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Les gares ferroviaires concentrant les ns et les débuts de trajets des trains structurent l'essentiel de l'exploitation de lignes pour passagers. En eet, on y programme des opérations de préparation du matériel roulant (nettoyage, accouplement des trains. . . ) dites de produit train indispensables à la qualité de service. Ces opérations imposent des man÷uvres et nécessitent de garer des trains.

Cette thèse aborde de manière intégrée la planication des opérations de produit train et la gestion de la capacité en gare. Elle introduit pour cela le Generalized Train Unit Shunting Problem (G-TUSP). Il s'agit plus précisément d'aecter des trains arrivant dans une gare à des départs et des voies de garage et d'ordonnancer leur maintenance et leurs man÷uvres. Ces décisions sont prises an de minimiser les retards au départ, les accouplements et désacouplements de trains et les annulations de départ ou de maintenance. Le G-TUSP possède des contraintes liées à des caractéristiques techniques du matériel roulant et de l'infrastructure ainsi qu'à la nature des opérations réalisées. Le G-TUSP comporte quatre sous-problèmes, souvent traités indépendamment dans la littérature. Cette thèse propose des algorithmes d'optimisation comme outils d'aide à la décision pour les planicateurs du produit train. Une formulation en programme linéaire à variables mixtes est établie en considérant une représentation détaillée des aspects du G-TUSP. La formulation est testée sur des instances réelles de la gare Metz-Ville et des résultats pertinents sont obtenus en une heure de calcul. Nous proposons ensuite des algorithmes dans lesquels nous considérons diérentes combinaisons d'approches séquentielles ou intégrées pour les sous-problèmes du G-TUSP. Dans une analyse expérimentale détaillée basée sur des instances de la gare de Metz-Ville, nous étudions la contribution de chaque sous-problème à la diculté du G-TUSP et nous identions le meilleur algorithme. Cet algorithme donne des résultats très satisfaisants en moins de vingt minutes.

Chapter 1 Introduction

Context and motivation

Railway transportation in Europe is based on networks set in the 19 th and 20 th century. In France, the railway network covers most of the territory with 30 000 km of tracks. Because of its small ecological footprint per passenger transported, rail transport is a pillar of passengers mobility policies. European, national and regional policies aim to encourage modal shift from private car or plane to train. This modal shift needs an improvement of rail transport service quality. In the European norm (Comité Européen de Normalisation [2002]), service quality includes, among other factors, trip duration, frequency and comfort. Delays aect trip duration and can propagate easier in congested portions of a network.

Comfort is improved with trains that have a suitable seat capacity. The cleanliness of trains and the proper functioning of interior equipment such as lights or air conditioning contributes to comfort. In stations, signicant service quality features are involved. Indeed, trains are prepared in station to meet the comfort requirement, while avoiding delays with high trac density.

Railway service is based on a timetable to satisfy passengers demand. It involves the use of an infrastructure, rolling stock and crews. There is an accurate planning so that required resources are in the right place at the right time. The use of each resource is usually complex to handle. This is why planning is mostly sequential and each resource is tackled separately. Ecient resources consumption is sought to minimize operation costs with a convenient service quality. On the one hand, rolling stock has signicant purchase and maintenance costs. These costs are amortized by maximizing the journeys made by a train. On the other hand, major investments and operating costs of infrastructure encourage the passage of as many trains as possible to satisfy demand. Often, railway service planners face infrastructure capacity utilization issue. Rolling stock and infrastructure capacity are expensive resources handled in railway planning.

Operations research and combinatorial optimization, in particular, have been relevant elds for railway planning improvement. Indeed, they allow formal modeling of problems for which algorithms seek optimal or good solutions. In particular, scheduling and routing problems have been widely tackled. In such problems tasks have to be processed using specic resources so that no (or minimum) delay occurs. The literature contains many optimization approaches for infrastructure capacity or rolling stock utilization. Some of these approaches are used by planners thanks to software tools. Then manual processing and errors can be avoided and a further analysis of resource usage and quality of service is possible. Sophisticated planning tools exist at the level of a railway line or of a region in France. However, they neglect the details of station operations. Shunting, which is the preparation of trains in a station between two trips, is planned manually between one month and few hours before operations. In this preparation, the management of rolling stock strongly interlinks with the use of station capacity. In shunting, trains can be split, coupled or kept as they are to cope with a rolling stock utilization dened at a larger scale.

Such operations need specic tracks called shunting tracks and train movements between shunting tracks and between shunting tracks and platforms. In 2018, 13% of delay minutes in the French railway network involve shunting [START_REF] Martin | Le marché français du transport ferroviaire de voyageurs[END_REF]). Indeed, shunting operations may be delayed because of failures.

Moreover, the movement of a train from a shunting track to its departing platform has to be inserted in the rest of the station trac. A such movement does not often have priority, which causes departure delays.

Shunting planning is a signicant lever for service quality improvement. A great part of the combinatorial optimization literature tackles resource consumption in shunting. The contributions focus on either capacity consumption, rolling stock or shunting crews use. Nevertheless few approaches consider the whole shunting process from a train arrival to its departure. They do not consider the possibility of accepting delays or maintenance operations cancellations. The study of the whole shunting process highlights service quality precisely. Indeed several scheduling or routing decisions are linked and need to be consistent.

Research objectives

This thesis aims to propose optimization approaches that integrate both rolling stock preparation and station capacity management for shunting planning in passengers stations. Rolling stock is targeted in terms of train units, as they constitute the bulk of the passenger transport eets in Western Europe. The approaches proposed consider practical aspects encountered in passenger stations.

They aim at suitable computation times in order to be used in preoperational planning software systems.

The main objective of the research (O) is to set a model and an algorithm for scheduling shunting operations such as coupling or splitting, maintenance and shunting movements. A such model shall consider decisions that involve rolling stock and capacity utilization. The proposal must deal with movements between shunting tracks and between shunting tracks and platforms. Shunting movements have to be considered at microscopic scale in order to tackle infrastructure capacity consumption wisely. Service quality issues, such as delays or comfort of rolling stock, must be taken into account. The research output must meet two sub-objectives in order to facilitate their use by planners:

• The optimization approach must provide feasible solutions that meet practical requirements. The performance of the solutions must be satisfactory in the eyes of the planners. (O1) Solutions have to be at least as ecient as the ones obtained manually by planners.

• (O2) The algorithms proposed must be able to deal with real-life instances whose size can be signicant because of microscopic modelling. Reasonable computation times have to be sought.

Contributions

The objectives mentioned in the previous section are achieved through two main contributions.

First, we introduce the Generalized Train Unit Shunting Problem (G-TUSP). It is an extension of the Train-Unit Shunting Problem (TUSP) introduced by [START_REF] Freling | Shunting of passenger train units in a railway station[END_REF] to maintenance and movements scheduling. Such a comprehensive extension has never been tackled in the literature. In the G-TUSP, shunting movements are taken into account thanks to a microscopic representation of the infrastructure. The G-TUSP handles both departure assignment, shunting track assignment, path assignment, maintenance scheduling and shunting movements scheduling. All the mentioned decisions are integrated in a mixed-integer linear programming (MILP) formulation which considers a range of practical constraints typically encountered in reality. The formulation is tested on real instances of Metz-Ville station in France. The results show that the G-TUSP can be solved in a reasonable time with satisfying results. Moreover, experiments highlight the relevance of integrating shunting decisions. This formulation has made the object of a paper published in the proceedings of the international conference RailNorrköping 2019 -8th International Conference on Railway Operations Modelling and Analysis (ICROMA) [START_REF] Kamenga | Train unit shunting : Integrating rolling stock maintenance and capacity management in passenger railway stations[END_REF]) and has been presented in the 20th congress of the French Operations Research & Decision Support Society [START_REF] Kamenga | Train unit shunting : Integrating rolling stock maintenance and capacity management in passenger railway stations[END_REF]).

Second, we propose sequential algorithms to solve the G-TUSP with lower computation times. These algorithms are based on the division of G-TUSP into sub-problems. In each algorithm a group of subproblems is solved exactly in an integrated formulation, while the other sub-problems can be solved with a heuristic or another mathematical programming formulation. The algorithms are implemented to tackle instances that include several types of disturbances. Convenient results are obtained with relatively low computation times. The relevance of sub-problems integration is also investigated. These algorithms have been presented in the 12th World Congress in Railway Research (WCRR) (Kamenga et al. [2019a]) and in the 21th congress of the French Operations Research & Decision Support Society [START_REF] Kamenga | Sequential approaches for solving shunting problems at passenger railway stations[END_REF]).

They make the object of an article currently under review for possible publication in an international journal.

Outline of the thesis

The rest of thesis is organized as follows.

In Chapter 2, we provide an overview of the railway system and present passengers rail transportation planning process and issues. We consider all resources that are needed to provide the railway service.

Moreover, we highlight the characteristics of shunting in passengers operations planning in France.

In Chapter 3, we formally dene specic problems related to shunting. These denitions are used in the whole thesis. We also provide a literature review of combinatorial optimization applied to shunting problems. The literature tackles each problem individually or integrate some of them.

In Chapter 4, we propose a MILP formulation for the G-TUSP. The formulation is based on a microscopic model of the infrastructure and formal train units in order to consider coupling and splitting. The relevance of the formulation is discussed with experimental tests on real-life instances at Metz-Ville. In particular, solutions obtained with the formulation are compared with planners decisions.

In Chapter 5, we deal with sequential algorithms for the G-TUSP. We propose heuristics and MILP formulations to solve groups of G-TUSP sub-problems. We propose experiments based on the real instances of Chapter 4 and ctive instances based on Metz-Ville trac data. Thanks to this larger set of instances, we compare the performances of algorithms and we analyze the impact of sub-problem integrations.

Finally, in Chapter 6, we summarize the main contributions and results presented in the thesis and provide future research directions. Chapter 2

Railway system and passenger transportation planning

Introduction to the railway system

The railway system is based on technical components that allow the execution of train trac. These components include ground installations such as tracks, electrication systems and signaling installations. Ground installation form the infrastructure. The railway system also includes rolling stock which is designed to meet infrastructure characteristics and transportation requirements. Human actors and organizations are also involved in the system. They operate and plan railway services. In Europe, since 1991 and following a series of directives that aim at opening up the access to rail networks, infrastructure management missions and service operations have been separated. Previously, historical rail operators were in charge of all processes, typically one operator per country. Infrastructure managers own, maintain and develop a railway network on which they manage trac. For example SNCF Réseau, Pro-Rail, NetworkRail, Infrabel and RFI respectively are the main railway infrastructure manager of France, Netherlands, United Kingdom, Belgium and Italy. Train operating companies operate trains for passengers or freight transportation. Train operating companies have to pay fees to infrastructure managers which own the network where they operate. In this chapter we focus on passenger transportation.

Particular resources have to be deployed to allow the execution of rail services. Infrastructure, rolling stock and crews (drivers, guards or conductors, ground agents...) must be available when a service has to be performed. We note that rail services are based on a timetable. A timetable informs passengers of times at which trains stop at stations. A timetable can give more detailed information for infrastructure managers and train operating companies. The time at which trains pass signals can be indicated as well as the rolling stock used. Thanks to a timetable, it is possible to check if each necessary resource is available. For example, a train cannot be used for two trips at the same time and for safety reasons two portions of an infrastructure cannot be used by two trains at the same time. Slots have to be reserved for each section of the infrastructure a rail service has to use. This reservation is a train path.

In this section, we introduce concepts that deal with compatibility between resources and service quality. In particular, we deal with infrastructure and rolling stock.

Infrastructure capacity

Infrastructure capacity goes hand in hand with its ability to satisfy a timetable. A timetable may contain dierent numbers of trains per day or hour, with dierent speeds or stops. Capacity can be dened as the number of train paths that can be allocated in a time horizon to meet service requirements. This concept is actually hard to tackle, because a relevant part of infrastructure must be identied and service requirements must be dened. The UIC 406 UIC [2013] proposes methodological aspects to consider for lines and nodes. These are based on a timetable compression. In this section, we focus on capacity consumption due to train paths. We tackle characteristics of infrastructure and rolling stock that impact capacity consumption.

Capacity and signaling system

The signaling system is based on components such as signals, switch command systems and track equipment to ensure trac safety [START_REF] Rétiveau | La signalisation ferroviaire. Presse de l'école nationale des Ponts et Chaussées[END_REF]. To avoid collision risk, train cannot enter a zone where another train is running. First, in order to satisfy this requirement, a signaling system needs the detection of trains presence on a specic zone. This detection is performed with track-circuits, which are electrical circuits that use the conductivity of a portion of the rail. An electrical shunt occurs when a train is on this portion. Then, the signaling system uses signals that have to be followed by train drivers. There is a stop signal, which has a red aspect 1 , before entering an occupied zone. Upstream, a warning signal, which has a yellow aspect, indicates to the driver to reduce speed in order to be able to stop the train at the next signal if it still has a red aspect. A clear signal, which has a green aspect, indicates that a train can pass with the allowed maximal speed. These three types of signal ensure the separation of trains: this is three aspects signaling. Some signaling systems may contain a sequence of several dierent warning signals before a stop signal. In this case we can have a four or more aspects signaling. A signaling control commands switches and signals in a dened part of a railway network called control area. In a control area, a route links an origin signal and a destination signal through a sequence of track-circuits. A block section in a route is a set of track-circuits between two consecutive signals. If a route contains switches, their position must lead a train that follows the route to the right direction. Routes are set by a signaling control. A route can be set once switches are commanded and the origin signal is not a stop" one. For safety reasons a switch should not be commanded, and an opening signal aspect can be clear, when a train uses the same or a conicting block section. Signaling control includes the interlocking system, which ensures that no route can be set if logical safety conditions are not fullled. Many interlocking systems are based on electro-mechanical relays or electronic circuits.

When a train goes through a route, several stages are considered. Indeed, track-circuits of the route are successively utilized (Figure 2.1). To do so, rst the route must be formed through the block section bs that contains a track-circuit tc: necessary switches must be set to the correct positions and the origin signal of the block section must not indicate to stop. The time needed to form a route through a block section is the formation time. If the route is not formed, the origin signal of the block section is a stop", then according to the number of aspects of the signaling system, upstream signals indicate a warning".

In the case of a three aspect signaling, the signal preceding the origin signal has to be a warning". More generally, with n aspects signaling the n -2th, n -3th,... signals before the origin signals have to be warnings". Without loss of generality, hereinafter we consider a three aspects signaling. We also suppose that trains run passing through clear signals. Once the route is formed. The signal at the block section bs which precedes bs is clear". Then, the head of the train goes through bs . The reservation of bs contains this time. Then, the head of the train runs through track-circuit tc. The duration of this step is the running time. Once the head of the train arrives at the next track-circuit, the tail of the train remains on track-circuit tc. A clearing time separates the moment when the head of the train arrives at the next track-circuit and the moment when the tail of the train leaves track-circuit tc. We note that track-circuit tc is occupied by the train between the moment when the head of the train enters in tc and the moment when the tail of the train leaves tc. The duration of this occupation is the occupation time. Finally, once the train leaves track-circuit tc, the state of the track-circuit changes after a release time.

Therefore, the utilization of a track-circuit includes formation and reservation time, occupation time and release time. Two trains can use a same time track-circuits if their utilization intervals do not overlap. 1 In mainlines, French signaling distinguishes two stop signals. The carrée, whose light signal has two red lights, protects switches and cannot be passed by a driver without an authorization. The sémaphore, whose light signal has one red light, ensures train spacing on a line. Sémaphore can be passed by a driver under some conditions. 

Railway station capacity

In passengers railway stations, trains can pass through, stop, be coupled to other trains or parked. A station has platform tracks on which trains can stop to board and unboard passengers. Switch areas, in green in Figure 2.2, gather switches in order to move trains from and to the platform tracks. Platform areas, in red in Figure 2.2, and switch areas are part of main tracks. Main tracks are used for trac along a line or stops at platforms. Stations also contain shunting tracks, which lead to facilities (maintenance equipment, refueling...) or are used for parking. A group of parallel shunting tracks is a shunting yard, as the ones represented in blue in Figure 2.2. When trains have to move in, from or to a shunting yard,they perform a shunting movement. A shunting movement may pass through main tracks. According to the regulations of many European networks, a shunting movement is executed at a low speed (e.g., less than 30 km/h in France and Belgium) so that the driver can be able to stop at any obstacle as soon as he sees it.

In order to tackle capacity in a station we need to consider:

• regular train movements that only pass through main tracks and are set in a timetable.

• shunting movements whose schedule is typically not planned in advance.

Shunting movements, that run slower, usually consume more capacity than regular train movements.

We can also note that capacity consumption includes stopping times on platforms or shunting tracks.

Therefore capacity at stations is based on track-circuit utilization by regular or shunting movements in switch areas. In platform and shunting area, the simultaneous use of a same track is also taken into account. Indeed, under some conditions dened by a station regulation, a train can enter a platform or shunting track when it is occupied in order to get coupled or to use allow the use of fewer tracks.

Rolling stock management

A train is made of a motive power system and passenger cars. One or several locomotives can contain the motive power system and pull or push passenger cars. Some trains with locomotives can be driven at both sides, those are push-pull trains. There can be a locomotive at each end of the train, or one locomotive and a cab in the passenger car at the opposite end. If a train is not push-pull, a turnaround In particular, electric trains can only move on an electried infrastructure with specic characteristics.

European countries can have dierent electrication systems which are not compatible with all trains.

For example, France has two electrication systems. Trains must also respect gauge or length restrictions depending of the network they run on. Trains that have same characteristics belong to a same rolling stock type. Train units that belong to dierent rolling stock types, can be coupled if their rolling stock types share some technical features: rolling stock types can be compatible.

Once a train is acquired by a train operator, maintenance must be done. Maintenance makes rolling stock able to ensure service quality. Indeed, it prevents incidents and provides clean trains with comfort equipment (seat, light, air conditioner...) in good conditions. A great part of rolling stock maintenance is preventive: components are checked, repaired or replaced according to nominal wear indications rather than actual failure. Operations are done according to the total distance traveled or to specic temporal frequencies. In France, maintenance activities are structured into ve levels. The higher the level of maintenance, the heavier the tasks performed. Interventions are more frequent for low level maintenance.

Level 1 maintenance is performed daily and does not need any specic facility. In level 1 maintenance, drivers or conductors check that safety devices work at the beginning of a day. Level 2 maintenance contains operations performed in a shunting yard that has specic facilities. Level 2 maintenance is made between two rail services that a train operates, so during o-peak hours or during the night. Level 2 maintenance contains light operations such as cleaning, technical checks of mechanical components, motorization and interior ttings. The frequency of most these operations varies from 4 times a week to once every 15 days. Level 3 maintenance gathers heavy maintenance operations. Such operations require immobilizing a train for several days for in-depth examinations. Level 3 maintenance is executed on a train every one or two years in a maintenance center. Level 4 and level 5 maintenance gather industrial maintenance operations. These operations are performed on a train every 10 years or more in industrial maintenance centers. Industrial maintenance contains complete overhaul or modernization operations.

Our study focuses on push-pull trains or train units, that we both call train units. Light maintenance, i.e., level 2 maintenance in France, is tackled in the rest of the thesis. The second stage is the construction and occurs between one year and six months before operations.

During this stage train operating companies request train paths to the infrastructure manager. If a request is accepted, it is scheduled and appears in the annual service: timetabling is performed. At stations a platform track is assigned to each train path: this is platforming. Usually, the requests are consistent with the timetable diagrams obtained in the preconstruction phase. Nevertheless, timetabling in construction phase is not periodic, for example holidays may change the passenger service. Once train paths are examined, train operating companies make a daytime rolling stock circulation plan. In a rolling stock circulation plan, a train is assigned to each train path.

Adaptation is the third stage of annual service planning. It takes place between six months and six days before operations. Train paths dened in the construction phase can be modied because of infrastructure works or special events. In adaptation phase, a complete rolling stock circulation is set. It consider maintenance as well as parking in nighttime or o-peak hours. In particular, shunting planning considers trains without passengers, which are parked or maintained in stations. A crew scheduling is also set.

The nal stage is the preoperational one and occurs between six days and few hours before operations.

In this stage, last minute requests and planned or expected disturbances such as failures or strikes are considered. A nal timetable and resource assignment is set to be used by dispatchers.

Railway planning is mostly resource centered. A planning problem deals with the use of specic resources. For example timetabling deals with the use of infrastructure capacity while rolling stock circulation concerns the use of rolling stock. Resources can be considered in a regional or national scale in which services are treated all along their path. Local scale planning details resource assignment or scheduling at major stations.

Many decision support tools or methods are used by infrastructure managers and train operating companies for service planning. Planners often use software tool which check the feasibility and precise the outcome of an assignment or a timetable. Software tools can go further and explore a set possible decisions to provide an optimal decision. Such tools integrate combinatorial optimization techniques.

The interest for operation research in passenger railway planning has grown in the last decades: as train operating companies face competition in Europe, they aim to improve their performances. Moreover, infrastructure managers aim to optimize the use of capacity. Operations research have proposed relevant modeling approaches and algorithms to solve planning problems.

In Section 2.2.2 we give some details about capacity use problems, and in Section 2.2.3 we focus on rolling stock. We refer the interested reader the literature (e.g., [START_REF] Caprara | Passenger railway optimization[END_REF], [START_REF] Huisman | Operations research in passenger railway transportation[END_REF] and [START_REF] Kroon | The new dutch timetable: The or revolution[END_REF]) for a deep review of operations research applications to European passengers rail services.

Train timetabling

In timetabling, train path requests have to be satised while meeting capacity constraints due to infrastructure and rolling stock features. Capacity constraints state that every train path must run with "clear" signals. Train path requests are made by train operating companies and specify rolling stock used as well as desired schedules at stops. A train path request also includes commercial requirements such as dwell times at stops or time windows for connections. A train path request is accepted if a path in the infrastructure and conict-free schedule can be found. There may be a deviation between schedules desired by the train operating companies and schedules proposed by the infrastructure manager.

In France, timetabling is made by the capacity allocation division (DAC) of SNCF Réseau. The DAC completely handles long distance train paths and devolves regional train path requests to regional timetabling divisions. 

Platforming

Platforming is timetabling at a station scale. The infrastructure considered is often a station control area. As running times through such areas are often less than ten minutes, little exibility exists for scheduling decisions while the opposite holds for routing decisions, for which there is a signicant number of paths. Platforming is based on a regional timetable which indicates time at which train paths leave and enter the control area. Platforming must also satisfy commercial requirements based on passenger ow or connections. For example, at some stations two trains should not stop on two adjacent tracks of a same platform at the same time, unless the platform is large enough to carry the passenger ow.

Otherwise, as major stations are often destination of rail services, trains stay at destination station until their next trip. Therefore, rolling stock assignment aects track occupation at stations. The longer trains stay in a station, the more platforms or shunting tracks are needed.

A platforming can be represented with a track occupancy diagram, which indicates the time at which a platform track is used by trains (Figure 2.3). Each row of the diagram represents a platform track and the horizontal axis represents time. A rectangle is drawn when a train is parked on a platform track. At based on stable set model solved with either linear programming or local search [START_REF] Kamenga | Gestion de l'occupation de voie des gares en temps réel[END_REF]).

Rolling stock circulation planning

In rolling stock circulation planning, train operating companies need to cover all train paths with an available number of trains. A train can be assigned to a trip if it respects technical characteristics such as gauge, electrication or length and its seats can carry the expected demand. In a eet made of train units, trains can be coupled or uncoupled during or between trips to adapt seat capacity. The train units coupled have to belong to identical or compatible rolling stock types. When a train nishes a trip at a station, its next trip can start either at the same station or at another one, then trains may run empty between these stations. The cost of rolling stock circulation integrates the distance traveled by trains. Rolling stock circulation contains maintenance, namely preventive maintenance that is operated depending on distance traveled or time frequency. Capacity of shunting yards used to park trains in daytime or nighttime is considered. In a eet made of train units, constraints due to position of train units in a train are also taken into account. When train units are coupled and uncoupled, the trip assignment must be consistent with the position of train units. For example, if a train made of two train units nishes a trip and gets uncoupled at a terminus station, which has dead end platform tracks, the original head train unit is at the bottom of the station. Therefore, after uncoupling, the head train unit has to leave the station last. The head train unit cannot be assigned to a train path that leaves the station before the train path assigned to the tail train unit.

In the construction phase, a year before operations (Table 2.1), a daytime rolling stock circulation is made. Each day, trains are assigned to train paths. Nevertheless, the position of trains at the beginning and at the end of the day is not considered. In a complete rolling stock circulation, days are linked by including night time parking or maintenance. In France, eet managers dene maintenance tasks that have to be performed on trains. Light maintenance (level 2) can be performed on shunting yards of stations as well as in maintenance centers. Heavy maintenance (level 3) can only be performed in maintenance centers. Maintenance tasks are grouped into maintenance cycles. All the tasks of a maintenance cycle can be performed in few hours in case of light maintenance or several days in case of heavy maintenance.

