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Abstract

The reachable set of a cyber-physical system is of great interest when it comes to
verification of safety properties. Such systems usually models dynamical systems
(a physical system) controlled by an embedded system (computer program). Its
reachable set is known to be a complex geometrical object (sometimes non-convex
and/or disconnected even for simple cases) and computing it is challenging. This
thesis proposes three methods to overapproximate the reachable set of cyber-physical
systems. The first method, the “ellipsoidal method”, studies linear systems subject
to a disturbance bounded in 2-norm or ∞-norm. The second method, the “interval
method”, studies non-linear integral quadratic constraint (IQC) systems by means of
interval sets. In the last method, the “cosimulation method” studies a broader family
of systems (an interconnection of dynamical systems) with an abstract interpretation
approach.

The “ellipsoidal method” describes the computation of reachable sets for linear
time-invariant systems with an unknown input bounded by IQC, which can models
delays, rate limiters, energy bounds, or sector inequalities. The reachable set is over-
approximated with a family of time-varying conics. The parameters of the conic are
solutions to a Differential Riccati Equation (DRE). Our approach unifies ellipsoidal
methods (for bounded disturbances) and storage function methods (classically used
for IQC systems).

The “interval method” describes the use of a Runge-Kutta validated integration
scheme to overapproximate the reachable set of nonlinear IQC systems. The reachable
tube is overapproximated as a union of intervals in the time and state space. The
IQC is used to define a contractor over each interval overapproximating the reachable
tube. This contractor and a propagation step are successively applied on an a priori
given overapproximation of the reachable tube until a fixed point is reached. We
evaluated our algorithm with DynIbex library to simulate a delayed system, i.e., an
infinite-dimensional system that can be modeled as a linear time-invariant system
subject to an IQC. Our approach is shown to be tractable and it enables the use of
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interval arithmetic and validated integration for a richer set of dynamical systems.
Finally, the “cosimulation method” merges the two previous methods into a unique

one that can study a broader family of systems: an interconnection of systems.
Each system in the interconnection is considered as an operator on a signal space
(continuous-/discrete-time) and the proposed method is formalized within the ab-
stract interpretation framework. The system reachable tube is expressed as the solu-
tion of a fixed point equation. This reachable set is overapproximated in the abstract
domain with time-varying sets (e.g. time-varying intervals or ellipsoidal sets) and
computed by solving a greatest fixed point equation. We apply the cosimulation
method to overapproximate the reachable tube of several non-linear systems subject
to IQC-bounded disturbances.

Paul Rousse Set-based Cosimulation



Notations

N natural numbers,
R reals,

R+ positive reals,
R
∗
+ strictly positive reals,

R
n real-valued vectors of dimension n,

R
n×m real-valued matrix of dimension n×m,
S
n×n real-valued symmetric matrix of dimension n× n,

℘(A) power set of A,
P
n conic sets in R

n,
IR interval sets in R,
JxK norm of IR, JxK = maxx∈[x] ‖x‖, for [x] ∈ IR

n,

[x] for [x] ∈ IR, let [x] = supx∈[x] x,
‖x‖ Euclidean norm of x ∈ R

n,
A � 0 semidefinite positive matrix A ∈ S

n×n, A � 0 iff ∀x ∈ R
n, x⊤Ax � 0,

A � B semidefinite positive partial order A,B ∈ S
n×n, A � B iff A− B � 0,

Tr trace,
det determinant,
A⊤ transpose,

‖A‖ Frobenius norm, ‖A‖ =
√
tr(A⊤A),

L(I;X) continuous-time functions from I = [0, T ] ⊆ R+, T ∈ R+ ∪ {∞} to X,
l(I;X) discrete-time functions from I = {1, . . . , T} ⊆ N, T ∈ N ∪ {∞} to X,

C 1(I;X) continuously differentiable functions from I to X,
‖f‖∞ the ∞-norm, ‖f‖∞ = maxt∈R+

‖f(t)‖ ,
L∞(I;X) functions from I to X, bounded by the ‖ · ‖∞ norm,

‖f‖ the 2-norm, ‖f‖ =
(
Tr
(∫∞

0
f⊤(t)f(t)dt

))1/2
,

L2(I;X) functions from I to X, square integrable over I,
L2,loc(I;X) functions from I to X, locally square integrable over I,

〈f, g〉 scalar product 〈f, g〉 = Tr
(∫∞

0
f⊤(τ)g(τ)dτ

)
,

〈f, g〉t truncated scalar product, 〈f, g〉t = Tr
(∫ t

0
f⊤(τ)g(τ)dτ

)
,
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Introduction

In a project life cycle, there is a high interest to find errors at the early stages of
the development. Take the example of software development. When the error is
detected during the test phase, every new fix in the code requires reallocating human
resources. Subparts of the faulty element might as well require new development
to correct the error. After the error is fixed, the project should go back through
the entire manufacturing, integration, and testing phases cycle. Thus, the cost-to-
fix is consequent. The cost-to-fix during the project has been analyzed within the
aerospace industry in [Haskins et al., 2004]. Table 1 reports the average cost-to-fix of
an error during the project phase in software development for aerospace companies.
This “exponential growth” of the cost justifies investing in solutions that can identify
these errors at an early stage in the development. In the case of software development
for the automotive industry, these solutions should analyze a complex class of systems:
embedded systems.

An embedded system generally represents a mechanical system controlled by a
computer program, e.g. an automatic car drove by an embedded computer. At a
given time, such a system can be represented by its state (e.g. the position of a car,
its velocity, and the state of the on-board computer). The evolution of the state

Project Phase Cost-to-fix Factor

Requirements 1×
Design 4×
Build 16×
Test 61×
Operations 157×

Table 1: Average cost-to-fix of errors during the project phase in software develop-
ment (Table 8 in [Haskins et al., 2004]).
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through time is described by the system dynamic (e.g. a part of the dynamic of
the car might be represented with the equation of motion described with the theory
of rigid body, the other part might be represented as a state machine modeling the
computer program). Any trajectory of the system is then a time-dependent function
that associates to a time instant, the system state evolving according to the system
dynamic.

Embedded systems are usually subject to rigorous safety requirements. Often,
these requirements can be expressed as a property over the state space of the system.
The system is safe if its trajectories avoid the set of states, the unsafe set, where this
property no longer holds. If there are only a few system trajectories, it is sufficient
to compute them by simulating the system in order to prove or disprove that the
system is safe. When such a solution is not possible (because it is too computationally
demanding, or because there is an infinite number of trajectories), verifying the safety
requirement in every possible scenario becomes more challenging.

A possible approach is to verify only a subset of the trajectories. This approach
is formalized using Monte-Carlo methods in [Rubinstein and Kroese, 2016]. In this
framework, the probability distribution of the system trajectories is estimated by
randomly choosing a set of trajectories with respect to probability distribution of
uncertain system parameters or inputs. Then the probability of a safety property can
be numerically estimated. The Monte-Carlo method is versatile and can be applied to
a large variety of systems to verify complex safety properties (e.g. temporal properties
for hybrid systems in [Sankaranarayanan and Fainekos, 2012]). These simulation-
based methods require a sample of input sets. Usually, these input sets are large.
For example, they can be uncountable sets (e.g. the initial position of a car) and/or
they can have an infinite number (e.g. a continuous-time real signal might model the
longitudinal effect of the wind over the car). It is therefore not possible to cover all
the behaviors of the system.

Another method is to manipulate infinite sets of trajectories instead of reasoning
over a finite set of trajectories. In such an approach, trajectories are represented as
a subset of the time- and state-space: the reachable tube. Then the system satisfies
the safety properties if the reachable tube does not intersect with the unsafe set (i.e.
the set of states violating the safety property).

Computing this reachable tube is usually difficult. For most systems, there exist
no “out-of-the-box” methods to compute the reachable set. The first step is to ab-
stract the dynamical systems with a class of uncertain systems that encapsulate the
set of behaviors. However, even for simple systems, the reachable set is a complex
geometrical object that does not admit a simple geometrical representation (e.g. the
reachable set of a linear time-invariant system is not a semi-algebraic). Most of the
time, the reachable tube is therefore only overapproximated, and if the safety prop-
erties are satisfied by the overapproximation, then the system satisfies these safety

Paul Rousse Set-based Cosimulation



3 1. Related works

properties.
In practice, to compute these overapproximations, we use computer-representable

geometrical sets (e.g. intersection of hyperplanes, ellipsoidal sets, superlevel set of
polynomial functions). The most precise is the overapproximation, the more prop-
erties can be proved over the reachable set. Therefore, there is a high interest to
overapproximate the reachable set with a geometrical template that correctly fits
the reachable set. Finding the “good” geometrical template is complex. Since these
templates do not exactly represent the set of reachable states, they introduce some
non-existing trajectories into the overapproximation. If these overapproximations are
too pessimistic, it might be impossible to prove that the system satisfies some safety
property. At the same time, these geometrical templates should not be too costly
to compute. The “good” template is highly dependent on the system (its dynamic,
external noises sets, the initial set of states).

This thesis proposes methods to overapproximate the reachable tube for specific
classes of embedded systems.

1 Related works

In the case of dynamical systems where trajectories are solutions to an ordinary
differential equation with bounded unknown input disturbances, the set of reachable
states can be computed by solving an optimal control problem [Lee and Markus,
1969, Gusev and Zykov, 2018]. For a given state and a given cost function that
associates to each initial state a positive cost (and a negative cost if the state is
outside the set of initial states), if the maximal cost leading to a given state is positive,
then this state is reachable. When such optimal control problem is solved (using
Hamilton-Jacobi-Bellman -HJB- viscosity subsolutions, see [Soravia, 2000]), the set
of states associated with a positive cost corresponds to the reachable set of the system.
However, HJB solutions are difficult to compute. They rely on numerical integration
of (partial) differential equations and these solutions are usually not regular.

HJB based methods propagate a cost function along with the flow of the dynam-
ical system. Occupation measures and barrier certificates methods aim at finding
constraints over the reachable tube of a dynamical system: [Wang et al., 2016] uses
Integral Quadratic Constraints (IQC) for verification purposes using barrier certifi-
cates where the positivity of the energetic state is ensured by using a nonnegative
constant multiplier: [Henrion and Korda, 2014, Korda, 2016] use an occupation mea-
sure approach where the IQC can potentially be incorporated as a constraint over the
moment of the trajectories (note however that these references do not deal explicitly
with IQCs). A hierarchy of semi-definite conditions is derived for polynomial dynam-
ics. Then, off-the-shelf Semi-Definite Programming (SDP) solvers are used to solve

Set-based Cosimulation Paul Rousse
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the feasibility problem. Optimization-based methods do not usually take advantage
of the model structure as they consider a large class of systems (convex, Lipschitz, or
polynomial dynamics for example). Similarly than for HJB methods, moment-based
methods can be used for a large class of systems, but they do not scale well, i.e. they
are limited to systems with a small number of states.

When the dynamical system has a convex reachable set, the set can be described by
an intersection of hyperplanes. These hyperplanes are obtained by finding trajectories
maximizing a linear cost. This optimization problem can be solved in practice using
the Pontryagin Maximum Principle -PMP- (see [Lee and Markus, 1969, Graettinger
and Krogh, 1991, Varaiya, 2000, Gusev and Zykov, 2018]). By solving this problem
for different cost direction, it is possible to describe the reachable set as an intersection
of hyperplanes.

The case of Linear Time-Varying (LTV) systems with ellipsoidal bounded inputs
is studied in [Chernous’ko, 1999, Kurzhanski and Varaiya, 2002, Kurzhanskiy and
Varaiya, 2007]. Such systems can model infinity norm bounded input-output Linear
Time-Invariant (LTI) systems. The reachable set (which is convex and bounded; see
[Kurzhanski and Varaiya, 2002]) can be overapproximated with time-varying ellip-
soidal sets. Each ellipsoid is described by its parameters (center and radius) that are
solutions to an Initial Value Problem (IVP). These parameters produce tight ellip-
soids (i.e., ellipsoids touching the reachable set) which are external approximations
of the reachable set. When multiple ellipsoids with different touching trajectories are
considered, their intersection is a strictly smaller overapproximation of the reachable
set. The accuracy of the overapproximation can be made arbitrarily small by adding
more well-chosen ellipsoids. The exact representation of the reachable set is possible
by using an uncountable set of ellipsoids.

The study of LTI systems with IQC constraint is closely related to the Linear
Quadratic Regulator (LQR) problem. In the LQR problem, a quadratic integral
is minimized at the terminal time. Optimal trajectories belong to a time-varying
parabolic surface, whose quadratic coefficients are a solution to a Differential Riccati
Equation (DRE). [Savkin and Petersen, 1996b, Guseinov and Nazlipinar, 2011, Gu-
sev and Zykov, 2018] describe the reachable set of LTI systems with terminal IQC.
[Jönsson, 2002] formalizes the problem with a game theory approach. [Seiler et al.,
2019] solves the differential Riccati inequality over a finite horizon using a basis of
polynomial functions, then an SDP solver (such as Sedumi in [Sturm, 1999]) searches
for a solution that minimizes the final volume of the overapproximation. This algo-
rithm has been implemented in available tools (see LTVTools toolbox, [Seiler et al.,
2017]). In all these works, the overapproximation of the reachable set is conditioned
by the existence of a solution to the DRE over the interval of integration. In the
case of unstable systems, there exists no stable solution to the continuous algebraic
Riccati equation. Any reachable set overapproximation is then defined only over a
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5 2. Outline and Contribution

finite interval of time.
A second approach to reachability analysis is set-based methods. Here, we try

to find a set invariant to the trajectories of the system. Usually, these methods are
expressed as a greatest fixed point equation and are iteratively solved by removing
infeasible trajectories from the set. In these frameworks, the sets are not necessarily
defined as level sets and operations are focused over set operations (e.g. intersec-
tion, union, Minkowski sum, and inclusion). Contrary to previous level set methods,
the family of systems that can be analyzed is usually larger since no system struc-
ture is assumed. [Moore et al., 2009] introduced the validated numerical integration
framework where numerical integration schemes (such as the Runge-Kutta one) are
redefined over the set of real intervals. The system trajectories are overapproximated
as a union of intervals in the state- and time-space. Other shapes (e.g. zonotopes
-the projection of a hypercube-, polytopes) are used for their ability to compute the
Minkowski (see [Girard, 2005]).

These fix-point algorithms are also used in compositional methods where the sys-
tem is decomposed into a closed-loop composition of systems as in [Chen and Sankara-
narayanan, 2016]. In such cases, a prior overapproximation of each internal signal is
iteratively refined through computation. In such an approach, interacting dynamics
between subsystems are neglected, leading to more conservative overapproximations,
however, systems of higher dimensions can be treated. It has been used for stability
analysis of continuous-time systems [Platzer and Clarke, 2009, Eqtami and Girard,
2019] in level set-based approaches for reachability analysis.

2 Outline and Contribution

The thesis is organized in three parts (see Table 2), Part I and Part II derive methods
to overapproximate the reachable tube for linear systems subject to bounded distur-
bances (bounded by a quadratic inequality over the signal space). Part I overapprox-
imates by mean of quadratic superlevel sets, Part II overapproximates with interval
sets. Part III describes a general framework to reason about the interconnection of
systems.

In Part I, we study linear systems subject to bounded disturbances. The dis-
turbance set is defined with a quadratic inequality between the disturbance signal,
the state signal, and the input signal. Chapter 1 derives the general framework of
overapproximation of the reachable set using the level set method with quadratic
forms. Chapter 2 and Chapter 3 are applying previously derived results for two
specific disturbance sets. Chapter 2 details the case where the set of disturbances
is bounded at any time. Since there an infinite number of overapproximations, we
show how the minimal volume overapproximation can be computed using a contin-
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Chapter System Framework Sets

Chapter 1 CT LTV + bounded disturbance levelset method conic sets
Chapter 2 CT LTV + QC levelset method conic sets
Chapter 3 CT LTV + IQC levelset method conic sets
Chapter 4 CT NL + NLIC interval arithmetic intervals
Chapter 5 interconnection of systems abstract interpretation various

Table 2: Summary of the systems studied in this thesis. Abbreviations: CT (Con-
tinuous Time), LTV (Linear Time-Varying), NL (Non Linear), QC (Quadratic Con-
straint), IQC (Integral Quadratic Constraint), and NLIC (Non Linear Integral Con-
straint).

uation method. Chapter 3 studies the case where the disturbance is constrained by
an Integral Quadratic Constraint (IQC). We show that the reachable set is exactly
characterized as an intersection of previously defined overapproximations. The work
presented in Chapter 3 has been published in the paper “Rousse, P., Garoche, P.-L.,
and Henrion, D. (2019). Parabolic set simulation for reachability analysis of linear
time invariant systems with integral quadratic constraint. In 2019 18th European
Control Conference, ECC 2019”, and in the paper “Rousse, P., Garoche, P.-L., and
Henrion, D. (2020b). Parabolic Set Simulation for Reachability Analysis of Linear
Time-Invariant Systems with Integral Quadratic Constraint. European Journal of
Control”.

In Part II, we study how the validated numerical integration method builds upon
interval arithmetic can be used to overapproximate the reachable set of an IQC sys-
tem. Chapter 4 presents the classical interval arithmetic framework and the guaran-
teed integration framework, and extend it to study a nonlinear IQC system. This work
has been published in the paper “Rousse, P., Alexandre dit Sandretto, J., Chapoutot,
A., and Garoche, P.-L. (2020a). Guaranteed Simulation of Dynamical Systems with
Integral Constraints and Application on Delayed Dynamical Systems. In Lecture
Notes in Computer Science, volume 11971 LNCS”.

In Part III, we more specifically study the interconnection of systems In Chapter 5,
we present the classical abstract interpretation framework and introduce the concrete
semantic of the interconnection of systems, then, we describe abstract domains for
signal spaces that will be used to represent the trajectories of the interconnection of
the system. Finally, we treat several examples to compute the reachable set of the
interconnection of systems.
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Chapter 1

Ellipsoidal Methods
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1.2 Set-based simulation . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Conic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Overapproximation with time-varying conics . . . . . . . . . . . 16

1.5 Domain of definition of the overapproximations . . . . . . . . . . 19

1.5.1 Coefficient expansion of the DRE . . . . . . . . . . . . . . 19

1.5.2 Domain of definition of the time-varying ellipsoids . . . . . 20

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.2 Conservatism . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

This chapter proposes a common framework for ellipsoidal methods applied for
the reachability analysis of linear time-varying systems subject to bounded distur-
bances. Ellipsoidal methods have been studied in the ’80s mainly for dynamical
systems subject to ∞-norm bounded disturbances (at any time the disturbance be-
longs to a bounded ellipsoidal set). Since then, it has been extended disturbances
subjects to state-input-disturbance inequality, namely to QC disturbances (Quadratic
Constraint disturbances) and IQC disturbances (Integral Quadratic Constraint dis-
turbances). These models have been widely used in the robust control community
for stability analysis of nonlinear systems (among other applications). We show that
such sets of disturbances can be described by a set of quadratic constraints in the
signal space. It results in an elegant approach to present ellipsoidal methods for a
wide family of models.

Section 1.1 defines the system of interest, the disturbance set, and the set of reach-
able states. Section 1.2 introduces the level set approach in order to overapproximate
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the set of reachable states. Section 1.3 introduces conic templates and there cor-
responding quadratic value functions. Section 1.4 applies the results of Section 1.2
to define overapproximating time-varying conic sets. The time-varying coefficients
of their corresponding value function are the solution of a DRE (Differential Riccati
Equation) parametrized by positive multipliers. This section provides two results
about overapproximating the reachable set (Theorem 1.1 and Theorem 1.2). The do-
main of definition of the DRE is then analyzed in Section 1.5. This chapter ends with
Section 1.6 with a discussion about the conservatism of the approach (the sources of
pessimism) and a comparison between the proposed approach with state of the art
found in the literature.

Theorem 1.1 and Theorem 1.2 are then applied within Chapter 2 for QC systems
(i.e. with ∞-norm constrained disturbances) and in Chapter 3 for IQC systems (i.e.
with 2-norm constrained disturbances).

1.1 Dynamical systems

In this part, the system of interest is a linear time-varying system perturbed by
an unknown disturbance that satisfies a set of constraints with the state and input
trajectories. The constraints are expressed as a quadratic form in the signal space for
the

Definition 1.1. Dynamical system

For a given input signal u ∈ L∞(R+;R
p), given time-varying matrices A ∈

L∞(R+;R
n×n), B ∈ L∞(R+;R

n×m), C ∈ L∞(R+;R
n×p), let the system S be

defined as

S :

{
ẋ(t) = A(t)x(t) + B(t)w(t) + C(t)u(t)

y = (x, u, w) ∈ D (1.1)

where w ∈ L2(R+;R
m) is an unknown disturbance described by D ⊆ L2(R+;R

n+m+p),
the set of disturbances

D = {y ∈ L2(R+;R
n+m+p)|∀µ ∈ D∗, ∀t > 0, 〈y, y〉M,µ|t ≥ 0}

where

〈y, y〉M,µ|t =

∫ t

0

y(s)⊤M(s)y(s)µ(s)ds

where M is a quadratic form negative in the disturbance dimension and D∗ ⊆
L2,loc(R+;R

∗
+) is a subset of positive functions from R+ → R

∗
+ locally integrable

over R+.

Paul Rousse Set-based Cosimulation



11 1.1. Dynamical systems

The system S is a linear system since for any (x, u, w) ∈ S and α > 0, α(x, u, w) ∈
S. The set of disturbance is chosen causal since the constraint satisfied by any signal
y in D, i.e. 〈y, y〉M,µ|t ≥ 0, for all t ≥ 0, only depends on past values of y. One should
notice that any signal y of D satisfies

∀t > 0, 〈y, y〉M,η|t ≥ 0

where η = aµ + bν with µ, ν ∈ D∗ and a, b ≥ 0. Without loss of generality, we can
therefore assume that D∗ is a convex cone.

Let a block decomposition of M be

M(t) =



Mx(t) Mx,u(t) Mx,w(t)
M⊤

x,u(t) Mu(t) Mu,w(t)
M⊤

x,w(t) M⊤
w,u(t) Mw(t)


 . (1.2)

Let the decomposition of M in the basis [x, 1, w] be such that

Mx1(t) = π⊤x1M(t)πx1(t),

Mw,x1(t) = π⊤wM(t)πx1(t),

Mw(t) = π⊤wM(t)π⊤w ,

Mx1w(t) = π⊤x1w(t)M(t)πx1w(t)

(1.3)

with the projections

πw =



0
0
Iw


 , πx1(t) =



Ix 0
0 u(t)
0 0


 and πx1w(t) =

[
πx1(t) πw

]

(the input u(·) is contained in the definition of Mx1(·), Mw,x1(·), and Mx1w(·)).
The set of reachable states is defined as the time-varying set that associates to a

time-instant t ≥ 0 the set x of states that are reachable starting from a given set of
initial states X0 subset of Rn:

Definition 1.2. Reachable set

The set of reachable states is

R(t;X0) = {x(t) | (x, u, w) ∈ S, x(0) ∈ X0}
where X0 ⊂ R

n is the set of initial states.

This chapter and the two following one propose a method to overapproximate the
set of reachable states R(t;X0).

Problem 1.1. Reachability problem

Find a P time-dependent set t ∈ R+ 7→ P(t) ⊆ R
n that overapproximates

R(t;X0) at any time t ≥ 0, i.e. R(t;X0) ⊆ P(t).

