
HAL Id: tel-03160040
https://hal.science/tel-03160040

Submitted on 4 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combinatorics of trees under increasing labellings:
Asymptotics, bijections and algorithms

Mehdi Naima

To cite this version:
Mehdi Naima. Combinatorics of trees under increasing labellings: Asymptotics, bijections and al-
gorithms. Combinatorics [math.CO]. Université Sorbonne Paris Nord, 2020. English. �NNT : �.
�tel-03160040�

https://hal.science/tel-03160040
https://hal.archives-ouvertes.fr

Combinatoire des arbres sous étiquetages croissants:
Asymptotiques, bijections et algorithmes

Combinatorics of trees under increasing labellings:

Asymptotics, bijections and algorithms

Mehdi Naima

Sous la direction de:
Olivier Bodini et Antoine Genitrini

THÈSE
pour obtenir le titre de

Docteur en Sciences mention Informatique
École doctorale Galilée (ED 146)
Université Sorbonne Paris Nord

France
Rapporteur:

Vlady Ravelomanana Université de Paris
Julien Clément Université de Caen
Alois Panholzer Technische Universität Wien

Jury:

Frédérique Bassino Université Sorbonne Paris Nord
Olivier Bodini Université Sorbonne Paris Nord
Julien Clément Université de Caen
Antoine Genitrini Sorbonne Université
Cécile Mailler University of Bath
Cyril Nicaud Université Gustave Eiffel
Alois Panholzer Technische Universität Wien
Vlady Ravelomanana Université de Paris

18 Décembre 2020

Résumé

Dans cette thèse nous étudions des classes d’arbres étiquetés selon différents modèles
d’étiquetages croissants. Ces arbres sont utiles dans la modélisation de nombreux processus.

Nous adoptons dans nos recherches différents points de vues complémentaires (combi
natoire, probabiliste ou informatique) afin d’enrichir les résultats connus sur les arbres crois
sants classiques et de proposer de nouvelles classes d’arbres moins contraints que les modèles
existants dans la littérature.

Nous proposons plusieurs nouveaux modèles d’arbres, dans l’idée de pouvoir représenter
un processus d’évolution où l’historique des évolutions est enregistré. Pour ces nouvelles
classes d’arbres nous montrons leur liens étroits avec des objets classiques en combinatoire
comme les permutations, les partitions d’ensemble, ainsi que les graphes. Nous les étudions
également de façon plus détaillée en terme probabiliste pour mieux comprendre la forme
typique des grandes structures.

Ainsi, nous définissons un processus d’évolution paramétrable qui recouvre ces nouvelles
classes d’arbres ainsi que d’autres classes encore plus générales. Cela nous mène à définir
plusieurs nouveaux modèles d’étiquetages croissants sur les arbres. Nous réussissons aussi
à avoir des formes universelles pour l’énumération asymptotique des classes d’arbres issues
de ce processus d’évolution en utilisant notamment des idées empruntées aux sommations de
Borel.

Du côté algorithmique l’étude des structures arborescentes nécessite la génération et la
mémorisation d’arbres de grandes taille ce qui nous mène à élaborer des algorithmes de
génération aléatoire uniforme efficaces qui nous permettent de faire des simulations non bi
aisées sur des arbres de grandes taille. Du fait que nous sommes en mesure d’engendrer des
arbres grands, une autre problématique apparaît. Celleci concerne leur représentation en
mémoire. En particulier, nous nous sommes aperçus qu’une compression efficace serait in
téressante afin demanipuler et étudier expérimentalement ces structures arborescentes. Notre
étude porte alors sur le taux compression moyen des arbres croissants classiques et elle nous
permet de définir une nouvelle structure de données compactifiée pour les arbres binaires de
recherche.

iii

Abstract

In this thesis we study classes of trees labelled according to different increasing labellings.
These trees are useful in the modelisation of various processes.

In our research different we adopt different but complementary points of view (combi
natorial, probabilistic or algorithmic) to enrich the results on classical increasing trees and
propose new tree classes that are less constrained than existing models in the literature.

We propose several new tree models, which each represent a process of evolution where
the histories of evolutions are registered. For these new classes of trees we show their close
links with classic combinatorial objects such as permutations, set partitions and graphs. We
also study them in more detail in probabilistic terms to have a better understanding of the
typical shape of large structures.

Then, we define a parametrizable evolution process that covers these new classes of trees
as well as other even more general classes. This leads us to define several new models of
increasing labellings on trees. We also derive universal forms for the asymptotic enumeration
of tree of classes of trees resulting from this evolution process using, in particular, ideas
borrowed from Borel’s summations.

On the algorithmic side, the study of tree structures requires the generation and storage of
large trees. This leads us to develop uniform random generation algorithms which allow us to
make unbiased simulations on large trees. Since we are able to generate large trees, another
problem arises concerning their representation in memory. In particular, we have found that
efficient compression would be useful for manipulating and studying experimentally these
tree structures. Our study then focuses on the average compression ratio of increasing trees
and it allows us to define a new compacted representation of binary search trees.

v

Remerciements

مس1َ. زوی کالی انِ اکِینون اپ کی
Rumi (1207 1273), Diwane

Shamse Tabrizi2

Bien que ce document porte mon nom il m’aurait été impossible de le produire seul,
chaque personne ayant de près ou de loin participé mériterait d’y figurer. c’est en gardant ce
fait à l’esprit que j’adresse mes sincères remerciements.

Il serait plus simple pour moi de dire ce que mes directeurs Olivier Bodini et Antoine
Genitrini n’ont pas fait. Ils n’ont pas contribué à l’écriture de ces remerciements. À part
cela, leur bienveillance, leur soutien permanent et leur grande gentillesse sont présents dans
chaque pas de mes recherches ainsi que dans ceux de ma formation académique. Sans eux,
je n’aurai rien fait de tout cela. 3

Je souhaite aussi remercier de tout coeur les rapporteurs de ma thèse Alois Panholzer
et Julien Clément pour leurs remarques bienveillantes et constructives afin d’améliorer mon
manuscrit de thèse. Et plus spécialement Julien Clément pour tout le temps qu’il m’a consacré
depuis le début de ma thèse, sa bonne humeur et sa gentillesse à chacune de nos rencontres.

Je suis très reconnaissant envers les membres du jury de ma thèse; Frédérique Bassino,
Julien Clément, Cécile Mailler, Cyril Nicaud, Vlady Ravelmonana et mes directeurs, d’avoir
accepté ce rôle. Je suis honoré de leur présence. Et suis particulièrement reconnaissant envers
Frédérique Bassino en tant que directrice du Laboratoire Informatique de Paris Nord pour sa
disponibilité et son aide durant ma thèse et pour la préparation de la soutenance.

Un grand merci à tous mes coauteurs qui m’ont appris énormément de choses. Je serai
très heureux de continuer à collaborer avec chacun d’entre eux à l’avenir. J’ai été très touché
par l’accueil chaleureux et la douceur de Cécile Mailler lors de mon voyage à Bath ainsi que
pour les méthodes probabilistes que j’ai appris en la côtoyant. Merci à Isabella Larcher pour
tous ces moments partagés et ces bonnes conversations à Paris et à Vienne sur nos vies et
sur les arbres “croissants”; À Bernhard Gittenberger pour son accueil à Vienne, sa grande

2English translation : ’It is because of him that life is sweet’. Rumi wrote it as a Greek Phrase in the Persian
script. The Greek equivalent is ’κι απ’ εκείνον έν καλή η ζωή μας’.

2 A collection of lyric poems that is considered one of the great works in Persian literature.
3Je reformule ici les remerciements qu’a rédigé Daniel Greene à son directeur Donald Knuth. À bien des

égards ces deux chercheurs sont des parents académiques pour moi.

vii

viii Remerciements

gentillesse et toutes les techniques de combinatoire et d’analyse complexe que j’ai appris
avec lui. Sans oublier Alexandros Singh qui m’apprend chaque jour de nouvelles choses et
qui a participé grandement à l’évolution de mes travaux, qui s’est toujours montré présent.
Sa sérénité, sa bonne humeur et son amitié précieuse m’apporte beaucoup.

Je souhaite à présent remercier ma famille doctorale en commençant par Matthieu Dien
pour son accueil lors de mes voyages à Caen et à Taïwan, ainsi que pour sa patience, son
sens de l’humour et son attention. Toute ma reconnaissance se porte ensuite envers Martin
Pépin pour son aide scientifique et pour nos voyages en Autriche et à Marseille. C’est un
formidable compagnon. Elle se porte également envers Sergey Dovgal, pour son énergie
scientifique permanente et notre randonnée dans les calanques.

Le travail sur ma thèse m’a amené à faire de merveilleuse rencontres. Andrew Elevy
Price en fait parti. Je tiens à souligner ici la joie que j’ai de partager chacun de nos moments
ensemble, nos longues déambulations dans les rues de Paris sans oublier nos parties de jeux
de société où je perds presque toujours. Je lui suis aussi reconnaissant pour tout ce qu’il m’a
appris en combinatoire et bien audelà.

Merci aussi à Michael Wallner pour son invitation à Bordeaux et tous les bons moments
que j’ai passé en sa compagnie. J’ai rarement vu une personne aussi souriante et bienveillante.

Je suis aussi reconnaissant envers Julien David pour m’avoir introduit au monde de la
recherche ainsi que pour toutes nos discussions et balades dans Paris.

Rencontrer Frédérique Peschanski, HsienKuei Hwang, Cyril Banderier, Mireille Bousquet
Mélou, GérardDuchamp, PierreNicodème, Andrea Sportiello, Julien Courtiel, DanièleGardy,
Noam Zeilberger, Clément Requilé, Elie de Panafieu, Gérard Duchamp et Thierry Monteil
fut pour moi également une grande joie. je tiens à tous les remercier.

Comme nos recherches ne seraient rien sans le travail de nos prédécesseurs il me parait
indispensable de remercier tous les savants dont les travaux m’ont été bénéfiques et partic
ulièrement Philippe Flajolet.

Le bureau dans lequel j’ai travaillé était rempli de bonne humeur grâce aux doctorants du
LIPN avec qui je l’ai partagé. Davide Barbarossa, Jawher Jerray, Le Thanh Dung Nguyen
(Tito), EnricoBettiol, Alexandros Singh, Sarah Zouinina, TiphaineViard ,Dina Faneva, Ugochukwu
Onwudebelu et Juan José Figueroa, ont toujours su m’encourager et m’épauler. Il en fut de
même des doctorants de l’équipe APR du LIP6 Clément Bertrand, Raphaël Monat, Ghiles
Ziat et Martin Pépin.

Je souhaite aussi remercier les écoles que j’ai fréquentées et qui ont aidées à ma for
mation académique. La mosquée AlShafii, École Omar ibn alKhattab, l’École alIbaa al
Araby, l’École alMohsiniyyah, l’Université privée de Yarmouk, l’Université de Sorbonne
Paris Nord, Sorbonne Université, l’Université de Montréal ainsi que l’université de Paris. Je
souhaiterais aussi remercier tous mes camarades proches qui ont aidé et contribué bien suivre
les cours ainsi qu’à l’ensemble de mes professeurs.

Mes remerciements vont également à toutes les personnes qui contribuent à dévelop
per des logiciels qui m’ont été d’une grande aide durant mes années de thèse, notamment
l’excellente base données OEIS et son fondateur Neil Sloane ainsi que LATEX, TEX, Emacs,
Sagemath, Wolfram, Maple, Graphwiz.

De façon plus générale je remercie toutes les personnes de la communauté Analysis of
Algorithms (AofA) et ceux d’ALEA.

Remerciements ix

Milles mercis à mon ami Tarek Hussni à qui je dois entre autres la reprise de mes études
universitaires. Je le remercie surtout mon pour son amitié et sa bienveillance ainsi qu’à sa
famille.

Je remercie aussi mes autres amis proches qui m’ont toujours encouragé, Saer Alkhyat,
Ayman AlHajjeh, Anas Shekfa, Yannis Bensalah, Jean Peyen, Arsalan Riaz, Omar Altinawi,
Osmana Traore, Saad Nahlawi, Abdulrahman Hamdan et la famille Schmitz.

Je remercie de même mes cousins français et syriens pour leur sympathie et tous les bons
moments que l’on partage et égalementmes oncles et tantes ainsi quemes grandsparents. J’ai
une pensée particulière pour mes cousins et amis emprisonnés en Syrie depuis dans années.

Merci également à mes soeurs pour leur tendresse et leur douceur, et à mon petit frère
pour son courage et toute l’énergie qu’il véhicule.

J’ai une pensée très forte à Brigitte Henry, qui a toujours été un grand soutien et une
inspiration précieuse pour moi. Je lui suis profondément reconnaissant. Qu’elle repose en
paix.

Je remercie également Magali Richard, pour son amour, sa bonté ainsi que pour son aide
permanente et notamment pour le beau dessin sur la page de dédicaces.

Pour conclure je remercie mes parents à qui je dois tout. Mon père passe sa vie au travail
pour que l’on nemanque jamais de rien et mamère a toujours tout sacrifié pour notre bienêtre.
Merci pour tout.

La liste est longue des gens qui comptent pour moi et qui ont contribué à sans nécessaire
ment s’en rendre compte à ce travail. Par avance désolé si un nom viendrait à manquer. Il ne
fait nul doute que chacun est important pour moi.

De tout coeur merci à tous

Contents

Résumé iii

Abstract v

Remerciements vii

Contents x

List of Symbols xiii

Chapter 1 Introduction 1

Chapter 2 Methods 5
2.1 Power series 6
2.2 Symbolic Methods 7

2.2.1 Ordinary generating functions 8
2.2.2 Exponential generating functions 9

2.3 Combinatorial Borel and Laplace transforms 11
2.4 Analytic methods for asymptotics 12

2.4.1 Singularity analysis 14
2.4.2 Asymptotics of linear differential equations 17

Chapter 3 Classical objects in Combinatorics 21
3.1 Permutations 22

3.1.1 Cycles 24
3.1.2 Eulerian numbers and runs 25

3.2 Set partitions and Surjections 26
3.3 Integer partitions and compositions 28
3.4 Graphs 29
3.5 Trees 31

3.5.1 Simple varieties of trees 33
3.5.2 Pólya trees 34
3.5.3 Schröder trees 35
3.5.4 Increasing trees 36
3.5.5 Incremental process for increasing trees 38
3.5.6 Monotonic trees 39

Chapter 4 Three models of increasing Schröder trees 43
4.1 Introduction 44
4.2 Increasing Schröder trees 47

x

Contents xi

4.2.1 The model and its context 47
4.2.2 Overview of the main results 49
4.2.3 Exact enumeration and relationship with permutations 50
4.2.4 Iterative construction of a tree 51
4.2.5 Bijections with permutations and relationship to internal nodes and depth

of a leaf 52
4.2.6 Relationship to Eulerian numbers and runs in permutations 57
4.2.7 Analysis of typical parameters 59
4.2.8 Analysis of the height of a typical increasing Schröder tree 71

4.3 Strict monotonic Schröder trees 73
4.3.1 The model and its context 73
4.3.2 Overview of the main results 75
4.3.3 Enumeration and relationship with ordered Bell numbers 75
4.3.4 Bijections with ordered Bell numbers and relationship to internal nodes 79
4.3.5 Analysis of typical parameters 83

4.4 Strict monotonic general Schröder trees 90
4.4.1 The model and its enumeration 90
4.4.2 Overview of the main results 90
4.4.3 Iteration steps and asymptotic enumeration of the trees 93
4.4.4 Correspondence with labelled graphs 96
4.4.5 Analysis of typical parameters 98

4.5 Conclusion 102

Chapter 5 General asymptotics for varieties of monotonic Schröder trees 105
5.1 Introduction 106
5.2 Formal definition and main results 107
5.3 Applications 111

5.3.1 Double nature of ϕ(z) 112
5.3.2 Varieties of strict monotonic Schröder trees 113
5.3.3 Varieties of connected monotonic Schröder trees 117
5.3.4 Varieties of monotonic Schröder trees 120
5.3.5 Weakly increasing plane dary trees (monotonic dary trees) 121
5.3.6 Applications of trees with unary nodes 123

5.4 Combinatorial model 124
5.5 Asymptotic analysis for r = {d} 126

5.5.1 Asymptotic analysis for r = {1} 127
5.5.2 Asymptotic analysis for d ≥ 2 130

5.6 Asymptotic analysis for r = N∗ 132
5.7 Asymptotics for general r 140
5.8 Asymptotic analysis for r = [m] 143
5.9 Asymptotics when unary nodes are allowed 144
5.10 Asymptotics where no binary nodes are allowed 150
5.11 Conclusion 154

Chapter 6 Average compaction of increasing tree models 156
6.1 Introduction 157

xii Contents

6.2 Average compression of Pólya trees under increasingly labelled distribution 162
6.3 Average compression of plane binary trees under increasingly labelled

distribution 170
6.4 A compressed data structure 182
6.5 Conclusion 184

Chapter 7 Random generation 188
7.1 Introduction 189
7.2 Efficient uniform samplers for the three models of increasing Schröder trees 190

7.2.1 Increasing Schröder 190
7.2.2 Strict monotonic Schröder 193
7.2.3 Strict monotonic general Schröder 198

7.3 General Model uniform random generation 201
7.3.1 Generating the elements of An,ϕ from Integer partitions 202
7.3.2 Sampling algorithm 207

7.4 Conclusion 210

Bibliography 211
7.5 Appendix A 216

7.5.1 Proofs for the bijections presented in Section 7.3.1 216

Index 219

Index of Sequences 221

Index of Open questions 223

List of Symbols

[
n
k

]
Stirling cycle numbers (First kind){

n
k

}
Stirling partition numbers (Second kind)

Sn The set of all permutations of n elements〈
n
k

〉
The number of permutations of size n with k descents

A,B, C, . . . Combinatorial classes
An,Bn, Cn, . . . Class of objects of A,B, C, . . . which have size n
An, Bn, Cn, . . . Number of objects of size n in A,B, C, . . .
A(z), B(z), C(z), . . . Generating function of A,B, C, . . .
nk n (n− 1) . . . , (n− k + 1)
[n] {1, 2, . . . , n}

xiii

À mes parents,
À Brigitte Henry,

Et à toutes les victimes de la tyrannie,

CHAPTER 1

Introduction

Trees are poems that the earth
writes upon the sky.

Kahlil Gibran (1883 1931),
Sand and Foam.

Tree structures are widely known and commonly studied objects which applications in vari
ous fields and disciplines ranging from computer science and mathematics to biology, phy
logenetics and sociological research.

In computer science, some examples of trees include tree structures that are used as represen
tations of the abstract syntactic structure of source code written in a programming language.
In this context they are called abstract syntax trees. In computational linguistics, a parse tree
represents the syntactic structure of a string according to some contextfree grammar. Parse
trees together with abstract syntax trees are used as main steps in the compiling process of a
program. See [ALSU06, Muc97, GvRB+12] for some references on the subject.

Other examples include, markup languages such as XML that have underlying tree structures
that can be used and processed subsequently by theDocument Object model, see [HM04] for
an introduction. Finally, in data structures, trees are used as efficient structures to store and
extract information. The most famous examples are binary search trees, redblack trees and
AVL trees, some references include [CCLR09, RK11].

On one hand, tree structures are naturally defined as subclasses of directed acyclic graphs
(or DAGs) that are very common in graph theory because they can model many different
kinds of information and they are in direct relation with partial orders as well. On the other
hand directed acyclic graphs appear naturally in computer science in the context of tree
structures that are compacted by sharing substructures. Compression of data structures is
not only studied computer science where it is a central tool in order to save memory, but is
also important in different fields such as information theory and combinatorics. There, it is
related to the central concepts of symmetries, entropy and Shannon information, see [CT05]
for an overview on information theory and compaction of data structures.

1

2 1 Introduction

Trees can also be labelled, such that each node of the tree contain some label. We have already
mentioned trees used in data structures, in which we manipulate data. In combinatorics,
people are interested in many different kinds of tree labellings. Some books on the subject
include [CCG18, FS09]. An important case of labellings is the increasing labelling, where
the labels in the nodes of the tree are increasing along branches.

Some models include increasing treeswhich have been introduced by Bergeron, Flajolet and
Salvy in [BFS92], where the authors study trees with no label repetitions. Other models
include [PU83], where the authors study increasing trees with label repetitions and more re
cently [BGGW20]. Label repetitions in concurrency theory can represent synchronisation of
processes as in [Gen17]. Other studies include [KP16] in which the authors look at increas
ing trees that are multilabelled, that is, a node can contain several labels.

This kind of notion is adapted to the study of several tree classes like binary search trees that
are equivalent to increasing binary trees as well as recursive trees, and plane oriented (or
heap ordered) trees, and monotonic trees, see [Drm09].

Increasing trees are adapted to the study and analysis of dynamic evolution processes, such
that phylogenetic trees that represent the evolutionary relationship among species. At each
bifurcation (or multifurcation) of the tree, the descendant species from distinct branches have
differentiated. Increasing trees can usually described as an incremental process where nodes
are inserted at different iteration steps according to some distribution as in [PP07]. This
models the fact that at any given time, each existing species is equally likely to give rise
to new species. More information on trees in biology and phylogenetics can be found in
[Fel03, Ste16]. These tree models can also be used as simple models for epidemics or other
evolution processes that admit incremental modelisation.

In this thesis we study various classes of trees under different increasing labellings. Our
perspective, varies from that of a combinatorialist, with questions of enumeration, bijections
and asymptotics, to the one of a probabilist, with analysis questions and determination of limit
random laws, to that of a computer scientist, where questions relating algorithm designs, data
structures and random generation are dealt with.

These different points of views, allow us to make rigorous theoretical statements, about the
objects of study and then design practical algorithms that manipulate these objects.

This thesis consists of three main parts. First, we introduce three new models of increas
ing trees, which are suitably interpreted as evolutionary trees, but they are also adapted to
represent other evolution processes such as that of programs in concurrency theory.

The underlying structure of these tree models is the one of Schröder trees that were studied
by Ernst Schröder [Sch70] in connection with evolutionary trees. However, his framework
did not model the of new species (i.e differentiations) over time, which we do by considering
labellings on internal nodes. These trees are counted by their number of leaves and inter
nal nodes bear integer labels. The first model called increasing Schröder trees only allows
for one species to evolve at a fixed period of time, while the other two models strict mono
tonic Schröder trees and strict monotonic general Schröder trees, allow for several species
to evolve simultaneously.

1 Introduction 3

For all three models, we will also study the average value of some parameters, in order to
have a better understanding of the typical shape of large random trees that belong to this
classes. We will also see how these models relate to classical objects in combinatorics such
as permutations, set partitions and graphs. In particular, we will exhibit relations between
cycles in permutations and the number of internal nodes or the depth of a fixed leaf. We will
also see how Eulerian numbers and Stirling numbers of both kinds relate on the tree structure.

The second main part of our research lies in the presentation of a general parameterisable
evolution process for classes of increasing Schröder trees that encompasses all three models
already presented but alsomany others. This will also allow us to introduceweakly increasing
labellings on tree structures in a new way that is different from [PU83]. For this general
evolution process, we will be mainly concerned with the asymptotic enumeration of these
classes of trees. Our theorems give general asymptotic formulae that are in the same spirit as
the theorem for universal asymptotic behaviour of simply generated trees in [FS09].

On a theoretical level, we see that the labellings that we add to the tree structures which al
lows for repeated labelling and weak increasing labelling along branches are easily specified
using ordinary generating functions. However, the generating functions are then invariably
divergent. Therefore, we develop a general method which is related to Borel summations,
which allows to capture the asymptotic behaviour.

Finally, the last axis of our research concerns data compression. We will study the average
compaction rate of trees under the increasing labelling distribution. Our aim is to extend
already known results on the average compaction of trees under the uniform distribution that
has been studied under the name of “common subexpression recognition” in [FSS90] and
more recently by [BMLMN15]. For instance, we will show that the average compaction of
binary trees under the increasing labelling distribution is better than the average compaction
under uniform distribution. By the word ’better’ here, we mean that we gain an asymptotic
order in the average compaction rate. In light of our theoretical results on the compaction
of binary trees, we will propose a new lossless data structure based on the compaction of
binary search trees. In the same way we study Pólya trees under the increasing labelling
distribution.

Plan of the thesis:

We start in Chapter 2 by presenting the main theoretical tools that we will use to build our
results. Chapter 3 contains a presentation of the different known combinatorial objects that
are used throughout the thesis. Chapter 4 introduces the three new classes of increasing
Schröder trees, it contains a thorough study of these three classes in terms of enumeration,
asymptotics, typical shapes, and relationship with classical combinatorial objects. In Chap
ter 5, we present a general evolution process that includes the three models of increasing
Schröder trees as parametrisations. This chapter is mainly concerned with the asymptotic
enumeration of the different classes of trees that can be produced with the evolution process.
Then, Chapter 6 is dedicated to the study of average tree compaction of two tree models under
increasing labelling distribution. Finally, in Chapter 7, we talk about the uniform random
generation of classes of trees that are the result of the evolution process defined in Chapter 5.

4 1 Introduction

We also show how the three classes of increasing Schröder trees defined in Chapter 4 admit
efficient uniform sampling algorithms.

O. Bodini, A. Genitrini,
M. N.

“Ranked Schröder trees”.
In Proceedings of the Sixteenth
Workshop on Analytic Algorithmics
and Combinatorics (ANALCO), 2019.

Chapter 4

O. Bodini, A. Genitrini,
C. Mailler, M. N.

“Strict monotonic trees arising
from evolutionary processes:
combinatorial and probabilistic study”.
Submitted to a journal. Available on
https://hal.sorbonneuniversite.fr/hal02865198

Chapter 4,
Chapter 7

O. Bodini, A. Genitrini,
M. N., A. Singh

“Families of Monotonic Trees:
Combinatorial Enumeration and Asymptotics”.
In Proceedings of the 15th
International Computer Science
Symposium in Russia (CSR), 2020.

Chapter 5

O. Bodini, A. Genitrini,
B. Gittenberger,
I. Larcher, M. N.

“Compaction for two models of
logarithmicdepth trees: Analysis and Experiments”.
Submitted to a journal. Available on
https://arxiv.org/abs/2005.12997

Chapter 6

Table 1.1: Publications and preprints that form parts of this thesis.

https://hal.sorbonne-universite.fr/hal-02865198
https://arxiv.org/abs/2005.12997

CHAPTER 2

Methods

Contents
2.1 Power series 6
2.2 Symbolic Methods 7

2.2.1 Ordinary generating functions 8
2.2.2 Exponential generating functions 9

2.3 Combinatorial Borel and Laplace transforms 11
2.4 Analytic methods for asymptotics 12

2.4.1 Singularity analysis 14
2.4.2 Asymptotics of linear differential equations 17

Ainsi mon dessein n’est pas
d’enseigner la méthode que
chacun doit suivre pour bien
conduire sa raison, mais de faire
voir en quelle sorte j’ai tâché de
conduire la mienne.1

René Descartes (1596 1650),
Discours de la méthode.

1Thus my design is not here to teach the Method which everyone should follow in order to promote the
good conduct of his Reason, but only to show in what manner I have endeavoured to conduct my own.

5

6 2 Methods

This chapter presents briefly the main concepts and mathematical tools that will be used
throughout this thesis.

2.1 Power series

Let A be a commutative rings and z an indeterminate. We denote by A[[z]] the ring of formal
power series in z with coefficients in A.

Unless otherwise stated we will work with power series in C[[z]] with elements of the form:

A(z) =
∑
n≥0

Anz
n.

The function A(z) is then an element of A[[z]]. Power series are useful in analysis especially
as Taylor series. Émile Borel a french mathematician showed that every power series is the
Taylor series of some smooth function. For example, let for all n ≥ 1, An = 1, Bn = 1

n!
then,

A(z) =
1

1− z
, B(z) = exp(z).

Power series are used as a basis for generating functions in combinatorics.

Depending on the values of the indeterminate z the function may converge or diverge. There
is always a number R ≥ 0, such that the power series converges for all values z < R and
diverges when z > r. This value R is called the radius of convergence of the power series.

As it will be seen in Section 2.4, the radius of convergence plays an important role in deter
mining the asymptotic behaviour of a combinatorial class.

Power series behave nicely with algebraic operations that can be defined on them to combine
them and form new power series. Table 2.1 gives a summary of some of the most basic oper
ations. When defining or combining power series together we consider the indeterminate z
as a formal variable without considering the questions of convergence and uniformity. These
questions will be inverstigated when looking for asymptotic behaviour of power series seen
as counting objects.

A good introduction to the subject with advanced operations on formal power series can be
found in the works of Goulden, Jackson and Wilf among others [GJ04, Wil05].

Using the definition of a power series a polynomial is an element of A[[z]] with only a finite
number of nonzero coefficients.

The definition of formal power series can be extended to the multivariate case. Therefore
A[[z, u]] has elements of the form:

A(z, u) =
∑
n≥0

∑
k≥0

An,ku
kzn

2In this thesis we will use ∂z for d
dz .

2.2 Symbolic Methods 7

Coefficient extraction [zn]A(z) = An

Addition C(z) = A(z) +B(z) ∀n ≥ 0, Cn = An +Bn

Cauchy Product C(z) = A(z) ·B(z) ∀n ≥ 0, Cn =
n∑

k=0

AkBn−k

Derivative C(z) = ∂zA(z)
2 ∀n ≥ 0, Cn = (n+ 1)An+1

Integral C(z) =
z∫
0

A(z) ∀n ≥ 1, Cn =
An−1

n

Exponential series C(z) = exp(z) ∀n ≥ 0, Cn =
1

n!

Logarithmic series C(z) = log(1− z)−1 ∀n ≥ 1, Cn =
1

n

Binomial series C(z) = (1 + z)k ∀n ≥ 0, Cn =
(
k
n

)
Table 2.1: Basic operations on power series

And we have
[zi]
∑
n≥0

∑
k≥0

An,ku
kzn =

∑
k≥0

Ai,ku
k

In order to extract both coefficient in the same time we denote [ziuj]A(z, u) = Ai,j .

2.2 Symbolic Methods

This section is mostly based on [FS09, Ch 1 and 2].

Definition 2.2.1. A combinatorial class set of objects on which a size notion has been defined
such that the size s of an object is always positive s ≥ 0 and the number of objects of a fixed
size is finite.

Symbolic methods are methods that help constructing combinatorial classes. These methods
give the correspondence between operations to construct classes of combinatorial objects and
their corresponding operations on the generating function level.

Notation. We will denote combinatorial classes with calligraphic capital letters likeA,B, C,
and the notationAn will refer to the combinatorial class defined as the subset of elements of
A that have size n.

8 2 Methods

2.2.1 Ordinary generating functions

Ordinary generating functions are usually used to specify combinatorial objects that are un
labelled. However, in this thesis we will see how they can be used to specify increasing
structures.

Definition 2.2.2. The ordinary generating function (orOGF) of a sequenceAn is the formal
power series

A(z) =
∑
n≥0

Anz
n.

Ordinary generating functions are also referred to simply as generating functions. Accord
ing to Georges Pólya in [Pól54] the name generating functions was coined by PierreSimon
Laplace but its use dates back to Leonhard Euler.

We start with the basic operators. The generating function of the neutral classE(z) (contains
a single object of size 0) and the atomic class (contains a single object of size 1) Z(z)

E(z) = 1 Z(z) = z.

The combinatorial sum (or disjoint union) between two combinatorial classes, create a new
class by putting together all the elements of each class. It might be the case that some element
are common to both classes, in which case we colour each element with a new colour and
add both to the new class. The size of an element in the new class is inherited from the class
it came from.

The Cartesian product forms all possible ordered pairs between two classes. The size of an
object (which is a pair) is obtained by adding the size of both objects contained in it.

Sum A = B + C A(z) = B(z) + C(z)

Cauchy Product A = B × C A(z) = B(z) · C(z)

Sequence A = Seq(B) A(z) =
1

1−B(z)

Pointing A = Θ(B) A(z) = z∂zB(z)

Substitution A = B ◦ C A(z) = B(C(z))

Multiset A = MSet(B) A(z) =
∏

n≥1(1− zn)−Bn

Table 2.2: Admissible constructions from [FS09, Ch 1]

The Sequence is defined for a class A as the infinite sum of
Seq(A) = {ϵ}+A+ (A×A) + (A×A×A) + . . .

2.2 Symbolic Methods 9

The pointing of a class A is a new class made by selecting any unit element in A. More
formally,

Θ(A) =
∑
n≥0

An × {ϵ1, ϵ2, . . . , ϵn}

The substitution or (composition) is defined by

B ◦ C =
∑
n≥0

Bn × Seqk(C)

TheMultiset construction can be decomposed into

MSet(B) ∼=
∏
β∈B

Seq ({β}) .

In fact a multiset can always be reorganised as a product of sequences of each element of
B. For instance if B = {1, 2, 3}, the element {1, 2, 1, 3, 1, 2} can be seen as {1, 1, 1, 2, 2, 3}.
Therefore we can get also an alternative form for the multiset construction,

A(z) =
∏
β∈B

(1− z|β|)−1 =
∏
n≥1

(1− zn)−Bn

= exp

(∑
n≥1

Bn log (1− zn)−1

)

= exp
(
B(z)

1
+

B(z2)

2
+

B(z3)

3
+ . . .

)
.

In this section we focus on the description of construction operators but many examples will
follow in Chapter 3.

2.2.2 Exponential generating functions

Definition 2.2.3. The exponential generating function (or EGF) of a sequence An is the
formal power series

A(z) =
∑
n≥0

An
zn

n!
.

Exponential generating functions will be denoted for short EGF. They are known to be
adapted to labelled combinatorial structures.

Definition 2.2.4. A labelled combinatorial class is a combinatorial class, such that each
object is labelled with labels in {1, . . . , n}, where n is the total size of the object and the
labels are all distinct.

The neutral and the atomic class objects are the same as in Section 2.2.1 but now the atomic
class refer to the only object of size 1, that is labelled 1.

10 2 Methods

Disjoint sum A = B + C A(z) = B(z) + C(z)

Labelled Product A = B ⋆ C A(z) = B(z) · C(z)

Sequence A = Seq(B) A(z) =
1

1−B(z)

Set A = Set(B) A(z) = exp(B(z))

Cycle A = Cyc(B) A(z) = log
1

1−B(z)

Boxed product A = B□ ⋆ C A(z) =
z∫
0

(∂tB(t)) · C(t)dt

Table 2.3: Admissible constructions from [FS09, Ch 2]

If we have two labelled objects β ∈ B and γ ∈ C, their labelled product is written by β ⋆ γ ,
is a set consisting of welllabelled ordered pairs (β′, γ′) that reduce to (β, γ). If β has size i
and γ size j. If n = i+ j, then the number of elements in β ⋆ γ is

(
n
i

)
.

The labelled product of two classes B and C, denoted B ⋆ C, is then obtained by forming
ordered pairs from B×C and performing all possible orderconsistent relabellings. We have,

B ⋆ C =
⋃

β∈B,γ∈C

(β ⋆ γ).

The sequence is defined for a class A as before
Seq(A) = {ϵ}+A+ (A ⋆A) + (A ⋆A ⋆A) + . . .

We can define a ksequence,
Seq
k

(A) = A ⋆ · · · ⋆A︸ ︷︷ ︸
k

A sequence is also
Seq(A) =

⋃
k≥0

Seq
k

(A).

From this a kset, denoted by Setk(A), corresponds to the quotient class of elements of
Seqk(A)/R, whereR is the equivalence relation that identifies two sequences when the com
ponents of one are a permutation of the components of the other. From here the set class is
simply

Set(A) =
⋃
k≥0

Set
k
(A).

In the same spirit, we can define a kcycle, denoted by Cyck(A), corresponding to the quo
tient class of elements of Seqk(A)/S, where S is the equivalence relation that identifies two
sequences when the components of one are a cyclic permutation of the components of the

2.3 Combinatorial Borel and Laplace transforms 11

other. From here the cycle class is simply

Cyc(A) =
⋃
k≥0

Cyc
k

(A).

The boxed (or Greene) product is used for order constraint which is very useful for increasing
structures. It has been introduced by Greene in his thesis [Gre91]. It is defined as the subset
of the product B ⋆ C such that the smallest label is constrained to in the B component. For
consistency we also need to have B0 = 0. We get for its coefficients

An =
n∑

k=1

(
n− 1

k − 1

)
BkCn−k

Remark 2.2.5. A simple relation can be deduced directly between a sequence and a set of
cycles.

Seq(A) = Set(Cyc(A)).
Since,

1

1− A(z)
= exp

(
log
(

1

1− A(z)

))
.

A combinatorial example of this fact can be seen on permutations in Section 3.1.

2.3 Combinatorial Borel and Laplace transforms

These two transforms are known to be ’bridges’ between OGF and EGF. Since they trans
form a generating function from one type to the other. The combinatorial Borel transform is
defined by

B
∑
n≥0

anz
n =

∑
n≥0

an
zn

n!
,

and the combinatorial Laplace,

L
∑
n≥0

an
zn

n!
=
∑
n≥0

anz
n.

Therefore the Laplace transform converts an EGF to an OGF while the Borel transform
does the inverse. The Laplace transform can be analytic under suitable conditions of conver
gence and can be defined as:

Lf(z) =
∞∫
0

f(zx) e−x dx.

While the Borel transform can be defined by:

Bf(z) = 1

2iπ

c+i∞∫
c−i∞

ezt

t
f

(
1

t

)
dt,

where c is greater than the real part of all singularities of f(1
t
) t−1.

12 2 Methods

Some simple rules can be directly inferred from these definitions:

• Lf ′ =
1

z
(Lf − f0).

• L(
∫
f) = zLf .

• B(zf) =
∫
f .

• B(f − f0
z

) = (Bf)′.
• Bf ′ = (Bf)′ + z(Bf)′′.

For more information on these transforms and on new operators for symbolic methods see
[BDGP17] in which the authors introduce new operators for the symbolic method. More
detailed accounts are also found in the thesis of [Die17].

These transforms and especially the Borel one, will be very useful to us in the subsequent
chapters. This is due to the fact that many of our specifications will made in the unlabelled
world while the objects of study will belong to the labelled one. Therefore, we will be passing
from OGFs to EGFs in order to compute asymptotics.

Combinatorial Borel transforms are closely related to Borel summation with the idea of sum
ming divergent power series introduced by Émile Borel in 1899.

2.4 Analytic methods for asymptotics

Most of the material of this section is taken from [FS09, ch 4,6,7]. We start this section with
a reminder of Cauchy’s coefficients formula.

Theorem 2.4.1. Let f (z) be analytic in a region Ω containing 0 and let λ be a simple loop
around 0 in Ω that is positively oriented. Then, the coefficient fn = [zn]f(z) admits the
integral representation

fn =
1

2iπ

∫
γ

f(z)
dz

zn+1
.

This formula, will be a major technique in the proof of the following transfer Theorems
which we will give the statements without proofs. Cauchy’s coefficients formula is a direct
application of the known residue theorem in complex analysis.

We continue by defining some types of functions for which there exists some general the
orems that allows mechanical procedures to extract asymptotic equivalent from them. The
interesting part for us, is to understand to which type does the generating function of a com
binatorial class belongs to. The simplest types of functions are the rational and meromorphic
functions.

Definition 2.4.2. A function f(z) is a rational function, if and only if it is of the form N(z)
D(z)

,
where N(z) and D(z) are polynomials. Rational functions that are analytic at the origin,
which is the case for some generating functions D(0) 6= 0.

2.4 Analytic methods for asymptotics 13

Definition 2.4.3. A function h(z) is meromorphic at z0 if and only if, for z in a neighbourhood
of z0 with z 6= z0, it can be represented as f(z)

g(z)
, with f(z) and g(z) being analytic at z0. In

that case, it admits near z0 an expansion of the form

h(z) =
∑

n≥−M

hn (z − z0)
n.

If h−M 6= 0 and M ≥ 1, then h(z) has a pole of order M at z = z0 and the coefficient h−1

is called the residue of h(z) at z = z0.

The main goal of analytic methods is to derive asymptotic information from generating func
tions.

In simple words, a singularity of a function f(z) is a point where f(z) stops of being analytic.
The search for the dominant singularity (the one that is nearest to the origin) of a generating
is essential in deriving asymptotic information from a generating function.

Pringsheim’s theorem applies to generating functions and allows one to restrict its attention to
positive real axis in search for the dominant singularity of a combinatorial generating function
(the power series has nonnegative coefficients).
Theorem 2.4.4. (Pringsheim’s Theorem). If f(z) is representable at the origin by a series
expansion that has nonnegative coefficients and radius of convergence R, then the point
z = R is a singularity of f(z).

The following result is known as The First Principle of Coefficient Asymptotics in Analytic
combinatorics. The location of a function’s singularities dictates the exponential growth (An

) of its coefficient.
Theorem 2.4.5. (Exponential Growth Formula). If f(z) is analytic at 0 andR is the modulus
of a singularity nearest to the origin. Then,

fn =

(
1

R

)n

θ(n),

where θ(n) is a subexponential factor, that is lim sup |θ(n)|
1

n = 1.

The Second Principle of Coefficient Asymptotics relates subexponential factors of coeffi
cients to the nature of singularities. For rational and meromorphic functions the results can
be obtained simply.

For rational functions, the next theorem gives an exact finite expression for the coefficients
of a function in term of its poles.
Theorem 2.4.6. (Expansion of rational functions). If f(z) is a rational function that is
analytic at zero and has poles at points α1, α2, . . . , αm, then its coefficients are a sum of
exponential–polynomials: there existm polynomials {Πj(x)}mj=1 such that, for n larger than
some fixed n0,

fn = [zn]f(z) =
m∑
j=1

Πj(n)α
−n
j .

14 2 Methods

The degrees of Πj is equal to the order of the pole of f(z) at αj minus one.

We can define a similar expansion for meromorphic functions.
Theorem 2.4.7. (Expansion of meromorphic functions). Let f(z) be a function meromorphic
at all points of the closed disc |z| ≤ R, with poles at points α1, α2, . . . , αm. Assume that f(z)
is analytic at all points of |z| = R and at z = 0. Then there existm polynomials {Πj(x)}mj=1

such that:

fn = [zn]f(z) =
m∑
j=1

Πj(n)α
−n
j +O

(
R−n

)
.

Furthermore the degree of Πj is equal to the order of the pole of f at αj minus one.

We give below an example of application of this Theorem that covers many different inter
esting combinatorial classes.

Example 2.4.8. Let f(z) =
1

2− exp(z)
, which is the generating function of Surjections

(also known as Ordered Bell numbers) as will be seen in Section 3.2. The function has a pole
of order 1 at log 2 which is the singularity of smallest modulus. The next pole is equal to
log 2 + 2iπ ≈ 6.32130292. From Theorem 2.4.7:

fn ∼
n→∞

Π1

(
1

log 2

)n

,

where Π1 is a polynomial of degree 0 (i.e a constant). To determine it we see that

f(z) ∼
z→log 2

−1

2

1

z − log 2
,

So that asymptotically,

fn ∼
n→∞

1

2

(
1

log 2

)n+1

.

Some other very good accounts onmethods for obtaining asymptotics of generating functions
include researches of Bender, De Bruijn, Odlyzko and Wilf. See [WdB60, Wil05, Odl95,
Ben74].

2.4.1 Singularity analysis

The main idea of the process of singularity analysis is the existence of a correspondence
between the asymptotic expansion of a function near its dominant singularities and the as
ymptotic expansion of the function’s coefficients.

It extends the analysis of meromorphic functions since it allows for functions whose singular
expansion involves fractional powers and logarithms.

It is based on two ingredients : A catalogue of asymptotic expansions for coefficients of func
tions that are in standard scale (these functions occur in the singular expansion) and secondly,
transfer Theorems which allow the extraction of the asymptotic order of the coefficients that
are error terms in the singular expansion.

2.4 Analytic methods for asymptotics 15

Its development is due to a pioneering paper of Flajolet and Odlyzko in 1990 [FO90] and is
also detailed with examples in [FS09, Chapter VI].

Let S denote the set of the following singular functions:

S = {(1− z)−α λ(z)β | α, β ∈ C}, λ(z) =
1

z
log

1

1− z
≡ 1

z
L(z).

Definition 2.4.9. (Delta domain) Given two numbers ϕ and R, with R > 1 and 0 < ϕ <
π

2
,

the open domain ∆(ϕ,R) is defined as
∆(ϕ,R) = {z | |z| < R, z 6= 1, |arg(z − 1)| > ϕ}.

A domain is a ∆domain at 1 if it is a ∆(ϕ,R) for some R and ϕ. For a complex number
ζ 6= 0, a∆domain at ζ is the image by the mapping z 7→ ζz z of a∆domain at 1. A function
is ∆–analytic if it is analytic in some ∆domain.

The catalogue of asymptotic expansions is based on the following two Theorems.

Theorem 2.4.10. (Standard function scale). Let α be an arbitrary complex number inC\Z≤0.
The coefficient of zn in

f(z) = (1− z)−α

admits for large n a complete asymptotic expansion in descending powers of n,

[zn]f(z) =
nα−1

Γ (α)

(
1 +

∞∑
k=1

ek
nk

)
,

where ek is a polynomial of degree 2k. In particular:

[zn]f(z) =
nα−1

Γ (α)

(
1 +

α(α− 1)

2n
+

α(α− 1)(α− 2)(α− 3)

24n2
+O

(
1

n3

))
.

Function Coefficients

(1− z)
3
2

1√
π n5

(
3

4
+

45

32n
+O

(
1

n2

))
(1− z)

1
2 log

1

1− z
− 1√

π n3

(
1

2
logn+

γ + 2 log 2− 2

2
+O

(
logn
n

))
(1− z)−

1
2 log

1

1− z

1√
π n

(
logn+ γ + 2 log 2 +O

(
logn
n

))
Table 2.4: Some functions of the standard scale and the asymptotics of their coefficients
according to Theorem 2.4.10 and Theorem 2.4.11

Theorem 2.4.11. (Standard function scale, logarithms). Let α be an arbitrary complex num
ber in C\Z≤0. The coefficient of zn in the function

f(z) = (1− z)−α

(
1

z
log

1

1− z

)β

16 2 Methods

admits for large n a full asymptotic expansion in descending powers of logn,

fn = [zn]f(z) =
nα−1

Γ (α)
(logn)β

(
1 +

C1

logn
+

C2

log2 n
+O

(
1

log3 n

))
,

where Ck =
(
β
k

)
Γ (α)

dk

d sk
1

Γ (s)
|s=α.

A summary of some applications of these two Theorems can be found in Table 2.4. They
serve as a first basis for the process of singularity analysis. Some special cases for values of
α and β are discussed in [FS09, p. 386].

The second part needed for the process of singularity analysis is the transfer Theorems. In the
following we give the statement of the Big − Oh transfer, however other transfer theorems
exist.

Theorem 2.4.12. (Transfer, BigOh). Letα and β be arbitrary real numbers, and let f(z) be a
function that is∆–analytic. Assume that f(z) satisfies in the intersection of a neighbourhood
of 1 with its ∆–domain the condition

f(z) = O

(
(1− z)−α (log

1

1− z
)

)β

.

Then,
[zn]f(z) = O

(
nα−1 (logn)β

)
.

Staring from the expansion of a function at its singularity (its singular expansion) it is possible
to justify termbyterm transfer which is the core of singularity analysis and by applying the
Standard scale Theorems jointly with the transfer Theorems we get the following.

Theorem 2.4.13. From [FS09] (Singularity analysis, single singularity). Let f(z) be a func
tion analytic at 0 with a singularity at ζ , such that f(z) can be continued to a domain of the
form ζ .∆0, for a ∆domain ∆0 where ζ .∆0 is the image of ∆0 by the mapping z 7→ ζz.
Assume that there exist two functions σ and τ , where σ is a (finite) linear combination of
functions in S and τ ∈ S , so that

f(z) = σ(z/ζ) +O(τ(z/ζ)) as z → ζ in ζ .∆0.

Then, the coefficients of f(z) satisfy the asymptotic estimate
fn = ζ−nσn +O(ζ−nτ ⋆n),

where σn = [zn]σ(z) has its coefficients determined by Theorem 2.4.10 and Theorem 2.4.11
and τ ⋆n = na−1 (logn)b, if τ(z) = (1− z)−a λ(z)b.

As an illustration of this scheme we take the following example.

Example 2.4.14. Let f(z) = e−
z
2− z2

4√
1−z

. The nominator is entire while the denominator is
singular at 1. However, the denominator is ∆analytic and so does R(z). We can write the
singular expansion of R(z) at z = 1. The factor (1 − z)−

1
2 does not change so we expand

2.4 Analytic methods for asymptotics 17

the numerator and get,

R(z) =
e− 3

4

√
1− z

+ e−
3
4

√
1− z +O

(
(1− z)

3
2

)
.

We can now use transfer Theorems for each term independently.

[zn]
e− 3

4

√
1− z

=
e− 3

4

√
π n

(
1− 1

8n
+O

(
1

n2

))
[zn]e−

3
4

√
1− z =

−e− 3
4

2
√
π n3

(
1 +

3

8n
+O

(
1

n2

))
As a conclusion we have,

[zn]R(z) =
e− 3

4

√
π n

− 5

8

−e− 3
4

√
π n3

+O

(
1

n
5
2

)
.

2.4.2 Asymptotics of linear differential equations

As it has been noted in Section 2.2 some operations on generating functions such as pointing
give rise to differential operators. Especially, when the specification is recursive, it often
leads to linear differential equations that may not be solvable with exact functions. However,
if we are looking to extract asymptotic information the task does not require an exact solu
tion and in many cases the asymptotics can be extracted mechanically from the differential
equation.

The study of solutions of linear differential equations in the complex plane and their asymp
totic expansions can be found inWasow [Was87], Henrici [Hen91] and [Inc44]. Flajolet and
Sedgewick in [FS09] reformulated some theorems for the Analytic combinatorics framework
which we state some results.

Suppose that we have a linear differential equation (ODE) of the form
c0(z) ∂

ry(z) + c1(z) ∂
r−1y(z) + · · ·+ cr(z) y(z) = 0. (2.1)

The integer r is said to be the order of the ODE, and it is assumed that there exists a simply
connected domainΩ in which the coefficients ci(z) are analytic at a point z0 where c0(z0) 6= 0.
Therefore, in the neighbourhood of z0 there exist r linearly independent analytic solutions
of Equation (2.1). This is guaranteed by an existence theorem to be found in [Was87]. As a
result singularities can only occur at points ζ that are roots of the leading coefficient c0(z).

For simplicity we will denote cj ≡ cj(z) and rewrite Equation (2.1),
∂ry(z) + d1(z) ∂

r−1y(z) + · · ·+ dr(z) y(z) = 0. (2.2)

Where di(z) =
ci(z)

c0(z)
. As a result, the functions di(z) are now meromorphic in Ω.

Let f(z) be a meromorphic function. We define ωζ(f) to be the order of the pole of f at ζ .
In the following we give two definitions and the main asymptotic result.

18 2 Methods

Definition 2.4.15. The differential equation in Equation (2.2) have a singularity at ζ if at
least one of the ωζ(dj) is a positive. Moreover the point ζ is called a regular singularity if

ωζ(d1) ≤ 1, ωζ(d2) ≤ 2, . . . , ωζ(dr) ≤ r,

The singularity is otherwise irregular.

In fact the case of regular singularities is more easy to handle and fortunately in this thesis
all differential equations appearing will have regular singularities.

Definition 2.4.16. Given an equation of the form of Equation (2.2) and a regular singular
point ζ , the indicial polynomial I(θ) at ζ is defined as,3

I(θ) = θr + δ1θ
r−1 + · · ·+ δr,

where δj = limz→ζ(z − ζ)jdj(z).

The indicial polynomial is used to extract information about the dominant asymptotic be
haviour. More formally, at a regular singular point, the Equation (2.2) transforms to

D[(z − ζ)θ] = I(θ)(z − ζ)θ−r +O
(
(z − ζ)θ−r−1

)
,

where D is the differential operator of Equation (2.2). The next Theorem shows the general
form of solutions of these differential equations near a regular singularity ζ .

Theorem 2.4.17. (Regular singularities of ODEs). Consider a meromorphic differential
equation of the form Equation (2.2) and a regular singular point ζ . Assume that the indi
cial equation at ζ , I(θ) = 0, is such that no two roots differ by an integer (in particular, all
roots are distinct). Then, in a slit neighbourhood of ζ , there exists a linear basis of all the
solutions that is comprised of functions of the form

(z − ζ)θjHj(z − ζ),

where θ1, θ2, . . . , θr are the roots of the indicial polynomial and eachHj is analytic at 0. In the
case of roots differing by an integer (or multiple roots), the solutions may include additional
logarithmic terms involving nonnegative powers of log(z − ζ).

A specialisation of this last Theorem to account for cases where some logterms might appear
is given in the following which is a specialisation of Theorems found in [Inc44] and written
in [GGKW20].

Theorem 2.4.18. Consider a differential equation of the form Equation (2.2) and a regular
singular point ζ such that ωζ(di) = 1 for all i = 1, . . . , r, and δ1 := lim

z→ζ
(z − ζ)d1(z) ≥ 0.

Then, the vector space of all analytic solutions defined in a slit neighbourhood of ζ has a
basis of r functions, where r − 1 functions are of the form

(z − ζ)m Hm(z − ζ), m = 0, 1, . . . , r − 2

with functions Hm being analytic at 0 and satisfying Hm(0) 6= 0. The rth basis function
depends on δ1:

3nk = n(n− 1) . . . (n− k + 1) represents the descending factorial.

2.4 Analytic methods for asymptotics 19

(1) For δ1 ∈ {0, 1, . . . , r − 1} it is of the form
(z − ζ)r−1−δ1 H(z − ζ) log(z − ζ),

(2) For δ1 ∈ {r, r + 1, . . . } it is of the form
(z − ζ)r−1−δ1 H(z − ζ) +H0(z − ζ) (log(z − ζ))k, with k ∈ {0, 1},

(3) For δ1 /∈ Z it is of the form
(z − ζ)r−1−δ1 H(z − ζ),

where H is analytic at 0, with H(0) 6= 0.

For linear differential equations the constants in the asymptotic development are usually hard
to compute. So that our results will depend in general on some constant that exists but for
which we do not know the value.

As an example of application of this last theorem we give the following.

Example 2.4.19. Let h(z) be analytic at 0 and satisfy
(−2 z − 1) ∂ h (z) + (1− z) ∂2 h (z) = 0,

with initial conditions h(0) = 0 and h′(0) = 1. The equation is in the form of Equation (2.1),
after dividing by the highest derivative we get,

∂2 h (z) +
(−2 z − 1) ∂ h (z)

1− z
= 0.

The value z = 1 is a regular singularity and moreover ω1(
(−2 z − 1)

1− z
) = 1. We have,

δ1 = lim
z→1

(−2 z − 1) (z − 1)

1− z
= 3.

Then the basis of solutions around z = 1 contains 2 functions: H0(z−1)(z−1) andH2(z−
1)(z−1)−2+H3(z−1)(log(z−1))k with k ∈ {0, 1} whereHi(z−1) are analytic functions
around z = 1. Finally we find,

[zn]h(z) ∼
n→∞

c n,

for some constant c that depends on the value of the function H2(0).

CHAPTER 3

Classical objects in Combinatorics

Contents
3.1 Permutations 22

3.1.1 Cycles 24
3.1.2 Eulerian numbers and runs 25

3.2 Set partitions and Surjections 26
3.3 Integer partitions and compositions 28
3.4 Graphs 29
3.5 Trees 31

3.5.1 Simple varieties of trees 33
3.5.2 Pólya trees 34
3.5.3 Schröder trees 35
3.5.4 Increasing trees 36
3.5.5 Incremental process for increasing trees 38
3.5.6 Monotonic trees 39

Die ganzen Zahlen hat der liebe
Gott gemacht, alles andere ist
Menschenwerk.1

Leopold Kronecker (1823
1891), Quoted by Weber in

Jahresbericht der Deutschen
MathematikerVereinigung

189192.

1God made the integers, all else is the work of man

21

22 3 Classical objects in Combinatorics

This chapter is dedicated to the presentation of the main classical combinatorial classes and
objects that we will be using frequently as well as the notations that we will adopt for them.

Combinatorics is an area of mathematics concerned with counting and studying certain prop
erties of finite structures. It is closely related to many other areas of mathematics and has
many applications ranging from logic to statistical physics, from evolutionary biology to
computer science, etc.

The first question that arise after defining a combinatorial class of objects is usually the enu
meration problem, in which ideally we look for an explicit formula, or at least finding some
recurrence relation that counts the objects.

An important question arises when two sets of objects have the same cardinality (same num
ber of objects) then we usually seek to find bijections between these two sets.

Then comes the question of statistics and random generating. What is the typical shape of
an object taken randomly in the set of all possible objects. A related question is the question
of random generation. Is it possible to efficiently generate random objects in the set of all
possible ones?

Counting objects to our knowledge dates back to earliest civilisations such as Babylonians,
Indians and Greeks. In the 6th century BCE, ancient Indian physician Sushruta asserts in
Sushruta Samhita that 63 combinations can be made out of 6 different tastes, taken one at a
time, two at a time, etc., thus computing all 26 − 1 possibilities. An interesting account on
the roots of combinatorics have been published by Biggs in [Big79].

A famous example is also given by a page of Plutarch’s Moralia where following statement
appears ”Chrysippus says that the number of compound propositions that can be made from
only ten simple propositions exceeds a million. (Hipparchus, to be sure, refuted this by show
ing that on the affirmative side there are 103049 compound statements, and on the negative
side 310 952.)”

This was related by Stanley in [Sta97]. The number 103049 corresponds exactly to the 10th
number of what is nowadays known as Hipparchus of Rhodes and Schröder numbers refer
enced under EIS A0010032. We will come back to these numbers in Section 3.5.3 to define
them more precisely and see their relationship to tree structures as suggested by Schröder.

3.1 Permutations

Permutations are one of the most famous object of study in combinatorics. The permutations
of a set of n elements represent the number of possible ways to rearrange the elements be
tween each others. In a paper [Bro11] of 2011 by Broemeling talks of an Arab mathematician
and cryptographer AlKhalil who lived in the 8th century, , wrote the Book of Cryptographic
Messages. It contains the first known use of permutations and combinations, to list all possi
ble Arabic words with and without vowels.

2Throughout this thesis, a reference EIS A· · · points to Sloane’s Online Encyclopedia of Integer Sequences
www.oeis.org.[Slo06]

https://oeis.org/A001003
www.oeis.org

3.1 Permutations 23

The way of determining the number of permutations of a set of n elements was also known
to Indians. Bhāskara an Indian mathematician and astronomer who lived in the 12th century
wrote a treatise in mathematics in which we find: ”The product of multiplication of the arith
metical series beginning and increasing by unity and continued to the number of places, will
be the variations of number with specific figures.”

This was reported by by Biggs in [Big79]. He also cites a second example that involves
references to permutations which the medical treatise of Susruta, which may be as old as the
6th century B.C. However, it is difficult to date this document with certainty.

Permutations can be defined as bijections from a set P onto itself. All permutations of a
set with n elements form a symmetric group, denoted Pn,where the group operation is the
functional composition. Then we have that,

|Pn| = n! = n · (n− 1) · · · · · 2 · 1

A permutation of n elements can be represented in a two line matrix where each element
of the first line is sent to its corresponding place in the rearrangement see Figure 3.1 for an
example.

(
1 2 3 4 5 6
3 4 6 2 5 1

)

Figure 3.1: A permutation of 6 elements and its corresponding graphical representation.

The first line can be omitted if the context is not ambiguous. Throughout this thesis we
will denote a single permutation by usually by σ = (σ1, σ2, . . . , σn) and call it the standard
notation. We will also introduce the cycle notation in the next section. So the permutation in
Figure 3.1 can be written simply as σ = (3, 4, 6, 2, 5, 1) and Sn for the set of all permutations
of n elements.

The orbit of an element x under the action of a permutation σ denoted byOσ(x) is the subset
of successive applications of σ on x that is,

Oσ(x) = {σk(x), k ∈ N}.

Permutations can be used inmany different areas such that computer science, quantum physics,
and biology to model RNA sequences. Some of the most important books in the literature on
permutations include [Bón12, GKP94, FS09, Knu05].

There are many statistics that can be defined on permutations and extensive ongoing re
searches are dedicated to them. We give in the next sections some statistics that we will
be use.

24 3 Classical objects in Combinatorics

As for their specification in the language of symbolic method presented in Section 2.2. A
permutation is a sequence of integers. In the labelled universe this gives:

P = Seq (Z) ,

that translates to,
P (z) =

1

1− z
.

The coefficients of this sequence are found in EIS A000142. Alternatively we can use Re
mark 2.2.5 and get that P can also be specified as a set of cycles. In the next section we see
more details about this last decomposition.

3.1.1 Cycles

A cycle in a permutation σ, correspond to a subset of elements of that permutation whose
elements trade places with one another. On the group level a cycle in a permutation σ of n
elements corresponds to the orbit of one element of this permutation. Finally, the notion
of cycle also corresponds to the cycles that appear in the graphical representation of the
permutation.

Two different elements in a permutation can be in the same cycle. A permutation can al
ways be decomposed uniquely into a set of disjoint cycles. For example the permutation in
Figure 3.1 can be seen as σ = (3, 4, 6, 2, 5, 1) = (1, 3, 6)(2, 4)(5).

Therefore, we can write another specification for permutations in the language of symbolic
method based on Remark 2.2.5. A permutation is simply a set of disjoint cycles of numbers.

