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During evolution, various and sometimes surprising methods have been developed by animals to ingest liquids. A compendium of drinking strategies encountered in animal realm is compiled in the review of Kim and Bush [1]. They emphasize that animals adapt their method to their size and the properties of the fluid to be ingested. Gravitational, viscous, capillary, and inertial forces thus balance to determine the rate and volume of captured fluid. For most insects and other tiny animals, beyond the action of muscles, capillary and viscous forces are dominant. Interestingly, viscous forces both facilitate fluid capture (e.g., drag in viscous dipping) or hinder it (e.g., dissipation in capillary filling of tubes). While viscosity of water is relatively low, plant secretions like nectar can show variable and high viscosity challenging the food intake strategy of the floral visitors [2]. Kim et al. propose two main mechanisms to describe the capture of nectar by various animals, including bees, hummingbirds, butterflies and bats. The first one is related to suction through the action of capillary forces or muscles, the second one being based on viscous dipping [1, 3]. To theoretically estimate the evolution of ingestion rates with nectar viscosities, they proposed a reasonable hypothesis: the animals capture the fluid with a constant power. This assumption yields scaling laws for the flow rates (i.e., Q ∝ η -1/2 for suction and Q ∝ η -1/6 for viscous dipping, η being the nectar viscosity), that qualitatively fit the compiled experimental data found in the literature [3]. It should be noted however that the leading hypothesis of constant retraction power is i Je remercie Pascal Damman pour m'avoir accueillie au sein de son laboratoire et pour m'avoir encadrée durant toutes ces années. Merci pour m'avoir donné la chance de réaliser cette thèse, pour tous les conseils, l'écoute et la confiance que tu as placée en moi. Plus qu'un simple directeur de thèse, tu as été, depuis mon mémoire, un pilier et je garde d'innombrables bons souvenirs de nombreuses discussions, scientifiques ou non, des cohabitations lors des conférences et des parties de rigolades qu'on a pu avoir.
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not supported by any experimental observations in the literature. Last but not least, they assimilated animals' tongues to simple tubes or smooth rods, the micro-structures such as hairy papillae, that decorate the tongues of bees and bats, being discarded. While several works in the literature discuss the capture of nectar by bees, the true influence of the micro-structures of the tongue is still questioned and a physical model describing quantitatively the fluid capture by nectarivores remains to be designed.

In this thesis, we will address these specific problems by studying in detail the collection of nectars by two archetypal species, bumblebees and hummingbirds. While both developed a back and forth movement of the tongue to capture nectar, the morphologies of their glossa are totally different. The studied bumblebees possess a tongue decorated with very elongated papillae forming a hairy coating surrounding a rod-like main stalk. The hummingbirds' tongues are made from two thin flexible sheets that self-assemble to form tubes. Our work is based on the analysis of videos of living animals ingesting nectars of various viscosities combined to a physical approach through detailed study of different model systems. For bumblebees, the viscous dipping for smooth and structured rods were investigated. In contrast, the feeding of hummingbirds relies on an elasto-capillary mechanism. During the retraction of the tongue from the nectar, the capillary forces help to close the tubes by bending the flexible sheets which trap the nectar.

The quantitative comparison of biological data with predictions of the physical models allows us to derive a novel perspective about nectar capture.

Goals and strategies

During the evolution, animals have developed various strategies to survive. These methods are very often perfectly suited to achieve reproduction, motion and to fulfill the basic needs in energy and water of the organisms. For example, the gecko lizards are able to adhere on any surface thanks to the VdW forces produced by the tiny hairs on their feet, dolphins navigate and hunt with the help of an internal sonar, the large stride of the cheetah allows it to capture agile preys and incidentally beat sprint record,... Through millions years of evolution, the animal kingdom exhibits an abundance of optimized methods designed to living purposes. Successfully ingesting food or fluids is obviously essential for the survival of living beings. Many animals have then undergone morphological changes, to attain optimized methods as close as possible. The best known exemple of such amazing adaptations is given by the chameleons able to catch preys with a shot of their extensible and adhesive tongue. Following this idea, the main goal of this thesis is to improve our understanding of two peculiar and very different mechanisms developed by bumblebees and hummingbirds to capture viscous fluids with their tongue.

In the first chapter, we give a non exhaustive panorama of mechanisms used by animals to capture food or to drink.

After a chapter devoted to Materials and methods, we have the three chapters describing the collection of nectar by bumblebees. Chapter 3 summarizes the state of the art of the physical models describing the drag of fluid during the withdrawal of solid surfaces. The biological data measured with living bumblebees are confronted to predictions of physical models describing the viscous drag with structured substrates in Chapter 4. Chapter 5 is related to liquid rope coiling, a phenomenon observed by accident during the experiments on viscous drag.

The second part of the thesis is devoted to the capture of nectar by hummingbirds. These animals use indeed a completely different tongue morphology than bees to achieve a similar purpose. In chapter 6, the biological data obtained with living hummingbirds are described and confronted to the proposed physical models. The major role played by elasto-capillarity in the process is also discussed.

Finally, the thesis ends with the general conclusion and outlooks.

Chapter 1

State of the art

The common characteristics of all living beings belonging to the animal realm are that they are multicellular and heterotrophic, i.e. feed on organic substances to collect energy. For their cells to function properly, they also need hydration (coming from their diet or simply by consuming bare water). In order to survive, animals have to develop the adequate food and water intake. The water intake should correspond to the hydration needs minus the hydration brought by food, while the food intake has to satisfy the sum of the metabolic cost of food acquisition, the metabolic cost of body maintenance and the reserves for reproduction and/or seasonal shortage [1]. In order to respect that, there is three diet conditions:

• to live in an adequate environment

• to have an adapted morphology

• to be capable of digesting and assimilating their food For example, the beaver feeds on tree bark, then it has to live in a wooden environment, its feeding apparatus has to be composed of sharp teeth able to cut trees and its digestive system has to digest wood.

The interesting point, in our case, is the relation between the nature of food, the morphology of the animal's mouthpart and the feeding/drinking mechanisms. During evolution, animals have developed extremely well adapted feeding/drinking apparatus as a function of their diet [2]. Indeed, considering that the animal is most vulnerable to predators during the feeding and drinking processes (where it can be motionless, exposed or inattentive to others animals), it is easy to understand that the feeding/drinking mechanisms are paramount in terms of natural selection. Then, at the exception of the use of the mouthpart for an other functionality, these apparatus are really optimum for the acquisition, the processing and the swallowing of food and drink. Since every animal has specific morphological constraints and needs, different parts of the feeding/drinking apparatus have been optimized. Herein below are some examples of morphological adaptations:

Teeth It is well-known that carnivores and herbivores do not have the same morphology of teeth, adapted to their diet [3]. Carnivores use their teeth to both capture prey and begin the food ingestion, canines are long and sharp in order to pierce and kill prey and molars are narrow and serrated to slice and shear meat into pieces (Figure 1.1A, top). In contrary, herbivores do not hunt a prey but due to their consumption of leafy vegetation they need to ruminate their food in order to extract some nutrients. They then use their teeth as a grinding surface with a lateral movement of their jaws. Their dentition is composed of strong and flat molars (Figure 1.1A, bottom). Another example of adaptation of teeth is the "right whale". Although these whales are huge, they feed on really small organisms (such as plankton). They have to capture a large quantity of small organisms and, in order to do so, they use a continuous ram filter feeding [4]. During evolution, their teeth have been substituted by whalebones, a series of stiff keratinous plates, situated on their upper jaw (Figure 1.1B). Covered by hairs, their specially angled whalebones allow to trap preys continuously while whales are swimming with their mouth open [5].

Jaw Most of lizards have developed kinetic skulls which allow not only the movement of the lower jaws, but also the movement of the upper jaws (1.1C). Because of the pince-like action, it confers a good improvement in speed and precision to capture their prey [6].

Bill Many birds have singular bill, very well adapted to their need [1,7]. Flamingos have a specific bill's shape (Figure 1.1D) which, in addition with a series of lamellae constituted of lateral margins on upper and lower bills, forms a highly filtering device [8,9]. In contrast to the filter feeding, some shorebirds are seize-selective predators and peck their food (as copepods, small crustaceans) thanks to their narrow bill. The mechanism to bring their food from the tip of the bill to the mouth is based on a surface tension transport (Figure 1.1F). The prey is caught with a small quantity of water. The drop of water moves towards the mouth when the mandibles spread. Indeed, mandibular spreading acts on the drops and increases its area, in order to reduce free surface area, and then reduce energy. The drop progress into the bill towards the closest part of the bill, towards the mouth. Once the drop with the prey is near the mouth, the shorebird abruptly closes the bill. This last motion of the bill ejects the drop of water out of the bill to only keep the prey [10]. A last example of bill adaptation is the bill of pelican [11]. When the pelican forages, its gular pouch is contracted. Once a prey is in sight, it dives opening its bill which enters the water. The gular is dilated and served as a net to trap the prey. When the pelican goes out of the water, it close the bill and then it half-opens it to empty the water. Finally, the pelican raises its bill in the air and, thanks to the gravity, swallows any prey caught in the trap (Figure 1.1E).

Tongue Frogs are opportunist feeders, their hunt consists to wait for the arrival of a prey in their environment. They have developed a elastic tongue coated by shear-thinning saliva [12]. To capture a prey, when the prey is close enough, the frog projects its tongue with a strong acceleration toward the prey. When the tongue hits the prey, the viscoelastic property of the tongue dissipates the impact, then it adheres and the frog is able to retract its tongue to its mouth to eat the prey (Figure 1.1F). The shear-thinning property of the saliva is also essential because it allows an increase of contact area between the prey and the frog's tongue (during the impact, high shear rate generates a low viscosity, the saliva easily spread) and improves the prey adhesion (during retraction, the shear rate is lower and the high viscosity allows a viscous adhesion). In nature, other animals exhibits a variation of this feeding process, such as the salamander [13] or the chameleon [14]. We will discuss about this last one in the following.

Lips Camels are herbivores able to feed on certain plants avoided by other herbivores partly due to the fact they have muzzle and strong prehensile lips [15].

In the following, we focus on the functional-morphological approach for animals which have developed a lingual capture. It means that the acquisition of the food is principally performed by the tongue. A counterexample is the feeding mechanism of humans [16]: while the tongue is essential to mix food with saliva and, once properly chewed, to bring it in to the back of the mouth to swallow, this mechanisms is not considered as a lingual feeding. As the feeding mechanism is strongly related to the physical properties of the food ingested, we will classify feedings in two categories: (i) the feeding on solid matters, where ingested food is solid such as animals or plants and (ii) the drinking on liquid matters such as water or nectar. and the other while it catches some fishes thanks to the swallow of the gular pouch. Images Credit: Flickr User ali_arsh. F. Snapshots of a shorebird to observe its mechanism to bring a drop of water towards the base of its bill [10]. G. Snapshots of a frog capturing a prey thanks to its sticky tongue [12].

Feeding on solid materials

There is a wide variety of solid food. While the lion preys are generally mammals weighting between 150 and 550 kg, from antilopes to baby elephants [17], others animals feeds on small organisms like bacteria and phytoplankton, preys of tilapias for example [18]. Nevertheless it is obvious that the capture of solid preys with a lingual feeding mechanism involves a size/weight limitation.

The properties of the tongue and other mouthparts (e.g., hyobranchial apparatus and muscles, the tongue skeleton and its muscles) have to be adapted to the food, which can be slippery, rough, hairy or just hard to reach. The lingual prehension can be done by two types of mechanism. The first kind of prehension concerns a grasp of the food with prehensile members. In order to catch the food, the tongue has to have a certain mobility, by the use of some muscles for example. The second prehension method embraces a lot of different types of adhesion [19] (Figure 1.2).

In this chapter we will focus on the collection of solid food made by three different animals: giraffes and pangolins, some active or predators, and chameleons, "sit and wait" predators.

Giraffe

Given their size, feeding is one of the most important activity for wild giraffes and it has to be efficient. However only few studies have been reported on the feeding mechanism of giraffes [20]. To capture food, they use their prehensile tongue (Figure 1.3A). With the action of their muscles, the tongue manages to surround the plant to bring it to their mouth. And to optimize the food intake rate when they consume leaves on a secondary branch, they tear off all the leaves of the branch in one shot by rapidly slipping on it. Moreover, the length of their neck plus the length of their tongue makes the high branches easier to reach, increasing the available food in comparison of others herbivores.

The tongue is covered by horny filiform papillae (Figure 1.3B). The texture of these papillae enables giraffes to feed on thorny trees as Acacia trees. Indeed, to protect their leaves from predators, these trees are surrounded by sharp thorns. This protection does not deter giraffes which can eat these leaves with their manageable tongue without any damages [21]. While giraffes produce a viscous saliva, helpful during the rumination and to protect the internal organs from an ingestion of thorns, the role of this saliva during the acquisition of the food is not proven [22,23].
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.3: A. Picture of a giraffe stretching its tongue to reach high leaves. B. Scanning electron micrographs of the tongue of a giraffe which is covered by filiform papilla [24].

Pangolin

The pangolin (Figure 1.4A) is known to curls its body up like a ball when he sleeps or feels threatened [26]. As the majority of anteaters, the pangolin is a nocturnal animal which hunts thanks to a well developed olfactory system. It feeds mainly on ants and termites but also on various other invertebrates such as bee larvae, flies, worms, earthworms and crickets [27]. The pangolin searches its prey through anthills, termite mounds, trunks bases or pile of dead leaves thanks to its extraordinarily long and thin tongue. Indeed, when the tongue is into its body, it extends from oral cavity, through the neck and the thorax, to the abdominal cavity (Figure 1.4B). As a result, the tongue and its muscles are longer than the animal itself. Once the pangolin smells food, it extrudes its tongue and laps up its preys. For this purpose, the tongue is coated with a sticky saliva which insured the adhesion of preys. As the volume of food intake directly depends on the length of its tongue, it is important for pangolins to extend its tongue to optimize feeding. Then, in addition to this very long tongue, two mechanisms increase its length again. The first consists of the attachment of the pangolin tongue. Generally, the tongue is anchored to the hyobranchial apparatus by extrinsic lingual muscles, but it is not the case for pangolins. For pangolins, the extremely elongated tongue is anchored by a xiphoid process of the sternum (Figure 1.4B) which allows a large motion of the tongue, favoring the increase of the protruded tongue. The second mechanism is based on the fact that the tongue is principally made up by muscles [28].

The tongue is then a boneless muscular hydrostat which has the specificity to maintain a constant volume [29]. This particularity means that, when the muscles of the tongue are contracted, the section area of the tongue decreases and, to preserve the volume, the length of the tongue has to increase. Of course, the degree of extension has a strong dependance with the shape of the tongue. The almost cylindrical tongue of the pangolin allows it, not only to burrow easily into anthills and termite mounds, but also to elongate further than a short and wide tongue. As the capture relies on the adhesion of the insects on the tongue, this last one has to keep a good lubrication with the saliva. As the strong elongation may harm the homogeneous saliva coating, pangolins produce more saliva provided by the glossal tube [25]. Then the tongue is lubricated during the protrusion.

The epithelial surface of the tongue lacks papillae. This means that the pangolins do not have the sense of taste. The only role of the tongue is to capture preys and bring them to the stomach without any manipulation within the oral cavity. As a consequence, pangolins are almost the single mammals without teeth and their preys reach the stomach intact with their tough exoskeletons. This feeding process requires strong gastric muscles to grind the preys. To help itself, pangolins swallow some small stones and sand to assist in grinding in the stomach [30].

Chameleon

At the opposite of the two previous examples, chameleon is not an active predator. It is an opportunistic predator ("sit and wait") and its hunt consists of an immobile waiting, until the crossway of a prey in his field of vision. While we may think that the chameleon is not a good predator, this first idea is totally wrong. It has developed specialized characteristics in the only goal to improve its hunt skills.

With its skin, the chameleon has the ability to hide into its environment and thus not be seen by the preys [31]. In addition, it has independent eye movement allowing him not only to see the prey located all around him but also to determine, with only one eye, the distance from it with precision [32].

The most spectacular characteristic of chameleons is, of course, the capture mechanism itself. Once a chameleon has localized a prey, it projects its tongue which, at an impressive speed, catches the prey (Figure 1.5A). For this purpose, two typical elements have been optimized: (i) the projection of the tongue and (ii) the adhesion between the prey and the tongue.

Ballistic projection

The prey-catching of chameleons is first achieved through the projection of the tongue which reaches a length up to 2.5 body lengths with a maximal acceleration around 500 m/s

2 [33]. The origin of this extreme acceleration has been the subject of many experimental studies [33][34][START_REF] Wainwright | The mechanism of tongue projection in chameleons: I. electromyographic tests of functional hypotheses[END_REF][START_REF] Wainwright | The mechanism of tongue projection in chameleons: Ii. role of shape change in a muscular hydrostat[END_REF][START_REF] Herrel | The mechanics of prey prehension in chameleons[END_REF][START_REF] Müller | Power at the tip of the tongue[END_REF][START_REF] De Groot | Evidence for an elastic projection mechanism in the chameleon tongue[END_REF]. Figure 1.5B highlights that the tongue is composed of 4 parts supported by a rigid bone-like structure, the entoglossal process. Each part is involved in a step of the feeding. On the back, the accordion-shaped retractor muscle is used for the retraction of the tongue while the accelerating muscle and the collagen sheath are activated during the projection. Finally, the tongue's tip with an adhesive layer plays an important role in the adhesion between the tongue and the prey.

The projection of the tongue is based on a gradual energy storage following by the fast release of this energy. In order to store energy, the muscle fibers in the accelerator muscle are activated and produce a mechanical contraction on the entoglossal process with a force F acc opposed to the force exerted by the incompressible entoglossal process F e . The structure of this muscle corresponds to a muscular hydrostat, in others words, this muscle is considered as incompressible and composed of oriented fibers. Then, to keep a constant volume, the compression of this muscle generates a compensatory increase of its lengths (Figure 1.5C (a,b)).

The muscle thus extends on the entoglossal process, increasing the sheaths of collagen tissue situated between these two elements. This effect generates energy storage within these fibers. When the accelerator muscle extends beyond the end of the bone, the tongue is sprung with the force F c , the elastic energy being converted into kinetic energy (Figure 1.5C (c)) [START_REF] Moulton | The elastic secrets of the chameleon tongue[END_REF]. This acceleration can be seen on the Figure 1.5D. When the tongue starts to move, the velocity rapidly increases because of the initial ballistic projection. Then this initial acceleration decreases due to the elasticity of the tongue and vanishes. As the chameleon has previously estimated the distance of the prey, the tongue is closed to its maximal extension near the prey, which produces a deceleration. During the decrease of velocity, the chameleon hits the prey and the movement is stopped before the retraction.

The retraction is composed of two steps. At first, during a time t d , there is an important acceleration up to 500 ms -2 , followed by a constant velocity stage. In fact, the retraction of the tongue is triggered by the elastic energy produced by the extension of the tongue which generates the reverse acceler- ation. Once the tongue has fully released the elastic energy, the retraction is made by the retractor muscle which brings the tongue back to the mouth at constant velocity.

Viscous adhesion

When the tongue reaches the prey, the animal, instead of being thrown by the collision, adheres to the tongue. This adhesion is even more impressive looking at the stomach content of chameleons. They capture preys which weigh up to 30% of their own body weight. Moreover, on Figure 1.6, we can see that the length of preys does not follow a simple allometric law with the size of the chameleon. We should expect that the mass of both animals are proportional, V 1/3 ∝ L SV L . Instead, the power law fit for the relation between these two data yields:

V 1/3 prey ∼ L 1.35 SV L (1.1)
Brau et al. [14] and Houze et al. [START_REF] Houze | Predation with the tongue through viscous adhesion, a scaling approach[END_REF] have studied this adhesion mechanism. They showed that the key element of the adhesion is the physical property of the mucus secreted on the chameleon's tongue. This is a yield stress fluid characterized by a very small yield stress (∼ 100 Pa) and a high viscosity (η = 0.4 Pa.s). During the retraction, the thickness of the thin layer of mucus increases, creating a radial Poiseuille flow. This flow involves a depression at the origin of the adhesive force between the chameleon's tongue and the prey (Figure 1.7). To succeed the prey capture, the adhesion force has to balance the inertial forces during the acceleration of the tongue in the retraction step. In others words, the detachment time of the tongue has to be longer than the time of the acceleration. Considering allometric relations and the viscous adhesion mechanism, it has been shown that the maximum prey mass should scale according to the relation

M 1/3 ∼ L 5/3
SV L in good agreement with observations (Figure 1.6).

Feeding on liquid materials

The feeding on liquid materials can be classified into three categories. The first one corresponds to animals that simply drink water. Indeed, although water found in their food is enough for some animals, the majority needs to hydrate from bare water. The other two categories include animals mixing hydration and energy intake. Indeed, some animals ingest water to extract the living organisms within. For example, flamingos filter water to feed on suspended algae [9]. The last category are composed of animals that consume liquids other than water as a direct source of energy. It concerns for example the mosquito with the blood [START_REF] Kim | Experimental analysis of the blood-sucking mechanism of female mosquitoes[END_REF], the aphid with the sap [START_REF] Douglas | The nutritional quality of phloem sap utilized by natural aphid populations[END_REF] or the bees with the nectar [START_REF] Lechantre | Collection of nectar by bumblebees: How physics of fluid demonstrates the prominent role of tongue's morphology[END_REF].

A compendium of drinking strategies encountered in animal realm is compiled in the review of Kim and Bush [START_REF] Kim | Natural drinking strategies[END_REF]. They emphasize that drinking can be seen as a balance between a dominant driving force, generally a pressure gradient, generated by muscular contraction and/or capillarity, and a resistive force, generally a combination of inertia, gravity and viscosity. As a result, animals adapt their method to their size and the properties of the fluid to be ingested. To explain their viewpoint, Kim and Bush have built an overview of the different drinking mechanisms (Figure 1.8) where they highlight eight drinking styles. In this Figure, they used two dimensionless numbers (Reynolds and Bond numbers, denoting the ratios of inertial to viscous forces and of hydrostatic to capillary forces), in their reduced forms to take into account the dimension of the anatomical part for the acquisition of food (e.g. the trunk of the elephant):

Re = ρvL η L H ; Bo = ρgHL σ ,
for a fluid of viscosity η and density ρ being driven with velocity v. L and H are the characteristic length and diameter of the anatomical part used for the acquisition of food.

From this Figure, we can globally see that, for large animals, inertia of the fluid ( Re > 1) and the driving pressure ( Bo > 1) are dominating while, for small animals, the drinking mechanisms are based on viscosity and capillarity.

Since the capture mechanism is related to the properties of the fluid, we will at first discuss the lingual capture of inviscid fluids, e.g. the water, before considering the capture of viscous fluids, e.g. the nectar.

Lingual capture of water (inviscid fluid)

This capture is generally submitted to morphological constraints which can affect the drinking mechanism. While a lot of vertebrates use their cheeks to seal their mouth cavity to generate suction (e.g. horses, humans and pigs [START_REF] Thexton | Transition from suckling to drinking at weaning: a kinematic and electromyographic study in miniature pigs[END_REF]), some animals without complete cheeks (e.g. cats, dogs and lizards) have to develop another drinking method.

Cat

Reis et al. studied the lapping, a drinking mechanism encountered for felines [START_REF] Reis | How cats lap: water uptake by felis catus[END_REF]. When they drink, cats show several back and forth movements of their tongue called laps. The feline lowers its tongue up to the surface of the water while the tip of the tongue is twisted (Figure 1.9a). The dorsal side of its tongue touches the surface without piercing it. Then the cat rapidly retracts the tongue producing a liquid column. By closing its jaws, the feline captures the top of this column (at the height H) before gravity brings it down. They experimentally model the tongue of cats by a hydrophilic disk of radius R f placed initially in contact with the water surface and then pulled vertically upward (Figure 1.9b). Using the same velocity as the one for cats, this experiment reproduces the formation of the liquid column. Of course, as there is nothing to trap the water during the ascension of the column, it pinches-off and drops at a certain height h p due to gravity (Figure 1.9b, F to H).

