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RÉSUMÉ

Motivations

Les systèmes multi-processeurs sur puce (MPSoC) sont largement appliqués dans de nom-

breux domaines en raison de leur ratio performance/consommation d’énergie élevé. La vérifica-

tion des propriétés temporelles de ces systèmes au plus tôt dans le processus de conception est

très importante. Cette vérification vise à garantir que les contraintes de temps sont pleinement

respectées. Cependant, les ressources partagées au sein des MPSoCs peuvent impliquer de fortes

variations du temps d’exécution du logiciel et compliquent donc la prévision des propriétés tem-

porelles de ces systèmes. Par conséquent, il est essentiel de créer un modèle de performance

capable de capturer les effets des ressources partagées. De plus, il faut choisir une approche

d’analyse appropriée qui propose non seulement un bon compromis entre la précision et le temps

d’analyse, mais aussi permette une bonne scalabilité. Cette thèse vise à étudier l’adoption de

méthodes de modélisation et d’analyse probabilistes pour améliorer l’efficacité des approches

d’analyse temporelle des systèmes MPSoC.

Contexte de la thèse

Les systèmes multiprocesseurs système sur puce (MPSoC) sont apparus dans de nombreux

domaines en quelques décennies. Un système MPSoC se compose de trois parties principales:

une application, un système d’exploitation et une plate-forme matérielle. L’application peut être

divisée en plusieurs tâches exécutées sur une plate-forme matérielle. Le système d’exploitation

est composé des logiciels du système (les services de gestion de la mémoire, l’ordonnanceur,

etc.) et des pilotes d’abstraction. La plate-forme matérielle se compose de différents composants

tels que des éléments de traitement (processing elements, PEs), des bus, des mémoires et des

périphériques. Dans un système MPSoC, ces composants matériels sont conçus sur une même

puce. Un MPSoC homogène contient plusieurs PE du même type et offre des capacités de paral-

lélisation des applications. Un MPSoC hétérogène présente différents types de PE conçus pour

des fonctionnalités spécifiques. La complexité des systèmes MPSoCs augmente rapidement dans

les deux parties logicielles et matérielles. Du côté matériel, les interactions entre différents com-

posants matériels accédant aux ressources partagées compliquent la prévision des comportements

du système. Du côté logiciel, les fonctionnalités des applications sophistiquées avec des millions

de lignes de code nécessitent d’énormes efforts pour être testées et vérifiées. La vérification de
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la performance de ces systèmes est donc indispensable car elle permet de vérifier le respect des

fonctionnalités mais aussi des exigences dites non fonctionnelles. Lors de l’exécution du pro-

gramme, les ressources logicielles et matérielles influencent le temps d’exécution du programme.

Dans cette thèse, nous nous concentrons principalement sur l’étude des influences des ressources

partagées sur l’analyse temporelle des systèmes MPSoC.

Dans les systèmes MPSoC, les éléments de traitement partagent des ressources du système

telles que des bus, des mémoires (mémoire globale, caches privées), des caches partagées, etc.

Les accès simultanés à ces ressources partagées provoquent des interférences qui entraînent des

délais supplémentaires dans le temps d’exécution des tâches. Ces ressources partagées influent

sur les comportements temporels des systèmes MPSoC.

Les interférences des accès concurrents aux résources partargées causent des difficultés à

prévoir la performance du système. Le temps d’exécution d’une tâche peut varier en fonction du

logiciel de la tâche et des ressources matérielles où la tâche est exécutée.

— Du point de vue logiciel, le temps d’exécution d’une tâche dépend de ses données d’entrée.

Différentes données d’entrée peuvent être traitées en suivant différents chemins d’exécution

à travers le programme, et donc fournir des temps d’exécution différents.

— Du point de vue matériel, la variabilité du temps d’exécution est causée par les interférences

entre les tâches accédant aux ressources partagées.

Étant donné que de nombreuses ressources matérielles sont impliquées dans l’exécution de la

tâche, le temps d’exécution de la tâche devient plus difficile à prévoir. La caractérisation de ces

temps élémentaires est cruciale pour la prévision des comportements temporels du système.

Différentes approches ont été proposées pour estimer la performance du système, par exemple:

les approches basées sur la simulation, les approches formelles, les approches probabilistes.

Les approches basées sur la simulation testent partiellement les propriétés du système en se

basant sur un ensemble limité de stimuli. Dans les approches existantes, des modèles d’architectures

matériel-logiciel sont formés en combinant un modèle d’application et un modèle de plate-forme.

Au début de la phase de conception, une description complète des fonctionnalités de l’application

n’est pas obligatoire et des modèles de charge de travail de l’application sont utilisés. Un modèle

de charge de travail exprime les charges de calcul et de communication (par exemple, le temps

d’exécution, la consommation d’énergie, le coût de la mémoire) qu’une application provoque

lorsqu’elle est exécutée sur les ressources de la plateforme. Les modèles de performances cap-

turés sont générés sous forme de descriptions exécutables et simulés. Le temps d’exécution de

chaque primitive de chargement est approximé comme un délai. Les délais sont généralement es-

timés à partir de mesures sur des prototypes réels ou de l’analyse de simulations de bas niveau.

Les approches basées sur la simulation nécessitent une analyse approfondie de l’architecture

dans divers scénarios de travail possibles. Les modèles d’architecture créés ne peuvent pas être

simulés de façon exhaustive et les pires scénarios de travail peuvent être difficilement identifiés
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et évalués. Un autre problème important concerne la précision des modèles créés. Enfin, avec la

complexité croissante des plates-formes MPSoC, l’exécution des modèles de simulation nécessite

plus de temps de simulation.

Différentes approches formelles ont été proposées pour analyser les systèmes multicœurs et

fournir des bornes de temps. Ces approches formelles sont généralement classées comme méth-

odes analytiques et méthodes basées sur l’état. Les méthodes analytiques ont l’avantage d’être

évolutives pour analyser des systèmes à grande échelle. Par contre, ces méthodes analytiques

font abstraction de nombreux détails de fonctionnement du système analysé, tels que les proto-

coles d’arbitrage complexes ou les dépendances de tâches de communication inter-processeurs,

ce qui conduit à des résultats pessimistes par rapport aux résultats des méthodes basées sur

l’état. Les méthodes basées sur les états representent le système consideré comme un système de

transition (états et transitions). Étant donné qu’elles reflètent les états de fonctionnement réels

du comportement du système, des résultats plus précis peuvent être obtenus par rapport aux

méthodes analytiques. De nombreuses approches récentes pour l’analyse temporelle du logiciel

sur des architectures multicoeur sont construites sur des techniques d’analyse basées sur l’état.

Les approches basées sur les états permettent une analyse exhaustive des propriétés du système

au prix d’effort de modélisation et d’analyse importants.

Les approches probabilistes sont une combinaison de modèles probabilistes et de techniques

d’analyse. Dans le contexte des systèmes embarqués, ils représentent un moyen de capturer

la variabilité du système. La variabilité provient principalement de la sensibilité du système à

l’environnement et des effets de bas niveau des plate-formes matérielles. Les modèles proba-

bilistes peuvent être utilisés pour capturer de manière appropriée cette variabilité. Les modèles

probabilistes sont des extensions du système de transition et permettent de prendre en compte

les variations des temps d’exécution et des transitions d’état.L’analyse de ces modèles proba-

bilistes permet d’obtenir des mesures quantitatives. Les approches probabilistes qui combinent

la simulation et les approches formelles est un bon compromis entre la précision et les efforts

d’exploration. Le model-checking statistique (SMC) a été proposé comme alternative aux ap-

proches formelles pour éviter une exploration exhaustive du modèle de l’espace d’états. SMC fait

référence à une série de techniques utilisées pour explorer une sous-partie de l’espace d’états et

fournit une estimation sur la performance du système. SMC désigne un ensemble de techniques

statistiques présentant les avantages suivants:

— SMC est basé sur une sémantique formelle des systèmes qui permet de vérifier les propriétés

comportementales. SMC répond à des questions qualitatives (Est-ce que la probabilité pour

un modèle de satisfaire une propriété donnée est supérieure ou égale à un certain seuil?)

et des questions quantitatives (quelle est la probabilité pour un modèle de satisfaire une

propriété donnée?).

— Il nécessite simplement un modèle exécutable du système qui peut être simulé et vérifié par
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rapport aux propriétés basées sur l’état exprimées en logiques temporelles. Les exécutions

observées sont traitées pour décider avec une certaine confiance si le système satisfait une

propriété donnée.

— En tant qu’approche basée sur la simulation, SMC demande moins de mémoire et de temps

que les approches exhaustives. SMC peut donc être considéré comme un compromis entre

les tests et la vérification formelle.

SMC permet d’approcher des systèmes qui ne peuvent être évalués avec une approche ex-

haustive. Il nécessite simplement un modèle de simulation du système, qui peut être vérifié par

rapport aux propriétés basées sur l’état. Cependant, l’adoption de techniques SMC pour l’analyse

des systèmes MPSoC a rarement été envisagée. Cela peut s’expliquer par les efforts considérables

déployés pour mettre en place cette approche. La création de modèles probabilistes reste donc

une tâche difficile et n’est pas bien prise en charge pour les systèmes MPSoC. Cette thèse vise

à fournir des lignes directrices pratiques pour faciliter la création de modèles probabilistes et

favoriser l’adoption d’approches d’analyse probabiliste pour les systèmes multicœurs.

Contributions

Dans le cadre de cette thèse, nous cherchons à étudier l’adoption de méthodes de modélisation

probabiliste et d’analyse temporelle des systèmes MPSoC. Nos principales contributions sont:

1. Cette thèse vise à fournir des lignes directrices pratiques pour faciliter l’adoption de méth-

odes probabilistes dans le flot de conception au niveau système. Ce flot de travail est basé

sur trois parties principales. (1) Une approche basée sur la mesure est d’abord utilisée

pour caractériser l’exécution d’une application sur une plateforme réelle. Cette caractéri-

sation se fait à la fois dans les parties calcul et communication, (2) L’approche modélise

à la fois les parties logicielles et matérielles et se base sur un langage de modélisation de

niveau système. Cette modélisation capte la variation du temps d’exécution en utilisant

les approches probabilistes, (3) Une approche d’analyse probabiliste est basée sur le model

checking statistique (SMC) qui estime la probabilité que notre modèle probabiliste puisse

satisfaire une propriété temporelle.

2. Au niveau transactionnel, le processus de simulation reste lent, ce qui pose des difficultés

pour analyser des systèmes complexes. Nous proposons un modèle de communication au

niveau message d’un bus multiprocesseur pour fournir des résultats de simulation rapides

mais précis. Le modèle proposé a montré une accélération significative de la simulation par

rapport au modèle au niveau transactionnel (TLM) sans dégrader la précision de l’analyse.

3. Une approche d’analyse probabiliste utilisant la méthode de model checking statistique

est mise en place. Cette approche SMC explore partiellement l’espace d’état du système,
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tout en rendant possible pour limiter la probabilité de faire une erreur sur les prédictions

en contrôlant le nombre d’exécutions de simulation à l’aide d’algorithmes statistiques.

Dans cette analyse, les effets des paramètres des algorithmes statistiques sur les résultats

d’analyse sont étudiés.

Contenu du manuscrit

Ce manuscrit est organisé comme suit:

— Chapitre 1 introduit les motivations, le contexte de la thèse, les contributions proposées.

— Chapitre 2 donne un aperçu de l’état de l’art, la comparaison des approches et des méthodes

d’amélioration de la vitesse de simulation.

— Chapitre 3 présente notre démarche de travail, comme le modèle de l’architecture (MoA),

le modèle de calcul (MoC), l’infrastructure de mesure et le modèle de simulation. Quelques

premières études de cas sont présentées et les résultats obtenus avec l’environnement

développé sont donnés.

— Chapitre 4 introduit le modèle de communication au niveau des messages. Ce modèle de

haut niveau améliore le modèle de simulation à la fois en précision et en vitesse de simu-

lation. Les résultats de la simulation montrent une accélération significative par rapport

au modèle de niveau transactionnel (TLM).

— Chapitre 5 présente l’approche d’analyse temporelle probabiliste. Nous visons à démontrer

l’efficacité de l’approche de vérification des modèles statistiques pour l’analyse temporelle

des MPSoCs. Une étude plus approfondie sur différents algorithmes statistiques est fournie

dans ce chapitre. Une extension de l’architecture matérielle avec cache privé activé pour

chaque tuile est présentée. Les résultats d’analyse d’un tel système montrent un bon niveau

de précision.

— Chapitre 6 résume les contributions et fournit différentes perspectives et les possibles

travaux futurs.
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Chapter 1

INTRODUCTION

Multi-processor system-on-chip (MPSoC) systems are widely applied in many domains be-

cause of their high performance/energy consumption ratio. A key property to allow early per-

formance evaluation of such systems in the design process is timing predictability. It represents

the capability to predict timing properties of MPSoC in order to verify that timing constraints

are met. However, shared resources in MPSoC can cause high variations of software execution

time and thus make timing prediction of such systems a challenging task. Therefore, it is crucial

to create performance models that can capture the shared resources effects. In this chapter, we

first introduce the context of our research. Then we discuss different analysis approaches which

are currently being considered for timing analysis. Finally, we present our main contributions

and the organization of this manuscript.

1.1 Timing predictability issues in multi-processor system-on-

chip

1.1.1 Hardware and software resources of multi-processor system-on-chip

Multi-processor system-on-chip (MPSoC) systems have emerged in many domains in few past

decades. We define a MPSoC system as composed of three main parts: an application, an em-

bedded software and a hardware platform. Application can be divided into multiple tasks which

are executed on a hardware platform. Embedded software is composed from system softwares

(operating system, memory management services, arbitration policies, etc.,) and abstraction

drivers. Hardware platform consists of different components such as processing elements (PEs),

buses, memories and peripherals. In MPSoC system, multiple PEs and other hardware compo-

nents are designed on a same chip. In Fig. 1.1, we present an overview of a MPSoC system. A

four-task application is executed on a hardware platform consisting of three processing elements

that communicates to a shared memory and peripherals via an interconnection.

We can classify a MPSoC system as homogeneous or heterogeneous depending on the type

of PEs. A homogeneous MPSoC contains multiple PEs which are of same type. Homogeneous

MPSoCs are designed to execute a same application on their PEs for parallelism perspectives.

Heterogeneous MPSoC have different types of PEs which are designed for specific functionalities.
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For example, these PEs can be General Purpose Processors (GPPs), Digital Signal Processors

(DSPs), Graphical Processing Units (GPUs), hardware accelerators.

T1

T2

T3

T4

PE1

Memory Peripherals

Interconnect
System 

software

Abstraction 

drivers

PE2 PE3

(a) Application (b) Embedded software (c) Hardware platform

Figure 1.1 – Overview of a multiprocessor system-on-chip consisting of an application (a), an
embedded software (b) and a hardware platform (c).

Along with the growth of system complexity, designers have to consider several challenges

in the design process. Different design challenges were discussed by Teich [1] and Nouri [2]:

1. Heterogeneous system-on-chip technology challenges the designers to integrate a heteroge-

neous system into a single multi-billion transistor system-on-chip. The current tendency

to get higher performance is to put more transistors on smaller size of chip. However, the

higher density of transistor on a chip requires much more higher efforts for physical design

and optimization of different aspects such as energy consumption, temperature, etc.

2. Hardware/software complexity: From the hardware side, interactions between different

complex hardware components accessing shared resources cause the unpredictability of

system behaviors. From the software side, the functionalities of sophisticated applications

with millions lines of code need enormous efforts to be tested and verified.

3. Hardware/software verification checks in the design process whether the MPSoCs can meet

its functionalities and requirements. Since MPSoCs become more and more complex, the

performance verification of such system is inevitable. In [3], Radetzki presented two aspects

which has to be taken into account in the performance verification: functional and extra-

functional properties. Functional properties are verified to check the system functionality

correctness by analyzing possible testing scenarios to detect potential problems. This avoids

costly iterations in the design/manufacturing process. Extra-functional properties consist

of the timing behavior, power consumption, reliability, security, etc. Early performance

verification reduces not only the design time but also save the time-to-market windows.

4. Uncertain environment effects: Embedded systems are designed for specific functionalities

where they can continuously interact with their environment. Thus their performance get
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influenced by different uncertain and unpredictable environment contexts. Therefore, the

environment uncertainties should be taken into account in the design process.

In the program execution, both software and hardware resources influence the program ex-

ecution time. In this thesis, we mainly focus on studying the shared resources influences to the

timing analysis of MPSoC systems. Thus in the next Section, we aim to present such influences.

1.1.2 Influence of shared resources on timing predictability of MPSoC sys-

tems

In MPSoC systems, the processing elements share system resources such as buses, memories,

caches, etc. These shared resources provide different influences to timing behaviors of MPSoC

systems. Fig. 1.2 presents different types of shared resources existing in a MPSoC system. A

private cache is accessible only by each PE. A shared cache is used by all the PEs. Both private

and shared caches are used to temporarily store data to reduce the large latency between the PE

and main memory. The PEs access to the shared caches and main memory via an interconnect.

Processing 

element 

Interconnect

Main memory

...

Shared cache

Priv. cache

Processing 

element 

Priv. cache

Processing 

element 

Priv. cache

.

.

.

Figure 1.2 – Different types of shared resources in MPSoCs: buses, memories (main memory,
private caches), shared caches. Interferences occur while the processing elements access to the
shared resources at same time.

Concurrent accesses to shared resources cause interferences. These inteferences lead to un-

desired additional delays in the application execution time. Different mechanisms causing addi-

tional delays in Commercial off-the-shelf (COST) multi-processors were presented by Kotaba et

al. in [4]. For example, contention on shared bus can come from concurrent accesses of multiple

cores, or other device, such as IO, DMA, etc. In shared memory, interleaved accesses by multiple
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cores cause additional delays for cores. For dynamic memory, additional delays can come from

memory refresh.

In [5], Abel et al. classified shared resources into two classes: bandwidth resources and storage

resources. The bandwidth resource corresponds to the situation when several tasks access to this

resource at the same time. However, this resource only allows one access at a time. An arbitration

policy is thus used to manage the order of access of these tasks. It allows one task to access

to this resource and delays the others. One example of bandwidth resource is shared bus. The

arbitration policies are divided into three main classes:

— Time-driven arbitration uses a predefined bus schedule which assigns time slot of fixed size

to particular PEs (e.g., Time Division Multiple Access (TDMA)).

— Event-driven arbitration decides at run-time, which PE is granted the access to the resource

during the next time slot. These decisions usually depend on the access histories of all PEs

(e.g., Round Robin or First Come First Serve (FCFS)).

— Hybrid arbitration splits their arbitration period into segments of fixed length. Static seg-

ments use Time-driven resource arbitration and dynamic segments use Event-driven re-

source arbitration (e.g., FlexRay a bus protocol used in the automotive industry of this

strategy).

PE0 PE1

Interconnect

Shared mem

write() read()

.

write()

read()

time

task

write read penalty time

(a) Interference (b) Penalty time caused by interference

Figure 1.3 – Interference on bus to access to the shared memory (a) causes penalty time (b).

Fig. 1.3 presents the interferences caused by concurrent accesses to the bus. In Fig. 1.3 (a),

two PEs attempt to access the shared memory via an interconnect. One PE tries to write data

to the shared memory and another one tries to read data from the shared memory. The bus

arbitration policy in this case is First-Come-First-Served. Then in Fig. 1.3 (b), the execution

process of these two PEs is presented. The first write function is executed and the first read

function is delayed. The second write function is also delayed until the end of the first read

21



Chapter 1 – Introduction

function. Similarly, the second read function is delayed by the second write function. The delay

duration caused by the bus interference is called penalty time.

The storage resource relates to the situation when one task changes the state of the shared

resource which is being used by a second task. This situation causes an additional delay for the

second task. The examples of storage resource are shared memories and shared caches. Multiple

accesses to main memory via shared cache might cause penalty delays. In Fig. 1.4 (a), we present

an example in which two PEs access to main memory via a shared cache. Cache hit occurs when

PE0 attempts to read data from the main memory and this data is available on shared cache.

For PE1, the data is not available on the shared cache (i.e, cache miss) and it has to load data

PE0

Shared

Cache

PE1

Main

Mem.

read()

(a) Access to main memory via cache (b) Penalty delay caused by cache miss

Cache hit

read() pen()

read()

read()

time

task

read() read()

Cache miss

pen()

Figure 1.4 – Accessing to the main memory via cache (a) and a penalty delay caused by a cache
miss (b) leads to longer execution time.

from main memory. In Fig. 1.4 (b), the execution time to read data of two PEs is presented.

The first read function needs only the read time from the cache. The second read function gets

slower execution time with additional penalty delay caused by the cache miss. Different cache

replacement policies are used to reduce cache misses. These policies help the cache to identify

which data should be removed to make space for new data that needs to be added. Furthermore,

they improve both precision and efficiency of a cache analysis. In [6], Monniaux et al. presented

in detail some following cache replacement policies.

— Least-Recently Used (LRU) evicts the data block least recently used when a cache miss

occurs. On a miss, the oldest block is replaced by a new one, which has age 0 and the ages

of all other blocks are incremented.

— Pseudo-LRU (PLRU) improves the performance of the LRU algorithm by evicting data

block using approximate measures of age rather than maintaining the exact age of every

data block in the cache.

— First-In-First-Out (FIFO) evicts the data block in the order they were added without

depending on how often or how many times they were accessed before.
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In the performance verification of MPSoC systems, timing behaviors are among priorities to

be analyzed, especially the task execution time. As summarized by Mitra et al. in [7], the task

execution time can variate depending on both software tasks and hardware resources where the

tasks are executed.

— From the software perspective, the execution time of a task depends on its input. Differ-

ent input data can be processed following different execution paths through the program

leading to different execution times.

— From hardware perspective, the variability in the execution time is caused by interferences

between tasks accessing shared resources.

We denote the ability to predict timing behaviors of MPSoC systems as timing predictability.

Since many hardware resources are involved in the task execution, the execution time becomes

more difficult to be predicted. We refer the task execution time on each hardware element as

elementary timing. The characterization of these elementary timings is crucial for the timing

predictability of an application made of multiple tasks and allocated to a multip-processor

platform. In the scope of this thesis, we focus on capturing timing variability from hardware

perspectives caused by shared resource effects. In the next section, we introduce the notion of

timing compositionality which represents the ability to exhibit different shared resource effects

of MPSoC systems.

1.1.3 Timing compositionality of MPSoC systems

Before defining the timing compositionality, Hahn et al. [8] provided a notion of decomposi-

tion of a system’s timing into the timing contributions of its components. The system states are

related with the corresponding states of each component by the decomposition. Furthermore,

the decomposition provides a combination function that combines the timings of the individual

components and captures the type of composition. The complexity of the combination function

depends on the chosen decomposition. The timing compositionality is then defined that the

timing behavior of a system can be inferred from the timing contributions of its constituent

components and the type of composition. For example, given a MPSoC system consisting of

multiple processors that access to a shared memory via a shared bus, the execution time of the

program running on one processor can be predicted from its computation time, the memory

access time and the bus blocking time.

The type of composition is classified based on two following notions timing anomalies or

domino effects as defined in [9, 10, 11].

— A timing anomaly is a situation where the local worst-case does not contribute to the

global worst-case. In [12], different potential sources can lead to timing anomalies, such

as: scheduling, branch prediction, cache and cache replacement policy.
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III, Non-compositional

II, Compositional with constant bounded effects

Memory
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Memory

I, Fully timing compositional

L1 cache
Processor 0

TA TB

Scheduler + Com. driver

L1 cache
Processor N-1

TC TD

Scheduler + Com. driver

...