P = Set(Cyc(Z)),
which gives

P (z) = exp
(
log

1

1− z

)
=

1

1− z
.

Now if we take the set of all permutations of size n denoted Sn and partition its element
following the number of cycles each permutation has. A permutation can have between 1
and n cycles. This partitioning is well known and the numbers are called Stirling cycle
numbers (or Stirling numbers of the first kind) that we will denote by

[
n
k

]
. See Table 3.1 for

the first values of Stirling cycle numbers. These numbers are referenced in EIS A132393.

1
1 1
2 3 1
6 11 6 1
24 50 35 10 1
120 274 225 85 15 1
720 1764 1624 735 175 21 1

Table 3.1: Stirling cycle numbers for n ∈ {1, . . . , 7} and k ∈ {1, . . . , n}

https://oeis.org/A000142
https://oeis.org/A132393

3.1 Permutations 25

A recurrence relation for these numbers is defined as follows.
[
0
0

]
= 1. Then ∀n > 0,

[
n
0

]
=

0 and
[
n
n

]
= 1. Then when n ≥ 2 and 1 ≤ k ≤ n− 1[n

k

]
=

[
n− 1

k − 1

]
+ (n− 1)

[
n− 1

k

]
.

The signature of a permutation σ of size n denoted sgn(σ) is defined as
sgn(σ) = (−1)n−m,

Wherem is the number of cycles of σ. We say that the permutation is even if sig(σ) = 1 and
odd if it is −1.

Now, we can define the alternating group (also group of even permutation) which is de
noted Altn to be the subgroup of Pn that contains even permutations.

3.1.2 Eulerian numbers and runs

We give two successive definitions of descent and runs and see the relation between each
others.
Definition 3.1.1. From [Bón12] Let σ be a permutation of Sn then i is a descent of σ, if
σi > σi+1. Similarly, we say that i is an ascent or rise if σi < σi+1.

For example, σ = (3, 4, 6, 2, 5, 1), has 2 descents which are {6, 2} and {5, 1}. A set of ascend
ing sequences in a permutation is called a run in [GKP94] or a rise in [Com12]. Formally
we give the following definition.
Definition 3.1.2. An ascending run (respectively a descending run) of a permutation σ is a
maximal increasing (respectively decreasing) subsequence. That is (σi, σi+1, . . . , σj) (1 ≤
i ≤ j ≤ n) such that if i ≤ p ≤ q ≤ j, then σp ≤ σq (respectively σp ≥ σq).

For example, the ascending runs of σ = (3, 4, 6, 2, 5, 1) are {3, 4, 6}, {2, 5} and {1}. The
number of permutations of size n with k descents are called Eulerian numbers which are de
noted

〈
n
k

〉
. We also denote by r(n, k) the number of permutations of sizen having k ascending

runs. We have the following result. If σ has k − 1 descents, then σ can be decomposed into
k asending runs. Which leads to the following equality
Result 3.1.3. ∀n ≥ 1, k ≥ 1, 〈

n

k − 1

〉
= r(n, k).

There is a simple recurrence relation on these numbers. We have that for,
〈
1
0

〉
= 1 and for

n ≥ 2, and k = 0 or k = n− 1,
〈
n
k

〉
= 1. Then for n ≥ 3, 1 ≤ k ≤ n− 2〈

n

k

〉
= (n− k)

〈
n− 1

k − 1

〉
+ (k + 1)

〈
n− 1

k

〉
.

The first values of the Eulerian numbers are depicted in Table 3.2 and the table can be find
in EIS A008292. These numbers have remarkable properties there is a wealth of literature
about them. Some accounts are [Knu98, Cha08, FS06, Car59].

https://oeis.org/A008292

26 3 Classical objects in Combinatorics

1
1 1
1 4 1
1 11 11 1
1 26 66 26 1
1 57 302 302 57 1
1 120 1191 2416 1191 120 1

Table 3.2: Eulerian numbers for n ∈ {1, . . . , 7} and k ∈ {0, . . . , n}

3.2 Set partitions and Surjections
A set partition is a partition of finite set into a number of nonempty subsets (also called
boxes). For example there is 1 partition of 3 elements into 1 subset, 3 into 2 subsets and 1
into 3 subsets as depicted in Figure 3.2.

These numbers have been studied in the 19th century even though they were known from
more ancient times. See [Con12, Gar78, Knu13, FS09] for some references on the subject.

The total number of set partitions for a fixed size n is counted by what is called Bell numbers
which we will denote bn. We already saw that b3 = 5.

(Sn)n≥0 = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, . . .

It is referenced under EIS A000110.

1 subset 2 subsets 3 subsets
{{1, 2, 3}} {{1, 2}, {3}} {{1}, {2}, {3}}

{{1, 3}, {2}}
{{2, 3}, {1}}

Figure 3.2: The 5 partitions of the set {1, 2, 3}.

Let S be the class of set partitions. Using the symbolic method we see that set partitions are
sets of nonempty sets of integers, therefore the EGF of S,

S = Set (Set≥1 (Z)) .

Which gives
S(z) = eez−1.

Let us now define the numbers
{
n
k

}
which represents the number of set partitions of a set n

elements into k nonempty subsets. These numbers are called Stirling partition numbers (or
Stirling numbers of the second kind). See Table 3.3 for the first values of

{
n
k

}
.

It is clear that Sn can be defined as a sum of
{
n
k

}
,

Sn =
n∑

k=1

{
n

k

}
.

https://oeis.org/A000110

3.2 Set partitions and Surjections 27

1
1 1
1 3 1
1 7 6 1
1 15 25 10 1
1 31 90 65 15 1
1 63 301 350 140 21 1

Table 3.3: Stirling partition numbers for n ∈ {1, . . . , 7} and k ∈ {1, . . . , n}

Once again, Stirling partition numbers have a simple recurrence relation.
{
0
0

}
= 1. For

n > 0,
{
n
0

}
= 0 and

{
n
n

}
= 1. Then for n ≥ 2, and 1 ≤ k ≤ n− 1{

n

k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
.

Now, if we put an ordering on the boxes that contain the partition of the set we get what is
called an Ordered set partition or Surjections. The number of ordered set partitions of fixed
size n is known as Ordered Bell numbers (also called Fubini numbers).

(Bn)n≥0 = 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, . . .

It can be found in EIS A000670. The ordered partitions of a set of 3 elements are depicted
in Figure 3.3

1 subset 2 subsets 3 subsets
[{1, 2, 3}] [{1, 2}, {3}] [{1}, {2}, {3}]

[{3}, {1, 2}] [{2}, {1}, {3}]
[{1, 3}, {2}] [{1}, {3}, {2}]
[{2}, {1, 3}] [{2}, {3}, {1}]
[{2, 3}, {1}] [{3}, {1}, {2}]
[{1}, {2, 3}] [{3}, {2}, {1}]

Figure 3.3: The 13 Ordered partitions of the set {1, 2, 3}.

It is still possible to write a sum for Bn in term of
{
n
k

}
by multiplying the numbers by k! and

call them Ordered Stirling partition numbers.

Sn =
n∑

k=1

k!

{
n

k

}
.

Once again if we letB be the class of ordered partition, using theEGF scheme of the symbolic
method we see that this time we have sequences nonempty set, thus,

B = Seq (Set≥1 (Z)) .

Which leads to
B(z) =

1

1− (ez − 1)
=

1

2− ez
.

https://oeis.org/A000670

28 3 Classical objects in Combinatorics

1
1 2
1 6 6
1 14 36 24
1 30 150 240 120
1 62 540 1560 1800 720
1 126 1806 8400 16800 15120

Table 3.4: Ordered Stirling partition numbers for n ∈ {1, . . . , 7} and k ∈ {1, . . . , n}

3.3 Integer partitions and compositions

It is possible that prehistorical used astragalus of hucklebone of certain animals to play games
with them. Since a grouped number of these bones are not rare to be found during archaeo
logical excavations. But ancient Egyptians used these bones to determine moves in simple
board games. But it is during middle ages that systematic use of of dice games. The first
studies on this subject goes back to Cardano (1501 1576) with a book titles “Book on game
of chance” and a manuscript by Galileo (1564 1642) with some frequencies on sums of
dices, see [Big79] for more details.

An integer partition is a way of writing an integer n as a sum of positive integers. If the order
of the elements in the sum matters then it is called an integer composition.

To illustrate the differences between integers partitions and compositions see Figure 3.4 and
Figure 3.5.

Compositions can be seen as sequences of integers. It we denote C to be the class of integer
compositions, then in the realm of OGF the class of positive integers can be written as I =
Seq≥1 (Z). We can then write:

C = Seq (I) ,
which translates to,

C(z) =
1

1− z
1−z

=
1− z

1− 2z
.

By coefficient extraction wee see easily that,
Cn = 2n−1.

The first coefficients are,
(Cn)n≥1 = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, . . .

This sequence is referenced under EIS A000079. Let us define Cn,k to be the number of
composition of integer n into k parts. We can write the integer n as a sequence of points and
put k−1 bars to split this integer into k distinct parts. The number of possible places to place
the bars is n− 1 and we want to place k − 1 of them. Therefore,

Cn,k =

(
n− 1

k − 1

)
.

https://oeis.org/A000079

3.4 Graphs 29

4
3 + 1
2 + 2

2 + 1 + 1
1 + 1 + 1 + 1

Figure 3.4: The 5 integer partitions of 4.

Partitions on the other hand can be specified using multisets of elements. Since the ordering
of the summands does not matter. If we let IP be the class of integer partitions then,

IP = MSet (I) ,
So that,

IP (z) =
∏
m≥1

1

(1− zm)
.

The first coefficients are,
(IPn)n≥1 = 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, . . .

The sequence can be found in EIS A000041.

4
3 + 1
1 + 3
2 + 2

2 + 1 + 1
1 + 2 + 1
1 + 1 + 2

1 + 1 + 1 + 1

Figure 3.5: The 8 integer compositions of 4.

3.4 Graphs

A graph is a set of vertices together with links between pairs of vertices.

Definition 3.4.1. A graph (or an undirected graph) is a pair G = (V,E), where V is a set
whose elements are called vertices, and E ⊆ {{x, y} | (x, y) ∈ V 2} is a set of pairs (sets
with two distinct elements) of vertices, whose elements are called edges.

The degree of a vertex v in a graph G is denoted DG(v) or simply D(v). It is defined by the
number of vertices adjacent to v (also called the neighbors).

https://oeis.org/A000041

30 3 Classical objects in Combinatorics

,

Figure 3.6: A graph of 6 vertices

If the order of links between vertices matters then we have a directed graph which has the
same definition as graph except that the set of edges is not a twoset elements but pairs of
elements in which (x, y) 6= (y, x)

Definition 3.4.2. A directed graph is a pair G = (V,E), where V is a set whose elements
are called vertices, and E ⊆ {(x, y) | (x, y) ∈ V 2} is a set of ordered pairs of vertices.

In Figure 3.7, we put a graph and a directed graph We can also define a multigraph if there
could be several links between the same pairs of elements.

Definition 3.4.3. A labelled graph (respectively labelled directed graph) is a graph (respec
tively directed graph) in which each vertex has a fixed label.

Figure 3.7: (left)A labelled graph and (right) a directed labelled graph both of 6 vertices

Definition 3.4.4. A multigraph (respectively directed multigraph) is a pair G = (V,E),
where V is a set whose elements are called vertices, and E is a multiset of pairs of pairs
(respectively ordered pairs) of vertices.

As in the case of graphs, multigraphs can also be labelled to form labelled multigraphs.

Result 3.4.5. Let Gn be the number of graphs on n labeled nodes then for n ≥ 1,

Gn = 2(
n
2
)

3.5 Trees 31

Figure 3.8: A labelled multigraph of 6 vertices

The result can be seen easily. Since the set of vertices has n elements. Then the set of edges
has E =

(
n
2

)
elements. Finally the number of possible graphs is the powerset of the set of

edges which represent all combinations to take different edges. Gn = 2E The sequence Gn

is referenced as EIS A006125.

A connected graph is a graph in which there is a path between any pair of vertices.

3.5 Trees

Trees are important structures, they are used extensively in computer science for compilers,
sorting algorithms, efficient database, representing lists,…. Their study is also relevant in
biology and phylogenetics andmany other areas. Inmathematics, people have been interested
in the systematic study of their properties. Modern studies date back to Francis Galton and his
investigation of the extinction of family names [Gal73] as well as Ernst Schröder in [Sch70].
Some good introductions to trees in combinatorics and probability theory can be found in
[Drm09, FS09, CCG18].

Formally a tree is a connected graph without cycles.

Definition 3.5.1. A rooted tree is a tree where a certain node is distinguished called the root
node.

Throughout this thesis we will be treating rooted trees and in the figures we will draw them
upsidedown such that the root node is always at the top, see Figure 3.9 for an example.

Trees are planar graphs since they can be embedded into a plane without crossings. However
a tree can have different embeddings. Therefore counting families of trees with different
embeddings or not makes a difference. If we are counting a family of planar trees then we
need to consider all different embeddings of the tree.

https://oeis.org/006125

32 3 Classical objects in Combinatorics

Figure 3.9: (left) An ordered rooted and (right) a different ordered rooted tree, both trees
have 7 nodes.

The vocabulary of trees will be a bit different from the graph one. Therefore, we will refer to
the vertices of the tree as nodes. We say that a tree r is a subtree of a if a is the parent of the
root if r (we also say that r is a child of a). The degree (or arity) of a node a in t is its number
of childen which corresponds to D(a)− 1 on the underlying graph structure (the minus 1 is
to substract the parent node). This will be denoted by dt(a) or d(a).

Finally, nodes of degree > 0 are called internal nodes while nodes of degree 0 are referred
to as leaves.
Definition 3.5.2. A planar tree (or ordered tree) is a tree where subtrees of a common node
are ordered between each others (and represented from left to right).

In Figure 3.9, if we are considering planar trees then the two trees are different. However
the underlying graph is the same. Therefore if we were counting nonplane trees these two
would be the same.
Definition 3.5.3. A labelled tree is a tree which the underlying graph is a labelled graph.
Remark 3.5.4. Usually the term labelled trees is used to denote a tree where each node has
a different label, and if the tree has n nodes then the labels range from 1 to n. But it is more
suitable to call it a bijective labelling between the nodes and the set [n].
Definition 3.5.5. A tree that has n nodes is a weakly labelled tree if each node is labelled by
an integer, and if k is the maximum label in the tree, then all labels from 1 to k appear in the
tree.

It is easy to see that the number of different labellings (or bijective labellings) of a tree with
n nodes is n!.

The number of weak labellings of a tree is counted by ordrered Bell numbers (also ordrered
set partitions), see Section 3.2 for more details on it. We need to define an ordering on the
nodes of the tree so that we can talk of first, second node, etc.

The idea is to take an ordered set partition of n. If the partition has k parts, then the tree will
be labelled from 1 to k. The integers in the first subset of the partitions represent the nodes
that take label 1 and so on.

3.5 Trees 33

3.5.1 Simple varieties of trees

Have been introduced by Meir and Moon in [MM78]. We start by defining the concept of a
degree function which is a function that groups all possible arities that a simple tree can be
built with.

Definition 3.5.6. Let Ω be a multiset of integers that does not contain 0. Then the colored
degree function ϕ(u) of Ω is:

ϕ(u) =
∑
ω∈Ω

uω.

Each different colored degree function gives a different variety of simple trees. The colored
degree function defines the set of allowed arities and colors for the nodes in a tree. It is then
possible to write ϕ(u) as a power series

ϕ(u) =
∑
n≥1

ϕnu
n.

Therefore ϕi represents the number of colors of nodes of arity i.

Definition 3.5.7. Let ϕ(u) be a colored degree function. The class T ϕ of simple trees or
(simply generated trees) parametrized by ϕ(u) contains all trees that are rooted, plane and
unlabelled. Each internal node has a degree d and a color c (d, c) such that the degree and
the color belongs to Ω (i.e [ud]ϕ(u) ≥ 1 and c ≤ [ud]ϕ(u)). The size of a tree is given by its
total number of nodes.

Some examples of simple varieties of tree are given in the following.

Example 3.5.8. Binary trees. Take Ω = {1, 1, 2} which gives ϕ(u) = 2u + u2. The num
ber of binary trees of size n is known to be the famous Catalan numbers referenced under
EIS A000108.

Example 3.5.9. Proper binary trees. Take Ω = {2} which gives ϕ(u) = u2. The number of
proper binary trees of size n corresponds to shifted Catalan numbers that include 0 on even
indices because there are no trees of even sizes. They are referenced under EIS A126120.

Example 3.5.10. Plane trees. Take Ω = {1, 2, . . . } which gives ϕ(u) = u
1−u

. This class of
tree is also counted by Catalan numbers.

Example 3.5.11. Motzkin trees or (unarybinary trees). Ω = {1, 2} with ϕ(u) = u + u2.
EIS A178834. See Figure 3.10 for an example.

Example 3.5.12. kary trees. Ω = {k} with ϕ(u) = uk.

From Definition 3.5.7 of simple trees we can specify these families in the OGF universe. Let
ϕ(u) be a degree function, then,

T = Z × (1 + (ϕ ◦ T))

In other word a tree is either a leaf or an internal node with a degree and a color as in ϕ. From
the specification we get

T (z) = z (1 + (ϕ(T (z))) . (3.1)

https://oeis.org/A000108
https://oeis.org/A126120
https://oeis.org/A178834

34 3 Classical objects in Combinatorics

Figure 3.10: An example of a Motzkin tree

The asymptotic counting of varieties of simple trees shows a universal behavior with a typical
polynomial of order n−3/2. A complete study of this phenomena can be found in [FS09, p.
452]. We give here the statement of the main Theorem. But we need to start first with two
technical conditions on the colored degree function ϕ(u). Let ϕ̂(u) = 1 + ϕ(u)

Condition 3.5.13. The function ϕ̂(u) is such that

ϕ̂(0) 6= 0, [un]ϕ̂(u) ≥ 0, ϕ̂(u) 6≡ ϕ̂0 + ϕ̂1u.

Condition 3.5.14. Within the open disk of convergence of ϕ̂ at |z| < R, there exists (neces
sarily unique) positive solution to the characteristic equation:

∃τ, 0 ≤ τ ≤ R, ϕ̂(τ)− τ ϕ̂′(τ) = 0.

A class of tree that satsifies these conditions is said to belong to the smooth inversefunction
schema. The schema is said to be aperiodic if ϕ̂(u) is an aperiodic function of u.

Theorem 3.5.15. [FS09, Theorem VII.2] Let y(z) belong to the smooth inversefunction
schema (i.e it satsifies Condition 3.5.13 and Condition 3.5.14) in the aperiodic case. Then,
let τ be the positive root of the characteristic equation and ρ = τ/ϕ̂(τ), we have,

[zn]y(z) =

√
ϕ̂(τ)

2ϕ̂′′(τ)

ρ−n

√
π n3

(
1 +O

(
1

n

))
.

3.5.2 Pólya trees

Pólya trees are rooted, nonplane trees where the size of the tree is taken to be its total number
of nodes. Using the symbolic method seen in Section 2.2. We can define the classH of Pólya
trees as follows:

H = Z ×MSet(H).

3.5 Trees 35

Figure 3.11: All 4 Pólya trees of size 4.

There is no known close formula for the resulting generating function but nontheless they
can be studied for asymptotic enumeration using the functional equation resulting from the
specification. The first values of Hn are:

0, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, . . .

The sequence can be found in EIS A000081 and the four trees of size 4 are depicted in Fig
ure 3.11.

3.5.3 Schröder trees

Schröder trees have first been studied by Ernst Schröder in a famous paper of 1870 [Sch70].

Definition 3.5.16 (see [FS09, p. 69]). A Schröder tree is a rooted plane tree whose internal
nodes all have arity at least 2. The size of a Schröder tree is its number of leaves.

Note that a Schröder tree is an unlabelled combinatorial structure (neither the leaves nor
the internal nodes are labelled). In the context of analytic combinatorics the combinatorial
class S of Schröder trees is thus specified as

S = Z ∪ Seq≥2 S. (3.2)
Its combinatorial meaning is direct in the context of decomposable objects (see Flajolet and

Figure 3.12: All 11 Schröder trees of size 4.

Sedgewick [FS09] for a detailed introduction to the combinatorial specification): An object
from S is either a leaf (represented by the single atom Z , of size 1), or it is composed of
an internal node, parent of a sequence of at least two elements from S. Not that, in the
specification, the internal nodes are omitted (because they are of size 0): the expression

https://oeis.org/A000081

36 3 Classical objects in Combinatorics

Seq≥2 S is a abbreviation of E × Seq≥2 S where E stands for an atom of size 0 and Seq≥2 S
is a sequence of at least two elements from S.

Once the combinatorial specification is given, the classical symbolic method presented in
Section 2.2, translates automatically the equation specifying the objects into a functional
equation satisfied by the (ordinary) generating functions associated to the structures. The
generating function of S is defined as the formal series S(z) =

∑
n≥1 snz

n where sn is
the number of Schröder trees of size n (i.e. with n leaves). Using the symbolic method on
Equation (3.2), we get that

S(z) = z +
S(z)2

1− S(z)
. (3.3)

An elementary iteration allows us to extract the first coefficients of the sequence (sn)n∈N:
(0, 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 2646723, 13648869, 71039373, . . .) .

Equation (3.3) implies that the generating function S is algebraic and in fact

S(z) =
1 + z −

√
1− 6z + z2

4
.

This is sufficient to get the following asymptotic equivalent of sn when n tends to infinity:

sn =

√
3
√
2− 4

4
√
π

n−3/2
(
3− 2

√
2
)−n

(1 +O(1/n)) .

We refer the reader to [FS09, page 69] for a more detailed analysis of this generating func
tion S. Figure 3.12 depicts all trees of size 4. Variants of Schröder trees can be defined, by
allowing the node degrees in some fixed set. For instace:

S = Z ∪ (S × S × S) . (3.4)
Which gives Shröder such that internal nodes have arity 3.

Remark 3.5.17. In we fix the node degree of a Schröder tree to be d, then, we get the class
of plane dary tree. This is because of the fact that in this case the number of internal nodes
is correlated to leaves.

3.5.4 Increasing trees

A labelled tree is increasing when all the paths from the root to a leaf are (strictly) incresing.
3

Different families of increasing trees can be considered. Even if the name ’increasing trees’
is classically used to denote a more specific families of trees.

Definition 3.5.18. Let ϕ(u) be a colored degree function as defined in Definition 3.5.6. The
class of increasing trees parametrized by ϕ(u) contains all trees that are labelled and rooted.
Let n be the number of nodes in the tree. Then the label on the nodes in the tree goes from 1

3In fact Strict increasing trees would have been a more accurate name but the name increasing trees has
become widely known. In this thesis the distinction is important since we will consider some families of trees
that are not necessarily strictly increasing.

3.5 Trees 37

to n. Additionally, all paths from the root to a leaf are strictly increasing. The size of a tree
is the total number of nodes.

A consequence from the definition is that increasing trees have no label repetitions. Flajolet,
Bergeron and Salvy in [BFS92] introduced a systematic study of increasing trees in terms of
asymptotics and parameters on these trees. It should be noted that other families of increasing
trees have also beend described in the literature such that the ones studied in [JKP11, KP16].

It is possible to construct plane or nonplane varieties of trees depending on how we interpret
the colored degree function

T = Z□ ⋆ Seq
Ω

(ϵ+ T) T = Z□ ⋆ Set
Ω

(ϵ+ T)

Where Ω is a multiset of of integers defined as in Section 3.5.1. If we denote

ϕ(u) =
∑
ω∈Ω

uω.

The operators SeqΩ and SetΩ can be defiend as follows:

Seq
Ω

(A) =
∑
k≥0

ϕk Seq
k

(A).

The set operators on Ω can be defined similarly.

So that for the Seq operator:
ϕ(u) =

∑
ω∈Ω

uω,

and for the Set operator:
ϕ(u) =

∑
ω∈Ω

uω

u!
.

The specifications translate to the following integral form

T (z) =

∫ z

0

1 + ϕ(T (u)) du. (3.5)

An example of the plane scheme is given by

Example 3.5.19. Increasing binary trees. Take Ω = {1, 1, 2} which gives ϕ(u) = 2u + u2.
The number of increasing binary trees of size n corresponds to the number of permutations
referenced under EIS A000142. The trees of size 3 are depicted in Figure 3.13.

Another example, this time corresponding to the nonplane scheme

Example 3.5.20. Recursive trees. Take Ω = {1, 2, . . . } which gives ϕ(u) = eu − 1. The
number of recursive trees of size n corresponds also to the number of permutations but of
size n− 1.

Increasing trees can often be described as the result of a dynamic construction: the nodes are
added one by one at successive integertimes in the tree (their labels being the time at which
they are added). This description sometimes allow to apply probabilistic method to prove
theorems about some characteristics such as the height of the tree, and it also often gives a

https://oeis.org/A000142

38 3 Classical objects in Combinatorics

Figure 3.13: All 6 increasing binary trees of size 3.

very efficient way to generate large trees from the considered class using simple, iterative
and local rules.

3.5.5 Incremental process for increasing trees

In this section we present an incremental processes for two models of increasing trees and
for binary search trees. The idea we want to build a random tree of the desired class such
that when we stop the process and have a tree of size n. All trees of size n are equiprobable
in other words the underlying distribution is the uniform distribution. It is not possible for all
varieties of increasing trees to admit a construction using successive insertions see [PP07]
for more details.

We illustrate this incremental process on three classes of trees: recursive trees, increasing
binary trees and binary search trees.

Recursive trees are a simple model of trees which were originally designed as a simple model
for the spread of epidemics [Moo74]. Combinatorially, a recursive tree is a rooted nonplane
(i.e. the order of siblings is irrelevant) tree whose nodes are labelled from 1 to the number of
nodes in such a way that each label appears exactly once, and the labels increase along all
branches. We denote byRn the class of all nnode recursive trees. Now, consider a sequence
of random trees (tn)n≥1 built recursively as follows: t1 has only one node, labelled by 1.
Given tn−1, attach a new child labelled by n to a node picked uniformly at random among
the n− 1 nodes of tn−1. Then, it is known that for all n ≥ 1, tn is a tree taken uniformly at
random inRn, the set of all nnode recursive trees.

Both analytic combinatorics and probabilistic methods, as well as a bijection with permuta
tions, have been used to understand the typical shape of a large recursive tree: it is known
that the degree of the root grows as lnn (see [Drm09, Sec. 6.1]), the height as c lnn (for an
explicit constant c – see [Pit94]), the proportion of nodes of arity k ≥ 0 converges to 2−k

(see [Drm09, Th. 6.8]).

Incresing binary trees are rooted plane binary trees. Internal nodes are labelled from 1 to n
such that along each branch of the tree, the labels are strictly increasing. We denote by Bn the
class of all node binary increasing trees. The evolution process that builds this class of trees
is defined by the follwing. Consider a sequence of random trees (gn)n≥1 built recursively as
follows: g1 has a single internal node labelled 1 and two leaves attached to it. Given gn−1,

3.5 Trees 39

replace a leaf picked up uniformly at random with a new node labelled n that has two leaves
attached to it. Then, gn is a tree which contains n internal nodes. It is known that for all
n ≥ 1, gn is a tree taken uniformly at random in Bn.

Binary search trees form an important and classical data structure. The structure is efficient
especially for inserting and searching elements. It is also simple enough to implement. There
are many existing studies on this class of trees studied from different point of views, see for
instance [FGM97, Mah92]. We describe the evolution process of these trees in the follow
ing. We generate a random tree tn of size n as follows. Suppose we are given a random
permutation σ of n elements. At first, t is reduced to the trivial tree consisting of a single
root labelled σ1. Then, given tn−1, we compare σn with the root labelled σ1. If σn < σ1, then
descend into the left subtree, otherwise into the right subtree. Continue with the root of the
chosen subtree as current, according to the same rule. Finally, attach a leaf labelled σn at the
first empty place.

It has been shown in various places [Drm09, MTS18, SM01] that the two models of binary
search trees and increasing binary trees are equivalent in the sense that the underlying tree
shapes (the one obtained after removing all labels) have the same probability distribution.

3.5.6 Monotonic trees

Prodinger and Urbanek in a paper entitled ’On monotone functions of tree structures’ [PU83]
introduced a property of a tree labelling.

Definition 3.5.21. From [PU83], Let T be a rooted labelled tree with n nodes such that
the labels belong to {1, . . . , k} with k ≤ n. The function f gives the label of each node.
The labelling function is called monotone if whenever a node x is a son of a node y, then
f(y) ≥ f(x).

If k = n they call it a monotone bijection. As we see from the definition there is no require
ment for the labelling to start at 1.

There exists some research on monotonic trees that study some paramters on these trees such
that [MP05, Kir84, Kem93, Bli87] and the thesis of of Morris [Mor04]. Some more recent
studies include models of multilabelled increasing trees by Panholzer and Kuba in [KP16].

In Chapter 4, Chapter 5 and Chapter 7 we will be working on trees that are labelled and such
that the underlying structure is the one of Schröder trees. Then, we make some definitions.

Definition 3.5.22. A labelled Schröder tree, has the skeleton of a Shröder tree (see Sec
tion 3.5.3) and is such that only internal nodes have integer labels.

From the definition we see that the leaves of a labelled Schröder tree are not labelled. There
fore,

Definition 3.5.23. Amonotonic Schröder tree is a labelled Schröder tree, such such that the
root node has label 1 and along each branch the labellings are weakly increasing and if m
is the largest integer of the tree then all labels from 1 tom appear.

40 3 Classical objects in Combinatorics

Figure 3.14: (left) A monotonic tree in the sense of [PU83] with k = 9, (right) A monotonic
tree in the sense of Definition 3.5.23 the root always starts with label 1 and there are no
skipped labels.

Figure 3.15: An example of a strict monotonic Schröder tree seen in Definition 3.5.24 (the
labels are strictly increasing along all paths) it is also a monotonic tree.

Definition 3.5.24. A strict monotonic Schröder tree, is a monotonic Schröder tree, such that
along each branch the labellings are strictly increasing.

3.5 Trees 41

monotonic Schröder trees and strict monotonic Schröder trees allow for a label appearing
multiple times. However in strict monotonic Schröder trees the labels appear in different
branches of the tree, whereas inmonotonic Schröder trees, they can appear in the same branch.
See Figure 3.15 for an example of a strict monotonic Schröder tree, however, the right tree
on Figure 3.14 is not strict monotonic.

Remark 3.5.25. Our use of monotonic labelling in Definition 3.5.23 and Definition 3.5.24 is
connected to the fact that different nodes with the same label can appear in the tree as long
as they do not violate the condition for monotonicity. However, in all our models the root
always starts with label 1. Therefore, we do not need to fix a parameter k as in [PU83].

We end this section with a final definition

Definition 3.5.26. A connected monotonic Schröder tree is a labelled Schröder tree such
that the labellings are weakly increasing along branches and when a label i appears for the
first time in the tree on node v (v is also the closest node to the root labelled i), then all other
occurences of i appear in subtree of v.

Figure 3.16: An example of a connected monotonic Schröder tree seen in Definition 3.5.26
(the same labels are connected).

As a result of this definition we see that when a label i appears in the tree, all other occurences
of i are connected. For instance, the tree in Figure 3.15 is not connected because the label
4 appears on different branches. Whereas the tree in Figure 3.16. As a result we see that a
connected monotonic Schröder tree is a monotonic Schröder tree but not a strict monotonic
Schröder tree in general (since in the latest the same label can appear on different branches).

CHAPTER 4

Three models of increasing Schröder trees

Contents
4.1 Introduction 44
4.2 Increasing Schröder trees 47

4.2.1 The model and its context 47
4.2.2 Overview of the main results 49
4.2.3 Exact enumeration and relationship with permutations 50
4.2.4 Iterative construction of a tree 51
4.2.5 Bijections with permutations and relationship to internal nodes and

depth of a leaf 52
4.2.6 Relationship to Eulerian numbers and runs in permutations 57
4.2.7 Analysis of typical parameters 59
4.2.8 Analysis of the height of a typical increasing Schröder tree 71

4.3 Strict monotonic Schröder trees 73
4.3.1 The model and its context 73
4.3.2 Overview of the main results 75
4.3.3 Enumeration and relationship with ordered Bell numbers 75
4.3.4 Bijections with ordered Bell numbers and relationship to internal nodes 79
4.3.5 Analysis of typical parameters 83

4.4 Strict monotonic general Schröder trees 90
4.4.1 The model and its enumeration 90
4.4.2 Overview of the main results 90
4.4.3 Iteration steps and asymptotic enumeration of the trees 93
4.4.4 Correspondence with labelled graphs 96
4.4.5 Analysis of typical parameters 98

4.5 Conclusion 102

what appears to be different
truths are like apparently
different countless leaves of the
same tree.

Mohandas Karamchand Gandhi
(1869 1948), Teachings of

Mahatma Gandhi

43

44 4 Three models of increasing Schröder trees

4.1 Introduction

The aim of this chapter is to introduce new combinatorial models for phylogenetic trees:
the main idea is to add node labels in order to encode chronology in the classical model
of trees introduced by Ernst Schröder in 1870 in the seminal paper Vier Combinatorische
Probleme [Sch70] and presented in Section 3.5.3.

In his paper (see the second problem), Ernst Schröder introduces a simple model of phyloge
netic tree model, and enumerate this class of trees by their number of leaves.

In biology, a phylogenetic tree is a classical tool to represent the evolutionary relationship
among species. At each branching node of the tree, the descendant species from distinct
branches have differentiated themselves in some manner and are no more dependent: the
past is shared but the futures are independent.

The main limitation of Schröder’s model of phylogenetic trees is that it does not take into
account the chronology between the different branching nodes. Since then, probabilistic
approaches have been developed to consider this chronology: in particular in the context of
binary trees, one canmention, e.g., the stochastic model of Yule [EY25] and its generalisation
by Aldous [Ald96].

However, to the best of our knowledge, there seems to have been no attempt to combinatori
ally enrich Schröder’s original model in order to encode the chronology of evolution.

To do so, we consider labelled versions of Schröder trees, where the labels represent the order
at which branchings occur. In Figure Figure 4.1 we have represented on the left handside a
classical Schröder trees of size 50 (i.e. with 50 leaves), and, on the right handside, a labelled
version of the same tree: time is on the vertical axis, from top to bottom, and a node of label
x is placed at time x (the horizontal placement is irrelevant).

Discussion of relatedmodels: Increasing trees are classical in the literature of combinatorics
and biology. Since they simulate evolution processes: for example, Bergeron, Flajolet and
Salvy [BFS92] studied several families of increasinglylabelled trees (see Section 3.5.4 for
more details), and, to do so, they developed some tools that are now classical in analytic
combinatorics. As an example, one of these classical tools is the integration of the Greene
operators. We refer the reader to [Drm09] where more recent results on various families
of increasing trees and the analytic combinatorics methods to quantitatively study them are
surveyed.

However, the nature of our problem combines the models of Schröder trees and that of In
creasing trees. From one side, the size notion of the trees is their number of leaves which
is total number of living individuals. From the other side, we want that internal nodes be
labelled increasingly to denote the appearance time differentiation.

Although our three models of increasing Schröder trees are more involved, our proofs rely on
the same three methods used in the literature for the recursive trees: analytic combinatorics, a
dynamical evolution and probabilistic methods, and bijections with classes of permutations.

4.1 Introduction 45

Figure 4.1: A Schröder tree: without chronological evolution (on the lefthand side), and
with chronological evolution (on the righthand side): the label of a node is represented as
the distance from this node to the root.

Our main contributions: Although, as mentioned above, many variations of the recursive
tree have been studied, this chapter together with the pair of papers: the long [BGMN20] and
short version [BGN19] contains the first studies of increasing versions of the classical model
of Schröder. We aim at defining an evolution process associating to a given Schröder tree
structure an evolution represented by an increasing labelling of its internal nodes. Further
more we also focus on relaxing the labelling constraints by allowing repetitions of labels. In
the dynamical construction of the trees, allowing repetition of labels mean allowing adding
several nodes at once in the tree. Our generalisations can be seen as natural discretetime
versions of the classical probabilistic model of Yule trees (see, e.g., [SM01]) where the time
between two branchings are exponentially distributed.

This work is a part of a longterm overarching project, in which we aim at relaxing the clas
sical rules of increasing labelling (described in, e.g., [BFS92]), by, for example, allowing
labels to appear more than once in the tree. The following papers are part of this strand

46 4 Three models of increasing Schröder trees

of research: [BGGW20, BGNS20] introduce and study models of label trees with less
constrained increasing labelling rules, but also other graphs structures like [BDF+16] fo
cuses on increasinglylabelled “diamonds” and [GGKW20] on a compacted structure that
specifies classes of directed acyclic graphs.

In this chapter, we introduce three new different models of Schröder trees with chronolog
ical evolution: the increasing Schröder trees, the strict monotonic Schröder trees and the
strict monotonic general trees. One important feature of these models is that they can all be
simulated efficiently as will be seen in Chapter 7. The first two models are based on some
increasingly labelling of Schröder trees, repetition of labels is allowed in the second model.
In the last model increases we increase the expressivity by allowing a new type of internal
nodes. For all of the three models, we prove asymptotic results about important character
istics of a typical large tree of this class (e.g. root distribution, number of nodes of arity 2,
3, etc, height of the tree, etc – see Table 4.1 where our main results are summarised), and
design an algorithm that generates a large tree taken uniformly at random among all trees
of a given size in the class. The quantitative analysis of the three models and the design of
the random samplers rely on a combination of analytic combinatorics methods (see [FS09]
for a survey), probabilistic methods (in particular methods developed by Devroye [Dev90]
to study the height of split trees), and bijective methods (we exhibit bijections between our
classes of trees and classes of permutations, these are then useful for the analysis of different
characteristics and for the design of the generation algorithms). In particular, we exhibit in
teresting relations between Stirling numbers and parameters on trees such that the labelling
of nodes, the number of internal nodes, and the depth of a leaf.

Generic approach highlighted in the chapter: Similarly to the recursive tree, all of our
three models have a generic constrained evolution process. The specificity of each model
is induced by small changes of the evolution process: we give here a generic, non precise
description of the evolution process, details specific to each family of trees will be detailed
in each section:

• Start with a single (unlabelled) leaf;
• Iterate the following process: at step ℓ (for ℓ ≥ 1), select a subset of leaves and
replace each selected leaf by an internal node with label ℓ attached to an arbitrary
sequence of leaves.

Note that the increasing labelling corresponds to the chronology of the construction of the
tree: internal nodes labelled by an integer ℓ were added at time ℓ. Our three models differ
from each other by different constraints on the set of selected leaves: in our first model, this
subset is always of size 1, while it can be bigger in the other two models. The difference
between our second model and third model is that internal nodes have arity at least 2 on
the second model, while they can have arity 1 in the third model. Importantly, in all three
models our Schröder trees can be seen as phylogenetic trees of n species (n being the number
of leaves): the labels of internal nodes stand for the times at which different branches of the
phylogenetic trees split.

4.2 Increasing Schröder trees 47

Number of trees Distinct labels Internal nodes Depth LM leaf Height

Increasing Schröder trees n!/2 n− lnn n− lnn lnn Θ(lnn)

Strict monotonic Schröder trees (n− 1)!/(2 (ln 2)n) 0.72 n n− ln 2 lnn lnn

Strict monotonic general trees c (n− 1)! 2(n−1)(n−2)/2 Θ(n) Θ(n2) Θ(n) Θ(n)

Table 4.1: Summary of the main analytic results of this chapter: behaviour of the charac
teristics of a large typical tree of each of the three classes of labelled Schröder trees. The
parameter n stands for the size of the trees (i.e. their number of leaves) and the results are
asymptotic when n → +∞. (LM stands for “leftmost” and c is a positive constant.)

Plan of the chapter: Each of the three main parts (Section 4.2,Section 4.3 and Section 4.4)
is dedicated to one of our three new models of labelled Schröder trees. The organisation
inside each section is similar: after defining the model we show theorems about different
characteristics of the trees using analytic combinatorics and bijective methods. We then ex
hibit the associated dynamical evolution that generates the considered class of trees, and use
this evolution process to (a) design an efficient random sampler for this class of trees and (b),
in some cases, to prove some probabilistic results about the height of a typical large tree from
this class.

4.2 Increasing Schröder trees

The first model we are interested in is a generalisation of the Schröder tree, a classical com
binatorial structure that was originally introduced in the context of phylogenetics [Sch70].

Our generalisation consists in labelling the internal nodes of a Schröder tree – denote by ℓ
their number – with the integers {1, . . . , ℓ}with the constraints that each label appears exactly
once and a node’s label is larger than the label of its parent; such a labelling of a tree is
called “increasing”, we call such a constrainedlabelled Schröder tree an increasing Schröder
tree. In the tree seen as an evolutionary process, the labels can be interpreted as the order of
appearance of the different nodes (which, for example, stand for different species). Several
classes of increasinglylabelled trees have already been studied in the literature using analytic
combinatorics [FS09] methods, but these methods applied to the Schröder tree would raise
important technical problems. The novelty of our approach is to use a dynamical description
of the increasing Schröder tree inspired by its evolutionary interpretation; this allows us to
give the first analytical results about this combinatorial structure.

4.2.1 The model and its context

We define rooted trees as genealogical structures: the root is the unique common ancestor of
all nodes of the tree, each node except the root has exactly one parent (the root has no parent),
nodes that have no children are called leaves, nodes that have at least one child are called
internal nodes. The arity of a node is it’s number of children. We say that a tree is plane if
siblings (nodes that have the same parent) are ordered.

48 4 Three models of increasing Schröder trees

We are interested in an increasinglylabelled variation of Schröder trees that were presented
in Section 3.5.3.

Definition 4.2.1. An increasing Schröder tree has a Schröder tree structure and its internal
nodes are labelled with the integers between 1 and ℓ (where ℓ is the number of internal nodes)
in such a way that each label appears exactly once and each sequence of labels in the paths
from the root to any leaf is (strictly) increasing.

1

14 2

25 3 15

4 5

24 7

8

13

19 17

27 23 26

9 6

11

12

20

10

16

18 22

21

Figure 4.2: Two increasing Schröder trees

Increasing trees can, to a certain extent, be specified using the Greene operator □⋆ (see, for
example, [FS09, page 139]), and the specification can then be translated into an equation
satisfied by the exponential generating function of the increasing tree class. Since in our
context the size of a tree is the number of its leaves while only internal nodes are labelled, we
need to introduce a second variable u to mark the internal nodes. Let us denote by sn,ℓ the
number of increasing Schröder trees with n leaves and ℓ internal nodes. Following standard
methods in analytic combinatorics we define a generating function that is ordinary for the
leaf marks and exponential for the internal node marks: we set S∗(z, u) =

∑
n,ℓ sn,ℓ z

n uℓ/ℓ!.
The specification of this combinatorial class is

S∗ = Z ∪ U□ ⋆ Seq≥2 S∗.

Using the symbolic method, we obtain the following equation satisfied by S∗(z, u):

S∗(z, u) = z +

∫ u

v=0

S∗(z, v)2

1− S∗(z, v)
dv.

Although this integral equation could be analysed further in order to get information about
increasing Schröder trees, this analysis would be very cumbersome; a better approach is to

4.2 Increasing Schröder trees 49

see the Schröder tree as the result of an evolutionary process. Another advantage of this new
approach is that it extends to other families of labelled Schröder trees for which there seems
to be no (classical) specification, even using the Greene operator: one such example is the
family of strict monotonic Schröder trees studied in Section 4.3.

In Figure 4.2 we have represented two increasing Schröder trees: both are generated uni
formly at random among all increasing Schröder trees of the same size: size 30 on the left,
size 500 on the right. The lefthandside tree has 27 internal nodes (and 30 leaves). It is
the same tree as the one represented in Figure 4.1, where its chronological evolution is repre
sented on the righthand side: the internal node labelled by ℓ is displayed on level ℓ−1 (i.e. at
distance ℓ−1 from the root on the vertical axis), for all ℓ ∈ {1, . . . , 27}. The righthandside
one is drawn using a circular representation, which is often used for phylogenetic trees: the
labels are omitted but as in Figure 4.1, the length of an edge is proportional to the difference
of the labels of the two nodes it connects. This righthandside tree has 492 internal nodes
(and 500 leaves).

We now introduce an evolution process generating increasing Schröder trees:

• Start with a single (unlabelled) leaf;
• Iterate the following process: at step ℓ (for ℓ ≥ 1), select one leaf and replace it by
an internal node with label ℓ attached to an arbitrary sequence of new leaves.

Recall that we define the size of a Schröder tree to be its number of leaves. It is important
to note that, because a Schröder tree with n − 1 internal nodes has at least n leaves, the
evolution process defines a bijection between the set of all nleaf Schröder trees and the set
of all sequences (d(n)

ℓ , u(n)

ℓ)1≤ℓ<n such that for all 1 ≤ ℓ < n, u(n)

1 = 1, d(n)

ℓ ≥ 2, 1 ≤ u(n)

ℓ+1 ≤∑ℓ
i=1 d

(n)

i − (ℓ− 1), and
∑ℓ

i=1 d
(n)

i = n.

By taking all trees of the same size together, we obtain the following induction equation,
enumerating increasing Schröder trees by size: if, for all n ≥ 0, tn is the number of nleaf
Schröder trees, then t1 = 1 and, for all n ≥ 2,

tn =
n−1∑
ℓ=1

ℓ tℓ. (4.1)

4.2.2 Overview of the main results

After solving the counting problem of increasing Schröder trees, we show how trees of size
n can be constructed from trees of size n − 1 in Section 4.2.4. Then, in Section 4.2.5 we
exhibit different bijections with subclasses of permutations in Section 4.2.3. In fact these
bijections give important information about the tree structure. For instance, we will show
that the number of internal nodes of an Increasing Schröder tree is related to the number of
cycles in permutations by a very simple formula, see Theorem 4.2.8. The last bijection will
show another interesting result. In fact, the number of cycles in a permutation is also linked
to the depth of the leftmost leaf in the tree as shown in Theorem 4.2.12. In Section 4.2.6, we
show the relationship between the trees and runs in permutations. Finally, Section 4.2.7 is
dedicated to the study of some parameters on these tree that are summarised in Table 4.2.

50 4 Three models of increasing Schröder trees

Figure 4.3: All increasing Schröder trees of size 4

Mean Variance Limit law

Internal nodes n− lnn lnn Normal

Number of binary nodes n− 2 lnn 4 lnn Normal

Number of ternary nodes lnn

Depth of the leftmost leaf lnn lnn Normal

Height of the tree Θ(lnn)

Degree of the root 2 e− 3 14 e− 4 e2 − 8 modified Poisson

Leaves attached to the root 2 e
n

2 e
n

Table 4.2: Summary of the main results on parameters of Increasing Schröder trees

4.2.3 Exact enumeration and relationship with permutations

Let T denote the class of increasing Schröder trees. Using the evolution process, we get the
following specification for T :

T = Z ∪
(
ΘT × Seq≥1Z

)
. (4.2)

4.2 Increasing Schröder trees 51

In this specification,Z stands for the leaves, and the operatorΘ is the classical pointing oper
ator (see [FS09, page 86] for details). The specification is a direct rewriting of the evolution
process: a tree is either of size 1 (Z), or it has been built by pointing a leaf in a smaller tree
(ΘT) and replacing it by a sequence of at least two leaves. Although the latter sequence is
of length at least 2, we use the operator Seq≥1(Z) instead of Seq≥2(Z) because the leaf that
was pointed is reused as the leftmost child of the new internal node.

The symbolic method translates this specification into a functional equation satisfied by the
generating function associated to the combinatorial class of increasing Schröder trees. Note
that although the increasing Schröder trees are labelled, this labelling is transparent, i.e. it is
possible to work with ordinary generating functions (as opposed to exponential generating
functions). This is because the size of an increasing Schröder tree is its number of leaves,
and the leaves are not labelled. We define the ordinary generating function associated to T
by T (z) =

∑
n≥1 tn z

n, where tn is the number of increasing Schröder trees of size n. Using
the symbolic method (in particular, pointing at a leaf translates into a differential operator),
we get

T (z) = z +
z2

1− z
T ′(z). (4.3)

Writing (1− z)T (z) = z(1− z) + z2T ′(z) and extracting the nth coefficient on both sides
of this equation, we get that,

tn =

{
1, n = 1, 2

n tn−1, n ≥ 3
(4.4)

Then, the first values of tn are
(tn)n≥0 = 0, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, . . .

Theorem 4.2.2. The number of trees of size n for all n ≥ 2,

tn =
n!

2
.

for all n ≥ 3, tn = n tn−1: we get back the recurrence exhibited earlier in Equation (4.1).
Using the fact that t1 = t2 = 1, we get that tn = n!/2 for all n ≥ 2. Note that the radius of
convergence of the ordinary generating series T (z) is 0; this series is thus purely formal.

In Figure 4.3 we draw all trees of size 4. The sequence of numbers tn appears in EIS A001710
as the order of the alternating group Altn, or the number of even permutations of n letters
(see Section 3.1 for more details on this group).

4.2.4 Iterative construction of a tree

From Equation (4.4) we see that a tree of size n can be constructed from the set of trees of
size n− 1.

Proposition 4.2.3. Each increasing Schröder tree of size n, t ∈ Tn can be constructed from
a tree t′ ∈ Tn−1 uniquely as follows,

• Either by choosing one of n−1 leaves of t′ and replace it with a binary node labelled
with the successor of the highest integer already appearing in the tree.

https://oeis.org/A001710

52 4 Three models of increasing Schröder trees

• Or by adding a new rightmost leaf to the last internal node (i.e the internal node
with highest label) that appears in t′.

Proof. By induction. For n = 2 there is only one tree. For n ≥ 3, from Equation (4.4)
there are exactly n way to add a leaf to a tree of size n− 1 so that it becomes a tree of size n.
Therefore if the above construction is unambiguous and all the constructed trees belong to Tn

the result holds. We see that we put a binary node to replace one of the n−1 leaves. Since the
trees are plane this construction is not ambiguous. Finally when adding a new rightmost leaf
to the last internal node added to the tree is also unambiguous. In summary, at each iteration
step we either create a binary node or add a new leaf to a specific node, and since we have
no limit on the degree of a node the construction gives a tree of Tn. □

In the following we will exhibit three bijections with subclasses of permutations based on
this iterative construction and we will obtain nice bijective results. In particular the reader
can see Corollary 4.2.9, Corollary 4.2.13, Corollary 4.2.14 and Theorem 4.2.20.

4.2.5 Bijections with permutations and relationship to internal nodes
and depth of a leaf

4.2.5.1 Bijection with restricted permutations

As we saw in Section 4.2.4, at each iteration step if we have a tree of size n (respectively an
npermutation or a permutation of n elements), we have n+1 ways of building a tree of size
n + 1 (respectively an (n + 1)permutation). We have n different ways of adding a binary
node and one way of adding a new leaf to the last internal node. This corresponds to the n+1
places to add a new element in an npermutation. In this bijection we fix the position of the
element that adds a new arity to the tree in the permutation.

The fact that the number of increasing Schröder trees of size n is equal to tn = n!
2
hints

at the existence of a relationship between our model of increasing trees and a subclass of
permutations. In this section, we aim at exhibiting this relationship. In this section we will
exhibit two bijections. The idea is to put a restriction on the number of permutations so that
they become equal to n!

2
. Maybe one of the simplest way to think of it is to put a restriction

that integer one appears before two in the permutation (i.e its index is smaller). However
a more elaborate bijection will be presented that makes use of another restriction namely
the one of cycles and this last restriction on cycles will be of great interest to us since some
parameters on trees can be seen directly on permutations.

We will denote by σ = (σ1, . . . , σn) the sizen permutation that sends i to σi ∈ {1, . . . , n}
for all i ∈ {1, . . . , n}. For all k ∈ {1, . . . , n}, we denote by σ−1(k) the preimageimage of k
by σ, and sometimes call σ−1(k) the “position” of k in the permutation σ.

We define recursively a mapM between HP , the class of permutations such that 1 appears
before 2, and the class T of increasing Schröder trees.

The only element of HP of size 2 is the permutation (1, 2); we set its image to be the tree
whose root is labelled by 1 and has two (unlabelled) leafchildren. Now assume that we have

4.2 Increasing Schröder trees 53

defined M(σ) for all permutations σ ∈ HP of size at most n − 1 for some n ≥ 2 and let
σ be a sizen permutation in HP . We distinguish two cases according to the preimage of n
by σ; we denote by σ̂ = σ\n, the permutation obtained by removing the largest element in
σ. For example, if σ = (4, 1, 5, 2, 3), then σ̂ = (4, 1, 2, 3); σ̂ can be seen as the permutation
induced by σ on {1, . . . , n− 1}.

• If σn = n then, we setM(σ) to be the treeM(σ̂) in which we add a new rightmost
leaf to the internal node with the largest label.

• If σn = k < n, then, we buildM(σ) as follows: create a new binary node ν labelled
with the smallest integer that does not appear as a label inM(σ̂) and attach two new
leaves to this internal node. Insert this tree inM(σ̂) by placing ν in the kth leaf (we
assume, for example, that the leaves are ordered in the depthfirst order) ofM(σ̂).

(1, 2) M−→ (1, 2, 3) M−→
(4, 1, 2, 3) M−→

(4, 1, 2, 5, 3) M−→ (4, 1, 2, 5, 3, 6) M−→

(4, 1, 2, 5, 3, 6, 7) M−→

(4, 1, 2, 5, 3, 8, 6, 7)
M−→

Figure 4.4: A size8 example of the mappingM

In Figure 4.4 we present the mapping on an example. Remark that we have ordered the steps
reversely to understand the process in a constructive way.
Theorem 4.2.4. The mapM is a onetoone correspondence betweenHP and T .

Proof. First note that the image by M of a permutation of size n is a Schröder tree of
size n: indeed, at each iteration we remove exactly one element from the permutation and
add exactly one leaf to the tree by either adding a leaf to the node with largest label or by
removing one leaf and adding two new ones. Since the number of permutations of size n in
HP is equal to the number of Schröder trees of size n, it is enough to prove thatM is injective
to conclude the proof. The mapping is injective since it corresponds to the construction in
Proposition 4.2.3. □

4.2.5.2 Bijection with cycles in permutations and relationship to internal nodes

The idea here is to present a bijection with permutations based on their number of cycles. As
we said in the start of this Section 4.2.5.1. We need a restriction on the set of permutations.

54 4 Three models of increasing Schröder trees

Let us define the combinatorial class PR (permutations with cycle restriction) to be the set
of permutations in which the elements 1 and 2 belong to different cycles.

Lemma 4.2.5. For n ≥ 2, PRn = n!
2
.

Proof. This can be seen by recurrence. For n = 2 there is one such permutation namely
(1)(2). Then if PRn is the set of npermutation with elements 1 and 2 in different cycles.
PRn+1 = (n+1)PRn. Since from the set PRn a new element can be added to any place in
the different cycles (the number of places is n) or create a new cycle. Solving the recurrence
we get n!

2
. □

In this section, let σ be an npermutation with k cycles. Then we denote
σ = c1 ◦ c2 ◦ · · · ◦ ck

as a product of cycles ci. This notation has been defined in Section 3.1.1. A cycle can be
ordered canonically by putting the smallest integer in the beginning. Let c = (a1, a2, . . . , ai)
be a cycle that contains i elements. A new element e can be added in i different places. We
add the new element to the right of the element at the selected index, that is, let 1 ≤ j ≤ i.
Then adding e in place j we obtain a new cycle c′ = (a1, . . . , aj, e, aj+1, . . . , ai). We also
denote by ci,j the element of position j in the cycle i.

Let us define also σ−1(k) the function that returns a pair of integers (i, j) where i is the cycle
number that contains integer k and j the position of integer k in the cycle ci. Finally let |cj|
be the number of elements in the cycle cj .

Finally we define σ\n to be the permutation σ from which the element n has been removed.

We will define the mapping N : T → PR and show that

T
N∼= PR

Definition 4.2.6. We define the mapping N recursively as follow:

• If σ = (1)(2) then N (σ) is the tree which is a binary root labelled 1.
• Else, Let (i, j) = σ−1(n) where n is the largest element in σ.

– If |ci| = 1 then, we set N (σ) to be the tree N (σ\n) in which we add a new
rightmost leaf to the last internal node of the tree (it is also the node with highest
label).

– Else, let k = ci,j−1, we set N (σ) to be the tree N (σ\n) in which a new binary
node labelled ν with the smallest integer that does not appear as a label in
N (σ\n) and attach two new leaves to this internal node. Insert this binary
node inN (σ\n) by placing ν in the kth leaf (we assume, for example, that the
leaves are ordered in the depthfirst order) of N (σ\n).

ThemappingN might seem a bit complicated to explain in simple words but it is quiet simple
and the Figure 4.5 shows the same tree as in Figure 4.4 but using this new bijection.

Theorem 4.2.7. The map N is a onetoone correspondence between PR and T .

4.2 Increasing Schröder trees 55

Proof. The proof is very similar to the one in Theorem 4.2.4. At each step in the algorithm
exactly one leaf is added to the tree (the total size is increased by 1). The corresponding
behaviour on the tree for the last is unambiguous since it corresponds to a construction as in
Proposition 4.2.3. Therefore the mapping N is also injective. □

This mapping is interesting since we can see directly deduce that the number of cycles is
closely related to the number if internal nodes in the tree.

Theorem 4.2.8. Let t be an increasing Schröder tree with n leaves and k internal nodes, and
let p = N−1(t). Let i be the number of cycles of p, then

k = n+ 1− i.

Proof. In the mapping N we see that when adding a new element in the permutation.
We have two options, either creating a new cycle, or adding the new element to an already
existing cycle. In both cases the size of the final permutation is increased by one.

We also see that if we create a new cycle with the new element then we do not create any new
internal nodes.

The trivial tree (a binary root labelled 1) has one internal node and its corresponding permu
tation has 2 elements and 2 cycles.

The maximum number of internal nodes for a tree of size n is n− 1 and its permutation has
2 cycles. If a tree has 3 cycles then its has n− 2 internal nodes and so on. The result follows
straightly. □

(1)(2) N−→ (1)(2)(3) N−→
(1, 4)(2)(3)N−→

(1, 4, 5)(2)(3) N−→ (1, 4, 5)(2)(3)(6) N−→

(1, 4, 5)(2)(3)(6)(7) N−→

(1, 4, 5)(2)(3)(6, 8)(7)
N−→

Figure 4.5: A size8 example of the mapping N

Corollary 4.2.9. Let tn,k be the number of increasing Schröder trees of size n with k internal
nodes. Let PRn,i be the number of npermutations such that the elements 1 and 2 belong to
different cycles and which have i cycles. Then,

tn,k = PRn,n+1−k.

56 4 Three models of increasing Schröder trees

Proof. The result follows directly from Theorem 4.2.8. □

4.2.5.3 Another Bijection with cycles in permutations and relationship to the depth of
the leftmost leaf

We present now a last bijection which is also based on the number of cycles in a permu
tation. The idea of this bijection looks like the previous one in Section 4.2.5.2 with small
modifications. We define the mapping O : T → PR and keep the same notations as in
Section 4.2.5.2.

Definition 4.2.10. We define the mapping O recursively as follow:

• If σ = (1)(2) then O(σ) is the tree which is a binary root (a root with two leaves)
labelled 1.

• Else, Let (i, j) = σ−1(n) where n is the largest element in σ.
– If |ci| = 1 then, we setO(σ) to be the treeO(σ\n) in which we add a new new
binary node with leaves that replaces the leftmost leaf of O(σ\n) .

– Else, let k = ci,j−1, if k is the maximum element of O(σ\n) then we add a new
leaf to the last internal node of O(σ\n) and else, we set O(σ) to be the tree
O(σ\n) in which a new binary node labelled nu with the smallest integer that
does not appear as a label inO(σ\n) and attach two new leaves to this internal
node. Insert this binary node in O(σ\n) by placing ν in the k + 1th leaf (we
assume, for example, that the leaves are ordered in the depthfirst order) of
O(σ\n).

An example of the mappingO is depicted in Figure 4.6 on the same tree that was used in the
other two bijections to illustrate the differences.

Theorem 4.2.11. The map O is a onetoone correspondence between PR and T .

Proof. The proof is very similar to the one in Theorem 4.2.4 and Theorem 4.2.7. At each
step in the algorithm exactly one leaf is added to the tree (the total size is increased by 1).
The corresponding behaviour on the tree for the last is unambiguous since it corresponds to
a construction as in Proposition 4.2.3. Therefore the mapping O is also injective. □

T
O∼= PR

From this bijection we get a very interesting between cycles in permutations and the depth
of the leftmost leaf of the tree.

Theorem 4.2.12. Let t be an increasing Schröder tree with n leaves and k is the depth of the
leftmost leaf, and let p = O−1(t). Let i be the number of cycles of p, then

k = i− 1.

Proof. In the mappingO we see that when adding a new element in the permutation. We
increase the depth of the leftmost leaf when a new cycle is created. The trivial tree (a binary

4.2 Increasing Schröder trees 57

(1)(2) O−→ (1)(2, 3) O−→
(1)(2, 3)(4)O−→

(1)(2, 3, 5)(4) O−→ (1)(2, 3, 5, 6)(4) O−→

(1)(2, 3, 5, 6, 7)(4) O−→

(1)(2, 3, 5, 8, 6, 7)(4)
O−→

Figure 4.6: A size8 example of the mapping O

root labelled 1) has depth of leftmost leaf 1. Its corresponding permutation has 2 elements
and 2 cycles.

