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Resume

The work presented in this thesis has the purpose of building a bridge between data-
based control and conventional control design logics for rejecting complex unknown perio-
dic disturbances acting on linear or a class of nonlinear systems. The main contribution of
the thesis is the triple layer control approach which shows how to combine learning-type
(data-based) control and non-learning-type (conventional) control by means of an iden-
tification process as connecting tool in between. This approach is explained in Chapter
5 of the thesis. A particularly motivating point of the proposed approach is that it can
properly function under complex periodic unknown disturbances both when the system is
linear and nonlinear (performance in linear case is much higher from the one in nonlinear
case for which the reasons will be explained in Chapter 5 and the general conclusion). The
feasibility of this approach is proven with simulation results.

The structure of the thesis is as follows. In Chapter 1, an introduction is given in
order to elaborate on the existing learning-type and non-learning type control methods
and portray the development process of the thesis. In Chapter 2, a study is dedicated
to the iterative learning control (ILC) bibliography where important design concepts for
ILC as well as the main ILC method used throughout thesis (i.e. the norm optimal ILC
(NO-ILC)) are introduced. In Chapter 3, a practical application with a real indoor UAV is
shown as an introductory study which was carried out for testing the feasibility of NO-ILC
and determining whether or not it could be used in the rest of the thesis work. In Chapter
4, the main contribution of the thesis begins to develop with the proposal of a procedure
for automatically tuning the linear feedback controllers which is given the name of learning
based controller tuning (LBCT) workflow. This procedure can be seen as the first attempt
to create a connection between data-based control and conventional control throughout
the thesis. It is demonstrated with the simulation results of an a priori unknown periodic
disturbance rejection problem that ILC can be utilised as a powerful tool for simplifying
the design of the feedback controllers. This whole process actually corresponds to the
transformation of the data-based ILC into a feedback law in an approximate way. Next, in
Chapter 5, the ideas presented in Chapter 4 are developed further and the approach that
is mentioned above as triple layer control is obtained as the main outcome of the thesis.

The final section of the thesis is dedicated to a conclusion that provides some sugges-
tions about future studies in the given topic and it involves the critical view of the author
on various points regarding the applications and approaches conducted during the thesis.

xiii
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One of the main issues of control design can be seen as achieving high controller
performance while at the same time keeping the compromises on system stability and
robustness as low as possible. The challenging part of such control objective comes into play
when the system is subject to unwanted external or internal factors such as disturbances
and uncertainties. Not surprisingly, main issues of engineering design have its focus on
improving disturbance rejection, robustness and performance which are constantly growing
requirements of more rapid and vigorous systems [65]. Handling parametric uncertainties
and external disturbances in situations where the exact model of a system or disturbance is
hard to be found is of fundamental interest in control system design as well as challenging
for in industrial and academic applications [122]. One main source of system uncertainties
originates from the modelling of the dynamics which for most real-life systems are usually
governed by a set of nonlinear equations. The accuracy of these equations suffer from
the lack of understanding by the designer or the available knowledge on the system’s
physics. Consequently, a common fact in system modelling process is to have some residual
uncertainties in the end due to neglected or unmodelled dynamics.

Another source for system uncertainties can be related to the time-variance of the
system dynamics. It is possible that the dynamics of the real system gradually deviates
from its initial model as a result of some external effects during the operation process (e.g.
plant aging). This model inaccuracy may cause an increased uncertainty over operation
time leading to unwanted results. Besides modelling uncertainties, internal or external
system disturbances are also crucial factors in controller performance. The problem of re-
jecting unknown disturbances has fundamental consideration in various applications such
as nano-positioning, active noise control, sinusoidal disturbances rejection of vibrating
structures, control of robotic manipulators and disturbance rejection in gyroscopes [87].
These disturbances can be classified in two groups : periodic and non-periodic (or repeti-
tive and non-repetitive) disturbances. The effect of periodic disturbances usually appear
in systems with rotary elements such as CD players and electrical machines due to any
imbalance, asymmetry or friction during their operation despite the fact that they are
designed to move at a constant angular speed [33]. On the other hand, non-periodic dis-
turbances do not necessarily belong to a specific group of systems. They exist in almost all
practical applications in different forms such as measurement noise, vibrations, windage
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and so on. This means that, if not treated well, non-periodic disturbances can still degrade
the system performance even though the system is dominated by the periodic ones [104].

The classification of disturbances can go further. The final important one that is worth
to mention is the classification made according to whether the disturbance is matched
or unmatched. Various practical systems involve unmatched disturbances (i.e. the control
inputs and disturbances enter the system through different channels) which is still a chal-
lenging factor for the robustness of many methods [65].

1.1 Control of repetitive systems

In repetitive systems, the periodic disturbance rejection usually appears as the primary
focus and the non-repetitive disturbance rejection is taken into account as an additional
step for further improving the performance. Accordingly, the main focus of the sections
hereafter is the periodic disturbances. To begin, one can find a notable amount of methods
in the literature dedicated to suppress the effect of periodic disturbances in repetitive
systems. One categorisation of these methods can be done considering whether they use
the available repetitive data or not, i.e. to divide them into two categories : non-learning-
type methods and learning-type methods. Table 1.1 provides vast majority of the existing
methods in both of these categories (note that the presented classification is according to
the author’s point of view as a control engineer). Here, it can be seen that the number of
methods for the non-learning-type category is larger than that of the learning-type one.
This is due to the fact that non-learning-type methods are not specifically designed for
repetitive systems only while the presented learning-type methods are solely developed for
repetitive systems.

Let us now give details on both categories.

1.1.1 Non-learning-type methods

The first method is the most traditional one in the non-learning-type category which
is called the internal model control (IMC). It is based on a feedback or feedforward control
design using the internal model principle (IMP) given in 1976 by B. A. Francis and W. M.
Wonham in [43]. The idea of IMP can also be seen as a reformulation of the good regulator
theorem by Conant and Ashby from 1970 which states that "every good regulator of a
system must be a model of that system" [32]. According to the IMP the disturbance can
fully be rejected if its model can be properly acquired and placed inside the controller [87].
In case of a reference tracking problem, the same logic requires the reference signal to be
known. If the model of a disturbance (or a reference signal) is known, this means that it
can be written by means of known differential or difference equations or it can be produced
by an exo-system. In the most conventional sense, a repetitive system can be controlled
by designing a state-feedback or output feedback controller based on IMP. However, the
difficulty of finding the required feedback is proportional to the amount of unconsidered
nonlinearity, uncertainty or process dynamics in the internal model. Therefore, the IMC

2



Table 1.1: Methods classification for repetitive system control

Control of repetitive systems
Non-learning-type methods Learning-type methods
Internal Model Control Repetitive Control (RC)
- Forward model IMC Iterative Learning Control (ILC)
- Inverse model IMC Run-to-run Control (R2R)
Robust Control
- High gain feedback control
- H∞ loop shaping
- Variable structure control (VSC)

- Sliding mode control (SMC)
- Terminal SMC (TSMC)

- Loop transfer recovery (LTR)
- Probabilistic robust control
Adaptive control
- Adaptive Feedforward Cancellation(AFC)
- Model Reference Adaptive Control (MRAC)
Disturbance Observer (DOB)
- Active Disturbance Rejection Control (ADRC)
- Extended State Observer (ESO)
- Equivalent Input Disturbance (EID)
Backstepping

design can be quite a tedious process under complex situations. Also, the IMC can yield
both the asymptotic rejection of the disturbances and the asymptotic tracking of reference
signals which are alike and this feature can bring about unwanted side effects in case of
joint disturbance and reference signals [50]. This method family will play an important
role in this manuscript later and the details will be given.

The second method in this category is the robust control that has been developing since
50s. The main idea of robust control is to design static control policies that are able to
deal with uncertainties and disturbances until a certain bound. This means assuming in
the control design stage that the controller will undergo some limit of parameter variation
due to internal/external unknown effects. The earliest attempts of robust approach began
by trying to improve stability margins of linear quadratic Gaussian (LQG) controller using
loop transfer recovery (LTR) [65]. Then, the robustness of the LTR method was found to
be insufficient in case of nonminimum phase systems which lead to the H∞ optimisation
approach [65]. The method is also called H∞ loop shaping by some and it is based on
lowering the sensitivity of the system over its frequency spectrum such that it will be
less effected by any uncertainty or unknown disturbance entering the system later on.
However, H∞ optimisation approach suffer from algebraic and analytic constraints (e.g.
limited information on uncertainties and disturbances, unmodeled dynamics and right
half-plane (RHP) zeros) which together reduce the attainable robustness and performance
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requirements of the control system [65]. Another robust control method that dates back to
early 80s is the high-gain feedback control (see [111, 112]). It is a method that stems from
the idea that any adverse effect or variation on the system can be diminished applying a
sufficiently high feedback gain. Yet, such approach has significant drawbacks in real-life
applications since it becomes a challenge to avoid control saturation (and thus closed-
loop stability) and excitation of high-order unmodelled dynamics [27]. In addition, it can
usually make it difficult to deal with the noise by amplifying it.

The third method in this category is the variable structure control (VSC) that is based
on discontinuous nonlinear control. It is a very old method invented in 50s by Emelyanov
in the Soviet Union (see [41]). The fundamental idea behind this approach is to design
a control law that changes its structure depending on the system’s position in the state-
trajectory. This induces a quick switching behaviour between multiple smooth control laws
with respect to the position in state-trajectory. The most unique property of VSC can be
seen as yielding very robust control systems that are almost fully invariant to external
disturbances and parametric uncertainty [53]. In the literature, the applications of VSC
appear generally under the extension of sliding mode control (SMC) and in more recent
approaches via terminal sliding mode control (TSMC). An SMC has two modes : (1) the
reaching mode (nonsliding mode) which brings the trajectories starting from anywhere in
the state-space to a switching line in finite time and (2) the sliding mode which moves
the trajectory asymptotically to the origin [106]. Besides the praises, SMC is usually criti-
qued because of the chattering phenomenon (high-frequency oscillations) due to switching
nonidealities and the need of high gain for unknown disturbances (see [120] for details).

The fourth method in this category is the adaptive control which came from the idea
of creating controllers that modify themselves with the changing system parameters or
the varying external effects. The adaptive control branch has been developing since 50s
bringing out many different adaptation strategies. The earliest approaches include gain
scheduling, model reference adaptive control (MRAC) and self-tuning regulators (STR)
which have a common framework (a normal feedback loop plus a regulator with adjustable
parameters) that only differs in the way they adjust parameters of the regulator [12].
The challenge of adaptive control is thus to find an efficient update law for changing
the regulator parameters in response to variations in plant and/or disturbance dynamics.
The main idea of gain scheduling is to find a set of gains that will produce the correct
controller for each operating condition. The advantage of gain scheduling is that it allows
a very rapid controller adjustment in response to quick process variations, but it still has
some drawbacks such as having a time consuming design procedure where the gains are
calculated via extensive simulations at each operating condition and being an open-loop
compensation that means an incorrect parameter adjustment can not be corrected [12].
Moreover, the MRAC and the STR approaches are similar in ultimate goals but they
differ in their functioning. The MRAC is based on direct parameter adjustment for the
regulator via processing the plant’s input, output and a reference model signal representing
the desired behaviour in a deterministic manner. On the other hand, the STR is based
on controller parameter adjustment based on processing the online recursive estimation
of the plant current plant parameters. The detailed background on both methods can be
found in [12, 39, 51].
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Apart from these methods, the adaptive feedforward cancellation (AFC) is a very po-
pular approach extended to unknown periodic disturbances. It is based on estimating the
magnitudes and phases of the periodic disturbance harmonics and adding the negatives
of them at the input of the plant such that they do not appear in the output [20] (see
also [18, 19, 33, 58] for more details). A more developed version of AFC called the extended
AFC (E-AFC) designed for unknown and time-varying periodic disturbances can be found
in [72] where also various other adaptive algorithms such as filtered-x least mean square
(FxLMS)-based algorithms and adaptive harmonic steady-state control (ADHSS) are also
mentioned. The main drawback in AFC algorithms is usually the difficulty of the tuning
of the gain values for unknown multi-sunisoidal time-varying disturbances [72]. Although
one can find many more adaptive rejection algorithms such as the adaptive control with
Q-parametrization and partial state reference model control (PSRMC) as given in [63],
they are left to the reader’s curiosity.

The fifth method in this category is the disturbance observation/estimation-based control
(DOBC) (see [50]). The idea of using DOBC came up with an aim of establishing linear
control laws using disturbance estimates [122]. One of the most popular DOBC approaches
can be seen as the active disturbance rejection control (ADRC) which was proposed in late
90s. ADRC is a model free approach that can inherently deal with attenuating unknown
disturbances, uncertainties and nonlineaties which was supported by simulation and expe-
rimental results in various applications [87]. The idea behind ADRC is the extension of the
system model with a state-variable that puts together all the unconsidered disturbances
and uncertainties inside the system model which is then used in a nonlinear feedback to
provide rejection [89]. The estimation component of ADRC is called the extended state
observer (ESO) which observes both the states and external disturbances without needing
a model. Another promising disturbance estimation-based method is the equivalent input
disturbance (EID) (e.g. [97] and [96]) that is also capable of rejecting challenging unknown
disturbances by only using the input and output of the plant without any a priori infor-
mation of the disturbance. The fundamental idea behind EID is based on estimating the
disturbance on the control input channel rather than directly estimating it which seems
more practical since in the end it is the control signal that is used for producing required
rejection [97].

As the final non-data based method, one can count the famous backstepping method
which is a recursive technique for stabilising usually specific class of nonlinear systems.
The main idea is to reduce an initial system until a stable subsystem is reached and
then to design backwards controllers for each outer system until the controller for the
initial system is reached. The main disadvantage of backstepping control can be seen as
the lack of robustness against system parameter variations (seethe conclusion of [40]).
Furthermore, an example of a robust backstepping algorithm that can reject bounded
uncertainties with unknown periodicity in the presence of external disturbances can be
seen in [62]. Moreover, it is also possible to encounter in some works such as [45, 57,
113] the combination of backstepping and ADRC approaches. However, further details are
beyond the scope of this thesis work.
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1.1.2 Learning-type methods

The learning-type control methods should generally be the first preferred option for
repetitive (periodic) and/or cyclic processes [110]. The reason behind such choice is
the large amount of already available data acquired during the operation of these repe-
titive processes. Such data contains a rather useful knowledge about all the repeating
behaviour within the process which can be used to create a system that anticipates
for them in the following repetitions. Neglecting this type of advantage in repetitive
systems can actually be as throwing over a huge precision performance, especially in
a time when the data-storage and powerful data manipulation are widely accessible.

The control tasks of many practical applications have a periodic nature such as CD or
magnetic disk drives, machine tools, the operations of picking, placing or painting via
industrial machines etc. where the goal is to reject or track periodic exogenous signals
while at the same time keeping the performance high in terms of productivity, quality and
precision [35]. In the literature, this control problem has been so far addressed by three
different learning-type control methods : repetitive control (RC), iterative learning control
(ILC) and run-to-run control (R2R). Each of these methods were initially proposed by dif-
ferent authors to solve different problems in different fields such that their characteristics,
specialisations and formulations are different despite the fact that each method is based
on enhancing the control performance via learning from past experience [110].

The nature of the repetitive process in terms of production or functioning needs is one
of the main characteristics defining the distinctions between the learning-type methods.
An industrial process is usually defined as either a continuous process or a batch process.
Originally, the RC and the R2R methods were designed for continuous processes whereas
the ILC method was aimed for batch processes.

In a continuous process the product is delivered continuously which is in contrast with
a batch process where the product comes out discontinuously in groups. For instance,
the batch processes are the most convenient processes for the discontinuous production
of high-value and low-volume products while the continuous processes befit better the
continuous production of high-volume products [110]. The term ’continuous process’
should not be mixed hereafter with the term ’continuous system (or continuous-time
system)’ which is a totally different classification meaning that the time variables of
the system have continuous values. A brief explanation and comparison of RC, ILC
and R2R is given below.

The repetitive control (RC) technique was first proposed in 1981 by the work [54]
where the authors achieved a high tracking precision of a periodic reference within 16
cycles of pulsed operation. Later many other researchers kept utilising the method also for
the rejection of periodic disturbances. The earliest versions of RC are based on internal
model principle (IMP) and they are made of two components : a periodic signal generator
and a stabilising controller for the closed loop system (the initial methods used in the
stabilising controller include stable pole/zero cancellation, zero phase error method, low-
pass FIR filter and pole placement) [118]. It is clear that the initial attempts of RC suffer
from the necessity of knowing the period of the periodic signals. In most scenarios, this
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information may not be available a priori or simply it can be slowly varying which caused
researchers to search for adaptive RC methods that recursively identify the period of the
periodic signal and re-tunes the signal generator to make it possible to reject the unknown
periodic disturbance [118]. The main difference of RC from ILC and R2R is that it is a
feedback-based approach that can be directly integrated inside a pre-designed feedback
loop [49]. This feature allows RC to be easily applicable to continuous processes. The
theoretical foundation of RC concept, which comes from IMP, is based on the fact that
one can generate any periodic signal with period T via utilising a free time-delay system
with a proper initial function [110]. The general form of RC for a discrete-time system is
given in the z-domain as below,

U(z−1) = z−TLRC(z−1)
1− z−TQRC(z−1)E(z−1) (1.1)

where z−1 is the backward shift operator in z-domain, z−1 is the backward shift by the
amount of the period T , E(z−1) = R(z−1) − Y (z−1) is the system error (R(z−1) and
Y (z−1) are the system reference and the system output, respectively), U(z−1) is the system
input, LRC(z−1) is the learning filter (or L-filter) and QRC(z−1) is the Q-filter. The block
diagram of this general RC system is illustrated in Figure 1.1. The control objective of RC
is thus to find proper LRC(z−1) and QRC(z−1) values or forms such that the tracking error
E(z−1) converges to zero as the time goes to infinity (t→∞). This is another distinction
between RC and the other two learning methods. Its design is done in frequency-domain
and the stability and convergence performance analysis are assessed according to process
duration in time axis. Without going into further details, some commonly utilised RC
filters (see [110]) can be provided below :

LRC(z−1) = KRC or LRC(z−1) = KRC(1− z−T ) (1.2)
QRC(z−1) = α1z + α0 + α1z

−1 (1.3)

where KRC ∈ R is a gain value and α0 ∈ R+ and α1 ∈ R+ are filter coefficients with
2α1 + α0 = 1. The L-filter is used for filtering the error (i.e. determines RC’s convergence
rate) while the Q-filter has the purpose of increasing the RC’s robustness. In the following
sections, it will be seen that the same logic exists for the aim of ILC filters.

Figure 1.1: An example of a repetitive controller [110]

The run-to-run control (R2R) is a control technique that emerged in 90s specifically
for the batch processes in the semiconductor industry after the work of Sachs et al. in [94].
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R2R (or run-by-run) process control is a term used for naming the methods that combine
both the statistical process control (SPC) and engineering process control (EPC) in the
semiconductor industry [37]. SPC is a method that is based on process output monitoring,
out of control process detection and causal attribution (e.g. a process is out of control if
the output variation can be assigned to a cause such as a disturbance) [25]. The regulation
of the output variation is obtained by varying the input (or set-point) with a control ac-
tion and this task is not included in SPC, i.e. left to the control engineer. The widespread
applications of SPC can be observed in discrete parts manufacturing where the processes
in general have natural variability and high repetitiveness. On the other hand, the EPC
(or automatic process control (APC)) is a widely used method in chemical processing that
is based on transforming the output variability into the input control variable utilising
the measurements of crucial process variables within a feedback law [25]. The main aim
of R2R control is to benefit from the features of both SPC and EPC (i.e. process mo-
nitoring and measurement (observation) based control) in order to regulate the output
variability. R2R controllers are used to determine the recipe for the batch processes (i.e.
how the process should be updated) and they are usually model-based controllers with an
observer integration [25]. The main motivation behind R2R was the difficulty of having
constant in situ measurements (i.e. the measurements done while the process is running)
in semiconductor manufacturing such as the film thickness of wafers, the gas flow rate
of the equipment etc. [94]. Similar to ILC, R2R updates the recipe between the runs (or
batches/trials) utilising a unified approach of feedforward, feedback and local optimisa-
tion (note that here updating the recipe can be interpreted as updating the process input).
The feedforward feature is used for adjusting the recipe for the next process run based
on the previous process measurement data which is analogous to ILC. Nevertheless, in
R2R applications, sparsely available output measurements are sufficient for performing
the control update whereas in ILC, multiple measurements are needed [110]. Furthermore,
the feedback feature of R2R helps to maintain the system at the local optimum of the
recipe (i.e within some desired performance) under the effect of disturbances. The general
structure of an R2R can be observed in Figure 1.2 and the more details regarding the
method can be found in [73] which is a the recent survey.

Figure 1.2: An example of a run-to-run controller [73]

The iterative learning control, that is the final learning-type method of the section,
is the core of the thesis work and therefore, it is introduced extensively in the following
sections.

8



1.2 Iterative learning control

The concept of iterative learning can be seen as an adaptation of human way of learning
to machines. In humans, the learning of a skill is based on repetitions of the same practices
or tasks over a period of time. In each repetition, the human gets to know the mistakes
that are reoccurring and the improvement towards the skill depends on how these mistakes
are processed by the person. In the sense of iterative learning control (ILC), the ’skill’
is a specific goal of a repetitive (periodic) system such as achieving a certain level of
tracking or rejection performance. The ’reoccurring mistakes’ are the repeating system
errors remaining after each trial of the same task. Finally, the ’improvement’ (i.e. the
gradual learning) is the result of ILC’s performance in correcting these repeating system
errors.

1.2.1 Historical background

Iterative learning control has been a topic in the literature for more than 35 years. Some
authors say that the first ILC approach is even older by mentioning a U.S. patent filed by
Garden in 1967 [44]. Besides, there are other authors mentioning that the idea of ILC begins
by the work of Uchiyama published in 1978 [105]. Although controversial, the vast majority
of researchers still accept that main attraction towards ILC started after the journal paper
written by Arimoto et al. in 1984 [9]. Some other works that also popularised the ILC in
the same year were the ones of Craig [34] and Casalino and Bartolini [26]. Finally, later in
the same year, another work of Arimoto [61] used the name "Iterative Learning Control"
for the first time and since then, this name has been used by all researchers. In 2020, the
importance of ILC can easily be understood by looking at the total number of available
ILC publications at the moment. For the keyword "iterative+learning+control", IEEE
Xplore website currently provides 4192 publications containing conference papers, articles
in journals, magazines and books. Similarly, the number of publications reaches 9780 for
"iterative+learning", 20480 for "iterative+control" and 62456 for "learning+control". This
clearly shows that the topic of iterative learning based control has become a rather active
research area over the years. Moreover, it is worth to mention that [1, 15, 29, 78, 86,
115, 116] are some fundamental books written about ILC theory and applications between
the years 1993 and 2016. Plus, several surveys such as [1] and [80] are useful sources for
understanding the development of ILC approaches over the years.

1.2.2 Fields of use

ILC has been utilised in various applications in different fields over the years. The initial
focus of the ILC works was to improve the performance of industrial robots in repetitive
tasks. Later on, the applications branched into many other fields such as rotary systems,
batch processes, factory processes, chemical processes, biomedical and bioengineering ap-
plications, actuators, semiconductors, power electronics, UAVs, high-speed trains and so
on. A detailed list of ILC applications in these fields are provided below on Table 1.2.
Except the applications written in ’bold’, the information presented on Table 1.2 is based
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on [1] which gives some paper references for each application. Therefore, here only the
’bold’ applications are provided with the references.

1.3 Development of the thesis work

In non-learning-type control, the high-precision tracking and the accommodation of
unknown periodic disturbances (or uncertainties) most of time require tedious analysis.
The results are usually achieved with some limitations and the controller tuning can be
quite conservative due to the mathematical assumptions needed by the methods. Moreo-
ver, even though the desired asymptotic performance is acquired, these methods cannot
improve the transients in the output since they do not have an anticipation property. On
the other hand, the iterative learning control, with its very simple update rule, is capable
of providing very high-precision results in tracking of periodic trajectories and it can re-
move challenging periodic disturbances (including the transients) without needing to know
their frequency content. This property of ILC has been one of the main motivations for
beginning this thesis.

The global objective followed throughout the thesis can be seen as facilitating the
conventional ILC approaches from a practical point of view. The initial preparation for
the thesis was done during a master thesis study at Isae-Supaero based on a 6-month in-
ternship at Onera-Toulouse (February 2017-August 2017). Since October 2017, the thesis
has led to the following contributions in the chronological order :

Contribution 1 (Madrid, 2018 - Rank : A1) IEEE/RJS International Conference
on Intelligent Robots and Systems (IROS)
Subject : A Practical Method to Speed-Up the Experimental Procedure of Itera-

tive Learning Controllers
Contribution 2 (Naples, 2019 - Rank : B1) European Control Conference (ECC)

Subject : Towards the Automatic Tuning of Linear Controllers Using Iterative
Learning Control Under Repeating Disturbances

Contribution 3 (Berlin, July 2020 - Rank : B4) International Federation of Au-
tomatic Control (IFAC) World Congress
Subject : Supervised Output Regulation via Iterative Learning Control for Rejec-

ting Unknown Periodic Disturbances
Contribution 4 (on-going) Nonlinear periodic disturbance rejection by internal mo-

del control : a mixed learning and data-driven approach.
(Note : the conference rankings are based on ’Qualis (2012)’ measure given at the following
website : http ://www.conferenceranks.com)

The first contribution was based on a real application with an indoor UAV. This work
had a purpose of forming a base for the other two contributions in terms of understanding
the ILC theory and testing its efficiency in practice. The ILC method that was tested in
the work was the norm-optimal iterative learning control given by [84] which was proven
to be highly performant in learning agile repetitive trajectories. The contribution to the
literature was through the proposal of a new data-flow for speeding-up the ILC experi-
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mentation processes with UAVs that had an aim of changing the conventional ILC update
procedure. The proposed data-flow can be considered unique in the sense that it added a
step of simulation-based ILC updates that utilises a system re-identification with simple
transfer functions before each real ILC iteration (i.e. one UAV flight).

