
HAL Id: tel-03163663
https://hal.science/tel-03163663v1

Submitted on 9 Mar 2021 (v1), last revised 29 May 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Querying heterogeneous data in NoSQL document stores
Hamdi Ben Hamadou

To cite this version:
Hamdi Ben Hamadou. Querying heterogeneous data in NoSQL document stores. Databases [cs.DB].
UPS Toulouse - Université Toulouse 3 Paul Sabatier, 2019. English. �NNT : �. �tel-03163663v1�

https://hal.science/tel-03163663v1
https://hal.archives-ouvertes.fr


THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 02/10/2019 par :
Hamdi Ben Hamadou

Querying Heterogeneous Data in NoSQL Document Stores

JURY
Bernd AMANN Professeur, LIP6-Université Sorbonne Examinateur
Omar BOUSSAID Professeur, Université Lyon 2 Rapporteur
Faiza GHOZZI Maître Assistant, Université de Sfax Examinatrice
Anne LAURENT Professeur, LIRMM-Montpelier Rapporteure
André PÉNINOU MC, Université Toulouse UT2J Co-directeur
Franck RAVAT Professeur, Université Toulouse UT1C Examinateur
Olivier TESTE Professeur, Université Toulouse UT2J Directeur
Isabelle
Comyn-Wattiau

Professeure, ESSEC Business School Examinatrice

École doctorale et spécialité :
MITT : Domaine STIC : Sureté de logiciel et calcul de haute performance

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directeur(s) de Thèse :
Olivier TESTE et André PÉNINOU

Rapporteurs :
Omar BOUSSAID et Anne LAURENT





Acknowledgement
Firstly, I would like to thank my family: my parents and my sister for supporting me
spiritually throughout all the years of my studies, for accepting the fact that I am
abroad past three years and for all their love and encouragement. For my parents who
raised me with a love of science and supported me in all my orientations.

I would like to express my sincere gratitude to my advisor Prof. Olivier TESTE
for the continuous support of my PhD study and related research, for his patience,
motivation, and immense knowledge. His guidance helped me in all the time of research
and writing of this thesis. I could not have imagined having a better advisor for my
PhD study.

Besides my advisor, I would like to thank my thesis co-advisors: Dr Faiza GHOZZI,
and Dr André Péninou, for their insightful comments and encouragement, but also for
the hard question which motivated me to widen my research from various perspectives.

My sincere thanks also go the reviewers, Pr. Omar BOUSSAID, and Pr. Anne
LAURENT, to whom I associate the members Pr. Bernd AMANN, Pr. Franck RA-
VAT, and Pr. Isabelle Comyn-Wattiau for taking time to evaluate my work.

I gratefully acknowledge the funding received towards my PhD from the neOCam-
pus project PhD fellowship. Thanks to Pr. Marie-Pierre Gleizes for her encourage-
ment.

I thank my colleagues at IRIT for the stimulating discussions, for the sleepless
nights we were working together before deadlines, and for all the fun we have had in
the last three years.

Last but not least, I would like to thank the one that she believed in me. I would
like to thank you for being part of my achievements, thank you for assisting me,
standing with me and encouraging me to go further.
I would like to say thank you to all who is dear to me.





Resumé

La problématique de cette thèse porte sur l’interrogation de données hétérogènes dans
les systèmes de stockage « not-only SQL » (noSQL) orientés documents. Ces derniers
ont connu un important développement ces dernières années en raison de leur capacité
à gérer de manière flexible et efficace d’importantes masses de documents. Ils reposent
sur le principe « schema-less » consistant à ne plus considérer un schéma unique pour
un ensemble de données, appelé collection de documents. Cette flexibilité dans la
structuration des données complexifie l’interrogation pour les utilisateurs qui doivent
connaître l’ensemble des différents schémas des données manipulées lors de l’écriture
de requêtes.

Les travaux développés dans cette thèse sont menés dans le cadre du pro-
jet neoCampus. Ils se focalisent sur l’interrogation de documents structurellement
hétérogènes, en particulier sur le problème de schémas variables. Nous proposons la
construction d’un dictionnaire de données qui permet de retrouver tous les schémas
des documents. Chaque clef, entrée du dictionnaire, correspond à un chemin absolu
ou partiel existant dans au moins un document de la collection. Cette clef est asso-
ciée aux différents chemins absolus correspondants dans l’ensemble de la collection de
documents. Le dictionnaire est alors exploité pour réécrire de manière automatique
et transparente les requêtes des utilisateurs. Les requêtes utilisateurs sont établies sur
la base des clés du dictionnaire (chemins partiels ou absolus) et sont automatique-
ment réécrites en exploitant le dictionnaire afin de prendre en compte l’ensemble des
chemins absolus existants dans les documents de la collection.

Dans cette thèse, nous menons une étude de l’état de l’art des travaux s’attachant
à résoudre l’interrogation de documents structurellement hétérogènes, et nous en pro-
posons une classification. Ensuite, nous comparons ces travaux en fonction de critères
qui permettent de positionner et différencier notre contribution. Nous définissions
formellement les concepts classiques liés aux systèmes orientés documents (document,
collection, etc), puis nous étendons cette formalisation par des concepts supplémen-
taires : chemins absolus et partiels, schémas de document, dictionnaire. Pour la
manipulation et l’interrogation des documents, nous définissons un noyau algébrique
minimal fermé composé de cinq opérateurs : sélection, projection, des-imbrication
(unnest), agrégation et jointure (left-join). Nous définissons chaque opérateur et ex-
pliquons son évaluation par un moteur de requête classique. Ensuite, nous établissons
la réécriture de chacun des opérateurs à partir du dictionnaire. Nous définissons le pro-
cessus de réécriture des requêtes utilisateurs qui produit une requête évaluable par un
moteur de requête classique en conservant la logique des opérateurs classiques (chemins
inexistants, valeurs nulles). Nous montrons comment la réécriture d’une requête ini-
tialement construite avec des chemins partiels et/ou absolus permet de résoudre le
problème d’hétérogénéité structurelle des documents.



Enfin, nous menons des expérimentations afin de valider les concepts formels que
nous introduisons tout au long de cette thèse. Nous évaluons la construction et la
maintenance du dictionnaire en changeant la configuration en termes de nombre de
structures par collection étudiée et de taille de collection. Puis, nous évaluons le moteur
de réécriture de requêtes en le comparant à une évaluation de requête dans un contexte
sans hétérogénéité structurelle puis dans un contexte de multi-requêtes. Toutes nos
expérimentations ont été menées sur des collection synthétiques avec plusieurs niveaux
d’imbrications, différents nombres de structure par collection, et différentes tailles de
collections. Récemment, nous avons intégré notre contribution dans le projet neO-
Campus afin de gérer l’hétérogénéité lors de l’interrogation des données de capteurs
implantés dans le campus de l’université Toulouse III-Paul Sabatier.



Summary

This thesis discusses the problems related to querying heterogeneous data in document-
oriented systems. Document-oriented "not-only SQL" (noSQL) storage systems have
undergone significant development in recent years due to their ability to manage large
amounts of documents in a flexible and efficient manner. These systems rely on the
“schema-less" concept where no there is no requirement to consider a single schema
for a set of data, called a collection of documents. This flexibility in data structures
makes the query formulation more complex and users need to know all the different
schemas of the data manipulated during the query formulation.

The work developed in this thesis subscribes into the frame of neOCampus project.
It focuses on issues in the manipulation and the querying of structurally heterogeneous
document collections, mainly the problem of variable schemas. We propose the con-
struction of a dictionary of data that makes it possible to find all the schemas of the
documents. Each key, a dictionary entry, corresponds to an absolute or partial path
existing in at least one document of the collection. This key is associated to all the cor-
responding absolute paths throughout the collection of heterogeneous documents. The
dictionary is then exploited to automatically and transparently reformulate queries
from users. The user queries are formulated using the dictionary keys (partial or ab-
solute paths) and are automatically reformulated using the dictionary to consider all
the existing paths in all documents in the collection.

In this thesis, we conduct a state-of-the-art survey of the work related to solving the
problem of querying data of heterogeneous structures, and we propose a classification.
Then, we compare these works according to criteria that make it possible to posi-
tion our contribution. We formally define the classical concepts related to document-
oriented systems (document, collection, etc). Then, we extend this formalisation with
additional concepts: absolute and partial paths, document schemas, dictionary. For
manipulating and querying heterogeneous documents, we define a closed minimal al-
gebraic kernel composed of five operators: selection, projection, unnest, aggregation
and join (left-join). We define each operator and explain its classical evaluation by the
native document querying engine. Then we establish the reformulation rules of each
of these operators based on the use of the dictionary. We define the process of refor-
mulating user queries that produces a query that can be evaluated by most document
querying engines while keeping the logic of the classical operators (misleading paths,
null values). We show how the reformulation of a query initially constructed with
partial and / or absolute paths makes it possible to solve the problem of structural
heterogeneity of documents.

Finally, we conduct experiments to validate the formal concepts that we introduce
throughout this thesis. We evaluate the construction and maintenance of the dictio-
nary by changing the configuration in terms of number of structures per collection



studied and collection size. Then, we evaluate the query reformulation engine by com-
paring it to a query evaluation in a context without structural heterogeneity and then
in a context of executing multiple queries. All our experiments were conducted on
synthetic collections with several levels of nesting, different numbers of structures per
collection, and on varying collection sizes. Recently, we deployed our contributions
in the neOCampus project to query heterogeneous sensors data installed at differ-
ent classrooms and the library at the campus of the university of Toulouse III-Paul
Sabatier.



Contents

1 Introduction 1
1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Heterogeneity Classes . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 The Problem of Structural Heterogeneity . . . . . . . . . . . . . 4

1.2 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Manuscript Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Related Literature 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 NoSQL Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Schema Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Physical Re-factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Schema Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Querying Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Document Data Model Concepts 35
3.1 Document and Collection Data Model . . . . . . . . . . . . . . . . . . . 37

3.1.1 Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Document and Collection Schemas . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Document Schema . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Collection Schema . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Document Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Collection Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 45



CONTENTS

3.3.3 Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Dictionary Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Insert Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Delete Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3 Update Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Schema-independent Querying 57
4.1 Minimum Closed Kernel of Operators . . . . . . . . . . . . . . . . . . . 58
4.2 Selection Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Classical Selection Evaluation . . . . . . . . . . . . . . . . . . . 61
4.2.2 Selection Reformulation Rules . . . . . . . . . . . . . . . . . . . 62

4.3 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Classical Projection Evaluation . . . . . . . . . . . . . . . . . . 64
4.3.2 Projection Reformulation Rules . . . . . . . . . . . . . . . . . . 66

4.4 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.1 Classical Aggregation Evaluation . . . . . . . . . . . . . . . . . 71
4.4.2 Aggregation Reformulation Rules . . . . . . . . . . . . . . . . . 71

4.5 Unnest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.1 Classical Unnest Evaluation . . . . . . . . . . . . . . . . . . . . 74
4.5.2 Unnest Reformulation Rules . . . . . . . . . . . . . . . . . . . . 74

4.6 Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6.1 Classical Lookup Evaluation . . . . . . . . . . . . . . . . . . . . 78
4.6.2 Lookup Reformulation Rules . . . . . . . . . . . . . . . . . . . . 79

4.7 Algorithm for Automatic Query Reformulation . . . . . . . . . . . . . . 81
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Evaluation 85
5.1 Implementing EasyQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . 88
5.2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.3 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.4 Execution Contexts . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Schema Inference Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.1 Dictionary Construction . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Dictionary at the Scale . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Queries Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.1 Reformulated Queries Performances . . . . . . . . . . . . . . . . 98



CONTENTS

5.4.2 Query Reformulation Time . . . . . . . . . . . . . . . . . . . . . 100
5.5 Dictionary Maintenance Evaluation . . . . . . . . . . . . . . . . . . . . 101

5.5.1 Dictionary Update on Insert Operation . . . . . . . . . . . . . . 102
5.5.2 Dictionary Update on Delete Operation . . . . . . . . . . . . . . 102
5.5.3 Dictionary Update on Documents Update Operation . . . . . . 102

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusion 107



List of Figures

1.1 Hierarchical representation of the document (a) . . . . . . . . . . . . . 4
1.2 Illustrative example of a collection (C) with four documents describing

films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 EasyQ architecture: data structure extractor (left part) and query re-

formulation engine (right part). . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Contributions to the neOCampus project. . . . . . . . . . . . . . . . . 13

2.1 Big Data 3-Vs properties, volume, velocity, variety. . . . . . . . . . . . 18
2.2 Key-value data model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Document data model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Column data model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Graph data model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Physical re-factorisation of a document data model to relational data

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Illustrative example of a document describing a film. . . . . . . . . . . 39
3.2 Snippets from the collection (C). . . . . . . . . . . . . . . . . . . . . . 40
3.3 Snippets of illustrative example of a collection (C) with four documents

describing films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Collection manipulation process. . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Collection (𝐶𝑛𝑒𝑤) with two documents describing films. . . . . . . . . . 51
3.6 Document to delete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Illustrative example of a collection (C) with four documents describing
films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 EasyQ architecture: data structure extractor and query reformulation
engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Document from the Baseline dataset. . . . . . . . . . . . . . . . . . . . 89
5.3 Document from the Heterogeneous dataset (3 groups, 5 nesting levels). 90
5.4 operator evaluation workload using heterogeneous dataset. . . . . . . . 98
5.5 operator combination evaluation workload using heterogeneous dataset. 98



LIST OF TABLES

List of Tables

2.1 Comparative study of the main contributions to querying heterogeneous
semi-structured data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Settings of the Heterogeneous dataset for query reformulation evaluation. 92
5.2 Workloads query elements. . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 The number of extracted documents per the two workloads using Het-

erogeneous dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Summary of the different queries used in the experiments . . . . . . . . 95
5.5 Time to build the dictionary for collections from the Loaded dataset

(100GB, 200M documents). . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Number of schemas effects on dictionary size using Schemas dataset. . 97
5.7 Evaluating 𝑄6 on varying number of schemas, Structures dataset. . . . 100
5.8 Number of schema effects on query rewriting (# of paths in reformulated

query and reformulation time) (query 𝑄6) over Schemas dataset. . . . . 101
5.9 Manipulation evaluation: insert operation using Manipulation dataset. 102
5.10 Manipulation evaluation: delete operation using Manipulation dataset. 103
5.11 Manipulation evaluation: update operation using Manipulation dataset. 103





Chapter 1

Introduction

Contents

1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Heterogeneity Classes . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 The Problem of Structural Heterogeneity . . . . . . . . . . . . . 4

1.2 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Manuscript Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



2 CONTENTS

1.1 Research Context
Big Data has emerged as evolving term in both the academic and the business com-
munities over the past two decades. Under the explosive increase of generated data,
the term of big data is mainly used to describe large and complex data caracterised
by three aspects: i) variety: data comes in all types of formats, e.g., structured,
semi-structured and unstructured, ii) velocity: the speed with which data are being
generated to be ingested and iii) volume: the enormous amount of generated data.
These aspects were introduced by Gartner 1 to describe the big data challenges.

Such voluminous data can come from myriad different sources, such as business
transaction systems, customer databases, medical records, internet clickstream logs,
mobile applications, social networks, the collected results of scientific experiments,
machine-generated data and real-time data sensors used in the internet of things
(IoT) environments (Chen and Zhang, 2014). Data may be left in its raw form or
pre-processed using data mining tools or data preparation software before being anal-
ysed. Thus, data arriving from different sources and representing the same kind of
information do not necessarily share the same structure. Furthermore, data structures
are not stable and are subjects to future changes. Such structure evolution appears as
applications evolve and change for many reasons: systems evolution, systems mainte-
nance, diversity of data sources, data enrichment over time, etc.

NoSQL, which stand for “not only SQL”, databases and schema-less data modelling
have emerged as mainstream database alternatives for addressing the substantive re-
quirements of current data-intensive applications (Hecht and Jablonski, 2011). NoSQL
is an approach to database design that can essentially accommodate four data models,
including key-value, document, column and graph model. NoSQL, is an alternative to
conventional relational databases in which data is placed in tables and data schema
should be carefully designed before building the database. NoSQL databases are es-
pecially useful for working with large volume of data in distributed and fault-tolerant
environments (Chevalier et al., 2015).

Schema heterogeneity is common feature in most NoSQL systems as they abandon
the traditional “schema first, data later” approach of RDBMS, which requires all record
in a table to comply to a certain predefined fixed schema, in favour of a “schema-less”
approach. NoSQL schema-less database can store data with different structure for
the same entity type. Furthermore, they do not require to define a rigid schema, e.g.,
database, schema, data types, or tables. The lack of data structure restrictions enables
easy evolution of data and facilitates the integration of data from different sources.

Document stores are one of the main NoSQL data models designed to store, retrieve
and manage collections of documents of JSON objects. JSON (JavaScript Object
Notation) is a format for formatting semi-structured data in human-readable text. The

1https://www.gartner.com/



1.1. RESEARCH CONTEXT 3

usage of JSON objects in the document data model offers several advantages (Chasseur
et al., 2013): i) Ease-of-use since it is not required to define a schema upfront, ii)
Sparseness where attributes could appear in some documents, but not in others, iii)
Hierarchical data where information could be present at different nesting level within
the document, and iv) Dynamic typing where types of the values of attributes can be
different for each record. Furthermore, schema-less document stores are able to store
documents in transparent and efficient ways (Floratou et al., 2012, Stonebraker, 2012).

Despite the flexibility guaranteed by most of the schema-less NoSQL stores while
loading data, querying multi-structured collection in document stores is a burden-
some task. In document stores, formulating relevant queries require full knowledge
of the underlying document schemas. Generally, queries are formulated only over ab-
solute paths, i.e., paths starting from the root of the document to the attribute of
interest. Most document stores adopt this assumption (e.g., MongoDB, CouchDB,
Terrastore (Anderson et al., 2010, Chodorow, 2013, Murty, 2008)). Whereas, the pres-
ence of several schemas within the same collection requires to explicitly use in the
query as many paths as the variation for the same attribute. This condition makes it
difficult to define adequate workloads.

In this thesis we address this problematic and we propose solutions to facilitate
the querying of heterogeneous collection of documents while omitting the limitation
in state-of-the-art solutions.

1.1.1 Running Example

Figure 1.2 illustrates a collection composed of four documents (a, b, c, d) in JSON
format. Each document contains a set of attribute-value pairs whose values can be
simple (atomic), e.g., the value of the attribute title, or complex, e.g., the value of
the attribute ranking in document (a). A special attribute _id in each document
identifies the document inside the collection. In addition, documents can be seen
as a hierarchical data structure composed of several nesting levels (also called nodes
or attributes), e.g., the attribute score in document (a) is nested under the complex
attribute ranking. The top node for all attributes in the document is called the root
but has no specific name. Figure 1.1 illustrates the hierarchical representation of
document (a).

1.1.2 Heterogeneity Classes

Several kinds of heterogeneity are discussed in the literature (Rahm and Bernstein,
2001): structural heterogeneity refers to diverse possible locations of attributes within
a collection due to documents diverse structures, e.g., nested or flat structures and
different nesting levels as shown in Figure 1.2; syntactic heterogeneity refers to dif-



4 CONTENTS

root

_id title year link awards director country genres lead_ 
actor actors ranking

first_ 
name

last_ 
name

first_ 
name

last_ 
name score

Figure 1.1: Hierarchical representation of the document (a)

ferences in the representation of the attributes, e.g., usage of acronyms, prefix, suffix
and special characters due to several naming convention affecting specifically attribute
names, e.g., movie_title or movieTitle; finally, semantic heterogeneity may exist when
the same field relies on distinct concepts in separate documents, e.g., country and
nation (Shvaiko and Euzenat, 2005).

1.1.3 The Problem of Structural Heterogeneity

For the aim of this work, we build our assumptions to resolve the problem of structural
heterogeneity to enable querying multi-structured collections. Several works were con-
ducted to resolve the semantic and syntactic heterogeneities (Rahm and Bernstein,
2001). The structural heterogeneity refers to the presence of several paths allowing
to retrieve information of a given attribute. Because of their flexibility, an attribute
within a collection could be root based, nested within another attribute or array of
attributes. Furthermore, it is possible that an attribute is nested at different depth,
several nesting levels. Thus, the lack of knowledge of full locations corresponding to
each attribute within a collection increase the difficulty to fetch relevant results. The
Figure 1.2 highlights this problem. In collection (C), the documents (b, c, d) share the
same leaf nodes (attributes with atomic/array of atomic values, e.g., title, genres) as
document (a). The structural heterogeneity lies in the fact that these leaf nodes exist
in different locations in documents (b, c, d), for instance, the absolute path to reach
the attribute title in document (c) is film.title. However, in documents (a, b), the path
title is enough to reach this information because it is directly nested under the root
node. Furthermore, description.title represents a fourth absolute path in document
(d) for the title information.

To retrieve information from a document attribute from a document stores, it is
necessary to build queries using the absolute path composed of all attribute to cross
starting from the document root down to the attribute of interest. If a user formulates



1.1. RESEARCH CONTEXT 5

{ "_id":1,
"title":"Million Dollar Baby",
"year":2004,
"link":null,
"awards":["Oscar", "Golden Globe",

"Movies for Grownups Award", "AFI
Award"],

"genres":["Drama", "Sport"],
"country":"USA",
"director":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"actors":["Clint Eastwood",

"Hilary Swank", "Morgan Freeman"],
"ranking":{ "score":8.1}

}

(a)

{ "_id":2,
"title":"In the Line of Fire",
"info":{

"year":1993,
"country":"USA",
"link":"https://goo.gl/2A253A",
"genres":["Drama", "Action", "Crime"],
"people":{

"director":{ "first_name":"Clint",
"last_name":"Eastwood"

},
"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"actors":["Clint Eastwood",

"John Malkovich", "Rene Russo Swank"]
},
"ranking":{ "score":7.2
}

}
}

(b)

{ "_id":3,
"film":{

"title":"Gran Torino",
"awards": "AFI Award",
"link":null,
"details":{

"year":2008,
"country":"USA",
"genres":"Drama",
"director":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"personas":{

"lead_actor":{ "first_name":"Clint",
"last_name":"Eastwood"

},
"actors":["Clint Eastwood",

"Bee Vang", "Christopher Carley"]
}

},
"others":{

"ranking":{ "score":8.1
}

}
}

}

(c)

{ "_id":4,
"description":{

"title":"The Good, the Bad and the Ugly",
"year":1966,
"link":"goo.gl/qEFfUB",
"country":"Italy",
"director":{ "first_name":"Sergio",

"last_name":"Leone"
},
"stars":{

"lead_actor":{ "first_name":"Clint",
"last_name":"Eastwood"

},
"actors":["Clint Eastwood",

"Eli Wallach", "Lee Van Cleef"]
}

},
"classification":{

"ranking":{"score":7.2
},
"genres":["Western"]

}
}

(d)

Figure 1.2: Illustrative example of a collection (C) with four documents describing
films.

a projection query using only the absolute path title, any document query engine
ignores the information related to this attribute in documents (c) and (d), despite
the fact it is present in those documents. As a result, document stores return only
{“_id":1, “title":“Million Dollar Baby"}, {“_id":2, “title":“In the Line of Fire"}. This
result is closely related to the paths expressed in the query. Because the majority of
NoSQL document stores require the use of absolute paths, when a user makes a query,
native query engines expect this user to explicitly include all existing paths from the



6 CONTENTS

database to target the relevant data.

It is not a straightforward task to handle structural heterogeneity manually, es-
pecially in continuously evolving big data contexts where data variety is quite com-
mon. For instance, to project all information related to the attribute year, the user
should know about the distinct absolute paths as found in collection (C), i.e., year,
info.year, film.details.year, description.year, otherwise the resulting information could
be reduced.

Let us suppose that a user wishes to project the following information related to
movies: title with their related ranking.score. If she formulates a query with the paths
(title, ranking.score) the result is {“_id":1, “title":“Million Dollar Baby", {“rank-
ing":{“score":8.1}}}, {“_id":2, “title":“In the Line of Fire"}. Despite the presence
of the information ranking.score in the four documents, the result does not include
this information since it is located in other paths in documents (b, c, d). We can
also see the same behaviour for the attribute title with documents (c, d). Let us as-
sume that the user knows the absolute path for ranking.score in document (b) and
formulates a second query with the paths (title, info.ranking.score) in this case, the re-
sult is {“_id":1, “title":“Million Dollar Baby"}, {“_id":2, “title":“In the Line of Fire",
{“info":{“ranking":{“score":8.1}}}}. When we compare the results of the two previous
queries, we can notice that information related to ranking.score for document (a) is only
present on the first result. However the second query just retrieves ranking.score in-
formation from document (b). Formulating and executing several queries is a complex
and an error-prone task. Data redundancy may occur (case of title information present
in both results). Therefore, to query multi-structured data, and using several queries
to target different paths, the user has to consider making an effort to merge results, to
learn the underlying data structures, and to remove possibly redundant information
in queries results. Another way is to combine all possible paths in a single query. In
this example, a possible query to consider all data could take the following form (title,
film.title, description.title, ranking.score, info.ranking.score, film.others.ranking.score,
classification.ranking.score) which is a long and complex query for projecting only two
pieces of information, i.e., title and ranking.score.

This problem is not only limited for project operator as mention in this section.
However, other operators could be affected by structural heterogeneity, e.g., select,
also called restrict, operator. Hence, if the user formulates a query to retrieve movies
having release year greater than the year 2000 using the path year from document (a),
the result contains only document (a) whereas the document (c) satisfies the selection
condition. The problem is that the information related to the year is reachable using
another path details.year. Therefore, the query should include both paths. A possible
single query could be (year = 2000 or info.year = 2000 or film.details.year = 2000 or
description.year = 2000 ) which is yet a complex query to satisfy a simple user need.



1.2. RESEARCH PROBLEMS 7

1.2 Research Problems

During the last decade, NoSQL databases and schema-less data modelling have
emerged as mainstream alternatives to relational modelling for addressing the substan-
tive requirements of current data-intensive applications (Hecht and Jablonski, 2011),
e.g., IoT, web, social media and logs. Document stores hold data in collections of
documents (most often JSON objects); they do not require the definition of any for-
mal structure before loading data, and any data structure can be used when updating
data. The main advantage of this is being able to store documents in transparent and
efficient ways (Floratou et al., 2012, Stonebraker, 2012). Nevertheless, it is possible to
store a set of heterogeneous documents inside the same collection, and for the purposes
of this thesis, documents have heterogeneous structures. This is a major drawback,
and issues arise when querying such data because the underlying heterogeneity has to
somehow be resolved in the query formulation in order to provide relevant results.

This thesis aims at answering the following research question: “How to enable
schema-independent querying for heterogeneous documents in NoSQL document
stores?

With respect to state-of-the-art, there are two issues involved: i) Schema transfor-
mations, e.g., physical, to resolve schemas variety within a collection of documents,
and ii) query expressiveness on varying schemas of documents. Due to the complexity
involving both subjects, we start our research by exploring limitations regarding two
research problems: 1) Schema transformation; 2) Query expressiveness.

Problem 1: Schema Transformation

The basic idea of transforming schemas in multi-structured collections is to overcome
the heterogeneity in documents structures within a collection. With each manipulation
operation, i.e., insert, update and delete, the schema of documents may be changed.
The challenge arises when there is a need to have access to information in such het-
erogeneous documents. Thus, documents querying engine requires that queries are
explicitly formulated over all existing absolute paths leading to the information of in-
terest. However, current techniques recommend flattening documents, e.g., in XML
or JSON format, into a relational form (Chasseur et al., 2013, DiScala and Abadi,
2016, Tahara et al., 2014) to overcome the heterogeneity in structures. This process
of physical schema transformation requires additional resources, such as an external
relational database and more effort to generate new schema every time they change
the workload or when new data are inserted, deleted or updated. Furthermore, to deal
with the heterogeneity in structures they propose transforming all document schemas
to a single common schema and introducing some logical views which leads to a homo-
geneous collection (Tahara et al., 2014) using schema matching techniques to merge



8 CONTENTS

heterogeneous structures (Rahm and Bernstein, 2001). These work are detailed in
Chapter 2.

Problem 2: Query Expressiveness

The problem of query expressiveness is the power of querying language to overcome
the underlying heterogeneity in documents. Work has been conducted to ensure that
document data model could be queried without any prior schema validation or re-
striction and requires the user to take heterogeneity into account (Wang et al., 2015).
However, several directions exist in the literature to provide uniform data access thus
to enable querying such heterogeneous documents. First line of work relies on the na-
tive query expressiveness of the underlying document stores. Therefore, to formulate
queries based on relational views built on top of the inferred data structures whereas
these queries should change when new data are inserted (or updated) in the collection.
Other work defines a new querying mechanism using complex syntax to make trans-
parent the structural heterogeneity in the data (Florescu and Fourny, 2013). Details
regarding these work are introduced in Chapter 2.

Given these considerations, we propose a novel approach based on query refor-
mulation to enable schema-independent querying for heterogeneous collection of
documents without the need to change the original document structures neither
the application workloads. Therefore, to enable our novel approach, we target to
resolve two main problems; i) extracting paths from multi-structured collections,
and ii) enabling schema-independent querying for multi-structured collections.

1.3 Thesis Contributions

In order to enable schema-independent querying for heterogeneous documents in
NoSQL document stores, we start first by drawing some assumptions:

• no physical document transformation: We advocate the idea of keeping the doc-
uments on their original schemas and under the original physical storage model.
Thus, documents are queried regardless of their structures.

• not only absolute paths in queries: Using only absolute paths while formulating
queries presents some limitations while dealing with collection of documents
having structural heterogeneity. User queries are expressed according to the
locations of the attributes inside the documents. We advocate that user queries
should be expressed according to user needs considering data content and not
locations. Thus, queries should be expressed using leaf attributes leading to



1.3. THESIS CONTRIBUTIONS 9

content, e.g., year in Figure 1.2 or partial paths in order to avoid leaf attributes
ambiguity. For instance, in Figure 1.2 the path last_name refers to director
or lead_actor. A partial path such as director.last_name allow to solve this
ambiguity and target the content corresponding to the user needs.

• using native document store query engine: Document stores offer efficient query
engines. Processing document using third party programs outside the document
stores would be a time and space consuming tasks requiring dealing with all
documents within a collection. Thus, performances of such execution context
would be not optimised when compared to processing the data directly into
their underlying stores. Therefore, we advocate the idea to build queries that
could be executed in most document stores using their underlying query engines.

Considering these three assumptions, we propose the following process for schema-
independent querying:

1. users express their needs using queries formulated over partial paths to retrieve
requested information.

2. the user query must be extended to include all possible absolute paths existing
within the collection of heterogeneous documents. Therefore, the user query
is automatically reformulated to replace each partial path with its correspond-
ing absolute paths in the different structures. We refer to the latter query as
extended query.

Thus, we introduce a dictionary that enables to map any partial path that may
be found in diverse document structures to their corresponding absolute paths
as found in the different structures.

3. finally, the extended query is executed using the native query engine of the
underlying document store.

This PhD research resulted in two main contributions summarised as follows:

• meanwhile current trends suggest performing complex physical transformation,
we advocate the idea of keeping on the documents in their original underlying
structures. In this thesis we provide a formal foundation to resolve the problem
of extracting schemas for evolving collections. The results of this problem help
us to adopt path extraction to build efficient queries. In practical terms, our
first contribution is to introduce a dictionary to track all changes in terms of
documents structures within a collection. For each path from the collection, the
dictionary maps paths to all their corresponding paths in all structures present
in the collection. Due to structural heterogeneity that we consider in this thesis,



10 CONTENTS

attributes could refer to the same kind of information but at different locations
inside the documents. Thus, we build our dictionary to track also partial paths.
Hence, entries of the dictionary could be any part of a paths inside the doc-
uments with all their corresponding representation in other documents. This
contribution is motivated by research problem 1. In our second contribution,
we introduce the concept of dictionary, the process to build and maintain it.
We employ several synthetic datasets composed of collections describing films
to evaluate the time required to extract paths on varying structures of docu-
ments, e.g., in collections with up to 5,000 distinct structures. Furthermore,
we ran experiments to study the time required to track all changes in terms of
documents structures as result of the execution of different manipulation opera-
tions. We dedicate Chapter 3 to introduce all formal foundations related to our
contribution.