During the lapping, where Re > 1 and Bo > 1, the formation of the columns results from a balance between inertia which elevates liquid and gravity which hinders it. To maximize the ingested volume of water by lap, the cat needs to ensure the jaws close when the column has reached its maximal volume, when H ∼ h p . Reis et al. found that the frequency is predicted as:

f ∼ (gH) 1/2 R f (1.2)
From allometric laws within the Felidae family (i.e., that lapping height H scales linearly with tongue width 2R f and animal mass M scales as R 3 f ), the relation between the frequency and the feline mass becomes:

f ∼ R -1/2 ∼ M -1/6 (1.3)
Experimentally, the lapping frequency for felines fits to the relation f = 4.6M -0.181±0.024 (f in s -1 , M in kg) which is in good agreement with the proposed law (Figure 1.9c). Hubbard et al. [START_REF] Hubbard | How tongue size and roughness affect lapping[END_REF] proved that this mechanism is restricted to the size of felines and would be inefficient for larger animals. They also proved that the mechanism is not affected by the roughness of the tongue, as suggested by Reis et al. [START_REF] Reis | How cats lap: water uptake by felis catus[END_REF].

Comment on the dogs drinking mechanism. Although the dogs drinking mechanism looks similar to the mechanism used by cats, it remains controversial. Indeed, the fact that the tongue of dogs penetrates the fluid during the lapping made some scientists believe of an other drinking mechanism, the ladling [START_REF] Reis | How cats lap: water uptake by felis catus[END_REF][START_REF] Kim | Optimal concentrations in nectar feeding[END_REF]. In this mechanism, the water was dragged not only by the inertia-and gravity-controlled lapping mechanism but also by a scoop formed by the dog tongue. This scoop located at the ventral side of the tongue is filled when the tongue is immersed into the fluid. Actually it seems that this scoop spilled out as the tongue is withdrawn [START_REF] Crompton | How dogs lap: ingestion and intraoral transport in canis familiaris[END_REF]. Then, with this new fact, both cats and dogs seem now use the same lapping mechanism. But there are some differences anyway [START_REF] Gart | Dogs lap using acceleration-driven open pumping[END_REF]: dogs show higher accelerations of the tongue than cats, leading to an unsteady inertial regime and the role of the fluid drag within the scoop is unclear because it may help to increase the volume of the column.

Lizard

Cats and lizards both use back and forth movements of their tongue in the liquid. While cats just touch the liquid surface, lizards plunge entirely the tongue in the water contrary to cats and the tongue velocity is much slower for lizards (v cat ∼ 78 cm/s while v liz ∼ 0.6 cm/s [START_REF] Wagemans | Drinking behaviour in anolis carolinensis (voigt, 1837) and oplurus cuvieri (gray, 1831)(reptilia: Iguania: Iguanidae)[END_REF]). Rabinowitz et al. [START_REF] Rabinowitz | Papillary morphology of the tongue of the american chameleon: Anolis carolinensis[END_REF] studied the tongue morphology of the Carolina anole and showed a physiological adaptation of lizards: they possess papillae all over their tongue whose depth is of order 100 µm (Figure 1.10). Then the drinking mechanism suggested is the licking associated to the capillary imbibition. The significant depth of papillae is filled with water when the tongue is into the water and all this fluid is expelled from papillae once in the mouth via a muscular contraction of the tongue. This mechanism provides an adequate quantity of fluid to lizard.

Lingual capture of nectar (viscous fluid)

Floral nectars are mainly composed of sugars (principally a combination of sucrose, glucose and fructose) and water. Then the collection of nectar can be seen as a simple energy supply taking advantage of the high sugar fraction contained in these plant secretions. Its optimization should maximize the energy-intake rate Ė [START_REF] Kingsolver | On the mechanics and energetics of nectar feeding in butterflies[END_REF] defined by the product of the energy content per unit mass of the sugar, , the density ρ of the nectar, the volumetric fraction of sugar in nectar C and the volumetric flow rate Q through the relation

Ė = ρCQ (1.4)
While and ρ can be considered as constants (small variations related to chemical composition and concentration can however be observed even within the same flower species), C and Q strongly depend on the viscosity of the nectar. This viscosity exponentially increases with the sugar concentration at a given temperature and also depends on the exact composition of the nectar (the ratio of the different types of sugar contained in the nectar but also the presence of various compounds such as amino acids or enzymes) [START_REF] Harder | Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees[END_REF].

To maximize Ė, animals should then both maximize the sugar content C and the flow rate Q. The sugar content C is determined by the type of visited flowers, a tremendously relevant parameter but completely fixed by the characteristics of the foraging area. Finally, for animals, the only adjustable parameter is Q. This important parameter could be adapted through the morphology of the tongue, the feeding mechanism and the feeding dynamics.

While the viscosity of water is relatively low, nectar can show a high viscosity challenging the food intake strategy of the floral visitors. Indeed, the concentration of sugar in the nectar depends not only on the initial nectar produced by the flower, but varies also ass a function of the relative humidity and temperature around and inside the flower (some microclimatic effects can appear depending on the shape of the flower's corolla [START_REF] Nicolson | Nectar chemistry[END_REF]). Moreover, the presence of additional components to the nectar can influence, for example, the vapor pressure [START_REF] Corbet | Humidity, nectar and insect visits to flowers, with special reference to crataegus, tilia and echium[END_REF]. Consequently, flowers can contain nectars with a large range of viscosities (from 10 -3 to 1 Pa.s).

In the following, we will discuss the capture of nectar for three species: butterflies, bees and hummingbirds. The feeding mechanism of these last two animals will be analyzed more deeply in this thesis.

Butterfly

Butterflies feed on nectar with a viscosity between 0.001 and 0.1 Pa.s [START_REF] Kingsolver | On the mechanics and energetics of nectar feeding in butterflies[END_REF][START_REF] Pivnick | Effects of nectar concentration on butterfly feeding: measured feeding rates for thymelicus lineola (lepidoptera: Hesperiidae) and a general feeding model for adult lepidoptera[END_REF]. To collect this nectar, they employ suction. They suck the nectar through their proboscis by applying a pressure gradient ∆P generated by cibarial muscles B. Schematic illustration of the drinking process for butterflies [START_REF] Kim | Natural drinking strategies[END_REF].

(Figure 1.11). In such a mechanism, the rate of volume intake Q can be deduced by the Hagen-Poiseuille equation [START_REF] Sutera | The history of poiseuille's law[END_REF]:

Q = πr 4 ∆P 8ηL (1.5)
This equation is derived from the Stokes equation where the flow of a Newtonian fluid of viscosity η through a tube of diameter r and length L is affected neither by gravity nor by inertia of the fluid. By definition, the power output Ẇ of the cibarial pump is related to ∆P by

Ẇ = ∆P Q (1.6)
Then the rate of the volume intake can be expressed in term of the power output:

Q = πr 4 Ẇ 8ηL 1/2 (1.7)
Pivnick and McNeil [START_REF] Pivnick | Effects of nectar concentration on butterfly feeding: measured feeding rates for thymelicus lineola (lepidoptera: Hesperiidae) and a general feeding model for adult lepidoptera[END_REF] measured the power output Ẇ of the cibarial pump as a function of the sucrose concentration of the nectar and deduced that butterflies apply an almost constant power to generate the pressure gradient. Then the dependence on the viscosity of the intake flow rate is

Q ∝ η -1/2
(1.8)

Figure 1.12: Scaled volumetric flow rate Q/<X> as a function of the nectar viscosity for different animals (X is a geometry-dependent parameter). Red, blue and green points correspond to the suction generated by the muscular pump, the suction activated by capillarity and the viscous dipping, respectively [START_REF] Kim | Optimal concentrations in nectar feeding[END_REF]. Inset: Relative energy intake rate as a function of the nectar viscosity where the calculated optimal concentrations for suction feeding (33%) and viscous dipping (52%) are denoted by vertical bands.

From this equation, it is easy to understand that the collection of nectar strongly depends on the viscosity. Kim et al. have shown this dependence, see Figure 1.12 (red points). As the tube formed by the proboscis of the butterfly does not vary in diameter or length with the viscosity, the rate of volume intake decreases with the increase of the viscosity. Butterflies have then to drink for a longer time to get the same volume of nectar. However, the viscosity increases exponentially with the sucrose concentration of the nectar, but the energy increases explicitly (through C) only linearly with the sucrose concentration, thus it exist an optimum in the energy intake rate. By equation 1.4, the rate of the energy intake becomes:

Ė = ρCQ ∝ Ce -C/2 .
Considering the evolution of the viscosity with the sucrose concentration C [START_REF] Pivnick | Effects of nectar concentration on butterfly feeding: measured feeding rates for thymelicus lineola (lepidoptera: Hesperiidae) and a general feeding model for adult lepidoptera[END_REF], the relation of the energy intake rate with the viscosity can be computed and is shown in the inset of Figure 1.12. It reveals an optimal concentration of 33% of sucrose at a temperature of 25 • C. This optimum is experimentally observed, see Figure 1.13. However, it should be noted that several studies have raised questions about the previous model which describes the capture of nectar as a simple straw connected to the muscular pump [START_REF] Monaenkova | Butterfly proboscis: combining a drinking straw with a nanosponge facilitated diversification of feeding habits[END_REF][START_REF] Lee | Liquid-intake flow around the tip of butterfly proboscis[END_REF][START_REF] Kwauk | Drinking with an unsealed tube: Fluid uptake along the butterfly proboscis[END_REF][START_REF] Tsai | Paradox of the drinking-straw model of the butterfly proboscis[END_REF][START_REF] Kornev | The butterfly proboscis as a fiber-based, self-cleaning, micro-fluidic system[END_REF]. Indeed, several authors doubt about the validity of the model in the case of an unsealed tube. They investigated the role of the dorsal closing longitudinally aligned with the proboscis and the possible antiparallel movements of the galea [START_REF] Krenn | Proboscis assembly in butterflies (lepidoptera)-a once in a lifetime sequence of events[END_REF]. Then, while the global capture feeding mechanism is understood, lots of adjustments have to be added to the previous model. Nevertheless, the improvement of this physical model is not the subject of this thesis.

Bee

Although bees also feed on pollen, we focus on their ability to feed on a viscous fluid, the nectar. The nectar viscosity of the flowers visited by bees is very diverse and ranges between 10 -3 and 5 10 -1 Pa.s [START_REF] Harder | Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees[END_REF][START_REF]Types of nectar in angiosperms[END_REF][START_REF] Roubik | Nectar selection by melipona and apis mellifera (hymenoptera: Apidae) and the ecology of nectar intake by bee colonies in a tropical forest[END_REF].

While most butterflies have a small energy requirement due to their low metabolic rate during flight and their capacity to thermoregulate, taking time to bask in the sun [START_REF] Heinrich | Energetics of pollination[END_REF], bees need a large quantity of energy. Indeed, their metabolic rate during flight is larger and they also need to store additional energy for their colony. Then, comparatively to butterflies, the rate of the energy intake has to be larger, relatively to their size. Unfortunately, the sucking mechanism can not be used anymore for bees. This mechanism is indeed optimal for relatively low nectar concentration (excluding the foraging for high viscous nectar), and, due to the smaller size of bees, the quantity of captured nectar would be smaller. Indeed, the rate of volume intake strongly depends on thechannel diameter of the food channel (Q = πr 4 ∆P/8ηL), ten times smaller for bees than butterflies (∼ 1 mm for butterflies and ∼ 0.1 mm for bees). We thus expect the flow inside the food channel to be ten thousand times lower. Contrary to butterflies, the bees feeding mechanism consists of back and forth movement of their tongue into the nectar. Their tongue repeatedly plunges into the nectar localized in the flowers' corolla and, during the retraction of the tongue, it drags an amount of nectar (Figure 1.14A-B).

Even though studies discuss the relation between the influence on some components and the nectar intake by bees [START_REF] Ma | A novel behavioral assay to investigate gustatory responses of individual, freely-moving bumble bees (bombus terrestris)[END_REF], in this thesis we are interested in the understanding of the physical aspect of the bee feeding.

The morphology of the bee oral apparatus has been extensively investigated [START_REF] Krenn | Proboscis assembly in butterflies (lepidoptera)-a once in a lifetime sequence of events[END_REF][START_REF] Snodgrass | Anatomy of the honey bee[END_REF][START_REF] Krenn | Mouthparts of flowervisiting insects[END_REF]. It is one of the most complex adaptation observed for insects as illustrated by the morphology of the proboscis (Figure 1.14C). The proboscis is formed by the maxillae and the labium. These structures end with a pair of palpi (articulated elements), where sensory hairs are present for touch or smell. In addition of this pair of palpi, the labium possesses in its center a glossa, more commonly called tongue, ended by the flabellum. While each part of the proboscis may slightly vary between different bee species [START_REF] Krenn | Mouthparts of flowervisiting insects[END_REF], the principal variation is the length of the tongue. Considering the feeding process, two main different types of bees exist with long or short proboscides. The length of the tongue may affect the choice of visited flowers because it impacts the probing time (which consists of the access and ingestion time) [START_REF] Harder | Flower handling efficiency of bumble bees: morphological aspects of probing time[END_REF]. Also, as showed by L. D. Harder [START_REF] Harder | Functional differences of the proboscides of short-and longtongued bees (hymenoptera, apoidea)[END_REF], the length of the proboscis has a strong impact on the ingestion rate. Indeed, while no difference in the ingestion rate is detectable for small bees, the "long-tongued" bees have a larger ingestion rate of nectar than "short-tongued" bees of same mass (Figure 1.15). This observation as well as the relative abundance of large bees suggest that long-tongued bees are more efficient to collect nectar. Because of this, we will focus on the feeding process of long-tongued bees in the following of this thesis.

B C

A Figure 1.14: A. Snapshots and illustrations of a set of frames of tongue kinematics in a bee feeding cycle. The inset in the third image shows the appearance of glossal segmented structures [START_REF] Chen | Switchable wettability of the honeybee's tongue surface regulated by erectable glossal hairs[END_REF]. B. Snapshot of the feeding process of a bee in nature. C. Schematic illustration of the proboscis of a bee. The maxilla is composed by the cardo, the stipe, the maxillary palpus and the galea and the labium is composed by the mentum, the prementum, the labial palpus, the paraglossa, the glossa; the flabellum [START_REF] Willmer | Pollination and floral ecology[END_REF]. The size of the feeding apparatus of long-tongued bees is impressive and could affect the drag force during flight. To avoid this problem, the tongue is completely folded and stored in a large and deep groove localized on the underside of the head [START_REF] Michener | The bees of the world[END_REF]. Then, before initiating the feeding process, bees have to deploy the feeding apparatus and to place it in the functional position. The galea and labial palpi assemble themselves to form a temporary food channel [START_REF] Snodgrass | Anatomy of the honey bee[END_REF]. As shown on Figure 1.16, the tongue is in the center of this food channel. During the back and forth movement, different components of the labium can be involved. For some bees, the tongue just as the prementum (see Figure 1.14C) moves while in bumblebees, all the feeding apparatus is practically motionless during the feeding process except for the tongue itself. It repeatedly extends into the nectar and then retracts thanks to muscles attached to the base of the tongue. Kingsolver and Daniel [START_REF] Kingsolver | Mechanics of food handling by fluid-feeding insects[END_REF] described the feeding cycles by a succession of three different components: (i) during its extension, the tongue is in a loading phase, (ii) it is followed by a retraction phase where the tongue goes back into the food channel and finally (iii) the nectar is removed from the tongue during an unloading phase. During this last phase, nectar is swallowed by ascending the food channel presumably by application of suction from the pharyngeal pump [START_REF] Pouvreau | Biologie et écologie des bourdons[END_REF]. Li et al. [START_REF] Li | Drag reduction in the mouthpart of a honeybee facilitated by galea ridges for nectar-dipping strategy[END_REF][START_REF] Li | Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones[END_REF] highlight the presence of microridges inside maxillary and labial palpis (Figure 1.16B, right inset) which would help in the mechanism to swallow the nectar. The feeding rate is then related to the tongue morphology. As previously explained, long-tongued bees possess an elongated tongue where the length determines the ingestion rate. Figure 1.16B shows that the surface of the tongue is covered by transversal rings wrapped by long hairs. During the feeding process, these hairs rhythmically erect: when the tongue begins to extend, they are close to the tongue, and, during extension, the hairs erect to reach a maximal angle with the tongue. When the tongue goes back in the retracted state (in the food channel), they return to the initial position where they are aligned with the tongue [START_REF] Chen | Switchable wettability of the honeybee's tongue surface regulated by erectable glossal hairs[END_REF][START_REF] Zhao | Erection mechanism of glossal hairs during honeybee feeding[END_REF]. Zhao et al. [START_REF] Zhao | Observations and temporal model of a honeybee's hairy tongue in microfluid transport[END_REF] have suggested that the tempo adopted by hairs should be optimal to reduce the viscous resistance when the tongue enters into the nectar while opening hairs. To support this viscous drag, the tongue is reinforced by an elastic glossal rod (Figure 1.16A). It also presents a cavity forming an internal glossal channel. The role of this internal channel in the feeding process is not clearly explained in the literature but some authors suggest it could be used to bring the saliva to the tip of the tongue during the pollen feeding [START_REF] Snodgrass | Anatomy of the honey bee[END_REF].

Kim et al. [START_REF] Kim | Optimal concentrations in nectar feeding[END_REF] proposed a mechanism to describe the capture of nectar bees: the viscous dipping. In order to build their model, they consider that animals capture the fluid with a constant power and the bees tongue can be modeled by a smooth cylinder. In this model, the rate of the volume intake may be expressed as

Q ∼ 2πrhv T 2T + T 0 (1.9)
where r and v represent the radius and the retraction velocity respectively, h corresponds to the thickness of the dragged nectar and T and T 0 are the time needed for tongue retraction and the interval between two cycles respectively. The power needed to overcome the viscous force can be written as

Ẇ ∼ ηLv 2 (1.10)
where L is the length of the tongue. The fact that the power of muscles is assumed to be constant implies that

v ∼ η -1/2 (1.11)
As T and T 0 would have the same dependence on the viscosity, T /(2T + T 0 ) would not strongly depend on the viscosity. Then the volumetric flow rate Q is given by

Q ∼ 2πrhv T 2T + T 0 ∝ hη -1/2 (1.12)
The thickness of a dragged viscous fluid on a thin smooth cylinder is described by the Landau-Levich-Derjaguin theory [START_REF] Quéré | Fluid coating on a fiber[END_REF] h ∼ rCa 2/3 (1.13

)
where Ca is the capillary number expressed by Ca = ηv/σ (ratio between the viscous forces and the surface tension). Then, as verified on Figure 1.17, the volumetric flow rate depends on the viscosity according to

Q ∝ hη -1/2 ∝ η -1/6 (1.14)
As previously considered for butterflies, the energy intake rate (E ∝ Cη -1/6 for bees) leads to an optimal sucrose concentration of 52% as seen in the inset of Figure 1.17. As expected for bees, their feeding mechanism allows to capture high viscous nectars which bring high energy rates. Moreover, the optimal concentration for viscous dipping is higher than the one for suction feeding.

Figure 1.17: Scaled volumetric flow rate Q/<X> as a function of the nectar viscosity for different animals (X is a geometry-dependent parameter). Red, blue and green points correspond to the suction generated by muscular pump, the suction activated by capillarity and the viscous dipping respectively [START_REF] Kim | Optimal concentrations in nectar feeding[END_REF]. Inset: Relative energy intake rate as a function of the nectar viscosity where the calculated optimal concentrations for suction feeding (33%) and viscous dipping (52%) are denoted by vertical bands.

It should be noted however that the leading hypothesis of constant power is not supported by any experimental observation in the literature. Last but not least, they assimilated animals' tongues to smooth cylinders, the microstructures such as hairy papillae that decorate the tongues of bees, being discarded. However, recent works suggest that the morphology and the dynamics of the tongue is decisive in the collection of nectar. Yan et al. proposed a mechanism of capture based on a very complex coordinated dynamics between the back and forth movement of the tongue in the fluid coupled to the erection of the hairy papillae coating the tongue [START_REF] Yang | Effects of erectable glossal hairs on a honeybee's nectar-drinking strategy[END_REF][START_REF] Wu | Erection pattern and sectionwise wettability of honeybee glossal hairs in nectar feeding[END_REF][START_REF] Zhao | The morphology and reciprocation movement of honeybee's hairy tongue for nectar uptake[END_REF][START_REF] Yang | The honeybee's protrusible glossa is a compliant mechanism[END_REF][START_REF] Wu | How to dip nectar: optimal time apportionment in natural viscous fluid transport[END_REF]. To improve the understanding of the collection of nectar by bees, and specially to understand the role of the hairy structure of the tongue, we will compare biological data with predictions of a physical model in the following of this thesis.

Hummingbird

Hummingbirds feed on small insects catch in flight, which they find near flowers and on spider webs. However, their main source of food is the nectar of flowers [START_REF] Powers | Field metabolic rate and food consumption by free-living anna's hummingbirds (calypte anna)[END_REF]. The nectar represents an excellent energetic resource to satisfy their extremely high energy need. Indeed, hummingbirds have the highest energy expenditure of any warm-blooded animal, with a heart rate up to 1000 beatper-minute, a maximal flight speed at 15 m/s and wingbeat frequencies of 30 -60 Hz [START_REF] Chai | Maximum flight performance of hummingbirds: capacities, constraints, and trade-offs[END_REF][START_REF] Altshuler | Kinematics of hovering hummingbird flight along simulated and natural elevational gradients[END_REF]. Moreover, they are the only birds able to hover [START_REF] Warrick | Aerodynamics of the hovering hummingbird[END_REF], which they do during the feeding process.

Extreme rates of energy consumption implies to maintain a high metabolism. Hummingbirds consume more than their body mass in nectar each day to avoid to starve to death. Incidentally, they have developed a specific behavior during the night: they enter in a state of torpor. Because they can not feed every half-hour while they sleep, they are not able to sustain their high metabolism and consequently they turn down their heartbeat and their body temperature to decrease the need for food [START_REF] Eberts | Using thermal imaging to detect torpor in nesting hummingbirds[END_REF].

One other characteristics of hummingbirds is their ability to enhance the flux of nutrients like sugars or amino acids to absorb more efficiently their food. They have enhanced both the "oxygen transport cascade" and the oxidation of sugar in their body to reach an assimilation of up to 99% [START_REF] Baker | Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics 1[END_REF][START_REF] Del Rio | Dietary, phylogenetic, and ecological correlates of intestinal sucrase and maltase activity in birds[END_REF][START_REF] Chen | Hummingbirds can fuel expensive hovering flight completely with either exogenous glucose or fructose[END_REF][START_REF] Suarez | Sugar metabolism in hummingbirds and nectar bats[END_REF]. This assimilation of sugar concerns the sucrose but also, and more surprisingly, both the glucose and the fructose contained in the nectar [START_REF] Lotz | Sugar preferences in nectar-and fruiteating birds: Behavioral patterns and physiological causes 1[END_REF][START_REF] Welch | Sugar flux through the flight muscles of hovering vertebrate nectarivores: a review[END_REF]. By this way, the energy needed to hover and forage comes from the direct burning of the newly ingested sugar [START_REF] Welch | Hummingbirds fuel hovering flight with newly ingested sugar[END_REF].