The second and third contributions are oriented towards utilising the power of ILC for
detecting frequency content of unknown disturbances and building feedback controllers
from this information. The third contribution is a continuation of the work presented in
the second contribution. To begin, the second contribution was based on using ILC to
create feedback controllers for accommodating unknown periodic disturbances. This pro-
cedure is equivalent to automatising the gain tuning of linear feedback controllers. The
contribution to the literature was through the introduction of a workflow called Learning
Based Controller Tuning (LBCT) which was proven to be effective for the unknown per-
iodic disturbances having nonlinear structure. The main motivation behind this work was
to encourage an automated tuning approach in designing linear controllers against perio-
dic disturbances by means of using ILC’s two advantageous features : the model-freeness
and the simple integration to existing systems without modifying their parameters. In the
third contribution, the same logic was extended to the creation of a new framework that
combines ILC with a robust output regulator. The main motivation of this work was the
possibility of a promising match of ILC with the robust output regulator scheme given
in [10]. The general idea can be seen as to improve the rejection (or tracking) perfor-
mance by combining the power of both methods. ILC was simply used to improve the
restrictive part of [10] that is the need of knowing the period of the periodic disturbance.
On the other hand, robust output regulation is used for increasing the system robustness
to nonrepetitiveness (e.g. instant perturbations, small variations around learned reference
trajectory, uncertainties and noise) by using the information learned via ILC in building
an internal model controller. The combination of both methods was given under the name
of Supervised Output Regulation via Iterative Learning Control (SOR-ILC). The proposed
SOR-ILC framework is a transformation of ILC into a feedback controller with additional
features of robustness and precision that were proven to be much better than the both
methods performing alone or separately.

Currently in the fourth contribution, the work done in the third contribution has been
applied on a nonlinear system and the idea of disturbance rejection via SOR-ILC has been
put in a generic frame called triple-layer control. This new work aims at motivating the
use of learning-type control, identification and non-learning type control in a combination.
The generic presentation of triple layer approach indicates that one may also apply the
same logic by using different learning-type and non-learning-type methods in combination
than limiting it to the combination of ILC and robust output regulation (SOR-ILC). The
numerical application of this work is based on rejecting a nonlinear Van der Pol oscillation
acting on a stable bilinear nonlinear system. The chosen triple layer method is still SOR-
ILC and the improvements consist of a prestabilisation step via nonlinear feedback as well
as an identification method based on Hankel matrices that can obtain an accurate model
approximation by using time domain data only (i.e. no Fast Fourier Transformation and
frequency domain data needed).

A summary for the development of the thesis can be found in Figure 1.3 and the
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outline of the thesis is provided as follows. Chapter 2 is dedicated to the bibliography
notes. It introduces the theory of ILC with demonstrative examples and presents some
sample systems used throughout the manuscript, the main algorithms and the notations
utilised in the rest of the sections where the main thesis study is shown. Thus, Chapter 3,
Chapter 4 and Chapter 5 give detailed explanations for the contribution 1, contribution
2 and contribution 3, respectively (Chapter 5 also includes the unpublished results from
the above mentioned on-going work, see Article 4 in Figure 1.3). Finally, the conclusion
talks about how the work could be further improved while at the same time providing the
critical views of the author on the results and the overall approach.

Table 1.2: The various fields of use of ILC

Existing ILC applications w.r.t their fields of use
Field Application

General robotic applications
(both rigid and flexible manipulators)
Robot applications with adaptive learning
Robot applications with Kalman filtering
Arc welding process
Microscale robotic deposition

Robotics Impedance matching in robotics
Mobile robots
Underwater robots
Cutting robots
Acrobat robots
Gantry robots
Table tennis
Batch process
Agile batch manufacturing processes
(product quality tracking control)
Chemical reactors
Chemical processes

Batch/Factory/Chemical Processes Industrial extruder plant
Packaging and assembly
Injection molding
Moving problem of liquid container
Laser cutting
Water heating system
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Vibration suppression of rotating machinery
AC servo motor
Permanent-magnet synchronous motor (PMSM)

Rotary Systems Linear motors
Electrostrictive servo motor
(Ultrasonic) induction motor
Switched reluctance motors (SRM)
Biomaterial applications
Human operator
Artificial muscle

Bio-applications Biomedical applications (e.g dental implants)
Functional nueromuscular stimulation (FNS)
Smart microwave tube
Pneumatic system
Post-stroke limb rehabilitation [77]
Hydraulic cylinder system
(Proportional-valve-controlled)

Actuators Electromechanical valve
Piezoelectric actuator hysterisis
Linear actuators

Semiconductors Manufacturing processes
Electronic/industrial power systems

Power electronics Inverters
Identification of aerodynamic coefficients
Engines [38, 81]
Hard disk drives
Visual tracking

Other Dynamic load simulator
Uniformity control of temperature
quantum mechanical system
Piezoelectric tube scanner
Magnetic bearings
High-speed trains [52, 56, 71]
UAVs [70, 95, 123]
Printer precision [17, 119]
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Chapter 2

Iterative Learning Control
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The purpose of this chapter is to provide the reader with some insight on the basic
linear ILC theory. The topics mostly consist of different ILC representations, ILC stability
analysis, ILC integration, popular ILC methods and some demonstrative numerical appli-
cations. It should be noted that the given content is not a deep review of ILC but rather
an introduction to essential ILC design elements and spractical points.

2.1 Basic ILC architecture

An ILC can be defined both in continuous-time and discrete-time. However, since
all real-life applications are performed using computers that work in discrete-time, the
main preference in ILC literature is towards the discrete-time. Accordingly, let us consider
the following discrete-time, linear time-invariant (LTI), single-input-single-output (SISO)
system :

yi(t) = P (q)ui(t) + d(t) (2.1)

where
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• t is the time index,
• i is the iteration index,
• q is the forward time-shift operator qf(t) = f(t+ 1),
• ui is the control input or the system input at i-t iteration,
• yi is the system output at i-t iteration,
• d(t) is a signal for including repeating elements at each iteration (e.g. periodic dis-

turbances, non-zero initial conditions, augmented feedback and feedforward control-
lers [22]),

• P (q) is a proper rational function of q which has a relative degree of m (i.e. a delay
of m samples).

It can be seen that for each iteration i ∈ Z+ the system (2.1) has a new input and a
new output. If a sequence with M ∈ Z+ samples is considered, t ∈ {0, 1, ...,M − 1} and
ui(t) is defined with the following sequence :

ui(t) := {ui(0), ui(1), ui(2), ..., ui(M − 1)} (2.2)

Since the plant P (q) has a relative degree of m, it causes a delay of m samples in the
sequences of yi(t) and di(t) such that

yi(t) := {yi(m), yi(m+ 1), yi(m+ 2), ..., yi(M +m− 1)} (2.3)
di(t) := {di(m), di(m+ 1), di(m+ 2), ..., di(M +m− 1)} (2.4)

This also means that one should take into account the delaym when choosing the sequence
for the system reference r(t) (or equivalently the system’s desired output sequence), i.e.

r(t) := {r(m), r(m+ 1), r(m+ 2), ..., r(M +m− 1)} (2.5)

Then, subtracting (2.5) from (2.3), gives the system error sequence

ei(t) = r(t)− yi(t) := {ei(m), ei(m+ 1), ei(m+ 2), ..., ei(M +m− 1)} (2.6)

Let us now introduce the simplest version of ILC (see Figure 2.1), i.e.

ui+1(t) = Q(q)[ui(t) + L(q)ei(t)] (2.7)

where
• i denotes the data from previous iteration,
• i+ 1 denotes the data for the current iteration,
• L(q) is the ILC learning function,
• Q(q) is the Q-filter (e.g. a low-pass filter).
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Figure 2.1: Basic ILC controller structure

Equation (2.7) is called the update equation which determines the learning dynamics.
Together with (2.1) it forms a two-dimensional system. Thus, an ILC system is compo-
sed of two dimensions : time (or frequency) domain and iteration domain. The time or
frequency domain shows the behaviour of the plant dynamics (2.1) while the iteration
domain demonstrates the learning behaviour of ILC (2.7). Moreover, the initial conditions
have crucial importance for ILC since, in its simplest form, it requires the repetitive task
to always begin from the same initial condition. Hence, for a better analysis of the ini-
tial conditions, ILC can be designed alternatively considering the state-space equivalent
of (2.1). For a SISO linear system with n states, the state-space equations are given as
follows :

xi(t+ 1) = Axi(t) +Bui(t) (2.8)
yi(t) = Cxi(t) +Dui(t) (2.9)

where xi(t) ∈ Rn denotes the state sequences with the initial condition xi(0) = x0 for all i.
The matrices A ∈ Rn×n,B ∈ Rn×1, C ∈ R1×n and D ∈ Rn stand for the state (or system)
matrix, the input matrix, the output matrix and the feedthrough (of feedforward) matrix,
respectively. For simplicity, it can be assumed that there is no feedthrough in the system,
i.e. the matrix D is a zero matrix. In this case, the system (2.8)-(2.9) can be written as

yi(t) = C(qI − A)−1Bui(t) + CAtx0 (2.10)

with I ∈ Rn×n being the identity matrix. Moreover,

P (q) = C(qI − A)−1B (2.11)
d(t) = CAtx0 (2.12)

It can be seen that (2.12) includes the initial condition x0 which, in an ideal ILC system,
should remain same at each iteration. This necessity is due to the fact that any variation
on x0 has a direct effect on the efficiency of the learning dynamics. After the ILC signal
passes through the plant dynamics P (q), it varies by the amount of CAtx0 (see the last
term of (2.10)). Thus, the variations on x0 will deteriorate a proper learning process and
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they should be properly reset to same values before each iteration starts. Furthermore,
the sensitivity to the initial conditions can be detrimental with the increasing number of
iterations. This is simply because the ILC update equation is actually a discrete integrator
and even a very small initial error can add up to a huge transient error if its integrated
enough, namely if the number of iterations are sufficiently large (e.g. i→∞). This notion
is well demonstrated in the ’equation (5)’ of the reference [117].

For the sake of generalisation, the ILC architecture until this point has been given in
terms of sequences. Let us now introduce the two popular system representations used for
ILC design : time-domain ILC representation and frequency domain ILC representation.
Both of these representations have their own advantages/disadvantages as well as different
interpretations.

2.1.1 Time-domain ILC design

In time-domain representation, the sequences and the proper functions turn into vectors
and matrices, respectively. The transition from sequences to vectors is straightforward. On
the other hand, the transition from proper functions to matrices requires an infinite power
series expansion. To do that, the denominator of P (q) is divided into its numerator such
that for an M -sample sequence and a relative degree of m,

P (q) =
M∑
k=m

hk
−k = hmq

−m+hm+1q
−(m+1) +hm+2q

−(m+1) + ...+hm+M−1q
−(m+M−1) (2.13)

where hk and the sequence {hm, hm+1, ..., hm+M−1} denote the Markov parameters and the
impulse response of P (q), respectively [22]. Assuming zero initial condition (x(0) = 0)
The impulse response for a state-space system is written as follows :

hk =

D, k = 0
CAk−1B k > 0

(2.14)

The function P (q) is finally transformed into an (m+M)× (m+M) matrix by using the
Lifted-System Framework as follows :

P =


hm 0 · · · 0
hm+1 hm · · · 0
... ... . . . ...

hm+M−1 hm+M−2 · · · hm

 (2.15)

It can be noted that the first column of the matrix P is the impulse response sequence of
the function P (q) and the rest of the columns are simply obtained by shifting this sequence
by one sample at a time until the column number reaches (m+M − 1). Let us now write
the lifted-system representation of (2.1) can be written as

yi(t) = Pui(t) + d(t) (2.16)
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
yi(m)

yi(m+ 1)
...

yi(m+M − 1)

 =


hm 0 · · · 0
hm+1 hm · · · 0
... ... . . . ...

hm+M−1 hm+M−2 · · · hm




ui(0)
ui(1)
...

ui(M − 1)

+


d(m)

d(m+ 1)
...

d(m+M − 1)


(2.17)

Similarly, the system error in lifted form is written as

ei(t) = r(t)− yi(t) (2.18)
ei(m)

ei(m+ 1)
...

ei(m+M − 1)

 =


r(m)

r(m+ 1)
...

r(m+M − 1)

−


yi(m)
yi(m+ 1)

...
yi(m+M − 1)

 (2.19)

The equations (2.16) through (2.19) define the time-domain dynamics of the ILC system.
In order to write the lifted version of the iteration-domain dynamics in (2.7), one should
determine the type of functions to be used for ILC’s filters, L(q) and Q(q). In the most
general form, it is possible to select non-causal functions for these filters. This is allowed
because ILC calculates the next iteration data by manipulating the previous iteration
data saved in the memory. In other words, this feature provides an anticipation behaviour
which can be expressed via a non-causal function (note that this feature does not exist in
a feedback controller). The impulse response of a non-causal filter can be expressed by :

P (q) =
M∑

k=−M
hk
−k = h−(M−1)q

M−1+...+h−2q
2+h−1q

1+h0+h1q
−1+h2q

−2+...+hM−1q
−(M−1)

(2.20)
If the Markov parameters for L(q) and Q(q) are denoted by Lk and Qk, respectively,

L(q) = L−(M−1)q
M−1 + ...+ L−2q

2 + L−1q
1 + L0 + L1q

−1 + L2q
−2 + ...+ LM−1q

−(M−1)

(2.21)
Q(q) = Q−(M−1)q

M−1 + ...+Q−2q
2 +Q−1q

1 +Q0 +Q1q
−1 +Q2q

−2 + ...+QM−1q
−(M−1)

(2.22)

Then, the iteration dynamics (2.7) in the lifted form is given as

ui+1(t) = Q(ui(t) + Lei(t)) (2.23)
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
ui+1(0)
ui+1(1)

...
ui+1(M − 1)

 =


Q0 Q−1 · · · Q−(M−1)

Q1 Q0 · · · Q−(M−2)
... ... . . . ...

QM−1 QM−2 · · · Q0





ui(0)
ui(1)
...

ui(M − 1)



+


L0 L−1 · · · L−(M−1)

L1 L0 · · · L−(M−2)
... ... . . . ...

LM−1 LM−2 · · · L0




ei(m)

ei(m+ 1)
...

ei(m+M − 1)


 (2.24)

It can be observed that P, L and Q matrices have identical diagonal entries which
means they are in Toeplitz form. Furhermore, L and Q have elements both above and
below their diagonals due to their non-causalities. In the causal case however, since their
Markov parameters with k < 0 cancel out, they transform into lower triangular matrices
such that

L =


L0 0 · · · 0
L1 L0 · · · 0
... ... . . . ...

LM−1 LM−2 · · · L0

 (2.25)

Q =


Q0 0 · · · 0
Q1 Q0 · · · 0
... ... . . . ...

QM−1 QM−2 · · · Q0

 (2.26)

As another important point, one should make sure that the diagonal entries of P , L and Q
are nonzero. Otherwise, the asymptotic stability condition is not satisfied and the system
diverges (see Theorem 1.1 in Section 2.2.1). If the plant produces a delay of m, the lifted
matrix P should be created considering the Markov parameters starting from pm which is
the first nonzero parameter. In addition, the elements of the vectors yi, d, r and ei should
also be shifted by m samples in order to adapt them to the plant’s delay.

2.1.2 Frequency-domain ILC design

The frequency-domain representation is based on applying the Z-transform to discrete-
time signals (sequences) in order to obtain their frequency responses (unit impulse res-
ponse). The general form of the Z-transform is the bilateral or two-sided Z-transform which
is given by

X(z) = Z{x[n]} =
∞∑

n=−∞
x[n]z−n (2.27)

where z ∈ C is a complex number, n ∈ N is an integer, x[n] is a discrete-time signal
(sequence), Z is the Z-transform operator and X(z) is the Z-transformed sequence in the
Z-domain. The bilateral Z-transform represents the noncausal case of a discrete signal
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combining both the effects of causality (only-past-dependency) and anti-causality (only-
future-dependency). However, the real systems are in practice causal such that in signal
processing one mostly uses the unilateral or one-sided Z-transform which is written by
considering n ≥ 0 in (2.27) :

X(z) = Z{x[n]} =
∞∑
n=m

x[n]z−n (2.28)

where m represents the delay as before (for no delay m = 0). The sequences and proper
functions (2.1)-(2.12) can easily be obtained via replacing the shifting operator q with z.
Although the purpose of these two notations is to represent the same notion of shifting,
the difference is that q is a general notation which does not specify any further detail
in terms of frequency while z represent a complex number which can be used to obtain
frequency response of a discrete signal. Applying (2.28), the Z-transform of the system
(2.1) is written as

Yi(z) = P (z)Ui(z) +D(z) (2.29)

and error of the system is
Ei(z) = R(z)− Yi(z) (2.30)

while the ILC update equation is

Ui+1(z) = Q(z)[Ui(z) + L(z)Ei(z)] (2.31)

The next step is to use the Z-transforms for calculating the frequency responses. This is
done by assigning the parameter z to a complex number as follows :

z = Aejφ = A(cosφ+ j sinφ) (2.32)

where j is the imaginary unit, A ∈ R is the magnitude of z and φ ∈ [−π, π] is the complex
argument denoting the phase in radians. If one considers A = 1, the frequency responses
of the equations (2.29)-(2.31) will correspond to their unit impulse responses such that

Yi(ejφ) = P (ejφ)Ui(ejφ) +D(ejφ) (2.33)
Ei(ejφ) = R(ejφ)− Yi(ejφ) (2.34)

Ui+1(ejφ) = Q(ejφ)[Ui(ejφ) + L(ejφ)Ei(ejφ) (2.35)

The main idea is to find the proper frequency responses for L(ejφ) and Q(ejφ) such that
Yi(ejφ) (or Ei(ejφ)) follows the desired reference R(ejφ). The tools of designing these res-
ponses are generally Nyquist and Bode diagrams and the design is determined by the
frequency-domain ILC stability criterion given in Section 2.2.2.

2.1.3 Comparison of the representations

The first ILC designs presented in the literature were based on the the time-domain
representation and the frequency-domain representation started to appear later on as an
alternative design approach. Although both representations can be used to get desirable
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result, there are some differences in each that are worth to be emphasizes. First of all, from
the point of practical applications, ILC systems have to be finite since one cannot have an
infinite number of samples in reality. Thus, the time-domain representation reflects better
the reality than the frequency domain one which is rather an approximate representation
assuming signals with infinite horizons. However, the accuracy of both representations be-
gin to coincide as the number of samples (M) increases. This means that before choosing
one of these representations, it would be clever to consider the number of samples needed
for the application (note that the sampling time and total process time determine the
length of M and thus the dimensions of the matrices and the overall computational heavi-
ness). Second, both representations use different frameworks. The time-domain design uses
the lifted-framework while the frequency domain design utilises the Z-transform. Third,
the computational cost of both representations is quite distinct when it comes to especially
large M . In time-domain the computational cost can be quite problematic since large M
means heavier calculations due to larger matrices and vectors. On the other hand, this is
never the case for frequency domain representation because it is always an approximation.

Table 2.1: Comparison of ILC representations

Features Time-domain ILC Frequency-domain ILC
Framework Lifted-system Z-transform
Sequence length Finite Infinite
Practical Accuracy Constant increases with larger M
Impulse response Shifted Markov Shifted complex

parameters numbers
Proper functions mapping To matrices To transfer functions
Sequence mapping To vectors To frequency responses
Computational cost at large M High Low

Overall, it is reasonable to say that there is a sort of trade-off when selecting one of these
representations. The efficiency of both is directly dependent on the application require-
ments. Finally, one can refer to Table 2.1 to have a clearer and a bit more detailed view
of the comparison given above.

It is worth to note that a selection between these two representations will depend on
the application requirements and can be a design constraint.

2.2 Stability and Convergence

Closed-loop stability is one of the most essential specifications for a control system.
When a system is said to be input-output stable, it is meant that its outputs are bounded
for the bounded inputs. The strength of the stability feature is usually analysed in three
categories : absolute stability (convergent), conditional stability (partially convergent)
and marginal stability (neither convergent nor divergent). The absolutely stability is the
strongest stability condition for a system. It means that whether open-loop or closed-loop,
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the system’s poles are all on the left half of the complex s-plane. In other words, the system
is stable all over the range of its parameter values. The conditional stability is a bit less
restricted stability condition which means that the system is stable over a specific range
of system parameters. It can be seen as having stable dynamics and unstable dynamics
at the same. Finally, the marginal stability is the limit of stability where system does not
absorb the inputs and disturbances, instead it just produces a constant amplitude signal
(nonzero poles over the imaginary axis in linear systems).

For an iterative system, the same logic of stability can be applied. The only difference
is that the stability notion is now assessed considering the evaluation over the iteration
axis. In short, if the system error tends to zero or to a bounded value as the iterations
continue, the iterative system is considered to be stable. Before analysing the stability of
ILC, it is useful to mention some preliminary assumption on the system to be controlled
by ILC. In [85] the authors state that these assumptions that were originally provided by
Arimoto can be found in [99] and then they give a reformulation of these assumptions
which also suits the framework utilised in this thesis. Thus, the following assumptions are
taken from [85].

(A1) The signals are finite in time axis such that each iteration finishes at the same
duration t = Tf ∈ R+.

(A2) The reference r(t) is given a priori over the interval t ∈ [0, Tf ].
(A3) The initial condition of the system is identical at each iteration, i.e. xi(0) = x0 ∈

Rn, ∀i ∈ [0, N ].
(A4) The dynamics of the system is kept invariant throughout all iterations.
(A5) Every system output yi(t) is measurable such that the information of the tracking

error ei(t) = r(t)− yi(t) can be achieved each time ui+1(t) is computed.
(A6) For the given trajectory r(t) having a piece-wise continuous derivative, there

exists a unique input trajectory u∗(t) that will match the output to the reference,
i.e. y∗(t) = r(t) (Author’s remark : for nonlinear systems Local (or Global) Lip-
schitz continuity is assumed and u∗(t) is searched around some local conditions (see
Section 2.4)).

Practically, obtaining an identical initial condition can be quite difficult and therefore the
assumption (A3) is rather restrictive. Thus, the following modification for (A3) would
make ILC more feasible to real applications :

(A3a) The initial condition resetting has a small bounded error, i.e. for some constant
ε ∈ R, |xi(0)− x0| < ε, ∀i ∈ [0, N ].

Assuming that the assumptions (A1)-(A6) hold, let us also introduce the following
useful definitions of stability (cf. [85]) :

Definition 2.1 (ε-convergence) : A system with ILC is said to be ε-convergent if

lim
i→∞

sup ||u∗(t)− ui(t)|| < ε

In other words, the difference between the ILC input solution u∗(t) and the ILC input
at all other iterations ui(t) is always less than a finite value ε. If this property holds, the
system with ILC is called stable. However, the definition of ε-convergence does not mean
any convergence to zero error. The ILC system error at i → ∞ can be higher then the
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case where system does not use ILC.

Definition 2.2 (Asymptotic Stability) : A system with ILC is said to be asymptotically
stable if

lim
i→∞

sup ||u∗(t)− ui(t)|| = 0

The asymptotically stable means that the ILC input will reach the input solution yielding
the perfect tracking or rejection as i→∞. However, the satisfaction of this condition does
not imply that that system error will reduce at each iteration.

Definition 2.3 (Exponential Stability) : A system with ILC is said to be exponentially
stable if

∃α, β > 0 | ∀i > 0, ||u∗(t)− ui(t)|| ≤ α||u∗(t)− u0(t)||e−βi

This simply implies that at each iteration the ILC input approaches more to the input
solution or alternatively that there is a monotone decrease of system error at each iteration
(i.e. ei+1(t) < ei(t)).

Definition 2.4 (Global Stability) : The definitions given above become global when the
system with ILC is stable for all possible initial conditions (x0) and initial inputs (u0(t)).
Although it might be difficult to achieve, this property can be sought after in cases where
ILC is applied on a nonlinear system.

Definition 5 (Bounded-Input-Bounded-Output (BIBO) Stability) : A linear iterative
system is said to be BIBO-stable if a bounded input (ui(t) <∞) produces a bounded output
(yi(t) <∞) for all i.

Thus, if the iterative system has this property, it means that the ILC algorithm provides
a stable performance.

Definition 6 (Uniform Exponential Stability) : A linear iterative system has uniform
stability if for the free response (ui(t) = 0) of the system with any initial output (y0(t))
and initial iteration (i0) satisfies

||yi(t)|| ≤ γ||y0(t)||, i ≥ k0

where γ stands for a positive constant. The uniform stability is extended to the uniform
exponential stability if for λ ∈ (0, 1] the following is also true

||yi(t)|| ≤ γλi−i0||y0(t)||, i ≥ k0

At this point the stability analysis can be shown by introducing some well-known theorems
from the linear systems theory (see [85] where these theorems are represented based on the
works of [93], [59], [92], [91], [3] and [79]. Since it is possible to use both the time-domain
and the frequency domain representations for ILC design, the stability analysis hereafter
is presented for each of these representations separately.
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2.2.1 Stability analysis of time-domain ILC

In order to better demonstrate the stability and convergence of a time-domain ILC
system, the iteration dynamics equation (2.23) can be put into the error dynamics form.
From (2.18) and (2.16), the system error and the output at the (i+ 1)th iteration are

ei+1(t) = r(t)− yi+1(t) (2.36)
yi+1(t) = Pui+1(t) + d(t) (2.37)

respectively. Substituting (2.37) into (2.36) and applying (2.23) leads to

ei+1(t) = r(t)−P(Qui(t) + QLei(t))− d(t)

Then using (2.18) as r(t) = ei(t) + yi(t) and replacing yi with (2.16), the error dynamics
is found as follows :

ei+1(t) = r(t)−P(Qui(t) + QLei(t))− d(t)
= ei(t) + yi(t)−PQui(t)−PQLei(t)− d(t)
= (I−PQL)ei(t)−PQui(t) + Pui(t) + d(t)− d(t)
= (I−PQL)ei(t)−P(I−Q)ui(t) (2.38)

It is straightforward to observe in (2.38) that the error convergence of the iterative system
is determined mainly by the matrix (I−PQL) and its eigenvalues. In addition, the value
of P(I − Q)ui has an increasing effect on the error at the next iteration. It is simply
the difference between the system output when the input has no filter and the system
output when the input is Q-filtered. In order to diminish this effect and achieve a faster
convergence, the traditional choice is Q = I. As it will be explained later, Q is in general
a low pass filter applied for increasing the ILC robustness which causes a trade-off for the
convergence speed.

The stability of (2.38) can be analysed utilising two measures for matrices which are the
spectral radius (ρ) and the maximum singular value (σ). These measures are well-known
results from linear systems theory and their definitions are as given below.

Definition 2.7 (Spectral Radius) For a matrix F ∈ Rn×n, the spectral radius is the
maximum of its eigenvalues, i.e.

ρ(F) = max
k=1,...,n

|λk(F)|

where λk(F) is kth eigenvalue of F.

Definition 2.8 (Maximum Singular Value) For a matrix F, the maximum singular
value is the maximum gain it can apply on a vector while mapping it, i.e.

(a) σ(F) =
√
ρ(F>F)

(b) ||Fv|| ≤ σ(F)||v||
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where v is any column vector.