• besides the solutions offered in the literature to provide uniform access to het-
erogeneous collections of documents using whether relational views built on top
of unified schemas or defining new querying languages, we built our solution on
top of the original underlying structures of documents and based on the queries
expressiveness power of most document stores. In practical terms, in our con-
tribution we rely on using a minimum closed kernel composed of unary, i.e.,
select, project, unnest and aggregate operators, and binary, i.e., lookup, oper-
ators to enable schema-independent querying for heterogeneous documents in
NoSQL document stores. All those operators are defined in the nested relational
algebra (NRA) which are compatible with the expressiveness of document stores.
Therefore, to overcome the heterogeneity in documents, we introduce an auto-
matic query reformulation via a set of rules that reformulate most document
store operators. Furthermore, we support queries formulated over partial paths
whereas most document stores can run only queries formulated over absolute
paths. The query reformulation is performed each time a query executed and
thus we guarantee that each reformulated query contains all required absolute
paths which are present at the collection in its latest structural status. We
conducted a set of experiments over several synthetic datasets and using sev-
eral workloads. We studied also the time required to reformulate queries and
their corresponding execution time. This contribution represents the main con-
tribution of this present thesis. Hence, it is motivated by research problem 2.
Therefore, it is introduced and formalized in Chapter 4.

The dictionary construction process it is not only exclusive to the one presented
in this thesis. We built our query reformulation process in a way that is not
tightly coupled to the dictionary construction. The coupling of queries to the



1.4. RESEARCH OVERVIEW 11

dictionary resides only on the use of keys, i.e., paths, existing in the dictionary.
Thus, if an administrator manually built the dictionary or the dictionary contains
keys which are not even existing paths, our query reformulation rules are still
valid since the formal definition of the dictionary consists of set of keys, in our
work keys refer to paths which could be partial or absolute, associated to absolute
paths. The choice of the dictionary keys is subject to the requirements of the
end users.

1.4 Research Overview

Insert 
Delete 
Update

Data 
Structure 
Extractor

{ }

NoSQL

Query 
Reformulation 

Engine 

Qext Q

{docu ments}

Dictionary
UsesRefreshes

Figure 1.3: EasyQ architecture: data structure extractor (left part) and query refor-
mulation engine (right part).

Figure 1.3 provides a high-level illustration of the architecture of our system called
EasyQ with its two main components: the dictionary as response to the research
problem 1 and the query reformulation engine as a solution to the research problem
2. Moreover, Figure 1.3 shows the flow of data during the data loading stage and the
query processing stage.

We introduce the data structure extractor during the data loading phase. It en-
riches the dictionary with new partial path entries and updates existing ones with
corresponding absolute paths in documents. From a general point of view, the dictio-
nary is modified or changed each time a document is updated, removed or inserted in
the collection.

At the querying stage, EasyQ takes as input the user query, denoted by Q, which is
formulated using any combination of paths from the dictionary keys (leaf nodes, partial
paths and absolute paths) and the desired collection. The EasyQ query reformulation
engine reads from the dictionary and produces an enriched query known as 𝑄𝑒𝑥𝑡, that
includes all existing absolute paths from all the documents. Finally, the document
store executes 𝑄𝑒𝑥𝑡 and returns the result to the user.



12 CONTENTS

1.5 Manuscript Outline
The remainder of this thesis is organised as follows.

Chapter 2 is dedicated to review the most relevant work from the literature. First,
we present a description of the fundamental concepts required for the understanding of
our work. Furthermore, we introduce the different solutions to extract structures from
collections of heterogeneous documents. Therein, we present the different contributions
to enable schema-independent querying for multi-structured collection of documents.
Finally, we compare our contribution with respect to state-of-the-art work based on a
set of criteria that ined through this chapter.

Chapter 3 discusses the requirements of the research problem 1 targeted to extract
paths from multi-structured collections and track all structural changes. This chap-
ter presents formal foundations to define the document data model, the concept of
paths and the dictionary. Furthermore, it introduces the process of automating the
reformulating classical manipulation operators (insert, delete and update queries) in
order to update the dictionary according to the different structural changes made in
the collection.

Chapter 4 presents our novel approach, based on formal foundations, for building
schema-independent queries which are designed to query multi-structured documents.
We present a query enrichment mechanism that consults a pre-constructed dictionary.
We automate the process of query reformulation via a set of rules that reformulate
most document store operators, such as select, project, unnest, aggregate and lookup.
We then produce queries across multi-structured documents which are compatible with
the native query engine of the underlying document store.

Chapter 5 corresponds to the evaluation of our main contributions. In this chapter
we present the process of generating our synthetic datasets (available online2). Further-
more, we introduce the different workloads that we use to evaluate the performances
of our two main contributions. Later on, we draw all experiments results related to
dictionary construction and manipulation on varying structures. Therein, we present
the results related to executing our schema-independent querying. Furthermore, we
introduce three execution contexts to compare results of our contribution with respect
to two other execution contexts.

Chapter 6 contains conclusions and some directions for future work.

2https://www.irit.fr/recherches/SIG/SDD/EASY-QUERY/



1.5. MANUSCRIPT OUTLINE 13

This thesis is financed and conducted in the frame of the neOCampus 3 project. In this
project we introduced a novel mechanism to collect data generated from the different
IoT sensors, e.g., temperature, humidity, or energy, installed on the classrooms in the
building U4 or on the Library at the campus of the University of Toulouse-III Paul
Sabatier for later exploration and visualisation. Our mechanism models the sensors
data and store it into a NoSQL document Stores, i.e., MongoDB. Furthermore, our
mechanism allows to integrate ad-hoc data generated from heterogeneous sensors using
different structures. Therein, heterogeneous sensors data could be easily accessed via
the use of our API. We address the heterogeneity using a set of automatic reformulation
rules that we define in this thesis. Figure 1.4 illustrates our main contributions to this
project.

University Library 
Building

01010010111010101

10
01

11
10

10
10

10

011101010101 
101010111010 
010111101010

neOCampus  
MQTT Server

neOCampus 
Data Collector

neOCampus 
MongoDB 
Server

{1010 1001 0101} 
{1011 0101 1011} 
{1101 1111 0001}

Classrooms  
 Building U4

1 2 3

1

2

3

4

Publishing Sensors Data

Collecting Sensors Data

Modelling and storing 
Sensors Data

Querying Heterogeneous  
Sensors Data

External Systems Our Contributions

4

neOCampus 
API

{1010 1001 0101} 
1011;0101;1011

π σγ

5
Monitoring Sensors  
Data via Web Interfaces

6
Exploring Sensors 
Data via Mobile Apps

6

5

Web Interface

Mobile Apps

Installed Sensors

Figure 1.4: Contributions to the neOCampus project.

There follows a list of publications published in the course of this thesis, including
the ones that compose the thesis.

• Journal Paper

– (Ben Hamadou et al., 2019b) Hamdi Ben Hamadou, Faiza Ghozzi, andré
Péninou, Olivier Teste : “Schema-independent Querying for Heterogeneous
Collections in NoSQL Document Stores" Information Systems, ELSEVIER
Volume 85, p. 48-67, 2019. This paper is presented in particular in Chap-
ter 4 and Chapter 5. It defines the closed kernel of operators, composed
of select-project-aggregate-unnest-lookup operators, and their corresponding
reformulation rules. Furthermore, it introduces our experimental protocol.

3https://www.irit.fr/neocampus



14 CONTENTS

• International Conferences

– (Ben Hamadou et al., 2019a) Hamdi Ben Hamadou, Enrico Gallinucci and
Matteo Golfarelli: “Answering GPSJ Queries in a Polystore: a Dataspace-
Based Approach". In Proceedings 38th International Conference on Con-
ceptual Modeling (ER 2019) Salvador, Brazil, 2019. This paper is an ex-
tension of this present thesis where we showed that the query reformulation
rules defined in this thesis could be employed in Polystores context where we
overcome further class of heterogeneity.

– (El Malki et al., 2018) Mohammed El Malki, Hamdi Ben Hamadou, Max
Chevalier, André Pńinou, Olivier Teste : “Querying Heterogeneous Data
in Graph-Oriented NoSQL Systems", Data Warehousing and Knowledge
Discovery, DaWaK 2018, Ratisbonne, Germany: 289-301. This paper is an
extension of this present thesis where we proved that the query reformulation
rules defined in this thesis could be applied to the graph data model, also
while considering further class of heterogeneity.

– (Ben Hamadou et al., 2018a) Hamdi Ben Hamadou, Faiza Ghozzi, André
Péninou, Olivier Teste : “Towards Schema-independent Querying on Doc-
ument Data Stores", Data Warehousing and OLAP, DOLAP 2018, Vienne,
Autriche. This paper is presented in Chapter 3, Chapter 4. It presents our
preliminary ideas regarding the dictionary and query reformulation rules for
select and project operators.

– (Ben Hamadou et al., 2018b) Hamdi Ben Hamadou, Faiza Ghozzi, An-
dré Péninou, Olivier Teste : “Querying Heterogeneous Document Stores",
International Conference on Enterprise Information Systems, ICEIS 2018,
Madeira, Portugal : 58-68 Best Student Award. This paper is presented in
Chapter 3 and Chapter 4. It presents our preliminary ideas regarding the
dictionary and query reformulation rules for select, project and aggregate
operators.

• Book Chapter

– (Ben Hamadou et al., 2019c) Hamdi Ben Hamadou, Faiza Ghozzi, André
Péninou, Olivier Teste: Schema-independent Querying and Manipulation
for Heterogeneous Collections in NoSQL Document Stores, Springer Lecture
Notes in Business Information Processing, volume 363, 2019. This book
chapter is presented in particular in Chapter 3 and Chapter 5. It defines
the dictionary and its associated manipulation operation, i.e., insert, update
and delete. Furthermore, it presents the evaluation related to the dictionary
construction and maintenance.



1.5. MANUSCRIPT OUTLINE 15

• National French Conferences

– (Ben Hamadou et al., 2018c) Hamdi Ben Hamadou, Faiza Ghozzi, An-
dré Péninou, Olivier Teste. “Interrogation de données structurellement
hétérogènes dans les bases de données orientées documents", Extraction
et Gestion des Conaissances, EGC 2018, Paris, France : 155-166, Best Aca-
demic Paper Award. This paper is presented in Chapter 3 and Chapter
4. It presents our preliminary ideas regarding the dictionary and query
reformulation rules for select and project operators.





Chapter 2

Related Literature

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 NoSQL Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Schema Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Physical Re-factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Schema Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Querying Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

17



18 CONTENTS

2.1 Introduction
In this thesis, we aim to enable schema-independent querying for heterogeneous col-
lection of documents. For this purpose and to easily understand the remainder of this
thesis, we start by introducing the context of this present work. We start by presenting
the concept of Big Data (McAfee et al., 2012) and we give details regarding its 3-Vs
characteristics, i.e., volume, velocity, and variety. Therein, we give an introduction
of the concept of NoSQL stores and their different four data models (Nayak et al.,
2013), i.e., key-value, document, column, and graph. Later, we present four classes of
work which run to resolve the problem of heterogeneity while querying heterogeneous
data. We start first by introducing work proposing the solution of schema integration
for this problem and we highlight the limitation of such kind of solution. Second,
we describe work addressing the problem by applying physical re-factorisation for the
original data model and we show that such solution requires additional efforts. Third,
we study work that address the heterogeneity by focusing on the schema inference to
understand the different structures and we study their limitations. Forth, we present
work resolving this problem with consideration to the querying techniques and we
explain how such solutions may require additional efforts from the user. Finally, we
draw a summary of all the studied work, and we compare them to our contribution
based on some criteria that we define.

2.2 Background

2.2.1 Big Data

Figure 2.1: Big Data 3-Vs properties, volume, velocity, variety.

Big Data is defined as extremely large datasets that could not be manipulated
using conventional systems and solutions (McAfee et al., 2012, Zikopoulos et al., 2011).



2.2. BACKGROUND 19

Usually, this concept is defined as 3-Vs model, i.e., volume, velocity and variety. These
properties are depicted in Figure 2.1 1 and defined as follows:

• Volume refers to the enormous amount of generated data to be processed. Thus,
during the last decade, applications such as IoT, web, or social media are used
intensively in several domains, e.g., banking, transportation, smart cities, or
health, and contribute to the generation of important volumes. For instance, a
smart city of 1 million population would generate 200 million GB data per day,
going up to 600 ZB by 2020 (Index);

• Velocity refers to the speed with which data are being generated to be ingested.
Recently, most applications are offering real-time services thus data could be
generated every microsecond. For instance, in applications such as social media,
e.g., more than 95 million photos and videos are uploaded to Instagram every
day (O’Donnell, 2018);

• Variety refers to the fact that data comes in diverse types of formats, e.g., struc-
tured such as relational databases, semi-structured such as XML, or unstructured
such as multimedia contents. Furthermore, structures could not be specified be-
forehand and evolves during time (Kaur and Rani, 2013).

In recent years, Big Data was defined by the 3Vs but now there are more comple-
mentary characteristics which are discussed in the community, e.g., Veracity, Value.

2.2.2 NoSQL Stores

To efficiently manage data in Big Data world, NoSQL stores, that stands for Not only
SQL, stores become a mainstream solution to store and analyse enormous amount of
generated data. Moreover, NoSQL systems run in distributed environments and thus
offering high availability. Furthermore, NoSQL systems are well-tailored to scale when
there is a need for more storage space for instance. All these capabilities make NoSQL
systems becoming an alternative to conventional relational stores while implementing
data-intensive applications. The variety characteristic of the Big Data is a naturally
support in most NoSQL stores. Hence, the schema-less nature of most NoSQL stores
allows the storage of data regardless of their schemas since it is not mandatory to define
schemas beforehand (Gómez et al., 2016). Despite conventional relational databases,
NoSQL stores offer promising scaling-out capabilities to load the enormous size of
generated data (Pokorny, 2013). From the literature we distinguish four mainstream
data models for NoSQL stores (Nayak et al., 2013) described as follows:

1source: https://www.tutorialscampus.com/tutorials/hadoop/big-data-overview.htm



20 CONTENTS

• Key-value. A key-value store is a database designed for storing, retrieving,
and managing associative arrays, i.e., set of keys identifying values, which is a
data structure grouping data in a dictionary or hash table. Dictionaries store a
collection of objects, or records, which in turn have many different fields within
them, each containing data. These records are stored and retrieved using a
key that uniquely identifies the record and it is used to quickly find the data
within the database. Figure 2.2 gives an illustration of the key-value data model.
Key-value stores are optimised to deal with records having for each key a single
value, e.g., the first record in Figure 2.2. However, a parser is required to retrieve
information from a key identifying a record with multiple values, e.g., the second
record in Figure 2.2. Furthermore, for instance, Redis (Carlson, 2013), which is
an in-memory key-value store, is built to provide high performances to retrieve
data using keys but to a small amount of data that fits into the main memory.

Key    Value 
Id1     Alex 
Id2     Jane, Australia, Student

Figure 2.2: Key-value data model.

• Document. Document stores are one of the mainstream NoSQL data models
designed to store, retrieve and manage collections of documents of JSON objects.
JSON (JavaScript Object Notation) is a format for formatting semi-structured
data in human-readable text (Chavalier et al., 2016). Figure 2.3 illustrates the
document data model. We notice that the document data model allows the
storage of both primitive values, e.g., the value of the attribute name in the
first document, and object values using nested structures, e.g., the value of the
attribute details in the second document.

{"_id": "id1", "name": "Alex"} 
{"_id": "id2", 
        "details": { 
           "name": "Jane", 

  "country": "Australia", 
"occupation": "Student" 

         } 
}

Figure 2.3: Document data model.

Another particularity of this class of stores is the rich query expressiveness
that covers most operators (Botoeva et al., 2018), e.g., select-project-aggregate-
unnest-join, defined in the Nested Relational Algebra (Korth and Roth, 1987)
and usually employed in conventional relational data models. Furthermore, there



2.2. BACKGROUND 21

is no need to define a structure before loading data. Whereas key-value stores are
offering limited storing capabilities, document stores scale well and respond to
most Big Data requirements. Systems such as MongoDB (Banker, 2011) succeed
to manage large collections of documents in distributed environment. However,
it does not offer native support to overcome heterogeneity with structures of
documents and users should know the different underlying structures while for-
mulating their queries. For instance, in Figure 2.3, if user formulates her query
to project all information related to the attribute name, only information from
the first document are returned. Despite the presence of the attribute name in
the second document, the native document query engine could not retrieve it.

• Column. A column store is a database that stores data by column whereas
conventional relational databases store data by rows (Stonebraker et al., 2005).
Thus, such stores access only the data it needs to answer a query rather than
scanning and discarding unwanted data in all rows which results in efficient
query response time. However, an extensive work is required to define the dif-
ferent structures of tables and their corresponding keys based on the workloads.
Furthermore, the query expressiveness of such stores is limited. For instance,
Cassandra (Lakshman and Malik, 2010) do not offer native support for queries
formulated over columns which are not part of the primary key. Also, a query
to retrieve tuples where a given column value is different could not be executed
using the native query engine. For instance, it is not possible the user to retrieve
all records where the column country is equal to USA form the column store
illustrated in Figure 2.4. This is because only the column id compose the table
primary key. Column store become best option as the backbone in a system to
serve data for common extract, transform, load (ETL) and data visualization
tools (Abadi et al., 2009, El Malki, 2016).

  
Id    Name   Country    Occupation 

id1   Alex 
id2   Jane   Australia  Student

Figure 2.4: Column data model.

• Graph. A graph store is a type of NoSQL database that uses graph theory (West
et al., 1996) to store, manage and query nodes and their corresponding rela-
tionships. A graph store is essentially a collection of nodes and edges. Such
structures support semantic queries (Lim et al., 2009). Graph store have been
used in multiple domains, such as data and knowledge management, recommen-
dation engines, . . . . Like document stores, there is no need to define structures
of nodes or edges beforehand and data could be easily stored regardless of their



22 CONTENTS

structures (Vukotic et al., 2015). However, to query such stores there is a need
to employ complex querying language such as Cypher (Francis et al., 2018).

Person

name: Alex 

Person

name: Jane 
country: Australia 

 

is_friends_with

Figure 2.5: Graph data model.

In this thesis, we focus mainly on document stores. We opt for this choice due to the
flexibility offered to store data regardless of their structures and the need to overcome
the heterogeneity within structures. Furthermore, when compared to the column and
key-value stores, the heterogeneity in terms of structures is limited and the schema-
less is mainly related to the presence or absence of values for given attributes. In
column database, it is required to define a schema for the data beforehand. Both,
document and graphs offer the freedom to store data regardless of their schemas.
However, more challenges are present in graph stores since the heterogeneity could not
only affects the data structures, i.e., structure of information within nodes, but also
it could affect edges also since the edges contain information regarding the semantic
of the relationships between nodes. However, in addition to our main contributions to
overcome the heterogeneity while querying heterogeneous collection of documents, we
succeeded to propose some preliminary contributions to address this problem in graph
data model. Our results are published in the International Conference on Big Data
Analytic and Knowledge Discovery DAWAK 2018 (El Malki et al., 2018). Furthermore,
the native query engine in document stores do not offer native support to overcome the
heterogeneity. However, it is mandatory for the users to explicitly include all possible
paths leading to the same information.

Contexts such as data-lake (Hai et al., 2016), federated database (Sheth and Larson,
1990), data integration, schema matching (Rahm and Bernstein, 2001), and recently,
schema-less data support in NoSQL systems (Corbellini et al., 2017) have highlighted
the importance of building transparent mechanisms that use the underlying data in
a transparent way. In addition to large volumes of data, there is a need to overcome
the heterogeneity of the collected data. Different sources generate data under different
structures, versions and languages. The problem of querying multi-structured data has
pushed the database community to rethink how information is accessed with regards
to the underlying data structure heterogeneity (Ben Hamadou et al., 2018a).

In the reminder of this chapter, we classify state-of-the-art research work based on
the solutions proposed for querying multi-structured documents. We start by present-
ing the first family of work employs different methods of schema matching to resolve



2.3. SCHEMA INTEGRATION 23

the problem of heterogeneity in structures. Afterwards, we present some work per-
forming materialized structural changes to unify heterogeneous forms of documents.
Therein, the third line of work recommends operating queries on a virtual schema de-
rived from the heterogeneous structures and the last recommends querying techniques
to overcome the heterogeneity in documents.

2.3 Schema Integration

Current data-intensive applications, e.g., web or IoT, could model the same real-world
domain differently since the schemas are independently developed. This difference
could be related to the evolution of the application, the integration of data from dif-
ferent sources, etc. Thus, in order to get insights from data generated in diverse
structures there is a need to identify relationships between schemas. In this section,
we study the most relevant work suggesting schema integration process as an interme-
diary step to facilitate a query execution process over data having various structures.
Thus, this process suggests determining mappings between attributes from heteroge-
neous schemas to provide integrated access to heterogeneous data using global schema.
Furthermore, schema integration employs a set of techniques and approaches to pro-
vide the user with a unified structure (Lenzerini, 2002). Usually, this unified structure
is called global schema. Therefore, data generated from different sources could be
accessed easily regardless of their sources or underlying structures. In practical terms,
schema integration involves combining data residing in different sources and providing
users with a unified access (Lenzerini, 2002). This process becomes significant in sev-
eral applications, e.g., commercial when two companies need to merge their databases,
or scientific combining results from different bio informatics repositories. It has be-
come the focus of extensive theoretical research work, and numerous open problems
remain unsolved.

Several techniques could be applied in order to automate this process. In their sur-
vey paper (Rahm and Bernstein, 2001), the authors presented the state-of-the-art tech-
niques used to automate the schema integration process. Matching techniques could
be applied to structure-level (Do and Rahm, 2002). Thus, structure-level techniques
compute the mapping between structures by analysing the similarity of how attributes
appear together in a structure (Shvaiko and Euzenat, 2005). Thus, structure-level
matching determines that certain attributes of a given schema semantically corre-
spond to certain attributes of another schema. In (Madhavan et al., 2001) the authors
propose an algorithm, i.e., Cupid, that discovers mapping between schema elements
using linguistic and structural matching. Hence, such an approach is built to map
XML schemas or other structured data where an explicit schema definition is already
present whereas data in most NoSQL stores are stored without prior schema definition.



24 CONTENTS

However, current solutions are often very brittle because they only exploit evidence
that is present in the two schemas being matched. Thus, in document stores, and due
to the lack of additional meta-data annotations of documents, determining the rela-
tionship between schemas using only the names of the attributes could result in wrong
matches and thus could affect the correctness of the queries evaluation. For instance,
it is possible to find a match between two attributes, e.g., an attribute called location
may refer to two different concepts, i.e., room number, or IP address and (Ventrone,
1991).

Furthermore, matching could be defined between instances (Wang et al., 2004). In
practical terms, determining a set of correspondences that identify similar elements in
different schemas (Madhavan et al., 2005). The problem of such type of matching is
that it is mandatory to perform a comparison between the values of different attributes.
In a context such as relation, column stores, it is possible to opt for comparing only
a subset of values and thus it is possible to determine matches. However, in contexts
such as document or graph stores, and due to the concept schema-less stores, values
for a given attribute have no fixed data type, and may vary from document to another
same attribute may have different data types (Chasseur et al., 2013, Gallinucci et al.,
2018), e.g., the type of an attribute called age could be a string or integer in different
documents within the same collection, thus performing element matching require to
compare all attributes values to others from different documents and structures.

Traditionally, several kinds of heterogeneity are discussed in the literature (Kang
and Naughton, 2003): structural heterogeneity refers to diverse possible locations of
attributes within a collection due to documents diverse structures, e.g., nested or flat
structures and different nesting levels (Ben Hamadou et al., 2018b); syntactic het-
erogeneity refers to differences in the representation of the attributes, e.g., usage of
acronyms, prefix, suffix and special characters due to several naming convention af-
fecting specifically attribute names (Wolski, 1989); finally, semantic heterogeneity may
exist when the same field relies on distinct concepts in separate documents (Shvaiko
and Euzenat, 2005).

To automatically find matches, diverse tools are employed to address each class
of heterogeneity. For instance, the usage of lexical matches helps to handle syntactic
heterogeneity (Hall and Dowling, 1980). Lexical matches are usually ensured via the
usage of different edit-distance algorithms. Hence, such algorithms represent a way
of quantifying how dissimilar two strings are by counting the minimum number of
operations required to transform one string into the other (Bille, 2005). Furthermore,
thesauruses and dictionaries, e.g., Wordnet (Li et al., 1995), are used to perform
semantic matching (Voorhees, 1993). Also, structural matching helps to compare the
document structures and to identify commonalities and differences (Bertino et al.,
2004).



2.4. PHYSICAL RE-FACTORISATION 25

The main problem of the different matching techniques is in how to determine
adequate parameters. Most of the matching functions require to determine a certain
threshold that allows to efficiently find matches. However, the parameters work only
for the context on which it was initially determined. Therefore, there are no generic
matching techniques and parameters that could be applied for any kind of structures
or applications.

Schema integration techniques may present certain issues to efficiently deal with
the structure of data. Hence, schema integration techniques make it difficult to support
legacy applications built on top of original structures of the data before generating a
unified one. Therefore, changing the data structure necessitates changing the queries
in the application side. Furthermore, this task is required whenever a new common
structure is integrated into the collection data.

2.4 Physical Re-factorisation

In this section, we study another alternative to retrieve information from a set of
heterogeneous data. This class of work suggests performing physical re-factorisation
to facilitate the access to documents having heterogeneous structures. The common
strategy of these work consists in changing the underlying document data model into
a relational data model. Thus, they rely on the use of conventional relational query-
ing and storing techniques. In practical terms, documents map to relational tables.
To achieve this, there is a need to perform customised transformations and to de-
fine some rules on how documents should be mapped into relations since there are
no standardised solutions to achieve this. Hence, mapping determines possible ta-
bles corresponding to a given collection of documents. Furthermore, types could be
automatically extracted to define the different columns while defining the relational
tables. Such kind of solutions leads to the loss of the flexibility initially guaranteed
in the document data model. Therefore, documents are shredded into columns in
one or more relational tables. To this end, it is mandatory to perform some physical
transformations to map the document data model into the relational one. However,
these solutions ensure that semi-structured data can be queried without any prior
schema validation or restriction. A mainstream approach widely used while dealing
with XML databases, is to partition documents and transform them into relation data
model (Amer-Yahia et al., 2004, Böhme and Rahm, 2004, Florescu and Kossmann,
1999). For instance, MonetDB (Idreos et al., 2012) uses specialised data encoding,
join methods, and storage for managing documents encoded in XML. In (Amer-Yahia
et al., 2004), the authors use the document type definition, i.e., DTD, to flatten docu-
ments and map documents into relational tables. However, despite of the advantages
of using relational schema and the expressiveness power of relational operators, par-



26 CONTENTS

titioning data into tables by attributes (Florescu and Kossmann, 1999) affects the
performance of the relational system. This is due to the need of performing multiple
joins to reconstruct any documents.

The particularity of documents encoded in XML is that the documents are usually
annotated with information describing the schemas whereas JSON documents are
lacking such schema annotations. Thus, such knowledge helps to easily infer the
structures and to facilitate the process of mapping documents into relational data
model.

With the wide spread use of JSON format (Bourhis et al., 2017) as flexible and
extensible document format, and due to the lack of structure annotations, recent work
have been introduced to transform JSON into relational data model. In (Chasseur
et al., 2013), the authors introduced a system called Argo to manage JSON data using
relational stores. They suggest distributing document values across different tables,
according to their types. Furthermore, Argo presents a mapping layer for storing and
querying JSON data in a relational system with a custom SQL-like query language.
The problem with this work is the necessity to learn a custom query language, i.e.,
Argo/SQL, and to employ a relational store in addition to the document store. In this
work also, they suggest flattening the different nested attributes to fit them with the
relational data model.

However, in (Tahara et al., 2014), the authors introduced a system, called sinew,
enabling to store documents into relational columns and they propose a layer above the
database to provides relational views using PostgreSQL (Momjian, 2001) as the under-
lying RDBMS. Therefore, document encoded in JSON can be queried and managed in
relational stores. To achieve this, sinew, adopt a custom serialization format to mate-
rialize document attributes into physical columns. Also, PostgreSQL (Momjian, 2001)
adopts the same strategy and uses a custom binary serialization for lading documents
encoded in JSON into relational stores.

Furthermore, in (DiScala and Abadi, 2016), the authors proposed a normalizing re-
lational data extractor for JSON data. The extractor creates a functional dependency
graph representing the different relationships existing within the attributes. However,
this work operates over collections of documents sharing a common schema. Thus, it
is possible to find different relational tables for each set of schemas present within the
collection. Therefore, several tables are generated based on the functional dependen-
cies. To retrieve data, users are required to formulate their queries while considering
the necessary join operations to reconstruct information as stored into their original
documents.

In Figure 2.6, we illustrate an example of how an information modelled as document
could be re-factorized to match with relational one. In this example we note that the
attributes are transformed into relational columns. This example is inspired from the



2.5. SCHEMA INFERENCE 27

{"_id": "id1", "name": "Alex"} 
{"_id": "id2", 
        "details": { 
         "name": "Jane", 

  "country": "Australia", 
"occupation": "Student" 

         } 
}

Figure 2.6: Physical re-factorisation of a document data model to relational data
model.

work (DiScala and Abadi, 2016).
To retrieve data from the shredded documents, a common strategy consists in for-

mulating relational queries based on relational views built on top of the new data
structures. This strategy implies that several physical re-factorisation should be per-
formed which will affect scalability. Hence, this process is time-consuming, and it
requires additional resources, such as an external relational database and more effort
from the user to learn the new generated relational views. Users of these systems have
to learn new schemas every time they change the application queries or when new
data are inserted (or updated) in the collection, as this is necessary to regenerate the
relational views and stored columns after every change.

In addition, the schema-less nature supported by most document stores allow for
the same attribute to have diverse data types. Therefore, the physical re-factorisation
could lead to several tables for the same information and thus several queries and
multiple join operations should be performed to find the expected results.

Finally, adopting custom serialisation to fit document complex attributes, e.g.,
arrays and objects, into relational could not be very efficient. For instance, Hence,
they do not offer fast access to serialised data and thus affects the query performances.
For instance, arrays and object require frequent de-serialization before executing the
query.

2.5 Schema Inference

In this section, we study the most relevant work conducted to resolve the heterogene-
ity in documents structures by inferring and unifying their various structures. This
problem pushed the community to propose solutions to infer the schemas of document
which are implicit in documents. In practical terms, collections are stored regardless
of their various structures. To assist the users while formulating their queries.



28 CONTENTS

Several work are proposing schema inference techniques. The idea is to provide
users with an overview of the different elements present in the collection of heteroge-
neous collection of documents (Baazizi et al., 2017, Ruiz et al., 2015).

This family of work was first introduced for inferring structures from semi-
structured documents encoded in XML format. These work aim to infer structures us-
ing regular expressions rules from the different strings representing element from XML
documents to propose a generalized structure (Freydenberger and Kötzing, 2015).
Both, JSON and XML are commonly used to encode nested data as documents. How-
ever, most of the solutions introduced to infer structures from documents encoded in
XML could not be applied to documents encoded in JSON. Furthermore, other efforts
were conducted to infer RDF data (Čebirić et al., 2015). The problem with this class
of work is none of these approaches is designed to deal with massive datasets whereas
current applications are data-intensive, and they are using JSON encoding.

In (Wang et al., 2015) the authors propose a framework to efficiently discover the
existence of fields or sub-schemas inside the collection. To this end, the framework
is built for managing a schema repository for JSON document stores. The proposed
approach relies on a notion of JSON schema called skeleton. Hence, a skeleton is a
tree representation describing the structures that frequently appear in a collection of
heterogeneous documents. Thus, the skeleton may totally lack some paths that does
exist in some of the documents because they do not appear often, and the generation
of skeleton will exclude them.

In (Gallinucci et al., 2018) a novel technique is defined to explain the schema
variants within a collection in document stores. Therefore, the heterogeneity problem
in this research work is detected when the same attribute is represented differently,
e.g., different type, different location inside documents. Therefore, the authors suggest
using mapping to find out the different variation for a given attribute. In order to
retrieve information, users should formulate as much query as the number of attributes
defined in the mappings for each attribute. However, the problem with such solution
is the difficulty to first build the adequate queries since there is no automatic query
generation. Second there is a need to perform further treatments to combine the
partial results.

In this section, we present the class of work that infer the implicit structures
from a heterogeneous collection of documents and provide the user with a high-level
illustration regarding all or a subset of structures present inside the collection. This
solution could help users to better understand the different underlying structures and
to take the necessary measures and decisions during the application design phase.
The limitation with such a logical view is that it requires a manual process in order
to build the desired queries by including the desired attributes and all their possible
navigational paths. In such approaches, the user is aware of data structures but is



2.6. QUERYING TECHNIQUES 29

required to manage the heterogeneity. Furthermore, some work does not consider all
structures and build an inferred schema on top of most used attributes, for instance,
using some probability measures. Thus, queries could result in misleading results.
Also, most of the work does not offer automatic support for structures evaluations and
it is mandatory to regenerate the inference process which could affect the associated
workloads and applications.

