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R

L'objectif de cette thèse est de proposer des méthodes variationnelles pour l'analyse mathématiques et numérique d'une classe d'équations d'HJ. Le caractère métrique de ces équations permet de caractériser l'ensemble des sous-solutions, à savoir, elles sont 1-Lipschitz par rapport à la distance Finslerienne associée au Hamiltonien. De manière équivalente, cela revient à dire que le gradient de ces fonctions appartient à une certaine boule Finslerienne. La solution recherchée est la sous-solution maximale, qui peut être décrite par une formule du type Hopf-Lax, qui résout un problème de maximisation avec contrainte sur le gradient. Nous dérivons un problème dual associé faisant intervenir la variation totale Finslerienne de mesures vectorielles avec contrainte divergente. Nous exploitons la structure de point-selle pour proposer une résolution numérique avec la méthode du Lagrangien augmenté. Cette caractérisation de l'équation d'HJ montre aussi le lien avec des problèmes de transport optimal vers/depuis le bord. Ce lien avec le transport optimal de masse nous amène à généraliser l'approche d'Evans-Gangbo. En e et, nous montrons que la sous-solution maximale de l'équation d'HJ s'obtient en faisant tendre p → ∞ dans une classe de p-Laplaciens de type Finsler avec des obstacles sur le bord. Cela nous permet aussi de construire le ux optimal pour le problème de Beckmann associé. Parmi les applications que l'on regarde, le problème du Shape from Shading qui consiste à reconstruire la surface d'un objet en D à partir d'une image en nuances de gris de cet objet. Mots clés: Équations d'Hamilton-Jacobi, transport optimal, dualité de Fenchel-Rockafellar, Lagrangien augmenté, Shape from Shading.

A

In this thesis we propose some variational methods for the mathematical and numerical analysis of a class of HJ equations. Thanks to the metric character of these equations, the set of subsolution corresponds to the set of 1-Lipschitz functions with respect to the Finsler metric associated to the Hamiltonian. Equivalently, it corresponds to the set of functions whose gradient belongs to a Finsler ball. The solution we are looking for is the maximal one, which can be described via a Hopf-Lax formula, solves a maximization problem under gradient constraint. We derive the associated dual problem which involves the Finsler total variation of vector measures under a divergence constraint. We take advantage of this saddle-point structure to use the augmented Lagrangian method for the numerical approximation of HJ equation. This characterization of the HJ equation allows making the link with some optimal transport problems. This link with optimal transport leads us to generalize the Evans-Gangbo approach. In fact, we show that the maximal viscosity subsolution of the HJ equation can be recovered by taking p → ∞ in a class of Finsler p-Laplace problems with boundary obstacles. In addition, this allows us to construct the optimal ow for the associated Beckmann problem. As an application, we use our variational approach for the Shape from Shading problem. Keywords: Hamilton-Jacobi equations, optimal transport, Fenchel-Rockafellar duality, augmented Lagrangian, Shape from Shading. i G This thesis is devoted to the mathematical and numerical analysis of a class of Hamilton-Jacobi (HJ) equations with some applications. We will be mainly concerned with equations of rst order of the form H(x, ∇u) = 0 in Ω, ( . ) where Ω ⊂ R N is an open bounded set and H : Ω × R N → R is a continuous function, called the Hamiltonian, satisfying some suitable assumptions that will be recalled later.

These equations have attracted the attention of mathematicians and physicists as they appear in many elds such as classical mechanics, geometry (especially symplectic geometry) with the study of Hamiltonian systems and in optics, more particularly, with Fermat and Huygens's principles (see e.g. [ , , , ]). They also arise in the study of Helmhlolz and Schrödinger equations in the framework of WKB method (see e.g.[ ]). In addition to this, they have plenty of applications in computer vision and computational geometry, amongst them the Shape from Shading problem which will be the content of Chapter , and geodesic extraction which will be discussed in Section . (see the book of J.Sethian [ ] for further examples). Another area of application of HJ equations is optimal control where the dynamical programming principle allows the characterization of the value function as a solution of a subfamily of HJ equations, usually called Hamilton-Jacobi-Bellman (HJB) equations (see e.g.[ , , ]). Lately, they are in the core of the newborn theory of mean eld games (see e.g.[ , , ]).

As we will see in the next chapter, the notion of classical solutions, i.e., smooth functions satisfying the equation pointwise, is not a suitable as a notion of solutions, and viscosity theory, introduced by C.Crandall and P.L.Lions in the 1980s (see [ , , , ]) provides an adequate framework to study these equations. The omnipresence of HJ equations led to a various methods and techniques to approximate the solutions, we will present some of them in Chapter .

Named after Wentzel, Kramer and Brillouin O This thesis is organised as follows. In Chapter , we recall the main notions and tools from the theoretical background on HJ equations, to the duality results and primal-dual algorithms we propose to solve them. In particular, Section . contains some reminders on viscosity theory, the metric character as well as a brief survey on some existing numerical methods to deal with HJ equations. Section . concerns some reminders from optimal transport theory which are needed essentially in Chapters , . We recall in Section . the notion of tangential measure and tangential gradient which plays a major role in optimization on measure spaces. Finally, we recall in Section . duality results in convex optimization as well as primal-dual algorithms.

Chapter contains our main result proposing a variational formulation for the HJ equation. The starting point is that every Hamiltonian H induces a geodesic distance (actually a quasi-distance) of Finsler type d σ , where d σ (x, y) = inf ξ∈Γ(x,y) 1 0 σ(ξ(t), ξ(t))dt, Γ(x, y) being the set of Lipschitz curves joining two points x, y ∈ Ω, and σ being the support function of the zero sublevels of H (see ( . )). This quasi-distance appears to characterize all the subsolutions of the HJ equation, and more generally, it intervene in representing any viscosity solution via Hopf-Lax type formulas. Indeed, every viscosity subsolution u of ( . ) turns to be 1-Lipschitz with respect to d σ , i.e., satis es u(x) -u(y) ≤ d σ (y, x) for any x, y ∈ Ω. We prove that this property is equivalent to saying that the gradient of u belongs to some convex ball. More precisely, we show that ∇u ∈ B σ * a.e, where B σ * is the unit ball of the dual function σ * . Coupling ( . ) with a Dirichlet boundary condition u = g on ∂Ω, for some "compatible" continuous function g : ∂Ω → R, we prove that he maximal viscosity subsolution given by u(x) = min y∈D d σ (y, x) + g(y), is the unique solution of the problem max Ω z(x)dx, σ * (x, ∇z(x)) ≤ 1 and z = g on ∂Ω .

( . )

To prove duality, we consider a general version of ( . ) by maximizing Ω zdρ for some positive Radon measure ρ instead of Ω zdx and we write the problem as an optimization problem involving the sum of two operators (see Section . ). We derive a dual problem involving some vector measures under a divergence constraint, with a particular atten-tion to introduce a trace-like operator for these vector elds to handle rigorously their contribution on the boundary. More precisely, we prove the following The proof will be done via an appropriate perturbation technique. This will enable us to solve (M D ) and (OF D ) simultaneously by looking for saddle points of a suitable augmented Lagrangian functional L r :

inf (u,q)∈W 1,∞ (Ω D )×L ∞ (Ω D ) N sup φ∈DM p (Ω D )
L r (u, q; φ).

Keeping in mind that the solution of ( . ) can be recovered by taking ρ ≡ 1, we take advantage of this saddle-point structure to use the augmented Lagrangian method to approximate the solution of (M D ) (an thus the solution of HJ equation) by considering a nite-dimensional optimization problem of the form

inf u∈X h F(u) + G(Λu) ( . )
for some appropriate functionals F, G. We apply the ALG algorith to solve ( . ) and we provide several numerical examples.

In Chapter we propose a formulation of the so-called Shape from Shading problem within the framework of Chapter . SfS is a classical problem in computer vision consisting in the reconstruction of the D shape of an object, given a greylevel image of its brightness map. It has been extensively studied, even before the birth of viscosity theory. The PDE formulation of this problem gives rise to a HJ equation. Complementing this equation with a compatible boundary data g, we can recover the maximal viscosity subsolution via ( . ). By assuming that g ∈ H 1/2 (∂Ω), we derive a slightly di erent dual problem from the one presented in Chapter . More precisely, we prove the following Theorem . . The extremal values (M) : max u∈W 1,∞ (Ω) Ω u(x)dx, σ * (x, ∇u(x)) ≤ 1 and u = g on ∂Ω , and (OF) : inf

φ∈L 2 (Ω) N Ω σ(x, φ)dx -g, φ • n H 1/2 ,H -1/2 : -div(φ) = 1 in D (Ω) , coincide.
As we will see, our variational approach allows handling the degeneracy of the Hamiltonian, which in this case corresponds to points with maximal brightness. More particularly, no regularisation is needed to avoid these points. In contrast with Chapter , we opt for Chambolle-Pock's primal-dual algorithm to approximate the solution since it is suitable when working on images and doesn't require solving some linear PDE. More precisely, we write the discrete version of (M) in an inf-sup form

(M) d : inf u∈X sup φ∈Y F h (u) + φ, ∇ h u -G h (φ),
where F h , G h are discrete functions to be precised later, and ∇ h is the discrete gradient operator de ned via nite di erences. In addition, we prove the following result convergence of our discretization Proposition . . Assume that the Finsler metric σ associated with the Hamiltionian H is non-degenerate (i.e. H(x, 0) < 0, ∀x ∈ Ω) and that g = 0. Let u h ∈ X and φ h = (φ 1 h , φ 2 h ) ∈ Y be a pair of primal-dual solutions to the discrete optimization problem (M) d and its dual problem. Then ũh ⇒ u and φh φ as the step size h → 0. Moreover, u and φ are optimal solutions to (M) and its dual problem, respectively.

At the end we show several shapes and tests. Chapter investigates the connection between HJ equation and the Beckmann problem. As one can see, our formulation ( . ) is close to the so-called Kantorovich-Rubinstein problem (see Section . ). The main di erence is the presence of the boundary constraint u = g on ∂Ω and the lack of a target measure since µ 1 = L N Ω and µ 2 = 0. In fact, we show that the HJ equation is connected to the following problem Observing that

min φ∈M b (Ω) N Ω σ(x, φ |φ| (x))d|φ| : -div(φ) = ρ -ν in D (R N ) = W dσ (ρ -+ν + , ρ + +ν -),
where W dσ (ρ -+ ν + , ρ + + ν -) is Monge-Kantorovich work between ν and ρ, we get by Kantorovich-Rubinstein dualiy (see Section . ) that

W dσ (ρ -+ ν + , ρ + + ν -) = max u Ω ud(ρ -ν) : u is 1 -Lipschitz w.r.t d σ .
At the end, by minimizing over all ν ∈ M(D), we obtain of the following general version of ( . ) W dσ (ρ -+ν + , ρ + +ν -)+ D gdν : π 1 γ = ρ -+ν + , π 2 γ = ρ + +ν -.

(M N ) : min ν∈M b (D)
Using optimal transport techniques, we prove the following Theorem . . Under the assumptions (H -H ) (see Section . . ), we have max(M D ) = min(BK) = min(M N ) = min(MK).

Finally, we provide some numerical examples showing the potential u and the ow Φ. In particular, we see that the set of degeneracy of d σ , called the Aubry set (see Section . ), plays a role of free-transport region for the optimal transport problems associated to HJ equation.

In chapter we examine a PDE approach à la Evans Gangbo [ ] for the following HJ equation with obstacles on the boundary H(x, ∇u) = 0 in Ω, and φ ≤ u ≤ ψ on ∂Ω, ( . ) where φ, ψ ∈ C(∂Ω) satisfying some compatibility condition that will be recalled later. Again, seeking to recover the maximal viscosity subsolution of ( . ), we will consider the following problem max Ω udx : σ * (x, ∇u) ≤ 1 a.e., φ ≤ u ≤ ψ on ∂Ω , where σ * is the dual of the support function of the 0-sublevels of H. To do further analysis, we consider for a Finsler metric H on Ω (not to be confused with the Hamiltonian) and ρ ∈ L 2 (Ω)

(KR) H : max Moreover, duality arguments show that the associated Beckamann's problem reads

(B) H : min Φ∈M N (Ω) ν∈M(∂Ω) Ω H(x, Φ |Φ| )d|Φ|+ ∂Ω ψdν -- ∂Ω φdν + : -div(Φ) = ρ+ν in D (R N ) .
The strategy consists in considering a family of Finsler p-Laplace problems with obstacles on the boundary whose solutions will be obtained by minimizing the functional:

F p (u) := Ω H * (x, ∇u) p p dx - Ω uρdx,
over W φ,ψ = {u ∈ W 1,p (Ω) : φ ≤ u ≤ ψ on ∂Ω}.

We derive suitable estimates to pass to the limit as p → ∞, and thus recover the Kantorovich potential. More precisely, we prove the following Proposition . . Let u p be a minimizer of F p . Then, up to a subsequence, u p ⇒ u on Ω. Moreover, u solves (KR) H .

Next, we de ne for p > N

Θ p = H * (x, ∇u p ) p-1 ∂ ξ H * (x, ∇u p ).
We show that the measures Θ p and Θ p • n are equibounded in Ω and ∂Ω respectively, and thus converge to some measures Θ ∈ M(Ω) N and θ ∈ M(∂Ω), and we prove that the couple (Θ, θ) solves (B) H . At the end, we relate the Kantorovich potential u to (K) H . More precisely, we prove the following Proposition . . Let u be the potential constructed in Proposition . . Then u is a Kantorovich potentional for the classical optimal transport problem between ρ + Ω + θ + and ρ -Ω + θ -. Moreover

Ω uρdx = min(K) H .
Finally, in Chapter we present results from some works in progress as well as some perspectives and future works.
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• Augmented Lagrangian method for degenerate Hamilton-Jacobi equations, H.Ennaji, N.Igbida and V.T.Nguyen. (submitted).

• Continuous Lambertian Shape From Shading: A primal-dual algorithm, H.Ennaji, N.Igbida and V.T.Nguyen. (submitted).

• Beckmann-type problem for degenerate Hamilton-Jacobi equations. H.Ennaji, N.Igbida and V.T.Nguyen. (submitted).

• Quasi-convex Hamilton-Jacobi equations via limits of Finsler p-Laplace problems as p → ∞, H.Ennaji, N.Igbida and V.T.Nguyen. (submitted).
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In this chapter we recall some notions and tools from PDE theory, optimal transport, optimization and numerical analysis. We start by an overview on HJ equations and their metric character which will play a major role in this thesis. Then, we provide some preliminaries on optimal transport theory. More particularly, the dual formulations of the so-called Monge-Kantorovich problem are recalled. Finally, we recall Fenchel-Rockafellar duality result and we present the two main algorithms that will be used in this manuscript: ALG algorithm and the so-called Chambolle-Pock's primal dual algorithm.

A HJ O

Given an open bounded domain Ω ⊂ R N and consider the following Laplace equation

-∆u := -trace(D 2 u) = 0 in Ω. ( . )
A priori, one would say that a function u : Ω → R is a solution of ( . ) if ∇u, D 2 u exist for all x ∈ Ω and that ( . ) is satis ed for every x ∈ Ω. This is known as the notion of classical solution. Due to di erentiablity requirement, it is not easy to look for classical solutions, and in practice, one de nes a notion of weak solution and then checks for di erentiablity. Very often, the weak solutions are de ned thanks to integration by parts. Notice that ( . ) is in divergence form as we may write ∆u = div(∇u). So that a weak solution can be easily de ned via integrals. Now considering an equation of the form

H(x, ∇u) = 0 in Ω, ( . ) 
where

H : Ω × R N → R is a continuous convex function.
One can easily see that integration by parts is not possible by considering the example

|∇u| = 1 in Ω, ( . 
)
which is highly nonlinear in contrast to ( . ). Moreover, under the Dirichlet condition u = 0 on ∂Ω, one can prove that no C 1 solutions exists to ( . ) (see gure . ).

x y

Figure . : Several solutions of ( . ) on Ω = (-1, 1).

To introduce an appropriate notion of weak solutions one uses the vanishing viscosity method as follows. For > 0, consider the variant of ( . ):

-∆u + H(x, ∇u ) = 0 in Ω.
( . )

Then we can prove the existence of a solution u of ( . ), and thanks to the maximum principle (see e.g.[ ]), we get uniqueness. Moreover, standard Bernstein techniques (see e.g.[ , , ]) allow deriving some appropriate estimates to prove the boundedness and equicontinuity of {u } . Using Ascoli-Arzelà Theorem, we deduce that the sequence {u } has a uniform limit u, which is a candidate solution of ( . ). In fact, we can prove the following

Proposition . ([ , ]

).

• Let u ∈ C(Ω) ∩ C 1 (Ω) be a classical subsolution of ( . ). If u converges to u ∈ C(Ω) uniformly on compact subsets of Ω, then

H(x, ∇w(x)) ≤ 0, for any w ∈ C 1 (Ω) such that u -w reaches a maximum at x ∈ Ω. • Let u ∈ C(Ω) ∩ C 1 (Ω) be a classical supersolution of ( . ). If u converges to u ∈ C(Ω) uniformly on compact subsets of Ω, then H(x, ∇w(x)) ≥ 0, for any w ∈ C 1 (Ω) such that u -w reaches a minimum at x ∈ Ω.
This motivates the following de nitions:

De nition . . Given two continuous functions u and w, one says that w is a strict supertangent (respectively subtangent) to u at some point x ∈ Ω if x is a strict local maximizer (respectively minimizer) of u -w.

De nition . . Let u : Ω → R be a continuous function.

• We say that u is a viscosity subsolution of ( . ) if H(x, ∇w(x)) ≤ 0 for any x ∈ Ω and any C 1 supertangent function w to u at x.

• We say that u is a viscosity supersolution of ( . ) if H(x, ∇ψ(x)) ≥ 0 for any x ∈ Ω and any C 1 subtangent function ψ to u at x.

• Finally, u is a viscosity solution of ( . ) if it is both a subsolution and a supersolution.

In sequel, we denote by S - H (Ω) the family of subsolutions of ( . ). One pertinent property of this family is its stability with respect to uniform convergence, which is not the case for a.e. solutions as we can see by considering a sawtooth function. Moreover, whenever we consider a family C ⊂ S - H (Ω) of locally equibounded functions, then inf u∈C u(x) and sup u∈C u(x) are still subsolutions to ( . ). We similarly denote by S + H (Ω) (resp. S H (Ω)) the family of supersolutions (resp. solutions) of ( . ). For a detailed exposition on viscosity solutions, we refer the reader to [ , , , ] and the references therein.

M HJ

The recent developments of metric formulas related to HJ equations appear essentially in the papers of A.Fathi, F.Camilli, A.Siconol [ , , ], for Hamiltonians of Eikonal type, i.e., depending only on the space variable x and the momentum p, and they have played a major role more particularly in the framework of the so-called weak KAM theory. These formulas are of main interest since they turn to provide a characterisation of the set of all subsolutions of HJ equation. In addition, they only depend on the sublevel sets of the Hamiltonian, so the convexity assumption on the Hamiltonian can be weakened by assuming only convexity of sublevel sets. Moreover, as we will see in Chapters , these metrics appear also as costs in some optimal transport problems associated to our variational approximation of the HJ equation. Other formulas for general Hamiltonians arising in optimal control or Finsler geometry can be found for example in [ , , , ].

Let Ω ⊂ R N be a regular connected open domain. We consider the following HJ equation (H ) Coercivity: Z(x) is compact;

H(x, ∇u) = 0, x ∈ Ω, ( 
(H ) Convexity: Z(x) is convex for any x ∈ Ω;

(H ) H(x, 0) ≤ 0, i.e., 0 ∈ Z(x) for any x ∈ Ω.

where for any x ∈ Ω,

Z(x) := {p ∈ R N , H(x, p) ≤ 0},
is the 0-sublevel set of H. Unless otherwise speci ed, the assumptions (H )-(H ) will hold true for the rest of this manuscript. The solution are to be understood in the sense of viscosity. For x ∈ Ω, we de ne the support function of the 0-sublevel set Z(x) by

σ(x, q) := sup q • Z(x) = sup{q • p, p ∈ Z(x)} for q ∈ R N .
( . )

The assumption (H )-(H ) ensures that σ is a continuous nonnegative function in Ω × R N , convex and positively homogeneous with respect to q. In addition, under (H ), we will say that the Hamiltonian H is quasiconvex. Due to the assumption (H ), σ(x, q) is possible to equal to 0 for q = 0, which leads to the degeneracy and its dual σ * , as given below, may take the value +∞. Here, the dual (or polar) σ * is de ned by σ * (x, p) := sup q {p • q : σ(x, q) ≤ 1}.

A typical example is the Eikonal equation with

H(x, p) = |p| -k(x), ( . )
for a nonnegative continuous function k. In this case, one has σ(x, q) = k(x)|q| and σ * (x, p) = 1 k(x) |p|. We see that σ * (x, p) take the value +∞ for p = 0, on the zero set of k. We denote by Γ(x, y) the set of Lipschitz curves de ned on [0, 1] joining x, y in Ω. We then de ne the intrinsic distance by

d σ (x, y) := inf ζ∈Γ(x,y) 1 0 σ(ζ(t), ζ(t))dt, ( . )
which is a quasi-distance, i.e. satisfying d σ (x, x) = 0 and the triangular inequality, but not necessarily symmetric. Some basic properties of d σ can be summerized in the following

Proposition . . ([ ])

) d σ is a quasi-metric, in the sense that for any x, y ∈ Ω d σ (x, y) ≥ 0 and d σ (x, x) = 0. Moreover, for all x, y, z ∈ Ω one has

d σ (x, y) ≤ d σ (x, z) + d σ (z, y). ) For any x ∈ Ω d σ (x, .) ∈ S - H (Ω) ∪ S + H (Ω \ {x}).
) Compatibility condition:

v ∈ S - H (Ω) if and only if v(x) -v(y) ≤ d σ (y, x) for any x, y ∈ Ω. ( . )
Example . . In the case of the Eikonal equation ( . ), we get a Riemannian metric:

d k (x, y) := inf ζ∈Γ(x,y) 1 0 k(ζ(t))| ζ(t)|dt.
Thanks to the previous proposition, any subsolution of ( .) is 1-Lipschitz with respect to d k . Moreover, when k ≡ 1, d 1 is nothing by the Euclidean distance, i.e., d 1 (x, y) = |x -y|.

Example . . Another interesting example can be given from convex geometry. Take a compact, convex set C of R N such that 0 ∈ int(C), then its gauge function reads

j C (p) = inf{λ ≥ 0; λp ∈ C}.
It can be shown that j C * = σ C where C * is the polar set of C de ned though

C * = {p ∈ R N : p • q ≤ 1, ∀q ∈ C},
and σ C is the support function of C de ned through σ C (p) = sup q∈C p•q. Considering the following Hamiltonian H(x, p) = j C (p) -1, the metric formula ( . ) becomes

d C (x, y) = j C * (y -x), for all x, y ∈ Ω.
Indeed, take x, y ∈ Ω and let ζ be a Lipschitz curve joining them. We then have

1 0 σ(ζ(t), ζ(t))dt = 1 0 j * C ( ζ(t))dt = 1 0 j C * ( ζ(t))dt ≥ j C * 1 0 ζ(t)dt = j C * (y-x),
where we have used Jensen's inequality. Taking the inf over ζ, we get

d C (x, y) ≥ j C * (y -x).
On the other hand, for t ∈ [0, 1], de ne ζ x,y (t) = x(1-t)+ty, which satis es ζ x,y (0) = x and ζ x,y (1) = y. We get

d C (x, y) ≤ 1 0 j C * ( ζx,y (t))dt = j C * (y -x),

Preliminaries

as claimed.

Example . (see [ ])

. Consider a Hamiltonian of the form ) where b(x) is called the drift vector eld and M (x) = D(x)D † (x) is a positive de nite matrix, D is called the di usion matrix and |•| M is the norm associted to the scalar product induced by M . Actually, the Hamiltonian ( . ) is related to the following stochastic di erential equation in

H(x, p) = b(x), p + 1 2 |p| 2 M (x) , ( . 
R N dX t = b(X t )dt + √ M (X t )dW t , X 0 = x 1 ∈ R N .
where > 0 and (W t ) t≥0 is an N -dimensional Brownian motion. Then, the associated metric formula reads

d M (x, y) = inf ξ∈Γ(x,y) 1 0 σ M (ξ(t), ξ(t))dt, with σ M (x, p) = |b(x)| M -1 (x) |p| M -1 (x) -b(x), p M -1 (x) ,
for any x ∈ Ω, p ∈ R N . Let us stress that for general Hamiltonians, the support function σ can't be expressed in closed form.