From these observations the result follows. □
Corollary 4.2.13. Let dn,k be the number of increasing Schröder trees of size n such that
the depth of the leftmost leaf is k. Let PRn,i be the number of npermutations such that the
elements 1 and 2 belong to different cycles and which have i cycles. Then,

dn,k = PRn,k+1.

Proof. The result follows directly from Theorem 4.2.12. □
Corollary 4.2.14. Let tn,k be the number of trees of size n with k internal nodes and let dn,i
be the number of trees of size n where the leftmost leaf has depth i. Then,

tn,k = dn,n−k.

Proof. The result is direct from Corollary 4.2.9 and Corollary 4.2.13. □

4.2.6 Relationship to Eulerian numbers and runs in permutations

Let us take the class of permutations HP defined in Section 4.2.5.1 which are permutations
such that 1 appears before 2. We can make a partition of this set according to the number
of runs. Let qn,k be the number of npermutations belonging to HP that have k runs (see
Section 3.1.2 for more details about runs). The first values of qn,k can be seen in Table 4.3
which is a shifted version of EIS A144696. It is easy to find a recurrence for qn,k, for n ≥ 3
and 2 ≤ k ≤ n,

qn,k =

 0 if n = 2 and k = 2,
1 if n ≥ 1 and k = 1,
k qn−1,k + (n− k + 1) qn−1,k−1 n ≥ 3 and 2 ≤ k ≤ n

(4.5)

https://oeis.org/A144696

58 4 Three models of increasing Schröder trees

The last recurrence can be proved easily. There is exactly one permutation of each size that
has one runwhich is (1, 2, . . . , n). For size 2 there is only one permutation that counts, namely
(1, 2), since (2, 1) is does not belong to HP . Finally, the number of npermutations having
k runs either come from an (n − 1)permutation with k runs, in this case the last element
can be added at the end of one of its runs so there are k places, or it comes from an n − 1
permutation that has k − 1 runs, in which case we want to create a new run and thus add is
some other place than the k − 1 places that do not create a new run. In this case there are n
new places for the new element minus k − 1 places that do not create a new run which give
n− (k − 1) = n− k + 1.

1
1 0
1 2 0
1 7 4 0
1 18 33 8 0
1 41 171 131 16 0
1 88 718 1208 473 32 0

Table 4.3: The first values of qn,k with n ∈ {1, . . . , 7} and k ∈ {1, . . . , n}

We define the mirror permutation of a permutation (written in the standard notation not the
cycle notation) to be the permutation obtained by reading the permutation from right to left.
We denote this operation bymir(.). For instance, if σ = (2, 3, 1) thenmir(σ) = (1, 3, 2).

Now if we take the mirror permutation of each permutation in HP we get all permutations
and moreover,

Proposition 4.2.15. Let σ be an npermutation and σ ∈ HP , if σ has k then mir(σ) has
n− k + 1 runs.

Proof. By reading the permutation from right to left, the sequence of ascents and descents
is inversed. Therefore, the number of descents in σ was k−1, thenmir(σ) has k−1 ascents
and n− 1− (k − 1) = n− k descents and therefore n− k + 1 runs. □

From Proposition 4.2.15, we see that it is possible to complete the values of qn,k by adding
for each permutation in HP its mirror and with the partition on the number of runs we get
Eulerian numbers that were presented in Section 3.1.2 and Table 3.2.

On the level of trees, there is a simple interpretation of runs in permutations of HP and the
numbers qn,k.

Proposition 4.2.16. Let t be an increasing Schröder tree, m be the total number of internal
nodes and k be the number of internal nodes (excepting the root node) that have an internal
node attached to their second child. LetM(t), be the corresponding permutation inHP . If
M(t) has i runs, then,

i = m− k.

4.2 Increasing Schröder trees 59

Figure 4.7: A tree of size 8 that has 5 internal nodes, one of which has a internal node as a
second child (node labelled 3), the root node does not count

Proof. Through the mappingM when we add new element to the resulting permutation,
if the element is added to the last position in the permutation we increase the arity of the last
internal node by one. No new run is created and no new internal node is added.

Otherwise, when a new binary node b is added to the tree. An integer n is added in some
position of the permutation (not the last one). We call this position j. In the next step the
integer n + 1 will be added in the permutation. We know that if it is added to the right of n
it will not create a new run. Since we have n in position j and a larger element at position
j + 1. On the tree level this corresponds to adding a new binary node to the second child of
b.

The argument still hold for separate steps. That is, if after adding b, in some future step we
add an element l to the right of n. Two cases can arise, either the element to the right of n
was smaller or larger than n. If it is smaller than n then, no new run is created.

However, if the integer l to the right of n is larger than n, then it has been added at some
step in between the appearance of b and the actual step. A new run is created. But then l has
already created a new binary node and the fresh binary node to be added in the tree will be
added as a first position child of the node created by adding l.

Therefore, new nodes add runs in the permutation as long as they are not second child of
some old node. □
Corollary 4.2.17. If we let tn,k be the number of Increasing Schröder trees of size n, and are
such that the difference between their number of internal nodes and the number of internal
nodes (excepting the root node) that have another internal node attached to their second child
is equal to k, then,

tn,k = qn,k.

4.2.7 Analysis of typical parameters

In this section, our aim is to describe the shape of a typical increasing Schröder tree, i.e.
a tree taken uniformly at random among all increasing Schröder tree of a fixed size. To
get information about this shape, we focus on four characteristics of the tree: the number

60 4 Three models of increasing Schröder trees

of internal nodes, the arity of the root, the number of leaves that are children of the root,
and the number of binary nodes (node of arity 2). We show asymptotic theorems for these
characteristics in a typical increasing Schröder tree when the size goes to infinity.

4.2.7.1 Quantitative analysis of the number of iteration steps

In this section, we show that although an increasing Schröder tree of size n can have between
1 and n − 1 internal nodes, it typically has of order n − lnn internal nodes. This result is
particularly interesting to analyse the complexity of the evolutionary process: this means
that, on average, this evolutionary process takes of order n− lnn iteration steps to generate
a typical increasing Schröder tree of size n. In fact, our result is stronger than just finding an
equivalent for the average number of iterations since we prove a central limit theorem for this
quantity. To complete the picture we also quantify the average number of nodes of a fixed
degree. We will show that the average number of binary nodes in a typical tree is n− 2 lnn,
the number of ternary nodes is lnn and higher arity nodes have a constant mean.

Theorem 4.2.18. For all n ≥ 1, we denote byXn the number of internal nodes in a tree taken
uniformly at random among all increasing Schröder trees of size n. Then, asymptotically
when n tends to infinity, ETn [Xn] ∼ n− lnn, VTn [Xn] ∼ lnn, and

Xn − (n− lnn)√
lnn

d−→ N (0, 1) in distribution.

To prove this theorem, we enrich the specification Equation (4.2) with an additional parame
ter U marking the internal nodes:

T = Z ∪
(
U ×ΘZT × Seq≥1Z

)
,

where the operatorΘZ consists in pointing an element marked by Z . Remark here we do not
use the Greene operator: the increasing labelling is a consequence of our point of view, we do
not need to care about it. Using the symbolic method, this implies that, if tn,k is the number
of increasing Schröder trees with n leaves and k internal nodes, tn(u) =

∑n−1
k=0 tn,k uk, and

T (z, u) =
∑

n≥1 tn(u) z
n, then

T (z, u) = z +
uz2

1− z
∂zT (z, u), (4.6)

where ∂z denotes the partial differentiation according to z. Once again, we write (1 −
z)T (z, u) = z(1 − z) + uz2, and extract the coefficient of zn on both sides; let us denoted
by tn(u) =

∑n−1
k=0 tn,k u

k, then this gives t1(u) = 1, t2(u) = u and, for all n > 2,
tn(u) = (1 + (n− 1)u) tn−1(u). (4.7)

Extracting the coefficient of uk on both sides of this last equation gives: t1,0 = 1, tn,1 = 1
for all n > 1,

tn,k = tn−1,k + (n− 1) tn−1,k−1 for all 0 < k < n,

and tn,k = 0 otherwise. The first values of tn,k are listed in Table 4.4. Note that, for all n ≥ 1,
tn,n−1 is the number of increasing binary trees (see [FS09, page 143] for details).

4.2 Increasing Schröder trees 61

1
0 , 1
0 , 1, 2
0 , 1, 5, 6
0 , 1, 9, 26, 24
0 , 1, 14, 71, 154, 120
0 , 1, 20, 155, 580, 1044, 720

Table 4.4: Values of tn,k (the number of increasing Schröder trees with n leaves and k
internal nodes) for n ∈ {1, 2, . . . , 7}, and k ∈ {0, 1, . . . , n− 1}.

From Equation (4.7), we easily deduce a closed form for tn(u): for all n ≥ 2, we have

tn(u) = u
n−1∏
ℓ=2

(1 + ℓu). (4.8)

This is a shifted version of the sequence EIS A145324, which is related to Stirling cycle num
bers. Our proof of Theorem 4.2.18 relies on the following lemma, which is a straightforward
consequence of Equation (4.8).

Lemma 4.2.19. Let SCn(u) =
∏n−1

i=0 (u + i) be the generating functions of the respective
rows of the Stirling Cycle numbers (see [FS09, page 735]), which enumerate all permutations
of size n that decompose into k cycles (i.e. Stirling numbers of the first kind). If we set
t̂n(u) =

∑n
k=1 tn,k u

n−k, which is the rowreversed generating function, then

t̂n(u) =
SCn(u)

1 + u
= u

n−1∏
ℓ=2

(u+ ℓ).

The rowreversed numbers appear in EIS A136124 and EIS A143491.

From Lemma 4.2.19 we can get an explicit formula for the numbers t̂n,k

Theorem 4.2.20. Let dn,k be the number of trees with n leaves and depth of the leftmost leaf
k. Let tn,k be the number of trees of size n with k internal nodes. Then,

dn,k = tn,n−k = t̂n,k =
k∑

i=0

(−1)k−i
[n
i

]
.

Proof. In Section 4.2.5.3, and corollary Corollary 4.2.14, we proved the relationship be
tween the number of internal nodes and the depth of the leftmost leaf. The conclusion comes
directly from Lemma 4.2.19 by extracting coefficients. □

Proof of Theorem 4.2.18. One could applyHwang’s quasipowers theorem [Hwa98], but
since we have an explicit formula for tn(u), we decide instead to apply Lévy’s continuity

https://oeis.org/A145324
https://oeis.org/A136124
https://oeis.org/A143491

62 4 Three models of increasing Schröder trees

theorem directly. By Lemma 4.2.19, we have that, if X̄n = n−Xn, for all ξ ∈ R,

E
[
eiξ·

X̄n−lnn√
lnn

]
=

1

tn
e−iξ

√
lnnt̂n

(
e

iξ√
lnn

)
=

2

n!
e−iξ

√
lnn+ iξ√

lnn ·
Γ
(
n+ e

iξ√
lnn

)
Γ
(
2 + e

iξ√
lnn

)

=
2 + o(1)

Γ(3 + o(1))

(
n− 1 + e

iξ√
lnn

)n+e iξ√
lnn− 1

2 ene−iξ
√
lnn

en−1+e
iξ√
lnn nn+ 1

2

,

where we have used Stirling’s formula. Note that

lim
n→∞

e1−e
iξ√
lnn

= 1,

and Γ(3) = 2, which implies that

E
[
eiξ·

X̄n−lnn√
lnn

]
= (1 + o(1))

(
n− 1 + e

iξ√
lnn

)n+e iξ√
lnn− 1

2 e−iξ
√
lnn

nn+1/2

= (1 + o(1))
ne

iξ√
lnn

n

(
1 +O

(
1

n
√
lnn

))n− 1
2
+e

iξ√
lnn

e−iξ
√
lnn

= (1 + o(1))
ne

iξ√
lnn e−iξ

√
lnn

n
.

Since

ne
iξ√
lnn

= exp
(
(lnn)e

iξ√
lnn

)
= exp

(
(lnn)

(
1 +

iξ√
lnn

− ξ2

2 lnn
+O

(
(lnn)−3/2

)))
=

n →∞
neiξ

√
lnn−ξ2/2,

we get
E
[
eiξ·

X̄n−lnn√
lnn

]
= (1 + o(1)) e−ξ2/2,

which, by Lévy’s continuity theorem concludes the proof; recall that X̄n = n−Xn. □

4.2.7.2 Quantitative characteristics of the root node

In this section, we study two parameters of the root of a typical increasing Schröder tree: the
total number of its children (i.e. its arity), and the number of its children that are leaves.

We denote byAT
n the arity of the root in a tree picked uniformly at random among all increas

ingSchröder trees of size n, and by pn its probability generating function:

pn(u) =
∑
k≥0

P(AT
n = k) uk.

4.2 Increasing Schröder trees 63

Theorem 4.2.21. The degree of the root of a tree taken uniformly at random among all in
creasing Schröder trees of size n when n tends to infinity has,

E[An] ∼
n→∞

2 e− 3, and V[An] ∼
n→∞

14 e− 4 e2 − 8.

The limiting law is a modified Poisson law. That is
pn(u) ∼

n→∞

(
2− 2u−1

)
eu − u+ 2u−1.

And the second result is:

Theorem 4.2.22. Let Ln be the number of children of the root that are leaves in a tree taken
uniformly at random among all increasing Schröder trees of size n. Asymptotically when n
tends to infinity,

E[Ln] =
2e
n

+Θ(1/(n·n!)) and V[Ln] =
2e
n

+Θ(1/n2) .

Theorem 4.2.21 is a direct consequence of the following lemma.

Lemma 4.2.23. If tn,k is the number of increasing Schröder trees whose root has arity k, then
t1,0 = 1, for all n ≥ 0, tn,1 = 0 and for all n ≥ 2, 2 ≤ k ≤ n− 1,

tn,k =
k n!

(k + 1)!
, and tn,n = 1.

Indeed, this lemma together with the fact that tn = n!/2, imply, for all 2 ≤ k < n,

P(An = k) =
2k

(k + 1)!
.

From here, the mean and variance can be mechanically computed and we have as n tends to
infinity

pn(u) ∼
n→∞

∞∑
k=2

2 k

(k + 1)!
uk

=
∞∑
k=2

(2 (k + 1)− 2)

(k + 1)!
uk

= 2 (eu − 1− u)− 2
∞∑
k=2

1

(k + 1)!
uk

= 2 (eu − 1− u)− 2

u

∞∑
k=2

uk+1

(k + 1)!

= 2 (eu − 1− u)− 2

u

(
eu − 1− u− u2

2

)
=
(
2− 2u−1

)
eu − u+ 2u−1

which concludes the proof of Theorem 4.2.21.

64 4 Three models of increasing Schröder trees

1, 0
0, 0, 1
0, 0, 2, 1
0, 0, 8, 3, 1
0, 0, 40, 15, 4, 1
0, 0, 240, 90, 24, 5, 1
0, 0, 1680, 630, 168, 35, 6, 1

Table 4.5: Values of tn,k, the number of sizen increasing Schröder trees of rootarity k, and
0 ≤ k ≤ n ∈ {1, . . . , 7}.

We refer the reader to Table 4.5 where the first values of tn,k are listed. The sequences
(tn(u))n≥1 and (tn,k)2≤k<n are related to the sequences EIS A094112 and EIS A092582, which
enumerate some families of permutations (the former enumerates a family of permutations
avoiding some pattern, the second permutations with initial cycle of a given size). Since the
number of increasing Schröder trees of size n ≥ 2 is equal to n!/2, it is natural to expect some
links between this family of trees and permutations that we have exhibited in Section 4.2.5.

Proof of Lemma 4.2.23. In this proof, the variable U marks the arity of the root (we re
use the same notation as in the previous section, but with a different meaning; this is done to
avoid having too many different notations). Using the evolution process, we get that

T = Z ∪
(
U × Z × Seq≥1(U × Z)

)
∪
(
ΘZ(T \ Z)× Seq≥1Z

)
.

Indeed, the root is either a leaf (Z), or it is an internal node to which is attached a sequence
of at least 2 leaves (U ×Z ×ΘZ(Z)× Seq≥1(U ×Z)), or the tree is larger, i.e. the last step
in the evolution process was replacing another leaf by an internal node to which is attached
a sequence of nonmarked leaves (ΘZ(T \ Z)× Seq≥1Z). Using the symbolic method, we
thus get that

T (z, u) = z +
u2z2

1− uz
+

z2

1− z
∂z (T (z, u)− z) .

In the same way as before, through a direct extraction [zn](1− zu)(1− z)T (z, u), we prove
that t1(u) = 1, t2(u) = u2, and for all n > 2,

tn(u) = (u− 1) un−1 + n tn−1(u).

This implies t1,0 = 1, tn,n = 1 for all n ≥ 1, tn,k = n tn−1,k for all 1 ≤ k ≤ n − 1, and
tn,k = 0 for all k > n, which concludes the proof. □

Proof of Theorem 4.2.22. The operators needed for the specification are not so classical
so we prefer to directly write the differential equation satisfied by T (z, u) =

∑
n,k tn,k u

kzn,
where tn,k is the number of sizen increasing Schröder trees with k leaves attached to the root.
Like in the proof of Lemma 4.2.23 at each step we must remove the tree reduced to the leaf,
i.e. T \ Z . So let us introduce the function V (z, y) = T (z, y)− z. Thus we get

T (z, u) = z +
u2z2

1− uz
+

z2

1− z

∂uV (z, u)

z
+

z2

1− z

(
∂zV (z, u)− u

z
∂uV (z, u)

)
. (4.9)

https://oeis.org/A094112
https://oeis.org/A092582

4.2 Increasing Schröder trees 65

Indeed, by looking at the last step in the evolution process, four possibilities occur:
 the tree is reduced to a leaf z, i.e. the evolution process did not already start
 the tree contains a single internal node to which a sequence of at least 2 leaves is attached
(u2 z2

1−uz
), i.e. the evolution process has gone through one step only,

 in the last step of the evolution process, a leaf of the root has been replaced by an internal
node to which a sequence of leaves is attached (z2

1−z
∂uV (z,u)

z
), in fact, leaves attached to the

root are marked as zu, the differentiation by u followed by the division by z gives the result,
 in the last step of the evolution process, a leaf that is not attached to the root has been selected
and replaced by an internal node attached to at least two leaves:

z2

1− z

(
∂zV (z, u)− u

z
∂uV (z, u)

)
.

The second term removes the trees built in the first one where a leaf attached to the root has
been selected. As an example, take a tree counted by zℓ+rur, thus containing ℓ leaves such
that r of them are attached to the root. The operation gives (ℓ + r)zℓ+r−1ur − u

z
r zℓ+rur−1

and thus gives exactly ℓzℓ+r−1ur.

After some simplifications and multiplications by (1− uz)(1− z) we get

(1− uz)(1− z) V (z, u) = u2z2(1− z) + z2(1− uz)
(
∂zV (z, u)− u

z
∂uV (z, u)

)
.

By extracting the coefficient of zn from the latter equation, we directly get that, for all n ≥ 4,
vn(u) = (n+ u) vn−1(u)− u(n− 1) vn−2(u)− (u− 1) v′n−1(u) + u(u− 1) t′n−2(u),

and v1(u) = 0, v2(u) = u2 and v3(u) = 2u2 + u3.

To evaluate the average number of leaves attached to the root we must compute the limit of
the ratio v′n(u)/vn(u) when n tends to infinity and evaluate it for u = 1. Differentiating the
last equation we get

v′n(u) = vn−1(u) + (n+ u− 1) v′n−1(u)− (u− 1) v′′n−1(u)− (n− 1) vn−2(u)

+(2u− (n− 1)u− 1) v′n−2(u) + u(u− 1) v′′n−2(u). (4.10)
We thus define the sequence of the average valuesmn = v′n(1)/vn(1) and get for n ≥ 4

mn = mn−1 −
n− 2

n(n− 1)
mn−2,

with m1 = 0,m2 = 2 and m3 = 5/3. In order to analyse the sequence of real values mn we
introduce an alternative sequence ℓn such that ℓn = n mn and thus we obtain for all n ≥ 1,
we get, for all n ≥ 4,

ℓn =

(
1 +

1

n− 1

)
ℓn−1 −

1

n− 1
ℓn−2, (4.11)

and ℓ1 = 0, ℓ2 = 4 and ℓ3 = 5. Finally, we set en = 2
∑n−1

i=0 1/i! for all n ≥ 1, and prove by
induction that, for all n ≥ 1, ℓn = en. First note that ℓn = en for n = {1, 2, 3}. Now take
n ≥ 4 and assume that for all i < n we have ℓi = ei. Using the fact that en = en−1 + 2/(n−1)!,
and Equation Equation (4.11), we have

ℓn − en = ℓn−1 +
1

n− 1
(ℓn−1 − ℓn−2)− en

66 4 Three models of increasing Schröder trees

= ℓn−1 − en−1 +
1

n− 1

(
ℓn−1 − ℓn−2 −

2

(n− 2)!

)
= ℓn−1 − en−1 +

1

n− 1
(ℓn−1 − en−1 − (ℓn−2 − en−2)) = 0,

and thus ℓn = en, which concludes the induction argument. Since, by definition of en, en =
2e+Θ(1/n!), and since en = ℓn = nmn = nE[Ln], we get

mn = E[Ln] =
2

n

n−1∑
i=0

1

i!
=

n→∞

2e
n

+Θ(1/(n·n!)) (4.12)

We now estimate the variance of Ln; to do so, we use the following identity (see, e.g., [FS09,
p. 159]):

V[Ln] = E[Ln(Ln − 1)] + E[Ln]− (E[Ln])
2 (4.13)

Sincewe already have estimatedELn, we only need to estimateE[Ln(Ln−1)] = v′′n(1)/vn(1),
which we denote by kn. Differentiating Section 4.2.7.2 we get that, for all n ≥ 4,

kn = kn−1 −
1

n

(
kn−1 −

n− 3

n− 1
kn−2

)
+

2

n

(
mn−1 −

n− 2

n− 1
mn−2

)
,

where we recall thatmn = v′n(1)/vn(1) = E[Ln]. The first terms of (kn)n≥1 are k1 = 0, k2 =
2 and k3 = 2. For all n ≥ 1, set rn = n(n− 1)kn. Using Equation (4.12), we get that, for all
n ≥ 4,

rn = rn−1 +
1

n− 2
(rn−1 − rn−2) +

4

(n− 2)!
,

with the initial values r1 = 0, r2 = 4 and r3 = 12. Finally, for all n ≥ 3, we set

ẽn = 4
n−1∑
i=2

i− 1

(i− 2)!
= 4

n−1∑
i=3

1

(i− 3)!
+ 4

n−1∑
i=2

1

(i− 2)!
,

and ẽ1 = 0, ẽ2 = 4. By induction, one can prove that, for all n ≥ 1, rn = ẽn, which implies

kn = E[Ln(Ln − 1)] =
rn

n(n− 1)
=

4

n(n− 1)

n−1∑
i=3

1

(i− 3)!
+

4

n(n− 1)

n−1∑
i=2

1

(i− 2)!

=
8e
n2

+Θ(1/n3) .

Using this last estimate together with Equation (4.13) Equation (4.12), we get

VLn =
n→∞

2e
n

+Θ(1/n2) . □

4.2.7.3 Quantitative analysis of the number of nodes of a given arity

In this section, we prove asymptotic results for the number of nodes of a given arity in a
typical increasing Schröder tree, starting with binary nodes:

Theorem 4.2.24. Let Bn be the number of binary nodes (nodes of arity 2) in a tree taken
uniformly at random among all increasing Schröder trees of size n. Asymptotically when n

4.2 Increasing Schröder trees 67

tends to infinity, we have

E[Bn] = n− 2 lnn+2γ− 7

3
+O(1/n), and V[Bn] = 4 lnn+4 γ− 2

3
π2 − 17

6
+O(1/n),

where γ is the EulerMascheroni constant. Moreover, in distribution when n → +∞,
Bn − (n− 2 lnn)

2
√
lnn

→ N (0, 1).

In other words, almost all internal nodes are binary, only a proportion of order 2 lnn/n of
internal nodes are at least ternary. In the following theorem, we show that, on average, half
of all nonbinary nodes are ternary.

Theorem 4.2.25. Let C(ℓ)
n be the number of nodes of arity ℓ ≥ 3 in a tree taken uniformly

at random among all increasing Schröder trees of size n. Asymptotically when n tends to
infinity, we have

EC(3)

n = lnn+O(1), and EC(4)

n ∼ cℓ,

for some positive constants (cℓ)ℓ≥4; and, for ℓ = 4, we have c4 = 23/90.

Proof of Theorem 4.2.24. Here the specification is easy to exhibit, and its translation via
the symbolic method is direct (in this proof, U marks the binary nodes):

T = Z ∪
(
ΘZT ×

(
U × Z ∪ Seq≥2Z

))
;

T (z, u) = z +

(
u z2 +

z3

1− z

)
∂zT (z, u).

The method we use to analyse this differential equation is similar to [CHY00]. For all n ≥ 3,
tn(u) = (1 + u(n− 1))tn−1(u) + (1− u)(n− 2)tn−2(u), (4.14)

with t1(u) = 1, t2(u) = u, and t3(u) = 1 + u2. Once again (see also Lemma 4.2.19)
we take the rowreversed generating function t̂n(u) =

∑n
k=1 tn,k un−k = tntn(1/u). From

Equation (4.14), we get that, for all n ≥ 4,

t̂n(u) =
n+ u− 1

n
t̂n−1(u) +

u(u− 1)(n− 2)

n(n− 1)
t̂n−2(u), (4.15)

with t̂2(u) = u and t̂3(u) = (2u+ u3)/3. Let us now define F (z, u) =
∑

n≥2 nt̂n(u)z
n; this

generating function satisfies the following differential equation:
z (1− z) ∂zF (z, u) =

(
1 + uz − u(1− u)z2

)
F (z, u) + 2uz2 (1− u(1− u)z) ,

with initial condition ∂2
zF (z, u)|z=0 = 4 u. This last equation gives

F (z, u) = 2uz exp (u(1− u)z) (1−z)−1−u2

∫ z

0

(1− u(1− u)t) (1−t)u
2 exp (−u(1− u)t) dt.

Let ϕ(z, u) = (1− u(1− u)z) (1− z)u
2e−u(1−u)z; with this definition, we get

F (z, u) = (1− z)−1−u2

(g(u) + E(z, u)) ,

where,

g(u) = 2ueu(1−u) (1− z)−1−u2

∫ 1

0

ϕ(t, u) dt

68 4 Three models of increasing Schröder trees

and,

E(z, u) =
(
z eu(1−u)z

)
− eu(1−u)

∫ 1

0

ϕ(t, u) dt− zeu(1−u)z

∫ 1

z

ϕ(t, u) dt.

Therefore, asymptotically when n → +∞,

nt̂n(u) =
g(u)

Γ (1 + u2)
nu2

(1 +O(1/n))

uniformly for all u such that |u − 1| ≤ δ for some δ > 0. This thus falls into the scope of
the quasipowers framework and Theorem IX.8 [FS09, p. 645] is applicable with B(u) =
exp (2u) and βn = lnn, which concludes the proof (the mean and variance expansions can
be calculated automatically using, e.g., a computer software such as Maple). □

Proof of Theorem 4.2.25. We first look at ternary nodes: the specification (with U mark
ing ternary nodes) is given by

T = Z ∪
(
ΘZT ×

(
Z ∪ U × Z2 ∪ Seq≥3Z

))
which implies

T (z, u) = z +

(
z2 + u z3 +

z4

1− z

)
∂zT (z, u),

and thus, for all n ≥ 4:
tn(u) = ntn−1(u) + (u− 1)(n− 2)tn−2(u) + (n− 3)(1− u)tn−3(u),

with t1(u) = 1 and t2(u) = 1. Differentiating this equation, we get that, for all n ≥ 5,

t′n(u)|u=1 = nt′n−1(u)|u=1 +
(n− 2)(n− 2)!

2
− (n− 3)(n− 3)!

2
.

This thus implies that, for all n ≥ 5,

E[C(3)

n] = E[C(3)

n−1]+
(n− 2)

n(n− 1)
− (n− 3)

n(n− 1)(n− 2)
=

10

24
+

n∑
ℓ=5

(
(k − 2)

k(k − 1)
− (k − 3)

k(k − 1)(k − 2)

)
.

since E[C(3)

4] = 10/24. Using again the fact that
∑n

k=1
1
k
= lnn+O(1) and

∑n
k=1

1
k2

= O(1)
when n tends to infinity, we get

E[C(3)

n] = lnn+O(1),

as claimed.

We reason similarly for ℓ = 4 (U now marks nodes of arity 4):
T = Z ∪

(
ΘZT ×

(
Z ∪ Z2 ∪ U × Z3 ∪ Seq≥4Z

))
;

T (z, u) = z +

(
z2 + z3 + u z4 +

z5

1− z

)
∂zT (z, u).

Thus, for all n ≥ 4, we have
tn(u) = ntn−1(u) + (u− 1)(n− 3)tn−3(u) + (n− 4)(1− u)tn−4(u),

with t1(u) = 1 and t2(u) = 1, which, after differentiating at u = 1 and dividing by tn gives

E[C(4)

n] = E[C(4)

n−1] +
(n− 3)

n(n− 1)(n− 2)
− (n− 4)

n(n− 1)(n− 2)(n− 3)
,

4.2 Increasing Schröder trees 69

with E[C(4)

5] = 12/120. A simple look to this recurrence shows that it converges to a constant
since it is a modified geometric sum. Solving the recurrence we obtain,

E[C(4)

n] =
23

90
− 13

6n
− 1

6 (n− 2)
+

4

3 (n− 1)
,

which proves the statement for ℓ = 4.

Let us now treat the general ℓ ≥ 5 case (U now marks nodes of arity ℓ):
T = Z ∪

(
ΘZT ×

((
∪ℓ−2
i=1Zℓ

)
∪ U × Zℓ−1 ∪ Seq≥4Z

))
;

T (z, u) = z +

((
ℓ−1∑
i=2

zi

)
+ u zℓ +

zℓ+1

1− z

)
∂zT (z, u).

This implies that, for all n ≥ ℓ:
tn(u) = ntn−1(u) + (u− 1)(n− ℓ+ 1)tn−ℓ+1(u) + (n− ℓ)(1− u)tn−ℓ(u),

with tn(u) = 1 for all n < ℓ. Therefore, we get

E[C(ℓ)

n] = E[C(ℓ)

n−1] +
(n− ℓ+ 1)

n(n− 1) · · · (n− ℓ+ 2)
− (n− ℓ)

n(n− 1) · · · (n− ℓ+ 1)

= E[C(ℓ)

ℓ] +
n∑

k=ℓ+1

(
(k − ℓ+ 1)

k(k − 1) · · · (k − ℓ+ 2)
− (k − ℓ)

k(k − 1) · · · (k − ℓ+ 1)

)
.

Since (
(k − ℓ+ 1)

k(k − 1) · · · (k − ℓ+ 2)
− (k − ℓ)

k(k − 1) · · · (k − ℓ+ 1)

)
∼

k→∞

1

kℓ−2
,

which implies that, for all ℓ ≥ 4,

lim
n→∞

E[C(ℓ)

n] = E[C(ℓ)

ℓ] +
∞∑

k=ℓ+1

(
(k − ℓ+ 1)

k · · · (k − ℓ+ 2)
− (k − ℓ)

k · · · (k − ℓ+ 1)

)
< +∞.

All these recurrences converges to constants that get smaller and smaller when ℓ increases.
□

Note that the constants cℓ are computable by solving the simple recurrences for each case;
Figure 4.8 gives a summary of the typical number of nodes for the smallest arities.

2ary 3ary 4ary 5ary 6ary 7ary 8ary 9ary 10ary
EC(ℓ)

n n− 2 lnn lnn 23
90

1
32

107
25200

47
86400

101
1587600

229
33868800

659
1005903360

Figure 4.8: The asymptotic number of ℓary nodes

4.2.7.4 Typical depth of the leftmost leaf

In this section, we prove a central limit theorem for the depth of the leftmost leaf in a typical
increasing Schröder tree; this gives us a lower bound for the height of a typical increasing
Schröder tree.

70 4 Three models of increasing Schröder trees

Lemma 4.2.26. Let Yn be the depth of the leftmost leaf in a tree taken uniformly at random
among all increasing Schröder trees of size n. For all n ≥ 1, Yn = n−Xn, whereXn is the
number of internal nodes in a typical increasing Schröder tree of size n (see Theorem 4.2.18),
and thus, we have convergence in distribution when n tends to infinity:

Yn − lnn√
lnn

d−→ N (0, 1).

Note that the choice of the leftmost leaf is arbitrary, although it has the advantage that the
specification is straightforward. Table 4.6 exhibits the first values of (tn,k).

Proof. We directly look at the differential equation satisfied by T (z, u), where u marks
the internal nodes that belong to the leftmost path (between the root and the leftmost leaf).

T (z, u) = z + ∂z

(
T (z, u)

z

)
z3

1− z
+ T (z, u)

uz

1− z
.

Indeed, the tree is either a unique leaf (which is thus also the leftmost leaf) at height zero (z),
or at the last step of the evolution process, we have selected a leaf that is not the leftmost one
and replaced it by a sequence of at least two leaves (∂z(T (z, u)/z) z3

1−z
), or we have replaced

the leftmost leaf by an internal node and a sequence of at least two leaves (T (z, u) uz
1−z

). We
rewrite this equation as

(1− uz)T (z, u) = z(1− z) + z2∂zT (z, u),

and thus, identifying the coefficient of zn on both sides gives that
tn(u) = (u+ n− 1)tn−1(u) (∀n ≥ 3),

t1(u) = 1, and t2(u) = u. This implies that, for all n ≥ 3,

tn(u) = u
n−1∏
i=2

(u+ i) =
1

1 + u
SCn(u),

where SCn(u), defined in Lemma 4.2.19, is the generating function of all size n permutations
with k cycles. Therefore, using Lemma 4.2.19, we get that Yn = n−Xn in distribution, where
Xn is the number of internal nodes in a typical increasing Schröder tree, which concludes the
proof, by Theorem 4.2.18. □

1
0 , 1
0 , 2, 1
0 , 6, 5, 1
0 , 24, 26, 9, 1
0 , 120, 154, 71, 14, 1
0 , 720, 1044, 580, 155, 20, 1

Table 4.6: The values of tn,k, the number of increasing Schröder trees of size n trees whose
leftmost leaf has depth k, for all 0 ≤ k < n ∈ {1, 2, . . . , 7}.

4.2 Increasing Schröder trees 71

These numbers appear in EIS A136124 and EIS A143491.

As we have seen before these numbers are the row reversed of the triangle of internal nodes.
We have exhibited these links in Section 4.2.5.2 and with Corollary 4.2.14.

4.2.8 Analysis of the height of a typical increasing Schröder tree

It is possible to define an incremental process (in the sense of Section 3.5.5) to generate
uniformly randomly a tree of increasing Schröder tree using the recurrence Equation (4.4).
Therefore we can build a tree using successive insertions in the tree to add exactly one leaf
at each iteration step based on a fixed probability distribution.

This probabilistic construction used in our uniform sampler that is given in Chapter 7 and
Algorithm 1 allows us to prove the following result.
Theorem 4.2.27. For all n ≥ 2, let Hn be the height of a tree taken uniformly at random
among all increasing Schröder trees of size n. Asymptotically when n tends to infinity,

P
(
Hn

lnn
∈ [1− ε, γ + ε]

)
→ 1,

where γ = inf{c > 0: c − 1 + c ln(2/c) < 0} ≈ 4.311. This implies, in particular that
E[Hn] = Θ(lnn) when n tends to infinity.
Definition 4.2.28. Given a sequence of integers d = (di)i≥1, we define the random dary
tree (τ (d)

n)n≥0 recursively as follows: τ (d)

0 is reduced to its root, given τ (d)

ℓ−1, we build τ (d)

ℓ as
the tree obtained by picking a leaf uniformly at random in τ (d)

ℓ−1 and replacing it by a node to
which dℓ leaves are attached.
Lemma 4.2.29. Let D = (Dℓ)ℓ≥1 be the sequence of integervalued random variables de
fined by:

• P(D1 = k) = 2k/(k + 1)! for all k ≥ 2, and
• if, for all ℓ ≥ 1, we denote by D̄ℓ =

∑ℓ
i=1Di, then,

P(Dℓ+1 = k|D1, . . . , Dℓ) =
(D̄ℓ + 1)!(k − 1 + D̄ℓ)

(k + D̄ℓ)!
.

Then, for all ℓ ≥ 1, the tree τ (D)

ℓ given its size is equal in distribution to an increasing
Schröder tree taken uniformly at random among all trees of that size.

Proof. This follows from Theorem 7.2.1. Indeed, note that the degree of the last inserted
internal node increases as long as the random integer k = ki (see line 7 of Algorithm 1) drawn
in the ith loop is not equal to i. Note that this happens with probability 1/i. For example,
the degree of the root starts at 2, we draw the first integer k3 ∈ {1, 2, 3} and if k3 6= 3, then
we can conclude that D1 = 2, otherwise, we know that D1 ≥ 3 and we need to look at k4.
Therefore, P(D1 = 2) = 2/3, as claimed, and P(D1 ≥ 3) = 1/3. Iterating this argument, we
get that

P(D1 ≥ k) =
k∏

i=3

P(ki = i) =
k∏

i=3

1

i
=

2

k!
,

https://oeis.org/A136124
https://oeis.org/A143491

72 4 Three models of increasing Schröder trees

and thus

P(D1 = k) = P(D1 ≥ k)− P(D1 ≥ k + 1) =
2

k!
− 2

(k + 1)!
=

2k

(k + 1)!
,

as claimed.

By definition of our sampling algorithm, we know that the (ℓ+1)th internal node is inserted
into the tree during the loop number i = D1 + · · ·+Dℓ + 1 = D̄ℓ + 1. Therefore, we get

P(Dℓ+1 = 2|D1, . . . , Dℓ) = P(ki+1 6= i+ 1) = 1− 1

D̄ℓ + 2
, as claimed,

and
P(Dℓ+1 ≥ 3|D1, . . . , Dℓ) =

1

D̄ℓ + 2
.

Iterating this argument, we get that, for all k ≥ 3,

P(Dℓ+1 ≥ k|D1, . . . , Dℓ) =

D̄ℓ+k−1∏
j=D̄ℓ+2

P(kj = j) =

D̄ℓ+k−1∏
j=D̄ℓ+2

1

j
=

(D̄ℓ + 1)!

(D̄ℓ + k − 1)!
.

This concludes the proof because
P(Dℓ+1 = k|D1, . . . , Dℓ) = P(Dℓ+1 ≥ k|D1, . . . , Dℓ)− P(Dℓ+1 ≥ k + 1|D1, . . . , Dℓ)

=
(D̄ℓ + 1)!

(D̄ℓ + k − 1)!
− (D̄ℓ + 1)!

(D̄ℓ + k)!
=

(D̄ℓ + 1)!(D̄ℓ + k − 1)

(k + D̄ℓ)!
,

as claimed. □

Proof of Theorem 4.2.27. For this proof, we use the fact that the increasing Schröder tree
is equal in distribution to the randomDary tree (see Lemma 4.2.29). For the lower bound,
we use Lemma 4.2.26 and the fact that, almost surely for all ℓ ≥ 1, Hℓ ≥ YD̄ℓ+1, where we
recall that Yn is the depth of the leftmost leaf in an nleaf uniform increasing Schröder tree
and D̄ℓ =

∑ℓ
i=1Di. By Lemma 4.2.26, we have that, for all ε > 0,

P(Hn ≤ (1− ε) lnn) ≤ P(Yn ≤ (1− ε) lnn) ≤ P
(
Yn − lnn√

lnn
≤ −ε

√
lnn
)

→ 0,

when n tends to infinity, which concludes the proof for the lower bound.

The proof for the upper bound is an adaptation of Devroye [Dev90] in

which the case of regular trees is treated (in regular trees, nodes have all the same degree
they are also known as random kary trees). We denote by N1(n), . . . , ND1(n) the sizes of
the subtrees of the root of τ (D)

n ; a straightforward adaptation of [Dev90, Lemma 2] gives that,
conditionally on D1,

P((n−m+ 2)S1 ≥ x) ≤ P(N1(n) ≥ x) ≤ P(nS1 ≥ x), (4.16)
where S1 is the minimum of D1 − 1 i.i.d. random variables uniform on [0, 1]. We reason
conditionally on the sequence D of random degrees, and denote by PD the law under this
conditioning. We denote by S1, . . . , SD1 the spacings induced on [0, 1] by a sample ofD1−1
i.i.d. random variables uniform on [0, 1]. Using the fact that the sizes of the subtrees of the

4.3 Strict monotonic Schröder trees 73

root, N1(n), . . . , ND1(n) all have the same distribution, we get

PD(Hn ≥ k) ≤
D1∑
i=1

PD(HNi(n) ≥ k − 1) = D1PD(HN1(n) ≥ k − 1)

≤ D1PD(HnS1 ≥ k − 1),

where we have used Equation (4.16) in the last inequality. We now iterate this identity: we
denote by I(n) = n

∏k
i=1 S(Di), where, for all d ≥ 2, S(d) is the minimum of d − 1 i.i.d.

random variables uniform on [0, 1]. We get

PD(Hn ≥ k) ≤

(
k∏

i=1

Di

)
PD

(
HI(n) ≥ 0

)
=

(
k∏

i=1

Di

)
PD

(
n

k∏
i=1

S(Di) ≥ 1

)
,

because a tree has height at least 1 as soon as it has at least one internal node. We now use
Chebychev’s inequality, which implies that, for all α ≥ 1,

PD(Hn ≥ k) ≤

(
k∏

i=1

Di

)
nαED

[
k∏

i=1

S(Di)
α

]
= nα

k∏
i=1

(
Γ(Di + 1)∏Di−1
i=1 (α + i)

)
.

See [Dev90, Equation (1)] for the last equality. For all α ≥ 1, and for all d ≥ 2, we have

lnΓ(d+ 2)−
d∑

i=1

ln(α + i) = lnΓ(d+ 1)−
d−1∑
i=1

ln(α + i) + ln(d+ 1)− ln(α + d)

≤ lnΓ(d+ 1)−
d−1∑
i=1

ln(α + i).

Therefore, since Di ≥ 2 almost surely for all i ≥ 1, we get

PD(Hn ≥ k) ≤ nα

k∏
i=1

(
Γ(3)

α + 1

)
= nα

(
2

α + 1

)k

.

This expression is minimised for α = k/ lnn − 1; taking k = c lnn and α = c − 1, we get
that, for all c > 0,

PD(Hn ≥ c lnn) ≤ nc−1+c ln(2/c).

If we take c > γ where γ = inf{c > 0: c− 1 + c ln(2/c) < 0}, then
PD(Hn ≥ c lnn) →

n→∞
0,

which concludes the proof for the upper bound. □

4.3 Strict monotonic Schröder trees

4.3.1 The model and its context

In this section we introduce and study a generalisation of the increasing Schröder trees, which
we call strict monotonic Schröder trees. The main difference between the two models is that

74 4 Three models of increasing Schröder trees

in strict monotonic Schröder trees, several internal nodes can be labelled by the same integer
as long as they are not on the same ancestral line:

Definition 4.3.1. A strict monotonic Schröder tree is a classical Schröder tree structure
whose internal nodes are labelled by the integers between 1 and ℓ (for some ℓ ≥ 1), in
such a way that each integer in {1, . . . , ℓ} appears at least once in the tree and the sequence
of labels in the path from the root to any leaf is (strictly) increasing.

In other words, it is a rooted labelled tree (only internal nodes are labelled) and the labelling is
strict monotonic as in Definition 3.5.24. Remark that the trees are qualified by “strict” in the
sense that the sequence of labels along the paths from the root to any leaf is strictly increasing.

1

8 2

15 3 9

4 4

14 5

6

8

12 10

16 14 15

6 5

7

8

12

6

10

11 13

12

Figure 4.9: Two strict monotonic Schröder trees

In Figure 4.9 we show two strict monotonic trees: the lefthandside one is of size 30 with 16
distinct labels, the righthandside one is of size 500 (sampled uniformly at random among
all trees of size 500), with 495 internal nodes labelled with 372 distinct labels.

Because of the possible repetition of labels, this class of labelled trees cannot be directly
specified using the classical analytic combinatorics operators for labelled structures. How
ever, the following recursive construction allows us to specify the class of strict monotonic
Schröder trees using operators for unlabelled structures. Every strict monotonic Schröder
tree can be built as follows:

• Start with a single (unlabelled) leaf.

4.3 Strict monotonic Schröder trees 75

• At step each step ℓ (for ℓ ≥ 1), select a nonempty subset of leaves and replace
each of them by an internal node with label ℓ attached to a sequence of at least two
leaves.

4.3.2 Overview of the main results

As we have done before, we will start this section by solving the counting problem of this
new family of trees in Section 4.3.3 and its asymptotics. We will then notice that the enumer
ation problem corresponds to the of Ordered set partitions. So that in Section 4.3.4 we will
exhibit two bijections withOrdered Set partitions. Then in Section 4.3.4.3 we will show how
strict monotonic Schröder trees can be generated from increasing Schröder by using Euler
ian numbers and runs in permutations. We conclude the study by analysing some parameters
on the trees where the results are summarised in Table 4.7.

Mean Variance Limit law

Internal nodes n− ln 2 lnn

Distinct labels 1
2 ln 2 n

(1−ln 2)
(2 ln 2)2 n Normal

Degree of the root 2 ln 2 + 1 −2 ln 2 (ln 2− 1) (shifted) zerotruncated Poisson

Depth of the leftmost leaf lnn lnn Normal

Table 4.7: Summary of the main results on parameters of Strict monotonic Schröder trees

4.3.3 Enumeration and relationship with ordered Bell numbers

Using the iterative construction described above, we deduce the following specification for
the class G of all strict monotonic Schröder trees:

G = Z ∪
(
G[Z → (Z ∪ Seq≥2Z)]

)
\ G.

Note that again the labelling is transparent and does not appear directly in the specification.
The combinatorial meaning of this specification is the following: A tree of G is either a
single leaf, or it is obtained by taking an already constructed tree in G, and replace each leaf
by either a leaf (i.e. no change) or an internal node attached to a sequence of at least two
leaves. Furthermore we omit the case where no leaf is changing (this is why we subtract the
set G). Note that subtracting G is important, otherwise some integer values could be absent
in the final tree. For example, if there is no change at step 2 but then the evolution continues,
then 2 would not appear in the final tree but larger integers would appear as labels.

76 4 Three models of increasing Schröder trees

Using the symbolic method, we can translate this specification into a functional equation
(with substitution) for the ordinary generating series:

G(z) = z +G

(
z +

z2

1− z

)
−G(z) = z +G

(
z

1− z

)
−G(z). (4.17)

From this equation we extract the recurrence for the number gn of strict monotonic Schröder
trees with n leaves: we get

gn = [zn]G(z) = [zn]

(
 z +G

(
z +

z2

1− z

)
−G(z)

)
= δn,1 + [zn]

∑
ℓ≥1

gℓ

(
z

1− z

)ℓ

− gn

= δn,1 − gn +
∑
ℓ≥1

gℓ[z
n−ℓ]

(
1

1− z

)ℓ

.

We use Kronecker’s notation: δn,1 = 1 if n = 1 and 0 otherwise. The last coefficient
extraction is similar to the integer composition (see [FS09, Example I.3, p. 44]). This implies

gn =

1 if n = 1,
n−1∑
ℓ=1

(
n−1
ℓ−1

)
gℓ otherwise. (4.18)

The first coefficients are equal to a shift of the sequence of ordered Bell numbers (also called
Fubini numbers or surjection numbers) referenced as EIS A000670:
(gn)n∈N = 0, 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, 1622632573, . . .

The 13 trees of size 4 are depicted in Figure 4.10, we notice that a new treewith two repetitions
of the label 2 appears. The rest of the trees are the same as the ones presented in Figure 4.3.

We recall that the nth ordered Bell number counts the number of ordered partitions of a set
of size n, where an ordered partition of a set S is an ordered sequence of disjoint subsets
of S whose union is equal to S . Ordered Bell numbers. This combinatorial class has been
presented in Section 3.2. We recall here its specification

B = Seq (Set≥1Z) . (4.19)
Motivated by this remark, we define in Section Section 4.3.4.1 a bijection between the set of
strict monotonic Schröder trees and the set of ordered partitions.

Following the approach developed by Pippenger in [Pip10] for ordered Bell numbers, we
compute the exponential generating function of G, i.e. we apply the Borel transform onG(z).
But first let us recall some basic properties of the latter transform. TheBorel transform, which
B denotes, takes as an argument an ordinary generating function and gives as its image the
corresponding exponential generating series. More precisely, for all realvalued sequence
(an)n≥0, we set

B

[∑
n≥0

anz
n

]
=
∑
n≥0

an
zn

n!
.

https://oeis.org/A000670

4.3 Strict monotonic Schröder trees 77

Figure 4.10: All 13 Strict monotonic Schröder trees of size 4

Note that if tn ≤ ρn n! for n sufficiently large then BT (z) is analytic around 0. It is easy to
check that:

Fact 4.3.2. For all ordinary generating function f = f(z), we have

(i) B [zf(z)] =

∫ z

0

B(f)(t)dt and (ii) B [f ′(z)] = (B[f(z)])′ + z(B[f(z)])′′.

Proposition 4.3.3. The exponential generating function enumerating strict monotonic Schröder
trees is

BG(z) =
1

2
(z − ln (2− ez)) .

Proof. Using Equation (4.18) and the fact that g0 = 1, we obtain

gn = δn,1 +
n−1∑
ℓ=1

(
n− 1

ℓ− 1

)
gℓ.

Adding gn to both sides (multiplied by
(
n−1
n−1

)
= 1 on the righthand side) gives

2gn = δn,1 +
n∑

ℓ=1

(
n− 1

ℓ− 1

)
gℓ.

78 4 Three models of increasing Schröder trees

This recurrence can be directly used to derive an equation for the exponential generating
function of G:

2BG(z) = z +
∑
n≥1

n∑
ℓ=1

(
n− 1

ℓ− 1

)
gℓ

zn

n!
,

which is the classical equation satisfied by the ordered Bell numbers. Following the approach
of [Pip10], we differentiate the equation with respect to z and get

2(BG(z))′ = 1 +
∑
n≥1

n∑
ℓ=1

(
n− 1

ℓ− 1

)
gℓ

zn−1

(n− 1)!
.

Since the sum is the convolution of BG′(z) with exp(z), we get

(BG(z))′ =
1

2− ez
,

which implies BG(z) = (z − ln (2− ez)) /2 as claimed. □

Recall that ordered Bell numbers are specified by B = Seq(Set≥1Z) and thus have exponen
tial generating functionB(z) = 1/(2−ez). This directly implies that our sequence (gn)n≥0 is
equal to the sequence of ordered Bell numbers shifted by one, since B(z) is the derivative of
BG(z). This link between strict monotonic trees and ordered Bell numbers has the interest
ing following consequence: we have shown that the (shifted) ordinary generating function of
the ordered Bell numbers satisfies Equation (4.17). As far as we can tell, this was not known
before.

The asymptotic behaviour of ordered Bell numbers is known (see, e.g., [FS09, p. 109]): if
we denote by bn the nth ordered Bell number, then

bn =
n∑

ℓ=0

ℓ!

{
n

ℓ

}
∼

n→∞

n!

2 (ln 2)n+1 ,

where the
{
n
ℓ

}
’s are the Stirling partition numbers (also called Stirling numbers of the second

kind, see [FS09, Appendix A.8]). They count the number of ways to partition a set of n
objects into k nonempty subsets.

Theorem 4.3.4. The number bn is equal to the number gn+1 of strict monotonic Schröder trees
of size n+ 1, which implies that, for all n ≥ 1,

gn =
n−1∑
ℓ=0

ℓ!

{
n− 1

ℓ

}
∼

n→∞

(n− 1)!

2 (ln 2)n
.

4.3 Strict monotonic Schröder trees 79

4.3.4 Bijections with ordered Bell numbers and relationship to internal
nodes

4.3.4.1 Bijection with Ordered Bell numbers based on the runs

Since the number of strict monotonic Schröder trees of size n + 1 is equal to the number of
ordered partitions of a set of size n, it is natural to try to find an explicit bijection between
the two classes. In this section, we exhibit such a bijection.

To describe precisely the bijection we need the following definitions and notations. Recall
that the the subsets of an ordered partitions are ordered but the elements inside each subset
are not. In the following, we denote by p = (p1, p2, . . . , pℓ) the ordered partition of ordered
subsets p1, . . . , pℓ; for example, ({3, 4}, {1, 5, 7}, {2, 6}) 6= ({2, 6}, {3, 4}, {1, 5, 7}). We
denote by |pi| the size of the ith subset of p, and by |p| =

∑ℓ
i=1 pi its total size (i.e. the number

of elements of ∪ℓ
i=1pi). Let a = {α1, α2, . . . , αr} (with r ≥ 1) be a subset of N; without loss

of generality, we can assume that α1 < α2 < . . . < αr. A run of a is a maximal sequence
(αi, αi+1, . . . , αj) (1 ≤ i ≤ j ≤ r) of consecutive integers, i.e. (αi, αi+1, . . . , αj) = (αi, αi+
1, . . . , αi + j − i), αi−1 < αi − 1 and αj+1 > αj + 1. We define the function runs as
the function that lists all the runs of a subset: for example, runs({3, 4}) = ({3, 4}) and
runs({1, 3, 6, 7}) = ({1}, {3}, {6, 7}).

An ordered partition p = (p1, . . . , pℓ) is called incomplete if and only if∪ℓ
i=1pi 6= {1, 2, . . . , |p|},

e.g. the partition ({3, 4}, {1, 5, 7}) is incomplete due to the fact that∪ℓ
i=1pi = {1, 3, 4, 5, 7} 6=

{1, 2, 3, 4, 5}. We define the normalization of a partition p (either incomplete or not), denoted
by norm(p), as the ordered partition of {1, . . . , |p|} that keeps the relative order between the
elements. For example, if p = ({3, 4}, {1, 5, 7}), then norm(p) = [{2, 3}, {1, 4, 5}].

We are now ready to describe our bijection: we first define the mapping M', which asso
ciates a strict monotonic Schröder tree to each (possibly incomplete) ordered partition p =
(p1, . . . , pℓ). Before starting we fix an arbitrary order for the leaves in the tree once and for
all (for example, the one given by the postorder traversal of the tree). Then The tree M'(p) is
the result of the following recursive procedure:

• At time zero, consider a tree with one internal node labelled by 1 to which are at
tached |p1|+ 1 leaves.

• At each time 2 ≤ i ≤ ℓ, we denote by p′1, . . . , p
′
i the ordered subsets of the renor

malization of (p1, . . . , pi), i.e. norm((p1, . . . , pi)) = (p′1, . . . , p
′
i). We denote by

r1, . . . , rj the runs of p′i, i.e. runs(p′i) = (r1, . . . , rj); recall that each of r1, . . . , rj is
a set of successive integers, possibly reduced to a singleton and iterate the following
process: for k from 1 to j, take the leaf whose index is the first element of rk and
replace it with an internal node with label k attached to |rk|+ 1 leaves.

In Figure 4.11 we show how to construct M′(p) when p = ({3, 4}, {1, 5, 7}, {2, 6}). The
resulting strict monotonic Schröder tree is of size 8. It is straightforward to check that M' is
indeed a bijection.

80 4 Three models of increasing Schröder trees

norm(({3, 4})) = ({1, 2}) M′−→

norm(({3, 4}, {1, 5, 7})) = ({2, 3}, {1, 4, 5}) M′−→

norm(({3, 4}, {1, 5, 7}, {2, 6})) = ({3, 4}, {1, 5, 7}, {2, 6}) M′−→

Figure 4.11: The constructive bijection between an ordered partition and a strict monotonic
Schröder tree

4.3.4.2 Bijection with Ordered Bell numbers based on the cycles

In Section 4.3.4.1 we exhibited a bijection between strict monotonic Schröder trees and or
dered Bell numbers. This bijection thus implies that

G(Z) ∼= Seq (Set≥1Z)
∼= Set (Cyc (Set≥1Z)) .

To prove Proposition 4.3.12, we first exhibit the bijection S between the two latter sets. To
do so, we first need to define better our notations: for example, since the order in a set
is not relevant, i.e. {1, 3, 2} = {1, 2, 3} = {3, 2, 1}, we choose to always use the rep
resentation {i1, . . . , im} such that i1 < i2 < · · · < im. Similarly, a cycle of sets, e.g.
({3, 4}, {1, 5, 6}, {2}), is invariant by cyclic permutation of its elements, i.e.

C = ({2, 4}, {1, 5, 6}, {3}) = ({1, 5, 6}, {3}, {2, 4}) = ({3}, {2, 4}, {1, 5, 6}).
In the following we choose to always use the representation such that the first element in the
cycle contains 1: for our example, C = ({1, 5, 6}, {3}, {2, 4}). Finally, given a set of cycles,
we choose the representation in which the cycles are in decreasing lexicographic order: to
each cycle, we associate the string of integers obtained from reading its elements from left to
right, for example to ({1, 5, 6}, {3}, {2, 4}), we associate 156324, and then order the cycles
of sets according to this order. For example, the set {({1, 2, 4}, {3}), ({1, 3}, {2, 4, 5})} has
2 cycles, the list of the string of the first one is 1243, the string of the second one is 13245.
Since 3 > 2, the canonical representation of this set of cycles is

{({1, 3}, {2, 4, 5}), ({1, 2, 4}, {3})}.

4.3 Strict monotonic Schröder trees 81

We are now ready to define the mapping S: take S a set of cycles of sets of integers (in its
canonical representation), and we denote by X(S) the string of integers read from left to
right in this canonical representation. E. g. if S = {({1, 3}, {2, 4, 5}), ({1, 2, 4}, {3})}, then
X(S) = 132451243. Now define X̂(S) as a string of zeros of the same length asX(S), and
c = 1, and for all i between 1 and the maximum integer in S, go through the string X(S)
from right to left, i.e. for all j from length(X(S)) down to 1, if the digit in jth position is
a 1, replace the jth digit in X̂(S) by c and increase c by 1. In our example, we eventually
obtain X̂(S) = 264891375. We denote by s1, . . . , sm as the sizes of the sets of the cycles of
S (in the order of the canonical representation); in our example, there arem = 4 sets in total
(in the two cycles) and their sizes are 2, 3, 3, 1. Define S(S) as the ordered partition having
m parts of respective sizes s1, . . . , sm and such that the elements of the first part are the first
s1 digits of X̂(S), the elements of the second part are the following s2 digits of X̂(S) and so
on. On our example, we get

S(S) = ({2, 6}, {4, 8, 9}, {1, 3, 7}, {5}).

Lemma 4.3.5. The mapping S is a onetoone map from
Set(Cyc(Set≥1Z)) onto Seq(Set≥1Z)

Proof. Given an ordered partition, i.e. a sequence os sets S1, . . . , Sm. Denote by k the
first integer in S1 (since we use the canonical representation, it is also the smallest integer in
S1). And denote by ij the integer such that Sij contains j, for all 1 ≤ j ≤ k − 1. Note that
1 = ik < ik−1 < . . . < i1, and define C1 = (S1, . . . , Sik−1−1), C2 = (Sik−1

, . . . , Sik−2
), until

Ck = (Si1 , . . . , Sm). And set S−1((S1, . . . , Sm)) = {C1, . . . , Ck}. One can check that this is
indeed the inverse of S, which concludes the proof. □

Recall that, in Section 4.3.4.1, we have defined M′, a bijection from the set of ordered parti
tions onto the set of strict monotonic Schröder trees. Therefore, M′ ◦ S is a bijection from the
Set(Cyc(Set≥1Z)) onto the set of strict monotonic Schröder trees.

Lemma 4.3.6. If X ∈ Set (Cyc (Set≥1Z)), then the number of cycles of X is equal to the
depth of the leftmost leaf of M′ ◦ S(X).

Proof. If X contains m cycles, then the integers 1, 2, . . . ,m appear in reverse order and
in different sets sm, sm−1, . . . , s1 of the ordered partition S(X): si is the set containing the
integer i for all 1 ≤ i ≤ m. Moreover sm is the first set in S(X) because the cycles are
ordered in the canonical order. In the mapping M′, sm will form the root of the tree. Then
sm−1 will create a node in the leftmost leaf, then sm−2 will create a node in the leftmost leaf
and so on until s1 is added to create a last node on the leftmost leaf. Thus the depth of the
leftmost leaf ism. □

4.3.4.3 From increasing Schröder to strict monotonic Shröder

Another way of defining Ordered Bell numbers (or set partitions) defined in Section 3.2 is
permutations with distinguished rises see [FS09, p.209]. A rise in a permutation is a pair
of consecutive elements in permutation that is increasing. See Section 3.1.2 for a formal

82 4 Three models of increasing Schröder trees

definition. A cluster is a maixmal sequence of adjacent rises. Let C be the class of clusters.
By definition then a cluster has at least two elements. We have,

C = Set≥2(Z).

3,4 , 6, 2, 5, 7, 8, 1

Figure 4.12: A permutation with distinguished runs. By definition not all the rises need to
be marked

In the labelled universe there is exactly one way of having n integers in an increasing order.
Finally, if we letPD the class of permutations with distinguished runs. Here we don’t require
that all runs be distinguished. We can see an example in Figure 4.12.

Finally a permutation with distinguished rises is a sequence of elements that are either distin
guished runs or simple integers and thus can be specified as follows:

PD = Seq(Z + C) = Seq(Z + Set≥2(Z)).