We build our schema-independent querying based while getting inspired by this
category of work and we provide automatic support for schema evolution. Also, in
our contribution, we guarantee that the workload dedicated to fetching data from a
heterogeneous collection of documents will not be affected by the evolution in term of
structures. We define the concept of the schema of a document because of the lack of a
formal specification (Pezoa et al., 2016). The document data model relies on collections
whose are usually schema-less. Despite the fact that such flexibility allows providing
important capabilities to load huge amounts of semi-structured data regardless of their
schema definitions, this flexibility makes it impossible to efficiently formulate complex
queries and workloads, users do not have reliable schema information to figure out
structural properties to speed up the formulation of correct queries (Baazizi et al.,
2017).

2.6 Querying Techniques

From the literature we distinguish some work consisting of proposing query rewrit-
ing (Papakonstantinou and Vassalos, 1999) which is a strategy for reformulating an
input query into several derivations to overcome heterogeneity. Most research work are
designed in the context of the relational databases, where heterogeneity is usually re-
stricted to the lexical level. When it comes to the hierarchical nature of semi-structured
data (XML, JSON documents), the problem of identifying similar nodes is insufficient
to resolve the problem of querying documents with structural heterogeneity. To this
end, keyword querying has been adopted in the context of XML (Lin et al., 2017).
The process of answering a keyword query on XML data starts with the identification
of the existence of the keywords within the documents without the need to know the
underlying schemas. The problem is that the results do not consider heterogeneity in
terms of nodes, but assume that if the keyword is found, no matter what its containing
node is, the document is adequate and must be returned to the user.

Furthermore, several systems are offering querying interface where the user could
use SQL or SQL-like querying interface to retrieve data from schema-less stores. How-
ever, it is required that the user must define the structure of the underlying data before
formulating her queries.

To address this problem in the context of document encoded in XML, the system



30 CONTENTS

Pathfinder (Schvaneveldt, 1990) define a processing stack designed to convert from
XML and XQuery (Boag et al., 2002) to relational tables and to use SQL queries.
This query language inherits the query expressiveness of relational data model from the
conventional SQL queries and adds further operators for document data model. Other
alternatives for finding different navigational paths which lead to the same nodes are
supported by (Boag et al., 2002, Clark et al., 1999). However, structural heterogeneity
is only partially addressed. There is always a need to know the underlying document
structures and to learn a complex query language. Moreover, these solutions are not
built to run with large-scale data. In addition, we can see the same limitations with
JSONiq (Florescu and Fourny, 2013), the extension to XQuery designed to deal with
large-scale semi-structured data.

Other line of work considers large volume of data and enable querying for doc-
uments encoded in JSON. For instance, the work SQL++ (Ong et al., 2014) offers
a query language designed to retrieve information from semi-structured data, e.g.,
documents. Furthermore, we find other work form the literature such as Google Ten-
zing (Lin et al., 2011), Google Dremel (Melnik et al., 2010), Apache Drill (Hausenblas
and Nadeau, 2013), and Apache Spark SQL (Armbrust et al., 2015) propose that user
could query data without first defining a schema for the data. In the work Tenz-
ing (Lin et al., 2011), the authors introduce a query mechanism inspired from the
SQL querying language and performing in MapReduce systems. To this end they
propose to infer relational models from the underlying documents. The limitation of
this work is that it is only limited to flat structures. In other words, only documents
composed of attributes of primitive types are supported. This is not always valid in
the context of documents stores where nested structures is commonly used in current
data-intensive applications. In contrast, other solutions such as Dremel (Melnik et al.,
2010) and Drill support nested data. We notice also that systems such as Apache
Spark SQL (Armbrust et al., 2015) fits the data into main memory using a custom
data model called data frames. Hence, a data frame reuses the table structure in which
each column contains values of one attribute. In case of heterogeneous structures, data
frames are built based on the most used structures and thus leading to miss some el-
ements present in limited number of documents. Furthermore, data frames could be
materialised and loaded to optimise querying performances. However, if new struc-
tures are inserted into the collection of heterogeneous documents, there is a need to
regenerate the data frames and thus changing the columns signature which could affect
the existing workloads.

In this thesis, we build our schema-independent querying upon the idea proposed
in the context of query reformulation. We believe that the advantage of reformulating
queries in ad-hoc fashion is transparent to the already available workloads. Further-
more, in our contribution we focus on generating one query able to overcome the



2.7. SUMMARY 31

heterogeneity problem and thus we omit the additional efforts required to recompose
results from the execution of several queries.

In the next section we summarise the state-of-the-art work which are related to
our work and we discuss them based on set of comparison criteria that we define.

2.7 Summary

In this section, we compare the most relevant work from the literature that propose
a solution to facilitate the process of querying heterogeneous data. We present first
a table and then we discuss the different criteria. Finally, we position our work with
respect to the related literature.

Contribution Heterogeneity Querying mechanism Underlying store Solution Data model Schema evolution
support

Type Level

ARGO(Chasseur et al., 2013) structural schema ARGO/SQL MySQL, Postgres physical re-factorization document manual

Sinew(Tahara et al., 2014) structural schema SQL Postgres physical re-factorization key-value manual

(DiScala and Abadi, 2016) semantic schema SQL RDBMS physical re-factorization key-value manual

(Hai et al., 2016) structural instance Keywords queries + SQL - data annotation document manual

(Baazizi et al., 2017) structural schema - Distributed DB schema inference document manual

(Ruiz et al., 2015) structural schema - MongoDB schema inference document manual

SQL++(Ong et al., 2014) structural schema SQL++ RDBMS+NoSQL query language relational + document manual

Spark SQL(Armbrust et al., 2015) structural schema SQL++ RDBMS+NoSQL query language relational + document manual

JSONiq(Florescu and Fourny, 2013) structural schema JSONiq - query language document manual

XQuery(Boag et al., 2002) structural schema XQuery - query language document manual

EasyQ(Ben Hamadou et al., 2019c) structural schema Aggregation Framework MongoDB query reformulation document automatic

Table 2.1: Comparative study of the main contributions to querying heterogeneous
semi-structured data.

In Table 2.1 we present the state-of-the-art research work intended to resolve the
problem of querying multi-structured data. We compare this work according to the
following criteria:

• the type of heterogeneity examined in each type of work: structural, syntactic
or semantic;

• the level of heterogeneity. For each type of work, we consider whether the con-
tribution is designed to resolve heterogeneity at schema level or instance level;

• the querying mechanism. We examine if the type of work recommends a new
query language, reuses existing systems or does not offer any querying support;

• the underlying store. We indicate if each type of work is limited to one store or
several stores;



32 CONTENTS

• the solution proposed for the heterogeneity problem. We describe the nature
of the solution for each type of work, for instance, does it perform physical re-
factorization and change the original schemas, does it focus only on inferring
underlying schemas or does it offer a new query language?

• the data models. We classify each work according to the data models it supports
documents, key-value, relational, etc.;

• Schema evolution support. We indicate how each type of work handles the arrival
of new data structures in the database (insert/update/delete documents). Do
they offer transparent and native support to handle these new structures? Are
manual changes needed to support this change?

The majority of the state-of-the-art research concentrates on managing heterogene-
ity at a structural level. If we consider schema evolution support, to the best of our
knowledge, our work is the first contribution that manages automatic support to over-
come structural heterogeneity without regenerating relational views or re-executing
schema inference techniques. Moreover, our contribution can automatically extract
existing schemas, build and update a dictionary with all the details of the attributes
and their corresponding paths in the collection, and offer querying capabilities without
introducing a new querying language or new store. We propose to help the user to
overcome heterogeneity: she queries the system with a minimum knowledge of the
data structures and the system reformulates the query to overcome the underlying
heterogeneity. We ensure that our query reformulation can reformulate queries with
the latest schemas in the collection.

This thesis introduces a schema-independent querying approach that is based on
the native engine and operators supported by conventional document stores. Fur-
thermore, we offer greater support for most querying operators, e.g., project-select-
aggregate-unnest-lookup. Our approach is an automatic process running on the initial
document structures; there is no need to perform any transformation to the underlying
structures or to use further auxiliary systems. Users are not asked to manually resolve
the heterogeneity. For collections of heterogeneous documents describing a given en-
tity, we believe that we can handle the structural heterogeneity of documents by using
a query reformulation mechanism introduced in this thesis.

In this chapter, we introduced the main concepts required for the understating of
the context and the problematic that we address in this thesis. Therein, we classified
related literature to four categories. We introduced some work for each of the cate-
gory and we compared to our work. Later, we summarised all the work and we draw a
comparison table where we compare the different work from the literature with respect
to our work. In the reminder of this thesis, we introduce the different formal founda-
tions required to build our main contributions with respect to the assumption that we



2.7. SUMMARY 33

introduced in the introduction and the inspiration that we got from the literature.





Chapter 3

Document Data Model Concepts

Contents

3.1 Document and Collection Data Model . . . . . . . . . . . . . . . . . . . 37
3.1.1 Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Document and Collection Schemas . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Document Schema . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Collection Schema . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Document Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Collection Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Dictionary Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Insert Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Delete Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3 Update Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

35



36 CONTENTS

During the last decade, NoSQL document stores and schema-less data modelling
have emerged as mainstream alternatives to relational modelling for addressing the
substantive requirements of current data-intensive applications (Hecht and Jablonski,
2011), e.g., IoT, web, social media and logs. Hence, to build efficient application and to
take the most profit from document stores, it is important to start first by understand-
ing the key concepts of the document data modelling. Furthermore, the schema-less
nature guaranteed by most document stores requires to build an efficient process to
extract the underlying structures within a collection of documents to build efficient
queries able to retrieve the required information. This process plays an important role
to build adequate queries. Document stores querying engine are not well-tailored to
overcome heterogeneity in structures. It is up to the user to handle the heterogeneity
and to explicitly includes various absolute paths in their queries to extract information
of interest.

In the literature several solutions were introduced to overcome this issue. Current
techniques recommend flattening documents, e.g., in XML or JSON format, into a
relational form (Chasseur et al., 2013, DiScala and Abadi, 2016, Tahara et al., 2014)
to overcome the heterogeneity in structures. This process of physical schema transfor-
mation requires additional resources, such as an external relational database and more
effort to generate new schema every time they change the workload or when new data
are inserted, deleted or updated. Furthermore, to deal with the heterogeneity in struc-
tures they propose transforming all document schemas to a single common schema and
introducing some logical views which leads to a homogeneous collection (Tahara et al.,
2014) using schema matching techniques to merge heterogeneous structures (Rahm
and Bernstein, 2001).

Meanwhile current trends suggest performing complex physical transformation, or
to employ complex schema matching techniques leading to initial structures loss and
affecting the support of legacy applications. We advocate the idea of keeping the
documents in their original underlying structures. In this thesis, we provide a formal
foundation to resolve the problem of extracting schemas for evolving collections. To
track all structures in documents, we introduce a dictionary in which each path within
a given structure is mapped to all its corresponding possible absolute paths in other
structures.

In this chapter, we introduce the formal model of our proposition built on top of
the dictionary to trace the heterogeneity in document structures. We first start by in-
troducing the formal definition of the document data model. Therefore, we introduce
our definition of the concept of documents and collection. Then, we introduce our
definition of the concept of structure which covers also the concept of paths in doc-
uments, and collection structures. Later, based on our formal foundations we define
the dictionary that we introduce as a solution to track heterogeneity in the collection



3.1. DOCUMENT AND COLLECTION DATA MODEL 37

of documents without performing any changes to the underlying document structures.
Finally, we define the set of operations, i.e., insert, delete, update, required to main-
tain the collection schema and the dictionary with the recent structures of an evolving
collection of documents.

3.1 Document and Collection Data Model

In this section, we introduce the key concept used in the defintion of the document
data model. Therefore, we present formal definition for the concept of collection and
document in document data model illustrated with examples.

3.1.1 Collection

In document stores, data is stored and organized as a collection of documents which
are simply a grouping of documents (Cattell, 2011). The concept of the collection
is like its counterpart table in Relational Database Management systems (RDBMS).
A collection can store documents which are not sharing similar structures. This is
possible because of the schema-less support of most NoSQL stores. However, the
value of documents is encoded in JSON 1 or XML (Consortium et al., 2006) format.
Many applications can thus model data regardless of prefixed schemas, as data can be
nested with different nesting levels and it is always query-able.

In the following, we introduce the formal definition for the concept of collection in
document stores.

Definition 3.1. Collection
A collection C is defined as a set of documents.

𝐶 = {𝑑1, . . . , 𝑑𝑛𝑐}

where 𝑛𝑐 = |𝐶| is the collection size.

3.1.2 Document

The key concept in document data modelling is the document. Most document
stores use documents as basic units for data storage as well as for queries. Documents
are well-tailored to store large volume of information (Imam et al., 2018). Furthermore,
documents are composed of set of fields where any number of fields could belong to
the documents without adding same fields with null values to the other documents
in a collection. Therefore, the number of attributes in two documents from the one
collection could be not the same. Compared to relational databases, empty columns

1https://www.json.org/



38 CONTENTS

contain null value by default. The document concept in document stores correspond
to records (Kaur and Rani, 2013) in relational ones.

In the following we introduce the formal definition for the document as a key-value
pair where the key identifies the document within the collection and the value refers
to the document value which could be atomic or complex.

Definition 3.2. Document
A document 𝑑𝑖 ∈ 𝐶, ∀𝑖 ∈ [1, 𝑛𝑐], is defined as a (key, value) pair

𝑑𝑖 = (𝑘𝑑𝑖
, 𝑣𝑑𝑖

)

• 𝑘𝑑𝑖
is a key that identifies the document 𝑑𝑖 in the collection C,

• 𝑣𝑑𝑖
is the document value.

We first start by defining a generic value 𝑣 which can be atomic or complex (object
or array).

An atomic value 𝑣 can take one of the four following forms:

• 𝑣 = 𝑛 where 𝑛 is a numerical value form (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 or 𝑓𝑙𝑜𝑎𝑡);

• 𝑣 = “𝑠” where “𝑠” is a string formulated in 𝑈𝑛𝑖𝑐𝑜𝑑𝑒 A*;

• 𝑣 = 𝛽 where 𝛽 ∈ 𝐵, the set of boolean 𝐵 = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒};

• 𝑣 = ⊥ where ⊥ is the 𝑛𝑢𝑙𝑙 value.

A complex value 𝑣 can take one of the two following forms:

• 𝑣 = {𝑎1 : 𝑣1, . . . , 𝑎𝑚 : 𝑣𝑚} is an object value, ∀𝑗 ∈ [1..𝑚], 𝑣𝑗 are values,
and 𝑎𝑗 are strings (in 𝑈𝑛𝑖𝑐𝑜𝑑𝑒 𝐴*) called 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠. This definition is recursive
since a value 𝑣𝑗 is defined as a generic value 𝑣;

• 𝑣 = [𝑣1, . . . , 𝑣𝑚] represents an array ∀𝑗 ∈ [1..𝑚] 𝑣𝑗 are values. This definition
is also recursive because a value 𝑣𝑗 is defined as a generic value 𝑣.

In the definition of a document, the document value 𝑣𝑑𝑖
is a value 𝑣𝑑𝑖

= {𝑎𝑑𝑖,𝑗
: 𝑣𝑑𝑖,𝑗

}
where the values 𝑣𝑑𝑖,𝑗

are defined as the generic values which could be atomic, complex
or array. To cope with nested documents and navigate through schemas, we adopt
classical navigational path notations (Bourhis et al., 2017, Hidders et al., 2017). For
instance, to access the value 𝑣𝑖,𝑗 from a document value defined as 𝑣𝑑𝑖

= {𝑎𝑖 : {𝑎𝑖,𝑗 :
𝑣𝑖,𝑗}}, the corresponding classical navigational path is expressed as 𝑎𝑖.𝑎𝑖,𝑗.



3.2. DOCUMENT AND COLLECTION SCHEMAS 39

Example. Figure 3.1 presents a document identified with the attribute _id and its
document value is composed of 2 attributes. We distinguish one simple attributes,
i.e., title, and a complex attribute, i.e., info. The latter is composed of three simple
attributes, i.e., year, country and link, and three complex attributes: i) the attribute
genres is an array of Strings, ii) the attribute people which is an object attribute
composed of the two object attributes director, lead_actor in which are nested two
simple attributes first_name and last_name and the array attribute actors, and iii)
the object attribute ranking in which is nested the simple attribute score.

{ "_id":2,
"title":"In the Line of Fire",
"info":{

"year":1993,
"country":"USA",
"link":"https://goo.gl/2A253A",
"genres":["Drama", "Action", "Crime"],
"people":{

"director":{
"first_name":"Clint",
"last_name":"Eastwood"

},
"lead_actor":{

"first_name":"Clint",
"last_name":"Eastwood"

},
"actors":["Clint Eastwood",

"John Malkovich", "Rene Russo Swank"]
},
"ranking":{ "score":7.2}

}
}

Figure 3.1: Illustrative example of a document describing a film.

3.2 Document and Collection Schemas

3.2.1 Paths

In documents, data is present at different nesting levels. The name of an attribute with
information of interest is not enough to fetch data when compared to its analogous
column name in relational data model. To retrieve required information from docu-
ments, it is mandatory use paths expressed in dot notation as in URLs for navigating
through the hierarchical structure of a document (Clark et al., 1999).

In the following we introduce the definition for the concept of path, and we distin-
guish between the different forms of paths, i.e., absolute path, partial path and leaf
node.

Definition 3.3. Path
A path represents a sequence of dot concatenated attributes starting from the root

of the document and leading to a particular attribute in the document value 𝑣𝑑𝑖
that



40 CONTENTS

could be an atomic value of a leaf node or a complex value of a document. In the event
of an array value, the path is expressed same ways as value and ends with the index
of each value inside the array. In all cases, the path from the root to any atomic or
complex document value in 𝑣𝑑𝑖

is called an absolute path. Furthermore, a path could
be a sub-path when the sequence of attributes does not start from the root. In this
case, the path is called a partial path. Finally, leaf node attributes are considered as
paths too since they respond to the partial path definition.

Example. Figure 3.2 presents snippets from four documents with focus on the at-
tributes score. In this example the path ranking.score in document (a) represents an
absolute path to reach the information referenced by the attribute score. This path
is composed of the complex attribute ranking expressed in dot concatenation format
with the simple attribute score. However, the same path, ranking.score in documents
(b, c, d) represents partial paths. Also, we could notice that others.ranking in docu-
ment (c) is another example of a partial path. Furthermore, the path score which is a
leaf node is considered as partial paths in all documents of the collection (C). In the
event of array value, e.g., ranking, the path ranking.1 in document (a) represents an
absolute path to retrieve the value Drama from this array value.

{ "_id":1,
....

"genres":["Drama", "Sport"],
"ranking":{ "score":8.1}

}

(a)

{ "_id":2,
"info":{
....

"ranking":{ "score":7.2}
}

}

(b)

{ "_id":3,
"film":{

....
"others":{

"ranking":{ "score":8.1}
}

}
}

(c)

{ "_id":4,
....

"classification":{
"ranking":{"score":7.2},

....
}

}

(d)

Figure 3.2: Snippets from the collection (C).

3.2.2 Document Schema

In this part, we define the concept of document schema because the lack of a formal
specification (Pezoa et al., 2016). Thus, in our definition, we rely on the concept of
document paths and we define the document schema as the set of all absolute paths
existing in this document.

Definition 3.4. Document Schema



3.2. DOCUMENT AND COLLECTION SCHEMAS 41

The document schema 𝑆𝑑𝑖
inferred from the document value 𝑣𝑑𝑖

of a document 𝑑𝑖,
is defined as:

𝑆𝑑𝑖
= {𝑝1, . . . , 𝑝𝑁𝑖

}

where, ∀𝑗 ∈ [1..𝑁𝑖], 𝑝𝑗 is an absolute path leading to an attribute of 𝑣𝑑𝑖
. For

multiple nesting levels, the navigational paths are extracted recursively in order to
find the path from the root to any attribute that can be found in the document
hierarchy. The document schema 𝑆𝑑𝑖

of a document 𝑑𝑖 is defined from its value 𝑣𝑑𝑖
=

{𝑎𝑑𝑖,1 : 𝑣𝑑𝑖,1, . . . , 𝑎𝑑𝑖,𝑛𝑖
: 𝑣𝑑𝑖,𝑛𝑖

} as follows:
for all attribute 𝑎𝑑𝑖,𝑗 : 𝑣𝑑𝑖,𝑗:

• if 𝑣𝑑𝑖,𝑗 is atomic, 𝑆𝑑𝑖
= 𝑆𝑑𝑖

∪ {𝑎𝑑𝑖,𝑗} where 𝑎𝑑𝑖,𝑗 is the path leading to the value
𝑣𝑑𝑖,𝑗;

• if 𝑣𝑑𝑖,𝑗 is an object value, 𝑆𝑑𝑖
= 𝑆𝑑𝑖

∪ {𝑎𝑑𝑖,𝑗} ∪ {∪𝑝∈𝑠𝑑𝑖,𝑗
𝑎𝑑𝑖,𝑗.𝑝} where 𝑠𝑑𝑖,𝑗 is

the document schema of 𝑣𝑑𝑖,𝑗 and 𝑎𝑑𝑖,𝑗.𝑝 is the path composed of the complex
attribute 𝑎𝑑𝑖,𝑗 dot concatenated with the path 𝑝 of 𝑠𝑑𝑖,𝑗;

• if 𝑣𝑑𝑖,𝑗 is an array value, 𝑆𝑑𝑖
= 𝑆𝑑𝑖

∪ {𝑎𝑑𝑖,𝑗} ∪ { ∪
𝑚𝑗

𝑘=1(︂
{ 𝑎𝑑𝑖,𝑗.𝑘} ∪ {∪𝑝∈𝑠𝑑𝑖,𝑗,𝑘

𝑎𝑑𝑖,𝑗.𝑘.𝑝}
)︂
} where 𝑠𝑑𝑖,𝑗,𝑘 is the document schema of the

𝑘𝑡ℎ value in the array 𝑣𝑑𝑖,𝑗, 𝑎𝑑𝑖,𝑗.𝑘 is the path leading to the 𝑘𝑡ℎ entry from
the array value 𝑣𝑑𝑖,𝑗 composed of the array attribute 𝑎𝑑𝑖,𝑗 composed of the array
attribute 𝑎𝑑𝑖,𝑗 dot concatenated with the index 𝑘, 𝑎𝑑𝑖,𝑗.𝑘.𝑝 is the path leading to
the 𝑘𝑡ℎ entry from the array value 𝑣𝑑𝑖,𝑗 composed of the path leading to the 𝑘𝑡ℎ

entry from the array dot concatenated with the path 𝑝 of 𝑠𝑑𝑖,𝑗,𝑘; we adopt this
notation from (Hidders et al., 2017).

Example. The document schema for the document from Figure 3.1 is as follows:
S𝑏 =

{title,
info,
info.year,
info.country,
info.link,
info.genres,
info.genres.1,
info.genres.2,

info.genres.3,
info.people,
info.people.director,
info.people.director.first_name,
info.people.director.last_name,
info.people.lead_actor,
info.people.lead_actor.first_name,
info.people.lead_actor.last_name,

info.people.actors,
info.people.actors.1,
info.people.actors.2,
info.people.actors.3,
info.ranking,
info.ranking.score}

3.2.3 Collection Schema

After defining the concept of document schema, we introduce now a generic definition
to cover the collection schema.



42 CONTENTS

Definition 3.5. Collection Schema
The schema 𝑆𝐶 inferred from a collection C is the set of all absolute paths defined

in document schemas extracted from each document in the collection C:

𝑆𝐶 = {(𝑝1, 𝑛1), . . . , (𝑝𝑛𝑐 , 𝑛𝑛𝑐)}

where 𝑝𝑙 is an absolute path in the collection and 𝑛𝑙 is its number of occurrence
within the collection. We refer to the number of occurrence 𝑛𝑙 of a path 𝑝𝑙 ∈ 𝑆𝐶 as
𝑛𝑙 = 𝑆𝐶(𝑝𝑙). We introduce the number of occurrence 𝑛𝑙 to ensure that all paths inside
𝑆𝐶 are present in at least one document, ∀𝑙 ∈ |𝑆𝐶 |, 𝑛𝑙 > 0.

Algorithm 1: Algorithm to construct collection schemas from document
Paths.

Input : 𝐶
1 𝑆𝐶 ← ∅
2 foreach 𝑑𝑖 ∈ 𝐶 do
3 foreach 𝑝𝑗 ∈ 𝑆𝑑𝑖

do
4 if 𝑝𝑗 /∈ 𝑆𝐶 then
5 𝑆𝐶(𝑝𝑗)← 𝑆𝐶(𝑝𝑗) + 1
6 end
7 else
8 𝑆𝐶 ← 𝑆𝐶 ∪ {(𝑝𝑗, 1)}
9 end

10 end
11 end
12 return 𝑆𝐶

In Algorithm 1, the collection schemas 𝑆𝐶 is constructed from each path 𝑝𝑗 from
each document schema 𝑑𝑖, Line 2 − 3. In case of an existing absolute path in the
document schema, the algorithm increments its number of occurrence by one, Line 4−
6. Otherwise, the algorithm adds new entry to the collection schemas, Line 7− 9. We
define the function 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑐ℎ𝑒𝑚𝑎(𝐶) to refer to the Algorithm 1. This function
takes as input the collection 𝐶 and returns the collection schema 𝑆𝐶 .

Example.
Figure 3.3 presents a snippet from a collection of documents describing movies.

The corresponding collection schemas for this collection is as follows:
𝑆𝐶 =

{title: 2,
genres.1:1,
genres.2:1,
director:1,
director.first_name:1,
director.last_name:1,
lead_actor.first_name:1,
lead_actor.last_name:1,
ranking:1,

ranking.score:1,
info:1,
info.people:1,
info.people.director:1,
info.people.director.first_name:1,
info.people.director.last_name:1,
info.ranking:1,
film:1,
film.title:1,



3.2. DOCUMENT AND COLLECTION SCHEMAS 43

film.details:1,
film.details.director:1,
film.details.director.first_name:1,
film.details.director.last_name:1,
film.details.personas:1,
film.details.personas.lead_actor:1,
film.details.personas.lead_actor.first_name:1,
film.details.personas.lead_actor.last_name:1,
others:1,
others.ranking:1,
others.ranking.score:1,
description:1

description.title:1,
description.director:1,
description.director.first_name:1,
description.director.last_name:1,
description.stars:1,
description.stars.lead_actor:1,
description.stars.lead_actor.first_name:1,
description.stars.lead_actor.last_name:1,
classification:1,
classification.ranking:1,
classification.ranking.score:1
}

{ "_id":1,
"title":"Million Dollar Baby",
...
"genres":["Drama", "Sport"],
"director":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"
},
...
"ranking":{ "score":8.1
}

}

(a)

{ "_id":2,
"title":"In the Line of Fire",
"info":{

...
"people":{

"director":{ "first_name":"Clint",
"last_name":"Eastwood"

},
"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"
},
...

},
"ranking":{ "score":7.2
}

}
}

(b)

{ "_id":3,
"film":{

"title":"Gran Torino",
...
"details":{

...
"director":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"personas":{

"lead_actor":{ "first_name":"Clint",
"last_name":"Eastwood"

},
...
}

},
"others":{

"ranking":{ "score":8.1
}

}
}

}

(c)

{ "_id":4,
"description":{

"title":"The Good, the Bad and the Ugly",
...
"director":{ "first_name":"Sergio",

"last_name":"Leone"
},
"stars":{

"lead_actor":{ "first_name":"Clint",
"last_name":"Eastwood"

},
...

}
},
"classification":{

"ranking":{"score":7.2
},

...
}

}

(d)

Figure 3.3: Snippets of illustrative example of a collection (C) with four documents
describing films.

The document schema concept provides only information for a document structure.
Furthermore, the concept of collection schema provides a global view regarding all
paths present in all documents within a collection. Also, the paths in those concepts



44 CONTENTS

are restricted to only absolute paths. In the next section, we extend those definitions
and we introduce the concept of a dictionary in which we map each path regardless of
its nature, e.g., partial or absolute path, with all absolute paths leading to the same
piece of information in other document schemas.

3.3 Dictionary
The architecture of our approach relies on the construction of a dictionary that enables
the query reformulation process. A dictionary is a repository that binds each existing
path in the collection (partial or absolute paths, including leaf nodes) to all the absolute
paths from the collection schema leading to it (Ben Hamadou et al., 2019b,c).

In the following paragraphs, we first define partial paths in documents (called doc-
ument paths), then partial paths in the collection (called collection paths) and we
finally give the formal definition of the dictionary. The goal of introducing the con-
cept of partial paths is to extend the query expressiveness of most document stores.
Thus, a user will be able to formulate queries over partial paths whereas current prac-
tices require that queries are only formulated over absolute paths. Let us notice that
dictionary keys will become the basic element on which queries could be formulated.

3.3.1 Document Paths

In the following, we introduce the formal definition of the document paths.

Definition 3.6. Document Paths
We define 𝑃𝑑𝑖

= {𝑝𝑑𝑖
} as the set of all existing paths in a document 𝑑𝑖: absolute

paths as well as partial paths. We give a formal and recursive definition of 𝑃𝑑𝑖
starting

from the value 𝑣𝑑𝑖
of document 𝑑𝑖.

For each document 𝑑𝑖 = (𝑘𝑑𝑖
, 𝑣𝑑𝑖

), where 𝑣𝑑𝑖
= {𝑎𝑑𝑖,1 : 𝑣𝑑𝑖,1, . . . , 𝑎𝑑𝑖,𝑛𝑖

: 𝑣𝑑𝑖,𝑛𝑖
}

• if 𝑣𝑑𝑖,𝑗 is atomic: 𝑃𝑑𝑖
= 𝑃𝑑𝑖

∪ 𝑆𝑣𝑑𝑖,𝑗
;

• if 𝑣𝑑𝑖,𝑗 is an object: 𝑃𝑑𝑖
= 𝑃𝑑𝑖

∪ 𝑆𝑣𝑑𝑖,𝑗
∪ 𝑃𝑣𝑑𝑖,𝑗

where 𝑃𝑣𝑑𝑖,𝑗
is the set of existing

paths for the value 𝑣𝑑𝑖,𝑗 (document paths for 𝑣𝑑𝑖,𝑗);

• if 𝑣𝑑𝑖,𝑗 is an array: 𝑃𝑑𝑖
= 𝑃𝑑𝑖

∪ 𝑆𝑣𝑑𝑖,𝑗
∪ (∪𝑛𝑙

𝑘=1𝑃𝑣𝑑𝑖,𝑗,𝑘
) where 𝑃𝑣𝑑𝑖,𝑗,𝑘

is the set of
existing paths of the 𝑘𝑡ℎ value of 𝑣𝑑𝑖,𝑗 (document paths for 𝑣𝑑𝑖,𝑗).

Since sets contain paths considered as values, the union of sets must be inter-
preted as a union of different paths. For example {𝑎.𝑏, 𝑎.𝑏.𝑐, 𝑎.𝑏.𝑑} ∪ {𝑎.𝑏, 𝑏.𝑎} =
{𝑎.𝑏, 𝑎.𝑏.𝑐, 𝑎.𝑏.𝑑, 𝑏.𝑎}.

Example. The document paths 𝑃𝑏 for document (b) in Figure 3.1 is as follows:



3.3. DICTIONARY 45

P𝑏 =

{_id,
title,
info,
info.year,
year,
info.country,
country,
info.link,
link,
info.genres,
info.genres.1,
info.genres.2,
info.genres.3,
genres,
genres.1,
genres.2,
genres.3
info.people,

info.people.director,
info.people.director.first_name,
info.people.director.last_name,
people,
people.director,
people.director.first_name,
people.director.last_name,
director,
director.first_name,
director.last_name,
first_name,
last_name,
info.people.lead_actor,
info.people.lead_actor.first_name,
info.people.lead_actor.last_name,
people.lead_actor,
people.lead_actor.first_name,
people.lead_actor.last_name,

lead_actor,
lead_actor.first_name,
lead_actor.last_name,
info.people.actors,
info.people.actors.1,
info.people.actors.2,
info.people.actors.3,
people.actors,
people.actors.1,
people.actors.2,
people.actors.3,
actors.1,
actors.2,
actors.3,
info.ranking,
info.ranking.score,
ranking.score,
score}

3.3.2 Collection Paths

After defining the concept of document paths, we introduce now a generic definition
to cover the collection paths.

Definition 3.7. Collection Paths
The set of all existing paths (absolute paths and partial paths) in a collection C:

𝑃𝐶 = ∪𝑛𝑐
𝑖=1 𝑃𝑑𝑖

We notice that 𝑆𝐶 ⊆ 𝑃𝐶 (all absolute paths are included in 𝑃𝐶).