The so called Aubry set is de ned as the set where the quasi-metric d σ degenerates. Prescribing a boundary value on ∂Ω does not guarantee the uniqueness of viscosity solutions to ( . ) unless A = ∅, which is not the case in our situation due to the assumption (H3). The Aubry set A appears then to be a uniqueness set for ( . ).

De nition . . We de ne the Aubry set A as the set of points x ∈ Ω such that there exists

(ζ n ) n ∈ Γ(x, x) with l(ζ n ) ≥ δ > 0 for some δ > 0 and inf n 1 0 σ(ζ n (t), ζn (t))dt = 0, where l(ζ n ) is the Euclidean length of the curve ζ n .

Proposition . . ([ ],[ ])

) The Aubry set A is a closed subset of Ω.

) If x ∈ A then d σ (x, .) ∈ S H (Ω). Moreover, x /
∈ A if and only if ( . ) admits a strict subsolution around x.

) If g : A ∪ ∂Ω → R is a continuous function satisfying the compatibility condition g(x) -g(y) ≤ d σ (y, x) on A ∪ ∂Ω, then u(x) = min y∈A∪∂Ω {d σ (y, x) + g(y)}
is the unique viscosity solution of the equation ( . ) such that u = g on A ∪ ∂Ω.

N HJ

We present here some di erent works and methods concerned with the approximation of HJ equations. This list is non exhaustive and the reader can check [ , ] for a general presentation of numerical methods for HJ equations, or [ ] for a more recent overview.

Optimal control.

In [ ] the authors propose an optimal control approach to approximate the maximal subsolutions of some degenerate HJ equation. More precisely, they study equations of the form:

H(x, ∇u) = f in Ω u = g on ∂Ω ( . )
where Ω ⊂ R N and f and g are continuous nonnegative functions. They consider a dynamic

v(t) = p(t) for t ∈ [0, ∞), v(0) = x, ( . 
)
where p is a measurable function and they introduce a cost functional

J(x, p) = T 0 σ(v(t), p(t))dt + g(v(T )) ( . )
where σ is the support function of the sublevel-sets of H. It is well known that the associated dynamic programming equation of this optimal control problem reads

sup |p|≤1 p • ∇u(x) -σ(x, p) = 0
which is equivalent to nding sub/super-viscosity solutions to ( . ). Then, they solve the optimal control problem ( . )-( . ) via a semidiscrete scheme. More precisely, they choose a step in time h ∈ (0, 1) for a xed > 0 and de ne the sequence

x i+1 = x i + h p i , i ∈ N, x 0 = x for x ∈ Ω and q i ∈ S d-1 . The discrete cost function becomes J h (x, p n ) = n-1 i=0 h σ (x i , p i ) + g(x n ) with n = inf{i ∈ N : x i ∈ Ω}. The value function is u h (x) = inf p i :n<∞ J h (x, p i )
which solves by means of the discrete dynamic programming principle, the problem

   u h (x) = inf |p|=1 h σ (x, p) + u h (x + hp) x ∈ Ω u h (x) = g(x) x ∈ R N \ Ω.
Finally, they show that for appropriate , h , the approximated solution converges to the maximal solution of ( . ) as , h → 0 using stability results. For comprehensive exposition of HJ equations and optimal control one can see for example [ , ]. Dijkstra type algorithms. One of the famous methods, at especially for Eikonal equations, remains the Fast Sweeping Method (FSM) and the Fast Marching Method (FMM). For the seek of simplicity, we consider the following equation

|∇u| = f in Ω u = 0 on Γ ⊂ ∂Ω.
The FSM is based on an upwind di erence discretization solved via Gauss-Seidel iterations with alternating sweeping ordering. More precisely, given a discretization {x i,j } ij of Ω, and denoting by u i,j the solution at the grid point x i,j , the equation can be rewritten ) where h is the step size and u xmin = min(u i-1,j , u i+1,j ), u ymin = min(u i,j-1 , u i,j+1 ). We initialize by u i,j = 0 if (i, j) ∈ Γ and ∞ otherwise. We compute the solution ũi,j of ( . ) and we update u i,j by taking min(u i,j , ũi,j ), in such a way we sweep the whole domain following the ordering

(u i,j -u xmin ) + 2 + (u i,j -u ymin ) + 2 = h 2 f 2 i,j ( . 
) i = 1, • • • , M, j = 1, • • • , N ) i = M, • • • , 1, j = 1, • • • , N ) i = M, • • • , 1, j = N, • • • , 1 ) i = 1, • • • , M, j = N, • • • , 1
The FSM is easy to implement and converges within few iterations. However, less is known about its convergence and complexity for general HJ equations. As for the FMM, the grid points are divided into three categories: Accepted nodes which are points where the value of the solution are already known, Narrow Band nodes where the computations take place and nally Far nodes which will be computed in the next iterations. The Eikonal equation is written via an upwind nite di erence approximation. We then compute the solution u i,j at a grid point (i, j) using the nite-di erence scheme on the Narrow Band, we take the minimum value of u i,j . The grid point (i, j) becomes an Accepted point and is removed from the Narrow Band. We add the rst neighbours of this node to the Narrow Band and we continue this way until all points are Accepted.

Elliptic approach. In [ ], the authors use an elliptic approach to solve the Eikonal

equation |∇u| = 1 in Ω u = g on ∂Ω ( . )
for a nonnegative continuous function g. To ensure the uniqueness, the authors look for u maximizing Ω udx among functions v ∈ H 1 (Ω) solving ( . ). The constraint |∇u| = 1 being nonlinear, they minimize

J(v) = Ω |∇v| 2 dx -c Ω vdx for some c > 0 instead of Ω udx , on E g = {v ∈ H 1 (Ω) : v solves ( . )}.
Then they penalize and regularize the problem by minimizing J(v) = J(v) + 1 2 Ω |∆v| 2 dx + 1 4 2 Ω (|∇v| 2 -1) 2 dx among all v ∈ H 2 (Ω) with v = g on the boundary. By setting p = ∇u, an equivalent formulation becomes

min q∈Q 1 2 Ω |q| 2 dx -c Ω ∇φ • qdx + 1 4 2 Ω (|q| 2 -1) 2 dx + G(q) ( . )
where Q = {q ∈ L 2 (Ω) 2 }, and φ is the unique solution of Dirichlet problem -∆φ = 1 in Ω and u = 0 on ∂Ω and

G(q) = 1 2 Ω |∇ • q|dx if q ∈ {∇v : v ∈ H 2 (Ω) and v = g on ∂Ω} ∞ otherwise.
Finally, they associate a ow to ( . ) and discretize it by an operator-splitting method. Yet, this method seems to be restrictive to the Eikonal equation ( . ) and it is not clear how to adapt it for general Hamiltonians.

O T T

All the results of this section can be found in the following classical books [ , , ].

M K

The classical optimal transport problem goes back to Gaspard Monge with his celebrated paper "Mémoire sur la théorie des déblais et des remblais". Concretely, let us imagine that we have a certain amount of soil which should be moved to ll some holes in the ground, or imagine some bakeries that should supply some co ee shops. All this tasks need be done while minimizing a certain cost, which could be the travelled distance or the e ort of transporting some quantity from a position to another etc. where Π(µ, ν) is the set of probability measures on X ×Y with marginals µ and ν respectively, i.e., (π X ) γ = µ and (π Y ) γ = ν, where π X , π Y are the projections from X × Y onto X and Y respectively. Contrary to (MP), the set Π(µ, ν) is always nonempty since it contains µ ⊗ ν. Moreover, it's richer than the set of transport maps, in the sense that a transport map T induces a transport plan γ T = (id × T ) µ. In addition, Γ(µ, ν) is a convex and compact subset of P(X ×Y ) endowed with narrow topology, which helps to get existence results under weak assumptions on the cost function c. All these properties make the analysis of (KP) easier. We have the following Theorem . . [ ] Let X and Y be compact metric spaces, µ ∈ P(X), ν ∈ P(Y ) and c : X × Y → R(R ∪ {∞}) a continuous function (respectively, lower semi-continuous and bounded from bellow). Then (KP) admits a solution.

We notice that (KP) is a linear optimization problem under convex constraints. So it is natural to derive its dual (see Section . ) formulation. This can be achieved (at least formally) by performing a min -max interchange.

Let γ ∈ M + (X × Y ) and v ∈ C b (X), w ∈ C b (Y ). We have sup v,w X vdµ + Y wdν - X×Y v ⊕ wdγ = 0 if γ ∈ Π(µ, ν), ∞ otherwise,
where (v ⊕ w)(x, y) = v(x) + w(y). So we can replace the constraint γ ∈ Π(µ, ν) in (KP) by the previous sup. This gives

min γ cdγ + sup v,w X vdµ + Y wdν - X×Y v ⊕ wdγ.
By interchanging the inf and sup we get

sup v,w X vdµ + Y wdν + inf γ (c -v ⊕ w)dγ.
Rewriting the inf on γ as a constraint on the potentials v, w, we get:

inf γ (c -v ⊕ w)dγ = 0 if v ⊕ w ≤ c on X × Y, -∞ otherwise.
We de ne the dual problem (KD) as follows (KD) : sup

X vdµ + Y wdν, v ∈ C b (X), w ∈ C b (Y ) and v ⊕ w ≤ c .
Proposition . . Suppose that X and Y are compact and c is continuous. Then there exists a solution (v, w) to (KD).

Moreover, if the cost c is a distance on X, then one can obtain the so-called Kantorovich-Rubinstein variant of (KD) as follows. Fix some x 0 ∈ X and 1 ≤ p ≤ ∞. We de ne the pth moment of a measure µ ∈ P(X) by: Mom p (µ; x 0 ) = 1 p X c(x, x 0 ) p dµ(x), and

P p (X) = {µ ∈ P(X) : ∃x 0 ∈ X : Mom(µ; x 0 ) < ∞}.
Clearly this de nition is independent from x 0 : If Mom p (µ; x 0 ) < ∞ for some x 0 ∈ X, then Mom p (µ; x) < ∞ for any x ∈ X. This being said, we have the following Proposition . (Kantorovich-Rubinstein). Let µ, ν ∈ P 1 (X), then

min γ∈Π(µ,ν) X×X c(x, y)dγ(x, y) = max v X vd(µ -ν) : v : X → R, 1 -Lipschitz w.r.t c .

B '

Beckmann's problem is a minimal ow type problem. It was proposed by Martin Beckmann [ ] in 1952 as a model for transportation. One can think about optimal transference in an urban area represented by a bounded domain Ω ⊂ R 2 , between two distributions of residents and services. These distributions can be represented by two nonnegative Radon measures ρ 1 and ρ 2 , respectively. So, the signed measure ρ := ρ 2 -ρ 1 represents the local measure of excess demand. The consumers tra c is given by a tra c ow eld, i.e. a vector eld Φ : Ω → R N whose direction indicates the consumers' travel direction and whose modulus |Φ| is the intensity of the tra c. The relationship between the excess demand and the tra c ow is obtained from the equilibrium condition:

-div(Φ) = ρ in D (Ω).
This condition describes some kind of equilibrium: the out ow of consumers equals the excess demand in any subregion ω ⊂ Ω, i.e. ∂ω Φ • n ds = ρ(ω). Since the measures ρ 1 and ρ 2 have equal masses (a balanced condition between residents and services), and the urban area is assumed to be isolated, i.e., no tra c ow should cross the boundary of the city Ω, the tra c ow Φ is subject to the boundary condition

Φ • n = 0 on ∂Ω,
where n denotes the outward normal vector to the boundary. Assuming the transportation cost per consumer is given by the quantity |Φ(x)|, Beckmann therefore argued that one may de ne the transportation cost between ρ 1 and ρ 2 as the in mum of the total cost of the tra c Ω |Φ(x)| dx. So the considered problem reads:

(BP) : min

Φ∈L 1 (Ω) N Ω |Φ(x)| dx : -div(Φ) = ρ in D (Ω) .
It can be shown that (BP) is actually equivallent to (KP) in the case of the Euclidean cost, i.e., c(x, y) = |x -y|. Again, let us express the divergence constraint on Φ as follows

sup w - Ω Φ • ∇wdx + Ω wdρ = 0 if -div(Φ) = ρ, ∞ otherwise.
. Tangential measure and tangential gradient So we may rewrite (BP) as

inf Φ Ω |Φ|dx + sup w - Ω Φ • ∇wdx + Ω wdρ ,
and by a formal inf-sup interchange, we get

sup w Ω wdρ + inf Φ Ω |Φ|dx - Ω Φ • ∇wdx .
Noticing that the in mum on Φ expresses the constraint |∇w| ≤ 1 or alternatively w ∈ Lip(Ω), we get the equivalence with (KP) thanks to Proposition ( . ). This can be proved rigorously via Fenchel-Rockafellar duality. Notice that the existence of a solution to (BP) in L 1 (Ω) N is not true in general since the latter is nonre exive. Setting this problem on a re exive Banach space, say L 2 (Ω) N , the direct method of calculus of variations would provide a minimizer thanks to weak compactness. However, it is convenient to consider this problem in the framework of divergence measure elds, i.e., consider ows

Φ ∈ M b (Ω) N with div(Φ) ∈ M b (Ω)
. Some new variants of Beckmann's problem will be addressed in Chapter -.

T

Let us recall some facts concerning the notion of tangential gradient which played a main role in this manuscript. To give a glimpse on the necessity to introduce this notion, let us remember that, as an example, Beckmann's problem is an optimisation problem on measure space under divergence constraint. More particularly, the optimal ow satis es -div(Φ) = ρ ∈ M(Ω). To do further analysis on such a problem and particularly to derive its dual problem we are naturally tempted to integrate by parts in the divergence constraint and write, for some Lipchitz function u

∇u • υ dγ = udρ.
where γ = |Φ| is the total variation of the vectorial measure Φ and υ = Φ |Φ| is the Radon-Nikodym derivative of Φ with respect to |Φ|. Observe that ∇u may not be de ned on a |Φ|-positive measure set and thus the previous formula may not have sense. Thanks to [ ] it is possible to give a sens to the previous formula as follows. First we can de ne the tangent space to γ

X γ (x) = γ -ess υ(x) : υ ∈ L 1 γ (Ω, R N ), div(υγ) ∈ M b (Ω) ,
where the γ-essential union is de ned as a γ-measurable closed multivalued function such that

• If υ ∈ L 1 γ (Ω, R N ) and div(υγ) ∈ M b (Ω), then υ(x) ∈ X γ (x)
, for γ-a.e x ∈ Ω. • The γ essential union is minimal amongst multivalued functions satisfying the previous properties.

Then, the tangential gradient ∇ γ (x) to a function u ∈ C 1 (Ω) with respect to the measure γ is the orthogonal projection of ∇u(x) onto X γ (x). Indeed, denoting by P γ (x) the orthogonal projection on X γ (x), it has been shown in [ ] that the linear operator

u ∈ C 1 (Ω) → P γ (x)∇u(x) ∈ L ∞ γ (Ω, R N
) can be uniquely extended to a linear continuous operator

∇ γ : u ∈ Lip(Ω) → ∇u ∈ L ∞ γ (Ω, R N )
. Moreover, we have the following useful integration by parts formula

Proposition . ([ ]). Given γ ∈ M + b (Ω) and υ ∈ L 1 γ (Ω, R N ) such that υ(x) ∈ X γ (x)
for γ-a.e x. and div(γυ) := ρ ∈ M b (Ω). We then have udρ = υ∇ γ udγ, for any u ∈ Lip(Ω).

As it was pointed out in [ , ], it is possible to adapt this notion in the Finsler setting.

F R P D

Unless otherwise speci ed, we denote X , Y two Banach spaces and by X * , Y * their topological dual spaces.

F R

Fenchel-Rockafellar duality is one of the main tools in convex optimization. It allows rigorous derivation of the dual problem associated to an optimization problem, and thus reposes on the notion of the dual functional, also called Fenchel-Legendre transform.

De nition . . Let F : X → R ∪ {∞} be a proper, l.s.c. and convex function. We de ne its dual functional F * : X * → R ∪ {∞} by

F * (f ) = sup u∈X f, u X * ,X -F(u) for any f ∈ X * .
Following the notations of [ ], we sometimes denote by Γ 0 (X ) the set of proper, l.s.c and convex functions on X . It can be shown that the Fenchel-Legendre conjugation is an involution, that is, it is its own inverse: F * * = F for all F ∈ Γ 0 (X ).

Many of the problems that we encounter fall into the scope of the following class of optimization problems

(P) : inf u∈X F(u) + G(Λu) ( . )
where F : X → (-∞, +∞], G : Y → (-∞, +∞] are proper, l.s.c., convex functions and Λ : X → Y is a linear operator. Let us sketch how to derive the dual problem of (P). We start by exploiting the fact that G * * = G to write

G(Λu) = sup v∈Y * v, Λu -G * (v),
and plugging this in ( . ), the problem (P) becomes:

inf u∈X sup v∈Y * F(u) + v, Λu -G * (v),
and by a formal inf-sup interchange we get

sup v∈Y * inf u∈X -Λ * v, -u + F(u) -G * (v) = sup v∈Y * -F * (-Λu) -G * (v),
where Λ * is the adjoint operator of Λ. So the associated dual problem to (P) reads:

(D) : sup v∈Y * -F * (-Λ * v) -G * (v).
Using the de nitions of F * , G * and Λ * , it is not di cult to get the following inequality

sup v∈Y * -F * (-Λ * v) -G * (v) ≤ inf u∈X F(u) + G(Λu),
usually called weak duality. The reverse inequality, the so-called strong duality gives a su cient condition to justify the previous inf-sup interchange.

Before stating the main result of this section, let us recall the notion of subdi erentiability. Suppose that u is an optimal solution of (P), then the Euler-Lagrange equation would give

DF(u) + Λ * DG(Λu) = 0.
Unfortunately, one of the functions F or G may not be di erentiable (typically in this manuscript G will be and indicator function of some convex set), so one need to use a more general notion of derivative.

De nition . . Given a convex functional

F : X → (-∞, +∞]. We say that p ∈ X * is a subgradient of F at u ∈ X if F(u) + p, w -u X * ,X ≤ F(w), for all w ∈ X .
The set of all subgradients of F at u is called the subdi erential and is denoted by ∂F(u). More precisely

∂F(u) = {p ∈ X * : F(u) + p, w -u X * ,X ≤ F(w), for all w ∈ X }.
Now, let us state the Fenchel-Rockafellar duality result.

Theorem . . (Strong duality [ , Chap

. III]) Assume moreover that there exists u 0 ∈ X such that F(u 0 ) < +∞, G(Λu 0 ) < +∞ and G is continuous at Λu 0 . Then the dual problem admits at least a solution v ∈ Y * and the strong duality holds, i.e.

max v∈Y * -F * (-Λ * v) -G * (v) = inf u∈X F(u) + G(Λu).

Moreover, the pair (u, v) solves the primal-dual problem (P)-(D) if and only if

-Λ * u ∈ ∂F(u) and v ∈ ∂G(Λu).
Before ending this subsection, let us recall the notion of Moreau's proximal mapping which plays a major role in many algorithms.

De nition . . Assume that X is a real Hilbert space and let J ∈ Γ 0 (X ). Then for every η > 0, the proximal mapping of ηJ is de ned though Prox ηJ (u) = arg min w∈X 1 2 w -u 2 X + ηJ(w) , for any u ∈ X .

Remark . . Prox ηJ is also denoted by (id + η∂J) -1 and is called the resolvent of ∂J.

Let us recall some basic computations of proximal opertors that will be used later

Proposition . ([ , ]). Let J ∈ Γ 0 (X ) , u ∈ X and η > 0 then • Prox η(J+λ) (u) = Prox ηJ (u), for any λ ∈ R. • For v ∈ X , then Prox η(J+ v,. ) (u) = Prox ηJ (u -ηv).
• Moreau's identity:

u = Prox ηJ (u) + η Prox η -1J * u η .
For more details concerning the proximal operator and its properties, we refer the reader to these recent books [ , ].

P

As Theorem . gives only a su cient condition to prove duality, we will see in Chapter that the quali cation constraints are not always easy to check. Yet, one can still prove duality using some perturbation techniques as presented in [ ]. Perturbation techniques are more or less known for the optimization community. Besides its employment to prove some regularity results for the incompressible Euler equation (see [ ]) or degenerate elliptic equations (see [ ]), it is less present in PDE or calculus of variations literature.

Take a function J ∈ Γ 0 (X ), and consider the following minimization problem

(P) : inf u∈X J(u).
We introduce a function T : X ×Y → [-∞, ∞] as well as the following minimization problem

(P p ) : inf u∈X T (u, p),
such that T (u, 0) = J(u). This being said, the problem (P 0 ) is just (P). The idea is that we can recover the dual problem of (P) by considering the one of (P p ). Indeed, if T * is the dual function of T , then

(D) : inf q∈Y * -T * (0, q),
is the dual problem of (P) with respect to T . An interesting situation is when the function J is of the form J(u) = J(u, Λu),

with J : X × Y → [-∞, ∞] and Λ ∈ L(X , Y ).
In this case, the perturbed function becomes T (u, p) = J(u, Λu -p) for p ∈ Y . In all this manuscript, we are more concerned with the case where J can be split into the sum of two operators, i.e., problems of the form ( . ). For more details, we refer the reader to [ , Chap. III].

P D

The main idea behind Primal-Dual methods is that we can recover simultaneously the solutions of (P) and (D) by looking for saddle-points of some appropriate functional. To see this, de ne the so called Langrangian

L(u, v) = F(u) + v, Λu -G * (v). ( . )
We observe that if (u, φ) is a primal-dual solution as in Theorem . , we have

L(u, φ) ≤ sup p∈Y * L(u, p) = inf q∈X F(q) + G(Λq) = sup p∈Y * -F * (-Λ * p) -G(-p) = inf q∈X L(q, φ) ≤ L(u, φ), so that (u, φ) is a saddle-point of L. Conversely, if (u, φ) is a saddle-point of L, we easily see that L(u, φ) = sup p∈Y * L(u, p) = F(u) + G(Λu) = inf q∈X L(q, φ) = -F * (-Λ * φ) -G * (-φ),
so that (u, φ) solve the Primal-Dual problem.

ALG

Consider as before the following optimization problem

(P) : inf u∈X F(u) + G(Λu).
The idea is to introduce a new primal variable q ∈ X so the previous problem reads

(P) : inf (u,q)∈X ×Y ,Λu=q F(u) + G(q),
and then introduce an Lagrange multiplier φ ∈ Y * for the constraint Λu = q. Then the problem (P) can be written as a saddle-point problem for an augmented Lagrangian

(cf [ ]) L r (u, q; φ) = F(u) + G(q) + φ, Λu -q + r 2 |Λu -q| 2 , for r > 0.
Then, as we presented in the begning of the section, (P) can be solved by nding the saddle-points of L r , i.e, by solving

inf (u,q)∈X ×Y * sup φ∈Y * L r (u, q; φ). ( . )
The so called ALG algorithm, a.k.a, Alternating Direction Method of Multipliers, allows solving ( . ) by alternatively minimizing the augmented Lagrangian L r in the primal direction and maximizing in the dual one. More explicitly, we initialise with u 0 ∈ X , q 0 ∈ Y and φ 0 ∈ Y * , and we generate sequences {u i } i , {q i } i and {φ i } for i ∈ N * , as follows:

• Minimise in u:

u i+1 ∈ arg min u∈X L r (u, q i ; φ i ) = arg min u∈X F(u) + φ i , Λu + r 2 |Λu -q i | 2 .
• Minimise in q:

q i+1 ∈ arg min q∈Y L r (u i+1 , q; φ i ) = arg min q∈Y G(q) -φ i , q + r 2 |Λu i+1 -q| 2 .
• Maximise in φ:

φ i+1 ∈ arg min φ∈Y * L r (u, q i ; φ i ) - 1 2r |φ -φ i | 2 = φ i + r(Λu i+1 -q i+1 ).
The convergence can be also established in the case of in nite-dimensional Hilbert spaces.

For further details in this direction and about the ALG , we refer the reader to [ , ,

].