Which translates to:

PD(z) =
1

1− (z + (ez − 1− z))
=

1

2− ez
.

Therefore PD is isomorphic to B the class of set partitions.

A very simple relation between ordered Bell numbers (Ordered partitions) and runs in permu
tations have been discovered by Velleman and Call in [VC95]. In our case this relation can
be seen as a direct link between Increasing Schröder trees and Strict monotonic Schröder
trees. We recall that bn is the nth ordered Bell number:

bn =
n−1∑
k=0

2k
〈
n

k

〉
. (4.20)

Where the numbers
〈
n
k

〉
are the eulerian numberswhich have been introduced in Section 3.1.2.

These numbers count the number of npermutations having k descents and therefore they
have n− 1− k rises.

Since Eulerian numbers are symmetric it is possible to rewrite Equation (4.20) as follows:

bn =
n−1∑
k=0

2n−k−1

〈
n

k

〉
. (4.21)

Equation (4.21) has an easy combinatorial explanation. The idea is that Eulerian numbers
count permutations where all the rises are distinguished. To obtain an Ordered partition, all
we have to do is to allow some rises not to be distinguished. We take an npermutation with
k desents and puts dots between each rise. Therefore, since we have n−1−k rises. We have

4.3 Strict monotonic Schröder trees 83

[{4}, {6}, {1}, {2}, {5}, {3}] [{4, 6}, {1}, {2}, {5}, {3}] [{4}, {6}, {1, 2}, {5}, {3}]
[{4}, {6}, {1}, {2, 5}, {3}] [{4, 6}, {1, 2}, {5}, {3}] [{4, 6}, {1}, {2, 5}, {3}]
[{4}, {6}, {1, 2, 5}, {3}] [{4, 6}, {1, 2, 5}, {3}]

Figure 4.13: The permutation (4, 6, 1, 2, 5, 3) has 3 rises, it gives 23 ordered partitions.

2n−k−1 possibilities of choosing configurations of these dots by taking them or not. Then,
for each configuration we merge the element where the dots have been taken and put them
in the same of the final ordered partition. For example, the permutation (3, 1, 2) has one
rise. We have two possibilities, putting the dot or not which give (3, 12̇) and (3, 1, 2). The
first element gives [{3}, {1, 2}] and the second gives [{3}, {1}, {2}]. Another example is
depicted in Figure 4.13.

If we look back at the bijection on Increasing Schröder trees presented in Section 4.2.5.1
with the mapping M. It is possible to do a mirror mapping M̂, for permutations where 2
comes before 1. For instance if n = σ1 then we add a node to the last internal node of the
tree. In the other case, we enumerate the leaves from left to right and add a new binary node.
As a consequence of this mapping. LetMHP be the class of permutations where 2 appears
before 1. then,

Lemma 4.3.7. Let σ be an npermutation and σ ∈ HP (i.e 1 appears before 2). Then
M̂(mir(σ)) gives the same tree.

Proof. Each permutation σ ∈ HP has its mirror permutation mir(σ) ∈ MHP . The
proof follows directly, since the mapping M̂ is the mirror mapping ofM. □

Finally, if we have an Increasing Schröder tree t which its corresponding permutation σ has
k descents. Then, the tree corresponding to M̂(σ) has n − k − 1 descents. This allows
us to have a tree representation for all permutations (without restrictions). Each Increasing
Schröder tree being the image of two separate permutations.

Corollary 4.3.8. As a conclusion, an Increasing Schröder tree t of size n which its corre
sponding permutation σ = M−1(t) has k descents, makes

2n−k−1 + 2k

strict monotonic Schröder trees of size n− 1 (remember that Ordered Bell numbers are size
shifted with strict monotonic Schröder trees).

Open question (Tree interpretation). It is an open question to give in interpretation in the
tree world on the kind of Strict monotonic Schröder trees that are created with an Increasing
Schröder tree.

4.3.5 Analysis of typical parameters

In this section, we give information about the shape of a typical strict monotonic Schröder
tree: more precisely, we prove limit theorems for the number of distinct labels, the number of

84 4 Three models of increasing Schröder trees

internal nodes and the arity of the root in a tree picked uniformly at random among all strict
monotonic Schröder trees of size n (i.e. with n leaves).

4.3.5.1 Quantitative analysis of the number of iteration steps

The main novelty of strict monotonic Schröder trees compared to increasing Schröder trees is
that repetitions of labels are allowed: it is thus natural to ask how many repetitions there are
in a typical strict monotonic Schröder tree. To answer this question, on can mark iterations
by adding a new variable u in Equation (4.17):

G(z, u) = z + u G

(
z

1− z
, u

)
− u G(z, u),

which implies

gn,k =

1 if n = 1 and k = 0,
n−1∑
ℓ=1

(
n−1
ℓ−1

)
gℓ,k−1 otherwise, (4.22)

with n being the size and k the number of iteration steps (i.e. the number of distinct labels).
In Figure 4.14, we show the first values of (gn,k) that are stored in EIS A019538.

1,
0, 1,
0, 1, 2,
0, 1, 6, 6,
0, 1, 14, 36, 24,
0, 1, 30, 150, 240, 120,
0, 1, 62, 540, 1560, 1800, 720

Figure 4.14: Distribution of (gn,k)k for n ∈ {1, . . . , 7}

This recurrence is analogous to the one relating ordered Bell numbers and Stirling partition
numbers (see Equation (4.18)).

Theorem 4.3.9. The number of strict monotonic Schröder trees of sizenwith exactly k distinct
labels is given by

gn,k = k!

{
n+ 1

k

}
.

We denote by XG
n the number of distinct labels in a tree picked uniformly at random among

all strict monotonic Schröder trees of size n: for all n ≥ 1, XG
n is a random variable such

that P(XG
n = k) = gn,k/

∑n
k=1 gn,k. Then, asymptotically when n tends to infinity,

XG
n − n

2 ln 2√
(1−ln 2)n
(2 ln 2)2

d−→ N (0, 1).

The analysis of the limiting distribution is classical in the quasipowers framework estab
lished by Hwang [Hwa98]; see [FS09, p. 645, 653] for details and applications.

https://oeis.org/A019538

4.3 Strict monotonic Schröder trees 85

Proof. Recall that gn,k = k!
{
n+1
k

}
is the number of ordered partitions of a set of size n

having k nonempty parts. It is known (see, e.g. [Ben73, Example 3.4]) that, if Kn is the
number of parts in an ordered set partition of size n, then

Kn − n
2 ln 2√

(1−ln 2)n
(2 ln 2)2

 d−→ N (0, 1),

in distribution. This concludes the proof since Kn has the same distribution as XG
n for all

n ≥ 1. □

4.3.5.2 Quantitative analysis of the number of internal nodes

In this model the number of internal nodes is different from the number of distinct labels
that appear in the tree: this is because one integer can label several internal nodes. It is thus
natural to ask how many internal nodes a typical strict monotonic Schröder trees of size n
(i.e. with n leaves) has. The specification marking both leaves (with variable z) and internal
nodes (with variable u) is

G(z, u) = z +G

(
z +

uz2

1− z
, u

)
−G(z, u). (4.23)

We recall that the substitution z → z + uz2

1−z
means that at each iteration each leaf can be left

as it is (z → z) or expanded into an internal node attached to an arbitrary number of leaves
(z → z2

1−z
). A new internal, marked with the variable u, is created only in the second case.

1,
0, 1,
0, 1, 2,
0, 1, 5, 7,
0, 1, 9, 31, 34,
0, 1, 14, 86, 226, 214
0, 1, 20, 190, 874, 1946, 1652

Figure 4.15: Distribution of (gn,k)k for n ∈ {1, . . . , 7}

For all 1 ≤ n and 1 ≤ k ≤ n − 1, we denote by gn,k the number strict monotonic Schröder
trees with n leaves and k internal nodes: Figure 4.15 shows the values of (gn,k)1≤k≤n−1 for
n ∈ {1, 2, . . . , 7}. This triangle of integers is not yet stored in OEIS. However, its diagonal
is equal to EIS A171792. In fact in the diagonal the numbers corresponds to the number of
strict monotonic trees with n leaves and n − 1 internal nodes, i.e. binary strict monotonic
trees: this class of trees is studied in [BGGW20].

Theorem 4.3.10. If we denote by IGn the (random) number of internal nodes in a tree picked
uniformly at random among all strict monotonic Schröder trees of size n, then, asymptotically
when n tends to infinity,

E[IGn] =
n→∞

n− (ln 2)(lnn) +
π2

12
− 1 + (ln 2)

(
−γ +

ln 2
2

+ ln ln 2
)
+ o(1),

https://oeis.org/A171792

86 4 Three models of increasing Schröder trees

where γ is the EulerMascheroni constant.

Proof. For all n ≥ 1, we denote by hn =
∑n−1

k=1 kgn,k, and let H be the ordinary generat
ing function of (hn)n≥1; we have

H(z) =

(
∂G(z, u)

∂u

)
|u=1

.

The ratio hn/gn is equal to the expected number of internal nodes in a tree taken uniformly
at random among all strict monotonic Schröder trees of size n; we are thus interested in the
asymptotic behaviour of this ratio. Differentiating according to u and then substituting u by 1
in Equation (4.23) gives

H(z) =
z2

1− z
G′
(

z

1− z

)
+H

(
z

1− z

)
−H(z), (4.24)

because (
∂G(z, u)

∂z

)
|u=1

= G′(z).

Since Equation (4.24) is similar to Equation (4.17), we apply the same method as in the proof
of Proposition 4.3.3. We first derive

(BH(z))′ =
1

2− ez

(
B
[

z2

1− z
G′
(

z

1− z

)])′

.

Then using Equation (4.17) we deduce(
B
[

z2

1− z
G′
(

z

1− z

)])′

= −z +
z2

2
+ 2

(
B
[
z2(1− z)G′ (z)

])′
.

Furthermore since for any function F we have BzF (z) =
∫ z

0
BF (t)dt, we can simplify the

equation into

(BH(z))′ =
1

2− ez

(
−z +

z2

2
+ 2

∫ z

0

BG′(t) dt− 2

∫ z

0

∫ t

0

BG′(u) du dt
)
.

Then, since
∫ z

0
BG′(t)dt = z(BG(z))′, we obtain

(BH(z))′ =
1

2− ez

(
−z +

z2

2
+ 2z(BG(z))′ − 2

∫ z

0

t(BG(t))′dt
)

=
1

2− ez

(
−z +

z2

2
+

2z

2− ez
− 2

∫ z

0

t

2− et
dt
)

=
1/2

1− ez/2

(
−π2

12
+

(ln 2)2

2
− z

(
1− ln(1− ez/2)− 1

1− ez/2

)
+ Li2(ez/2)

)
,

where Li2 is the dilogarithm function, defined in [FS09, section VI.8.]. Using its asymptotic
development at 1, we get

(BH(z))′ ∼
z→ln 2

1

2 ln 2
1

(1− z/ ln 2)2

4.3 Strict monotonic Schröder trees 87

−
(

1

2 ln 2
− π2

24 ln 2
+
ln 2
4

− ln 2 + ln ln 2 + ln (1− z/ ln 2)
2

)
1

1− z/ ln 2

− 1

2
− 7 ln 2

24
+

π2

48
+

(ln 2)2

8
+
ln 2 ln ln 2

4
+O

(
ln
(

1

1− z/ ln 2

))
.

By using classical transfer theorems we obtain the result by extracting the (n− 1)th coeffi
cient of (BH(z))′ and dividing it by the nth coefficient of BG(z). □

4.3.5.3 Quantitative characteristics of the root node

In this section, we look at the arity of the root in a typical strict monotonic Schröder tree.
We denote by AG

n the arity of the root in a tree picked uniformly at random among all strict
monotonic Schröder trees of size n, and by pn its probability generating function:

pn(u) =
∑
k≥0

P(AG
n = k) uk.

Theorem 4.3.11. Asymptotically when n tends to infinity, AG
n converges in distribution to a

(shifted) zerotruncated Poisson law with parameter ln 2, i.e. for all u ≥ 0,
pn(u) →

n→∞
ueu ln 2 − u.

This implies that E[AG
n] → 2 ln 2+1 andV[AG

n] → −2 ln 2 (ln 2− 1) when n tends to infinity

Proof. Thanks to the bijection of Section 4.3.4.1, we know that AG
n is equal to the size

of the first subset in an ordered partition picked uniformly at random among all ordered par
titions of {1, . . . , n − 1}. We denote by P the class of ordered partitions, 1 is the empty
partition, Z is a singleton, and U marks the elements in the first subset. Here the specifica
tion is defined in the context of labelled object, thus the associated generating functions are
exponential (see [FS09] for notation details):

P = 1 + Set
≥1

(UZ) ⋆ Seq(Set
≥1

Z).

Using the symbolic method for exponential generating function, we get

P (z, u) = 1 +
euz − 1

2− ez
.

Thus, if we set

p̃n(u) =
[zn]P (z, u)

[zn]P (z, 1)
,

for all n ≥ 0, then
[zn]P (z, u) →

n→∞

1

2
(2u − 1) (ln 2)−n−1 .

This implies that, for all u ≥ 0,
p̃n(u) →

n→∞
2u − 1.

Note that, by definition, p̃n(u) is the probability generating function of the size Sn of the first
subset in an ordered partition picked uniformly at random among all ordered partitions of
{1, . . . , n− 1}. Because of the bijection of Section 4.3.4.1, we know that AG

n and Sn−1 have
the same distribution, implying that pn(u) = up̃n(u). This concludes the proof. □

88 4 Three models of increasing Schröder trees

4.3.5.4 Typical depth of the leftmost leaf

In this section, we prove a central limit theorem for the depth of the leftmost leaf in a typical
strict monotonic Schröder tree:

Proposition 4.3.12. Let Y G
n be the depth of the leftmost leaf in a tree taken uniformly at

random among all increasing Schröder trees of size n. In distribution when n tends to infinity,
we have

Y G
n − lnn√
lnn

d−→ N (0, 1).

The depth of the leftmost leaf is a lower bound for the height (since the height of a tree is the
maximal depth of its leaves), and it has the advantage of being easier to specify and analyse
than the height itself.

Recall that, in Section 4.2.7.4, we proved a similar central limit theorem for the depth of the
leftmost leaf in a typical increasing Schröder tree.

In this section, the variable U marks the depth of the leftmost leaf. Using the evolution
process, we get that

G(z, u) = z +

(
G(y, u)

y

)
|y= z

1−z

·
(
z +

uz2

1− z

)
−G(z, u).

At each iteration stepwe start by chopping off the leftmost leaf (this corresponds toG(y, u)/y).
Each of the other leaves either stays unchanged or is replaced by an internal node to which
is attached a sequence of at least two leaves (this corresponds to substituting y by z/(1− z)).
Finally we put back the leaf that has been chopped off and there we have 2 choices, either
it stays unchanged (z) or it is replaced by an internal node with at least two leaves attached
to it (z2/(1 − z)) in which case we multiply by u because the depth of the leftmost leaf has
been increased by one.

Iterating this specification, we can calculate the first coefficients (see Table 4.8): they are
equal to the first coefficients of a shifted version of EIS A129062. From the specification it
is possible to derive a recurrence relation on the coefficients gn,k. We have g1,0 = 1 and for
all n ≥ 2 and 1 ≤ k ≤ n− 1,

gn,k =
n−1∑

ℓ=k+1

gℓ,k

(
n− 2

ℓ− 2

)
+

n−1∑
ℓ=k

gℓ,k−1

(
n− 2

ℓ− 1

)
. (4.25)

This equation can be interpreted combinatorially using the evolution process (this reasoning
is similar to the one leading to Equation (4.18).): At each iteration step, the depth of the
leftmost leaf either stays unchanged or increases by 1. Therefore each tree in Gn,k, the set
of all strict monotonic Schröder trees whose leftmost leaf is at depth k, was, before the last
iteration, either a tree of Gℓ,k of a tree of Gℓ,k−1, for some ℓ < n. There are

(
n−2
ℓ−1

)
to expand

a tree of Gℓ,k−1 into a tree of Gn,k in one iteration step: it is the number of ways to partition
the n leaves of the sizen tree into ℓ parts of size at least one (when a part is of size 1, the
corresponding leaf in the ℓsize node stays unchanged, otherwise, it becomes an internal node
of outdegree the size of the part) in a way that the first part is of size at least 2 (the leftmost

https://oeis.org/A129062

4.3 Strict monotonic Schröder trees 89

leaf becomes an internal node attached to two leaves). Similarly, there are
(
n−2
ℓ−2

)
number of

ways to expand a tree of Gℓ,k into a tree of Gn,k in one iteration step: it is the number of ways
partition the n leaves of the sizen tree into ℓ parts of size at least one such that the first part
is of size 1.

Using the bijection exhibited in Section 4.3.4.2 we have the following

Proposition 4.3.13. The exponential generating function of gn,k is

G(z, u) =
∑
n≥0

∑
k≥0

gn,ku
k z

n

n!
=

z∫
0

(
1

2− ex

)u

dx.

Proof. From the bijection, since the depth of the leftmost leaf is the number of cycles we
get a direct specification by marking the cycles in the following

D = Set (U Cyc (Set≥1Z)) .

Therefore D(z, u) = exp
(
u ln

(
1

1−(exp(z−1))

))
. The number of trees of size n is the number

of ordered Bell numbers of size n− 1, so we integrate the last expression. □

The discussion above also leads to the following identity

Proposition 4.3.14. For all n ≥ 2 and 1 ≤ k ≤ n− 1,

gn,k =
n−1∑
m=0

{
n− 1

m

}[
m

k

]
.

Where
[
n
k

]
are Stirling Cycle numbers (also known as Stirling numbers of the first kind). They

count the number of cycles of size k in a permutation of size n.

Proof. The proof is a direct consequence of the previous construction. The number of
trees of size n with leftmost leaf at depth k can be constructed by looking at set partitions of
size n − 1 elements into i subsets for all possible sizes of i which is counted by

{
n−1
i

}
then

for each partition of size i we see how many cycles of size k we can build with it. □

Proof of Proposition 4.3.12. We can make the calculations on the bivariate generating
function D(z, u) which enters the scope of quasipowers framework. Theorem IX.11 in
[FS09, p. 669] is applicable. The exponent α(u) = u is analytic and α(1) = 1 and it
satisfies α′(1) + α′′(1) = 1 6= 0. So D(z, u) is asymptotically Gaussian with mean and vari
ance as announced. Finally the shift that we have between the size of trees and the ordered
partitions does not affect the first orders since ln (n+ 1) ∼ lnn. □

Open question (Height of trees). Unfortunately, wewere not able to analyse the height of this
tree model even though we strongly believe that the mean height is c lnn for some positive
constant c.

90 4 Three models of increasing Schröder trees

1
0 1
0 2 1
0 6 6 1
0 26 36 12 1
0 150 250 120 20 1
0 1082 2040 1230 300 30 1

Table 4.8: Values of gn,k, the number of n strict monotonic Schröder trees of size n with
leftmost leaf at depth k, for all 0 ≤ k ≤ n ∈ {1, . . . , 7}.

4.4 Strict monotonic general Schröder trees

In this section, we introduce a generalisation of the strict monotonic Schröder tree model of
Section 4.3: the difference is that we allow internal nodes to have only one child (we call
these nodes “unary” nodes). Since the size of a tree is the number of its leaves, allowing
unary nodes without adding any other constraint would mean that there would be infinitely
many trees of any given size n. To avoid this, we add the following constraint: at each growth
step, at least one leaf is expanded as an internal node of arity greater or equal to 2.

4.4.1 The model and its enumeration

Definition 4.4.1. A strict monotonic general tree is a labelled tree that can be obtained by
the following evolution process:

• Start with a single (unlabelled) leaf.
• At every step ℓ ≥ 1, select a nonempty subset of leaves, replace all of them by
internal nodes labelled by ℓ, attach to at least one of them a sequence of at least two
leaves, and attach to all others a unique leaf.

The two trees in Figure 4.16 are sampled uniformly among all strict monotonic general trees
of respective sizes (i.e. number of leaves) 15 and 500. The lefthandside tree has 14 distinct
nodelabels, i.e. it can be built in 14 steps using Definition 4.4.1. The righthandside tree is
represented as a circular tree with stretched edges like in the righthandside of Figure 4.16.
Here the tree contains 500 leaves built with 499 iterations of the growth process. But in
comparison with the increasing and strict monotonic Schröder trees drawn in the latter sec
tions and containing respectively 492 and 495 internal nodes, this one contains 62494 internal
nodes, most of them being unary nodes.

4.4.2 Overview of the main results

Once again we start with the counting problem of this family of trees. We find a recurrence
on the trees, but this time we have no link with classical objects in combinatorics. In order to
find an asymptotic enumeration we look for an approximating model of this family of trees in

4.4 Strict monotonic general Schröder trees 91

1

2 2

3 3 3

4 5

5 6

7 6 7

9 7

10

14

10 8

12 9 9

13 10 12

14 14 11 14

12

13

14

11

12 12

13

14

6

7 9

8 11

9

10

11

13

12

13 14

14

9 4

14 5

6

7

12

14

Figure 4.16: Two strict monotonic general trees

Section 4.4.3 by taking a subset of trees. Surprisingly, this approximating model will turn out
to to be simple enough to have a close formula for enumeration and its asymptotic behaviour
corresponds to the one of the general model (up to a constant). The approximating has also a
very simple correspondence with labelled graphs that we exhibit in Section 4.4.4. Then, we
will turn to study some parameters of these trees in Section 4.4.5. Unfortunately, we were not
able to find limiting laws for this newmodel due to the explosion of the enumeration problem.
It was not possible for us to get closed form of generating functions. However, we do find
the order of growth of the main interesting parameters that we summarised in Table 4.1.

We can specify strict monotonic general trees using the symbolic method; once again the
labelling is transparent and does not appear in the specification (i.e. we use ordinary generat
ing functions). In this section, we denote by F (z) the generating function of strict monotonic
general trees and by Fn the set of all strict monotonic general trees of size n; from Defini
tion 4.4.1, we get

F (z) = z + F

(
z +

z

1− z

)
− F (2z). (4.26)

The combinatorial meaning of this specification is the following: A tree of is either a single
leaf, or it is obtained by taking an already constructed tree, and replace each leaf by either a
leaf (i.e. no change) or an internal node attached to a sequence of at least one leaf. Further
more we omit the case where no leaf is replaced by an internal node with at least to children
(this is encoded in the subtracting F (2z)).

92 4 Three models of increasing Schröder trees

From this equation we extract the recurrence for the number fn of strict monotonic general
trees with n leaves. In fact we get

fn = [zn]F (z) = [zn]

(
 z + F

(
z +

z

1− z

)
− F (2z)

)
= δn,1 − 2nfn + [zn]

∑
ℓ≥1

fℓ

(
z +

z

1− z

)ℓ

= δn,1 − 2nfn +
∑
ℓ≥1

fℓ [z
n−ℓ]

ℓ∑
i=0

(
ℓ

i

)(
1

1− z

)i

,

which implies that

fn =

1 if n = 1,∑n−1

ℓ=1

min(n−ℓ,ℓ)∑
i=1

(
ℓ
i

)
2ℓ−i

(
n−ℓ−1
i−1

)
fℓ for all n ≥ 2.

(4.27)

Figure 4.17: All strict monotonic generam Schröder trees of size 3

The combinatorial meaning of the inner sum is the following: starting with a tree of size ℓ
we reach a tree of size n in one iteration by adding n − ℓ leaves. The index i in the inner
sum stands for the number of leaves that are replaced by internal nodes or arity at least 2,
by definition of the model (see Definition 4.4.1), we have 1 ≤ i ≤ min(n − ℓ, ℓ). There
are
(
ℓ
i

)
possible choices for the i leaves that are replaced by nodes of arity at least 2. Each

of the remaining ℓ − i leaves is either kept unchanged or replaced by a unary node, which
gives 2ℓ−i possible choices. And finally, there are

(
n−ℓ−1
ℓ−1

)
possible ways to distribute the

(indistinguishable) n − ℓ additional leaves among the i new internal nodes so that each of
the i nodes is given at least one additional leaf (it already has one leaf, which is the leaf that
was replaced by an internal node). The first terms of the sequence are the following:
(fn)n≥0 = (0, 1, 1, 5, 66, 2209, 180549, 35024830, 15769748262, 16187601252857, . . .) .

The 5 trees of size 3 are depicted in Figure 4.17.

Theorem 4.4.2. There exists a constant c such that the number fn of strict monotonic general
trees of size n satisfies, asymptotically when n tends to infinity,

fn ∼
n→∞

c (n− 1)! 2
(n−1)(n−2)

2 .

4.4 Strict monotonic general Schröder trees 93

In the proof of the latter theorem we exhibit the following bounds 1.4991 < c < 1.8932. But
through several experimentations we see that c < 3/2 but it is close to it. For instance when
n = 1000 we get c ≈ 1.49913911. We postpone the proof to the next section to make use of
the number of iteration steps.

4.4.3 Iteration steps and asymptotic enumeration of the trees

In this section, we look at the number of distinct internalnode labels that occur in a typical
strict monotonic general tree, i.e. the number of iterations needed to build it:
Proposition 4.4.3. Let fn,k denotes the number of strict monotonic general trees of size n
with k distinct nodelabels, then, for all n ≥ 1,

fn,n−1 = (n− 1)! 2
(n−1)(n−2)

2 .

Note that the first terms are
(fn,n−1)n≥0 = (0, 1, 1, 4, 48, 1536, 122880, 23592960, 10569646080, 10823317585920, . . .) .

Proof. We use a new variable u to mark the number of iterations (i.e. the number of
distinct nodelabels) in the iterative Equation (4.27). We get

F (z, u) = z + u F

(
z +

z

1− z
, u

)
− u F (2z, u). (4.28)

Using either Equation (4.28) or a direct combinatorial argument, we get that, for all k ≥ n,
fn,k = 0 and

fn,k =

1 if n = 1 and k = 0,
n−1∑
ℓ=k

min(n−ℓ,ℓ)∑
i=1

(
ℓ
i

)
2ℓ−i

(
n−ℓ−1
i−1

)
fℓ,k−1 if 1 ≤ k < n.

In particular, for k = n− 1, we get

fn,n−1 = (n− 1) 2n−2 fn−1,n−2 = f1,0

n−1∏
j=1

j2j−1 = (n− 1)!2
∑n−2

j=0 j

= (n− 1)!2
(n−1)(n−2)

2 ,

because f1,0 = 1. This concludes the proof.

Alternatively the recurrence of fn,n−1 can be obtained by extracting the coefficient [zn] in the
following functional equation

T (z) = z + z2 T ′(2z). □
Lemma 4.4.4. Both sequences (fn) and (fn,n−1) have the same asymptotic behaviour up to
a multiplicative constant.

Proof. Let us start with the definition of a new sequence

gn =

{
1 if n = 1,
fn/fn,n−1 otherwise.

94 4 Three models of increasing Schröder trees

This sequence gn satisfies the following recurrence:

gn =

{
1 if n = 1,∑n−1

ℓ=1

∑min(n−ℓ,ℓ)
i=1

(
ℓ
i

)
2ℓ−i

(
n−ℓ−1
i−1

)
gℓ

(ℓ−1)! 2(ℓ−1)(ℓ−2)/2

(n−1)! 2(n−1)(n−2)/2 otherwise.

When n > 1, extracting the term gn−1 from the sum we get

gn = gn−1 +
n−2∑
ℓ=1

min(n−ℓ,ℓ)∑
i=1

(
ℓ

i

)
2ℓ−i

(
n− ℓ− 1

i− 1

)
gℓ

(ℓ− 1)! 2(ℓ−1)(ℓ−2)/2

(n− 1)! 2(n−1)(n−2)/2
.

Since all summands are nonnegative, this implies that gn ≥ gn−1, and thus that this sequence
is nondecreasing. To prove that this sequence converges, it only remains to prove that it is
(upper)bounded.

Equation (4.27) implies that, for n ≥ 2,

fn ≤
n−1∑
ℓ=1

2ℓ−1

min(n−ℓ,ℓ)∑
i=1

(
ℓ

i

) (
n− ℓ− 1

i− 1

)
fℓ.

ChuVandermonde’s identity states that, for all ℓ ≤ n,
min(n−ℓ,ℓ)∑

i=1

(
ℓ

i

) (
n− ℓ− 1

i− 1

)
=

(
n− 1

ℓ− 1

)
.

This implies the following upperbound for fn:

fn ≤
n−1∑
ℓ=1

2ℓ−1

(
n− 1

ℓ− 1

)
fℓ =

n−1∑
ℓ=1

2n−ℓ−1

(
n− 1

ℓ

)
fn−ℓ

Using the same argument for gn we get

gn ≤ gn−1 +
n−1∑
ℓ=2

2(ℓ−1)(ℓ−2n+2)/2

ℓ!
gn−ℓ.

We look at the exponent of 1 in the sum: For all ℓ ≥ 2 (as in the sum), we have 2ℓ ≥ ℓ+2, and
thus 2n− ℓ−2 ≥ 2(n− ℓ). This implies that for all ℓ ≥ 2, (ℓ−1)(ℓ−2n+2)/2 ≤ −(n− ℓ),
and thus that

gn ≤ gn−1 +
n−1∑
ℓ=2

1

ℓ! 2n−ℓ
gn−ℓ.

Since the sequence (gn)n is nondecreasing, we obtain

gn ≤ gn−1 +
gn−1

2n

n−1∑
ℓ=2

2ℓ

ℓ!
≤ gn−1 + gn−1

e2 − 3

2n
.

We set α = e2 − 3. Iterating the last inequality, we get that

gn ≤ gn−1

(
1 +

α

2n

)
≤ g1

n∏
i=2

(
1 +

α

2i

)
= exp

(
n∑

i=2

ln
(
1 +

α

2i

))
,

4.4 Strict monotonic general Schröder trees 95

because g1 = 1. Note that, when i → +∞, we have ln(1+α2−i) ≤ α2−i (because ln(1+x) ≤
x for all x ≥ 0). This implies that, for all n ≥ 1,

gn ≤ exp

(
α

∞∑
i=2

2−i

)
= exp(α/2).

In other words, the sequence (gn)n is bounded. Since it is also nondecreasing, it converges
to a finite limit c, which is also nonzero since gn ≥ g1 6= 0 for all n ≥ 1. This is equivalent
to fn ∼ cfn,n−1 when n → +∞ as claimed. To get a lower wound on c, note that, for all
n ≥ 1, c ≥ gn ≥ g9 = f9/f9,8 ≈ 1.4956. □

Proof of Theorem 4.4.2. The latter Lemma 4.4.4 gives a proof of Theorem 4.4.2. But in
order to get a better upper bound for the constant c, let us introduce another proof. In the
proof of Lemma 4.4.4 we have proved

gn ≤ gn−1 + gn−1
e2 − 3

2n
.

We set α = e2 − 3 and define two other sequences as

ḡn =

{
1 if n = 1 or n = 2,
ḡn−1 +

α
2n

ḡn−2 otherwise,
and

¯̄gn =

{
1 if n = 1 or n = 2,
¯̄gn−1 +

1
n(n+1)

¯̄gn−2 otherwise.
Due to the two first terms and the recurrence equation we have for all positive n, gn ≤ ḡn ≤
¯̄gn. By induction we prove a new expression for ¯̄gn:

¯̄gn =

{
ḡn if n ≤ 3,
¯̄gn−1 +

2
(n+1)!

an−1 otherwise,

with the sequence (an)n such that a1 = 0, a2 = 1 and for n ≥ 3, an = nan−1 + an−2.
This sequence (an) is a shifted version of EIS A058307. We can either follow the work of
Janson [Jan10] to study it, but we need less details than him so we describe here an easier
approach. We define a new sequence as bn = an/n!. We easily prove that bn = bn−1 +
bn−2/(n(n−1))with b1 = 0 and b2 = 1/2. Using the later recurrence, we obtain an equation
satisfied by its generating function B(z) =

∑
n>0 bnz

n:

B(z) =
z2

2
+ zB(z) +

∫ u

t=0

∫ z

t=0

B(u)du.

we thus obtain
(z − 1)B′′(z) + 2B′(z) +B(z) + 1 = 0,

with B(0) = 0 and B′(0) = 0. By dividing the equation by i
√
1− z and then by a change of

variable: u := 2i
√
1− z, we recognise the classical differential equation satisfied by Bessel

functions [BO99]. We thus derive

B(z) = −1 +
1√
1− z

(
α J1(2i

√
1− z) + β Y1(2i

√
1− z)

)
,

https://oeis.org/A058307

96 4 Three models of increasing Schröder trees

where J·(·) and Y·(·) are the Bessel functions and α and β are two complex constants deter
mined with the initial conditions:

α =
Y1(2i)− iY0(2i)

J1(2)Y0(2i) + iJ0(2)Y1(2i)
, β = − J1(2)− iJ0(2)

J1(2)Y0(2i) + iJ0(2)Y1(2i)
.

We are interested in the asymptotic behaviour of bn. The dominant singularity of B(z) is at
z = 1 and there

B(z) ∼
z→1

− β

iπ
1

1− z
.

We thus deduce that bn tends to −β/(iπ) ≈ 0.68894. Since the sequence ¯̄gn satisfies ¯̄gn =
¯̄gn−1+

2
n(n+1)

bn−1. We deduce that the increasing sequence (¯̄gn) admits a finite limit. Hence it
is also the case for the increasing sequence (gn). Finally, Proposition 4.4.3 allows to conclude
for the existence of the constant c. Furthermore we get

c < ¯̄g3 +
∑
ℓ≥4

2

ℓ(ℓ+ 1)
· lim
n→∞

bn ≈ 1.8932. □

This result means that asymptotically a constant fraction of the strict monotonic general trees
of size n are built in (n − 1) steps. For these trees, at each step of construction only one
single leaf expands into a binary node. All other leaves either become a unary node or stay
unchanged, meaning that on average half of the leaves will expand into unary node with one
leaf expanding into a binary node. The number of internal nodes of these trees then grow like
n2/4.

4.4.4 Correspondence with labelled graphs

In Section 4.4.3 we defined fn,k the number of strict monotonic general trees of size n that
have k distinct nodelabels then we have shown that, for all n ≥ 1,

fn,n−1 = (n− 1)! 2
(n−1)(n−2)

2 .

The factor 2(n−1)(n−2)/2 = 2(
n−1
2
) in graphs of (n− 1) vertices counts the different combina

tions of edges (not directed) between vertices. The factor (n − 1)! accounts for all possible
permutations of vertices. We will denote Sn to be the trees that fn,n−1 counts and exhibit a bi
jection between strict monotonic general trees of S = ∪n≥1Sn with a class of labelled graphs
with n − 1 vertices defined in the following. Let us define the subclass of strict monotonic
general trees S = ∪n≥1Sn.

For all n ≥ 1, we denote by Gn the set of all labelled graphs (V, ℓ, E) such that V =
{1, . . . , n}, E ⊆ {{i, j} : i 6= j ∈ V } and ℓ = (ℓ1, . . . , ℓn) is a permutation of V (see
Figure 4.18 for an example). We set G = ∪∞

n=0Gn. Choosing a graph in Gn is equivalent
to (1) choosing ℓ (there are n! choices) and (2) for each of the

(
n
2

)
possible edges, choose

whether it belongs to E or not (there are 2(
n
2
) choices in total). In total, we thus get that

|Gn| = n! 2(
n
2
).

4.4 Strict monotonic general Schröder trees 97

2 1 3

Figure 4.18: The graph G3 graph. In this representation, the vertices V = {1, . . . , n} are
drawn from left to right (node 1 is the leftmost, node n is the rightmost), and their label is
their image by ℓ: in this example ℓ = (2, 1, 3).

We recall the definitions used in Section 3.1. A sizen permutationσ is denoted by (σ1, . . . , σn),
and σi is its ith element (the image of i), while σ−1(k) is the preimage of k (the position of
k in the permutation).

Another important bijection that we will use is the bijection between binary increasing trees
and permutations, see [FS09, page143].

We defineM′′
: S → G recursively on the size of the tree it takes as an input: first, if t is the

tree of size 1 (which contains only one leaf) or the tree of size 2 (one internal node attached
to two leaves), then we set M′′(t) to be the graph ({1}, (1),∅) (the graph with one vertex
labelled 1 and no edge). Now assume we have defined M′′ on ∪n−1

ℓ=1 Sℓ, and consider a tree
t ∈ Sn. By Definition 4.4.1 and since t ∈ Sn, then there exists a unique binary node in t
labelled by n− 1, and this node is attached to two leaves. Consider t̂ the tree obtained when
removing all internal nodes labelled by n−1 (and all the leaves attached to them) from t and
replacing them by leaves. Denote by vn the position (in, e.g., depthfirst order) of the leaf of
t̂ that previously contained the binary node labelled by n− 1 in t. Denote by u1, . . . , um the
positions or the leaves of t̂ that previously contained unary nodes labelled by n− 1 in t. We
setM′′

(t̂) = ({1, . . . , n− 1}, ℓ̂, Ê) and defineM′′
(t) = ({1, . . . , n}, ℓ, E) where

ℓi =

n if i = vn
ℓ̂i if ℓ̂i < vn

ℓ̂i−1 if ℓ̂i ≥ vn,

E = Ê∪{{ℓ̂−1(uj), n} : 1 ≤ j ≤ m}. An example of the bijection is depicted in Figure 4.19.

Theorem 4.4.5. The mappingM′′ is bijective, andM′′
(Sn) = Gn−1.

Proof. From the definition, it is clear that two different trees have two distinct images
by M′′ , thus implying that M′′ is injective; this is enough to conclude since |Gn−1| = |Sn|
(see Proposition 4.4.3 for the cardinality of Sn). □

Remark: It is interesting to note that this graph model is a labelled version of the binomial
random graph Gn(1/2) = (V,E) defined as follows: V = {1, . . . , n} and each edge belong
to E with probability 1/2, independently from the other edges. This model, also called the
ErdösRenyi random graph was originally introduced by Erdös and Renyi [ER59], and simul
taneously by Gilbert [Gil59], and has been since then extensively studied in the probability
and combinatorics literature (see, for example, the books [Bol01] and [Dur06] for introduc
tory surveys).

98 4 Three models of increasing Schröder trees

1

2
2 1

1

2 3

3

2 1 3

1

2 3

3 4 4

2 4 1 3

1

2 3

3 4 4

5 5 5

2 4 1 3 5

Figure 4.19: Bijection between an evolving tree in S from size 3 to 5 and its corresponding
graph G.

4.4.5 Analysis of typical parameters

4.4.5.1 Quantitative analysis of the number of internal nodes

Theorem 4.4.6. Let IFn be the number of internal nodes in a tree taken uniformly at random
among all strict monotonic general trees of size n. Then for all n ≥ 1, we have

(n− 1)(n+ 2)

6
≤ E[IFn] ≤

(n− 1)n

2
.

To prove this theorem, we use the following proposition.

Proposition 4.4.7. Let us denote by sn,k the number of strict monotonic general trees of size
n that have n− 1 distinct nodelabels and k internal nodes. For all n ≥ 1 and k ≥ 0,

sn,k = (n− 1)!

(
(n− 1)(n− 2)/2

k − (n− 1)

)
,

and thus, if ISn is the number of internal nodes in a tree taken uniformly at random among
all strict monotonic general trees of size n that have n− 1 distinct label nodes, then, for all

4.4 Strict monotonic general Schröder trees 99

n ≥ 1,
E[ISn] =

(n− 1)(n+ 2)

4
.

Proof. Let us prove the formula for sn,k by induction. For n = 1, k can only be 0 thus
s1,0 = 1 = 0!

(
0
0

)
.

We suppose that sm,k = (m−1)!
(
(m−1)(m−2)/2

k−(m−1)

)
holds form = n−1 and k ∈ {n−1, . . . , (n−

2)(n− 3)/2}.

Then, we are interested in the value of sn,k:

sn,k =

k−(n−1)∑
s=0

(n− 2)!

(
(n− 2)(n− 3)/2

s− (n− 2)

)(
n− 1

k − s− 1

)
(k − s− 1).

Let k′ = k − (n− 1) and s′ = s− (n− 2). Replacing k′ and s′ in the equation gives,

s̃n,k′ =
k′∑

s′=0

(n− 2)!

(
(n− 2)(n− 3)/2

s′

)(
n− 1

k′ − s′ + 1

)
(k′ − s′ + 1)

= (n− 1)!
k′∑

s′=0

(
(n− 2)(n− 3)/2

s′

)(
n− 2

k′ − s′

)
.

Using ChuVandermonde identity, we finally obtain

sn,k = (n− 1)!

(
(n− 1)(n− 2)/2

k − (n− 1)

)
.

We now can compute the average number of internal nodes of Sn:

En[I
S
n] =

n(n−1)/2∑
k=n−1

k(n− 1)!
(
(n−1)(n−2)/2

k−(n−1)

)
(n− 1)! 2(n−1)(n−2)/2

.

Again we reverse the sum: k′ = k − (n− 1),

E[ISn] =

(n−1)(n−2)/2∑
k′=0

(k′ + (n− 1))(n− 1)!
(
(n−1)(n−2)/2

k′

)
(n− 1)! 2(n−1)(n−2)/2

=

(n−1)(n−2)/2∑
k′=0

k ′((n−1)(n−2)/2
k′

)
+ (n− 1)

(n−1)(n−2)/2∑
k′=0

(
(n−1)(n−2)/2

k′

)
2(n−1)(n−2)/2

=
(n− 1)(n− 2)

4
+ (n− 1) =

(n− 1)(n+ 2)

4
.

□

We are now ready to prove the main theorem of this section.

100 4 Three models of increasing Schröder trees

Proof of Theorem 4.4.6. Note that the number of internal nodes of a strict monotonic
general tree of size n belongs to {1, . . . , n(n−1)/2}. The upper bound follows from the fact
that, at the ℓth iteration in Definition 4.4.1, a maximum of ℓ internal nodes is added to the
tree, and

∑n
ℓ=1 ℓ = n(n− 1)/2. In particular, we thus have that, almost surely for all n ≥ 1,

IFn ≤ n(n− 1)/2, and thus E[IFn] = O(n2).

For the lower bound, we denote by Sn the set of strict monotonic general trees of size n that
have n−1 distinct nodelabels. Moreover, we denote by tn a tree taken uniformly at random
in Fn, and by IFn its number of internal nodes. We have, for all n ≥ 1,

E[IFn] = E[IFn | tn ∈ Sn] · P(tn ∈ Sn) + E[IFn | tn /∈ Sn] · P(tn /∈ Sn)

≥ E[IFn | tn ∈ Sn] · P(tn ∈ Sn) = E[ISn] ·
fn,n−1

fn
,

where we have used conditional expectations and the fact that conditionally on being in Sn,
tn is uniformly distributed in this set, and, in particular, E[IFn | tn ∈ Sn] = EISn . Using
Proposition 4.4.7 and the upper bound of Proposition 4.4.3, we thus get

E[IFn] ≥
2

3

(n− 1)(n+ 2)

4
,

which concludes the proof. □

4.4.5.2 Quantitative analysis of the number of distinct labels

Theorem 4.4.8. LetXF
n denotes the number of distinct internalnode labels (or construction

steps) is a tree taken uniformly at random among all strict monotonic general trees of size n,
then for all n ≥ 1,

2

3
(n− 1) ≤ E[XF

n] ≤ n− 1.

Proof. First note that since at every construction step in Definition 4.4.1 we add at least
one leaf in the tree, then after ℓ construction steps, there are exactly ℓ distinct labels and at
least ℓ + 1 leaves in the tree. Therefore, n ≥ XF

n + 1 almost surely for all n ≥ 1, which
implies in particular that E[Xn] ≤ n− 1, as claimed.

For the lower bound, we reason as in the proof of Theorem 4.4.6, and using the same nota
tions:

E[XF
n] ≥ E[XF

n | tn ∈ Sn] · P(tn ∈ Sn) = (n− 1)
fn,n−1

fn
,

because E[XF
n | tn ∈ Sn] = n − 1 by definition of Sn (being the set of all strict mono

tonic general trees of size n that have n− 1 distinct nodelabels). Using the upper bound of
Proposition 4.4.3 gives that E[XF

n] ≥ 2(n− 1)/3, which concludes the proof. □

4.4.5.3 Quantitative analysis of the height of the trees

Theorem 4.4.9. LetHF
n denotes the height of a tree taken uniformly at random in Fn, the set

of all strict monotonic general trees of size n. Then we have, for all n ≥ 0,
n

3
≤ E[HF

n] ≤ n− 1.

4.4 Strict monotonic general Schröder trees 101

To prove this theorem, we first prove the following:

Proposition 4.4.10. Let us denote by HS
n the height of a tree taken uniformly at random in

Sn, the set of all strict monotonic general trees of size n that have n− 1 distinct labels. Then
we have, for all n ≥ 0,

n

2
≤ E[HS

n] ≤ n− 1.

Proof. Define the sequence of random trees (tn)n≥0 recursively as:
 t1 is a single leaf.
 Given tn−1, we define tn as the tree obtained by choosing a leaf uniformly at random among
all leaves of tn−1, replacing it by an internal nodes to which two leaves are attached, and, for
each of the other leaves of tn−1, choose with probability 1/2 (independently from the rest)
whether to leave it unchanged or to replace it by a unary node to which one leaf is attached.

One can prove by induction on n that for all n ≥ 1, tn is uniformly distributed in Sn. We
denote by HF

n the height of tn. Since the height of tn is at most the height of tn−1 plus 1 for
all n ≥ 2, we get that HS

n ≤ n− 1 almost surely.

For the upper bound, we note that, for the height of tn to be larger than the height of tn−1,
we need to have replaced at least one of the maximalheight leaves in tn−1. There is at least
one leaf of tn−1 which is at height HS

n−1 and this leaf is replaced by an internal node with
probability

1

2

(
1− 1

n− 1

)
+

1

n− 1
≥ 1

2
.

Therefore, for all n ≥ 1, we have

P(HS
n = HS

n−1 + 1) ≥ 1

2
,

which implies, since HS
n ∈ {HS

n−1, H
S
n−1 + 1} almost surely,

E[HS
n] = E[HS

n−1] + P(HS
n = HS

n−1 + 1) ≥ E[HS
n−1] +

1

2
.

Therefore, for all n ≥ 1, we have E[HS
n] ≥ E[HS

0] + n/2 = n/2, as claimed. □

Proof of Theorem 4.4.9. By Definition 4.4.1, it is straightforward to see that the height
of a tree built in ℓ steps is at most ℓ since the height increases by at most one per construction
step. Since a tree of size n is built in at most n − 1 steps, we get that HF

n ≤ n − 1 almost
surely, which implies, in particular, that E[HF

n] ≤ n− 1.

For the lower bound, note that, if tn is a tree taken uniformly at random in Fn and HF
n is its

height, then
E[HF

n] ≥ E[HF
n |tn ∈ Sn] · P(X ∈ Sn) ≥

2

3
E[HS

n],

where we have used Proposition 4.4.3 and the fact that tn conditioned on being in Sn is
uniformly distributed in this set and thus E[HF

n | tn ∈ Sn] = EHS
n . By Proposition 4.4.10,

we thus get E[HF
n] ≥ n/3, as claimed. □

102 4 Three models of increasing Schröder trees

4.4.5.4 Quantitative analysis of the depth of the leftmost leaf

Theorem 4.4.11. Let us denote by DF
n the height of a tree taken uniformly at random in Fn,

the set of all strict monotonic general trees of size n. Then we have, for all n ≥ 0,
n

3
≤ E[HF

n] ≤ n− 1.

Proposition 4.4.12. Let us denote by DS
n the depth of the leftmost leaf of a tree taken uni

formly at random in Sn, the set of all strict monotonic general trees of size n that have n− 1
distinct labels. Then we have, for all n ≥ 0,

n

2
≤ E[DS

n] ≤ n− 1.

Proof. Given the uniform process of trees tn presented in Proposition 4.4.10. The depth
of the leftmost leaf is always smaller than n− 1. LetXn be a Bernoulli variable taking value
1 if the leftmost leaf of tn has been expanded at iteration n and the value 0 otherwise. Then
for n ≥ 1,

P (Xn = 1) =
1

n
+

(n− 1)

n

1

2
=

n+ 1

2n
≥ 1

2
.

Since at each iteration step either the leftmost leaf expand to make a binary node which gives
1
n
or it has not created a binary and then it has 1

2
probability to make a unary node. The depth

of the leftmost leaf is DS
n =

n∑
k=1

Xk. Therefore for n ≥ 1,

E[DS
n] ≥

n

2
.

Which concludes the proof. □

Proof of Theorem 4.4.11. By the same arguments as in Theorem 4.4.9 the result follows
directly since we have the same bounds on the depth of leftmost leaf as we had in the height
of the tree. □

4.5 Conclusion

As a conclusion, we comment our main analytical results (summarised in Table 4.1, Table 4.7
and Table 4.2) in the light of the simulations obtained using the different random samplers
designed in Chapter 7 (see the righthand sides of Figure 4.2, Figure 4.9 and Figure 4.16),
and compare on the similarities and difference of our three models. Recall that in the rep
resentations no label is represented but the length of an edge between two internal nodes is
proportional to the difference of the labels of the nodes it connects.

A few of our analytical results can be observed looking at the simulations in Chapter 7: for
example, the fact that a large proportion of the nodes are binary in a large monotonic Schröder
tree, which we have confirmed by a rigorous analysis (see Theorem 4.2.24), is visible on Fig
ure 4.2. From Figure 4.9, one could conjecture this is also true in the case of strict monotonic
Schröder trees, but this question remains open.

4.5 Conclusion 103

From Figure 4.2, Figure 4.9 and Figure 4.16 it seems clear that the model of strict monotonic
general Schröder trees behaves drastically differently from the two other models, which are
quite similar. This is indeed what we have proved in our analysis: for example, the height of a
typical strict monotonic general tree of size n is of orderΘ(n) (see Theorem 4.4.9), while we
have shown that a in the monotonic case, the height is of orderΘ(logn) (see Theorem 4.2.27).
Another huge difference is that the number of internal nodes in a large typical monotonic
general Schröder tree is of order Θ(n2) (see Theorem 4.4.6) while, in the two other models,
this parameter is of order n (see Theorem 4.2.18 Theorem 4.3.10).

Proving results on the height of different families of random trees is often a challenging
question, and we have seen that it is indeed one of the most intricate parameters to study in
our three models: in the case of monotonic and strict monotonic general trees, we obtain a
Θestimate but we only obtain a lnn lower bound in the case of strict monotonic Schröder
trees (see Section 4.3.5.4). A natural conjecture, based on the fact that increasing Schröder
and strict monotonic Schröder trees seem to behave similarly in some aspects, we conjecture
that the height of a typical strict monotonic Schröder tree is also of order c lnn, for some
constant c.

CHAPTER 5

General asymptotics for varieties of monotonic Schröder trees

Contents
5.1 Introduction 106
5.2 Formal definition and main results 107
5.3 Applications 111

5.3.1 Double nature of ϕ(z) 112
5.3.2 Varieties of strict monotonic Schröder trees 113
5.3.3 Varieties of connected monotonic Schröder trees 117
5.3.4 Varieties of monotonic Schröder trees 120
5.3.5 Weakly increasing plane dary trees (monotonic dary trees) 121
5.3.6 Applications of trees with unary nodes 123

5.4 Combinatorial model 124
5.5 Asymptotic analysis for r = {d} 126

5.5.1 Asymptotic analysis for r = {1} 127
5.5.2 Asymptotic analysis for d ≥ 2 130

5.6 Asymptotic analysis for r = N∗ 132
5.7 Asymptotics for general r 140
5.8 Asymptotic analysis for r = [m] 143
5.9 Asymptotics when unary nodes are allowed 144
5.10 Asymptotics where no binary nodes are allowed 150
5.11 Conclusion 154

ً طَيبِّةَ ً كلَمِةَ مثَلَاً ُ ه َّ الل ضرَبََ كَيفَْ َ ترَ أَلمَْ
فيِ وفَرَعْهُاَ ثاَبتٌِ أَصْلهُاَ ٍ طَيبِّةَ كَشجََرةٍَ

ماَء1ِ. السَّ
Quran 14:24

1Have you not considered how God presents an example, [making] a good word like a good tree, whose
root is firmly fixed and its branches [high] in the sky?

105

106 5 General asymptotics for varieties of monotonic Schröder trees

5.1 Introduction

In this chapter we study of an evolution process that generalises the processes studied in Chap
ter 4 and incorporates them as special cases. The idea is to study evolution processes, where
individuals evolve at some period of times and give birth to new individuals and the process
goes on. The process that we present is general in the sense that it can parameterised by two
variables. One variable controls the number of children that an individual can reproduce at
each period of time. The process is general enough to incorporate also the fact that the num
ber of newly born children from an individual can be unbounded. The second variable, is not
a local variable but a global one, and this controls how many individuals can reproduce at
each period of time.

The result of the evolution process can be represented with a plane rooted tree that has labels
on internal nodes to denote the period of times in which this individual appeared. Leaves
(i.e external nodes) are not labelled and represent the individuals that can reproduce and
transform to internal nodes with new leaves.

Evolution processes are known in different fields. In combinatorics, several models of evolu
tion processes have been studied. Many classes of trees in combinatorics are described by an
evolution process like simple trees [MM78], Schröder trees and phylogenetic trees [Sch70],
increasing trees [BFS92], bifurcating trees and multifurcating trees [CPQ96]. An introduc
tion into various aspects of trees in combinatorics can be found [Drm09] and for trees arising
in phylogenetics [Fel03]. See Section 3.5.1 for more details on the tree classes cited above.

In probability theory, evolution processes, are described by rules of individual reproduction
according to some probability distribution. Some famous models include GaltonWatson
trees formalised by Neveu in [NEV86], Yule trees introduced by Pittel in [Pit84]. For some
tree classes, there exist a combinatorial evolution process and a probabilistic evolution pro
cess that generates uniformly a tree from all trees of the same size. But it is not always the
case.

Our main contributions in this chapter concerns asymptotic enumeration of different classes
of trees that can be defined through the evolution process. The type of theorem we look for is
close to the one on the asymptotics of simple trees that we have presented in Theorem 3.5.15.
This theorem uses a characteristic equation and the main asymptotic term comprises deriva
tives of the degree function ϕ(u). We look to develop the same kind of theorem for our
evolution process. We will also find some new results on the asymptotics of labelled binary
trees under different models of increasing labellings, see Table 5.8. For instance we will
have the asymptotics of binary trees with weakly increasing labellings along branches. We
will also be able to enumerate dary trees with weakly increasing labellings along branches.
Therefore, this study constitutes as far as we know a first account on weakly increasing la
bellings in the sense that we define, with the root always having label 1, the labels are weakly
increasing along branches and finally there are no holes in the labels (if k is the maximum
label then all labels between 1 and k must appear).

As we will see the specification of the evolution process gives rise invariably to divergent
generating functions. The key idea in the proofs of our theorems is related to the use of Borel

5.2 Formal definition and main results 107

transform of the recurrence of the coefficients. In combinatorics the Borel transform plays a
role similar to Borel summation for divergent power series.

We also see in this chapter how using specifications belonging to the unlabelled world of the
symbolic method can help us define different increasing labellings on tree structures.

We will start this chapter in Section 5.2, by giving the formal definition of the evolution
process. From the formal definition we will go on to give the statements of the main two
theorems to be proved (Theorem 5.2.6 and Theorem 5.2.7). Our results in this chapter are
mainly results relating to the enumeration of tree classes and general asymptotic equivalent
results. Then a section is dedicated for applications of the theorems on specific tree classes
in Section 5.3. In the section that follows, we will write a combinatorial recurrence on the
coefficients of this process in Section 5.4. The four following sections (Section 5.5,Sec
tion 5.6,Section 5.7 and Section 5.8) are dedicated to the proofs of the main results. Our
results require that binary nodes are allowed to appear in the resulting tree. This is why in
Section 5.10, we summarise some of the results where this is not the case and give some open
questions about the evolution process in this case. We end this chapter with a conclusion that
summarises the results in Section 5.11.

5.2 Formal definition and main results

We present now the evolution process that we will study in this chapter. This process gener
ates trees such that their labels along branches are strictly increasing. But it will be possible
to relax the strict increasing condition when we present a variant of this process later on.

Definition 5.2.1. (Evolution process for a variety of strict monotonic Schröder trees)
Given some colored degree function ϕ(z) as defined in Definition 3.5.6 and r ⊂ N∗, the fol
lowing evolution process generates a variety of strict monotonic Schröder tree parameterised
by ϕ(z) and r. Let min(r) = 12. The process starts at timestep 0 with a single leaf and at
each timestep i ≥ 1 is as follows:

(1) Choose a nonempty subset of leaves L such that |L| ∈ r.
(2) For each leaf ℓ ∈ L choose an admissible degree and a colour (d, c), meaning that

ϕd > 0 and 1 ≤ c ≤ ϕd. There also exists some leaf, such that the associated couple
(d, c) is such that d > 1.

(3) Replace each leaf ℓ with an internal node labelled by i with colour c and having d
new leaves attached to it.

Remark 5.2.2. If min(r) 6= 1, it means that we have more than one repetition at each
iteration step. Therefore, it is not possible to start with single leaf. In this case we start with
a tree consisting of a root labelled 1 that have min(r) leaves. Then the process goes on as
described above and starts at time step 2 rather than one.

This evolution process generates a strict monotonic Schröder tree since at each iteration step
we add some nodes having the same label in different places of the tree such that the labelling

2wheremin() returns the smallest value of a set

108 5 General asymptotics for varieties of monotonic Schröder trees

Figure 5.1: Example of Definition 5.2.1. (Left) An example of the colored degree function,
here ϕ(z) = 3z2 + z3 + 2z4, there are 3 colours of binary nodes, 1 colour for ternary nodes
and 2 colours for quaternary nodes. (Right) A tree of size 15 built with ϕ(z) where the set
of allowed repetitions r = {1, 2, 3}, so that each label can appear 1,2 or 3 times. But they
might not all appear, in the example there is no node with 3 repetitions.

along each branch is always strictly increasing. In Section 5.3 we will see how to extend this
process in order to generate monotonic trees (where the labelling along branches is weakly
increasing).

Translating the above process using the framework of the symbolic method (see [FS09]), we
obtain the following functional relation for the generating seriesBr,ϕ enumerating trees built
via the evolution process based on the colored degree function ϕ(z), and the set of allowed
repetitions r ⊂ N∗ and letm = min(r):

B(z) = zm +
∑
i∈r

1

i!
B(i)(z)

(
ϕ(z)i − (ϕ1 z)

i
)
. (5.1)

Where B(i)(z) is the i− th derivative of B(z). We write B instead of Br,ϕ for simplicity but
it should be always clear that B is characterized by these two parameters.

Remark 5.2.3. We notice that the condition “There also exists some leaf, such that the asso
ciated couple (d, c) is such that d > 1” in the evolution process Definition 5.2.1 is reflected
in the specification by the factor−(ϕ1z)

i, which means that at each iteration step at least one
leaf evolves to something different from a unary node, this is why we erase the configuration
where all leaves evolve to unary nodes. This ensures the resulting class to be a combinatorial
class with a finite number of objects for each size.

Table 5.1 sums up some of the most important examples that this evolution process captures.
More examples are discussed in Section 5.3.

Supertrees are a class of rooted plane binary increasing trees where labels can appear twice.
It has been introduced as a model of tree of life in [SDH+04]. This class can be specified
using our evolution process with ϕ(z) = z2 and r = {1, 2}. Monotonic dary trees will be

5.2 Formal definition and main results 109

r ϕ(z) Name References
{1} zd Plane dary increasing [BFS92]
{1} z2

1−z
Increasing Schröder Section 4.2,[BGN19]

N∗ z2 Strict monotonic binary [BGGW20]
N∗ z2

1−z
Strict monotonic Schröder Section 4.3,[BGN19]

N∗ z
1−z

Strict monotonic general Schröder Section 4.4,[BGMN20]
N∗ plane dary monotonic dary trees Section 5.3,[BGNS20]
{1, 2} z2 Supertrees [SDH+04]
{d} z2 Increasing binary with d label repetitions Section 5.3.2

Table 5.1: Some of examples of tree classes covered by Definition 5.2.1

introduced in Section 5.3. They are rooted plane trees such that the labellings along branches
is weakly increasing.

Conditions on the growth of ϕ(z)

Our asymptotic results work under conditions of growth of the coefficients ϕi in ϕ(z). How
ever, the conditions are general enough, so that, the results hold for interesting cases as will
be presented in Section 5.3. Finally, it is possible that the growth condition on ϕ(z) can be
relaxed further in some cases. But we keep it like this for uniformity of the results.

Condition 5.2.4. Let r ⊂ N∗ and m = min(r). Let ϕ(z) be a coloured degree function as
presented in Definition 3.5.6 and such that ϕ1 = 0, ϕ2 ≥ 1 and ϕn =

n→∞
O
(

n!
m!n/m nm+4

)
.

Condition 5.2.5. Let ϕ(z) be a coloured degree function as presented in Definition 3.5.6 and
such that ϕ1 ≥ 1, ϕ2 ≥ 1 and ϕn = O

(
n!
n5

)
.

The main difference between both conditions Condition 5.2.4 and Condition 5.2.5 is that in
the first ϕ1 = 0 and in the second this condition is negated so that ϕ1 ≥ 1.

The main theorems are:

Theorem 5.2.6. Let ϕ(z) be as in Condition 5.2.4, with r 6= ∅. Let m = min(r), when n
tends to∞ and is of the form n ≡ 0modm,

Br,ϕ
n ∼

n→∞
κ n!