For the simplicity, let us now assume that Q = I. Then, the error dynamics (2.38)
becomes

ei+1(t) = (I−PQL)ei(t) (2.39)

The ILC system with (2.39) is said to be asymptotically stable if Definition 2.7 holds
for the matrix (I− PQL). If the state-space system is minimal (all states are observable
and controllable), it can also be said that the ILC system is BIBO-stable according to
Definition 2.7. Thus, the following theorem gives a necessary and sufficient condition for
both of these stability types (see [85] and [22]) :

Theorem 2.1 (Asymptotic Stability or BIBO-stability) : The ILC system is asymp-
totically stable or under the condition of minimality in case of a state-space system, is
BIBO-stable if

ρ(I−PQL) < 1 (2.40)

Alternatively, the stability of ILC can be determined by applying the same logic to the
the update equation (2.23). Substituting (2.18) and (2.16) into (2.23),

ui+1(t) = Q(I− LP)ui(t) + QL(r(t)− d(t)) (2.41)

Thus, under the same conditions mentioned above the same asymptotic and BIBO-stability
are achieved if

ρ(Q(I− LP)) < 1 (2.42)

Although necessary, the satisfaction of the conditions (2.40) or (2.42) do not imply any
monotonic convergence for the ILC system (see Definition 2.3). This can be quite pro-
blematic for some applications since ILC can still be asymptotically stable while having
huge transients, so called learning transients. According to Definition 2.3, the monotonic
convergence means that under a norm ||.|| (2.39) satisfies

||e∞(t)− ei+1(t)|| = γ||e∞(t)− ei(t)|| (2.43)

where γ ∈ [0, 1) is the rate of convergence and e∞(t) is the asymptotic error that is found
by putting i = ∞ in (2.39) and considering that at infinity ei+1(t) = ei(t) = e∞(t) and
ui(t) = u∞(t) (i.e. the final input),

e∞(t) = (I−PQL)e∞(t)−P(I−Q)u∞(t)
= (PQL)−1P(I−Q)u∞(t)
= (QL)−1(I−Q)u∞(t) (2.44)

This relation can also be verified by manipulating (2.23) as

u∞(t) = Qu∞(t) + QLe∞(t)
(I−Q)u∞(t) = QLe∞(t)

(QL)−1(I−Q)u∞(t) = e∞(t) (2.45)
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Note that the asymptotic error becomes zero for Q = I which also transforms (2.43) into

||ei+1(t)|| = γ||ei(t)|| (2.46)

In order to make the ILC monotonically convergent, one should obtain the description
for γ in (2.43) and then apply the Definition 2.8 on it. Using (2.38) and (2.44), one can
calculate the error differences in (2.43) as

e∞(t)− ei+1(t) = (QL)−1(I−Q)u∞(t)− (I−PQL)ei(t)−P(I−Q)ui(t)
= (I−PQL)(e∞(t)− ei(t))− (I−PQL)e∞(t)

+ (QL)−1(I−Q)u∞(t)−P(I−Q)ui(t)
= (I−PQL)(e∞(t)− ei(t)) + (I− I + PQL)(QL)−1(I−Q)u∞(t)
−P(I−Q)ui(t)

= (I−PQL)(e∞(t)− ei(t)) + P(I−Q)u∞(t)−P(I−Q)ui(t)
= (I−PQL)(e∞(t)− ei(t)) + P(I−Q)(u∞(t)− ui(t)) (2.47)

For the sake of simplicity, it can be assumed that Q = I and letting ||.|| be the Euclidian
norm denoted as ||.||2,

e∞(t)− ei+1(t) = (I−PQL)(e∞(t)− ei(t))
||e∞(t)− ei+1(t)||2 ≤ ||I−PQL||2||e∞(t)− ei(t)||2 (2.48)

From this expression, it is clear to see the definition of γ as

γ := ||I−PQL||2 (2.49)

Thus, according to Definition 2.8, the monotonic convergence is reached if the following
theorem holds :

Theorem 2.2 (Monotonic Convergence) The ILC system is monotonically convergent
if the error at each new iteration is less than the previous iteration’s error, i.e. to ensure

γ = ||I−PQL||2 < 1
= σ(I−PQL) < 1 (2.50)

2.2.2 Stability analysis of frequency-domain ILC

In order to show the stability conditions of frequency domain ILC, let us write (2.39)
and (2.41) in the Z-domain, respectively.

Ei+1(z) = [1− P (z)Q(z)L(z)]Ei(z)− P (z)[1−Q(z)]Ui(z) (2.51)
Ui+1(z) = Q(z)[1− L(z)P (z)]Ui(z) +Q(z)L(z)[R(z)−D(z)] (2.52)

The asymptotic stability is achieved by the frequency domain ILC system if the following
theorem holds :

27



Theorem 2.3 (Frequency-domain Asymptotic Stability) An ILC system in the frequency-
domain (M =∞) is asymptotically stable if 1−P (z)Q(z)L(z) or Q(z)[1−L(z)P (z)] is a
contraction mapping [21], i.e.

||1− P (z)Q(z)L(z)||∞ = sup
θ∈[−π,π]

||1− P (ejθ)Q(ejθ)L(ejθ)|| < 1 (2.53)

||Q(z)[1− L(z)P (z)||∞ = sup
θ∈[−π,π]

||Q(ejθ)[1− L(ejθ)P (ejθ)|| < 1 (2.54)

Since the frequency domain representation requires an assumption of infinite samples
(M = ∞), the conditions (2.53) and (2.54) are results for an approximated system and
thus they are only sufficient and not necessary for the asymptotic stability. They are
more conservative than (2.40) and (2.42) [21]. Furthermore, the monotonic convergence in
frequency domain is written as

||E∞(z)− Ei+1(z)||∞ = γ||E∞(z)− Ei(z)||∞ (2.55)

where γ is the convergence rate and the asymptotic error is given by

E∞(z) = 1−Q(z)
Q(z)L(z)U∞(z) (2.56)

Note that the asymptotic error becomes zero for Q(z) = 1. Following the same procedure
given in previous section and choosing again Q(z) = 1 for simplification, (2.55) becomes,

||E∞(z)− Ei+1(z)||∞ = ||1− P (z)Q(z)L(z)||∞||E∞(z)− Ei(z)||∞ (2.57)

which indicates
γ := ||1− P (z)Q(z)L(z)||∞ (2.58)

Hence, the monotonic convergence is achieved according to the following theorem :

Theorem 2.4 (Frequency-domain Monotonic Convergence) An ILC system in frequency-
domain is monotonic convergent if

γ = ||1− P (z)Q(z)L(z)||∞ = sup
θ∈[−π,π]

||1− P (ejθ)Q(ejθ)L(ejθ)|| < 1 (2.59)

This result simply proves that the asymptotic stability and monotonic convergence
conditions are identical for frequency-domain ILC. Having seen the stability properties of
ILC designs, some other useful properties of ILC such as order of ILC and forgetting factor
can be introduced.

2.2.3 Order of ILC and forgetting factor

The ILC update law given in (2.7) is a first-order ILC since it utilises only the data
from one previous iteration (i.e. ei(t) and ui(t)). However, this is not the only option
for ILC system design. There also exists various extensions to so called higher-order ILC
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(HO-ILC) algorithms in the literature such as [14, 30, 67, 108, 109]. It is proposed in [109]
that using the information from the previous N > 1 iterations in the calculation of the
current iteration control input may provide faster error convergence speed compared to
the first-order ILC. The non-causality of the HO-ILC is feasible due to the fact that all
previous iteration data is kept in the memory. The HO-ILC update equation can slightly
vary depending on designer preferences. For example, a common form of HO-ILC update
law [108] in the time-domain representation is :

ui+1(t) = ui(t) +
N∑
k=1

Lk(t)el+1(t) (2.60)

whereN is the order of HO-ILC, Lk is the learning gain matrix for each iteration l = i−k+1
and el+1 = r−yl+1. Some other versions of HO-ILC (e.g. [14]) include several inputs form
previous iterations in addition as well :

ui+1(t) =
N∑
k=1

Pk(t)ul+1(t) +
N∑
k=1

Lk(t)el+1(t) (2.61)

where Pk is the gain matrix applied on input k. Furthermore, [108] emphasizes the im-
portance of using a forgetting factor in HO-ILC that can improve the robustness of ILC
under the factors such as disturbance, uncertainty, fluctuations of system dynamics and
initialisation error. This type of HO-ILC can be given as

ui+1(t) = β(i)u0(t) + (1− β(i))ui(t) +
N∑
k=1

Lk(t)el+1(t) (2.62)

where β(i) = H−i is the time-varying forgetting factor and u0(t) is the initial input. It
is suggested that 0 ≤ β(i) < 1 and H is constant such that as i → ∞, β(i) → 0 [108].
This simply indicates that as the iterations continue HO-ILC begins to remember less the
initial input at the very beginning u0(t) and focuses more on the previous iteration input
ui(t).

Let us now show the possible ways of integrating an ILC to a given system.

2.2.4 ILC integration to an existing system

When it comes to connecting ILC to the system, one may find two options [21] :
1. Adding ILC output to the system’s reference signal (serial connection),
2. Adding ILC output to the closed loop controller’s output inside the system (parallel

connection).
These two different options for connection can be reviewed in Figure 2.2 and Figure 2.3,
respectively. It should be noted that a system with serial ILC connection calculates the
output slightly different than its version with parallel ILC connection. The reason to that
is obviously the change in block calculations due to the different locations ILC signal
enters the system. Here, C and P denote the closed loop controller block and the plant,
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respectively (see Figure 2.2 and Figure 2.3).

yi = [(1 + PC)−1PC] ui + [(1 + PC)−1PC] r (2.63)

yi = [(1 + PC)−1P] ui + [(1 + PC)−1PC] r (2.64)

Equation (2.63) gives the system output with serial ILC connection and (2.64) is the
output with parallel ILC connection. The difference comes from an extra usage of term
C for serial ILC connection. Note that the serial ILC does not need to know P and C
blocks explicitly as (1 + PC)−1PC can be used as a "black box" which can be obtained
through identification using its input-ouput data directly. On the other hand, the parallel
ILC requires a knowledge of P and C. Thus, one can conclude that adding an ILC to the
system is much easier with the serial connection since in this case one does not have to
know the internal controller parameters.

Figure 2.2: Serial ILC connection

Before jumping into the existing ILC methods, it can be useful to review some common
ILC classification that has appeared in the literature so far. The following classifications
are based on the author’s observations during the thesis work.

2.3 Common classifications of ILC methods

Apart from the ILC classification given so far, it is possible to notice some other
common ILC classifications in the literature as well. These classifications usually appear
with following properties :

— The time-domain in which ILC is defined,
— The ILC update method that is used,
— The order of the ILC update law,
— The time-variance of ILC or system parameters.
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Figure 2.3: Parallel ILC connection

The first classification is about the ILC’s time-domain, namely continuous-time or
discrete-time depending on the application. Although most of the ILC work in literature
has been done in discrete-time domain, it is still possible to come across some analyses in
continuous-time domain as well (see e.g. [31]). This is a sound preference since all real-life
applications are performed using computers that work in discrete-time.

The second classification is made considering which method is used for updating the
output of ILC. One can write the ILC update equation using plenty of different update me-
thods such as P-type, D-type, PD-type, fractional-order, inversion-based and optimization-
based (e.g. norm optimal ILC, predictive norm-optimal ILC and parameter optimal ILC).
It is also possible to see other names for optimization-based ILCs which are given accor-
ding to the optimization method used (e.g. ILC with steepest-descend, ILC with gradient
method, ILC with Newton-Raphson etc.). One can refer to [48] for the above mentioned
methods.

The third classification is related to how much of information is used from previous
trials in order to calculate the ILC output. One may use only the previous trial’s infor-
mation when updating ILC which in this case makes the update law of first order. On the
other hand, it is also possible to use the information from more than one previous trials
and this type of ILCs are called high-order ILCs.

The fourth classification comes from the system’s behaviour with time. If the system
is time-variant then the plant model should be identified before each ILC iteration. In this
case the filters used in ILC will be different during each iteration and they need to be
recomputed. Otherwise, in a time-invariant system the ILC filters stay the same during
each iteration.

Next, a quick overview of the existing ILC methods is given.
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2.4 Overview of Existing ILC approaches

In [114], the ILC design approaches are grouped in four categories in terms of system
nonlinearities :

1. Linear ILC for linear systems,
2. Nonlinear ILC for linear systems,
3. Linear ILC for global Lipshitz continuous (GLC) nonlinear systems,
4. Nonlinear ILC for local Lipshitz continuous (LLC) nonlinear systems.
However, this categorisation is too detailed for this thesis work and it can be shorte-

ned into two categories : the linear ILC methods and the nonlinear ILC methods. This
simplification can be done since both the linear ILC and nonlinear ILC methods are ap-
plicable to linear and nonlinear systems. It can be observed that the focus of research in
both category has been changing over the years. To begin, in linear ILC, the theoretical
problems have mostly been understood such that the current focus is mainly on improving
the performance of ILC in practice. The main interest is towards creating ILC algorithms
that are nontraditional which deal with issues such as no-resetting possibility, robustness
to non-zero initial error [66, 88], iteration-variant trial lengths [98], robustness to non-
repetitiveness [76] (i.e. non-learning of the non-repetitive data such as iteration-varying
uncertainties or disturbances), time-varying Q-filter [102] etc.

The evolution of the nonlinear ILC on linear systems had started with an aim of
achieving faster convergence speeds and better transient performances than the linear
ILC. Recently, the research focus of nonlinear ILC branched into LLC systems where
Lyapunov approach and composite energy function are the fundamental design tools (ILC
design cannot be done using contraction mapping since nonexistence of finite escape time
phenomenon is not globally applicable to LLC systems) [114]. One of the main drawbacks
of nonlinear ILC has been the need of more prior knowledge (e.g. see [117]) about the
system dynamics (in case of LLC systems, state dynamics has to be known) which can be
restrictive for many practical applications and thus remains open for further research.

The nonlinear ILC is beyond the scope of this thesis work such that the following
sections comprise only the linear ILC methods.

2.4.1 Linear ILC for linear systems

This section briefly introduces some popular ILC methods on the literature. The most
traditional ILC algorithms, i.e. proportional-type (P-type) ILC, derivative-type (D-type)
ILC and and their combination (PD-type ILC), are introduced first. Next, the explanations
are extended to the fractional-order ILC (FO-ILC), the model inversion-based ILCs and
finally the optimisation-based ILCs. In the end of the section, the core ILC method of the
thesis, that is the norm-optimal ILC (NO-ILC) is given a distinct place for more detailed
look.
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2.4.1.1 P-type, D-type and PD-type ILCs

The simplest ILC methods that can be found are the P-type ILC and the D-type ILC
(see section 2 of [107] for various references these type of ILCs and their variations). In
P-type ILC, the update is done by utilising the system error at the ith iteration while in
D-Type ILC the update is achieved by using the derivative of the system error at the ith
iteration. Thus, the update equations of P-Type and D-type ILCs can be written as

ui+1(t) = Q(q)[ui(t) + Lp(q)ei(t)] (2.65)
ui+1(t) = Q(q)[ui(t) + Ld(q)ėi(t)] (2.66)

respectively. Here, L(q) and Q(q) are user defined functions, namely a learning filter and
a low pass filter for robustness, respectively. If ILC is designed in time domain, L(q) and
Q(q) become lifted matrices L and Q whereas if ILC is designed in frequency domain they
transform into transfer functions Lp(z) and Q(z) in Z-domain (see Section 2.1). For the
simplest case, the learning filters in (2.65) and (2.66) can be selected as a proportional gain
(i.e. L = Γp with Γp ∈ R+) or a single shift operator (i.e. Lp = q or in case of frequency
domain design L = z).

Although simple looking and shown to be effective theoretically, P-type and D-type
ILCs have significant drawbacks in practice, especially in case of uncertainties, disturbances
and noises. A D-type ILC utilises the highest order derivative signals of a dynamics system
which are either rather noisy or not measurable (most robots only have position sensors
on their joints such that the velocity and acceleration information has to be acquired by
numerical differentiation which can cause drastic noises) [107]. On the other hand, P-type
ILC does not need any derivative information. However, it does not contain the trend of
the error from previous iterations (i.e. if ei(t) = 0 the learning stops even though ėi(t) 6= 0)
and initial state (x(0) 6= 0 ∀i ≥ 0) or initial output errors (ei(0) 6= 0 ∀i ≥ 0) can cause
divergence of the ILC signal (i.e. ui(0)→∞ as i→∞) [107].

The PD-type method is simply combining the both P and D-types [68]. The ILC update
equation is in this case is

ui+1(t) = Q(q)[ui(t) + Lp(q)ei(t) + Ld(q)ei(t)] (2.67)

where Lp(q) and Ld(q) are learning functions for proportional and derivative parts, respec-
tively. For the simplest case, one can select them as Lp(q) = Γp ∈ R+ and Ld(q) = Γd ∈ R+

or similarly as shift operators as explained above. The use of shift operators adds a non-
causality to ILC. For example, if Ld(q) = q in (2.67), ILC actually uses the future error
from the saved data (iteration i), i.e. ei(t + 1), in order to compute the current control
signal ui+1(t). Also, a shifting operator can be used to avoid the system delay that appears
when the system’s relative degree m > 0 (for example, it means that if m = 1, the first
system error can be obtained at ei(t+1) such that one can use L(q) = q for getting correct
results from ILC update).

Even though it is possible to find some explanations for the PID-type ILC (e.g. in [1,
29, 78]), the addition of an integrator does not have a considerable effect on update since
ILC itself acts sort of as an integrator [68]. Yet, when the integral term is added, the
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update equation becomes more general [78] and it can be given as,

ui+1(t) = Q(q)[ui(t) + Lp(q)ei(t) + Ld(q)ėi(t) + Li(q)
∫
ei(t)]. (2.68)

where Lp(q), Ld(q) and Li(q) are learning filters for proportional, derivative and integral
parts, respectively.

The above-mentioned update techniques have been quite popular due to their low
dependency on system knowledge. However, they have some common disadvantages such
as troublesome tuning for the learning filter and reset requirement for the the learning
process each time the parameters are changed [101]. Also, as mentioned before, their
performance deteriorates quickly with uncertainties, disturbances and noise.

Note : Equations (2.65)-(2.68) asume that one does not do numerical differentiation
and that the derivative of the error is available. In case where only the output error avai-
lable the derivative parts of D-type, PD-type and PID-type ILCs are obtained by using a
differentiator in their learning filters. For example, in frequency domain ILC design the
time difference (derivative) is obtained by using Ld(z) = (1 − z−1) and the time accumu-
lation (integral) is found by applying Li(z) = (1− z−1)−1.

2.4.1.2 Fractional-order ILC (FO-ILC)

In addition to P, D, PD and PID-type methods there is another similar method which
considers a fractional order derivative. In other words, the degree of the time-shifting
operator is between 0 and 1 (here it is assumed that numerical derivation is applied). It
can be understood as being a special case between P-type (Lp(z) = 1 − z0) and D-type
(Lp(z) = 1− z1) updates. The learning filter and update equation are written as,

L(z) = Γzα

ui+1(t) = Q(z)[ui(t) + Γ(1− zα)ei(t)].
(2.69)

where Γ > 0 and 0 < α < 1. The approach using a fractional order derivator is not as
straightforward as the D-type approach which was only a time difference applied on the
error data. In [69], they show that FO-ILC gives better results than D-type ILC in terms
of convergence rate and it provides a more efficient tuning as well. However, it is still quite
limiting fact that (2.69) does a numerical derivation on data which can cause divergence
of the ui+1(t) easily.

2.4.1.3 Model Inversion-based ILC

The basic idea behind the model inversion technique is to use the inverse of the system
as a filter in order to produce the input that will give the desired output. Therefore, it
generally requires a rather accurate prior knowledge of the system. Once the inverse filter
is obtained, the desired output is given as input to the filter which then creates the a
priori needed system input. Consider the following system, P (q), which has an input u(t)
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that yields an output y(t) :
y(t) = P (q)u(t). (2.70)

Then, assume a desired output r(t) such that,

y(t) = r(t). (2.71)

Theoretically, filtering r(t) through the inverse of the system should provide the input u(t)
that will produce the desired output,

u(t) = P (q)−1r(t). (2.72)

Thus, sending the u(t) signal to the actual system yields r(t) as,

y(t) = P (q)P (q)−1r(t),
y(t) = r(t).

(2.73)

The ILC performance from the perspective of convergence rate and converged error
depends on how well the learning filter is designed and the ideal learning filter is the
one that corresponds to the inverse of the system [101]. Yet, the inversion of the system
transfer function may cause some problems when discrete systems are considered. It is a
common result that discretisation of continuous systems may produce unstable or lightly
damped zeros in the system transfer function [42]. Accordingly, it is not possible to di-
rectly use the inverse of such system for controlling purposes since the inverses will be
unstable. The systems with unstable zeros are referred to as non-minimum phase (NMP)
systems. Obtaining an NMP system can simply be due to using fast sampling rates on
systems with high relative degrees or noncollocated sensors and actuators [23]. The me-
thod utilized for discretising has also an important effect on the number of unstable zeros
obtained when discretising. For some systems, it can be observed that the ’Zero Order
Hold method’ can produce more unstable zeros than ’Tustin method’ for the same sam-
pling time. There are several methods used to solve the problem of finding the inverse of
NMP systems : nonmimimum phase zeros ignore (NPZ-ignore), zero-phase-error tracking
controller (ZPETC), zero-magnitude-error tracking controller (ZMETC), non-causal se-
ries expansion, exact unstable inverse and zeroth order series. All of these methods aims
at approximating the stable inverse of the NMP system. Butterworth et al. [23] states
that NPZ-ignore, ZPETC, ZMETC and zeroth order series methods are rather effective
and easy to design and implement whereas high order non-causal series expansion and
exact unstable inverse methods add more complexity on control implementation. It can
be seen that ILCs using one of the above-mentioned methods are named by some authors
as inversion-based ILC (IIC) or enhanced inversion-based ILC (EIIC). It is pointed out
in [64] that convergence rate of IIC and EIIC methods are dependent on the accuracy of
dynamics model of the system which is inclined to errors as well as it is time-consuming
to obtain. To address these issues, [64] proposed a model-less inversion-based ILC method
to eliminate the need for dynamics model when further improving the output tracking
performance. [101] developed a data-based dynamic inversion algorithm to obtain a lear-
ning filter which reduces the unmodeled dynamics while successfully approximating NMP
systems. Apart from these, in [42], they proposed an approach for using the finite impulse
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response of the inverse transfer function to build learning filters that will avoid inversion
of unstable or lightly damped zeros.

2.4.1.4 Optimisation-based ILC

Due to its effective and promisive nature, it is possible to find a significant number
of publications related to optimisation-based ILC. The method is grounded on solving a
convex optimisation problem which is defined by an objective function to be minimised
under some constraint equations. A sufficient understanding on the application of optimi-
sation methods on the ILC algorithm can be gained through [4, 28, 46, 47, 103]. Moreover,
the PhD theses [84] and [48] are quite useful for having a deeper insight on the mathema-
tical theory behind optimization-based ILC as well as reviewing detailed derivations for
convergence conditions in general.

The objective of the optimisation algorithm can be seen as making the tracking error of
the system as small as possible. This corresponds to minimising the norm of the tracking
error and the simplest objective function for the optimisation problem (2.74, cf. [48]) can
be written in time-domain representation as,

min
ui+1(t)

J(ui+1(t)) = min
ui+1(t)

||ei+1(t)||2 = min
ui+1(t)

||r(t)−Pui+1(t)||2 (2.74)

where the tracking error is the difference between desired trajectory and actual output,
i.e. ei+1(t) = r(t) − Pui+1(t). One can interpret (2.74) as finding the optimal ILC signal
ui+1(t) that will minimise the ei+1(t). It should be noted that the best possible solution
that yields zero tracking error is in case of using the inverse of the system in the optimal
solution of ILC input :  u∗(t) = P−1r(t)

emin(t) = r(t)−Pu(t)∗
(2.75)

with emin(t) = r(t)−PP−1r(t) = r(t)− r(t) = 0.

Equation (2.75) is the ideal solution and it is in general difficult to be obtained prac-
tically due to the unmodeled nonlinearities of the system dynamics. Thus, the goal of the
optimisation algorithm is to approach the inverse solution as much as possible. Further-
more, a better solution can be obtained by including additional measures in the objective
function (2.76) (see [48]) such as the input difference between each iteration, i.e.

min
ui+1(t)

J(ui+1(t)) = min
ui+1(t)

||ei+1(t)||2 + ||ui+1(t)− ui(t)||2 (2.76)

In the literature, ILC update laws that work on minimising some norm criteria such as
the ones given in (2.74) and (2.76) (weight matrices can also be added for a better control
of optimisation) are called norm-optimal ILC (NO-ILC). It is the basic optimisation-based
approach used on ILC. The information given in [48] about NO-ILC is based on a more
detailed material provided by [2] and it explains with proofs the step-by-step procedure in
obtaining the optimal solution and the learning filter for NO-ILC. Moreover, some other
examples of optimisation-based ILC methods can be counted as the predictive norm-
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optimal ILC (PNO-ILC) and the parameter optimal ILC (PO-ILC). A PNO-ILC differs
from NO-ILC by the fact that it includes the future predictions of the tracking error and
the input difference. [48] gives the objective function of PNO-ILC as,

J(ui+1(t)) =
n∑
k=1

λk−1(||ei+k(t)||2 + ||ui+k(t)− ui+k−1(t)||2) (2.77)

where n determines the total number of future iterations to be considered and λ > 0 is
a weighting factor that defines the importance of future iterations that is similar to the
forgetting factor in identification methods. In order to make this representation easier to
understand, one may look at the case where i = 1, n = 2 and λ = 0.5 :

J(u2(t)) =
2∑

k=1
λk−1(||e1+k(t)||2 + ||u1+k(t)− u1+k−1(t)||2)

= (0.5)0(||e2(t)||2 + ||u2(t)− u1(t)||2)
+ (0.5)1(||e3(t)||2 + ||u3(t)− u2(t)||2)

(2.78)

The first term in (2.78) involves the current values of tracking error and input difference
whereas the second term considers the predictions of the same measures for the incoming
iteration. Furthermore, it was suggested that the effect of adding these extra future values
in the cost function should improve the convergence speed of PNO-ILC [48]. For the sake
of brevity, the information regarding the latter method, i.e. PO-ILC, is not explained here
and the reader may again refer to [48] for detailed explanations.

The NO-ILC is the core algorithm of the thesis work and it is used in all the remaining
chapters. Therefore, it is given below a separate section for extensive explanations.