Figure 1.5 – Classification of architectures according to the level of resources compositionality

— A domino effects is a situation where the difference in timing between two states cannot

always be bounded by a constant. For example, given a program loop, the difference in

execution time between states of the pipeline (or caches, or other hardware resource)

increases in each iteration.

In [13], Cullmann et al. classified three types of MPSoC architectures depending on whether

they exhibit timing anomalies and/or domino effects. These architectures are illustrated in Fig.

1.5.

1. Fully timing compositional architectures does not exhibit timing anomalies or domino ef-

fects. In this case, a local worst-case path can be analyzed safely without considering other

paths. In this thesis, we consider a hardware platform with predictable computation time

due to un-cached local and exclusive data and instruction memory.

2. Compositional with constant bounded effects architectures exhibit timing anomalies but no

domino effects. The analysis has to consider the effects of local data/instruction caches

(L1 caches as illustrated in Fig. 1.5). Possible cache misses are caused by the difference

between cache size and data in the main memory. In general, an analysis has to consider

all execution paths. A trade-off between precision and efficiency is to safely discard local

non-worst-case paths by adding a constant number of cycles to the local worst-case path.

The Infineon TriCore [14] is an example of this class.
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3. Non-compositional architectures exhibit domino effects and timing anomalies. Different

level of caches are taken into account in the analysis. Possible cache misses are caused by

the replacement of data on shared cache (L2 cache) by processors. For such architectures

timing analyses always have to follow all paths since a local effect may influence the future

execution arbitrarily. In [15], Schneider presented a domino effect in the pipeline of the

PowerPC 755.

To evaluate such architectures, appropriate modeling and analysis approaches are needed to

describe and analyze timing behaviors. In the next section, we aim to present the performance

evaluation of MPSoC systems related to different timing analysis approaches.

1.2 Performance evaluation of MPSoC systems

1.2.1 Hardware/software codesign

Hardware/software codesign approaches aims to concurrently design hardware and software

components of embedded systems. The main objective is first to meet design constraints such

as cost, performance, and power of the product and secondly to reduce the time-to-market of

the product [16].

System requirements

System specification

System architecting

Specification of software Specification of hardware

Software programming 

languages

Hardware description 

languages

Binary code Gates

Implementation

Low level co-

simulation

Detailed co-

simulation

High level co-

simulation

Pre-partitioning

Post-partitioning
Verification

Figure 1.6 – Hardware/software codesign with pre-partitioning and post-partitioning phases.
System level verification captures the system performance early in the design process.
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In Fig. 1.6, the hardware and software codesign steps with the pre-partitioning and post-

partitioning are illustrated. In the pre-partitioning, the codesign process first identifies the sys-

tem requirements to be satisfied. The system architecting represent the considered system using

system level design (SLD) tools. This high level system design avoids detailed consideration of

the system. However, it requires availability of reliable estimations about component models

to create an accurate system. As illustrated in [16], a 10% error is acceptable at this phase.

At system level, a high level of modeling language can be used to describe the considered sys-

tem, for example Unified Modeling Language (UML). In this thesis, we focus on the verification

step which allows early exploration of the system performance by using the simulation-based or

formal approaches.

Different abstraction levels of hardware/software codesign are then illustrated in the post-

partitioning steps of Fig. 1.6. From the software side, the functional specification of software such

as the computation and communication parts can be mapped and scheduled on one or multiple

processing elements. This step can be done by using a target programming languages such as C,

C++. At the binary code level, the software code such as a function, a method or a basic block

is compiled and linked to the selected hardware platform to build an executable description

[1]. From the hardware side, processes and tasks are implemented as hardware accelerators are

synthesized down to RTL description by using hardware description languages such as VHDL,

Verilog. At the gates level, the granularity of the objects considered during logic synthesis are

implemented by using logic gates and flip flops. Finally, the implementation of an application

executing on a hardware platform is for validation and verification purposes. The efficiency of

the proposed system level model can be evaluated by comparing the simulation results with the

implemented results.

Several languages have been proposed as intermediate solution for system design, for example

SystemC [17] and SpecC [18], [19]. SystemC is a class library of C++, while SpecC is a superset

of ANSI C. They provide useful data types and concurrent programming structures for describing

both software and hardware parts.

System level design approaches have been proposed to allow estimation of HW/SW archi-

tecture performances early in the design process. In system level design approaches, workload

models are used to capture the influence of application execution on platform resources. Timing

properties of architectures and related power consumption can then be assessed under different

working scenarios. However, the efficiency of system level design approaches strongly depends

on the created HW/SW architecture models that should deliver both fast analysis time and

good accuracy. Especially, captured workload models should correctly abstract low-level details

of system components but still provide good estimations about the whole system performance.

High-level models must capture the possible variability in multi-core platform resources usage

caused by cache management, bus interleaving, and memory contention. The creation of efficient
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architecture models represents thus a time-consuming effort that limits the efficiency of current

system level approaches.

The different categories of system-level analysis approaches are discussed in the next sections.

1.2.2 Simulation-based analysis approaches

Simulation-based approaches are proposed to partially test system properties. Different

simulation-based approaches have been compared in [20] to support evaluation of multi-core

architecture performance early in the design process. In the existing approaches, models of

hardware-software architectures are formed by combining an application model and a platform

model. In the early design phase, full description of application functionalities is not mandatory

and workload models of the application are used. A workload model expresses the computation

and communication loads (e.g., time, power consumption, memory cost) that an application

causes when executed on a hardware platform. The captured performance models are generated

as executable descriptions and simulated. The execution time of each load primitive is ap-

proximated as a delay. Delays are typically estimated from measurements on real prototypes or

analysis of low level simulations. SystemCoDesigner [21], Daedalus [22], SCE [19], and Koski [23]

are good examples of academic approaches. Other existing academic approaches are presented

by Kreku et al. in [24] and by Arpinen et al. in [25]. Simulation-based approaches require exten-

sive architecture analysis under various possible working scenarios. Since the possible working

scenarios of the created models are very huge, the created models can not be exhaustively sim-

ulated in a reasonable analysis duration and worst-case working scenarios are hardly identified

and assessed. One other important issue concerns the accuracy of created models. As architec-

ture components are modeled as abstractions of low level details, there is no guarantee that the

created architecture model reflects with good accuracy the whole system performance. Finally,

with the rising complexity of MPSoC platforms, execution of simulation models requires more

simulation time. In the next section, formal analysis approaches are presented which provide a

more exhaustive analysis of system state space.

1.2.3 Formal analysis approaches

Due to insufficient corner case coverage, simulation-based approaches are limited to de-

termine guaranteed bounds of system properties. Different formal approaches have thus been

proposed to analyze multi-core systems and provide time bounds. These formal approaches are

commonly classified as analytical methods and state-based methods.

Most of the available static real-time methods are of analytical nature. An overview of such

methods are given in [26]. Since analytical methods depend on solving closed-form equations,

they have the advantage of being scalable to analyze large-scale systems. However, analytical

methods abstract from state-based modus operandi of the system under analysis (SUA) leads
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to pessimistic over-approximated results compared to state-based real-time methods [26]. For

example, such systems can be complex state-based arbitration protocols or inter-processor com-

munication task dependencies. Analytical methods that combine analysis of processor and bus

scheduling for distributed embedded systems can be classified as holistic methods [27], [28], [29]

and compositional analytical methods [30], [31].

State-based real-time methods are based on representing the SUA as a transition system

(states and transitions) and since they reflect the real operation states of the actual system be-

havior, tighter results can be obtained compared to analytical methods. Many recent approaches

for software timing analysis on many- and multi-core architectures are built on state-based analy-

sis techniques. The two main considered application classes are streaming applications (modeled

as synchronous data flow graphs) [32], [33] and generic real-time task-based applications [34],

[35].
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Figure 1.7 – Comparison different formal approaches according to the achievable accuracy and
analysis time (a) and the obtained accuracy with the rising of problem size (b).

In Fig. 1.7, we compare different formal approaches according to the achievable accuracy and

analysis time (a) and the potential gain in addressable problem size (b). As illustrated, state-

based approaches provide tighter results compared to analytical (holistic and compositional)

approaches. However, state-based approaches allow exhaustive analysis of system properties at

the expense of time-consuming modeling and analysis effort. Analytical approaches can address

more complex systems.
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1.2.4 Probabilistic analysis approaches

Probabilistic approaches are a combination of probabilistic models and analysis techniques. In

the context of embedded systems, they represent a means of capturing system variability. In this

context, variability mainly comes from system sensitivity to environment and low level effects of

hardware platforms. Probabilistic models can be used to appropriately capture this variability.

Probabilistic models are extensions of labeled transition system and allow variations about

execution times and state transitions to be considered, for example the discrete time Markov

chains or Markov automata, etc. Analysis of probabilistic models allow quantitative measures

to be obtained. As an illustration, the adoption of probabilistic model checking for evaluation of

dynamic data-flow behaviors is presented in [32]. Markov automata is used as the fundamental

probabilistic model to capture and analyze architectures. Characteristics as application buffer

requirements, timing performance, and platform energy consumption are estimated. However,

this approach is restricted to fully predictable platforms, with low influence of platform resources

on timing variations.

Probabilistic approaches that combine simulation and formal approaches appear to be a

good compromise to deliver both accuracy and limited exploration effort. Statistical Model

Checking (SMC) [36] has been proposed as an alternative to formal approaches to avoid an

exhaustive exploration of the state-space model. SMC refers to a series of techniques that are

used to explore a sub-part of the state-space and provides an estimation. SMC designates a set

of statistical techniques that present the following advantages:

— As classical model checking approach, SMC is based on a formal semantic of systems that

allows inference of behavioral properties. SMC is used to answer qualitative questions

(Is the probability for a model to satisfy a given property greater or equal to a certain

threshold?) and quantitative questions (What is the probability for a model to satisfy a

given property?).

— It only requires an executable model of the system that can be simulated and checked

against state-based properties expressed in temporal logics. The observed executions are

processed to decide with some confidence whether the system satisfies a given property.

— As a simulation-based approach, it is less memory and time intensive than exhaustive

approaches. SMC can thus be seen as a trade-off between testing and formal verification.

This approach has been considered in various application domains [37]. First, SMC allows

to approximate systems that can not be assessed with an exhaustive approach. Second, it only

requires a simulation model of the system, that can be checked against state-based properties.

Various existing probabilistic model checkers have been extended to support statistical approach.

PRISM [38] is based on a symbolic model checker that relies on numerical techniques. UPPAAL-

SMC [37] is a statistical model checking extension for the UPPAAL model checker. Plasma-Lab
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[39] is a modular and extensible statistical model checker that can be extended with external

simulator and checkers. The use of Plasma-Lab to carry out statistical analysis for systems

modeled in SystemC is presented in [40]. SMC has been adopted in [41] to evaluate a many-core

architecture. A statistical model checking tool called BIP-SMC was proposed in [42]. It was

used to evaluate the probability that some timing aspects (e.g. execution time, variability of

processing time) were bounded. A very recent work in [43] demonstrates the applicability of

SMC for a quantitative evaluation of uncertainty-aware hybrid AADL designs [43] (of a train

control system) against various performance queries. However, adoption of SMC techniques to

analysis of multi-core systems have rarely been considered. This can be explained by the large

amount of required effort to setup this approach. Creation of probabilistic models remains a

difficult task and is not well supported for multi-core systems. This thesis aims at delivering some

practical guidelines to facilitate the creation of probabilistic models and favour the adoption of

probabilistic analysis approaches for multi-core systems.

1.3 Contributions and organization of the manuscript

In the scope of this thesis, we aim to study the way adoption of probabilistic modeling and

timing analysis methods of MPSoC systems. The main contributions of this work are:

1. Since the lack of a systematic evaluation workflow leads to difficulties to use probabilis-

tic approaches, a new evaluation workflow is proposed to evaluate the these approaches.

This workflow is based on three main parts: (1) A measurement-based approach is first

used to characterize timing behaviors of the execution of application on a real platform.

This characterization is done in both computation and communication parts, (2) A prob-

abilistic modeling approach implements both software and hardware parts on a specific

programming language. This implementation captures the variation of the execution time

by using the statistical timing models, and (3) A probabilistic analysis approach is based

on statistical model checking (SMC) which estimates a probability that our probabilistic

model can satisfy a timing property.

2. At transaction-level, the simulation process remains slow which causes difficulties to an-

alyze complex systems. We propose a message-level communication model of a multipro-

cessor bus to deliver fast yet accurate simulation results.

3. A probabilistic analysis approach which considers statistical model checking (SMC) ap-

proach for MPSoCs is taken into account. This SMC approach partially explore system

state-space, but still makes possible to bound the probability of making an error about

predictions by controlling the number of simulation runs by using statistical algorithms.

In this analysis, the effects of the statistical algorithms parameters to the analysis results

are further investigated.
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The remains of this manuscript is organized as follows:

— Chapter 2 gives an overview of the state of the art, comparing the existing timing analysis

approaches and accuracy/simulation speed improvement approaches.

— Chapter 3 presents our workflow which is the working environment with the related the

model of architecture (MoA), the model of computation (MoC), the measurement infras-

tructure and the simulation model. Some case-studies are presented and results achieved

with the developed environment are given.

— Chapter 4 introduces the message level communication model. This high level model im-

proves the simulation model in both accuracy and simulation speed. The proposed model

showed a significant simulation speed-up comparing to the transaction-level model (TLM)

without degrading the analysis accuracy.

— Chapter 5 presents the probabilistic timing analysis approach. We aim to demonstrate the

efficiency of statistical model checking approach for timing analysis of MPSoCs. A further

study about different statistical algorithms is provided in this chapter. An extension of

the hardware architecture with private cache for each tile is presented. Analysis results of

such system show a good level of accuracy.

— Chapter 6 summarizes the contributions and provides different perspectives and future

work.
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Chapter 2

STATE OF THE ART

In the previous chapter, we introduced the context of our work. Different analysis approaches

can be used to verify the performance of MPSOC systems. Probabilistic approaches are proposed

to capture the variability of the execution time caused by contentions at shared resources. In

this chapter, we first review the performance analysis approaches for MPSoC systems. These

approaches are compared regarding their analysis effort, their accuracy and their scalability.

Second, we specifically discuss some existing works that were proposed to improve the efficiency

of system-level simulation-based approaches.

2.1 Performance analysis approaches

Analysis approaches are commonly classified as (1) simulation-based approaches, which par-

tially test system properties based on a limited set of stimuli, (2) formal approaches, which check

system properties in an exhaustive way, and (3) hybrid approaches, which combine simulation-

based and formal approaches.

2.1.1 Simulation-based approaches

In this section, we present simulation-based approaches. We emphasize the way performance

models are created. Then we present the considered use-cases and the obtained results. Several

simulation-based approaches were compared in [44], such as SystemCoDesigner [21], Daedalus

[45, 46], system-on-chip environment (SCE) [19, 47] and Koski [48] which are good examples of

academic approaches.

SystemCoDesigner presented in [21] is an SystemC-based electronic system level (ESL) de-

sign framework for design space exploration (DSE). It allows to automatically map applications

into a heterogeneous MPSoC platform. The SystemCoDesigner design flow starts by describing

an application as an actor-oriented model using SystemC. Some or all actors are then generated

using behavioral synthesis to create architecture templates. An architecture template contains

all possible hardware modules, processors and the communication infrastructure. Design space

exploration is used to select the best architecture solution that fulfills the user requirements,

such as the overall throughput and required hardware resources. From a set of obtained solu-
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tions, the designer selects promising implementations for rapid prototyping on FPGAs. In [21],

Keinert et al. implemented a Motion-JPEG decoder case study. The DSE evaluated 7600 dif-

ferent solutions over 5.1033 possible solutions in 2 days 17 hours 46 minutes. The exploration

time for each solution is about 30 seconds. In fact, it took a lot of time to explore a very small

part of the solution space and good solutions could be missed. There were 366 solutions found

and several of these solutions were implemented onto a Xilinx Virtex II FPGA (XC2V6000).

Different objectives were evaluated such as: 1) throughput; 2) latency; 3) number of required

flip-flops; 4) lookup tables (LUTs); and 5) block random access memories (BRAMs). The FPGA

implementations results showed differences in latency and throughput up to 30% comparing to

the performance estimations during DSE due to scheduling overhead. The estimated hardware

resources during DSE required 15% more than in the implementation on FPGA. The accuracy

of the performance model of this approach still needs to be improved.

Daedalus is a system-level design flow for MPSoC based embedded multimedia systems. It

provides a high automation of design space exploration (DSE), system-level synthesis, appli-

cation mapping, and system prototyping of MPSoCs. The Daedalus design flow is detailed in

[45, 46], it consists of three main steps implemented by the KPNgen, Sesame and ESPAM tools.

In the first step, a sequential application specification written in C or C++ is automatically

converted into a parallel Kahn Process Network (KPN) specification using the KPNgen tool.

In the second step, the generated KPNs are then used by the Sesame modeling and simula-

tion environment to perform system-level architectural DSE. Sesame evaluates the performance

of different applications to architecture mappings, hardware/software partitionings, and target

platform architectures. More details about Sesame tool can be found in [49]. In the third step,

the ESPAM tool takes as input the specifications of promising candidate system designs ob-

tained from the previous step. It automatically generates synthesizable VHDL that implements

the candidate MPSoC platform architecture. The target MPSoC of Daedalus is composable MP-

SoCs, in which the IP components are strictly composed. This prototyping allows to calibrate

and validate the created performance models. Several case studies were used to demonstrate

the feasibility of Daedalus approach. In [45], Thompson et al. explored different implementation

option for a Motion-JPEG encoder case study running on a 4 heterogeneous processor MPSoC.

The case study state space was exhaustively explored with 10148 solutions in 2.5 hours. The

exploration time for each solution is less than 1 second which is much faster than in the System-

CoDesigner approach. Several solutions were used for the prototyping on Xilinx Virtex II Pro

FPGA (xc2cp20). The estimated simulations showed an average error of 12% and worst-case er-

ror of 19% to the FPGA implementations which still need to be improved. Another work about

Daedalus approach presented by Nikolov et al. in [46] that performed a DSE study of a JPEG

encoder application executing on both homogeneous (MicroBlaze processors) and heterogeneous

(MicroBlaze processors and Discrete Cosine Trans-form (DCT) IP cores) MPSoCs. The number
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of processing cores is up to 30. They achieved a performance speed-up of up to 20x compared

to a single processor system. The DSE experiments and the real implementation of 25 different

hardware solutions on Xilinx Virtex II-6000 FPGA were performed within 5 days with around

70% of this duration taken by the low-level commercial synthesis and place-and-route FPGA

tools. They presented a very good accuracy with the error between the estimated models and

real implementation is around 5%. However the experiment duration is still long while exploring

a limited number of hardware solutions.

The system-on-chip environment (SCE) [19, 47] implements an automated system design

flow from specification down to hardware/software implementation. The SCE design flow starts

with an abstract model specifying the design functionality. The design flow then explores the

design space consisting of the architecture, scheduling and network exploration to make different

design decisions. A new lower level of abstraction model is refined by integrating design decisions

into the previous model. In the next phase, hardware/software synthesis is performed. Hardware

synthesis takes behavioral hardware models down to structural register-transfer level (RTL) de-

scriptions. While in software synthesis, application written in SpecC [18], middleware, drivers

and interrupt handlers are generated, cross-compiled, and targeted toward and linked against

real time operating system (RTOS) to create a final target binaries. In SCE, all design steps

are integrated under a common graphical user interface (GUI). The GUI provides interactive

and visual design model and database browsing, decision entry, and design analysis. For the

case study, they demonstrated the design space exploration of their approach by considering six

industrial examples: the JPEG encoder, the GSM voice codec, floating- and fixed-point versions

of an MP3 decoder and the GSM vocoder. For each example, they considered different architec-

tures using Motorola DSP56600, Motorola ColdFire and ARM7TDMI processors together with

custom hardware coprocessors and I/O units. They used various communication architectures

with DSP, CF, ARM (AMBA AHB) and simple handshake busses. The exploration duration of

the design space for each example is about few seconds. Timing errors range from 12.5% down

to an average of 3% depending on back annotation of profiling or trace-based estimates.

In [48], Kangas et al. presented Koski design flow for MPSoC that covers the design phases

from system-level modeling to FPGA prototyping. Koski design flow consists of five main steps.

First, designers capture the requirements of an application and architecture, including design

constraints. Second, the functionality of the system is described with an application model in

the unified modeling language (UML) design environment and verified with functional simula-

tions. The architecture model is designed from the application model and the given platform. A

mapping model is used to describe the relationship between application and architecture models.

Third, application and architecture models are transformed to an abstracted model for fast archi-

tecture exploration by using the UML interface. Fourth, the exploration step consists of static

and dynamic exploration which analyzes an extensive set of architectures to find optimized
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Related work
Fully timing

compositional

Compositional

with bounded

effects

Non-

compositional

SystemCoDesigner [21]

Daedalus [45, 46]

SCE [19, 47, 44]

Koski [48]

Table 2.1 – Classification of simulation-based approaches according to the level of composition-
ality of addressed platforms

mapping. The static exploration is used to optimize the allocation, mapping and scheduling,

while the dynamic exploration is based on iterative simulation of application and architecture

to optimize the cost function parameters. Designers can control the architecture exploration

by specifying different constraints, such as the platform parts that can be used as well as the

allowed mapping combinations or performance, area, and power constraints. In the last step,

the physical implementation is performed by generating both software/hardware parts down to

low level software code and RTL descriptions which are combined for the implementation of

real hardware platform. As example, they studied a dynamic reservation time division multiple

access (TDMA) based medium access control (MAC), so-called TUTMAC. The target platform

is a part of a Wireless Local Area Network (WLAN) terminal (TUTWLAN). The architecture

exploration was performed to optimize the initial allocation and mapping model. The static

exploration time is very fast which is 7 minutes for 74935 mapping iterations. For the dynamic

exploration, it took a very long time to explore the whole 74935 mapping iterations which is

around 8 days. Therefore they explored only 56 mapping iterations within 9 minutes. For the

FPGA prototyping, they used a Stratix FPGA from Altera. However, the comparison between

the performance model and the real implementation is not presented in their work.

In Tab. 2.1, we summarize the presented simulation-based approaches which are classified

according to the above identified three categories of platforms. We have estimated the efficiency

of these approaches for each type of platforms according to the case studies presented in each re-

lated work ( well supported , partially supported and not supported). However, these works

support only fully timing compositional architectures, in which all the behaviors of components

are well characterized. In these presented works, the performance models were executed in lim-

ited number of simulation runs that might led to insufficient corner case coverage in analyzing

of such performance models. Furthermore, shared resource effects of MPSoC systems have been

rarely considered. The variability of the execution time of such systems was not taken into ac-

count. In the next section, we present the formal approaches which are managed to exhaustively

check the system properties.
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2.1.2 Formal approaches

In this section, we discuss different formal approaches which have been proposed to ana-

lyze multi-core systems and provide real-time and performance bounds. The formal approaches

are commonly classified as analytical approaches and state-based approaches. The analytical ap-

proach consists of holistic and compositional approaches. The holistic approaches create equa-

tions representing the system in a whole, while the compositional approaches combine the equa-

tions of system components. We first review some holistic approaches in the following.

In [27], Tendell et al. presented a holistic schedulability analysis for fixed-priority tasks with

arbitrary deadlines which communicate by messages passing and shared data areas. This schedu-

lability analysis was used to determine the worst-case response time (WCRT) of a distributed

task set. They first introduced the equations to compute the WCRT of tasks for a single processor

example. A communication model was then provided from the communications schedulability

analysis of a multiprocessor system with a shared broadcast bus using the TDMA arbitration

protocol. An integration of the computation and communication model was presented to produce

analysis for a distributed hard real-time system architecture. The integration model consists of

equations that represent the system behaviors. For the case study, they considered a simple

system consisting of three processors with 32 tasks and 7 objects that share a broadcast bus.