C P '

As we discussed previously, the solutions of the problems (P)-(D) are exactly the saddlepoints of the Lagrangian L de ned in ( . ). Now x some (u, φ) ∈ dom(F)×dom(G * ) and de ne the partial Lagrangians:

L u (φ) = L(u, φ) and L φ (u) = L(u, φ).
Then, (u, φ) is a saddle point of L if and only if

φ solves min v∈Y -L u (v) and u solves min w∈X L φ (u),
this is equivalent to saying that 0 ∈ ∂(-L u )(φ) and 0 ∈ ∂L φ (u). Thus, we have for η, τ > 0:

0 ∈ ∂(-L u )(φ) and 0 ∈ ∂L φ (u) ⇔ φ ∈ φ + τ (-∂L u )(φ) u ∈ u + η∂L φ (u), ⇔ φ = Prox -τ Lū (φ) u = Prox ηL φ (u), ⇔ φ = Prox τ G * (φ + τ Λū) u = Prox ηF (u -ηΛ * φ).
where we have used extra variables (ū, φ) ∈ X × Y * and standard formulas from calculus of resolvents recalled in Proposition . . Then Chambolle-Pock's algorithm reads:

• Step 1: u n+1 = Prox ηF u n -ηΛ * φn . • Step 2: φ n+1 = Prox τ G * (φ n + τ Λu n+1 ). • Step 3: φn+1 = φ n+1 + θ(φ n+1 -φ n ), for θ ∈ [0, 1].
The variable φ is called an extra gradient variable and Step 3 can be replaced by a similar one for u. The convergence of this algorithm is studied in [ , ]. More precisely, when X , Y are nite dimensional Hilbert spaces, it can be proven that for θ = 1 and ητ Λ 2 < 1, where Λ is the operator norm of Λ, then the sequence {u n , φ n } n generated by this algorithm converges to a saddle point of L and thus to a solution of the primal and dual problems (P)-(D). This method is widely applied in image problems. It is worth mentioning that this is a particular case of the so-called Arrow-Hurwicz method.

We refer the reader to the papers of A.Chambolle and T.Pock [ , ] for more details, and to [ ] for a recent overview with further applications in image processing.

A L HJ E HJ

We present the main result showing the correspondence between HJ equation and a maximization problem. To this end, we will consider a general version of ( . ) coupled with Dirichlet boundary condition. Given a closed subset D ⊂ Ω (typically D = ∂Ω or D = {x} for some x ∈ Ω), we consider the following HJ equation

H(x, ∇u) = 0 Ω \ D u = g D ( . )
where g :

D → R is continuous function satisfying compatibility condition g(x) -g(y) ≤ d σ (y, x) on D.
Then the unique maximal viscosity subsolution of the equation ( . ) such that u(x) = g(x) for any x ∈ D, is given by

u(x) = min y∈D d σ (y, x) + g(y). ( . )
The considerations given in the introduction lead us to look for the maximal subsolutions of the HJ equation, i.e., H(x, ∇u) ≤ 0 or equivalently u(x) -u(y) ≤ d σ (y, x). We will show that such functions are precisely the ones with gradient in the unit ball of σ * . More precisely, we prove the following

Proposition . . S - H (Ω) = {u ∈ W 1,∞ (Ω) and σ * (x, ∇u(x)) ≤ 1 f or a.e x ∈ Ω} := B σ * .
Then, we transform the problem into a question of maximization of the volume Ω udx among the subsolutions u. This leads to the following theorem which is an important step to treat the equation ( . ) via augmented Lagrangian methods.

Theorem . . The maximal viscosity subsolution of ( . ), given by ( . ), is the unique solution of the problem

max u∈W 1,∞ (Ω) Ω z(x)dx, σ * (x, ∇z(x)) ≤ 1 and z = g on D . ( . )
For the proof of Proposition . , we recall that the result is more or less known in the case where H(x, 0) < 0 which corresponds to A = ∅ (see [ , ] for example). Here, under the general condition (H3), we need the following Cauchy-Schwartz-like lemma.

Lemma . . For any q ∈ R N , and for any x ∈ Ω we have

σ * (x, q) ≤ 1 ⇔ p, q ≤ σ(x, p) for any p ∈ R N .
Proof. Assume rst that σ * (x, q) ≤ 1. If p, q = 0, it is obvious. For the case p, q > 0, if σ(x, p) = 0 then by homogeneity of σ, σ(x, λp) = 0 for every λ ≥ 0.

Consequently, σ * (x, q) ≥ λ p, q → ∞ as λ → ∞, this contradicts σ * (x, q) ≤ 1.
This implies that σ(x, p) > 0 and p σ(x,p) , q ≤ σ * (x, q) ≤ 1, as desired. Conversely, if p, q ≤ σ(x, p), by de nition of σ * , we take the sup over all p such that σ(x, p) ≤ 1 in the previous inequality to obtain that σ * (x, q) ≤ 1.

Proof of Proposition . . We divide the proof into two parts. Firstly, S - H (Ω) ⊂ B σ * . Take a point x ∈ Ω such that u is di erentiable at x. For every vector v ∈ S N -1 on the unit sphere, we take ζ h (t) = tx + (1 -t)(x -hv) for every h > 0 and t ∈ [0, 1] and we notice that ζ h ∈ Γ(x -hv, x) and for h small enough, ζ h is close to x. We then have

∇u(x), v ≤ lim h→0 + h -1 (u(x) -u(x -hv)) ≤ lim inf h→0 + h -1 d σ (x -hv, x) ≤ lim inf h→0 + h -1 1 0 σ(ζ h , ζh )dt = lim inf h→0 + 1 0 σ(ζ h , v)dt ≤ σ(x, v),
where we have used the continuity of x → σ(., v) and Lebesgue theorem. Using the de nition of σ * , we deduce that σ * (x, ∇u(x)) ≤ 1 as desired.

Secondly, B σ * ⊂ S - H (Ω). Assume now that σ * (x, ∇u(x)) ≤ 1 at any di erentiable point x of u, i.e., ∇u(x), p ≤ σ(x, p) for all p ∈ R N . For smooth function u, the argument is simply given by

u(y) -u(x) = 1 0 ∇u(ξ(s)) • ξ(s)ds ≤ 1 0 σ(ξ(s), ξ(s))ds,
for Lipschitz curves ξ joining x to y in Ω. This implies that u(y) -u(x) ≤ d σ (x, y).

For general Lipschitz function u, one can make use of smooth approximation (see [ , Proposition ]).

Proof of Theorem . . Let us see that for any subsolution v ( . ), we have v ≤ u. Pick any subsolution v of ( . ) satisfying the condition v = g on D. Let x ∈ Ω, we have for

any y ∈ D v(x) = v(x) -v(y) + g(y) ≤ d σ (y, x) + g(y).
This gives that v ≤ u in Ω and then Ω v(x)dx ≤ Ω u(x)dx. Clearly u is 1-Lipschitz with respect to d σ , hence by Proposition ( . ) we have σ * (x, ∇u) ≤ 1. Consequently u solves ( . ). If w is another solution, then Ω u(x)dx = Ω w(x)dx and w ≤ u in Ω by the rst step. Consequently u = w, as desired.

HJ

As we said in the introduction among our main interests in this chapter is to use augmented Lagrangian methods to give a direct algorithm to approximate the solution of the HJ equation.

To this end, we observe that problem ( . ) falls into the scope of the following class of optimization problem (see . )

(P) : inf u∈X F(u) + G(Λu)
where X and Y are two Banach spaces with the topological dual spaces X * and Y * , F : X → (-∞, +∞], G : Y → (-∞, +∞] are proper, l.s.c., convex functions and Λ : X → Y is a linear operator, that we will precise later.

As we pointed out in the introduction, because of the degeneracy of the Hamiltonian, we can not directly use Theorem . to show duality between the maximization problem and its dual problem. The main goal of this section is to show rigorously that the duality still holds true. As a typical example we will consider an HJ equation of Eikonal type, coupled with a zero Dirichlet boundary condtion,

|∇u(x)| = k(x) in Ω u = 0 on ∂Ω.
In other words,

H(x, p) = |p| -k(x)
where k is a continuous, nonnegative function on Ω. In this case, the problem ( . ) can be rewritten as

sup Ω udx : |∇u| ≤ k and u = 0 ∂Ω , or (P) : inf u∈V {F(u) + G(Λu)} where V = C 1 (Ω) ∩ H 1 0 (Ω), F(u) = - Ω udx, Λu = ∇u and G(q) = 0 if |q| ≤ k +∞ otherwise.
For the case of non-degeneracy, i.e., k(x) > 0 on Ω, the Fenchel-Rockafellar duality, since the quali cation conditions are satis ed ( Theorem . , Section . ), gives

sup

Ω udx : |∇u| ≤ k and u = 0 on ∂Ω = min φ∈M b (Ω) N Ω k d|φ| : -div(φ) = ρ in D (Ω) .

D HJ

To the duality, we consider a more general problem by considering, for a nonnegative Radon measure ρ ∈ M + b (Ω) and a closed subset D ⊂ Ω, the problem

max u∈W 1,∞ (Ω) Ω udρ : σ * (x, ∇u(x)) ≤ 1 and u = g on D .
Since the values of u are prescribed on D and the solution of ( . ) is given by the distance to D, we can consider the following problem

(M D ) : max u∈W 1,∞ (Ω) Ω D udρ : σ * (x, ∇u(x)) ≤ 1 and u = g on Γ D ,
where

Ω D := Ω \ D, Γ D := ∂Ω D ∩ ∂D and Γ = ∂Ω D \ Γ D . In particular, if D = ∂Ω then Ω D = Ω and Γ D = ∂Ω, Γ = ∅. Example . . Consider for example Ω = (0, 2) 2 and D = [1, 2] × [0, 2]. Then, we immediately nd Ω D = (0, 1) × (0, 2) and ∂Ω D = Γ D ∪ Γ with Γ = (0, 1) × {0} ∪ (0, 1) × {2} ∪ {0} × (0, 2), and Γ D = {1} × (0, 2).
As we will see, our dual formulation challenges some kind of trace-like operator for the so called divergence-measure eld. To begin with let us sort out formally and brie y our approach, at least in the case where D = ∂Ω. Taking X to be the Banach space W 1,∞ (Ω) and Y to be the space L ∞ (Ω) N , we consider simply

F(u) =    -Ω u dρ if u ∈ W 1,∞ (Ω) and u = g on ∂Ω +∞ otherwise, , Λu = ∇u, and 
G(η) =    0 if σ * (x, η) ≤ 1 +∞ otherwise,
so that the problem (M D ) reads as (P). For a formal computation of the dual problem, let us notice that G * :

Y * → (-∞, +∞], G * (Φ) = Ω σ(x, Φ) for any Φ ∈ Y * .
The operator Λ * : Y * → X * is given by

Λ * Φ, ξ = Φ, ∇ξ for any ξ ∈ X .
Also,

F * (-Λ * Φ) = sup u∈X ,u=g on ∂Ω Ω -Φ • ∇u dx -F(u) = sup u∈X ,u=g on ∂Ω Ω -Φ • ∇u dx + Ω u dρ = sup u∈X ,u=g on ∂Ω Ω udiv(Φ) - ∂Ω Φ • ν u + Ω u dρ = -∂Ω Φ • ν g if -div(Φ) = ρ +∞ otherwise.
In other words, the dual problem reads

inf Ω σ(x, Φ) - ∂Ω Φ • ν g : Φ ∈ Y * , -div(Φ) = ρ in D (Ω) . ( . )
Note that the above computation is very formal by the appearance of the trace-like term Φ • ν which is not well de ned for all Φ.

To handle rigorously the normal trace of the vector-valued dual variable Φ in the dual problem of the type ( . ), we recall the trace-like operator for the so called divergencemeasure eld (cf. [ , , ]). To this aim, we assume in this section that

Ω D = Ω \ D is a regular domain with a deformable Lipschitz boundary ∂Ω D .
This is achieved for instance in the case where Ω is a regular domain and D = ∂Ω or D = ω with a regular domain ω ⊂⊂ Ω.

For any 1 ≤ p ≤ ∞, we de ne the set

DM p (Ω D ) := F ∈ L p (Ω D ) N : div F =: µ ∈ M b (Ω D ) ,
where µ = div F is taken in D (Ω D ). See here, that for any F ∈ DM p (Ω D ), the total variation of div F is given by

|div F |(Ω D ) := sup ϕ dµ : ϕ ∈ C 0 (Ω D ), |ϕ(x)| ≤ 1 for any x ∈ Ω D = sup ϕ dµ : ϕ ∈ C 1 0 (Ω D ), |ϕ(x)| ≤ 1 for any x ∈ Ω D = sup F • ∇ϕ : ϕ ∈ C 1 0 (Ω D ), |ϕ(x)| ≤ 1 for any x ∈ Ω D .
In particular, the space DM p (Ω D ) endowed with the norm

F DM p (Ω D ) := F L p (Ω D ) + |div F |(Ω D )
is a Banach space. Thanks to [ , , ], for any 1 < p ≤ ∞, it is possible to de ne a trace-like operator on the set DM p (Ω D ). Actually, for any F ∈ DM p (Ω D ), we de ne F • ν the normal trace of F on ∂Ω D , given by F • ν : Lip(∂Ω D ) → R the continuous linear functional such that

F • ν, ξ /∂Ω D = Ω D ξ divF + Ω D ∇ξ • F, for any ξ ∈ C 1 (Ω D ).
Moreover, since Γ D is a deformable Lipschitz boundary, then the restriction of F • ν to Γ D is well de ned, this will be denoted by F • ν D (cf. [ , , ], see also Remark . ).

Remark . .

. Thanks to [ , , ], for any F ∈ DM p (Ω D ), with 1 < p ≤ ∞, it is possible to de ne the normal trace F •ν locally by using Lipschitz deformation of the boundary. This formulation is very useful in the case where the boundary is partitioned into disjoint deformable Lipschitz patches.

. In the case where p = 1 as well as the case where L p (Ω D ) N is replaced by the space M b (Ω D ) N , the trace may be de ned as well, but only as continuous linear form on a subset of Lip(∂Ω D ) (cf. [ , , ]). Now, combining this consideration with the formal computation for ( . ), we introduce the following optimization problem

(OF D ) : inf φ∈DM p (Ω D ) Ω D σ(x, φ(x))dx -φ • ν D , g : -div (φ) = ρ in D (Ω D \ Γ D ) ,
where the divergence constraint is understood as follows:

Ω D ∇ξ • φ dx -φ • ν D , ξ = Ω D \Γ D ξdρ, for any ξ ∈ Lip(Ω D ),
with φ • ν D being trace-like term on Γ D as de ned above. In other words, we impose that φ • ν Γ = 0 on Γ.

Our main result in this section is the following duality result.

Theorem . . Let ρ ∈ M + b (Ω), then (M D ) and (OF D ) coincide. Proof. Consider on M b (Ω D ) the following functional F : M b (Ω D ) →] -∞, ∞] de ned by F (h) = inf φ∈DM p (Ω D ) Ω D σ(x, φ(x))dx+ Γ D gdh-φ•ν D , g : -div(φ) = ρ+h in D (Ω D \ Γ D ) , for any h ∈ M b (Ω D ). Then F is convex and l.s.c. Indeed, take h 1 , h 2 ∈ M b (Ω D ) and set h := th 1 + (1 -t)h 2 for t ∈ [0, 1]. Let φ 1,n , φ 2,n ∈ DM p (Ω D ) be two mini- mizing sequences of uxes corresponding to h 1 and h 2 respectively, i.e. -div(φ i,n ) = ρ + h i , in D (Ω D \ Γ D ) and 
F (h i ) = lim n Ω D σ(x, φ i,n (x))dx + Γ D g dh i -φ i,n • ν D , g for i = 1, 2.
Augmented Lagrangian approach for HJ equation

Set φ n = tφ 1,n + (1 -t)φ 2,n .
We clearly see that φ n are admissible for h and

F (h) ≤ lim inf n Ω D σ(x, φ n (x))dx + Γ D g dh -φ n • ν D , g = lim inf n Ω D σ(x, tφ 1,n + (1 -t)φ 2,n )dx + Γ D g dh -(tφ 1,n + (1 -t)φ 2,n ) • ν D , g ≤ lim n t Ω D σ(x, φ 1,n )dx + Γ D g dh -φ 1,n • ν D , g + (1 -t) Ω D σ(x, φ 2,n )dx + Γ D g dh -φ 2,n • ν D , g ≤ tF (h 1 ) + (1 -t)F (h 2 )
and this proves convexity. For the lower semicontinuity, take a sequence

h n h in M b (Ω D ). For every n ∈ N, we consider a sequence (φ k n ) k∈N of DM p (Ω D ) such that F (h n ) = lim k→∞ Ω D σ(x, φ k n (x))dx + Γ D g dh n -φ k n • ν D , g .
We may nd some

ψ n ∈ L 1 (Ω D , R N ) such that -div(ψ n ) = h -h n in D (Ω D \ Γ D ), ψ n L 1 → 0 and ψ n •ν D , g → 0. In fact, we have h-h n ∈ M b (Ω D ) → W -1,p (Ω D ) for p > N and p := p p-1 .
We consider the following p-Laplace equation

           -∆ p u n = h -h n in Ω D u n = 0 on Γ D |∇u n | p-2 ∇u n • ν Γ = 0 on Γ.
( . )

The system ( . ) admits a unique solution

u n ∈ W 1,p (Ω D ) such that u n = 0 on Γ D . Hence, if we set ψ n = |∇u n | p-2 ∇u n , we see that ψ n ∈ L p (Ω D ), and then in L 1 (Ω D ). Moreover, we have -div(ψ n ) = h -h n in D (Ω D ). Since h -h n is bounded in W -1,p (Ω D ), it is not di cult to prove that u n is bounded in W 1,p (Ω D ).
So, by taking a subsequence if necessary, we have u n u in W 1,p (Ω D ), and uniformly in Ω D . On the other hand, we have

Ω D |ψ n | p dx = Ω D |∇u n | p dx = h -h n , u n W -1,p (Ω D ),W 1,p (Ω D ) -→ n→∞ 0.
In particular, this implies that |ψ n | -→ n→∞ 0 in L 1 (Ω D ). Moreover, taking g ∈ Lip(Ω D ) be such that g = g on Γ D , we have

ψ n • ν D , g = Ω D ψ n • ∇g dx - Ω D g d(h -h n ) -→ n→∞ 0.
This being said, we clearly have -div(φ k n + ψ n ) = ρ + h, i.e. φ k n + ψ n are admissible uxes for h. By semicontinuity of the integral, we have

F (h) ≤ Ω D σ(x, (φ k n + ψ n )(x))dx + Γ D g dh -(φ k n + ψ n ) • ν D , g ≤ Ω D σ(x, φ k n (x))dx + Γ D g dh n -φ k n • ν D , g + Ω D σ(x, ψ n (x))dx + Γ D g d(h -h n ) -ψ n • ν D , g .
Letting k → ∞ we get

F (h) ≤ F (h n ) + Ω D σ(x, ψ n (x))dx + Γ D g d(h -h n ) -ψ n • ν D , g .
Now, letting n → ∞, and using the fact that

ψ n → 0 in L 1 (Ω D ) N , and h n h in M b (Ω D ),
as n → ∞, we obtain the lower semicontinuity, i.e.

F (h) ≤ lim inf n F (h n ).
Next let us compute F * . For any u ∈ C(Ω D ), we have

F * (u) = sup h∈M b (Ω D ) Ω D udh -F (h) = sup h∈M b (Ω D ) φ∈DM p (Ω D ) Ω D udh - Ω D σ(x, φ(x))dx - Γ D g dh + φ • ν D , g : -div(φ) = ρ + h in D (Ω D \ Γ D ) = I 1 (u) + I 2 (u),
where I 1 (u) := -Ω D udρ and

I 2 (u) := sup h∈M b (Ω D ) φ∈DM p (Ω D ) Ω D \Γ D ud(ρ+h)- Ω D σ(x, φ(x))dx+ Γ D (u-g)dh+ φ•ν D , g : -div(φ) = ρ + h in D (Ω D \ Γ D ) .
Using Lemma . below, we deduce that, for any u ∈ Lip(Ω D ), we have

F * (u) =          -Ω D udρ if σ * (x, ∇u) ≤ 1 and u = g on Γ D ∞ otherwise.
Finally, using the fact

inf(OF D ) = F (0) = F * * (0) = sup u∈Lip(Ω D ) -F * (u) = max(M D ),
we deduce the result.

Lemma . . Let u ∈ Lip(Ω D ), we have sup h∈M b (Ω D ) φ∈DM p (Ω D ) Ω D \Γ D ud(ρ + h) - Ω D σ(x, φ(x))dx + Γ D (u -g) dh + φ • ν D , g : -div(φ) = ρ + h in D (Ω D \ Γ D ) =          0 if σ * (x, ∇u) ≤ 1 and u = g on Γ D ∞ otherwise.
Proof. Take u as a test function in the divergence constraint -div(φ

) = ρ + h in D (Ω D \ Γ D ), we get I(h, φ) := Ω D \Γ D ud(ρ + h) - Ω D σ(x, φ(x))dx + Γ D (u -g) dh + φ • ν D , g = Ω D ∇u • φdx - Ω D σ(x, φ(x))dx + Γ D (u -g) dh + φ • ν D , g -u .
If σ * (x, ∇u) ≤ 1 and u = g on Γ D , then following Lemma . , we obtain sup I(h, φ) ≤ 0. Actually, sup I(h, φ) = 0 in this case by taking h ≡ -ρ and φ ≡ 0. If u(x 0 ) = g(x 0 ) for some x 0 ∈ Γ D , then we consider Dirac mass at x 0 , h = n sign(u(x 0 ) -g(x 0 ))δ x 0 for n ∈ N, and x

Φ 0 ∈ DM p (Ω D ) such that -div Φ 0 = ρ in D (Ω D \ Γ D ), we have sup I(h, φ) ≥ Ω D Φ 0 •∇u- Ω D σ(x, Φ 0 (x))dx+n|u(x 0 )-g(x 0 )|+ Φ 0 •ν D , g-u .
Letting n → ∞, we get the result. For the remaining case, i.e. u = g on Γ D and σ * (x, ∇u) > 1 on a non negligible set, we see rst that, for any u ∈ Lip(Ω D ), there exists a measurable function that we denote by q u : Ω D → R N , such that

q u (x) • ∇u(x) = σ * (x, ∇u(x)), a.e. in Ω D .
Indeed, recall that σ * (x, ∇u(x)) = max p { p, ∇u(x) : σ(x, p) = 1} and the function x → p, ∇u(x) + II [σ(x,.)=1] is measurable. Then, q u is given by the measurable representation in the set

arg max p { p, ∇u : σ(x, p) = 1}. Now, if u = g on Γ D and σ * (x, ∇u) > 1 in a subset A ⊂ Ω D such that |A| = 0, we consider Φ n = n qu |qu| χ A * η , where η is a sequence of molli ers. It is clear that there exists h ∈ M b (Ω D ), such that -div Φ n = ρ + h. For any n, we have sup I(h, φ) ≥ Ω D Φ n • ∇u - Ω D σ(x, Φ n (x))dx.
Letting → 0, we get

sup I(h, φ) ≥ n A 1 |q u | (q u • ∇u -σ(x, q u ))dx ≥ n A 1 |q u | (σ * (x, ∇u(x)) -1)dx.
Then, letting n → ∞, we get the result.

Remark . . Going over the duality inferred by Theorem . , we have inf

Ω D σ(x, φ(x))dx -φ • ν D , g : φ ∈ DM p (Ω D ), -div (φ) = ρ in D (Ω D \ Γ D ) = max u∈W 1,∞ (Ω) Ω D u(x)dρ, σ * (x, ∇u(x)) ≤ 1 a.e. x in Ω D and u = g on Γ D .
It is not clear if the inf is a min . This is closely connected to the regularity of the trace of divergence-measure eld. However, one sees that if this is true, i.e. the inf is a min, then the respective extremums u and φ satisfy the following PDE:

                           -div(φ) = ρ in D (Ω D \ Γ D ) φ(x) • ∇u(x) = σ(x, φ(x)) in Ω D u = g on Γ D σ * (x, ∇u(x)) ≤ 1 in Ω D φ • ν Γ = 0 on Γ. T L F We set again X = W 1,∞ (Ω D ) and Y = L ∞ (Ω D ) N .
For any u ∈ X and η ∈ Y , we de ne

F(u) =    -Ω D u dρ if u = g on Γ D +∞ otherwise , G(η) =    0 if σ * (x, η) ≤ 1 +∞ otherwise
, and Λu = ∇u.

Thus, the problem (M D ) can be rewritten in the form

-inf u∈X F(u) + G(Λu).
Thanks to Theorem . , we can write

-min F(u)+G(Λu) : u ∈ X = -sup -F * (-Λ * φ)-G * (φ) : φ ∈ DM p (Ω D ) = inf Ω D σ(x, φ(x))dx -φ • ν D , g : φ ∈ DM p (Ω D ), -div (φ) = ρ in D (Ω D \ Γ D ) .
Introducing a new primal variable q ∈ Y we can write (M D ) in the following alternative form inf

(u,q)∈X ×Y Λu=q F(u) + G(q) ( . )
so that (M D ) and (OF D ) can be recast in a saddle point form

inf (u,q)∈X ×Y sup φ∈DM p (Ω D ) L(u, q; φ)
where

L(u, q; φ) = F(u)+G(q)+ Ω D φ•(Λ(u)-q)dx, for any (u, q, φ) ∈ X ×Y ×DM p (Ω D ).
More precisely, we have

Proposition . . u is a solution of (M D ) if and only if the couple (u, q := Λu) ∈ X × Y is a solution of sup φ∈DM p (Ω D ) min (u,q)∈X ×Y L(u, q; φ)
which is equal to min

(u,q)∈X ×Y sup φ∈DM p (Ω D )
L(u, q; φ).

