
HAL Id: tel-03180395
https://hal.science/tel-03180395

Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modélisation géométrique
Dmitry Sokolov

To cite this version:
Dmitry Sokolov. Modélisation géométrique. Computational Geometry [cs.CG]. Université de Lorraine
(UL), Vandoeuvre-lès-Nancy, FRA., 2016. �tel-03180395�

https://hal.science/tel-03180395
https://hal.archives-ouvertes.fr

École doctorale IAEM Lorraine

Modélisation géométrique

THÈSE

soutenue le 10 juin 2016

pour l’obtention d’une

Habilitation de l’Université de Lorraine

(mention informatique)

par

Dmitry SOKOLOV

Composition du jury

Président : Isabelle DEBLED-RENNESSON,
Professeure en Informatique à Université de Lorraine

Rapporteurs : Dominique BECHMANN,
Professeure en Informatique à l’Université de Strasbourg

Alexander BELYAEV,
Associate Professor in School of Engineering & Physical Sciences, UK

Pascal FREY,
Professeur en Mathématiques appliquées à l’Universite Pierre et Marie Curie

Examinateur : Bruno LÉVY,
Directeur de Recherche à l’Inria Nancy-Grand Est

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

2

Contents

I Procedural modeling 7

1 Boundary Controlled Iterated Function Systems 9
1.1 Background . 9

1.1.1 Iterated Function Systems . 9
1.1.2 Controlled / Language Restricted IFS . 11

1.2 Boundary Controlled IFS . 14
1.2.1 Specifying the topology . 14
1.2.2 Controlling the geometric texture . 19
1.2.3 Example . 20

1.3 Subdivision curves and surfaces as BC-IFS . 22
1.3.1 Regular patch . 22
1.3.2 Extraordinary vertices . 22
1.3.3 Non-uniform B-spline curves . 26

2 Tangent spaces for self-similar shapes 32
2.1 Related works . 34
2.2 Analysis of IFS attractors . 38

2.2.1 Complete set of eigenvectors . 39
2.2.2 Incomplete set of eigenvectors . 42
2.2.3 Conclusion . 45

II Meshing 48

3 Polycube maps 50
3.1 Normal constraints for polycube maps . 50

3.1.1 Problem statement . 53
3.1.2 Formalization . 54
3.1.3 Algorithm overview . 56
3.1.4 Results and discussion . 64

3.2 Robust tracing of streamlines on triangulated surfaces 65
3.2.1 Field representation . 67
3.2.2 Stream-mesh . 68
3.2.3 Pairing intervals . 71
3.2.4 Crossing triangle with arbitrary precision 75
3.2.5 Discussion . 75

4 Hexahedral-dominant meshing 83
4.1 On smooth frame field design . 86

4.1.1 In search of elusive ground truth, or d ≈ 0.85 86
4.1.2 Functional representation of frames in 2D 93
4.1.3 Optimization of 3D frame fields . 98

4.2 Integrating a 3D frame field: periodic global parameterization 113
4.2.1 Problem statement . 114
4.2.2 Optimization . 116
4.2.3 Extracting gridpoints . 118
4.2.4 Optional pre-processing step: curl correction 118

3

4 CONTENTS

4.3 Generating the hexahedral-dominant mesh . 120
4.3.1 Re-meshing the border of the domain . 120
4.3.2 Recombining tetrahedra into hexahedra . 120

4.4 Results and discussion . 128
4.4.1 Hexahedra proportion and quality . 128
4.4.2 Influence of the parameters . 129
4.4.3 Robustness . 131

4.5 Enumerating the decompositions of a hexahedron 135
4.5.1 Decomposition of a hexahedron into 5 or 6 tetrahedra 135
4.5.2 Decomposition of a hexahedron into 7 to 13 tetrahedra 138

Preface

This manuscript shows our first steps towards fundamental and applied aspects of geometry model-
ing and geometry processing. This research domain deals with acquiring, analyzing and optimizing
digital representations of 3D objects. Our ultimate ambition is to develop all the tool chain, from
modeling and simulation to physical validation.

The following figure shows a structure we modeled that allows for high vertical loads while
minimizing heat transfer:

Additive fabrication (3d printing) makes it possible for the first time to create such complicated
objects, even in metal (here with a high-end EOS M270 laser sintering printer). This type of
technology will have a high societal and economical impact, by creating better systems (engines,
cars, planes . . .), designed and numerically tailored for optimal functionality thus consuming less
raw materials for their fabrication and less energy when they are used.

However, current state computer aided design is not well suited for generation of such types
of objects. For centuries, for millennia mankind produced goods with axes, files and CNC mills,
removing unnecessary parts from a chunk of wood or plastic. Nowhere in this process we needed
abrupt stops of the cutting tool, hence we have excellent background in modelling of smooth
objects. That’s why we had to wait for the XX century to have necessary mathematical background
in order to model rough surfaces or porous structures: we were simply unable to produce them
before. First part of this manuscript gives our approach of shape modeling, it is a conjoint work
with Pr. Christian Gentil (Université de Bourgogne). This work encompasses previous approaches
like free-form surfaces and subdivisions.

Applications domain is vast, it can be design of “fractal” micro-strip antennas, meta-materials
and so on. Here is another example of a study performed by the laboratory of vibration and
acoustics in Lyon, it shows a simulation and physical validation of normal modes for a domain
with “fractal” boundary.

In these new design processes, numerical methods play a central role. Besides some “proofs of
concepts”, these methods remain to be developed in order to be general and robust enough to be
integrated in existing industrial processes. Practitioners often consider the 4/20-node tet FEM to
be the holy grail because of its simplicity, however using hexahedra as the discretization element of
choice offers some important advantages over tetrahedral meshes. First of all, it has significantly
better accuracy, especially in the presence of non-uniform scaling. Hexahedral meshes are much
less complex and require much less memory.

Second part of this manuscript presents our work on geometry processing, namely on generation

5

6 CONTENTS

of hexahedral meshes. It is a result of our current work with Dr. Nicolas Ray and Dr. habil. Bruno
Lévy (INRIA Nancy-Grand Est), and I thank them for fructuous and creative team play! Currently
we are able to (automatically) produce hexahedral-dominant meshes of acceptable quality and we
start to solve our first partial derivative equations on the meshes. Just for a foretaste, here is an ex-
ample of the heat transfer equation computed on a hexahedral-dominant mesh of a champagne cork:

Part I

Procedural modeling

7

8

“Je me détourne avec effroi et
horreur de cette plaie lamentable
des fonctions continues qui n’ont
pas de dérivées.”

— Charles Hermite

lettre à Thomas Stieltjes,
20 mai 1893

Objects modeled through Computer Aided Geometric Design (CAGD) systems are often in-
spired by standard (subtractive) machining processes. However, other types of objects, such as
objects with a porous structure or with a rough surface, may be interesting to create: porous
structures can be used for their lighter weight while maintaining satisfactory mechanical proper-
ties, rough surfaces can be used for acoustic absorption.

Fractal geometry is a relatively new branch of mathematics that studies complex objects of
non-integer dimensions. Because of their specific physical properties, fractal-like structure is a
center of interest in numerous areas such as architecture [RS14b], jewellery [SYC06], heat and
mass transport [Pen10] or antennas [PRP+96, Coh97].

The emergence of techniques such as 3D printers allow for new possibilities that are as yet un-
used and even unexplored. Different mathematical models and algorithms have been developed to
generate fractals. We can roughly categorize them into three families. The first gathers algorithms
computing the basins of attraction of a given function. Julia sets and the Mandelbrot set [PR86]
or Mandelbulb [Aro09] are some examples. The second is based on simulation of phenomena
such as percolation or diffusion [Fal90]. The last one corresponds to deterministic or probabilis-
tic algorithms or models based on the self-similarity property associated fractals like the terrain
generator [ZSTR07], Iterated Function System [BHS08], L-system [PL90]. Shapes are generated
from rewriting rules providing control of the geometry. Nonetheless, most of these models were
developed for image synthesis without consideration of fabricability or were developed for very
specific applications like Wood modeling [TGM+09].

Some studies address this aspect for specific applications for 3D printers [SYC06]. In [BV13]
Barnsley defines fractal homeomorphisms from [0, 1]2 onto the modeling space [0, 1]2. The same
approach is used in 3D to build 3D fractals. A 3D standard object is embedded in the domain
space [0, 1]3 and then transformed into a 3D fractal object. This approach preserves the topology
of the initial object which is an important point for fabricability.

The main challenge with traditional fractals is the control of the resulting geometry. For
example, it is quite challenging to get the desired shape using the system of fractal homeomorphisms
proposed by Barnsley. We elaborate here a new type of modeling system, using the facilities of
existing CAGD software, while extending their capabilities and their application areas. This new
type of modeling system will offer designers (engineers in industry) and creators (visual artists,
stylists, designers, architects, etc.) new opportunities to design and produce a quick mock-up, a
prototype or a single object. Our approach is to expand the possibilities of a standard CAD system
by including fractal shapes while preserving ease of use for end users.

We propose to use standard Iterated Function Systems enriched with boundary rep-
resentation concepts. It allows to dissociate the topology of final shapes from the geometric
texture, greatly simplifying the design process. This approach is powerful, it generalizes standard
(linear, stationary) subdivision curves and surfaces, allowing for additional control. For example,
with the dissociation of topology from the geometry we were able to fill gaps between a primal and
a dual subdivision surface [PGSL14], a challenging topic for the standard subdivision approach.

This part of the thesis consists of two chapters:

• Chapter 1 explains our approach of modelling objects. First section of the chapter describes
general settings, namely how to introduce a B-rep structure on a fractal shape (the work was
published in [SGGM15]), while the second section shows how standard subdivision curves
and surfaces fit with this approach.

• Chapter 2 explains our way to analyze smoothness of produced shapes.

Chapter 1

Boundary Controlled Iterated
Function Systems

1.1 Background

1.1.1 Iterated Function Systems

Iterated Function Systems (IFS) were introduced by Hutchinson [Hut81] and further developed and
popularized by Barnsley [Bar88]. More research has followed on from these seminal studies [Gen92,
Mas97, BHS08, Tos06]. IFS are based on the self-similarity property. A modeled object is made
up of the union of several copies of itself; each copy is transformed by a function. These functions
are usually contractive, that is to say they bring points closer together and make shapes smaller.
Hence, the modeled object, called the attractor, is made up of several possibly overlapping smaller
copies of itself, each copy also made up of copies of itself, ad infinitum.

Definition. Given a complete metric space (X, d) with the associated metric d, an IFS is defined
by a finite set of continuous transformations T = {Ti}N−1

i=0 in the space X. Let Σ = {0, . . . , N − 1}
be the set of IFS transformation indices, thus |Σ| = N . The IFS is then denoted by {X;Ti | i ∈ Σ}.

We are substantially interested in so-called hyperbolic IFS, whose transformations Ti are all
contractive.

Definition. A transformation T : X→ X is called contractive if and only if there exists a real s,
0 6 s < 1 such that d(T (x), T (y)) < s · d(x, y) for all x, y ∈ X.

Definition. For the set of non-empty compacts of X, denoted H(X), we define the Hausdorff
distance dX induced by the metric d:

dX(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

Since the metric space (X, d) is complete, the set (H(X), dX) is also complete.
In the early 80’s, Hutchinson [Hut81] used the Banach fixed point theorem to deduce the

existence and the uniqueness of an attractor for a hyperbolic IFS, i.e. the fixed point of the
associated contractive map. He defined an operator T : H(X) → H(X), now called Hutchinson
operator [Bar88], as the union of the IFS transformations Ti:

T(K) =

N−1⋃
i=0

Ti(K).

If IFS is hyperbolic then T is also contractive in the complete metric space (H(X), dX). Ac-
cording to the Banach fixed point theorem [Bar88], T has a unique fixed point A. This fixed point
is named the attractor of the IFS:

A = T(A) =

N−1⋃
i=0

Ti(A). (1.1)

9

10 CHAPTER 1. BOUNDARY CONTROLLED ITERATED FUNCTION SYSTEMS

The theorem allows to calculate attractors in a very straightforward manner. Let us consider
an example, where the IFS consists of three affine transformations on R2 (figure 1.1 shows an
illustration):

T0

(
x
y

)
=

[
1/2 0
0 1/2

] [
x
y

]
T1

(
x
y

)
=

[
1/2 0
0 1/2

] [
x
y

]
+

[
1/2
0

]
T2

(
x
y

)
=

[
1/2 0
0 1/2

] [
x
y

]
+

[
0

1/2

]

1

2

3

4

5

6

Figure 1.1: An illustration for the deterministic algorithm. Starting from any non-empty compact
subset (the flower, for example), the sequence converges to the Sierpiński’s Gasket.

The first step is to choose an arbitrary non-empty compact subset of K ∈ H(R2). The second
step is to apply T0, T1 and T2 to the current set, and then to take the union of the resulting
sets. The transformation T0 scales the input image size down, T1 scales down and translates along
x-axis, and T2 scales down plus translates along y-axis. After merging three images T0(K), T1(K)
and T2(K) we obtain second image of figure 1.1.

Therefore, the iteration process consists of applying each transformation T0, T1 and T2 to the
current set, and then taking the union of the resulting sets. Then T0, T1 and T2 are to be applied
to the union and so on. The limit of this process gives the attractor of the IFS, as shown above.
As one can see, in few steps only the shape of the flower disappears, the attractor (the Sierpiński’s
Gasket in this case) does not depend on the initial K.

More formally, since the Hutchinson operator is contractive, the attractor of an IFS can be
evaluated recursively. That is, the attractor can be approximated by a sequence {Kn}n∈N con-
verging to A. The initial element in the sequence is defined by means of a primitive K ∈ H(X).
The following elements are defined recursively:

K0 = K

Kn+1 =
⋃
i∈Σ

Ti(Kn).

The elements Kn are images of composite functions applied to K.
Each element in the sequence represents an approximation of the IFS attractor. Each term Kn

is composed of Nn images of K by a composite of n functions. For example, a sequence of the
attractor approximations for an IFS {X;T0, T1} is presented here:

K0 = K,
K1 = T(K0) = T0(K) ∪ T1(K),
K2 = T(K1) = T0T0(K) ∪ T0T1(K) ∪ T1T0(K) ∪ T1T1(K),
K3 = T(K2) = T0T0T0(K) ∪ T0T0T1(K) ∪ T0T1T0(K) ∪ T0T1T1(K) ∪

T1T0T0(K) ∪ T1T0T1(K) ∪ T1T1T0(K) ∪ T1T1T1(K),
...

...
...

Kn = T(Kn−1) =
⋃

αi∈{0,1}
Tα1

. . . Tαn
(Kn).

In this iterative algorithm a set of transformed primitives K is constructed recursively and
calculations can be represented by an evaluation tree. Each node on the i-th level of the tree
corresponds to the image of a composite of i IFS transformations. This tree is traversed up to a
given depth n, where we display the image of K by the composite function associated with the
current node, as shown in figure 1.2.

Note that these composite functions are calculated from left to right. The primitive K is
transformed finally by a constructed composite function. In practice, the IFS transformations Ti are

1.1. BACKGROUND 11

T1T0T0 T1T1T0 T1T1T1T0T0T0 T0T1T0 T0T1T1T0T0T1 T1T0T1

T1T0T0(K) T1T1T0(K) T1T1T1(K)T1T0T1(K)T0T0T0(K) T0T1T0(K) T0T1T1(K)T0T0T1(K)

T1T0 T1T1T0T0 T0T1

Id

T0 T1

T1T0 T1T0T1T0T1T0

KKK K K K K K

T1T0

T0 T1

T1T0

Figure 1.2: The IFS evaluation tree calculated to the third level. Internal nodes correspond to
the calculation of a composite function. Leaves correspond to subsets of Ka

3 to construct or to
visualize.

affine operators and can therefore be represented by matrices. A composite affine transformation
can thus be represented by a product of transformation matrices.

1.1.2 Controlled / Language Restricted IFS

In IFS all the transformations are applied on each iteration. It is possible to enrich this model by
adding rules to control the iterations. This is the principle of a CIFS (Controlled IFS). CIFS are
more general systems allowing us to control certain parts of the IFS attractor. A CIFS denotes
an IFS with restrictions on transformation sequences imposed by a control graph. This system is
similar to “Recurrent IFS” (RIFS) [Bar88], and is also described [PH94, TT93] by means of formal
languages, called LRIFS (Language-Restricted Iterated Function System). CIFS defines objects
whose geometry can be complex. However CIFS attractors are more convenient and controllable
for manufacturability purposes than IFS attractors.

The attractor of a CIFS can be evaluated by an automaton [MW88] defined on the control
graph. Each validated word of the automaton corresponds to an authorized composition of trans-
formations. Each state of the automaton corresponds to different parts of the modeled object.
States are associated with construction spaces. Transitions between states indicate that one sub-
part is contained in another one. It is then possible to control the attractor more precisely.

Definition. A CIFS is given by an automaton, where each state q is associated with an attractor
Aq ∈ Xq, and each transition from q to w is associated with an operator Xw → Xq. The following
is a list of parameters describing the CIFS:

• An automaton (Σ, Q, δ), where Σ is an alphabet, Q is a set of states and δ is a transition
function δ : Q× Σ→ Q;

• A set of complete metric spaces associated with the automaton states {Xq}q∈Q;

• An operator associated with each transition T qi : Xδ(q,i) → Xq;

• A compact set Kq ∈ H(Xq), called a primitive, associated with each state q ∈ Q. Primitives
are not used to define the attractor, but only to approximate it;

• Finally, the automaton is provided by an initial state, noted by \, and all states are final
states.

In the following, we denote by Σq the restriction of Σ by outgoing transitions from the state q,
i.e.:

Σq = {i ∈ Σ, δ(q, i) ∈ Q}

12 CHAPTER 1. BOUNDARY CONTROLLED ITERATED FUNCTION SYSTEMS

CIFS defines a family of attractors associated with the states: {Aq}q∈Q, where Aq ∈ H(Xq).
The attractors Aq are mutually defined recursively:

Aq =
⋃
i∈Σq

T qi (Aδ(q,i)) (1.2)

As for IFS, each CIFS attractor can be approximated by a sequence {Kq
n}n∈N converging to

Aq. Each state q ∈ Q is associated with a primitive Kq ∈ H(Xq), which defines the initial element
in the sequence. The following elements are mutually defined recursively:

Kq
0 = Kq

Kq
n+1 =

⋃
i∈Σq T

q
i (K

δ(q,i)
n)

In this iterative algorithm, a set of transformed primitives Kq is recursively constructed and
the calculations can also be represented by an evaluation tree. Each node on the i-th level of the
tree corresponds to the image of a composition of i CIFS transformations, i.e. a path of length i
in the automaton. This tree is traversed up to a given depth n, where we display the image of Kq

by the composite function associated with the current node.

Example 1

Consider an example of the CIFS attractor, illustrated in the right-hand image in figure 1.3. This
was introduced by Bandt and Gummelt [BG97]. The system is described by an automaton with
two states: a and b. There are two subdividing operators from state a as well as from b. The left
panel in figure 1.3 shows the automaton of this CIFS.

ba♮
0

1

0

1

AbAa

T a
1 (Aa)

T a
0 (Ab)

T b
0 (Ab)

T b
1 (Aa)

Figure 1.3: Fractal kite and dart for Penrose tilings. The CIFS automaton is shown on the left,
the attractors with the transformations are shown on the right.

The automaton transition functions are the following:

δ(a, 0) = b δ(b, 0) = b
δ(a, 1) = a δ(b, 1) = a

Each transition δ(q, i) = w of the automaton is associated with an operator T qi : Xw → Xq.
N.B.: T and δ act in opposite directions!

In this example, Xa and Xb are both in the same Euclidean affine plane. Let us define the
mappings as follows:

T a0

([
x
y

])
=

[
x
y

]
T a1

([
x
y

])
=

2

1 +
√

5

[
cos(3/5π) − sin(3/5π)
sin(3/5π) cos(3/5π)

] [
x
y

]
+

[
0
1

]
T b0

([
x
y

])
=

2

1 +
√

5

[
cos(4/5π) − sin(4/5π)
sin(4/5π) cos(4/5π)

] [
x
y

]
+

[
1+
√

5
2 sin(4/5π)

1 + 1+
√

5
2 cos(4/5π)

]

T b1

([
x
y

])
=

2

1 +
√

5

[
cos(7/5π) − sin(7/5π)
sin(7/5π) cos(7/5π)

] [
x
y

]
+

[
0
1

]

1.1. BACKGROUND 13

Thus, the attractors Aa and Ab satisfy the following equations:

Aa =
⋃
i∈Σa

T ai (Aδ(a,i)) = T a1 (Aa) ∪ T a0 (Ab)
Ab =

⋃
i∈Σb

T bi (Aδ(b,i)) = T b0 (Ab) ∪ T b1 (Aa)

Figure 1.4 shows the CIFS evaluation tree calculated to the third level. Internal nodes cor-
respond to the calculation of a composite function, while the leaves correspond to subsets of Ka

3

to construct or to visualize. The pink and blue highlights help distinguish between current state
(space) a and b, respectively.

T a
1T a

0

T a
0 T a

1

T a
1T a

0

T b
0 T b

1

T a
1 T

a
0 T a

1 T
a
1T a

0 T
b
0 T a

0 T
b
1

T b
1T b

0

T a
1 T

a
0 T

b
0 T a

1 T
a
1 T

a
0 T a

1 T
a
1 T

a
1T a

0 T
b
0T

b
0 T a

0 T
b
1T

a
0 T a

0 T
b
1T

a
1T a

0 T
b
0T

b
1 T a

1 T
a
0 T

b
1

T a
1 T

a
1 T

a
1 (K

a)

Kb

Id

Ka

T a
0 T

b
0T

b
0 (K

b)

T a
1T a

0

Kb Ka Kb Ka Kb

T b
1T b

0 T a
1T a

0

T a
0 T

b
1T

a
0 (K

b) T a
1 T

a
0 T

b
0 (K

b)T a
0 T

b
0T

b
1 (K

a)

Ka

T a
1 T

a
1 T

b
0 (K

b)T a
1 T

a
0 T

b
1 (K

a)T a
0 T

b
1T

a
1 (K

a)

Figure 1.4: CIFS evaluation tree calculated to the third level. Internal nodes correspond to the
calculation of a composite function. Leaves correspond to subsets of K3 to construct or to visualize.

Example 2

Our second CIFS example is a simple uniform quadratic B-spline curve with 4 control points.
Figure 1.5 gives the automaton (left) and the attractors with corresponding transformations (right).
This is a special kind of CIFS, sometimes called Projected IFS in the literature [ZT96, GTB00].

ba♮

0

1

1

0 Aa

(0, 0, 1)

(0, 1, 0)
T b
1 (Ab)

Ab

T a
0 (Ab)

T a
1 (Ab)

T b
0 (Ab)

(1, 0, 0)

Figure 1.5: The 2D uniform quadratic B-spline curve can be defined as a projection of an attractor
from the three-dimensional barycentric space.

The automaton transition functions are the following:

δ(a, 0) = b δ(b, 0) = b
δ(a, 1) = b δ(b, 1) = b

Now the space associated with state a is still the Euclidean plane R2, while a three-dimensional
barycentric space is associated with state b. Given the coordinates of the 4 control points P0, P1, P2

and P3, we can express the transformations as follows:

T a0

xy
z

 =

[
P x0 P x1 P x2
P y0 P y1 P y2

]xy
z

 T a1

xy
z

 =

[
P x1 P x2 P x3
P y1 P y2 P y3

]xy
z



14 CHAPTER 1. BOUNDARY CONTROLLED ITERATED FUNCTION SYSTEMS

T b0

xy
z

 =

3/4 1/4 0
1/4 3/4 3/4
0 0 1/4

xy
z

 T b1

xy
z

 =

1/4 0 0
3/4 3/4 1/4
0 1/4 3/4

xy
z


The transformations T a0 and T b1 are two projections of the same attractor representing the basis
functions of the uniform quadratic B-spline illustrated in figure 1.5 (on the left side). Figure 1.6
gives the evaluation tree for the approximation Ka

3 . Note that besides the 1st level of subdivision
this is an ordinary IFS (all nodes are blue). The attractors of a CIFS are uniquely defined if
operators associated with each cycle in the control graph are contractive. Hence, we do not have
any constraints on the coordinates of the control points, as T ai do not appear in any cycle.

T a
1T a

0

T b
0 T b

1

T a
1T a

0

T b
0 T b

1

T a
1 T

b
0 T a

1 T
b
1T a

0 T
b
0 T a

0 T
b
1

T b
1T b

0

T a
1 T

b
0T

b
0 T a

1 T
b
1T

b
1T a

0 T
b
0T

b
0 T a

0 T
b
1T

b
0 T a

0 T
b
1T

b
1T a

0 T
b
0T

b
1 T a

1 T
b
0T

b
1

T a
1 T

b
1T

b
1 (K

b)

Kb

Id

Kb

T a
0 T

b
0T

b
0 (K

b)

T b
1T b

0

Kb Kb Kb Kb Kb

T b
1T b

0 T b
1T b

0

T a
0 T

b
1T

b
0 (K

b) T a
1 T

b
0T

b
0 (K

b)T a
0 T

b
0T

b
1 (K

b)

Kb

T a
1 T

b
1T

b
0 (K

b)T a
1 T

b
0T

b
1 (K

b)T a
0 T

b
1T

b
1 (K

b)

T a
1 T

b
1T

b
0

Figure 1.6: CIFS evaluation tree calculated to the third level. Note that the pattern of pink/blue
nodes has changed completely from the previous example.

1.2 Boundary Controlled IFS

IFS and CIFS can model complex shapes; it is, however, difficult to control their topological
properties. These shapes are determined by a set of geometry operators. Modifying these operators
leads to both global and local changes in the shape and affects not only geometry but also topology.
In order to control the topological structure of the modeled shape, we enrich CIFS by integrating
a topological model to obtain BCIFS (Boundary Controlled Iterated Function System).

In standard CAD systems, topology and geometric properties of shapes are separated. The
topological structure is encoded by a set of topological cells (faces, edges, vertices) interconnected
by a set of incidence and adjacency relations. The incidence relations are based on the nesting
of cells: each face is bounded by a set of edges, and each edge is bounded by two vertices. The
adjacency relations are based on sharing cells: two adjacent faces share a common edge, and two
adjacent edges are bounded by a common vertex.

Inspired by this approach, we propose to extend the CIFS model by integrating B-rep rela-
tions. BCIFS is thus an extension of a CIFS enriched by a description of topology. Sub-parts
of the attractor are identified as topological cells by specifying incidence constraints. These cells
are assembled during the subdivision process by adjacency constraints. These constraints induce
constraints on the subdivision operators of the CIFS.

Our B-rep structure is more general than the standard one. A topological cell may be fractal.
For example, a face can be the Sierpinski triangle or an edge can be the Cantor set, but the
topological structure remains consistent. Each topological cell corresponds to an attractor in a
certain space.

1.2.1 Specifying the topology

There are two types of transitions in the BCIFS automaton:

• transitions subdividing a topological cell;

1.2. BOUNDARY CONTROLLED IFS 15

• transitions embedding a topological cell in another one.

The alphabet Σ is also divided into:

• symbols of subdivision Σ÷ = {÷i | i = 0, · · · , n÷};
• symbols of incidence Σ∂ = {∂i | i = 0, · · · , n∂}.

Each subdividing transition δ(q,÷i) = w is associated with a subdividing operator T qi : Xw → Xq,
where q, w ∈ Q and ÷i ∈ Σ÷. Similarly, each embedding transition δ(q, ∂i) = w is associated with
an embedding operator Bqi : Xw → Xq, where q, w ∈ Q and ∂i ∈ Σ∂ .

Example

Let us illustrate the idea with an example. In this section we generate a continuous patch of a
free-form surface with 9 control points. This patch will be defined as the attractor Af of the
IFS (Xf ;T f0 , T

f
1 , T

f
2 , T

f
3), let us call it “facet”. We construct it as a B-rep structure with “edges”

corresponding to the attractor Ae of the IFS (Xe;T e0, T e1) and “vertices” corresponding to the
attractor Av of the IFS (Xv;T v0).

ef♮÷0...3

÷0

∂0...3 ÷1

∂0...1

v ÷0

v e v

fe e

v ve

∂0

∂1 ∂2

∂3

∂0 ∂1

∂1∂0

∂1 ∂1

∂0 ∂0

Figure 1.7: Left image: automaton representing a quad patch defined by its boundaries. Right
image: expanded incidence relations of the automaton .

Figure 1.7 gives the corresponding automaton. Note that the automaton has a hierarchical
structure: there are three separate IFS linked by incidence operators. We omit the evident step of
projecting the attractors into the modeling space. Refer to figure 1.5 to see how the projection is
carried out in general.

Incidence constraints

We start with the definition of the vertex attractor Av. To keep the example simple, we choose
Xv to be a 1-dimensional barycentric space and T v0 is simply a 1 × 1 identity matrix. The edge
attractor will be defined in a 3-dimensional barycentric space.

We choose the inclusion of Av (recall that it is just a point) inside the attractor Ae, it defines
boundaries of the edge Ae. Let us say we want the vertex to be included twice at the coordinates
(1, 0, 0) and (0, 0, 1). That is to say, we need certain constraints on the matrices T e0 and T e1 to
force points (1, 0, 0) and (0, 0, 1) to belong to the attractor Ae.

Let us assume Be0 =
[
1 0 0

]>
and Be1 =

[
0 0 1

]>
. Now we can express first incidence

constraints as

Be0T
v
0 = T e0B

e
0

Be1T
v
0 = T e1B

e
0

These constraints impose a structure of the matrices T e0 and T e1:

T e0 =

1 · ·
0 · ·
0 · ·

 T e1 =

· · 0
· · 0
· · 1

 ,

16 CHAPTER 1. BOUNDARY CONTROLLED ITERATED FUNCTION SYSTEMS

where dots stand for arbitrarily chosen reals.

The subset of Ae defined as an attractor of the IFS (Xe;T e0) is equal to the Be0Av, the attractor
Av embedded by the action of Be0. In the same manner, (0, 0, 1) is the fixed point of T e1 and thus
contained in the Ae. Note that the first constraint implies that T e0 must have all eigenvectors of
T v0 transformed by the action of the embedding operator Be0.

Property. More generally, let us show that the incidence constraints force the inclusion of the
boundary CIFS attractors into the corresponding cell. If a cell AY has a number of boundaries
defined by attractors AXi , then we want to show that each AXi (when embedded in the space
associated with state Y) is a sub part of AY : in other words, we want to show that the inclusion
BYi AXi ⊂ AY holds.

The incidence constraints have the following expression:

BYi T
Xi
j = TYf(i,j)B

Y
g(i,j),

with i ∈ ΣY∂ and j ∈ ΣXi
÷ . The functions f and g are simply the corresponding ordering of

the boundaries and subdivisions. For example, for a square patch with four boundaries, each
subdivided by two operators, we have |ΣY∂ | × |ΣXi

÷ | = 4× 2 constraints.

For each boundary embedding we can write the following:

BYi AXi = BYi
⋃

j∈Σ
Xi
÷

TXi
j AXi =

⋃
j∈Σ

Xi
÷

BYi T
Xi
j AXi =

⋃
j∈Σ

Xi
÷

TYf(i,j)B
Y
g(i,j)AXi .

This means that the boundary BYi AXi can be obtained as a union of other boundaries BYg(i,j)AXi

under the action of the subdivision operators. We can repeat this process ad infinitum. This
means that by restricting the generated language, every boundary BYi AXi can be generated solely
by operators TY and therefore the inclusion BYi AXi ⊂ AY holds.

We can choose any real values for the dots in the expression of T e0 and T e1, the attractor Ae
will include two points (1, 0, 0) and (0, 0, 1). Note that at this point the attractor Ae can be a
disjoint set of points. In the following subsection we add an adjacency constraint that will enable
the attractor Ae to be a continuous curve. Figure 1.8 provides an example of the attractor Ae
with the subdivision operators chosen as follows:

T e0 =

1 1/2 1/4
0 1/2 1/2
0 0 1/4

 T e1 =

1/2 0 0
1/4 1/2 0
1/4 1/2 1

 ,

Ae
T e
0 (Ae) T e

1 (Ae)

Av

Be
0(Av)

Be
1(Av)

Figure 1.8: Incidence constraints ensure the inclusion Be0Av ⊂ Ae and Be1Av ⊂ Ae, however they
do not guarantee the connectivity of the attractor Ae.

1.2. BOUNDARY CONTROLLED IFS 17

Let us define edge-to-facet embedding operators:

Bf0 =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

> Bf1 =

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

>

Bf2 =

0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

> Bf3 =

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

>

and the corresponding incidence constraints:

Bf0T
e
0 = T f0B

f
0 Bf0T

e
1 = T f1B

f
0

Bf3T
e
0 = T f2B

f
3 Bf3T

e
1 = T f3B

f
3

Bf1T
e
0 = T f0B

f
1 Bf1T

e
1 = T f2B

f
1

Bf2T
e
0 = T f1B

f
2 Bf2T

e
1 = T f3B

f
2 .

This particular form of Bf0 simply signifies that the corresponding edge depends on the first
three control points (out of nine total). If we take the first pair of constraints only, it ensures

that the attractor of the IFS (Xf ;T f0 , T
f
1) (recall that it is a sub-attractor of Af) is an image of

the edge Ae embedded by the action of Bf0 . In the same manner, three other pairs of constraints

ensure that Af contains edges Bf1Ae, Bf2Ae and Bf3Ae. Figure 1.9 shows an example of Af with
randomly fixed degrees of freedom.

Adjacency constraints

Here we add the adjacency constraints that enforce connection of corresponding attractors. Recall
that our attractors are self-similar, so after a subdivision one smaller copy of the attractor will be
adjacent to another smaller copy.

Figure 1.10 illustrates the idea. Attractor Ae is defined as a union of its subdivisions Ae =
T e0(Ae) ∪ T e1(Ae). Let us apply the following constraint:

T e0B
e
1 = T e1B

e
0.

This signifies that T e0(Ae) and T e1(Ae) must share a common vertex thus producing a connected
attractor Ae. Let us express the corresponding matrices explicitly:

T e0 =

1 a0 b0
0 a1 b1
0 1− a0 − a1 1− b0 − b1

 T e1 =

 b0 c0 0
b1 c1 0

1− b0 − b1 1− c0 − c1 1

 ,
We have 6 degrees of freedom left in the matrices; any choice of the coefficients ensures the
connectivity of the attractor of the IFS (Xe;T e0, T e1).

In exactly the same manner, we apply the adjacency constraints for the facet subdivision
operators:

T f0B
f
2 = T f1B

f
1

T f2B
f
2 = T f3B

f
1

T f0B
f
3 = T f2B

f
0

T f1B
f
3 = T f3B

f
0

Figure 1.11 provides an illustration. We omit an explicit expression of T f0...3 here, since it is
cumbersome but straightforward to obtain.

At this point (after applying incidence and adjacency constraints) the attractor of the IFS

(Xf ;T f0 , T
f
1 , T

f
2 , T

f
3) is guaranteed to have the topology of a quad patch. The degrees of freedom

left in the operators can only affect the geometric texture.
For instance, we can fix the coefficients of T f0...3 to produce a bi-quadratic Bézier patch (left

image in figure 1.12). But even randomly chosen coefficients produce a continuous surface (right
image in figure 1.12).

18 CHAPTER 1. BOUNDARY CONTROLLED ITERATED FUNCTION SYSTEMS

Af

Bf
0 (Ae)

Bf
1 (Ae)

Bf
3 (Ae)

Bf
2 (Ae)

Ae

Figure 1.9: As for the edge, facet incidence constraints ensure the inclusion Bf0Ae ⊂ Af , Bf1Ae ⊂
Af , Bf2Ae ⊂ Af and Bf3Ae ⊂ Af .

Ae
T e
0 (Ae) T e

1 (Ae)

Av
T e
0B

e
1(Av)

T e
1B

e
0(Av)

Figure 1.10: In order to obtain a continuous curve, it suffices to apply the constraint T e0B
e
1 = T e1B

e
0.

T f
0 B

f
2 (Ae) = T f

1 B
f
1 (Ae)

T f
0 B

f
3 (Ae) = T f

2 B
f
0 (Ae)

T f
1 B

f
3 (Ae) = T f

3 B
f
0 (Ae)

T f
2 B

f
2 (Ae) = T f

3 B
f
1 (Ae)

Af

Ae

Figure 1.11: Non-respect of the adjacency constraints leads to a disconnected patch.

1.2. BOUNDARY CONTROLLED IFS 19

Figure 1.12: After applying incidence and adjacency constraints, the attractor of the IFS
(Xf ;T f0 , T

f
1 , T

f
2 , T

f
3) is guaranteed to have the topology of a quad patch. The degrees of free-

dom left in the operators can only affect the geometric texture. Left image: the degrees of freedom
were fixed to produce a bi-quadratic Bézier patch; right image: even randomly chosen coefficients
produce a continuous patch.

1.2.2 Controlling the geometric texture

Full analysis of the differential behavior of produced shapes is beyond the scope of this section,
but in this section we try to illustrate how the BCIFS model can be used to control geometry (in
addition to topology). Refer to chapter 2 for more details on the subject.

Let us construct an edge bounded by two vertices, each depending on one control point. Each
vertex can be represented by the same state v, the only one possible for a one dimensional space
with its trivial subdivision operator : T v0 =

[
1
]
. Figure 1.13 provides the automaton.

÷0

÷1

♮e
∂0 ÷0

∂1

v

Figure 1.13: In this example the edge Ae is bounded by two different vertices Av0 and Av1 .

Let us assume Be0 =
[
1 0 0

]>
and Be1 =

[
0 0 1

]>
and the usual incidence and adjacency

constraints:

Be0T
v0
0 = T e0B

e
0

Be1T
v1
0 = T e1B

e
1

T e0B
e
1 = T e1B

e
0.

Solving for the incidence and adjacency constraints we obtain:

T e0 =

1 · a
0 · b
0 · c

 T e1 =

a · 0
b · 0
c · 1

with a+ b+ c = 1

In order to control the differential behavior at each vertex, we define two additional states, de-
noted by d0 and d1, with a two dimensional barycentric space associated with each one, and two

embedding operators, Be0
′ =

[
1 0 0
0 1 0

]>
and Be1

′ =

[
0 1 0
0 0 1

]>
, specifying which control points

are implied for each differential behavior. Each state has its own subdivision operator, respectively
T d00 and T d10 .

20 CHAPTER 1. BOUNDARY CONTROLLED ITERATED FUNCTION SYSTEMS

As for C0 continuity, we use incidence constraints for the differential continuity.

Be0
′T d00 = T e0B

e
0
′

Be1
′T d10 = T e1B

e
1
′.

The consequence is:

T d00 =

[
1 1− λ
0 λ

]
T d10 =

[
µ 0

1− µ 1

]

T e0 =

1 1− λ a
0 λ b
0 0 c

 T e1 =

a 0 0
b 1− µ 0
c µ 1


Attractors of Ad0 and Ad1 are points with coordinates given by the dominant eigenvectors of

T d00 and T d10 . Hence we know that Ad0 is a point with coordinates (1, 0) and Ad1 is a point with
coordinates (0, 1) in corresponding barycentric spaces.

Recall that incidence constraints embed all eigenvectors (and eigenvalues) of T d00 and T d10 into
T e0 and T e1. Therefore, if λ is a sub-dominant eigenvalue of T e0, then the half-tangent at the “left”
endpoint of the curve Ae is the vector (−1, 1, 0) (the first edge of the control polygon). In the same
manner, if µ is sub-dominant in T e1, then the “right” half-tangent is the vector (0,−1, 1), the 2nd
edge of the control polygon.

As for the C0 adjacency constraint, we can apply the same constraint for the half-tangents: 1

T e0B
e
1
′
[
−1
1

]
= T e1B

e
0
′
[
−1
1

]
⇒ T e0

 0
−1
1

 = T e1

−1
1
0

 .
Solving the incidence and adjacency constraints we obtain the following expression for the

subdivision operators:

T e0 =

1 1− λ 1−λ
2

0 λ λ+µ
2

0 0 1−µ
2

 T e1 =

 1−λ
2 0 0

λ+µ
2 µ 0

1−µ
2 1− µ 1

 .
Provided that λ and µ are positive sub-dominant eigenvalues (λ ≥ 1−µ

2 and µ ≥ 1−λ
2), the

attractor Ae is guaranteed to be a C1 curve.

1.2.3 Example

Given a set of control points and a subdivision method, construction of a CIFS whose attractor
is exactly the limit subdivision surface is straightforward. In this example, we push the concept a
bit further. We want to construct a solid arborescent structure, whose boundary is a subdivision
surface.

Figure 1.14 shows the core of the subdivision process. The final arborescent structure Aa is
defined as an iterative condensation of the attractor Ab. Here Ab is a limit subdivision surface for
a given mesh. The idea is simple: Aa is defined layer-by-layer. Ab covers the top of the shape,
then the second layer is defined by four smaller copies of Ab, the third layer has 16 copies of Ab
and so forth.

Both Aa and Ab have six facets; figure 1.15 shows the constraints we obtain on facets from the
nature of the subdivision process. We are free to choose two facets (one upper and one lateral) for
the attractor Ab, the other four are fixed automatically by our choice.

Finally, figure 1.16 gives the final shape of the attractor Aa.

1Strictly speaking, we do not need the equality of the half-tangents, collinearity suffices, so the adjacency con-

straint can be written as T e
0B

e
1
′
[
−α
α

]
= T e

1B
e
0
′
[
−1
1

]
for some α 6= 0.

1.2. BOUNDARY CONTROLLED IFS 21

T a
0...3(Aa)

Ab

Aa

T a
4 (Ab)

Aa

Figure 1.14: Arborescent structure of Aa is defined by iterative condensation of the attractor Ab.

Figure 1.15: Left: unfolding of the six facets of Ab. We are free to choose two of them; the other
four are fixed automatically by our choice. Right: our choice.

Figure 1.16: Left: mesh of control points for the Aa, right: the final shape of Aa.

22 CHAPTER 1. BOUNDARY CONTROLLED ITERATED FUNCTION SYSTEMS

1.3 Subdivision curves and surfaces as BC-IFS

While BC-IFS were motivated by a new universe of fractal shapes, it can perfectly reproduce
standard subdivision techniques. This section shows how to model famous curves and surfaces
with our B-rep Iterated Function Systems.

1.3.1 Regular patch

The quad patch example we have shown in figure 1.7 can be seen as a subdivision surface. Let us
show a correspondence between, say, a Doo-Sabin regular patch and the example we have shown
above.

A subdivision surface is a curved surface formed by recursively subdividing a regular grid of
control points until it approximates a smooth surface. The subdivision process usually generates
points on the basis of some spline function. A subdivision surface is thus like a spline patch, but
has more flexibility due to the fact that the original grid need not be rectangular. An example of a
subdivision scheme is the Doo-Sabin method. For the regular cases the method produces uniform
bi-quadratic B-spline surfaces.