Set-based Cosimulation Paul Rousse
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1.2 Set-based simulation

In this part, the reachable set R(t;X0), for t ∈ R+, is overapproximated by the
superlevel set P(t) = {x ∈ R

n | p(t, x) ≥ 0} of a value function p : R+ × R
n 7→ R

expressed in the time and state space domain. P(t) overapproximates R(t;X0) for
any t ≥ 0 if for any system trajectory x of S and any time instant t ≥ 0, it holds
p(t, x(t)) ≥ 0, i.e.

x ∈ S ⇒ ∀t ∈ R+, p(t, x(t)) ≥ 0. (1.4)

When the set of disturbances is reduced to a singleton w = 0, the conditions

1. p(0, x0) is positive for any initial state x0 ∈ X0;

2. t→ p(t, x(t)) is an increasing function over R+ for any system trajectory x ∈ S

are sufficient to enforce (1.4), and therefore to have R(t;X0) ⊆ P(t) (i.e. P(t) is an
overapproximation of the set of reachable states of S, see Figure 1.1). Condition 2)

Figure 1.1: The value function p is positive (increasing and starting from zero at
the initial time) along each trajectory x of the system S. The superlevel set P(t) of
x 7→ p(t, x) overapproximates the reachable set R(t;X0) of the system S at any given
time t > 0.

is expressed over the system trajectories. To avoid enforcing condition 2) over the
set of trajectories, it can be replaced with a stronger one: for any t ∈ R+ and any
x ∈ R

n, the value function of p increases along the flow of S. When p is continuous
and differentiable in time and space, this condition is written

∂p

∂t
+
∂p

∂x

⊤
f(t, x) ≥ 0, for all x ∈ R

n and all t ∈ R+ (1.5)

Paul Rousse Set-based Cosimulation



13 1.2. Set-based simulation

where f(t, x) = A(t)x+ C(t)u(t) is the vector flow of S (for the case where w = 0).
When the set D is not trivial, it is still possible to use the previous approach. A

sufficient condition such that (1.4) holds can be derived using a S-procedure approach
(see [Boyd et al., 1994], Section 2.6.3). If there is a µ ∈ D∗ such that for any t ∈ R+

p(t, x(t)) ≥ λ(t)〈y, y〉M,µ|t (1.6)

where y = (x, u, w) is a system trajectory and λ : R+ 7→ R
∗
+ is a strictly positive

time-dependent function, then (1.4) holds and R(t;X0) ⊆ P(t). Similarly than in the
trivial case, the following conditions are sufficient for (1.6) to hold:

1. p(0, x0) is positive for any initial state x0 ∈ X0

2. t→ p(t, x(t))− λ(t)〈y, y〉M,µ|t is an increasing function over R+ for any system
trajectory x ∈ S.

When p is continuous and differentiable in time and space, and when λ is continuous
and differentiable, a sufficient condition for 2) to hold is

∂p

∂t
+
∂p

∂x

⊤
f(t, xt, wt) ≥ λ̇(t)〈y, y〉M,µ|t + λ(t)µ(t)y(t)⊤M(t)y(t) (1.7)

for all xt ∈ R
n and all t ∈ R+, where f(t, xt, wt) = A(t)xt + B(t)wt + C(t)u(t) is

the vector flow of S. Moreover, when λ̇ is positive over R+ and when p(t, x(t)) ≥
λ(t)〈y, y〉M,µ|t

∂p

∂t
+
∂p

∂x

⊤
f(t, xt, wt) ≥ λ̇(t)λ(t)-1p(t, xt) + λ(t)µ(t)y(t)⊤M(t)y(t), (1.8)

for any wt ∈ R
m and any xt ∈ R

n, it implies that (1.7) holds. Contrary to (1.7), (1.8)
is expressed over the state space and the disturbance space. Finally, the problem of
overapproximation is reduced to proving the positivity of some function over a space
of finite dimension.

In the general case, proving the positivity of some function is difficult. In the next
part, this problem will be solved for a specific family of p, namely the time-varying
quadratic forms for which proving the positivity of a function can be equivalently
solved in its dual form by proving that the minimum is positive.

Remark 1.1. Relationship with Liouville equations

Equation (1.7) can be interpreted in many ways. It corresponds to the Koopman
equation (dual of the Liouville equation). It is as well the value function of the
minimization problem minx0,y=(x,u,w) p(t, x) such that y is a system trajectory.
We do not investigate further these connections in this manuscript.
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We summarize the above discussion in Proposition 1.1.

Proposition 1.1. Level-set overapproximation

For a given µ ∈ D∗, and a given λ : R+ 7→ R
+∗ continuous, differentiable, and

increasing over R+, let p : R+ × R
n 7→ R be a continuous and differentiable

function over R+ × R
n satisfying

∂p

∂t
+
∂p

∂x

⊤
f(t, x, w) ≥ λ̇(t)λ(t)-1p(t, x(t)) + λ(t)µ(t)y(t)⊤M(t)y(t)

for all t ∈ R+, x ∈ R
n and w ∈ R

m where f(t, x, w) = A(t)x+B(t)w+C(t)u(t),

y(t) =
[
x⊤(t) u⊤(t) w⊤(t)

]⊤
,

Then, the 0-superlevel set P(t) of x→ p(t, x), for a given t ≥ 0, defined by

P(t) = {x ∈ R
n | p(t, x) ≥ 0},

overapproximates the set of reachable states of S, i.e.

R(t;X0) ⊆ P(t), for any t ≥ 0.

Among the trajectories of the system, some might belongs to the boundary ∂P(t)
of an overapproximation P at any time t ≥ 0. Such trajectories are called touching
trajectories.

Definition 1.3. Touching trajectory

A trajectory x of the system S is a touching trajectory of P if x(t) belongs to the
surface of P(t) at every time t ∈ I, i.e. x(t) ∈ ∂P(t).

Since a touching trajectory is a trajectory of the system, it belongs as well to the
set of reachable states. Therefore, the overapproximation P locally touches the set
of reachable states.

1.3 Conic sets

The next sections apply Proposition 1.1 to time-varying conic sets.

Definition 1.4. Conic set

Let P = P⊤ ∈ R
(n+1)×(n+1) be the coefficient of the quadratic form over R

n

p :Rn 7→R

x →
[
x
1

]⊤
P

[
x
1

]
.
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15 1.3. Conic sets

We define the conic set as

P = {x ∈ R
n | p(x) ≥ 0}.

Let P be the set of conic sets of R
n and let Conic : S(n+1)×(n+1) 7→ P be the

function that associates to any quadratic coefficient P ∈ S
(n+1)×(n+1) the conic

set P = Conic(P ).

Let a block decomposition of P be

P =

[
E f
f⊤ g

]
. (1.9)

P is a conic subset of Rn centered around xc = −E -1f . E corresponds to the (signed)
curvature of P . When E is not negative definite, i.e. E 6≺ 0, P is unbounded,
otherwise P is bounded (see Figure 1.2). When E ≺ 0, P is a (bounded) ellipsoidal
subset of Rn. In this case, P 6= ∅ iff g − f⊤E -1f ≥ 0 (i.e. xc belongs to P). In such a
case, the ellipsoidal set can be equivalently described by the relation

x ∈ P ⇔ (x− xc)⊤Q-1(x− xc) ≤ 1

where Q = (g − f⊤Ef)(−E)-1.
The volume of P is then equal to

Vol(P ) =
πn/2

√
(g − f⊤Ef)det(−E)-1
Γ(n/2 + 1)

where Γ is the gamma function.
In this report, the volume is only used as a minimizing criterion within sets of

ellipsoids of fixed dimensions. Most of the time the constant in n is being neglected
and since we only want to minimize the volume, we use the pseudo volume that we
define by

Ṽol(P ) = (g − f⊤Ef)det(−E)-1. (1.10)

Let TrSq : S(n+1)×(n+1) → R be the map that associates to an ellipsoid P parametrized
by P ∈ S

(n+1)×(n+1) the squared sum of its semi-axes:

TrSq(P ) = (g − f⊤Ef)trace(−E -1). (1.11)

Remark 1.2. Representation of the conic set

Conic sets could be represented differently, i.e. their center and the curvature
arguments. However, we observed that alternative representations are less con-
venient. The time-varying conic sets are not bounded in the general case and
their center is not a continuous function of time. Associated ordinary equations
are most of the time difficult to manipulate and analyze.
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(a) Ellipse (b) Hyperboloid

Figure 1.2: When E (see the block decomposition of P in (1.9)) is negative definite
(subfigure 1.2a) and P 6= ∅, P is an ellipsoidal set, to this respect P is a bounded
and convex set. When E is not sign-definite (subfigure 1.2b), P and P 6= ∅, the P is
unbounded.

1.4 Overapproximation with time-varying conics

This section applies Proposition 1.1 to overapproximate R(t;X0) with time-varying
conic sets (defined in Section 1.3). The coefficients of the time-varying conics are ex-
pressed as the solution of a DRE (Differential Riccati Equation) that is parametrized
by the positive multipliers λ and µ introduced in Section 1.2. When generating all
the time-varying conics for all the possible parameters (λ, µ), one obtains a family
of time-dependent overapproximations of R(t;X0), we define their intersection that
is a tighter overapproximation. The next section will further analyze the DRE to
determine the domain of definitions of these overapproximations.

Let the time-dependent conic P : R+ → P associated with its value function
p : R+ × R

n 7→ R defined by

p(t, x) =

[
x
1

]⊤
P (t)

[
x
1

]

where P : R+ 7→ S
n×n the time-varying coefficient associated with the quadratic form

p.
We will use Proposition 1.1 to find sufficient conditions over Ṗ such that P over-

approximates the set of reachable states R(t;P0). Let q be the overapproximation of
the variation of p(t, x(t))− λ(t)〈y, y〉M,µt

along a system trajectory y = (x, u, w) ∈ S
as defined in Property 1.1

q(t, x, w) =
∂p

∂t
+
∂p

∂x

⊤
f(t, x, w)− λ̇(t)λ(t)-1p(t, x(t))− λ(t)µ(t)y⊤M(t)y. (1.12)
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17 1.4. Overapproximation with time-varying conics

Contrary to p(t, x(t))− λ(t)〈y, y〉M,µt
which depends on trajectories, q only depends

on states at the given time t. Moreover, q is a quadratic function of



x
1
w




q(t, x, w) =

[
x
1

]⊤
Ṗ (t)

[
x
1

]
+ 2

[
x
1

]⊤
P (t)

[
A(t)x+B(t)w + C(t)u(t)

0

]

− λ̇(t)λ(t)-1
[
x
1

]⊤
P (t)

[
x
1

]
− λ(t)µ(t)



x
u(t)
w



⊤

M(t)



x
u(t)
w


 .

(1.13)

Let us fix a pair (t, x) ∈ R+ × R
n. To prove the positivity of h : w 7→ q(t, x, w), we

prove that the minimum of h is positive. For any t ≥ 0, Mw(t) ≤ 0, therefore the
minimum of the quadratic function w 7→ q(t, x, w) exists. The minimum is reached
at w∗,

w∗(t, x) = argmin
w∈Rp

q(t, x, w)

= λ(t)-1µ(t)-1Mw(t)
-1
(
B⊤1 (t)P (t)− λ(t)µ(t)Mw,x1(t)

) [x
1

]
.

(1.14)

Let q∗(t, x) = q(t, x, w∗(t, x)), we can rewrite q∗ as

q∗(t, x) =

[
x
1

]⊤
Q(t)

[
x
1

]
(1.15)

where

Q(t) =Ṗ (t) + P (t)A1(t) + A⊤1 (t)P (t)− λ̇(t)λ(t)-1 P (t)− λ(t)µ(t)Mx1(t)

+ λ(t)-1 µ(t)-1
(
B⊤1 (t)P (t)− λ(t)µ(t)Mw,x1(t)

)⊤
M -1

w (t)
(
B⊤1 (t)P (t)− λ(t)µ(t)Mw,x1(t)

)

with the following matrices

A1(t) =

[
A(t) C(t)u(t)
0 0

]
and B1(t) =

[
B(t)
0

]
(1.16)

and the projection and block decomposition of M into the basis
[
x⊤ 1 w⊤

]⊤
is

defined in (1.3).
When Q(t) = 0 for all t ≥ 0, Proposition 1.1 holds.

Definition 1.5. Time-varying conic

For a given µ ∈ D∗, λ a continuous, differentiable function strictly positive and

Set-based Cosimulation Paul Rousse



Chapter 1. Ellipsoidal Methods 18

increasing over R+, a given initial condition P0 ∈ S
(n+1)×(n+1), let P : [0, T ] 7→

S
(n+1)×(n+1) be the solution of the initial value problem (time dependences are

omitted for readability)

0 =Ṗ + PA1 + A⊤1 P − λ̇ λ-1 P − ν Mx1

+ ν -1
(
B⊤1 P − νMw,x1

)⊤
M -1

w

(
B⊤1 P − νMw,x1

) (1.17)

where ν(·) = λ(·)µ(·) and γ(·) = λ̇(·)λ-1(·), with initial condition

P (0) = P0.

The ordinary differential equation (1.17) is a Differential Riccati Equation (DRE).
Since all the parameters of (1.17) are measurable, the solution P to (1.17) exists
locally and is unique. The convergence properties and continuity of the solution to
the DRE (1.17) are studied in [Kučera, 1973]. Depending on the initial condition P0

and on the parameters of the system, the solution P might diverge in finite-time. In
such a case, the corresponding overapproximation P(·) is only defined over a finite
time-horizon as well. In Section 1.5, we will show that an appropriate choice of λ and
ν allows to have a solution P to DRE (1.17) defined over any time-horizon.

We can then define the time-varying conic set as

P(t) = Conic(P (t)). (1.18)

By Proposition 1.1, since along any trajectory x ∈ S, t → p(t, x) is an increasing
function of time, the following property holds

Theorem 1.1. Overapproximation with a time-varying conic

The set of reachable states R(t;P0) of S is overapproximated at any time instant
t ∈ R+ and for any conic set of initial of states P0 ∈ P

R(t;P0) ⊆ P(t)
where P is the time-varying paraboloid defined in (1.18) with the time-varying
coefficient P solution of the DRE (1.17) of Definition 1.5, A1(·) and B1(·) are
defined in (1.16).

The ODE (1.17) depends on the multipliers λ ∈ C 1(R+;R
∗
+) and µ ∈ D∗. For

each multiplier, Theorem 1.1 ensures that the corresponding P(t;λ, µ) is a valid
overapproximation of the reachable set R(t;P0). We define the time-varying set Π
that associates to any time-instant t > 0 a subset Π(t) ⊆ R

n

Π(t) =
⋂

λ ∈ C
1(R+;R

∗
+)

µ ∈ D∗

Pλ,µ(t) (1.19)
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as well as the set time-varying paraboloids:

Π∗ = {Pλ,µ(t)|λ ∈ C
1(R+;R

∗
+), µ ∈ D∗}. (1.20)

The following theorem is a direct consequence of Theorem 1.1.

Theorem 1.2. Intersection of overapproximations

The set of reachable states R(t;P0) of S is overapproximated by the intersection
of time-varying paraboloids Π(t) generated by the sets of multipliers (λ, µ) ∈
C 1(R+;R

∗
+)×D∗, i.e.

R(t;P0) ⊆ Π(t),

for every t ≥ 0.

Proof. Direct consequence of Theorem 1.1 and the definition (1.19) of Π. ♦

1.5 Domain of definition of the overapproxima-

tions

In the case of reachability analysis, the existence and boundedness of the overapprox-
imation over a given time-horizon is of great interest. This part first expresses the
block decomposition of P (t). We explicit the ODEs satisfied by each block. This
formulation shows the structure of the DRE (1.17) and is then used to study the
domain of definition of the overapproximations P and therefore of their point-wise
intersection Π.

1.5.1 Coefficient expansion of the DRE

The expression of (1.17) highlights the “Riccati formulation” of the ODE satisfied
by P , it conveniently formulates the ODE in a one-line equation. In this part, we
give an alternative useful form of (1.17) that will help to characterize the domain of
definition of the overapproximations P .

Let P (·) be a solution of (1.17) for a given initial condition P0 ∈ P. The associated

value function p(t, x) =

[
x
1

]⊤
P (t)

[
x
1

]
is a quadratic function of Rn. Let E : R+ 7→

S
n×n be the time-varying quadratic coefficient of p, let f : R+ 7→ R

n be the affine
coefficient and let g : R+ 7→ R be the constant coefficient. Namely,

P (t) =

[
E(t) f(t)
f⊤(t) g(t)

]
.
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In this section, we expand (1.17) to express the ODE satisfied by E, f , and g. Ex-
pressions (1.21), (1.22), and (1.23) are more verbose than (1.17) but exhibit a more
meaningful structure.

Using (1.17), E satisfies DRE

0 =Ė(t) + E(t)A(t) + A⊤(t)E(t)− λ̇(t)λ(t)-1E(t)− λ(t)µ(t)Mx(t)

+ λ(t)-1µ(t)-1(B⊤(t)E(t) +Mx,w(t))
⊤Mw(t)

-1(B⊤(t)E(t) +Mx,w(t)).
(1.21)

E is independent of f and g, therefore the quadratic coefficient of p is independent of
the center and the offset of P0. f satisfies the linear time-varying differential equation

0 =ḟ(t) + A⊤(t)f(t)− λ̇(t)λ(t)-1f(t)− (Mx,u(t) + E(t)C(t))u(t)

+ (E(t)B(t) +Mx,w)Mw(t)
-1(B⊤(t)f(t)−M⊤

u,wu(t)).
(1.22)

When E is measurable over R+, there exists a solution to (1.22) over R+ which is
bounded over any interval [0, T ], T > 0. g satisfies the linear time-varying differential
equation

0 =ġ(t)− λ̇(t)λ(t)-1g(t) +
[
f(t)
u(t)

]⊤
G(t)

[
f(t)
u(t)

]
(1.23)

where

G(t) =

[
B(t)Mw(t)

-1B⊤(t) C(t)− B(t)Mw(t)
-1Mu,w(t)

(C(t)− B(t)M -1
wM

⊤
u,w(t))

⊤ −Mu(t) +Mu,w(t)M
-1
w (t)M

⊤
u,w(t)

]
.

Similarly than for f , when E is measurable over R+, there exists a solution f to (1.23)
over R+, this solution is bounded over any interval [0, T ], T > 0.

The domain of definition of P is therefore only dependent over the domain of
definition of (1.21). The differential equation (1.21) has been well studied in control.
In particular, it is known that solutions of (1.21) might diverge in finite-time (in-
dependently of the regularity of the coefficient). The next section shows that under
some hypothesis over D∗, we can show that Π is bounded at any time t ∈ R+.

1.5.2 Domain of definition of the time-varying ellipsoids

Since the domain of definition of P is the domain of definition of its quadratic param-
eter E solution of (1.21), we study the domain of definition of E. Let the dynamical
function of E in (1.21) be Ricc : Sn×n × R+ × R+ such that (1.21) is equivalently
formulated by

Ė = Ricc(E(t), λ(t), µ(t)).

A sufficient condition for E to exist over R+ is that Et 7→ Ricc(Et, λ(t), µ(t)) is Lips-
chitz over Sn×n for every t ≥ 0 (see the Cauchy-Lipschitz Theorem in Proposition 1 of
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[Zeidler, 1995a]). This is not the case since Ricc is a quadratic function in Et and thus
there exists no constant that can bound the slope of this operator. However, if the
solution E to (1.21) is bounded over R+, then Et 7→ Ricc(Et, λ(t), µ(t)) is Lipschitz
over the bounded set of possible solutions for every t ≥ 0.

Assumption 1.1. Well-posed disturbance set

There is a K > 0 such that for any κ ≥ K, µκ ∈ D∗ where µκ(t) = exp(−κt).
Such an assumption about D∗ will be satisfied in the cases presented in Chap-

ter 2 and Chapter 3. When Assumption 1.1 holds, for a κ ≥ K such that for the
pair (λκ, µκ) ∈ C 1(R+;R

∗
+) × D∗, with λκ(t) = exp(κt), µκ(t) = exp(−κt), it holds

λ̇κ(t)λκ(t)
-1 = κ and λκ(t)µκ(t) = 1 for any t ≥ 0.

In this section, we show that, when Assumption 1.1 holds and when E0 ≻ 0, then
there is a solution E to (1.21) that is upper-bounded E(t) � E(t) (see Proposition 1.2)
and lower-bounded E(t) � E(t) (see Proposition 1.3) at every t ≥ 0. These two
bounds are sufficient to prove that E is bounded by the matrix norm ‖ · ‖ (see
Proposition 1.4). We conclude that the solution E exists over R+ (Proposition 1.5).

To prove that E is upper-bounded, we use (1.21) and the fact that Mw ≺ 0. By
integration of (1.21) over the interval [0, t], t > 0, it holds

ψ(t, 0)⊤E(t)ψ(t, 0)− E0 =∫ t

0

ψ(t, τ)⊤
(
−Mx + (B⊤E(τ) +M⊤

xw)
⊤M -1

w (B
⊤E(τ) +M⊤

xw)
)
ψ(t, τ)dτ

(1.24)

where ψ is the transition matrix of t→ A(t)− κ
2
I. Since Mw ≺ 0,

ψ(t, 0)⊤E(t)ψ(t, 0) � E0 −
∫ t

0

ψ(t, τ)Mxψ(t, τ)dτ.

The transition matrix ψ is invertible over [0, T ], therefore the following property holds

Proposition 1.2. E’s upper-bound

For any t ≥ 0, E(t) � E(t) where

E(t) = (ψ(t, 0)-1)⊤
(
E0 −

∫ t

0

ψ(t, τ)Mxψ(t, τ)dτ

)
ψ(t, 0)-1.

To prove that E is lower-bounded, we show that for some κ ≥ K large enough,
E0 is a lower-bound to E.

For any E0 ≻ 0, since A and B are bounded at any time (see Definition 1.1), there
is a κ ≥ K large enough s.t.

−E0A(t)−A(t)⊤E0−Mx+(B(t)⊤E0+M
⊤
xw)
⊤M -1

w (B(t)⊤E0+M
⊤
xw)+κE0 � 0 (1.25)
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for every t ≥ 0 Let ∆(t) = E(t) − E0. By definition of E, ∆(0) = 0. Using 1.25, ∆
satisfies the following ordinary differential inequality

−E0A(t)−A(t)⊤E0−Mx+(B(t)⊤E0+M
⊤
xw)
⊤M -1

w (B(t)⊤E0+M
⊤
xw)+κE0 � Ė(t)−∆̇(t).

Using the definition of E and the one of ∆, it holds

∆̇(t) �−∆(t)A(t)− A(t)⊤∆(t) + (B(t)⊤E(t) +M⊤
xw)
⊤M -1

w (B(t)⊤E(t) +M⊤
xw)

− (B(t)⊤E0 +M⊤
xw)
⊤M -1

w (B(t)⊤E0 +M⊤
xw)

(1.26)
We use the following expansion in (1.26)

Y ⊤RY −X⊤RX = −Γ⊤RY − Y ⊤RΓ− Γ⊤RΓ

with Γ = X − Y , X = B⊤E0 +M⊤
xw, Y = B⊤E +M⊤

xw, and R = M -1
w . Then, (1.26)

gives

∆̇(t) � −∆(t)Ã(t)− Ã(t)⊤∆(t)−∆(t)⊤B(t)M -1
wB(t)⊤∆(t)

where Ã(t) = A(t)− (B(t)⊤E(t) +M⊤
xw)M

-1
w for every t ≥ 0. Since Mw ≺ 0, it holds

∆̇(t) + ∆(t)Ã(t) + Ã(t)⊤∆(t) � 0

By integration over [0, t], it holds

ψ̃(t, 0)⊤∆(t)ψ̃(t, 0) � 0

where ψ̃(t, 0) is the transition matrix of Ã(·) from 0 to t. Since ψ̃(t, 0) is invertible,
∆(t) � 0, i.e. E(t) � E0.

Proposition 1.3. E’s lower-bound

There exists a κ ≥ K such that the solution E to (1.21) with λ(t) = exp(κt) and
µ(t) = exp(−κt) is lower-bounded by E0, i.e. for every t ≥ 0, E(t) � E(t) where
E(t) = E0.

Properties 1.2 and 1.3 provide an upper and lower bound for the positive semidef-
inite matrix order. Proposition 1.4 shows that it is a sufficient condition for E to be
bounded by the ‖ · ‖ norm.