Proof. The proof of this result is standard. For completeness let us give the main arguments showing how the duality of the previous section takes part of this result. Using ( . ), it is not di cult to see that

min F(u) + G(Λu) : u ∈ X = min (u,q)∈X ×Y sup φ∈DM p (Ω D )
L(u, q; φ).

On the other hand, using the de nition of F * , G * and Λ * , one sees that

sup φ∈DM p (Ω D ) min (u,q)∈X ×Y L(u, q; φ) = sup -F * (-Λ * φ) -G * (φ) : φ ∈ DM p (Ω D ) .
Thus using Theorem . , the result of the proposition follows.

For a given r > 0, we recall that the augmented Lagrangian (cf. [ ]) is given by

L r (u, q; φ) = F(u)+G(q)+ φ, Λu-q + r 2 |Λu-q| 2 , for any (u, q, φ) ∈ X ×Y ×DM p (Ω D ).
In the same way, it can easily be proved that

Proposition . . Let r > 0. Then, u is a solution of (M D ) if and only if the couple (u, q := Λu) ∈ X × Y is a solution of sup φ∈DM p (Ω D ) min (u,q)∈X ×Y L r (u, q; φ)
Augmented Lagrangian approach for HJ equation which is equal to (S r ) : min

(u,q)∈X ×Y sup φ∈DM p (Ω D )
L r (u, q; φ). Now for the numerical computation concerning the problem (M D ), we will focus on the saddle point problem (S r ). Recall that the addition of the quadratic term r 2 |Λu-q| 2 has the advantage of improving the convergence of the dual approach (one can see [ , ]).

A ALG

We approximate the domain Ω D via a triangulation T h . For k ≥ 1, we denote by P k the space of polynomials with real coe cients and of degree at most k. We de ne

X h ⊂ W 1,∞ (Ω D )
as the space of continuous functions on Ω D belonging to P k on each triangle. Similarly, Y h is the space of vector valued functions belonging to (P k-1 ) d on each triangle. Then the problem (M D ) is discretized by the following nite-dimensional optimization problem: inf

u∈X h F(u) + G(Λu).
Then, as recalled in Section . , for a given q 0 ∈ Y h , φ 0 ∈ Y * h , using ALG algorithm we construct a sequence {u i } i , {q i } i , {φ i } i by optimizing alternatively in u and q, for i ≥ 1.

Algorithm ALG iterations

st step: u i+1 ∈ arg min u∈X h F(u) + φ i , Λ(u) + r 2 |Λ(u) -q i | 2 . nd step: q i+1 ∈ arg min q∈Y h G(q) -φ i , q + r 2 |Λ(u i+1
) -q| 2 . rd step: We update the multiplier φ by

φ i+1 = φ i + r(∇u i+1 -q i+1 ).
The steps of the Algorithm can be detailed as follows:

• The rst step amounts to solve a Laplace equation with mixed boundary conditions. Indeed, we have for every

z ∈ X h with z = 0 on Γ D r ∇u i+1 , ∇z = ρ, z + (rq i -φ i ), ∇z
which is equivalent to solve

-r∆u = ρ + div(φ -rq) in Ω D ,
. The augmented Lagrangian technique together with the following mixed boundary conditions:

   Dirichlet boundary condition u = g on Γ D Homogeneous Neumann boundary condition (r∇u + φ -rq) • ν Γ = 0 on Γ.
• The second step is a pointwise projection. Indeed, we use P 1 nite element for q and φ, we have at each vertex

x k 0 ∈ ∂II B * (x k ,.) (q i+1 (x k )) -φ i (x k ) -r(∇u i+1 (x k ) -q i+1 (x k )),
which is equivalent to perform pointwise projections:

q i+1 (x k ) = Proj B * (x k ,.) φ i (x k ) r + ∇u i+1 (x k )
where

B * (x, .) = {p ∈ R N : σ * (x, p) ≤ 1}.

E

Basing on the primal-dual optimality conditions, we use the following stopping criterion

. MaxLip := sup x σ * (x, ∇u(x)),

. Div := -div(φ) -ρ L 2 , . Dual := σ(x, φ(x)) -φ(x) • ∇u L 2 , . NBD φ := Γ(φ • ν) 2 1/2 .
We expect MaxLip ≤ 1 and Div, Dual, NBD φ to be small. In addition, we compute u -u exact for di erent norms where u is the computed solution and u exact is the exact solution, whenever the latter is easily found. Let us mention that NBD φ will concern only the Test where we prescribe data on a closed set D, so that Γ = ∅.

To implement the algorithm we use FreeFem++ [ ], which is particularly adapted to solve the Laplace equation in the rst step of ALG . We use P 2 nite element for u and P 1 nite element for φ and q (see e.g. [ ]). All the tests are executed on a macOs Mojave 10.14.4.

N T

We rst examine the case |∇u| = f (x, y) ≡ 1 in Ω = (0, 1) 2 and u = 0 on ∂Ω.

(a) The exact solution is u exact (x, y) = d((x, y), ∂Ω) = min(x, 1 -x, y, 1 -y). We measure u -u exact in di erent norms, with di erent mesh sizes N h and for iterations. 

N h Time execution u -u exact L 2 u -u exact L 1 u -u exact L ∞ . s .

T

We consider the same equation |∇u| = 1 on Ω = (-1, 1) 2 \ D where D is the euclidean ball centered at (0.05, 0.09) and of radius 0.25, and we set u to be equal to 0 on D.

(a) 

N h Time execution u -u exact L 2 u -u exact L 1 u -u exact L ∞ . s .

R

We take σ((x, y), v) =

β 1 v 2 1 + β 2 v 2 2 , with β 1 , β 2 > 0. It is not di cult to see that σ * (q) = q 2 1 β 1 + q 2 2 β 2 . As in [ ],
the projection onto the unit ball of σ * , B * = {q, σ * (q) ≤ 1} is given by

Proj B * (q) = q if q ∈ B * β 1 q 1 β 1 +ζ , β 2 q 2 β 2 +ζ otherwise,
where ζ is the zero of the function

F (ζ) = 1 - β 1 q 1 (β 1 + ζ) 2 + β 2 q 1 (β 2 + ζ) 2 ,
which can be computed with a dichotomy algorithm.

For this test, we take

β 1 = 1 e -2 √ 2(x-0.5) 2 +2(x-0.5)(y-0.5)+(y-0.5) 2 )
and

β 2 = 2 e -2 √ 2(x-0.5) 2 +2(x-0.5)(y-0.5)+(y-0.5) 2 )
.

(a) A E

One interesting case is the so called anisotropic Eikonal equation. Consider a symmetric positive de nite matrix M modelling the anisotropy, and de ne the following equation

H(x, ∇u) = √ ∇u † M ∇u -1 in Ω and u = 0 on ∂Ω.
In this case B * is an ellipse and the projection can be computed as in the Riemannian case [ ]:

Proj B * (q) = q if q ∈ B * (ζM + I n ) -1 q otherwise,
where ζ is the unique positive root of the function

F (ζ) = q † ζ M qζ -1 with qζ = (ζM + I n ) -1 q,
which can be found with a dichotomy method. We perform a test as in [ , Example ] by taking

M = l 1 (x, y) -l 3 (x, y) -l 3 (x, y) l 2 (x, y) with l 1 (x, y) = 1 e -2 √ 2.(x-0.5) 2 +2.(x-0.5).(y-0.5)+(y-0.5) 2 l 2 (x, y) = 2l 1 (x, y) l 3 (x, y) = l 1 (x, y).
(a) 

B * = conv(p 1 , • • • , p k ).
The projection onto B * can be performed easily (see [ , ]). We start by determining the vertices s 1 , • • • , s k of B * and the corresponding outward normal vectors ν i to the edges of B * . Afterwards, if v ∈ B * , we distinguish to cases:

either v ∈ [s i , s i+1 ] + R + ν i ,
and in this case we project v onto the segment [s i , s i+1 ], or it belongs to a sector s i + R + ν i + R + ν i+1 and in this case its projection is s i . We perform a test with p 1 = (1, -1), p 2 = (1, -0.8), p 3 = (-0.8, 1), p 4 = (-1, 1), p 5 = (-1, -1). We take N h = 64 and 600 iterations.

(a) 

R(n(x 1 , x 2 )) = I(x 1 , x 2 ), ( . ) 
where I(x 1 , x 2 ) is the brightness greylevel measured in the image at point (x 1 , x 2 ); R(n(x 1 , x 2 )) is the re ectance map and n(x 1 , x 2 ) is the unit normal at point

(x 1 , x 2 , u(x 1 , x 2 )) given by n(x 1 , x 2 ) = 1 1 + |∇u(x 1 , x 2 )| 2 (-∂ x 1 u(x 1 , x 2 ), -∂ x 2 u(x 1 , x 2 ), 1).
In ( . ), the irradiance function I(x 1 , x 2 ) is known since it is measured at each pixel of the brightness image, for example, in terms of greylevel in the interval [0, 1]. The implicit unknown is the surface u(x 1 , x 2 ), which has to be reconstructed.

In the case of Lambertian and the surface illuminated by a simple distant light source of direction = (w, r) = (w 1 , w 2 , r) ∈ R 3 , one has R(n(x 1 , x 2 )) = n(x 1 , x 2 ) • (w 1 , w 2 , r) and, by ( . ),

I 1 + |∇u| 2 + ∇u • w -r = 0. ( . )
This equation falls into the scope of Hamilton-Jacobi equations

H(x, ∇u) = 0 in Ω, ( . )
where the Hamiltionian H is de ned by H(x, p) = I 1 + |p| 2 +p•w-r. In particular, if the object is vertically enlightened, i.e., = (0, 0, 1), one obtains the standard Eikonal equation

|∇u(x 1 , x 2 )| = 1 I 2 (x 1 , x 2 ) -1. ( . )
As pointed out in [ ] (see also [ ]), there are three major families of numerical methods allowing the resolution of the SfS problem. Namely, PDE methods (cf [ , , , , ]), optimization methods (cf [ , ]) and approximating the image irradiance equation (cf [ , , ]).

Here, we are particularly interested in the study of the PDE formulation in terms of HJ equations ( . ) as it was presented in the previous chapter. As we know, the theory of viscosity solutions [ , , ] provides a suitable framework to study equations of the form ( . ), and applications of the viscosity theory to the SfS problem go back to the works of Lions, Rouy and Tourin [ , ] and recently in the work of Prados, Camilli and Faugeras [ ]. Several di culties arise while dealing with the SfS problem, namely compatibility of boundary conditions and the degeneracy of the Hamiltonian. As we recalled in Chapter ,it is well known that for ( . ) coupled with the boundary condition u = g on ∂Ω, to admit a solution one needs to check that g(x) -g(y) ≤ d σ (y, x) for all x, y ∈ ∂Ω, where d σ is the intrinsic distance associated to the Hamiltonian (see ( . )). In addition, imposing only boundary conditions is not su cient to ensure the uniqueness of solution to the HJ equations ( . ). It turns out that the set of degeneracy of the distance d σ , called the Aubry set, plays the role of a uniqueness set for ( . ) (see e.g. [ ]). In the case of Eikonal equation ( . ), the Aubry set A can be taken as the zero set

[k = 0] of k = √ I -2 -1.
In other words, it corresponds to the points with maximal intensity I, i.e., I(x 1 , x 2 ) = 1 so that the right hand side in ( . ) vanishes. Most of the authors (cf [ , , ] for example) choose to regularize the equation to avoid these points. We will not encounter this di culty in our approach since we do not need to deal with the inverse of possibly vanishing functions. We only need to perform projections onto euclidean balls whose radii may be equal to zero.

Our approach is based on the results of Chapter , we characterize the maximal viscosity subsolution of ( . ) in terms of a maximization problem. We then associate a dual problem and exploit the saddle-point structure to approximate the solution of ( . ) using the Chambolle-Pock (CP) algorithm. Our approach lies between the PDE and optimization methods since we start by characterizing the maximal viscosity subsolution of the HJ equation thanks to the intrinsic metric of the Hamiltonian and we end up with an optimization problem under gradient constraint. Moreover, the convergence of discretization is also studied in detail.

M

As we discussed in the introduction, we will consider the PDE formulation of the SfS problem in terms of HJ equation. Following our setting in Section . , we consider the following HJ equation where

D ⊂ Ω H(x, ∇u) = 0 in Ω \ D u = g on D ( . )
where g : D → R is a continuous function satisfying the compatibility condition g(x) -g(y) ≤ d σ (y, x) for any x, y ∈ D.

Thanks to Theorem . , the following result allows us to approach the SfS problem via a maximization problem.

Theorem . . The unique maximal viscosity subsolution of the equation ( . ) can be recovered via the following maximization problem

(M) : max u∈W 1,∞ (Ω) Ω u(x)dx, σ * (x, ∇u(x)) ≤ 1 and u = g on D .
We propose here a di erent proof of duality than the one presented in Chapter . For simplicity, we will state it for the case D = ∂Ω (which is essentially the case for other numerical computations). In addition, we assume that g ∈ H 1/2 (∂Ω).

Theorem . . We have

max u∈W 1,∞ (Ω) Ω u(x)dx, σ * (x, ∇u(x)) ≤ 1 and u = g on ∂Ω = inf φ∈L 2 (Ω) N Ω σ(x, φ)dx -g, φ • n H 1/2 ,H -1/2 : -div(φ) = 1 in D (Ω) := (OF).
Proof. To prove the duality between (M) and (OF), we use a perturbation technique as follows. De ne on L 2 (Ω) N the following functional

E(p) := -sup Ω udx : u ∈ Lip(Ω), σ * (x, ∇u(x)-p(x)) ≤ 1, u = g on ∂Ω .
Then, one can check that E is convex and lower semicontinuous. To compute E * we start by observing that since u = g on ∂Ω, we can assume thanks to trace lifting Theorem that g = γ 0 (w) for some w in H 1 (Ω), and u = ξ + w with ξ ∈ H 1 0 (Ω) ∩ W 1,∞ (Ω).

Primal-Dual Algorithm for Shape from Shading

We then have for any φ ∈ L 2 (Ω) N :

E * (φ) = sup p∈L 2 (Ω) N Ω φ • p dx -E(p) = sup p∈L 2 (Ω) N ,ξ∈H 1 0 (Ω) Ω φ • p dx + Ω ξdρ + Ω wdx : σ * (x, ∇(ξ + w) -p) ≤ 1
Set q = ∇(ξ + w) -p we get p = ∇(ξ + w) -q, we then have

E * (φ) = sup q∈L 2 (Ω) N ,ξ∈H 1 0 (Ω) Ω φ • (∇(ξ + w) -q)dx + Ω ξdx + Ω wdx : σ * (x, q(x)) ≤ 1 = sup ξ∈H 1 0 (Ω) q∈L 2 (Ω) N , σ * (x,q(x))≤1 Ω φ • ∇ξdx + Ω ξdx + Ω φ • ∇wdx + Ω wdx - Ω φ • qdx .
The last quantity is nite if we impose that Ω φ•∇ξdx+ Ω ξdx = 0 for all ξ ∈ H 1 0 (Ω), which means that -div(-φ) = 1 and consequently φ ∈ H div (Ω), where

H div (Ω) = {φ ∈ L 2 (Ω) N , div(φ) ∈ L 2 (Ω)}.
Thus the normal trace of φ is well-de ned and φ.n ∈ H -1/2 (∂Ω). Taking ν = -φ.n, then -div(-φ) = 1 -ν in D (R N ) and therefore, for such a φ, integrating by parts we get

E * (-φ) = sup q∈L 2 (Ω) N Ω φ • q dx : σ * (x, q(x)) ≤ 1 + w, ν H 1/2 ,H -1/2 = Ω σ(x, φ)dx -g, φ.n H 1/2 ,H -1/2 .
Finally,

max M = -E(0) = -E * * (0) = -sup -E * (-φ) = inf E * (-φ) = inf(OF D ),
as desired.

Remark . . When the object is enlightened vertically, i.e., = (0, 0, 1) and u = 0 on ∂Ω, the SfS problem amounts to solve the following Eikonal equation

|∇u| = k in Ω u = 0 on ∂Ω ( . )
where k(x) = I -2 (x) -1. In this case, the duality in Theorem . reads as

max u∈W 1,∞ (Ω) Ω udx : |∇u| ≤ k, u = 0 on ∂Ω = inf φ∈L 2 (Ω) N Ω k(x)|φ|dx : -div(φ) = 1 in D (Ω) .
As for the Aubry set A, it can be taken as the zero set [k = 0] of k = √ I -2 -1, which corresponds to the points with maximal intensity I, i.e., I(x) = 1 so that k(x) vanishes. As we will see in the next section, dealing with nonempty Aubry set does not represent an obstacle in our approach. Contrary to the works (e.g [ , , ]) where the authors approximate the degenerate HJ equation via non-degenerate one (typically, by considering ( . ) with k = max(k, ) for > 0), the only step where we deal with degeneracy points is the projection onto a ball of radius k, which may be equal to zero.

Remark . (Boundary conditions). It is well known that a natural choice for boundary conditions is the Dirichlet boundary condition. As pointed out in [ ], the images we will consider contain an occluding boundary (see Fig . ) which will be taken as the boundary ∂Ω. Particularly, assuming that the object is placed on a at table suggests taking u = 0 on ∂Ω or more generally, if the height g of the surface on which is placed is known one can take u = g on ∂Ω. 

Ω ∂Ω

D

The main result in this section will be the convergence of primal-dual solutions of the discretized ( nite-dimensional) problems to the ones of the original problems in continuous setting.

D

Let Ω ⊂ R d be an image domain, which can be taken as Ω = [0, 1] 2 . Following [ ], we discretize the domain Ω using a regular grid m×n: {(ih, jh) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} for a xed h > 0. We denote by D d = {(i, j) : (ih, jh) ∈ D} the indexes whose spatial positions belong to D and by u i,j the values of u at (ih, jh). The space X = R m×n is equipped with a scalar product and an associated norm as follows:

u, v = h 2 m i=1 n j=1 u i,j v i,j and u = u, u .
For 1 ≤ i ≤ m and 1 ≤ j ≤ n, we de ne the components of the discrete gradient operator via nite di erences:

(∇ h u) 1 i,j = u i+1,j -u i,j h if i < m 0 if i = m , (∇ h u) 2 i,j = u i,j+1 -u i,j h if j < n 0 if j = n.
Then the discrete gradient

∇ h : X -→ Y = R m×n×2 given by (∇ h u) i,j = (∇ h u) 1 i,j , (∇ h u) 2 i,j
. Similar to the continuous setting, we de ne a discrete divergence operator div h : Y → X, which is the minus of the adjoint of ∇ h , given by div

h = -∇ * h . That is, -div h φ, u X = φ, ∇ h u Y for any φ = (φ 1 , φ 2 ) ∈ Y and u ∈ X. It follows that div is explicitly given by (div h φ) i,j =        φ 1 i,j h if i = 1 φ 1 i,j -φ 1 i-1,j h if 1 < i < m -φ 1 m-1,j h if i = m +        φ 2 i,j h if j = 1 φ 2 i,j -φ 2 i,j-1 h if 1 < j < n -φ 2 i,n-1 h if j = n.

Proposition . . ([ , ]) Under the above-mentioned definitions and notations, one has that • The adjoint operator of

∇ h is ∇ * h = -div h . • Its norm satisfies: ∇ h 2 = div h 2 ≤ 8/h 2 .

D

Based on the discrete gradient and divergence operators, we propose a discrete version of (M) as follows

(M) d : min u∈X u i,j =g i,j ∀(i,j)∈D d -h 2 m i=1 n j=1 u i,j + I B σ * (∇ h u)
where B σ * := {v ∈ Y : σ * (ih, jh, v i,j ) ≤ 1, ∀(i, j)} the unit ball w.r.t. σ * , and I B σ * is the indicator function in the sense of convex analysis, that is,

I B σ * (v) = 0 if v ∈ B σ * +∞ otherwise.
In other words, the discrete version (M) d can be written as

min u∈X F h (u) + G h (∇ h u),
where

F h (u) = -h 2 m i=1 n j=1 u i,j if u i,j = g i,j ∀(i, j) ∈ D d +∞ otherwise , and 
G h = I B σ * .
Let u * ∈ X * , we then have

F * h (u * ) = sup u∈X u, u * X -F h (u) = sup u∈X u i,j =g i,j ∀(i,j)∈D d h 2 m i=1 n j=1 u i,j u * i,j + h 2 m i=1 n j=1 u i,j = sup u∈X u i,j =g i,j ∀(i,j)∈D d h 2 m i=1 n j=1 u i,j (u * i,j + 1) = h 2 (i,j)∈D d g i,j u * i,j + 1 if -u * i,j = 1 for (i, j) / ∈ D d +∞ otherwise.
It follows that

F * h (div h φ) = h 2 (i,j)∈D d g i,j ((div h φ) i,j + 1) if (-div h φ) i,j = 1 for (i, j) / ∈ D d +∞ otherwise.
On the other hand, we have for q

= (q 1 , q 2 ) ∈ Y * G * h (q) = sup p=(p 1 ,p 2 )∈Y p, q Y -G h (p) = sup p∈B σ * h 2 m i=1 n j=1 p 1 i,j q 1 i,j + p 2 i,j q 2 i,j = h 2 m i=1 n j=1
σ(ih, jh, q i,j ).

Consequently, the corresponding discrete dual problem is given by

(OF) d : max φ∈Y -F * h (div h φ) -G * h (φ) = - min φ∈Y (-div h φ) i,j =1 for (i,j) / ∈D d h 2    m i=1 n j=1 σ(ih, jh, φ i,j ) + (i,j)∈D d g i,j ((div h φ) i,j + 1)    .
( . ) In the case of Eikonal equations |∇u(x)| = k(x), the primal-dual relations can be explicitly written as

min u∈X u i,j =g i,j ∀(i,j)∈D d -h 2 m i=1 n j=1 u i,j + I B(0,k i,j ) (∇ h u i,j ) = - min φ∈Y (-div h φ) i,j =1 for (i,j) / ∈D d h 2    m i=1 n j=1 k i,j φ i,j + (i,j)∈D d g i,j ((div h φ) i,j + 1)    ,
where I B(0,k i,j ) is the indicator function of the Euclidean ball with center 0 and radius k i,j , the latter being the value of k at (ih, jh).

To end this subsection, let us recall that (see Theorem . ) a pair (u, φ) ∈ X × Y solves the primal and dual problems (M) d and (OF) d if and only if

div h (φ) ∈ ∂F h (u) and φ ∈ ∂G h (∇ h u),
or equivalently, they satisfy the following system

           -(div(φ)) i,j = 1 for (i, j) ∈ D d φ i,j • ∇ h u i,j = σ(ih, jh, φ i,j
) for all (i, j) u i,j = g i,j for every (i, j) ∈ D d .

( . )

T

In this subsection, we will show a result on the convergence of discretization, i.e, where the solutions of the discrete optimization and its discrete dual problem converge to the ones of the corresponding problems in continuous setting. First, let us describe how to interpolate elements of X and Y .

We know the values of u h ∈ X at the vertices (i, j), (i, j + 1), (i + 1, j + 1), (i + 1, j) of a small square (see Fig . ). We interpolate u h ∈ X by piecewise a ne functions on the sub-triangles, i.e., taking ũh ∈ L 2 (Ω) as an a ne function on the sub-triangles and coincides with u h on all the vertices. Then ũh is Lispchitz function and its gradient is, by the de nition of ũh , given by

∇ũ h (x, y) = u h (i + 1, j) -u h (i, j) h , u h (i, j + 1) -u h (i, j) h ( . )
on the sub-triangle of the vertices (i, j), (i, j + 1), (i + 1, j); and

∇ũ h (x, y) = u h (i + 1, j + 1) -u h (i, j + 1) h , u h (i + 1, j + 1) -u h (i + 1, j) h ( .
) on the sub-triangle of the vertices (i, j + 1), (i + 1, j + 1), (i + 1, j).

Let φh ∈ L 2 (Ω) 2 be an interpolation of φ h ∈ Y such that Ω σ(x, φh )dx = h 2 m i=1 n j=1 σ(ih, jh, (φ h ) i,j ).
(i,j) (i+ ,j) (i+ ,j+ ) (i,j+ ) Proposition . (Convergence of discretization). Assume that the Finsler metric σ associated with the Hamiltionian H is non-degenerate (i.e. H(x, 0) < 0, ∀x ∈ Ω) and that g = 0. Let u h ∈ X and φ h = (φ 1 h , φ 2 h ) ∈ Y be a pair of primal-dual solutions to the discrete optimization problem (M) d and its dual problem ( . ). Then ũh ⇒ u and φh φ as the step size h → 0. Moreover, u and φ are optimal solutions to (M) and its dual problem, respectively.