The computation of a hypothetical aircraft control system was considered as tasks which send 14

different messages in the system, of which 13 require transmission across the shared communi-

cation bus. They showed the WCRT of tasks based on their equations. However, their example

remained very simple and they did not compare their results to any implementation on real

hardware platform.

In [28], Yen et al. presented an holistic analysis algorithm to derive tight bounds on execution

time for real-time distributed systems. Their analysis algorithm is based on two main techniques:

phase adjustment and separation analysis to compute both upper and lower bounds on the worst-

case delay of a task graph executed on multiple PEs. Phase adjustment uses a modified longest-

path algorithm to model the constraints imposed by data dependencies in the task graph, while

separation analysis uses a modified max-constraint algorithm to solve the preemtion between

tasks. These two phases are repeated to get tighten bound. In one iteration, the results of one

phase were used to improve the results of the other. A limit on the number of iterations can also

be set if faster delay estimation is desirable. For the case study, they considered a three tasks

example running on a 4 CPU system consisting of three Intel i960s and one Lucent DSP3210.

They captured the execution time bound for all functions of tasks. Then they applied their

algorithms using the lower bound for each period and the upper bound for each computation

time on a Sun SS20 workstation. Their algorithms showed the simulation time with a factor of

5348x less than the simulation on 4 CPU system. They presented an interesting algorithm to get

a tight bound on execution time which is also a main property of our work. However, they have
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not yet consider exhaustive simulation taking into account possible values between lower bound

and upper bound. Moreover, they did not consider the shared resource effects. No consideration

of MPSoC was presented in their work. The consideration of preemption and task pipelining are

interesting but they are not in the scope of our work.

In [29], Pop et al. presented a holistic scheduling and analysis approach of mixed time/event

triggered distributed embedded systems which are communicating through mixed static/dy-

namic bus protocols. Given an application and a system architecture, a correct static schedule

for the time triggered (TT) tasks and static messages has to be constructed. They first presented

the schedulability analysis for the event triggered (ET) sub-system considering the influence of

a given static schedule. Then they constructed the static schedule for TT tasks and static mes-

sages. They also discussed some specific optimization issues which can be solved by efficient

design space exploration, such as the partitioning of the system functionality into time triggered

and event triggered activities, determining the optimal structure of the bus access cycle. Then

they proposed a bus access optimization to solve the problem of insufficient bandwidth allocated

for the communication of messages between ET tasks. For the case study, they first generated

80 applications. Each application consisted of 80 tasks mapped on 10 processor nodes. They

observed the bus optimization results by changing the percentage of event trigger tasks and the

processor utilization. The percentage of event triggered tasks was 40% of the total number of

tasks for half of the application set and 60% for the other half. Processor utilisation was 60%

and 80%. The communication infrastructure was mixed equally dynamic and static protocol. All

experiments were done on an AMD athlin 850 MHz PC. The obtained results showed an average

improvement of the schedulability between 24% and 34% with an average optimization time is

about 2 minutes. However, they did not provide any comparison to other existing scheduling

and analysis approaches or real implementation. Since their target architecture is simple, further

demonstration in more complex architectures is needed.

These holistic approaches are limited to the system configurations which simplify the equa-

tions, such as deterministic TDMA networks. The lack of procedure to solve the holistic equations

for arbitrary systems leads to the avoidance of these approaches for real-time analysis of multi-

processor system. The following works represent the second type of the analytical approaches,

called the compositional approaches.

In [30], Huang et al. presented formal performance analysis approach for real-time stream-

ing applications on MPSoCs. This approach aims at integrating modular performance analysis

into a distributed operation layer (DOL). Distributed operation layer is a platform-independent

MPSoC programming environment used for real-time streaming and signal processing applica-

tions. In this DOL, they presented their contributions relating to the generation and calibration

of formal performance analysis models. The model generation consists of two phases. First, a

meta-model is generated representing the data dependencies of actors in the dataflow process
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network and the mapping of the application onto an architecture. Second, this meta-model is

refined using the method-specific abstractions and the corresponding code is generated. These

two phase are described in the context of DOL design flow. For the analysis, they proposed

the modular performance analysis (MPA) which provides hard upper and lower bounds for

various performance criteria in a real-time system, such as end-to-end delays, buffer require-

ments, or resource utilization. For the experiments, they considered three different applications:

a producer-consumer, a Motion-JPEG (MJPEG) decoder and a wave field synthesis (WFS)

running on a multiprocessor ARM architecture (MPARM) cycle-accurate simulator. The du-

ration of the single steps to generate, calibrate and evaluate the MPA models were minute in

the producer-consumer to hours in the MJPEG. In terms of the accuracy, they compared the

observed worst-case execution time between simulation and using MPA for two mappings. The

results showed the inaccuracy of the performance models because of two main reasons: first,

several components in the formal performance analysis do not yield tight bounds; second, the

timed simulations only exhibit the worst-case and best-case behavior at component-level but

not at system level.

In [31], Henia et al. presented SymTA/S which is a system-level performance and timing

analysis approach based on formal scheduling analysis techniques and symbolic simulation. The

core of SymTA/S is to couple local scheduling analysis algorithms using event streams describing

the possible timing of input/output events of tasks. A SymTA/S application model consists of

tasks which are mapped and executed on a computation or communication resource. A task is

activated due to activating events. The possible timing of activating events is captured by event

models which can be described by sets of parameters. Their compositional performance analysis

approach can requires possible timing of output events for propagation to the next scheduling

component. It has the ability to adapt the possible timing of events in an event stream. In order

to get tighter analysis bounds, they proposed to use advanced performance analysis techniques,

called system contexts. These techniques take into account the correlations between successive

computation or communication requests. In SymTA/S, the design space exploration for system

optimization is presented by defining the search space and the optimization objectives. They

explored different parameters, such as the mapping , priority of tasks, time slot sizes, time slot

order, scheduling policy and system clock frequency. They combined optimization algorithms

with system sensitivity analysis for rapid design space exploration. A sensitivity analysis captures

the bound of system performance due to the variation of the parameters. They considered

two metrics for the sensitivity analysis: the variation of task execution/computation times and

the variation of resource speed. For the case studies, they analyzed the execution of one task

which issues actuator commands to the physical system and collects routine sensor reading on a

system-on-chip example which consists of a micro-controller, a digital signal processor (DSP) and

dedicated hardware connected via an on-chip bus. The analysis duration is around 10 seconds
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including optimization. They have already applied their approach in case studies in co-operation

with industrial partners in telecommunications, multimedia, and automobile manufacturing.

Their sensitivity analysis results are promising to capture the variation of system performance

from the variability of its components. However, further demonstrations of using their approach

on complex architecture and application are not presented.

Besides the presented analytical approaches, many other recent approaches represent system

under analysis as a transition system (states and transitions). These approaches belong to the

class of state-based approaches. We first consider the generic real-time state-based approaches

which uses timed automata to represent real time systems.

In [50], Norstrom et al. proposed a framework based on model checking techniques for schedu-

lability analysis of event-driven systems. They used timed automata as formal model to describe

their system. In their timed automata, a task consists of two parameters: the worst execution

time and deadline. It is executed following the earliest deadline first (EDF) scheduling strategy.

They assumed that the tasks are non-preemptive. The schedulability problem can be trans-

formed to a reachability problem for ordinary timed automata and thus it is decidable. For the

case study, they presented a speed control system. Then they analyzed the schedulability and

safety properties of the created model. This approach proposed the idea of creating formal model

that can be verified by using UPPAAL model checker tool. However, their case study remained

simple and they have not yet considered any complex application running on MPSoCs which

might show difficulties to create the performance model. Moreover, they did not provide any

results related to the accuracy and simulation time of their approach.

In [51], Lv et al. presented a timing analysis approach which combines abstract interpretation

and model checking for multicore system. They considered a multicore architecture where each

core has a local L1 cache and share a memory bus. They presented the abstract interpretation

technique to analyze the local cache behavior of a program running on a dedicated core. Then

they constructed a timed automaton (TA) to model the timing behavior of the program accessing

to the memory bus. The created TA models were explored using the UPPAAL model checker to

find the WCETs of the program. Based on the presented techniques, they have developed a tool

that allows automatic generation of the TA models from binary code and WCET estimation for

any TA model of the shared bus. For the case study, they analyzed six benchmark programs

running on a dual core system using the TDMA and FCFS shared bus. The analyzed results

showed that the WCET bounds were tightened by up to 240% for the TDMA bus and 82% for the

FCFS bus compared with the bounds estimated assuming worst-case delays for bus accesses. The

longest experiment was executed in 3362 seconds. A consideration on a more complex hardware

architecture is needed to demonstrate the scalability of such an approach.

We introduce in the following the second class of state-based approach which is the state-

based synchronous dataflow graphs (SDFGs) approach.

39



Chapter 2 – State of the art

In [14], Fakih et al. proposed a real-time analysis approach based on model-checking for

synchronous dataflow (SDF) applications running on MPSoCs with shared communication re-

sources. The analysis flow starts with the synthesis of a SDF model of computation (MoC) and a

model of architecture (MoA) into an annotated parallel hardware/software model, called model

of structure (MoS). A model of performance (MoP) which is described as a network of timed au-

tomata (TA) representing all actor worst case execution time (WCETs), communication delays,

scheduling and communication resource access protocols of the platform are extracted from the

synthesis process. The TA templates are configured and instantiated in the UPPAAL framework,

taking into account the mapping, timing and platform configuration. Timing requirements are

converted into UPPAAL Computation Tree Logic (CTL) queries. Then the TA model can be

evaluated by using the UPPAAL model checker. They developed the sdf2ta editor which allows

to generate automatically UPPAAL model from all needed parameters, such as SDFGs, map-

ping, hardware constraints. For the case study, a multi-phase electric motor control algorithm

mapped to Infineon’s TriCore-based Aurix multicore hardware platform with two mappings was

analyzed. The performance analysis using UPPAAL model checker provided upper and lower

bounds on the execution times which showed tighter bounds in the worst-case response time

prediction, compared to an analytical approach. In [52], the simulation time of their approach

for the 2 tile platform was from 0.5 second with 8 actors to 1050.1 seconds with 96 actors. In

a 4 tile platform, the simulation time was 34.6 seconds with 8 actors and 1038 seconds with 36

actors. This approach is limited in a complex case study because of the exponentially increasing

system state space. In our approach, we aim to provide the variation of the execution time

instead of providing only the upper and lower bounds.

In [33], Stemmer et al. presented a model-checking based real-time analysis approach for the

analysis of timing bounds for finite state machine scenario aware dataflow (FSM-SADF) graphs

mapped on a multicore architecture with shared memory. In their work, the FSM-SADFGs are

translated to timed automata (TA) semantic model to represent worst-case execution time of

actors and shared communication resource. This was done by using the SDF2TA tool. For the

case study, they analyzed an MPEG decoder running on dual core architecture with shared

memory using UPPAAL model-checker. The best-case and worst-case execution times were

captured from the analysis. However, they only presented a simple case study on both application

and architecture. The simulation time was also not provided. Beside that they did not compare

their work to real implementation results.

In Tab. 2.2, we summarized the presented formal approaches with the consideration of their

supported architecture. We also estimated the efficiency of these approaches for each type of

platforms according to the case studies presented in each related work ( well supported ,

partially supported and not supported). Most of the approaches aimed to get tight execution

bound of the program. Some approaches can support the compositional with bounded effects
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Classes of

estimation

approaches
Related work

Fully timing

compositional

Compositional

with bounded

effects

Non-

compositional

Holistic approaches
Tendell et al. [27]
Yen et al. [28]
Pop et al. [29]

Compositional
approaches

MPA-RTC [30]
SymTA/S [31]

State-based SDFGs

approaches
Fakih et al. [14]
Stemmer et al. [33]

State-based generic

tasks approaches
Norstrom et al. [50]
Lv et al. [51]

Table 2.2 – Classification of timing formal approaches according to the level of compositionality
of the adressed platforms.

architectures. However, it is limited in considering the overall execution time including the cache

effects. However the biggest problem of these approaches is their analysis time. This long time

leads to difficulties to analyze complex systems. In the next section, we present the probabilistic

approaches which provide a compromise between accuracy and analysis time compared to the

simulation-based and formal approaches.

2.2 Probabilistic approaches

The simulation-based approaches are limited in the ability to explore the complete state

space of the model which leads to inaccuracy of the analysis. The formal approaches need long

analysis time to explore the whole state space. In this section, we present existing probabilistic

approaches which combine simulation and formal approaches to deliver both accuracy and lim-

ited exploration time effort. Especially, we consider the use of statistical model checking (SMC)

techniques that explore a sub-part of the state-space and provides an estimation to satisfy pre-

defined properties.

PRISM [38] is a probabilistic model checker, a tool for formal modeling and analysis of

systems that exhibit random or probabilistic behavior. It has been used to analyze systems

from many different application domains, including communication and multimedia protocols,

randomized distributed algorithms, security protocols, biological systems, etc., . PRISM can

build and analyse several types of probabilistic models (Discrete-time Markov chains (DTMC),

Continuous-time Markov chains (CTMC), Markov decision processes (MDPs), Probabilistic au-

tomata (PAs), Probabilistic timed automata (PTAs)) and extensions of these models with costs

and rewards. Models are described using the PRISM language, a simple, state-based language.

PRISM provides support for automated analysis of a wide range of quantitative properties.

The property specification language incorporates different temporal logics, such as Probabilistic

real-time Computation Tree Logic (PCTL), Linear Temporal Logic (LTL) [53], etc., as well as ex-
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tensions for quantitative specifications and costs/rewards. PRISM also includes a discrete-event

simulation engine, providing support for approximate/statistical model checking, and implemen-

tations of various different analysis techniques, such as quantitative abstraction refinement and

symmetry reduction. In [54], Kwiatkowska et al. presented an overview of model checking for

both discrete and continuous-time Markov chains (DTMCs and CTMCs) through three real-

world case studies: a probabilistic contract signing, dynamic power management in devices and

a biological pathway. They verified the probability evolution of one properties by changing some

parameters, expected reachability properties, etc. The simulation time is from seconds to several

minutes depending on the system complexity. Other case studies can be found on the PRISM

website [55]. However, this approach have been rarely applied to analyze MPSoCs.

Bulychev et al. present in [37] a survey of UPPAAL-SMC which is a statistical model checking

approach that can analyze performance properties for networks of Priced Timed Automata

(NPTA). Priced Timed Automata have its clocks that can evolve with different rates, while

being used with no restrictions in guards and invariants. NPTA is generated from different

Priced Timed Automatas that communicate via broadcast channels and shared variables. In

[37], they used weighted temporal properties expressed in the logic WMTL≤ (Weighted Metric

Temporal Logic) to specify properties of NPTAs. Given an NPTA M and a property ψ to be

satisfied, a statistical algorithm is used to answer three types of questions:

1. Hypothesis testing: Is the probability that M satisfies ψ greater or equal to a threshold p

∈ [0,1]?

2. Probability evaluation: What is the probability that M satisfies ψ?

3. Comparison: Is the probability that M satisfies ψ1 greater than the probability that M

satisfies ψ2?

For the qualitative questions (1 and 3), they used sequential hypothesis testing, while for the

quantitative question (2), they use an estimation algorithm that resemble the classical Monte

Carlo simulation. They demonstrated the utilization of UPPAAL-SMC through some practical

case studies (e.g robot control, firewire, bluetooth, etc.,). However, none of these applications

relates to the analysis of MPSoCs.

In [41], Nouri et al. present high level modeling and performance evaluation of many core

embedded systems. Their approach aims to build a stochastic abstract performance models

using statistical inference and model calibration. They propose a formal model based on the

Behavior-Interaction-Priority (BIP) formal framework to build complex systems by coordinat-

ing the behavior of a set of atomic components. Behavior is defined as a transition system ex-

tended with data and functions described in C/C++. The description of coordination between

components consists of two layers. The first layer describes the interactions between compo-

nents. The second layer describes dynamic priorities between interactions and is used to express

scheduling policies. For the system-level verification, they use stochastic BIP (SBIP) statisti-
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cal model checker [56] as performance evaluation technique. The proposed workflow consists

of four main steps: (1) Code generation produces instrumented code of the implementation of

application on target architecture, (2) Statistical Inference characterizes the execution traces

obtained from the execution to provide probabilistic model of performance data, (3) Calibrated

model uses the probabilistic model to calibrate the BIP application model, (4) Statistical Model

Checking analyzes quantitatively the obtained model. They demonstrated their approach on

an image recognition case study, called HMAX, this is a hierarchical computational model of

object recognition which attempts to mimic the object recognition of human brain. Their tar-

get the STHORM architecture platform, a power efficient manycore architecture consisting of

a host processor and a manycore fabric. The host processor is a dual-core ARM cortex A9 and

the fabric comprises 4213 computing clusters, inter-connected via a NoC. For the performance

evaluation, they focused on verifying bounded temporal properties for stochastic systems. They

computed the probabilities that the overall execution time is always lower than a given time

bound and the variability of processing time of successive lines is always bounded by a threshold.

They observed that the time on the calibrated BIP model is about 20% lower than what they

obtained on the test-board. For SMC, they use the Sequential Probability Ratio Test (SPRT)

algorithm implemented within the SBIP statistical model checker. They observed the probability

evolution of the overall execution time for different time bound. Then they checked the overall

execution time with different pipelining rates. This method provides a good example of SMC

in timing analysis of a manycore architecture. However, the computation and communication

time were not separately captured in their approach which led to difficulties in analyzing shared

resources effects to the execution time. Following this approach, when we change the application

or the mapping of the application on target platform, we need to repeat the implementation and

statistical inference steps. This may lead to the problem of a time-expensive modeling effort in

this approach.

In [32], Katoen et al. presented a probabilistic model checking method to analyze uncertain

Scenario-Aware Dataflow (SADF) models. The uncertainty is SADF comes from both the execu-

tion time of processes and the generation of scenarios. In their work, exponentially-timed SADF

(eSADF) is considered which is based on asynchronously communicating actors, exponential

firing durations and discrete-time Markov chains for sub-scenario selection. The compositional

semantics of eSADF are thus captured by using Markov automata (MA). The eSADF graphs

are then quantitatively analyzed by using algorithms and software tool for verifying Markov

automata. However, the state space of the eSADF graphs is very large because of the highly

concurrent character of typical data-flow computations. To solve the effect on the state space

growth, they proposed a technique confluence reduction to reduce the state space. The key of

confluence reduction is to detect independent concurrent transitions and to eliminate all non-

determinism in the MA semantics of eSADF. They considered two case studies: the MPEG-4
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decoder and a face recognition application. In the MPEG-4 decoder, they first showed the effect

of confluence reduction, in which the number of states and transitions of the applications were

reduced 2 or 3 times. Then they analyzed different properties such as buffer occupancy, through-

put and probability to reach certain buffer occupancies with a given deadline. They compared

the analysis results using two tools: MAMA and SDF3. The two tools provided the similar anal-

ysis results. For the verification time, the MAMA tool took from minutes to several hours while

the SDF3 only took some seconds. The face recognition application is larger than the MPEG-4

decoder as it exhibits a higher degree of parallelism. They studied the auto-concurrency effect

that relates to the simultaneous firing of an actor. This effect can be expressed as the parallel

composition of multiple enabled copies of the actor process. They also compared the analysis re-

sults of buffer occupancy, expected time and response delay with and without auto-concurrency.

They introduced an extension of eSADF with hardware platform for power consumption anal-

ysis. In their model of architecture, they adopted a communication assist for tile-based MPSoC

to decouple the computation and communication tasks. This made the analysis easier and more

predictable. They demonstrated their extension on a MPEG-4 decoder running on Samsung

Exynos 4210. The maximal and minimal power consumption were evaluated that showed the

feasibility of their extension.

Bao et al. proposed in [43] a statistical model checking based framework that can perform

quantitative evaluation of uncertainty-aware hybrid architecture analysis and design language

(AADL). AADL supports modeling of hardware and software components for the design and

analysis of safety-critical real-time systems such as automotive, avionics, and railway systems. It

can be extended to hybrid AADL to support continuous behavior modeling via the hybrid annex.

In their approach, they extended the syntax and semantics of hybrid AADL specifications by

proposing the uncertainty annex. The uncertainty annex specifies various performance variations

such as network delays and sensor inputs and performance requirements. Then they proposed a

set of mapping rules that can automatically transform uncertainty-aware hybrid AADL designs

into corresponding uncertainty-aware Networks of Priced Timed Automata (NPTA) model. To

evaluate the performance of generated NPTA models, they implemented a tool chain that in-

tegrates both UPPAAL-SMC and the open-source AADL tool environment OSATE. This tool

chain enables the automated performance evaluation and comparison of uncertainty-aware hy-

brid AADL designs. Two kinds of queries were considered: performance queries to check the

probability that an expected performance metric can be achieved under a given resource limit,

and safety queries to check the probability that an unexpected scenario can happen eventu-

ally with a given resource constraint. For the case study, they demonstrated the efficiency of

their approach via a train control system. In the analysis, they used UPPAAL-SMC with the

statistical algorithms that provides a confidence of 98%. For the performance analysis, they

obtained a probability interval within 132 seconds. For the safety analysis, UPPAAL-SMC took
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17s to have the result. In this approach, they presented an interesting probabilistic analysis using

UPPAAL-SMC. However, they have not introduced any case study relating to MPSoCs.

In [57], Chen et al. presented an UPPAAL-SMC based framework to evaluate the performance

of Task Allocation Scheduling (TAS) strategies under time and power constraints variation for

MPSoC. TAS strategies aim to maximize the utilization of available processing elements (PEs)

while satisfying various design constraints, such as response time, power. Their approach adopts

the Priced Timed Automata (PTAs) as the formal model. The workflow first defines the appli-

cation task graph, the MPSoC architecture and design constraints. Then they define different

mapping rules which can automatically convert the generated TAS instances with variation

information into Networks of PTA (NPTA) models. In the meantime, design constraints can

be translated into properties which enable queries for performance evaluation. The generated

NPTA models are then analyzed and evaluated by UPPAAL-SMC model checker to find the sat-

isfying TAS instances. If there is no satisfying TAS instance, their framework can automatically

iteratively change the design architecture and constraint parameters, regenerate TAS instances

and perform re-evaluation. If there are multiple satisfying TAS instances, the best one will be

reported. For the case study, they evaluated a synthetic example of 22 node task graph. They

used the gaussian distribution to represent the power distribution and the execution time of

PEs. Evaluation results were done under different power and architectural constraints. They

obtained a probability interval with a confidence of 95% with a simulation time of 2067 seconds.

In this approach, they introduced an interesting utilization of UPPAAL-SMC for the evaluation

of TAS strategies for MPSoC. However, their case study remains simple in both application and

architecture. Moreover, the effects of shared resources have not been taken into account in this

approach.