Fleet managers set maintenance cycles each time a train is parked at a shunting yard or a maintenance center. In the adaptation or preoperational phase, they must also change the rolling stock circulation when a train needs an extra maintenance because of an incident. This adaptation is the maintenance routing.

Shunting and local scale planning

Shunting deals with local scale issues. A limited space around a station is available. This space can be delimited by a station control area which includes platform area, switch and shunting yards. A maintenance center close (less than 1 km) to the station can also be included. In the common denition, shunting gathers operations that require shunting movements. A shunting movement, as mentioned in Section 2.1.1, is restricted to the local scale and is made so that trains change tracks for operations (coupling, maintenance...). This capacity centered denition is used by SNCF Réseau and is translated in French as man÷uvre. SNCF Voyageurs, the main French passenger train operating company, prefers a rolling stock centered denition. This denition is translated in French as produit train and refers to the set of technical operations carried out at a station to prepare trains for departure. These technical operations include coupling and uncoupling as well as light maintenance. As such operations are needed, trains have to be parked on shunting tracks and shunting movements have to be performed.

If we combine the rolling stock centered denition and the capacity centered one, shunting includes coupling and uncoupling operations, light maintenance, parking and shunting movements. Hence, shunting planning must consider several resources:

• Infrastructure capacity, since parking and shunting movements require capacity

• Crews, maintenance crews are involved for light maintenance, drivers and ground agents are involved for coupling, uncoupling and shunting movements

• Rolling stock, since trains must be available to ensure departures.

Shunting occurs once a train ends its trip at a station and all its passengers get o. The train can be moved to a shunting yard and may be uncoupled if it is made of several train units. Then maintenance tasks are performed on the train units at specic shunting tracks which have appropriate equipment.

Finally, after possible coupling operations, a train is moved from a shunting yard to a platform before its departure.

Shunting planning follows rolling stock circulation planning and involves several decision makers. In 

Conclusion

In this chapter, we introduced the main resources and planning process involved in passenger rail service.

We focused on planning at stations and we remarked that resources such as rolling stock, infrastructure capacity and crews are all involved in shunting operations. We also presented the organization of shunting planning in France as well as performance issues.

In Chapter 3, we will review operations research approaches that tackle rolling stock preparation and station trac scheduling in shunting problems.

Chapter 3

Overview of shunting problems modelling approaches

In passenger railway transportation, shunting is the management of rolling stock when it is not used for a trip. Shunting usually takes place during nights or o-peak hours. Shunting concerns rolling stock rotation given the layout of a station. We focus on train units, since they are widely used for suburban, regional and high speed transit in Europe. We do consider locomotives and coaches management.

In this chapter, we focus on shunting planning in a railway station. As discussed in Chapter 2, in France shunting operations are considered during two phases of service planning:

• The adaptation phase (six months to six days before operations) which uses a nominal timetable,

• The preoperational phase (six days to few hours before operations) in which planned disturbances are considered.

We present four main problems related to shunting operations. We depict a shunting system set up and provide a literature review on modeling approaches for solving shunting problems.

Shunting problems description

Shunting problems setup

Shunting is the management of train units which stay long enough in a station to be parked at specic yards called shunting yards. Shunting problems are based on several characteristics of infrastructure or rolling stock as well as planning inputs.

First, stations have main tracks where regular train movements go through. At some of these main tracks there are platforms for passengers boarding. Stations also contain sidings which are tracks on which trains move at a lower speed and can be parked. These tracks may have technical equipment for maintenance, cleaning or refueling (for diesel trains): Maintenance may require a pit for engine examination or a gangway for roof examination. External cleaning can be performed at a track with a washing machine. It is an automatic washing installation, similar to automatic car wash, set along a track which has rollers and liquid jets. Sidings can have various topologies. There are dead-end tracks on which train units must respect last-in rst-out (LIFO) rule. These sidings are called LIFO tracks.

There are other tracks with two access sides: FIFO tracks and regular tracks. In rst-in rst-out (FIFO) tracks, train units can enter at one side and leave at the opposite side. In regular tracks, train units can enter or leave at both sides. Tracks also have a limited length and are not necessarily electried. This can prevent electried train units from parking or moving through. A shunting yard contains several parallel sidings with common access sections. Then, sidings which belong to a shunting yard can also be called shunting tracks. A shunting neck is a siding on which a turnaround can be performed so that trains can change track in a shunting yard. Figure 3.1 shows the layout of Metz-Ville station, in eastern France.

The station contains four shunting yards dedicated to passenger trains. Shunting yards are green squared in Figure 3.1 and shunting tracks are represented with a bold line. For example, track 90 at the top of A timetable provides the set of trains that have to enter or leave the shunting yards. These trains are called shunted trains. The timetable also contains trains that simply go through the station. These trains are called passing trains. Each train departure requires a certain number of train units which belong to specic rolling stock types. A group of train units that arrive coupled to be shunted is an arriving train. Each departure is ensured by one or several train units stored in the shunting yard that can be coupled if necessary. This group of train units is called a departing train. We remark that a such group, for both arriving and departing trains, can include only one train unit if suitable. Maintenance and cleaning operations can be planned for arriving trains. These operations require specic tracks, as mentioned above, and specialized crews. These crews are available at specic periods of the day or the night. A rolling stock rotation can also be provided as an input for shunting problems. In France this input is mandatory and is a reference that shunting planners seek to stick to.

Characteristics of shunting problems

Shunting contains four basic problems which consider the management of a specic resource:

• Train matching Problem (TMP) in which train units are assigned to departing trains. Train units are the resource managed.

• Track Assignment Problem (TAP) in which train units are assigned to shunting tracks. The capacity of shunting tracks is the major constraint.

• Shunting Maintenance Problem (SMP) in which maintenance operations are scheduled. The resources needed are maintenance crews and shunting tracks.

• Shunting Routing Problem (SRP) in which shunting movements are set and scheduled. Infrastructure capacity in main tracks and shunting tracks is the main constraint.

These problems are illustrated with an example based on the Metz-Ville infrastructure shown in Figure 3.1 and the timetable in Tables 3.1 and 3.2. These tables contain a part of train units that have to be shunted at Metz-Ville during a week day. In Table 3.1, trains arriving at the station are listed. The time at which they arrive at their platform (column Platform") is mentioned in column Hour". A train has been parked in the shunting yard during the previous night, its Id is 01 and its hour is D-1". As this train has been stored in the shunting yard, it did stop at a platform, therefore no platform is mentioned in Table 3.1. The conguration of each train is mentioned in column Type". In this example, there are six types of train units:

• Regiolis B83500 with 4 carriages (REG4)

• Regiolis B83500 with 6 carriages (REG6)

• Z24500 with 3 carriages (TER2N)

• CFL 2200 with 3 carriages a version of Z24500 owned by Luxembourg National Railway Company (TER2N)

• Z11500 with 2 carriages (Z2)

• Z27500 with 3 carriages (ZGC3)

• Z27500 with 4 carriages (ZGC4)

If a train unit of type X and a train unit of type Y are coupled, then the conguration is denoted X-Y in Table 3.1 and 3.2. Some cleaning or maintenance operations are performed at the shunting yard:

• Arriving technical check (VAR)

• Engine inspection (ES)

• Water lling (EAU)

• Internal cleaning of type 1 (NS1)

• Internal cleaning of type 4 (NS4)

• Glass cleaning (LV)

• External cleaning with a washing machine (MAL)

• Toilet emptying (WC)

The operations that have to be performed on each arriving train are mentioned in column Operations" in Table 3.1. The operations performed on each train are listed in the order in which they have to be done.

Train matching problem (TMP)

In the TMP, a main input to be considered is that a departure requires a specic conguration. Any train unit which belongs to a rolling stock type of the suitable conguration can ensure the departure.

Train units must also arrive at the station suciently earlier than the departure time.

The conguration of departure trains is xed as shown in Table 3.2. Local planners must respect these congurations when they match train units with departing trains.

Departures are ensured by train units which either belong to arriving trains or have been stored

in the shunting yards before the beginning of the planning period. For sake of simplicity, latter can be considered as composing arriving trains which arrive at the beginning of the planning period. As congurations of arriving trains do not necessarily correspond to departing trains ones, train units must be split and joined. Splitting two train units leads to an uncoupling operation and joining them leads to a coupling operation. It is possible that, at the end of the planning period, train units remain stored in the shunting yard.

The number of train units required for departing trains is usually consistent with the number of train units in arriving trains, especially if a rolling stock rotation is given. The initial rolling stock rotation can be changed by local planners through the TMP in order to perform shunting operations which may have been forgotten or neglected in rolling stock circulation planning or to respond to perturbations. Indeed, the time interval between an arrival and a departure from a station must take into account several operations. First, once a train arrives at a platform, passengers get o, then an uncoupling operation can be performed at the platform, if appropriate. Second, the train is moved to a shunting yard. Once in the yard, coupling, uncoupling or maintenance operations may be carried out on the train. Third, the train built must be moved to its departure platform. In principle, it must arrive at the platform soon enough for boarding passengers and a possible additional coupling operation. Many of the durations mentioned above are xed or can be estimated, so that we can obtain the pairs of arriving and departing trains which may be matched, i.e., with arrival and departure times separated at least of the total resulting interval. For these pairs the matching duration condition is respected.

Local planners match arriving and departing trains in order to minimize the number of coupling or uncoupling operations.

If an arriving and a departing train are matched and do not respect the matching duration condition, then the departure will be delayed or an optional operation will be canceled. A solution of the TMP is a matching plan.

Denition 3.1. Let a timetable with arriving and departing trains and minimum matching durations.

The Train Matching Problem (TMP) is to match arriving train units to every departing train units with a minimum number of coupling or uncoupling operations and matching duration condition violations.

If an initial rolling stock rotation is given its deviation with the matching plan must be minimized.

For readability, we do not mention the minimum matching durations for the example in Tables 3.1 and 3.2. Shunting maintenance problem (SMP)

Cleaning and maintenance operations are scheduled once arriving and departing trains are matched.

Then, the train units that remain coupled in the shunting yard are known. These are intermediate trains.

In [START_REF] Brucker | Job-shop scheduling with multi-purpose machines[END_REF]) since the shunting track where an operation is carried out can be chosen among a set of compatible shunting tracks. There is also a human resource constraint, since a crew must be available to perform an operation. Thus we consider two types of decisions:

• a shunting track and a crew is assigned to each operation,

• operations are scheduled.

A solution of the SMP is a maintenance schedule.

Denition 3.2. The Shunting Maintenance Problem (SMP) is a exible job shop scheduling with human resource constraints in which the total delay and the number of canceled operations is minimized.

Track assignment problem (TAP)

Parking train units in shunting yards is an issue if the available space on shunting tracks is scarce. This space must be used wisely, especially during the night when most of the train units have to be parked at shunting yards. The number of tracks is often lower than the number of train units parked at the same time. However, tracks are long enough for parking several train units. In many real life cases, tracks can contain up to 10 small train units which are 50 meters long. As several trains can be parked on a same track, planners must ensure that no train unit is blocked by another one placed in front of it if the former departs earlier than the latter. As mentioned in Section 3.1.2, there are shunting tracks in which the side on which train units enter or leave can be chosen. These are regular tracks (Figure 3.2a). Shunting track The management of parking space is dierent from usual infrastructure capacity management. Parking space on a track is a cumulative resource, contrary to a track circuit on main tracks which is a singlecapacity resource. The use of parking space is based on two constraints. Firstly, the total length of train units which occupy a track at the same time cannot exceed the length of the track. This is the length constraint. Secondly, the order in which train units enter and leave the track must be such that every train unit can leave the track without moving another train unit placed in front of it. This is the crossing constraint. Indeed, it holds also for train units to be coupled to form departing trains, which must then be in coherent positions on the track and on the train. Some tracks can be dedicated to a type of rolling stock for technical reasons, such as electrication or gauge. If suitable, planners can decide that only train units of the same type can be parked on a same track. This can be helpful to deal with real-time disturbances. Indeed, if this is done, at any time a train unit of any type can leave the shunting yard without conicts to ensure a rescheduled departure. Planners can also simplify the problem by splitting every track into positions with a xed length. Then, each position is treated as a single-capacity resource.

Doing so is much easier than dealing with length constraints, but there is a loss of parking capacity. This simplication may be particularly suitable if all the train units have the same length.

In the general case, the TAP must have a matching plan and a maintenance plan as input. Train units which belong to a same intermediate train are parked together, since they stay combined in the shunting yards. When a maintenance operation is carried out on an intermediate train, it must be parked on the track where the operation takes place. This is the maintenance parking constraint. Cleaning and maintenance operation crews must be protected from any train movement. Therefore, no train can enter or leave a track if a maintenance operation is in progress. This is the protection constraint.

Moreover, coupling and uncoupling operations in the matching plan are performed on shunting tracks.

We remind that maintenance operations are performed before uncoupling operations and after coupling operations on a same train unit. The track where coupling and uncoupling operations take place has to be decided by planners. Indeed, arriving trains are often split as soon as they arrive in the shunting yards. Moreover, once intermediate trains are coupled to become departing trains, they do not move to other shunting tracks. In between, intermediate trains may have to be parked at several shunting tracks.

If an intermediate train needs to change track, the duration of the shunting movement needed is taken into account. A standard shunting movement duration must separate the arriving time at the destination track and the departing time at the origin track, similarly to what described for the SMP. Moreover, a path must exist between shunting tracks that are successively assigned to a train unit. A matching plan is essential to dene a TAP since intermediate trains that stay in the shunting yards must be provided.

Instead, a maintenance schedule is only useful for setting protection and maintenance parking constraints.

If train units can be parked on at most k tracks during their stay in shunting yards, we have a k Multiple Track Assignment Problem (TAP k ). However, in the general case the number of tracks where a train unit has to be parked is not bounded: it is a Multiple Track Assignment Problem (TAP * ). A solution of TAP * is a multiple track assignment. This problem includes matching plan constraints:

• Train units which belong to a same arriving train must be parked at the same track just after they arrive in the shunting yards.

• Train units which belong to a same departing train must be parked at the same track just before they leave the shunting yards.

• A train unit must be parked on a track long enough to ensure drivers relief and coupling or uncoupling operations. That is why a minimum parking time is specied. The second input of the SRP is a station infrastructure. An infrastructure provides a set of possible paths, these paths may include turnarounds. Paths can be described with a microscopic approach such that each track circuit is considered. Other scales which aggregate track circuits may also be studied.

Without loss of generality we focus on a track circuit scale representation. Signaling system characteristics are also precised. Minimum running times of dierent rolling stock types through parts of the infrastructure are given. Therefore, each shunting movement demand has a set of possible paths according to its origin and destination.

The SRP must also consider the timetable at main tracks as a third input. Since some shunting movements go through main tracks, they may aects passing trains. Passing trains have a path through the station and schedules. These schedules indicate the time at which a passing train arrives at a waypoint along its path.

In the SRP, a path and schedules must be assigned to shunting movement demands. The schedules give the time at which the head of the train concerned by the shunting movement arrives at each track circuit. These schedules must be consistent with feasible running times. Schedules also have to respect the time needed for a turnaround, if a turnaround is planned. These two conditions are the succession constraint. With these schedules and signaling system features, the occupation time of each track circuit can be deduced. Then, the moment at which signals turn to clear" is known. Every signal must be clear" when crossed by a train, this is the capacity constraint. Shunting movements which end at a shunting track must arrive in the time window indicated in the demand, this is the time window constraint. If a shunting movement for a departing train arrives at its platform later than its time window, then there is a delay penalty.

Denition 3.5. Considering an infrastructure, a timetable and shunting movements demands, the Shunting Routing Problem is to assign a path and a schedule to each shunting movement demand such that succession, time window and capacity constraints are respected and delays penalties are minimized.

Integrating shunting problems

Shunting problems are usually solved separately because they involve dierent resources and decision makers (Table 3.4). Nevertheless, they can have signicant dependencies, as [START_REF] Lentink | Algorithmic decision support for shunt planning[END_REF] underlines.

Specically, we can notice a partial hierarchy between shunting problems. Firstly, the main purpose of all these problems is the preparation of rolling stock to ensure on-time departures: a matching plan is essential to service. Secondly, the SMP, the TAP * and the SRP require a matching plan to be instantiated while the TMP can be instantiated and solved without solutions of other problems. Therefore, the TMP is a master problem. Moreover, the SRP is instantiated with shunting movement demands which are set with a parking plan and a maintenance schedule. Thus the SRP is a slave problem of the TAP * and the SMP. In addition, the TAP * needs a maintenance schedule. Then, the SMP is a master problem of the TAP * . The particular case of the TAP 1 can be instantiated and solved without any maintenance schedule, to solve the SMP with maintenance parking constraints and protection constraints.

With this partial hierarchy in mind, we can build the sequential planning approach showed in Figure Indeed, the interaction between shunting problems must provide consistency. This also leads to questions about optimality. A slave problem includes constraints dened by a solution of the master problem, and we would like to ensure that a solution of the master problem makes the slave problem instance at least feasible. This is why the master problem includes aggregated constraints, in which the detail of the resources used by the slave problems is not detailed.

The SMP is a slave problem of the TMP, because a matching plan denes the jobs instantiated in the former. In particular, the matching plan gives the time at which train units must be ready for departure.

Hence, the TMP has aggregated constraints guaranteeing that maintenance and cleaning operations can be performed, with the minimum departure delays. This requirement is included in the matching duration condition.

The TAP is also a slave problem of the TMP, since a matching plan sets the intermediate trains which have to be stored in the shunting yards. The matching plan also species the arrival and departure time of each intermediate train. Indeed, coupling and uncoupling operations provided in a matching plan dene matching plan constraints that the TAP must satisfy. TAP and TMP can have conicting objective functions. In the TAP, we need to minimize the number of tracks used by train units. The more arriving trains are split, the smaller intermediate trains are. Then a more convenient way to t these intermediate trains in fewer tracks can be found. However, the more arriving trains are split, the more coupling and uncoupling operations are needed, which is detrimental for the TMP.

The SMP and the TAP are linked by maintenance parking constraints and protection constraints.

Train units must stay long enough at shunting tracks with cleaning or maintenance equipment so that operations can be performed. Because of protection constraint, performing maintenance operations ontime may spread train units on more shunting tracks than if such operations are canceled. Therefore more shunting tracks may be needed to fulll the objective of the SMP, which is minimizing the total delay and the number of canceled operations. Thus, the objectives of SMP and TAP can be contradictory.

Besides, as shunting tracks are assigned to operations in the SMP, a partial parking plan is already set in the maintenance schedule. A such parking plan is partial because the track assignment is known during maintenance only, while the TAP * deals with the whole time spent in the shunting yard. This partial parking plan is feasible for the TAP * . Indeed, length, protection and crossing constraints are respected because shunting tracks are treated as single-capacity resources in the SMP (one intermediate train per track). Matching plan constraints are also satised because in the SMP cleaning and maintenance operations can start once are uncoupling operations performed. Moreover, by denition, the SMP also considers a standard time needed to move between tracks.

Moving on, the SRP is a slave problem of the TAP: it is instantiated with a parking plan. Moreover, the TAP includes an objective function and constraints that, to some extent, facilitate the feasibility of the SRP. Firstly, in the TAP the number of shunting movements is minimized. This may prevent trac conicts due to a huge amount of simultaneous movements. Secondly, the TAP ensures that there exists a path between the shunting tracks assigned successively to an intermediate train. Thirdly, a standard shunting movement duration is taken into account.

The SRP is indirectly a slave problem of the TMP, through the mediation of the TAP. Thanks to the TAP, the intermediate trains that have to be moved are determined. The TMP takes into account the time needed for shunting movements with the matching duration condition.

The SRP and the SMP are also linked since time window constraints can be based on a maintenance schedule. Moreover, the SMP considers the time needed for shunting movements. If maintenance operations that have to be performed on a same intermediate train can be done on a same track, we only consider movements between platforms and shunting tracks. In this case, the SRP may have to include washing machine paths which might delay departures.

Remark that, in some cases the TAP 1 is to be solved, i.e., when train units do not need to move between shunting tracks in the planning period. This is the problem tackled for example by [START_REF] Lentink | Algorithmic decision support for shunt planning[END_REF]. In these cases, the TAP can be solved prior to the SMP, simply shifting to this latter problem the solution of maintenance parking and protection constraints.

3.2 Literature review

Classication of related works

The optimization approaches proposed in the literature either deal with one shunting problem in passenger transportation or combine a few. Literature also contains scheduling problems similar to shunting ones.

We also review works that deals with the integration of shunting problems in rolling stock circulation planning as well as integrated problems in railway planning. In Figure 3.4, we propose a classication of these problems.

A rst part of shunting literature tackles problems related to the TMP. In these problems, we assign vehicles (trains, buses, trams) to departures. Two main variants can be distinguished. In the rst one, which is called vehicle dispatching problem (VDP), vehicles are placed in lanes or tracks at a depot during the night. The assignment is set so that no crossing conict occurs in the morning. The second variant is specic to trains and is called train matching problem. No parking issue is taken into account but train units can be uncoupled or coupled.

A second part of the literature deals with scheduling problem close to the SRP.

The third part of the literature tackles the TAP or similar problems with other vehicles (trams, buses) that have to be stored in a yard. Many contributions deal with the TAP 1 version (Denition 3.4), in which a vehicle matching is xed. Then, arriving and departing time of each vehicle in the yard is known.

TAP 1 often considers vehicles that are stored in a depot during the night or o-peak hours. In this case, every vehicle arrives before all departures, this is the midnight condition. If the midnight condition is respected, all train units occupy the depot at a same time. Other contributions combine the TAP with the TMP or the VDP in case of buses or trams. Such problems are called vehicle positioning problems (VPP). Vehicles must be parked in a depot and assigned to a departure so that no crossing conict occur. The Train Unit Shunting Problem (TUSP) is the VPP for railway transportation. The TUSP takes into account vehicle coupling and uncoupling. Some contributions also tackle both the SMP and the TAP: they deal with depots in which maintenance is performed. The maintenance schedule can be xed or to decide. In the rst case, we only have to chose tracks where maintenance operations occur, while in the second one the whole SRP must be solved. During maintenance operations, vehicles must be parked at locations with specic equipment. Moreover, during the studied period, a vehicle can be parked at several dierent locations to release critical equipment. The fourth part of the literature deals with the SRP and is specic to railway transportation. In the problems considered, shunting movements must be performed in order to change trains locations.

Shunting movements can be taken into account with a more or less detailed model. The SRP can be solved separately or it can be merged with the TAP. The TMP and the SMP can also be added to a problem that models and solves the SRP and the TAP.

Literature review on the Train Matching Problem

Vehicle dispatching problem (VDP) [START_REF] Blasum | Scheduling trams in the morning[END_REF] introduce the vehicle dispatching problem (VDP) for trams. The authors consider trams that have been stored in a depot during the night. This depot contains LIFO tracks and the position of each tram is known. Therefore the track where a tram is parked is specied as well as its position on this track. These trams must be assigned to departures in order to avoid crossings. Departure times are an input. Each departure requires a specic type of tram, a dispatching solution assigns to it a tram of the desired type. Vehicle dispatching problem is of major interest at the operational level when it is necessary to modify the planning after an unforeseen event such as vehicle breakdown. [START_REF] Blasum | Scheduling trams in the morning[END_REF] Train matching problem (TMP)

As by Denition 3.1, the TMP is linked to the rolling stock circulation problem in which train composition are planned [START_REF] Fioole | A rolling stock circulation model for combining and splitting of passenger trains[END_REF]; [START_REF] Aleri | Ecient circulation of railway rolling stock[END_REF]). However, in the TMP, there is no need to match train composition and demand: the given relation between departing trains and necessary train units takes care of this match. In the TMP, the focus is on train units coupling and uncoupling. Indeed in the TMP, the composition of arriving and departing trains in a yard is xed. Arriving trains must be matched to departing trains in order to minimize the number of uncoupling operations. [START_REF] Lentink | Applying operations research techniques to planning of train shunting[END_REF] describe the TMP thanks to the possible congurations which can be obtained after splitting arriving trains. These congurations are equivalent to paths in an oriented graph modeling of arriving trains.

Lentink [2006] proves that the TMP is NP-hard with a reduction from the 3 partition problem. The author also tackles cases in which the TMP is solvable in polynomial time and space. If the number of train units per arriving or departing train is at most three, then the TMP is polynomially solvable. The same holds if the number of train units per arriving or departing train is xed as well as the number of train units stored in the yard. [START_REF] Haahr | Exact methods for solving the train departure matching problem[END_REF] propose an extension of the TMP which includes maintenance requirements.