The procedure is similar to the subdivision of curves: having selected a 3×3 patch of 9 original
control points one produces 16 new points, refer to figure 1.17 for an illustration. The original grid
(without loss of generality we start with the smallest grid for a bi-quadratic B-spline surface) is
drawn in red color while the refined one is drawn in green color. Then the process is restarted with
each of 3 × 3 sub-patches independently, figure 1.18 shows the parallelized tasks in blue. Each of
the refined grid patches (blue) in figure 1.18 can be seen as the original grid (red) under the action

of (left-to-right) T f0 , T f1 , T f2 and T f3 .
Boundary operators select six control points out of nine total. Then the incidence constraint

Bf1T
e
0 = T f2 B

f
1 can be illustrated with the left half of figure 1.19, compare it with the figure 1.9.

The adjacency constraint T f0 B
f
3 = T f2 B

f
0 is illustrated in the right half of figure 1.19, compare it

with the figure 1.11. These conditions impose the borders of the sub-patches to coincide. And,
finally, we will “import” three conditions from the previous section to force the borders be curves
and not, say, Cantor sets.

Imposing these constraints of the matrices T fi leave only three degrees of freedom. Figure 1.20
shows an illustration. The leftmost image is the control grid for the subdivision surface, the middle
image is the surface with Doo-Sabin coefficients {.5625, .1875, .0625} and the rightmost image is
the surface with arbitrarily chosen coefficients {.09, .21, .49}. Note that the attractor of the IFS is
always a surface, even if all three variables are taken randomly.

1.3.2 Extraordinary vertices

Of course, in real life it is impossible to use regular grids only, let us discuss the relationship
between Iterated Function Systems and subdivision surfaces with extraordinary points. After one
round of subdivision the Doo-Sabin scheme produces a mesh whose vertices all have the same
degree 4, and most faces are rectangular, except for faces arising from original vertices of degree
not equal to four and from non-rectangular faces. Figure 1.21 shows an example of the Doo-Sabin
scheme on a “suitcase corner” mesh.

It is a very interesting fact that after one round of subdivision, the number of non-rectangular
faces remains constant, and it turns out that these faces shrink and tend to a limit which is their
common centroid. The centroid of each non-rectangular faces is referred to as an extraordinary
point. Figure 1.22 illustrates the property. The original “suitcase corner” patch has 8 control
points, whereas the regular patch has 9 points. The first step of the subdivision generates 15
new points. Then one selects three regular (with 9 points) patches and an extraordinary (with 8
points) patch and subdivides them independently. Therefore, the number of extraordinary points
is preserved, since no extraordinary points could emerge from regular patches.

Let us build an IFS whose attractor is the limit surface of the Doo-Sabin subdivision scheme.
To clarify the construction we start with extraordinary curves. The lower boundary of the “suitcase
corner” depends on the control points shown in figure 1.23. Iterating on the control points, one
gets a shrinking grid that tends to a curve. The original (red) grid has 5 vertices and the regular
Doo-Sabin boundary grid must contain 6 vertices. At the second level of the process we have two
different patches (in blue): an extraordinary and a regular one. Since they have different number
of control points, the corresponding spaces differ in number of dimensions and we have to create

1.3. SUBDIVISION CURVES AND SURFACES AS BC-IFS 23

Figure 1.17: Doo-Sabin subdivision, the original grid and the refined one (after one subdivision
step).

Figure 1.18: The second step of the Doo-Sabin subdivision process: one selects four 3× 3 patches
and refines them independently.

Figure 1.19: Two samples of connectivity constraints. On the left: incidence constraint Bf1T
e
0 =

T f2 B
f
1 , boundary of the subdivision is the subdivision of the boundary. On the right: adjacency

constraint T f0 B
f
3 = T f2 B

f
0 , or inner patch stitching.

Figure 1.20: Doo-Sabin subdivision. At the left: the control grid. In the middle and at the right
are the limit surfaces obtained with traditional coefficients and randomly chosen coefficients.

24 CHAPTER 1. BOUNDARY CONTROLLED ITERATED FUNCTION SYSTEMS

Figure 1.21: Doo-Sabin subdivision with extraordinary vertices, the original grid and the refined
one (after one subdivision step).

Figure 1.22: The second step of the Doo-Sabin subdivision process: one selects one extraordinary
and three regular patches and refines them independently.

Figure 1.23: Doo-Sabin: subdivision of the boundary with an extraordinary point.

separate nodes in the control graph. However, the blue grids share four control points, therefore,
there is a relation between the nodes.

Figure 1.24 presents the control graph for the subdivision of the boundary. The top row is the
zero level of the subdivision: the left endpoint of the curve depends on 3 control points, whereas
the right one depends on 4 vertices. So, an extraordinary edge is bordered with two types of
vertices: a regular and an extraordinary one. Then, the bottom row shows the first level of the
subdivision: the original grid (red, 5 points) is split into two blue sub-grids of 5 and 6 points each.
One grid is again an extraordinary edge, and another is a perfectly regular edge. Figure 1.25 shows
the compact version of the control graph.

We have determined the structure of the IFS, now it is time to impose conditions to insure the
connectivity of the attractor. First joining conditions are straightforward, since there emerges a
regular sub-curve. We simply import the conditions from the section 1.2.1:

Be0T
v
0 = T e0B

e
0

Be1T
v
0 = T e1B

e
0

T e0B
e
1 = T e1B

e
0.

There are three other constraints easy to deduce, follow the arrows in the figure 1.24 to under-
stand the logic. First of all, the boundary of the subdivision is the subdivision of the boundary.
For the “left” endpoint: Bê0T

v̂
0 = T ê0B

ê
0 For the “right” one: Bê1T

v̂
0 = T ê1B

e
1. Finally, blue grids

share control points, therefore: T ê0B
ê
1 = T ê1B

e
0.

Once we have constructed an IFS for the boundary, the surfaces are to be dealt in the same
way. Remember the figure 1.22. It shows that for an patch the subdivision process constructs
three regular sub-patches and one extraordinary patch. The patch has two types of boundaries:
the regular (top and right) and the extraordinary one (left and bottom). Then the structure of the
IFS may be outlined as it is shown in figure 1.26. The joining conditions are constructed in the
same manner. Note that for the sake of clarity we omit vertex nodes. In fact, we just “include”
the graph shown in figure 1.25. Indeed, it is very convenient to add the constraints level-by-level
(in B-rep sense) and not to obfuscate the highest-level representation with unnecessary details.

1.3. SUBDIVISION CURVES AND SURFACES AS BC-IFS 25

B ê
0 B ê

1

T ê
1T ê

0
T v̂
0 T v

0

B ê
0 B ê

1 Be
1

Be
0

Figure 1.24: Iteration on a control net, refer to the figure 1.25 for the corresponding automaton.

♮ê

÷0

÷1

∂0

∂1

∂1

∂0

÷0

÷0v

v̂

e

÷1

÷0

Figure 1.25: B-rep: the edge-vertex topolog-
ical structure for an extraordinary curve.

ê

ef

÷0

÷1...3

÷0...3

∂0...3

∂2,3

∂0,1
♮f̂

Figure 1.26: B-rep: the face-edge-vertex
topological structure for an extraordinary
patch.

Figure 1.27: Left image: Doo-Sabin subdivision scheme applied on the suitcase corner mesh; right
image: the subdivision with modified weights (refer to section 2.2.1 for more details), the studied
curves (patch borders) are highlighted.

26 CHAPTER 1. BOUNDARY CONTROLLED ITERATED FUNCTION SYSTEMS

Therefore, in the case of Doo-Sabin “suitcase corner” patch there are two additional free variables
in our IFS. Refer to figure 1.27 for an example. which affect surface features near the extraordinary
point.

1.3.3 Non-uniform B-spline curves

A primer on free form curves

The general way to define a free form curve is to take a set of control points (P0, P1, . . . , Pn) in R2 or

R3 with a set of blending functions (f0(t), f1(t), . . . , fn(t)), and to define a curve C(t) =
n∑
i=0

fi(t)Pi.

There are may ways to define the blending functions, for example, for B-splines they can be
expressed using Cox-de Boor recursion formula. Given a non-decreasing sequence (t0, t1, . . . , tm),
known as the knot vector, then a polynomial fi,p of degree p on the interval ti < t < ti+1 is given
by the recurrence relations

fi,p(t) =
t− ti

ti+p − ti
fi,p−1(t) +

ti+p+1 − t
ti+p+1 − ti+1

fi+1,p−1(t),

fi,0 = 1 if ti ≤ t ≤ ti+1 and 0 otherwise.
As can be seen from the above, to define a B-spline curve, one starts with n+ 1 control points

(P0, P1, . . . , Pn) and m + 1 knots (t0, t1, . . . , tm). Then, having defined the degree of the spline

p ≡ m− n− 1, the equation for p-degree B-spline with is C(t) =
n∑
i=0

Pifi,p(t), tp ≤ t ≤ tn+1. Note

that p must be at least 1 (linear) and can be not greater than n+1 (the number of control points).
This set of basis functions has the following properties:

• fi,p(t) is a degree p polynomial in t

• Non-negativity:
For all i, p and t, basis function fi,p(t) is non-zero on [ti, ti+p+1). Or, equivalently, fi,p(t) is
non-zero on p+ 1 knot spans [ti, ti+1), [ti+1, ti+2), . . . , [ti+p, ti+p+1).

• On any span [ti, ti+1), at most p+1 degree p basis functions are non-zero, namely: fi−p,p(t),
fi−p+1,p(t), fi−p+2,p(t), . . . , fi,p(t). Therefore, B-spline depends on at most p + 1 nearest
control points at any point t.

• Partition of Unity:
The sum of all non-zero degree p basis functions on span [ti, ti+1) is 1. The previous property
shows that fi−p,p(t), fi−p+1,p(t), fi−p+2,p(t), . . . , fi,p(t) are non-zero on [ti, ti+1). This one
states that the sum of these p+ 1 basis functions is 1.

Curve knot doubling For the sake of clarity of presentation the following examples are provided
for the quadratic case. Figure 1.28 shows an example of blending functions for a non-uniform
quadratic B-spline with four control points. Thus, there are four blending functions, defined by a
knot vector (ti) and the degree p ≡ 2 of the spline. The curve is defined on the interval [t2, t4].

f0,2(t)

f1,2(t)
f2,2(t)

f3,2(t)

0

1

t1t0 t2 t3 t4 t5 t6

Figure 1.28: B-spline blending functions as like as Bézier ones are non-negative and have “partition
of unity” property.

1.3. SUBDIVISION CURVES AND SURFACES AS BC-IFS 27

Cox-de Boor recursion formula yields that all blending functions are piecewise quadratic poly-
noms (where non-zero). Moreover, the shape of the polynoms depends on three adjacent knot
intervals. Therefore it is easy to see that knots t0 and t6 do not affect the shape of the B-spline
curve, because the curve is defined on the interval [t2, t4]. For our purposes it is convenient to use
interval lengths instead of knots. Thus, (we discard two knots t0 and t6) for a set of four control
points {P0, P1, P2, P3} we have four knot intervals {u0, u1, u2, u3}, where ui = ti+2 − ti+1.

To draw the curve there are two options. Either we draw it directly with the definition C(t) =
n∑
i=0

fi(t)Pi or we can use an iterative approach. In the latter case, the idea is to double the number

of control points (as well as the number of knots). In the knot insertion process, a knot is added to
the knot vector of a given B-spline. This results in an additional control point and a modification
of a few existing control points. The end result is a curve defined by a larger number of control
points, but which defines exactly the same curve as before knot insertion. If a new knot is inserted
at the midpoint of each current knot interval, the resulting control polygon has twice as many
control points, and their coordinates Qi are [SZSS98]:

Q2i =
(ui + 2ui+1)Pi + uiPi+1

2(ui + ui+1)
(1.3)

Q2i+1 =
ui+1Pi + (2ui + ui+1)Pi+1

2(ui + ui+1)
(1.4)

P0

P3P1

P2

u0 u1 u3u2

0

1

Q0

Q1
Q2

Q4

Q5

Q3

u0

2
u1

2
u1

2
u2

2
u2

2
u3

2

0

1

Figure 1.29: The set of control points {P0, P1, P2, P3} and the knot vector {u0, u1, u2, u3} de-
fine exactly the same B-spline curve as the control points {Q0, . . . Q5} with the knot vector
{u0

2 ,
u1

2 ,
u1

2 ,
u2

2 ,
u2

2 ,
u3

2 }.

Figure 1.29 illustrates both approaches. Starting with the control points {P0, P1, P2, P3} and
the knot vector {u0, u1, u2, u3}, it is possible to draw the curve by blending directly the functions
f0...3,2(t). The top row of the figure gives an illustration.

The bottom row of the figure represents the second approach. Having inserted new knots at the
midpoint of each knot interval, we get the control polygon {Q0, . . . Q5}. The new polygon along
with the new knot vector {u0

2 ,
u1

2 ,
u1

2 ,
u2

2 ,
u2

2 ,
u3

2 } defines exactly the same curve, however, points
Qi lie closer to the curve than the initial points Pi. We can get a set of control points that well
approximates the curve just by repeating the process few times.

Note that it is possible to stretch uniformly the knot vector without affecting the curve, i.e.,
the curve from figure 1.29 may be equally defined by the control points {Q0, . . . Q5} and the knot
vector {u0, u1, u1, u2, u2, u3}.

Figure 1.30 shows one more iteration of the curve knot doubling process. Note that the simplest
quadratic B-spline curve is defined with three control points, whereas our example has four control
points. It is possible to split our example into two different curves. Refer to the top row of the
figure 1.29. The first part of the curve (shown in red) is defined by the control points {P0, P1, P2}
with the knot vector {u0, u1, u2}, and the second (the green one) is given by the control points

28 CHAPTER 1. BOUNDARY CONTROLLED ITERATED FUNCTION SYSTEMS

u0, u1, u1

u1, u2, u2

u0, u1, u1

P1

Q2 Q2

R2

R0

R2 R2 R4
R4 R4

Q2

Q4

P3P1

Q4

Q5

R9

P0

P2 P2

Q1 Q1

Q0

Q3 Q3 Q3

R1 R1

R3R3
R3

R7 R7 R7R5R5R5

R6 R6 R6

R8 R8

R0

R4

R1

R2

R3

R5

R6

R9

R7

R8

u0, u1, u2

u1, u2, u3

u1, u1, u2

u2, u2, u3

u1, u1, u2uniformuniform u1, u2, u2 uniform uniform u2, u2, u3

Figure 1.30: Curve knot doubling along with the splitting into atomic parts. Starting from the
second iteration, uniform parts emerge.

{P1, P2, P3} with the knot vector {u1, u2, u3}. The joint of the curves is assured by the overlap of
the control sets.

In the same manner, the curve defined by {Q0, . . . Q5} and {u0, u1, u1, u2, u2, u3} can be split
into four elementary curves (the second row of the figure 1.30). Going further, the curve with
control points {R0, . . . R9} is the union of eight elementary curves. The interesting point here is
that the curve with control points {R1, R2, R3} has the knot vector {u1, u1, u1}, and it means that
it is a uniform B-spline curve. Moreover, starting with a uniform B-spline, no non-uniform curve
can emerge. Thus, starting from the second iteration of the knot doubling process, the number of
non-uniform elementary curves is stationary.

Figure 1.31: From left to right: the curve at iteration 0 (original control points), iteration 2 and
iteration 6. Regular parts of the curve are shown in green, whereas non-uniform ones are in red.

Figure 1.31 illustrates the process. At the very beginning four control points define the non-
uniform B-spline curve. After the second iteration the very same curve consists of eight elementary
pieces (refer to the third row of the figure 1.30). There are four uniform pieces, the corresponding
parts of the curve are shown in green. As the number of elementary pieces grows, each piece
shrinks. It turns out that the non-uniform curve knot doubling is just a subdivision scheme with
few singular points.

Subdivision masks

Figure 1.32 gives the schema of the process, read it along with the figure 1.30. At the very beginning
we have three control points P0,1,2 with three knot intervals. This phase is shown by the uvw node
in the schema. Then the limit curve is split into two parts with control points Q0,1,2 and Q1,2,3,
each of them depends on two original knot intervals. We may say that we apply two different
transformations (shown by p0 and p1) to obtain the new control points, in other words:[

Q0 Q1 Q2

]
=
[
P0 P1 P2

]
× p0(u0, u1, u2) : uvv node[

Q1 Q2 Q3

]
=
[
P0 P1 P2

]
× p1(u0, u1, u2) : vvw node

1.3. SUBDIVISION CURVES AND SURFACES AS BC-IFS 29

r1r0

p1

q3

q2

uvw

p0

q1

vvw

vvv

q0 uvv

Figure 1.32: Schema of the knot insertion process.

The second iteration generates four groups of control points:[
R0 R1 R2

]
=
[
Q0 Q1 Q2

]
× q0(u0, u1) : uvv node[

R1 R2 R3

]
=
[
Q0 Q1 Q2

]
× q1(u0, u1) : vvv (uniform) node[

R2 R3 R4

]
=
[
Q1 Q2 Q3

]
× q2(u1, u2) : vvv (uniform) node[

R3 R4 R5

]
=
[
Q1 Q2 Q3

]
× q3(u1, u2) : vvw node

Note that the transformations depend on the initial knot vector, however, they does not change
over time, i.e., once the knot vector is given, the corresponding matrices are constant.

Let us determine the relationship between the transformations. We know that after the first
iteration uvv and vvw nodes must share two control points Q1 and Q2. Here comes naturally the
first constraint.

[
Q1 Q2

]
=
[
Q0 Q1 Q2

]
×

0 0
1 0
0 1

 =
[
P0 P1 P2

]
× p0(u0, u1, u2)×

0 0
1 0
0 1


[
Q1 Q2

]
=
[
Q1 Q2 Q3

]
×

1 0
0 1
0 0

 =
[
P0 P1 P2

]
× p1(u0, u1, u2)×

1 0
0 1
0 0


Thus, p0(u0, u1, u2)×

0 0
1 0
0 1

 = p1(u0, u1, u2)×

1 0
0 1
0 0

. This equation states that two last columns

of the matrix p0 must be equal to the two first columns of the matrix p1. Let us write down the
matrices. Remember that the coefficients of the matrices are functions of three parameters (the
knot vector).

p0(u0, u1, u2) =

a0 b0 c0
a1 b1 c1
a2 b2 c2

 p1(u0, u1, u2) =

b0 c0 d0

b1 c1 d1

b2 c2 d2


Then the second constraint may be written as follows:

[
Q2 Q3

]
=
[
Q1 Q2 Q3

]
×

0 0
1 0
0 1

 =
[
P0 P1 P2

]
× p1(u0, u1, u2)×

0 0
1 0
0 1


[
Q2 Q3

]
=
[
Q2 Q3 Q4

]
×

1 0
0 1
0 0

 =
[
P1 P2 P3

]
× p0(u1, u2, u3)×

1 0
0 1
0 0


This means that for all possible configurations of P0, P1, P2, P3 and u0, u1, u2, u3 the following
equations must be held:

P0 ∗ c0(u0, u1, u2) + P1 ∗ c1(u0, u1, u2) + P2 ∗ c2(u0, u1, u2) =
P1 ∗ a0(u1, u2, u3) + P2 ∗ a1(u1, u2, u3) + P3 ∗ a2(u1, u2, u3)

P0 ∗ d0(u0, u1, u2) + P1 ∗ d1(u0, u1, u2) + P2 ∗ d2(u0, u1, u2) =
P1 ∗ b0(u1, u2, u3) + P2 ∗ b1(u1, u2, u3) + P3 ∗ b2(u1, u2, u3)

30 CHAPTER 1. BOUNDARY CONTROLLED ITERATED FUNCTION SYSTEMS

The only case to make the system feasible is when c0 ≡ d0 ≡ a2 ≡ b2 ≡ 0 and the rest are functions
depending on two parameters only, related as follows:

a0(u1, u2, ·) ≡ c1(·, u1, u2) b0(u1, u2, ·) ≡ d1(·, u1, u2)

a1(u1, u2, ·) ≡ c2(·, u1, u2) b1(u1, u2, ·) ≡ d2(·, u1, u2)

Now let us remember equations (1.3) and (1.4). The equations perfectly fit into the deduced
constraints. Indeed, it is possible to rewrite the equations in the following manner:

p0(u, v, w) =


u+2v

2(u+v)
v

2(u+v) 0
u

2(u+v)
2u+v

2(u+v)
v+2w

2(v+w)

0 0 v
2(v+w)

 p1(u, v, w) =


v

2(u+v) 0 0
2u+v

2(u+v)
v+2w

2(v+w)
w

2(v+w)

0 v
2(v+w)

2v+w
2(v+w)


The relationship between the transformations p0,1 and q0,1,2,3, r0,1 can be deduced in the very

same manner. The transformations r0 and r1 correspond to uniform parts, therefore it is possible
to take the coefficients from the subdivision masks directly (or from the equations (1.3) and (1.4)
with equal knot intervals):

r0 =

0.75 0.25 0
0.25 0.75 0.75

0 0 0.25

 r1 =

0.25 0 0
0.75 0.75 0.25

0 0.25 0.75


q0(u, v, ·) =

 u+2v
2(u+v)

v
2(u+v) 0

u
2(u+v)

2u+v
2(u+v) 0.75

0 0 0.25

 q1(u, v, ·) =

 v
2(u+v) 0 0
2u+v

2(u+v) 0.75 0.25

0 0.25 0.75


q2(·, v, w) =

0.75 0.25 0
0.25 0.75 v+2w

2(v+w)

0 0 v
2(v+w)

 q3(·, v, w) =

0.25 0 0
0.75 v+2w

2(v+w)
w

2(v+w)

0 v
2(v+w)

2v+w
2(v+w)


Controlled IFS

In fact, we have just built a controlled iterated function system, whose attractor is exactly the
non-uniform B-spline curve. To conclude, the control graph (refer to figure 1.32) and the above
transformations p0,1, q0,1,2,3 and r0,1 define a graph-directed IFS with the B-spline curve for its
attractor. Thus, a non-uniform B-spline curve is a particular case of a self-similar (fractal) curve.
In the previous section we have used the coefficients deduced by Sabin et al. What happens if
we change the coefficients? The connectivity constraints we have imposed in the previous section
force the attractor to be a connected (in general case non-differentiable) curve. Thus, the above
constraints impose the following shape of the transformations:

p0(u, v, w) =

1− a(u, v) b(u, v) 0
a(u, v) 1− b(u, v) 1− a(v, w)

0 0 a(v, w)

 r0 =

1− c d 0
c 1− d 1− c
0 0 c


p1(u, v, w) =

 b(u, v) 0 0
1− b(u, v) 1− a(v, w) b(v, w)

0 a(v, w) 1− b(v, w)

 r1 =

 d 0 0
1− d 1− c d

0 c 1− d


q0(u, v, ·) =

1− a(u, v) b(u, v) 0
a(u, v) 1− b(u, v) 1− c

0 0 c

 q1(u, v, ·) =

 b(u, v) 0 0
1− b(u, v) 1− c d

0 c 1− d


q2(·, v, w) =

1− c d 0
c 1− d 1− a(v, w)
0 0 a(v, w)

 q3(·, v, w) =

 d 0 0
1− d 1− a(v, w) b(v, w)

0 a(v, w) 1− b(v, w)


The leftmost image of the figure 1.33 shows an attractor of the IFS with randomly chosen (with

respect to the deduced shape) elements of the matrices.
A recent study of fractal curves [BGN08] introduces the notion of half-tangents in the endpoints

of a curve. In fact, a large family of fractal curves possesses half-tangents in the endpoints (e.g. the
leftmost image of figure 1.33). The paper states that the half-tangents depend on the eigenvector
corresponding to the second largest eigenvalue of the transformation.

1.3. SUBDIVISION CURVES AND SURFACES AS BC-IFS 31

Figure 1.33: At the left: the curve has no derivatives at all (however, it does have half-tangents in
the endpoints); in the middle and at the right: the curve has no derivative at the extraordinary
point.

First of all, having defined half-tangents for the endpoints of a curve, we can define two half-
tangents for the midpoint of the curve. That is so, one iteration of the subdivision process splits
our curve into two independent ones and it is possible to define half-tangents for the endpoints
of each one. If the half-tangents exist and coincide in the midpoint, we get C1 continuity for the
curve in the midpoint. If we continue the reasoning, we obtain half-tangents defined for a set of
points dense in the curve.

There are four types of joints for our IFS curve: uvv − vvv, vvv − vvv, vvv − vvw, vvw − uvv
(refer to the third row of the figure 1.30). Let us consider the joint between vvw and uvv nodes.
In our example there one point in the middle of the curve with this type of joint.

The transformation q0 has three eigenvalues: (1, c, 1−a−b) with the corresponding eigenvectorsba
0

 ,

 −b
1− a− c

a+ b+ c− 1

 ,

 1
−1
0

, as well as q3 has (1, d, 1−a−b) and

0
b
a

 ,

a+ b+ d− 1
1− b− d
−a

 ,

 0
1
−1

.

The eigenvectors corresponding to the eigenvalues 1 give fixed points of the transformations q0 and
q3. The half-tangents depend of the eigenvector corresponding to the second largest eigenvalue,
i.e. for q0 there are two options: either c > 1− a− b and then the half-tangent depends on three
control points, or c ≤ 1− a− b and the half-tangent depends on two control points.

The C1 continuity in this point may be obtained if the half-tangents coincide. We know that the
vvw and uvv nodes share two control points. Thus, if the half-tangents depend on the position of
the common control points only, the C1 continuity will be achieved. To resume: the C1 continuity
in the joint vvw − uvv is ensured by the conditions{

c ≤ 1− a− b
d ≤ 1− a− b

In the same way we can write down the conditions for the vvv − vvv joint. The eigenvalues

and eigenvectors for r0 and r1 are respectively (1, 1− c− d, c),

dc
0

 ,

 1
−1
0

 ,

 −d
1− 2c

2c+ 2d− 1

 and

(1, 1−c−d, d)

0
d
c

 ,

 0
1
−1

 ,

c+ 2d− 1
1− 2d
−c

. Therefore, the C1 continuity in all joints of vvv−vvv

type is ensured by the following conditions:{
c ≤ 1− c− d
d ≤ 1− c− d

The continuity in uvv − vvv and vvv − vvw joints may be deduced in the same manner, but the
conditions obtained are more feeble that the above ones. The leftmost image of the figure 1.33
shows a curve where vvv− vvv joining conditions are not satisfied. In the middle and at the right
of the figure there are curves that break the joining condition only in the “extraordinary” point.

This quick and incomplete study gives us a foretaste for the next chapter, where we will go
through all aspects of differentiating fractal attractors given by affine IFS.

Chapter 2

Tangent spaces for self-similar
shapes

This chapter presents a continuation of works realized by Bensoudane et al [Ben09] and Podkorytov
et al [Pod13]. It is a first step towards full control of geometrical texture of objects we create with
BC-IFS. This kind of analysis is useful when creating subdivision schemes to guarantee physical
properties of modelled shapes.

We give a definition of a tangent subspace from a purely geometrical point of view. We want to
avoid to define the tangent depending on a parameterization, because given the complex nature of
self-similar shapes it may be difficult to find correct parameterizations. Here we focus on analyzing
smoothness of attractors of affine Iterated Function Systems. So, first of all, what a tangent is?

Definition 1 (Tangent space). Let p be a point of some set A ⊂ Rn. An affine subspace E is said
to be tangent to A in point p if:

1. p ∈ E,

2. for any ε > 0 there exists a ball B(p, r) centered in p with radius r such that ∀x ∈ A ∩
B(p, r)⇒ ‖x−x⊥E‖

‖x−p‖ < ε, where x⊥E is the orthogonal projection of x onto E,

3. dim(E) ≥ 1 and dim(E) is a minimum of all possible subspaces E that satisfy above condi-
tions.

This is essentially the same definition Falconer [Fal90, p. 86] uses in his book, refer to figure 2.1
for an illustration. While including the standard notion of tangents, this definition allows to define
tangents without introducing explicitly a parameterization. Moreover, it also includes other cases,
figure 2.2 provides an illustration. For example, 3D parametric curve (t cos 1/t, t sin 1/t, t2) does
not possess a tangent line at the origin, however the plane Oxy satisfies the definition of a tangent
subspace. Another example is a 3D parametric surface (x, y, (x2 + y2)1/4) that is tangent to the
z-axis at the point (x, y) = (0, 0).

An outline of our approach

In this chapter we propose a method to check differential behavior of an IFS attractor for a point
with periodic address. Recall that any point of an IFS attractor possesses at least one address.
An address is an infinte sequence of indices of IFS transformations: if we take an arbitrary (non-
empty) compact subset and apply IFS (contractive) transformations corresponding to the address
sequence, the compact converges to a point. Thus this sequence addresses the point. Currently we
have a simple way to check differential behaviour only for points with periodic addresses (recall
that they are dense in the attractor). Aperiodic points will be addressed in nearest future works.

If a point has multiple addresses, it suffices to verify that the differential behavior is the same
for all of them, so we focus here on checking a single address. Moreover, without loss of
generality we can focus on the fixed point of an IFS transformation: indeed, if we want to
study a point with a periodic address other than a fixed point we can simply enrich our IFS with a
composed transformation corresponding to the period. It does not alter the attractor, but provides
us a convenient basis.

32

33

p

E

B(p, r)

A

ε

p

ε

Figure 2.1: For A to have a tangent E at point p means that for any cone generated by E and ε
there must be a ball B(p, r) with radius r such that all points A ∩B(p, r) are in the given cone.

Figure 2.2: Left: parametric curve (t cos 1/t, t sin 1/t, t2) is tangent to the plane Oxy. Right:
parametric surface (x, y, (x2 + y2)1/4) is tangent to the z axis.

Let us consider the IFS attractor we used to illustrate the tangent definition. The corresponding
IFS consists of four transformations:

T0

([
x
y

])
=

[
0.25 0

0 0.5

] [
x
y

]
T1

([
x
y

])
=

[
0.45 0.15
−0.15 0.45

] [
x
y

]
+

[
−0.8
0.6

]
T2

([
x
y

])
=

[
0.3 −0.03
0.03 0.3

] [
x
y

]
+

[
−0.1
0.5

]
T3

([
x
y

])
=

[
−0.3 0.4
−0.4 −0.3

] [
x
y

]
+

[
0.2
−0.7

]
We want to study the behavior in the vicinity of the origin, p = 0 (note that p is the fixed point of
T0). It is natural to suppose that the behavior around the fixed point is dictated by the eigenbasis
of T0. T0 has two eigenvectors ~v1 = (0, 1) and ~v2 = (1, 0) with eigenvalues λ1 = 0.5 and λ2 = 0.25,
correspondingly. T0 contracts the space slower in the ~v1 direction, thus it is natural to expect that
the tangent space E = span(~v1). Figure 2.3 shows an illustration.

34 CHAPTER 2. TANGENT SPACES FOR SELF-SIMILAR SHAPES

How do we prove that E is indeed tangent to A in point p?

• First of all, we define a covering of the attractor (in the same manner as Prautzsch [Pra98]
does for subdivision surfaces). We define a set R1 = A \ T0(A) and Ri = T0(Ri−1). It defines
a sequence of rings {Ri}∞i=1, converging to the point of interest, whose (infinite) union is the
attractor itself. Refer to figure 2.4 for an illustration.

• Next step is to check whether R1 ∩ span(~v2) is empty. In our example it means to verify if
the red set intersects with the x-axis. Section 2.2.1 explains in detail why we need to check
this.

• If the intersection is empty, then the tangent will be given by the dominant eigenvector(s).

T3(A)

T2(A)

A = T0(A)∪T1(A)∪ T2(A)∪T3(A)

T0(A)

~v2

T1(A)

~v1

p

Figure 2.3: The attractor A consists of
the union of four scaled copies of itself,
we study the behavior in the point p,
expecting span ~v1 to be tangent to A.

R3 = T0(R2)

R1 = A \ T0(A)

R2 = T0(R1) R4 = T0(R3)

ε

Figure 2.4: If for any choice of ε we can
find a number of steps N such that ∀i >
N ring Ri lies in the cone generated by
E and ε, E is tangent to A. Here N =
3: for this choice of ε the ring R4 (in
black) lies in the cone.

In the following sections of this chapter we illustrate the related works and perform a more
formal analysis of our approach.

2.1 Related works

Differential properties of subdivision surfaces are the subject of many studies. In [Pra98] Prautzsch
studies the differentiability of subdivision schemes at the extraordinary vertices. His study exploits
the following idea: for every extraordinary vertex at every step of the subdivision its neighboring
control points define a ring of m irregular patches, where m is the valence of that vertex. After one
step of the subdivision, m irregular patches are subdivided into m smaller irregular patches and
3m regular patches. These 3m regular patches form a ring on a surface that can be parameterized
over [0, 1]2 × {1, 2, . . . , 3m}. Next subdivision step produces a smaller ring that also consists of
3m regular patches. A certain parameterization used by Prautzsch is derived from the notion of
characteristic map introduced by Reif and Peters in [Rei95]. Our study will follow a similar idea,
but in a more general way. Let us first show what a characteristic map is.

A primer on eigenvectors

Consider a n × n diagonalizable matrix T whose eigenvalues are all distinct and satisfy |λ0| >
|λ1| > |λi|, i ≥ 2. Define right eigenvectors T~ui = λi~ui and left eigenvectors ~viT = λi~vi. Here ~ui
are column vectors and ~vi are row vectors. The purpose of this section is to describe the role the
dominant and sub-dominant eigenvectors play in the action of the repeated transformation T k as
k grows large.

2.1. RELATED WORKS 35

Property 1. i 6= j ⇒ ~ui ⊥ ~vj
Proof. It suffices to compute ~vjT~ui in two different ways:

(~vjT)~ui = λj~vj~ui

~vj(T~ui) = λi~vj~ui

We supposed that all eigenvalues are distinct, therefore λi 6= λj . Subtracting two above equations
we get (λi − λj)~ui~vj = 0 and thus ~ui~vj = 0.

Without loss of generality we can suppose that ~ui and ~vj are scaled so that the matrices built
from the ~ui and ~vj are inverses of each other:

~v0

~v1

...
~vn−1

(~u0 ~u1 . . . ~un−1

)
= I

Property 2. T =
n−1∑
i=0

λi~ui~vi.

Proof. By our assumptions above, we have
~v0

~v1

...
~vn−1

T =


λ0 0 . . . 0
0 λ1 . . . 0
...

...
. . .

...
0 0 . . . λn−1




~v0

~v1

...
~vn−1


Let us left post multiply each member of this expression by the matrix (~ui) = (~vi)

−1:

T =
(
~u0 ~u1 . . . ~un−1

)

λ0 0 . . . 0
0 λ1 . . . 0
...

...
. . .

...
0 0 . . . λn−1




~v0

~v1

...
~vn−1


This equation gives us an eigendecomposition of the matrix:

T = (~ui)Λ(~vi) =

n−1∑
i=0

λi~ui~vi. (2.1)

Here Λ represents the diagonal matrix with eigenvalues at the main diagonal.

O

~v1

~u1

~v0

P ′

P

A

C
D

E

B
~u0

Figure 2.5: Action of a linear transformation on two eigenbases, the right eigenvectors are shown
in green and left eigenvectors are red.

36 CHAPTER 2. TANGENT SPACES FOR SELF-SIMILAR SHAPES

This property is known under the name of eigendecomposition of a matrix, it tells us that any
matrix can be represented as a sum of rank-1 matrices. Let us illustrate the geometric meaning of

the formula with T =

(
1 1
0 2

)
. The matrix T has eigenvalues λ0 = 2 and λ1 = 1, right eigenvectors

~u0 =

(
1
0

)
, ~u1 =

(
1
1

)
and left eigenvectors ~v0 =

(
1 −1

)
, ~v1 =

(
0 1

)
. Equation (2.1) can be

understood more easily if applied to a point P (refer to figure 2.5 for an illustration). Basically it
says that to find the transformed point P ′ = T ×P from the original point P , we have two options:

either decompose the vector
−−→
OP in the basis ~u0, ~u1, scale the decomposition by corresponding

eigenvalues and re-compose the transformed point. Or we can use the left eigenvectors ~v0, ~v1: first

we (orthogonally) project the vector
−−→
OP , rescale vectors and (orthogonally) unproject to get the

desired point P ′. More strictly,

−−→
OP ′ =

(
P ′x
P ′y

)
= T

(
Px
Py

)
= ~u0λ0

(
~v0

(
Px
Py

))
+ ~u1λ1

(
~v1

(
Px
Py

))
.

The part
(
~vix ~viy

)(Px
Py

)
is the dot product between vectors ~vi and

−−→
OP . In this way we can

find the orthogonal projection B of the point P onto the axis ~v0: |−−→OB| = (~v0 ·
−−→
OP)/|~v0|. The

transformed point P ′ can be found through
−−→
OP ′ =

−−→
OD +

−−→
OE. Vector

−−→
OD can be found by

re-scaling vector ~u0:

−−→
OD =

~u0

|~u0|
|−−→OD| = ~u0

|~u0|
|−−→OC||~u0||~v0|
~u0 · ~v0

= ~u0
|−−→OC||~v0|
~u0 · ~v0

= ~u0λ0
|−−→OB||~v0|
~u0 · ~v0

= ~u0λ0
~v0 ·
−−→
OP

~u0 · ~v0
= ~u0λ0~v0

(
Px
Py

)
The last transition is valid due to our assumption on the eigenvectors scaling: ~ui · ~vi = 1. In the

same way it possible to show
−−→
OE = ~u1λ1~v1

(
Px
Py

)
.

Property 3. Repeated action of T can be described as T k =
n−1∑
i=0

λki ~ui~vi.

Proof. It is easy to see that T × T × · · · × T = (~ui)Λ(~vi)× · · · × (~ui)Λ(~vi). Since (~ui)× (~vi) = I,

we obtain T k = (~ui)Λ
k(~vi) =

n−1∑
i=0

λki ~ui~vi.

As an immediate consequence we get that the second term decays exponentially quickly with
respect to the first, and the third and higher terms decay exponentially quickly with respect to the
second:

Corollary 1. T k = λk0~u0~v0 + λk1~u1~v1 + o(λk1).

Characteristic map illustrated

In the barycentric space of control points the subdivision matrices look as follows (note that I follow
IFS habits and the matrices are transposed with respect to the subdivision surfaces tradition):

T0 =

3/4 1/4 0
1/4 3/4 3/4
0 0 1/4

 T1 =

1/4 0 0
3/4 3/4 1/4
0 1/4 3/4


Figure 2.6 illustrates the action of the transformations T0 and T1 on the curve. Right eigenvectors
of T0:

~u0 =

1/2
1/2
0

 ~u1 =

−1
1
0

 ~u2 =

 1
−2
1


Left eigenvectors of T0:

~v0 =
(
1 1 1

)
~v1 =

(
−1/2 1/2 3/2

)
~v2 =

(
0 0 1

)
As in the background section, our eigenvectors are scaled in the way ~ui · ~vi = 1.

2.1. RELATED WORKS 37

Figure 2.6: Left: uniform quadratic B-spline curve with its control points. Middle and right: image
of the curve under subdivisions T0 and T1, respectively

Reif [Rei93, Rei95] defined the characteristic map for subdivision surfaces as a 2D spline func-
tion. For the case of a quadratic B-spline curve with 3 control points the domain of the map is
the segment [0, 1] and the image is the curve projected to R with control points

(
P0 P1 P2

)
=

~v1 =
(
−1/2 1/2 3/2

)
. Figure 2.7 shows the image of the characteristic map. In order to show

10 R

Figure 2.7: The image of the characteristic map for a quadratic B-spline is shown in red.

that quadratic B-splines are smooth it suffices to prove that the characteristic map is regular and
injective.

Let us illustrate the motivations behind this definition of characteristic map. According to
corollary 1 the repeated action of T0 can be expressed as T k0 = ~u0~v0 + 1/2k~u1~v1 + o(1/2k). In few
iterations the action of T0 on the subspace spanned by ~u2 becomes negligible, so let us discard this
action and consider modified version of T0 defined as follows:

T = ~u0~v0 + ~u1~v1 =

1/2
1/2
0

(1 1 1
)

+

−1
1
0

(−1/2 1/2 3/2
)

=

=

1/2 1/2 1/2
1/2 1/2 1/2
0 0 0

+

 1/2 −1/2 −3/2
−1/2 1/2 3/2

0 0 0

 =

1 0 −1
0 1 2
0 0 0


So we discarded the action of T0 onto span{~u2} and removed the contraction factor 1/2.

Figure 2.8 shows the action of the transformation T on the control polygon of the B-spline
curve. Note that the control points of the curve were chosen to have ~u1 and ~u2 as an orthonormal
basis of R2 once projected to plane:

P0 =

(
−1/2

0

)
P1 =

(
1/2
0

)
P2 =

(
3/2
1

)

~u2

0 = ~u0 ~u1

P0 = T (P0) P1 = T (P1) T (P2)

P2

Figure 2.8: Control polygon of the quadratic B-spline curve (red) and its image under the trans-
formation T (green). The corresponding curves are not shown in order not to occlude the image.
In the modeling space T is simply the orthogonal projection to the x-axis.

The transformation T is simply a projection onto the subspace spanned by ~u0 and ~u1. In our
example we can restate the condition by Reif: if the curve defined by the red control polygon in

38 CHAPTER 2. TANGENT SPACES FOR SELF-SIMILAR SHAPES

Figure 2.9: A curve with half-tangent at the endpoints and a non-injective characteristic map.

Figure 2.8 (compare the figure to figure 2.7!) is projected to the curve defined by the green control
polygon without foldovers, then the original curve is smooth. Note that x-coordinates of green
points are given by the vector ~v1, namely -1/2, 1/2, 3/2.

To conclude this illustration, the characteristic map is nothing else but restriction
of the subdivision matrix to its sub-dominant eigenspace. Reif and Peters [Rei95] proved
that if the characteristic map is regular and invertible then the resulting surface is C1-continuous.
Prautzsch shows that under certain conditions on eigenvalues and eigenvectors of the subdivision
matrices the subdivision schemes with a regular and invertible characteristic map produce Gk-
continuous surface at the extraordinary points.

However the characteristic map (in general) is not injective for fractal shapes. As an example
we consider the curve presented in figure 2.9. The end points of curve are obtained with the
following subdivision mask:

S =

 5
4 − 1

4 0
1
2

1
2 0

0 5
4 − 1

4

 .

As any other curve obtained with subdivision, such curve is self-similar. According to [BGN08]
the half-tangents exist at the endpoints, however as we are going to show the characteristic map
is not injective.

Let us calculate the eigenvectors of S and associated eigenvalues:

λ0 = 1, λ1 = 3/4, λ2 = −1/4,

~v0 =

1
1
1

 , ~v1 =

 1
2

5/2

 , ~v2 =

0
0
1

 .