(
ϕ2

ρ

)n

n
−1+

ρ ϕ3
ϕ22

− ρ f ′′(ρ)
f ′(ρ) ,

where κ is a constant that depends on ϕ(z) and r. Let f(z) =
∞∑

i=1,i∈r

zi

i!
, then ρ is the positive

real solution of smallest modulus of the equation f(z)− 1 = 0.

Theorem 5.2.7. Let ϕ(z) be as in Condition 5.2.5 , let r ⊂ N∗, r 6= ∅, and r 6= {1}, then
when n tends to∞,

Br,ϕ
n ∼

n→∞
κ (n− 1)!ϕn−1

2

n−1∏
k=1

(
∞∑

i=1,i∈r

ϕi−1
1

(
n− k − 1

i− 1

))
,

110 5 General asymptotics for varieties of monotonic Schröder trees

where κ is a constant that depends on ϕ(z) and r.

These two theorems show that the asymptotic first order is only affected by the by ϕ2 and ϕ3

if there are no unary nodes (i.e ϕ1 = 0). However, when unary nodes are allowed (i.e ϕ1 > 0)
only ϕ1 and ϕ2 appear in the first order asymptotic. In both cases as stated in the theorems
ϕ2 > 0.

For the case where unary nodes are not allowed, we study some relaxations of the condition
on ϕ2 ≥ 1, in Section 5.10. For the second case, where unary nodes are allowed an extension
of Theorem 5.2.7 is given in Theorem 5.9.7.

When r consists of consecutive integers that starts from 1, that is r = [1, 2, . . . ,m] or r = N∗,
then a specialising theorem gives the following:
Theorem 5.2.8. Let ϕ(z) be as in Condition 5.2.4, we have,

B[m],ϕ
n ∼

n→∞
κ n!

(
ϕ2

ρ

)n

n
−1+τ+ρ

(
−1+

ϕ3
ϕ22

)
,

where κ is a constant that depends on ϕ(z) and m, and is given by an implicit equation, let

f(z) =
m∑
i=1

zi

i!
, ρ is the positive real solution of smallest modulus of the equation f(z)−1 = 0

and τ = ρm

(m−1)!f ′(ρ)
. Moreover, the numbers ρ and τ are algebraic except when r = N∗, then

ρ becomes transcendental.

We will start the proofs sections by showing two specific cases of r. In Section 5.5 we give
the proof for r = {d}, and in Section 5.6 we give the proof for r = N∗.

The statement of the two cases are:
Proposition 5.2.9. Let ϕ(z) be as in Condition 5.2.4, and r = {d}, with d ≥ 1, then when n
tends to∞ and is of the form n ≡ 0mod d,

B{d},ϕ
n ∼ κ n!

(
ϕ2

d!n/d

)n

n
−d+

ϕ3
ϕ22 .

Where κ is a constant that depends on ϕ and is given by an implicit equation.
Corollary 5.2.10. Let ϕ(z) be as in Condition 5.2.4, and r = N∗. Then,

BN∗,ϕ
n ∼

n→∞
κn!

(
ϕ2

ln 2

)n

n

(
−1+

ϕ3
ϕ2

2

)
ln 2−1

.

Where κ is a constant that depends on ϕ and is given by an implicit equation.

The result in Proposition 5.2.9 is used to make Condition 5.2.4.

Corollary 5.2.10 is put as a corollary because it follows directly from Theorem 5.2.8, but we
will make a proof of it since the proof of the general result follows the same schema with a
striction on the summands of the specialisation.

Then we go to show the general case Theorem 5.2.6 in Section 5.7 and its specialisation
Theorem 5.2.8 in Section 5.8. Finally, we will show the proof of Theorem 5.2.7 where unary
nodes are allowed in Section 5.9.

5.3 Applications 111

Principles of the proofs:

The proofs in the next sections follow the same steps which are summarised in the following:

• Make a Borel transform (rescaling by n!) on the coefficients of the main recurrence.
• Identify the coefficients of the leading behaviour.
• Write a differential equation that satisfies an upper and a lower bound of the gener
ating function.

• Prove an upper and lower bounds on the coefficients (i.e a Θ result).
• From the Θ result and a careful analysis of the error terms deduce the equivalent
result.

5.3 Applications

All applications that we will present in this section are parameterised version of the evolution
process presented in Definition 5.2.1 which gives rise to the following functional equation
Equation (5.1) that we recall here.

B(z) = zm +
∑
i∈r

1

i!
B(i)(z)

(
ϕ(z)i − (ϕ1 z)

i
)
.

This equation is parameterised by:

• The function ϕ(z)which represents the set of allowed nodes degrees with their num
ber of colours.

• The set rwhich represents the set of allowed number repetitions for an each iteration
step andm = min(r).

All the asymptotic results presented are applications of Theorem 5.2.6 when there are no
unary nodes and Theorem 5.2.7 otherwise.

We start this section by presenting a variant of the evolution process of Definition 5.2.1 that
generates trees with weakly increasing labellings in Section 5.3.1.

In Section 5.3.2, we talk about families of strict monotonic Schröder trees, where there can be
label repetitions on different branches of the tree but the labellings are strictly increasing from
the root to any leaf. Using our theorem we derive again two known asymptotic results. We
additionally study the behaviour of increasing binary treeswith a fixed number of repetitions
at each iteration step.

In Section 5.3.3 we consider trees with weakly increasing labellings. We study two varieties
of them. The first one is called connected monotonic Schröder trees where the labellings are
weakly increasing from the root to any leaf but where the same labels all belong to the same
subtree.

The second variety that is called monotonic Schröder trees is the one of trees with weakly
increasing labellings along brancheswhere there can be label repetitions on different branches
of the trees.

112 5 General asymptotics for varieties of monotonic Schröder trees

In Section 5.3.4, we give some examples of labelled Schröder trees with weakly increasing
labellings, before we pass on to Section 5.3.5 where we talk about plane dary trees with
weakly increasing labellings that we call then monotonic dary Schröder trees.

We then end with Section 5.3.6, that gives two examples of trees with unary nodes.

5.3.1 Double nature of ϕ(z)

The evolution process in Definition 5.2.1 sees the coloured degree function (defined in Def
inition 3.5.6) representing the set of allowed arities and node colours in a tree and thus it
generates a strict monotonic Schröder tree since at each iteration step we add some nodes
having the same in different places of the tree such that the labelling is always strictly in
creasing as in [BGGW20, BGN19].

Alternatively, the coefficients ϕi, i ≥ 2, can be seen as the number of trees with i leaves be
longing to some class of plane rooted unlabelled trees (in the sequel, we will refer to elements
of such classes as treeshapes). In this second context the objects that we will construct are
monotonic trees as defined in Definition 3.5.23.

In order to generate monotonic trees, in which case the coefficients of ϕ(z) are alternatively
interpreted as enumerating treeshapes rather than node colours, a slight modification of the
evolution process Definition 5.2.1 is required: at each iteration step i, each selected leaf is
replaced by a treeshape, rather than a coloured internal node, and all internal nodes of this
treeshape are labelled by i.

Definition 5.3.1. (Evolution process for a variety of monotonic Schröder trees)
Given ϕ(z) that represents the generating function of a rooted unlabelled plane class of tree
counted by its number of leaves (we will call it the tree shapes) starting at size 2 and r ⊂ N∗,
the following evolution process generates a variety of monotonic Schröder tree parameterised
by ϕ(z) and r. Let min(r) = 13. The process starts at timestep 0 with a single leaf and at
each timestep i ≥ 1 is as follows:

(1) Choose a nonempty subset of leaves L such that |L| ∈ r.
(2) For each leaf ℓ ∈ L choose an admissible size and a treeshape (s, t), meaning that

ϕs > 0 and 1 ≤ t ≤ ϕs. There also exists some leaf, such that the associated couple
(s, t) is such that s > 1.

(3) Replace each leaf ℓ with its corresponding the tree shape t having all its internal
nodes labelled i.

An example of this evolution process is presented in Figure 5.2. We now exhibit examples
of asymptotic enumeration for a number of interesting combinatorial tree classes as direct
applications of the results presented in Section 5.2.

3wheremin() returns the smallest value of a set

5.3 Applications 113

Figure 5.2: Example of Definition 5.3.1. (Left) An example of the colored degree function,
seen as a class of rooted unlabelled trees here binary trees ϕ(z) = z2 + 2z3 + 5z4, the
trees of first sizes 2, 3 and 4 are depicted. At each iteration step a leaf can evolve into a
whole unlabelled shape and that all its internal nodes get the label of the current iteration
step. (Right) A resulting monotonic binary tree, here r = N∗.

r ϕ(z) Definition Application
Varieties of strict monotonic Schröder trees r Coloured degree function Definition 3.5.24 Section 5.3.2

Varieties of connected monotonic Schröder trees {1} Tree shapes Definition 3.5.23 Section 5.3.3
Varieties of monotonic Schröder trees r Tree shapes Definition 3.5.26 Section 5.3.4

Table 5.2: Increasing labellings on Schröder trees generated by Definition 5.2.1 and Defini
tion 5.3.1.

5.3.2 Varieties of strict monotonic Schröder trees

We recall the reader that we defined strict monotonic Schröder trees in Definition 3.5.24 of
Section 3.5.6. Labelled Schröder trees are plane rooted trees, counted by their number of

114 5 General asymptotics for varieties of monotonic Schröder trees

leaves. Only internal nodes bear labels. Then a variety of strict monotonic Schröder trees
are labelled Schröder trees, such that the labelling is strictly increasing from the root to any
leaf and if k is the maximum label in the tree, all labels from 1 to k appear. In particular, k
can be smaller than the number of internal nodes and therefore, we can have label repetitions.

In these classes, the Definition 5.2.1 is such that r = N∗ and ϕ1 = 0 (when unary nodes are
allowed we added the word general in the name, see Section 5.3.6). Therefore, the sum in
Equation (5.1) can be expressed in terms of composition of functions (substitution):

B(z) = z +B(ϕ(z) + z)−B(z).

In the substitution B(ϕ(z) + z) we add z which then allows for each leaf to be expanded or
not, so that any subset of leaves can evolve which is also represented by the unbounded sum.

Figure 5.3: All 7 strict monotonic binary trees of size 4. There can be label repetitions, but
the labellings along each branch are strictly increasing.

Example 5.3.2. In [BGN19] and Section 4.3 we studied the classG ofstrict monotonic Schröder
trees in which all degrees are allowed except unary nodes. The model corresponds to r = N∗

and ϕ(z) = z2

1−z
. The first values of Gn are:
0, 1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, . . .

The sequence corresponds to Ordered Bell numbers also known as (Ordered set partitions).
More information can be found in Section 3.2 and EIS A000670.

Example 5.3.3. In [BGGW20], the authors studied the class T of strict monotonic binary
trees where r = N∗ and ϕ(z) = z2. The first values of Tn are

0, 1, 1, 2, 7, 34, 214, 1652, 15121, 160110, 1925442, . . .

https://oeis.org/A000670

5.3 Applications 115

r ϕ(z) Asymptotics References
S. M. Binary Trees N∗ z2 α(n− 1)! n− ln 2 (1

ln 2)
n [BGGW20]

S. M. BinaryTernary Trees N∗ z2 + z3 κ(n− 1)! (1
ln 2)

n

S. M. Schröder trees N∗ z2

1−z
1
2
(n− 1)! (1

ln 2)
n [BGN19]

Table 5.3: An example of the change in behaviour of the asymptotics for different classes
of our model. Here “S. M.” stands for “Strictly Monotonic”. The asymptotic behaviours all
come from Theorem 5.2.6 and its specialisation to this case Corollary 5.2.10

The sequence is referenced under EIS A171792. The 7 trees of size 4 can are drawn in Fig
ure 5.3.

The asymptotic regimes of both strict monotonic Schröder trees and strict monotonic binary
trees are close since they only differ by a polynomial term namely n− ln 2. This led us to
investigate when does the shift of behaviour appears. It turns out that adding ternary nodes (i.e
ϕ(z) = z2 + z3) suffices to have the asymptotic of ϕ(z) = z2

1−z
. The results are summarised

in Table 5.3.

Example 5.3.4. Consider the class T with ϕ(z) = z2 + z3. The first few values of Tn are:
0, 1, 1, 3, 12, 68, 482, 4122, 41253, 472795, . . .

Then we have by Theorem 5.2.6

Tn ∼ κ (n− 1)!

(
2

ln 2

)n

.

with κ ≈ 0.41 as seen in simulations.

Increasing binary trees with d repetitions

Example 5.3.5. As a final example, we give the asymptotics growth of binary increasing trees
with d label repetitions.

Let Bd be the class of increasing binary trees with d label repetitions at each iteration step.
So that at each iteration step exactly d leaves are chosen to expand (we start with a single root
that has d leaves). We can specify Bd from Equation (5.1) by taking ϕ(z) = z2 and r = {d}.
For all d ≥ 1, Theorem 5.2.6 is applicable. Some results are given using Theorem 5.2.6 in
Table 5.4 and some simulations of the asymptotic behaviour in Figure 5.5.

For instance the first values of B2
n are:

0, 0, 1, 0, 1, 0, 6, 0, 90, 0, 2520, 0, 113400, 0, 7484400, . . .

The 6 trees of size 6 are depicted in Figure 5.4.

https://oeis.org/A171792

116 5 General asymptotics for varieties of monotonic Schröder trees

Figure 5.4: All 6 tree of increasing binary trees with 2 repetitions B2
6 .

d Asymptotics References
1 (n− 1)! EIS A000142
2 c2 n!

(
21/2

)−n
n−2 EIS A000680

3 c3 n!
(
3!1/3

)−n
n−3 EIS A014606

4 c4 n!
(
4!1/4

)−n
n−4 EIS A014608

Table 5.4: Asymptotic behaviour for Bd
n for d ∈ {1, 2, 3, 4} when n ≡ 0mod d. The se

quences in OEIS appear shifted (without periodicities).

d = 1 1 1 2 6 24 120 720 5040
d = 2 1 1 6 90 2520 113400 7484400 681080400
d = 3 1 1 20 1680 369600 168168000 137225088000 182509367040000
d = 4 1 1 70 34650 63063000 305540235000 3246670537110000 66475579247327250000

Table 5.5: First non zero values of increasing binary trees Bd
n with d repetitions and d ∈

{1, 2, 3, 4}.

Figure 5.5: Simulation forn ∈ {10, 200} of the ratio ofBd
n and its main asymptotic behaviour

with d ∈ {1, 2, 3, 4}. Some coefficients are 0 because of the periodicities.

https://oeis.org/A000142
https://oeis.org/A000680
https://oeis.org/A014606
https://oeis.org/A014608

5.3 Applications 117

5.3.3 Varieties of connected monotonic Schröder trees

The definition of this labelling has been given in Section 3.5.6 and Definition 3.5.26. We
recall it in the following

“ A connected monotonic Schröder tree is a labelled Schröder tree such that the labellings
are weakly increasing along branches and when a label i appears for the first time in the tree
on node v (v is also the closest node to the root labelled i), then all other occurences of i
appear in subtree of v. ”

In fact generating a connected class of monotonic trees can be done using the evolution pro
cess in Definition 5.3.1. By taking r = {1} and choosing the appropriate class of tree shapes
in Equation (5.1) as described in Definition 5.3.1. So that, instead of colours the coloured
degree function represents a class of rooted plane unlabelled trees counted by its number of
leaves. Then we generate a variety of connected monotonic Schröder trees.

Example 5.3.6. The class of connected monotonic binary trees. Let B be the class of plane
binary trees with size equal to the number of leaves, given by

B = Z + B2,

which translates to
B(z) = z +B(z)2.

These numbers are counted by shifted Catalan numbers. By solving the above equation we
find that B(z) = 1−

√
1−4z
2

. Now if we let CB to be the class of connected monotonic binary
trees. Then by using the evolution process in Equation (5.1) parameterised with ϕ(z) =
B(z)− z and r = {1} we get:

CB(z) = z + CB′(z) · (B(z)− z).

Then the first few values of CBn, i.e the number of connected monotonic binary trees with
(n− 1) internal nodes or with n leaves, are

0, 1, 1, 4, 21, 132, 958, 7872, 72273, 733772, 8167986, . . .

We have depicted all 21 trees of size 4 in Figure 5.6. By Theorem 5.2.6, we have that
CBn ∼ κϕ n! n.

Example 5.3.7. The class of connected monotonic Schröder trees. Let S be the class of
Schröder trees (all arities except unary are allowed) which has the following specification,

S = Z + Seq≥2 S.

By solving the above equation, we have S(z) = 1
4
(1+ z−

√
1− 6z + z2). The first terms of

S(z) are z+ z2+3z3+11z4+45z5+197z6+ Hence. Let CS be the class of connected
Schröder trees. The class CS is specified with parameters r = {1} and ϕ(z) = S(z)−z, then
first values of CSn, i.e., the number of connected monotonic Schröder trees with n leaves,
are

0, 1, 1, 5, 32, 240, 2036, 19196, 199020, 2251764, 27630972, . . .

We have by Theorem 5.2.6,
CSn ∼ κϕ n! n2.

118 5 General asymptotics for varieties of monotonic Schröder trees

Figure 5.6: (Above) All 21 connected monotonic binary trees of size 4. (Below) This tree is
the only tree of size 4 that belongs to the set of monotonic binary trees but not to the set of
connected monotonic binary trees.

Let IBn be the number of increasing binary trees with n − 1 nodes. We have that IBn =
(n− 1)! and therefore

5.3 Applications 119

Figure 5.7: (left) A connected monotonic tree and (right) a monotonic binary tree. A mono
tonic binary tree need not to have the condition of connectedness. For instance, we see that
the labels 3 and 4 appear in separate branches.

Proposition 5.3.8. If we let, IBn, be the number of increasing binary trees. Then,
CSn

IBn

∼ Cn2,

for some positive constant C.

We also see the same asymptotic growth happens, between increasing Schröder trees and
connected monotonic Schröder trees see Table 5.6 for a summary.

r ϕ(z) Asymptotics References
Increasing Binary Trees {1} z2 (n− 1)! [FS09],Theorem 5.2.6
C. M. Binary Trees {1} (B(z)− z) α n! n Theorem 5.2.6
Increasing Schröder {1} z2

1−z
1
2
n! [BGN19],Theorem 5.2.6

C. M. Schröder trees {1} (S(z)− z) β n! n2 Theorem 5.2.6

Table 5.6: Connected monotonic and increasing labelling for binary and Schröder trees. ‘C.
M.” stands for “Connected Monotonic”

120 5 General asymptotics for varieties of monotonic Schröder trees

5.3.4 Varieties of monotonic Schröder trees

This form of labellings has been defined in Definition 3.5.23 and Section 3.5.6. We recall
the definition

“ Amonotonic Schröder tree is a labelled Schröder tree, such such that the root node has label
1 and along each branch the labellings are weakly increasing and if m is the largest integer
of the tree then all labels from 1 tom appear.”

Let T be some class of unlabelled rooted plane trees counted by its number of leaves. We
will denoted by MT the corresponding family of monotonic trees, i.e trees in T that have
been labelled according to the rules for monotonic trees as defined in Definition 5.3.1. The
idea here is to parameterise Equation (5.1) ϕ(z) corresponding to the variety of tree shapes
that we want to label in a weakly increasing labelling along branches. We saw in the previous
section that when r = {1} we called these varieties connected monotonic Schröder trees. In
the examples that we present in this section we always take r = N∗ so that we can have any
number of repetitions but this can be restricted be putting restrictions on the set r.

Example 5.3.9. Consider the classBT of rooted plane binaryternary unlabelled trees (whose
size is their number of leaves). The specification of this class is

BT = Z + Seq
{2,3}

BT ,

where the first terms are BT (z) = z+ z2 +3z3 +10z4 +38z5 +154z6 + Then the first
few values ofMBT n, i.e., the number of monotonic binaryternary trees with n leaves, are

0, 1, 1, 5, 32, 252, 2340, 25048, 303862, 4121730, . . .

ThenMBT (z) is defined with r = N∗ and ϕ(z) = BT (z)− z. By applying Theorem 5.2.6,

MBT n ∼ κ (n− 1)!

(
1

ln 2

)n

n2 ln 2,

with κ ≈ 0.17 as seen in simulations.

Example 5.3.10. Let S be the class of Schröder trees (all arities except unary are allowed)
which has the following specification,

S = Z + Seq≥2 S.

By solving the above equation, we have S(z) = 1
4
(1+ z−

√
1− 6z + z2). The first terms of

S(z) are
S(z) = z + z2 + 3z3 + 11z4 + 45z5 + 197z6 + . . .

Hence, MS(z) is defined with the paramters r = N∗ and ϕ(z) = S(z) − z, then the first
values ofMSn, i.e., the number of monotonic Schröder trees with n leaves, are

0, 1, 1, 5, 33, 265, 2497, 27017, 330409, 4510065, . . .

By Theorem 5.2.6 we have,

MSn ∼ κ (n− 1)!

(
1

ln 2

)n

n2 ln 2,

with κ ≈ 0.19.

5.3 Applications 121

r ϕ(z) Asymptotics References
Increasing Schröder trees {1} z2

1−z
1
2
n! [BGN19], Theorem 5.2.6

C. M. Schröder trees {1} (S(z)− z) α n! n2 [BGN19],Theorem 5.2.6
Strictly monotonic Schröder N∗ z2

1−z
1
2
(n− 1)! (1

ln 2)
n [BGN19],Theorem 5.2.6

Monotonic Schröder N∗ (S(z)− z) κ(n− 1)! (1
ln 2)

n n2 ln 2 Theorem 5.2.6

Table 5.7: Comparison of the asymptotic behaviour of families of labelled Schröder trees.

Figure 5.8: Simulation for n ∈ {1, 100} of the ratio of Schröder trees with different labellings
with their main asymptotic behaviour. The models of increasing Schröder trees and strict
monotonic Schröder trees have the same constant and therefore their plots coincide.

5.3.5 Weakly increasing plane dary trees (monotonic dary trees)

It is a fact that our specification, by construction, enumerates families of trees by number of
leaves. However there exists a special case, that of monotonic dary Schröder trees (MT
where T is a variety of rooted plane mary trees), where our specification also allows for
enumeration by number of internal nodes. In this specific case then, we are also able to
enumerate by number of internal nodes since any dary tree with k leaves has (k−1)/(d−1)
internal nodes.

As an example, we consider the case of monotonic binary trees (an example is depicted in
Figure 5.7). In this case we obtain the following.

Example 5.3.11. Let B be the class of plane binary trees with size equal to the number of
leaves, as defined in Section 5.3.3. ThenMB is the class of monotonic binary trees (binary
trees with weakly increasing labellings along branches). It is specified with ϕ(z) = B(z)−z
and r = N∗.

122 5 General asymptotics for varieties of monotonic Schröder trees

r ϕ(z) Asymptotics References
Labelled binary c1 (n− 1)! 4n n− 3

2 [FS09]
Weakly labelled c2 (n− 1)!

(
4
ln 2

)n
n− 3

2

Increasing {1} z2 (n− 1)! [FS09], Theorem 5.2.6
Connected monotonic {1} (B(z)− z) c3 n! n Theorem 5.2.6
Strict monotonic N∗ z2 c4 (n− 1)! (1

ln 2)
n n− ln 2 [BGGW20],Theorem 5.2.6

Monotonic (Weakly increasing) N∗ (B(z)− z) c5 (n− 1)! (1
ln 2)

n nln 2 Theorem 5.2.6

Table 5.8: Comparison of the asymptotic behaviour of labelled binary trees under different
labelling models.

The first few values ofMBn, i.e the number of monotonic binary trees with (n− 1) internal
nodes and n leaves, are

0, 1, 1, 4, 22, 152, 1264, 12304, 137332, 1729584, 24265584, . . .

By Theorem 5.2.6, we have that,

MBn ∼ κ (n− 1)!

(
1

ln 2

)n

nln 2,

with κ ≈ 0.34 as seen in simulations. We have depicted all 22 trees of size 4 in Figure 5.6.

Figure 5.9: Simulation for n ∈ {1, 100} of the ratio of binary trees with different labellings
and their main asymptotic behaviour.

Finally, Table 5.7 and Table 5.8 summarises different results on the asymptotic behaviour
of Schröder and binary trees with different forms of labellings. Figure 5.9 and Figure 5.8
shows the graph of the number of trees divided by the asymptotic behaviours obtained with
Theorem 5.2.6. See Definition 3.5.5 for the weak labelling of a tree.

5.3 Applications 123

The evolution process we have presented, enumerates any class of plane weakly increasing
dary trees (dary monotonic tree). However, the asymptotic enumeration in the theorems
presented in Section 5.2 always require the existence of binary nodes.

Open question (Asymptotic enumeration). It is an open question as to give the asymptotic
behaviour of plane weakly increasing dary trees. For d = 2, the problem falls under Theo
rem 5.2.6 and its specialisation Corollary 5.2.10. But for d > 2 the problem remains open.
The parametrisation of Equation (5.1) is to take r = N∗ and ϕ(z) = Td(z) the class of rooted
plane dary trees counted by its number of leaves. We have, for d > 2,

n 0 1 2 3 4 5 6 7 8 9 10 11
d = 2 0 1 1 4 22 152 1264 12304 137332 1729584 24265584 375316704
d = 3 0 1 0 1 0 6 0 54 0 638 0 9336
d = 4 0 1 0 0 1 0 0 8 0 0 100 0

Table 5.9: First values of weakly increasing plane dary trees.

Td(z) = z + (Td(z))
d ,

and then, the class Bd of plane weakly increasing dary trees is defined by:
Bd(z) = z +Bd(Td(z)− z)−Bd(z).

We remind that when r = N∗, the specification reduces to a substitution. The first values of
Bd(z) for d = 2, 3, 4 are presented in Table 5.9.

5.3.6 Applications of trees with unary nodes

In this section we give two examples of application of Theorem 5.2.7.

Example 5.3.12. The class of G of general monotonic Schröder trees presented in Section 4.4
has r = N∗ and ϕ(z) = z

1−z
. By Theorem 5.2.7, we have,

Gn ∼
n→∞

α (n− 1)!
n−1∏
k=1

(
∞∑
i=1

(
n− k − 1

i− 1

))

∼
n→∞

α (n− 1)!
n−1∏
k=1

(
2n−k−1

)
∼

n→∞
α (n− 1)! 2

∑n−1
k=1 (n−k−1)

∼
n→∞

α (n− 1)! 2(n−1)(n−2)/2.

This corresponds to the result found in Theorem 4.4.2.

Example 5.3.13. Let us consider now the class F of trees, such that r = {1, 2} and ϕ(z) =
z

1−z
. The first values of Fn are:

0, 1, 1, 5, 51, 883, 23285, 870911, 43913281, 2873499383, . . .

124 5 General asymptotics for varieties of monotonic Schröder trees

By Theorem 5.2.7, we get,

Fn ∼
n→∞

α (n− 1)!
n−1∏
k=1

((n− k))

∼
n→∞

α (n− 1)!2.

5.4 Combinatorial model

It is possible to write a general recurrence for these models using sets that are in bijection
with integer partitions or integer compositions. We start by defining the following:

Definition 5.4.1. [The set An,k,r,ϕ.] We denote by An,r,k,ϕ the set of ordered multisets with
elements in N such that for each ordered multiset a = [a1, . . . , al] ∈ An,k,r,ϕ:

• We have that a1 + · · ·+ al = k.
• The elements a1, . . . , al are ordered decreasingly.
• |a| ∈ r and |a| ≤ (n− k).
• ∀i, 1 ≤ i ≤ l, [zai+1]ϕ(z) > 0.

where |a| represents the size of the list a.

The set In An,k,r,ϕ represents the different possiblities of making a subset of leaves grows to
reach the final size n at an iteration step. In Figure 5.10, the set A10,6,z2/(1−z),N∗ , gives the
different possiblities of a tree of size 4 to expand into one of size 10. The elements of the set
A, give the configurations with different possible arities. The list [3, 2, 1], says that we can
expand by making 3 leaves evolve, one into a binary node, one into a ternary nodes and one
into a quaternary node (there is a shift by one in the degrees). We will see in the recurrence
here after that each configuration has then a certain weight that depends on its elements and
the number of leaves in the tree, since it is possible to permute elements and get other trees.

[2, 2, 1, 1] [3, 1, 1, 1] [2, 2, 2]
[3, 2, 1] [4, 1, 1] [3, 3]
[4, 2] [5, 1] [6]

Figure 5.10: An example of A10,6,ϕ,r with ϕ(z) = z2

1−z
and r = N∗.

Definition 5.4.2. Let a be an ordered list of integers. We define themaximum functionmax
to be the function that maps a to its greatest element. We define the occurrences function to
be the one such that occ(a) = [u0, . . . , umax(a)] where ui is the number of elements in a equal
to i. For example, when a = [4, 3, 1, 1], occ(a) = [0, 2, 0, 1, 1].

Remark 5.4.3. For simplicity we will writeBn instead ofBm,ϕ
n to make the notations lighter.

But it is clear from the context that the two parameters always exist.

5.4 Combinatorial model 125

Theorem 5.4.4. For any weighted degree function ϕ(z) and r ⊂ N∗. Let m = min(r), The
number of trees of size n generated by Equation (5.1) can be obtained using the following
recurrence:

Bn =

0 if n < m
1 if n = m
n−1∑
k=1

(∑
a∈An,k,r,ϕ

(n−k)!
(n−k−|a|)!

|occ(a)|∏
i=0,ui ̸=0

ϕ
ui
i+1

ui!

)
Bn−k if n > m

(5.2)

Proof. We argue combinatorially. Fix some positive integer 1 ≤ k ≤ n− 1 and consider
the number of trees of size n that can be constructed from a tree T of size n− k by attaching
to each of its leaves a number (possibly zero) of new vertices. Each element a ∈ An,k,ϕ then
represents a way of building a tree of size n out of T by replaced some of its leaves with iary
vertices. This procedure may be described as a linear ordering of the leaves of T such that
for 1 ≤ i ≤ |a|, the i− th leaf of T is replaced by an (ai+1)ary node, while for i > |a|, the
ith leaf in the ordering is left untouched. We now consider the multiplicative factors arising
from the combinatorics of this procedure. To start with, we can naively suppose that after
the aforementioned procedure, all leaves of T will have different new arities and so we can
freely impose any order on them; this can be done in (n − k)! ways. We will now proceed
to refine this naive approach. First of all we have to account for the fact that some leaves of
T do not get replaced and so may be freely permuted within a given order without affecting
the resulting tree; this yields a factor of 1

(n−k−|a|)! , since the number of leaves that actually
change is |a|. In the case where ϕ1 > 1, some 0 integers will appear in a. But that is not a
problem, since the size of a is constrained to be in r or smaller than (n−k) which is the total
number of leaves in Bn−k.

In the same vein, we have a factor
|occ(a)|∏
i=0,ui ̸=0

ϕui
i+1

ui!

which accounts for the fact that for each arity i, the leaves that get replaced with iary ver
tices may be freely permuted among themselves in any given ordering, without affecting the
outcome. Again, the factors ϕ

ui
i+1

ui!
in last expression account for the fact that for each arity i

we have to choose one of the ϕi+1 colours for each of the ui leaves that will be replaced by
iary vertices. □

When unary nodes are not allowed (i.e ϕ1 = 0), we can write the sum in terms of restricted
integer compositions.

Definition 5.4.5 (The set Cn,k,r,ϕ.). We denote by Cn,k,r,ϕ the set of restricted integer compo
sitions defined as the set of ordered multisets with elements in N∗ such that for each ordered
multiset a = [a1, . . . , al] and let j be the multiplicity of 1 in a (i.e j is the number of 1 ap
pearing in a). Then a ∈ Cn,k,r,ϕ if:

• We have that a1 + · · ·+ al = n
• |a| = k.

126 5 General asymptotics for varieties of monotonic Schröder trees

• (|a| − j) ∈ r.
• ∀i, 1 ≤ i ≤ l, if ai > 1, [zai]ϕ(z) > 0.

where |a| represents the size of the list a.

An example of this set is depicted in Figure 5.11.

[6, 1, 1] [5, 2, 1] [5, 1, 2] [4, 3, 1] [4, 1, 3] [2, 2, 4] [2, 3, 3]
[1, 6, 1] [2, 5, 1] [1, 5, 2] [3, 4, 1] [1, 4, 3] [2, 4, 2] [3, 2, 3]
[1, 1, 6] [2, 1, 5] [1, 2, 5] [3, 1, 4] [1, 3, 4] [4, 2, 2] [3, 3, 2]

Figure 5.11: An example of C8,3,ϕ,r with ϕ(z) = z2

1−z
and r = N∗.

Bn =

0 if n < m
1 if n = m
n−1∑
k=1

(∑
a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i

)
Bn−k if n > m

(5.3)

We know the number of ways to make a tree of size n−k to evolve into a tree of size k, is the
same number as the integer composition of n into n− k parts. Each one of the n− k leaves
can be given a canonical ordering (from left to right for example) and then following the
composition, into n−k part, each leaf take a part. If the leaf is given a part which is 1 it does
not change because it contributes to 1 size in the whole tree, if the leaf is given integer i with
i ≥ 2, then it will expand into an internal nodewith i new leaves. The integer composition has
to be restricted according to the degree function ϕ(z). We saw that the leaves given integer
1 do not evolve, then the number of evolving leaves at an iteration step is (|a| − j), and that
number should be present in the set of allowed repetitions. Finally, for leaves evolving into
internal nodes of same degree, they could take different colors according to ϕ(z) and thus the
product arises from this situation.

We will mainly use Equation (5.3) in the proofs but Equation (5.2) has the advantage of
working for any ϕ(z) and any r.

5.5 Asymptotic analysis for r = {d}

[Proof of Proposition 5.2.9].

This case is a generalisation that includes study of asymptotics enumeration of general Schröder
trees as presented in Section 4.2 where r = {1} and ϕ(z) = z2

1−z
.

At each iteration step only one leaf evolves into an internal node with some new leaves. When
r = {1} the result to prove is

B{1},ϕ
n ∼ κϕ n! ϕ2

n n

(
ϕ3
ϕ22

−1

)
.

5.5 Asymptotic analysis for r = {d} 127

5.5.1 Asymptotic analysis for r = {1}

For simplification we will denote Bn instead of B
{1},ϕ
n in the proof. Our model can be speci

fied via the symbolic method, as detailed in Section 2.2. Using Equation (5.2) we can directly
obtain the following recurrence:

B1 = 1,

Bn =
n−1∑
k=1

(n− k)ϕk+1Bn−k.
(5.4)

The main idea of the proof is to perform a Borel transform on the level of the coefficients of
B(z). Let b(z) =

∑
n≥0

Bn

(n−1)!
zn. We can thus get a new recurrence:

b1 = 1,

bn =
n−1∑
k=1

(n− k)!ϕk+1

(n− 1)!
bn−k.

(5.5)

We remark that ∀n ≥ 2, bn ≥ bn−1. Indeed, if we develop the formula of bn, we see that bn =
ϕ2bn−1 + ϵn and all the terms in ϵn are positive. Let us define for all n ≥ 1, 1 ≤ k ≤ n− 1,

tn,k =
(n− k)!ϕk+1

(n− 1)!
.

The idea is to leave ϕ2 and ϕ3 fixed and to let all other ϕn take their maximal value. We will
see that whatever are the values of ϕn for n > 3 they only affect the constant in the first order
asymptotic. We can show that,

Lemma 5.5.1. There exists a constant c independent of n such that, ∀n ≥ 2,
n−1∑
k=3

tn,k ≤
c

(n− 1)(n− 2)
.

Proof. We know that there exist n0 ∈ N∗ and c1, such that for all n ≥ n0, ϕn ≤ c1
n!
n5 .

Therefore, we can make a Stirling approximation on tn,k, we get,

tn,k ≤ c1
k(k + 1)(

n−1
k−1

)
(k + 1)5

≤ c2(
n−1
k−1

)
k3

.

This works for large n and fixed k, but by positivity of ϕn, we can find a constant c2 such
that for any 3 ≤ k ≤ n− 1, tn,k ≤ c2

(n−1
k−1

)k3
. then,

tn,k ≤
n−1∑
k=3

c2(
n−1
k−1

)
k3

= c2

n−1∑
k=3

1(
n−1
k−1

)
k3

≤ c3
1

n2
+ c2

n−1∑
k=4

1(
n−1
k−1

)
k3

= O

(
1

n2

)
.

128 5 General asymptotics for varieties of monotonic Schröder trees

In the sum
∑n−1

k=4
1

(n−1
k−1

)
= O

(
1
n

)
, the factor k3 comes to help getting the right bound. There

fore, there exists n3 such that for all n ≥ n3,
∑n−1

k=3 tn,k ≤
c

(n−1)(n−2)
. Since there are a finite

number of steps until n3, we can find a constant that works for all n, by taking the maximum
from the smaller values.

□

Wewill define a new sequence which we call a correcting sequence defined as follows a1 = 1
and for all n ≥ 2

an = bn − ϕ2bn−1 −
1

(n− 1)
ϕ3bn−2. (5.6)

We can show that remainder sequence is

an =
n→∞

O

(
bn
n2

)
.

We have that by definition an =
n−3∑
k=1

tn,kbk, and since bn is increasing then

an ≤ bn

n−3∑
k=1

tn,k = O

(
bn
n2

)
,

by using Lemma 5.5.1. Now writing the generating function of bn with the sequence of an
we get

bn = ϕ2bn−1 +
1

(n− 1)
ϕ3bn−2 + an.

Which gives (
−ϕ3z

2 − 1
)
b(z) +

(
−ϕ2z

2 + z
)
b′(z) = za′(z)− a(z).

The homogeneous part has the form(
ϕ3z

2 − 1
)
y(z) +

(
−ϕ2z

2 + z
)
y′(z) = 0.

Which solves to y(z) = Cg(z) with

g(z) = (−1)
1+

ϕ3
ϕ22 z e−

ϕ3z
ϕ2 (1− ϕ2z)

−1−ϕ3
ϕ22

.

By constant variation
−c′(z) (ϕ2z − 1)z g(z) = za′(z)− a(z).

We have b(z) = c(z) g(z), therefore,

b(z) = g(z)

z∫
0

za′(t)− a(t)

(ϕ2t− 1)t g(t)
dt.

We have,

g(z) =
z→1/ϕ2

e−
ϕ3
ϕ2

2

ϕ2

(1− ϕ2z)
−1−ϕ3

ϕ22 +O

(
(1− ϕ2z)

−ϕ3
ϕ22

)
.

5.5 Asymptotic analysis for r = {d} 129

From which,

[zn]g(z) =
e−

ϕ3
ϕ2

2

Γ
(
1 + ϕ3

ϕ2
2

)
ϕ2

ϕ2
n n

ϕ3
ϕ22

(
1 +O

(
1

n

))
.

The coefficients of za′(z) − a(z) are bounded above in absolute value by K (1− ϕ2z)
−ϕ3

ϕ22 .
Finally,

za′(t)− a(t)

(ϕ2t− 1)t g(t)
∼

z→1/ϕ2

K2,

For some constant K2. From which,

hn = [zn]

z∫
0

za′(t)− a(t)

(ϕ2t− 1)t g(t)
dt = O

(
1

n2+ϵ

)
.

Now,

bn =
n∑

k=0

gn−khk.

We see that,
n∑

k=⌊n/2⌋

gn−khk = O
(gn
n1+ϵ

)
.

Since the smallest value for hk is when k = n
2
, and it is hn/2 = O

(
1
n2

)
. For the second part

of the sum,
⌈n/2⌉∑
k=0

gn−khk =
e−

ϕ3
ϕ2

2

ϕ2

Γ

(
1 +

ϕ3

ϕ2
2

)
ϕn
2

⌈n/2⌉∑
k=0

n
ϕ3
ϕ22

(
1 +O

(
k

n

))
hk

=
e−

ϕ3
ϕ2

2

Γ
(
1 + ϕ3

ϕ2
2

)
ϕ2

ϕ2
n n

ϕ3
ϕ22

⌈n/2⌉∑
k=0

(
1 +O

(
k

n

))
hk

=
e−

ϕ3
ϕ2

2

Γ
(
1 + ϕ3

ϕ2
2

)
ϕ2

ϕ2
n n

ϕ3
ϕ22

 ∞∑
k=0

hk −
∞∑

k=⌊n
2
⌋

hk

+

⌈n/2⌉∑
k=0

O

(
k

n

)
hk

=

e−
ϕ3
ϕ2

2

Γ
(
1 + ϕ3

ϕ2
2

)
ϕ2

ϕ2
n n

ϕ3
ϕ22

 ∞∑
k=0

hk −
∞∑

k=⌊n
2
⌋

hk

+O

(
1

n1+ϵ

)
=

e−
ϕ3
ϕ2

2

Γ
(
1 + ϕ3

ϕ2
2

)
ϕ2

ϕ2
n n

ϕ3
ϕ22

((
∞∑
k=0

hk −O

(
1

n1+ϵ

))
+O

(
1

n1+ϵ

))

=
e−

ϕ3
ϕ2

2

Γ
(
1 + ϕ3

ϕ2
2

)
ϕ2

ϕ2
n n

ϕ3
ϕ22

((
∞∑
k=0

hk

)
+O

(
1

n1+ϵ

))

130 5 General asymptotics for varieties of monotonic Schröder trees

∼
n→∞

e−
ϕ3
ϕ2

2

Γ
(
1 + ϕ3

ϕ2
2

)
ϕ2

 1/ϕ2∫
0

za′(t)− a(t)

(ϕ2t− 1)t g(t)
dt

 ϕ2
n n

ϕ3
ϕ22

Finally, we get,4

bn =
e−

ϕ3
ϕ2

2

Γ
(
1 + ϕ3

ϕ2
2

)
ϕ2

 1/ϕ2∫
0

za′(t)− a(t)

(ϕ2t− 1)t g(t)
dt

 ϕ2
n n

ϕ3
ϕ22

(
1 +O

(
1

n

))
.

To conclude, we know that,
Bn = n! bn,

We see that Bn has then the right asymptotic behaviour, which concludes the Proof of Propo
sition 5.2.9.

The method that we have used in the end of this section with the remainder function is generic
and it will be used to show the subsequent results.

5.5.2 Asymptotic analysis for d ≥ 2

The proof of the case r = {1} generalises with some modifications that we give in the
following. We first restate the result to prove:

B{d},ϕ
n ∼ κ n!

(
ϕ2

d!1/d

)n

n
−d+d!1/d

ϕ3
ϕ22 .

Using Equation (5.2) we obtain the following recurrence:

Bn =

0 if n < d
1 if n = d
n−1∑
k=1

 ∑
a∈Cn,n−k,{d},ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i

 Bn−k. if n > d
(5.7)

In other words, when we have a tree of size n − k, the number of configurations to make a
tree of size n are integer compositions such that the number of elements larger than one in
the composition is equal to d and each element larger than in the composition is multiplied
by the number of colours of the corresponding degree. For instance the first terms of Bn are

Bn = ϕd
2

(
n− d

d

)
Bn−d + dϕd−1

2 ϕ3

(
n− d− 1

d

)
Bn−d−1

+ ϕd−2
2

(
dϕ2ϕ4 +

(
d

2

)
ϕ2
3

)(
n− d− 2

d

)
Bn−d−2 + . . .

Now we apply a modified Borel transform on the coefficients ofBn in order to normalise the
term in front ofBn−d. This transformwill also give us a new recurrence which its correspond
ing generating function is analytic. So that itis easier to extract an asymptotic behaviour from

4We are grateful to Professor Stephan Wagner for helping with the last calculations on a related problem.

5.5 Asymptotic analysis for r = {d} 131

it by using classical tools. We define for n ≥ 1,

bn =
Bn

(n− d)! d!−n/d
.

Therefore the first terms of bn are

bn = ϕd
2bn−d +

dϕd−1
2 ϕ3

(n− d)
bn−d−1 + . . .

We know that
ϕn =

n→∞
O

(
n!

d!n/d n4+d

)
.

For a fixed k the maximal summand in∑
a∈Cn,n−k,{d},ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i ,

is asymptotically ϕd−1
2 ϕk+2−(d−1) which corresponds to the configuration which have (d− 1)

binary nodes and a node of size k + 2− (d− 1) becauseϕn grows factorially. See Lemma 5.6.5
for a similar discussion. We conclude that for a fixed k > d+ 1∑

a∈Cn,n−k,{d},ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i = O

((
n− 1

d− 1

)
ϕd−1
2 ϕk+2−(d−1)

)
The factor

(
n−1
d−1

)
, comes from the fact the number of summands is bounded by integer com

positions of n with size d. Let us define for all n ≥ 1, d+ 2 ≤ k ≤ n− d,

tn,k = ϕd−1
2 ϕk+2−(d−1)

(
n− 1

d− 1

)
(n− d− k)!d!−(n−d−k)/d

(n− d)!d!−(n−d)/d
.

tn,k ≤ ϕd−1
2

(k + 2− (d− 1))!

d!(k+2−(d−1))/d(k + 2− (d− 1))d+4

(n− 1)!(n− d− k)!d!−(n−d−k)/d

(n− d)!2 (d− 1!)d!−(n−d)/d

≤ d!−3/dϕd−1
2

(k + 2− (d− 1))!

(k + 2− (d− 1))d+4

d (n− 1)!(n− d− k)!

(n− d)!2

≤ d!−3/dϕd−1
2 d

(n− 1)d−1

kd−3(k + 3− d)d+4

1(
n−d
k

)
By a crude estimate we find that tn,k = O (1/n3) and therefore

n−d∑
k=d+2

tn,k = O

(
1

n2

)
.

The sequence of bn is increasing in each one of its d regimes because of its recurrence bn =
ϕd
2bn−d + ϵn, where ϵn contains only positive terms.

132 5 General asymptotics for varieties of monotonic Schröder trees

From the last expression we define for n ≥ 1,

bn = ϕd
2bn−d +

d!1/ddϕd−1
2 ϕ3

(n− d)
bn−d−1 + an

From which by coefficient translation we get(
−d!1/d dϕ2

d−1ϕ3z
d+1 − d

)
b (z) +

(
−ϕ2

dzd+1 + z
)
∂ b (z) = za′(z)− a(z).

We can solve the homogeneous part(
−d!1/d dϕ2

d−1ϕ3z
d+1 − d

)
y (z) +

(
−ϕ2

dzd+1 + z
)
∂ y (z) = 0.

Which solves to y(z) = Cg(z) with

g(z) = h(z) (1− ϕ2z)
−1−d!1/d

ϕ3
ϕ22 .

with h(z) is analytic at z = 1/ϕ2. The result is obtained since the real dominant singularity
is invariably ζ = 1

ϕ2
and is a regular one, there are d singularities of the same modulus. Then

the contribution of the real singularity can be computed mechanically with

δ1 = lim
z→ζ

(z − ζ)d1(z) = 1 +
d!1/dϕ3

ϕ2
2

.

From the estimation of tn,k we find that an = O(
d∑

i=0

bn−i/n
2). Since each regime in bn is

increasing. Then following the same calculations as in the end of Section 5.5.

The sequence bn can be periodic and this is reflected by the presence of multiple singularities
on the radius of convergence. However all singularities give the same asymptotic behaviour
and we have three possible cases. Either bn is periodic with 0 coefficients at regular intervals
and in this case the contribution of the singularities cancel each others. There can also be
different asymptotic constants so that all regimes have the same asymptotic behaviour with
different constants or finally the constants of the different regimes converge to the same
constant and the first order asymptotic of bn has one constant. But in all cases when n ≡ 0
mod d and n tends to∞

bn ∼
n→∞

αϕn
2 n

d!1/d
ϕ3
ϕ22 ,

for some positive constant α. Then the main asymptotic order of Bn is
Bn = bn (n− d)! d!−n/d,

which is the desired result.

5.6 Asymptotic analysis for r = N∗

We remind that here ϕ1 = 0. and r = N∗, the specification in Equation (5.1) reduces to a
substitution,

B(z) = z +B(z + ϕ(z))−B(z)

5.6 Asymptotic analysis for r = N∗ 133

Since combinatorially, any subset of leaves can be chosen to expand at each iteration step.
Thus we can put a substitution and add z inside the substitution so that any subset of leaves
can evolve. The problem with this addition is that we need to remove the case where not any
leaf has expanded and therefore the factor −B(z) appears to account for this fact. We can
write a recurrence on the coefficient ofBn which is Equation (5.2) that we recall here. In fact
we have two recurrences,

B1 = 1,

Bn =
n−1∑
k=1

(∑
a∈An,k,ϕ

(n−k)!
(n−k−|a|+1)!

|occ(a)|∏
i=2,ui ̸=0

ϕ
ui
i+1

ui!

)
Bn−k,

(5.8)

It will be useful for us to give a name to the inner sum of the recurrence. Let

tn,k =
∑

a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i .

Lemma 5.6.1. If for all n ≥ 1 and if for all i ≥ 2, if ϕi = 1 then

tn,k =

(
n− 1

k

)
=

(
n− 1

n− k − 1

)
.

Proof. In this case, we have all repetitions allowed and all arities allowed, so that the
set Cn,n−k,r,ϕ = Cn,n−k,where Cn,n−k is the integer compositions of n into n − k parts and
|Cn,n−k| =

(
n−1

n−k−1

)
. See Section 3.3 for more on integer compositions. □

We can rewrite the recurrence of Bn by taking out some of the factors and rearranging the
rest of the terms.

Bn =

⌊n
2
⌋∑

k=1

ϕk
2

(
n− k

k

)
Bn−k

+

⌈n
2
⌉∑

k=2

ϕk−2
2 ϕ3(k − 1)

(
n− k

k − 1

)
Bn−k

+
n−1∑
k=3

((∑
a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i

)

− ϕk
2

(
n− k

k

)
− ϕk−2

2 ϕ3(k − 1)

(
n− k

k − 1

))
Bn−k

(5.9)

Combinatorially, in the recurrence it is possible to separate the terms that involve only adding
binary nodes, and the ones that involve adding a single ternary and binary nodes from the rest
of the terms.

In the last recurrence when 1 ≤ k ≤ bn
2
c the terms ϕk

2

(
n−k
k

)
exists. If 2 ≤ k ≤ dn

2
e the term

ϕk−2
2 ϕ3

(
n−k
k−1

)
exists. But these two sums can be extended to n since the additional terms are

0.

134 5 General asymptotics for varieties of monotonic Schröder trees

Bn =

⌊n
2
⌋∑

k=1

ϕk
2

(
n− k

k

)
Bn−k

+

⌈n
2
⌉∑

k=2

ϕk−2
2 ϕ3(k − 1)

(
n− k

k − 1

)
Bn−k

+
n−1∑
k=3

((∑
a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i

))
Bn−k.

(5.10)

Remark 5.6.2. In the recurrence, Cn,n−k,r,ϕ is Cn,n−k,r,ϕ where the configurations with k
integers larger than 1 or (k − 1) integers larger than 1 has been removed from the set

Since we think that these two first terms are the only ones which play a role in the asymptotic
first order we will look for an estimate for the rest of the terms. The following two Lem
mas will serve as a basis to write the main term of the differential equation that satisfies the
generating function of Bn.

Lemma 5.6.3. ∀n ≥ 1, 1 ≤ k ≤ n,
1

k!

(
1− k2

n
− k4

n2

)
≤ (n− k)!2

k! n! (n− 2k)!
≤ 1

k!

(
1− k2

n
+

k4

n2

)
.

Proof. Let us start with the upper bound, we notice that for k > bn
2
c, (n−k)!2

k!n!(n−2k)!
= 0 and

k2

n
≥ 1 therefore k4

n2 = (k
2

n
)2 ≥ k2

n
and finally 1

k!
(1 − k2

n
+ k4

n2) ≥ 0. Now we need to show
the upper bound for the rest, that is when 1 ≤ k ≤ bn

2
c

(n− k)!2

k!n!(n− 2k)!
=

1

k!

(n− k)(n− k − 1) . . . (n− 2k + 1)

n(n− 1) . . . (n− k + 1)

=
1

k!
(1− k

n
)(1− k

n− 1
) . . . (1− k

n− k + 1
)

≥ 1

k!

(
1− k

(
1

n
+

1

n− 1
+ · · ·+ 1

n− k + 1

))
=

1

k!
(1− k (Hn −Hn−k))

≥ 1

k!
(1− k (lnn− ln(n− k)))

=
1

k!

(
1− k ln

(
1

1− k
n

))
In the proof we have used the fact that (Hn − lnn)n is monotonically decreasing see [TT71]
for example. We only look at values for x ≤ 1

2
and in this range ln 1

1−x
≤ x+ x2, then,

(n− k)!2

k!n!(n− 2k)!
≥ 1

k!

(
1− k2

n
− k4

n2

)
.

5.6 Asymptotic analysis for r = N∗ 135

For the other side,
(n− k)!2

k!n!(n− 2k)!
=

1

k!

(n− k)(n− k − 1) . . . (n− 2k + 1)

n(n− 1) . . . (n− k + 1)

=
1

k!
(1− k

n
)(1− k

n− 1
) . . . (1− k

n− k + 1
)

≤ 1

k!

(
1− k

n

)k

≤ 1

k!

(
1− k2

n
+

k4

n2

)
The last inequality results from the fact that (1− x)r ≤ 1− rx+

(
r
2

)
x2. □

Lemma 5.6.4. ∀n ≥ 1, 1 ≤ k ≤ n

1

k!

(
k(k − 1)

n
− k2(k − 1)2

n2

)
≤ (n− k)!2

n!(n− 2k + 1)!(k − 2)!
≤ 1

k!

(
k(k − 1)

n

)
.

Proof.
(n− k)!2

n!(n− 2k + 1)!(k − 2)!
=

1

(k − 2)!

(n− k) . . . (n− 2k + 2)

n(n− 1) . . . (n− k + 1)

=
1

n(k − 2)!
(1− k − 1

n− 1
)(1− k − 1

n− 2
) . . . (1− k − 1

n− k + 1
).

We want that ∀n, 1 ≤ k ≤ n,
1

n(k − 2)!
(1− k − 1

n− 1
)(1− k − 1

n− 2
) . . . (1− k − 1

n− k + 1
)

≥ 1

n(k − 2)!
(1− k(k − 1)

n
).

We see that if k ∈ {dn
2
e+ 1, . . . , n} the left hand side is equal to 0 and the right hand side is

negative so the result holds. Now it is enough to show that ∀n, 1 ≤ k ≤ dn
2
e,

(1− k−1
n−1

)(1− k−1
n−2

) . . . (1− k−1
n−k+1

)

(1− k(k−1)
n

)
≥ 1.

We have that,

(1− k−1
n−1)(1−

k−1
n−2) . . . (1−

k−1
n−k+1)

(1− k(k−1)
n)

≥

(
1− k−1

n−k+1

)k−1

(1− k(k−1)
n)

≥

(
1− (k−1)2

n−k+1

)
(1− k(k−1)

n)

=
n

n− k + 1
≥ 1

For the other side we have,
(n− k)!2

n!(n− 2k + 1)!(k − 2)!
=

1

(k − 2)!

(n− k) . . . (n− 2k + 2)

n(n− 1) . . . (n− k + 1)

136 5 General asymptotics for varieties of monotonic Schröder trees

=
1

n(k − 2)!
(1− k − 1

n− 1
)(1− k − 1

n− 2
) . . . (1− k − 1

n− k + 1
).

≤ 1

n(k − 2)!
(1− k − 1

n− 1
)k−1.

≤ 1

n(k − 2)!
.

=
1

k!

k(k − 1)

n

≤ 1

k!

(
k(k − 1)

n
+

k(k − 1)

n2

)
where the last inequality follows from the fact that k(k−1)

n2 ≥ 0 for all n ≥ 0 and 1 ≤ k ≤
n. □

The following calculations help getting a bound to estimate the rest of the terms in the recur
rence. The idea is to find an upper bound for the rest of the terms and then show that it is
bounded.

We want to get a good upper bound for the rest of the terms that are of the form∑
a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i .

The first Lemma gives an upper bound for the value of the greatest element of this sum.

Lemma 5.6.5. For n ≥ 3, and 3 ≤ k ≤ n − 1. If ϕn = O
(
n!
n5

)
. Let mx be the maximal

summand of ∑
a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i .

There exists a positive constant c independent of n, such that

mx ≤ c
k!

k4
.

Proof. For a fixed k, and as n grows, the optimal configuration (the one that gives the
largest product) is the list containing 1 everywhere except for one element which has value
(k + 1). Because of the factorial growth on ϕn.

For example if for ϕ2 = 7 and for all i > 2, ϕi = (i − 2)!. If k = 3, when n = 4, the only
composition possible is [4] which gives 2! = 2. But when n = 5, the composition [2, 3] gives
7while [4, 1] gives 2! = 2. Then when n = 6, the optimal composition is [2, 2, 2]which gives
73 = 343 while [4, 1, 1] gives 2 and [3, 1, 2] gives 7. and then we see that the optimal one is
always [2, 2, 2, 1n−k−3], where 1n−k−3 means that we add n− k− 3 ones to the list. And the
product always have the same value. This comes from the fact at the beginning there were
not enough leaves for the optimal configuration to settle, but ones it is done the product of
the optimal configuration stabilises.

Now, we want to show that, there exists n0 and 1 ≤ η ≤ n− 1, such that for all n ≥ n0 and
η ≤ k ≤ n − 1, the optimal configuration is [k + 1, 1n−k−1] and when k < η, the optimal

5.6 Asymptotic analysis for r = N∗ 137

configurations are stable which means that when n grows we only add more and more ones
and that does not change the overall product.

This result follows from the conditions onϕ(z). Since other configurations involve product of
factorials smaller than (k+1) but which still have the same number of factors if the factorials
are flattened. These compositions have the form

p = p1!× p2!× · · · × pi!,

where pj are all ≥ 2, and is such that (
∑i

j=1 pj) = k + i, and

p = O

(
k!

k4

)
,

and the only configuration that reaches O
(
k!
k4

)
is [k + 1, 1n−k−1]. Whereas for k < η, the

largest product can have another form due to the first values of ϕ(z). Therefore, after a finite
n1 and η ≤ k ≤ n− 1 the optimal composition is [k + 1, 1n−k−1].

For k < η, as it has been said the optimal compositions stabilise when n grows. Since η is
finite, there exists n2 such that for all n ≥ n2, and k < η the optimal configuration are stable
because they have reached the maximal product. In fact, these optimal compositions stabilise
as soon as n− k has a number of leaf large enough for the optimal composition to settle.

Finally, we take n0 = max({n1, n2}). Then, starting from n ≥ n0, and k < η, the optimal
composition is stable (does not depend on n), we only add 1 for each growing n but the
overall product does not change. When k ≥ η As n grows k can take larger values, but for
all these values we know the optimal composition that is [k + 1, 1n−k−1].

In order to determine the value of the constant cwe have for a finite number of values n ≤ n0

and 3 ≤ k ≤ n − 1, where we divide each one of them by k!
k4
and take the maximum value

as a general constant that will work for all n. An example is depicted in Section 7.5.1. □

Let us now define the Borel transform of Bn, for all n ≥ 1,

bn =
Bn

n!
.

By replacing in the above equations we get,

bn =

⌊n
2
⌋∑

k=1

ϕk
2

(
n− k

k

)
(n− k)!

n!
bn−k

+

⌈n
2
⌉∑

k=2

ϕk−2
2 ϕ3(k − 1)

(
n− k

k − 1

)
(n− k)!

n!
bn−k

+
n−1∑
k=3

 ∑
a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i

 (n− k)!

n!
bn−k

(5.11)

138 5 General asymptotics for varieties of monotonic Schröder trees

bn ≤
⌊n
2
⌋∑

k=1

ϕk
2

(
n− k

k

)
(n− k)!

n!
bn−k

+

⌈n
2
⌉∑

k=2

ϕk−2
2 ϕ3(k − 1)

(
n− k

k − 1

)
(n− k)!

n!
bn−k

+
n−1∑
k=3

c
k!

k4

 ∑
a∈Cn,n−k,r,ϕ

1

 (n− k)!

n!
bn−k

In this way it is possible to define bn and bn,

The last sum arise by applying Lemma 5.6.5. We need now to estimate the size of the set
Cn,n−k,r,ϕ.

Lemma 5.6.6. For n ≥ 4, 3 ≤ k ≤ n− 1, ∑
a∈Cn,n−k,r,ϕ

1

 (n− k)!

n!
= O

(
k4

k!n2

)
.

Proof. We know that |Cn,n−k,r,ϕ| ≤ |Cn,k| =
(
n−1
k

)
. Therefore,

|Cn,n−k,r,ϕ| ≤
(
n− 1

k

)
−
(
n− k

k

)
− (k − 1)

(
n− k

k − 1

)
.

We already have lower bounds for
(
n−k
k

) (n−k)!
n!

and (k−1)
(
n−k
k−1

) (n−k)!
n!

with Lemma 5.6.3 and
Lemma 5.6.4. We have for the first term,(

n− 1

k

)
(n− k)!

n!
=

1

k!
− 1

(k − 1)!n
.

Therefore,((
n− 1

k

)
−
(
n− k

k

)
− (k − 1)

(
n− k

k − 1

))
(n− k)!

n!

≤ 1

k!
− 1

(k − 1)!n
− 1

k!

(
1− k2

n
− k4

n2

)
− 1

k!

(
k(k − 1)

n
− k2(k − 1)2

n2

)
= O

(
k4

k!n2

)
.