Proposition 1.4. Boundedness of an upper and lower bounded matrix

Let A,B,C ∈ S
n×n, if A � B � C then ‖B − B̃‖ ≤ ‖A− C‖ where B̃ = A+C

2
.
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Proof. B − B̃ = B−A
2

+ B−C
2

. The inequality satisfied by A, B, and C gives 0 �
B − A � C − A and 0 � C − B � C − A. Since for any X, Y ∈ S

n×n, 0 � X � Y
implies that ‖X‖ ≤ ‖Y ‖, we have

‖B − B̃‖ =
∥∥∥∥
B − A

2
+
B − C

2

∥∥∥∥

≤ ‖B − A‖
2

+
‖B − C‖

2

≤ ‖C − A‖
2

+
‖A− C‖

2
≤ ‖C − A‖

♦
Using Properties 1.2, 1.3, and 1.4, when condition (1.25) holds, E is bounded

over its domain of definition [0, T ]. It implies that Et 7→ Ricc(Et, λκ(t), µκ(t)) is
Lipschitz over the set E =

⋃
t∈[0,T ]

{
Et ∈ S

n×n | ‖Et− Ẽ(t)‖ ≤ ‖E(t)−E(t)‖
}
, where

Ẽ(t) = E(t)+E(t)
2

for time instants in [0, T ]. By using a contradiction argument, if E
diverges at a time instant td ∈ R+, then E is not continuous at td ∈ [0, T ]. Since Ricc
is Lipschitz over E , this contradicts the Cauchy-Lipschitz Theorem (see Proposition 1
in [Zeidler, 1995a]) and thus E is defined over R+.

Proposition 1.5. Domain of definition of the solution to the DRE

When E0 ≻ 0 and when Assumption 1.1 holds, there is a pair of multipliers
(λ, µ), λ ≥ 0 and µ ∈ D∗ s.t. E is defined over R+.

1.6 Discussion

1.6.1 Related works

Linear systems subject to disturbances bounded by quadratic constraints have been
studied in the verification of dynamical systems (as in [Chaudenson, 2013]), in guaran-
teed state estimation (as in [Bertsekas and Rhodes, 1971, Savkin and Petersen, 1995])
and in stability analysis (as in [Jönsson, 1996]). Reachability analysis of such systems
has been derived within three different approaches: a set-based approach, an optimal
control approach, and a level-set approach. Each method leads to fundamentally the
same result which is a time-varying ellipsoid overapproximating the reachable tube
and whose parameter is the solution to a Differential Riccati Equation.

In the set-based approach, the reachable set is expressed as operations (Minkowski
sum and affine transformation) over the set of initial states and the disturbance set.
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[Chernous’ko, 1999] studies the case of linear time-varying system subjects to a dis-
turbance bounded by an ∞-norm constraint (i.e. w⊤(t)R(t)w(t) ≤ 1 with R(t) � 0).
The set of trajectories is overapproximated by a time-varying ellipsoid. Its center and
radius satisfy an ordinary differential equation similar to (1.17). These differential
equations are obtained using a set-based reasoning. The reachable set is described
with set operations involving the initial set and the set of disturbance. More precisely
the reachable set is expressed as a Minkowski sum between the flow of the initial set
and the flow of the disturbance set. The first set corresponds to the image of the
initial state through the autonomous dynamic and is simply an affine transformation
of the set of initial states. The second set describes the influence of the exogenous
disturbance w. For small time-step increase, the reachable set can be soundly ap-
proximated with an ellipsoidal set whose center and radius evolve according to an
ordinary differential equation. This differential equation is parametrized by a free
positive time-varying signal.

The original ellipsoidal method was firstly derived in [Schweppe, 1973]. Since then,
this set-based approach has been extended to different geometrical shapes (such as
zonotopes [Girard, 2005]) where the set operations could be overapproximated. The
differential equation satisfied by the radius of the time-varying ellipsoid is a Differ-
ential Riccati Equation (DRE). This DRE and its associated Continuous Algebraic
Riccati Equation (CARE, the equilibrium solutions of the DRE) are crucial for the
control community and have been extensively studied in many works. The reader can
refer to [Bittanti et al., 1991] for an exhaustive survey.

Such an approach is difficult to reproduce when it comes to more complex distur-
bances as the one studied in this thesis.

The optimal control approach uses the following observation: let a real-valued
function V defined over the state space be such that V (x0) ≥ 0 for any x0 in the
initial state, for any reachable state xt ∈ R

n, there exists a system trajectory x(·)
such that x(t) = xt and V (x(0)) ≥ 0. Then, (t, xt) belongs to the reachable set iff

maxV (x(0)) for x(·) a system trajectory s.t. x(t) = xt

When the system is subject to bounded disturbances, the optimization problem is
constrained.

Such a constrained optimization problem can be studied using the Hamilton-
Jacobi-Bellman (HJB) equation. The HJB equation is a nonlinear partial differential
equation (PDE). This PDE models the propagation of the cost function along the
flow of the system. Solutions to the PDE are difficult to approximate in practice (its
solution is often not smooth).

When the cost is quadratic, the constrained optimization problem is known as the
constrained Linear Quadratic Regulator problem (LQR). [Matveev and Yakubovich,
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1997] studied it using a Lagrangian relaxation. When the Lagrangian multipliers are
independent of the state, i.e. are time-dependent functions, the relaxed optimization
problem is the well-known LQR problem that has been extensively studied in the
literature (see [Lee and Markus, 1969], Chapter 5). [Jönsson, 2002] applied this
approach to study Integral Quadratic Constraint systems (that fall into the class of
system of interest of this thesis). Lagrangian multipliers are here constant weights.

The level-based approach represents an overapproximation of the reachable tube
as the superlevel-set of a real-valued function defined over the time and space state.
The overapproximation relationship is obtained by choosing a level-set function pos-
itive over the initial set and of increasing value along each system trajectory (see
Section 1.2). Contrary to the optimal control approach, the level-set function does
not solve any optimization problem.

In [Yin et al., 2020], the authors overapproximate the reachable set of a nonlinear
system subject to IQC constraints using polynomial level sets.

[Seiler et al., 2019] shows that the solution to the DRE is overapproximated by
solutions to a Differential Riccati Inequality (DRI). This DRI can be equivalently
expressed as Differential Linear Matrix Inequality (DLMI) by using the Schur com-
plement. Then, the authors find a solution that minimizes the input-output gain.
Since the solution to the DLMI is a time-dependent matrix, the optimization prob-
lem has decision variables and constraints that belong to a signal space (of infinite
dimension). To solve this optimization problem in practice, the authors express the
signals in a finite-dimensional signal basis (with splines) and defined a time-sampled
version of the DLMI constraint. The resulting optimization problem can be solved
with semidefinite programming solvers (such as [Sturm, 1999]). The solution to the
DRE can then be chosen by successively finding an optimal multiplier value with the
DLMI and the DRE to minimize the input-output gain.

In previously cited works, two representation of the ellipsoidal sets are used:

• the centered representation where the ellipsoidal set E is characterized by their
radius (or their curvature, i.e. the inverse of the radius), i.e. E = {x ∈ R

n | (x−
c)⊤R-1(x− c) ≤ 1};

• the homogeneous coordinates representation where the ellipsoidal set is ex-
pressed as the superlevel set of a quadratic form y → y⊤Py, P ∈ S

n+1 in

homogeneous coordinates y =

[
x
1

]
, E = {x ∈ R

n |
[
x
1

]⊤
P

[
x
1

]
≥ 0 in coordi-

nates y =

[
x
1

]
.
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The center-radius representation is frequently used in a set-based approach (as in
[Chernous’ko, 1999, Kurzhanski and Varaiya, 2014]) whereas the center-curvature is
more frequent in optimal control and level set approaches (as in [Seiler et al., 2019]).
The homogeneous coordinate representation is less used in the literature (see [Savkin
and Petersen, 1995, Savkin and Petersen, 1996a]).

The ODE satisfied by the coefficient of the time-varying ellipsoid depends on the
chosen representation. When the disturbance set is centered, the center and radius
of the ellipsoid are independent from each other (i.e. the center xc satisfies an ODE
ẋc = fx(t, xc) independent of the radius, and the radius Q satisfies another ODE Q̇ =
fQ(t, Q) independent from the center xc). Such representation is therefore convenient
for centered disturbances. However, in the general case (where disturbances are not
necessarily centered), the center and radius ODEs are coupled. In our work, we found
the homogeneous coordinate representation to lead to well-defined ODEs compared
to the centered representation. Also, in this representation, the ODE satisfied by the
coefficient of time-varying ellipsoid has an elegant form which is a DRE.

1.6.2 Conservatism

In this chapter, the conservatism of the ellipsoidal method is not addressed. It is
studied in the two following chapters. Here, we give few hints about the different
sources of conservatism and their impact over the overapproximation Π.

Incomplete dual description Few sources of uncertainties due to an incomplete
dual space characterization can be identified. These incomplete dual only have a con-
sequence of more conservatism. Since we are only interested in overapproximations,
it does not compromise our analysis.

The disturbance constraint is taken into account in (1.6) by using a positive mul-
tiplier. A more general approach would choose the multiplier in the dual set of
functions. And therefore, λ would be a strictly positive function of (t, x, w). Instead,
(1.6) uses a multiplier λ chosen in a set of time-dependent functions. This approach
allows us to derive the equations in the case of conic overapproximation case but
induces some conservatism. Typically, the impact of disturbances correlated to the
state is neglected.

The characterization of D∗ is provided to the model. In practice, disturbances are
rarely described by their dual. Different disturbances will be addressed in the case
of ∞-norm constraints (Chapter 2) and 2-norm constraints (Chapter 3). In practice,
an underapproximation D̃∗ of D∗ produces an overapproximation D̃ of D̃. Therefore,
the reachable set R(t;X0) of S with the set of disturbances D is overapproximated by
the reachable set R̃(t;X0) of S̃ with the set of disturbances D̃. Overapproximation
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P̃(t) computed with Theorem 1.1 or Π̃(t) of R̃(t;X0) are valid overapproximation of
R(t;X0).

Conic overapproximation For some specific D∗, the reachable set R(t;P0) is not
a pure conic set when P0 ∈ P (see Chapter 2). Several facts motivate the choice of
conic sets to describe the set of reachable states:

• when the set of disturbances is trivial (singleton set, as at the beginning of
Section 1.2), the set of reachable states is exactly described by a time-varying
ellipsoidal set;

• any set can be described as a (possibly non-finite, uncountable) intersection of
conic sets;

• computing the minimum (and therefore proving the positivity) of a quadratic
function can be done analytically;

Contrary to many works in reachability analysis, we use the general set of conics
(instead of the subset of ellipsoidal sets). It allows to describe non-convex reachable
sets and hopefully reduce the conservatism of the global approach.

1.6.3 Conclusion

This chapter proposed to overapproximate the reachable set of a linear time-varying
system with time-varying conic sets. The overapproximation relationship is obtained
with a “Lyapunov” approach: the value function associated with the time-varying
conic is chosen to be increasing along every trajectory and positive over the set of
initial states. The coefficient (in homogeneous coordinates) of the time-varying conic
satisfies a parametrized Differential Riccati Equation (DRE). When some assumption
about the system holds, these parameters can be chosen such that the DRE has a
solution (i.e. the overapproximation exists) over the entire time-domain. Such a
result is obtained by finding a lower and an upper bound to the DRE.

The next two chapters apply Theorem 1.1 and Theorem 1.2 to two subclasses of
the system defined in (1.1). Chapter 2 studies linear systems subject to Quadratic
Constraint (QC systems), i.e. systems where the state-input-disturbance signal y(t) =
(x(t), u(t), w(t)) satisfies the quadratic constraint y⊤(t)M(t)y(t) ≥ 0 at any time
t ≥ 0. Chapter 3 studies linear systems subject to Integral Quadratic Constraint
(IQC), i.e.

∫ t

0
y⊤(s)M(s)y(s)ds ≥ 0 at each t ≥ 0.
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Future works The DRE of interest satisfies many interesting properties one of
them being that when t 7→ E(t) solves the DRE (1.21), P ′ : t 7→ k(t)P (t) solves
the same DRE (1.21) provided some conditions over k and the parameters of the
system hold, in other words, the DRE is separable. Such a result provides a lot of
information on how the reachable tube of such systems behaves depending on the
initial set of states. On another note, the DRE 1.21 is closely related to its associated
Continuous Algebraic Riccati Equation (CARE; the CARE corresponds to constant
solutions to DRE 1.21 with a free initial condition). The CARE appears in the
Kalman-Yakubovitch-Popov Lemma when studying the robust stability of uncertain
systems. In this case, the quantity λ̇λ-1 is related to the input-to-output L2 gain. A
clear understanding of this connection would help to choose an appropriate value for
λ.
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In Chapter 1, we formalized the general framework of reachability analysis by
means of the ellipsoidal method. This chapter applies this framework to a specific sub-
class of disturbances: point-wise constrained disturbances. Such a model frequently
appears for verification purposes since local linearization and overapproximation of
the system dynamic provides such an abstraction.

This chapter is organized as follows. The QC system is presented in Section 2.1,
Section 2.2 provides motivating examples and computes their reachable set. Sec-
tion 2.3 applies Theorem 1.1, Chapter 1, to the QC system. Section 2.4 identifies
touching trajectories and their associated support ellipsoid. Section 2.5 studies the
problem of finding optimal time-varying ellipsoids (e.g. that minimize the end volume
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of the overapproximation), Section 2.5.2 provides a continuation method to find this
optimal overapproximation. Section 2.6 presents several study cases. This chapter
ends with a discussion in Section 2.7 and a conclusion in Section 2.8.

2.1 Definition of the system

In this chapter, we study an LTV system subject to a disturbance that satisfies a
point-wise quadratic constraint with the state and the input.

Definition 2.1. Quadratic constraint system

Let the system S be defined by

S :





ẋ = A(t)x+B(t)w + C(t)u(t)


x(t)
u(t)
w(t)



⊤

M(t)



x(t)
u(t)
w(t)


 ≥ 0 for any t ≥ 0

(2.1)

where M is a quadratic form that is negative in the disturbance dimension and
s.t.

Mx1\w(t) =Mx1(t)−Mx1,w(t)Mw(t)
-1M⊤

x1,w(t) ≻ 0 (2.2)

for any t ≥ 0 (with the representation of M and u defined in (1.3), Mx1\w is the
Schur complement of the block decomposition of M).

The assumption (2.2) ensures that the disturbance set is not empty at any time.
It guarantees that

max
wt∈Rm



xt
u(t)
wt



⊤

M(t)



xt
u(t)
wt


 ≥ 0

for any state xt ∈ R
n at any time-instant t ≥ 0.

Remark 2.1. Link with IQC systems

In the field of robust control, such inequalities have been analyzed with the frame-
work of Integral Quadratic Constraints. Such inequality is known as static IQC,
sector inequalities.

2.2 Motivation of the QC model

To motivate the use of the quadratic constrained model of Definition 2.1, Section 2.2.1
presents some use of QC systems as an abstraction for nonlinear systems. Section 2.2.2
computes the reachable set of a 1-dimensional linear time-invariant system for differ-
ent QC constraints (i.e. for different M matrices in Definition 2.1).
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(a) Pure conic set (b) Cylinder set (c) Hyperbola set

Figure 2.1: Different QC abstractions for some nonlinearities in dynamical systems.

2.2.1 Abstraction

At a given time, admissible states and disturbances belong to a conic set D1(t) ⊂
R

n×m described by

(xt, wt) ∈ D1(t)⇔



xt
1
wt



⊤

Mx1w(t)



xt
1
wt


 ≥ 0.

For a given xt, t ≥ 0, let W (t, xt) ⊂ R
m be the set of admissible disturbances wt

at time instant t and state xt. Using the QC constraint in Definition 2.1, W (t, xt) is
equivalently described by

wt ∈ W (t, xt)⇔ (wt − rt)⊤Rt(wt − rt) ≤ 1

where Rt = −
([

xt
1

]⊤
Mx1\w(t)

[
xt
1

])-1

Mw and rt = M -1
wM

⊤
x1,w

[
xt
1

]
. Since Mw ≺ 0

and Mx1\w ≻ 0, it holds Rt ≻ 0. To this respect, W (t, xt) is an ellipsoidal set,
bounded (since Rt ≻ 0) and not empty (since Rt ≺ ∞).

The following paragraphs show how the QC systems can be used as an abstraction
to nonlinear systems.

Let the following system

ẋ = Ax+Bsat(c⊤x)

where sat is the saturation operator defined by

sat :

{
sat(y) = y when −1 ≤ y ≤ 1
sat(y) = sign(y) otherwise
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Let w = sat(y) and y = c⊤x, for any x ∈ R
n, it holds

w ≥ 0⇒ w ≤ y

w ≤ 0⇒ w ≥ y

It implies (y − w)w ≥ 0. Which corresponds to

Mp =



0 0 c

2

0 0 0
c⊤

2
0 −1


 .

The associated set of disturbance D1,p(t) is a pure conic set (represented in Fig-
ure 2.1a).

For any y ∈ R, it also holds that w ≤ 1 and w ≥ −1. Therefore, it holds 1−w2 ≥ 0
and

Mc =



0 0 0
0 1 0
0 0 −1


 .

is a valid QC constraint for the system Gsat. The associated set of disturbance D1,c(t)
is a cylinder (represented in Figure 2.1b).

Any convex combinations of the QC constraint is a valid constraint as well, and
thereforeMλ = (1−λ)Mp+λMc for any λ ∈ [0, 1] is a valid QC constraint for Gsat as
well. For any given λ ∈ [0, 1], the associated set D1,λ is a hyperbolic set (represented
in Figure 2.1c).

2.2.2 A simple example

In the case of a 1-dimensional system, the reachable set of S of Definition 2.1 can be
easily characterized. The reachable set corresponds to a time-varying interval whose
bounds are trajectories of S. These extremal trajectories x and x are generated
by disturbances that steer the state away from a center trajectory. Example 2.1
and Example 2.2 compute the reachable set for two different disturbance sets (i.e.
two different QC constraints). Example 2.1 compute the reachable set for a sector
inequality, Example 2.2 for an exogenous disturbance.

Example 2.1.

Let the following 1-dimensional LTI system parametrized by a k > 0

S1
k :





ẋ = −x+ w

x(0) ∈ [−1, 1]
w(t)2 ≤ kx(t)2, for all t ≥ 0

(2.3)
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Extremal trajectories of S1
k are respectively associated with the disturbance

w(t) = max
|xt|≤x(t)

√
kxt, when x ≥ 0

and
w(t) = min

|xt|≤x(t)

√
kxt, when x ≤ 0

Therefore, extremal trajectories x and x satisfies

ẋ = (
√
k − 1)x x(0) = 1,

ẋ = (
√
k − 1)x x(0) = −1.

Every other disturbance w ∈ [w,w] steers the state in-between these two trajec-
tories x and x. The reachable set can be exactly derived

R1
k(t) = [x, x].

We can then identify the following cases:

• when
√
k− 1 > 0, trajectories x and x are exponentially unstable, the reachable

set is unbounded when t→∞ and the system S1
k is said unstable;

• when
√
k− 1 > 0, trajectories x and x are exponentially unstable, the reachable

set is unbounded when t→∞ and the system S1
k is said stable;

• when
√
k − 1 = 0, extremal trajectories satisfies x = −1 and x = 1, the

reachable set is a constant tube R(t) = [−1, 1].

Example 2.2.

Let the following 1-dimensional LTI system, parametrized by a k > 0, be defined
by

S2
k :





ẋ = −x+ w

x(0) ∈ [−1, 1]
w(t)2 ≤ k, for all t ≥ 0

(2.4)

As in Example 2.1, extremal trajectories of S2
k corresponds to disturbances that

steer the state away of 0. I.e. the disturbance is equal to

w(t) =
√
k, when x ≥ 0

and
w(t) = −

√
k, when x ≤ 0
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(a) S10.25 (b) S11 (c) S11.44

Figure 2.2: Reachable set of dynamical system S1
k , defined in (2.4), for different

values of k. For k = 0.5, S1
0.5 is a stable system, the reachable set R(t) is a tube

converging to {0} when t → ∞. For k = 1, S1
1 the reachable set R(t) is a constant

tube equals to [−1, 1] for all t ≥ 0. For k = 1.2, S1
0.5 is an unstable system, the

reachable set R(t) is a tube diverging when t→∞.

Figure 2.3: Reachable set of dynamical system S2
0.04 defined in (2.4). The reachable

tube is not contracting when t→∞.

Therefore, extremal trajectories x and x satisfies

ẋ = −x+
√
k, x(0) = 1,

ẋ = −x−
√
k, x(0) = −1.

Every other disturbance w ∈ [w,w] steers the state in-between these two trajec-
tories x and x. The reachable set can be exactly derived

R2
k(t) = [x, x].
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2.3 Ellipsoidal method

In order to apply Theorem 1.1 of Chapter 1 for the QC system of Definition 2.1, we
first identify the dual space D∗ of the set of signals.

The set positive functions can be fully characterized as the subset of square-
integrable signals f ∈ L2(R+;R) such that the scalar product with any positive
measurable square-integrable signal µ ∈ L2(R+;R) is positive.

Proposition 2.1. Positive signal duality

Any square-integrable measurable f ∈ L2(R+;R) signal is positive over R+ iff

〈f, µ〉 ≥ 0

for any square-integrable measurable µ positive over R+.

Proof. (⇒) if f(·), µ(·) ≥ 0 over R+, then 〈f, µ〉 ≥ 0 (⇐) if there is a t ≥ 0 s.t.
f(t) ≤ 0, then since f is measurable, there is an interval I ⊂ R+ centered over t
where 〈f, 1〉I ≤ 0, therefore the property holds for µ = δI . ♦

Therefore, the system S of Definition 2.1 is strictly equivalent to the system of
Definition 1.1 where D∗ is the set of square-integrable functions, measurable and
positive over R+. Therefore, the following Theorem 1.1 holds.

Corollary 2.1. Overapproximation of the reachable set,

application of Theorem 1.1

The set of reachable states R(t;P0) of S of Definition 2.1 is overapproximated
at any time instant t ∈ R+ and for any conic set of initial of states P0 ∈ P with
the coefficient P0 ∈ S

(n+1)×(n+1)

R(t;P0) ⊆ P(t)

where P is the time-varying paraboloid defined by its time-varying coefficient P
solution of the DRE (time dependence is omitted for readability)

0 =Ṗ + PA1 + A⊤1 P − µMx1

+ µ-1
(
B⊤1 P − µMw,x1

)⊤
M -1

w

(
B⊤1 P − µMw,x1

) (2.5)

with initial condition P (0) = P0 where µ is any measurable function strictly
positive over R+, A1(·), and B1(·) are defined in (1.16).

Corollary 2.1 is a weaker form of Theorem 1.1 since the multiplier λ is taken as
the constant function λ(t) = 1, t ≥ 0. The following parts establish that this subset
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of overapproximations is satisfactory enough to overapproximate the reachable set
R(t;P0).

Next sections will manipulate the dynamic function of P in (2.5). We name it
below. For given t ≥ 0, Pt ∈ S

(n+1)×(n+1), µt > 0, let the operator Ricc : R+ ×
S
(n+1)×(n+1) × R

∗
+ 7→ S

(n+1)×(n+1) be defined by

Ricc(t, Pt, µt) =PtA1(t) + A⊤1 (t)Pt − µtMx1(t)

+ µ-1
t

(
B⊤1 (t)Pt − µtMw,x1(t)

)⊤
M -1

w (t)
(
B⊤1 (t)Pt − µtMw,x1(t)

)
.
(2.6)

Then, for a given µ(t) ∈ D∗, solutions of (2.5) satisfies Ṗ (t) + Ricc(t, P (t), µ(t)) = 0
at any t ≥ 0.

Remark 2.2. Comparison with the ellipsoidal method

In the case where Mx = 0, Mx,u = 0, Mu = diag([0, . . . , 0, 1]), Mw,u = M -1
wwc.