The nectar produces by flowers visited by hummingbirds averages a volume of 10 -30 µL with only a concentration of 15 -25% w/w [START_REF] Johnson | Evolutionary associations between nectar properties and specificity in bird pollination systems[END_REF]. This low concentration means to collect a large quantity of nectar. Hummingbirds have then developed a specific feeding mechanism with an extremely specialized tongue morphology.

A scanner of the bill shown in Figure 1.18A allows to see all the internal three-dimensional arrangement of the hummingbird mouth when the bill is closed. At its base, the tongue is single-chambered [START_REF] Weymouth | The tongue apparatus in hummingbirds[END_REF], the cross section 1 on Figure 1.18A permits to observe that, into the bill, the tongue is flattened and starts to divide into two chambers with a dorsoventral ingrowth of epithelium.

Along the bill, the soft tissue inside the chambers disappears, and we observe the formation of a cornified tissue. Then, the tongue forms two opened tube-like groove walls. In contrast to others birds, half to three fourths of the tongue lacks muscles, bone and cartilage support. Analyse of TEM (transmission electron microscopy) images of the tongue [START_REF] Rico-Guevara | Morphology and function of the drinking apparatus in hummingbirds[END_REF] reveals that the tongue groove walls are principally composed of a keratinized epithelium with a small quantity of melanin. This composition provides elastic properties to the tongue. The longitudinal rigidity is provided by a thick and robust rod (Figure 1.18B). As seen on Figure 1.18A, this rod gradually thins down until disappearing at the tip of the tongue. Another remark is the lacking of papillae which is unusual for vertebrates [1] and for birds [START_REF] Erdoğan | Function-related morphological characteristics and specialized structures of the avian tongue[END_REF]. However, hummingbirds are still able to "taste" the nectar because they have developed small taste receptor specific to the sweet flavors [START_REF] Baldwin | Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor[END_REF]. Consequently, their tongues are smoother than the tongue surfaces of other birds [START_REF] Rico-Guevara | Morphology and function of the drinking apparatus in hummingbirds[END_REF].

The feeding mechanism is based on the back and forth movement of the tongue where hummingbirds both load and unload their tongues on each cycle. These repetitive movements are extremely rapid reaching frequencies up to 17 Hz [START_REF] Ewald | Function of the bill and tongue in nectar uptake by hummingbirds[END_REF]. Collins [START_REF] Collins | Nectar intake and foraging efficiency: responses of honeyeaters and hummingbirds to variations in floral environments[END_REF] observed that the contact between the tongue and the nectar is decisive in the amount of captured nectar. This amount increases if the volume available in flowers with deep corolla increases or if the corolla is shorter. To favor the contact tongue/nectar, hummingbirds have a long tongue, generally longer than the bill. The bill/tongue ratio is even larger for shortbilled species, insuring a minimal tongue length. For example, Rico-Guevara [START_REF] Rico-Guevara | Morphology and function of the drinking apparatus in hummingbirds[END_REF] measured that the short-billed Purple-Backed Thornbill (Ramphomicron microrhynchum) has a bill of 6.1 mm for a tongue of 11.9 mm while the longbilled Sword-billed Hummingbird (Ensifera ensifera) has a bill of 103 mm for a tongue close to 119 mm. Moreover, the movement of the tongue is controlled by muscles attached to the hyobranchial apparatus [START_REF] Schwenk | Extrinsic versus intrinsic lingual muscles: a false dichotomy[END_REF] and, for hummingbirds, this movement has a large amplitude because of the tuba elastica situated at the base of the tongue which exhibits an accordion-like morphology [START_REF] Weymouth | The tongue apparatus in hummingbirds[END_REF][START_REF] Rico-Guevara | Relating form to function in the hummingbird feeding apparatus[END_REF]. Hummingbirds can thus exhibit an extreme protrusion of their tongue without dragging their trachea inside the bill, allowing them to maintain their bill relatively closed. This specific faculty is important to explain the intraoral transport of the nectar. Suction can not be done through the tongue as for a straw because of the presence of two flaps at the base of the tongue, called "tongue wings" (Figure 1.18C) [START_REF] Rico-Guevara | Morphology and function of the drinking apparatus in hummingbirds[END_REF][START_REF] Kingsolver | Mechanical determinants of nectar feeding strategy in hummingbirds: energetics, tongue morphology, and licking behavior[END_REF]. This structure prevents a connection between the distal grooves and the tongue base [START_REF] Weymouth | The tongue apparatus in hummingbirds[END_REF]. As a consequence, the vacuum mechanism proposed by Gadow [START_REF] Gadow | On the suctorial apparatus of the tenuirostres[END_REF] is rejected. Moreover, Ewald and Williams [START_REF] Ewald | Function of the bill and tongue in nectar uptake by hummingbirds[END_REF] showed that the bill of the hummingbird squeezes the tongue during the protraction. From that, it has been presumed that the nectar is forced off the chambers of the tongue to go into the oral cavity [START_REF] Paton | Bills and tongues of nectar-feeding birds: A review of morphology, function and performance, with intercontinental comparisons[END_REF]. Then they proposed that the tongue acts like a pump: the base of the extruded tongue could adhere to the offloaded nectar load and bring it backwards when the tongue is retracted.

To elucidate the intraoral transport of the nectar, Rico-Guevara [START_REF] Rico-Guevara | Morphology and function of the drinking apparatus in hummingbirds[END_REF] used a backlighting technique to visualize the nectar flow through the keratin of the bill. Figure 1.19A-F shows that the nectar enters into the bill during the retraction. During the protrusion of the tongue, the nectar is trapped inside the bill. Once the tongue is at its maximal protrusion and starts to retract entraining newly nectar, the offloading nectar localized behind the tongue wings is displaced to the back of the bill, towards the throat. The fact that the nectar is trapped inside the bill during the protrusion of the tongue can be related to the vertical movements of the upper and lower jaws (Figure 1.19G). During the feeding process, Rico-Guevara [START_REF] Rico-Guevara | Morphology and function of the drinking apparatus in hummingbirds[END_REF] have observed an asynchronous opening and closing between the bill base and the bill tip (while the middle portion of the bill stayed relatively fixed). The bill seems to produce a wavy movement where the amplitude at the bill tip (white solid line) is higher than at the bill base (yellow solid line). During the beginning of the protrusion of the tongue (red dashed line), the aperture at the bill tip is minimal, the tongue is squeezed by the bill tip and the intraoral nectar is trapped into the bill. This aperture is forced to grow during the protrusion because of the portion of the tongue between the bill tip which is thicker (on Figure 1.18A we can notice that the thickness of the tongue increases along its length). During the retraction of the tongue, the distance between the bill tips is large enough to allow the tongue to enter into the bill with nectar. Moreover, in comparison with the bill tip, the bill base produces an asymmetric movement where it is more opened during the retraction of the tongue to let the fluid trapped into the bill to be dragged by the tongue wings towards the throat.

The mechanism allowing the hummingbird to capture the nectar has been subjected to intense discussions. Studies of the nectar concentration preferences by hummingbirds have been performed. While the majority concluded that hummingbirds select generally the most concentrated sugar solutions (from 33% w/w to 47% w/w [START_REF] Wolf | Ecological organization of a tropical, highland hummingbird community[END_REF][START_REF] Bené | The feeding and related behavior of hummingbirds: With special reference to the black-chin, archilochus alexandri (bourcier and mulsant)[END_REF][START_REF] Bolten | On the calculation of sugar concentration in flower nectar[END_REF][START_REF] Pyke | The production of dilute nectars by hummingbird and honeyeater flowers[END_REF][START_REF] Stiles | Taste preferences, color preferences, and flower choice in hummingbirds[END_REF][START_REF] Van Riper | Hummingbird feeding preferences[END_REF]), Tamm et al. [START_REF] Tamm | Energy intake rates and nectar concentration preferences by hummingbirds[END_REF] were the first to test highly concentrated solutions. They found that hummingbirds visit more often sugar solutions with concentrations equal or slightly higher than the optimal value maximizing the energy intake rates. Figure 1.20 presents the volume and energy intake rates as a function of the concentration of the sugar solutions for one hummingbird. Experiments on several birds reveal that, at each time, the volume decreases with the concentration and that the mean optimal energy intake rate is slightly higher than 40%. This observation is consistent with the model of Kingsolver and Daniel [START_REF] Kingsolver | Mechanical determinants of nectar feeding strategy in hummingbirds: energetics, tongue morphology, and licking behavior[END_REF] where the tongue of hummingbirds is assumed to capture nectar at each cycle by capillarity. The capture of nectar via capillarity was the mechanism reported in many studies [START_REF] Collins | Nectar intake and foraging efficiency: responses of honeyeaters and hummingbirds to variations in floral environments[END_REF][START_REF] Tamm | Energy intake rates and nectar concentration preferences by hummingbirds[END_REF][START_REF] Heyneman | Optimal sugar concentrations of floral nectars -dependence on sugar intake efficiency and foraging costs[END_REF][START_REF] Stromberg | Hummingbird sweetness preferences: taste or viscosity?[END_REF][START_REF] Gass | The problem of temporal scale in optimization: three contrasting views of hummingbird visits to flowers[END_REF]. Kim et al. [START_REF] Kim | Optimal concentrations in nectar feeding[END_REF] have developed this model and called it "capillary suction".

In the capillary suction mechanism, the flow of nectar of viscosity η through the tongue of radius r can be described by the balance between the viscous forces and pressure:

∆P h = 8ηv r 2 (1.15)
where h = h(t) is the height of the nectar into the tongue and v = ḣ(t) is the velocity of the nectar during the capillary rise. The source of the pressure gradient ∆P does not come from the muscles of the animal anymore but from the capillary force:

∆P = 2σ cos θ r (1.16)
where σ is the liquid-air surface tension and θ the contact angle of the nectar on the hummingbird tongue. Considering the initial condition h(0) = 0, the height of the fluid is obtained by the Washburn's equation:

h(t) = rσt cos θ 2η 1/2
(1.17)

In this mechanism, the average volumetric flow rate per cycle Q depends on the time to absorb the nectar T and the time to unload it T 0 :

Q = πr 2 ḣ T T + T 0 (1.18)
Like for butterflies, let us make the assumption that the ratio of cycle times is only weakly affected by the viscosity. Then, by equation 1.17, the volumetric flow rate depends on the viscosity according to

Q ∝ η -1/2 (1.19)
The same dependence as the one for active suction is observed. Kim et al. have shown this dependence, see Figure 1.21 (blue points) and, as active suction, the capillary suction exhibits an optimal concentration at 33% of sucrose (for a temperature at 25 • C).

Although the capillary suction is the widely accepted mechanism, Rico-Guevara et al. [START_REF] Rico-Guevara | The hummingbird tongue is a fluid trap, not a capillary tube[END_REF] reject this mechanism and point the inconsistency between the predicted sugar concentration for the optimal energy intake (33%) and the preferred sugar concentration which is comprised between 45 and 65% [START_REF] Pyke | The production of dilute nectars by hummingbird and honeyeater flowers[END_REF][START_REF] Stiles | Taste preferences, color preferences, and flower choice in hummingbirds[END_REF][START_REF] Van Riper | Hummingbird feeding preferences[END_REF][START_REF] Tamm | Energy intake rates and nectar concentration preferences by hummingbirds[END_REF][START_REF] Roberts | Hummingbirds' nectar concentration preferences at low volume: the importance of time scale[END_REF]. They propose another mechanism based on a dynamic change of the shape of the tongue during the feeding process. In-vivo and post mortem experiments reveal the morphology of the tongue at each step of the feeding for different animals (X is a geometry-dependent parameter). Red, blue and green points correspond to the suction generated by muscular pump, the suction activated by capillarity and the viscous dipping respectively [START_REF] Kim | Optimal concentrations in nectar feeding[END_REF]. Inset: Relative energy intake rate as a function of the nectar viscosity where the calculated optimal concentrations for suction feeding (33%) and viscous dipping (52%) are denoted by vertical bands.

(Figure 1.22). When the tongue is protruded (A), the bill tip squeezes it and it adopts a flattened tube-like conformation due to the high Laplace pressure which originates from the presence of nectar or saliva inside the tongue. The elastic energy tends to decrease by opening the grooves (B). Once in the nectar (C), the surface tension disappears, the grooves immediately change their conformation to open, and release energy. During the retraction of the tongue (D-E), the wings close trapping nectar inside due to the reappearance of the capillary forces. In this conformation, the increase of elastic energy is balanced by the decrease of surface energy and the presence of a high Laplace pressure. Then, this mechanism does not require energetic expenditure and is based on the capillary origami model [START_REF] Py | Capillary origami: spontaneous wrapping of a droplet with an elastic sheet[END_REF][START_REF] Vogel | Surface tension helps a tongue grab liquid[END_REF].

While, further, Kim et al. [START_REF] Kim | Natural drinking strategies[END_REF][START_REF] Kim | The hummingbird's tongue: a self-assembling capillary syphon[END_REF] agree with the fluid trapping mechanism, they support the importance of a capillary rise through the hummingbird tongue. Indeed, as the tongue groove length is higher than nectar pool in the The hypothetical morphology of the tongue is illustrate by cross-sectional drawing. On the right, the hypothetical relative contributions of the different forces at each step. [START_REF] Rico-Guevara | The hummingbird tongue is a fluid trap, not a capillary tube[END_REF].

flower corolla, the entire groove is not immersed and then the loading of the tongue is not optimal. Consequently, they suggested that the fluid trapping complements with an other feeding mechanism based on capillary suction. To prove such a feeding process, they fed hummingbirds with a sugar solution of 20% w/w sucrose concentration from a feeder where the fluid level is adjusted to force the hummingbird to extend its tongue at approximately 13 mm. While the bird feed, they observe the nectar rising through its tongue. Figure 1.23A allows to see the dynamics of the nectar rise: while the meniscus climbs up at a speed v ∼ 20 cm/s, the tongue moves at a speed of less than 7 cm/s when the tongue is immersed and 33 cm/s during its retraction. To explain this behavior, they developed a feeding mechanism based on capillary suction. Nevertheless, this new feeding mechanism does not correspond exactly to the previous capillary suction because it considers the elasto-capillary behavior of the tongue. They based their model on two observations: during the feeding process, they notice a decrease of the outer tongue diameter of up to 10% and the grooves do not completely close because of surface tension. Then, they model the tongue as an open circular groove without longitudinal variation (Figure 1.23B). According to the size and the dynamical parameter, gravity and inertia can be neglected and the deformation of the tongue results principally from the surface tension acting along lateral edges. The tongue deformation results from the balance between bending and capillary pressures. On Figure 1.23B, at the midpoint C, the bending moment per unit of length at the cross-section M is given by

M ∼ σr (1.20)
where σ is the surface tension and r the radius of one groove of the tongue. Then, when the tongue opens or closes, the displacement δ at the edge is determined by

δ ∼ M B r 2 ∼ σr 3 B (1.21)
where B is the bending modulus. If the dimensionless displacement Γ is defined by Γ = δ/r, the control parameter of the system which characterizes the relative magnitudes of capillary pressure and bending stress scales as

Γ ∼ r 2 σ B (1.22)
Considering the different parameters of the feeding process for hummingbirds, Γ ∼ 0.3 which reveals, as experimentally seen, a weak deformation regime.

The energy intake rate can be expressed as

Ė ∼ f cAh(T ) (1.23)
where f is the suction frequency, c the energy per volume of nectar, A the cross-sectional area of the rising nectar and h(T ) the height of the nectar at the loading time T . The resolution of dynamics of the flow submitted to an elasto-capillarity suction [START_REF] Kim | The hummingbird's tongue: a self-assembling capillary syphon[END_REF] reveals that the energy intake rate is optimized for an opening angle 2α of approximately 25 • . This new mechanism describes the hummingbird tongue as a self-assembling capillary syphon. While in their experiment the fluid trapping is relatively less important than the capillary suction, they expect it is not the case when the immersed part of the tongue is longer. Moreover, because of the long billl tipnectar pool distance, the licking frequency is rather weak (observed frequency: 6 Hz) while it can reach 17 Hz in usual conditions [START_REF] Ewald | Function of the bill and tongue in nectar uptake by hummingbirds[END_REF]. To maintain the same tongue filling, they suppose an adaptation of the loading time T with the licking frequency.

Rico-Guevara et al. still raise questions about the capillary mechanism [START_REF] Rico-Guevara | Hummingbird tongues are elastic micropumps[END_REF]. They explained that to validate the capillary process, the chambers of the tongue have to be an empty space before the filling where the fluid can rise with an observable meniscus. Yet, analysis of videos reveals that the tongue grooves remain collapsed after they are squeezed by the tip of the tongue because a thin layer of nectar remains into the grooves. Then, once in the nectar, the collapsed tongue does no exhibit an empty space and the transport of nectar is done without meniscus. Furthermore, the section of the tongue greatly increases (of 48 to 60% depending on hummingbird species) which is in strict contradiction with the capillary syphon mechanism [START_REF] Kim | The hummingbird's tongue: a self-assembling capillary syphon[END_REF] where the grooves have to close around the fluid during the rise, meaning that the section of the tongue has to decrease. Thus, while hummingbirds may exhibit a capillary syphon mechanism under unrealistic conditions (such as the extreme extension of their tongue), they use another mechanism in real conditions. As a complement to the fluid trapping, they proposed the "expansive filling" mechanism where the elastic recovering force of the grooves acts like a pump to fill the tongue with the nectar [START_REF] Rico-Guevara | Hummingbird tongues are elastic micropumps[END_REF]. This mechanism relies on the fact that A B r the collapsed grooves are loaded of elastic energy. Once the tip of the tongue contacts the nectar pool, the collapsed grooves start to gradually recover a relaxed cylindrical shape creating a flow of nectar inside the tongue.

The dynamics of the nectar rise is defined by the balance of inertial, elastic, and viscous forces. As proposed by the authors, in a short-time process of about 1 ms, the tongue is wider thanks to a fast elastic relaxation. The local acceleration is important which implies that it moves faster than the groove boundary, and the tongue gradually swells along its length with a progressive wave-like behavior (black lines on Figure 1.24). When the swelling reaches the top of the tongue (near the bill tip), a long-time process starts. During this second step, the nectar is governed by a Poiseuille flow and the deformation follows a diffusive recovery (grey lines on Figure 1.24). The dynamics is controlled by the ratio p a /E. While p a represents the adhesive stress at the origin of the collapsed tongue and then controls the pump strength or the peak value of front velocity, E corresponds to the apparent modulus and adjusts the filling time. Figures 1.24 B and C show the evolution over time of the front velocity and the filling length. The data (dots) agree with the theory (lines) based on an elastohydrodynamic model. The filling length compares the expansive filling mechanism to the capillarity rise model (blue line) [START_REF] Bosanquet | Lv. on the flow of liquids into capillary tubes[END_REF]. The red dots correspond to an abnormality in the velocity of rise for only one experiment. They explain this decrease of velocity by a default in the collapse of the tongue which has prevented to see the expansive filling. Then, this experiment corresponds to a simple capillary filling. The comparison between the mechanisms can be done easily, allowing to understand why the expansive filling is privileged. Indeed, the observed filling velocity is not compatible with capillarity. As a consequence, the filling time increases which implies a decrease of the tongue frequency and then of the energy intake rate. As previously seen, the feeding mechanism for hummingbirds has been controversial for a long time. In the following of this thesis, biological data will be used to discriminate between the various models. Filling length over time. The blue line represents the theoretical capillary filling according to Bosanquet's capillary model [START_REF] Bosanquet | Lv. on the flow of liquids into capillary tubes[END_REF] (which considers inertial effect) and the red dots correspond to an experiment showing a capillary filling. [START_REF] Rico-Guevara | Hummingbird tongues are elastic micropumps[END_REF].

Capture of nectar by bees

The collection of data for the capture of nectar by bees has been realized in collaboration with Prof. Denis Michez from the "laboratoire de Zoologie" of university of Mons. The studied subspecie is the Bombus terrestris audax, a long-tongued bee. It is one of the nine subspecies of Bombus terrestris (L.). It belongs to the order Hymenoptera and the family Apidae, commonly called bees. These bumblebees generally live in temperate climates, which explains their significant presence in Europe (Figure 2.1) even if their capacity to survive in a wide variety of habitats allows them to spread up to near East, Canary Islands and Northern Africa [1,2]. The accomplished domestication of this bumblebee enabled their insertion in many places as Japan, Tasmania or South America [3][4][5][6]. Bombus terrestris (L.) have a rather moderate foraging distance, i.e., they are not the best colonies to use as pollinators in agriculture [7]. However, as they have to feed on a restricted area, they exhibit a strong polylectic character, i.e. these bees collection nectar and pollen from the flowers of a variety of unre-lated plants [8]. The advantage of focusing the study on a non-specialized specie is to avoid exotic tongue morphologies resulting from a specific co-evolution of flowers and bees [9].

Preparation of the colony

We have worked with domestic bumblebees, the colony was purchased from Biobest firm (Westerlo, Belgium). The colony was kept in a wooden cage at the temperature of 27 • C and humidity of 65-70% [10]. They were fed every two days with pollen candies and a sweet solution imitating nectar (Biogluc pink R ) was also provided ad libitum.

Video recording of nectar capture

In the experiments, bumblebees were fed with a sweet solution of known viscosity. To get closer from the usual food of bees, the sweet solutions were only composed of honey and water. To obtain the desired viscosity, the honey is more or less diluted.

We have tested 6 different viscosities (from 10 -3 to 0.3 Pa.s). The solutions were diluted by considering a conversion table between the viscosity and the volumetric fraction of water into the honey (Figure 2.2A). Then, the viscosity was measured with the Stokes law [12] and the fall of a sphere (of radius r, density ρ s and velocity v i ) in the fluid (of viscosity η i and density ρ f ). The buoyancy F b = 4/3πr 3 ρ f g is balanced with the gravitational force F g = 4/3πr 3 ρ s g and frictional force F f = 6πη i rv i . The velocity of the sphere is then defined by

v i = 2g(ρ f -ρ s ) 9η i r 2 (2.1)
Figure 2.2B shows the calibration curve corresponding to the Stokes equation. By comparing the velocity of the sphere for two different viscosities (of which one is known), the viscosity adopts a simple relation with the velocity ratio of the sphere:

v 1 v 2 = η 2 η 1 (2.2)
To be sure of the viscosity of the sweet solutions, they have been made the day before the drinking experiment. This decreases the chance of modification

Fit: η ∼ v -1
Velocity (mm/s) of the viscosity because of evaporation. The experimental setup for observing the drinking process is based on a previously reported protocol [13]. Before beginning the observation, between 10 and 12 bumblebees (for each viscosity) are secluded from the colony. They are starved at room temperature in the dark from 2 to 4 hours. Then, a single bumblebee is transferred into the holding tube (centrifuge tube of 15 mL) with a 4 mm drilled hole at the tip (Figure 2.3).

After 3 minutes, the extension of the proboscis is motivated by presenting a drop of a solution of diluted honey. Finally, a capillary tube with the sweet solution of known viscosity is presented to the bumblebee. If the bumblebee does not feed within 5 minutes, the experiment is cancelled (the bee then returns at least 15 minutes in the dark, at rest before a new trial). The experiments are filmed with a Logitech C920 camera, up to 30 frames per second.

Viscous dipping process

For the model viscous dipping experiments, a smooth or structured rod is fixed on a Probetack (Figure 2.4). The rod can then move vertically at a controlled velocity. During experiments, a scale (Kern KB2400-2N model with a precision The diameters of the smooth rods are comprised between 1 and 6.9 mm. The materials of these rods are either glass or resin for those made by 3D printing via the company Sculpteo R .