Roughly speaking, the characteristic map is a projection of this curve onto left black segment.
This projection has foldovers due to the negative eigenvalue −1/4 and therefore the characteristic
map is not injective. Thus results by Reif et al. do not apply even if the curve has tangents at the
endpoints. Moreover, it is quite difficult to check the injectivity of characteristic maps in general.
The rest of this chapter describes our approach on testing whether tangents exist or not.

2.2 Analysis of IFS attractors

In this section we study behavior of IFS attractors for the fixed point of some transformation T . We
give a series of lemmas, that describe this behavior depending on the eigenvalues and eigenvectors
of T . We give our results for transformations expressed in the barycentric coordinates BIm. First
of all, it allows us to express translations as linear transformations, thus simplifying the treatment;
second (in general settings) smoothness of, say, spline surfaces depend on the basis functions and
not on particular projections to the modelling space.

Thus, we have a linear transformation T and we want to study the behavior of IFS attractor
having T as one of its transformations; the point of interest is the fixed point of p = T (p). There
are two major cases to consider: when T has a full set of eigenvectors (section 2.2.1) and when it
does not (section 2.2.2).

2.2. ANALYSIS OF IFS ATTRACTORS 39

2.2.1 Complete set of eigenvectors

Let us start with the simplest case: when transformation T possesses a complete set of real
eigenvectors. It is quite obvious that in general the differential behavior is given by the direction
of slowest contraction of T . Dominant eigenvector for transformations in barycentric coordinates
gives the fixed point (dominant eigenvalue is always 1), thus sub-dominant eigenvector gives us the
direction with slowest rate of contraction. There is one more condition to verify, though, namely
empty intersection of the attractor with the subspace dual to the subdominant eigenvector, the
following section provides an illustration.

Real eigenvalues

Lemma 1. Let T be an operator on BIm with a complete set of real eigenvectors ~v0, ~v1, . . . , ~vm−1

along with their respective eigenvalues λ0 = 1 > |λ1| > |λ2| ≥ . . . ≥ |λm−1|, ∀i λi ∈ R. Let p = ~v0

be the fixed point of T and E = p+ span{~v1} be the affine subspace generated by point p and vector
~v1. Given a point x ∈ BIm : ~px /∈ span{~v2, . . . , ~vm−1}, we want to show that

lim
n→∞

‖Tn(x)− (Tn(x))⊥E‖
‖Tn(x)− p‖ = 0,

where (Tn(x))⊥E is the orthogonal projection of Tn(x) onto E.

Proof. Let us express Tn(x) in the eigenbasis of T : Tn(x) = p +
∑m−1
i=1 λni x

(i)~vi. Then the ratio
we are interested in can be written as follows:

‖Tn(x)− (Tn(x))⊥E‖
‖Tn(x)− p‖ =

‖p+
∑m−1
i=1 λni x

(i)~vi − p− λn1x(1)~v1‖
‖p+

∑m−1
i=1 λni x

(i)~vi − p‖
=
‖∑m−1

i=2 λni x
(i)~vi‖

‖∑m−1
i=1 λni x

(i)~vi‖
.

For any choice ε > 0 it is possible to find N such that for all n > N the ratio is inferior to
ε. Indeed, if we divide both the numerator and denominator by |λ1|, there will be non-vanishing
term in the denominator, while the numerator approaches zero exponentially fast.

Corollary 2. Any IFS having T as one of its transformations, has its attractor A tangent to the
affine subspace E if the ring R1 = A \ T (A), does not intersect p+ span{~v2, . . . , ~vm−1}.

Proof. The proof is obvious as long as we know the following fact: R1 is compact not intersecting
p+ span{~v2, . . . , ~vm−1}. Therefore for any choice of ε it is possible to find N(ε) such that for any
n > N(ε) ring Rn lie in the cone defined by E and ε.

Let us illustrate why it is important for the ring R1 not to intersect the horizontal line on the
figure 2.4. Let us modify the IFS by adding a fifth transformation:

T4

([
x
y

])
=

[
0.75 0

0 0.5

] [
x
y

]
+

[
.25
0

]
.

The corresponding attractor is shown in figure 2.10 (compare it to the figure 2.3). Since it intersects
the horizontal axis p+ span{~v2}, any point on this axis will remain on it under repeated action of
T0, leading to the absence of non-trivial tangent subspace.

Another more simple example would be the IFS consisting of {T0, T4}. Its attractor is the hori-
zontal segment between points (0, 0) and (1, 0). This segment lies completely inside the horizontal
axis p+ span{~v2}, therefore the tangent subspace is given by ~v2 and not ~v1!

Complex sub-dominant eigenvalues

Now we are going to study the case where a pair of complex sub-dominant eigenvalues is present.
The goal of this section is to show that for if ~v is an eigenvector corresponding to the sub-dominant
eigenvalue λ ∈ C, then span{Re~v, Im~v} is a good candidate to be a tangent.

Lemma 2. Let T be an operator on BIm with a complete set of eigenvectors ~v0, ~v1, . . . , ~vm−1

along with their respective eigenvalues λ0 = 1 > |λ1| = |λ2| > |λ3| ≥ . . . ≥ |λm−1|, where
λ1 = λ̄2, λ1, λ2 ∈ C and all other eigenvalues are real. Let p = ~v0 be the fixed point of T and

40 CHAPTER 2. TANGENT SPACES FOR SELF-SIMILAR SHAPES

~v2

~v1

p

T2(A)

T1(A)

T0(A)

T4(A)

A = T0(A)∪T1(A)∪ T2(A)∪T3(A)∪ T4(A)

T3(A)

Figure 2.10: This attractor intersects the horizontal axis p + span{~v2}, therefore p + span{~v1} is
not tangent to the attractor in point p.

E = p + span{Re~v1, Im~v1}. Given a point x ∈ BIm : ~px /∈ span{~v3, . . . , ~vm−1}, we want to show
that

lim
n→∞

‖Tn(x)− (Tn(x))⊥E‖
‖Tn(x)− p‖ = 0,

where (Tn(x))⊥E is the orthogonal projection of Tn(x) onto E.

Proof. The idea of the proof is exactly the same as in lemma 1. First of all, we need to choose a
basis of our space. It is easy to see that if a matrix has a complex eigenvalue λ, then its conjugate
λ̄ is also an eigenvalue. The same goes for eigenvectors: if ~v is an eigenvector corresponding to
the eigenvalue λ ∈ C then ~̄v is an eigenvector that corresponds to the eigenvalue λ̄. Also for every
pair of complex eigenvalues λ, λ̄ there exists a subspace invariant to T . Indeed, let us consider a
complex eigenvalue λ = a + bi and the corresponding eigenvector ~v = ~x + ~yi, where a, b ∈ R and
~x, ~y ∈ Rm :

T (~v) = T (~x) + iT (~y) = (a+ bi)(~x+ ~yi) = a~x− b~y + i(a~y + b~x).

So if we consider T (α~x+ β~y) we obtain:

T (α~x+ β~y) = α(a~x− b~y) + β(a~y + b~x) = (aα+ bβ)~x+ (aβ − bα)~y.

Thus we choose to complete ~v0, ~v3, . . . , ~vm−1 with Re~v1 and Im~v1 to form a basis of our
space. Then we can express Tn(x) in this basis: Tn(x) = p + x(1) Reλn1~v1 + x(2) Imλn1~v1 +∑m−1
i=3 λni x

(i)~vi. As in previous lemma, it is easy to see that the ratio ‖T
n(x)−(Tn(x))⊥E‖
‖Tn(x)−p‖ has non-

vanishing denominator as n goes to infinity, while the numerator vanishes.

It is straightforward to extend this reasoning to allow considered operator T to have complex
eigenvalues other that the sub-dominant ones. Things become a little bit more difficult if the
operator does not possess a complete set of eigenvectors as explained in the following section, but
now let us provide an example of application of the above lemma.

An example: a spiral touching a tangent plane In this paragraph we study a curve which
does not possess a tangent line but a tangent plane. The curve will be obtained by a modified
Doo-Sabin scheme, we have already met it in the previous chapter, refer to figure 1.25 for the
control graph. Figure 2.11 illustrates the subdivision process. The control mesh consists of two
faces: a triangle and a quad; subdivided mesh converges to a limit curve.

The barycentric space associated with the state ê has 5 dimensions, whereas e has 6 dimensions.
The matrices corresponding to the standard Doo-Sabin subdivision scheme can be expressed as

2.2. ANALYSIS OF IFS ATTRACTORS 41

1

3

4 5

2

1

3

4 5

2

Figure 2.11: Left image shows the Doo-Sabin subdivision scheme applied on the control mesh
shown in black, the green mesh is obtained by one iteration and the red curve is the limit curve.
Right image shows the subdivision with modified weights.

follows:

T ê0 =


2/3 1/6 0 1/6 0
1/6 2/3 9/16 1/6 3/16
0 0 3/16 0 1/16

1/6 1/6 3/16 2/3 9/16
0 0 1/16 0 3/16

 , T ê1 =


1/6 0 0 1/6 0 0
2/3 9/16 3/16 1/6 3/16 1/16
0 3/16 9/16 0 1/16 3/16

1/6 3/16 1/16 2/3 9/16 3/16
0 1/16 3/16 0 3/16 9/16


The matrices T e0 and T e1 are obtained as a tensor product of quadratic B-spline and quadratic
B-spline vertex. Left image of figure 2.11 shows one subdivision. For example, the green triangle
is obtained from the black one with the weights defined in 1st, 2nd and 4th columns of the matrix
T ê0 .

For this section we modify the scheme, namely the green triangle is slightly rotated (refer to
the right image of the figure 2.11). The modified weights are following:

T ê0 =


2/3 0 0 1/3 0
1/3 2/3 9/16 0 3/16
0 0 3/16 0 1/16
0 1/3 3/16 2/3 9/16
0 0 1/16 0 3/16

 , T ê1 =


0 0 0 1/3 0 0

2/3 9/16 3/16 0 3/16 1/16
0 3/16 9/16 0 1/16 3/16

1/3 3/16 1/16 2/3 9/16 3/16
0 1/16 3/16 0 3/16 9/16


Let us study the differential behavior of the curve at the fixed point of T ê0 . The operator T ê0

has 5 eigenvalues:

λ0 = 1, λ1 = 1/2− i
√

3/6, λ2 = 1/2 + i
√

3/6, λ3 = 1/4, λ4 = 1/8

and the corresponding eigenmatrix is

(~v0, ~v1, ~v2, ~v3, ~v4) =


1 1 1 1 1

1 −1/2 + i
√

3/2 −1/2− i
√

3/2 −41/4 5/8
0 0 0 21/4 −43/24

1 −1/2− i
√

3/2 −1/2 + i
√

3/2 −5/4 −13/8
0 0 0 21/4 43/24


Lemma 2 tells us that the plane spanned on (Re~v1, Im~v1) is the tangent plane to our curve if

there is no point in the ring R0 with zero coordinates along the vectors Re~v1, Im~v1 in the basis

(~v0,Re~v1, Im~v1, ~v3, ~v4) =


1 1 1 1 1

1 −1/2 −
√

3/2 −41/4 5/8
0 0 0 21/4 −43/24

1 −1/2
√

3/2 −5/4 −13/8
0 0 0 21/4 43/24


How do we check that R0 does not intersect p + span{~v3, ~v4}? First of all, our subdivision

matrices have non-negative entries, therefore we know that the limit curve belongs to the convex
hull of its control points (black mesh in the figure 2.11). The coordinates of the control points in

42 CHAPTER 2. TANGENT SPACES FOR SELF-SIMILAR SHAPES

the standard basis are given by a 5× 5 identity matrix I5×5. Therefore the ring R0 belongs to the
convex hull of 6 control points with coordinates I5×5 × T ê1 in the standard basis (two green quads
in the figure 2.11). The coordinates in the eigenbasis can be obtained as follows:

(~v0,Re~v1, Im~v1, ~v3, ~v4)−1 × I5×5 × Tr =


1
3

1
3

1
3

1
3

1
3

1
3

− 1
3 − 97

301 − 271
903 0 − 118

301 − 460
903

−
√

3
9 − 67

√
3

301 − 302
√

3
903

2
√

3
9

24
√

3
301 − 85

√
3

903
0 1

42
1
14 0 1

42
1
14

0 − 3
86 − 9

86 0 3
86

9
86


Second and third rows give coordinates of 6 control points along the vectors (Re~v1, Im~v1). We
need to check if there is a point with coordinates (·, 0, 0, ·, ·) in the convex hull. Any point of the
convex hull can be expressed as a weighted sum of hull vertices. Thus our problem can be restated
as follows: find weights (α0, α1, α2, α3, α4, α5) and coordinates (β0, β3, β4) subject to constraints
5∑
i=0

αi = 1, αi ≥ 0 such that


1
3

1
3

1
3

1
3

1
3

1
3

− 1
3 − 97

301 − 271
903 0 − 118

301 − 460
903

−
√

3
9 − 67

√
3

301 − 302
√

3
903

2
√

3
9

24
√

3
301 − 85

√
3

903
0 1

42
1
14 0 1

42
1
14

0 − 3
86 − 9

86 0 3
86

9
86

×

α0

α1

α2

α3

α4

α5

 =


β0

0
0
β3

β4

 .

The second row of the linear system implies α0 = α1 = α2 = α4 = α5 = 0 and therefore from the

third row we have α3
2
√

3
9 = 0 ⇒ α3 = 0. This is incompatible with the constraint

5∑
i=0

αi = 1 and

thus the convex hull does not include points with coordinates (·, 0, 0, ·, ·).
So, the conditions of the lemma 2 are verified and the plane spanned by the vectors (Re~v1, Im~v1)

is indeed a tangent plane. To better illustrate the existence of such a plane, right image of figure 1.27
shows the suitcase corner subdivision. The studied curve (present 3 times) is highlighted in the
limit surface.

2.2.2 Incomplete set of eigenvectors

Previous section shows how to analyze differential behavior for a linear transformation with a
complete eigenbasis, unfortunately in practice this condition is seldom achieved. In this section
we use generalized eigenvectors to complete the eigenbasis and we show how to use it to express
powers of a matrix.

A primer on eigenvectors

This section reminds necessary definitions of generalized eigenvectors and some of their properties.
For a linear operator A acting on a vector space Rn an eigenvalue λ is a non-zero number for
which a vector ~v exists such that A~v = λ~v. All eigenvectors corresponding to certain eigenvalue λ
lie within the kernel of the linear map A − λI, where I is a identity map over Rn. Similarly the
generalized eigenvectors of order k lie in the kernel of (A−λI)k where k is a positive integer. Note
that for k = 1 we obtain the standard eigenvectors. Also, since generalized eigenvectors of order k
are solution of the linear equation

(A− λI)k~x = 0,

they are also related with eigenvectors of order k − 1 with the following relation:

(A− λI)~vk = ~vk−1,

where ~vk is a generalized eigenvector of order k.

Eigenvalues and multiplicities Consider a matrix A ∈ Rn×n. The characteristic polynomial
PA(λ) = det(A− λI), where I is an identity matrix, has m roots:

λ0, λ1, . . . , λm−1,

2.2. ANALYSIS OF IFS ATTRACTORS 43

where m ≤ n. The values λi are called eigenvalues of the matrix A. The characteristic polynomial
can be decomposed as: PA(λ) =

∏m−1
i=0 (λ−λi)ri . The power ri is called the algebraic multiplicity of

the eigenvalue λi. The sum of all algebraic multiplicities is equal to the degree of the characteristic
polynomial:

∑m−1
i=0 ri = n.

Let Ei = {~v ∈ Rn such that A~v = λi~v}. Ei is called an eigenspace associated with an eigenvalue
λi. The dimension of Ei (denoted as dim(Ei)) is always less or equal to the algebraic multiplicity
of λi. Dimension of Ei is also referred to as geometric multiplicity of λi.

If dim(Ei) = ri for all i = 0, . . . , n− 1 then a linearly independent set of n eigenvectors can be
found. This set forms a basis of Rn.

Chains of generalized eigenvectors When there is not enough linearly independent eigenvec-
tors to compose a basis of space, there is always enough linearly independent generalized eigen-
vectors that can be used to complete the basis. Given an eigenvalue λ, associated generalized
eigenvectors ~v1, . . . , ~vk of corresponding order 1, . . . , k are said to form a chain of generalized eigen-
vectors of length k. Let us consider a linear operator A acting on Rn with m distinct eigenvalues
λ0, λ1, . . . , λm−1. Then for each of λi there exists a chain of generalized eigenvectors, possibly
limited to only one eigenvector:

~v1
0 , ~v1

1 , . . . , ~v1
m−1

~v2
0 ~v2

1 . . . ~v2
m−1

...
...

...
... ~vr11

...
~vr00 ~v

rm−1

m−1

Vectors ~vij are linearly independent and
∑m−1
i=0 ri = n. So for all ~a ∈ Rn there exists ai,j ∈ R such

that

~a =
∑

0≤i≤m−1
0≤j≤ri

ai,j~v
j
i .

Powers of a matrix in a generalized eigenbasis

An action of a linear operator can be expressed in a simple and elegant way though its eigenbasis.
Unfortunately, the action in a basis of generalized eigenvectors is a little bit more cumbersome.
Let us consider a linear operator T on Rk. Let T have an eigenvalue λ with geometric multiplicity
1 and algebraic multiplicity k. We will denote one of its eigenvectors as ~v0 :

T~v0 = λ~v0.

Let us complete the eigenbasis of Rk with k − 1 generalized eigenvectors ~v1, ~v2, . . . ~vk−1 defined as
follows:

T~vi = λ~vi + ~vi−1, 1 ≤ i ≤ k − 1,

and vectors ~v0, ~v1, . . . , ~vk−1 are linearly independent and therefore form a basis of Rk. Any vector

~a ∈ Rk can be decomposed in the basis: there exist {ai}k−1
i=0 such that ~a =

∑k−1
i=0 ai~vi.

Lemma 3. The action of T on an arbitrary vector ~a can be written in the above basis as follows:

Tn~a =

k−1∑
j=0

k−j−1∑
i=0

Cinai+jλ
n−i~vj .

Proof. We will prove this assertion by induction. For the base of our induction (n = 1) we get:

T~a =

k−1∑
j=0

ajT~vj = a0λ~v0 +

k−1∑
j=1

aj(λ~vj + ~vj−1) =

= λak−1~vk−1 +

k−2∑
j=0

(λaj + aj+1)~vj .

44 CHAPTER 2. TANGENT SPACES FOR SELF-SIMILAR SHAPES

It is immediate to verify that our assertion holds true for the base of induction. Now we are going
to show that if our hypothesis is true for some n than is it also true for n+ 1:

Tn+1(~a) = T (Tn(~a)) = T

k−1∑
j=0

(
k−j−1∑
i=0

Cinai+jλ
n−i

)
~vj

 =

=

k−1∑
i=0

Cinaiλ
n−i+1~v0 +

k−1∑
j=1

(
k−j−1∑
i=0

Cinai+jλ
n−i

)
(λ~vj + ~vj−1) =

= ~vk−1λ
n+1ak−1 +

k−2∑
j=0

~vj

(
k−j−1∑
i=0

Cinai+jλ
n−i+1 +

k−j−2∑
i=0

Cinai+j+1λ
n−i

)
=

= ~vk−1λ
n+1ak−1 +

k−2∑
j=0

~vj

(
k−j−1∑
i=0

Cinai+jλ
n−i+1 +

k−j−1∑
i=1

Ci−1
n ai+jλ

n−i+1

)
=

= ~vk−1λ
n+1ak−1 +

k−2∑
j=0

~vj

(
C0
najλ

n+1 +

k−j−1∑
i=1

(Cin + Ci−1
n)ai+jλ

n−i+1

)
=

= ~vk−1λ
n+1ak−1 +

k−2∑
j=0

~vj

(
k−j−1∑
i=0

Cin+1ai+jλ
n−i+1

)
=

=

k−1∑
j=0

~vj

(
k−j−1∑
i=0

Cin+1ai+jλ
n−i+1

)
Thus the inductive step is performed and this finishes the proof.

Corollary 3. lim
n→∞

Tn(~a)

Ck−1
n λn

= ak−1λ
1−k~v0.

Proof. lim
n→∞

Tn(~a)

Ck−1
n λn

= lim
n→∞

k−1∑
j=0

k−j−1∑
i−0

Ci
n

Ck−1
n

ai+jλ
−i~vj = ak−1λ

1−k~v0. The last transition is due to

the fact that the only term depending on n is the ratio
Ci

n

Ck−1
n

and it vanishes if i 6= k − 1 when n

grows large.

From this observation we can make an obvious conclusion:

Corollary 4. If an IFS attractor has T (as above) as one of its transformations, and the fixed
point p of T is a single-address point, then E = p + span{~v0} is tangent to the attractor in the
point p if the attractor does not intersect affine subspace p+ span{~v1, . . . , ~vk−1}.

In this section we considered a very special case when the transformation T has an eigenvalue
with geometric multiplicity 1 and algebraic multiplicity k, however it is straightforward to extend
the reasoning to other cases:

• under power iteration of matrix T on a vector a the component corresponding to the eigen-
vector of order 1 has the slowest rate of contraction within the corresponding chain

• if we compare two components corresponding to two different chains with the same eigenvalue,
the one with the longer chain has the slowest rate of contraction.

An example: the Takagi curve

In this paragraph we are going to show how our theoretical results apply to such a well known
attractor as the Takagi curve. One example of an IFS with an operator that does not has a
complete set of eigenvectors is a Takagi curve (see figure 2.12). For the Takagi curve we chose to
use 4 control points (one for each vertex of a rectangle it is projected into), see figure 2.12. In BI4

the Takagi curve is an attractor of the following IFS:

T1 =


1 1/2 0 1/4
0 1/2 1/2 1/4
0 0 1/2 1/4
0 0 0 1/4

 , T2 =


1/4 0 0 0
1/4 1/2 0 0
1/4 1/2 1/2 0
1/4 0 1/2 1

 .

2.2. ANALYSIS OF IFS ATTRACTORS 45

~v0

~v1

Figure 2.12: The Takagi curve is an attractor of an IFS without a complete set of eigenvectors.

Let us study the tangent at the fixed point of T1. Transformation T1 has three different
eigenvalues 1, 1/2, 1/4 with 1/2 being double eigenvalue. Here are the corresponding eigenvectors:

~v0 =


1
0
0
0

 , ~v1 =


1/2
−1/2

0
0

 , ~v2 =


1
−1
1
−1

 .

We need one generalized eigenvector to complete our eigenbasis:

~v1
1 =


1
0
−1
0

 .

To show that sub-dominant eigenvector gives the tangent we need to verify that the ring R0 for
the fixed point of T1 does not have any point with zero components corresponding to the generalized
eigenvector ~v1

1 . To verify this we are going to calculate the control polygon for R0. Then as we
did in the example of the spiral curve, we can say that the ring R0 lies within the convex hull of
the control polygon. If the convex hull does not intersect affine subspace ~v0 + span{~v1, ~v2}, then
the ring R0 does not intersect it either.

(~v0, ~v1, ~v
1
1 , ~v2) =


1 1/2 1 1
0 −1/2 0 −1
0 0 −1 1
0 0 0 −1

 , (~v0, ~v1, ~v
1
1 , ~v2)−1 =


1 1 1 1
0 −2 0 2
0 0 −1 −1
0 0 0 −1

 .

So the vertices of the control polygon for R0 in the basis of generalized eigenvectors are as follows:

(~v0, ~v1, ~v
1
1 , ~v2)−1 × T2 =


1 1 1 1
0 −1 1 2
−1/2 −1/2 −1 −1
−1/4 0 −1/2 −1


Note that the third component for all four vertices is negative. Therefore there is no point in R0

with a zero component corresponding to the generalized eigenvector ~v1
1 . So the tangent at the

fixed point of T1 is given by the sub-dominant eigenvector ~v1, thus a tangent that passes through
first and second control points. If we project the attractor from BI4 into the unit square using the
vertices of the square as control points we obtain a vertical tangent (see figure 2.12).

2.2.3 Conclusion

This chapter provides necessary foundations to analyze differential properties of affine IFS attrac-
tors. While it focuses solely on points with single periodic address, it is straightforward to extend
the analysis to points with multiple addresses. For example, in the above example of Takagi curve
mid-point has two addresses: let p be the fixed point of T1 and q be the fixed point of T2. Then
the midpoint can be obtained in two different ways: T1(q) = T2(p). Thus it suffices to verify the
behavior in p, in q and to check if under action of T2 and T1, correspondingly, the tangent spaces
coincide. For the Takagi curve this is the case, thus the midpoint possesses a vertical straight line
as a tangent.

46 CHAPTER 2. TANGENT SPACES FOR SELF-SIMILAR SHAPES

There is lots of work left though: currently we do not have a simple way to verify the behaviour
for points with aperiodic addresses. For example, the Takagi curve posseses a dense set of points
tangent to vertical lines, but we can not elegantly express condition for the rest of the curve. We
think that en excellent work by Ingrid Daubechies and Jeffrey Lagarias [DL92] is a good starting
point, since reasonably all our IFS matrices form RCP sets.

Next point we plan to work on is differential operators of BC-IFS. Currently BC-IFS attractors
are guaranteed to have a given topology, since B-rep structure imposes a certain way of connectivity
through its boundary operators. It is far from being obvious, but we work hard on trying to add
one more level to the B-rep and to introduce differential boundary operators, thus effectively
guaranteeing necessary smoothnes of the attractor.

Summary

Defining shapes by iterative processes allows us to generate new structures with specific properties
(roughness, lacunarity), which can be achieved by classic modelling with great difficulty. Our goal
is to create an iterative modeller to design fractals described by a BC-IFS; we continue our efforts to
develop a set of tools and algorithms that allows to evaluate, to characterize and to analyse different
geometric properties (localisation, convex hull, volume, fractal dimension) of fractal shapes. Anton
Mishkinis encountered (and partly solved) these difficulties in his PhD thesis [Mis13], there are
numerous questions yet to be answered. A simple boolean operation on two fractals is far from
being obvious to compute with a given precision and this kind of things is crucial to create a
user-friendly geometric modeller.

However our system is is mature enough to start ex-
ploration of its real life applications. We plan to study
creation of fractal antennas and meta-materials with pre-
determined electrodynamic properties. This kind of an-
tennas is very promising due to their bandwidth and re-
duced volume. We start a cooperation with a team of
Federal University of Kazan who developed an expertise
in this domain. They developed a software to model mi-
crostrip antennas and to simulate their electrodynamic
characteristics. Thus our first goal is to explore the po-
tential of our geometric model with this simulator to ease
the design process. We do hope to hit a large variety of shapes yet undiscovered today thanks to
the dissociation of topology and geometry in our model.

47

Part II

Meshing

48

49

“Nothing clears up a case so
much as stating it to another per-
son.”

— Sherlock Holmes

Silver Blaze

The state of the art in tetrahedral meshing has now reached a maturity that makes it reasonably
easy to mesh arbitrary shapes using existing software [GHS90], [Si15], CGAL . . . For hexahedral
meshing, the situation is different, and despite important advances, the state of the art is still far
away from a general and robust fully automatic solution.

Quite a common technique to re-mesh an object Ω is to find a deformation M that “straightens”
Ω, and then to compute the preimage M−1(G) of a regular grid G inside the “straightened” version:

This part of the manuscript has two chapters: chapter 3 proposes a method of generating
polycube maps, or, in other words, hexahedral meshes without any singularity inside the mesh.
While being quite robust, this method has disadvantages and is not very well suited for re-meshing
objects with lots of hard edges, producing distorted hexahedral elements.

At the moment there is no method capable of generating acceptable full-hexahedral meshes
automatically. The number of failure cases remains important, even for simple objects that can
exhibit some difficult combinatorial aspects of the problem. Despite an important amount of
research efforts to solve these issues, designing a complete hexahedral re-meshing algorithm requires
to solve many open problems [SJ08]. For this reason, hexahedral-dominant meshing may be an
option worth investigating: by relaxing the problem, it still generates a valid result in complicated
case where full-hexahedral methods generally fail, at the expense of introducing non-hexahedral
elements such as tetrahedra, pyramids and prisms. Thus, we extend the polycubes approach
and propose to use additional degrees of freedom: chapter 4 discusses a method of generating
hexahedral-dominant meshes.

A major source of frustration we have are papers (often found in SIGGRAPH community and,
admittedly, with excellent ideas, but) lacking thorough analysis of limitations and failure cases.
We are inspired by excellent papers like the work on quadrangulation by Myles et al [MPZ14] and
upset by some others. You will meet the word robustness at least twenty times throughout this
part of the manuscript.

Chapter 3

Polycube maps

3.1 Normal constraints for polycube maps

A polycube is an abstract representation of a volume that is very efficient for tasks such as texturing,
deformation or re-meshing. To convert a triangulated surface into a polycube, it is required to
deform the surface such that its normal becomes always aligned with coordinate axes. A natural
choice of the axis to align the normal with is the closest axis to the original surface normal.
However, such a deformation satisfying these constraints on the surface normal may not exist. We
present an algorithm able to detect such situations and repair the normal constraints. Figure 3.1
presents some cases where the normal equality constraints need to be edited to allow for a valid
deformation.

This objective is motivated by the hexahedral re-meshing application proposed by Gregson
et al. [GSZ11, LVS+13], where invalid axis assignments were not always fixed. Their pipeline
(Figure 3.3-up) starts with a tetrahedral mesh and can be summarized as follows:

1. it applies a soft, rotation-based, deformation to roughly align the surface normals with the
coordinate axes,

2. it determines which coordinate axis has to be aligned with the normal on each point of the
surface,

3. it deforms the mesh to respect these constraints,

4. the geometry is then filled by a Cartesian grid that is mapped to the original mesh position to
provide the all-hex re-meshing. Standard post-processing removes too distorted hexahedral
elements close to the volume boundary.

Figure 3.1: Upper row: no deformation can align all charts with coordinate axes without squeez-
ing the surface. Bottom row: editing the normal constraints by adding “steps” makes the
deformation possible.

50

3.1. NORMAL CONSTRAINTS FOR POLYCUBE MAPS 51

Figure 3.2: Meet the family: a L∞-screw and its little brother, screw-junior. Both models have
the same graph of charts, but clearly one is not a polycube we want for the other one. Slightly
different hues are used to simplify the identification of charts.

A major drawback of this method is that during the construction of the polycube, it is not
always possible to deform the object subject to the surface orientation constraints (Step 3). Gregson
et al. repair some cases, however these configurations are far from being exhaustive.

To extract polycube structure, Gregson et al. label surface triangles according to the closest
axis to smoothed triangle normals and group similarly labeled triangles into charts. Then they
filter the decomposition by removing small, spurious charts. Since the required properties of
orthogonal polyhedra are not fully known, Gregson et al. use a set of local heuristics inspired
by the results of of Eppstein and Mumford [EM10]. Namely, they look for planar 3-regular 3-
connected chart connectivity graphs. Unfortunately, these conditions were expressed for objects of
zero genus. Moreover, Figure 3.2 gives a typical example where the method proposed by Gregson
et al. will inevitably fail. The “L∞-screw” has a planar 3-regular 3-connected chart graph, but it
is impossible to transform it to an orthogonal polyhedron with a continuous transformation. Left
image of figure 3.2 shows a xyz polyhedron with the same connectivity graph. No local conditions
on the chart connectivity graph can guarantee existence of the corresponding polycube. Figure 3.15
shows the polycube for the screw constructed by our algorithm.

Our contribution is an algorithm that edits the normal constraints defined in Step 2, to ensure
that there exists a deformation respecting these constraints. As illustrated in Figure 3.3-Middle,
the coordinates axis assignment of the object boundary is represented by a new mesh (referred to
as meta-mesh and similar to the one introduced in [TACSD06]) that is easier to manipulate than
a direct per-point axis assignment. This meta-mesh is embedded in the original surface, so local
editing operations of the meta-mesh are equivalent to directly editing the axis assignment on the
original surface.

Our method defines a deformation of the object boundary by affecting a geometry to the meta-
mesh (Figure 3.3-bottom). For each dimension ei, each face of the meta-mesh is decomposed
into quads, and the ith coordinate of each meta-edge is determined by a constrained optimization
algorithm. It ensures that each point of the surface has the prescribed normal when possible. If
it is not possible, extra variables and constraints are added to determine where steps have to be
created. A step creation is the basic operation that splits a meta-face’s quad on the meta-mesh
(Figure 3.3-bottom, dimension e3), and introduces a new chart of axis alignment on the original
surface. Our contributions are an analysis of the possibility to deform an object with constrained
normal, an algorithm that detects failure cases, and a solution to edit the normal constraints such
that the deformation is made possible.

52 CHAPTER 3. POLYCUBE MAPS

Figure 3.3: Upper row: overview of the all-hex meshing pipeline. The volume is deformed to
better align its boundary with coordinates axis, this alignment is enforced as a constraint, the
deformed mesh is voxelized, and mapped back to the object original shape. Middle row: fixing
impossible coordinate axis assignments. The axis assignment is edited with aid of a meta-mesh,
that is easier to manipulate than the axis assignment. Bottom row: meta-mesh editing, for each
dimension ei, each face of the meta mesh is decomposed into quads, and the geometry is resolved
for the current dimension. Here, a solution was directly found for e1 and e2, but e3 required to
edit the meta-mesh topology.

3.1. NORMAL CONSTRAINTS FOR POLYCUBE MAPS 53

Figure 3.4: Global overlaps: given a volume (left image), aligning its boundary with coordinate
axis (middle image) can create global overlaps (green voxel), but re-projecting it to the original
volume provides a valid hexahedral mesh.

Figure 3.5: Volume foldovers: the volume is not defined if the deformed boundary surface has
self-intersections, or when the surface has foldovers.

Related works

Polycubes were introduced in computer graphics by Tarini et al. [THCM04] for seamless texturing
surfaces. They were later used for hexahedral re-meshing of shell meshes [HXH10], then extended
to volume re-meshing [GSZ11]. In these applications, the construction of polycubes is not discussed
besides in the framework of Gregson et al. [GSZ11] we are improving here.

Juncong et al. [LJFW08] proposed an algorithm to automatically construct polycubes. It is
based on locally match simple polycube primitives, detect features such as protrusion, and merge
them all together to produce a polycube. It is able to produce very convincing result for some
classic computer graphics meshes, but it seems difficult to handle meshes from CAD/CAM where
the features are not well characterized by their proxy.

Ying et al. [HWFQ09] have presented an alternative solution based on cutting the volume into
slices and iteratively add slices to the polycube. This solution produces fair results for meshes
reasonably aligned with coordinate axis.

Another contribution [WYZ+11] in this domain is an optimization of the mapping between a
polycube and a surface. It requires a valid polycube to start with, but it can improve any others
results by adjusting the mapping.

3.1.1 Problem statement

Let us consider a solid object Ω and a coordinate axis N(P) associated to each point P of the
boundary of Ω. Our objective is to determine how to modify N(P) to make it possible to define a
deformation D such that for each point P of Ω’s boundary, the normal n(D(P)) of the deformed
volume at point D(P) is equal to N(P).

A natural deformation D has to be one-to-one. However, in our context global overlaps do
not impact the final hexahedral mesh (Figure 3.4) because the pre-image of each voxel in the
voxelization of the deformed mesh (Step 4 of Gregson et al. pipeline) can be a set of hexes in the
re-meshed model.

Therefore, the constraints we need are rather local than global i.e. ensuring that D has no
foldovers is a sufficient property for our application. As a consequence, we want to produce a
locally one-to-one map, so D has to preserve the orientation of the volume i.e. the determinant of
its Jacobian matrix det(J(D)) must be strictly positive.

There are two situations (Figure 3.5) that can enforce a negative determinant of the Jacobian
matrix of D: if the deformed boundary surface self-intersects (it is not a boundary anymore), or
if there are some problems on the surface i.e. det(J(D)) ≤ 0 on the surface. This work deals
only with surface issues, and a possible solution to prevent surface self-intersections is discussed in
Section 3.1.4.

54 CHAPTER 3. POLYCUBE MAPS

Figure 3.6: Coordinate axis assignment correction: colors represent axes that the deformed
surface has to be orthogonal to. The volume can not be directly deformed to align its boundary
normals with their associated coordinate axis (left). The desired coordinate axis can be modified
(middle) to make it possible (right).

Figure 3.7: Opposite axes can not be assigned to neighboring points (left). A tiny band is intro-
duced to avoid this situation (right).

3.1.2 Formalization

The object boundary is represented by a triangulated surface with an associated coordinate axis
N(f) ∈ {ei,−ei}i≤3

i=1 associated to each triangle f . We wish to edit N to ensure that the volume
can be deformed without foldovers to make its boundary normal n(f) equal to N(f) (Figure 3.6
for an example).

Axis assignment assumption

Our objective is to preserve as much as possible the original axis assignment. Therefore, we
limit the possible modification of N to a local operation creating a step. As a consequence, it
is impossible for our algorithm to deal with completely random axis assignments. For example,
adding steps does not allow to make valid an object where all points are assigned to the same
axis. More generally, the genus of the object strongly constraints the set of potentially valid axis
assignments and creating steps does not allow to change it.

The intuition is based on the fact that for a smooth object the degree of its Gaussian map is
closely related to the genus of the object deg(N) = 1− g, here deg(N) is the degree of the Gauss
map and g is the genus (Gauss-Bonnet theorem [Gau00, Bon48]). Given a Gauss map, no local
operation (creation of steps in our case) changes the degree. We conjecture that it is possible with
a series of local operations it is possible to converge to an object covering the normal sphere exactly
1− g times.

Guided by this intuition, we assume that the initial flagging is given by the closest axis to
the surface normal, thus the flagging corresponds to an object of the same genus. Obviously, in
Gregson et al. pipeline, it is the closest axis to the deformed surface normal.

Unfortunately, degree of a map is defined for continuous maps, and for triangulated surfaces the
Gauss map is not continuous. We repair evident cases of under-sampling: hard edges may generate
adjacent triangles associated to opposite axes. It corresponds to a degenerated volume that can
be directly handled by our algorithm if a new axis is assigned in a tiny band placed on the edge
adjacent to conflicting triangles, as illustrated in Figure 3.7. This operation can be interpreted
geometrically as hard edges smoothing.

3.1. NORMAL CONSTRAINTS FOR POLYCUBE MAPS 55

Figure 3.8: Meta mesh: the surface can be decomposed into charts such that each chart is
associated to a single preferred coordinate axis. The meta mesh has a facet for each such chart
(middle left), and is decomposed into quads (middle right). Each edge is then affected to its
preferred coordinate axis.

Figure 3.9: Meta-edge axis assignment: the coordinate axis assignment on meta-edges can not
be deduced from the axis of meta-faces. Here, the gray oriented edge (left) goes in direction e1

at the beginning and −e1 at the end. A coherent axis assignment requires to split this meta-edge
(right).

Meta-mesh

The coordinate axis assignment is difficult to manipulate directly on the object boundary. It is
easier to manipulate a 2D mesh embedded in the original volume boundary referred to as meta-
mesh. By embedded, we mean that the meta-edge geometry is given as paths defined on the original
surface as described by Li et al. [LLP05a]. The meta-mesh is obtained from the original surface
by merging all adjacent triangles f having the same N(f) into a meta-face F . As a consequence,
each meta-face F is associated to a coordinate axis N(F), refer to figure 3.8 for an illustration.

To manipulate the meta-mesh geometry, it is also required to define the coordinate axis N(E)
associated to each oriented meta-edge E. The coordinate axis N(E) must be orthogonal to its
adjacent meta-faces, but this is not sufficient to set its orientation (ei or −ei). We rely on an
heuristic to resolve the ambiguity: if the projection of the edges on ei is positive, ei is affected, else
−ei is affected. As a consequence, a meta-edge may be split into several parts during this process
if the coordinate axis associated to its original edges is not always the same like in Figure 3.9.

As the meta-mesh is embedded in the original surface, there exists a one-to-one mapping be-
tween both. Therefore, if we determine a 3D geometry of the meta-mesh that is a boundary (no
self intersections) and has no local shrinks (det(J(D)) = 0) nor foldovers (det(J(D)) < 0), then the
original surface can be mapped to it, and the deformation inside the volume can be interpolated
by mean value coordinates [JSW05, HF06].

As stated in the previous section, we focus here on the local shrinks and fold-over problems (self
intersections are discussed in section 3.1.4). To do so, the geometry of the meta-mesh must ensure
that the normal n(F) of each meta-face F is constant (flat meta-face) and defined everywhere (no
shrink).

56 CHAPTER 3. POLYCUBE MAPS

3.1.3 Algorithm overview

Having all meta-faces normals equal to their assigned axis can be ensured if all oriented meta-
edge E are in the direction to their corresponding coordinate axis N(E), and if the meta-face
boundary do not self intersect. Both conditions are enforced by decomposing each meta-face into
quads, and solving the quad edges geometry such that their normal equals their assigned axis. The
quad decomposition makes it impossible for meta-face boundaries to self-intersect because it would
require some quad edges to be oriented in the wrong direction.

When determining the geometry of oriented meta-edges, the e0, e1, e2 coordinates do not inter-
act with each other, making it possible to deal with one dimension at a time. Therefore, algorithm
1 performs on each dimension a decomposition of the meta faces into quads, determines the geom-
etry of the quads edges with respect to their associated axis, possibly determine where to edit the
meta-mesh by creation of steps, then create the steps and resolves again the geometry (Algorithm
1).

Algorithm 1: Algorithm overview

Data: Mesh m of the object boundary
Data: coordinate axis assignment N
for dim ← 1 to 3 do

create meta-mesh M ;
decompose each meta-face of M into quads;
resolve the edim coordinate of M ’s geometry;
if no valid solution is found then

add extra degrees of freedom corresponding to step creation;
resolve the edim coordinate of M ’s geometry;
create the corresponding steps;
introduce the steps vertices variables to the system;
resolve the edim coordinate of M ’s geometry;

end

end

To improve the clarity of the explanations, we will assume from now that the current dimension
to be solved is the vertical dimension e1. Therefore, meta-faces orthogonal to e1, and meta-edges
in direction e2 and e3 will be characterized as horizontal, and other will be characterized as
vertical.

The rest of the section presents how the meta-faces are decomposed into quads, an algorithm
that determines if it is possible to directly construct an axis aligned meta-mesh, an algorithm
that determines where new steps should be created, and the creation of a step in the meta-mesh
corresponding to edit the axis assignment on the original surface. Results are then presented and
the benefits and drawbacks of the method are discussed.

Meta-face decomposition

Solving the meta-edges geometry enforces meta-faces to be flat. However, it is not sufficient to
ensure that the surface normal is defined everywhere, because the boundary may self-intersect. It
is prevented by decomposing the meta-faces into quads, and solving the geometry of quad’s edges
instead of meta-edges.