The system S of Definition 2.1 falls into the scope of ellipsoidal methods developed
in [Chernous’ko, 1999]. In these works, the reachable sets are overapproximated
with time-varying ellipsoids defined by their time-dependent center xc(·) and time-
dependent radius Q(·). (xc, Q) and (E, f, g) are linked by the following equations

Q = (g − f⊤Ef)-1E-1

xc = −E-1f

By deriving (xc, Q) according to time and using (2.5) (with the block decompo-
sition (1.9)), we obtain similar differential equations than the one presented in
[Chernous’ko, 1999]. Such a remark gives further insight into (2.5). The µ corre-
sponds to a weight that either drives the system toward the disturbance direction
or toward the direction of the system dynamic.

2.4 Support ellipsoids

This section defines touching trajectories and support conics. Touching trajectories
are trajectories of S staying in contact with the boundary of the reachable setR(t;P0).
Such trajectories are associated with a time-dependent conic overapproximation P
(defined in Corollary 2.1) defined such that the state x(t) of the touching trajectory
stays on the boundary of P(t) at any time t ≥ 0. Since the reachable set R(t;P0)
and its overapproximation P(t) touches at x(t), their normals coincide at x(t) and
the conic P(t) is said to be supported by the reachable set R(t;P0) (see Figure 2.4).

The optimal disturbance defined in (1.14) when λ = 1 is

w(t) = µ(t)-1Mw(t)
-1
(
B⊤1 (t)P (t)− µ(t)Mw,x1(t)

) [x
1

]
. (2.7)
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Figure 2.4: The touching trajectory x touches the boundary of the reachable set
R(t;P0) and the boundary of the overapproximation P(t) at any t ≥ 0.

Let x be the trajectory generated by the feedback w defined in (2.7). The integration
of (1.15) gives

p(t, x(t)) = 〈y, y〉M,µt
+ p(0, x(0)). (2.8)

Any point xt ∈ R
n such that p(t, xt) = 0 belongs to the boundary of the conic set

P(t). Therefore, using (2.8), sufficient conditions for x to be a touching trajectory
are

a) y⊤(t)M(t)y(t) = 0 for all t ≥ 0,

b) p(0, x(0)) = 0, i.e. x(0) belongs to the boundary of P(0).

Since w is chosen such that (2.7), the condition a) corresponds to an equation that
depends over µ(t)-1, with µ(t) > 0. The expansion of a) using (2.7) gives

y⊤(t)M(t)y(t) = z⊤t Mx1(t)zt + 2z⊤t Mx1,w(t)Mw(t)
-1
(
µ(t)-1B⊤1 (t)P (t)−Mw,x1(t)

)
zt

+z⊤t
(
µ(t)-1B⊤1 (t)P (t)−Mw,x1(t)

)
Mw(t)

-1
(
µ(t)-1B⊤1 (t)P (t)−Mw,x1(t)

)
zt

(2.9)

where zt =

[
x(t)
1

]
. If, at any time t ≥ 0, there is a strictly positive root µ∗(t) to the

quadratic equation (2.9), then a) is satisfied. We now show that such a µ∗(t) ∈ (0,∞)
exists. Let h : R 7→ R be the quadratic function defined by h(µ(t)-1) = y⊤(t)M(t)y(t).
When µ(t)-1 = 0, expression (2.9) becomes

h(0) = z⊤t (Mx1(t)−Mx1,w(t)Mw(t)
-1Mw,x1(t)) zt
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Since Mx1(t)−Mx1,w(t)Mw(t)
-1M⊤

w,x1(t) ≻ 0, it holds h(0) > 0. Since Mw ≺ 0, when
µ(t) → 0, h(µ(t)-1) → −∞. h is a continuous function, h(0) > 0 and h(∞) = −∞,
by the intermediate value theorem, there is always a strictly positive solution µ∗(t)
to the equation y⊤(t)M(t)y(t) = 0 and therefore condition a) can be satisfied.

The above discussion is summarized in the following property.

Proposition 2.2. Touching trajectories and support conic

When w, µ are chosen such that conditions a) and b) holds, then x is a touching
trajectory and P is a support conic.

Proposition 2.2 defines some touching trajectory of the reachable set. Touching
trajectories are defined as long as their associated support conic is defined.

2.5 Optimal ellipsoids

In this section, we address the problem of finding overapproximations minimizing
some given criteria. Necessary optimality conditions are derived out of the Pontrya-
gin’s Maximum Principle (PMP) in Section 2.5.1. These conditions lead to locally
optimal solutions of the initial optimization problem. Section 2.5.2 provides a numer-
ical method to compute sub-optimal overapproximations.

In this section, we are interested in solving the following optimization problem

Minimize J(P (·))
such that P (·) is a solution of (2.5)

with µ(t) > 0 over [0, T ]

(2.10)

where J : L2([0, T ]; S
(n+1)×(n+1)) → R associates to a time-dependent conic P(·) a

cost in R. The cost is composed of an integral cost and a final cost as follow

J(P (·)) = Ψ(P (T )) +

∫ T

0

L(P (t))dt

The following specializations of (2.10) will be detailed within this section:

a) the minimal pseudo-volume (value proportional to the squared volume, defined
in (1.10)) of the terminal conic

{
Ψ(PT ) = Ṽol(PT )

L(Pt) = 0
(2.11)
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Figure 2.5: Ellipsoids overapproximating a set of points: minimum volume ellipsoid
(in red, corresponds to the objective a)), minimum sum of square semi-axis (in green,
corresponds to the objective c)).

b) the minimal pseudo-volume of the tube t→ P(t)
{
Ψ(PT ) = 0

L(Pt) = Ṽol(Pt)
(2.12)

c) the sum of squared semi-axis (defined in (1.11))

{
Ψ(PT ) = TrSq(PT )

L(Pt) = 0
(2.13)

Figure 2.5 illustrates the difference between the different objectives of cases a)
and c).

2.5.1 Application of the Pontryagin’s Minimum Principle

Necessary conditions at the optimal solution of Problem (2.10) can be derived using
the Minimum Pontryagin’s Principle for matrices as presented in [Athans, 1967].

The PMP is an approach to solve optimal control problems, i.e. to find a control
signal for system trajectory such that some cost function is minimized. To find the
necessary conditions of optimality, the Hamiltonian of the dynamical system together
with a co-state variable are introduced. The Hamiltonian is a storage function that
preserves the final cost of a trajectory. The co-state variable measures the sensitivity
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of the final cost to variation in the control signal. The co-state is the solution of
a linear time-varying system with final state conditions. Necessary conditions of
optimality imply constraints between the Hamiltonian, the co-state, and the control
signal.

In the present case, the dynamical system is the time-dependent parameter of
the conic and is described by differential equations (2.5), the control input is the µ
parameter. Contrary to the classical application of the PMP for dynamical systems
where the state is represented with vectored variables, P is a symmetric matrix real-
valued variable. The co-state can be expressed as a solution to a matrix ordinary
differential equation. The scalar product corresponds to the inner product of the
space, i.e. trace(A⊤B) where A,B ∈ S

n×n. Note that the matrix representation is
equivalent to a vectored representation of each variable. However, the formulation is
more convenient in the matrix form.

In what follows, we define the Hamiltonian H, the co-state Q, the optimal control
µ∗. This section ends with the necessary conditions satisfied by an optimal solution P ∗

to (2.10). Those necessary conditions are formulated as a Boundary Value Problem
(BVP) in Theorem 2.1. The next subsection provides numerical methods to compute
sub-optimal solutions to (2.10) using the BVP.

Let the Hamiltonian be defined by

H(P (t), Q(t), µ(t), t) = trace(Q(t)Ricc(t, P (t), µ(t))) + L(P (t)) (2.14)

where Ricc is defined in (2.6). Let Q be the co-state solution of

Q̇− AQ(t)Q−QA⊤Q(t)− UP (t) = 0 (2.15)

where

AQ(t) = A1(t) + µ(t)-1
(
B⊤1 (t)P (t)− µ(t)Mw,x1(t)

)⊤
M -1

w (t)B
⊤
1 (t)

and
UP (t) = LP (P (t))

with final conditions
Q(T ) = ΨP (P (T )).

Functions LP and ΨP can be easily computed in cases a), b) and c) (ṼolP and TP
are respectively defined in (2.22) and (2.23), their differential are defined in Ap-
pendix 2.A):

a)

{
LP (Pt) = 0

ΨP (PT ) = ṼolP (PT )
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b)

{
LP (Pt) = ṼolP (Pt)

ΨP (PT ) = 0

c)

{
LP (Pt) = 0

ΨP (PT ) = TrSqP (PT )

The optimal control µ∗ is a solution of the following minimization problem

µ∗(t) = argmin
µ(t)>0

H(P (t), Q(t), µ(t), t) (2.16)

Let the function ht : µt → H(P (t), Q(t), µt, t), it holds

ht =h
0
t − µttrace

(
Q(t)Mx1\w(t)

)
+ µ-1

t trace (Q(t)P (t)B1(t)M
-1
w (t)B1(t)P (t))

where h0t is a term independent of µt. Deriving ht gives the following minimizer µ∗(t)
for (2.16)

µ∗(t) =

[
−trace

(
Q(t)P (t)B1(t)M

-1
w (t)B

⊤
1 (t)P (t)

)

trace
(
Q(t)Mx1\w(t)

)
]1/2

(2.17)

Since, Mw(t) ≺ 0 and Mx1\w(t) ≻ 0, when Q(t) ≻ 0, µ∗(t) is correctly defined (i.e,
the square root exists) and the minimization problem (2.16) does have a solution.

Theorem 2.1. Necessary conditions for optimality

Let P ∗ be an optimal trajectory associated with the optimal control µ∗ as defined
in (2.17) of (2.10).

Necessary conditions for P ∗ are expressed as the existence of a solution to a
boundary value problem. The co-state is a symmetric matrix function.

2.5.2 A continuation method to solve the PMP

The BVP defined in Theorem 2.1 is not easy to solve. Solutions of (2.5) might have
a finite escape time. Even when the solution E(·) is correctly defined for a given µ(·),
there are no guarantees about the sign of E(·). Considering the different optimality
criterion presented in Section 2.5.1, when E(·) is not invertible along the trajectory,
the integration of the co-state variable is compromised.

In this part, we investigate the use of a continuation method to solve the BVP in
Theorem 2.1.

The BVP can be equivalently defined as the following root-finding problem parametrized
by the final time of integration T > 0

F (Q0, T ) = Q(T )−ΨP (P (T )). (2.18)
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Figure 2.6: In the continuation method, we follow the curve Q over [0, Tf ] by using
a prediction-correction algorithm.

where P is a solution of (2.5) for a given initial state Q0, Q is a solution of (2.15)
with the initial state Q(0) = Q0.

The continuation method proposes to find the solution Q0,Tf
of (2.18) where T =

Tf , Tf > 0 given, by following the curve of solutions

Q : [0, Tf ] 7→ S
(n+1)×(n+1)

T → Q0,T
(2.19)

from a trivial point (that will be at T = 0 in our case) to the point of interest T = Tf .
When the curve Q is regular enough, a prediction correction algorithm can be used
to follow the curve over [0, Tf ] (see Figure 2.6).

When T = 0, the root Q0 of the equation F (Q0, 0) = 0 is indeed trivial (using
(2.18)).

Proposition 2.3. Initial point the co-state

The solution of (2.18) for T = 0 is Q(0) = ΨP (P0).

The regularity of the curve Q is difficult to assess globally since the curve is an
implicit function; it would require to study the regularity of the inverse function of
Q0 → F (Q0, T ) for T ∈ [0, Tf ]. However, for a given point (T,Q0,T ) on the curve Q,
if F is linearizable at (T,Q(T )) and if Q0 → F̃ (Q0, T ) can be inverted, then the curve
Q exists in the neighborhood of T . This is stated in the implicit function theorem as
described in [Zeidler, 1995b, Chapter 4.8].

The linearization F̃ of F can be derived using variational calculus (see Fréchet
derivatives [Zeidler, 1995b, Chapter 2.1]). Let R : [0, T ] → S

(n+1)×(n+1) and S :
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[0, T ] → S
(n+1)×(n+1) (resp.) be variations of P and Q (resp.) for a given variation

S0 ∈ S
(n+1)×(n+1) to the initial co-state Q0. R and S are solutions of an LTV system,

details of how (R, S) are derived are given in Annexe 2.B. The linearization F̃ along
(S0, dt) is

F̃ = ∆FQ0
· S0 +∆FT dt

where
∆FQ0

· S0 = R(T )−∆ΨP (P (T )) · S(T )
∆FT = Q̇(T )−∆ΨP (P (T )) · Ṗ (T )

where the Fréchet derivatives ∆ΨP (P ) · S are defined in Appendix 2.A.

Proposition 2.4. Tangent of the co-state

When ∆FQ0
is invertible, the tangent S0 of Q satisfies

0 = ∆FQ0
· S0 +∆FT . (2.20)

The BVP is solved for an increasing sequence of time-horizons {Tk} until the
time-horizon Tf is reached. For each time -horizon Tk, we compute the solution of
the BVP problem, i.e. the initial state of the co-state Q0,Tk

. We use the continuity
of the curve (guaranteed by using the inverse function theorem) to predict the next
Q0,Tk+1

.

Remark 2.3. Corrector step

The corrector step numerically solving (2.18) uses a BVP solver such as bvp5c
[Kierzenka and Shampine, 2008].

Remark 2.4. Complexity of the BVP algorithm

P , Q, R and S are symmetric matrices. Therefore, the differential equations
have a 2n(n+ 1) dimensional state.

2.6 Example

We study a linear time-invariant system of two dimensions defined by (2.1) with the
following parameters

A =

[
−2 1
−3 −3

]

B =
[
1 1

]⊤

C =
[
1 1

]⊤

u = 0

M = diag
( [

1 2 0 −1
] )

(2.21)
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Figure 2.7: Reachable set of the system of Definition 2.1 with parameters defined
in (2.21). The gray area corresponds to the minimum volume ellipsoid. Since the
Pontryagin’s Maximum Principle only gives necessary conditions for optimality, and
since the ellipsoidal method only provides overapproximations, the Evol is not the actual
minimum volume ellipsoid overapproximating the reachable tube R(T ; E0). The dotted
line represents an overapproximating hyperbola touching the reachable set.

The reachable set at T = 1 and the minimal volume overapproximating ellipsoid are
drawn in Figure 2.7. The minimal volume overapproximating ellipsoid is drawn at
different times in Figure 2.8.

2.7 Discussion

The QC constraint is a ∞-norm constraint over the state-input-disturbance signal.
Such QC system (or subfamilies of QC systems) has been studied many times in
the literature. First studies goes back to the 60’s with the unknown-but-bounded
disturbance model (in [Schweppe, 1973], Section 7.5), in this model the disturbance
belongs to an ellipsoidal set at any time, i.e. (w(t) − wc(t))

⊤R(t)(w(t) − wc(t)) ≤
1. In other works, the inequality αv2 ≤ vw ≤ βv2 which is equivalent to the QC
constraint

∥∥w − α+β
2

∥∥ ≤ β−α
2
‖v‖, is referred as the sector inequality (as in [Megretski

and Rantzer, 1997]). [Boyd et al., 1994] (in Section 4.2.3) studies the stability of the
norm-bound linear time-invariant system, a system subject to disturbance w = ∆x
where ‖∆(t)‖ ≤ 1. Such constraint is equivalent to the QC constraint ‖w(t)‖ ≤
‖x(t)‖.

Any QC constraint y(·)⊤M(·)y(·) ≥ 0 is equivalent to the set of IQC constraints

∀µ(·) ≥ 0,
∫ T

0
y(t)⊤M(t)y(t)µdt ≥ 0 for any T ∈ R+ ∪ {+∞}. For this reason,
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(a) t = 0 (b) t = 0.2

(c) t = 0.4 (d) t = 0.6

(e) t = 0.8 (f) t = 1

Figure 2.8: Reachable set R (in red) of the dynamical system S, defined in Sec-
tion 2.6, at different time instant t. Vopt is the level-set associated with the minimal
volume overapproximating ellipsoids and x∗ is its associated touching trajectory.
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the study of QC system is closely related to the study of IQC systems. Moreover,
the integration of the QC constraint is a necessary step that happens during the
Lagrangian relaxation of the LQR problem. [Bertsekas and Rhodes, 1971] identified
this link in the case of guaranteed state estimation where the system is subject to
hard bound constraint or to energy constraint. In the robust control community, a
lot of effort in the study of QC constraints has been dedicated to the search of a class
of multiplier µ that can be expressed as state-space model of finite dimension (see
[Veenman et al., 2016] Section 6).

The most common way to handle QC constraints is the use of constant multipliers,
i.e. µ(·) = µ0 > 0 as in [Jönsson, 1996]. Such an approach is commonly referred in
the literature as the S-procedure (see [Boyd et al., 1994], Section 2.6.3).

More recently, [Fetzer et al., 2018, Veenman et al., 2016] used so-called dynamic
multipliers that allowed to reduce the conservatism of robust stability analysis and
reachability analysis of IQC systems. The inequality w(t)2 ≤ v(t)2 is equivalently
replaced by 〈w,Hw〉 ≤ 〈v,Hv〉 where H is a positive operator over the set of signal
(i.e. a positive transfer function).

For QC systems, multipliers belong to the set of positive functions over the time
interval. Each multiplier is associated with a valid overapproximation of the reach-
able set. Since the set of multipliers is infinite, it is interesting to find one “good”
overapproximation.

In [Chernous’ko, 1999], the author tries to search for minimal volume overap-
proximation (for the case of exogenous disturbances, i.e. w⊤(t)R(t)w(t) ≤ 1 with
R(t) � 0). This optimization problem is an optimal control problem for which neces-
sary conditions can be derived using the Pontryagin’s Maximum Principle (PMP, as
in Section 2.5). In our work, we consider a wider family of systems, namely the LTV
systems with a disturbance that satisfies a quadratic constraint at any time. The
ellipsoidal method is then a sub-case of our approach.

In the context of discrete-time IQC models, [Fry et al., 2017] chooses the overap-
proximation that maximizes the input-to-output robust L2 gain (where the L2 norm
of the signal is computed over a finite time interval). A similar approach method
is applied in [Seiler et al., 2019] for the case of continuous-time system with IQC
systems. In both of these works, since the Riccati equation (DRE in the continuous-
time case, difference Riccati equation for the discrete-time case) is expressed as an
LMI constraint, SDP solvers can then be used to find a solution minimizing a given
criterion by using an SDP solver.
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2.8 Conclusion

This chapter applied the framework introduced in Chapter 1 for the specific case of
disturbances with a point-wise quadratic constraint. Since the set of time-varying
conic overapproximations is infinite, we proposed two methods to find one “tight”
overapproximation of the reachable set. In the first method, we compute a touching
time-varying conic overapproximation, this overapproximation touches the reachable
set along system trajectories (so-called touching trajectories). In the second method,
we find a time-varying paraboloid that minimizes a given criterion (e.g. its volume at
a given time). We derive necessary conditions by using the Pontryagin’s Maximum
Principle (PMP) and proposed a continuation method to solve its associated boundary
value problem.

Future Works In this chapter, we only computed overapproximations minimizing
their volume at a given time. An interesting extension of this chapter would be
to compute be the time-varying conic minimizing its volume at each time over the
interval of integration. To address this problem, it is possible to parametrize optimal
overapproximations P(t, t∗) with two time indexes t and t∗. t∗ corresponds to the
time where the time-varying conic t 7→ P(t, t∗) minimizes its volume, t corresponds
to the regular time index. In such a situation, the overapproximation t∗ 7→ P(t∗, t∗)
is a time-varying conic with a minimal volume at each time instant t∗. Another
problem of interest would be to adapt the work of [Seiler et al., 2019], where optimal
multipliers are searched by solving a Differential Linear Matrix Inequality (DLMI),
to our optimization problem in order to find the optimal positive multiplier µ.
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Appendices of Chapter 2

2.A Derivatives of the cost functions

We hereby detail the computations of the first derivative ṼolP and TrSqP (resp.)

of Ṽol, defined in (1.10), and TrSq, defined in (1.11) (resp.). Then, the Fréchet

derivatives of ṼolP and TrSqP at P ∈ S
(n+1)×(n+1) in a given direction S ∈ S

(n+1)×(n+1).

Derivative of Ṽol The derivative of Ṽol at P in the direction δP ∈ S
(n+1)×(n+1) is

ṼolP (P ) ·δP = det(−E)-1(δg−2δ⊤f Ef−f⊤δEf)−det(−E)-1(g−f⊤Ef)trace(−E -1δE).

ṼolP (P ) · δP can be expressed with the inner product

ṼolP (P ) · δP = trace

(
det(−E)-1

[
−ff⊤ + (g − f⊤Ef)E -1 −Ef

−(Ef)⊤ 1

]
δP

)

Therefore, we can express the differential ṼolP (P ) of Ṽol at P in its matrix form (we
hereby use an abuse of notation)

ṼolP (P ) = det(−E)-1
[
−ff⊤ + (g − f⊤Ef)E -1 −Ef

−(Ef)⊤ 1

]
(2.22)

We compute the Fréchet derivative ∆P ṼolP · S of ṼolP in the direction S ∈
R

(n+1)×(n+1). Let the block decomposition of S

S =

[
T u
u⊤ v

]

To compute ∆P ṼolP · S, we first the following functions

d(P ) = det(−E)-1

r(P ) = g − f⊤Ef

VP (P ) =

[
−ff⊤ + r(P )E -1 −Ef
−(Ef)⊤ 1

]

then ṼolP = d(P )VP (P ). Fréchet derivatives of d, r and VP in the direction S are

∆Pd(P ) · S = −det(−E)-1trace(E -1T )

∆P r(P ) · S = v − u⊤Ef − f⊤Tf − f⊤Eu

∆PVP (P ) · S =

[
−uf⊤ − fu⊤ +∆r(P ) · S E -1 − r(P )E -1TE -1 −Tf − Eu

−(Tf + Eu)⊤ 0

]
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Therefore,
∆P ṼolP · S = ∆Pd(P ) · S VP (P ) + d(P )∆VP (P ) · S.

Derivative of TrSq similarly than for Ṽ , we can derive the differential TrSqP of
TrSq at P (in its matrix representation)

TrSqP (P ) = trace(E -1)

[
ff⊤ Ef
(Ef)⊤ −1

]
+ (g − f⊤Ef)

[
E -2 0
0 0

]
(2.23)

Similarly, we can compute the Fréchet derivative of TrSqP at P in the direction
S.

TrSq =trace(−E -1TE -1)

[
ff⊤ Ef
(Ef)⊤ −1

]
+ trace(E -1)

[
uf⊤ + fu⊤, T f + Eu

(Tf + Eu)⊤ 0

]

−∆r(P ) · S
[
E -2 0
0 0

]
− (g − f⊤Ef)

[
−E -1TE -2 − E -2TE -1 0

0 0

]
.

2.B Variations of the state and co-state

Hereby, we explicit the computation of the variation (R, S) of the state and co-state
(P,Q) with respect to the initial state (0, S0). R and S are solutions of

{
Ṙ + A⊤Q(t)R +RAQ(t) + VR(t) + trace(STS +RTR)HR = 0

Ṡ − AQ(t)S − SA⊤Q(t) + VS(t) + trace(STS +RTR)HS = 0
(2.24)

with initial conditions {
R(0) = 0

S(0) = S0

For the following computations, all signals are time-dependent. We omit its nota-
tion to simplify the following computations. Let k = a

b
, µ =

√
k, then dµ = da

a
µ− db

b
µ,

where
a = −trace(QMx1\w)

b = trace(QPB1M
-1
wB

⊤
1 P )

da = ∆a · (R, S) = −trace(SMx1\w)
db = ∆b · (R, S) = trace(SPB1M

-1
wB

⊤
1 P +RB1M

-1
wB

⊤
1 PQ+QPB1M

-1
wB

⊤
1 R)

TS =
µMx1\w

trace(QMx1\w)
− µPB1M

-1
wB

⊤
1 P

trace(QPB1M -1
wB

⊤
1 P )

TR = −µ (B1M
-1
wB

⊤
1 PQ+QPB1M

-1
wB

⊤
1 )

trace(QPB1M -1
wB

⊤
1 P )
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Finally,

dµ = ∆b · (R, S) = trace(S TS +RTR).