Proof. Since u h is feasible for the discrete optimization problem (M) d , its discrete gradient ∇ h u h ∈ B σ * is bounded for all small h > 0. In other words, the sequences

u h (i+1,j)-u h (i,j) h
and u h (i,j+1)-u h (i,j) h are bounded for h > 0 and i = 1, ..., m, j = 1, ..., n. Following ( . ) and ( . ), the sequence {ũ h } is equi-Lispchitz. Combining with the fact that u h = g on D d , by Ascoli-Arzelà's Theorem, up to a subsequence, ũh converges uniformly to some Lipschitz function u on Ω as the step size h → 0. By the optimality of u h and φ h , we have

F h (u h ) + G h (∇ h u h ) = -F * h (div h φ h ) -G * h (φ h ).
More concretely,

h 2 m i=1 n j=1 u i,j = h 2 m i=1 n j=1 σ(ih, jh, (φ h ) i,j )
or equivalently

Ω ũh dx = Ω σ(x, φh )dx.
Since σ is non-degenerate and ũh is bounded, φh is also bounded in L 1 (Ω). Hence, φh φ weakly* in M b (Ω). Using the lower-semicontinuity of the integrand (see [ , Theorem . ]), we deduce that

Ω σ(x, φ)dx ≤ lim h→0 Ω σ(x, φh )dx = lim h→0 Ω ũh dx = Ω udx.
By the duality result in the continuous setting given in Section (Theorem . ), we deduce that u and φ are primal-dual optimal solutions.

Remark . . In the case where σ is a degenerate Finsler metric, there is no boundedness on φh and we cannot thus pass to the limit for φh . However, we still have the uniform convergence of ũh to some Lipschitz function u and moreover u is actually an optimal solution to the maximization problem (M).

N

In this section we focus on the case where the light direction is vertical, i.e., = (0, 0, 1).

S

As we pointed out in Section . , the discrete version (M) d of (M) can be rewritten in the form

inf u∈X F h (u) + G h (∇ h u) ( . )
or in an inf-sup form as

inf u∈X sup φ∈Y F h (u) + φ, ∇ h u -G * h (φ)
where

F h (u) = -h 2 m i=1 n j=1 u i,j if u i,j = g i,j ∀(i, j) ∈ D d +∞ otherwise , and G h = I B σ * .
Both the functions F h and G h are lower-semicontinuous, convex and they are "proximable", i.e. we can compute their proximal operators (see De ntion . ):

Prox τ F h (u) = argmin v∈X 1 2 u -v 2 + τ F h (v) Prox ηG h (ψ) = argmin φ∈Y 1 2 ψ -φ 2 + ηG h (φ)
where τ, η > 0. Then the Chambolle-Pock algorithm [ ] can be applied to ( . ):

Algorithm Chambolle-Pock iterations st step. Initialization: choose η, τ > 0, θ ∈ [0, 1], u 0 and take φ 0 = ∇ h u 0 , ū0 = u 0 . nd step. For k ≤ Iter max do

φ k+1 = Prox ηG * h (φ k + η∇ h (ū k )); u k+1 = Prox τ F h (u k -τ ∇ * h (φ k+1 )); ūk+1 = u k+1 + θ(u k+1 -u k ).
As we pointed out in Section . . , if θ = 1 and ητ ∇ h 2 < 1, the sequence {u k } converges to an optimal solution of ( . ). Contrary to the ALG algorithm, the Chambolle-Pock algorithm does not require to solve a Laplace equation at each iteration, we only need to perform some algebraic operations, namely the multiplication by apply the gradient and the divergence in each iteration. Moreover, it easy to implement on Matlab which allows working on images easily contrary to the ALG algorithm which was implemented using FreeFem++ to solve linear PDEs.

In order to compute Prox ηG * h we make use of the celebrated Moreau identity

φ = Prox ηG * h (φ) + ηProx η -1G h (φ/η), ∀φ ∈ Y. Moreover, Prox η -1 G h is nothing but the projection onto B(0, k i,j ). Indeed Prox η -1 G h (ψ) = arg min q∈Y 1 2 |q -ψ| 2 + 1 η G h (q) = arg min q i,j ∈B(0,k i,j ) 1 2 |q -ψ| 2 = Proj B(0,k i,j ) (ψ i,j ).
Consequently,

Prox ηG * h (ψ) i,j = ψ i,j -ηProj B(0,k i,j ) (ψ i,j /η).
Let us now compute the proximal operator of F h . We have

Prox τ F h (u) = argmin v∈X 1 2 v-u 2 +τ F h (v) = argmin v=g on D d 1 2 v-u 2 -τ h 2 m i=1 n j=1 v i,j .
Writing the rst-order optimality condition we get

(Prox γF h (u)) i,j -u i,j -τ h 2 = 0 ⇔ (Prox γF h (u)) i,j = u i,j +τ h 2 , ∀i = 1, ..., m, j = 1, ..., n.
So in practice, we update u n+1 via the previous formula and we then set its values to g on the Dirichlet domain.

For applications in image, as usual, one can always assume that h = 1 since it only scales the domain. The details of the nd step in Algorithm are then given by • compute φ k+1 :

φk+1 = φ k + η∇ h ūk φ k+1 i,j = φk+1 i,j -ηProj B(0,k i,j ) ( φk+1 i,j /η), 1 ≤ i ≤ m, 1 ≤ j ≤ n;
• compute u k+1 :

v k+1 = u k + τ div h (φ k+1 ) u k+1 i,j = v k+1 i,j + τ, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Remark . . Another way to formulate the problem (M) (in the continuous setting) is to take

F(u) = - Ω udx, and G(q, v) = 0 if |q| ≤ k and v = g on ∂Ω ∞ otherwise,
for all u ∈ W 1,∞ (Ω), and (q, v) ∈ L ∞ (Ω) d × L 2 (∂Ω). In this case, the problem (M) can be rewritten as

inf u F(u) + G(K(u))
where K = (∇, γ 0 ), and γ 0 is the trace operator on the boundary. This being said, at the second step of the Algorithm we need to compute γ * 0 which turns requiring to solve a PDE. Indeed, we de ne

γ 0 : H 1 (Ω) → L 2 (∂Ω)
through γ 0 (u) = u |∂Ω for every u ∈ H 1 (Ω). By de nition, for any

(u, v) ∈ H 1 (Ω) × L 2 (∂Ω) γ 0 u, v L 2 (∂Ω) = u, γ * 0 v H 1 (Ω) . This means that ∂Ω uvdS = Ω u(γ * 0 v)dx + Ω ∇u∇(γ * 0 v)dx
for any u ∈ H 1 (Ω). In other words γ * 0 v solves the following PDE

-∆z + z = 0 in Ω and ∂ n z = v on ∂Ω.
Thus we opt for the rst formulation in order to avoid additional costs to the computations.

E

As usual, we can check the optimality conditions ( . ) associated to (M) d and (OF) d . Namely we check the following conditions:

• Divergence error: -div h (φ) -1 2 .

• Dual error: σ(x, φ) -∇ h u • φ 1 .

• Lip error: sup i,j σ * (ih, jh, ∇ h u i,j ).

We expect Divergence error and Dual error to be small. Note that for vertical light direction, the support function σ is easy to compute. More particularly, one has for every p ∈ R d , σ(x, p) = k(x)|p| where |p| is the euclidean norm of p. Thus, for the Lip error, we can check the value sup i,j ( ∇ h u i,j -k i,j ) and expect it to be close to zero.

N

We test for some commonly used images: Mozart and vase images taken from [ ] and Basilica and vaso images taken from [ ].

In these cases, the shapes are reconstructed by solving the Eikonal equation |∇u(x, y)| = k(x, y) in D with g ≡ 0, i.e, with homogeneous Dirichlet boundary condition u = 0 on ∂Ω. The algorithm was implemented in Matlab and executed on a , GHz CPU running macOs Catalina system. Let us mention that for most shapes, only a hundred of iterations is enough to reconstruct a reasonable solution. We took 5000 iterations in order to check that the error criteria are getting smaller.

C

Let us mention that our strategy works (at least theoretically) to a general light direction. In this case one has to solve a PDE of the form

H(x, ∇u) = 0 in Ω u = 0 on ∂Ω ( . )
Similarly, the maximal viscosity subsolution of ( . ) can be recovered via the following maximization problem

(M) g : max u∈W 1,∞ (Ω) Ω udx : σ * (x, ∇u) ≤ 1, u = 0 on ∂Ω .
Contrary to the case where the object is enlightened vertically, i.e., = (0, 0, 1), where the Prox G * in Algorithm involved projections on euclidean balls, in this general case we need to be able to project on

Z(x) = {p ∈ R d : σ * (x, p) ≤ 1},
for every x ∈ Ω. To this end, one can use the following result.

Theorem . . [ ] Let

Z = {p ∈ R d : H(p) ≤ c} where c ∈ R and H : R d → (-∞, ∞] is a convex, proper function. If there exists p ∈ R d such that H(p) < c then Proj Z (p) = Proj dom(H) (p) if H(Proj dom(H) (p)) ≤ c Prox ηH (p) otherwise. ( . 
)
where η is any positive root of the equation f (η) := H(Prox ηH (p)) -c = 0.

Taking = (1, 0, 1) as light direction in ( . ), we obtain the following Hamiltonian

H(x, ∇u) = I 1 + |∇u| + ∂ x 1 u -1, for which Z(x 1 , x 2 ) = {p ∈ R 2 : I(x 1 , x 2 ) 1 + |∇u(x 1 , x 2 )| + ∂ x 1 u(x 1 , x 2 ) ≤ 1}.
A priori there is no closed form for the support function σ of Z and its dual σ * , so in future works, we are planing to investigate and propose methods to perform e ciently projections of the form ( . ), and to adapt our techniques for non-Lambertian surfaces.

B HJ I

Our main interest here lies in the study of the connection between HJ equations of the type

H(x, ∇u(x)) = 0 in Ω u = g on D ⊂ Ω. ( . )
and the Beckmann problem as well as the Monge-Kantorovich problem in the case where H is a Hamiltonian satisfying the assumptions (H1)-(H3) recalled in . . Recall that Beckmann's problem is a divergence PDE-constrained optimization problem. It is important in the study of transportation activities. As to the Monge-Kantorovich problem, it consists in nding the best way to push forward between two given measures (usually called goods and consumers) related to some cost function. It is a linear optimization problem which appears in the study of optimal transportation and allocation of resources.

Following our presentation in Section . , consider two nonnegative Radon measures ρ 1 and ρ 2 representing the distributions of resident and services, and let Φ : Ω → R N be the tra c ow satisfying the equilibrium condition:

-div(Φ) = ρ := ρ 2 -ρ 1 in D (Ω),
together with the no-ux boundary condition, i.e., Φ • n = 0 on ∂Ω. Now, given a non-degenerate Finsler metric F , and assume that the transportation cost per costumer is F (x, Φ(x)), then Beckmann's problem reads

inf Φ∈L 1 (Ω) N Ω F (x, Φ(x)) dx : -div(Φ) = ρ 2 -ρ 1 in D (R N ) .
Moreover, thanks to Thereom . we have duality (see e.g.[ , , , ] for details) with

min Ω×Ω d F (x, y) dµ : π 1 #ρ = ρ 1 , π 2 #ρ = ρ 2 = max Ω u d(ρ 2 -ρ 1 ) : u(y) -u(x) ≤ d F (x, y) for all x ∈ Ω , ( . )
where

d F (x, y) := inf ϕ∈Lip([0,1],Ω) ϕ(0)=x, ϕ(1)=1 1 0 F (ϕ(t), ϕ (t))dt.
In the next section we show how to provide similar results from our formulation to the solution of ( . ).

H J B '

The connection between HJ equation coupled with a Dirichlet condition ( . ) and Beckmann's problem is not straightforward.

In the case where H(x, p) = |p| -k(x) (i.e., the Eikonal equation |∇u(x)| = k(x)) complemented with Dirichlet boundary condition u = g on ∂Ω, the viscosity solution of ( . ) can be characterized through the following optimization problem max Ω u dx : u(x) -u(y) ≤ d k (y, x) and u = g on ∂Ω , where d k is given by

d k (x, y) = inf 1 0 k(ϕ(t)) |ϕ (t)| dt : ϕ ∈ Lip([0, 1], Ω), ϕ(0) = x, ϕ(1) = 1 .
Thanks to Kantorovich duality, it is meaningful to consider this problem as some kind of push-forward of ρ 1 := L N Ω. The o set is clearly connected to the lack of a measure ρ 2 which can t out the problem with the balanced property. Actually, the linked Beckmann and Monge-Kantorovich problems aim to nd moreover the optimal ρ 2 concentrated on ∂Ω which will consume ρ 1 := χ Ω . More precisely, we will prove that the problem is connected to

min ν∈M b (∂Ω) max u Ω u(dx -dν) - ∂Ω g dν : u is 1 -Lipschitz w.r.t d k ,
which provides the following modi ed Beckmann problem

min ν∈M b (∂Ω) inf Φ∈L 1 (Ω) N Ω k(x) |Φ|(x) dx + ∂Ω g dν : -div(Φ) = 1 -ν in D (R N ) .
as well as to the following modi ed Monge-Kantorovich problem

min γ∈M + (Ω×Ω),ν∈M b (∂Ω) Ω×Ω d k (x, y)dγ(x, y)+ ∂Ω gdν : π 1 γ = ν + , π 2 γ = 1+ν -.
For the general case of degenerate Hamiltonian H, we will also obtain the corresponding results by means of the intrinsic distance d σ associated to the Hamiltonian H (see ( . )).

The main result of this chapter is the rigorous treatment for the case of degenerate Hamiltionian H and its degenerate intrinsic metric d σ , as well as non-zero Dirichlet condition. Moreover, we also illustrate numerical examples.

Again, recall that we are considering the following HJ equation 

H(x, ∇u) = 0 in Ω u = g on D ( 

M

In order to prove the connection between ( . ) and a Beckmann-type problem, we will consider a slightly more general variant of ( . ) by considering for ρ ∈ M b (Ω), the following maximization problem

(M D ) : max Ω u dρ : u(y) -u(x) ≤ d σ (x, y), ∀x, y ∈ Ω and u = g on D .
We can clearly see that the solution of ( . ) can be recovered by taking ρ ≡ 1.

The connection with the Beckmann problem is given in the following theorem.

Theorem . . The optimization problem (M D ) coincides with the following Beckmanntype problem

(BK) : min φ∈M b (Ω) N ν∈M b (D) Ω σ(x, φ |φ| (x))d|φ| + D gdν : -div(φ) = ρ -ν in D (R N ) .
Moreover, u and (φ, ν) are optimal solutions to (M D ) and (BK), respectively, if and only if

             -div(φ) = ρ -ν in D (R N ) φ(x) • ∇ |φ| u(x) = σ x, φ |φ| (x) |φ| -a.e. x u = g on D,
where ∇ |φ| u denotes the tangential gradient with respect to |φ|, the total variation of φ (cf.

[ ]).

In particular, we have the following.

Corollary . . Let u be the maximal viscosity subsolution to ( . ) and (φ, ν) an optimal solution to (BK) with ρ = 1, then

             -div(φ) = 1 -ν in D (R N ) φ(x) • ∇ |φ| u(x) = σ x, φ |φ| (x) |φ| -a.e. x u = g on D.
For the case of non-degenerate Finsler metric σ (i.e., H(x, 0) < 0) we know that, by ( . ), the minimal value of (BK) is the same with e have (see [ ] for the particular case

σ = |.|) min φ∈M b (Ω) N Ω σ(x, φ |φ| (x))d|φ| : -div(φ) = ρ -ν in D (R N ) = W dσ (ρ -+ν + , ρ + +ν -)
the so called Monge-Kantorovich work between ν and ρ given by

W dσ (ρ -+ν + , ρ + +ν -) = min γ∈M + (Ω×Ω) Ω×Ω d σ (x, y)dγ(x, y) : π 1 γ = ρ -+ ν + , π 2 γ = ρ + + ν -.
Moreover, recall that the Robinstein-Kantorovich duality implies that

W dσ (ρ -+ ν + , ρ + + ν -) = max u Ω ud(ρ -ν) : u is 1 -Lipschitz w.r.t d σ .
So, minimizing over all ν ∈ M(D) leads to the study of the following problem

(M N ) : min ν∈M b (D) max u Ω ud(ρ -ν) + D gdν : u is 1 -Lipschitz w.r.t d σ ,
as well as Monge-Kantorovich problem

(MK) : min γ∈M + (Ω×Ω),ν∈M b (D) Ω×Ω d σ (x, y)dγ(x, y)+ D gdν : π 1 γ = ρ -+ν + , π 2 γ = ρ + +ν -.
The following theorem ensures that the above-mentioned relations still hold true for the case of degenerate HJ equation, i.e., H(x, 0) ≤ 0.

Theorem . . Under the assumptions (H -H ), we have

max(M D ) = min(BK) = min(M N ) = min(MK).
As a typical example we will consider an HJ equation of Eikonal type, coupled with a zero Dirichlet boundary condtion,

|∇u(x)| = k(x) in Ω u = 0 on ∂Ω.
In other words,

H(x, p) = |p| -k(x)
where k is a continuous, nonnegative function on Ω. In this case, the problem (M D ) can be rewritten as

sup Ω udx : |∇u| ≤ k and u = 0 ∂Ω , or (P) : inf u∈V {F(u) + G(Λu)} where V = C 1 (Ω) ∩ H 1 0 (Ω), F(u) = - Ω udx, Λu = ∇u and G(q) = 0 if |q| ≤ k +∞ otherwise.
For the case of non-degeneracy, i.e., k(x) > 0 on Ω, the Fenchel-Rockafellar duality, since the quali cation conditions are satis ed (see e. However, dealing with general degenerate Hamiltionians at least two di culties arise. Firstly, the quali cation conditions are not satis ed to apply directly the Fenchel-Rockafellar duality. Secondly, in this setting the problem (BK) is not coercive, it follows that the existence of an optimal solution to (BK) is not trivial. These two issues will be bypassed via approximation and optimal transport techniques. Before ending this section, let us mention that thanks to the duality result Chapter , we have the following

Corollary . . The extremal values (BK) and

(OF D ) : inf

φ∈DM p (Ω) Ω σ(x, φ(x))dx -φ • n, g : -div(φ) = ρ in D (Ω) , coincide.
The formulation of the problem (OF D ) as well as the de nition of DM p (Ω) and further comments are recalled in Remark . . 

T : φ → T (φ) =    Ω σ(x, φ(x))dx if -div(φ) = ρ -ν in D (R N ) +∞ otherwise, E :, u → E(u) =    Ω ud(ρ -ν) if σ * (x, ∇u(x)) ≤ 1 a.e. x ∈ Ω -∞ otherwise.
Lemma . . Assume that σ is a degenerate Finsler metric. Let T , E be defined as above and ρ(Ω) = ν(D). Then

inf φ∈L 1 (Ω) N T (φ) = sup u∈Lip(Ω) E(u).
. Proofs

Proof. The proof will be divided into two steps. We rst prove for the case of nondegenerate Finsler metric σ, i.e., there exist two positive constants K 1 , K 2 such that

K 1 |p| ≤ σ(x, p) ≤ K 2 |p| for any x ∈ Ω, p ∈ R N .
In this setting, due to the non-degeneracy of σ, the quali cation conditions are satis ed and the result follows directly from the Fenchel-Rockafellar duality (see e.g. [ , Theorem III . ]). For the general case, we check at once that sup E ≤ inf T by taking u as a test function in the divergence constraint -div(φ) = ρ-ν in D (R N ). Therefore, it remains to prove that inf T ≤ sup E.

( . )

We now proceed by an approximation via non-degenerate Finsler metrics. For n ∈ N * and x ∈ Ω, de ne

σ n (x, p) := max(σ(x, p), |p| n ) for every p ∈ R N ,
which establishes a sequence of non-degenerate Finsler metrics σ n on Ω satisfying

|p| n ≤ σ n (x, p) ≤ K|p| for some constant K > 0.
Thanks to [ , Thereom . ], we have that d σn → d σ in the space of Finsler distances endowed with the topology induced by uniform convergence on compact subsets of Ω × Ω. To prove the inverse inequality ( . ), let us introduce for n ∈ N * the functionals

T n : L 1 (Ω) N → R ∪ {+∞}, φ →    Ω σ n (x, φ(x))dx if -div(φ) = ρ -ν in D (R N ) +∞ otherwise, E n : Lip(Ω) → R ∪ {-∞}, u →    Ω ud(ρ -ν) if σ * n (x, ∇u(x)) ≤ 1 a.e. x ∈ Ω -∞ otherwise.
It follows from the non-degeneracy of σ n and the rst step of the proof that inf T n = sup E n . We are now in a position to show that sup E n → sup E as n → ∞. Let u n be a maximizer for E n , i.e., sup

E n = Ω u n d(ρ -ν) and σ * n (x, ∇u n (x)) ≤ 1 a.e. in Ω. Fix x 0 ∈ Ω. Since ρ(Ω) = ν(D), we see that u n := u n -u n (x 0
) is still a maximizer. Thus we can assume that u n (x 0 ) = 0 for any n. Since

u n (y) -u n (x) ≤ d σn (x, y) ≤ K|x -y| in Ω × Ω,
{u n } is equi-Lipschitz continuous. By Ascoli-Arzelà's theorem, there exists a Lipschitz function u such that, up to a subsequence,

u n ⇒ u uniformly in Ω. Since d σn → d σ as n → ∞ we deduce that u is admissible for E, i.e. u(y) -u(x) ≤ d σ (x, y) in Ω × Ω. Consequently lim n (sup E n ) = lim n Ω u n d(ρ -ν) = Ω ud(ρ -ν) ≤ sup E,
and inf T ≤ lim n (inf T n ) ≤ sup E
as claimed in ( . ).

Before ending up this subsection, we recall the notion of disintegration of measures which will be useful in the proof of existence of optimal solution to the Beckmann-type problem.

Theorem . . (cf. [ ])

Let X, Y be locally compact metric spaces and π : X → Y a Borel map. For any η ∈ M + b (X) there exist a family of probability measures (η y ) y∈Y on X concentrated on π -1 ({y}) such that for any test function u ∈ C(X), the mapping y → X udη y is Borel measurable and

X u(x)dη(x) = Y X u(x)dη y (x)dπ η(y).

P

We get started with the proof of Theorem . by the following result.

Proposition . . We have

max(M D ) = inf(BK) = inf (BK), where (BK) : inf φ∈L 1 (Ω) N ,ν∈M b (D) Ω σ(x, φ(x))dx+ D gdν : -div(φ) = ρ-ν in D (R N ) . Proof. First observe that max(M D ) ≤ inf(BK) ≤ inf (BK). ( . )
Indeed, take u satisfying σ * (x, ∇u(x)) ≤ 1 a.e. x in Ω, u = g on D as a test function in the divergence constraint -div(φ) = ρ -ν in D (R N ), we get

Ω udρ = Ω φ |φ| • ∇ud|φ| + D gdν ≤ Ω σ x, φ |φ| (x) d|φ| + D gdν.
This implies ( . ).