The structured rods were obtained by 3D printing on the basis of the "honey spoon" shape. A cylindrical rod is decorated by disks of a certain thickness, keeping a radial symmetry as we can see on the scheme shown in internal diameter, R i , the gap between pillars, D, the depth of the structure, H, and the thickness of a ridge, d; are compiled in the Table 2.1 for the different structures. Anna's hummingbirds are among the most common hummingbirds along the Pacific Coast (Figure 2.6A) [14]. Their feathers are composed by a green iridescent back and a grey colored stomach. Moreover, the males are recognizable by their bright colors and their sparkling red throat (Figure 2.6B). Anna's bill is about 15 mm long which is relatively short for a hummingbird. 
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Preparation of the hummingbirds

A feeding station filled with a sweet solution is positioned at the window of the lab 24/7. This device allows to feed every day wild hummingbirds but the main objective is to make easier the capture of hummingbirds with a net system. During the experiments of feeding, three hummingbirds males have been captured, one at a time.

Once caught, hummingbirds are transferred to the laboratory in a carrying case. Before starting experiments, they are kept in a holding cage of about 1 m 3 at controlled temperature during a few days. This phase is essential to decrease the stress of captured hummingbirds and, then, avoid unusual behavior during experiments. The holding cage is not only used during the habituation phase, but also when there is no experiment in progress.

It should be noted that only males are captured. This choice is not correlated with the experiment itself, but it is to ensure no consequence on a hypothetical litter a female could have.

Captured hummingbirds are kept for experiments and then, after 2 or 3 weeks, are released. we have measured it by weighing different quantities of water inside the tube. Figure 2.8 shows the measured internal radius in function of the distance D from the edge of the tube. Except the first 5 mm of the tube, the radius is constant and corresponds to 1.475 mm. Consequently, experiments of feeding will be validated only when the meniscus is further than 5 mm from the edge.

As shown on Figure 2.7, the artificial flower is made by false red petals in front of false transparent corolla. This part serves to guide the hummingbird towards the nectar. As it is known that the corolla length and width of flowers are correlated with the length of the bill [15,16], the size of the artificial feeder has been chosen to correspond at best to the bill of Anna's hummingbird and to mimic natural conditions.

During experiments, we recorded the tongue-fluid interactions at 500 fps with a high-speed camera. Two different parameters have been studied: the viscosity of the artificial nectar and the orientation of the feeder.

Variation of the nectar viscosity

During experiments, the feeder was positioned horizontally and filled by sweet solutions of varying viscosities. These solutions are made from the main con-stituents of natural nectar: water and sucrose, a disaccharide carbohydrate consisting of glucose and fructose.

To obtain the sweet solutions, known amounts of distilled water and sucrose were mixed. The solutions were heated at 60 • C for up to 1 hour (depending on the sugar concentration of the solutions) to accelerate the dissolution of the sugar. Solutions of 10, 20, 30, 40, 50 and 60% w/w (e.g., 10% means 10 g sugar in 100 mL solution) have been prepared. The solutions were stored in a hermetically sealed container to reduce evaporation of water, and kept at room temperature, ready to use, to limit the change in viscosity due to temperature. Despite all our precautions, we do not keep a solution for more than 5 days. Refractometer measurements were performed before each set of experiments.

The viscosities have been determined from data available in the literature [17] and are compiled in the Table 2.2. For each hummingbird, the six sweet solutions were tested following a random order. A minimum of 10 videos by solution were recorded. All the experiments were repeated a second time by ensuring that solutions of the same viscosity were not proposed at the same period of the day. Between two viscosities, the experimental setup was rinsed twice: the first time with distilled water and the second time with the sweet solution of the next experiment. 

Variation of the feeder orientation

To test the influence of the orientation of the feeder on the feeding process, we used a feeder filled with the sweet solution of 20% sucrose concentration.

In addition to the horizontal position, the feeder was positioned in 4 other orientations (Figure 2.9): two upwards orientations (at +45 and +90 • ) and downwards orientations (at -45 and-90 • ). For each hummingbird, the five orientations were tested following a random order. A minimum of 5 videos by orientation were recorded. All the experiments was repeated twice, and the orientations were not proposed at the same period of the day. 

Statistical analysis

Given the number of data, the experimental data of hummingbirds are analyzed using a boxplot representation (Figure 2.10). This representation have the advantage to schematize and standardize the data distribution in order to rapidly know the variability or the dispersion of the data. It is based on five number: minimum, first quartile (Q1), median, third quartile (Q3) and maximum. The median, showing the middle value of the dataset, is represented by a line in the interior of a box. This box is the interquartile range (IQR) delimited by the first and third quartiles (Q1 and Q3). These quartiles represent the 25th and 75th percentiles respectively. The 25th percentile is a number such that 25% of the data is less than that number. Similarly, the 75th percentile is a number such that 25% of the data is more than that number (then 75% of the data are below it). Then, the interquartile range corresponds to the spread of the "middle half" of the dataset. Finally, the box is extended up to the "minimum" and "maximum". These two numbers do not necessarily correspond to the absolute minimum and maximum of the dataset but they are equivalent to an extension of the box of maximum 1.5 interquartile ranges (the "minimum" is defined by Q1 -1.5IQR and the "maximum" is defined by Q3 + 1.5IQR).

The mean value has been added and is represented by a cross.

Curved elastic sheets

To model the unfolding of the hummingbird tongue in the nectar, we used elastic sheets clamped on a cylinder (Figure 2.11 A-B). The sheet is positioned vertically to avoid the influence of gravity.

Polyethylene terephthalate (PET) films purchased from GoodFellow company were used 12.7, 30 and 50 mm width strips were used to clamp on a cylinder (with radius 2.1 ≤ R ≤ 49.1 mm). The thickness of the PET films ranges between 17 and 500 µm.

In addition to experiments, numerical simulations using Surface Evolver were performed [18]. These simulations were based on the previous simulations reported by Barois et al. [19] where the surface energy is composed of two main terms. The first term corresponds to the in-plane elastic energy. In a Hookean (linear) model [20], it is given by 1/2 ij K ijkl kl where ij , K ijkl represent the two-dimensional stain tensor and the elastic modulus tensor for in-plane deformations, respectively. The implemented method to every facets for this term is the "linear_elastic", with the two-dimensional Young modulus Y 2D (Y 2D = Et = 12(1 -ν 2 )B/t 2 with E the bulk Young modulus, t the thickness of the sheet, ν the two-dimensional Poisson coefficient and B the bending modulus). The second term corresponds to the curvature and is given by 1/2κc 2 + κg where c is the mean curvature (c = 1/R 1 + 1/R 2 , with R 1 and R 2 the principal curvature radii) and g is the Gaussian curvature [20]. The curvature is implemented to every vertex by the "star_perp_sq_mean_curvature" method with a modulus of 2B. Barois et al. have indicated that ν does not affect the persistence length. Then, we chose to use a fixed ν = 0.5. The bending modulus only appears as a stress scale and we fix B = 1. The different parameters affecting the morphology of our system and modified during the simulations are the initial dimensions of the sheet (its width, thickness and length as well as the radius on which it is clamped). During the minimization of the energy of the system, a variation of 0.001% of the total elastic energy between two steps is the criterion for convergence.

(g = 1/R 1 × 1/R 2 )
To analyze the second part of the feeding process, the capture of nectar by the hummingbird tongue is modeled by encapsulation of water by elastic sheets. The elastic sheets, made of polydimethylsilxane (PDMS), are placed on sandpaper to limit the interaction between the film and the substrate. A drop of water is deposited on the PDMS film, while we took care that the water reaches the corners of the film (Figure 2.11C). Over time, the water evaporates and the film finally closes around the fluid. Thin PDMS films (between 45 and 100 µm of thickness) were realized by spin coating. The PDMS curing agent (Dow Corning, Sylgard 184) was mixed with a base agent in a mass ratio of 1:10 (few drops of blue coloring agent were added) and placed under vacuum to remove air bubbles. In the spin coater, a few drops of the mixture were deposited on the center of a silanized glass substrate, previously cleaned with ethanol and Snow-Jet (cryogenic process [21]). The polymer spread homogeneously thanks to the high speed rotation. Then, the film was cured at 60 • C for minimum 4 hours before removal from the glass substrate.

As the polymer does not evaporates, the thickness of the film is determined by the acceleration during the rotation, the speed of rotation and the rotation time. To adjust the film thickness, we chose to change the speed of rotation while maintaining an acceleration of 500 rpm/s 2 and a time of rotation of 30 s. Figure 2.12 shows the relation between the film thickness (measured by weighing) and the speed of rotation of the spin coater. As previously explained in Chapter 1, bees capture nectar by a back-andforth movement of their tongue. They plunge their tongue into the nectar and, during its withdrawal, a certain quantity of nectar is entrained. In order to study this process, we develop, in this chapter, some general concepts aiming at understanding this physical mechanism.

Thickness (m)

Considering that nectar is a viscous Newtonian fluid [1], the theory is directly related to the Landau-Levich-Derjaguin mechanism. We consider the case of a cylindrical rod, but also the visco-gravitational regime. In the last section is considered the withdrawal of structured solids from a viscous fluid.

Withdrawal of smooth solids from a fluid

Landau-Levich-Derjaguin theory

When a plate is pulled off a bath of viscous fluid, the quantity of dragged fluid is determined by a balance between antagonists forces [2]. The dragging force can be either the inertia or the viscous force. As the Reynolds number (which is the ratio between these two forces) is much smaller than 1 for the highly viscous fluids considered here, the inertia of the fluid is negligible and the dragged force corresponds to the viscous one.

F η ∼ ηV h 2 (3.1)
where η, V and h are the viscosity of the fluid, the velocity of the plate and the thickness of the fluid respectively. In the same way, the resistant force can be the gravitational and/or the capillary force.

The general profile of the dragged fluid is illustrated in Figure 3.1. During its motion, the film deforms the surface of the bath to form a meniscus composed of two distinct parts:

• A static meniscus whose curvature is defined by the capillary length l c . This length is the length at which the hydrostatic pressure ρgh is balanced by the Laplace pressure γ/l c : From there, the film forms a constant layer of thickness h and it hangs to the plate with a thickness h(x, t) on a distance λ(h, t).

l c = γ ρg (3.2)
• A dynamic meniscus linking the dragged film to the static meniscus. The height of this meniscus is l.

During the withdrawal, the dynamic meniscus is deformed and is the location of a pressure gradient that will be at the origin of the resistant force. Indeed, while the pressure is equal to the atmospheric pressure P 0 for the dragged film which is flat, the pressure exerted by the static meniscus is on the order of P 0 -γ/l c . If the gravity is negligible with respect to capillarity (ρgl γ/l c ), the resulting pressure gradient is

∂P ∂x ∼ ∆P l ∼ γ l c l (3.3)
This hypothesis is only valid if the gravity is neglected in front of the size of the dynamic meniscus (l l c ). The viscous dipping is then described by a visco-capillary regime where the balance between forces can be written from the Stokes equation, as:

ηV h 2 ∼ γ l c l (3.4) 3.1. WITHDRAWAL OF SMOOTH SOLIDS FROM A FLUID h 2 ∼ ηV l c l γ (3.5)
The height l of the dynamic meniscus can be determined by matching the curvatures as the static meniscus, 1/l c , and the dynamic meniscus, h/l 2 . This gives:

1 l c ∼ h l 2 (3.6)
Then the length l can be defined by the thickness of the fluid h and the capillary length

l c as l ∼ l c h (3.7)
The thickness of the dragged fluid for a plate following the LLD theory is then given by

h ∼ l c ηV γ 2/3 ∼ l c Ca 2/3 (3.8)
where Ca is the capillary number, a dimensionless number which is the ratio between the viscous and capillary forces.

By rigorously resolving the equation [2,3], the exact LLD equation becomes:

h = 0.94 l c Ca 2/3 (3.9)
From this equation, we can estimate the height of the dynamic meniscus l as being l ∼ l c Ca 1/3 (3.10)

As we made the hypothesis that l l c , then one must have Ca 1 which is a low velocity condition.

Case of a cylindrical rod

The curvature of the static meniscus can be affected by the shape of the smooth solid on which the fluid is deposited. As previously explained in the case of a plate, its curvature is defined by the balance between the hydrostatic pressure and the capillary pressure. But in the case of a cylindrical rod, the curvature can be described by an other length scale: the azimutal curvature of the rod (Figure 3.2). Depending on the ratio of the radius of the rod b and the capillary length l c , the static meniscus can possess different curvatures [4]: • When b > l c , the curvature is defined by 1/l c as for a plate

• When b < l c , the curvature is defined by 1/b
Then, for thick rods (b > l c ), the thickness of the dragged fluid follows exactly the same equation as for a smooth plate (equation 3.9) but, for thin rods (b < l c ), the equation needs some adjustments.

Indeed, the pressure exerted by the static meniscus does not depend on the capillary length anymore but on the radius of the rod and is on the order of P 0 -γ b . The pressure gradient is then defined by

∂P ∂x ∼ ∆P l ∼ γ bl (3.11)
The same modification has to be done for the matching of the curvatures between the static and the dynamic menisci:

1 b ∼ h l 2 (3.12)
Based on these new laws, the thickness can be defined by

h ∼ b Ca 2/3 (3.13)
And, by rigorously resolving the equations [6,7], the exact LLD equation for a thin rod becomes:

h = 1.34 b Ca 2/3 (3.14)

Visco-gravitational regime

It should be noted that in the LLD theory, the hydrostatic pressure (ρgl) has been neglected with respect to the Laplace pressure (γ/l c or γ/b) which causes a condition on the capillary number: Ca 1/3 1. When the capillary number increases, the effects of gravity appear and both White and Tallmadge [8] and Spiers et al. [9] proposed a gravity-corrected version of the LLD theory. At high Ca, gravity can no longer be ignored in front of capillarity, which becomes negligible. Then, the system is described by a visco-gravitational regime and the viscous force is balanced with the gravitational force:

ηV h 2 ∼ ρg (3.15)
Derjaguin [2,10] and de Ryck and Quéré [2] thus proposed an equation where the thickness of the film can be expressed as

h ∼ ηV ρg ∼ l c √ Ca (3.16) 
By rigorously resolving the equation for a rod, one obtains,

h = √ 3 l c √ Ca (3.17)

Withdrawal of rough and structured solids from viscous fluids

The roughness of the solid could also influence the quantity of dragged fluid. Some preliminary work on the influence of roughness on LLD films has been done. Krechetnikov and Homsy [11] produced sanded glass plates with micron sized grooves and observed at first a stabilization effect of the coated film. They attributed this effect to a thermodynamic consideration where, as known since Wenzel, the roughness amplifies the wetting property of a partially wetting liquid of contact angle smaller than 90 • . Then the effective spreading on a rough solid gets always larger than the spreading on a smooth solid. Krechetnikov and Homsy also showed a dynamic effect of the roughness on the film thickness. Depending of the roughness σ R , the ratio of the real to apparent area, and the thickness h of the film of fluid, three regimes can be defined: i) for σ R h, the roughness does not produce any observable effect and can be neglected, ii) for σ R h, the liquid essentially fills the cavities and, the fluid thickness becomes independent of Ca (the drag becomes negligible), and iii) the intermediate regime, σ R ≈ h, where both contributions are comparable. The fluid flow at the rough interface is perturbed and can be described by considering a slippage length at the apparent solid-fluid interface due to the formation of vortices in the grooves (as illustrated in Figure 3.3).

Seiwert et al. [12] have compared the viscous dipping of wetting fluid using smooth and micro-textured surfaces (silicon wafers decorated with regular arrays of micropillars of height h p ). They also observed different regimes depending on the capillary number Ca: at high Ca, the thickness tends to satisfy the LLD theory which does not take into account the structure. They explained this observation by considering that, for these high Ca, the thickness h d of the film is much larger than the size h p of the pillars. Conversely, at low Ca, the observed thickness significantly differs from the expected values and tends towards a constant, determined by the size h p of the pillars. They suggested that the thickness of the film should be given by h d = h p + h f where h f the thickness of the free layer.

They proposed a model with two layer (Figure 3.4): a free layer where the fluid is carried away as for a smooth rod (where the thickness depends on the velocity of retraction of the plate and the viscosity of the fluid) and a trapped layer of thickness h p where the fluid flows between pillars and is entrained because of capillary forces. The key element of their theory is to model the pillar effects on the trapped layer by a rise of the effective viscosity of the layer. Moreover, pillars does not influence the free layer in their idealization. A characteristics of this model is to authorize the slip of the fluid at the trappedfree interface.

More recently, Nasto et al. [13] reported the viscous dipping of plates coated with regular arrays of millimetric pillars arranged in a hexagonal pattern. They found that the amount of dragged fluid is defined by the amount initially taken up (that corresponds to the amount of fluid trapped by hairs) minus the volume of drained fluid. Then, the final amount of dragged fluid is essentially determined by the drainage dynamics of the fluid trapped in the microstruc- [12]. The total thickness h d entrained by the solid correspond to the addition of a trapped layer of thickness hp (thickness of the micropillars) and a free layer of thickness h f . Image from [12].

ture during the retraction time. From an Hele-Shaw experiment, they showed that, depending on the space d between pillars, the system may reach an optimum to entrain a maximal quantity of fluid: if d increases, the drainage is favored then the mass of dragged fluid decreases but, in contrast, if d gets too small, the available space for the fluid decreases and the mass of dragged fluid decreased too.

As previously noted in Chapter 1, there is only one parameter determining the energy-intake rate during the collection of nectar by bumblebees: the flow rate, Q, which depends on the capture mechanism. Careful analysis of this parameter could ultimately give a strong support to the idea that evolution has selected the species optimizing the capture of nectar in a given region and/or a given group of plants.

To measure this flow rate, we recorded videos of bumblebees (Bombus terrestris) capturing artificial nectars of different sugar contents, i.e., different viscosities in "laboratoire de Zoologie" of UMONS (Prof. Denis Michez). The bumblebees feed on nectar situated in a capillary tube of 1 mm diameter. Figure 4.1A shows a sequence of images recorded during the collection of nectar. On the capillary tube, the meniscus is easily localized which allows us to follow its displacement, and then the volume of fluid in the capillary tube, with time (Figure 4

.1B).

Over time, the volume of fluid into the capillary tube essentially decreases, the small periodic variations corresponding to the back and forth movement of the tongue. When the tongue plunges into the fluid, the volume increases and when it retracts the volume decreases. While we can notice that the displacement of the meniscus seems to be erratic at first (the grey zone in Figure 4.1B), the curve becomes regular, both in time and volume afterwards (with deviations less than 20%). The erratic stage implies that bees need a short time of adaptation when they begin to feed from nectar.

Analysis of the curve gives access to details about the dynamical process such as the volume of the tongue immersed, the volume of fluid captured per lap and the lapping time (inset of Figure 4.1B). By changing the viscosity of the fluid inside the capillary tube, we can examine its influence on the feeding process.

First, we look at the movement of the tongue. At each lap, the volume of the tongue can be measured as it corresponds to the modification of the volume of fluid during the insertion of the tongue (orange arrow on the inset of Figure 4.1B). Knowing the volume of the tongue (and then the length of the immersed tongue) and the lapping time, the velocity of the tongue can also be calculated.

These two parameters are plotted as a function of the viscosity on Figure 4.2. While the velocity of the tongue is nearly constant for all viscosities, the tongue volume very slightly decreases with the viscosity (tongue volume ∼ η -0.07 ). From Figure 4.1B, the lapping rate and the volume of fluid collected for each lap can be also measured (red and green arrows on the inset of Figure 4.1B). As for the volume and the velocity of the tongue, the average lapping rate ν and the average captured volume for each lap v 0 are almost constant for nectar viscosities spanning four orders of magnitude (Figure 4.3A). Colored crosses on this graph correspond to data from Harder [1]. These two parameters lead to the ingestion rate Q given by,

Q ∼ νv 0 (4.1)
The influence of the viscosity on the ingestion rate is shown in Figure 4.3B, where additional data for different species of bees found in literature are added [1,2]. Counterintuitively, the ingestion rate does not show a strong dependance with the fluid viscosity. For more than three orders of magnitude in viscosity, it remains constant and decreases only for the highest studied viscosity (10 Pa.s).

These observations contradict the theoretical model of Kim et al. [3] where they make the hypothesis that, whatever the viscosity, the muscle power is a constant. Balancing the muscle power with the dissipation power in the viscous flow, this muscle power can be written as

P ∼ ηv 2 RL h (4.2)
where η is the viscosity of the fluid, h is the thickness of the capture fluid and v, R and L are the velocity, the radius, the length of the tongue, respectively. Assuming that R and h have the same order of magnitude, Kim et al.

suggest that v ∝ η -1/2 (4.3)
They then propose to use the LLD law in the visco-capillary regime (equation 3.9 where h ∼ R(ηv/γ) 2/3 ) to deduce the evolution of Q,

Q ∝ Rhv ∝ η 1/3 η -1/2 ∝ η -1/6 (4.4) 
It should be noted that if R and h are not simplified in the first equation, the flow rate depends on the viscosity as, Q ∝ η 1/4 . Instead, our experiments show that the velocity of the tongue is nearly constant for a very large range of viscosities. The consequence of this observation is rather unexpected. It might indicate that, during the short period of adaptation lasting less than 1s (the grey zone in Figure 4.1B), the bumblebees are able to adjust the retraction force to the viscosity of the nectar. The only effect of the viscosity on the tongue movement, and then the only effect of the viscous drag force, is the slight decrease of the immersed volume when the viscosity increases (Figure 4.

2).

Such an adaptive behavior is supported by a previous study showing that bees prefer warmer and less viscous nectar, regardless of sugar concentration [4]. In addition, it is known that hummingbirds have a sweet taste perception [5]. Moreover high learning abilities have already been demonstrated for honey bees and bumblebees [6]. This raises a fundamental question: What does determine the lapping frequency and the volume per lap v 0 if it is not the muscle power? We could only suggest hypotheses. For instance, limiting the captured nectar volume below the maximum amount they can swallow is an issue of survival [7].

As a first try, we amended the model previously proposed by Kim et al. [3] by replacing the constant power assumption by the observed constant velocity of the tongue. As they suggested, the volume of nectar per lap can be estimated by considering a LLD mechanism (mechanism described in Chapter 2). The thickness of the dragged fluid during the retraction is determined by the bee tongue radius R and the capillary number, Ca = (ηV /γ) through the relation

h ∼ RCa 2/3 ∼ R ηV γ 2/3 (4.5)
It suggests that the ingestion rate is defined by

Q ∼ RhV ∝ η 2/3 (4.6)
As shown in Figure 4.3B, this law is in contradiction with the observed ingestion rate. Neither the independence with the viscosity nor the observed values of Q, much higher than the predictions, are compatible with this model.

How could we thus explain the constant volume per lap for viscosities spanning three orders of magnitude? The severe inconsistency of the previous model suggests that we should discard the proposed LLD hypotheses and test other hypothesis. Biologists have highlighted the presence of a specific morphology of the tongue [8,9]: the tongue is made of a hairy structure, the papillae (Figure 4.4). This structure unfold during the capture and therefore should have an effect in the amount of nectar captured. In the following, we build a physical model of viscous dipping taking into account the influence of the micro-structures that decorate the bumblebees' tongue.

Viscous dipping with micro-structured rods

We model the bee's tongue as a structured rod. In order to understand the role of the structure, we need first to model the viscous dipping with smooth rods. Indeed, while the viscous dipping on a smooth plate is well understood [10,11], the case of smooth rods of different radius need to be detailed, especially at high capillary numbers.

Smooth rods

! " ! # This first region corresponds to the viscous drag, when the rod is pulled off the fluid. Afterwards, the rod keeps rising out of the fluid and then stops moving at a specific time τ 2 while the captured mass decreases over time. During this phase, the decrease of the mass corresponds to gravitational drainage.