The decomposition is obtained by tracing curves on the original surface from the meta-vertices
(see Figure 3.10). The curve directions are determined by two smooth tangent vector fields, each
aligned with the subset of meta-edges that share a same associated axis. These smooth vector
fields are computed by Ray et al.’s algorithm [RVLL06]. Note that tracing cross-free streamlines
on arbitrary triangulated surface is not a trivial task. We need the computed streamlines to be
cross-free to ensure the valid quad decomposition. Section 3.2 covers the methodology necessary
for the task. The decomposition of a meta-face into quads depends on its orientation and the
current axis to be solved.

Vertical meta-faces (See Figure 3.11-Middle) For vertical meta-faces, the quad decompo-
sitions are obtained by tracing the set of curves from their vertices and aligned with e1.

3.1. NORMAL CONSTRAINTS FOR POLYCUBE MAPS 57

Figure 3.10: Meta-face decomposition: the axis associated to the meta-edges (left) allows
to interpolate two tangent vector fields in the meta-face (middle). The quad decomposition is
performed by following streamlines of these vector fields (right).

Figure 3.11: When solving in the vertical direction, vertical meta-faces are decomposed first by
cutting them in the vertical direction (middle), then the horizontal meta-faces are decomposed by
cutting them in the two horizontal directions from all their vertices (right).

When two adjacent meta-edges are associated to opposite coordinates axis, a degenerated quad
is created. In this case, an extra edge (Fig 3.11) is generated from a point close to the degenerated
edge, and lying in a quad edge adjacent to the degenerated edge. This will force the algorithm to
generate a special step.

Horizontal meta-faces (See Figure 3.11-Right) For horizontal meta-faces, the quads de-
composition is obtained by tracing curves in both directions from both the original meta-face
vertices and the T-vertices introduced during the quad decomposition of other meta-faces.

Why doing an axis dependant quad decomposition? The decomposition of meta-faces into
quads is axis dependant. It is motivated by two reasons:

• It prevents T-junctions from generating impossible steps. A T-junction splits a quad edge into
two. If this quad edge lies on a horizontal meta-face, it will generate two “step” variables able
to create different step positions. If the quad strip crossed by the step ends at both extremities
with such T-junction, the step to create may have no valid realization (Figure 3.12—Left).

• It prevents the generation of an over constrained system. Any single T-junction could be
avoided by iteratively splitting the quad adjacent to a single T-junction, but generally this
process may not converge.

Our process cuts vertical faces only in the vertical direction to avoid T-junctions between
vertical meta-faces, and propagates these T-junctions on horizontal meta-faces to prevent having
edge split in these faces. The remaining T-junctions adds a vertex in the middle of an horizontal
edge of a vertical quad. As illustrated in Figure 3.12—Right, these remaining T-junction can
not produce impossible situations, and only requires to introduce a new slack variable to prevent
foldovers.

Check assignment validity

A valid assignment of coordinate axis requires each oriented edge hi to go in the direction of its
associated coordinate axis N(hi). As meta faces are decomposed into quads, this will also ensure
that each quad (and therefore all meta-faces) has the prescribed orientation.

58 CHAPTER 3. POLYCUBE MAPS

Figure 3.12: A T-junction having a double edge on an horizontal meta-face may generate a set of
non horizontal edges that cannot be crossed in a single step (Left). However, if the double edge of
the T-junction is associated to another meta-face, it is sufficient to add a slack variable to prevent
foldovers in the vertical meta-face (Right).

Let xi represent the first (vertical) coordinate of vertex i and ∆xij denotes the first coordinate
of edge joining vertices i and j.

A valid geometry requires that ∆xij = xj − xi. Moreover, ∆xij must be positive if the edge
is associated to e1, negative if the edge is associated to −e1, and zero ∆xij = 0 if the edge is
horizontal. To find a unique solution, we minimize Σ|∆xij | subject to the constraints ∆xij = 0 if
the edge is not associated to e1 or −e1. If the edge is associated with e1, we require ∆xij ≥ lij ,
where lij is the geodesic length of the meta-edge hij . For oriented edges associated with −e1, a
constraint on opposing edges ensures that ∆xji > 0 i.e. ∆xij < 0.

This problem is solved by the revised simplex method. We use the implementation in the
lp solve library. If the problem has no solution, it means that there exists no deformation without
fold-over that aligns the surface normal with the current flagging N . Therefore more degrees of
freedom are required, corresponding to the creation of steps, as described in the next section.

Find where to create steps

From the point of view of the meta-mesh geometry, creating a step on a quad strip allows to lift
all vertices of one side of the quad strip. This can be represented (before creating the steps) in the
meta-mesh geometry by allowing for horizontal edges to have non null e1 component. However,
it is subject to the constraint that on each quad (of the meta-face quad decomposition), opposite
edges have the same e1 geometry.

Simply introducing new geometry variables xi to horizontal edges and setting the constraint
of equality on opposite quad edges would probably create many useless steps. Indeed, even on a
simple cube, it is possible to have a double step on meta-faces associated with e1 and −e1.

Thus, we allow ∆xij for horizontal edges to be non zero, and we include it into the objective
function with a large penalty weight. The penalty weight tells us that we always prefer to change
the geometry of vertical edges over horizontal edges that would lead to creation of new steps.

All horizontal edges are weighted by 10000 + εij in the objective function. The value of εij ∈
[0..1000] is set to minimize the step length by setting it to be proportional to the corresponding
quad strip length. Before introducing slack variables, the system minimizes:∑

wij |xj − xi| (3.1)

where wij = 1 if edge ij is vertical, and wij = 10000 + εij if edge ij is horizontal. The system is
subject to the constraints:

• xj > xi (resp. xj < xi) if N(hij = e1) (resp. N(hij = −e1))

• xj − xi = x′j − x′i if hi′j′ and hij are opposite quad edges

• xj − xi ≥ lij (resp. xj − xi ≤ −lij) where lij is the length (geodesic distance) of edge ij, if
N(hij = e1) (resp. N(hij = −e1))

For horizontal edges we split ∆xij into γ+
ij and γ−ij : γ

+
ij + γ−ij = ∆xij , γ

+
ij ≥ 0. If in the solution

γ+
ij is positive, it means that we will create an ascending step, if γ−ij is negative, the step will be

descending. Note that γ+
ij and γ−ij can not be non-zero at the same time. Thus, after introduction

3.1. NORMAL CONSTRAINTS FOR POLYCUBE MAPS 59

Figure 3.13: Variables of the system: xi are the vertices height, ∆xij are the height component
of edges, γ+

ij and γ−ij are slack variables associated to horizontal edges.

of slack variables ∆xij , γ
+
ij and γ−ij (see Figure 3.13), the final system minimizes:∑

ij is vertical

|∆xij |+
∑

ij is horizontal

(10000 + εij)(γ
+
ij − γ−ij) (3.2)

subject to the constraints:

• ∆xij = ∆xi′j′ if hi′j′ and hij are opposite quad edges

• ∆xij ≥ lij (resp. ∆xij ≤ −lij) where lij is the length (geodesic distance) of edge ij, if edge
ij is vertical

• ∆xij = γ+
ij + γ−ij if if edge ij is horizontal

• γ+
ij ≥ 0

• γ−ij ≤ 0

Solving this system provides the height of vertices xi where all quads have the prescribed
normal, or are inclined planes due to steps to be created.

Creation of a step

All modifications of the coordinate axis assignment N rely on a single editing operation on the
meta-mesh: the creation of a step (Figure 3.14). This operation is local to a quad strip generated
during the decomposition the meta-faces into quads. In the original mesh, it corresponds to define
a band crossing all quads of the quad strip, and re-affecting to it another coordinate axis.

The creation of a step invalidates the quad decomposition of meta-faces adjacent to the created
band. Figure 3.15 shows an illustration. The left topmost image is the deformed model with its
axis flagging. Our linear program tells us that we need to create few steps, thus re-coloring few
bands on the “thread” of the screw (middle image, top row). The final polycube is shown at
the right, top row. Note that three pink quads on the front of the screw are no longer quads in
the final polycube. Creation of steps invalidated the initial quad decomposition, therefore after
re-coloring of the bands on the “thread” we re-quadify adjacent charts. New flagging of edges will
produce new vector fields. The quadification is shown in the bottom image of figure 3.15. Note
the close-up with a very thing quad, we had a lot of problems to decompose the charts into quads
until we treated the problem of streamline tracing separately (refer to section 3.2 for a complete
description).

Crossing steps: it is possible that two steps need to be created on the same quad: one in
each direction. In this case, at the bands intersection, the flagging comes for the value of N for
the the highest step, as illustrated in Figure 3.16.

Degenerated quad (jump ramps) require a special treatment because the band (where the
coordinate axis must be redefined) must touch an edge of the quad. Indeed, if the band is defined
as usual in the middle of the quad, a part of the adjacent meta-face will be shrunk. However, it is
not sufficient to place it at the border as proposed by Gregson et al., because another meta-face
may have to shrink (Figure 3.18). To overcome these issues, we move the degenerated quad edge
prior to placing the step (Figure 3.17).

60 CHAPTER 3. POLYCUBE MAPS

Figure 3.14: Step creation: assigning a band of a meta-face to another coordinate axis (middle)
creates a step. This relaxes the planarity constraint between two sides of the quad-strip (right).

Figure 3.15: Upper row, left-to-right: input model after a deformation, steps to be created, final
polycube. Note that creation of steps forces re-quadification of adjacent charts (bottom row).

Figure 3.16: Double step: two orthogonal steps can be created on the same meta face. The
intersection of two bands is assigned to the same flag as the highest of two steps.

3.1. NORMAL CONSTRAINTS FOR POLYCUBE MAPS 61

Figure 3.17: When two adjacent meta-edges are assigned to opposite axes, the quad decomposition
isolates the degenerated quad (bolt cut). The axis assignment close to the degenerated edge is
changed to the axis associated to the adjacent meta-face, and a step is created.

Figure 3.18: Degenerated quads require to place a step adjacent to the degenerated edge (left).
It may be impossible to do so without squeezing a part of an adjacent meta-face (middle). Our
solution first removes the extremity of the degenerated edge, leading to a valid polycube (right).

Figure 3.19: Dead lock for solving the first dimension (Left). Creating a step would create two
new degenerated quads, including one in the current dimension to be solved (Middle). Solving the
other dimension first (Right—1) makes it possible to solve the current dimension ((Right—2)).

Figure 3.20: A deformation that will align the faces of the left object would push the hole under
the opposite face, creating a volume fold-over. Preventing such situation would require to create
a step (Right).

62 CHAPTER 3. POLYCUBE MAPS

Figure 3.21: Results on CAD/CAM objects. (1) Input mesh with boundary faces flagged to the
nearest axis. (2) A soft deformation is applied to improve the flagging. Note the dashed cycle in
the upper row, it must be planar in the final polycube, it is a hard constraint squeezing the model.
(3) We relax this constraint by re-flagging a part of the red chart. (4) Final polycube.

3.1. NORMAL CONSTRAINTS FOR POLYCUBE MAPS 63

Figure 3.22: Results on smooth objects.

64 CHAPTER 3. POLYCUBE MAPS

3.1.4 Results and discussion

Since we are working with meta-meshes, our algorithm running time is very low (under 10 seconds
for all shown models). We have tested our algorithm on different type of objects, figure 3.21
provides results on CAD objects and figure 3.22 gives the behavior for smooth objects.

In rare cases editing of normal constraints is not necessary, a polycube is realizable directly
from input flagging (bottom row of figure 3.21). Second row of figure 3.21 can be treated with the
original repair procedures proposed by Gregson et al. [GSZ11]. However, the top row (and the 3rd
one) of figure 3.21 shows a typical failure case of the method, it requires global constraints to be
solved in order to create necessary steps.

For the sake of clarity, we did not give all details and justifications during the presentation of
our algorithm. The following points are worth noting:

Characterization of target objects This approach creates hexahedral meshes with no singu-
larities inside the volume, therefore it may be better suited to re-meshing of smooth objects like
bones, petroleum reservoirs, etc. These objects have no or few hard edges, making it possible to
change the mapping of the polycube edges on the surface. CAD/CAM objects can be re-meshed,
but having a regular (distorted) grid inside the volume makes it hard to obtain nice results even
on simple objects such as prism, pyramids, etc. Indeed, generally these objects are not nicely
approximated by polycubes.

Geometric quality This work aims the robustness of the approach, produced steps are valid
topologically, however the geometric quality is (almost) not taken into account.

Degenerate quads hard to fix When it is required to create a step on a quad strip that
includes a degenerated quad, the situation becomes hard to solve (see Figure 3.19). We detect
such cases and try to solve other dimensions first. We conjecture that there is no configuration
where all dimensions are locked at the same time.

Prevent surface self intersections The current results ensure that the boundary surface can
be deformed to satisfy the normal constraints. This does not prevent volume foldovers. It should be
possible to detect the boundary intersections, and place slack variables to avoid such situations. In
practice, such situations appear in some CAD/CAM models when the object thickness is very low.
However, detection of conflicting meta-faces is beyond the scope of this project. It is interesting
to notice that introducing such slack variables in our system should even be able to create steps if
needed, as illustrated in Figure 3.20.

Conclusion

Automatic generation of polycubes is a challenging problem and affecting the desired polycube
normal to the original surface prior to constructing the polycube is a promising idea. In this
work, we have presented some limits of this approach as well as a solution to resolve the surfacic
foldovers issues. It makes it possible to convert many challenging surfaces into polycubes such as
Escher-style polycubes, screws, or situation involving partial shrink of the polycube face (degen-
erated quads). The polycube construction could be made more robust by dealing with the volume
foldovers, and provide nicer results by both pre-processing (better smooth object deformation) and
post-processing (optimizing the mapping between polycube and surface, use a better constrained
deformation, apply suitable local hex mesh operations).

3.2. ROBUST TRACING OF STREAMLINES ON TRIANGULATED SURFACES 65

3.2 Robust tracing of streamlines on triangulated surfaces

This section explains how to trace streamlines on vector fields designed on triangulated surfaces.
While it is an essential step to make the generation of polycubes robust (recall the close-up on the
figure 3.15), we feel that it is useful for many other applications, so it is extracted to a separate
section. This work was previously published at [RS14a].

Segmentations of triangulated surfaces that align chart boundaries with a direction field often
exhibit useful properties for computer graphics applications. For instance, alignment with the main
curvature directions is used for quad dominant remeshing [ACSD+03], following the gradient of a
scalar field allows to compute pure quad decomposition using Morse-Smale complexes [DBG+06,
SZ12], and streamlines of a cross field can decompose a mesh into quad shaped domains [KLF13].
However, it is required that cutting polylines do not merge to obtain a pure quad decomposition.
This property is difficult to enforce in the presence of highly perturbed geometry, field singularities
(Fig. 3.23), or limit cycles (Fig. 3.34).

Figure 3.23: Our algorithm traces polylines on triangulated surfaces. Unlike previous algorithms
our technique ensures that two polylines cannot cross each other. It works even with highly
perturbed surfaces (top) and supports any type of vector field singularities (bottom).

All previous algorithms tend to generate polyline crossing or merging. Indeed, when tracing
a polyline that converges to a limit cycle, the distance between the polyline and the limit cycle
decreases at each loop, until the (floating point) number representation accuracy is reached and
the polylines either merge or cross.

A more common source of merges comes from vector fields representations that are polynomial
inside each triangle, leading to incompatible directions between pairs of adjacent triangles. As
illustrated in Fig. 3.24, and observed in practice in Fig.3.35, these incompatibilities leads stream-
lines to converge to an edge. Zhang et al [ZMT06, Section 6.2] analyse this issue and provide an
alternative vector field representation based on local flattening. Our representation differs from
Zhang’s one, but it also prevents merges or splits along streamlines.

(a) (b)

Figure 3.24: (a) all streamlines from the dashed area merge on an edge, and split on a vertex. (b)
constant per triangle tangent vector fields have direction discontinuities along edges due to vertex
angle defect.

Algorithm overview

Given a triangulated surface and a direction field in our representation (detailed in Section 3.2.1),
our method traces cross-free and merge-free polylines that are oriented by the direction field.

66 CHAPTER 3. POLYCUBE MAPS

We start from a polyline extremity located at barycentric coordinates c (and 1− c) on halfedge
e. The algorithm crosses the triangle associated to e by finding the output point (e′, c′), and
continues on the next triangle. It stops when the streamline reaches the surface boundary, a sink
of the field, or when the polyline’s number of segments reaches a user given limit.

The main difficulty is to determine how each triangle is traversed by the polyline. Our ap-
proach (Fig. 3.25) is inspired by EdgeMaps [BJB+11]: we decompose the triangle into pairs of
inflow/outflow interval, and define the triangle crossing function by a linear mapping between each
inflow interval and its corresponding outflow interval.

The original EdgeMaps algorithm is not guaranteed to produce cross-free and merge-free
streamlines because: its input is a linear vector field per triangle (subject to field discontinu-
ities along edges), pairing of inflow/outflow interval requires to trace streamlines inside triangles
(subject to numerical integration errors), and the linear maps between intervals is monotonic only
up to numerical precision. We address these issues as follows:

• input representation: we introduce an explicit representation of the field direction on
edges, making the field compatible on adjacent triangles.

• pairing input/output interval: the behavior of the field inside each triangle is described
by a new structure called stream-mesh. The boundary of each (simple) stream-face can be
decomposed into two regions: one where the field points inside the face and one where field
points outside the face (Fig. 3.25–c, and Section 3.2.2). The problem of crossing a triangle
can then be restated as crossing its stream-mesh (Section 3.2.3), by iteratively crossing its
stream-faces. It guarantees the mapping to be monotonic, if it is performed with arbitrary
precision numbers.

• numerical precision: we use arbitrary precision floating points to represent the barycentric
coordinate c, and manipulate them by almost linear mapping functions (Section 3.2.4) that
are guaranteed to be monotonic.

Practically, the first point prevents merges of the “real streamlines” of the input. The second
point allows all non trivial configurations (field singularities, edge tangent to the field, high vertices
angle defect) to be uniformly and correctly handled without any parameters inherent to numerical
integration. The last point allows two polylines to become arbitrary close to each other, as it
happens with limit cycles.

(a) (b) (c) (d) (e)

Figure 3.25: (a) a polyline (blue arrow) enters a triangle. (b) we construct a stream-mesh by a seg-
mentation of the triangle boundary into inflow (green) and outflow (red) segments (Section 3.2.2).
(c) the stream-mesh is split into simple stream-faces (Section 3.2.2). (d) we cross the triangle from
stream-halfedges extremities (Section 3.2.3). (e) we map inflow intervals onto outflow intervals
using an almost linear mapping with exact precision number representation (Section 3.2.4).

Previous Work

To the best of our knowledge, no prior work directly addresses our problem. However, it is inter-
esting to review solutions developed for 2D streamline tracing, to notice similar issues occurring

3.2. ROBUST TRACING OF STREAMLINES ON TRIANGULATED SURFACES 67

for tracing other types of curves on surfaces, and to give an overview of the tangent vector field
and, more generally, N-symmetry direction field design algorithms.

Streamline tracing

Tracing streamlines of 2D or 3D vector fields is a common task [SLCZ09, RT12] in visualization.
In most cases, an order four Runge Kutta (RK4) integration scheme performs well. For piecewise
linear vector field on a triangulation, Bhatia et al. propose EdgeMaps [BJB+11], a more robust
solution that directly matches in/out flow intervals of the triangle border. Our method shares
the idea of directly mapping in/out flow intervals, but is not limited by vertices angle defect or
numerical precision issues.

Tracing curves on triangulated surfaces

Tracing curves on triangulated surfaces is a challenging task because the curve may cross triangles,
follow edges, and pass through vertices [LLP05b]. All such configurations are naturally managed
by our representation: a polyline passing through a vertex is considered as crossing a subset of its
adjacent triangles, all polyline vertices being located on the vertex of the surface.

For computing optimal systems of loops [CdVL05], one needs to distinguish the order between
curves following the same edge, leading to a complex data structure where all the curves following
the same edge need to be ordered. Special efforts [MVC05, SSK+05, PS06] have also been devoted
to tracing geodesics where the angle defect plays an important role, as in our case.

Recent works [SZ12] compute Morse decomposition of piecewise constant vector fields by con-
verting them into a combinatorial structure. It results in a robust algorithm, but the streamlines
traced from saddles to create edges of the Morse complex still merge of split due to the input field.

Direction field design

Many algorithms [ZMT06, WWT+06, FSDH07] allow to design tangent vector fields. The resulting
field can be continuous enough to have (continuous) streamlines that do not cross one another
[ZMT06], eventually at the expense of simultaneously refining the surface [WWT+06]. Albeit,
there exist no solution to trace merge-free streamlines.

For mesh segmentation, it is more common to use N-symmetry direction fields than tangent
vector fields, but a N-symmetry direction field is equivalent to a vector field on an N-covering of
the surface [KNP07]. Such fields were used for quad remeshing based on global parameterization
[RLL+06]. The lack of control over the topology of these direction fields was addressed later
[PZ07, RVLL06]. A common representation [KNP07, RVLL06, RVAL09, BZK09] samples the
direction on triangles, and makes explicit the field rotation between adjacent triangles.

3.2.1 Field representation

The continuity of tangent vector fields is naturally defined on smooth surfaces. It is possible to
extend this notion of continuity on triangulated surfaces ([ZMT06], Section 6) by considering that,
across an edge, the vector field should preserve its magnitude and the angle with respect to the
edge. This is unfortunately impossible to achieve with most of existing vector field representations,
and results in possible streamline merges. We see this issue in detail and introduce an alternative
representation.

Most representations of tangent vector fields are polynomial on each triangle. These vector
fields are differentiable everywhere on each triangle, so their direction expressed as an angle in a
local basis of the triangle is also differentiable. This continuity of the field on triangles also involves
discontinuities of the field direction on edges in the vicinity of vertices with non zero angle defect.
Indeed, along an infinitesimal circle around the vertex, a unit regular vector field will undergo a
rotation that is equal to the vertex angle defect. As the field is differentiable on triangles, the
direction rotation accumulated along the cycle necessarily comes from direction discontinuities
when crossing edges (Fig. 3.24b). Such discontinuities can lead to the merging streamlines on an
edge where the flow leaves both adjacent triangles (Fig. 3.24a).

These issues were already addressed in section 6.2 of [ZMT06], where the field is defined on
each vertex by a 2D vector in a local map of its one-ring neighborhood, and interpolated on each

68 CHAPTER 3. POLYCUBE MAPS

α3

α4

α2
−→
r

α5 = α0 = 0 α1 = 0

I

I

I

I

IO

O

Tf

Tb

out-list

in-list

Tf

in�ow interval

out�ow interval

Figure 3.26: Left: the field is defined on edge extremities by angles αi between the field direction
and a reference vector ~r. Middle: the field behavior with respect to the triangle boundary is
explicitly represented by stream-halfedges (blue) where the field is either incoming, outgoing, or
tangent (I, O, Tf or Tb). In this example, the stream-mesh is a simple stream-face: the field
enters the triangle from a single triangle section (in-list) and leaves it from a single triangle section
(out-list). Right: the black “streamline” is traced from the tangent of the in-list (lower edge). It
defines two inflow/outflow pairs of intervals that define the final mappings to be performed with
arbitrary precision floating point.

triangle. However, numerical approximations of this field’s streamlines are not guaranteed not to
cross each other.

To avoid the numerical integration of streamlines inside triangles, we rely only on the field
direction along edges. Moreover, we prefer to interpolate the field in polar coordinates instead of
Cartesian coordinates to allow for more general types of direction field and singularities. It also
simplify the field representation by restricting singularities to be located on vertices.

We represent the input field on each triangle by sampling the field direction at each edge
extremity: αk, k ∈ [0 . . . 5] are the angles of the field, with respect to a reference vector −→r taken
in the triangle plane (Fig. 3.26—Left). Note that due to angle defect and singularities on vertex,
each triangle corner is associated to two angles: one for each incident edge.

To prevent crossings, we force the input field to be continuous across edges, i.e to have the
same angle with respect to an edge on both adjacent triangles of this edge. We also constrain the
angle discontinuity on triangle corners to be evenly distributed around each corner. This latter
constraint is equivalent to the local flattening of one-ring neighborhood in [ZMT06] and allows to
better manage singularities.

Connection with direction field

We have defined how to represent a vector field on each triangle. To handle N-symmetries, other
directions are generated by applying a rotation of 2kπ/N with k ∈ 1..N − 1 to the vector field.
The vector field across an edge requires the k’s of each triangle to agree: their difference (referred
to as layer shift in N-coverings) is uniquely defined due to the continuity (enforced in the previous
paragraph) of the field across edges.

3.2.2 Stream-mesh

A stream-mesh is the combinatorial representation of the field behavior inside a triangle of the
mesh. It is a halfedge data structure endowed with additional information that represents the field
behavior with respect to the triangle boundary. The field direction is given at each stream-vertex
by its angle α relative to the triangle reference vector −→r . Along each stream-halfedge e, the field
has a unique behavior that may be :

• incoming (I) if the field points inwards the stream-face,

• outgoing (O) if the field points outwards the stream-face,

• tangent in the forward direction (Tf) if the field has the stream-halfedge direction,

• or tangent in the backward direction (Tb) if the field direction is opposite to the stream-
halfedge direction.

3.2. ROBUST TRACING OF STREAMLINES ON TRIANGULATED SURFACES 69

As illustrated in Fig. 3.26–Middle, stream-halfedges represent the behavior of the field with
respect to the triangle boundary. They can correspond to a portion of an edge, or be limited
to a single point where the field becomes tangent to an edge, or define the field behavior on a
triangle corner. In the latter case (Fig. 3.27), multiple stream-halfedges are used to describe the
field behavior on a single point (triangle corner).

In this representation, we can define:

• An in-list as a list of stream-halfedges that contains at least one incoming stream-halfedge,
and no outgoing stream-halfedge.

• An out-list as a list of stream-halfedges that contains at least one outgoing stream-halfedge,
and no incoming stream-halfedge.

• A simple stream-face as a stream-face having a border that can be decomposed into an
in-list, followed by a forward tangent stream-halfedge, followed by an out-list, and followed
by a backward tangent stream-halfedge (Fig. 3.28–right).

The stream-mesh is initialized as a single stream-face by decomposing the triangle border
according to the field behavior (Section 3.2.2). The main stream-face is then decomposed into
simple stream-faces by a strategy inspired from the ear clipping algorithm [Ebe98]: simple stream-
faces are iteratively removed from the main stream-face until the main stream-face becomes simple
(Section 3.2.2).

Main stream-face initialization

The initialization of the main stream-face of a triangle is performed independently between each
pair of field samples. Each such pair corresponds either to a triangle edge, or to a corner of the
triangle between an edge and the next edge around the triangle.

For the kth edge Ek of the triangle, the angle of the field with respect to the edge is given by

a linear interpolation between α2k − ∠(−→r ,−→Ek) and α2k+1 − ∠(−→r ,−→Ek).

• When this angle equals 0 mod 2π it is a forward tangent,

• when it equals π mod 2π it is a backward tangent,

• when it is strictly between 0 and π mod 2π, it is incoming,

• and outgoing otherwise.

A stream-halfedge is generated for every interval with constant type of behavior, including zero
length intervals when the field is tangent at a single point. These tangent directions must be
explicitly represented as illustrated in the first row of Fig. 3.27, where columns 2 and 3 differ only
by their opposite tangent directions.

On the triangle corner between kth edge Ek and jth edge Ej (with j−k = 1 mod 3), α2k+1 and
α2j may be different due to vertex angle defect or field singularities. Consequently, it is possible
for a vertex to contain important topologic information about the field. As illustrated in Fig. 3.27,
the field behavior on a vertex (second row) is similar to its behavior along an edge (first row),
and can be characterized in the same way. The segmentation is performed with the algorithm

described for edges, except that angles are linearly interpolated between α2k+1 − ∠(−→r ,−→Ek) and

α2j−(∠(−→r ,−→Ek)+∠(
−→
Ek,
−→
Ej)). One can notice that using ∠(−→r ,−→Ek)+∠(

−→
Ek,
−→
Ej) instead of ∠(−→r ,−→Ej)

allows to consider that the triangle border rotation on the corner is in]0, π[(not modulo 2π).
A possible geometric interpretation of stream-halfedges generated on triangle corners could be

to consider the triangle as a rounded triangle having its corner radius tending to 0. It makes the
field and the triangle border rotating along the arc of circle instead of a single point.

Split the stream-mesh into simple stream-faces

The stream-mesh is now initialized by a main stream-face. The decomposition iteratively re-
moves simple stream-faces from the main stream-face until the main stream-face becomes simple
(Fig. 3.28).

To remove a simple stream-face (Fig. 3.29), we search in the stream-halfedges list of the main
stream-face a sequence of halfedges that can be decomposed into : a Tf stream-halfedge, followed

70 CHAPTER 3. POLYCUBE MAPS

O

O

O O O

I ITb
TbTf

Tf

O

O

O

O

O
I I

Tb

Tb

Tf

Tf

Figure 3.27: Combinatorial representation of the flow behavior. The first row shows the decom-
position of an edge into incoming (green), outgoing (red), tangent forward and backward (black
arrows) stream-halfedges, for three different fields. The second row shows that similar situations
can occur on a triangle corner and can be characterized the same way. The field behavior is the
same on both rows, but in the second row, the field rotation is performed on a single point instead
of a triangle edge. The only difference between columns 2 and 3 is the tangent direction.

by an out-list, followed by a Tb stream-halfedge, followed by an in-list, and followed by a Tb
stream-halfedge. We split the first Tf and last Tb stream-halfedges of the sequence and introduce
a new stream-edge linking the stream-vertices produced by the stream-edge split. The type of the
generated stream-halfedges is set to incoming in the simple stream-face side, and outgoing in the
main stream-face side.

As illustrated in Fig. 3.29, the type of the produced stream-halfedges is coherent with the flux
that can be computed across the stream-halfedge. Indeed, the triangle border being convex, the
field direction at the new stream-halfedge’s extremities will always point to the same half-plane of
the new stream-halfedge.

By symmetry, it is also possible to apply the same operation on the opposite field, i.e. replace
both Tf ⇔ Tb and in-list⇔ out-list in the pattern and in the result.

Next section shows that recursively applying the split operation converges to a decomposition
into simple stream-faces.

Correctness of the decomposition

Convergence Given a stream-face with n in-lists and n out-lists, let us choose one out-list as a
reference. Any two adjacent lists i and i+ 1 have a tangent between them, let us define a sequence
of labels {ti}∞i=0 as the label of tangent stream-halfedge incident to both lists i and i+ 1. Then we
define a sequence of integers {ai}+∞i=0 as follows:

a0 = 0

a2i+1 =

{
a2i + 1 if t2i+1 = Tf ,

a2i − 1 otherwise.

a2i+2 =

{
a2i+1 + 1 if t2i+2 = Tb,

a2i+1 − 1 otherwise.

The defined sequence {ai} is arithmetic quasiperiodic: ai+2n = ai − 2 and is continuous in the
sense that |ai+1 − ai| = 1. A stream-face is simple if and only if the corresponding sequence {ai}
is decreasing. The splitting rule described in section 3.2.2 searches for a pattern (per period 2n)
(2i+1, 2i, 2i−1, 2i) in the sequence {ai} and replaces it with a new one (2i+1, 2i). In other words,
the splitting rule removes one (per period) local minimum of the sequence {ai}. The symmetric
rule replaces (2i+ 2, 2i+ 1, 2i, 2i+ 1) with (2i+ 2, 2i+ 1), again removing a local minimum. If a

3.2. ROBUST TRACING OF STREAMLINES ON TRIANGULATED SURFACES 71

Figure 3.28: The field is converted into a stream-mesh, then a simple stream-face is removed at
each step until the main stream-face becomes simple.

Figure 3.29: Splitting the main stream-face (left) by our rule produces a simple stream-face and
removes a pair of in-list/out-list of the main stream-face border.

stream face is not simple, the corresponding sequence has at least one local minima, moreover, the
sequence decreases by 2 with each period and therefore it is possible to apply one of the splitting
rules. Both rules keep the continuity of the sequence, and the period is reduced by 2 with each
iteration, leading to a final decomposition of the initial stream-face into a set of simple stream-faces.

Non-nullity of flux through simple faces We show that each simple stream-face is traversed
by some flux. To do so we demonstrate that the out-list (as well as in-list) of a simple stream-face
have non-zero associated flux.

First of all, let us note that all stream-halfedges created by splitting rules have non-zero flux.
Indeed, their length is not zero: it is easy to see that due to the linear interpolation between angle
samples, the sequence {ai} is monotonic inside triangle corners; however the splitting rule searches
for a local minimum of the sequence. Therefore, it is not possible to create a simple face entirely
contained in a triangle corner.

Now let us show that all simple faces have non-zero flux through them. Let us suppose that
the out-list of a simple stream-face has a zero flux. All outflow stream-halfedges on triangle edges
as well as outflow stream-halfedges corresponding to splits have non-zero flux, since their length
is greater then zero. The only option for an out-list to have a zero flux is to be contained in a
triangle corner and to have Tb, O, Tf structure, as defined in section 3.2.3. However it means that
the corresponding sequence {ai} is increasing on this out-list, and that contradicts the monotonicity
of the sequence {ai} for simple faces. Therefore, there is no out-list in a simple face that does not
have a flux through it. The same argument shows by symmetry that there is no in-list without
flux through it.

3.2.3 Pairing intervals

Pairing inflow/outflow intervals using the original EdgeMaps algorithm [BJB+11] requires to trace
a set of “streamlines” inside each triangle. However, the numerical imprecision involved by the
streamline integration inside triangles may produce an invalid decomposition. Typical failure cases
include high field rotation close to field singularities, or fields that are almost tangent to an edge.
To prevent such failure cases, we replace the numerical streamline integration by a traversal of the
stream-mesh.

A robust method crosses each simple stream-face by almost linear mappings (Section 3.2.4)
between their in-list and out-list. This solution guarantees the generation of intersection-free

72 CHAPTER 3. POLYCUBE MAPS

streamlines, but the polyline orientation may not closely match the direction field geometry.

Alternatively, a more geometric method crosses each simple stream-face by using a heuristic to
take the field geometry into account. This method may fail due to numerical approximations, but
better fits the field geometry.

Both solutions only differs by the estimation of the direction field flux Φ across the stream-
halfedges. We start with the geometric heuristic and switch to the robust version if needed.

Remark 1: At this point, we have two solutions to cross a triangle, but we don’t use them
directly for tracing the polyline because: the robust version has a poor geometry with respect
to the direction field, and the other one may result in crossing streamlines. Instead we use this
method only to decompose the triangle boundary into inflow/outflow intervals (Fig. 3.26—Right),
then use EdgeMaps with arbitrary precision to perform the final mapping.

Remark 2: The geometric heuristic with fixed precision is usually good enough for the de-
composition, but not for directly tracing streamline. On one hand, the decomposition requires to
trace only few “streamlines”, and it is possible to check the validity independently in each triangle.
On the other hand, tracing a polyline is much more difficult because each new segment must be
guaranteed not to cross all previous and future segments that may cross this triangle.

Crossing a simple stream-face

Crossing a simple stream-face requires to define how points in the in-list are mapped to points in
the out-list. Any such mapping that does not cross streamlines will produce globally cross-free
streamlines. However, it is better to choose a mapping that preserves as much as possible the
field geometry. Our mapping is defined such that any evenly distributed set of streamlines that
enters a triangle will leave it with an even distribution, except if field sinks or streamlines that
are tangent to the boundary prevent it. It can be restated as follows: for a unit norm field, if the
stream-face is split by a streamline, both parts should have the same ratio between the incoming
flux and the outgoing flux. Here, we call by flux the amount of streamlines outgoing from a portion
of the out-list (and symmetrically for the in-list). However, it can be considered as an abuse of
terminology because we explicitly set a non zero flux for sink/source vertices to allow for an infinite
set of streamlines to pass through them (Section 3.2.3), whereas computing the flux of the unit
vector field would give zero. This heuristic perfectly respects the field when it is constant inside
the triangle, and is evaluated in in more difficult situations (figures 3.23 and 3.36).

As illustrated in Fig. 3.30, we call f (resp. b) the stream-halfedge of type Tf (resp. Tb) that
comes before the out-list (resp. in-list).

We denote by Φ(e, c) the flux crossing the in-list (resp. out) of stream-halfedges up to the point
located at the (c, 1 − c) barycentric coordinate on the stream-halfedge e. It is recursively defined
by Φ(e, c) = Φ(prev(e), 1) + φe(c) where Φ(f, 1) = 0,Φ(b, 1) = 0, and φe(c) is the flux crossing the
stream-halfedge e up to the point of barycentric coordinates c, 1− c.

Using these notations (Fig. 3.30), the condition for a streamline to split the simple stream-face
into two stream-faces having the same ratio between inflow and outflow writes:

Φ(ein, cin)

Φ(prev(f), 1)
= 1− Φ(eout, cout)

Φ(prev(b), 1)

where the input point is ein, cin and the output point is eout, cout. As a consequence, the output
point is given by :

(eout, cout) = Φ−1

(
Φ(prev(b), 1)

(
1− Φ(ein, cin)

Φ(prev(f), 1)

))
To compute the output position (eout, cout) of a streamline, we need to evaluate the functions Φ,

and Φ−1. The function Φ can be evaluated from φe(c) using its recursive definition. The function
Φ−1(x) requires to take the stream-halfedge e such that Φ(e, 0) ≤ x ≤ Φ(e, 1) and φe(1) 6= 0, and
to define its barycentric coordinate c = φ−1

e (x− Φ(e, 0)).

As a consequence, we only need to be able to evaluate φe(c) and its inverse φ−1
e (x) to cross a

simple stream-face. For the robust version, it is sufficient to set φe(c) = φ−1
e (c) = c, and for the

heuristic version it is described in Section 3.2.3 for φe(c) and Section 3.2.3 for φ−1
e (c)

3.2. ROBUST TRACING OF STREAMLINES ON TRIANGULATED SURFACES 73

(ein,cin)

︸ ︷︷ ︸
Φ(ein,cin)

(eout,cout)

Φ(eout,cout)︷ ︸︸ ︷

︸ ︷︷ ︸
Φ(prev(f),1)

fb

Φ(prev(b),1)
︷ ︸︸ ︷

Figure 3.30: Flow notations used to cross a simple stream-face.

Computing φe(c)

Flux on edges To estimate a flux across edges, the vector field orientation (direction field) is
not sufficient, therefore we also assume that its magnitude is equal to one. On edges, we set φe(c)
to be the flux of this vector field across the stream-halfedge e given by:

φe(c) = |−→e |
c∫

0

− sin(αo + t(αd − αo)− ∠(−→e ,−→r))dt

= |−→e |cos(αo + t(αd − αo)− ∠(−→e ,−→r))

αd − αo

∣∣∣c
0

where αo and αd are the field directions located at the vertex pointed by the stream halfedges
prev(e) and e, and expressed by their angle relative to −→r .

Flux on vertices N-symmetry direction fields may have singularities that can be characterized
by their index. The index is well defined for smooth manifolds [Mro95], and has been extended
to triangulated surfaces [RVAL09]. In our case, we assume that singularities can only appear on
vertices, leading to the following characterization of indices:

Index(A) =
∑ ∆αe

2π
+

2π −∑βe
2π

(3.3)

where the sums are performed on all triangle corners referred by their halfedge e incident to A,
Index(A) is the index of vertex A, ∆αe is the angle discontinuity on the triangle corner, βe is the
triangle corner angle. The first sum is the total amount of field rotation around A, and the rest is
the angle defect of A divided by 2π.

Examples of singular vertices are given in Fig. 3.31. One can notice that an infinite number of
streamlines can reach the vertex only for strictly positive indices, leading to two different behaviors
of our algorithm as detailed bellow.

On corners, we can generally say that there is no flux that leaves the triangle i.e. φe(c) = 0.
However, for singularities with positive index such as source and sinks, there is an infinity of
streamlines that reach or start from the corner (Fig. 3.31). If an outflow stream-halfedge e is
defined in a triangle corner, in a sequence Tf , O, Tb, then we set φe(c) = c. By symmetry, if an
inflow stream-halfedge e is defined in a triangle corner, in a sequence Tb, I, Tf , then we set φe = −c.
This strategy provides a field behavior coherent with the continuous behavior of streamlines on
field singularities as explained in the following section.

Geometric vertex crossing

The default behavior of our algorithm is when there is not an infinity of
streamlines having the vertex as one of its extremities. In this case, when a
streamline leaves a triangle on a vertex location, the output of the triangle
crossing algorithm is an adjacent edge, with a barycentric coordinate being
either 0 or 1 to fit the vertex location. The streamline then continues on

74 CHAPTER 3. POLYCUBE MAPS

î� î� �

� � � �

Figure 3.31: Singularities classified by index. On negative indices, there exist a finite number of
streamlines (red and green) having the vertex as extremity. On regular vertices (index is zero), at
most one streamline can cross the vertex. On positive index singularities, there exist an infinity of
streamlines having the vertex as extremity, expect for the vortex case (lower-left).

the next triangle until it ends in the vertex or leaves the vertex location as
illustrated in the inset figure.

Our algorithm has this behavior because the flux on a stream-halfedge
defined on a triangle corner is generally zero, and the constraint that the simple stream-face crossing
algorithm is not allowed to generate outputs on a stream-halfedge without flux.

Streamline extremity on a vertex Streamlines may also have one of its extremities located on
a vertex, but this occurs only for vertices with strictly positive index, as illustrated in Fig. 3.31 (we
consider that if a unique streamline reaches the vertex it will cross it with the previous behavior).
We explain here why our way to determine the flux on stream-halfedges inside triangle corners
(Section 3.2.3) gives non zero flux only for vertices with strictly positive index.

As the rotation speed of the field around the vertex A is constant, the difference of angle ∆αe
is equal to the sum of such rotations around the vertex A times the ratio of βe over the sum of
triangle corner angles around A. Putting it together with equation (3.3), with summation over all
halfedges e′ pointing to A gives:

∆αe =
βe∑
βe′

(
2π(Index(A)− 1) +

∑
βe′
)

so the variation of angle with respect to halfedges pointing to A is

∆αe − βe =
2πβe∑
βe′

(Index(A)− 1)

As a consequence, if ∆αe − βe is strictly positive, the vertex index is greater or equal to 1.
Otherwise, the index is strictly less than 1. Note that for direction fields with rational indices, we
are still able to distinguish between singularities with and without flux.

In our algorithm, the condition to associate some flux to output stream-halfedges (defined on
a triangle corner) is that the stream-halfedge must be contained in a sequence TfOTb. It means
that the field angle with respect to the triangle border increases at least by π. Since the corner is
convex, we have βe < π. As a consequence, our algorithm gives some flux only for stream-halfedges
in triangle corners corresponding to a vertex with strictly positive index. The same thing occurs
for the sequence TbITf .

Starting a streamline from a vertex For a vertex that is the origin of a finite number of
streamlines (negative or null index), it is possible to generate all streamlines by simply starting a
streamline for each inflow stream-halfedge on adjacent triangle corners. This is especially important
for tracing streamlines from saddle points, as it is required for computing Morse-Smale complexes.