So, it is su cient to show the duality between (M D ) and (BK), i.e. max(M D ) = inf (BK). We use a perturbation technique as in [ ]. De ne on C(D) the following functional

F : v ∈ C(D) → -max u Ω udρ : u ∈ Lip(Ω), σ * (x, ∇u(x)) ≤ 1, u+v = g on D ,
which is well-de ned. Let us show that F is convex and l.s.c.. Consider

v 1 , v 2 ∈ C(D) and set v = tv 1 + (1 -t)v 2 for t ∈ [0, 1]. Let u 1 , u 2 ∈ Lip(Ω) be two maximizers corresponding to v 1 and v 2 respectively, i.e. σ * (x, ∇u i (x)) ≤ 1, u i + v i = g on D and F (v i ) = - Ω u i dρ for i = 1, 2. De ne u = tu 1 + (1 -t)u 2 . It is evident that u + v = g on D.
And using the homogeneity of σ * , we obtain σ * (x, ∇u) ≤ tσ * (x, ∇u 1 ) + (1 -t)σ * (x, ∇u 2 ) ≤ 1 so that u is admissible for v. Finally, we get

F (v) ≤ - Ω udρ = t - Ω u 1 dρ +(1-t) - Ω u 2 dρ = tF (v 1 )+(1-t)F (v 2 ),
which proves the convexity. For the lower semicontinuity, take a sequence v n ⇒ v uniformly on D. For every n ∈ N, consider a maximizer u n corresponding to v n such that

u n + v n = g on D, u n are -Lipschitz w.r.t. d σ (i.e., u n (y) -u n (x) ≤ d σ (x, y) or equivalently, σ * (x, ∇u n (x)) ≤ 1 a.e. x ∈ Ω), and 
F (v n ) = - Ω u n dρ.
Since u n (y) -u n (x) ≤ d σ (x, y) ≤ K|x -y|, the functions u n are equi-Lipschitz in the Euclidean distance. Since the sequence {v n } is convergent, it is bounded on D, and so is the sequence {u n }. By Ascoli-Arzelà 's theorem, there exists a Lipschitz function

u such that u n ⇒ u uniformly in Ω as n → ∞. It is clear that u + v = g on D and
u(y)-u(x) ≤ d σ (x, y), i.e. u is admissible for v. The lower semicontinuity is completed by

F (v) ≤ - Ω udρ = lim n→∞ - Ω u n dρ = lim inf n→∞ F (v n ).
Since F is convex and l.s.c., we have F = F * * , in particular F (0) = F * * (0). Let us nish the proof by computing F * and F * * . For any ν ∈ M b (D), we see that

F * (ν) = sup v∈C(D) D vdν -F (v) = sup v∈C(D), u∈Lip(Ω) D vdν + Ω udρ : σ * (x, ∇u(x))) ≤ 1, u + v = g on D = sup u∈Lip(Ω) Ω udρ + D (g -u)dν : σ * (x, ∇u(x))) ≤ 1, g -u ∈ C(D) .
For any constant c ∈ R and a Lipschitz extension g of g, one can see that u := g + c is an admissible test function in the de nition of F * (ν) and

Ω udρ + D (g -u)dν = c(ρ(Ω) -ν(D)) + Ω g dρ. So, if ρ(Ω) = ν(D), then F * (ν) = +∞. This implies that F * (ν) =    sup u∈Lip(Ω) Ω udρ + D (g -u)dν : σ * (x, ∇u(x))) ≤ 1 if ν(D) = ρ(Ω) +∞ otherwise.
Following Lemma . , for any ν ∈ M b (D) such that ν(D) = ρ(Ω), we have

F * (ν) = sup u∈Lip(Ω) Ω udρ + D (g -u)dν : σ * (x, ∇u(x))) ≤ 1 = D gdν + sup u∈Lip(Ω) Ω ud(ρ -ν) : σ * (x, ∇u(x))) ≤ 1 = D gdν + inf φ∈L 1 (Ω) N Ω σ(x, φ(x))dx : -div(φ) = ρ -ν in D (R N ) = inf φ∈L 1 (Ω) N Ω σ(x, φ(x)) dx + D gdν : -div(φ) = ρ -ν in D (R N ) . . Proofs Consequently, max(M D ) = -F (0) = -F * * (0) = -sup ν∈M b (D) -F * (ν) = inf (BK).
Remark . . Following our approach in Chapter , it is possible to show that the optimal ν in (BK) is somehow related to the trace of the optimal ow φ. For completeness let us recall brie y some of the main ingredients we used, and for a simpler presentation, consider the case where D = ∂Ω. Then we prove in [ ] the duality between (M D ) and

(OF D ) : inf φ∈DM p (Ω) Ω σ(x, φ(x))dx -φ • n, g : -div (φ) = ρ in D (Ω) ,
where we de ne for 1 ≤ p ≤ ∞,

DM p (Ω) := φ ∈ L p (Ω) N : div φ =: µ ∈ M b (Ω) ,
endowed with the graph norm

φ DM p (Ω) := φ L p (Ω) + |div φ|(Ω).
The main interest of introducing such a space is to give a sense to the trace term φ • n which is not always de ned for a general measure eld φ. In particular, for any measure eld φ ∈ DM p (Ω), one can de ne a trace φ • n on ∂Ω as a linear form on Lip(∂Ω) such that

φ • n, ξ /∂Ω = Ω ξ divφ + Ω ∇ξ • φ, for any ξ ∈ C 1 (Ω).
One can see that, at least formally, ν plays the role of -φ • n in (OF D ).

Our aim now is to use the optimal mass transportation interpretation to prove that the inf in (BK) is actually a min, i.e. the existence of optimal solution to the Beckmann-type problem (BK).

Proposition . . There exist ν ∈ M b (D) and a vector measure

Φ such that -div(Φ) = ρ -ν in D (R N ) and inf(BK) ≤ Ω σ x, Φ |Φ| d|Φ| + D gdν ≤ min(MK).
In particular we see that min(BK) = max(M D ).

Beckmann problem and HJ equations

Proof. Take (γ, ν) be a solution of (MK) and de ne a vector measure Φ γ through

< Φ γ , v >= Ω×Ω 1 0 v(ξ(t)) ξ(t)dtdγ(x, y) ∀v ∈ C(Ω) N ,
with ξ being a geodesic joining x and y with respect to d σ . Let us check the feasibility of

Φ γ for (BK), i.e. -div(Φ γ ) = ρ -ν in D (R N ). ( . )
For any w ∈ C 1 (Ω), by de nition, we have

< Φ γ , ∇w > = Ω×Ω 1 0 dw(ξ(t)) dt dtdγ(x, y) = Ω×Ω (w(y) -w(x))dγ(x, y) = Ω wd(ρ -ν),
which gives ( . ). The next task is to show that

Ω σ(x, Φ γ |Φ γ | (x))d|Φ γ | + D gdν ≤ Ω×Ω d σ (x, y)dγ(x, y) + D gdν.
To do so, for each t ∈ [0, 1], de ne vector measure E t by setting E t (v) := Ω×Ω v(ξ(t)) ξ(t)dγ(x, y) for v ∈ C(Ω) N . We get Φ γ = 1 0 E t dt and, by Jensen's inequality,

Ω σ(x, Φ γ |Φ γ | (x))d|Φ γ | ≤ 1 0 Ω σ(x, E t |E t | (x))d|E t |dt. ( . ) Now de ne π t : (x, y) ∈ Ω × Ω → ξ(t) for t ∈ [0, 1],
where ξ is as before, a geodesic joining x and y. Consider η t = (π t ) γ. Using disintegration theorem (see Theorem . ) for γ with respect to π t , we can nd probability measures γ z supported on π -1 t ({z}) such that Ω×Ω u(x, y)dγ(x, y) = Ω×Ω×Ω u(x, y)dγ z (x, y)dη t (z).

( . )

We check at once that E t << η t with the density dEt dηt (z) = Ω×Ω ξ(t)dγ z (x, y), which follows from the fact that, for any test function v,

Ω v(z)dE t = Ω v(ξ(t)) ξ(t)dγ(x, y) . Proofs = Ω×Ω×Ω v(ξ(t)) ξ(t)dγ z (x, y)dη t (z) = Ω v(z) Ω×Ω ξ(t)dγ z (x, y)dη t (z).
On the other hand, by ( . ) and Jensen's inequality,

Ω×Ω σ(ξ(t), ξ(t))dγ(x, y) = Ω×Ω×Ω σ(ξ(t), ξ(t))dγ z (x, y)dη t (z) = Ω×Ω×Ω σ(z, ξ(t))dγ z (x, y)dη t (z) ≥ Ω σ z, Ω×Ω ξ(t)dγ z (x, y) dη t (z) = Ω σ(z, E t |E t | (z))d|E t |(z).
( . )

Finally, we observe that since ξ is a geodesic

Ω×Ω d σ (x, y)dγ(x, y) + D gdν = Ω×Ω 1 0 σ(ξ(t), ξ(t))dγ(x, y)dt + D gdν ≥ 1 0 Ω σ(z, E t |E t | (z))d|E t |(z) + D gdν (by ( . )) ≥ Ω σ(x, Φ γ |Φ γ | (x))d|Φ γ | + D gdν (by ( . )). Consequently inf(BK) ≤ Ω σ(x, Φ γ |Φ γ | (x))d|Φ γ |+ D gdν ≤ Ω×Ω d σ (x, y)dγ(x, y)+ D gdν = min(MK).
Proof of Theorem . . By Kantorovich duality, one has max(M N ) = min(MK).

Combining this with Propositions . and . , we conclude that the Beckmanntype problem (BK) admits an optimal solution and max(M D ) = min(BK) = max(M N ) = min(MK).

Proof of Theorem . . The proof of the duality between max(M D ) and inf(BK) is followed from Proposition . while the existence of optimal solution to the Beckmanntype problem (BK) is a consequence of Proposition . (see also Theorem . ). Let us now show the optimality conditions. Indeed, u and (φ, ν) are optimal solutions for (M D ) and (BK), respectively, if and only if

Ω σ(x, φ |φ| (x))d|φ| + D gdν = Ω udρ, or Ω σ(x, φ |φ| (x))d|φ| = Ω ud(ρ -ν) = Ω φ(x) • ∇ |φ| u(x)d|φ|.
This is equivalent to

σ(x, φ |φ| (x)) = φ(x) • ∇ |φ| u(x) for |φ|-a.e. x,
as desired.

N

As we pointed out in the previous sections, the maximization problem (M D ) is linked to the Monge-Kantorovich type problem (MK). The measure ρ needs not to satisfy the standard mass balance condition. However, transporting a part of the mass from/to the Dirichlet region D is allowed. In addition, taking ρ = L N |Ω , (M D ) allows recovering the solution of HJ equation. This was the content of Chapter . Here, we will focus essentially on the solution of (BK).

F We set X = W 1,∞ (Ω) and Y = L ∞ (Ω) N × C(D), with F(u) = - Ω u dρ, Λu = (∇u, u |D ), for any u ∈ X and G(η, h) =    0 if σ * (x, η) ≤ 1 and h = g on D +∞ otherwise, for any (η, h) ∈ Y .
Thus, we can rewrite the problem (M D ) in the form

-inf u∈X F(u) + G(Λu).
Thanks to Theorem ( . ) and Proposition ( . ), we have

-min F(u)+G(Λu) : u ∈ X = -sup -F * (-Λ * (φ, ν))-G * (φ, ν)φ ∈ L 1 (Ω) N , ν ∈ M b (D) = min φ∈L 1 (Ω) N ,ν∈M b (D) Ω σ(x, φ(x))dx + D gdν : -div (φ) = ρ -ν in D (R N ) .
Introducing a new primal variable (p, q) ∈ Y , (M D ) reads

- inf (u,(p,q))∈X ×Y Λu=(p,q) F(u) + G(p, q).
This allows us to rewrite (M D ) and (BK) in a saddle point form (S ) : min

(u,(p,q))∈X ×Y sup φ∈L 1 (Ω) N ,ν∈M b (D)
L(u, (p, q); φ, ν)

where

L(u, (p, q); φ, ν) = F(u) + G(p, q) + Ω φ • (∇u -p) dx + D ν • (u -q)dx.
As usual, it is convenient to consider the following augmented Lagrangian

L r (u, (p, q); φ, ν) = L(u, (p, q); φ, ν) + r 2 |∇u -p| 2 + r 2 |u |D -q| 2 , r > 0,
which has the same saddle points as L. Thus, the problem we will focus on is

(S r ) : min (u,q)∈X ×Y sup φ∈L 1 (Ω) N ,ν∈M b (D)
L r (u, (p, q); φ, ν).

The main di erence with the above formulation and the one in Section . is the presence of an additional Lagrange multiplier ν corresponding to the boundary condition u = g on D. The resolution of (M D ) was used via ALG algorithm and was implemented using nite element method. Up to our knowledge, it is not straightforward to de ne nite element functions ν on a closed subset D (typically D = ∂Ω). In the next section we explain how to tackle this di culty.

P

As we pointed out in the previous subsection, it is not clear how to solve the saddle point problem (S r ) via ALG algorithm due to the presence of the measure ν on the Dirichlet region. However, thanks to Corollary . and Remark . which shows that ν is somehow linked to the trace of the optimal ow φ on D, we can restrict ourselves to a formu-lation involving only the potential u and the ow φ. More precisely, for any u ∈ X and η ∈ Z = L ∞ (Ω), we take

F(u) =    -Ω u dρ if u = g on D +∞ otherwise , G(η) =    0 if σ * (x, η) ≤ 1 +∞ otherwise
, and Λu = ∇u.

Thus, following our approach in [ ], we can focus on the following saddle point problem

inf (u,q)∈X ×Z sup φ∈DM p (Ω\D)
L(u, q; φ)

where

L(u, q; φ) = F(u)+G(q)+ Ω φ•(Λ(u)-q)dx, for any (u, q, φ) ∈ X ×Z×DM p (Ω\D).
Hence, the augmented Lagrangian reads L r (u, q; φ) = F(u)+G(q)+ φ, Λu-q + r 2 |Λu-q| 2 , for any (u, q, φ) ∈ X ×Z×DM p (Ω\D).

S

We take Ω = [0, 1] × [0, 1] and g = 0 on ∂Ω. The rst three examples are performed with a Finsler distance d σ of Riemannian type

d σ (x, y) = inf ζ∈Lip([0,1];Ω) ζ(0)=x,ζ(1)=y 1 0 k(ζ(t))| ζ(t)|dt.
For the rst test we take k(x, y) = 1 and ρ + = 2, ρ -= δ (0.5,0.5) . In the second test we take ρ + = 4χ [(x-0.3) 2 +(y-0.2) 2 <0.03] and ρ -= 4χ [(x-0.7) 2 +(y-0.8) 2 <0.03] and k(x, y) = 5 -3e -2 * ((x-0.5) 2 +(y-0.5) 2 ) . In the third test we take two Gaussian densities ρ + = e -40 * ((x-0.75) 2 +(y-0.3) 2 ) and ρ -= e -40 * ((x-0.3) 2 +(y-0.65) 2 ) . We change the distance d σ by taking a degenerate k. In particular, we choose

IsoValue

IsoValue

k(x, y) = (1 -2x) 2 (y -y 2 ) 2 + (1 -2y) 2 (x -x 2 ) 2 χ B where B = {(x, y) ∈ [0, 1] 2 : (x -0.5) 2 + (y -0.5) 2 > 0.25}.
We clearly see that the ux is concentrated essentially on the region where k vanishes, i.e, on B c , which in terms of optimal transport with respect to d σ represents a free transport region. In the last test we consider a Finsler metric of cystalline type, namely C A natural extension one can think of is the HJ equation with double obstacles on the boundary. More precisely one can consider the equation

σ(v) = max i=1,••• ,5 v • d i with d 1 = (1, -1), d 2 = (1, -0.8), d 3 = (-0.8, 1), d 4 = (-1, 1), d 5 = (-1, -1).
H(x, ∇u) = 0 on Ω, g 1 ≤ u ≤ g 2 on ∂Ω
where g i : ∂Ω → R are continuous functions satisfying the compatibility condition g 1 (x) -g 2 (y) ≤ d σ (y, x) for any x, y ∈ ∂Ω.

In order to establish the link between this problem and a Bekmann-type problem, we consider as previously the following maximization problem

(M D ) o : max Ω u dρ : u ∈ W 1,∞ (Ω), σ * (x, ∇u) ≤ 1 and g 1 ≤ u ≤ g 2 on ∂Ω .
Similarly, we can state the following result. . Comments and extentions Moreover, u and (φ, ν) are optimal solutions to (M D ) o and (BK) o , respectively if and only if

             -div(φ) = ρ -ν in D (R N ) φ(x) • ∇ |φ| u(x) = σ x, φ |φ| (x)
for |φ| -a.e. x g 1 ≤ u ≤ g 2 on ∂Ω and u = g 1 for ν --a.e. x and u = g 2 for ν + -a.e. x.

Sketch of proof. We de ne on C(∂Ω) × C(∂Ω) the following functional on C(∂Ω) × C(∂Ω) by, for

(v, w) ∈ C(∂Ω) × C(∂Ω), E(v, w) = -sup Ω udρ : u ∈ Lip(Ω), σ * (x, ∇u(x)) ≤ 1, g 1 ≤ u+v, u+w ≤ g 2 on ∂Ω .
Most of the arguments of Section . can be reproduced to show that E is convex and lower semicontinuous, which gives E(0, 0) = E * * (0, 0). It follows that max(M D ) o = min(BK) o . We now turn to the optimality conditions. First observe that, for any feasible u and (φ, ν), we get

Ω udρ = Ω ∇ |φ| u(x) φ |φ| (x)d|φ| + Ω udν ≤ Ω σ(x, φ |φ| (x))d|φ| + D g 2 dν + - ∂Ω g 1 dν -, ( . ) 
where we have used ∇ |φ| u(x)φ(x) ≤ σ(x, φ |φ| (x)) for |φ| -a.e. x by the fact that u is -Lipschitz w.r.t. d σ . On the other hand, u and (φ, ν) are optimal for (M D ) o and (BK) o respectively, if and only if

Ω udρ = Ω σ(x, φ |φ| (x))d|φ| + ∂Ω g 2 dν + - ∂Ω g 1 dν -,
i.e. the equality holds in ( . ), which is equivalent to the system of optimality conditions as desired.

Let us mention that problems of the form (M D ) o and (BK) o can arise when studying optimal transport problems with some import/export costs on the boundary. In the case where the transport cost is given by the Euclidean distance c(x, y) = |x -y| (in our case when considering the Eikonal equation |∇u| = 1) we refer the reader to [ ]. In the next chapter, we will discuss a PDE approach for (M D ) o .

HJ F p L I A OHJ

This chapter is concerned with a p-Laplace approach à la Evans-Gangbo [ ] to a general class of the transport problems studied in Chapter . As we pointed out in . , we shall consider the following HJ equation with double obstacles on the boundary:

H(x, ∇u) = 0 on Ω, φ ≤ u ≤ ψ on ∂Ω, ( . 
)
where H is a nondegenerate convex Hamiltonian and φ, ψ are continuous functions satisfying φ(x) -ψ(y) ≤ d H (y, x), ∀x, y ∈ ∂Ω, ( . )

where d H is the intrinsic metric associated to the Hamiltonian H. Let us recall that ( . ) is a necessary and su cient condition for the existence of subsolution.

Before presenting in details our problem, let us say few words about some existing works (essentially close to our setting) dealing with HJ equation with obstacles.

Metric approaches:

In [ ], Camilli et al. studied We observe here that the equation ( . ) can be rewritten in the form

F (x, u, ∇u) = 0 in Ω,
where F (x, t, p) = max{H(x, p), t -ϕ}. The 0-sublevels of F are convex, and thus ( . )-( . ) can be treated using the techniques of [ , ]. In contrast with ( . ), N.Igbida proposes in [ ] a metric formula to handle the obstacle in the following OHJ equation

min{H(x, ∇u), u -ϕ} = 0 in Ω u = ϕ in ∂Ω ( . )
where ϕ is a continuous function, not necessarily satisfying ( . ). Note that in this case, the Hamiltonian is of the form F (x, t, p) = min{H(x, p), t -ϕ} , and its 0-sublevels are not convex in general. So that the metric machinery in [ , , , ] doesn't allow providing representation formulas of such equations. We will come back to this result in details in Chapter .

Penalization techniques:

Penalization techniques remain a natural approach to deal with obstacle problems for general PDEs. For a HJ equation of the form max{F (x, u, ∇u), u -ϕ} = 0 in Ω, and u = 0 on ∂Ω, ( . )

it is convenient to consider the following penalized PDE

-∆u + F (x, u , ∇u ) + α (u -ϕ) = 0 in Ω, and u = 0 on ∂Ω, ( . 
)
where α is a smooth function approximating the monotone graph

α(s) =      0 if s < 0 [0, ∞[ if s = 0 ∅ if s > 0.
Then, the standard techniques in [ , ] allow deriving appropriate estimates on u and by passing to the limit as → 0, to recover a viscosity solution of ( . ). In this framework, we can mention for example the work of Gagnetti et al They studied a version of ( . ) with F (x, u, ∇u) = u + H(x, ∇u) and a convex penalization function α . They make use of the adjoint method (see [ ]) to derive some useful estimates, with a particular attention to the term ∂ α (s). This allows them to show that u converges uniformly towards a solution u of ( . ) and

u -u L ∞ ≤ C 1 2 ,
where C is a positive constant not depending on . They also extend their approach to the case of coupled systems. We were able to prove similar results for However, it is not clear to us how to obtain similar results both for ( . )-( . ) without a zero order term, i.e, when the Hamiltonians is of the form F (x, u, ∇u) = H(x, ∇u).

To end this section, let us mention that in addition to optimal stopping problems, obstacle HJ equations arise typically in the vanishing viscosity limit of HJ equation with incompatible boundary conditions (see e.g [ , Chapter ]).

In this chapter, we are more concerned with HJ equation with double obstacles on the boundary ( . ). We will come back to obstacle problems of the form ( . ) in the next chapter.

Recall that our starting point is a problem of the form H(x, ∇u) = 0 on Ω, φ ≤ u ≤ ψ on ∂Ω.

Thanks to Theorem . , the maximal viscosity subsolution of ( . ) can be recovered via the following maximization problem

max Ω udx : σ * (x, ∇u) ≤ 1 a.e., φ ≤ u ≤ ψ on ∂Ω , ( . )
where σ * is the dual of the support function of the 0-sublevel sets of the Hamiltonian H. Considering Ω udρ in ( . ) instead of Ω udx for some ρ ∈ L 2 (Ω), this problem can easily be linked to a mass transport problem with boundary costs. Our aim is to construct a solution of this ( . ) as well as the optimal ow of the associated Beckmann problem using the Evans-Gagbo machinery. Before presenting the problem and the main ingredients, let us give a broad overview on this p-Laplace approach.

R E G

Given a Borel measure ρ with Ω dρ = 0, and consider the Kantorovich problem ( . )

In the case where ρ ∈ L 1 (Ω), the optimal solution of ( . ), usually called Kantorovich potential, can be obtained via PDE method in the celebrated paper of Evans-Gangbo [ ].

More precisely, they prove that when supp(ρ + ) ∩ supp(ρ -) = ∅, the solution u of ( . ) is the uniform limit of u p , where u p is the solution of

-∆ p u p = ρ in B(0, R) u p = 0 on ∂B(0, R),
for some large R > 0. Moreover, there exists a function σ ∈ L 1 (Ω) such that (σ, u) solves the following Monge-Kantorovich system

   -div(σ∇u) = ρ in Ω |∇u| ≤ 1 in Ω |∇u| = 1 σ -a.e.
and the vector measure Φ = σ∇u solves Beckmann problem inf

Φ∈M(Ω) N Ω d|Φ| : -div(Φ) = ρ in D (Ω) . ( . )
Moreover, all the optimal values coincide min ( . ) = inf ( . ) = max ( . ).

Variants of ( . ) with boundary costs were addressed in [ ] where the boundary costs can be seen as some import/export taxes. Similar results were obtained in [ ] with some weighted Euclidean distance as a cost. The use of PDE techniques à la Evans-Gangbo in the Finsler framework was addressed recently in [ ]. It is well known that Finsler metrics generalise the Riemannian ones and are of main interest in the study of optimal transport and minimal ow problems since they allow considering anisotropy, obstacles...

In this chapter we consider a Finsler variants of ( . )-( . ) with the presence of boundary costs. We consider some suitable variational p-Laplace problems to provide a solutions to these problems.

R F

Let Ω be a bounded open subset of R N , a Finsler metric is a continuous function

H : Ω × R N → [0, ∞) such that H(x, .
) is convex, and positively 1-homogeneous in the second variable, that is, H(x, tp) = tH(x, p) for every t ≥ 0. We de ne the dual of a Finsler metric H (which is also a Finsler metric) by

H * (x, q) = sup H(x,p)≤1 p, q = sup p =0
p, q H(x, p) .

Throughout this chapter, we assume that H is a non-degenerate Finsler metric, that is, there exist a, b > 0 such that a|p| ≤ H(x, p) ≤ b|p| ( . ) for all (x, p) ∈ Ω × R N . Similarly, we have ã|q| ≤ H * (x, q) ≤ b|q| ( . )

for some ã, b > 0.

Note that a Finsler metric is not symmetric in general. Moreover, we have the Cauchy-Schwarz like inequality p, q ≤ H(x, p)H * (x, q). ( . )

Every Finsler metric induces a Finsler distance via the so called length (or action) functional. The action of a Lipschitz curve ξ ∈ Lip([0, 1]; Ω) is de ned through

A H (ξ) = 1 0 H(ξ(s), ξ(s))ds. ( . )
The induced distance d H by the action functional ( . ) reads as

d H (x, y) = inf ξ∈Γ(x,y) A H (ξ)
where Γ(x, y) = {ξ ∈ Lip([0, 1]; Ω) : ξ(0) = x, ξ(1) = y} and Lip([0, 1]; Ω) is the set of Lipschitz continuous functions u : [0, 1] → Ω.