HR = −Mx1\w − µ-2PB1M
-1
wB

⊤
1 P

HS = −µ-2(PB1M
-1
wB

⊤
1 Q+QB1M

-1
wB

⊤
1 P )

VS = ∆PLP ·R + µ-1RB1Mw -1B⊤1 Q+ µ-1QB1Mw -1B⊤1 R

2.C Contracting property in the centered case

We show that in the specific case of centered stable LTI system (see the definition on
the paragraph below), we can find an overapproximation that is contracting as t goes
to ∞, i.e. P(t) → {0}. The following chapter shows that this result is not available
in the case of IQC systems.

Let S a centered stable LTI QC system be a QC system as in Definition 2.1 with:

1. time-invariant A, B, C andM matrices (the linear time-invariant system part);

2. with a centered set of initial states (i.e. with f0 = 0 in the block decomposition
of P0);

3. with a centered set of disturbances (i.e. Mx1,w(·) = 0);

4. with a null input signal, i.e. u(·) = 0;

5. such that S is exponentially stable.

These assumptions are restrictive but will simplify the following proofs. When this
specific case, DRE (1.21) is

0 = Ė + EA+ A⊤E − µ(t)Mx + µ(t)-1EBM -1
wB

⊤E. (2.25)

Assumptions 1 and 5 let us express a negative definite solution Ē(·) to the DRE (2.25)
with initial condition Ē(0) = Ē0 ≺ 0 such that Ē -1 converges to 0 when t → ∞.
Assumptions 2, 3 and 4 are chosen such that any overapproximation P is centered
at any time, when they holds, f(·) = 0 and g(·) = g0. Since Ē(·) ≤ 0, P(·) is an

ellipsoidal set at any time. The radius of P is
√
Ē

-1
, and if Ē(t)-1 → 0 when t→∞,

then P → {0}. The following paragraph will demonstrate this result. First, we
express such a Ē and show that Ē(t)-1 → 0 when t → ∞. Then we show that Ē is
an upperbound for solutions of (2.25) with any initial conditions E0 ≺ 0.
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Let Ē(t) = expλtĒ0 and µ(t) = µ̄(t) = κ expλt with λ, κ > 0. Ē satisfies (2.25)
if and only if Ē0 is solution to the following Continuous Algebraic Riccati Equation

0 = λĒ0 + Ē0A+ A⊤E − κMx + κ-1Ē0BM
-1
wB

⊤Ē0. (2.26)

Since the system is exponentially stable, there is a Ē0 ≺ 0 and κ > 0 such that (2.26)
is solved for λ = 0. By continuity, there is a Ē0 ≺ 0, a κ > 0 and a λ > 0 such that
(2.26) holds.

It will appear that Ē(t) is an upperbound for any solution to (2.25). Let ∆(t) =
Ē(t)− E(t), we aim at proving that ∆(t) ≻ 0. Using (2.25) and the definition of Ē,
it holds

∆̇ = −A⊤∆−∆A− µ̄(t)-1Ē(t)BM -1
wB

⊤Ē(t) + µ̄(t)-1E(t)BM -1
wB

⊤E(t).

Using the following identity

ĒRĒ − ERE = ∆R∆+ ER∆+∆RE

where R = −µ̄(t)-1BM -1
wB

⊤, R(t) ≻ 0, we have

∆̇ + AR(t)
⊤∆+∆AR(t) = ∆(t)R(t)∆(t)

By integration, it holds

Φ⊤R(T )∆(T )ΦR(T ) = ∆(0) +

∫ T

0

Φ⊤(t)∆(t)R(t)∆(t)Φ⊤(t)dt

where ΦR is the transition matrix associated with AR. Therefore, when ∆(0) ≻ 0,
since R ≻ 0, it holds ∆ ≻ 0.

By definition, Ē -1 → 0 when t→∞. Since Ē(t) ≻ E(t), it holds

0 ≺ E(t)-1 ≺ Ē(t)-1

therefore, E(t)-1 → 0. By consequence, P(t)→ {0} when t→∞.
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subclass of systems: LTV system subjects to a disturbance that satisfies an Integral
Quadratic Constraint (IQC) on the state and input signal. IQC models are a classical
tool of robust control theory (see e.g. [Megretski, 2010, Megretski and Rantzer, 1997]).
They can model infinite-dimensional states, nonlinear dynamics, delays, rate limiters,
uncertain systems (see [Helmersson, 1999], [Rantzer and Megretski, 1998], [Peaucelle
et al., 2014] and [Ariba et al., 2018]).

In Section 3.1, we first define IQC systems. In Section 3.2, we motivate the use of
IQC systems as a modeling tool. In Section 3.3, we apply Theorem 1.1 of Chapter 1
to define overapproximations of the reachable set of an IQC system. Contrary to
overapproximations defined in Chapter 2 that are supported by the reachable set at
any time, it is not possible to satisfy such property for an IQC system. The next
sections are then dedicated to the investigation of another approach in order to find
tight overapproximations to the reachable set. In Section 3.4, we define an extended
system of the original IQC system. In Section 3.5, we show that the reachable set of
this extended system can be overapproximated with time-varying paraboloids and we
identify touching trajectories and their associated overapproximations supported by
the reachable set. In Section 3.6, we define the intersection of all the supporting time-
varying paraboloids, Theorem 3.1 states that the reachable set of the extended system
is exactly characterized by this intersection of overapproximations. A projection
of this overapproximation is the exact reachable set of the initial IQC system. In
Section 3.7, we detail the practical implementation of the overapproximation of the
reachable set of the IQC system. In Section 3.8, we present some examples. In
Section 3.9 and Section 3.10, we discuss and conclude this chapter.

3.1 Definition of the system

In this chapter, the system of interest is an LTV system subjects to a disturbance
that satisfies an Integral Quadratic Constraint (IQC) with the state and input signal.
This IQC constraint can be seen as an energetic relationship on the disturbance and
the state/input signals (see Remark 3.1). This system is a subclass of the system
described in Definition 1.1.

Definition 3.1. IQC system

Let the system S be defined by

S :





ẋ(t) = A(t)x(t) + B(t)w(t) + C(t)u(t)
∫ t

0

[
x(τ)
u(τ)
w(τ)

]⊤
M(τ)

[
x(τ)
u(τ)
w(τ)

]
dτ ≥ 0 for every t ≥ 0

(3.1)

where M is a quadratic form negative in the disturbance dimension, i.e. such
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that Mw(·) ≺ 0 with the block decomposition of M

M(t) =



Mx(t) Mx,u(t) Mx,w(t)
M⊤

x,u(t) Mu(t) Mu,w(t)
M⊤

x,w(t) M⊤
w,u(t) Mw(t)


 ∈ S

(n+m+p)×(n+m+p).

Since for two system trajectories (x1, w1, u1) and (x2, w2, u2) of S, the trajectory
(x1, w1, u1) + (x2, w2, u2) does not necessarily satisfy the IQC constraint, i.e. the
system S is not linear. However, (αx1, α w1, α u1), for α ∈ R, is a system trajectory,
and therefore the set of trajectories of S is conic.

Remark 3.1. Energetic constraint

The IQC constraint in (3.1) can be reformulated as follows

∫ t

0

(w(τ)− wc(τ))
⊤R (w(τ)− wc(τ)) dτ ≤

∫ t

0

[
x(τ)
u(τ)

]⊤
Q
[
x(τ)
u(τ)

]
dτ (3.2)

where R = −Mw ≻ 0,

Q =

[
Mx Mxu

M⊤
xu Mu

]
−
[
Mxw

Muw

]⊤
M -1

w

[
Mxw

Muw

]

and

wc =M -1
w

[
Mxw

Muw

]
.

Then, (3.2) can be reformulated in terms of norm 2 constraints

〈w − wc, R(w − wc)〉t ≤ xq0 + 〈[ xu ] , Q [ xu ]〉t

where

〈y, y〉t =
t∫

0

y(τ)⊤y(τ)dτ.

Let v =
√
R(w−wc), the term 〈v, v〉1/2t corresponds to the energy of v over [0, t].

The IQC constraint (3.1) can therefore be understood as the energetic constraint

〈v, v〉1/2t ≤ (xq0 + 〈[ xu ] , Q [ xu ]〉t)1/2 .
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(a) Unit energy exogenous input. (b) Unit H∞ norm feedback.

Figure 3.1: Two trajectories of the unit energy response system and the unit H∞
feedback loop. The second trajectory (dashed red line) is delayed, with a delay of
τ = 4, compared to the first trajectory (plain blue line). This is true for any delay τ .
Therefore, the state of such a system can be steered away from its equilibrium position
at any time in the future.

3.2 Motivation and examples of IQC systems

IQC models are widely used in robust control theory to assert the stability of dy-
namical systems. Usually, they model nonlinearities or uncertainty within the model.
They have strong connections with fundamental system theory and physical concepts
(energy and passivity, see Remark 3.1). IQC models can be used to model physical
quantities such as the error of an observation (as in [Savkin and Petersen, 1996b]).
They also arise when only the H∞ gain of a feedback loop is available (see [Megretski,
2010]).

Contrary to examples of QC systems in Section 2.2.2, we could not find a simple
expression of the reachable set. Hereby, we represent a few trajectories for two systems
of one state dimension. The first system corresponds to a linear stable LTI system
disturbed by a unit energy disturbance. The second system corresponds to the same
stable LTI system with a feedback loop of unit H∞ gain.

Unit energy exogenous input: the system described by (3.3) corresponds to a
linear stable system disturbed by a unit energy noise.





ẋ = −2x+ w
∫ t

0

w(τ)2dτ ≤ 1

x(0) = 0

(3.3)
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The reachable set of such a system is known to be bounded (see [Boyd et al.,
1994, Chapter 6.1.1]). For a trajectory (x, w) of the system (3.3), let (xτ , wτ ) be
the translated signal, i.e. (xτ (t + τ), wτ (t + τ)) = (x(t), w(t)), for any t > 0,
(xτ (t), wτ (t)) = (0, 0) elsewhere (see Figure 3.1a). Since the system is time-invariant,
the translated signal (xτ , wτ ) is as well a trajectory of (3.3). The state can be steered
away from its stable equilibrium at every time τ > 0. Therefore, we expect the
reachable set of such an IQC system to be not contractive when t→∞.

Unit H∞ gain feedback loop: the system described by (3.4) corresponds to a
linear stable system with a unit H∞ feedback loop.





ẋ = −2x+ w
∫ t

0

w(τ)2 ≤
∫ t

0

x(τ)2

x(0) = 1

(3.4)

Contrary to the system described by (3.3) any translated signal of a system trajectory
(x, w) is not necessarily a trajectory of (3.4). However, the same observation applies
to the reachable set. For any trajectory, since x(0) 6= 0, for a null w over a given
interval, the system accumulates energy along time. This energy can then be used at
any time in the future (see Figure 3.1b). As for the Unit energy case, we expect the
reachable set of such an IQC system to be not contractive when t→∞.

3.3 Overapproximation of the reachable set with

time-varying conics

Theorem 1.1 of Chapter 1 derives a time-varying conic overapproximation to the
reachable set of a system subject to a bounded disturbance. The coefficient of the
time-varying conic is the solution of a differential equation parametrized by an element
of the dual space D∗ of the disturbance set D. In this section, we apply Theorem 1.1
for the IQC system of Definition 3.1. To do so, we first identify the dual space D∗.

The dual space D∗ is characterized by

µ ∈ D∗

iff ∫ ∞

0

y(τ)⊤M(τ)y(τ)µ(τ)dτ ≥ 0
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Figure 3.2: An infinite sum of functions corresponds to the set of positive and
decreasing functions D∗.

for all y ∈ D. Hereby, a given signal y = (x, u, w) belongs to the disturbance set D
iff F (t) =

∫ t

0
f(τ)dτ is positive for every t ≥ 0, where f(τ) = y(τ)⊤M(τ)y(τ). This

condition is strictly equivalent to 〈f, µt〉 ≥ 0 for every t ≥ 0 where

µt(τ) =

{
1 if τ ≤ t

0 otherwise.

Therefore, µt ∈ D∗ for any t ≥ 0. Since the weighted sum of µt and µt′ belongs to
D∗, every function ν defined by ν(t) =

∫∞
0
κ(τ)µτ (t)dτ , where κ is a positive function

over R+, belongs to D∗ as well (see Figure 3.2). To this respect, we can choose D∗ as
the set of functions from R+ to R that are positive and decreasing over R+.

Proposition 3.1. Positive integral duality

Any square-integrable measurable signal f ∈ L2(R+;R) is of positive integral
over any interval [0, t], t > 0, iff

〈f, µ〉 ≥ 0

for any square-integrable measurable µ positive and decreasing over R+.

Proof. (⇒) if f(·), µ(·) ≥ 0 over R+, then 〈f, µ〉 ≥ 0. (⇐) if there is a t ≥ 0 s.t.
f(t) ≤ 0, then since f is measurable, there is an interval I ⊂ R+ centered over t
where 〈f, 1〉I ≤ 0, therefore the property holds for µ = δI . ♦
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Figure 3.3: Two overapproximations of the reachable set for the system of Exam-
ple 3.1. Depending on the values of λ and µ, the overapproximation is bounded over
the interval of integration (Ps in blue) or is diverges in finite-time (Pu in red).

The system S of Definition 3.1 is strictly equivalent to the system of Definition 1.1
where D∗ is the set of square-integrable functions, measurable and positive over R+.
Therefore, the following Theorem 1.1 holds.

Corollary 3.1. Application of Theorem 1.1

The set of reachable states R(t;P0) of S of Definition 3.1 is overapproximated
at any time instant t ∈ R+ and for any conic set of initial of states P0 ∈ P with
coefficient P0 ∈ S

(n+1)×(n+1), i.e.

R(t;P0) ⊆ P(t)

Example 3.1.

Let A = −1, B = 1, M =
[
1 0 0
0 1 0
0 0 −2

]
, C = 0 and u : [0,∞[ 7→ 0. Two overapproxi-

mations, as defined in Definition 1.5, are represented in Figure 3.3. The overap-
proximation Ps corresponds to the case where λ(t) = exp(0.3t) and µ(t) = 1, for
all t ≥ 0. The overapproximation Pu corresponds to the case where λ(t) = 0 and
µ(t) = 1, for all t ≥ 0. Ps is defined over R+ and Pu diverges in finite-time.

To assert the quality of overapproximations defined in Corollary 3.1, as for QC
systems in Chapter 1, we would like to identify touching trajectories and their asso-
ciated support conic. To find such trajectories, we should find a valid couple (λ, µ)
and an optimal disturbance w such that the level set function associated with the
support conic is equal to zero. According to (1.12), it implies that λ is a positive
increasing function of R+ and where µ is a positive and decreasing function over R+
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(i.e. µ ∈ D∗), such that y(t)⊤M(t)y(t) = 0. It results that µ = µ∗ where µ∗ solves
(2.9). However, since µ∗ might be increasing, µ∗ does not necessarily belong to D∗.
Therefore, we are only able to identify a subset of touching trajectories. It is not
possible to find all conics supported by the reachable set in a similar way than for
the QC system in Chapter 2. The next sections show that it is possible to define a
time-varying paraboloid overapproximating and supported by the reachable set R̃ of
an extended system S̃. We show that the intersection of these overapproximations
leads to the exact characterization of the reachable set of S.

3.4 Extended system

In the following sections, we study the system S̃ which extends S, composed of the
state signal x solution of

{
ẋ(τ) = Ax(τ) + Bw(τ) + Cu(τ) with τ ∈ [0, t]

x(0) = x0
(3.5)

with a signal xq ∈ L2([0, t];R) (corresponding to the IQC constraint) defined for
τ ∈ [0, t] by

xq(τ) = xq0 +

τ∫

0

[
x(s)
u(s)
w(s)

]⊤
M

[
x(s)
u(s)
w(s)

]
ds, (3.6)

and that satisfies the state constraint

xq(τ) ≥ 0 for all τ ∈ [0, t]. (3.7)

The constrained dynamical system S̃(Z0, t) is then defined for a given set of initial
states Z0 ⊂ R

n × R and a terminal time t > 0

z = (x, xq) ∈ S̃(Z0, t)⇔





x solves (3.5)
and xq solves (3.6)
with (x0, xq0) ∈ Z0, and
xq satisfies (3.7)

(3.8)

Let the reachable set of S̃(Z0, t) be

R̃(Z0, t) =
{
z(t)

∣∣∣ z ∈ S̃(Z0, t)
}
. (3.9)

Then, R̃(Z0, t) ⊆ Z+ where Z+ = R
n × R+.
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3.4.1 Paraboloids

We overapproximate the reachable set R̃(Z0, t) of S̃(Z0, t) with paraboloids.

Definition 3.2. Paraboloid

Given (E, f, g) ∈ S
n×n × R

n × R, we define the value function p̃ by

p̃ : R
n × R → R

x̃ = (x, xq) 7→ p(x)− xq,

and the paraboloid:

P̃ =
{
x̃ = (x, xq) ∈ R

n+1
∣∣ p̃(x̃) ≥ 0

}
.

Definition 3.3. Scaled paraboloid

For P = Parab(E, f, g) ∈ P̃ and a scaling factor λ > 0, let λP ∈ P̃ be the scaled
paraboloid defined by λP = Parab(λE, λf, λg).

Scaled paraboloids satisfy the following:

Proposition 3.2. Overapproximation relationship of a scaled paraboloid

Given P ∈ P̃ and λ ≥ 1, it holds P ∩ Z+ ⊆ λP ∩ Z+.

Proof. Let h and h′ (resp.) be the value functions of P = Parab(E, f, g) and λP
(resp.) evaluated at (x, xq) ∈ P . Since (x, xq) ∈ P , h ≤ 0, i.e. x⊤Ex − 2f⊤x + g ≤
−xq. Then, h′ = λ(x⊤Ex − 2f⊤x + g) + xq ≤ −(λ − 1)xq. Since (x, xq) ∈ Z+ and
since λ−1 ≥ 0, we have (λ−1)xq ≥ 0 i.e. h′ ≤ 0 meaning that (x, xq) ∈ λP∩Z+. ♦

Remark 3.2. On the paraboloid sets

In what follow, a paraboloid Pt = Parab(Et, ft, gt) (see Definition 3.2) is used to

overapproximate the reachable set R̃(P̃0, t) (for a given P̃0 ∈ P̃) at a given t > 0.
Pt is a paraboloid centered around the ray xq 7→ (xt, xq) with xt = E-1

t ft with a

summit at (xt, xqs) where xqs = f⊤t E
-1
t ft − gt. Since R̃(P̃0, t) ⊂ Z+, depending

on the parameters (Et, ft, gt) of Pt = Parab(Et, ft, gt), the overapproximation
Pt∩Z+ might describe an empty, unbounded, convex or not convex set. Studying
the subset Pt ∩Z∗ of Rn where Z∗ = R

n × {0} (i.e. the section of the paraboloid
in the cone R

∗
+ = R

n × {0}) gives more insight into the shapes of these overap-
proximations. When xqs > 0 and Et ≻ 0, Pt ∩ Z∗ is an ellipsoid of quadratic
coefficient (f⊤t E

-1
t ft−gt)-1Et. When Et is not sign-definite, Pt∩Z∗ is unbounded

and not convex. When Et ≺ 0 and xqs ≥ 0, Pt ∩ Z∗ = R
n.

Contrary to ellipsoidal sets used in e.g. [Savkin and Petersen, 1996b, Savkin
and Petersen, 1996a, Scherer and Veenman, 2018], overapproximations used
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in this work are not necessarily bounded and convex (e.g. when Et is sign-
undefined). Since the reachable set is not always convex (see Example 3.3 and
Section 3.8.2), it allows us to define tight overapproximations that are in contact
with the reachable set even where the surface of the reachable set is not locally
convex.

3.5 Overapproximation with time-varying paraboloids

In this section, we define time-varying paraboloids that overapproximate the reach-
able set S̃. This overapproximation relationship arises from Theorem 1.1 of Chapter 1.
These overapproximations are then used in Section 3.6 to define tighter overapproxi-
mations of the reachable set. We prove that the overapproximations P are tight since
there are touching trajectories of R̃(P̃0, t) that both belong to the surface of P(t)
and to the surface of R̃(P̃0, t) for t ∈ I. Finally, the method is presented for a simple
example.

To overapproximate the reachable set R̃, we choose λ and µ such that λ(t)µ(t) =
1, for every t ≥ 0. This constraint is compatible with the necessity for λ to be
positive and increasing and µ to be strictly positive and decreasing. Let γ = λ̇ λ-1, by
hypothesis over λ, γ can be any positive function from R+ to R+.

Definition 3.4. Time-varying paraboloid

For an initial paraboloid P̃0 ∈ P̃, let the time-varying paraboloid P be defined as

P : I → P̃

t 7→ Parab(P (t))

where the time-varying coefficient P solves

0 = Ṗ + PA1 + A⊤1 P − γ P − Mx1 +
(
B⊤1 P −Mw,x1

)⊤
M -1

w

(
B⊤1 P −Mw,x1

)
(3.10)

with the initial condition P (0) = P0, where Parab(P0) = λ0P̃0. Let T be the func-

tion that associates to the initial paraboloid P̃0 ∈ P̃ the time-varying paraboloid
P. Let TP (P) = TE(E0) and I(P) = [0, TP (P)[ be the interval of definition of
P.
Then, by integration of (1.7) along a system trajectory, for the case described in

Definition 3.4, it holds
dp̃(t, x̃) ≥ γ (p̃(t, x̃) + xq)

where x̃ = (x, xq). Since γ(·) ≥ 0, it holds that p̃(0, x̃(0)) ≥ 0 implies that for any
t ≥ 0, then p̃(t, x̃(t)) ≥ 0.
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For γ ∈ L2,loc(R+;R+), λ0 ≥ 1, let P = T (P̃0, λ0, γ) be the time-varying
paraboloid with time-varying parameters defined by (3.10) for initial conditions de-

fined by P̃0. Equation (3.28) in Appendix 3.A proves that when the quadratic coeffi-
cient E diverges in finite-time, at t∗ > 0, the interval of definition of the time-varying
paraboloids, which is [0, t∗[ can be as well prolongated to the closed interval [0, t∗].

The worst disturbance, given by (1.14), is associated with the maximal variation
of the value function.

Proposition 3.3. Variation of the value function

For γ ∈ L2,loc(R+;R+), λ0 ≥ 1, and P̃0 ∈ P̃, let P = T (P̃0, λ0, γ). For an
optimal trajectory z∗ generated by the disturbance w defined in (1.14) s.t. z∗(0) ∈
∂P̃0, for any t ≥ 0 it holds

˙̃pz∗(t) = γ(t)(p̃z∗(t)− x∗q(t)). (3.11)

Proof. Direct derivation from (3.10). ♦

For any t ∈ I(P), the solution to the ODE (3.11) is

p̃z∗(t) = (1− λ0)(x∗q(0)− p̃0z∗)e
∫ t

0
γ(r)dr −

t∫

0

γ(s)x∗q(s)e
∫ t

s
γ(r)drds (3.12)

where p̃0z∗ is the evaluation at z∗(0) of the value function of P̃0.
Equations (3.11) and (3.12) provide a convenient way to a) prove the overapprox-

imation relationship; b) identify touching trajectories; c) reject invalid trajectories.

a) p̃z(t) ≤ 0: for a valid system trajectory z, since z(0) ∈ P̃0 (i.e. p̃0z ≤ 0) and
(3.7) holds, (3.12) ensures that z(t) ∈ P(t) for any t (stated in Corollary 3.2);

b) p̃z(t) = 0: optimal trajectories z∗ as defined in Proposition 3.3 are touching

trajectories when z(0) belongs to the boundary of P̃0 and γ(t)x∗q(t) = 0, for all
t ≥ 0, and (1− λ0)x∗q(t) (stated in Proposition 3.4);

c) p̃z(t) > 0: when z violates the constraint (3.7), there is a t ≥ 0 s.t. x∗q(t) < 0,

one can choose a γ(t) > 0 such that ˙̃pz(t) ≥ 0 eventually leading to p̃z(t
′) > 0,

t′ > t, proving that z(t′) /∈ R̃(t; P̃0) (this will be used in Proposition 3.7).

