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Abstract

One might wonder what can be gained from the image-laser fusion and in which measure
such a hybrid system can generate automatically complete and photorealist 3D models of
difficult to access and unstructured underground environments.

In such environments, special attention must be given to the main issue standing be-
hind the automation of the 3D modeling pipeline which is represented by the capacity to
match reliably image and laser data in GPS-denied and feature-less areas. In addition,
time and in-situ access constraints require fast and automatic procedures for in-situ data
acquisition, processing and interpretation in order to allow for in-situ verification of the 3D
scene model completeness. Finally, the currently generated 3D model represents the only
available information providing situational awareness based on which autonomous behav-
ior must be built in order to enable the system to act intelligently on-the-fly and explore
the environment to ensure the 3D scene model completeness.

This dissertation evaluates the potential of a hybrid image-laser system for generating
in-situ complete and photorealist 3D models of challenging environments, while minimizing
human operator intervention. The presented research focuses on two main aspects: (i)
the automation of the 3D modeling pipeline, targeting the automatic data matching in
feature-less and GPS-denied areas for in-situ world modeling and (ii) the exploitation of
the generated 3D models along with visual servoing procedures to provide mobile systems
with autonomous site digitization and exploration capabilities.

We design a complementary and cooperative image-laser fusion which lead to a 4D
mosaicing sensor prototype. A 4D mosaic represents a 4-channel data structure encoding
color (R, G, B) and depth components for each pixel coming from several overlapped
images and 3D scans aligned in a global coordinate system. The complementary aspect
is related to the data acquisition process. In order to deal with time and in-situ access,
the proposed acquisition protocol consists in acquiring low-resolution 3D point clouds and
high-resolution color images to generate in-situ photorealist 3D models. The use of both
sensors rigidly attached leads to a cooperative fusion, producing a dual sensing device
capable to generate in-situ omnidirectional and photorealist 3D models encoded as 4D
mosaic views, which are not achievable when using each sensor separately.

Each sensor is set to acquire the necessary data to cover a fully spherical field of
view from a single 3D pose of the system which are further exploited by laser and image
alignment algorithms for generating in-situ 3D and 2D Giga-pixel mosaic views. Although
both sensors are rigidly attached, they are related through a global 3D rotation and a small
inter-sensor parallax. The proposed image-laser acquisition strategy allows to perform
occlusion-free image-laser alignment and texture mapping processes via a mosaic-based
framework designed in a coarse-to-fine approach, providing robustness to small inter-sensor
parallax.

This leads to a two-steps strategy which addresses the automation of the 3D modeling
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pipeline by solving for its main data alignment issues through the image-laser fusion.
We first address a simple problem, i.e. same viewpoint and small-parallax data alignment,
resulting in automatic 2D and 3D mosaicing algorithms, to provide in a second step image-
laser solutions, i.e. the 4D mosaic views, to solve for wide-baseline 3D modeling alignment
using a joint 2D-3D criterion to disambiguate feature matching in feature-less areas.

The proposed automated 3D modeling pipeline gave rise to several solutions for au-
tomatic data matching algorithms, from which other stand-alone sub-systems emerged.
We propose hardware and software solutions for generating in-situ 2D, 3D and 4D mosaic
views in feature-less and GPS-denied areas. They can be employed either as stand-alone
processes or included within a 3D modeling process. In our research work we integrate
the 4D mosaicing sensor within a vision-based system designed to supply site digitiza-
tion and exploration to generate in-situ complete and photorealist 3D models in complex
environments.

Since the autonomous site digitization and exploration problem is intrinsically related
to the unmanned system’s autonomy via the world modeling capability, we first investigate
in which measure the 4D mosaicing sensor can solve for the system’s autonomy problem
and propose a vision-based autonomy model to be embedded onboard mobile platforms
designed to supply complex missions in challenging environments, site surveys being one
of them.

The proposed visual autonomy model was further instantiated to the autonomous site
digitization and exploration case, giving rise to the ARTVISYS system which comes to-
gether with a 4D mosaic-driven acquisition scenario and automatic data matching softwares
for supplying in-situ the entire 3D modeling pipeline. The 4D mosaicing sensor represents
the nucleus of the 3D world modeling process which powers visual servoing procedures
in-charged with the 3D scene model completeness.

Since the processing blocks composing the visual feedback loop exploit the global 3D
scene model, we evaluate the 4D mosaic’s potential to address the pose estimation problem.
To this end, we propose image-laser solutions for disambiguating the data matching process
which is inherent to outliers in feature-less areas. Short-term research perspectives are
focused on the remaining processing blocks composing the visual feedback loop, such as
view planning and autonomous navigation.

Keywords: image-laser fusion, complex environments, automatic in-situ 3D modeling,
automatic data alignment, 3D mosaicing, Gigapixel mosaicing, 4D mosaicing, 3D model
matching, 4D mosaic-driven hybrid SLAM, active vision, vision-based unmanned systems,
visual-autonomy, autonomous site 3D digitization and exploration.



11

Contents

Résumé 14
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Problématique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Solution image-laser proposée pour la numérisation in-situ . . . . . . . . . . 16

3.1 Système image-laser pour la modélisation 3D in-situ . . . . . . . . . 17
3.1.1 Mosaique 4D . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Scénario d’acquisition des panoramiques 4D . . . . . . . . . 19

3.2 Recalage automatique multi-vues de scans pour le mosaiquage 3D . . 20
3.3 Recalage automatique d’images pour la création de mosaïques op-

tique Gigapixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Recalage image-laser pour la génération de mosaïques 4D . . . . . . 23
3.5 Vers l’exploration des sites complexes basée sur l’acquisition des pa-

noramiques 4D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1 Introduction and Motivation 29
1.1 The in-situ 3D Modeling Problem . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2 Image-Laser Proposed Solution: 4D-Mosaic-driven 3D Modeling . . . . . . . 32

2 Why and How to perform In-situ 3D Modeling? 35
2.1 Why In-situ 3D Modeling? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Digital Scene Representation Techniques . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Image-based Rendering . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 3D Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.2.1 Passive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2.2 Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Taxonomy and Image-Laser Joint Solutions . . . . . . . . . . . . . . 42
2.3 The 3D Modeling Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 Data Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.3 3D Model Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Simultaneous Localization and Mapping . . . . . . . . . . . . . . . . . . . . 48
2.4.1 The SLAM Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1.1 Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.1.2 Range-based SLAM . . . . . . . . . . . . . . . . . . . . . . 55
2.4.1.3 Fusion-based SLAM Solutions . . . . . . . . . . . . . . . . 56

2.5 Proposed Image-Laser Solutions for in-situ 3D Modeling . . . . . . . . . . . 57
2.5.1 Digital scene representation . . . . . . . . . . . . . . . . . . . . . . . 58



12 CONTENTS

2.5.2 Automation of the 3D modeling pipeline . . . . . . . . . . . . . . . . 58
2.5.3 4D-Mosaic-driven Dual SLAM Solution for Complex Environments . 59

3 ARTVISYS: ARTificial VIsion-based SYStem 63
3.1 Key Issues for In-situ 3D Modeling in Challenging Environments . . . . . . 63
3.2 Automatic 3D Modeling through 4D-Mosaic Views . . . . . . . . . . . . . . 66
3.3 4D Mosaic-driven In-situ 3D Modeling . . . . . . . . . . . . . . . . . . . . . 68
3.4 On-board Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 In-situ Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 System’s Capabilities vs. State-of-the-Art . . . . . . . . . . . . . . . . . . . 71
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Multi-view Scans Alignment for in-situ 3D Mosaicing 77
4.1 The Multi-view 3D Scans Alignment Problem . . . . . . . . . . . . . . . . . 77
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Pair-wise Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.1.1 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.1.2 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Multi-view Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.3 Taxonomy and Open Issues . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 3D Mosaicing Acquisition Scenario . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Free-Initial Guess Pair-wise Alignment for Precise Rigid Estimates . . . . . 89

4.5.1 From 3D Point Clouds to 2D Panoramics . . . . . . . . . . . . . . . 89
4.5.2 Constructing Pose’s Space Candidates under Calibration Constraints 90
4.5.3 2D-Panoramic-based Rotation Estimation . . . . . . . . . . . . . . . 93

4.5.3.1 Intensity Mode . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.4 Translation Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.5 Pyramidal Matching Strategy and Incremental Pose Refinement . . . 95

4.6 Pair-wise Rigid Scans Alignment Experiments . . . . . . . . . . . . . . . . . 96
4.7 Multi-view Scan Matching via Topological Inference . . . . . . . . . . . . . 100

4.7.1 Alien Scans’ Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7.2 Find Optimal Absolute Poses . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Experiments and Quality Assessment . . . . . . . . . . . . . . . . . . . . . . 105
4.9 Embedded Design for onboard 3D Mosaicing . . . . . . . . . . . . . . . . . . 112
4.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 AGM: Automatic Gigapixel Mosaicing from Nodal Optical Images 121
5.1 Once Upon a Time ... Image Mosaicing . . . . . . . . . . . . . . . . . . . . 121
5.2 The Image Mosaicing Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.1 Pair-wise Image Alignment . . . . . . . . . . . . . . . . . . . . . . . 126
5.2.1.1 Image Motion Estimation Strategies . . . . . . . . . . . . . 127

5.2.2 Multi-view Global Alignment . . . . . . . . . . . . . . . . . . . . . . 132
5.2.3 Mosaic Compositing . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Gigapixel Mosaicing Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4 Existing Mosaicing Methods’ Performances . . . . . . . . . . . . . . . . . . 136
5.5 Proposed Giga-Mosaicing Algorithm . . . . . . . . . . . . . . . . . . . . . . 139
5.6 Camera Motion Parametrization . . . . . . . . . . . . . . . . . . . . . . . . 142



13

5.7 Global-to-Local Pair-wise Motion Estimation . . . . . . . . . . . . . . . . . 144
5.7.1 Rigid rotation computation . . . . . . . . . . . . . . . . . . . . . . . 145
5.7.2 Non-rigid Motion Estimation . . . . . . . . . . . . . . . . . . . . . . 146
5.7.3 Pyramidal Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.7.4 Experimental Results & Performance Evaluation . . . . . . . . . . . 147

5.7.4.1 Unstructured and Underground Environments . . . . . . . 147
5.7.4.2 Tests in Outdoor Structured Environments . . . . . . . . . 154
5.7.4.3 Quality Assessment . . . . . . . . . . . . . . . . . . . . . . 155

5.8 Multi-view Fine Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.8.1 Experimental Results using the Existent BA Solutions . . . . . . . . 162
5.8.2 3D-Cross Bundle Adjustment: Analytical Solution . . . . . . . . . . 166

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.9.1 Addressing key-issues for the in-situ Giga-mosaicing problem . . . . 169
5.9.2 Revisiting Algorithm’s Components . . . . . . . . . . . . . . . . . . . 170
5.9.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6 Generating 4D Dual Mosaics from Image and Laser Data 173
6.1 Digital Photorealist 3D Models from Sensor Fusion . . . . . . . . . . . . . . 173
6.2 RACL System for in-situ 3D Modeling via 4D Mosaicing . . . . . . . . . . . 176
6.3 Panoramic-based Image-Laser Alignment . . . . . . . . . . . . . . . . . . . . 177

6.3.1 Panoramic Sensing Devices . . . . . . . . . . . . . . . . . . . . . . . 177
6.3.2 Data Input and Problem Statement . . . . . . . . . . . . . . . . . . 178

6.4 Automatic Pyramidal Global-to-local Image-Laser Alignment . . . . . . . . 180
6.4.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.4.2 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.4.3 Texture mapping and rendering . . . . . . . . . . . . . . . . . . . . . 182

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7 Toward 4D Panoramic-driven Site Exploration 189
7.1 Proposed Visual Autonomy Model . . . . . . . . . . . . . . . . . . . . . . . 189
7.2 Visual-actuated 4D Mosaicing Sensor for Site Digitization and Exploration . 193
7.3 The 3D Model Matching Problem . . . . . . . . . . . . . . . . . . . . . . . . 195
7.4 4D Mosaic-driven Acquisition Scenario in the Tautavel Prehistoric Cave . . 197
7.5 4D-Panoramic-based Solution for Automatic 3D Model Matching . . . . . . 198

7.5.1 Viewpoint Invariant Hybrid Descriptors - VIHD . . . . . . . . . . . . 199
7.5.2 Unambiguous Matching . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.5.3 6-DOF Pose Estimation using Next Best View . . . . . . . . . . . . 203

7.6 Conclusions and Future Research Directions . . . . . . . . . . . . . . . . . . 204
7.6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.6.2 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . 205

8 Conclusion and Research Perspectives 207
8.1 General Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.1.1 Contribution to the automation of the 3D modeling pipeline . . . . . 208
8.1.2 Contribution to data matching in GPS-denied and features-less areas 208
8.1.3 4D Mosaic-driven autonomous site digitization and exploration . . . 210
8.1.4 Software Quality Validation . . . . . . . . . . . . . . . . . . . . . . . 210

8.2 Short-term Research Perspectives . . . . . . . . . . . . . . . . . . . . . . . . 210



14 CONTENTS

8.3 The use of ARTVISYS as a general-purpose system . . . . . . . . . . . . . . 212

A Complements to Chapter 2 217
A.1 Laser-range sensing techniques . . . . . . . . . . . . . . . . . . . . . . . . . 217
A.2 The state-based formulation of SLAM . . . . . . . . . . . . . . . . . . . . . 217
A.3 Existing 3D Modeling Systems . . . . . . . . . . . . . . . . . . . . . . . . . 219

A.3.1 Image-based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
A.3.2 3D Laser-based Systems . . . . . . . . . . . . . . . . . . . . . . . . . 221
A.3.3 Dual Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

B Complements to Chapter 4 227
B.1 Depth Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
B.2 Complement to Section 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
B.3 Complement to Section 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

C Complements to Chapter 5 233
C.1 Complement to Section 5.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 233
C.2 Perspective Geometry and Camera Calibration . . . . . . . . . . . . . . . . 233
C.3 Basic rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
C.4 Mosaicing "make-up" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
C.5 Complement to Section 5.7.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 238
C.6 Proposed Closed-from solution for Optimal Unit Quaternion Computation . 238
C.7 Generalization to the Multi-view Case . . . . . . . . . . . . . . . . . . . . . 242
C.8 Optimal Rigid Transformation using Sum of the Squared Residual Errors . 245

D Complements to Chapter 7 249
D.1 Space’s and Earth’s Needs for Autonomous Exploration . . . . . . . . . . . 249
D.2 The Visual-based Autonomous Site Exploration Problem . . . . . . . . . . . 252
D.3 Complement to Section 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Thesis Publications 257

Bibliograpy 286



15

Résumé

1 Introduction

Le sujet de cette thèse s’inscrit dans l’action de recherche ARCHI dirigée par Nicolas
Paparoditis (IGN-MATIS) et vise à mettre en place un système de vision capable d’effectuer
la numérisation 3D automatique in-situ d’édifices remarquables et difficile d’accès pour
un opérateur humain, en particulier les sites architecturaux préhistoriques. Néanmoins,
la méthode développée peut être utilisée également pour la numérisation d’une grande
variété des sites complexes, pour des applications telles que : l’héritage culturel, visites
virtuelles, l’analyse des scènes pour la maintenance des sites difficiles à accéder par un
opérateur humain (comme par example les mines [Huber and Vandapel, 2003a], [Baker
et al., 2004b], [Cole and Newman, 2006], [Survey, 2006], les tunnels [Chaiyasarn et al.,
2009]), ou pour l’exploration des environnements sous-marins [Garcias and Santos-Victor,
2000] ou extra-terrestres [Mathies et al., 2007], [Johnson et al., 2007]. La validation
des méthodes mises en oeuvre durant la thèse est effectuée sur des sites présentant une
architecture complexe, en occurrence les grottes préhistoriques.

2 Problématique

La numérisation exhaustive et photoréaliste d’environnements complexes représente
aujourd’hui un grand défi en raison d’une part du besoin d’automatisation des processus
d’acquisition et de traitement qui sont encore quasiment manuels et d’autre part en raison
de la difficulté de vérifier in situ l’adéquation du modèle avec le cahier des charges. Très sou-
vent on constate a posteriori, une fois les données traitées, que le modèle 3D est incomplet
et il n’est souvent pas possible de retourner sur site pour compléter les numérisations.

Dans le cadre de cette thèse, nous nous intéressons à l’automatisation du processus
de numérisation 3D d’environnements complexes et en particulier non-structurés qui sont
plus difficiles aujourd’hui à traiter avec les outils proposés dans la littérature. Les travaux
de recherche réalisés visent d’une part la mise en oeuvre de méthodologies d’acquisition de
données et d’autre part le développement d’algorithmes pour le traitement de données in-
situ afin d’aider les opérateurs dans leur travail de manière à assurer la bonne numérisation
du site.

Comme contexte applicatif, nous nous intéressons aux grottes ornées préhistoriques qui
sont des environnements particulièrement difficiles. Dans de tels environnements l’absence
des structures habituellement utilisées pour la mise en correspondance et la mise en géo-
métrie des images rend le problème très difficile, voir impossible. L’utilisation de cibles
pour faciliter la partie de mise en géométrie des données n’est pas souhaitable d’une part
parce qu’elle ralentit fortement les cadences de numérisation (alors que le temps de nu-
mérisation autorisé est restreint) et d’autre part car il est difficile voir interdit de poser
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Fig. 1 – Campagne de numérisation réalisée dans le grotte Mayenne Science (France)
c©IGN-ESGT.

des cibles sur des parois. Par ailleurs, le recours à des solutions basées sur des systèmes de
localisation/navigation externe (centrale inertielle etc.) pour aider au géo-référencement
est difficilement envisageable et complexe à mettre en oeuvre, par rapport à des chantiers
en extérieur où le GPS est disponible.

Le besoin de développer un système de vision pour l’automatisation du processus de
numérisation 3D est mis également en évidence par la difficulté d’un opérateur humain
d’accéder des tels environnements complexes (pour poser des cibles et guider l’acquisition)
et par la nécessité de visualiser in situ le modèle 3D acquis de la scène afin d’assurer la
complétude du modèle 3D du site. Pour donner un exemple de la difficulté engendrée par
la mise en oeuvre d’un scénario d’acquisition, la Figure 1 illustre un exemple d’acquisition
des données réalisé par l’IGN et l’ESGT dans la grotte de Mayenne Science.

3 Solution image-laser proposée pour la numérisation in-situ

Dans le cadre de cette thèse, nous nous proposons d’évaluer le potentiel d’un système
de vision photogrammetrique et lasergrammetrique pour la modélisation 3D in-situ des
environnements complexes et difficile à accéder pour un opérateur humain. Un tel système
doit :

– acquérir et traiter les données sans l’intervention d’un opérateur humain,
– générer des modèles 3D de manière séquentielle
– agir intelligemment afin de complétiser le modèle 3D du site.
Le mémoire est structuré en huit chapitres qui introduisent graduellement la solution

portant sur l’utilisation conjointe image-laser pour la modélisation 3D in-situ. Le Cha-
pitre 2 présente plusieurs applications faisant appel aux techniques de modélisation 3D
in-situ et survole les différentes méthodes permettant une numérisation 3D photoréaliste
et précise. Ces techniques seront évoquées dans le Chapitre 3 pour justifier le choix des
capteurs que nous avons fait pour les travaux de cette thèse. Nous continuons l’état de
l’art par une présentation des techniques existantes pour la modélisation 3D en mettant en
évidence leur limitation concernant la génération des modèles 3D dans les environnements
non-structurés. Le Chapitre 2 conclut avec les aspects clefs qui doivent être résolus pour
répondre aux problèmes de la modélisation 3D in-situ ayant lieu dans les environnements
complexes.

Les cinq sous-sections suivantes sont dédiées à la description du système de numérisa-
tion proposé dans cette thèse dans lequel nous projetons la solution image-laser pour la
modélisation 3D in-situ des environnements complexes.
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Fig. 2 – Le processus de mosaiquage 4D proposé pour la modélisation 3D in-situ. (a) ap-
pareil photo NIKON D70 r monté sur une plateforme pan-tilt motorisée, (b) laser scanner
3D Trimble r - campagne de numérisation de la grotte de Tautavel (France) réalisée par
l’Institut Géographique National, Octobre 2007, (c) panoramique couleur Gigapixel ob-
tenue via l’algorithme de recalage d’images proposé dans le Chapitre 5 de cette thèse,
(d) mosaique 3D obtenue à partir de plusieurs scans avec un recouvrement partiel via
l’algorithme de recalage des scans multi-vues proposé dans le Chapitre 4, (e) recalage de
mosaique 3D sur la mosaique 2D couleur pour generer une mosaique 4D, i.e. à 4 canaux :
rouge, vert, bleu et profondeur. Cette procedure est décrite dans le Chapitre 6 de la thèse.

3.1 Système image-laser pour la modélisation 3D in-situ

On s’intéresse au prototypage d’un système de vision capable de générer des modèles
3D photorealistes et complets in-situ. Le Chapitre 3 introduit l’architecture matérielle
et logicielle, le scénario d’acquisition et les fonctionnalités composant le processus de la
modélisation 3D. Nous introduisons un système à double tête, composé par un laser scanner
et une caméra haute résolution montée sur une plateforme pan-tilt motorisée. Pour assurer
le photoréalisme du modèle, notre approche utilise davantage la complémentarité image-
laser, en utilisant un système à double tête, composé par un laser scanner (illustré dans la
Figure 2 (a)) et une camera couleur haute résolution montée sur une plateforme pan-tilt
tournante motorisée (illustrée dans la Figure 2 (b)).

L’utilisation conjointe des deux capteurs est réalisée de manière complémentaire :
– acquisition et traitement rapide des scans basse résolution,
– photoréalisme via l’acquisition des images couleurs haute résolution.
L’exploitation des deux capteurs est conditionnée par l’étape de recalage des données

dans un référentiel commun. Cette étape est encore plus difficile à cause des occultations
présentent à la fois dans les données images et les données laser. Le système d’acquisition
présenté dans cette thèse évite ce problème en utilisant les deux capteurs attachés de ma-
nière rigide mais non-calibré. Le montage proposé réduit les problèmes liés aux procédures
de recalage et de construction de modèles 3D dans les zones où les données images et/ou
laser sont manquantes. La construction matérielle du système d’acquisition minimise la
parallaxe inter-capteurs facilitant ainsi le recalage des données image-laser. Le système
proposé nous permet la mise en oeuvre des algorithmes de recalage des données multi-vues
guidés via un critère géométrique et radiométrique robuste aux faux appariements qui sont
inhérents quand un critère radiométrique seul est utilisé.
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3.1.1 Mosaique 4D

Les travaux de cette thèse introduisent les mosaïques 4D comme des modèles 3D om-
nidirectionnelles encodant l’information radiométrique et géométrique couvrant un champ
de vue sphérique complet dans une seule représentation compacte. Pour chaque position
spatiale, le système acquiert des données images et laser avec un champ de vue limité.
Elles sont ensuite exploitées par des algorithmes de recalage image-image, laser-laser et
image-laser afin de produire une représentation unique du sous la forme de mosaïque 4D,
unifiant ainsi le photoréalisme et l’information géométrique dans une seule image à quatre
canaux : R,G,B et profondeur.

Une mosaique 4D est obtenue en trois étapes :
1. Mosaiquage 3D. Le système commence par acquérir plusieurs scans 3D avec un

recouvrement partiel pour ensuite générer une mosaique 3D in-situ via un algorithme
automatique de recalage de scans multi-vues. La Figure 2 (d) illustre un exemple de résultat
obtenu sur des données acquises dans la grotte de Tautavel (France). Cette méthode est
détaillée dans le Chapitre 4 et résumée en Section 3.2.

2. Mosaiquage optique haute résoluton. Le système acquiert une séquence d’images
haute résolution qui sont ensuite injectées dans un moteur de recalage d’images multi-vues
pour générer une mosaïque optique RGB Gigapixel. La Figure 2 (c) illustre un exemple
de résultat obtenu sur des données acquises dans la grotte de Tautavel. Cette méthode est
décrite dans le Chapitre 5 et résumée en Section 3.3.

3. Recalage image-laser. La troisième étape consiste à recaler la mosaique 3D issue
du recalage multi-vues des scans (étape 1) par rapport à la mosaique optique RGB Giga-
pixel (étape 2). Cette étape correspond à la Figure 2 (e). Pour ceci, il est nécessaire de
calculer la transformation rigide qui doit être appliquée à la mosaique 3D pour minimiser
un critère de distance (métrique ou radiométrique) entre les zones de recouvrement des
deux mosaiques. Cette procédure unifie les deux mosaïques (3D et RGB optique) dans une
mosaïque à 4-canaux (R, G, B et profondeur) qu’on appel par la suite une mosaique 4D.
Cette procédure est décrite dans le Chapitre 6 et résumée en Section 3.4.

Comme les techniques existantes de recalage des données imposent des contraintes sur le
contenu de la scène, nous avons mis en oeuvre des procédures de recalage automatiques des
données images, laser et image-laser indépendantes de l’environnement. Plus précisément,
aucune connaissance a priori sur le contenu de la scène (comme par exemple l’existence
des primitives radiométrique ou géométriques). De plus, aucune estimation initiale n’est
disponible (comme par exemple un recalage grossier manuel ou à partir des données fournies
par les capteurs de navigation classiques).

La visualisation des données image et laser est réalisée via la création des mosaïques
4D. Ce sont les images à quatre composantes : rouge, vert, et bleu et la profondeur. Cette
représentation compacte de plusieurs millions de points 3D et plusieurs centaines d’images
haute résolution fournit une topologie de données qui facilite l’exploitation des données.
En l’occurrence, il est possible de visualiser les coordonnées 3D des points localisés dans les
images 2D couleur, et donc de trouver les coordonnées 3D d’un objet facilement identifiable
dans l’image couleur. Cette visualisation dans l’espace image devient plus pratique quand
on souhaite vérifier la complétude de la numérisation du site via l’absence de signal. La
création du modèle 3D est réalisée en deux étapes : d’abord une construction du modèle
3D est effectuée via une procédure de triangulation 2D des nuages des points suivie par
l’étape de plaquage de texture pour activer le photoréalisme du modèle 3D.
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3.1.2 Scénario d’acquisition des panoramiques 4D

En présence des occultations, plusieurs mosaïques 4D doivent être acquises à partir
des points de vues différents afin de complétiser le modèle 3D du site. Plus précisément,
le système génère des mosaiques 4D in-situ pour chaque position 3D du système (nommée
station), comme illustré dans la Figure 3. Pour ces raisons, après l’acquisition de chaque
mosaïque, le système procède à son recalage par rapport à un référentiel global afin de
créer le modèle global de la scène.

Fig. 3 – Scénario d’acquisition basé sur l’acquisition des panoramiques 4D proposé pour
la modélisation 3D in-situ.

Dans un deuxième temps, le système doit déterminer la meilleure prochaine position du
système d’où la prochaine mosaique 4D doit être acquise afin de minimiser les occultations
(résoudre le problème de Next Best View (NBV) [Klein and Sequeira, 2000]). De plus, le
système doit être capable de naviguer de manière autonome entre sa position courante et
celle calculée par la procédure de NBV. Il s’agit de mettre en oeuvre des procédures de
planification de vue et de trajectoire ainsi que des moyens pour la navigation autonome
(détection d’obstacles, moyens rapides de raisonnement et de prise de décision).

Le scénario basé sur l’acquisition des mosaïques 4D permet de résoudre plusieurs pro-
blèmes liés à la modélisation 3D photorealiste des environnements non-structurés.

Appariement des données robuste. Dans les environnements complexes, l’absence
des primitives radiométriques et géométriques (i.e. zones homogènes ou très texturées)
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rend l’appariement très sensible aux mesures aberrantes (outliers), voire impossible. Nous
proposons une méthode de recalage des données à travers des mosaiques 4D, en utilisant
l’information 2D et 3D, afin de contraintre et desambiguer l’appariement des données dans
les zones non-structuré.

Rendu-image basé sur la 3D. Contrairement aux méthodes de rendu basées pu-
rement sur l’utilisation de l’image (image-based rendering) pour interpoler et générer des
vues synthétiques (ces méthodes n’utilisent pas la géométrie, et de nombreuses prises des
vues sont nécessaires pour produire des nouvelles vues cohérentes avec la scène réelle), les
mosaïques 4D permettent d’interpoler entre les vues en utilisant l’information 3D pour
créer des nouvelles vues cohérentes géométriquement. Ceci facilite la navigation à travers
le web pour les applications de type tourisme virtuel, mais aussi pour l’archivage et l’an-
notation de données.

Le système de numérisation proposé possède une double capacité : il permet de réaliser
la numérisation 3D des sites inaccessible aux operateurs humains, fournissant simultané-
ment au système la perception de l’environnement dans lequel il évolue pour réaliser des
tâches plus complexes (analyses des scènes, maintenance des sites à risques, etc). Comme
cette propriété exploite uniquement les capteurs de vision (active ou passive), nous l’avons
dénommé ARTVISYS, l’acronyme de ARTificial VISion-based SYStem, en anglais système
de vision artificielle. Nous avons appliqué la méthodologie de numérisation proposée au cas
de la numérisation et l’exploration des grottes préhistoriques qui sont des environnements
particulierement difficile d’accès pour un opérateur humain.

3.2 Recalage automatique multi-vues de scans pour le mosaiquage 3D

Dans un premier pas, le laser acquiert plusieurs scans avec un recouvrement partiel qui
sont recalés pour former une mosaïque 3D avec un champ de vue sphérique complet. Nous
avons mis en oeuvre un scenario d’acquisition pour le recalage multi-vues des scans 3D avec
un recouvrement partiel, afin de générer une mosaïque 3D complète in-situ. Le scenario
d’acquisition facilite considérablement la tâche de recalage en fournissant un recouvrement
constant et minimal de 33%.

Cette méthode repose essentiellement sur la corrélation dense des informations fournies
par le capteur, ici le laser, i.e. l’intensité et profondeur associé à chaque point 3D. La mé-
thode est capable de fonctionner en deux modes, suivant la type d’information fournie par
le capteur. Dans le cas où l’intensité n’est pas exploitable, la méthode utilise la profondeur
pour le recalage des scans.

L’originalité de cette méthode réside dans plusieurs aspects :
– l’utilisation du scénario d’acquisition pour création des mosaïques 3D, assurant un

recouvrement partiel et constant aux pôles pour faciliter le recalage ;
– recalage des nuages 3D dans l’espace des panoramiques 2D de profondeur ou d’in-

tensité pour exploiter l’information topologique des scans ;
– robustesse à l’absence des primitives radiométriques et géométriques ;
– la procédure de recalage n’utilise aucune connaissance à priori sur l’environnement,

et aucune estimation initiale n’est exigée pour le recalage ;
– la méthode proposée remplace les deux étapes de procédures de recalage habituel-

lement utilisées (i.e. dans un premier temps un recalage grossier est réalisé soit ma-
nuellement, soit en utilisant des cibles, soit en exploitant des informations fournies
par les capteurs de navigation, dans un deuxième temps le recalage fin est réalisé via
une technique de type Iteratively Closest Points - ICP [Besl and McKay PAMI92]).
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L’approche proposée est une méthode automatique, pyramidale, n’imposant pas des
contraintes sur le contenu de la scène. Le choix de la méthode a été influencé par l’ab-
sence de primitives dans les environnements non-structurés. Comme aucune connais-
sance sur le contenu de la scène n’est utilisée, cette technique est indépendante de
l’environnement qu’on souhaite numériser (structuré ou non-structuré).

Afin de valider la méthode mise en oeuvre, nous avons réalisé une campagne d’acquisi-
tion de données dans la grotte de Tautavel pendant le mois d’octobre 2007. Les résultats
de la méthode sont illustrés dans les figures 4 et 5.

Fig. 4 – Resultats de la méthode de recalage d’un couple des scans - campagne de nu-
mérisation réalisée dans la grotte de Tautavel, magenta : scan de réference, vert - scan à
recaler. a) Scans récalés - vue de dessus, b) plafon de la grotte, c) scans recalés - vue de
dessous, d) vue sur le sol de la grotte, e) l’union des scans recalés en utilisant l’intensité
délivré par le laser.

La méthode proposée est décrite dans leChapitre 4 et fait l’objet de deux publications
[Craciun et al., 2008], [Craciun et al., 2010].

3.3 Recalage automatique d’images pour la création de mosaïques op-
tique Gigapixel

Le deuxième processus composant le mosaiquage 4D est représenté par la mise en cor-
respondance des images couleurs haute résolution acquises par une plateforme pan-tilt
motorisée pour générer in-situ une panoramique Gigapixel. Dans cette partie nous cher-
chons à résoudre une des limitations des algorithmes de mosaïquage existantes portant
sur l’appariement des images très haute résolution avec recouvrement faible (pour éviter
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Fig. 5 – Résultats de la procédure de recalage multi-vues des scans acquis dans la grotte
de Tautavel. (a) S1 - vert, S2 - magenta, (b) S12 - vert, S3 - magenta, (c) S123 - vert, S4

- magenta, (d) Recalage multivues des scans - vue de dessus, S1 - jeun, S2 - bleu, S3 -
vert, S4 - rouge, (e) vue latérale - gauche, (f) vue de dessus, (g) vue latérale - droite, (h)
zoom-in (e), (i) vue de dessous, (j) zoom-in - vue du plafon.

les données redondantes) dans les environnements non-structurés. Le Chapitre 5 décrit
une méthode automatique de recalage multi-vues basée sur la mise en correspondance de
patches (vignettes), et par conséquent robuste à l’absence des points d’intérêt. L’algo-
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rithme proposé permet le recalage multi-vues d’images haute résolution pour la génération
automatique d’une mosaïque Gigapixel pour une station donnée [Craciun et al., 2009] et
[Cannelle et al., 2009].

Le coeur de l’algorithme est une méthode d’estimation de mouvement inter-image qui
prend en entrée un couple d’images avec un recouvrement partiel et donne en sortie une
liste des points homologues reliant les deux images. L’algorithme commence par estimer
un mouvement global de rotation dans une approche pyramidale basée sur la corrélation
de patches extraits que sur les bords de l’image, afin de réduire le temps de calcul. Après
avoir compensé le mouvement de rotation, la procédure continue par une mise en corres-
pondance locale des patches réalisée au niveau de résolution le plus fin, afin d’estimer un
mouvement local de translation pour chaque patche. Cette procédure donne en sortie une
liste des patches homologues pour chaque couple d’images adjacentes qui seront exploités
ensuite par d’ajustement par faisceaux pour l’estimation des poses absolues. Comme les
points homologues ne correspondent pas aux points d’intérêts habituels, nous les avons
dénommé anonymous features. Ces derniers sont injectés dans un algorithme d’ajustement
par faisceaux pour permettre une estimation fine des poses globales. L’étape d’ajustement
par faisceaux et le rendu de la mosaïque sont réalisés par une approche existante, Autopa-
noPro [Kolor, 2005].

L’algorithme de mosaiquage proposé exploite la complémentarité des algorithmes de
mosaiquage existants [Szeliski, 2006], notamment les algorithmes de corrélation dense
[Teller and Coorg, 2000] (précis mais gourmands en temps de calcul pour les images haute
résolution) et les algorithmes éparses pouvant bénéficier de la rapidité de recalage multi-
vues fin via la procédure de compensation par faisceaux (bundle adjustment [Triggs et al.,
1999]). Nous mettons en valeur la haute résolution du mosaiquage en utilisant un visualiseur
avec 8 niveaux de détail adapté aux applications de visites virtuelles.

Le résultat final illustré dans la Figure 6 est fortement influencé par l’étape d’ajustement
par faiceaux réalisé par AutopanoPro [Kolor, 2005] qui impose une étape de ré-estimation
des paramètres intrinsèques de la camera ; par conséquent, l’algorithme procède à la re-
jection des points homologues qui ne correspondent pas au modèle de mouvement estimé
par l’étape d’ajustement par faisceaux. Une deuxième raison à l’origine de la rejection des
faux appariements est essentiellement due au critère de mesure de l’erreur résiduelle. Cette
dernière étant calculée dans l’espace image, et non pas dans l’espace objet, le critère me-
suré est biaisé par l’étape de ré-estimation des paramètres intrinsèques. Par conséquent, la
mosaïque finale comporte des artefacts, en particulier des effets de dé-doublement (ghost)
et d’éspace entre le début et la fin de la panoramique (gap) due aux faux appariements.
Pour cette raison, nous proposons une solution théorique pour l’étape de recalage multi-
vues fin, qui estime les quaternions optimaux pour chaque vue en minimisant un critère
mesuré dans l’espace 3D.

3.4 Recalage image-laser pour la génération de mosaïques 4D

La dernière étape consiste à recaler la mosaïque couleur haute résolution sur la mosaïque
3D provenant du laser. Pour cette raison, il est nécessaire de calculer la transformation
3D rigide reliant le laser et la caméra. Les deux capteurs sont rigidement attachés et
légèrement décalés. Le Chapitre 6 décrit la mise en oeuvre d’un algorithme de recalage
basé sur la corrélation dense multi-résolution pour le calcul de pose camera-laser. Grâce
au montage matériel, la parallaxe inter-capteurs devient négligeable aux niveaux basse
résolution. Une mise en correspondance de vignettes est réalisée au niveau le plus fin pour
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Fig. 6 – Résultat d’une mosaique 2D optique haute résolution obtenue à partir d’une
séquence d’images acquises dans la grotte de Tautavel en utilisant la plateforme Rodeonr.
Les mosaiques on été générées en injectant les points homologues (AF) dans le processus
de compensation par faiceaux intégré dans Autopano Pro v1.4.2. (a) entrée de la grotte,
(b) - centre la grotte, (c)-(f) - niveux de détail correspondants au mosaique de la figure
(b).
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extraire et compenser la parallaxe inter-capteurs dans l’espace image. Due aux différences
radiométriques des deux capteurs, seule une pose grossière peut être calculée. Néanmoins,
la pose grossière est suffisante pour permettre une visualisation rapide in-situ de données
collectées. Pour un recalage fin, un calibrage radiométrique apparaît nécessaire. Des travaux
de recherche sur ce sujet ont été démarrés au laboratoire MATIS.

La procédure de recalage des mosaïques 3D et 2D Gigapixel exploite l’information
d’intensité de la mosaïque 3D. La Figure 7 illustre les données en entrée de la procédure
de recalage des données image-laser. Afin d’obtenir le modèle 3D numérique d’une mosaïque
4D, on associe à chaque point 3D la couleur R, G, B correspondante de la mosaïque couleur.
Le résultat final de cette procédure est une mosaïque à 4-canaux (R, G, B et profondeur)
qu’on appelle une mosaïque 4D. La Figure 8 illustre le modèle 3D d’une mosaïque 4D.

Fig. 7 – Les deux entrées de la procedure de recalage image-laser (résultats obtenus sur les
données acquises dans la grotte de Tautavel). Nous illustrons les projections spherique et
planaire, dans l’espace image pour chaque donnée en entrée. (a) le mosaique 3D issue de la
procédure de recalage décrite dans le Chapitre 4. (b) le mosaique optique haute résolution
obtenue en utilisant l’algorithme décrit dans le Chapitre 5.

Le nuage de points 3D transformé passe par une procédure automatique de triangulation
2D suivie par une procédure de plaquage de la texture provenant de la mosaïque Gigapixel
sur-échantillonnée. La Figure 9 illustre le modèle 3D d’une mosaïque 4D obtenue après
l’étape de plaquage de texture.

3.5 Vers l’exploration des sites complexes basée sur l’acquisition des
panoramiques 4D

En présence d’occultations, plusieurs mosaïques 4D doivent être acquises depuis des
points de vue bien définis afin de numériser de manière complète le site, dans un intervalle
de temps assez limité, tout en évitant les données manquantes et/ou redondantes (trop de
recouvrement entre les différents données a comme conséquence des temps de calcul assez
longs).
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Fig. 8 – Modèle 3D de la mosaique 4D. (a) Le nuage des points affiché en utilisant l’intensité
délivrée par le laser scanner. (b) Le nuage des points 3D affiché avec la composante couleur
du mosaiquage optique haute résolution sur-échantillonné.

Fig. 9 – Modèle 3D de la mosaique 4D obtenu après le plaquage de texture sur des meshes
2D. (a) Vue de l’extérieur de la grotte de Tautavel. (b) Vue de l’intérieur du modèle 3D de
la grotte.

Dans cette thèse nous proposons un scénario de numérisation basé sur l’acquisition d’un
réseau des panoramiques 4D qui seront recalées entre elles dans une approche séquentielle.
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Le processus de numérisation alterne entre plusieurs phases :
– (i) génération de mosaïque 4D,
– (ii) recalage de mosaïques 4D,
– (iii) mise à jour du modèle global de la scène,
– (iv) calcul de la prochaine meilleure position du système pour la numérisation des

parties cachées.
Le Chapitre 7 propose une solution théorique pour le recalage des mosaïques 4D

en utilisant un critère 2D-3D pour desambiguer la mise en correspondance des points
d’intérêts. La technique proposée exploite l’avantage offert par le champ de vue sphérique
qui permet d’avoir un suivi des primitives stable à long-terme.

Après avoir doté le système de numérisation avec un processus de modélisation fonc-
tionnel, ce dernier doit être exploité pour guider le système à numériser les parties cachées
du site. Cette procédure fait appel à une méthode de numérisation intelligente qui implique
le calcul de la prochaine meilleure position du système à partir de laquelle la nouvelle mo-
saïque 4D dois être acquise (problème appelé Next Best View dans la littérature [Klein
and Sequeira, 2000]). De plus, dans le cas où l’opérateur ne peut pas intervenir sur le
site, le système doit être capable de naviguer de manière autonome entre sa position cou-
rante et celle calculée par le module de planification de vue. Nous introduisons un modèle
d’autonomie visuelle qui exploite le modèle 3D courant pour extraire des sémantiques (ca-
ractéristiques geométriques et radiométriques de l’environnement formant le vocabulaire
associé à l’environnement exploré). Cette sémantique peut être exploitée pour asservir le
système de numérisation en position, notamment pour fournir les informations nécessaires
à la navigation, i.e. pour la détection d’obstacles et la planification de la trajectoire. Ces
dernières exploitent une seule et unique entrée : le modèle 3D global de la scène construit
en itérant le processus d’acquisition, génération et recalage de mosaïques 4D.

La numérisation complète d’un environnement est intrinsèquement liée à l’autonomie
du système qui doit explorer le site en se servant du modèle 3D généré. Pour cette raison,
nous avons étudié dans quelle mesure le capteur de mosaiquage 4D peut servir de processus
de base pour fournir un modèle d’autonomie fondée sur la vision. En l’occurrence, il s’agit
de données image-laser unifiées sous la forme d’une mosaique 4D. Nous proposons une
architecture logicielle qui peut être facilement intégrée dans un système de vision artificielle
upgradable avec différents capacités pour la réalisation des missions complexes in-situ.
Dans notre étude, nous avons instancié le modèle d’autonomie basée sur la vision au cas
de la numérisation et l’exploration des environnements complexes. Les modules composant
la boucle de contrôle portent principalement sur la planification de vue et la navigation
autonome afin assurer in-situ la numérisation complète du site.

4 Conclusions

Le Chapitre 8 conclut les travaux de recherche réalisés et résume les contributions de-
diées à l’automatisation de la modélisation 3D. La deuxième partie du Chapitre 8 présente
les perspectives de recherche à court- et long-terme portant sur l’asservissement visuel pour
assurer la numérisation complète du site.

Les méthodologies de numérisation et recalage des données image, laser et image-laser
ont été conçues en tenant compte des environnements complexes. Une caractéristique com-
mune est la robustesse à l’absence des point d’intérêts et aux environnements dans les-
quels les capteurs de navigation (GPS, IMU) ne sont pas exploitables. Pour répondre aux
contraintes d’embarquabilité et de fonctionnalité in-situ, nous donnons comme example la
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parallélisation sur des plateformes de calcul multi-processeurs pour l’algorithme présenté
dans le Chapitre 4. Des expérimentations ont été effectuées sur des données acquises dans
trois sites préhistoriques ainsi que dans les environnements urbains.

Solutions locales - au niveau des procédures composant le système de modélisation
3D proposé :

– Mosaiquage 3D : scénario d’acquisition des scans 3D et recalage pour la génération
de mosaïques 3D robuste au types de capteurs (cameras de distance ou de laser
scanners) ;

– Mosaique optique : recalage automatique d’images haute résolution pour la création
des mosaïques 2D Gigapixel ;

– Modèle 3D-RGB : technique de recalage des mosaïques image-laser pour la création
des mosaïques 3D photorealistes (4D) ;

Solutions théoriques :
– détection de poses globales optimales pour le recalage multi-vues des scans ;
– solution théorique pour l’estimation des quaternions optimaux absolus pour le reca-

lage multi-vues d’images haute résolution en utilisant les patches (anonymous fea-
tures) ;

– solution théorique pour le recalage multi-vues de mosaïques 4D ;
Contributions globales :
– prototypage d’un capteur dual pour la génération in-situ des mosaiques 4D ;
– architecture logicielle d’un système de vision pour la numérisation autonome des sites

complexes et difficile d’accès par un opérateur humain ;
Les avantages offerts par le scénario d’acquisition des plusieurs mosaïques 4D pour

assurer la complétude du site sont multiples :
– recalage des mosaïques 4D en utilisant les informations 2D et 3D pour desambiguer

les faux appariements (robustesse aux zones non-structurés, très homogènes ou trop
texturées).

– les vues panoramiques offrent l’avantage des pouvoir extraire et apparier des primi-
tives stables à long term ;

– l’interpolation des nouvelles vues en utilisant la géométrie rend possible la navigation
entre les différentes mosaïques 4D à travers le web (pour des applications comme les
visites virtuelles, annotation d’objets, etc.) ;

– les mesures de distances et l’information de texture peuvent être utilisées conjointe-
ment pour l’annotation des données (application web-based pour l’indexation d’ob-
jets) ou pour réaliser des mesures 3D sur les données acquises pour l’analyse des
scènes

Le système de vision proposé dans cette thèse réalise la numérisation du site, donnant
des moyens de perception sur l’environnement aux plateformes inhabités, leur fournissant
ainsi des capacités pour réaliser des tâches complexes dans les zones difficile d’accès pour
un opérateur humain.
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Chapter 1

Introduction and Motivation

Embedded 3D scene representation has been opening the possibility to provide vision-
based systems with 3D environment perception, allowing them to be aware when evolving
in previously unknown environments. Such systems can dynamically generate 3D scene
models and act intelligently on the fly in order to pursue the execution of the required tasks.
Therefore, a new generation of vision-based systems raises, with intelligent articulation
from perception to action. On the other hand, nowadays a wide number of missions taking
place in difficult to access environments rely on heavy operator’s intervention for piloting
and mission validation. Moreover, worse case scenarios imply limited time and in-situ
access which can lead to mission failure even when human operator is included within the
loop.

Due to the aforementioned reasons, several research works aim at overcoming a tech-
nological step by employing vision-based systems dotted with 3D scene representation and
fast decision making capabilities. Such systems are aimed at providing assistance to the
operator during the mission, or at supplying the entire mission without requiring human
operator’s intervention. One of the most challenging application seems to be the possibil-
ity to employ such systems in complex missions taking place in high-risk environments in
order to avoid endangering human operator’s life. Supervising and inspection missions are
good examples in which unmanned platforms relieve operator’s intervention. The same for
monitoring missions in which human watchfulness can unexpectedly fail.

Site survey missions in complex and previously unknown environments are a more inter-
esting example in which the system must perform in-situ 3D digitization, while exploring
the site. These systems aim at recovering the 3D geometric and photometric information
through the jointly use of 3D laser scanners and/or cameras by means of 3D modeling, giv-
ing rise to a general-purpose vision-based system capable to supply several functions: first,
the 3D modeling capability allows for a wide range of applications, such as cultural heritage,
digital archiving, visual effects for virtual reality applications, urban planning, creation of
model data-bases for GIS (Geographical Information Systems) and virtual tourism appli-
cations. Second, the digital scene representation it-self provides onboard visual perception
which is the basic sense required for accomplishing in-situ complex tasks, such as: scene
analysis, maintenance of high-risk sites (mines or tunnels), exploration of underground or
underwater prehistoric caves and geological studies of extra-terrestrial sites.

This dissertation aims at providing means for automatic 3D modeling to accomplish
site surveys missions in complex and difficult to access environments. Such missions are
currently difficult to achieve since traditional 3D digitization techniques are highly depen-
dent on human surveyors. Usually, data collection is followed by a post-processing step
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performed off-line during which it is often observed that the 3D scene model in incomplete.
Since for such endeavors time and in-situ access are major concerns, the 3D scene model
completeness must be ensured in-situ in order to avoid to come back on site to complete
data collection.

In our research work we focus on developing a vision-based system capable to gener-
ate in-situ complete 3D scene models in complex environments. In order to achieve the
aforementioned goal, the system must be endowed with automatic procedures in order to
generate dynamically the 3D scene model, while autonomously exploring the site to ensure
the 3D scene model completeness. Another main requirement of our research goal is to pro-
vide in-situ visualization of the acquired 3D scene model to allow verification either in-situ
or by a host wirelessly connected to the target. The in-situ 3D modeling process endows
mobile platforms with onboard visual perception allowing them to be aware when evolving
in previously unknown environments. Such visual capabilities can be further exploited to
supply visual servoing resources to provide feedback control to the system for accomplishing
autonomously complex missions without requiring human operator’s intervention.

1.1 The in-situ 3D Modeling Problem

The in-situ 3D modeling problem is concerned with the automatic environment sensing
through the use of active (laser) and/or passive (cameras) 3D vision and aims at generating
in-situ the complete 3D scene model in a step by step fashion. At each step, the currently
generated 3D scene model must be exploited along with visual servoing procedures in
order to guide the system to act intelligently on-the-fly to ensure in-situ the 3D scene
model completeness.

Our research work is focused on developing a vision-based system aimed at automat-
ically generating in-situ photorealist 3D models in previously unknown and unstructured
underground environments from image and laser data. In particular we are interested in
modeling underground prehistoric caves. In such environments several issues must be ad-
dressed: the absence of reliably extractable and trackable features, the non-reliability of
navigation sensors, but also the limited time and in-situ access within which the 3D scene
model completeness must be ensured.

Systems embedding active 3D vision are suitable for generating in-situ complete 3D
models of previously unknown and high-risk environments. Such systems rely on visual-
based environment perception provided by a sequentially generated 3D scene representa-
tion. Onboard 3D scene representation for navigation purposes was pioneered by Moravec’s
back in the 1980s [Moravec, 1980]. Since then, Computer Vision and Robotics research
communities have intensively focused their efforts to provide vision-based autonomous be-
havior to unmanned systems, special attention being given to the vision-based autonomous
navigation problem. In [Nister et al., 2004], Nister demonstrated the feasibility of a purely
vision-based odometry system, showing that an alternative for localization in GPS-denied
areas can rely on artificial vision basis. Several research works introduced either 2D and 3D
Simultaneous Localization and Mapping (SLAM) algorithms using single-camera or stereo
vision frameworks [Durrant-White and Bailey, 2006], [Bailey and Durrant-White, 2006].
While gaining in maturity, these techniques rely on radiometric and geometric features’
existence or exploit initial guess provided by navigation sensors (GPS, IMUs, magnetic
compasses) employed along with dead-reckoning procedures.

Researchers from Computer Vision and Graphics research communities were introduc-
ing the 3D modeling pipeline [Beraldin and Cournoyer, 1997] aiming to obtain photorealist
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digital 3D models through the use of 3D laser scanners and/or cameras. Various 3D model-
ing systems have been developed promoting a wide range of applications: cultural heritage
[Levoy et al., 2000], [Ikeuchi et al., 2007],[Banno et al., 2008], 3D modeling of urban scenes
[Stamos et al., 2008], modeling from real world scenes [Huber, 2002], natural terrain map-
ping and underground mine mapping [Huber and Vandapel, 2003a], [Nuchter et al., 2004],
[Thrun et al., 2006].

Without loss of generality, the 3D modeling pipeline requires automatic procedures for
data acquisition, processing and 3D scene model rendering. Due to the sensors’ limited field
of view and occlusions, multiple data from various viewpoints need to be acquired, aligned
and merged in a global coordinate system in order to provide a complete and photorealist
3D scene model rendering. As for SLAM techniques, the main drawback standing behind
the automation of the entire 3D modeling process is the data alignment step for which
several methods have been introduced.

For systems focusing on 3D modeling of large-scale objects or monuments [Levoy et al.,
2000], [Ikeuchi et al., 2007],[Banno et al., 2008] a crude alignment is performed by an op-
erator off-line. Then the coarse alignment is refined via iterative techniques [Besl and
McKay, 1992]. However, during the post-processing step it is often observed that the
3D scene model is incomplete. Although data alignment using artificial markers produces
accurate results, it cannot be applied to high-risk environments due to time and in-situ ac-
cess constraints. In addition, for cultural heritage applications, placing artificial landmarks
within the scene cause damages to the heritage hosted by the site. The critical need for
an in-situ 3D modeling procedure is emphasized by the operator’s difficulty to access too
small and too dangerous areas for placing artificial landmarks and by the need to validate
in-situ the 3D scene model completeness in order to avoid to return on site to complete
data collection.

Existing automatic data alignment methods perform coarse alignment by exploiting
prior knowledge over the scene’s content [Stamos et al., 2008] (i.e. radiometric or geometric
features’ existence, regular terrain to navigate with minimal perception) or the possibility
to rely on navigation sensors (GPS, INS, odometry, etc.). In a second step, a fine alignment
is performed via iterative methods.

Since in our research work the environment is previously unknown, features’ existence
cannot be guaranteed. In addition, in underground environments and uneven terrain nav-
igation sensors are not reliable and dead-reckoning techniques lead to unbounded error
growth for large-scale sceneries. A notable approach reported by Johnson [Johnson, 1997]
and improved by Huber [Huber, 2002] overcomes the need of odometry using shape de-
scriptors for 3D point matching. However, shape descriptors’ computation requires dense
3D scans, leading to time consuming acquisition and processing, which does not cope with
time and in-situ access constraints.

A main part of this dissertation focuses on providing image-laser solutions for address-
ing the automation of the 3D modeling pipeline by solving the data alignment problem
in feature-less and GPS-denied areas. In a second phase, we propose to exploit the world
modeling capability along with visual servoing procedures to provide feedback control to
the system for visual-guided site exploration in order to ensure in-situ the 3D scene model
completeness.



32 1. Introduction and Motivation

1.2 Image-Laser Proposed Solution: 4D-Mosaic-driven 3D
Modeling

Our main target is to provide automatic procedures for a vision-based system (VBS) aimed
at performing in situ the entire 3D modeling pipeline: (1) acquire and process data without
requiring human operator intervention, (2) generate 3D models in a step-by-step fashion,
(3) act intelligently on-the-fly in order to improve the scene’s completeness. We close
the introduction chapter by drawing the remainder of this dissertation along with it’s
contributions. This dissertation is structured in eight chapters which gradually present
how to achieve in-situ 3D modeling through the jointly use of image and laser data.

Chapter 2 lists several applications standing behind the need of an in-situ 3D modeling
system and describes several reality sensing techniques which can be employed for building
photorealist and highly accurate 3D models from reality. We briefly describe the available
techniques for computing digital scene representation and emphasize their limitations for
generating in-situ 3D models in unstructured and large-scale underground environments.
We end Chapter 2 by listing the requirements which need to be fulfilled when dealing with
the in-situ 3D modeling problem in challenging environments and by proposing several
image-laser solutions to overcome the existing methods’ shortcomings.

The next five chapters are dedicated to a gradual description of the ARTVISYS sys-
tem in which we project the proposed image-laser solutions willing to provide unmanned
platforms with autonomous world modeling capabilities.

Chapter 3 of this dissertation introduces the ARTVISYS prototype, an ARTificial
VIsion-based SYStem designed for automatic 3D modeling in previously unknown envi-
ronments. We describe the hardware and the software architecture together with the acqui-
sition scenario and the on-board functionalities composing the 3D modeling pipeline. We
propose a double-head system, composed by a 3D laser range finder and a high-resolution
digital camera mounted on a motorized pan-tilt unit (PTU). The system’s design exploits
the image-laser complementarity featuring: (a) fast acquisition and processing via low-
resolution 3D scans and (b) photorealism provided by high resolution color images. When
performing 3D modeling from cameras and 3D laser scanners, an additional open issue is
raised when the two sensors have different optical centers. Due to occlusions in either im-
age or laser data, a difficult task to solve is the rendering of the aligned image-laser data.
In this dissertation we propose a dual camera-laser system rigidly attached in order to
overcome the shortcomings caused by high inter-sensors parallax. We provide reliable data
matching techniques in unstructured environments by exploiting 3D geometry and appear-
ance information yielding robustness to false matches, which are inherent when exploiting
only radiometric information.

Introducing 4D-mosaics: omnidirectional photorealist 3D models. For each
3D spatial position of the system, the proposed 3D modeling scenario unifies photorealism
and dense geometry into four-dimensional (4D) mosaic views. In this dissertation we
solve for the automation of the 3D modeling pipeline by introducing the 4D mosaics as
fully spherical panoramic views encoding surface geometry (depth) and 3-channel color
information (R, G, B). A 4D mosaic is processed within three steps, each of which being
described in Chapters 4,5 and 6 of this dissertation and for which we provide a brief
description hereafter.

• First, the 3D laser scanner acquires several partially overlapped scans which are
aligned and merged into a fully 3D spherical mosaic. Since our work is concerned
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with the 3D modeling in unstructured and underground environments, Chapter 4
introduces an automatic scan matcher which replaces the two post-processing steps
usually performed by the currently existing scans alignment techniques (coarse align-
ment via manual or GPS pose and ICP-like methods for fine alignment). The pro-
posed method does not rely on feature extraction and matching, providing thus an
environment-independent method.

• Second, the motorized PTU acquires a sequence of pose-annotated and high-resolution
images, which are further exploited to generate in-situ a Gigapixel color mosaic. Since
the nowadays image stitching algorithms present several limitations when dealing
with unstructured environments, one of our main concern in this dissertation is the
ability to match images in feature-less areas. For this reason, in Chapter 5 of this
dissertation we introduce an automatic multi-view image matching algorithm capable
to deal with the absence of reliably detectable and trackable features. The proposed
mosaicing system is powered by a global-to-local pairwise image alignment algorithm
which recovers the rotations relating the overlapping images in a coarse-to-fine ap-
proach. The local motion procedure outputs a list of locally matched anonymous fea-
tures which are later injected in a bundle adjustment engine for multi-view fine align-
ment. The proposed algorithm combines the state of the art mosaicing techniques
in a complementary and efficient fashion providing an environment-independent so-
lution for the image mosaicing task. A powerful viewer with 8-levels of detail is
employed to enable virtual tourism applications through the world wide web.

• Third, the 3D mosaic and the 2D color Gigapixel one are aligned and fused into a
photorealist and geometrically accurate 4D mosaic. To do so, Chapter 6 describes
a mosaic-based approach for image-laser data alignment. Since the two sensors are
rigidly attached and slightly separated, the algorithm computes the 3D Euclidian
transformation, which is essentially a 3D rotation and a residual 3D translation.
When solving for the image-laser alignment problem, it is difficult to achieve reli-
able data matching when the two sensors have different optical centers. Since in
our research work the image-laser parallax is negligible, our system overcomes the
main drawback caused by occlusions in either image and laser data. We match the
3D mosaic against the RGB Gigapixel one by first estimating the global rotation
motion within a pyramidal framework followed by a local patch matching procedure
performed only at the highest resolution level of the pyramid (where the image-laser
parallax is visible) to estimate a global translational model over the entire mosaic
space. The estimated pose is exploited to generate automatically a 4D mosaic (4-
channel: red, green, blue and depth) which to our knowledge has not been reported
until now. The reconstruction of the 3D scene model is performed in two steps: (i)
an integration step exploits the 3D mosaic to generate 2D meshes and (ii) a texture
mapping procedure enables the photorealist component of the 3D scene model.

The aforementioned algorithms are composing the ARTVISYS system. They can be
utilized either as stand alone procedures (i.e. for generating in-situ 3D or 2D Gigapixel
mosaics) or as a 3D modeling process for generating in-situ photorealist and highly accurate
3D models encoded as 4D mosaics.

4D-mosaic-driven in-situ 3D modeling. Due to occlusions, several 4D mosaic
views must be autonomously acquired from different 3D spatial positions of the system in
order to maximize the visible volume, while minimizing data redundancy. In this disser-
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tation we propose a mosaic-driven acquisition scenario to be performed in a stop-and-go
fashion. As soon as a 4D mosaic is acquired, the latter is matched against the previously
generated ones and integrated into a global reference coordinate system in order to build
dynamically the global 3D scene model. To do so, in Chapter 7 we propose a theoretical
solution to supply the 4D panoramic alignment process based on a hybrid 2D-3D criterion
to disambiguate data matching in unstructured environments.

The proposed data alignment procedures are composing the automatic 3D modeling
pipeline. They are featuring robustness to feature-less and GPS-denied areas, being able
to cope with embedded computer requirements and to run in-situ. Validation tests are per-
formed in three difficult to access prehistoric caves situated in France (Moulin de Langue-
nay, Tautavel and Mayenne Science). Experimental tests in structured environments are
also presented using real data acquired in Paris city.

Toward autonomous 4D-panoramic-driven site exploration. After solving for
the automation of the 3D modeling pipeline, the system is now endowed with visual percep-
tion means which must be further exploited along with visual servoing techniques in order
to guide the system to ensure the 3D scene model completeness. In particular, the system
must be able to build dynamically the 3D scene model, while exploring autonomously the
site in order to minimize the occluded areas. This calls for an intelligent 3D modeling
procedure which implies the computation of the next best 3D pose of the system from
which the next 4D mosaic must be acquired in order to minimize the occluded areas (i.e.
solve the Next Best View problem [Klein and Sequeira, 2000]). In addition, the system
must be able to navigate from it’s current position to the estimated 3D pose via path
planning and visual-based autonomous navigation procedures powered by the currently
generated 3D scene model. The aforementioned procedures are powered by the global 3D
scene model obtained via the 4D mosaic matching algorithm, exploiting the image-laser
fusion to provide visual feedback to the 4D mosaicing sensor. For this reason, Chapter
7 provides image-laser solutions which exploit the 3D modeling pipeline for developing
visual servoing procedures in order to generate dynamically the 3D scene models, while
autonomously exploring the site.

This allows us to evaluate the 4D mosaicing sensor’s potential in solving for the auto-
matic in-situ generation of complete and photorealist 3D models in high-risk and complex
environments, without operator intervention.

Since the autonomous 3D world modeling capability is intrinsically related to the sys-
tem’s autonomy, we provide a visual-autonomy model which is instantiated to the au-
tonomous site digitization and exploration problem. The software architecture has as
main nucleus the 4D mosaicing sensor which used along with visual servoing procedures
acquires and integrates on-the-fly 4D mosaic views in order to ensure the 3D scene model
completeness.

Chapter 8 closes this dissertation by summarizing our research proposals and by giving
short- and long-research directions exploiting the aforementioned results.
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Chapter 2

Why and How to perform In-situ 3D
Modeling?

We start this chapter by motivating the need for in-situ 3D modeling procedures and listing
a variety of applications requiring for an automatic in-situ 3D digitization procedure.

The next three sections present the available technological means allowing to tackle
the in-situ 3D modeling problem. Section 2.2 presents the existing techniques encoding
high-detailed photorealist digital scene representations of the reality. The next section de-
scribes the technical background of the 3D modeling process and introduces the main key
issues standing behind the automation of the 3D modeling pipeline. Since the in-situ 3D
modeling task implies automatic environment mapping and localization capabilities, Sec-
tion 2.4 introduces the Simultaneous Localization and Mapping problem and lists several
existing solutions, emphasizing their limitations for dealing with unstructured, large-scale
and difficult to access environments.

We end this chapter by proposing several image-laser joint solutions for the aforemen-
tioned techniques aiming to overcome their main drawbacks when dealing with unstruc-
tured and difficult to access environments. More important is that the proposed solutions
are the main ingredients which are likely be embedded on a vision-based system in order
to achieve autonomously in-situ 3D modeling tasks.

2.1 Why In-situ 3D Modeling?

Systems embedding digital scene representation are well suited for many civilian and mil-
itary applications. The most challenging one seems to be the possibility to employ such
vision-based systems (VBSs) in complex missions tacking place in unknown and complex
environments. To do this, onboard perception and decision capacities need to be improved
in order to provide autonomous behavior during the mission. A great number of missions in
hostile environments are still unavailable due to the autonomous system feasibility, which
is limited and thus request operator’s intervention.