Assuming that H * (x, .) is di erentiable on R n \ {0}, we have thanks to Euler's homogeneous function theorem (see e. ∂ ξ H * (x, p) • p = H * (x, p) for any p ∈ R N , ( . )

and by convexity of H * , we have ∂ ξ H * (x, p) • q ≤ H * (x, q) for any p, q ∈ R N , so that, by ( . )

|∂ ξ H * (x, p) • q| ≤ b|ζ| for any p, q ∈ R N . ( . )
Finally, we have H(x, ∂ ξ H * (x, p)) = 1 for any p ∈ R N .

For details and additional properties we refer to Using perturbation techniques as in Chapter (see also [ , Theorem . ]), we can derive the following variant of Beckmann's problem

(B) H : min Φ∈M N (Ω),ν∈M(∂Ω) Ω H(x, Φ |Φ| )d|Φ|+ ∂Ω ψdν -- ∂Ω φdν + : -div(Φ) = ρ+ν in D (R N ) ,
as well as the associated Kantorovich problem

(K) H : min γ∈Π(ρ + ,ρ -) Ω×Ω d H (x, y)dγ(x, y)+ ∂Ω ψ(y)d(π y ) γ- ∂Ω φ(x)d(π x ) γ ,
where

Π(ρ + , ρ -) = {γ ∈ M + (Ω × Ω) : (π x ) γ Ω = ρ + , (π y ) γ Ω = ρ -}.
The existence of optimal solution to (K) H can be obtained using the direct method of calculus of variations. Moreover, all the extremal values coincide:

min(B) H = min(K) H = max(KR) H .
Our aim is to show, using the Evans-Gangbo approach, that the solution of the HJ equation ( . ) can be obtained as the limit as p → ∞, of the solution of the following Finsler (also called anisotropic) p-Laplace problem

           -div(H * (x, ∇u) p-1 ∂ ξ H * (x, ∇u)) = ρ in Ω H * (x, ∇u) p-1 ∂ ξ H * (x, ∇u) • n ≥ 0 on {u = φ} H * (x, ∇u) p-1 ∂ ξ H * (x, ∇u) • n ≤ 0 on {u = ψ} H * (x, ∇u) p-1 ∂ ξ H * (x, ∇u) • n = 0 in {φ < u < ψ} φ ≤ u ≤ ψ on ∂Ω, ( . ) 
with ρ ≡ 1, where n is the exterior normal to the boundary ∂Ω and ∂ ξ H * stands for the derivative of H * with respect to the second variable. The chapter is organised as follows.

In Section 2 we provide a solution to ( . ) by studying a family of variational Finsler p-Laplace problems, and by passing to the limit as p → ∞, we construct a solution u of (KR) H , and hence, the one of ( . ). In Section 3 we construct a ow Φ to (B) H and we provide, under suitable assumptions, a solution to the following Monge-Kantorovich system

                   -div(ω∂ ξ H * (x, ∇u)) = ρ in Ω ∂ ξ H * (x, ∇u) • n ≥ 0 on {u = φ} ∂ ξ H * (x, ∇u) • n ≤ 0 on {u = ψ} ∂ ξ H * (x, ∇u) • n = 0 in {φ < u < ψ} φ ≤ u ≤ ψ on ∂Ω H * (x, ∇u) ≤ 1 in Ω H * (x, ∇u) = 1 ω -a.e.
( . )

In Section 4 we make the link between u and (K) H .

Remark . .

• Note that given a positive continuous function k : Ω → R, de ning a Finsler metric H(x, p) = k(x)|p| for every (x, p) ∈ Ω × R N , we easily see that

H * (x, q) = |q| k(x)
and the systems ( . )-( . ) becomes the ones studied in [ ].

• Let us recall that we can de ne Finsler metrics via the so called Minkowski functional. Indeed, given a convex, closed and bounded set K ⊂ R N containing the origin in its interior, we de ne the Minkowski functional of K (also called gauge function) by g K (p) = inf{t > 0 : t -1 p ∈ K}, we can easily check that g K is a Finsler metric. Moreover, considering H * (x, p) = g K (p) and φ = ψ, we recover the Monge-Kantorovich system studied in [ ].

F p L

We consider, for p > N , the following minimization problem

min u∈W φ,ψ F p (u) := Ω H * (x, ∇u) p p dx - Ω uρdx ( . ) where ρ ∈ L 2 (Ω) and W φ,ψ = {u ∈ W 1,p (Ω) : φ ≤ u ≤ ψ on ∂Ω}. Observe that W φ,ψ is a closed, convex subset of W 1,p (Ω).
The functional F p is coercive, strictly convex and lower semicontinuous on W φ,ψ . Therefore F p admits a unique minimizer u p on W φ,ψ . Observe that when H * (x, .) ∈ C 1 (R N \ {0}), u p is a weak solution of ( . ).

The following result shows that we can obtain a Kantorovich potential to (KR) H from the minimizers of F p .

Proposition . . Let u p be a minimizer of F p . Then, up to a subsequence, u p ⇒ u on Ω. Moreover, u solves (KR) H .

Proof. We divide the proof into two steps. First, we show the convergence of u p . To do so, we need to derive some estimate on u p independent of p. De ne v(x) = min y∈∂Ω ψ(y)+ d H (y, x). Regarding the compatibility condition ( . ), we have φ ≤ v ≤ ψ on ∂Ω. It is not di cult to see that v is 1-Lipschitz with respect to d H and equivalently (see e.g. [ , Proposition . ]), we have that H * (x, ∇v(x)) ≤ 1 a.e.. Using the fact that u p is a minimizer of F p , we have

Ω H * (x, ∇u p ) p p dx - Ω u p ρdx ≤ Ω H * (x, ∇v) p p dx - Ω vρdx ≤ |Ω| p - Ω vρdx.
( . ) Thanks to Theorem .E in [ ], there is a Morrey-type inequality independent of p u

L ∞ (Ω) ≤ C Ω ∇u L p (Ω) for any u ∈ W 1,p 0 (Ω), p > N,
where the constant C Ω does not depend on p and u. Observing that we can apply the above inequality to

(u p -max ∂Ω ψ) + and (u p -min ∂Ω φ) -which are in W 1,p 0 (Ω) to obtain u + p L ∞ (Ω) ≤ C Ω ∇u p L p (Ω) + | max ∂Ω ψ|, and u - p L ∞ (Ω) ≤ C Ω ∇u p L p (Ω) + | min ∂Ω φ|. So u p L ∞ (Ω) ≤ C 1 ∇u p L p (Ω) + C 2 .
From ( . ) and the preceding inequality we deduce that

Ω H * (x, ∇u p ) p p dx ≤ |Ω| p - Ω vρdx + Ω u p ρdx ≤ C 3 (1 + ∇u p L p (Ω) ),
where C 3 is a positive constant not depending on p. Combining this with ( . ), we get

H * (x, ∇u p ) p L p (Ω) ≤ C 4 p(1 + H * (x, ∇u p ) L p (Ω) ) ( . ) which implies that H * (x, ∇u p ) L p (Ω) ≤ (C 5 p) 1 p-1 ( . )
for some constant C 5 independent from p. Again, by ( . ), we get ∇u p L p (Ω) ≤ C 6 .

( . )

Now take some N < m ≤ p. Then by Hölder's inequality

∇u p L m (Ω) ≤ |Ω| p-m pm ∇u p L p (Ω) . ( . )
Thanks to ( . ), ( . ) and the Morrey-Sobolev embedding from W 1,m (Ω) to Hölder spaces,

|u p (x) -u p (y)| ≤ C 7 |x -y| 1-α
with α = N m . By Ascoli-Arzelà's theorem, up to a subsequence, u p ⇒ u on Ω for some continuous function u satisfying φ ≤ u ≤ ψ on ∂Ω. Observe that u ∈ W 1,∞ (Ω) thanks to ( . ) and ( . ).

Second, we are now in a position to show that u solves (KR) H . To do so, we take any v ∈ W φ,ψ such that H * (x, ∇v(x)) ≤ 1 a.e.. Using the optimality of u p we see that

- Ω u p ρdx ≤ F p (u p ) ≤ F p (v) ≤ |Ω| p - Ω vρdx.
Taking the limit up to a subsequence, we get

sup Ω vρdx : H * (x, ∇v) ≤ 1, a.e., φ ≤ v ≤ ψ on ∂Ω ≤ Ω uρdx.
It remains to show that u is 1-Lipschitz with respect to d H , that is, H * (x, ∇u(x)) ≤ 1 a.e.. Recall that φ ≤ u ≤ ψ on ∂Ω. Again, using ( . ), we consider N < m ≤ p and we use Hölder's inequality to get

H * (x, ∇u p ) L m (Ω) ≤ (C 5 p) 1 p-1 |Ω| p-m pm .
Since u p ⇒ u uniformly on Ω, we can assume that up to a subsequence u p u weakly in W 1,m (Ω), and particularly, ∇u p ∇u in L m (Ω, R N ). Mazur's lemma (see [ ] for example) ensures the existence of a convex combination of ∇u p k converging in norm toward ∇u. More precisely, there exists {U i } such that

U i = n i k=i α i k ∇u p k where n i k=i α k i = 1, and α i k ≥ 0, i ≤ k ≤ n i and U i -∇u L m (Ω) → 0 as i → +∞. Since H * is continuous, we have H * (x, ∇u) L m (Ω) ≤ lim inf i→∞ H * (x, n i k=i α i k ∇u p k ) L m (Ω) ≤ lim inf i→∞ n i k=i α i k H * (x, ∇u p k ) L m (Ω) ≤ lim inf i→∞ n i k=i α i k (C 5 p k ) 1 p k -1 |Ω| p k -m mp k = |Ω| 1 m ,
which completes the proof by taking m → ∞.

C (B) H

In the sequel, we assume that ( . ) is strict, that is,

φ(x) -ψ(y) < d H (y, x) for all x, y ∈ ∂Ω.
The next lemma is important to construct a solution of (B) H , we follow the main ideas of [ , Thereom . ].

Lemma . . Assume that H * (x, .) ∈ C 1 (R N \ {0}), and define, for p > N

Θ p = H * (x, ∇u p ) p-1 ∂ ξ H * (x, ∇u p ).
Then, the distribution defined through

Θ p • n, η = Ω Θ p ∇ηdx - Ω ηρdx, η ∈ D(R N ) ( . )
is a Radon measure concentrated on ∂Ω. Moreover, we have 

∂Ω ηd(Θ p • n) = Ω Θ p • ∇ηdx - Ω ηρdx for all η ∈ W 1,p (Ω). ( 
(Θ p • n) ⊂ {x ∈ ∂Ω : u p (x) = φ(x)} ∪ {x ∈ ∂Ω : u p (x) = ψ(x)}. Take a test function η ∈ C ∞ (Ω) whose support is disjoint from {x ∈ ∂Ω : u p (x) = φ(x)} ∪ {x ∈ ∂Ω : u p (x) = ψ(x)}.
There exists some > 0 so that u p + tη remains admissible for ( . ) for |t| < , i.e., φ ≤ u p + tη ≤ ψ. By optimality of u p , we get the variational inequality

Ω Θ p • ∇(v -u p )dx ≥ Ω (v -u p )ρdx for all v ∈ W φ,ψ .
In particular, for v = u p + tη, we get

t Ω Θ p • ∇ηdx ≥ t Ω ηρdx.
This holds for positive and negative t, such that |t| ≤ . Consequently

Ω Θ p • ∇ηdx = Ω ηρdx.
In other words, Θ p • n, η = 0 and supp(Θ p • n) ⊂ {u p = φ} ∪ {u p = ψ}. We are now in a position to show that Θ p • n is actually a Radon measure. Indeed, since the inequality ( . ) is strict, the two compact sets {x ∈ ∂Ω :

u p (x) = φ(x)} and {x ∈ ∂Ω : u p (x) = ψ(x)} are disjoint. There exist η 1 , η 2 ∈ D(R N ) such that η 1 (x) =
1 on {u p = φ}, 0 on {u p = ψ}, and η 2 (x) = 1 on {u p = ψ}, 0 on {u p = φ}.

Then we can write Θ p • n = D 1 + D 2 , where D 1 , D 2 are distributions given by

D 1 , η = Θ p • n, ηη 1 and D 2 , η = Θ p • n, ηη 2 .
This being said, for any positive test function η, we have that supp(ηη 1 )∩{u p = ψ} = ∅, and for 0 ≤ t < we have u p + t(ηη 1 ) ∈ W φ,ψ . Consequently

t Ω Θ p • ∇(ηη 1 )dx ≥ t Ω (ηη 1 )ρdx, i.e, D 1 , η ≥ 0. ( . )
On the other hand, for any positive test function η, we have that supp(ηη 2 ) ∩ {u p = φ} = ∅ and for -< t ≤ 0, we have that

u p + t(ηη 2 ) ∈ W φ,ψ . Consequently t Ω Θ p • ∇(ηη 2 )dx ≥ t Ω (ηη 2 )ρdx.
In other words, D 2 , η ≤ 0.

( . )

In Proof. First, we consider as before v(x) = min y∈∂Ω ψ(y) + d H (y, x). We plug u p and v in ( . ) to get

∂Ω (u p -v)d(Θ p • n) = Ω Θ p • ∇(u p -v)dx - Ω (u p -v)ρdx.
In other words

Ω (u p -v)ρdx = Ω Θ p •∇(u p -v)dx+ {up=ψ} (ψ-v)d(Θ p •n) -- {up=φ} (φ-v)d(Θ p •n) + .
We see that φ < v ≤ ψ on ∂Ω so that ψ -v ≥ 0 and φ -v < 0, thus φ -v < -C 1 for some positive constant C 1 . So we obtain

Ω Θ p • ∇u p dx + C 1 ∂Ω d(Θ p • n) + ≤ Ω (u p -v)ρdx + Ω Θ p • ∇vdx. ( . )
Since H * is a Finsler metric, we have by Euler's homogeneous function theorem (see e

.g. [ ]) that ∂ ξ H * (x, ξ) • ξ = H * (x, ξ) for any ξ ∈ R N . Thus Ω Θ p • ∇u p dx = Ω H * (x, ∇u p ) p-1 ∂ ξ H * (x, ∇u p ) • ∇u p dx = Ω H * (x, ∇u p ) p dx.
Using this fact in ( . ), we get

Ω H * (x, ∇u p ) p dx + C 1 ∂Ω d(Θ p • n) + ≤ C 2 + Ω Θ p • ∇vdx,
where C 2 > 0 is independent from p. On the other hand, thanks to ( . ) we have

Ω Θ p • ∇vdx ≤ Ω H(x, Θ p )H * (x, ∇v)dx = Ω H(x, H * (x, ∇u p ) p-1 ∂ ξ H * (x, ∇u p ))H * (x, ∇v)dx = Ω H * (x, ∇u p ) p-1 H(x, ∂ ξ H * (x, ∇u p ))H * (x, ∇v)dx = Ω H * (x, ∇u p ) p-1 H * (x, ∇v)dx,
where we have used the homogeneity of H and the fact that H(x, ∂ ξ H * (x, ξ)) = 1 for any ξ ∈ R N \{0}. Using Hölder and Young's inequalities and the fact that H * (x, ∇v) ≤ 1 a.e, we get

Ω H * (x, ∇u p ) p-1 H * (x, ∇v)dx ≤ Ω H * (x, ∇u p ) (p-1)p dx 1 p |Ω| 1 p = p -1 p Ω H * (x, ∇u p ) p dx + 1 p |Ω|.
We deduce that

1 p Ω H * (x, ∇u p ) p dx + C 1 ∂Ω d(Θ p • n) + ≤ C 2 + 1 p |Ω|.
Since p > N , it follows from ( . ) and ( . ) that the rst term of the preceding is bounded and therefore ) for some positive constant C 3 . De ning w(x) = max y∈∂Ω φ(y) -d H (x, y), we see that φ ≤ w < ψ and following the same lines we get that

∂Ω d(Θ p • n) + ≤ C 3 , ( . 
∂Ω d(Θ p • n) -≤ C 4 . ( . )
As a consequence, we deduce that Θ p • n is bounded in M(∂Ω) and thus there exists θ ∈ M(∂Ω) such that Θ p • n θ weakly*.

As for Θ p , we have

Ω H * (x, ∇u p ) p dx = Ω Θ p • ∇u p dx = ∂Ω u p d(Θ p • n) + Ω u p ρdx.
. Construction of the optimal flow for (B) H Keeping in mind ( . ) and ( . ), Hölder's inequality gives

Ω H * (x, ∇u p ) p-1 dx ≤ C 5 . ( . ) Since ∂ ξ H * (x, ξ) • ζ ≤ H * (x, ζ
) and taking into account ( . ), we deduce that

|∂ ξ H * (x, ∇u p )| ≤ b,
and consequently in view of ( . )

Ω |Θ p |dx ≤ C 6 .
Thus, there exists Θ ∈ M(Ω) N such that up to a subsequence Θ p Θ.

Theorem . . Let u and Θ as in Propositions . and . and set ω = H(x, Θ). Assume moreover that H * (x, ∇ ω u) ≤ 1 ω a.e..

( . )

Then (ω∂ ξ H * (x, ∇ ω u), u) solves ( . ).

Proof. First, let us recall that thanks to Lemma . and Proposition . we have

-div(Θ) = ρ + θ in D (Ω).
Since dΘ dω ∈ L 1 ω (Ω) N we also have

-div(ω dΘ dω ) = ρ + θ in D (Ω).
So dΘ dω (x) ∈ X ω (x) for ω-a.e. x (see the Section . for the de nition of X ω ) . Since Θ p Θ (cf. Proposition . ), we have by Reshetnyak's lower semicontinuity theorem (see [ , Thereom . ]

): Ω H(x, Θ |Θ| )d|Θ| ≤ lim inf p Ω H(x, Θ p |Θ p | )d|Θ p |.
Using Hölder's inequality combined with ( . )-( . ), we get

Ω H(x, Θ |Θ| )d|Θ| ≤ lim inf p Ω H x, H * (x, ∇u p ) p-1 ∂ ξ H * (x, ∇u p ) dx = lim inf p Ω H * (x, ∇u p ) p-1 H(x, ∂ ξ H * (x, ∇u p ))dx
HJ equation and Finsler p-Laplace approximations

≤ lim inf p Ω H * (x, ∇u p ) p dx p-1 p = lim inf p Ω H * (x, ∇u p ) p-1 ∂ ξ H * (x, ∇u p ) • ∇u p dx p-1 p = lim inf p Ω ∇u p dΘ p p-1 p = lim inf p Ω u p ρdx + ∂Ω u p d(Θ p • n) p-1 p = Ω uρdx + ∂Ω φdθ + - ∂Ω ψdθ -.
Finally, using the integration by parts formula recalled in Proposition . , we get

Ω uρdx + ∂Ω φdθ + - ∂Ω ψdθ -= Ω ∇ ω udΘ, so that Ω H(x, Θ |Θ| )d|Θ| ≤ Ω ∇ ω udΘ.
Keeping in mind ( . ), we get

Ω ∇ ω udΘ ≤ Ω H * (x, ∇ ω u)H(x, Θ |Θ| )d|Θ| ≤ Ω H(x, Θ |Θ| )d|Θ|. Hence, Ω H(x, Θ |Θ| )d|Θ| = Ω ∇ ω udΘ. ( . )
From ( . ), we deduce that

∇ ω u • dΘ dω = 1 ω -a.e.
Since H(x, dΘ dω ) = 1 ω -a.e, we have that H * (x, ∇ ω u) = 1 ω -a.e. This implies by de nition of H * that

dΘ dω = H(x, dΘ dω )∂ ξ H * (x, ∇ ω u) = ∂ ξ H * (x, ∇ ω u) ω -a.e. Finally, -div(ω∂ ξ H * (x, ∇ ω u)) = ρ in Ω,
and reproducing the arguments of Lemma . , we recover the constraints on ∂ ξ H * (x, ∇ ω u) • n in ( . ).

In The link between HJ equation and Beckmann's problem is already established in Chapter . Thanks to Proposition . , the maximal viscosity subsolution of ( . ) is obtained by taking the limit as p → ∞ in the minimizers of F p with ρ ≡ 1. Thus, combining this fact with Proposition . , we have the following Corollary . . Assume that ρ ≡ 1, and let u the maximal viscosity subsolution of ( . ) and (Θ, θ) an optimal solution to (B) H . Then To conclude, let us observe that taking v ∈ W 1,∞ (Ω) such that H * (x, ∇v(x)) ≤ 1, we have Lemma . . Let w ∈ W 1,∞ (Ω) such that H * (x, ∇w(x)) ≤ 1 for a.e. x ∈ Ω. Then, there exists w ∈ C 1 (Ω) such that w ⇒ w in compact subsets of Ω and H * (x, ∇w (x)) ≤ 1.

             -div(Θ) = 1 + θ in D (R N ) Θ(x) • ∇ |Θ| u(x) = H x

P

We end this dissertation by presenting results from ongoing works and some possible extensions and open question that are of interest to us.

Q A HJ

In this section we present brie y some results from an ongoing work with N.Igbida concerning obstacle HJ (OHJ for short) equation with application to the formation of lakes and dunes. We suggest to use an evolutionary quasivariational inequality to solve numerically the OHJ equation by exploiting similar characterisations of the appropriate solution as in Chapter .

Given a continuous function g : Ω → R + , we consider the following OHJ equation u ≥ g in Ω H(x, ∇u) = 0 in [u > g]

( . )

This equation can be recast in the form F (x, u, ∇u) = 0 in Ω, where F : Ω × R × R N → R is given by F (x, t, p) = min(H(x, p), t -g(x)), for (x, t, p) ∈ Ω × R × R N .

As one can see, the 0 sublevel sets of F are not convex in general, so producing a metric associated to F is not straightforward. To handle the obstacle in ( . ), N.Igbida proposed in [ ] an inf-sup formula as follows. For ξ ∈ Lip([0, 1]; Ω), we de ne g(ξ(t)) + Λ ξ (t, 1).

Λ ξ (s 1 , s 2 ) =
For x, y ∈ Ω, we de ne the minimum g-action from x to y through S g (x, y) = inf ξ∈Γ(x,y)

A g (ξ).

( . ) and I g (x, y) = S g (x, y) -g(x).

Then, it is shown in [ ] that S g is the maximal viscosity subsolution of ( . ). Moreover, when the obstacle g satis es the compatibility condition g(x) -g(y) ≤ d σ (y, x), for any x, y ∈ Ω, ( . )

where d σ is the associated distance to H, then I g = d σ . Which shows that the quasidistance I g is consistent with the case where the obstacle is a subsolution for HJ equation.

To describe the morphology of a sandpile or a lake on an arbitrary landscape, we consider the following obstacle Eikonal equation

     |∇u| = k on [u > g]
u ≥ g in Ω u = g on D.

( .

)
where D is a closed subset of Ω, where k is related to the so-called repose angle of the granular material. To describe the equilibrium state we consider a Radon measure ρ modelling the source. One could imagine ρ = m i=1 δ x i where δ x i are Dirac masses at points x i ∈ Ω, to model the case of punctual distribution of sand or water. This being said, we consider by analogy with the problem (M D ) in Chapter , the following maximization problem

max udρ : u ∈ K D g , ( . ) 
where

K D g = u ∈ W 1,∞ (Ω) : u ≥ g, u = g on D and |∇u| ≤ k in [u > g] ,
is the set of the so-called admissible pro les. Then, thanks to ( . ), N.Igbida provides a solution to ( . ). More precisely, he proves the following study the case of lake. However, they considerd a small k 0 in their formulations and numerical simulations instead of k 0 = 0.

Our strategy is close to the one in [ , ] in the sense that, instead of considering ( . ), we regard the following problem max zdρ, z ∈ K(u) , ( . )

where u = S g (D, .) is the solution of ( . ) given in Theorem . . First, let us observe that ( . ) is related to the Eikonal equation

|∇u| = M (u) in Ω \ D u = g on D.
( . )

Due to discontinuity of M , the appropriate notion of solutions is the so-called Monge solutions introduced by Newcomb and Su [ ]. So our starting point is to investigate the existence of a unique Monge solution of ( . ), and show by analogy with Theorem . , that it solves ( . ). In this case, we conjecture that ( . ) and ( . ) are equivalent. This suggests considering the following quasivariational equation

ρ ∈ ∂ t u + ∂I K(z) (u), ( . ) 
where ∂I K(z) is the subdi erential of I K(z) in L 2 (Ω). To approximate numerically the solution of ( . ), we use an Euler implicit scheme. We denote by δt the time step and u n the solution at time t = nδt with n ∈ N. We initialize by u 0 and we generate a sequence {u n } n as follows:

u n + δtρ n := w n ∈ u n+1 + ∂I K(u n ) (u n+1 ),

or equivalently w n ∈ id + ∂I K(u n ) (u n+1 ).