3.2. ROBUST TRACING OF STREAMLINES ON TRIANGULATED SURFACES 75

Computing φ−1
e (x)

Computing φ−1
e (x) requires to invert Equation (3.3). As cosine is not a one to one function,

determining φ−1
e (x) requires to take into account that it is a barycentric coordinate in the halfedge

e, and therefore 0 ≤ φ−1
e (x) ≤ 1. This constraint fixes s ∈ {−1, 1} and k ∈ Z in the formula:

φ−1
e (x) =

s arccos(cos(αo − ∠(−→e ,−→r T))− x (αd−αo)
|−→e |)

αd − αo
+

2kπ − αo + ∠(−→e ,−→r T)

αd − αo

3.2.4 Crossing triangle with arbitrary precision

When a polyline reaches a triangle edge e at barycentric position p (given in arbitrary precision
floating point) on e, we are able (Section 3.2.3) to determine the corresponding inflow interval
(barycentric coordinates [a/2i, b/2i] on e) and outflow interval (barycentric coordinates [c/2j , d/2j]
on edge e′). The usage of dyadic rationals (denominator is a power of two) is motivated by the
direct compatibility with floating points, and possible simplifications exploited in our almost linear
mapping.

The objective is to determine the barycentric coordinate q on edge e′. A linear interpolation
gives q = c/2j + (p − a/2i)(d/2j − c/2j)/(b/2i − a/2i). However, doing so in exact arithmetic
dramatically affects the performances: the memory required to represent q is approximately 100
bits larger (50 for the denominator, and 50 for the nominator) than for p. After crossing n triangles,
the size of q is approximately 100n bits, which greatly reduces the performance and increases the
memory required to store the polyline (Fig. 3.33).

Our solution, described in the next section, is an approximation of a linear mapping that
reduces by two orders of magnitude the size of p and q (Fig.3.32). At coarse scale, it is linear up
to approximations of 64 bits floating points, and at finer scale, it is linearly interpolated between
the closest 64 bits floating points numbers.

Almost linear mapping

In this section we describe how to define a strictly monotonic mapping of all dyadic rationals of an
origin interval [a/2i, b/2i] to a destination interval [c/2j , d/2j], where a, b, c, d ∈ N and a < b, c < d.
Algorithm 2 gives an implementation, and Fig. 3.32 illustrates an example of execution.

Input/output interval boundaries define two grids of fractional numbers with given precision
(resp. 2i and 2j). The idea is to refine the output grid until it becomes larger than the input one,
and then to map the input grid onto the output grid by rounding the linear mapping (Fig. 3.32,
middle). The final mapping is defined as a collection of linear transformations between pairs of
grid segments (Fig. 3.32, right).

The section between lines 5 and 8 of the algorithm 2 is a loop that refines the input grid. While
the loop is not mandatory to define a correct mapping, it is essential to save the memory. Indeed,
the increase in the precision of the point q/2l with respect to the point p/2k is given by the relation
l − k = j − i, thus we keep i as high as possible to avoid wasting memory. Fig. 3.33 gives a plot
of occupied memory for a polyline in the limit cycle field (Fig.3.34). Note that the growth is not
monotonic, this is due to two phenomena: either i > j or a fraction that can be canonicalized.

3.2.5 Discussion

This section evaluates the performances of our algorithm on synthetic stress tests, proposes some
applications where tracing robust polylines is required, compares with possible alternative algo-
rithms and provides some details about local overlaps.

Synthetic tests

To evaluate the geometric quality of our polylines, we traced them on a circular vector field with
different mesh quality (Fig. 3.36). It shows our polylines smoothness and accuracy with different
triangle qualities (upper to lower) and different field rotation magnitude (border to center). In
practice, computer graphic meshes are closer to the upper and middle images, and field design

76 CHAPTER 3. POLYCUBE MAPS

Algorithm 2: Algorithm overview

Input: Origin interval boundaries [a/2i, b/2i]
Input: Point p/2k ∈ [a/2i, b/2i] with k ≥ i
Input: Destination interval boundaries [c/2j , d/2j]

Output: Point q/2l ∈ [c/2j , d/2j]

1 while b− a > d− c do
2 (c, d)← 2 · (c, d);
3 j ← j + 1;

4 end
5 while 2 · (b− a) < d− c do
6 (a, b, p)← 2 · (a, b, p);
7 (i, k)← (i+ 1, k + 1);

8 end

9 p′ ← bp/2k−ic;
10 p′′ ← p′ + 1;
11 q′ ← b(p′ − a) · (d− c)/(b− a)c+ c;
12 q′′ ← b(p′′ − a) · (d− c)/(b− a)c+ c;

13 q ← (p− p′ · 2k−i) · (q′′ − q′)/(p′′ − p′) + q′;
14 l← j + k − i;
15 return q/2l;

1

0 0

1

5/23

1/23

6/23

3/23

1

0 0

1

5/23

1/23

12/24

3/23

2/23

6/24

9/24

1

0 0

1

3/23

2/23

7/24

9/24

15/25

7/24

9/25 9/25 9/25

Figure 3.32: An example of execution of the algorithm 2. (left) Origin interval [a/2i, b/2i] =
[1/23, 5/23], destination interval [c/2j , d/2j] = [3/23, 6/23] and an entry point p = 9/25. (middle)
The destination interval is refined (c and d are doubled and j incremented) and we map points
p′ = 2 and p′′ = 3 to points q′ = 7 and q′′ = 9, respectively. (right) The resulting point
q/2l = 15/25 is obtained by the linear mapping of the interval [p′/2i, p′′/2i] onto the interval
[q′/2j , q′′/2j].

algorithms tends to produce as smooth as possible fields. It is interesting to notice that an impor-
tant loss of accuracy only appears on very stretched triangles like one having a corner with a field
singularity (see close-up).

The cross-free and merge-free properties are ensured by our approach. Fig. 3.23(top) and Fig.
3.34 show examples where these properties are hard to enforce due to noisy geometry and the very
short distance between polylines.

3.2. ROBUST TRACING OF STREAMLINES ON TRIANGULATED SURFACES 77

100 101 102 103 104 105

102

103

104

105

Length of the polyline, triangles

P
oi
n
t
re
p
re
se
n
ta
ti
on

si
ze
,
b
it
s

100 101 102 103 104 105

101

102

103

Length of the polyline, triangles

T
ri
an

gl
e
tr
av
er
sa
l
ti
m
e,

m
s

(a) (b)

Figure 3.33: Results after one hour of computing: (a) length of a polyline (in triangles, x-axis)
versus number of bits to represent the current polyline vertex (y-axis): linear mapping (red),
without input grid refinement (brown), our algorithm (blue); (b) length of a polyline (in triangles,
x-axis) versus time to cross one triangle (y-axis).

Figure 3.34: Robustness stress test: the polyline initialized at the red dot converges to a limit cycle.
Our arbitrary precision representation of the polyline prevents crossings and merging whereas 64
bits precision leads to a merge after less than 10 loops. On the same data, we run with exact
precision up to 900 loops for generating Figure 3.33.

Figure 3.35: Crosses and merges of streamlines observed with alternative algorithms
EdgeMaps (top row) create many streamlines (second column) that converge to an edge due to
the piecewise linear representation of the vector field. Streamlines traced on a continuous field
representation [ZMT06] with an order four Runge-Kutta (second row) lead to only two failures
(second column) illustrated by the streamline switch observed in the close-up.

78 CHAPTER 3. POLYCUBE MAPS

Figure 3.36: Our algorithm on mesh (bottom row) is compared with a numerical integration (RK4)
on the same data (top row), with decreasing mesh quality from left to right.

Applications

We illustrate two possible applications of our method: computing quarangulations inspired by
Morse-Smale complexes (Fig. 3.37), and splitting a mesh according to a direction field. Tracing
streamlines of a N-symmetry direction field [KLF13] allows to partition 2D meshes. To illustrate
a possible application of our method, we applied the same strategy on 3D surfaces, by growing
all streamlines simultaneously, and stopping them when they reach a streamline defined on a
perpendicular direction. As a result (Fig. 3.38) we obtain quadrangular charts with T-junctions
everywhere except when a degeneracy is prescribed by feature curves as in the fandisk model. Such
T-meshes could be useful after optimization, as proposed in [MPKZ10].

Alternative algorithms

We have proposed the first algorithm that guarantees non crossing (or merging) streamlines. How-
ever, in many applications, alternative algorithms can produce similar results. We review an
existing algorithm [BJB+11], a fair solution obtained by combining order four Runge-Kutta with
a continuous vector field representation [ZMT06], and our algorithm without adaptive numerical
precision. The failure cases are illustrated in Fig. 3.35, and the number of failures on a set of
models are given in Fig. 3.39.

• EdgeMaps

EdgeMaps requires a linear vector field on each triangle. To produce it, we start from our
smooth field, and set the vector on the ith triangle corner to be equal to (α2i + α2i+1)/2.
This strategy is fair as it evenly distributes the angle defect of each vertex over all adjacent
triangles (much better than a projection).

On surfaces without angle defect, it offers the same guarantee than our algorithm without
adaptive resolution. On other surfaces, streamlines can converge to an edge as in Fig. 3.24–
left. In practice, one could expect the failure case to appear very rarely because the streamline
must cross an edge with an angle lower than a portion of the angle defect of an incident vertex.
However, our experiments illustrated in Fig. 3.39 demonstrate the opposite.

• RK4 on [ZMT06]

The field introduced in [ZMT06] is sufficiently continuous to have non crossing streamlines.
The problem is therefore to determine how often approximations of these streamlines (com-

3.2. ROBUST TRACING OF STREAMLINES ON TRIANGULATED SURFACES 79

Figure 3.37: Morse-Smale complexes provide a quad shaped charts decomposition of a smooth
manifold. Converting a scalar field gradient into our representation allows to have this property
for triangulated surfaces. We used a Laplacian eigenfunction for the double torus and the z
coordinate for the Feline. Close-ups allow to see that polylines can be very close to each other.

Figure 3.38: Tracing streamlines (black curves) from singularities of a cross field provides a de-
composition of the surface

80 CHAPTER 3. POLYCUBE MAPS

Figure 3.39: Number of failures using [EdgeMaps – RK4] : Jobard’s plume 12–0, gargoyle 1–0,
lionvase 12–0, pegasus 3–0, dog 0–0, crocodile 17–4, fandisk 0–0, monkey man 18–1, dragon 23–0,
statue with elephant 66-6

puted by RK4) do cross each other. We don’t exactly use their field representation: we
perform the field interpolation on triangles in polar coordinates instead of Cartesian coordi-
nates. This minor modification allows to work with direction fields, constraints singularities
to be on vertices, allows to represent fields with high curvature, and is directly compatible
with our field, resulting in more fair comparisons.

To trace streamlines on this field representation, we used an order four Runge-Kutta algo-
rithm. This numerical integration scheme comes with the usual numerical imprecision, the
difficulty to tune the time step parameter, and some thresholds required to manage singular
points (reaching a sink, crossing a saddle vicinity, etc.). Moreover, to work on a triangulated
surface, the algorithm must deal with high curvature due to the angle defect distributed on
triangle corners, and numerical ambiguities (e.g. when the streamline have to follow sharp
edges of a geometric feature). In our experiments, we use an average of 10 integration steps
by triangle, and don’t consider as errors crossings that occur in the one-ring of singular
vertices (different strategies would have led to very different results).

In practice, with a smooth vector field, the numerical errors are similar to our algorithm
without adaptive resolution (≈ 10 loops on the spiral model). However, two proximal poly-
lines traced with opposite directions are more likely to cross because RK4 evaluates the field
at different positions (see Fig. 3.35).

With this approach, it is possible to decrease the time step to reduce the probability of
crossings. However, it doesn’t guarantee that no new crossings will appear (Fig. 3.40), and it
requires to relaunch the crossing streamlines (and cancel all computations based on them).

• Our algorithm without adaptive resolution

This solution is fair as long as we don’t reach extreme cases as in the spiral test. In this
configuration, we obtain a merge after ten loops, which is equivalent to the RK4 solution

3.2. ROBUST TRACING OF STREAMLINES ON TRIANGULATED SURFACES 81

Figure 3.40: Impact of RK4 time step parameter. A triangle is crossed with 10, 100, and 1000
integration steps by triangle (in close-ups). A cross is detected with 100 integration steps.

Figure 3.41: The blue streamline enters and leaves the pink triangle on the same edge. As il-
lustrated in the stretched version of the close-up (Right), the continuous streamline (in black) is
approximated by a segment (blue) contained in the edge.

(tested with 10, 100 or 1000 integration steps by triangle). In practice, it doesn’t produce
errors on all other tested examples. It also does not have any issues in the vicinity of singular
vertices, and does not require any parameters tuning.

Our algorithm is the only one to ensure that polylines will never cross or merge. However, it
could also work without adaptive resolution for common applications. A fair alternative solution
would be to extend EdgeMaps to work with [ZMT06] field representation, and eventually our adap-
tive number representation. However, this latter solution would rely on RK4 to trace streamlines
inside each triangle (to define the edge map), and it would be difficult to prove that no cross/merge
could occur here.

Local overlaps

When a streamline enters and leaves a triangle on the same edge, the generated segment is localized
on the edge (Fig. 3.41). If two such streamlines are traced, they may locally overlap on the triangle
edge. However, if polylines are dedicated to cut the mesh into pieces, such overlaps will result in
faces with degenerated geometry, but the desired topology. Another side effect of representing

82 CHAPTER 3. POLYCUBE MAPS

streamlines by a single segment on each crossed triangle is that some points inside the triangle are
not covered by polylines, as in the lower part of the triangle in Fig. 3.26—Right.

Conclusion

Tracing intersection-free polylines makes it easier to design new algorithms inspired by the contin-
uous settings. Possible improvements of the method include using polycurves inside triangles, or
finding a simpler way to cross each triangle. The question of the generalization to higher dimension
arises naturally, but it is important to remember that the main issue (angle defect) requires that
the metric is not induced by the object itself (for surfaces, it is induced by its embedding in 3D
space, but volumes in 3D do not have this issue).

Chapter 4

Hexahedral-dominant meshing

In this chapter, we propose a new hexahedral-dominant meshing algorithm, that is to say an
algorithm that creates from an input tetrahedral mesh a new mesh where most cells are hexahedral.
We use the three steps pipeline (Fig. 4.1) introduced in [BRM+14]: (1) create a frame field to steer
the placement and orientation of the cells; (2) generate a point set P that mostly corresponds
to the vertices of a grid aligned with the frame field, (3) merge the tetrahedra in the Delaunay
triangulation of P in order to create hexahedra. Our contribution is two-fold: the frame field and
the point set are both generated by global optimization (instead of front propagation), and we
provide a thorough analysis of the recombination problem (merging tetrahedra into hexahedra),
leading to a both robust and efficient algorithm.

Figure 4.1: Starting from a tetrahedral mesh, we compute a frame field (1), optionally optimize
the metric to increase the proportion of hexahedra (2a), compute a point set (2b), produce a new
tetrahedral mesh with the point set as vertices and (3a) generate the hexahedral-dominant mesh
by recombining the tetrahedra (3b).

Our two global optimizations used for generating the frame field and for the global parameteriza-
tion are inspired from works in full hexahedral re-meshing [LLX+12, JHW+14]. We compute input
frame fields using a variation of Huang’s algorithm [HTWB11], the point set is defined by extracting
the intersections of integer-valued iso-surfaces of a global parameterization. In our context, we re-
lax the constraint induced by full hexahedral re-meshing (and thus we target hexahedral-dominant
re-meshing instead). As a consequence, generating the smooth frame field does not require to pre-
determine its topology by optimizing combinatorial / integer variables, as done in previous work
such as volumetric extensions of QuadCover [KNP07]. In our case, the global parameterization
is computed by a volumetric extension of Periodic Global Parameterization [RLL+06] that can
naturally make singularities emerge.

To extract the hexahedral-dominant mesh from the global parameterization, we first generate
a point set P by mapping the points with integer-valued parameters. The points in P are then
interconnected with tetrahedra using the Delaunay triangulation of P constrained to the boundary
of the domain. We finally recombine the tetrahedra into hexahedra, with an algorithm that extends
the analysis in [MT00]. We fill-in a gap in the original proof, extend the analysis to all the
configurations with slivers, and identify some non-trivial forbidden configurations that are ruled-

83

84 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

out by our algorithm.
In most cases, our method outperforms the best hexahedral-dominant method [BRM+14] both

in proportion and quality of hexahedral elements. This is mostly due to the front propagation
approach they use, that creates discontinuities close to the medial axis. Compared with full
hexahedral remeshing [LLX+12], the main advantage of our method is its ability of handling more
industrial-size difficult cases (at the expense of introducing non hexahedral elements). The main
drawback of our approach is that it may introduce non-hexahedral elements and/or non-natural
branching structures, even in simple cases, where a full hexahedral mesher can avoid them and
generate a more structured mesh, with for instance a constant number of layers of hexahedra in a
thick surface.

Pipeline overview

Our method is summarized in Fig. 4.1. Starting from an input tetrahedral mesh, it consists in the
following three steps:

1. Generate the frame field that specifies the desired size and orientation of the
elements (Section 4.1)

We set the desired edge size to be equal to the average edge size of the original mesh. It is
also possible to explicitly specify the desired scale by an arbitrary function.

2. Generate the point set P (Section 4.2)

• Modify the prescribed size and orientations in order to increase the proportion of hexa-
hedra in the final mesh (§4.2.4), as shown in Fig. 4.1-bottom (this sub-step is optional).

• Generate an atlas of grid-compatible maps (§4.2.2).

• Extract the point set (§4.2.3).

3. Generate the hexahedral dominant mesh (Section 4.3)

• Re-mesh the border of the domain using the points in P (§4.3.1);

• generate a tetrahedral mesh using the Delaunay triangulation of the point set P con-
strained by the re-meshed border. This sub-step uses state-of-the-art methods [GHS90],
[Si15].

• Find all the candidate hexahedra that can be obtained by merging tetrahedra (§4.3.2).

• Select among them the best mutually compatible set of hexahedra (§4.3.2).

Hexahedral-dominant meshing is often treated by adapting a hexahedral-only meshing method
and completing the result with tetrahedra whenever the method gets stuck in configurations that
cannot be meshed with hexahedra only. It is also recommended not to use it as a full automatic
process [MTTT98]. Our strategy to tackle the problem is different: we first distribute points inside
the volume to be meshed, then generate a tetrahedral mesh having these points as vertices, and
finally form hexahedra by recombining tetrahedra from this mesh. This strategy decomposes the
problem into two subproblems: (1) Generating the points: generate points that are likely to
be the vertices of a nice hexahedral-dominant mesh and (2) Recombining the tetrahedra into
hexahedra: finding the best hexahedra that can be recombined within a tetrahedral mesh.

1. Generating the points: In previous works, points were distributed by a centroidal Voronoi
with a norm Lp in [LL10], or by a front propagation approach as used in [BRM+14]. We
introduce another strategy inspired by re-meshing using a global parameterization.

In 2D, for quadrilateral re-meshing of triangulated surface, it is possible to define a cross
field over the surface (4 orthogonal unit vectors of the tangent plane), then define a special
atlas of the surface such that the pre-image of a unit grid defined in the maps gives a quadri-
lateral mesh of the surface. The first 2D method was introduced in [RLL+06], it produces
quadrilateral meshes with very regular size, but not everywhere on the surface. These areas
where the algorithm fails to produce quadrilaterals allow to introduce irregularities in the
quad mesh. It corresponds either to singularities of the cross field, or to T-vertices that are

85

required to respect the desired scale of the quads. The following approaches [KNP07, BZK09]
are able to generate a quadrilateral mesh on 100% of the surface, at the expand of creating
more distorted quadrilaterals (they do not balance the field’s curl by introducing T-vertices).

In 3D, the algorithm in [NRP11] is a direct extension of the 2D [KNP07]. It can produce
very nice results. However, its main restrictions is that it assumes to have as input a valid
3D frame field that corresponds to a hexahedral mesh, and it may significantly stretch the
hexahedra in order to balance the frame field’s curl. In many (simple) cases, a frame field can
be initialized by [HTWB11], and locally optimized [LLX+12, JHW+14] to produce a field
topology that corresponds to a hexahedral mesh. This solution is fast and provides excellent
results provided that local modifications of the frame field are sufficient to make it compat-
ible with hexahedral re-meshing, and that the stretch of hexahedra induced by the frame
field’s curl corresponds to the user-desired stretch. Another approach to ensure that the
frame field’s topology is compatible with re-meshing is to forbid having any singularity. This
approach yields algorithms based on the generation of polycubes [GSZ11, LVS+13, HJS+14].

We instead choose to extend [RLL+06] to the 3D case. As in the 2D case, it will not be
able to produce hexahedra everywhere inside the volume, but it will produce hexahedra of
desired stretch and orientation everywhere else in the volume, without any constraint on
the frame field. The resulting mesh is hexahedral-dominant (rather than pure hexahedral),
it has non-hexahedral elements where the Periodic Global Parameterization has singularities.

2. Merging tetrahedra into hexahedra Several algorithms were proposed to merge tetrahe-
dra into hexahedra within a tetrahedral mesh [YS03], [MT00]. The latter reference provides
an abstract formalization that can be used to systematically enumerate all the possible con-
figurations. We give a complete explanation of this formalism, fill-in a gap in the original
proof and then elaborate on it to obtain an exhaustive enumeration of all the decompositions
of a hexahedron into tetrahedra, together with a complete understanding of the structure
behind the set of all possible decompositions: any decomposition of the cube can be deduced
by simple operations from six “atomic” configurations. This specific understanding of the
problem leads to an algorithm that is both short, efficient and easy to implement.

86 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

4.1 On smooth frame field design

In computer graphics, a frame field can be defined on a surface (2D) or inside a volume (3D).
For each point of the domain, it defines a set of 4 (resp. 6) unit vectors invariant by rotations of
π/2 around the surface normal (resp. around any of its member vector). The main motivation to
study these fields is to split the quad and hexahedral re-meshing problems into two steps: (1) the
design of a smooth frame field, (2) and the partitioning of the domain by quads or hexes aligned
with the frame field. Our objective is to unify the formulation of the 2D and 3D frame field design
problems, and to use it to extend an efficient 2D algorithm to the 3D case.

In most cases, frame field design is formalized as the following optimization problem: find the
smoothest frame field subject to some constraints. What makes them different from each other is
obviously the dimension of the frames (2D or 3D), but also the definition of the field smoothness,
the expression of the constraints, and the optimization method. Interestingly, the 2D case and the
3D case are addressed by very different strategies:

• In 2D, the frame field design problem can be restated as a vector field design problem
thanks to the introduction of the “representation vector”. In local polar coordinates,
each vector of a frame has the same angle modulo π/2, if we multiply it by 4 we obtain a
unique representation vector (modulo 2π). It is easy to derive optimization algorithms acting
on the representation vectors. For simplicity reasons, we limit ourselves to planar frame fields
and use the algorithm proposed by Kowalski et al. [KLF12] as reference.

• In 3D, it is not possible to extend the idea of “representation vector”. Instead, Huang
et al. [HTWB11] propose to represent frames by functions defined on the sphere, refer
to figure 4.2 for an illustration. A definition of the field smoothness is derived from this
representation and optimized in a two step procedure: (1) initialization based on optimization
of spherical harmonics coefficients in [HTWB11] or front propagation of boundary constraints
in [LLX+12], followed by (2) smoothing iterations performed by L-BFGS on Euler angles
representation of frames.

Figure 4.2: Orthonormal frames (close-up (a)) are represented by spherical harmonic functions
(close-up (b)), attached to each vertex of a tetrahedral mesh. Streamlines and singularities of the
field are shown in yellow and red, respectively.

Thus our goal is to better understand how 2D and 3D problems are related to each other
and to extend [KLF12] to 3D. We first show that [KLF12] can be derived with the formalization
approach inherited from the 3D case, and then we extend it to 3D by the same logical flow. Busy
readers interested in only reproduction of the method can skip to implementation section §4.1.3,
the only required tool is a linear solver, all calculations are given explicitly.

4.1.1 In search of elusive ground truth, or d ≈ 0.85

In this section we focus on the relation between the Dirichlet’s energy and curvature of (discrete)
vector fields. It is not a trivial problem, thus we focus on a 2D toy problem to gain some intuition
about the relation. First of all, what is a direction field?

4.1. ON SMOOTH FRAME FIELD DESIGN 87

Direction (Frame) Field: a frame field can be seen as the orientation of the normal of the
edges of a square as done in [RVLL08]. Hence a 2D frame field is a function that associates, to
each point of a sub-domain of R2, a set of 4 unit vectors invariant under rotation by π/2.

Representation of a frame by an angle: a frame can be represented by an angle θ such
that the set of vectors is given by complex numbers ei(θ+2kπ/4) with k ∈ {0, 1, 2, 3}. In this
representation, any θ = θ0 + 2kπ/N represents the same frame. As a consequence, the continuity
of direction fields is not equivalent to the continuity of their corresponding θ function.

Continuity: a frame field is continuous at P0 if ∀ε > 0 ∃r s.t. ∀P, |P − P0| < r ⇒ ∃k ∈ N s.t.
|θ(P)− θ(P0) + 2kπ/N | < ε. Note that we took a standard definition of continuity, and added the
integer k in it to account for the equivalence between frames represented by θ and θ + 2kπ/N .

Gradient: for a continuous frame field and its angle representation θ, for each disk inside the
domain, there exists an integer valued function k such that θ′ = θ + k is a continuous real valued
function. For ease of writing, we directly write ∇θ for the gradient of θ′.

Singularity: most frame fields that are suitable for applications have their gradient ∇θ defined
everywhere on the domain except at a finite number of points. These points are called singularities,
and can be classified by their index: the integral of ∇θ/2π along an infinitesimal circle turning
counter clockwise around the point.

Now we have all the vocabulary necessary to aboard the problem. Computer scientists always
define smooth 2D frame fields in discrete setting: the field is defined on vertices (or facets) and
the field smoothness is evaluated only between pairs of adjacent samples. The standard way to
measure the smoothness of a field is through the field curvature. If the field is sampled on vertices,
then the field curvature is defined as follows:∑

ij

|θi − θj mod π/2|2,

where θi and θj are the field samples for adjacent vertices i and j, respectively.
In the literature the field curvature is often called Dirichlet’s energy, however it is not appro-

priate, since Johann Peter Gustav Lejeune Dirichlet worked in continuous settings. Moreover,
the problem to find a smooth (discrete) frame field is typically posed as a minimization of the
field curvature. However, discrete field curvature is always finite, whereas the Dirichlet’s integral
diverges in the vicinity of singular points. Continuous counterpart of a 2D frame field singularity
is the atan2 function. For example, if we take any neighborhood Ω of the point (0, 0) then the
integral 1

2

∫
Ω
‖∇ atan2(y, x)‖2dydx diverges.

This problem is often overlooked, the only (unsatisfactory) discussion we are aware of is the
work by Knöppel et al. [KCPS13]. They rightfully mentioned that the frame field curvature is not
a reliable measure of quality, since under refinement the energy contributed by a singularity grows
without bound. They say that this energy is ill-defined, and then right in the next sentence they
re-formulate it as an eigenvalue problem without suppressing unbounded potential [KCPS13, p.
8].

In this section we analyze a closed form solution for a 2D unit disc, comparing
Dirichlet’s energy with its discretization, the frame field curvature. The question we
try to answer in this section is: “Does it make any sense to minimize for a divergent
Dirichlet’s energy?” The answer can not be directly projected to 3D frame fields or
even to other 2D fields. The only thing we aim here for is the intuition about the
problem.

Closed form solution for a disk

In this section we are looking for the minimal curvature frame field in a disk, with normal boundary
constraints. With above definitions, the continuous formulation of the problem is very similar to
the discrete formulation given in the core of the chapter.

The curvature is evaluated by the integral over the domain of the square of the magnitude
of the gradient ‖∇θ‖2, that is the Dirichlet energy of the function θ. The boundary constraint
simply enforces (on the boundary) that (cos(θ), sin(θ)) is equal to the normal of the boundary of

88 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

d

Figure 4.3: Angle function fd plotted on the whole unit disk and the sector for which we actually
solve the Laplace’s equation ∆fd(r, θ) = 0. Blue corresponds to −π/4 and red to π/4.

the domain. The minimization of the curvature is easy (∆θ = 0) when a solution exists without
singularities, but becomes much more difficult if position of singularities and index have to be
automatically generated. Indeed, a singularity is a point where the gradient is undefined, so it
must be removed from the curvature integration domain. Moreover, we will see that even when
removing singularities, the integral diverges in the neighborhood of singularities.

From the symmetry of the problem we assume that the solution will be symmetric, i.e. there
will be 4 index 1/4 singularities placed onto two perpendicular diameters of the disk, equidistant
to the disk center. We denote this distance as d. An example plot is given on the left of the
figure 4.3. The goal of this section is to answer the following question: “Which value of d should
we pick to get the smoothest field?”

WARNING: The frame angle θ will now be represented by the
function fd, and we re-use the notation θ to denote the angle of the
points in polar coordinates.

More formally, we parameterize our disk by (r, θ) and we are looking for a function fd(r, θ)
that gives for any point of the disk the rotation angle (referred to as θ in the introduction) of the
reference frame. Therefore the domain of values of the function fd is [−π/4, π/4]. As we want to
minimize the Dirichlet’s energy, fd must be harmonic. Due to the high symmetry of the problem,
we restrain our domain to π/4-angle sector of the unit disk to simplify the notations.

Thus we are looking to solve the Laplace’s equation ∆fd(r, θ) = 0 under Dirichlet’s boundary
conditions: 

fd(1, θ) = θ
fd(0, θ) = 0
fd(r, 0) = 0

fd(r, π/4) =

[
0, r ≤ d
π/4, r > d

Given these boundary conditions the solution to the Dirichlet’s problem exists and unique.

Divergent energy analysis Let us verify that the following function is the solution: 1

fd(r, θ) = 1/4(atan2((rd)4 sin(4θ), (rd)4 cos(4θ) + 1) + atan2((r/d)4 sin(4θ), (r/d)4 cos(4θ) + 1))

1It is quite a detective story how we found this function. By the way, beware of mathematical soft-
ware! We extensively used SageMath and Wolfram and found bugs in both. Just a simple screen-shot from
https://cloud.sagemath.com:

Test your software engineering intuition (without imagining the graph of the function): which answer is right?

4.1. ON SMOOTH FRAME FIELD DESIGN 89

Left image of the figure 4.3 gives a plot of the function f0.6([0, 1], [0, 2π]). Right image of the
figure 4.3 gives a plot of the function f0.6([0, 1], [0, π/4]).

The calculations are made with sage 5.11 (online version is available at cloud.sagemath.com).
In this section for each computing stage we provide Sage code followed by a screen-shot of Sage
answers. The following code verifies that the laplacian of the function fd is indeed zero:

1 var (’ r , d ’)
2 var (’ t ’ , latex name=r ”\ theta ”)
3 f = 1/4∗(atan2 ((r /d) ˆ4∗ s i n (4∗ t) , (r /d) ˆ4∗ cos (4∗ t) +1) +
4 atan2 (dˆ4∗ r ˆ4∗ s i n (4∗ t) , dˆ4∗ r ˆ4∗ cos (4∗ t) +1))
5 Lf = f . d i f f (r , r) + f . d i f f (r) / r + f . d i f f (t , t) / r ˆ2
6 pr in t ” Lf =”, Lf . f u l l s i m p l i f y ()

Thus the laplacian is zero, it is straightforward to verify that the boundary conditions are
satisfied. We are interested in minimizing the Dirichlet’s energy E(d) over d ∈ [0, 1], however

the integral E(d) =
1∫
0

π/4∫
0

||∇fd(r, θ)||2rdθdr is divergent. Does it mean that any choice of d is

equivalent and there is no way to pick the best one? No, it does not. Let us remove 2ε-width ring
from our domain of integration (thus eliminating the singularities) and study the behavior of the
rest of the integral:

E(d, ε) =

d−ε∫
0

π/4∫
0

||∇fd(r, θ)||2rdθdr +

1∫
d+ε

π/4∫
0

||∇fd(r, θ)||2rdθdr.

E(d, ε) is a convex function of d with a single minimum for any choice of ε. It means that if we
exclude any neighborhood of the singularity point from the domain of integration, we can find the
function with lowest variation.

Unfortunately we can not operate complex notations in the source code, so let us call by g(r, θ)
the integrand g(r, θ) = ||∇fd(r, θ)||2r in the source code. Thus we are analyzing the function

E(d, ε) =

d−ε∫
0

π/4∫
0

g(r, θ)dθdr +

1∫
d+ε

π/4∫
0

g(r, θ)dθdr.

To calculate g we need to express the Cartesian gradient in polar coordinates, here we provide
the expression for the integrand as well as its plot:

1 g = ((f . d i f f (r) ∗ cos (t) − f . d i f f (t) ∗ s i n (t) / r) ˆ2 +
2 (f . d i f f (r) ∗ s i n (t) + f . d i f f (t) ∗ cos (t) / r) ˆ2) ∗ r
3 g = g . s i m p l i f y f u l l () . t r i g r e d u c e ()
4 show (g . f a c t o r ())
5 paramet r i c p lo t3d ([r ∗ cos (t) , r ∗ s i n (t) , g . subs (d==.6)] , (r , 0 , 1) , (t , 0 , p i /4−.1))

90 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

So we start with computing
π/4∫
0

gdθ. In the resulting integral we will get several expression

involving atan2(0, . . .), these are if-then-else depending on whether r belongs to [0, d] or [d, 1]

interval. To ease the job we calculate
π/4∫
0

gdθ twice, once assuming r < d and once r > d.

1 a n t i d e r i v a t i v e = i n t e g r a t e (g , t)
2 assume(0<d , d<1,0<r , r<1,0<t , t<pi /4 , r<d , (d∗ r) ˆ4<1)
3 show (assumptions ())
4 i n t e g r a l a = (l i m i t (a n t i d e r i v a t i v e , t=pi /4 , d i r =’− ’) −
5 l i m i t (a n t i d e r i v a t i v e , t =0, d i r =’+’)) . f u l l s i m p l i f y ()
6 show (i n t e g r a l a)

1 f o r g e t (r<d)
2 assume (r>d)
3 show (assumptions ())
4 i n t e g r a l b = (l i m i t (a n t i d e r i v a t i v e , t=pi /4 , d i r =’− ’) −
5 l i m i t (a n t i d e r i v a t i v e , t =0, d i r =’+’)) . f u l l s i m p l i f y ()
6 f o r g e t (r>d)
7 show (i n t e g r a l b)

Now it is easy to assemble

E(d, ε) =

d−ε∫
0

integral a dr +

1∫
d+ε

integral b dr.

In the following figure the graph of integral a is blue and integral b is red. The plots are made
for the value d = 0.6.

1 p lo t (i n t e g r a l a . subs (d==.6) , (r , 0 , . 6 − . 01) , t h i c k n e s s =3, c o l o r =’blue ’) + \
2 p lo t (i n t e g r a l b . subs (d==.6) , (r , . 6 + . 0 1 , 1) , t h i c k n e s s =3, c o l o r =’red ’)

Now let us integrate over r to find the expression for E(d, ε):

4.1. ON SMOOTH FRAME FIELD DESIGN 91

1 i i a = i n t e g r a t e (i n t e g r a l a , r) . s i m p l i f y l o g ()
2 i i b = i n t e g r a t e (i n t e g r a l b , r) . s i m p l i f y l o g ()
3 var (’ eps ’ , latex name=r ”\ v a r e p s i l o n ”)
4 E = (l i m i t (i i a , r=d−eps , d i r =’− ’) − l i m i t (i i a , r =0, d i r =’+’) +
5 l i m i t (i i b , r =1, d i r =’− ’) − l i m i t (i i b , r=d+eps , d i r =’+’))
6 E=E. maxima () . radcan () . l o g c o n t r a c t () . sage ()
7 E = E − I ∗ pi ˆ2/32 + SR(−1) . l og (hold=True) ∗ pi /32 ;
8 E = E. maxima () . l o g c o n t r a c t () . sage ()
9 show (E. maxima () . radcan () . sage () . f a c t o r ())

10 plot3d (E, (d , 0 , 1) , (eps ,1/10ˆ6 ,1/10ˆ2) , c o l o r =’red ’ , opac i ty =.5)

The expression for E(d, ε) did not fit into the screen-shot, let us give it explicitly:

E(d, ε) =
1

32
π(log(d8 + 4d7ε+ 6d6ε2 + 4d5ε3 + d4ε4 + 1)− log(−d8 + 4d7ε− 6d6ε2 + 4d5ε3 − d4ε4 − 1)−

− log(2d4 + 4d3ε+ 6d2ε2 + 4dε3 + ε4)− log(2d4 − 4d3ε+ 6d2ε2 − 4dε3 + ε4)+

+ log(d4 + 2d3ε+ d2ε2 + 1)− log(d4 − 2d3ε+ d2ε2 + 1)− 2 log(d4 − 4d3ε+ 6d2ε2 − 4dε3 + ε4 + 1)−
− log(2d2 + 2dε+ ε2)− log(2d2 − 2dε+ ε2) + log(d2 + dε+ 1) + log(d2 + dε− 1)−
− 2 log(d2 − 2dε+ ε2 + 1)− log(−d2 + dε+ 1)− log(−d2 + dε− 1)− log(2d+ ε)+

+ 8 log(d)− 2 log(−d+ ε+ 1)− 2 log(−d+ ε− 1)− log(−2d+ ε)− 2 log(ε))

E(d, ε) is a convex function of d with a single minimum for any choice of ε. Solving for
lim
ε→0

∂E
∂d = 0 gives d = 8

√
3/11:

1 dEdd = E. d i f f (d) . s i m p l i f y f u l l () . f a c t o r ()
2 show (s o l v e (l i m i t (dEdd , eps =0, d i r =’+’)==0, d) [6])
3 p lo t (l i m i t (dEdd , eps =0, d i r =’+’) , (d , . 0 1 , . 9 9) , t h i c k n e s s =3)

92 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

0 0.2 0.4 0.6 0.8 1

0

2

4

6

Singularity radial coordinate

D
ir
ic
h
le
t’
s
en

er
gy

0 0.2 0.4 0.6 0.8 1

0.24

0.26

0.28

0.3

Singularity radial coordinate

S
m
o
ot
h
in
g
en

er
gy

Figure 4.4: Left: Dirichlet’s energy with a summand removed, right: the discretization for two
different triangular meshes.

Figure 4.5: The discrete algorithm can generate singularities in order to minimize the field curvature
elsewhere (left). The continuous settings have infinite penalty to singularities, so it will always
produces a frame field without singularities when it is possible (right).

Comparison with the discrete problem We saw that in the continuous case Dirichlet’s energy
diverges in the vicinity of singular points, however the field curvature for the rest of the domain
can be minimized. Left image of the figure 4.4 gives the plot of

∫
lim
ε→0

∂E
∂d = 0, this is the Dirichlet’s

energy up to a summation constant that we removed by derivating and by re-integrating back.
The minimum is attained for d = 8

√
3/11.

In the discrete case we place samples at triangular mesh vertices; then it is natural to define
the field curvature as a sum over all edges of the squared angle difference of adjacent samples. This
sum does not diverge, what is its behavior compared to the continuous case?

We sampled the function fd(r, θ) for different values of d and then computed the discrete
curvature. Right image of the figure 4.4 gives the plot of the sum for two different meshes. In
continuous settings, the energy is high when singularities are too close to the disk center or to
its boundary, but has low variations in a large interval in the middle. The discrete version have
a similar global shape (up to a scale factor), but is strongly perturbed by the mesh. Indeed, it
is more influenced by how the field rotation induced by the singularity can be dissipated in the
singularity neighborhood than by the singularities position.

To conclude, even if the Dirichlet’s energy diverges in the vicinity of singular points, it does
make sense to minimize it’s discrete counterpart under the condition that the underlying mesh is
uniform.

Does it extend to other models? The continuous settings will always place a minimal number
of singularities (with minimal absolute value of its index). As shown in Fig. 4.5, it can produce
fields that are too distorted for the applications (e.g. quad re-meshing).

The discrete version is not always a very good approximation of the continuous version, but it
punishes less singularities, which is often better for the applications.

4.1. ON SMOOTH FRAME FIELD DESIGN 93

4.1.2 Functional representation of frames in 2D

This section introduces how to optimize 2D frame fields using a functional representation for
each frame. While we do not claim any technical contribution in this section, we think that it is
important to reformulate existing concepts using the functional representation, because 3D case
inherits exactly the same difficulties and the intuition we gained in 2D helps to motivate the choices
made for 3D fields. We derive an energy and the boundary conditions from this new representation.
The resulting optimization problem is exactly the one usually solved by direction field algorithms
based on the standard “representation vector”. We show on a toy and a real examples that this
optimization problem is much easier than directly minimizing the frame rotation. We then present
the algorithm [KLF12] that we extend to 3D in the following section.

Problem settings

Given a 2D shape, frame field design in 2D consists of finding a smooth frame field aligned with the
boundary of the shape. We formulate it as minimizing the field curvature, based on the following
definitions:

• A frame is a set of 4 unit vectors f = {fi}, i ∈ [0, 3] that is invariant by a rotation of π/2
(Figure 4.6). It can be represented by the angle θ such that ∀i, fi = (cos(θ + iπ/2), sin(θ +
iπ/2)).

• A frame field is a frame per vertex of a 2D shape triangulation.

• The boundary constraint: a frame located on a boundary vertex must have one of its
member vectors equal to the normal on the boundary.

• The rotation angle between two frames is the angle ∆θ of the rotation that transforms
one frame into the other. This angle being defined modulo π/2, we choose the ∆θ with
minimum absolute value.

• The curvature of a frame field is the sum over each edge of the squared rotation angle
between frames that are defined at the edge extremities.

• A triangle is said to be singular if the sum of the rotation angles over his boundary is not
equal to 0.

θ
x

y

f3

f1 f0

f2

Figure 4.6: A 2D frame is a set f of 4 vectors f0, f1, f2, f3 invariant under rotation by π/2. Its
angle representation is the rotation θ between the global axis x and f0.

Representing frames by angles is simple, but it makes the field curvature hard to optimize [BZK09,
RVLL06], and it does not extend nicely in 3D. For these reasons, we propose an alternative rep-
resentation based on functions, and use this curvature based formalization as a reference.

Functional approach: frame representation The frame aligned with coordinate axes is called
the reference frame f̃ = {(1, 0), (0, 1), (−1, 0), (0,−1)}. Instead of using the angle approach, we
represent it by the function F̃ (α) = cos(4α) with α ∈ [0, 2π[(Figure 4.7–left), that exhibits the
same π/2 rotation invariance as the frame.

Any other frame f can be obtained by a rotation of f̃ by angle θ. The functional counterpart
is to rotate the graph of the function F̃ , namely any frame f can be represented by a function
F (α) = F̃ (α− θ) = cos(4(α− θ)) with α ∈ [0, 2π[(Figure 4.7–right).