Embedded 3D scene representation has been opening the possibility to provide un-
manned systems with 3D environment perception, allowing them to be aware when evolv-
ing in previously unknown environments. Such systems can dynamically generate 3D
scene models and act intelligently in order to pursue the execution of the required tasks.
Therefore, a new generation of unmanned system arises, with intelligent articulation from
perception to action, enriched with new visual-based capabilities: see, detect, plan and
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avoid within an information and decision network.
Designing systems embedding 3D vision is one of the nowadays multi-disciplinary chal-

lenges which puts together researchers from Computer Vision and Robotics communities.
Such VBSs are about to be employed in high-risk environments for performing complex
missions. Supervising and inspection missions are good examples in which robots equipped
with adapted sensors relieve operator’s intervention, the same for monitoring missions in
which human watchfulness can unexpectedly fail. The most challenging ones seem to be
the possibility to employ unmanned systems in complex interventions, such as disaster
response as well as searching and rescuing operations.

Several 3D modeling systems reported tractable solutions for large-scale objects or
monuments relying on heavy human operator intervention. 3D modeling of large-scale
urban scenes was successfully solved by Stamos [Stamos, 2001] by imposing orthogonality
constraints on scene’s content. While improving the state of the art, these methods re-
main limited by the application type: 3D modeling of structured environments. Very few
research works attempt to generate automatically in-situ photorealist 3D scene representa-
tion in complex and unstructured environments for field robotics applications. Photorealist
digitization and understanding of the heritages hosted by prehistoric caves, maintenance of
tunnels or mines, site surveys and exploration of underwater, under-ice or extra-terrestrial
environments are several applications requiring for an accurate and automatic 3D modeling
procedure.

Through the following description we review several ongoing 3D modeling projects
promoting the aforementioned applications in order to emphasize the critical need for
developing an autonomous vision-based system capable to generate in-situ photorealist
and complete 3D models of its surroundings.

Cultural heritage of large-scale sites. Figure 2.1 a) illustrates a site survey cam-
paign performed by the French Mapping Agency1 and ESGT2 in the Mayenne Science
prehistoric cave (France) by human surveyors to create exhaustive maps for cultural her-
itage archiving and virtual tourism applications. Figure 2.1 a) emphasize the operator’s
difficulty to access too small areas. A first difficulty which the human operator must face
is finding the adequate number of viewpoints from which the environment must be sensed
in order to ensure the 3D scene model completeness. A second concern is that the data
acquisition time must fit the granted in-situ access time. Due to the complexity of the site,
the standard assumptions for automating the 3D modeling process, such as parallelism,
perpendicularity or symmetry are not adequate. Therefore, the data processing step is
performed off-line by human operators which often observe that the final 3D scene model
is incomplete.

Figure 2.1 b) depicts a site survey campaign undertaken by the French Mapping Agency
and ENSG3 in the Tautavel prehistoric cave, France. The purpose of the site survey was
to produce highly accurate cross sections of the 3D model to allow archeologists to analyze
the heritage hosted by the cave. During the mission, constraints for surveyors’ access
and system’s positioning were imposed in order to avoid damaging the heritage hosted by
the cave. In addition, it was difficult and sometimes impossible to place the system in
particular viewpoints to acquire the missing data in order to ensure the 3D scene model
completeness. During such endeavors, airborne and ground-based sensors are likely to be
employed in order to preserve the cultural heritage hosted by the site. The same problem

1Institute Géographique National - IGN
2École Supérieure des Géomètres et Topographes
3École Nationale Supérieure de Géographie
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was reported in [Ono and Ikeuchi, 2007] when attempting to create digital 3D models of
Bayon Temple shown in Figure 2.1 c). Due to the high architectural complexity of the
site, ground-based sensors are not suitable for sensing too small or too narrow areas, (see
for an example Figure 2.1 d)). For this reason, authors in [Banno et al., 2008] designed an
aerial mobile sensing platform using a balloon as a base, resulting in a Flying Laser Range
Sensor (FLRS). The sensor was employed during the Bayon Temple digitization mission in
order to accomplish the 3D scene model completeness.

This dissertation aims at endowing a vision-based system with automatic environment
sensing functionalities for generating in-situ complete and photorealist digital 3D models in
complex and underground environments. We validate our system on real tests performed
in three prehistoric caves situated in France for an ongoing project promoting cultural her-
itage, virtual reality and scene understanding applications. Such a vision-based system has
a double utility: on one hand, when the site allows easy access, the system performs in-situ
data processing and view planning, providing guidance and assistance to human surveyors
for completing the 3D scene model. On the other hand, when site surveys missions are
performed in difficult to access environments, the system must be able to digitize and ex-
plore autonomously the site through path planning and autonomous navigation procedures
based on image and laser data input.

3D Mine mapping. Nowadays, abandoned subterranean voids, especially mines rep-
resent a threat to their surroundings. They present risk inundation by water or hazardous
gases. A way to combat these risks is to catalog the exist and characterize these voids.
This operation relies currently on the available maps and on other geophysical techniques.
Several research groups [Baker et al., 2004b] [Nüchter et al., 2004] are focusing on de-
veloping mobile platforms capable to autonomously map and explore abandoned mines.
Figure 2.1 f) illustrates the Groundhog mobile platform developed by [Baker et al., 2004b]
at Robotics Institute-Carnegie Mellon University for autonomous 3D mine mapping. In
the proposed framework, the scanning device provides 3D terrain modeling for obstacle
avoidance and path planning, whilst odometry and scan matching provide feedback to
the motion controller and allow Groundhog to follow a specific path. Nevertheless, when
using odometry on such uneven terrains as shown in figure 2.1f), a major issue for safe
navigation arises due to slippage on sloping terrain.

Planets’ Exploration. Since 2003, computer vision is being successfully applied in
Space, within the Mars Exploration Rover (MER) mission with Spirit and Opportunity,
twins geologist robots. Employing vision for taking onboard decisions is a key aspect
needed to accomplish complex missions taking place in hostile environments. For instance,
for large scale site surveys missions performed on Mars [Paar et al., 2009], data acquisi-
tion is performed automatically, transmitted on Earth and processed by computer vision
experts. Furthermore, rovers are receiving commands from human operator for path plan-
ning, navigation and obstacle detection and for dealing with unpredictable situations.
This highly-dependency on human interaction is subject to memory bandwidth and com-
munication latency, causing unmanned systems’ failure to react rapidly to unpredictable
situations. Recently, researchers from Jet Propulsory Lab have reported in [Mathies et al.,
2007], [Johnson et al., 2007] the use of stereo-vision, visual-odometry and feature tracking
for rover navigation and lander’s velocity estimation before touchdown. As for the mine
mapping case study, researchers are planning to address one of the performance’s issues
for MER navigation: wheels’ slippage. Since visual odometry solves this problem partially,
researchers are now attempting to use learning algorithms to predict the amount of slip to
expect from the appearance and from slope angle of hills in front of the robot.
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So far we introduced several practical issues revealing the need of a unmanned vision-
based system for in-situ 3D modeling. The next section reviews the existing techniques for
generating digital scene representation of the reality through the use of active (3D laser
scanners) and passive (cameras) 3D vision devices.

2.2 Digital Scene Representation Techniques

Digital scene representation has been intensively addressed within Computer Graphics,
Computer Vision and Remote Sensing research communities and three different approaches
have been introduced. Researchers in Computer Graphics reported image-based solutions
defined as image-based rendering (IBR) techniques. Computer Vision and Remote Sensing
research communities employ color cameras and 3D laser scanners aiming to recover the
3D geometry from reality, giving rise to passive and active 3D vision senses, respectively.
Through the following subsections we provide a brief description of the aforementioned
techniques, while the last subsection emphasizes their complementarity and illustrates how
we propose to combine them in this dissertation to overcome each one’s shortcomings.

2.2.1 Image-based Rendering

IBR methods exploit exclusively an image sequence together with their associated camera
calibration matrix, when available. These techniques are interested in generating synthetic
views by interpolating between original images, without aiming to provide the 3D geometry
of the sensed surface. Computer Graphics research community aims at producing high-
detailed photorealist rendering for virtual tourism and augmented reality applications pay-
ing the price of heavy acquisition setup, expensive computation time and semi-automatic
frameworks. The proposed rendering pipeline implies the geometry and viewpoint recovery
as well as texture, lighting, and shading information.

Image morphing is a widely used IBR technique which generates transitions between
original images. Supposing that the rigid transformation which lies between two views is
known, image morphing procedure generates an animation which smoothly transforms the
initial view toward the final one. Image morphing methods were firstly employed in the
early 1990s by Michael Jackson in the clip Black or White for face morphing.

IBR techniques are being successfully employed for Computer Generated Imaging
(CGI) to create special effects for movie industry. They produced the science fiction boom
at Hollywood starting in the early 1990s with Steven Spielberg’s Jurassic Park, in which
CGI was used to create special effects, by combining them with live action.

Light Field Rendering (LFR) techniques were introduced by Marc Levoy and Pat Han-
rahan in the Computer Graphics community in 1996 [Levoy and Hanrahan, 1996] [Gortler
et al., 1996], [Buehler et al., 2001]. Their proposed application was the IBR. The key to
this technique lies in interpreting the input images as 2D slices of a 4D function - the light
field. This function completely characterizes the flow of light through unobstructed space
in a static scene with fixed illumination. Since these methods do not estimate the real 3D
structure behind the images, they are unable to cover every possible novel viewpoint and
a large number of views is needed to produce undistorted renderings. Therefore, in order
to capture, encode and display real 3D scenes based on the light-field principle massive
processing power is required. Finally, they cannot model novel illumination conditions.
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a)

b) c)

d) e)

f) g)

Figure 2.1: In-situ 3D Modeling in Challenging Environments. (a)Data acquisition scenario in Mayenne
Science Prehistoric Cave (France) c©IGN-ESGT, (b)Data acquisition scenario in Tautavel Prehistoric Cave
(France) c©IGN-ENSG, (c)Bayon Temple - kingdom of Cambodia, (d)Bayon Temple top-down view - image
taken from [Ono and Ikeuchi, 2007], (e)Missing data in the 3D model result using only ground-based
acquisition platforms - image taken from [Banno et al., 2008], (f) Groundhog mobile platform for mine
mapping (Carnegie Mellon University) - image taken from [Baker et al., 2004b], (g) Mars Exploration
Rover - Spirit geologist robot c©NASA-JPL.
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2.2.2 3D Vision

Following the capturing device’s type, two research directions were introduced in Com-
puter Vision and Remote Sensing research communities. Computer Vision research works
lead to an extensive use of cameras for interpolating 3D coordinates of a point in space
(passive methods), while remote sensing approaches were oriented toward the use of 3D
laser scanners (active methods). Both of them provide a digital description of the reality
in a defined data structure refereed to as 3D model. In opposite to IBR methods, both
passive and active techniques allow to recover the 3D geometry of the sensed surfaces,
which is one of the main concerns of this dissertation, providing the possibility the endow
unmanned platforms with 3D vision.

2.2.2.1 Passive

Passive 3D modeling methods are taking as input either calibrated or un-calibrated images
and estimate the 3D surface geometry via image motion estimation methods. They are
referred to as image-based modeling (IBM) techniques. Passive methods employ either
single- or multi-camera systems, depending on the application type.

Structure from motion (SFM). In opposite to multi-camera systems, SFM methods
require single video camera use, thus offering a low cost and portable solution. They
depend on algorithms able to reliably detect and track stable radiometric 2D features over
a sequence of images. SFM methods take as input a set of tracked 2D image features and
estimate their 3D location and the camera poses simultaneously. When Tomasi and Kanade
[Tomasi and Kanade, 1992] reported a batch algorithm for solving the SFM problem, there
was when the SFM method was first spread into the Computer Vision community, after
being pioneered in the photogrammetry community, in which it is referred to as bundle
adjustment [Triggs et al., 1999].

Since the 3D structure estimates are computed only relative to the tracked feature
points, the final result is a sparse 3D point cloud. Reported solutions focus on providing
dense 3D structure in a separate step [Pollefeys et al., 1998], but poorly textured and
unstructured areas are still an open issue and feature matching over non-consecutive frames
remains a difficult problem to solve.

Multi-cameras. Multi-camera systems are putting together range and intensity im-
ages. For poorly structured scenes, stereo-vision systems provide dense but noisy 3D point
clouds of the sensed surface. A multi-camera system allows for noise reduction by integrat-
ing multiple range estimates independently computed [Kanade et al., 1995]. At Carnegie
Mellon University researchers have reported in [Rander, 1998], [Saito et al., 1999] an ex-
treme case in which the scene is entirely surrounded by cameras giving rise to a virtualized
room. In a first step, range estimates are obtained using a multi-baseline stereo framework
performed on multiple subsets of the cameras. Then, prior camera calibration knowledge is
used to automatically register range images. A real-time multi-cameras system is reported
in [Rander, 1998] which allows for dynamic scenes 3D modeling. In [Pollefeys et al., 2008]
authors reported real-time 3D reconstruction from a multi-camera system mounted on a
vehicle exploited along with navigation sensors (GPS, IMU).

Shape from silhouette. Back in the ’70s, silhouettes were firstly used for 3D modeling
purposes by Baumgart [Baumgart, 1974], while the silhouettes-based surface’s properties
were first studied by Laurentini [Laurentini, 1994], defining the visual hull concept. The
visual hull algorithm takes as input a sequence of images of an objet acquired from known
camera positions. The 3D model computation rely on complex volume intersection tech-
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niques needed to discard parts of the viewing volume which do not belong to the object
using background constraints. In [Matusik, 2000] authors reported an efficient method to
perform visual hull computation entirely in the 2D image space.

Space carving. Instead of exploiting background region constraints, shape from carv-
ing methods rely on photo-consistency constraints of the object [Kutulakos and Seitz,
2000], [Matsumoto et al., 1997]. These methods generate a volume and iteratively dis-
card voxels based on color coherency in all images. In [Broadhurst et al., 2001] authors
proposed a probabilistic approach for voxel occupancy. The output is a voxel-based 3D
model difficult to transform in a 3D mesh representation. In [Zhang and Seitz, 2001] and
[Yezzi et al., 2002] authors attempt to solve this problem. Nevertheless, another issue
arises when using photo-consistency: namely, the sensitivity to light color variation when
comparing absolute color values. A different way of exploiting color by studying local vari-
ation via cross-correlation techniques can be found in [Faugeras and Keriven, 1998], [Sarti
and Tubaro, 2002]. By formalizing the problem using an approach such as visual hull, it is
not possible to model complex shapes (such as concavities) while space carving methods
can.

Shape from silhouette and space carving methods are usually employed for small-scale
object 3D modeling when the camera captures the entire objet from known viewpoints
using a controlled background. Due to the aforementioned constraints, these methods
cannot be employed in our research work.

Shape from shading. These methods [Horn and Brooks, 1989] exploit the diffusing
properties of Lambertian surfaces making use of several acquisition constraints (ortho-
graphic cameras or punctual light sources), making them useless for practical applications.

Fusion-based approaches. Several authors exploit jointly color and additional in-
formation such as: silhouettes [Liedtke et al., 1991], [Fua and Leclerc, 1996], [Matsumoto
et al., 1997], [Cross and Zisserman, 2000], [Isidoro and Sclaroff, 2003] , shading [Fua and
Leclers, 1995], [Jin et al., 2000] or radiance [Yezzi and Soatto, 2001], [Soatto et al., 2003],
but extracting 3D information still remains an open issue. Hernandez [Hernandez, 2004]
employs a novel data fusion technique for silhouettes-stereo joint 3D modeling which leads
to high quality reconstruction results.

2.2.2.2 Active

In opposite to IBM techniques, the 3D scanning process produces 3D digital representation
of the surface geometry encoded as 3D cartesian coordinates expressed wrt the sensor’s
3D position. Laser-range sensing implies a physical contact between a controlled source of
energy and the 3D surface, leading to a response measurement. These techniques proceed
by sampling regularly the nearby surfaces of a scene and by emitting regular energy patterns
beams into the scene to measure the visible 3D geometry wrt to the sensor’s position and
field of view. Range-sensors exploit the spatial and time properties of the reflected laser
beam to compute the depth of the 3D point in the beam direction. Appendix A.1 resumes
the main laser-range sensing techniques, while further details on early range-sensing can
be found in [Besl, 1988], [Poussart and Laurendeau, 1989].

The scanning device employed in the research work presented in this dissertation falls
in the category of time-of-flight 3D scanning techniques. Basic features defining a 3D
laser scanner are the scanning resolution and its accuracy. The absolute value of error
increases with the distance between the sensor and the surface to be scanned. Following
the application type, it is possible to set the laser to acquire either one-shot scans, which



42 2. Why and How to perform In-situ 3D Modeling?

are fast but less accurate, or multiple-shots scans, which are more accurate but time
consuming. The resolution bounds the dimensions of the 3D scene model and influence
the choice of the data structures employed for merging multiple scans into an unified scene
representation.

2.2.3 Taxonomy and Image-Laser Joint Solutions

After reviewing the existing approaches allowing to produce digital representations from
reality, Figure 2.2 provides a taxonomy of these methods with respect to our main interest:
recover reliably 3D geometry and appearance information in unstructured environments
for generating in-situ photorealist and accurate digital models in difficult to access envi-
ronments.

The first class, IBR methods are mainly focused on generating novel views from
original images. In order to generate novel views geometrically coherent, a high amount
of images need to be acquired under fixed illumination conditions. Therefore, in order to
capture, encode and display real 3D scenes based on the IBR techniques, massive processing
power is required. In addition, in high-risk and difficult to access environments, a human
operator cannot access into the site to set fixed illumination conditions. A possible way to
improve IBR techniques’ performances is to acquire simultaneously geometric information
with a 3D laser scanner, which allows to accurately interpolate between views, overcoming
the need of a high amount of views.

The second class, passive 3D vision techniques detain a main advantage over the
IBR methods which is the fact that they do aim at recovering accurately the 3D geometry
of the sensed surface. Reported solutions rely on feature extraction which yield reliable
and accurate results for environments rich in radiometric and geometric features. Since
our research work deals with the 3D modeling problem in unstructured environments, we
cannot guarantee the above feature-existence hypothesis.

In previously unknown environments, in absence of stable detectable and trackable fea-
tures and in presence of unstructured and texture-less areas, such algorithms fail during
the data alignment process. Furthermore, in feature-less areas they provide fast, but sparse
and noisy 3D point clouds, and multi-cameras systems for dense 3D mapping are highly
complex, not portable and computationally extremely expensive. In unstructured envi-
ronments, image matching techniques lead to outliers, which are inherent when employing
only radiometric criteria for image matching. A possible solution to this problem is to
employ a joint criterion, using both: radiometry - from color cameras, and 3D geometry -
from 3D laser scanners, to disambiguate data matching. Such a technique is proposed in
Chapter 7 for 3D model matching purposes.

Active 3D vision techniques are mainly limited by the fact that they cannot capture
high-quality color information required to enable the photorealism component of the 3D
scene model. This justifies the recent trends reported in computer graphics and vision
research communities, which employ image-laser fusion to yield photorealist and accurate
3D models.

Image-laser joint solutions. Figure 2.2 illustrates our choice highlighted in blue
and concerns essentially the fusion of active and passive 3D vision techniques for capturing
both, 3D geometry and low cost color information, allowing to improve the aforementioned
techniques’ performances: (1) improve IBR techniques with 3D geometry from 3D laser
scanner needed for interpolating more accurately novel views with low cost processing,
(2) overcome IBM techniques shortcomings raised by image matching algorithms sensitive
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to unstructured environments by employing a joint radiometric and geometric criterion
to ensure reliable data matching in feature-less environments, and (3) enrich 3D laser
scanners capabilities with color information for photorealist 3D modeling large-scale and
unstructured environments. To this end, Chapter 3 of this dissertation proposes a dual
environment sensing device endowed with a high-resolution color camera rigidly attached to
a 3D laser-range-finder which allows the implementation of the aforementioned image-laser
solutions.

2.3 The 3D Modeling Pipeline

This section covers the background material of the 3D modeling pipeline and emphasizes
the major issues standing behind its fully automation in order to allow for in-situ 3D
modeling. Figure 2.3 illustrates the existing 3D modeling pipeline consisting in laser and
image data acquisition, alignment and 3D scene model rendering. The following description
briefly summarizes each step of the traditionally employed 3D modeling pipeline, while
means for its automation proposed throughout this dissertation are resumed in the final
section of this chapter.

2.3.1 Data Acquisition

Following the capturing devices’ positioning, two types of acquisition systems can be distin-
guished. Systems embedding a color camera and a laser scanner rigidly attached (RACL)
and those performing data collection with a freely moving camera and laser (FMCL). For
both cases, due to the sensing devices’ limited field of view, multiple partially overlapped
scans and images need to be acquired either automatically or by an operator in order to
ensure the 3D scene model completeness.

Figure 2.4 illustrates a classification of the existing data acquisition procedures with
respect to the application type. There are manual - usually designed for 3D modeling of
small-scale objects [Huber, 2002], semi-automatic methods suitable for large-scale objects
[Levoy et al., 2000] and monuments [Ikeuchi and Sato, 2001], [Banno et al., 2008], tele-
operated and automatic acquisition scenarios exploiting calibration constraints [Huber and
Vandapel, 2003b], navigation sensors [Nuchter et al., 2005], [Thrun et al., 2003] and path
planning procedures [Klein and Sequeira, 2000] for 3D modeling and exploration purposes
in large-scale environments.

When dealing with the in-situ 3D digitization problem in unstructured and difficult to
access environments, several key issues have to be taken into account within the acquisition
scenario, such as: the non-reliability navigation sensors for GPS-denied areas and non-flat
terrain, the impossibility to place artificial landmarks (for data matching purposes) and
the need for intelligent 3D digitization techniques in order to ensure ins-situ the 3D scene
model completeness.

2.3.2 Data Alignment

Since each data is described in the sensor’s coordinate systems, the 3D scans and color
images need to pass through a so-called alignment process which integrates all data into a
global 3D scene model. The data alignment process consists in estimating the sensor’s poses
from which each scan (or image) was acquired with respect to a global coordinate system.
A 3D pose estimate is a rigid body transform which encodes 6 degree-of-freedom (DOF),
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Figure 2.2: A taxonomy of the existing digital scene representation techniques wrt their
performances for recovering 3D geometry and photometric information in unstructured
environments. While cameras-based methods allows to capture high resolution color in-
formation rapidly, 3D lasers scanners captures highly accurate and densely sampled 3D
geometry in unstructured environments.
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Figure 2.3: The 3D modeling pipeline.

Figure 2.4: Data Acquisition. a) hand-held acquisition for small-scale objects modeling,
image taken from [Huber, 2002], b)-f) semi-automatic acquisition for large-scale objects
modeling b)-e) capturing devices-images taken from [Levoy et al., 2000], f)3D modeling
of large-scale monuments using a flying range sensor, image taken from [Banno et al.,
2008], tele-operated or automatic acquisition via path planning: g)Kurt3D - multi-purposes
mobile platform - image taken from [Nuchter et al., 2005], h)cart-mounted laser for 3D mine
mapping - image taken from [Huber and Vandapel, 2003b].
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Figure 2.5: Data alignment between overlapping color and range images through coarse-to-
fine alignment. Following the application type, we can distinguish two methods providing
data matching: either manual or semi-automatic for large-scale objects and automatic
based on navigation sensors for large-scale environments.

(three for rotation: yaw - ψ, pitch-ϕ and roll-θ, and three for translation [tx, ty, tz]T ) and
allows to align two overlapped images or scans in a global coordinate system.

Pose estimates computed wrt a global coordinate system give rise to absolute poses.
Otherwise, they can be also computed wrt an arbitrary view, leading to relative poses’
estimates. The pose estimation process performed between two partially overlapped scans
or images is refereed to as the pair-wise alignment. When multiple overlapped images or 3D
scans are aligned wrt a global reference coordinate system, a multi-view alignment process
is performed. Without loos of generality, being given a sequence of partially overlapped
scans and color images, the data alignment process requires three different procedures:

• pair-wise and multi-view scans alignment (3D-3D);

• pair-wise and multi-view image alignment (2D-2D);

• texture to range alignment (2D-3D).

Figure 2.5 summarizes the current approaches available for performing the data align-
ment task. Usually, the pair-wise data alignment is performed within two steps: the first
step is the coarse alignment, usually called data matching, followed by a fine alignment
refereed to as data registration.

For both steps, different solutions have been introduced, following the application type.
Systems aiming to produce high-detailed 3D models of large-scale objects includes human
operator’s intervention in the 3D modeling loop, while systems operating in large-scale
indoors or outdoors environments aim at embedding fast and accurate 3D modeling algo-
rithms onboard unmanned mobile platforms by coupling data with vehicle’s pose provided
by navigation sensors (GPS, IMU, odometry) to perform a coarse alignment. For both
categories, the fine alignment is performed via radiometric and/or geometric features de-
tection and matching. A widely employed technique for scans registration is the Iteratively
Closest Point algorithm [Besl and McKay, 1992] which was pioneered by Besl in the early
1990s.

There are several methods for data matching, including calibrated pose measurements,
manual matching and verification [Turk and Levoy, 1994], [Ikeuchi and Sato, 2001], me-
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chanical measurement (robot arm or a controlled turn-table). However, calibrated pose
methods are generally limited to small-scale objects [Blaise and Levine, 1995]. Researchers
from Computer Vision and Graphics research communities have reported very ambitious
projects aiming to produce photorealist and highly accurate 3D models of large-scale mon-
uments for cultural heritage applications. The proposed framework employ either manual
or semi-automatic procedures for the data acquisition and processing steps [Ikeuchi et al.,
2007], [Banno et al., 2008], [Levoy et al., 2000] yielding accurate results in a controlled
laboratory environment.

Techniques relying on manual data matching and verification are time consuming, since
the user must search for corresponding feature points in the view by hand. Other data
matching methods are making use of artificial landmarks previously placed in the envi-
ronment by human surveyors. Such methods cannot be employed in our research context
due to two reasons. For cultural heritage applications, the environmental modification
can damage the heritage hosted by the prehistorical site. Secondly, for site surveys mis-
sions taking place in difficult to access environments such scenarios are not feasible since
they endanger human surveyor’s life and they do not cope with time and in-situ access
constraints.

Several research works attempted to automate the data alignment step by exploiting
a-priori constraints wrt the scene structure, such as the existence of radiometric and ge-
ometric features [Stamos et al., 2008], [Zhao et al., 2005], [Dias et al., 2003]. While
improving the state of the art, these methods remain limited to the application type: 3D
modeling in structured environments. Johnson [Johnson, 1997] and Huber [Huber, 2002]
employ shape descriptors for coarse alignment, overcoming the need for odometry. Never-
theless, shape descriptors require accurate normals estimates which are difficult to obtained
when acquiring fast one-shot and low-resolution 3D scans, such as in our case.

Due to the aforementioned reasons, the data alignment step represents the major bot-
tleneck standing behind the automation of the 3D modeling pipeline. The most general
formulation of the data alignment problem makes no assumption on features’ existence nor
on navigation sensors employability, being extremely hard to solve. In addition, the main
challenge is to achieve coarse and fine alignment within one step.

2.3.3 3D Model Rendering

After the alignment stage the 3D modeling process outputs a digital representation of the
system’s surroundings which is stored in the system’s memory, being directly exploitable
by an unmanned system without requiring visual display.

Nevertheless, for humans a visual representation is required and for this reason a 3D
model rendering process is performed in two stages. The first step merges all models into
a global 3D scene representation. This process is usually referred to as data integration.
In the second stage, texture maps created from color images collected by digital cameras
may be added to enable the photorealism of the geometric model via a texture mapping
procedure.

Data Integration. The data integration stage aims at merging all scans into an
unified and non-redundant scene representation. To this end, overlapping areas leading to
partial occlusions in the global scene model are detected via ray tracing methods [Reshetov
et al., 2005] and carved in order to produce a global 3D scene model.

Depending on the application type, it is possible to improve the 3D model quality by
performing additional pre-processing. For instance, a triangular mesh may be computed
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and further simplified to reduce the number of points while preserving the shape. A
significant amount of research has been done in this direction.

Existing methods can be classified following the input data type. Methods receiving
a set of range images are exploiting 3D points for extracting more information (surface
normal, partial connectivity, sensor position) for better estimating the actual surface. We
recall here Delaunay-based techniques [Edelbrunner, 1998], surface-based methods [Soucy
and Laurendeau, 1995], [Bernardini et al., 1999], [Gopi et al., 2000], volumetric ap-
proaches [Curless and Levoy, 2000], [Hilton et al., 1996], [Lorensen and Cline, 1987], [Reed
and Allen, 1999] and deformable surfaces methods [Terzopoulos et al., 1988] , [Pantland
and Sclaroff, 1991], [Whitaker, 1998], [Gomes, 2000], [Eck et al., 1995], [Peters, 1994].
A high amount of research work was reported within the Computer Graphics research
community yielding accurate surface reconstruction results.

These methods have several shortcomings to our concern. First, when dealing with
complex environments, mesh simplification procedure may lead to a loos of details and
artifacts within the 3D model. A second issue is raised by the practical implementation
due to the high computational complexity and the existing computing resources. Although
the aforementioned methods yield accurate 3D models, they require a heavy interactive
process which does not cope with time and in-situ access constraints imposed by difficult
to access environments. On the other hand, they can be integrated into the final 3D model
rendering process which can be performed off-line by a host wirelessly connected to the
target. For unorganized point clouds, more general methods have been introduced, but
they lack robustness in presence of noise and outliers.

Texture Mapping. First, texture maps are created by merging all the acquired images
into a single non-redundant map over the entire object via image stitching and blending
techniques [Szeliski, 2006], [Brown and Lowe, 2007]. In a second stage, a texture mapping
procedure is performed by assigning a color to each vertex composing the mesh.

When performing texture mapping, an important issue arise when the camera and
the laser have different optical centres (i.e. FMCL systems). The main problem is how
to render the registered image-laser data due to occlusions in either image or laser data.
Several authors attempt to solve this problem by providing efficient solutions for the view-
dependent texturing, without handling the problem of texture occlusions [Pulli et al.,
1997], [Devebec et al., 1996].

2.4 Simultaneous Localization and Mapping

Endowing unmanned systems with in-situ 3D modeling capacities requires autonomous
behavior and automatic procedures to (i) dynamically generate 3D scene models, (ii) to
localize it-self within the generated map and (iii) to act intelligently on the fly in order to
assure the 3D scene model completeness.

The first two functions are related to the robot’s capacities to build a map of a previously
unknown environment, while localizing it-self within the generated map. Localization and
mapping are intricately coupled problems: automatic map generation requires platform’s
localization, while position’s estimation is impossible without a map. Researchers from
Robotics community exploit this mutual dependency by attempting to solve for the Simul-
taneous Localization and Mapping (SLAM) problem, also known as Concurrent Mapping
and Localization (CML).

In order to solve for the third problem, visual servoing procedures are needed in order to
control the system for accomplishing complex tasks in hostile environments, such as: scene
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understanding, site inspection, monitoring, site surveys, searching and rescuing missions
or disaster response. For instance, in our research work the 3D modeling system must
be capable to sense the entire environment and to assure the scene’s completeness in-situ,
by maximizing the amount of information while minimizing the occluded areas and data
redundancy.

This section resumes the SLAM process and the existing solutions, while focusing on
methods designed for unstructured, large scales and difficult to access environments for
field robotics applications.

2.4.1 The SLAM Process

The SLAM framework aims building a map of a previously unknown environment, while
simultaneously estimating the platform’s location with respect to the generated map. Ini-
tially, the map and the system’s location are unknown and the environment is populated
with artificial or natural landmarks. The system is supposed to embed the necessary devices
to sense the environment relative to the landmarks and to provide platform’s positioning.

The most popular environment sensing devices employed to supply SLAM frameworks
are sonars, 3D laser range finders and color cameras. Additional navigation sensors are
employed to localize the platform wrt a local (proprioceptive sensors: odometry, IMU) or
a global (exteroceptive sensors: GPS, lasers, cameras) coordinate system.

Exteroceptive devices collect information about the environment in which the system
evolves and provide absolute localization of the system. The most popular exteroceptive
localization device is the Global Positioning System (GPS) which employs at least four
satellites and performs position estimation via triangulation methods. Other localization
devices rely on distance measure: sonars, lidar (infrared), radar. Such sensors measure the
time of flight t of an impulse t = 2d

v , where d denotes the distance and v the speed of sound
which is known. The lidar and the radar allows for distance computation using the phase
difference: φ

2π = 2d
v . Video cameras capture powerful representation of the environment

surrounding the robot providing sparse features or depth information when stereo montage
is available.

Proprioceptive localization devices provide relative positioning wrt the robot’s referen-
tial system. A good example of relative positioning technique is odometry, which computes
the distance traveled by the platform by counting the wheels’ tours. It allows for accurate
localization for short distances, providing high-frequency data with low cost. Nevertheless,
such techniques lead to unbounded error growth due to platform’s imperfections (such as
unequal wheels’ diameter) or to terrain slippage and non-flat terrain. In opposite, iner-
tial measurement units (IMUs) are expensive relative localization devices composed by
three accelerometers and three gyros. Two major drawbacks make IMU systems unreli-
able. First, is that they are sensible to platform’s inclination, i.e. to undulated terrain
and second, is due to the accelerometers’ measures which are characterized by a very low
signal to noise ratio (SNR) when the low accelerations are encountered. Thereofore, IMU
systems are reliable when navigation is performed at high speed and acceleration values.
However, this cannot be ensured in uneven terrain, such as in underground or underwater
prehistoric caves. Finally, the error of the position estimate causes drift over time.

The SLAM technique represent a fundamental ingredient to provide unmanned mobile
platforms with autonomous navigation capabilities for accomplishing complex missions
in GPS-denied areas or where inertial measurement systems are inaccurate and dead-
reckoning techniques exploiting noisy estimates lead to map building and location estimates
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Figure 2.6: The SLAM process [Lemaire, 2004], [Lemaire et al., 2007].

(i.e. position and orientation) characterized by an unbounded error growth. Although,
dead-reckoning methods are suitable for local path planning and control execution, they do
not allow for global positioning. Figure 2.6 illustrates a general architecture of the SLAM
process which consists in estimating jointly the system’s location and building a map of
the environment. We recall hereafter the feature-based SLAM functionalities introduced
in [Lemaire, 2004] and [Lemaire et al., 2007].

• Perception about the system’s surroundings is a function strongly related to the
environment type and to the sensors embedded by the platform. Generally, the per-
ception bloc is concerned with the salient and observable features’ selection through
the use of cameras or range sensors.

• The proprioception bloc estimates the landmarks’ location wrt the platform’s posi-
tion within an observation process. Then it follows a prediction step which integrates
propriceptive measures to estimate the platform’s location between two observations
via dead-reckoning techniques.

• The data association process consists in the association of landmarks belonging to
different 3D poses of the system in order to make possible the platform’s localization.
To do so, the landmarks observed from different positions must be accurately matched
in order to avoid pose’s inconsistency.

• Estimation of both, platform’s and landmarks’ position (i.e. the state vector) wrt
a global reference frame, by integrating perception and proprioception data up to
the current time. This step represents the core of the SLAM solution for which
probabilistic solutions were developed in order to estimate incrementally a posterior
probability distribution over the state vector.

In addition, map management issues are to be taken into account within the afore-
mentioned functionalities. In particular, means for selecting pertinent features among the
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detected ones in order to avoid expensive computation time and high combinatorial of the
estimation process.

Solutions for representing the observations and the motion models are generally per-
formed by computing prior and posterior distribution using probabilistic algorithms. In
Appendix A.2 we review the existing probabilistic SLAM solutions. Research directions
are focusing on both, the estimation and the data association processes and reported so-
lutions lead to remarkable results for man-made environments. Probabilistic frameworks
lead to a complexity which grows quadratically with the number of landmarks, making
them unpractical for large-scale environments. The following subsections describes briefly
the technical background of the SLAM problem and summarizes the existing visual-SLAM
frameworks exploiting cameras and 3D laser scanners.

2.4.1.1 Visual SLAM

When appearance signatures were firstly employed for indexing databases [Rubner et al.,
1998], place recognition in topological maps [Argamon-Engelson, 1998], [Ulrich and Nour-
bakhsh, 2000] and loop detection [Gutmann and Konolige, 1999], there was when computer
vision algorithms started to be intensively employed by the Robotics research community.

Vision allows to perform 3D SLAM, implying the estimation of a fully 6DOF robot
pose. Visual motion estimation methods produce very accurate platform motion estimates
in presence of stable trackable features, outperforming dead-reackoning techniques. Vision
algorithms provide solutions for the two over the four problems of the basic feature-SLAM
functionalities: perception can be provided by the observed interested points, while data
association can be solved via interest point matching algorithms.

A second component of the SLAM framework is the loop-closing stage, which is strongly
conditioned by the capacity to recognize revisited areas in order to build consistent maps.

Let us now focus to the most fundamental key topic of the SLAM solution, the data
association problem which depends essentially on the capability to match features reliably
under any transformation occurring between two partially overlapped images.

Feature matching. The feature matching procedure identifies two features perceived
in two different positions at different moments as being the same physical object in the
world. SLAM methods rely on robot’s pose and landmarks’ location estimates to perform
data association. Since the errors on these estimates are large for long loop trajectory, the
data association becomes ambiguous. This leads to a number of hypothesis which grows
exponentially, making SLAM unpracticable for large areas. Computer vision techniques
can solve reliably the data association problem without relying on landmarks’ estimates,
by employing instead feature extraction and matching algorithms. It is mainly due to this
reason that SLAM solutions are recently being directed toward purely visual frameworks.

When conceiving a feature matching algorithm, three key aspects must be taken care
of [Brown, 1992]: (a) define a feature space (i.e. either the 2D image space or the 3D
world’s space, (b) define a similarity measure over the feature space and (c) establish a
searching strategy for feature matching.

Features can be directly the bi-directional image signal, edges, contours, lines, regions
detected within the image after applying a segmentation step, up to a higher semantic
information on the scene content.

Since fragile segmentation algorithms can lead to an alteration of the real region, several
research works solve the feature matching problem by associating the whole image content
to the feature space. Approaches widely employed are minimizing implicitly or explicitly
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a similarity measure between the local gray values [Shi and Tomasi, 1994b], [Martin
and Crowley, 1995], [Zabih and Woodfill, 1994]. There is a big BUT aspect when using
these techniques since they assume that the inter-image motion is relatively low in order
to limit the searching space (i.e. they rely on a known epipolar constraint [Hartley and
Zisserman, 2004] or suppose that the transformation laying between the overlapped images
is close to identity). Consequently, these approaches are suitable for matching data between
consecutive frames.

The SLAM framework is feeded with observations by means of feature recognition,
tracking and 3D reconstruction. In contrast to early attempts employing low-level features
(vertical edges, lines, segments, etc.) and artificial beacons, recent advances in computer vi-
sion lead to high-level feature extraction techniques [Schmid et al., 1998]. Current research
works search for image descriptors encoding powerful discriminants invariant to any image
transformation. The feature tracking problem consists in estimating features’ locations
over an image sequence. A traditional tracking framework is the Kanade-Lucas-Tomasi
(KLT) [Lucas and Kanade, 1981], [Tomasi and Kanade, 1991], [Shi and Tomasi, 1994a]
feature tracker, which employs the Harris corner detector [Harris and Stephens, 1988] for
feature extraction. A recently image matching framework employs Scale Invariant Fea-
tures Transform (SIFT) [Lowe, 2004] in conjunction with the Random Sample Consensus
(RANSAC) algorithm [Fischler and Bolles, 1981] to reject false matches. Since SIFT are
computationally too expensive, attempts aiming to speed up the computation time lead
to the Speeded-up Robust Features (SURF) [Murillo et al., 2007]. The 3D reconstruc-
tion problem is concerned with the estimation of the 3D structure and the camera pose
using a pair of partially overlapped images via epipolar geometry and fundamental matrix
use [Hartley and Zisserman, 2004].

Current feature matching algorithms exploit 2D information to solve for the data associ-
ation problem, becoming ambiguous in large-scale and unstructured environments, causing
accumulated errors along the trajectory and leading to inconsistent maps. When perform-
ing SLAM scenarios in underground or underwater environments, the feature matching
problem becomes more complicated due to the absence of reliably extractable features and
significant variations in viewpoint, lightening and distortions. In such environments, a
reliable data association algorithm is required in order to uniquely recognize already seen
landmarks. Current research work including the one presented in this dissertation are di-
rected toward the jointly use of sensors providing 2D and 3D information to yield more
robust features [Sàez et al., 2006], [Petillot et al., 2008], [Wu et al., 2008]. Chapter 7
resumes the state of the art and describes our proposal.

Visual-based SLAM raises additional issues over laser sensors, including high input data
rate, the lack of 3D measurement and the difficulty of extracting long term features of the
map. These challenges define a successful vision-only SLAM system as one able to build
consistent maps on-the-fly and to close loops for drift correction. All the aforementioned
capabilities are strongly conditioned by the detection of stable features within the image, in
order to match them under significant viewpoint changes, different illumination conditions,
noise and dynamic scene content.

Following the vision system that the platform is endowed with, the landmarks’ posi-
tion and the platform’s pose are estimated utilizing either stereo-camera pairs [Zhang and
Faugeras, 1992], [Mallet et al., 2000], [Olson et al., 2000], monocular using SFM recovery
techniques [Heeger and Jepson, 1992], [Vidal et al., 2001], panoramic-cameras or multi-
ple cooperative unmanned vision-based systems. They aim at producing highly accurate
motion estimates between successive data acquisitions, providing the possibility to build
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global and consistent maps of the environment.
Stereovision solution. We resume hereafter the stereovision SLAM principle de-

scribed in [Lemaire et al., 2007]. When using stereovision, 3D coordinates of the feature
wrt the robot are provided by matching points in the stereoscopic image pair. Stereovision
process estimates the state of the observed features transforming the latter into a landmark
(i.e. a 3D point) via feature matching algorithms performed on the image couple provided
by the stereoscopic bench. The SLAM solution can be then developed via the EKF scheme
which assigns to the state of the filter the 3D position parameters of the stereovision system
(or the robot) and a set of landmarks coordinates. State prediction and update processes
are generally performed via the EKF equations which can be found in [Durrant-White
and Bailey, 2006].

In [Jung and Lacroix, 2003] authors reported preliminary results of a stereovision
SLAM solution on a blimp testbed. Methods reported by Davison [Davison, 1998], [Davi-
son and Murray, 2002], [Davison and Murray, 1998] employed fixating active stereo, pro-
moting real-time processing (at 5 Hz) being capable of building sparse 3D maps of natural
landmarks on the fly while controlling the robot. It was also shown that is possible to
provide accurate SLAM using a small set of landmarks carefully chosen and well spread
over the image space. This approach was extended to the case of non-planar ramps travers-
ing by combining stereo-vision jointly with an inclinometer. In [Se et al., 2002] authors
demonstrated the feasibility of a SIFT-based approach designed for room-size area, yield-
ing sparse 3D maps. A patch-based approach is reported in [Kim and Sukkarieh, 2003].
Authors present an aerial scenario willing to map patches of known size on a horizontal
ground plane.

Monocular-SLAM. When the robot is endowed with a single camera, only the bear-
ings of the features are observed. In opposite to stereovision approaches, the bearing-only
SLAM does not recover directly the full state of the landmark from a single observation,
being considered as a partially observable SLAM problem [Lemaire et al., 2007]. This
requires a landmark initialization procedure, which integrates several observations over
time.

Several contributions were reported attempting to provide either a delayed or un-
delayed initial state estimation. In [Bailey, 2003] a delayed initial-state estimation method
is reported. Authors evaluate the Kullback distance between two robot’s poses which leads
to high-complexity. In [Deans and Herbert, 2000] authors designed a framework which rely
on a feature initialization powered by bundle adjustment procedure [Triggs et al., 1999]
and a Kalman filter. Despite the high-complexity of the initialization step, the proposed
method yields better results. In [Davison, 2003] [Davison et al., 2004] authors introduce
a PF approach for representing the initial depth corresponding to each feature. In large-
scale environments the proposed method is unfeasible due to the high number of particles
required which increases linearly with the initialization range. In [Lemaire et al., 2005]
the initial probability density function (PDF) is approximated with a sum of Gaussians
which are passed through a discarding process until only a single Gaussian remains, which
is injected into the Kalman stochastic map. [Lacroix last papier].

In [Kwok and Dissanayake, 2004] authors introduce the first un-delayed feature initial-
ization method. Authors approximate the initial state with a sum of Gaussians which is
explicitely injected into the state of the Kalman filter. However, the system’s convergence
when updating a multi-Gaussian feature is not yet proved. An extension of this algorithm
using Gaussian Sum Filter can be found in [Kwok et al., 2005]. In [Sola et al., 2005] a
method based on Kalman federate filtering can be found. Research work relating non-linear
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optimization approaches and standard Kalman filter bearing-only SLAM can be found in
[Konolige, 2005].

A pure SFM approach is introduced in [Mouragnon et al., 2006]. The proposed method
alternates between two steps: the 3D reconstruction is performed for images separated
by large displacements introduced as key frames, while pose computation is performed
between consecutive frames to ensure reliable feature matching. The bundle adjustment
stage is performed locally in order to overcome the computational complexity of the global
optimization stage. Davison provides a recent description of the MonoSLAM algorithm
in [Davison et al., 2007]). Authors designed a pure vision SLAM methodology using a
single camera featuring real-time but drift-free capabilities, which were inaccessible to
SFM approaches. The algorithm has a O(N2) complexity, where N is the number of
features bounded to around 100. The proposed system was validated with an application
to real-time 3D localization and mapping for a humanoid robot and live-augmented reality
with a hand-held camera. A three-step approach monocular vision is reported in [Royer
et al., 2007] for localization and autonomous navigation. Authors combine off-line learning
and SFM for mapping to perform on-line localization with real-time performances.

In [Clemente et al., 2007] a monocular SLAM system is presented based on the hi-
erarchical map approach [Estrada et al., 2005], able to build independent local maps in
real-time using EKF-SLAM and inverse depth parametrization proposed by [Montiel et al.,
2006]. Authors attempt to solve for the data association problem in dynamic and complex
environments. The proposed method employs the same approach for salient features de-
tection and matching as in [Davison and Murray, 2002], whilst the loop closing constraint
is applied at the upper level of the Hierarchical Map in near real-time.

Panoramic images provide a fully spherical field of view of the system surroundings
from a single 3D spatial position of the system, allowing to track observations over long
distances and under significant viewpoint changes. In addition, they allow to map features
far away from the camera, which is currently not achievable with stereo methods. Naturally,
scientists from robotic research community directed their researches toward the integration
of panoramic images within SLAM frameworks. Deans in his Ph. D. thesis [Deans, 2002]
demonstrated the feasibility of a 2D SLAM technique using panoramic images. In [Lemaire
and Lacroix, 2007] authors have recently reported the first 3D SLAM approach powered
by panoramic images. The proposed framework relies on natural features matching and
image indexation for loop closing.

SLAM using multiple cooperative systems. Vision-based mapping systems with
cooperative robots were recently reported [Danesi et al., 2003], [Sujan and Meggiolaro,
2005], [Brown et al., 2008]. These systems aim at performing collaborative mapping sce-
narios within which each map generated by each unmanned platform is send to a central
processing node to merge all the individuals maps into a global one. Such approaches im-
prove considerably the mapping process in terms of rapidity and computational resources,
since each platform can have access to the knowledge gathered by others platforms, col-
laborating within an information and decision network.

So far we have briefly described several visual-SLAM approaches aiming to provide
unmanned mobile platforms with localization and map building capabilities. While solving
reliably for the observation and data association problems, the reported vision-based SLAM
solutions have several limitations when dealing with unstructured, large-scale and GPS-
denied environments.

First, the high-complexity of the state-based formulation of SLAM limits the feasibility
to room-size scenarios.
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Second, data association problem relies on feature extraction and matching whose ex-
istence cannot be guarantee in previously unknown environments. In addition, current
frameworks exploit data form navigation sensors (GPS, IMU, odometry) which in un-
derground and uneven terrain may have dropouts or carry noisy measurement. Feature
matching algorithms yields reliable results in structured environments. A hard-to-solve
problem in such environments is to conceive feature matching algorithms capable to deal
with feature-less and GPS-denied areas. When dealing with unstructured environments,
due to the lack of interest features, one must design a feature matching algorithm capable
to disambiguate the data matching process.

A third problem is that the majority of visual-SLAM approaches solve mainly for the
platform’s localization problem, generating sparse 2D or 3D maps. As stated in Section
2.2.2, this is mainly due to the fact that in unstructured environments stereovision ap-
proaches lead to noisy 3D geometry and consequently they cannot allow for accurate 3D
measurements. Therefore, endowing a mobile platform with dense 3D scene representation
still remains an open issue in the robotics research community. In order to address this
critical need, several research works were directed toward the use of range sensors. The
next subsection reviews several range-based SLAM methods.

2.4.1.2 Range-based SLAM

Achieving three-dimensional SLAM is a straightforward extension of the 2-D case. Never-
theless, it involves additional complexity due to the more general vehicle pose, increasing
sensing and feature modeling complexity. There are three essential forms of 3D SLAM.

The first class is a simple 2D SLAM framework which includes additional map building
capabilities in the third dimension. For instance, a widely used system is composed by
a horizontal laser and a second orthogonal laser which maps vertical slices [Mahon and
Williams, 2003], [Thrun et al., 2000]. However, these approaches are suitable only for
vehicles motions which are confined to a plane.

The second form is a direct extension of 2D SLAM, which relies on landmarks extraction
and joint estimation of the map and the vehicle’s pose.

The third form involves a different SLAM formulation, where the joint state is composed
of a history of past-vehicle poses [Newman et al., 2006], [Eustice et al., 2005]. At each pose,
the vehicle gathers a 3-D scan of the environment, and their alignment is performed via
scans matching methods. These approaches are referred to as trajectory-oriented SLAM
methods. They are suitable for environments where discrete identifiable landmarks and
direct alignments of sensed data is more reliable. When using these techniques, the map
is no longer part of the state to be estimated, forming instead an auxiliary data set. Each
pose has an associated scan of sensed data and by aligning them it is possible to form a
global map.

Also, topological mapping gave rise to different trajectory-based SLAM paradigm, where
poses are connected in a graphical network rather than a joint state vector. This framework
is known as consistent pose estimation (CPE) methods [Gutmann and Konolige, 1999],
[Konolige, 2004], which based on topological mapping and data alignment procedures yields
exemplary results in large indoor environments. Other methods are extracting directly 3D
features which are further inserted into a map or matched against others overlapping scans
to accurately measure robot displacement and build a map of historic robot locations each
with a local scan reference [Thrun et al., 2000], [Konolige and Gutmann, 1999].

Recent trends apply probabilistic frameworks to 3D mapping. In [Katz et al., 2006]
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authors employ a probabilistic approach of ICP scan matching. An extended Kalman filter
is integrated within the mapping framework in [Weingarten and Siegwart, 2006], [Cole
and Newman, 2006]. In [Olson et al., 2006] authors build globally consistent maps by
minimizing the global non-linear constraint network on a set of poses. Their approach was
employed by [Triebel et al., 2006] to create multi-level surface maps.

Several research groups aim at generating highly accurate 3D maps using immobile 3D
laser scanners [Allen et al., 2001], [Georgiev and Allen, 2004], [Sequeira et al., 1999]. In
[Sequeira et al., 1999] authors introduce the RESOLV project aimed at modeling interiors
promoting virtual reality and tele-presence applications. Their system is composed by a
robot endowing a RIEGLr scan laser and scan matching algorithms through means of ICP.
In [Allen et al., 2001] authors have developed a robot for modeling urban environments
using a CYRAXr scanner and a feature-based algorithm for 3D scans alignment. However,
in their recent work [Georgiev and Allen, 2004], authors do not exploit the 3D laser data
for the platform’s localization.

In opposite to visual-based SLAM methods mainly designed for localization purposes,
range-based methods provide highly-accurate dense 3D maps, beside the localization. How-
ever, current visual- and range-based SLAM frameworks present two common drawbacks:
first, they exploit initial estimation provided by navigation sensors which are unreliable on
non-flat terrain and underground environments. Second, they utilize prior knowledge on
the scene’s content, relying on features’ existence for data matching task, which cannot be
guarantee in previously unknown environments.

Nevertheless, visual and range-based SLAM solutions have complementary advantages.
On one hand, visual-SLAM techniques provide appearance information allowing to solve
for data association, loop closing and localization problems, being unsuitable to produce
dense 3D maps for areas where interest points are not detectable (such as unstructured
zones). On the other hand, range-based SLAM solutions ensure accurate and dense 3D
geometry recovery suitable for generating in-situ rich environment perception and for in-
ferring semantics about the robot’s surroundings. In addition, both radiometric and geo-
metric information can be efficiently combined to disambiguate the data matching task in
feature-less and GPS-denied areas for field robotics applications.

2.4.1.3 Fusion-based SLAM Solutions

In 2009, the Workshop on Visual Navigation and Mapping held in conjunction with the
IEEE International Conference on Robotics and Automation has clearly showed that SLAM
techniques have now reached a considerable state of maturity.

The standard state-space approach to SLAM in now well understood and representa-
tion, association and computation issues appear to be theoretically solved. Nevertheless,
the computational complexity limits such methods to room-size areas. As for the visual-
based SLAM solutions, since they rely on feature extraction and matching, tractable solu-
tions can be obtained for scenes containing strong structures. Consequently, the accuracy
of the 3D structure and platform’s motion estimates are subject to the scene’s content.
Such approaches yield sparse maps, being suitable for accurate localization purposes rather
than mapping. In order to obtain accurate and dense 3D point clouds from passive 3D
vision techniques the environment has to be strongly structured in order to allow for sta-
ble detectable features. In unstructured environments, it is therefore difficult to achieve
both: accurate and dense 3D mapping, and 6DOF localization using purely visual SLAM
solutions. In opposite to visual-SLAM methods, range-based approaches yield the pos-
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sibility to provide dense and accurate 3D maps and 6DOF localization in unstructured
environments. A common drawback of the reported visual and range-based SLAM frame-
works is that they integrate noisy measurements provided by navigation sensors (GPS,
IMU, odometry) which are not reliable and even absent in unstructured and underground
environments.

Much less research works attempt to solve for the SLAM problem in complex and
difficult to access environments for field robotics applications. In such environments, spe-
cial attention must be given to the absence of reliably detectable and trackable features
but also to the impossibility to rely on navigation sensors. Appearance- and range-based
SLAM methods are opening a radically new paradigm for mapping and location estima-
tion, without the need of strong geometric or radiometric landmark descriptions. As stated
in [Bailey and Durrant-White, 2006], these methods are opening up new directions and
making links back to fundamental principles in robot perception. The key challenges for
SLAM are in larger, more persuasive implementations and feasibility demonstrations of the
autonomous system. Ongoing research works on SLAM aim to demonstrate their reliability
within complex missions taking place in hostile environments, such as driving hundreds of
kilometers in large-scale and increasingly unstructured environments where GPS-like solu-
tions are unavailable such as, forest canopy [Nister et al., 2004], underground, underwater
mapping and ship hull inspection [Kim and Eustice, 2009], under-ice exploration [Kunz
et al., 2009] and automatic mapping of Martian physiography [Stepinski and Bagaria,
2009].

Recent trends of SLAM approaches are directed toward the jointly use of the existing
solutions. In [Kim et al., 2009] an integration of grid and topology map is reported.
Recently, the use of a sonar-based SLAM solution in conjunction with neural networks
for object classification was reported in [Conte et al., 2008]. In [Nuchter et al., 2005]
authors employ low-level semantic knowledge (i.e. segmentation of the surrounding areas
into ceiling, floor and in-between) to perform 3D mapping using the Kurt3D unmanned
mobile platform.

The first hybrid SLAM framework was reported in [Newman et al., 2006]. Authors
use an actuated laser scanner for geometric map building and vision for loop closing.
Each image is passed into a feature extraction and matching procedure to estimate the
rigid transformation between two robot’s poses. The latter becomes the initial solution
for an iterative laser scan registration procedure reported in [Cole and Newman, 2006].
Authors reported the use of SIFT [Lowe, 2004] and Harris Affine Detector [Mikolajczyk
and Schmid, 2004], but other descriptors robust to wide baseline are likely to be employed.
The proposed feature matching procedure yields robustness to repetitive texture in outdoor
urban scenes, such as trees and windows.

2.5 Proposed Image-Laser Solutions for in-situ 3D Modeling

So far we provide a description of the existing methods for generating digital 3D models of
the reality through the use of cameras and laser range finders, i.e. digital scene represen-
tation, 3D modeling and SLAM techniques, showing that recent trends are now directed
toward the fusion of the different techniques and image-laser fusion is one of them.

In Appendix A.3 we review several 3D modeling systems grouping the aforementioned
techniques and highlight their shortcomings with respect to our research goal: in-situ
3D modeling in unstructured and difficult-to-access environments. Currently existing ap-
proaches were conceived under the assumption that the system disposes of a prior knowl-
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edge on the scene’s content (i.e. radiometric or geometric features’ existence, regular terrain
to navigate with minimal perception) or the possibility to rely on navigation sensors (GPS,
INS, odometry, etc.).

Our research work aims to study and evaluate the potential of the image-laser data
fusion for addressing efficiently the in-situ 3D modeling problem when dealing with difficult
to access and unstructured environments. In this context, we suggest that a successful in-
situ 3D modeling framework can be supplied by a combination of the aforementioned
techniques improved with image-laser solutions for handling feature-less areas in order to
respond to worse-case in-situ 3D modeling scenarios.

The image-laser complementarity has been widely emphasized by several research works
focusing on photorealist and highly-accurate 3D modeling frameworks. This dissertation
exploits the image-laser complementarity, providing a fully automatic 3D modeling system
designed to generate in-situ photorealist and complete digital 3D models in feature-less and
GPS-denied large scale environments. The proposed system takes advantage of the Nis-
ter [Zhao et al., 2005] system’s design (i.e. camera-laser baseline negligible wrt the scene’s
depth), by employing a RACL system, overcoming therefore the shortcomings caused by
FMCL systems caused by high inter-sensors parallax. Beside this main contribution, it pro-
vides image-laser solutions aiming to fill the gap between nowadays image- and laser-based
world modeling techniques to overcome their limitations when dealing with unstructured,
large-scale and difficult to access environments. We summarize hereafter the image-laser
joint solutions achievable by the proposed system.

2.5.1 Digital scene representation

Figure 2.2 emphasizes the complementarity of the nowadays digital scene representation
techniques. In particular, IBR methods lack geometry (for generating novel coherent views
from original images), which can be recovered via either passive or active 3D vision tech-
niques. However, passive 3D vision methods cannot recover dense and accurate 3D ge-
ometry in areas for which stable features are barely detectable, such as unstructured en-
vironments. In exchange, active 3D vision sensors captures densely sampled geometry of
the sensed surface, but they lack photorealist photometric information. Consequently, the
aforementioned techniques have several shortcomings when dealing with the unstructured
and difficult to access environments, which can be overcame through their joint use.

To do so, this dissertation introduces the 4D-mosaics defined as fully spherical panoramic
views unifying color and geometric information. They allow to generate novel views ge-
ometrically coherent with the real scene by accurately interpolating between 4D-mosaics,
by-passing therefore the costly acquisition step required by IBR approaches. Passive and
active 3D vision techniques complementarity becomes more obvious when dealing with
unstructured environments. Active 3D vision techniques recover more reliably the 3D ge-
ometry, while passive methods provide texture information. The proposed 4D-mosaicing
sensor builds a bridge between active and passive methods, providing photorealist and
geometrically accurate panoramic view for a single 3D pose of the system by stitching
automatically several overlapping scans and color images.

2.5.2 Automation of the 3D modeling pipeline

Data acquisition. In this dissertation we propose means for automatic data acquisition
and visual servoing procedures for intelligent digitization. To this end, Chapter 3 introduces
a mosaic-driven acquisition scenario, while visual servoing procedures for ensuring the
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3D scene model completeness are proposed in the Chapter 7 of this dissertation. Since
panoramic views provide long-term feature matching, the proposed mosaic acquisition
scenario facilitates data matching task in feature-less areas and ensures in-situ the 3D
scene model completeness.

Data Alignment. When dealing with unstructured and difficult to access environ-
ments, the main issue standing behind the automation of the 3D modeling pipeline is
represented by the data alignment stage. In such environments, automatic data alignment
is still an open issue since the available data alignment algorithms rely on the assumption
that the scene contains stable trackable features whose existence cannot be guaranteed. In
addition, most algorithms exploit either appearance or geometric criteria separately which
limits the robustness to false matches.

In this dissertation we address key issues for solving the data alignment problem in
feature-less and GPS-denied areas. We introduce fully automatic data alignment tech-
niques, giving rise to a 3D modeling pipeline capable to run in-situ without human op-
erator’s intervention. The proposed techniques supply fully automatic functionalities for
multi-scans (Chapter 4), multi-image (Chapter 5) and laser-image alignment (Chapter 6),
without relying on features’ extraction nor on navigation sensors, yielding therefore an
environment-independent solution for the data alignment task. In addition, data matching
under wide view-point variation is performed using a joint 2D-3D criteria to eliminate false
matches.

Beside the in-situ generation of 3D scene models, the proposed automatic data align-
ment procedures provides solutions for multiple onboard autonomous functionalities in
feature-less and GPS-denied areas, such as: localization, 2D or 3D mapping, SLAM, view
and path planning, obstacle detection, place recognition, etc.

Rendering. In our research work we aim at performing a fast in-situ 3D scene model
rendering to validate the completeness of the global 3D scene model. Chapter 6 of this
dissertation describes the 3D model rendering process integrated within the proposed 3D
modeling pipeline. The proposed method exploits essentially the geometry and the texture
recovered by a RACL system.

In order to cope with time and in-situ access constraints, we propose a multi-level
3D model rendering method. Depending on time constraints, the available computational
resources and the desired accuracy, the 3D model rendering process can be performed
at different resolution levels. For each level, we provide two methods for the 3D model
rendering step. The first method assigns the color the each 3D point to yield a photorealist
digital 3D model. The second method performs texture mapping onto 2D meshes generated
from 3D point clouds to produce a photorealist 3D model rendering. Data integration into
2D meshes is performed via an automatic algorithm able to handle both type of inputs:
unorganized 3D point clouds or a set of range images. In order to save computation time
and power resources, additional processing to include lighting and shading effects can be
performed off-line by a host wirelessly connected to the target to produce highly accurate
and photorealist 3D model for virtual tourism applications.

2.5.3 4D-Mosaic-driven Dual SLAM Solution for Complex Environments

Since the in-situ 3D modeling problem is strongly related to the systems’ capacities to
acquire, generate and merge partially overlapped 3D models and to localize it-self within
the global 3D scene model, in this dissertation we tackle the SLAM problem for complex
and difficult to access environments and propose image-laser means to solve for it without
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relying on feature detection nor on navigation sensors (GPS, IMU, odometry).
We propose a dual SLAM solution through the jointly use of a color camera and a 3D

laser range finder. The term dual denotes the complementary image-laser fusion, which
combines sparse 3D point clouds and ultra-high resolution color images.

The proposed system embeds only active and passive 3D vision sensors, being designed
to generate in-situ photorealist and complete digital 3D models in large-scale and unstruc-
tured underground environments. Chapter 3 introduces the hardware and the software
architecture of the proposed system. The platform is aimed at generating in-situ complete
and photorealist 3D models using a 4D-mosaic-driven SLAM scenario, without relying on
navigation sensors nor on feature extraction and matching.

For each spatial position of the platform, the system generates in-situ a fully spherical
4D mosaic (i.e. 4-channel R,G,B and depth), encoding a photorealist and dense 3D digi-
tal panoramic view. The 3D scene model completeness is ensured via a 4D-mosaic-driven
acquisition scenario by employing visual servoing resources to provide feedback control for
view planning, path planning and autonomous navigation to supply complete site explo-
ration and digitalization. The latter calls for SLAM, obstacle detection and fast decision
making capabilities. A SLAM doze would be obtained by matching and merging several
4D-mosaics wrt a global coordinate system, resulting in a global 3D scene model which
powers the visual control loop.