3.3.3 Dictionary

The main purpose behind introducing document and collection paths is to construct
the dictionary.

Definition 3.8. Dictionary
The dictionary 𝑑𝑖𝑐𝑡𝐶 of a collection 𝐶 is defined as:

𝑑𝑖𝑐𝑡𝐶 = {(𝑝𝑘, △𝐶
𝑝𝑘

)}

where:

• 𝑝𝑘 ∈ 𝑃𝐶 is an existing path in the collection C, 𝑘 ∈ [1..|𝑃𝐶 |];

• △𝐶
𝑝𝑘

= {𝑝𝑘,1, . . . , 𝑝𝑘,𝑛𝑘
} ⊆ 𝑆𝐶 is the set of all absolute paths of the collection

leading to 𝑝𝑘, 𝑛𝑘 = |△𝐶
𝑝𝑘
|.



46 CONTENTS

We refer to the set of absolute paths △𝐶
𝑝𝑘

leading to the path 𝑝𝑘 in the collection 𝐶 as
△𝐶

𝑝𝑘
= 𝐷𝑖𝑐𝑡𝐶(𝑝𝑘).

Formally, the dictionary value △𝐶
𝑝𝑘

is a set of all absolute paths 𝑝𝑘,𝑗 ∈ 𝑆𝐶 , 𝑗 ∈
[1..𝑛𝑘], of the form 𝑝𝑘,𝑗 = 𝑝𝑙.𝑝𝑘 where 𝑝𝑙 is a path or 𝑝𝑙 is empty. Thus, the dictionary
value△𝐶

𝑝𝑘
contains all the absolute paths to 𝑝𝑘 that exist in at least one document in the

collection. The Algorithm 2 presents the required steps to construct the dictionary.
This Algorithm takes as input the collection schema 𝑆𝐶 , and collection paths 𝑃𝐶 .
Later on, it starts to find out for each path in collection paths 𝑃𝐶 , Line 2, the set of
its corresponding absolute paths from the collection schema 𝑆𝐶 , Lines 5− 11. Finally,
the algorithm appends the dictionary with a new entry mapping a path with all its
absolute paths extracted from other structures of documents, Line 12. In the reminder
of this thesis we use the function generateDict(C’) to use the Algorithm 2 to construct
a new dictionary for a collection 𝐶 ′ given as input. This function returns the dictionary
𝐷𝑖𝑐𝑡𝐶′ and the collection schema 𝑆 ′𝐶 .

Algorithm 2: Dictionary construction algorithm.
Input : 𝑆𝐶 , 𝑃𝐶 // Collection Schema 𝑆𝐶 and Collection Paths 𝑃𝐶

1 𝑑𝑖𝑐𝑡𝐶 ← ∅ // Initialisation
2 foreach 𝑝𝑘 ∈ 𝑃𝐶 // for each path absolute or partial 𝑝𝑘 in 𝑃𝐶

3 do
4 △𝐶

𝑝𝑘
← ∅

5 foreach 𝑝𝑗 ∈ 𝑆𝐶 // for each absolute path 𝑝𝑗 in 𝑆𝐶

6 do
7 if 𝑝𝑗 = 𝑝𝑙.𝑝𝑘 // if the path 𝑝𝑗 is an absolute path expressed

as a concatenation of a path 𝑝𝑙 and the path 𝑝𝑘

8 then
9 △𝐶

𝑝𝑘
←△𝐶

𝑝𝑘
∪ {𝑝𝑗} // add the path 𝑝𝑗 to the value △𝐶

𝑝𝑘

10 end
11 end
12 𝑑𝑖𝑐𝑡𝐶 ← 𝑑𝑖𝑐𝑡𝐶 ∪ {(𝑝𝑘,△𝐶

𝑝𝑘
)} // append the dictionary with a

key-value pair where 𝑝𝑘 is a dictionary entry, and △𝐶
𝑝𝑘

is the
value of the entry 𝑝𝑘

13 end
14 return 𝑑𝑖𝑐𝑡𝐶

Example. For example, if we build the dictionary from q collection composed of
document in Figure 3.1, the dictionary keys will contain title and info.people, but
also info.people.director, people.director, people, director and so on as explained in the
example introduced in section 3.3.1. In the following example, we present the following
dictionary entries from the collection (C) in Figure 3.3



3.4. DICTIONARY MAINTENANCE 47

• the absolute path film.title from document (c);

• the leaf node score from documents (a,b,c,d);

• the partial path people.director from document (b);

• the partial path ending with leaf node director.first_name from documents
(b,c,d).

The corresponding values for these dictionary entries are as follows:

• film.title:[film.title]

• score:[ranking.score,
film.others.ranking.score,
info.ranking.score,
classification.ranking.score]

• people.director:[info.people.director]

• director.first_name:[director.first_name,
film.details.director.first_name,
info.people.director.first_name,
description.director.first_name]

We introduced the concept of the dictionary after defining all concepts related to
schema and paths for documents and collection. The dictionary provides a full coverage
regarding the presences of the paths and their distribution across diverse structures
of documents in the collection. The information related to the structures is static,
i.e., this information only refers to the exact structures composing the document of
a collection now when the dictionary is created. Thus, it is required to update the
dictionary when structures of documents evolve during the time.

3.4 Dictionary Maintenance

In this section, we introduce an automatic mechanism that keeps the dictionary
updated with the latest structures within a collection of documents. The main idea
behind this process is to track every manipulations, e.g., insert, update or delete,
that occurs to a collection and to simultaneously update the affected paths by those
operations (Ben Hamadou et al., 2019c). Therefore, in case of document with new
structures, the mechanism; i) adds new keys to the dictionary with all new paths
from new structures, ii) updates the value of existing keys with new absolute paths
from new structures. Moreover, in case of update operation, the mechanism updates
the dictionary entries corresponding to the paths affected by the update operation.
Finally, in case of delete operation the mechanism removes i) keys from the dictionary
and their corresponding absolute paths in case of obsolete dictionary keys. ii) obsolete
absolute paths leading to existing dictionary keys.

Collection manipulation operators are used to insert, delete, and modify (update)
documents in a collection. Storing data in their original schema in classical document



48 CONTENTS

stores, we use classical manipulation operators of document stores. Since these op-
erations may lead to changes in schemas of documents, we add to these operators a
simultaneous operation to update the collection schema and the dictionary accordingly.

Insert 
Delete 
Update

Data 
Structure 
Extractor

{ }

NoSQL

Dictionary
Refreshes

Collection  
Manipulation Operation

Operators

Dictionary  
Manipulation Operation

Figure 3.4: Collection manipulation process.

Figure 3.4 shows the process of executing a manipulation operation on a collection.
We denote Φ as the insert operator, Ψ as the delete operator and Θ as the update
operator. We define any collection manipulation operator as the computation of two
pseudo-collections 𝐶𝑜𝑙𝑑 and 𝐶𝑛𝑒𝑤. The collection 𝐶𝑜𝑙𝑑 refers to the set of documents
affected by the execution of the manipulation operation making those documents ob-
solete and it is mandatory to remove them from the collection 𝐶. Conversely, the
collection 𝐶𝑛𝑒𝑤 refers to the set of new documents with their possible new structure to
be inserted in the collection 𝐶 or possibly replacing documents of the collection 𝐶𝑜𝑙𝑑

from the collection 𝐶 after executing the manipulation operation. Thus, we formally
represent the result of any collection operator as follows:

𝐶 ← 𝐶 \ 𝐶𝑜𝑙𝑑 ∪ 𝐶𝑛𝑒𝑤

where 𝐶 is the collection to manipulate, 𝐶𝑜𝑙𝑑 the set of documents to remove from 𝐶

and 𝐶𝑛𝑒𝑤 the set of documents to add to 𝐶. We provide examples of 𝐶𝑛𝑒𝑤 and 𝐶𝑜𝑙𝑑

for each manipulation operation in the next sections.
Algorithm 3 presents the different states of both collections 𝐶𝑜𝑙𝑑 and 𝐶𝑛𝑒𝑤 for

each manipulation operation. Line 2 − 7 presents the case of insert operation, i.e.,
Φ. In this case, the collection 𝐶𝑛𝑒𝑤 refers to the set of new documents to insert in
the collection 𝐶. Line 8 − 13 presents the case of delete operation, i.e., Ψ. In this
case, the collection 𝐶𝑜𝑙𝑑 refers to the set of obsolete documents to remove from the
collection 𝐶. Finally, Line 14 − 19 presents the case of update operation, i.e., Θ.
In this case, the collection 𝐶𝑛𝑒𝑤 refers to the set of documents after updating their
status, 𝐶𝑜𝑙𝑑 contains the document in their initial status before executing the update



3.4. DICTIONARY MAINTENANCE 49

Algorithm 3: Generic manipulation operation.
Input : 𝐶

1 switch operator do
2 case Φ; // case of Insert
3 do
4 𝐶𝑛𝑒𝑤 holds the set of new documents to insert in the collection
5 𝐶 ← 𝐶 ∪ 𝐶𝑛𝑒𝑤

6 end
7 case Ψ; // case of Delete
8 do
9 𝐶𝑜𝑙𝑑 holds the documents to delete from the collection

10 𝐶 ← 𝐶 ∖ 𝐶𝑜𝑙𝑑

11 end
12 case Θ; // case of Update
13 do
14 𝐶𝑜𝑙𝑑 holds the documents to be updated in their initial state
15 𝐶𝑛𝑒𝑤 holds the set of documents to be updated after applying the

update
16 𝐶 ← 𝐶 ∖ 𝐶𝑜𝑙𝑑 ∪ 𝐶𝑛𝑒𝑤

17 end
18 end
19 return 𝐶

operation over the collection 𝐶. We define the function 𝐼𝑛𝑠𝑒𝑟𝑡(𝐷𝑖𝑐𝑡𝐶 , 𝐶𝑛𝑒𝑤) to the use
the Algorithm 4. This function takes as input the initial dictionary to update 𝐷𝑖𝑐𝑡𝐶 ,
the set of documents to insert 𝐶𝑛𝑒𝑤 and it returns the 𝐷𝑖𝑐𝑡𝐶 after refreshing it.

In the remaining of this section, we introduce the different steps to update the
dictionary for each of the manipulation operators.

3.4.1 Insert Operation

In this part, we define the process of updating the dictionary while new documents
are inserted in the collection. This process consists on updating the dictionary entries
in case of inserting documents with new structures. Furthermore, this process update
the collection schemas by adding new possible absolute paths with their corresponding
number of occurrence or updating the number of occurrence of existing absolute paths.
Therefore, the dictionary entries are simultaneously updated with the newly inserted
absolute paths. Furthermore, new entries are added to the dictionary that could be
used later during query reformulation (Ben Hamadou et al., 2019c).

Definition 3.9. Dictionary update on insert operation
The execution of this operator is automatically executed whenever new documents

are inserted into the collection. We denote the insert operation as:

Φ(𝐶), where 𝐶𝑛𝑒𝑤 ̸= ∅, 𝐶𝑜𝑙𝑑 = ∅



50 CONTENTS

Algorithm 4: Dictionary update on insert operation.
Input : 𝐷𝑖𝑐𝑡𝐶 , 𝐶𝑛𝑒𝑤

1 𝑆𝐶𝑛𝑒𝑤 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑐ℎ𝑒𝑚𝑎(𝐶𝑛𝑒𝑤) // Same way as Algorithm 1
2 𝐷𝑖𝑐𝑡𝐶𝑛𝑒𝑤 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑐𝑡(𝐶𝑛𝑒𝑤) // Same way as Algorithm 2
3 foreach 𝑝′𝑘 ∈ 𝐷𝑖𝑐𝑡𝐶𝑛𝑒𝑤 do
4 if 𝑝′𝑘 ∈ 𝐷𝑖𝑐𝑡𝐶 then
5 △𝐶

𝑝′
𝑘
←△𝐶

𝑝′
𝑘
∪△𝐶𝑛𝑒𝑤

𝑝′
𝑘

6 end
7 else
8 𝐷𝑖𝑐𝑡𝐶 ← 𝐷𝑖𝑐𝑡𝐶 ∪ {(𝑝′𝑘,△𝐶𝑛𝑒𝑤

𝑝′
𝑘

)}
9 end

10 end
11 foreach 𝑝′ ∈ 𝑆𝐶𝑛𝑒𝑤 // updating the number of occurrence for each

absolute path in the collection
12 do
13 if 𝑝′ ∈ 𝑆𝐶 then
14 𝑆𝐶(𝑝′)← 𝑆𝐶(𝑝′) + 𝑆𝐶𝑛𝑒𝑤(𝑝′)
15 end
16 else
17 𝑆𝐶 ← 𝑆𝐶 ∪ {(𝑝′, 𝑆𝐶𝑛𝑒𝑤(𝑝′))}
18 end
19 end
20 return 𝐷𝑖𝑐𝑡𝐶 , 𝑆𝐶

The goal is to update the dictionary 𝐷𝑖𝑐𝑡𝐶 with possible new paths extracted from
the collection of new documents 𝐶𝑛𝑒𝑤. We describe this process as follows:

• adding new entries in the dictionary 𝐷𝑖𝑐𝑡𝐶 (e.g., new paths in documents);

• adding new absolute paths to initial paths existing in 𝐷𝑖𝑐𝑡𝐶 ;

• updating the number of documents for each absolute path in 𝑆𝐶 .

The insertion of the new collection 𝐶𝑛𝑒𝑤 into the collection 𝐶 requires to update
the dictionary 𝐷𝑖𝑐𝑡𝐶 as follows:

Algorithm 4 starts by generating the dictionary for the collection 𝐶𝑛𝑒𝑤, Line 1,
and the collection schema 𝑆𝐶𝑛𝑒𝑤 , Line 2 . Later, it iterates over each path 𝑝′𝑘 in the
dictionary 𝐷𝑖𝑐𝑡𝑛𝑒𝑤, Line 3. If the path 𝑝′𝑘 it is already an entry into the dictionary
𝐷𝑖𝑐𝑡𝐶 , the algorithms adds the new absolute paths to the value of the dictionary entry
△𝐶

𝑝′
𝑘
, Lines 4 − 6. Otherwise, it creates a new dictionary entry identified by the path

𝑝′𝑘 and its associated value 𝐷𝑖𝑐𝑡𝐶𝑛𝑒𝑤(𝑝′𝑘), Lines 7− 9. Finally, the dictionary updates
the number of occurrence for each absolute path 𝑝′, noted 𝑆𝐶(𝑝′), added or affected
by the insertion operation, Lines 11− 19.

Example. In this example, we execute an insert operation which adds two documents
as described in in Figure 3.5 into the collection 𝐶 from Figure 3.3. Hence, the collection



3.4. DICTIONARY MAINTENANCE 51

{ "_id":5,
"title":"Fast and furious",
"director":{ "first_name":"Rob",

"last_name":"Cohen"
},
"lead_actor":{ "first_name":"Vin",

"last_name":"Diesel",
"country" : "USA"

},
"score":7.1

}

(a)

{ "_id":6,
"title":"Johnny English Strikes Again",
"info":{
"people":{

"director":{ "first_name":"David",
"last_name":"Kerr"

},
"lead_actor":{ "first_name":"Rowan",

"last_name":"Atkinson"
},

}
"ranking":{ "score":8.2

}
}

}

(b)

Figure 3.5: Collection (𝐶𝑛𝑒𝑤) with two documents describing films.

𝐶𝑛𝑒𝑤 to insert in 𝐶 is composed these two documents. After executing the Algorithm 4,
the schema collection 𝑆𝐶 from section 3.2.3 becomes

𝑆𝐶 =

{_id: 6,
title: 4,
director:2,
director.first_name:2,
director.last_name:2,
lead_actor:2,

lead_actor.first_name:2,
lead_actor.last_name:2,
lead_actor.country:1,
ranking:2,
ranking.score:2,
info:2,
info.people:2,

info.people.director:2,
info.people.director.first_name:2,
info.people.director.last_name:2,
info.ranking:2,
info.ranking.score:2
...
}

In this example we note the introduction of a new absolute path lead_actor.country,
extracted from the document of _id:5, in the collection schema 𝑆𝐶 . Furthermore, the
insert operation refreshes the collection schema 𝑆𝐶 entries. For instance, the absolute
paths title was title:2 before the insert operation, becomes title:4 since both documents
contain the absolute path title. In addition to the collection schemas updates, the
algorithm 4 updates the dictionary by adding the following entries to the dictionary.

• country:
[lead_actor.country]

• lead_actor.country:
[lead_actor.country]

Therein, the dictionary updates the entry associated to the key score presented
in the example in Section 3.3.3 with the new absolute path score extracted from the
document (a) in Figure 3.5 as follows:

• score:[score,
ranking.score,
film.others.ranking.score,
info.ranking.score,
classification.ranking.score]

However, the dictionary entry referenced with the key director.first_name pre-
sented in Section 3.3.3 stay invariant. This is because these paths are already defined
in the dictionary and only the number of their occurrence is affected with this insert
operation. Thus, only the schema of the collection is affected where for instance the



52 CONTENTS

entry info.people.director.first_name becomes equal to 2 because this path is present
in document (b) from Figure 3.5.

3.4.2 Delete Operation

In this part, we describe the different steps required to refresh the dictionary and
the collection schemas whenever a delete operation is executed over an existing col-
lection. Therefore, this process removes obsolete absolute paths from the dictionary
entries or removes obsolete dictionary entries. Furthermore, it refreshes the collection
schemas (Ben Hamadou et al., 2019c).

Definition 3.10. Dictionary update on delete operation
The execution of this operator is automatic whenever a delete operation is executed

on the collection 𝐶. We denote the dictionary delete operation as:

Ψ(𝐶), where 𝐶𝑛𝑒𝑤 = ∅, and 𝐶𝑜𝑙𝑑 ̸= ∅

The goal is to update 𝐷𝑖𝑐𝑡𝐶 according to 𝐶𝑜𝑙𝑑 by:

• updating the number of documents for each absolute path deleted in 𝑆𝐶 ;

• deleting unnecessary entries for absolute paths having count equals to 0 from
the collection schema 𝑆𝐶 ;

• updating the dictionary 𝐷𝑖𝑐𝑡𝐶 ;

• deleting unnecessary entries in the dictionary 𝐷𝑖𝑐𝑡𝐶 , those having no more ab-
solute paths in the collection to reach them.

Algorithm 5 starts first by generating a dictionary for the set of documents to delete
𝐶𝑜𝑙𝑑 and their corresponding collection schema 𝑆𝐶𝑜𝑙𝑑

, Line 1− 2. Later on, it iterates
over the different entries 𝑝′𝑘 of the dictionary 𝐷𝑖𝑐𝑡𝐶𝑜𝑙𝑑

and over each absolute path 𝑝′

in △𝐶𝑜𝑙𝑑

𝑝′
𝑘

, Lines 3− 4. Then, if all absolute paths 𝑝′ are deleted, the algorithm removes
the path 𝑝′ from the dictionary entry △𝐶

𝑝′
𝑘
, Lines 5− 6. Therein, if there are no more

absolute paths leading to the path 𝑝′𝑘, the algorithm removes this entry, Line 7 − 8.
Finally, the dictionary updates the number of occurrences of each absolute path 𝑝′,
noted 𝑆𝐶(𝑝′), by subtracting the number of occurrence from the collection schema
𝑆𝐶𝑜𝑙𝑑

if not all paths 𝑝′ from collection 𝐶 are removed, Lines 13− 16. Otherwise, the
algorithm removes the path 𝑝′ from the collection schema 𝑆𝐶 , Lines 17−19. We define
the function 𝐷𝑒𝑙𝑒𝑡𝑒(𝐷𝑖𝑐𝑡𝐶 , 𝐶𝑜𝑙𝑑) to the use the Algorithm 5. This function takes as
input the initial dictionary to update 𝐷𝑖𝑐𝑡𝐶 and the set of documents to remove 𝐶𝑜𝑙𝑑

and it returns the 𝐷𝑖𝑐𝑡𝐶 after refreshing it.
Example. In this example we delete from the collection 𝐶 the document in Fig-

ure 3.6. Therefore, the Algorithm 5 starts by refreshing the collection schema 𝑆𝐶 .
Thus, the following entries from the collection schema 𝑆𝐶 from section 3.2.3 are deleted:



3.4. DICTIONARY MAINTENANCE 53

Algorithm 5: Dictionary update on delete operation.
Input : 𝐷𝑖𝑐𝑡𝐶 , 𝐶𝑜𝑙𝑑

1 𝑆𝐶𝑜𝑙𝑑
← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑐ℎ𝑒𝑚𝑎(𝐶𝑜𝑙𝑑); // Same way as Algorithm 1

2 𝐷𝑖𝑐𝑡𝐶𝑜𝑙𝑑
← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑖𝑐𝑡(𝐶𝑜𝑙𝑑); // Same way as Algorithm 2

3 foreach 𝑝′𝑘 ∈ 𝐷𝑖𝑐𝑡𝐶𝑜𝑙𝑑
do

4 foreach 𝑝
′ ∈ △𝐶𝑜𝑙𝑑

𝑝′
𝑘

do
5 if 𝑆𝐶(𝑝′)− 𝑆𝐶𝑜𝑙𝑑

(𝑝′) = 0 then
6 △𝐶

𝑝′
𝑘
←△𝐶

𝑝′
𝑘
∖ {𝑝′}

7 if △𝐶
𝑝′

𝑘
= ∅ then

8 𝐷𝑖𝑐𝑡𝐶 ← 𝐷𝑖𝑐𝑡𝐶 ∖ {(𝑝′𝑘,∅)}
9 end

10 end
11 end
12 end
13 foreach 𝑝′ ∈ 𝑆𝐶𝑜𝑙𝑑

do
14 if 𝑆𝐶(𝑝′)− 𝑆𝐶𝑜𝑙𝑑

(𝑝′) > 0 then
15 𝑆𝐶(𝑝′)← 𝑆𝐶(𝑝′)− 𝑆𝐶𝑜𝑙𝑑

(𝑝′)
16 end
17 else
18 𝑆𝐶 ← 𝑆𝐶 ∖ {𝑝′}
19 end
20 end
21 return 𝐷𝑖𝑐𝑡𝐶 , 𝑆𝐶

The algorithm 5 removes these entries from the collection schemas since
in 𝑆𝐶 from section 3.2.3, the corresponding entry for the absolute path
info.people.director.first_name was info.people.director.first_name:1. The delete op-
eration removes the documents, thus the absolute path info.people.director.first_name
it does not exists any more in the collection schema 𝑆𝐶 . Furthermore, the Algorithm 5
removes the following keys:

[info
info.people

info.people.director,
info.people.director.first_name,

info.people.director.last_name,
info.ranking]

In addition, if we consider the partial path entry identified by the key direc-
tor.first_name presented in Section 3.3.3, after the execution of the delete operation
becomes:

• director.first_name:[director.first_name,
film.details.director.first_name,
description.director.first_name]

3.4.3 Update Operation

In this part, we introduce the different steps required to update the dictionary and
the collection schemas while executing a document update operation. The update



54 CONTENTS

{ "_id":4,
"description":{

"title":"The Good, the Bad and the Ugly",
...
"director":{ "first_name":"Sergio",

"last_name":"Leone"
},
"stars":{

"lead_actor":{ "first_name":"Clint",
"last_name":"Eastwood"

},
...

}
},
"classification":{

"ranking":{"score":7.2
},

...
}

}

Figure 3.6: Document to delete.

operation runs to change document values and even structures (Ben Hamadou et al.,
2019c).

Definition 3.11. Dictionary update on update operation
The execution of this operator is automatic whenever an update operation is exe-

cuted on the collection 𝐶. We denote the dictionary remove operation as:

Θ(𝐶), where 𝐶𝑛𝑒𝑤 ̸= ∅, 𝐶𝑜𝑙𝑑 ̸= ∅

The goal is to update 𝐷𝑖𝑐𝑡𝐶 according to 𝐶𝑜𝑙𝑑 and 𝐶𝑛𝑒𝑤. This update is processed
by updating 𝐷𝑖𝑐𝑡𝐶 from 𝐶𝑜𝑙𝑑 as explained for delete and then updating the 𝐷𝑖𝑐𝑡𝐶

from 𝐶𝑛𝑒𝑤 as explained for insert. Let us notice that the processing of update could
be somehow reversed, first from 𝐶𝑛𝑒𝑤 and then from 𝐶𝑜𝑙𝑑, leading to the same result.

Algorithm 6: Dictionary update on update operation.
Data: 𝐷𝑖𝑐𝑡𝐶 , 𝐶𝑜𝑙𝑑 , 𝐶𝑛𝑒𝑤

1 𝐷𝑒𝑙𝑒𝑡𝑒(𝐷𝑖𝑐𝑡𝐶 , 𝐶𝑜𝑙𝑑); // Same way as Algorithm 5
2 𝐼𝑛𝑠𝑒𝑟𝑡(𝐷𝑖𝑐𝑡𝐶 , 𝐶𝑛𝑒𝑤); // Same way as Algorithm 4
3 return 𝑑𝑖𝑐𝑡𝐶

The Algorithm 6 executes the Algorithm 5 to update the dictionary after deleting
the documents from the collection 𝐶𝑜𝑙𝑑, Line 1. Then, it inserts the documents af-
ter updating their underlying structures as result of executing the update operation.
Hence, the algorithm calls the Algorithm 4, Line 2.

3.5 Conclusion
In this chapter, we introduced the different formal foundations required for the under-
standing of the two main contributions of this thesis. We started first by defining the



3.5. CONCLUSION 55

document data model. In order to overcome the heterogeneity, we introduced a set of
definition to infer structures from the documents. Thus, we introduced the concept
of paths. Paths are used to navigate inside documents starting from the root of the
document in case of absolute paths and could be partial paths if they do not start
from the root of the document, or they are leaf attribute.

We infer the different possible absolute paths from each document to build the
collection schemas. The main idea behind the collection schema is to provide a trans-
parent overview of the different structures of documents within a collection of het-
erogeneous schemas. The collection schemas trace also the number of documents for
each absolute path. This definition helped us later in this chapter to automatically
update our schema inference solution with the latest information related to the exist-
ing absolute paths within the collection. In order to assist the user while formulating
her queries, we introduced the concept of a dictionary. The dictionary represents the
set of paths that can be used to formulate relevant queries. Therefore, the user could
formulate queries using partial or absolute paths regardless of conventional documents
stores. To enable such flexibility, we introduced the definition of document and collec-
tion paths. This definition helps to extract from each document within the collection
the set of all possible paths. Hence, the user is no more limited to only absolute paths
to retrieve information of interest.

In this chapter, we introduced also different mechanisms that automate dictionary
maintenance; i.e., whenever a manipulation operation is executed over the collection,
we define how to automatically update the dictionary with the existing paths. In case
of inserting a document with new structures, we automatically add new entries to the
dictionary with all new paths and their associated absolute paths or we update the
existing dictionary entries with new possible absolute paths. We perform the same for
all of the delete and update operations.

The purpose of this chapter is to offer transparent mechanisms to overcome het-
erogeneity in documents. Therefore, the introduction of the dictionary helps to tracks
all structures within a collection of documents. Furthermore, it provides to the user
more flexibility while formulation her queries. It is possible for the user to use partial
information of the paths to fetch information of interest. The different algorithms that
we introduced to maintain the dictionary help to guarantee that query reformulation
that we introduce in the next chapter returns the required information. Hence, they
help to remove obsolete paths from the dictionary leading to generate queries that
may take more time to execute due to the unnecessary absolute paths included in the
query. Moreover, the query reformulation may lack new absolute paths introduced
after insert or update operation.

In the next chapter, we introduce a minimal closed kernel of operators inherited
from the Nested Relational Algebra (Korth and Roth, 1987) and formalised in the



56 CONTENTS

context of document stores in (Botoeva et al., 2018). In our kernel, we support select-
project-unnest-aggregate-join operators. Based on the dictionary, we introduce a set
of reformulation rules for most document stores operation that we support. All formal
definitions presented in this chapter are necessary to build the automatic process of
query formulation to enable schema-independent querying for heterogeneous document
stores.



Chapter 4

Schema-independent Querying

Contents

4.1 Minimum Closed Kernel of Operators . . . . . . . . . . . . . . . . . . . 58
4.2 Selection Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Classical Selection Evaluation . . . . . . . . . . . . . . . . . . . 61
4.2.2 Selection Reformulation Rules . . . . . . . . . . . . . . . . . . . 62

4.3 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Classical Projection Evaluation . . . . . . . . . . . . . . . . . . 64
4.3.2 Projection Reformulation Rules . . . . . . . . . . . . . . . . . . 66

4.4 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.1 Classical Aggregation Evaluation . . . . . . . . . . . . . . . . . 71
4.4.2 Aggregation Reformulation Rules . . . . . . . . . . . . . . . . . 71

4.5 Unnest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.1 Classical Unnest Evaluation . . . . . . . . . . . . . . . . . . . . 74
4.5.2 Unnest Reformulation Rules . . . . . . . . . . . . . . . . . . . . 74

4.6 Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6.1 Classical Lookup Evaluation . . . . . . . . . . . . . . . . . . . . 78
4.6.2 Lookup Reformulation Rules . . . . . . . . . . . . . . . . . . . . 79

4.7 Algorithm for Automatic Query Reformulation . . . . . . . . . . . . . . 81
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

57



58 CONTENTS

In this chapter, we introduce the different operators that we support to query col-
lections of a heterogeneous collection of documents. In our contribution, we build
all our solutions for enabling schema-independent querying using reformulation rules.
Thus, we do not introduce a new querying language. In addition to overcoming the
structural heterogeneity in document via query reformulation, we extend the query
expressiveness power by offering for the user the ability to formulate queries using
absolute paths and partial paths whereas most document stores require to formulate
queries over absolute paths only. The main advantages of our contribution are that
all reformulated queries are compatible with most native document stores querying
engines. Therefore, we start first by introducing a minimum closed kernel of operators
providing support for a set of unary, i.e., select-project-aggregate-unset, and binary,
i.e., join, operators (Ben Hamadou et al., 2019b). Hence, we present for each operator
the results when applied over a heterogeneous collection of documents to highlight
the limitations of the underlying native querying engine. In practical terms, for each
operator, we introduce a set of reformulation rules which employ the different for-
mal definition introduced in the previous chapter, e.g., dictionary, paths, collection
schemas and collection paths. Then, we define the set of reformulation rules to over-
come heterogeneity in documents structures. In practical terms, for each operator,
we introduce a set of reformulation rules which employ the different formal definition
introduced in the previous chapter, e.g., dictionary, paths, collection schemas and col-
lection paths. Therein, we present the results of executing the reformulated queries
over the same heterogeneous collection of documents.

The reminder of this chapter is as follows. First, we introduce the kernel of opera-
tors. Then, we introduce the different reformulation rules for each operator. Finally,
we introduce an automatic Algorithm for operator reformulation.

Figure 4.1 presents the collection reference that we employ for the different exam-
ples presented in this chapter. We reuse the same collection presented earlier in the
first chapter.

4.1 Minimum Closed Kernel of Operators

In this section we define a minimum closed kernel for operators based on the document
operators defined in (Botoeva et al., 2018). Later, we introduce the definition of the
query.

Definition 4.1. Kernel
The kernel 𝐾 is a minimal closed set composed of the following operators:

𝐾 = {𝜎, 𝜋, 𝛾, 𝜇, 𝜆}



4.1. MINIMUM CLOSED KERNEL OF OPERATORS 59

{ "_id":1,
"title":"Million Dollar Baby",
"year":2004,
"link":null,
"awards":["Oscar", "Golden Globe",

"Movies for Grownups Award", "AFI
Award"],

"genres":["Drama", "Sport"],
"country":"USA",
"director":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"actors":["Clint Eastwood",

"Hilary Swank", "Morgan Freeman"],
"ranking":{ "score":8.1
}

}

(a)

{"_id":2,
"title":"In the Line of Fire",
"info":{

"year":1993,
"country":"USA",
"link":"https://goo.gl/2A253A",
"genres":["Drama", "Action", "Crime"],
"people":{

"director":{ "first_name":"Clint",
"last_name":"Eastwood"

},
"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"actors":["Clint Eastwood",

"John Malkovich", "Rene Russo Swank"]
},
"ranking":{ "score":7.2
}

}
}

(b)

{ "_id":3,
"film":{

"title":"Gran Torino",
"awards": "AFI Award",
"link":null,
"details":{

"year":2008,
"country":"USA",
"genres":"Drama",
"director":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"personas":{

"lead_actor":{ "first_name":"Clint",
"last_name":"Eastwood"

},
"actors":["Clint Eastwood",

"Bee Vang", "Christopher Carley"]
}

},
"others":{

"ranking":{ "score":8.1
}

}
}

}

(c)

{ "_id":4,
"description":{

"title":"The Good, the Bad and the Ugly",
"year":1966,
"link":"goo.gl/qEFfUB",
"country":"Italy",
"director":{ "first_name":"Sergio",

"last_name":"Leone"
},
"stars":{

"lead_actor":{ "first_name":"Clint",
"last_name":"Eastwood"

},
"actors":["Clint Eastwood",

"Eli Wallach", "Lee Van Cleef"]
}

},
"classification":{

"ranking":{"score":7.2
},
"genres":["Western"]

}
}

(d)

Figure 4.1: Illustrative example of a collection (C) with four documents describing
films.