Intuitively, time-varying paraboloid P is contracting for valid trajectories (i.e. when

z(0) ∈ P̃0 and (3.7) holds) and expanding for invalid trajectories (i.e. when either

z(0) ∈ P̃0 or either (3.7) is violated).
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Since
t∫
0

γ(s)x∗q(s)e
∫ t

s
γ(r)dr might not be equal to 0, trajectories generated by the

worst-case disturbance w∗ do not necessarily stay in contact with the time-varying
paraboloid and therefore are not touching trajectories (see Definition 1.3). For this
reason, we call optimal trajectories the trajectories generated by w∗ given by (1.14).
When some conditions hold (see below), an optimal trajectory might be a touching
trajectory.

Proposition 3.4. Touching optimal trajectories

Let z∗ be an optimal trajectory of P s.t. z∗(0) ∈ ∂P̃0, if (1 − λ0)x∗q(0) = 0, and
γ(t)x∗q(t) = 0 for any t ≥ 0, then z∗ is a touching trajectory of P .

Proof. Since, z∗(0) ∈ ∂P̃0, it holds p̃
0
z∗ = 0. Using (3.12), we get that p̃z∗(t) = 0 for

all t ≥ 0. ♦

Theorem 1.1 can be rewritten in the specific IQC case for the extended system S̃

Corollary 3.2. Overapproximation of the set of reachable states

For a set of initial states P̃0, a time-varying multiplier γ ∈ L2,loc(R+;R+) and

an initial multiplier λ0 ≥ 1, let P = T (P̃0, λ0, γ). The reachable set R̃(P̃0, t) of

S̃(P̃0, t), t > 0, is overapproximated by P(t), i.e.

∀t ∈ I(P), R̃(P̃0, t) ⊆ P(t) ∩ Z+.

Proof. For any trajectory z of S̃(P̃0, t), z(0) ∈ P̃0 implies that p̃z∗(0) ≤ 0, since
(3.7) holds, using (3.12), p̃z∗(t) ≤ 0, i.e. z(t) ∈ P(t). Any trajectory z satisfies
the state constraint (3.7) over R+, so z(t) ∈ Z+, for any t ∈ I(P) and therefore

R̃(P̃0, t) ⊆ Z+. ♦

Example 3.2.

Let A = −1, B = 1, M =
[
1 0 0
0 1 0
0 0 −2

]
, C = 0 and u : [0,∞[ 7→ 0. Solutions to

IVP (1.21) (that is Ė = −1
2
E2 + 2E − 1) diverge when E0 ≺ E− and converge

to E+ when E0 ≻ E− (see Figure 3.4) where E− ≺ E+ are the roots of the
equation −1

2
E2 + 2E − 1 = 0 for E ∈ R, E− = 2 −

√
2 and E+ = 2 +

√
2.

Since time-varying paraboloids of Definition 3.4 are defined over the domain of
definition of E, for a time-varying paraboloid P with the initial value (E0, f0, g0),
depending on whether E0 is in the stable region (i.e. E0 ≻ E−) or the unstable
region (i.e. E0 ≺ E−), the time-varying paraboloid might be defined over R+ or a
finite horizon only. Figure 3.5 shows the trajectory of the time-varying paraboloid
P for E0 in the stable region. Figure 3.6 shows the trajectory of the paraboloid
for E0 in the unstable region.
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Figure 3.4: Convergence analysis of the DRE for Example 3.2

Figure 3.5: Time-varying paraboloid (its boundary is the green line) overapprox-
imating the reachable set (the gray shaded area with the red boundary) at different
time instants t in {0.00, 0.91, 1.62, 10.00} for an initial maximum energetic level of
xq,0 = 0.06. The solution to (1.21) converges to a constant value when t→ +∞. The

shaded regions are the reachable set R̃(P̃0, t) (with P̃0 = (E0, f0, g0), E0 = 0.6, f = 0
and g0 = −0.06), the thin lines are the boundary of the overapproximation P(t) of
Corollary 3.2.

Figure 3.6: Time-varying paraboloid (its boundary is the green line) overapprox-
imating the reachable set (the grey shaded area with the red boundary) at different
time instants t in {0.00, 0.91, 1.62, 10.00} for an initial maximum energetic level of
xq,0 = 0.03. The solution to (1.21) has a finite escape time and diverges at t = 1.68.

The shaded regions are the reachable set R̃(P̃0, t) (with P̃0 = (E0, f0, g0), E0 = 0.3,
f = 0 and g0 = −0.03), the thin lines are the boundary of the overapproximation P(t)
of Corollary 3.2.
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Remark 3.3. Domain of definition

Previous works in reachability analysis of IQC systems (such as [Savkin and
Petersen, 1995, Savkin and Petersen, 1996b, Jönsson, 2002, Seiler et al., 2019])
derive overapproximations as in Section 3.5 but with a scaling function γ(t) = 0,
for all t ≥ 0. In such a case, the DRE (3.10) might have a finite escape time
depending on the initial set (more precisely, depending on the initial condition E0

of E) and on the system’s parameters. When the initial set belongs to the unstable
region, no time-varying paraboloid is defined over R+ (even if the reachable set
is bounded at any time).

In Example 3.2, the overapproximations are derived using a null scaling func-
tion γ(t) = 0, their domain of definition that depends on the initial condition E0

of the associated coefficient of E (see the convergence analysis in Figure 3.4).
When E0 is greater than the unstable equilibrium of DRE (1.21), E is defined
over R+, otherwise, E has a finite escape time. Such an unstable equilibrium of
DRE (1.21) exists for stable systems, but it does not exist for unstable systems:
the DRE (1.21) does not have any equilibrium at all. In this case, solutions E
diverge in finite-time for every E0 ∈ R. Example 3.3 shows that by using a non-
zero scaling function γ in the DRE (1.21), it is possible to find a γ large enough
such that the overapproximation is defined over the entire time-interval R+.

Thus, our method to overapproximate the reachable set of an IQC system
extends the scope of systems that can be studied to unstable systems.

Example 3.3.

Let the system S̃(P̃0) defined by parameters:

A = −1, B = 1, Bu = 0, M =
[
1 0 0
0 1 0
0 0 −0.9

]

and a zero input signal u, and let the set of initial states be the paraboloid P̃0 =
Parab(E0, f0, g0) with parameters:

E0 = 1, f0 = 0 and g0 = −0.015.

Let the disturbance signal w = x√
0.9

, w satisfy the IQC (3.7) since
∫ t

0
x2(τ) −

0.9w2(τ)dτ = 0 for every t ≥ 0. Trajectories associated with such w satisfy
ẋ = αx with α = 1√

0.9
−1. Since α > 0, every trajectory starting from a non zero

initial condition x(0) = x0 6= 0 diverges when t → ∞, and the system is said
unstable.

Figure 3.7 shows plots of the reachable set of this system and several over-
approximations at different time instants. Overapproximations are derived using
Definition 3.4 for different scaling functions and initial scaling factors. These
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Figure 3.7: Stabilized constraint Ps(t) versus finite escape time constraints Pns(t).
The time-varying paraboloid Pns is defined over [0, 3] whereas Ps is defined over R+.

Figure 3.8: Convergence analysis of the DRE (1.21) for the unstable system defined
in Example 3.3 for different scaling functions γ(·) = κ, with κ ∈ {0, 0.5, 1}. Stable
equilibriums are marked with circles, unstable equilibrium are marked with stars. For
κ = 0, the DRE does not have any stable equilibrium, and solutions have a finite
escape time. When κ ∈ {0.5, 1}, the DRE has a stable equilibrium, the solution E
with initial condition E0 converges to this equilibrium and it is defined over R+.

overapproximations have different domains of definitions depending on these scal-
ings. The solution to DRE (3.10) for γ(t) = 0, for all t ≥ 0, and λ0 = 0 has a
finite escape time and diverges at TP (Pns) = 1.7. The solution to DRE (3.10)
for γ(t) = 1, for all t ≥ 0, and λ0 = 0 is defined over R+.

Their domains of definitions can be studied by conducting a stability analysis
of DRE (1.21). Figure 3.9 plots the phase portrait of DRE (1.21) for differ-
ent constant scaling functions. Figure 3.8 plots the domain of convergence of
DRE (1.21) depending on the scaling function γ and the initial condition E0.
For γ = 0, solutions to the DRE escape in finite-time for every initial value E0.
When γ(t) = κ, for all t ≥ 0, with κ ≥ 0, for every E0, there is a value of κ such
that the associated solution E converges to a stable equilibrium of the DRE.
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Figure 3.9: Domain of convergence of the solutions to the DRE (1.21) for the
unstable system defined in Example 3.3 for different scaling functions γ(·) = κ, and
different initial conditions E0. The red area corresponds to solutions with finite escape
time, the yellow area corresponds to solutions converging to a stable equilibrium of the
DRE.

3.6 Exact reachable set

The previous section introduced time-varying paraboloids that overapproximate the
reachable set R̃ of S̃. In this section, for the set of time-varying paraboloid de-
fined in Definition 3.4, at each time instant, we show that the intersection of these
paraboloids is an overapproximation of the reachable set (in Section 3.6.2). Then,
we prove that when some topological assumption holds about the reachable set, our
overapproximation is equal to the reachable set (in Sections 3.6.3, 3.6.4, and 3.6.5).

3.6.1 Overapproximation with an intersection of time-varying

paraboloids

In this section, a set of time-varying paraboloids is defined. At a given time, the
intersection of the paraboloids gives better overapproximations of the reachable set.
With additional assumptions about the topology of the reachable set, the reachable
set is exactly characterized. This approach relies on the use of Corollary 3.2 and
preliminary results showing that for any state of the overapproximation, there exists
a trajectory in S̃(P̃0, t), t > 0, leading to this state.

Let Π̃∗ be defined as follows

Π̃∗ = {T (P̃0, λ0, γ) | γ ∈ L2,loc(R+;R+), γ ≥ 0, λ0 ∈ R, λ0 ≥ 1}. (3.13)
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Π̃∗ corresponds to the set of all time-varying paraboloids with initial conditions P̃0,
generated by the set of positive time-varying multipliers γ ∈ L2,loc(R+;R+), and the
set of initial multipliers λ0 ≥ 1. Let

Π̃∗(t) =
{
P ∈ Π̃∗

∣∣∣ t ∈ I(P)
}

(3.14)

be the set of all the defined time-varying paraboloids at time t ≥ 0.
For t ≥ 0, let

Π̃(t) =
⋂

P∈Π̃∗(t)

P(t) (3.15)

the intersection of all the defined time-varying paraboloids P of Π̃∗ at time t (see

Figure 3.10). Since Π̃∗(·) is defined over R+, Π̃(·) is defined over R+.

Figure 3.10: For a given t ≥ 0, consider three time-varying paraboloids Pi ∈ Π̃∗,
i = 1, 2, 3. Light color shaded areas are their corresponding parabolic sets Pi(t) at

t, i = 1, 2, 3. The grey color shaded area is their intersection. By (3.15), Π̃(t) is a
subset of P1(t) ∩ P2(t) ∩ P3(t).

Since Assumption 1.1 is satisfied in the case of IQC systems (indeed, t→ exp(−kt)
is a decreasing and positive function), therefore Proposition 1.5 holds, and the fol-
lowing holds:

Corollary 3.3. Domain of definition of the intersection of time-varying

paraboloid

When E0 ≻ 0 (i.e. the set of initial states is bounded), Π̃ is defined over R+.

Proof. By Proposition 1.5. ♦

We now prove that, when some assumptions about the topology of Π̃ hold (As-

sumption 3.1 and 3.2), we have R̃(P̃0, t) = Π̃(t) ∩ Z+, for any t ≥ 0 (Theorem 3.1,
Section 3.6.5). To achieve that:
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Figure 3.11: Past trajectory z∗ constructed to prove that any state within Π̃(t)∩Z+

belongs to R̃(P̃0, t) (in grey color shaded area with red boundary). The trajectory z∗

connects the endpoint z(t′) to trajectory z(t) which is a touching trajectory of some

time-varying paraboloid P ∈ Π̃∗ (its boundary is represented with the plain black line).

• we prove the overapproximation relationship R̃(P̃0, t) ⊆ Π̃(t) (Section 3.6.2);

• we prove that any state (x, xq) ∈ Π̃(t) is reachable from a state (x, x′q) ∈ ∂Π̃(t)
with xq ≤ x′q (Section 3.6.3);

• for a state zt ∈ ∂Π̃(t), we find a touching trajectory z∗ = (x∗, x∗q) of Π̃ such that

z∗(t) = zt. This touching trajectory (x∗, x∗q) of Π̃ satisfies the state constraint
xq(·) ≥ 0 over [0, t] (Section 3.6.4);

• finally, we conclude that any zt ∈ Π̃(t) is reachable from P̃0, thus R̃(P̃0, t) =

Π̃(t) ∩ Z+ (Section 3.6.5).

The three last bullet-points characterize a system trajectory z that associates a given
state (x, xq) ∈ Π̃(t) to an initial state that belongs to the set of initial states. We
illustrate this in Figure 3.11.

3.6.2 Overapproximation relationship

Corollary 3.2 states that each time-varying paraboloid of Definition 3.4 is an overap-
proximation of the reachable set. An intersection of many time-varying paraboloids
is as well an overapproximation of the reachable set.

Proposition 3.5. Overapproximation relationship

R̃(P̃0, t) ⊆ Π̃(t) ∩ Z+ for any t ≥ 0.
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Figure 3.12: Time-varying paraboloids (its boundary is the green line) overapproxi-
mating the reachable set (the grey shaded area with the red boundary) at different time
instants t in {0.00, 0.91, 1.62, 10.00} for different initial multipliers. Time-varying
multipliers (see Definition 3.4) are equal to the null signal, γi = 0, and initial multi-
plier λ0i ≥ 1 are respectively equal to 1.0, 1.6, 2.2, 2.7 and 3.3 for i = 0, . . . , 4. The

shaded regions are the reachable set R̃(P̃0, t) (with P̃0 = (E0, f0, g0), E0 = 0.3, f = 0
and g0 = −0.03), the thin lines are the boundary of the overapproximation P(t) of
Theorem 1.1.

Proof. This is a direct consequence of Corollary 3.2 and (3.15). ♦
Example 3.4.

Example continued from Example 3.2. In the case where the solution to (1.21)
does not converge (i.e. E0 < E−), Figure 3.12 shows several paraboloid trajecto-
ries with different initial multipliers. Time-varying multipliers are equal to the
0 function and initial multiplier λi are greater than 1, P̃0 ∩ Z+ ⊂ λiP̃0 ∩ Z+.
Therefore, each time-varying paraboloid is a valid constraint that bounds R̃(P̃0, t),

t ∈ I(Π̃∗) (Theorem 1.1). Therefore, R̃(P̃0, t) ⊆ P∗(t) = P0(t)∩P1(t)∩· · ·∩P4(t)

where Pi = T (P̃0, λi, 0), and λi are resp. equal to 1, 1.6, 2.2, 2.7 and 3.3 for
i = 0, . . . , 4. In this case, the overapproximation P∗(t) is strictly included in
P0(t).

Observations in Example 3.4 motivate the use of multiple time-varying paraboloids
to get better overapproximations of the reachable set R̃(P̃0, t), t > 0.

3.6.3 Past trajectory for states in the interior of the overap-

proximation

Proposition 3.6 shows that the state (x, αxq) is reachable from the given state (x, xq)
for any given α ∈ [0, 1].

Proposition 3.6. Reachability of states in the interior of the overapprox-

imation

For t ≥ 0, if (x, xq) ∈ R̃(P̃0, t) then (x, αxq) ∈ R̃(P̃0, t) for all α ∈ [0, 1].
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Proof. Let f : t, x 7→ Ax + Bw(t) + Cu(t). Since for any (t, x) ∈ R+ × R
n, f(., x) is

locally measurable over R+, f(t, .) is Lipschitz over R
n, (3.5) has a unique solution

x (see [Schuricht and von der Mosel, 2000], Theorem 1.1) that is time-continuous.

Therefore, for a trajectory (x, xq) ∈ S̃(P̃0, T ), T > 0, x is time-continuous.
For ǫ > 0, let w ∈ L2([0, t + ǫ];Rm), s.t. w⊤(s)Mww(s) = −(1 − α)xq(t)1ǫ when

s ∈ [t, t+ ǫ]. Then

∫ t+ǫ

t

w⊤(s)Mww(s)ds→ −(1− α)xq(t)

when ǫ→ 0. Using the Cauchy-Schwartz inequality

∣∣∣∣∣∣

t+ǫ∫

t

(−Mw)
1

2w(s)ds

∣∣∣∣∣∣
≤ √ǫ

√√√√√
t+ǫ∫

t

−wT (s)Mww(s)ds

and the time-continuity of x, the quantity

t+ǫ∫

t

[
x(s)
u(s)
0

]⊤
M

[
x(s)
u(s)
w(s)

]
ds→ 0

when ǫ → 0. By integration, xq(t + ǫ) → αxq(t) when ǫ → 0. Since x is time-
continuous, x(t + ǫ) → x(t) when ǫ → 0. Since u is bounded at any time (u ∈
L∞(R+;R

p)) and since x is continuous, w is bounded over [t, t + ǫ]. Therefore, u, x
and w are bounded over [t, t+ ǫ] xq is continuous over [t, t+ ǫ]. Then, there exists a
t′ ∈ [t, t+ ǫ] such that xq(τ) ≥ αxq(t) ≥ 0 for all τ ∈ [t, t′] and xq(t

′)→ αxq(t) when
ǫ → 0. Therefore, the constraint xq(·) ≥ 0 is satisfied over [t, t′] and the trajectory

(x, xq) is a valid trajectory of S̃(P̃0, t
′) for all t ≤ t′. ♦

3.6.4 Past trajectory for states on the boundary of the over-

approximation

In this section, touching trajectories of Π̃ are identified. We show that all these
touching trajectories satisfy the state constraint (3.7).

The value function h̃ of a time-varying paraboloid P̃ ∈ Π̃∗ can be approximated
at the first-order along a touching trajectory z∗ of another time-varying paraboloid
P ∈ Π̃∗ when their time-varying multiplier γ̃ and γ and initial multiplier λ̃0 and λ0
are close to each other. In this part, we compute this first-order approximation when
γ̃ = γ + δ and λ̃0 = λ0 + δ0 for small variations δ ∈ L2(R+;R) and δ0 ∈ R (i.e. when
‖δ‖+ |δ0| tends to 0).
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To show that the reachable set R̃(P̃0, t), t > 0, is exactly described by Π̃(t), we

use a proof by contradiction. For any optimal trajectory z∗ of P ∈ Π̃ s.t. z∗ is
violating the constraint (3.7), there is a P̃ ∈ Π̃∗ such that the endpoint z∗(t) does

not belong to P̃ (t) and therefore to Π̃(t). To do so, we will study the value function
of a time-varying paraboloid P̃ for touching trajectories of P .

Proposition 3.7. First-order expansion of the value function

For γ ∈ L2,loc(R+,R+) and λ0 ≥ 1, let the corresponding time-varying paraboloid

P = T (P̃0, λ0, γ). For any t in the open set of I(P ), it exists ǫ > 0 and H > 0

s.t. for any δ ∈ L2(R+;R), ‖δ‖ ≤ ǫ, for any δ0 ∈ R, |δ0| ≤ ǫ, P̃ = T (P̃0, λ̃0, γ̃)
where γ̃ = γ + δ and λ̃0 = λ0 + δ0 s.t. t belongs to the open set of I(P̃ ), let h̃t be
the value function of P̃ (t) and z∗ = (x∗, x∗q) an optimal trajectory of P , it holds

∣∣∣h̃t(z∗(t))− β(t)
∣∣∣ ≤ Hǫ2

where

β(t) =
δ0
λ0
x∗q(0) +

t∫

0

δ(s)ψ(s)e
∫ t

s
(γ(r)+δ(r))drds

and

ψ(s) = x∗q(s)−
t∫

s

γ(τ)x∗q(τ)e
∫ s

τ
γ(r)drdτ.

Proof. Let (E, f , g) and (Ẽ , f̃ , g̃) (resp.) be parameters of P and P̃ (resp.), and

ν = (E − Ẽ)x∗ − (f − f̃ ).

Using (3.5), (1.14), and (3.10), ν satisfies the linear time-varying differential equation

ν̇(τ) = Aν(τ)ν(τ)− δ(τ)n(τ). (3.16)

with n = Ex∗ − f and Aν(τ) = −A⊤ +MxwM
-1
wB

⊤ + Ẽ(τ)BM -1
wB

⊤ + γ(τ)I. By
Definition 3.4, initial values of P and P̃ satisfy

1

λ0
P (0) = 1

λ̃0
P̃ (0) = P̃0,

therefore ν(0) = δ0(E0x
∗(0)−f0) where (E0, f0, g0) = P̃0. Since t belongs to the open

set of I(P̃ ), Ẽ(·) is bounded over [0, t] (the discontinuity of Ẽ can only occur at the
final integration time). By time-continuity of Ẽ(·) over [0, t], there is a scalar K > 0
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that bounds
∥∥∥Ẽ(·)

∥∥∥ over [0, t]. Then, since γ is measurable, there exists a measurable

function L ∈ L2([0, t];R+) such that

‖Aν(τ)‖ ≤ L(τ) (3.17)

over τ ∈ [0, t]. We can integrate (3.17)

‖ν(t)− ν(0)‖ ≤
t∫

0

L(τ) ‖ν(τ)‖ dτ +
t∫

0

|δ(τ)| ‖n(τ)‖ dτ.

Since l 7→
∫ l

0
|δ(τ)| ‖n(τ)‖ dτ is a non-decreasing function over [0, t], by applying the

Grönwall inequality, we get

‖ν(t)‖ ≤


‖ν(0)‖+

t∫

0

|δ(τ)| ‖n(τ)‖ dτ


 e

∫ t

0
L(τ)dτ . (3.18)

Let

q(t) = ht(z
∗(t))− h̃t(z∗(t)). (3.19)

z∗ is an optimal trajectory of P s.t. z∗(t) ∈ ∂P (t), therefore, ht(z∗(t)) = 0, therefore,
using (3.11)

hτ (z
∗(τ)) =

t∫

τ

γ(s)x∗q(s)e
∫ s

τ
γ(r)drds. (3.20)

Using (3.5, 1.14, 3.10, 3.20), q satisfies

q̇(τ) =− ν⊤(τ)BM -1
wB

⊤ν(τ) + γ(τ)hτ (z
∗(τ))

− γ̃(τ)h̃τ (z∗(τ))− γ(τ)x∗q(τ) + γ̃(τ)x∗q(τ).

Using (3.19) and (3.20):

q̇(τ) =− ν⊤(τ)BM -1
wB

⊤ν(τ)

+ δ(τ)ψ(τ) + (γ(τ) + δ(τ))q(τ)
(3.21)

where

ψ(τ) = x∗q(τ)−
t∫

τ

γ(s)x∗q(s)e
∫ s

τ
γ(r)drds
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with the initial condition q(0) = h0(z
∗(0))−h̃0(z∗(0)). Since z∗ is a touching trajectory

of P , it holds h0(z∗(0)) = 0, therefore

x∗q(0) = −λ0(x∗(0)⊤E0x
∗(0)− 2f⊤0 x

∗(0) + g0).

Therefore, h̃0(z
∗(0)) satisfies

h̃0(z
∗(0)) = − δ0

λ0
x∗q(0)

and q(0) = δ0
λ
0

x∗q(0).

Since t belongs to the open set of I(P̃ ), the optimal trajectory z∗ and ν are
defined and continuous over [0, t]. Moreover, since γ and δ are measurable over [0, t],
the solution to the linear time-varying equation (3.21) exists over [0, t] and is

q(τ) = −h̃0(z∗(0)) +
τ∫

0

(
− ν(s)⊤BM -1

wB
⊤ν(s) + δ(s)ψ(s)

)
e
∫ t

s
(γ(r)+δ(r))drds.