94 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

F̃ (α)

f̃

F (α) =
F̃ (α− θ)

α

f θ

α

Figure 4.7: Parametric plot of the reference frame representation F̃ (α) (left) and an arbitrary
frame F (α) (right). The plot is made using x(α) = (1 +F (α)) cos(α) and y(α) = (1 +F (α)) sin(α)
for α ∈ [0, 2π[. It is easy to see that corresponding frames are aligned with maxima of the
representation functions.

A compact representation of these functions is given by the trigonometric relation f(α) =
cos(4α − 4θ) = cos(4θ) cos(4α) + sin(4θ) sin(4α): we see that a frame function F can be rep-
resented by a 2D vector of coefficients a = (a0, a1)> = (cos(4θ), sin(4θ))> in Fourier basis
B = (cos(4α), sin(4α)) i.e. F = Ba.

A coefficient vector a is feasible if and only if there exists θ such that a = (cos(4θ), sin(4θ))>.
Geometrically, a is constrained to live on a curve parameterized by θ. This curve represents, in
coefficient space, all possible rotations of the reference frame. In 2D, this curve is the unit circle,
so the constraint on a is simply : a>a = 1.

At this point, we can observe that the coefficient vector a is exactly the representative vector
used in the direction field literature. We can also notice that expressed in Cartesian coordinates,
our reference frame function F̃ is the polynomial 4(x4 + y4)− 3 restricted to the unit circle, thus
it is also equivalent to the traceless symmetric 4th order tensors manipulated in [PZ07].

Functional approach: objective function We have defined the field curvature as the sum over
each edge of the squared difference between frames at the edges extremities. In our formalization,
the difference between two frames (at vertices i and j) is no longer the rotation angle, but the L2

norm of the difference between the corresponding functions :
∫ 2π

0
(F j(α)− F i(α))2dα. It leads to

the new objective function:

E =
∑
ij

∫ 2π

0

(F j(α)− F i(α))2dα

=
∑
ij

∫ 2π

0

(Baj −Bai)2dα

=
∑
ij

(aj − ai)>
(∫ 2π

0

B>Bdα

)
(aj − ai)

As the function basis B is orthogonal, and all functions are of norm
√
π, so the expression simplifies

to:

E = π
∑
ij

‖aj − ai‖2 (4.1)

Functional approach: constraints As discussed in previous paragraph, the first constraint is
clearly that the variables ai must be feasible (i.e. there exists a frame represented by ai).

The second constraint is that frames of boundary vertices i must have one member vector
equals to the normal direction. If θi denotes the normal direction, the frame can be directly fixed

4.1. ON SMOOTH FRAME FIELD DESIGN 95

by satisfying two equations:

ai0 = cos(4θi) (4.2)

ai1 = sin(4θi)

However, as we already have the feasibility constraint ai
>
ai = 1, enforcing only one equation

has the same effect:
ai0 cos(4θi) + ai1 sin(4θi) = 1. (4.3)

Toy example

It is natural to ask the question: “Does minimizing our energy minimizes the field curvature as
well?”

Two frames f i and f j are represented by ai and aj , both located on the unit circle. The field
curvature measures the circle arc length between them, whereas our L2 norm is the chord length
between ai and aj .

From a practical point of view, we want to produce smooth fields, so most edges will have low
curvature. In this case the objective function E is almost proportional to the field curvature. If,
however, two adjacent frames are not similar (e.g. they are close to singularities), then the function
E is smoother than the field curvature, making it easier for the optimization algorithm to move
singularities.

Let us illustrate our intuition on a very simple interpolation example: a chain of four vertices
having its extremities locked. The toy problem is therefore to find two frames interpolating the
extremity frames.

If we represent two free frames by their angle θ1 and θ2, we can plot and compare the field
curvature versus our objective function E (Figure 4.8). The field curvature is not smooth (it is
piecewise quadratic) and we can observe that there are two local minima. Our objective function is
smooth, and has exactly the same minima on this example. Note that it could also have a smaller
number of minima e.g. if the constrained frames are more similar.

Figure 4.9 shows the frames corresponding to minima P0 and P1: they differ by the sense of
rotation. The point P0 minimizes objective function E and has better field curvature. In next two
sections we expose current state of the art approach to minimization of the objective function.

Implementation

We have to minimize our objective function E (eq. (4.1)) with linear equality constraints on

boundary vertices (eq. (4.2) or eq. (4.3)) and quadratic equality constraints ai
>
ai = 1 for each

vertex i.
We use [KLF12]’s algorithm to solve this problem. It finds an initial solution by relaxing the

quadratic feasibility constraints on ai and finding the nearest feasible solution. Then it performs a
number of smoothing iterations to ameliorate the solution. In order to respect the feasibility, the
quadratic constraints are linearized at each smoothing step.

Initialization Here, we relax the feasibility constraints, so we need to minimize the quadratic
function E subject to linear boundary constraints. To do it, we simply replace the linear constraints
by a strong penalty term in the objective function, leading to a new quadratic function to optimize.
This penalty method is very simple and sufficient in practice.

More precisely, the new quadratic function is expressed in the form ‖AX − b‖2 where A is
a matrix, X our variable vector (X2i = ai0 and X2i+1 = ai1) and b is a vector. The system of
equations AX − b = 0 is constructed line-by-line:

• initial objective function E: for each edge ij, we add two equations (eq. (4.1)):
√
π(X2i −X2j) = 0

√
π(X2i+1 −X2j+1) = 0

• boundary constraints: for each boundary vertex i, we add two equations (eq. (4.2)):

λX2i = λ cos 4θi

λX2i+1 = λ sin 4θi,

96 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

θ1 θ2

θ1θ1

θ2 θ2

P1

P0

Figure 4.8: Top row: interpolation problem with two locked extremity frames. Bottom row, left:
field curvature plot. Bottom row, right: our objective function E. The plots are made as functions
of the rotations θ1, θ2 of interpolated frames. Both functions share same local minima P0 and P1.

P1

P0

Figure 4.9: Two minima for the toy problem shown in Figure 4.8. P0 turns the frames counter-
clockwise while P1 turns clockwise. P0 minimizes energy E and has better field curvature.

where we set λ = 100 in our experiments.

From A and b, we just need to solve the linear system A>AX = A>b to obtain a minimizer of
‖AX− b‖2. Then from X we can obtain an initialization of ai by projecting corresponding vectors
on the set of feasible coefficients:

ai ← (X2i, X2i+1)>/‖(X2i, X2i+1)‖.

Smoothing iterations Each smoothing iteration is similar to the initialization problem, except
that we add to the objective function a new quadratic penalty term that corresponds to a linear
approximation of the feasibility constraint as done in [KLF12, p. 6]. As before it is expressed by
a new set of linear equations when constructing A and b: for each vertex i, we add one equation
λ(X2ia

i
0 +X2i+1a

i
1 − 1) = 0, where ai denotes the solution obtained at the previous iteration.

To solve linear systems we use OpenNL library [Lé]: it automatically constructs A>AX = A>b
from the set of linear equations and then solves it by the conjugate gradient method.

Toy problem revisited

This section explains our optimization approach on the toy problem already presented above.
As we mentioned before, at the initialization step we relax the constraints of feasibility of ai.
Unfortunately we can not plot the corresponding energy since without the constraints it becomes
four-dimensional.

4.1. ON SMOOTH FRAME FIELD DESIGN 97

ai

F i(α)

f i
initialization

�nal solution

f i

Figure 4.10: First row: initialization stage solution. Second row: corresponding functional inter-
pretation. Third and fourth rows: frames obtained by the projection of initialization ai and after
smoothing iterations.

Figure 4.11: Evaluation of 2D frame field optimization algorithms: singular triangles are high-
lighted in red. Compared algorithms are: (left) steepest descent of the field curvature, initialized
with an axis aligned frame field, (middle) smoothing iterations with our objective function E ini-
tialized with axis aligned frame field after 102, 103 and 106 iterations (from left to right), (right)
initialization step alone (left) and the initialization step followed by 103 smoothing iterations
(right).

98 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Top row of Figure 4.10 shows the solution of the initialization stage. Intuitively, we allow the
points ai not to be on the unit circle. Hence a1 and a2 lie on the chord between locked points a0

and a3. Second row of Figure 4.10 shows the corresponding functions and the third row gives the
frames obtained by projecting points ai on the circle of constraints.

Note that the initialization stage produces the correct sense of rotation (Figure 4.9). However
it does not directly produce the optimum point P0. The reason being that the initialization stage
produces points a1 and a2 (before normalization) in the way that all three chord segments are
equal: ‖a0 − a1‖ = ‖a1 − a2‖ = ‖a2 − a3‖. But after projecting the points onto the feasible circle
(3rd row of Figure 4.10) the corresponding arc lengths are not equal. Therefore, we need a few
smoothing iterations to reach the optimum (Figure 4.9—bottom row).

Results

Figure. 4.11–left shows the optimization of the field curvature by a gradient descent algorithm,
initialized by an axis aligned frame field. We obtain a frame field that bends to match the boundary
constraints, but its singularities remain on the boundary. The system is only able to reach the
local minima corresponding to the initial field topology. The field curvature 2 is 34.21.

Figure 4.11–middle shows the optimization using only the smoothing iterations, initialized by
an axis aligned frame field. We observe that smoothing iterations were able to slightly move the
singularities away from the border and even to merge two singularities. It results in a better field
curvature (equal to 31.41, 24.01 and 23.95 after 102, 103 and 106 iterations).

Figure 4.11–right shows that the initialization step alone finds a solution with a simple topology
and a lower field curvature (20.84). Smoothing iterations further decrease the field curvature (to
17.91).

These observations suggest that our initialization step is mandatory, and smoothing iterations
further improve the result. However, it is important to notice that each iteration takes approxi-
mately the same time as the initialization step.

Boundary constraints When working only with feasible solutions a single equation (equa-
tion (4.3)) is sufficient to enforce each boundary constraint. Using it for the initialization step is
wrong: for example, a normal constraint of angle θ = 0 forces a0 = 1 but let a1 free. As illus-
trated in Figure 4.12, it can produce very bad frames fields. Therefore we must use two separate
equations (4.2).

There exists a similar issue in 3D: Huang et al [HTWB11] use a 3D boundary condition that
is not sufficient for the initialization step. It leads to a poor initialization for their smoothing
algorithm, making it very slow, and getting possibly locked with a bad initial topology. This issue
is discussed in details in the results section.

Figure 4.12: Boundary constraints for global optimization: if we only use one constraint (eq.4.3), the
initialization step finds a constant frame field on a parallelogram (left). It is therefore mandatory
to lock the frames to get the proper boundary constraints (right).

4.1.3 Optimization of 3D frame fields

Our objective is to extend to 3D the optimization algorithm presented in previous section. In 2D,
our framework allows to retrieve the representation vector that was the key to efficient optimization
of direction fields. We now extend our framework to 3D, find a generalization of this representation
vector, express the boundary alignment condition with respect to this representation, and derive
the optimization algorithm.

2The value of the field curvature is relevant only for comparing different fields on the same mesh.

4.1. ON SMOOTH FRAME FIELD DESIGN 99

Problem settings

The problem is to define, inside a 3D shape, a smooth frame field that is aligned with the boundary
of the shape. We are working in discrete settings on a tet mesh. The problem to minimize the
field curvature is defined as follows:

• The reference frame f̃ is the set of 6 unit vectors forming normals of a cube aligned with
coordinate axes (Figure 4.13).

• A frame is the reference frame rotated by a 3× 3 matrix R: f = Rf̃ . Note that multiplying
a matrix by a set is a slight abuse of notation, it means that we obtain a new set where each
vector is rotated by the given matrix.

• A frame field is the definition of a frame for each vertex of the tet mesh.

• The boundary constraint: The frame of a boundary vertex must have one of its member
vectors equal to the normal of the boundary.

• The rotation angle between two frames is the minimal angle of rotation that brings one
frame to the other.

• The curvature of a frame field is the sum, over each edge, of the squared rotation angle
between adjacent frames.

• A tet is called singular if any of its triangles is singular.3 The triangle ijk is singular if and
only if Rij × Rjk × Rki 6= Id, where Rij denotes the rotation matrix that brings the frame
f i to the frame f j .

Frame representation

The reference frame f̃ is represented by the function F̃ =
√

7
12Y4,0 +

√
5
12Y4,4, where Yl,m is the

real valued spherical harmonic of degree l and order m. These harmonics are sometimes called
tesseral [Fer77, p. 74]. The list of harmonics of degree 4 can be found in [GWB96, p. 239]).
Function F̃ is defined as R3 → R, but we are interested by its restriction to the unit sphere
S2 → R.

This function is chosen because it is the lowest-frequency function exposing exactly the set
of 24 rotational symmetries of the unit cube. To the best of our knowledge, it first appeared in
works of Moakher [Moa09] under the name of cubic orientation distribution function, it was used
to model distribution of fibers in physics. Huang et al. [HTWB11] were first to use this function
for representing frame field samples.

Any other frame f can be obtained as a rotation of f̃ by a matrix R. It is represented by the
function F (P) = F̃ (RP), where P is a point of the unit sphere (Figure 4.13).

Yl,m forms a functional basis over the unit sphere with an interesting property: applying a rota-
tion to a spherical harmonic of degree l produces another harmonic of degree l. As a consequence,
since we represent the reference frame by a sum of two spherical harmonics of degree 4, each frame
function F can be represented in the basis B = (Y4,−4, Y4,−3, . . . , Y4,4). Using it, we can rewrite

the expression for the reference frame function as F̃ = Bã with ã =
(

0, 0, 0, 0,
√

7
12 , 0, 0, 0,

√
5
12

)>
.

Any other frame f = Rf̃ can be represented by F = Ba, where a = RB ã with RB being a 9 × 9
rotation matrix acting on coefficients space, defined as follows: let us denote by Rx, Ry and Rz

3× 3 matrices of rotation around axes x, y and z respectively. Any frame f can be obtained as a
composed rotation of the reference frame f̃ , where the reference frame is the set of 6 unit vectors
aligned with coordinate axes:

f = Rx(α)×Ry(β)×Rz(γ)× f̃ .

If (α, β, γ) are Euler angles of rotation between a frame f and f̃ , the representation vector a
is calculated as a = RxB(α) × RyB(β) × RzB(γ) × ã, where RxB , RyB and RzB are 9 × 9 matrices of

3We can define what a singular tet is, but we are not able to characterize them by an equivalent of the index in
2D. This fact is discussed in the supplemental material.

100 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

xy

z R

R

xy

z

F̃ (P)

f̃ f = Rf̃

F (P) = Ba =

F̃ (RP) = BRBã

Figure 4.13: A frame f is the reference frame f̃ rotated by a 3 × 3 matrix R. The plots of
the corresponding functions F and F̃ are also rotated by R, and their coefficients vectors verify
a = RB ã where RB is a 9× 9 rotation matrix.

rotation defined as follows:

RzB(γ) =



cos(4γ) 0 0 0 0 0 0 0 sin(4γ)
0 cos(3γ) 0 0 0 0 0 sin(3γ) 0
0 0 cos(2γ) 0 0 0 sin(2γ) 0 0
0 0 0 cos(γ) 0 sin(γ) 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 − sin(γ) 0 cos(γ) 0 0 0
0 0 − sin(2γ) 0 0 0 cos(2γ) 0 0
0 − sin(3γ) 0 0 0 0 0 cos(3γ) 0

− sin(4γ) 0 0 0 0 0 0 0 cos(4γ)



RxB(π/2) =



0 0 0 0 0
√

14/4 0 −
√

2/4 0

0 −3/4 0
√

7/4 0 0 0 0 0

0 0 0 0 0
√

2/4 0
√

14/4 0

0
√

7/4 0 3/4 0 0 0 0 0

0 0 0 0 3/8 0
√

5/4 0
√

35/8

−
√

14/4 0 −
√

2/4 0 0 0 0 0 0

0 0 0 0
√

5/4 0 1/2 0 −
√

7/4√
2/4 0 −

√
14/4 0 0 0 0 0 0

0 0 0 0
√

35/8 0 −
√

7/4 0 1/8


RyB(β) = RxB(π/2)×RzB(β)×RxB(π/2)>

RxB(α) = RyB(π/2)> ×RzB(α)×RyB(π/2)

These matrices are called Wigner D-matrices and the literature on their construction is vast [CRL+89,
BFB97, CIGR99, IR96]. However, as we are using degree 4 harmonics only, we performed the sym-
bolic computation.

A feasible coefficient vector a is a vector that can be written as a = RB ã where RB is a 9D
rotation matrix that can be derived from a 3D rotation. Geometrically, a is constrained to be on
a manifold of dimension 3 embedded in the 9D coefficient space.

At this point we can consider the coefficient vector a as an extension of the representative
vector used in the direction field literature. It is also the representation introduced in [HTWB11].

Other orientation fields In 2D, our frames are 4-symmetry direction fields, and are very easy
to extend to any integer number N of symmetries: it basically just replace all 4 by N in our
equations.

For 3D frame fields, the representation by spherical harmonics was introduced in [Moa09,
HTWB11] by converting from a quartic equation. These frames have 6 member vectors, and are
invariant by rotation of π/2 around these vectors.

4.1. ON SMOOTH FRAME FIELD DESIGN 101

Figure 4.14: A N-symmetry direction field can be interpreted as the set of (edge) normal of regular
polygons. This definition extends nicely to the 3D case where the set of facet normals of regular
polyhedron is considered.

Frames in 3D can be extended to other type of orientation by considering that an orientation is
the set of normal of a regular polyhedron. As a consequence, the only possible orientations have 4,
6, 8, 12 and 20 vector members. Moreover, we can notice that dual regular polyhedra are invariant
by the same set of rotations, so there exist only 3 possible orientations with 4, 6 or 8, and 12 or
20 member vectors.

We propose a systematic way to construct spherical harmonic representations of these orienta-
tions. It also confirms that our frames have only one possible spherical harmonic representation.

A spherical harmonic able to represent a regular polyhedra must be invariant by exactly all
rotations that transform the corresponding polyhedra (cube for a frame) into itself. We first
compute the set of such rotations Ri: we combine all possible rotations around one face (4 for
a frame), with all rotations that exchange this face with each faces (6 for a frame). It gives
4 × 6 = 24 rotations for a frame. Then, for each harmonic band, we compute the corresponding
rotation matrices RiB , and we compute

∑
iR

i
Ba for a random non null coefficient vector a. This

sum gives harmonics that have the desired rotation invariance. Indeed, applying a desired rotation
to them is equivalent to re-arrange the term order in the sum.

The band 0 is always a solution Y0,0, but it is not interesting as it is invariant by all rotations.
The next bands typically gives only null vectors of coefficients because the band of harmonics is
not sufficient to capture the rotations... until we reach a band with a non null coefficient vector.
At this stage, we can check that the obtained vector is the only eigen vector of the

∑
iR

i
B matrix.

In practice, we did just verify that the coefficient vector is colinear to another invariant coefficient
vector constructed from another random vector a. This was always true for the first successful
band, and false for the next bands.

Using this technique, we produced SH representations of other types of orientation fields: vector
fields Y1,0, line fields Y2,0, tetrahedron Y3,2, cube or octahedron

√
7Y4,0 +

√
5Y4,4 and dodecahedron

or icosahedron (
√

154 + 14)Y6,−5 + (
√

154 + 11)Y6,0. Figure 4.14 provides an illustration.

Note: we can also consider orientation with 1 or 2 member vectors. With one member vector,
the coefficient vector equals the member vector. With two member vector, the coefficient vector is
a basis of traceless symmetric order 2 tensor in 3D.

102 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Objective function

As in 2D, the objective function is the sum, over each edge ij, of the squared difference between
frames located at the edges extremities. In our formalism, the difference between two frames is
not the rotation angle, but the L2 norm of the difference between the corresponding functions:∫ 2π

0
(F j(α)− F i(α))2dα. It gives the energy:

E =
∑
ij

∫ 2π

0

(F j(α)− F i(α))2dα

Here, the function basis B is orthonormal, so the expression simplifies to:

E =
∑
ij

‖aj − ai‖2 (4.4)

Constraints

There are two types of constraints: each coefficient vector ai must be feasible, and boundary
frames must have one vector aligned with the normal of the volume boundary. The first constraint
is presented in the frame representation section, and will be enforced by our optimizer in a dedicated
“projection” step (the 3D counterpart of the normalization of a in the 2D case). Here we focus
on the boundary constraint.

Smooth vertex: we assume first that there is only one normal associated with the vertex, it can
be computed as the average normal vector of incident boundary triangles.

Case 1: the normal is equal to the z axis.
Let us first consider the case where the fixed vector (the surface normal) is the axis z. If we

rotate F̃ around z by angle θ, we obtain a = RB ã with RB being a rotation around z. The simple
structure of RB together with the null coefficients of ã gives the equation:

a =

(√
5

12
sin 4θ, 0, 0, 0,

√
7

12
, 0, 0, 0,

√
5

12
cos 4θ

)>
(4.5)

As done in the construction of coefficient vectors in the 2D case, we can get rid of the angle θ

by replacing it by a vector c = (c0, c1) =
(√

5
12 cos 4θ,

√
5
12 sin 4θ

)
.

a =

√
7

12
(0, 0, 0, 0, 1, 0, 0, 0, 0)> + c0(0, 0, 0, 0, 0, 0, 0, 0, 1)> + c1(1, 0, 0, 0, 0, 0, 0, 0, 0)>

With this equation, all frames having a vector equal to z can be represented by the 2D vector c.
As in the 2D case it comes with a norm constraint: c20 + c21 = 5

12 .
The variable c defines the rotation of the frame around the surface normal i.e. a 2D frame

field. The optimization of this 2D frame field using c as variables is exactly what we did in 2D by
introducing the coefficient vector a. Our 3D solution restricted to the object boundary is therefore
almost 4 equivalent to our 2D solution (Figure 4.15).

Case 2: the normal is not equal to the z axis.
To handle this more general case, we rotate the constraint. If we want the vector ~n to be

preserved, we first compute a rotation that brings z axis to ~n. From this rotation, we compute the
corresponding 9D rotation matrix RB , and derive the constraints:

a =

√
7

12
RB(0, 0, 0, 0, 1, 0, 0, 0, 0)> (4.6)

+ c0RB(0, 0, 0, 0, 0, 0, 0, 0, 1)> (4.7)

+ c1RB(1, 0, 0, 0, 0, 0, 0, 0, 0)> (4.8)

This expression of the normal constraint gives us a set of 9 linear equations per boundary
vertex. It introduces two new variables c0 and c1, and a quadratic constraint c>c = 5/12.

Note As in the 2D case, the boundary constraint has a simpler expression [HTWB11] :

a>RB(0, 0, 0, 0, 1, 0, 0, 0, 0)> =
√

7
12 that is valid only if all ai are feasible. Consequently, it cannot

be used safely during the initialization step (see Figure 4.18).

4The boundary has curvature that was not assumed in our 2D frame fields.

4.1. ON SMOOTH FRAME FIELD DESIGN 103

Figure 4.15: A 3D frame field produced on a (2D) disk (Left) produces the 2D frame field we
could obtain from the 2D algorithm (Right).

Non smooth vertices: frames of vertices located on hard edges have to conform to more than
one normal. These vertices have multiple normal constraints, we pick two normals that are almost
orthogonal, perturb them (by rotations around their cross product vector) to make them orthog-
onal, and compute the rotation that brings x to the first normal, and y to the second normal. We
compute the corresponding coefficient space rotation RB and fix the frame coefficient vector ai to
RB ã.

Implementation

We have to minimize our objective function (eq. (4.4)) with linear equality constraints on boundary

vertices eq. (4.6), quadratic equality constraints ci·ci> = 1 on boundary vertices, and the constraint
that each ai is feasible.

As in the 2D case, our minimization algorithm (Algo. 3) is formulated as a series of least squares
problems (minimize ‖AX − b‖2), where A and b are constructed without the feasibility constraint
of ai at the first iteration (initialization), and with a linear approximation of it in the subsequent
iterations (smoothing iterations).

• Initialization: Our variable vector X must represent the representation vectors ai but also
the ci variables introduced to express the boundary constraint. To do so, we first reorder
vertices to have boundary vertices first 5. We can then organize the variable vector X by
blocks: X[9i+ d] = aid, and X[9nv + 2i+ d] = cid where nv is the number of vertices.

As in the 2D case, the matrix A and the vector b are constructed iteratively by adding new
equations for the objective function (algorithm 5) and the boundary constraints (algorithm 4).

In our approach, we do not explicitly enforce the feasibility of ci (ci · ci> = 5/7), but it will
be indirectly respected by the feasibility of ai.

The projection of ai on the set of feasible coefficient vectors is no longer a simple normaliza-
tion. Instead we perform, for each vertex, a gradient descent (algorithm 7) initialized by ã.
More precisely, starting with ã we rotate our current frame gradually in order to minimize the
distance between the current frame function and the function to be projected. The gradient
is evaluated by calculating the variation of the L2 norm induced by infinitesimal rotation
matrices with Euler’s angles.

• Smoothing iteration: For the linearized feasibility constraint of ai, we must also add
3 extra variables per vertex to our system. These variables account for the position in a
local basis of the tangent space of the 3D manifold of feasible ai. The introduction of these
constraints in the matrix A is detailed in algorithm 6.

Note that this step requires to linearize 9×9 rotation matrix RB . To do so, we define matrices
ExB , E

y
B and EzB as follows:

5It is possible to increase the performances by ≈ 30% by doing a Hilbert sort in the boundary vertices block,
and another one in the free vertices block

104 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

ExB =



0 0 0 0 0 0 0 −
√

2 0

0 0 0 0 0 0 −
√

7/2 0 −
√

2

0 0 0 0 0 −3/
√

2 0 −
√

7/2 0

0 0 0 0 −
√

10 0 −3/
√

2 0 0

0 0 0
√

10 0 0 0 0 0

0 0 3/
√

2 0 0 0 0 0 0

0
√

7/2 0 3/
√

2 0 0 0 0 0
√

2 0
√

7/2 0 0 0 0 0 0

0
√

2 0 0 0 0 0 0 0



EyB =



0
√

2 0 0 0 0 0 0 0

−
√

2 0
√

7/2 0 0 0 0 0 0

0 −
√

7/2 0 3/
√

2 0 0 0 0 0

0 0 −3/
√

2 0 0 0 0 0 0

0 0 0 0 0 −
√

10 0 0 0

0 0 0 0
√

10 0 −3/
√

2 0 0

0 0 0 0 0 3/
√

2 0 −
√

7/2 0

0 0 0 0 0 0
√

7/2 0 −
√

2

0 0 0 0 0 0 0
√

2 0



EzB =


0 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 2 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 −2 0 0 0 0 0 0
0 −3 0 0 0 0 0 0 0
−4 0 0 0 0 0 0 0 0


It is easy to verify that these matrices are chosen to verify the following equations for small
rotations α, β, γ:

RxB(α) = I9×9 + αExB + o(|α|)
RyB(β) = I9×9 + βEyB + o(|β|)
RzB(γ) = I9×9 + γEzB + o(|γ|).

Finally, for small rotations the multiplication is commutative:

RB(α, β, γ) = RxB(α)×RyB(β)×RzB(γ) =

= I9×9 + αExB + βEyB + γEzB + o(|α|+ |β|+ |γ|).

This frame field design algorithm can be implemented without being expert in spherical harmon-
ics. We give explicit construction of matrices RB , E

x, Ey, Ez. The system to solve A>AX = A>b
is simply a linear system with a positive definite matrix. We use the OpenNL library [Lé] because
the system can be directly constructed from the equations (lines of A and elements of b).

In order to keep the algorithm easy to read, we did not detail how to lock frames for vertices
with multiple normal constraints.

Results

It is impossible to compare frame field design algorithms only from the images and results presented
in the state of the art papers. First of all, our implementation of [HTWB11] has significantly better
performances compared to what was presented in the original paper. Next, Li et al. [LLX+12] did
not present any frame field results, but only hex meshes that was the main focus of their work.
Therefore, we implemented both methods; there are few points worth noting:

Sampling: In previous works the frame fields were sampled either on each tet face or on each
tet. Instead we sample it on vertices, otherwise we would not be able to compare corresponding
energies.

Gimbal Lock: Both Huang and Li use Euler angles as variables in their L-BFGS optimization,
which have numerical issues when the angles are close to the gimbal lock. Note that each frame
can be represented by 48 triplets of equivalent Euler angles. In our implementation we choose the
triplet maximizing the distance to the nearest gimbal lock.

Rendering: For rendering purposes, we rely on a combination of techniques (Figure 4.17) to
show the spherical harmonics field, the frame field (locally and globally) and the field topology.

4.1. ON SMOOTH FRAME FIELD DESIGN 105

Algorithm 3: Frame field optimization

Input:

• A tetrahedral mesh M with:

– nv vertices including nl vertices with normal constraint

– edges E

• number of smoothing iterations N

Output: A frame f i for each vertex i

1 sort(M, E); // vertex i is a boundary vertex ⇐⇒ i < nl

2 foreach I ∈ 0 . . . N do
3 // A and b will be constructed iteratively
4 create matrix A with 0 rows and 9nv + 2nl + 3nv columns;
5 create vector b of size 0;

6 add smoothing terms(M, A, b);
7 add normal constraints(M, A, b);
8 // add constraints only if we are in a smoothing iteration
9 if I > 0 then

10 add local optim constraints({ai}, M, A, b);
11 end

12 // solve A>AX = A>b
13 X ← call least squares solver(A, b);

14 // find the frame for each vertex
15 foreach i < nv do
16 ai ← X[9i . . . 9i+ 8];
17 (f i, ai)← closest frame(ai);

18 end

19 end

Algorithm 4: add normal constraints

Input: A tetrahedral mesh M, matrix A, row b
Output: Modified matrix A and vector b

1 // enforcing normal constraints by quadratic penalty
2 foreach i < nl do
3 estimate normal n at vertex i;
4 find Euler angles (α, β, γ) to rotate z-axis to n;
5 find 9× 9 rotation matrix RB ;

6 h0 ← RB × (1, 0, 0, 0, 0, 0, 0, 0, 0)>;

7 h4 ← RB × (0, 0, 0, 0, 1, 0, 0, 0, 0)>;

8 h8 ← RB × (0, 0, 0, 0, 0, 0, 0, 0, 1)>;
9 λ← 100; // quadratic penalty multiplier

10 foreach d ∈ 0 . . . 8 do
11 create vector row;
12 row[9i+ d]← λ;
13 row[9nv + 2i+ 0]← λh0[d];
14 row[9nv + 2i+ 1]← λh8[d];
15 A.add row(row);

16 b.push(λ
√

7/12h4[d]);

17 end

18 end

106 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Algorithm 5: add smoothing terms

Input: A tetrahedral mesh M, matrix A, row b
Output: Modified matrix A and vector b

1 foreach ij ∈ E do
2 foreach d ∈ 0 . . . 8 do
3 create vector row;
4 row[9i+ d]← 1;
5 row[9j + d]← −1;
6 A.add row(row);
7 b.push(0);

8 end

9 end

Algorithm 6: add local optim constraints

Input: Previous solution {ai}i<nv , tetrahedral mesh M, matrix A, row b
Output: Modified matrix A and vector b

1 foreach i < nv do
2 cx ← Ex × ai;
3 cy ← Ey × ai;
4 cz ← Ez × ai;
5 λ← 100; // quadratic penalty multiplier
6 foreach d ∈ 0 . . . 8 do
7 create vector row;
8 row[9i+ d]← λ;
9 row[9nv + 2nl + 3i+ 0]← −λcx[d];

10 row[9nv + 2nl + 3i+ 1]← −λcy[d];
11 row[9nv + 2nl + 3i+ 2]← −λcz[d];
12 A.add row(row);
13 b.push(λai[d]);

14 end

15 end

Algorithm 7: closest frame

Input: 9-component vector q
Output: A frame f and its representation vector a

1 f ← f̃ ;
2 a← ã;
3 s← 10−1; // optimization step size
4 ε← 10−4; // step threshold
5 q ← q/|q|;
6 while True do
7 g ← (q>ExBa, q

>EyBa, q
>EzBa); // gradient in point a

8 if ‖g‖ < ε then
9 break;

10 end
11 RB ← RxB(s · g[0])×RyB(s · g[1])×RzB(s · g[2]);
12 R← Rx(s · g[0])×Ry(s · g[1])×Rz(s · g[2]);
13 a← RBa;
14 f ← Rf ;

15 end
16 return f, a;

4.1. ON SMOOTH FRAME FIELD DESIGN 107

Comparison with Huang’s method Recall that Huang et al. proposed a method in two steps:

• find an initial frame field by solving a linear system and projecting the solution onto the
manifold of feasible solutions

• represent each frame by a triplet of Euler angles and optimize the smoothness using an
L-BFGS descent method.

Our implementation produces results very similar to those presented in [HTWB11], but with
significantly better timings. For example, the rock-arm (Figure 4.16) with one million tetrahedra
takes about 10 minutes on a single thread application on a Dell M6600 laptop compared to 155
minutes obtained by Huang et al. on a two-thread i7 processor.

Huang’s initialization is very similar to ours, however their boundary condition is not sufficient
in this case (it requires the SH coefficients to be feasible). Moreover, they enforce the boundary
condition with a penalty term that is very light (10−2 weight). As a consequence, their initial
fields are almost constant everywhere (it maximizes the smoothness), with a topology very far
from being optimal. The smoothing iterations are performed with much higher weight (103) of the
penalty term using L-BFGS.

After the initialization step we measured the deviation of the field from the given constraints
on the rock-arm model. Note that the penalty term being the sum of deviations over all vertices,
we can conclude that deviation at a given vertex belongs to [0, 2

√
7/12]. Thus on the rock-arm

the initial frame field has the average deviation of 0.34, whereas the maximum frame deviation is
0.96.

If we use a much higher penalty weight to enforce the boundary constraint, we obtain an initial
frame field with average deviation from constraints equal to 0.07 and maximum deviation equal
to 0.75. The field has better topology and L-BFGS converges faster for this initialization. The
initialization provided by our method has average deviation from constraints equal to 10−8 with
maximum deviation of 10−7.

Figure 4.16 gives an illustration, it compares three methods: Huang’s algorithm (left image)
Huang’s algorithm with much higher penalty weight (middle image) and our initialization followed
by Huang’s smoothing iterations (right).

Huang’s paper is the pioneer work and the main contribution in [HTWB11] was the introduction
of the energy used in frame field optimization, however the initialization is not very good and
smoothing stage was also outperformed by later works.

Comparison with Li’s method Li’s initialization computes a 2D frame field on the surface,
then propagates it inside the volume by advancing front. As a consequence, the initial field perfectly
matches boundary constraints, but is discontinuous across its medial axis.

The smoothing iterations are performed by L-BFGS. It acts on a new set of variables that
characterizes, per vertex, the rotation that brings the reference frame to the current frame. For
the frames located inside the object, variables are the Euler angles as in Huang’s method. For
frames located on the object boundary, the rotation is characterized by a single rotation angle
around the normal vector.

The frame field results presented in their paper were limited to an ellipsoid and a sphere (frame
field design was not the primary objective). We guess that most of presented results were not fully
automatically generated frame fields, as they wrote: “For instance, we use guiding boxes to modify
the frames inside the narrow ears of Bunny (Figure 13-a) and the head of rock arm (Figure 13-b)
to reduce singularities”.

Moreover, before implementing the method, we thought that their algorithm was strongly
limited by the original field topology from the sentence: “However, our propagation-based frame
field initialization likely generates singular edges around the medial axis of the volume, and most
of them cannot be eliminated by frame optimization.” Surprisingly, our implementation of their
method is able to generate smooth frame fields automatically in most situations, even when the
topology of the initial field is complex close to the medial axis. Our implementation is slightly
different:

• we initialize the 2D field by our 3D algorithm restricted to boundary vertices

• we sample the field on vertices

• and we prevent gimbal locks by a proper initialization of Euler angles.

108 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Figure 4.16: Comparison of initialization of Huang’s algorithm with their weight of boundary
penalty term (10−2) (left/blue), with a much higher weight (102) (middle/yellow), and our initial-
ization (right/red). All smoothing iterations are performed by Huang’s algorithm. For the rocker
model, the energies (we take the run with our initialization for 100%) are respectively 94, 7%,
101, 6% and (obviously) 100%. For the tet model, we obtain 91%, 89, 7% and 100%.

4.1. ON SMOOTH FRAME FIELD DESIGN 109

The only real failure case we found using their method is due to the front propagation algorithm:
when a boundary frame is copied to a large number on inner samples. In this case, the L-BFGS
solver is sometimes locked with a bad topology (see Fig. 4.19).

On more complex examples, we have compared their algorithm against our initialization fol-
lowed by their smoothing iterations. In most cases, we obtain an energy that is a bit better
(Fig 4.20). We also observed that their topology often differs from ours (Fig 4.21), so we conjec-
ture that our topology is somehow better. However, the quality of the field topology depends on
the application, and is not well evaluated by the energy, even for topologies very far from being
optimal (see e.g. Fig 4.16).

Comparison of smoothing iterations In the previous sections we have shown (Fig. 4.16 and
4.19) that our method provides the best initialization, however our smoothing iterations are not
clearly better than others.

Figure 4.22 shows a comparison of three different smoothing strategies (our linearization, L-
BFGS proposed by Huang et al. and L-BFGS proposed by Li et al.). In all three cases we use
our method to initialize the field. L-BFGS smoothing proposed by Huang et al. is the slowest in
all test cases. First of all, in our implementation the time to evaluate the energy and the gradient
is four times slower for the method by Huang et al. than for the method by Li et al. Second,
the crucial difference between these two methods is the way to enforce the boundary alignment:
Huang et al. use a penalty term, whereas Li et al. use the set of variables directly satisfying the
boundary constraints. In our test we noticed that usage of penalty terms increases the number of
iterations to converge and interferes with topological choices to be made, leading to inferior final
fields.

We also noticed that the behavior of linearization changes in function of how far the initialization
is from the final solution.

• First row of figure 4.22 shows a simple case without topology changes, the smoothing itera-
tions change the field geometry only. In this case the linearization of feasibility constraints
works flawlessly, in two iterations the method converges, taking about the same time as the
smoothing by Li et al.

• Middle row shows a second case, where few topology changes must be made. It slowes the
linearization down, even if two iterations produce a reasonably good field.

• Finally, the bottom row shows the case where the initial topology is really bad. The lin-
earization method fails on this model: two first iterations are still very far from the final
solution and to reach the minimum it requires four times more time than the method by Li
et al.

We conclude that the best solution is our initialization followed by the optimization of Li et al..
In practice, the implementation of our linearization smoothing iterations is almost free (incremental
with respect to our initialization algorithm), whereas Li et al. smoothing algorithm is more difficult
to implement. Moreover, in most cases few iterations of linearization steps suffice to obtain a fairly
good field. As a consequence, we suggest starting with our smoothing iterations (almost free to
implement), then possibly replace it with Li et al. smoothing algorithm if performances are not
sufficient.

Conclusion

This section unifies the frame field design problem in 2D and 3D. Both problems are formulated
with a similar representation of frames, constraints and objective function. As a consequence, they
can also be solved by similar algorithms.

From this analysis, we discovered that the best actual solution to produce smooth 3D frame
fields is to initialize it by our proposed extension of [KLF12], followed by smoothing iterations of
[LLX+12]. The main drawback of this solution is requirement to implement two very different
approaches (a sparse linear system solver and a L-BFGS descent). A fair alternative is to use our
extension of [KLF12], it is simple to implement and requires a linear system solver only. In practice
for our models we perform only two or three linearization iterations, however if the initialization
is a bad guess (e.g. the sphere), it can be insufficient. With this approach we are able to generate
(on a laptop) fields on the models up to few millions tetrahedra in less than 10 minutes, refer to
Figure 4.23 for an illustration.

110 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Figure 4.17: Our results are shown using
combinations of the following rendering tech-
niques. We can plot for each vertex i its
F i (upper left), or its frame as a cube(upper
right). We can show the singular tets (lower
left), or a smoothed and refined version (lower
middle) to better see it in 3D (thanks to the
lighting). The field inside the volume can be
rendered by curved french fries.

Figure 4.18: The initialization of [HTWB11]
(left) is a constant frame field whereas ours
(right) is aligned to the boundary. Their F i

are all equal, and very far from being feasible,
making it possible to violate the boundary
condition.

Figure 4.19: Li’s algorithm (red) is compared to our algorithm (green) on a one-finger bowling
ball. The hole has a huge impact on the initialization due to the advancing front approach (second
column, inside the yellow box). As a result, their initialization provides a field with a poor topology
and smoothing iterations are not sufficient to find the expected topology (like ours). Our final
energy is 86% of theirs.

4.1. ON SMOOTH FRAME FIELD DESIGN 111

Figure 4.20: Comparison of two fields generated by Li et al. smoothing iterations: using their
initialization (red) or ours (blue). Our energy in percent of theirs is 99%, 99.87%, 100.5%, 99.97%,
99%, 99.6%. The difference is always very low (< 1%) but always in our advantage except for the
third model.

Figure 4.21: Comparison of two fields generated by Li’s smoothing iterations: using their initial-
ization (red) or ours (blue). Our energy in percent of theirs is 98.5%. Close-ups show the field
where the singularity graphs diverge: one is inside the volume (leftmost) and others are on the
object boundary. Our results are on the top row and theirs are on the bottom row with singularity
encircled in white.

112 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Figure 4.22: Comparison of smoothing iteration algorithms combined with our initialization algo-
rithm. We compare Huang’s method (blue), Li’s method (green), our method (orange), and our
method limited to two iterations (red). Top row compares the initialization (left) with the field
after two iterations of our algorithm (right). Middle and bottom rows compare the field with two
iterations of our smoothing algorithm with other smoothing strategies. Singularity graphs reflect
nicely the convergence of thee algorithms. We obtain energy (we take Li’s result for 100%) of resp.
99.98%, 100%, 99.98% and 100.5% on the sector, 101.5%, 100%, 100.4%, and 106.5% on the fan
disk, and 116%, 100%, 109%, 185% on the one-finger bowling ball.

4.2. INTEGRATING A 3D FRAME FIELD: PERIODIC GLOBAL PARAMETERIZATION113

Figure 4.23: Results on CAD objects. Names are (from left to right): Anc, Crank, 40head.

4.2 Integrating a 3D frame field: periodic global parame-
terization

Notations: throughout this section we use bold font to denote vectors. Subscripts are used to
index variables. For example, the vertex number i of a tetrahedral mesh will be denoted by xi.
Square brackets are used to access to individual components of vectors or matrices. For instance,
xi[0] denotes the first component of a three-dimensional vector xi. Given a matrix R, its first row
is denoted by R[0, ·] and its first column is denoted by R[·, 0].