A 4D-mosaic is performed within three-steps of data alignment which are detailed
throughout this dissertation. First, several partially overlapped 3D scans are automati-
cally aligned and merged into a 3D fully spherical 3D mosaic. This method is described in
Chapter 4. Second, a PTU delivers a sequence of high-resolution color images which are
stitched into a 2D Gigapixel mosaic via a multi-view image alignment technique. Technical
details on this method are provided in Chapter 5. Third, an image-laser data alignment
algorithm is proposed in order to align the 3D mosaic onto the 3D Gigapixel one. This
method is described in Chapter 6. All the aforementioned are featuring data matching
capabilities for feature-less and GPS-denied areas. As stated in [Lemaire and Lacroix,
2007], panoramic images provide long-term feature matching. In addition, the main ad-
vantage of the 4D mosaic-driven SLAM scenario is that it provides reliable data association
in unstructured environments by exploiting both 2D and 3D information to disambiguate
feature matching when stable features and not detectable. The use of 4D-mosaic matching
provides tractable solution for data association and loop closing, avoiding the use of image
indexation for loop closing suggested in [Lemaire and Lacroix, 2007], which is a reliable,
but time consuming solution.

Hereafter, we summarize several capabilities provided by the proposed 4D-mosaic-
driven hybrid SLAM scheme:

• 4D-mosaic views allow for photorealist and dense 3D maps within a hierarchical
representation;

• reliable solution for the data association and loop closing problems through the 4D-
mosaic matching;

• environment perception by merging appearance and geometry information to infer
semantics over the scene’s content.

When dealing with the SLAM problem in unstructured and difficult to access environ-
ments, it is strongly required to generate high-detailed photorealist and dense 3D maps
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of the environment in order to endow the platform with rich perception of the environ-
ment. Therefore, one must be able to solve reliably for the data matching (image-image,
range-range and range to image alignment) in order to provide mapping, localization, data
association and loop closing capabilities, without relying on navigation sensors nor on
feature extraction.

Beside providing automatic means for data alignment allowing to perform vision- and
range-based omnidirectional 3D vision in unstructured environments, the proposed 4D-
mosaicing sensor ensures reliable data matching between different 3D poses of the system
using a joint 2D-3D similarity criterions, allowing to disambiguate the data matching
process, which is sensible to false matches when using only radiometric criterions. Figure
2.7 synthesizes the existing SLAM solutions and places our proposal within it: dual SLAM
described throughout this section.

All the aforementioned functionalities allow for several applications to be performed
either in-situ (site surveys, inspection and monitoring in high-risk environments via metrol-
ogy techniques) or through the world wide web (cultural heritage, data annotation for
virtual tourism or augmented reality purposes). In addition, the proposed solutions pro-
vides unmanned mobile platforms with rich environment perception (i.e. photorealist and
dense 3D mapping), allowing them to be aware when evolving in an previously unknown
environment.
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Figure 2.7: SLAM methods classification and our proposed image-laser solution: 4D-
mosaic-driven dual SLAM for feature-less and GPS-denied areas.
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Chapter 3

ARTVISYS: ARTificial VIsion-based
SYStem

This chapter introduces a general-purpose artificial vision-based system aiming to provide
vision-based systems (VBSs) with basic functionalities for accomplishing autonomously
complex tasks in unstructured and difficult to access environments. An autonomous system
can be employed in a wide variety of complex missions and generating in-situ complete
3D models of complex environments is one of them. Since such endeavors are strongly
related to a basic sense: vision, we endow a site survey system with automatic means for
environment sensing, giving rise to a perception-through-site survey system.

We start this chapter by listing several key issues which need to be addressed when
dealing with the 3D modeling problem in challenging environments. The next section
solves for the automation of the 3D modeling pipeline by introducing the 4D-mosaic - a
fundamental ingredient of our proposed in-situ 3D modeling pipeline. In order to ensure
in-situ the 3D scene model completeness, Section 3.3 proposes a 4D-mosaic-driven in-situ
3D modeling process having as main scope the automatic digitization and exploration of
the site. Section 3.4 presents the ARTVISYS’s software architecture, whilst Section 3.5
describes the in-situ operating modes of the ARTVISYS system. Section 3.6 summarizes
ARTVISYS’s capabilities comparing to the state-of-the-art 3D modeling systems, while
Section 3.7 concludes on the ARTVISYS’s potential to be used as a general-purpose vision-
based system which can be upgraded with secondary capabilities to perform specific tasks
in complex environments.

3.1 Key Issues for In-situ 3D Modeling in Challenging Envi-
ronments

Nowadays, unmanned systems equipped with active and passive 3D vision sensors are about
to be deployed in previously unknown and difficult-to-access environments for performing
complex tasks in order to avoid operator’s intervention. During such endeavors it is often
not possible to provide the platform with a detailed map of the environment. Therefore, the
system is required to create a dimensionally accurate geometric model of its surroundings
by sensing autonomously the environment.

In our research work, we aim at developing a vision-based system capable to generate in-
situ photorealist and digital 3D maps in unstructured and difficult-to-access environments
in order to avoid operator’s intervention. To achieve the aforementioned research goal, this
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dissertation is willing to answer the following question:
How can an unmanned vision-based system generate in-situ photorealist and geometri-

cally accurate and high resolution digital models of the real world in previously unknown,
unstructured and difficult-to-access environments?

When referring to the state-of-the-art 3D digitization techniques described in Chapter
2, additional key aspects must be taken care of in order to endow an unmanned platform
with autonomous functionalities for supplying in-situ 3D modeling missions in complex
environments. We list hereafter these key aspects and how we propose to address them in
this dissertation.

Underground, underwater, under-ice, extra-terrestrial environments. Such
environments lead to the impossibility to rely on navigation sensors (GPS, INS, odome-
try, dead-reckoning). Several research works have attacked this problem but the proposed
frameworks rely on features’ extraction and matching (Harris, SIFT) yielding reliable re-
sults for structured scenes, or on shape descriptors which require dense 3D scans, being
unaffordable for in-situ processing.

In this dissertation we provide fast acquisition and data processing by acquiring low
resolution 3D scans and high-resolution color images. It is important to note that in our
research work no additional sensors are used beside a 3D laser scanner and a camera. Both
capturing devices are sensing the environment providing unmanned systems embodied
with such sensors with onboard visual capability. The proposed algorithms exploit the
jointly use of image and laser data alone to design environment-independent methods for
map building and platform’s positioning, without exploiting knowledge from navigation
sensors.

Unstructured terrains. In such environments geometric and radiometric features are
barely extractable. In addition, zones containing repetitive texture or too homogeneous
areas are difficult to be reliably matched using the currently existent feature extraction
and matching methods, due to the separate use of either 2D or 3D information. In this dis-
sertation we propose means to disambiguate data matching in unstructured environments
by employing a joint 2D-3D criterion, yielding robustness to feature matching. To this
end, in Chapter 6 we introduce the 4D-mosaic data structure in order to ensure reliable
data matching under significant viewpoint variations, which encode photogrammetric and
geometric information, allowing for long-term primitive matching. The research work re-
lated in this dissertation introduces two categories of descriptors to solve for data matching
problem in unstructured environments.

• The first one corresponds to 2D features encoding radiometry and the bearing of the
sensor. These features were developed for image stitching purposes and a detailed
description of them is provided in Chapter 5. Since they do not correspond to any
interest point, we introduce them as anonymous features (AF).

• The second class of features is a hybrid 2D-3D descriptor encoding texture and shape
properties (i.e. geometric and statistical distribution of the 3D point clouds) of the
sensed surface. They are introduced in Chapter 7 as viewpoint invariant hybrid
descriptors (VIHD) for matching 4D-mosaics acquired from different 3D poses of the
system, under significant viewpoints variation and illumination changing.

Dangerous areas. From Appendix A.3 we can note that several research works have
reported semi-automatic frameworks for 3D modeling of complex environments [Banno
et al., 2008], relying on heavy operator’s intervention for placing artificial landmarks, for
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guiding the data acquisition and processing, and for validating the final 3D scene model.
In our research work, the 3D modeling missions are undertaken in hostile environments,
precluding therefore human surveyors’ access. The critical need for a vision-based auto-
matic 3D modeling system is emphasized by the operator’s difficulty to access too small or
too dangerous areas. As in the work proposed by [Nuchter et al., 2005], [Paar et al., 2009],
[Miura and Ikeda, 2009], a possible solution is to send data to a host wirelessly connected
to the target in order to allow data processing and validation. However, such methods are
usually limited by memory bandwidth and communication latency, being therefore vital to
develop fully onboard autonomous functionalities to be performed in-situ. To this end, this
dissertation proposes automatic algorithms to automate the 3D modeling pipeline, which
leads to in-situ generation of 4D-mosaics, unifying photorealism and geometry into a fully
spherical view.

Limited time and in-situ access. A very ambitious goal in mobile robotics is to
deploy unmanned systems in hostile environments to perform complex missions. The goal
of such endeavors is to avoid endangering human’s surveyor’s life and to ensure that the
mission is accomplished within the granted time. In order to avoid to come back on site
to complete data collection, the limited time and in-situ access within which the 3D scene
model completeness must be ensured are major concerns. In this dissertation we address
this issue by proposing an automatic 3D modeling pipeline able to cope with time and in-
situ access constraints. The 3D modeling capability is further exploited along with visual
servoing procedures in order to guide the system to act intelligently on-the-fly to ensure
in-situ the 3D scene model completeness.

Dealing with the aspects listed above is the main concern of our research work. To
this end, this dissertation provides image-laser solutions for the aforementioned issues and
proposes their integration within an unmanned vision-based system architecture. Since
the proposed system exploits active 3D vision and color camera inputs alone, this disserta-
tion introduces it as ARTVISYS, the corresponding acronym for ARTtificial VIsion-based
SYStem.

Our research work aims at addressing the aforementioned issues by introducing a
purely-vision-based system able to perform in-situ the entire 3D modeling pipeline: (1)
data acquisition and processing, (2) generate 3D models in a step-by-step fashion, (3) act
intelligently on-the-fly in order to improve the scene completeness.

This dissertation focuses mainly on the system’s design and solves for the automation
of the 3D modeling pipeline through the use of 4D-mosaics. The research perspectives
aim at exploiting the 4D-mosaic structures to supply visual servoing functions to provide
unmanned platforms with autonomous behavior for site exploration and to ensure complete
site digitization.

The proposed system embeds a perception-through-site-digitization capability, being
able to perform site surveys missions in previously unknown environments, while perceiving
the environment. The system’s design allows its use in either autonomous or manual mode
(to provide assistance to the human surveyors). Tests run on real data acquired in three
prehistoric caves from France (Moulin de Languenay - Chasteaux, Tautavel and Mayenne
Science) are presented to evaluate the performances of the proposed system. In addition,
in order to illustrate the environment-independent character of the proposed methods, we
perform tests in structured environments using data sets acquired by a vehicle equipped
with several cameras and LRFs designed for city mapping purposes.
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Figure 3.1: The 4D-mosaicing process proposed for integration onboard ARTVISYS. a)
NIKON D70 r digital camera mounted on Rodeon r motorized pan-tilt unit, b) Trimble
r 3D laser-range-finder during a data acquisition campaign undertaken in the Tautavel
prehistoric cave (France) by the French Mapping Agency in October 2007, c) a Gigapixel
color mosaic resulted from an image sequence acquired in the Tautavel prehistoric cave
using an automatic image stitching algorithm which we introduce in Chapter 5 of this
dissertation, d) a 3D mosaic resulted from several overlapped scans acquired in the Tautavel
prehistoric cave, matched by an automatic multi-view scan-matcher proposed in Chapter
4, e) alignment the 3D mosaic onto the Gigapixel one to produce the 4D mosaic, process
described in Chapter 6 of this dissertation.

3.2 Automatic 3D Modeling through 4D-Mosaic Views

This section resumes how we solve for the automation of the 3D modeling pipeline through
the use of 4D mosaics. The following description introduces the hardware design and
summarizes the 4D-mosaicing process.

We designed a dual system for performing in-situ 3D modeling tasks in large-scale,
complex and difficult to access underground environments. Since in such environments
navigation sensors are not reliable, the proposed system embeds only 2D and 3D vision
sensors, unifying photorealism and high resolution geometry into 4D mosaic views. Figure
3.1 illustrates the ARTVISYS’s hardware along with a 4D-mosaicing process. We describe
hereafter several ARTVISYS’s features and justify the proposed design.

RACL dual-system. The proposed hardware architecture falls in the category of
the RACL dual sensing devices, embedding a high-resolution color camera mounted on a
motorized pan-tilt unit and a 3D laser-range-finder, which are depicted in Figures 3.1 a)
and b), respectively. There are several reasons for choosing a RACL design:

• image-laser complementarity has been widely emphasized and investigated by several
research works. There is no doubt that employing the two sensors separately, none
can solve for the 3D modeling problem reliably.

• RACL systems overcomes several shortcomings raised by FMCL ones. In particular,
image-laser alignment and texture mapping procedures are difficult due to occluded
areas in either image or laser data.
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Figure 3.2: a) Trimble r laser range finder delivering 5000 points per second with an
accuracy of 3mm at 100m. The dimensions of the laser range finders are: 340mm diameter,
270mm width and 420mm height. The weight of the capturing device is 13.6kg. b) the
field of view covered by the sensor.

3D Mosaics from laser-range-finders. As mentioned in Section 2.2.3, in oppo-
site to stereovision techniques, laser range finders allow dimensionally accurate and high
resolution geometry recovery in unstructured environments, where stable features are not
detectable. The scanning device employed in this research work belongs to the time-of-
flight 3D scanning techniques for which a brief description is provided in Appendix A.1.
We dispose of a Trimble r laser range finder depicted in Figure 3.2 a) providing a 3D
point clouds and their associated light intensity backscattering within a field of view of
360◦ horizontally × 60◦ vertically, as shown in Figure 3.2 b). ARTVISYS acquires several
partially overlapped scans and matches them into a fully 3D spherical mosaic via a multi-
view scan matching algorithm for which a detailed description is provided in Chapter 4.
Figure 3.1 d) illustrates an example of a 3D mosaic obtained from real data acquired in
the Tautavel prehistoric cave.

Gigapixel panoramic head. ARTVISYS is capable of generating photo-realist 3D
models through the use of fully spherical Gigapixel mosaics. Our system is equipped with
a Gigapixel panoramic head for which we designed an automatic software for generating
in-situ Gigapixel mosaics. The Gigapixel mosaicing system illustrated in Figure 3.1 a)
delivers a sequence of ultra-high resolution and pose-annotated images which are further
automatically stitched into a Gigapixel mosaic via a multi-view image matching algorithm
which will be described further in Chapter 5. Figure 3.1 c) depicts an example of an
Gigapixel mosaic obtained from real data acquired in the Tautavel prehistoric cave.

4D-Mosaicing. For each 3D spatial position, ARTVISYS aligns the 3D mosaic onto
the Gigapixel color one and integrates them into a photorealistically textured 3D panoramic
view encoded as a 4D-mosaic. This is the last step in the 4D-mosaicing process correspond-
ing to Figure 3.1 e) and for which a detailed description is provided in Chapter 6. The
main advantage of 4D-mosaic views is represented by the fact that they encode explicit
color information as 3-channel components (i.e. red, green and blue) and implicit shape
description as depth for a fully spherical view of the system’s surroundings. The four di-
mensional components are required in order to ensure reliably further processing, such as
unambiguous data matching under wide viewpoint variation.
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Addressing time and in-situ access constraints. An in-situ 3D modeling system
must be able to supply fast data acquisition and processing while assuring the 3D scene
model completeness in order to avoid to return on site to collect new data. To do so,
ARTVISYS fulfills the aforementioned requirements by integrating several features within
the data acquisition and processing stages.

• Low-resolution geometry. As already emphasized in Chapter 2, dense 3D point
clouds require computationally expensive data acquisition and processing. In order
to cope with time and in-situ constraints, ARTVISYS acquires low-resolution 3D
geometry, whilst fast processing is ensured via a multi-resolution framework.

• High resolution texturing. Since cameras allows for instantaneous acquisition,
ARTVISYS captures high-detailed texture and generates in-situ Gigapixel mosaics
through the use of a fast multi-resolution image stitching algorithm.

• 2D, 3D and 4D mosaics. ARTVISYS generates in-situ 2D, 3D and 4D fully
spherical view of the system for a single 3D pose. This makes them suitable for
map-building and localization tasks. In addition, they provide long-term features
tracking, ensuring reliable data matching in feature-less environments. The afore-
mentioned advantages are exploited by the ARTVISYS system within a 4D-mosaic-
driven acquisition scenario aiming to ensure the 3D scene model completeness. To
this end, a 4D-mosaic matching procedure described in Chapter 7 in order to aligns
and integrates them into a global 3D scene model.

• Partial 3D mosaic acquisition for scene completeness avoiding data redun-
dancy. The 3D mosaicing scenario starts by acquiring several partially overlapped
scans and integrates them into fully spherical 3D mosaics. However, when occlusions
are encountered, the system senses only the occluded areas, giving rise to partial
mosaics. This allows to ensure the 3D scene model completeness while avoiding data
redundancy and long processing.

The next section introduces the 4D-mosaic-driven in-situ 3D modeling process per-
formed by ARTVISYS aiming to ensure in-situ the 3D scene model completeness.

3.3 4D Mosaic-driven In-situ 3D Modeling

The proposed 3D modeling pipeline leads to a vision-based system capable to gener-
ate in-situ photorealist and highly accurate 3D models encoded as 4D mosaics for each
ARTVISYS’s spatial position, called station.

When dealing with the in-situ 3D modeling problem in large scale complex environ-
ments, one has to generate dynamically 3D scene models and to deal with occluded areas
on-the-fly, in order to ensure automatically the 3D scene model completeness. Moreover,
since our research work is concerned with 3D modeling in difficult to access environments,
time and in-situ access are major concerns. Therefore, once accessing the site, the system
must be capable to ensure in-situ the 3D scene model completeness in order to avoid re-
turning on site to collect new data. This calls for an intelligent 3D modeling system, which
implies the computation of the Next Best View (NBV) position from which the new 4D
mosaic must be acquired in order sense the occluded areas. In addition, the system must be
able to navigate from it’s current position to the next best estimated 3D pose from which
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the next 4D mosaic must be acquired. This implies path planning, autonomous navigation
and fast decision making capabilities. To this end, the 4D-mosaicing process in integrated
within a 4D-mosaic-driven in-situ 3D modeling process for which a global description is
provided in Figure 3.3.

Figure 3.3: The global software architecture of the 4D-mosaic-driven in-situ 3D modeling
process proposed for integration onboard ARTVISYS.

Software design. The global architecture of the ARTVISYS is composed by the main
process corresponding to the 4D mosaicing acquisition and processing, and the control loop
which provides feedback to the system in order to ensure the 3D scene completeness by
means of visual servoing. The latter capability exploits the currently generated 3D scene
model, being subject to the system’s kinematics. The next section provides a detailed
description of the onboard autonomous functionalities composing the proposed global ar-
chitecture.

4D-mosaic-driven acquisition scenario. The above software design is supplied by
a 4D-mosaic-driven acquisition scenario performed in a stop-and-go fashion, as illustrated
in Figure 3.4. Due to occlusions, several 4D mosaics must be autonomously acquired from
different 3D spatial positions of the system in order to maximize the visible volume, while
minimizing data redundancy. The acquisition scenario starts by acquiring a 4D-mosaic
which is further exploited to detect the occluded areas. In Figure 3.4, they corresponds
to the blue segments representing depth discontinuities associated to each station. In a
second step, the system must estimate the 3D pose from which the next 4D-mosaic must
be acquired in order to maximize the visible volume. In a third step, the 4D mosaics are
matched and integrated within a global 3D scene model which is further exploited to iterate
the two aforementioned steps until the 3D scene model completeness is achieved. Figure 3.4
illustrates the matching process between successive stations which establishes homologous
triads belonging to the overlapping area. A description of the matching process is provided
in Chapter 7.

3.4 On-board Functionalities

This section zooms into the ARTVISYS’s software design depicted in Figure 3.3 to provide
a detailed description of its onboard autonomous functionalities in Figure 3.5.

Main process: automatic 3D modeling through 4D-mosaics. The main pro-
cess corresponds to the 3D modeling pipeline for which this dissertation proposes a 4D-
mosaicing framework. During the main process, the system acquires a sequence of N
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partially overlapped scans and M high-resolution color images, for a given 3D position of
the platform. A multi-view scan-matcher exploits the 3D point clouds to automatically
generate in-situ a low resolution (LR) 3D mosaic. In a second step, a multi-view image
matching algorithm stitches the M high-resolution images into a Gigapixel mosaic. The
two aforementioned blocs have stand-alone capabilities, providing the possibility to employ
them outside of the 3D modeling process. A third procedure aligns automatically the LR
3D mosaic onto the Gigapixel one to generate in-situ a 4D mosaic view. The result is
further exploited by a fourth bloc which improves the 3D model quality by mapping the
texture obtained from the Gigapixel mosaic onto 2D meshes computed from 3D mosaic.

Control loop: visual servoing for 3D scene model completeness. The system
iterates the main process described above, while servoing the 3D position of the system from
which a new station must be acquired in order to fulfill the 3D scene model completeness.

Supposing that several 4D mosaics were acquired, the 4D-mosaic matching bloc com-
putes the 3D pose to unify them into a single 3D entity via the global 3D scene model
integration process.

In order to complete the 3D scene model, the systems performs automatically occlu-
sions’ detection. If occluded areas are detected, the systems employs a view planning
procedure in order to compute the spatial position from where the next station must
be acquired in order to minimize the occluded areas, while minimizing data redundancy.
Otherwise, the system ends by computing the final 3D scene model rendering. In order to
reach the NBV position, we provide image-laser solutions for embedding the system with
visual-based autonomous navigation capabilities.

Chapter 7 studies and evaluates image-laser solutions for supplying the aforementioned
processes composing the control loop of the ARTVISYS system, leading to a vision-based
system embedding complete site digitization and exploration capabilities.

3.5 In-situ Operating Modes

Following the application type, the proposed 4D-mosaic-driven in-situ 3D modeling process
can run in either autonomous or manual mode. Each of them requires automatic 4D-
mosaicing matching and integration processes to generate in-situ the global 3D scene model
which is further exploited for detecting the occluded areas within the generated scene.
The main difference between the two modes is that the first one detects automatically the
occluded areas and estimates the NBV from which the new 4D-mosaic must be acquired,
while the latter relies on human operator intervention to supply the above mentioned
operations.

This dissertation focuses on both operating modes. First, we provide a solution for
the 4D-mosaic matching in Chapter 7, which is common requirement for both operating
modes. In a second time, we focus on the autonomous mode by introducing an visual-based
autonomy model and future research directions to supply visual servoing procedures (i.e.
view and path planning, autonomous navigation) powered by the 4D mosaicing module to
provide feedback control to the system for ensuring autonomously complete site digitization
and exploration.
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3.6 System’s Capabilities vs. State-of-the-Art

We end this chapter by listing the main capabilities offered by ARTVISYS wrt the state-
of-the-art closely related approaches. We compare our system by looking at the global
and local levels of the software architecture. At the global level, we compare ARTVISYS’s
performances wrt the 3D modeling pipeline performances, while at the local level we list
its several stand-alone functionalities.

Global level: automatic 3D modeling pipeline through 4D mosaic views

• 4D Mosaics: photorealist omnidirectional 3D models. In this dissertation
ARTVISYS’s main purpose is to automate the 3D modeling pipeline in order to
generate in-situ photorealist 3D models. Our 3D modeling framework introduces
4D-mosaics as photorealist panoramic 3D models, which to our knowledge have not
been introduced by now.

• Fast data acquisition and processing. The 3D laser is set to capture low-
resolution 3D point clouds for rapidity purposes, while high-detailed photorealism
is enabled by fast acquisition of high resolution color images. We employ a pyra-
midal data matching framework along with calibration constraints and optimization
techniques to ensure fast data processing. The proposed technique overcomes the
limitations of the existent techniques which reported dense 3D scans acquisition and
time-consuming semi-automatic methods [Levoy et al., 2000], [Ikeuchi et al., 2007]
aiming to produce highly accurate 3D models in a controlled laboratory environ-
ment, or automatic frameworks employing computationally expensive algorithms to
produce highly realist 3D models of the scene [Stamos, 2001].

• Automatic data alignment in feature-less and GPS-denied areas. Concern-
ing the fully automation of the 3D modeling pipeline, we would like to first take a look
at the data alignment step, because there is where the main issue lies. Our system
embeds three procedures for (1) image, (2) laser and (3) image-to-laser data align-
ment. As presented in Section 2.3.2, the existent data alignment techniques employ
either semi-automatic or automatic frameworks and rely on navigation sensors read-
ings or feature existence hypothesis. ARTVISYS provides environment-independent
methods for (1,2,3) data alignment steps, yielding robustness to feature-less and GPS-
denied areas, overcoming therefore the main drawback of the current techniques.

• Occlusion-free image-laser fusion. We proposed a dual RACL system which
overcomes the shortcomings of FMCL systems caused by occlusions in either image
or laser data. As a matter of fact, we exploit Nistér’s idea [Zhao et al., 2005] for the
3D modeling system design, for which the inter-sensors baseline is negligible wrt the
scene’s depth. When using the proposed hardware design, the rigid transformation
separating the two sensors is essentially a 3D rotation and a residual translation, for
which is easy to solve since occluded areas minimized.

Local level: stand alone capabilities

• Scene completeness through the use of fully and partial 3D mosaics. In
[Rekleitis et al., 2009] a Lidar-based path planning algorithm for Mars exploration
is proposed. The system acquires directly 3D mosaics from different 3D poses of the
system and matches them in a sequential manner. This process provides 3D maps of
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the environment which are further exploited for path planning purposes. The main
drawback of the proposed system is that for each 3D pose, the system acquires a fully
3D spherical mosaic, leading to a computationally expensive step for the 3D mosaic
matching process and global map computation. Our proposed solution consists in
acquiring fully 3D mosaics when the system encounters large displacements, and
partial 3D mosaics in order to cover the occluded areas, ensuring therefore the 3D
scene’s model completeness in a feasible computation time onboard mobile platforms.

• Automatic Gigapixel mosaicing. There are several key aspects which have to be
taken care of when performing high-resolution image stitching. Since feature-based
algorithm fails to detect and match poorly textured areas - which is the case in our
research work, we develop an automatic Gigapixel mosaicing algorithm powered by
a pair-wise image motion estimation algorithm robust to feature-less environments.

• 4D-mosaic hybrid SLAM. ARTVISYS embeds a 4D-mosaic matching algorithm
enabling simultaneous photorealist and dense 3D mapping along with 6 DOF localiza-
tion through the jointly use of (1) cameras - allowing to solve for data association and
loop closing problems, and (2) 3D laser-scanners - suitable for localization purposes.
Furthermore, the use of 4D mosaic allows to disambiguate the feature matching pro-
cess which is inherent to outliers in unstructured terrains. One may argue that due to
computational requirements, a hybrid SLAM scheme would be unaffordable for on-
line processing. Computational issues are discussed along this dissertation, providing
several optimization schemes and possible improvements.

3.7 Conclusion

This chapter introduces the ARTVISYS system, a vision-based system with an application
to automatic environment sensing. This provides unmanned platforms with a basic sense,
vision - which is undoubtedly a powerful resource for mapping and localization tasks,
offering the possibility to infer semantics about the environment in which the platform
evolves. The aforementioned functionalities give rise to a perception-through-site-survey
capability which is basic requirement for endowing unmanned platforms with elementary
intelligence (i.e. reasoning and fast decision making capacities) powered by a computer
vision engine.

In addition, vision and conceptual perception form the artificial intelligence skeleton
to which visual servoing procedures need to be added to supply autonomous onboard
functionalities, giving rise to unmanned platforms able to accomplish complex missions in
previously unknown environments.

A wide research literature was reported aiming to develop intelligent systems for per-
forming civilian and military applications. However, current approaches are introducing
binary reasoning solutions to accomplish specific tasks, without developing perception and
reasoning resources in order to solve for the system’s autonomy problem. Consequently,
such systems fail to deal with unpredictable situations, precluding the feasibility of complex
missions in hostile environments, where human operator’s intervention is highly undesir-
able.

Instead of developing such special-purpose systems which are operational within a lim-
ited application field, a more durable solution is to solve first for the system’s autonomy
problem and to enrich them in a second step with specific onboard functionalities. There-
fore, in order to provide a long-term solution to this issue, we believe that a general system
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dotted with an elementary intelligence level and autonomy has to be designed first. In a
second stage, the system can be upgraded with specific onboard functionalities in order
to accomplish particular tasks. The aforementioned design enriches unmanned systems
with new articulations, from perception to action. For this reason, Chapter 7 investi-
gates the ARTVSYS’s potential for addressing unmanned system’s autonomy problem and
establishes a vision-based autonomy model.
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Figure 3.4: The 4D-mosaic-driven acquisition scenario performed by ARTVISYS.
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Figure 3.5: A detailed overview of software architecture of the ARTVISYS system.
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Chapter 4

Multi-view Scans Alignment for
in-situ 3D Mosaicing

This chapter focuses on one of the main processing blocs composing the ARTVISYS system
and deals with the automation of the 3D modeling pipeline by introducing an automatic
multi-view scans alignment technique for generating in-situ fully 3D spherical mosaics.
This chapter presents extends the research work introduced in [Craciun et al., 2008] and
[Craciun et al., 2010].

We start this chapter by stating the 3D scan matching problem and by presenting the
available methods solving for it. Section 4.3 introduces the 3D mosaicing acquisition sce-
nario, while the following section provides an overview of the proposed multi-view scans
alignment technique associated to it. Section 4.5 presents our pair-wise alignment pro-
posal: a free initial guess pair-wise scans alignment designed to achieve precise rigid poses
estimates. The experimental results of the proposed method are presented in Section 4.6.
The next section describes how we integrate the proposed pair-wise scan alignment tech-
nique within a multi-view global alignment framework to yield optimal absolute poses, while
Section 4.8 presents the quality assessment of the multi-view scans alignment algorithm.
Section 4.9 introduces the embedded design supplying multi-core onboard processing of 3D
mosaics. We end this chapter in Section 4.10 by summarizing our research proposal and
its main contributions.

4.1 The Multi-view 3D Scans Alignment Problem

3D scanning devices capture the 3D structure of the environment from a single view-point.
However, due to the sensor’s limited field of view and occlusions, multiple scans from
various viewpoints need to be acquired, either automatically or by an operator, in order
to sense the scene in its entirety.

Let S0, ..., SN−1 be N partially overlapping scans acquired from different viewpoints.
Since each scan is expressed wrt the sensor’s coordinate system, the multi-view scan match-
ing problem requires to recover each sensors’ viewpoints wrt a global coordinate system
in order to align and integrate all views into a single 3D entity. As a matter of fact, the
multi-view scans alignment problem is pretty much like a 3D puzzle game, since it consists
in assembling several overlapped scans without knowing how the sensed scene looks like.

Generally, the first scan in a sequence can be chosen as the origin, so that the global
coordinate system is locked to the coordinate frame of that scan. However, we show
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further in this dissertation that this approach can yield optimal results only when a specific
acquisition scenario is associated to it.

The multi-view scans alignment process is a fundamental step within the 3D modeling
process which requires to solve for the absolute poses. An absolute pose Ti, i = {0, .., N−1}
is defined as the 3D linear operators which rigidly transforms the 3D coordinates of a point
p ∈ Si,p = (px, py, pz, 1)t from the local coordinate system of scan Si to the global (or
world) coordinate system: pw = Tipi.

Absolute poses’ computation is highly dependent on the relative positioning of the
overlapped views and their associated overlap. As a matter of fact, when dealing with the
multi-view scans’ alignment problem, one has to solve for two inter-related sub-problems:
(a) find the overlapped views and compute the overlaps Oij , j = {0, .., N − 1}, i 6= j when
they are detected, and (b) find the relative poses Tij between the overlapped views. As
for the SLAM problem, the relative poses estimates and the overlap are intricately related
problems: pose estimation algorithms are generally powered by corresponding point pairs
detected in the overlap region of each scan and vice-versa, the precise overlapping areas
are not findable without the pose’s knowledge.

The aforementioned tasks are generally supplied by pair-wise scans alignment proce-
dures. However, due to the mutual dependency which lies between the overlaps Oij and
the relative poses Tij , the multi-view scan matching is a difficult task. The most general
case of the problem does not assume any prior knowledge on the original sensor viewpoints
nor on which views share the same scene region, being extremely hard to solve.

Since the multi-view fine alignment problem is powered by the pair-wise alignment
process, in the next section we review the existing methods supplying both pair-wise and
multi-view scans alignment functionalities.

4.2 Related Work

In the past few years several research studies have been presented within a wide range of
communities interested in building 3D models using 3D Laser Range Finders (LRFs). In
Chapter 2.3 we pointed out that the main issue standing behind the automation of the 3D
modeling pipeline is the data alignment step. This section presents a deeper analysis of
the related work attempting to solve for the automation of the 3D scans alignment process,
being perfectly applicable to the 2D image alignment problem.

This section focuses first on the main ingredient of the multi-view 3D scans alignment
method, i.e. the pair-wise alignment step. The second part of this section describes how
pair-wise methods are integrated within global multi-view frameworks in order to solve for
the multi-view scans alignment problem.

4.2.1 Pair-wise Alignment

Given a pair of partially overlapping scans, we shall refer to the reference scan as the model
and to the scan to align as the data. The goal is to compute the six degrees of freedom
(6-DOF) (3 for rotation and 3 for translation) of the Euclidian rigid transformation T,
which will register the data scan with the model. Following the available input data, two
types of scans alignment methods were reported designed to take into account whether
an initial guess of T is provided or not to produce coarse (i.e. scan matching) or fine
alignment (i.e. registration), respectively.
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4.2.1.1 Matching

If no initial estimation of T is given, direct and feature-based methods were introduced to
recover an approximate transformation relating two overlapped views.

The first class refers to correlation-based scan matching methods, such as the one re-
ported in [Konolige, 2004] in which authors proceeds to an exhaustive search by varying
the parameters of T. The combination of parameters that gives the lowest cost is accepted
as the optimal match. While affordable if an initial estimation is given or for 2D scan
matching, these methods are time consuming for higher dimensional spaces. In [Lucchese
et al., 2002] authors reported a frequency-domain-based method which exploits the geo-
metric regularity to solve for the range image matching problem. In [Chen et al., 1999]
authors introduced the RANSAC-based DARCES method in which an exhaustive search
is performed to match two partially overlapped views.

The second approach used to solve for the scan matching problem establishes corre-
spondences between distinctive features that may be present in the overlapping area. The
basic procedure involves features’ extraction and matching and pose estimation based on
the established correspondences. Different approaches explored a wide variety of features:
edge maps [Sappa et al., 2001], lines and planes [Faugeras and Herbert, 1986], bitangent
curves [Wyngaerd and Gool, 2002], surface curvatures [Yamany and Farag, 2001], surface
orientation [Johnson and Herbert, 1999] and invariant features such as moments and cur-
vatures [Sharp et al., 2002]. In [Stein and Medioni, 1992] Stein and Medioni introduced
the splash structure - a local map describing the distribution of surface normals along the
geodesic circle. Johnson in [Johnson, 1997] introduced the spin image idea - a surface
descriptor invariant to rigid motions used to solve for the scan matching problem. Since
the spin image descriptor requires uniform distribution of point for sensible discrimination,
later Huber [Huber, 2002] improved Johnson’s idea with face based spin image computed
on meshes, yielding robustness to scale variations. However, spin image-based descriptors
remain quite sensitive to error in the point normals and unfortunately, it is very difficult
to compute reliable point normals on noisy scans, which is the case in our research work.

The general formulation of the scan matching problem does not assumes any knowledge
about the environment type (i.e. either structured or unstructured), being extremely hard
to solve. When dealing with homogeneous surfaces, one can imagine the difficulty to extract
features and the ambiguous matches that such surfaces may lead to. The same problem
may rise when attempting to match too homogeneous areas using radiometric features.
Although a big part of scans alignment are applied for missions undertaken in man-made
environments, we strongly believe that an environment-independent method need to be
introduced in order to supply reliably the scans’ alignment task in both structured and
unstructured environments.

Direct and feature-based common. Generally, it is difficult to obtain precise pose
estimates when using the aforementioned methods, being usually employed to supply a
rough alignment. On the other hand, scans registration methods require a good initial
starting point and employ different criterions to evaluate the quality of the refined es-
timates. Due to these reasons, several attempts reported the combination of matching
followed by a registration to achieve automatically precise results [Huber and Vandapel,
2003b], [Sappa et al., 2001] [Chen et al., 1999].

Direct vs. Feature-based. At the first sight, one can propose a feature-based
method to detect matches belonging to the overlapping area and estimation step through
the jointly use of linear estimators [Plackett, 1972] and non-linear optimizers [Moré, 2006].
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One issue may arise when employing feature-based methods, since they are subject to
the scene’s content which must be rich in features. For poorly structured or completely
feature-less areas such methods usually lead to either ambiguous or false matches (also
called false alarms or outliers). Traditionally, outliers rejection algorithms are applied to
increase the accuracy of the estimates. A well known algorithm for outlier rejection is
the probabilistic framework RANSAC (Random Sample Consensus) [Fischler and Bolles,
1981], which unfortunately leads to random computational time making it unsuitable for
embedding processing on silicon devices. This problem gets more severe when one has to
minimize the amount of the acquired data, which is the case in our research work. Since
the minimum overlap provided cannot guarantee the existence of corresponding features in
that particular area the algorithm may lead to lost features and pose computation failure.

A safer solution is to explore the whole poses’ solution space to find the best trans-
formation which minimizes the signals’ dissimilarity measured via correlation techniques.
Although heavy for in-situ processing, when improved in terms of rapidity, this method
is the more likely to be employed since it ensures reliable data matching in previously
unknown environments.

Both schools present their pros and cons and sustaining one of them is not our purpose
in this dissertation. We simply point out that when attempting to provide a general
solution for the multi-view alignment problem, one has to provide the needed information
to solve carefully for each other’s drawbacks in order to avoid algorithm’s failure. To this
end, this dissertation provides means to overcome both methods’ drawbacks, i.e. direct
and feature-based, as follwing:

• In this chapter we adopt the safer way and decide to deal with the computational
issues of the correlation-based methods using calibrated constraints to limit the so-
lution space, in conjunction with a pyramidal searching strategy to cut down the
combinatory and produce precise rigid pose estimates.

• Feature-based methods’ drawbacks are addressed in Chapter 7 which introduces a
feature-based method which combines 2D and 3D criterions to disambiguate the fea-
ture matching task and to produce reliable pairings within an environment-independent
framework.

4.2.1.2 Registration

If an initial estimation is provided, iterative methods are preferred [Besl and McKay,
1992], [Chen and Medioni, 1992], [Zhang, 1994]. The chief algorithm used to supply
fine alignment is the Iteratively Closest Point pioneered by Besl [Besl and McKay, 1992].
At each ICP iteration, two steps are performed: (i) correspondences are first established
between the data points and their nearest model points and (ii) the transformation T is
then estimated via Horn’s closed-form solution using quaternions [Horn, 1987], or singular
value decomposition (SVD) [Hartley and Zisserman, 2004].

The algorithm minimizes iteratively the mean squared error (MSE) between the corre-
sponding points, which is given by the following expression:

f(R, t) =
1
n

n∑

i=1

‖p1
i −Rp2

j − t‖2 (4.1)

where p1
i ∈ S1 and p2

j ∈ S2.
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As stated in [Besl and McKay, 1992], the correspondences search is the most expensive
step within the entire process, taking about 95% of the runtime. A kd-tree data structure
[Bentely, 1975] can be used to establish faster correspondences. Another important strategy
employed to speed up the registration process exploits sampling techniques to reduce the
number of points [Rusinkiewicz and Levoy, 2001]. In [Greenspan and Godin, 2001] authors
perform a local search within a small neighborhood around the matches resulted from the
previous iteration of ICP and update them.

While being efficient with a O(n log n) complexity for n-point scans, ICP converges
under the assumption that one of the datasets is included in the other. This leads to narrow
convergence, implying monotonically convergence to a local minimum and therefore, the
need of a good pre-alignment to ensure convergence to the correct solution.

Since its conception, many approaches have been developed aiming to widen the con-
vergence basins. Fitzggibon in [Fitzgibbon, 2003] uses the iteratively non linear optimizer
Levenberg-Marquardt (LM) to perform the residual error minimization, which allows for
a robust kernel to be applied resulting in a wider convergence basin. Recently, Bae in its
dissertation [Bae, 2006] introduces a pair-wise registration algorithm capable to handle
up to 10◦ of error in the rotational pre-alignment and small translation errors through the
use of geometric primitives and neighborhood search.

In order to compute more precise transformations, various attempts focus on both steps
performed at each ICP iteration, by introducing to new rules for outliers’ rejection and
quality alignment measures. A good survey of different variations of ICP is presented in
[Chen and Medioni, 1992], [Levoy et al., 2000] , [Rusinkiewicz and Levoy, 2001], [Sharp
et al., 2002] and [Liu and Rodrigues, 2002]. In [Levoy et al., 2000] authors discard
boundary points, while [Zhang, 1994] proposes a method to classify outliers when the
point-to-point distance exceeds an automatically computed threshold. Chen and Medioni
reported in [Chen and Medioni, 1992] the use of the distance between the point and the
tangent plane to the corresponding point in the other view. When a good pre-alignment
is available, this method yields better results than ICP. In [Masuda and Yokoya, 1995]
authors combine random sampling with least median squares estimator to adjust ICP.

A quality assessment of ICP-variations can be found in [Liu and Rodrigues, 2002],
[Dalley and Flynn, 2002], [Rusinkiewicz and Levoy, 2001], [Rodrigues et al., 2002]. How-
ever, since algorithms were developed on different databases using different metrics, it is
difficult to establish a correct evaluation. Nevertheless, the aforementioned comparative
studies lead to a common conclusion suggesting that although there is still room for further
extensions of ICP, its improvements may become helpless when initial alignments are not
feasible and methods attempting to overcome the pre-alignment requirement may lead to
erroneous poses.

Recent trends. The pose-space search algorithm introduced in [Robertson and
Fisher, 2002] shows that tractable solutions stand in the development of a new fundamen-
tal pose searching strategy, rather than using the correspondence-based search of ICP-like
methods. These methods aim at exploring a huge solution space to find the best trans-
formation which aligns two views precisely in a reasonable time. Reported frameworks
employed stochastic optimization techniques such as Genetic Algorithms (GAs) [Man and
Kwong, 1996] and Simulated Annealing (SA) [Kirkpatrick et al., 1983] to supply coarse
registration in conjunction with local search heuristics to produce fine alignments. In
[Silva et al., 2005] authors focus on obtaining precise alignments using GAs and introduce
the Surface Interpenetration Measure (SIM) to compute the interpenetration of the two
registered range views.
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Figure 4.1 presents an overview of the existing pair-wise alignment methods and high-
lights our proposal wrt the state of the art capabilities. The pair-wise scans alignment
method introduced in this dissertation belongs to the pose-search methods, employs cal-
ibration constraints and performs a pyramidal searching strategy to cut down the com-
binatory. The proposed algorithm provides precise rigid estimates without requiring for
an initial guess by matching either intensity or depth 2D panoramic views using dense-
correlation via quaternions. The estimation process starts by first exploring the entire
solution space to localize the global minimum which is further refined at higher resolution
levels of the pyramidal structure.

4.2.2 Multi-view Alignment

Generally, the multi-view scan alignment process can be performed either sequentially
or simultaneously. Sequential methods [Chen and Medioni, 1992], [Turk and Levoy,
1994] are susceptible to propagate and accumulate errors from one iteration to another.
Nevertheless, if one can ensure precise alignment, they are computationally more attractive
and require less memory resources. A general approach was introduced in the literature
[Ikeuchi and Sato, 2001] to perform simultaneous multi-view fine alignment which consists
in performing an initial alignment between each overlapped pair which are further refined
within the global registration phase to distribute all errors among all alignments, being
followed by an integration step [Ikeuchi and Sato, 2001], [Masuda, 2002] [Shum et al.,
1997] and [Dorai et al., 1998].

Global rigid alignment algorithms have been studied by [Bergevin et al., 1996],
[Benjemaa and Schmitt, 1997], [Pulli, 1999] and [Mitra et al., 2004]. In [Stamos and
Leordeanu, 2003] an automatic feature-based range image registration technique for 3D
modeling of urban scenes is proposed. Authors are extracting high-level entities: 3D lines
and planar regions in order to compute a rigid transformation between two overlapping
scans. While improving the state of the art, this method remains limited to the application
field: 3D modeling of urban structured scenes.

Several global registration methods were introduced based on a physical equivalent
model [Stoddart and Hilton, 1996] later optimized using a multi-resolution framework
[Eggert et al., 1998], or using a network of views [Bergevin et al., 1996] and [Huber
and Vandapel, 2003a]. In [Huber and Vandapel, 2003a] authors introduce a complete
system for 3D modeling which employs spin images to obtained initial guess, proposes
to find the minimum spanning tree in a graph and uses a topological inference criterion
[Sawhney et al., 1998] to verify the consistency of the global alignment. Although, the
aforementioned methods have been successfully applied to several cases [Huber and Her-
bert], [Huber, 2002], [Huber and Vandapel, 2003a], they have O(N2) complexity in the
number of views which limits the processing to sub-maps containing about 50 views. Con-
sequently, these methods are computationally unaffordable when it comes to large-scale
and complex environments for which a high amount of views is required to cover the entire
site without omitting the occluded areas.

Non-rigid alignment. The aforementioned techniques assumes that the sensing de-
vice captures the identical geometry of the scene. However, when it comes to scanner
calibration errors or noise, this assumption can easily be violated, resulting in slightly
warped data. This causes rigid alignment algorithms to diverge, since they model only rigid
motion. In order to ensure robustness to the scanner miscalibration, different non-rigid
alignment techniques have been introduced using an hierarchical ICP approach [Ikemoto
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Figure 4.1: Classification of pair-wise scan alignment methods. Our proposal is highlighted
in yellow.
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et al., 2003], affine transformation to align body scans to a template [Allen et al., 2003a]
and for global registration of images [Zhang and Rangarajan, 2004]. On the downside,
such methods require dense 3D scans which limits their applicability to small-scale objects.

4.2.3 Taxonomy and Open Issues

After reviewing the available scans alignment methods, we provide a taxonomy of the
existing methods and state several open issues which need to be addressed when attempting
to solve for the automation of the multi-view fine alignment process.

Taxonomy. Figure 4.2 illustrates a taxonomy of the main techniques employed to inte-
grate the existing pair-wise techniques within the multi-view alignment process. Sequential
frameworks powered by fine pair-wise alignment techniques are more attractive in terms
of accuracy and computational resources. On the other hand, simultaneous approaches
aim at gaining computation time by performing only the matching phase and thus, paying
the price of an accumulated error. Although the following global registration step may
distribute the accumulated error among all poses, the residual error requires a global con-
sistency test whose complexity grows quadratically with the number of views, leading to
unfeasible schemes for large-scale environments, which is one of our main concerns in this
dissertation.

Figure 4.2: Taxonomy of the multi-view scans alignment approaches. Sequential ap-
proaches are generally powered by a fine rigid pair-wise alignment, while simultaneous
methods employ coarse matching which is further refined via global registration frame-
works.

Since the accumulated errors increase with the number of views to be aligned, one
important aspect to be taken care of is to minimize the number of views required to
recover entirely the 3D scene model. This issue has also been emphasized in [Ikeuchi and
Sato, 2001] when attempting to minimize the amount of data to be acquired in order to
avoid expensive acquisition and processing. While aiming to minimize the amount of the
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acquired and processed data, it is important to ensure the robustness of the algorithms to
low-overlapped views. Another issue which needs to be addressed is how to evaluate the
minimum overlapping area between two views in order to guarantee a precise alignment.
Several papers addressed this problem by calculating the overlapping areas between views
and measuring the registration quality [Dalley and Flynn, 2002], [Huber and Vandapel,
2003b], [Silva et al., 2003]. Huber and Herbert in [Huber and Vandapel, 2003b] proposed
an exhaustive search over the entire network of views to find the multi-view registration
solution giving the lowest global error. Authors defined the overlapped points concept
based on two thresholds which cannot define overlapped areas precisely.

Open issues. We resume hereafter several open issues which need to be addressed in
order to produce an environment-independent method capable to solve automatically for
the multi-view scans alignment task:

• handle the impossibility to supply initial alignment through the use of navigation
sensors or manual intervention;

• deal with the absence of reliably trackable features;

• provide automatically the minimum overlapping area required to guarantee a precise
alignment while minimizing the amount of the acquired data;

• replace the coarse-to-fine alignment framework by solving simultaneously for the
poses estimates and the corresponding points to produce precise rigid estimates;

• since one view may overlap several others, it is necessary to detect which one produces
the optimal absolute poses;

• when simultaneous global registration methods are used, reduce the combinatory of
the global consistency test.

Throughout this chapter we focus on providing several means to solve for the aforemen-
tioned problems raised by the automation of the multi-view scans alignment task.

4.3 3D Mosaicing Acquisition Scenario

As mentioned in Chapter 3, ARTVISYS achieves 3D scene model completeness through
the use of a mosaic-driven acquisition scenario for which a brief description was provided
in Section 3.3. This chapter is concerned with the multi-view scans alignment problem for
generating in-situ 3D mosaics from several partially overlapped scans acquired from the
same 3D pose of the system. To this end, this section introduces a 3D mosaicing acquisition
scenario which is integrated within the mosaic-driven acquisition scenario proposed in
Section 3.3.

In Section 3.2 we presented the hardware design of the proposed system, which includes
a Trimbler scanning device illustrated in Figure 3.2 a) providing a cloud of 3D points and
their associated light intensity backscattering, within a field of view of 360◦ horizontally x
60◦ vertically, as shown in Figure 3.2 b). When mounted on a tripod, due to the vertical
narrow field of view, the scanning device is not suitable for the acquisition coverage of
ceiling and ground. Therefore, we manufactured in our laboratory a L-form angle-iron
shown in Figure 4.3 a).

The L-mount-laser prototype illustrated in Figure 4.3 b) captures all the area around
its optical center within 360◦ vertically and 60◦ horizontally as shown in Figure 4.3 c),
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Figure 4.3: The 3D mosaicing acquisition geometry.

which we call a vertical panoramic band (VPB). Given a spatial position of the tripod,
which we call a station, the scenario consists in acquiring multiple overlapping VPBs in
order to provide a fully 360◦ × 180◦ 3D spherical view. For this purpose, the L-mount-
laser is turned around its vertical axis n (superposed with the scan equator axis, Oy)
with different imprecisely known orientations ψ, acquiring one VPB for each orientation,
as shown in Figure 4.4. The L-mount-laser rotation angle ψ may vary within the range
of [0◦, 180◦]. For this experiment the L-mount-laser was turned manually, but using a
non-calibrated turning device it is straight forward. Generally, Nscenario = 4 VPBs are
acquired to provide a fully 3D spherical view, separated by a rotation ψmax ' 45◦ providing
an overlap of ' 33% which our algorithm can handle (to be compare to the state of the
art [Makadia et al., 2006], for which a minimum overlap of 45% is required).

Minimum overlap guaranteed. The proposed acquisition scenario facilitates consid-
erably the scan matching task providing a constant and minimal overlapping area situated
at the bottom (ground) and top (ceiling) areas of the 3D spherical view. This is an impor-
tant key issue when performing 3D modeling tasks in large-scale environments, where the
amount of the acquired and processed data must be minimized.

This chapter introduces an automatic scan alignment procedure which aligns the 4
VPBs wrt a global coordinate system and integrates them into a single 3D entity, providing
thus in situ a fully 3D spherical view of the system’s surrounding.

When comparing the proposed 3D mosaicing sensor to several 3D scanning devices
designed to acquire directly a 3D mosaic, such as Leica HDS3000r, Faro Laser Scanner
Photonr or LiDARr, which aimed to supply 3D modeling and path planning operations
for missions undertaken on Mars [Rekleitis et al., 2009], our system provides completeness
through the use of mosaic and avoid data redundancy by acquiring partial mosaics when
occlusions are encountered. More precisely, instead of acquiring a fully spherical mosaic
in occluded areas - which is computationally unaffordable for in-situ processing - we sense
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Figure 4.4: Example of the 3D mosaicing acquisition scenario performed in the Tautavel
prehistoric cave - France. (a)Top view of the acquisition: the laser acquires 4 VPBs
as it rotates around its vertical axis n(θn, ϕn) with different values of ψ: (b) VBP 1
corresponding to ψ ≈ 0◦, (c) VPB 2 for ψ ≈ 45◦ (d) VPB 3 for ψ ≈ 90◦, (e) VPB 4 for
ψ ≈ 135◦.

only the occluded areas by acquiring partial mosaics, avoiding therefore data redundancy
while achieving site completeness.

The next section provides an overview of the proposed multi-view alignment method
associated to the proposed 3D mosaicing acquisition scenario.

4.4 Algorithm Overview

Generally speaking, when solving for the data alignment problem, one has to carefully
formalize the motion encountered by the sensing device and set a strategy to solve for
absolute poses.

Motion parametrization. Theoretically, for a single spatial position, the system
delivers a sequence of partially overlapped scans separated by a rotation. However, in
practice the system’s instability may introduce small amounts of parallax between scans.
Moreover, when the center of mass of the the capturing device is not superposed with
the rotation center of the platform, non-rigid motions are introduced. Other sources of
non-rigid motion are the system’s vibrations which are amplified by the heavy capturing
device, calibration errors, unmodeled sensor’s distortions and noise.

Solving for the absolute poses. The proposed multi-view scans alignment is per-
formed in a sequential fashion, being powered by a pair-wise alignment procedure which
outputs precise rigid relative poses estimates, overcoming therefore the accumulated errors
caused by multi-view methods integrating coarse pair-wise algorithms. Figure 4.5 synthe-
sizes the main ingredients included in the proposed multi-view alignment method which
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are justified hereafter:

Figure 4.5: Global overview of the proposed multi-view scans alignment method for gen-
erating in-situ 3D mosaics. In yellow is emphasized the optional character of the non-rigid
alignment phase.

(1) Precise pair-wise rigid estimates. The pair-wise alignment falls in the category
of pose-search methods and supplies both matching and registration phases to produce
precise rigid poses estimates, eliminating therefore the initial guess requirement of the
traditionally used ICP-methods. In order to cope with in-situ processing constraints, we
reduce the solutions’ space using calibration constraints and cut down the combinatory by
employing a pyramidal searching strategy.

While focusing on acquiring the minimum amount of data required to ensure a reli-
able scan matching and fast processing, the algorithm must deal with poor overlaps. To
do so, the alignment process must exploit all the existent information available in the
overlapping area. For this reason, the core of the algorithm performs pose estimation by
matching either intensity or depth 2D panoramic views using dense correlation via quater-
nions. Two main raisons stand behind the use of the dense correlation instead of the use
of feature-based approaches: (i) feature extraction and matching for poor overlaps may
easily fail or result in ambiguous matches, (ii) this aspect gets worse when applying such
scenarios to feature-less areas, since the poor overlap cannot guarantee the existence of
such features in that particular common area. Since in our research work we are interested
in providing an environment-independent framework for in-situ processing in previously
unknown environments, we aim at acquiring and processing the minimum amount of data
needed. Consequently, we employ a correlation-based method in order to exploit the entire
information contained in the overlapping region.

As mentioned in the previous section, due to the mutual dependency laying between the
relative poses and the overlaps, the multi-view scans matching problem is a difficult task.
The proposed pair-wise matching procedure solves simultaneously the above interrelated
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problems by matching 2D panoramic views using dense-correlation via quaternions. In
addition, the 2D panoramic images provides spatial and appearance constraints increasing
therefore the robustness of the scan matching process.

The pyramidal searching strategy emphasizes the tradeoff between the two key aspects
of any scan matcher: the accuracy and the robustness. The accuracy is related to the
subpixel precision attached to the dense correlation step, while the robustness component
is related to the capability to handle large and small motions by performing estimation at
the lowest and highest resolution levels of the pyramid, respectively.

(2) Non-rigid motion estimation. Optionally, when non-rigid motions are encoun-
tered, a non-rigid pair-wise registration step can be applied in order to compensate the
eventual non-rigid motions introduced by the system. To this end, Chapter 5 introduces a
non-rigid pair-wise registration technique. Although originally designed and tested on 2D
color images for 2D optical mosaicing purposes, it is straight forward to apply it on either
intensity or range 2D panoramic images.

Since the pair-wise procedure outputs precise poses estimates, there is no need to
perform a global registration process for poses’ refinement. In exchange, the multi-view
alignment process has to detect whether the sequence contains non-overlapped scans and
to find out wrt which view the algorithm must register all scans in order to benefit of
accurate estimates provided by pairs with high overlaps.

(3) Alien scans’ detection. Since no knowledge is provided about the overlapped
scans, the multi-view alignment process starts by first detecting the alien scans, i.e. scans
which do not belong to the currently processed 3D mosaic.

(4) Detect optimal absolute poses. Since one view may overlap several others, the
multi-view alignment procedure detects the best reference view which optimally register
all views into a global 3D scene model.

The scan matching procedure ends by integrating all scans into a single 3D entity,
hence providing a complete spherical view of the scene for a given station.

This chapter focuses on the rigid alignment part, describing the pair-wise procedure in
Section 4.5 - corresponding to phase (1) in Figure 4.5, and the multi-view scans alignment
process in Section 4.7 - corresponding to phases (2) and (3) in Figure 4.5.

4.5 Free-Initial Guess Pair-wise Alignment for Precise Rigid
Estimates

This section focuses on the pair-wise alignment process corresponding to phase (1) in Figure
4.5. First, we briefly illustrate how we build 2D panoramic images from 3D point clouds.
The following section defines the 3D rigid poses’ solution space in the 2D panoramic image
space under calibration constraints. In Section 4.5.3 we describe the rotation estimation
process which can be performed in either intensity or depth mode, following the input data
provided by the capturing device. The next section exploits the rotationally aligned scans
to estimate the translation. The pair-wise process ends up by performing an incremental
refinement of the obtained 3D pose using a pyramidal pose searching strategy to produce
rigid precise poses estimates.

4.5.1 From 3D Point Clouds to 2D Panoramics

Let S1 and S2 be two sets of 3D points expressed in Cartesian coordinates, with respect
to the laser scan reference system. They are defined as S1 = {si

1|i = 0, ..., N1 − 1},
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S2 = {sj
2|j = 0, ..., N2 − 1}, where N1 and N2 stand for the numbers of 3D points con-

tained by the scans S1 and S2, respectively. The four-dimensional vector s = (px, py, pz, i)
represents the 3D coordinates of a point and the associated reflected intensity value defined
on [0, 255]. The proposed pair-wise scan matcher performs pose estimation by correlating
either intensity or depth values in the 2D panoramic image space which represents the 2D
spherical projection of a VPB.

In order to compute the 2D spherical projection of a generic VPB, we first automati-
cally recover the internal parameters of the spherical acquisition PI : the acquisition steps
(δθ, δϕ) and the field of view ([θmin, θmax],[ϕmin, ϕmax]) via a triangulation procedure.

The 2D image projection which assigns to each direction (θ, ϕ)t a 2D image location
m = (u, v)t and conversely is defined below:

Sn:p(θ, ϕ) → m(u, v) (4.2)

where, u and v denote the column and the row of a generic panoramic pixel m, as shown
in Figure 4.3 d). The quantities I(m) and D(m) are defined as the greyscale and depth
value corresponding to the 2D image location m = (u, v)t. The rectangular support of
width nu and hight nv of the 2D spherical panoramic corresponds to θmax − θmin = 360◦

and ϕmax − ϕmin = 60◦, which is the effective laser’s field of view. Figure 4.6 illustrates
the 2D spherical projections of two overlapped VPBs acquired in the Moulin de Languenay
prehistoric cave. Missing data is observed systematically in each view, in the area indicated
by the arrow which corresponds to the area situated right underneath the sensor which
cannot be digitized due to the system’s montage.

4.5.2 Constructing Pose’s Space Candidates under Calibration Con-
straints

The 6 DOF rigid transformation can be written as a 4× 4 matrix:

T =
[
R3×3 t3×1

01×3 1

]
(4.3)

We solve for the pose estimationT in two steps, within a hybrid framework: the rotation
R is first computed by matching either intensity or depth data in the 2D panoramic image
space, while translation is calculated a posteriori by projecting back in the 3D space the
rotationally aligned panoramic images.

Rotation parametrization. There are several choices for representing 3D rotations:
3×3 orthogonal matrix, angle-axis representation or unit quaternions. An unit quaternion
is a normalized four-dimensional vector q̇ = (q0, qx, qy, qz) which provides a more compact
representation than an orthogonal matrix (9 parameters), being suitable for numerical
optimization techniques. A rotation of angle ψ around an axis n can be represented by the
unit quaternion q̇ = (cos ψ

2 , sin ψ
2 n̂) where n̂ is the unit vector n̂ = n

‖n‖ . The orthogonal
matrix R(q̇) corresponding to a rotation given by the unit quaternion q̇ is expressed by:

R[q̇] =




q2
0 + q2

x − q2
y − q2

z 2(qxqy − q0qz 2(q0qy + qxqz)
2(q0qz + qxqy) q2

0 − q2
x + q2

y − q2
z 2(qyqz − q0qx)

2(qxqz − q0qy) 2(q0qx + qyqz) q2
0 − q2

x − q2
y + q2

z


 (4.4)

For further lecture on quaternions the reader can refer to [Horn, 1987], [Howell and
Lafon, 1975], [Salamin, 1979].

The pose estimation process combines the acquisition geometry and the sensing device
intrinsics in order to decrease the poses’ solution space as described hereafter:
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Figure 4.6: Example of 2D panoramic views obtained from 3D point clouds acquired in
the Moulin de Languenay prehistoric cave, France: a) the VBP corresponding to the scan
S1, b) the 2D intensity panoramic image obtained from S1 noted I1, c) the 2D depth
panoramic image corresponding to S1 noted D1, d) the VBP corresponding to the scan S2

which overlaps partially S1, e) the 2D intensity panoramic image obtained from S2 noted
I2, f) the 2D depth panoramic image corresponding to S2 noted D2. In order to illustrate
the surface shared by S1 and S2, figures g) and h) depicts the registered scans in 3D and
2D image space, respectively: h) shows the aligned scans with S1 - green and S2 - magenta,
g) a 2-channel 2D panoramic image containing I1 - red channel, I2 - green channel. Their
superposition produces the grey-level area corresponding to the overlap region. The area
indicated by the arrow corresponds to the area situated right underneath the sensor which
cannot be digitized due to the system’s montage. This leads to a considerable amount of
missing data for which a robust scans alignment method must be designed.

• following the acquisition geometry illustrated in Figure 4.3 c), the sensing device
undertakes rotations of angle ψ around the L-mount laser rotation axis given by
n(θn, ϕn) in order to acquire several partially overlapped scans, as shown in Figure
4.7 a).

• following the laser construction, the L-mount laser rotation axis n(θn, ϕn) is con-
tained by the laser’s equator plane given by (θ, ϕE), as shown in Figure 4.7 b). In
addition, by construction, the scanning device has the equator fixed at ϕE = π

2 .

The two aforementioned relations can be summarized by the following expression:

n(θn, ϕn) ⊂ (θ, ϕE) ⇒ ϕn ≡ ϕE (4.5)

giving rise to the following calibration constraint:

n(θn, ϕn) ≡ n(θn, ϕE) (4.6)

which reduces the 3D solution space of the rotation q̇(ψ,n(θn, ϕn)) to a 2D one, focused
on the estimation of the remaining unknown angles (ψ, ϕn).
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Given the acquisition geometry (Figure 4.3 c)) and the 2D spherical projection of a VPB
shown in Figure 4.3 d), we solve for the unit vector q̇(ψ,n) in the panoramic image space.
We search for the 2D image location (uθn , vϕn) corresponding to the spherical coordinates
(θn, ϕn) of the L-mounted-laser rotation axis n. Following the calibration constraint given
in Equation (4.6), we can deduce the equator’s row location vϕE in the 2D panoramic
image space using the internal parameters PI of the spherical acquisition ϕmin and δϕ
(previously recovered in Section 4.5.1), as follows:

vϕE =
ϕE − ϕmin

δϕ
(4.7)

The remaining unknowns, (ψ, θn) are computed by varying the parameters of ψ and
θn within an homogeneous searching area, PSA, which is recursively updated at each
pyramidal level. PSA is defined by the following parameters: the ψ range: [ψmin, ψmax],
the θn range: [θn,min, θn,max], the ψ step δψ and the θn step δθn. We search for the column
uθn by varying θn in the searching area within a range of [0◦, 180◦], as shown in Figure 4.3
d). The rotation angle is computed by applying rotations of angle ψ ∈ [0◦, 180◦] around
n(θn, ϕE) axis to the 3D points of S2 and matching the corresponding transformed pixels
with pixels from I1, which was previously obtained by from S1.