Then, using (3.18)

∣∣∣∣∣∣
q(t)− δ0

λ0
x∗q(0)−

t∫

0

δ(s)ψ(s)e
∫ t

s
(γ(r)+δ(r))drds

∣∣∣∣∣∣
≤ Hǫ2

with
H = tRK2N(‖n(0)‖2 + ‖n‖2) (3.22)

a finite constant whereR =
∥∥BM -1

wB
⊤∥∥,K = exp

∫ t

0
L(τ)dτ andN =

∫ t

0
e
∫ t

s
(γ(r)+δ(r))drds.

This ends the proof. ♦

Proposition 3.8 gives conditions where the sign of h̃t(z
∗(t)) is only determined by

its first-order approximation defined in Proposition 3.7.

Proposition 3.8. Sign of the value function of perturbed trajectories

Let z∗ be a touching trajectory of P = T (P̃0, λ0, γ) for γ ∈ L2,loc(R+;R+),
λ0 ≥ 1 given and t ∈ I(P ) given. If there is a δ ∈ L2,loc(R+;R) and a δ0 ∈ R,

s.t. ‖δ‖ ≤ ǫ and |δ0| ≤ ǫ and t ∈ I(P̃ ) (where P̃ = T (P̃0, λ0 + δ0, γ + δ)) and

Hǫ2 ≤

∣∣∣∣∣∣
δ0
λ0
x∗q(0) +

t∫

0

[
δ(s)ψ(s)e

∫ t

s
(γ(r)+δ(r))dr

]
ds

∣∣∣∣∣∣
, (3.23)
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then the sign of

− δ0
λ0
x∗q(0)−

t∫

0

[
δ(s)ψ(s)e

∫ t

s
(γ(r)+δ(r))dr

]
ds

is equal to the sign of h̃t(z
∗(t)) where h̃t is the value function of P̃ (t) and H > 0

defined in (3.22) and

ψ(s) = x∗q(s)−
t∫

s

γ(τ)x∗q(τ)e
∫ s

τ
γ(r)drdτ.

Proof. This is a direct consequence of Proposition 3.7 and of the property: (|a− b| ≤
c) ∧ (c < |b|)⇒ sign(a) = sign(b) for a, b, c ∈ R. ♦

Provided the existence of a (δ, δ0) ∈ L2(R+;R)×R such that γ + δ ≥ 0 and λ0 +

δ0 ≥ 1, the first-order approximation of the value function of P̃ = T (P̃0, λ0+δ0, γ+δ)

gives a way to identify time-varying paraboloids P̃ that belongs to Π̃∗ such that an
invalid trajectory with an end state zt ∈ ∂P(t) (meaning with an initial state outside

of the initial set P̃0 or a trajectory violating the constraint) does not belong to P̃ (t)
and therefore, does not belong to Π̃(t).

Proposition 3.9 states that the touching trajectories of Π̃ satisfy the state con-
straint (3.7). Proposition 3.9 is proven by choosing a valid trajectory candidate. If
this trajectory violates the state constraint (3.7), then Proposition 3.8 provides a

proof that this trajectory does not belong to the overapproximation Π̃.

Proposition 3.9. Valid touching trajectory

For P ∈ Π̃, if zt ∈ ∂Π̃(t) and zt ∈ ∂P (t) for t in the open set of I(P ), then the
optimal trajectory z∗ of P such that z∗(t) = zt is a valid touching trajectory of

P and Π̃.

Proof. Let ψ : R+ 7→ R be defined for s ≥ 0 by

ψ(s) = x∗q(s)−
t∫

s

γ(τ)x∗q(τ)e
∫ s

τ
γ(r)drdτ.

Let τ ∈ [0, t] and I = [τ, t].
• Case 1, x∗q(0) < 0: with δ0 > 0, using Proposition 3.8, z∗(t) /∈ P̃ (t) where

P̃ ∈ Π̃∗ since δ0 + λ0 ≥ 1, so z∗(t) /∈ Π̃(t).
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• Case 2, ψ(·) < 0 over I: any δ(·) ≥ 0 over I and δ(·) = 0 elsewhere such that∫ t

0
δ(s)ψ(s)ds 6= 0 and for δ0 = 0, using Proposition 3.8, z∗(t) /∈ P̃ (t) where

P̃ ∈ Π̃∗ since γ + δ ≥ 0, so z∗(t) /∈ Π̃(t).
• Case 3, ψ(·) > 0 over the open of I and there is a l ∈ I, s.t.

∫
s∈[τ,l] γ(s)x

∗
q(s)ds 6=

0: since γ ≥ 0, there exists a δ ≤ 0 such that γ + δ ≥ 0 and for δ0 = 0, using
Proposition 3.8, z∗(t) /∈ Π̃(t).
• Case 4, ψ(·) = 0 over I: since x∗q is continuous over R+, and since γ is locally
square-integrable, ψ(t) = 0 ⇒ x∗q(t) = 0, therefore x∗q(·) = 0 over I. Conse-
quently hτ (z

∗(τ)) = 0 for τ ∈ I.
Cases 1 to 4 show that for z∗(t) ∈ ∂Π̃(t):
• either ∀l ∈ I,

∫ l

τ
γ(τ)x∗q(τ)dτ = 0 and ψ(·) = x∗q(s) > 0;

• nor x∗q(l) = 0 for l ∈ I.
Let a partition [0, t] =

⋃
i∈N Ii be such that over each open interval Ii, ψ(·) ⊲⊳i 0 with

⊲⊳i∈ {<,>,=}. We deduce that for every s ∈ [0, t], x∗q(s) ≥ 0 and
∫
I
γ(τ)x∗q(τ)dτ = 0.

z∗ is a valid trajectory, i.e. the constraint (3.7) is satisfied. By (3.11), z∗ is a touching

trajectory of P . Moreover, since z∗(0) ∈ P̃0, z
∗ is as well a touching trajectory of

Π̃. ♦

Since Π̃(t) is an intersection of closed sets, Π̃(t) is closed as well. In the general
case, for an infinite intersection Y∗ = ⋂i∈N Yi of closed sets Yi, i ∈ N, any boundary
point y ∈ ∂Y∗ does not necessarily belong to the boundary of any Yi, i ∈ N (e.g.⋂

ǫ∈]1,2][−ǫ, ǫ] = [−1, 1], but there is no ǫ ∈]1, 2] such that 1 ∈ ∂[−ǫ, ǫ]). The following
assumption states that for every state on the boundary of the overapproximation
Π̃(t), t > 0, there exists a time-varying paraboloid P such that this state belongs as
well to the boundary of the P (t).

Assumption 3.1. Closedness of Π̃(t).

For every zt ∈ ∂Π̃(t), there is a P ∈ Π̃∗ such that zt ∈ ∂P(t).
This assumption is not a strong one and it is satisfied for simpler cases (see [Rousse

et al., 2019, Property 11]).

In Proposition 3.9, the existence of γ̃ and λ0 is conditioned by t belonging to
the open domain I(P̃ ); to ensure this, ‖E(·)‖ is assumed to be bounded over [0, T ]
(by considering the case where t is in the open set of I(P )). In the general case,
the boundedness of ‖E(·)‖ is not granted (see the unstable case in Example 3.2
and Figure 3.6). Assumption 3.2 states that for any state on the boundary of the

overapproximation Π̃(t), t > 0, there is a neighbor state on the boundary of P̃ (t)
where P̃ is a time-varying paraboloid of Π̃∗ not diverging at t (i.e. t belongs to the
interior of TP (P )).
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Assumption 3.2. Unbounded time-varying paraboloids

For t > 0, for all ǫ > 0, for all zt ∈ ∂Π̃(t) such that zt ∈ ∂P (t), P ∈ Π̃∗ with
P (t) unbounded, there is a z̃t that belongs to the boundary of P̃ (t), z̃t ∈ ∂P̃ (t),
such that ‖zt − z̃t‖ < ǫ.

Lemma 1 shows that all state zt ∈ ∂Π̃(t) (with t ∈ I(Π̃∗) given) is the terminal

state of a touching trajectory z∗ of Π̃ with an initial state z∗(0) ∈ ∂Π̃(0).
Lemma 1. If Assumption 3.1 and Assumption 3.2 hold, every state zt ∈ ∂Π̃(t) has

a past touching trajectory z∗ of Π̃ s.t. z∗(t) = zt.

Proof. Let zt /∈ R̃(P̃0, t) such that for any ǫ > 0, there is a touching trajectory z̃ of

P̃ , P̃ finite, with z̃(t) ∈ R̃(P̃0, t) and ‖z̃(t)− zt‖ < ǫ. For xq(t) > 0, we can define
the optimal trajectory z∗ with z∗(t) = zt. For all τ ∈ [0, t], P (τ) is finite. Then,
Proposition 3.9 can be used over [0, τ ]. Therefore, if zt ∈ ∂P such that P diverges at
t, it holds

zt ∈ ∂Π̃(t)⇔ zt ∈ R̃(P̃0, t)

For states not belonging to a diverging time-varying paraboloid, the property is a
direct consequence of Assumption 3.1, Proposition 3.9. ♦

Lemma 1 shows that any point on the boundary belongs to the reachable set since,
for any given terminal state, we found a past trajectory (the touching trajectory) that
satisfies the constraint (3.7) and with an initial condition in the set of initial states.

3.6.5 Exact reachable set

We now state the main result of the chapter.

Theorem 3.1. Exact reachability

When Assumption 3.1 and Assumption 3.2 hold, the reachable set R̃(P̃0, t) of

system S̃(P̃0, t) (defined in Section 3.4) is equal to the set Π̃ defined in (3.15),
namely

Π̃(t) = R̃(P̃0, t)

for all t ≥ 0.

Proof. Corollary 3.2 states that R̃(P̃0, t) ⊆ Π̃(t). By Proposition 3.6, for zt ∈ Π̃(t), we

can construct a trajectory z such that z(t) = zt, z(t
−) = z∗t ∈ ∂Π̃(t) (Proposition 3.6).

Since z∗t ∈ ∂Π̃(t), using Lemma 1, there exists a trajectory z such that z(t−) = z∗t
and z is a touching trajectory of Π̃ on [0, t[. Since z is a touching trajectory of Π̃,

z(0) ∈ ∂Π̃(0) with Π̃(0) = P̃0 = R̃(0). By Proposition 3.8, the trajectory z is valid

(i.e. satisfies the energy constraint (3.7)) zt ∈ R̃(P̃0, t). ♦
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3.7 Implementation

In this part, we discuss the practical implementation of the reachable sets overap-
proximation using Theorem 3.1. To do so, we compute a subset Π

∗
of Π̃∗,

Π
∗ ⊆ Π̃∗. (3.24)

Π
∗
corresponds to the time-varying paraboloid set generated by a finite subset of

time-varying multiplier and initial multiplier. Then, the intersection of each time-
varying paraboloid evaluated at a given t > 0 is an overapproximation of the reach-
able set R̃(P̃0, t). Finally, the DRE numerical integration is detailed for the case of
non-negative solutions to the DRE. We propose an algorithm (Algorithm 3.1) that
computes Π

∗
. Its implementation in Matlab is available online [Rousse, 2019].

Subset of time-varying multipliers and initial multipliers In this work, the
time-horizon is partitioned into intervals of width Tc > 0 and the construction of the
over-approximation is restarted for each interval with an appropriate initial multiplier
while the time-varying multiplier is set to the zero function γ(·) = 0. A multiplier is
then described by a sequence of initial multipliers {λk}k∈N, λk ≥ 1, k ∈ N.

In the ideal case, the multipliers (time-varying and initial) would be chosen such
that the following property is satisfied

∃ǫ > 0, ∀τ ∈ [t, t+ ǫ], x∗q(τ) ≥ 0 (3.25)

where (x∗, x∗q) corresponds to the touching trajectory associated with the time-varying
multiplier γ and initial multiplier λ0 and such that (x∗(t), x∗q(t)) = (x, xq). In practice,
since there might be an infinite number of states (x, xq) satisfying ẋq ≥ 0, only a finite
number of states are checked. These states are chosen as projections of a given point
in given directions over Z∗ ∩ ∂Π where Z∗ = R

n × {0}. These points are then used
to evaluate a range of initial multipliers λ0 to enforce ẋ∗q(kTc) ≥ 0. γ is not used.

Paraboloid numerical integration Consider two paraboloids P = T (P̃0, 1, γ),

P̃ = T (P̃0, 1, γ̃). If γ(.) = γ̃(.) over an interval [0, ti], ti > 0, then P (.) = P̃ (.) over
[0, ti]. Let ti ≥ 0 correspond to the maximal time instant where there is P̃ ∈ Π̃∗ such
that P̃ |[0,ti] = P|[0,ti] (i.e. such that the restriction of P̃ on [0, ti] is equal to the one of
P on the same interval). And let tf ≥ 0 correspond either to the integration horizon
T > 0, or to the maximal of the interval of definition of P . For implementation
purposes, each time-varying paraboloid is defined over the interval [ti, tf ] ⊆ [0, T ].

The solution to P = T (P̃0, 1, γ) is then described by parameters (E, f, r) with

(E(t), f(t), g(t)) = (Ek(t), fk(t), gk(t))

for each t ∈ [kTc, (k + 1)Tc], k ∈ N.
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Cardinal limitation of Π
∗

In order to have a tractable integration of the reachable
set computation, we limit the cardinality of Π

∗
in the following way

• at each time step kTc, we consider only the Nnew scaled paraboloids of the
largest initial multiplier;

• Π
∗
below NP , oldest time-varying paraboloids are dismissed in benefit of more

recent ones;

Nnew and NP are user-defined parameters. Choosing the paraboloids with this heuris-
tic showed good results in practice. These rules try to consider only elements of Π̃∗

that are more stable. Since for two solutions E and Ẽ of (1.21) respectively defined
over [0, T ] and [0, T̃ ] where T , T̃ ∈ R ∪ {∞}, if E(0) � Ẽ(0), then E(t) � Ẽ(t) for t
in the interval of definition of E and Ẽ , we have T ≥ T̃ (this property follows directly
by writing the corresponding value function of the basic LQR optimization problem).
Therefore, for a time-varying paraboloid that is positive definite at t > 0, its scaled
time-varying paraboloid at t will be defined for a longer time horizon.

DRE numerical integration DRE integration is subject to numerical instability.
Numerical integration of the DRE (1.21) does not produce good results in practice
(see [Kenney and Leipnik, 1985]). Experiments presented in this works make use of
the Chandrasekhar method [Lainiotis, 1976]. This method integrates the Ordinary
Differential Equation (ODE) (1.21) E using an intermediate ODE over the time-
dependent matrix L in L2(R+,R

n×n) as follow

Ė(t) = L(t)L(t)⊤

L̇(t) = (E(t)BM -1
wB

⊤ − A⊤ −MxwM
-1
wB

⊤)L(t)

with
E(0) = E0

L(0)L(0)⊤ = Ė0

where Ė0 = Ė(0) given by (1.21). Then E is a solution to (1.21).
Since L(t)L(t)⊤ � 0, this method is only applicable to strictly increasing solu-

tions of the DRE. As seen in Example 3.2, the solutions to ODE (1.21) are not
strictly increasing over the time horizon, even for a positive definite initial condition.
Therefore, the Chandrasekhar method cannot be used directly. We instead use the
following approach, let L,K ∈ L2(R+;R

n×n) be such as:

Ė(t) = L(t)L(t)⊤ −K(t)K(t)⊤

L̇(t) = (E(t)BM -1
wB

⊤ − A⊤ −MxwM
-1
wB

⊤)L(t)

K̇(t) = (E(t)BM -1
wB

⊤ − A⊤ −MxwM
-1
wB

⊤)K(t)
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with
L(0)L(0)⊤ = Ė+

0

K(0)K(0)⊤ = −Ė−0
where Ė0 = Ė(0) = Ė+

0 +Ė
−
0 given by (1.21), with Ė+

0 � 0 and Ė−0 � 0 The increasing
and decreasing parts of E are respectively represented by the terms L and K. Our
Chandrasekhar inspired method performs better since the square root term L and K
are much smaller than E, and they produce less numerical errors.

For f and g, integration of the ODE as given in (1.22) and (1.23) is used.
Algorithm 3.1 summarizes the computation of Π

∗
. An implementation on Matlab

is available online [Rousse, 2019].

Algorithm 3.1: Computation of Π
∗
defined by (3.24), in Section 3.7, as

the subset of Π̃∗ defined by (3.14), in Section 3.6.

Inputs :

-A paraboloid P̃0 ∈ P̃ of initial of states
-A time-horizon of simulation T > 0
-Sample time Tc > 0 of constraint addition

-The maximum NP cardinal of Π
∗

Output :

-A set of overapproximating time-varying paraboloids
Π
∗

Algorithm:

1 Π
∗
= {T (P̃0, 1, 0)}

2 t = 0

3 Sim Parab = {(P̃0, 0)}
4 while t < T do

/* Find the new time-varying paraboloids to consider and add

them to Sim Parab (see Algorithm 3.2) */

5 Sim Parab = Update Sim Parab(Sim Parab,Π)

/* Simulate the paraboloid for Tc */

6 for (Pτ , τ) ∈ Sim Parab do

7 Simulate P(·) over [t, t+ Tc] with P(τ) = Pτ

8 Add P(·) to Π
∗

9 if P(·) diverges then

10 Remove (P , t) from Sim Parab

11 t = t+ Tc
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Algorithm 3.2: Computation of the new paraboloids New Parab and update
the set of paraboloids Sim Parab.

Parameters:

-Searching directions Search Dir ⊂ R
n to add constraints

-The maximum Nnew paraboloids to add at each step
Inputs :

-The current overapproximation Π
∗
t

-The updated set of paraboloids Sim Parab
Output :

-The updated set of paraboloids to simulateSim Parab

Algorithm :

1 New Parab = {}
2 for n ∈ Search Dir do

3 project xc on ∂Πt in the direction n

4 let x∗ be this projection and P∗ ∈ Π
∗
its corresponding touching

paraboloid

5 compute λ given (x∗,P∗)
6 for λ = 1 + dλ, 1 + 2dλ, . . . , λ do

7 add (P∗, λ) to New Parab

8 Sort New Parab according to the values of λ
9 Keep Nnew elements of New Parab with the largest value of λ

10 for (P∗, λ) ∈ New Parab do

11 add (λP∗(t), t) to Sim Parab

3.8 Examples

Algorithm 3.1 deduced from Corollary 3.2 and Theorem 3.1 is used to compute the
overapproximation Π̃ defined in (3.24) (subset of Π̃∗ defined in (3.14)) of the reachable

set R̃(P̃0, t) of the system S̃(P̃0, t) (described in Section 3.4), t ≥ 0. Several examples
are treated. With these examples, we provide some performance evaluations of our
approach.

3.8.1 Examples from COMPleib

To evaluate the performance of our approach, we compute an overapproximation of
the reachable set for several real-life systems from the COMPleib library [Leibfritz,
2006]. For each system, a stabilizing controller is generated for the generalized plant
(by using the h2syn function of Matlab), then the system is reduced using a balanced
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truncation method to a given state space size (by using the balred function of Mat-
lab). The set of initial states is chosen such that the quadratic term belongs to the
set of stable solutions to the associated Continuous Algebraic Riccati Equation. The
simulation are ran for an input u(t) = [ 1 ... 1 ]⊤ exp(−t) for t ∈ [0, 2]. Each ODE is
numerically integrated using the ode113 solver in Matlab. Finally, we run the simu-
lation with one time-varying paraboloid and then multiple time-varying paraboloids.
CPU time performances for a computer with an Intel i5 2.5GHz are presented in
Table 3.1 and Table 3.2.

In Figure 3.13, we show several runs for the examples. Each paraboloid is over-
approximated with a box, we show the intersection of these intervals.

Performance is mainly dependent on the number of paraboloids that we consider,
and our ability to efficiently solve the DRE.

System
size

Helicopter
(HE7)

Aircraft
(AC10)

Coupled
Spring
(CSE1)

5 4.32 4.64 3.65
10 5.12 5.96 3.86
19 7.42 10.62 7.92
30 n.a. 28.85 n.a.
40 n.a. 50.66 n.a.
49 n.a. 88.00 n.a.

Table 3.1: Computation times (in seconds) of the overapproximation for different
systems sizes, using a unique time-varying paraboloid. (When the size of the original
system is smaller than the required reduced system size, then the model reduction is
not applicable -n.a.-.)

3.8.2 System verification

We study the stable IQC system S̃(P̃0, t), defined in (3.8), at a given time t in [0, 1],

for a parabolic set of initial states P̃0 = Parab(E0, f0, g0), with E0 =
[
a+b a
a a+b

]
, f0 =

[ 00 ] , g0 = −0.015, a = 10−2 and b = 10−6, and for the following parameters

A = −I, B = I, C = 0, M =
[
I 0 0
0 1 0
0 0 −2I

]

where I = [ 1 0
0 1 ], and with a zero input signal u.

The reachable set R̃(P̃0, t) of S̃(P̃0, t), defined in (3.9), is computed using (3.13)
and Theorem 3.1, for t ∈ [0, 1]. Figures 3.14a and 3.14b show the reachable set
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System
size

Helicopter
(HE7)

Aircraft
(AC10)

Coupled
Spring
(CSE1)

5 83.63 (66) 36.64 (13) 213.88
(232)

10 89.55 (57) 25.77 (9) 261.32
(197)

19 167.53 (52) 27.67 (4) 21.97 (4)
30 n.a. 113.72 (7) n.a.
40 n.a. 117.60 (4) n.a.

Table 3.2: Computation times (in seconds) and number of paraboloids (in paren-
thesis) of the overapproximation for different systems sizes. (When the size of the
original system is smaller than the required reduced system size, then the model re-
duction is not applicable -n.a.-.)

R̃(P̃0, t) set at time t = 0.794 and its projection R̃(P̃0, t)|x over the LTI state space
(i.e. projection over (x1, x2) states). In Figure 3.14b, the constraints boundaries ∂P(t)
(for P ∈ Π̃∗, Π̃∗ defined in Section 3.6) are touching the reachable set R̃(P̃0, t). The

non-convexity of R̃(P̃0, t) arises from the non-positive solutions to the DRE (1.21).

Figure 3.14c represents the projection of the reachable tube t 7→ R̃(P̃0, t) projected
over the LTI dimension (x1, x2).

3.8.3 Delayed system

IQC relationships can be derived for delayed systems (see [Seuret and Gouaisbaut,
2015]). The delay operator is a linear time-invariant system that has a state of
infinite dimension. The states dynamic can be described by a wave partial differential
equation. Projections of the state over a base of Legendre polynomials (of maximal
degree r ∈ N) have a linear dynamic that only depends on smaller degree projection.
Moreover, the error between the true state and the projections satisfies energetic
constraints (that is derived from Jensen inequality). By increasing the maximal degree
r of the considered polynomials, for similar input, the set of reached output is strictly
reduced. For each degree r, the IQC falls into the context of this work since M r

w ≺ 0.

In the sequel, the reachable set of this overapproximating model is computed and
plots of the reachable outputs are given. Consider the following delayed system

Dh
1

1+τs
u y

w
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Figure 3.13: Overapproximation of the output reachable set (projection of the reach-
able set R(t) through the observation map; the red area) of the AC10 example from
the COMPleib library. The plain black line corresponds to the unperturbed trajectory
of the system.

(a) Reachable set
(b) Reachable set of the LTI
system

(c) Reachable tube of the LTI
system

Figure 3.14: The green surface in (a) is the reachable set R̃(P̃0, t) at t = 0.794 of

S̃(P̃0, t) computed using Theorem 3.1. Its projection over the LTI state space (x1, x2)
(in solid red line) is shown in (b), each green line corresponds to one constraint

P ∈ Π̃∗ computed with Theorem 1.1. (c) is the reachable tube t→ R̃(P̃0, t) of S̃(P̃0, t)
projected over the LTI state space (x1, x2) for t ∈ [0, 1]. The red section corresponds
to the time t = 0.794.

where s ∈ C is the Laplace variable, τ > 0 and a delay h > 0 and the input signal is
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defined as follows

u(t) =

{
0 if t < 0 or t > 5
0.3(1− t

5
)t+ 0.1sin(2πt) otherwise.

