ranking SVM
model that combines a set of text similarity measures, including our proposed n-
gram similarity measure as well as other lexical, syntactic and semantic features
which have shown promise in the Semantic Textual Similarity task (STS) of Se-
mEval. Our results have shown that the proposed approach PaROD could outperform
in English other state-of-the-art systems using the CLEF data collection. We have
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proved that our new n-gram based similarity measure is efficient since our passage
extraction engine has outperformed in different languages the system ranked first in
CLEF PR exercise. Additionally, we have demonstrated that integrating different
similarity measures using RankSVM model allows to better re-rank the retrieved
passages and ensure the relevance of the passages returned in response to a given
natural language question. However, PaROD fails to answer some questions, where
most of the unanswered and incorrectly answered questions were opinion or cause
ones. Furthermore, the overall approach was only tested on the english corpora as
we have resorted to the english versions of major used tools such as the english
version of WordNet Lexical Database and the named entity recognizer for English.
Further tests on different languages are required to verify that the PaROD approach
is language independent. Also, we can say that the performance of PaROD highly
depends on that of the external resources such as the lexical database and the named
entity recognizer. Besides, our work lacks a detailed analysis of the approach com-
plexity which allows to have an idea about the running time and space consumption
of the program.

On the other hand, question retrieval in cQA while being similar to passage re-
trieval in QA, remains more challenging mainly due to the lexical gap problem. Most
existing works on QR focus on the similarity measure between questions while it
is tricky to set a compelling similarity function for sparse and discrete word rep-
resentations. Recent efforts in word representations, have led to the rise of word
embeddings, which have shown success in various NLP tasks. As we believe that
word representations are crucial for the question retrieval task and motivated by the
success of these models, we proposed a word embedding-based approach to retrieve
similar questions in cQA named WEKOS. We suggested to turn words in a commu-
nity question into continuous vectors using the CBOW model and weight the word
vectors using TF-IDF. The K-means clustering algorithm was integrated to create
clusters from the question collection of related questions. We believe that Kmeans
provides a good strategy to reduce the data dimensionality and decrease the runtime
cost of the search and ranking tasks. Therefore, each query is matched against the
questions contained within its closest cluster rather than the entire question collec-
tion. The cosine similarity was used to calculate the similarity between the questions
and rank them accordingly.

Our experiments conducted on a recently released large-scale cQA datasets showed
the effectiveness of the proposed approach in English and Arabic in terms of detect-
ing similar questions even if they share few common words. The results demonstrate
that WEKOS can outperform other competitive methods by capturing semantic rela-
tions between question words, while most of the other methods do not detect enough
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information about semantic equivalence. We have also shown evidence that the TF-
IDF weighting can improve the search efficiency as well as the quality of the retrieval
results. However, TF-IDF doesn’t take into account synonymy relations between
terms and can not resolve the lexical ambiguity problem which is frequent in a com-
munity collection of informal and heterogeneous questions where the same concept
may be expressed in various ways. Also, the computational complexity of TF-IDF
could be an escalating problem for large data collections. Besides, despite being
simple, linear and fast, the main shortcoming of the kmeans clustering algorithm is
its non-deterministic nature since it requires to pre-specify the number of clusters
and it randomly selects the initial centroı̈ds.

Although WEKOS has yielded good results, it could yet be improved by over-
coming the limitations of TF-IDF and Kmeans and put more focus on the Arabic
language which is as a morphologically rich language with high character variation
and has a significant impact on delivering good word embeddings.

Our second proposed approach named ASLSTM has pushed work on question
retrieval to the next level relying on the recent trends in deep learning namely,
Siamese neural network architecture and attention mechanisms which have proven
to achieve great results in various NLP tasks. In order to enhance the performance of
our WEKOS approach and improve the QR task, we proposed a new deep learning
approach based on a Siamese architecture with LSTM networks, augmented with an
attention mechanism, which is an additional layer, integrated to let the model give
different words different attention while modeling questions. The semantic similarity
between questions was predicted using the Manhattan distance. Our experiments on
large scale Yahoo! Answers datasets showed that our ASLSTM proposed approach
can successfully improve the question retrieval task in both English and Arabic and
outperform WEKOS and other competitive methods evaluated on the same dataset.
We proved that Siamese LSTM is capable of modeling complex semantics and cov-
ering the context information of question pairs. Nevertheless, a major limitation was
the ignorance of the morphological structure of Arabic words. Moreover, while it
could address some lexical disagreement problems, our approach failed to retrieve
similar questions containing non-common misspelled terms.

7.2 Future directions

Whilst promising approaches to passage retrieval in QA and question retrieval in
cQA have been presented in this thesis allowing our research questions to be an-
swered, there are several research directions we can follow to further improve our
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work. We summarize the main routes for future research:

* Experimenting with syntactic features in passage and question retrieval

In the processes of retrieving relevant passages and similar questions, we
mainly relied on lexical, semantic and context information to measure the text
similarity. There is still much room to experiment with more features such as
syntactic ones to facilitate the semantic similarity measure between passages
or questions. We believe that syntactic information is important for the ranking
task and could improve the retrieval performance across morphologically rich
languages such Arabic. Regarding PR, this could be done by integrating, along
with the different features fed into RankSVM, a syntactic similarity measure
that calculates the similarity between the syntactic trees of the passages pro-
duced by a syntactic parser. For QR, it would be interesting to incorporate
morphological features into the embedding model or using LSTM to identify
the best subtrees in the syntactic parsing of the questions, which will be then
used in the ranking process.

* Incorporating metadata in the learning process

CQA websites usually produce different types of metadata for the posted ques-
tions and answers such as category, voting score, tags, favourite count, last edit
date, user expertise information and so on. Using this additional information
may help to improve the performance of our QR approaches. Therefore, we
are planning to take advantage of this information in our future work by in-
corporating various types of metadata information in the learning process in
order to enrich the word representations.

* Experimenting with different languages and datasets

Our proposed approaches in this thesis were tested on the CLEF and Ya-
hoo!Answer datasets mostly in English and Arabic. In the future, we plan to
continue our experiments with more diverse languages and larger datasets and
carrying out an error and complexity analysis to compare the relative merits
and demerits of our approaches.

* Going conversational A QA system should be equipped with at least a short
term memory to remember the questions that were asked before and it should
be able to track changes in structure and topic. This is a core element in
building conversational QA systems. An exciting area of future work could
be investigating the potential of attentive LSTM models with representation
learning for the task of next question prediction in conversations which is ana-
logue to the question retrieval problem in cQA.
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