Figure 4.7: Calibration constraints induced by the acquisition geometry of the L-mount
laser prototype. (a) the L-mount laser prototype acquisition geometry, (b) the intrinsics
of a 2D spherical projection of a VPB acquired by the L-mount laser prototype.

Translation computation. In the 3D mosaicing acquisition scenario presented in
Section 4.3 translations are negligible, i.e. less than 1

4 pixel at levels l > 0, shadowing the
system’s instability during the sensing device rotations which introduces small amounts
of parallax. Nevertheless, the pyramidal framework allows to handle larger amounts of
translations. Further details on the translation estimation are provided in Section 4.5.4.

Let us now describe the core of the pair-wise scan matcher in more mathematical details.
At every pyramidal level l = 0, .., Lmax, where Lmax defines the height of the pyramid, the
goal is to find the 3D rigid transform Tl = [R, t]l. Since the same type of operation is
performed at each level l, let us drop the superscript l through the following description.
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4.5.3 2D-Panoramic-based Rotation Estimation

For a given 3D rigid transformation T12 we can directly obtain the 2D image coordinates
m̂1 of a 3D point in scan S1 from its pixel coordinates m2 in I2 using the following
composed projection:

m̂1 = S1 ◦T12 ◦ S−1
2 (m2) (4.8)

The rotation computation is performed by matching 2D panoramic views within a
pyramidal dense correlation framework using quaternions. The algorithm solves for the
rotation estimation by exploiting either intensity or depth 2D panoramic views, following
the input data provided by the capturing device. The following subsection describe the
intensity mode of the rotation estimation process. The depth mode employs an similar
procedure whose description can be found in Appendix B.1.

4.5.3.1 Intensity Mode

For a given quaternion q̇(ψ,n[θn, ϕE ]), (ψ, θn) ∈ PSA, we map pixels mj
2 from I2 in the I1’s

space using the spherical projection expressed in Equation (4.8). The optimal rotation
is obtained by minimizing the difference in brightness between the two panoramic images
I1 and I2 in the overlapping region. The dissimilarity in brightness is measured by Mean
Absolute Differences (MAD) for all corresponding pixels belonging to the overlap, being
defined on the interval [0, 1].

EI(ψ,n) =
1

255N12

j=N2−1∑

j=0

ΦI
j |I2(mj)− I1(m̂

j
ψ,n)| (4.9)

ΦI
k defines a characteristic function which takes care of "lost" (i.e. the pixel falls outside

of the rectangular support of I1) and "zero" pixels (i.e. missing data either in I1(m̂
j
ψ,n)

or I2(m̂
j
ψ,n)), which may occur when mapping pixels m̂j

ψ,n in the I1’s space. Thus, we
penalize "lost" and "zero" pixels using the following weighting function:

ΦI
j =





0, if I1(ûj , v̂j) = 0 or I2(ûj , v̂j) = 0
0, if ûj , v̂j < 0 or ûj > nu − 1 or v̂j > nv − 1
1, otherwise

(4.10)

The number of N12 denotes the number of pixel matches found between I1 and I2 for
which ΦI

j = 1, and defines the overlapping area OI [ψ,n] of the corresponding rotation
RI [ψ,n] between I1 and I2. The overlap is evaluated with respect to the reference image,
I1. Hence,

OI [ψ,n] =
N12

N1
(4.11)

being essentially a subunit value.
The optimal rotation R̂I [q̇(ψ̂, n̂)] is given by the minimal dissimilarity measure, thereby

maximizing the overlap ÔI [ψ̂, n̂]:

R̂I [ψ̂, n̂] = arg min
(ψ,n)∈PSA

EI(ψ,n) (4.12)

When referring to the GS200 laser range finder data sheet, we can find that the scanning
device delivers 3D measurements with an accuracy of 1.5mm which decreases starting with
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50m. In the research work presented in this dissertation, we employ the scanning device
in underground environments with depth values up to 30m. In this sense, the Φ function
can be extended to weight laser measurements wrt their accuracy.

4.5.4 Translation Estimation

Let us now drop the superscripts I and D through the following description and consider
that an optimal rotation R̂ was computed using either the intensity or depth mode. The
corresponding overlap Ô and dissimilarity score Ê are used for further computations.

We use the rotationally aligned scans to eliminate bias with respect to the median error
and to compute the optimal translation vector t̂, which is given by the difference between
the two barycenters of the 3D coordinates points belonging to the overlapping areas of each
scan. Since the rotation is computed using the non-centered 3D coordinates, an additional
translation appears when applying R̂−1 to the 3D coordinates of S2. The rotationally
aligned scans are then obtained by compensating the total translation, t̃ = t̂ + tres.

When computing t̃ based on correspondences between 3D coordinates points, we have
to deal with outliers. We minimize a weighted residual error metric defined by the euclidian
norm in order to discard false matches between the 3D points correspondences with respect
to the optimal rotation model R̂. The goal is to minimize the criterion QR̂ =

∑k=N12−1
k=0 rk,

where rk are the weighted residual errors defined by:

rk = Φk‖(pk
1 − R̂−1pk

2‖ (4.13)

The discarding procedure eliminates 3D points correspondences with a residual error
grater than a threshold ξ = f(r̄, σr̄), where r̄ and σr̄ are the mean and the standard
deviation of the residual errors rk obtained with respect to the rotation model. Hence, the
outliers are penalized by updating the function Φk as follows:

Φk,ξ =

{
0, if rk > ξ

1, if rk < ξ
(4.14)

with f(r̄, σr̄) = r̄ + ασr̄. In the presented work, the threshold corresponds to a rotation
residual error of 0.01 ± 0.01, while α tunes the scanning device standard deviation (3mm
for GS100 and 1.5mm for GS200). We estimate the optimal translation vector t̂ by double
thresholding the residual errors, rk. We first discard outliers in order to compute the total
translation t̃:

t̃ = C1,ξ − R̂−1C2,ξ (4.15)

where Cb,ξ, b = 1, 2 denotes the barycenters coordinates after the first outlier rejection
using the rotation model. We compensate the total translation on scan S2,

p̄k
2 = pk

2 − t̃ (4.16)

and we discard a second time the residual errors between the rotationally aligned scans.
In practice, up to 15% of 3D correspondences are rejected through the double-thresholding
process. The translation vector is computed using the difference of the rotationally aligned
centroids corresponding to the remaining 3D points matches:

t̂ = C1,ξξ − R̂−1C̄2,ξξ (4.17)
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The total residual error with respect to the global model is expressed by:

Q[R̂,̂t] =
k=N12−1∑

k=0

Φk,ξξ‖(pk
1 − R̂−1p̄k

2 − t̂‖ (4.18)

4.5.5 Pyramidal Matching Strategy and Incremental Pose Refinement

Additionally to the use of calibration constraints for reducing the solution space of T,
the algorithm performs pose estimation in a pyramidal searching fashion to cut down the
combinatory.

After computing intensity and depth 2D panoramic images for each scan, we build
pyramidal structures for both, the intensity and depth panoramic images of Sn noted
I l
n and Dl

n, respectively, where l = 0, .., Lmax and Lmax is the height of the pyramid
[Bouguet, 2000]. We build 2D panoramic images for 3D Cartesian coordinates noted Ixyz,
and generate their corresponding pyramidal structures I l

xyz in order to have direct access
to the true 3D coordinates at each level, when projecting back in the 3D space each
matched pixel. The rotation computation starts at the lowest resolution level Lmax, where
an exhaustive searching is performed in order to provide a coarse value of the global
minimum. For l = Lmax the PLmax

SA parameters are initialized using Equation (4.19):

PLmax
SA =





[ψLmax
min , ψLmax

max ] = [0◦, 180◦]
[θLmax

n,min, θLmax
n,max] = [0◦, 180◦]

δψLmax = δθLmax
n
2 = 1◦

(4.19)

Let (ψ̂, θ̂n, ϕE)Lmax be the coarse global minimum computed at the lowest resolution level
Lmax. The coarse rotation estimation is refined at higher resolution levels l = Lmax−1, .., 0,
increasing the accuracy and reducing the searching space around the global minimum
(ψ̂, θ̂n, ϕE)l computed at each previous level. The solution space for each level is delimited
by ∆ψl and ∆θl

n which are defined as the corresponding range values for ψl and θl
n,

respectively. For each new level l = Lmax − 1, .., 0, the PSA parameters are updated
following the recursive scheme described in Equation (4.20):

P l
SA





∆ψl = ∆ψl+1

2

∆θl
n = ∆θl+1

n
2

[ψl
min, ψl

max] = [ψ̂l+1 −∆ψl, ψ̂l+1 + ∆ψl]
[θl

n,min, θl
n,max] = [θ̂l+1

n −∆θl
n, θ̂l+1

n + ∆θl
n]

δψl = ∆ψl

4

δθl
n = ∆θl

n
4

(4.20)

For l = Lmax an exhaustive searching has been processed in a (ψ, θn) window of size
180◦ by 180◦. For l = Lmax − 1 we choose a PLmax−1

SA of size 2◦ by 2◦ around the global
minimum (ψ̂, θ̂n) found at Lmax, (choosing ∆ψLmax−1 = ∆θ

Lmax−1
n = 1◦ with ∆θ

Lmax−1
n

corresponding to 1 pixel in the 2D panoramic image space), which is sampled in a 9 by 9
pixel window.

Since in our 3D mosaicing scenario translations are negligible, i.e. less than 1
4 pixel

at levels l > 0, we can speed up the matching process by introducing and computing
the translation vector directly at the highest resolution level, l = 0. Accordingly to the
height of the pyramidal structure given by Lmax = 3, the algorithm can handle maximal
translation values of 2Lmax = 8 pixels corresponding to 10 cm.
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4.6 Pair-wise Rigid Scans Alignment Experiments

Data input. We applied the 3D mosaicing scenario described in Section 4.3 in two
prehistoric caves from France: Moulin de Languenay - trial 1 and Tautavel - trials 2, 3
and 4. Each trial is composed by sequence of 4-VPBs acquired nearly from the same 3D
position. In order to evaluate the robustness of the proposed method wrt different scanning
devices and different scans resolutions, we performed several tests on data acquired with
different acquisition setups.

Moulin de Languenay - trial 1: time and in-situ access constraints were not noticed
and therefore the Trimbler GS100 laser was set to deliver multi-shot and high resolution
scans.

Tautavel - trials 2, 3, 4: the experiments were run in a large-scale and "difficult-to-
access" underground site. Therefore, the acquisition setup was designed to handle large-
scale scenes while dealing with time and in-situ constraints. In particular, Trimbler GS200
was employed to supply accurate measurements at long ranges. In addition, during exper-
iments we focused to limit as much as possible the acquisition time by setting the sensing
device to acquire one-shot and low resolution scans, emphasizing the robustness of our
algorithm with respect to sparse large scale data sets caused by depth discontinuities.

Figures 4.8 and 4.9 depict the pair-wise scan matching process for trial 1 and trial
2, respectively, using both modes of the rotation estimation, i.e. intensity and depth.
The basic inputs are directly exploited in order to automatically solve for the intrinsic
parameters of the spherical acquisition PI , which are used to generate intensity and depth
2D spherical panoramic views (step described in Section 4.5.1) and their associated 3-
level pyramidal structures corresponding to each scan. In the panoramic image space
1◦ corresponds to 4, 2, 1, 0.5 pixels at level l = 0, .., 3, respectively. We illustrate the
dissimilarity maps (ψ-row, θn-column) for each level l and the superposed images obtained
for the optimal rotation, i.e. I1 and I2 warped in I1’s space for the intensity mode,
and D1 and D2 warped in D1’s space, for the depth mode. The dissimilarity maps for
level Lmax represent a full search, i.e. (ψ ∈ [0◦, 360◦]) and (θ ∈ [0◦, 360◦]), in order to
emphasize the score maps symmetry. Nevertheless, in practice for rapidity purposes, only
the half of the space is explored. The warping is performed by resampling the image with
subpixel accuracy and computing image brightness via bilinear interpolation. The maximal
accuracy is obtained at the highest resolution level l = 0, where steps of (δψ0, δθ0

n) =
(0.0625◦, 0.0625◦) were used to explore the SA solution space, where δθ0

n corresponds to 1
4

pixel. The final outputs of the pair-wise scan matcher are given by the highest resolution
level, l = 0: the pose T[R̂, t̂], the overlap O[R̂, t̂], the dissimilarity score E[R̂, t̂] and
the global criterion Q[R̂,̂t]. Figure B.1 from Appendix B.2 summarizes the pair-wise scan
matcher processing pipeline.

Figure B.2 from Appendix B.2 and Figure 4.10 illustrate the aligned scans obtained by
running the pair-wise scan matcher on one pair of partially overlapping scans belonging to
trials 1 and 2, using depth and intensity modes, respectively. Table 4.6 shows the numerical
results associated to Figures B.2 and 4.10.

Operating mode influence. When analyzing the results illustrated in Table 4.6 for
trial 2 with respect to the mode employed for the rotation estimation (intensity or depth),
we observe that for large motions resulting in low overlap values the laser rotation angle
estimates are ambiguous. These pair-wise uncertainties are eliminated by the optimal ab-
solute poses computed during the multi-view fine alignment process for which a description
is provided in the next section.
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Figure 4.8: Pair-wise scan matching procedure on data sets acquired in Moulin de
Languenay prehistoric cave (France) using a TrimblecircledR GS100 scanning device.
Image size I0

1 : n0
u = 1502, n0

v = 252.



98 4. Multi-view Scans Alignment for in-situ 3D Mosaicing

Figure 4.9: Pair-wise scan matching procedure on data sets acquired in Tautavel prehistoric
cave (France) using a Trimbler GS200 scanning device. Image size I0

1 : n0
u = 2083, n0

v =
310.

Overlap influence. Comparing to trial 2, for trial 1 a large overlap region was pro-
vided. By having a closer look at Table 4.6 we observe that the size of the provided overlap
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Trial Mode ψ̂(◦) n(ûθn , v̂ϕn ) (pixels) ‖t̂‖ (mm) O E

Trial 1 Intensity 33.875 [483.1875, 158.6604]T 2.59 0.51 0.074

M-shot Depth 33.875 [483.1875, 158.6604]T 2.19 0.51 0.003

Trial 2 Intensity 47.875 [521.75, 196.0377]T 0.85 0.19 0.054

1-shot Depth 48 [521.75, 196.0377]T 0.88 0.19 0.116

Table 4.1: The outputs of the automatic pair-wise scan matching procedure for Trial 1 and
Trial 2.

influence the robustness of the rotation estimates. However, the translation estimates are
still ambiguous, varying with an order of 10−3m even when high overlaps are provided.
This is explained by the fact that the accuracy of the algorithm is subject to the accuracy
of the measurement delivered by the sensing device, which is our case is α α = 3mm for
GS100 - trial 1 and 1.5mm for GS200 - trial 2.

The multi-view alignment process described in the next section is designed to com-
pute the optimal absolute poses which consists in minimizing and compensating eventual
misregistration errors encountered during the pair-wise process.

Figure 4.10: Pair-wise matching results on data sets acquired in Tautavel prehistoric cave
(France). Operating mode: depth, total number of points: 1.312× 106, runtime: 7 min 32
s on a 1.66 GHz Linux machine equipped with 2 Gb of RAM memory.
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4.7 Multi-view Scan Matching via Topological Inference

This section focuses on the multi-view alignment process corresponding to phases (3) and
(4) in Figure 4.5. The basic input is a sequence of N overlapping scans and no additional
information. For an arbitrary sequence, no knowledge is given about the reference scan
neither about the ordering between scans within the sequence.

Being given the symmetric relationship between the direct and indirect pair-wise poses,
i.e. Tij = T−1

ji , we save computation time by running the pyramidal pair-wise scan matcher
on pairs of scans (Si, Sj) defined on Ω = {(Si, Sj)|i, j ∈ {0, .., N − 1}, i 6= j, i < j}, i.e. C2

N

pairs.
The pair-wise scan matcher outputs are used to assign a model graph introduced by

Huber, [Huber, 2002], defined as G = {N ,A,B, E} which encodes the topological relation-
ship between all views within a sequence. G contains a node Ni for each view Vi associated
to Si. The attribute Ai for node Ni denotes the absolute pose Ti for Vi. Bij includes the
relative pose Tij , the overlap Oij , the dissimilarity score Eij , and the edge Eij , indicating
that Vi transformed by Tij overlaps Vj . We assign to each edge Eij a weight, noted eij ,
which provides information about the scans’ adjacency.

We define two topological relations over the graph G. First, a scans adjacency notion
is associated to the 3D mosaic acquisition scenario and second, the pose consistency is
verified via a topological inference criterion.

Scans adjacency. In our proposed 3D mosaicing acquisition scenario, the scans’
adjacency is defined as the apparentness of an arbitrary scan Si to the currently processed
3D mosaic. Accordingly to the acquisition scenario and taking an extreme case when
rotations larger than ψmax are encountered, the adjacent scans composing the mosaic are
always related by a minimum overlap situated at the top (ceiling) and bottom (ground)
of the spherical mosaic which in theory correspond to an overlap of ∼= 30% of a VPB.
In practice, the system’s montage leads to an area which is not digitized, situated right
underneath the scanner, as shown in Figure 4.6, which corresponds to the south pole of the
spherical view, reducing therefore the global overlap to the half. Nevertheless, the missing
data does not affect the quality of the alignment thanks to the dense correlation procedure
which yields robustness to low overlap areas.

Therefore, we estimate that the minimum overlap which relates two VPB belonging
to the same mosaic must be superior to Omin

V BP = 15%. Consequently, an inferior value
to Omin

V BP = 15% would signify that the tested scan Si does not belong to the currently
processed 3D mosaic, being an integrating part of a different 4-VBP sequence acquired
from a different spatial 3D position of the system. This defines the scans adjacency notion
associated to the 3D mosaicing acquisition scenario which is encoded within the graph G
using the edges eij as follows:

eij =

{
1, if Si ∩ Sj ≥ Omin

V BP

0, if Si ∩ Sj < Omin
V BP

(4.21)

Since no knowledge is given about the scan’s adjacency, the weights values eij corre-
sponding to each edge Eij are initialized to 1.

Topological inference criterion [Sawhney et al., 1998]. As stated in [Huber,
2002], a model graph is said to be pose consistent if the relative pose between any two
views is independent on the path used in calculation. When dealing with pair-wise scan
matching it is very often observed that the estimated poses are locally consistent but



101

globally they are not. In order to ensure the consistency of the global 3D scene model,
the multi-view scan matching process verifies the pair-wise matches’ consistency via the
topological inference (TI) procedure introduced by [Sawhney et al., 1998]. The TI process
verifies the relative poses Tij by composing the relative poses of adjacent views along the
path:

TTI
ij = Ti,i+1 ◦ ... ◦Tk,k+1 ◦ ... ◦Tj−1,j (4.22)

where, ek,k+1 = 1.
Up to now we have formalized two relations defined on the graph G: the scans’ ad-

jacency and the topological inference criterion, which are employed to perform the global
alignment within two steps. First, the algorithm detects whether the input scan sequence
contains alien scans, i.e. scans which do not belong to the currently processed 3D mosaic.
Second, the pair-wise poses are used to detect the best reference scan which will optimally
register all the adjacent scans in a global reference coordinate system. The multi-view
scans matching procedure ends by integrating all views into a single 3D entity, hence pro-
viding a complete 4π steradians field of view for a given station. Figure B.3 from Appendix
B.3 illustrates the global pipeline of the multi-view scans alignment process. The following
two subsections focus on the description of the two aforementioned steps of the multi-view
alignment process.

4.7.1 Alien Scans’ Detection

The sensing device is set to acquire Nscenario scans from a single 3D position in space.
However, during the mission, multiple scans acquired from various view-points may be
mixed up and incorrectly assigned to the currently processed 3D mosaic, being by default
linked through edges eij = 1. Detecting scans which do not belong to the currently
processed 3D mosaic requires to verify the adjacency condition expressed in Equation
(4.21) and update the edge values into eij = 0 when the adjacency criterion is not fulfilled.

Alien scans’ detection is performed within two steps. First, the pair-wise procedures
outputs are exploited by a voting procedure to detect scans susceptible of being incorrectly
assigned to the currently processed 3D mosaic. The currently processed 3D mosaic is given
by the maximum VPBs fulfilling the adjacency condition expressed in Equation (4.21). As
stated in the acquisition scenario, Nscenario = 4 VPBs are generally acquired to form a
complete spherical mosaic. Second, a consistency test is performed on scans for which the
susceptibility assumption was sustained by a maximum number of votes in order to decide
whether the candidates may be classified as alien scans or not.

In our acquisition scenario Nscenario is known. Nevertheless, we generalize our ap-
proach, providing two solutions, taking into account whether Nscenario is provided or not.

Case (a) Nscenario known. The algorithm performs alien scan detection if the input
sequence contains more scans than the acquisition scenario needs, i.e. when N > Nscenario.

Each scan belonging to the scan sequence is tested in order to detect those which are sus-
ceptible of being incorrectly assigned to the current sequence. Let Sk, k ∈ {0, .., Nsequence−
1} be a scan for which we want to find whether it is susceptible to be an incorrectly as-
signed one or not. For each scan, Si, i ∈ {0, .., Nsequence − 1|i 6= k} the algorithm performs
a voting procedure using the dissimilarity measure.

The dissimilarity scores computed wrt Sk, Eik, are compared against those obtained
between the same scan, Si and all the other scans, Sj , j ∈ {0, .., Nsequence−1|j 6= i, j 6= k},
Eij . For each scan, Si the algorithm votes for the scan Sk susceptibility assumption as
follows:
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vi,k,j =

{
1, if Eik > Eij

0, if Eik ≤ Eij

(4.23)

Being given that the current sequence must contain a number of Nscenario scans, for
each scan Si at least Nscenario − 1 votes must sustain the susceptibility assumption in
order to declare Sk susceptible of being an incorrectly assigned scan. More precisely, the
susceptibility assumption must be sustained in unanimity by scans Si, i ∈ {0, .., Nscenario−
1|i 6= k}. For an arbitrary scan Si the total number of votes is given by vik =

∑
j vi,k,j and

the susceptibility condition is expressed as:

vik ≥ Nscenario − 1 (4.24)

If for at least one scan Si the above susceptibility condition is fulfilled, then the scan
Sk is a candidate for the pose consistency test performed in order to decide whether the
scan is incorrectly assigned or not.

Since the pair-wise scans matching procedure outputs the dissimilarity score and the
overlap, we can express the susceptibility condition by making use of the minimum overlap
value imposed by the acquisition scenario Omin

V PB.

if ∃Si such as vik ≥ Nscenario − 1 ⇒ Sk ∈ CTI = {Sk|Sk ∩ Si < Omin
V PB, k 6= i} (4.25)

The topological inference procedure is applied on the graph G in order to verify the con-
sistency of the estimated pair-wise poses Tik, i 6= k corresponding to each candidate scan
Sk ∈ CTI .

Being given that all views within the graph G are initially linked through edges eij = 1,
there are several paths possible for composing the pose TTI

ik . Following the topological
inference criterion, if for at least one arbitrary path TTI

ik the pose Tik is found inconsistent,
then the scan Sk is detected as an alien scan and consequently is discarded from the
multi-view alignment procedure by updating the corresponding edge values eik. Using the
topological criterion from Equation (4.22), the discarding condition can be formalized as
follows:

if ∃TTI
ik 6∈ {Tik ± ξTI} ⇒ eik = 0 (4.26)

where ξTI = |̄r + σr| encoding the tolerance error attached to the pair-wise scan matching
procedure.

Case (b) Nscenario unknown. If the number Nscenario is not known, the algorithm
employs the median value of the dissimilarity score in order to detect susceptible alien
scans. For each scan Si, we compute the median score Ēi over all the dissimilarity measures
obtained by matching pairs of scans (Si, Sj), j ∈ {0, .., N − 1|i < j, }, Eij , which is defined
by the following expression:

Ēi = medj∈{0,..,N−1|i<j}{Eij} (4.27)

For each scan Si the algorithm performs the voting procedure as follows:

vij =

{
1, if Eij > Ēi

0, if Eij ≤ Ēi

(4.28)
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For each scan Sj the total number of votes is given by:

vi =
∑

j∈{0,..,N−1|i<j,}
vij (4.29)

The scans Sk whose susceptibility assumption is sustained by a maximal number of
votes are considered candidates for the consistency test. The susceptibility condition form
Equation (4.24) becomes:

Sk = arg max
i∈{0,..,N−1}

vi (4.30)

Analogue to case (a), the pose consistency Tik is verified for each scans Sk via the TI
procedure. If at least one pose is found inconsistent, then the algorithm decides that Sk is
an alien scan and consequently discards it from the multi-view scans alignment process.

Discarding alien scans. Let K be the total number of the discarded scans for both
cases (a) and (b). Each detected alien scan Sk is discarded from the multi-view alignment
process by updating the weights eik corresponding to each edge Eik relating the scans Sk

to all other scans Si within the graph G as follows:

Eik ← eik = 0 (4.31)

Discarded scans Sk, k ∈ {0, ..,K − 1} with the same number of votes vm are grouped
into clusters Cm:

Cm = {Sk, k = 0, .., M − 1|vk = vm} (4.32)

where card(Cm) = M < K < N and K =
∑

m card(Cm).
The alien scan detection procedure is applied iteratively to each cluster Cm until the

topological inference procedure results in a completely pose consistent graph.
The multi-view scans alignment process goes on by exploiting the updated graph G′ to

compute the optimal absolute poses which register all the remaining N −K adjacent scans
in a common reference coordinate system to produce a 3D mosaic.

4.7.2 Find Optimal Absolute Poses

Absolute poses are required in order to register all scans wrt a global coordinate system.
Since one view may overlap several others, it is necessary to detect which one will optimally
register all scans wrt a global coordinate system.

Since a high overlap privileges the computation of highly accurate absolute poses, it is
undoubtable that the optimal absolute poses maximize implicitly the global overlap while
minimizing the dissimilarity score over the entire 3D scene model.

Generally, the first scan is chosen as the reference so that the global coordinate system
is locked in the reference frame of that scan. However, this approach requires a specific
acquisition scenario to provide a maximum overlap between the first scan and all the other
views in order to produce accurate absolute poses estimates.

We propose a 3D mosaicing acquisition scenario which allows to freely rotate the scan
laser, leading to imprecise overlapping areas. Since high overlap values ensures accurate
pose estimates, the multi-view scan alignment process detects the absolute poses which
will optimally register all views wrt the optimal reference scan, noted Ŝ0.

As shown in Table 4.6, very large motions (i.e. superior to the maximal rotation angle
ψmax imposed by the acquisition scenario in order to guarantee the minimum overlap
Omin

V PB) corresponds to low overlap values, resulting in quite noisy pose estimates. In order
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to handle such critical cases, the global multi-view scans alignment process compensates
the misregistration errors of the pair-wise matching step by registering all scans wrt the
one which maximizes the global overlap over the entire sphere between all scans, while
minimizing the dissimilarity between them.

The basic idea based on which the algorithm searches for the optimal reference scan, Ŝ0

uses the relationship between the rotation angle ψij , the overlap Oij and the dissimilarity
score Eij . Since high overlap values correspond to low dissimilarity scores, the optimal
reference scan Ŝ0 maximizes the global overlapping area between all the registered scans,
minimizing thereby the global dissimilarity score between all views. Therefore, the optimal
reference scan is computed by maximizing the global overlap surface over the entire 3D
scene model.

For each potential reference scan Si, the absolute pose Tj which will register the view
Vj , j ∈ {0, .., N − 2|j 6= i} with respect to the absolute view Vi, is given by Tj = Tji =
T−1

ij , where Tij has been already computed by the pair-wise matching procedure and its
corresponding edge weight fulfills the adjacency condition, i.e. eij = 1.

The global overlap GO(i) is obtained by registering all scans Sj with respect to Si, and
summing all the overlaps Oj corresponding each absolute pose Tj . The quantity GO(i) is
evaluated with respect to the entire 3D scene model surface, which in our case is a fully
covered spherical surface, noted Gs.

Since the overlap Oj is expressed with respect to the number of image points belonging
to the 2D panoramic image associated to reference scan Si, we compute first the overlap
produced by the alignment process in pixel units, On−view(i) as follows:

On−view(i) = nu(i)nv(i)
j=N−2∑

j=0,i 6=j

Oj (4.33)

where, nu(i) and nv(i) denote the rectangular support of the 2D panoramic image.
Using the angular steps corresponding to one pixel, (δθs, δϕs), we express the global

spherical surface in pixel units:

Gs =
2π

δθs
.
ϕmin

s − ϕmax
s

δϕs
(4.34)

where, ϕmin
s and ϕmax

s denote the limits of the vertical field of view of the obtained 3D
mosaic. The angular steps corresponding to one pixel are given by the median value over
the angular steps of the VPBs composing the sequence, being expressed as:

(δθs, δϕs) = (med{i∈0,..,N−1}, {δθ(i)},med{i∈0,..,N−1}{δϕ(i)}) (4.35)

Therefore, the global overlap GO(i) may be expressed with respect to the sphere’s
surface as follows:

GO(i) =
On−view(i)

Gs
(4.36)

The optimal reference scan is given by the maximum global overlap obtained over the
entire 3D scene model.

Ŝ0 = arg max
i∈{0,..,N−1}

GO(i) (4.37)
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4.8 Experiments and Quality Assessment

This section presents the results obtained for trials 1 - 4. The algorithm starts by running
the pair-wise scan matching procedure on each scan sequence, which outputs the pose
estimation between each pair defined on Ω.

Alien scans detection. The multi-view global alignment process detects whether the
sequence contains incorrectly assigned scans or not. Figures 4.11, 4.12 and 4.13 illustrates
the case (a) of the alien scans’ detection process described in Section 4.7.1 for a sequence
containing Nscenario = 6 scans from which 2 scans were found as incorrectly assigned and
consequently they were discarded from the scan sequence. Figure 4.11 shows that scans
S5 and S6 are susceptible to be incorrectly assigned. Therefore, in order to decide if
scan S5 and S6 are incorrectly assigned, the algorithm tests the pose consistency of their
corresponding pair-wise poses via the TI procedure. Figures 4.12 and 4.13 illustrate the
consistency tests using the laser rotation angle estimates ψ̂. For both scans, the algorithm
detects more than one inconsistent pair-wise rotation angle. Thus, the two candidates S5

and S6 were detected as incorrectly assigned and consequently, they are discarded from
the multi-view scans alignment process.
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Figure 4.11: MAD voting procedure using the intensity mode. We observe that for scan S1,
E15 > E12, E15 > E13, E15 > E14, which yield v15 = 3, meaning that the susceptibility
condition in Equation (4.24) is fulfilled. A similar situation is obtained for S2 and S3,
fulfilling also the susceptibility condition. However, one scan Si suffice in order to declare
the scan S5 susceptible to be an incorrectly assigned scan. The same result is obtained
also for scan S6.

Compute optimal absolute poses. The remaining pair-wise poses are used to
compute the optimal reference scan Ŝ0. Since each view Vi is a potential reference, the
multi-view scan matching process evaluates the global overlap over the entire 3D scene
model obtained by considering each view Vi as a reference. The optimal reference scan Ŝ0

is given by the absolutes poses which maximize the global overlap over the entire 3D scene
model.



106 4. Multi-view Scans Alignment for in-situ 3D Mosaicing

Figure 4.12: Consistency Test for Scan S5 using the topological inference procedure. Each
estimated rotation angle ψi5, i ∈ {1, .., 4} does not coincide with the angle computed via
TI procedure ψTI

i5 . This yields the inconsistency of all relatives poses between scans Si and
S5.

Figure 4.13: Consistency Test for Scan S6 using the topological inference procedure. Each
estimated rotation angle ψi6, i ∈ {1, .., 4} does not coincide with the angle computed via
TI procedure ψTI

i6 . This yields the inconsistency of all relatives poses between scans Si and
S6.

Figure 4.14 depicts the global overlap evaluation with respect to each potential reference
scan for trials 1-4. Referring to trials 1, 2 and 3, we observe that for both modes, intensity



107

and depth, the global overlap over the entire 3D scene model is maximized by registering
all views with respect to scan S1. The multi-view scans alignment procedure ends by
registering all views with respect to the reference scan Ŝ0 = S1. We observe that for trial
4 different optimal reference scans were obtained with respect to each mode: Ŝ0 = S2

for intensity mode and Ŝ0 = S1 for depth mode. This is explained by the presence of
missing data, which results in a low global overlap value over the entire sphere’s surface
(GO = 0.06 %). Trial 4 illustrates an extreme case for which our method yields reliable
alignment results in presence of critical low overlapping scans. More precisely, the laser
was situated in a narrow area, close to the wall’s cave. This experiment illustrates the
robustness of the proposed method to large-scale data sets.

Figure 4.14 allows us to establish a repeatability rate with respect to each mode. When
using the depth mode, the same scan S1 was found as the one maximizing the global overlap
for all trials (1-4), Ŝ0 = S1, yielding an unitary repeatability rate, while for the intensity
mode a repeatability rate of 0.75 is obtained.
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Figure 4.14: Global overlap evaluation with respect to the potential reference scans for
trials 1 - 4.

Figures 4.15, 4.16, 4.17 and 4.18 depict the residual mean error and the corresponding
standard deviation obtained for each pair-wise match, using both modes of the pair-wise
scan matching procedure for all trials.

For trials 2, 3, and 4 the experiments were run in a very difficult-to-access underground
environment, in presence of holes and sharp depth changes resulting in missing data. De-
spite data sparseness, more accurate results were obtained for trials 2, 3, and 4, comparing
to trial 1. This is explained by the sensing device capacity: comparing to trial 1, for trials
2, 3 and 4 the number of points provided by the scanning device (GS200) is higher (see
figures 4.8 and 4.9).

Figure B.4 from Appendix B.3 and Figures 4.19 and 4.20 illustrate the rendering
results for trials 1 an 2, obtained by passing each 4-VPBs sequence to the automatic
intensity-based multi-view scan matcher.

Table 4.2 provides the global residual errors obtained for all trials. When analyzing the
residual mean errors, we observe the inter-dependency between the alignment accuracy
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Figure 4.15: Residual Mean Square vs. Rotation Angle for trials 1 - 4.

Figure 4.16: Residual Mean Square vs. 3D Translation for trials 1 - 4.

and the number of points provided by the capturing device for pose calculation. The
experiments demonstrates the robustness and the reliability of our algorithm in complex
environments where depth discontinuities lead to large scale sparse data sets. The fourth
column of table 4.2 illustrates that following the scan matcher mode, the results’ accuracy
may vary between [10−2, 10−3].

Operating mode selection. The accuracy between the two modes does not vary
significantly. Consequently, when both data are available, i.e. intensity and depth, their
jointly use provides robustness, completing each other drawbacks (depth mode is robust to
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Figure 4.17: Standard Deviation vs. Rotation Angle for trials 1 - 4.

Figure 4.18: Standard Deviation vs. 3D Translation for trials 1 - 4.

poorly textured areas, while the intensity mode guarantees accurate results in geometrically
symmetric man-made environments). When computation time must be reduced, one may
choose between intensity and depth mode using two criterions.

• for previously unknown environments, the scan matching output needed by the pro-
cessing pipeline: for instance, in our case, the intensity mode is used in order to
recover the reflectance 2D spherical projection of the generated 3D mosaic which
is exploited for further processing in Chapter 6 to align a texture map onto the 3D
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Figure 4.19: Multiview Scan Matching results on data sets acquired in Tautavel prehistoric
cave, France - Trial 2. (a) S1 - green, S2 - magenta, (b) S12 - green, S3 - magenta, (c)
S123 - green, S4 - magenta, (d) Multiview scan alignment - Top-down view, S1 - yellow,
S2 - blue, S3 - green, S4 - red, (e) Front-left view, (f) Top view, (g) Front-right view, (h)
Zoom-in outdoor front-right view, (i) Bottom-up view, (j) Zoom-in cave’s ceiling.

mosaic using radiometric criterions for generating 4D-mosaics. Figure 4.21 illustrates
the 2D spherical projection containing the reflectance obtained for trial 2.

• environment type: when knowledge about the environment is available, the algorithm
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Figure 4.20: Multiview Scan Matching results on data sets acquired in the Tautavel pre-
historic cave, France - Trial 2. (a) Cave’s outdoor view, (b) Cave’s indoor, (c) Zoom-in
cave’s indoor.

allows us to select the most suitable scan matching mode. For instance, the depth
mode provides robustness in complex environments in presence of either too textured
or too homogeneous areas. Although the proposed method does not rely or feature
extraction and matching, it is suitable for structured environments as well. When
applying the proposed method in structured man-made areas, with geometrically
symmetric areas, such as rooms, the intensity mode yields more robust results.

Normal operating limits. We study the algorithm’s operating limits for application
in previously unknown environments, which implies either structured or unstructured for
scenarios performed either indoor or outdoor. Two main factors may influence the scans
alignment quality or even provoke the algorithm’s failure. The first one is the size of the
overlapping region which has the main impact on the pose computation process, and the
second is the inter-scans parallax amount introduced by the system’s instability during
rotations.

When applied in underground or ceiling-covered environments, there are no limits im-
posed for the rotation of the sensing device. The acquisition scenario guarantees the
minimum overlapping value Omin

V BP situated on the north pole of the spherical mosaic.
Nevertheless, special attention must be given when applying the 3D mosaicing scenario
in outdoors environments, since they lead to a non-digitized north pole of the spherical
mosaic. This problem can be solved by rotating the L-mount-laser with smaller rotation
values that ψmax. A second issue which must be taken care of is the inter-VPBs parallax
introduced by the system’s instability during rotations. The pyramidal framework enables
the algorithm to handle translations values up to 10 cm. In order to allow accurate poses
estimation, it is necessary to fix the platform to avoid superior parallax values.

Runtime. The experiments were run on a 1.66 GHz Linux machine using a standard
CPU implementation. The last column of Table 4.2 shows that the proposed approach ex-
hibits robustness to registration errors with a reasonable computation time. Nevertheless,
since the algorithm was originally designed in a multi-tasking fashion, it allows for both
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Figure 4.21: The 2D spherical projection of the global 3D mosaic obtained for trial 2.
(a) The 2D reflectance mosaic: the resulted global mosaic contains a non-digitized area
corresponding to the area situated underneath the scanner. (b) The 2D color mosaic
generated from the same 3D pose of the system to facilitate the visualization of the 2D
reflectance mosaic. The two mosaics (a) and (b) are separated by a 3D rotation and a
negligible translation.

sequential and parallel processing on embedded platforms. In order to improve the speed of
the algorithm, the next section provides the embedded design for parallel implementation
on a multi-core embedded platform.

4.9 Embedded Design for onboard 3D Mosaicing

When porting an algorithm on an embedded system several aspects must be taken care of
such as: which hardware fits the needs of the application, how fast the algorithm can be
processed and how many power resources are required. Therefore, feasible schemes stand
in the design of specific integrated solutions for a wisely chosen hardware accordingly to
the application type.

This section proposes the embedded design for the multi-view scans alignment algo-
rithm described in this chapter for performing onboard 3D mosaicing. In order to allow real
time 3D mosaicing, the embedding design occurs at two levels: data acquisition and pro-
cessing. Therefore, we present the embedded design for parallel processing and a hardware
solution to allow real time acquisition.

Parallel processing. By having a closer look at Figures B.1 and B.3 from Appendices
B.2 and B.3 respectively, one can notice that the 3D mosaicing process can be decomposed
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Trial Mode (r̄± σr̄)× 10−2 (∆r̄±∆σr̄)× 10−2 ]points, CPU time (min)

Trial 1 Intensity 3.913± 15.86 0.793± 2.22 1.508× 106

GS100 Depth 3.12± 13.64 16.44
Trial 2 Intensity 1.18± 16.14 1.94± 0.84 2.5829× 106

GS200 Depth 3.12± 16.98 27.39
Trial 3 Intensity 0.332± 4.15 0.021± 0.154 2.6079× 106

GS200 Depth 0.353± 4.304 27.66
Trial 4 Intensity 0.184± 1.249 0.007± 0.884 2.5321× 106

GS200 Depth 0.191± 0.365 26.28

Table 4.2: Results of the global 3D scene models. The fourth column illustrates that the
accuracy may vary following the mode used an order of 10−2. of the pose estimates wrt
the mode used. The last column illustrates the number of points and runtime obtained for
each trial.

into smaller tasks that can be performed in parallel. We can divide the algorithm in the
following main parts:

1. Pre-processing:

• build 2D panoramic images of intensity/depth and 3D cartesian coordinates
from VPB;

• generate the corresponding Lmax-level pyramidal structures;

2. Core: compute relative poses Tij between scans;

3. Post-processing:

• alien scans’ detection;

• optimal absolute poses computation;

The core represents the most computationally expensive part within the entire multi-
view scan alignment process. Within this stage the pair-wise scan matching step is per-
formed between all scans in order to provide the relative pose estimates. Moreover, this is
a repetitive and independent task which can be processed simultaneously on a multi-core
embedded platform.

We designed a multi-tasking software architecture suitable for parallel onboard pro-
cessing on a multi-core embedded platform, capable to cope with the laser’s architecture
and to meet the embedded platform requirements.

The acquisition time for one single VPB containing 6 × 105 points (6.7Mb) is 15 min
and 4 VPBs are at least needed to provide a fully 3D spherical mosaic. In order to minimize
the execution time of the entire in-situ process (i.e. data acquisition and processing), data
processing is performed on-the-fly, starting as soon as the each scan’s acquisition is finished.

Figure 4.22 illustrates the algorithm’s parallelization for an embedded platform equipped
with 3 CPUs. After acquiring each scan, its pre-processing starts simultaneously with the
next scan acquisition. As soon as the first scan pair is acquired, their relative pose com-
putation is performed simultaneously with the third scan acquisition. This multi-tasking
process continues until the last scan is acquired. Then, all its associated pair-wise poses are
computed in parallel. The multi-view alignment process ends up with the post-processing
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stage. Following the above principle and by parallelizing the algorithm on an embedded
platform equipped with 3 cores, a factor of 3 can be gained over the entire runtime for the
entire 3D mosaicing process. As shown in Table 4.3, once the scans’ acquisition is finished,
the system generates in-situ a 3D mosaic after 5 min - for GS100, and 9 min - for GS200
scanning device.

Figure 4.22: Parallelization on 3 CPUs.

runtime (min) 1 CPU 3 CPU
GS100 16 5
GS200 27 9

Table 4.3: CPU runtimes for sequential and parallel processing on two capturing devices
from Trimbler.

Since the pre-processing stage waits for each scan acquisition (15 min), there are no
speed constraints nor memory bandwidth limitations for data transmission or memory
access. During the core and the post-processing stages all the 4 VPBs are exploited and
a maximum amount of 35 Mb memory is needed. Therefore, the proposed algorithm can
run on multi-core embedded platform with low amount of onboard memory. The power
consumption of the scanning device reaches 150 W, while the embedded computer may
require less than 65 W.

Improving runtime using silicon devices. With the new advances of Digital Signal
Processing (DSP) and Field Programmable Gate Array (FPGA) researchers have reported
implementations of commonly used computer vision algorithms - such as feature extraction
and digital image warping [Giacon et al., 2005], [Baumgartner et al., 2007]. The recently
developed cutting edge DSP provides enough performance when optimized computer vision
algorithms are used. When choosing between DSP and FPGA, one has to pay attention
to the execution mode of the algorithm, i.e. parallel or sequential. FPGA are suited for
algorithms which benefit from parallel execution, which is the case in our research work.
Therefore, more processing time could be gained by implementing the proposed algorithm
on FPGA.
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Real-time 3D mosaicing using 3D cameras. Although the multi-core implemen-
tation of the algorithm decreases the computational time for the processing stage, there
is still room to improve the runtime of the entire 3D mosaicing process by reducing the
acquisition time. A possible way to speed up the data acquisition step is to employ a real-
time 3D camera, such as the one proposed by MESAr, mounted on a pan-tilt motorized
platform instead of the L-mount-laser prototype. The 3D camera delivers a sequence of
pose-annotated range images which can be further stitched into a 3D mosaic using the
2D Gigapixel mosaicing algorithm proposed in next chapter. Although the algorithm was
designed and tested in 2D high-resolution color images, it is straight forward to apply it
on 2D depth images.

Uses of the 3D mosaic output. The output of the proposed 3D mosaicing system
can be exploited either in-situ or by a host wirelessly connected to the target.

• in-situ: in our research work, the 3D mosaicing process is integrated within the
mosaic-driven 3D modeling process performed in-situ by the ARTVISYS system in-
troduced in Chapter 3. The use of the 3D mosaic output occurs at two levels of the
entire 3D modeling system. The first level is the main 3D modeling process. This
is described further in Chapter 6 which illustrates how the 3D mosaic is exploited
to generate in-situ fully spherical and photorealistically textured 3D models encoded
as 4D-mosaics. The second level occurs when looping to provide feedback control
to the system by exploiting the 3D mosaic within visual servoing procedures. As
we will see further in Chapter 7, at this level the 3D mosaic can be used to encode
the geometric information into a volumetric global map which is further exploited
to extrapolate semantic information about the system’s surroundings, giving rise to
in-situ perception needed to enable vision-based systems at performing in-situ site
modeling and exploration.

• off-line: the acquired data together with the absolute poses can be transmitted wire-
lessly to a host, where the final 3D model rendering can be visualized and improved
by an operator within in a controlled-laboratory rendering pipeline [Levoy et al.,
2000], [Ikeuchi et al., 2007].

The aforementioned embedded design gives rise to a real-time 3D mosaicing sensor
suitable to be integrated onboard unmanned mobile platforms for supplying site surveys
missions in high-risk and difficult to access environments.

4.10 Conclusions

This chapter prototypes a 3D mosaicing sensor capable to supply automatically 3D mod-
eling tasks in complex and difficult to access environments without human operator inter-
vention. The contributions of this chapter range from hardware to software levels, along
with theoretical and algorithmic concepts focused to solve for the automation of the 3D
modeling pipeline which is actually the main scope of this dissertation. We list hereafter
the main contributions of the research work presented in this chapter.

Hardware. We introduce a hardware architecture which enables the sensor to capture
a fully spherical field of view of the system’s surroundings for a single 3D pose. The cap-
turing device delivers a sequence of partially overlapped scans acquired through imprecise
pan rotations which are further aligned and merged automatically by the multi-view scans
alignment method proposed in this chapter.
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3D mosaicing scenario. An unsolved issue standing behind the automation of the
3D modeling process requires a data acquisition scenario capable to provide automatically
the minimum overlap required in order to supply reliable and fast in-situ data matching.
To deal with this aspect, the proposed scans alignment technique comes together with
a 3D mosaicing acquisition scenario which provides automatically the minimum overlap
required to ensure a reliable and fast data matching, while avoiding data redundancy.
Furthermore, the 3D mosaicing scenario allows for an occlusion-free 3D modeling process
by acquiring fully spherical mosaics and partially mosaics to sense the occluded areas,
avoiding therefore data redundancy. Beside its stand alone use, the proposed acquisition
scenario is an integrating part of the mosaic-driven acquisition scenario performed in-situ
by ARTVISYS in order to achieve the 3D scene model completeness.

Theoretical and algorithmic contributions. Although prototyping the 3D mo-
saicing sensor is the global contribution of this chapter, we believe that the its essential
contribution stands in the development of a rigid multi-view scans alignment algorithm
capable to generate in-situ 3D mosaics in large-scale, complex and difficult to access en-
vironments without requiring operator’s intervention. This is of main importance, since
the proposed algorithm solves for one of the major issues standing behind the automation
of the 3D modeling pipeline: the automatic data alignment problem. We summarize and
justify hereafter several theoretical and algorithmic features integrated within the proposed
scans alignment framework.

• Global approach. We propose a rigid multi-view scans alignment algorithm for gen-
erating in-situ 3D mosaics in large-scale and difficult to access environments. The ba-
sic input of our framework is a sequence of partially overlapped and unordered scans,
without other additional information. The multi-view alignment framework falls in
the category of sequential methods being powered by a pair-wise alignment tech-
nique which produces precise poses estimates. This overcomes the drawback of the
simultaneous techniques which are generally followed by a global registration phase
to distribute the accumulated errors resulted from the pair-wise coarse estimates.
Moreover, the global registration step leads to a complexity with grows quadratically
with the number of views, being unfeasible for large-scale environments. One may
argue that the alien scans detection process introduced in this chapter may lead to a
quadratic growth with the number of scans, too. This is not truth since in out case
study we know that a 3D mosaic requires Nmosaic = 4 scans and therefore, the total
number of scans acquired Nscenario and integrated with the multi-view process can
be limited by the user to Nscenario = 10 for instance.

• Free-initial guess pair-wise alignment for precise rigid estimates. Being
given the existing pair-wise alignment approaches, feature-based and direct, for safety
reasons, we choose a direct approach and save computation time using calibration
constraints to reduce the solution space and by performing a pyramidal searching
to cut down the combinatory. As for the core of the pair-wise scans alignment,
it is powered by a matching procedure of 2D panoramic views using a pyramidal
dense correlation framework via quaternions. Since the acquisition scenario ensures
a minimum overlapping area in order to avoid data redundancy, the dense correlation
procedure allows to exploit all the information presented in the overlap region. We
designed a hybrid framework using a combination of radiometric and geometric mea-
sures. As a matter of fact, we solve for pose estimation within two steps: first, the
rotation in computed in the 2D panoramic image space, while translation estimation
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is performed using the rotationally aligned panoramic images back-projected in the
3D space. The 2D panoramic image provides spatial and appearance constraints,
increasing therefore the reliability of the scan matching task. In addition, the pyra-
midal framework takes care of the two key aspects of any scan matcher: the accuracy
and the robustness, allowing to compute large motions at low resolution levels and
fine motions at the highest pyramidal level.

• Multi-view rigid alignment. We define a graph model over the entire scan se-
quence which exploits the pair-wise procedure outputs to encode the topological rela-
tionship between views. We associate a scans adjacency notion to the 3D acquisition
scenario which is used jointly with a topological inference criterion [Sawhney et al.,
1998] to discard scans which do not belong to the currently processed 3D mosaic,
introduced as alien scans. In addition, since one view may overlap several others, the
detection of the best reference view is seen as a dissimilarity minimization over the
entire graph. Therefore, the optimal absolute poses are obtained by minimizing the
dissimilarity score, thereby maximizing the global overlap over the entire 3D scene
model.

Onboard capabilities:

• We designed a general multi-view scans alignment technique capable to receive differ-
ent types of inputs: range images or 3D point clouds, and to process different type of
data: intensity and depth, being able to automatically switch between the two modes
for pose computation. Therefore, the proposed framework provides robustness wrt
the scanning device, tacking into account whether the intensity is acquired or not.

• We provide a multi-tasking implementation of the algorithm and demonstrate its
portability on either single or multi-core embedded platforms for on line 3D scan
matching onboard mobile platforms. This software is likely be integrated onboard
unmanned mobile platforms to provide them with 3D scene representation for sup-
plying autonomy and decisional resources.

Experiments and quality assessment. We demonstrated the reliability of our
method by automatically generating 3D mosaics in two challenging underground prehistoric
caves situated in France. A quality assessment is addressed by illustrating and evaluating
the results obtained wrt different scanning devices, using both modes of the scan matcher:
intensity and depth. The presented experiments illustrate the robustness of the proposed
method with respect to the available type of input available (range images or 3D point
clouds), type of data to be processed (intensity or depth), feature-less areas and sparse
large-scale data sets (caused by depth discontinuities which are inherent to complex and
large-scale environments, such as natural underground sceneries).

Solved key issues. The proposed method solves explicitly for several key issues
stated in the beginning of this chapter in Section 4.2.3, which need to be addressed when
performing in-situ 3D modeling tasks in unstructured and underground environments, such
as:

• the absence of detectable and trackable features via dense correlation methods;

• the non-reliability of navigation sensors;

• time and in-situ constraints, i.e. fast acquisition and processing.
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While focusing to solve for the automation of the data alignment task, we have ad-
dressed the aforementioned issues by integrating the following features:

• a data acquisition scenario which guarantees the minimum overlap required to achieve
accurate pose estimates, avoiding therefore data redundancy;

• since features’ existence cannot be guaranteed in previously unknown environments,
for safety reasons we employ a direct scans’ alignment method for computing precise
rigid estimates without requiring pre-alignment;

• a sequential multi-view scans alignment to avoid the high complexity of the global reg-
istration step employed by simultaneous multi-view alignment methods. Moreover,
we reduce the number of views to be acquired to minimum 4 in order to generate a
fully spherical field of view surrounding the system;

• in order to allow for in-situ processing, calibration constraints were used jointly with
a pyramidal searching strategy to reduce the solution space and to cut down the
combinatory.

Features and uses of the proposed 3D mosaicing system. Figure 4.23 shows
the integration of the 3D mosaicing bloc within the ARTVISYS system and illustrates a
top-down-zoom view of its composing processing blocs. On the left side of the figure are
emphasized the features of each composing bloc wrt the currently existing scans alignment
methods, while on the right side are stated their corresponding stand alone and integrated
uses.

Perspectives. In [Craciun et al., 2008] we have investigated the possibility of in-
troducing a matching quality measure for the pair-wise scan alignment by exploiting the
inter-dependency between the dissimilarity scores and the overlap region. This is willing
to reduce the computational time of the alien scans’ detection process. An ongoing work
is to verify whether the quality match is verified when extreme cases occur within a wide
range of scenarios.

Since the nowadays 3D scanning devices are not equipped with an onboard multi-view
scan matching technique, but with interactive post-processing software based on manual
calibration, artificial landmarks or navigation sensors, they do not have enough capacity to
perform autonomously data acquisition and processing to allow in situ verification and/or
visualization of the 3D scene model completeness.

The need of such an algorithm is emphasized by the fact that during the post-processing
step the operator observes that the final 3D scene model is incomplete. Therefore, without
an in-situ pre-visualization of acquired data, the need to come back on site to complete
data collection is unavoidable. Moreover, the algorithm proposed in this chapter repre-
sents one of the main processing blocs required by the vision-based 3D modeling systems
currently under development aimed to be deployed in hostile environments for supplying
site surveys missions [Nüchter et al., 2004], [Magnusson and Duckett, 2007], [Johnson
et al., 2007], [Rekleitis et al., 2009]. Such systems aim to solve for the automation of the
3D modeling pipeline which is further exploited to power the system’s autonomy based on
visual perception.

We see the contribution of this chapter at two levels. From a system-oriented point of
view, the main contribution of this chapter stands in the development of a 3D mosaicing
sensor prototype embedding an automatic multi-view scans alignment algorithm capable
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to cope with currently existing 3D scanning devices, to process data on line and to gen-
erate in situ a 3D mosaic. The presented software was designed to be embedded onboard
3D laser scanners to perform, guide and assist site survey missions in difficult-to-access
environments. The second level refers to the automation of the 3D modeling pipeline
it-self by introducing a fully automatic scans alignment algorithm without relying on nav-
igation sensors nor nor feature matching, providing therefore an environment-independent
solution.

We believe that the proposed approach has an interest of its own, since it can reliably
generate in-situ fully 3D spherical mosaics, which nowadays represents an increasing need
for multiple purposes requiring an accurate embedded 3D scene representation, such as 3D
modeling, autonomous navigation, SLAM and path planning, being capable of providing
active 3D vision in high-risk environments.
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Figure 4.23: Global and local overview of the 3D mosaicing process.
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Chapter 5

AGM: Automatic Gigapixel
Mosaicing from Nodal Optical
Images

This chapter addresses the multi-view image alignment problem for in-situ automatic gen-
eration of Giga-pixel spherical mosaics in complex and underground environments. An
short version of the research work presented in this chapter can be found in [Craciun
et al., 2009]. Beside the stand-alone use of the proposed Giga-pixel mosaicing algorithm,
it constitutes the second main processing bloc of the ARTVISYS system introduced in
Chapter 3.

The image mosaicing spreadness has its origin in the Digital Age, being increasingly
supported by what one would call today ubiquitous digital computing or Information Era.
We start this chapter by introducing a bit of history on image mosaicing, drawing its fast
upgrade and wide applicability to which the last two decades of the Digital Age lead.

The next section presents an inside view of the mosaicing process and the available tech-
niques composing it, pointing out their complementarity. Section 5.3 starts the description
of our proposal by introducing the testbed employed for the Giga-mosaicing process. Sec-
tion 5.4 studies the performances of a widely used mosaicing algorithm and points out its
limitations when attempting to generate Giga-pixel mosaics in unstructured environments.
Consequently, Section 5.5 lists the main requirements which must be integrated within a
Giga-mosaicing scheme and provides an overview of the proposed framework fulfilling them.

Section 5.6 illustrates how we parameterize the camera motion in order to capture
entirely the camera displacements and the image formation process. The proposed mosaic-
ing algorithm is performed in two stages: first, the pair-wise image alignment establishes
a global-to-local motion estimation and second, a multi-view fine refinement process is
performed in order to compensate for the pair-wise possible mis-registrations. The mathe-
matical design and the experimental results obtained for each step are presented in Sections
5.7 and 5.8, respectively. We close this chapter by summarizing the research proposal and
by drawing future research directions in Section 5.9.

5.1 Once Upon a Time ... Image Mosaicing

Image stitching was pioneered back in the 1970s. Since then, it is an active research topic
in Photogrammetry, Remote Sensing, Computer Graphics, Computer Vision and Robotics
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research communities, promoting a wide range of applications.
Following the research community, different applications were motivating the devel-

opment of image mosaicing techniques. Remote Sensing and Photogrammetry research
community reported manual methods based on surveyed ground control points for aligning
and merging aerial images into large-scale photo-mosaics [Slama, 1980]. Another tradi-
tional application is the construction of large aerial satellite photographs from collection
of images [Moffit and Mikhail, 1980].

The next decade, Computer Vision research community was attacking the mosaicing
problem for visual scene representation purposes [Anandan, 1995], while in Computer
Graphics mosaic construction interferes with the IBR process [McMillan and Bishop, 1995],
[Chen, 1995], previously discussed in Section 2.2.1. The image mosaicing process started to
be widely employed for scene stabilization and change detection [Hansen et al., 1994], video
compression [Irani et al., 1995a], [Irani et al., 1995b], [Lee et al., 1997], video indexing
[Sawhney and Ayer, 1996], wide-angle FOV imagery [Heckbert, 1989], [Mann and Picard,
1994], [Szeliski, 1994] and high-resolution [Irani and Peleg, 1991], [Chaing and Boult,
1996], virtual environments [McMillan and Bishop, 1995] and virtual traveling applications
[Chen, 1995]. Robotics research community employs mosaics as visual maps [Garcias and
Santos-Victor, 2000], for localization [Ramisa et al., 2006], [Yazawa et al., 2009] and to
enable SLAM capabilities [Lemaire and Lacroix, 2007] in order to supply autonomous
navigation functionalities for site surveys, inspection and exploration purposes in hostile
environments, where human presence is highly undesirable.

Means for mosaicing imagery. Several techniques have been used to supply panoramic
imagery from real world scenes. Some of them employ special-purpose hardware acquisi-
tion, such as in [Meehan, 1990] in which authors capture directly a cylindrical panoramic
image by recording an image onto a long film strip using a panoramic camera. A possi-
ble alternative is the use of lens with very large FOV, such as fisheye lens [Xiong and
Turkowski, 1997], mirrored pyramid or parabolic mirrors [Nayar, 1997].

In this dissertation we focus on a low-cost technique which exploits a collection of
partially overlapped images covering a desired FOV. Image stitching algorithms [Szeliski,
2006], [Brown and Lowe, 2007] were designed to align and merge a collection of partially
overlapped images in order to deliver wide-angle imagery. Such composites are the result
of the image mosaicing process resumed in Figure 5.1, which allows to increase significantly
the image resolution and improves the SNR through the superresolution use.

Figure 5.1: The purpose of the image mosaicing process exemplified on data acquired
in the Tautavel prehistoric cave, France. (a)-input data consisting of several partially
overlapped images injected in the mosaicing process which outputs a wide field of view
image composite-(b).

A wide applicability of mosaic imagery was reported within the last three decades of
the Digital Age. Figure 5.2 resumes the fast evolution of the mosaicing systems. Since
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the reported techniques are influenced by the application type, we can place a virtual
frontier between them, splitting them in two classes. Interactive and automatic mosaicing
techniques are being introduced by Computer Graphics and Computer Vision research
communities, promoting consumer-level mosaicing. More industrial-oriented applications
have been reported in Remote Sensing and Robotics research communities.

Figure 5.2: The evolution of the mosaicing applications wrt their capabilities. Our research
proposal is highlighted in orange.

Consumer-level mosaicing. In mid 1990s, image mosaicing algorithms were lim-
ited to cylindrical panoramas acquired by cameras rotating on leveled tripods adjusted
to minimize the parallax motion [McMillan and Bishop, 1995], [Chen, 1995], [Szeliski,
1996], limiting the range users to professional photographers dotted with such dedicated
equipment. This bottleneck was overcome in the following decade when Shum and Szeliski
introduced a mosaicing system designed for hand-held cameras [Shum and Szeliski, 2000],
making mosaicing accessible to general-public.

In the late 2000s, commercial software releases are being made available for consumer-
level mosaicing uses [Kolor, 2005], [Brown and Lowe, 2007]. Moreover, with help from fast
computing and cheap disk storage devices, image mosaicing softwares have been ported
onboard mobile phones [Lowe, 2007], [Lopez et al., 2009] and improved with Gigapixel
capabilities [Kolor, 2009]. In [Nielsen and Yamashita, 2006], Sony c© have recently reported
the ClairV oyance mosaicing system for generating Gigapixel imagery. GigapanTM [Gi-
gaPan, 2009] is the latest release of the Global Connection Project developed by Carnegie
Mellon University and NASA Ames Intelligent Robotics Group, with support from Google
and BBC. The project aims at providing customers with a Gigapixel mosaicing package
containing a robotic digital camera mount for capturing high resolution images, a software
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for constructing Gigapixel panoramic images and a web site to allow hosting and shar-
ing of panoramas through the world wide web. The project initiators are confident that
this will bring together different communities across the globe having as main goal to ex-
plore and share each other’s discovery experience. Nowadays web-based applications such
as Google Streetview1 are being powered by spherical panoramic views to enable virtual
traveling. iTowns [iTowns, 2008] is an ongoing research project willing to provide virtual
walkthroughts and high-level semantic data extracted from panoramic images obtained
from a sequence of poorly overlapped images acquired on-the-fly by a 10-camera network
mounted on a vehicle. A description of the mosaicing algorithm can be found in [Can-
nelle et al., 2009]. All the aforementioned methods yield good results for pure-rotating
camera motion and small amount of parallax. One of their main drawbacks is that they
cannot handle scene motion which introduces ghost effects within the final mosaic image.
Recently, this problem has efficiently been addressed in [Qi and Cooperstock, 2007], [Qi
and Cooperstock, 2008].

The above mosaicing systems were designed to enable general public applications or
for hobbyists willing to produce manually wide-angle imagery. On the other side, Remote
Sensing and Robotic research communities promote exclusively less accessible to general-
public and more industrial-oriented applications of image mosaicing techniques.

Industrial-oriented applications. The Remote Sensing research community was
one of the first areas to report an intensive use of mosaic imagery for site survey pur-
poses [Slama, 1980], [Moffit and Mikhail, 1980]. Researchers from Lunar and Planetary
Institute report the use of mosaics for investigating the color and albedo of planet Mer-
cury [Robison and Edwards, 1995]. The use of mosaics for seabed mapping is reported in
[Rzhanov et al., 2000] in order to allow to survey the ocean floor and to inspect underwater
structures. Recently, in [Chaiyasarn et al., 2009] authors reported an ongoing research
project aiming to employ mosaic imagery for tunnel inspection with an application to the
underground infrastructure maintenance in London, United Kingdom.

Within all the aforementioned systems the mosaic processing is performed off-line which
leads to missing data and misalignments, precluding therefore the in-situ interpretation of
the acquired data. This is actually one of the main shortcomings of the current mosaicing
methods which highlights the need for an automatic mosaicing framework in order to
visualize and validate in-situ the mosaic correctness. This allows to perform accurate
measurements for site inspection or exploration purposes undertaken either off-line or in-
situ.