The set of operations that have to be performed on a train can depend of the matching plan. The authors prove that this problem is NP-hard and solve it with a column generation approach.

Literature review on the Shunting Maintenance Problem

In this section, we review contributions which tackle scheduling problems similar to the SMP. These contributions belong to the category of machine scheduling problems with availability constraints. [START_REF] Lentink | Algorithmic decision support for shunt planning[END_REF] tackles cleaning operations scheduling. A parking plan is given, but human resources have to be assigned to these operations. The processing time of an operation depends of the number of crews assigned to perform it. The number of crews available is time dependant. This problems is equivalent to single machine scheduling problem at each shunting track. It is considered with a discrete time model and formulated with an integer linear program.

Flexible job-shop scheduling integrates two sub-problems: a routing in which a machine is chosen for each operation and a scheduling. It has been solved, for example, with genetic algorithms [START_REF] Zhang | An eective genetic algorithm for the exible job-shop scheduling problem[END_REF]), local search (Dauzère-Pérès and Paulli [1997], [START_REF] Mastrolilli | Eective neighbourhood functions for the exible job shop problem[END_REF]) and linear programming [START_REF] Cemal | Mathematical models for job-shop scheduling problems with routing and process plan exibility[END_REF]).

The SMP is also a multi-resource scheduling problem. [START_REF] Dauzère-Pérès | Multi-resource shop scheduling with resource exibility[END_REF] propose a local search algorithm based on disjunctive graphs. [START_REF] Guyon | Solving an integrated job-shop problem with human resource constraints[END_REF] specically tackle human resource constraints issues. They have to assign operators to shifts and machines so that a feasible job-shop schedule can be found. An integer linear programming (ILP) formulation with a discrete time model is introduced by the authors. [START_REF] Artigues | Solving an integrated employee timetabling and job-shop scheduling problem via hybrid branch-and-bound[END_REF] solves this problem by combining ILP and constraint programming.

Literature review on the Track Assignment Problem Combinatorial problems related to the Track Assignment Problem

The TAP suers from major combinatorial issues due to both length and crossing constraints. Indeed, the TAP is linked to packing problems and require some graph theory notions to be formally handled.

First, we can notice that length constraints in the TAP 1 with midnight constraints bring to a bin- packing problem. Indeed as all the train arrivals occur before departures, there is a moment in which all train units must be parked in the shunting yard.

Denition 3.6 (Bin Packing Problem [START_REF] Coman | Approximation algorithms for bin packing: a survey[END_REF])). Given a set of items I = {1, 2, .., n} with respective sizes {ω 1 , ω 2 , .., ω n } and an unlimited number of bins of capacity W , the bin-packing problem is to partition I into a minimum number subsets in which the total size of the items does not exceed W .

The problem is NP-hard and is widely tackled in literature. [START_REF] Martello | Lower bounds and reduction procedures for the bin packing problem[END_REF] propose the obvious lower bound
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. More relevant lower bounds can be orbtained with an accurate sorting of the items.

Crossing constraints in TAP are related to the position of train units on tracks. The same problem sometimes occurs in freight yards. In this context, the so-called train sorting problem pushes and pulls railcars on dierent tracks so as to achieve the desired sorting minimizing either the number of tracks used to store railcars or the number of movements. A rst variant of the train sorting problem supposes that a railcar can be moved at most twice: after an uncoupling operation and before a coupling operation. This is the single stage variant [START_REF] Dahlhaus | The train marshalling problem[END_REF]). The other variant of train sorting does not limit the number of movements and is called multistage [START_REF] Jacob | Multistage methods for freight train classication[END_REF]). [START_REF] Gatto | Shunting for Dummies: An Introductory Algorithmic Survey[END_REF] provide a literature review which highlights algorithmic issues in shunting for freight transportation and reports some relations with passengers transportation. [START_REF] Dahlhaus | The train marshalling problem[END_REF] and [START_REF] Jacob | Multistage methods for freight train classication[END_REF] remark that storing railcars in tracks is equivalent to providing a partition of a permutation. This holds for TAP 1 with midnight condition since a set of train units which can be described as a permutation is partitioned into subset of trains that are parked on a same track [START_REF] Gatto | Shunting for Dummies: An Introductory Algorithmic Survey[END_REF], Di [START_REF] Di Stefano | A graph theoretical approach to the shunting problem[END_REF]). The permutation represents the order in which train units enter and leave the shunting track. Let us consider a set of n train units. Every train unit is numbered according to its departure order, so that the rst train unit which leaves the yard is labeled 1 and the last one is labeled n. For example, with n = 4, in [3,1,4,2] the rst train which arrives is the third one to leave while the third train which arrives is the fourth one to leave. The decision space of TAP 1 is included in the set of partitions of a given permutation. Crossing constraints are respected if each partition respects monotony properties imposed by the type of track. For example, in the case of LIFO tracks each partition must include train units labeled in decreasing order (indeed the last train unit which arrives must be the rst one to leave). Feasible partitions in this case are named decreasing [START_REF] Bodlaender | Treewidth and pathwidth of permutation graphs[END_REF] remark that the problem of partitioning a permutation into increasing (or decreasing) sequences can be computed in polynomial time.

sequences. For permutation [3, 1, 4, 2], the partition {[3, 1], [4, 2]} is feasible.
Standard Track Assignment Problem (TAP 1 ) Di [START_REF] Di Stefano | A graph theoretical approach to the shunting problem[END_REF] tackle crossing constraints in the TAP 1 . They suppose that the length of parking tracks is at least equal to the sum of the vehicles length, therefore they do not have to deal with length constraints. Moreover, they consider that the midnight condition is respected. Then, arrival and departure order of trains can be described as permutation sequences. The authors try to minimize the number of tracks used according to four congurations. The rst conguration is the one in which n trains enter and leave a track on only one side. This conguration gathers LIFO and FIFO cases. Then, the TAP with these conditions is equivalent to permutation graph coloring. For this case, the paper provides two segments cross, then the crossing constrains are violated. In Figure 3.5, the train t 1 enters on the right side before t 2 enters on the left side. Then, t 1 leaves on the left side before t 2 leaves on the same side. The segments representing t 1 and t 2 cross, then the crossing constraints are not respected for these trains. Indeed, the sequence of events is infeasible. A robust extension and a stochastic version are proposed to take into account possible delays.

Vehicle Positioning Problem (VPP) [START_REF] Winter | Real-time dispatch of trams in storage yards[END_REF] introduce the VPP for the management of tram depots. Trams of dierent types have to be stored in LIFO tracks to ensure departures in the morning. The authors suppose that all trams have the same length. Then tracks are divided into positions which can contain a tram. Moreover, the midnight condition is respected. In a rst version of the VPP, the number of crossings is minimized, while in a second version the number of departures performed with a tram of the desired type is maximized. The contribution notes that the VPP is NP-complete thanks to a reduction from the 3 dimensional matching problem. The authors propose mathematical programming formulations and three heuristics.

Winter [1999] also tackles an online version of the VPP, in which the midnight condition is not respected. The author considers trams with dierent lengths. [START_REF] Gallo | Dispatching buses in parking depots[END_REF] extend the work of [START_REF] Winter | Real-time dispatch of trams in storage yards[END_REF] to the management of bus depots. Buses, which can have dierent lengths, are stored in FIFO lanes. The contribution considers schedules in which the midnight condition is not respected. In this version of the VPP, the number of departures ensured by a bus is maximized. The authors tackle the problem with a two level approach. In the rst level, they solve vehicle matching with a relaxation of crossing constraints. In the second level, they deal with these crossing constraints. In the rst level, a Lagrangian relaxation is used to generate an upper bound. In a second level, they provide a feasible solution for the VPP thanks to a heuristic in which crossings are minimized. The solution approach is implemented for solving real instances of the Florence bus network in Italy. These instances, which contains up to 12 lanes and 77 buses of 4 dierent types, are also solved with CPLEX. Then, up to 13000 variables and 4 millions constraints are generated.

CPLEX encounters many memory issues or is unable to provide a feasible solution within 10800 seconds for most of the instances. On the contrary, the two level approach gives satisfying solutions in up to 300 seconds.

Also [START_REF] Hamdouni | Dispatching buses in a depot using block patterns[END_REF] consider a version of the VPP applied to buses: lanes are divided into blocks and the midnight condition is respected. They seek for robust solutions in which buses of the same type are parked together. They handle the problem well with CLPEX. [START_REF] Hamdouni | Parking buses in a depot using block patterns: A benders decomposition approach for minimizing type mismatches[END_REF] propose then a Benders decomposition for the problem. They obtain integer solutions in few seconds and note signicant gaps for some instances.

Train Unit Shunting Problem (TUSP)

The TUSP is an adaptation of the VPP to trains. It takes into accounts train units coupling and uncoupling. This problem is introduced by [START_REF] Freling | Shunting of passenger train units in a railway station[END_REF]:

Denition 3.7 (Train unit shunting problem (TUSP) [START_REF] Freling | Shunting of passenger train units in a railway station[END_REF])). Given a station layout and a timetable, the train unit shunting problem consists of (i) matching the arriving train units and departing train units and (ii) parking these on a shunting track. [START_REF] Freling | Shunting of passenger train units in a railway station[END_REF] solve the TMP in a rst phase and the TAP in a second one, once the train matching is set. An ILP based on a graph associated to each train models the TMP. The TAP is tackled with a column generation approach which is based on dynamic programming as in Cardonha

and Borndörfer [2009]. The authors solve 12 real-life instances based on Zwolle station data in the Netherlands, which contain about 80 train units, 15 regular tracks and 4 LIFO tracks. The TMP step is solved in less than 2 seconds while for busy day scenarios the TAP step can last up to 40 minutes without proof of optimality. [START_REF] Haijema | Train shunting: A practical heuristic inspired by dynamic programming[END_REF] solve the TUSP with a heuristic that tackles the problem split as function of sub-planning periods. Computation times do not exceed one second on Zwolle station instances. [START_REF] Kroon | Shunting of passenger train units: an integrated approach[END_REF] propose an ILP formulation which integrates TAP and TMP. The new issue is that the position of train units must be taken into account so that there is no crossing after uncoupling.

The authors also include valid inequalities based on the conict graph cliques. The formulation is solved with CPLEX and tested on Zwolle and Enschede stations instances, in the Netherlands. Some solutions are obtained in few seconds while other instances can not be solved to optimality within 3 hours. Haahr et al. [2017] provide a column generation method with LIFO tracks and allow trains to be parked at platforms. The pricing approach is based on a shortest path search. This method is compared with constraint programming formulations, a greedy algorithm, the one-step mathematical program proposed by [START_REF] Kroon | Shunting of passenger train units: an integrated approach[END_REF] and the two-step approach by [START_REF] Freling | Shunting of passenger train units in a railway station[END_REF].

Integrating the Track Assignment Problem and the Shunting Maintenance Problem

Usually, when the TAP and the SMP are combined, a train must be parked successively on dierent tracks to use various equipment necessary for its maintenance. Guided local search provides results close to exact solutions found through an ILP on test instances.

Solutions are obtained after a few seconds by guided local search while it takes several hours with CPLEX.

The authors consider the use of simulated annealing to improve solutions obtained by local search.

A paper considers the TAP * and the SMP with a xed maintenance schedule. [START_REF] Li | Optimal track utilization in electric multiple unit maintenance depots[END_REF] assume that arrival and departure time on shunting tracks are known and consider an homogeneous train eet.

In this case, the TAP * can be reduced to the TAP 1 . Tracks can be LIFO or regular and are set to contain at most two train units. A mathematical program which models crossing conicts and maximizes the number of parked trains is proposed.

Literature review on the Shunting Routing Problem

Shunting Routing Problem (SRP) [START_REF] Zwaneveld | Routing trains through railway stations: Model formulation and algorithms[END_REF] tackle the problem of routing trains through stations. Trains have an expected schedule on which variations can be applied. Incompatibilities between assignments are modeled using a conict graph. This leads to the search for a maximum stable set in this graph. A branch-and-cut algorithm is proposed to solve instances based on the Zwolle station infrastructure. Indeed for LIFO tracks, train units are parked at the rear-end of the track. A dynamic programming approach is proposed. 

Riezebos and Van Wezel

Shunting issues in rolling stock circulation problem

Other integrated problems in railway planning

As many shunting problems are often solved in an integrated way, the litterature also includes important contributions on the integration of other railway planning problems. In particular, [START_REF] Schöbel | An eigenmodel for iterative line planning, timetabling and vehicle scheduling in public transportation[END_REF] highlights optimality and consistency problems of sequential planning approaches in public transportation. In this section, we focus on solution approaches used for integrating rolling stock management and infrastructure capacity management. [START_REF] Schöbel | An eigenmodel for iterative line planning, timetabling and vehicle scheduling in public transportation[END_REF], [START_REF] Benhizia | Optimisation du plan de transport par planication intégrée des ressources[END_REF] propose detailed surveys on this topic.

Schöbel [2017] tackles line planning, timetabling and vehicle scheduling problem (rolling stock circulation problem for railway transportation). She proposes an algorithmic framework for integrating the three aforementioned problems. This framework is based on iterations in which a single problem is solved, where the solution of the specic problem has to be consistent with possible solutions of the other problems found in previous steps. [START_REF] Cadarso | Integration of timetable planning and rolling stock in rapid transit networks[END_REF] consider a discrete time model in order to integrate timetabling and rolling stock circulation problems for suburban services. They consider a MILP formulation which leads to better solutions than a rolling stock circulation model with xed timetable. [START_REF] Liebchen | The modeling power of the periodic event scheduling problem: railway timetablesand beyond[END_REF] show that a periodic event based scheduling framework can be used to integrate cyclic timetabling and rolling stock management.

Conclusion

In this chapter we proposed formal presentations of four shunting problems which manage rolling stock, cleaning and maintenance crews, and infrastructure capacity. We specied constraints which highlight the dependencies between these problems.

In the analysis of state of the art, we brought out modeling approaches and algorithmic issues of each shunting problem. We also reviewed contributions which integrate some of the shunting problems thanks to sequential or integrated approaches. Table 3.5 reports a list of the main contributions. In this thesis, we aim to provide models and algorithms which integrate the four problems introduced in this chapter.

In Chapter 4, we will introduce a generalization of the TUSP called G-TUSP, in which train units can be parked successively on several shunting tracks. We will propose a MILP formulation for modeling and solving it. In Chapter 5 we will investigate sequential algorithms for solving the G-TUSP.

Remark that the approaches proposed in this thesis are the only ones dealing with all four problems considering TAP * rather than TAP 1 , and solving a precise routing and scheduling problem for the SRP.

Chapter 4

MILP formulation for integrating maintenance and routing

As discussed in Chapter 3, rolling stock planning must manage train units between an arriving trip and a departure trip in a station. This specic part of rolling-stock management is called shunting. Inside stations, train units are prepared for departure and possibly stored for several hours if they are not needed immediately. More precisely, they are cleaned and have maintenance checks. Moreover, train units can be coupled or uncoupled to match train congurations required for departure. This is done on shunting tracks located around platform tracks. Parallel shunting tracks form shunting yards. Some of these shunting tracks have specic amenities such as train-wash for external cleaning or pits for maintenance checks. To be stored in shunting yards, train units need rst of all to be moved from their arrival platform.

Then, they can possibly need to be moved there from one yard to another. Finally they need to be moved to their departure platform. Movements arriving or departing from a yard are called shunting movements and must respect trac safety rules imposed by signalling system and by ground-agents instructions.

Indeed, shunting movements must not create conicts with the rest of train trac in the station.

Shunting operations planning includes several decisions. First, arriving train units must be assigned to departures, which constitutes a matching decision. This matching must take into account rolling stock features required for departures. Another decision concerns train units location: they must be parked at one or several shunting tracks depending on amenities required by maintenance operations. Similarly, movements are set to achieve the parking locations. For these movements, route planning decisions are to be made, since paths are assigned to train units and movements are scheduled based on running times and potential conicts. Finally, depending on maintenance crews availability, maintenance operations must be scheduled. Although all these decisions are often taken separately, they are usually strongly interdependent. For instance, some matching plans make train units parking or maintenance scheduling impossible.

The Generalized Train Unit Shunting problem (G-TUSP) is the problem of shunting operations planning. It integrates four sub-problems:

• The Train Matching Problem (TMP), the problem of matching arriving and departing train units.

• The Track Allocation Problem (TAP * ), the problem of choosing train units location.

• The Shunting Routing Problem (SRP), the problem of determining train units routing during shunting movement.

• The Shunting Maintenance Problem (SMP), the problem of dening train units maintenance scheduling.

The G-TUSP considers a station and a timetable with arriving and departing trains that need to be shunted. It is a pre-operational problem, it is solved from 6 days to 4 hours before operations 

Trains

We denote T T the set of arriving trains. Each arriving train can be split into several intermediate trains.

For an arriving train t , T I (t ) is the set of its possible intermediate trains. The set of departing trains is denoted T S . For a departing train we denote T I (t) the set of intermediate trains which are compatible Some intermediate trains may remain in the shunting yard at the end of the planning period. For trains that are stored in the station before the planning period, a dummy arriving train is introduced. This arriving train enters the station at the beginning of the planning period on the associated siding.

Besides, by denition, the sets T I (t ) are disjoints. For readability, we introduce T I = ∪ t ∈T T T I (t ) that is the set of intermediate trains. We can remark that a departing train t and an arriving train t use the same set of train unit if and only if T I (t) = T I (t ). In Figure 4.2, three types of train units are considered: hashed ones, full colored ones and white ones. For each arriving train, the set of its intermediate trains is represented by a dark-blue lined dashed box. For each departing train, the set of compatible intermediate trains is represented with a light-green lined dashed box. Arrows represent a possible combination of coupling and uncoupling to use the train units available to compose the two departing trains. Here, the arriving train t 1 is uncoupled in order to obtain train t A and two intermediate trains are coupled to obtain train t B .

We also consider trains which stop or pass at the station without being shunted. Those are passing trains. The set of passing trains is denoted T P .

Infrastructure

A track-circuit scale model is used in order to get a precise capacity occupation representation. In the station area, a train follows a path which is a track-circuits succession. As trains can turn around, a path may go twice through a track-circuit. Therefore, we introduce formal track-circuits to specify passing directions. For every real track-circuit, we consider a set of corresponding formal track-circuits. Each of these sets contain up to two formal track-circuits, since there is a formal track-circuit per direction. We distinguish the notion of path from that of route. Routes are individually handled and dened by signalling control. A route starts at a starting signal and nishes at a nishing signal. A path is a concatenation of routes and may include turnarounds. In the turnarounds, a rst route is dened up to the turnaround place where a second route starts. In a turnaround a train stops at a signal and then follows another signal at its back which leads to a reverse direction.

Capacity occupation is based on track-circuit reservation. When a train t needs to go through a track-circuit tc, the signal which allows t to move into the block section where tc is located must have a green aspect. A block section is a sequence of track-circuits which can be utilized by at most one train at a time. Thanks to the interlocking system, the green aspect can be obtained once the itinerary r that leads t to tc is formed. This is why we introduce formation times, which depend on block sections characteristics. However r can only be formed if all conicting block sections are released. A block section locked by a train is released shortly after this train clears the last track-circuit it is using in the block section itself.

A path can imply parking on a shunting track. Paths are set such that shunting tracks are at the beginning or the end of the path. For a path r, we dene P s r the set of shunting tracks where r starts and P e r the set of shunting tracks where r ends. P s r and P e r can contain one shunting track or be empty. For example, if P s r is empty, then path r does not start on a shunting track. Every train has a set of usable paths. Arriving trains' paths begin on a platform and terminate on a shunting track, while departing trains' paths begin on a shunting track and terminate on a platform. Exactly one path among usable paths is assigned to arriving, departing and passing trains. Intermediate trains' paths begin and terminate on shunting tracks. When an intermediate train needs to be parked successively at several tracks, a sequence of paths is assigned to it. Two ctive paths r 0 and r ∞ are assigned to intermediate trains. r 0 is at beginning of the sequence while r ∞ terminates it.

The set of exit points of a shunting track p is denoted Ex(p). This set contains at most two elements which indicate a geographical location. We use the locations left and right, respectively denoted L and R. For a train which enters shunting track p with path r, we introduce the boolean indicator Es(r, p) which is equal to 1 if the exit point where r ends in p is left and 0 if this exit point is right. Similarly, for a train which leaves shunting track p with path r, we introduce the boolean indicator Ee(r, p) ∈ Ex(p) which is equal to 1 if the exit point where r begins in p is left and 0 if it is right. A path r 2 can only follow a path r 1 if r 1 ends at the shunting track where r 2 begins: P s r2 ∩ P e r1 = ∅. In the example of Figure 4.1, the green path is denoted r 1 and the orange one is denoted r 2 . r 2 follows r 1 at shunting track 21. Indeed P s r2 = P e r1 = {21}.

Maintenance operations

Cleaning or maintenance operations may be included in the rolling-stock plan. They are considered to be made on intermediate trains. The operations to be carried out on an intermediate train t ∈ T I form set O t . An operation o ∈ O t can only be performed on shunting tracks with specic facilities. The sequence of operations is given. We introduce P o set of shunting tracks where o can be carried out. In addition, an operation requires the use of specic human resources. We consider that an operation o requires a crew among the set HR o of crews which can be assigned to o. Each crew is available from its shift start time to its shift end time.

We also note that when an operation is in progress, the shunting track where it is carried out must be protected to ensure sta safety. Thus, during this period, no other train can enter this shunting track or leave it. OT C ty,r,tc set of consecutive formal track-circuits preceding tc ∈ T C r which are occupied by a train of type ty traveling along path r ∈ ∪ t∈T R t if its head is on tc, depending on train and track-circuit length pc r,t , sc r,t formal track-circuits preceding and following tc ∈ T C r along path r ∈ R t rt ty,r,tc , ct ty,r,tc running and clearing time of tc ∈ T C r along r ∈ ∪ t∈T R t for a train of type ty ref r,tc reference formal track-circuit for reservation of tc ∈ T C r along r ∈ ∪ t∈T R t (depending on the interlocking system) bs r,tc block section including formal track-circuit tc ∈ T C r along r ∈ ∪ t∈T R t f or bs ,rel bs formation and release time for block section bs P s r ,P e r , P r set of shunting tracks where r ∈ ∪ t∈T R t begins, set of shunting tracks where r ∈ ∪ t∈T R t ends, set of shunting tracks in r P r = P s r ∪ P e r . In particular P e r0 and P s r∞ contain all shunting tracks, while P s r0 = P e r∞ = ∅ Z(p),Ex(p) set of real track-circuits and set of exit points composing a shunting track p L p length of shunting track p tcp r,p , tce r,p reference formal track-circuit for parking at shunting track p ∈ P r along r ∈ ∪ t∈T R t , rst formal track after shunting track p ∈ P s r along r ∈ ∪ t∈T R t Es(r, p) 

Basic formulation

In the formulation, we introduce non-negative continuous variables:

• oc t,r,tc , φ t,r,tc , sU t,r,tc , eU t,r,tc , with t ∈ T, r ∈ R t , tc ∈ T C r : time at which t starts the occupation of tc along r, additional running time of t on tc along r compared to a free-network situation, time at which tc starts being utilized by t along r, time at wich tc ends being utilized by t along r;

• sO o,r,r ,p,hr , with t ∈ T I , o ∈ O t , r, r ∈ R t , p ∈ P r ∩ P o , hr ∈ HR o : time at which o starts at shunting track p between paths r and r with crew hr;

• D t , with t ∈ T S ∪ T P : delay suered by train t when exiting the control area.

Moreover, we introduce binary variables:

• xT t , with t ∈ T I , is equal to 1 if t is created and 0 otherwise;

• xS t,t , with t ∈ T S , t ∈ T I (t), is equal to 1 if t is assigned to t and 0 otherwise;

• xR t,r , with t ∈ T , r ∈ R t , is equal to 1 if t uses r and 0 otherwise;

• xO o,r,r ,p,hr , with t ∈ T I , o ∈ O t , r, r ∈ R t , p ∈ P e r ∩ P s r ∩ P o , hr ∈ HR o , is equal to 1 if o is carried out at shunting track p between paths r and r with crew hr and 0 otherwise;

• qS t , with t ∈ T S , is equal to 1 if t is cancelled and 0 otherwise;

• yR t,t ,r,r ,tc,tc with t, t ∈ T

, r ∈ R t , r ∈ R t , z ∈ Z r ∩ Z r , tc ∈ T C(z) ∩ T C r , tc ∈ T C(z) ∩ T C r , index t < index t
, is equal to 1 if t uses tc along r before t uses tc along r and 0 otherwise;

• k t,r,r ,p , with t ∈ T I , r, r ∈ R t , (p ∈ P s r ∩ P e r = ∅) (i.e. r can follow r), is equal to 1 if t uses r followed by r (also it is equal to 1 if t is parked at track p) and 0 otherwise; We also introduce the following integer variables:

• u t , with t ∈ T T gives the number of uncoupling operations on t;

• v t , with t ∈ T S gives the number of coupling operations on t. 