Considering the collection of nectar by bees, the most relevant parameter is the maximal mass of nectar that could be obtained per lap. For ease of comparaison with the theory, the measured mass of fluid is converted into a thickness h through the following relation:

M ∼ ρπLh 2 2b h + 1 (4.7)
where L, b and ρ are the immersed distance, the radius of the rod and the density of the fluid respectively. The normalized maximal thickness is plotted as a function of the capillary number in Figure 4.7B for various radii, viscosities and velocities of retraction of the rod. Our data are completed with data reported by Seiwert et al. [12] and Maleki et al. [11] who studied the viscous dipping of plates at low capillary numbers (Ca < 0.1).

As explained in Chapter 3, two distinct scenarios appear. (i) For thick rods (b l c ), the dragged fluid is not perturbed by the curvature of the rod which behaves as a plate. The thickness of the dragged fluid is then described by two asymptotic regimes as a function of Ca. At low Ca, the process is governed by a visco-capillary regime described by the LLD theory [13] and the thickness is determined by the relation h ∼ l c Ca 2/3 . This regime corresponds to the blue dotted line in Figure 4.7B. Above a critical capillary number Ca * , a transition towards a visco-gravitational regime appears. The thickness is, in that case, characterized by the relation h ∼ l c Ca 1/2 [14] as illustrated by the red dotted line in Figure 4.7B.

The transition between these two asymptotic behaviors at a critical capillary number Ca * corresponds to a switch from a Laplace pressure dominated to a hydrostatic-dominated regime. The difference in dynamics results from a change in the pressure gradient in the Stokes equation:

η∇ 2 V = ∇P (4.8)
In the visco-capillary regime, we can write

∇P ∼ γκ l (4.9)
where κ and l are the curvature of the static meniscus and the length of the dynamic meniscus. Green, red and black dots correspond, respectively, to thin rods (R < lc), thick rods (R > lc) and previously reported data for plates [10,11]. The red and blue dashed lines represent a slope of 2/3 and 1/2 respectively. 112

While in the gravity-dominated regime we have

∇P ∼ ρg (4.10)
The gravity regime appears when ρgl > γ/l c (l being the length of the dynamic meniscus). This relation implies that l/l c > 1. Considering the relation l ∼ l c Ca 1/3 , we have Ca > 1 in agreement with our observations for thick rods (red dots in Figure 4.7B).

(ii) For thin rods (b < l c ), the dragged fluid feels the curvature of the rod and behaves differently (green dots in Figure 4.7B). Indeed, the thickness of the dragged fluid in the visco-capillary regime depends on the radius of the rods following the relation h ∼ bCa 2/3 (blue dotted line in Figure 4.7B). The viscogravitational regime appears when ρgl > γ/b. Following the same reasoning than for thick rods, this condition requires that Ca > (l c /b) 6 . In most cases, this condition cannot be fulfilled and this regime is not observed (for instance, it should appear for Ca > 200 for the thin rods used here).

For clarity, here is a summary of the different scenarios (sketched in Figure 4.8):

• For thin rods (when b < l c ), the process is subjected to a visco-capillary regime where the thickness h is always determined by: h ∼ bCa 2/3 (4.11)

• For thick rods (when (b > l c ), the rods behave as plates, two different regimes can be observed:

-At low Ca, we are in a visco-capillary regime where the thickness h is determined by: h ∼ l c Ca 2/3 (4.12)

-At high Ca, we are in a visco-gravitational regime where the thickness h is determined by: h ∼ l c Ca 1/2 (4.13) 

Profile of the dragged film

During the withdrawal of the vertical smooth solid, gravity also plays a role over time on the top of the film and thinning of the film can appear. Jeffreys [15] proposed a theory to explain this phenomenon. This theory describes the profile of the deformed viscous film of initial thickness h 1 subjected to the gravity. Taking into account lubrication theory and a slip boundary condition at the wall, the flux per unit width of the plate can be expressed as

Q = ρgh 3 1 3η (4.14)
Then the average velocity V of the flow of the fluid follows the relation: V . The profile is composed of four parts. From the bath of fluid to the top there is a static meniscus followed by a dynamic meniscus of height l. From there, the film forms a constant layer of thickness h and it hangs to the plate with a thickness h 1 (x, t) over a distance λ(h, t).

V ∼ Q h 1 ∼ ρgh 2 1 η (4.15)
The top of the film is then getting thinner over time and, since by conservation of matter:

∂h 1 ∂t = - ∂Q ∂x = - ρg η h 2 1 ∂h 1 ∂x (4.16)
With x the vertical distance from the top of the profile (as illustrated on Figure 4.9). The Jeffreys equation has the solution

h 1 (x, t) = ηx ρgt (4.17)
The film adopts such a profile over a distance λ(t) which is the distance needed for the h(x, t) profile to reach the thickness h of the film. From equation 4.17, we can determine that:

λ(t) ∼ ρg η h 2 t (4.18)
From this equation, we can defined a critical velocity V * * (= λ(t)/t) and then a critical capillary number Ca * * . It corresponds to the capillary number for which the parabolic profile will extend over the entire film:

Ca * * = ηV * * γ = η γ ρgh 2 η = h l c 2 (4.19)
In the case of a plate or a thick rod subjected to the visco-capillary regime, the thickness h is defined by the LLD equation and then the critical capillary number can be given by

Ca * * = l c Ca 2/3 l c 2 = Ca 4/3 (4.20)
In order to respect the visco-capillary regime, the velocity V * * of the fluid has to be lower than the extraction velocity of the rod V , which also involves Ca * * Ca. The condition on the capillary number to observe the viscocapillary regime is given by:

Ca 1/3 1 (4.21)
which is the same initial condition for obtaining the visco-capillary regime defined by the LLD theory. Then, at low capillary number, the thickness of the film respect the LLD equation despite of the increasingly importance of the drainage with Ca. In the opposite, if the system is subjected to the visco-gravitational regime (h ∼ l c √ Ca), the distance of the deformed fluid λ(t) evolves according to

λ(t) ∼ ρg η (l c Ca 1/2 ) 2 t ∼ V t (4.22)
Then the distance λ(t) increases with time in the same way as the speed of withdrawal. In consequence, the profile would always be parabolic. In summarize for thick rods and plates, the modification of the profile of the drained fluid as a function of the capillary number is illustrated at the For thin rod, there is also a visco-capillary regime (h ∼ 1.34bCa 2/3 ). The critical capillary number is then describe by which can be considered as always valid as the second term is extremely high in the case of thin rods.

The difference of the profile as a function of the diameter of the rod can be observed on the Figure 4.11. As we can see, for large diameter (blue and green dots), the evolution of the thickness h(x) over the vertical distance from the top of the film x corresponds to a parabolic profile where h(x) ∼ √ x while, for thinner rod (red dots), the evolution of the thickness respects, at first, the parabolic profile but the thickness becomes a constant from a certain distance as predicted in the LLD theory. 

Drainage

In Figures 4.6 and 4.6A, we saw that, after reaching a maximal mass, the mass starts to decrease with time. We mentioned that this part of the graph corresponds to the drainage, its dynamics can be explained. During the drainage, the system does not move anymore. For viscous fluid, the inertia can be neglected, the Navier-Stokes equation can be written as

η ∂ 2 V x ∂y 2 = ∇P + ρg (4.25)
where x, y axes are parallel, perpendicular to the rod.

As the fluid of thickness h flows under gravity, the pressure gradient related to the Laplace pressure can be neglected, we are in a visco-gravitational regime with,

η V x (t) h 2 = ρg (4.26)
Since the mass is globally proportional to the thickness of the film, we can deduced:

m(t) ∝ h(t) = ηV dr (t) ρg = L ρg η t (4.27)
Figure 4.12 shows the evolution of the normalized thickness h/l c with the normalized time tγ/Lη of the drained film for all experiments (with different viscosities, surface tension and the velocity of the rod). All data collapse on a master curve where the thickness evolves as a function of (t/η) -1/2 . This result confirms the previous equation for the dynamics of the drainage. correspond to the evolution of the mass normalized by L im , the immersed distance, for a structure with different velocities of the rod or different viscosities (4.14) and for different structures (4.15). As expected, we obtain the same general tendency. First, the mass increases with time until reaching a maximum mass at the specific time τ 1 . After this viscous drag part, the rod keeps rising out of the fluid and then stops moving at a specific time τ 2 while the captured mass decreases with time. During these two last regions, the decrease of the mass corresponds to the drainage. The radius of the used structured rods are larger than the capillary length and the experiments are conducted at high capillary number (Ca > 0.1). The dynamics should then corresponds to a visco-gravitational regime where, at the maximal mass/thickness, we have h ∝ Ca 1/2 . But the presence of structures raises several fundamental questions regarding the capture of viscous fluid. How to quantitatively analyse the viscous drag for such heterogeneous system? How to define the thickness h of dragged fluid? What is the influence of valleys and ridges on viscous forces?

Structured rods

! " ! # t ! " ! # t
Unfortunately, there is no obvious way to analyse the amount of fluid collected through viscous drag for such complex shapes. Nevertheless, to be consistent with the results obtained for smooth rods, we choose to convert the mass of fluid as an effective thickness, defined by the relation the structured rod is seen as a smooth rod (Figure 4.16). This procedure makes sense considering that this effective thickness takes into account both the depth and density of ridges/valleys within a single parameter. The evolution of the effective thickness with the capillary number is shown in Figure 4.17. Data from the structured rods (color signs) are directly compared to the behavior observed for smooth rods in the visco-gravitational regime (black line). We can notice a drastic deviation between smooth and structured rods; instead of a master plot with all curves collapsing on the black line as previously observed for the smooth rods, well-separated curves are observed for the different structures. By looking at the Figures 4.14 and 4.15, the most obvious difference observed for structured rods with respect to their smooth counterparts appears during the drainage. The drainage dynamics does not follow anymore the t -1/2 power law but instead asymptotically tends toward a constant value characterized by the size and geometry of the rod. As shown on Figures 4.14 and 4.15, for each structure, this value corresponds to a theoretical effective thickness (plotted on dashed colored lines) which is defined by an effective thickness corresponding to the depth of the structures. This observation means that, during experiments, the thickness of the fluid decreases with time until reaching the thickness of the structure, leaving a certain quantity of fluid in the structure. Actually, this part of the fluid is trapped in the structure by capillary forces and then cannot be drained.

h ef f = R 2 i + Mmax πρL -R i , with R i the internal
This layer of trapped fluid highlights the fact that the thickness comes from two contributions, as previously reported [12,16]:

• The first contribution called h 0 is related to fluid trapped in the structure.

• The second contribution arises from the fluid carried away by the viscous drag on a smooth rod, this thickness is called h drag .

Following Seiwert et al. [12], the final effective thickness of fluid wrapping a structured rod should compile these two asymptotic behaviors and is given by

h ef f = h 0 + h drag (4.28) 
A given contribution can be estimated by subtracting the other contribution from the effective thickness. The trapped fluid contribution, regardless of the viscosity of the fluid or the velocity of retraction of the rod, is a constant for a given structure. The calculated trapped fluid thickness h 0 = h ef f -l c Ca 1/2 is shown on Figure 4.18A. As expected, each structured rod has a h 0 constant. On the Figure 4.18B we can observe that the average normalized thicknesses is close to the h 0 calculated from the geometrical characteristics of the micro-structures, h theo Conversely, the contribution related to viscous drag, h drag , can be obtained from h ef f by subtracting the trapped fluid thickness, h 0 . In Figure 4.19, the viscous drag contribution for structured rods (colored dots) follow quantitatively the same law h/l c ∼ Ca 1/2 (black line) as smooth rods. However, we can observe a strong deviation from this law at low capillary number. Actually, the contribution related to the viscous drag vanishes when approaching a critical capillary number, Ca * S . This deviation comes from the fact that the effective thickness is compiled with two different asymptotic behavior which have a different significance as a function of the capillary number. As Ca decreases, the viscous forces get smaller and the contribution related to the viscous drag, proportional to Ca α (where α = 1/2 for the visco-gravitional regime and α = 2/3 for the viscocapillary regime) decreases. Then, for small Ca, the viscous forces are negligible and the rod only carries away the fluid trapped in the structure (illustrated at Figure 4.20, left). The thickness becomes independent of Ca. Inversely, the viscous forces become very large for high Ca that the trapped fluid can be neglected in front of the contribution related to the viscous drag (illustrated at Figure 4.20,right). The curves get closer to the h/l c ∼ Ca 1/2 , law observed for smooth rods.

Close to the critical capillary number Ca * S , both contributions have the same importance. Ca * S , associated to the transition from trapped to viscous dominated regimes, can be defined by considering that h 0 = h drag , which yields Ca * S ∼ (h 0 /l c ) 2 . Below Ca * S , the contribution related to the viscous drag becomes negligible, yielding the observed deviation in 

Drainage

J. Seiwert [10] has analyzed the drainage of low viscous fluid on a microtextured surface (array of pillars on a plate). Figure 4.22A shows the thickness of the dragged fluid h with time. The drainage can be separated in three different regimes:

• At the beginning of the dynamics (t < t c 800 s), the drainage is similar to the one observed for smooth surfaces (the slope of the graph is > -1/2);

• When t t c , there is a step in the curve and the thickness decreases very rapidly;

• After the step, the thickness reaches an equilibrium state and stays constant with time.

The presence of the step followed by a drastic decrease of the thickness is due to the flow of the fluid trapped between the array of pillars. This effect becomes predominant when the thickness of the dragged fluid decreases. At the end of the drainage the thickness is stabilized because of the formation of the trapped layer of fluid inside the structure due to the capillarity. The thickness of this layer is determined by the balance between the hydrostatic and the Laplace pressure. Concerning the first stage of the drainage, the authors observe that the decrease of the thickness h is slower than during the drainage on a smooth plate, characterized by the power law h ∼ t -1/2 . During this regime, the flow of the fluid localized between the pillars is negligible with respect to the flow of the fluid on the dragged layer. Figure 4.22B represents the drainage of the fluid within the dragged layer (h drag ∼ h -h p where h p is the heigh of the pillars). It appears that the drainage of the dragged fluid becomes close to the dynamic observed for smooth plates. When the thickness decreases, the drainage accelerates (for t > 100 s). The authors attribute this acceleration to the slippage of the fluid on the heterogeneous interface.

In our experiments, we choose to study structured surface with a radial symmetry and larger height of the micro-structure (∼ 1 mm instead of 10 µm). The evolution of the mass of fluid collected on the rod during the drainage is shown in Figure 4.23A for several structured rods. The sharp transition observed by J. Seiwert disappears in the curves. Instead, a smooth decrease of the fluid thickness towards a final constant value is observed, the slowing down with respect to the smooth counterpart still being present.

The disappearance of the step transition in the drainage dynamics is related to the geometry of the micro-structures. For the rods with a "honey spoon" like structure, there is no flow allowed in contrast to the situation reported for a forest of pillars [10]. This effect has been studied by J. Seiwert with specially designed structure preventing any flow. As shown in Figure 4.24A, this modification of structure is enough to remote the step transition in the drainage dynamics.

To have a better insight of the dynamics, we plot the difference between the mass of fluid and the mass of trapped fluid (Figure 4.24B). As reported for the micron-scale structures [10], a decrease of fluid thickness with a t -1/2 power law is recovered. The drainage dynamics in the fluid layer above the micro-structure thus behave in a similar way as smooth substrates. Obviously, a sharp decrease is also observed at lon time since (M tot -M trap ) → 0.

For the rods studied here, the presence of a millimetric structure does not affect the flow in the free fluid layer. This is rather surprising if we consider that the thickness of the fluid in the free layer is very close to the height of the structure. A situation that could lead to a rather strong slippage at the interface. 

Application of the model to bumblebees

The proposed physical model based on structured rods could easily be transposed to bumblebees. From experiments on bees, we measured the collected volume per lap V bee (Figure 4.25A). From simple geometric considerations, we have

V bee ∼ πLh(h + R) (4.29)
With h the thickness of the nectar and L, R the length and the radius of the tongue. Figure 4.25B shows the evolution of the normalized thickness of captured nectar by bees (blue dots) with the capillary number. To apply the physical model to bumblebees, we should first determine the corresponding regime by comparing the capillary numbers to the critical ones. Regarding the transition between capillarity and gravity dominated regimes, the tongue of the studied bumblebees corresponds to a thin rod, R 0.1 mm, decorated with flexible papillae of length, h 0 0.15 mm. The characteristic critical capillary number which determines the transition between the visco-capillary and visco-gravitational regime is defined as Ca * ∼ (l c /R) 6 . Bumblebees thus always collection the nectar in the capillary dominated regime as the geometric parameters yield very large Ca * ( 10 6 ). The theoretical evolution of the thickness with the capillarity is then defined as This law is represented by the blue dotted line on Figure 4.25B. The predictions of the physical model is quantitatively in agreement with the values measured for living bumblebees without any fitting parameter. For low Ca, the thickness is constant but we observe deviations for high Ca (Ca > 0.1). As the maximal viscosity encounters by bumblebees in nature is around 5 10 -1 Pa.s [1,2,18] which corresponds to a capillary number of Ca ∼ 0.1, we can establish that the tongue of the bee is optimized to the natural conditions. The deviations appear only for highest viscosities, never observed in nature.

h ∼ h 0 + 1.
To explain the fact that, for Ca < 0.1, the thickness is quite constant, we have to look at the transition from trapped to viscous dominated regimes (both regimes illustrated at Figure 4.20) which appears for a critical capillary number Ca * S . Its expression must be adapted to the bumblebees' characteristics. Considering that h 0 = h drag ∼ RCa 2/3 , we obtain Ca * S ∼ (h 0 /R) 3/2 1.9. Then, when Ca 1, we could assume that the collected nectar is essentially located into the micro-structure, the amount of nectar taken by the viscous drag being negligible. The collection of nectar for bumblebees can be viewed as a "mopping-squeezing" mechanism.

On the contrary, at high Ca, the deviation from the law may originate from the filling dynamics of the structure. On the tongue, hairs are arranged on transversal rings with spacing of approximatively 25 µm along the axial direction (Figure 4.26A) [9]. The filling between hairs is due to the contact between a wetting fluid, the nectar, and narrow spaced hairs. This situation is similar to the filling of a porous media which results from the balance of capillary force by viscous friction. z and ż are the meniscus position and velocity, R the spacing between hairs (γ, η and θ the surface tension, the viscosity and the contact angle of the fluid, respectively). The capillary and viscous forces are given by F c ∼ 2πRγ cos θ and F η ∼ 2πη żz, which yields the Washburn's law [19],

z(t) = γ cos θR η √ t (4.31)
The filling of the hairy structure inversely depends on the viscosity of the fluid. To completely fill the hairy structure, the fluid needs to cover the entire length of hairs (h 0 0.15 mm) while the tongue is immersed into the fluid. If we estimate that the immersed time is half of the lapping time, the fluid has to fill the structure within 0.1 s (the lapping rate is about 5 laps/s for bees). While this time is sufficient for low viscosity fluid (e.g., z ∼ 1 mm, > h 0 with t = 0.1 s and η = 10 -2 Pa.s), the filling is not completed for fluid of high viscosity (e.g., z ∼ 0.1 mm, < h 0 with t = 0.1 s and η = 1 Pa.s).

Finally, the trapping of the nectar within the papillae is only the first stage of the collection of nectar by bumblebees. Once the tongue is filled with nectar and retracts, the nectar is unloaded in a tube formed by labial palpae 4.26B. The loaded tongue is squeezed by labial palpae acting like a wedge and the nectar is sucked into the mouth by action of the pharyngeal pump [8].

The proposed physical model could probably be adapted to other animal species. For instance, some bats also capture nectar by using erectile papillae forming a hairy structured tongue. As we can see in Figure 4.25B, the predictions of the proposed model are compatible with the thickness of the dragged nectar measured for bats according to data found in literature [17]. Who has never admired the hypnotizing movement of a honey thread when it falls from few centimeters on a slice of bread (Figure 5.1A)? The vertical filament folds when it reaches the bread, that takes to a periodic oscillation of the filament around the vertical axis. This situation is only an example of many others where we can see this surprising behavior called fluid buckling (Figure 5.1).

When a liquid rope falls on a plate, the fluid can either spread homogeneously, or buckle and then exhibits the coiling instability depending on the experimental parameters such as the height and the radius of the filament, the viscosity of the fluid or the flow rate of the fluid. This last effect arises from a competition between an axial compression of the fluid when the liquid rope reaches the bottom (which can be a bath of fluid or a solid, as the slice of bread in our first example) and the bending of this rope [1].

The coiling of viscous fluid was first studied by Barnes et al. [2] and, since, this field has been widely developed both experimentally [3][4][5][6][7][8][9][10][11][12] and theoretically [13][14][15][16][17][18]. Taylor [4] was the first to make the assumption that the buckling instability encountered in the viscous coiling is similar to the one observed for elastic rods. This buckling is described by the Euler buckling theory. displacement in y-direction, the moment-curvature relationship can be written has

d 2 δ dx 2 ∼ M f EI (5.1)
where M f is the moment, E the Young's modulus and I the moment of inertia of the rod (I ∼ R 4 ). Equilibrium requires that M f = 0, then

M f + P δ(x) = 0 (5.2) 
By equations 5.1 and 5.2, we have

d 2 δ dx 2 + P EI δ = 0 (5.3) 
With the boundary condition δ(0) = δ(H) = 0, the solution of this second order linear differential equation becomes

P = n π 2 H 2 EI (5.4) 
where n = 1, 2, 3, .... The critical load of Euler corresponds to the mode of lowest energy (when n = 1),

P c = π 2 H 2 EI (5.5)
This equation corresponds to a columns with pinned connections at both ends (lateral translations constrained and rotations free). In nature, this buckling threshold has a strong impact on slender materials, such as tree. Indeed, to avoid breaking, trees have to keep a certain ratio height/diameter. A tree can be consider as a cylinder that should support its own weight M g. Their mass can not exceed a critical mass M c determined by the Euler buckling relation,

M g < M c g ∼ ER 4 H 2 (5.6)
For a cylinder of diameter D, we can defined M g ∼ ρgD 2 H, the stability limit becomes,

H c ∼ E ρg 1/3 D 2/3 (5.7)
where H c is the critical height of the tree. As the typical Young's modulus and density of trees are E = 11 ± 1 GPa and ρ = 750 ± 250 kg/m 3 respectively, the rigorous resolution of the equation (if the weight of the tree is distributed all over the trunk) is H 

Different regimes for the liquid rope coiling

A filament of fluid has to overcome a critical height H c to buckle. This critical height is defined by H c = Ca 1 where a 1 is the radius of the jet near the coil and C a constant (6 ≤ C ≤ 30) which increases with the surface tension γ but is weakly depending on the kinematic viscosity ν and the flow rate Q [22]. Provided H > H c , the fluid buckles and coiling is observed (Figure 5.4). The coiling results from the balance between viscous forces (F η ), gravity (F g ) and inertia (F i ). Viscous forces follow from the internal deformation of the fluid (stretching in the tail and bending and twisting in the coil) while inertial force stems from the centrifugal and Coriolis accelerations. Mahadevan et al. [8] and Ribe et al. [18] have estimated these forces per unit rope length within the coil as

F η ∼ ρνa 4 1 U 1 R -4
(5.8)

F g ∼ ρga 2 1
(5.9)

F i ∼ ρa 2 1 U 2 1 R -1 (5.10)
where R, U 1 and a 1 correspond to the radius of the coil, the axial velocity and the radius of the fluid within the coil respectively. We can immediately notice that these forces strongly depend on a 1 , the radius of the filament within the coil. Since this radius is determined by the thinning of the thread along the vertical axis which depends on the gravity (so the height of fall of the fluid H), the relative magnitudes of the forces F η , F g and F i are also dependent on H. Viscous regime. At small height (H(g/ν 2 ) 1/3 < 0.08 in the experiment illustrated in Figure 5.5D), both the gravity and the inertia are negligible in front of the viscous forces. The coiling occurs in the viscous (V) regime and is driven by the injection of the fluid, like toothpaste squeezed from a tube. The jet is deformed by bending and twisting but not by stretching thereby there is no thinning of the jet (a 0 a 1 and U 0 U 1 ) (Figure 5.5A). The coiling frequency Ω is defined by Ω ∼ U 1 /R where R ∼ H and U 1 ∼ Q/a 2 1 which yields,

Ω V ≡ Ω ∼ Q Ha 2 1 (5.11)
Gravitational regime. When the height increases, the gravity can no longer be negligible in contrast with inertia (0.08 ≤ H(g/ν 2 ) 1/3 ≤ 0.4 in Figure 5.5D).