Robotics research community aims at integrating image mosaicing algorithms onboard
unmanned platforms to supply active-vision, including autonomous navigation tasks. To
this end, several research topics were attacked including panorama-based localization
[Ramisa et al., 2006], [Yazawa et al., 2009], the use of mosaics as visual navigation
maps [Garcias and Santos-Victor, 2000], seabed video mosaicing using a autonomous un-
derwater vehicle (AUV) [Sakai et al., 2004], SLAM with panoramic vision [Lemaire and
Lacroix, 2007]. The major challenge standing behind the development of the aforemen-
tioned systems is represented by the possibility to embed unmanned systems with au-
tonomous capabilities to perform site surveys in hostile environments and to supply in-situ
inspection, monitoring, maintenance and exploration of difficult-to-access environments
without requiring human operator intervention.

Addressing key issues for automatic image mosaicing in feature-less areas.

1http://maps.google.com
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Various mosaicing algorithms have reported successful frameworks based on feature ex-
traction and matching. However, when attempting to deal with image alignment problem
within an environment-independent framework, an important issue which needs to be ad-
dressed is represented by the absence of reliably extractable and trackable features. This
chapter attacks the image alignment problem in order to enable reliable image matching
in previously unknown environments.

Giga-pixel mosaicing in unstructured and underground environments. As
highlighted in Figure 5.2, the research work related in this chapter falls in the second cate-
gory, promoting an industrial-oriented application. In particular, we are mainly interested
in generating in-situ Giga-mosaics in unstructured and difficult to access environments
using specialized equipment, being therefore less consumer-level. The proposed mosaicing
framework was designed and validated on real data acquired in two prehistorical caves sit-
uated in France. The utility of such environment digitization can be considered in different
applications, ranging from data archiving to 3D modeling, passing through visual maps to
supply active-vision capabilities.

In this dissertation, the image mosaicing process is used for 3D modeling purposes,
being an integrating bloc of the ARTVISYS system introduced in Chapter 3. To this end,
the Giga-mosaicing algorithm described in this chapter allows to generate texture maps to
be mapped onto the 3D point cloud obtained through the 3D mosaicing process described
in Chapter 4. Moreover, the proposed algorithm can be used as a stand-alone in-situ
mosaicing system, being capable to perform in-situ acquisition, processing and visualization
of the sensed area in order to ensure the mosaic correctness. Finally, the system can be used
to provide onboard visual scene representation to supply in-situ autonomous site surveys
in difficult to access environments.

5.2 The Image Mosaicing Pipeline

After reviewing the great potential leading to a wide applicability of the mosaic imagery,
we will now take a look inside the mosaicing process and see which are the main issues
standing behind the in-situ generation of Gigapixel mosaics in unstructured environments.

Since its early days, the image mosaicing problem has been extensively addressed
and various mosaicing frameworks have been reported within the last decade [Shum and
Szeliski, 2000], [Teller and Coorg, 2000], [Szeliski, 2006], [Brown and Lowe, 2007] and
all them seem to converge to the same workflow processing illustrated in Figure 5.3 (a),
showing the wide understanding of the image mosaicing problem. The mosaicing process
can be split in two stages, the pair-wise and the multi-view fine alignment.

As shown in Figures 5.3 (b) and (c), following the input type, different approaches
were employed for each stage, each of which having its advantages and its inconvenient
highlighted in green and red. The third step is concerned with the mosaic compositing for
which either interactive or automatic techniques were introduced in order to obtain artistic
or basic mosaic rendering, respectively.

The next three subsections briefly review the available techniques for supplying each
procedure of the image mosaicing pipeline and emphasize their main shortcomings wrt
our research goal: automatic and fast in-situ Giga-mosaicing in feature-less environments,
implying all scenery type.
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Figure 5.3: Mosaic workflow processing. (a) The general mosaicing framework; (b) - direct,
(c) - feature-based approaches.

5.2.1 Pair-wise Image Alignment

When solving for the alignment of two partially overlapped images acquired from different
3D camera positions, as shown in Figure 5.4, it is necessary to back-track the camera
motion encountered in-between the images’ acquisition using nothing but the image data,
which can be eventually calibrated beforehand.

In Figure 5.4 each camera has its referential coordinate system centered in OC1 and
OC2 respectively, being related through a 3D rigid transformation. On the other side, the
spatial camera motion is reflected in the 2D image space through a planar transformation
for which a hierarchy is presented in Appendix C.1, Table C.1, each of which having its
corresponding parametrization in the 3D world space.

Let us now set I1 the template image and I2 the target image. Each camera images
different physical surfaces and the intersection of their FOV leads to an overlapping region
in the 2D image space. In Figure 5.4 the spatial point p expressed in the world coordinate
system O(x,y,z) belongs to the physical surface commonly imaged by the two cameras. Its
corresponding pixel locations in I1 and I2 are given by u1 = (ux, uy)T

1 and u2 = (ux, uy)T
2 ,

respectively.
The image alignment task requires to recover the 2D transformation which must be

applied to pixels belonging to the target in order to minimize an error function measured
in the overlapping area between the template and the target images. Finding such image
points pairings u1 ←→ u2 corresponding to the same 3D point p is the key element of the
image alignment process [Hartley and Zisserman, 2004].

Applications requiring highly accurate geo-referencing are still making use of artificial
landmarks whose 3D position are previously measured. Reliable means to perform this



127

Figure 5.4: Camera motion encountered in-between two successively acquired images with
a partially overlap region.

automatically are still an open issue, being particularly hard to solve in unstructured
and textureless areas due to the high-ambiguity of the feature extraction and matching
algorithms.

In order to come out with a reliable algorithm solving for the image alignment prob-
lem in feature-less areas, it was necessary to analyze first the available pose estimation
strategies.

The next section reviews the existing techniques solving for the pair-wise image align-
ment. Readers not familiar with the image formation process can refer the Appendix C.2
which presents the technical background on perspective geometry and camera calibration.

5.2.1.1 Image Motion Estimation Strategies

When computing the relative poses, one must establish three main factors: (i) model
the pixel relation by a parametric or non-parametric motion model; (ii) an error metric
to quantify the quality of the alignment and (iii) a technical solution for exploring the
available solution space. The possible parametric models are illustrated in Table C.1 from
Appendix C.1.

As shown in Figures 5.3 (b) and (c), following the input data type, two main approaches
are usually employed for the image alignment task. A detailed description of these methods
can be found in Sezliski’s tutorial on image mosaicing [Snavely et al., 2006]. This section
recalls each one’s characteristics willing to emphasize their complementarity which is later
exploited by our research proposal.

(A)Pixel-to-pixel methods. When the input is a set of ordered and pose-annotated
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images, direct approaches [Teller and Coorg, 2000] are usually employed for computing the
relative pose estimates by minimizing a radiometric criterion measured in the overlapping
area.

Technical solution. A possible least-squares solution is to minimize the sum of
squared differences in brightness (SSD [Anandan, 1989]) expressed in Equation (5.1) which
provides the optimal solution wrt to Gaussian noise.

ESSD(∆u) =
∑

i

[I2(ui + ∆u)− I1(ui)]2 (5.1)

where ∆u denotes the pixel displacement and ESSD is the residual error. More robust
metrics have been proposed by replacing the squared error with a robust norm [Huber,
1981], [Black and Rangarajan, 1996]. In video coding a widely employed function is the
sum of absolute differences (SAD). However, since is not differentiable in the origin, it is not
suitable for gradient-descend approaches [Szeliski, 2006]. Consequently, researchers have
directed their studies toward cost functions characterized by a quadratic growth around
the origin and slow convergence as getting far from the origin [Black and Rangarajan,
1996].

Illumination changes. When using a radiometric criterion, one must solve for the
exposure difference problem which may rise when attempting to align two partially over-
lapped images acquired with different exposures. To this end, researchers introduced the
bias and gain model [Lucas and Kanade, 1981], [Gennert, 1988], [Baker et al., 2003]
which can be easily integrated within a least square estimation problem. Note that for
color images such technique requires to estimate a different bias and gain for each channel
in order to compensate for the automatic correction of digital cameras. In [Jia and Tang,
2003] authors established a non-parametric model to count for intensity variation within
the registration process, providing robustness to lens vignetting caused by wide-angle cam-
eras. In other cases authors pre-process images with a band-pass filter [Burt and Adelson,
1983], [Bergen et al., 1992] or maximize the mutual information [Viola and Wells-III,
1995], [Kim et al., 2003].

Instead of using SSD jointly with the bias and the gain model, another widely radio-
metric criterion is the normalized cross-correlation (NCC) criterion which is invariant to
illumination changes. As stated in [Szeliski, 2006], in presence of low-contrast regions its
performance decreases, being given that NCC is undefined for zero-variance patches.

Computational burden. Direct methods are accurate but unaffordable for high
resolution images when using full search methods, even if a close initial estimation of T is
given. To speed up the motion estimation process, coarse-to-fine solutions were introduced
[Quam, 1984], [Anandan, 1989], [Bergen et al., 1992], [Craciun et al., 2009]. Note that for
low-resolution images the pyramidal structure may coarsen the representation too much,
causing blur of discriminative features. A solution to this problem is the use of Fourier-
based alignment techniques [Nielsen and Yamashita, 2006] as an alternative for speeding
up the image correlation process. Furthermore, it can also accelerate the sum of squared
difference function and its variations [Szeliski, 2006].

Sub-pixel accuracy. Up to now the aforementioned techniques are capable of achiev-
ing motion estimation with pixel accuracy. The estimate can be further refined incremen-
tally to achieve subpixel accuracy [Tian and Huhns, 1986]. One may choose to evaluate
the cost function around the optimum and interpolate the matching score to find the ana-
lytic maximum. Another widely used approach is to perform gradient descent [Lucas and
Kanade, 1981] on the cost function using a Taylor series expansion which leads to the cor-
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rect solution only when the initial guess is close to a few pixels. In [Jurie and Dhome, 2002]
the authors estimate the Jacobian using a least-square fit to a series of larger displacements
in order to increase the range of convergence. Another technique combines the incremental
approach with coarse-to-fine strategies [Bouguet, 2000]. The iterative estimation process
is stopped when the magnitude of the correction displacement is less than an established
threshold.

Lack of texture. Other metrics attempt to deal with the lack of texture in both
directions which causes the rank-deficient Hessian matrix, resulting in wired guesses. In
[Simoncelli et al., 1991], [Baker and Matthews, 2004b], [Govindu, 2006] the authors
attempt to mitigate this problem by adding soft constraints on the expected motions. In
[Triggs, 2004] authors showed that in practice the Gaussian model assumption [Simoncelli
et al., 1991] is not verified due to the aliasing along strong edges.

Dealing with noise. Robust error metrics and weighting techniques can be used
jointly within the Lucas-Kanade rule, leading to the Iteratively Re-Weighted Least Squares
(IRLS) algorithm which alternates at each step the weights computation and the weighted
least squares estimation process [Huber, 1981], [Stewart, 1999]. Other incremental least
squares algorithms were reported in [Sawhney and Ayer, 1996], [Black and Rangarajan,
1996], [Baker et al., 2003].

Parametric motion model. Instead of estimating a translational motion model,
gradient-decent methods can be used for estimating a parametric motion field M, by
minimizing the following criterion:

E12 =
∑

i

(I2(ui;T2D)− I1(ui))2 (5.2)

Since the Hessian and the residual vectors are computationally more expensive than for
the translational case [Baker and Matthews, 2004a], researchers employed a patch-based
approach [Shum and Szeliski, 2000]. For complex motion models, such as homographies the
Jacobian computation becomes more elaborated, involving per-pixel division. In [Szeliski
and Shum, 1997] authors proposed a simplified approach by first warping the target image
using the initial estimate and by comparing the warped image against the template. In
this context it is assumed that the images are similar and therefore an incremental para-
metric motion evaluated in the origin vicinity suffices. Several strategies were introduced
to speed up the computation time: forward compositional [Baker and Matthews, 2004a],
forward additive [Hager and Belhumeur, 1998], [Baker and Matthews, 2004a] and inverse
compositional [Baker and Matthews, 2004a]. In [Baker and Matthews, 2004a] the au-
thors compare the advantages of the Gauss-Newton iteration wrt to other techniques such
as steepest descent and Levenberg-Marquardt. More advanced research topics on these
approaches, including efficient strategies for pixel-weighting can be found in [Baker and
Matthews, 2004a], [Baker et al., 2003].

We end reviewing direct methods by resuming their positives and negatives, which are
also emphasized in Figure 5.3. Direct methods exploit all the information available in
the overlapping area, allowing for accurate pose estimates. Nevertheless, special attention
must be given to the initial guess quality when non-linear minimization techniques are
used. In presence of noisy initial guess, full search performed in a coarse-to-fine fashion is
the main technique which guarantees convergence.

(B)Feature-based methods. Feature-based methods are likely to be employed in
the absence of an initial estimation of T, being powered by feature pairings previously
established via feature extraction and matching algorithms. This framework was originally
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reported in the Robotic research community by Moravec [Moravec, 1983] and is being
increasingly employed for image stitching purposes. Early feature-based methods were
initialized by incremental refinement methods. Such a technique was firstly reported in
[Shi and Tomasi, 1994a] which employs a translational and affine-based patch alignment
to track Harris corners [Harris and Stephens, 1988] through an image sequence.

A suitable or a general keypoint detector? The first thing to do when designing a
feature-based method is to choose a suitable keypoint detector, i.e. yielding invariance wrt
the transformation encountered by the capturing device. In [Schmid et al., 2000] authors
report a keypoint detector survey together with an improved version of the Harris operator
[Harris and Stephens, 1988]. Recently, scale and affine transformation invariant descriptors
were reported in [Lowe, 2004], [Mikolajczyk and Schmid, 2004] and in [Schaffalitzky and
Zisserman, 2002], [Mikolajczyk and Schmid, 2005], respectively. A speeded-up variant of
robust features called SURF was recently reported in [Bay et al., 2008]. As an alternative
to keypoints features, line segments can be also used to for registering images. In [Zoghlami
et al., 1997] authors exploits line segments in the same manner as the keypoints to estimate
homographies between image pairs. Line segments were also used jointly with local edge
correspondences to produce 3D structure and motion [Bartoli et al., 2004].

Feature matching strategies. Assuming that several features were found in the
images, one must establish a set a pairings to feed the pose estimation process. This is a
big ASSUMPTION, since up to now we are not aware of a general keypoint detector and
since the existing ones are not guaranteed to be present in any environment.

Different matching strategies were introduced, following the amount of displacement
encountered by the camera, i.e. either small or large motions.

Early works on feature matching techniques were reported for video sequences [Shi and
Tomasi, 1994a]. These methods assume that the local motion around each feature is mainly
translational making them suitable to compute SSD or NCC functions over small patches
around each feature point. This is usually followed by a gradient-descent technique to
obtain more accurate results but with expensive computational time [Brown et al., 2005].
When larger motions are encountered, a translational model can be first established to
initialize an affine registration method [Shi and Tomasi, 1994a]. This matching approach
is refereed to as detect and track in [Szeliski, 2006].

When matching is performed between several images separated by larger unknown mo-
tions, detect and match techniques [Schaffalitzky and Zisserman, 2002], [Brown and Lowe,
1983] are employed to firstly detect features in all images. This is a more complex case,
since features are subjected to different orientations and scales, the feature recognition task
requires for a view-invariant descriptor to be designed. An evaluation of such descriptors
can be found in [Mikolajczyk and Schmid, 2005]. In the descriptor evaluation reported
in [Mikolajczyk and Schmid, 2005] authors conclude that SIFT descriptors [Lowe, 2004]
yield the best performances, followed by steerable filters [Freeman and Adelson, 1991] and
the cross-correlation criterion. In [Brown et al., 2005] authors demonstrated that the
NCC yields good results for small inter-image displacements with an application to image
stitching. Recent research directions in the field of feature descriptors are oriented toward
the use of PCA of SIFT [Ke and Sukthankar, 2004]. In [Weijer and Schmid, 2006] authors
exploit color information to design image descriptors.

Speed issues. Assume that a set of features were extracted from two partially over-
lapped images. The most simple method for finding feature pairings is to compare all points
in an image against all points in the second image. Since this approach leads to a quadratic
growth wrt the number of features, several techniques for rapid indexing were introduced
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based by finding the nearest neighbors in high-dimensional spaces including k-d trees spa-
tial data structures [Samet, 1989] and modified versions of it: Best-Bin-First (BBF) [Beis
and Lowe, 1997], local-sensitive hashing [Shakhnarovich et al., 2003], parameter-sensitive
hashing [Brown et al., 2005] and metric tree [Nister and Stewenius, 2006]. Although the
aforementioned techniques are a first step forward made for reducing the combinatory of
the matching process, techniques for computational saving are still required in order to
apply feature-methods on ultra-HR images for Giga-mosaicing purposes, which is the case
in our research work.

Dealing with false matches (outliers). Considering that a set of initial features
correspondences has been established, it is required to find the set which will produce an
accurate alignment. Direct estimation methods use a coarse-to-fine approach to first lock
onto a coarse estimate which is further refined on higher resolution levels [Bergen et al.,
1992], [Craciun et al., 2009]. In exchange, a general approach for feature-based methods
is to employ a least-square solution via IRLS [Szeliski, 2006]. A better technique is to
start the estimation directly with a set of pairings points which are consistent with the
estimated model within an error tolerance of a few pixels (inliers), previously established
via a random sampling algorithm, such as RANSAC [Fischler and Bolles, 1981] or least
median of squares (LMS) [Rousseeuw, 1984]. A random selection process of inliers set is
repeated and the subset with the largest number of inliers (or with the smallest residual
error) is kept as the final solution. A rapid variant of RANSAC, PROSAC (PROgressive
SAmple Consensus) can be found in [Chum and Matas, 2005].

Geometric registration. In contrast to direct methods which minimize a radiometric
measure, feature-based techniques minimize a geometric error measured between the cor-
responding coordinate points to estimate a parametric model motion relating two partially
overlapped images. The criterion is written as follows:

ELS =
∑

i

‖ri‖2 = ‖u1
i − (u2

i ;T2D)‖2 (5.3)

For motion models presented in Appendix C.1, Table C.1 having a linear relationship
between the motion and the parameters, usually a simple linear regression using normal
equations performs well. Some of LS solutions include uncertainty weighting to take into
account the matching accuracy. Although RANSAC is supposed to produce consistent
matches, the matching process is always subject to outliers and IRLS methods are used to
robustly weight point matches.

For non-linear motion parameters, such as homography, an iterative solution is required
to obtain accurate results. This solution is usually obtained via Gauss-Newton approx-
imation which implies a first-order Taylor series expansion. Each iteration estimates an
incremental motion which is used to iteratively update the parametric motion. However,
this is highly subject to the initial estimation accuracy.

Dealing with arbitrary camera motion. When constructing a closed 360◦ panorama
from multiple partially overlapped images by concatenating the pair-wise poses estimates,
the accumulated error lead to either a gap or an excessive overlap between the two ends
of the panorama. A possible solution to this problem is proposed in [Szeliski and Shum,
1997] which consists in distributing the error equally across the whole sequence. Related
approaches reported solutions for the focal length estimation for the case of pure panning
motion and cylindrical images [Hartley, 1994]. Such gap closing strategies are limited to
one-dimensional panorama case and more sophisticated techniques were introduced in or-
der to deal with arbitrary camera motions [Shum and Szeliski, 2000], [Brown and Lowe,
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2007].
Nevertheless, when dealing with arbitrary camera motions, the pair-wise estimates are

subject to mis-registration errors due to the 3D parallax, mis-calibration errors or scene
motion. A traditional approach for dealing with this issue is to refine the relative poses
within a global alignment step, which is actually the second main step of the mosaicing
pipeline for which a description is provided in the following subsection.

5.2.2 Multi-view Global Alignment

Generally, a simple concatenation of the relative poses lead to a globally inconsistent
alignment. This is generally due to the following geometric and radiometric factors, which
cause ghosting and blurring effects in the final mosaic composite.

• camera motion: unmodeled parallax (failure to rotate the camera around its optical
center), deviations from pinhole camera model [Hartley and Zisserman, 2004] and
unmodeled camera distortions;

• deal with various exposures: when the camera is used in the automatic mode or when
casually acquired images are stitched, the image alignment algorithm must be robust
to illumination changes. A challenging ongoing project developed by Microsoft is
the Photosynthr system [Snavely et al., 2006] in which authors attempt to match
several images under a different lighting conditions, seasons, day time and so on;

• scene motion: dynamic scenes (at small and large scale, ranging from people to
tree branches) affects the matching accuracy and introduce ghost effects in the final
compositing.

The aforementioned items lead to several radiometric and geometric inconsistencies
for which additional processing must be included within the 3D mosaicing pipeline. The
geometrical correction is concerned with the poses’ refinement, while the radiometric cor-
rection is usually integrated within the mosaic rendering process, being actually the last
step of the mosaicing pipeline and for which a description is provided in the next section.

This section is dedicated to the geometrical correction which is seen as an optimization
step and implies the computation of a set of globally consistent alignment parameters
by minimizing the mis-registration errors measured over all image pairs [Szeliski and
Shum, 1997], [Shum and Szeliski, 2000], [Sawhney and Kumar, 1999], [Teller and Coorg,
2000]. This can be accomplished by extending the pair-wise criteria (i.e. radiometric or
geometric) to a global error function which evaluates the relative estimates over the entire
image sequence composing the mosaic.

As shown in Figures 5.3 (b) and (c), following the pair-wise image alignment method
preceding the multi-view stage, two main approaches are usually employed for the geomet-
rical correction performed within the multi-view alignment step, which are briefly reviewed
hereafter.

Geometrical correction through bundle adjustment (BA). A big step toward
globally consistent solutions was the development of the bundle adjustment (BA) algo-
rithm which allows to solve simultaneously for all the cameras poses. Pioneered in the
photogrammetric community [Slama, 1980], it has increasingly been used by computer vi-
sion scientists to solve for the structure from motion problem [Szeliski, 1994] and later on
for mosaicing purposes [Sawhney and Kumar, 1999], [Shum and Szeliski, 2000], [Brown
and Lowe, 2007].
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Generally, the BA algorithm is fed with a set of image point pairings previously es-
tablished, being therefore likely to be employed within a feature-based framework. Never-
theless, as stated in [Szeliski, 2006], one can divide the image into patches and generate
virtual corresponding features [Shum and Szeliski, 2000]. In its original form, the BA
scheme solves simultaneously for the camera motion parameters and the 3D structure by
minimizing the geometric error between the features belonging to the template image and
the projections of the corresponding features in the target image obtained using the current
motion model estimate. Note how the pose estimation is highly-dependent on the quality
of the initial guess. In addition, this process has long iterations and slow convergence.
One solution for reducing the computational complexity of the Gauss-Newton step is to
use sparse matrix techniques [Szeliski, 1994], [Triggs et al., 1999], [Hartley and Zisserman,
2000], [Lourakis and Argyros, 2004].

BA-variants. Several variants of BA were reported, each of which employs different
poses formulations, including a rotation matrix and a focal length, [Shum and Szeliski,
2000], but also in terms of homographies [Shum et al., 1997], [Sawhney and Kumar,
1999]. Estimating a 3D rotation matrix and optionally a focal length is intrinsically more
stable than estimating a 8-D.O.F. homography, which justifies the use of this method for
large-scale image stitching algorithms [Szeliski and Shum, 1997], [Shum and Szeliski,
2000], [Teller and Coorg, 2000], [Brown and Lowe, 1983]. Usually, when blending the
images using the orientations and focal length estimates obtained through the BA process,
it is often observed that the final composite contains artifacts, i.e. blur and ghost effects
caused by a variety of factors including unmodeled radial distortion, 3D parallax and scene
motion. When the BA process does not model the 3D parallax nor the camera distortions,
the global alignment might be followed by a local alignment step via a patch-based optical
flow technique, such as in [Shum and Szeliski, 2000]. However, since this approach does
not model explicitly the error source, it can fail often or introduce unwanted distortions.

Dealing with distortions, parallax and dynamic scenes. Each of the aforementioned
problems can be addressed individually: the radial distortion can be estimated by cali-
brating the camera beforehand and although more expensive, the parallax estimation can
be integrated within the BA scheme. For dealing with objects which appear and/or disap-
pear completely, a less robust solution is to select pixels only from one image source when
computing the final composite [Milgram, 2006], [Davis, 1998], [Agarwala et al., 2004]. In
[Qi and Cooperstock, 2007], [Qi and Cooperstock, 2008] authors deal with moving objects
and parallax within the registration process.

Solutions for small or large parallax. Following the mosaicing acquisition scenario,
either negligible or small parallax amounts can be introduced. The first case supposes that
the images might be acquired from the same optical center or that the cameras slightly
separated. Therefore, an optical flow approach suffices for capturing negligible up to small
parallax motions. In exchange, the latter case requires to include the parallax estimation
within the pair-wise estimation process in order to ensure that the multi-view fine alignment
does not get stuck in a local minimum.

Solving optimally for distortions and parallax. An optimal approach to address this
issue is to solve for the camera distortions before the first camera use and to compensate
for parallax effects within the early stage of the pair-wise image alignment process in order
to model and compensate different motion sources separately.

Spherical mosaicing via dense-correlation and quaternions [Teller and Coorg,
2000]. Direct methods [Teller and Coorg, 2000] employ a global correlation function
defined for adjacent images wrt all orientations encoded as quaternions. In [Teller and
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Coorg, 2000] authors refine the initial guess provided by the physical instrumentation using
the LM non-linear optimization to produce an unique rotation for each image. In order to
avoid gaps between the first and the last images, authors constraint the system such that
the composed rotations along any cycle is the identity matrix.

The multi-view global alignment process solves for the geometric correction which im-
proves significantly the mosaic quality. The remaining issue now is represented by the
radiometric artifacts, which is generally solved within the rendering process. Nevertheless,
in other research works authors attempt to solve for the remaining geometric errors within
the rendering process, such as panorama straightening in [Brown and Lowe, 2007].

5.2.3 Mosaic Compositing

The last step of the image mosaicing pipeline exploits jointly all images and their associated
transforms to warp the input images onto a parametric surface to form the mosaic image.
Additionally, when one is concerned in providing an artistic rendering, it is within this
stage that an artifact "make-up" is performed by focusing on how to combine pixels from
different image sources in order to display overlapped areas when different exposures are
encountered. This operation is refereed to as feathering.

Basic or artistic rendering. The mosaic image rendering step is highly dependent
on the application type, not to mentioned that one can use a mosaic image without dis-
playing it effectively, but by storing it as a combined topological-semantic map based on
geometric and color attributes. However, most applications are interested in displaying
mosaic imagery and they usually require fast rendering and visualization methods, willing
to enable smooth navigation between panoramic-views.

Following the application type, different criterias are governing the rendering process.
The first class employs mosaic imagery as visual maps, aiming to endow unmanned mobile
platforms with active vision to supply autonomous navigation capabilities. These systems
privilege fast in-situ rendering procedures, while the second group focuses on providing an
artistic rendering for data archiving, virtual traveling and various general-public applica-
tions. More details on basic and artistic rendering can be found in Appendices C.3 and
C.4, respectively.

5.3 Gigapixel Mosaicing Testbed

This section presents the experimental platform employed in this chapter for generating
Giga-pixel color mosaic. The inputs of our algorithm are several hundreds of ordered HR
images acquired from a common optical center by a NIKONr D70 digital camera fixed on a
motorized pan-tilt head as shown in Figure 5.5. Although this chapter introduces a stand-
alone Giga-mosaicing system, the entire system is an integrating part of the ARTVISYS
hardware and acquisition scenario, as previously presented in Section 3.2.

Acquisition setup. The system’s setup is parameterized through a laptop/pocket PC
with the FOV to be covered by the mosaic and the desired overlap separating two images.
The platform delivers a sequence of pose-annotated and high-resolution color images of
size nu × nv = 3000 × 2008, where nu and nv denote the columns and the rows number,
respectively. We employ a long-camera focal f = 50 mm to minimize lens vignetting effects,
with a FOV of HFOV × VFOV = 26.34◦ × 17.73◦ and pixel size of 7.8µm. The camera is
calibrated off-line and the radial distortion modeled with a 3-rd degree polynomial. As
we will see further in this chapter, the use of a long focal allows to capture details over
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Figure 5.5: Mosaicing acquisition System: a NIKONr D70 digital camera (a) with its opti-
cal center fixed on a motorized pan-tilt head (Rodeon manufactured by Claussr) attached
to a tripod base (b).

long range sceneries, while images of low-depth scenes can be affected by blur if automatic
focus fails.

The camera is used in the automatic mode and the shooting delay is fixed to 5s in
order to provide enough time for synchronization with the Rodeonr platform. Generally,
we aim at generating an image mosaic with a 360◦×180◦ FOV and for the first experiment
images with an overlapping area of 33% were acquired, leading to Nstation = 315 images.
Later in this chapter we show that our algorithm exhibits robustness for images with an
overlap less than 1%.

Theoretical initial guess. The acquisition platform assigns to each image a relative
pose (θ, ϕ)hard corresponding to the theoretical rotations values imposed to guarantee the
required overlap and the final mosaic’s FOV.

The theoretical rotations delivered by the platform are related to the FOV to be covered
by the mosaic given by FOV=[θmin, θmax] × [ϕmin, ϕmax] and to the number of images
to be used for covering the entire field Nstation, itself being related to the size of the
overlapping areas. Therefore, the relative pose delivered by the motorized heading are given
by (δθ, δϕ)hard = ( θmax−θmin

Nstation
, ϕmax−ϕmin

Nstation
). In practice, we observed that the difference

between the theoretical and the physical rotation of the platform may vary within a range
of ∆εhard = ±5◦ in each direction.

Improving platform’s motion control. In order to record the physical motion of
the Rodeonr platform, it was therefore necessary to improve the quality of the initial
guess provided by the physical instrumentation. To this end, our research lab developed
a software to control and record the physical rotations of the capturing device. Although
the platform’s improvement does not influence the algorithm design, it was necessary for
generating in-situ Gigapixel mosaicing with real time performances.

Capturing platform’s motion. Although in theory the motorized platform under-
goes 2D-rotations, the spherical acquisition geometry gives rise to rotations which can be
better captured by adding a 3rd angle - yaw denoted by ψ in order to count for rotations
around the optical axis, corresponding to the Oz axis. It worths noting that the physical
instrumentation does not provide an initial estimation for ψhard. Yaw effects are negligible
for tilt values near the equator and increase as tilting either negatively or positively toward
poles. As the motorized heading tilts upwards (or downwards) to reach north (or south)
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pole, pan motions appears like rotations around the optical axis when projected in the 2D
image plane. Figure 5.6 illustrates the spherical acquisition geometry performed by the
experimental platform.

Figure 5.6: Rodeonr spherical acquisition geometry.

Being given the camera calibration and the initial guess (θ, ϕ)hard, it is necessary to
refine the camera orientations in order to solve for the image alignment problem. To this
end, in this dissertation we tackle the camera motion estimation within two phases. We first
evaluate the behavior of a widely employed image mosaicing algorithm when attempting
to generate Giga-mosaic imagery in unstructured and underground environments. Second,
to solve for its limitation, we introduce a pair-wise image alignment which can be used in
conjunction with a BA scheme to align and merge multiple partially overlapped images
into a mosaic.

5.4 Existing Mosaicing Methods’ Performances

It is very important to draw the limits of the currently existing mosaicing framework, and
therefore, in this section we present an evaluation of the state-of-the-art mosaicing tech-
niques on a data acquisition scenario performed in the Tautavel prehistoric cave situated
in France. We employ the image stitching algorithm reported in [Brown and Lowe, 2007]
which is being widely employed for commercial and industrial purposes.

The technique falls in the category of feature-based methods, being powered by a SIFT-
based image matching algorithm. The image motion is parameterized by affine motions,
justifying the use of SIFT features [Lowe, 2004] which are partially invariant to affine
motions. The pose estimation is performed by utilizing the Direct Linear Transform (DLT)
[Hartley and Zisserman, 2004] in conjunction with RANSAC [Fischler and Bolles, 1981] and
verified using a probabilistic model. Under the assumption that the pair-wise alignment
process yields geometrically consistent matches, the multi-view fine alignment follows a BA
scheme, which beside the computation of the rotations parameters, re-estimates the camera
internal parameters. The rendering process aims at providing artistic panoramic obtained
from casually acquired images, including automatic straightening, gain compensation and
multi-band blending.

Various implementations are available for both OSs, Linux and Windows. We tested
a C version under Linux and on Windows a Matlab source, Autostitch [Lowe, 2007] and
Autopano Pro [Kolor, 2005]. The evaluation is performed at different levels of the mosaicing



137

process:

• level (1): two-steps pair-wise matching: (i) feature extraction, (ii) feature matching;

• level (2): the global alignment step via BA.

At a first glance, we are mainly interested in evaluating the algorithm’s capacity to find
reliably SIFT matches, i.e. level (1). On several images pairs acquired in the Tautavel pre-
historic cave the extraction of SIFT descriptors failed. In other cases, SIFT were detected
but the algorithm failed to match them due to the high amount of blur effects introduced
by the long focal, which is the case shown in Figures 5.7 (a), (b). As for the global align-
ment step, i.e. level (2) illustrated in Figure 5.7 (c), it highlights the hole corresponding to
the unmatched images from Figures 5.7 (a) and (b). Figure 5.7 (d) exhibits an erroneous
multi-view alignment due to false matches imposing erroneous spatial constraints.

As stated in [Labrosse, 2004] and [Nielsen and Yamashita, 2006], there are several
issues with feature-based methods:

Major drawback for stitching fully textured images and ultra-high resolution images
have potentially such fully textured areas.

The underlying assumption sustaining that such features exist and can be efficiently
extracted and matched between sensor readings leads to the following issues:

• features that can be extracted do not necessary exist (natural environments);

• features of a particular type do exist in particular environments and algorithms de-
veloped for particular features are thus not portable;

• feature types used are more often a consequence of what can be extracted from the
data provided by the sensor used than that of the environment itself;

• extracting and matching features is computationally expensive and is often not reli-
able.

Major advantage: when used along with a suitable motion model, the BA scheme
allows for fast multi-view fine alignment, which is one of our main interests for generating
in-situ Giga-pixel mosaicing.

Investigation and solutions. In our research work we attack the mosaicing prob-
lem from both sides: the pair-wise image matching - level (1), and the multi-view global
alignment - level (2) processes.

Level (1). Since the main problem of the pair-wise process stands in the difficulty of
identifying corresponding features points, we first tackle the pair-wise image alignment
problem by proposing a global-to-local motion estimation methods which delivers a list of
homologous points to make possible their exploitation along with a BA step at level (2).
This stage helps to evaluate the BA process proposed in [Brown and Lowe, 2007] when
consistent point matches are injected into it.

Level (2). Section 5.8.1 shows tests demonstrating that the BA process re-estimates
the intrinsic parameters of the camera, precluding the estimation of the optimal pose.
In addition, the use of a 2D criterion causes the rejection of consistent matches, while
the multi-view alignment stage distributes the remaining errors across all poses causing
artifacts in the final compositing. In order to solve for this problem, in Section 5.8.2 we
propose a theoretical solution solving for the multi-view fine alignment problem.

The next section provides an overview of the proposed Giga-mosaicing algorithm and
justifies its design comparing to the state-of-the-art algorithms.
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Figure 5.7: Evaluation of [Brown and Lowe, 2007] on data set acquired in the Tautavel
prehistoric cave using Autostitch [Brown and Lowe, 2007] - default parameters. (a) - 8
SIFT extracted, (b)- 20 SIFT extracted, 0 matched. (c), (d) multi-view alignment and
rendering on data sets acquired in Tautavel prehistoric cave - 5% of the total mosaic
resolution. The two blue rectangles are the result of the bundle adjustment process in
presence false matches (situated on a blue object - the laser’s dust cover).
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5.5 Proposed Giga-Mosaicing Algorithm

The image mosaicing problem has been widely understood, reaching a considerable state of
maturity. Researchers attacked this problem from different sides, each one being interested
in responding to several constraints imposed by the application context. As emphasized
in Figures 5.3 (b) and (c), the main difference between the existing mosaicing approaches
stands in the pair-wise image alignment step, and more important is the complementarity
between the existing techniques solving for it, i.e. direct vs. feature-based.

Direct methods allow a reliable image matching in both, structured and feature-less
areas, while feature-based methods are more likely to be employed in structured environ-
ments. Moreover, direct approaches privilege the accuracy, while feature-based the rapidity.
Nevertheless, there is no doubt that these research works provide some idea about how the
the fundamental skeleton of an environment-independent mosaicing pipeline should look
like. When both approaches are strategically combined, their advantages can be grouped
to yield an efficient multi-view alignment framework.

Our research work is concerned with the image matching problem in unstructured envi-
ronments, including therefore the structured area case, and deals with ultra-high resolution
images for generating in-situ spherical Giga-mosaics in underground environments. Con-
sequently, we privilege the use of direct methods for reliable and accurate matching but
nonetheless, since time and in-situ constraints are major concerns, we use them jointly
with feature-based methods to enable fast global alignment via a BA step.

When tackling the image alignment problem for Giga-Mosaicing purposes, we prioritize
the following factors:

• Minimize every source of possible error. Due to the error prone nature of the
self-calibration process, camera off-line calibration is highly recommended when the
same camera is employed during the entire mission.

• Exploit every possible information given. The proposed algorithm exploits the
initial guess provided by the physical instrumentation and the camera calibration
performed off-line. In-situ mosaicing requires fast processing which at its turn im-
poses the acquisition of low-overlapping images. Since the environment is previously
unknown, none can predict nor guarantee salient features’ existence in that particular
area of overlap. Consequently, in order to ensure reliable matching, we choose to em-
ploy a dense correlation approach, exploiting therefore all the information presented
in the overlapping region.

• Model all physical motion sources. Our main concern is to capture all the
physical motions encountered by the capturing device within the early stage of the
algorithm, i.e. the pair-wise image matching process.

Rotation. In our research work, theoretically, the camera performs purely-rotations
around it optical center, which are parameterized by unit quaternions [Horn, 1987].

In practice, when modeling the camera motion using only a rotational model, we may
notice visible seams due to images’ misalignment. One of the main reasons is that
the motorization of the capturing device yields some vibration noise which is further
amplified by the tripod platform. Moreover, unmodeled distortions or the failure to
rotate the camera around the optical center may result small amounts of parallax.
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Small parallax. In order to handle deviations from pure parallax-free motion or
from ideal pinhole camera model, we upgrade the camera motion with a non-rigid
motion model estimated via a patch-based local matching procedure.

• Robustness to noisy initial guess and accurate alignment of ultra-high
resolution images. In certain cases the initial guess may be very far for the true
pose, for instance ranging between ±5◦ of error from the theoretical pose and ±1◦

for the ψhard delivered by the improved platform and consequently an incremental
estimation, such as LM or gradient-descend would get stuck in a local minimum.
Therefore for safety reasons, we perform a full search over the entire solution space,
to ensure convergence. It is undoubtable that artifacts caused by mis-registration
errors are more visible for the Giga-mosaics case and consequently, one of our main
concerns is to produce accurate poses. This is another reason which enforces our
choice toward the use of direct methods via dense correlation.

• Fast processing of high-resolution images. Since direct methods are unafford-
able when applied on high-resolution images, we reduce the combinatory by cor-
relating only border-patches (extracted in the overlapping region) along within a
coarse-to-fine strategy.

Beside the pair-wise process, a second factor related to the rapidity issue is the
multi-view alignment process. When using high resolution images, direct approaches
are computationally too expensive to be applied for the multi-view image alignment
stage. Consequently, it is more likely to employ a BA approach for the global opti-
mization step.

The technical solutions proposed to fulfill each of the aforementioned requirements form
the ingredients of the proposed Giga-mosaicing framework proposed in this dissertation,
whose global pipeline is illustrated in Figure 5.8 and detailed hereafter.

(A) Global-to-local pair-wise alignment. The initial step is first refined via a
direct method which estimates a global 3D rotation motion which, at its turn initializes
a patch-based local (non-rigid) motion estimation. The first stage estimation process is
performed by exploring the solution space within a full searching strategy performed in a
coarse to fine approach. The pair-wise procedure outputs a list of locally matched image
points and a vector displacement for each patch, which gives the possibility to establish a
global translational motion model.

More important is that the local alignment outputs a list of homologous patches which
are perfectly exploitable by a BA scheme, enabling therefore a fast global alignment of
high-resolution images. Since the matched points do not correspond to any corner-like
features, we introduce them as anonymous features (AF).

(B) Multi-view fine alignment. The multi-view fine alignment is achieved by in-
jecting the AF matches in a BA engine [Triggs et al., 1999]. We first employed the BA
scheme proposed in [Brown and Lowe, 2007] for which we show in Section 5.8.1 that it
does not solve efficiently for the multi-view fine alignment problem due to the re-estimation
of the camera intrinsics parameters and due to the 2D criterion employed during the min-
imization process. Therefore, in Section 5.8.2 we propose an analytical solution for the
BA step which minimizes an error measured in the 3D space and which could potentially
improve the results considerably.

Exploit direct vs. feature-based methods complementarity and bridging
in-between. The proposed Giga-mosaicing technique exploits the complementarity of
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Figure 5.8: Overview of the proposed Automatic Giga-pixel Mosaicing (AGM) algorithm.
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the existing image alignment techniques (direct vs. feature-based) and fuses their main
advantages in an efficient fashion. It combines the accuracy of direct methods with the
rapidity of the BA framework, usually employed with feature-based approached. Moreover,
the global-to-local pair-wise motion estimation has a double advantage: first, it allows to
capture small amounts of parallax and to compensate for deviations from the pinhole
camera model or unmodeled distortions. Second, it provides a set of homologous point
matches, providing therefore a bridge between the direct method and the BA step and
enabling fast multi-view image alignment.

Comparing to other mosaicing frameworks. The proposed image mosaicing
scheme detains several advantages over the existing methods.

Comparing to Teller’s approach [Teller and Coorg, 2000], our method can handle very
noisy initial guess and relatively small amounts of parallax. In addition, the pyramidal
patch-based framework enables fast high resolution image matching which is a key aspect
for the Giga-pixel mosaicing task. Furthermore, the BA scheme enables final optimization
with real-time performances.

Comparing to Lowe’s method [Brown and Lowe, 2007], the proposed algorithm can
deal with feature-less areas, providing therefore an environment-independent method for
the image alignment task.

In [Shum and Szeliski, 2000] authors deal with the image mosaicing problem for the
hand-held camera case by performing a pair-wise alignment followed by a multi-view fine
alignment stage. A third step is dedicated to the parallax removal and deghosting process,
being performed via an optical flow approach to estimate a local motion estimation. In our
case study, images are acquired from the same optical center and therefore small parallax
motion or mis-calibration errors are susceptible of being introduced. In this situation, an
optical flow approach can easily compensate for the residual motions which may appear.
Since in [Shum and Szeliski, 2000] authors attempt to compensate for large amounts of
parallax encountered by hand-held cameras, the optical flow may fail since the method
does not model the real parallax sources.

The following subsections are dedicated to the camera motion parametrization and
to the description of the overall flow of processing, including the global-to-local pairwise
motion estimation and the multi-view fine alignment stages.

5.6 Camera Motion Parametrization

Let us now describe in more mathematical details how the camera motion is modeled and
how we constraint its estimation process.

Rotational mosaics. When the camera undergoes purely rotations around it’s optical
center, it is assumed that all points are very far from the camera, i.e. on the plane at infinity,
as shown in Figure 5.9. Since depth effects do not occur across two images acquired from
the same optical center, the general perspective projection from Appendix C.2, Equation
(C.4) can be simplified to a 3 × 3 rotation matrix R and the camera intrinsic matrix K,
yielding the following equation:




ux

uy

1


 ∼= KR




px

py

pz


 (5.4)

The inversion of Equation 5.4 yields a method to convert pixel position to 3D-ray. There-
fore, using pixels from an image (I2) we can obtain pixel coordinates in another image
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Figure 5.9: Camera encountering purely 3D rotations.

(I1) by applying the corresponding 3D transform and by projecting the transformed points
into the I1’s space using equation 5.4. This principle can be summarized by the warping
equation which is expressed as:

û1
∼= K1R1R−1

2 K−1
2 u2 (5.5)

Assuming that all the intrinsic parameters are known and fixed for all n images composing
the mosaic, i.e. Ki = K, i = 1, .., n, this simplifies the 8-parameter homography relating a
pair of images to a 3-parameter 3D rotation.

û1
∼= KR12K−1u2 (5.6)

Off-line camera calibration. The off-line camera calibration constraints the esti-
mation process to 3-parameters, which is intrinsically more stable than estimating a 4- or
5-parameter model, encoding the 3 rotation parameters and a fixed or variable unknown
focal length [Szeliski and Shum, 1997], [Shum and Szeliski, 2000], [Teller and Coorg,
2000], [Brown and Lowe, 1983].

Willing to minimize as much as possible distortions, we employ a long-focal camera
(50 mm) introducing relative week distortions (i.e. about 1.5 pixels around the image
corners). The radial distortion parameters were estimated using a 3rd degree polynomial
function since in practice the use of higher order coefficients did not improve considerably
the correction results.

Rotation parametrization. We employ unit quaternions qθ, qϕ, qψ for repre-
senting rotations around the tilt, pan and yaw axis which are denoted by their corre-
sponding vectors nθ = (1, 0, 0), nϕ = (0, 1, 0), nψ = (0, 0, 1). The 4 components of
an unit quaternion representing a rotation of angle θ around the nθ axis are given by
qθ = (qw

θ ,nθ) = (qw
θ , qx

θ , qy
θ , qz

θ)
T .

Consider that a rotation above the nθ axis is applied to a 3D point p. By using the
conjugate of the unit quaternion q∗θ = (qw

θ ,−nθ), this can be written as pθ = qθpq∗θ. If we
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apply a second rotation represented by the unit quaternion qϕ we obtain:

pθϕ = qϕpθq∗ϕ = qϕ(qθpq∗θ)q
∗
ϕ (5.7)

Using quaternions properties is easy to verify that q∗θq
∗
ϕ = (qϕqθ)∗, yielding:

pθϕ = (qϕqθ)p(qϕqθ)∗ (5.8)

meaning that the overall rotation is represented by the unit quaternion (qϕqθ). Therefore,
rotation composition leads to quaternion multiplication. The product of two quaternions
defined as qθ = (cos θ

2 , sin θ
2nθ) and qϕ = (cos ϕ

2 , sin ϕ
2 nϕ) is given by :

qθ ∗ qϕ = (qw
θ qw

ϕ − nθ · nϕ, qw
θ nϕ + qw

ϕnθ + nθ × nϕ) (5.9)

which can be conveniently expressed in terms of matrices multiplication between an or-
thogonal 4× 4 matrix and a 4 dimensional vector:

qθ ∗ qϕ = Q(qθ)qϕ =




qw
θ −qx

θ −qy
θ −qz

θ

qx
θ qw

θ −qz
θ qy

θ

qy
θ qz

θ qw
θ −qx

θ

qz
θ −qy

θ qx
θ qw

θ


qϕ (5.10)

As 3D rotations and matrix multiplications, quaternion multiplication is not commutative.
The general form of the rotation matrix recovered from a unit quaternion noted R[q] is
given in Equation (4.4). As stated in [Horn, 1987], quaternions’ multiplication is less
expensive than 3×3 rotation matrices. In addition, since numerical computation has finite
precision, the product of orthonormal matrices may no longer be orthonormal. The same
problem may rise with unit quaternions. Nevertheless, finiding the closest unit quaternion
is less difficult than finding the nearest orthonormal matrix.

Capture deviations from parallax-free or ideal pinhole camera model. In
order to handle deviations from pure parallax-free motion of ideal pinhole camera model
we improve the camera motion model by estimating a local motion estimation provided by
a patch-based local matching procedure.

5.7 Global-to-Local Pair-wise Motion Estimation

In this section we describe the pair-wise motion estimation process. As seen in the previous
section, the entire camera motion is parameterized by a global rotation and a local motion
which allows to establish a list of patch matches and a global translational motion model
over the entire image. This helps to deal with small amount of parallax and allows to
integrate the pair-wise motion model within a BA process.

The entire global-to-local motion estimation is performed in a pyramidal fashion. Since
the parallax is negligible, the motion process can be speeded up by performing the local
alignment step only at the highest resolution level.

The motion estimation process follows four steps: (i) pyramid construction, (ii) patch
extraction, (iii) motion estimation and (iv) coarse-to-fine refinement. At every level of the
pyramid l = 0, ..., Lmax the goal is to find the 3D rotation Rl. Since the same type of
operation is performed at each level l, let us drop the superscript l through the following
description.
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5.7.1 Rigid rotation computation

Let R(qθ,qϕ,qψ)init be the initial guess provided by the pan-tilt head, where (θ, ϕ, ψ)hard

denote the pitch, roll and yaw angles, respectively expressed in the camera coordinate
system. The optimal rotation is computed by varying the rotation parameters (θ, ϕ, ψ)
within an homogeneous pyramidal searching space, PSS , which is recursively updated at
each pyramidal level. PSS is defined by the following parameters: θ range ∆θ, ϕ range
∆ϕ, ψ range ∆ψ and their associated searching steps, δθ, δφ, δψ.

The rotation angles are computed by applying rotations R(θ,ϕ,ψ), (θ, ϕ, ψ) ∈ PSS to
the 3D rays of recovered from pixels belonging to I2 and matching the corresponding
transformed pixels with pixels from I1. For a given rotation R(θ,ϕ,ψ), (θ, ϕ, ψ) ∈ PSS
we can map pixels u2 from I2 in the I1’s space using the warping equation expressed in
Equation 5.6.

û1
∼= KR(θ,ϕ,ψ)∈PSS

K−1u2 (5.11)

We obtain the rotated pixel from I2 warped in the I1’s space which yields an estimate of
I1, noted Î1. The goal is to find the optimal rotation which applied to pixels from I2 and
warped in the I1’s space minimizes the difference in brightness between the template image
I1 and its estimate, Î1(u2;R(θ,ϕ,ψ)).

For the first experimental test of the Rodeonr platform the camera was used in an
automatic mode, meaning that the flash could fire automatically while focusing. However,
blur effects were introduced due to the fact that the imaging device failed to focus low-
depth scenes. Moreover, our research work deals with the mosaicing problem in complex
environments where depth varies chaotically leading to considerable light variations which
poses difficulties to the image matching process. In order to deal with this issue, the
Rodeonr platform was improved by our research lab in order to provide the possibility to
acquire the same image with different flash values and focal lengths.

Since images belonging to the same mosaic node are subject to different flash values, we
employ the Zero Normalized Cross Correlation score to measure the similarity robustly wrt
illumination changes. For each pixel, the score is computed over each pixel’s neighborhood
defined as W = [−wx, wx] × [−wy, wy] centered around u2 and û1 respectively, of size
(2wx + 1) × (2wy + 1), where w = wx = wy denote the neighborhood ray. The similarity
score Z is given in Equation (5.12), being defined on the [−1, 1] domain and for high
correlated pixels is close to the unit value.

− 1 ≤ Z(I1(u), I2(û)) =
∑

d∈W [I1(u + d)− Ī1(u)][I2(û + d)− Ī2(û)]√∑
d∈W [I1(u + d)− Ī1(u)]2

∑
d∈W [I2(û + d)− Ī2(û)]2

≤ 1

(5.12)
The global similarity measure is given by the mean of all the similarity scores computed

for all the patches belonging to the overlapping region. For rapidity reasons, we correlate
only border patches extracted in the overlapping regions.

E[R(θ,ϕ,ψ)] =
1

Nw

Nw−1∑

j=0

ΦjZ(I1(uj), I2(û
j
R(θ,ϕ,ψ)

)) (5.13)

Φj defines a characteristic function which takes care of "lost" (i.e. the pixel falls outside of
the rectangular support of I2) ([0, nu− 1]× [0, nv− 1]) and "zero" pixels (i.e. missing data
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either in I1(û
j
R) or I2(û

j
R), which may occur when mapping pixels ûj

R in the I2’s space.
Thus, we penalize "lost" and "zero" pixels using the following weighting function:

Φj =





0, if I1(ûj , v̂j) = 0 or I2(ûj , v̂j) = 0
0, if ûj , v̂j < 0 or ûj > nu − 1 or v̂j > nv − 1
1, otherwise

(5.14)

Nw denotes the number of valid pixel matches founded between I1 and I2 for which Φj = 1
and defines the overlapping area O[R(θ,ϕ,ψ)] of the corresponding rotation R(θ,ϕ,ψ). The
global dissimilarity score E(R(θ,ϕ,ψ)) is defined on the interval [0, 1].

The optimal rotation R̂(θ,ϕ,ψ) is obtained by maximizing the global similarity score
E[R(θ,ϕ,ψ)] over the entire searching area PSS .

R̂(θ,ϕ,ψ) = arg max
(θ,ϕ,ψ)∈PSS

E[R(θ,ϕ,ψ)] (5.15)

5.7.2 Non-rigid Motion Estimation

In order to handle deviations from pure-parallax motions or from ideal pinhole camera, we
use the rotationally aligned images to perform the local patch matching. Since deviations
from parallax-pure motion are negligible (i.e. less than 1

4 pixels at level l < 0) shadowing
the failure to rotate the camera around its optical center, we can speed up the process
by computing the local motion directly at the highest resolution level, l = 0. For this
reason, the optimal rotation produced at the highest resolution R0

(θ,ϕ,ψ) level initializes
local motion estimation procedure.

Let P1 = {P(uk
1)|uk

1 ∈ I1, k = 1, ..., N1} and P2 = {P(uk
2)|uk

2 ∈ I2, k = 1, ..., N2} be
the patches extracted in image I1 and I2 respectively, which are defined by a neighborhood
W centered around uk

1 and uk
2 respectively. For each patch P(uk

1) ∈ P1 we search for its
optimal match in I2 by exploring a windowed area WSA(uk

2; R̂) centered around (uk
2; R̂),

where SA denotes the searching area ray.
Let Pk,SA

2 = {P(um
2 )|um

2 ∈ WSA(uk
2; R̂) ⊂ I2,m = 1, .., M} be M patches extracted

from the warped image’s searching area centered around (uk
2; R̂), with 1-pixel steps. For

each patch P(um
2 ) we compute the similarity score Z(I1(uk), I2(um)) and we perform a

bicubic fitting in order to produce the best match with a subpixel accuracy and real time
performances. The best match is obtained by maximizing the similarity score Z over the
entire searching area WSA.

P(ûk
2) = arg max

um
2 ∈WSA(uk

2 ;R̂)
Z(I1(uk), I2(um

2 )) (5.16)

In order to handle "lost" or "zero" pixels, patch matches corresponding to uncomplete
warped patches are discarded. This yields a list of matched patches P(uk

1) and P(ûk
2) which

gives the possibility to compute a local translational model for each patch: tk = ‖uk
1− ûk

2‖
and compensates eventual parallax motions or deviations from the ideal pinhole camera
model. Moreover, the local motion allows the possibility to establish a mean translational
motion model over the entire image space, noted t̄. The list of the patch matches are
further injected into a bundle adjustment engine for multi-view fine alignment and gap
closure.
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5.7.3 Pyramidal Refinement

Suppose that a global maximum similarity score was localized at the lowest resolution level
Lmax, producing a coarse global rotation estimation R̂Lmax

(θ,ϕ,ψ). The motion refinement is
performed at higher resolution levels l = Lmax − 1, .., 0 by searching within a 4× 4 pixels
neighborhood around the global optimum center sampled with 1-pixel step. Although
pixels are considered to be squared during the camera calibration process, in practice we
employ the FOV dimension and the size image to compute the angular steps corresponding
to a pixel in both directions, being given by δux = HFOV

nu
and δuy = VFOV

nv
. Therefore, the

PSS is recursively updated using the following scheme:

P l−1
SS =





∆θl−1 = 4δul−1
x = δul

x

∆ϕl−1 = ∆ϕl−1 = 4δul−1
y = δul

y

δθl−1 = δul−1
x

δϕl−1 = δψl−1 = δul−1
y

(5.17)

5.7.4 Experimental Results & Performance Evaluation

We tested the pair-wise image alignment process wrt different applications. The first appli-
cation is the main concern in this dissertation which aims at generating in-situ Giga-mosaics
to produce texture maps for photorealist in-situ 3D modeling. The second application con-
sists in performing mosaic-based city mapping using a 10-camera network mounted on a
vehicle to allow virtual traveling on the world wide web and to extract high-level semantics
from panoramic imagery [iTowns, 2008].

Being given each application’s context, different constraints are imposed to the mo-
saicing process. In this section we show that the proposed pair-wise alignment algorithm,
which is the main ingredient of the mosaicing process, copes with both applications’ con-
straints. To this end, different acquisition scenarios include unstructured and structured
areas, being undertaken in indoors and outdoors environments. For each acquisition sce-
nario different testbeds were deployed, one of them being fixed and the other mobile. In
addition, different camera sensors were employed, each one being calibrated beforehand.

5.7.4.1 Unstructured and Underground Environments

Since our research work focuses on unstructured and difficult to access environments, exper-
imental tests were undertaken in two prehistoric caves situated in France. First experiments
were performed in the Tautavel prehistoric cave using the motorized pan-tilt heading de-
livering the theoretical rotations. The Rodeonr platform was upgraded to deliver a closer
initial estimate and deployed in Mayenne Science prehistoric cave. We present hereafter
the results obtained for each trial.

Experiment performed in Tautavel prehistoric cave, France. Figures 5.10
and 5.11 illustrate the results obtained by running the global-to-local image motion esti-
mation procedure on an image pair using the testbed presented in Section 5.3. In order
to evaluate our technique with respect to a feature-based method, Figures 5.10 and 5.11
show the results obtained on an image pair for which the SIFT detection and matching
failed due to blur effects introduced by the long focal length and low-depth scenery (i.e.
the cave’s wall in this example).

Global rotation estimation. The global rotation estimation illustrated in Figure 5.10
uses a 6-levels pyramidal structure in which 1 pixel goes from 0.00875◦ up to 0.28◦ for



148 5. AGM: Automatic Gigapixel Mosaicing from Nodal Optical Images

levels l = 0, ..., 5 respectively. The rotation computation starts at the lowest resolution
level Lmax = 5, where a fast searching is performed by exploring a searching space of 5◦

with 1-pixel steps in order to localize the global maximum, as shown in Figure 5.10(c).
The coarse estimation is refined at higher resolution levels l = Lmax − 1, .., 0 by exploring
a searching area of 4 pixels around the global maximum using 1-pixel steps.

Figure 5.10: Test performed in Tautavel prehistoric cave. Rigid rotation estimation pro-
cedure. (a) I1 - template image, (b) I2 - target image, (c) global maximum localization at
level Lmax = 5, (d) superposed rotationally aligned images at level l = 0: I1-red channel,
the warped image I2(u; R̂)-green channel, R̂(θ,ϕ,ψ) = (17.005◦, 0.083◦, 0.006◦).

Non-rigid motion estimation. Since deviations from parallax-pure motion are negligible
we speed up the process by computing the local motion directly at the highest resolution
level, l = 0. Figure 5.11 illustrates the results of the local estimation procedure which
matches patches with a ray of w = 15 pixels by exploring a searching area of SA = 32
pixels with 1-pixel steps. For rapidity, a bicubic fitting procedure is used to compute the
maximum correlation score with subpixel accuracy. For illustrative purposes only, in this
experiment the patch location yielding the maximum correlation was interpolated using
0.005 sampling step.

The local translational motion estimated for each patch tk allows to compute a mean
translation motion model to be used for compensating the parallax motion. After trans-
lation compensation, the camera motion consists of purely rotations and therefore, the
optimal rotation minimizes the angle between the corresponding 3D rays of each match
pair given by γ̂ = (vk

1 ,vk
2), where v = K−1ũ, where ũ denotes the image point in homo-

geneous coordinates.
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Figure 5.11: Test performed in Tautavel prehistoric cave. Anonymous Features extraction
and matching procedure. w = 15 pixels, 85 AF matches. (a)P(uk

1), (b)P(uk
2) extraction

in I2 using the rotation initialization, (c)Bicubic fitting for an arbitrary patch: SA = 32
pixels, sampling step: 0.005 pixels, (d)AF locally matched: P(uk

2) blue, P(ûk
2) yellow,

t̄ = [1.6141, 1.0621] pixels.

Residual Errors. Table 5.1 illustrates the residual mean square error (r̄) and the stan-
dard deviation (σr) of the pair-wise motion estimate [R̂, t̄k] computed with two different
criteria: (a) the projection error in the 2D space given in Equation 5.18 and (b) the an-
gle between the 3D-rays corresponding corresponding to AF matches given by their cross
product expressed in Equation 5.19.

The second row of Table 5.1 verifies the rotation estimation correctness showing that
the angular distance RMS×3D between the non-aligned images (first column) corresponds
to the optimal rotation estimate, R̂ij .

r̄2D =
1
N

k=N−1∑

k=0

‖uk
i −KR̂T

ijK
−1(ûk

j − tk)‖ (5.18)

r̄×3D =
1
N

k=N−1∑

k=0

‖vk
i × R̂T

ijK
−1(ûk

j − tk)‖ (5.19)

Rendering. Since Autopano Pro did not detect SIFT matches, we have injected the
detected AF matches in order to obtain the rendering of the aligned images. Figure 5.12
illustrates the rendering of the merged images.
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r̄± σr no model t̄ compensation [R̂, t̄] model
RMS2D(pixels) 1989.68± 62.83 1988.05± 62.74 0.08± 0.01

RMS×3D(◦) 16.99± 0.51 16.98± 0.5 (7± 1)× 10−4

Table 5.1: Trial Tautavel - Residual Error Measures. R̂(θ,ϕ,ψ) =
(17.005◦, 0.083◦, 0.006◦), t̄ = [1.614, 1.062] pixels.

Figure 5.12: Test performed in Tautavel prehistoric cave. Rendering of the aligned images
using the optimal rotation estimate R̂ and the AF features injected in the Autopano Pro
1.4.2. Mosaic size: 5658× 2074 (pixels), mosaic FOV: [50.82◦ × 18.63◦].

Tests using the improved platform in Mayenne Science prehistoric cave. Sev-
eral problems were encountered during the first acquisition scenario performed in Tautavel
prehistoric cave. The main one is concerned with the erroneous initial estimation deliv-
ered by the motorized platform. In addition, the synchronization between the platform’s
rotations and camera shooting required long shooting delay.

Upgraded-Rodeonr. The motorized platform was improved with a control software
as a mean for parameterizing the acquisition with the number of views to be acquired
in order to cover the entire sphere. This step establishes the rotation angles (θ, ϕ) ∈
[0◦, 360◦]× [−90◦, 90◦] to be performed by the platform which are further exploited by the
pair-wise alignment algorithm. For this trial, images with a lower overlapping area were
acquired (15%), reducing the acquisition time with a factor of 4.

In complex environments depths scene changes suddenly, leading to light changes and
thus one must employ different flash values in order to allow reliable image matching. For
this reason, the control software allows to capture the same image with different flash
values. Consequently, during the rendering step it is possible to select the most suitable
one, taking into account changes light variations. Also, the new platform design allows to
send data directly to the processing unit on-the-fly, allowing for on-line processing.

Pair-wise alignment. A new acquisition scenario was undertaken in the Mayenne Sci-
ence prehistoric cave using the improved motorized platform. We test the pair-wise align-
ment procedure on the images pair illustrated in Figures 5.13 (a) and (b). Figures 5.13(c)-
(e) illustrates the alignment obtained using the initial orientation provided by the physical
instrumentation, exhibiting a much better estimate.

Figure 5.14 (a) depicts the aligned images using the global rotation estimate computed
at level Lmax initialized by the new estimate provided by the acquisition platform. Since
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the initial estimation exhibits a good approximation of the global rotation, the pair-wise
alignment process can skip the global motion estimation and jump directly to the local
matching stage. This emphasizes the main impact of the improved platform which leads to
considerable computational savings, enabling therefore the in-situ generation of Gigapixel
mosaics. Figure 5.14 (b) shows the initialization and the local patch matching procedure
using the global rotation from Figure 5.14 (a), while Figure 5.14 (c) illustrates the final
result of the local patch matching procedure performed at highest resolution level l = 0.

Figure 5.13: Test performed in Mayenne Science prehistoric cave. (a) I1 - reference image,
(b) I2 - image to align, (c) I2 transformed in the I1’s space using the initial guess provided
by the upgraded-Rodeon r (θ, φ)hard = (48◦,−2◦), (d) aligned images using (θ, ϕ)hard: I1

red channel, [I2;Rhard] transformed - greed channel, (e) zoom-in on the overlapping area
illustrated in (d).