Matching constraints

The MILP formulation must consider TMP constraints. First, we need to check train compositions.

We introduce constraints for the number of train units of a specic type in trains. 

Routing constraints

A rst set of constraints is based on the RECIFE-MILP model of [START_REF] Pellegrini | RECIFE-MILP: An eective milpbased heuristic for the real-time railway trac management problem[END_REF]. An arriving or a passing train cannot be operated before its arrival time (4.8). The start time of track-circuit occupation by a train along a path is zero if the path itself is not used (4.9). A train starts occupying a track-circuit along a path after spending in the preceding track-circuit its running time and possibly an additional running time due to delay or dwelling, if the path is used (4.10). An arriving or a passing train uses exactly one path (4.11).

A second set of constraints is specic to the SRP in G-TUSP. A departing train uses exactly one path if it is created and zero otherwise (4.12). • exactly one path follows it (4.16),

• exactly one path precedes it (4.17).

r ∈Rt:P s r ={p} k t,r,r ,p = xR t,r ∀t ∈ T I , r ∈ R t , p ∈ P e r (4.16) r ∈Rt:P e r ={p} k t,r ,r,p = xR t,r ∀t ∈ T I , r ∈ R t , p ∈ P s r (4.17)

A train delay is at least equal to the dierence between its actual exit time from the infrastructure and its scheduled scheduled one (4.18). 

D t ≥ r∈Rt oc t,
+ M R (1 -xS t,t ) ∀t ∈ T S , t ∈ T I (t), p ∈ r∈Rt,r ∈R t (P s r ∪ P e r ) (4.25)
Track-circuits of shunting tracks must remain in use when a train is parked there. Thus, when an arriving train t becomes an intermediate train t , t starts using the rst track-circuit of its path before t nishes using the last track-circuit of its path (4.26). The same happens when an intermediate train uses two paths in a row (4.27) and when an intermediate train becomes a departing train (4.28).

sU t ,r ,sc r ,tc 0 ≤ eU t,r,pcr,tc ∞ -M (2 -k t ,r0,r ,p -xR t,r ) ∀t ∈ T T , t ∈ T I (t), r ∈ R t , r ∈ R t , p ∈ P e r ∩ P s r (4.26) sU t,r ,sc r ,tc 0 ≤ eU t,r,pcr,tc ∞ -M (1 -k t,r,r ,p ) ∀t ∈ T I , r, r ∈ R t , p ∈ P e r ∩ P s r (4.27) sU t,r,scr,tc 0 ≤ eU t ,r ,pc r ,tc∞ -M (2 -k t ,r ,r∞,p -xR t,r ) ∀t ∈ T S , t ∈ T I (t), r ∈ R t , r ∈ R t , p ∈ P s r ∩ P e r (4.28)
An additional set of constraints deals with formal track-circuit tc reservation. Their role is illustrated in Figure 4.3. Path r of train t represented in orange in Figure 4.3a contains formal track-circuits T C r = {tc 0 , tc 10 , tc 20 , tc 30 , tc 40 , tc 31 , tc 21 , tc 60 , tc ∞ }. In Figure 4.3b, values of variables sU t,r,tc , eU t,r,tc , oc t,r,tc and φ t,r,tc are represented for each formal track-circuit tc along r. Formal track-circuit tc 10 is for example utilized by t between instants sU t,r,tc10 and eU t,r,tc10 . The block section between signals S 1 and S 4 along r is reserved once t reaches formal track circuit tc 20 . At the same moment, tc 30 and tc 40 are also reserved by t.

A train's utilization of a track-circuit along a route starts as soon as the train starts occupying the reference formal track-circuit ref r,tc for the reservation of tc minus the formation time (4.29). A train's utilization of a track-circuit along a route ends when the track-circuit has been physically cleared plus the release time (4.30). Thus, the equality considers running time, additional running time and clearing time on track-circuit tc along path r. Finally, it incorporates possible additional running time on following track-circuits if train t is long enough to occupy more than one track-circuit at a time. In this case, tc exists such that tc is physically occupied by t while the head of t reaches the end of track-circuit tc , i.e. tc ∈ OT C(t, r, tc ). There are also disjunctive constraints (4.31)(4.32) so that two trains cannot utilize a track-circuit at the same time. These constraints are not applied for track-circuits of common shunting tracks to be coherent with track-circuit utilization constraints during parking (4.26)-(4.28). sU t,r,tc = oc t,r,refr,tc -f or bsr,tc xR t,r ∀t ∈ T, r ∈ R t , tc ∈ T C r (4.29) eU t,r,tc = oc t,r,tc + ((rt t,r,tc + ct t,r,tc + rel bsr,tc )xR t,r + φ t,r,tc ) 

+ tc ∈T C:tc∈OT C(t,r,tc ) φ t,r,tc ∀t ∈ T, r ∈ R t , tc ∈ T C r
∀t, t ∈ T, index t < index t , r ∈ R t , r ∈ R t , z ∈ Z r ∩ Z r \ p∈P r ∩P r Z(p), tc ∈ T C(z) ∩ T C r , tc ∈ T C(z) ∩ T C r (4.31) eU t ,r ,tc -M yR t,t ,r,r ,tc,tc ≤ sU t,r,tc ∀t, t ∈ T, index t < index t , r ∈ R t , r ∈ R t , z ∈ Z r ∩ Z r \ p∈P r ∩P r Z(p), tc ∈ T C(z) ∩ T C r , tc ∈ T C(z) ∩ T C r (4.32)

Maintenance scheduling constraints

For maintenance operations, we specify the inequalities that must be veried at the beginning of the tasks. This must take into account the availability of crews and shunting tracks.

If an intermediate train t is created, any operation carried out on t can use only one crew and one shunting track along a given path (4.33). An operation of train t can not be performed on a shunting track p if t is not parked at p between two paths r and r (4.34). The starting time of an operation is set to 0 if it is not assigned to a shunting track (4.35). An operation performed by crew hr must start after the shift start time of hr (4.36) and end before its shift end time (4.37). In particular with (4.37) a maintenance operation starts at 0 when it is not assigned to a crew or a track. For readability, we introduce the following expressions:

• sP t,r,p is t's arrival time on p through r • eP t,r ,p is t's departure time from p through r .

An operation carried out on train t at shunting track p between paths r and r needs to start after t's arrival on p through r and nish before t's departure from p through r . t's arrival time on p through r is given by the expression sP t,r,p (4.38). If r = {r 0 }, sP t,r,p is the moment when t starts utilizing the reference track-circuit for parking at p (4.39). Otherwise, r = r 0 and we need to consider the arriving train which uses the same rolling-stock. Then an intermediate train arrives at its rst shunting track when its corresponding arriving train arrives (4.40). t's departure time from p through r is given by the expression eP t,r ,p (4.41). If r = {r ∞ }, eP t,r,p is the moment when t ends utilizing the reference track-circuit for parking at p (4.42). Otherwise, r = r ∞ and we need to consider the departing train which uses the same rolling-stock. Then an intermediate train leaves its rst shunting track when its corresponding departing train leaves (4.43),(4.44). If no departing train is assigned to t, then t stays at its last shunting track until the end of the planning period (4.45). Finally, if an operation o follows an operation o, then o starts after the end of o (4.46). 

hr∈HR o ,r,r ∈Rt,p∈P e r ∩P s r ∩P o xO o,r,r ,p,hr ≤ xT t ∀t ∈ T I , o ∈ O t (4.33) hr∈HR o xO o,r,r ,p,hr ≤ k t,r,r ,p ∀t ∈ T I , o ∈ O t , r, r ∈ R t , p ∈ P e r ∩ P s r ∩ P o
sO o,r,r ,p,hr ≥ sP t,r,p -M (1 -xO o,r,r ,p,hr ) ∀t ∈ T I , o ∈ O t , r, r ∈ R t , p ∈ P e r ∩ P s r ∩ P o , hr ∈ HR o (4.38) sP t,r,p = sU t,r,tcpr,p ∀t ∈ T I , r ∈ R t \ {r 0 , r ∞ }, p ∈ P e
∀t, t ∈ T, o ∈ O t , o ∈ O t , hr ∈ HR o ∩ HR o , r 1 , r 2 ∈ R t , r 1 , r 2 ∈ R t , p ∈ P o ∩ P e r1 ∩ P s r2 , p ∈ P o ∩ P e r 1 ∩ P s r 2 , index t < index t (4.47) sO o,r1,r2,p,hr ≥ sO o ,r 1 ,r 2 ,p ,hr + pR o xO o ,r 1 ,r 2 ,p ,hr -M y o,o ,hr ∀t, t ∈ T, o ∈ O t , o ∈ O t , hr ∈ HR o ∩ HR o , r 1 , r 2 ∈ R t ,

Parking constraints

Parking constraints are based on constraints which involve precedence between events.

These precedences are based on the following additional variables:

• xP t1,t2,r1,r 1 ,r2,r 2 ,p where t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 1 ∈ R t1 , r 2 ∈ R t2 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 ∩ P s r 1 ∩ P s r 2 , index t 1 < index t 2 is equal to 1 if t 1 that enters track p by path r 1 and leaves by r 1 and t 2 that enters track p by path r 2 and leaves by r 2 use track p at same time and 0 otherwise,

• yP t1,t2,r1,r 1 ,r2,r 2 ,p where t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 1 ∈ R t1 , r 2 ∈ R t2 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 ∩ P s r 1 ∩ P s r 2 , index t 1 < index t 2 is equal to 1 if t 1 that
enters track p by path r 1 and leaves by r 1 uses track p before t 2 that enters track p by path r 2 and leaves by r 2 and 0 otherwise,

• sE t,r,p , with t ∈ T I , r ∈ R t , p ∈ P e r , is equal to 1 if t enters shunting track p through path r by side L and 0 if t enters p through r by side R,

• eE t,r,p , with t ∈ T I , r ∈ R t , p ∈ P s r , is equal to 1 if t leaves shunting track p through path r by side L and 0 if t enters p through r by side R,

• ysE t,t ,r,r ,p with t, t ∈ T I , r ∈ R t , r ∈ R t , p ∈ P s r ∩ P s r , index t < index t is equal to 1 if t has to be placed on the left of t to enter track p through path r and 0 if t has to be placed on the right of t to enter track p through path r,

• yeE t,t ,r,r ,p where t, t ∈ T I , r ∈ R t , r ∈ R t , p ∈ P e r ∩ P e r , index t < index t is equal to 1 if t must be placed on the left of t to leave track p through path r without crossing and 0 if t must be placed on the right of t to leave track p through path r without crossing.

With these variables we can set length constraints: for every intermediate train t 1 which is parked at track p, the length of intermediate trains that use p at the same time as t 1 must be less or equal than the length of the track.

l t1 k t1,r1,r 1 ,p + t2∈T I ,r2,r 2 ∈Rt 2 :p∈P e r 2 ∩P s r 2 l t2 xP t1,t2,r1,r 1 ,r2,r 2 ,p ≤ L p ∀t 1 ∈ T I , r 1 , r 1 ∈ R t1 , p ∈ P e r1 ∩ P s r 1 (4.55)
In a rst disjunction, we impose that a shunting track p can be occupied by at most one intermediate train t 1 , t 2 at any time, unless one of the variables xP t1,t2,r1,r 1 ,r2,r 2 ,p is equal to 1. Either t 1 enters p after t 2 leaves it (4.56) or t 2 enters p after t 1 leaves it (4.57). sP t1,r1,p ≥ eP t2,r 2 ,p -M (yP t1,t2,r1,r 1 ,r2,r 2 ,p + xP t1,t2,r1,r 1 ,r2,r 2 ,p )

∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 ∩ P s r 1 ∩ P s r 2 , index t 1 < index t 2 (4.56) sP t2,r2,p ≥ eP t1,r 1 ,p -M (1 -yP t1,t2,r1,r 1 ,r2,r 2 ,p + xP t1,t2,r1,r 1 ,r2,r 2 ,p ) ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 ∩ P s r 1 ∩ P s r 2 , index t 1 < index t 2 (4.57)
Crossing constraints state that if two intermediate trains t 1 , t 2 use a same shunting track p at the same time (then a variable xP t1,t2,r1,r 1 ,r2,r 2 ,p is equal to 1), relative positions of t 2 and t 1 when they enter the track and when they leave the track must be equal. If t 1 has to placed on the left of t 2 to leave the track without crossing, t 1 cannot be placed on the right of t 2 when it enters the track (4.58). If t 1 has to placed on the right of t 2 to leave the track without crossing, t 1 cannot be placed on the left of t 2 when it enters the track (4.59).

yeE t1,t2,r 1 ,r 2 ,p + (1 -ysE t1,t2,r1,r2,p ) ≤ 2 -xP t1,t2,r1,r 1 ,r2,r 2 ,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 ∩ P s r 1 ∩ P s r 2 , index t 1 < index t 2 (4.58) (1 -yeE t1,t2,r 1 ,r 2 ,p ) + ysE t1,t2,r1,r2,p ≤ 2 -xP t1,t2,r1,r 1 ,r2,r 2 ,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 ∩ P s r 1 ∩ P s r 2 , index t 1 < index t 2 (4.59)
Positioning variables ysE t1,t2,r1,r2,p and yeE t1,t2,r 1 ,r 2 ,p are deduced thanks to disjunctions. These disjunctions are based on two assertions:

• if t 1 enters shunting track p by the left (or right) side after t 2 enters p, then t 1 is placed on the left (or right) side of t 2 (Figure 4.4) (4.60)-(4.63)

• if t 1 leaves shunting track p by the left (or right) side before t 2 leaves p, t 1 has to be placed on the left (or right) side of t 2 so that no crossing occurs (Figure 4.5) (4.64)-(4.67)

The rst assertion leads to Table 4.2 which presents a disjunction for variables ysE t1,t2,r1,r2,p . An example can illustrate (4.60). Suppose that t 1 enters p through r 1 by the left side after t 2 enters p through r 2 . Then sP t1,r1,p > sP t2,r2,p . As t 1 enters through the left side, sE(r 1 , p) = 1. Therefore we must have ysE t1,t2,r1,r2,p = 1. M (ysE t1,t2,r1,r2,p + 1 -sE t1,r1,p ) ≥ sP t1,r1,p -sP t2,r2,p

∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 , index t 1 < index t 2 (4.60) M (1 -ysE t1,t2,r1,r2,p + sE t1,r1,p ) ≥ sP t1,r1,p -sP t2,r2,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 , index t 1 < index t 2 (4.61) M (ysE t1,t2,r1,r2,p + sE t2,r2,p ) ≥ sP t2,r2,p -sP t1,r1,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 , index t 1 < index t 2 (4.62) M (1 -ysE t1,t2,r1,r2,p + 1 -sE t2,r2,p ) ≥ sP t2,r2,p -sP t1,r1,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 , index t 1 < index t 2 (4.63)
The second assertion leads to Table 4.3 which presents a disjunction for variables yeE t1,t2,r 1 ,r 2 ,p .

M (yeE t1,t2,r 1 ,r 2 ,p + 1 -Ee(r 1 , p)) ≥ eP t2,r 2 ,p -eP t1,r 1 ,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P e r 1 ∩ P e r 2 , index t 1 < index t 2 (4.64) Table 4.2: Values of variable ysE t1,t2,r1,r2,p , with t 1 , t 2 ∈ T I , index t 1 < index t 2 , r 1 ∈ R t1 , r 2 ∈ R t2 ,
p ∈ P e r1 ∩ P e r2 . ysE t1,t2,r1,r2,p is equal to 1 if t 1 is placed on the left side of t 2 and 0 if t 1 is placed on the right side of t 2 . ysE t1,t2,r1,r2,p Entrance side of t 1 on p Entrance side of t 2 on p t 1 enters t 2 enters sE(r 1 , p) sE(r 2 , p) before t 2 before t 1

1 (Left) 1 (Left) 0 1 1 (Left) 0 (Right) 1 1 0 (Right) 1 (Left) 0 0 0 (Right) 0 (Right) 1 0 Table 4.3: Values of variable yeE t1,t2,r 1 ,r 2 ,p , with t 1 , t 2 ∈ T I , index t 1 < index t 2 , r 1 ∈ R t1 , r 2 ∈ R t2 ,
p ∈ P e r 1 ∩ P e r 2 . ysE t1,t2,r 1 ,r 2 ,p is equal to 1 if t 1 is placed on the left side of t 2 and 0 if t 1 is placed on the right side of t 2 . yeE t1,t2,r 1 ,r 2 ,p Exit side of t 1 on p Exit side of t 2 on p t 1 leaves t 2 leaves eE t1,r 1 ,p eE t2,r 2 ,p before t 2 before t 1

1 (left) 1 (left) 1 0 1 (Left) 0 (Right) 1 1 0 (Right) 1 (Left) 0 0 0 (Right) 0 (Right) 0 1 M (1 -yeE t1,t2,r 1 ,r 2 ,p + Ee(r 1 , p)) ≥ eP t2,r 2 ,p -eP t1,r 1 ,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P e r 1 ∩ P e r 2 , index t 1 < index t 2 (4.65) M (yeE t1,t2,r 1 ,r 2 ,p + Ee(r 2 , p)) ≥ eP t1,r 1 ,p -eP t2,r 2 ,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P e r 1 ∩ P e r 2 , index t 1 < index t 2 (4.66) M (1 -yeE t1,t2,r 1 ,r 2 ,p + 1 -Ee(r 2 , p)) ≥ eP t1,r 1 ,p -eP t2,r 2 ,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P e r 1 ∩ P e r 2 , index t 1 < index t 2 (4.67)
We also need to consider the special case in which two intermediate trains t 1 and t 2 enter or leave a track p coupled, and hence at a same time. Their relative positions on p is given by either a t1,t2 , which is their positions once coupled in a same departing train, or b t1,t2 , which is their positions when they are coupled in a same arriving train.

If two intermediate trains t 1 and t 2 arrive coupled in a same track, their relative position given by variables ysE t1,t2,r1,r2,p is determined by b t1,t2 (4.68)(4.69). If an intermediate train t 1 is placed on the left of an another one t 1 in the same arriving train, t 1 obviously remains on the left of t 2 once they are parked at a shunting track. In this example b t1,t2 = 1. If p is the rst track that t 1 and t 2 use (k t1,r0,r1,p = 1 and k t2,r0,r2,p = 1), then 3 -k t1,r0,r1,p -k t2,r0,r2,p = 1. In this case, we must have ysE t1,t2,r1,r2,p = b t1,t2 = 1, t 1 is located left of t 2 on the track p.

If two intermediate trains t 1 and t 2 which do not belong to a same type are coupled to be assigned to a same departing train t 0 , the relative position of t 1 and t 2 given by variables yeE t1,t2,r1,r2,p must be equal to a t1,t2 (4.70),(4.71). We remark that we only consider intermediate trains that do not belong to a same type because trains of a same type are interchangeable.

b t1,t2 + (1 -ysE t1,t2,r1,r2,p ) ≤ 3 -k t1,r0,r1,p -k t2,r0,r2,p ∀t 0 ∈ T T , t 1 , t 2 ∈ T I (t 0 ), index t 1 < index t 2 , r 1 ∈ T t1 , r 2 ∈ T t2 , p ∈ P e r1 ∩ P e r2 (4.68) (1 -b t1,t2 ) + ysE t1,t2,r1,r2,p ≤ 3 -k t1,r0,r1,p -k t2,r0,r2,p ∀t 0 ∈ T T , t 1 , t 2 ∈ T I (t 0 ), index t 1 < index t 2 , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 (4.69) a t1,t2 + (1 -yeE t1,t2,r 1 ,r 2 ,p ) ≤ 5 -k t1,r1,r∞,p -xS t0,t1 -k t2,r2,r∞,,p -xS t0,t2 ∀t 0 ∈ T S , t 1 , t 2 ∈ T I (t 0 ), index t 1 < index t 2 , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P s r1 ∩ P s r2 , ty t1 = ty t2 (4.70) (1 -a t1,t2 ) + yeE t1,t2,r 1 ,r 2 ,p ≤ 5 -k t1,r1,r∞,p -xS t0,t1 -k t2,r2,r∞,p -xS t0,t2 ∀t 0 ∈ T S , t 1 , t 2 ∈ T I (t 0 ), index t 1 < index t 2 , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P s r1 ∩ P s r2 , ty t1 = ty t2 (4.71)
Variables sE t,r,p are set in case r is not a dummy path (4.72) and in case r = r 0 (4.73). Variables eE t,r,p are set in case r is not a dummy path (4.74) and in case r = r ∞ (4.75),(4.76).

sE t,r,p = Es(r, p) ∀t ∈ T I , r ∈ R t \ {r 0 }, p ∈ P e r (4.72) sE t,r0,p = r∈Rt 0 Es(r, p)xR t0,r ∀t 0 ∈ T T , t ∈ T I (t 0 ) (4.73) eE t,r,p = Ee(r, p) ∀t ∈ T I , r ∈ R t \ {r ∞ }, p ∈ P s r (4.74) sE t,r∞,p ≥ t0∈T S ,r∈Rt 0 :t∈T I (t0) Es(r, p)(xR t0,r + xS t0,t -2) ∀t 0 ∈ T T , t ∈ T I (t 0 ) (4.75) 1 -sE t,r∞,p ≥ t0∈T S ,r∈Rt 0 :t∈T I (t0) (1 -Es(r, p))(xR t0,r + xS t0,t -2) ∀t 0 ∈ T T , t ∈ T I (t 0 ) (4.76)

Model strengthening

In this section, we propose ways for strengthening the formulation described in Section 4.2.1. They are based on the relaxation of integrality constraints, on the reduction of the number of binary variables and on the removal of symmetries in the branching tree.

Removing integrality constraints for specic variables

Integrality constraint on variables qS t which indicate if departing train t is cancelled or not can be removed. Then we only need to specify:

0 ≤ qS t ≤ 1 ∀t ∈ T S .
Variable qS t appears in (4.3) and (4.5). If at least one intermediate train t is assigned to t (xS t,t = 1), then the right hand side of (4.5) is greater than or equal to 1. Therefore, 1 -qS t must be greater than or equal to 1, thus qS t = 0. On contrary, if no intermediate train is assigned to t, then the right hand side of (4.3) is equal to 0 for any type of train units tu ∈ T U . In particular for tu ∈ T U such that m t,tu > 0 we have m t,tu (1 -qS t ) = 0. Therefore 1 -qS t must be equal to 0, thus qS t = 1. This integrality removal speeds up the preprocessing operated by MILP solvers.

Integrality constraints on variables u t , v t which respectively represent the number of uncoupling operations on an arriving train or coupling operations on a departing train can be released, too. u t and v t only appear respectively in (4.6) and (4.7). In these inequalities the right hand sides are integers. u t and v t also appear in the objective function which is minimized. Therefore, u t and v t will automatically set equal to the right hand sides of the constraints.

Reducing the number of disjunction variables for routing

In this section, as [START_REF] Pellegrini | Ecient train re-routing and rescheduling: Valid inequalities and reformulation of recife-milp[END_REF], we propose to reduce the number of binary variables used for scheduling shunting movements as well as the rest of a station trac. More precisely, for two formal trackcircuits tc, tc which correspond to the same real track-circuit, we consider variables yR t,t ,r,r ,tc,tc : they indicate if train t uses tc along path r before t uses tc along r . Some of these variables may be redundant depending of the path sequences. For example, consider the case in which the sequences of real trackcircuits of r and r are respectively Z r = {z 0 , z 1 , z 2 , z 3 , z 4 , z 5 , z ∞ } and Z r = {z 0 , z 9 , z 8 , z 4 , z 3 , z 2 , z ∞ }. Then, the sequences of formal track-circuits of these paths are respectively T C r = {tc 0 , tc 10 , tc 20 , tc 30 , tc 40 , tc 50 , tc ∞ } and T C r = {tc 0 , tc 91 , tc 81 , tc 41 , tc 31 , tc 21 , tc ∞ } . Here, for i = 1, ..., 9 formal track-circuits corresponding to real track-circuit z i are T C(z i ) = {tc i0 , tc i1 }. In this example, both r and r contain track-circuits z 2 , z 3 and z 4 and they use them in opposite directions. Then, constraints (4.31),(4.32) have to be dened at each of these track-circuits. However, as t and t move in opposite directions, t cannot start using z 4 when t uses either z 2 , z 3 or z 4 . Similarly, t cannot start using z 2 when t uses either z 2 , z 3 or z 4 . Therefore yR t,t ,r,r ,tc20,tc21 = yR t,t ,r,r ,tc30,tc31 = yR t,t ,r,r ,tc40,tc41 . It is possible to consider a single disjunction variable for track-circuits z 2 ,z 3 and z 4 . This variable indicates which train enters rst in the section composed of z 2 ,z 3 and z 4 . Likewise, when two paths follow a same sequence of track-circuits in the same direction the values of variables yR t,t ,r,r ,tc,tc for tc, tc in this sequence do not change.