• The input of our algorithm is a tetrahedral mesh T representing an object to be remeshed,
as well as the desired sizes and orientations of the hexahedral elements. The desired size and
orientation at each vertex i is represented by a matrix Bi such that its columns Bi[·, k],
k = 0, 1, 2 form an orthogonal basis that corresponds to the edges of the typical hexahedral
elements to be created in the vicinity of vertex i (Fig. 4.24);

• the output of our algorithm is a set of points P meant to be the vertices of a hexahedral-
dominant mesh where the orientation and size of hexahedra is as close as possible to the one
defined by the matrices Bi.

Our algorithm consists in the following three steps (an optional step and two mandatory ones):

1. Optional step: optimize the size of the hexahedra to reduce the number of singularities
(curl-correction). The curl-corrected frame field is obtained as the solution of a sparse linear
system (§4.2.4);

2. Parameterize the object T by solving a sparse linear system (§4.2.2).

3. Back-project points with integer coordinates from the parameter space onto the object
T (§4.2.3)

Figure 4.24: Each vertex of the input mesh knows the size and the orientation of the hexahedron
to be created in his vicinity. We store this information as an orthogonal basis matrix Bi per vertex
i.

The following subsection details the method that generates the volumetric parameterization.
For the sake of clarity, the accompanying illustrations are in 2D.

114 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Figure 4.25: Considering a continuous map M from an object Ω (left) to R3 (center), it is possible
to generate a hexahedral mesh of Ω by tracing the preimage of the regular grid from R3 (center) to
the object. Note that a whole family of maps – that we call “grid-equivalent” – produces exactly
the same hexahedral mesh (right).

Figure 4.26: The object shown on the left can be remeshed with the atlas of grid-equivalent maps
shown on the right. The preimage of G through the three maps is unique and defines a hexahedral
mesh.

4.2.1 Problem statement

We suppose that we have a 3D domain Ω and a (global) continuous map M : Ω→ R3. Let G denote
a regular 3D grid: G = {(x, y, z) ∈ R3 : (x mod 1 = 0) or (y mod 1 = 0) or (z mod 1 = 0)}.
The pre-image M−1(G) of G defines the facets of a hexahedral mesh for Ω (see Fig. 4.25). In this
configuration, R3 may be thought of as a “texture space”, and then the hexahedral mesh of Ω is
obtained by using a rectilinear grid as a “texture”.

Note that for a given map M and its induced hexahedral mesh M−1(G), it is possible to find
another map M ′ that generates exactly the same mesh (Fig. 4.25-right). We now formalize such
pair of maps that produce the same grid :

Definition 2. Two maps M and M ′ are said to be grid-equivalent if and only if there exists R ∈ R
and t ∈ T such that M = RM ′ + t, where:

• R is the set of 24 rotation matrices that permute the normal vectors of the unit cube (1, 0, 0),
(0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0) and (0, 0,−1);

• T is Z3, the set of vectors with integer coordinates.

A regular grid G is invariant under the action of the 24 rotations and integer translations:
R ∈ R, t ∈ T ⇒ G = RG + t. Therefore, the preimages of two grid-equivalent maps M and M ′

correspond to the same hexahedral mesh M−1(G) = M ′−1(G) (Fig. 4.25-right).

In general, a single global continuous map is not sufficient to create a boundary-aligned hexa-
hedral mesh. For example, it is impossible to remesh in this way the object shown on the left of
Fig. 4.26. Thus we will search instead for an atlas of local maps. If any pair of maps within the
atlas is grid-equivalent on the intersection of their domain, then the final remesh is still unique
(see Fig. 4.26).

In our setting, the domain Ω is the tetrahedral mesh T . We associate to each vertex i a local
map Mi, defined on the tetrahedra incident to i, and linear in each tetrahedron.

4.2. INTEGRATING A 3D FRAME FIELD: PERIODIC GLOBAL PARAMETERIZATION115

Figure 4.27: The maps Mi for the example shown in Fig. 4.24. Each map Mi is represented by the
texture coordinates of the vertices connected to i with an edge. To ensure the grid compatibility
of the maps, we constrain the position of the blue vertices: they are obtained from the black ones
by an integer translation tij (and possibly a rotation).

We formulate our problem as an energy minimization (defined later in this section). We rep-
resent each map Mi by texture coordinates of the vertex star of the vertex i. The problem is a
minimization under constraints of grid equivalence.

Recall that for two adjacent vertices i and j the maps Mi and Mj are grid-equivalent iff there
exists R ∈ R and t ∈ T such that Mi = RMj + t. As our maps are linear (per tetrahedron),
it is sufficient to enforce this equality at 4 points on each tetrahedron: the maps Mi and Mj are
grid-equivalent iff we can find Rij ∈ R and tij ∈ T such that on each tetrahedron (i, j, k, l) we
have : 

Mi(xi) = RijMj(xi) +tij (1)
Mi(xj) = RijMj(xj) +tij (2)
Mi(xk) = RijMj(xk) +tij (3)
Mi(xl) = RijMj(xl) +tij (4)

(4.9)

Thus the problem consists in finding Mi(xi) and Mi(xj) for each oriented edge i, j, under the
constraint of grid-equivalence Eqn (4.9). It is difficult to find an expression of the grid-equivalence
constraint suitable to numerical optimization (i.e. existence of rotations and translations). There-
fore, we prefer to introduce the rotations and translations (Rij , ti) into the set of variables, together
with constraints that connect the texture coordinates on neighboring maps. However, if we directly
introduce unknowns Rij and tij for each oriented edge ij, it creates much redundancy in the vari-
ables. Indeed, from a texture coordinate Mi(xi), rotation Rij and translation tij we can deduce the
value of Mj(xi), because our system must satisfy the grid-equivalence constraint (4.9). Therefore,
we can remove Mj(xi) (as well as Mi(xj)) from the set of variables. Finally, each oriented edge ij
involves Mi(xi), Rij and tij as variables (refer to Fig. 4.27 for an illustration). Note that with this
particular choice of variables, lines 1 and 2 of Equation 4.9 are naturally satisfied.

We formulate the problem as a least squares problem with a set of equations per oriented edge
ij. These equations express the geometric objective, i.e. make the Jacobian matrix J(Mi) as close
as possible to Bi

−1. From now on we note Mi(xi) as ui. Thus, each oriented edge ij introduces a
term ui +Bi

−1(xj − xi) = Rijuj + tij in the objective function.

Remark 1. This formulation does not ensure that lines 3 and 4 of Equation 4.9 are satisfied.
A configuration where they are not satisfied corresponds to a singularity of the frame field or a
singularity of the parameterization (more on this in the next section).

Remark 2. This formulation does not ensure the positivity of the Jacobian determinant det(J(Mi)) >
0, so the trivariate functions Mi may not provide a valid mapping. Following our definition, two
maps can be grid-equivalent even if they are not valid. However in practice, most Mi will be valid

116 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Figure 4.28: A PGP-singularity corresponds to a T-junction in the generated mesh. Left image:
the T-junction. Right images: three (non grid-equivalent) maps for the (grayed-out) singular
tetrahedron.

maps at the end. Invalid ones generate singular tetrahedra (see §4.2.2), treated as explained in
§4.2.3.

4.2.2 Optimization

We first solve for the matrices Rij

We have J(Mi) = RijJ(Mj) and we want J(Mi) ≈ Bi, thus we define Rij as :

Rij = arg min
R∈R

‖R−Bi−1Bj‖

.

We can now replace tij by Rijtji for i < j

Let us regroup the equations: for each oriented edge i < j we have two equations:{
ui +Bi

−1(xj − xi) = Rijuj + tij
uj +Bj

−1(xi − xj) = Rjiui + tji

Then we multiply the second equation by −Rij and regroup the terms:{
ui −Rijuj − tij −Bi−1(xi − xj) = 0
ui −Rijuj − tij −RijBj−1(xi − xj) = 0

Note that if a linear system is composed of equations of type x − a = 0 and x − b = 0, then
solving it in the least squares sense is equivalent to solving the system of equations x−(a+b)/2 = 0.

It leads to the new formulation

We now have a set of equations (one per oriented edge i < j) to be solved in the least squares
sense:

∀i < j, ui −Rijuj − tij + gij = 0 (4.10)

where the variables are ui, uj and tij and where the input constants gij are given as follows:

gij = ((Bi
−1 +RijBj

−1)/2)(xj − xi) (4.11)

Rij = arg min
R∈R

‖R−Bi−1Bj‖ (4.12)

As each tij appears exactly in one line of the system (4.10), it is sufficient to consider the
fractional part of each equation:

∀i < j, ui + gij = Rijuj mod 1

4.2. INTEGRATING A 3D FRAME FIELD: PERIODIC GLOBAL PARAMETERIZATION117

We split this vector equation into six scalar ones and use the periodicity of the cosine and sine
functions to remove the modulo:

∀i < j,
∀d ∈ {0, 1, 2},

{
cos(2π(ui + gij)[d]) = cos(2π(Rijuj)[d])

sin(2π(ui + gij)[d]) = sin(2π(Rijuj)[d])

By expanding the cosine and sine of a sum, one obtains :

∀i < j, ∀d ∈ {0, 1, 2},
cos(2πui[d]) cos(2πgij[d]) − sin(2πui[d]) sin(2πgij[d])

− cos(2π(Rijuj)[d]) = 0

sin(2πui[d]) cos(2πgij[d]) + cos(2πui[d]) sin(2πgij[d])
− sin(2π(Rijuj)[d]) = 0

Then we perform a change of variables

Each scalar variable ui[d] is replaced with two variables ai[d] and bi[d] that correspond to its cosine
and sine, respectively:

ai[d]
def
= cos(2πui[d]) bi[d]

def
= sin(2πui[d]).

Note that as Rij ∈ R is one of 24 rotation matrices, for any d the corresponding row Rij [d, ·]
contains two zeroes and one 1 or −1. Let us define rdij to be the index of the non-zero entry in the

row Rij [d, ·], and sdij its sign. We can write (Rijuj)[d] = Rij [d, ·]uj = sdijuj[r
d
ij]. Then we solve the

following linear system in the least squares sense:

ai[d] cos(2πgij[d])− bi[d] sin(2πgij[d]) − aj[r
d
ij] = 0

bi[d] cos(2πgij[d]) + ai[d] sin(2πgij[d]) −sdij bj[r
d
ij] = 0

(4.13)

To ensure that points are generated on the boundary of the volume, (at least) one component of
the parameterization has to be zero there. Therefore, for each tetrahedron vertex on the boundary,
we find the vector of the input frame field (column of Bi) aligned with the normal to the boundary
and constrain the corresponding variables ai[d] and bi[d] to be equal to 1 and 0 respectively.

To solve the linear system, we use the implementation of the Jacobi preconditioned Conjugate
Gradient algorithm [AMS90], available in [Lé]. We then retrieve the original variables as ui[d] ←
atan2(bi[d],ai[d]). Once we have all ui, corresponding tij are straightforward to compute.

Singularities

As previously mentioned, our choice of variables satisfies the first two equations of the system (4.9).
However, the last two equations can be violated. In this case, the tetrahedron is said to be singular.
There are two types of singularities :

Definition 3. FF-Singularity (Frame-Field):

• The triangle ijk is said to be FF-singular if RijRjkRki 6= Id3×3;

• A tetrahedron is FF-singular if any of its faces is FF-singular.

Definition 4. PGP-Singularity (Periodic Global Param.):

• The triangle ijk is said to be PGP-singular if tij +Rijtjk 6= tik;

• A tetrahedron is PGP-singular if any of its faces is PGP-singular.

Note that the variables ui do not appear in this criterion.

Frame-Field singularities create degenerate maps, since the FF-singularity condition enforces
tij = 0 and ui = 0. PGP singularities yield T-junctions in the generated hexahedral mesh
(Fig. 4.28).

118 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

4.2.3 Extracting gridpoints

Once the vectors ui and tij are computed, it is easy to extract the gridpoints, as follows : For
each tetrahedron ijkl we choose an arbitrary map among Mi, Mj , Mk, Ml and then we extract
the pre-images of the points with integer texture coordinates inside the image of the tetrahedron.
There are two cases: either the tetrahedron is non-singular and then the result does not depend
on the choice of the map, or it is singular and then the result can depend on the map. If the
tetrahedron is singular, to ensure a sufficient sampling density, we select among Mi, Mj , Mk, Ml

the one that maximizes the volume of the mapped tetrahedron. In general, this generates points
(and then Delaunay tetrahedra) that are not recombined into hexahedra in the subsequent step.

4.2.4 Optional pre-processing step: curl correction

Curl correction6 is an optional step that pre-processes the “frame” field (Bi) that steers the
optimization in Section 4.2.2. In a nutshell, it adds a corrective term cij to the input gij as
gij ← gij + cij, in such a way that our optimization algorithm produces a smaller number of sin-
gularities. It basically trades a higher proportion of grid-compatible maps for a larger distance to
the geometric objective J(Mi) = B−1

i .

We first define the constraints on cij that enforce grid-compatible maps §4.2.4, then we derive
an algorithm to compute values of cij that prevent degeneracies and that limit the distortion §4.2.4.

Curl-correction constraints on cij

Two maps Mi and Mj are grid compatible iff each tetrahedron incident to the vertices i and j
satisfies Equation 4.9. This means that for each triangle ijk, we have Mi(xk) = RijMj(xk) + tij.
This later expression can be expressed with our set of variables ui as :

Rikuk −RijRjkuk = Rijtjk + tij − tik

Assuming that the geometric objective is perfectly respected (Equation 4.10), we can write :

Rikuk −RijRjkuk = Rij(uj −Rjkuk + gjk) (4.14)

+ ui −Rijuj + gij (4.15)

− (ui −Rjkuk + gik) (4.16)

If the triangle ijk is not a singularity of the frame field, we have RijRjkRki = Id3×3 so the
condition simplifies to: Rijgjk + gij − gik = 0. As a consequence, we can assert the following:

Remark 3. If the cij’s are such that Rij(gjk + cjk) +(gij + cij) −(gik + cik) = 0, then there is
a trivial solution to our optimization process (without boundary condition), with zero energy, and
that produces only grid compatible maps.

It gives us a simple sufficient condition on the cij’s to produce grid-equivalent maps.
To have hexahedra faces located on the surface boundary, the image of boundary faces and

edges of T are constrained to live in an iso-value of a coordinate of the map. This boundary
condition is expressed as the following set of constraints :

(Bi +RijBj)(gij + cij) · n = 0

where n is the normal of the surface on edge ij located on the boundary of the surface.

Curl-Correction Algorithm

We first search for the corrective term cij of minimal norm that respects the constraints, in other
words we solve the following constrained optimization problem:

6In DEC language, if Rij = Id3×3, this step is a modification of the trivariate 1-form g to make it closed, i.e.
canceling its curl.

4.2. INTEGRATING A 3D FRAME FIELD: PERIODIC GLOBAL PARAMETERIZATION119

min Σij‖cij‖2

s.t.


For all non-singular triangles ijk,

Rij(gjk + cjk) + (gij + cij)− (gik + cik) = 0

For all edges on the border ij,
(Bi +RijBj)(gij + cij) · n = 0

The obtained cij ensures that Equation 4.9 is respected everywhere. However, it can produce
highly distorted (and probably not injective) maps. To avoid this, we scale the result by :

cij[d]← min

(
1,
γ‖gij‖
‖cij‖

)
cij[d]

The parameter γ sets the minimum ratio between the corrected desired scale and the original
one. The impact of γ is discussed in §4.4.2, and all other results are obtained with the default
setting γ ← 0.35.

120 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

4.3 Generating the hexahedral-dominant mesh

The algorithm described in the previous section §4.2.3 generates a set of points P . The points in
P are well spaced and mostly organized on a warped regular grid (except on the singularities).
In addition, P samples the border ∂T of the input tetrahedral mesh and fills its interior. Our
method to generate a hexahedral-dominant mesh from P can be summarized as follows (more
details further):

• Step 1: re-mesh of the border of the domain ∂T using as vertices the points of P that are
located on the border of T (§4.3.1);

• Step 2: compute an intermediate tetrahedral mesh T ′ using the points P constrained by the
re-meshed border. One can use an off-the-shelf constrained Delaunay implementation, such
as MGTetra [GHS90] or tetgen [Si15];

• Step 3: recombine in T ′ the sets of tetrahedra that can be assembled to form a hexahedron.
Optionally, if supported by the application that uses the mesh, prisms and pyramids can be
generated as well. We use a refinement of the algorithm proposed by Meshkat and Talmor
in [MT00] §4.3.2.

4.3.1 Re-meshing the border of the domain

This section explains how to re-mesh the border ∂T of the input tetrahedral mesh T to generate a
new triangulated surface with its vertices in the point set P generated at the previous step (plus
some additional vertices, as explained later). We start by computing Del(P)|∂T , the Delaunay tri-
angulation of P restricted to the border of the domain ∂T . In other words, this means computing
the intersection between the Voronoi diagram of P and ∂T (thin yellow lines in Fig. 4.29 top-left).
Each time three Voronoi cells meet (i.e. when a Voronoi edge has a non-empty intersection with
∂T), then the corresponding three points are connected with a triangle (bottom-left). We use
the algorithm described in [YLL+09] implemented in [Lé15] with arithmetic filters [MP08], exact
arithmetics using expansions [She97] and symbolic perturbations [EM90]. Such perturbations are
useful to disambiguate triangle connections whenever four Voronoi cells meet (instead of three in
the generic case). In our specific case, such degenerate configurations occur very often since the
points that we generate are aligned on a regular grid.

Note that the sampling of ∂T realized by P is not always sufficiently dense to capture all the
geometric features of ∂T (see Fig. 4.29 bottom-left). For this reason, we iteratively insert points in
the regions of largest geometric error (red points on Fig. 4.29) until the Hausdorff distance between
∂T and the re-meshed border is smaller than a user-defined threshold ε. The refinement algorithm
is detailed in Algorithm 8.

The algorithm iteratively adds batches of points B. To facilitate reproducing our results, we
further detail some parts of the algorithm. Line 2: the ’sample surface’ function generates a regular
sampling for each triangle of ∂T in such a way that the maximal distance between two samples
is smaller than ε. Line 6: the function ’distance to surface’ gives the minimal distance between
a point and a triangulated surface, implemented using an AABB-tree. Line 11: the constant ε′

specifies the minimal distance between points inserted in the same batch B (see condition Line 13).
We use ε′ = 2× ave edge length(T) where ’ave edge length’ denotes the average edge length of the
input mesh. We found this value empirically: a lower value generates useless points, and a higher
value makes the algorithm slower by inserting smaller batches and thus requiring a larger number
of outer iterations. Line 13: the function ’distance to pointset’ gives the minimal distance between
the input point and all the elements of the point set. The parameter ε ensures that all the points
of ∂T are at most at a distance of ε of the re-meshed border. We use ε← 0.2×ave edge length(T).
The effect of this parameter is discussed in §4.4.2.

4.3.2 Recombining tetrahedra into hexahedra

Once the border is re-meshed (by Del(P)|∂T), we can obtain an intermediate tetrahedral mesh T ′

by computing the Delaunay triangulation of the point set P constrained by the re-meshed border,
using off-the-shelf software [GHS90, Si15]. In this section, we explain how to deduce from this
intermediate tetrahedral mesh a hexahedral-dominant mesh by recombining the tetrahedra into

4.3. GENERATING THE HEXAHEDRAL-DOMINANT MESH 121

Figure 4.29: The border is re-meshed using the Delaunay triangulation of the generated points
(white) restricted to the border of the domain. Additional points (red) are inserted until the
geometric error is smaller than a user-defined threshold.

Algorithm 8: The mesh refinement algorithm

RefinePointSet(T ,P ,ε,ε′):

Data: T : the input tetrahedral mesh, and ∂T its boundary;
P : the point set to be refined; ε > 0: the maximum distance between the re-meshed
boundary and the input boundary ∂T ;
Result: The updated point set P with new inserted point to make the distance between

Del(P)|∂T and ∂T smaller than ε.

point set E ← sample surface(∂T, ε)
point set B ← ∅
do

for i := 1 to |E| do
d[i]← distance to surface(E[i],Del(P)|∂T)

end
sort (E, d) by decreasing d
B ← ∅ ; i← 0
// Min. dist. between two points inserted in the same batch
constant ε′ ← 2× avg edge length(T)
while i < |E| and d[i] < ε/2 do

if distance to pointset(E[i], B) > ε′ then
B ← B ∪ {E[i]}

end
i← i+ 1

end
P ← P ∪B

while B 6= ∅;

122 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Figure 4.30: Recombination (in 2D): the template G describes the recombination of two triangles
into a quad. Five instances H∗ = {H1, H2, H3, H4, H5} can be found in the intermediate mesh
T ′. Clearly, H2 and H3 are of lower quality (lower value of function Q). H1 and H2 are mutually
incompatible (C(H1, H2) = 1) because they have t2 in common. The other mutually incompatible
pairs are (H2, H4), (H4, H3) and (H3, H5).

other primitives (hexahedra, and optionally prisms and pyramids). We first present the general
problem statement:

Optimal Recombination: Problem statement

Given the following elements (see Fig. 4.30):

• an intermediate tetrahedral mesh T ′ = {ti}nti=1 where ti denotes one of the tetrahedra and
nt the number of tetrahedra;

• the set of “primitive templates” G to be recognized in T ′ (hexahedra, prisms, pyramids).
Each template G ∈ G is a graph that encodes the combinatorial relations within a set of
tetrahedra that corresponds to a primitive. This combinatorial representation comprises the
adjacencies of each pair of tetrahedra along their common facets and additional information
(more on this below). It is said that a primitive represented as a set of tetrahedra H =
(t1, t2, . . . tk) matches a template G if the adjacencies between (t1, t2, . . . tk) correspond to
the arcs of the graph G (a more formal definition will be given later).

• a criterion Q(H) > 0 that measures the geometric quality of a recognized primitive H. The
criterion Q that we use is explicited further (see Section 4.3.2);

• a set of compatibility constraints C(H1, H2). If both primitives of the pair can be con-
structed simultaneously in the resulting mesh, then they are said to be mutually compatible
(C(H1, H2) = 0), otherwise they are mutually incompatible (C(H1, H2) = 1). Clearly, two
primitives H1 and H2 that use the same tetrahedron are mutually incompatible (H1 ∩H2 6=
∅ ⇒ C(H1, H2) = 1). There are also less trivial compatibility constraints, described below
(Section 4.3.2).

the optimal recombination problem can be stated as:

Find the set of primitives H that maximizes the quality Q(H) =
∑
iQ(Hi), such that

each primitive P ∈ H matches one of the templates G ∈ G and such that the mutual
compatibility constraints are satisfied (∀H1 6= H2 ∈ H, C(H1, H2) = 0).

Re-formulation / decomposition

This combinatorial optimization problem can be decomposed into two steps:

Step 1 - Template matching:
Find the set of all possible primitives H∗ extracted from the intermediate tetrahedral
mesh T ′ that match a template in G.

4.3. GENERATING THE HEXAHEDRAL-DOMINANT MESH 123

Step 2 - Constrained optimization:

Maxb∈{0,1}N
[∑N

i=1 biQ(Hi)
]

where N = |H∗|
s.t. ∀i, j ∈ (1..N)2, bibjC(Hi, Hj) = 0

Template matching (Step 1) is detailed further, in Section 4.3.2. In the constrained optimization
problem of Step 2, one tries to find the boolean vector b that indicates for each potential primitive
Hi ∈ H∗ whether it will be used (bi = 1) or not (bi = 0) in the final result. The constraint indicates
that whenever a primitive Hi is used, the primitives Hj that are incompatible with it cannot be
used. Written in this form, this (combinatorial) constrained optimization problem can be recog-
nized as the maximum independent set problem, classical in graph theory [BBPP99]. Since we will
be able to find the set of all candidate primitives H∗, this lets hope for an algorithm that provably
finds the optimum recombination. Unfortunately, even for a few hundred elements, algorithms for
the maximum independent set problem take a considerable amount of time, as confirmed by our ex-
periments Therefore, for this step, we use a classical greedy heuristic (more on this in Section 4.3.2).

We now give more details about each phase of the algorithm, template matching (Section 4.3.2)
and combinatorial optimization (Section 4.3.2).

Template matching

Several algorithms were proposed for recombining tetrahedra into hexahedra [YS03, MT00]. We
chose to elaborate on the approach proposed by Meshkat and Talmor [MT00], that provides a
formalism that can be used to systematically analyze all the configurations. Their formalism
represents a configuration as a graph, where each node corresponds to a tetrahedron:

Each (solid) arc connects two tetrahedra that share a facet. The dangling dashed arcs corre-
spond to facets on the border, not connected to another tetrahedron.

In addition, to identify the quadrilateral facets in the decomposition of a hexahedron, they
connect each pair of dangling dashed edges that correspond to the pair of triangular facets that
form each quadrilateral facet:

In the example shown above, three dashed arcs are materialized on the left image (the three
other hidden ones are in a similar configuration).

Meshkat and Talmor refer to such a graph (with both solid and dashed arcs) as the augmented
graph of the decomposition. They enumerate the possible augmented graphs for decompositions
with 5 and 6 tetrahedra. They mention (without describing it) a possible generalization in the
presence of slivers. In Section 4.5, we further analyze their formalization, fill a gap in the proof,
prove that a configuration cannot contain more than 13 tetrahedra, extend the analysis to all the
possible configurations (from 5 to 13 tetrahedra), summarized in the following theorem:

Theorem 1. A decomposition of a hexahedron into tetrahedra without any sliver on the border
can have 5,6 or 7 tetrahedra. There is 1 configuration with 5 tetrahedra, 5 configurations with 6
tetrahedra and 4 configurations with 7 tetrahedra (see Fig. 4.31)

124 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Figure 4.31: The augmented graphs of the ten decompositions of a hexahedron into tetrahedra.

Proof. See section 4.5

In addition, a sliver can be “glued” to each quadrilateral face of the hexahedron:

where the sliver is symbolized by a circled cross. The corresponding graph transform can be applied
to each dashed arc, thus generating up to 26 graphs from each initial graph (modulo symmetries).
Thus, a decomposition can have up to 13 tetrahedra (the maximum 13 is reached with one of the
decompositions into 7 tetrahedra with 6 slivers glued on the quadrilateral facets).

Now that all the possible configurations of a hexahedron are known, we can proceed to describe
the algorithm that recognizes them in the intermediate tetrahedral mesh T ′. This is an instance
of the subgraph isomorphism problem, known to be NP-complete [Coo71]. However, since the
template graph to be recognized is small (no more than 7 nodes), systematic exploration with
backtracking remains reasonably efficient. We follow the approach in [MT00], that first transforms
each augmented graph into a “program”, as exemplified in Fig. 4.32. Each node (tetrahedron)
of the graph is numbered (left), then the graph is “linearized” (center). The “program-form”
of the graph is a sequence of LINK and QUAD instructions that encode the solid and dashed arcs
respectively.

At each step of the program, nodes touched by a previous LINK instruction are said to be visited.
Node 0 is initially considered to be visited as well, before the program starts. To facilitate the
design of the matching algorithm described below, the LINK and QUAD instructions are scheduled
in the program in such a way that:

• a QUAD instruction always connects two already visited nodes;

4.3. GENERATING THE HEXAHEDRAL-DOMINANT MESH 125

Figure 4.32: An augmented graph (left) is linearized (center) and transformed into a program
(right).

• a LINK instruction can connect an already visited node to a new one (the new one is then
visited), as in lines 1,2,7,8,10;

• or a LINK instruction can bridge two already visited nodes (lines 4 and 11).

Once each of the 10 augmented graphs of Fig. 4.31 is encoded as a program, all the possible
primitives in the input tetrahedral mesh T ′ can be recognized by the following algorithm:

Algorithm 9 finds each mapping H = [t0, t1, . . . t7] that maps local node indices in the template
graph to global tetrahedra indices in the intermediate mesh T ′. When such a mapping H is
complete (then referred to as a matched primitive), it is appended to the set H∗ of recognized
primitives. A mapping H that is incomplete is referred to as a matching state. The program Prg

is a list of operations, each operation being one of LINKi,j or QUADi,j . The two operations are
detailed in Algorithm 10 below. The function MergeSlivers detects all the slivers glued onto the 6
quadrilateral facets of the recognized hexahedron and merges them into the detected hexahedron.
Such slivers are encountered whenever the pair of triangular facets that form a quad are connected
to the same tetrahedron.

The QUADi,j operation checks whether it is combinatorially possible to find a quadrilateral facet
between tetrahedra ti and tj . The LINKi,j operation needs to explore all the possible assignments
for tetrahedron tj , resulting in a non-terminal recursion and requiring backtracking. In the al-
gorithm, the facet f of a tetrahedron ti is said to be free if tet adjacent(T ′, ti, f) is not in H
(∀j ∈ [0..7], tj 6= tet adjacent(T ′, ti, f)).

Implementation details / Optimizations: Since no inter-thread communication/synchronization
is required, parallelization of the algorithm is very easy and directly gains a factor nearly linear
in the number of cores. Besides this trivial optimization, we further optimized the algorithm,
by early-discarding the matches that do not meet minimum quality requirements (for instance, a
quadrilateral facet with angles that differ too much from 90 degrees). In addition, in the implemen-
tation of LINK, we avoid copying the matching state (H ′ ← H) when there is only a single facet of
ti that can be linked (i.e., when the recursion is terminal). Finally, to avoid unnecessary traversals
of both T ′ and H, we keep track of the tetrahedron facets that are free by using a bitfield.

Constrained optimization

Once the template matching algorithm of the previous section is executed, we obtain the set H∗ of
all possible primitives that can be recombined in the intermediate mesh T ′ by applying Algorithm
9 to the 10 programs that correspond to the 10 possible decompositions of a hexahedron (and
optionally to the program that recognizes prisms and the one that recognizes pyramids).

126 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Algorithm 9: The template-matching algorithm

FindAllMatches(Prg, T ′):

Data: Prg: The program of an augmented graph; T ′: the intermediate tetrahedral mesh
Result: H: the set of all the primitives recognized by Prg in T ′

H← ∅
foreach t ∈ T ′ do

// H is a “matching state”, i.e. a local-node-index to
// global-tet-index mapping, initialized with t0 = t
H ← [t, ∅, ∅, ∅, ∅, ∅, ∅]
H← H∪ FindMatchesRecursive(Prg, H, T ′)

end

FindMatchesRecursive(Prg, H, T ′):

Data: Prg: Part of a program; H: a matching state; T ′: the intermediate tetrahedral
mesh

Result: H: the set of all the instances recognized by Prg in T ′ from state H

if Prg = EMPTYLIST then
// If Prg is empty, then all the instructions of the program
// where consumed (H is a matched primitive)
MergeSlivers(H,T ′) ; return { H }

else
// Consume the first operation in the program
// Op is one of LINKi,j or QUADi,j (see algo 10).
Op ← Head(Prg)
PrgRest ← Tail(Prg)
// The rest of the program is passed to Op,
// to allow recursion / backtracking.
return Op(H, T ′, PrgRest)

end

The goal now is to find the subset H ⊂ H∗ that maximizes the quality criterion Q(H) =∑
H∈HQ(H) and that satisfies the compatibility constraints ∀Hi, Hj ∈ H, C(Hi, Hj) = 0. We use

the following quality criterion that favors flat quadrilateral facets with right angles:

Q(H) =
∑

q∈quads(H)

(
n̂1, n2

2
+

1

4

∑
c

(
ĉ− π

2

)2)

where n̂1, n2 denotes the angle between the two normals n1, n2 of the two triangular facets recombined in

the quadrilateral facet q, and where ĉ denotes the angle at the corner c of the quadrilateral facet q.

The compatibility criterion C(H1, H2) is defined in function of the envisioned application for
the generated hexahedral-dominant mesh. In our case, the Finite Element Modeling application
that we target tolerates a single type of nonconformity in the mesh, that is a quadrilateral facet
connected to two triangular facets. All the other nonconformities that involve the diagonal edges
of the quadrilateral faces are forbidden. In other words, this means that the following two config-
urations are forbidden:

More formally, two primitives H1 and H2 are mutually incompatible (C(H1, H2) = 1) if one of
the following conditions is met:

4.3. GENERATING THE HEXAHEDRAL-DOMINANT MESH 127

Algorithm 10: Algorithms for QUAD and LINK

QUADi,j(H,T ′,PrgRest):

Data: H: a matching state; T ′: the intermediate tetrahedral mesh, PrgRest: The rest of
the program.

Result: H: the set of recognized primitives
if ti and tj have two free facets with a common edge then

return FindMatchesRecursive(PrgRest, H, T ′)
else

return ∅
end

LINKi,j(H,T ′,PrgRest):

Data: H: a matching state; T ′: the intermediate tetrahedral mesh, PrgRest: The rest of
the program.

Result: H: the set of recognized primitives
H← ∅
for f ∈ {0, 1, 2, 3} do

if CanLinki,j,f (H,T ′) then
H ′ ← H // Copy the state, for backtracking
t′j ← adjacent tet(T ′, ti, f)

H← H∪ FindMatchesRecursive(PrgRest, H ′, T ′)
end

end

CanLinki,j,f (H,T ′)

Data: i, j: two local tet indices; f : a facet index, H: a matching state; T ′: the
intermediate tetrahedral mesh

Result: TRUE if i and j can be linked, FALSE otherwise
if tj = ∅ then

return facet f of ti is free
else

return adjacent tet(T ′, ti, f) = tj
end

1. H1 and H2 have one or more tetrahedra in common (H1 ∩H2 6= ∅);

2. an edge of H1 corresponds to a diagonal edge of H2 or vice-versa (left figure);

3. two quadrilateral facets of H1 and H2 have three vertices in common (right figure).

Otherwise, H1 and H2 are mutually compatible (C(H1, H2) = 0).

Remark 4. 7 At first sight, one may think that constraint (3) can be enforced by simply ensuring
that the pair of tetrahedral facets adjacent to a quadrangular facet are connected to the same hex-
ahedron. However, there exists a configuration where two hexahedra share three vertices without
any direct adjacency between their tetrahedra:

7We lost more than two days debugging and trying to figure out what was going on with this configuration,
therefore we think its description may be useful for readers who want to reproduce our results.

128 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

The shown (invalid) configuration cannot be ruled-out by simply examining tetrahedron facet
adjacencies. As a consequence, the algorithm needs to traverse the set of cells incident to each
vertex.

Since there is no efficient algorithm that finds the exact set of primitives that maximizes Q
while satisfying the compatibility constraints (maximum independent set problem), we use instead
the heuristic outlined in Algorithm 11.

Algorithm 11: The constrained optimization algorithm

SelectPrimitives(H∗, T ′):

Data: H∗: the set of all the possible primitives recognized in T ′

Result: H: a set of mutually compatible primitives selected from H∗

sort H∗ by primitive type: hexahedron > prism > pyramid
sort primitives of same type by decreasing Q(H)
H← ∅
foreach H1 ∈ H∗ do

if (∀H2 ∈ H, C(H1, H2) = 0) then
H← H ∪ {H1}

end

end

Implementation details / Optimizations: To avoid the n2 cost of testing mutual compatibility
for all primitive in H∗ against all the already recognized ones in H, we observe that incompati-
bility between two primitives only occur when they share at least a vertex. Thus we restrict the
compatibility test to the set of primitives that share a vertex with H1. To quickly obtain this set,
we chain in T ′ the tetrahedra incident to each vertex and we maintain an array that maps each
tetrahedron of t to the primitive in H it belongs to.

4.4 Results and discussion

We evaluate the quality of our results by the proportion of hexahedra elements, and some mea-
sures of their geometric quality. Our algorithm was tested on a large set on models (available in
supplemental material) and is discussed for a representative subset in this section.

We compare the classic hexahedral mesh quality measures with previous works in §4.4.1, we
show how it behaves when the desired size for the hexahedra is not constant §4.4.2, and we discuss
its strengths and weaknesses in term of robustness.

4.4.1 Hexahedra proportion and quality

We tested our method on various modeled shapes and CAD models with a 2.2Ghz Intel Core i7
CPU and 8GB of RAM laptop. Table 4.1 summarizes the resulting statistics and timings. We

4.4. RESULTS AND DISCUSSION 129

Figure 4.33: Some hexahedral-dominant meshes generated by our method, see statistics in Table
4.1 (first line: cubo, bunny, impeller, corner, cylinder; second line: fertility, bone, fusee, fandisk;
third line: rocker arm, CV745, propeller)

copied the results reported in [BRM+14] in Table 4.1 (lines in gray) for comparison purposes. In
all our experiments we made the number of vertices generated by our method as close as possible
to the other method for comparison purposes.

Fig. 4.33 illustrates the models produced with our method and reported in Table 4.1. The
hexahedra are depicted in white, tetrahedra in red, prisms in green and pyramids in blue. Examples
of extra points addition can be observed on fandisk, fertility, rocker arm and CV745 models. For
these models the sampling of ∂T realized by P is not sufficient as measured by the Hausdorff
distance and reported in the column dist1. The added points imply the creation of tetrahedra,
prisms and pyramids that can be observed in several regions of these models.

We observe in Table 4.1 that the percentage of hexahedra is higher in number and volume with
our method despite the addition of points (e.g. CV745 model). The quality Q of the produced
hexahedra is also better with our method. The significant amount of time of the refinement step
is due to the number of batches required to reach the user defined threshold. Indeed, each batch
of points inserted in P implies to update Del(P)|∂T , the Delaunay triangulation of P restricted to
the border of the domain ∂T .

To experiment how the method scales up both in terms of input complexity and number of
generated cells, we used it to generate an hexahedral-dominant mesh of a complete engine block
(TRX engine from GRABCAD), shown in Fig. 4.43.

4.4.2 Influence of the parameters

All our results in the previous subsection were produced using the default parameters. We now
discuss the influence of each parameter and its impact on the result quality.

Maximal proportion of curl correction

The parameter γ (introduced in § 4.2.4) that tunes how much curl correction is allowed really
impacts complex models (Fig. 4.34). High values of γ (left) make the correction term meaningless,
so the algorithm introduces many T-junctions to balance the curl of the frame field. When γ is low
(right), the correction term makes the field locally integrable everywhere, exactly as in CubeCover

130 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

T
ab

le
4.

1:
S

ta
ti

st
ic

s
an

d
ti

m
in

gs
.

#
v
er

t
is

th
e

n
u

m
b

er
of

ve
rt

ic
es

o
f

th
e

g
en

er
a
te

d
m

o
d

el
.

T
h

e
h

ex
a
h

ed
ra

p
ro

p
o
rt

io
n

is
m

ea
su

re
d

b
y

th
e

p
er

ce
n
ta

g
e

o
f

h
ex

a
h

ed
ra

in
n
u

m
b

er
(H

n
b
r
)

an
d

vo
lu

m
e

(H
v
o
l)

.
T

h
e

h
ex

ah
ed

ra
m

es
h

q
u

a
li

ty
Q

is
m

ea
su

re
d

b
y

th
e

sc
a
le

d
J
a
co

b
ia

n
in

th
e

fo
rm

a
t

o
f

av
er

a
g
e
|s

ta
n

d
a
rd

d
ev

ia
ti

o
n

.
W

e
m

ea
su

re
th

e
H

au
sd

or
ff

d
is

ta
n

ce
b

et
w

ee
n

ou
r

m
es

h
an

d
th

e
re

fe
re

n
ce

in
p

u
t

m
es

h
in

th
e

fo
rm

a
t

o
f
M
→

∂
T
|∂
T
→

M
w

it
h
M

th
e

m
es

h
b

ef
o
re

(d
is

t1
)

a
n

d
a
ft

er
(d

is
t2

)
th

e
re

m
es

h
in

g
st

ep
.

W
e

m
ea

su
re

th
e

ti
m

in
gs

of
th

e
te

tr
a
h

ed
ra

li
za

ti
o
n

o
f

th
e

in
p

u
t

su
rf

a
ce

,
fr

a
m

e
fi

el
d

g
en

er
a
ti

o
n

(F
F

),
cu

rl
co

rr
ec

ti
o
n

(C
C

),
g
lo

b
a
l

p
ar

am
et

er
iz

at
io

n
(P

G
P

),
p

oi
n
t

se
t

ex
tr

ac
ti

on
,

re
fi
n

em
en

t
st

ep
,

te
tr

a
h

ed
ra

to
h

ex
a
h

ed
ra

st
ep

a
n

d
w

h
o
le

p
ip

el
in

e
in

se
co

n
d

s.

m
o
d

el
#

ve
rt

H
n
b
r

H
v
o
l

Q
d

is
t1

d
is

t2
te

t
in

p
u

t
F

F
C

C
P

G
P

p
o
in

ts
et

re
fi

n
e

te
t2

h
ex

to
ta

l

fu
se

e
13

1,
50

8
81

.2
2

94
.6

2
0.

98
|0

.0
4

0.
38

7
|0

.2
5
2

0
.0

7
0
|0

.0
6
0

5
2
.4

1
1
0
4
.5

2
1
9
5
.8

7
5
8
.7

6
2
9
.2

8
1
1
0
.8

2
1
1
6
.4

2
7
2
8
.3

2
fu

se
e

12
6,

92
2

62
.9

1
85

.7
0

0.
95

n
/a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

4
8
8

C
V

74
5

13
3,

33
1

72
.4

5
91

.6
3

0.
97
|0

.0
5

0.
84

5
|0

.5
4
0

0
.1

0
1
|0

.0
9
1

1
0
9
.2

9
2
2
1
.8

6
4
9
4
.2

1
1
7
.5

1
5
9
.4

6
2
6
6
.0

7
1
2
5
.6

7
1
4
9
6
.4

2
C

V
74

5
13

3,
43

6
n

/a
89

.7
4

n
/a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

2
4
7

p
ro

p
el

le
r

13
2,

46
9

71
.2

7
91

.1
0

0.
97
|0

.0
5

0.
35

5
|0

.3
2
7

0
.0

3
5
|0

.0
6
2

4
7
.9

5
1
2
7
.0

8
1
9
1
.7

8
5
1
.2

4
2
8
.9

9
1
1
9
.8

2
1
2
3
.2

8
7
4
8
.5

7
p

ro
p

el
le

r
13

3,
67

8
n

/a
83

.6
5

n
/a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

2
6
8

cu
b

o
10

9,
18

2
72

.8
7

89
.0

1
0.

98
|0

.0
4

0.
78

2
|0

.6
7
1

0
.7

0
5
|0

.2
5
7

7
.4

5
1
3
.2

2
1
9
.5

5
.1

4
7
.7

4
6
9
.5

4
9
8
.0

1
2
4
7
.1

7
cu

b
o

10
2,

94
6

n
/a

78
.5

5
n

/a
n

/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

2
2
5

cy
li

n
d

er
11

,2
05

64
.6

6
90

.8
5

0.
96
|0

.0
6

0.
20

8
|0

.2
1
4

0
.1

3
4
|0

.1
3
7

3
3
.3

2
6
5
.5

6
1
1
6
.8

6
3
9
.0

0
1
7
.3

7
2
1
.5

5
1
2
.0

8
3
2
7
.1

3
cy

li
n

d
er

11
,6

48
58

.1
6

82
.6

8
0.