In this gravitational (G) regime, the balance between gravitational and viscous forces leads to

Ω G ≡ Ω ∼ gQ 3 νa 8 1 1/4
(5.12)

In this regime, only the lowest part of the jet buckles to form the coil (Figure 5.5B).

The transition from viscous to gravitational regime occurs when Ω G ∼ Ω V [17]. The transition occurs at a critical height H V G given by

H V G ∼ νQ g 1/4
(

The transition is easy to localize on Figure 5.5d from the change of sign of the derivative. While, for the viscous regime, the constant radius a 1 (= a 0 ) implies that the frequency decreases with height, for the gravitational regime, the radius a 1 decreases with height involving an increase of the frequency.

Inertial regime. For larger heights, we observe the inertial coiling (H(g/ν 2 ) 1/3 1.2 in Figure 5.5C,D). A model of this regime was first proposed by Mahadevan et al. ([23,24]). The viscous forces in the coil are balanced by the inertia. It might seem inconsistent to speak about inertia when experiments reveal small Reynolds number (Re = U 0 H/ν 1). In fact, while the inertia in the global system is relatively low, the inertia within the coil may become very large because of the acceleration of the fluid. Into the coil, the Reynolds number may become important and the inertia can no longer be ignored. The scaling law for this inertial (I) regime can be written as

Ω I ≡ Ω ∼ Q 4 a 10 1 ν 1/3 (5.14)
The increase of frequency with height can be understood by looking at the evolution of the radius a 1 [11]. From the previous equation, Ω I ∼ a -10/3 1 . While, the frequency depends on the viscosity and the inertia, the radius a 1 is determined by the gravity and the viscosity that resists stretching. Then, at strong stretching, in the limit a 1 a 0 , we have,

a 1 ∼ Qν g 1/2
H -1/2 (5.15)

The coiling frequency in the inertial regime can be written as a function of the height as

Ω I ∼ H 5/3 (5.16)
This evolution is in good agreement with the experimental measurements for moderate height.

Inertio-gravitational regime. Between the gravitational and the inertial regimes (0.4 ≤ H(g/ν 2 ) 1/3 ≤ 1.2 in Figure 5.5D), the evolution of the frequency with the height is multivalued, there is a series of quasi-horizontal "steps" connected by curves with a strong negative slope. It means that for one height, several frequencies are permitted. The change in the curve's shape is a sign of a change of regime. Actually, at these heights, the viscous forces in the coil are balanced not only by the inertia but also by the gravity, driving to a transitional regime called inertio-gravitational (IG) regime. Figure 5.6A shows this regime in details. We can see that, at one height (10 cm for example), up to five different frequencies are possible but experimental datas show that only three of them are observed in experiments (those situated on the steps). Frequency localized on the part of the curve where the slope is negative corresponds to unstable modes [15]. In the gravitational regime, the jet is almost vertical except on the coil where there is the bending of the jet and the dynamics is laid down by this part of the jet. When the height of fall increases, the motion of the jet starts to become non-negligible: although the bending is still localized only on the coil part of the jet, the whole length oscillated increasingly. The dynamics is determined by the tail of the jet and the bending in the coil becomes insignificant. In the tail, the bending and twisting are negligible in front of the stretching allowing to see the jet as a "liquid string" [17]. Taking into account gravity, centrifugal inertia and viscous forces, the frequencies at a fixed height in the IG regime are proportional to [10] 

Ω IG ∝ g H 1/2
(5.17)

Which corresponds to the familiar pendulum frequency. Experimentally, Ribe et al. ( [10]), Maleki et al. [9] and Varagnat [12] have observed a coexisting coiling states with irregular oscillations between them. As we can see on Figures 5.6 B and C, the shape of the coil changes with the frequency for the same height of fall. The radius of the coil is related to the coiling frequency and the velocity of the fluid into the filament. As the velocity, determined by the height of fall and the viscosity of the fluid, is constant, the radius of the coil has to be inversely proportional to the frequency. The oscillations between two coiling states appear because of small irregularities in the pile of fluid beneath the coiling rope.

Results

During the drainage part of the viscous dipping experiments, we observe the coiling of the filament (Figure 5.7A). The fluid previously dragged during the withdrawal from a viscous bath of viscosity η of a rod of radius R T has a thickness h(t) and flows under gravity with a flow rate Q(t) (with a(x, t), the filament of radius). The filament is composed of two different part: on the top, the first part is the "tail" where the fluid is quasi vertical and gets thinner downwards. Close to the bottom, the second part corresponds to the "coil" (Figure 5.7C).

The periodic movement of the fluid can be observed with a kymograph (a spatiotemporal diagram) with horizontal slices, close to the coil build, from video frames (an example is shown in Figure 5.7B). Surprisingly, the coiling frequency is constant while the flow rate changes by more than one order of magnitude (Figure 5.7D)! All relations determining Ω involve the flow rate; Ω ∝ Q α (with α = 1, 3/4, 4/3, equations 5.11, 5.12 and 5.14).

To analyze the coiling of the fluid the flow rate Q(t) has to be determined. We know that the flow rate is given by

Q(t) ∼ v(t)h(t)R t (5.18)
With v, the velocity of the flow and R t , the radius of the rod. As the flow is closely related to the visco-gravitational drainage, we can easily defined Q(t). Indeed, the velocity of the flow around the rod results from the balance between viscous forces (F η ∼ ηV /h 2 ) and gravitational force (

F g ∼ ρg). v ∼ ρg η h 2 (5.19)
Q is also given by the evolution of fluid volume V , By integration of this equation with the boundary condition h 0 = 0, we obtain

dV dt = R t L dh dt ( 
h = 1 h 2 0 + 2ρg ηL t -1/2 (5.22)
Reporting this equation in equation 5. 18, we obtain the flow rate,

Q = R t ρg η 1 h 2 0 + 2 ρg ηL t 3/2
(5.23)

Then, when t 0, we expect a time evolution for h and Q described as power laws with exponents -1/2 and -3/2 respectively. Equations 5.22 and 5.23 are quantitatively in good agreement with the experimental results as shown in Figure 5.8 (no fitting parameter has been used). During the flow of the fluid, at constant height, we observe the onset of coiling where H ≥ H c = Ca 1 , a 1 being the filament radius close to the coil. To relate the filament radius to the varying flow rate, we first need to estimate the initial filament radius, a 0 (close to the tip of the rod). Considering the conservation of flow, Q ∼ vR t h ∼ a 2 0 v (5.24)

RESULTS

The initial radius a 0 is thus given by

a 0 = R t h (5.25)
This approximation is in good agreement with the experimental measures of a 0 (Figure 5.9), especially for the less viscous fluid, where the deceleration due to the viscosity is weaker. In our experiments, the distance H kept at 2 cm, we are thus in the viscous regime of coiling. The frequency is given by Ω V = v/R which yields,

Ω V = Q a 2 R ∼ Q a 2 H (5.26)
To explain the observed constant coiling, the variation of Q and a with time should cancel. Experimentally, the evolution of the radius of the filament a and the radius of the coil R with the flow rate Q is shown on Reporting these dependencies in equation 5.26, we obtain the evolution of the frequency, Ω ∼ Q 0 (5.29)

The constant coiling frequency observed for the first part of the drainage is thus related to a self-adjustement of a, R and Q, over more than one order of magnitude in Q (Figure 5.11).

To go further, it will be necessary to study this problem in details to determine the mechanisms producing the observed relations a ∼ Q 0.35 and R ∼ Q 0.3 , the influence of viscosity observed in Figure 5.11 should be also described. These interesting points are however beyond the scope of this thesis. 

Conclusion

In this first part of the thesis, we built a physical model for the collection of nectar by bees and confronted it to data obtained with living bumblebees.

The main idea behind the model rests on the peculiar morphology of bee's tongues, coated by a hairy structure. In this study, we gave a new insight into the interaction of viscous fluids with structured solid objects. Viscous dipping with smooth and structured rods were investigated under unexplored experimental conditions, i.e., millimetric rods decorated with micro-structures of radial symmetry. Different dynamical regimes were observed for smooth rods and the major role played by the microstructures was highlighted. The experiments validates the description of the dragged fluid with two independent contributions: one related to the fluid trapped in the micro-structure, and the other from the fluid carried away by the viscous drag.

Regarding the behavior of bumblebees, the mechanism based on a trapped fluid layer into the hairy structure due to the low values of capillary numbers is quantitatively confirmed, the amount of fluid dragged by the viscous forces being negligible. We propose to describe the capture of nectar by bees with a "mop-squeezed" mechanism. The hairy tongue's tip mops the nectar which is squeezed in the buccal cavity by the closing of the proboscis. This rather simple method should work for many types of flowers offering nectar and is therefore adequate for non-specialized bees. In term of evolutionary purpose, this study highlights the true benefit of the hairy micro-structure of papillae observed at the tip of the tongue of many bees.

Part II

Collection of nectar by hummingbirds

As already mentioned, the morphology of the hummingbird tongue is totally different than the morphology of bees' tongues. The feeding mechanism should be different too. Indeed, the tongue of hummingbirds does not exhibit a hairy structure, so they cannot use the "mop-squeezed" mechanism observed for bees. In this chapter, we will try to better understand this mechanism from biological measurements confronted to physical models.

Biological measurements on hummingbirds

There is only one parameter determining the energy-intake rate during the capture of nectar: the flow rate Q. The experiment allowing to measure it is very similar to the one used for bees (cf. Chapter 4). In the "Animal Flight Laboratory" of the University of California, Berkeley, in collaboration with the Dr. Alejandro Rico-Guevara, we recorded videos of hummingbirds capturing artificial nectars of different sugar contents, i.e., different viscosities. Figure 6.1A shows a sequence of images recorded during the collection of nectar. We follow the displacement of the meniscus with time (Figure 6.1B). The meniscus moves because the volume of fluid into the tube decreases, the small periodic variations correspond to the back-and-forth movement of the tongue. When the tongue plunges into the fluid, the volume increases and when it retracts the volume decreases. Contrary to bees, the displacement of the meniscus leads to an increase of the distance between the fluid and the hummingbird (Figure 6.1A). Consequently, while the periodic back-and-forth movement seems regular with time, the displacement of the meniscus seems to decrease along the experiment. This first observation allows to suspect the significant role of the distance nectar-bill during the feeding.

The analysis of these curves gives access to details about the dynamic process such as the volume of the immersed tongue, the amount of fluid captured per lap and the lapping time (inset of Figure 6.1B). By changing the viscosity of the fluid inside the feeding tube, we can examine its influence on the feeding process.

As the hummingbird is free to move and to position its bill at a different distance from the feeder, we do no exploit the volume of the tongue from this graph but we measured the length of the tongue from the analysis of videos (Figure 6.2). Knowing the length of the tongue for each lap and the associated lapping time, the velocity of the tongue can be determined. These two parameters are plotted with the viscosity on Figure 6.3. The total length of the tongue (blue boxplots in Figure 6.3A) is nearly constant for all the viscosities and the velocity very slightly decreases with the viscosity (Figure 6.3B). This decrease may be explained by the drag force which increases with the viscosity of the fluid. Considering a constant power output for the hummingbirds yields Ẇ ∼ ηLv 2 ∼ constant. The velocity should then decrease much more rapidly with the viscosity (v ∼ η -1/2 ). This discrepancy between the observations and a rough model raises questions about the validity of the constant power assumption. It is likely that the hummingbirds adopt their muscle power to the viscosity of the fluid, as observed for bees (cf. Chapter 4).

From Figure 6.1B, the lapping rate ν and the volume v 0 of the fluid captured per lap can be determined (red and green arrows on the inset of Figure 6.1B). These two parameters lead to the ingestion rate Q given by Q ∼ νv 0 . On Figure 6.4 we observe that, as for the velocity of the tongue, the lapping rate decreases with viscosity, while the captured volume per lap is constant. As a consequence, the ingestion rate does not show a strong dependance with the fluid viscosity at low viscosity (η < 0.01 Pa.s) where it seems to be constant but, for higher viscous fluid (η > 0.01 Pa.s), the ingestion rate decreases with the viscosity.

To understand the feeding process, we need first to establish how the nectar is captured within the tongue. By measuring the immersed length of the tongue L im and the external length of the tongue L ext for each lap, as illustrated on Figure 6.5A, we can plot the volume of captured nectar as a function of these two lengths (Figure 6.5, B and C). The variation of the different lengths comes from the variation of the meniscus during the feeding process as well as the position of the bill into the feeder. We observed that while the captured volume does not change with the external length, it increases linearly with the immersed length. This unambiguously shows that the nectar is principally trapped into the immersed part of the tongue. The capillary rise or the expansive filling (as suggested by some authors, see Chapter 1) inside the external part of the tongue is therefore negligible. These results differ from previous studies where a rise of the nectar is noticed inside the tongue [1,2]. In addition to the change of the observed species (which can involve some specific feeding mechanisms), this difference may come from the feeder design used during the feeding experiments. Indeed, contrary to others studies, the feeder here tries to represent the natural conditions of the feeding process, by respecting the natural distance between the hummingbird bill and the nectar bath. As it has already been suggested [2], the results of feeding under unnatural conditions may not be representative of the processes happening in nature. Another relevant parameter for the feeding process of hummingbirds is the orientation of the flower. Indeed, in nature, flower corolla can have a fluctuating angle with the horizontal as shown in Figure 6.6A. To simulate the different orientations of the flowers, the feeder was positioned with a certain angle to the horizontal during the feeding experiments. Figure 6.6 B to D exhibit, for different feeder orientations, the lapping rate, the volume of captured nectar normalized by the immersed length of the tongue and the ingestion rate normalized by the immersed length of the tongue, respectively. A general outcome is that, whatever the orientation of the feeder, the feeding mechanism is not impacted, leading to constant lapping rates, captured volumes and ingestion rates.

Feeding mechanism of hummingbirds

To confirm the proposed trap mechanism, we compare the actual volume captured during the feeding experiment with the calculated volume inside the immersed part of the tongue at each lap. Knowing the immersed length L im and the radius R of the tongue during the withdrawal from the nectar bath (R ∼ 0.2mm), the volume should correspond to V trap = 2(πR 2 L im ) (the tongue is composed by 2 tube-like grooves). Figure 6.7A shows the captured volume normalized by the immersed length of the tongue as a function of the capillary number Ca (Ca = ηV /γ). This calculated volume (blue solid line) corresponds to the experimental data (blue dots).

The feeding process consists to back-and-forth movements of the tongue and thus the captured volume depends on the immersed length of the tongue. We can wonder if nectar is captured by a viscous dipping mechanism (described by the LLD equations), as discussed for bees. Given the dimensions of the hummingbird bill, the viscous dipping should be defined by a visco-capillary regime where the thickness on the tongue of the thickness of the dragged fluid that is given by h = 1.34RCa 2/3 . By considering the thickness of dragged fluid is coated around both of the tongue grooves, the volume captured by the viscous dipping mechanism is given by V LLD ∼ RhL im . As previously done for bees, we can imagine that both of these mechanisms are used by hummingbirds during the feeding process. Then, the captured volume per lap is defined by V = V trap + V LLD . These volumes are also plotted on Figure 6.7A (green and red dashed lines). While the velocity of the tongue is rather large in comparison to bees (v is on the order of 0.1 m/s for hummingbirds versus 0.01 m/s for bees), hummingbirds feed on flowers which produce low viscous nectars. Consequently, the capillary number Ca remains relatively small and the captured volume by the LLD model is negligible. However, we can notice that the LLD model suggests a non-negligible captured volume for Ca > 0.1. Indeed, for the highest viscosity, the viscous dipping should help to increase the captured volume. In contrast, the experimental captured volumes decrease with the capillary number. By looking to snapshots of the feeding process for the highest viscosity (60% of sucrose concentration, Figure 6.7B), we can observe the presence of a dragged fluid around the tongue but this nectar does no enter into the bill. The bill is only slightly opened during the withdrawal of the tongue: the fluid surrounding the tongue has not enough space to get in. We may first think that rejecting fluid is not optimal for the feeding process, but we are not in natural conditions. The captured nectar is much less viscous, and the thickness of the dragged fluid by viscous dipping is neglected. Moreover, as previously explained in Chapter 1, the intraoral transport of the nectar strongly depends on the bill opening. Movements of weak amplitude of the bill allow the hummingbird to rapidly bring the nectar towards its throat, in the same time as taking the nectar from the flower [3]. Adapted the bill opening would have a big impact on the dynamics of the intraoral transport of the nectar which could be, ultimately, less optimum for the feeding process.

To better understand the trapping mechanism, in the following section we look at the physical processes that are helpful for this feeding method.

Physical models

While a few authors suggest a similar trapping mechanism [1,2,4], the details of this process remain largely unknown. The feeding mechanism will not be resolved in one complete model, but it will be divided in two different steps: the protrusion and the retraction of the tongue.

To succeed in capturing the nectar, the hummingbird tongue has to be adapted to both of these steps which require different physical properties. Dur- ing the protrusion, the hummingbird tongue is squeezed by the bill tip and plunges inside the nectar bath. In the nectar, the collapsed tongue has to open to let the nectar fills it (Figure 6.8A). In this part of the feeding process, the opening of the tongue depends on the elasticity of the sheet forming the tube. For the second part of the feeding process, during the retraction, the tongue has to close around the nectar once it goes outside of the nectar bath to trap the fluid (Figure 6.8B). In this stage, the elasticity of the tongue should be coupled to capillary forces.

Model of the hummingbird tongue

As already shown in the introduction, the tongue is made of a pair of grooves. In the throat, these grooves are clamped on a circular shape. The hummingbird tongue can be seen as a pair of open independent tubes, see Figure 6.9. The thick rods along the tongue (in black on Figure 6.9A and grey on Figure 6.9B) are a reinforcement structure to penetrate the viscous fluid without any deformation because of the drag forces. Although the tubular shape of the tongue can increase the effective stiffness of the tongue [5], this structure helps to support the weight of the tongue filled with nectar. These grooves are mainly composed of keratinized epithelium [6] and can be modeled as flat elastic ribbons, forced to adopt a tubular shape at their base.
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Elasticity of the tongue

During the protrusion of the tongue, the tip of the bill squeezes the tongue to drain the remaining nectar. A residue of nectar stays inside the squeezed tongue that maintains its collapsed shape because of capillarity. The mechanism highlighting the relation between elasticity of the tongue and capillarity also occurs during the retraction and will be developed thereafter.

Once immersed into the fluid, there is no meniscus along the tongue. The capillarity is not involved in the shape of the tongue, and the grooves are free to open. The important parameter is the persistence length of curvature L p which defines the necessary distance for the tongue, with an imposed tubular shape at its base, to recover its flat natural shape. Indeed, the nectar can easily "impregnate" the tongue only if this distance is short enough comparatively to the immersed length of the tongue L im . If L p > L im , the tongue grooves do not reach an opened shape in the nectar and the nectar cannot be trapped into the grooves during the retraction of the tongue.

This persistence length has already been described in the literature to explain the size of the deformation induced by ridges [7] or pinches [8] in thin sheets, the self-similar hierarchy wrinkles in curtains [9] or the opening of a curved elastic strip [10]. In all these studies, the persistence length is estimated from the balance between bending and stretching energies of the sheet.

Considering the hummingbird tongue as an elastic sheet clamped in a tubular shape of radius R at one end with an out-of-plane deformation Z (Figures 6.10A and B), the bending energy scales as U b ∼ Bκ 2 A where B is the bending modulus, κ the curvature of the sheet and A the area of the bent sheet. The sheet is subjected to a transverse curvature over the length L p , related to a bending energy is given by

U b ∼ Et 3 1 R 2 W L p (6.1)
where E is the Young modulus of the sheet, t its thickness, R its radius and W its width. The stretching energy scales as U s ∼ EΩ 2 where Ω defines the deformed volume and the in-plane strain. Barois et al. [10] estimated the strain for small out-of-plane deflections as the elongation of the edges in comparison with the neutral central line where, from Figure 6.10C:

1 + = Z 2 + L 2 p L p = Z 2 L 2 p + 1 (6.2) 
Considering a small deflection, Z 2 /L 2 p + 1 1 + (1/2)Z 2 /L 2 p . The strain is then defined as ∼ Z 2 /L 2 p and the stretching energy U s is given by

U s ∼ EtW Z 4 L 3 p (6.
3)

The total energy U tot for a curved sheet becomes

U tot = U b + U s ∼ EtW L p t R 2 + Z 4 L 3 p (6.4)
The persistence length is obtained by minimizing U tot :

∂U tot ∂L p = 0 ∼ EtW t R 2 - Z 4 L 4 p (6.5)
which yields the relation:

L p ∼ Z R t (6.6)
Assuming Z R, we can estimate the out-of-plane deflection Z from the width W of the sheet. Indeed, according to Figure 6 then Z = W 2 /2R. The persistence length L p is finally given by
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L p ∼ W 2 √ tR ∼ W Z t (6.7)
By rigorously resolving the equations, Barois et al. [10] found that the persistence length L p is given by

L p ∼ 2 √ 35 W Z t (6.8)
To test this relation, we measure the persistence length for thin films glued on a rigid tube at one extremity and perform numerical simulations. Figure 6.10E shows the experimental data obtained with PET films of varied thicknesses t, width W and imposed radius R (see the Material & Methods chapter) confronted with the data of Barois et al. [10] and Vandeparre et al. [9]. Numerical simulations for small out-of-plane deflection (Z/(2R) = 0.25 and Z/(2R) = 0.50) using Surface Evolver are added. All data collapsed on the predicted theoretical black line. We can notice that, as previously shown in the study of curtains [9], the persistence length does not depend on the physical properties of the sheet but only on the geometrical characteristics of the reference state.

In the case of the hummingbird tongue, the out-of-plane deflection is rather large and corresponds to the diameter of the grooves. The approximation on the strain is not valid and the resolution of the system using scaling laws becomes impossible. Nevertheless, numerical simulations can help to understand the behavior of the curved elastic ribbon when the out-of-plane deflection Z increases. Deviations from the scaling law are shown on Figure 6.11, where we can notice that the increase of the out-of-plane deflection Z involves an increase of the persistence length L p . Surprisingly, when the sheet is clamped in a complete tubular shape at its base (Z/(2R) = 1), the evolution of the persistence length L p normalized by the width of the sheet W shows a similar scaling law, L p ∼ W (Z/t). From numerical simulations, L p is found to be described by the relation:

L p 0.9W Z t (6.9)
This last observation questions the origin of the deviations from the scaling law. Are they related to the approximations used to build the scaling or related to the formation of singularities in the sheet (Figure 6.12)? Additional work is required to solve this problem but the recovering of the scaling law when W = 2R pleads in favor of the elastic singularities hypothesis.