2.4.2 Norm optimal ILC (NO-ILC)

The algorithm is based on optimising a cost function and the aim is to find the best
system input that will produce the closest output signal to the desired trajectory. The
procedure proposed by Norrlof [84] can be seen as the main source of the following expla-
nations. When deriving the NO-ILC algorithm, it is possible to use both time-domain and
frequency-domain representations. Below only the time-domain one (see [84]) is provided
since this is the one used in the following chapters.

Design in time-domain representation :

In order to have more control on the optimisation procedure, the cost function can
be written using weighting matrices. The cost function is a quadratic criterion which is
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subject to a constraint. The optimisation problem can be written as,

min
ui+1(t)

J(ui+1(t)) = min
ui+1(t)

eTi+1(t)Weri+1(t) + uTi+1(t)Wuui+1(t)

subject to [ui+1(t)− ui(t)]T [ui+1(t)− ui(t)] ≤ δ

(2.79)

To use Lagrange method for minimisation, one should put the constrained optimisation
problem in (2.79) into the form of an unconstrained problem that includes a Lagrange
multiplier (λ) :

min
ui+1(t)

J(ui+1(t)) = min
ui+1(t)

eTi+1(t)Weei+1(t)+uTi+1(t)Wuui+1(t)+λ[(ui+1(t)−ui(t))T (ui+1(t)−ui(t))−δ]
(2.80)

The parameters effecting the solution of the optimisation problem in (2.79) and (2.80) can
be listed as

— The weighting matrices, We and Wu,
— The constraint on the input difference, δ and
— The Lagrange multiplier, λ.

The purpose ofWe andWu is to determine which error and input elements will be of more
importance along the minimisation process, respectively. The parameter δ, on the other
hand, limits the increment of input between consecutive iterations while λ determines how
the query goes towards optimal value. Moreover, for simplification it is assumed that the
system has no measurement disturbances and the initial conditions for states are zero.
Hence, the input-output relation can be expressed as,

yi(t) = P(r(t) + ui(t)) (2.81)

In (2.81), ui(t) is the input from ILC algorithm and the system has a desired reference
r(t). This means that the ILC signal modifies the reference in order to better the output
tracking (i.e. a feedforward action). Using (2.81), the system error can be written as,

ei(t) = r(t)− yi(t)
= (I−P)r(t)−Pyi(t).

(2.82)

It is straightforward that the error for the next trial is

ei+1 = (I−P)r(t)−Pui+1(t). (2.83)

Now, (2.83) is placed into the objective function in (2.80) as,

Ji+1(ui+1(t)) = [(I−P)r(t)−Pui+1(t)]TWeei+1(t)
+ uTi+1(t)Wuui+1(t)
+ λ[(ui+1(t)− ui(t))T (ui+1(t)− ui(t))− δ]

(2.84)
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Applying the transposes and performing the multiplications leads to

Ji+1(ui+1(t)) = [(I−P)r(t)]TWeei+1(t)− (Pui+1(t))TWeei+1(t)
+ uTi+1(t)Wuui+1(t)
+ λ[(ui+1(t)− ui(t))T (ui+1(t)− ui(t))− δ]

(2.85)

Also, consider the following relation for derivation where v is a vector of variables and M
is a matrix of constant values.

∂(vTMv)
∂v

= 2Mv (2.86)

Using (2.86), one may take the derivative of (2.85) with respect to ui+1(t).

∂Ji+1

∂ui+1(t) = −PTWeei+1(t) + 2Wuui+1(t) + 2λ(ui+1(t)− ui(t)) (2.87)

Here, ei+1 may be replaced by using (2.83) and since the optimal value exists where the
derivative is equal to zero,

−PTWe(I−P)r(t) + PTWePui+1(t) + 2Wuui+1(t) + 2λ(ui+1(t)− ui(t)) = 0 (2.88)

This can be simplified by defining 2Wu ≡Wu and 2λ ≡ λ :

−PTWe(I−P)r(t) + PTWePui+1(t) + Wuui+1(t) + λ(ui+1(t)− ui(t)) = 0
(λI + PTWeP + Wu)ui+1(t) = λui(t) + PTWe(I−P)r(t)

(2.89)

Hence, the solution for ui+1 is obtained as,

ui+1(t) = (λI + PTWeP + Wu)−1(λui(t) + PTWe(I−P)r(t)) (2.90)

The next step is to write the expressions for the Q and L filters. In order to do that, let us
consider writing (2.90) as in (2.41) by making the following substitution (consider d = 0) :

(I−P)r(t) = ei(t) + Pui(t) (2.91)

Then,

ui+1(t) = (λI + PTWeP + Wu)−1(λui(t) + PTWe(ei(t) + Pui(t)))
= (λI + PTWeP + Wu)−1(λui(t) + PTWeei(t) + PTWePui(t))
= (λI + PTWeP + Wu)−1[(λI + PTWeP)ui(t) + PTWeei(t)]
= [(λI + PTWeP + Wu)−1(λI + PTWeP)][ui(t) + (λI + PTWeP)−1PTWeei(t)]

(2.92)

From this result one can see that the ILC filters areQ = (λI + PTWeP + Wu)−1(λI + PTWeP)
L = (λI + PTWeP)−1PTWe

(2.93)

λ = 0 :
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The challenge here for the designer is to determine λ, We and Wu. Choosing λ = 0
converts ILC algorithm to a feedforward control logic since the control signal is found in
one step. Setting λ = 0 in (2.90) leads to,

ui+1(t) = (PTWeP + Wu)−1(PTWe(I−P)r(t)). (2.94)

Wu = 0 :
If the weight on the input is removed, i.e. Wu = 0, the system can reach its maximum
convergence rate since there is no limit in the input increment. This result gives the
following ILC filters : Q = I

L = (λ I + PTWeP)−1PTWe

(2.95)

λ = 0,Wu = 0 :
If one chooses λ = 0 and Wu = 0, then one can obtain the ultimate best solution for the
ILC system where L becomes the inverse of the system. Thus, the filters areQ = I

L = P−1 (2.96)

Comments :
However, this solution is usually not quite satisfactory considering the issues such as
robustness, non-minimum phase systems and unwanted transients in the output. In order
to cope with these issues, one can make the following choices :


λ > 0

We = I
Wu = ρI with ρ > 0

(2.97)

Remark : A similar approach is found in Linear LQ control.
Thus, the ILC filters becomeQ = ((λ+ ρ)I + PTP)−1(λI + PTP)

L = (λI + PTP)−1PT
(2.98)

Let us now write the update equation in the following form :

ui+1(t) = Q(ui(t) + Lei(t)) = Qui(t) + QLei(t) (2.99)

The convergence conditions are obtained by investigating largest singular values of Q and
QL in (2.99) : 

||Q||2 < 1

||QL||2 ≤
1

2
√
λ+ ρ

(2.100)

These conditions can be used when choosing the accurate filters for the ILC system. For
more detailed mathematical explanations including the steps for acquiring these condi-
tions, one should refer to [84].
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2.5 Numerical Examples

In this section, two numerical examples are provided for giving the reader a better
intuition of ILC. The first example demonstrates a frequency domain PD-type ILC ap-
plication while the second example shows a time-domain norm optimal ILC (NO-ILC)
application. The system to be controlled for these two applications is the following se-
cond order linear time-invariant single-input-single-output (SISO) system that is given in
both its continuous-time and discrete-time forms (the discretisation is done using ’bilinear
Tustin method’ with a sampling time of Ts = 0.01s).

Continuous-time system :

P (s) = 1
0.3333s2 + 1.167s+ 1 = 1

(1 + 0.5s)(1 + 0.666s) (2.101)

Discrete-time system :

P (z) = 0.0000737z2 + 0.0001474z + 0.0000737
z2 − 1.965z + 0.9656 = 0.000073705(z + 1)2

(z − 0.9851)(z − 0.9802) (2.102)

Note that the given system is already stable and thus it is suitable for being tested with
an open-loop ILC in iterative feedforward fashion (for the opposite case where the initial
system is unstable, an inner feedback controller must be employed to ensure stability). Fur-
thermore, in both applications below, ILC is integrated to the system via serial connection
as shown in Fig. 2.2.

2.5.1 PD-type ILC application

The first numerical analysis demonstrates the design procedure of a PD-type ILC for
the discrete system (2.102). The design procedure given in this section is adopted from [68]
and it should be referred to for further details. Before beginning this section, it can be useful
to first read the basic design procedure of a traditional frequency-domain in Appendix A
for an easier understanding. Let us consider the PD-type ILC filter proposed by [68] :

L(z) = z[Kp +Kd(1− z−1)] (2.103)

which is slightly different than a typical PD-type ILC filter (i.e. L(z) = Kp + Kd(z − 1))
since it applies the proportional and derivative operations on the error differently. Putting
(2.103) into the general ILC update equation ui+1(t) = Q(z)[ui(t) + L(z)ei(t) :

ui+1(t) = Q(z)[ui(t) +Kpei(t+ 1) +Kd[ei(t+ 1)− ei(t)] (2.104)

It can be seen that the filter (2.103) applies a proportional gain Kp on the error from
previous iteration that is shifted by one term in time (since ILC is applied offline, ’future
error’ of the previous iteration is already available) and it also multiplies the derivative
of the error by a derivative gain Kd. Moreover, Q-filter is as mentioned before a low-pass
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filter which can be of many different types such as Butterworh, Chebychev and so on.
Thus, the main issue is to determine the proper values for the gains Kp and Kd. If (2.104)
is arranged as

ui+1(t) = Q(z)[ui(t) + ((Kp +Kd)z −Kd)ei(t)], (2.105)

the learning filter can be rewritten as

L(z) = (Kp +Kd)z −Kd

= Kmz −Kd

(2.106)

For a chosen convergence margin γ , ILC converges to the desired input ui(t) if

0 ≤ |1− L(ejw)P (ejw)| ≤ γ, ∀w ∈ [0, wc] (2.107)

where P (ejw) is the plant. For P (ejw) = A(w)ejΦ(w) (2.107) is written as

0 ≤ |1− (Kme
jw −Kd)A(w)ejΦ(w)| ≤ γ, ∀w ∈ [0, wc] (2.108)

Making the substitution ejw = cos(w) + j sin(w) and ejΦ(w) = cos(Φ(w)) + j sin(Φ(w))
and then taking the absolute of the resulting complex expression, one gets the following
quadratic equation :

N1 = A(w)2K2
d + [2A(w) cos(Φ(w))− 2KmA(w)2 cos(w)]Kd

[1− γ2 − 2A(w)Km cos(Φ(w) + w) +K2
mA(w)2] ≤ 0

(2.109)

This can be seen as a quadradic equation with variable Km and unknown parameter Kd.
Then, the real solution of Kd is obtained if

N2 = A(w)2(cos2w − 1)K2
m − 2A(w) sin(Φ(w))Km sinw

cos2(Φ(w)) + γ2 − 1 ≥ 0
(2.110)

Since A(w)2(cos2w − 1) < 0, for N2 = 0 the real solutions of Km (i.e. λ1 and λ2) are
found if the discriminant of (2.110) can be made greater than zero with the proper cut-off
frequency wc and γ, i.e. ∆ = 1− cos2wc > 0. Thus, λ1 ≤ Km ≤ λ2 which means that the
value of Km can vary between these solutions with the central value

Km = − sin Φwc
A(wc) sinwc

(2.111)

satisfying (2.110). Once the value for Km is determined, considering N1 = 0, one can
obtain two real solutions (η1 and η2) similarly for Kd in (2.109) with the central value

Kd = Km coswc −
cos Φwc
A(wc)

(2.112)

satisfying the condition of (2.109). At this point, the stability condition (2.107) is gua-
ranteed at w = wc. However, this still does not mean that (2.107) will be fulfilled at low
frequency, e.g. w = 0. Therefore, in order to be sure that the error will be zero at low
frequencies, one must guarantee |1 − L(z)P (z)| = 0 at w = 0 which means that the gain
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Kd in (2.112) has to be modified into

Kd = Km −
1

A(0) (2.113)

where one can assign the proportional gain as Kp = 1/A(0). This finally simplifies the
overall design procedure since the sine and cosine terms cancel out. For a "common unit-
loop closed system" as mentioned in [68], A(0) = 1 (other values are also possible depending
on the plant) and then Km = Kd + 1 from (2.113). This allows to rewrite (2.109) as

aK2
d + bKd + (c− γ2) = 0, (2.114)

where

a = 2A(w)2[1− cos(w)],
b = 2A(w)[cos(Φ(w))− cos(Φ(w) + w)] + 2A(w)2[1− cos(w)],
c = 1 + A(w)2 − 2A(w)cos(Φ(w) + w).

(2.115)

The solution for Kd exists when

a > 0
4ac− b2

4a < γ2
(2.116)

Thus, the solutions of (2.114) are obtained as

Kd,1 = −b+
√
b2 − 4ac

2a

Kd,2 = −b−
√
b2 − 4ac

2a

(2.117)

Next, to satisfy the stability condition (2.107) at w = 0, the following relation should hold
between gains Km and Kd :

Km = Kd + 1
A(0) (2.118)

One can see that the calculation of Km and Kd depends on the chosen cut-off frequency wc
and the convergence margin γ. The designer should find the highest wc at which the ILC
system can operate without diverging. Then, a low-pass filter should be used to eliminate
the frequencies greater than this cut-off frequency.

Simulation results :

The system desired reference is chosen to be a sinusoidal signal, i.e. yd(t) = sin(t). The
rest of the parameters used in the initialization of the ILC process is given on Table 2.2.
Note that γ is selected as 1 meaning that there is no extra restriction on the convergence
rate and the maximum cut-off frequency is selected around 19Hz via trial-and-error consi-
dering the discriminant condition for (2.110) (see the design explanation therein). Also,
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the Q-filter is assumed to be Q(z) = 1 for this example and other selections (i.e. low-
pass filters mentioned in the design procedure given above) are possible for eliminating
high-frequencies within the control signal ui+1(t).

Table 2.2: PD-type ILC parameters

Parameters

Sample time, Ts 0.01 sec.
Simulation time, Tsim 20 sec.
Discretization method Tustin

Initial system input, usys(t) yd(t)
Initial ILC input, uILC(t) 0
Number of ILC iterations 15
Cut-off frequency, wc 19 Hz
Convergence margin, γ 1

Under these initial conditions, (2.107) is satisfied since

a = 1.5152× 10−6 > 0
4ac− b2

4a = 0.9395 < 1
(2.119)

The solutions for the gains for wc = 19Hz and γ = 1 are

Kd = 27.76
Km = 28.76

(2.120)

Therefore, the learning filter is

L(z) = 28.76z − 27.76 (2.121)

which satisfies the stability condition (2.107) by making

|1− L(ejwc)P (ejwc)| = 0.9968 < 1 (2.122)

The system response without ILC which is shown by Figure 2.4 has a phase delay and a
lower amplitude. When the ILC is activated the system approaches the desired trajectory
in 15 iterations. The first and every fifth iteration of this process are provided in Figure
2.5. Similarly, the error and the control signal produced by ILC can be observed in Figure
2.6 and Figure 2.7, respectively. It can be seen that the error gets lower and lower with
each iteration while the control signal converges to the proper value. Figure 2.8 gives the
variation of the squared norm of the system error ||ei(t)||2 which illustrates that the error
becomes nearly zero in 10 iterations. Also, the squared norm of the difference of the ILC
control signals between consecutive iterations ||ui+1(t)− ui(t)||2 approaches zero which is
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seen in Figure 2.9. This is an expected result since the control signal converges as iterations
continue.

Finally, Figure 2.10, Figure 2.11 and Figure 2.12 can be reviewed for the results regar-
ding the last iteration only. One can figure out that the ILC output corresponds to the
exact desired output after 6 seconds and there is a slight deviation between the seconds
1 and 2. Increasing the iterations to 150, almost completely solves this problem ; howe-
ver this still creates small deviations at some other parts of the signal. If the iterations
continue even further until 1000, the output becomes flawless.
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Figure 2.4: System output without ILC intervention.
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Figure 2.5: Effect of ILC on the system outputs.
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Figure 2.6: System error for each iteration.
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Figure 2.7: ILC control signals for each iteration.
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Figure 2.8: Squared norm of the system error with respect to ILC iterations.
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Figure 2.9: Squared norm of the ILC output difference with respect to ILC iterations
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Figure 2.10: System output for the last ILC iteration
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Figure 2.11: System error for the last ILC iteration
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2.5.2 NO-ILC application

The second numerical analysis shows the design procedure of a norm-optimal ILC in
time-domain representation. The procedure described in Section 2.4.2 is applied on the
state-space version of the system (2.102), i.e.

ẋ(t) = Ax(t) +Bu(t), (2.123)
y(t) = Cx(t) +Du(t). (2.124)

with x(t), y(t) ∈ R2, u(t) ∈ R1 and

A =
−3.5014 −3.0003

1 0

 , B =
0

1

 , C =
1 0

0 1

 .D =
0

0

 .
The system (4.1)-(4.2) is discretised on MATLAB via ’Tustin method’ and this time with
larger sampling time to reduce heaviness of calculations, i.e. Ts = 0.01s). The system
is then put in the lifted-framework by obtaining its impulse response and following the
procedure given in Section 2.1.1. For keeping the simplicity, the desired reference trajectory
is again chosen as yd(t) = sin(t). The remaining simulation parameters used for the NO-
ILC simulation are given on Table 2.3.

Table 2.3: NO-ILC parameters

Parameters
Sample time, Ts 0.1 sec.
Simulation time, Tsim 50 sec.
Number of samples, Tsim/Ts M
Discretization method Tustin

Initial states [0 0 0 0 0]T
Initial system input, usys(t) yd(t)
Initial ILC input, uILC(t) 0
Number of ILC iterations 40

We ρI

Wu I

ρ 0.01
λ 0.1

It can be seen that the selections of ρ and λ on Table 2.3 satisfy the convergence
requirements in (2.100) by yielding,

||Q||2 = 0.9999 < 1
||QL||2 = 1.5075 < 1.5076

(2.125)

In the beginning of the process, the system is run without any ILC intervention, i.e.
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uILC = 0. This is required for gathering the data that is needed to calculate the first ILC
output which will modify the reference signal on the next run. The output of the system
without ILC can be reviewed in Figure 2.13. On the other hand, one can observe in Figure
2.14 that as the iterations continue the output of the system with ILC gets closer and
closer to the desired trajectory. After 40 iterations the system achieves almost the exact
desired trajectory. Furthermore, the convergence of the error and the control signals of
the ILC system are depicted in Figure 2.15 and 2.16, respectively. The converged signals,
i.e. the last iteration, are shown in blue while the green signals are for the first iteration.
One can observe how ILC manipulates the control signal and thus the error by looking at
the signals plotted in red. Furthermore, Figure 2.17 and Figure 2.18 shows the squared
norm values of the error and the ILC output difference, respectively. The error of the ILC
system is very close to zero after 25 iterations and as the process continues towards 40th
iteration the error is nearly diminished. Also, the change in control signal between two
consecutive iterations approaches nearly to zero in 25 iterations and a full convergence
approximately occurs in 40 iterations. Besides, Figure 2.19, Figure 2.20 and Figure 2.21
are the illustrations of the output, the error and the control signals corresponding to the
last iteration, respectively. One may refer to these figures to analyse the converged signals
in more detail.
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Figure 2.13: System output without ILC intervention.
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Figure 2.14: Effect of ILC on the system outputs : the 1st iteration (green), every 5th
iteration (red) and the desired reference (blue).
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Figure 2.15: System error for each iteration : the 1st iteration (green), every 5th iteration
(red) and the last iteration (blue).
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Figure 2.16: ILC control signals for each iteration : the 1st iteration (green), every 5th
iteration (red) and the last iteration (blue).
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Figure 2.17: Squared norm of the system error with respect to ILC iterations.
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Figure 2.18: Squared norm of the ILC output difference with respect to ILC iterations
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Figure 2.19: System output for the last ILC iteration
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Figure 2.20: System error for the last ILC iteration
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Figure 2.21: ILC control signal for the last iteration

Practical note : In this numerical application, the main aim is to demonstrate how
ILC reduces the system error while it converges to a specific input value. However, similar
applications on different systems may need a more precise consideration from the practical
point of view. Instead of heuristically finding the best number of iterations for the needed
convergence results, one can define a termination criteria considering the normalised ver-
sions of the squared norms ||ei(t)||2 and ||ui+1(t) − ui(t)||2. This kind of approach allows
to have an independency with respect to the studied system. For example, the termination
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criteria of ILC can be defined considering the normalised input difference as bellow :
C.1 Termination (normal) : ||ui+1(t)−ui(t)||2

||u1(t)−u0(t)||2 = ||∆ui(t)||2
||∆u0(t)||2 < εu%

C.2 Termination (more robust) : ||∆ui(t)||2−||∆ui−1(t)||2
||∆ui−1(t)||2 < εu%

where εu is an ultimate goal for the ILC input difference variation in percentage chosen by
the user. After some point, the input may start to vary so low that further iterations may
not affect precision performance. This point can be imagined as εu.

Similarly, the termination criteria can be constructed considering the amount of error :
C.3 Termination (normal) : ||ei(t)||2

||e0(t)||2 < εe%

C.4 Termination (more robust) : ||ei(t)||2−||ei−1(t)||2
||ei−1(t)||2 < εe%

where εe is an ultimate goal for the ILC error variation in percentage that is left to user’s
preference. In order to include the impact of measurement noise, εe can be obtained cho-
sen with respect to σ2

y which is the variance of the additive noise in the output y(t). In
conclusion, the user can simply stop the ILC iterations utilising these four above given
criteria.

2.6 Conclusion

The concept of iterative learning control has been explained in detail 1 including the
fundamental idea behin ILC, the design steps, the different representations, the stability
analysis, the integration of ILC, the existing ILC methods, the order of ILC, some practical
suggestions and two numerical applications. It can be said that ILC has a simple structure ;
yet it can be quite effective in high precision applications. Although it is open-loop, it
allows a very easy integration to an existing system that is already controlled via feedback
without effecting the inner controller or system parameters. This feature of ILC is rather
motivating for carrying out a practical application with the aim of improving the system
performance in reference tracking beyond feedback capabilities. One of the main features
that can provide this kind of result is ILC’s anticipation property that comes from its
data-based nature. ILC can simply use the repetitive data from previous system iterations
to remove transients and improve precision to a very high level.

As a result of such motivation, the initial study of the thesis has began by applying
an existing ILC method to a real indoor UAV. Among the presented ILC methods in this
chapter, the norm optimal ILC (NO-ILC) has been chosen as a good candidate since it
is more suitable for uncertainties, disturbances or noise compared to other ILC methods
such as P-type ILC, D-type ILC, PD-type ILC and so on. Thus, the following chapter
demonstrates an ILC experimentation on a UAV and, in addition, it indroduces a new
experimental procedure for speeding up the UAV flight experiments using ILC.

1. At a fairly high level (further information is available in the references).
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Applying ILC on a real UAV
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This chapter can be seen as the first step in the development of the thesis which is
based on an ILC application on a real indoor UAV. The main goals of the presented work
here are to test the feasibility of an optimisation-based ILC on real UAV and to propose
a new experimentational procedure for ILC experiments with UAVs that speeds up the
conventional approach.

3.1 UAV Oriented Problem Statement

In almost all ILC experiments with UAVs, the main practice is to perform one ILC
update after each flight of the same reference trajectory. This corresponds to the classical
way of applying an ILC scheme. The tracking precision is improved throughout the flights
by means of updating the system inputs utilising experimental data from previous flight(s).
Even though this update scheme gives desired results in terms of converged error, its
efficiency is arguable when one considers the number of flights needed for achieving the
desired convergence. The more this number increases, the more becomes the duration for
reaching the required tracking performance. Some other factors that increase the time
of UAV experimentation can be counted as the time spent for the experimental setup,
sampling time, flight duration, battery changes and various unexpected problems that may
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occur along the flight causing a rerun. Under such factors, even conducting 20 experiments
may take sufficiently long, not to mention the cases in which the number of experiments
reaches more than 100 as in [74]. On the other hand, it is usually not very difficult to
obtain the linear dynamic model of a UAV for a given trajectory (linear models can be
considered as accurate enough on local trajectories and even though a linear model may
not be well-fitting for very aggressive trajectories, it can still be sufficient to be used in
ILC).

If the task is to reach a certain tracking performance, using a linear model with ILC
can make it much faster to approach the desired performance when ILC is applied in
a non-traditional way by using predicted iteration data

. The linear model can be utilised to predict the future flight data and to carry out large
number of ILC iterations which would then allow one to largely improve the ILC signal
without needing to actually perform real flight experiments. What makes this practical
approach interesting is that one can highly improve the tracking accuracy by using simple
linear models such as UAV models identified with a few number of poles and zeros.

In the following section, the control design is presented. First, the initial requirements
for the reference trajectory is explained. Then, the UAV’s internal feedback controller and
the ILC algorithm are shown.

3.2 Philosophy and Control Design

In order to obtain proper results from ILC experimentation on a UAV, it is necessary
to take into account some factors for making the control objectives feasible as per the
dynamics of the UAV. This section demonstrates these factors under a cascade control
design architecture that consists of three parts : the reference trajectory, the internal
feedback controller and the ILC. The usage of this control architecture is aimed to be
motivated by putting an emphasis on its practicality.

3.2.1 Reference trajectory & Pre-filter

For an ILC application, it is assumed that the operator can give an arbitrary repetitive
sequence of position (or velocity) setpoints. As this sequence can be discontinuous and not
achievable by the UAV, this raw sequence should first be filtered systematically in order
to smoothen it before it enters the UAV system as a reference input 1. For this purpose, in
the context of a UAV, a 3rd order pre-filter is a suitable choice since it will render the raw
repetitive sequence continuous along the attitude references as well as twice differentiable
(i.e. suitable for ILC control objectives). This process can be interpreted as allowing some
time for the UAV to reach the desired position at the beginning of the reference trajectory
which is initialised according to the UAV’s initial state (e.g. asking a UAV to be at 1m
immediately at t = 0s is not realistic in terms of physical limitations). Moreover, pre-filters

1. This is directly related to systems achievable performances
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of same structure are applied to each axis of the UAV such that it is possible to separately
adjust the DC-gains and to produce only a small phase delay without having any change
in amplitude with respect to the initial trajectory given by the operator. The pre-filter’s
transfer function can be described as :

(.)ref (s)
(.)raw_ref (s)

= G(.)

(τ1(.)s+ 1)(τ2(.)s+ 1)(τ3(.)s+ 1) (3.1)

where (.) can be X, Y or Z, the ’ref ’ and ’raw_ref ’ stand for the filtered and unfiltered
references, respectively and τ1(.),τ2(.) and τ3(.) represent the time responses chosen to be
less than 2 seconds. Here, G(.) is the inverse of the gain of the filter’s transfer fuction
evaluated at the reference frequency wref , i.e.