94
n

/a
n

/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

1
1
2

co
rn

er
6,

53
8

95
.4

6
99

.5
5

0.
99
|0

.0
2

0.
09

5
|0

.1
0
2

0
.0

9
5
|0

.1
0
2

2
.7

3
5
.5

9
6
.0

5
2
.3

7
1
.6

6
0
.8

3
6
.0

4
2
7
.9

8
co

rn
er

6,
00

6
84

.5
4

94
.1

0
0.

96
n

/a
n

/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

8
0

fa
n

d
is

k
85

6
51

.3
6

77
.8

2
0.

95
|0

.0
6

2.
18

4
|3

.2
8
9

0
.4

5
8
|0

.4
9
3

0
.9

6
1
.8

7
2
.5

2
0
.6

9
0
.4

5
1
.5

9
0
.5

3
9
.6

ro
ck

er
ar

m
15

,5
64

33
.0

5
80

.1
5

0.
95
|0

.0
9

1.
30

8
|1

.2
5
8

0
.0

7
2
|0

.0
7
4

9
1
.4

5
2
1
5
.2

5
4
6
.6

8
1
0
3
.0

0
3
9
.9

9
1
4
7
.6

6
1
1
.5

6
1
2
0
9
.3

2
im

p
el

le
r

13
,8

96
53

.3
1

81
.1

1
0.

95
|0

.0
6

1.
40

8
|0

.8
4
8

0
.3

3
3
|0

.2
1
9

4
.5

1
8
.0

2
1
1
.2

8
3
.1

6
2
.6

9
1
1
.9

1
0
.7

5
9
.3

7
b

u
n

n
y

11
6,

14
9

60
.5

7
88

.6
1

0.
95
|0

.0
6

0.
79

1
|0

.7
7
9

0
.1

2
3
|0

.1
2
9

2
3
.7

4
5
6
.1

1
2
7
.8

8
2
9
.6

2
1
9
.6

6
4
2
.6

1
3
6
.4

3
4
6
8
.8

9
b

on
e

4,
22

5
45

.1
7

82
.5

4
0.

92
|0

.1
0

1.
83

8
|1

.1
4
5

0
.2

6
4
|0

.2
5
7

2
.3

8
5
.1

3
1
2
.4

8
3
.1

5
1
.8

2
3
.1

1
4
.1

5
3
5
.0

7
fe

rt
il

it
y

20
,0

68
33

.6
3

78
.4

0
0.

93
|0

.1
1

1.
29

2
|0

.9
0
4

0
.0

6
9
|0

.0
7
1

8
9
.4

2
2
0
5
.5

8
4
5
4
.7

1
1
0
6
.0

6
4
3
.1

5
1
4
5
.7

1
1
6
.5

1
1
1
2
0
.7

4.4. RESULTS AND DISCUSSION 131

Figure 4.34: Influence of the maximum curl-correction parameter γ ∈ {1, 0.8, 0.6, 0.4, 0.2, 0}. A
value of γ that is too low results in the same over-constrained problem as in CubeCover (right
images).

Figure 4.35: Influence of the maximal deviation parameter ε ∈ {100%, 2%, 1%, 0.5%, 0.25%} of the
average edge length of the input mesh. A high tolerance misses some features (left), whereas a too
strict tolerance inserts too many points (right).

before introducing the constraint to have integer variables. As a consequence, when γ is too low,
our algorithm have the same failure cases as CubeCover.

Extra points to fit the original model

Our algorithm adds extra points to the point set P to ensure that the hexahedral-dominant mesh
is close enough to the input mesh §4.3.1. It stops when it does not find any point of the input mesh
that is further than a given threshold to the current reconstructed tetrahedral mesh. The impact
of this threshold is illustrated in Fig. 4.35: if the threshold is high, our algorithm fails to capture
details of the model, but if it is too low, then it adds too many extra points to curved areas and
thus prevents some hexahedra from being reconstructed.

Varying scale

In our method, the scale of the hexahedra is prescribed by the norm of the columns of Bi. We
demonstrate a varying isotropic scaling on a real object Fig. 4.36–up, and an anisotropic scaling on
a cube Fig. 4.36–bottom. Our method handles the scale variation by introducing new singularities
that split a layer of cubes into two layers of cubes. Intuitively, this behavior may be considered as
the 3D counterpart of the T-vertices used in quadrilateral surface re-meshing.

4.4.3 Robustness

Recent advances in pure hexahedral re-meshing [LLX+12] produce very good results, but are
limited by global constraints due to the topology of the input frame field. We review the most
common failure cases of recent full hexahedral re-meshing algorithms and show what we produce
in these situations.

The most famous failure case is the jump ramp (Fig. 4.39) that make global parameterization
fail with a field that has no singularity. It was observed (and partially fixed) in [GSZ11] where
the global parameterization was a simple polycube map. In this example, our method adds non
hexahedral elements to smoothly connect 0 to 5− 10 layers of hexes.

Failure cases can also come from constraints that are not local (as in the lower part of the
jump ramp). Such non-local constraints are typically encountered in the square screw example

132 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Figure 4.36: Varying scale: In the upper im-
age, the desired hexahedra size varies lin-
early with the x coordinate. The bottom
row shows a cube (clipped on the right im-
age) with a varying anisotropic scale. Singu-
larities are evenly distributed to absorb the
variation of resolution.

Figure 4.37: Our algorithm is not able to
produce hexahedra for small parts of the ob-
ject (red), where it generates tetrahedra.

Figure 4.38: When the point set has too
much shear, our recombination algorithm
may find a (locally) better grid as shown in
the close-up.

Figure 4.39: Jump Ramp (a classical fail-
ure case of global parameterization method),
treated by our method without (left) or with
(right) scale correction. With scale correc-
tion, artifacts similar to the ones obtain
with global parameterization methods are
encountered.

Figure 4.40: Our algorithm without scale
correction produces a nice hexahedral-
dominant mesh for the squared screw (left).
If we try to use scale correction, we have
the same over constrained problem as Cube-
Cover and it does not improve the result.

Figure 4.41: Even if the frame field
does not correspond to a full hexahedral
mesh, our algorithm is able to produce a
hexahedral-dominant mesh. The produced
non-hexahedral elements are shown on the
left.

4.4. RESULTS AND DISCUSSION 133

Figure 4.42: The number of layers of hexahedra depends on the prescribed edge length. For a
plate, this number of layers is constant (left). In some limit cases (right), the algorithm is not able
to find the same number of layers everywhere on the model and “dithers” between two integer
values, thus producing many singularities.

(Fig. 4.40). Considering a frame field topology without any singularity, finding a global parame-
terization is equivalent to constructing a polycube map. If we try to align all the surface normals
with their closest axis, it will necessarily squish the model. In this configuration, our algorithm
relaxes the incompatible constraints by introducing non hexahedral elements.

Beside these global issues, the input frame field is not always compatible with CubeCover, that
requires a nice behavior of the frame field around its singularity curves. Local editing [LLX+12]
allows to filter-out noisy topology, but it is not always sufficient. For example, in Fig. 4.41 a
singularity curve is doing half a turn inside the volume, that requires 3 different and incompatible
orientation flags for the same curve. Our algorithm still works properly in these situations.

Our solution has its own drawbacks:

• When either the input mesh or the output mesh is not dense enough to represent the frame
field singularity graph, the algorithm is not able to produce hexahedra (Fig. 4.37). This
drawback also exists in other methods;

• for plates and thick surfaces, our algorithm produces a small number of layers of hexahedra
according to the desired edge length. For some particular values of the prescribed edge length,
the number of layers is undetermined, in the sense that the optimization step produces a
number of layers that varies on the model. Intuitively, the algorithm “dithers” between two
number of layers, and these variations induce many singularities (Fig. 4.42). We mention
that this phenomenon is seldom encountered, and producing such failure cases is difficult:
changing the prescribed edge length by more than 1% solves the problem. However, by
changing the prescribed edge value by up to 10%, one may still observe this behavior over
limited local zones of the model, due to the input mesh resolution, as in Fig. 4.42—Left
where a small number of tetrahedra is still produced (in red);

• whenever the orientation followed by the point set is too much sheared, our recombination
algorithm may produce hexahedra with a better geometry, but that are less coherent with
their neighbors, as in the highlighted zone of Fig. 4.38.

The possibility of creating non-hexahedral elements allows our algorithm to escape from the
failure cases encountered with pure hexahedral meshing methods. In all the examples that we
tested, our method generated a valid hexahedral dominant mesh in a fully automatic manner. The
main drawback is that, in the cases listed above, our algorithm introduces non-hexahedral elements

134 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Figure 4.43: Hexahedral-dominant mesh of the TRX engine (from GRABCAD). The input tetra-
hedral mesh has 2,123,979 vertices and 10,192,895 tetrahedra. The hexahedral-dominant mesh was
generated by our algorithm in 1170 seconds (on a laptop with an Intel core i7 and 16Gb RAM).
The result has 1,337,083 vertices and 1,894,549 cells in which 1,006,899 are hexahedra.

4.5. ENUMERATING THE DECOMPOSITIONS OF A HEXAHEDRON 135

to avoid distortion of hexahedra, even in some cases where the distortion of a fully regular grid of
hexahedra would remain acceptable.

4.5 Enumerating the decompositions of a hexahedron

The main result in [MT00] (theorem 2 below) enumerates all the possible decompositions of a
hexahedron into 5 or 6 tetrahedra. We explain here the main arguments used in the proof, iden-
tify some configurations that were not analyzed in the initial article and provide the additional
arguments (Lemma 9) to rule them out. Our conclusions are the same as in the initial article,
but comes with a complete proof (section 4.5.1). Our additional analysis provides the basis for
studying the configurations with slivers (section 4.5.2). Before studying the configurations, we first
give a lemma that bounds the total number of tetrahedra in a decomposition.

Lemma 4. The decomposition of a hexahedron into tetrahedra without any sliver glued on a quadri-
lateral face has at least 5 tetrahedra and at most 7 tetrahedra.

Proof. The decomposition satisfies the Euler-Poincaré identity, i.e. χ = V − E + F − T = 1,
where V = 8 denotes the number of vertices of the cube, E the number of edges in the de-
composition, F the number of faces and T the number of tetrahedra. There are 12 facets on
the border (two per quadrilateral facet), and 18 edges on the border (12 + 6 diagonals). Let
Fint and Eint denote the number of internal facets and the number of internal edges respec-
tively. We have F = 12 + Fint and E = 18 + Eint. Note also that 4T = 12 + 2Fint, or
Fint = 2T − 6. Injecting these identities into the Euler-Poincaré identity, we get T = Eint + 5.

An internal edge is a diagonal of the cube, as shown on the left figure. In a cube decomposition,
there can be at most two internal edges, configured like on the right figure (other configurations
generate intersecting tetrahedra), therefore we have 0 ≤ Eint ≤ 2, and 5 ≤ T ≤ 7.

Note that we supposed that there was no sliver glued on a face of the hexahedron. If we include
configurations with such slivers, we can find up to 7 + 6 = 13 tetrahedra in a decomposition(more
on this in section 4.5.2).

4.5.1 Decomposition of a hexahedron into 5 or 6 tetrahedra

We now enumerate all the graphs that correspond to the decomposition of a hexahedron into five or
six tetrahedra (and later, decompositions with up to 13 tetrahedra). To analyze the different possi-
ble decompositions, we use a graph representation, where each node corresponds to a tetrahedron,
each solid arc corresponds to a facet shared by two tetrahedra, and each dashed arc corresponds
to a pair of facets on the border that form a quadrilateral facet (see illustrations in §4.3.2).

The following lemmas are useful, since they exhibit some constraints that significantly restricts
the set of graphs to be analyzed.

Lemma 5. The graph of the decomposition into five or six tetrahedra is planar.

Proof. A non-planar graph contains either the complete graph or the utility graph as a subgraph
or a minor [Liu68] (i.e. can be transformed into the complete graph or the utility graph by deleting
edges and nodes).

136 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Recalling that Fint = 2T − 6 (see proof of Lemma 4), the decomposition into 5 tetrahedra has
e = Fint = 4 arcs and the decomposition into 6 tetrahedra has 5 arcs, which is smaller than the
number of arcs in the complete graph and in the utility graph, therefore they do not contain any
of them as a subgraph or a minor.

Lemma 6. The graph of the decomposition into 5 tetrahedra is a tree.

Proof. The 5 tetrahedra have 20 faces, including the 12 facets on the border of the hexahedra.
The remaining 8 faces are internal. Since each solid arc corresponds to a pair of internal facets,
there are 4 solid arcs in the graph. Since the graph is planar, the decomposition of the plane that
it yields satisfies the Euler-Poincaré identity, i.e. χ = v − e+ f = 2, where v denotes the number
of vertices in the graph (v = T = 5), e the number of arcs (e = 4) and f the number of faces
(including the infinite face). In this case, we obtain f = 1, which means there is only the infinite
face, thus the graph is a tree.

Lemma 7. The graph of the decomposition into six tetrahedra has exactly one cycle.

Proof. A derivation similar to the proof of Lemma 6 leads to f = 2, therefore the decomposition
has the infinite face and another one, that corresponds to a cycle in the graph.

Lemma 8. In the decomposition of a hexahedron into tetrahedra, if a tetrahedron has 3 facets on
the border, its neighboring tetrahedron has either 0 or 1 facet on the border.
In other words, the following configurations cannot appear in the graph:

(where each dangling dashed edge corresponds to a tetrahedron facet on the border of the hexahe-
dron).

Proof. Let t1 denote a tetrahedron with three facets on the border of the hexahedron (left figure).
Let t2 be a tetrahedron adjacent to t1. There are only two possible configurations for t2, with
either no facet on the border (center figure) or one facet on the border (right figure).

Lemma 9. In the decomposition of a hexahedron into 5 or 6 tetrahedra, if a tetrahedron has no
facet on the border, then each of its 4 neighbors has 3 facets on the border.
In other words, within the decompositions into 5 or 6 tetrahedra, only the following configuration
has a tetrahedron with no facet on the border:

4.5. ENUMERATING THE DECOMPOSITIONS OF A HEXAHEDRON 137

Proof. By enumerating all the possible ways of choosing the 4 vertices of a tetrahedron from the
8 vertices of a hexahedron, one can see that the only two configurations where a tetrahedron does
not have 3 vertices on the same facet of the hexahedron are as follows (left and center image):

The configuration shown in the center image corresponds to a sliver that splits the hexahedron
into two prisms (right image). Since the decomposition of each prism has at least 3 tetrahedra,
this means that such a configuration can only appear in decompositions with at least 7 tetrahedra
(more on this later). With 5 or 6 tetrahedra, only the configuration on the left can appear. Since
there are exactly 12 triangular facets on the border of the hexahedron, each of the neighboring 4
tetrahedra has its remaining 3 facets on the border.

Equipped with these lemmas, it is now simple to enumerate all the configurations with 5 and
6 tetrahedra. We find it worth mentioning that since all nodes are of degree 4, there is a natural
correspondence between the set of admissible graphs and hydrocarbons. By looking-up all the
isomers of C6H12, we found configurations that were overlooked in the initial article (in the end,
the conclusion is the same, but this fills a hole in the proof). Each tetrahedron corresponds to a
carbon atom, and facets on the border to hydrogen atoms. The configurations with 5 tetrahedra
correspond to isomers of C5H12, and the configurations with 6 hexahedra to isomers of C6H12 with
one cycle:

Theorem 2. There is exactly one possible decomposition of a hexahedron into five tetrahedra and
there are exactly five decompositions of a hexahedron into six tetrahedra.

Proof. Five tetrahedra: There are three saturated isomers of C5H12:

Since they violate the condition in Lemma 8, the second one (2-methylbutane) and third one
(n-pentane) do not correspond to the decomposition of a hexahedron.

Six tetrahedra: There are twelve isomers of C6H12 with one cycle:

138 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Among these twelve isomers, only five of them correspond to the decomposition of a hexahedron:

• ethyl-cyclobutane, propyl-cyclopropane, 1-ethyl-2-methyl-cyclopropane and 1-ethyl-1-methyl-
cyclopropane are ruled-out by Lemma 8;

• 1,1-dimethyl-cyclobutane and 1,1,2-trimethyl-cyclopropane are ruled-out by Lemma 9;

The last one (methylethyl-cyclopropane) requires a particularized analysis:

Tetrahedron t1 has three facets on the border, and corresponds to a “chopped corner” of the
hexahedron (A). For tetrahedron t2, that also has three facets on the border, there are two possi-
bilities (B,C). Configuration (B) is ruled out because there is no tetrahedron t3 adjacent to both
t1 and t2, therefore they must be in configuration (C). The only tetrahedron t3 adjacent to both
t1 and t2 has no facet on the border, which mismatches the “methylethyl-cyclopropane” graph on
the left, where t3 has exactly one facet on the border. Therefore there is no decomposition of an
hexahedron into tetrahedra that matches this graph.

This completes the enumeration of all possible graphs and the discrimination of the ones that
do not correspond to the decomposition of a hexahedron.

4.5.2 Decomposition of a hexahedron into 7 to 13 tetrahedra

We now proceed to analyze the decomposition of an hexahedron into a larger number of tetrahe-
dron, that include slivers, i.e. tetrahedra with nearly coplanar vertices. To introduce a sliver into
the decomposition, there are two possibilities:

• append a sliver to a face of the hexahedron:

4.5. ENUMERATING THE DECOMPOSITIONS OF A HEXAHEDRON 139

Figure 4.44: For a fixed front quadrilateral face (q1), there are two decompositions of a prism into
three tetrahedra, from left to right, in exploded view, graph representation, compact view and
shaded wire-frame.

where the sliver is symbolized by a circled cross. The corresponding graph transform can
be applied to each dashed arc, thus generating 26 graphs from each initial graph (modulo
symmetries). We do not need enumerating all these graphs, it is easier to change the recog-
nition algorithm as follows: once a hexahedron is recognized, we test whether a sliver can be
merged to it for each of its faces;

• split the hexahedron into two prisms and connect them with a sliver (see the figure in the
proof of Lemma 9).

This second way of introducing a sliver into the decomposition requires a finer analysis, since
it more deeply changes the graph. Therefore, we need to enumerate all the new graphs that are
generated by this operation. In other words, we need to identify within the five decompositions of
a hexahedron into six tetrahedra which ones correspond to two prisms, and how the corresponding
tetrahedra relate with the two prisms.

Without loss of generality, we consider the decomposition of a prism into three tetrahedra where
the front quadrilateral facet q1 and its diagonal are constrained, as shown in Fig. 4.44. In this
setting, there are exactly two decompositions, GI and GII , that respect the constraint. Clearly
the two graphs GI and GII are isomorphic (there is only one decomposition of a prism into three
tetrahedra). What distinguishes GI from GII in this setting is which dashed arc corresponds to
the constrained facet q1.

At this point, one can notice that GI is invariant by a 180 degrees rotation in the plane of the
figure: the two vertices that are “far away” (black dots in the shaded wire-frame view) are both
of degree 4. In contrast, GII is not rotation invariant: the two vertices that are “far away” are of
degree 5 (top one) and 3 (bottom one). Therefore, GII comes in two different “flavors”, that we
will call G+

II if the degree 5 vertex is at the top (like on the figure), and G−II if the degree 5 vertex is
at the bottom. Again, this does not make any difference when considering a single isolated prism,
but it will generate different graphs when gluing two prisms along q1.

We can now enumerate the different ways of creating a hexahedron by assembling two prisms
in configuration GI , G

+
II or G−II . As shown in Fig. 4.45, there are four different configurations,

GI − GI , GI − G+
II(= GI − G−II), G+

II − G+
II(= G−II − G−II) and G+

II − G−II(= G−II − G+
II). They

correspond to four of the five decompositions of an hexahedron into six tetrahedra listed in the
previous subsection. Inserting a sliver results in the graphs shown on the right column. The fifth
configuration with six tetrahedra (1,2,3 trimethyl-cyclopropane) cannot be split into two prisms

140 CHAPTER 4. HEXAHEDRAL-DOMINANT MESHING

Figure 4.45: There are four possible ways of assembling prisms of type GI , G
+
II and G−II . For each

configuration, a sliver can be inserted between the two prisms (graphs on the right).

Figure 4.46: Among the six decompositions into 5 or 6 tetrahedra, two of them cannot be split into
2 prisms. The one with six tetrahedra (right) can be deduced from the one with five tetrahedra
(left) by applying a flip-2-3 operation to any pair of tetrahedra that share a facet.

4.5. ENUMERATING THE DECOMPOSITIONS OF A HEXAHEDRON 141

(and thus a sliver cannot be inserted into it).
This completes the enumeration of the decompositions of a hexahedron into 5 to 13 tetrahedra.

To summarize, such a decomposition can be one of:

• One of the two “non-prismatic” decompositions into 5 and 6 tetrahedra (Fig. 4.46);

• one of the four “prismatic” decompositions (Fig. 4.45, left column);

• one of the four “prismatic” configurations with an internal sliver (Fig. 4.45, right column);

• a configurations obtained by appending 1 to 6 slivers to the quadrilateral faces of a configu-
ration listed above.

Remark 5. With the same argument as in Lemmas 6 and 7, one can see that the graph of a
decomposition into 7 tetrahedra has exactly two cycles, which is the case of the four configurations
that we found (prismatic configuration with an internal sliver, right column of Fig. 4.45).

Bibliography

[ACSD+03] Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Des-
brun. Anisotropic polygonal remeshing. ACM Trans. Graph., 22(3):485–493, 2003.

[AMS90] Ashby, Manteuffel, and Saylor. A taxonomy for conjugate gradient methods. J.
Numer. Anal., 27:1542–1568, 1990.

[Aro09] Jacob Aron. The mandelbulb: first ‘true’ 3d image of famous fractal. New Scientist,
204(2736):54 –, 2009.

[Bar88] Michael Barnsley. Fractals everywhere. Academic Press Professional, Inc., San Diego,
CA, USA, 1988.

[BBPP99] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique
problem. In Handbook of Combinatorial Optimization 4. Kluwer Academic, 1999.

[Ben09] Hicham Bensoudane. Etude différentielle des formes fractales. PhD thesis, 2009. Thèse
de doctorat dirigée par Neveu, Marc Informatique Dijon 2009.

[BFB97] Miguel A. Blanco, M. Flórez, and M. Bermejo. Evaluation of the rotation matrices in
the basis of real spherical harmonics. Journal of Molecular Structure: {THEOCHEM},
419(1–3):19 – 27, 1997.

[BG97] C. Bandt and P. Gummelt. Fractal penrose tilings i. construction and matching rules.
aequationes mathematicae, 53(1-2):295–307, 1997.

[BGN08] Hicham Bensoudane, Christian Gentil, and Marc Neveu. The local fractional derivative
of fractal curves. Signal-Image Technologies and Internet-Based System, International
IEEE Conference on, 0:422–429, 2008.

[BHS08] M. Barnsley, J. Hutchinson, and O. Stenflo. V-variable fractals: Fractals with partial
self similarity. Advances in Mathematics, 218(6):2051 – 2088, 2008.

[BJB+11] Harsh Bhatia, Shreeraj Jadhav, Peer-Timo Bremer, Guoning Chen, Joshua A. Levine,
Luis Gustavo Nonato, and Valerio Pascucci. Edge maps: Representing flow with
bounded error. In PacificVis, pages 75–82. IEEE, 2011.

[Bon48] Pierre Ossian Bonnet. Journ. École Polytechnique, 19:1–146, 1848.

[BRM+14] TristanCarrier Baudouin, Jean-François Remacle, Emilie Marchandise, François Hen-
rotte, and Christophe Geuzaine. A frontal approach to hex-dominant mesh generation.
Advanced Modeling and Simulation in Engineering Sciences, 1(1), 2014.

[BV13] Michael Barnsley and Andrew Vince. Fractal homeomorphism for bi-affine iterated
function systems. Int. J. Applied Nonlinear Science, 1(1):3–19, 2013.

[BZK09] David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer quadrangulation.
ACM Trans. Graph., 28(3):77:1–77:10, July 2009.

[CdVL05] Éric Colin de Verdière and Francis Lazarus. Optimal system of loops on an orientable
surface. Discrete & Computational Geometry, 33(3):507–534, March 2005.

[CIGR99] Cheol Ho Choi, Joseph Ivanic, Mark S. Gordon, and Klaus Ruedenberg. Rapid and
stable determination of rotation matrices between spherical harmonics by direct re-
cursion. The Journal of Chemical Physics, 111(19):8825–8831, 1999.

142

BIBLIOGRAPHY 143

[Coh97] N. Cohen. Fractal antenna applications in wireless telecommunications. In Electronics
Industries Forum of New England, 1997. Professional Program Proceedings, pages 43–
49, May 1997.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd ACM Sym-
posium on Theory of Computing, pages 151–158, 1971.

[CRL+89] José Ramón Alvarez Collado, Jaime Fernández Rico, Rafael López, Miguel Paniagua,
and Guillermo Ramı́rez. Rotation of real spherical harmonics. Computer Physics
Communications, 52(3):323 – 331, 1989.

[DBG+06] Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C. Hart.
Spectral surface quadrangulation. ACM Trans. Graph., 25(3):1057–1066, 2006.

[DL92] Ingrid Daubechies and Jeffrey C. Lagarias. Sets of matrices all infinite products of
which converge. Linear Algebra and its Applications, 161:227 – 263, 1992.

[Ebe98] David Eberly. Triangulation by ear clipping. Geometric Tools, 1998.

[EM90] Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity. ACM TRANS.
GRAPH, 9(1), 1990.

[EM10] David Eppstein and Elena Mumford. Steinitz theorems for orthogonal polyhedra.
In Proceedings of the Twenty-sixth Annual Symposium on Computational Geometry,
SoCG ’10, pages 429–438, New York, NY, USA, 2010. ACM.

[Fal90] H.J. Falconer. Fractal geometry : mathematical foundations ands applications. Wiley,
1990. 2nd edition.

[Fer77] N.M. Ferrers. An Elementary Treatise on Spherical Harmonics and Subjects Connected
with Them. Macmillan and Company, 1877.

[FSDH07] Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. Design of
tangent vector fields. ACM Trans. Graph, 26:56, 2007.

[Gau00] Carl Friedrich Gauß. Werke, volume 8. Gesellschaft Wissenschaft, Göttingen, 1900.

[Gen92] C. Gentil. Les fractales en synthése d’images: le modèle IFS. PhD thesis, Université
LYON I, March 1992. Jury: D. Vandorpe, P. Chenin, J. Mazoyer, J. P. Reveilles,
J. Levy Vehel, M. Terrenoire, E. Tosan.

[GHS90] Paul-Louis George, Frédéric Hecht, and E. Saltel. Fully automatic mesh generator for
3d domains of any shape. IMPACT Comput. Sci. Eng., 2(3):187–218, 1990.

[GSZ11] J. Gregson, A. Sheffer, and E. Zhang. All-hex mesh generation via volumetric polycube
deformation. Computer Graphics Forum (Special Issue of Symposium on Geometry
Processing 2011), 30(5), 2011.

[GTB00] E. Guerin, E. Tosan, and A Baskurt. Fractal coding of shapes based on a projected
ifs model. In Image Processing, 2000. Proceedings. 2000 International Conference on,
volume 2, pages 203–206 vol.2, Sept 2000.

[GWB96] Christiane Görller-Walrand and Koen Binnemans. Rationalization of crystal-field
parametrization. status: published, 1996.

[HF06] Kai Hormann and Michael S. Floater. Mean value coordinates for arbitrary planar
polygons. ACM Trans. Graph., 25(4):1424–1441, October 2006.

[HJS+14] Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu Desbrun.
L1 based construction of polycube maps from complex shapes. ACM Trans. Graph.,
33(3):25:1–25:11, June 2014.

[HTWB11] Jin Huang, Yiying Tong, Hongyu Wei, and Hujun Bao. Boundary aligned smooth 3d
cross-frame field. ACM Trans. Graph., 30(6):143:1–143:8, December 2011.

144 BIBLIOGRAPHY

[Hut81] J. Hutchinson. Fractals and self-similarity. Indiana University Journal of Mathematics,
30:713 – 747, 1981.

[HWFQ09] Ying He, Hongyu Wang, Chi-Wing Fu, and Hong Qin. A divide-and-conquer approach
for automatic polycube map construction. Computers & Graphics, 33(3):369 – 380,
2009. IEEE International Conference on Shape Modelling and Applications 2009.

[HXH10] Shuchu Han, Jiazhi Xia, and Ying He. Hexahedral shell mesh construction via vol-
umetric polycube map. In Proceedings of the 14th ACM Symposium on Solid and
Physical Modeling, SPM ’10, pages 127–136, New York, NY, USA, 2010. ACM.

[IR96] Joseph Ivanic and Klaus Ruedenberg. Rotation matrices for real spherical harmonics.
direct determination by recursion. The Journal of Physical Chemistry, 100(15):6342–
6347, 1996.

[JHW+14] Tengfei Jiang, Jin Huang, Yuanzhen Wang, Yiying Tong, and Hujun Bao. Frame
field singularity correctionfor automatic hexahedralization. IEEE Transactions on
Visualization and Computer Graphics, 20(8):1189–1199, 2014.

[JSW05] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for closed triangular
meshes. ACM Trans. Graph., 24(3):561–566, July 2005.

[KCPS13] Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. Globally optimal
direction fields. ACM Trans. Graph., 32(4), 2013.

[KLF12] Nicolas Kowalski, Franck Ledoux, and Pascal Frey. A PDE based approach to multi-
domain partitioning and quadrilateral meshing. 2012.

[KLF13] Nicolas Kowalski, Franck Ledoux, and Pascal Frey. A pde based approach to multido-
main partitioning and quadrilateral meshing. In Proceedings of the 21st International
Meshing Roundtable, pages 137–154. Springer Berlin Heidelberg, 2013.

[KNP07] Felix Kälberer, Matthias Nieser, and Konrad Polthier. Quadcover - surface parame-
terization using branched coverings. Comput. Graph. Forum, 26(3):375–384, 2007.

[Liu68] C.L. Liu. Introduction to Combinatorial Mathematics. Mc-Graw Hill, 1968.

[LJFW08] Juncong Lin, Xiaogang Jin, Zhengwen Fan, and CharlieC.L. Wang. Automatic
polycube-maps. In Falai Chen and Bert Jüttler, editors, Advances in Geometric Mod-
eling and Processing, volume 4975 of Lecture Notes in Computer Science, pages 3–16.
Springer Berlin Heidelberg, 2008.

[LL10] Bruno Lévy and Yang Liu. Lp centroidal voronoi tesselation and its applications.
ACM Transactions on Graphics (SIGGRAPH conference proceedings), 2010. patent
pending - FR 10/02920 (filed 07/09/10).

[LLP05a] Bruno Lévy, Wan Chiu Li, and Jean-Claude Paul. Mesh Editing with an Embedded
Network of Curves. In IEEE International Conference on Shape Modeling and Appli-
cations - SMI 2005, Shape Modeling and Applications, 2005 International Conference,
pages 62–71, Cambridge, USA, June 2005. IEEE. http://ieeexplore.ieee.org.

[LLP05b] Wan Chiu Li, Bruno Lévy, and Jean-Claude Paul. Mesh editing with an embedded
network of curves. In IEEE International Conference on Shape Modeling and Appli-
cations, pages 62–71, 2005.

[LLX+12] Yufei Li, Yang Liu, Weiwei Xu, Wenping Wang, and Baining Guo. All-hex meshing
using singularity-restricted field. ACM Trans. Graph., 31(6):177:1–177:11, November
2012.

[LVS+13] Marco Livesu, Nicholas Vining, Alla Sheffer, James Gregson, and Riccardo Scateni.
Polycut: Monotone graph-cuts for polycube base-complex construction. Transactions
on Graphics (Proc. SIGGRAPH ASIA 2013), 32(6), 2013.

[Lé] Bruno Lévy. OpenNL, Open Numerical Library.
http://alice.loria.fr/index.php/software/4-library/23-opennl.html.

BIBLIOGRAPHY 145

[Lé15] Bruno Lévy. Geogram, a programming library of geometric algorithms, 2015.
http://alice.loria.fr/software/geogram/doc/html/index.html.

[Mas97] P. R. Massopust. Fractal functions and their applications. Chaos, Solitons & Fractals,
8(2):171 – 190, 1997.

[Mis13] Anton Mishkinis. Extension des méthodes de géométrie algorithmique aux structures
fractales. PhD thesis, 2013. Thèse de doctorat dirigée par Gentil, Christian et Lan-
quetin, Sandrine Informatique Dijon 2013.

[Moa09] M. Moakher. Visualization and Processing of Tensor Fields : Advances and Perspec-
tives. D. Laidlaw and J. Weickert, eds., Springer, 2009.

[MP08] Meyer and Pion. FPG: A code generator. In Real Numbers and Computers, pages
47–60, 2008.

[MPKZ10] Ashish Myles, Nico Pietroni, Denis Kovacs, and Denis Zorin. Feature-aligned t-meshes.
In ACM SIGGRAPH 2010, pages 117:1–117:11, 2010.

[MPZ14] Ashish Myles, Nico Pietroni, and Denis Zorin. Robust field-aligned global parametriza-
tion. ACM Trans. Graph., 33(4):135:1–135:14, July 2014.

[Mro95] Marian Mrozek. Conley index theory. In Handbook of Dynamical Systems II, North-
Holland, pages 393–460. Elsevier, 1995.

[MT00] Sia Meshkat and Dafna Talmor. Generating a mixed mesh of hexahedra, pentahe-
dra and tetrahedra from an underlying tetrahedral mesh. International Journal for
Numerical Methods in Engineering, 49(1-2):17–30, 2000.

[MTTT98] Ray J. Meyers, Timothy J. Tautges, Philip M. Tuchinsky, and Dr. Philip M. Tuchin-
sky. The ”hex-tet” hex-dominant meshing algorithm as implemented in cubit. In in
CUBIT; Proceedings, 7 th International Meshing Roundtable 98, pages 151–158, 1998.

[MVC05] Dimas Mart́ınez, Luiz Velho, and Paulo C. Carvalho. Computing geodesics on trian-
gular meshes. Comput. Graph., 29(5):667–675, October 2005.

[MW88] R. D. Mauldin and S. C. Williams. Hausdorff dimension in graph directed construc-
tions. Transactions of the American Mathematical Society, 309(2):811 – 829, 1988.

[NRP11] Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. CubeCover - Parameteriza-
tion of 3D Volumes. Computer Graphics Forum, 30(5):1397–1406, 2011.

[Pen10] Deborah Pence. The simplicity of fractal-like flow networks for effective heat and mass
transport. Experimental Thermal and Fluid Science, 34(4):474 – 486, 2010. {ECI}
International Conference on Heat Transfer and Fluid Flow in Microscale.

[PGSL14] Sergey Podkorytov, Christian Gentil, Dmitry Sokolov, and Sandrine Lanquetin. Join-
ing primal/dual subdivision surfaces. In Michael Floater, Tom Lyche, Marie-Laurence
Mazure, Knut Mørken, and LarryL. Schumaker, editors, Mathematical Methods for
Curves and Surfaces, volume 8177 of Lecture Notes in Computer Science, pages 403–
424. Springer Berlin Heidelberg, 2014.

[PH94] P. Prusinkiewicz and M. Hammel. Language-restricted iterated function systems, koch
constructions, and l-systems. SIGGRAPH’94 Course Notes, 1994.

[PL90] P. Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of Plants.
Springer-Verlag New York, Inc., New York, NY, USA, 1990.

[Pod13] Sergey Podkorytov. Espaces tangents pour les formes auto-similaires. PhD thesis,
2013. Thèse de doctorat dirigée par Gentil, Christian et Sokolov, Dmitry Informatique
Dijon 2013.

[PR86] Heinz-Otto Peitgen and Peter Richter. The beauty of fractals : images of complex
dynamical systems. Springer-Verlag, Heidelberg, 1986.

146 BIBLIOGRAPHY

[Pra98] Hartmut Prautzsch. Smoothness of subdivision surfaces at extraordinary points. Ad-
vances in Computational Mathematics, 9:377–389, 1998. 10.1023/A:1018945708536.

[PRP+96] C. Puente, J. Romeu, R. Pous, X. Garcia, and F. Benitez. Fractal multiband antenna
based on the sierpinski gasket. Electronics Letters, 32(1):1–2, Jan 1996.

[PS06] Konrad Polthier and Markus Schmies. Straightest geodesics on polyhedral surfaces.
In ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06, pages 30–38, New York, NY,
USA, 2006. ACM.

[PZ07] Jonathan Palacios and Eugene Zhang. Rotational symmetry field design on surfaces.
ACM Trans. Graph., 26(3), July 2007.

[Rei93] Ulrich Reif. Neue Aspekte in der Theorie der Freiformflachen beliebiger Topologie.
PhD thesis, Mathematisches Institut A der Universitat Stuttgart, 1993.

[Rei95] Ulrich Reif. A unified approach to subdivision algorithms near extraordinary vertices.
Computer Aided Geometric Design, 12(2):153 – 174, 1995.

[RLL+06] Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. Periodic global
parameterization. ACM Trans. Graph., 25(4):1460–1485, October 2006.

[RS14a] Nicolas Ray and Dmitry Sokolov. Robust polylines tracing for n-symmetry direction
field on triangulated surfaces. ACM Trans. Graph., 33(3):30:1–30:11, June 2014.

[RS14b] Iasef Md Rian and Mario Sassone. Tree-inspired dendriforms and fractal-like branch-
ing structures in architecture: A brief historical overview. Frontiers of Architectural
Research, 3(3):298 – 323, 2014.

[RT12] C. Rossl and H. Theisel. Streamline embedding for 3d vector field exploration. IEEE
Transactions on Visualization and Computer Graphics, 18(3):407 –420, march 2012.

[RVAL09] Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. Geometry-aware direc-
tion field processing. ACM Trans. Graph., 29(1):1:1–1:11, December 2009.

[RVLL06] Nicolas Ray, Bruno Vallet, Wan-Chiu Li, and Bruno Lévy. N-symmetry direction
fields on surfaces of arbitrary genus. Technical report, INRIA - ALICE, 2006.

[RVLL08] Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. N-symmetry direction field
design. ACM Trans. Graph., 27(2):10:1–10:13, May 2008.

[SGGM15] Dmitry Sokolov, Gilles Gouaty, Christian Gentil, and Anton Mishkinis. Boundary con-
trolled iterated function systems. In Jean-Daniel Boissonnat, Albert Cohen, Olivier
Gibaru, Christian Gout, Tom Lyche, Marie-Laurence Mazure, and Larry L. Schu-
maker, editors, Curves and Surfaces, volume 9213 of Lecture Notes in Computer Sci-
ence, pages 414–432. Springer International Publishing, 2015.

[She97] Shewchuk. Adaptive precision floating-point arithmetic. Discrete & Computational
Geometry, 18(3), 1997.

[Si15] Hang Si. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans.
Math. Softw., 41(2):11:1–11:36, February 2015.

[SJ08] Jason F. Shepherd and Chris R. Johnson. Hexahedral mesh generation constraints.
Eng. with Comput., 24(3):195–213, June 2008.

[SLCZ09] Benjamin Spencer, Robert S. Laramee, Guoning Chen, and Eugene Zhang. Evenly
spaced streamlines for surfaces: An image-based approach. Comput. Graph. Forum,
28(6):1618–1631, 2009.

[SSK+05] Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and Hugues
Hoppe. Fast exact and approximate geodesics on meshes. ACM Trans. Graph.,
24(3):553–560, July 2005.

BIBLIOGRAPHY 147

[SYC06] S.C. Soo, K.M. Yu, and W.K. Chiu. Modeling and fabrication of artistic products
based on {IFS} fractal representation. Computer-Aided Design, 38(7):755 – 769, 2006.

[SZ12] Andrzej Szymczak and Eugene Zhang. Robust morse decompositions of piecewise
constant vector fields. IEEE Transactions on Visualization and Computer Graphics,
18:938–951, 2012.

[SZSS98] Thomas W. Sederberg, Jianmin Zheng, David Sewell, and Malcolm Sabin. Non-
uniform recursive subdivision surfaces. In SIGGRAPH ’98: Proceedings of the 25th
annual conference on Computer graphics and interactive techniques, pages 387–394,
New York, NY, USA, 1998. ACM.

[TACSD06] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. Designing quadrangulations
with discrete harmonic forms. In Proceedings of the Fourth Eurographics Symposium
on Geometry Processing, SGP ’06, pages 201–210, Aire-la-Ville, Switzerland, Switzer-
land, 2006. Eurographics Association.

[TGM+09] Olivier Terraz, Guillaume Guimberteau, Stéphane Mérillou, Dimitri Plemenos, and
Djamchid Ghazanfarpour. 3gmap l-systems: an application to the modelling of wood.
The Visual Computer, 25(2):165–180, 2009.

[THCM04] Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. Polycube-maps.
ACM Trans. Graph., 23(3):853–860, August 2004.

[Tos06] E. Tosan. Surfaces fractales définies par leurs bords. Grenoble, 2006. Journées
Courbes, surfaces et algorithmes.

[TT93] J. Thollot and E. Tosan. Construction of fractales using formal languages and matrices
of attractors. In Harold P. Santos, editor, Conference on Computational Graphics and
Visualization Techniques, Compugraphics, pages 74 – 78, Alvor, Portugal, 1993.

[WWT+06] Ke Wang, Weiwei, Yiying Tong, Mathieu Desbrun, and Peter Schröder. Edge sub-
division schemes and the construction of smooth vector fields. ACM Trans. Graph.,
25(3):1041–1048, July 2006.

[WYZ+11] Shenghua Wan, Zhao Yin, Kang Zhang, Hongchao Zhang, and Xin Li. Smi 2011: Full
paper: A topology-preserving optimization algorithm for polycube mapping. Comput.
Graph., 35(3):639–649, June 2011.

[YLL+09] Dongming Yan, Bruno Lévy, Yang Liu, Feng Sun, and Wenping Wang. Isotropic
remeshing with fast and exact computation of restricted voronoi diagram. In ACM/EG
Symposium on Geometry Processing / Computer Graphics Forum, 2009.

[YS03] Soji Yamakawa and Kenji Shimada. Fully-automated hex-dominant mesh generation
with directionality control via packing rectangular solid cells. International Journal
for Numerical Methods in Engineering, 57(15):2099–2129, 2003.

[ZMT06] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Vector field design on surfaces.
ACM Trans. Graph., 25(4):1294–1326, October 2006.

[ZSTR07] Howard Zhou, Jie Sun, Greg Turk, and James M. Rehg. Terrain synthesis from
digital elevation models. IEEE Transactions on Visualization and Computer Graphics,
13(4):834–848, July/August 2007.

[ZT96] Chems Eddine Zair and Eric Tosan. Fractal modeling using free form techniques.
Computer Graphics Forum, 15(3):269–278, 1996.