In [40], Ngo et al. presented an analysis approach based on Plasma Lab [59] statistical model

checking techniques for SystemC models. This method allows both qualitative and quantitative

analysis to estimate a probability to satisfy temporal properties of SystemC models. Their

SMC-based verification tool implementation consists of two main components: a monitor and

aspect advice generator (MAG) and a statistical model checker (SystemC Plugin). Running

the verification framework consists of four steps: (1) A configuration file containing necessary

information (e.g., temporal properties, libraries, etc.,...) is generated by MAG to get monitor

files, an Aspect-Advice file and other necessary information, (2) The Aspect-Advice file, the

monitor files and the SystemC model are then instrumented by using AspectC++ [60], (3) The

instrumented SystemC models are then compiled and linked to the patched SystemC [61] to

build an executable model, (4) The temporal properties are verified in Plasma Lab by observing

the execution traces obtained from the simulation of the executable model. The statistical model

checker is implemented as a plugin of Plasma Lab that establishes a communication, in which

the generated monitor transmits execution traces of the model-under-verification (MUV). When
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Nouri et al. [42, 56] BIP flow
BIP
model

SBIP
HMAX object
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nect and shared
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Katoen et al. [32] eSADF MA Mama and SDF3

MPEG-4 decoder
and Face recogni-
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Expected time,
long-run aver-
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Samsung Exynos
4210 with a shared
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Bao et al. [43] AADL NPTA UPPAAL-SMC
Train control sys-
tem

Performance and
safety queries

X

Ngo et al. [40] X CTMC Plasma Lab
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embedded control
system

Bounded Linear
Temporal logic
(BLTL)

X

Chen et al. [57] X NPTA UPPAAL-SMC a synthetic example
Performance evalu-
ation under con-
straints

8 PEs MPSoC with
shared interconnect
and shared memory

Bulychev et al. [37] X NPTA UPPAAL-SMC
Robot control,
firewire, bluetooth

WMTL X

Proposed approach
[58]

SDFG X PlasmaLab-SMC
Sobel filter and
JPEG decoder

Bounded Linear
Temporal logic
(BLTL)

Xilinx ZC702 with
private cache,
shared bus and
shared memory

Table 2.3 – Specifications of the presented probabilistic approaches
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a new state is requested, the monitor reports the current state to the plugin. The length of

the traces depends on the satisfaction of the formula to be verified, which is finite because the

temporal operators are bounded. Similarly, the required number of execution traces depends on

the hypothesis testing algorithms in use, such as sequential hypothesis testing or 2-sided Chernoff

bound [62]. For the case study, they introduced two case studies: a simple case study with a FIFO

channel and an embedded control system for demonstrating the use of their verification tool.

They obtained a probability to satisfy their properties with a confidence of 98%. The simulation

time for the FIFO channel example is about minutes. For the embedded control system is around

2 hours, in which 90 properties were verified. However, their case studies remain simple and they

have not yet applied their approach on MPSoCs.

In Tab. 2.3, the specification of probabilistic approaches is presented. Most of them validated

the feasibility of their approaches by presenting simple case studies without considering a real

hardware platform. Only the approach in [42] presented a comparison between the analysis and

real implementation results. However, the adoption of shared resources effects in the performance

analysis have not yet been considered. This can be explained by the large amount of effort to

setup this approach. Creation of probabilistic models remains a difficult task and is not well

supported for multi-core systems. These presented works for performance evaluation of MPSoC

lead to several conclusions:

1. A systematic workflow to apply the probabilistic approaches is needed to evaluate the

performance of MPSoC systems.

2. Further consideration of probabilistic modeling approaches is needed to represent the

shared resource effects of such MPSoC systems.

3. Further study on Statistical Model Checking approach for performance evaluation is

needed to capture the effects of statistical algorithms to the performance evaluation.

In Tab. 2.3, we take into account these points in our work which will be described latter,

especially in chapter 3 and chapter 5. In the next section, we discuss different methods that aim

to accelerate the simulation speed and/or improve the accuracy.

2.3 Simulation speed/Accuracy improvement methods

Different criteria are needed to be considered in the performance evaluation, such as the

accuracy, the simulation speed and the scalability. The simulation speed depends on the ab-

straction level of models. The accuracy of the whole system depends on the accuracy of the

characterization of each component. In this section, we discuss some existing work which relates

to the simulation speed/accuracy improvement.

In [63], Schiner et al. present a result-oriented modeling (ROM) technique for transaction

level model (TLM). In their approach, ROM is considered as a "black box" which eliminates
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intermediate states and produces only the end result of the process. At the starting moment

of a process, ROM uses an optimistic approach to predict the termination time and final state

of the process. However, in the execution of the process, a disturbing influence can occur that

may change the system state. ROM checks at the end of the predicted time whether there

is a disturbing influence. In that case, ROM retroactively adjusts to the new conditions and

takes corrective measures. In their work, they present two communication busses applying ROM

concept: an on-chip multiplexed bus system with a centralized arbitration scheme Advanced Mi-

crocontroller Bus Architecture (AMBA) and an off-chip serial bus with decentralized arbitration

Controller Area Network (CAN). They define three classes of granularity applicable to any bus

protocol, and match these granularity classes to three model types: the Transaction Level Model

(TLM) that models user transactions, the Arbitrated Transaction Level Model (ATLM) at bus

transaction granularity, and the bus cycle accurate Bus Functional Model (BFM). Further detail

about these classes can be found in [64]. They implemented for both two busses using the SpecC

system level design language (SLDL). Three aspects were evaluated: (1) the accuracy, (2) the

simulation speed and (3) the number of prediction updates that are needed by ROM. They

used a multi-node setup which consists of two senders and two receivers. For the accuracy, they

obtained 100% accuracy in timing for both two busses. For the simulation speed, they measured

the simulation time of the whole system comparing ROM with TLM, ATLM and BFM. In the

AMBA bus, ROM is as fast as TLM, three orders of magnitude faster than the BFM and one

order of magnitude faster than the ATLM. In the CAN bus, ROM is 2x slower than TLM, 24x

faster than ATLM and 12700x faster than the BFM. For the prediction updates, the probabil-

ity of updates drops exponentially with the number of updates in both cases. This approach

proposed an impressive level of accuracy by predicting the termination time and final state of

the process. The simulation time is as good as other TLM approaches. However, the presented

case studies remain simple. Further demonstration of this approach for applications running on

MPSoC is needed.

In [65], Bobrek et al. proposed a stochastic contention level (SCL) simulation for single chip

heterogeneous multiprocessors (SCHM). SCL simulations capture contention effects of shared

resources by using execution blocks. Each execution block represents thousands to millions clock

cycles. This approach aims to create a Statistical Contention Model (SCM) which enables the

high-level simulation to estimate the impact of contention for shared resource accesses with-

out access to the clock-cycle-level information within the system. They proposed three access

attributes that can summarize the access pattern behaviors observed at the shared resources:

Average Requested Utilization, Access Balance, and Thread Concurrency. The SCL design flow

starts with a brief cycle-accurate simulation which captures shared resource access patterns and

collecting the resulting contention information. Then the access attributes and the access/con-

tention information are extracted and used to train a non parametric regression model. The
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trained regression contention model can be used to predict contention within a MESH simula-

tion, gaining a significant simulation performance advantage. MESH simulator allows designers

to answer questions about how the numbers and types of processors and communications re-

sources, the scheduling decisions, and the software tasks affect the overall performance of SCHM

systems. The statistical modeling approach allows MESH to simulate heterogeneous multipro-

cessor systems significantly faster than cycle-accurate simulators, while still accurately capturing

contention. For the evaluation of their approach, they selected several multimedia, encryption,

compression, and signal processing applications from SPEC2000 and MiBench benchmark suites:

adpcm (adaptive differential pulse code modulation), FFT, jpeg, gzip, rijndael (encryption),

rsynth (speech synthesis), and crc (cyclic redundancy check). The SCL approach results in

speedups of 40x over cycle-accurate simulation, with average simulation errors of less than one

percent with 95% confidence intervals of about ±3%, providing a unique combination of simula-

tion capabilities, performance, and accuracy. This significant increase in simulation performance

enables the system designers to explore more of the design space than possible with traditional

simulation approaches. This approach proposed a very interesting example that delivers both

accuracy and simulation speed. However, the key limitation of this approach relates to the de-

pendence on cycle-accurate training. When the system changes, the contention model has to be

retrained. This leads to time-expensive modeling effort of this approach.

In [66], Le Nours et al. presented a hybrid simulation approach for fast and accurate timing

analysis of MPSoCs considering communication resources conflicts. They considered that some

parts of a system model can be abstracted and replaced by an equivalent executable model.

This executable model presents the same evolution as the abstracted elements from an external

viewpoint, but the number of events managed by the simulation kernel is reduced. The equiv-

alent model incorporates the expressions of the synchronization instants among the abstracted

elements. They adopted the timed Petri net formalism to express the time dependencies among

the abstracted elements and the related synchronization instants. This formal representation is

used to compute the synchronization instants during simulation and to determine the execution

order between the abstracted processes. This approach considers the data dependencies which

can be formulated through the created timed Petri net and influence execution of the equiv-

alent executable model. The key point of their approach is that the synchronization instants

are instantaneously computed during simulation. In the case of contention on shared resources,

a disturbing influence can cause the computed synchronization instants to become inaccurate

because delays due to access conflicts at shared resources are not simulated. The computed syn-

chronization instants potentially need to be updated to correctly reflect the influence of shared

resources. Thus they proposed a correction technique to update computed synchronization in-

stants influenced by shared resources. For the case study, they first validated their approach in

a system model made of 20 functions, two processors and shared communication resources. The
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simulation speed-up factor is 14.5 with no loss of the accuracy. For a communication receiver

case study, they obtained a simulation speed-up by a factor of 4 with no loss on timing accuracy.

In their work, they demonstrated their approach on the computation part. Further application

of this approach on the communication part should be adopted which is strongly influenced by

the contention on shared resources.

In summary, all of these approaches provided a very good level of accuracy. The approaches

in [65] and [66] presented a good simulation speed up. However, their case studies are still

simple or have not yet been applied for MPSoC sytems. In our work, we aim to provide a fast

yet accurate message level communication bus model for timing prediction of applications on

MPSoC systems which will be presented in Chapter 4.
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Chapter 3

WORKING ENVIRONMENT

In the previous chapter, we have presented different timing analysis approaches and simu-

lation speed/accuracy improvement methods for MPSoC systems evaluation. In this chapter,

we present the developed modeling and analysis workflow. This workflow is used to evaluate

the efficiency of probabilistic models for timing property analysis of MPSoCs. We first present

an overview of the proposed workflow. We give the definition of our system which is based

on a model of computation (MoC), a model of architecture (MoA), a mapping model and a

measurement infrastructure. The created probabilistic models use the separation between com-

putation and communication aspects. Preliminary analysis results are presented to validate the

feasibility of the proposed approach. At the end of this chapter, we propose the improvements

corresponding to our contributions in Chapter 4 and Chapter 5.

3.1 Overview of the proposed workflow

The proposed workflow is presented in Figure 3.1. Its objectives are twofold: (1) It first

provides means to create probabilistic models based on measured data. (2) It then allows to

evaluate the accuracy and simulation speed of probabilistic models used for timing properties

analysis of MPSoC systems.

The workflow consists of three main parts. First, an implementation and measurement phase

is used to create hardware and software models from a model of architecture and a model of

computation with respect to the predefined specifications. These hardware and software models

get implemented on a real hardware FPGA platform. Computation and communication delays

needed for the next part are measured by a measurement infrastructure.

Second, we consider a separation of the computation time and communication time model-

ing in the probabilistic modeling part. This separation is allowed due to the use of Synchonous

Dataflow (SDF) model of computation (detailed in Section 3.2.1). For the computation mod-

eling, the computation time can variate depending on either software or hardware resources

influences. From the perspective of software resources, different input data can follow different

branches of a given actor’s algorithm that can lead to different computation durations. From

the perspective of hardware resources, the interferences caused by concurrent accesses to shared

resources can lead to variations in both computation and communication time. These variations
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Figure 3.1 – The established workflow to evaluate the efficiency of the probabilistic approach
for timing property analysis of MPSoCs.

can be captured by measurement. The measured computation and communication delays are

used in the modeling process to create the computation and communication time models. For

the probabilistic computation time model, we consider a probability distribution to represent the

variation of measured computation delays. For the communication model, we also measure the

delays to access shared resources. Due to the possible contentions at shared resources according

to mapping and scheduling, the communication delays can also variate. These measurements

are then used to calibrate a probabilistic communication time model. The created probabilistic

computation and communication models get integrated into a specific language to have a prob-

abilistic simulation model. This simulation model is then executed and analyzed in the next

part.

Third, in the analysis part, the probabilistic simulation model gets executed within a defined

number of iterations to have analysis results. These analysis results are compared with the

measured results from the implementation on real hardware platform, for example a FPGA, to

evaluate the efficiency of the probabilistic simulation model. Different criteria can be taken into

account in this evaluation: the accuracy of the created simulation model, the simulation time

and the scalability of the proposed approach.

3.2 System model

In our modeling workflow, the considered system model is made of descriptions of an appli-

cation, a platform and a mapping. A measurement infrastructure is used to measure the timing

behaviors of the system. The system model is illustrated in Figure 3.2.
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3.2.1 Model of computation

We use synchronous data flow (SDF) as model of computation [67]. This model describes

the application data flow between actors via communication channels.

Definition 1 (SDFG) A synchronous dataflow graph is defined as SDFG = (A, C), which

consist of:

1. a finite set A of actors A.

2. a finite set C of channels C. A channel is a tuple C = (Ri, Ro, B) with

(a) The input rate Ri defining the number of tokens that can be written into the channel

during the write phase of an actor.

(b) The output rate Ro defining the number of tokens that will be read from the channel

during the read phase of an actor.

(c) The buffer size B in number of tokens.
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Actor-Execution

Com. IF
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Figure 3.2 – Illustration of the system model that consists of (a) the model of computation
(MoC), (b) the model of architecture (MoA), (c) the mapping model and (d) the measurement
infrastructure. The delay of application iteration (iteration delay) is observed.

The SDF graph of the Sobel filter example (in brown) is given in Figure 3.2(a). It consists

of four actors (GP, GX, GY and ABS) and four channels (C0, C1, C2 and C3 ). The input
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and output rates are presented as the integer values on each channel. For example, the channel

C0 has the input token rate Ri = 9, the output token rate Ro = 9 and the buffer size B = 9.

Each actor has a strict separation of computation (Compute) and communication (WriteTokens,

ReadTokens) statements. As illustrated in the example of the actor GX in Figure 3.2(a), these

functions are executed consecutively. During the ReadTokens phase of an actor, tokens get read

from a channel buffer. During the Compute phase, the sequence of processes are executed. During

the WriteTokens phase, tokens get written into a channel. As FIFO access is blocking, an actor

can only switch to its computation phase after it reads all tokens from all incoming channels.

After the computation phase, the actor switches into write phase to write all tokens to the

outgoing channels. In our work, all channels buffers are mapped onto shared memory, while the

actors use the private memory of the processing element they get executed on. One important

observation is that this setup is fully composable. The computation phases of any actor can be

considered independent from communication phases.

Communication is done by two functions used in the implemented software: WriteTokens

that writes tokens onto the shared memory, and ReadTokens that reads from shared memory.

Figure 3.3 gives the observed state-transition diagram of the write process of n tokens. The states

in grey denoted by polling, writing and update buffer usage correspond to the situations when

the PE accesses to the shared resources. The states denoted by initialization, inter-polling stage,

pre-writing, inter-writing stage, post-writing correspond to the execution on the PE without

interfering with another resource. At the beginning of the tokens write process, once initialization
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pre-writing

buffer not 

available

end of 

update

end of 
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end of 
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Figure 3.3 – State-transition diagram of the write process of n tokens to the shared memory.

done, the polling step aims to verify the availability of the buffer. If the buffer is ready to write,

the actor prepares to copy the data onto the buffer. Otherwise, it continues polling until the

condition is satisfied. A delay exists between two consecutive polling states, it corresponds to

the duration of the inter-polling state. The tokens write phase finishes when all the data are

copied onto the buffer. At the end of the tokens write process, the PE finally updates the usage
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of the buffer to indicate that the data is ready for the read process. The tokens read process is

implemented with a similar sequence of elementary states.

3.2.2 Model of architecture

The hardware platform follows the definition of a tile-based platform as given in [68, 69]. A

simple example of this platform (in blue) is shown in Figure 3.2(b).

Definition 2 (Tile) A tile is a tuple T = (PE,Mp, IF ).

1. PE is the processing element.

2. Mp is the private memory only accessible by the processing element.

3. IF is the communication interface that ensures the accesses to the communication re-

sources (shared interconnect).

A tile can execute software without interfering with other tiles as long as the software only

accesses the private memory. While a tile can be connected to multiple interconnects, we assume

that every memory is connected to only one interconnect. Furthermore we assume that tiles can

only communicate via a shared memory. We adopt a tile-based platform organization where

each tile consists of a processing element (PE) with private instruction and data memories, and

a communication interface (IF). A tile can execute software without interfering with other tiles

as long as the software does not explicitly access shared resources.

Definition 3 (Execution Platform) An execution platform is defined as EP = (T ,Ms, I) where

1. T is a finite set T of tiles T as defined in Def.2.

2. Ms is a finite set of shared memory Ms.

3. I is a finite set of shared interconnect IF .

An execution platform consists of a finite set of tiles, a finite set of shared memories and a

shared communication bus. In the scope of our work, we consider a first-come-first-served (FCFS)

bus arbitration protocol. Shared memory is used to temporary store channel buffers exchange

between actors of the application.

3.2.3 Mapping model

We present in Figure 3.2(c) the mapping example of the Sobel filter application on two tile

hardware platform. The two actors GP and GX are mapped to the Tile 0 while the two actors

GY and ABS are mapped to the Tile 1. All the channels of the modeled application, denoted

by C0 to C3, are mapped to the shared memory. Then the tiles have to access to the shared

memory to read or write data.
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3.2.4 Measurement infrastructure

For the experiments, we considered the Xilinx ZC702 Evaluation Board as the real platform.

A tile was implemented as a Xilinx Microblaze processor with local instruction and data mem-

ories. The MicroBlazes connect to the shared memory BRAM via an AXI4LITE interconnect.

For our performance models we need to characterize the duration of the computation phase

of each actor as well as the duration of the communication between actors. In Figure 3.2(d), the

measurement infrastructure (in green) is illustrated. For the computation phase, we measure

computation time in clock cycles of actors. We use the same measurement infrastructure as

presented in details in [70]. It consists of two main components: Time Measurement Unit (TMU)

and Time Measurement Controller (TMC) . TMU is basically a counter with the same cycle rate

of the processors. The counter can be started and stopped from any tile individually without

interference. When the counter got stopped, it sends the counter value via an UART to a host

computer. For this method, it was important that all components were clocked with the same

frequency. The management of the individual start/stop signals from the tiles are managed by

the TMC.

For the communication phases, the adopted measurement infrastructure called Xilinx Sys-

tem Integrated Logic Analyzer (SystemILA) is able to monitor and store the signals that are

relevant to estimate the communication durations. It is used to measure the durations of each

elementary states involved in communication, as for example the ones identified in Figure 3.3,

and delays caused by contention at shared resources. SystemILA connects to the AXI4LITE bus

and observes the signals that relate to the communication process. For the writing process, the

write address valid signal (AWVALID) indicates that the channel is signaling valid write address

and control information. The write response valid signal (BVALID) indicates that the channel

is signaling a valid write response. For the reading process, we observed the signals ARVALID

and RVALID. These signals are sent to the host computer via a JTAG cable. Further details

about AXI4 protocol can be found in [71].

3.3 Probabilistic modeling of computation and communication

times

In this section, we first present the computation and the communication time models. Then

these models get integrated into a simulation model written in SystemC language. As presented

earlier in Figure 3.2, the execution of an actor in SDFG model of computation consists of three

phases: ReadTokens, Compute and WriteTokens. Since the computation and communication

phases have no influence to each other, we can separately characterize these phases.
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3.3.1 Computation time modeling approach

The computation time model is created by considering the actor’s compute phase. We present

in the following the software and hardware resources influences which cause the variation of

the computation time. From the software perspectives, an actor’s algorithm can have different

branches. For each input data set, the actor is executed following a corresponding branch.

Therefore, these branches can provide different execution delays. It leads to the variation of

actor’s computation time. An example is given in Figure 3.4, in which we present the computation

algorithm of the ABS actor of Sobel filter application in (a). This actor computes the gradient

magnitude of two gradient estimations GX and GY. Its execution depends on the combination

of input values from the channel C3 (token X) and channel C2 (token Y ). In Figure 3.4 (b), four

different branches are listed with their measured execution delays by running the Sobel filter

application on a real hardware platform FPGA. The computation time variation of the ABS

actor is then implemented in a specific programming language in Figure 3.4(c).

ABS

X

Y

X ≥ 0  ꓥ  Y ≥ 0
X < 0  ꓥ  Y ≥ 0
X ≥ 0  ꓥ  Y < 0

X < 0  ꓥ  Y < 0

Branches
Delay 

(cycles)

53

62

62

71

X < 0

X = -X

Y < 0

Y = -Y

...

if (X < 0 and Y < 0)

     wait(71);

else if (X < 0 or Y < 0)

     wait(62);

else 

     wait(53);

(a) Computation of ABS actor (b) Measured computation time (c) Implementation of ABS actor

C3

C2

Figure 3.4 – Illustration of different execution branches of the ABS actor (a), the measured
execution time (in cycles) (b) and (c) its implementation in specific programming language.

From the hardware perspectives, the micro-architecture can also provide different computa-

tion time. Specific hardware accelerator such as Floating Point Unit (FPU) or Multiplier (MUL)

can change the computation time. For example in the Sobel filter application, the GX actor con-

tains the convolution operation in their computation process. We illustrated the computation

time variation of the GX actor depending on the hardware accelerator MUL. In Figure 3.5

(a), we do not apply MUL. Thus the computation time of GX strongly depends on the input

data. This leads to a variation that can be represented using a gaussian distribution with mean

µ = 6800 cycles and standard deviation σ = 30.16 cycles. In Figure 3.5 (b), the MUL reduces

the computation time of GX. In this case, we measured a constant value of this computation

time which is of 4138 cycles.

In Figure 3.6, we present the workflow to create the probabilistic computation time model

which is based on measurement and statistical inference technique. The workflow starts with
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Figure 3.6 – Illustration of the probabilistic computation time modeling.

the implementation of software and hardware models on a real hardware platform. Then we

measure the computation delays of all the actors within a defined number of iterations. The

computation delay of actor does not change while mapped on different processors of a same

type. This computation delay executed on a specific processor is measured once and then used

in different mappings. A statistical inference technique is then used to capture the variation of the

measured computation delays. This variation is then represented as a probabilistic distribution

function (PDF) such as the gaussian or uniform distribution. Once the probabilistic computation

time model is created, it can be used for different mappings of the considered application.

3.3.2 Communication time modeling approach

The communication time model is created from the two main functions: WriteTokens and

ReadTokens. The variation of the communication time comes from the interferences of concurrent

accesses to shared resources. At this stage of our work, we try to explain why the duration of
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Delay Signification Delay Signification

twi Write initialization delay tri Read initialization delay
twp Write polling delay trp Read polling delay
twpl Write inter-polling delay trpl Read inter-polling delay
twpr Pre-writing delay trpr Pre-reading delay
twwr Writing delay trrd Reading delay
twl Inter-writing delay trl Inter-reading delay
twpo Post-writing delay trpo Post-reading delay
twu Write update buffer usage tru Read update buffer usage

Table 3.1 – Signification of the elementary delays.

WriteTokens and ReadTokens are variable.
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Figure 3.7 – Illustration of writing n tokens on channel C1 and reading n tokens from channel
C0 at transaction level. The elementary delays and penalty delays caused by the contention are
exhibited.

In Figure 3.7 we present two simultaneous communications to a shared memory through a

shared communication bus. It illustrates the situation of writing n tokens on channel C1 and

reading n tokens from channel C0 with the protocol described in Figure 3.3. In Figure 3.7, each

elementary step of the communications is described with a specific duration called elementary

delay. In the following, elementary delays with an upper index w are related to an elementary

step in the tokens write process and ones with an upper index r are related to an elementary

step the tokens read process. The same notation is used to denote transition instants between

elementary steps. For example, the durations of the polling, writing, inter-writing, and update

buffer usage steps are respectively denoted by twp , twwr, twl and twu . Each instant denoted by xw
j (k)

(respectively, xr
j(k)) corresponds to the kth transition instant between two successive elementary

steps of the tokens write process (respectively, the tokens read process). The instant denoted by

xw
u (k) corresponds to the kth transition instant between the post-writing state and the update

buffer usage state. In Tab. 3.1, we summarize the signification of the elementary delays for both
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writing and reading process.