G(.) = 1
|H(jw)|

∣∣∣∣∣
w=wref

where
H(jwref ) = 1

(τ1(.)jwref + 1)(τ2(.)jwref + 1)(τ3(.)jwref + 1)
This filtering procedure is applied on three different UAV trajectories which are used
during the experimentation and simulations in Section 3.3. These reference trajectories
can be seen below (note that reference signal construction is a complete research field
where contributions can be found in robotics).

1 - Eight-shaped trajectory
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Figure 3.1: Eight-shaped reference trajectory (no filter)

The UAV is asked to follow an eight-shaped trajectory with a period of T = 7.5 seconds
on its XY-plane. The altitude of the UAV is set to 1 meter in Z-axis. The eight-shape is
obtained by combining two sinusoidal signals on X and Y-axes with the same amplitude
(AX,Y = 1m) but different frequencies ; i.e. fX = 0.5fY . The motion starts from starts
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from hovering position in the center of the trajectory at the specified altitude. The raw
and filtered versions of this trajectory can be viewed in Fig. 3.1 and 3.2, respectively.
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Figure 3.2: Filtered eight-shaped reference trajectory vs. no filter

2 - Square-shaped trajectory

Figure 3.3: Square reference trajectory (left : top view, right : tilted side view)
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The UAV is asked to follow a square-shaped trajectory with a period of 8 seconds on
the XY-plane. The length of the trajectory is 1 meter in each axis. The motion starts from
the center of the square where the UAV is at hovering position at 1meter of altitude. The
original and filtered trajectories can be observed in Fig. 3.3 and Fig. 3.4.

Figure 3.4: Square reference trajectory components in each axis

3 - Elliptical trajectory

Figure 3.5: Square reference trajectory (left : top view, right : tilted side view)

61



The UAV is asked to follow an inclined elliptical trajectory with 0.8 meter semi-major
axis and 0.4 semi-minor axis. The trajectory is inclined by 15 degrees. The altitude of the
UAV is chosen to be 1.5 meters and the motion starts from the center of the UAV. The
original and filtered trajectories can be observed in Fig.3.5 and Fig. 3.6.

Figure 3.6: Square reference trajectory components in each axis

3.2.2 The inner feedback control

The UAV’s embedded feedback controller is a combination of 3 controllers : a position,
a speed and an attitude controller (see Fig. 3.7 2). The horizontal and vertical positions
of the UAV are each controlled by the position and speed feedback controllers which
in each axis compute the required attitude and total thrust (for horizontal and vertical
movements, respectively) in order to follow the set-points of a given repetitive sequence.
This information is then used by the attitude controller to calculate the necessary torque
values from which a mixer matrix finally deduces the thrust contribution of each rotor.

2. The parameters with ’bar’ notation are feedback measurments.
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Figure 3.7: NO-ILC experimental setup and control architecture.

The designs of the feedback controllers are done utilizing an LQ method with the
linearised model of the UAV considering the following control objective :

— An overshoot of < 5% for the position tracking (X, Y, Z),
— A limited command noise,
— Good robustness properties.

In Fig. 3.7, one can observe the architecture of the position closed-loop system. The LQ
horizontal controllers deliver the attitude references α?x and α?y in the OptiTrack frame
which are then converted in Euler angles references φ? and θ?. The vertical LQ controller
generates thrust reference δT ? to which a nominal thrust uT0 is added to compensate
for the weight of the UAV. Furthermore, Euler angle references and thrust references
are tracked by the PX4 controllers which generate setpoints for the motors (ωri). The
position and speed of the UAV are then measured by the optitrack system and used
by the LQ controllers. Hence, the closed-loop system considered by ILC consists of the
transfer functions between the position references X?, Y ? and Z? that are assigned to
position controllers and the measured position outputs X̄, Ȳ and Z̄ :

GX(s) = X̄(s)
X?(s) , GY (s) = Ȳ (s)

Y ?(s) , GZ(s) = Z̄(s)
Z?(s) . (3.2)

The main drawback of this feedback controller is, as illustrated later, its "slow" time
response (see Fig. 3.10 and 3.11). It takes approximately 5.5 seconds to reach a reference
position which introduces a delay when tracking fast varying trajectories. Therefore, the
aim of the feedback controller is to maintain the robustness while the precision performance
is left to ILC.

The initialisation of the ILC is done as demonstrated on Table 3.1. The values of ρ and
λ are selected considering the two convergence conditions given in (2.100). The low value
set for ρ indicates that a high convergence rate is aimed. Besides, identification algorithm is
asked for continuous transfer functions of low complexity (3 poles and no zeros). It should
also be taken in to account that the initial UAV state is ’hovering’ at 1 meter altitude.
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3.2.3 The ILC algorithm

The goal of using an ILC algorithm is to compensate for the weak performance of the
embedded feedback controller such that the UAV can achieve high tracking performance
for operator’s repetitive sequences. The ILC method chosen for the control design is the
norm optimal ILC (NO-ILC) given in Section 2.4.2.

Table 3.1: NO-ILC initialisation parameters

Sample time, Ts 0.02 sec.
Simulation time, Tsim 37.5 sec.
Discretisation method Tustin

Identified models in X, Y and Z npoles = 3 ; nzeros = 0
Initial states [0 0 − 1]T ∈ R3

Initial system input [xref yref zref ] ∈ RN×3

Initial ILC input [0 0 0] ∈ RN×3

Number of ILC iterations 300
Weight on the error, We ρI ∈ RN×3

Weight on the system input, Wu I ∈ RN×3

ρ 0.001
λ 0.1

3.3 Experimental setup

The flight experiments are carried out by using the presented cascade control archi-
tecture on UAV called Parrot AR. Drone 2.0. The place of the experimentation is an
indoors flight arena equipped with an OptiTrack motion capture system. Figure 3.7 shows
the experimental environment in a schematic way. The fast and robust attitude regulation
loop is implemented in the Pixhawk PX4 autopilot which computes motors’ references to
track attitude set-points. The guidance and navigation loops are implemented in a more
powerful calculator, the Gumstix, yielding attitude references to the Pixhawk to track de-
sired position trajectories. Moreover, the specific role of each component can be detailed
as below :

1. Ground station : a Simulink model that can both send attitude reference and high
level position reference to the Gumstix or execute its own guidance law (position
feedback and ILC).

2. Wi-Fi Link : the data transfer between the quadrotor, the ILC computer and Op-
tiTrack system is done via Wi-Fi.

3. Gumstix Board : the bridge between the data received via Wi-Fi and the PX4
autopilot. The Gusmtix can run its own guidance law or can directly receive attitude
commands coming from the ground station.
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4. Pixhawk PX4 : joined to the Gumstix by a serial link, the PX4 is the actual auto-
pilot of the quadrotor, where attitude control takes place.

So far, the process is fairly standard.

3.3.1 Proposition of a new ILC data-flow

The main contribution of this chapter is presented in this section by introducing a new
experimentation method for ILC. It is shown how one can perform experiments following
a nontraditional update procedure for ILC. In the common practice, one uses the experi-
mental data from the previous flight in order to obtain the input signal in the next flight
which leads to one ILC update per one experiment. The problematic side of this issue
comes when one needs to do large number of iterations to reach a desired reference. In
order to overcome this problem, a new experimentation scheme can be applied by using a
closed-loop system identification process together with an ILC algorithm. This method is
provided in form of a data flow chart and can be viewed in Figure 3.8. The given procedure
can be described as follows : The first flight includes no ILC signal, i.e. the UAV flies with
its own internal closed-loop controllers that are adjusted to have low performance. The
data from the first flight is used to identify linear models of the UAV dynamics along X, Y
and Z-axes. Then, ILC makes 300 iterations using predicted positions of virtual incoming
flights (note that the number of iterations can be chosen different than 300 depending
on the needed accuracy and the speed of the simulation time). The signal from the last
iteration is then used to modify the reference signal of the system and a new real flight is
performed. Next, using the flight data from this new flight the UAV model is re-identified
and then the simulated iterations are restarted. After applying the same steps for 3 times,
this approach reaches its limit and the identification does not improve the trajectory fur-
ther (note that the number of repetitions, i.e. 3 times, is determined by observing UAV
tracking results). At this point, the update process is switched back to the traditional way
where the ILC begins directly using the error from the real flights and this process yields
one update per flight.
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Figure 3.8: Data flow procedure for NO-ILC experiment

The proposed procedure can provide a rapid correction of closed-loop lags and errors
from model imperfections by means of only simulated ILC iterations in several flights
at the beginning. This is because the re-identification process of the linear UAV model
after each flight allows us to obtain a close behaviour to the desired tracking. Basically,
what ILC does is to refine the UAV linear model as of the first flight. One can think of
each newly performed flight with the current ILC signal as a new operating point which
is closer to the desired reference trajectory. Thus, the forthcoming ILC signal needs to
include the information of the last operating point to better the tracking and this is the
point where the re-identification is made use of. In this way, the simulation based ILC
approach improves the tracking until the limits of the linear UAV model. Accordingly, it
can be said that when ILC is switched back to the traditional update, the remaining errors
are due to the non-repeating disturbances or very nonlinear behaviours occurring in real
flight which cannot be approximated by the linear model.
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3.4 Experimental results and analyses

The control architecture given in Section 3.2 is tested using three reference trajectories
shown in Section 3.2.1. The flight experiments are conducted with respect to the data flow
in Figure 3.8 and the initialisation on Table 3.1. Note that depending on the reference
trajectory some readjustments are also applied in the simulations time and the initial
UAV altitude.

3.4.1 Eight-shaped trajectory tracking results

For the eight-shaped trajectory, the experimentation was done until the 9th flight consi-
dering the fact that the tracking precision was not improving further. The tracking results
obtained with the NO-ILC algorithm are depicted in Figure 3.9. The ILC update for the
first 4 flights are based on the predicted data obtained through the identified models of the
system. On the other hand, the ILC used directly the real flight data for the remaining
5 flights. It can be observed that the reference tracking almost does not improve as of
the 5th flight. This is due to the fact that it was possible to reach the maximum tracking
performance via ILC using the identified system models by the end of the fourth flight.
Moreover, one can also see in Figure 3.9 how the mean position error on each axis changed
along the flight experiments. It is straightforward to conclude that a sufficiently accurate
tracking performance can be obtained in only 4 flight experiments.
On the identified transfer functions : After each flight, we identify the UAV transfer
functions on each axis. Since the translational speeds, and the attitude angles become more
aggressive as the ILC improves the tracking, the identified linear transfer functions are
slightly different after each flight. This simply highlights the utility of identifying a new
transfer function after each flight. As shown in Figure 3.10, the identified transfer func-
tion of the X-axis evolves only for a small amount along the flights whereas the variations
are relatively larger on the Y -axis (see Figure 3.11). This can be found reasonable since
it is harder to follow the trajectory on the Y -axis that is of a frequency twice as the one
on X-axis. Moreover, for more complex trajectories, it could be more suitable to choose
higher-order transfer functions to identify in order to better fit the nonlinear behaviour.
For the sake of practicality, one can go further by performing an ’automatic order selection’
of these transfer functions based on the model fit percentage or on the prediction error for
the real flight.
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Figure 3.9: Tracking results for the eight-shaped reference
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3.4.2 Amplitude analysis for eight-shaped trajectory tracking

After obtaining a satisfactory tracking performance for an eight-shaped trajectory, an
amplitute analysis was performed in order to find the limitation of the used ILC algo-
rithm. In different words, the same procedure was applied using the reference trajectories
with higher amplitudes but the same frequency as before. In this process, a full nonlinear
simulator of the UAV (including saturations, aerodynamics effects etc.) was used instead
of carrying out real flight experiments. Three simulations were shown for each amplitude
considering the fact that the simulator output became invariant after three flight simu-
lations. The results of this amplitude analysis were given on Table 3.2 in terms of the
absolute values of the mean and maximum position errors on each axis. Looking at the
error values in general, one may observe that increments in reference amplitude cause lar-
ger mean and maximum errors. Until A4 = 1.75m, the errors on Z-axis show a different
fashion along the runs ; i.e. they increase whereas the errors on X and Y -axes decrease
as aimed. Then, at A5 = 2.00m, the mean errors on X and Y -axes first decrease and
then slightly increase while the errors on Z-axis keep the same trend. The issue observed
on Z-axis can be seen as an outcome of higher pitch and roll angles that were taken by
the UAV for improving the accuracy of the lateral trajectory which accordingly caused
a compromise of altitude accuracy. Hence, one can say that the ILC algorithm for the
eight-shaped trajectory starts to become unsatisfactory as of A4 = 1.75m.

Table 3.2: Mean position error vs. Reference amplitude (in cm)

Frequency, f = 0.1333 Hz.
Reference Mean Run Run Run Max. Run Run Run
Amplitude error 1 2 3 error 1 2 3

ēx 81.98 3.366 3.400 exmax 128.6 6.192 5.683
A1 = 1.00 ēy 80.29 3.504 1.292 eymax 126.3 7.831 3.363

ēz 0.091 1.235 1.357 ezmax 0.181 2.127 2.363
ēx 102.7 4.082 4.084 exmax 161.3 7.687 6.985

A2 = 1.25 ēy 100.3 5.114 1.773 eymax 157.8 11.14 4.770
ēz 0.142 2.001 2.260 ezmax 0.284 3.435 3.864
ēx 123.4 4.757 4.678 exmax 193.8 9.166 8.150

A3 = 1.50 ēy 120.2 6.899 2.363 eymax 189.3 14.69 6.361
ēz 0.204 3.039 3.582 ezmax 0.409 5.220 6.062
ēx 144.3 5.399 5.140 exmax 226.4 10.67 9.455

A4 = 1.75 ēy 140.1 8.819 3.122 eymax 220.7 18.34 7.897
ēz 0.277 4.405 5.244 ezmax 0.557 7.669 9.288
ēx 165.2 5.907 8.713 exmax 259.0 12.49 14.91

A5 = 2.00 ēy 160.0 10.26 15.26 eymax 252.2 21.24 32.30
ēz 0.362 6.503 14.27 ezmax 0.729 11.41 27.33

The unwanted results after a certain point are most probably due to nonlinearities
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or nonrepetitive elements such as noise and uncertainties in identified models which are
used within ILC. A solution to these issues can come from an improvement in the method
by improving the proposed scheme in a way that it can be robust to uncertainties and
nonlinearities while keeping the tracking precision still as high as possible (see Chapter 5
for such approach).

3.4.3 Square-shaped trajectory

A square-shaped trajectory is much harder to follow with precision compared to the
eight-shaped trajectory if the UAV is required to fly continuously without stopping at the
corners of the square. In different words, at the corners of the square the UAV is asked to
perform a sudden change in its direction of movement which is a strenuous control task.
Moreover, a prefiltering process similar to the one in Section III-B was also implemented
on the square trajectory before beginning the ILC experimentation. Thus, the reference
trajectory was made more real-like from the point of UAV dynamics and the thust level
could be kept below the limit of saturation.

Figure 3.12: Filtered square reference trajectory (V : speed, a : acceleration)
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Figure 3.12 depicts the filtered square reference positions for X and Y-axes as well as
the corresponding velocity and acceleration curves. One can observe that the demanded
acceleration from the UAV was kept within a range defined by a limit of ±25 degrees in
pitch and roll angles. In order to avoid saturations at sharp corner turns, this limit was
made more strict compared to the one set for the eight-shaped reference, i.e ±35 degrees.

The square trajectory has a period of 8 seconds and it was repeated for 40 seconds which
corresponds to 5 loops. Figure 3.13 demonstrates the evolution of the reference tracking
according to the predefined data flow procedure and the plotted data represents only the
fifth loop of the UAV’s trajectory. It can be figured out that the most of the improvement
in the tracking was obtained during the first 4 flights where the ILC algorithm used the
predicted flight data. The rest of the flights were carried out with the real flight data using
the traditional ILC update process and the precision of the tracking could be slightly
improved.

Figure 3.13: Tracking results for the square-shaped reference
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3.4.4 Elliptical inclined trajectory

The final trajectory that was analysed is an ellipse with 0.8 meter semi-major axis, 0.4
meter semi-minor axis and 15 degrees inclination. The altitude of the UAV was initially
set to 1.5 meters and the UAV starts its flight from the center of the ellipse. Furthermore,
the period of the ellipse and the flight duration were chosen to be 4 seconds and 20 second,
respectively.

Figure 3.14: Filtered elliptical reference trajectory

Due to the inclination of the reference, the UAV needs to allocate some of its total
allowable thrust for altitude increment which limits the reachable accelerations for the
maneuvers on the lateral plane. Accordingly, the reference was filtered in order to be sure
that the demanded maneuvres stay below the saturation limits. Figure 3.14 demonstrates
the positions, velocities and accelerations for the filtered reference trajectory where one
can also observe that the norm of the vector compound of the accelerations on each axis re-
mains between a certain acceleration range. The absolute value of the maximum allowable
acceleration of the UAV is 1.25 times the gravitational acceleration, i.e. 12.26m/s. The
evolution of the reference tracking is demonstrated in Figure 3.15. The experiments were
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carried out according to the same data flow procedure used before and the represented
data corresponds to the 5th loop of the trajectory. Similar to the results of other refe-
rence trajectories, the largest improvement in tracking was seen to be during the first four
flights where the ILC used predicted data. Moreover, the seven flights that were performed
afterwards using traditional update could only reduce a small amount of the remaining
error.

Figure 3.15: Tracking results for the elliptical reference (V : speed, a : acceleration)

3.5 Conclusion

This chapter has presented the application of norm optimal ILC (NO-ILC) on a real
indoor UAV. The efficiency of NO-ILC has been proven with good tracking results during
the experiments. The agility of the UAV has been used to its limit via NO-ILC and a large
amount of precision has been achieved in only four flights. During this application, NO-
ILC has been integrated in open-loop to an already existing UAV system that is controlled
via feedback system. This has demostrated that ILC can be used as tool for increasing the
performance of a real nonlinear system as a UAV.

The main contribution of the chapter can be seen as a practical procedure proposed
for reducing the time spent during ILC experiments. This procedure is based on the idea
of using a hybrid ILC update, i.e. integrating large amount of predicted flight data while
performing the ILC updates instead of directly using real data (see Section 3.3.1). The
proposed procedure has proved to be efficient despite the low order linear UAV models
used in the update process (identified models have been used in generating predicted
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flight data and thus improving the system input without requiring real flights). The flight
experiments with three different trajectories demonstrated that, for the given specific flight
experiments, it was possible to acquire a large amount of tracking performance in only 4
flight experiments.

One of the challenges observed during the experiments can be seen as the increased
nonlinearity and parametric uncertainty in the UAV’s dynamics. These two adverse effects
had an impact on the learning of ILC as the UAV was reaching closer and closer to the
given agile reference. An improvement for resolving this issue can be done first by trying to
use higher-order identified transfer functions during the simulated ILC updates. Another
improvement can come from changing the UAV and apply the same experiment. This
has sense since the UAV used during the experiments had limited agility. Finally, the
ILC method that was used can be changed or a different tuning can be applied. If the
measurement noise and disturbances can be maintained well, some D-type or PD-type
ILCs may also be tried as better candidates. However, it would be suggested to rather
choose a more sophisticated optimasation approach inside the NO-ILC (the one used
in the application is based on minimisation via Lagrange multiplier technique which is
analytical).

It is also possible to address the issue of reduced learning after several flights due to
nonlinearities by trying the switch to a nonlinear ILC method from linear ILC (i.e. the one
used during experiments). It may improve convergence speed ; yet, it is generally required
that there is some well-known information about these nonlinearities (or uncertainties,
disturbances etc.).

Another point that is worth to mention is related to the offline nature of the ILC. The
term offline signifies here that after each real flight trajectory tracking, the UAV has to stop
flying (or wait in hovering position) and wait for ILC to compute the next system input.
This is quite normal since ILC is a method developped for the need of improving batch
processes, i.e. discontinuous processes (e.g. reference tracking during a pick-and-place of
robotic arm). However, it can be quite useful for a UAV to be able to carry out an online
computation during its flight. In other words, the ILC signal for the next flight can tried to
be calculated while the UAV is performing the current flight. Of course, some limitations
for this type of application can be the computational speed, the communication speed and
the length of the simulation (flight trajectory).

Finally, the results of the presented UAV application has demonstrated how an ILC
that is in open-loop can improve a system with an inner feedback controller. This has
been a motivation in continuing the research further and developing a way of using ILC
to build linear feedback controllers. Thus, the following chapter is focusing on using ILC
as a tool for automatically tuning feedback controllers (it can also be seen as transforming
open-loop ILC to a close feedback controller).
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Chapter 4

Learning Based Controller Tuning
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The internal model principle (IMP) based state feedback control is an intuitive and a
well established method for controlling dynamical systems. One can find it quite natural
to build controllers based on the states of a dynamical system since the state variables
can be used to anticipate the future behaviour of the system [13]. Accordingly, it is not
a suprise that the state feedback method has been referred to since 70s when analysing
the disturbance rejection problems [16]. In order to lessen the effect of disturbance on
the system, one can simply augment the state-space of the nominal system with the mo-
del of the disturbance (i.e. IMP) and then apply a non-learning type feedback method.
Although there are many non-learning-type control methods developed to handle system
disturbances such as the ones given in Section 1.1.1, the simplest one among all can be
considered as the pole (or eigenvalue) placement method that uses state feedback through
a linear controller structure. This approach is quite useful when dealing with periodic dis-
turbances for which the structure is known. Some examples to these type of disturbances
can be seen as a step signal, a sinusoidal signal at some specific frequency or a combi-
nation of several sinusoidal signals with different frequencies. Since the dynamics of such
disturbances has periodic behaviours, they have a known structure and can be eliminated
if their structure is utilised in the design of the controller.

From the point of view of repetitive disturbance rejection, it would be quite natural
to expect some similarity between the state state feedback via IMP (pole-placement in
this case) and the ILC. The difference of ILC, however, is that it is a data-driven open-
loop method based on iterative feedforward control calculated via error filtering. ILC can
successfully vanish the repetitive errors that occur between the system runs (iterations)
and it has been traditionally used to "optimise" the tracking performance of repetitive
trajectories for over a decade. As suggested by [121], one can obtain high trajectory tracking
performance for motion control systems via feedforward control and in the case of a system
that repeats the same task, the ILC can be used as the feedforward method to increase
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the system performance. It should be noted that the ILC performance is highly dependent
on the type of the system disturbance. Since ILC is based on remembering the errors
from the previous runs and compensating for the repeating errors, it becomes a powerful
approach when dealing with repetitive disturbances. Accordingly, the ILC performance
can significantly reduce when the system is subject to non-repetitive disturbances simply
because ILC will also remember the non-repeating error from the previous run. Due to this
drawback, ILC is usually applied on a pre-designed closed-loop system which compensates
for the non-repetitive characteristics of the system. Despite this fact, ILC applications can
bee observed in many fields (see Section 1.2.2).

In this chapter, it is proposed that ILC can be used as a tool to provide an easier
solution for obtaining the proper parameters of a linear state feedback controller since
ILC requires no disturbance modelling and it does not get affected by the complexity
of the structure of the repetitive disturbance. The given analysis demonstrate first the
comparison of ILC and the pole-placement method in case of unknown complex periodic
disturbances. Then the proposition is given in the form of a design workflow. The overall
result corresponds to an automatic tuning of linear state feedback controllers.

4.1 Comparison of ILC to IMP

One of the simplest examples for a disturbance rejection controller based on IMP can
be seen as the state feedback controller designed via augmenting the closed loop system
dynamics with the model of the periodic disturbance, namely an augmented state feed-
back (ASFB) controller. As this method is purely based on the exact knowledge of the
disturbance signal’s frequencies, it is capable of fully rejecting the periodic disturbance
asymptotically depending on the accuracy of the disturbance model. However, the effi-
ciency of this approach reduces with the increasing complexity of the disturbance signal
(e.g. nonlinearities and uncertainties) as well as with the amount of precision obtained
during disturbance measurement and estimation processes.

In order to better assess the similarities between ILC and ASFB, a simulation model
is created as demonstrated in Figure 4.1. One can simply see that the simulation model
consists of three main blocks : the ILC, the state augmentation and the plant (from left
to right). The plant used in the simulation model is the one given in Section 2.5.2, i.e.

ẋ(t) = Ax(t) +Bu(t), (4.1)
y(t) = Cx(t) +Du(t). (4.2)

where x(t), y(t) ∈ R2, u(t) ∈ R1 and

A =
−3.5014 −3.0003

1 0

 , B =
0

1

 ,C =
1 0

0 1

 , D =
0

0

 .
The system (4.1)-(4.2) is discretised on MATLAB via Tustin method with a sampling time
of Ts = 0.01s). The periodic disturbance d(t) (depicted with a red block) is acting on the
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second output of the plant and it is in the sinusoidal form, i.e d(t) = a· sin(wt) where
a = 0.2 and w = 1rad/s are the amplitude and the pulsation of the signal, respectively.
Morover, a switch mechanism separates the simulation process of ILC and ASFB (see
Figure 4.1). Thus, two simulations are performed disjointly. Further details regarding each
simulation is provided below.

+_
x' = Ax+Bu
y  = Cx+Du

_
_

[K1  K2]

+
+

[K3  K4]

d(t)

r(t) KDCZOH

ZOH

ZOH

L

Q+
+ yout(t)

State augmentation

ILC

Disturbance

G

Memory

Memory

uILC(t)
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State­space system of  
disturbance dynamics SA

[0  1]x' = Ax+Bu
y  = Cx+Du

State­space system of  
open­loop dynamics Plant

S.1

S.2

Figure 4.1: Simulation model

1) Simulation with ASFB :

According to IMP, the model of the repetitive disturbance d(t) should be used to
augment the state-space of the plant dynamics. Therefore, we define an output z̃(s) by
considering the Laplace transform of d(t) with the system reference r(t) and the system
output y(t) :

z̃(s) = aw

s2 + w2 (r̃(s)− ỹ(s)), (4.3)

for which the state-space is written as :z̈(t)
ż(t)

 =
0 −w2

1 0

ż(t)
z(t)

+
aw

0

 ε(t) (4.4)

where ε(t) = r(t) − y(t) is the error. Next, one can use (4.4) to augment the system
(A, B,C, D) given by (4.1)-(4.2) which will lead to (4.5). Since the disturbance enters
the system at the second output, C2 = [0 1] and the augmented system is thus built as
follows : 

ẋ(t)
z̈(t)
ż(t)

 =


A 02×1 02×1

−C2aw 0 −w2

01×2 1 0



x(t)
ż(t)
z(t)

+


B

0
0

u(t) +


0
aw

0

 r(t). (4.5)

At this point, a state feedback method should be chosen in order to calculate the closed-
loop gains that will provide good rejection performance. A simple classical choice for this
purpose is to apply the Pole Placement method with the control law u = −Kxaug(t) to
move the disturbed system’s poles to the desired locations that will produce the required
tracking and disturbance rejection (xaug(t) = [x(t) ż(t) z(t)]T is the augmented state
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vector). Mathematically, the control objective of the simulation is r(t) = 0 where r(t) is the
system reference. A solution to the given rejection problem can obtained by selecting new
pole locations utilising the Bessel poles chart. For a 4th order system and a settling time
of 1s, one should choose the poles as : p1,2 = −4.016± 5.072i and p3,4 = −5.528± 1.655i.
Then, the final step of pole placement is the calculation of the gain vector Kaug that will
move the system poles to the new ones. Finally, the result of the simulation with the built
ASFB controller can be analysed in Figure 4.2 (denoted by the legends ’ASFB’). It can
be easily observed that ASFB is capable of perfectly rejecting the sinusoidal disturbance
in about 1.5s.