Residual Error. Table 5.2 illustrates the residual errors demonstrating that as for the
Tautavel case the residual cross product agrees with the main rotation angle. The 2D
translation exhibits a predominant motion in the vertical direction which can be visually
verified by tacking a closer look at the patch extraction initialized by the optimal rotation
illustrated in Figure 5.14 (b).

r̄± σr no model t̄ compensation [R̂, t̄] model
RMS2D(pixels) 2421.498± 24.558 2416.852± 24.529 (18± 0.22)× 10−3

RMS×3D(◦) 47.942± 0.538 47.861± 0.532 (1.19± 2.86)× 10−4

Table 5.2: Trial Mayenne - Residual Error Measures. R̂(θ,ϕ,ψ) =
(48.69◦,−2.0443◦, 3.274◦), t̄ = [3.198, 20.127] pixels.

AutopanoPro residual error. In contrast to the image pair exemplified in the Tautavel
trial for which SIFT features were not detected, on the images shown in Figures 5.13 (a)
and (b), SIFT features were detected and correctly matched. The first row of Table 5.3
illustrates the numerical results corresponding to the mosaic rendering depicted in Figure



152 5. AGM: Automatic Gigapixel Mosaicing from Nodal Optical Images

Figure 5.14: Test performed in Mayenne Science prehistoric cave. (a) the rotationally
aligned images: I1 - red channel superposed with I2[u; R̂] - green channel, R̂(θ,ϕ,ψ) =
[48.69◦,−2.0443◦, 3.324◦]T , (b) patch extraction initialized by the optimal rotation R̂:
patches extracted from I2(u; R̂), P(uk

2) - green channel superposed with I1 - red channel,
(c) locally matched patches: P(ûk

2) - green channel superposed with I1 - red channel.
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5.15. Although the rendering is visually coherent, the residual error has a relatively high
magnitude. We evaluated the pose quality using different initial guesses in conjunction
with either SIFT or AF features. The second row of Table 5.3 shows that the 2D residual
error decreases when the matching process is initialized with the platform’s pose, and more
accurate results are obtained when AF are used instead SIFT features. Although the initial
guess provided by the upgraded-Rodeonr combined with AF matches seems to increase
the pose quality, the self-calibration process integrated within the pose estimation scheme
leads to different intrinsic parameters, increasing the residual error.

Figure 5.15: Test performed in Mayenne Science prehistoric cave. Rendering of the aligned
images using Autopano Pro 1.4.2.

Method # features RMS2D (pixels) Mosaic size (pixels) Mosaic FOV(◦)

AutoPano Pro 41 2.81 5541× 2274 94.19× 38.65

Rodeonr & SIFT 41 2.74 5523× 2271 92.89× 38.21

Rodeonr & AF 51 2.50 5634× 2324 108.92× 44.93

Table 5.3: Test performed in Mayenne Science prehistoric cave. AutopanoPro evaluation
of the pair-wise matching results for image couple illustrated in Figures 5.13 (a), (b) using
the initial guess provided by the upgraded-Rodeonr with SIFT and AF matches.

After testing the pair-wise method on two different prehistoric caves, using different
experimental setups, we can conclude two main aspects:

• Trial Tautavel using Rodeonr: SIFT matches were not detected due mainly to blur
caused by long focal length and low-depth scenery. We injected AF matches into
Autopano Pro to refine pose and produce rendering;

• Trial Mayenne-Science using the upgraded-Rodeonr: each image was acquired with
different flash values in order to deal with illumination changes, without using the
camera in an automatic focus mode. This improved considerably the image matching
task and SIFT matches detected. We test whether better results can be obtained
using upgraded-Rodeonr pose and AF pairings. During this test a first doubt on
Autopano Pro capabilities was raised. We conclude that there is a high probability
for the self-calibration process to cause an erroneous multi-view alignment process.
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5.7.4.2 Tests in Outdoor Structured Environments

In order to evaluate the algorithm’s robustness wrt different mosaicing scenarios, several
tests were undertaken in outdoor structured environments. The main purpose of the mo-
saicing system is to supply terrestrial city mapping applications using a vehicle equipped
with multiple 2D and 3D imaging devices.

STEREOPOLIS c©IGN : a mobile system for terrestrial mapping. The mobile
platform embeds both stereo- and panoramic-imaging montages, as well as 2D and 3D laser
range finders. Figure 5.16 (a) illustrates the STEREOPOLIS c©IGN prototype designed
by MATIS research lab at French Mapping Agency2 to supply terrestrial city mapping
applications.

Onboard terrestrial mosaicing. In order to capture panoramic imagery, a 10-HD
camera network is mounted onboard STEREOPOLIS c©IGN , as shown in Figure 5.16 (b).
The image acquisition is synchronized with the vehicle’s speed, i.e. 4 fps, in order to deliver
one panoramic image to each 4 meters. This reduces considerably the overlapping area
to 1%. In this case, it is possible for a feature-based method to fail in finding primitive
matches in such a reduced overlapping area, emphasizing therefore the major advantage of
the correlation-based approach employed within the proposed pair-wise alignment scheme.

When running Autopano Pro on image pairs acquired by the panoramic montage,
SIFT’s detection failed. Consequently, several tests were performed to analyze the behavior
of the pair-wise matching procedure when running on images acquired by the different
cameras composing the panoramic imagery montage. It is important to note that in this
experiment images with a lower resolution are acquired, i.e. of size 1920 × 1080, in order
generate panoramic imagery on-the-fly.

Small parallax. Comparing to trials presented in Section 5.7.4.1, in this case the
cameras are separated by a few centimeters parallax, being therefore conveniently to either
start the local matching from lower resolution levels or set a larger searching area ray WSA

at the highest resolution level.
This section presents two tests performed on data acquired during two city mapping

campaigns undertaken in Paris, France. The first trial is performed at Panthèon Square,
while the second one in the 12th district of Paris.

Trial Panthèon, Paris (France). The first trial is performed on two partially
overlapped images acquired by two cameras with their positions highlighted in green in
Figures 5.17 (a) and (b). The corresponding acquired images are illustrated in Figures
5.17 (c) and (d).

The initial pose provided by manual calibration initializes the global motion estimation
stage of the pair-wise alignment. process. The initial guess is refined by exploring a
pyramidal searching space initially set to PLmax

SS which is reduced by searching for the main
rotation angle θ within a range of ∆θ = 6◦, while for ϕ and ψ a range of ∆ϕ = ∆ψ = 0.5◦

is used. Figure 5.18 illustrates the results obtained using the estimated global rotation
model R̂Lmax

(θ,ϕ,ψ). The global motion initializes the local patch matching procedure for which
the results are illustrated in Figure 5.19. Table 5.4 illustrates the residual errors quantified
with two different criterions showing that the most sensible measure is the cross product
measuring the angle between the 3D vector associated to the AF matches.

Trial Paris 12th district. We present a second trial performed in the 12th district
of Paris. The image couple is illustrated in Appendix C.5, Figures C.2 (a) and (b). In
Appendix C.5, Figures C.2 (c) and (d) illustrate the results obtained using the estimated

2Institut Geographique National www.ign.fr
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Figure 5.16: Tests performed in outdoor structured environments. (a) The STEREOPO-
LIS c©−IGN mobile platform prototype designed by MATIS Research Lab, (b) the 10-HD
camera network mounted onboard the vehicle designed to deliver panoramic imagery.

r̄± σr no model t̄ compensation [R̂, t̄] model
RMS2D(pixels) 1007.906± 11.354084 1006.14± 14.193 (7.6± 1.57)× 10−3

RMS×3D(◦) 39.004± 0.506 38.837± 0.498 (0.368± 0.09)× 10−4

Table 5.4: Trial Panthèon - Residual Error Measures. R̂(θ,ϕ,ψ) =
(−10.871◦, 38.872◦, 1.734◦), t̄ = [−6.382, 3.302]T pixels.

global rotation model R̂Lmax
(θ,ϕ,ψ). Note here the mirror effects visible in Figure C.2 (c)

introduced by the cameras montage causing reflections. The global estimation initializes
the local patch matching procedure for which the results are illustrated in Figure C.3. Since
the local matching keeps only valid patches (without zero pixels), the patches extracted
initially in the areas produced by the camera reflection are discarded.

5.7.4.3 Quality Assessment

This section analysis the performances of the above mosaicing system configurations wrt
the main algorithms parameters. In order to emphasize the robustness of the pair-wise
alignment process wrt different testbeds and acquisition scenarios, we summarize in Table
5.5 the characteristics of each trial.

Establishing the optimal patch value (w). In order to establish the optimal patch
ray coping with all the aforementioned application contexts, we evaluate the residual error
and the runtime of the local matching process wrt different patch ray values. Figure 5.20
shows that although the error does not vary significantly, it decreases slightly for all trials
when a patch ray of w = 15 pixels is used. On the other hand, Figure 5.21 shows that the
computation time increases as the patch ray w decreases. This is a normal behavior since
for low values of w, the number of extracted patches increases and since for each patch,
the algorithm searches for its optimal homologous patch within a searching area ray WSA
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Figure 5.17: Test performed in outdoor structured environments. (a) camera no. 21, (b)
camera no. 31, (c) I1 - the reference image corresponding to camera no. 21, (d) I2 - the
image to align corresponding to the camera no. 31. Parallax ≈ 12 cm.

in the second image.
One might argue that a high patch ray value can yield a reliable matching. This is

true when purely free-parallax rotation are encountered by the capturing device, which
is not always the case in a real mosaicing scenario, since small parallax amount can be
introduced when camera optical center is not superposed with the rotational center. In
addition, in order to cope with poorly overlapped images, such as those acquired by the
STEREOPOLIS c©IGN platform, small patch rays need to be used in order to avoid the
presence of patches laying out of the rectangular support of the image.

It can be observed in Figure 5.21 an offset runtime corresponding to each trial which is
related to the overlapping values of each trial which are showed in Table 5.5. More precisely,
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Figure 5.18: Trial Panthèon - Image alignment using the global rotation estimate - reso-
lution Lmax. (a) I1 and I2(u; R̂) superposed - grey levels, (b) zoom-in in the overlapped
region of (a), (c) I1-red channel superposed with the transformed image I2(u; R̂) - green
channel, (d) zoom-in in the overlapped region of (c).

for high overlap values, the number of the extracted patches increases and therefore, the
runtime of the patch matching process increases too.

Establishing the optimal searching area ray (WSA). We set the patch ray value
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Figure 5.19: Trial Panthèon - local patch matching procedure. (a) patch extraction using
the rotationally aligned images: I1- red channel, patch extracted in I2[u; R̂] P(uk

2) - green
channel, (b) zoom-in in the overlapping area of (a), (c) locally matched patches P(ûk

2)I1-
green channel superposed with I1 - red channel, (d) zoom-in in the overlapping area of
(c).

to w = 15 and analyze the local matching process when different searching area rays WSA

are employed. Figure 5.22 shows that for each trial, slightly different residual errors are
obtained when the searching area ray varies. The RMS offsets corresponding to each trial
are explained by the different numbers of patches matched for each trial, which increase
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Trial vs. Features Tautavel Mayenne Science Panthèon Paris 12
Environment type Unstructured underground Outdoor structured

Platform fixed mobile
Testbed Rodeon Upgraded Rodeon STEREOPOLIS
Camera NIKON D70 AVT MARLIN

focal(mm) 50 20 variable
Image size (pixels) 3000× 2008 1920× 1080
Modeled distortion R3 R3, R5, R7 R3, R5, R7

Overlap 33% 15% > 1%
Parallax (mm) negligible > 32 mm
Initial guess NO YES YES

SIFT detection NO YES NO

Table 5.5: Summary of different trials.
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Figure 5.20: 3D RMS error vs. patch ray w.

with the overlapping area.
Figure 5.23 illustrates the computation time obtained when different searching areas

ray are employed. In opposite to the patch ray study presented in Figure 5.21, runtime
increases as large searching areas are used.

After this evaluation, one would choose a searching area ray of WSA = 15 pixels.
Nevertheless, such a value cannot always cope with systems introducing large amounts of
parallax, which is the case for STEREOPOLIS c©IGN . Consequently, we choose to use a
patch ray of w = 15 pixels and a searching area ray of WSA = 30 pixels.

Computation time. Table 5.6 presents the computational time obtained for each trial.
Note that these results are obtained when running an experimental version of the algorithm,
without any optimization. We observe that the upgraded-Rodeonr improves the processing
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time with a factor of 5.83.

Trial Testbed Global rotation Local patch Total
estimation matching

Tautavel Rodeonr 2 min 49 s 2 min 38 s 5 min 48 s
Mayenne Science Upgraded Rodeonr 29 s 1 min 44 2 min 13 s

Panthèon STEREOPOLIS c©−IGN 44 s 22 s 1 min 6 s

Table 5.6: Runtimes for global and local motion estimation steps for w = 15 pixels and
WSA = 30 pixels.

Bounds on performances. The pair-wise image alignment algorithm is subject to
two main factors: the quality of the initial estimation and the parallax amount. Table
5.7 illustrates several acquisition platform configurations taken in charge by the algorithm.
Since prior knowledge on the acquisition setup is available, the algorithm can be adapted
to each configuration in order to save computation time. For instance, when using the
upgraded-Rodeonr platform, the close initial guess allows to skip the global alignment
step for computational savings. Note that the proposed pair-wise alignment method is not
adapted for hand-held mosaicing systems, since they introduce noisy initial guess and high
parallax amounts.

5.8 Multi-view Fine Alignment

Given the pairwise motion estimates R̂ij and the associated set of AF matches P(i, j) =
{(uk

i ∈ Ii; ûk
j ∈ Ij)|j > i}, we refine the pose parameters jointly within a BA process

[Triggs et al., 1999]. Two approaches are employed for the global optimization step, each
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5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

SA ray (pixels)

C
P

U
 (

s)

CPU vs. Searching area ray

Trial Tautavel
Trial Mayenne
Trial Pantheon

Patch ray w = 15

Figure 5.23: CPU time vs. searching area rays WSA.



162 5. AGM: Automatic Gigapixel Mosaicing from Nodal Optical Images

Platform Initial Guess Parallax
Source Quality

Rodeonr
physical instrumentation noisy negligibleUpgraded-Rodeonr fine

STEREOPOLIS c©IGN calibrated cameras montage noisy 12 mm

Table 5.7: Different acquisition platforms configurations taken in charge by the global-to-
local image alignment algorithm.

of which are making the object of the following two subsections.

5.8.1 Experimental Results using the Existent BA Solutions

In order to analyze the behavior of the existent BA schemes when consistent matches are
injected into it, we run the BA step integrated within the Autopano Pro v1.4.2 [Kolor,
2005] by injecting AF pairings pre-computed by the proposed global-to-local pair-wise
image alignment step described in Section 5.7.

As in [Brown and Lowe, 2007], the objective function is a robust sum squared projection
error. Given a set of N AF correspondences uk

i ←→ ûk
j , k = 0, .., N − 1 the error function

is obtained by summing the robust residual errors over all images:

e =
n∑

i=1

∑

j∈I(i)

∑

k∈P(i,j)

h(uk
i −KR̂T

ijK
−1ûk

j ) (5.20)

where n is the number of images, I(i) is the set of adjacent images to image Ii and h(x)
denotes the Huber robust error function [Huber, 1981] which is used for outliers’ rejec-
tion. This yields a non-linear least squares problem which is solved using the Levenberg-
Marquardt algorithm. A detailed description of this approach may be found in [Brown
and Lowe, 2007].

Trial Tautavel. Since our research work is focused on generating in situ complete
and photorealistic 3D models of complex and unstructured large-scale environments, the
Gigapixel mosaicing system was placed in different positions in order to generate mosaics
covering the entire site. We illustrate in this section three examples of high-resolution
mosaic views acquired from different spatial poses of the system corresponding to the
cave’s entrance, center and background.

Autopano Pro. When using Autopano Pro with SIFT features, a small number of
errors were encountered for the cave’s entrance and center. In opposite, more problems
were observed when attempting to stitch the images acquired in the cave’s background, as
shown in Figure 5.25 (a), for which SIFT detection and matching failed. This is mainly
due to blur effects introduced by the acquisition device which failed to focus areas too close
to the optical center.

Autopano Pro and AF matches. Figures 5.24 (a), (b) and 5.25 (b) show the mosaic
results obtained by injecting the AF pairings into the BA procedure integrated within the
AutopanoPro v1.4.2 which took in charge the rendering process using a spherical projection
and a multi-band blending technique. The mosaic’s high photorealist level is emphasized
by a high-performance viewer which allows for mosaic visualization using 4-level of detail
(LOD), as shown in Figures 5.24 (c)-(f).
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Ghost effects. Although Figure 5.25 (b) shows that better results are obtained when
feeding the BA process with AF pairings, Figure 5.25 (f) illustrates important ghost effects
which could be caused by two accumulated error sources. On one hand, they can be
introduced by the erroneous initial estimation delivered by the Rodeonr platform, causing
a real difficulty in establishing a general pyramidal searching space PLmax

SS valid for all image
couples. On the other hand, the self-calibration process integrated within the Autopano Pro
scheme leads to high residual errors causing the rejection of valid AF matches. Moreover,
the minimization of an error measured in the 2D image space may not quantify correctly
the camera rotations. Since they are performed in the 3D space, in the next section we
suggest that a 3D error metric could be more sensible to camera motion and therefore,
capture more accurately the camera motions.

Table 5.8 illustrates several characteristics of each mosaic generated by Autopano Pro
v1.4.2 when AF matches are used. During this first use of the Rodeon platform a high
number of images was acquired, i.e. Nim = 310, in order to cover a fully spherical FOV
using the acquisition scenario presented in Section 5.3. As shown in Table 5.8, Nstation <
Nim. This is mainly due to the fact that the camera was used in an automatic mode,
meaning that for low depth scenes the camera failed to focus and skip shooting. Scenes
which are likely to be skipped by the capturing device are situated in the region right
underneath the camera.

Memory limitations. Since the existing viewers are designed for lower size inputs,
memory limitations were encountered when displaying the mosaics at their full size. For
this reason, the mosaics are reduced by a factor of 2 to allow visualization within a multi-
LOD viewer. This is quite compromising since we can not afford to exploit the high LOD
offered by the Gigapixel mosaic. We employed KrPano [KrPano, 2009] panorama viewer
for displaying the mosaics using 4-LOD. Nevertheless, if the mosaics were displayable at
their full size, a 8-LOD rendering could be possible.

When looking at the third row of Table 5.8, one could argue that the size of the resulted
mosaics does not reach the Gigapixel order. Although, a fully spherical mosaic leads to a
Gigapixel size, it is important to note that the main purpose of the proposed mosaicing
method is to demonstrate the feasibility of generating HR-mosaic imagery by overcoming
the nowadays image alignment algorithms. In addition, it worths pointing out that the
mosaics presented in Figures 5.24 (a), (b) and 5.25 (b) are already reaching the limits of a
general-use computer in terms of computational and memory resources.

Residual errors. The BA scheme includes a self-calibration step and minimizes an error
measured in the 2D image space, causing the rejection of correct AF matches and leading
to relatively high mis-registration errors, as shown by the fourth row of Table 5.8. In
practice we observed that this shortcoming can be overcome by injecting a high number
of AF matches. However, this may be costly and when a low number of matches are used,
there is a high probability that all of them to be rejected, producing the BA’s failure. Since
we can not afford this risk, our first concern is to improve the multi-view fine alignment
process by simultaneously computing the optimal quaternions using a criterion computed
in the 3D space in order to reduce the residual error when using a minimum number of
AF correspondences. To this end, the next section proposes an analytical solution for the
multi-view fine alignment step.

Runtime. For this experiment we employed the original Rodeonr platform, i.e. with-
out the improvements. Therefore, the searching range for the rotation refinement was
considerably high, i.e. ±5◦, leading to a computationally expensive rotation estimation
stage. The upgraded-Rodeonr reduces the computational time by a factor of 5.83 for an
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Figure 5.24: Mosaicing tests on data sets acquired in Tautavel prehistoric cave using the
Rodeonr platform. The mosaics were generated by injecting the AF matches into the BA
process integrated within Autopano Pro v1.4.2. (a) - cave’s entrance, (b) - cave’s center,
(c)-(f) 4-LODs corresponding to the right part of mosaic (b).
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Figure 5.25: Mosaicing test on data set acquired in Tautavel prehistoric cave using the
Rodeonr platform. A mosaic generated from images acquired in the cave’s background.
(a) - mosaic obtained using Autopano Pro : 99 images, mosaic FOV 360◦×85.22◦ ,42973×
10061 pixels. (b) mosaic obtained using the BA integrated within Autopano Pro powered
by the global to local pair-wise alignment procedure presented in section 5.7. (c)-(e) - four
LODs corresponding to the left part of the mosaic in (a). (f) - zoom-in on ghosting effects
located in the right part of the mosaic.
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Mosaic Figure 5.24 (a) Figure 5.24 (b) Figure 5.25 (b)
#Nstation 272 168 121
FOV(◦) 360× 108.4 360× 105.37 360× 84.50

Size(pixels) 43365× 13057(567 Mp) 43206× 12646 (546 Mp) 42305× 9915(418 Mp)
e(pixels) 1.93 1.76 3.10

# AF matches 21840 13440 9680
CPU (time) 8h 12min 5h 33min 3h 50 min

Table 5.8: Qualitative results corresponding to mosaics generated using Autopano Pro
and AF matches when running on a 1.66 GHz Linux machine equipped with 2Gb of RAM
memory. The mosaics illustrated in Figures 5.24 (a), 5.24 (b) and 5.25 (b) correspond to
the cave’s entrance, center and background, respectively.

experimental version of the implementation, i.e. without any optimization. Moreover, the
number of images to be acquired is reduced to Nim = 32 which decreases by a factor of 4
the acquisition time.

5.8.2 3D-Cross Bundle Adjustment: Analytical Solution

This section proposes an original analytical solution for refining the relative orientations
resulted from the global motion estimation described in Section 5.7.1 which exploits the
AF pairings obtained from the local patch matching procedure described in Section 5.7.2.

Let Ii and Ij be two partially overlapped images for which the two aforementioned
outputs are available from the pair-wise processing step, i.e.:

• the global rotation R̂ij .

• N homologous AF belonging to the overlapping region defined on Ωij = Ii ∩ Ij =
{(uk

i ,u
k
j )|uk

i ∈ Ii,uk
j ∈ Ij , k = 0, .., N − 1}.

Introducing spatial constraints for drift elimination. The simple concatenation
of the pair-wise poses’ estimates does no introduce spatial constraints, leading error ac-
cumulation. It is therefore required to employ a BA technique in order make use of all
the AF matches belonging to images which are adjacent to the currently processed image
and which are visible from the current camera in order to estimate simultaneously the
relative optimal quaternions. This eliminates the drift usually introduced when a simple
concatenation of the relative orientation is used by introducing spatial constraints between
images belonging to the same station or mosaic node.

Exploit the adjacency information. The proposed scheme exploits the images’
adjacency information established through the acquisition setup and minimizes the global
registration error over all the images composing the mosaic by using a set of AF features
associated to each group of adjacent images (i.e. the set of AF features belonging to the
current image which are visible in all its adjacent images). Since images are ordered,
the algorithm does not search for overlapping images (or adjacent) allowing considerable
computational savings.

Alignment’s evaluation using 3D criteria. As shown in Equation (5.20), the
BA scheme evaluated in the previous section minimizes the error between the 2D image
projections of the transformed 3D vectors which might be biased by the self-calibration
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process. In addition, the main goal is to compute the 3D camera motion to which a
criterion measured in the 2D image space is less sensible and for this reason our proposal
is to employ a criterion measured in the 3D space.

3D-cross criterion formulation. Since in our case the depth coordinate is not
known, our solution for the BA process stands in the minimization of the area comprised
between the 3D normalized vectors which corresponds to the minimization of the cross
product between the 3D vectors vk

1 ←→ vk
2 corresponding to the AF pairings uk

i ←→ uk
j .

This can be expressed in terms of both cross and dot product:

0 ≤ γ = arccosvk
i · vk

j = arcsin ‖vk
i × vk

j ‖ ≤ π (5.21)

The geometrical meaning of the minimization of the cross product between the correspond-
ing 3D rays is illustrated in Figure 5.26.

Figure 5.26: (a) The 3D criterion illustrated for n = 3 adjacent images. (b)The estimation
process minimizes of sum of the angles between the corresponding 3D vectors in each
image.

Assuming that we have a set of N corresponding vectors ~vk
1 ←→ ~vk

2 coming from the
corresponding AF matches uk

1 ←→ uk
2, the cost function for an image pair sums the angles

enclosed by each vector couple, being expressed as following:

Qij−× = min
R

N−1∑

k=0

‖vk
i ×Rvk

j ‖2 (5.22)

Multi-view formulation of the 3D-cross criterion. For n images composing a com-
plete spherical mosaic node, several factors need to be taken into account:

• image adjacency: in order to model the adjacency relationship between Ii and Ij ,
for all i, j = 0, .., n− 1 with i 6= j, we define the the matrix W(n×n) whose terms are
defined by a weighting function

wij =

{
1, if card(Ωij) 6= 0
0, if card(Ωij) = 0

(5.23)



168 5. AGM: Automatic Gigapixel Mosaicing from Nodal Optical Images

• feature visibility: since several features are visible in some images and in others no,
we define the visibility matrix Θm×p, where m is the number of images composing
a group of adjacent images, and p denotes the number of features matched overall
m images. We can count whether the feature k detected in image Ii uk

i , is visible in
image Ij by using the following weighting function:

δk
ij =

{
1, if uk

i ∈ Ωj

0, otherwise
(5.24)

By integrating the two aforementioned factors into Equation 5.22 and by summing over all
images composing the mosaic node, we obtain the total cost which need to be minimized
when stitching multiple overlapped images acquired from a single view-point, which is
expressed hereafter:

Qmosaic−× =
n∑

i

n∑

j,i<j

wij

∑

k

δk
ij‖vk

i ×Rvk
j ‖2 (5.25)

The technical solution of Equation (5.25) is related to the choice made for the rota-
tion parametrization. We employ quaternions since they allow for elegant and numerically
stable solution. Appendix C.6 describes the solution for estimating the optimal quater-
nion relating two adjacent images, followed by its generalization to the multi-view case in
Appendix C.7.

Sequential algorithm. The minimization of the cost function Qmosaic−× wrt Nq

quaternions is done in a sequential fashion using a similar approach as the one introduced by
Benjemaa and Schmitt in [Benjemaa and Schmitt, 1997]. Authors introduced an iterative
scheme for registration of multiple sets of 3D point clouds by minimizing the sum of
squared residual errors between corresponding 3D points in each view. A quaternion-based
solution to this problem was proposed in [Faugeras and Herbert, 1986] and [Horn, 1987].
The translation is given by the difference between centroids, while the unit quaternion
maximizes the sum of the dot products of corresponding coordinates in the first system
with the rotated coordinates in the second system. In this case, the unit quaternion is
given by the unit eigen-vector corresponding to the maximum eigen-value of a symmetric
4× 4 observations matrix.

In opposite to their case study, in our research work we search for the optimal parameter
vector qnode which minimize the sum of square angular errors expressed in Qmosaic−×.

The minimization process starts with a vector parameter q0
node which can be set to

an arbitrary value or initialized by a previous step. At each iteration, all the Nq − 1
quaternions are fixed except one of them whose estimation is performed by minimizing
the cost function Qmosaic−×. For an arbitrary iteration m, the transition from qm

node to
qm+1

node is done in Nq − 1 steps. When all the quaternions are fixed except one, minimizing
Qmosaic−× becomes a simple problem which can be directly solved using the closed-form
solution presented in Appendix C.6.

Taking into account the properties of the 4 × 4 observations matrices Vij , it can be
verified that the cost function Qmosaic−× is lower and upper bounded. The overall criterion
Qmosaic−× is composed by simple concatenation of several relative cost functions Qij−×,
each of which having its minimum given by the smallest eigen-value λij = λmin

ij and
maximum given by their maximum eigen-value λmax

ij . Consequently, it can be shown that
the cost function is upper and lower bounded:
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∑

Ii∩Ij 6=∅
λmin

ij ≤ Qmosaic−× =
N−1∑

i=0

N−1∑

j=0

wijQij−× ≤
∑

Ii∩Ij 6=∅
λmax

ij (5.26)

5.9 Conclusions

At the global scope, this chapter proposes a system-oriented solution for generating in-situ
Gigapixel mosaics in unstructured and difficult to access environments, without requiring
human operator intervention. Since the environment is unknown, the proposed method
does not rely on corner-like primitives extraction, providing therefore an environment-
independent method.

We conclude by first listing the main issues to solve for when dealing with the in-situ
Giga-pixel mosaicing problem in unstructured and difficult to access environments. Once
reviewing the main aspects to be addressed, we revisit the algorithm’s components and
justify our choices. The closer of this section draws the main aspects in which is see the
contributions of the chapter.

5.9.1 Addressing key-issues for the in-situ Giga-mosaicing problem

When tackling the Giga-pixel mosaicing problem within an environment-independent method,
special attention was given to several factors:

(A) Image matching in feature-less areas. When solving for the automation of
the Giga-mosaicing process in whatever environments, we were faced to a well-known issue
raised by the image alignment task in presence of feature-less areas. Such an algorithm
requires reliable image matching in homogeneous, highly textured areas but also in regions
presenting repetitive patterns, and natural scenes (such as trees or grass). More specific
to the Giga-pixel mosaicing process, is the accuracy, since any mis-registration will lead
to visible artifacts in the final compositing. Furthermore, the in-situ requirement plays
an important role in the design of the proposed algorithm, introducing constraints for
automation and rapidity.

(B) Choosing the suitable ingredients. At a first glance, grouping the aforemen-
tioned requirements into a single mosaicing framework appeared to be challenging task
for the nowadays image mosaicing frameworks. We started by including the suitable algo-
rithms solving efficiently for each requirement:

• Fast direct method for accurate alignment of HR and low-overlapped images acquired
in feature-less areas. Being given the initial estimates and focusing on providing
an accurate image matching algorithm for feature-less areas, our attention was first
directed toward direct methods. This guarantees the matchability of low-overlapped
images by exploiting all the information belonging to the overlapping region, elim-
inating the risk of not-founding keypoint features in feature-less areas. The "fast"
term is related to fact that for computational savings only pixels extracted from the
overlapping areas (i.e. patches belonging to the image border) are correlated within
a coarse-to-fine framework.

• Deviations from parallax-free camera rotation and pinhole camera model. In our case
images are acquired by a motorized pan-tilt head and only small amounts of parallax
can be encountered when the optical center is not superposed with the center of
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rotation of the platform. In this case, a simple a local patch matching approach
can be applied in order to compensate for deviations from purely-rotating camera or
pinhole camera model.

• Fast multi-view fine alignment. Although accurate, direct methods are computation-
ally too expensive when applying them on HR images for the multi-view refinement
stage, whereas BA methods usually employed in conjunction with feature extraction
and matching algorithms, are fairly more interesting due to their rapidity.

5.9.2 Revisiting Algorithm’s Components

We will now review the design of the proposed mosaicing algorithm combining the afore-
mentioned capabilities.

(A) Pyramidal global-to-local pair-wise image alignment. The pair-wise align-
ment refines the initial estimates and establishes a global 3D rotation model which, at its
turn initializes the non-rigid motion estimation via a local patch matching procedure.

This helps in solving for four issues: (i) it compensates for deviations from free-parallax
motion camera rotation, (ii) it allows to establish a set of corresponding "anonymous
features" which are reliably matchable in any environment (including feature-less areas)
and (iii) it allows to estimate a local displacement for each patch which can be also be
used to compute a global translational motion. The last aspect is the most important,
as it allows to build the bridge between the pair-wise direct alignment procedure and the
BA stage, making possible their jointly use to enable accurate, fast and reliable in-situ
Giga-mosaicing.

The proposed scheme has several advantages wrt the existing image alignment methods:

• the direct approach enables fast and efficient computation, provides robustness to
noisy initial guesses and initializes the local patch matching procedure sufficiently
close to their true homologues, decreasing therefore the outliers’ rate.

• the pyramidal approach enables high-resolution image alignment with a reasonable
computation time, which is a key aspect for the Gigapixel mosaicing task.

• the local patch matching accuracy ensures that the bundle adjustment step will not
get trapped in a local minimum.

Evaluating the environment-independent character of the image matching
method. The main ingredient of the mosaicing pipeline which must deal with the feature-
less aspect is the pair-wise image alignment process. In order to evaluate the environment-
independent character of the proposed method, we tested the pair-wise global-to-local
alignment on different acquisition scenarios.

Unstructured and underground environments. We present a first group of trials which
test and evaluate the reliability of the proposed system in unstructured underground envi-
ronments using a camera mounted on a pan-tilt motorized platform capturing HR images
with high overlap. We described two trials performed using different experimental setups.
The first trial undertaken in Tautavel prehistoric cave tests an experimental version of
the algorithm, while the second trial performed in Mayenne Science prehistoric cave vali-
dates the algorithm and evaluates the computational savings when an improved acquisition
platform is used in order to allow for in-situ processing.

Outdoor structured environments. The second group of trials validates and evaluates
the algorithm when used in outdoors structured environments to supply terrestrial mapping
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applications. While the first group of trials is susceptible of introducing small amounts of
parallax, the second one introduces a higher parallax and aims to stitch poorly-overlapped
images with lower resolution acquired on-the-fly by a vehicle equipped with a 10-cameras
panoramic moantage.

The presented tests demonstrate the robustness of the algorithm in both structured
and unstructured environments, in presence of poorly overlapped regions and relatively
high amount of parallax.

(B) 3D Cross-BA for optimal quaternions computation. The patch correspon-
dences between each adjacent image pair are injected in a BA engine for the final opti-
mization. At the first glance we attempt to solve for the multi-view fine alignment using
a classical implementation of the BA scheme [Kolor, 2005] and we concluded that the use
of a 2D criterion and the self-calibration stage lead to mis-registration errors. Moreover,
when AF correct matches are injected into it, the process rejects a majority of the point
correspondences, leading to erroneous poses.

The aforementioned shortcomings influenced us to design a closed-from solution for
computing the optimal unit quaternion by minimizing the angle between the 3D-rays cor-
responding to AFs pairings which is given by their cross product. By expanding the cri-
terion to the multi-view case we obtain a sequential algorithm which iteratively computes
the relative orientations until convergence. An ongoing work is to implement, test and
evaluate the proposed 3D Cross-BA analytical solution on real data acquired in Tautavel
and Mayenne Science prehistoric caves.

Possible rendering schemes for dynamic scenes. Our research work focuses
mainly on the image alignment process. When it comes to the in-situ mosaic rendering
step, rapidity is a priority and therefore a basic rendering pipeline can be used, such as
the one proposed in [Garcias and Santos-Victor, 2000]. Nevertheless, off-line an artistic
rendering pipeline can be performed using the existing techniques [Shum and Szeliski,
2000], [Lowe, 2004]. A possible future research direction is to attack the mosaicing problem
in dynamic scenes. The existing mosaicing frameworks applied on dynamic scenes have
as main goal to hide ghosting effects introduced by moving objects in order to produce
artistic rendering. In exchange, in our work artistic rendering is not a priority. Moreover,
mosaicing make-up is unaffordable for in-situ processing.

GPU implementation. In this chapter we presented a CPU-experimental implemen-
tation of the algorithm in order to test and evaluate the behavior of the overall framework
on different acquisition scenarios. The algorithm seems to work well on different types of
scenery and although the upgraded Rodeonr helps considerably to reduce the computation
time, the main bottleneck for Giga-pixel in-situ processing, rendering and visualization is
raised by the available computational resources for in-situ processing. Consequently, fur-
ther improvements take the proposed mosaicing scheme toward a GPU design.

5.9.3 Contributions

While introducing an automatic Giga-mosaicing system, we believe that the main contri-
bution of this chapter stands in the automation of the image alignment task in feature-less
areas. While focusing on the design of a robust image matching scheme, novel strategies
came up wrt which we see the following contributions:

• Technical solution. A global-to-local pair-wise alignment scheme estimates a global
motion and leads to a list of homologous image points extractable in any kind of
scenery. Since they do not correspond to any salient area, this chapter introduces
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them as anonymous features (AF). They can be employed for image matching, track-
ing and localization purposes.

• Analytical solution: Cross-BA for multi-view fine alignment. In order to
improve the BA process, we propose an analytical solution for the multi-view align-
ment stage which minimizes an error in the 3D space given by the angle between
the vectors corresponding to AFs. The multi-view formulation takes advantage of
sparse matrices, leading to an efficient and fast method for computing the optimal
unit quaternions laying between each partially overlapped image couple.

• Algorithmic contributions. In order to cope with the in-situ Giga-pixel mosaicing
requirements, we exploit the state-of-the-art complementarity by combining pair-wise
direct methods with the feature-based BA scheme through the use of locally matched
AFs. The two aforementioned ingredients are combined to propose an automatic Gi-
gapixel mosaicing system for generating in situ photorealistic mosaics of previously
unknown, complex and unstructured underground environments, without requiring
human operator intervention. The proposed technique can deal with several key
issues of the Gigapixel mosaicing problem in unstructured and large-scale environ-
ments, such as: handling the absence of reliably detectable and trackable features,
robustness to noisy initial guess and to deviations from pure parallax-free motion.

Wide-range applicability. We report a new technique mosaicing technique employ-
able with different testbeds and acquisition scenarios: either fixed motorized platforms or
mobile camera networks mounted onboard ground vehicles. Beside providing Giga-mosaic
imagery, the proposed pair-wise method provides the platform’s heading, giving the possi-
bility to be employed as a visual compass. Moreover, the mosaicing algorithm can be used
to supply site surveys and active vision tasks such as visual-SLAM and recognition. One
of our research work applications aims at providing digital recording and virtual visits of
prehistorical caves through the world wide web [iCa].
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Chapter 6

Generating 4D Dual Mosaics from
Image and Laser Data

The previous two chapters were concerned with the automatic alignment of 3D point
clouds and HR-images for producing 3D and 2D mosaic views to be exploited further in
this dissertation to supply in-situ 3D modeling tasks.

Let us now come back to the main goal of this dissertation which deals with the automa-
tion of the 3D modeling pipeline for in-situ photorealist digitization in difficult-to-access
and unstructured environments. As shown in Section 2.3 of this dissertation, there are
several stages composing the 3D modeling process and each of them must be performed
automatically. This chapter deals explicitly with the automation of the image-laser align-
ment stage in feature-less and GPS-denied areas by proposing an automatic procedure for
generating in-situ photorealist 3D models encoded as 4D mosaic views.

We start this chapter by motivating the jointly use of laser and image data and by
listing the main key issues which need to be addressed when aiming to supply automatic
photorealist 3D modeling tasks while coping with time and in-situ access constraints. The
next section comes up with hardware and software solutions forming a 4D mosaicing proto-
type able the fulfill the aforementioned requirements. Section 6.3 introduces the input data
and states the simplified pose estimation problem under calibration constraints. Section
6.4 describes the image-laser alignment algorithm along with preliminary experimental re-
sults, while Section 6.5 summarizes our research proposal and draws several future research
directions.

6.1 Digital Photorealist 3D Models from Sensor Fusion

When dealing with the automation of the 3D modeling pipeline in difficult-to-access and
unstructured underground environments, one has to take into account several constraints
in order to solve reliably for the data alignment task in feature-less and GPS-denied areas.
This section states several choices and key issues which must be addressed in order to
supply in-situ 3D modeling tasks in such environments.

Recovering 3D information beside appearance has now become indispensable due to
its tremendous potential for solving reliably for a variety of artificial vision tasks, such as
position estimation, navigation, obstacle avoidance, object detection and recognition. The
available solutions for all the aforementioned problems can be undoubtedly be improved
through the integration of 3D information.
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Passive vs. active 3D geometry recovering. Both schools provide 3D geometry
but through different environment sensing means, influencing their use wrt both accuracy
and computational aspects. A stereo-based framework is subject to features’ existence and
would be computationally too expensive to be performed in situ. Moreover, the capacity
of a stereo-montage to provide depth depends on the baseline. For instance, a stereo-bank
mounted on a robot may have a 30 cm baseline, leading to a capacity to estimate depth
up to several meters, while a LRF is capable to sense range up to several tens of meters.

Therefore, in order to recover reliably the 3D geometry while overcoming the ambiguity
of the feature-matching step, recent techniques are more directed toward the active 3D
geometry recovery via 3D LRFs [Dias et al., 2003], [Deveau et al., 2004], [Zhao et al.,
2005], [Stamos et al., 2008], [Banno et al., 2008], [Pilania and Chakravarty, 2008].

Key issues of the image-laser data alignment. When tackling the data fusion
problem, the main problem for which we have to solve for is the representation of the
measurements provided by each sensing device in a common coordinate system. This
calls for the computation of the 3D rigid pose, being also refereed to as the multi-sensor
calibration problem. The data fusion quality is subject to the 3D rigid transformation
relating the sensors, being usually formulated as a minimization problem between common
measurements provided by each sensing device. Several laser-image fusion methods were
reported over the time in Photogrammetry and Remote Sensing [Reulke et al., 2004],
[Deveau et al., 2004], Computer Vision [Dias et al., 2003], [Zhao et al., 2005], [Banno
et al., 2008], [Stamos et al., 2008] and Robotics [Cole et al., 2005], [Cole and Newman,
2006], [Newman et al., 2006], [Pilania and Chakravarty, 2008] research communities.

The first community is more interested in off-line laser-image alignment frameworks
performed using artificial landmarks and or surveyed ground points. The acquired data is
processed by human operators using softwares provided by the acquisition devices. Multi-
sensor calibration methods employ a calibrated pattern [Dupont et al., 2005], [Brun and
Goulette, 2007] or exploit manually selected common observations [Scaramuzza et al.,
2007]. In [Li et al., 2009] authors employ a calibration to get control points. Other
approaches employ a detectable calibration pattern [Rodrigues et al., 2008]. However,
in risky environments it is difficult to have access and place such a calibration pattern.
Consequently, an open issue is how to recover automatically the rigid transformation.

In opposite, the last two research communities have directed their studies toward au-
tomatic methods using interest point extraction and matching together with information
provided by navigation sensors [Zhao et al., 2005] or by exploiting orthogonality constraints
defined over the scene’s content [Stamos et al., 2008], the environment saliency [Cole et al.,
2005], [Cole and Newman, 2006], or interest features [Banno et al., 2008]. Beside the
operational limits raised by the features’ existence and the reliability of navigation sensors
in GPS-denied areas, an important issue is raised by the image-laser occlusions which are
inherent when the two sensing devices have different optical centers, i.e. FMCL system.

Since our research work is concerned with the automation of the 3D modeling pipeline
in difficult-to-access and unstructured underground environments, we list hereafter the
main key issues which need to be addressed in order to solve efficiently for the 2D-3D data
alignment problem in feature-less and GPS-denied areas:

• Image-laser occlusions. When both sensors are freely moving, it is difficult and
even impossible to perform both image-laser alignment and texture mapping due to
occlusions between image and laser data.

• Data alignment failure in feature-less and GPS-denied areas. As mentioned before,
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automatic solutions for aligning texture maps onto 3D point clouds exploit prior
constraints on the scene’s content, limiting their applicability to structured or man-
made environments.

In-situ 3D modeling requirements. Beside the image-laser alignment shortcom-
ings listed above, additional constraints are imposed by the in-situ deployment of the 3D
modeling system.

• Deal with in-situ constraints. In difficult-to-access and unstructured underground
environments special attention must be given to time and in-situ access. In particu-
lar, dense scans acquisition and processing are computationally too expensive to be
performed in situ.

• Provide means to validate in-situ the completeness of the 3D scene model in order to
avoid returning on site to complete data collection. This aspect is concerned with the
fully automation of the 3D modeling pipeline, implying in-situ acquisition, processing
and visualization. In addition, risky environments preclude access of human surveyors
and therefore, supplying 3D modeling tasks through fully automatic procedures is a
must.

Figure 6.1 summarizes the main key issues which have to be addressed when solving
for the in-situ 3D modeling problem from image and laser data, while the following section
describes our research proposal solving for the automation of the data alignment task and
coping with the aforementioned in-situ constraints.

Figure 6.1: Summary of the main key issues which need to be addressed in order to solve for
the automation of the image-laser alignment for supplying in-situ 3D modeling in feature-
less and GPS-denied areas. The scheme illustrates that both steps, data alignment and
texture mapping and subject to image-laser occlusions, while the data alignment its-self
requires for an efficient framework reliable in feature-less and GPS-denied areas.
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6.2 RACL System for in-situ 3D Modeling via 4D Mosaicing

In order to overcome the image-laser alignment shortcomings raised by image-laser oc-
clusions while fulfilling the aforementioned time and in-situ constraints, we propose the
following solutions:

Outlier-free and accurate 3D geometry recovery in feature-less areas through
3D LRFs. In order to address the main issues raised by passive 3D vision techniques re-
lated to the features’ existence, we capture the 3D geometry through the use of LRFs,
allowing to sense reliably the 3D geometry in feature-less areas.

Fast in-situ 3D modeling through complementary color-geometry acquisi-
tion (HR-images and low resolution (LR) 3D geometry) and cooperative data
fusion. Data fusion is concerned with the combination of different information sources.
In [Mitchell, 2007], the author highlights that when attempting to fuse different sensing
devices, one must ensure a good compromise between the accuracy (wrt noise) and the
integration (i.e. how to reject false measurements). As mentioned in Durrant-Whyte’s
paper [Durrant-Whyte, 1988a], several data fusion configurations exist: complementary,
competitive and cooperating fusion.

In our research work we employ a complementary and cooperative data fusion approach.
We fuse HR-image and LR 3D point clouds (complementary aspect) to deliver photorealist
3D models encoded as 4D mosaic views, which can not be provided by using each sensor
separately (cooperative aspect). The proposed combination leads to a 4D mosaicing sensing
device which to our knowledge has not been reported by now.

We exploit the laser-image complementarity emphasized also in [Dias et al., 2003] to
ensure complete site digitization while fulfilling time and in-situ access constraints. Since
for large-scale scenes dense scans acquisition and processing can not be afforded in-situ,
our acquisition scenario acquires LR 3D geometry. In opposite to the 3D scanning devices,
HR color image’s acquisition is instantaneously and the processing time can be reduced
via pyramidal schemes. Consequently, we combine HR-images with LR 3D point clouds,
leading to a complementary combination of 3D and 2D color data acquisition wrt the
acquisition time required by each sensing device in order to fulfill the in-situ requirements.

Occlusions-free image-laser fusion via RACL. Our vision system is based on the
acquisition of dual laser-image panoramic views acquired successively from the SVP. We
capture the entire 3D spherical FOV from a single 3D pose of the system, using both
sensors one after another mounted on a tripod. Therefore, in opposite to the research
work reported in [Zhao et al., 2005] and [Stamos et al., 2008], our approach overcomes
completely the image-laser fusion problems which may rise due to occlusions when laser
and image data are acquired from different view-points. This improves two levels of the
entire 3D modeling pipeline: the image-laser alignment and the texture mapping processes.

Automatic feature-less image-laser alignment via 4D mosaicing. The pro-
posed RACL system simplifies the image-laser alignment problem in feature-less and GPS-
denied areas by imposing calibration constraints. Since both sensors are considered rigidly
attached, the dominant motion between the two mosaics consists in a 3D rotation and a
small inter-sensors parallax amount, both being unknown. The proposed RACL system
allows to solve automatically for the image-laser alignment problem via a mosaic-based
framework, generating in-situ a 4D mosaic for each spatial position of the platform. A 4D
mosaic is a 4-channel panoramic view encoding depth and RGB-color information coming
from laser and HR-color camera, respectively.

4D mosaic-driven in-situ 3D modeling. When a traditional 3D modeling pipeline
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is employed, several 3D models are generated from different 3D poses of the system in
order to cover the site in its entirety. During the global 3D scene model computation,
several problems are encountered during the 3D model matching stage due to occlusions
which lead to an ambiguous feature-matching process.

In order to ensure in-situ the 3D scene model completeness, we propose the use of a
4D mosaic-driven acquisition scenario. In this context, several 4D mosaic views must be
automatically acquired, processed, aligned and merged. The proposed 4D mosaic views
provide a fully spherical FOV, allowing for long-term feature tracking and facilitating
therefore the 3D model matching task via a 4D-panoramic matching process.

Figure 6.2 summarizes the ingredients included in our image-laser fusion scheme in
order to overcome the main key issues of the in-situ 3D modeling problem emphasized in
Figure 6.1.

Figure 6.2: The proposed complementary and cooperative image-laser fusion resulting in
a 4D mosaicing sensor for in-situ 3D modeling.

6.3 Panoramic-based Image-Laser Alignment

After presenting the main ingredients included in our image-laser alignment strategy, the
following two sections provide a brief description of the input data and state the simplified
pose estimation problem under calibration constraints.

6.3.1 Panoramic Sensing Devices

The proposed image-laser alignment method is powered by two panoramic views, supplying
geometry and color information. We state hereafter several omnidirectional imaging devices
capable to capture geometry and color information from real world and justify our choices.

3D mosaic. The Digital Era lead to ubiquitous electronic devices embedding powerful
digital processing units which enable massive data acquisition and computing. Although
expensive, the recently released 3D scanners allow to acquire accurate and high-density
geometry. The close-range ScanStationTM2 manufactured by Leica shown in Figure 6.3
(a) allows to acquire a FOV of [360◦ × 270◦] with a speed acquisition of 50000 points
per second. MESA Imaging designed the SR4000 3D time of flight camera showed in
Figure 6.3 (b) which offers high-resolution 3D image data in real-time. It can be used in
conjunction with the Giga-pixel mosaicing algorithm described in Chapter 5 to generate
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a depth panoramic view. It worth noting that this camera does not provide the intensity
information.

On the downside, the aforementioned sensors are limited to low-depth sceneries and
therefore they can not supply 3D mosaics in large-scale and complex sceneries.

Low-cost, long-range LRF. In our research work we focus to design a low-cost 3D
mosaicing sensor, capable to sense long-range sceneries and to acquire the 3D geometry
and the associated intensity backscattering. To this end, we employ the Trimble GS200
LRF illustrated in Figure 6.3 (c) with an addressability of 700 m. The sensor is employed
along with a 3D mosaicing acquisition scenario used in conjunction with the automatic 3D
mosaicing algorithm described in Chapter 4. Since we aim at using the proposed sensor
in complex environments, we enable the capturing device to sense small-occluded areas by
acquiring partial mosaic views, avoiding the generation of a fully mosaic view for each 3D
pose of the system and decreasing therefore the processing time.

Figure 6.3: Possible 3D mosaic sensing devices. (a) The ScanStation 2 manufactured by
Leica. (b) The SR4000 3D time of flight camera manufactured by MESA Imaging. (c)
Trimble GS200 employed in our research work.

HR-RGB mosaic. The second main input is represented by the color mosaic which
enables the photorealist component of the 3D model. In our research work we employ a
motorized pan-tilt head in conjunction with the Giga-pixel mosaicing algorithm described
in Chapter 5 to produce a Giga-pixel mosaic.

Other special-purpose imaging devices were designed to supply wide-angle imagery.
Fisheye cameras allow to capture directly a hemispherical FOV but they introduce high
distortions. Omnidirectional imaging can be achieved through the use of catadioptric
cameras [Nayar, 1997].

Although various panoramic imaging devices are now capable to capture directly a
fully spherical FOV, on the downside, they do not allow to acquire partial spherical FOV
in order to sense occluded areas in complex environments. More precisely, for each 3D pose
of the system a fully spherical mosaic is acquired which leads to very high computational
costs and causes data redundancy. This is the main reason due to which we prefer to
compose mosaic views by stitching several images, allowing to sense occluded areas when
needed.

6.3.2 Data Input and Problem Statement

Figure 6.4 illustrates the two inputs of the image-laser alignment procedure. In order to
facilitate the visualization of the FOV imaged by each sensor, Figure 6.4 depicts both
the 3D spherical and the 2D image projections associated to each input, i.e. the 3D



179

mosaic generated by the laser and the 2D mosaic obtained from the Gigapixel camera
which was down-sampled to meet the 3D mosaic resolution. It can be observed that
both sensors are capturing the same FOV, having their optical centers separated by a 3D
rotation and a small inter-sensor parallax. In order to build photorealistically textured
panoramic 3D models, one must register the 3D spherical mosaic MBR−3D and the color
Giga-mosaic MHR−RGB in a common reference coordinate system in order to perform the
texture mapping stage.

Pose estimation under calibration constraints. Since the two capturing devices
(laser scanner and camera) are supposing to acquire the same FOV, they can be either
rigidly attached or used successively, one after another. However, in both cases, it is difficult
to calibrate the system such that the parallax is completely eliminated. Consequently, it
is possible to model the transformation between the two sensors through a 3D euclidian
transformation with 6-DOF (i.e. three for rotation and three for translation) as illustrated
in Figure 6.4. The following section is dedicated to the description of the image-alignment
algorithm allowing to compute transformation relating their corresponding optical centers.

Figure 6.4: The two inputs of the panoramic-based image-laser alignment procedure exem-
plified on a data set acquired in Tautavel prehistoric cave. We illustrate the spherical and
image plane projections associated to each input. (a) MBR−3D - the scan matcher output
by the 3D mosaicing process described in Chapter 4. FOV 360◦ × 180◦, size: 2161× 1276,
angular steps [δθ, δϕ]BR−3D = [0.002906◦, 0.00246◦], (b) the optical mosaic obtained using
the algorithm described in Chapter 5. FOV: 360◦ × 108.4◦
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6.4 Automatic Pyramidal Global-to-local Image-Laser Align-
ment

We employ a direct correlation-based technique within a feature-less framework. In order to
cope with time and in-situ access constraints, we cut down the pose estimation combinatory
using a pyramidal framework.

Figure 6.5 illustrates the image-laser fusion pipeline which can be split in two main
processes, each of which being detailed through the following description. Since the entire
pose estimation method is very similar to the pair-wise global-to-local alignment described
in Chapter 5, the following subsections resume several specifications related to its appliance
on fully spherical mosaic views.

Figure 6.5: Image-laser fusion pipeline. Inputs: 3D mosaic MHR−RGB and 2D Giga-
pixel color mosaic MBR−3D illustrated in Figures 6.4 (a) and (b), respectively. The pre-
processing and processing steps are highlighted in green and blue, respectively.

6.4.1 Pre-processing

The proposed image-laser alignment method correlates the reflectance acquired by the LRF
with the green channel of the optical mosaic MHR−G. To do so, we first recover automat-
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ically the parameters of the spherical acquisition through a 2D triangulation procedure in
order to compute the 2D projection of the 3D mosaic. This stage of the algorithm is very
important as it provides the topology between the 3D points and allows fast interpolation.

Down-sampling the green channel of the MHR−RGB mosaic. Our algorithm
starts by down-sampling the green channel of the optical mosaic in order to meet the 2D
laser mosaic’s size. The result obtained is illustrated in Figure 6.6 (a).

Important observation. Once the pose is computed, the high potential of the Giga-
pixel mosaic can be exploited in order to improve the 3D model resolution through shape-
from-X techniques. A method for densifying a sparse 3D point cloud from image data can
be found in [Harrison and Newman, 2009].

Generating pyramidal structures for each input: MBR−G and MBR−3D. We
generate pyramidal structures of Lmax = 3 levels for both inputs MBR−3D = {M l

BR−3D|l =
0, .., Lmax−1} and MBR−G = {M l

BR−G|l = 0, .., Lmax−1}, where the mosaic size ranges from
[2162× 1278] up to [270× 159] corresponding to levels l = 0, .., Lmax.

6.4.2 Pose Estimation

The pose estimation procedure employs a hybrid scheme, the 3D rotation is computed
by minimizing a radiometric criterion in the 2D mosaic space, while the translation is
computed by back-projecting the rotationally aligned mosaics in the 2D space via a local
patch matching procedure. The proposed approach lead to a two-steps rigid transformation
computation process: first, the 3D global rotation R(θ,ϕ,ψ) is computed in a pyramidal
fashion, while the second step is dedicated to the inter-sensor parallax compensation being
performed only at the highest resolution level.

Correction of 3D mosaic distortions. As mentioned in Chapter 4, the 3D mosaic
acquisition combines several bands acquired through laser’s rotations which may introduce
wavy effects within the 3D mosaic geometry. These effects are captured within the inter-
sensor parallax computation step which is performed through a non-rigid motion estimation
procedure. Consequently, in order to correct the 3D mosaic’s geometry, the alignment
procedure is performed by aligning the 3D mosaic onto the 2D optical one, MBR−G.

Global rotation estimation. The algorithm employs a patch-based correlation strat-
egy using quaternions in order to solve for the optimal 3D rotation. In order to avoid the
use of navigation sensors and features’ extraction, the rotation estimation is performed in
a full search fashion. Since the same type of operation is performed at each pyramidal level
l = 0, .., Lmax − 1, let us now drop the superscript l through the following description.

Assume that an arbitrary 3D rotation R(θ,ϕ,ψ) belonging to the rotation solution space
PRS is applied to the 3D point cloud. Each transformed 3D point p̂ = R(q)p is back-
projected in the 2D mosaic space using the intrinsic parameters of the spherical geometry
S : {δθ, δϕ, θmin, θmax, ϕmin, ϕmax} previously recovered through a 2D triangulation pro-
cedure. The transformed points are converted in spherical coordinates (θ, ϕ) in order to
retrieve the corresponding pixel locations u = [u, v]T in the 2D mosaic space. This can
be expressed using the spherical projection of the 3D mosaic SBR−3D under the following
form:

û = S−1
BR−3Dp (6.1)

Consequently, a pixel belonging to the 3D mosaic MBR−3D can be mapped into the optical
mosaic space MBR−G by using the following composed projection:

ûBR−G(R) = S−1
BR−GR(q)SBR−3DuBR−3D (6.2)
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The grey level associated to the image point location ûBR−3D is obtained via bilinear
interpolation in the 2D projection of 3D mosaic MBR−3D. Thus, for an arbitrary rotation
value R ∈ PRS , Equation (6.2) provides us with the transformed mosaic M̂BR−3D(R)
projected in the optical mosaic geometry MBR−G. The optimal rotation is obtained by
minimizing the dissimilarity in brightness between MBR−G and M̂BR−3D(R).

When comparing the 3D mosaic inputs illustrated in Figure 6.6 (a) to the green-channel
of the resized optical mosaic MBR−G shown in Figure 6.4 (b), one can observe that each
sensing device has different responses and consequently, the ZNCC score is used to achieve
robustness wrt illumination changes. The optimal rotation R̂ minimizes the ZNCC score
measured over the entire image space expressed by the following equation:

R̂ = arg max
R∈PRS

∑
ZNCC(MBR−G, M̂BR−3D(R)) (6.3)

Since the 2D projection may result in zero and lost pixels û, the procedure employs a
down-weighting function to correlate only valid pixels, as presented in Chapter 5.

Figure 6.6 illustrates the results obtained by the optimal rotation estimate. The align-
ment correctness can be visually inspected when looking at Figures 6.6 (a) and (b). Figure
6.6 (c) shows that the superposition of the two images does not result in grey-level due to
the different responses given by the sensing devices. Figure 6.7 (b) illustrates a close-up
view of the superposed mosaics showing that the global rotation does not model completely
the motion separating the camera and the laser, and consequently the inter-sensor parallax
must be introduced within the estimated motion model.

Parallax removal. We recover the parallax between the laser’s and the optical mo-
saicing platform by performing a local patch matching procedure at the highest resolution
of the pyramidal structure. As for the local patch matching procedure described in Chapter
5, this stage of the algorithm uses the rotationally aligned mosaics.

The patch matching procedure outputs a 2D translational motion for each patch, esti-
mating a non-rigid motion over the entire mosaic space. This vector field is used for the
parallax removal stage. In addition, the non-rigid motion allows to compute a mean trans-
lation motion model defined over the entire mosaic space t̄2D. The parallax is removed in
the 2D image space by compensating each t̄2D, obtaining therefore the warped 3D mosaic
M̂BR−3D aligned onto the 2D mosaic. Figure 6.7 (c) depicts the result of the laser-camera
alignment procedure.

Accuracy. Although the Giga-pixel mosaic produced using the Autopano Pro software
( details are presented in Chapter 5) has a RMS of 3.74 pixels, these residual errors become
negligible in the down-sampled mosaic MBR−G used for the registration process. A sub-
pixel accuracy can be achieved by using a bicubic fitting, as described in Chapter 5.

6.4.3 Texture mapping and rendering

This is the final stage of the 3D modeling pipeline which actually finalizes the 4D-mosaicing
process. Since the main goal of the research work presented in this dissertation is concerned
with the in-situ 3D modeling problem, we are mainly interested in producing a fast ren-
dering technique for visualization purposes in order to validate in-situ the data acquisition
correctness. To this end, a simple point-based rendering procedure may suffice. Neverthe-
less, off-line a more artistic rendering can be performed by sending data to a host wirelessly
connected to the target.

In-situ point-based visualization. The employed method simply associates the
RGB-color to its corresponding 3D coordinate. In order to emphasize the photorealist
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Figure 6.6: Experimental result on a data set acquired in Tautavel prehistoric cave. (a) The
the green channel of the down-sampled optical mosaic MBR−G meeting the 3D mosaic size:
FOV 360◦×180◦, size: 2161×1276, angular steps [δθ, δϕ]BR−G = [0.00296◦, 0.002458◦]. For
visualization purposes, we add null-pixels to form a complete spherical FOV. (b) The 3D
mosaic M̂BR−3D warped in the optical mosaic’s geometry using the optimal rotation esti-
mate R̂(θ, ϕ, ψ) = [92.82◦,−86.667◦,−66.667◦]. (c) Superposed aligned mosaics: MBR−G

- red channel, M̂BR−3D - greed channel.

rendering results obtained when using high-resolution texture maps, Figure 6.8 compares
the rendering results obtained by first using the intensity acquired by the 3D scanning
device illustrated in Figure 6.8 (a), while the rendering using the texture maps obtained
from the color mosaic is shown in Figure 6.8 (b).

Off-line mesh-based rendering. We apply a 2D meshing algorithm developed in our
laboratory by Mathieu Brèdif and assign to each polygon the RGB-color corresponding to
its 3D coordinates. Figures 6.9 illustrates the rendering results showing that the complex
surface geometry of the environment lead to 3D point cloud discontinuities which are
difficult to handle by the 2D meshing algorithm. In such environments, a more elaborated
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Figure 6.7: Experimental results of the parallax removal procedure obtained on data sets
acquired in Tautavel prehistoric cave: (a) Superposed aligned mosaics: MBR−G - red
channel, M̂BR−3D - greed channel. (b) zoom in - before parallax removal, (c) zoom in
- after parallax removal. The compensated parallax amount: t̄2D = [−1.775,−0.8275]T

pixels.

meshing algorithm must be designed in order to provide robustness to missing data.

6.5 Conclusion

This chapter investigates the image-laser solutions to address the automation of the 3D
modeling pipeline in feature-less and GPS-denies areas. Although the proposed solution
exploit the 3D geometry captured through active 3D vision means, it can be applied to
3D point clouds acquired through passive 3D vision techniques. The research studies
presented in this chapter are concretized in a 4D mosaicing sensor prototype and contribute
to the automation of the image-laser alignment process. We summarizes hereafter the main
features of the aforementioned studies.

4D mosaicing sensor for omnidirectional and photorealist in-situ 3D mod-
eling. In order to solve for the image-laser alignment problem in unstructured and un-
derground environments, we propose hardware and software solutions giving rise to a 4D
mosaicing sensor prototype providing omnidirectional and photorealist 3D models.

• Hardware solution. We came up with a hardware solution consisting in a double-
head panoramic imaging device embedding a panoramic HR-color camera and a 3D
LRF. The two sensors are rigidly attached and their relative position is unknown.
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Figure 6.8: Texture mapping results. (a) The 3D point cloud displayed using the intensity
acquired by the LRF. (b) The colored 3D point cloud using the down-sampled optical
mosaic MBR−RGB.

Figure 6.9: Mesh-based rendering of the Tautavel prehistoric cave. (a) Outdoor view. (b)
Indoor view of the 3D model.
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• Acquisition scenario. The 4D mosaicing sensor employs a specific acquisition sce-
nario, each of its heads being set to acquire the necessary data in order to cover a
fully spherical FOV to generate color and 3D mosaic views. In addition, the acqui-
sition protocol takes care of time and in-situ constraints by acquiring low resolution
3D point clouds and HR images.

• Software. Although both inputs are provided by the 3D and 2D mosaicing proce-
dures described in Chapters 4 and 5, respectively, let us assume that both inputs are
available from previously processing steps. The 4D mosaic sensor embeds automatic
procedures for the image-laser fusion task. We propose a mosaic-based framework
in order to estimate the 3D pose separating the optical centers which is further ex-
ploited within the texture mapping stage. We employ a point-based rendering step
to be performed in-situ to allow fast visualization.