We will apply this model to the elastic tongue of hummingbirds. The radius of the tongue is R ∼ 0.1 mm with a thickness t about 10 µm. With these values, the persistence length is about 1 mm. Then the immersed tongue (which can reach 15 mm in our experiments) is long enough to completely open. In addition to the persistence length, the opening of the sheet is characterized by the evolution of the curvature along the sheet. The different profiles of sheets, of 20 and 300 µm clamped on a cylinder with 1 mm radius, are shown on Figure 6.13. Figure 6.14 shows the evolution of the curvature along the sheet (normalized by the persistence length L p ) for various thicknesses. We observe that the curvature slightly decreases towards the flat state. This evolution does not depend on the thickness of the tongue. 

Effect of capillarity on the hummingbird tongue

During the retraction of the tongue from the nectar bath, an air-nectar interface is created. Although the role of capillary forces may often be negligible for phenomena happening at human scale or larger, it may be fundamental at smaller scales. Indeed, these forces are responsible for the shape of a drop of water but also the capillary rise, wetting or the capacity of insects to walk on the surface of water (Figure 6.15A) [11]. In fact, it is well known that gravity becomes negligible compared with capillarity for sizes smaller than the capillary length l c = γ/ρg, where γ is the surface tension of the fluid. In addition, it has been showed that capillarity can also impact the mechanics of deformable solids [12][13][14]. Depending on the properties of the solid, capillary forces can determine the most stable morphology of the system. A common example to see the effect of capillarity on a soft solid is the deposition of a liquid drop. Classically, the shape of the drop is only defined by a pure surface effect and then the wetting only depends on surface energies. This situation is described through the Young-Dupré equation [17]:

cos θ = γ SG -γ SL γ (6.10)
where the contact angle θ is determined by the different magnitudes of γ, γ SG and γ SL , the surface tensions of the liquid/air, solid/gas and solid/liquid interfaces, respectively (Figure 6.15B). We can see this equation as a balance of the horizontal projections of the surface tensions at the triple line. However, a vertical term γ sin θ should also be considered. To be at equilibrium, this last term has to be equilibrated by the solid surface stress. Considering that the vertical force deforms the solid over a distance ω which generates a stress σ (Figure 6.15C), then we have γ sin θ ∼ ωσ [18,19]. Because of this, a ridge of height δ is formed at the triple line with a local strain ε ∼ δ/ω. The order of magnitude of the ridge for a solid with a Young's modulus E is then given by δ = γ sin θ E (6.11)

This deformation can reach few micrometers in the case of elastomers with a Young modulus around 100 kPa [20][21][22], but is hardly discernible for hard substrates. For example, the γ/E ratio for a water drop (γ 70 mN/m) deposited in a glass substrate (E 70 GPa) is only on the order of 1 pm. The magnitude of the deformation of the surface of the solid can be explained by the "Shuttleworth effect" [23] which defines the surface stress Γ as a function of the surface tension γ and the interfacial strain ε:

Γ = γ + dγ dε (6.12)
For fluids, the surface stress Γ is simply equal to the surface energy γ but, for solids, the surface stress is also strain-dependent. Then, the equilibrium state of a drop of fluid on a solid has to take into account the strain-dependence of the surface energy of the solid, and the deformation depends on the stiffness of the solid.

For slender objects, we should also consider their global deformation. Paulsen et al. [16] studied the conformation adopted by ultra-thin and unstretchable circular sheets on a drop. In this system, the morphology is determined by the minimization of the surface energy U = γA f ree with A f ree the area of the exposed surface of the drop. Due to the inextensibility, the sheet cannot conform to the shape of the drop but exhibits wrinkles and crumples to wrap the drop (Figure 6.15D). Indeed, the purely geometric model leads to a minimization of the exposed area (which can result in non-axisymmetric configurations as a function of the relative size of the drop).

The hummingbird tongue does not correspond to this geometric model because of the elastic component of the tongue. While, the bending energy can be neglected for ultra-thin sheets, it may become very important for thicker sheets. In fact, the relative importance of the bending energy depends on the length scales of the system. Consider a thin sheet of width W and length L coated with a fluid in contact with a cylinder of radius R coated with the same fluid (Figure 6.16). If the radius of the cylinder is large enough, the sheet will curve and adhere to the cylinder. In contrast, if the radius of the cylinder is too small, the required flexion to adhere to the cylinder is too large and the sheet stays straight. To allow for the folding of the sheet, the gain in surface energy ∆U γ = 2γW L has to be compensated by the cost in flexural energy given by ∆U b = BW L/2R 2 . For a thin sheet of thickness t, Young's modulus E and Poisson ratio ν, the bending modulus is given by [24] B = Et 3 12(1 -ν 2 ) (6.13)

The spontaneous bending appears only if R > B/4γ. In fact, for all processes where surface energy balances bending energy, the system is described through a characteristic length called the elasto-capillary length L EC [25], and given by

L EC = B γ (6.14)
This elasto-capillary length represents the minimal radius of curvature that can be induced by the capillarity. Thin rods or thin sheets will curve only if their length is larger than L EC . In the previous case reported by Paulsen et al. [16], bending could be neglected because the sheet was so thin that B γ and then the elasto-capillary length was small compared to the length of the sheet. An example with a rod is provided by the spider webs which use the elastocapillary interaction to promote the damping properties [27,28]. The true length of the threads forming a web is much longer that the apparent length. The non-visible part of the thread is trapped into the water droplets (Figure 6.17A). To explain this phenomenon, the authors consider a thin elastic rod of radius b through a drop where the gravity is neglected (Figure 6.17B) [25]. At the triple line, capillary forces are exerted on the rod, F γ = 2πγb cos θ, where θ is the contact angle. If θ < π/2, the capillary forces act like a compressive force on the rod. When this force exceeds the Euler buckling load F B = π 2 B/R 2 (with R, the radius of the drop), a buckling of the rod into the drop is observed (bottom case of Figure 6.17B). The buckling is only observed if the radius of the drop is higher than a critical radius R c = (πB/2rγ cos θ) 1/2 ∼ L EC . After the buckling, the spatial position of the rod involves two compressive forces exerted at the menisci that are not anti-parallel, generating a spontaneous coiling of the thread inside the drop. For spider webs, the typical radius of the threads is of the order of 1 µm and the Young's modulus is roughly estimated at 5 GPa [27]. The bending modulus is then on the order of 5 10 -18 Nm 2 and the elastocapillary length is L EC ∼ 1 µm. As the typical radius of the drops observed on spider webs is around 10 µm, the spontaneous coiling is observed.

For the hummingbirds, the coupling between the elasticity of the tongue and capillarity occurs at two different moments. (i) At first, it is suggested

Capillary adhesion

Elasto-capillarity can lead to the adhesion between two plates. For a tube confining a small quantity of fluid, elasto-capillarity could lead to a collapsed state (Figure 6.18A). To maintain the tube in such a state, the imposed radius R has to be larger than the elasto-capillary length L EC . In the case of the hummingbird tongue, the tube is opened along its length and its closing bears similarity with the "elasto-capillary rackets" first proposed by J. Bico [14,25,31]. The racket shape is obtained by bending an elastic ribbon coated with a wetting liquid in order to assemble both ends (Figure 6.18B). The bending and surface energies per unit length of the racket are given by

U b ∼ BL curv L 2 curv ∼ B L curv (6.15) U γ ∼ γ(L t -L curv ) (6.16) 
where L curv and L t are the length of the bent part and the total length of the ribbon, respectively. To minimize the energy of the system, the size of the racket should be close to:

L curv ∼ L EC (6.17)

For hummingbirds, the thickness of the tongue is close to t = 10 µm and the Young's modulus has been estimated by Kim et al. around E = 300 kPa [1]; the bending modulus is thus B ∼ 10 -11 N.m. The critical length to observe the collapse of the tongue, equivalent to the elasto-capillary length, is given by L EC ∼ 100 µm. The circumference of the hummingbird tongue has to be larger than 100 µm. The observed tongue width is about 300 µm [6], the collapsed state is therefore at the equilibrium state of the tongue filled with a small amount of nectar.

Capillary origami

Capillary forces can be useful to self-assemble 3D micro-objects. By leaving a drop of fluid on a stiff solid provided by elastic hinges (Figure 6.19A), capillary forces act to pull the flaps. The equilibrium angle α of the hinges is determined by the balance between surface energy and elastic energy of the hinges (defined by a rotational stiffness C). Then α ∼ γL/C and, depending on the properties of the solid (and the hinges), elasto-capillarity may allow to close the 2D map in a 3D structure [32].

Py et al. [31] have studied the deposit of a drop on flexible plates (Figure 6.19B) and have determined a critical length L crit at which the plates can fold and wrap completely the drop of fluid. They found that the critical length is linearly dependent on the elasto-capillary length with a prefactor depending on the geometry of the plates (L crit 12L EC for triangles and L crit 7L EC for squares). This difference in the prefactor manifests the transition from two dimensional to tridimensional folding. Indeed, depending on the initial shape of the plates, different geometries can be obtained: squares lead to tubes (Figure 6.19B), triangles lead to pyramids, flower to spheres, crosses to boxes,... (Figure 6.19C). For hummingbirds, the tongue can be modeled by a rectangle and will then wrap, forming a tube if its width is above L crit .

The equilibrium shape of the 1D sheet (i.e., a rod) wrapped around a 2D drop can be obtained by solving two coupled equations: the Euler's Elastica found that, for the 2D model, L crit is about 3.5 -4.0L EC . When L ≤ L crit , capillary forces are able to deform the elastic sheet but the full wrapping is only observed in a restricted domain of the phase diagram (Figure 6.20A). This state cannot be attained spontaneously. The sheet must be forced into the closed state. Finally, for L > L crit , we observe all configurations from the flat one (very large drop section area S and vanishing volume) to the close slate (Figure 6.20B). The volume of liquid corresponding to the perfect closed state, δ/L = 0, involves a complex relation between elasticity and capillarity. This problem has not been solved yet, while the approach followed by Paulsen et al. for inextensible sheet seems promising [16].

Surprinsingly, these theoretical phase diagrams were never confronted to experimental results. We thus decided to measure the δ/L ratio for a rectangular sheet. With such a rectangular sheet, we expect to minimize the 3D effects and stay close to the 2D phase diagram.

The three situations were studied. Figure 6.21 shows the experimental results plotted together with the theoretical phase diagrams. In spite of the 3D versus 2D sheet, and of the influence of gravity, we observe a very good quantitative agreement between theory and experiments. For the L ≤ L crit situation, it was even possible to attain the metastable closed state in the loop domain (Figure 6.21A). At this point, it would be interesting to derive a theoretical model able to yield estimations of the critical volume, δ/L 2 , for the perfect closed state but this is beyond the scope of this thesis.

In the context of the capture of nectar by hummingbirds, we have already shown that the width of the tongue is larger than the critical length, close to the elasto-capillary length, L EC . The tongue can thus completely wrap the nectar. It is not surprising to see that evolution has produced tongues perfectly suited to the capture of the nectar with a width adjusted to the thickness of the living tissue. We can go further by considering that the thickness of tissue determines the width of the tongue which itself determines the size of the hummingbirds. It should however be noticed that this is extremely speculative. 

Conclusion

In the second part of the thesis, we studied the collection of nectar by hummingbirds. Surprisingly, the biological data reveal that the capture of nectar only depends on the immersed length of the tongue. We do not observe a capillary filling of the external part of the tongue, as suggested by some authors.

The experiments showed a mechanism based on the bare trapping of the nectar by the folding of the tongue during its withdrawal from the fluid.

To explain the physical mechanism, the feeding process should be divided into two steps: the protrusion and the retraction of the tongue. For both stages, we checked the relevance of the physical process by confronting quantitatively the prediction of the model to the parameters of the tongue. During the protrusion, when the collapsed tongue penetrates the nectar, an unfolding of the tongue sheets is observed due to elasticity of the rigid thin sheets. The immersed length of the tongue is well larger than the persistence length, and thus the two sheets of the tongue completely opens into the nectar. During the retraction, while the tongue gets out of the nectar, the capillary forces become also involved in the feeding process. Elasto-capillarity could indeed explain the trapping of nectar. The radius of the tongue is well above the elasto-capillary length: the sheets are thus able to fold, for encapsulating the nectar.

For both stages, the characteristics of the hummingbirds' tongue (radius and length) are close to the physical limits resulting from elasticity and elastocapillarity. This adequacy between observations and models suggests an optimization of the tongue morphology to the capture of nectar, and the size of these animals, hummingbirds being much bigger than bees. of nectar captured in a lap is in the trapped fluid layer. We thus propose a "mop-squeezed" mechanism that should work for a large variety of flowers.

The second part of the thesis was devoted to the capture of nectar by hummingbirds. While some authors suggest a mechanism of a capillary filling of the tongue, the biological data, recorded with living animals, showed that the volume of captured nectar per lap only depends on the immersed length of the tongue. As for bees, the mechanism involves a trapping of the nectar into the tongue thanks to a spontaneous folding of two elastic thin sheets. To explore the different physical mechanisms, the feeding process has been divided into two steps: the protrusion and the retraction of the tongue. During the protrusion, when the collapsed tongue penetrates the nectar, the unfolding of the thin sheets is observed and should be related to bare elasticity. Indeed, from a balance of stretching and bending energies, we could define a characteristic length to keep an imposed curvature, the persistence length, L p ∼ R 3/2 t -1/2 . The immersed length being above the estimated persistence length, the tongue completely opens into the nectar. During the retraction, when the tongue gets out of the nectar, a meniscus forms. The bending rigidity of the tongue is balanced by capillary forces. The elasto-capillary length, L EC ∼ (B/γ) 1/2 , estimated for the hummingbirds is below the radius of the tongue. The size of the tongue thus allows a folding, and then the trapping of nectar.

For both animals, the different parameters characterizing their tongues seem to be well adapted to ingest an optimal quantity of nectar regarding the natural conditions. We could therefore ask why animals develop so different mechanisms to achieve a similar purpose? The reason could be related to the size of the bees and hummingbirds, and the velocity of the tongue. Indeed, the velocity of the tongue is ten times higher for hummingbirds (Figure 8.22A). In addition, hummingbirds collect larger volume of nectar per lap for similar capillary numbers (Figure 8.22B).

At first sight, these features suggest that the capture of nectar by hummingbirds is more efficient than the mechanism developed by bumblebees. To compare both mechanisms in term of true efficiency, the mass of the animal has to be taken into account. Figure 8.23 shows that the ingestion rates normalized by the mass of the animals of both collection mechanisms are very close. This suggests that the mechanisms of collection could be optimized in terms of the energy need which depends on the size of the animals. The "mop and squeeze" mechanism is very likely the optimum for small animals foraging on a great variety of flowers, while the sheet folding is more relevant for larger animals such as hummingbirds.

Hummingbirds Bees

Ingestion rate/mass (μl/s.g) While these crude physical models quantitatively agree with the biological data, some improvements are needed to fully understand the details of the mechanisms.

Regarding bees, the in vivo experiments have been performed with a single bumblebees' species, the Bombus terrestris. This bumblebee is known to visit a large variety of flowers and to be able to collect nectar whatever its viscosity or the shape of the corolla. It thus makes sense to find an "all-terrain" mechanism suited for any flowers. However, others bees' species have a clear preference to certain flowers with a particular corolla's shape or a specific nectar viscosity. This specificity is very likely due to the global shape of the tongue (co-adapted to the shape of the flowers) but also to the dimensions of the papillae situated on the tongue. Consequently, the proposed physical model has to be tested for others species with more specific tongue morphology. To improve the model, the mechanism should also consider the flexibility of the hairy structure. In-deed, the impregnation of the viscous fluid in the micrometric hairy layer should involve elasto-capillary effects coupled to fluid flow. This coupling has never been studied yet.

For the capture of nectar by hummingbirds, while we have shown that the tongue is morphologically compatible with the proposed model, a complete physical model taking into account the whole dynamic of the feeding process is still missing. The equilibrium shape of a constrained elastic sheet containing various quantity of fluid has to be determined via experiments and simulations. This full 3D problem is however beyond the scope of the general framework currently used in reported studies. It should also be interesting to confront the dynamics of the unfolding of the tongue's sheets to the observed lapping frequency. Regarding the second stage of the process, the dynamics of closure of the tongue's sheet should be studied and compared to the velocity of the hummingbird's tongue during the retraction phase. Finally, to validate the physical model, experiments on other hummingbird species have to be performed. As for bees, hummingbirds can exhibits tongues with various sizes depending on the species. While the general shape is maintained, the different dimensions, length, radius of the tongue or the thickness of the grooves can vary. These parameters directly affect the elasto-capillary property of the tongue and the confrontation to the model should allow to explain the observed predilection of some hummingbirds species to some flowers.
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 11 Figure 1.1: A. Comparison between the crane of a carnivore (top) and the crane of a herbivore (bottom). B. Picture of a right whale with an enlargement of the baleen, seen through the open mouth. Image Credit: Michael Greenfelder, Alamy. C. Picture of an opened mouth lizard. During this action, both jaws part. D. Picture of a flamingo with enlargement of its bill. Image Credit: Eric Kilby. E. Pictures of two pelicans: one during the foraging (left)and the other while it catches some fishes thanks to the swallow of the gular pouch. Images Credit: Flickr User ali_arsh. F. Snapshots of a shorebird to observe its mechanism to bring a drop of water towards the base of its bill[10]. G. Snapshots of a frog capturing a prey thanks to its sticky tongue[12].
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 12 Figure 1.2: Illustration of different adhesion mechanisms: (a) intermolecular van der Waals interactions, (b) chemical bonding, (c) capillary interactions, (d) mechanical interlocking, (e) suction forces, (f ) diffusion of the surface material into the other, (g) electrostatic forces and (h) magnetic forces [19].
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 14 Figure 1.4: A. Picture of a pangolin with its baby. Image credit: AP Photo/Firdia Lisnawati. B. (a) Position of the tongue in the pangolin's body. (b) Scheme of the pangolin's tongue without protrusion. Abbreviations are as follows: es, esophagus; fp, free part of the tongue, consisting mostly of intrinsic lingual muscles; fs, fibrous sheath that surrounds the intra-abdominal part of the tongue and attaches to the whole length of the xiphoid process; gt, cranial end of the glossal tube; hc, hyoid cartilage; np, nonprotruded part of the tongue; oc, oral cavity; rb, a rib; st, sternothyroid; tr, trachea; xp, xiphoid process [25].
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 1615 Figure 1.5: A. Scheme of the retraction phase of the prey capture by a chameleon. The tongue acceleration occurs over the distance d with a force ft and the adhesion force corresponds to fa. The thickness of the mucus layer is h 0[14]. B. Picture and scheme of the chameleon tongue[START_REF] Müller | Power at the tip of the tongue[END_REF]. C. Scheme of the mechanism of the ballistic projection. The collagen sheath (dark grey) is loaded by compression between the accelerator muscle (in white, exerting a force Facc) and the entoglossal process (in light grey, exerting a force Fe) (a). Under this compression, the radial thinning results in elongation of the muscle (b) and the projection is triggered with a force Fc when it reaches the tip of the entoglossal (c). Image adapted from[START_REF] De Groot | Evidence for an elastic projection mechanism in the chameleon tongue[END_REF]. D. Kinematics profiles of the capture of a prey by a chameleon. Position (a), velocity (b) and acceleration (c) of the tip of the chameleon tongue over time. The contact between the tongue and the prey is made at t = 0[14].
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 16 Figure 1.6: Relation between the size of preys (estimated from the prey volume, Lprey ∼ V 1/3 prey ) and the snout-vent length L SV L of different chameleons. The pure viscous adhesion model corresponds to the red line (with η = 0.4 ± 0.1 Pa.s) [14].
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 17 Figure1.7: Schematic illustration of the prey capture during the retraction of the tongue (in green). A flow of velocity v occurs in the viscous mucus (in blue) while the tongue of radius R retracts with a velocity ḣ. This retraction produces an increase of the thickness of the mucus according to h(t).
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 18 Figure 1.8: Illustration of different drinking mechanisms encountered for various animals as a function of Re = (ρvL/η)(L/H) and Bo = (ρgHL/σ) with L and H representing, for tube feeders, the tube diameter and the height respectively or, for others, the characteristic mouth size where L = H [45].
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 19 Figure 1.9: (a) Experimental image sequence of the lapping process of a cat. (b) Image sequence of the model of lapping. A disk of radius R f is placed on the surface of water and pulled vertically at a velocty v f up to the height H. A column of fluid is formed (A to E) and then pinched-off (F) before collapsing (G to H). (c) Lapping frequency as a function of the mass of felines for eight species. The dashed red line is the best fit (slope of ˘0.181 ± 0.024) while the black solid line represents a slope -1/6. Images from [47].
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 1 Figure 1.10: A. Scanning electron micrograph of an Anolis tongue within the mandible (zoom x12). B. Cross section of the tongue covered by papillae (zoom x20). C. Enlargement of cylindriform papillae on scanning electron micrograph (zoom x315). Images from [53].
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 1 Figure 1.11: A. Picture of a butterfly drinking nectar from a flower through its proboscis.B. Schematic illustration of the drinking process for butterflies[START_REF] Kim | Natural drinking strategies[END_REF].
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 113 Figure 1.13: Sucrose intake rate (related to the rate of energy intake) for different sucrose concentrations (related to the nectar viscosity) [58].
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 115 Figure 1.15: Ingestion rate of nectar as a function of the body mass for short-tongued (opened points) and long-tongued bees (filled points) [75].
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 116 Figure 1.16: A. Section of the proboscis [70]. B. Images SEM of the labium of Bombus terrestris composed by labial palpis (Pl), a paraglosse (Pg), a glossa (Gl) covered by hairs (enlargement in the bottom left-hand corner) and ended by the flabellum (Fl). In the top right-hand corner there is an enlargement of the internal surface of the labial palp. Images from [81].
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 118 Figure 1.18: A. Picture of the bill of a hummingbird surrounded by cross sections of the closed bill at different places from a microCT scan [104]. B. Close-up of the morphology of the distal half of the hummingbird tongue. Scale bar = 250 µm [107]. C. Picture of the base of the opened bill where the wings (see red arrow) are visible [107].
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 119 Figure 1.19: A-F. Snapshots of the feeding process of a hummingbird using a backlighting technique (dorsal views). The intraoral nectar is colored in blue. Red line in the middle of the bill represents the tongue, with the localization of the tongue wings marked by a red "V" sign. The movement of the tongue is indicated by red arrows on top of the bill. The white and yellow double-headed arrows symbolize the distance between the two bill tips and the thickness of the bill base respectively. G. Movement of the tongue and the intraoral flow and vertical distances of the bill base and bill tip over time [107].
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 120 Figure 1.20: Volume of captured nectar and energy intake rates as a function of the concentration of the sugary solution for one hummingbird [120].

Figure 1 . 21 :

 121 Figure 1.21: Scaled volumetric flow rate Q/<X> as a function of the nectar viscosityfor different animals (X is a geometry-dependent parameter). Red, blue and green points correspond to the suction generated by muscular pump, the suction activated by capillarity and the viscous dipping respectively[START_REF] Kim | Optimal concentrations in nectar feeding[END_REF]. Inset: Relative energy intake rate as a function of the nectar viscosity where the calculated optimal concentrations for suction feeding (33%) and viscous dipping (52%) are denoted by vertical bands.