Contention effects at shared resources are illustrated in Figure 3.7. The situations denoted by

(1), (2), and (3) are related to the states highlighted in grey in Figure 3.3. The situation denoted

by (1) corresponds to a contention due to two concurrent polling steps. The communication bus

arbitration allows the polling step of the tokens read process to execute first, the polling step

of the tokens write process has to wait until the end of the read polling phase. Situation (1)

could also correspond to the situation where the polling step interferes with an elementary

reading or update buffer step. The situation denoted (2) corresponds to the situation where

the elementary writing phase is delayed due to a simultaneous elementary reading phase. The

situation denoted by (3) corresponds to the situation where the C1 update usage phase is delayed

due to simultaneous C0 update usage phase.
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Figure 3.8 – Illustration of the communication time modeling.

In Figure 3.8, we present the workflow to create the communication time model. In Section

3.2.1, we argued that communication and computation do not interfere each other and they can

be considered independently. We thus create a communication workload that consists only of

the communication phases of an application. We then implement this communication workload

on a hardware platform. The elementary delays are measured using the SystemILA [72] IP

component provided by Xilinx which observes the communication process on the bus. In fact,

these elementary delays do not depend on the application mappings, we only need to do the

measurement once. In our communication time model, we implement a bus arbitration policy

to manage the contention situations. Different mappings cause different contention situations.

These contention situations cause additional delays called penalty times. Thus the variation of

the communication time depends on mappings. Finally, our communication time model is built

from the measured elementary delays and the implementation of bus arbitration policy.

3.3.3 Simulation model

The simulation model is implemented using the SystemC language [73]. It allows to model

systems made of hardware and software resources at different abstraction levels such as the

register transfer level (RTL) or transaction level (TL). The RTL gives the description of bit

accurate hardware resources according to a reference clock signal, while the TL considers de-

scription of resources with a higher level of abstraction than the RTL. A discussion of possible
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3.3. Probabilistic modeling of computation and communication times

levels of abstraction can be found in [74]. SystemC is built as a C++ language library and can

be compiled to produce an executable model. An event-driven simulation kernel is provided in

SystemC to control this executable model.

A SystemC model is built from basic blocks called modules which can be described with

the SC_MODULE macro [75]. The modules are classes in C++. A module contains ports

that allows the module to communicate with its environment and a set of processes running

concurrently to describe the functionality of the module. The communications between modules

and between processes within modules are done through channels via their ports. A channel

can be either a primitive channel or a hierarchical channel. Basically, channels are buffers that

contains data and can generate events in the simulation kernel whenever the contained data

changes.

Processes are basic units of functionality in SystemC which can be simulated concurrently.

A process can be either a method or a thread depending on the different needs in expressiveness

and simulation performance. Once a method process is triggered, it always executes from the

beginning to the end, while a thread process can be suspended by calling the wait() function or

any of its variant. The thread process remembers its point of suspension. When the execution

is resumed, it will continue from that point. This shows a greater expressiveness for thread

processes than method processes.

SystemC sc_event classes determine whether and when to trigger or resume the execution

of a process. An event reports the change of state in a process by using notification. When

the event fires, the scheduler is informed of which processes to trigger. Further details about

SystemC can be found in [17].

Tile 0

void Tile0::sc_thread(){

  while(1){

    ReadTokens();

    wait(GetDelay());

    WriteTokens();

}}

Interconnect Shared memory

Tile 1

  b_transport(...) {     

       if (read) 

            wait(      );

       else

            wait(       );

  }

t
r
rdt
r
rd

t
w
wrt
w
wr

b_transport()

Figure 3.9 – Illustration of a SystemC model with two tiles.

In Figure 3.9, we present the organisation of our system model. It corresponds to the de-

scription of the mapped actors and channels on the resources of a two-tile execution platform.

The SystemC model consists of three main parts. The Tile modules describe the execution of

61



Chapter 3 – Working environment

the actors mapped on processing elements. The timing behaviors of the actors are described in

an SC_THREAD of Tile modules. The computation phase of an actor is described with a wait

statement calling the GetDelay function. In each simulated iteration of the system, a computa-

tion time of actor gets selected from a list of observed delays. This is realized by reading a text

file that provides the raw measured computation time of this actor. We randomly select data

from the measured delays, taking care that no element of this list gets selected twice. We refer to

this random selection of recorded execution times as injected data in the following experiments.

The GetDelay function can select the computation time of the actor following the distribution

function (gaussian or uniform) representing the measured computation time. The use of the

uniform and gaussian distribution can be found in the GNU Scientific Library (GSL) [76]. The

parameters for these distributions are derived from the measured delays. The communication

phase of actors is based on two functions ReadTokens or WriteTokens. These two functions call

the Interconnect module.

The Interconnect module manages the connection of tiles to shared memories. This module

arbitrates the accesses to the shared memories of the tiles. The ReadTokens or WriteTokens

functions are implemented following the protocol, as described in Figure 3.3. Whenever the

functions ReadTokens or WriteTokens are called, the function b_transport blocks the access to

the shared memory for a duration to read or write token.

The Shared Memory module simply distinguishes the access time to memory to read/write

one token or the reading delay trrd and the writing delay twwr as presented in Tab. 3.1. Depending

on the access type, it proceeds the simulation time by the related time. For reproduction of our

simulations, we provide git repositories with SystemC models 1

3.4 Evaluation of the proposed framework

In this section, we present the preliminary results of the proposed workflow. We first describe

our two image processing case studies: Sobel filter and JPEG decoder. Then we present a 7-tile

heterogeneous platform with different mappings for each case study. Finally, we present and

discuss the analysis results.

3.4.1 Case studies

Two different use-cases and various possible mappings were considered to evaluate the ef-

ficiency of the created models in terms of accuracy and analysis time. For every considered

use-cases and mappings we predicted the duration for one iteration of the data flow graph to

be executed. We refer this duration as the iteration delay. We executed all these experiments

on a real platform and measured the actual execution times of each iteration. The obtained

1. Temporary Repository: https://doi.org/10.5281/zenodo.4243071
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predictions were compared between simulation and measured results. Figure 3.10 represents the

two data flow applications considered to validate the proposed approach.

Sobel filter

Sobel filter is a simple and popular application that is an edge-detection for image processing

(see Figure 3.10 (a)). A pixel matrix gets read by the GP actor. The gradient component of

each orientation is then measured by the GX and GY actors and returned to the ABS actor

that calculates the resulting pixel. The communication part in this use-case takes most of the

execution time. The tokens rate of the channels between the actors GP and GX or between the

actors GP and GY depends on the size of the image matrix. One token is equal to one 32 bit

data word on bus. In Figure 3.10 (a), an example of 3 × 3 pixels matrix is illustrated.
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Figure 3.10 – Two SDF applications are used in our experiments: (a) Sobel filter and (b) JPEG
decoder.

JPEG decoder

JPEG decoder is an image decompression application which is presented in Figure 3.10 (b).

The GetMCU actor reads a Minimum Coded Unit of an JPEG encoded image. The inverse

quantization (IQ) is then done for the input data unit. Then a rough classification of possible

input data is obtained from Inverse Discrete Cosine Transformation(IDCT) actor. Each of the

three color channels of an encoded JPEG MCU (Y , Cr, Cb) has specific characteristics that

influence the execution time distribution of the IDCT actor. This leads to different possible

execution times for each color channel. This use-case presents a huge computation part with an

unmanageable amount of execution paths in most of the actors except for the IQ-actors that

contain only one execution path. The communication part became more important when the
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application is executed on a high number of tiles. In this use-case, we used as many tiles as

possible for this application to demonstrate the scalability of the created models.

3.4.2 Hardware platform

In Figure 3.11, we present the heterogeneous multiprocessor system that was used for all the

experiments. The platform in blue contains 7 tiles that are connected to a shared memory via

a shared interconnect. On the lower part of Figure 3.11, the measurement infrastructure which

was detailed in Section 3.2.4 is presented in green.
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Figure 3.11 – Heterogeneous platform with 7 tiles connected to a shared memory via a shared
interconnect. In green, the measurement infrastructure contains the System Integrated Logic
Analyzer (SystemILA) that characterizes the elementary delays, while the Time Measurement
Controller (TMC) that merges all control signals from the tile trigger the Time Measurement
Unit (TMU). Input and output images are generated in library files and stored in shared memory.

The individual tile use a MicroBlaze soft core that was implemented with private instruction

and data memories. The 7 tiles provide different hardware accelerators (MUL, FPU). These

hardware accelerators can allow a better performance in computation depending on the actor’s

algorithm. The tile Tile0 does not contain any hardware accelerator. Tile1, Tile2, Tile3 tiles

were extended by a hardware multiplication unit (MUL). Tile4, Tile5, Tile6 tiles were extended

with a floating point unit (FPU). Furthermore one shared memory was used for communication

between the tiles.

Different mappings were applied for each use-case as shown in Tab. 3.2. The first column

presents the different actors of the JPEG decoder experiment. In the second column, we show

the 3 mappings of the JPEG decoder: Jpeg1, Jpeg3 and Jpeg7. For each mapping, the number

presents the tile where each actor was mapped. For example, the experiment denoted by Jpeg1

corresponds to a complete mapping on Tile0. This means that all the actors were mapped on a

64



3.4. Evaluation of the proposed framework

Experiment→ Jpeg1 Jpeg3 Jpeg7 Exp. → Sobel1 Sobel2 Sobel4
Actor ↓ Actor ↓

Get MCU 0 0 0 GP 1 1 1
IQY 0 1 1 GX 1 2 2
IQCr 0 1 2 GY 1 1 3
IQCb 0 1 3 ABS 1 2 0
IDCTY 0 4 4
IDCTCr 0 4 5
IDCTCb 0 4 6
YCrCb RGB 0 0 0

Table 3.2 – Mapping of the Sobel filter and JPEG experiments on the tiles of the hardware
platform. The number prese nts the tile where each actor was mapped.

single tile. In this experiment, all actors were executed in static order without any contention.

In the Jpeg3 experiment, we mapped the actors on 3 tiles to have parallel execution of the

application. The MUL and FPU were used to accelerate the computation time of the actors. In

the Jpeg7 experiment, 7 tiles were considered to have the highest possible parallelization and to

challenge the communication model in terms of accuracy and simulation time.

In the third and fourth columns of Tab. 3.2, the actors and mappings of the Sobel filter

experiments are presented. We also simulated 3 mappings for Sobel filter: Sobel1, Sobel2 and

Sobel4. In the Sobel1 experiment, all the actors were also mapped on a single tile (Tile1 ). This

tile contains the MUL hardware accelerators. For the parallelization in the execution of this

application, we considered two additional mappings Sobel2 and Sobel4. For all the experiments

the instruction and local data of an actor were mapped on the private memory of a tile.

3.4.3 Experiment setup

In the experiments, we considered the injected data, gaussian and uniform distribution for

the computation time model. For the distribution of execution times of an actor, we use the

observed execution times of 1 000 000 iterations. For the communication time model, we consid-

ered the communication model that was presented in Section 3.3.2. We measured elementary

delays needed for building the communication model. For the 7-tile heterogeneous platform, we

observed that the elementary delays were constant for all mappings and for every iterations of

the applications. These elementary delays measured using SystemILA on the hardware platform

are presented in Table 3.3.

For the simulation results, we ran 1 000 000 iterations and captured the iteration delay.

We considered parallel simulation by splitting our simulations into 20 processes. Each process

simulated 50 000 iterations on dedicated processor with 12288 Go de RAM (https://ccipl.univ-

nantes.fr).
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Elementary delay Value Elementary delay Value

tri 15 twi 16
trp 8 twp 8
trpl 7 twpl 7
trpr 15 twpr 15
trr 8 twwr 5
trl 14 twl 13
trpo 11 twpo 9
tru 5 twu 5

Table 3.3 – Elementary delays (in cycles) for communication measured using the SystemILA.
One cycle is equal to 10 ns.

3.4.4 Results

In this section, we present the preliminary results of the proposed workflow. In Table 3.4, we

compare the results of the simulation model with the measured data. We present the average

iteration delay in the upper part of Table 3.4 and the observed worst case iteration delay in

the lower part. In our simulation model, we applied different representations of the computation

time, such as the injected data, the uniform and gaussian distribution. In the first column

Experiment, all the experiments are listed. Then in the second column Measured, we show the

average measured iteration delay. In the next three columns, we presented in order the result of

the simulation models using the injected data, the uniform and gaussian distributions.

For the average iteration delay, our simulation model using the injected data presents an over-

estimation of 3.57 % for Sobel1 experiment. This over-estimation decreases to 2 % in the Sobel2

experiment. Then the Sobel4 experiment presents an under-estimation of 7.7 %. Since we used the

injected data for the computation model, the errors thus come from the communication model.

In the JPEG decoder experiments, the application has a huge computation part comparing to the

communication part. Therefore, the errors are very low compared to the Sobel filter experiments.

For example, the Jpeg7 experiment shows at the highest under-estimation of 1.6 %.

Our simulation model for the Sobel filter experiments using the uniform distribution shows

the similar error of the model using the injected data. However the JPEG decoder experiments

show much higher under-estimation compared to the injected data. This can be explained be-

cause the uniform distribution leads to a higher possibility to select the worst case computation

time. Our simulation models using the uniform distribution show similar errors as the model

using the injected data in all experiments. The results show that the gaussian distribution have

a better performance to represent the variation of the measured computation time than the

uniform distribution.

For the observed worst case iteration delay, the simulation results of the models are sim-
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Experiment Measured Injected data Uniform Gaussian

A
v

e
ra

g
e

C
a
se Sobel1 3690 3821.6 (3.57 %) 3804 (3.1 %) 3821 (3.55 %)

Sobel2 2902.5 2960.6 (2 %) 2942.5 (1.38 %) 2959.4 (1.96 %)
Sobel4 3097.4 2859.6 (-7.7 %) 2841 (-8.3 %) 2858 (-7.7 %)
Jpeg1 2385860 2387757.6 (0.08 %) 2246952.8 (-5.83 %) 2386251.3 (0.02 %)
Jpeg3 940836 940174.7 (-0.07 %) 874531.1 (-6.73 %) 938843.9 (-0.21 %)
Jpeg7 941059 925969.7 (-1.61 %) 860285.2 (-8.6 %) 924640.4 (-1.75 %)

W
o

rs
t

C
a
se

Sobel1 3719 3854 (3.63 %) 3853 (3.6 %) 3882 (4.38 %)
Sobel2 2994 2999 (0.17 %) 2999 (0.17 %) 3020 (0.87 %)
Sobel4 3197 2905 (-9.13 %) 2904 (-9.16 %) 2923 (-8.57 %)
Jpeg1 2746197 2749873 (0.13 %) 2789559 (1.58 %) 3387677 (23.36 %)
Jpeg3 1185223 1188393 (0.27 %) 1188484 (0.27 %) 1547288 (30.55 %)
Jpeg7 1185483 1174158 (-0.96 %) 1174174 (-0.95 %) 1533008 (29.31 %)

Table 3.4 – Comparison of the results of the simulation model using the injected data, the
uniform and gaussian distribution with the measurement data. The table shows the average
iteration delay (in cycles) in the upper part and the observed worst case iteration delay in the
lower part. The error to the measurement data is computed for each mapping. The negative
values mean the under-estimation, otherwise over-estimation. The experiments are done for
1 000 000 iterations.

ilar in the Sobel filter experiments. In the JPEG decoder experiments, the models using the

injected data and the uniform distribution also provide similar results. This is because the se-

lected computation time in the two models stays within the best-case and worst-case measured

computation delays. However, the model using the gaussian distribution shows a much higher

error up to 30 %. This can be explained because in the gaussian distribution, the selected value

of a computation time can be much higher than the observed worst-case measured computation

delay.

In Figure 3.12, we compare the iteration delay distribution of the measured data (blue) and

the analyzed results using the injected data (orange), the uniform distribution (green) and the

gaussian distribution (red) for the computation time. The main objective of using the injected

data in the simulation model is to validate the created SystemC model. Eventually we aim to

create a probabilistic model that represents the variation of the computation and communication

times. In the upper part of Figure 3.12, we compare the distribution of the iteration delays of our

simulation model to the measured data of the Sobel filter experiments while the comparison of the

JPEG decoder experiments are presented in the lower part. In Figure 3.12 (a) and (b), the over-

estimation of the simulation results compared to the measured data were illustrated, while the

under-estimation was presented in Figure 3.12 (c). These distributions show the efficiency of the

computation time representation approaches to the measured computation delay. Our simulation

model using the injected data can provide a similar shape of distribution as the measured data.
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Figure 3.12 – Distribution of the measured data (blue) compared to the results of the models
using the injected data (orange), the uniform distribution (green) and the gaussian distribution
(red). Figures (a), (b) and (c) show the results of the Sobel filter . Figures (d), (e) and (f) present
the results of the JPEG decoder. The colored dashed lines show median execution time of the
corresponding models.

While the model using the gaussian distribution partly present the shape compared to the

measured data and the uniform distribution showed a totally different shape. This remains to

find better probabilistic distribution to represent the measured computation time.

In Tab. 3.5, we first show the duration to execute 1 000 000 iterations of the applications

running on the real hardware platform. We then present the simulation time of models with

different representations of the computation time. For each experiment, we simulated 1 000 000

iterations. We finally show in the speed up factor between the simulation time and measurement

time. In Table 3.5, our simulation models using the different representations of the computation

time present a similar simulation time for each experiment. In the Sobel filter experiments, the

simulation time is around 10 s because of the simplicity of the application. The speed up factor

decreases from 73.8 in the Sobel1 experiment to 39.4 in the Sobel4 experiment which is caused

by the increase of polling states. For the JPEG Decoder, the simulation time variates from half

a minute for Jpeg1 to 2 h for the Jpeg7 experiment. The speed up factor is 1765.6 in the Jpeg1

experiment. It quickly decreases to 10.8 in the Jpeg3 experiment and 2.6 in the Jpeg7 experiment.

This is because several actors in JPEG decoder have huge computation time. When one of these
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Experiment Measured Injected data Uniform Gaussian Speed up

Sobel1 0:07:23 0:00:06 0:00:06 0:00:06 73.8x
Sobel2 0:07:03 0:00:09 0:00:07 0:00:08 52.8x
Sobel4 0:07:13 0:00:11 0:00:11 0:00:12 39.4x
Jpeg1 13:14:31 0:00:32 0:00:27 0:00:27 1765.6x
Jpeg3 5:12:58 0:44:53 0:38:58 0:44:16 10.8x
Jpeg7 5:13:02 2:11:44 1:58:57 2:02:49 2.6x

Table 3.5 – Simulation time (HH:MM:SS) is done for 1 000 000 iterations on a Intel® Xeon®
Broadwell-EP CPU E5-2630 v4 (2.20 GHz) at https://ccipl.univ-nantes.fr. Simulation split into
20 processes, each on a dedicated processor. Measured data is obtained from measurement of
1 000 000 iterations executed on real hardware platform Xilinx ZC702.

actors computes, the others poll the data in parallel. In the TL model we considered that actor

GetEncodedImageBlock took an average computation time of 600 000 cycles and the polling time

step took 20 cycles. The number of polling steps can be estimated to around 30 000 per iteration

by the model. This caused the long simulation time in the Jpeg3 and Jpeg7 experiments which

contain a huge number of polling statements in the execution. This remains to consider the

system at higher level of abstraction to reduce the number of states that needs to be considered

in the simulation process.

3.5 Conclusion

In this chapter, we have presented the working environment used in this thesis. A workflow

was proposed to evaluate the efficiency of the measurement-based modeling approach for timing

property analysis of MPSoC systems. A SystemC simulation model is built from the separation

of computation and communication modeling at transaction level. We then presented our pre-

liminary results on two image processing applications (Sobel filter and JPEG decoder) executing

on a 7 tile heterogeneous platform. The results showed the validation of our proposed approach.

However, different aspects should be improved in the remaining work of this thesis. For the

accuracy aspect, the errors of the experiments are caused by the communication time model.

Our communication time model did not well predict the multiprocessor mappings as presented

in a communication intensive application as Sobel filter. This requires higher efforts to improve

the communication model. For the simulation time aspect, the simulation time is up to 2 hours

in the Jpeg7 experiment which needs to be improved.

We position our contributions in Figure 3.13 that are going to be presented in the next

chapters. In Chap. 4, we aim to improve the accuracy and reduce the simulation run-time of

analyzing multiple FIFO communication channels mapped on a shared bus with a shared mem-

ory. We adopt an analytical model to formulate the time dependencies between the elementary
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Figure 3.13 – Our contributions are presented in two parts: The first part (in blue dash line) is
the message-level communication model and the second part (in red dash line) is the statistical
model checking approach.

communication phases taking into account potential penalty delays due to contention at shared

resources. It is used in a message-level simulation model of the communication infrastructure

which demonstrates good scalability for performance prediction of different possible mappings.

In Chap. 5, we aim to use the statistical model checking (SMC) method [69, 77] for the

analysis process. SMC refers to a series of techniques that are used to explore a sub-part of the

state-space and provides an estimation about the probability that a given property is satisfied.

SMC approaches reduce the required number of simulation runs by using statistical algorithms

such as Monte-Carlo or Sequential Probability Ratio Test (SPRT). By controlling the number of

simulation runs, a trade-off between high confidence and fast analysis time is possible. Further-

more, such an approach could be adopted to evaluate different properties of the created models

such as the probability to miss a deadline.
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Chapter 4

DEFINITION OF A FAST YET ACCURATE

MESSAGE-LEVEL COMMUNICATION

MODEL

In the previous chapter, we presented our proposed workflow to evaluate the efficiency of the

created probabilistic models in analyzing timing properties of MPSoC systems. The preliminary

results showed the needs to improve the created models in terms of accuracy and simulation

time. In this chapter, we thus propose a message-level communication model that is based on a

run-time prediction technique of the whole communication time of the application actors. This

message-level model can be used for different mappings and applications. In this message-level

model, the communication time prediction is done by using an analytical model which is defined

from our observations of the application execution of the application on the hardware platform.

This message-level model reduces significantly the number of simulation events considered in

the execution process. Through our experiments, we observed that the simulation time is largely

reduced without degrading the level of accuracy of the created model.

In this chapter, we first introduce the proposed message-level communication model. Secondly

we present the implementation of this model in SystemC language. Afterward, simulation results

are then presented with comparisons to the transaction-level of the previous chapter and the

measured results. The discussion of our proposed communication model is finally given.

4.1 Proposal of a message level communication model

The proposed modeling approach allows accurate estimation of communication timings with

a limited simulation run-time. This approach consists in associating a message-level simulation

model of the mapped communication channels with an analytical expression of the communica-

tion durations. Without loss of generality, we present the application of this message level model

to a First Come First Served bus arbitration policy. The definition of the analytical model is

given by using the Petri net formalism to represent the contention situations between the actors.

Finally, a workflow is proposed to calibrate the proposed message-level model.
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4.1.1 Message-level model principles

In this work, communications are modeled at two different abstraction levels. At transaction

level (TL), communications are described with bus transaction granularity and the bus arbitra-

tion is expressed for each transaction. The description of communication at transaction level is

presented in Section 3.2.3, especially with Figure 3.7. An execution over time of a n tokens write

function at transaction level is illustrated on the upper part of Figure 4.1. Different elementary

steps with their duration have to be considered. These durations are classified in two types. The

first type relates to the situation that the PE accesses a shared resource, such as: the polling

time twp , the writing time twwr. The second type corresponds to the situation that the transaction

is executed only on the PE, such as: the inter-polling time twpl, the pre-writing time twpr, the

inter-writing time twwl and the post-writing time twpo.