Automatic image-laser pose estimation. The image-laser alignment step solves
one of the main shortcomings standing behind the automation of the 3D modeling pipeline.
With help from both hardware and acquisition scenario, addressing the image-laser align-
ment task becomes a more simple problem, allowing us to resume the pose estimation
process to a rotation computation and a small-parallax removal step. The pose estima-
tion process exploits a mosaic-based scheme and switches between the 3D and 2D spaces
along the estimation process. The pose estimation is designed in two steps: the global
rotation computation is performed within a coarse-to-fine approach, being followed by a
local patch matching procedure which provides means for parallax compensation. The two
advantages of the proposed image alignment method are its simplicity and capability to
solve simultaneously for the following issues:

• automatic rotational alignment between the camera and the laser with toleration to
small inter-sensor parallax amounts;

• robustness to feature-less and GPS-denied areas;

• on-line acquisition, processing and visualization.

Validation and further improvements. This chapter presented preliminary results
of the image-alignment fusion method letting us concluding the feasibility of the proposed
scheme. Future work is concerned with the validation of the proposed method on a recent
data acquisition campaign performed in the Mayenne Science prehistoric cave in order
to allow the in-situ demonstration of 3D modeling applications using the 4D mosaicing
prototype.

The main future research work aims at exploiting the high-potential of the 2D Giga-
pixel mosaic to densify the 3D point cloud. This allows us to create rich textured 3D
maps which can provide a valuable information for addressing several problems related to
photorealist 3D modeling and autonomous navigation schemes.

Following the application type, one may choose to employ either a basic- or an artistic-
rendering scheme. Since our research work concerns the in-situ world modeling problem,
for computational savings, we employ a fast point-based rendering technique. For off-line
uses, such as creating virtual models for digital heritage and virtual traveling applications,
it is required to develop a rendering scheme capable to deal with with missing data caused
by the accidental surfaces inherent to complex and large-scale environments.

In-situ uses of the 4D mosaicing sensor. Our research studies are mainly con-
cerned with the in-situ use of the 4D mosaicing sensor. We are mainly interested in
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exploiting the great potential 4D mosaic views for in-situ world modeling, localization and
exploration purposes. We list hereafter several in-situ uses of the 4D mosaicing sensor.

• 4D-mosaic-driven in-situ 3D modeling. In complex environments, several views
need to be acquired in order to ensure the complete 3D modeling of the site. To do
so, we propose the use of a mosaic-driven 3D modeling scenario, in which the system
acquires, aligns and merges them dynamically in order to ensure in-situ the 3D scene
model completeness. The 4D mosaics are powerful tools, encoding both geometry
and color information, allowing to disambiguate the data matching task which is
inherent to outliers in complex environments.

• 4D-mosaic hybrid SLAM. The proposed 4D mosaic can be used as a basic entity
for panoramic-SLAM purposes, helping to disambiguate the data association problem
and providing long-term feature tracking.

• Visual servoing. 4D mosaic views encode rich representations of the real world
which can be used along with visual servoing procedures to provide active vision to
unmanned systems.

Figure 6.10 illustrates an inside view of the 4D mosaicing sensor prototype, highlighting
the image-laser solutions emerging from it for supplying off-line and in-situ applications.
Since the research work presented in this dissertation aims at designing a vision-based
system for generating in-situ complete 3D models of complex environments, we are mainly
concerned with the in-situ 4D mosaicing uses which are integrated within the ARTVISYS
system to supply autonomous site digitization and exploration applications.

Autonomous site digitization and exploration. We aim at exploiting the potential
of the 4D mosaic views to guide a 3D modeling system to act intelligently on-the-fly and
sense the occluded areas in order to ensure in-situ the 3D scene model completeness. In this
context, the 4D mosaics represent basic entities designed to supply in-situ 3D modeling and
exploration missions taking place in difficult to access environments. For this reason, the
next chapter integrates the 4D mosaicing sensor within a modular software architecture
and describes the solutions provided by the 4D mosaic views for each processing block
composing it.
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Figure 6.10: Summary of the 4D mosaicing sensor prototype and the image-laser solutions
emerging from it for supplying off-line and in-situ applications.
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Chapter 7

Toward 4D Panoramic-driven Site
Exploration

This chapter proposes the integration of the 4D mosaicing sensor within a vision-based
system designed to supply autonomously the digitization of complex environments in their
entirety.

Since this aspect is intrinsically related to the system’s autonomy through the world
modeling capability, in Section 7.1 we investigate the potential of the 4D mosaicing sensor
to provide a vision-based autonomy model which is instantiated to the site digitization and
exploration case. In the next section we employ it to design the software architecture of an
autonomous site digitization and exploration system, having as nucleus the 4D mosaicing
process which gives rise to the ARTVISYS system. It’s visual control loop includes sev-
eral processing blocks which require the 3D pose estimation between partially overlapped
4D mosaic views. After reviewing the available solutions solving the 3D model matching
problem in Section 7.3, we exemplify a more difficult case on a data set acquired in the Tau-
tavel prehistoric cave. Section 7.5 proposes a 4D-panoramic-based solution of automatic
3D model matching by designing a viewpoint invariant hybrid descriptors - VIHD, to be
used in conjunction with an unambiguous matching strategy. Several existing solutions are
proposed to supply the estimation of the 3D rigid transformation relating two partially
overlapped 3D models, taking into account several system’s configurations. The closure
of this chapter summarizes the main contributions and provides several future research
directions concerning the remaining processing blocks of the visual control loop.

7.1 Proposed Visual Autonomy Model

Our research work focuses on the world modeling functionalities in feature-less and GPS-
denied areas. Supposing that proprioceptive sensors are not embedded on a mobile plat-
form, we propose to study and evaluate how far can we go with the system’s autonomy by
exploiting only exteroceptive sensors (camera and laser). Appendices D.1 and D.2 provide
a brief review of the existing methods dealing with site digitization and exploration prob-
lem, emphasizing the relationship between the visual autonomy and the world modeling
procedures which we illustrate in Figure 7.1.

For this reason, in this chapter we propose a vision-based autonomy model powered by
the 3D world modeling process, emphasizing the high potential of passive and active 3D
vision alone to supply unmanned systems’ autonomy. Nevertheless, the proposed model
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can be further improved with proprioceptive devices when reliable.
To this end, this section integrates the 4D mosaicing sensor within a vision-based explo-

ration framework, providing mapping, localization and navigation in the already explored
and built world model. We integrate the 4D mosaicing sensor within the vision-based
autonomy architecture illustrated in Figure 7.2 whose composing blocks are detailed here-
after.

Figure 7.1: The vision-based autonomy of unmanned mobile systems is intrinsically related
to the capacity of the system to autonomously digitize and explore the environment, which
at its turn requires automatic world modeling procedures.

1. Sensory perception. Unmanned systems must be equipped with instinctual
perception such as seeing, hearing and touching. Visual information is our main concern,
which is usually gathered through exteroceptive sensors (camera, lasers, sonars) which
are embodied using different configurations. In our case study, we employ a camera-laser
hybrid device giving rise to the 4D mosaicing sensor presented in Chapter 6.

2. Artificial vision through dynamic world modeling. As for humans, vision
is an elementary functionality which provides knowledge about the system’s surround-
ings, allowing situational awareness during the execution of the required tasks. Therefore,
embedding unmanned platforms with automatic procedures for environment sensing and
modeling is vital as they provide them with rich and understandable information about
the real world. This gives rise to an artificial vision engine powered by a dynamic world
modeling process.

3. Scene understanding. In order to exploit the high potential of the artificial vision
engine provided by the world-modeling process, scene understanding functionalities must
be developed in order to extract high-level semantics characterizing the scene’s content.
This is of primer importance since it impacts on the future decisions and actions of the
platform. This calls for two subsequent blocks: characteristics’ extraction from images and
definition of cognitive rules governing the environment surrounding the system.

(a) Scene characteristics extraction. The scene understanding process starts by
extracting different characteristics from the scene model via signal and image processing
techniques (region segmentation, optical flow, edge extraction, entropy computation, etc.).
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Figure 7.2: Vision-based autonomy model: the VAN process represents the vision-based
autonomous navigation module described in this section.

(b) Conceptual perception. Characteristics alone are meaningless and reality per-
ception rules need to be defined in order to provide basic semantic interpretation based on
which high-level semantics can be further extrapolated. For instance, optical flow compu-
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tation provides knowledge on scene’s dynamic, region segmentation and entropy computed
in several areas allows us to characterize them (i.e. planar or highly unstructured), discon-
tinuity depths allows us detecting unvisited places and so on. To this end, an underlaying
module is required in order to relate the platform to the exterior world through senses
and ideas as a result of collective and individual reasoning. For this reason, basic notions
providing scene interpretations are required to provide situational awareness, in order to
answer questions such as: what a depth discontinuity means, or to what can be associated
light or other colors and how to classify materials (wood, rock, water) surrounding the
system. All these operations are related to the exploration task, which provides knowledge
and contributes directly to the system’s autonomy.

4. Short-term goal planning. The environment is previously unknown, being
subject to unexpectedly changes. Following the scene understanding results, several goals
may be prioritized, influencing the action flow. This module provides short-term planning
based on the 3D world model build so far in order to drive the platform toward the final
goal. For instance, for environment digitization and exploration the short-term goal is
to visit the occluded areas detected by the scene understanding module which requires
the next best view computation. Another example can be given for geological inspection
of objects classified as "interesting" during the previous stage. This block is powered
by fast decision making resources built upon the reasoning principles defining the scene
understanding module.

5. Visual-based autonomous navigation (VAN). The platform must be capable
to autonomously navigate within the already generated scene model in order to reach a
particular 3D position. For this reason, the navigation process generates possible motion
paths to the target using the internal world model, the size of the platform and its maneu-
verability. Visual odometry and obstacle detection procedures interfere with the motion
control process via visual servoing procedures.

(a) Self-localization. During navigation and exploration stages, the system must al-
ways be aware of its positioning wrt its inside world model. The self-localization procedure
answers the system’s question "Where am I?", taking in charge kidnapping cases. Since
the system must be capable to navigate in GPS-denied areas and unstructured terrains
(i.e.odometry is not reliable), the implementation of vision-based localization procedures
are therefore a must.

(b)Short-term piloting. The environment can be dynamic and therefore the path
planned may be deviated by recently appeared objects in the trajectory. In order to deal
with unpredicted situations, a pilot module is charged with the path updating process.

(c) Interacting with surroundings. As stated in the exploration strategy intro-
duced in [Bolduc et al., 1996], the navigation module must approach the obstacles in
order to allow their classification by the scene understanding module in "interesting "and
"not interesting". During an exploration mission, the system is required to "touch" the
interesting ones and to conclude on their properties. This environment exploration module
can also help for the navigation task by providing information about the material properties
of the system surroundings (traversable surfaces, water, wood, rock, humans, etc.).

6. Consciousness. Studies on a machine consciousness approach [Moreno and
de Miguel, 2006], [Moreno and de Miguel, 2008] shown that these methods can pro-
vide a controlled behavior when dealing with unexpected situations. Learning capabilities
are expected to be improved as they are driven by attention and subjective experience
acquired on-the-fly should improve considerably the system autonomy when dealing with
uncertainty.
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Other contextual constraints, such as real time processing and robustness to large
variability of the real world, interfere with the aforementioned functionalities.

The proposed visual-autonomy paradigm provides a general architecture applicable for
a wide range of missions taking place in unknown environments. The next section illustrates
how we apply it in our research work to propose a vision-based autonomous site exploration
strategy scheme to supply site surveys in complex and underground environments.

7.2 Visual-actuated 4D Mosaicing Sensor for Site Digitiza-
tion and Exploration

Our research work is willing to produce complete and photorealistically textured 3D models
of complex and difficult to access environments. Therefore, once accessing the site, the
system must be capable to ensure in-situ the 3D scene model completeness in order to
avoid to return on site to collect new data. This calls for an intelligent system capable
to acquire and process data on the fly, and to exploit it in order to guide and control the
system to ensure the 3D scene model completeness.

In this dissertation we propose to exploit the high potential of textured 3D maps
encoded as 4-channel panoramic views to supply visual servoing procedures for vision-
based autonomous site digitization and exploration operations. The high-detailed 3D
maps provide valuable help for exploration, allowing to search for reachable targets, to
find traversable terrains and to localize the system. Figure D.4 synthesizes the available
solutions for the autonomous site digitization and exploration problem and the proposed
strategy described in this section.

To address this issue, we employ the visual-autonomy paradigm from Figure 7.2 and
integrate the 4D mosaicing sensor within a visual-based site digitation and exploration
architecture, giving rise to a vision-based 3D modeling system, ARTVISYS for which a
global overview was provided in Chapter 3.

Due to occlusions, several 4D mosaic views need to be acquired from different 3D spatial
positions of the system in order to ensure the digitization of the entire site. As mentioned
in Chapter 3, we employ a 4D-mosaic driven acquisition scenario in a stop and go fashion.
Traditional systems employ a camera with limited FOV, leading to a low situational aware-
ness and limited 3D perception. The main advantage of the 4D mosaicing sensor is that it
captures directly a a fully spherical 3D model and photorealistically textured from a single
3D pose of the system, increasing spatial perception and allowing for long term tracking
features between successive sensor readings. Figure 7.3 illustrates a zoom-in view on the
visual feedback loop actuating the 4D mosaicing sensor, showing its composing processing
blocks which are briefly detailed hereafter.

1. Long-term world model update. This procedure is called at each new spatial
position of the system, when a 4D mosaic is acquired. The following two subsequent
operations are required in order to integrate the currently acquired 4D mosaic, noted
M4D(t) into the global 3D scene model generated so far, noted W (t).

(a) 4D Mosaic matching. The system acquires and generates a 4D mosaic view at
each spatial position. As they are generated, the 4D mosaics are sequentially aligned and
integrated into a global 3D scene model. After each acquisition, the generated 4D mosaic
must be aligned wrt a global coordinate system in order to be merged with the previously
generated ones, forming thus the global 3D scene model. To this end, this chapter provides
an automatic solution to ensure reliable 4D-mosaic matching in unstructured environments.
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Figure 7.3: Visual-actuated 4D mosaicing sensor for site digitization and exploration.

This is the main ingredient of the visual feedback loop as it allows for several functionalities
to be computed based on the currently built 3D model, such as: occlusions detection, view
and path planning, obstacle detections and system’s localization.

(b) 4D Mosaic merging. Once the 3D pose has been computed, the 4D mosaic
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views must be merged in a common reference system in order to produce a global scene
model. During this stage, special attention must be given to noisy points which must be
discarded using down-weighting rules and to data redundancies. The acquired mosaics
are complementary, i.e. hardly- or non-visible areas in one view were sensed from other
viewpoints. Therefore, space carving methods [Kutulakos and Seitz, 2000] must be used
in order to integrate data sensed from all viewpoints covering the occluded areas.

2. Next Best View (NBV) planning. In order to ensure in-situ the 3D scene
model completeness, the system exploits the global 3D scene model W (t) generated so far
to find the best next 3D position of the system from where the new 4D mosaic in order to
maximize the visible volume, while minimizing cost’s displacement and data redundancy.
The NBV’s computation process requires knowledge about depth discontinuities in the 3D
model acquired so far W (t). This might be seen as an occlusion-based exploration
strategy.

3. Autonomous navigation to rich the NBV. Supposing that a NBV position
s∗(t + 1) has been computed, the system must be capable to navigate autonomously and
reach it. This calls for obstacles’ detection, self-localization, path planning and motion
control procedures.

All the aforementioned functionalities are composing the control loop of the ARTVISYS
system, actuating the 4D mosaicing sensor to perform site digitization and exploration.

The main process powering the entire visual feedback loop is represented by the 4D
mosaicing matching procedure (step 1.a) which allows to integrate all 4D-mosaic views
within a global 3D scene model. For this reason, the following sections are dedicated to
the 3D model matching process, illustrating the potential of the 4D mosaicing sensor in
solving reliably for the data matching task in GPS-denied and unstructured environments.
Since the remaining processing blocks composing the visual feedback loop are strongly
related to the 4D mosaicing sensor’s features, we provide several research directions in the
closing section of this chapter.

7.3 The 3D Model Matching Problem

The recent advances in 3D modeling lead to a growing interest for retrieving 3D models
from real world [Snavely et al., 2006]. With help from 3D graphics hardware and CPUs,
3D data has become cheap enough to be processed and displayed on a general computer.
The world wide web hosts 3D models gathered by peoples from all over the world, allowing
to spread high-quality 3D models. (avalon.viewpoint.com). The issue moves from "how
we generate 3D models?" to "how we recognize them?". This is an active research topic
in shape-based recognition, retrieval, clustering and classification.

Up-to-date research work reported real-time performances on large-scale 3D reconstruc-
tion from video data [Pollefeys et al., 2008]. Although image-based matching techniques
provide loop-closing constraints to the bundle adjustment, they are powerless when deal-
ing with 3D surface irregularities. When using only a texture-based criterion it is difficult
or even impossible to match low-overlapped 3D models acquired under high viewpoint
changes in large-scale environments. In addition, as stated in [Wu et al., 2008], the accu-
racy required by ICP is not achievable with 3D point clouds recovered from stereo. Several
limitations were also encountered when attempting to match 2D features in complex en-
vironments where due to the accidental terrain the problem gets even worse in absence of
odometry.
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This issue is addressed in [Wu et al., 2008], were Viewpoint Invariant Patches - VIP
are introduced for matching textured 3D models produced from video data. The VIPs
are designed as orthonormal patch projections on which SIFT descriptors are computed.
The VIP descriptor is subject to the orthographic projection which is valid only on planar
surfaces. Since our research work is concerned with the 3D model matching in unstructured
environments, planar surface hypothesis required to build orthonormal patch projection is
not validated. Although the matching results illustrate that VIPs outperform SIFTs, the
accuracy of the pose estimation is limited by the error of the passive 3D geometry recovery
process.

It is therefore necessary to acquire accurate 3D geometry and to provide more reliable
matching while avoiding the use of salient features in order to deal with unstructured
environments. For this reason, several research works including this one have directed
their studies toward image-laser solutions.

A very similar work to ours is presented in [Miro and Dissanayake, 2008], in which
authors propose the use of the 3D visual sensor illustrated in Figure 7.4 for SLAM to supply
SAR missions in unstructured environments. Authors employ a 3D camera manufactured
by MESAr and a high-resolution color camera mounted on it, being fixed wrt each other.
The two sensors are used to extract 3D features and to design a SLAM algorithm based
on an Extended Information Filter (EIF) [Thrun et al., 2005]. SIFT features extracted
in the textured images that can be identified in the range images, giving access to the full
3D information which is exploited to retrieve the sensor motion between two consecutive
camera poses via a least-square fitting procedure [Arun et al., 1987] and RANSAC [Fischler
and Bolles, 1981]. The new transformation can be used to combine several textured range
images to form a global model of the environment [Ellekilde et al., 2005]. On the downside,
the MESA range-sensor is limited to 10 m range, being therefore unsuitable for large-scale
sceneries.

Figure 7.4: Image-range solution presented in [Miro and Dissanayake, 2008]. (a) MESA
and camera montage. (b) The rescue arena University of Technology Sydney illustrating
the difficulty to navigate in unstructured environments.
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7.4 4D Mosaic-driven Acquisition Scenario in the Tautavel
Prehistoric Cave

A first data acquisition scenario was performed in the Tautavel prehistoric cave in October
2007. In order to illustrate the difficulty to acquire data, Figure 7.5 depicts an indoor view
of the cave, illustrating the area where the system could not be placed. In this case, an
aerial digitization system could be more suitable to be used.

In this context, we acquired three stations, one situated at the cave’s entrance, a
second station after the forbidden whole and a third station in the cave’s background area.
Figure 7.6 illustrates the corresponding 2D mosaic views generated using the algorithm

Figure 7.5: A global view of the interior of the Tautavel prehistoric cave. The red rectangle
highlights the forbidden area for sensor’s positioning.

proposed in Chapter 6 which are down-sampled in order to allow fast computing. The goal
is to recover the 3D rigid transformation relating the 4D mosaic views. When looking at
Figures 7.6 (a) and (b), the difference in viewpoint is considerably high and when visually
inspected, common areas can barely be detected.

Figures D.5 and D.6 from Appendix D.3 illustrate that Harris and SIFT features’ were
extracted in a sufficient number. In Figure 7.7 (c) several matches can be visually inspected,
showing the week capacity for matching reliably Harris features between panoramic views
acquired under high viewpoint variations and illumination changes. In addition, SIFT
matches were found in a limited number (4 and 8 false matches were found at levels 1 and
0, respectively) allowing us to conclude that traditional 2D features do not allow for outlier-
free pose estimates and that the matching process must be driven by 3D information.

In our research work we are interested in coding 3D descriptors allowing to reliably
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Figure 7.6: 2D Mosaic views acquired in Tautavel prehistoric cave. (a) caves entrance:
M1

2D size 2710× 816, (b) cave’s middle M2
2D size 2771× 811, (c) cave’s bottom M3

2D size
2775× 652.

match 3D models in feature-less environments over large-scale scenes. To this end, the
next section proposes a 3D model matching procedure which exploit the 4D mosaicing
sensor capabilities to solve reliably for data matching problem over large-scale scenes.

7.5 4D-Panoramic-based Solution for Automatic 3D Model
Matching

When designing an automatic solution, one has to take into account the three main stages
of the data matching pipeline: (a) descriptor extraction, (b) feature matching, and (c) pose
estimation.

The proposed framework takes advantage of the panoramic views which provide long-
term feature tracking and exploits the accuracy of the 3D geometry recovered through
LRFs to design hybrid descriptors for eliminating the ambiguity of the traditionally 2D
features matching methods. To this end, we design a class of hybrid descriptors, encoding
both appearance and geometry information which will drive the matching process toward
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Figure 7.7: Harris matches extrction on M1
2D and M2

2D mosaic views. ]1136 matches
between (a) M1

2D and (b) M2
2D. (c) one match over 75 is displayed.

reliable data matching in feature-less environments by filtering out the false matches based
on intrinsic geometrical properties and topological consistency between triads belonging to
the same 4D mosaic view, noted M4D. Figure 7.8 illustrates the proposed approach which
is detailed throughout the following subsections.

7.5.1 Viewpoint Invariant Hybrid Descriptors - VIHD

We proposed the design of hybrid features, d = [(x, y, z), (u, v)T , t, ~n]T encoding the 3D
coordinates (x, y, z)T , the pixel location in the 2D projection of the 4D mosaic (u, v)T , the
color components c = [R, G, B]T , and the normal ~n to the tangent plane at the surface at
the 3D coordinates of the descriptor d, given by (x, y, z)T .

Various characteristics may be added, following the features which might be relevant
to the environment description. In our case, it is very useful to encode the entropy of the
patch (η), characterizing the variation of the surface geometry. Since salient descriptors
are subject to illumination changes, causing lost features, we recommend to use the un-
processed color provided by texture maps.

The anonymous features resulted from the 2D Giga-mosaicing process described in
Chapter 5 can used to by-pass the extraction phase. Additional processing stages are
required for uniform sampling and to achieve viewpoint-invariance. In complex environ-
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Figure 7.8: The proposed image-laser solution provided by the 4D mosaicing sensor for
data matching and pose computation.

ments, the orthonormal projection is not validated and for this reason we suggest the use
of circular patches projected on the sphere surface using curve fitting.

7.5.2 Unambiguous Matching

Suppose that a list of descriptors were extracted from each mosaic D[M1
4D] = {d1

i , i =
0, .., nD1−1} and D[M2

4D] = {d2
j , j = 0, .., nD2−1}, where nDi , i = 1, 2 denote the number

of the VIHD descriptors extracted in M i
4D with nD1 < nD2 . Our matching strategy follows

two stages. First a radiometric criterion establishes r-candidates which are verified in a
second stage using a geometric criterion, producing g-candidates.

Finding radiometrically (R) eligible candidates matches. Each feature d1
i ∈

D[M4D]1 is matched against each feature d2
j ∈ D[M4D]2 to form a cluster with the best R

"eligible" candidates which might correspond to d1
i . The eligibility criterion is based on
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the ZNCC score computed over a squared windowed area of size w.
In order to deal with occlusions, we must be able to decide whether a feature point is

lost or not. This aspect is taken into account by introducing the following rule:
{

ZNCC(d1
i ,d

2
j ) ∈ [−1, 0.5] → w(i, j) = 0

ZNCC(d1
i ,d

2
j ) ∈ (0.5, 1] → w(i, j) = 1

(7.1)

Eligible candidates for d1
i are expressed under the following form:

Q(i) = {d2
i,q,r, q = 0, .., R− 1|w(i, j) = 1} (7.2)

where q is the counter and r denotes the rank of features d2
j ∈ M2

4D, with card(Qi) = R.
As shown in Figure 7.9, this phase of the algorithm outputs a bag of R-candidates for each
feature d1

i extracted from M1
4D.

Figure 7.9: R-candidates for each features d1
i ∈ M1

4D, i = 0, .., nD1 − 1.

Selecting geometrically (G) consistent triads. For each candidate pair d1
i ↔ d2

i,q,r

the geometrical coherence is verified wrt the inter-mosaic topological relationship be-
tween descriptor triads (di,dj ,dk)1 ∈ D[M1] and their corresponding bag of R-candidates
(di,q,r,dj,q,r,dk,q,r)2 ∈ D[M2] established at the previous step.

The inter-mosaic topological consistency is defined in terms of Euclidian norm and
angular distance between feature couples taken over feature triads in each mosaic. The
geometrical consistency is verified on pairs (i, j), (i, k) and (j, k) composing each triad and
provides potential matches by comparing the spatial relationship between features in M1

4D

and features in M2
4D.

Valid homologous descriptors composing the triad (di,dj ,dk)1 are found by searching
over triads formed by R-candidates (di,q,r,dj,q,r,dk,q,r)2 ∈ D[M2], the one which verifies
the inter-mosaic topological relationship, noted (d(i,r),d(j,r),d(k,r))2. The neighboring re-
lationship is defined in terms of norm and angular distances between the corresponding
3D points p = (x, y, z)T :

V(i, j) :

{
V1 : ‖p1

i − p1
j‖ = ‖p2

i,q,r − p2
j,q,r‖ ± ξ‖‖

V2 : p1
i × p1

j = p2
i,q,r × p2

j,q,r ± ξ×
(7.3)
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The quantities ξ‖‖ and ξ× define the norm and the angular tolerance measures, respectively
which can be established through automatic thresholding methods [Sezgin and Sankur,
2004]. Pairs of features verifying simultaneously V1 and V2 provide a list of G-candidate
pairs (d2

i,q,g ↔ d2
j,q,g), with card{Qi,g} = G, where g denotes the ranking of the best

G candidates in a decreasing order. The g-candidates (d2
i,q,g ↔ d2

j,q,g) are topologically
consistent with (d1

i ,d
1
j ) within the bounding domains ¤ξ‖‖ and ¤ξ×. A similar procedure is

performed for pairs (i, k) and (j, k) leading to G-candidates pairs (d2
i,q,g ↔ d2

k,q,g)(i, k) and
(d2

j,q,g ↔ d2
k,q,g)(j, k) which are topologically consistent with (d1

i ↔ d1
k) and (d1

j ↔ d1
k),

respectively. The proposed topological consistency criterion can be formalized as following:




V(di,dj)1 ⇔ V(di,q,g,dj,q,g)2

V(di,dk)1 ⇔ V(di,q,g,dk,q,g)2

V(dj ,dk)1 ⇔ V(dj,q,g,dk,q,g)2
(7.4)

The corresponding valid triad (di,r,dj,r,dk,r)2 is found by confronting the ranks of the
homologous features for each couple composing the triad, i.e. the following three conditions
must be simultaneously verified:





d2
i,r : V(i, j) ∧ V(i, k) ⇔ rank(d2

i,q,g)(i, j) = rank(d1
i,q,g)(i, k))

d2
j,r : V(i, j) ∧ V(j, k) ⇔ rank(d2

j,q,g)(i, j) = rank(d1
j,q,g)(j, k))

d2
k,r : V(i,k) ∧ V(j,k) ⇔ rank(d2

k,q,g)(i,k) = rank(d1
k,q,g)(j,k))

(7.5)

As shown in Figure 7.10, the above tests lead to a geometrical-consistent triad:

(di,dj ,dk)1 ↔ (di,r,dj,r,dk,r)2 (7.6)

and three homologous pairs:

(d1
i ↔ d2

i,r,d
1
j ↔ d2

j,r,d
1
k ↔ d2

k,r) (7.7)

Figure 7.10: VIHD Matching.

The matching process continues by exploiting the circular positioning of features and
searches for a geometrically consistent triad with (di+1,dj+1,dk+1)1 ∈ M1

4D. To this
end, the algorithm continues by testing the next triad (di,r+1,dj,r+1,dk,r+1)2 ∈ M2

4D,
as shown in Figure 7.11. The process leads to a list of homologous hybrid descriptors
(d1

m ↔ d2
m),m = 0, .., nD12 − 1 which are used for the 6-DOF pose estimation process for

which several solutions are provided in the next section.
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Figure 7.11: VIHD-triad matching process exploiting the circular positioning of features
provided by the mosaic view.

7.5.3 6-DOF Pose Estimation using Next Best View

Following the number of homologous features available, several pose estimation schemes
are available for the estimation process.

• Closed-from solutions. The main advantage of these methods is that they provide
the solution in a single step. Reported techniques address the problem by splitting
the estimation process. A closed form solution for absolute quaternion computation
can be found in [Horn, 1987]. In the same paper, a solution for computing the 3D
transformation using matches of three non-collinear points is presented. Once the
rotation is computed, the translation can be recovered using the difference of the
centroids between the reference points and the rotated points in the second reference
system.

• LS-solutions. In opposite to closed-form solutions, the parameters are estimated
simultaneously but iteratively. The process minimizes the sum of squares of resid-
ual errors iteratively until a negligible error is obtained. Nevertheless, for practical
issues, when an initial estimation is available it can be used to reduce the number of
iterations.

In this dissertation, our main concern is to design a pose estimation process which can
take advantage of the 4D mosaicing sensor and its integration within the autonomously
site digitization and exploration system introduced in Chapter 3 - ARTVISYS. In this
context, the pose estimation process can benefit of the NBV process integrated within the
ARTVISYS’s software architecture to initialize the pose estimation procedure. This is an
advantage provided by the 4D mosaicing sensor it-self, since the NBV process exploits
the currently 3D built model. The 3D pose can be refined using non-linear optimization
schemes, such as Levenberg-Marquardt [Moré, 2006]. A similar estimation scheme is
introduced by Low in [Low, 2006] which employs the NBV position to provide a coarse
alignment for 3D model registration via ICP algorithm.
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7.6 Conclusions and Future Research Directions

This chapter proposes the integration of the 4D mosaicing sensor within a vision-based
system architecture for supplying autonomous site surveys in complex and difficult to
access environments. The use of the 4D mosaicing sensor provides image-laser solutions
which allow to address the automation of the 3D modeling process. Moreover, when
integrated within a visual feedback control loop, the 4D mosaicing sensor allows to ensure
the 3D scene model completeness. The research perspectives of this chapter are focusing on
providing several research directions for the processing blocks composing the visual control
loop of the ARTVISYS system.

7.6.1 Conclusions

This chapter investigates the potential of the 4D mosaicing sensor in solving for several
problems intrinsically related to the automatic world modeling process, ranging from un-
manned system’s autonomy needed to explore autonomously an unknown environment,
passing through visual servoing procedures required to ensure the 3D scene model com-
pleteness and finishing with the pose estimation between partially overlapped 4D mosaic
views to provide a global 3D scene model - being the main input of the visual servoing
procedures. We summarize hereafter the main investigations presented in this chapter.

Vision-based autonomy model. Since the autonomous site digitization and explo-
ration problem is intrinsically related to the unmanned system’s autonomy, we exploit the
potential of the 4D mosaicing sensor to establish a vision-based autonomy model, high-
lighting two aspects: (i) evaluate how far we can exploit 3D vision techniques to provide
autonomy to unmanned mobile platforms, and (2) apply the proposed vision-based au-
tonomy model to solve for the site digitization and exploration problem, giving rise to an
artificial vision-based system - ARTVISYS.

ARTVISYS: integration of the 4D mosaicing sensor within an autonomous
3D site digitization and exploration system. When designing ARTVISYS, we have
taken into account different solutions ranging from exploration to autonomous navigation,
passing through SLAM and photorealist 3D world modeling techniques. The proposed
system is willing to fill the gap between the existing methods by integrating the photorealist
3D modeling capability provided by the 4D mosaicing sensor within a visual control loop
in order to ensure the 3D scene model completeness.

The main nucleus of ARTVISYS is represented by the 4D mosaicing process which
generates automatically omnidirectional 3D scene models, while providing visual data for
scene understanding, view-planning and autonomous navigation procedures. The afore-
mentioned procedures form the visual feedback loop of the ARTVISYS system, which pro-
vides onboard reasoning and decisional resources in order to ensure in-situ the 3D scene
model completeness.

ARTVISYS-solutions for automatic 3D modeling. We shown the high potential
of the 4D mosaic views in addressing efficiently several open issues in automatic 3D world
modeling: (i) the elimination of data matching ambiguities in feature-less areas using
image-laser fusion, (ii) long-term features tracking offered by panoramic views and (iii) the
use of the NBV computed from the currently built 3D model which accelerates considerably
the pose estimation process between poorly-overlapped views.

• 6-DOF pose estimation. We introduced a visual feedback system architecture to
ensure the 3D scene model completeness and we focus on its main ingredient: com-
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pute the pose between several sensors readings in order to (1) align and integrate the
currently acquired 4D mosaic view in a global 3D scene model, (2) to provide local-
ization of the platform and (3) to allow for occlusion detection for view planning. To
this end, we proposed the use of hybrid descriptors to disambiguate between feature
matches, constraining the matching process with a 4D-panoramic driven matching
procedure.

• Unambiguous data matching using image-laser hybrid descriptors. The
4D mosaicing sensor enables the extraction of hybrid descriptors from image and
laser data. Their use is recommended together with a two steps matching algo-
rithm: first, radiometric candidates and established which are further filtered using
an intra-mosaic topological consistency criterion verified on triads belonging to the
same mosaic views.

7.6.2 Future research directions

The research directions of this chapter are directed toward the exploitation of the 3D
scene model to supply the visual control loop in order to ensure the 3D scene model
completeness, being actually one of the main near feature research perspectives of this
dissertation. The proposed 4D mosaic matching procedure takes in charge the generation
of the global 3D scene model which feeds the processing blocks composing the visual
control loop. The development of the remaining functionalities (4D mosaic merging, NBV
computation, visual-based navigation procedures and sensor’s control) must cope with
several time and in-situ access constraints.

View Planning. The system must be able to use the already generated 3D scene model
in order to compute the next best 3D pose from which a new 4D mosaic must be acquired.
The next best view process is a function of the detected occlusions, the currently generated
3D scene model, subject to the system’s kinematics and to the stationing possibilities
provided by the environment. For detecting the stationing possibilities, the system must
characterize its surroundings from visual data in order to detect whether the terrain allows
it’s stationing in that area. In particular, the system must detect flat or non-flat terrain,
humidity or other extern factors which may impact on the system stationing during 4D
mosaics’ acquisition. The output is further exploited by the next 3D pose estimation
procedure which provides the main feedback for system’s control.

Path Planning. The system must be able to perform path planning in order to
navigate from the current position to the estimated next best 3D pose computed at the
previous step. Nowadays, path planning procedures rely on machine learning processes
leading to simple and binary reasoning, limiting the system’s capacity to react rapidly
in unpredictable situations and to deal with uncertainty. In order to avoid the learn-
ing step which is time consuming and limits system’s capacities, we propose to employ
a learning-through-history and reinforcement learning schemes, giving the capability to
extrapolate semantics and actions empirically. Such an approach gives the possibility to
act intelligently on the fly, while accomplishing the required mission, i.e. the 3D scene
model completeness in our case study. The path planning procedure exploits the currently
generated 3D scene model which provides environment perception and awareness about
the system’s surroundings. The 3D scene model can be exploited to infer semantics about
the environment which must be taken into account within the path planning process.

Autonomous navigation. After generating the path, the system must be able to
execute it by navigating autonomously through the environment, without human operator



206 7. Toward 4D Panoramic-driven Site Exploration

intervention. This is a hard task to achieve which nowadays is accomplished by sending
visual data to a host where is processed by computer vision experts to send commands to
the target [Griffiths et al., 2006], [Mathies et al., 2007], [Li et al., 2007]. For these rea-
sons, currently existent systems do not have enough capacity for taking onboard decisions
and their real applications rely on heavily human operator intervention. This highly-
dependency on human interaction is subject to memory bandwidth and communication
latency, causing unmanned systems failure to react rapidly to unpredictable situations.
Autonomous navigation calls for:

• Simultaneous Localization and Mapping procedures (SLAM).

As mentioned in Section 2.5.3, the proposed image-laser site digitization scheme al-
lows to solve for the SLAM problem efficiently in feature-less and GPS-denied areas.
The framework is powered by the 4D mosaic views, providing both appearance infor-
mation and geometry. Their joint use allows for reliable data matching for localization
purposes, place recognition in feature-less areas and loop closing procedures. Such
a dual SLAM scheme provides the capacity to generate photorealist and dense 3D
maps of the environments without relying on navigation sensors (GPS, INS, magnetic
compasses, dead-reackoning techniques).

• Obstacle detection and fast decision making capabilities. The remaining procedures
which have to be solved are the obstacle detection and the decision making modules.
The latter provides feedback for system’s command and control in order to achieve
3D scene model completeness. A good solution would be to supply these processes
within a general framework based on biologically inspired computer vision algorithms
exlploiting the currently built 3D model.

Perform in-situ the global 3D scene model rendering. Optionally, the 3D scene
model rendering can be generated on-the-fly, in a dynamic fashion. One open issue is how
to deal with the high amount of data when performing 3D modeling missions in large scale
environments. We propose the use of a multi-level scene rendering procedure, capable to
generate 3D models with different levels of detail in order to cope with real time and power
consumption constraints.

The aforementioned research work represents the design of a vision-based system em-
bedded with automatic 3D modeling capabilities. The proposed system is capable to per-
form autonomously site digitization and exploration in previously unknown and difficult-
to-access environments. The system captures 3D and appearance information to generate
dynamically in-situ complete 3D scene model of the environment while localizing it-self
within the generated model. This is a basic function which must be embedded onboard
mobile systems aimed at performing different missions in complex environments. In a
second step, the system can be upgraded with additional functionalities for accomplishing
specific tasks in hostile environments, such as scene understanding, exploration, disaster
response, searching and rescuing, etc.
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Chapter 8

Conclusion and Research
Perspectives

This dissertation evaluates the potential of a hybrid image-laser system for generating
autonomously complete and photorealist 3D models in challenging environments, with-
out requiring human operator intervention. The presented research focuses on two main
aspects: (i) the automation of the 3D modeling pipeline, targeting the automatic data
matching in feature-less and GPS-denied areas for in-situ world modeling and (ii) the ex-
ploitation of the generated 3D models along with visual servoing procedures to provide
unmanned systems with autonomous site digitization and exploration capabilities.

Our investigations are projected into a vision-based system prototype introduced as
ARTVISYS which addresses the automation of the 3D modeling pipeline and based on the
3D model generated so far, it explores and digitize the environment to ensure the 3D scene
model completeness. The system is aimed at generating textured 3D models encoded as
4D mosaic views which are integrated within a global 3D scene model sequentially. Finally,
we propose to exploit the currently built 3D model to provide feedback to the system in
order to ensure in-situ the 3D scene model completeness, giving rise to an artificial vision
engine powered by a site digitization and exploration process.

8.1 General Conclusions

One might wonder what can be gained from the image-laser fusion and in which measure
such a hybrid system can generate automatically complete and photorealist 3D models in
difficult to access and unstructured underground environments.

In such environments, special attention must be given to the main issue standing behind
the automation of the 3D modeling pipeline which is represented by the capacity to match
reliably image and laser data in GPS-denied and feature-less areas. In addition, time and
in-situ access constraints require fast and automatic procedures for in-situ data acquisition,
processing and interpretation in order to allow for in-situ verification of the 3D scene model
completeness. Finally, the currently generated 3D model represents the only available
information providing situational awareness based on which autonomous behavior must
be build in order to enable the system to act intelligently on the fly and explore the
environment to ensure the 3D scene model completeness.

The proposed automated 3D modeling pipeline gave rise to several solutions for auto-
matic data matching from which other stand-alone sub-systems emerged. Our frameworks
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are projected into a vision-based system prototype - ARTVISYS embedding software so-
lutions designed to be used along with a mosaic-driven site digitization and exploration
acquisition scenario.

Since the autonomous site exploration problem is intrinsically related to the unmanned
system’s autonomy through the world modeling capability, we first investigate in which
measure such a hybrid system can solve for the unmanned system’s autonomy. To this
end, we propose a vision-based autonomy model and the software architecture of a vision-
based system designed to supply autonomously site digitization and exploration missions
in difficult to access and unstructured environments.

8.1.1 Contribution to the automation of the 3D modeling pipeline

When studying the image-laser potential in solving for the automation of the 3D modeling
pipeline in GPS-denied and feature-less areas, we establish a strategy which solves reliably
for the data matching problem through the use of an image-laser solution designed within
a panoramic-based framework.

We design a complementary and cooperative image-laser fusion. The complementary
aspect is related to the data acquisition. In order to deal with time and in-situ access,
the proposed acquisition protocol consists in acquiring low resolution 3D point clouds and
high-resolution color images in order to generate photorealist 3D models. Their cooperative
use lead to in-situ generation of omnidirectional and photorealist 3D models encoded as
4D mosaic views, which are not achievable when using each sensor separately. Since in
practice the acquisition of low resolution 3D point clouds in complex environments leads
to a high amount of depth discontinuities, one may consider the input as a sparse 3D point
cloud.

4DMosaicing sensor. This dissertation introduces a dual sensor designed to generate
in-situ omnidirectional 3D models encoded as 4D mosaic views from image and laser data.
The 4D mosaicing algorithm has as main inputs 3D and 2D mosaic views. Although
both sensors are rigidly attached, the image-laser 3D motion is unknown and consists of a
global 3D rotation and a small inter-sensor parallax. This acquisition strategy allows us to
perform occlusion-free image-laser alignment and texture mapping processes, giving rise to
omnidirectional 3D models encoded as 4D mosaic views. Moreover, the matching between
several 4D mosaic views is driven by color and 3D information, allowing to disambiguate
the data matching tasks in feature-less areas.

8.1.2 Contribution to data matching in GPS-denied and features-less
areas

Since our research work aims at generating photorealist and complete 3D models of difficult
to access and unstructured underground environments, this dissertation attacks the main
ingredient standing behind the automation of the 3D modeling pipeline: the data matching
problem in GPS-denied and feature-less areas. To this end, we propose a camera-laser dual
sensor and investigate its potential for addressing the ill-poseness of the data matching
problem in complex and unstructured environments.

We first focus to provide solutions for the automatic data alignment problem for simple
case, i.e. SVP and small-parallax case, in order to provide image-laser solutions, i.e. the
4D mosaic views, to solve for a more difficult problem: the data alignment under wide
viewpoint changes in large scale environments. During our research study, the following
data alignment algorithms emerged, each of which being usable as independent processes.
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Free- and small-parallax data alignment in feature-less areas. We solve for the
pose estimation problem for free- and small-parallax acquisition scenarios within accurate
and environment-independent frameworks.

We developed pair-wise pose estimation procedures for both image and laser data,
based on which multi-view alignment algorithms were designed to generate in-situ 2D and
3D mosaic views, respectively.

• Laser data matching for in-situ 3D mosaicing. Chapter 4 presents an automatic
scans matching procedure capable to generate in-situ 3D mosaic views by stitch-
ing several partially overlapped scans acquired from the SVP via an environment-
independent framework. The proposed method is powered by a pair-wise scans
alignment procedure, which estimates the rigid rotation using an intensity-based
pyramidal framework to compute quaternions via dense correlation. The multi-view
alignment procedure employs a graph-based approach used along with the topologi-
cal inference criterion [Sawhney et al., 1998] to verify the consistency of the pair-wise
pose estimates.

• Image data matching for 2D Gigapixel mosaicing. We propose a relative
rotation estimation scheme for high-resolution image alignment using a patch-based
correlation procedure via quaternions. The global rotation estimate is refined via a
non-rigid estimation process which outputs a list of homologous image points. Since
they do not correspond to any corner-like features, they are introduced as anonymous
features.

In order to generate a 2D-Gigapixel mosaic views, we investigate the use of the
proposed pair-wise pose estimation scheme within an existent bundle adjustment
framework [Kolor, 2005], powered by AF matches. The results obtained let us
conclude that the self-calibration step and the use of a 2D residual error lead to a
high number of rejected AFs.

Theoretical solutions. In order to solve for the aforementioned problems, we pro-
posed a closed-form solution for estimating the absolute quaternion by minimizing a
residual error measured in the 3D space, i.e. the angle between homologous vectors
corresponding to AF pairings given by their cross product. The multi-view fine align-
ment scheme - cross-BA - leads to a sequential process which estimates the absolute
quaternions by minimizing the cross product between corresponding 3D vectors in
multiple views.

Wide-baseline and unambiguous data matching driven by 4D mosaic views
and hybrid descriptors. What is more important about the 4D mosaic views is that
they are high level data structures providing means (i.e. geometry and color information)
to solve for a more difficult problem, i.e. wide baseline data matching in feature-less areas.
When used along with a mosaic-driven acquisition scenario, the 4D mosaic primitives
eliminate the feature matching ambiguity by imposing spatial constraints between feature
triads belonging to the same mosaic view. This allows us to approach the estimation
scheme of outlier-free estimates, which is of prior concern in our research work as it allows
the processing of several processing blocks composing the visual feedback loop such as:
view planning, trajectory planning, and motion control.

Theoretical solutions. We exploit the 4D mosaic to extract viewpoint invariant hybrid
descriptors - VIHD to be used with a two-step data matching process. First, radiometric
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candidates and established which are further filtered using an intra-mosaic topological
consistency criterion verified on triads belonging to the same mosaic view.

8.1.3 4D Mosaic-driven autonomous site digitization and exploration

Chapter 7 proposes the integration of the 4D mosaicing sensor within a vision-based system
to supply site digitization and exploration of difficult to access and unstructured environ-
ments.

Since the autonomous site digitization and exploration problem is intrinsically related
to the unmanned system’s autonomy via the world modeling capability, we first investigate
in which measure the 4D mosaicing sensor can solve for the system’s autonomy problem and
established a purely-visual autonomy model to be embedded onboard mobile unmanned
mobile systems designed to supply complex missions in challenging environments, site
surveys being one of them.

The proposed visual autonomy model was further instantiated to the autonomous site
digitization and exploration case, giving rise to the ARTVISYS system which comes
together with a 4D mosaic-driven acquisition scenario and embeds automatic softwares for
supplying the entire 3D modeling pipeline. The 4D mosaicing sensor represents the nucleus
of the 3D world modeling process which powers visual servoing procedures in-charged with
the 3D scene model completeness.

Since the processing blocks composing the visual feedback loop exploit the global 3D
scene model, we evaluate the 4D mosaic’s potential to address the pose estimation problem.
To this end, we propose image-laser solutions for disambiguating the data matching process
which is inherent to outliers in feature-less areas when using either image or laser data
alone.

8.1.4 Software Quality Validation

Figure 8.1 provides an overview of the results emerged from the research studies presented
in this dissertation. The proposed algorithms are implemented in C++ and run on a
Linux laptop equipped with an Intel 1.66 GHz and 2Gb of RAM memory. At the first side,
we focus to solve for the data matching task while runtime issues were addressed using
pyramidal frameworks. In addition, initial guess provided by physical instrumentation and
calibration constraints are used to limit the searching space.

Experimental results illustrate the performance of the algorithm in both areas: under-
ground unstructured environments (in three prehistoric caves situated in France) and in
outdoor structured environments (Paris, France). Moreover, different acquisition scenarios
were employed using both fixed and mobile acquisition devices.

8.2 Short-term Research Perspectives

The research perspectives of the near future are concerned with the in-situ demonstration
of an improved version of the proposed system, starting with the implementation of sev-
eral theoretical solutions, passing through their validation and finishing with the in-situ
demonstration on the proposed system.

Future improvements and validations of the 4D mosaicing sensor. The first
part concerns the improvement of the 4D mosaicing sensor by including the theoretical
solutions highlighted in blue in Figure 8.1 and their validation on a recent data acquisition
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Figure 8.1: Contributions and short-term research perspectives of the research work pre-
sented in this dissertation.

campaign recently undertaken by the French Mapping Agency in the Mayenne Science
prehistoric cave (France). Since the proposed solutions do not rely on feature-based frame-
works, this should lead to an operational system capable to generate automatically 4D
mosaic views in both unstructured and structured environments.

Visual feedback loop of the ARTVISYS system. In order to ensure a com-
plete site digitization, a visual feedback loop actuates the 4D mosaicing sensor to generate
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dynamically 3D scene models and to act intelligently on the fly in order to explore the
environment. The research perspectives of the near future are concerned with the de-
velopment of the processing blocks composing the visual control loop of the ARTVISYS
system for which a brief description is presented in Chapter 7. The research directions
are mainly oriented toward the use of biologically inspired computer vision algorithms to
develop reinforcement learning ad planning schemes [Bishop, 1998].

Being given the challenging environment presented by the Mayenne Science prehistoric
cave, the development of the ARTVISYS system on these data sets should lead to a sys-
tem capable of demonstrating in-situ the feasibility of autonomous site digitization and
exploration missions.

Site digitization and exploration using multiple autonomous cooperative
systems.

As stated in [Estlin et al., 1999], utilizing multiple cooperating platforms to achieve
the overall goal of the mission has definitely several advantages. Systems embedding com-
plementary sensors can be deployed simultaneously to greatly increase the collected infor-
mation, giving the possibility to perform tasks whose feasibility is beyond the limits of a
single system.

When using such scenarios, open issues are concerned with communication, control
[Murray, 2007] and cooperative navigation [Sanderson, 1998], mapping [Rocha et al.,
2005] or situational awareness [Touzet, 2000]. Systems share information and exploit it
via onboard reasoning resources in order to decide and communicate these decisions. In
this context, there is a tradeoff between the communication capabilities and the amount
of shared information between systems.

When reaction time is critical, due to communication latency, system’s onboard au-
tonomy must be addressed. This includes autonomous navigation and re-planning of its
own tasks wrt its surroundings. Indeed, the multi-platform cooperation increases the gain
of an exploration mission, but before using it, one must address the system’s autonomy
problem.

Consequently, a priority is to solve for the system’s autonomy in order to maximize the
onboard individual capabilities, while limiting inter-systems communication and coopera-
tion to team-working and emergency response situations which are not feasible by a single
system, reducing therefore the communication issues. To this end, the next section focuses
on the main research perspective of this dissertation which targets to embed human-like
intelligence onboard unmanned mobile systems through through vision, giving rise to a
fully autonomous system capable to supply both single- and team-working scenarios.

8.3 The use of ARTVISYS as a general-purpose system

When studying the potential of the 4D mosaicing sensor for supplying autonomously site
digitization and explorations missions, we were faced to a more general problem: the un-
manned systems autonomy. For this reason, in Chapter 7 we investigate in which measure
the 4D mosaicing sensor can solve for the autonomy problem and proposed a vision-based
autonomy model.

We saw that 3D vision techniques provide powerful resources for mapping and local-
ization together with the possibility to infer semantics about the environment. This allows
system’s awareness when evolving in an unknown and changing environment for performing
complex missions in high-risk environments, relieving human operator’s life. Moreover, it
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is possible to enrich unmanned platforms with artificial intelligence functionalities powered
by a computer vision engine.

Consequently, ARTVISYS represents a promising research direction to solve for the au-
tonomy of unmanned systems. More precisely, its mapping through exploration capability
can be exploited as an artificial vision sense to supply reasoning and decisional resources
as well as actions via visual servoing procedures. This represents the main research per-
spective of this dissertation which aims at providing a purely-vision solution for addressing
the unmanned systems autonomy problem.

The global scheme of the proposed system illustrated in Figure 8.2 emphasizes the mod-
ular design which allows to easily enhance the system’s performances. ARTVISYS embeds
vision-based environment perception capabilities at which visual servoing algorithms can
be added, giving rise to unmanned platforms able to accomplish complex missions in pre-
viously unknown and difficult to access environments.

Figure 8.2 illustrates the ARTVISYS’s behavior for both cases: when the system runs
in open loop and when the visual servoing procedures are included within the main process.
During the open loop the system generates in-situ a photorealist 3D mosaic, providing a
fully 3D spherical view of the system’s surroundings for a single 3D pose of the system.
The proposed system embeds purely vision algorithms for performing automatically the
entire the 3D modeling process which consists in on-line data acquisition and processing,
enabling in-situ 3D models generation.

When including visual servoing procedures within the main process, it is possible to
enhance the system’s performances by integrating different capabilities within the main
process.

In our research work, several procedures are required in order to enable the system to
explore autonomously an unknown environment for generating complete 3D scene models.
They are included in the visual control loop to provide path and view planning, obstacle
detection and avoidance and other visual-based autonomous navigation on-board function-
alities which are related to the system’s kinematics, to the 3D locations where the system
is authorized to move within the map and to the detected occluded areas.

The modular design of ARTVISYS allows for ease upgrade by integrating other func-
tionalities for accomplishing a wide variety of complex missions taking place in hostile
environment, such as: site inspection and monitoring, disaster response or searching and
rescuing missions.

Quantum computing and autonomy model. The high potential of the world mod-
eling capability in providing autonomy to unmanned platforms has been studied through
separated processing blocks, leading to a limitation in terms of computational resources for
in-situ processing. During today’s lunar exploration missions, an image is send on Earth in
25 s and unmanned platforms employs radar units and celestial navigation systems. The
presence of computer vision experts in the loop precludes the possibility of analyzing the
site and while taking decisions on-the-fly. Driven by the computational issues posed by
traditional computing, the visual perception’s high potential has not been exploited in its
entirety for conceiving a complete visual autonomy model.

Although computers have become considerably faster, they are cursed to manipulate
and interpret binary bits to provide computational results and following the Moore’s low,
the limits of the integrated-circuit-based computing power will be reached by the next
decade.

Nevertheless, a new hope arise from quantic computing, which can a quantum bit
(qubit), being capable to exist in the classical 0 and 1 states, but also in a weighted su-
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perposition of both. An operation on such a qubit acts on both values simultaneously,
a two-qubit would act on 4 values and so on, increasing the quantum parallelism expo-
nentially. By designing the suitable algorithm it is possible to exploit this parallelism to
address computational-burden issues raised by classical computers. Today such algorithms
exist in a very few number (e.g. Shor’s and Grover’s algorithm). Researchers estimate
that a traditional computer requires 10 million billion billion years to factorize a 1000-
digits number, while Shor algorithm provides the result in 20 minutes.

In this context, we can conclude that there are no functional limits for embedding
human-like intelligence onboard unmanned systems in order to solve for the unmanned
systems autonomy problem. The issue here is related to the human aptitude to conceive the
appropriate program which imitates brain’s functionalities. This is a challenging problem,
since nowadays neuroscientists are still searching to model brain mechanisms.

Biologically-inspired computer vision algorithms. Exploiting sensory perception
to develop biologically inspired computer vision algorithms can bring a useful contribution
to design adaptive algorithms to answer to a high-variability of environment types. More-
over, biologically inspired techniques provide valuable insight to new design principles for
robotics. In this context, we are confident that computer science and robotics can con-
tribute to a better understanding of biological systems.

This dissertation idea-flow starts with the automation of the 3D modeling pipeline to
enable in-situ 3D modeling in high-risk and complex environments. Next, we propose to
exploit the currently built 3D model with visual servoing procedures for supplying site
digitization and exploration purposes.

Our studies let us concluding that the world modeling capability of ARTVISYS can
be exploited as an artificial vision engine to supply several functionalities to solve for
the unmanned systems autonomy problem. We design a vision-based autonomy model to
be used along with biologically inspired computer vision algorithms implemented using
quantum computing.

The proposed research perspective puts together several research fields in computer
science, biology, neuroscience, physics and mechanics and robotics, which may benefit
together of the impact of such a experimental system to clear several open questions in
each area, such as in biology and neuroscience, while solving for the unmanned systems
autonomy problem.



215

Figure 8.2: Open and closed loop uses of the ARTVISYS system.
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Appendix A

Complements to Chapter 2

A.1 Laser-range sensing techniques

This section presents a complement to Section 2.2.2.2 and provides a brief description on
active 3D geometry recovery techniques. Based on the way they exploit the reflected laser
beam, there are two different laser-range sensing techniques.

Triangulation Sensors. Capturing devices belonging to this class represent the most
common range scanners. They recover the disparity measure between the emitted and the
reflected laser beam into a laser-sensitive CCD array. Triangulation sensors are equipped
with a lighting system which projects a light pattern onto the surface to be scanned. A CCD
camera senses the reflected light from the surface and a software provided by the scanner
computes an array of depth values, which can be further converted into 3D point coordi-
nates expressed in the scanner coordinate system, by exploiting the calibrated position and
orientation of the light source and sensor. The main drawback of the triangulation-based
sensors is that they require a suitable clear visible field of view for the source and the sensor
in order to observe the surface being scanned. In addition, the quality of the captured data
is sensible to the surface’s reflectance properties. Triangulation sensors yields inaccurate
data in presence of shiny materials, with low surface albedo or having significant subsurface
scattering.

Time-of-flight. Such sensing devices measures the time that the laser-beam takes to
travel to the target and to return back to the sensor. By exploiting the velocity of the
laser beam (speed of light) and the accurate measurement of the time taken, the distance
between the object and the sensor can be computed. Laser range finders are the heart
of the so-called time-of-flight 3D scanners, incorporating high-precision scanning abilities.
These systems have been developed with near real time rates, being employed in large scale
environments sensing missions (e. g. 100 m). Time-of-flight systems require accurate time
measurements, limiting therefore the accuracy of the measured depths.

A.2 The state-based formulation of SLAM

The probabilistic SLAM was first introduced in 1986 in IEEE Robotics and Automa-
tion Conference, when probabilistic techniques were just starting to get spread within the
robotics and artificial intelligence frameworks. Since robot mapping techniques are subject
to uncertainty and sensor noise, research works were directed toward probabilistic tech-
niques. Solutions to the probabilistic SLAM problem search an appropriate representation
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for observation and motion models to allow for a consistent and efficient computation
of the prior and posterior distribution. Probabilistic SLAM solutions were developed as
mathematical derivations of the recursive Bayes rule.

Estimation-theoretic methods for mapping and localization includes Peter Cheeseman,
Jim Crowley, Hugh Durrant-Whyte and Raja Chatila, Olivier Faugeras together with many
other useful contributions. Since then, several key contributions were reported: Smith and
Cheeseman [Smith and Cheesman, 1987], Durrant-Whyte [Durrant-Whyte, 1988b] intro-
ducing statistical basis concerning the relationship between landmarks and the geometric
uncertainty.

The standard state-space approach using additive Gaussian noise leads to the use of
the Kalman filter for robot’s localization. Mapping allows an extension the this framework
by estimating the landmarks’ locations, beside the robot’s pose. Closed loops, i.e. a second
encounter of a previously visited area of the environment, play an important role for error
bounding, by deforming the already mapped area such that a topologically consistent
model is created. We resume hereafter some of the main filters in SLAM.

Several research works attempting to provide filters for SLAM lead to Kalman filter
and it’s variants: Extended Kalman Filter [Dissanayake et al., 2001] (EKF), Information
Filtering [Thrun et al., 2000] and it’s related Extended Information Filtering(EIF) Thrun
et al. [2002]. EKF includes the non-linearities from outside world by approximating the
robot motion using linear functions. When using EKF-SLAM techniques, the observation
update step requires that all the landmarks and the joint covariance matrix be updated
every time an observation is made, yielding a computational time which grows quadrat-
ically with the number of landmarks. This problem is mainly due to the fact that each
new landmark is correlated to all other ones, being a fundamental need for the long-term
convergence of the algorithm. In Guivant and Nebot [2001] authors introduced the Com-
pressed Extended Kalman Filter (CEKF) which reduces the computational requirements
of EKF, without affecting the accuracy of the results.

A second class of filters aiming to solve for the SLAM problem belongs to the Particle
Filter (PF) approach, which is actually a recursive Bayesian filter implemented as Monte
Carlo simulations (SMC). The use of particles allows to handle high-nonlinearities of sensors
and non-Gaussian noise. This capability causes a growth in the computational complexity
on the state dimension as new landmarks are being measured, which makes it unsuitable for
real-time applications. As a consequence to this drawback, SLAM frameworks employ PF
for localization purposes in combination with other SLAM techniques, such as FastSLAM.
The FastSLAM was introduced by Montemerlo [Montemerlo et al., 2002] which shifted
the designed of the recursive probabilistic SLAM. In contrast to EKF which commits a
single data association for the entire filter, FastSLAM performs a local data association for
each particle. The PF is used to sample over robots paths, requiring less memory usage
and computational time than EKF or KF.

Expectation maximization (EM) methods iterate two steps: an expectation step (E-
step) when the posteriors over the robot’s poses are calculated, and the maximization step
(M-step), in which the map is calculated given the poses’ expectations. A main advantage
over the KF methods is that EM can handle the data association problem by localizing
repeatedly the platform wrt the map in the E-step. The M-step takes into account the
detected features which are either reinforced in the next E-step or eliminated. However,
EM methods need to process several times the same data, becoming inefficient for real-time
application. When estimating the robot’s pose, the computational cost grows exponentially
with the size of the map and the error is unbounded, leading to unstable maps after long
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cycles. A possible solution to this issue is to solve for the data association problem,
which corresponds to the E-step elimination. As a consequence, authors combine EM - for
mapping (M-step), with a PF-localizer to refine odometry readings.

A.3 Existing 3D Modeling Systems

The research work presented in this dissertation is concerned with the photometric and
geometric recovery for generating in-situ photorealist and complete 3D digital models in
complex and large scale underground environments. Thus, this section presents several
representative 3D modeling systems and points out their limits with respect to the afore-
mentioned research goal. Various 3D modeling systems have been developed promoting a
wide range of applications:

• cultural heritage of large-scale objects and monuments: Stanford’s University Michelan-
gelo Project [Levoy et al., 2000], [Bernardini and Rushmeier, 2002], Great Buddha
Project [Ikeuchi et al., 2007], Bayon Temple [Banno et al., 2008], IBM’s Pieta
Project [Wasserman, 2003], Columbia University’s French Cathedral Project [Allen
et al., 2003b], detailed 3D modeling of castles [El-Hakim et al., 2007] and digital
recording of aboriginal rock art [El-Hakim et al., 2004].

• 3D modeling of urban scenes [Peter K. Allen and Blaer, 2001], [Stamos et al.,
2008], [Stamos and Leordeanu, 2003], [Reed and Allen, 2000].

• modeling from real world scenes [Zhao et al., 2005], [Dias et al., 2003], [Huber,
2002], [VIT, 2000].

• natural terrain mapping [Huber and Herbert].

• underground mine mapping [Surmann et al., 2003], [Thrun et al., 2003], [Magnusson
and Duckett, 2005], [Magnusson and Duckett, 2007].

• autonomous planetary exploration using both: vision [Giralt and Boissier, 1992],
[Goldberg et al., 2002], [Matthies and Shafer, 1987], [Mathies et al., 2007] and
range measurements [Rekleitis et al., 2009], [Hebert et al., 1989].

Through the following description, we review a non-exhaustive list of systems closely
related to our research goal, i.e. in-situ 3D modeling in large-scale unstructured envi-
ronments. Beside generating in-situ complete and photorealist 3D models, the proposed
3D modeling system aims at providing the possibility to perform 3D measurements onto
3D digital models for scene understanding and data annotation purposes. To this end,
accurate geometry recovery is one of our main concerns.