Figure 1 . 22 :

 122 Figure 1.22: On the left, snapshots of the lateral view of the bill tip during a feeding cycle.The hypothetical morphology of the tongue is illustrate by cross-sectional drawing. On the right, the hypothetical relative contributions of the different forces at each step.[START_REF] Rico-Guevara | The hummingbird tongue is a fluid trap, not a capillary tube[END_REF].
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 123 Figure 1.23: Capillary rise of the nectar through the hummingbird tongue. A. Height of the tongue tip (open circles) and the meniscus (filled circles) during two consecutive licks [128]. B. Schematic illustration of the nectar rise through the tongue [45].
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 1 Figure 1.24: A. Apparent radius along the length of the hummingbird tongue at different times. The black lines correspond to the short-time process and the grey lines to the long-time process. B-C. Theoretical (lines) and experimental (dots) data for the filling mechanisms in hummingbird tongues. B. Front velocity of the rising nectar over time for one lick. C.Filling length over time. The blue line represents the theoretical capillary filling according to Bosanquet's capillary model[START_REF] Bosanquet | Lv. on the flow of liquids into capillary tubes[END_REF] (which considers inertial effect) and the red dots correspond to an experiment showing a capillary filling.[START_REF] Rico-Guevara | Hummingbird tongues are elastic micropumps[END_REF].
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 21 Figure 2.1: Distribution of the nine subspecies of Bombus terrestris (L.) in Europe. All the subspecies are represented by a schematic colouration peculiar to queens [1].
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 22 Figure 2.2: A. Zero-shear viscosity as a function of honey fraction in water at different temperatures [11]. B. Velocity of a metal sphere of radius r = 1 mm falling into a bath of fluid of various viscosities.
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 23 Figure 2.3: Picture (A) and schematic illustration (B) of the experimental setup for the feeding process on bumblebees. The bee is trapped into a holding tube with a hole and is placed in front of a capillary tube filled with a sweet solution. The movement of the tongue and the displacement of the meniscus are filmed to be further analyzed.
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 24 Figure 2.4: Experimental setup for viscous dipping. Rods are supported by the Probetack and placed into a bath of fluid with a controlled viscosity. They are withdrawn from the fluid at a controlled velocity (up to 40 mm/s) and the mass of the drained fluid is followed by the scale situated underneath the bath of fluid.
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 225 Figure 2.5: Schematic illustration of a structured rod.
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 26 Figure 2.6: A. Distribution of Calypte anna (L.) along the Pacific Coast [14]. B. Picture of one of the three captured Anna's hummingbird.
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 22 Video recording of the nectar capture Median Q1 (25 th %ile)
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 2728 Figure 2.7: Picture and schematic illustration of the experimental setup for the feeding process of hummingbirds. The hummingbird feeds on a feeder composed by an artificial flower (in red) and a tube containing the artificial nectar (represented in yellow). The movement of the tongue and the meniscus are recorded to be further analyzed.
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 29 Figure 2.9: Snapshots of the different orientations tested in addition to the horizontal one.
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 210 Figure 2.10: Illustration of a boxplot symbol.
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 211 Figure 2.11: A. Snapshot of the profile of a sheet clamped on a cylinder of radius R = 12 mm. The sheet has a width of 30 mm and a thickness of 250 µm. B. Schematic illustration of the experimental setup for the study of the persistence of an elastic sheet. C. Snapshots of the deposit of a drop of water on a thin layer of PDMS at two different times during the evaporation of the drop.
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 212 Figure 2.12: Thickness of the PDMS film, made from Sylgard 184, in function of the velocity of rotation of the spin coater (with an acceleration of 500 rpm/s 2 and a time of rotation of 30 s).
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 31 Figure 3.1: Profile of a fluid dragged by a smooth plate along the x-axis with a velocityV . The profile is composed of four parts. From the bath of fluid to the top there is a static meniscus following by a dynamic meniscus of height l. From there, the film forms a constant layer of thickness h and it hangs to the plate with a thickness h(x, t) on a distance λ(h, t).
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 32 Figure 3.2: Meniscus of the fluid on a smooth rod of radius b [5].
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 33 Figure 3.3: Comparison of the velocity profile on (a) a smooth and (b) a rough surface. (c) Magnification on the rough surface to illustrate the influence of the vorticity in the grooves on the slip length. These illustrations of the effect of the roughness (as described by Krechetnikov et al.) are extrated from [11].

Figure 3 . 4 :

 34 Figure 3.4: General profile of the fluid dragged with a velocity V by a textured plate along the x-axis (left). The scheme on the right is a magnification of the profile showing the model of two layers proposed by Seiwert et al.[12]. The total thickness h d entrained by the solid correspond to the addition of a trapped layer of thickness hp (thickness of the micropillars) and a free layer of thickness h f . Image from[12].
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 42 Figure 4.2: Immersed volume of the tongue (blue dots) and the velocity of the tongue (red dots) as a function of the viscosity of the captured fluid. The data come from an average of 4 to 7 different bees for each viscosity.
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 44 Figure 4.4: Glossa and labial palpae (l.p.) of Bombus terrestris (scale bar: 400 µm). On the right, detail of the setae structure.
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 45 Figure 4.5: Image sequence of the withdrawal (at a velocity V = 40 mm/s) of a smooth rod of radius b = 2.4 mm from a fluid of viscosity η = 5 Pa.s.

Figure 4 .

 4 Figure 4.5 is a sequence of images recorded during an experiment of withdrawal of a smooth rod from a viscous fluid. During each experiment, we follow the evolution of the dragged mass over time (Figures 4.6and 4.7A). All withdrawals show the same general behavior, whatever the diameter b of the rod, the velocity V of retraction or the viscosity η of the fluid. During the withdrawal of the rod, the mass increases over time until it reaches a maximum at the specific time τ 1 .This first region corresponds to the viscous drag, when the rod is pulled off the fluid. Afterwards, the rod keeps rising out of the fluid and then stops moving at a specific time τ 2 while the captured mass decreases over time. During this phase, the decrease of the mass corresponds to gravitational drainage.Considering the collection of nectar by bees, the most relevant parameter

Figure 4 . 7 :

 47 Figure 4.7: A. Mass of dragged fluid with time for the withdrawal of smooth rods of varied diameter. B. Normalized maximal thickness h/C of collected fluid with the capillary number, Ca (C is equal to lc or R for thick or thin rods).Green, red and black dots correspond, respectively, to thin rods (R < lc), thick rods (R > lc) and previously reported data for plates[10, 11]. The red and blue dashed lines represent a slope of 2/3 and 1/2

Figure 4 . 8 :

 48 Figure 4.8: Summary of the different behaviors of the dragged fluid.

Figure 4 . 9 :

 49 Figure 4.9: Profile of a fluid dragged by a smooth plate along the x-axis with a velocityV . The profile is composed of four parts. From the bath of fluid to the top there is a static meniscus followed by a dynamic meniscus of height l. From there, the film forms a constant layer of thickness h and it hangs to the plate with a thickness h 1 (x, t) over a distance λ(h, t).

  Figure 4.10.

Figure 4 . 10 :

 410 Figure 4.10: Scheme of the profile of the fluid dragged by a thick rod (or a plate) as a function of the capillary length Ca. As Ca increases, as the part submitted at the thinning of the film increases too. The zone where the film is constant (thickness h) slightly decreases. It represents the transition between the visco-capillary and the visco-gravitational regimes.

Ca * * = bCa 2/3 l c 2 = b l c 2 Ca 4 / 3 ( 4 . 23 )c b 6 ( 4

 224342364 The condition to observe the visco-capillary regime (Ca * * Ca) implies Ca l

Figure 4 . 11 :

 411 Figure 4.11: Profile of the dragged for smooth rods of different diameters. While for thick rods (diameter > 2lc, blue and green dots), the thickness h respects an entire parabolic profile over the distance x from the top of the film, thin rod (diameter < 2lc, red dots) have a constant thickness from 2 cm to the bottom of the rod. Dashed lines follows a relation h(x) ∼ √ x while the solid red line is constant.

Figure 4 . 12 :

 412 Figure 4.12: Time evolution of the normalized thickness of dragged fluid during the drainage stage (normalized time tnorm = (tγ/Lη) where γ, L and η are the surface tension, the immersed length and the fluid viscosity respectively). The solid line represents a t -1/2 power law.

Figure 4 . 13 :

 413 Figure 4.13: Images sequence of the withdrawal (at a velocity of V = 40 mm/s) of a structured rod from a fluid of viscosity η = 5 Pa.s.

Figure 4 . 16 :

 416 Figure 4.16: Schematic illustration of the conversion of the structured rod (left) towards a smooth rod coated by the fluid with an effective thickness h ef f (right).

  /(D + d)) (solid line on the Figure). The correspondent mass of these thicknesses are, of course, the same masses plotted on the Figures 4.
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Figure 4 . 18 :

 418 Figure 4.18: A. Plot of the estimated normalized thickness of the trapped fluid h 0 /lc as a function of the capillary number Ca. The solid lines correspond to the average for each structure. B. Comparison between the average of the normalized trapped thickness h average 0 /lc and the theoretical normalized trapped thickness h theo 0 /lc. The black line corresponds to h average 0
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 419420 Figure 4.19: Plot of the normalized thickness of the estimated dragged fluid h drag /lc as a function of the capillary number Ca. Dotted lines represent theoretical predictions for structured rods and the solid line corresponds to smooth rods.

Figure 4 .

 4 19. An additional support to the proposed separation of contribution to describe the fluid drag of the structured rods is the agreement between measured and calculated Ca * S (Figure 4.21).

Figure 4 . 21 :

 421 Figure 4.21: Plot of the measured critical capillary number Ca * S as a function of the calculated value (h theo 0 /lc)2.

Figure 4 . 22 :

 422 Figure 4.22: A. Thickness with time during the drainage of a fluid of viscosity η = 19.5 mPa.s dragged on an array of pillars of 10.2 µm of height spaced by 10 µm. B. Dragged film h drag with time. Graphs from[10] 

Figure 4 . 23 :

 423 Figure 4.23: A. Mass of fluid drained with time for films dragged by viscous dipping with a withdrawal velocity of 40 mm/s and a viscosity of 5 Pa.s and on different structured rods. The depth (blue dots) and the gap (green dots) of the structures of a reference structured rod (red dots) have been modified (complete dimension of the structured rods in Table 2.1, Chapter 2). B. Difference between the total mass and the trap mass Mtot -Mtrap with time t for the same experiments as in A. The slopes of the solid black line is -1/2.

Figure 4 . 24 :

 424 Figure 4.24: A. Schematic illustration of the micro-textured surface used to prevent the flow in the structure (hcuves = 11.4 µm and c = 100 µm). B. Dragged film h drag with time with the surface preventing the flow into the structure (η = 19.5 mPa.s). Figures from [10]
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Figure 4 . 25 :

 425 Figure 4.25: A. Volume of captured fluid by bees for each lap as a function of the viscosity of the fluid η (copy of Figure 4.3A). B. Normalized thickness of nectar collected by bees (blue dots) or bats (red dot, data reported in[17]) with the capillary number. The black solid line corresponds to the law expected for smooth rods (R = 0.1 mm) and the colored solid lines represent the predictions of the new model for bees (blue) or bats (red).

Figure 4 .

 4 Figure 4.26: A. Microscopic image of the tongue of a bumblebee. B. Schematic illustration of the proboscis of the bees. The labial palps and the galea formed a tube surrounding the tongue to unload and swallow the nectar.

Figure 5 . 1 :

 51 Figure 5.1: Flow of honey (A), chocolate (B) and painting (C). This last picture is Jackson Pollock, at work in 1949, photograph by Martha Holmes. He worked with viscous paint to use the coiling effect to make his masterpieces. (Photographs c Time Inc, Getty Images)

  D 2/3 ).

Figure 5 .

 5 3 shows the data collected for different trees around the world that support the theoretical critical height. Trees adjust their diameter and height to stay below the critical height[21].

Figure 5 . 3 :

 53 Figure 5.3: Height H of different trees with their diameter D. Young's modulus and density for trees are typically E = 11±1 GP a and ρ = 750±250 kg/m 3 . Red line corresponds to the critical height H (1) c without taking into account the variation of the tree weight with the height (H (1) c (61 ± 7)D 2/3 )) while green line corresponds to the critical height H (2) c

Figure 5 . 4 :

 54 Figure 5.4: Coiling of a jet of viscous corn syrup [17].

Figure 5 .Figure 5 . 5 :

 555 Figure 5.5: A-C. Examples of liquid rope coiling in the viscous regime (A), gravitational regime (B) and inertial regime (C)[9]. D. Evolutions of the dimensionless coiling frequency Ω(ν/g) 1/2 and the normalized radius of the coil a 1 /a 0 as a function of the dimensionless height of fall H(g/ν 2 ) 1/3 . The different regimes are labelled: viscous (V), gravitational (G), inertio-gravitational (IG) and inertial (I)[10].

Figure 5 . 6 :

 56 Figure 5.6: A. Coiling frequency as a function of the fall height in the inertio-gravitational regime (η ∼ 1 Pa.s) [10]. B-C. Images of the coil showing two different frequencies for a same fall height [10].

5 . 20 )Figure 5 . 7 :

 52057 Figure 5.7: A. Images sequence of the coiling. B. Kymograph showing the oscillation of the filament. It corresponds to a spatiotemporal diagram of the filament at 1 cm from the rod. C. Schematic illustration of the different parameters involved during the coiling. D. Oscillation frequency with time of filaments of viscosity η = 1; 5 Pa.s falling from a rod of radius Rt = 3.36; 2.41 mm.

Figure 5 . 8 :

 58 Figure 5.8: Thickness h (A) and the flow rate Q (B) with time during the coiling of a filament of viscosity η = 1 or 5 Pa.s, falling from a rod of radius Rt = 3.36 mm.

ηFigure 5 . 9 :

 59 Figure 5.9: Radius a 0 (close to the tip of the rod) as a function of the thickness of the fluid around the rod of radius Rt = 3.36; 2.41 mm (η = 1; 5 Pa.s).
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 5355510 Figure 5.10: Radius of the filament a (A) and radius of the coil R (B) as a function of the flow rate Q during the fall of a fluid of viscosity η = 1; 5 Pa.s from a rod of radius Rt = 3.36; 2.41 mm.

ηFrequencyFigure 5 . 11 :

 511 Figure 5.11: Frequency of oscillation of a filament of viscosity η = 1; 5 Pa.s falling from a rod of radius Rt = 3.36; 2.41 mm.

Figure 6 . 1 :

 61 Figure 6.1: A. Image sequence of the collection of nectar by a hummingbird. Scale bar: 5 mm. The hummingbird positions its bill inside a flower-like structure and feeds on nectar places inside a tube. Over time, the amount of nectar decreases, then the meniscus moves back. B. Meniscus position with time during the feeding process. The inset shows a close-up of the graph and illustrates the different dynamic data, such as the lapping time, the captured volume per lap and the volume of the immersed part of the tongue, that could be deduce from the graph.

Figure 6 . 2 :

 62 Figure 6.2: Illustration of the position of the tongue at its maximal extension during the feeding process.

Figure 6 . 3 :

 63 Figure 6.3: A. Tongue's length and length of the immersed part of the tongue as a function of the viscosity of the fluid. B. Velocity of the tongue with the viscosity of the fluid.
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 6465 Figure 6.4: Lapping rate (A), captured volume for each lap (B) and ingestion rate (C) as a function of the viscosity of the fluid.

Figure 6 . 6 :

 66 Figure 6.6: A. Snapshot of a hummingbird feeding on a floral stem. Lapping rate (B), captured volume per lap (C) and ingestion rate (D) as a function of the orientation of the feeder.

Figure 6 . 8 :

 68 Figure 6.8: Snapshots (left) and illustrations of one groove of the tongue (right) during the protraction (A) and the retraction (B) of the tongue. The red arrows represent the " back-and-forth" movement of the tongue while the green arrows correspond to the movement of the grooves composing the tongue.

Figure 6 . 9 :

 69 Figure 6.9: A. Post-mortem picture of a hummingbird tongue [6]. B. Close-up of the cross section of the tongue (light microscope). The reinforcement structure is highlighted in grey (corresponding to the black structure of the Figure A). Scale bar = 250 µm [3].

Figure 6 . 10 :

 610 Figure 6.10: A. Scheme of the sheet of width W clamped with an out-of-plane deformation Z on a cylinder of radius R. The sheet opens to reach a flat state at the persistence length Lp. B. Snapshot of the profile of a PET sheet of width W = 30 mm and thickness t = 23 µm clamped on a cylinder of radius R = 15 mm. C. Scheme of the profile view of the sheet. D. Scheme of the front view of the sheet. E. Normalized persistence length Lp/W as a function of the normalized deflection Z/t. Data found in literature [9, 10] are confronted to our experiments (where Z < R) and numerical simulations.

Figure 6 . 11 :

 611 Figure 6.11: Normalized persistence length Lp/W as a function of the normalized deflection Z/t, for numerical simulations of sheets with various normalized deflections Z/(2R).
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 612613 Figure 6.12: Picture of typical singularities observed for experiments on the opening of a sheet (t =75 µm and W = 30 mm).

Figure 6 . 14 :

 614 Figure 6.14: Normalized curvature with the distance from the top of the sheet normalized by the persistence length Lp for the numerical simulation of sheets of various thicknesses clamped on a cylinder of radius R 1 mm, with a deflexion Z of 2R = 2 mm (closed cylinder).

Figure 6 . 15 :

 615 Figure 6.15: A. Picture of a water strider Gerris remigis on a surface of water. scale bar: 1cm [15]. B Profile of a drop of fluid on a stiff substrate. Image from [14]. C. Profile on a drop on a rigid substrate. Image adapted from [14]. D. Side and top views of a circular ultrathin polystyrene (PS) sheet (with a thickness of 29 nm) wrapping a water drop. According to the volume of the drop, the sheet adopts a typical non-axisymmetric shape. Scale bars: 1 mm [16].

Figure 6 . 16 :

 616 Figure 6.16: Schematic illustration of the influence of elasto-capillarity. When a flexible sheet coated with a wetting fluid is put in contact with a cylinder (left), coated with the same fluid. Depending on the elasto-capillarity length L EC , the sheet can spontaneously wrap the cylinder (right) or not.

Figure 6 .

 6 Figure 6.18: A. Illustration of a flexible tube with wetting fluid inside. If the radius R is larger than the elasto-capillary length L EC , the tube can collapse [14]. B. Elastocapillary racket. An elastic ribbon coating with a wetting fluid bending to assemble both ends is maintained with a racket shape because of elasto-capillarity. The numerical solution of the Euler elastica equation is drawn with a white dashed line. The right images illustrate a close-up of the displacement of the meniscus. [31].

Figure 6 . 21 :

 621 Figure 6.21: Experimental data report on phase diagrams obtained by Py et al. [31] for the numerical resolution of the 2D model. The distance δ between the edges of the "sheet" is plotted as a function of the drop volume (represented by the drop section area S) when the length L of the sheet is above (A) or below (B) L crit .

Figure 8 . 23 :

 823 Figure 8.23: Ingestion rate of nectar for bees and hummingbirds as a function of the capillary number.

  

  

  

Table 2 . 1 :

 21 Dimensions of the structures. R i , d, D and H represent the inner diameter of the rod, the width of a pillar, the gap between pillars and the depth of the microstructures, respectively. All lengths are given in mm.

	Name	R i	D	H	d
	A	2.41 1.2 1.2 1.2
	B	2.41 1.6 1.2 1.2
	C	2.41 2.4 1.2 1.2
	D	2.41 1.2 1.6 1.2
	E	2.41 1.2 2.4 1.2
	F	2.41 1.2 4.8 1.2
	G	2.41 1.2 1.2 1.6
	H	2.41 1.2 1.2 2.0
	I	2.41 1.2 1.2 2.4
	2.2 Capture of nectar by hummingbirds
	The collection of data for the capture of nectar by hummingbirds has been
	realized in collaboration with Dr. Alejandro Rico-Guevara from the "Animal
	Flight Laboratory" of the University of California, at Berkeley. The studied
	species is the Calypte anna, commonly called Anna's hummingbird. It measures

about 10 centimeters long and only weighs 3 -6 grams. Hummingbirds are smaller than typical flying vertebrates

[14]

.

Table 2 . 2 :

 22 Viscosities of the different solutions synthesized by the dissolution of a certain quantity of sucrose into the distilled water.

	Sucrose concentration Viscosity
	(% w/w)	(mPa.s)
	10	1.2
	20	1.9
	30	3.1
	40	6.0
	50	14.2
	60	51.2

  radius of the structured rod. With this effective height,
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Figure 4.17: Normalized effective thickness h ef f /lc as a function of the capillary number Ca for different structured rods (dimensions of the structured rods in

Table 2.1, Chapter 2).

1.1. FEEDING ON SOLID MATERIALS

1.2. FEEDING ON LIQUID MATERIALS
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Chapter 2 The bee is trapped on a holding tube and feeds on nectar placed inside a capillary tube. Over time, the meniscus moves to the left. It signifies that the volume inside the tube decreases. The graph of the displacement of the meniscus over time (B) shows the dynamics of the feeding process. The inset illustrates how the different data such as the captured volume per lap, the tongue's volume or the lapping time, could be deduced from this graph. When a solid elastic rope is subjected to an axial compression, depending on the yield stress and the stiffness of the material, three different situations can be occur. At small compression, the rope compress itself and the length of the rope decreases following the Hooke's law [19]. When the axial force increases, the rope starts to bend and can break (if the yield strength is reached) or simply stay deformed and buckle. The load at which a rod starts to buckle is the Euler's critical load [20], it corresponds to the maximal internal load in compression that a column can support before buckling.

Material and methods

To determine this critical load, P c , we could consider a perfectly straight column mode of homogeneous and elastic material. The column is aligned with the x-axis (where x 0 is the bottom of the column), has a height H, a radius R and is subjected to an axial compression P (Figure 5.2). With δ(x), the Chapter 6 If the Euler buckling load F B is higher than the capillary forces Fγ , the buckling is initiated (bottom scheme). Adapted images from [26].

Capture of nectar by hummingbirds

that capillarity maintains the tongue in a collapsed state during the protraction. The residue of nectar inside the tongue allows for capillary adhesion. (ii) During the retraction of the tongue, the tongue closes around the nectar to trap it. This modification of the conformation of a thin sheet to help grabbing fluids from a fluid bath (or, inversely, to grab air inside a fluid bath) have already been discussed in literature and is called the "capillary origami" [29,30]. The implication of elasto-capillarity in these two different parts of the feeding process will be discussed in the following. (balance of moments) and the pressure equation relating the tension to the shape [31]. These equations solved numerically yields the phase diagram shown in Figure 6.20. The parameters used to build the phase diagram are the distance δ between the edges of the "sheet". Depending on the size of the sheet L, three situations can be observed. When L L crit 3.54L EC , the sheet cannot be deformed by capillary forces and stays always flat. Py et al. [31] and Rivetti et al. [34] 

A C B

General conclusion and outlook

During the achievement of this thesis, we have improved the global understanding of the capture of viscous fluids by animals. Two different organisms were considered as model systems: bumblebees and hummingbirds. These animals need to ingest a high quantity of nectar to sustain their needs thus requiring highly efficient mechanisms. The proposed models of collection of nectar are completely different for these two animals and rely on different morphologies of the tongue.

In the first part, the capture of nectar by bees was investigated. Biological data revealed that the lapping frequency and the volume of fluid per lap are constant whatever the viscosity. These observations suggest that the mechanisms do not operate at constant power output, as first assumed in the literature. A bare looking at the process unambiguously shows that viscous dipping is involved. Then we built a physical model based on the specific morphology of bee's tongues, coated by a hairy structure. We chose to simplify the morphology and considered a "honey spoon" like structure with radial ridges on a rigid rod. To understand the role of these structures, viscous dipping with smooth rods and their structured counterparts were analyzed. The experiments showed two independent contributions allowing to drag the fluid from the tank. While the withdrawal of the rod dragged a layer of fluid through the action of viscous forces, the structures trap a layer of fluid thanks to capillary forces. Applied to bumblebees, this model showed that, considering the capillary numbers involved, the fluid layer dragged by the viscous forces is very small. The majority