Following this reasoning, for two paths r,r we identify the sequences of consecutive common trackcircuits. We name these sequences sections. A section contains couples of formal track-circuits (tc, tc ) such that tc ∈ T C r and tc ∈ T C r correspond to a same real track-circuit. In the example of the previous paragraph, paths r and r share the section composed by {z 2 , z 3 , z 4 }. This section contains the couples of formal track-circuits {(tc 20 , tc 21 ), (tc 30 , tc 31 ), (tc 40 , tc 41 )}. In the general case, we denote S r,r the set of sections that share two paths r and r . These sections do not include track-circuits of common shunting tracks of r and r .

In the formulation, sets S r,r are input data. In Section 4.3 we propose an algorithm to compute these sets. We consider binary variables:

• yR t,t ,r,r ,s where t, t ∈ T , index t < index t , r ∈ R t , r ∈ R t ,s ∈ S r,r is equal to 1 if t uses the section s before t and 0 otherwise Inequalities (4.31), (4.32) can be replaced by (4.77),(4.78). In (4.77),(4.78) the variables yR t,t ,r,r ,s which represent precedence at each section are used. These variables are less numerous than variables yR t,t ,r,r ,tc,tc . In Section 4.4, we evaluate the benet of this alternative formulation in a case study.

eU t,r,tc -M (1 -yR t,t ,r,r ,s ) ≤ sU t ,r ,tc

∀t, t ∈ T, index t < index t , r ∈ R t , r ∈ R t , s ∈ S r,r , (tc, tc ) ∈ s (4.77) eU t ,r ,tc -M yR t,t ,r,r ,s ≤ sU t,r,tc ∀t, t ∈ T, index t < index t , r ∈ R t , r ∈ R t , s ∈ S r,r , (tc, tc ) ∈ s (4.78)
Breaking Symmetries for disjunction variables

In the formulation, many binary variables are involved in disjunctive scheduling constraints. These are disjunctive variables. These variables are dened for two shunting operations (maintenance, routing or parking) and a common resource. They indicate how two shunting operations use a common resource. If none of the operations use the possibly common resource, the disjunctive variable can be equal to either 1 or 0. Therefore, the MILP formulation has symmetries and a MILP solver may have ti explore equivalent nodes in a branching tree. In order to break these symmetries, we impose that disjunctive variables are equal to 0 if the corresponding operations do not use the common resource. We impose this constraint for variables yR t,t ,r,r ,tc,tc which represent a disjunction for the use of a track-circuit by two trains t and t . yR t,t ,r,r ,tc,tc is equal to 0 if neither r nor r are assigned respectively to t and t (4.79 yP t1,t2,r1,r 1 ,r2,r 2 ,p andxP t1,t2,r1,r 1 ,r2,r 2 ,p which represent the order in which two intermediate trains t 1 , t 2 use shunting track p for parking are equal to 0 if neither t 1 or t 2 is parked on p (4.84), (4.85). When xP t1,t2,r1,r 1 ,r2,r 2 ,p = 1, we impose that yP t1,t2,r1,r 1 ,r2,r 2 ,p = 0 (4.86). Similarly, variable ysE t1,t2,r1,r2,p gives the relative position of t 1 and t 2 on p if t 1 uses path r 1 and t 2 uses path r 2 . ysE t1,t2,r1,r2,p is equal to 0 if neither t 1 uses r 1 nor t 2 uses r 1 (4.87). An equivalent inequality is set for variable yeE t1,t2,r1,r2,p which indicates crossing free relative positions (4.88). 

yR t,t ,r,r ,tc,tc ≤ xR t,r + xR t ,r ∀t, t ∈ T, r ∈ R t , r ∈ R t , z ∈ Z r ∩ Z r , tc ∈ T C(z) ∩ T C r , tc ∈ T C(z) ∩ T C r , index t < index t (4.79) y o,o ,hr ≤ r,r ∈Rt,p∈P e r ∩P s r ∩P o xO o,r,r ,p,hr + r,r ∈R t ,p∈P e r ∩P s r ∩P o xO o ,r,r ,p,hr ∀t, t ∈ T I , index t < index t , o ∈ O t , o ∈ O t , hr ∈ HR o ∩ HR o (4.80) yO o,o ,p ≤ hr∈HR o ,r,r ∈Rt:p∈P e r ∩P s r xO o,r,r ,p,hr + hr∈HR o ,r,r ∈R t :p∈P e r ∩P s r xO o ,r,r ,p,hr ∀t, t ∈ T I , index t < index t , o ∈ O t , o ∈ O t , p ∈ P o ∩ P o (4.81) ysO o,t,r,p ≤ hr∈HR o ,r1,r2∈R t :p∈P e r 1 ∩P s r 2 xO o,r1,r2,p,hr + xR t,r ∀t ∈ T I , t ∈ T I , t = t , o ∈ O t , r ∈ R t , p ∈ P o ∩ P e r (4.82) yeO o,t,r,p ≤ hr∈HR o ,r1,r2∈R t :p∈P e r 1 ∩P s r 2 xO o,r1,r2,p,hr + xR t,r ∀t ∈ T I , t ∈ T I , t = t , o ∈ O t , r ∈ R t , p ∈ P o ∩ P s r (4.83) yP t1,t2,r1,r 1 ,r2,r 2 ,p ≤ k t1,r1,r 1 ,p + k t2,r2,r 2 ,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 ∩ P s r 1 ∩ P s r 2 , index t 1 < index t 2 (4.84) xP t1,t2,r1,r 1 ,r2,r 2 ,p ≤ k t1,r1,r 1 ,p + k t2,r2,r 2 ,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 ∩ P s r 1 ∩ P s r 2 , index t 1 < index t 2 (4.85) yP t1,t2,r1,r 1 ,r2,r 2 ,p ≤ 1 -xP t1,t2,r1,r 1 ,r2,r 2 ,p ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 ∩ P s r 1 ∩ P s r 2 , index t 1 < index t 2 (4.86) ysE t1,t2,r1,r2,p ≤ xR t1,r1 + xR t2,r2 ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P e r1 ∩ P e r2 , index t 1 < index t 2 (4.87) yeE t1,t2,r1,r2,p ≤ xR t1,r1 + xR t2,r2 ∀t 1 , t 2 ∈ T I , r 1 ∈ R t1 , r 2 ∈ R t2 , p ∈ P s r1 ∩ P s r2 , index t 1 < index t 2 (4.88)

Instances generation and checking

In this section, we consider the preprocessing phase in which a G-TUSP instance is set. We focus on instance generation aspects that typically aect solution quality and computation time.

We rst look at on the generation of the set of alternative paths for trains. Then, we report a method to check a necessary condition for instance feasibility before starting the MILP solution.

Path generation

In section 4.1.3, we noticed that routes are dened by signalling system specications. Basically an infrastructure contains a set of routes. In order to have a G-TUSP instance, a set of paths is generated thanks to the existing set of routes. A second input is a set of trains, for which a starting and nishing points in the infrastructure are specied. Such points are signals at which train paths have to start or nish. A passing train has one starting point and one nishing point. It may also have to pass through a specic platform. An arriving train has one starting point and several possible nishing points. The number of nishing points increases with the number of shunting tracks it can access. A departing has one nishing point and several possible starting points. The number of starting points increases with the number of shunting tracks it can access. An intermediate train t has several possible starting and nishing points which are located on tracks where t can be parked. In this section, we report how we generate the set of alternative paths to obtain G-TUSP instances. Moreover, we show how to derive common sections to these paths, needed to strengthen the model as discussed in Section 4.2.2.

Generating paths with a set of routes

Set R t is computed by looking for all paths that link starting and nishing points of t.

When we do so, we consider a maximum number of turnaround for each path, and we set it as small as possible depending on the infrastructure layout. In particular, consider the example in Figure 4.6.

Here, one turnaround is allowed to move between tracks in the same group (blue path). Instead, two turnarounds must be allowed to move between some tracks and some platforms (orange path). Considering maximum number of turnarounds signicantly reduces the number of possible paths. For the infracture of Metz-Ville station (Section 4.4) the algorithm generates 8567 paths while 56949 paths are obtained with a simple breadth rst search algorithm.

Computing the set of sections for track-circuit utilization disjunction

In Section 4.2.2, we introduced set S r,r of sections shared by paths r and r . S r,r is made of subsequences of formal track-circuits in T C r and T C r . These subsequences can consider T C r and T C r in the same order or in the opposite order as proposed in Algorithm 1. This algorithm requires |T C r ||T C r | iterations. 

Alternative paths number reduction

The size of the set of paths R t that can be assigned to a train t depends of two factors:

• the multiplicity of paths between a starting point and a nishing point

• the multiplicity of starting points and nishing points

The rst factor concerns all trains, while the second one is specic to shunted trains. Indeed, the multiplicity of starting or nishing points is due to the multiplicity of shunting tracks. In this section, we provide techniques to limit the size of R t considering these two factors.

Reducing the number of alternative paths between two points

We implement a selection of alternative paths based on a simplication of the approach given by Riezebos and Van Wezel [2009]. As for shunted trains paths are dened between shunting tracks or between shunting tracks and platforms, there is no use to consider the sequence of tracks a route goes through, as disturbed day, one of the two north side shunting necks is closed. This shunted neck is circled in the red (Figure 4.7) and the available one is circled in green. During the other perturbed day, one of the two north side shunting necks is closed because of a major track failure. A shunting neck is a track used for train turnarounds during shunting movements. The closed shunted neck is circled in red in Figure 4.7 (north side, up). Another neck remains available on the north side of the station, and it is circled in green in the gure. The track closure scenario reduces the set of possible routes and increase the likelihood of the occurrence of conicts. For example, if a train has to be moved from yard F2 to yard F4, in this scenario it has to use the green shunting neck and traverse the main station tracks on which passing trains travel too. For each of the four days, we consider a day and a night time scenario. The former includes trac between between the morning (7:00) and the evening peak hour (19:00). In this interval, between 14 and 18 train units have to be shunted and there are between 241 and 243 passing trains. The latter includes trains between evening (18:30) and the next morning peak hour (7:30). In this interval, between 19 and 26 train units have to be shunted and there are between 158 and 165 passing trains. 

Results

Table 4.6 reports the results obtained on the 8 instances described in Section 4. can also be delayed in addition to shunted trains delays, then the total delay reported in Table 4.6 comes from these two sources. The table also shows the actual total delay recorded on the trac database. We remark that the solver does not reach an optimal solution or a proof of optimality in the allocated time for any of the instances. The percentage optimality gap exceeds 10 % in both arrival delay scenarios D3-0 and N3-0.

The solution of the MILP has no delay for disturbance free scenarios D1-0, D4-0, N1-0 and N4-0. However, more shunting movements are performed in our solution than in the one implemented by dispatchers. The solution of D2-0 brings a departure delayed as in the actual trac data. It is in both cases the same departing train, nevertheless it suers from a 500 seconds delay in our solution while it is 600 seconds in reality. In the total delay, we consider delays of departing trains and passing trains. In the solutions of D2-0, some passing trains are also delayed. This is why we have more than 700 seconds of delay. In instance D3-0, despite a signicant gap, the solution obtained reduces the total delay. The solution of N2-0 switches two trains in order to reduce the delay. For N3-0, the result is notably dierent from the actual decisions. The solution changes three assignments from the planned train matching. Then fewer operations are canceled than in the solution implemented by dispatchers, in which the planned train matching is not changed. In summary, the implementation of our MILP formulation calls the attention on relevant alternatives to the choices of dispatchers in the tested instances. In particular, they highlight the signicant eect of changes in the train matching for G-TUSP. 

Conclusion

In this chapter, we provided a formal description for the G-TUSP, which is the integrated problem of managing shunting operations planning in passenger trains. It is a large decision problem that includes many specic operational constraints. We presented a MILP formulation for allocations and continuous time scheduling.

The formulation copes with both rolling-stock management and capacity management. It extends some literature approaches which combine the TAP with the TMP. Moreover, we introduced microscopicscale routing features based on a MILP formulation for real-time trac management, and maintenance scheduling aspects. Maintenance aspects lead us to consider that the trains can be successively parked on several tracks which is typically not considered in most of the TUSP literature. The proof of concept carried out on the Metz-Ville case-study validates the formulation relevance. Indeed, it conrms the interest of implementing an integrated approach for improving the operating performance of a station.

Even if we cannot prove the optimality of the solutions, they are very satisfying compared to the decisions made by dispatchers.

Nonetheless, before being able to deploy an optimization tool for this problem, we need to reduce computational times. A heuristic phase may provide a rst integer solution to the MILP solver, which typically has a major impact on performance. We may also reduce the number of variables by reducing further the number of alternative paths to consider. The choice of the remaining paths is in this case critical, and a suitable approach must be found. Other solution techniques such as decomposition or sequential algorithms can be applied. In the next chapter, we will propose such algorithms and assess their performance.

Chapter 5

Sequential algorithms for the generalized train unit shunting problem

As mentioned in Chapter 3 shunting operations planning includes several decisions. First, arriving train units must be assigned to departures, which constitutes a matching decision. This matching must take into account rolling stock features required for departures. Another decision concerns train units location: they must be parked at one or several shunting tracks depending on amenities required by maintenance operations. Similarly, movements are set to achieve the parking locations. For these movements, route planning decisions are to be made, since paths are assigned to train units and movements are scheduled based on running times and potential conicts. Finally, respecting maintenance crews availability, maintenance operations must be scheduled. Although all these four types of decisions are often made separately, they are usually strongly interdependent. For instance, some matching plans make train units parking or maintenance scheduling impossible.

In In Chapter 3, we presented a sequential planning approach based on the hierarchy between the TMP, the SMP, the TAP * and the SRP. To obtain good solutions to the G-TUSP in shorter time, processing sequentially the dierent sub-problems is a natural strategy that we investigate in this chapter. However, as above mentioned, intuitively at least some of these sub-problems would rather be solved in an integrated way. In this study, we assess the importance of the interdependence between sub-problems considering their sequential or integrated solution.

In this chapter, we propose algorithms in which a group of sub-problems is solved exactly while the decision variables related to the other sub-problems are set. Then, we select the best algorithm to solve the overall G-TUSP considering the most appropriate sub-problems integration. We model the G-TUSP on an infrastructure microscopically represented. All the algorithms proposed are tested on several instances which cover dierent types of disturbances. Some of these instances replicate actually occurred situations, other are articially generated starting from them. These solution approaches have been presented in the 12th World Congress in Railway Research (WCRR) Kamenga et al. [2019a] and in the 21th congress of the French Operations Research & Decision Support Society [START_REF] Kamenga | Sequential approaches for solving shunting problems at passenger railway stations[END_REF].

The rest of the chapter is organized as follows. Solutions algorithms are presented in Section 5.1.

Section 5.2 reports experiments and Section 5.3 concludes the chapter.

Table 5.1: Schematic representation of the structure of the algorithms proposed. In the rst step a solution of one or more sub-problems is found. This solution is passed to step 2, where other sub-problems are solved, including the SRP, and where only one path is considered available for each movement. In step 3, alternative pathss are also considered. When a problem is mentioned in two subsequent steps, the solution of the former is used to initialize the search in the latter.

Name

Step 1

Step 2

Step In chapter 4, we proposed a comprehensive MILP formulation which suers from computational time issues when its exact solution is attempted. In this section, we investigate dierent possibilities to reduce the computational time necessary to achieve a good quality solution. Remark that, on one hand, the literature shows that many sub-problems are already dicult to solve when they are tackled independently from one another. On the other hand, the interaction between the sub-problems signicantly complicates the solution task. The possibilities we propose concretize in sequential algorithms, in which dierent phases integrate dierent sub-problems.

In the sequential algorithms, we independently tackle a sub-problem or a group of sub-problems and we use the so obtained solutions as input to the following ones. As discussed in Chapter 3, in sequential order, the TMP is the rst problem to be solved in the G-TUSP. Indeed, it is thanks to a TMP solution that the time at which a train must be ready for departure is known. Then, the time spent by every train in the shunting yard can be determined. Moreover, the TMP can be instantiated without the need for a solution to other sub-problems. After the TMP, the SMP can be solved. In particular, compatible crews and shunting tracks are allocated to maintenance operations. In the next step, the TAP * assigns shunting tracks for trains to be parked on when they are not undergoing maintenance operations. Finally, the SRP is solved.

Table 5.1 reports the structure of dierent sequential algorithms. We consider four algorithms in which we progressively nd exact or heuristic solutions to dierent sub-problems. All algorithms are in three steps. In the rst step, a rst part of the G-TUSP sub-problems are solved. Therefore a partial solution is found, since a subset of sub-problems is solved. This step is named Partial solution. In this step, depending on the algorithm, the TMP and the SMP are solved with the MILP formulations detailed in Sections 5.1.1 and 5.1.2. The TAP * is solved heuristically, using the algorithm described in Section 5.1.3.

In the second step, the missing sub-problems are integrated, but only one path is considered in the SRP to link each origin-destination pair. This step is hence named FIX-Solution. In this step, we use the formulation of Chapter 4 in which we x the value of the decision variables corresponding to some of the problems solved in the rst step. Finally, in the third step, all sub-problems are solved considering all available alternative paths. This step is named VAR-Solution. Also this step uses the formulation of Chapter 4 in which we x the same variables as in the second step. The search is initialized with the FIX-solution.

The rst algorithm reported in Table 5.1 is named S-FM: shunting with xed matching. Here, rst, the TMP is exactly solved. Then, the three remaining sub-problems are exactly solved altogether considering the matching as given and non-modiable: the TMP is not solved again in the second and third step.

Instead, all other sub-problems are solved in both these steps: the solution found in the former is used as initial solution in the search of the latter.

The second algorithm is S-FMM: shunting with xed matching and maintenance. Here, the integrated problem composed of the TMP and the SMP is exactly solved, and its solution is used as input for the integrated exact solution of the TAP * and the SRP.

In the third algorithm, S-FMMP for shunting with xed matching, maintenance and parking, the rst step starts as in S-FMM. However, here the solution is used as an input of both a heuristic algorithm for the TAP * and the exact solution of the SRP.

Finally, the fourth algorithm is the S-FP: shunting with xed parking. Here, as in S-FMMP, we have the exact integrated solution of the TMP and the SMP, and the heuristic one of the TAP * . However, while the TAP * cannot be modied in the last two steps, the TMP and the SMP ones can.

The reason for using sub-problem solutions as non-modiable inputs for subsequent steps of the algorithms is the attempt of limiting the size of their search space, so that they can be explored more eciently. Indeed, this eciency comes at the cost of possibly excluding the overall optimal solution of the G-TUSP from the explored space. Instead, when solutions are only used to initialize the search but can be modied, it is a dierent approach to try to increase eciency, this time without excluding the optimum a priori. As the number of alternative paths appears to be an element strongly increasing the diculty of the instances, we limit it thanks to the application of a pre-processing technique presented in Section 4.3.2.

MILP formulation for TMP

We consider the notation of Table 4.1. For a departing train t ∈ T S and an intermediate train t ∈ T I (t), the weight ωS t,t penalizes changes to the original rolling-stock rotation. As the TMP is solved separately from other G-TUSP subpoblems, we penalize solutions that do not let enough time between the arrival and departure of a train to carry out maintenance operations. Indeed, as operations can be performed on intermediate trains, they may not be ready to depart as soon as they arrive at the shunting yard. Then for a departing train t, T I (t) may contain some trains that can not be ready at t's departure time, unless an operation is cancelled or the departure delayed. Let T N I (t) ⊆ T I (t), be the subset of intermediate trains that cannot be ready on time for t's departure if all planned operations are executed. T N I (t) can be computed by considering the total duration of the operations planned to be carried out on each intermediate train and then deducing its earliest exit time from the shunting yard. The denition of the cost ωS t,t for t ∈ T S , t ∈ T I (t) is updated to consider this issue. ωS t,t is positive if the assignment does not belong to the initial matching or if t ∈ T N I (t) and is equal to 0 otherwise. This cost represents the fact that it is preferable to keep the initial assignment if possible: if a precise assignment has been made in the tactical G-TUSP, then we may avoid the violation of macroscopic constraints by keeping it. Indeed, if by doing so major infeasibilities occur in the station under consideration, then changes are allowed, which motivates the relevance of the TMP.

We consider the following MILP formulation for the TMP. We rst consider the following binary variables:

• xT t , with t ∈ T I , is equal to 1 if t is created and 0 otherwise • P t is the set of shunting tracks compatible with t, P t = r∈Rt P r .

• mr is the maximum duration of a shunting movement.

• bt is the minimum time that must separate the arrival of a train on a track and the departure of another train which used the same track before.

We introduce non-negative continuous variables: After computing all parking time slots, we focus on unassociated slots. We consider them following their starting time chronological order. In the example in Figure 5.1, the unassociated slot of t 4 is considered rst. For each of these slots, we identify the set of shunting tracks that satisfy three criteria:

1. They must be compatible with the intermediate train, e.g., they must be electried if the train is electric;

2. They must respect the length constraint, i.e., have a suciently long available portion for the whole slot duration;

3. They must respect the crossing constraint, i.e., allow the association of the slot without the occurrence of crossing issues.

Then, a slot is assigned to the the track with the shortest remaining length. The yard layout and the latter criterion may impose an entrance side to the shunting track. When the entrance side is not constrained, we set an entrance side dened in input for each shunting track. We never experienced an infeasibility, a situation in which some slots remain unassociated.

This algorithm is formalized in Algorithm 2.

Experimental analysis

In this section, we present the results of the assessment of the four proposed algorithms (Table 5.1). The algorithms are coded in Java, and MILP models are solved with the commercial solver CPLEX. The experiments are run with an Intel R Xeon TM CPU X5650 2.67 GHz, 12 cores, 24 GB RAM. We study trac in Metz-Ville station. It is a major hub for Eastern France railway trac. We tackle real scenarios which include perturbations such as arrival delay or track closure. We also consider scenarios in which we insert ctive perturbations in order to enrich the experimental analysis.

We set running time limits for each algorithm's phase that are mentioned in Table 5.1:

• In the rst step, that gives a partial solution (partial solution), the running time is limited to 30 seconds. In S-FM and S-FMM, this is the running time for solving a MILP formulation, while in S-FMMP and S-FP the running time includes both a MILP solution and a heuristic run. • In the last step, where a complete solution considering alternative paths (VAR-solution) is sought, the running time is limited to 900 seconds.

Coecients in the objective function are reported in Table 4.5.

Case study

We consider trac in Metz-Ville station and its passengers shunting yards described in Section 4.4.1 and represented in Figure 5.2. • 4 instances do not contain perturbations (all real-life scenarios),

• 14 instances only contain delays (2 real-life and 12 ctive scenarios),

• 8 instances contain only track closures (2 real-life and 6 ctive scenarios),

• 6 instances contain both delays and track closures (all ctive scenarios).

Before running the algorithms on each of these instances, we execute the feasibility test described in Section 4.3.3.

Experimental results

In this section, we focus rst on computation times to compare our algorithms, then we tackle objective function values. The rst analysis shows the impact of the integration of dierent sub-problems on the diculty of the G-TUSP. Computational times are summarized in Table 5.3 for each step in the algorithms. Let us Step 1, the computational time of the last two algorithms does not exceed 6.6 seconds with an average only slightly higher than the one of the rst two algorithms (4.1 seconds more than S-FM and 1.2 seconds more than S-FMM). In Step 2, when the TAP * is considered the computational time reaches 362 (S-FM) and 373 (S-FMM) seconds, while it remains lower than one minute otherwise. In Step 3, only S-FMMP always achieves optimality: the computational time is at most 715 seconds. S-FMM, which in this step only diers for the integration of TAP * , only solves 12.5% of the instances to optimality within 900 seconds.

The latter algorithm exits the search with an average optimality gap of 4.5% and a maximum of 7.3%.

Although reaching in some cases the time limit, S-FP solves 93.9% of the instances to optimality in step 3 with an average gap of 0.3% and a maximum gap of 0.4%. Finally, S-FM never manages to close the gap, exiting with a value of 4.5% in average, and getting to a maximum of 9.5%. Indeed, this algorithm re-assess the highest number of sub-problems in Step 3, including the TAP * . A quantitative measure of the impact of the integration of this problem is also given by the number of binary variables included in the MILP formulations of Step 3 of the dierent algorithms: they are 1838K and 1831K for S-FM and S-FMM, respectively, while only 49K and 162K for S-FMMP and S-FP.