The selection, also called restriction (𝜎), the project (𝜋), the aggregate (𝛾) and the
unnest (𝜇) are unary operators whereas the lookup (𝜆) is a binary operator.

If we take into consideration the kernel 𝐾 for operators, a query Q is formulated
by combining the previously presented unary and binary operators as follows:

Definition 4.2. Query

𝑄 = 𝑞1 ∘ . . . ∘ 𝑞𝑟(𝐶)



60 CONTENTS

where ∀𝑖 ∈ [1, 𝑟], 𝑞𝑖 ∈ 𝐾.
We define the kernel as closed because each operator in the kernel operates across

a collection and as a result, returns a new collection. Furthermore, we can observe
that these operators are neither distributive, commutative nor associative. Such op-
erator combinations are valid in very particular cases only and allow some algebraic
manipulations which are helpful in reducing the query complexity. However, such
optimisations are out of the scope of this thesis and are subject of future work.

In the next sections, each operator is studied in five steps. We first give the opera-
tor definition, based on partial paths. Next we give a query example for the operator
and its evaluation in classical engines. We then explain how existing engines classi-
cally evaluate the operator. Finally, we define the operator reformulation rules which
are illustrated with some reformulation examples. Since we target that reformulated
queries should be evaluated using the classical querying engines, it is necessary that
we define the classical evaluation of operators to define the reformulation of operators
so that these reformulations are correctly evaluated, particularly when considering
missing paths and null values.

4.2 Selection Operation
In this section we introduce the selection operator for document stores. We give the
definition of the operator and its normal execution over a heterogeneous collection
of documents. Later, we define the reformulation rules required to overcome the
heterogeneity.

Definition 4.3. Selection
The selection operator is defined as:

𝜎𝑃 𝐶𝑖𝑛 = 𝐶𝑜𝑢𝑡

The selection operator (𝜎) is a unary operator that filters the documents from
collection 𝐶𝑖𝑛 in order to retrieve only those that match the specified condition P.
This can be a boolean combination expressed by the logical connectors {∨,∧,¬} of
atomic conditions, also called predicates, or a path check operation. The documents
in 𝐶𝑜𝑢𝑡 have the same structures as the documents in collection 𝐶𝑖𝑛. However, the
condition P may reduce the number of documents in 𝐶𝑜𝑢𝑡 when applied to collection
𝐶𝑖𝑛 (Ben Hamadou et al., 2018a).

The condition 𝑃 is defined by a boolean combination of a set of triplets (𝑝𝑘 𝜔𝑘 𝑣𝑘)
where 𝑝𝑘 ⊆ 𝑃𝐶𝑖𝑛

is a 𝑝𝑎𝑡ℎ, 𝜔𝑘 ∈ {=; >; <; ̸=;≥;≤} is a comparison operator, and 𝑣𝑘

is a value that can be atomic or complex. In the case of an atomic value, the triplet
represents an atomic condition. In the case of a complex value, 𝑣𝑘 is defined in the same
way as a document value as defined in Section 3.1.2, 𝑣𝑘 = {𝑎𝑘,1 : 𝑣𝑘,1, . . . , 𝑎𝑘,𝑛 : 𝑣𝑘,𝑛}



4.2. SELECTION OPERATION 61

and 𝜔𝑘 is always “ = ”. In this case the triplet represents a path check operation. We
assume that each condition 𝑃 is normalised to a conjunctive normal form:

𝑃 = ⋀︀ (︂ ⋁︀
𝑝𝑘 𝜔𝑘 𝑣𝑘

)︂

Example. Let us suppose that we want to execute the following selection operator
on collection (C) from Figure 4.1:

𝜎year ≥ 2004 ∧ director = {“first_name": “Clint", “last_name":“Eastwood"}(C)

This selection operation only selects movies produced starting from the year 2004, and
the movie is directed by Clint Eastwood when the path director is an object with the
following value {“first_name": “Clint", “last_name":“Eastwood"}.

4.2.1 Classical Selection Evaluation

During a selection evaluation, classical query engines return documents 𝑑𝑖 ∈ 𝐶𝑖𝑛 based
on the evaluation of the predicates 𝑝𝑘 𝜔𝑘 𝑣𝑘 of 𝑃 = ∧(∨ 𝑝𝑘 𝜔𝑘 𝑣𝑘) as follows:

• if 𝑝𝑘 ∈ 𝑆𝑑𝑖
the result of the predicate is 𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒 depending on the evaluation

of 𝑝𝑘 𝜔𝑘 𝑣𝑘 in 𝑑𝑖;

• if 𝑝𝑘 /∈ 𝑆𝑑𝑖
, the evaluation of 𝑝𝑘 𝜔𝑘 𝑣𝑘 is 𝐹𝑎𝑙𝑠𝑒.

The selection operator will select only documents 𝑑𝑖 ∈ 𝐶𝑖𝑛 where the evaluation of the
normal form of condition 𝑃 returns 𝑇𝑟𝑢𝑒.

Example. In a classical evaluation, the execution of the above-mentioned selection
operation returns the following documents:

This query selects only documents

• {
"_id":1,
"title":"Million Dollar Baby",
"year":2004,
"genres":["Drama", "Sport"],
"country":"USA",
"director":{"first_name":"Clint", "last_name":"Eastwood"},
"lead_actor":{"first_name":"Clint", "last_name":"Eastwood"},
"actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"],
"ranking":{"score":8.1}}

}

Due to the presence of some partial paths in our query and because a classical eval-
uation only takes absolute paths into account, the result only contains the document
(a) despite the presence of other documents (document (c)) which seem to satisfy the
selection condition.



62 CONTENTS

4.2.2 Selection Reformulation Rules

The reformulation of the selection operator aims to filter documents based on a set
of conditions from a collection of documents regardless of their underlying structures.
The predicate triplets of the select condition are built across one path (atomic con-
dition or path check). In practical terms, the query reformulation engine replaces
each path used in a condition by all their corresponding absolute paths extracted from
the dictionary. Therefore, a triplet condition 𝑝𝑘 𝜔𝑘 𝑣𝑘, 𝑝𝑘 ∈ 𝑃𝐶𝑖𝑛

becomes a boolean
“OR" combination of triplet conditions based on paths found in the dictionary for
the path 𝑝𝑘. If we take into consideration the classical evaluation as defined above,
the evaluation of this generated boolean “OR" combination in the reformulated select
operator ensures that i) a document containing at least one path can match the triplet
condition, and ii) a document containing no path evaluates the triplet condition as
False.

𝜎𝑃𝑒𝑥𝑡(𝐶𝑖𝑛) = 𝐶𝑜𝑢𝑡

The query reformulation engine reformulates the normal form of predicates 𝑃 =⋀︀ (︂ ⋁︀
𝑝𝑘 𝜔𝑘 𝑣𝑘

)︂
by transforming each triplet (𝑝𝑘 𝜔𝑘 𝑣𝑘) into a disjunction of triplets,

replacing the path 𝑝𝑘 with the entries △𝐶𝑖𝑛
𝑝𝑘

while keeping the same operator 𝜔𝑘 and
the same value 𝑣𝑘 as follows : (⋁︀

∀𝑝𝑗∈△
𝐶𝑖𝑛
𝑝𝑘

𝑝𝑗 𝜔𝑘 𝑣𝑘). The reformulated normal form of
the predicate is defined as:

𝑃𝑒𝑥𝑡 = ⋀︀ (︂ ⋁︀(⋁︀
∀𝑝𝑗∈△

𝐶𝑖𝑛
𝑝𝑘

𝑝𝑗 𝜔𝑘 𝑣𝑘)
)︂

Example. Let us suppose that we want to reformulate the select operator described
above:

𝜎( year ≥ 2004) ∧ (director = {“first_name": “Clint", “last_name":“Eastwood"})(C)

The query reformulation engine start first by extracting the following entries from
the dictionary:

• the absolute paths leading to the path year, i.e., △𝐶
𝑦𝑒𝑎𝑟, are equal to [year,

info.year, film.details.year, description.year]

• the absolute paths leading to the path director, i.e., △𝐶
𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟, are equal to [di-

rector, info.people.director, film.details.director, description.director]

Then, it reformulates each condition as follows:

• the condition year ≥ 2004 becomes:

year ≥ 2004 ∨ info.year ≥ 2004 ∨ film.details.year ≥ 2004
∨ description.year ≥ 2004



4.3. PROJECTION 63

• the condition director = {“first_name":“Clint", “last_name":“Eastwood"} becomes:

director={“first_name":“Clint", “last_name":“Eastwood"}
∨ info.people.director = {“first_name":“Clint", “last_name":“Eastwood"}
∨ film.details.director = {“first_name":“Clint", “last_name":“Eastwood"}
∨ description.director = {“first_name":“Clint",“last_name":“Eastwood"}

After applying the reformulation rules, the selection operator becomes:

𝜎(year ≥ 2004 ∨ info.year ≥ 2004 ∨ film.details. year ≥ 2004 ∨ description.year ≥ 2004)
⋀︀

(director =

{“first_name":“Clint", “last_name":"Eastwood"} ∨ info.people.

director = {“first_name":“Clint", “last_name":“Eastwood"} ∨

film.details.director = {“first_name":“Clint", “last_name":

“Eastwood"} ∨ description.director = {“first_name":“Clint", “last_name":“Eastwood"}) (C)

The execution of this latest select operator returns:

• {
"_id":1,
"title":"Million Dollar Baby",
"genres":["Drama", "Sport"],
"country":"USA",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",
"Hilary Swank", "Morgan
Freeman"],

"ranking":{"score":8.1}}
}

• {
"_id":3,
"film":{

"title":"Gran Torino",
"details":{

"year":2008,
"country":"USA",
"genres":"Drama",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"personas":{
"lead_actor":{

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",
"Bee Vang","Christopher
Carley"]}},

"others":{"ranking":{
"score":8.1}}

}
}

Executing the selection operator after reformulation gives all the desired results, since
it contains all the absolute paths that lead to the different selection conditions.

4.3 Projection
Definition 4.4. Projection

The project operator is defined as:

𝜋𝐸(𝐶𝑖𝑛) = 𝐶𝑜𝑢𝑡

The project operator (𝜋) is a unary operator that projects only a specific portion
from each document of a collection, i.e., only information referring to paths given in the



64 CONTENTS

query (Ben Hamadou et al., 2018a). In document stores, this operator is applied to a
collection C𝑖𝑛 by possibly projecting existing paths from the input documents, renam-
ing existing paths or adding new paths as defined by the sequence of elements 𝐸. This
returns an output collection C𝑜𝑢𝑡. The result contains the same number of documents
as the input collection while the schema of all documents is changed (Ben Hamadou
et al., 2019b).

The sequence of project elements is defined as 𝐸 = 𝑒1, . . . , 𝑒𝑛𝐸
, where each element

𝑒𝑗 is in one of the following forms:

• i) 𝑝𝑗, a path existing in the input collections; 𝑝𝑗 ∈ 𝑃𝐶𝑖𝑛
which enables the

projection of existing paths. As a result, the schema of the collection C𝑜𝑢𝑡 may
contain 𝑝𝑗;

• ii) 𝑝′𝑗 : 𝑝𝑗, where 𝑝′𝑗 represents an absolute path (string in 𝑈𝑛𝑖𝑐𝑜𝑑𝑒 A*) to be
injected into the structure of the collection C𝑜𝑢𝑡 and 𝑝𝑗 is an existing path in the
input collection; 𝑝𝑗 ∈ 𝑃𝐶𝑖𝑛

and its value is assigned to the new absolute path 𝑝′𝑗

in C𝑜𝑢𝑡. This form renames the path 𝑝𝑗 to 𝑝′𝑗 in C𝑜𝑢𝑡;

• iii) 𝑝′𝑗 : [𝑝1, . . . , 𝑝𝑚], where [𝑝1, . . . , 𝑝𝑚] is an array composed of 𝑚 paths where
∀𝑙 ∈ [1..𝑚] 𝑝𝑙 ∈ 𝑃𝐶𝑖𝑛

produces a new absolute path 𝑝′𝑗 in C𝑜𝑢𝑡 whose value is an
array composed of the values obtained through the paths 𝑝𝑙;

• iv) 𝑝′𝑗 : 𝛽, where 𝛽 is a boolean expression that compares the values of two paths
in C𝑖𝑛, i.e., 𝛽 = (𝑝𝑎 𝜔 𝑝𝑏), 𝑝𝑎 ∈ 𝑃𝐶𝑖𝑛

, 𝑝𝑏 ∈ 𝑃𝐶𝑖𝑛
and 𝜔 ∈ {=; >; <; ̸=;≥;≤}.

The evaluation of the boolean expression is assigned to the new absolute path
𝑝′𝑗 in C𝑜𝑢𝑡.

Example. Let us suppose that we want to run the following project operator on
collection (C) from Figure 4.1:

𝜋cond:director.first_name = lead_actor.first_name, desc:[title, genres], production_year:year, ranking.score (C)

4.3.1 Classical Projection Evaluation

During a projection operation, classical query engines deal with missing paths or null
values in the documents with regards to the four possible forms of the projection
element 𝑒𝑗:

• i) 𝑝𝑗 where 𝑝𝑗 is a path from the input collection, 𝑝𝑗 ∈ 𝑆𝐶𝑖𝑛
:

– If the path 𝑝𝑗 leads to a value 𝑣𝑝𝑗
= 𝑛𝑢𝑙𝑙/𝑎𝑡𝑜𝑚𝑖𝑐/𝑜𝑏𝑗𝑒𝑐𝑡/𝑎𝑟𝑟𝑎𝑦 in a doc-

ument 𝑑𝑖 ∈ 𝐶𝑖𝑛, the corresponding document in the output collection
𝑑

′
𝑖 ∈ 𝐶𝑜𝑢𝑡 contains the path 𝑝𝑗 with the value 𝑣𝑝𝑗

from 𝑑𝑖 (𝑝𝑗 ∈ 𝑆𝑑
′
𝑖
),



4.3. PROJECTION 65

– If the path 𝑝𝑗 /∈ 𝑆𝑑𝑖
, where 𝑑𝑖 ∈ 𝐶𝑖𝑛, the corresponding document in the

output collection 𝑑
′
𝑖 ∈ 𝐶𝑜𝑢𝑡 does not contain the path 𝑝𝑗, (𝑝𝑗 /∈ 𝑆𝑑

𝑖
′ );

• ii) 𝑝′𝑗 : 𝑝𝑗 where 𝑝𝑗 is a path from the input collection, 𝑝𝑗 ∈ 𝑆𝐶𝑖𝑛

– If the path 𝑝𝑗 leads to a value 𝑣𝑝𝑗
= 𝑛𝑢𝑙𝑙/𝑎𝑡𝑜𝑚𝑖𝑐/𝑜𝑏𝑗𝑒𝑐𝑡/𝑎𝑟𝑟𝑎𝑦 in a doc-

ument 𝑑𝑖 ∈ 𝐶𝑖𝑛, the corresponding document in the output collection
𝑑

′
𝑖 ∈ 𝐶𝑜𝑢𝑡 contains the path 𝑝′𝑗 with the value 𝑣𝑝𝑗

from 𝑑𝑖,

– If the path 𝑝𝑗 /∈ 𝑆𝑑𝑖
, where 𝑑𝑖 ∈ 𝐶𝑖𝑛, the corresponding document in the

output collection 𝑑
′
𝑖 ∈ 𝐶𝑜𝑢𝑡 does not contain the path 𝑝′𝑗 (𝑝′𝑗 /∈ 𝑆𝑑

𝑖
′ );

• iii) 𝑝′𝑗 : [𝑝1, . . . , 𝑝𝑚] where [𝑝1, . . . , 𝑝𝑚] is an array of paths from the input collec-
tion and each 𝑝𝑙 ∈ 𝑆𝐶𝑖𝑛

. For a document 𝑑𝑖 ∈ 𝐶𝑖𝑛, if the corresponding document
in the output collection 𝑑

′
𝑖 ∈ 𝐶𝑜𝑢𝑡 contains the path 𝑝′𝑗 leading to an array that

contains 𝑚 values and one value for each 𝑝𝑙 in [𝑝1, . . . , 𝑝𝑚], then the 𝑙𝑡ℎ value is
as follows:

– If the path 𝑝𝑙 leads to a value 𝑣𝑝𝑙
= 𝑛𝑢𝑙𝑙/𝑎𝑡𝑜𝑚𝑖𝑐/𝑜𝑏𝑗𝑒𝑐𝑡/𝑎𝑟𝑟𝑎𝑦 in the

document 𝑑𝑖, the corresponding value is 𝑣𝑝𝑙
,

– If the path 𝑝𝑙 /∈ 𝑆𝑑𝑖
, the corresponding value is 𝑛𝑢𝑙𝑙;

• iv) 𝑝′𝑗 : 𝛽, 𝛽 is the boolean expression 𝛽 = (𝑝𝑎 𝜔 𝑝𝑏) where 𝑝𝑎 ∈ 𝑆𝐶𝑖𝑛
and

𝑝𝑏 ∈ 𝑆𝐶𝑖𝑛
. For a document 𝑑𝑖 ∈ 𝐶𝑖𝑛, then the corresponding document in the

output collection 𝑑′𝑖 ∈ 𝐶𝑜𝑢𝑡 contains the path 𝑝′𝑗 leading to a boolean value:

– If 𝑝𝑎 ∈ 𝑆𝑑𝑖
and 𝑝𝑏 ∈ 𝑆𝑑𝑖

, the value is the boolean evaluation of 𝛽,
𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒,

– If 𝑝𝑎 /∈ 𝑆𝑑𝑖
and 𝑝𝑏 ∈ 𝑆𝑑𝑖

, the value is 𝐹𝑎𝑙𝑠𝑒,

– If 𝑝𝑎 ∈ 𝑆𝑑𝑖
and 𝑝𝑏 /∈ 𝑆𝑑𝑖

, the value is 𝐹𝑎𝑙𝑠𝑒,

– If 𝑝𝑎 /∈ 𝑆𝑑𝑖
and 𝑝𝑏 /∈ 𝑆𝑑𝑖

, the value is 𝑇𝑟𝑢𝑒.

Example. The previous projection operation returns documents composed of the
following paths:

• cond: the evaluation of a boolean expression which checks if the value of the
path director.first_name is equal to the value of the path lead_actor.first_name
or not, i.e., it checks whether both director and lead actor have the same first
name or not;

• desc: an array composed of information from the title and genre paths;



66 CONTENTS

• production_year : information from the path year using a new path called pro-
duction_year, i.e., the path year from the input collection is renamed produc-
tion_year ;

• ranking.score: information from the path ranking.score, i.e., the same path as
defined in the input collection is retained.

In a classical evaluation, the execution of this operation returns the following doc-
uments:

• {
"_id":1,
"cond":true,
"desc": ["Million Dollar Baby",

"Drama", "Sport"],
"production_year":2004,
"ranking":{"score":8.1}

}

• {
"_id":2,
"cond":true,
"desc":["In the line of Fire",

null]
}

• {
"_id":3,
"cond":true,
"desc":[null,null]

}

• {
"_id":4,
"cond":true,
"desc":[null,null]

}

Due to the presences of partial paths in our query, the execution of the project
operator gives rise to misleading results. We can see that only the first results include
all the desired information. In the second result, only the title information is present
for the new array desc. We can see that in some cases the result which is 𝑡𝑟𝑢𝑒 is not
always real (case of document (𝑑)) due to unreachable paths in the documents.

4.3.2 Projection Reformulation Rules

The aim of reformulating the project operator is to extract information from a col-
lection of documents regardless of their underlying structures. In practical terms, the
query reformulation engine replaces each path in the projection operation by their
corresponding absolute paths extracted from the dictionary. In order to ensure that
the reformulated operator has the same behaviour as the standard execution of the
classical projection operation we introduce two specific notations, i.e., “|” and “||” to
deal with missing paths and null values.

In the operation 𝜋𝐸(𝐶𝑖𝑛) = 𝐶𝑜𝑢𝑡, the original set of project elements 𝐸 is extended
as follows:

𝐸𝑒𝑥𝑡 = 𝑒1𝑒𝑥𝑡 , . . . , 𝑒𝑛𝑒𝑥𝑡 where each 𝑒𝑗𝑒𝑥𝑡 is the extension of the 𝑒𝑗 ∈ 𝐸. The
extended project operator is defined as follows:

𝜋𝐸𝑒𝑥𝑡(𝐶𝑖𝑛) = 𝐶𝑜𝑢𝑡



4.3. PROJECTION 67

We introduce the notation “|” to exclude path 𝑝𝑗 from the result when the project
element 𝑒𝑗 is atomic or the path 𝑝′𝑗 if 𝑒𝑗 is complex. In practical terms, an expression
such as 𝑝𝑘,1| . . . |𝑝𝑘,𝑛𝑗

is evaluated as follows for a document 𝑑𝑖:

• if ∃𝑝𝑘 ∈ [𝑝𝑘,1..𝑝𝑗,𝑛𝑘
], where 𝑝𝑘 ∈ 𝑆𝑑𝑖

, then the corresponding document in the
output collection 𝑑′𝑖 ∈ 𝐶𝑜𝑢𝑡 contains the path 𝑝𝑘 with the value 𝑣𝑝𝑘

(from 𝑑𝑖);

• if @𝑝𝑘 ∈ [𝑝𝑘,1..𝑝𝑘,𝑛𝑘
], where 𝑝𝑘 ∈ 𝑆𝑑𝑖

, i.e., no path from the list is found in the
document 𝑑𝑖, the corresponding document in the output collection 𝑑′𝑖 ∈ 𝐶𝑜𝑢𝑡 does
not contain the path 𝑝𝑘.

In the notation “|”, if a first path from the list is found in the document, the cor-
responding value is kept for the output. Otherwise, the desired path is excluded from
the output. Therefore, in the event where multiple paths are found in the document,
the notation selects only the first one.

The notation “||” is very similar to “|” notation when evaluating an expression
such as 𝑝𝑘,1|| . . . ||𝑝𝑘,𝑛𝑘

but it returns null instead of erasing the path in the output. It
returns a null value in the following case:

• if @𝑝𝑘 ∈ [𝑝𝑘,1..𝑝𝑘,𝑛𝑘
], where 𝑝𝑘 ∈ 𝑆𝑑𝑖

, i.e., no path from the list is found in the
document 𝑑𝑖, the operator returns a 𝑛𝑢𝑙𝑙 value.

We can now define the following set of rules to extend each element 𝑒𝑗 ∈ 𝐸 based
on its four possible forms:

• i) 𝑒𝑗 is a path 𝑝𝑗 in the input collection 𝑝𝑗 ∈ 𝑃𝐶𝑖𝑛
, 𝑒𝑗𝑒𝑥𝑡 = 𝑝𝑗,1 | . . . | 𝑝𝑗,𝑛𝑗

∀𝑝𝑗,𝑘 ∈
△𝐶𝑖𝑛

𝑝𝑗
;

• ii) 𝑝′𝑗 : 𝑝𝑗, where 𝑝𝑗 is a path, 𝑝𝑗 ∈ 𝑃𝐶𝑖𝑛
, then 𝑒𝑗𝑒𝑥𝑡 is of the form 𝑝′𝑗 :

𝑝𝑗,1 | . . . | 𝑝𝑗,𝑛𝑗
, ∀𝑝𝑗,𝑘 ∈ △𝐶𝑖𝑛

𝑝𝑗
;

• iii) 𝑝′𝑗 : [𝑝1, . . . , 𝑝𝑚], where [𝑝1, . . . , 𝑝𝑚] is an array of paths, then each path
𝑝𝑗 ∈ [𝑝1, . . . , 𝑝𝑚] is replaced by a “||” combination and 𝑒𝑗𝑒𝑥𝑡 is of the form 𝑝′𝑗 :[︁
𝑝1,1 || . . . || 𝑝1,𝑛1 , . . . , 𝑝𝑚,1|| . . . || 𝑝𝑚,𝑛𝑚

]︁
∀𝑝𝑗,𝑙 ∈ △𝐶𝑖𝑛

𝑝𝑙
;

• iv) 𝑝′𝑗 : 𝛽, where 𝛽 is the boolean expression 𝛽, 𝑒𝑗𝑒𝑥𝑡 = (𝑝′
𝑎 𝜔 𝑝

′
𝑏) where 𝑝

′
𝑎 =

𝑝𝑎,1 | . . . | 𝑝𝑎,𝑛𝑎 , ∀𝑝𝑎,𝑙 ∈ △𝐶𝑖𝑛
𝑝𝑎

and 𝑝
′
𝑏 = 𝑝𝑏,1 | . . . | 𝑝𝑏,𝑛𝑏

, ∀𝑝𝑏,𝑙 ∈ △𝐶𝑖𝑛
𝑝𝑏

.

In the following we introduce the Algorithm 7 to present the automatic process of
reformulating the project operator for its different cases.

Algorithm 7 runs over each element in the project operator, Line 2. Then based
on the type of the element 𝑒𝑗 the dictionary extends it with the corresponding entries
from the dictionary, Lines 4 − 7 for path element, Lines 8 − 11 in case of rename
operation, Lines 12 − 14 in case of array of elements and Lines 15 − 19 in case of
boolean comparison of paths.



68 CONTENTS

Algorithm 7: Algorithm for automatic project operator reformulation.
Input : 𝜋𝐸

1 𝐸𝑒𝑥𝑡 ← ∅ // initialising the set of extended elements from 𝐸
2 foreach 𝑒𝑗 ∈ 𝐸 // for each element 𝑒𝑗 ∈ 𝐸
3 do
4 if 𝑒𝑗 = 𝑝𝑗 is a path (𝑝𝑗 ∈ 𝑃𝐶𝑖𝑛

) // 𝑒𝑗 takes the form of a path
5 then
6 𝑒𝑗𝑒𝑥𝑡 = 𝑝𝑗,1 | . . . | 𝑝𝑗,𝑛𝑛𝑗

∀𝑝𝑗,𝑙 ∈ △𝐶𝑖𝑛
𝑝𝑗

// generating 𝑝𝑗𝑒𝑥𝑡 using
paths from △𝐶𝑖𝑛

𝑝𝑗

7

8 if 𝑒𝑗 = 𝑝′𝑗 : 𝑝𝑗, (𝑝𝑗 ∈ 𝑃𝐶𝑖𝑛
) // renaming the path 𝑝𝑗 to 𝑝′𝑗

9 then
10 𝑒𝑗𝑒𝑥𝑡 = 𝑝′𝑗 : 𝑝𝑗,1 | . . . | 𝑝𝑗,𝑛𝑗

, ∀𝑝𝑗,𝑙 ∈ △𝐶𝑖𝑛
𝑝𝑗

// generating 𝑒𝑗𝑒𝑥𝑡 while
renaming paths from △𝐶𝑖𝑛

𝑝𝑗
to 𝑝′𝑗

11

12 if 𝑒𝑗 = 𝑝′𝑗 : [𝑝1, . . . , 𝑝𝑚𝑗
], ∀𝑙 ∈ [1..𝑚𝑗], 𝑝𝑙 ∈ 𝑆𝐶𝑖𝑛

// new array
[𝑝1, . . . , 𝑝𝑚𝑗

] composed of paths 𝑝𝑙

13 then
14 𝑒𝑗𝑒𝑥𝑡 = 𝑝′𝑗 : [𝑝1,1|| . . . || 𝑝1,𝑛1 , . . . , 𝑝𝑚,1|| . . . || 𝑝𝑚,𝑛𝑚 ] ∀𝑝𝑗,𝑙 ∈ △𝐶𝑖𝑛

𝑝𝑙

15 if 𝑒𝑗 = 𝑝′𝑗 : 𝛽, 𝛽 = (𝑝𝑎 𝜔 𝑝𝑏) // comparing values of paths 𝑝𝑎 and 𝑝𝑏

16 then
17 𝑒𝑗𝑒𝑥𝑡 = 𝑝𝑎,1 | . . . | 𝑝𝑎,𝑛𝑎 𝜔 𝑝𝑏,1 | . . . | 𝑝𝑏,𝑛𝑏

, ∀𝑝𝑎,𝑘 ∈ △𝐶𝑖𝑛
𝑝𝑎

, ∀𝑝𝑏,𝑙 ∈ △𝐶𝑖𝑛
𝑝𝑏

18 𝐸𝑒𝑥𝑡 = 𝐸𝑒𝑥𝑡 ∪ {𝑒𝑗𝑒𝑥𝑡} // extending 𝐸𝑒𝑥𝑡 by the new extended element
𝑒𝑗𝑒𝑥𝑡

19 end
20 return 𝜋𝐸𝑒𝑥𝑡

Example. Let us suppose that we want to reformulate the project operator described
above.

𝜋cond:director.first_name = lead_actor.first_name, desc:[title, genres], production_year: year, ranking.score(C)

The query reformulation engine start first by extracting the following entries from
the dictionary:

• the absolute paths leading to the path year, i.e., △𝐶
𝑦𝑒𝑎𝑟, are [year, info.year,

film.details.year, description.year]

• the absolute paths leading to the path director.first_name, i.e.,
△𝐶

𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟.𝑓𝑖𝑟𝑠𝑡_𝑛𝑎𝑚𝑒, are [director.first_name, info.people.director.first_name,
film.details.director.first_name, description.director.first_name]

• the absolute paths leading to the path lead_actor.first_name,
i.e., △𝐶

𝑙𝑒𝑎𝑑_𝑎𝑐𝑡𝑜𝑟.𝑓𝑖𝑟𝑠𝑡_𝑛𝑎𝑚𝑒, are [lead_actor.first_name,
info.people.lead_actor.first_name, film.details.personas.lead_actor.first_name,
description.stars.lead_actor.first_name]



4.3. PROJECTION 69

• the absolute paths leading to the path genres, i.e., △𝐶
𝑔𝑒𝑛𝑟𝑒𝑠, are [genres,

info.genres, film.details.genres, classification.genres]

• the absolute paths leading to the path title, i.e., △𝐶
𝑡𝑖𝑡𝑙𝑒, are [title, film.title, de-

scription.title]

• the absolute paths leading to the path ranking.score, i.e., △𝐶
𝑟𝑎𝑛𝑘𝑖𝑛𝑔.𝑠𝑐𝑜𝑟𝑒,

are [ranking.score, info.ranking.score, film.others.ranking.score, classifica-
tion.ranking.score]

Below we present the results of applying the reformulation rules to each element
of the project operator:

• the element cond:director.first_name = lead_actor.first_name becomes:
cond:p′

𝑎 = p′
𝑏

where
𝑝′

𝑎 = director.first_name | info.people.director.first_name | film.details.director.first_name | descrip-
tion.director.first_name

p′
𝑏 = lead_actor.first_name | info.people.lead_actor.first_name | film.details.personas.lead_actor.first_name |

description.stars.lead_actor.first_name

• the element desc:[title, genres] becomes:

desc:[p′
1, p′

2]

where
𝑝′

1 =title || film.title || description.title

𝑝′
2 = genres || info.genres || film.details.genres || classification.genres

• the element production_year:year becomes:

production_year: year | info.year | film.details.year | description.year

• the element ranking.score becomes:

ranking.score | info.ranking.score | film.others.ranking.score | classification.ranking.score

After applying the reformulation rules, and with reference to previous paragraphs
for reformulations, the project operator becomes:

𝜋cond:director.first_name | info.people.director.first_name | film.details.director.first_name |

description.director.first_name = lead_actor.first_name | info.people.lead_actor.first_name |

film.details.personas.lead_actor.first_name | description.stars.lead_actor.first_name,

desc:[title || film.title || description.title, genres || info.genres || film.details.genres || classification.genres],

production_year:year | info.year | film.details.year | description.year, ranking.

score | info.ranking.score | film.others.ranking.score | classification.ranking.score(C)

The execution of this latest project operator returns:



70 CONTENTS

• {
"_id":1.0,
"ranking":{"score":8.1},
"cond":true,
"desc":["Million Dollar Baby",

"Clint"],
"production_year":2004}

}

• {
"_id":2,
"info":{"ranking":

{"score":7.2}},
"cond":true,
"desc":[ "In the Line of Fire",

"Clint"],
"production_year":1993

}

• {
"_id":3,
"film":{"others":

{"ranking":
{"score":8.1}}},

"cond":true,
"desc":[ "Gran Torino",

"Clint"],
"production_year":2008}

}

• {
"_id":4,
"classification":

{"ranking":
{"score":7.2}},

"cond":false,
"desc":[ "The Good, the

Bad and the Ugly",
"Clint"],

"production_year":1966
}

The reformulated project operator is now able to reach all the paths from the
initial query regardless of their numerous locations inside the collection. In addition,
the comparison of path information now gives reliable results.