2) Simulation with ILC

After observing the performance of the ASFB controller, the switch ’S.2’ in the simu-
lation model of Figure 4.1 is set ′ON ′ for the ILC simulation. The ILC algorithm used
during the simulation is the same as in Section 2.5.2. The disturbance parameters remain
the same as before (a = 0.2, w = 1rad/s) and the initialization of the ILC is performed
with the parameters shown on Table 4.1 where ρ, λ and M are selected by considering
the effect of each in the optimisation. The calculation of the ILC input uILC is performed
’off-line’ and updated after each run of the model. For having a better insight of the tuning
process, consider the objective function (2.80) and its derivative (2.87), i.e.

min
ui+1(t)

J(ui+1) = min
ui+1(t)

eTi+1(t)Weei+1(t) + uTi+1(t)Wuui+1(t)

+ λ[(ui+1(t)− ui(t))T (ui+1(t)− ui(t))− δ]
∂Ji+1

∂ui+1(t) = −PTWeei+1(t) + 2Wuui+1(t) + 2λ(ui+1(t)− ui(t))

In these equations, the parameter ρ is the weight on the system input ui+1(t) and the
parameter λ is the weight on the input increment ui+1(t)− ui(t). Since NO-ILC approach
is a minimisation process, the goal is to find the input ui+1(t) that will make ∂Ji+1/∂ui+1(t)
reach zero iteratively. This derivative can be rewritten considering Wu = ρI, We = I and
ui+1(t) = Qui(t) + LQei(t) as

∂Ji+1

∂ui+1(t) = −PT ei+1(t) + (2ρ+ 1)LQei(t) + 2[ρQ + λQ− 2λ]Qui(t) (4.6)

Thus, choosing a low value for ρ while keeping λ much higher with a proper Q filter is a
reasonable choise for faster arrival to the minimum. However, for more precise results one
should look at the convergence conditions given by (2.100), i.e.

||Q||2 < 1

||QL||2 ≤
1

2
√
λ+ ρ

which are obtained by looking at the largest singular values of Q and QL in (2.99).
Moreover, the parameter M , which is the number of iterations, depends on how fast ρ and
λ make the system converge as well as how much the error needs to be reduced by the
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designer.

Table 4.1. NO-ILC initialisation

Sample time, Ts 0.01 sec.
Simulation time, Tsim 50 sec.
Initial states, x [0 0]T ∈ R2

Initial ILC input, uILC 0
Number of ILC iterations, M 1000
Weight on the error, We ρI ∈ RN×N

Weight on the system input, Wu I ∈ RN×N

ρ 0.001
λ 0.1

It is expected from ILC to converge to the control signal of the ASFB as the iterations
continue which, theoretically, is a rather normal expectation since for a linear system there
exists only one single solution. After 1000 system iterations, the converged ILC signals
can be seen as in Figure 4.2. An interesting similarity between the ILC and ASFB can
be noticed as their asymptotic rejection performances yield quite close results. The only
difference, however, is that ILC is capable of handling the transients that are inevitable
for the ASFB controller at the beginning of the simulation. This is simply due to the fact
that ILC can detect the repeating error patterns between system runs and anticipate for
them whereas ASFB needs to initialise itself by a first convergence to synchronise the
phase of its internal model with the one of the disturbance. Furthermore, ASFB controller
can completely reject the disturbance making the output exactly zero while the results
with ILC still have some remaining oscillations that are of magnitude less than 0.00074
(These residual oscillations can be considered insignificant since their magnitude is 0.37%
of the original disturbed output). The amount of disturbance attenuation reached by ILC
in the steady-state (see Figure 4.2 (zoom)) is generally related to the choices made for its
initialisation parameters such as M and ρ and λ.

Having seen the rejection performances of both methods, a structured comparison
between them can be presented for a more clarified understanding. In this regard, Table
4.2 combines both the advantages and disadvantages of ILC and ASFB in a comparative
manner. The given comparison is rather encouraging for having a further look at the
benefits of the data-based ILC with respect to the systems going under unknown complex
periodic disturbances. The ILC properties such as model independence, high precision
and anticipation can make it easier to achieve the high performance requirements of many
industrial applications where an approach based on IMP can hardly provide the required
system performance. Nevertheless, one should not either discard the usefulness of already
existing information regarding disturbance and system models. Although replacing an
existing feedback controller with ILC can provide better results in some cases, it can be
much more beneficial in most cases to use ILC as an integration to the closed-loop system
having its embedded controller. This is due to the fact that both ILC and embedded
feedback controller can compensate for each other’s deficiencies which may eventually
lead to much higher performances.
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Table 4.2. A comparison between iterative learning control (ILC) and augmented state
feedback (ASFB) control

ILC ASFB
Based on repetitive data Based on disturbance knowledge
Approximate results Exact results

Free from disturbance complexity Dependent on disturbance complexity
Iterative result Constant result

Anticipation for transients Unchanging transients
Small oscillations on steady-state Full rejection on steady-state

Open-loop strategy Closed-loop strategy
Higher precision Precision within feedback bandwidth

Better for unknown complex disturbances Better for simple known disturbances
Suffers from non-repeating elements Deals with non-repeating elements

Figure 4.2: Augmented state feedback system vs. ILC system

4.2 Learning Based Controller Tuning (LBCT)

As a result of its useful properties, ILC can be utilised as an automatic tuning tool for
linear controllers. By its open-loop integration to the system, the frequency spectrum and
amplitudes of unknown periodic disturbances acting on a system can quickly be learned.
This means that the modeling phase (or measurement/estimation) of designing a periodic
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disturbance rejection controller (which is in general a tedious process) can be skipped and
replaced by highly accurate approximations that are difficult to acquire without approaches
based on repetitive data. Such a tool for automatic tuning is proposed below as a workflow
named Learning Based Controller Tuning (LBCT) which can be seen as a procedure
combining ILC with model identification.

4.2.1 Description of the LBCT workflow

The input of the LBCT workflow (see Workflow 1) is a stable system P under unmodel-
led/unknown disturbances and the output of LBCT is a transfer function containing the
approximation of the disturbance spectrum. Thus, the main aim of the proposed workflow
can be seen as to provide a guiding function from which a linear controller can be built.
In other words, the whole procedure can be boiled down to automatically finding correct
tuning parameters of a linear controller such that the periodic disturbances are attenuated
(note that the ’automatic’ property here signifies the fact that the disturbance is learned
without any modelling efforts of the designer and this is an advantage of this approach).

As it can be seen in Workflow 1, LBCT consists of six steps. First, it uses an ILC
algorithm to find an optimal system input u∗i=M(t) that rejects a repeating disturbance
d(t) (Steps 1-3). Thus, this phase identifies the structure of the periodic disturbance.
Next, LBCT applies an FFT on the converged signal of ILC to obtain the corresponding
frequency data set {ωj, φj}Nf

j=1 where j ∈ N+, ωj ∈ R+, φj ∈ C1×1 and Nf ∈ N+ are the
frequency data index, the frequency at j, the frequency response at ωj and the number of
frequency samples, respectively (Step 4). Then, the workflow includes a Loewner frame-
work ([6] and [75]) based method to make an approximate fit on this data with a rational
function H(s) ∈ H∞ 1 (Step 5). Finally, the properties of H(s) is used for designing a
linear controller via state feedback, loop shaping or any other suitable method (Step 6).

Workflow 1: Learning Based Controller Tuning (LCBT)
Data: An internal closed-loop system P ∈ H∞ (the open-loop plant plus a

feedback controller) that is stable (see Figure 4.1) and subject to repetitive
disturbance d(t) ; a desired reference input r(t) ; values for {ρ, λ} ∈ R+ and
M ∈ N+ on Table 4.1.

Result: A linear controller rejecting a non-modelled repeating disturbance, d(t).
1 ρ, λ and M can be chosen as suggested in [83];
2 Consider the switch is at ’S.2’ position in Figure 4.1;
3 Run ILC to find the system input that will attenuate the unwanted repeating

frequencies;
4 Obtain the frequency data {ωj, φj}Nf

j=1 of the converged input signal, u∗i=M(t),
from the last iteration;

5 Approximate a stable linear model H(s) ∈ H∞ making a fit to this frequency data
utilising [6] and [75];

6 Design a controller based on H(s) properties (internal model control).

1. "H∞ is the Hardy space of matrix-valued functions that are analytic and bounded in the open
right-half of the complex plane defined by Re(s) > 0"
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4.3 LBCT under complex disturbances

The advantages of LBCT can be appreciated the best when the complexity of the
periodic disturbance increases. The more unknown/undetectable elements a disturbance
has the more difficult it becomes to reject it. The complexity level of a disturbance may be
due to many reasons such as its number of unknown frequencies, nonlinearities between
its frequencies, the channel it enters the system etc. In order to asses these issues, let
us assess the feasibility of LBCT approach by showing that it is capable of detecting all
the repeating frequencies for two different complex periodic disturbances : (1) linearly
combined of periodic disturbances and (2) non-linearly combined of periodic disturbances.

4.3.1 Linearly combined disturbance signals

To begin the analysis with a relatively simpler example, one can consider an unknown
periodic disturbance signal made of several sinusoids of different frequencies. It is assumed
that the combination of these sinusoids are linear and they all have the same amplitude
for the sake of simplicity. This complex disturbance can then be written as :

d(t) = a(sin(w1t) + sin(w2t) + sin(w3t) + sin(w4t)) (4.7)

where a = 0.2, w1 = 0.25rad/s ≈ 0.04Hz, w2 = 0.5rad/s ≈ 0.08Hz, w3 = 0.75rad/s ≈
0.12Hz and w4 = 1rad/s ≈ 0.16Hz. One can view the plot of this periodic disturbance in
Figure 4.4. This disturbance is again added to the output of the system (4.1)-(4.2). For the
simulation, Figure 4.1 is used together with the LBCT procedure provided in Workflow
1. As the first step, the parameters of ILC is set again as given on Table 4.1. It should
be noted that the desired reference signal of the system is zero (i.e. r(t) = 0) and r(t)
is also the initial ILC signal at first iteration (i.e. ui=0(t) = r(t) = 0). Next, ILC is run
for 1000 iterations in order to learn the required system input that will meet the control
objective, (i.e.y2(t) = 0). The ILC signal ui(t) at i = 1000 is the converged signal which
provides sufficiently low error in the output. For different design choices, this error can
of course be reduced further by increasing the number of iterations (M) or by retuning
ILC filter parameters (ρ and λ). The simulation results are given in Figure 4.5 and 4.6
which show the variation of system inputs and the corresponding system outputs in the
iteration axis, respectively. The system inputs in Figure 4.5 are the ILC signals for the
corresponding iterations since each new ILC signal was defined as the new system input.
One can clearly observe from the results in Figure 4.6 that the ILC algorithm is able
to gradually attenuate the disturbance effect to a huge degree such that the magnitude
of the output at the last iteration reaches below 0.242%. Moreover, as it is expected
mathematically, the ILC signal tended towards a signal which is a close approximation of
the inverse of the disturbed system (see Figure 4.5).
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Figure 4.4: Linearly combined disturbance signal

Figure 4.5: System input along iterations
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Figure 4.6: System output along iterations

The results until this point comprise the first 3 steps of the LBCT workflow and the
remaining steps intend to identify the frequency spectrum of (4.7) and finding a linear
model H(s) for the ILC system via making a data fitting operation. Thus, the next step in
the simulation procedure is to estimate the frequency components {ωj, φj}Nf

j=1 of the last
ILC signal ui=1000. For this purpose, ILC system is considered as a block having an impulse
signal at the input and ui=1000 at the output. When ILC is at this form, it is possible to
utilise a method based on Loewner framework (detailed in [6] and [75]) to obtain an
approximate fit on the frequency data with a rational function H(s). The resulting fit and
the frequency response data of the ILC system after this can be reviewed in Figure 4.7.
Expectedly, the ILC system has peaks nearly at the frequencies of the disturbance (4.7)
which proves its capability of singling out each repetitive component in the disturbance.

84



w3= 0.1205 Hz

w4= 0.1602 Hz

w2= 0.0794 Hz

w1= 0.0397 Hz

Figure 4.7: Frequency response of the ILC system and its approximated model, H(s)

Note that the presented model approximation process deduces the dominant eigenva-
lues of the ILC system.

4.3.2 Nonlinearly combined disturbance signals

Following the satisfactory rejection performance in the previous section, the analysis
can now be extended to the case of unknown nonlinear periodic disturbance. For this
purpose, d(t) is this time selected in the form of three nonlinearly combined sinusoids with
different frequencies :

0.25((0.7(0.15− 0.8 sin(w1t))2 − 0.6 sin(w2t))3...

...− 0.35(sin(w3t))2)
(4.8)

where w1 = 0.25rad/s ≈ 0.04Hz, w2 = 0.75rad/s ≈ 0.12Hz and w3 = 1rad/s ≈ 0.16Hz.
This disturbance is demonstrated in Figure 4.8. It can be seen that the nonlinear relations
between w1, w2 and w3 produces many other hidden frequencies which is the challenging
part for approaches based on IMP or estimation. The same procedure of LBCT is ap-
plied and the only difference is the structure of the periodic disturbance. Moreover, the
initialisation for ILC and the desired system reference remain the same as in previous
section.
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Figure 4.8: (Top) Non-linearly combined disturbance signal ; (Bottom) Fast Fourier trans-
form of the disturbance signal showing the main frequencies (L : frequency data length).

The results from the ILC analysis are provided in Figure 4.9 and Figure 4.10 which
show the evolutions of the system inputs and outputs, respectively. One can notice that
the system output converges towards the desired reference as the ILC gradually calculates
the proper inverse of the disturbed system. Next, analogically to the previous subsection,
a frequency response of the converged ILC system is obtained. Then, an approximate fit
on the corresponding data is applied following [6] and [75]. The result of this operation is
given in Figure 4.11 where one can observe nearly the same frequencies as those found in
the disturbance signal (5.22) (see Figure 4.8). Hence, it can clearly be concluded that the
ILC algorithm successfully detects the frequencies to be attenuated inside the unknown
nonlinear disturbance 2. This also means that the linear approximate transfer function de-
duced from ILC’s frequency data can provide accurate reference for tuning the parameters
of a linear controller. Therefore, the LBCT workflow can be a powerful tool for automa-
ting the design of challenging disturbance rejection controllers. Furthermore, LBCT can be
considered as a model-free alternative approach to unknown periodic disturbance rejection
problem since the ILC filters in (2.98)), which can be recalled as

Q = ((λ+ ρ)I + PTP)−1(λI + PTP)
L = (λI + PTP)−1PT ,

use only the information of the existing closed-loop system P. This type of data-based

2. In this thesis, the term nonlinear disturbance means a disturbance that is produced by a nonlinear
system/oscillator
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approach converts a difficult modelling problem to a simple filtering operation.

Figure 4.9: System input along iterations

Figure 4.10: System output along iterations
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Figure 4.11: Frequency response of the ILC system and its approximated model, H(s)

4.4 Conclusion

In this chapter, it has been demostrated that ILC can be used as a tool for auto-
matically creating (or tuning) linear feedback controllers for rejecting unknown periodic
disturbances. The idea has been presented under the name of LBCT workflow and the main
contribution of the work is twofold : (1) utilising ILC, the bridge between the requirement
of having a priori knowledge of the periodic disturbance and building an internal model
principle based feedback controller has been broken ; (2) utilising ILC, an automatisation
is achieved for the tuning of feedback controller parameters.

The initial motivation of the presented work came after observing an equivalance of
ILC to the augmented state feedback control in rejecting a simple sinusoidal repetitive
disturbance. According to the results, the ILC showed a rather successful rejection perfor-
mance that is superior to state feedback control. This is due to the fact that ILC was able
to gradually remove the repeating errors and anticipate for the transients in the response
without needing to know the disturbance. Hence, this brings out the following question :
Why not make benefit of learning methods (like ILC) that are based on repetitive data
manipulation when technology becomes less and less an issue in terms of computational
speed, data storage etc. ? Trying to correctly model the repetitive disturbances can be
quite a tedious process if the disturbances are unknown, partially known, nonlinear or
lumped with other effects such as parametric uncertainties.
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The missing part of this work is that the last step of the LBCT workflow, i.e. the
transfer function H(s), has not been demonstrated (see Workflow1). It could be interesting
to create the H(s) (which is an approximation of the ILC’s performance in feedback) and
compare its rejection performance directly to ILC such that the efficiency of the LBCT
procedure can fully be evaluated. It could also be interesting to further test this remaining
part with a practical application on a real system.

Another improvement can be done by developing the presented workflow for making it
feasible to nonlinear systems under periodic disturbances. It is also always possible to test
a different ILC method for obtaining the same results faster in terms of computational
time. The selected tuning for the norm optimal (NO-ILC) may not be the best and other
optimisation methods can be used (NO-ILC is based on Lagrange multipliers technique
which is based on an analytical minimisation process).

Thankfully, the next chapter can provide some improvements for some of the above
mentioned remaining issues. In the next chapter, a new control approach has been intro-
duced which demonstrated how to fully transform ILC into a feedback controller. This
approach utilises the LBCT workflow from this chapter and adds more to it by building
a new framework which is the combination of ILC and robust output regulation based on
internal model principle. Furthermore, the next chapter is important for the fact that it
finally develops the combined approach for handling a nonlinear system under nonlinear
periodic disturbances.
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The previous section has demonstrated the effectiveness of using ILC as a tool for
simplifying the design of state feedback controllers under complex disturbances. The main
idea and the procedure to follow has been given by the Learning Based Controller Tuning
(LCBT) workflow. The promising results obtained via LCBT has been a motivation for
the further development of the presented idea towards a new and more generic framework
which covers applications on nonlinear 1 repetitive systems.

Figure 5.1: Diagram of the proposed triple-layer control approach

1. Note that here the term ’nonlinear’ is used for the weak nonlinearities (i.e. excluding saturation,
friction, nondifferentiablity etc.).
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The new framework shown in Figure 5.1 is based on two design problems to be solved :
1. How to reject a complex unknown periodic disturbance without modelling it ?
2. How to improve controller robustness and rejection precision simultaneously ?
Following Figure 5.1, the solution to these problems is proposed in the form of a triple-

layer control approach that benefits from the distinct features of three different methods :
learning-type control, identification 2 and non-learning-type control. The disctinct cha-
racteristics of each layer can be seen as follows : (1) the learning-type control methods
are generally designed to function in a model-free fashion and they utilise the repetitive
patterns in the system data in order to accomodate unknown periodic disturbances ; (2)
the identification methods can help extracting the most useful information from a signal
(e.g. frequencies, amplitudes etc.) in an approximative way ; (3) the non-learning-type
methods are capable of giving robustness against non-repetitive effects on a system (e.g
instant perturbations and noise). It can of course be argued that both learning-type or
non-learning-type methods can separately be used to solve the above mentioned design
problem and this is already the case for existing approaches in both categories (see Section
sec :introduction-1-1 and the references therein). However, instead of trying to force each
method to achieve goals that are nonconforming to their nature, one can create a fusion
of both approaches and get much better results in terms of performance and practicality.
The author believes that this can be an important step in its broad application. A diagram
for the proposed triple-layer approach can be seen in Figure. 5.1.

The application of this kind of scheme can be seen as a transformation from data-based
logic to conventional logic in the control design. Assuming that the required control action
for rejecting the periodic disturbance is denoted as u∗, the design steps of the triple-layer
controller is as given in Figure 5.2. At this point, the question that rises in mind is :
which methods to select for each layer ? A clever choice in this case would be to combine
some methods that complement each other, i.e they fix each other’s disadvantageous sides
without sacrificing much (or if possible, at all) on their unique features. Considering this,
it is proposed that a reasonable selection would be to go for iterative learning control as
the learning-type method and output regulation based on internal model principle (IMP)
as the non-learning-type method. As for the identification layer, a couple of different
approaches will be shown during the design process (e.g. the Fast Fourier Transformation,
the Loewner framework based identification from Chapter 2 and an identification method
called Hankel). It should be noted that the identification is just an intermadiate tool
required for combining the first and the third layer such that it does not have much
effect on the method choices for these layers. The goal is not to identify the model but to
find the information that is necessary to the internal model conroller. Thus, the feature
analysis of the mentioned identification approaches will be revisited in the latter section.
The reasons behind choosing ILC and output regulation has been demonstrated in Figure
5.3 which puts down the advantages and disadvantages of both sides. The conclusion of
this visualisation is that both methods can really fix each other and their fusion can even
produce something much better than they could do when applied alone.

2. Identification on some meta data.

92



Figure 5.2: Design steps of the triple-layer controller

The resulting triple-layer controller which combines ILC and output regulation is given
the name Supervised Output Regulation via Iterative Learning Control (SOR-ILC) in this
chapter. This is simply because ILC’s role in this fusion can be interpreted as being a
supervisor that guides the actions of the output regulator towards rejection of an a priori
unknown periodic disturbance. Below, the design procedure and analysis of SOR-ILC are
given for two different cases :

1. A linear system under an unknown complex periodic disturbance,
2. A nonlinear system under an unknown complex periodic disturbance.

Figure 5.3: Selections for Layer 1 and Layer 3

The problem definitions and numerical results for both cases are thus provided separately
in the following two sections. Section 5.1 is useful for understanding the insight of the
process since it first includes a simple introductory example and then analyses the rejection
of a more complicated disturbance with some additional effects. On the other hand, Section
5.2 provides a nice demonstration for a lot more challenging design problem which analyses
the rejection of Van der Pol oscillations via SOR-ILC. Moreover, in both sections the
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general design steps stay the same as in Figure 5.2. Let us now explain the design of
SOR-ILC in the mentioned order.

5.1 SOR-ILC for linear systems under unknown com-
plex periodic disturbances

5.1.1 Problem definition

Let us consider the following linear time invariant open-loop plant in continuous-time

ẋ(t) = Ax(t) +Bu(t) + Wxw(t), (5.1)
y(t) = Cx(t) +Du(t) + Wyw(t). (5.2)

where x(t) ∈ Rn is the state, u(t) ∈ R1 is the system input, y(t) ∈ R1 is the output,
w(t) ∈ Rnw is a signal representing unknown disturbances to be rejected andWx ∈ Rnw×nw

and Wy ∈ Rnw×nw are the weight matrices for the internal and external disturbances,
respectively. For simplicity, it is supposed that the full state x(t) is available for feedback
design and that D = 0. Such assumptions are not restrictive since a straightforward
extension to the multivariable and output feedback cases of all the forthcoming results
can be formulated by following [10, 24] or [100]. The final goal of the rejection problem
can be formulated as follows :

Global Objective : Find u(t) such that limt→∞ y(t)→ 0
However, the calculation of the input u(t) using SOR-ILC is not direct and, as mentioned
before, it is found by applying three steps (i.e. three layers, see Figure 5.2). Therefore, let
us divide the rejection problem to its subproblems :

Objective of Layer 1 (ILC) : Find u∗(t) = ui=N(t) such that limi→N y(t) → y∗(t)
where y∗(t) ≈ 0 (i.e ||ei=N(t)|| ≤ εILC where εILC is an arbitrarily small ILC error).

Objective of Layer 2 (Identification) : Given u∗(t) find its frequency data {ωj, Aj}Nf

j=1
where Nf denotes the length of the data and the pair {ωj, Aj} consists of the pul-
sation and amplitude, respectively.

Objective of Layer 3 (Output regulation via IMC) : Given the frequency data
of u∗(t) find a feedback control u(t) such that limt→∞ y(t)→ 0 and ||e(t)|| ≤ εOR ≤
εILC where εOR is an arbitrarily small output regulation error.

Having determined the objectives, let us now show the control design of SOR-ILC.

5.1.2 Control Design

Layer 1 : Iterative Learning Control (ILC)

The fundamental idea of ILC can be recalled by looking at the equation (2.7), i.e.

ui+1(t) = Qui(t) + QLei(t)
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In this simple form, ILC applies its Q and L filters on the previous system input ui(t) and
the previous system error ei(t) and finds the next system input ui+1(t). With the proper
choices of Q and L, the input solution u∗(t) = ui=N(t) that pushes the system error below
an arbitrary value εILC can theoretically be achieved within N iterations. Hence, the main
challenge of ILC is to design these filters (Chapter 2 can be revisited to see the various
possible design choices of an ILC technique).

In this chapter, the selected ILC method is again the norm-optimal ILC (NO-ILC) due
to the satisfactory results and its feasibility obtained in the previous chapters. The details
regarding the NO-ILC design procedure can be reviewed in Section 2.4.2. In brief, NO-ILC
calculates the current system input ui+1 given above by analytically solving for the ui+1
that minimises the cost function

J(ui+1(t)) = eTi+1(t)Weei+1(t) + uTi+1(t)Wuui+1(t) + λ[(ui+1(t)− ui(t))T (ui+1(t)− ui(t))]

where λ ∈ R1 is the Lagrange multiplier ; We = ρI ∈ RN×N and Wu = I ∈ RN×N are
the weighting matrices for the error and the input, respectively, with I being the identity
matrix. Thus, the optimal solution of J(ui+1) gives the following required Q ∈ RN×N and
L ∈ RN×N filters which constitute the core of NO-ILC.

Q = ((λ+ ρ)I + PTP)−1(λI + PTP)
L = (λI + PTP)−1PT

Here, the P matrix referes to the lifted-matrix (2.15) of the internal system 3. Moreover,
the convergence and robustness performance of NO-ILC depends on the heuristic selection
of λ > 0 and ρ > 0 under the requirement of two criteria : ||Q||2 < 1 and ||QL||2 ≤
0.5/
√
ρ+ λ.