Focusing on the other sub-problems, we observe that the computational time to solve Step 1 in S-FM, and hence to solve the TMP, does not exceed 0.8 seconds. Indeed, As mentioned by [START_REF] Freling | Shunting of passenger train units in a railway station[END_REF],

the TMP alone is rather easy to handle. The same holds when this problem is integrated with the SMP:

solving the MILP that constitutes Step 1 of S-FMM takes between 2.2 and 5.1 seconds. Apparently, integrating the SMP has a minor impact on the diculty of the problem. Indeed, in Step 2, when solving to optimality the TAP and the SRP (S-FMM) or the TAP, the SRP and the SMP (S-FM) the average computation times dier by less than 10%. In Step 3, where alternative paths are allowed, S-FM has an average computation only slightly higher than S-FMM.

After this analysis on diculty, we focus on the impact of integrating G-TUSP sub-problems on solution quality. We discuss the quality of solutions according to objective function components, rst, and scenario types, second.

Table 5.4 reports the mean values of the G-TUSP objective function and some of its components returned by the four algorithms as their nal solution, i.e., after Step 3. Departure cancellations are not mentioned in Table 5.4 since no departure is cancelled in the solutions. S-FP gives solutions with the best average objective function, while S-FMMP gives the worst. This is not surprising since, in Steps 2 and 3, the latter considers xed the solutions of all sub-problems but the SRP, while S-FP only does so for the TAP * . Indeed, here the specic solution of the TAP * does not really make a dierence, as S-FM and S-FMM solutions are in average worse than S-FP and better than S-FMMP.

If we look at the number of modications to the planned train matching (third column of Table 5.4), we see that S-FM is the algorithm that modies the planned train matching the least, while S-FP modies it the most. Indeed, S-FM, S-FMM and S-FMMP only modify the train matching in Step 1, integrating the TMP at most with the SMP. As it can be expected, the higher the number of sub-problems the TMP is integrated with, the higher the number of modications.

The average total delay and number of cancelled maintenance operations are reported in columns four and ve of Table 5.4. S-FMMP gives solutions with the longest delay, and in particular with signicantly longer delay than S-FMM. In both algorithms, a MILP integrates the TMP and the SMP in Step 1, which then returns the same solution for both algorithms. This solution is not re-assessed in the following steps.

Hence, maintenance operations have the same schedule in the nal solution of both algorithms. The train matching is then considered xed in the following. As mentioned in Section 5.1.1, the MILP formulation for the TMP used by S-FM includes a penalty if the solution does not let enough time for maintenance operations. However, the penalty simply considers operations duration and does not take into account crews or tracks availability, which instead may have an impact on solutions. The average number of operations that need to be canceled to t the train matching is then slightly higher than for the other algorithms. The solutions found by S-FMM, S-FMMP and S-FP have the same number of maintenance operations cancellations for all instances. While for most of the instances S-FM nds the same numbers, it cancels an additional operation for one instance. It is a daytime instance (D3-2) in which many arrivals are delayed. In this case, S-FM gives a solution which follows the initial matching, but there are not enough crews to carry out internal cleaning and ensure the on-time departures. Therefore, one internal cleaning operation is cancelled to avoid a long delay. Dierently, S-FMM, S-FMMP and S-FP change the initial matching so that no operation is cancelled.

Looking at the shunting movements, whose number and duration are reported in the last two columns of Table 5.4, S-FMMP and S-FP provide the solutions with fewer shunting movements. These algorithms return solutions with the same number of shunting movements. Indeed, the number of shunting movements is set with a TAP * solution: the more shunting tracks an intermediate train is parked on the more shunting movements are performed. In S-FMMP and S-FP, the TAP * solution is obtained with a heuristic in Step 1. The greedy algorithm for the TAP * favors the minimization of the number of shunting movements. On the contrary, once the SRP is solved taking as input a TAP * solution, the total duration of shunting movements is higher than in algorithms where the TAP * and the SRP are integrated (S-FM and S-FMM).

Table 5.5 contains mean objective function values for dierent types of scenario.

In the perturbation-free instances, S-FM and S-FMM provide slightly better solutions than S-FMMP and S-FP. Nevertheless, all the algorithms provide solutions without delays. The dierence is due to a higher duration of shunting movements, that increases the cost of S-FMMP and S-FP solutions.

In the scenarios with arrival train delays, S-FP gives particularly good results compared to the other algorithms. Its nal delays are almost twice as low as the other on average. Moreover, S-FM gives the worst solutions in average. This attests the benet of integrating the TMP and the SMP in these S-FP manages to partially compensate the early solution of the TAP * by re-assessing the solutions of the other problems. However, this does not allow the complete recovery of solution quality. In Table 5.6, we propose additional details for these scenarios, concerning the number and the duration of shunting movements. We can observe that S-FMM generates the highest number of shunting movements. Through them, the algorithm avoids conicts with passing trains, which otherwise would cause departure delays.

Conversely S-FP and S-FMMP give solutions that have fewer shunting movements and longer delays.

In scenarios that combine delays and track closures, S-FP provides more better solutions than other algorithms. In particular, they have shortest total delay.

For the eight real-life instances available, we can compare the solutions of our algorithms with the one implemented by yard planners. The available trac data contains delays, operations cancelled and number of modications to the initial matching. All our algorithms obtain better results in terms of delay except for a specic instance in which S-FM and S-FMM have a total delay 10 seconds longer than the realized one, which is 200 seconds. However in this same instance, no operation is cancelled by our algorithms. Our solutions have been considered ecient by experts of Metz-Ville station.

In summary, we can conclude that there is no algorithm that always outperforms the others, although integrating the TAP * to other problems signicantly increases the problem diculty. However, this increase does not always imply solution quality worsening in the computational time limit considered.

Globally, we think that S-FP can be considered the best algorithm, as it achieves the best objective function values overall (Table 5.4) and in two out of four types of scenarios. In the two remaining types, its average objective function value is 2% and 14% worse than its best competitor S-FM. Instead, when S-FM is not the best, the dierence with respect to S-FP is 9% and 10% in two types of scenarios (Table 5.5).

Conclusion

In this chapter, we proposed four solution algorithms for the G-TUSP, based on the sequential or integrated solution of dierent groups of sub-problems. We assess their performance on a real case study, observing their computational times and the quality of their solutions. Our experiments show that the TAP * is sub-problem that mostly complicates the G-TUSP. Once this sub-problem tackled, the others can be solved quite easily. However, to successfully solve the TAP * , appropriate solutions of the TMP and the SMP must be provided. Indeed, dierent instance characteristics may imply dierent relative performance of the algorithms proposed. In the chapter, we assessed these performance when various types of perturbations occur.

Chapter 6

Conclusion

This thesis proposes combinatorial optimization models and algorithms to solve the problem of shunting passenger trains in stations. Integrated approaches are considered to plan coupling, uncoupling, parking, maintenance and movements of train units. As mentioned in Chapter 1, we tackle both service quality and capacity consumption issues. We also highlight the practical relevance of our approaches. In this chapter we overview the main issues tackled in the thesis. In Section 6.1, we summarize the content of this thesis and we draw conclusions. Then, in Section 6.2, we report some directions for future research that emerge from the analysis of our work.

Summary and conclusions

We organized this manuscript is six chapters, including this concluding one.

In Chapter 1, we introduced our research work. In particular, we described its context and motivation, and we set its objectives. The main objective (O) is the proposal of a model and algorithm for scheduling shunting operations. It is declined in two sub-objectives: (O1) the algorithms must supply solutions at least as good as the ones currently implemented, and (O2) they must do so in reasonable time for real life instances.

In Chapter 2, we focused on the description of the railway system, considering its aspect relevant for this thesis. Namely, we rst took into account the main resources that allow the execution of rail services:

infrastructure capacity consumption and rolling stock management, including aspects as maintenance needs, and coupling and uncoupling of train units. Then, we moved to the passenger railway service planning process. This process is mostly resource centered and made at dierent time horizons. When narrowing the perspective to shunting problems, we observed how their denition is centered on train units preparation for train operating companies, and on station capacity for the infrastructure manager.

However, the common need for eciency increase is currently pushing all actors to aim to common objectives including the minimization of: departure cancellations, delays, shunting operations as train unit uncoupling and coupling, maintenance operations cancellation, . . . In France, shunting is planned over a sort-term horizon which does not exceed one month. It is considered after the rolling stock circulation and is strongly related to platforming. In shunting, the use of rolling stock, the use of infrastructure and the use of crews are strictly interlinked.

In Chapter 3, we formally described the shunting problems we consider in the thesis. In particular, we identied and discussed four problems: the Train Matching Problem (TMP), the Track Assignment Problem (TAP), the Shunting Maintenance Problem (SMP) and the Shunting Routing Problem (SRP).

First, we discussed these problems as well as their interdependence. Then, we analyzed the literature on transportation problems related to one or more of them. Indeed, the literature deals with a specic sub-problem or few of them, solved either sequentially or with integrated algorithms.

In Chapter 4, we formalized the integration of the four problems identied above, and proposed the Generalized Train Unit Scheduling Problem (G-TUSP). In addition, this problem includes a large set of features that are present in real life but so far neglected in the literature. For example, it includes maintenance crews scheduling and protection constraints, that guarantee the safety of these crews when working on a train unit. No existing approach in the literature considers such an comprehensive problem, that must however be daily solved by planners.

For the G-TUSP, we designed a MILP formulation, considering an extremely detailed representation of all problem aspects. For example, a microscopic representation of the infrastructure is modeled to dene train routing. Moreover, we proposed techniques to reduce the size of instances such as the removal of redundant binary variables used for ensuring train unit's separation during movements. We tested the solution of this formulation on real instances representing trac in Metz-Ville station, in France, and we obtained satisfying solutions within one hour of computation. We compared these solutions with the ones implemented by planners, and we showed that our optimization outperforms the current practice under several criteria. In case of planned disturbances, such as works or delays, the use of the formulation was clearly relevant. Indeed, service quality indicators such as delays and canceled operations were improved.

Nevertheless, operating costs we obtained were sometimes higher than in the implemented solutions.

However, a service quality is considered the priority in this process, our solutions were appreciated by planners. Indeed, thanks to our comprehensive model, dierent solutions of the trade-o between costs and service quality can be considered.

This analysis allows concluding the fulllment of objective (O1) as well as in general objective (O).

However, as for the computation time necessary to nd good solutions to real life instances, the results presented in this chapter were not completely satisfactory. Hence, we subsequently focused on the second objective of the thesis.

In Chapter 5, we introduced algorithms to solve the G-TUSP considering its sub-problems either sequentially or in an integrated way. In particular, we designed and developed four algorithms, dierent in the subsets of sub-problems considered in their subsequent steps. We assessed the performance of these algorithms in a thorough experimental analysis, including real and articial instances representing trac in Metz-Ville station. This analysis showed the achievement of objective (O2): all algorithms are suitable to tackled the G-TUSP in the preoperational planning phase which we consider in this thesis, going from six days to few hours before operations. In particular, even in the dicult articial instances designed to challenge the algorithms, good solutions were returned in about 20 minutes in the very worst cases.

The thorough experimental analysis performed also allows the analysis of the impact of the approach used for dierent sub-problems and of their integration. In particular, the TAP stands out for its complicating role. If it is included in a formulation aimed to be solved exactly, the computation times grow signicantly. However, in terms of nal objective function value, and hence in terms of costs and service quality, all the combinations of sub-problem integrations we tested were successful. Although the performance of the proposed algorithms were not impressively dierent, the best algorithm appears to be S-FP:

shunting with xed parking. Here, rst a MILP formulation integrating the TMP and the SMP is solved.

Then, a heuristic for the TAP nds a track assignment to park train units consistently with the matching and maintenance schedule previously found. Finally, keeping this track assignment unchanged, matching and maintenance schedule are re-optimized through a MILP solution rst with pre-aected routes for all train units, and then allowing route exibility.

Future research

The studies carried out during this thesis raise new questions which may be the subject of future research directions. In this section we mention directions that cover three issues: performance improvement, quality of solutions, extension to real time management.

In this thesis, several approaches are proposed to achieved good performance in the G-TUSP solution:

reducing instances sizes, boosting a MILP formulation and considering sequential algorithms. Possibly, the performance can be further improved by exploring three research directions: further reduction of instance size, alternative solution approaches, alternative modeling approaches.

We remark that the number of paths per train strongly aects the size of instances that solve the TAP and the SRP. A reduction of the number of paths per train can reduce signicantly the size of instances.

In the thesis, we propose a selection of shunting tracks and a basic approach based on shortest path search in order to reduce the number of alternative paths between two points. However, such reductions can remove paths that belong to an optimal solution. The selection of alternative routes between two points without eliminating optimal solutions is the problem formulated and tacked with a metaheuristic by [START_REF] Sama | Ant colony optimization for the real-time train routing selection problem[END_REF]. The approach is implemented for the problem of minimizing total delay propagation when optimizing train routing and scheduling in real-time in case of perturbation. A such approach may have to be adapted to the shunting problem and to consider an objective function that including several very dierent aspects. From a similar perspective, we also think that an algorithm that pre-selects shunting tracks where train units can be parked may be pertinent.

Other algorithms based on exact approaches, heuristics or metaheuristics may be investigated. Decomposition methods in mathematical programming may deal with the overall G-TUSP. For example, Lagrangian relaxation may be studied in order to tackle dicult constraints in the TAP. Benders decomposition and column generation may also be considered to tackle large size instances. A local search based metaheuristic may also be considered to solve the G-TUSP. As mentioned in our literature review, thanks to local search and simulated annealing, [START_REF] Van Den Broek | Train shunting and service scheduling: an integrated local search approach[END_REF] obtains convincing results for a similar problem in which no simultaneous shunting movements is allowed. Indeed, a such approach will have to be extended to assess its suitability to the microscopic scale routing and scheduling of shunting movements, when simultaneous movements are possible.

A further possibility is the design of a meta-algorithm, including dierent algorithms to be executed in dierent situations. The main issue with the design of a such an approach is the denition of the triggers associated to each algorithm. A deep understanding of the problem is necessary to do so. Alternatively, a machine learning mechanism may be implemented for the meta-algorithm to learn these triggers as it is deployed. Indeed, our experimental analysis may be considered as a sort of rst training set. In particular, it allowed identifying some relations between the type of perturbation occurring and the most suitable sub-problem integration. For example, we observed that integrating the TMP and the SMP is very benecial in case of delays and that integrating the TAP and the SRP is relevant in case of track closures. Of course, a very large experimental testbed should be obtained to set up a reasonable machine learning approach. However, we think that it may be possible to acquire it while, for example, deploying a single algorithm and running in the background the alternative ones for some time.

Signicantly changing perspective, discrete time models may be studied. A discrete time model can be particularly relevant to model shunting yard operations, where a rather large time step, probably in the order of the minute, can be set to handle crews and track utilization. Instead, on main tracks a lower time step or a continuous model must be considered to deal with conicts between shunting and regular movements. Then methods that ensure consistency between scheduling at shunting tracks and scheduling at main tracks should be found.

From a dierent point of view, the quality of solutions of integrated shunting problems involves two issues that may be investigated in future research: multiobjective optimization and robustness.

In the thesis, the tradeo between service quality or operational cost criteria is considered with a weighted sum. Nevertheless weighted sum can only represent preferences based on compensation and do not consider all ecient solutions [START_REF] Ehrgott | A survey and annotated bibliography of multiobjective combinatorial optimization[END_REF]. Alternative approaches in multiobjective optimization can be studied. Preference modelling and elicitation should be considered.

Moreover, solutions that have the same objective function value may not be equivalent in practice.

This is due to uncertainty of parameters in our models. for planners. Indeed, an additional issue that may be considered is robustness: solutions capable to cope with uncertainty undoubtedly preferable. In, a rst approach we require that solutions are feasible in all scenarios of a certain restricted disturbances scenario set. In a second approach, recovery robustness [START_REF] Liebchen | The concept of recoverable robustness, linear programming recovery, and railway applications[END_REF], [START_REF] Cicerone | Recoverable robustness in shunting and timetabling[END_REF]) may be considered. In recovery robustness,we consider also means or recovery possibilities to modify the plan which can be made feasible in the limited set of scenarios. These means or recovery eort is limited. In this approach, a solution is feasible if a recovery possibilities exist for every scenario studied.

We can investigate extensions of our results to real time shunting operations management. In case of disturbances, rerouting or rescheduling may be necessary. The G-TUSP solution can be used in a loop control of shunting operations with a rolling horizon. The horizon duration should be chosen wisely. Indeed, this horizon determines the set of possible modications. It may start few minutes after a disturbance and nish once trac is recovered. As decisions must be taken in a very short time, heuristics and metaheuristics can be suitable solution approaches.
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 2 Figure 2.1: Utilization of track-circuits by a train that follows the blue route in the case of a three aspect signaling system

Figure 2

 2 Figure 2.2: Example of a station layout: Lyon Part-Dieu station, in France

Figure 2

 2 Figure 2.3: Track occupancy diagram at Marseille Saint-Charles station: each row represents a platform track; a rectangle indicates the time at which the platform track is occupied by a train (SNCF Réseau)
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 3 Figure 3.1 is a LIFO track, while track 15 at the bottom is a regular track. Track 82, which is drawn in brown in Figure 3.1, has a gangway and track 24, drawn in light blue, has a washing machine. There are two shunting necks on the north side and two shunting necks on the south one, which are red squared in Figure 3.1.
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 31 Figure 3.1: Simplied layout of Metz-Ville station

  Figure 3.2: Shunting tracks congurations

  Denition 3.3. Considering a matching plan and a maintenance schedule, the Multiple Track Assignment Problem (TAP * ) is to assign shunting tracks with entrance side and time, and leaving side and time, to intermediate trains such that crossing, length, matching plan, maintenance parking and protection constraints are respected, and the number of used tracks and shunting movements is minimized. Another version of the TAP considers that intermediate trains are parked at only one track during the planning period: This is the 1-track assignment problem (TAP 1 ) also called standard track assignment problem. Considering this problem is relevant if train units do not have to change tracks for cleaning or maintenance operations. In the TAP 1 , the time at which each train unit arrives in a shunting track is xed since it is the time at which it arrives in the shunting yards. Similarly the time at which each train unit leaves a shunting track is known since it is the time at which it leaves the shunting yards. Therefore, there is no use to assign an entrance and a leaving time to each intermediate train that has to be parked in the shunting yard. Denition 3.4. Considering a matching plan and a maintenance schedule, the Standard Track Assignment Problem (TAP 1 ) is to assign a parking track with entrance and leaving side to intermediate trains compatible with their maintenance operations, such that crossing and length constraints are respected and the number used tracks is minimized.Shunting routing problem (SRP)Shunting movement demands are the rst input of the SRP. They can be deduced from a parking plan and a maintenance schedule. Arriving trains need to move from their platform to their rst shunting track. Also, departing trains need to move from their last shunting track to their platform. Intermediate trains can have to move between shunting tracks. Hence, a shunting movement demand can be related to either an arriving, a departing or an intermediate train. The side from which trains must enter or leave a platform or a shunting track is provided by the parking plan. A shunting movement demand for a train indicates the window time in which it must start moving and a time window in which it must arrive at its destination. At shunting tracks, these time windows are set such that the maintenance schedule and the parking plan remain feasible.

3. 3 .

 3 Here, some specic constraints are represented with white lled rectangles. Thick arrows represent the shunting problems solutions ow while thin arrows represent the information ow of data. If the destination of a thick arrow is a color lled rectangle, then the destination problem needs the corresponding input solution to be instantiated. If the destination of a thick arrow is a specic constraint, it is this constraint which directly depends on the corresponding input solution. Therefore, these arrows represent the hierarchical relation between problems. Indeed, if an arrow links two color lled rectangles, the origin is a master problem of the destination.

Figure 3

 3 Figure 3.3: Sequential planning approach for shunting problems (const.: constraint(s))

  Figure 3.4: Passengers transportation shunting problems in the literature

Figure 3

 3 Figure 3.5: Graphical representation of crossing constraints on a regular track.Trains are represented by two points which indicate the side and the time at which they enter and leave the track. For each train, theses points are linked with a segment. If two segments cross, the corresponding trains can not be parked at the same track using the specic entrance and exit sides at the specied times.

  [START_REF] Cardonha | A set partitioning approach to shunting[END_REF] tackle the VPP for a depot with FIFO lanes with the same hypotheses as[START_REF] Winter | Real-time dispatch of trams in storage yards[END_REF]. They also consider a cyclic version. The number of crossings must be minimized in a 3 dimensional assignment problem. They propose three quadratic programming formulations. The authors propose a pseudo-polynomial time pricing based on the dynamic programming approach of[START_REF] Winter | Real-time dispatch of trams in storage yards[END_REF] for a column generation algorithm. Then, an integer solution is obtained thanks to a heuristic. They also deal with the robust congurations introduced by[START_REF] Hamdouni | Dispatching buses in a depot using block patterns[END_REF]. They consider ctive instances which contain up to 20 tracks and 200 vehicles of 40 types.

  [START_REF] Jacobsen | Train shunting at a workshop area[END_REF] consider the TAP * and the SMP with a discrete time model. Shunting tracks are supposed to be LIFO. The paper uses three metaheuristics: guided fast local search, guided local search and simulated annealing. Experiments are run on virtual instances containing up to 10 trains.

  [START_REF] Abbink | Intelligent Shunting: Dealing with Constraints (Satisfaction)[END_REF] tackles both TAP and SRP with a discrete time model. Tracks are divided in positions that can contain a train unit. A constraint programming algorithm is proposed to achieve conict-free planning.

  Haahr and Lusby [2017] propose a model of the rolling stock circulation problem (RSCP) which integrates TAP decisions and constraints. A multi-commodity ow based model is combined with a track assignment at each station depot. They propose a compact ILP formulation and a path approach for column generation. They tackle real life instances based on Copenhagen commuter rail network. The results highlight the interest of integrating TUSP and RCSP.[START_REF] Thorlacius | An integrated rolling stock planning model for the copenhagen suburban passenger railway[END_REF] integrate shunting track assignment in the RSCP. Train units that are coupled can be parked on the same track. Then, position of train units must be taken into account. The authors add edges which represent parking in a multi-commodity network. Instances based on Copenhagen commuter rail network are solved with a hill-climbing heuristic.[START_REF] Cadarso | Robust rolling stock in rapid transit networks[END_REF] integrate some the TAP constraints in RCSP. The authors consider an aggregated capacity constraint for the TAP. They also take into account the cost of coupling and uncou-Table 3.5: Summary of main contributions in shunting for passengers trains. The second column indicates if a papers tackle the TMP. The third column indicates the version of TAP considered. The fourth and the fth columns respectively show if SMP and SRP are treated. In both columns, Cont. is for a continuous time model and Disc. for a discrete time model. The last column indicates if the paper proposes an integrated solution approach.

  . The problem aims to minimize departure delays and cancellations if timetable perturbations are expected, as well as maintenance call o. Moreover, the minimization of the number of coupling and uncoupling operations is also sought.The aim of this chapter is to provide a formal model of the G-TUSP. Specically, the contribution consists in formulating it as a mixed-integer linear programming (MILP) formulation. The formulation is based on a microscopic representation of the infrastructure and on consideration of dummy train units in order to manage coupling and uncoupling. In particular, an accurate description of trac conicts due to shunting movements is proposed: shunting movements can be simultaneous and capacity utilization is wisely considered thanks to a model inspired by RECIFE-MILP[START_REF] Pellegrini | RECIFE-MILP: An eective milpbased heuristic for the real-time railway trac management problem[END_REF]. This formulation has made the object of a paper published in the proceedings of the international conference RailNorrköping 2019 -8th International Conference on Railway Operations Modelling and Analysis (ICROMA)[START_REF] Kamenga | Train unit shunting : Integrating rolling stock maintenance and capacity management in passenger railway stations[END_REF] and has been presented in the 20th congress of the French Operations Research & Decision Support Society[START_REF] Kamenga | Train unit shunting : Integrating rolling stock maintenance and capacity management in passenger railway stations[END_REF].The rest of the chapter is organized as follows. The GTUSP is formally introduced in Section 4.1. Section 4.2 proposes a MILP formulation of the G-TUSP together with some proposals for making it stronger. Section 4.3 reports possible preprocessings for speeding up the solution of the formulation. Section 4.4 describes the experiments carried out as proof of concept of the applicability of the formulation.Finally, Section 4.5 concludes the chapter.4.1 Formal description of G-TUSP4.1.1 Modelling principlesIn our formulation of the G-TUSP, we consider that train units can be coupled or uncoupled to form trains. Three formal sets of trains are introduced to model this: arriving, intermediate and departing trains. Arriving trains are moved from a platform track to the shunting yard. Once there, they are uncoupled if needed, and they become intermediate trains, which are moved in the yard and submitted to maintenance. Finally, intermediate trains are coupled if necessary and become departing trains to be moved to the suitable platform track. We suppose that arriving trains become intermediate trains at the rst shunting track they use. Also once intermediate trains are parked at their last shunting track they become departing trains. Trains move on an infrastructure modeled microscopically through a trackcircuit scale representation. A track-circuit is a portion of track on which the presence of a train unit is automatically detected. Thanks to this infrastructure model, detailed characteristics of interlocking systems are taken into account and train safety is ensured through suitable separation.