As presented in the previous chapter, the TL model can provide long simulation time due

to the huge number of states considered during simulation process. We propose a message-level

(ML) communication model to solve this problem. At the message-level, communications are

described at the application data granularity. Timing is simulated by a single wait-for-time

statement and arbitration is not explicitly modeled. The main idea of the proposed approach is

illustrated in the lower part of Figure 4.1. Three significant instants are exhibited:
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Figure 4.1 – Principle of the proposed message-level communication model with run-time com-
putation of communication durations comparing with the transaction level model.

— Instant when tokens communication function is called, denoted by xw
ComC in Figure 4.1.

This is followed with a waiting state which corresponds to the duration until buffer is

available for tokens write.
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— Instant when buffer is available, denoted by xw
ComS . This would correspond to the instant

when data is available in the case of a read tokens function.

— Instant when tokens communication ends, denoted by xw
ComE .

Communication durations and instants are computed during simulation. The computation is

based on an analytical model which determines instants when shared resources are used. The

computation is denoted by the ComputeCommTime(). At message level, the communication dura-

tion is denoted Tw. When multiple tokens communications are simulated, instants when shared

resources are used are considered to determine if contention situations occur. In that case,

instants are adapted accordingly to appropriately set the communication duration. It is thus

possible to limit the number of simulation kernel calls but with still accuracy about commu-

nication resource usage. In previous work [78], Le Nours et al. presented a similar approach

to model the computation resources. In the scope of this chapter, we focus on communication

resources modeling. In the following, we illustrate the application of this approach through a di-

dactic example and we detail the setup of the analytical model used for communication duration

computation.

4.1.2 Application of the proposed modeling approach to a FCFS bus arbi-

tration policy

We present in Figure 4.2 two simultaneous communications through a shared communication

bus and a shared memory at the two different abstraction levels. It illustrates the situation of

writing n tokens on channel C1 and reading n tokens from channel C0 with the protocol described

in Figure 3.3. In part (a) of Figure 4.2, we present the communication model at transaction level

which was already detailed in Section 3.3.2. Considering a shared communication bus, there are

different contention situations that can occur depending on the number of concurrent accesses

and their types. For example, possible contention situations between two tiles was presented in

Figure 4.2 (a), such as: (1) contention between two polling steps, (2) contention between one

writing step and one reading step and (3) contention between an update buffer usage step and a

reading step. In part (b) of Figure 4.2, we adopt the message-level communication model. At the

message-level, the number of simulation states is commonly reduced at the expense of accuracy.

To deliver still accurate results, it is needed to appropriately set the durations of the communi-

cations, especially in the situations when contentions at shared resources occur. In part (b) of

Figure 4.2, the successive polling steps of WriteTokens and ReadTokens are replaced by waiting

two synchronization events, denoted read_C1 and write_C0, that indicate instants when the

buffer is available to write or the data is available to read. At message level, an UpdateStatus

function is called at three considered instants of the WriteTokens or ReadTokens. This function

identifies the contention situation which is needed for the computation of the communication

time. In the proposed approach, the created simulation model uses computation of the whole
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communication durations. The computation of ReadTokens and WriteTokens durations is de-

noted by action ComputeCommTime. It is performed at the instants denoted xw
pr(k) and xr

pr(k) in

Figure 4.2.

In Figure 4.3, we present another possible contention situations between 4 tiles accessing a

FCFS bus arbitration protocol at (a) transaction level and (b) message level. The contention

situation is between the writing phase (situation (2)) of one WriteTokens and the polling phases

(situation(1)) of 3 ReadTokens. At transaction level, the elementary delays with their duration

and the penalty time are illustrated in Figure 4.3 (a). In each contention situation, the penalty

time can be computed from the elementary delays of the ReadTokens and WriteTokens. For

example, the communication duration for the WriteTokens function is computed at the instant

xw
ComS by using the functions UpdateStatus and ComputeCommTime. The UpdateStatus function

first identifies the contention situation at the instant xw
ComS which consists of 1 writing step and 3

polling steps. The ComputeCommTime function then computes the communication duration from

the elementary and the penalty delays caused by this contention situation. The penalty delays

are computed by using an equation obtained from the analysis the contention situations of the

considered bus. Further details about the equation creation are given in the following sections.

In the next section, we have established an analytical model to express the time dependencies

among transition instants between elementary communication steps based on the implemented

communication functions and the FCFS arbitration bus protocol.

4.1.3 Definition of the analytical model

We create the analytical model which is built from the knowledge of communication phases

and the bus arbitration policy. In our approach, the timed Petri net (TPN) formalism is adopted

to formulate the relationships between elementary communication steps. It represents a timed

extension of Petri nets for which time is expressed as minimal durations on the sojourn of tokens

on places. In the Petri net notation, circles correspond to places and thick lines to transitions

between places.

In Figure 4.4, we first present the TPN of writing n tokens into buffer at transaction level. In

this example, a transition q is enabled if each upstream place p contains at least one token. The

kth instant when transition qi is enabled is denoted by xi(k). The holding time t in a place is

the time a token must spend in the place before contributing to the enabling of the downstream

transition. Different states as illustrated in Figure 3.3 are also presented. Each holding time

corresponds to the duration of the elementary states. For example, the initialization state starts

at the instant xw
i (k) when the transition qw

i is enabled. The duration of this state is twi (k).

In this TPN, there are two possible loops: the polling loop and the writing loop. In the

polling loop, the instant at which transition qw
p is fired for the kth time (denoted by xw

p (k)) is

when the polling step checks the availability of the buffer. The duration for this polling step is
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Figure 4.4 – Timed Petri net model of writing n tokens at transaction level.

twp (k). At the instant xw
pl(k) if the buffer is not available, the polling step continues until the

buffer is ready. The duration between two successive polling is denoted by twpl(k). In Figure 4.4,

when the condition denoted by buff is satisfied, it indicates that the buffer is available to write

data. Then the pre-writing state starts at when the transition qw
ComS is fired (instant xw

ComS(k)).

The writing loop starts when transition qw
ws is fired at the instant xw

ws(k). The duration to write

a token is twwr(k). The duration between two successive writing tokens is denoted by twpl(k). The

writing loop ends at the instant xw
po(k) when all the tokens are written into the buffer.
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Figure 4.5 – Timed Petri net model of writing n tokens on channel C1 and reading n tokens from
channel C0 at transaction level with FCFS arbitration policy. Rectangles in grey emphasize the
situations where shared resources are used.
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We present in Figure 4.5 the TPN description for C1 WriteTokens and C0 ReadTokens

through the studied shared communication bus and memory. In Figure 4.5, the place denoted

by pshared represents the limited availability of the shared resources and the fact that only some

phases of the communication can occur at a time. In the message-level communication model, we

replace the successive polling steps by using synchronization events. From the instant xw
ComS(k)

that the transition qw
ComS(k) is fired, the relationships between transition instants can basically

be expressed using two operators: addition and maximization [79]. For the situations that cause

accesses to shared resources (i.e., situations (2) and (3) in Figure 4.5) operator maximization

is used to express the effect of mutual exclusion on transition instants values. The transition

instants from Figure 4.5 are given as follows:

xw
ws(k)=xw

ComS(k) + twpr(k) (4.1)

xw
wr(k)=max(xw

ws(
⌊

k

n

⌋

), xw
fe(k − 1), xr

l (k′), xr
ComE(k′)) (4.2)

xw
l (k)=xw

wr(k) + twwr(k) (4.3)

xw
fe(k)=xw

l (k) + twl (k) (4.4)

xw
po(k)=xw

fe(nk) (4.5)

xw
u (k)=max(xw

po(k) + twpo(k), xr
ComE(k′), xr

l (k′)) (4.6)

In the situation (3), the instants when the step update buffer usage can start is expressed as

follows:

xw
ComE(k)=xw

u (k) + twu (k) (4.7)

where xw
po is the instant when post-writing starts, twpo is the duration of the post-writing step,

xr
l is the instant when elementary read finishes, and xr

e is the instant when ongoing tokens read

process finishes. The equations for the ReadTokens function can be created similarly.

These expressions are used to compute the communication durations in the case of one tokens

write and one tokens read for a two-tile platform. The adoption of the TPN formalism allows

to describe different communication situations with different numbers of tiles and simultaneous

read and write processes. It is thus possible to systematize the obtaining of the equations that

give the instants when shared resources are accessed. Figure 4.6 illustrates a more complex

situation with four simultaneous communications which was presented in Figure 4.3 (b) (one

write tokens process and three read tokens processes).

This example emphasizes the situation (2) where the elementary write step competes with

the elementary read step. The instant xw
wr when a token is written depends on the end of each

elementary read step (xr1

l , xr2

l , xr3

l ). The instant when a token is read can also be computed as
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follows:

xw
wr(k)=max(xw

ws(
⌊

k

n

⌋

), xw
fe(k − 1), xr1

l (k′), xr2

l (k′′), xr3

l (k′′′)) (4.8)

xr1

rd(k)=max(xr1

rs(
⌊

k

n

⌋

), xr1

fe(k − 1), xw
l (k′), xr2

l (k′′), xr3

l (k′′′)) (4.9)

xr2

rd(k)=max(xr2

rs(
⌊

k

n

⌋

), xr2

fe(k − 1), xw
l (k′), xr1

l (k′′), xr3

l (k′′′)) (4.10)

xr3

rd(k)=max(xr3

rs(
⌊

k

n

⌋

), xr3

fe(k − 1), xw
l (k′), xr1

l (k′′), xr2

l (k′′′)) (4.11)

The TPN formalism is suitable in the case of the studied FCFS bus arbitration policy.

As it makes possible to express synchronization and mutual exclusion, it could be adopted for

different bus protocols and arbitration policies. An example of using this formalism can be found

in [80] to study communication latency for a network on chip infrastructure. In our approach,

the content of the ComputeCommTime method would be adapted to describe the influence on the

communication duration.

4.1.4 Message-level model creation

The proposed message level communication model is built from the elementary delays in-

troduced at transaction level and the defined analytical model for a bus arbitration policy. In

Figure 4.7 we present the workflow to create the message level communication model. The idea

is to characterize the elementary delays from the implementation of a communication workload
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Figure 4.7 – The workflow to establish our proposed ML communication model is made of a
measured elementary delays and our defined analytical model.

on real hardware platform. This communication workload model has the same communication

phase as an application model but the computation phase is ignored. This is done based on

the assumption that the computation phase has no influence on the communication phase in

the SDF representation. The elementary delays are measured and the contention situation is

characterized using the IP SystemILA.Based on our observations, the elementary delays depend

on both hardware platform specification and software compilation option. In the scope of this

thesis, we characterized the 7 tile heterogeneous platform which is described in Section 3.4.2.

The compilation is optimized using the option −O3. The elementary delays are constants as

presented in Tab. 3.3 and can be used for different applications and mappings.

The created analytical model depends on the bus arbitration policy. Once the analytical

model is created for the considered bus, it can be used for different applications and mappings.

When we consider another bus, a new analytical model should be created. The analytical model

and the elementary delays are then combined to create the equations that can be used to compute

the communication time of actors in contention. These equations are then implemented in the

communication time model of the SystemC simulation model as the message level communication

model.

4.2 ML description of the communication model

In this section, we present the implementation of our communication model in SystemC

language.

4.2.1 Message-level evolution of the communication model

In Figure 4.8, we present the Petri net of our message-level communication model for a one

place FIFO buffer through a shared bus and memory. For each WriteTokens or ReadTokens

communication, we consider 3 instants: (1) The instant when the function is called, (2) the
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Figure 4.8 – Illustration of the message-level communication model for a 1-place FIFO buffer
mapped on a shared memory.

instant when the writing/reading data process starts and (3) the instant when the function

finishes. The UpdateStatus function which identifies the contention situation (i.e., number of

polling, writing and reading states) is called at each of these instants. For WriteTokens, the place

wr indicates that the next transition qw
i can not be fired before firing the previous transition

qw
ComE . The same indication is made for the place rd of ReadTokens. The place pshared indicates

the availability of the FIFO buffer. In this example, two communication access an one-place FIFO

buffer which allows one communication to access the buffer and the other one has to wait until

the FIFO buffer is released. When the FIFO buffer is available, the waiting communication is

notified and triggered to access to the buffer. At this instant, the function ComputeCommTime is

called to compute the communication duration.

4.2.2 Simulation model

The created communication model has been implemented in the SystemC language [73]. We

present in Figure 4.9 the organization of the system model at message-level. It corresponds to the

description of the mapped actors and channels on the resources of a two-tile execution platform.

The SystemC model consists of two main parts. The Tile module describes the execution of

the actors mapped on processing elements. The timing behavior of the actors is described in

an SC_THREAD for each Tile module. The computation phase of an actor is described with
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Tile 0

void Tile0::sc_thread(){

  while(1){

      ReadTokens();

      wait(GetDelay());

      WriteTokens();

}}

Tile 1

Communication Infrastructure

 ReadTokens() {

UpdateStatus();

wait(write_event);

UpdateStatus();

wait(ComputeCommTime());

read_event.notify();

UpdateStatus();

}                

 WriteTokens() {

         UpdateStatus();

         wait(read_event);

         UpdateStatus()

         wait(ComputeCommTime());

         write_event.notify();

         UpdateStatus();

}

Figure 4.9 – Illustration of the SystemC model with two tiles at message level

a wait statement by calling the GetDelay function to get the computation time of the actors.

The ReadTokens and WriteTokens functions are used to describe the communication processes

between actors. The Communication infrastructure module uses synchronization events to trigger

the accesses to shared resources of the actors. For example, the ReadTokens function waits for the

availability of data in the buffer until the write_event is notified. The communication duration

is then computed by the ComputeCommTime function for a wait statement. Afterward, it notifies

the end of the access to shared resources via the read_event. The UpdateStatus function is used

to update the contention situation.

Figure 4.10 illustrates the evolution of the model created for two actors GetPixel mapped on

Tile 0 and GY mapped on Tile 1. They share a FIFO buffer C0. In this example, the GetPixel

actor starts with its computation which finishes at the instant xw
ComC(k) and then the function

WriteTokens(C_0) is called. The function UpdateStatus updates the communication situation

by setting the ongoing number of polling, reading, or writing phases. The WriteTokens(C_0)

function then waits for the availability of the channel C0. The example in Figure 4.10 corresponds

to the situation that the channel C0 is not ready to write. Thus the writing process has to wait

until the event read_C0 notifies that the channel C0 is available. The function ComputeCommTime

computes then the communication duration of the write process. At the end of the writing phase,

the WriteTokens(C_0) function notifies the event write_C0 to trigger the ReadTokens(C_0)

function to read data from the channel C0.

In our experiment, we used the raw measured computation time of actors to validate the

proposed communication model independently from the computation modeling approach. We

denote them as injected data. During simulation, they get chosen randomly from a file in each

simulated iteration.
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Figure 4.10 – Execution of created message-level SystemC model following the proposed com-
munication and computation modeling processes.

4.3 Experiments

In this section, we first present the communication characterization phase for the AXI4LITE

bus. Then we demonstrate the simulation results of our message level communication model.

From the application part, we considered two image processing SDF applications described in

Chap. 3: a Sobel filter and a JPEG decoder. For the hardware platform, we also used the 7

tile heterogeneous platform introduced in Section 3.4.2. For the mapping model, the following

mappings were considered: Sobel1, Sobel2 and Sobel4 for Sobel filter and Jpeg1, Jpeg3 and Jpeg7

for JPEG decoder. The details of the experiment setup are detailed in Section 3.4.3.

4.3.1 Communication characterization phase for the AXI4LITE bus

In this section, we aim to present how the equations to compute the penalty delays were

built for an AXI4LITE FCFS bus arbitration policy. We used two familiar examples which were

already presented in this chapter.

We present in Figure 4.11 the computation of penalty times of contention situations that

were observed on the bus AXI4LITE by using SystemILA. The contention situation is between

WriteTokens n tokens to the buffer C1 and ReadTokens m tokens from the buffer C0. We denote

different instants that relate to the computation of the penalty delay of writing one token and
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Figure 4.11 – Example of the penalty delays computation on the AXI4LITE bus based on the
elementary delays and the contention situations of 2 tiles.

reading one token as follows:

— xw
wrs(k) and xw

wrs(k + 1) denote the instants to start accessing the buffer C1 to write the

kth and (k + 1)th tokens, respectively.

— xw
wlf (k) denotes the instant when the inter-writing step between the tokens kth and (k+1)th

finishes.

— xr
rls(k′) and xr

rls(k′+1) denote the instants when the inter-writing steps between the tokens

k′th and (k′ + 1)th start.

The transition instants in Figure 4.11 are given as follows:

xw
wlf (k)=xw

wrs(k) + twwr(k) + twl (k) (4.12)

xr
rls(k′)=xw

wrf (k) (4.13)

xr
rls(k′ + 1)=xr

rls(k′) + trl (k′) + trrd(k′ + 1) (4.14)

xw
wrs(k + 1)=max(xw

wlf (k), xr
rls(k′ + 1)) (4.15)

The penalty delay for writing the kth token twpen(k) can be computed as follows:

twpen(k)=xw
wrs(k + 1) − xw

wlf (k)) (4.16)

=trl (k′) + trrd(k′ + 1) − (twwr(k) + twl (k)) (4.17)

(4.18)
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Similarly, the penalty delay of reading the k′th token trpen(k′) can also be computed as follows:

trpen(k′)=xw
wrs(k + 1) − xr

rls(k′ + 1)) (4.19)

=xr
rls(k′ + 1) − xr

rls(k′ + 1) = 0 (4.20)
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Figure 4.12 – Example of the penalty delays computation on the AXI4LITE bus based on the
elementary delays and the contention situations of 4 tiles.

In Figure 4.12, the contention situation between WriteTokens to the buffer C0 and Read-

Tokens from the buffers C1, C2 and C3. The instants xw
wrs(k) and xw

wrs(k + 1) and xw
wlf (k) are

denoted similarly as in Figure 4.11. The instant xr
rls(k′) is when the (k′)th inter-polling step on

the buffer C1 starts. Similarly, the instants xr
rls(k′′) and xr

rls(k′′′) are when the (k′′)th inter-polling

step on the buffer C2 and the (k′′′)th inter-polling step on the buffer C3 start, respectively. Then

the penalty delay of writing the kth token twpen(k) can be computed as follows:

twpen(k)=xw
wrs(k + 1) − xw

wlf (k) (4.21)

=max(xw
wlf (k), xr

rls(k′), xr
rls(k′′), xr

rls(k′′′)) − xw
wlf (k) (4.22)

=trp(k′) + trp(k′′) + trp(k′′′) − twl (k) (4.23)

Since the penalty delay of a contention situation for transmitting one token is computed,

we can approximate the penalty delay of the whole WriteTokens or ReadTokens functions by
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multiplying this unary penalty delay with the number of transmitted tokens. Afterward we have

built the function ComputeCommTime to compute the communication duration in SystemC.

In the next section, we present the experimental results to evaluate the efficiency of the

proposed approach.

4.3.2 Results

We aim to demonstrate the validation of our proposed communication model by comparing

the average iteration delay of our simulation model with the transaction level model and the

measured data. We used the same use cases as in Chap. 3. For the purpose of validation, we

used the injected data for the computation time.

In Tab. 4.1, we compare the analyzed results of the TL model and the ML model against

the measured data. In the first column (Experiment), the experiments are listed. The second

column (Measured) presents the average execution time of 1 000 000 iterations that are the actual

measured execution time of the application on the real hardware platform. The next column

shows the results of the TL model. The next column shows the results of the ML model without

considering the penalty delays caused by the contention situations. The last column shows the

results of the ML model that takes into account the penalty delays. We used a noise image as

input for these experiments. The noise image uses 1 Pixel Gaussian noise to provide a source

with many edges to detect.

In Tab. 4.1, the results of TL model show an over-estimation of 3.57 % for Sobel1 experiment,

2 % for Sobel2 experiment, while Sobel4 presents an under-estimation of 7.7 %. The errors in

experiments with the JPEG decoder remain lower because this application has a huge compu-

tation part in the overall execution of the program. These errors were discussed in Section 3.4.4

of Chap. 3.

For the ML model No-Comp. experiments, the Sobel1 and Sobel2 experiments show a better

estimation compared to the TL model. However the Sobel4 experiment presents a higher under-

estimation up to 8.1 %. This under-estimation shows the need of considering the penalty delays

for the accuracy of the simulation model. Since the communication part is minor part in the

JPEG decoder application, the experiments of the ML model show the same level of accuracy

as the TL model.

All the experiments of our ML model Comp. show a high accuracy result that slightly over-

approximates the measured data. In a communication intensive application as Sobel-Filter, the

highest error is upto 1.81 % in Sobel4 experiment. In the JPEG decoder application with a huge

computation part, the errors stay even lower.

In Figure 4.13, we compare the iteration delay distribution of the measured data (in blue) and

the analyzed results (in orange) of experiments. The results of the Sobel filter experiments are

shown in the upper part of Figure 4.13. While the results of the JPEG decoder experiments are

86



4.3. Experiments

Experiment Measured TL model ML model No-Comp. ML model Comp.

Sobel1 3690 3821.6 (3.57 %) 3759.8 (1.8 %) 3756.6 (1.8 %)
Sobel2 2902.5 2960.6 (2 %) 2923.8 (0.73 %) 2936.6 (1.17 %)
Sobel4 3097.4 2859.6 (-7.7 %) 2847.8 (-8.1 %) 3153.6 (1.81 %)
Jpeg1 2385860 2387757.6 (0.08 %) 2387489.7 (0.07 %) 2387489.6 (0.07 %)
Jpeg3 940836 940174.7 (-0.07 %) 939597.3 (-0.13 %) 941445.3 (0.07 %)
Jpeg7 941059 925969.7 (-1.61 %) 925419.7 (-1.67 %) 941518.1 (0.05 %)

Table 4.1 – Comparison of the message level model with and without the computation of the
communication time and the TL model results with the measurement data. The table show the
average execution time (in cycles).

Experiment Measured TL model ML model Speed up

Sobel1 0:07:23 0:00:06 0:00:03 2x
Sobel2 0:07:03 0:00:09 0:00:03 3x
Sobel4 0:07:13 0:00:11 0:00:02 5.5x
Jpeg1 13:14:31 0:00:32 0:00:06 5.3x
Jpeg3 5:12:58 0:44:53 0:00:04 673.25x
Jpeg7 5:13:02 2:11:44 0:00:04 1976x

Table 4.2 – Simulation time (HH:MM:SS) is done for 1 000 000 iterations on a Intel® Xeon®
Broadwell-EP CPU E5-2630 v4 (2.20 GHz) at https://ccipl.univ-nantes.fr. Simulation split into
20 processes, each on a dedicated processor. Measured data is obtained from measurement of
1 000 000 iterations executed on real hardware platform Xilinx ZC702.

in the lower part. We used the noise image as input of the applications to get these distributions.

The distributions of simulated results show a similar shape between simulation and measured

data. This means that our ML model was well created.

In Tab. 4.3.2, we first show measurement time of 1 000 000 iterations to run the applications

on the real hardware platform. We then compare the simulation time of our ML model with the

TL model. Both models apply the injected data for the computation part. For each experiment,

we simulated 1 000 000 iterations. The column Speed up presents the reduction ratio between

the two models. For the Sobel filter experiments, the simulation time is around 10 s because

the short computation time of the actors caused a few polling states. In the JPEG decoder

experiments, the simulation time variates from 32 s for Jpeg1 to 2 h 11 min 44 s for the Jpeg7

experiment. This is due to the huge number of polling statements considered by the system.

In our ML model, the simulation time stays less than 10 s for both Sobel-Filter and JPEG

decoder. The simulation time of the ML model reduced compared to the TL model simulation.