4.4 Aggregation
Definition 4.5. Aggregation

The aggregate operator is defined as:

𝐺𝛾𝐹 (𝐶𝑖𝑛) = 𝐶𝑜𝑢𝑡

The aggregate operator (𝛾) is a unary operator grouping documents according to
the values from the grouping conditions 𝐺. The output is a collection of documents
where each document refers to one group and contains a computed aggregated value
over the group as defined by the aggregation function 𝐹 (Ben Hamadou et al., 2018b).

• 𝐺 represents the grouping conditions, 𝐺 = 𝑝1, . . . , 𝑝𝑔, where ∀𝑘 ∈ [1..𝑔], 𝑝𝑘 ∈
𝑃𝐶𝑖𝑛

;

• 𝐹 is the aggregation function, 𝐹 = 𝑝 : 𝑓(𝑝𝑓 ), where 𝑝 represents the new path in
𝐶𝑜𝑢𝑡 for the value computed by the aggregation function 𝑓 for the values reached
by the path 𝑝𝑓 where 𝑝𝑓 ∈ 𝑃𝐶𝑖𝑛

∧ 𝑝𝑓 /∈ 𝐺, 𝑓 ∈ {𝑆𝑢𝑚, 𝑀𝑎𝑥, 𝑀𝑖𝑛, 𝐴𝑣𝑔, 𝐶𝑜𝑢𝑛𝑡}.

Example. Let us suppose that we want to run the following aggregation operation
on collection (C) from Figure 4.1:

ranking.score𝛾titles_count:Count(title)(C)



4.4. AGGREGATION 71

4.4.1 Classical Aggregation Evaluation

During an aggregation evaluation, classical query engines perform as follows based on
the paths in 𝐺 = 𝑝1, . . . , 𝑝𝑔, 𝑝𝑖 ∈ 𝑆𝐶𝑖𝑛

and 𝑝𝑓 (𝐹 = 𝑝 : 𝑓(𝑝𝑓 ), 𝑝𝑓 ∈ 𝑆𝐶𝑖𝑛
):

• In the grouping step, documents are grouped according to the presence or non-
presence of the paths from 𝐺 = 𝑝1, . . . , 𝑝𝑔 in documents. Documents are
grouped when they have the same subset of paths from 𝐺 and the same values
for these paths. Finally, a group is created for those documents that contain
no paths from 𝐺. Formally, a group is a subset of documents {𝑑} such that:
i) ∃𝐻 = ℎ1, . . . , ℎℎ,∀𝑖 ℎ𝑖 ∈ 𝐺 or 𝐻 is empty, ii) ∀𝑑 document of the group,
∀ℎ𝑖 ∈ 𝐻, ℎ𝑖 ∈ 𝑆𝑑, and iii) 𝑑 have all the same values ∀𝑖 ℎ𝑖 ∈ 𝐻;

• In the computation step, for each group established in the grouping step, the
function 𝑓 is applied as follows:

– If ∃ 𝑑 in the group such that 𝑝𝑓 ∈ 𝑆𝑑, then 𝑓 is computed across all doc-
uments 𝑑𝑖 of the group where 𝑝𝑓 ∈ 𝑆𝑑𝑖

; documents 𝑑𝑘 of the group where
𝑝𝑓 /∈ 𝑆𝑑𝑘

are simply ignored,

– If @ 𝑑, a document from the group, such that 𝑝𝑓 ∈ 𝑆𝑑, then 𝑓 is evaluated
as a 𝑛𝑢𝑙𝑙 value regardless of its original value.

Example. The previous aggregation operation groups movies by their scores as de-
fined in the path ranking.score and counts the number of titles (movies) for each
group.

The native query engine returns the following results:

• {
"_id":null,
"titles_count":3

}

• {
"_id":8.1,
"titles_count":1

}

These results place document (𝑎) with a ranking.score of 8.1 in one group and the
other documents (𝑏, 𝑐, 𝑑) in a second group with a ranking.score of 𝑛𝑢𝑙𝑙 since this path
is unreachable in these documents.

4.4.2 Aggregation Reformulation Rules

The aim of reformulating the aggregate operator is to replace each path from the
grouping and aggregation function by their corresponding absolute paths extracted
from the dictionary. Nevertheless, a preliminary project operation is needed to unify
the heterogeneous paths in documents with a set of common paths for all documents.
Then a classical aggregation is applied to the previously projected documents. In



72 CONTENTS

practical terms, the query reformulation engine first starts by projecting out all values
reached by the paths from both 𝐺 (grouping conditions) and 𝐹 (aggregation function).
This project operation renames the distinct absolute paths extracted from the dictio-
nary for paths in 𝐺 (𝐺 = 𝑝1, . . . , 𝑝𝑔) and 𝐹 (path 𝑝𝑓 ) to the paths initially expressed
in the original query. Then we can apply the classical aggregate operator to the output
of the added project operator.

Let 𝐴𝑡𝑡 be the set of all paths expressed in 𝐺 and 𝐹 , that is 𝐴𝑡𝑡 = 𝐺∪{𝑝𝑓}. The
additional project operator is defined as:

𝜋𝐸𝑒𝑥𝑡(𝐶𝑖𝑛)

where 𝐸𝑒𝑥𝑡 = ∪∀𝑝𝑗∈𝐴𝑡𝑡{𝑝𝑗 : 𝑝𝑗,1| . . . |𝑝𝑗,𝑛𝑗
}, ∀𝑝𝑗,𝑘 ∈ △𝐶𝑖𝑛

𝑝𝑗

The reformulated aggregate operator is formally defined as:

𝐺𝛾𝐹 (𝜋𝐸𝑒𝑥𝑡(𝐶𝑖𝑛)) = 𝐶𝑜𝑢𝑡

In the following we introduce the Algorithm 8 to present the automatic process
of reformulating the aggregation operator. Algorithm 8 starts first by generating
projection elements from the attributes expressed in the group by and aggregation
functions, Lines 2− 5.

Algorithm 8: Algorithm for automatic aggregate operator reformulation.
Input : 𝐺𝛾𝐹

1 𝐸𝑒𝑥𝑡 ← ø
2 foreach 𝑝𝑗 ∈ 𝐺 ∪ {𝑝𝑓} // for each attribute in 𝐺 and 𝐹
3 do
4 𝐸𝑒𝑥𝑡 = 𝐸𝑒𝑥𝑡 ∪ {𝑝𝑗 : 𝑝𝑗,1| . . . |𝑝𝑗,𝑛𝑗

}, ∀𝑝𝑗,𝑙 ∈ △𝐶𝑖𝑛
𝑝𝑗

// generating elements
where paths △𝐶𝑖𝑛

𝑝𝑗
are renamed to 𝑝𝑗

5 end
6 return 𝐺𝛾𝐹 ∘ 𝜋𝐸𝑒𝑥𝑡

Example. Let us suppose that we want to reformulate the aggregate operator as
described above:

(ranking.score)𝛾(titles_count: Count(title))

To reformulate the aggregate operator, the query reformulation engine must first
generate a project operator using the following dictionary entries:

• the absolute paths leading to the path title, i.e., △𝐶
𝑡𝑖𝑡𝑙𝑒, are [title, film.title, de-

scription.title]



4.5. UNNEST 73

• the absolute paths leading to the path ranking.score, i.e., △𝐶
𝑟𝑎𝑛𝑘𝑖𝑛𝑔.𝑠𝑐𝑜𝑟𝑒,

are [ranking.score, info.ranking.score, film.others.ranking.score, classifica-
tion.ranking.score]

Therefore, it generates the following projection operation:

𝜋 ranking.score:ranking.score | info.ranking.score | others.ranking.score | classification.ranking.score,

title:title | film.title | description.title(C)

The aggregate operator after reformulation becomes:

ranking.score𝛾titles_count:Count( title) (
𝜋 ranking.score:ranking.score | info.ranking.score | others.ranking.score | classification.ranking.score,

title:title | film.title | description.title(C))

Now after executing this query we obtain the following results:

• {
"_id":7.2,
"titles_count":2

}

• {
"_id":8.1,
"titles_count":2

}

4.5 Unnest

Definition 4.6. Unnest
The unnest operator is defined as:

𝜇p(Cin) = Cout

The unnest operator (𝜇) is a unary operator which flattens an array reached via
a path 𝑝 in 𝐶𝑖𝑛. For each document 𝑑𝑖 ∈ 𝐶𝑖𝑛 that contains 𝑝, the unnest operator
outputs a new document for each element of the array. The structure of the output
documents is identical to the original document 𝑑𝑖, except that 𝑝 (initially an array)
is replaced by a path leading to one value of the array in 𝑑𝑖. Let us notice that the
output collection 𝐶𝑜𝑢𝑡 contains at least equal number of documents as the collection
𝐶𝑖𝑛, and usually more documents (Ben Hamadou et al., 2019b).

Example. Let us suppose that we want to run the following unnest operation on
collection (C) from Figure 4.1:

𝜇genres(C)



74 CONTENTS

4.5.1 Classical Unnest Evaluation

During an unnest evaluation, classical query engines generate new documents for the
operation 𝜇p(Cin) = Cout as follows: For a document 𝑑𝑖 ∈ 𝐶𝑖𝑛

• If 𝑝 ∈ 𝑆𝑑𝑖
, and its value is an array [𝑣𝑝1 , . . . , 𝑣𝑝𝑛 ] the collection 𝐶𝑜𝑢𝑡 contains new

𝑘 documents where 𝑘 = |𝑣𝑝| is the number of entries of the array referenced by
the path 𝑝. Each new document is a copy of 𝑑𝑖 and contains the path 𝑝. The
value of 𝑝 in each new document 𝑑𝑖,𝑗 is equal to the 𝑗𝑡ℎ entry from the array
value 𝑣𝑝 in 𝑑𝑖;

• If 𝑝 ∈ 𝑆𝑑𝑖
and its value is atomic or object and not an array, the collection 𝐶𝑜𝑢𝑡

contains the same document 𝑑𝑖 and the same number of documents as 𝐶𝑖𝑛.

• If 𝑝 /∈ 𝑆𝑑𝑖
, the collection 𝐶𝑜𝑢𝑡 contains a copy of the original document 𝑑𝑖.

Example. The previous unnest operator considers the array referenced by the path
genres and returns a new document for each element in the array. By executing this
query, the unnest operator only applies to document (𝑎) due to the presence of the
absolute path genres in this document. As a result, the array genres from document
(𝑎) is split into two documents as follows:

• {
"_id":1,
"title":"Million Dollar

Baby",
"year":2004,
"genres":"Drama",
"country":"USA",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"Hilary Swank", "Morgan
Freeman"],

"ranking":{"score":8.1}
}

• {
"_id":1,
"title":"Million Dollar

Baby",
"year":2004,
"genres":"Sport",
"country":"USA",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",
"Hilary Swank", "Morgan
Freeman"],

"ranking":{"score":8.1}
}

Let us notice that documents (b,c,d) are present in the result since they do not
include path genres. The result contains five documents.

4.5.2 Unnest Reformulation Rules

The aim of reformulating the unnest operator is to generate documents where on each
occasion the path 𝑝 contains an element from the initial array referenced by 𝑝 in the



4.5. UNNEST 75

collection 𝐶𝑖𝑛 regardless of the underlying structure of the documents. In practical
terms, the query reformulation engine combines a series of different unnest operators
applied to each path 𝑝𝑗 extracted from the dictionary entry △𝐶𝑖𝑛

𝑝 that leads to the
path 𝑝. We represent the combination of the operators by using the “ ∘ ” composition
symbol. The reformulation of the unnest operator is formally defined as:

∘∀𝑝𝑗 ∈ △𝐶𝑖𝑛
𝑝

𝜇pj (Cin)

In the following we introduce the Algorithm 9 to present the automatic process of
reformulating the unnset operator.

Algorithm 9: Algorithm for automatic unnset operator reformulation.
Input : 𝜇𝑝

1 𝜇𝑒𝑥𝑡 ← ∅
2 foreach 𝑝𝑗 ∈ △𝐶𝑖𝑛

𝑝 ; // for each attribute 𝑝𝑗 in △𝐶𝑖𝑛
𝑝

3 do
4 𝜇𝑒𝑥𝑡 ← 𝜇𝑒𝑥𝑡 ∘ 𝜇𝑝𝑗

; // extending 𝜇𝑒𝑥𝑡 with 𝜇𝑝𝑗

5 end
6 return 𝜇𝑒𝑥𝑡

Algorithm 9 generates a composition of unnest operators for each absolute paths
found in the dictionary leading to attributes from the initial queries. The results are
automatically added to the extended query 𝜇𝑒𝑥𝑡, Lines 1− 4.

Example. Let us suppose that we want to reformulate the following unnest operation
as described above:

𝜇genres(C)

After applying the above-mentioned transformation rules, the unnest operation
becomes:

𝜇genres ∘ 𝜇info.genres ∘ 𝜇film.details.genres ∘ 𝜇classification.genres (C)

Now, executing this query returns seven documents where the array from document
(a) generates two documents which have the same information as document (a) and
the array becomes a simple attribute whose value is an entry from the array. We
obtain three documents from document (b) (the array genres contains three entries).
Document (c) stays invariant. Finally, document (d) returns one document (the array
genres contains only a single entry):

• {
"_id":1,
"title":"Million Dollar

Baby",
"year":2004,
"genres":"Drama",



76 CONTENTS

"country":"USA",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",
"Hilary Swank",
"Morgan Freeman"],
"ranking":{"score":8.1}

}

• {
"_id":1,
"title":"Million Dollar Baby",
"year":2004,
"genres":"Sport",
"country":"USA",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",
"Hilary Swank", "Morgan
Freeman"],

"ranking":{"score":8.1}
}

• {
"_id":2,
"title":"In the Line of Fire",
"info":{
"year":1993,
"country":"USA",
"genres":"Drama",
"people":{
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",
"John Malkovich", "Rene
Russo Swank"]

},
"ranking":{"score":7.2}

}
}

• {
"_id":2,
"title":"In the Line of Fire",
"info":{
"year":1993,
"country":"USA",
"genres":"Action",
"people":{
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",
"John Malkovich",
"Rene Russo Swank"]

},
"ranking":{"score":7.2}

}
}

• {
"_id":2,
"title":"In the Line of Fire",
"info":{
"year":1993,
"country":"USA",
"genres":"Crime",
"people":{
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"John Malkovich",
"Rene Russo Swank"]

},
"ranking":{"score":7.2}

}
}

• {
"_id":3,
"film":{
"title":"Gran Torino",
"details":{
"year":2008,
"country":"USA",
"genres":"Drama",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"personas":{
"lead_actor":{

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",
"Bee Vang", "Christopher
Carley"]



4.6. LOOKUP 77

}
},
"others":{

"ranking":{"score":8.1}
}

}
}

• {
"_id":4,
"description":{
"title":"The Good, the

Bad and the Ugly",
"year":1966,
"country":"Italy",
"director":{

"first_name":"Sergio",
"last_name":"Leone"},

"stars":{
"lead_actor":{

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",
"Eli Wallach", "Lee Van
Cleef"]
}

},
"classification":{
"ranking":{"score":7.2},
"genres":"Western"

}
}

4.6 Lookup

Definition 4.7. Lookup
The lookup operator is defined as:

(Cin) 𝜆res:pin=pex(Cex) = Cout

The lookup operator (𝜆) is a binary operator which enriches (embeds or left-joins)
documents from the input collection 𝐶𝑖𝑛 with documents from the external collection
𝐶𝑒𝑥 that satisfy a lookup condition. This condition determines whether the values of
paths reached from local paths 𝑝𝑖𝑛 in 𝐶𝑖𝑛 match the values reached via external paths
𝑝𝑒𝑥 in 𝐶𝑒𝑥 or not. This operator is similar to the left outer join operator in relational
algebra. As a result, the lookup operator adds an array 𝑟𝑒𝑠 to each document from
𝐶𝑖𝑛 and each element of 𝑟𝑒𝑠 is a document from 𝐶𝑒𝑥 that satisfies the lookup condition
𝑝𝑖𝑛 = 𝑝𝑒𝑥. The output collection 𝐶𝑜𝑢𝑡 is the same size as the input collection 𝐶𝑖𝑛.
The structure of the documents in 𝐶𝑜𝑢𝑡 are slightly different from 𝐶𝑖𝑛 because each
document in 𝐶𝑜𝑢𝑡 includes an additional path 𝑟𝑒𝑠 whose value is an array of the nested
external documents. Despite lookup and unnest operators are used to nest or unnest
values, it is important to underline that lookup and unnest operators are not reverse
operators (Ben Hamadou et al., 2019b).

Example. Let us suppose that we want to run the following lookup operation on
collection (C) from Figure 4.1:

(C)𝜆dir_actor:director.first_name=lead_actor.first_name(C)

This lookup operator left joins each film based on the director’s first name with other
films that have the same first name for the main actor.



78 CONTENTS

4.6.1 Classical Lookup Evaluation

During a lookup evaluation, classical query engines deal with misleading paths or null
values in documents based on the evaluation of the condition 𝑝𝑖𝑛 = 𝑝𝑒𝑥 as follows:

• If 𝑝𝑖𝑛 ∈ 𝑆𝑑𝑖
, 𝑑𝑖 ∈ 𝐶𝑖𝑛, res contains an array with all documents 𝑑𝑗 ∈ 𝐶𝑒𝑥 where

𝑝𝑒𝑥 ∈ 𝑆𝑑𝑗
and 𝑣𝑝𝑖𝑛

= 𝑣𝑝𝑒𝑥 ;

• If 𝑝𝑖𝑛 /∈ 𝑆𝑑𝑖
, 𝑑𝑖 ∈ 𝐶𝑖𝑛, res contains an array with all documents 𝑑𝑗 ∈ 𝐶𝑒𝑥 where

𝑝𝑒𝑥 /∈ 𝑆𝑑𝑗
.

Example. The execution of the previous query returns one entry in the new path
dir_actor for document (a). This entry contains the information from document (a)
since the lookup operation can only match the information from document (a). The
content of the new path dir_actor for document (a) is as follows:

• "dir_actor":[
{
"_id":1,
"title":"Million Dollar Baby",
"year":2004,
"genres":[ "Drama","Sport"],
"country":"USA",
"director":{
"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"Hilary Swank",
"Morgan Freeman"],
"ranking":{"score":8.1}

}
]

Here we explain the classical evaluation process and the possible incorrect results.
The lookup succeeds in matching document (a) with itself, but despite the presence
of other documents that may satisfy the lookup condition we can see that they are
absent from the new path dir_actor. We can see this same result inside the remaining
documents (b, c, d) that give three documents as a result, and each resulting document
contains the same value for the new path dir_actor :

"dir_actor":[{
"_id":2,
"title":"In the Line of Fire",
"info":{
"year":1993,
"country":"USA",
"genres":[ "Drama","Action",
"Crime"],
"people":{

"director":{
"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",

"John Malkovich",
"Rene Russo Swank"]

},
"ranking":{"score":7.2}
}

},
{
"_id":3,
"film":{
"title":"Gran Torino",
"details":{

"year":2008,
"country":"USA",
"genres":"Drama",
"director":{

"first_name":"Clint",



4.6. LOOKUP 79

"last_name":"Eastwood"},
"personas":{
"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":["Clint Eastwood",
"Bee Vang",
"Christopher Carley"]

}
}, "others":{"ranking":

{"score":8.1}
}
}

},
{
"_id":4,
"description":{
"title":"The Good, the Bad

and the Ugly",

"year":1966,
"country":"Italy",
"director":{

"first_name":"Sergio",
"last_name":"Leone"},

"stars":{"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"Eli Wallach",
"Lee Van Cleef"]

}
},
"classification":{
"ranking":{"score":7.2},
"genres":[ "Western"]
}

}
]

We can see that this result does not contain the expected information, for in-
stance, document (d) should not match any of the other documents since the direc-
tor.first_name is totally different from the lead_actor.first_name. It is supposed to
return an empty array for the new path dir_actor. Also, document (a) is excluded
from the results.

4.6.2 Lookup Reformulation Rules

The aim of reformulating the lookup operator is to replace each path from the join
condition by their corresponding absolute paths extracted from the dictionaries. We
reuse the previously defined notation “|” to ensure an identical evaluation for the
reformulated lookup compared to the classical evaluation mentioned in the previous
paragraph. We observe that the lookup reformulation requires a dictionary for the
input collection 𝐶𝑖𝑛 and for the external collections 𝐶𝑒𝑥. In practical terms, the query
reformulation engine includes a combination of all absolute paths of △𝐶𝑖𝑛

𝑝𝑖𝑛
and a com-

bination of all absolute paths of △𝐶𝑒𝑥
𝑝𝑒𝑥

. The reformulated lookup operation is defined
as:

(Cin)𝜆res: pj,1 | . . . | pj,nj = pl,1 | . . . | pl,nl
(Cex) = Cout

∀𝑝𝑗,𝑥 ∈ △𝐶𝑖𝑛
𝑝𝑖𝑛

, ∀𝑝𝑙,𝑦 ∈ △𝐶𝑒𝑥
𝑝𝑒𝑥

Example. Let us suppose that we want to reformulate the following lookup operation:

(C)𝜆dir_actor:director.first_name=lead_actor.first_name(C)

The query reformulation engine start first by extracting the following entries from the
dictionary:



80 CONTENTS

• the absolute paths leading to the path director.first_name, i.e.,
△𝐶

𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟.𝑓𝑖𝑟𝑠𝑡_𝑛𝑎𝑚𝑒, are [director.first_name, info.people.director.first_name,
film.details.director.first_name, description.director.first_name]

• the absolute paths leading to the path lead_actor.first_name,
i.e., △𝐶

𝑙𝑒𝑎𝑑_𝑎𝑐𝑡𝑜𝑟.𝑓𝑖𝑟𝑠𝑡_𝑛𝑎𝑚𝑒, are [lead_actor.first_name,
info.people.lead_actor.first_name, film.details.personas.lead_actor.first_name,
description.stars.lead_actor.first_name]

Below is the reformulation of the lookup operation:

(C)𝜆dir_actor:director.first_name | info.people.director.first_name

| film.details.director.first_name | description.director.first _name=lead_actor.first_name | info.people.lead_actor.

first_name | film.details.personas.lead_actor.first_name | description.stars.lead_actor.first_name(C)

The execution of this lookup operation gives four documents. First, it gives these
three documents (a, b, c). Each resulting document contains the same value for the
new path dir_actor :

• "dir_actor":[
{
"_id":1,
"title":"Million Dollar Baby",
"year":2004,
"genres":["Drama", "Sport"],
"country":"USA",
"director":{
"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"Hilary Swank",
"Morgan Freeman"],

"ranking":{"score":8.1}
},
{
"_id":2,
"title":"In the Line of Fire",
"info":{
"year":1993,
"country":"USA",
"genres":["Drama", "Action",
"Crime"],
"people":{
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"lead_actor":{
"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"John Malkovich",

"Rene Russo Swank"]
},
"ranking":{"score":7.2}

}
},
{
"_id":3,
"film":{
"title":"Gran Torino",
"details":{
"year":2008,
"country":"USA",
"genres":"Drama",
"director":{

"first_name":"Clint",
"last_name":"Eastwood"},

"personas":{
"lead_actor":{

"first_name":"Clint",
"last_name":"Eastwood"},

"actors":[ "Clint Eastwood",
"Bee Vang",
"Christopher Carley"]

}
},
"others":{

"ranking":{"score":8.1}
}

}
}
]



4.7. ALGORITHM FOR AUTOMATIC QUERY REFORMULATION 81

Second, the document (d) does not have the same information for the paths direc-
tor.first_name and lead_actor.first_name. Therefore, the lookup operation returns
the following result for document (d):

• "dir_actor":[]

4.7 Algorithm for Automatic Query Reformulation

In this section we introduce the query extension algorithm that automatically refor-
mulates the user query.

If we take into account the definition of a user query (section 4.1), the goal of the
extension algorithm 10 is to modify the composition of the query in order to replace
each operator by its extension (defined in the previous sections). The final extended
query is then the composition of the reformulated operators corresponding to 𝑞1∘. . .∘𝑞𝑟.

Algorithm 10 starts by initialising the query 𝑄𝑒𝑥𝑡 with the identity 𝑖𝑑, line 3.
Then, for each operator 𝑞𝑖 in the query 𝑄, Lines 4. The algorithm proceeds as follows
for each of the five supported operators; i) project operator, i.e., 𝜋, the algorithm
executes the instructions from algorithm 7, Lines 8−30. ii) select operator, i.e., 𝜎, the
algorithm executes the reformulation rules defined for this operator, Lines 31−36. iii)
aggregate operator, i.e., 𝛾, the Algorithm executes the instructions from algorithm 8,
Lines 37 − 46. iv) unnest operator, i.e., 𝜇, the algorithm executes the instructions
from Algorithm 9, Lines 47 − 53. v) lookup operator, i.e., 𝜆, the algorithm executes
the reformulation rules defined for this operator, Lines 55− 57. Finally, the algorithm
return the extended query 𝑄𝑒𝑥𝑡, Line 60.

Ultimately, the native query engine for document-oriented stores, such as Mon-
goDB, can execute the reformulated queries. It is therefore easier for users to find all
the desired information regardless of the structural heterogeneity inside the collection.

4.8 Conclusion

In this chapter, we introduced most document querying operators. First, we started by
defining each operator and we presented their classical evaluation. To enable the user
to formulate schema-independent querying for heterogeneous document stores where
queries could be formulated over partial as well as absolute paths, we introduced for
each operator a set of reformulation rules. Our contribution is built upon the idea
of using the underlying query engine of the document stores. Therefore, we extend
each element from the query with their corresponding absolute paths extracted from
a materialised dictionary defined in the previous chapter. We support user queries
formulated over partial information regarding the paths leading to the information of



82 CONTENTS

Algorithm 10: Automatic query reformulation algorithm.
1 input: 𝑄 // original query
2 output: 𝑄𝑒𝑥𝑡 // reformulated query
3 𝑄𝑒𝑥𝑡 ← 𝑖𝑑 // identity
4 foreach 𝑞𝑖 ∈ 𝑄 // for each operator in 𝑄
5 do
6 switch 𝑞𝑖 // case of the operator 𝑞𝑖
7 do
8 case 𝜋𝐸 : // 𝑞𝑖 is a project operator
9 do

10 𝐸𝑒𝑥𝑡 ← ∅ // initialising the set of extended elements from 𝐸
11 foreach 𝑒𝑗 ∈ 𝐸 // for each element 𝑒𝑗 ∈ 𝐸
12 do
13 if 𝑒𝑗 = 𝑝𝑗 is a path (𝑝𝑗 ∈ 𝑃𝐶𝑖𝑛

) // 𝑒𝑗 takes the form of a path
14 then
15 𝑒𝑗𝑒𝑥𝑡 = 𝑝𝑗,1 | . . . | 𝑝𝑗,𝑛𝑛𝑗

∀𝑝𝑗,𝑙 ∈ △𝐶𝑖𝑛
𝑝𝑗

// generating 𝑝𝑗𝑒𝑥𝑡 using paths from

△𝐶𝑖𝑛
𝑝𝑗

16
17 if 𝑒𝑗 = 𝑝′

𝑗 : 𝑝𝑗 , (𝑝𝑗 ∈ 𝑃𝐶𝑖𝑛
) // renaming the path 𝑝𝑗 to 𝑝′

𝑗

18 then
19 𝑒𝑗𝑒𝑥𝑡 = 𝑝′

𝑗 : 𝑝𝑗,1 | . . . | 𝑝𝑗,𝑛𝑗 , ∀𝑝𝑗,𝑙 ∈ △𝐶𝑖𝑛
𝑝𝑗

// generating 𝑒𝑗𝑒𝑥𝑡 while renaming

paths from △𝐶𝑖𝑛
𝑝𝑗

to 𝑝′
𝑗

20
21 if 𝑒𝑗 = 𝑝′

𝑗 : [𝑝1, . . . , 𝑝𝑚𝑗 ], ∀𝑙 ∈ [1..𝑚𝑗 ], 𝑝𝑙 ∈ 𝑆𝐶𝑖𝑛
// new array [𝑝1, . . . , 𝑝𝑚𝑗 ] composed

of paths 𝑝𝑙
22 then
23 𝑒𝑗𝑒𝑥𝑡 = 𝑝′

𝑗 :
[︀
𝑝1,1|| . . . || 𝑝1,𝑛1 , . . . , 𝑝𝑚,1|| . . . || 𝑝𝑚,𝑛𝑚

]︀
∀𝑝𝑗,𝑙 ∈ △𝐶𝑖𝑛

𝑝𝑙

24 if 𝑒𝑗 = 𝑝′
𝑗 : 𝛽, 𝛽 = (𝑝𝑎 𝜔 𝑝𝑏) // comparing values of paths 𝑝𝑎 and 𝑝𝑏

25 then
26 𝑒𝑗𝑒𝑥𝑡 = 𝑝𝑎,1 | . . . | 𝑝𝑎,𝑛𝑎 𝜔 𝑝𝑏,1 | . . . | 𝑝𝑏,𝑛𝑏

, ∀𝑝𝑎,𝑘 ∈ △𝐶𝑖𝑛
𝑝𝑎 , ∀𝑝𝑏,𝑙 ∈ △𝐶𝑖𝑛

𝑝𝑏

27 𝐸𝑒𝑥𝑡 = 𝐸𝑒𝑥𝑡 ∪ {𝑒𝑗𝑒𝑥𝑡} // extending 𝐸𝑒𝑥𝑡 by the new extended element 𝑒𝑗𝑒𝑥𝑡

28 end
29 𝑄𝑒𝑥𝑡 ← 𝑄𝑒𝑥𝑡 ∘ 𝜋𝐸𝑒𝑥𝑡 // adding the extended projection 𝜋𝐸𝑒𝑥𝑡 to 𝑄𝑒𝑥𝑡

30 end
31 case 𝜎𝑃 : // 𝑞𝑖 is a select operator and the condition is normalised to

𝑃 =
⋀︀ (︂ ⋁︀

𝑝𝑘 𝜔𝑘 𝑣𝑘

)︂
32 do

33 𝑃𝑒𝑥𝑡 ←
⋀︀ (︂ ⋁︀

(
⋁︀

∀𝑝𝑗 ∈△𝐶𝑖𝑛
𝑝𝑘

𝑝𝑗 𝜔𝑘 𝑣𝑘)
)︂

// extending the condition with a disjunction⋁︀
∀𝑝𝑗 ∈△𝐶𝑖𝑛

𝑝𝑘

𝑝𝑗 𝜔𝑘 𝑣𝑘

34
35 𝑄𝑒𝑥𝑡 ← 𝑄𝑒𝑥𝑡 ∘ 𝜎𝑃𝑒𝑥𝑡 // adding the extended selection 𝜎𝑃𝑒𝑥𝑡 to 𝑄𝑒𝑥𝑡

36 end
37 case 𝐺𝛾𝐹 :
38 where 𝐺 = 𝑝1, . . . , 𝑝𝑔 , and 𝐹 = 𝑝 : 𝑓(𝑝𝑓 ) // 𝑞𝑖 is an aggregate operator
39 do
40 𝐸𝑒𝑥𝑡 ← ø
41 foreach 𝑝𝑗 ∈ {𝐺} ∪ {𝑝𝑓} // for each attribute in 𝐺 and 𝐹
42 do
43 𝐸𝑒𝑥𝑡 = 𝐸𝑒𝑥𝑡 ∪ {𝑝𝑗 : 𝑝𝑗,1| . . . |𝑝𝑗,𝑛𝑗 }, ∀𝑝𝑗,𝑙 ∈ △𝐶𝑖𝑛

𝑝𝑗
// △𝐶𝑖𝑛

𝑝𝑗
are renamed to 𝑝𝑗

44 end
45 𝑄𝑒𝑥𝑡 ← 𝑄𝑒𝑥𝑡 ∘ (𝐺𝛾𝐹 ∘ 𝜋𝐸𝑒𝑥𝑡 ) // adding the combined aggregation 𝐺𝛾𝐹 and the

custom projection 𝜋𝐸𝑒𝑥𝑡 to 𝑄𝑒𝑥𝑡

46 end
47 case 𝜇𝑝 : // 𝑞𝑖 is an unnest operation
48 do
49 foreach 𝑝𝑗 ∈ △𝐶𝑖𝑛

𝑝 // for each attribute 𝑝𝑗 in △𝐶𝑖𝑛
𝑝

50 do
51 𝑄𝑒𝑥𝑡 ← 𝑄𝑒𝑥𝑡 ∘ 𝜇𝑝𝑗 // extending 𝑄𝑒𝑥𝑡 with 𝜇𝑝𝑗

52 end
53 end
54 case 𝜆𝑟𝑒𝑠:𝑝𝑖𝑛=𝑝𝑒𝑥 : // 𝑞𝑖 is a lookup operation
55 do
56 𝑄𝑒𝑥𝑡 ← 𝑄𝑒𝑥𝑡 ∘ 𝜆𝑟𝑒𝑠:𝑝𝑗,1 | ... | 𝑝𝑗,𝑛𝑗

= 𝑝𝑙,1 | ... | 𝑝𝑙,𝑛𝑙
∀𝑝𝑗,𝑥 ∈ △𝐶𝑖𝑛

𝑝𝑖𝑛
, ∀𝑝𝑙,𝑦 ∈ △𝐶𝑒𝑥

𝑝𝑒𝑥

57 end
58 end
59 end
60 return 𝑄𝑒𝑥𝑡



4.8. CONCLUSION 83

interest. Thus, we extend the capabilities of most document stores to support queries
that are not formulated using only absolute paths.