Layer 2 : Identification via Loewner

For the linear system case, the chosen identification method is based on FFT and model
approximation. It should be noted that this is just a choice and the given identification
method is also applicable to the nonlinear system case that will be shown in the next
section. The only difference is that the identification process in this section is based on
directly using the frequency-domain data while the one given in the next section will
be capable of providing similar results based on the time-domain data only. Thus, in
this section the modes of the ILC system is found by utilising the frequency-domain
information of the converged ILC signal from the last iteration (i.e. u∗(t) = ui=N(t)). The
overall procedure is defined by the following steps :

1. The frequency data of u∗(t) is acquired by applying a Fast Fourier Transformation
(FFT) on it. For the data of length Nf , this step yields the frequency data set
{ωn, φn}Nf

n=1.
2. This data is divided into two parts : {µj, vj}qj=2n−1 and {λk, wk}pk=2n where n =

1, ..., p, p+1 with q = p+1 = (Nf +1)/2 and p = (Nf )/2 ; µj and λk are frequencies

3. Note that P only refers to the system (plant) and it does not contain any information regarding the
disturbances acting on itself
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at their corresponding j, k value ; and vj and wk are vectors containing both gains
and phases at each µj and λk, respectively.

3. The identification problem is to find a rational function Ĥ that will closely ap-
proximate the dynamics of u∗(t) which can be of a reduced order depending on the
preference. This problem can be formulated as follows :

Goal : Given {µj, vj}qj=2n−1 and {λk, wk}pk=2n, seek Ĥ such that Ĥ(µj) = vj and
Ĥ(λk) = wk for j = 1, ..., q and k = j + 1, ..., p.

4. Finally, the model approximation of u∗(t) is obtained via a rational interpolation
based on Loewner Framework [5] :

Ĥ(s) = W(−sL + Lσ)−1V (5.3)

where L, Lσ, W and V are given respectively as :

L =


v1−w1
µ1−λ1

· · · v1−wp

µ1−λp... . . . ...
vq−w1
µq−λ1

· · · vq−wp

µq−λp

 (5.4)

Lσ =


µ1v1−w1λ1
µ1−λ1

· · · µ1v1−wpλp

µ1−λp... . . . ...
µqvq−w1λ1
µq−λ1

· · · µqvq−wpλp

µq−λp

 (5.5)

W =
[
w1 · · · wk

]
(5.6)

VT =
[
v1 · · · vk

]
(5.7)

Note that the transfer function (5.3) is a data driven interpolation. If all the fre-
quencies of u∗(t) are used in the model approximation, the Ĥ(s) should provide an
exact representation of the system.

Once a sufficiently 4 accurate model approximation is obtained for u∗(t), the frequency
data corresponding to this approximation can be used in the design of the output regula-
tor’s internal model (the data needed for the output regulation is {ωn, An}Nf

n=1 and phase
values φn are not necessary). Furthermore, the amplitude values An that are associated
to each wj are only used to put the identified frequencies ωj in the order of descending
amplitudes. This preference can be seen as way of determining the importance of each ωn.
Therefore, it is not obligatory and it may not indicate the importance of frequencies for
other applications.

4. The accuracy of the model approximation is related to the amount of properly detected frequencies
by the FFT and then to how many of these are used in the Loewner framework’s rational interpolation
(see (5.3)-(5.7)). One can simply include more frequencies and visually decide on the accuracy of the
model fit to u∗(t).
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Layer 3 : Output Regulation

Let us now come back to the system (5.1)-(5.2). In output regulation theory (see [36,
43]), the signal w(t) is usually denoted as exosignal and it is generated by an autonomous
exosystem given as

ẇ(t) = Sw(t) (5.8)

where S is a neutrally stable matrix of the form S = blkdiag(0 5, ω1J, . . . , ωρJ), with

J =
 0 1
−1 0

 (5.9)

Here, ρ ≤ Nf is the number of frequencies decided to be used for building the internal
model (i.e. the matrix S) and ωn for n = 1, . . . , ρ are all different and characterize the
frequencies of the signal w(t). Thus, one is not obliged to use all the frequencies detected
in the Layer 2. Figure 5.4 demonstrates the blockdiagram of a common output regulator
scheme. The problem of regulating e(t) to zero while maintaining the state x(t) bounded
for all positive times, denoted as output regulation, is solved under the following customary
assumptions (see [24]).

Assumption 5.1 (Stabilisability) The pair (A, B) is stabilisable.

Assumption 5.2 (Non-resonance condition) The matrix
A− λI B

C 0

 has independent

rows for each λ ∈ iR where i denotes the imaginary number.

The Assumption 5.2 6 mainly states that the transfer function between u(t) and y(t)
has no zeros with zero real part. Although this condition is more stringent than standard
output regulation framework (where the rank condition needs to hold only for each λ

eigenvalue of S), it is necessary in the current scenario in which an adaptive solution is
sought. Hence, the solution to the output regulation problem is obtained with the following
two-step procedure.

S1) Extend the system (5.1)-(5.2) with an internal model unit (IMU) of the form

η̇(t) = Ŝη(t) + Γe(t) (5.10)

where η = (η0, η1, . . . , η%)T ∈ R1+2% is the state of the IMU. The matrix Ŝ is
built using the identified frequencies from Layer 2 (i.e. the {ωn}ρn=1) such that
S = blkdiag(0, ω1J, . . . , ω%J), with J of the form (5.9). On the other hand, Γ has
to be chosen in that (Ŝ,Γ) is a controllable pair.

S2) Stabilize the extended system (5.1)-(5.2), (5.10) with a controller of the form

u(t) = K1x(t) +K2η(t) (5.11)

5. This element has a purpose of including constant repetitive trajectory tracking or constant repetitive
disturbance rejection cases.

6. The matrices A and B do not have to be known. They can be obtained simply using the model
approximation procedure in Layer 2.
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such that the unforced (i.e. when w(t) = 0) closed loop system is asymptotically
stable.

Theorem 5.1 Suppose % = ρ, Ŝ = S in (5.10) with ρ, S given by (5.8) and that K1, K2
in (5.11) ensures asymptotic stability of the unforced closed loop system (5.1), (5.2),(5.10),
(5.11). Then, the output regulation problem for the system (5.1)- (5.2), is solved, namely
solutions of the closed-loop system (5.1), (5.2), (5.10), (5.11), forced by (5.8), are bounded
for all t ≥ 0 and satisfy limt→∞ y(t) = 0. Furthermore, the above properties are robust to
any (small) parameter perturbations of the nominal matrices (A, B, C) that do not break
the stability property of the (unforced) closed-loop system.

Proof. See [24, 36, 43].

In addition to previous result, note that the design of the dynamical regulator (5.10),
(5.11), is independent from how the exosignal w(t) affects the plant (5.1)-(5.2), namely
from the matrices Wx and Wy.

Figure 5.4: Output regulator scheme

As one can see from Theorem 5.1, the main challenge of the internal model based ap-
proach is that for the design of (5.10), one needs to perfectly know S, that is the frequencies
ωn of the exosignals (5.8), and such assumption remains unrealistic in a practical scenario.
Furthermore, each time the matrix Ŝ in (5.10) is aimed to be adapted, the matrices K1, K2
of the controller (5.11) may need to be redesigned. Accordingly, a pole-placement strategy
is not well suited in such context. A possible solution could be parametrizing the dynamic
(5.10) by following the parametrisation of [82]. However, the extension to the nonlinear
case is not trivial with this approach, see [11]. Therefore, in this work, we follow another
route which is maintaining the structure of (5.10) and proposing a design of (5.11) based
on forwarding techniques proposed in [10]. The advantage of such approach is the self-re-
parametrisation of the stabilizer unit each time Ŝ in (5.10) is modified (i.e. each time the
frequencies ω̂i are modified). Thus, following [10], we design (5.11) as

u(t) = −βBTRx(t) +
%∑
i=1

µiB
TMT

i (ηi(t)−Mix(t)) (5.12)

where the parameters β ≥ 0 and µi > 0 can be seen as free design parameters which can be
utilized to put weight on specific frequencies as well as to increase rejection performance,
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and the matrices R, T, and M are computed respectively as solution to

RA + ATR = −I (5.13)
TŜ + ŜTT = 0 (5.14)
MiA = ω̂iJMi + ΓiC, (5.15)

with J defined in (5.9) and Γ = [Γ0,Γi, . . . ,Γρ]T with Γ0 = 1 and Γi = [0, 1]T for all
i = 1, . . . , %. Note that the skew-symmetricity of the Ŝ matrix allows T to be the identity
matrix. Note also that with respect to (5.11), we selected

K1 = −βBTR−
ρ∑
i=1

µiB
T (5.16)

K2 = [µ1B
TMT

1 , µ2B
TMT

2 , ..., µρB
TMT

ρ ]. (5.17)

Then, the following proposition can be stated.

Proposition 5.1 Under Assumptions 5.1 and 5.2 for any Ŝ designed as in S1, the
unforced closed-loop system (5.1)-(5.2), (5.10), (5.12) with R = RT > 0, T = TT and M
designed as in (5.13)-(5.15), respectively, is asymptotically stable.

Proof. The proof can be found in [10] and it is based on the analysis of the derivative
of the Lyapunov function V = xTRx+ (η −Mx)TT(η −Mx).

5.1.3 Numerical Analysis

After seeing the design steps of SOR-ILC, it is time to demonstrate its functioning. As
said previously, the SOR-ILC is first demonstrated with a numerical simulation that takes
into account a simple external periodic disturbance. Then, another simulation is done to
demonstrate its performance under a complex disturbance case, i.e. a combination of com-
plex effects such as internal and external periodic disturbances, parametric uncertainties
and lack of frequency knowledge.

Analysis 1 : Simple periodic disturbance

Let us consider that (5.1)-(5.2) is a second-order open-loop system with

A =
−3.5014 −3.0003

1 0

, B =
0

1

, C = I2×2,

D = 02×1.

It is assumed that both states are accesible and there is a sinusoidal disturbance acting
on the second output only, i.e. Wx = 02×2, Wy = [0, 0; 0, 1] and w(t) = d(t) = a· sin(ωt)
where a = 0.2 and ω = 1rad/s = 0.1591Hz are the amplitude and the pulsation
of the signal, respectively. Since most systems have some already existing controllers
in practice, it is also supposed that the system (A, B,C, D) is in closed-loop with :
K0 = [−3.4728, 15.5866]. This step is a requirement for the proper functioning of ILC
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in the first layer of SOR-ILC which yields a stable inner system (P) that is defined by

ẋ(t) = Ainx(t) +Binu(t), (5.18)
y(t) = Cinx(t) +Wyd(t) (5.19)

where Ain = A + BK, Bin = B and Cin = [0, 1] and Wy = [0, 1] since the disturbance
is only considered on the second state. This system can be observed in Figure 5.5 (inner
system block). Since the model of the disturbance is not included in the state feedback,
the gains given above are already incapable of dealing with the given disturbance. Thus,
this architecture portrays a scenario in which the existing closed-loop system is insufficient
of dealing with an external periodic disturbance.

+
+

η'=	Sη+Γe

+_ +
+

d(t)

r(t) ZOH

ZOH

ZOH

L

Q+
+

yout(t)

ILC Disturbance

G

Memory

Memory

uILC(t)

Switch

Internal	Model	Unit
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K1
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Stabiliser	Unit

SOR-ILC

u
η

K0

Figure 5.5: Simulation model

Once the inner system is determined, one can follow the procedure given in Section
5.1.2 where the first step is to properly initialise the ILC and iteratively run the system in
Figure 5.5 until a satisfying rejection level is achieved. The amount of precision is a matter
of tuning or simply is related to the power of the selected ILC approach. The focus of the
analysis provided here is to rather analyse the functioning of SOR-ILC framework than
finding the most precise tuning. Thus, if NO-ILC initialisation is carried out according to
Table 5.1, the ILC inputs shown in Figure 5.6 iteratively improve the rejection performance
as in Figure 5.7. The power of this optimisation-based approach can easily be understood
by checking the output amplitude at the last iteration in Figure 5.7.
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Table 5.1. NO-ILC initialisation

Sample time, Ts 0.01 sec.
Simulation time, Tsim 50 sec.
Initial states, x [0 0]T ∈ R2×1

Initial ILC input, uILC 0
Number of ILC iterations, M 1000
Weight on the error, We ρI ∈ RN×N

Weight on the system input, Wu I ∈ RN×N

ρ 0.001
λ 0.1

Figure 5.6: ILC inputs
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Figure 5.7: System outputs

The second step is to apply the identification layer of SOR-ILC. The frequency data
of the converged ILC signal is the input at the last iteration in Figure 5.6 (i.e. u∗(t)). The
result of the model approximation of u∗(t) can be seen in Figure 5.8 where the peaks show
approximated values of dominant frequencies ωi. Since the disturbance was chosen as a
sinusoidal signal, only the largest peak that is ω1 ≈ 1rad/s is sufficient for the design of
the output regulator.

Figure 5.8: Model approximation of the ILC system

After detecting the approximate frequency content of the periodic disturbance, it is
possible to build the output regulator part of the SOR-ILC as shown in the Layer 3 of
Section 5.1.2. The first step is to build the internal model unit (5.10) using the identified
frequencies ωi. For the given disturbance d(t), Ŝ = blkdiag(Ŝ0, Ŝ1) and Γ = [Γ0,Γ1]>
where Ŝ0 = 0, ω̂1 = ω, Γ0 = 1 and Γ1 = [0, 1]T . The second step is to build the stabiliser
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unit given by (5.12). Since d(t) is a single sine signal ρ = 2 such that (ρ + 1) tuning
parameters are needed for the output regulator. The values for these parameters can be
set to following values : β = 0.1, µ1 = 100 and µ2 = 100 (note that these values are
chosen by trial-and-error for a sample demonstration and other choices that lead to better
rejection performance might be possible).

Additionally, for a better analysis, a phase shift of π/4 is added to the disturbance
and the initial states of the inner model are set to some arbitrary values, i.e. d(t) =
0.2 sin(t + π/4) and x0 = [0, 0.05]>. Finally, the SOR-ILC performance can be tested
against d(t) by running the system in Figure 5.5 while the switch is at S.2. One can
observe in Figure 5.9 that the disturbance amplitude appearing in the system output
has been reduced by 99.6% after applying the output regulator of the SOR-ILC. The
remaining small oscillations after 50sec are due to a small approximation error left from
the ILC learning, ω1 ≈ 1rad/s.

Figure 5.10 demonstrate the control signal of SOR-ILC which is made up from two
parts : upart1 and upart2 as can be seen in (5.11). The different shapes of upart1 and upart2
are results of the choices made for the tuning parameters β, µ1 and µ2. It can easily
be observed that upart1 is more effective in the beginning whereas upart2 takes over for
attenuation later on. upart1 uses the state information x from the inner model while upart2
depends on the internal model unit states η learned via ILC.

Figure 5.9: System output with SOR-ILC
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Figure 5.10: SOR-ILC control signals

Analysis 2 : Complex Disturbances and Uncertainty

The rejection performance of our SOR-ILC is now tested considering a lumped effect
of complex disturbances and parameter uncertainty. For this numerical application, the
inner system is updated with the following form :

ẋ(t) = Ã(t) + B̃u(t) + [sin x1(t), 0]>, (5.20)
y(t) = C̃x(t) + d(t). (5.21)

Here, Ã, B̃, C̃ are A, B, C matrices in (5.1)-(5.2) with 20% parameter uncertainty,
x(t) = [x1(t), x2(t)]> and x0 = [0, 0]>. The state disturbance is a sine function of the first
system state and the output disturbance is in form of three non-linearly combined sine
waves, i.e.

d(t) = 0.25
[(

0.7(0.15− 0.8 sin(ω1t+ φ))2

−0.6 sin(ω2t+ φ)
)3
− 0.35(sin(w3t+ φ))2

] (5.22)

where ω1 = 0.27rad/s, ω2 = 0.76rad/s and ω3 = 0.95rad/s are chosen to not have common
divisors and φ = 0 for the first analysis. SOR-ILC is created by following the procedure
given in Section 5.1.2. First, ILC learns the periodic frequencies of the disturbances under
the varying uncertainty between iterations (see Figure 5.11). It can be observed that
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the maximum amplitude of d(t) is already reduced by 86.8% via ILC only. Second, the
identification process determines the number of frequencies to be used in output regulator
as Nf = 18 and these frequencies are utilised for building the internal model unit of
the output regulator as shown in Section 5.1.2. Then, the remaining step is to tune the
stabiliser unit parameters considering the equations (5.10),(5.12), (5.16), (5.17). It can be
seen in (5.12) that the number of needed tuning parameters become ρ + 1 = 37. For the
simulation, β is set to 0.1 as before and all µi values are chosen to be 100.

Figure 5.11: System outputs with ILC only

In addition, it is decided to analyse the effect of the number of disturbance frequencies
used in creating the SOR-ILC. Therefore, the frequencies are put in the order of decreasing
amplitude and 18 tests are carried out in total by adding a new frequency into SOR-ILC
before each test. The results of these tests are shown in Figure 5.12. In the test 1, the
amplitude of the disturbance is the highest since SOR-ILC uses only one singlefrequency.
In the remaining tests, the amplitude of the disturbance approaches a smaller value as
we include new frequencies in SOR-ILC. Furthermore, the final system output obtained
in the test 18 reaches the same form of the signal calculated by ILC alone and it is less
in amplitude which can be attributed to the feedback gains inside the output regulator.
The maximum amplitude of the disturbance is observed to be 92.9% smaller than that
obtained through ILC only. Another demonstration is done in Figure 5.13 by swithching
the SOR-ILC on and off (this time φ = π/4 in d(t), x0 = [0, 0.2]> in (5.20) and SOR-ILC
uses all the learned frequencies). One can observe that when SOR-ILC is switched on, the
amount of disturbance attenuation highly increases which proves once again the efficiency
of SOR-ILC.
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Figure 5.12: System outputs with SOR-ILC

Figure 5.13: System outputs with SOR-ILC (on/off)

5.2 SOR-ILC for nonlinear systems under unknown
complex periodic disturbances

In this section, the design and analysis of SOR-ILC are extended to a nonlinear system
case. The disturbance rejection problem is also made practically more interesting by consi-
dering a Van der Pol (VDP) oscillator acting on one of the outputs. The VDP oscillator
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creates a nonlinear disturbance 7 of which the properties of are assumed to be unknown.

5.2.1 Problem definition

Let us consider a nonlinear system in the form of a general chain of integrators which
is written as 

ẋ1(t) = x2(t)
...

ẋn(t) = ϕ(t, x(t)) + u(t)
y(t) = x1(t)

(5.23)

where x(t) = (x1(t), . . . , xn(t))> ∈ Rn is the state, u(t) ∈ R is the control input, and
y(t) ∈ R is the output to be regulated and ϕ(t, x(t)) is assumed to be Lipschitz. For an
easier analysis, it is useful to write the system (5.23) in the following compact form :

ẋ = Fx+B(ϕ(x, t) + u(t)), (5.24)
y = Cx (5.25)

where the matrices F, B, C are selected as

F =
0n−1×1 In−1×n−1

0 01×n−1

 B =
0n−1×1

1

 C =
(
1 01×n−1

)

which is also called the Bruwonsky canonical form. For simplifying the explanations, let
us consider (5.23) in second order and add a periodic disturbance in its output, i.e.

ẋ1(t) = x2(t)
ẋ2(t) = ϕ(t, x(t)) + u(t)
y(t) = x1(t) + w(t, xv(t))

(5.26)

where ϕ(t, x(t)) = sin(x(t)) and w(t, xv(t)) is an unknown nonlinear smooth periodic
signal generated by the following VDP oscillator :

w(t, xv(t)) = −xv,1(t) + µv(1− x2
v,1)xv,2 (5.27)

The goals of rejection problem stay the same as in Section 5.1.1. In order to make the
ILC application feasible to this type of system, one must ensure that given some initial
conditions the system will remain initially stable along the iterations. Therefore, a two-step
pre-stabilisation procedure is needed before applying the layers of SOR-ILC :

1. Stabilise the system (5.23), i.e. select Ks = (a1, . . . , an) such that F−BKs is stable.

7. In this thesis, the term nonlinear disturbance means a disturbance that is produced by a nonlinear
system/oscillator
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For (5.26), in particular, select a1, a2 such that

F +BKs =
 0 1
−a1 −a2


is stable. This model is obtained by linearising the chain of integrators in (5.26).

2. Build an inner controller to ensure that the ILC system will not diverge in the
presence of w(t, xv(t)). In other words, apply the following control law :

u(t) = −κ2a1x1 − κa2x2 = KsK0x(t) (5.28)

where K0 = diag(κ2, κ). With this control law, the matrix to be studied becomes

Ain = F +BKsK0 =
 0 1
−k2a1 −ka2

 (5.29)

The proper selection of κ can be done by analysing the Lipshitz constant Lϕ of
ϕ(t, xv(t)). The property is that for any δ > 0 there exists a Lϕ > 0 such that

|ϕ(t, s)− ϕ(t, r)| ≤ Lϕ|s− r|

for all s, r such that |s| ≤ δ and |r| ≤ δ. To be precise, one can choose κ > 2Lϕλ̄(P)
where λ̄(P) is the maximum eigenvalue of the matrix P yielded by solving the
Lypaunov equation :

P(F +BK) + (F +BK)>P = −I

The Lipshitz constant Lϕ for (5.27) can be calculated as

Lϕ = sup|x|≤δ
∣∣∣∣∣∂ϕ∂x (t, x)

∣∣∣∣∣
= sup|x|≤δ

∣∣∣(− 1− 2µx1x2, µ(1− x2
1)
)∣∣∣

≤ sup|x|≤δ
∣∣∣√(1 + 2µx1x2)2 + µ2(1− x2

1)2
∣∣∣

≤ sup|x|≤δ
(
|(1 + 2µx1x2)|+ µ|(1− x2

1)|
)

≤ 1 + 2µδ2 + µ(1 + δ2)

≤ 1 + µ+ 3µδ2

Therefore, from my experience, it can be said that the Lipshitz constant can be
picked as Lϕ = 2µ. Then κ should be chosen bigger than this value according to
above mentioned criterion (i.e. κ > 2Lϕλ̄(P)).
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5.2.2 Control Design

The control designs of Layer 1 (ILC) and Layer 3 (output regulator) of SOR-ILC for
the nonlinear system case are exactly the same as in Section 5.1.2. Therefore, they are
not shown here again. However, another identification method is utilised for the nonlinear
case which can be seen below.

Layer 2 : Identification method via Hankel

The identification method called Hankel is selected due to the fact that it does not re-
quire a Fast Fourier Transformation (FFT) for yielding an accurate model approximation
of the converged ILC signal u∗(t). It directly uses time domain data and finds the approxi-
mate model of a system. What it basically does is to approximate the nonlinear system
model by combining the outputs of many linear trasfer functions to the same impulse
signal.

Let us now consider that the converged (and optimal) ILC control signal u∗(t) has
been obtained in Layer 1. Since the disturbance to be rejected is periodic, u∗(t) is periodic
as well. Therefore, following the same philosophy as in [7], one can seek for the dominant
harmonics of this optimal open-loop signal and the use these harmonics in the IMC design
of Layer 3.

Consider now u∗(t) ≡ u∗(tk), where k = 1, . . . , N = 2n, as a sampled signal with
constant period ts. On this basis, one can construct the Hankel matrix H ∈ Rn×(n+1) as

H =


u∗(t1) u∗(t2) . . . u∗(tn+1)
u∗(t2) u∗(t3) . . . u∗(tn+2)

... ... ... ...
u∗(tn) u∗(tn+1) . . . u∗(t2n)

 . (5.30)

Rooted on H, let us define the following quadruple (E,A,B,C) 8

E = H1:n,1:n ∈ Rn×n ,
A = H1:n,2:n+1 ∈ Rn×n ,
B = H1:n,1 ∈ Rn×1 ,
C = H1,1:n ∈ R1×n

(5.31)

that constitutes the raw model encoding the data generated by the optimal control signal
u∗(tk). This model is linear time-invariant (LTI) and discrete-time, with the same sampling
period ts, and reads

Ex(tk + 1) = Ax(tk) +Bu(tk) and u∗(tk) = Cx(tk) (5.32)

with a non-zero initial condition Ex(t1) = B and where x(tk) ∈ Rn and u(tk) ∈ R. As the

8. Here we denote the raw vector from element 1 to n of H as H(1, 1 : n), the column vector from
element 1 to n as H(1 : n, 1).
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above model is of dimension n, a reduced model and associated fundamental oscillations
can be computed by a model reduction approach following the same approach as the Loew-
ner one e.g. presented in [5, 60] or any LTI oriented one (see e.g. [8] book or [90] monograph
for rather complete insight). The procedure involved here is the so-called Pencil method,
which allows to obtain dominant sub-models by using a rank revealing factorisation such
as the Singular Value Decomposition (SVD) one. Then, by first performing

U1S1VT
1 = SVD([ET AT ]T ) (5.33)

U2S2VT
2 = SVD([E A]) (5.34)

and by selecting the X ∈ Rn×r and Y ∈ Rn×r projectors as

X = U2(1 : n, 1 : r) and Y = V1(1 : n, 1 : r), (5.35)

the quadruple (Ê, Â, B̂, Ĉ) = (XTEY,XTAY,XTB,CY) leads to the discrete-time re-
duced dynamical model of dimension r,

Êx̂(tk + 1) = Âx̂(tk) + B̂û(tk) and û∗(tk) = Ĉx̂(tk) (5.36)

where x̂(tk) ∈ Rr and u(tk) ∈ R, and with initial conditions x̂(t1) = XTx(t1). On the basis
of this reduced quadruple, one may obtain the partial fraction expansion of the underlying
associated transfer function Ĥ(z) = Ĉ(zÊ−Ar)−1B̂, which impulse response reads

û∗(tk) =
r∑
i=1

αie
σitkeı(ωitk+θi) (5.37)

=
r∑
i=1

ĥ(αi, σi, ωi, θi) (5.38)

where αi ∈ R is the real amplitude and θi ∈ R the phase angle. Then, the eigenvalues are
expressed as λi = eσi+ıωi ∈ C where σi ∈ R is the decay rate and ωi ∈ R the frequency
(in rad/s) of the i-th oscillation (see [7] for additional comments). In general, increasing r
leads to a perfect matching of the original signal u∗(tk).

In the presented case, as the signal u∗(tk) mainly contains oscillatory behaviour, one
will practically observe σi = 0.

On this basis, it is now easy to sort the frequencies ωi as a function of the amplitude
of the oscillations αi. This naturally leads to the set of frequencies that will be used in the
IMC design in Layer 3.