□

Therefore, from Lemma 5.6.6 and Lemma 5.6.5, for n ≥ 4, and 3 ≤ k ≤ n− 1, ∑
a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i

 (n− k)!

n!
= O

(
1

n2

)
. (5.12)

5.6 Asymptotic analysis for r = N∗ 139

In order to conclude the equivalent result that we are looking to demonstrate we will define a
new sequence that is a remainder one and analyse it. Let us write bn with a remainder term,

bn =

(
n∑

k=1

(
ϕk
2

k!

(
1 +

(
ϕ3

ϕ3
2 − 1

)
k2

n
− ϕ3

ϕ2
2

k

n

))
bn−k

)
+ an. (5.13)

From which by splitting the sum as before we find,

an =

⌊n
2
⌋∑

k=1

ϕk
2

((
n− k

k

)
(n− k)!

n!
− 1

k!

(
1− k2

n

))
bn−k

+

⌈n
2
⌉∑

k=2

ϕk−2
2 ϕ3

(
(k − 1)

(
n− k

k − 1

)
(n− k)!

n!
− 1

k!

(
k(k − 1)

n

))
bn−k

−
n−1∑

k=⌊n
2
⌋

ϕk
2

(
1

k!

(
1− k2

n

))
bn−k

−
n−1∑

k=⌈n
2
⌉

ϕk−2
2 ϕ3

1

k!

(
k(k − 1)

n

)
bn−k

+
n−1∑
k=3

(∑
a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i

)
(n− k)!

n!
bn−k.

(5.14)

Lemma 5.6.7. The remainder sequence is asymptotically

an =
n→∞

O

(
bn
n2

)
.

Proof. Looking at Equation (5.14), the first two sums are bounded by Lemma 5.6.3 and
Lemma 5.6.3. For instance the first sum, we have,

ϕk
2

((
n− k

k

)
(n− k)!

n!
− 1

k!

(
1− k2

n

))
= O

(
ϕk
2 k

4

k!n2

)
,

and therefore,
⌊n
2
⌋∑

k=1

ϕk
2

((
n− k

k

)
(n− k)!

n!
− 1

k!

(
1− k2

n

))
bn−k ≤

bn
n2

⌊n
2
⌋∑

k=1

c ϕk
2 k

4

k!

= O

(
bn
n2

)
.

In the proof c is some positive constant. The second sum in Equation (5.14) can be treated in
the same way. as well as the last sum by Equation (5.12). The two sums in the middle starts
at n = bn/2c. For example,

n−1∑
k=⌊n

2
⌋

ϕk
2

(
1

k!

(
1− k2

n

))
= O

(
1

(bn/2c − 2)!

)
,

140 5 General asymptotics for varieties of monotonic Schröder trees

Therefore,
n−1∑

k=⌊n
2
⌋

ϕk
2

(
1

k!

(
1− k2

n

))
bn−k ≤ bn

n−1∑
k=⌊n

2
⌋

c2
(bn/2c − 1)!

≤ bn
c2

(bn/2c − 2)!

= O

(
bn
n2

)
,

where c2 is some positive constant. The same can be done for the remaining sum. Therefore,
the result holds. □

From Equation (5.13) a differential equation for b(z) can be written in term of the function
a(z):

−eϕ2zz

(
ϕ2

2 − ϕ3 −
ϕ2

z

)
b (z) + ∂za (z) +

(
eϕ2z − 2

)
∂zb (z) ,

which its homogeneous part has a generic solution b(z) = C g(z) and g(z) is:

g(z) = exp

 z∫
0

eϕ2tt
(
ϕ2

2 − ϕ3 − ϕ2

t

)
(eϕ2t − 2)

dt

 .

The function g(z) can be expanded around its singularity ln 2
ϕ2

to give:

g(z) ∼
z→ln 2/ϕ2

exp

(
−
(
ϕ2

2 − ϕ3

)
ln (2) (ln (ln (2))− ln (−zϕ2 + ln (2)))

ϕ2
2

)
,

which gives asymptotically

gn ∼
n→∞

1

Γ
(

(−ϕ2
2+ϕ3) ln 2
ϕ2
2

) (ϕ2

ln 2

)n

n

(
−1+

ϕ3
ϕ2

2

)
ln 2−1

.

By constant variation we find that

c′(z) =
a′(z)

(eϕ2z − 2)g(z)
,

and therefore since b(z) = c(z)g(z) we have

b(z) = g(z)

z∫
0

a′(t)

(eϕ2t − 2)g(t)

From now on the same arguments hold as the ones we saw in the last part of Section 5.5 to
conclude the equivalent result.

5.7 Asymptotics for general r

[Proof of Theorem 5.2.6].

5.7 Asymptotics for general r 141

In some applications it might be the case that we would like to allow a different kind of
repetitions like exactly k repetitions at each iteration step, or a subset {3, 4, 8}, so that at
each iteration step we could select 3 or 4 or 8 leaves to expand. In this case r is any non
empty subset of integers r ⊂ N∗.

It is interesting to see that even in this case we can get a very general asymptotic formula
for the coefficients of such processes. In fact, the proof is very close to the one presented in
Section 5.8. The only difference is that the asymptotic formula is more general.

The initial condition of the process has to be little modified, since for example if we allow
for exactly 2 repetitions at each iteration step (i.e r = {2}), we can not start with a single
leaf, since at each iteration step we have to select exactly 2 leaves and only one is available.
We will denote by min(r) the smallest integer present in the set m. Therefore, the initial
condition of the process is a single tree which is a leaf withmin(r) leaves attached to it. So
it is always possible to iterate.

Finally, depending on the set r of allowed repetitions, some coefficients may always be 0. For
instance if r = {2}, the number of trees of odd sizes is always 0. This why the asymptotics
of the Theorem works for n of the form n = 0(modm).

It turns out that our analysis in Section 5.8 is robust, and that studying this case is just about
adding some details to the analysis that we have already done.

The initial condition on the coefficient of Bn differs following to the minimal number of
allowed repetitions. We will denote this number m = min(r). Then Bk = 0 for all k < m
and Bm = 1. The recurrence goes on afterwards as described in Equation (5.2). The reason
is that if number of allowed repetitions is at least 2we can start with a single leaf. So we start
with a single root containing 2 leaves.

If we do a Borel transform on the coefficients of Bn, we get the same equation as Equa
tion (5.11), but the first two sums now range only over accepted values of r, since some
repetitions might not be allowed.

bn =

0 if n < m
1

m!
if n = m

∞∑
k=1,k∈r

ϕk
2

(
n− k

k

)
(n− k)!

n!
bn−k

+
∞∑

k=2,(k−1)∈r

ϕk−2
2 ϕ3(k − 1)

(
n− k

k − 1

)
(n− k)!

n!
bn−k

+
n−1∑
k=3

 ∑
a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i

 (n− k)!

n!
bn−k

if n > m

(5.15)

It is then possible to use Lemma 5.6.3 and Lemma 5.6.4 seen in Section 5.6.

142 5 General asymptotics for varieties of monotonic Schröder trees

In order to get the asymptotic equivalent wee that it is to write bn as follows:

bn =
∞∑

k=1,k∈r

ϕ2
k

k!

(
1− k2

n

)
bn−k +

ϕ3

ϕ2
2

∞∑
k=2,(k−1)∈r

ϕ2
k

k!

(
k2

n
− k

n

)
bn−k + an (5.16)

We can then show by using Lemma 5.6.7 that:

an = O

(
bn
n2

)
,

It is true that this time bn can be exponentially decreasing. This is where the condition of ϕn

intervenes. By using Lemma 5.6.7 we see that

an ≤
n−3∑
k=1

c

m!k/m n3
bn−k

We know that min(r) = m but r 6= m, since this case has been treated previously. This
implies that the singularity of b(z) is smaller than m!1/m

ϕ2
. Let g(z) =

∑∞
k=1,k∈r

ϕ2
kzk

k!
we

have,
1

z

∞∑
k=1,k∈r

ϕ2
k(k − k(k − 1))zk

k!
= g′(z)− zg′′(z).

and,
ϕ3

ϕ2
2z

∞∑
k=2,(k−1)∈r

ϕ2
kk (k − 1) zk

k!
=

ϕ3 z

ϕ2

g′(z).

Then by coefficient translation of Equation (5.16) we get((
1 +

ϕ3 z

ϕ2

)
g′(z)− z g′′(z)

)
b(z) + (g(z)− 1) b′(z) + a′(z) = 0

by solving the homogeneous equation we obtain

r(z) = exp

 z∫
0

(1 + ϕ3 z
ϕ2

)g′(z)− z g′′(z)

g(z)− 1
dz

We see that the real dominant singularity ζ is the smallest real solution of g(z) − 1 = 0 Let

d1(z) =
(1+

ϕ3 z
ϕ2

)g′(z)−z g′′(z)

g(z)−1
. Then

lim
z→ζ

(z − ζ) d1(z) = lim
z→ζ

(
(1 + ϕ3 z

ϕ2
)g′(z)− z g′′(z)

g′(z)(z − ζ)

)
(z − ζ)

= 1 +
ϕ3 ζ

ϕ2

− ζ g′′(ζ)

g′(ζ)
.

The asymptotic behaviour of r(z) around ζ mechanically obtained to be

r(z) =
z→ζ

h(z − ζ) (z − ζ)
−1−ϕ3 ζ

ϕ2
+

ζ g′′(ζ)
g′(ζ)

5.8 Asymptotic analysis for r = [m] 143

for some function h that is analytic at 0 and h(0) 6= 0. Then

rn =
n→∞

κ

(
1

ζ

)n

n
−1+

ζ ϕ3
ϕ2

− ζ g′′(ζ)
g′(ζ)

From there the result follows. Then it is possible to write

b(z) = c(z)r(z), c(z) =

z∫
0

a′(t)

(g(t)− 1) r(t)

The rest of the calculations follow by using the method used in the end of Section 5.5.

Finally, to obtain in the asymptotic form given by Theorem 5.2.6, the function f(z) is defined

by f(z) =
∞∑

i=1,i∈r

zi

i!
while in the proof that we did we used g(z) that is defined as g(z) =

∞∑
i=1,i∈r

(ϕ2 z)i

i!
.

We see that, the solutions ζi of g(z) − 1 have the form ζi = ρi/ϕ2 while the solutions of
f(z) − 1 are just the ρi. Now in the proof ζ was the singularity of smallest modulus of
g(z)− 1. Then

ρ = ϕ2 ζ,

is the singularity of smallest modulus of f(z)− 1. Therefore, it suffices to replace ζ by ρ/ϕ2

and also g′′(ζ)/g′(ζ) = ϕ2f
′(ρ)/f ′′(ρ) in the asymptotics of bn to get the exact form.

5.8 Asymptotic analysis for r = [m]

[Proof of Theorem 5.2.8]. The proof of this Theorem is the same as the one for Theorem 5.2.6.
The only difference is in the treatment of δ1.

Theorem 5.2.8 also shows us how the value of the singularity moves from 1
ϕ2

to ln 2
ϕ2

as we
allow more leaves to evolve in the same time.

The transcendental ρ when r = N∗ is a rare phenomena in the asymptotic form arising from
combinatorial problems. It reflects the fact that the specification of the problem is an infinite
sum in this case or equivalently it is based on a particular substitution see Section 5.6.

This time the function g(z) seen in ?? contains all the coefficients :

g(z) =
m∑
k=1

ϕ2
kzk

k!
. (5.17)

From ?? we have:
δ1 = lim

z→ζ
(z − ζ) d1(z)

= lim
z→ζ

(1 + ϕ3 z
ϕ2

)ϕ2

(
f(z) + 1− (ϕ2 z)m

m!

)
− z ϕ2

(
ϕ2

(
f(z) + 1− (ϕ2 z)m−1

(m−1)! − (ϕ2 z)m

m!

))
(z − ζ)

ϕ2

(
f(z) + 1− (ϕ2 z)m

m!

)
(z − ζ)

144 5 General asymptotics for varieties of monotonic Schröder trees

=
(1 + ϕ3 ζ

ϕ2
)ϕ2

(
f(ζ) + 1− (ϕ2 ζ)m

m!

)
− ζ ϕ2

(
ϕ2

(
f(ζ) + 1− (ϕ2 ζ)m−1

(m−1)! − (ϕ2 ζ)m

m!

))
ϕ2

(
f(ζ) + 1− (ϕ2 ζ)m

m!

)
= 1 +

ϕ3

ϕ2
ζ − ϕ2 ζ +

(ϕ2 ζ)
m

ϕ2

(m− 1)! f ′(ζ)

= 1 + τ + ϕ2 ζ

(
−1 +

ϕ3

ϕ2
2

)
.

By letting β = ϕ2(ϕ2 ζ)
m

(m−1)!f ′(ζ)
and ρ = ϕ2 ζ . We make the same shift as in the end of the previous

section. We finally get τ = ρm

(m−1)!f ′(ρ)
as defined in Theorem 5.2.8.

5.9 Asymptotics when unary nodes are allowed

In this section, we see how allowing unary nodes affects the study of evolution processes. An
important question directly related to this problem is how is it possible to allow unary nodes
in the evolution processes (see Section 5.1 and Definition 5.2.1) that we have been studying?

In fact, it is possible but we have to add a little constraint on the evolution process. We
recall that the processes that we study have a notion size and that this notion size for us is the
number of individuals that can develop in the next iteration step. On the level of trees, this
corresponds to the number of leaves of the tree. If we allow unary nodes in all generality. so
that at each iteration step all leaves that are evolving make unary nodes. The overall size of
the tree does not change, and as a consequence, there is an infinite number of trees for each
fixed size.

Therefore, it is possible to allow unary nodes, but we have to be careful. In fact, it is impos
sible to allow unary nodes if the set of allowed repetitions is equal to one (i.e r = {1}). We
will need this set to be different from {1}. We require the following additional constraint, at
least one of the leaves evolving at an iteration step has to evolve into a nonunary node. This
means that all other evolving leaves can make unary nodes.

This also implies that the weighted degree function can not contain only unary nodes.

The recurrence on the coefficients of this model does not change Equation (5.2), we give it
again:

B1 = 1,

Bn =
n−1∑
k=1

(∑
a∈An,k,r,ϕ

(n−k)!
(n−k−|a|)!

|occ(a)|∏
i=0,ui ̸=0

ϕ
ui
i+1

ui!

)
Bn−k

We write Bn instead of Br,ϕ
n and define,

s1 = 1

sn = ϕ2 (n− 1)

(
∞∑

i=1,i∈r

ϕi−1
1

(
n− 1

i− 1

))
sn−1, for n > 1.

(5.18)

5.9 Asymptotics when unary nodes are allowed 145

We immediately find have,

sn = ϕn−1
2

n−1∏
k=1

(n− k)

(
∞∑

i=1,i∈r

ϕi−1
1

(
n− k − 1

i− 1

))
.

The idea now is to renormalize Bn, for all n ≥ 1,

bn =
Bn

ϕn−1
2

n−1∏
t=1

(n− t)

(
∞∑

i=1,i∈r
ϕi−1
1

(
n−t−1
i−1

))
We get a new recurrence,

b1 =1

bn =
n−1∑
k=1

((∑
a∈An,k,r,ϕ

(n− k)!

(n− k − |a|)!

|occ(a)|∏
i=0,ui ̸=0

ϕui
i+1

ui!

)

·
ϕn−1−k
2

n−1∏
t=k+1

(n− t)
(∞∑

i=1,i∈r
ϕi−1
1

(
n−t−1
i−1

))
ϕn−1
2

n−1∏
t=1

(n− t)
(∞∑

i=1,i∈r
ϕi−1
1

(
n−t−1
i−1

))
)
bn−k

(5.19)

Notation. We will denote cn,k for the coefficient in front of bn−k.
By analysing the coefficient of cn,k at k = 1, the possibilities for a tree of size n−1 to evolve
into a tree of size n are

ϕ2(n− 1)

(
∞∑

i=1,i∈r

ϕi−1
1

(
n− 2

i− 1

))
.

Therefore,

ϕ2(n− 1)

(
∞∑

i=1,i∈r

ϕi−1
1

(
n− 2

i− 1

))(
ϕn−2
2

n−1∏
t=2

(n− t)

(
∞∑

i=1,i∈r

ϕi−1
1

(
n− t− 1

i− 1

)))

= ϕn−1
2

n−1∏
t=1

(n− t)

(
∞∑

i=1,i∈r

ϕi−1
1

(
n− t− 1

i− 1

))
.

So that,
cn,1 = 1.

From the above discussion we see that,

bn = bn−1 + ϵn,

where ϵn groups all the of terms in Equation (5.19). Since they are all positive, we get imme
diately:

Lemma 5.9.1. The sequence bn is increasing, that is for all n ≥ 2,
bn ≥ bn−1.

146 5 General asymptotics for varieties of monotonic Schröder trees

Proof. The proof is straightforward from the fact that bn = bn−1 + . . . □

Now, if we are able to show that bn is bounded to finish the proof. It would mean that:
bn ∼

n→∞
c,

for some constant c and therefore,
Bn ∼

n→∞
c sn.

This is where we want to go. Let us take some upper bounds on cn,k.

cn,k ≤

(
∞∑

i=1,i∈m

ϕi−1
1

(
n− k − 1

i− 1

))((∑
a∈An,k,r,ϕ̂

(n− k)!

(n− k − |a|)!

|occ(a)|∏
i=0,ui ̸=0

ϕui
i+1

ui!

)

·
ϕn−1−k
2

n−1∏
t=k+1

(n− t)
(∞∑

i=1,i∈m
ϕi−1
1

(
n−t−1
i−1

))
ϕn−1
2

n−1∏
t=1

(n− t)
(∞∑

i=1,i∈m
ϕi−1
1

(
n−t−1
i−1

))
)

=

(
∞∑

i=1,i∈m

ϕi−1
1

(
n− k − 1

i− 1

))((∑
a∈An,k,r,ϕ̂

(n− k)!

(n− k − |a|)!

|occ(a)|∏
i=0,ui ̸=0

ϕui
i+1

ui!

)

·
ϕn−1−k
2 (n− k − 1)!

n−1∏
t=k+1

(∞∑
i=1,i∈m

ϕi−1
1

(
n−t−1
i−1

))
ϕn−1
2 (n− 1)!

n−1∏
t=1

(∞∑
i=1,i∈m

ϕi−1
1

(
n−t−1
i−1

))
)

=

((∑
a∈An,k,r,ϕ̂

(n− k)!

(n− k − |a|)!

|occ(a)|∏
i=0,ui ̸=0

ϕui
i+1

ui!

)

·
ϕn−1−k
2 (n− k − 1)!

n−1∏
t=k

(∞∑
i=1,i∈m

ϕi−1
1

(
n−t−1
i−1

))
ϕn−1
2 (n− 1)!

n−1∏
t=1

(∞∑
i=1,i∈m

ϕi−1
1

(
n−t−1
i−1

))
)

where ϕ̂(z) = ϕ(z) − ϕ1z. The first inequality can be justified combinatorially, for each
coefficient Bn−k, by expanding a subset of leaves into nonunary nodes, we should take this
into account to allow some others to make unary nodes. But as an upper bound we consider
the size of the subset of leaves that has expanded into nonunary nodes to be equal to 1, and
allow all other leaves to unary nodes. Then in the first equality we pull out a term from the
product (from both numerator and denominator). The last equality comes from inserting the
sum

(∑∞
i=1,i∈r ϕ

i−1
1

(
n−k−1
i−1

))
into

∏n−1
t=k+1

(∑∞
i=1,i∈r ϕ

i−1
1

(
n−t−1
i−1

))
.

5.9 Asymptotics when unary nodes are allowed 147

Lemma 5.9.2. For 3 ≤ k ≤ n− 1,
n−1∏
t=k

(
∞∑

i=1,i∈r
ϕi−1
1

(
n−t−1
i−1

))
n−1∏
t=1

(
∞∑

i=1,i∈r
ϕi−1
1

(
n−t−1
i−1

)) =
n→∞

O

(
1

nk−1

)
.

Proof. It comes from the fact that r 6= {1} and r 6= ∅. Therefore, the sum
n−1∑
t=1

(
∞∑

i=1,i∈r

ϕi−1
1

(
n− t− 1

i− 1

))
,

is at least linear in n for each term with 1 ≤ t ≤ k − 1. □

Let us first denote

qn,k =
(∑

a∈An,k,r,ϕ̂

(n− k)!

(n− k − |a|)!

|occ(a)|∏
i=0,ui ̸=0

ϕui
i+1

ui!

)(n− k)!

n!
.

Where ϕ̂ has no unarynodes. A remark is that,

qn,k =
tn,k(n− k)!

n!
,

where tn,k has the same form as in Section 5.6.

tn,k =
∑

a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i

=
∑

a∈An,k,ϕ

(n− k)!

(n− k − |a|+ 1)!

|occ(a)|∏
i=2,ui ̸=0

ϕui
i+1

ui!

Lemma 5.9.3. When n grows,
qn,k = O (1) .

Proof. From Section 5.6, for 3 ≤ k ≤ n− 1, we have seen that, ∑
a∈Cn,n−k,r,ϕ

|occ(a)|∏
i=2,ui ̸=0

ϕui
i

 (n− k)!

n!
= O

(
1

n2

)
, (5.20)

where Cn,n−k,r,ϕ is Cn,n−k,r,ϕ with some removed configurations namely the ones that make
only binary nodes or the ones that make a single ternary with the others all binary. See
Remark 5.6.2 for more details. We can the proceed as in Lemma 5.6.6. But this time,

|Cn,n−k,r,ϕ| ≤
(
n− 1

k

)
.

148 5 General asymptotics for varieties of monotonic Schröder trees

And following the same steps we find that,

qn,k = tn,k
(n− k)!

n!
= O (1) .

□

Now, we are ready, to give upper bounds on the coefficients cn,k.

Lemma 5.9.4.
cn,2 =

n→∞
O

(
1

n2

)
, cn,3 =

n→∞
O

(
1

n2

)
,

and for 4 ≤ k ≤ n− 1

cn,k =
n→∞

O

(
1

nk−1

)
.

Proof.

cn,k ≤ tn,k

(
n

(n− k)

) ϕn−1−k
2

n−1∏
t=k

(∞∑
i=1,i∈r

ϕi−1
1

(
n−t−1
i−1

))
ϕn−1
2

n−1∏
t=1

(∞∑
i=1,i∈r

ϕi−1
1

(
n−t−1
i−1

)) = O

(
1

nk−1

)
.

The result comes by combining Lemma 5.9.2 and Lemma 5.9.3

By a direct inspection of of cn,2,

cn,2 ≤

((
ϕ2
2

(
n− 2

2

)
+ ϕ3

(
n− 2

1

)
+ ϕ1ϕ3(n− 2)(n− 3)

)

·
ϕn−1−k
2

n−1∏
t=3

(n− t)
(max(m)∑

i=1,i∈m
ϕi−1
1

(
n−t−1
i−1

))
ϕn−1
2

n−1∏
t=1

(n− t)
(max(m)∑

i=1,i∈m
ϕi−1
1

(
n−t−1
i−1

))
)

We have,

ϕn−1−k
2

n−1∏
t=3

(n− t)
(max(m)∑

i=1,i∈m
ϕi−1
1

(
n−t−1
i−1

))
ϕn−1
2

n−1∏
t=1

(n− t)
(max(m)∑

i=1,i∈m
ϕi−1
1

(
n−t−1
i−1

)) = O

(
1

n4

)
.

Finally,

cn,2 =
n→∞

O

(
1

n2

)
.

The same thing can be done for cn,3,

cn,3 =
n→∞

O

(
1

n2

)
.

□

5.9 Asymptotics when unary nodes are allowed 149

If we sum up all the preceding we have,

bn = bn−1 +
n−1∑
k=2

cn,k bn−k

≤ bn−1 + bn−2

n−1∑
k=2

cn,k

= bn−1 + bn−2

(c

n2

)
,

(5.21)

for some positive constant c. It comes from
n−1∑
k=2

cn,k = O

(
1

n2

)
+

n−1∑
k=4

O

(
1

nk−1

)
= O

(
1

n2

)
Therefore, we can write a new recurrence, g1 = 1,

g2 = ϕ2,
gn = gn−1 +

c
n2 gn−2, for n > 2.

(5.22)

Lemma 5.9.5. For all n ≥ 1,
gn ≥ bn.

Proof. The proof follows Lemma 5.9.4, and the resulting upper bound on bn in Equa
tion (5.21). □

Let the g(z) be the generating function of the sequence gn:

g(z) =
∑
n≥0

gnz
n

It is possible to write a differential equation satisfying g(z), we find,
−cg (z)− 2 ∂g (z) + (1− z) ∂2g (z) ,

with initial conditions that depend on the set r. We see directly that z = 1 is a regular
singularity. The differential equation also satisfies the conditions of Theorem 2.4.18.

δ1 = lim
z→ζ

(z − ζ)a1(z)

= lim
z→1

2

(z − 1)
(z − 1) = 2.

Therefore the singular expansion is of the form,
(z − 1)−1H(z − 1) +H0(z − 1) (log(z − 1))k, with k ∈ {0, 1},

where the functions H(0) and H0(0) are different from 0. Therefore,
gn ∼

n→∞
c2,

150 5 General asymptotics for varieties of monotonic Schröder trees

where c2 is some constant that depends on the function H(z). This concludes the proof of
Theorem 5.2.7.

In fact it is possible to extend the Theorem to cases where ϕ1 ≥ 1 and for some j > 1, ϕj ≥ 1.
The same type of Theorem holds but with a shift on the coefficients since there appear some
periodicities. In the following we give the statement of the Theorem without proof, because
of the heavier notations and the fact that the proof is the same as the one that we already did.

Condition 5.9.6. Let ϕ(z) be a weighted degree function as presented in Section 3.5.1 and
such that ϕ1 ≥ 1, and for some d ≥ 2, ϕd ≥ 1 and ϕn = O

(
n!
n5

)
.

Theorem 5.9.7. Let ϕ(z) be as in Condition 5.9.6, and let r ⊂ N∗, r 6= ∅, and r 6= {1}, then
when n is of the form n = 1mod (d− 1),

Br,ϕ
n ∼

n→∞
κ

n−1∏
k=1,k=1mod (d−1)

(n− k)

(
∞∑

i=1,i∈r

ϕi−1
1

(
n− k − 1

i− 1

))
,

where κ is a constant that depends on ϕ(z) and r.

5.10 Asymptotics where no binary nodes are allowed

So far we have been studying the evolution process (Definition 5.2.1) in terms of counting
and asymptotic enumeration. The two main theorems that encompasses the other results
namely Theorem 5.2.6 and Theorem 5.2.7. The Theorems work when we include binary
nodes (i.e ϕ2 ≥ 1).

We have also seen in Section 5.9, that for Theorem 5.2.7, it is possible to extend the result
very naturally for situations where we do not have binary nodes but there exists some j > 2,
such that ϕj ≥ 1 in Condition 5.9.6.

For cases where there are nor either unary nodes and nor binary nodes more diverse asymp
totic situations appear, there is still much work to do to figure out the form of the asymptotics.
We have resumed some results in Table 5.10.

There is a paper [BGGW20], in which the authors studied the cases when r = N∗ and ϕ(z) =
zd for d ≥ 2. Their main Theorem gives:

Theorem 5.10.1. Let r = N∗, and ϕ(z) = zd, then the class strictly monotonic Schröder tree
Gd, is specified by:

Gd(z) = z +Gd(z + zd)−Gd(z).

When n grows we get:

Gd
n

= 0 if n 6≡ 1modk − 1,

∼
n→∞

ηd (m− 1)!

(
d− 1

ln 2

)m

m
2−d ln 2
2(d−1) if n = 1 + (d− 1)m.

(5.23)

We see from the Theorem that the form of the asymptotic behaviour has similarities with
Corollary 5.2.10. It also reduces to it when d = 2.

5.10 Asymptotics where no binary nodes are allowed 151

For ϕ(z) = ϕdz
d with ϕd ≥ 2, it is also quiet simple to give the asymptotics for when r = {1}.

Since the recurrence reduces to {
Bd

1 = 1,
Bd

n = ϕd Bn−d+1
(5.24)

We will write Bd
n instead of B{1},zd for simplicity Then, for d > 2, when n is of the form

n = 1mod (d− 1),

Bd
n = ϕ

⌊ n
d−1

⌋
d

⌊ n
d−1

⌋∏
k=1

(n− (d− 1)k) ,

We can define a new sequence
sdn = Bd

n(d−1)+1,

and then,

sdn = ϕn−1
d

n−1∏
k=1

(
(n− k − 1)(d− 1) + 1

)
,

Then if ϕd = 1, the exponential generating function(EGF) of s(z)

sd(z) = (1− (d− 1) z)−
1

d−1 .

From which by singularity analysis,

sdn ∼
n→∞

αn! (d− 1)n n− d−2
d−1 .

And then,

Theorem 5.10.2.
Bd

n ∼
n→∞

β
(
b(n

d− 1
)c
)
! (d− 1)

n
d−1 n− d−2

d−1 ,

ϕ(z) r Theorem References
zd N∗ Theorem 5.10.1 [BGGW20]
zd {1} Theorem 5.10.2
zd

1−z
{1} Conjecture 5.10.3

Table 5.10: Some asymptotics when ϕ2 = 0 in the evolution process of Equation (5.1).

Open question (Stretched exponential). The parametrisation of Equation (5.1) is r = {1},
d ≥ 2, and ϕ(z) = zd

1−z
. Let T d be the resulting class of trees. Then,5

T d(z) = z +
zd

1− z
∂zT

d(z).

The first values of T d
n for d = 2, 3, 4, 5, 6 are written in Table 5.11. The sequences of T 2

n

and T 3
n can be found in EIS A059480 and EIS A059480. T 2(z) corresponds to the model

of increasing Schröder trees studied in Section 4.2 and the enumeration problem is easily
solved. However, for d > 2. The asymptotic enumeration is harder and it seems to involve

5∂z = d
dz is the classical differential operator

https://oeis.org/A059480
https://oeis.org/A059480

152 5 General asymptotics for varieties of monotonic Schröder trees

T 2
n T 3

n T 4
n T 5

n T 6
n

1 1 1 1 1
1 0 0 0 0
3 1 0 0 0
12 1 1 0 0
60 4 1 1 0
360 8 1 1 1
2520 28 5 1 1
20160 76 10 1 1
181440 272 16 6 1
1814400 880 51 12 1
19958400 3328 131 19 7
239500800 12128 275 27 14
3113510400 48736 785 81 22
43589145600 194272 2226 201 31
653837184000 827840 5526 81 41
10461394944000 3547648 15731 410 118
177843714048000 15965248 46895 734 286

Table 5.11: The first values of T d
n , 2 ≤ d ≤ 6 and n ∈ {1, .., 17}.

stretched exponential of the following form. The case where d = 3, can still be solved using
exact different equations solutions. But for d > 3 the full asymptotic behaviour is still an
open question. The recurrence has the form for a fixed d ≥ 2,

T d
1 = 1,

T d
d = 1,

T d
n = 0, for 1 < n < d

T d
n = T d

n−1 + (n− d+ 1)T d
n−d+1, for n > d.

(5.25)

Conjecture 5.10.3. For d ≥ 3, when n grows, we have,

T d
n ∼

n→∞
β
(
b n

d− 1
c
)
! (d− 1)

n
d−1 e

(
d−2∑
k=1

ckn
(k
d−1)

)
n−1,

where ck are rational constants.

We give this as a conjecture, as we were able to solve the case for d = 3which is given below.
The solution is based on an exact solution for the generating function. The cases where d > 3,
can not be solved by differential equations since their orders are higher. We are able to get
asymptotic expansions by a process of bootstrapping, however, this does not give a rigorous
a proof. In Table 5.12, we give the expansions that we got for d = 4 and d = 5.

5.10 Asymptotics where no binary nodes are allowed 153

We show here how to solve the for d = 3. But we do not write all the details of the proof.
The recurrence by Equation (5.25) gives:

T 3
1 = 1,

T 3
2 = 0,

T 3
3 = 1,

T 3
n = T 3

n−1 + (n− 2)T 3
n−2, for n > 3.

(5.26)

Applying a Borel transform on the recurrence gives a new recurrence that we call tn, so that:

tn =
T d
n

n!
.

t1 = 1,
t2 = 0,
t3 = 1,

tn = (n−1)
n(n−1)

tn−1 +
(n−2)
n(n−1)

tn−2 for n > 3.

(5.27)

From which it is possible to write a differential equation for the generating function t(z) of

d Asymptotics
3 c1

(n
2

)
! 2

n
2 en1/2

n−1

4 c2

(n
3

)
! 3

n
3

(
en2/3

2
+n1/3

6

)
n−1

5 c3

(n
4

)
! 4

n
4

(
en3/4

3
+n1/2

8
+ 5n1/4

96

)
n−1

Table 5.12: Conjectured asymptotic behaviour for d = 4 and d = 5, the case for d = 3 is
solved in this section

the sequence tn.
(−z − 1) ∂z t (z) + ∂2

z t (z) + 1

with initial conditions t (0) = 0 and ∂z (t) (0) = 1. Then we can solve this equation with a
computer algebra system and find that:

t(z) =

∫ z

0

−
√
2π

2
erf

(√
2

2
(x+ 1)

)
e

(x+1)2

2 + e
x(x+2)

2

(√
2π

2
erf

(√
2

2

)
e

1
2 + 1

)
dx,

where erf(z) is the error function which is defined for all complex z by:

erf(z) =
2√
π

∫ z

0

e−t2 dt.

.So that, we have:

t′(z) = −
√
2π

2
erf

(√
2

2
(z + 1)

)
e

(z+1)2

2 + e
z(z+2)

2

(√
2π

2
erf

(√
2

2

)
e

1
2 + 1

)
.

We notice that this function is entire. An expansion of t′(z) around z = ∞, yields:

t′(z) ∼
z→∞

(
−
√
2π

2
e

1
2 +

√
2π

2
erf

(√
2

2

)
e

1
2 + 1

)
e

z2

2
+z +O

(
1

z

)
.

154 5 General asymptotics for varieties of monotonic Schröder trees

Then by saddlepoint analysis,

[zn]t′(z) =
tn+1

n!
∼

n→∞
α
((n

2

)
! 2

n
2

)−1

e
√
n,

with α = 1/4
(√

π
√
2erf

(
1/2

√
2
)
e1/2 −

√
π
√
2e1/2 + 2

)
e−1/4.

Figure 5.12: Simulation for n ∈ {1, 400} of (Blue) T 3
n plotted against its asymptotic be

haviour. (Red) T 4
n and (Green) T 5

n are plotted against their conjectured behaviour in Ta
ble 5.12.

Finally, with a shift on the coefficients of t′(z) we have,

[zn−1]t′(z) =
tn

(n− 1)!
∼

n→∞
β
√
n
((n

2

)
! 2

n
2

)−1

e
√
n,

with β = 1/4
(√

π
√
2erf

(
1/2

√
2
)
e1/2 −

√
π
√
2e1/2 + 2

)
e−1/4. Multiplying by 1

n
we find,

tn
n!

∼
n→∞

β
1√
n

((n
2

)
! 2

n
2

)−1

e
√
n,

We find finally after multiplying tn by n! that,

T 3
n ∼

n→∞
c
(n
2

)
!
(√

2
)n e

√
n

n
,

with c = 1/2
(−

√
πe1/2+

√
πe1/2erf(1/2

√
2)+

√
2)e−1/4

√
π

= 0.106979181603588 . . . , which is in ac
cordance with Conjecture 5.10.3.

Figure 5.12 shows how the asymptotic first order of T d
n converges to the constant c.

5.11 Conclusion

In this chapter, we have seen how the evolution process we define, can be specialised to
different classes of existing trees and several interesting new ones. We have been able to
systematically enumerate and give the asymptotic behaviour of many models. However, our

5.11 Conclusion 155

study falls short of giving the asymptotic behaviour of tree models where no binary nodes
are allowed.

On the theoretical level, this chapter gives an interpretation for some transcendental polyno
mials terms that appeared in earlier research paper. On the other hand, we give a first study
of trees with weakly increasing labellings along branches.

A lot of work has still to be done for cases without binary nodes, but we tried to give directions
and conjectures for future studies about this tree classes.

CHAPTER 6

Average compaction of increasing tree models

Contents
6.1 Introduction 157
6.2 Average compression of Pólya trees under increasingly labelled

distribution 162
6.3 Average compression of plane binary trees under increasingly labelled

distribution 170
6.4 A compressed data structure 182
6.5 Conclusion 184

Kennst du das Land, wo die
Zitronen blühn, Im dunklen
Laub die Goldorangen glühn,
Ein sanfter Wind vom blauen
Himmel weht, Die Myrte still
und hoch der Lorbeer steht?
Kennst du es wohl? Dahin,
dahin Möcht ich mit dir, o mein
Geliebter, ziehn!1

Johann Wolfgang von Goethe
(17491832), Kennst du das

Land

1Do you know the land where the lemontrees grow, In darkened leaves the goldoranges glow, A soft wind
blows from the pure blue sky, The myrtle stands mute, and the bay tree high? Do you know it well? It’s there
I’d be gone, To be there with you, O, my beloved one! Translated by azucarinho on lyricstranslate.com

156

6.1 Introduction 157

6.1 Introduction

In this chapter we study the average compression rate of two tree classes. Compression of
data structures is an important part in the study of data structures both on a theoretical and
practical levels.

Treeshape data structures are present in a lot of places in computer science. In compilation
and parsing the syntax structure of a program is a tree, in algebra systems the symbolic ex
pressions have a tree structure. XML documents and other markup languages use tree data
structures.

Our focusing point of view is lossless compression, where the original data structure can be
perfectly recovered from the compacted one. An introduction to the subject can be found in
[Say12].

The compression of tree structures has been studiedwithin different fields, such that computer
science, information theory and combinatorics. The idea is that in a single tree, some subtrees
can be isomorphic and therefore when compressing the tree we can keep only one occurrence
of a repeated subtree and put pointers to it in the other occurrences which save an important
amount of spacial memory. Usually an algorithmic step called the common subexpression
recognition is run to identify identical fringe subtrees (i.e. a node and all its descendants) so
that only one occurrence is stored and all other are replaced by pointers to the first one.

From the previous discussion, in computer science it is more common to talk about the size
of the compacted tree while in combinatorics it is more common to talk about the number
of nonisomorphic subtrees of a tree. The terms are different but they mean the same thing
so we could use them interchangeably. Moreover, the size in terms of number nodes of the
compacted tree, corresponds also to the number of nonisomorphic subtrees of this tree. In
Figure 6.1 we have depicted a plane binary tree and its compacted version, we see that the
compacted version has only 5 nodes while the original had 17 nodes. We also notice that the
compacted tree has no longer a tree structure but rather a structure of a DAG (directed acyclic
graph).

We will study the average compression rates of plane binary trees and Pólya tree (see Sec
tion 3.5 for their definitions) under what we call increasingly labelled distribution. We will
see that this corresponds also exactly to the study of the average compression rate in increas
ing binary trees and recursive trees, when we do not consider the labels of the trees in the
compression process.

Definition 6.1.1. The increasingly labelled distribution over the unlabelled rooted tree class
T corresponds to the uniform distribution of treeshapes (trees obtained after removing all
labels) in IT , where IT is the increasing labelled version of T .

The treeshapes in IT are exactly the trees in T , but the probability distribution is different.
Since the weight of its tree shape depends on its number of increasing labellings. Therefore,
it leads to putting more weights on dense trees with small depths, since these trees have many
different increasing labellings.

158 6 Average compaction of increasing tree models

Figure 6.1: (left) A binary tree of size 17. (right) Its compacted version that has size 5.

Uniform distribution 1
5

1
5

1
5

1
5

1
5

Increasingly labelled distribution 1
6

1
6

2
6

1
6

1
6

Figure 6.2: In the increasingly labelled distribution a tree gets a weight proportional to the
number of ways to increasingly label it.

Sampling from the increasingly labelled distribution is equivalently done by sampling a tree
uniformly at random in IT and then erasing its labels. In Figure 6.2 we draw plane binary
trees of size 3 with their distribution according to both uniform and increasingly labelled
distributions. If we let Xn be a random plane binary tree of size n sampled according to the
increasingly labelled distribution. Then

P(Xn = t) =
ℓ(t)

IB n
,

where ℓ(t) denotes the number of ways to increasingly label the treeshape t and IBn is the
total number of increasing binary trees of size n.

There, a random plane binary tree under increasingly labelled distribution can be sampled by
taking a tree uniformly at random from increasing binary trees (also binary search trees) and
erasing its labels. See Section 3.5.5, for a discussion on building a uniform tree in classes of
increasing trees.

6.1 Introduction 159

Figure 6.3: A uniformly sampled plane binary tree with 500 internal nodes: black fringe
subtrees are removed by the compaction process; the red head is of size 250.

Another example, is the one of Pólya trees, a random tree underincreasingly labelled distri
bution corresponds to uniformly picking a tree in the class of recursive trees.

One of themain parameter of interest in information theory is the entropy of the data structure:
it represents an optimal lower bound on the average number of bits required to represent the
data structure: see for example [CT05] for an introduction to the subject. For trees, the

160 6 Average compaction of increasing tree models

entropy of some models of plane trees have been studied in particular in [CMST17, GMS18,
MTS18].

An analysis of a model of nonplane binary trees has been presented in [CMST17]. The au
thors focus on the number of symmetry nodes (internal nodes having two isomorphic subtrees
as children) and its relation with Rényi entropy. As it has been said before, these questions
are well defined when the probability distribution over the trees is defined. The last reference
focuses on increasingly labelled (also binary search tree) distribution model. Likewise, it can
be rephrased as the binary increasing tree model we will deal with in Section 6.3, as it was
already pointed out in [BFS92].

A seminal paper of Flajolet et al [FSS90] considers the compaction ratio of binary trees under
uniform distribution. They prove that the average size of the compacted result is αn/

√
logn

with a computable constant α. In the end of the paper the authors finally state that their
analysis is fully adapted to all families of simple trees (see Section 3.5.1) under uniform
distribution.

We recall that in the context of simple trees under uniform distribution of size n, the typical
depth is of order

√
n (this is the case for the binary trees). BousquetMélou et al. [BMLMN15]

present the complete proof for the compaction quantitative analysis of all varieties of simple
trees and apply it experimentally on XMLtrees. Finally, in [RW15] the authors are inter
ested in the number of fringe subtrees with at least r occurrences in a random simple tree
under uniform distribution. This approach is an extension of the previous results where it
was dealt with subtrees appearing at least once (thus for r = 1).

As we have seen, simple trees under uniform distribution models have been well studied in
terms of compression rate. However, not much has been done for these trees under other
distributions and particularly under the increasingly labelled distribution. This distribution
is particularly interesting, because it includes other models like random search trees and
additionally these trees have a different shape on average, and their depth is typically of
order logn in contrast with

√
n under the uniform model.

Figure 6.4: A uniformly sampled (plane) binary search tree structure with 500 internal nodes:
black fringe subtrees are removed by the compaction; the red head is only of size 172

In Figure 6.3 we have represented a uniformly sampled binary tree with 500 internal nodes.
If we compact it then all the fringe subtrees in black are removed and only the red structure is
kept with addition of several pointers (that are not represented in the figure). The remaining
red tree is of size 250. In contrast Figure 6.4 shows a binary search tree structure of size

6.1 Introduction 161

500, with 172 nodes (represented in red) remaining after compaction. The gain compaction
between the two structures is quite important.

Our study focuses on the number of nonisomorphic subtrees in a tree and this corresponds
also to the size of the compacted tree (also called minimal DAG representation in [ZYK13]).
This parameter is different from the study of symmetry nodesmentioned above (see [CMST17]),
since there symmetries happen if an internal node has two isomorphic children (a local sym
metry) whereas the number of nonisomorphic subtrees of a tree is capturing a global sym
metry. Using the results in [CMST17] to design and analyse a data compression algorithm
leads to constant compression rate on average, as was already shown in [FGM97]. In our
case, we gain on average at least a logarithmic factor.

The distribution on plane binary trees we use is the same as the one of [CMST17, MTS18].
Even if the analysed parameters are not the same, the mathematical tools are based for all
such studies on differential equation analyses due to the underlying distribution on trees.

We are interested in the analysis of the compaction ratio, relating the treesize and its minimal
DAG size as in [ZYK13].

Section 6.2 is dedicated to the study of the average compression ratio of Pólya trees under the
increasingly labelled distribution defined in Definition 6.1.1 which corresponds to unlabelled
recursive trees. Then, in Section 6.3, we study the average compaction ratio of binary trees
under the same distribution, which corresponds to unlabelled binary search trees.

Both these families have been much studied lately in both probabilities theory [Drm03,
BDMdlS08, DIMR09, SM95] and in combinatorics [BFS92, KP07, PP07].

Our main contribution:

For binary trees under increasingly labelled distribution, we prove that, asymptotically, if a
random tree of size n denoted Xn is compacted, then the resulting structure has an average
size of

E(Xn) = Θ
(n

lnn

)
.

For Pólya trees under increasingly labelled distribution, we prove that, asymptotically, if a
random tree of size n denoted Yn is compacted, then the resulting structure has an average
size of

C1

√
n ≤ E(Yn) ≤ C2

n

lnn
.

For some constants C1 and C2.

We thus remark that such kind of trees are compacted in a more efficient way (in the sense
of the number of remaining nodes) than the same models (plane binary tree and Pólya trees)
under uniform distribution.

In Section 6.4, we present a new lossless data structure based on the compaction of binary
search trees (bst). An experimental study is provided by using a prototype in python for
our new data structure, the compacted bst. The experiments are very encouraging for the
development of such new compacted search tree structures.

162 6 Average compaction of increasing tree models

We conclude this chapter in Section 6.5 with a discussion about the reason why we were not
able to show a stronger result. The discussion leads us to make to formulate conjectures and
open questions for future works.

6.2 Average compression of Pólya trees under increasingly
labelled distribution

The class of recursive trees has been studied by Meir and Moon [MM78] (see Section 3.5.4
for more details). These trees are models in several contexts as e.g. for the study of epi
demic spreads, and thus many quantitative study have focused on this family. Some details
are presented either in [Drm09] or in [FS09]. Using the classical operators from Analytic
Combinatorics presented Section 2.2, recursive trees can be specified by the boxed product
(also called Greene operator) seen in Section 2.2.2,

T = Z □ ⋆ Set(T), (6.1)

meaning that the structure of a recursive tree (in the class T) is defined as a rootZ attached to
a set of recursive trees (the setmay be empty, thenZ is a leaf) and such that thewhole structure
is canonically labelled (1,2,…, up to the size). The box in the boxed product indicates that
the lowest label goes into the left component (the atom in this case). The atoms Z in the
structure are therefore labelled increasingly on each path from the root of the tree to any
leaf. In Figure 6.5 we have represented a recursive tree structure containing 5,000 nodes on

Figure 6.5: (left) a uniformly sampled nonplane recursive tree of size 5,000: black fringe
subtrees are removed by the compaction; (right) the red head is of size 663

the lefthand side. It has been uniformly sampled among all trees with the same size. The
original root of the tree is represented using a small circle ◦. On the righthand side we have

6.2 Average compression of Pólya trees under increasingly labelled distribution 163

depicted the nodes that are kept after the compaction of the latter tree. There are only 663
nodes remaining.

Let the EGF of T (z) be:

T (z) =
∑
n≥1

Tn
zn

n!
,

where Tn corresponds to the number of trees containing n nodes i.e. of size n. We get directly
from the specification Equation (6.1) that:

T (z) =

∫ z

0

exp(T (v)) dv.

The unique power series solution satisfying T (0) = 0 is

T (z) = ln
1

1− z
,

whose dominant singularity is ρ = 1. Finally, we get the value Tn = (n− 1)!.

Let Tn be the class of recursive trees of size n; the size of a tree τ is defined as the number
of its nodes and is denoted by |τ |. Let Xn be the size of the compacted tree corresponding
to a random recursive tree τ of size n. In other words, Xn is the number of distinct fringe
subtreeshapes in τ . We define P as the set of Pólya trees. This set of trees corresponds to
the possible shapes of the recursive trees, once the increasing labelling has been removed.
We denote by P≤n the set of all Pólya trees with size at most n. Then we have

E (Xn) =
∑

t∈P≤n

P(t occurs as subtree of τ) =
∑

t∈P≤n

1− P(t does not occur as subtree of τ).

(6.2)
Recall that the tree t corresponds to a treeshape, it is unlabelled, while τ is a recursive tree
and therefore is increasingly labelled.

Now for a given Pólya tree t ∈ P let us consider a perturbed combinatorial class St that
contains all recursive trees except for those that contain a tshape as a (fringe) subtree. The
corresponding exponential generating function satisfies the differential equation

S ′
t(z) = exp(St(z))− P ′

t(z), (6.3)

where Pt(z) = ℓ(t) z
|t|

|t|! , with ℓ(t) denoting the number of ways to increasingly label the tree
shape t.

So, using Equation (6.2) we obtain

E (Xn) =
∑

t∈P≤n

(1− P(t does not occur as shape of a fringe subtree of τ))

=
∑

t∈P≤n

(
1− [zn]St(z)

[zn]T (z)

)
. (6.4)

Therefore, the problem is now essentially reduced to the analysis of the asymptotic behaviour
of [zn]St(z).

164 6 Average compaction of increasing tree models

Solving Equation (6.3) we obtain the exponential generating function

St(z) = ln
(

1

1−
∫ z

0
exp(−Pt(v)) dv

)
− Pt(z). (6.5)

Since Pt(z) is not singular, the dominant singularity ρ̃ of St(z) the following equation must
hold: ∫ ρ̃

0

exp(−Pt(v)) dv = 1. (6.6)

As exp(−Pt(v)) < 1 for positive v, the dominant singularity ρ̃ is greater than 1. Therefore
we write ρ̃ = ρ(1 + ϵ) = 1 + ϵ with suitable ϵ > 0.

Notations

Before we proceed, let us introduce some frequently used notations: For the size and the
weight of a Pólya tree t we use

k = |t| and w(t) =
ℓ(t)

|t|!
,

respectively. Moreover, let

G(z) :=

∫ z

0

e−Pt(v) dv =

∫ z

0

e−w(t)vk dv.

if z ≥ 0 and its complex continuation if z is not a nonnegative real number. With this notation
Equation (6.6) reads as G(1 + ϵ) = 1. By expanding the integrand, we obtain

G(z) =
∑
ℓ≥0

(−w(t))ℓ
zℓk+1

(ℓk + 1) · ℓ!
,

which shows that G(z) is an entire function.

How to proceed

Taking a random recursive tree of size n, we are interested in the asymptotic behaviour of the
size of the compacted tree issued from the compaction of the recursive one. In order to obtain
bounds for this compacted size we proceed as follows: First, in Lemma 6.2.1, we compute a
upper bound for ρ̃.

Then, in Lemma 6.2.4, we provide asymptotics for the nth coefficient of the generating
function St(z) when n tends to infinity, thereby showing that the error term is uniform in the
size k of the “forbidden” tree t.

The average size of a compacted tree corresponding to a random recursive tree is expressed as
a sum over the forbidden trees. Thereby, the two cases, where the size k of the forbidden tree
t is smaller or larger than logn are treated in a different way: Upper bounds for the size of
the compacted tree are derived in Proposition 6.2.6 (small trees) and Proposition 6.2.7 (large
trees). Finally, Proposition 6.2.9, gives a (crude) lower bound for the size of the compacted
tree.

6.2 Average compression of Pólya trees under increasingly labelled distribution 165

Lemma 6.2.1. Let St(z) be the generating function of the perturbed combinatorial class (cf.
Equation (6.3) of recursive trees that do not contain a subtree of shape t and ρ̃ be the dominant
singularity of St(z) (cf. Equation (6.6)). Furthermore, let k = |t| and w(t) = ℓ(t)/k! where
ℓ(t) denotes the number of possible increasing labellings of the Pólya tree t. Then

ρ̃ = 1 + ϵ < 1 +
2w(t)

k
.

Proof. First observe that the number of increasing labellings of the Pólya tree t is bounded
by (k − 1)!, which gives the very crude bound w(t) ≤ 1/k.

Next, as ρ̃ satisfiesG(1+ϵ) = 1, it suffices to show the inequalityG
(
1 + 2w(t)

k

)
> G(1+ϵ).

We show the equivalent inequality G
(
1 + 2w(t)

k

)
−G(1) > G(1 + ϵ)−G(1).

Then we have

G(1 + ϵ)−G(1) = 1−
∫ 1

0

e−w(t)vk dv ≤ 1−
∫ 1

0

(1− w(t)vk) dv =
w(t)

k + 1
.

On the other hand, if k ≥ 3, then we have the lower bound

G

(
1 +

2w(t)

k

)
−G(1) ≥ 2w(t)

k
exp

(
−w(t)

(
1 +

2w(t)

k

)k
)

≥ 2w(t)

k
exp

(
−w(t)

(
1 +

2

k2

)k
)

=
w(t)

k
· 2e−2w(t) >

w(t)

k + 1

which implies the assertion. In the course of this chain of inequalities we used w(t) < 1/k

and then
(
1 + 2

k2

)k
< 2 (for k ≥ 3) in the second line, then again w(t) < 1/k, and finally

k ≥ 3 and 2e−2/3 > 1.

If k = 2, then t is a path of length one and therefore w(t) = 1/2. This gives explicitly∫ 3/2

1
e−v2/2 dv > 1/6 which is easily verified. □

Corollary 6.2.2. With the notations of Lemma 6.2.1 we have the following asymptotic rela
tion:

ρ̃ = 1 + ϵ ∼ 1 +
w(t)

k
, as k → ∞.

Proof. Write G(z) as G(z) = z +R(z) with

R(z) =
∑
ℓ≥1

(−w(t))ℓ
zℓk+1

(ℓk + 1) · ℓ!
(6.7)

As ρ̃ = 1 + ϵ is the smallest positive solution of G(z) = 1, it is the smallest positive zero of
z− 1+R(z). From Lemma 6.2.1 we know that ϵ = O (1/k2) and thus ρ̃k ∼ 1, as k tends to

166 6 Average compaction of increasing tree models

infinity, and R(ρ̃) = w(t)ρ̃k+1/(k + 1) +O (1/k3). This implies

ϵ ∼ w(t)

k + 1
ρ̃k+1 ∼ w(t)

k
, (6.8)

as desired. □
Remark 6.2.3. Using more terms of the expansion of G(z), it is possible to derive a more
accurate asymptotic expression for ϵ (in principle up to arbitrary order). As an example, we
state

ρ̃ = 1 +
w(t)

k + 1
+

w(t)2(3k + 1)

(k + 1)(4k + 2)
+

w(t)3(29k3 + 32k2 + 10k + 1)

6(k + 1)2(2k + 1)(3k + 1)
+O

(
w(t)4

k

)
.

Now we are able to derive a uniform asymptotic expression for the coefficients of St(z).
Lemma 6.2.4. Let St(z) be the generating function of the perturbed class of recursive trees
seen in Equation (6.5). Then for sufficiently small δ > 0 we have

[zn]St(z) =
ρ̃−n

n

(
1 +O

(
1√
lnn

))
, as n → ∞,

which holds uniformly for D ≤ |t| ≤ n, where D > 0 is independent of n and sufficiently
large.

Proof. Recall that by Equation (6.5) we have

St(z) = ln
(

1

1−G(z)

)
− Pt(z). (6.9)

Since G(z) is an entire function, the singularities of St are exactly the zeros of G(z) − 1.
Therefore, consider z0 such that G(z0) = 1 and write G(z) = z + R(z) with R(z) as in
Equation (6.7). Then

|R(z0)| ≤
1

k + 1

∑
ℓ≥1

|w(t)|ℓ|z0|kℓ+1

ℓ!

<
1

k
(e|w(t)||z0|k − 1) (6.10)

The first step is to show thatG(z)− 1 does not have any zeros in a sufficiently large domain.
We have to approach this in three steps, each enlarging the domain.

Assume first that |z0| ≤ 1 + e−1
k
. As the dominant singularity of St(z) is ρ̃ and ρ̃ > 1, we

must have |z0| > 1. Thus, the upper bound on |z0| and Equation (6.10) imply
1− z0 = R(z0) = O

(
1/k2

)
. (6.11)

On the other hand, R(z) ∼ −w(t)
k
zk0 and 1− z0 ∼ −w(t)/k because of Corollary 6.2.2. Thus

z0 is asymptotically equal to a kth root of unity. But then z0 = ρ̃, because the distance
between the other kth roots of unity and 1 is greater than 1/k, which contradicts Equa
tion (6.11).

Now assume that |z0| = 1+ η with (e− 1)/k < η < ln(k)/k. Then w(t)|z0|k ≤ 1 and so by
Equation (6.10) we have then |R(z0)| ≤ (e− 1)/k. But we assumed |z0 − 1| > (e− 1)/k.

6.2 Average compression of Pólya trees under increasingly labelled distribution 167

Finally, let 1 + ln(k)
k

< |z| ≤ 1 + ln k+ln ln ln k
k

. In this region we have |z − 1| > ln(k)/k
but, using Equation (6.10), we get |R(z)| ≤ (ln(k) − 1)/k and thus R(z) is too small to
compensate the value of z − 1. Indeed, we obtain that |G(z)− 1| > 1/k.

Summarising what we have so far, we obtain that either z0 = ρ̃ or |z0| > 1 + ln k+ln ln ln k
k

.

Notice that G′(ρ̃) = exp
(
−w(t)ρ̃k

)
6= 0 and therefore ρ̃ is a simple zero of G(z)− 1. Thus

G(z)− 1 = (z− ρ̃)G̃(z) where G̃(z) is analytic in the domain |z| ≤ 1+ ln k+ln ln ln k
k

and does
not have any zeros there. Thus,

St(z) = ln
(

1

1−G(z)

)
− Pt(z)

= − ln
(
1− z

ρ̃

)
− ln(ρ̃ G̃(z))− Pt(z),

where, apart from the first summand, there are no singularities in |z| ≤ 1 + ln k
k
. Expanding

the logarithm gives

[zn]St(z) =
ρ̃−n

n

(
1 +O

(
nρ̃n[zn] ln G̃(z)

))
(6.12)

and we want to estimate [zn] ln G̃(z) using Cauchy’s estimate. Unfortunately, G̃(z) is not
uniformly bounded in k, so we have to analyse G̃(z) a little more.

For applying Cauchy’s estimate on the remainder function in Equation (6.12) we use the
integration contour |z| = 1 + ln k+ln ln ln k

k
. On this contour, we have

1

k
≤ |G(z)− 1| ≤ |z − 1|+ |R(z)| ≤ 3 +

ln k
k

,
ln k
k

< |z − ρ̃| < 3.

Since G̃(z) = (G(z) − 1)/(z − ρ̃), this implies | ln G̃(z)| ≤ ln k + ln 3. Consequently, by
Cauchy’s estimate we get

[zn] ln G̃(z) = O

((
1 +

ln k + ln ln ln k
k

)−n

ln k

)
.

Finally, if k is sufficiently large, then

ρ̃n
(
1 +

ln k + ln ln ln k
k

)−n

ln k

≤
(
1 +

ln k + ln ln ln k
k

)−n

≤
(
1 +

lnn+ ln ln lnn
n

)−n

= O
(

1

n
√
lnn

)
,

which yields the desired result after all. □

168 6 Average compaction of increasing tree models

Remark 6.2.5. Within this section many logarithms that occur are with respect to the base 1
σ
,

where σ ≈ 0.338 denotes the dominant singularity of the generating function of Pólya trees
(cf. [FS09, Section VII.5]). To ensure a simpler reading we omit this base subsequently and
just write logn instead. In order to distinguish, the natural logarithm will always be denoted
by lnn.

Now we decompose the sum Equation (6.4) into

E (Xn) =
∑

t∈P≤n

k<logn

(
1− [zn]St(z)

[zn]T (z)

)
+
∑

t∈P≤n

k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
, (6.13)

and investigate the two sums individually, starting with the leftmost one, whose summands
can be estimated by 1.

Proposition 6.2.6. The first sum in (Equation (6.13)) behaves asymptotically as∑
t∈P≤n

k<logn

(
1− [zn]St(z)

[zn]T (z)

)
=

n→∞
O

(
n√

(logn)3

)
.

Proof. Remember that we have set k := |t|. Furthermore, we denote by P (z) the gener
ating function of Pólya trees and by σ its dominant singularity. Then∑

t∈P≤n

k<logn

(
1− [zn]St(z)

[zn]T (z)

)
≤
∑

t∈P≤n

k<logn

1

=
∑

k<logn

[zk]P (z) ∼ 1

1− σ
[z⌊logn⌋]P (z)

= O

(
σ−⌊logn⌋√
(logn)3

)
.

Since logn has the base 1/σ, we estimate σ−⌊lnn⌋ ≤ n, which completes the proof. □

Now we are able to estimate the asymptotic behaviour of the second sum in Equation (6.13).

Proposition 6.2.7. Let P≤n denote the class of Pólya trees of size at most n. Then∑
t∈P≤n

k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
=

n→∞
O
(

n

logn

)
.

Proof. Using Lemma 6.2.4 we get, when n tends to infinity, that
[zn]St(z)

[zn]T (z)
∼

n→∞
ρ̃−n = (1 + ϵ)−n,

6.2 Average compression of Pólya trees under increasingly labelled distribution 169

uniformly in |t| = k. Thus,∑
t∈P≤n

k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
∼

n→∞

∑
t∈P≤n

k≥logn

(
1− (1 + ϵ)−n

)
.

By means of the Bernoulli inequality we get∑
t∈P≤n

k≥logn

1− (1 + ϵ)−n ≤
∑

t∈P≤n

k≥logn

n · ϵ,

which by use of Lemma 6.2.1 can be further simplified to∑
t∈P≤n

k≥logn

n · ϵ ∼
n→∞

n∑
k=logn

∑
t∈P≤n

|t|=k

n · w(t)
k

=
n∑

k=logn

n

k

∑
t∈P≤n

|t|=k

w(t).