The reduction ratio is 673.25 for the Jpeg3 experiment and upto 1976 for the Jpeg7 experiment.
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Figure 4.13 – Distribution of the measured data (blue) compared to the results of the ML model
using the injected data (orange). Figures (a), (b) and (c) show the results of the Sobel filter .
Figures (d) , (e) and (f) present the results of the JPEG decoder. The dashed lines show the
median execution time.

4.3.3 Discussion

For the consideration of shared memory access over a bus, we demonstrated the effectiveness

of a message-level simulation approach on the AXI4LITE bus using a FCFS bus arbitration

policy. This simple bus facilitated the characterization of the elementary delays and the com-

munication behaviors to create an analytical model. For another bus arbitration policy, a new

characterization phase needs to be done that consists of the measurement of new elementary

delays and the creation of new analytical model. This one-time phase should take some overhead

duration. In the column ML model of Tab.4.1, the JPEG decoder experiments demonstrated the

benefit of our approach for design space exploration. The average iteration delay of the Jpeg3

experiment decreased by a factor 2.5 compared to the Jpeg1 experiment. This result come from

the use of more tiles and the effects of the hardware accelerators which reduce the actor’s compu-

tation time. However, the Jpeg7 experiment present a higher degree of parallel execution but did

not show the improvement in the average iteration delay compared to the Jpeg3 experiment. It

demonstrates well the boundedness of the application speed-up due to communication overhead

on the shared memory.
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4.4 Conclusion

In this chapter, we presented a message-level communication model that is based on an

analytical model of the concurrent accesses to shared resources and the characterization of

elementary delays. We applied this ML model to a FCFS bus arbitration policy AXI4LITE.

Then we implemented this ML model in SystemC language. The simulation results of this ML

model were compared to the measured data that showed an improvement in both accuracy and

the simulation time compared to the TL model in Chap. 3. Further adoption of this proposed

approach on other bus arbitration policies can be done by creating a new analytical model and

measuring the corresponding elementary delays.
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Chapter 5

PROBABILISTIC TIMING ANALYSIS

APPROACH

In previous chapters, we have presented our proposed probabilistic modeling approach for

MPSoC systems. The analysis results showed good accuracy and fast simulation speed of the

proposed approach even considering a large number of simulation runs. However, we can not

ensure that this number of simulation runs is actually sufficient. If it is less than needed, we

could miss some corner cases. Otherwise, we could waste simulation efforts without having better

results. In this chapter, we aim to present a statistical model checking (SMC) approach that

gives further control on the simulation runs of the created probabilistic models. We then study

the efficiency of this SMC approach with different statistical algorithms, such as Monte Carlo or

Sequential Probability Ratio Test (SPRT). Furthermore, we also extend the complexity of our

hardware architecture considering private cache for processing elements to show the scalability

of the approach.

5.1 Statistical model checking

5.1.1 Overview of statistical model checking

In previous chapters we have illustrated the way that probabilistic models represent a pos-

sible solution to capture variability caused by shared resources on parallel software execution.

Quantitative analysis of probabilistic models can be used to quantify the probability that a

given time property is satisfied. Numerical approaches exist compute the exact measure of the

probability at the expense of a time-consuming analysis effort. Another approach to evaluate

probabilistic models is to simulate the model for many runs and monitor simulations to ap-

proximate the probability that time properties are met. This approach, which is also called

Statistical Model Checking (SMC), is far less memory and time intensive than probabilistic

numerical methods and it has been successfully adopted in different application domains [81].

Statistical Model Checking (SMC) refers to a serie of techniques that are used to explore a

sub-part of the state-space and provides an estimation. Given a probabilistic system S and a

property ϕ, SMC can be used to answer two types of questions:
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Qualitative: Is the probability for a model to satisfy a given property ϕ greater or equal to

a certain threshold θ ?

Quantitative: What is the probability for a model to satisfy a given property?

In the following sections, we further detail the methods used to perform quantitative and/or

qualitative analysis of probabilistic models.

5.1.2 Qualitative analysis

In [82], Younes presents an approach to answer qualitative question which is based on hy-

pothesis testing. To answer the qualitative question, he considers the Bernoulli distribution. Let

Bi be a discrete random variable with a Bernoulli distribution of parameter p that only takes

two values: 0 and 1. If the probability Pr[Bi = 1] = p then Pr[Bi = 0] = 1 − p. In our case,

if each variable Bi is associated with one simulation of the system then the outcome for Bi,

denoted bi, is 1 if the given system S satisfies ϕ and 0 otherwise. To determine whether p ≥ θ,

we can test H : p ≥ θ against K : p < θ. A simulation-based solution does not guarantee a

correct result but it is possible to bound the probability of making an error. The strength of a

test is determined by two parameters (α, β), such that the probability of accepting K when H

holds, called a Type-I error (false positive) is less or equal to α and the probability of accepting

H when K holds, called a Type-II error (false negative) is less or equal to β. However, it is

impossible to ensure a low probability for both types of errors simultaneously. A solution is to

relax the test using an indifference region [p1, p0] (with θ in [p1, p0]) and to test H0 : p ≥ p0

against H1 : p ≤ p1. A value δ is chosen such that p1 = θ− δ and p0 = θ+ δ. Two solutions were

proposed by Younes in [83, 82] to test the requirements above: the Single Sampling Plan (SSP)

and the Sequential probability ratio test (SPRT). In this thesis, we are going to use SPRT in

the analysis process.

Sequential probability ratio test (SPRT) [84] is defined to reduce the expected number of

observations required to achieve a desired test strength. In SPRT, one has to choose two values

A and B, with A > B. These two values should be chosen to ensure that the strength of the test

is respected. Let n be the number of observations that have been made so far. The test is based

on the following quotient:

p1n

p0n
=

n
∏

i=1

Pr(Bi = bi | p = p1)
Pr(Bi = bi | p = p0)

=
pdn

1
(1 − p1)n−dn

pdn

0
(1 − p0)n−dn

Where dn =
∑n

i=1 bi. The idea behind the test is to accept H0 if p1n

p0n
≥ A, and H1 if p1n

p0n
≤ B.

An algorithm for sequential ratio testing consists of computing p1n

p0n
for successive values of n

until either H0 or H1 is satisfied. In [85], a logarithmic based SPRT algorithm was proposed

that given p0, p1, α and β implements the sequential ratio testing procedure.
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5.1.3 Quantitative analysis

For the quantitative analysis, an estimation procedure was presented in [86] by Herault et

al. to compute the probability p for a model to satisfy a given property ϕ. Given a precision

δ, their procedure computes an approximation p′ such that |p′ − p| ≤ δ with confidence α, i.e.,

Pr(|p′ − p| ≤ δ) ≥ 1 − α.

Let Y1...Yn be n discrete random variables with a Bernoulli distribution of parameter p

associated with n simulations of the system. Recall that the outcome for each of the Yi, denoted

yi, is 1 if the simulation satisfies ϕ and 0 otherwise. Let p′ = (
∑n

i=1 bi)/n. According to the

Chernoff-Hoeffding bound [62]:

Pr(|p′ − p| > δ) < 2e− nδ
2

4

If we consider a number of simulations n ≥ 4

δ2 log( 2

α
), then we are guaranteed that P (|p′−p| ≤

δ) ≥ 1 − α. This estimation procedure is latter applied in this chapter with the Monte-Carlo

statistical algorithm.

5.1.4 Bounded Linear Temporal Logic

To apply the above approach, we have to ensure that the simulation result is obtained in a

finite time. This means that the considered properties are bounded. In the scope of this thesis,

we consider the Bounded Linear Temporal Logic (BLTL) [87] to express timing properties. BLTL

is an extension of Linear Temporal Logic (LTL) with time bounds and temporal operators. The

semantics of BLTL logic are the semantics of LTL logic restricted to a time interval. A BLTL

formula ϕ is defined over a set of atomic propositions AP , the logical operators (e.g., true, false,

¬, → and ∧) and the temporal modal operators (e.g., U for until, X for next, F for eventually,

G for always, M for strong release and W for weak until). The ϕ is defined by the grammar as

follows (| is denoted as or):

ϕ := true | false | ap ∈ AP | ¬ ϕ | ϕ1 ∧ ϕ2 | ϕ1 U≤T ϕ2

The time bounds T is the duration of one simulation run during which we analyze the

property. Temporal modality F can be derived from the "until" U as F≤T ϕ = true U≤T ϕ. It

means that the property ϕ is eventually satisfied within T . Similarly, temporal modality G can

be derived from F as G≤T ϕ = ¬F≤T ¬ϕ. This equation can be explained as: the hypothesis

that the property ϕ is not satisfied within T will not occur or the property ϕ is always satisfied

within T .

The semantics of BLTL are defined w.r.t execution traces of the model. Let

ω = (s0, t0), (s1, t1), ..., (sN−1, tN−1), N ∈ N
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be an execution trace of the model where each state (si, ti) comprises a discrete state si and a

time ti ∈ R≥0. We denote ωk = (si, ti), ..., (sN−1, tN−1) be the suffix of ω starting at step i. We

denote the BLTL formula ω |= ϕ is that ω satisfies the property ϕ.

We present latter in this chapter the way to express our timing properties in BLTL language.

5.2 SMC for SystemC model of MPSoC systems

5.2.1 Proposed workflow

In the field of embedded system design, executable specifications built with the use of the Sys-

temC language are now widely adopted [73]. SystemC models are used for the purpose of timing

analysis that typically capture workload models of the application mapped on shared resources

of the considered platform. Timing annotations are commonly expressed as average values or

intervals with estimated best case and worst case execution times. SMC techniques controls the

number of simulation runs and provide a confidence level of analysis results that could deliver a

good compromise between accuracy and analysis time. Thus the adoption of these techniques to

analyze SystemC models for multi-processor systems is promising. However, it requires a more

sophisticated timing model based on probability density functions, inferred from measurements

on a real prototype. Thus, the creation of trustful probabilistic SystemC models is challenging.

Since SMC methods have rarely been considered to analyze timing properties of applications

mapped on multi-processor systems with complex hierarchy of shared resources, exploring their

application on trustful probabilistic SystemC models remains a significant research topic.
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Figure 5.1 – The established workflow to evaluate the efficiency of the statistical model checking
approach for timing property analysis of probabilistic models of MPSoC systems.

We present an experimental modeling workflow that is used to evaluate the efficiency of

SMC methods for MPSoC systems, as illustrated in Fig. 5.1. We propose a probabilistic modeling

process for both computation and communication time models which is based on a measurement-
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based approach to appropriately prepare timing annotations and calibrate the simulation model.

Then the created model is simulated by using Plasma Lab SMC approach which controls the

number of simulation runs and analyzes the simulated results. We evaluated the SMC methods

efficiency with respect to accuracy and analysis time. Evaluation was done by comparing a

real multi-processor implementation with related estimation results. In [69], we evaluated this

workflow on a Sobel filter case study running on a two tile homogeneous hardware architecture.

However, we considered the communication bus model at transaction level. In this chapter, we

consider the message level communication model as presented in Chap. 4. For the evaluation,

we demonstrate the feasibility of the proposed approach using the two SDFGs image processing

applications: a Sobel filter and a JPEG decoder running on the 7-tile heterogeneous hardware

architecture. We also take a deeper analysis on the effects of statistical algorithms to the accuracy

and analysis time of the simulation process.

5.2.2 PLASMA Statistical Model Checker

Platform for Learning and Advanced Statistical Model checking Algorithms (PLASMA) [88]

is an efficient self-contained SMC tool and software library written in Java. In Fig. 5.2, we

present the architecture of PLASMA which consists of three main parts: an API, a controller

and plugins (statistical algorithms, checkers and simulators) [89]. An SMC algorithm collects

samples obtained from a checker component. The checker asks the simulator to initialize a

new trace. Then, it controls the simulation by requesting new states, with a state on demand

approach: new states are generated only when needed to decide the property. Depending on the

property language, the checker either returns Boolean or numerical values. Finally, the algorithm

notifies the progress and sends the results through the controller API.

API

Controler

Plugins

Statistical

Algorithm
Checker Simulator

request trace

results

results

Figure 5.2 – Illustration of the PLASMA architecture.
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PLASMA supports different simulators, such as Reactive Module Language (RML) which

is the input language of the tool PRISM for Markov chains models, an extension of RML

for adaptive systems (RML Adaptive), a biological language for writing chemical reactions, a

simulator of Matlab/Simulink and a SystemC plugin for the simulation of SystemC models. For

the checkers, PLASMA accepts the Bounded Linear Temporal Logic (BLTL), Adaptive Linear

Temporal Logic (ALTL), Goal and Contract Specification Language (GCSL), BLTL checker

enhanced with nested probability operator (Nested) and RML Observer.

PLASMA supports different statistical algorithms [90], such as: simple Monte-Carlo, Monte-

Carlo using a Chernoff confidence bound and sequential hypothesis testing. Users define the

parameters before running the simulation. PLASMA supports multi-threaded mode that imple-

ments parallel SMC algorithms to distribute the simulations. In distributed mode, PLASMA

acts like a server that controls the experiment from PLASMA clients. The clients perform sim-

ulations and send the results to the server. Distributed results are aggregated and shown in the

GUI as final result.

5.2.3 Monitor and aspect-advice generator and SystemC plugin

The PLASMA statistical model-checker workflow is illustrated in Fig. 5.3. Users first define

a configuration file which contains the observed variables, the BLTL properties and the tem-

poral resolution. This configuration file is then used by a Monitor and aspect-advice generator

(MAG) tool to generate a monitor model and an aspect-advice file [40]. The monitor model

captures the observed variables to verify the BLTL properties. It contains a monitor class and

a local_observer class. The local_observer class has a callback function that invokes a step()

function of the appropriate monitor class at a given sampling point during the simulation [91].

The step() function captures the value of the observed variables and their instances to produce

execution trace [92]. The aspect-advice file declares the monitor class as a friend class of the

SystemC model. Thus the monitor can access the private variables of the observed SystemC

model [87]. The BLTL properties are verified in the analysis process. The temporal resolution

specifies the granularity of simulation time.

Afterward, the generated monitor model and the probabilistic model are instrumented using

AspectC++ with the help of the aspect-advice file. The instrumentation exposes the user model’s

states and syntax to the monitors [91]. The instrumented models are compiled and linked to

the libraries of a patched version of SystemC [93, 94, 95] to build an executable model. The

patched version of SystemC facilitates the communication between the simulation kernel and

the monitor and implement a random scheduler for the kernel.

In the simulation phase, PLASMA iteratively triggers the executable model to run sim-

ulations. The generated monitor observes and delivers the execution traces to PLASMA. An

execution trace contains the observed variables and their simulation instances. The BLTL prop-
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Figure 5.3 – Creation of the SystemC plugin for PLASMA workflow.

erties are used by the checker to verify the execution traces. The required number of execution

traces is computed by the supported statistical algorithms in PLASMA (e.g., Monte Carlo with

Chernoff-Hoeffding bounds or SPRT). Users set the parameters of the statistical algorithms to

control the confidence level of the analyzed results. The obtained results are the probabilities

that the model satisfies the defined properties.

In the next section, we present our case studies and the experiment results.

5.3 Experiments

5.3.1 Case studies

From the application part, we considered the two image processing SDF applications de-

scribed in Chap. 3: the Sobel filter and the JPEG decoder. For the hardware platform, we used

the 7 tile heterogeneous platform with two different setups. The first setup is the same as in

Sec. 3.4.3. For the mapping model, the following mappings were considered: Sobel1a, Sobel2a

and Sobel4a for Sobel filter and Jpeg1a, Jpeg3a and Jpeg7a for JPEG decoder.

The second setup is illustrated in Fig. 5.4. In this configuration, a private cache is activated

for each tile. Two shared memories are used: a DDR and a BRAM memory. The computation

code of actors is placed on the DDR memory where the code is accessed via a data/instruction

bus (BUS 1) with the help of a cache controller. The inter-tile communication takes place via

the data bus (BUS 0) and the shared BRAM memory. The interest of this setup is that it allows

more complex instruction sections to be implemented due to larger DDR capacity. The JPËG

decoder experiments have a very long execution time. We thus consider only the Sobel filter

experiments: Sobel1b, Sobel2b and Sobel4b. Detail of the mappings can be found in Tab. 5.1.
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Figure 5.4 – Hardware platform with cache activated. The instructions and input data are
mapped to the DDR memory and the shared data between PEs are in the BRAM memory.

Experiment→ Jpeg1a Jpeg3a Jpeg7a Exp. → Sobel1a Sobel2a Sobel4a Sobel1b Sobel2b Sobel4b
Actor ↓ Actor ↓

Get MCU 0 0 0 GP 1 1 1 1 1 1
IQY 0 1 1 GX 1 2 2 1 2 2
IQCr 0 1 2 GY 1 1 3 1 1 3
IQCb 0 1 3 ABS 1 2 0 1 2 0
IDCTY 0 4 4
IDCTCr 0 4 5
IDCTCb 0 4 6
YCrCb RGB 0 0 0

Table 5.1 – Mapping of the Sobel filter and JPEG experiments on the tiles of the two hardware
platforms.

5.3.2 Definition of used computation and communication time models

The probabilistic model written in SystemC language is created based on the computation

and communication time models. In Fig. 5.5, we show the variation of the measured GetPixel’s

computation time in the first hardware setup (a) with the Sobel1a experiment and the sec-

ond hardware setup (b) with the Sobel1b experiment. In Fig. 5.5 (a), the computation time of

GetPixel actor variated within a few values around 1450 cycles, while in the Fig. 5.5 (b), this

computation time increases upto around 9100 cycles with a clear variation as illustrated. The

increase of the computation time in the second setup can be explained because of the longer

access time to the instructions and data which are stored in the DDR memory via private caches.

Beside that, the high variation come from the possible interferences between PEs to access to

the DDR memory and the possible cache misses. For the computation time model of the first

hardware setup, we considered gaussian and uniform distributions to model the variation of
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Figure 5.5 – The computation time of the GetPixel actor in the first hardware setup (a) and in
the second hardware setup (b).

Elementary delay Value [BC,WC] Elementary delay Value [BC,WC]

tri [146, 157] twi [146, 157]
trp 8 twp 8
trpl 7 twpl 7
trpr [13, 66] twpr [43, 86]
trrd 8 twwr 5
trl [43, 86] twl [12, 65]
trpo [12, 27] twpo [9, 36]
tru 5 twu 5

Table 5.2 – Elementary delays (in cycles) measured using the SystemILA.

the measured computation time, as presented in Sec. 3.3.1. However, in the second hardware

setup, we only considered the gaussian distribution since the uniform distribution could not well

present the variation of the measured computation delays.

For the communication time model, the proposed message-level communication model is

used to capture the communication duration taking into account contention. We then built the

analytical model and measured the elementary delays. The same analytical model was used for

both hardware setups, as presented in Sec. 4.2.1, while the elementary delays were different

for each setup. For the first hardware setup, the constant elementary delays were measured, as

indicated in Tab. 3.3. For the second hardware setup, the elementary delays are shown in Tab. 5.2.

We observed a limited number of iterations (10 different iterations) to capture the elementary

delays because there is currently no automation tool to observe the execution process. Some

constant elementary delays were observed, such as: the polling delay, the inter-polling delay, the
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update buffer usage delay, the read delay and the write delay. The other delays are variable

because of two reasons. First the possible cache miss situations cause penalty delays. Second,

since the instructions were mapped on the DDR memory, the concurrent accesses of the PEs

to read these instructions could provide interferences on the shared bus. In Tab. 5.2, we report

the observed Best-Case and Worst-Case [BC, WC] of the elementary delays. We then used the

uniform distribution to represent the variation of these delays in the SystemC model. Further

analysis on the variation of the elementary delays should be done in the future.

These two computation and communication models are then integrated into a probabilistic

simulation model which is the input of the presented PLASMA workflow.

5.3.3 Analysis results for the first hardware setup

In this section, we use PLASMA to estimate the iteration delay for different use-cases. We

declared t_latency as a variable to observe the iteration delay in the SystemC model. Then we

defined different timing properties to be verified by PLASMA.

Quantitative analysis

We first did the quantitative analysis by verifying the probability that the iteration delay

stays in a given time interval [BC, WC]. We divided this time interval into several smaller interval

and then observed the probability distribution which presents the distribution of the probability

in the given time bound. This property can be expressed in BLTL as follows:

declare var := [min;max; inc] end

F ≤ T (t_latency ≥ var)&(t_latency < var + inc)

In this BLTL expression, we declared a variable var that stays in a range of values [min, max].

This generates a set of BLTL formulas that can be checked simultaneously. The variable var

is assigned a minimum value min and a maximum value max. In each instantiation, PLASMA

increments an constant value inc. Then PLASMA quantified the probability that the iteration

delay t_latency stay in the interval [var, var+inc]. PLASMA verifies the property in a temporal

bound T which is either the number of simulation states or a real-time bound. The modal

operator F means that the property is eventually satisfied. We used the Monte Carlo algorithm

with Chernoff-Hoeffding bound with absolute error δ = 0.02 and confidence 1 − α = 0.98. The

experiments were done on an Ubuntu PC core i7 2.50 GHz with 8 Gb of RAM.

In Tab. 5.3, we show in the second column, the average iteration delay obtained from the

measurement. In the next two columns, the average iteration delays obtained from the SMC

analysis for the simulation model using the gaussian and uniform distributions are computed

from the obtained probabilities and their time intervals. We compared the SMC analysis results
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Exp. Measured SMC gau. SMC unif. 1M gau. 1M unif.

Sobel1a 3690 3799.2 (2.96 %) 3743.1 (1.44 %) 3797.5 (2.91 %) 3738.5 (1.31 %)
Sobel2a 2902.5 2977.8 (2.58 %) 2924.1 (0.74 %) 2977.5 (2.58 %) 2918.5 (0.55 %)
Sobel4a 3097.4 3189.0 (2.96 %) 3133.2 (1.16 %) 3194.5 (3.13 %) 3135.5 (1.23 %)
Jpeg1a 2385860 2376010.1 (-0.42 %) 2281862.7 (-4.36 %) 2382722.5 (-0.13 %) 2247578.5 (-5.8 %)
Jpeg3a 940836 911764.7 (-3.1 %) 817079.2 (-13.16 %) 912219.5 (-3.05 %) 848620.7 (-9.81 %)
Jpeg7a 941059 886538.5 (-5.8 %) 807857.1 (-14.43 %) 896367.7 (-4.75 %) 829775.0 (-11.83 %)

Table 5.3 – Comparison of the SMC analysis results with the simulation results of 1000000
iterations using the gaussian and uniform distribution and the measured data. The table shows
the average iteration delay (in cycles). The error to the measurement data is next to the results.
The SMC experiments are done using the Monte-Carlo algorithm with Chernoff bound (the
absolute error δ = 0.02 and the confidence 1 − α = 0.98, 5757 simulation runs).

to the measured data. In PLASMA, 5757 simulation runs were done for each experiment. In

the last two columns, the average iteration delay of 1000000 simulation runs for the simulation

model using the gaussian and uniform distribution are then presented with the error related to

the measured results.

In the Sobel filter experiments, the SMC results show a good accuracy for the model using

both gaussian and uniform distribution. The simulation models using the gaussian distribution

presents an over-approximation of around 3%. The simulation models using the uniform dis-

tribution shows better results with the highest error is 1.44% for the Sobel1a experiment. The

results of 1000000 simulation runs present a same level of accuracy compared to the measured

results.

For the JPEG decoder experiments, the SMC results show under-estimations compared to

the measured data. The simulation models using the uniform distribution presents the highest

error of 5.8% for the Jpeg7a experiment. The simulation models using the gaussian distribution

shows higher errors upto 14.43% for the Jpeg7a experiment. The results of 1000000 simulation

runs show better accuracy but not significant compared to the SMC results except for the Jpeg1a

experiment with the uniform distribution.