In our contribution, the query reformulation Algorithm is designed to support any
kind of heterogeneity. Since the dictionary and the Algorithm are independent, it
is possible to define a custom dictionary to overcome given classes of heterogeneity,
e.g., semantic heterogeneity, thus our Algorithm delivers results that respond to the
matching already defined in the dictionary. Furthermore, it is possible to formulate
queries using custom attributes names. The core of contribution is flexible and could
be adaptable for any class of heterogeneity and queries could be formulated over sev-
eral types of attribute representations since the latter should be already defined as
dictionary entries.

In this thesis, we introduced the different reformulation rules to enable querying
for schema-independent querying for heterogeneous collection of documents. Thus, to
highlight the importance of introducing such a solution, we focused on overcoming a
given type of heterogeneity, i.e., structural heterogeneity. However, all formal defini-
tions that we introduced in this thesis could be easily adapted to support other classes
of heterogeneity.

In the next chapter, we introduce the different experiments to validate all the
different formal definitions that we introduced in these two previous chapters. Thus,
we developed a tool that we called EasyQ, that stands for Easy Query, that i) extracts
document structures, ii) maintains the dictionary, and iii) automatically reformulates
user queries. Later, we introduce our experimental protocol. Finally, we present the
results of all the experiments conducted for the aim of this thesis.





Chapter 5

Evaluation

Contents

5.1 Implementing EasyQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . 88
5.2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.3 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.4 Execution Contexts . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Schema Inference Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.1 Dictionary Construction . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Dictionary at the Scale . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Queries Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.1 Reformulated Queries Performances . . . . . . . . . . . . . . . . 98
5.4.2 Query Reformulation Time . . . . . . . . . . . . . . . . . . . . . 100

5.5 Dictionary Maintenance Evaluation . . . . . . . . . . . . . . . . . . . . 101
5.5.1 Dictionary Update on Insert Operation . . . . . . . . . . . . . . 102
5.5.2 Dictionary Update on Delete Operation . . . . . . . . . . . . . . 102
5.5.3 Dictionary Update on Documents Update Operation . . . . . . 102

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

85



86 CONTENTS

Along this thesis manuscript, we introduced formal definitions related to the con-
cept of the document model, structures, etc. Then, we introduced the concept of a
dictionary to track the different structures of documents within a collection of a hetero-
geneous collection of documents. Later on, we introduced a set of reformulation rules
to enable schema-independent querying for heterogeneous collection of documents us-
ing queries formulated over partial or absolute paths. Thus, our contribution involves
three main components to i) extract document structures, ii) maintain the dictionary,
and iii) automatically reformulate user queries, that we try to validate and evaluate in
this chapter. In the following, we present i) the implementation of this three compo-
nents as a prototype that we called EasyQ, and ii) the experiments that we conducted
to evaluate the efficiency of our contribution.

In practical terms, the purpose of the experiments is to answer the following ques-
tions:

• is the time to build the dictionary acceptable, and is the size of the dictionary
affected by the number of structures in the collection?

• what is the cost of maintaining the dictionary?

• What are the effects on the execution time of the rewritten queries when the size
of the collection is varied and is this cost acceptable or not?

For this purpose, we start first by describing the synthetic dataset that we employ
for both structure extraction and query reformulation evaluation. Later, we start by
evaluating the schema inference techniques and the dictionary construction phase using
the Algorithm 2, that we introduced in Chapter 3 describing the process of construction
a dictionary for a collection of heterogeneous collection of documents. Therein, we
evaluate the reformulation of the queries using the Automatic Query Reformulation
Algorithm 10, Chapter 3, and we compare the overhead of executing the extended
queries to two other execution contexts. Then, we evaluate the dictionary maintenance
costs. Our goal is (i) to demonstrate that all formal definitions in this thesis are feasible
and reliable, (ii) to analyse the performances of the document structures inference and
the query reformulation.

5.1 Implementing EasyQ

5.1.1 Architecture Overview

In this part, we present the architecture of EasyQ and its main components.
Figure 5.1 provides a high-level illustration of the architecture of EasyQ with its

two main components: the query reformulation engine and the dictionary. Moreover,



5.1. IMPLEMENTING EASYQ 87

Insert 
Delete 
Update

Data 
Structure 
Extractor

{ }

NoSQL

Query 
Reformulation 

Engine 

Qext Q

{docu ments}

Dictionary
UsesRefreshes

Figure 5.1: EasyQ architecture: data structure extractor and query reformulation
engine.

Figure 5.1 shows the flow of data during the data loading stage and the query pro-
cessing stage.

To evaluate and validate the different formal models introduced in this thesis, we
developed EasyQ as a proof of concept for all Algorithms introduced in Chapter 3 and
Chapter 4. Thus, EasyQ helps us to query and manipulate a collection of heteroge-
neous documents in automatic ways. Hence, EasyQ ensure the interaction between
the document store and the user. Regarding our technical choices, we implemented
EasyQ using Python programming language. As for the document store, we employed
MongoDB which is one of the most commonly used document stores. All interac-
tions with the document store were ensured using the library PyMongo. The usage
of our implementation of EasyQ is ensured using the command line. EasyQ is mainly
composed of two main components described as follows:

• i) the data structure extractor: This module ensures that the dictionary is always
updated with all existing structures present inside each collection. The data
structure extractor module runs a recursive algorithm that goes through all the
trees of documents starting from the root down to each leaf node before going
up to collect all the absolute paths, partial paths and leaf nodes. All documents
in the collection are involved in this process. This module offers the following
functions:

– the first execution scenario is automatically executed whenever a document
manipulation operation is executed. Therefore, it enriches the dictionary
with new partial path entries and updates existing ones with all correspond-
ing absolute paths in documents. Thus, all manipulation operations are in-
tercepted by EasyQ and this module automatically detects the changes and
generates a new dictionary in case of creating a new collection, or updates
existing dictionary in case of executing any manipulation operation. The
execution of this scenario is transparent to the user and it is executed as a



88 CONTENTS

background process, and no interaction with the user is required.

– the second execution scenario is manually launched by the user. It allows
to generate a dictionary for a given heterogeneous collection of documents.
Hence, the user executes a command line on which she specifies the name
of the collection. Afterwords, EasyQ display to the user in the command
line the dictionary and information regarding the time required to generate
the dictionary.

• ii) the query reformulation engine: At the querying stage, EasyQ takes as input
the user query, denoted by Q, which is formulated using any combination of
paths (leaf nodes, partial paths and absolute paths) and the desired collection.
Then, the query reformulation engine reads from the dictionary and produces
an enriched query known as 𝑄𝑒𝑥𝑡, that includes all existing absolute paths from
all the documents. Later, this module sends this new query to the underlying
document store querying engine. Once the query is executed, results are auto-
matically displayed to the user in the command line and information regarding
the execution time are displayed.

5.2 Experimental Protocol

In this section, we introduce the different configurations that we employed to evaluate
the performances of our contribution. We start first by presenting the experiments
environment and the tools used to conduct all experiments. Therein, we describe the
synthetic datasets helping to study the heterogeneity effects on the different contri-
bution presented in this thesis. Later, we introduce the different workloads that we
employ in these experiments. Finally, we describe the different execution contexts that
we run to evaluate the queries.

5.2.1 Experimental Environment

In this part we present the experimental environment that we built to evaluate
EasyQ and validate its ability for enabling schema-independent querying for NoSQL
document-oriented databases and automatically maintaining the dictionary with the
latest document structures.

We conducted all our experiments on an Intel I5 i5-4670 processor with a clock
speed of 3.4 GHz and 4 cores per socket. The machine had 16GB of RAM and a 1TB
SSD drive. We ran all the experiments in single-threaded mode. We chose MongoDB
as the underlying document store for our experiments. We focused on the measurement
of the execution time for each executed query.



5.2. EXPERIMENTAL PROTOCOL 89

5.2.2 Datasets

In this part we describe the different customised synthetic datasets that we generated
to run our experiments. We choose to work with synthetic datasets in order to adjust
the different parameters that helps to study the effects of heterogeneity on the execu-
tion of the reformulated queries. Hence, we could set the number of nesting levels, the
number of attributes within a given complex attribute, the number of documents per
collection, etc.

{ "_id":1,
"title":"Million Dollar Baby",
"year":2004,
"link":null,
"awards":["Oscar", "Golden Globe",

"Movies for Grownups Award", "AFI
Award"],

"genres":["Drama", "Sport"],
"country":"USA",
"director":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"lead_actor":{ "first_name":"Clint",

"last_name":"Eastwood"
},
"actors":["Clint Eastwood",

"Hilary Swank", "Morgan Freeman"],
"ranking":{ "score":8.1
}

}

Figure 5.2: Document from the Baseline dataset.

In order to analyse the behaviour of EasyQ on varying collections sizes and struc-
tures, we generated customised synthetic datasets. First, we collected a CSV document
with information related to 5,000 movies. We initially extracted all movies details from
an online database of information related to films, IMDB1. Then we started generating
an initial homogeneous dataset that we called Baseline where documents within the
different collections are composed of 10 attributes (4 primitive type attributes, e.g.,
country, 3 array type attributes, e.g., genres, and 3 complex attributes of an object
type, e.g., ranking in which we nested additional primitive attributes). All documents
within the different collections in the Baseline dataset share the same structure as il-
lustrated in Figure 5.2. We used the Baseline dataset as baseline for our experiments.
It helped us to compare our schema-independent querying mechanism with the normal
execution of queries on collections that have a unique homogeneous structure. The

1https://www.imdb.com/



90 CONTENTS

{"_id":1
"group_1A":

{"level0":
{"level1":

{"level2":
{"level3":

{"ranking" : {"score": 8.1},
"country" : "USA",
"lead_actor" : {"first_name": "Clint", "last_name": "Eastwood"},
"director" : {"first_name": "Clint", "last_name": "Eastwood"},
"link" : null

}
}

}
}

},
"group_2A":

{"level0":
{"level1":

{"level2":
{"level3":

{"genres" : ["Clint Eastwood", "Hilary Swank", "Morgan Freeman"]}
}

}
}

},
"group_3A":

{"level0":
{"level1":

{"level2":
{"level3":

{"title" : "Million Dollar Baby",
"year" : 2004,
"actors":["Clint Eastwood", "Hilary Swank", "Morgan Freeman"],
"awards":["Oscar", "Golden Globe", "Movies for Grownups Award",

"AFI Award"]
}

}
}

}
}

}

Figure 5.3: Document from the Heterogeneous dataset (3 groups, 5 nesting levels).

Baseline dataset was composed of five collections of 1M, 10M, 25M, 50M, 100M and
500M documents for a total disk space ranging from 500MB to more than 250GB.
In the baseline dataset, there are 1M of distinct documents where attributes values
are selected automatically from the initial 5,000 distinct documents used to generate
our synthetic datasets. In case of a collection of 25M document, each document is
repeated 25 times and so on.

We then injected heterogeneity into the structure of documents from the Baseline
dataset. We opted to introduce structural heterogeneity by changing the location
of the attributes of the documents from the Baseline dataset. We introduced new
absolute paths with variable lengths. The process of generating the heterogeneous
collection took several parameters into account: the number of distinct structures, the
depth of the absolute paths and the number of new complex attributes in which are
nested attributes used in baseline dataset. We randomly nested a subset of attributes,
for instance, up to 10 attributes, under these complex attributes at pre-defined depths.



5.2. EXPERIMENTAL PROTOCOL 91

The complex attributes are unique in each structure, which enables unique absolute
paths for each attribute in each structure.

Figure 5.3 describes a sample of a generated document along with the parameters
used to generate it. Therefore, for each attribute there are as many absolute paths as
the chosen number of distinct structures. For instance, the number of the new complex
attributes in which are nested the attributes from the baseline dataset is equal to three,
i.e., group_1A, group_2A, group_3A. The depth of the absolute paths in this example
is equal to five. The number of nested attributes per complex attribute is equal to five
for the first group, one for the second group, and four for the third group.

For the purpose of the experiments we used the above mentioned strategy to gen-
erate five datasets described as follows:

• a Heterogeneous dataset to evaluate the execution time of the reformulated query
on varying collections sizes. This dataset was composed of five collections of 1M,
10M, 25M, 50M, 100M and 500M documents for a total disk space ranging from
500MB to more than 250GB and each collection contained 10 schemas;

• a Schemas dataset to evaluate the time required to reformulate a query for a
varying number of schemas and to study the consequences on the dictionary
size. This dataset was composed of five collections of 100M documents with 10,
100, 1,000, 3,000 and 5,000 schemas respectively for more than 50GB of disk
space for each collection;

• a Structures dataset to evaluate the time required to execute a query for a
varying number of schemas. This dataset was composed of five collections of
10M documents with 10, 20, 50, 100 and 200 schemas respectively for more
than 5GB of disk space for each collection;

• a Loaded dataset to evaluate the dictionary construction time on an existing
collections. This dataset was composed of five collections of 200M documents
containing 2, 4, 6, 8 and 10 schemas respectively for more than 100GB of disk
space for each collection;

• an Adhoc dataset to evaluate the dictionary construction time for the loading
collections phase. This dataset was composed of five collections of 1M of docu-
ments containing 2, 4, 6, 8 and 10 schemas respectively for more than 1GB of
disk space for each collection.

• a Manipulation dataset to evaluate the dictionary update time on executing a
manipulation operation. This dataset was composed of five collections of 1k,
10k, 100k, 300k and 500k documents containing 10 schemas for a total disk
space ranging from 50MB to more than 2.5GB.



92 CONTENTS

In Table 5.1, we represent the characteristics of documents in the Heterogenous
dataset. The characteristics in terms of nesting levels and the number of grouping
objects is automatically selected for the remaining datasets, i.e., Schemas dataset,
Structures, Loaded and Adhoc datasets. Therefore, the number of grouping object per
schema is between 1 and 7, the number of nesting levels is between 1 and 8.

Setting Value
# of schemas 10
# of grouping objects per schema
(width heterogeneity) {5,6,1,3,4,2,7,2,1,3}
Nesting levels per schema
(depth heterogeneity) {4,2,6,1,5,7,2,8,3,4}
Avg. percentage of schema presence 10%
# of leaf nodes per schema 9 or 10
# of attributes per grouping objects [1..10]

Table 5.1: Settings of the Heterogeneous dataset for query reformulation evaluation.

In order to have the same results when executing queries across baseline and het-
erogeneous collections, we carried on using the same values for leaf nodes. The same
results imply: i) the same number of documents, and ii) the same values for their
attributes (leaf nodes). Therefore, the evaluation did not target result relevance, as
the same results will be retrieved by all queries: either homogeneous documents or
heterogeneous documents built from homogeneous documents.

5.2.3 Workloads

In this part, we define the different workloads that helps to evaluate the query reformu-
lation engine on varying collections of documents. We built two workloads composed
of a synthetic series of queries; i) an operator evaluation to evaluate separately the
execution time of each reformulated operator selection-projection-aggregation-unnest-
lookup, and ii) an operator combination evaluation to evaluate the execution time of
the reformulated query composed of operator combination.

The details of the five queries, 𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄5, from the operator evaluation
workload are as follows:

• for the projection query, we chose to build a query that covers the different
options offered for projection operations, e.g., a Boolean expression to com-
pare two paths, project and rename paths, and project paths into an array
and the normal projection operation. In addition, we built our query with ab-
solute paths from the baseline collection, e.g., year, title, director.first_name,
lead_actor.first_name paths for a particular entry in the array, e.g., genres.1
and leaf nodes, e.g., score. The following is the projection query that we used in
our experiments:



5.2. EXPERIMENTAL PROTOCOL 93

𝑄1 : 𝜋cond:director.first_name = lead_actor.first_name,

desc:[title, genres.1], production_year:year, score (C)

• for the selection operation we chose to build a query that covers the classical com-
parison operators, i.e., {<,>,≤,≥,=, ̸=} for numerical values, e.g., (year ≥ 2004)
as well as classical logical operators, i.e., {and:∧, or:∨} between query predicates
(e.g., ((year ≥ 2004) ∨ (genres.1 = “Drama"))) Also, we combined these tradi-
tional comparisons with a path check condition, e.g., (ranking = {“score": 6 }).
The following is the selection query that we used in our experiments:

𝑄2 : 𝜎(year ≥ 2004 ∨ genres.1 = “Drama") ∧ (ranking = {“score": 6 } ∨ link ̸= null) (𝐶)

• for the aggregation operation we decided to group movies by country and to
find the maximum score for all movies for each country. The following is the
aggregation query that we used in our experiments:

𝑄3: country𝛾maximum_score:Max(score)(C)

• we chose to apply the unnest operator to the array awards which contains all
the awards for a given film. The following is the unnest query that we used in
our experiments:

𝑄4 : 𝜇awards(C)

• for the lookup operation we decided to generate a new collection, “actors", which
is composed of four attributes (actor, birth_year, country and genre) with 3,033
entries, and we built a lookup query that enriches movie documents with details
of the lead actor in each movie. We do not inject any structural heterogeneity
to the “actors" collection. The following is the lookup query that we used in our
experiments:

𝑄5: (C)𝜆res:actors.1=actor (actors)

In the second workload operator combination evaluation we introduced three ad-
ditional queries, 𝑄6, 𝑄7, 𝑄8, in which we combined two or more operators. These
combinations enabled us to study the effects of operator combinations on the query
reformulation and its evaluation by the document query engine. We present these
additional queries below:

• we combined the unnest operator from the query “𝑄4" with the project operator
from query “𝑄1”:



94 CONTENTS

𝑄6 : 𝜋cond:director.first_name = lead_actor.first_name,

desc:[title, genres.1], production_year:year, score (𝜇awards(C))

• we combined the select operator form query “𝑄2" and the project operator from
the query “𝑄1":

𝑄7 : 𝜋cond:director.first_name = lead_actor.first_name,

desc:[title, genres.1], production_year:year, score) (𝜎(year ≥ 2004 ∨ genres.1 = Drama)

∧ (ranking = {score: 6 } ∨ (link ̸= null) (𝐶))

• we combined the select operator from query “𝑄2," the unnest operator from
query “𝑄4" and the project operator from query “𝑄1":

𝑄8 : 𝜋cond:director.first_name = lead_actor.first_name,

desc:[title, genres.1], production_year:year, score (𝜎(year ≥ 2004 ∨ genres.1 = Drama)

∧ (ranking = {“score": 6 } ∨ link ̸= null) (𝜇awards(C)))

Table 5.2 highlights the different characteristics of the selected attributes in queries
from both workloads and gives details about their depth inside documents of the
Heterogeneous dataset.

Path Attribute Type Paths Depths
p1 director.first_name String 10 {3,6,5,4,8,9,5,7,2,3}
p2 lead_actor.first_name String 10 {3,6,5,4,8,9,5,7,2,3}
p3 title String 10 {3,6,5,4,8,9,5,7,2,3}
p4 genres.1 String 10 {3,6,5,4,8,9,5,7,2,3}
p5 year Int 10 {3,6,5,4,8,9,5,7,2,3}
p6 awards Array 10 {3,6,5,4,8,9,5,7,2,3}
p7 ranking Object 10 {3,6,5,4,8,9,5,7,2,3}
p8 link String 10 {3,6,5,4,8,9,5,7,2,3}
p9 country String 10 {3,6,5,4,8,9,5,7,2,3}
p10 score Float 10 {3,6,5,4,8,9,5,7,2,3}
p11 actors.1 String 10 {3,6,5,4,8,9,5,7,2,3}

Table 5.2: Workloads query elements.

In our queries we employed 11 attributes of different types (primitive, e.g., link,
and complex genres) and different depths ranging from 2 to 9 intermediary attributes
that should be traversed to reach the attributes containing data of interest. Also, we
represented the paths in several ways, e.g., absolute paths, array entries, relative paths
and leaf node. Table 5.3 gives the number of documents to be retrieved for each query.

The query reformulation process replaces each element with its 10 corresponding
paths. For instance, the query 𝑄1,𝑒𝑥𝑡 contains 60 absolute paths for its 6 initial paths,
10 in query 𝑄4,𝑒𝑥𝑡.

In Table 5.4, we present a summary of all queries that we employ in our experiments
for both workloads.



5.2. EXPERIMENTAL PROTOCOL 95

Collection
size in GB

# of
documents 𝑄1 𝑄2 𝑄3 𝑄4 𝑄5 𝑄6 𝑄7 𝑄8

0.5GB 1M 1M 27K 66 1M 1M 1M 27K 23K
5GB 10M 10M 271K 66 10.4M 10M 10.4M 271K 2.3M
12.5GB 25M 25M 678K 66 26M 25M 26M 678.7K 5.7M
25GB 50M 50M 1.3M 66 52M 50M 52M 1M 11.5M
50GB 100M 100M 2.7M 66 104M 100M 104M 2.7M 23M
250GB 500M 500M 13.5M 66 521.6M 500M 521.6M 13.5M 11.5M

Table 5.3: The number of extracted documents per the two workloads using Hetero-
geneous dataset.

operator evaluation

𝑄1 : 𝜋cond:director.first_name = lead_actor.first_name,

desc:[title, genres.1], production_year:year, score (C)
𝑄2 : 𝜎(year ≥ 2004 ∨,genres.1 = “Drama")

∧(ranking = {“score": 6 } ∨ link ̸= null) (𝐶)
𝑄3: country𝛾maximum_score:Max(score)(C)
𝑄4 : 𝜇awards(C)
𝑄5: (C)𝜆res:actors.1=actor (actors)
𝑄6 : 𝜋cond:director.first_name = lead_actor.first_name,

desc:[title, genres.1], production_year:year, score (𝜇awards(C))

operator combination evaluation

𝑄7 : 𝜋cond:director.first_name = lead_actor.first_name,

desc:[title, genres.1], production_year:year, score)
(𝜎(year ≥ 2004 ∨ genres.1 = Drama) ∧ (ranking = {score: 6 } ∨

(link ̸= null) (𝐶))
𝑄8 : 𝜋cond:director.first_name = lead_actor.first_name,

desc:[title, genres.1], production_year:year, score
(𝜎(year ≥ 2004 ∨ genres.1 = Drama)

∧ (ranking = {“score": 6 } ∨ link ̸= null)
(𝜇awards(C)))

Table 5.4: Summary of the different queries used in the experiments

5.2.4 Execution Contexts

We describe three contexts for which we ran the queries as defined above. For the
purpose of this experiment we used the Baseline dataset to study the classical query
engine execution time for both workloads. Furthermore, we used the Heterogeneous
dataset to evaluate the execution time of reformulated queries from both workloads.
For each context we measured the average execution duration after executing each
query at least five times. The query execution order was random.

We present the details of the three evaluation contexts for each query 𝑄 from the
two workloads as follows:

• 𝑄𝐵𝑎𝑠𝑒 is the name of the query that refers to the initial user query (one of the
queries from from the two above workloads): it was executed across the Baseline
dataset. The purpose of this first context was to study the native behaviour of the



96 CONTENTS

document store. We used this first context as a baseline for our experimentation;

• 𝑄𝐸𝑥𝑡 refers to the query 𝑄 reformulated by our approach. It was executed across
the Heterogeneous dataset;

• 𝑄𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 refers to distinct queries where each query 𝑄 is formulated for a sin-
gle schema found in the collection. In our case, we needed 10 separated queries
as we were dealing with collections with ten schemas. These queries were built
manually without any additional tools and the required time is not considered.
We did not consider the time required to merge the results of each query as we
were more interested in measuring the time required to retrieve relevant docu-
ments. We executed each of the 𝑄𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 across the Heterogeneous dataset.
The result was therefore the accumulated time required to process the 10 queries
sequentially.

5.3 Schema Inference Evaluation
In this section, we focus on the dictionary construction process. EasyQ offers the
possibility of building the dictionary from the scratch for an existing collection. Fur-
thermore, we try to push the dictionary to its limit and to see if the dictionary can
handle collections with large number of structures. In these experiments, we study
the characteristics of the dictionary, e.g., size and time to construct the dictionary.

5.3.1 Dictionary Construction

In this part, we evaluate the performances of inferring structures of heterogeneous
collection of documents. For this purpose, we evaluated the time required to build the
dictionary for collections from the Loaded dataset on varying number of structures.

# of schema Required time
(minutes)

Size of the dictionary
(KB)

2 96 4,154
4 108 9,458
6 127 13,587
8 143 17,478
10 156 22,997

Table 5.5: Time to build the dictionary for collections from the Loaded dataset (100GB,
200M documents).

We can see from the results in Table 5.5 that the time taken to build the dictionary
increases when we start to deal with collections which have more heterogeneity. When
a collection has 10 structures, the time does not exceed 40% when we compare it to a



5.3. SCHEMA INFERENCE EVALUATION 97

collection with 2 structures. In Table 5.5 we can see the negligible size of the generated
dictionaries when compared to the 100GB of the collection, i.e., around 22KB.

5.3.2 Dictionary at the Scale

In this part, we try to push the dictionary construction phase to its limit. Therefore,
we ran experiments to construct dictionary of collection of varying structures, i.e.,
ranging from 10 schemas to 5,000 schemas using Schemas dataset. We notice that
our dictionary can support up to 5,000 distinct schemas, which is the limit for the
number of schemas we decided on for the purpose of this experiment. We believe that
current data-intensive application could not reach such high number of heterogeneous
schemas to manage simultaneously. The resulting size of the materialized dictionary
is very promising because it does not require significant storage space. In table 5.6 the
size of a dictionary for a collection having 5,000 schemas do not exceeds 12MB when
compared to the size of the collections around 100GB for a collection having 5,000
schemas.

# of schemas Dictionary size
10 40KB
100 74KB
1k 2MB
3k 7.2MB
5k 12MB

Table 5.6: Number of schemas effects on dictionary size using Schemas dataset.

In this section, we validated the formal definition introduced in Chapter 4 related
to the document data model and the dictionary. We demonstrate that the implemen-
tation of the Algorithm 2, introduced in Chapter 3 which generates the dictionary,
can infer schemas and construct a dictionary for a collection of varying structures at
up to 100GB of data. Furthermore, we showed that our Algorithm can infer struc-
tures from collections with up to 5,000 distinct schemas. The time to construct the
dictionary increases when the number of heterogeneous structures increases within the
studied collection. This behavior is because the Algorithm 2 considers each document
individually to infer its structure whereas state-of-the-art solution elects a subset of
documents from which they infer their structures. For instance, Apache Spark (Za-
haria et al., 2016) do not infer structures from all documents thus leading to incoherent
query results due to lack of full information regarding all structures.



98 CONTENTS

5.4 Queries Evaluation Results
In this section, we discuss the performances of executing the reformulated queries on
varying collections of heterogeneous schemas. Furthermore, we evaluate the perfor-
mances of reformulating queries using the Algorithm 10 introduced in Chapter 4 for
ensuring the automatic query reformulation.

5.4.1 Reformulated Queries Performances

0 100 200 300 400 500

0
10

00
0

25
00

0

Number of documents in Millions

Ex
ec

ut
io

n 
tim

e 
in

 S
ec

on
ds Q1 Projection Evaluation

0 100 200 300 400 500

0
50

00
15

00
0

Number of documents in Millions

Ex
ec

ut
io

n 
tim

e 
in

 S
ec

on
ds Q2 Selection Evaluation

0 100 200 300 400 500

0
40

00
80

00

Number of documents in Millions

Ex
ec

ut
io

n 
tim

e 
in

 S
ec

on
ds Q3 Aggregation Evaluation

0 100 200 300 400 500

0
20

00
0

50
00

0

Number of documents in Millions

Ex
ec

ut
io

n 
tim

e 
in

 S
ec

on
ds Q4 Unwind Evaluation

0 100 200 300 400 500

0e
+0

0
4e

+0
5

8e
+0

5

Number of documents in Millions

Ex
ec

ut
io

n 
tim

e 
in

 S
ec

on
ds Q5 Lookup Evaluation

Query type
QAccumulated QExt QBase

Q5 : QAccumulated is >> 10 times than QExt 

Unnest

Figure 5.4: operator evaluation workload using heterogeneous dataset.

Q6 Evaluation

15
00

0

Ex
ec

ut
io

n 
Ti

m
e 

in
 S

ec
on

ds

10
00

0
50

00
0

Number of documents in Millions

0 100 200 300 400 500

Q6 EvaluationQ7 Evaluation

50
00

Ex
ec

ut
io

n 
Ti

m
e 

in
 S

ec
on

ds

30
00

10
00

0

Number of documents in Millions

0 100 200 300 400 500

80
00

Ex
ec

ut
io

n 
Ti

m
e 

in
 S

ec
on

ds

40
00

20
00

0

Number of documents in Millions

0 100 200 300 400 500

60
00

Q8 Evaluation

Query type
QExt QBase

Figure 5.5: operator combination evaluation workload using heterogeneous dataset.

In this part, all queries are executed using the heterogeneous dataset composed of
five collections of 1M, 10M, 25M, 50M, 100M and 500M documents for a total disk
space ranging from 500MB to more than 250GB and each collection contained 10
schemas.

As shown in Figure 5.4, we can see that our reformulated query, 𝑄𝐸𝑥𝑡, outperforms
the accumulated query, 𝑄𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑, for all queries. The difference between the two
execution scenarios comes from the ability of our query reformulation engine to au-
tomatically include all corresponding absolute paths for the different query elements.



5.4. QUERIES EVALUATION RESULTS 99

Hence, the query is executed only once when the accumulated query requires several
passes through the collection (10 passes). This solution requires more CPU loads and
more intensive disk I/O operations. We examine now the efficiency of the reformu-
lated query when compared to the baseline query 𝑄𝐵𝑎𝑠𝑒. We can see that the overhead
of our solution is up to three times more, e.g., projection, selection and unnest when
compared to the native execution of the baseline query on the Baseline dataset. More-
over, we score an overhead that does not exceed a multiple of two in the evaluation of
the aggregation operator. We believe that this overhead is acceptable as we can by-
pass the costs needed for refactoring the underlying data structures, similarly to other
state-of-the-art research work. Unlike the baseline, our Heterogeneous dataset contains
different grouping objects with varying nesting levels. Therefore, the rewritten query
includes several navigational paths which were processed by the native query engine,
MongoDB, to find matches for each visited document among the collection. Finally,
we must emphasize that the execution time for the lookup operators is very similar
between 𝑄𝐵𝑎𝑠𝑒 and our reformulated query 𝑄𝐸𝑥𝑡.

We do not present the 𝑄𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 evaluation for the query 𝑄5 from the operator
evaluation workload and the operator combination evaluation workload due to the
complexity and the considerable number of accessed collections required to evaluate
the 𝑄𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 context. For example, to evaluate the query 𝑄8 from the second
workload, we would need to build 30 separate queries. Therefore, we would need to go
through the collection 30 times. Furthermore, it is complicated to combine the results.
Thus, this process is difficult and time-consuming, and combining partial results may
lead to corrupted results.

In Figure 5.5, we compare the time required to execute 𝑄𝐸𝑥𝑡 with the time required
to execute 𝑄𝐵𝑎𝑠𝑒 when the query is a combination of operators. It is notable that the
overhead arising from the evaluation of our reformulated query is the share the same
behaviour as the overhead arising from the execution of the single execution of each
operator, it is not exponential, (around three times the size when compared to querying
a heterogeneous collection).