First, we analyze passive 3D modeling systems’ performances, in particular, how far
away we can push the capacities of IBM to gather accurate 3D geometry. Second, our
attention moves to laser-based systems to emphasize their limitations for producing photo-
realist 3D models. Third, we briefly review the existing dual systems and study their
capacities with respect to our research goal in order to motivate further the choice of our
system’s design and 3D modeling strategy.
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A.3.1 Image-based Systems

Photosynthr. Szeliski’s group at Microsoft Research has recently reported an interesting
system for virtual tourism [Snavely et al., 2006] which relies on a combination of IBR and
IBM along with image retrieval and annotation techniques for exploring photos collection
in 3D. IBM, in particular a robust SFM approach is employed for recovering the viewpoint
of each photograph, to estimate a sparse 3D model of the scene and to geo-register the
latter onto global 3D maps (Digital Elevation Models-DEMs). IBR methods are used to
enable the user to smoothly navigate between photographs. Authors demonstrated the
reliability and the broad applicability of the proposed system on numerous sites, ranging
from Notre Dame to the Great Wall of China and Yosemite National Park. The proposed
system is interested in providing data annotation for virtual tourism purposes, paying
the price of heavy manual processing for the geo-registration step. In addition, sparse
and noisy 3D geometry obtained via SFM cannot allow 3D accurate measurements of the
surface geometry, which is one of our main concerns is our research work.

City scanning. CSAIL group at MIT attacked the problem of photometric rendering
in large scale urban scenes [MIT, 2000] using a large amount of pose-annotated images (via
GPS measurements) for generating spherical mosaics. The poses (rotation and translation)
between adjacent nodes (overlapping mosaics) is computed through the use of vanishing
points matches and Hough transformation. While encoding complete scene representation
of the system’s surroundings through the mosaics’ use, with an image-based approach
it is difficult to model high detailed architectural environments. Furthermore, the final
rendering does not allow accurate 3D measurements. Finally, as a consequence of using
geometric features for pose computation, this method cannot be employed in unstructured
environments.

Zisserman’s group [Fitzgibbon and Zisserman, 1998] aims at developing a system for
fully automatic construction of Graphical Models of scenes when the input is an image
sequence. The authors employ feature extraction and matching through couples and triple
consecutive images. The final result is a 3D point cloud which samples irregularly the
real 3D scene geometry. While extending the limits of the image-based methods, this
approach has two inherent drawbacks: sparse depth estimates and the use of Computer
Aided Design (CAD) model which is a coarse approximation in the areas which does not
support 3D measurements.

IBM for navigation. In [Johnson et al., 2007] reports the use of the Descent Image
Motion Estimation Systems (DIMES) during the Mars Exploration Rover (MER) landings
for estimating of the lander’s velocity before touchdown. Currently, the latest mission on
Mars [Mathies et al., 2007] used successfully stereovision to build 3D models which for
both: automatic terrain assessment and visual odometry. In the case of automatic terrain
assessment the triangulated 3D points are used to evaluate the traversability of the terrain
immediately in the front of the robot, which is defined as a regular grid of squared patches.
In the case of visual odometry, the model is used to identify and track features of the
terrain to mitigate the effect of slip [Howard and E. W. Tunstel, 2006].

ESA’s ExoMars Rover panoramic camera (PanCam). The ESA Aurora pro-
gramme will deploy the ExoMars rover to deliver the exobiology payload Pasteur to the
surface of Mars by 2016. A 0.7 kg panoramic camera (PanCam [Griffiths et al., 2006])
was designed to fulfil the digital terrain mapping requirements of the mission as well as to
provide multi-spectral geologic stereo panoramic views. The PanCam can also be used for
high resolution imaging of inaccessible locations on crater walls and to observe retrieved
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subsurface samples before ingestion into the Pasteur payload. A recent paper [Paar et al.,
2009] describes the current status and implementation of the PanCam vision ground pro-
cessing workflow. Authors are introducing the PROX software, a 3D vision processing
pipeline capable to support several key functionalities such as panorama mosaicing as well
as generation of textured triangular meshes and DEMs from stereo images. Since time
is a limiting factor for the success of such endeavours, authors’ main concern is to de-
velop an automatic and fast processing pipeline in order to overcome the main drawbacks
of several robotics surface missions, mainly on Mars, which are currently operated with
tremendous manual processing. However, the proposed PROX 3D vision toolbox aims to
deliver a fully automatic processing pipeline to be performed by the host on Earth which
consequently does not allow for in-situ data processing and interpretation. This keeps the
rover-host dependency issue still open, since during the mission the system must be able
to deal with memory bandwidth, communication latency or real time decision making to
handle unpredictable situations. The only reliable and efficient solution to this problem is
to develop a automatic processing pipeline to be perform in-situ.

IBM systems provide passive 3D vision and color information with light and low-cost
sensors, rapid acquisition and processing. On the other hand, 3D laser range finders (LRFs)
capture range data to build terrain with centimeter accuracy. Although very important in
our research context, such accuracy would be very difficult to attain with most stereo vision
systems when dealing with unstructured environments, being very difficult to detect stable
features. Furthermore, LRFs sensors provide 3D point clouds without needing processing,
which is very important for site inspection purposes (3D measurements). Finally, since
LRFs do not rely on ambient lightening, there is no need to address the problems arising
from adverse lighting conditions.

A.3.2 3D Laser-based Systems

3D Mapping. A popular testbed for 3D mine mapping tasks is the Groundhog robot
illustrated in Figure 2.1f). The first framework embedded onboard Groundhog consists
of a volumetric mine mapping system reported in [Thrun et al., 2003]. The platform is
equipped with four 2D laser range finders, without odometry sensor. Authors employ
an ICP-based method for 2D scan registration to recover relative pose estimates, yielding
locally consistent maps. In order to build globally consistent maps, the local poses initialize
a slightly modified version of ICP to find the correspondences between robot’s poses at
different points in time. Volumetric maps are obtained by integrating the resulted maps
and poses with 3D information acquired by additional scanners pointing toward the ceiling
and the floor of the mine. Unfortunately, the proposed reconstruction method is only valid
for planar environments. Later, Groundhog was upgraded with odometry measurement
devices and in [Nuchter et al., 2004] and [Baker et al., 2004a] authors reported two mine
mapping frameworks which integrate odometry readings to provide initial pose estimate
to ICP-like methods for scans’ registration.

In [Surmann et al., 2003] authors developed an autonomous mobile robot equipped
with a 3D laser range finder for 3D exploration and digitalization. In [Nuchter et al.,
2005] authors introduced the Kurt3D robot for 3D mapping of rescuing environments
using a client-server architecture wirelessly connected. The 3D laser range finder is build
by using a SICK 2D range finder and a standard servo motor to capture pitch motion.
Due to the erroneous vehicle’s poses, authors are considering the geometric structure of
the overlapping 3D scans for registration. The registration process chooses extremum of
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scans as natural landmarks, which correlate to corners and jump edges. The host preforms
the robot’s tele-operation for interactive 3D mapping (i.e. manual correction of the initial
6DOF pose and restart of matching algorithm). The operator is charged to minimize the
number of the acquired 3D scans to save time for victim detection. Since time is a major
concern, authors attempt to speedup the ICP algorithm by reducing the 3D data and using
a kd-tree to partition the space in order to speed up the matching process.

Later in [Cole and Newman, 2006] authors solved for 3D SLAM problem in outdoor
environments by introducing a modified version of ICP with a wider convergence basin,
overcoming the risk to fail in undesired minimas, due to erroneous odometry readings. In
[Cole et al., 2005] a similar pose refinement algorithm for matching natural salient fea-
tures. For rapidity purposes, the method selects points randomly to verifies their saliency.
Therefore, in presence of homogeneous surface, this approach may lead to erroneous poses
estimates.

When dealing with 3D mapping in large scales environments, an open issue is that the
central loop of ICP requires to store the complete point cloud data, which is computation-
ally unaffordable. Biber attacked this problem using the normal distribution transform
(NDT) for 2D scan registration [Biber and Strasser, 2003]. The key aspect to this repre-
sentation stands in the model parametrization which consists in a combination of normal
distributions, encoding the probability of finding a surface point at a certain position.
Later, an extension to the 3D case (3D-NDT) is introduced [Magnusson and Duckett,
2007] for 3D mine mapping purposes. Authors present a quality assessment of the pro-
posed method wrt the standard ICP algorithm showing that 3D-NDT is less error prone
when using very low sample ratios and faster thanks to a more efficient scan surface rep-
resentation. The proposed method exploits initial poses’ estimates from the robot’s two
dimensional odometry which is subject to high errors when driving on undulated terrain.
Since the odometry poses are too far from the true ones causing algorithm’s failure, the
framework’s success is highly subject to the algorithm’s parameters. Both algorithms were
evaluated wrt the sensitivity to the initial error and it was noticed that 3D-NDT starts to
fail for smaller values in the initial error than ICP.

In [Borrmann et al., 2008] authors addressed several open issues related to 3D mapping
and 6DOF localization by extending a 2D SLAM method presented in [Lu and Milios,
1997]. Authors solved for several key issues which are inherent when dealing with 3D SLAM
problem, such as: additional complexity due to the 6DOF, leading to a solution space which
increases exponentially, non-linearities and the massive amount of data. Authors overcome
the aforementioned issues using a Taylor expansion and Cholesky decomposition within a
globally consistent scan matching algorithm initialized from odometry readings.

The aforementioned systems have several common drawbacks starting with the use of
the vehicle’s pose (GPS, IMU, odometry) which initializes feature-based ICP-like tech-
nique for pose refinement. Such frameworks are not reliable since radiometric and/or
geometric features’ existence cannot be guarantee in unstructured environments. These
methods cause two major shortcomings to current the 3D scans’ alignment scheme due to
the matching step (i.e. the initialization phase which usually exploits information from
vehicle’s pose) and to the registration step usually performed by ICP. Usually, gross errors
in the initial pose estimates causes ICP to get stuck in local minimas. Chapter 4 of this
dissertation proposes an automatic pyramidal 3D scan alignment methods which replaces
the two processing steps performed by the aforementioned scheme, overcoming therefore a
major drawback of the existent scan alignment algorithms. The proposed technique does
not require initial estimation and nor feature extraction and matching.
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3D Terrain Modeling. In [Huber and Herbert] authors have wisely combined terres-
trial with low altitude laser data acquired with an Unmanned Aerial Vehicle(UAV) for 3D
unstructured terrain modeling. Authors have completely overcame the major bottleneck
of the ICP method by eliminating the need of the initial alignment through the use of a
surface matching algorithm based on shape descriptors [Johnson, 1997], [Huber, 2002].
Authors demonstrated the feasibility of a 3D mine mapping system [Huber and Vandapel,
2003b] using the same 3D scans alignment approach, emphasizing therefore the generality
of the proposed system. On the downside, the shape descriptors rely on normal estimates,
whose accuracy is subject to the scans’ density.

Path planning. In [Rekleitis et al., 2009] authors introduce a path planning tech-
nique for planetary exploration using a Lidar sensor which acquires directly high resolution
3D mosaics for a given spatial position of the system. While assuring the completeness
through the use of mosaics, high resolution scans causes both, data redundancy and un-
affordable processing time for nearby mosaics matching. In this dissertation we propose a
3D mosaicing system by matching automatically several low-resolution scans. This allows
to acquire both, complete and partial mosaics to eliminate occlusions which occur very
often in complex environments, avoiding the acquisition of the already-acquired data. In
addition, mosaics enable completeness, whilst low resolution scans allow for fast in-situ
processing.

A.3.3 Dual Systems

Image-laser complementarity for 3D modeling has been extensively emphasized by several
notable papers [Dias et al., 2003], [Levoy et al., 2000], [Ikeuchi et al., 2007], [Peter
K. Allen and Blaer, 2001], [Zhao et al., 2005] leading to a predominant use of active 3D
vision for capturing 3D surface geometry and color images for photorealistic 3D model
rendering.

The main key issue now is how the image-laser pose is computed. In addition, it is
still unclear how the texture mapping step is performed when the camera and the laser
have different optical centers (refereing to 3D modeling pipeline described in section 2.3.3,
FMCL systems). Researchers have extensively attempt to address the two aforementioned
open issues to develop dual systems designed for automatic and photorealist 3D modeling.
We provide a brief description of several existent systems having the above mentioned
research goal.

Various 3D modeling systems were developed for cultural heritage purposes: Great
Buddha Project [Ikeuchi et al., 2007] and Digital Michelangelo Project [Levoy et al., 2000]
proposing an interactive 3D modeling pipeline of large-scale objects. A common drawback
of the proposed frameworks is that they require heavy operator’s intervention for both
steps: data acquisition and processing. In [Ikeuchi et al., 2007] two methods are proposed
to refine the image-laser alignment: if the two sensors are separated by a short baseline,
calibration would be a suitable solution. Otherwise, a reflectance edge-based method is
proposed. However, in presence of homogeneous surfaces and for high-resolution images,
the edge detection may fail, leading to erroneous pose estimates.

In [Dias et al., 2003] authors added 3D points from stereo into the range data giving
the possibility to increase 3D information and fill holes in the model. The image-laser
registration process rely on semi-automatic initial alignment between laser-image and ini-
tial camera calibration [Tsai, 1987] based on edges, which is further refined by matching
triangulated 3D points against the range data.
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The VIT group [VIT, 2000], [Beraldin and Cournoyer, 1997], [El-Hakim et al., 1997]
developed a mobile platform equipped with a range capturing device and nine cameras.
The relative positions of the range sensor wrt each cameras are known from an off-line
calibration procedure. This is a limiting factor, since the off-line calibration is required
regularly. An additional high resolution camera provides texture information. The pose
between the high resolution camera and the range sensors requires operator’s intervention
for finding corresponding points.

For large-scale man-made environments, such as urban areas, it is possible to create 3D
models by combining a simple set of primitives such as rectangular blocks, pyramids and
cones. Façade system reported by Devebec in [Devebec et al., 1996] is a good example
of a primitive-based method. The proposed 3D modeling process starts with a manual
initialization followed by a primitive fitting procedure via disparity minimization between
2D edges and 3D model edges projected in the 2D image space. Recent research work
reported in [Werner and Zisserman, 2002] has eliminated the Façade system’s need of for
an initial guess. The main drawback of primitive-based approaches is that they impose
orthogonality constraints over the scene’s type, limiting their applicability to structured
environments.

In [Zhao and Shibasaki, 1999] a system embedding a laser scanner and a camera sensor
rigidly attached (RACL) is used for providing panoramic textured range images. Authors
exploit the assumption that neighbor image are horizontally in order to register long range
images sequences.

In [Sequeira et al., 1999] authors report a calibrated RACL system embedding a 3D
modeling pipeline which relies on feature extraction and matching for pose estimation,
limiting the applicability of the system to structured environments.

In AVENUE [Peter K. Allen and Blaer, 2001], [Stamos, 2001] the authors promote a
project integrating range and intensity sensing for photo-realistic 3D modeling in urban
environments. Aiming to minimize the amount of the user interaction, authors employ
Façade’s idea [Devebec et al., 1996] (i.e. line correspondences between the model and
the image) for camera pose estimation and Backer’s method [Becker and Bove, 1995],
[Becker, 1997] for camera self-calibration consisting in exploiting parallel and orthogonality
constraints. However, since such hypothesis cannot be applied to general 3D scenes, authors
are studying solutions for extending the system to a general case study. In addition, since
the image and the laser have different optical centers (FMCL system), the feature matching
and texture mapping steps are highly sensible to occlusions in either image or laser data.

In [Zhao et al., 2005] the authors designed a 3D modeling system composed by a
video camera and a Lidar for building aerial 3D models in semi-urban large-scale envi-
ronments. Authors took advantage of the airborne-sensing context which leads to a neg-
ligible camera-Lidar baseline wrt the scene’s depth, overcoming therefore the image-laser
alignment shortcomings due to occlusions. A novel 3D "modeling-through-registration"
technique is introduced using stereo from video and active 3D vision. In order to perform
texture mapping coming from video, authors register passive 3D vision coming from stereo
onto 3D point clouds acquired by the lidar. This method takes care of two exigencies: ac-
curate geometry provided by Lidar data and photorealism through the use of texture from
video data. On the downside, the framework relies on Harris corners [Harris and Stephens,
1998] extraction and matching for the stereo process and exploits initial alignment from
DGPS and ground points surveys to register the inferred 3D points onto the Lidar data.
This makes this method unsuitable for feature-less and GPS-denied areas, which is one of
our major concern in this dissertation.
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A coarse modeling of complex environments to be used for communication between
users and mobile robots is reported in [Miura and Ikeda, 2009]. The system is equipped
with two pan-tilt-zoom (PTZ) high resolution cameras and a range sensor. The proposed
framework extracts texture from images and maps it onto plane segments generated from
range data. The texture mapping step is the most expensive process of the entire 3D
modeling pipeline. Authors performed on-line tests using two wireless-connected PCs which
yield latency due to the slow wireless communication.

Beside the image-laser data alignment problem, another open issue of dual FMCL
systems is the rendering of the registered range and intensity data. This problem was
first discussed in [Chen and Williams, 1993] and attacked in [McMillan and Bishop,
1995], [Rademacher and Bishop, 1998] and [Shade et al., 1998]. Coorg in his PhD
thesis [Coorg, 1998] introduces a solution based on median extraction technique under the
assumption that the "correct" texture is visible from most images. Pulli in [Pulli et al.,
1997] and Devebec in [Devebec et al., 1996] provide efficient solutions for view-dependent
texturing, without handling the problem of texture occlusion. That means that parts of
the scene which do not correspond to the modeled object but appear on the input images
are erroneously texture-mapped onto the model.

The above mentioned methods are not suitable for generating in-situ complete and
photorealist 3D scene models in previously unknown environments due to several reasons.
First, they rely on manual data alignment provided either by an operator or by naviga-
tion sensors. In addition, image-laser alignment methods suppose the existence of either
radiometric or geometric features which cannot be guaranteed in previously unknown en-
vironments.

Generally, the existent dual 3D modeling systems may be classified wrt two criterions:

• following the application type, we can find either semi-automatic frameworks designed
for cultural heritage of large-scale objects or monuments, and automatic modeling
processing for large-scale urban-like environments. The latter category imposes scene
orthogonality constraints and relies on the existence of radiometric and geometric
features, limiting their application to structured environments.

• following the sensors disposition, there are RACL and FMCL dual systems. The
first category lead to the development of reliably and efficient 3D modeling systems
capable of automatic functioning in structured environments. The latter category
lead to manual, semi-automatic and automatic frameworks resulting in inaccurate
3D scene models due to occluded areas in either image or laser data.
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Appendix B

Complements to Chapter 4

B.1 Depth Mode

In complement to Section 4.5.3, we describe below the depth mode of the rotation estima-
tion procedure. If the intensity is not provided by the capturing device, the proposed scan
matcher automatically switches to the depth mode of the rotation estimation procedure.

Analogue to the intensity mode, for each quaternion q̇(ψ,n[θn, ϕE ]), (ψ, θn) ∈ PSA, we
map pixels mj

2 from D2 in the D1’s space using the spherical projection expressed in
Equation (4.8).

The optimal rotation is obtained by minimizing the difference in depth between the
two panoramic images D1 and D2 in the overlapping region, expressed as follows:

ED(ψ,n) =
1

DmaxN12

j=N2−1∑

j=0

ΦD
j |D2(mj)−D1(m̂

j
ψ,n)| (B.1)

In order to obtain a depth dissimilarity score defined on the interval [0, 1], the mean of
absolute differences is divided to Dmax, which denotes the maximal depth value computed
over the entire scan sequence defined as:

Dmax = max{dmax(Si), i = 0, .., Nsequence − 1} (B.2)

ΦD
k denotes the characteristic function which penalizes "lost" and "zero" pixels. ΦD

k

is computed on depth images by applying Equation (4.10) to depth images D1 and D2

instead of I1 and I2, respectively.
The optimal rotation is given by the minimal dissimilarity measure, thereby maximizing

the overlap ÔD[ψ̂, n̂]:

R̂D[ψ̂, n̂] = arg min
(ψ,n)∈PSA

ED(ψ,n) (B.3)

B.2 Complement to Section 4.6

The overall processing flow of the pair-wise scan-matcher is presented in Figure B.1. Figure
B.2 illustrates the pair-wise scan matching results on a data set acquired in Moulin de
Languenay prehistoric cave.
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Figure B.1: The global pipeline of the pair-wise scan matcher.

B.3 Complement to Section 4.8

The global pipeline of the multi-view scans alignment process is shown in Figure B.3. The
multi-view scan matching result obtained on the data set acquired in Moulin de Languenay
prehistoric cave is illustrated in Figure B.4.
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Figure B.2: Pair-wise scan matching results on data sets acquired in Moulin de Languenay
prehistoric cave (France). Operating mode: intensity, total number of points: 7, 57260×105

runtime: 4 min 25 s on a 1.66 GHz Linux machine.
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Figure B.3: The global pipeline of the multi-view scans alignment process.
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Figure B.4: Multiview Scan Matching results on data sets acquired in Moulin de Languenay
prehistoric cave, France - Trial 1.(a) S1 - green, S2 - magenta, (b) S12 - green, S3 - magenta,
(c) S123 - green, S4 - magenta, (d) Multiview scan alignment - Top-down view, S1 - yellow,
S2 - blue, S3 - green, S4 - red, (e) Bottom-up view, (f) Front-left view, (g) Cave’s indoor,
(h) Cave’s Indoor - zoom in, (i) Cave’s outdoor rendering using the intensities acquired by
the scanning device.
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Appendix C

Complements to Chapter 5

C.1 Complement to Section 5.2.1

Table C.1 resumes the camera motions and their corresponding 2D image transformations.

Motion Models Image 2D Transformations 3D Camera Motions

Euclidian T2D =
[
cos θ − sin θ tx
sin θ cos θ ty

]
T3D =




r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz




D.O.F. {θ, tx, ty} {θ, ϕ, ψ, tx, ty, tz}

Similarity T2D =
[
s cos θ −s sin θ tx
s sin θ s cos θ ty

]
T3D =




sr11 sr12 sr13 tx
sr21 sr22 sr23 ty
sr31 sr32 sr33 tz




D.O.F. {s, θ, tx, ty} {s, θ, ϕ, ψ, tx, ty, tz}

Affine T2D =
[
a11 a12 tx
a21 a22 ty

]
T3D =




a11 a12 a13 tx
a21 a22 a23 ty
a31 a32 a33 tz




D.O.F. {aij , tx, ty|i, j = 1, 2} {aij , tx, ty, tz|i, j = 1, 2, 3}

Projective T2D =




h11 h12 h13

h21 h22 h23

h31 h32 h33


 T3D =




h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44




D.O.F. {hij |i, j = 1, 2, 3} \ {h33} {hij |i, j = 1, .., 4} \ {h44}

Table C.1: Parametric camera motions (3D) and image transformations (2D).

C.2 Perspective Geometry and Camera Calibration

Without loss of generality, let us now drop the subscript referring to each camera coordinate
frame and consider the case of the imaging process for one camera with its coordinate frame
centered in OC , as shown in Figure C.1.

The image alignment process requires to model the image formation process in order
to find out at which pixel location u gets mapped a 3D point p. The first thing to do
is to trace-back the 3D rigid transformation relating the world O(x,y,z) and the camera
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coordinate frame OC in order to recover the 3D coordinates of p expressed in the camera
coordinate frame, noted pC , using Equation C.1.

pC =
[
R|t]p (C.1)

Figure C.1: The pinhole camera anatomy.

Under the pinhole camera model, a point in space pC = (px, py, pz)T
C gets mapped at

a 2D pixel location u = (ux, uy)T through the central projection process. The perspective
projection scales the coordinates by depth to produce image coordinates which are further
converted to pixel values using the camera focal length f expressed in pixels and the
coordinates of the principal point (u0, v0)T . The mapping process takes the following
form:

(px, py, pz)T
C 7→ (f

pC
x

pC
z

+ u0, f
pC

x

pC
z

+ v0)T (C.2)

The entire perspective projection can be parameterized up to a scale factor and expressed
as a chain of matrix transformations using the following expression:




ux

uy

1


 ∼=




f 0 u0

0 f v0

0 0 1







1 0 0 0
0 1 0 0
0 0 1 0







px

py

pz

1




C

(C.3)

and by noting with K3×3 =




f 0 u0

0 f v0

0 0 1


 the camera calibration matrix and with P3×4 =




1 0 0 0
0 1 0 0
0 0 1 0


 the canonical perspective projection matrix, we can write in a concise form

the entire perspective projection relating a world 3D point p and an image point u, as
expressed in the equation hereafter:

u ∼= KPpC = KP[R|t]p = Mp (C.4)
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where M denotes the 3× 4 perspective projection which encodes the imaging process of a
world point p under the pinhole camera model.

CCD cameras. Equation (C.3) assumes that pinhole camera model scales equally in
both axial directions leading to a 9-parameters camera model (6 D.O.F. for the external
parameters, and 3 intrinsic camera parameters, f and the principal point location). When
it comes to CCD cameras, a more general camera matrix models non-square pixels and
the skew factor [Hartley and Zisserman, 2004], leading to a 10-parameter camera model.
However, [Szeliski, 2006] for image stitching purposes it was shown that the focal length
and the variable optic center location yields high-quality results.

Nonlinear distortion. Up to now the imaging process was assumed to be linear and
accurate, meaning that the world point p, the image point u and the optical center OC

are collinear. In a real case study, all imaging devices introduce an amount of nonlinear
distortion and non-pinhole lenses must be modeled in order to take into account deviations
from the ideal pinhole camera model. As stated in [Lenz and Tsai, 1988], for accurate
3D-measurements it is very important to model lens distortions and correct them.

Under such nonlinear distortions, the actually observed image point is ud. As stated in
[Tsai, 1987], [Devernay and Faugeras, 2001], the most severe deviation from the pinhole
camera model is the radial distortion, which is performed along the radial direction from
the center of distortion, increasing as the focal length decreases. Such deviation displaces
an image point from its ideal location u either inward (pincushion distortion) or outward
(barrel distortion) the image center with an amount proportionally to their radial distance
[Juyang Weng and Herniou, 1992]. There are cameras for which the distortion varies with
color, being refereed to as a chromatic aberration.

A commonly used technique for the alleviation of the radial distortion is performed in
three steps: (i) by first applying a parametric radial distortion model, (ii) by estimating
the distortion parameters and finally (iii) by correcting the distortion.

Radial distortion parametrization. When taking into account such deviations, the
goal is to correct image measurements to those that would have been produced under an
ideal (non-distorted) pinhole projection. Since u denotes the image coordinate of a point
produced by an perfect imaging process, we note ud the distorted image point which is
related to u by a radial displacement. Assuming that the center of the distortion is at the
principal point, the relationship between the distorted and the undistorted radial distance
r is given by:

rd = r + δr (C.5)

where δr is the radial distortion. Early studies in photogrammetry [Slama, 1980] modeled
the radial distortion using a Taylor expansion and the simplest radial distortion models
use low-order polynomials:

rd = rf(r) = r(1 + k1r
2 + k2r

4 + k3r
6 + ...) (C.6)

which settles the coefficients of the radial correction to {k1, k2, k3, ...} which are usually
considered as part of the interior camera calibration [Brown, 1971], [Slama, 1980]. In
practice, the principal point is usually set as the center of the radial distortion, although is
not always the case. Expressed in pixel coordinates, the correction is written as following:

{
ud

x − u0 = (ux − u0)f(r)
ud

y − v0 = (uy − v0)f(r)
(C.7)
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Computing the radial distortion function. It is difficult to compute analyti-
cally the inverse polynomial function, being generally computed numerically via iterative
schemes. When estimating the radial distortion model in (C.6), the dominant parameters
is k1 and various studies have shown that when too higher order polynomial may cause
numerical instability [Tsai, 1987], [Lenz and Tsai, 1994], [Zhang, 1999], [Lee, 2000]. A
widely employed technique for computing specific radial distortion models exploits feature
correspondences (corners [Zhang, 1999], circles [Heikkila, 2000]). The most commonly
used due to its simplicity is the plumb line algorithm [Brown, 1971] which iteratively ad-
justs the radial distortion parameters until all of the lines present in the image are straight
[Brown, 1971], [Kang, 2001], [El-Melegy and Farag, 2003]. The bind removal technique
[Farid and Popescu, 2001] which relies on the fact that lens distortion introduce high-order
correlations in the frequency domain. Another approach is to estimate the radial distortion
parameters within the image alignment process [Sawhney and Kumar, 1999], [Stein, 1997].
More recent approaches solve simultaneously for intrinsic and radial distortion parameters
using higher order temps or non-parametric forms [Claus and Fitzgibbon, 2005], [Sturm,
2005], [Tardif et al., 2006].

The camera calibration matrix and the radial distortion specifies the mapping of an
image point to a ray in the camera coordinate system. Although radial distortion suffice for
designing consumer-level image stitching algorithms, more accurate results can be obtained
by modeling the tangential distortion can be modeled in order to increase the accuracy
[Slama, 1980].

C.3 Basic rendering

The mosaic rendering process starts by choosing a compositing surface. The second main
step is the mapping between the input images and the output pixel coordinates wrt the
compositing surface.

Choosing the compositing surface. A natural approach gives rise to what is usually
called a flat panorama consisting in choosing one image as the reference and warping
all the other images into the chosen reference coordinate frame. This approach keeps
the perspective projection attributes for wide-angle panoramas with a FOV inferior than
90◦. Since for larger FOV panoramas this method stretches pixels near the image border,
cylindrical [Szeliski, 1994], [Chen, 1995] or spherical projections [Szeliski and Shum, 1997]
are used instead. Cube maps are also used for environment mapping purposes in Computer
Graphics [Szeliski and Shum, 1997] and other methods for representing the globe were
introduced by cartographers [Bugayevskiy and Snyder, 1995].

In [Shum and Szeliski, 2000] authors first proposed a texture mapping algorithm for
spherical surfaces. Since these models do not employ a polyhedrone-shape representation,
they do not exploit the hardware texture-mapping acceleration, requiring instead special-
ized viewer. Moreover, spherical representation results in distorted rendering at poles.
In order to overcome these shortcomings, authors propose the use of environment maps
[Greener, 1986] and allow to the user to choose the model shape, which can range from
a cube to subdivided dodecahedron or even a latitude-longitude tessellated globe. In all
cases, the choice is somehow hardware-dependent, being also strongly related to the desired
quality (distortion minimization, etc.). Authors propose a texture mapping algorithm for
any geometry and choice of texture map coordinates. In its general formulation, this algo-
rithm allow to project a collection of images onto an arbitrary model, implying non-convex
models - which do not surround the viewer.
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The surface parametrization of the final image involves a tradeoff between keeping the
local appearance undistorted under uniform sampling. Since the choice of the parametriza-
tion surface is strongly related to the application type, recent researches are directed toward
methods capable to perform automatically the surface selection to allow smooth navigation
between panoramic views.

Texture maps. The mapping between the inputs and the output pixels coordinates
wrt the compositing surface requires a coordinate transformation process. In the flat
panorama case, the coordinate transformation is a homography [Szeliski, 2006]. The
warping is performed in graphics hardware by setting the texture mapping coordinates
and rendering a single quadrilateral. In the cylindrical or spherical case, every pixel is
converted into a viewing 3D ray and then back-projected into each image, including even-
tually the radial distortion. In other cases, the final compositing can take the form of a
texture-mapped polyhedron. In this case, the 3D and texture map coordinates must be
properly handled and ensure that the texture pixels interpolated during the 3D rendering
have valid values [Szeliski and Shum, 1997].

Since the coordinate transformations can yield fractional pixel locations, special atten-
tion must be given to sampling issues. When the final compositing has a lower resolution
than the input images, the input images must be passed through a pre-filtering step in
order to avoid aliasing. Researches on this directions were reported in Computer Graphics
community [Wiliam, 1983], [Greener, 1986], dealing with the problem of computing an
appropriate pre-filter wrt the distance between the neighboring samples in a source image.
High-visual quality can be obtained using a cubic interpolator used jointly with a spatially
adaptive pre-filter [Wang et al., 2001]. Higher resolution than the input images can be
obtained through a process called super-resolution [Szeliski, 2006].

C.4 Mosaicing "make-up"

When the images are perfectly registered and identically exposed, every combination of
pixels will lead to correct rendering. However, this is not always the case for a real applica-
tion, which includes casually acquired images using the automatic mode of the camera. In
this situation, special attention must be given to exposure differences, blurring caused by
mis-registration and ghosting caused by dynamic scenes. Consequently, one must decide
which pixel are to be used and how to weight or blend them. Several spatially varying
weighting (feathering), pixel selection and blending strategies can be found in [Szeliski,
2006].

Feathering. The simplest technique takes the average value at each pixel. However,
this does not work well in presence of exposure difference, mis-registrations and scene
movement. The latter issue is tackled in [Irani and Anandan, 1998] which proposed the
use of median filter to eliminate moving objects.

Blending. When using feathering, it is difficult to balance between smoothing out low-
frequency exposure variations and retaining sharp enough transitions to prevent blurring.
Blending strategies for compensating moderate exposure differences include laplacian pyra-
mid blending [Burt and Adelson, 1983] and gradient domain blending [Agarwala et al.,
2004], [Perez et al., 2003]. In order to handle larger amounts of exposure differences be-
tween images, alternative approaches were reported in [Uyttendaele et al., 2001] which
are capable of handling local variations in exposure due to lens vignetting effects.

Alternative methods were introduced for exposure compensation, such as high dynamic
range imaging which consists in estimating a single high dynamic range (HDR) from differ-
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ently exposed images [Mann and Picard, 1995], [Devebec and Malik, 1997], [Mitsunaga
and Nayar, 1999], [Reinhard et al., 2005]. When casually acquired images are employed,
it is difficult to design a blending method capable to avoid sharp transitions and deal
with scene motion. This problem has recently been attacked in [Eden et al., 2006] by
first finding a consensus mosaic and then selectively computing radiances in under- and
over-exposed regions. Such a mosaic rendering framework is usually employed for casually
acquired images, which may not be perfectly registered due to different exposures.

In [Shum and Szeliski, 2000] and [Brown and Lowe, 2007] the target is to provide
an artistic mosaic rendering pipeline, easy to use which can eventually require user-input,
whereas in [Garcias and Santos-Victor, 2000] a more industrial-oriented problem is at-
tacked. The latter addresses the issue of automatic creation of video mosaics in under-
water environments and vehicle-self localization relying on mosaics as visual maps. The
rendering pipeline is focused on selecting a unique intensity value from multiple contri-
butions in the overlapping regions in order to compose the output image. The proposed
rendering technique operates in the time domain, being introduced as a temporal operator.
The contributions of each image for the mosaic output are seen as lying on a line parallel
with the time axis. Possible solutions include use-first, use-last, mean and median. As
mentioned before, the average value has been proved to be effective for removing temporal
noise inherent in video. The median operator removes both noise and transient data, such
as moving objects whose intensity patterns are stationary for less than half of the frames.
This is particularly useful for underwater sequences, when moving fish or algae may be
captured.

C.5 Complement to Section 5.7.4.2

Figures C.2 and C.3 present the experimental results of the pair-wise motion estimation
process obtained on a second trial performed in the 12th district of Paris.

C.6 Proposed Closed-from solution for Optimal Unit Quater-
nion Computation

When solving for the optimal quaternion which minimizes the cross product between a set
of N homologous 3D vectors, the criterion to minimize is expressed under the form:

q̂ = arg min
q

Q12−×(R(q)) = arg min
q

N−1∑

k=0

‖vk
1 ×R(q)vk

2‖2 (C.8)

where R(q) is given in Equation (4.4). The minimum of Equation (C.8) is obtained for
the quaternion q̂ which annuls its first derivative wrt the its 4-parameters, noted ∂Q×

∂q in
which we dropped the subscript 12 for the sake of clarity. By posing r = ‖vk

1 ×Rvk
2‖, the

partial derivative can be written under the following form:
∂Q×
∂q

= 2r
∂r

∂q
(C.9)

and by developing the partial derivatives ∂r
∂q we obtain:

{
∂r
∂q = ‖∂vk

1
∂q ×Rvk

2 + vk
1 × ∂(Rvk

2 )
∂q ‖

∂vk
1

∂q = 0
(C.10)
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Figure C.2: Trial 2 outdoor structured environments - 12th district of Paris. Global rotation
estimation results. (a) camera no. 32, (b) camera no. 31, (c) I1 - reference image, (d)
I2 - image to align, (e) global maximum localization at level Lmax = 3, (f) rotationally
aligned images at level l = 0: I1-red channel, the warped image I2(u; R̂)-green channel,
R̂(θ,ϕ,ψ) = (70.5306◦ = −0.5462◦, 0.1556◦).
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Figure C.3: Trial 2 outdoor structured environments - 12th district of Paris. Non-rigid
motion estimation via local patching. (a) Patch extraction in I2 and warping in the I1’s
image space using the global rotation R̂: I1 - red channel, warped patches in I2 using
the estimated rotation P(uk

2) - green channel. (b) zoom-in of the warped patches of (a)
emphasizing mis-registrations caused by parallax, (c) I1 - red channel, locally matched
patches in P(ûk

2) and warped in I1’s image space - green channel, (d) zoom-in of the
locally matched patches from (c) exibiting a fairly good local patch matching.

From Equation C.10 we have:

∂r

∂q
= ‖vk

1 ×
∂(Rvk

2)
∂q

‖ (C.11)
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The partial derivatives of R(q) wrt the unit quaternion q = [q0, qx, qy, qz]T form a 3×4×3-
tensor and by multiplying it with the vector v2 we obtain:

∂R
∂q

v2 =




a d −c b
b c d −a
c −b a d


 (C.12)

with 



a = q0v2x + qzv2y − qyv2z

b = −qzv2x + q0v2y + qxv2z

c = qyv2x − qxv2y + q0v2z

d = qxv2x + qyv2y + qzv2z

(C.13)

in which we dropped the superscript k for clarity. The derivative is zero if at least one of
two conditions below are fulfilled:

2r = 2‖vk
1 ×R(q)vk

2‖ = 0 (C.14)

or,
∂r

∂q
= ‖vk

1 ×
∂(Rvk

2)
∂q

‖ = 0 ⇔ vk
1 ×

∂(Rvk
2)

∂q
= 0 (C.15)

By developing the condition expressed in Equation C.15, we obtain a system of form
Aq = 0 where A12×4 is the measures matrix defined by its terms aij obtained by developing
the cross product vk

1 × ∂(Rvk
2 )

∂q and by expressing it in terms of vk
1 and vk

2 .
We develop hereafter the cross product:

vk
1 ×

∂(Rvk
2)

∂q
=




vk
1x

vk
1y

vk
1z


×




a d −c b
b c d −a
c −b a d


 = (C.16)

=







vk
1x

vk
1y

vk
1z


×




a
b
c







vk
1x

vk
1y

vk
1z


×




d
c
−b







vk
1x

vk
1y

vk
1z


×



−c
d
a







vk
1x

vk
1y

vk
1z


×




b
−a
d





 (C.17)

The above matrix multiplication leads to the matrix D3×4 with each of its terms being
expressed as a linear combination between the corresponding measures vectors ~vk

1 , ~v2
k and

the quaternion, i.e.:

D =




d00 d01 d02 d03

d10 d11 d12 d13

d20 d21 d22 d23


 (C.18)

with dij = f(vk
1 ,vk

2)q = f0q0 + fxqx + fyqy + fzqz, and f : R2×3 → R4. After arranging
terms, we get the measure matrix A12×4 of form:

A12×4 =




d0
00 dx

00 dy
00 dz

00

d0
01 dx

01 dy
01 dz

02

d0
02 dx

02 dy
02 dz

02

· · · ·
· · · ·
· · · ·

d0
22 dx

22 dy
22 dz

22

d0
23 dx

23 dy
23 dz

23




(C.19)
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After obtaining the measures matrix, the resolution follows the same technical solution
employed for the case when the cost function was the sum of the squared residual errors
for which a description is provided in Appendix C.8.

By replacing A12×4 with the matrix relation [Q(vk
1)−W(vk

2)] from Appendix C.8, the
criterion to minimize becomes:

‖vk
1 ×R(q)vk

2‖2 = qTAT
k Akq = qTUkq (C.20)

where Uk is a symmetrical, squared and 4-dimensional matrix.
Consequently, the optimal quaternion minimizing the angle between a set of N homol-

ogous 3D vectors relating two adjacent images, initially given in Equation (C.8) takes the
following form:

q̂ = arg min
q

N−1∑

k=0

qTUkq = arg min
q

qT (
N−1∑

k=0

Uk)q = arg min
q

qTVq (C.21)

with V =
∑N−1

k=0 Uk =
∑N−1

k=0 AT
k A being a symmetric and positive definite matrix. By

constraining the system to produce a unit quaternion, we obtain:

q̂ = arg min
q

Q× = arg min
q

(qTVq + λ(1− qTq)) (C.22)

which provides us with a similar solution as the one obtain in Appendix C.8, i.e.: the
unit quaternion which minimize Q× is given by the eigen vector of V corresponding to the
smallest eigen value of V, noted λ.

C.7 Generalization to the Multi-view Case

This section generalizes the optimal quaternion computation for n images composing a
mosaic node by minimizing the sum of squared angular errors enclosed by the corresponding
3D vectors. The global registration computes the best set of unit quaternions qnode =
{qij |wij = 1} to be applied to each vector set vk

j , j = 0, ..., n − 1, i 6= j, k = 0, .., Nij such
that the sum of all squared angular errors expressed in Equation (C.23) is minimized.

Qmosaic−× =
i=n−1∑

i=0

j=n−1∑

j=0,i 6=j,i<j

wij(
k=Nij−1∑

k=0

δk
ij‖vk

i ×R(qij)vk
j ‖2) (C.23)

wij and δk
ij denote the adjacency and the visibility weights defined in Equation (5.23) and

(5.24) respectively. The number Nij denote the total number of features found between Ii

and Ij . Instead of having a set of two-corresponding features coming from two overlapped
images, for the multi-view image alignment case we have a collection of Nnode features,
with Nnode =

∑i=n−1
i=0

∑j=n−1
j=0,i 6=j,i<j Nij . The multi-view criterion from Equation (C.23)

can be expressed using the pair-wise cost function from Equation(C.8) under the following
from:

Qmosaic−× =
i=n−1∑

i=0

j=n−1∑

j=0,i6=j,i<j

wijQij−× (C.24)
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and by introducing the result from Equation (C.21) we obtain:

Qmosaic−× =
i=n−1∑

i=0

j=n−1∑

j=0,i6=j,i<j

wij(qT
ij(

N∑

k=0

δk
ijUk)qij) =

i=n−1∑

i=0

j=n−1∑

j=0,i6=j,i<j

wijqT
ijVijqij

(C.25)
where,

[Vij ]4×4 =
Nij−1∑

k=0

δk
ijUk =

Nij−1∑

k=0

δk
ijA

T
k Ak =

N−1∑

k=0

δk
ij [Q(vk

i )−W(vk
j )]T [Q(vk

i )−W(vk
j )]

(C.26)
For n images, the total number of relative quaternions required to be computed is given

by Nq = C2
n. Therefore, the unknown parameter vector is given by the upper triangular

part of the following n× n× 4 symmetric tensor:

Γ =




q11 q12 q13 · q1i · q1n

q21 q22 q23 · q2i · q2n

· · · · · · ·
qn1 qn2 qn3 · qni · qnn


 (C.27)

The unknown parameter vector is given by

qnode = 5(Γ) = [qT
12,q

T
13, ·,qT

1n,qT
23,q

T
24, ·,qT

2n, ·,qij , ·,qT
in, ·,qT

(n−1,n)]
T (C.28)

It worths noting that since not all images are adjacent, the number of relative quaternions
to compute will be considerably reduced, leading to sparse matrices.

Absolute quaternions computation. In order to compute simultaneously the ab-
solute quaternions relating all views wrt a global reference frame, one can fix the reference
frame to an arbitrary image, let’s say I1, and set its associated unit quaternion q1 to
identity. This resumes to the minimization of the criterion Qmosaic−× wrt 4(n − 1) pa-
rameter vector qT

node−abs = {qT
12, ..,q

T
1n} ≡ {qT

2 , ..,qT
n}. It can also can be observed that

qT
node−abs ⊂ qT

node. Therefore, the absolute quaternions for an arbitrary reference system
fixed to an image Ii is given by the ith row of the matrix Γ.

Case n=3. Let us now see what becomes the result deduced in Equation (C.25) for
the 3-image case. The optimal quaternions to compute form the upper-triangular part of
the 3× 3× 4 tensor expressed as:

Γ3×3 =



q11 q12 q13

q21 q22 q23

q31 q32 q33


 (C.29)

Therefore, the unknown parameter vector of size 4Nq× 1 = 12× 1 is given by the concate-
nation of the Nq = C2

n = C2
3 = 3 unit quaternions :

qnode = [qT
12,q

T
13,q

T
23] (C.30)

For n = 3 the cost function becomes:

Qmosaic−× =
2∑

i=0

2∑

j=0

wijQij−× (C.31)
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Supposing that all images are adjacent, i.e. ∀i, j = 0, ..2, i 6= j, wij = 1 and by developing
the previous equation we obtain:

N−1∑

k=0

(Q12−× + Q13−× + Q23−×) = qT
node



V12 0 0
0 V13 0
0 0 V23


qnode (C.32)

By posing the matrix measures

E12×12 =




V12 04×4 04×4

04×4 V13 04×4

04×4 04×4 V23


 (C.33)

we obtain a more compact form of the final cost function:

Qmosaic−× = qT
nodeEqnode (C.34)

whose minimization provides us with the optimal unit quaternions.
Case for an arbitrary number of images n. We recall that total number of

quaternions to compute is given by Nq = C2
n. The size of the matrix E is then 4Nq× 4Nq

and the size of the vector to estimate is 4Nq × 1. The squared matrix E of size 4Nq and
the corresponding unknown parameters vector take the following form:

E =




V12 0 0 0 0 0 0 0
0 · 0 0 0 0 0 0
0 0 V1n 0 · · · 0
0 0 0 V23 0 0 0 0
0 0 0 0 · 0 0 0
0 0 0 0 0 V2n 0 0
0 0 0 0 0 0 · 0
0 0 0 0 0 0 0 V(n−1)n




(C.35)

qnode =




q12

·
q1n

q23

·
q2n

·
q(n−1)n




(C.36)

By constraining the system so that the estimated quaternions must be unitary, we obtain
the following constrained minimization problem:

qT
ijVijqij + λij(1− qT

ijqij) = 0 (C.37)

yielding,

∂(qTVijq + λij(1− qTq))
∂q

= 0 ⇔ qTVij − λijqT = 0 ⇔ Vij = λij (C.38)

The total number of unit quaternions Nq which minimize the total cost Qmosaic−× are
therefore given by the Nq eigen-vectors of the Vij matrices associated to their smallest
eigen values λij .
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C.8 Optimal Rigid Transformation using Sum of the Squared
Residual Errors

Let us now consider that we have access to the 3D point coordinates of a set of N image
matches previously established using a feature extraction and matching algorithm. The
following description recalls the technique reported in [Horaud and Monga, 1995] which
solves for the optimal rigid transformation reported by minimizing the following cost func-
tion:

[R∗, t∗] = arg min
[R,t]

N−1∑

k=0

‖pk
1 −Rpk

2 − t‖2 (C.39)

If [R∗, t∗] denote the optimal rotation and translation resulted from Equation C.39, then
we have the following property relating the corresponding centers of gravity of the two
clusters noted by v̄1 and v̄2 [Lin et al., 1986]:

p̄1 = R∗p̄2 + t∗ (C.40)

and by using centered coordinates p̆k
i = pk

i − p̄i with i = 1, 2 we obtain:

pk
1 −R∗pk

2 − t∗ = p̆k
1 −R∗p̆k

2 (C.41)

This allows to split the optimal rigid transformation criterion in expressed in Equation
(C.39) in two different ones solving separately for the optimal rotation and translation.

{
R∗ = arg minR

∑N−1
k=0 ‖p̆k

1 −Rp̆k
2‖2

t∗ = p̄1 −R∗p̄2

(C.42)

This methods solves for the rigid transformation in two steps. The rotation is first
computed, which is exploited within the second stage for translation estimation, being
seen as an optimization step. As stated in [Horaud and Monga, 1995], the proposed
method has its advantages and its inconveniences. Its main positive is related to the
rotation separation which allows to design an elegant and numerically stable solution for
the rotation estimation. On the downside, the translation estimation is subject to the
accuracy of the rotation estimate.

Let us now turn back to our mosaicing problem by recalling that in this case study, the
images were acquired from the same optical center and even if small amounts of parallax
are susceptible of being introduced, there can be compensated by the local motion estima-
tion procedure integrated within the pair-wise alignment process described in Section 5.7.
Consequently, the proposed method can be applied to estimate a pure rotation, without
being biased by eventual parallax or subject to the residual translation.

Optimal quaternion computation for a couple of adjacent images. We describe
hereafter the solution reported in [Horaud and Monga, 1995] which solves for rotation
estimation using unit quaternions. The main advantage of this technique stands in the
choice of the rotation parametrization. Is more easy to constraint the system to produce
an unit quaternion, instead of imposing 6 constraints to ensure the orthogonality of the
3× 3 rotation matrix.

We recall hereafter the notation of a unit quaternion describing a rotation of angle θ
around the ~n:

q = cos
θ

2
+ sin

θ

2
(inx + iny + knz) (C.43)
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The criterion allowing to compute the optimal rotation for N homologous 3D vectors is
given by:

Q12 = min
R

N−1∑

k=0

‖vk
1 −Rvk

2‖2 (C.44)

Using unit quaternions, the rotation of an arbitrary 3D vector v is written as:

v1 = Rv2 = q ∗ v2 ∗ q̄ (C.45)

where q̄ represent the conjugate quaternion with the property q ∗ q̄ = q · q = ‖q‖2 = 1.
The criterion from Equation (C.44) becomes:

min
q

N−1∑

k=0

‖vk
1 − q ∗ vk

2 ∗ q̄‖2 (C.46)

Using quaternions’ properties, from Equation (C.46) we have successively:

‖vk
1 − q ∗ vk

2 ∗ q̄‖2 = ‖vk
1 − q ∗ vk

2 ∗ q̄‖2‖q‖2 = (C.47)

⇔ ‖vk
1 ∗ q− q ∗ vk

2 ∗ q̄ ∗ q‖2 = ‖vk
1 ∗ q− q ∗ vk

2‖2 (C.48)

By using matrix notations we can write the product of two quaternions in the following
form:

v1 ∗ q = Q(v1)q and q ∗ v2 = W(v2)q (C.49)

where, Q(v) and W(v) are the associated antisymmetrical matrices of a pure-imaginary
quaternion v = [0, vx, vy, vz]T of the form:

Q(v) =




0 −vx −vy −vz

vx 0 −vz vy

vy vz 0 −vx

vz −vy vx 0


 (C.50)

W(v) =




0 −vx −vy −vz

vx 0 vz −vy

vy −vz 0 vx

vz vy −vx 0


 (C.51)

with the properties:
Q(v)T = −Q(v) and W(v)T = −W(v) (C.52)

Using the aforementioned properties, the right term in Equation C.48 becomes:

‖vk
1 ∗ q− q ∗ vk

2‖2 = [[Q(vk
1)−W(vk

2)]q]T [[Q(vk
1)−W(vk

2)]q] = qTAkq (C.53)

where Ak is a 4× 4 symmetric matrix containing the measures:

Ak = [Q(vk
1)−W(vk

2)]TQ(vk
1)−W(vk

2) (C.54)

For a set of N point correspondences, the criterion from Equation C.44 becomes:

q̂ = arg min
q

N−1∑

k=0

qTAkq = arg min
q

(qT (
N−1∑

k=1

Ak)q) = arg min
q

(qTBq) (C.55)
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where B =
∑N−1

k=1 Ak =
∑N−1

k=1 [Q(vk
1) − W(vk

2)]T [Q(vk
1) − W(vk

2)] is a symmetric and
positive definite matrix. By introducing the constraint that the quaternion must have an
unit norm, the criterion takes the following form:

q̂ = arg min
q

Q = arg min
q

(qTBq + λ(1− qTq)) (C.56)

By deriving Q wrt q, we get:

∂Q

∂q
= 0 ⇔ Bq− λq = 0 ⇒ (B− λ)q = 0 (C.57)

from which can deduce
Q = λ (C.58)

meaning that the unit quaternion minimizing Q is the eigen vector of B corresponding the
smallest eigen value of B, λ.

Proof: A symmetric matrix has real eigen values and a symmetric positive definite
matrix has its eigen values positive. Let then e = (e1, e2, e3, e4) be the eigen vectors of B
forming an orthogonal base. If vectors are unitary, then the base is ortho-normalized. The
quaternion q can then be written as a linear combination of the eigen vectors e, i.e. :

q =
4∑

i=1

µiei (C.59)

and for all i = 1, 2, 3, 4 we have:

Bei = λiei, λ1 < λ2 < λ3 < λ4 (C.60)

and by exploiting eigen vectors orthonormality, we get:

qtBq =
4∑

i=1

µ2
i λi (C.61)

which reaches its minimum for
{

µ1 = 1,

µ2 = µ3 = µ4 = 0
(C.62)

Hence, we have: {
q = e1

qTBq = λ1

(C.63)

The optimal quaternion is therefore given by the eigen vector of B associated to its smallest
eigen value.

q.e.dO
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Appendix D

Complements to Chapter 7

The following two sections are concerned with the the autonomous site digitization and
exploration problem. We start this section by presenting the autonomous site digitization
capability and by revisiting several systems which are heavily relying on it through semi-
autonomous methods. Section D.2 states the site digitization and exploration problem
emphasizing the complementarity of the existing solutions.

D.1 Space’s and Earth’s Needs for Autonomous Exploration

Designing unmanned mobile platforms capable to drive themselves in previously unknown
environments while gathering rich information about their surroundings represents a key
aspect standing behind the feasibility of various military and civilian missions undertaken
in hostile environments, where human presence is highly undesirable.

The great potential of unmanned systems stands in their capability to reach and explore
terrains which are inaccessible or considered too dangerous for humans. Mostly, the de-
ployment of such systems is driven by practical constraints. Although remotely-controlled
by human experts, such endeavors have already been demonstrated in Space and on Earth
to supply inspection, monitoring, exploration, searching and rescuing (SAR) operations.

Producing digital copies of large-scale and complex archeological sites, whose preser-
vation is highly subject to weather conditions which cause high risk of collapse in any
time, has led to a considerable research work in Remote Sensing, Computer Vision and
Robotics research communities. Such environments preclude the access of human survey-
ors and unmanned mobile systems are highly desirable to supply photorealist site surveys.
In addition, the digitization of prehistorical sites allows paleontologist to perform geomor-
phological studies revealing human evolution. Figure D.1 illustrates several complex sites
requiring digitization.

The use of 3D dense mapping for underwater exploration of mineral resources on the
ocean floor is reported in [Jasiobedzki and Jakola, 2007]. Generally, these systems are
controlled from the surface and removing the human operator from the loop poses several
technical challenges, such as low situational awareness in unknown environments, com-
plexity of the operated machines and the need for high band-width and real-time commu-
nication systems. Currently, precise maps of underwater worksites are not available and
accurate positioning after several kilometer of navigation is still an open issue. Moreover,
tele-operated underwater campaigns are extremely expensive, requiring for highly skilled
operator, being strongly related to the cost of an error [Hainsworth, 2001], [Liu et al.,
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Figure D.1: Exemples of cultural heritage applications. (a) The Great Buddha Statue
13.35m (Kamakura, Japan). Cast in 1252, the statue has stood the test of time, including
a tsunami which hit Kamakura in 1945. (b) the remotely control Flying Laser Range
Sensor (FLRS) introduced in [Banno et al., 2008] digitizing the Bayon Temple (Angkor,
Siem Reap, Cambodia) built around 1190 by King Jayavarman VII. (c) Data acquisition
in Mayenne Science prehistoric cave (France) discovered in 1967 by Roger Bouillon c©IGN-
MATIS 2009 - photo provided by Jean-Pierre Papelard.

2001], [Bailey, 2002], [Ralston et al., 2005]. Due to all these aspects, it is difficult to
exploit the underwater resources economically and without environmental damage.

The operation of on-orbit robotic systems or of those designed for planetary explo-
ration present similar challenges. In both contexts, recent research works addressed the
tele-operation difficulty by presenting virtual models of worksites to the human expert and
by increasing the autonomy of the remote system. For instance, for the recently site survey
missions performed on Mars, data acquisition is performed automatically, transmitted on
Earth and processed by computer vision experts. Furthermore, rovers receive commands
from human operator for obstacles’ avoidance and path planning. Such human depen-
dency leads to inefficient and delayed missions, representing therefore a major bottleneck
in performing rapidly complex tasks in critical situations. Figure D.2 (a) illustrates the
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concept for a robotic explorer introduced in [Deans et al., 1998] designed for lunar south
pole exploration. The platform employs a hybrid tele-operated/autonomous navigation
approach. Figure D.2 (b) shows the rock modeling and matching presented in [Li et al.,
2007] for autonomous Mars rover localization.

Figure D.2: (a) Icebreacker [Deans et al., 1998]. (b) Automatic rocks matching [Li et al.,
2007].

The great advances in technology and the increasing number of natural catastrophes
(high-magnitude earthquakes - Kobe 1995, Haiti 2010) and human-caused disasters (New
York city 2001) lead to a high number of research works willing to provide robots for
emergency response. These platforms are sent to explore unstructured terrains and to
build a map that can be used by humans rescuers to retrieve victims.

In [Pilania and Chakravarty, 2008] a sense, communicate, plan and act paradigm is used
along with a wireless visual sensor for a semi-autonomous mine navigation system designed
to supply post-disaster rescue operation planning. Such a system aims at minimizing the
chances of accidents during the extraction of the existing mineral resources by providing
navigation and regular monitoring based on semi-autonomous robots. A robotic vehicle can
explore the mine and provide valuable help for human rescuers for planning SAR missions.
Figure D.3 illustrates the unmanned system of University of Technology Sydney designed
to supply semi-autonomous searching and rescuing mission in mines.

Figure D.3: The remotely-controlled unmanned system presented in [Pilania and
Chakravarty, 2008] equipped with a pan-tilt mechanism (b) for improved navigation. (c)
system’s deployment in a testing mine illustrating the unstructured terrain.

The autonomy of unmanned mobile systems. All the aforementioned missions are
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nowadays subject to the system’s autonomy feasibility which has not been yet demonstrated
and currently relies on heavy human operator intervention. Unmanned mobile platform’s
autonomy is related to the real world perception and consequently, it must be embedded
with environment modeling functionalities. This calls for visual perception through multi-
sensor fusion for producing a rich 3D reconstruction of the real world, allowing thereby the
development of automatic reasoning and decisional resources.

Unmanned platforms are usually embodied with proprioceptive sensors (odometry,
IMU) to localize themselves and exteroceptive devices (vision and tactile) to build local
environment models in which they can localize themselves using the first class of sensors.
It opposite to the latter one, localization devices are subject to accumulation errors for
long term trajectories and traditional approaches are build on a combination of both to
reduce drift. For missions undertaken in GPS-denied and unstructured environments, one
of the most employed proprioceptive senses - odometry, is estimated through purely visual
means [Nister and Stewenius, 2006], [Craciun et al., 2006].

Active perception and visual autonomy paradigm. Unmanned mobile platforms
equipped with suitable vision sensors allows recording rich digital representations of the
real world. This gives rise to an artificial vision engine based on which onboard intelligence
can be developed, providing unmanned systems with significant autonomy, enabling them
to execute the required tasks. The unmanned systems’ autonomy deals with the system’s
capacity to learn characteristics without assistance and to adapt dynamically to unexpected
environment changes.

Before conducting task-specific actions, the platform must become familiar with the
environment and build an internal model of its surroundings. Active perception paradigm
presents promising results in this direction. Instead of planning the required tasks using
poor description of the environment, the robot interacts first with its surroundings in or-
der to gather as much information as possible. This is an active research topic which has
recently been attacked by researchers aiming to build mobile robots able to explore pre-
viously unknown environments and conduct task-specific actions without a central control
system, special landmarks or human interaction. In this context, the exploration phase is of
primer interest as it provides knowledge about the environment and situational awareness,
allowing to the platform to see, detect and act in order to fulfill the required tasks.

D.2 The Visual-based Autonomous Site Exploration Prob-
lem

The main goal of our research work is concerned with the automatic 3D digitization of
complex environments through the jointly use of image and laser data. The term com-
plex denotes the accidental terrain which leads to a high number of occluded areas. It
also denotes the inaccessibility of the site which precludes human surveyors access and
consequently, the 3D modeling process requires for unmanned systems to be deployed.

Moreover, since the environment is considered to be previously unknown, no map is
assumed to be available. Therefore, the system must be able to explore autonomously the
site and build dynamically 3D models in order to generate an occlusions-free 3D model
of the entire site. This is usually refereed to as the autonomous site digitization and
exploration problem which is willing to answer to the following question: given the currently
build 3D model, where the system should move to gain as much new information as possible?
Additional constraints are introduced by the in-situ aspect, i.e. avoid cost’s displacement



253

and minimizing data redundancy.
Global solutions. Several research works have attacked the exploration problem in its

entirety [Kuipers and Byun, 1991], [Bolduc et al., 1996], [Yamauchi et al., 1998], [Baker
et al., 2004b], [Nüchter et al., 2004]. Reported methods are based on the wall-following
principle which is too simple to be applied for the exploration of complex environments
[Mataric, 1997], [Duckett and Nehmzow, 1997]. In [Lee, 1996] authors exploit parallel
and perpendicular walls and validate the proposed method in simple environments (three
corridors). In [Thurn and Bucken, 1996] authors combine evidence grids with topological
maps and demonstrate the feasibility of the system in a large-scale building. The tech-
nique assumes that walls are observable, without being obstructed by obstacles. At INRIA,
AROBAS research team is currently focusing to address both autonomous navigation and
SLAM problems jointly to provide perception, modeling and platform’s control. In [Vic-
torino et al., 2003], simulation results showed that a sensor-based control approach adds
constraints on the relative pose and its local environment.

Partial solutions. Researchers split the autonomous exploration problem into smaller
tasks and introduce solutions for several ingredients of the visual-based autonomous nav-
igation: SLAM, visual-odometry, path planning and obstacles’ detection. Unfortunately,
none of these procedures include visual servoing schemes nor motion control. In addition,
the autonomous navigation stage supposes that a map is available from a prior processing
step and no exploration is performed on line.

3D modeling of large-scale scenes. Solving for the 3D digitization problem provides
unmanned systems with rich visual information, giving the possibility to see, detect and
act in order to explore the environments. A considerable amount of research work reported
photorealist 3D modeling of large-scale scenes from image-laser data fusion (Appendix A.3
presents a survey on the existing 3D modeling systems).

All the aforementioned systems do not provide visual feedback for on-line exploration in
order to make possible the complete digitization of the site. Generally, the main problem is
raised by the capacity to generate dynamically textured 3D models along with visual servo-
ing procedures. This provides sensor’s control to supply decisions and actions contributing
to the 3D scene model completeness. Such systems have been reported for supplying 3D
modeling of small scale objects by humanoids in [Foissotte et al., 2008a], [Foissotte et al.,
2008b] and we believe that a similar approach represent be a promising research direction
for automatic 3D modeling and exploration of large-scale environments.

Bridging between Robotics and Computer Vision world modeling methods.
Field robotic applications require rich 3D maps in order to allow visual-based autonomy.
Their result provide localization and mapping to be exploited along with visual servoing
procedures. On the other hand, computer vision researchers aims at producing 3D digital
copies of complex and difficult to access sites [Banno et al., 2008], [Craciun et al., 2008].
To this end, researchers employ remotely-controlled unmanned platforms embodied with
different vision sensing devices [Banno et al., 2008] and build rich 3D models of complex
environments.

Robotics and Computer Vision research communities report real world modeling meth-
ods but without exploiting them in a exhaustive way along with visual servoing procedures
to provide visual-autonomy. This an important issue which must be addressed which al-
lows to solve active research topics in both research communities, allowing (1) to provide
autonomous site digitization and exploration for producing rich and complete maps of dif-
ficult to access environments and (2) based on these maps, visual-autonomy can be build
in order to allow the execution of complex tasks.
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Figure D.4: The available site exploration and digitization methods. The proposed strategy
is highlighted in green.
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D.3 Complement to Section 7.4

Figure D.5 illustrates Harris corners’ extraction of 2D mosaic views obtained on a data
set acquired in the Tautavel prehistoric cave. Figure D.6 shows the result obtained when
SIFT descriptors are extracted on the same data set.

Figure D.5: Harris features extraction on three partially overlapped mosaic views acquired
in Tautavel prehistoric cave. (a) M1

2D size 2710×816,]Harris: 3299 (b) M2
2D size 2771×811

] Harris: 7648, (c) M3
2D size 2775× 652,]Harris: 1100.
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Figure D.6: SIFT [Lowe, 2004] extraction on the 2D panoramic views illustrated in Figure
7.6. (a) ]SIFT on M1

2D: 6694, (b) ]SIFT on M2
2D: 11816, (c) ]SIFT on M3

2D: 1442.
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