The higher under-estimation results of the model using the gaussian distribution is due to the

fact that the selected computation delays can be much higher (lower) than the worst-case (best-

case) measured computation delay. The model using the uniform distribution have lower error

because the selected computation delays always stay in the [BC, WC] measured computation

delays.

In Fig. 5.6, we compare the iteration delay distribution of the measured data (blue) and the

analyzed results using the uniform distribution (red) and the gaussian distribution (orange) of

the experiments. The results of the Sobel filter experiments are shown in the upper part of Fig.

5.6. The distributions of the simulation results using gaussian distribution show a similar shape

composed to the measured data. For the uniform distribution, the shape of the distributions is

100



5.3. Experiments

3650 3700 3750 3800 3850
Iteration delay (cycles)

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

Measured
Gaussian
Uniform

(a) Sobel, 1 Tile

2850 2900 2950 3000 3050
Iteration delay (cycles)

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

Measured
Gaussian
Uniform

(b) Sobel, 2 Tiles

3050 3075 3100 3125 3150 3175 3200 3225 3250
Iteration delay (cycles)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

Measured
Gaussian
Uniform

(c) Sobel, 4 Tiles

1.8 2.0 2.2 2.4 2.6 2.8
Iteration delay (cycles) 1e6

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

Measured
Gaussian
Uniform

(d) Jpeg, 1 Tile

0.4 0.6 0.8 1.0 1.2
Iteration delay (cycles) 1e6

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
ob

ab
ilit

y

Measured
Gaussian
Uniform

(e) Jpeg, 3 Tiles

0.2 0.4 0.6 0.8 1.0 1.2
Iteration delay (cycles) 1e6

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Measured
Gaussian
Uniform

(f) Jpeg, 7 Tiles

Figure 5.6 – Distribution of the measured data (blue) compared to the SMC results of the ML
model using the gaussian distribution (orange) and the uniform distribution (red). The iteration
delay is in cycle. Figures (a), (b) and (c) show the results of the Sobel filter . Figures (d) , (e)
and (f) present the results of the JPEG decoder. The dashed lines show the median execution
time.

different. The results of the JPEG decoder experiments are in the lower part. The distributions

of simulated results using the gaussian distribution partly show similar shape according to the

measured data. For the uniform distribution, the distributions also present different shapes. Since

the JPEG decoder application consists of more actors than in the Sobel filter, the influence of

the distribution representing the computation times to the iteration delay might be higher in

the JPEG decoder experiments.

Simulation time

In Tab. 5.4, we present the simulation time of the experiments. In the first column, the mea-

sured duration of 1 000 000 iterations of the applications running on the real hardware platform

is presented. We then show the simulation time of the SMC analysis for the simulation model

using the uniform and gaussian distribution. For each SMC experiment, 5757 simulations were

done with the confidence of the analysis is 98%. All the experiments took from around 30 seconds

to 2 minutes. The simulation time of 1 000 000 iterations without using PLASMA are showed

in the two last columns. It took from 4 seconds to around 30 seconds. The higher simulation
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Experiment Measured SMC gau. SMC unif. 1M gau. 1M unif.

Sobel1a 0:07:23 0:00:29 0:00:30 0:00:04 0:00:04
Sobel2a 0:07:03 0:01:39 0:01:39 0:00:05 0:00:04
Sobel4a 0:07:13 0:01:44 0:01:43 0:00:05 0:00:05
Jpeg1a 13:14:31 0:00:39 0:00:39 0:00:07 0:00:06
Jpeg3a 5:12:58 0:01:52 0:01:52 0:00:12 0:00:11
Jpeg7a 5:13:02 0:02:16 0:02:16 0:00:29 0:00:27

Table 5.4 – Simulation time (HH:MM:SS) with PLASMA using Monte-Carlo algorithm with
Chernoff bound (the absolute error δ = 0.02 and the confidence 1 − α = 0.98, 5755 simulation
runs) and without PLASMA (1000000 simulation runs).

Absolute error δ Confidence α Simulation runs Simulation time(s) Prob.

0.01 0.01 26492 123.9 0.141
0.01 0.02 23026 105.5 0.135
0.01 0.03 20999 96.4 0.114
0.01 0.04 19561 90.3 0.062
0.01 0.05 18445 87.3 0.179

0.02 0.01 6623 33.1 0.101
0.03 0.01 2944 18.7 0.083
0.04 0.01 1656 9.6 0.118
0.05 0.01 1060 9.6 0.131

Table 5.5 – Analysis of the Jpeg7a experiment with the gaussian distribution using different
parameters of Monte-Carlo.

time using PLASMA can be explained that PLASMA needs to capture the observed variables

at every simulation state of the SystemC model. This caused the additional simulation time

compared to the simulation without PLASMA.

Influences of the parameters

We aim to study the influence of the statistical algorithm to the simulation results by chang-

ing their parameters. In Tab. 5.5, we present the analysis of the Jpeg7 experiment with the

gaussian distribution using different sets of parameters (the absolute error δ and the confidence

α) of the Monte-Carlo algorithm. We defined a property to express the probability that the

iteration delay of the Jpeg7a experiment stays in the interval [950000, 1000000] cycles. For each

set of parameters, we captured the number of simulation runs, the simulation time in second

and the probability to satisfy this property. As we can see in Tab. 5.5, we first used the same

absolute error δ = 0.01 and increased the confidence α from 0.01 to 0.05. This means that the

confidence of the analysis decreases from 99% to 95%. In these cases, the number of simulation
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runs slightly decreased. The simulation time also decreased as well as the number of simulation

runs. The obtained probability to satisfy the defined property also decreased from 0.141 to 0.062.

However, it increased to 0.179 in the case of δ = 0.01 and α = 0.05. Afterward, we used the same

confidence α = 0.01 and increased the absolute error. The number of simulation runs and the

simulation time decreased quickly when the absolute error increased. The confidence has much

smaller influence to the number of simulation run compared to the absolute error. The obtained

probability had small differences between the set of parameters. However these differences were

not huge and were between 0.083 to 0.141.

Qualitative analysis

We considered the qualitative analysis by verifying another property (cumulative probability)

to bound the worst-case iteration delay (WCID). It is the probability that the iteration delay is

less or equal to a time bound. This property can be expressed in BLTL as follows:

declare var := [min;max; inc] end

G ≤ T (t_latency ≤ var)

This BLTL property is used to test if all the iteration delays is less or equal to a given time

bound var during the simulation time T. The variable var increments in the range [min, max].

With a temporal bound T, we quantify the probability that the property is always satisfied by

using the modal operator G. In Fig. 5.7, we present the cumulative probability for the Jpeg7a

experiment using the uniform distribution. In this experiment, we considered the temporal bound

T as the duration to finish 100 iterations. It means that the property is satisfied if all 100 iteration

delays are less or equal to the time bound. We used two statistical algorithms: Monte-Carlo with

Chernoff bound (δ = α = 0.02) and SPRT (α = β = 0.001, δ = 0.01, θ = 0.9). The evolution

of the cumulative probability is illustrated for both statistical algorithms. We can identify the

WCID when the cumulative probability is 1. Therefore, we bound a WCID is 1 170 000 cycles for

the Jpeg7a experiment. PLASMA supports parallel simulation with multi-threaded execution.

We used 4 threads for this experiment to reduce the simulation time. The analysis time for this

experiment is 10 minutes for Monte-Carlo and 3 minutes for SPRT.

In these presented experiments on the first hardware setup, the SMC analysis presented the

same level of accuracy as the simulation of 1 000 000 iterations but with much less simulation

iteration (5757 iterations to have a confidence level of 98%). This validated our proposed ap-

proach to use SMC analysis to control the simulation runs and provide a quantification of the

analysis confidence. Different BLTL properties can be analyzed by the proposed SMC analysis

approach. Users can control the analysis process by configuring the parameters of the supported
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Figure 5.7 – Cumulative probability of the Jpeg7a experiment using the uniform distribution.
The simulation is done using Monte Carlo and SPRT.

statistical algorithms. However, the simulation time of SMC analysis remains much longer than

the simulation executed without SMC. This can be explained by the fact that PLASMA causes

undesired delays in the analysis process. Further optimization process is needed to provide faster

analysis speed of this SMC tool.

5.3.4 Analysis results for the second hardware setup

In this section, we aim to demonstrate the scalability of the proposed approach by running

Sobel filter application on the second hardware setup. In this experiment, the use of cache caused

higher variability of the communication time. For the computation time, we only considered the

gaussian distribution since the uniform distribution do not well represent the variation of the

measured computation time. For the SMC analysis, we analyzed the distribution property using

the Monte Carlo algorithm with Chernoff-Hoeffding bound (the absolute error δ = 0.02 and the

confidence 1 − α = 0.98). The experiments were done on an Ubuntu PC core i7 2.50 GHz.

In Tab. 5.6, we compare the average iteration delay obtained from the SMC analysis with

the simulation results of 1 000 000 iterations measured results. The iteration delays in these

experiments are much higher than in the first hardware setup because of the long access time to

data on the DDR memory. For the Sobel1b experiment, the SMC results for the models using the
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Experiment Measured SMC gau. 1M gau.

Sobel1b 20634.2 20529.2 (-0.51 %) 20547.5 (-0.42 %)
Sobel2b 15533.8 15479.0 (-0.35 %) 15459.7 (-0.48 %)
Sobel4b 15455.1 15321.9 (-0.87 %) 14907.7 (-3.55 %)

Table 5.6 – Comparison of the results of the simulation model using the gaussian distribution
with the measurement data. The table shows the average iteration delay (in cycles). The error
to the measurement data is next to the results. The experiments are done using the Monte-Carlo
algorithm with Chernoff bound (the absolute error δ = 0.02 and the confidence 1 − α = 0.98).
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Figure 5.8 – Distribution of the measured data (blue) compared to the SMC results of the ML
model using the gaussian distribution (orange) and the uniform distribution (red). The dashed
lines show the median execution time.

uniform distribution showed a very good accuracy. It over-estimated around 0.04% the measured

data.

The simulation models using the gaussian distribution present an under-estimation around

0.51%. For the other experiments, the simulation models using gaussian distribution showed

under-approximation to the measured data. However, the errors are very low with the highest

error of 1.57% in the Sobel4b experiment. The simulation results of 1 000 000 iterations show a

similar level of accuracy compared to the SMC analysis results in the Sobel1b and Sobel2b exper-

iments. In the Sobel4b experiment, the level of accuracy was decreased. This can be explained

that the SMC analysis did not consider some worst-case computation delays of actors since the

number of simulation runs is only 5757.

In Fig. 5.8, we compare the iteration delay distribution of the measured data (blue) and

the analyzed results using the gaussian distribution (orange) of the experiments. The shape

of the simulation result distributions are different from the measured data. Therefore, other

distribution function is needed to better represent the measured computation time.

We show in the Measured column of Tab. 5.7 the measurement time of executing 1 000 000

iterations to run applications on the real hardware platform. We then show in the next two

columns the simulation time of the SMC analysis for the simulation models using the gaussian
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Experiment Measured SMC gau. 1M gau.

Sobel1b 0:07:23 0:01:43 0:00:05
Sobel2b 0:07:03 0:01:43 0:00:05
Sobel4b 0:07:13 0:01:43 0:00:05

Table 5.7 – Simulation time (HH:MM:SS) of 5757 simulation runs using Monte-Carlo algorithm
with Chernoff bound (the absolute error δ = 0.02 and the confidence 1 − α = 0.98). 5757
simulation runs were done in each experiment.

and uniform distribution. For each SMC experiment, 5757 simulations were done with the con-

fidence of the analysis of 98%. All the experiments took the same simulation time of less than 2

minutes. In the last two columns, the simulation time of 1 000 000 iterations for the simulation

models using the gaussian and uniform distribution is presented. The simulation time for each

experiment is around 5 seconds.

In these presented experiments of the second hardware setup, the message-level communi-

cation model is still applicable to capture the variability of the communication time caused by

such architecture. However, the gaussian distribution do not represent very well the variation of

the measured computation time. Further investigation in inference techniques is needed to find

better capture of such variation.

5.4 Conclusion

In this chapter, we have presented the use of SMC analysis approach for MPSoC systems.

We validated this approach by running the two image processing applications (Sobel filter and

JPEG decoder) on two different hardware platform setups. The SMC analysis showed good

results compared to the measured data and the same level of accuracy as the simulation of

1 000 000 iterations. Two BLTL timing properties were analyzed in this chapter, the probability

distribution and the cumulative probability. This showed the possibility to apply such SMC

approach for verifying other timing properties, such as the probability to miss a deadline of task.

The errors to the measured data are caused by the gaussian and uniform distributions which

did not well represent the variation of the measured computation time. The establishment of

appropriate distribution function is needed to improve the SMC analysis results. The statistical

inference technique, called Kernel Density Estimation (KDE) [96, 97] could be considered, it is a

method to estimate the probability density function based on an incomplete set of samples. The

KDE processed data represents the sum of all individual distribution functions. This method

allows us to not only cover observed execution time during our simulation, but also other delays

that are likely to appear when using the actor with different stimuli. In our experiments, the

simulation time of PLASMA SMC tool is from seconds to minutes to finish the analysis which is
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still much longer than the traditional simulation run. Thus, the optimization of this SMC tool

is needed to reduce its analysis time. Furthermore, we can also run the analysis on cluster to

reduce the analysis time because this SMC tool supports distributed simulation.
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CONCLUSIONS AND PERSPECTIVES

In this chapter, we summarize our contributions presented in this manuscript. Some per-

spectives are also proposed to further develop our work in the future.

6.1 Conclusions

In the context the complexity increases of multi-processor system-on-chip (MPSoC) systems

in both software and hardware, the performance evaluation of such systems is very important in

the early phases of the design process. Such performance evaluation verifies that the system con-

straints are met, especially timing. In MPSoCs systems, concurrent accesses to shared resources

cause interferences which lead to additional delays and thus create high variations in software

execution time. However, in the context of software performance prediction on multi-processor

platforms, creation of high abstraction level models with good prediction accuracy at affordable

analysis times represents a key challenge. One issue that makes creation of efficient performance

models a time-consuming effort is due to complex interactions among shared resources. Thus

the timing prediction of such systems is a challenging task. Moreover, an appropriate analysis

approach must be chosen which not only provides a good compromise between precision and

analysis time, but also good scalability.

In this thesis, we aim to study the adoption of probabilistic modeling and analysis methods to

improve the efficiency of timing analysis approaches for MPSoC systems. Several contributions

are presented to achieve this goal:

First, we proposed a systematic evaluation workflow in Chap. 3 that considers probabilistic

modeling and analysis approaches for MPSoC systems. This workflow is based on three main

parts:

— A measurement-based approach is first used to characterize timing behaviors of actors

that constitute the application on a real platform. This characterization is done for both

computation and communication parts

— A probabilistic modeling approach describes both software and hardware parts on a specific

programming language. This description captures the variation of the execution time by

using statistical timing models.
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— A probabilistic analysis approach is based on statistical model checking (SMC) which

estimates a probability that the created model can satisfy a timing property.

In this workflow, created performance models are separated between computation and commu-

nication modeling. For the computation time model, we use the injected data and the gaus-

sian/uniform distributions to represent the variation of the measured computation delays. For

the communication time model, we consider the communication model that is presented in Sec-

tion 3.3.2. We then presented our preliminary results of two image processing applications: the

Sobel filter and the JPEG decoder executed on a 7 tile heterogeneous platform. The simulation

results are compared to the measured results to show the validation of the proposed approach.

For the average iteration delay, our simulation model using the injected data presented an

under-approximation of 7.7% for the Sobel4 experiment and only 1.6% for the Jpeg7 experi-

ment. Different aspects should be improved in the proposed approach, such as the pessimistic

communication time model that caused the errors of the analysis and the long simulation time

(around 2 hours for the Jpeg7 experiment).

Second, we proposed a message-level communication model of a shared bus in Chapter 4

to deliver fast yet accurate simulation results compared to simulation results at transaction

level and the measured results obtained from real implementation on FPGA. This message-level

communication model is based on a run-time prediction technique of the whole communication

time of the application actors. In this message-level model, the communications time predictions

are done by using an analytical model which is defined from our observations of the execution of

the application on the hardware platform. We applied this ML model to a FCFS bus arbitration

policy AXI4LITE. The injected data and the gaussian/uniform distributions are considered to

build the computation time model. The simulation results of this ML model showed a significant

improvement in both accuracy and simulation time compared to the TL model. For example, the

average execution time of the ML model using the injected data presented an over-approximation

of 1.81% for the Sobel4 experiment and 0.05% for the Jpeg7 experiment. For the simulation time,

the ML model showed a reduction factor of up to 1976 compared to the TL model.

Finally, we presented a probabilistic analysis approach in Chap. 5 which considers statistical

model checking (SMC) method to analyze MPSoC systems. This SMC approach partially explore

system state-space, but still makes possible to bound the probability of making an error about

predictions by controlling the number of simulation runs by using statistical algorithms. In this

analysis, the effects of the statistical algorithms parameters to the analysis results are further

investigated. We also used two case studies: Sobel filter and JPEG decoder to validate this

approach. We considered the uniform/gaussian distributions to represent the variation of the

measured computation time. Two different hardware platform setups are studied which are the

7 tile heterogeneous platform without private cache for the first setup and with private cache

for the second setup. The SMC analysis results are obtained from 5757 iteration runs that show
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good accuracy compared to the measured data and provide a same level of accuracy as the

SystemC execution analysis of 1 000 000 iterations. For example, the SMC results of using the

gaussian distribution presented an over-approximation of 2.96% for the Sobel4 experiment and

an under-approximation of 5.8% for the Jpeg7 experiment. The errors to the measured data

are caused by the gaussian and uniform distributions which did not well represent the variation

of the measured computation time. In our experiments, the simulation time is from seconds to

minutes to finish the analysis which is still much longer than the SystemC execution analysis.

6.2 Perspectives

Different aspects should be considered to improve the proposed approach. We propose to

extend our work in the future as follows:

1. From the communication part, we have considered a FCFS bus arbitration protocol to

demonstrate the efficiency of the message level communication model. The use of another

bus arbitration policy (e.g., TDMA) is needed to demonstrate the adaptability of the pro-

posed approach. In that case, we have to characterize a new message-level communication

model for the considered bus which consists of its analytical model and elementary delays.

This one-time characterization phase takes overhead duration.

2. For the characterization of the elementary delays, we executed communication workload

on a hardware platform and characterized the elementary delays by observing a limited

number of iterations. However, this could not guarantee that the worst-case elementary de-

lays have been captured in the case of using private cache for the processing elements. The

variation of some elementary delays were thus not well captured. Therefore, a measure-

ment tool is needed to observe more iterations to capture such variations of the elementary

delays.

3. From the computation part, we have considered the gaussian/uniform distributions which

did not very well represent the variation of the measured computation time. Thus, further

investigation in the inference techniques is needed to improve the simulation results, such as

the Kernel Density Estimation (KDE). This is a method to estimate the probability density

function based on an incomplete set of samples. The KDE processed data represents the

sum of all individual distribution functions. This method allows to not only cover observed

execution time during the simulation, but also other delays that are likely to appear when

using the actor with different stimuli.

4. For the SMC analysis using PLASMA, it requires several intermediate steps to create

the SystemC plugins used by this tool, such as the generating step using the MAG tool,

the instrumenting step using the AspectC++ or the compiling and linking steps. These

steps causes overhead time which should be reduced by creating an automation script that
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runs these steps sequentially. Beside that, PLASMA observes all the simulation states of

the performance model that requires additional time in simulation process. This leads to

much longer analysis time compared to SystemC execution analysis. Therefore, further

optimization of this tool is needed to reduce the analysis time.

5. In terms of case studies, we have considered two simple image processing applications:

Sobel filter and JPEG decoder executed on a 7 tile heterogeneous platform (with optional

L1 caches) in this thesis. More complex case studies should be considered to demonstrate

the scalability of the proposed approach. This means more complex industrial applications

and COST platform extended with L2 cache should be taken into account.

6. Different timing properties should be taken into account to better analyze the MPSoC

systems, such as the probability to miss a deadline of tasks. The influences of statistical

algorithms to the analysis results should be further investigated to find the best trade-off

between the accuracy and analysis efforts.

7. Extend the performance evaluation approach for other properties of MPSoC systems, such

as energy, power consumption, temperature, etc. This requires an appropriate way to create

the performance model for such properties.
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Résumé : L’analyse temporelle est une étape très

importante dans la conception d’un système multi-

processeur sur puce (MPSoC) pour garantir que

les contraintes de temps sont pleinement respec-

tées avec une durée d’analyse acceptable. Cepen-

dant, les interférences sur l’accès aux ressources

partagées des MPSoC entraînent la variabilité de

l’exécution du programme qui conduit à des diffi-

cultés pour l’analyse temporelle. Cette thèse vise à

étudier l’adoption de méthodes de modélisation et

d’analyse probabilistes pour améliorer l’efficacité

du processus d’analyse temporelle des systèmes

MPSoC.

Nous avons contribué à une approche basée sur

la mesure pour caractériser les temps de calcul

et de communication des applications SDFG fonc-

tionnant sur une plate-forme MPSoC basée sur

des tuiles. Dans cette approache, les effets des

ressources partagées sont saisis et représentés

comme des fonctions de distribution. Nous propo-

sons un modèle de communication au niveau mes-

sage d’un bus multiprocesseur pour fournir des ré-

sultats de simulation rapides mais précis. Le mo-

dèle proposé a montré une accélération significa-

tive de la simulation par rapport au modèle au ni-

veau transactionnel (TLM) sans dégrader la pré-

cision de l’analyse. Nous évaluons certaines mé-

thodes de modèle checking statistique (SMC) pour

démontrer l’efficacité de l’analyse temporelle pro-

babiliste des systèmes MPSoC. Dans cette ana-

lyse, différents algorithmes statistiques sont étu-

diés plus en détail. Enfin, l’efficacité de l’approche

proposée est évaluée en exécutant différentes ap-

plications de traitement d’images sur différentes

configurations d’une architecture matérielle hété-

rogène. Les résultats de la simulation ont montré

un temps de simulation rapide avec des résultats

précis par rapport aux résultats mis en œuvre sur

une plate-forme matérielle réelle FPGA.

Title: Fast and Accurate Performance Models for Probabilistic Timing Analysis of SDFGs on MPSoCs

Keywords: High-level probabilistic modeling, Timing Analysis, Statistical Model Checking, MPSoC

Abstract: Timing analysis is a very important step

in the design phase of multiprocessor system-on-

chip (MPSoC) to guarantee that timing constraints

are fully met with acceptable analysis duration.

However, interferences on accessing to shared re-

sources of MPSoCs cause variability of the pro-

gram execution which leads to difficulties for timing

analysis. This thesis aims to study the adoption of

probabilistic modeling and analysis methods to im-

prove the efficiency of the timing analysis process

of MPSoC systems.

We have contributed to a measurement-based ap-

proach for characterizing computation and com-

munication times of SDFG applications running on

a tile-based MPSoC platform. In this approach,

shared resource effects are captured and repre-

sented as distribution functions. We propose a

message-level communication model of a multi-

processor bus to deliver fast yet accurate sim-

ulation results. The proposed model showed a

significant simulation speed-up comparing to the

transaction-level model (TLM) without degrading

the analysis accuracy. We evaluate some statis-

tical model checking (SMC) methods to demon-

strate the efficiency of probabilistic timing analysis

of MPSoC systems. In this analysis, different sta-

tistical algorithms and their parameters are further

investigated. Finally, the efficiency of the proposed

approach is evaluated by running different image

processing applications on different configurations

of a heterogeneous hardware architecture. Simula-

tion results showed a fast simulation time with ac-

curate results comparing to the measured results

from the implementation of the applications on real

hardware platform FPGA.
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