Using the fact that ∑
t∈P≤n

|t|=k

w(t) = [zk]T (z) =
1

k
,

we further get
n∑

k=logn

n

k

∑
t∈P≤n

|t|=k

w(t) =
n∑

k=logn

n

k2
= Θ

(
n

∫ ∞

logn

1

x2
dx
)

= Θ

(
n

logn

)
.

Thus the statement is proved. □
Theorem 6.2.8. LetXn be the size of the compacted tree corresponding to a random recursive
tree τ of size n. Then

E (Xn) =
n→∞

O
(

n

logn

)
.

Proof. The result follows directly by combining the previous propositions. □

Finally, we now prove a lower bound for the average size of the compacted tree based on a
random recursive tree of size n.
Proposition 6.2.9. Let P≤n denote the class of Pólya trees of size at most n. Then∑

t∈P≤n

k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
=

n→∞
Ω
(√

n
)
.

Proof. First, we use the inequality (1 + ϵ)−n ≤ exp
(
−nϵ+ nϵ2

2

)
in order to estimate∑

t∈P≤n

k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
=
∑

t∈P≤n

k≥logn

(
1− (1 + ϵ)−n

)
≥
∑

k≥logn

∑
t∈P≤n

|t|=k

(
1− e−nϵ+nϵ2/2

)
.

(6.14)

170 6 Average compaction of increasing tree models

For the sake of simplified reading we will use the abbreviation
∑

t :=
∑

t∈P≤n

|t|=k

in the re

mainder of this proof. Since x 7→ 1 − exp
(
−nx+ nx2

2

)
, x ≥ 0, is a concave nonnegative

function with a zero in the origin and w(t) > 0 for all t, we can estimate the inner sum in
(Equation (6.14)), which yields∑

k≥logn

∑
t

(
1− e−nϵ+nϵ2/2

)
≥
∑

k≥logn

(
1− exp

(
−n
∑
t

ϵ+
n

2
(
∑
t

ϵ)2

))
.

Note that ϵ depends on t, and that∑
t

ϵ ∼
n→∞

∑
t

w(t)

k
=

1

k

∑
t

w(t) =
1

k2
.

Thus, we get∑
t∈P≤n

k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
≥
∑

k≥logn

(
1− exp

(
− n

k2
+

n

2k4

))

∼
n→∞

∫ ∞

lnn

(
1− exp

(
− n

x2
+

n

2x4

))
dx

=
√
n

∫ ∞

√
n logn

(
1− exp

(
− 1

y2
+

1

2ny4

))
dy.

Since the integral is convergent this gives a lower bound that is Θ(
√
n). □

6.3 Average compression of plane binary trees under
increasingly labelled distribution

Plane binary increasing trees have a classical specification in the context of Analytic Com
binatorics, once again by using the Greene operator, or boxed product, allowing to define
increasing labelling constraint for decomposable objects. Thus the specification of this class
T is

T = Z □ ⋆ (1 + T)2 . (6.15)
This specification defines a tree to be rooted with an atom Z associated to a pair of elements
that are either the empty element (representing no subtree) or a subtree itself from the class
T . Once again the operator · □ ⋆ · ensures the fact that the smallest available label must be
used for the atom Z .

In Figure 6.6 we have represented on the lefthand side a plane increasing binary tree structure
containing 5.000 nodes. It has been uniformly sampled among all trees with the same size.
The original root of the tree is represented using a small circle ◦. On the righthand side, we
have depicted the nodes that are kept after the compaction of the latter tree. It remains only
1,361 nodes.

6.3 Average compression of plane binary trees under increasingly labelled distribution 171

Figure 6.6: (left) a uniformly sampled (plane) increasing binary tree of size 5,000: black
fringe subtrees are removed by the compaction; (right) the red head is of size 1,361

By using the symbolic method [FS09], the latter specification Equation (6.15) translates as

T (z) =

∫ z

0

(1 + T (v))2 dv,

in terms of T (z) the exponential generating function for T . We can also rewrite it as a
differential equation

T ′(z) = (1 + T (z))2 , with T (0) = 0

The equation can be solved such that

T (z) =
z

1− z
,

with the dominant singularity ρ = 1.

The exponential generating function St(z) of the perturbed class of plane increasing binary
trees that do not contain the treeshape t (where t is a nonlabelled binary tree) as a fringe
subtree, fulfils the equation

S ′
t(z) = (1 + St(z))

2 − P ′
t(z) with St(0) = 0 (6.16)

where Pt(z) = ℓ(t)z|t|

|t|! and ℓ(t) denotes the number of ways to increasingly label the plane
binary tree t. The quantity ℓ(t) is also called the hook length of t and it is well known that ℓ(t)
equals |t|! divided by the product of the sizes of all fringe subtrees of t (cf. e.g. [Knu98, p.67]
or [BGP16]). We first start with a lemma establishing an upper bound for the normalised hook
length.

172 6 Average compaction of increasing tree models

Lemma 6.3.1. Let t be a binary tree of size k. By defining the weight of the tree t as w(t) :=
ℓ(t)
k!
, where ℓ(t) denotes the hook length of t, we have

w(t) ≤ 1

2k−2
.

Proof. Recall that the hook length equals |t|! divided by the product of the sizes of all
fringe subtrees s of t. If we write s ≤ t to say that s is a fringe subtree of t, then this means
that w(t) = 1/

∏
s : s≤t |s|. Consider now a tree t. If k = 1, then t is a single node and hence

w(t) = 1. Otherwise, the root of t has children being roots of fringe subtrees. If s ≤ t, then
either s = t and so |s| = k or s is one of the fringe subtrees of one of the subtrees rooted at
a child of the root of t. Therefore

w(t) =

{
1
k
w(t′) if the root of t has one child t′

1
k
w(tℓ)w(tr) if the root of t has the two children tℓ and tr.

Now proceed by induction: Set wn := maxt : |t|=nw(t). Then we have obviously that wn =
max{wℓ · wn−1−ℓ | ℓ = 0..n− 1}/n with w0 = 1. For the first seven values a direct compu
tation shows

(w1, w2, . . . , w7) =

(
1,

1

2
,
1

3
,
1

8
,
1

15
,
1

36
, and

1

63

)
.

As the first seven values of the sequence 1/2k−2 are

2, 1,
1

2
,
1

4
,
1

8
,
1

16
, and

1

32
,

we assume that the result is correct until k − 1.

Let t be a binary tree of size k. If the root of t has only one child t′ of size k − 1, then by
induction we obtain

w(t) =
w(t′)

k
≤ 1

k 2k−3
≤ 1

2k−2
.

Otherwise, the root of t has two children. Let us denote the corresponding fringe subtrees
by tℓ of size ℓ and tr of size k − ℓ − 1, (with ℓ < k). By the induction hypothesis, we have
w(tℓ) ≤ 1/2ℓ−2 and w(tr) ≤ 1/2k−ℓ−3 and thus

w(t) =
1

k
w(tℓ)w(tr) ≤

1

k

1

2k−5
=

8

k

1

2k−2
,

which is smaller than 1/2k−2 for k ≥ 8. □

Finally, note that the inverse term by term of our sequence corresponds to the sequence stored
as EIS A132862.

By the same combinatorial argument as in the previous section we know that St(z) has a
unique dominant singularity ρ̃, which is greater than the dominant singularity ρ = 1 of T (z).
Thus, we set again ρ̃ = ρ(1 + ϵ) = 1 + ϵ. Since Equation (6.16) is a Riccati differential
equation (cf. [Inc44] for a background on Riccati equations), we use the ansatzSt(z) =

−u′(z)
u(z)

to get the transformed equation
u′′(z)− 2 u′(z) + (1− w(t)kzk−1) u(z) = 0, (6.17)

https://oeis.org/A132862

6.3 Average compression of plane binary trees under increasingly labelled distribution 173

where we use the same abbreviations as in the previous section, namely k := |t| and w(t) :=
ℓ(t)
k!
. Note that the condition St(0) = 0 implies u′(0) = 0 and u(0) 6= 0.

The singularities of a function u(z) solving a linear differential equation (with polynomial
coefficients) are given by the singularities of the coefficient of the highest derivative, i.e.,
in our case the coefficient of u′′(z), which is 1. The reader can refer to Miller [Mil06] for
details. Thus, we can conclude that u(z) is an entire function. As a direct consequence we
know that the singularities of St(z) are given by the zeros of u(z) (that are not zeros of u′(z))
and are therefore poles. More precisely the dominant singularity ρ̃ must be a simple pole
for St(z), since for u(z) = (ρ̃ − z)lv(z), (such that ρ is not a zero of v(z)), it follows that
u′(z) = −(ρ̃− z)l−1v(z) + (ρ̃− z)lv′(z). Thus

St(z) =
l

ρ̃− z
− v′(z)

v(z)
,

which implies

St(z) ∼
z→ρ̃

l/ρ̃

1− z/ρ̃
.

Taking the derivative we get S ′
t(z) ∼ 1

ρ̃2
l

(1−z/ρ̃)2
. Plugging in the asymptotic expressions for

St and S ′
t in the original differential Equation (6.16) we get

1

ρ̃2
l(

1− z
ρ̃

)2 ∼
z→ρ̃

(
1 +

l/ρ̃

1− z
ρ̃

)2

,

since the monomial Pt is analytic in ρ̃. Comparing the main coefficients yields l = 1, and
thus ρ̃ is a simple zero of the function u(z) and

St(z) ∼
z→ρ̃

1

ρ̃− z
.

How to proceed

As in the previous section, we have a singularity ρ̃ = 1 + ϵ with ϵ > 0 depending on t, or
k. In order to get results on the average size of the compacted tree of a random increasing
binary tree we proceed similarly to the recursive tree case. Lemma 6.3.3 gives an asymptotic
expression for ρ̃ that quantifies its dependence on t, when the size k of the “forbidden” tree
tends to infinity.

As a next step, Lemma 6.3.4 shows that St(z) has a unique dominant singularity ρ̃ on the
circle of convergence, which is used in Lemma 6.3.5 to obtain the asymptotic behaviour of
the coefficients of the generating function St(z).

Again, the average size of a compacted tree can be represented as a sum over the forbidden
trees, where we distinguish between the two cases whether the size of the trees is smaller or
larger than logn in order to get an upper bound (see Proposition 6.3.7 and Proposition 6.3.8).
This time the lower bound is obtained in Theorem 6.3.10 by carefully analysing the sum
bounds and which uses estimate for the weights w(t) (see Lemma 6.3.1). The final Θ result
is then obtained as an immediate corollary.

174 6 Average compaction of increasing tree models

We start from the equation u′′(z) − 2 u′(z) + (1 − w(t)kzk−1) u(z) = 0 with the initial
conditions u(0) = γ, and u′(0) = 0. The value γ can be chosen arbitrarily, as St(z) =
γu′(z)/(γu(z)), and thus, γ cancels. For simplification reasons in the following we choose
u(0) = −1 together with the initial condition u′(0) = 0.
Lemma 6.3.2. The function u(z) defined by the differential Equation (6.17) and the initial
conditions u(0) = −1 and u′(0) = 0 satisfies

u(z) =zez
∑
m≥0

(
w(t)k

(k + 1)2

)m
1

m! (m+ α)m
z(k+1)m

− ez
∑
m≥0

(
w(t)k

(k + 1)2

)m
1

m! (m− α)m
z(k+1)m,

where (x)m denotes the falling factorials (x)m = x(x−1) · · · (x−m+1) and α = 1/(k+1).

Before starting with the proof, note our computer algebra system suggests a solution of Equa
tion (6.17) as a linear combination of Bessel functions. Before proving the latter statement,
let us recall the context of Bessel functions. The reader can refer to the book of Bender and
Orszag [BO99] for more details. The ordinary differential equation

z2 y′′(z) + z y′(z) + (z2 − α2) y(z) = 0,

with α not being an integer is such that the solutions y(z) are linear combination of the Bessel
functions Jα(z) and Yα(z) defined as

Jα(z) =
∞∑
n=0

(−1)n

n! Γ(n+ α + 1)

(z
2

)2n+α

and

Yα(z) =
Jα(z) cos(απ)− J−α(z)

sin(απ)
.

Proof. In order to be closer to the Bessel equation, we define a new function,
y(z) := u(z) · exp(−z)/

√
z,

thus we get an new equation for y(z):

y′′(z) +
1

z
y′(z)−

(
1

4z2
+ w(t)kzk−1

)
y(z) = 0,

with limz→0+ y(z) = −∞ and limz→0+ y′(z) = +∞. Let us now introduce the following

change of variable x :=

(
k+1

2
√

−w(t)k
z

)2/(k+1)

. After simplification we obtain

β2 y′′(β) + β y′(β) +

(
β2 − 1

(k + 1)2

)
y(β) = 0,

with β =
2
√

−w(t)k

k+1
t(k+1)/2. We recognise the Bessel equation and thus y(β) is a linear com

bination of the functions Jα(β) and Yα(β).

A first remark is necessary while reading the expression for u(z) =
√
z exp(z)y(z). At a

first sight, it seems that the solution is not analytic at 0 due to the factor
√
z. But this is only

6.3 Average compression of plane binary trees under increasingly labelled distribution 175

an artefact in the way we present u(z) through a linear combination of Bessel functions. We
recall that using Equation (6.17) we previously proved that u(z) is an entire function.

Let us now introduce the following functions

f(z) =
√
z exp(z)Jα

(
2β̃z

1
2α

)
and

f̄(z) =
√
z exp(z)J−α

(
2β̃z

1
2α

)
,

with β̃ :=

√
−w(t)k

k+1
and α := 1

k+1
. Due to the relationship between the function u(z), y(β)

and the Bessel functions, we deduce u(z) is a linear combination of the functions f(z) and
f̄(z). Let us write first it as u(z) = λf(z) + λ̄f̄(z) and now let us find both constants λ and
λ̄. Using the series expression for J·(·) we notice both functions f(z) and f̄(z) are analytic
and can be expanded around 0 as

f(z) = β̃α 1

Γ(1 + α)
z + . . . and f̄(z) = β̃−α 1

Γ(1− α)
+ β̃−α 1

Γ(1− α)
z +

Thus we deduce

u(0) = −1 = λ̄β̃−α 1

Γ(1− α)
, and u′(0) = 0 =

λβ̃α

Γ(1 + α)
+

λ̄β̃−α

Γ(1− α)
.

By using Γ(1+α)
Γ(m+1+α)

= 1
(m+α)m

, where (x)m denotes the falling factorials (x)m = x(x −
1) . . . (x−m+ 1), we conclude

u(z) =zez
∑
m≥0

(
w(t)k

(k + 1)2

)m
1

m! (m+ α)m
z(k+1)m

− ez
∑
m≥0

(
w(t)k

(k + 1)2

)m
1

m! (m− α)m
z(k+1)m.

□

We are now ready to analyse the dominant singularity of St(z).

Lemma 6.3.3. Let St(z) be the generating function of the perturbed combinatorial class of
plane increasing binary trees that do not contain the shape t as a subtree (of size k). With ρ̃
denoting the dominant singularity of St(z), we get

ρ̃ = 1 + ϵ ∼
k→∞

1 +
2w(t)

k2
,

where w(t) = ℓ(t)
k!

and ℓ(t) denotes the hook length of t.

Proof. For combinatorial reasons we deduced that the equation u(z) = 0 must have a
solution ρ̃ > 1 and no smaller positive solution. When k tends to infinity we expect that
ρ̃ = 1 + ϵ tends to 1, i.e. ϵ tends to 0.

176 6 Average compaction of increasing tree models

First observe that u(0) = −1 and

u

(
1 +

1

k2

)
=

1

k2
+O

(
w(t)

k

)
> 0,

asw(t) decays exponentially due to Lemma 6.3.1. Thus ϵ = O (1/k2) and plugging z = 1+ϵ
into u(z) = 0 gives then

ϵ+ (1 + ϵ)k+1 w(t)k

(k + 1)2

(
1 + ϵ

1 + α
− 1

1− α

)
= O

(
w(t)2

k2

)
.

This implies ϵ − 2w(t)/k2 = O (w(t)2/k2) and hence ϵ ∼ 2w(t)/k2, which finishes the
proof. □

So, Lemma 6.3.3 ensures that for |t| = k tending to infinity the generating function St(z)
has a dominant singularity at ρ̃ ∼ 1 + 2w(t)/k2. Now we show that in a circle with radius
smaller than 1 + 2 ln(k)/k there is no other singularity for St(z).

Lemma 6.3.4. Let ρ̃ be the dominant singularity of St(z). Then, for all δ > 0 the following
assertion holds: If k is sufficiently large, then the generating function St(z) does not have
any singularity in the domain ρ̃ < |z| < 1 + (2−δ) ln k

k
.

Proof. First let us remember that the singularities of St(z) are given by the zeros of the
function u(z) that is defined in Lemma 6.3.2. Now let us write ũ(z) := u(z) exp(−z) and
note that u(z) and ũ(z) have the same zeros. Thus, in the remainder of this proof we investi
gate ũ(z), which can be written as ũ(z) = zF (z)−G(z) with

F (z) =
∑
m≥0

(
w(t)k

(k + 1)2

)m
1

m!

1

(m+ α)m
z(k+1)m, and

G(z) =
∑
m≥0

(
w(t)k

(k + 1)2

)m
1

m!

1

(m− α)m
z(k+1)m,

still with α := 1/(k + 1). Therefore we get

|F (z)−G(z)| =

∣∣∣∣∣∑
m≥0

(
w(t)k

(k + 1)2

)m
1

m!

(
1

(m− α)m
− 1

(m+ α)m

)
z(k+1)m

∣∣∣∣∣
= O

(
w(t)

k
α |z|k+1

)
= O

(
w(t)

k2
|z|k+1

)
.

Now, let us rewrite ũ(z) as
ũ(z) = (z − 1)F (z) + F (z)−G(z), (6.18)

set |z| = 1 + η and perform a distinction of two cases:

• η = O (1/k): This implies |z|k+1 = Θ(1) for k tending to infinity. Thus F (z) ∼ 1,
G(z) ∼ 1, and then F (z) − G(z) tends to 0 when k tends to infinity. Furthermore,
Equation (6.18) implies ũ(z) ∼ z − 1. The equation ũ(z) = 0 therefore yields
z− 1 ∼ F (z)−G(z), which isO (w(t)/k2). Since we know that ρ̃ ∼ 1+ 2w(t)

k2
we

get |z − 1| = Θ(ρ̃− 1).

6.3 Average compression of plane binary trees under increasingly labelled distribution 177

But for zeros z0 of ũ(z) with |z0| = 1+ o (1/k) we know z0− 1 ∼ (2w(t)/k2) ·
zk0 ∼ 2w(t)/k2, which is equivalent to zk0 ∼ 1. Hence z0 ∼ k

√
1 = cos

(
2π
k

)
+

i sin
(
2π
k

)
and

ρ̃
k
√
1 ∼

(
1 +

2w(t)

k2

)(
1− 2π2

k2
+ i

2π

k

)
∼ 1 + i

2π

k
,

which is a contradiction to z0−1 ∼ 2w(t)/k2. Thus, the function ũ(z) has no zeros
for ρ̃ < |z| ≤ 1 +O (1/k).

• η = Ck/k, with Ck ≤ (2 − δ) ln k, and Ck tends to infinity with k: In this case
we have |z|k+1 ∼ eCk = o(k2), and thus |F (z) − G(z)| = o(w(t)) and F ∼
1 + o (w(t)k) ∼ 1 when k tends to infinity. Using again Equation (6.18) yields
ũ(z) = z − 1 + o(w(t)) ∼ z − 1. Since |z| = 1 + η we have |z − 1| ≥ Ck/k
and because of o(w(t)) = o (1/k) we know that ũ(z) cannot be zero in ρ̃ < |z| <
1 + ((2− δ) ln k)/k.

□

Now we are interested in the ratio [zn]St(z)/[z
n]T (z), which corresponds to the probability

that a random plane binary tree of size n does not contain the binary tree shape t as a fringe
subtree.

Lemma 6.3.5. Let T (z) be the generating function of plane increasing trees and St(z) the
generating function of the perturbed class that has the dominant singularity ρ̃. Then, for any
η > 0 we have

[zn]St(z)

[zn]T (z)
=

n→∞
ρ̃−n−1

(
1 +O

(
lnn
n1−η

))
,

uniformly for D ≤ k ≤ n, if D is sufficiently large (but independent of n).

Proof. First, let us remember that ρ̃ is a unique zero of the function u(z). Thus, we can
write

u(z) =

(
1− z

ρ̃

)
v(z), (6.19)

with v(ρ̃) 6= 0 and by Lemma 6.3.4 we additionally know that v(z) 6= 0 in ρ̃ < |z| <

1 + (2−δ) ln k
k

, provided that k is sufficiently large. Furthermore, we have

u′(z) =

(
1− z

ρ̃

)
v′(z)− 1

ρ̃
v(z),

which yields

St(z) =
1

ρ̃− z
− v′(z)

v(z)
.

Thus,

[zn]St(z) = ρ̃−n−1 − [zn]
v′(z)

v(z)
= ρ̃−n−1 − (n+ 1)[zn+1] ln v(z). (6.20)

178 6 Average compaction of increasing tree models

Now, we estimate the second summand in Equation (6.20). First we use a Cauchy coefficient
integral to write

n[zn] ln v(z) =
n

2πi

∫
C

ln v(t)
tn+1

dt, (6.21)

where the curve C is described by |t| = 1+ (2−δ) ln k
k

with some δ > 0. The absolute value of
the logarithm of v(z) is given by | ln v(z)| =

∣∣ln (|v(z)|ei arg v(z))∣∣ = |ln |v(z)|+ i arg(v(z))|.
Furthermore, by Equation (6.19) we have |v(z)| = |u(z)|/ |1− z/ρ̃|, which can be estimated
along C via

|v(z)| ≤ |u(z)|k
(2− δ) ln k

.

Now, we have to estimate |u(z)|. By Lemma 6.3.2 we get

|u(z)| ≤
∑
m≥0

(
w(t)

k

)m
1

m!

∣∣∣∣ z

(m+ α)m
− 1

(m− α)m

∣∣∣∣ |z|(k+1)m.

Along C we have |z|(k+1)m ≤ (k2−δ)m and the absolute value
∣∣∣ z
(m+α)m

− 1
(m−α)m

∣∣∣ can be
estimated by

∣∣∣ z
(m+α)m

− 1
(m−α)m

∣∣∣ ≤ 2+µ
(m−α)m

, for some µ > 0 which results in

|u(z)| ≤
∑
m≥0

(w(t)k1−δ)m
2 + µ

m!(m− α)m
≤ K,

for a constant K independent of k.

Putting all together, we can estimate the integral Equation (6.21) by

n[zn] ln v(z) =
n

2πi

∫
C

ln v(t)
tn+1

dt

≤ n(ln k + lnK − ln((2− δ) ln k)
(
1 +

(2− δ) ln k
k

)−n−1

≤ n lnn
(
1 +

(2− δ) ln k
k

)−n

which implies the following asymptotic relation:

[zn]St(z) = ρ̃−n−1

(
1 +O

(
n lnn

(
1 +

(2− δ) ln k
k

)−n

ρ̃n

))
Finally, note that for sufficiently large k we have the estimate

ρ̃

(
1 +

(2− δ) ln k
k

)−1

≤
(
1 +

(2− 2δ) ln k
k

)−1

≤
(
1 +

(2− 2δ) lnn
n

)−1

and, as (
1 +

(2− 2δ) lnn
n

)−n

= O
(
n−2+2δ

)
,

6.3 Average compression of plane binary trees under increasingly labelled distribution 179

we obtain the assertion by setting η = 2δ. □

Now, we separate the sum of interest, i.e.
∑

t∈B P [t occurs at subtree of τ], where τ denotes
a plane increasing binary tree of size n and B denotes the class of (unlabelled) plane binary
trees, analogously as we did in the previous section for recursive trees.

Remark 6.3.6. Now our underlying class of treeshapes is the class of plane binary trees and
no more the class of instead of Pólya trees. Since the dominant singularity of the generating
function of binary trees is 1/4, we use henceforth logn as an abbreviation for the logarithm
with respect to base 4.

E (Xn) =
∑
t∈B≤n

k<logn

(
1− [zn]St(z)

[zn]T (z)

)
+
∑
t∈B≤n

k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
. (6.22)

In order to estimate the first sum, we proceed analogously to Proposition 6.2.6.

Proposition 6.3.7. Let B(z) be the generating function associated to B, of (unlabelled) bi
nary trees, whose dominant singularity is 1/4. Then asymptotically when n tends to infinity
we have ∑

t∈B≤n

k<logn

(
1− [zn]St(z)

[zn]T (z)

)
=

n→∞
O

(
n√

(logn)3

)
.

Proof. A crude estimate gives∑
t∈B≤n

k<logn

(
1− [zn]St(z)

[zn]T (z)

)
≤
∑
t∈B≤n

k<logn

1 =
∑

k<logn

[zk]B(z) ∼
n→∞

1

1− 1
4

[z⌊logn⌋]B(z)

=
n→∞

O

((
1
4

)−⌊logn⌋√
(logn)3

)
.

This is already sufficient, since logn = log4 n and thus
(
1
4

)−⌊logn⌋ ≤ n, which completes the
proof. □

Estimating the second sum in (Equation (6.22)) works analogously to the proof of Proposi
tion 6.2.7 in the previous section.

Proposition 6.3.8. Let B≤n denote the class of binary trees of size at most n. Then∑
t∈B≤n

k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
=

n→∞
O
(

n

logn

)
.

Proof. Using Lemma 6.3.5 we get that for n tending to infinity
[zn]St(z)

[zn]T (z)
∼

n→∞
ρ̃−n−1 = (1 + ϵ)−n−1

180 6 Average compaction of increasing tree models

Thus, ∑
t∈B≤n

k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
∼

n→∞

∑
t∈B≤n

k≥logn

(
1− (1 + ϵ)−n−1

)
.

Bernoulli’s inequality then gives∑
t∈B≤n

k≥logn

1− (1 + ϵ)−n−1 ≤
∑
t∈B≤n

k≥logn

(n+ 1) · ϵ,

which by use of Lemma 6.3.3 further simplifies to∑
t∈B≤n

k≥logn

(n+ 1) · ϵ ∼
n→∞

n∑
k=logn

∑
t∈B≤n

|t|=k

(n+ 1) · 2w(t)
k2

=
n∑

k=logn

2n

k2

∑
t∈B≤n

|t|=k

w(t).

But since the inner sum equals 1, we finally get∑
t∈B≤n

k≥logn

(n+ 1) · ϵ =
n→∞

n∑
k=logn

2n

k2
=

n→∞
Θ

(
n

∫ ∞

logn

1

x2
dx
)

=
n→∞

Θ

(
n

logn

)
. □

Theorem 6.3.9. Let Xn be the size of the compacted tree corresponding to a random binary
tree of size n. Then

E (Xn) =
n→∞

O
(

n

logn

)
.

Proof. The result follows directly by combining the previous propositions. □

Theorem 6.3.10. LetXn be the size of the compacted tree corresponding to a random binary
tree of size n. Then

E (Xn) =
n→∞

Ω

(
n

logn

)
.

Proof.

E (Xn) =
∑
t∈B≤n

k<logn

(
1− [zn]St(z)

[zn]T (z)

)
+
∑
t∈B≤n

k≥logn

(
1− [zn]St(z)

[zn]T (z)

)

≥
∑
t∈B≤n

k≥logn

(
1− [zn]St(z)

[zn]T (z)

)

≥
∑
t∈B≤n

k≥2 logn

(
1− [zn]St(z)

[zn]T (z)

)

6.3 Average compression of plane binary trees under increasingly labelled distribution 181

Using Lemma 6.3.5 we get that for n tending to infinity
[zn]St(z)

[zn]T (z)
∼

n→∞
ρ̃−n−1 = (1 + ϵ)−n−1

Thus, ∑
t∈B≤n

k≥2 logn

(
1− [zn]St(z)

[zn]T (z)

)
∼

n→∞

∑
t∈B≤n

k≥2 logn

(
1− (1 + ϵ)−n−1

)
.

We have that from Lemma 6.3.1

w(t) =
w(t′)

k
≤ 1

k 2k−3
≤ 1

2k−2
.

And we have from Lemma 6.3.3
ϵ ∼

k→∞

2w(t)

k2
.

Therefore:
ϵ =

k→∞
O
(

2

2k−2k2

)
,

and when 2 logn ≤ k ≤ n,

−(n− 1)ϵ =
k→∞

O
(

1

k2

)
.

And thus,
(1 + ϵ)−n−1 ∼

n→∞
1− (n− 1)ϵ.

Finally, ∑
t∈B≤n

k≥2 logn

1− (1 + ϵ)−n−1 ∼
∑
t∈B≤n

k≥2 logn

(n+ 1) · ϵ,

The rest of the calculations are the same as in the last two lines of the proof of Proposi
tion 6.3.8, since the lower bound of the sum only changes by a constant which does not
change the Θ result.

If we sum up what we have obtained

E (Xn) ≥
∑
t∈B≤n

k≥2 logn

(
1− [zn]St(z)

[zn]T (z)

)
,

and ∑
t∈B≤n

k≥2 logn

(
1− [zn]St(z)

[zn]T (z)

)
=

n→∞
Θ

(
n

logn

)
.

And we have
E (Xn) = Ω

(
n

logn

)
,

as desired. □

182 6 Average compaction of increasing tree models

Corollary 6.3.11.

E (Xn) =
n→∞

Θ

(
n

logn

)
.

Proof. The proof is a direct consequence of Theorem 6.3.9 and Theorem 6.3.10. □

6.4 A compressed data structure

The probability model induced by plane increasing binary trees is the classical permutation
model of binary search trees (or bst). Thus the typical shape of a uniformly sampled plane in
creasing binary tree consisting of n internal nodes corresponds to the typical shape of a binary
search tree built using a uniform random permutation of n elements. See Drmota [Drm09,
Section 1.3.3] for details about the latter correspondence. Thus the tree structure of a typical
bst has the properties we have found out in the previous section. In particular, by remov
ing the information stored in the nodes the typical compaction of the tree gives a compacted
structure consisting of Θ(n/ lnn) nodes (on average).

Our objective here is to desing a new lossless immutable data structure based on the tree
structure induced by the compaction of a bst to which we associate some extra information in
the nodes and in the edges to keep all the information and keep the same bounds to searching.
We also make experiments related to this data structure in the end of this section.

The main idea is ta have an efficient database for searching elements while this databse oc
cupy the least possible memory space. However, we compressing the data structure it be
comes immutable and therefore only searching operations can be done on it. We can access
but not modify it efficiently. Of course since the compaction is lossless, it is always possible
to decompress it, modify it as we want and then compress it once again.

The bst built for example on the permutation (4, 8, 6, 2, 9, 1, 3, 7, 5) is represented with the
classical tree structure in the lefthand side of Figure 6.7. This example will be used as an
illustration throughout the whole section. In order to compress the tree structure, first the

4

2 8

6 9

75

1 3

□

□ □

□

Figure 6.7: (left) A bst built e.g. on (4, 8, 6, 2, 9, 1, 3, 7, 5); (right) The compacted tree
structure associated to the bst

node labels must be removed, as presented before. Thus by using a compaction through
a postorder traversal of the tree, the example becomes the tree structure presented in the

6.4 A compressed data structure 183

righthand side Figure 6.7. By adding the values stored in the original bst we get the tree of
Figure 6.8. When a substructure has been removed through the compaction process, then in

4
9©

2
3©

8
5©

[6, 5, 7]

1
1© [9][3]

Figure 6.8: Labeled compacted structure associated to the original bst

addition to the red pointer, the list of the labels, obtained through a preorder traversal of the
substructure is stored. The latter, associated to the size of the substructures, depicted with
the circled blue values, allows to obtain an efficient research. Let us present an example. We
would like to know if 7 is stored in the structure. 7 is larger than 4, thus from the root we take
the right edge to reach 8. The value we are looking for is smaller than 8. We take the left
red pointer, and take also in consideration the list L := [6, 5, 7]. We define an index i = 0
corresponding to the actual index in the list we are interested in. Using the pointer, we reach
2 that corresponds in fact to L[0] = 6. Since 7 is larger than 6, we must follow the right child
of 2, thus the new index is i := i+ 2 (the list stores the values obtained through the preorder
traversal), the constant 2 is the size of the left subtree attached to 2 plus 1 for the node labeled
by 2. Now L[2] = 7, we have reached the value we were interested in.

Proposition 6.4.1. In the compacted bst containing n values, the search complexity is the
same as in the bst with respect to the number of value comparisons. There may be an extra
cost corresponding to the number of additions (related to the index) to traverse a list. The
number of additions is at most equal to the number of comparisons to search for the value.

Proof. The number of value comparisons is exactly the same in the compacted structure
as in the original bst. In fact, we just share the identical unlabeled tree structure, thus the
number of comparisons does not change. For the same reason, if we must search inside a list
associated to a red edge, then, for each comparison there is one addition to shift inside the
list. □

In the following Figure 6.9 we have represented two experiments through our python proto
type. In the lefthand side we are interested in the compaction ratio between the compressed
data structure and the original bst. Here we are interested in the whole size needed in memory.
In particular the size of the integer values is counted but further the data structure size itself
is important. It is this latter that is in fact compressed: in the bst many pointers are needed
to reach the nodes of the tree. Many pointers and nodes are replaced in the compressed data
by lists of integers that need much less memory in practice. In the figure, in the abscissa we
represent the number of integers stored in the data structures; and in the ordinate, we compute
the ratio between the size in memory of the compressed data structure in front of the size of

184 6 Average compaction of increasing tree models

its corresponding bst. Each dot corresponds to one sample, and the green curve is the average
value among all samples. The experiments are starting with 250 integer values up to 20,000
with steps every 250 values, and for each size we have used 30 uniformly sampled bsts. We
observe that even for small bsts, the compression ratio is very interesting, smaller than 0.5.
Further we remark that the green curve looks like the theoretical result: it is very close to a
function x 7→ α/ lnx for a given α.

Figure 6.9: (left) Experimental compression ratio; (right) Experimental search time compar
ison

In the righthand side of Figure 6.9, for the same set of bsts and associated compacted struc
tures, we search for 1,000 randomly sampled values present in the two structures. Each red
dot is the average time, in milliseconds, (among the 1,000 searches) for finding the value
inside the bst, and the blue point is the analogous time for the search in the compressed struc
ture. For both complexity measures (number of comparisons or of arithmetic additions) the
average complexity stays of the same order O(lnn) as for the original bst, as we see it in
the figure. By computing the ratio of the blue values and the red values, the mean seems
oscillating around 1.25 for the whole range of sampled structures.

Let us conclude this section with the following remark. The point of view we have chosen
is to build first the bst and then, once the insertion and deletion process is done, we convert
the bst into a compressed data structure that is used only for search. We could develop a
prototype data structure that manages insertion in deletion but the efficiency would probably
be much less than the one of bst, because of the substructure recognition problem.

6.5 Conclusion

For the case of binary trees under increasingly labelled distribution (see Definition 6.1.1) we
were able to get a Θ result, by showing that if we have random tree of size n, denoted Xn,
the size of the compacted tree on average is

E(Xn) = Θ
(n

lnn

)
.

However, for Pólya trees under increasingly labelled distribution the size of the compacted
tree is smaller asymptotically than the average size of Pólya trees under uniform distribution.

6.5 Conclusion 185

More precisely, we proved that if we have a random tree of size n, denoted Yn, the compacted
tree is on average of size

C1

√
n ≤ E(Yn) ≤ C2

n

lnn
.

For some constants C1 and C2.

Numerical simulations suggest that this upper bound is already sharp, i.e., that the size of the
compacted tree is Θ

(
n
lnn

)
. However, in order to prove this conjecture, one has to find the

distribution of the weights w(t), which is very challenging task for nonplane trees due to
the appearance of automorphisms. In Figure 6.10 we have depicted Pólya trees that give the
maximum number of labellings for the first sizes. We also gave their number of increasing
labellings as well as the size of their automorphism group.

Size 2 3 3 4 5 6 6 7
Inc lab 1 1 1 3 6 15 15 60
Aut Gr 1 1 2 1 2 1 2 1

Size 7 8 9 10 11 11
Inc Lab 60 315 1260 5670 37800 37800
Aut Gr 2 1 2 2 1 2

Figure 6.10: Pólya trees that give the maximum number of increasing labellings for 2 ≤ n ≤
11. ’Inc Lab’ stands for the number of increasing labellings of the tree and ’Aut’ Gr the size
of the automorphism group of the tree.

Open question (Maximum number of labellings of nonplane trees). Let Pn, be the set of
all Pólya trees of size n and let ℓ(t) denotes the number of ways to increasingly label a tree
t. We define the sequenceMn as follows

Mn = max({l(t) | t ∈ Pn}).
The sequence Mn represents the number of labellings of the tree in Pn that gives the maxi
mum of number increasing labellings. How does the sequenceMn behaves and how does its
asymptotics looks like?

Thus, obtaining the (maximum) number of labellings of nonplane trees of a given size is
still work in progress, with the aim to improve the lower bounds such that we can show the
Θresult.

186 6 Average compaction of increasing tree models

Open question (Average compaction rate for an any class of trees under increasingly labelled
distribution). Based on our theoretical and numerical results we conjecture the following.

Conjecture 6.5.1. Let T be a rooted class of trees. LetXn be a random tree of size n gener
ated according to the increasingly labelled distribution defined in Definition 6.1.1. Then the
average size of the compacted version of Xn is

E(Xn) = Θ
(n

lnn

)
.

We explain the choice of the two classes of increasing trees, that were investigated within
this paper. The reason to choose recursive trees and increasing binary trees was that for these
two classes our computer algebra system is able to solve the differential equation defining
St(z), although in case of increasing binary trees the solution is already more complicated
and involves some Bessel functions. However, in case of the third prominent class of increas
ing trees, ports (plane oriented recursive trees), we did not get any explicit solution for the
analogous of St(z); thus this case is still an open question.

As a final note, remember the way we have compacted the bsts in the last section. Using a
pointer to describe the erased fringe subtree and the list of the labels in a specific traversal
(labels that must be kept in the compacted tree), we are able to search in the compacted struc
ture efficiently. But more generally, the way we have compacted the tree can be used for all
possible tree structures. In the original paper [FSS90] by Flajolet et al., the authors compact
only identical fringe subtrees in simply generated trees. We focus on the tree structure and its
compaction as well, but the probability model on the tree shapes is a different one, induced
by the labelling. Moreover, we use a different additional information management in order to
cope with labels and could there extend the compaction to labelled tree models. It is desirable
to study other natural labelled tree classes and the resulting compaction ratio.

CHAPTER 7

Random generation

Contents
7.1 Introduction 189
7.2 Efficient uniform samplers for the three models of increasing Schröder

trees 190
7.2.1 Increasing Schröder 190
7.2.2 Strict monotonic Schröder 193
7.2.3 Strict monotonic general Schröder 198

7.3 General Model uniform random generation 201
7.3.1 Generating the elements of An,ϕ from Integer partitions 202
7.3.2 Sampling algorithm 207

7.4 Conclusion 210

La création a toujours besoin de
hasard.1

Jacques Godbout (1933), Les
Têtes à Papineau

1Creation always needs chance

188

7.1 Introduction 189

7.1 Introduction

Boltzmann sampling is a method for constructing random generation algorithms for combi
natorial structures. Boltzmann sampling is closely related to the Boltzmann distribution used
in statistical mechanics. The idea of applying Boltzmann samplers for combinatorial classes
has been introduced in 2004 by Duchon, Flajolet, Louchard and Schaeffer in [DFLS04].
The idea is to get automatic random generation algorithms directly from the combinatorial
specification (symbolic method). A later paper by Flajolet, Fusy and Pivoteau extended the
admissible operators in [FFP07]. However, these papers did not include the operators for
increasingly labelled structures such as increasing trees. Bodini, Roussel and Soria showed
in [BRS12] how to extend the samplers to include specifications that give rise to differen
tial equations of the first order as it is the case for in increasing trees. The thesis of Bodini
[Bod10] and Roussel [Rou12] are dedicated to the study of Boltzmann samplers. The thesis
of Dien [Die17] has also a dedicated chapter for Boltzmann samplers on increasing classes
of graphs.

Boltzmann sampling has the great advantage of being very fast in time complexity, they can
also be tuned to generate structures with some fixed parameters (multivariate combinatorial
classes) in [BP10] and [BBD18].

However, Boltzmann samplers are less efficient for exact size sampling. Since they are based
on an expected size n for the generated object. There exists some methods in order to get
exact size generation with a rejection principle. But then the time complexity, in most cases
the complexity becomes quadratic instead of the linear complexity for the approximate size
sampling.

On the other hand the recursive generation method makes use of the recursive specification
of the combinatorial class in order to get systematic uniform random generation algorithms.
Many of the basic principles of this approach have been developed in the 70’s by Nijenhuis
and Wilf [NW75]. This approach has the been adapted to the analytic combinatorics point
of view in [FZV94] by Flajolet, Van Custem and Zimmerman.

Unranking algorithms form also part of this global approach. The idea is to first define a
total order over the objects under consideration so that to each object corresponds exactly
one integer. Then, after choosing an integer it is possible to build deterministically the as
sociated object. Moreover, if the rank is uniformly chosen among all possible ranks, then
the unranking algorithm becomes a uniform random sampler. The unranking approach gives
also a way for obtaining an exhaustive sampler, just by iterating the sampling over all possi
ble ranks. In [BDGV18], the authors give an example of both methods: recursive generation
and unranking method. Other accounts can be found in the books of Ruskey [Rus03] and the
one by Alonso and Schott [AS95].

The recursive generation method generally operates in two steps. First, it necessitates a
step of precomputations of some information such that the enumeration sequence of the
combinatorial class. The more information is stored in the beginning, the more efficient will
be the second step. The second step is for sampling random objects. The precomputations
are done once before the sampling, then any number of objects can be sampled.

190 7 Random generation

This chapter is organised as follows. Our main objective is to sample any variety of trees
generated by the evolution process presented in Chapter 5. As we will see a uniform random
generation algorithm will not have a polynomial complexity in the general case. However,
for the three classes presented in Chapter 4, there exist fast algorithms to efficiently sample
these trees uniformly at random with exact size generation. We present them in Section 7.2
under the sections Section 7.2.1, Section 7.2.2 and Section 7.2.3

Then in Section 7.3 we focus our attention on the general case and give an unranking algo
rithm to generate uniformly a tree of a fixed size in the specified variety. This algorithm
necessitates the generating of all integer partitions of size n, which does not have a polyno
mial complexity.

7.2 Efficient uniform samplers for the three models of
increasing Schröder trees

In the next three sections we present the recursive generation algorithms for the three classes
of trees presented in Chapter 4. For these three models there are simplifactions in the recur
rence that allow us to have efficient uniform samplers which is not the case in general.

In Figure 7.1 we compare between the complexities of the uniform samplers for each model
of increasing Schröder trees that are presented in Algorithm 1, Algorithm 3 and Algorithm 5.

7.2.1 Increasing Schröder

In this section, we present an algorithm that samples a Schröder tree uniformly at random
among all Schröder trees of a given size. Our aim is to use this algorithm to generate trees of
large size (typically several thousands of leaves): we thus provide a detailed analysis of the
complexity of our sampler.

Note that the uniform sampling of structures with increasing labelling constraints is not so
classical in the context of analytic combinatorics. Martínez and Molinero [MM03, Mol05]
focus on the recursive method: using and generalising recursive and unranking generation
methods, they give amethod that, given a combinatorial specification, automatically outputs a
uniform generation algorithm and its complexity analysis. Using a different approach based
on Boltzmann generation, Bodini, Roussel and Soria [BRS12] give an algorithmic frame
work to develop Boltzmann samplers in the context of specifications that lead to differential
equation of the first order.

The paper [BDF+16] show that this framework can be extended to the context of differential
equations of higher order; in particular, they apply this method to the generation of diamonds
satisfying differential equations of order 2.

The bijection presented in Section 4.2 immediately gives an algorithm that samples a tree
uniformly among all Schröder trees of size n: first sample a permutation uniformly at random
among all permutations of size n inHP , and then build its image byM. While there exists

7.2 Efficient uniform samplers for the three models of increasing Schröder trees 191

Figure 7.1: Complexity of uniform samplers for the the three models of increasing Schröder
trees. (up left) Time complexity of the sampling in milliseconds. (up right) Arithmetic oper
ations on big numbers complexity. (down) Arithmetic operations complexity.

fast algorithms to sample permutations (see for example [BBHT17]), it is not clear how to
make the application ofM efficient.

Instead, we use the bijectionM as a basis for a direct probabilistic construction. Indeed, one
can sample a uniform bijection uniformly at random inHP by doing the following recursive
procedure: if n = 2, then return σ(2) = (2, 1). If n ≥ 3, assume we have sampled σ(n−1)

uniformly among all permutations of size n− 1. Draw an integer kn uniformly at random in
{1, . . . , n}, and set σ(n)

n = kn, and

σ(n)

i =

{
σ(n−1)

i if σ(n−1)

i < kn

σ(n−1)

i + 1 otherwise.

One can indeed check that σ(n) is uniformly distributed among all permutations of size n
in HP . Executing this random sampling of σ(n) simultaneously with M (note that, for all
n ≥ 3, σ(n−1) = σ̂(n), where the notation σ̂ is defined in the definition of M) is the idea of
our sampler:

Using the adequate data structures, as for example by keeping an array of pointers to all leaves
and another one to the last inserted internal node, each insertion in the tree under construction
is done in constant time. We thus get

192 7 Random generation

Figure 7.2: Simulation of different parameters on Increasing Schröder trees. (left) The num
ber of dary nodes. (right) The height and the depth of the (LM) leftmost leaf. The sizes of
the sampled trees range from 1 to 500. (down left) The profile of trees of size 10000. (down
right) Root degree, the lines gets darker as nmoves from 2 to 250, there are 40 trees sampled
for each size

Algorithm 1 Increasing Schröder Tree Builder
1: function TreeBuilder(n)
2: if n = 1 then
3: return the single leaf
4: T = the root labelled by 1 and attached to two leaves
5: ℓ = 2
6: for i from 3 to n do
7: k = rand_int(1, i)
8: if k = i then
9: Add a new leaf to the last added internal node in T
10: else
11: Create a new binary node at position k in T
12: with label ℓ and attached to two leaves
13: ℓ = ℓ+ 1

14: return T
The function rand_int(a, b) returns uniformly at random an integer in {a, a+ 1, . . . , b}.

Theorem 7.2.1. The function TreeBuilder(n) in Algorithm Algorithm 1 is a uniform sampling
algorithm for size n trees. Asymptotically, it operates inO(n) operations on trees and neces
sitates O(n lnn) random bits.

7.2 Efficient uniform samplers for the three models of increasing Schröder trees 193

Since the generation times is almost linear it is possible to generate trees of large sizes, up
to 10000 in few seconds. In Figure 7.2 we simulate these trees with some parameters. Some
of these parameters have already been studied in Section 4.2, namely the average number
of dary nodes in the tree, the depth of the leftmost leaf and the average height of the tree.
However, the profile of the tree has not been studied yet.

7.2.2 Strict monotonic Schröder

To sample uniformly at random a strict monotonic Schröder tree of size n, we could choose a
twostep algorithm. First we sample uniformly an ordered partition of the set {1, . . . , n− 1}
and then with the use the bijection of Section 4.3 we transform it into a strict monotonic
Schröder tree. But here, in this section, we prefer to present a direct algorithm that generates
uniformly a strict monotonic Schröder tree, i.e. without the intermediate step of generating
another combinatorial object like an ordered partition.

We will use the recursive generation method which will turn out to give as directly an un
ranking algorithm as a byproduct of the process.

For both types of algorithms (unranking or recursive generation) some precomputations are
done (only once before the sampling of many objects). We compute (and store) the num
bers of trees of sizes from 1 to n. This calculation is be done with a quadratic complexity
(in the number of arithmetic operations) using the recursive formula for (gn)n≥1 (see Equa
tion (4.22)). This complexity is only achieved if we first compute and memorise all values
of (i!)1≤i≤n. Then it only remains to build the tree of rank r recursively. If r is sampled
uniformly at random in {0, 1, . . . , gn − 1} the algorithm is a uniform sampler and if r is de
terministically chosen, then the algorithm is a classical unranking algorithm. To do this, we
recall that (see Equation (4.18)), for all n ≥ 1,

gn =

(
n− 1

n− 2

)
gn−1 +

(
n− 1

n− 3

)
gn−2 + · · ·+

(
n− 1

0

)
g1, (7.1)

and interpret this equation combinatorially: to build a tree of size n, we take a size ℓ ∈
{1, . . . , n − 1} tree Tℓ constructed with exactly one less iteration. To grow it into a sizen
tree, we interpret the binomial coefficient

(
n−1
ℓ−1

)
as the number of composition of n in ℓ parts:

some of the ℓ leaves of Tℓ are replaced by some internal nodes to which leaves are attached,
some leaves remain leaves. To do that we traverse the tree Tℓ and each time we see a leaf, we
do the following action: if the next part (in the composition) is of value 1, we keep the leaf
unchanged otherwise for a value s > 1, we replace the leaf by an internal node (well labelled
with the currently step number) and attached s leaves to it. We then take the next part of the
composition into consideration and continue the tree traversal.

Focusing on Equation (7.1) and the equation above we see that a function allowing the un
ranking of compositions is necessary. Recall the composition of the integer n into ℓ parts is in
bijection with the number of combinations of (ℓ−1) elements chosen in (n−1) ones. A way
to prove it consists in laying (ℓ− 1) barriers in the sequence of n bullets in order to define ℓ
parts. There are classical algorithms to unrank combinations in the lexicographical order. A
first algorithm has been described by Buckles and Lybanon [BL77]. Another, more efficient,
has just been settled in the technical report [DGH]. For both of them we can easily prove

194 7 Random generation

Figure 7.3: Simulation of different parameters on Strict monotonic Schröder trees. (left) The
number of dary nodes and the number of iteration steps. (right) The height and the depth
of the (LM) leftmost leaf. The sizes of the sampled trees range from 1 to 250. (down) Root
degree, the lines gets darker as n moves from 2 to 100, with 40 trees sampled for each size.

that their average complexity (when ℓ rages over all possibilities) is Θ(n) in the number of
arithmetic operations by having first memoized all factorial values of the numbers from 0 to
n. In the following we develop a simpler approach based on the classical recursive generation
without any lexicographic constraint like in the two mentioned papers. The algorithm is an
unranking method for the composition of integers. It is based on the reverse lexicographic
order (cf e.g. [Rus03]) so that we get an easier implementation2. For simplification, we sup
pose having memoized all values of

(
r
s

)
for r ∈ {1, n} and s ∈ {1, r}. Using the classical

Pascal’s rule for binomial coefficients, we obtain the following recurrence for the number of
composition of n into ℓ:

Cn,ℓ =

(
n− 1

ℓ− 1

)
= Cn−1,ℓ + Cn−1,ℓ−1. (7.2)

We thus deduce Algorithm Algorithm 2 for the unranking method.

2For the composition unranking, note that it would suffice to look for the rank
(
n
ℓ

)
− 1 − r (instead of r)

in order to get the lexicographic order.

7.2 Efficient uniform samplers for the three models of increasing Schröder trees 195

Algorithm 2 Reverse Lexicographic Composition Unranking
1: function UnrankComposition(n, ℓ, r)
2: if n = ℓ and r = 0 then
3: return (1, 1, . . . , 1)

4: if r <
(
n−2
ℓ−1

)
then

5: C :=UnrankComposition(n− 1, ℓ, r)
6: C[0] := C[0] + 1
7: return C
8: else
9: s := r −

(
n−2
ℓ−1

)
10: C := (1) ∪ UnrankComposition(n− 1, ℓ− 1, s)
11: return C

Theorem 7.2.2. The function UnrankComposition is an unranking algorithm (based the re
verse lexicographic order) and calling it with the parameters ℓ ≤ n and a uniformlysampled
integer r in {0, . . . ,

(
n−1
ℓ−1

)
− 1}, gives as output a uniform composition of n in ℓ parts.

Using the memorisation of binomial coefficients, the algorithm needs at most (ℓ − 1) arith
metic operations on big integers.

Proof. We prove that the algorithm is correct by induction on n. The result is true when
n = ℓ = r = 1 since the algorithm returns (1). Fix an integer n and assume that the
algorithm is correct for all ℓ ≤ n−1, and that the total order over compositions is the reverse
lexicographic one (see, e.g., [Rus03] for the definition of the reverse lexicographic order).
Let ℓ be an integer between 0 and n, and r be an integer chosen uniformly at random in
{0, . . . , Cn,ℓ−1}. Equation Equation (7.2) implies that a composition of n in ℓ parts is either
a composition of (n − 1) in ℓ parts whose first part has been increased by one, or it is a
composition of (n− 1) in (ℓ− 1) parts, and a new part equal to 1 is added at the beginning
of the composition. In both cases, the first elements are all greater than the second elements
according to the lexicographic order. The recurrence hypothesis ends the proof since the rank
value r (or s in the second case) is adapted to each of the latter cases.

The number of arithmetic operations is direct when all binomial coefficients are first memo
rised. □

In Equation (7.1) the first term is much bigger than the second one, which is much bigger than
the third one and so on. This approach, focusing first on the dominant terms is an adaptation
to the idea underlying the Boustrophedonic order presented in [FZV94]. It allows to improve
essentially the average complexity of the random sampling algorithm. In our case of strict
monotonic Schröder trees do not follow a standard specification (cf. [FZV94] for details), the
complexity gain is even better. The loop starting in line 6 aims at determining the interesting
term in the sum Equation (7.1), thus the size of the tree in the evolution process letting to
build the tree of rank s and size n.

The traversal T used to substitute some leaves in line 13 determines partly the total order
over the strict monotonic trees. Let α be an strict monotonic tree, and T a given traversal
of all trees. Remark that there is a single evolution process building α (the construction is

196 7 Random generation

Algorithm 3 Strict monotonic Schröder Tree Unranking
1: function UnrankTree(n, s)
2: if n = 1 then
3: return the tree reduced to a single leaf
4: ℓ := 1
5: r := s
6: while r >= 0 do
7: r := r −

(
n−1
ℓ

)
· gn−ℓ

8: ℓ := ℓ+ 1

9: ℓ := ℓ− 1
10: r := r +

(
n−1
ℓ

)
· gn−ℓ

11: T :=UnrankTree(n− ℓ, r mod gn−ℓ)
12: C :=UnrankComposition(n, n− ℓ, r//gn−ℓ)
13: Substitute in T , using traversal T , some leaves according to C
14: return the tree T

The sequences (gℓ)ℓ≤n and (ℓ!)ℓ∈{1,...,n} have been precomputed and stored.
Line 13: The operation // is the Euclidean division.

unambiguous). If α is built at the step ℓ, then we denote by α̃ the single tree (built with ℓ− 1
steps) and α the single composition such that at step ℓ replacing the leaves from α̃ according
to the composition α, using the traversal T , we obtain α.
Here we remark that the whole tree α is strongly dependent from the traversal of the leaves of
α̃ (while some leaves are substituted by an internal nodes attached to new leaves according
to α). We define now how to compare strict monotonic trees (we use the analogous notations
than the latter for all trees).
Definition 7.2.3. Let α and β be two trees. We define α < β if

• the size of α is smaller than the one of β, or
• if both sizes are equal to n and if the size of α̃ is strictly greater than the one of β̃
or if both sizes of α̃ and β̃ are equal and the composition α is smaller than β, using
the reverse lexicographic order over compositions.

Proposition 7.2.4. The order defined over strict monotonic trees is a total order.

The result is direct since all possible cases according to the trees α and β for comparing them
are explored.
Theorem 7.2.5. The function UnrankTree is an unranking algorithm and calling it with the
parameters n and a uniformlysampled integer s in {0, . . . , gn−1} gives as output a uniform
strict monotonic Schröder tree of size n .

The correctness of the algorithm follows directly from the total order over the trees and Equa
tion (7.1).
Theorem 7.2.6. Once the precomputations have been done, the function UnrankTree needs
on average Θ(n) arithmetic operations on big numbers to construct a tree of size n.

Proof. Let us assume that all binomial coefficients (Cn,ℓ)0≤ℓ≤n have been memorised and
prove that, with this information stored, the complexity in terms of arithmetic operations is of

7.2 Efficient uniform samplers for the three models of increasing Schröder trees 197

order Θ(n). Note that if we only memorise the factorial numbers (i!)0≤i≤n−1 the complexity
is at most three times the complexity obtained when memorising the binomial coefficient and
thus still of order Θ(n).

For all n ≥ 1, we denote by an the number of arithmetic operations on big numbers that come
from the loop in line 7 and the calls in lines 11 and 12, when building all trees of size n (i.e.
we sum the number needed for each r ∈ {0, . . . , Cn,ℓ − 1}). The exact value of arithmetic
operations is an +O(ngn), because at each recursive call there is at most a constant number
of operations that are not counted in an. We first analyse an: we have

an =
n−1∑
ℓ=1

(
n− 1

ℓ

)(
(min(ℓ, n− 1− ℓ)− 1 + 2ℓ) gn−ℓ + an−ℓ

)
.

In fact, for the terms with index ℓ, we are interested in the trees α of size n such that their
corresponding tree α̃ is of size n − ℓ. Thus such trees α are counted by

(
n−1
ℓ

)
gn−ℓ. And for

each of them the factor min(ℓ, n− 1− ℓ)− 1 is the the number of operations needed for the
unranking of the composition (we use the symmetry in the binomial coefficients), the factor
2ℓ is the number of multiplication and subtractions in the loop in line 7. Furthermore we have
a1 = 0. By taking an upper bound for the min function, we get that if ā1 = 0, and, for all
n ≥ 2,

ān =
n−1∑
ℓ=1

(
n− 1

ℓ

)
(3ℓ gn−ℓ + ān−ℓ) ,

then an ≤ ān for all n ≥ 1. Using similar calculations as in the proof of Proposition 4.3.3,
we obtain an equation satisfied by the Borel transform of the series associated to (ān):

2
(
BĀ(z)

)′
= ez

(
BĀ(z)

)′
+ 3zez (BG(z))′ .

We thus deduce ān ∼ 3ngn, which concludes the proof. □

Theorem 7.2.7. Once the precomputations have been done, the function UnrankTree needs
on average (n2) arithmetic operations to construct a tree of size n.

Proof. The proof of this comes when we see that the number of arithmetic operations
needed for the unranking of the composition is n. When we were counting the arithmetic
operations on big numbers wewere not counting any operation when entering the if condition.
But now, this counts for one operation. The number of calls to UnrankComposition(n, l, r)
is bounded by n and for each call we do exactly one operation.

For all n ≥ 1, we denote an the number of arithmetic operations that come from the loop
in line 7 and the calls in lines 11 and 12, when building all trees of size n (i.e. we sum the
number needed for each r ∈ {0, . . . , Cn,ℓ − 1}). The exact value of arithmetic operations is
an +O(ngn), because at each recursive call there is at most a constant number of operations
that are not counted in an. Let ā1 = 0, and, for all n ≥ 2,

ān =
n−1∑
ℓ=1

(
n− 1

ℓ

)
(n gn−ℓ + ān−ℓ) ,

198 7 Random generation

It is immediate that for all n ≥ 1, ān ≥ an. We also get as in the previous
ān ∼

n→∞
αn2 gn,

since the EGF of Ā(z) is

2
(
BĀ(z)

)′
= ez

(
BĀ(z)

)′
+ z(zez (BG(z))′)′.

Which concludes the proof. □

Let us give some final remarks for this algorithm. In order to obtain a better time complexity
for the implementation, we must handle an array of pointers to the leaves of the tree under
construction so that the tree traversal is efficient. At each step ℓ, a leaf stored in the array is
replaced by n − ℓ + 1 leaves that must be stored in the array. An efficient way consists in
reusing the cell from the replaced leaf, and the to append all other leaves at the end on the
array. Thus, the most efficient traversal T of the leaves consists to the left right traversal of
the array. But obviously this is not really a natural traversal for the tree. Thus in practice we
use this efficient traversal T .

Some simulations on several parameters are presented in Figure 7.3. The lines between the
points represent the theoretical expected values that we have shown in Section 4.3.

In Figure 7.1, the figures show that the average number of arithmetic operations on big num
ber is Θ(n) and they suggest that the average total number of arithmetic operations is Θ(n2).
We have shown

7.2.3 Strict monotonic general Schröder

In this section we exhibit an efficient way for the uniform sampling of the tree model using
the evolution process.

Once again when r grows, the sequence (fn−r)r decreases extremely fast. Thus for the uni
form random sampling, it will appear more efficient to read Equation (4.27) in the following
way:

fn =

(
n− 1

1

)
2n−2 fn−1 +

2∑
i=1

(
n− 2

i

)
2n−2−i fn−2

+
3∑

i=1

(
n− 3

i

)
2n−3−i

(
2

i− 1

)
fn−3 + · · ·+ f1. (7.3)

Using the latter decomposition the algorithm can now be described as Algorithm 5. Let us
define first the algorithm for unranking a binomial that we give in Algorithm 4. The idea is
to that if we want to choose k elements from n disposable ones. The algorithm gives a rank
to each possible set of elements and then we can return the element the rth element from the(
n
k

)
possible ones.