Remark 5.1 (Selection of the approximation order r) : Obviously in the above proce-
dure, the order r of the approximated model Ĥ has an importance. The higher r is, the
more accurate the impulse response of the reduced model (5.37) is. However, a large r will
embed many harmonics and thus lead to a more complex controller structure. One way to
limit the number of harmonics (as proposed in [7]) is to monitor the angles between each
harmonics. This latter may be computed as follows :

∠(u, v) = arccos
〈u, v〉
||u||||v||

(5.39)
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where u and v vectors are two consecutive harmonics obtained by evaluating

u = ĥ(αo, σo, ωo, θo) and v = ĥ(αp, σp, ωp, θp)

along the time indices tk for {o, p} = {1, ..., r and ||ωo|| 6= ||ωp||}. An angle close to π/2
leads to orthogonal signals u and v and thus an important information addition. Then,
one may stop if ||∠(u, v)− π/2|| > ε.

Now one may move on to the final step of the proposed procedure, namely the construc-
tion of the state feedback controller thought internal model control synthesis.

5.2.3 Numerical Analysis

Let us consider the nonlinear system (5.26) with ϕ(t, x(t)) = sin(x(t)) and the unknown
nonlinear disturbance (5.27) where the Van der Pol (VDP) oscillator w(t, xv(t)) with µ = 1
produces the disturbance shown in Figure 5.14. The structure of the simulator in Figure
5.5 in this numerical analysis differs by the inner system in which the plant is replaced
with (5.26) and the prestabilising feedback gain K0 is calculated by the steps given in
5.2.1.

Figure 5.14: Disturbace generated by the Van der Pol Oscillator

The first step of SOR-ILC is to pre-stabilise the system (5.26) with the inner controller
(5.28). To meet this purpose, the inner controller gain parameters in K0 are selected as per
κ = 2µ+ 2 following the precedure given in Section (5.2.1). This choice will guarantee the
nondivergence of the system during the ILC application of SOR-ILC’s first layer. Next,
the initialisation parameters of ILC are set to the same values as shown on Table 5.2. The
convergence related parameters ρ, λ andM are kept the same as in the previous numerical
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application with norm optimal ILC (NO-ILC) since they provide sufficient performance
for the demonstrating the functioning of this framework (running M = 1000 iterations
in our case takes only few minutes). It should again be noted that achieving the best
tuning for these ILC parameters is not the focus of the presented work here and one
may probably find even better ILC methods to get faster or more precise results. To
move on, the simulation model 5.2 is run with these parameters while the switch is at
S.1 and the ILC inputs and outputs as a result of this process can be viewed in Figure
5.15 and Figure 5.16, respectively. It can be observed that ILC reduces the amplitude of
the unknown disturbance to a very high precision and leaves oscillations roughly between
[−0.005, 0.005], thus making it more interesting for the identification process in layer 2.

Table 5.2. NO-ILC initialisation

Sample time, Ts 0.01 sec.
Simulation time, Tsim 52.07 sec.
Initial states (nonlinear Plant), x [0 0]T ∈ R2

Initial states (VDP Oscillator), xv [2 1]T ∈ R2

Initial ILC input, uILC 0
Number of ILC iterations, M 1000
Weight on the error, We ρI ∈ RN×N

Weight on the system input, Wu I ∈ RN×N

ρ 0.001
λ 0.1

Figure 5.15: ILC inputs

The second step is to apply the Layer 2 of SOR-ILC. The model fitting on the converged
ILC input data (i.e. u∗(t) = uM=1000(t) ) is carried out by the Hankel identification method
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given in Section 5.2.2. The parameter r in this identification algorithm denotes the number
of frequencies to be extracted from the data and it is chosen as r = 18 for a very close
model fit to u∗(t)(see Figure 5.17 for the model fit and the extracted harmonics and Figure
5.18 the eigenvalues of the approximated model on the unit circle).

Figure 5.16: ILC outputs

As it was previously pointed out, what makes the given identification method interes-
ting and motivating is that it does not need frequency domain data of a signal to extract
its harmonics. The only requirement is to have the time domain data of the signal which
means that it eliminates the step of Fast Fourier Transformation. Another advantage of the
Hankel based identification is that it allows to monitor the angles between each harmonic
and thus to reduce the the number of harmonics needed for the proper model approxima-
tion and controller design (see Remark 5.1). In other words, this feature can be used as
a stop meachanism within the algoritm and eliminate the excessive information that does
not contribute further to the model fitting precision.

113



Figure 5.17: Identification of the ILC system via Hankel : Model fit and its harmonics

Figure 5.18: Eigenvalues of the model fit

Once the frequency content of u∗(t) is obtained, it can be used in building an internal
model unit for the output regulator described in Section 5.1.2. The procedure is exactly
the same and the only difference comes from the stabiliser unit parameters where now
β = 0.00001 and all µi are set to 10. It should be noted that these choises do not provide
high performance ; however, they are sufficient for demonstrating the functioning of the
triple layer control logic (i.e. the transformation from data-based logic to conventional
logic in control design) on a nonlinear system under a nonlinear disturbance. The tuning
of β and µi can be considered as another research topic.
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The simulation results 9 of the output regulator of SOR-ILC can be observed in Figure
5.19 and Figure 5.20 which represent the output and the input (with its subparts), res-
pectively. It can be seen that the SOR-ILC process succesfully generates a feedback action
utilising the internal model control created based on learning from data. However, compa-
red to the results shown in Section 5.1.3 for the linear system case, the output regulator of
SOR-ILC this time, with the given nonlinear system application, cannot outperform the
results of ILC-only case in Layer 1. This can be related to the not fully accurate tuning
of the output reglator. For improved results, it would probably needed to have a better
insight on the interrelation of β and µi and the direct effects of both (and all µ) on each
harmonic separately. There can also be issues related to the nonlinear system and the
Van der Pol oscillator because when all µi values are chosen over 10 the system begins to
diverge.

Figure 5.19: System output with SOR-ILC

9. Note that the simulation time for this step is set to 200s.
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Figure 5.20: SOR-ILC control signals

5.3 Conclusion

This chapter can be considered as the main contribution of the thesis work. The main
idea that has been presented is the triple layer control approach which allows a combination
of learning-type control and non-learning-type control utilising an intermediate layer of
data-based identification. The given concept is not limited to ILC and output regulation
as choises for Layers 1 and 2, respectively. The main goal is to motivate the designers
to consider such an approach that benefits from the best features of both control family
and that fixes the disadvantages of both. For example, with the model-free nature of ILC,
one can get rid of the necessity of knowing the frequencies periodic disturbance in order
to build a controller. On the other hand, with the robust output regulation (feedback
based on IMC), it is possible to cover the one of the major flaws of ILC which is the
lack of robustness to nonrepetitiveness in the data due to instant disturbances, noises and
parametric uncertainty (see Figure 5.1 and Figure 5.3 again for more details).

It is particularly important to realise that it was not so difficult to extend the SOR-ILC
approach from linear systems to nonlinear systems. This has shown that the triple layer
approach is not limited to simple linear systems and it can well be applied to nonlinear
ones while keeping the overall control design relatively simple, compared to conventional
non-learning-type methods even if the tuning still remains a complex process.

Moreover, in the last section of this chapter a time-domain identification method has
been introduced which can be counted as another contibution of the thesis. This identifica-
tion method is particularly interesting since it directly uses the time-domain data (period
of the signal) to approximately find a linear model fit (i.e to extract dominant frequen-
cies). A powerful and simple identification method (Layer 2) has crucial importance since
it constitutes a mid-layer between learning-type control (Layer 1) and non-learning type
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control (Layer 3). If the frequency extraction is not accurate, this has a direct effect on the
Layer 3 since the internal model unit of the output regulator is built using the information
acquired through the identification layer.

A future work for the presented approach can be done by focusing on the tuning of
the output regulator parameters β and µs (in case SOR-ILC is chosen as the triple layer
control). The lack of proper research on the tuning of these parameters can be related to
the drop of performance occured while passing from Layer 1 results to Layer 3 results in
Section 5.2 (nonlinear system case). Apparently, the tuning of the output regulator gets
more complex when the plant is nonlinear (in linear system application in Section 5.1, a
rough tuning improved even further the overall precision after ILC). This can be seen as
an interesting issue to be looked at in more detail in a future work.

As stated in the previous chapters, it is always interesting to test different NO-ILC
tunings or simply different ILC methods for Layer 1 of SOR-ILC. Since the goal of the
thesis was to demonstrate new procedures (workflows) and frameworks, the tuning or
theoretical improvement of the ILC methods was out of scope. However, having shown the
proper functioning of the presented frameworks, one can carry out a reasearch on ILC and
then test the same framework to achieve more satisfying (faster) results.

Finally, choosing different methods than ILC and the output regulation or even the
identification in the proposed triple layer approach has not been tested yet and it might be
of interest for future research. Thus, it remains rather interesting to see that this framework
can make other combinations possible and produce results that are as good as the ones of
SOR-ILC. One can refer to Table 1.1 for thinking of other combinations of learning-type
and non-learning-type control methods.
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General Conclusion

In this thesis, it has been shown that ILC can be used as a powerful tool in bettering
the operation and design of existing conventional control approaches. The main objective
has been to use ILC for building feedback controllers. In other words, the thesis work
showed how an open-loop data-based method can be converted into a closed-loop feedback
method in an approximative way. Moreover, it can be viewed that high precision reference
tracking (Chapter 3) and disturbance rejection (Chapters 4 and 5) have both been analysed
throughout the thesis. However, the major focus has been given to the rejection of unknown
complex periodic disturbances.

The future perspectives of the thesis, the author’s critiques on some challenging points
and his suggestions for further improvements are provided in the sections below that cover
the judgements on Chapter 3, Chapter 4 and Chapter 5 (i.e. the four contributions achieved
throughourthe thesis).

Author’s perspective and critiques

Chapter 3 : Contribution 1

In Chapter 3, the UAV experimentation with ILC has shown how a simple learning
controller can make the UAV reach close to its highest agility allowed by its dynamics.
The chapter has presented an application of norm optimal ILC (NO-ILC) on a real indoor
UAV. The feasibility and efficiency of NO-ILC has been tested and good tracking results
have been obtained during the experiments. A highly motivating point was that all the
tracking results were obtained under nonlinearities and uncertainties. Basically, the NO-
ILC algorithm allowed to achieve close to the maximum agility of the UAV and a large
amount of precision has been achieved in only four flights. These results have been rather
encouraging for using NO-ILC as a tool in the rest of the chapters and the chapter itself
contributed to the development of the thesis as an initial study.

Apart from this, the main contribution of Chapter 3 to the literature can be seen as the
proposed experimental procedure shown in Figure 5.21 recalled above. This new data flow
has demonstrated that ILC experiments with UAVs can significantly benefit from a hybrid
ILC update procedure that reduces the total time spent for the whole experiment. The
core idea of this procedure is based on using a hybrid ILC update, i.e. integrating a large
amount of predicted (simulated) flight data while performing the ILC updates, instead
of directly using the real data as it can be seen on the left half of Figure 5.21 (refer to
Section 3.3.1 for more details). By applying this experimental procedure on three different
trajectories, it was possible to reach a large amount of tracking performance in only 4 flight
experiments (note that this result is for the given specific flight experiments). During this
application, the NO-ILC integration was done in open-loop to the UAV’s already existing
closed-loop system controlled by a feedback controller which has demostrated that ILC
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can be used as tool for increasing the performance of a real nonlinear system such as a
UAV. Note that the inner controller was a weak one in terms of tracking performance but
a fairly good one in terms of robustness. This was an intentional choice that was made in
order to test whether or not ILC can improve the performance of a bad feedback controller
for tracking while at the same time benefiting from its robustness feature.

Figure 5.21: Proposed experimental procedure for NO-ILC experiment with UAVs (Re-
called from Chapter 3)

One of the challenges observed during the experiments can be seen as the increased
nonlinearity and parametric uncertainty in the UAV’s dynamics. These two adverse effects
had an impact on the learning of ILC as the UAV was reaching closer and closer to the
given agile reference (ILC was basically pushing the UAV towards its dynamic limits in
order to improve tracking precision at each fight experiment). This phenomenon can be
observed in Figure 5.22 which depicts the model accuracy versus model update during
reidentification using ILC.

An improvement for resolving this issue can be done first by trying to use higher-order
identified transfer functions during the simulated ILC updates. Another improvement can
come from changing the UAV and apply the same experiment. This is reasonable since the
UAV used during the experiments had limited agility. Finally, the ILC method that was
used can be changed or a different tuning can be applied. If the measurement noise and
disturbances can be maintained well, some D-type or PD-type ILCs may also be tried as
better candidates. However, it would be suggested to rather choose a more sophisticated
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optimisation approach inside the NO-ILC (the one used in the application is based on the
minimisation via Lagrange multiplier technique which is analytical).

Figure 5.22: Proposed experimental procedure for NO-ILC experiment with UAVs (Re-
called from Chapter 3)

Furthermore, it is also possible to address the issue of reduced learning due to nonlinea-
rities after several flights by trying the switch to a nonlinear ILC method from the linear
ILC (i.e. the one used during experiments). It may improve convergence speed ; yet, it is
generally required that there is some well-known information about these nonlinearities
(or uncertainties, disturbances etc.).

Another point that is worth to mention is related to the offline nature of the ILC. The
term offline signifies here that after each real flight trajectory tracking, the UAV has to stop
flying (or wait in hovering position) and wait for ILC to compute the next system input.
This is quite normal since ILC is a method developped for the need of improving batch
processes, i.e. discontinuous processes (e.g. reference tracking during a pick-and-place of
robotic arm). However, it can be quite useful for a UAV to be able to carry out an online
computation during its flight. In other words, the ILC signal for the next flight can tried to
be calculated while the UAV is performing the current flight. Of course, some limitations
for this type of application can be the computational speed, the communication speed and
the length of the simulation (flight trajectory).
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Chapter 4 : Contribution 2

In Chapter 4, it has been demostrated that ILC can be used as a tool for automati-
cally creating (or tuning) linear feedback controllers for rejecting unknown periodic dis-
turbances. This idea has been given under the name of learning based controller tuning
(LBCT) workflow (see Workflow 2) which has shown that ILC and feedback can be united
for achieving a satisfying performance with much less design effort. The main contribution
of this chapter is twofold : (1) utilising ILC, the bridge between the requirement of having
a priori knowledge of the periodic disturbance and building an internal model principle
based feedback controller has been broken ; (2) utilising ILC, an automatisation is achieved
for the tuning of linear feedback controller parameters.

To begin, for periodic systems a large amount of repetitive data is generally available
and thus ILC can be used as a beneficial tool for reaching superior rejection performances
that would not be possible to obtain by means of feedback laws only. The usage of ILC
becomes even more motivating from the point of control design when the periodic system
is under a priori unknown periodic nonlinear disturbances. This is simply because ILC
allows the designer to find the right control input that will reject the periodic disturbance
without needing to model the disturbance. Furthermore, the feedback methods are not
able to improve the control performance by detecting repetitive patterns in the system
which means that there is no anticipation and the transients cannot be removed. On the
other hand, this is not the case for ILC which anticipates for transients using repetitive
data. Therefore, the LBCT workflow has been proposed to show that one can achieve
much better rejection performances by including ILC in the design procedure of a feed-
back controller and such process actually corresponds to the automatic tuning of feedback
controller parameters. To mention again, the LBCT approach becomes particularly inter-
esting when the periodic disturbance is completely unknown. Thanks to ILC, in such case,
the feedback controller design can still be automatically obtained without the need of any
modelling.

Workflow 2: Learning Based Controller Tuning (LCBT) (Recalled, Chapter 4)
Data: An internal closed-loop system P ∈ H∞ (the open-loop plant plus a

feedback controller) that is stable (see Figure 4.1) and subject to repetitive
disturbance d(t) ; a desired reference input r(t) ; values for {ρ, λ} ∈ R+ and
M ∈ N+ on Table 4.1.

Result: A linear controller rejecting a non-modelled repeating disturbance, d(t).
1 ρ, λ and M can be chosen as suggested in [83];
2 Consider the switch is at ’S.2’ position in Figure 4.1;
3 Run ILC to find the system input that will attenuate the unwanted repeating

frequencies;
4 Obtain the frequency data {ωj, φj}Nf

j=1 of the converged input signal, u∗i=M(t),
from the last iteration;

5 Approximate a stable linear model H(s) ∈ H∞ making a fit to this frequency data
utilising [6] and [75];

6 Design a controller based on H(s) properties (internal model control).

The initial motivation of the work in Chapter 4 came after observing an equivalance
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of ILC to the augmented state feedback control in rejecting a simple sinusoidal repetitive
disturbance. According to the results, the ILC demonstrated a rather successful rejection
performance that is superior to state feedback control. This is due to the fact that ILC
was able to gradually remove the repeating errors and anticipate for the transients in the
response without needing to know the disturbance. Hence, this brings out the following
question : Why not make benefit of learning methods (like ILC) that are based on re-
petitive data manipulation when technology becomes less and less an issue in terms of
computational speed, data storage etc. ? Trying to correctly model the repetitive distur-
bances can be quite a tedious process if the disturbances are unknown, partially known,
nonlinear or lumped with other effects such as parametric uncertainties.

The missing part of this work is that the step 6 of the LBCT workflow above, i.e the
transfer function H(s), has not been demonstrated in the paper contribution. Therefore, it
could be interesting to create H(s) (which is an approximation of the ILC’s performance
in feedback form) and compare its rejection performance directly to ILC. This would allow
to fully assess the efficiency of the LBCT procedure. Moreover, it could be interesting to
further test this remaining part with a practical application on a real system.

Another improvement can be done by developing further the LBCT workflow in order
to make it feasible to nonlinear systems under periodic disturbances. In fact, this issue
has already been adressed in Chapter 5 and there is still an open work remaining from
the tuning aspect (see Section 5.2). Apart from this it is always possible to check the
performance with a different ILC method which may provide similar but faster results
faster in terms of computational time. For example, the selected tuning for the norm
optimal ILC (NO-ILC) in Chapter 4 may not be the best one and it is possible that other
optimisation methods can give better results (NO-ILC is based on Lagrange multipliers
technique which is based on an analytical minimisation process). In general, the focus of
Chapter 4 was to demonstrate the functioning of a new workflow and the tuning was not
the particular focus. Further research on this point can enhance the practicality of LBCT
worklow.

Chapter 5 : Contribution 3 and 4 10

The Chapter 5 can be considered as the major contribution of the thesis study. The
ultimate goal of the thesis has been achieved in this chapter and the previous contributions
provided in Chapter 3 and Chapter 4 simply built the basis for the work presented here.
There is especially a direct relation between Chapter 4 and 5 since the results obtained
in Chapter 4 have been improved and completed further in Chapter 5 which led to a new
framework called the triple layer control approach (see Figure 5.23). The significance of
this approach comes from the fact that it unifies the learning-type control logic (layer 1)
to the non-learning-type control logic (layer 3)(in other words the data-based logic to the
conventional logic) via utilising an identification process (layer 2) in between its layers.

An interesting feature of the triple layer control is that it also motivates the trial of
different method combinations which is now open for further research. In Chapter 5, the

10. Contribution 4 is an ongoing work.
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Layers 1 and 3 of the triple layer controller are selected as ILC and output regulation
via internal model control (IMC), respectively. This version of the triple layer controller
was named supervised output regulation via ILC (SOR-ILC). The rejection performance
of SOR-ILC has been shown to function well for both the linear and nonlinear systems 11

under nonlinear disturbances 12. This point is basically the most crucial outcome of the
whole thesis work since finally the approach of designing a feedback law using iterative
learning control has been fully developed.

Figure 5.23: Triple-layer control approach (Recalled from Chapter 5)

As it was mentioned above, the given concept in Chapter 5 is not limited to ILC and
output regulation as design choises on Layers 1 and 2, respectively. These choises have
been done rather to motivate the designers to utilise the triple layer approach in order to
benefit from the best features of both control family and decrease the disadvantages of
both. For instance, the model-free nature of ILC helps to remove the necessity of having
a priori knowledge of periodic disturbance frequencies while build a controller. On the
other side, one can compensate for the major drawbacks of ILC (i.e. the lack of robust-
ness to nonrepetitiveness in the data due to instant disturbances, noises and parametric
uncertainty) by utilising a robust output regulator based on IMC (Figure 5.1 and Figure
5.3 can be revisited for more details). Here again, other methods can be considered by
adding some optimisation criteria which would create an openning to the dynamic output
feedback design instead of the full state feedback one.

It is worth to put emphasis on the fact that SOR-ILC approach is not only limited
to simple linear systems and it can well be extended to nonlinear ones (as it was done in
Section 5.2) without losing the relative simplicty of the overall control design compared to
conventional non-learning-type methods. However, the precise tuning of SOR-ILC is still
a process to be researched further.

In case where SOR-ILC is selected as the triple layer controller, the tuning of the output
regulator parameters β and µs can be considered as a future study (these parameters can
be used to put different weights on the contribution fo each disturbance frequency in the
feedback). Such analysis would most probably improve the reduced performance occured
while passing from Layer 1 results to Layer 3 results in Section 5.2 for the nonlinear system

11. Weak nonlinearities, see
12. In this thesis, the term nonlinear disturbance means a disturbance that is produced by a nonlinear

system/oscillator
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case (linear case has no issues regarding performance). Clearly, the output regulator tuning
gets more complex if the plant is nonlinear (with a linear system in Section 5.1, a rough
tuning of SOR-ILC raised even further the overall precision after ILC-only-performance).
A particular interest can be given to this point as well in the future work in order to
understand the main factors determining the SOR-ILC rejection in linear case and their
relation to the increased complexity when switching from linear case to nonlinear case.

Moreover, it is useful to give some comments on the identification method used in the
Layer 2 in Section 5.2.2 which is called Hankel. This method is particularly interesting
since it directly uses the time-domain data (period of the signal) to approximately find a
linear model fit (i.e to extract dominant frequencies). A powerful and simple identification
method (Layer 2) has crucial importance since it constitutes a mid-layer between learning-
type control (Layer 1) and non-learning type control (Layer 3). If the frequency extraction
is not accurate, this has a direct effect on the Layer 3 since the internal model unit of the
output regulator is built using the information acquired through the identification layer.
Although the presented identification and model approximation results show that Hankel
method works very well, there can still be some improvements to be considered as future
work. Firstly, one can use faster and more memory efficient singular value decomposition
(SVD) methods than the Pencil method in order to reduce the Hankel matrix H in (5.30)
recalled below :

H =


u∗(t1) u∗(t2) . . . u∗(tn+1)
u∗(t2) u∗(t3) . . . u∗(tn+2)

... ... ... ...
u∗(tn) u∗(tn+1) . . . u∗(t2n)


In other words, this means to use some other SVDmethod such as Zoom-SVD, Randomised-
SVD or TallSkinny-SVD (see e.g. [55]) in the equations (5.33)-(5.34) recalled below :

U1S1VT
1 = SVD([ET AT ]T )

U2S2VT
2 = SVD([E A])

Secondly, one can make a study on how to optimise the number of harmonics to be used
in Hankel (i.e. the dimension of the parameter r in (5.37) recalled below) such that the
output regulator of SOR-ILC yields good performance with less identified frequency data.

û∗(tk) =
r∑
i=1

αie
σitkeı(ωitk+θi)

=
r∑
i=1

ĥ(αi, σi, ωi, θi)

A criterion for determining the lowest number of harmonics in the model approximation
is based on monitoring the orthogonality of the harmonics which is explained in Remark
5.1 by the following equation :

∠(u, v) = arccos
〈u, v〉
||u||||v||

(5.40)

where one can select the harmonics satisfying ||∠(u, v) − π/2|| > ε with ε being a small
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computational error defined by the user. Clearly, this equation is a very useful practical
tool ; however, it may also be possible to reduce the number of orthogonal harmonics even
further by analysing which frequencies are the most useful ones for the output regulator
performance. Hence, this point can be seen as a topic of future research for SOR-ILC or
any other new triple layer approach.

Finally, it is always interesting to test different NO-ILC tunings or simply different
ILC methods for Layer 1 of SOR-ILC. Since the goal of the thesis was to demonstrate new
procedures (workflows) and frameworks, the tuning or theoretical improvement of the ILC
methods was out of scope. However, having shown the proper functioning of the presented
frameworks, one can carry out a specified reasearch on new ILC methods for SOR-ILC
in order to achieve more satisfying (faster, less computational-heavy etc.) results with the
triple layer framework. In addition to this, it remains still rather interesting to see whether
this framework can make other method combinations possible and produce results that are
as good as the ones of SOR-ILC. A good reference for further thinking on this topic can be
done by reviewing Table 1.1 which provides a list of learning-type and non-learning-type
control methods.
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Annexe A

Extra Details

Basic ILC design procedure in frequency domain

Generally speaking, the design procedure of an ILC system depends on the ILC method
used for the calculation of the filters. Yet, it can be said that a basic guiding procedure
exists in essence. The procedures presented in [69] and [68] seem to be good references
for understanding the basic ILC design steps in frequency-domain. The authors of [69]
and [68] apply the same steps but their focuses are to design PD-type and fractional order
ILCs, respectively. These steps can be given as follows :

1. Specify a desired cut-off frequency (wc) for the ILC system such that its bandwidth
becomes,

w ∈ [0, wc].
2. Choose a low-pass filter Q(ejw) such that

|Q(ejw)| = 1, ∀w ∈ [0, wc],
|Q(ejw)| = 0, ∀w ∈ (wc,∞)

(A.1)

A low-pass filter that will remove the unwanted high-frequencies as given in (A.1)
can be designed through various different methods such as FIR, Butterworth, Che-
byshev, Gaussian or any other filter that serves for the same purpose.

3. Specify a lower convergence margin (γsafe) if a safer operation is desired. If not, let
the margin be at least in γ ∈ [0, 1). For the safer case scenario with a Q-filter that
assures (A.1), the monotonic convergence condition in is written as,

0 ≤ |1− L(ejw)G(ejw)| ≤ γsafe, ∀w ∈ [0, wc]. (A.2)

The purpose of introducing a γsafe is to reduce the radius of the unit circle which
is the area defined by MC condition. The aim here is to prevent the ILC system
from exceeding the convergence rate limit of γ = 1 so that the convergence can be
guaranteed.

4. Find a learning filter L(ejw) such that (A.2) is satisfied at the boundaries. In dif-
ferent words, guarantee the following conditions :

|1− L(ejw)G(ejw)| = γsafe, for w = wc,

|1− L(ejw)G(ejw)| = 0, for w = 0.
(A.3)

The learning filter L(ejw) can be of various types depending on the ILC update
method. For the systems using P-type, D-type, PD-type, PID-type ILCs or FO-ILC,
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the design process of L(ejw) is based on solving for the gains that will satisfy (A.3).
Note that for the optimization-based ILC algorithms, the calculation of L(ejw)
and Q(ejw) depends on the chosen cost function and the optimization method.
Therefore, the steps are different than the ones described in this section. Yet, the
filters can still be designed in a way that the conditions (A.1)-(A.3) are achieved.
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