Figure 4 .

 4 Figure 4.1 represents a simple example in which an orange, a green and a blue path are shown with their respective track-circuits named z followed by a number. Both the orange and blue paths use trackcircuit z 15 , therefore they cannot utilize it at the same time. The train with the orange path is an intermediate train whose path starts at shunting track 21. This train results from the arriving train using the green path and has to be cleaned. It is parked at shunting track 29 for cleaning. The train with the blue path is a departing train which uses platform A. Some specic concepts with notations are introduced in Section 4.1.2, 4.1.3 and 4.1.4. Notations are reported in Table 4.1.
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 41 Figure 4.1: Simple example. Station layout with signals represented by squares. The green arriving train whose path is represented with a green line becomes the orange intermediate train at shunting track 21. The orange intermediate train's path is represented in orange. The blue departing train leaves the shunting track and is moved to platform A. This train uses the blue path.

Figure 4

 4 Figure 4.2: Train matching. Arriving trains T T on the left are used for the departing trains T S on the right thanks to intermediate trains T I . A possible matching is represented with arrows.

  4.1.5 Denition of the G-TUSPDenition 4.2. Given the infrastructure of a station, a set of arriving, departing, intermediate and passing trains and a set of maintenance operations, the Generalized Train Unit Shunting Problem (G-TUSP) is dened by the following decisions, objective function to minimize and constraints.• Decisions:Matching arriving and intermediate trains, matching intermediate and departing trains; Assigning a path that goes from a platform to a shunting track to each arriving trains, a path that goes from a shunting track to a platform to each departing train, a succession of paths between shunting tracks to each intermediate train, a path to each passing train; Scheduling each shunting movement (i.e. determining the time at which trains pass at each track-circuit of a path); Assigning a crew and a shunting track to each maintenance operation; Scheduling each maintenance operation.• Objective function: cost for departure cancellation, departure delays, assignments of intermediate trains to departing trains, coupling and uncoupling operations, maintenance operation cancellation, duration and number of shunting movements.• Constraints:Length constraint: the length of trains that occupy a shunting track at the same time can not exceed the length of the track;Crossing constraint: when a train leaves a shunting track, it can not be blocked by another one;Precedence constraint for maintenance operations and movements dened by sequences of formal track-circuits in a path and sequences of paths for an intermediate train;No trac conict occurs, i.e trains can not use a same track-circuit at the same time during movements;Maintenance parking constraint: when an operation is carried out on an intermediate train at a given shunting track, it must be parked at a this track; Protection constraint: no train can enter or leave a track when a maintenance operation is in process;Resource disjunction for maintenance operations: maintenance operations can not use a same crew or track at a same time.

  T I ,T S ,T P set of arriving trains, intermediate trains, departing trains, passing trains T = T T ∪ T I ∪ T S ∪ T P set of trains T * = T T ∪ T I ∪ T S set of shunted trains

  Figure 4.3: Reservation of track circuits along a path

  r,r ,p,hr ≤ M hr∈HR o xO o,r,r ,p,hr ∀t ∈ T I , o ∈ O t , r, r ∈ R t , p ∈ P e r ∩ P s r ∩ P o (4.35) sO o,r,r ,p,hr ≥ sR hr xO o,r,r ,p,hr ∀t ∈ T I , o ∈ O t , r, r , ∈ R t , p ∈ P e r ∩ P s r ∩ P o , hr ∈ HR o (4.36) sO o,r,r ,p,hr ≤ (eR hr -pR o )xO o,r,r ,p,hr ∀t ∈ T I , o ∈ O t , r, r , ∈ R t , p ∈ P e r ∩ P s r ∩ P o , hr ∈ HR o (4.37)
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 44 Figure 4.4: An intermediate train t 1 enters a track p through the left side after an intermediate train t 2 . Then t 1 is placed on the left side of t 2 .
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 45 Figure 4.5: An intermediate train t 1 leaves a track p through the left side before an intermediate train t 2 . Then t 1 must be placed on the left side of t 2 in order to leave without crossing.
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 46 Figure 4.6: Simple example of station layout. The blue path links to shunting tracks that belong to the same group which is blue squared. The orange path links the bottom platform with a shunting track in the orange lled rectangle.

  Algorithm 1: Sections Generation Data: two paths r and r 1 tc ← rst formal track-circuit in T C r 2 while tc is unmarked do 3 mark tc, unmark all elements of T C r 4 tc ← rst formal track-circuit in T C r 5 while tc is unmarked do 6 if tc corresponds to the same real track-circuit of tc and tc is unmarked then 7 mark tc 8 create a section s with (tc, tc ) 9 tc ← formal track-circuit which follows tc in T C r 10 tcf ← formal track-circuit which follows tc in T C r 11 tcp ← formal track-circuit which precedes tc in T C r 12 while tcf corresponds to the same track circuit of tc do 13 mark tc and tcf 14 add (tc, tcf ) to s 15 tc ← formal track circuit which follows tc in T C r 16 tcf ← formal track circuit which follows tcf in T C r 17 while tcp corresponds to the same track circuit of tc do 18 mark tc and tcp 19 add (tc, tcp ) to s 20 tc ← formal track circuit which follows tc in T C r 21 tcp ← formal track circuit which precedes tcp in T C r 22 add s to S r,r 23 tc ← rst unmarked element of T C r which follows tc
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 47 Figure 4.7: Layout of Metz-Ville station

  4.1. It shows the number of coupling and uncoupling required on shunted trains as well as the number of modications to the planned train matching. It also reports the average number of routes allocated to an intermediate train by our solution and the average number of routes actually allocated by dispatchers. Moreover, we indicate delays taken by departures performed by trains coming from shunting yards. However passing trains departures

  Chapter 4, we introduced the G-TUSP, a problem which integrates four shunting problems: the Train Matching Problem (TMP), the Shunting Maintenance Problem (SMP), the Track Assignment Problem (TAP) in its multiple track version (TAP * ) and the Shunting Routing Problem (SRP). The mixed integer linear programming formulation gave very satisfying solutions compared to decisions made by dispatchers. Nevertheless, calculation times are quite high. In particular, they are unpractical to allow dispatchers to study dierent trac scenarios.

→→

  MILP SM P,T AP * ,SRP 1 → MILP SM P,T AP * ,SRP S-FMM MILP T M P,SM P → MILP T AP * ,SRP 1 → MILP T AP * ,SRP MILP T M P,SM P,SRP 1 → MILP T M P,SM P,SRP5.1 Sequential algorithms for G-TUSPIn this section, we introduce dierent algorithms based on various combinations of integrated and sequential solution of the G-TUSP sub-problems.
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 52 Figure 5.2: Layout of Metz-Ville station: Filled rectangles represent platforms. Yards are orange squared and shunting necks are circled.

  the train matching set in S-FM is dierent from the one in S-FMM. The latter algorithm provides better solutions than S-FMMP in delay scenarios. As the two algorithms use the same solution for the TMP and the SMP, found by a MILP in Step 1, this observation highlights the benet of integrating the TAP * and the SRP.Conversely, in track closure scenarios, S-FM provides the best solutions on average. The reason why S-FMM and S-FMMP are less successful may be linked to the SMP solution. Indeed, setting the maintenance schedule might be an issue, since it limits the set of alternative paths for a train. During track-closure periods, alternative paths are crucial to avoid potential trac conicts. Solving the TAP *in Step 1 can be detrimental for the same reason. Indeed, S-FMMP gives worse solutions than S-FMM.

  

Table 2 .

 2 1: Phases in the tactical planning of rail services (France)

	phase	preconstruction	construction	adaptation	preoperational
	time	1 to 5	6 months to	6 days to	few hours
	horizon	years	1 year	1 month	to 6 days
	focus	line planning	timetabling	timetabling	timetabling
		periodic timetabling	day time rolling	rolling stock	rolling stock
			stock circulation	circulation	circulation
				crew scheduling	crew scheduling
	local		platforming	platforming	platforming
	scale			shunting	shunting
	2.2 Passengers railway operations planning	
	2.2.1 Overview of passengers operations planning	

Railway services are planed so that necessary resources which are infrastructure capacity, rolling stock and crews can be deployed. At a strategic level resources are sized. The decision horizon is often larger than ve years. Strategic decisions include the purchase of rolling stock and infrastructure building or upgrading. At tactical level, rail services are dened and resources are assigned. The decision horizon is between ve years and one day before operations. Tactical decisions include timetabling as well as rolling stock and crew assignment. At operational level, trac is managed in real-time. The decision horizon is often less than few hours. Operational decisions may change timetable or resource assignment to cope with disturbances.

In France, the timetable for a year is called the annual service. It is obtained thanks to tactical decisions which occur in four stages

(SNCF Réseau [2018]

) reported in Table

2

.1.

The rst stage is the preconstruction. Preconstruction decisions are made between ve years and one year before the annual service. The basic framework of the railway service is dened. During this stage a systematic timetable diagram for a 2 hour period and for a 24 hour period is made. Diagrams are obtained by dening rst systematic paths with stops. Such paths are called lines and dening lines is line planning. The frequency of lines is set in order to satisfy an expected demand. Then a periodic timetabling is made. During periodic timetabling, train paths of the lines are scheduled.
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 3 

		.1: Example of arrivals at Metz-Ville in daytime
		Arrivals				Operations
	Type	Id Number	Hour	Platform
	ZGC3	01		D-1	*
	ZGC3	23722		05:36	8
	ZGC4	23734		07:56	8	NS4,WC,LV,MAL
	ZGC4	837511		08:21	4	NS4,WC,LV,MAL
	ZGC3	834356		08:36	9
	Z2	834013		08:44	5	VAR,NS4,WC,LV
	ZGC3	23738		08:46	8	VAR,NS4,WC,LV,MAL
	TER2N	837519		08:57	6	ES,NS4
	TER2N-TER2NL	88719		09:14	1
	TER2N-TER2N	88721		09:27	1	VAR,NS4,WC,LV,MAL
	ZGC3-ZGC3	834358		12:36	8	VAR,NS4,WC,LV,MAL
	ZGC3-ZGC3	88727		12:59	3	EAU
	REG6	830304		13:15	6	EAU, MAL
	Z2-Z2	834023		13:58	3	NS1
	REG4	830306		14:15	8	EAU
	Table 3.2: Example of departures at Metz-Ville in daytime
				Departures
		Type	Id Number	Hour	Platform
	ZGC3-ZGC3		834014	07:13	1
		ZGC3		701005	10:20	7
		TER2N		88730	10:33	9
		Z2		837534	11:02	7
		TER2N		88506	11:33	7
		ZGC4		837536	11:39	2
		TER2N		88734	11:42	3
	TER2NL		88738	13:06	6
		ZGC3		88740	14:46	1
		ZGC3		837554	16:02	2
		Z2		837556	16:09	1
		ZGC4		23755	16:38	6
		Z2		837560	16:39	1
		REG4		830307	16:43	8
		REG6		830315	17:25	7
	ZGC3-ZGC3		837568	18:02	2
		ZGC3		837536	18:26	A
		TER2N		88766	18:33	2

Table 3
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		.3: Solution for matching arrivals to departures	
		Arrivals		Departures	
	Type	Id Number	Hour	Type	Id Number	Hour
	ZGC3 ZGC3	01 23722	D-1 05h36	ZGC3-ZGC3	834014	07h13
	ZGC4	23734	07h56	ZGC4	837536	11h39
	ZGC4	837511	08h21	ZGC4	23755	16h38
	ZGC3	834356	08h36	ZGC3	701005	10h20
	Z2	834013	08h44	Z2	837534	11h02
	ZGC3	834013	08h46	ZGC3	837536	18h26
	2N	837519	08h57	2N	88766	18h33
	2N-2N	88719	09h14	2N 2N	88730 88738	10h33 13h06
	2N-2N	88721	09h27	2N 2N	88506 88734	11h33 11h42
	ZGC3-ZGC3	834358	12h36	ZGC3-ZGC3	837568	18h02
	ZGC3-ZGC3	88727	12h59	ZGC3 ZGC3	88740 837554	14h46 16h02
	REG6	830304	13h15	REG6	830315	17h25
	Z2-Z2	834023	13h58	Z2 Z2	837560 837556	16h39 16h09
	REG4	830306	14h15	REG4	830307	16h43
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	.3 presents the solution of the TMP proposed by planners. In this solution, the arriving trains
	01 and 23722 are combined. The arriving trains 88717, 88721 88727 and 834023 are split. Moreover,
	planners did not choose to match the arriving train 88727 with the departing train 837568 so that the
	arriving train 834358, which arrives sooner at 12:36, gets split to ensure departing trains 88740 at 14:46
	and 837554 at 16:02. Planners considered the duration of maintenance operations to set the matching
	duration condition. We remark in Table 3.1 that the arriving train 834358 has ve operations planned
	while the arriving train 88727 has only one operation planned. The matching condition states that the
	arriving train 834358 can ensure a departure after 16:50 while the arriving train 88727 can ensure a
	departure after 14:10.
	In a TMP solution, arriving trains can be split. The group of train units that stay coupled, possibly
	made of a single train unit, are intermediate trains. Then, these intermediate trains can be combined to
	obtain departing trains. In the solution in Table 3.3 train units of the arriving train 88719 scheduled at

  the SMP, operations are carried out on intermediate trains. The earliest possible start time of all operations carried out on an intermediate train is the moment at which it arrives in the shunting yard.

	This takes into account the time the passengers need to alight the corresponding arriving train, to move
	to the yard and possibly to be split. The due date of all operations carried out on an intermediate train is
	the time at which it must leave the yard, it depends on the departure time of its departing train. Before
	the departure time from a platform, intermediate trains may also have to be combined, they must be
	moved to the platform and allow passengers to board. If the operations cannot nish at the due date,
	then the departure is delayed.
	The order of the operations to be performed is already xed. Nevertheless any operation can be
	canceled in order to avoid departure delays. Each operation has a xed duration and must be executed
	without interruption. Therefore, no preemption is allowed. An operation needs two resources: a crew
	and a shunting track. A crew is specialized (internal cleaning, engine maintenance...) and can carry
	out several operations in its specialization eld. The composition of a crew is supposed to be xed, in
	particular we cannot enlarge a crew to reduce the operation duration. Crews have xed shift times and
	can perform one operation at a time. Moreover, as technical equipment on a shunting track can be used
	for only one operation, two operations cannot be performed at the same time on a shunting track. If an
	intermediate train needs to change track between two operations, the duration of the shunting movement
	needed is taken into account. In particular, a standard shunting movement duration must separate the
	start time of an operation from the end time of the preceding one. The standard shunting movement
	duration can be set as the time of a long movement according to operations history. In the SMP, we
	suppose that there is a path between every shunting track which has cleaning or maintenance equipment.
	Therefore, the SMP can be modelled based on disjunctive resources. It is a job shop scheduling
	problem whose jobs are the intermediate trains. The shunting tracks are machines in this problem. This
	job shop scheduling is exible
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	.4: Decision makers for shunting problems
	Shunting problem	Resources	Decision maker at tactical
			level
	Train Matching Problem (TMP)	Rolling stock	Ground operations planner
	Shunting Maintenance Problem (SMP)	Crews, Shunting tracks	Maintenance and cleaning op-
			erations manager
	Track Assignment Problem (TAP)	Shunting tracks	Ground operations planner
	Shunting Routing Problem (SRP)	Station infrastructure	Station trac scheduler

  version the number of departures performed with a tram of the desired type is maximized. An exact mathematical programming solution and a reactive tabu search initialized with a greedy algorithm are used on real and random instances. The reactive tabu search provides satisfying solutions in few seconds while the mathematical program solved with CPLEX can require several hours.[START_REF] Eggermont | The hardness of train rearrangements[END_REF] provide additional complexity results for the VDP. The authors prove that problems remains NP-complete despite a restriction on the number of vehicles and vehicle types a track contains. Nevertheless, the VDP can be solved in polynomial time if there are at most two vehicles of each type.[START_REF] Lübbecke | Shunting minimal rail car allocation[END_REF] tackle a similar problem for freight transportation.

	note that this decision problem is NP-complete thanks to a reduction from the 3 dimensional
	matching. The authors propose a dynamic programming search, in which the state of the depot is
	represented after each departure. They implement elimination techniques to cope with memory issues
	due to states representation. They solve in less than 1000 seconds most of a set of random instances
	which contain up to 150 trams of 46 types and 10 tracks. They also solve real word instances which
	contain up to 74 trams in less than 10 seconds.

[START_REF] Winter | Real-time dispatch of trams in storage yards[END_REF] 

consider two other approaches for solving the optimisation problem associated to the VDP. The number of crossings is minimized in a rst version of the problem, while in a second

  ∈ T T ∪ T S T U ,m t,tu set of train unit types, number of train units of type tu ∈ T U in train t ∈ T * index t index of train t ∈ T ty t ,l t , d t , ex t type of train t ∈ T , length of train t ∈ T , arrival time of train t ∈ T T ∪ T P or departure time of train t ∈ T S ∪ T P , time at which t ∈ T S ∪ T P leaves the infrastructure B t ,Q t cancellation cost of train t ∈ T S , cost associated to the delay of train t ∈ T S ∪ T P A t ,Q R cost of one time unit duration of a shunting movement performed on intermediate train t ∈ T I and cost of the assignment of a route to intermediate train t ∈ T I ωS t,t weight associated to the assignment of intermediate train t ∈ T

	T I (t)	set of intermediate trains compatible with the arriving or depart-
		ing train t minimum parking time
	R t ,T C t ,Z t	set of paths, formal track-circuits and real track-circuits which
		can be used by a train t ∈ T
	T C(z)	set of formal track-circuits corresponding real track-circuit z ∈
		∪ t∈T Z t
	Z r , T C r	set of real and formal track-circuits for path r ∈ ∪ t∈T R t
	M R	maximum number of paths which can be assigned to an interme-
		diate train

I (t) to departing train t ∈ T S Q C ,Q H coupling cost, uncoupling cost b t1,t2

indicator function: is equal to

1 if t 1 ∈ T I (t) (with t ∈ T T ) is placed to the left of t 2 ∈ T I (t) with index t 1 < index t 2

on their corresponding arriving train t and 0 otherwise a t1,t2 indicator function: is equal to 1 if t 1 ∈ T I (t) (with t ∈ T S ) must be placed to the left of t 2 ∈ T I (t) with index t 1 < index t 2 and ty t1 = ty t2 if they are assigned to the same departing train t and 0 otherwise mp

  boolean indicator equal to 1 if the exit point where r ∈ ∪ t∈T R t \ {r 0 } ends in shunting track p ∈ P e r is left and 0 if it is right Ee(r, p) boolean indicator equal to 1 if the exit point where r ∈ ∪ t∈T R t \ {r ∞ } begins in shunting track p ∈ P s r is left and 0 if it is right O t set of operations to carry out on t ∈ T I E t set of pairs of successive operations on t ∈ T I . (o, o ) ∈ E t if and only if operation o follows operation o pR o ,ω o duration and cancellation cost of operation o ∈ t∈T I O t HR o ,P o set of crews and shunting tracks which can be assigned to operation o ∈ t∈T I O t sR hr ,eR hr shift start time and shift end time of crew hr M ,τ M

	large constant compared to event times, end of planning period
	4.2 MILP formulation

  • y o,o ,hr with t, t ∈ T , o ∈ O t , o ∈ O t , hr ∈ HR o ∩ HR o , index t < index t , is equal to 1 if hr performs o before o and 0 otherwise; • yO o,o ,p with t, t ∈ T , o ∈ O t , o ∈ O t , p ∈ P o ∩ P o , index t < index t , is equal to 1 if p is used by o before o and 0 otherwise; • ysO o,t,r,p , with t ∈ T I , t ∈ T I , t = t , o ∈ O t , r ∈ R t , p ∈ P o ∩ P e r , is equal to 1 if o is carried out at shunting track p before t enters p through r and 0 otherwise; • yeO o,t,r,p , with t ∈ T I , t ∈ T I , t = t , o ∈ O t , r ∈ R t , p ∈ P o ∩ P s r , is equal to 1 if o is carried out at shunting track p before t leaves p through r and 0 otherwise;

  r,tc∞ -d t ∀t ∈ T S ∪ T P The formulation includes constraints that take into account train matching decisions and the sequence of paths used by intermediate trains. These constraints consider two trains t and t which use the same rolling-stock. A minimum parking time must be ensured between t's arrival (at the end of t's path) and t 's departure on the shunting track. It happens when an arriving train t becomes an intermediate train t (4.19), when an intermediate train uses two paths in a row (4.20) and when an intermediate train becomes a departing train (4.21). It means that when an arriving train t becomes an intermediate train t , t uses a path which ends at the same shunting track where the path used by t starts (4.22), (4.23). If the intermediate train t is not created (xT t = 0), as M R ≥ r∈Rt xR t,r , variables k t ,r0,r,p are not constrained. The same happens when an intermediate train t becomes a departing train t (4.24), (4.25). If the intermediate train t is not assigned to the departing train t (xS t,t = 0), as M R ≥ r∈Rt xR t,r , variables k t ,r∞,r,p are not constrained. :p∈P s r xR t,r + M R (1 -xS t,t ) ∀t ∈ T S , t ∈ T I (t), p ∈

	k t ,r,r∞,p ≤	
	r∈R t :p∈P e r			(P s r ∪ P e r )	(4.24)
			r∈Rt,r ∈R t
	xR t,r ≤		k t ,r,r∞,p
	r∈Rt:p∈P s r	r∈R t :p∈P e r	
				(4.18)
	xR t,r ≤	k t ,r0,r,p + M R (1 -xT t )
	r∈Rt:p∈P e r ∀t ∈ T T , t ∈ T I (t), p ∈ r∈R t :p∈P s r	(P e r ∪ P s r )	(4.22)
			r∈Rt,r ∈R t
	k t ,r0,r,p ≤	xR t,r + M R (1 -xT t )
	r∈Rt:p∈P e r ∀t ∈ T (4.23) r∈R t :p∈P s r

oc t ,r ,tce r ,p ≥ r∈Rt:p∈P e r [oc t,r,pcr,tc ∞ + (rt t,r,pcr,tc ∞ + mp)xR t,r ] -M (1 -k t,r0,r ,p ) ∀t ∈ T T , t ∈ T I (t), r ∈ R t , p ∈ P s r (4.19)

oc t,r ,tce r ,p ≥ oc t,r,pcr,tc ∞ + rt t,r,pcr,tc ∞ + mp -M (1 -k t,r,r ,p ) ∀t ∈ T I , r, r ∈ R t : p ∈ P e r ∩ P s r (4.20) r ∈R t :p∈P s r oc t ,r ,tce r ,p ≥ oc t,r,pcr,tc ∞ + (rt t,r,pcr,tc

∞ + mp)xR t,r -M (1 -xS t ,t ) ∀t ∈ T S , t ∈ T I (t ), r ∈ R t , p ∈ P e r

(4.21) Moreover, we need to ensure spatial coherence. T , t ∈ T I (t), p ∈ r∈Rt,r ∈R t (P e r ∪ P s r ) r∈Rt

  ∈R t :p∈P e r sU t ,r ,tcp r ,p ∀t ∈ T T , t ∈ T I (t ), p ∈ sO o,p,r,r ,hr + pR o xO o,p,r,hr ≤ eP t,r ,p + M (1 -xO o,p,r,hr ) ∀t ∈ T I , o ∈ O t , r, r ∈ R t , p ∈ P e r ∩ P s r ∩ P o , hr ∈ HR o (4.41) eP t,r,p = eU t,r,tcpr,p ∀t ∈ T I , r ∈ R t \ {r 0 , r ∞ }, p ∈ P s r ∈R t :p∈P e r eU t ,r ,tcp r ,p -M (1 -xS t ,t ) ∀t ∈ T S , t ∈ T I (t ), p ∈ ∈R t :p∈P e r eU t ,r ,tcp r ,p + M (1 -xS t ,t ) ∀t ∈ T S , t ∈ T I (t ), p ∈