Algorithm 5 is very similar to the one corresponding to strict monotonic trees. In fact this
new one is a bit more involved than the previous one because of the recurrence formula
for enumerating the tree. However both algorithm cores are very close. First the While

7.2 Efficient uniform samplers for the three models of increasing Schröder trees 199

Algorithm 4 Reverse Lexicographic binomial Unranking
1: function UnrankBinomial(n, ℓ, r)
2: C :=UnrankComposition(n+ 1, ℓ+ 1, r)
3: r := [C[0]]
4: cumul := C[0]
5: for i from 1 to length(C)− 2 do
6: cumul := cumul + C[i]
7: r.append(cumul)

8: return r

Algorithm 5 Strict Monotonic General Tree Unranking
1: function UnrankTree(n, s)
2: if n = 1 then
3: return the tree reduced to a single leaf
4: ℓ := 1
5: r := s
6: i := 1
7: while r >= 0 do
8: t :=

(
n−ℓ
i

)
2n−ℓ−i

(
ℓ−1
i−1

)
9: r := r − t · fn−ℓ

10: i := i+ 1
11: if i > min(ℓ, n− ℓ) then
12: i := 1
13: ℓ := ℓ+ 1

14: if i > 1 then
15: i := i− 1
16: else
17: ℓ := ℓ− 1
18: i := min(ℓ, n− ℓ)

19: r := r + t · fn−ℓ

20: T :=UnrankTree(n− ℓ, r mod fn−ℓ)
21: r := r//fn−ℓ

22: B :=UnrankBinomial(n− ℓ, i, r mod
(
n−ℓ
i

)
)

23: r := r//
(
n−ℓ
i

)
24: F := r//

(
ℓ−1
i−1

)
25: C :=UnrankComposition(ℓ, i, r mod

(
ℓ−1
i−1

)
)

26: Substitute in T , using traversal T , the leaves selected with B with internal nodes
27: and new leaves according to C and the other leaves are changed or not based on F
28: return the tree T

The sequences (fℓ)ℓ≤n and (ℓ!)ℓ∈{1,...,n} have been precomputed and stored.

loop allows to determine the values for ℓ, i and r. Then the recursive call is done using the
adequate rank r mod fn−ℓ. The last lines of the algorithm (for 21 to 27) are necessary to
modify the tree T of size n− ℓ that has just been built. In line 22 we determine which leaves
T will be substituted by internal nodes (of arity at most 2) with new leaves. It is based on the
unranking of combinations that is very close to the unranking of compositions. Then for the
other leaves that are either kept as they are of replaced by unary internal nodes attached to a
leaf we use the integerF seen as a n−ℓ−ibit integer: if the bit #s is 0 then the corresponding

200 7 Random generation

leaf is kept, and if it is 1 then the leaf is substituted. And finally the composition unranking
allows to determine how many leaves are attached to the nodes selected with B.

Figure 7.4: Simulation of different parameters on general strict monotonic Schröder trees.
(left) The number of dary nodes and the number of iteration steps. (right) The height and the
depth of the (LM) leftmost leaf. The sizes of the sampled trees range from 1 to 250. (down)
Root degree, the lines gets darker as n moves from 2 to 100, with 40 trees sampled for each
size.

Theorem 7.2.8. The function UnrankTree is an unranking algorithm and calling it with the
parameters n and a uniformlysampled integer s in {0, . . . , fn−1} gives as output a uniform
strict monotonic general tree of size n .

The correctness of the algorithm follows directly from the total order over the trees deduced
from the decomposition Equation (7.3).

Theorem 7.2.9. Once the precomputations have been done, the function UnrankTree needs
in average Θ(n) arithmetic operations on big numbers to construct a tree of size n.

7.3 General Model uniform random generation 201

The proof for this theorem is analogous to the one for Theorem 7.2.6 corresponding to the
complexity of the tree builder for strict monotonic Schröder trees.

We have depicted some simulations of some parameters in Figure 7.4. These simulations
agree with the theoretical results found in Section 4.4. In fact, we unary nodes are allowed
many of them appear at each iteration step. Since they do not add the final size of the tree
their number can grow quadratically. This also affects the height that becomes linear rather
than logarithmic as we saw with the two other models.

7.3 General Model uniform random generation
In order to have exact size uniform random generation, we need to work with the general
recurrence Equation (5.2) of the evolution process Definition 5.2.1.

We start this section by recalling Definition 5.4.1 seen in Chapter 5:
Definition 7.3.1. We denote by An,r,k,ϕ the set of ordered multisets with elements in N such
that for each ordered multiset a = [a1, . . . , al] ∈ An,k,r,ϕ:

• We have that a1 + · · ·+ al = k.
• The elements a1, . . . , al are ordered decreasingly.
• |a| ∈ r and |a| ≤ (n− k).
• ∀i, 1 ≤ i ≤ l, [zai+1]ϕ(z) > 0.

where |a| represents the size of the list a.

The elements of the set An,k,r,ϕ are used in the main recurrence of the evolution process. It
means that for unranking method to work and even for enumeration purposes we need to be
able to generate these elements. We recall the main recurrence of the process Equation (5.2)
seen in Section 5.4:

Bn =

0 if n < m
1 if n = m
n−1∑
k=1

(∑
a∈An,k,r,ϕ

(n−k)!
(n−k−|a|)!

|occ(a)|∏
i=0,ui ̸=0

ϕ
ui
i+1

ui!

)
Bn−k if n > m

(7.4)

As we will see it is possible to generate a super set of An,k,r,ϕ, namely An,k,N∗,ϕ. We just take
the set of allowed repetitions to be all possible repetitions. Therefore it is immediate that

An,k,r,ϕ ⊂ An,k,N∗,ϕ.

It is then possible to filter the elements An,k,N∗,ϕ to produce exactly the desired set An,k,r,ϕ.
The set An,k,N∗,ϕ is related to restricted integer partitions through a bijection with an inter
mediate object. It will be easier to add an element for the proofs of the bijections to add an
element a0 in the elements of An,k,N∗,ϕ.

For simplicity we will denote and An,k,ϕ for An,k,N∗,ϕ. In fact:

An,k,ϕ =
∞⋃
i=1

An,k,i,ϕ

202 7 Random generation

A related set of objects An,k,r,ϕ that we present hereafter will be used in order to generate
the set An,k,r,ϕ. This set An,k,r,ϕ is closely related to integer partitions for which plenty of
algorithms exist to generate them.

Definition 7.3.2. We denote by An,r,k,ϕ the set of ordered multisets with elements in N∗ such
that for each ordered multiset a = [a1, . . . , al] ∈ An,k,r,ϕ:

• a0 = n− k.
• We have that a1 + · · ·+ al = k.
• The elements a1, . . . , al are ordered decreasingly.
• |a| ∈ r and |a| ≤ (n− k).
• ∀i, 1 ≤ i ≤ l, [zai+1]ϕ(z) > 0.

where |a| represents the size of the list a. we denote by An,k,ϕ

An,ϕ =
n−1⋃
i=1

An,i,ϕ

The same definitions can be done with An,ϕ and An,k,ϕ.

The main difference between An,r,k,ϕ and An,r,k,ϕ, is the fact that the former does not contain
zeros. The former incorporate also an additional element a0, which is useful for the proofs
of the bijection.

We remind that the zeros in An,r,k,ϕ account for building varieties of trees where we have
unary nodes. In fact An,r,k,ϕ in essence in the set of trees where unary nodes are not allowed.
In the end of the generation process, once we can generateAn,r,k,ϕ, it will be simple to modify
it and obtain An,r,k,ϕ. We take each element of An,r,k,ϕ, and some zeros to it and check if the
new element belongs to An,r,k,ϕ.

7.3.1 Generating the elements of An,ϕ from Integer partitions

We will need the same operations that have been defined on An,k,r,ϕ. Therefore we use a
slightly modified version of Definition 5.4.2:

Definition 7.3.3. Let a be an ordered list of integers. We define the maximum function
max to be the function that maps a\{a0} to its greatest element. We define the occurrences
function to be the one such that occ(a) = [u0, . . . , umax(a)]where ui is the number of elements
in a\{a0} equal to i. For example, when a = [4, 3, 1, 1], occ(a) = [0, 2, 0, 1].

From this definition we can immediately write a pseudocode for the occ function, see Algo
rithm 6.

The function occ serves for computing the product of inside the recurrence. We define now
the restricted class of integer partitions that we will use:

Definition 7.3.4. Let Pn,k,ϕ be the set of integer partitions of n: such that for each p =
[p0, . . . , pm] ∈ Pn,k,ϕ:

7.3 General Model uniform random generation 203

Algorithm 6 The occ function
1: function occ(a : an (ordered list))
2: l := copy(a)
3: l.pop(0)
4: res := []
5: for i from 0 to length(l) do
6: res[l[i]] := res[l[i]] + 1

7: return res

copy() copies the element of a list to make complete independent copy of the list.

• We take the decreasing ordering as a canonical order.
• p0 = k.
• for all 1 ≤ i ≤ m, if pi − pi+1 > 0 =⇒ [zi+1]ϕ(z) > 0.

We define

Pn,ϕ =
n−1⋃
k=1

Pn,k,ϕ.

Our main objective is to show an equivalence (a bijection) between An,ϕ and Pn,ϕ. Since
integer partitions are a well known and well studied class of objects. We can use efficient
generation algorithms and adapt them for our problem.

We define the following class of object that will be the intermediate class between An,ϕ and
Pn,ϕ. This intermediate class will help proving the bijection.

Definition 7.3.5. Vn,k,ϕ the set of ordered multisets with elements in N such that for each
ordered multiset v = [v0, v1, . . . , vl] ∈ Vn,k,ϕ:

• v0 = n, v1 = k, vl = 0.
• The sequence is strictly decreasing that is ∀, 0 ≤ i ≤ l − 1, vi < vi−1.
• The spacings (difference between two consecutive elements) is always decreasing,
that is ∀i, 0 ≤ i ≤ l − 2, vi − vi+1 ≥ vi+1 − vi+2.

• ∀i, 1 ≤ i ≤ l − 2, if vi − 2vi+1 + vi+2 > 0 =⇒ [zi+1]ϕ(z) > 0.

For instance, for ϕ(z) = z
1−z

, [6, 4, 3, 0] /∈ V6,4,ϕ while [6, 4, 2, 0] ∈ V6,4,ϕ.

We define

Vn,ϕ =
n−1⋃
k=1

Vn,k,ϕ.

Finally, we define Vn,k,i,ϕ = {v = [v0, v1, v2, . . . , vl] | v ∈ Vn,k,ϕ ∧ v2 = i}.

In Table 7.1, we depict an example of the bijection to be proven between these three classes
of objects. We see on that example that the differences between the elements of Vn,ϕ are
the elements of the integer partition. Now we will show the correspondence between these
classes. The diagram in Figure 7.5 sums up the results.

204 7 Random generation

An,ϕ Vn,ϕ Pn,ϕ
M

G

N

F

Figure 7.5: The bijections between An,ϕ, Vn,ϕ, Pn,ϕ.

Definition 7.3.6. The function M is a mapping from An,ϕ to Vn,ϕ such that ∀a ∈ An,ϕ, if
a = [a1, . . . , al], occ(a) = [u0, . . . , umax(a)], andm = max(a) we have:

• v0 = sum(a).
• vm = um, vm+1 = 0
• ∀i, 1 ≤ i ≤ m− 1, vm−i = um−i + 2vm−i+1 − vm−i+2.

Vn,ϕ An,ϕ Pn,ϕ

[7, 1, 0] [6, 1] [6, 1]
[7, 2, 0] [5, 1, 1] [5, 2]
[7, 2, 1, 0] [5, 2] [5, 1, 1]
[7, 3, 0] [4, 1, 1, 1] [4, 3]
[7, 3, 1, 0] [4, 2, 1] [4, 2, 1]
[7, 3, 2, 1, 0] [4, 3] [4, 1, 1, 1]
[7, 4, 1, 0] [3, 2, 1, 1] [3, 3, 1]
[7, 4, 2, 0] [3, 2, 2] [3, 2, 2]
[7, 4, 2, 1, 0] [3, 3, 1] [3, 2, 1, 1]
[7, 4, 3, 2, 1, 0] [3, 4] [3, 1, 1, 1, 1]
[7, 5, 3, 1, 0] [2, 3, 2] [2, 2, 2, 1]
[7, 5, 3, 2, 1, 0] [2, 4, 1] [2, 2, 1, 1, 1]
[7, 5, 4, 3, 2, 1, 0] [2, 5] [2, 1, 1, 1, 1, 1]
[7, 6, 5, 4, 3, 2, 1, 0] [1, 6] [1, 1, 1, 1, 1, 1, 1]

Table 7.1: Table of values for V7,ϕ,A7,ϕ and P7,ϕ with ϕ(z) = z
1−z

and r = N∗

Proposition 7.3.7. The mappingM is injective.

Proof. The proof is postponed to Section 7.5.1. □

We define now what we call the num function. This function will be used in the mapping G.
In essence num counts the number

Definition 7.3.8. We define num(v, n) by the following. Let m = last(v), where last(v) is
the last index i such that vi > 0. Then num(v, n) is defined as the ordered list a such that

7.3 General Model uniform random generation 205

• a0 = n− (
|v|−1∑
i=0

ivi).

• For i going from 0 tom− 1, append vi occurrences of i to the list a.

For example, d = [0, 2, 0, 1], n = 9, num(d, 9) = [4, 3, 1, 1].

Remark 7.3.9. We have that ∀a ∈ An,ϕ, num(occ(a), n) = a.

From Figure 7.5, we see that for our application. Since we will generate An,ϕ from Pn,ϕ, we
will give the pseudocodes of the mappings G and F because they go to the right direction.

Definition 7.3.10. The function G is a mapping from Vn,ϕ to An,ϕ such that ∀v ∈ Vn,ϕ, if
v = [v0, , . . . , vl]. We construct an new ordered list b having:

• bl−2 = vl−1.
• ∀i, 1 ≤ i ≤ l − 3, bi = vi − 2vi+1 + vi+2.

Then the result of the mapping is a new list a = [v0 − v1] + num(b, n). Where “+” is the
operation of concatenation of two ordered lists.

The pseudocode of G is presented in Algorithm 7. In the following Propositions we will
prove that N and F form a bijection.

Algorithm 7 The mapping G
1: function v_to_arities(v : (ordered list))
2: res := [v[0]− v[1]]
3: for i from 1 to length(v) do
4: if length(v)− 1− i ≥ 2 then
5: k := v[i]− 2v[i+ 1] + v[i+ 2]
6: for j from 0 to k − 1 do
7: res.insert(i)

8: else if length(v)− 1− i = 1 then
9: k := v[i]− 2v[i+ 1]
10: for j from 0 to k − 1 do
11: res.append(i)

12: else
13: k := v[i]
14: for j from 0 to k − 1 do
15: res.append(i)

16: x := res.pop(0)
17: res.sort_reverse_order()
18: res.insert(0, x)
19: return res

pop(i) function, removes ith element from a list and returns it.
insert(i, e) function, insert the element e at the ith position of the list.

sort_reverseorder() function, sorts a list of element in a decreasing order.

Proposition 7.3.11. The mapping G is injective.

206 7 Random generation

The proof is postponed to Section 7.5.1.

Proposition 7.3.12. ∀a ∈ An,ϕ,G(M(a)) = a.

Proof. The proof is postponed to Section 7.5.1. □
Remark 7.3.13. The mapping G is the inverse mapping ofM

From these previous Propositions the bijection between An,ϕ and Vn,ϕ follows immediately.

Theorem 7.3.14. The mappingM and its inverse G is a bijection between An,ϕ and Vn,ϕ.

Proof. The result follows directly from Proposition 7.3.7, Proposition 7.3.11 and Propo
sition 7.3.12. □

Now we show the second bijection between Pn,ϕ and Vn,ϕ. We will follow the same steps
as we did for the first bijection. We give the definitions of the mappings N and F . We give
the pseudocode of F since it is the direction of interest to us for the generation. Finally, we
prove the bijection.

Definition 7.3.15. The functionN is a mapping from Vn,ϕ to Pn,ϕ. If v = [v0, . . . , vm] ∈ Vn,ϕ,
and p = [p0, . . . , pm−1]. We define ∀i, 0 ≤ i ≤ m− 1, pi = vi − vi+1. Then N (v) = p.

Definition 7.3.16. The functionF is a mapping from Pn,ϕ toNn,ϕ. If p = [p0, . . . , pm] ∈ pn,ϕ,
and v = [v0, . . . , vm+1]. We define v0 = sum(p) ∀i, 0 ≤ i ≤ m, vi+1 = vi − pi. Then
F(p) = v.

From the definition ofF it is possible to directly write a pseudocode for it that we present in
Algorithm 8. Both definitions are simple. In fact, the elements ofPn,ϕ are just the differences
between the elements of Vn,ϕ.

Algorithm 8 The mapping F
1: function part_to_v(p : an integer partition (ordered list))
2: n := sum(p)
3: res := [n]
4: for i from 0 to length(p)− 1 do
5: res.append(res[i]− p[i])

6: return res

The append(e) function appends the element e to the end of an existing list.

Proposition 7.3.17. The mapping N is injective.

The proof is in Section 7.5.1.

Proposition 7.3.18. ∀v = [v0, . . . , vm] ∈ Vn,ϕ, F(N (v)) = v.

The proof is in Section 7.5.1.

Remark 7.3.19. F is the inverse function of V

7.3 General Model uniform random generation 207

The bijection follows directly from the previous Propositions.
Theorem 7.3.20. The mapping V and its inverse F is a bijection between Vn,ϕ and Pn,ϕ

Proof. The result follows from Proposition 7.3.17 and Proposition 7.3.18. □

7.3.2 Sampling algorithm

We can now find a new recurrence to our general problem by using the bijections. We first
need to show a small result. In order to make our random generation Algorithm we needed
to generate the set An,k,r,ϕ. The problem has now been simplified to the one of generating
integer partitions and then use the mappings F and G defined in Definition 7.3.10 and Defi
nition 7.3.16 to get the set An,k,ϕ and filter it to get An,k,r,ϕ.

Algorithm 9 The inner product of the recurrence : (n−k)!
(n−k−|a|)!

|occ(a)|∏
i=0,ui ̸=0

ϕ
ui
i+1

ui!

1: function prod(a : an (ordered list), n :integer, k :integer, ϕ : function N∗ → N∗)
2: l := occ(a)
3: p := 1
4: for i from 0 to length(l)− 1 do
5: if l[i] 6= 0 then

6: p := p× ϕ
l[i]
i+1

(l[i])!

7: p := p× (n−k)!
(n−k−length(a)+1)!

8: return p

We need now to make the algorithm that generates all partitions of size n and filter them
according to ϕ(z) and the set r of allowed repetitions to generate An,r,ϕ. Finally, in order to
generate An,r,ϕ, we need to see where it is possible to add 0 elements since the set An,r,ϕ has
no zeros. For example we see that in Table 7.1, unary nodes are allowed since ϕ1 = 1. But
no element in A7,z/(1−z) contains zeros.

Therefore, in order to generateA7,z/(1−z) from A7,z/(1−z), we take each element in A7,z/(1−z),
and make new sets with zeros as long as the condition |a| ≤ (n− k) is met.

Algorithm 10 Check if the node arities are accepted (i.e all arities belong to ϕ(z)).
1: function check_node_arities(a : an (ordered list) , ϕ : function N∗ → N∗)
2: for i from 1 to length(a)− 1 do
3: if ϕ(a[i] + 1) = 0 then
4: return 0
5: return 1

Algorithm 12, generates exactly the set An,r,ϕ of elements required for the recurrence Equa
tion (7.4). Since it generates An,r,ϕ through the mappings F and G defined by the functions
part_to_v and v_to_arities. Once this is done, for each element of the resulting set we try
to add zeros (i.e unary nodes are allowed) to see if they are allowed in terms of arities through
ϕ and if they are allowed in terms of the number of nodes that can grow in one iteration step
through the set r.

208 7 Random generation

Algorithm 11 Check if the number of repetitions is accepted (i.e the number of node added
at this step is in r).
1: function check_nb_repetitions(a : an (ordered list), r : function N∗ → {0, 1})
2: if r(length(a)− 1) = 1 then
3: return 1
4: else
5: return 0

Algorithm 12 Generate An,r,ϕ

1: function generate_A(n : integer, , ϕ : function N∗ → N∗, r : function N∗ → {0, 1})
2: res := []
3: l := generate_partitions(n)
4: for e ∈ l do
5: e.sort_reverse_order()
6: v := part_to_v(e)
7: a := v_to_arities(v)
8: if check_node_arities(a, ϕ) = 1 then
9: if check_nb_repetitions(a, r) = 1 then
10: res.append(a)

11: if ϕ(1) > 0 then
12: for i from length(a)− 1 to a[0]− 1 do
13: tmp := a.copy()
14: tmp.append(0)
15: if check_nb_repetitions(tmp) = 1 then
16: res.append(tmp)

17: return res

generate_partitions(n) function, returns a list of all integer partitions of n. Each element is an ordered list
of integers

If we let:

tn,k =
∑

a∈An,k,r,ϕ

(n− k)!

(n− k − |a|)!

|occ(a)|∏
i=0,ui ̸=0

ϕui
i+1

ui!
,

It is possible to compute tn,k from An,r,ϕ, we only need to go through An,r,ϕ and keep the
elements that starts with n− k, then sum the inner products using Algorithm 9.

Theorem 7.3.21. The precomputations can be done in O
(
e
√
n
)
arithmetic operations.

Proof. The precomputations involve computing the sequence B and the set An,r,ϕ. As
we saw the set An,r,ϕ is built from integer partitions of n which have complexity:

O

(
e
√
n

n

)
,

in term of the number of arithmetic operations, see [YKKN07] for more details. Each integer
partition is then analysed and we try to add zeros to it which necessitates at worst case n
operations. After storing the values of the set, the sequenceB can be computed inO (n2). □

7.3 General Model uniform random generation 209

Algorithm 13 Sampling
1: function SampleTree(n : integer, ϕ : function N∗ → N∗, r : function N∗ → {0, 1})
2: if n = 1 then
3: return the tree reduced to a single leaf
4: s := randint(0, B[n])
5: k := 1
6: while s >= 0 do
7: s := s− tn,k ×B[n− k]
8: k := k + 1

9: k := k − 1
10: T :=SampleTree(n− k, ϕ, r)
11: weights := []
12: for e ∈ An,k,r,ϕ do
13: weights.append(prod(e, n, k, ϕ)/tn,k

14: ar :=choice(An,k,r,ϕ,weights)
15: ar.pop(0)
16: col := []
17: for i from 0 to length(ar) do
18: col.append(randint(1, ϕ(i+ 1)))

19: ls := UnrankBinomial(n− k, len(ar))
20: Substitute in T , using traversal T , the leaves selected with in ls with internal nodes of the degrees of

the list ar with colours selected in col
21: return the tree T

The sequences (Bℓ)ℓ≤n and Aℓ,k,r,ϕ for ℓ < n, 1 ≤ k ≤ n− 1 have been precomputed and stored.
choice(list, weights) chooses an element from a list according to the weights of the elements.

Algorithm 13 is based on the recursive generation method. However, we are faced with a
problem in the choice function. Each element of the set An,r,ϕ has a weight, because the
same configuration of new nodes at an iteration step can be put on different leaves. Either,
we can store the weight of an element as a repetition of this element same element and make
a new set and finally sample uniformly from it. If we store exactly An,r,ϕ. Then there is a
need to sample from this set according the weights of each element.

The variable ar, contains the new nodes that will be added to the tree at this ietration step.
The the variable col, contains the color of each new node in ar. Finally, the variable ls, serves
to choose wich leaves will get expanded at the current iteration step.

Theorem 7.3.22. The function SampleTree operates in O
(
e
√
n n2

)
arithmetic operations.

Proof. The number of calls of SampleTree is bounded by n − 1. The UnrankBinomial
and UnrankComposition functions need O(n) arithmetic operations as it has been seen in
Section 7.2.2. Then the choice function is O

(
e
√
n
)
, since it needs to go through all elements

of An,k,r,ϕ. □

210 7 Random generation

7.4 Conclusion

For the three classes of increasing Schröder trees, we saw that some simplifications occur in
the main recurrence, and thus we can take advantage of these situations to design fast uniform
samplers. For increasing Schröder trees, the uniform sampler it very fast, linear in time, so
we can go to big sizes of order 20000 in some seconds. For strict monotonic Schröder trees,
we can go to sizes of order 1000 in few seconds also after having done precomputations.
For the third model general monotonic Schröder trees, the size of the numbers in the main
recurrence are of order n2. Even if, the average number of arithmetic operations on big
numbers is Θ(n), the intrinsic complexity of the model is higher. For this model we can go
to sizes up to 500 in few seconds.

Finally, the generam model relies on generating and storing restricted integer partitions
which can not be done in polynomial time. For the general case we can go to sizes of or
der 50 in few seconds after the precomputations have been made.

Bibliography

[Ald96] David John Aldous. Probability Distributions on Cladograms. In Random Discrete Structures,
pages 1–18. Springer New York, 1996.

[ALSU06] Alfred Vaino Aho, Monica SinLing Lam, Ravi Sethi, and Jeffrey David Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). AddisonWesley Longman Publishing Co., Inc.,
USA, 2006.

[AS95] Laurent Alonso and René Schott. Random Generation of Trees. Springer US, Boston, MA, 1995.
[BBD18] Maciej Bendkowski, Olivier Bodini, and Sergey Dovgal. Polynomial tuning of multiparametric

combinatorial samplers. In 2018 Proceedings of the FifteenthWorkshop on Analytic Algorithmics
and Combinatorics (ANALCO), pages 92–106. SIAM, 2018.

[BBHT17] Axel Bacher, Olivier Bodini, HsienKuei Hwang, and TsungHsi Tsai. Generating Random Per
mutations by Coin Tossing: Classical Algorithms, New Analysis, and Modern Implementation.
ACM Trans. Algorithms, 13(2):24:1—24:43, 2017.

[BDF+16] Olivier Bodini, Matthieu Dien, Xavier Fontaine, Antoine Genitrini, and HsienKuei Hwang. In
creasingDiamonds. In Theoretical Informatics 12th Latin American Symposium (LATIN), pages
207–219, 2016.

[BDGP17] Olivier Bodini, Matthieu Dien, Ant Genitrini, and Frédéric Peschanki. The Ordered and Colored
Products in Analytic Combinatorics: Application to the Quantitative Study of Synchronizations
in Concurrent Processes. In In Proceedings of the Meeting on Analytic Algorithmics and Combi
natorics (ANALCO). SIAM, 2017.

[BDGV18] Olivier Bodini, Matthieu Dien, Antoine Genitrini, and Alfredo Viola. Beyond seriesparallel
concurrent systems: the case of arch processes. In 29th International Meeting on Probabilistic,
Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AOFA), pages 14:1—
14:14, 2018.

[BDMdlS08] Nicolas Broutin, Luc Devroye, Erin McLeish, and Muriel de la Salle. The height of increasing
trees. Random Struct. Algorithms, 32(4):494–518, 2008.

[Ben73] Edward A. Bender. Central and local limit theorems applied to asymptotic enumeration. Journal
of Combinatorial Theory, Series A, 15(1):91–111, 1973.

[Ben74] Edward A. Bender. Asymptotic Methods in Enumeration. SIAM Review, 16(4):485–515, 1974.
[BFS92] François Bergeron, Philippe Flajolet, and Bruno Salvy. Varieties of increasing trees. In CAAP,

pages 24–48, 1992.
[BGGW20] Olivier Bodini, Antoine Genitrini, Bernhard Gittenberger, and Stephan Wagner. On the number

of increasing trees with label repetitions. Discrete Mathematics, 343(8):111722, 2020.
[BGMN20] Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima. Strict monotonic trees aris

ing from evolutionary processes: combinatorial and probabilistic study. 2020.
[BGN19] Olivier Bodini, Antoine Genitrini, and Mehdi Naima. Ranked Schröder Trees. In 2019 Proceed

ings of the Sixteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pages
13–26. SIAM, 2019.

[BGNS20] Olivier Bodini, Antoine Genitrini, Mehdi Naima, and Alexandros Singh. Families of Monotonic
Trees: Combinatorial Enumeration and Asymptotics. In 15th International Computer Science
Symposium in Russia (CSR), pages 155–168, 2020.

[BGP16] Olivier Bodini, AntoineGenitrini, and Frédéric Peschanski. AQuantitative Study of Pure Parallel
Processes. Electronic Journal of Combinatorics, 23(1):P1.11, 2016.

[Big79] Norman Linstead Biggs. The roots of combinatorics.HistoriaMathematica, 6(2):109–136, 1979.

211

212 Bibliography

[BL77] Bill P Buckles and Matthew Lybanon. Algorithm 515: Generation of a Vector from the Lexico
graphical Index [G6]. ACM Trans. Math. Softw., 3(2):180–182, 1977.

[Bli87] Johann Blieberger. Monotonically labelled Motzkin trees. Discrete Applied Mathematics,
18(1):9–24, 1987.

[BMLMN15] Mireille BousquetMélou, Markus Lohrey, Sebastian Maneth, and Eric Noeth. XML Compres
sion via Directed Acyclic Graphs. Theory of Computing Systems, 57(4):1322–1371, 2015.

[BO99] Carl M Bender and Steven A Orszag. Advanced Mathematical Methods for Scientists and Engi
neers: Asymptotic methods and perturbation theory. Springer, 1999.

[Bod10] Olivier Bodini. Autour de la génération aléatoire sous modèle de Boltzmann. In Habilitation
memoir. Université Pierre et Marie Curie, 2010.

[Bol01] Béla Bollobás. Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge Uni
versity Press, 2 edition, 2001.

[Bón12] Miklós Bóna. Combinatorics of permutations. CRC Press, 2012.
[BP10] Olivier Bodini and Yann Ponty. Multidimensional Boltzmann sampling of languages. Proceed

ings of the 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods
in the Analysis of Algorithms (AOFA), pages 49–64, 2010.

[Bro11] Lyle D Broemeling. An account of early statistical inference in Arab cryptology.American Statis
tician, 65(4):255–257, 2011.

[BRS12] Olivier Bodini, Olivier Roussel, and Michèle Soria. Boltzmann samplers for firstorder differen
tial specifications. Discrete Applied Mathematics, 160(18):2563–2572, 2012.

[Car59] Leonard Carlitz. Eulerian Numbers and Polynomials.Mathematics Magazine, 32(5):247, 1959.
[CCG18] Brigitte Chauvin, Julien Clément, and Danièle Gardy. Arbres pour l’algorithmique, volume 83.

Springer, 2018.
[CCLR09] Stein Clifford, Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms, 3rd edition. MIT press, 2009.
[Cha08] Charalambos A. Charalambides. Enumerative combinatorics. ACM SIGACT News, 2008.
[CHY00] Hua Huai Chern, HsienKuei Hwang, and YeongNan Yeh. Distribution of the number of con

secutive records. Random Structures & Algorithms, 17(34):169–196, 2000.
[CMST17] Jacek Cichoń, AbramMagnery, Wojciech Szpankowskiz, and Krzysztof Turowskix. On symme

tries of nonplane trees in a nonuniform model. 14th Workshop on Analytic Algorithmics and
Combinatorics, (ANALCO), pages 156–163, 2017.

[Com12] Louis Comtet. Advanced Combinatorics: The Art of Finite and Infinite Expansions. Springer
Science & Business Media, 2012.

[Con12] John Horton Conway. The book of numbers. Springer Science & Business Media, 2012.
[CPQ96] Douglas E. Critchlow, Dennis K. Pearl, and Chunlin Qian. The triples distance for rooted bifur

cating phylogenetic trees. Systematic Biology, 45(3):323–334, 1996.
[CT05] ThomasMCover and Joy A Thomas. Elements of Information Theory. JohnWiley & Sons, 2005.
[Dev90] Luc Devroye. On the Height of Random mary Search Trees. Random Struct. Algorithms,

1(2):191–204, 1990.
[DFLS04] Philippe Duchon, Philippe Flajolet, Guy Louchard, andGilles Schaeffer. Boltzmann samplers for

the random generation of combinatorial structures. Combinatorics Probability and Computing,
13(45):577–625, 2004.

[DGH] Cyann Donnot, Antoine Genitrini, and Yassine Herida. Unranking Combinations Lexicographi
cally: an efficient new strategy compared with others.

[Die17] Matthieu Dien. Concurrent process and combinatorics of increasingly labeled structures : quan
titative analysis and random generation algorithms. (Processus concurrents et combinatoire des
structures croissantes : analyse quantitative et algorithmes de génération aléatoi. PhD thesis,
Pierre and Marie Curie University, Paris, France, 2017.

[DIMR09] Michael Drmota, Alex Iksanov, Martin Moehle, and Uwe Roesler. A limiting distribution for the
number of cuts needed to isolate the root of a random recursive tree. Random Struct. Algorithms,
34(3):319–336, 2009.

Bibliography 213

[Drm03] Michael Drmota. An analytic approach to the height of binary search trees II. ACM, 50(3):333–
374, 2003.

[Drm09] Michael Drmota. Random trees: An interplay between combinatorics and probability. Springer
Science & Business Media, 2009.

[Dur06] Rick Durrett. Random Graph Dynamics. Cambridge Series in Statistical and Probabilistic Math
ematics. Cambridge University Press, 2006.

[ER59] Paul Erdös and Alfréd Rényi. On random graphs. Publicationes mathematicae, 6(26):290–297,
1959.

[EY25] F. Y. E. and G. Udny Yule. A Mathematical Theory of Evolution Based on the Conclusions of
Dr. J. C. Willis, F.R.S. Journal of the Royal Statistical Society, 88(3):433, 1925.

[Fel03] Joseph Felsenstein. Inferring phylogenies. Sinauer Associates, 2003.
[FFP07] Philippe Flajolet, Éric Fusy, and Carine Pivoteau. Boltzmann sampling of unlabelled structures.

Proceedings of the 9th Workshop on Algorithm Engineering and Experiments and the 4th Work
shop on Analytic Algorithms and Combinatorics (ANALCO), pages 201–211, 2007.

[FGM97] Philippe Flajolet, Xavier Gourdon, and Conrado Martínez. Patterns in random binary search
trees. Random Structures & Algorithms, 11(3):223–244, 1997.

[FO90] Philippe Flajolet and Andrew Odlyzko. Singularity Analysis of Generating Functions. SIAM
Journal on Discrete Mathematics, 3(2):216–240, 1990.

[FS06] Dominique Foata and MarcelPaul Schützenberger. Théorie géométrique des polynômes eu
lériens, volume 138. Springer, 2006.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009.

[FSS90] Philippe Flajolet, Paolo Sipala, and Jean Marc Steyaert. Analytic variations on the common
subexpression problem. In International Colloquium on Automata, Languages, and Program
ming (ICALP), volume 443 LNCS, pages 220–234. Springer, New York, 1990.

[FZV94] Philippe Flajolet, Paul Zimmerman, and Bernard Van Cutsem. A calculus for the random gener
ation of labelled combinatorial structures. Theoretical Computer Science, 132(12):1–35, 1994.

[Gal73] Francis Galton. Problem 4001. Educational Times, 1(17):4, 1873.
[Gar78] Martin Gardner. Bellsversatile numbers that can count partitions of a set, primes and even

rhymes. Scientific American, 238(5):24—30, 1978.
[Gen17] Antoine Genitrini. Combinatoire énumérative et analytique en Logique Propositionnelle et en

Théorie de la Concurrence: Vers une quantification de l’expressivité des modèles. PhD thesis,
Sorbonne Université, 2017.

[GGKW20] Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers, and Michael Wallner. Asymptotic
enumeration of compacted binary trees of bounded right height. Journal of Combinatorial The
ory. Series A, 172:1–43, 2020.

[Gil59] Edgar Nelson Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144,
1959.

[GJ04] Ian Goulden and David M. Jackson. Combinatorial Enumeration, 2004.
[GKP94] Ronald L Graham, Donald E Knuth, and Oren Patashnik. Concrete Mathematics: A Foundation

for Computer Science. AddisonWesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd
edition, 1994.

[GMS18] Zbigniew Gołe�biewski, Abram Magner, and Wojciech Szpankowski. Entropy and optimal com
pression of some general plane trees. ACM Transactions on Algorithms, 15(1):1–23, 2018.

[Gre91] Daniel H Greene. Labelled Formal Languages and Their Uses., 1991.
[GvRB+12] Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J.H. Jacobs, and Koen Langendoen.Mod

ern Compiler Design. Springer Science & Business Media, 2012.
[Hen91] Peter Henrici. Applied and computational complex analysis. {V}ol. 2. Wiley Classics Library.

John Wiley & Sons, Inc., New York, 1991.
[HM04] Elliotte Harold and Scott Means. XML in a Nutshell, 2004.
[Hwa98] HsienKuei Hwang. On Convergence Rates in the Central Limit Theorems for Combinatorial

Structures. European Journal of Combinatorics, 19(3):329–343, 1998.

214 Bibliography

[Inc44] Edward Lindsay Ince. Ordinary Differential Equations. Dover Publications, New York, 1944.
[Jan10] Svante Janson. A divertent generating function that can be summed and analysed analytically.

Discret. Math. Theor. Comput. Sci., 12(2):1–22, 2010.
[JKP11] Svante Janson, Markus Kuba, and Alois Panholzer. Generalized Stirling permutations, families

of increasing trees and urn models. Journal of Combinatorial Theory. Series A, 118(1):94–114,
2011.

[Kem93] Rainer Kemp. Monotonically labelled ordered trees and multidimensional binary trees. In Inter
national Symposium on Fundamentals of Computation Theory (FCT), pages 329–341. Springer,
1993.

[Kir84] Peter Kirschenhofer. On the average shape of monotonically labelled tree structures. Discrete
Applied Mathematics, 7(2):161–181, 1984.

[Knu98] Donald E Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and searching.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

[Knu05] Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating All
Combinations and Partitions. AddisonWesley Professional, 2005.

[Knu13] Donald E Knuth. Two thousand years of combinatorics. Combinatorics: Ancient & Modern,
pages 3–37, 2013.

[KP07] Markus Kuba and Alois Panholzer. On the degree distribution of the nodes in increasing trees.
Journal of Combinatorial Theory, Series A, 114(4):597–618, 2007.

[KP16] Markus Kuba and Alois Panholzer. Combinatorial families of multilabelled increasing trees and
hooklength formulas. Discrete Mathematics, 339(1):227–254, 2016.

[Mah92] Hosam M Mahmoud. Evolution of random search trees. Wiley New York, 1992.
[Mil06] Peter David Miller. Applied Asymptotic Analysis. Graduate studies in mathematics. American

Mathematical Society, 2006.
[MM78] Amram Meir and John W Moon. On the altitude of nodes in random trees. Canad. J. Math.,

30(5):997–1015, 1978.
[MM03] Conrado Martínez and Xavier Molinero. Generic algorithms for the generation of combinato

rial objects. In In International Symposium on Mathematical Foundations of Computer Science
(MFCS), volume 2747, pages 572–581. Springer Berlin Heidelberg, 2003.

[Mol05] Xavier Molinero. Ordered Generation of Classes of Combinatorial Structures. Thesis, Universi
tat Politècnica de Catalunya, 2005.

[Moo74] John W Moon. The distance between nodes in recursive trees, pages 125–132. London Mathe
matical Society Lecture Note Series. Cambridge University Press, 1974.

[Mor04] Katherine Morris. On Parameters in Monotonically Labelled Trees. In Mathematics and Com
puter Science III, pages 261–263. Birkhäuser Basel, 2004.

[MP05] Katherine Morris and Helmut Prodinger. Monotone tree structures revisited, 2005.
[MTS18] Abram Magner, Krzysztof Turowski, and Wojciech Szpankowski. Lossless Compression of

Binary Trees With Correlated Vertex Names. IEEE Transactions on Information Theory,
64(9):6070–6080, 2018.

[Muc97] Steven S Muchnick. Advanced compiler design and implementation. Morgan Kaufmann, San
Francisco, CA, 1997.

[NEV86] Jacques NEVEU. Arbres et processus de GaltonWatson. Annales de l’I.H.P. Probabilités et
statistiques, 1986.

[NW75] Albert Nijenhuis and Herbert S Wilf. Combinatorial algorithms. Computer science and applied
mathematics. Academic Press, New York, NY, 1975.

[Odl95] Andrew M Odlyzko. Asymptotic enumeration methods. Handbook of Combinatorics, 2:1063–
1229, 1995.

[Pip10] Nicholas Pippenger. The Hypercube of Resistors, Asymptotic Expansions, and Preferential Ar
rangements.Mathematics Magazine, 83(5):331–346, 2010.

[Pit84] Boris Pittel. On growing random binary trees. Journal of Mathematical Analysis and Applica
tions, 103(2):461–480, 1984.

Bibliography 215

[Pit94] Boris Pittel. Note on the heights of random recursive trees and random m�ary search trees. Ran
dom Structures & Algorithms, 5(2):337–347, 1994.

[Pól54] Geörge Pólya. Mathematics and Plausible Reasoning: Induction and Analogy in Mathematics.
Princeton University Press, 1954.

[PP07] Alois Panholzer and Helmut Prodinger. Level of nodes in increasing trees revisited. Random
Structures and Algorithms, 31(2):203–226, 2007.

[PU83] Helmut Prodinger and Friedrich J Urbanek. On monotone functions of tree structures. Discrete
Applied Mathematics, 5(2):223–239, 1983.

[RK11] Robert Sedgewick and Kevin Wayne. Algorithms 4th Edition. AddisonWesley, 2011.
[Rou12] Olivier Roussel.Génération aléatoire de structures ordonnées par le modèle de Boltzmann. PhD

thesis, Paris 6, 2012.
[Rus03] Frank Ruskey. Combinatorial generation. 2003.
[RW15] Dimbinaina Ralaivaosaona and StephanWagner. Repeated fringe subtrees in random rooted trees.

In 12th Workshop on Analytic Algorithmics and Combinatorics 2015, (ANALCO), pages 78–88.
SIAM, Philadelphia, PA, 2015.

[Say12] Khalid Sayood. Introduction to Data Compression. Morgan kaufmann, 2012.
[Sch70] Ernst Schröder. Vier combinatorische Probleme. Zeitschrift für Mathematik und Physik, 15:361–

376, 1870.
[SDH+04] Charles Semple, Philip Daniel, Wim Hordijk, Roderic D.M. Page, and Mike Steel. Supertree

algorithms for ancestral divergence dates and nested taxa. Bioinformatics, 2004.
[Slo06] N.~J.~A. Sloane. The online Encyclopedia of Integer Sequences. Published electronically at {\tt

http://www.research.att.com/~njas/sequences/}, 2006.
[SM95] Robert T Smythe and Hosam M Mahmoud. A survey of recursive trees. Theory of Probability

and Mathematical Statistics, pages 1–28, 1995.
[SM01] Mike Steel and Andy McKenzie. Properties of phylogenetic trees generated by yuletype speci

ation models.Mathematical Biosciences, 170(1):91–112, 2001.
[Sta97] Richard P. Stanley. Hipparchus, Plutarch, Schröder, and Hough. The American Mathematical

Monthly, 104(4):344–350, 1997.
[Ste16] Mike Steel. Phylogeny Discrete and Random Processes in Evolution, volume 89 of CBMSNSF

regional conference series in applied mathematics. SIAM, 2016.
[TT71] S. R. Tims and John Alfred Tyrrell. 3295. Approximate Evaluation of Euler’s Constant. The

Mathematical Gazette, 55(391):65, 1971.
[VC95] Daniel J. Velleman and Gregory S. Call. Permutations and Combination Locks. Mathematics

Magazine, 68(4):243–253, 1995.
[Was87] Wolfgang Wasow. Asymptotic expansions for ordinary differential equations. Dover Publica

tions, Inc., New York, 1987.
[WdB60] Edward Maitland Wright and Nicolaas Govert de Brujin. Asymptotic Methods in Analysis. The

Mathematical Gazette, 44(348):144, 1960.
[Wil05] Herbert S Wilf. Generatingfunctionology. CRC press, 2005.
[YKKN07] Katsuhisa Yamanaka, Shin Ichiro Kawano, Yosuke Kikuchi, and Shin Ichi Nakano. Constant

time generation of integer partitions. IEICE Transactions on Fundamentals of Electronics, Com
munications and Computer Sciences, 2007.

[ZYK13] Jie Zhang, En Hui Yang, and John C. Kieffer. Redundancy analysis in lossless compression of a
binary tree via its minimal DAG representation. IEEE International Symposium on Information
Theory Proceedings (ISIT), pages 1914–1918, 2013.

216 Bibliography

7.5 Appendix A

7.5.1 Proofs for the bijections presented in Section 7.3.1

Proof of Proposition 7.3.7. We proceed in two steps.

(1) Firstly, we’ll show that for all a ∈ An,ϕ,M(a) ∈ Vn,ϕ.
• Let v = M(a), then v0 = sum(a) = n,v1 = v0 − a0 = n− (n− k) = k. Let
us denotem = max(a). We have that vm+1 = 0 and by definition vm = um >
0 and so the subsequence of the last two elements is decreasing. But by the
construction of v, we have that ∀i, 1 ≤ i ≤ m− 2, vm−i = um−i + 2vm−i+1 −
vm−i+2 ≥ um−i + vm−i+1 ≥ vm−i+1 and so the sequence is decreasing in its
entirety.

• For all 0 ≤ i ≤ m we have that for the consecutive differences si = vi−vi+ 1
of elements in v, sm = vm − vm+1 = um > 0 and sm−1 = vm−1 − vm =
um−1 + 2vm = um+1 + 2sm > sm. Once again by definition of v we have that
∀i, 2 ≤ i ≤ m, sm−i = vm−i − vm− i+ 1 = um−i + 3vm−i+1 − vm−i+2 =
um−i + sm−i+1 + 2vm−i+1 > sm−i+1 since vm−i+1 > 0 in this interval.

• Finally, if vi − 2vi+1 + vi+2 > 0 =⇒ vi > 2vi+1 − vi+2 =⇒ ui > 0 =⇒
[zi+1]ϕ > 0.

(2) We now show thatM is indeed injective. Consider a, b ∈ An,ϕ such that a 6= b. Then
the fact thatM(a) 6= M(b) follows from the fact that the construction ofM makes
use of the occ function and the fact that occ(a) cannot equal occ(b) by definition of
occ and An,ϕ.

□

Proof of Proposition 7.3.11. We show first that G(v) ∈ An,ϕ and then we show the injec
tion.

(1) We show that for v ∈ Vn,ϕ, G(v) ∈ An,ϕ.
• Let a = [a0] + num(b, n) = G(v), then a0 = v0 − v1 = n − k. By definition
of num(b, n) the elements are placed in decreasing order. Let l = last(v),

sum(a\{a0}) =
l∑

i=1

ibi = (l−1)vl−1+
l−2∑
i=1

ibi = (l−1)vl−1+
l−2∑
i=1

i(vi−2vi+1+

vi+2) = (l− 1)vl−1 +
l−2∑
i=1

ivi − 2
l−2∑
i=1

ivi+1 +
l−2∑
i=1

ivi+2 = (l− 1)vl−1 +
l−2∑
i=1

ivi −

2
l−1∑
i=2

(i − 1)vi +
l∑

i=3

(i − 2)vi = (l − 1)vl−1 − (l − 1)vl−1 + v1 + 2v2 − 4v2 +

2
l−1∑
i=2

vi − 2
l∑

i=3

vi = v1 − 2v2 + 2v2 = v1 = k.

• Since the spacings in v are deceasing all bis are positive non zero(bi = vi −
2vi+1 + vi+2).

• If 1 ≤ i ≤ l, ai > 0, let j = ai, then j > 0 =⇒ bj > 0 =⇒ vj − 2vj+1 +
vj+2 > 0 =⇒ [zj+1]ϕ > 0 =⇒ [zaj+1]ϕ > 0.

7.5 Appendix A 217

(2) For v, w ∈ Vn,ϕ, such that v 6= w, then let G(v) = [v0 − v1] + num(t, n) and
G(w) = [v0 − v1] + num(r, n) then num(t, n) 6= numn(r, n). because at least one
of vi 6= wi. Therefore G(v) 6= G(w).

□

Proposition 7.3.12. Let v = M(a), v0 = sum(a) and v1 = v0 − a0, and let l =
G(M(a)) = [l0] + num(h, n), where h is an ordered list that result from the first part of
G then l0 = v0−v1 = sum(a)−sum(a)+a0 = a0. Let u = occ(a),m = max(a). We have
that vm+1 = 0, vm = um we get that lm = am. For all 1 ≤ j ≤ m, vj = uj + 2vj+1 − vj+2

and hj = vj − 2vj+1+ vj+2 = uj . Then uj = hj . Since u = h and occ(a) = num(h, n) then
lj = aj . □

Proof of Proposition 7.3.17. ∀v = [v0, . . . , vm] ∈ Vn,ϕ, N (v) ∈ Pn,ϕ. Since v0 =
n, vm = 0, and the elements are strictly decreasing. The spacings make a partition of n.
And if pi − pi+1 > 0 =⇒ vi − 2vi+1 + vi+2 > 0 =⇒ [zi+1]ϕ > 0. Now if v ∈ Vn,ϕ and
w ∈ Vn,k if v 6= w then N (v) 6= N (w) because the spacings between elements of v and w
are necessarily decreasing(by definition). The spacings can not be equal everywhere. □

Proof of Proposition 7.3.18. Let p = N (v) and w = F(p). w0 = sum(p) = n then by
induction, for 1 ≤ i ≤ m, wi = wi−1 − pi− 1 = vi−1 − (vi−1 − vi) = vi. □

218 Bibliography

n
/
k

8
9

10
11

12
13

14
9

[9
]

10
[9
,1
]

[1
0]

11
[9
,1
,1
]

[1
0,
1]

[1
1]

12
[9
,1
,1
,1
]

[1
0,
1,
1]

[1
1,
1]

[1
2]

13
[4
,3
,2
,2
,2
]

[1
0,
1,
1,
1]

[1
1,
1,
1]

[1
2,
1]

[1
3]

14
[4
,2
,2
,2
,2
,2
]

[1
0,
1,
1,
1,
1]

[1
1,
1,
1,
1]

[1
2,
1,
1]

[1
3,
1]

[1
4]

15
[3
,2
,2
,2
,2
,2
,2
]

[1
0,
1,
1,
1,
1,
1]

[1
1,
1,
1,
1,
1]

[1
2,
1,
1,
1]

[1
3,
1,
1]

[1
4,
1]

[1
5]

16
[2
,2
,2
,2
,2
,2
,2
,2
]

[4
,2
,2
,2
,2
,2
,2
]

[1
1,
1,
1,
1,
1,
1]

[1
2,
1,
1,
1,
1]

[1
3,
1,
1,
1]

[1
4,
1,
1]

[1
5,
1]

17
[2
,2
,2
,2
,2
,2
,2
,2
,1
]

[3
,2
,2
,2
,2
,2
,2
,2
]

[1
1,
1,
1,
1,
1,
1,
1]

[1
2,
1,
1,
1,
1,
1]

[1
3,
1,
1,
1,
1]

[1
4,
1,
1,
1]

[1
5,
1,
1]

18
[2
,2
,2
,2
,2
,2
,2
,2
,1
,1
]

[2
,2
,2
,2
,2
,2
,2
,2
,2
]

[1
1,
1,
1,
1,
1,
1,
1,
1]

[1
2,
1,
1,
1,
1,
1,
1]

[1
3,
1,
1,
1,
1,
1]

[1
4,
1,
1,
1,
1]

[1
5,
1,
1,
1]

19
[2
,2
,2
,2
,2
,2
,2
,2
,1
,1
,1
]

[2
,2
,2
,2
,2
,2
,2
,2
,2
,1
]

[1
1,
1,
1,
1,
1,
1,
1,
1,
1]

[1
2,
1,
1,
1,
1,
1,
1,
1]

[1
3,
1,
1,
1,
1,
1,
1]

[1
4,
1,
1,
1,
1,
1]

[1
5,
1,
1,
1,
1]

Table 7.2: An example of Lemma 5.6.5, with ϕi = 2 for 2 ≤ i ≤ 5 and ϕi = (i − 5)! for
i ≥ 5. We see that n0 = 18 and η = 10.

Index

alternating group, 25
ascent, 25

Bell numbers, 26
bifurcating trees, 106
bijection, 52, 53
binary increasing trees, 115
binary search trees, 38
Binary trees, 33
Boltzmann sampling, 189
Borel transform, 11, 111, 130, 137, 141,

153

cluster, 82
colored degree function, 33
coloured degree function, 109, 112
connected monotonic binary trees, 117
connected monotonic Schröder tree, 41,

117
connected monotonic Schröder trees, 117
cycle, 24, 54
cycles, 49, 53

descent, 25
directed acyclic graph, 157

Eulerian numbers, xiii, 3, 25, 57, 58
eulerian numbers, 82
evolution process, 112, 117
Evolution process for a variety of

monotonic Schröder trees, 112
Evolution process for a variety of strict

monotonic Schröder trees, 107
evolution processes, 44
exponential generating function, 9

Fubini numbers, 27

general monotonic Schröder trees, 123
generating functions, 8
graph, 29
graphs, 29

Increasing binary trees, 37
increasing binary trees, 38, 111, 118
increasing labelling distribution, 3
Increasing Schröder trees, 82
increasing Schröder trees, 2, 49, 151
increasing trees, 36, 37, 106, 189
increasingly labelled distribution, 157,

186
incremental processes, 38
indicial polynomial, 18
integer composition, 28
integer partition, 28
integer partitions, 201, 208

kary trees, 33

labelled directed graph, 30
labelled graph, 30
labelled graphs, 91
labelled multigraphs, 30
labelled Schröder tree, 39
labelled tree, 32
Laplace transform, 11
linear differential equation, 17
lossless compression, 157

meromorphic, 13
mirror permutation, 58
monotone, 39
monotone bijection, 39
monotonic binary trees, 121
monotonic Schröder tree, 39

219

220 INDEX

monotonic trees, 108, 112
Motzkin trees, 33
multifurcating trees, 106
multigraph, 30

orbit, 23
Ordered Bell numbers, 14, 27, 114
ordered Bell numbers, 82
Ordered partitions, 82
Ordered set partition, 27
Ordered set partitions, 114
Ordered Stirling partition numbers, 27
ordered tree, 32
ordinary generating function, 8
ordinary generating functions, 3
ordrered Bell numbers, 32
ordrered set partitions, 32

Pólya tree, 157
Pólya trees, 3, 34
Permutations, xiii, 22
permutations, 49, 82
phylogenetic trees, 106
planar tree, 32
plane binary trees, 157
Plane trees, 33
Proper binary trees, 33

random search trees, 160
recursive generation, 189
recursive generation algorithms, 190
recursive generation method, 189
Recursive trees, 37
recursive trees, 38
regular singularity, 18
rise, 25

rooted tree, 31
run, 25
runs, 57, 58, 82

saddlepoint analysis, 154
Schröder trees, 2, 39, 44, 106
set partition, 26
signature, 25
simple trees, 33, 106, 160
simply generated trees, 33
singular expansion, 16
Singularity analysis, 16
Stirling cycle numbers, xiii
Stirling cycle numbers , 24
Stirling numbers, 3
Stirling numbers of the first kind, 24
Stirling numbers of the second kind, 26
Stirling partition numbers, xiii, 26
stretched exponential, 152
strict monotonic, 74
strict monotonic general Schröder trees, 2
strict monotonic Schröder tree, 40, 74,

107, 112
Strict monotonic Schröder trees, 82
strict monotonic Schröder trees, 2, 114
Surjections, 14, 27

tree shapes, 112, 117

undirected graph, 29
uniform distribution, 38
unlabelled binary search trees, 161
unlabelled recursive trees, 161
Unranking algorithms, 189

weakly labelled tree, 32
weighted degree function, 150

Index of Sequences

EIS A000041, 29
EIS A000079, 28
EIS A000081, 35
EIS A000108, 33
EIS A000110, 26
EIS A000142, 24, 37, 116
EIS A000670, 27, 76, 114
EIS A000680, 116
EIS A001003, 22
EIS A001710, 51
EIS A008292, 25
EIS A014606, 116
EIS A014608, 116
EIS A019538, 84
EIS A058307, 95
EIS A059480, 151

EIS A092582, 64
EIS A094112, 64
EIS A126120, 33
EIS A129062, 88
EIS A132393, 24
EIS A132862, 172
EIS A136124, 61, 71
EIS A143491, 61, 71
EIS A144696, 57
EIS A145324, 61
EIS A171792, 85, 115
EIS A178834, 33

221

https://oeis.org/A000041
https://oeis.org/A000079
https://oeis.org/A000081
https://oeis.org/A000108
https://oeis.org/A000110
https://oeis.org/A000142
https://oeis.org/A000670
https://oeis.org/A000680
https://oeis.org/A001003
https://oeis.org/A001710
https://oeis.org/A008292
https://oeis.org/A014606
https://oeis.org/A014608
https://oeis.org/A019538
https://oeis.org/A058307
https://oeis.org/A059480
https://oeis.org/A092582
https://oeis.org/A094112
https://oeis.org/A126120
https://oeis.org/A129062
https://oeis.org/A132393
https://oeis.org/A132862
https://oeis.org/A136124
https://oeis.org/A143491
https://oeis.org/A144696
https://oeis.org/A145324
https://oeis.org/A171792
https://oeis.org/A178834

Index of Open questions

Asymptotic enumeration, 123
Average compaction rate for an any class

of trees under increasingly labelled
distribution, 185

Height of trees, 89

Maximum number of labellings of
nonplane trees, 185

Stretched exponential, 151

Tree interpretation, 83

223

	Résumé
	Abstract
	Remerciements
	Contents
	List of Symbols
	Chapter 1. Introduction
	Chapter 2. Methods
	2.1. Power series
	2.2. Symbolic Methods
	2.2.1. Ordinary generating functions
	2.2.2. Exponential generating functions

	2.3. Combinatorial Borel and Laplace transforms
	2.4. Analytic methods for asymptotics
	2.4.1. Singularity analysis
	2.4.2. Asymptotics of linear differential equations

	Chapter 3. Classical objects in Combinatorics
	3.1. Permutations
	3.1.1. Cycles
	3.1.2. Eulerian numbers and runs

	3.2. Set partitions and Surjections
	3.3. Integer partitions and compositions
	3.4. Graphs
	3.5. Trees
	3.5.1. Simple varieties of trees
	3.5.2. Pólya trees
	3.5.3. Schröder trees
	3.5.4. Increasing trees
	3.5.5. Incremental process for increasing trees
	3.5.6. Monotonic trees

	Chapter 4. Three models of increasing Schröder trees
	4.1. Introduction
	4.2. Increasing Schröder trees
	4.2.1. The model and its context
	4.2.2. Overview of the main results
	4.2.3. Exact enumeration and relationship with permutations
	4.2.4. Iterative construction of a tree
	4.2.5. Bijections with permutations and relationship to internal nodes and depth of a leaf
	4.2.6. Relationship to Eulerian numbers and runs in permutations
	4.2.7. Analysis of typical parameters
	4.2.8. Analysis of the height of a typical increasing Schröder tree

	4.3. Strict monotonic Schröder trees
	4.3.1. The model and its context
	4.3.2. Overview of the main results
	4.3.3. Enumeration and relationship with ordered Bell numbers
	4.3.4. Bijections with ordered Bell numbers and relationship to internal nodes
	4.3.5. Analysis of typical parameters

	4.4. Strict monotonic general Schröder trees
	4.4.1. The model and its enumeration
	4.4.2. Overview of the main results
	4.4.3. Iteration steps and asymptotic enumeration of the trees
	4.4.4. Correspondence with labelled graphs
	4.4.5. Analysis of typical parameters

	4.5. Conclusion

	Chapter 5. General asymptotics for varieties of monotonic Schröder trees
	5.1. Introduction
	5.2. Formal definition and main results
	5.3. Applications
	5.3.1. Double nature of (z)
	5.3.2. Varieties of strict monotonic Schröder trees
	5.3.3. Varieties of connected monotonic Schröder trees
	5.3.4. Varieties of monotonic Schröder trees
	5.3.5. Weakly increasing plane d-ary trees (monotonic d-ary trees)
	5.3.6. Applications of trees with unary nodes

	5.4. Combinatorial model
	5.5. Asymptotic analysis for r={d}
	5.5.1. Asymptotic analysis for r={1}
	5.5.2. Asymptotic analysis for d2

	5.6. Asymptotic analysis for r=N*
	5.7. Asymptotics for general r
	5.8. Asymptotic analysis for r=[m]
	5.9. Asymptotics when unary nodes are allowed
	5.10. Asymptotics where no binary nodes are allowed
	5.11. Conclusion

	Chapter 6. Average compaction of increasing tree models
	6.1. Introduction
	6.2. Average compression of Pólya trees under increasingly labelled distribution
	6.3. Average compression of plane binary trees under increasingly labelled distribution
	6.4. A compressed data structure
	6.5. Conclusion

	Chapter 7. Random generation
	7.1. Introduction
	7.2. Efficient uniform samplers for the three models of increasing Schröder trees
	7.2.1. Increasing Schröder
	7.2.2. Strict monotonic Schröder
	7.2.3. Strict monotonic general Schröder

	7.3. General Model uniform random generation
	7.3.1. Generating the elements of An, from Integer partitions
	7.3.2. Sampling algorithm

	7.4. Conclusion

	Bibliography
	7.5. Appendix A
	7.5.1. Proofs for the bijections presented in sec:randbijection

	Index
	Index of Sequences
	Index of Open questions