This amounts to saying that

u n+1 = arg min z∈K(u n ) F(z)
with F(z) = 1 2 z -w n 2 .

Minimizing the functional F over K(u n ) can be done e ciently by Chambolle-Pock's algorithm as in Section . . We therefore present some preliminary results for the case k ≡ 0. In the gure . , the geometry of the obstacle given by a simple function g(x, y) = min(0, y -x)) doesn't allow collecting water. On the other hand, we see in gure . . that water lls the lake. These preliminary results are encouraging and tend to support our conjectures.

To conclude this section, let us say that besides the equivalence between ( . ) and ( . ) there are many interesting questions to deal with:

• To prove the convergence of the approximate solution by the Euler scheme in time and the convergence as t → ∞ of the solution of ( . ) to the solution of ( . ).

• Up to our knowledge, the regularity of the the free boundary ∂[u = g] of the OHJ is less studied (if not non-existent !) and the techniques in the classical textbooks (see e.g.[ , ]) cannot be applied directly for OHJ equations. We are planing to address this question in future work.

H

Amongst our future works is to adapt the methods and techniques of this thesis to socalled Hughes model for crowd motion (see [ , ]). Let us say few words about this model, the di culties arising in its mathematical and numerical study, and how we are planing to tackle them.

Let Ω ⊂ R N be a smooth bounded domain. We denote by µ = µ(x, t) the density of some population where x ∈ Ω and t ≥ 0 representing the time variable. Then µ satis es the continuity equation ∂ t µ + div(µv) = 0, µ(x, 0) = µ 0 (x) ≥ 0, ( . )

where v(x, t) is the velocity eld which can be related to µ via v(x, t) = (1µ(x, t))∇u(x), and u is the potential modelling the common sens of the task. Assuming that the individuals try to avoid regions with high densities while heading their destination, the potential u will satisfy the following Eikonal equation ) with k(µ) = (1 -µ). So that the model reads ) coupled with homogeneous boundary conditions µ(x, t) |∂Ω = 0 and u(x, t) |∂Ω = 0 and initial condition µ(x, 0) = µ 0 (x) ≥ 0. The rst observation is that in ( . ), |∇u| may blow up as µ becomes close to 1. In addition, due to the nonlinearity in ( . ), the entropic solution of such equation is not unique in general. This makes the mathematical and numerical treatment of ( . ) di cult. In the one dimensional case, the authors in [ ] propose a "double" regularization of ( . ), in the sense that they add a viscosity term as in ( . ) in addition to the regularization of the right hand side in ( . ) to avoid discontinuities of ∇u. More precisely, they solve ( . ) with k δ (µ) = (δ + k(µ)) 2 instead of k(µ) for δ > 0. It turn out that our variational approach presented in Chapter seems to give good results as the main step in our algorithm to solve ( . ) will consist in projecting onto the euclidean ball centred at 0 and of a "large" radius. Moreover, discontinuous right hand side in the Eikonal equation seems not to a ect the method.

|∇u| = k(µ) in Ω u = 0 on ∂Ω, ( . 
∂ t µ + div(µk(µ)∇u) = 0, |∇u| = k(µ). ( . 
Following [ ], we intend to solve ( . ) iteratively as follows. Assuming that µ is known at time t n , we compute the potential u n by solving ( . ) using the augmented Lagrangian method. Then, we update the velocity eld v n and we plug it in ( . ) to compute the new density µ n+1 .

HJ

We are also interested in adapting our approach to the framework of networks or more generally, metric random walk spaces in the spirit of [ , ]. HJ equations on networks are of main interest particularly in modelling vehicular tra c ows, social networks and data transmission etc. Contrary to linear PDE, the theory of HJ equation on networks is under development and we refer the reader to these recent works [ , , , ] and the references therein more details on the topic. Our starting point will be to consider HJ equations on topological networks, i.e., graphs embedded in the Euclidean space. To make this section self-contained we recall some notions and de nitions from [ ].

Let V = {v i } i∈I ⊂ R N be a collection of pairwise distinct points called vertices, C = {γ j } j∈I a collection of smooth, non-intersecting curves de ned through γ j : [0, l j ] → R N , l j > 0, for all j ∈ J, and E = {e j } j∈I be the collection of edges such that • e j = γ j ((0, l j )) and ēj = γ j ([0, l j ]),

• γ j (0), γ j (l j ) ∈ V for every j ∈ J,

• card(e j ∩ V) = 2 for every j ∈ J,

• ēj ∩ ēk ⊂ V and card(ē j ∩ ēk ) ≤ 1.

• Every two vertices p, q ∈ V can be connected by a nite sequence of edges. In other words, there exists {e j } N j=1 such that p ∈ ē1 , q ∈ ēN and card(ē j ∩ ēj+1 ) = 1. Given x i ∈ V, Inc i = {j ∈ J : x i ∈ ēj } is the set of indices of edges having x i as an endpoint.

Then N = j∈J ēj is called a topological network. We say that u : N → R is continuous if its restriction u j to [0, l j ] is continuous for each j ∈ J.

De nition . (Di erentiation).

• If x ∈ e j , the di erential along e j is de ned through ∂ j u(x) = ∂ ∂x u j (γ -1 j (x)).

• If x = v i , then

∂ j u(x) = ∂ ∂x u j (γ -1 j (x)), for j ∈ Inc i .
On a topological network, a Hamiltonian H : N × R → R is regarded as a collection (H j ) j∈J of continuous functions H j : [0, l j ]×R → R satisfying analogous assumptions to (H1)-(H3) stated Chapter -Section . . . In addition, to ensure the continuity of H on the vertices and take into account the fact that N is not oriented, we assume • H j (γ -1 j (v i ), p) = H k (γ -1 k (v i ), p), for any p ∈ R, i ∈ I, j, k ∈ Inc i

• H j (γ -1 j (v i ), p) = H j (γ -1 j (v i ), -p), for any p ∈ R, i ∈ I, j ∈ Inc i .

Given g : N → R be a continuous function and consider the following Dirichlet problem H(x, ∂u(x)) = 0 in N u = g on ∂N .

( . )

Then, an appropriate notion of viscosity solution to equation of type ( . ) can be introduced (again, see e.g.[ , ]). Moreover, for x, y ∈ N , we can de ne similarly to the standard setting, the associated metric to H: Reproducing the same arguments as in Chapter , the maximal viscosity solution given by the formula ( . ) is the unique solution of the following maximization problem (M) : max N udx : σ * (x, ∇u(x)) ≤ 1 a.e and u = 0 on ∂N where N udx = j∈J l j 0 u j (s)dx. Many interesting questions remain to explore, both from a mathematical and numerical perspectives. In particular, the dual problem of (M) and the optimal transport problems linked to it are worth exploring.

Theorem . .

 . Let ρ ∈ M + b (Ω), then (M D ) : max Ω D udρ : σ * (x, ∇u(x)) ≤ 1 and u = g on Γ D , and (OF D ) :infφ∈DM p (Ω D ) Ω D σ(x, φ(x))dx -φ • ν D , g : -div(φ) = ρ in D (Ω D \ Γ D ) , coincide.WhereΩ D = Ω \ D and DM p (Ω D ) is the space of φ ∈ L p (Ω D ) N whose divergence is a bounded measure on Ω D .

  -dν) -∂Ω g dν : u is 1 -Lipschitz w.r.t d σ , ( . )for which suitable Beckmann and Monge-Kantorovich problems are presented. Again, considering a general version of ( . ),(M D ) : max Ω u dρ : u(y) -u(x) ≤ d σ (x, y), ∀x, y ∈ Ω and u = g on D ,where ρ ∈ M b (Ω), we prove the following result using perturbation techniques and approximation of degenerate Finsler metrics:Theorem . . The optimization problem (M D ) coincides with the following Beckmanndiv(φ) = ρ -ν in D (R N ) .

  is 1 -Lipschitz w.r.t d σ , as well as the following Monge-Kantorovich problem (MK) : min γ∈M + (Ω×Ω),ν∈M b (D)

Ω

  udρ : H * (x, ∇u) ≤ 1 a.e., φ ≤ u ≤ ψ on ∂Ω , which appears to be the Kantorovich-Rubinstein problem associated to the following mass transport problem(K) H : min γ∈Π(ρ + ,ρ -) Ω×Ω d H (x, y)dγ(x, y)+ ∂Ω ψ(y)d(π y ) γ-∂Ω φ(x)d(π x ) γ .

  . ) with H : Ω × R N → R a continuous Hamiltonian satisfying Named after Kolmogorvov, Arnold and Moser.
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 . Figure . : Error criterion for 400 iterations with N h = 64

Figure . :

 . Figure . : Left to right: 3D plot of the solution u, contour plot of u, the ux φ
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 . Figure . : Error criterion for 300 iterations with N h = 80.
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 . Figure . : Left to right: 3D plot of the solution u, contour plot of u, the ux φ
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 . Figure . : Error criterion for 600 iterations with N h = 64.
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 . Figure . : An object and its occluding boundary
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  Figure . : Sub-triangles
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  Figure . : Left to right: Initial image, the reconstructed shape

Figure . :

 . Figure . : Error criterion for 5000 iterations and τ = 0.01 and η = 8/τ
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 . Figure . : Left to right: Initial image, the reconstructed shape

Figure . :

 . Figure . : Error criterion for 5000 iterations and τ = 0.01 and η = 8/τ

Figure . :

 . Figure . : Error criterion for 5000 iterations and τ = 0.001 and η = 8/τ

  . ) a closed subset D ⊂ Ω (typically D = ∂Ω or D = ω for some ω ⊂⊂ Ω) and g : D → R is a continuous function satisfying the compatibility condition g(x) -g(y) ≤ d σ (y, x) for any x, y ∈ D. Thanks to Proposition . , the unique maximal viscosity subsolution of the equation ( . ) can be recovered via the following maximization problem max Ω u dx : u(x) -u(y) ≤ d σ (y, x), ∀x, y ∈ Ω and u = g on D , ( . )where d σ (., .) is the intrinsic distance associated to the Hamiltonian de ned by ( . ).

  g. [ , Theorem III . ]), gives sup Ω udx : |∇u| ≤ k and u = 0 on ∂Ω = min φ∈M b (Ω) N Ω k d|φ| : -div(φ) = ρ in D (Ω) .

  M b (D) satisfy ρ(Ω) = ν(D). We de ne two functionals T : L 1 (Ω) N → R ∪ {+∞} and E : Lip(Ω) → R ∪ {-∞} de ned by:

  Figure . : (A): the potential u, (B): the ow φ.

  Figure . : (A): the potential u, (B): the ow φ.

  Figure . : (A): the potential u, (B): the ow φ privileging the zero set of k .

  Figure . : (A): the potential u, (B): the ow φ .

Theorem . .

 . The optimization problem (M D ) o coincides with the following Beckmann-type problem, denoted by (BK) -: -div(φ) = ρ -ν in D (R N ) .

  systems of rst order HJ equation with implicit obstacles. Amongst their main results, a representation formula for the following OHJ equationmax{H(x, ∇u), u -ϕ} = 0 in Ω,(. ) coupled with Dirichlet boundary condition u = g on ∂Ω, ( . ) where ϕ : Ω → R and g : ∂Ω ∪ A → R are continuous functions. More precisely, they show that when ϕ and g are 1-Lipschitz with respect to d H , then the unique solution of ( . )-( . ) such that u = min{ϕ, g} on ∂Ω ∪ A is given by u(x) = min min ∂Ω∪A {d H (y, x) + g(y)}, min Ω {d H (y, x) + ϕ(y)} .

  .[ ] where the authors considered the following obstacle problem max{u + H(x, ∇u), u -ϕ} = 0 in Ω, ( . ) coupled with homogeneous Dirichlet boundary condition, where ϕ : Ω → R is a smooth function satisfying ϕ ≥ 0 on ∂Ω and H : R n × Ω → R is a smooth coercive Hamiltonian. Moreover, they assume the existence of a strict subsolution of ( . ), i.e, a function w ∈ C 1 (Ω) × C 2 (Ω) such that w = 0 on ∂Ω, w ≤ ϕ and w + H(x, ∇w) < 0 in Ω.

  min{u + H(x, ∇u), u -ϕ} = 0 in Ω, ( . ) by considering the following penalized PDE-∆u + u + H(x, ∇u ) + f α (u -ϕ) = f in Ω, and u = 0 on ∂Ω,where f is a positive Lipschitz function and α (s) = α(s/ ) with α a smooth function verifying α ≥ 0, α(s) = 0 for s ≤ 0 and α → 1 as t → ∞.

  min γ∈M + (Ω×Ω) Ω×Ω |x -y|dγ(x, y) : (π x ) γ = ρ + , (π y ) γ = ρ -,( .) as well as the associated Kantorovich-Rubinstein problem max Ω udρ : u ∈ Lip 1 (Ω) .

  g [ ])

  ψ ∈ C(∂Ω) satisfying φ(x) -ψ(y) ≤ d H (y, x) for all x, y ∈ ∂Ω, ( . ) we consider the following variant of Kantorovich-Rubinstein problem (KR) H : max Ω udρ : H * (x, ∇u) ≤ 1 a.e., φ ≤ u ≤ ψ on ∂Ω .

  , Θ |Θ| (x) for |Θ| -a.e. x φ ≤ u ≤ ψ on ∂Ω and u = ψ for θ -a.e. x and u = φ for θ + a.e. x. Let u be the potential constructed in Proposition . . Then u is a Kantorovich potentional for the classical optimal transport problem between ρ + Ω + θ + and ρ -Ω + θ -. MoreoverΩ uρdx = min(K) H .Proof. In the de nition of Θ p • n in ( . ), we take as a test function η = u to get∂Ω ud(Θ p • n) = Ω Θ p • ∇udx -Ω uρdx.Thanks to Proposition . , passing to the limit p → ∞ (up to a subsequence) we get 1-Lipschitz with respect to d H , we may nd thanks to Lemma . , a sequence of smooth functions w converging uniformly to u and enjoying the property of being 1-Lipschitz with respect to d H . By de nition of Θ p • n, we get∂Ω (u -w )d(Θ p • n) = Ω Θ p • (∇u -∇w )dx -Ω (u -w )ρdx.. Back to Monge-Kantorovich problem Taking p → ∞ (again, up to a subsequence) and keeping in mind ( . ), we get dx = A +B , ( . ) with A = Ω (u -w )ρdx + ∂Ω (u -w )dθ and B = Ω Θ • ∇w dx. Since w convergences uniformly to u, we have that A → 0 as → 0. We claim that

  x, y)dγ(x, y), where γ is a solution ofmin Ω×Ω d H (x, y)dγ(x, y) : (π x ) γ = ρ + Ω + θ + , (π y ) γ = ρ -Ω + θ -.Since (π x ) γ ∂Ω = θ + and (π y ) γ ∂Ω = θ -we deduce thatΩ uρdx = Ω×Ω d H (x, y)dγ(x, y) + ∂Ω ψdθ --∂Ω φdθ + = min(K) H .To end this section let us recall the following useful approximation result[ , , ].

  t), ξ(t))dt, for 0 ≤ s 1 ≤ s 2 ≤ 1, where σ is the support function of the 0 sublevels of H. Then, the g-action functional of the curve ξ reads A g (ξ) = max t∈[0,1] 

  Figure . : (A): the landscape height function g, (B): the constructed solution u .

  t), η(t))dt, where Γ(x, y) = η : [0, 1] → N piecewise di ernetiable curves such that: η(0) = x, η(1) = y. , andσ j (x, p) = sup q∈Z j (γ -1 j (x)) p • q.we have the followingTheorem . ([ ]). Assume that g satisfies the following compatibility condition g(x) -g(y) ≤ d σ (y, x), for any x, y ∈ ∂N , then the unique viscosity solution to ( . ) is given by u(x) = inf y∈∂N {g(y) + d σ (y, x)}.( . )

  

  So if µ and ν are probability measures on two subsets X and Y of R N , representing the initial and the target distributions, the modern formulation of Monge problem, consists in minimizing the quantity |x -T (x)| 2 dµ(x), where T is a Borel Map from X to Y that pushes µ onto ν, i.e, ν coincides with the measure obtained by picking every atom at x and putting it at T (x).

	More precisely, Monge's problem reads
	(MP) : min	|x -T (x)| 2 dµ(x), µ(T -1 (B)) = ν(B),
	X	
	for any Borelian B ⊂ Y . It is well known that this problem is di cult to solve due to
	the nonlinear constraint T µ = ν. Moreover, such maps T may not exist as we can see by
	taking a Dirac mass µ = δ x and another atomless measure ν. Monge's optimal transport
	problem remained unstudied until around 1940 when Leonid Kantoroivich proposed a
	"relaxation" of the problem in his paper [ ] by allowing mass splitting. More formally,
	he considered the problem	
	(KP) : min	cdγ, γ ∈ Π(µ, ν)
		X×Y

  Proof. We follow the main argumants of Mazón et al. in [ ]. If u p is a minimizer of F p , then we clearly have -div(Θ p ) = ρ in D (Ω). It follows that the Θ p • n de ned by ( . ) is a distribution supported on ∂Ω. Let us show moreover that supp

. )

  conclusion, D 1 and -D 2 are positive distributions. Hence, they are positive Radon measures. It follows that the distribution Θ p • n is a Radon measure on ∂Ω. Moreover, ( . ) and ( . ) give supp((Θ p • n) + ) ⊂ {u p = φ} and supp((Θ p • n) -) ⊂ {u p = ψ}. Under the previous assumptions, there exist two Radon measures Θ and θ in Ω and ∂Ω respectively such that up to a subsequence Θ p Θ and Θ p • n θ in the sense of measures.

	Proposition . .

  the case where ω L N , we have the following Corollary . . Let u and Θ as in Propositions . and . and set ω = H(x, Θ). The couple (Θ, θ) solves (B) H .Proof. First, take any admissible potential v ∈ C 1 (Ω) for (KR) H and an admissible couple of ows (Ψ, ν) for (B) H . Since H * (x, ∇v) ≤ 1 for a.e.x, we have

					If
	ω	L N , then		
					ω(x) > 0 ⇒ H * (x, ∇u) = 1,
	and			
	Ω ω(x)∂ ξ H In particular,
		-div(ω∂ ξ H Ω H(x, Ψ |Ψ| )d|Ψ| ≥ Ω	H(x,	Ψ |Ψ|	)H * (x, ∇v)d|Ψ|
					≥	Ω	Ψ |Ψ|	∇vd|Ψ|
					=	∇vdΨ
					Ω
					=	vd(ρ + ν)
					Ω
					≥	vdρ +	φdν + -	ψdν -
					Ω	∂Ω	∂Ω
	and consequently	
		Ω	H(x,	Ψ |Ψ|	)d|Ψ| +
		Ω	H(x,	Φ |Φ|	)d|Φ| +
	Remark . . It is possible to solve ( . ) without the assumption ( . ) as in [ , Theo-
	rem . ]. Yet, one needs to de ne the ω-tangential gradient of u with respect to H (see
	[ ] for details).		

* (x, ∇u) • ∇ηdx = Ω ηρdx, for all η ∈ D(Ω). * (x, ∇u)) = ρ in Ω. Proposition . . ∂Ω ψdν --∂Ω φdν + ≥ Ω vdρ using Lemma . and taking the in mum on (Ψ, ν) we deduce that min(B) H ≥ sup(KR) H . By Theorem . and Corollary . we have ∂Ω ψdθ --∂Ω φdθ + = Ω udρ.

Hence (Θ, θ) solves (B) H .

  where in the last inequality we have used Lemma . . Again we proceed as in the proof of Theorem . : since Θ p Θ, we have by Reshetnyak's lower semicontinuity theorem: (x, ∇u p ) p-1 ∂ ξ H * (x, ∇u p ) • ∇u p dx have used Hölder's inequality and Euler's theorem combined with the fact that H * (x, ∂ ξ H(x, ξ)) = 1 for any ξ ∈ R N \ {0}. Coming back to ( . ) we get

		HJ equation and Finsler p-Laplace approximations
								= lim →0 Ω	w ρdx +
								Ω	uρdx +	∂Ω	udθ =	Ω	H(x,	Θ |Θ|	)d|Θ|.
					→0 Ω	∇w	Θ |Θ|	d|Θ| +	∂Ω	ψdθ --	∂Ω	φdθ +
			≤ lim →0 Ω	H * (x, ∇w )H(x,	Θ |Θ|	)d|Θ| +	∂Ω	φdθ +
			≤	Ω	H(x,	Θ |Θ|	)d|Θ| +
	Ω	H(x,	Θ |Θ|	)d|Θ| ≤ lim inf p	Ω	H(x,	Θ p |Θ p |	)d|Θ p |
						= lim inf
									p-1
									p
						= lim inf p	Ω	H p-1 p
									p-1
						= lim inf p	Ω	∇u p dΘ p	p
						=		uρdx +	udθ
							Ω	∂Ω

∂Ω ψdθ --∂Ω ψdθ --∂Ω φdθ + p Ω H x, (H * (x, ∇u p ) p-1 ∂ ξ H * (x, ∇u p ) dx = lim inf p Ω H * (x, ∇u p ) p-1 H(x, ∂ ξ H * (x, ∇u p ))dx ≤ lim inf p Ω H * (x, ∇u p ) p dx * ∂Ω w dθ

where we

The method consists essentially in considering a linearization of ( . ) and then study the adjoint of the linearization operator.

This obstacle was created from an image taken from https://www.numerical-tours.com/matlab/

Theorem . . Assume that ρ ∈ M + b (Ω) and k ∈ C(Ω), k ≥ 0, g ∈ W 1,∞ (Ω), g ≥ 0. Define S g (D, x) = min y∈D S g (y, x) for any x ∈ Ω.

Then

) S g (D, .) ∈ K D g . ) S g (D, .) is a solution of ( . ).

) u is a solution of ( . ) if and only if u ∈ K D g and u = S g (D, .) ρ -a.e. in Ω.

It is not clear how to treat ( . ) as in Chapter since the dynamic takes place only on the region [u > g]. More precisely, the main di culty arising in ( . ) compared to what we have developed in the previous chapters, is the lack of convexity of K D g . Few works investigated problems of the form ( . ). In the case of lakes, i.e., k = 0, Doferman and Evans [ ] considered the following PDE

where H is the Heaviside function. Then, the limit u = lim →0 u satis es ( . ). The authors justify their results by rigorous proofs as well as asymptotics and numerical simulations.

In [ , ], Barrett and Prigozhin use a quasivariational inequality to model growing sandpiles, i.e., k ≥ k 0 > 0 with an obstacle g satisfying ( . ). To do so, they de ne, for v ∈ C(Ω), the following operator

and K(z) = {z ∈ W 1,∞ (Ω) : z ≥ g and |∇z| ≤ M (v)}. Then, the proposed quasivariational inequality consists in nding u(x, t) such that u(x, 0) = g(x) and for a.a. t ∈ (0, T ), u ∈ K(u) solves

( . )

As one can see, M (v) is discontinuous in general, so the authors study a regularized version of ( . ) with a continuous gradient constraint M (v). Let us mention that they also

G

In geometry, the shortest paths or geodesics play a central role. Consider for example a Riemannian manifold (M, m), then for any x, y ∈ M, the geodesic distance is de ned by where . m -1 is the dual norm associated to m. Once the distance computed, a gradient descent allows extracting the geodesic ξ between a given x ∈ M and D. More precisely, the geodesic ξ solves

This kind of questions appear in many applications such as meshing, image analysis and shape detection of tumors from medical images, or tractography and neural ber tracking in neuroscience (see e.g.[ , ] and the references therein). We are planing to apply our method to address these questions, compare with existing results and possibly consider general forms of ( . ) on Finsler manifolds. Laplace and p-Laplace operators.

Spaces of continuous, bounded continuous and compactly supported continuous functions on Ω.

Spaces of in nitely di erentiable functions, in nitely di erentiable with compact support and distributions on Ω. P(Ω), M(Ω), M + (Ω), M b (Ω) Spaces of probability measures, nite measures, positive nite measures and vector valued measures on Ω.

The sets of viscosity subsolutions, supersolutions and solutions of HJ equation.

Lip(Ω)

The set of Lipschitz functions on Ω. χ A Characteristic function of a set A: χ A (x) = 1 if x ∈ A and 0 otherwise.

I C

Indicator function of a set C in the sense of convex analysis, i.e., equals 0 on C and ∞ on C c . Γ 0 (X )

The set of propoer, convex and l.s.c functions on X .

The measure µ is absolutely continuous w.r.t ν. µ C

The restriction of the measure µ to a set C. µ n µ The µ n converges to µ in the sense of set measures.

|Φ|

The total variation of a vector measure Φ.