This series of workload evaluations shows that the overhead for the time required
to evaluate our reformulated query is linear with the increasing number of documents.
The same behaviour for the execution of the queries over the baseline dataset occurs
when studying the effects of querying varying number of documents. Furthermore, the
overhead induced by the evaluation of our reformulated query is not affected by the
number of documents or the combination of operators.

Furthermore, we executed the query 𝑄6 from the operator combination evaluation
workload over the Structures dataset: we present the time needed to execute the
reformulated query in Table 5.7. This experiment helps us to study the effect of
executing our reformulated query on the varying number of schemas. It is notable that



100 CONTENTS

the time evolves linearly rather than exponentially as more heterogeneity is added.
This is due also to the important number of comparisons required to execute each
query. For instance, the execution of the query 𝑄6 over the collection having 200
schemas requires 200 possible paths for each attribute of the six attributes involved in
the query. In sum, the extension of the query 𝑄6 contains 1,2000 absolute paths.

# of Schemas 10 20 50 100 200
Time in (s) 200 380 690 1,140 2,560

Table 5.7: Evaluating 𝑄6 on varying number of schemas, Structures dataset.

In these experiments, we push each parameter to its limit like the number of
schemas, size of the collection, . . . to study the robustness of our system. The results
show that EasyQ scales well and offer acceptable rates.

5.4.2 Query Reformulation Time

For this experiment we only executed the query 𝑄6 from the operator combination
evaluation workload over the Schemas dataset: we present the time needed to build
the reformulated query in Table 5.8. It is notable that the time to generate the
reformulated query is less than two seconds, which is very low when to compared to
the time and efforts to build similar query manually. In this series of experiments,
we have tried to find distinct navigational paths for seven predicates. Each rewritten
query is composed of numerous absolute paths for each predicate. Table 5.8 shows
that reformulation of the query 𝑄6 initially formulated using seven paths generates
queries having 70 absolute paths for a collection of 10 schemas, 700 absolute paths
for a collection of 100 schemas, 7,000 absolute paths for a collection of 1,000 schemas,
21,000 absolute paths for a collection of 3,000 schemas and 35,000 absolute paths
for a collection of 5,000 schemas. We believe that the query rewriting engine scales
effectively when handling heterogeneous collections which contain a high number of
schemas. We succeeded in executing all the reformulated queries on MongoDB. We
noticed a limitation in terms of performance: the execution time can be 50 times
more than the execution of similar queries on the Baseline dataset. This limitation
is due to the considerable number of comparisons per document. In the worst-case
scenario, we would need to perform 35,000 comparisons per document when dealing
with a collection containing 5,000 distinct schemas.

In this section, we demonstrate the efficiency of our reformulation rules to retrieve
relevant queries and that those queries could be executed using the native mechanisms
of most underlying document stores. All queries generated using the implementation of
the Algorithm 10, introduced in Chapter 5 to automatically reformulating the queries,



5.5. DICTIONARY MAINTENANCE EVALUATION 101

# of schemas # of absolute paths Reformulation time
10 70 0.0005s
100 700 0.0025s
1k 7k 0.139s
3k 21k 0.6s
5k 35k 1.52s

Table 5.8: Number of schema effects on query rewriting (# of paths in reformulated
query and reformulation time) (query 𝑄6) over Schemas dataset.

overcome the structural heterogeneity within documents and deliver expected results.
We notice that the time required to execute the reformulated queries is relatively
higher than the normal execution of a query having unique schema. We explain this
overhead by the additional evaluations required to be performed by the query engine
to find out the adequate query parameters for each structure of documents. The
main advantage of our query reformulation is that we offer users the possibility to run
queries using partial information regarding the paths whereas most document stores
require full path to retrieve information. Furthermore, we demonstrated that we are
able with one query to retrieve data from a collection having 5k schemas. The query
reformulation takes only 1.2s which is very promising.

5.5 Dictionary Maintenance Evaluation

In this section, we study the dictionary maintenance process. The data structure
extractor module in EasyQ offers the possibility to build the dictionary for existing
dataset. Furthermore, it offers the possibility to maintain existing dictionaries to keep
them with the latest version of the data each time the collection of documents is ma-
nipulated. Hence, the query reformulation engine uses the latest structures found in
the different collections. However, if the process of data manipulation is in progress, it
may not take into consideration the recent changes. In the following, we study for each
manipulation operation, i.e., inset, delete and update, the performances of maintaining
the dictionary with information about the latest absolute paths and possible paths to
use while formulating queries. First, we start by the evaluation of the time required
to build the dictionary using Heterogeneous dataset while inserting data. Later, we
evaluate the cost of updating the dictionary while deleting documents from a collection
of documents. Finally, we evaluate the cost of updating documents. Both delete and
update operation are evaluated using Manipulation dataset. For all experiments, we
measure the time required to execute a manipulation operation without updating the
dictionary, we refer to this evaluation as the baseline since we employ native mecha-
nisms of MongoDB. Later, we measure the time required to execute the manipulation
operation while updating the dictionary. Finally, we show the overhead induced by



102 CONTENTS

our system.

5.5.1 Dictionary Update on Insert Operation

In this experiment, we evaluate the performances of the Algorithm 4, introduced in
Chapter 4, to update the dictionary during an insert manipulation operation using
the Adhoc dataset. We notice from the results in the Table 5.9 that the time elapsed
to refresh the dictionary increases when we start to deal with collections having more
heterogeneity. In case of the collection with 10 structures, the time does not exceed
40% when we compare it to a collection with 2 structures.

#of schema MongoDB EasyQ Overhead
2 201s 269s 33%
4 205s 277s 35%
6 207s 285s 37%
8 208s 300s 44%
10 210s 309s 47%

Table 5.9: Manipulation evaluation: insert operation using Manipulation dataset.

Table 5.9 shows that for 1 M of documents and for collections of up to 10 distinct
schema the overhead does not exceed 47%. We find that the overhead measure does
not exceed 0.5 the time required to load data on MongoDB. The evolution of the time
when compared to the number of number of schemas in the collection is linear and is
not exponential which is encouraging.

5.5.2 Dictionary Update on Delete Operation

In this experiment, we evaluate the performances of the Algorithm 5, introduced in
Chapter 4, for updating the dictionary during a delete manipulation operation using
the manipulation dataset. We notice from the results in the Table 5.10 that the
time elapsed to refresh the dictionary increases when we start to deal with collections
having more documents. Furthermore, we notice that the overhead added to delete
and refresh the dictionary while deleting a set of 500k documents does not exceed 1.4
seconds which is just 18% of overhead.

We notice from Table 5.10 for the delete operation that the overhead added to the
execution of the delete operation is similar to the execution of an insert operation,
e.g., does not exceed 48%.

5.5.3 Dictionary Update on Documents Update Operation

In this experiment, we evaluate the performances of the Algorithm 6 updating the
dictionary during an update manipulation operation using the manipulation dataset.



5.5. DICTIONARY MAINTENANCE EVALUATION 103

#of documents MongoDB EasyQ Overhead
1k 0.03s 0.04s 33%
10k 0.15s 0.204s 36%
100k 0.8s 1.112s 39%
300k 2.2s 3.146s 43%
500k 3s 4.44s 48%

Table 5.10: Manipulation evaluation: delete operation using Manipulation dataset.

We notice from the results in the Table 5.11 that the time elapsed to build the dic-
tionary increases when we start to deal with collections having more heterogeneity.
In case of the collection with 500k documents, the overhead of executing the update
manipulation and updating the dictionary exceeds 120%. However, this overhead that
may reach 1.2 times because we do not employ optimisation for this operator in this
thesis. Furthermore, executing an update operation requires to run a delete and an
insert manipulation operation over both the database and the dictionary. Thus, each
operation requires to build temporary dictionaries etc. We estimate that operation
of updating structures of documents are frequent as update operation to update at-
tributes values. Thus, in this thesis we do not propose any sophisticated optimisation
to accelerate this process. We address this issue in our future work.

#of Documents MongoDB EasyQ Overhead
1k 1.3s 2s 53%
10k 14s 24s 71%
100k 149s 285s 91%
300k 183s 380s 107%
500k 239s 527s 120%

Table 5.11: Manipulation evaluation: update operation using Manipulation dataset.

In this section, we validated the dictionary maintenance process by implementing
the Algorithms [4,5,6]. Results show that refreshing the dictionary requires additional
time when compared to the normal execution of each manipulation operation over
collection of documents. We studied this time and we discovered that it does not
exceed 48% for all of the insert and delete operators. However, we found that the
time required to maintain the dictionary requires up to 1.2 times the time required
to execute the update operation only. The main advantage of our approach is that
the dictionary is updated on the fly. Thus, it is not necessary to infer structures from
documents which are already stored within a collection. Therefore, all maintenance
Algorithms work to infer structures for only affected documents by these operations.
Maintaining the dictionary and refreshing it is beneficial to overcome the structural
heterogeneity within collection of heterogeneous documents. This process ensures that



104 CONTENTS

all queries are reformulated on executing time with a guarantee that the query contains
only valid absolute paths from the refreshed dictionary.

5.6 Conclusion

In this chapter, we validated the different formal definitions that we introduced for
the document data model from Chapter 3 and we validate the Algorithm 10 for au-
tomatic query reformulation from Chapter 4. We proved that our solution to capture
heterogeneity within a collection of heterogeneous documents could handle collections
of large volume of data, i.e., up to 500M documents in a collection of 250GB size. Fur-
thermore, we pushed the dictionary to its limitations in terms of maximum number
of heterogeneous schemas and results show that we could construct a dictionary for a
collection having 5,000 distinct schemas.

The validation of the dictionary construction phase and its capacity to handle large
volume of data and high number of structures within the same collection encourage
us to run a second series of experimentations to evaluate the main contribution of
this thesis introduced in Chapter 5 consisting of reformulating initial users queries
with the usage of the dictionary. In our experiments, we compared the execution
time cost of basic MongoDB queries and rewritten queries proposed by our approach.
We conducted a set of tests by changing the size of the dataset and the structural
heterogeneity inside a collection (number of grouping levels and nesting levels). Results
show that the cost of executing the rewritten queries proposed in this thesis is higher
when compared to the execution of basic user queries, but always less than a multiple of
three. Nevertheless, this time overhead seems to be acceptable when compared to the
execution and the merge of results of separated queries built manually for each schema
while heterogeneity issues are automatically managed. Furthermore, we succeeded to
reformulate and execute queries over a collection having 5k schemas. Results are
very promising since the time required to reformulate queries on such heterogeneous
collection of 5k schemas does not exceeds 1.5 second.

In order to maintain the correctness of the query and to optimise the query re-
formulation by excluding obsolete absolute paths, we introduced a set of automatic
mechanisms to refresh the dictionary each time a manipulation execution is launched.
Results shows that the overhead added in this process is acceptable in both insert and
delete manipulation operation. However, update operator requires additional tuning
and optimisation which is the subject of our future work.

All the implementation and the experiments introduced in this Chapter helped
us to validate the different contribution of this thesis. The main purpose was to
prove the feasibility and the validity of all formal definition introduced in this thesis.
Optimisation and real uses cases are under study and are a good subject for our



5.6. CONCLUSION 105

future work. Currently, we are deploying EasyQ as a mainstream solution to query
sensors data in the aim of the neOCampus 2 project at the campus of the University of
Toulouse III-Paul Sabatier. In this project we are gathering sensors data, the structure
of the data is not unique and thus we are experimenting EasyQ to enable different
collaborators to access heterogeneous sensors data through a dedicated web API.

2https://www.irit.fr/neocampus





Chapter 6

Conclusion

NoSQL document stores are often called schemaless because they may contain variable
schemas among stored data. Nowadays, this variability is becoming a common feature
of many applications, such as web applications, social media applications and the
internet of things. Nevertheless, the existence of structural heterogeneity makes it
very hard for users to formulate queries that achieve relevant and coherent results.

In this thesis we have presented EasyQ, an automatic mechanism which enables
schema-independent querying for multi-structured document stores. To the best of
our knowledge, EasyQ is the first mechanism of its kind to offer schema-independent
querying without the need to learn new querying languages and new structures, or to
perform heavy transformation on the underlying document structures.

Our contribution consists in generating and maintaining a dictionary which
matches each possible partial path, leaf node and absolute path with its corresponding
absolute paths among the different document structures inside the collection. Using
this dictionary, we can apply reformulation rules to rewrite the user query and find
relevant results in transparent ways for users. The query reformulation can be applied
to most document store operators based on formal foundations that are stated in the
thesis.

In our experiments we compared the execution time cost of basic MongoDB queries
and rewritten queries proposed by our approach. We conducted a set of tests by
changing the size of the dataset and the structural heterogeneity inside a collection
(number of grouping levels and nesting levels). Results show that the cost of executing
the rewritten queries proposed in this thesis is higher when compared to the execution
of basic user queries, but always less than a multiple of three. Nevertheless, this time
overhead is acceptable when compared to the execution of separated (manually built)
queries for each schema while heterogeneity issues are automatically managed.

Our approach is a syntactic manipulation of queries, so it is based on an important
assumption: the collection describes homogeneous entities, i.e., a field may have the
same meaning in all document schemas. In case of ambiguity, the user should specify a

107



108 CHAPTER 6. CONCLUSION

sub-path (partial path) in order to overcome this ambiguity. If this assumption is not
guaranteed, users may obtain irrelevant results. Nevertheless, this assumption may be
acceptable in many applications, such as legacy collections, web applications and IoT
data.

One novel aspect of our proposal is that we have provided a generic reformula-
tion mechanism based on a dictionary. For the scope of this thesis, the dictionary is
built and updated automatically. Nevertheless, the dictionary content may be defined
specifically for a given application in order to target specific heterogeneity. The refor-
mulation mechanism remains generic for all applications whereas dictionaries can be
tailored to specific needs.

This thesis contrasts with classical documents stores in that we offer users the
ability to query documents using partial paths and thus EasyQ manages to find all
information regardless of the document structures. Furthermore, by using specific
dictionaries we extend the native querying capabilities of document stores, even when
querying homogeneous documents.

Another original aspect is that any query will always return relevant and complete
data whatever the state of the collection. Indeed, the query is reformulated each time
it is evaluated. If new heterogeneous documents have been added to the collection,
their schemas are integrated into the dictionary and the reformulated query will cover
these new structures too.

Current extensions of this work consists of adopting the kernel of operators to other
data models. In our recent work published in (El Malki et al., 2018), we succeeded
to overcome the heterogeneity in graphs and we provided support for further class of
heterogeneity, i.e., semantic and syntactic. However, we supported only a subset of
operators and we working on extending the support to cover all operators introduced
in this thesis. Another interesting extension of the present work is the usage of the
query reformulation rules in a polystore systems. In a another recent joint work,
we published the paper (Ben Hamadou et al., 2019a), where we employed the query
reformulation rules introduced in this thesis and we showed that they were useful to
be adopted for overcoming further class of heterogeneity. In that work, heterogeneities
cover both the data model and the structures.

Future research work will cover the different aspects presented in this thesis. Initial
research will focus on testing EasyQ on more complex queries and ever larger datasets.
We also plan to employ our mechanism on real data-intensive applications. Thus, we
are experimenting EasyQ in the context of neOCampus project at the University of
Toulouse-III Paul Sabatier. For the query reformulation process we will enable support
for more document operations, e.g., join. Moreover, we will work on the interaction
between the user and our systems so that the user has the possibility of selecting
certain absolute paths or removing unnecessary absolute paths, e.g., because a multi-



109

entity has collapsed in the reformulated query, which will assist our mechanism while
reformulating the initial user query. A long-term aim will be to cover most classes of
heterogeneity, e.g., syntactic and semantic classes, and thus provide different dictionary
building processes.





Bibliography

D. J. Abadi, P. A. Boncz, and S. Harizopoulos. Column-oriented database systems.
Proceedings of the VLDB Endowment, 2(2):1664–1665, 2009.

S. Amer-Yahia, F. Du, and J. Freire. A comprehensive solution to the xml-to-relational
mapping problem. In Proceedings of the 6th annual ACM international workshop on
Web information and data management, pages 31–38. ACM, 2004.

J. C. Anderson, J. Lehnardt, and N. Slater. CouchDB: The Definitive Guide: Time
to Relax. " O’Reilly Media, Inc.", 2010.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, and Liu. Spark sql: Relational data
processing in spark. In Proceedings of the 2015 ACM SIGMOD, pages 1383–1394.
ACM, 2015.

M.-A. Baazizi, H. B. Lahmar, D. Colazzo, G. Ghelli, and C. Sartiani. Schema inference
for massive json datasets. In (EDBT), pages 222–233, 2017.

K. Banker. MongoDB in action. Manning Publications Co., 2011.

H. Ben Hamadou, F. Ghozzi, A. Péninou, and O. Teste. Towards schema-independent
querying on document data stores. In Proceedings of the 20th International Work-
shop on Design, Optimization, Languages and Analytical Processing of Big Data
(DOLAP), Vienna, Austria, March 26-29, 2018., 2018a.

H. Ben Hamadou, F. Ghozzi, A. Péninou, and O. Teste. Querying heterogeneous
document stores. In Proceedings of the 20th International Conference on Enterprise
Information Systems, ICEIS 2018, Funchal, Madeira, Portugal, March 21-24, 2018,
Volume 1., pages 58–68, 2018b.

H. Ben Hamadou, F. Ghozzi, A. Péninou, and O. Teste. Interrogation de données
structurellement hétérogènes dans les bases de données orientées documents (regu-
lar paper). In Journées Francophones Extraction et Gestion de Connaissances (EGC
2018), Paris, 22/01/2018-26/01/2018, volume vol.RNTI-E-34, pages 155–166. Re-
vue des Nouvelles Technologies de l’Information (RNTI), janvier 2018c.

H. Ben Hamadou, E. Gallinucci, and M. Golfarelli. Answering GPSJ Queries
in a Polystore: a Dataspace-Based Approach (regular paper). In Interna-
tional Conference on Conceptual Modeling (ER 2019), salvador,Brazil, 04/11/2019,
https://link.springer.com, novembre 2019a. Springer.

H. Ben Hamadou, F. Ghozzi, A. Péninou, and O. Teste. Schema-independent querying
for heterogeneous collections in nosql document stores. Information Systems, 85:48–
67, 2019b. URL https://doi.org/10.1016/j.is.2019.04.005.

111



112 BIBLIOGRAPHY

H. Ben Hamadou, F. Ghozzi, A. Péninou, and O. Teste. Schema-Independent Querying
and Manipulation for Heterogeneous Collections in NoSQL Document Stores. In
Enterprise Information Systems, volume 363 of LNBIP, chapter 16, pages 1–26.
Springer Nature, 2019c.

E. Bertino, G. Guerrini, and M. Mesiti. A matching algorithm for measuring the
structural similarity between an xml document and a dtd and its applications. In-
formation Systems, 29(1):23–46, 2004.

P. Bille. A survey on tree edit distance and related problems. Theoretical computer
science, 337(1-3):217–239, 2005.

S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu. Xquery 1.0: An xml query language. 2002.

T. Böhme and E. Rahm. Supporting efficient streaming and insertion of xml data in
rdbms. In DIWeb, pages 70–81, 2004.

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao. Expressivity and complexity of
mongodb queries. In 21st International Conference on Database Theory, ICDT 2018,
March 26-29, 2018, Vienna, Austria, pages 9:1–9:23, 2018.

P. Bourhis, J. L. Reutter, F. Suárez, and D. Vrgoč. Json: data model, query languages
and schema specification. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 123–135. ACM, 2017.

J. L. Carlson. Redis in action. Manning Publications Co., 2013.

R. Cattell. Scalable sql and nosql data stores. Acm Sigmod Record, 39(4):12–27, 2011.

Š. Čebirić, F. Goasdoué, and I. Manolescu. Query-oriented summarization of rdf
graphs. Proceedings of the VLDB Endowment, 8(12):2012–2015, 2015.

C. Chasseur, Y. Li, and J. M. Patel. Enabling json document stores in relational
systems. In WebDB, volume 13, pages 14–15, 2013.

M. Chavalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier. Document-oriented
data warehouses: Models and extended cuboids, extended cuboids in oriented doc-
ument. In 2016 IEEE Tenth International Conference on Research Challenges in
Information Science (RCIS), pages 1–11. IEEE, 2016.

C. P. Chen and C.-Y. Zhang. Data-intensive applications, challenges, techniques and
technologies: A survey on big data. Information sciences, 275:314–347, 2014.

M. Chevalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier. Implementation
of multidimensional databases in column-oriented nosql systems. In East Euro-
pean Conference on Advances in Databases and Information Systems, pages 79–91.
Springer, 2015.

K. Chodorow. MongoDB: The Definitive Guide: Powerful and Scalable Data Storage.
" O’Reilly Media, Inc.", 2013.

J. Clark, S. DeRose, et al. Xml path language (xpath) version 1.0, 1999.

W. W. W. Consortium et al. Extensible markup language (xml) 1.1. 2006.



BIBLIOGRAPHY 113

A. Corbellini, C. Mateos, A. Zunino, D. Godoy, and S. Schiaffino. Persisting big-data:
The nosql landscape. Information Systems, 63:1–23, 2017.

M. DiScala and D. J. Abadi. Automatic generation of normalized relational schemas
from nested key-value data. In Proceedings of the 2016 International Conference on
Management of Data, pages 295–310. ACM, 2016.

H.-H. Do and E. Rahm. Coma system for flexible combination of schema matching
approaches. In VLDB’02: Proceedings of the 28th International Conference on Very
Large Databases, pages 610–621. Elsevier, 2002.

M. El Malki. Modélisation NoSQL des entrepôts de données multidimensionnelles
massives. Thèse de doctorat, Université de Toulouse-le-Mirail, Toulouse, France,
décembre 2016.

M. El Malki, H. Ben Hamadou, M. Chevalier, A. Péninou, and O. Teste. Querying het-
erogeneous data in graph-oriented NoSQL systems (short paper). In C. Ordonez and
L. Bellatreche, editors, International Conference on Data Warehousing and Knowl-
edge Discovery (DaWaK 2018), Regensburg, Germany, 03/09/2018-06/09/2018,
September 2018. ISBN 978-3-319-98539-8.

A. Floratou, N. Teletia, D. J. DeWitt, J. M. Patel, and D. Zhang. Can the elephants
handle the nosql onslaught? Proceedings of the VLDB Endowment, 5(12):1712–1723,
2012.

D. Florescu and G. Fourny. Jsoniq: The history of a query language. IEEE internet
computing, 17(5):86–90, 2013.

D. Florescu and D. Kossmann. Storing and querying xml data using an rdmbs. IEEE
data engineering bulletin, 22:3, 1999.

N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plan-
tikow, M. Rydberg, P. Selmer, and A. Taylor. Cypher: An evolving query language
for property graphs. In Proceedings of the 2018 International Conference on Man-
agement of Data, pages 1433–1445. ACM, 2018.

D. D. Freydenberger and T. Kötzing. Fast learning of restricted regular expressions
and dtds. Theory of Computing Systems, 57(4):1114–1158, 2015.

E. Gallinucci, M. Golfarelli, and S. Rizzi. Schema profiling of document-oriented
databases. Information Systems, 75:13–25, 2018.

P. Gómez, R. Casallas, and C. Roncancio. Data schema does matter, even in nosql
systems! In 2016 IEEE Tenth International Conference on Research Challenges in
Information Science (RCIS), pages 1–6. IEEE, 2016.

R. Hai, S. Geisler, and C. Quix. Constance: An intelligent data lake system. In
Proceedings of the 2016 International Conference on Management of Data, pages
2097–2100. ACM, 2016.

P. A. Hall and G. R. Dowling. Approximate string matching. ACM computing surveys
(CSUR), 12(4):381–402, 1980.



114 BIBLIOGRAPHY

M. Hausenblas and J. Nadeau. Apache drill: interactive ad-hoc analysis at scale. Big
Data, 1(2):100–104, 2013.

R. Hecht and S. Jablonski. Nosql evaluation: A use case oriented survey. In Cloud
and Service Computing (CSC), 2011 International Conference on, pages 336–341.
IEEE, 2011.

J. Hidders, J. Paredaens, and J. Van den Bussche. J-logic: Logical foundations for json
querying. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, pages 137–149. ACM, 2017.

S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, and M. Kersten. Monetdb:
Two decades of research in column-oriented database. 2012.

A. A. Imam, S. Basri, R. Ahmad, J. Watada, and M. T. González-Aparicio. Automatic
schema suggestion model for nosql document-stores databases. Journal of Big Data,
5(1):46, 2018.

C. G. C. Index. Forecast and methodology, 2014–2019, 2015. Forrás:
www. cisco. com/c/en/us/solutions/collateral/service-provider/global-cloud-index-
gci/Cloud_Index_White_Paper. pdf (2015. 10. 01.).

J. Kang and J. F. Naughton. On schema matching with opaque column names and
data values. In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pages 205–216. ACM, 2003.

K. Kaur and R. Rani. Modeling and querying data in nosql databases. In 2013 IEEE
International Conference on Big Data, pages 1–7. IEEE, 2013.

H. F. Korth and M. A. Roth. Query languages for nested relational databases. In
Workshop on Theory and Applications of Nested Relations and Complex Objects,
pages 190–204. Springer, 1987.

A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 233–246. ACM, 2002.

X. Li, S. Szpakowicz, and S. Matwin. A wordnet-based algorithm for word sense
disambiguation. In IJCAI, volume 95, pages 1368–1374, 1995.

L. Lim, H. Wang, and M. Wang. Semantic queries in databases: problems and chal-
lenges. In Proceedings of the 18th ACM conference on Information and knowledge
management, pages 1505–1508. ACM, 2009.

C. Lin, J. Wang, and C. Rong. Towards heterogeneous keyword search. In Proceedings
of the ACM Turing 50th Celebration Conference-China, page 46. ACM, 2017.

L. Lin, V. Lychagina, W. Liu, Y. Kwon, S. Mittal, and M. Wong. Tenzing a sql
implementation on the mapreduce framework. 2011.

J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid.
In vldb, volume 1, pages 49–58, 2001.



BIBLIOGRAPHY 115

J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy. Corpus-based schema match-
ing. In 21st International Conference on Data Engineering (ICDE’05), pages 57–68.
IEEE, 2005.

A. McAfee, E. Brynjolfsson, T. H. Davenport, D. Patil, and D. Barton. Big data: the
management revolution. Harvard business review, 90(10):60–68, 2012.

S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vas-
silakis. Dremel: interactive analysis of web-scale datasets. Proceedings of the VLDB
Endowment, 3(1-2):330–339, 2010.

B. Momjian. PostgreSQL: introduction and concepts, volume 192. Addison-Wesley
New York, 2001.

J. Murty. Programming amazon web services: S3, EC2, SQS, FPS, and SimpleDB. "
O’Reilly Media, Inc.", 2008.

A. Nayak, A. Poriya, and D. Poojary. Type of nosql databases and its comparison
with relational databases. International Journal of Applied Information Systems, 5
(4):16–19, 2013.

N. H. O’Donnell. Storied lives on instagram: Factors associated with the need for
personal-visual identity. Visual Communication Quarterly, 25(3):131–142, 2018.

K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The sql++ query language: Con-
figurable, unifying and semi-structured. arXiv preprint arXiv:1405.3631, 2014.

Y. Papakonstantinou and V. Vassalos. Query rewriting for semistructured data. In
ACM SIGMOD Record, volume 28, pages 455–466. ACM, 1999.

F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč. Foundations of json
schema. In Proceedings of the 25th International Conference on World Wide Web,
pages 263–273. International World Wide Web Conferences Steering Committee,
2016.

J. Pokorny. Nosql databases: a step to database scalability in web environment.
International Journal of Web Information Systems, 9(1):69–82, 2013.

E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.
the VLDB Journal, 10(4):334–350, 2001.

D. S. Ruiz, S. F. Morales, and J. G. Molina. Inferring versioned schemas from nosql
databases and its applications. In International Conference on Conceptual Modeling,
pages 467–480. Springer, 2015.

R. W. Schvaneveldt. Pathfinder associative networks: Studies in knowledge organiza-
tion. Ablex Publishing, 1990.

A. P. Sheth and J. A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys (CSUR), 22
(3):183–236, 1990.

P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal
on data semantics IV, pages 146–171, 2005.



116 BIBLIOGRAPHY

M. Stonebraker. New opportunities for new sql. Communications of the ACM, 5(11):
10–11, 2012.

M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, et al. C-store: a column-oriented dbms. In Proceedings
of the 31st international conference on Very large data bases, pages 553–564. VLDB
Endowment, 2005.

D. Tahara, T. Diamond, and D. J. Abadi. Sinew: a sql system for multi-structured
data. In Proceedings of the 2014 ACM SIGMOD, pages 815–826. ACM, 2014.

V. Ventrone. Semantic heterogeneity as a result of domain evolution. ACM SIGMOD
Record, 20(4):16–20, 1991.

E. M. Voorhees. Using wordnet to disambiguate word senses for text retrieval. In
Proceedings of the 16th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 171–180. ACM, 1993.

A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, and J. Partner. Neo4j in action, vol-
ume 22. Manning Shelter Island, 2015.

J. Wang, J.-R. Wen, F. Lochovsky, and W.-Y. Ma. Instance-based schema matching
for web databases by domain-specific query probing. In Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30, pages 408–419. VLDB
Endowment, 2004.

L. Wang, S. Zhang, J. Shi, L. Jiao, and Hassanzadeh. Schema management for docu-
ment stores. Proceedings of the VLDB Endowment, 8(9):922–933, 2015.

D. B. West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle
River, NJ, 1996.

A. Wolski. Linda: A system for loosely integrated databases. In [1989] Proceedings.
Fifth International Conference on Data Engineering, pages 66–73. IEEE, 1989.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, et al. Apache spark: a unified engine for big data
processing. Communications of the ACM, 59(11):56–65, 2016.

P. Zikopoulos, C. Eaton, et al. Understanding big data: Analytics for enterprise class
hadoop and streaming data. McGraw-Hill Osborne Media, 2011.


	Resumé
	Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Research Context
	1.1.1 Running Example
	1.1.2 Heterogeneity Classes
	1.1.3 The Problem of Structural Heterogeneity

	1.2 Research Problems
	1.3 Thesis Contributions
	1.4 Research Overview
	1.5 Manuscript Outline

	Chapter 2 Related Literature
	2.1 Introduction
	2.2 Background
	2.2.1 Big Data
	2.2.2 NoSQL Stores

	2.3 Schema Integration
	2.4 Physical Re-factorisation
	2.5 Schema Inference
	2.6 Querying Techniques
	2.7 Summary

	Chapter 3 Document Data Model Concepts
	3.1 Document and Collection Data Model
	3.1.1 Collection
	3.1.2 Document

	3.2 Document and Collection Schemas
	3.2.1 Paths
	3.2.2 Document Schema
	3.2.3 Collection Schema

	3.3 Dictionary
	3.3.1 Document Paths
	3.3.2 Collection Paths
	3.3.3 Dictionary

	3.4 Dictionary Maintenance
	3.4.1 Insert Operation
	3.4.2 Delete Operation
	3.4.3 Update Operation

	3.5 Conclusion

	Chapter 4 Schema-independent Querying
	4.1 Minimum Closed Kernel of Operators
	4.2 Selection Operation
	4.2.1 Classical Selection Evaluation
	4.2.2 Selection Reformulation Rules

	4.3 Projection
	4.3.1 Classical Projection Evaluation
	4.3.2 Projection Reformulation Rules

	4.4 Aggregation
	4.4.1 Classical Aggregation Evaluation
	4.4.2 Aggregation Reformulation Rules

	4.5 Unnest
	4.5.1 Classical Unnest Evaluation
	4.5.2 Unnest Reformulation Rules

	4.6 Lookup
	4.6.1 Classical Lookup Evaluation
	4.6.2 Lookup Reformulation Rules

	4.7 Algorithm for Automatic Query Reformulation
	4.8 Conclusion

	Chapter 5 Evaluation
	5.1 Implementing EasyQ
	5.1.1 Architecture Overview

	5.2 Experimental Protocol
	5.2.1 Experimental Environment
	5.2.2 Datasets
	5.2.3 Workloads
	5.2.4 Execution Contexts

	5.3 Schema Inference Evaluation
	5.3.1 Dictionary Construction
	5.3.2 Dictionary at the Scale

	5.4 Queries Evaluation Results
	5.4.1 Reformulated Queries Performances
	5.4.2 Query Reformulation Time

	5.5 Dictionary Maintenance Evaluation
	5.5.1 Dictionary Update on Insert Operation
	5.5.2 Dictionary Update on Delete Operation
	5.5.3 Dictionary Update on Documents Update Operation

	5.6 Conclusion

	Chapter 6 Conclusion
	Bibliography