			(4.42)
	eP t,r∞,p ≥		
			(4.43)
		P s r	
		r∈Rt	
	eP t,r∞,p ≤		
			(4.44)
		P s r	
		r∈Rt	
		Ñ	
	eP t,r∞,p ≥ τ M -M	1 -	
		r	(4.39)
	sP t,r0,p =	P s r	(4.40)
		r∈Rt	

r r r t ∈T S :t∈T I (t ) xS t ,t é ∀t ∈ T I , p ∈ r∈Rt P s r (4.45) sO o ,r 1 ,r 2 ,p ,hr ≥ sO o,r1,r2,p,hr + pR o xO o,r1,r2,p,hr -M (1 -xO o ,r 1 ,r 2 ,p ,hr ) ∀t ∈ T I , ∀(o, o ) ∈ E t , r 1 , r 1 , r 2 , r 2 ∈ R t , p ∈ P o ∩ P e r1 ∩ P s r2 , p ∈ P o ∩ P e r 1 ∩ P s r 2 , hr ∈ HR o , hr ∈ HR o (4.46) As two operations cannot be performed by a crew at the same time, there are disjunctive constraints (4.47), (4.48). sO o ,r 1 ,r 2 ,p ,hr ≥ sO o,r1,r2,p,hr + pR o xO o,r1,r2,p,hr -M (1 -y o,o ,hr )

  r 1 , r 2 ∈ R t , p ∈ P o ∩ P e r1 ∩ P s r2 , p ∈ P o ∩ P e r 1 ∩ P s r 2 , index t < index t o ,r 1 ,r 2 ,p,hr ≥ sO o,r1,r2,p,hr + pR o xO o,r1,r2,p,hr -M (1 -yO o,o ,p ) sO o,r1,r2,p,hr ≥ sO o ,r 1 ,r 2 ,p ,hr + pR o xO o ,r 1 ,r 2 ,p ,hr -M yO o,o ,p ∀t, t ∈ T, o ∈ O t , o ∈ O t , p ∈ P o ∩ P o , r 1 , r 2 ∈ R t , r 1 , r 2 ∈ R t , p ∈ P o ∩ P e r1 ∩ P s r2 ∩ P o ∩ P e r 1 ∩ P s r 2 , hr ∈ HR o , hr ∈ HR o , index t < index t ,hr∈HR o :p∈P e r 1 ∩P s r 2 sO o,r1,r2,p,hr + pR o xO o,r1,r2,p,hr -M (1 -ysO o,t,r,p ) ∀t ∈ T I , t ∈ T I , t = t , o ∈ O t , r ∈ R t , p ∈ P o ∩ P e r

	(4.50)
	Finally, we need to impose the protection of a shunting track during an operation. A disjunction sets
	that trains must enter a shunting track before the beginning (4.52) or after the end (4.51) of an operation.
	Another disjunction sets that trains must leave a shunting track before the beginning (4.54) or after the
	end (4.53) of an operation.
	sP t,r,p ≥
	r1,r2∈R t (4.51)
	r1,r2∈R
	(4.48)
	Besides, two operations cannot use a shunting track at the same time, and there are disjunctive
	constraints (4.49), (4.50).

sO ∀t, t ∈ T, o ∈ O t , o ∈ O t , p ∈ P o ∩ P o , r 1 , r 2 ∈ R t , r 1 , r 2 ∈ R t , p ∈ P o ∩ P e r1 ∩ P s r2 ∩ P o ∩ P e r 1 ∩ P s r 2 , hr ∈ HR o , hr ∈ HR o , index t < index t (4.49) t ,hr∈HR o :p∈P e r 1 ∩P s r 2 sO o,r1,r2,p,hr ≥ sP t,r,p -M ysO o,t,r,p ∀t ∈ T I , t ∈ T I , t = t , o ∈ O t , r ∈ R t , p ∈ P o ∩ P e r (4.52) eP t,r,p ≥ r1,r2∈R t ,hr∈HR o :p∈P e r 1 ∩P s r 2 sO o,r1,r2,p,hr + pR o xO o,r1,r2,p,hr -M (1 -yeO o,t,r,p ) ∀t ∈ T I , t ∈ T I , t = t , o ∈ O t , r ∈ R t , p ∈ P o ∩ P s r

(4.53) r1,r2∈R t ,hr∈HR o :p∈P e r 1 ∩P s r 2 sO o,r1,r2,p,hr ≥ eP t,r,p -M yeO o,t,r,p ∀t ∈ T I , t ∈ T I , t = t , o ∈ O t , r ∈ R t , p ∈ P o ∩ P s r (4.54)

  ). Variables y o,o ,hr which represent a disjunction for the use of a crew hr by two maintenance operations o and o are equal to 0 if neither o nor o uses crew hr (4.80). The same holds for variables yP o,o ,p which indicate the order in which o and o use shunting track p (4.81). Variable ysO o,t,r,p , which indicates if intermediate train t enters in shunting track p trough path r before maintenance operation o starts or after o nishes, is equal to 0 if o is not performed on p and t does not use r (4.82). An equivalent constraint (4.83) is added for variable yeO o,t,r,p which indicates if intermediate train t leaves shunting track p trough path r before maintenance operation o starts or after o nishes. Variables

  Table4.4 reports the details on the eight real life instances tackled. In each of them there are 7 types of trains on which 4 dierent operations can be performed: arrival check, internal cleaning, WC cleaning and external cleaning. The track closure scenario reduces the set of possible shunting paths and implies the occurrence of conicts. Indeed, if a train has to be moved from yard F2 to yard F4, it has to cross main tracks. In instance N3, as trains arrive late in the evening peak hour, their operation cannot start on time. In this scenario, in reality as cleaning crews shift ended too early, some cleaning operations were actually postponed to the morning or cancelled. The number of alternative paths mentioned in Section Table 4.5: Coecient of penalties in the G-TUSP objective function In Table4.4, we report the number of passing trains |T P | (Column 4), arriving trains |T T | (Column 5) and train units (Column 6) as well as the number of continuous (Column 7) and binary variables (Column 8) created in the model by reducing the number of disjunction variables yR for routing. Despite the limited set of trains, we get large numbers of variables. In last column, we detail the percentage α of variables yR removed thanks to the reduction procedure presented in Section 4.2.2. For each instance, the number of yR variables is reduced of more than 65%.As mentioned in Denition 4.2, the G-TUSP objective function includes penalties due to delays, maintenance operations cancelling, coupling and uncoupling operations, modications of the initial rolling stock rotation, as well as the number and the duration of shunting movements. Coecients in the objective function reported in Table4.5 have been obtained with operations experts of Metz-Ville station.

		Type of cost			unit			range	
		departure cancellation			per departing train	135 K -0.5 M	
		maintenance operation cancellation	per operation	10K -13.5K	
		delay				per second of delay	900 -1800	
		number of shunting movements		per movement		15	
		duration of shunting movements		per second of movement	1	
		modication to the initial matching	per modication		7	
		coupling or uncoupling operation	per operation		900	
	4.3.2 does not exceed 5.							
										α
		Night				train	cont.	variables	constraints	(%)
						units	variables			
	D1-0	Day	None	243	6	14	87 768	8 400 706	9 150 824	75.8
	D2-0	Day	Track closure	241	7	17	91 207	11 871 303	13 066 517	71.3
	D3-0	Day	Arrival delays	243	6	15	82 960	10 491 601	13 102 017	75.2
	D4-0	Day	None	242	7	18	94 437	13 406 847	14 782 921	71.4
	N1-0	Night	None	162	9	23	131 084	14 803 127	17 541 805	66.0
	N2-0	Night	Track closure	165	8	19	119 640	10 790 572	13 654 132	65.2
	N3-0	Night	Arrival delays	161	10	26	153 742	18 263 150	22 184 403	72.6
	N4-0	Night	None	158	10	24	146 055	14 812 464	18 676 208	71.5

Table 4 .

 4 6: Experimental results (act. # cancel. op.: number of cancelled operations by rolling-stock managers, modif. match.: modications to the planned train matching, av. # shunt. paths: average number of shunting paths allocated to intermediate trains by our solution, act. av. # shunt. paths:

	average number of shunting paths allocated to intermediate train by dispatchers, shunt. dep. del.:
	shunted departure trains delayed, act. # shunt. dep. del.: number of shunted departure trains delayed
	by dispatchers solution, tot. shunt. mov. time: total shunting movement time, act. total delay: total
	delay in dispatchers solution).								
	Instance	D1-0	D2-0	D3-0	D4-0	N1-0	N2-0	N3-0	N4-0
	running time (sec)	3 600	3 600	3 600	3 600	3 600	3 600	3 600	3 600
	# cancelled operations	0	0	0	0	0	0	1	0
	act. # cancel. op.	0	0	0	0	0	0	2	0
	# coupling	1	2	0	2	1	2	2	2
	# uncoupling	2	1	1	2	2	0	3	3
	# modif. match.	0	0	0	0	0	2	3	0
	av. # shunt. paths	2.5	3.09	2.67	2.7	2.89	3.38	3.10	2.25
	act. av. # shunt. paths 2.17	2.43	2.33	2.60	2.56	2.75	2.40	2.25
	# shunt. dep. del.	0	1	0	0	0	0	1	0
	act. # shunt. dep. del.	0	1	0	0	0	1	1	0
	tot. shunt. mov. time	9 092	11 032	7 703	12 268	20 867	24 076	19 510	16 389
	(s)								
	total delay (s)	0	712	296	0	0	206	871	0
	act. total delay (s)	0	750 1 167	0	0	480 1 462	0
	integer solution value	21692	37912	24038	31168	44267	46590	62642	33489
	gap (%)	9.7	7.4	11.3	10.3	8.2	12.5	18.6	13.5

  • xS t,t , with t ∈ T S , t ∈ T I (t), is equal to 1 if t is assigned to t and 0 otherwise • qS t , with t ∈ T S , is equal to 1 if t is cancelled and 0 otherwise We also introduce the following integer variables:• u t , with t ∈ T T gives the number of uncoupling operations on t • v t , with t ∈ T S gives the number of coupling operations on t As discussed in Section 4.2.2, integrality constraints can be removed on variables qS t , u t and v t . this section we present a MILP formulation which integrates SMP and TMP. It uses notation of Table4.1 as well as variables used in Section 5.1.1. We also provide additional notation:

	The objective function to minimize integrates several penalties (5.1). First, it takes into account the
	cost of departure cancellations. The function includes uncoupling and coupling operations cost. Then,
	penalties for intermediate trains assignment to departing trains are added. The formulation includes
	inequalities (4.2)-(4.7). min	B t • qS t +	Q C • u t +	Q H • v t +	ωS t,t xS t,t	(5.1)
	t∈T S	t∈T T	t∈T S	t∈T S t ∈T I (t)		
	5.1.2 MILP formulation for SMP and TMP		

In

  HR o ∩ HR o , is equal to 1 if crew hr performs operation o before operation o and 0 otherwise;• yP o,o ,p , with o ∈ O t , o ∈ O t (t, t ∈ T I , t < t ), p ∈ P o ∩ P o , is equal to 1 if operation o is carriedout before o , and they are both carried out on shunting track p, 0 otherwise. on which maintenance operations take place: it is an unassociated slot. It starts as soon as t 1 nishes its operation at the light blue track and ends just before t 1 starts its operation at the yellow track. Another unassociated slot is created for t 4 when it arrives in the shunting yard, since the light blue track is used for t 1 's maintenance before being available for t 4 itself. This algorithm also takes into account coupling and uncoupling operations. Intermediate trains that enter or leave the shunting yard coupled are represented with a gray arrow in Figure5.1. t 1 and t 2 arrive coupled. As t 1 starts its maintenance before t 2 , we suppose that the coupled intermediate trains move directly to the light blue track. Hence, a parking time slot is created for t 2 there. This parking time slot is long enough to allow the uncoupling operation and it ends as soon as possible, in any case before the operation on t 1 starts. As explained in Section 5.1.2, Constraints (5.5) ensure that a maintenance operation starts at the earliest once trains have had time to be moved from platforms to a shunting track, to get uncoupled and to be moved to another shunting track. Similarly, as t 2 has to be coupled to t 3 , t 3 joins t 2 on the green track before leaving the shunting yard. Here we follow the same principle as in the rest of the algorithm: t 3 moves as soon as possible. It is the same for t 6 and t 5 . Intermediate trains that are not maintained have common slots if they are from a same arrival train like t 6 and t 7 . These are unassociated slots. Intermediate trains are treated in their arrival order in the shunting yard. If many intermediate trains arrive at the same time at the shunting yard, the intermediate train whose rst maintenance operation starts the earliest is treated rst. If a group of coupled intermediate trains arrive, uncoupling parking time slot are assigned to all intermediate trains but the rst one treated.

	dierent from those					
	The objective function to minimize includes function (5.1) and adds penalties for departures delay and
	operations cancellation (5.2). We note that we can have an operation cancellation penalty only if the
	intermediate train concerned by the operation is actually created.		
				Ñ		é
	min	Q t D t +	ω o	xT t -	xO o,p,hr	+
	t∈T S t∈T (5.2) t∈T I ,o∈Ot p∈P o ,hr∈HR o

• sO o,p,hr , with o ∈ O t (t ∈ T I ), p ∈ P o , hr ∈ HR o , time at which operation o starts on shunting track p with the crew hr; • dO t , with t ∈ T I , time at which intermediate train t ends all its operations; • D t , with t ∈ T S , delay suered by departing train t when exiting the control area. Moreover, we introduce binary variables: • xO o,p,hr , with o ∈ O t (t ∈ T I ), p ∈ P o , hr ∈ HR o , is equal to 1 if o is carried out on shunting track p by crew hr and 0 otherwise; • y o,o ,hr with o ∈ O t , o ∈ O t (t, t ∈ T I , t < t ), hr ∈ S B t qS t + t∈T T Q C u t + t∈T S Q H v t + t∈T S t ∈T I (t) ω t,t xS t,t

  Algorithm 2: Greedy algorithm for the TAP * for t intermediate train do if t needs uncoupling and it is not the rst treated in its group then create an uncoupling slot for t for o operations of t do if track of o is free then move t to track of o else if o is not the rst operation and track of o predecessor of o is free then extend slot of t on track of o else create an unassociated slot for t if t needs coupling then if t is the rst treated in its group then if track of last operation ô of t is free until departure time then extend slot of t on track of ô In the second step, where a complete solution without alternative paths (FIX-solution) is sought, the running time is limited to 600 seconds.

	•	
	set coupling track of the group to track of	ô
	else	
	create an unassociated slot for t
	set coupling track of the group to dummy track
	if coupling track of the group of t is free until departure time no intermediate train of the
	group occupies the track then	
	move t to coupling track	
	else	
	if track of last operation ô of t is free until departure time minus coupling time then
	extend slot of t on track of	ô
	create a later slot at coupling track
	else	
	create an unassociated slot for t until departure time minus coupling time
	create a later slot at coupling track
	for unassociated slot do	
	determine set of feasible tracks	
	select a track with the shortest remaining length in the set

Table 5 .

 5 2: Details on the instances tackled in the experimental analysis (|T P |: number of passing trains)

	Name	Day	Number of	|T P |	Original	Infrastructure	Number of
		/Night	train units		disturbance	disturbance added	delays added
	D1-0	Day	14	243	None	None	0
	D2-0	Day	17	241	T26 Closure	None	0
	D3-0	Day	15	243	2 arrival delays	None	0
	D4-0	Day	18	242	None	None	0
	N1-0	Night	23	162	None	None	0
	N2-0	Night	19	165	T26 Closure	None	0
	N3-0	Night	26	161	2 arrival delays	None	0
	N4-0	Night	24	158	None	None	0
	D1-1	Day	14	243	None	None	2
	D2-1	Day	17	241	T26 Closure	None	2
	D3-1	Day	15	243	2 arrival delays	None	2
	D4-1	Day	18	242	None	None	2
	N1-1	Night	23	162	None	None	2

Table 5

 5 

		.3: Computational times of the algorithms proposed	
			Step 1			Step 2			Step 3	
		partial solution	FIX -solution	VAR -solution
			(sec)			(sec)			(sec)	
	algorithm	min	mean	max	min	mean	max	min	mean	max
	S-FM	0.2	0.6	0.8	110	192.4	362	900	900	900
	S-FMM	2.2	3.5	5.1	115	177.1	373	572	870.6	900
	S-FMMP	3.1	4.7	6.6	12	23.9	51	86	257.3	715
	S-FP	3.1	4.7	6.6	12	25.6	56	153	428.8	900

Table 5 .

 5 4: Mean values of objective function components (# modif. matching: number of modications to the planned train matching, # oper. cancel.: number of maintenance operations cancelled, # coupling maximum computational time plays a role only if CPLEX does not prove the optimality of a solution earlier. If this happens, the corresponding algorithm step is stopped. The main observation concerns the solution of the TAP * . This problem has a great impact on the diculty of the G-TUSP. Computational times increase signicantly if the TAP * is integrated with other G-TUSP sub-problems and an exact solution for this problem is searched. Recall that S-FM and S-FMM neglect the TAP * in Step 1 and solve it exactly in Steps 2 and 3, integrating it with the SRP and both the

	or uncoupling: sum of the number of coupling and uncoupling operations, # shunt mov.: number of
	shunting movements, total shunt. mov. time: total shunting movements duration)	
	algorithm	objective	# modif.	total	# oper.	# coupling	# shunt	total shunt.
			matching	delay	cancel.	or uncoupling	mov.	mov. time
				(sec)				(sec)
	S-FM	48093	1.4	604	0.22	2.9	19.7	16078
	S-FMM	48502	1.7	549	0.19	2.9	20.3	16830
	S-FMMP	49559	1.7	707	0.19	2.9	18.8	16972
	S-FP	47012	2.2	527	0.19	3	18.8	17008
	remark that the							

SMP and the SRP, respectively. Dierently, in S-FMMP and S-FP, Step 1 is the same and it solves the TAP * with a heuristic. The TAP * solution is considered xed from there on. If we focus on

  The higher delay in S-FMMP is due to shunting movements between the shunting tracks and the platforms. Indeed, in S-FMMP, as the TAP * is heuristically solved in Step 1, the SRP solved in Steps 2 and 3 has a limited alternatives to nd good solutions: the shunting track where the trains' paths begin and nish have to be consistent with the TAP * solution. In S-FMM, the TAP * and the SRP are integrated in Steps 2 and 3: a larger set of possible paths is available and trac conicts can be avoided. Although the TAP * is heuristically solved in Step 1 of S-FP, too, this algorithm gives the solutions with the shortest delay in average. Indeed, this algorithm prots from the solution of the TMP in Steps 2 and 3, together with the SMP and the SRP. Therefore, it solves a trade-o between total delay, number of modications to the initial matching and number of coupling or uncoupling operations, which allows the reduction of delay. S-FM achieves the worst results in terms of number of maintenance operations cancelled and quite bad results in terms of total delay. It is the only algorithm in which only the TMP is solved in Step 1.

Table 5 .

 5 5: Mean values of objective function for dierent types of scenarios. If a train matching is set, then SMP solutions are often of low quality in case of delays. Indeed,

	algorithm	no perturbation	delay	track closure	delay and track
		scenarios	scenarios	scenarios	closure scenarios
	S-FM	32654		45333	49924	62385
	S-FMM	32654		43499	54515	62722
	S-FMMP	33202		43986	57227	63243
	S-FP	33202		41413	56984	55990
	Table 5.6: Shunting movements in track closure scenarios
		algorithm	mean number of	mean total duration
			shunting	of shunting
			movements	movements (sec)
		S-FM		21.07	17887
		S-FMM		22.36	19649
		S-FMMP		19.14	19395
		S-FP		19.14	19668
	scenarios.				

 Riezebos and Van Wezel [2009]do. In addition some paths that are deemed to be useless are removed.

More precisely, the paths that link two shunting tracks passing through platforms are not taken into account.

Then for a starting point and a nishing point we consider the routes between two points with the lowest nominal running time. For an integer k, we limit the number of alternative routes between two points by searching for the k-shortest paths.

Reducing the number of shunting tracks available

If the number of alternative routes between two points can be reduced to an integer k, the number of routes available for a train may remain high. Indeed, there are at least k routes for every couple of starting and nishing points. But for passing trains, in principle this corresponds to the number of reachable shunting tracks. Nevertheless, there are some strategies to reduce the number of shunting tracks available to each train. The tracks that are not long enough to host a train are obviously removed from the set of available tracks. Moreover, dispatchers tend to dedicate shunting tracks to particular rolling stock types. We assume that trains only use their dedicated tracks. This issue is investigated by Haahr et al. [2017], who study several ways to split a yard to specic rolling stock types. We consider that this splitting is an input data.

Aggregated capacity feasibility check

In G-TUSP, a cause of instance infeasiblity may be the fact that train units cannot be parked or routed.

A feasible solution must satisfy a necessary condition based on an aggregate capacity criterion (Haahr et al. [2017]). We need to check that the total length of trains that occupy the shunting yard at the same time does not exceed the total tracks length. The trains length can be computed each time a train leaves or enter the shunting yard. These times are given by the timetable. Then, this aggregated capacity criterion can be checked in O(|T T | + |T S |) time.

Experiments

In this section, we report on experiments that test the model on a panel of instances. The model is coded in Java and solved exactly using the commercial solver CPLEX considering at most one-hour computation.

Beyond this time there is no practical interest for pre-operational planning. The experiment are executed on a 64 bit operation system equipped with a 2.2 GHz Intel R Core TM i5-8400 processor and 16GB RAM.

We study the Metz-Ville station infrastructure. It is a major hub for Eastern France railway trac. We tackle real scenarios which include disturbances such as arrival delay or track closure.

Instances description

We consider trac in the Metz-Ville infrastructure and its passengers shunting yards represented in The station mainly hosts regional trains. Many of these trains start or end their service in Metz-Ville.

The area is 3.8 km long and has 10 platforms including a dead-end one. Yards F1 and F2 are controlled from the signal box, while switches are directly handled by a ground-agent in yards F3 and F4. Yard F3 contains a track with a washing machine. Two tracks in yard F3 and one track in yard F4 have equipment for technical inspection. A predened coupling exists between the other shunting track and rolling stock types. Hence, each train can be parked only on a subset of these tracks. The infrastructure is composed of 138 track-circuits, 68 signals, 421 block sections and 405 routes.

We consider two regular week days and two disturbed week days in 2018. One disturbed day includes several delays from Luxembourg between 16:30 and 19:40. These delays were due to urgent infrastructure maintenance works during the day. Such delays are known by dispatchers at 15:15. During the other First of all, all constraints in the TMP formulation (4.2)-(4.7) must be respected. Moreover, any operation carried out on t must use exactly one crew and one shunting track (5.3). The starting time of an operation is set to 0 if it is not assigned to a shunting track (5.4). Operations must start after the concerned train arrives at a shunting track (5.5), if they are performed. Remark that, when solving this problem, we have no information on the precise time that will see the train entering a shunting track. Hence, to be conservative, we consider this time equal to the train's arrival time plus (a t ) the maximum duration of a shunting movement (mr). If uncoupling operations take place on the train, for each of them we also add the minimum uncoupling time (mc) and the time needed for another shunting movement. An operation performed by crew hr must start after the shift start time of hr (5.6) and end before the shift end time (5.7). Note that (5.6) imposes that the starting time of an operation is 0 if it is not assigned to a crew. If operation o follows operation o, then o starts after the end of o. We consider the case in which the successive operations are performed on the same track (5.8) and the one in which they are performed on dierent tracks and a shunting movement is necessary (5.10). Constraints (5.11) specify when intermediate trains end all their performed operations. If these operations end after the departure time of the associated departing train, then the latter is delayed (5.12). 

(5.12) (5.13) As two operations can not use a crew at the same time, we set disjunctive constraints (5.14), (5.15).

Also, as two operations cannot be performed on the same shunting track concurrently, we set disjunctive constraints (5.16), (5.17).

(5.17)

Heuristic for the TAP

In two of the algorithms we propose, the TAP * is solved heuristically, taking in input a solution of the integration of TMP and SMP. This solution can be obtained with the MILP formulation in Section 5.1.2, for example.

In the heuristic, initially, a routine generates parking time slots according to the maintenance schedule as well as the coupling and uncoupling operations planned. Many of them can be directly associated to a shunting track, i.e., all those related to an operation for which the track has already been chosen.

Others are not associated to any specic shunting track, being them before, between or after maintenance operations. Then a greedy algorithm is applied to assign a shunting track to these latter parking time slots. have to be performed as soon as possible. For example, in Figure 5.1, t 2 can move to the green track right after the end of its orange operation, since the track is available. A dierent situation holds for t 3 : it is rst on the blue track, where two operations are carried out, and then it moves to the red track as soon as the operation performed there on t 5 is nished. Since no other train needs the blue track we can extend t 3 's parking time slot until this movement. It is not always possible for an intermediate train which is maintained to remain on the track assigned for its last operation. For example, t 1 has a rst operation on the light blue track and a second one on the yellow track. Before t 1 , the yellow track is used for t 5 's maintenance. After t 1 , the light blue track is used for t 4 's maintenance. Then, a new parking time slot is created. This new slot is represented with a gray rectangle, since it concerns a generic shunting track