Let S̃r(P̃0, T ) for g ∈ N be the relationship of maximal polynomial degree r,

and let R̃r(Z0, t) be the associated reachable set at time t > 0 for a given set of

initial states. The reachable set R̃r for a set of initial states P̃0 is computed using
(3.13) and Theorem 3.1 for different orders r of the hierarchy. Figure 3.15 is a
plot of the projections of the reachable set over the output map (where r = 1, 2, 3)
together with the trajectory of the delayed system. We have the following relationship:
R̃3(P̃0, t) ⊂ R̃2(P̃0, t) ⊂ R̃1(P̃0, t).
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Figure 3.15: Reachable set computation of the delayed system

3.9 Discussion

IQC theory was introduced in [Rantzer and Megretski, 1998] as a method to assert ro-
bust stability and performance for uncertain LTI systems. It merges the results from
[Yakubovich, 1967] and [Zames, 1966b, Zames, 1966a]. The uncertain system is rep-
resented as an interconnection between an LTI system with an unknown block that is
described by a set of to input-output energy relationships. The Kalman-Yakubowich-
Popov lemma gives equivalence between the stability of the interconnection and a
Linear Matrix Inequality.

These IQCs are represented in a frequency domain. However, some of them can
be equivalently expressed over a finite-horizon in the temporal domain. Such IQCs
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are called hard IQCs (or complete IQCs) and have been studied in [Megretski, 2010].
These IQCs allows to derive bounds over the state at any given time and are therefore
of high interest in the verification literature. More recently, [Scherer and Veenman,
2018], showed that any IQCs can always be expressed as a finite-horizon IQC plus
a state-dependent quantity. Such an inequality allows to derive bounds over the
reachable tube of the uncertain system.

When computing bounds over the reachable set of an IQC system, the IQC is inte-
grated into a storage function. The IQC is scaled with multiplier and then integrated
into the storage function. The class of multipliers used to handle IQC constraint is
closely related to the method used to solve the DRE. [Jönsson, 2002, Savkin and Pe-
tersen, 1995, Savkin and Petersen, 1996a, Savkin and Petersen, 1996b] use constant
multipliers, i.e. the IQC constraint is integrated using the S-procedure (see [Boyd
et al., 1994], Section 2.6.3). In the study of LTI IQC systems, multipliers can be
chosen as positive operators over the signal space (i.e. positive LTI systems, see [Fet-
zer et al., 2018, Scherer and Veenman, 2018, Yin et al., 2020]). Recursive methods
based over integration of the DRE allow to study LTV systems and thus time-varying
multipliers.

The existence of an overapproximation over a given time-horizon is dependent on
the existence of a solution to a DRE or a DLMI.

The existence of a solution to the DRE has been extensively studied in several
works (see a review of the Riccati equation in [Kučera, 1973] and in [Bittanti et al.,
1991]). The DRE equation is known to diverge in finite-time depending on its initial
condition and on the parameters. [Savkin and Petersen, 1995] provides the existence
of a solution to the DRE over any time-horizon for a subclass of IQC. [Jönsson, 2002]
gives equivalent conditions between the existence of a solution to the DRE and a
full-rank condition over the Hamiltonian.

[Seiler et al., 2019] shows (in Theorem 1) that the DRE is equivalent to a DRI
(Differential Riccati Inequality). Contrary to the DRE, the DRI can be expressed as
a DLMI by using the Schur complement, thus the existence of a solution to the DRE
is then expressed as a feasibility problem of an infinite-dimensional linear problem.
The problem can then be solved over a finite basis of functions. An SDP solver can
then be used to find the optimal weights and solution of the DRE.

In our work, we provide (for the LTI case) a theorem stating that overapproxima-
tions of the reachable always exist over any time-horizon. Such a result is obtained
by using time-varying multipliers for the IQC constraint.
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3.10 Conclusion

This chapter applied the framework described in Chaper 1 to overapproximate the
reachable sets of a linear time-varying systems with an unknown input bounded by
integral quadratic constraints, modeling e.g. delay, rate limiter, or energy bounds. We
define a family of paraboloidal overapproximations. These paraboloids are supported
by the reachable tube on touching trajectories. Parameters of each paraboloid are
expressed as a solution to an initial value problem.

Our integration scheme is not guaranteed and the paraboloids we compute are
subject to the error of the differential equation numerical integration. The next chap-
ter, Chapter 4, investigates the use of interval arithmetic and validated integration
scheme to derive a guaranteed overapproximation to the reachable set of a system
subject to an IQC disturbance.

Future work We showed that the reachable set can be described as an intersec-
tion of uncountably many paraboloids. In our implementation, a subset of these
time-varying paraboloids is computed to overapproximate the reachable set. Then,
we compute a minimal volume paraboloid that contains the intersection of all the
paraboloids. The computation time of our method is directly dependent on the num-
ber of time-varying paraboloids. Finding only one time-varying paraboloid which
minimizes its end volume would avoid integrating multiple time-varying paraboloids.
Solutions exist for this optimization problem.

The differential Riccati equation can be weakly solved using a basis of polyno-
mial solutions (as in [Seiler et al., 2019]). Then Sum-Of-Square relaxation provides
a suboptimal overapproximating paraboloid. Previous works implementing this ap-
proach use conservative overapproximations that do not fully incorporate the state
constraint. In future works, we will develop such an approach with the results pre-
sented in this chapter. A locally optimal solution of the optimization problem can be
derived using the Pontryagin’s Maximum Principle. We provided such a solution for
in the previous chapter, Chapter 2. This could be adapted as well for the IQC case.

In our implementation, the time-varying multipliers and initial multiplier are cho-
sen such that some touching trajectory validate the constraint in the future. Other
criteria could be derived such as studying the average behaviors of the trajecto-
ries. Since the computational complexity is linear in the number of time-varying
paraboloids that need to be simulated, an efficient choice of the multipliers can lead
to algorithms that demand less computational resources.
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3.A. Continuous extension of the domain of definition of the time-varying
paraboloids

Appendices of Chapter 3

3.A Continuous extension of the domain of defini-

tion of the time-varying paraboloids

This part introduces an intermediate result that is used for the proof of Proposition 3.7
in Section 3.6.

By Definition 3.4, the domain of a time-varying paraboloid P is the domain of
its quadratic time-varying coefficient E. Since the solution of the DRE (1.21) might
diverge in a finite-time TE(E0) < ∞ (where E0 is the initial condition of (1.21)), P
is defined only in the right-open interval [0, TE(E0)[. In this part, we show that since
the touching trajectories of P are defined over the closed interval [0, TE(E0)], i.e. the
definition of P can be prolonged to the same closed interval.

(3.10) can be derived solving the following optimal control problem (for t > 0)

max
w∈L2([0,t];Rm)

t∫

0

[
x(τ)
u(τ)
w(τ)

]
M

[
x(τ)
u(τ)
w(τ)

]
dτ − xq,t

s.t. ẋ = Ax+Bw + Cu
x(t) = xt

for given (xt, xq,t) ∈ Z+. This is a special instance of the LQR problem (see e.g.
[Savkin and Petersen, 1996b]). For x ∈ L2([0, T ];R

n) a touching trajectory, let

n = Ex− f. (3.26)

Using (3.10), n satisfies the following differential equation

[
ẋ
ṅ

]
= L

[
x
n

]
+Nu

where

L =

[
A− BM -1

wM
⊤
xw −BM -1

wB
⊤

−(Mx −MxwM
-1
wM

⊤
xw) −A⊤ +MxwM

-1
wB

⊤

]

and

N =

[
C − BM -1

wM
⊤
uw

−(Mxu −MxwM
-1
wM

⊤
uw)

]
.

The value function evaluated along the touching trajectory x is then obtained by
introducing the parameter

r = g − f⊤x (3.27)
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which satisfies
ṙ = u

(
H R

) [ x
n
u

]

with
H =

(
MuwM

-1
wMxw −M⊤

xu −(C −MuwM
-1
wB

⊤)
)

and
R =Mu −MuwM

-1
wM

⊤
uw.

Using (3.26) and (3.27), the value function satisfies:

p̃(t, z(t)) = x(t)⊤n(t) + r(t) + xq(t).

Let the time-varying paraboloid P = T (P̃0) such that P diverges in finite-time, i.e.

TP (P̃0) <∞. Since all the touching trajectories are continuous in time, each touching

trajectory is defined over [0, TP (P̃0)]. Their corresponding value function h evaluated

along the touching trajectory is as well continuous over [0, TP (P̃0)]. Therefore, one

can extend the definition of P until TP (P̃0) using the continuity of the value function

P(T ) = {z ∈ R
n+1 | lim

t→T
t<T

p̃(t, z) ≤ 0}. (3.28)

where T = TP (P̃0). We state this result in the following property

Proposition 3.10. Continuous extension

For any P = T (P̃0), if the quadratic coefficient of the time-varying paraboloid
set P diverges in finite-time, then the extension to the right of P exists and is
defined by (3.28).
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In Part I, we applied the levelset method to overapproximate the reachable tube
of a linear time-varying system subject to bounded disturbances. In this part, we pro-
pose another approach based on the framework of Interval Arithmetic and validated
integration to overapproximate the reachable tube of a nonlinear system subject to a
disturbance bounded by an Integral Quadratic Constraint (IQC, see Chapter 3).

The Interval Arithmetic has been introduced in the ’50s and ’60s as a numeri-
cal method to evaluate mathematical expressions while embedding rounding errors.
These rounding errors were represented as intervals of values and propagated by struc-
tural induction within the mathematical expression. Thus, the exact evaluation of this
expression is guaranteed to belongs to this interval despite the use of approximated
numerical real arithmetic (e.g. the floating-point arithmetic). The initial Interval
Arithmetic was designed to evaluate expressions with additions, subtractions, and
multiplications, and was later on extended to divisions, Taylor series and integrals.
More complicated problems have been studied, and in particular, root equations and
fixed-point equations can as well be addressed within this framework. For such equa-
tions, the exact solution is often not computer-representable (it can be an irrational
number) and Interval Arithmetic provides a practical tool to find bounds for which
the exact solution is guaranteed to lie in.

In dynamical systems analysis, continuous trajectories are solutions to an Initial
Value Problem (IVP) {

ẋ(t) = f(t, x)

x(0) = x0

where x ∈ L2,loc(I;R
n), with I is the domain definition of the solution x. Such an

IVP can be highly sensitive on the numerical error and providing bounds containing
the exact solutions is often necessary. This IVP can, in fact, be conveniently and
equivalently expressed by the following fixed-point equation:

x(t) = x0 +

∫ t

0

f(τ, x(τ))dτ.

In this form, it is possible to use the Interval Arithmetic framework to compute
a guaranteed solution to the IVP. [Moore et al., 2009] described a method where
the trajectory x is represented as a union of interval in the time and state space.
Since then, more problems in the field of analysis of dynamical systems have been
addressed such as Differential Algebraic Equations (DAE), guaranteed estimations
(where the measurement noise is chosen in an interval of value), and, in particular,
for system verifications. The interval evaluation allows to model unknown inputs
such as unknown initial value (when x0 belongs to a set of initial states) and input
disturbances (such as a disturbance w(·) where w(t) ∈ [−1, 1]m at every t ∈ I).
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In such a case, the same validated numerical integration method can be applied to
compute an overapproximation of the reachable tube of a dynamical system.

In this part, we overapproximate the reachable set of a dynamical system subject
to a disturbance bounded by an integral constraint. Contrary to Chapter 3, the
system of interest has a non-linear dynamic, and the set of disturbances is described
by a non-linear integral constraint.

Non-linear systems can already be studied with IQC models. To do so, the image
of the non-linear block is modeled as an unknown but bounded disturbance. Then,
the methods presented in Part I can be used for the class of systems studied in this
chapter. However, there is a practical difficulty. Getting this IQC model cannot
be done automatically out of the dynamical function. Most of the time, the IQC
model is obtained manually by identifying the non-linearities in the model and by
overapproximating them with known IQCs.

To automatize the analysis of such systems, a possible approach is to study the
syntax of the dynamical system models. Usually, the non-linear system is given as
a formula involving only a few elementary operations. When these operations can
be overapproximated, the resulting expression can be as well overapproximated. The
interval arithmetic and its associated validated numerical integration framework use
such an approach to overapproximate the reachable tube of a non-linear system. The
dynamical function (whether it is linear or not) can be automatically overapproxi-
mated by syntactic decomposition over its expression.

In the classical validated numerical integration framework introduced in [Moore
et al., 2009], models of interest are usually dynamical systems with an unknown
disturbance bounded by an ∞-norm constraint. These frameworks do not take into
account disturbances defined by an integral constraint (as presented in Chapter 3).
However such models are interesting as they can model complex systems (such as
systems with internal delays).

In Chapter 4, we present the classical interval arithmetic framework and the vali-
dated numerical integration framework, then, we extend the last to overapproximate
the reachable set of non-linear system subject to a disturbance described by a non-
linear integral constraint.
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In this chapter, we present a method to compute the reachable set of a nonlinear
dynamical system subject to an unknown disturbance described by an integral con-
straint between the disturbance and the state trajectory. The Interval Arithmetic and
validated numerical integration frameworks are used. With additional assumptions
about the dynamic of the disturbance, the integral constraint gives bounds over the
set of disturbances. A contractor over the set of reachable states is defined out of
these bounds. This contractor is then used in a fixed point algorithm with a prop-
agation step (as described in [Alexandre dit Sandretto and Chapoutot, 2016]). Our
algorithm is implemented using the DynIbex library [Dit Sandretto and Chapoutot,
2016] and applied to overapproximate the reachable tube of a dynamical system with
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an internal delay.

In Section 4.1, we describe the basics of interval analysis. In Section 4.2, we give
a short introduction of validated numerical integration. In Section 4.3, we present the
nonlinear system with disturbances subject to an integral constraint. In Section 4.4,
we extend the validated numerical integration presented in Section 4.2. In Section 4.5,
we present an example and compare it to the results obtained in Chapter 3. In
Section 5.10 we conclude this chapter.

4.1 Interval arithmetic

A simple and common way to represent and manipulate sets of values is interval
arithmetic (see [Moore et al., 2009]). An interval [xi] = [xi, xi] defines the set of reals
xi such that xi ≤ xi ≤ xi. IR denotes the set of all intervals over reals. The size (or
width) of [xi] is denoted by w([xi]) = xi − xi.

Interval arithmetic extends to IR elementary functions over R. For instance, the
interval sum, i.e., [x1]+[x2] = [x1+x2, x1+x2], encloses the image of the sum function
over its arguments.

An interval vector or a box [x] ∈ IR
n, is a Cartesian product of n intervals.

The enclosing property defines what is called an interval extension or an inclusion
function.

Definition 4.1. Inclusion function

Consider a function f : Rn → R
m, then [f ] :IRn → IR

m is said to be an inclusion
function of f to intervals if

∀[x] ∈ IR
n, [f ]([x]) ⊇ {f(x),x ∈ [x]} .

It is possible to define inclusion functions for all elementary functions such as
×, ÷, sin, cos, exp, etc. The natural inclusion function is the simplest to obtain:
all occurrences of the real variables are replaced by their interval counterpart and
all arithmetic operations are evaluated using interval arithmetic. More sophisticated
inclusion functions such as the centered form, or the Taylor inclusion function may
also be used (see [Jaulin et al., 2001] for more details).

Example 4.1.
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A few examples of arithmetic operations between interval values are given

[−2, 5] + [−8, 12] = [−10, 17]
[−10, 17]− [−8, 12] = [−10, 17] + [−12, 8] = [−22, 25]

[−10, 17]− [−2, 5] = [−15, 19]
[−2, 5]
[−8, 12] = [−∞,∞]

[3, 5]

[8, 12]
=

[
3

12
,
5

8

]

[
3

12
,
5

8

]
× [8, 12] =

[
2,

15

2

]
.

In the first example of division, the result is the interval containing all the real
numbers because the denominator contains 0.

As an example of inclusion function, we consider a function p defined by

p(x, y) = xy + x .

The associated natural inclusion function is

[p]([x], [y]) = [x][y] + [x],

in which variables, constants and arithmetic operations have been replaced by its
interval counterpart. And so
p([0, 1], [0, 1]) = [0, 2] ⊆ {p(x, y) | x, y ∈ [0, 1]} = [0, 2]. �

4.1.1 System of equations

The Interval Arithmetic framework can be used to find bounds containing the solu-
tions of a set of equations. In Section 4.1.1, we present a method to solve a fixed-point
equation. In Section 4.1.1, we present a method to solve a system of equations that
is not given in the form of a fixed point equation.

Fixed-point equation To solve the fixed-point equation

x = f(x) (4.1)

where f : Rn 7→ R
n, it is possible to compute the fixed-point iterations

xk+1 = f(xk)
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for x0 ∈ R
n. If the self-map f is contractive, i.e. if

‖f(x)− f(y)‖ ≤ k‖x− y‖

where 0 ≤ k < 1, then

• the equation (4.1) has a unique fixed point x∗, and

• the sequence {xk}k∈N converges to this fixed point x∗.

This result is known as the Banach Theorem (Section 1.6 in [Zeidler, 1995a]). It gives
a practical algorithm to compute an approximate solution to (4.1).

This iteration method has been adapted to the framework of interval arithmetic
(e.g. in Chapter 6 of [Moore et al., 2009]). Let [f ] be the interval evaluation of f . If
[f ] is contractive (with respect to the norm dist1), i.e. for every [x] ∈ IR

n, it holds
dist ([f ]([x]), [f ]([y])) ⊆ k dist ([x], [y]), where 0 ≤ k < 1, then the sequence of [xk+1]
defined by {

[xk+1] = [f ]([xk])

[x0] ∈ IR
n (4.2)

converges to the singleton {x∗}, i.e.

[xk]→ {x∗}. (4.3)

The convergence property (4.3) is not satisfying since the sequence of [xk] are not
guaranteed to contain the fixed point solution x∗. Such a result can be obtained by
observing that

x∗ ∈ [x]⇒ x∗ ∈ [f ]([x])

for every [x] ∈ IR
n. Then, the interval version of the iteration method can be applied

for the case where

• [f ] is contractive (with respect to the set inclusion), i.e. [f ]([x]) ⊆ [x], and

• [x0] contains the solution x∗ to the fixed-point equation (4.1).

in such a case, the sequence of [xk] defined by

[xk+1] = [f ]([xk]) (4.4)

satisfies
x∗ ∈ [xk+1] ⊆ [xk] ⊆ [xk−1] ⊆ · · · ⊆ [x0].

1where dist([x], [y]) = supx∈[x],y∈[y] ‖x− y‖.
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Thus, each iterate [xk] is a sound approximation of x∗.
When the contractive property is not available, the operator [f ] can be enforced

to be contractive by using the operator [f ] defined by [f ]([x]) = [f ]([x]) ∩ [x].
This iterative approach to solve the fixed point equation (4.1) has been improved

by using other existing fixed-point algorithm. Chapter 8 of [Moore et al., 2009] uses
a Newton gradient descent to improve the contractive properties of [f ].

Example 4.2.

Let f be a univariate function f : R 7→ R defined by

f(x) = 0.5(2− x). (4.5)

The solution x∗ to the fixed point equation (4.1) is x∗ = 2
3
. We compute the

fixed-point iterates [xk] defined by (4.4) starting from [x0] = [0.5, 1]. The first
iterates are (see Figure 4.1)

[x0] = [0.500, 1.000] = 0.750± 5.00e− 01

[x1] = [0.500, 0.750] = 0.625± 2.50e− 01

[x2] = [0.625, 0.750] = 0.688± 1.25e− 01

[x3] = [0.625, 0.688] = 0.656± 6.25e− 02

[x4] = [0.656, 0.688] = 0.672± 3.12e− 02

The iteration sequence converges to [x∞] = 0.666666± 4e− 6. The error is due
to numerical imprecision introduced by the floating-point arithmetic.

Contractors When the equation to solve can be represented as a fixed point equa-
tion, the previous section proposes iterative methods that can refine an a priori bound
containing a solution of this equation. When the equation is not a fixed point equa-
tion, it is possible to use similar concepts: the contractor. A contractor is an operator
that associates to every given set, a subset that contains all the points where the con-
straint is verified (see [Chabert and Jaulin, 2009]).

Definition 4.2. Contractor

For a constraint f that maps Rn to a truth value, a contractor Ctc of f associates
to a subset of Rn to a subset of Rn. For any [b], [b′] ∈ IR

n, Ctc must verify the
following properties:

• the contraction: Ctc ([b]) ⊆ [b],

• the conservativeness: ∀x ∈ [b] \ Ctc ([b]) , f(x) is not satisfied,

• the monotonicity: [b′] ⊆ [b]⇒ Ctc ([b′]) ⊆ Ctc ([b])
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Figure 4.1: Sequence of [xk] defined by (4.4) overapproximating the fixed point
solution x∗ of (4.1) with f defined in (4.5) for [x0] = [0.5, 1].

As for the fixed point equation and thanks to the contraction and monotonicity
property, if a solution x∗ belongs to the truth value of f , then every sequence of [xk]
defined by

[xk+1] = Ctc ([xk+1]) ,

such that x∗ ∈ [x0], satisfies

x∗ ∈ [xk+1] ⊆ [xk] ⊆ [xk−1] ⊆ · · · ⊆ [x0].

The precision and the speed of convergence of the sequence of [xk] depends on the
contraction of Ctc.

Example 4.3.

To find the set of x such that f(x) ≥ 0 where

f(x) = 2− x4 (4.6)

it is possible to define a contractor that exploit the concavity of f (see Figure 4.2).
The resulting contractor produces a decreasing (in the set inclusion sens) sequence
of iterates [xk] for an initial [x0] = [−2, 2]. The sequence converges to [x∞] =
[−1.189207, 1.189207] (see Figure 4.3).

Paul Rousse Set-based Cosimulation



101 4.1. Interval arithmetic

Figure 4.2: The red area corresponds to the set of points (x, f(x)) where f(x) ≥ 0.
The blue area corresponds to the set of points under the linear approximation of the
concave function f at the boundaries of [x].

Figure 4.3: The red area corresponds to the set of points x where f(x) ≥ 0..
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4.2 Validated numerical integration methods

The Initial Value Problem (IVP)

{
ẏ(t) = F (t,y(t))

y(0) = y0
(4.7)

can be equivalently expressed with the fixed point equation

y = Φ(y) (4.8)

where

Φ(y)(t) = y0 +

∫ t

0

F (s,y(s))ds

with F : R+×R
n 7→ R

n, y0 ∈ R
n, and with the unknown y : R+ 7→ R

n. The function
y : R+ 7→ R

n can be represented with a union of intervals in the time and state space,
i.e.

{(t,y(t)) | t > 0} ∈
⋃

k

[ỹk]

where [ỹk] ∈ IR
n+1 (see Figure 4.4). With such a representation, one can solve the

fixed point equation (4.8) using the fixed point iteration proposed in Section 4.1.1.
This section details this approach for a more general IVP than (4.7).

Mathematically, differential equations have no explicit solutions, except for a few
particular cases. Nevertheless, the solution can be numerically approximated with the
help of integration schemes such as Taylor series [Nedialkov et al., 1999] or Runge-
Kutta methods [Sandretto and Chapoutot, 2016, Dit Sandretto and Chapoutot, 2016].

In the following, we consider a generic parametric differential equation as an
interval initial value problem (IIVP) defined by





ẏ = F (t,y,x,p,u)

0 = G(t,y,x,p,u)

y(0) ∈ Y0,x(0) ∈ X0,p ∈ P ,u ∈ U , t ∈ [0, tend] ,

(4.9)

with F : R × R
n × R

m × R
r × R

s 7→ R
n and G : R × R

n × R
m × R

r × R
s 7→ R

m.
The vector variable y of dimension n is the differential variable while the variable
x is an algebraic variable of dimension m with an initial condition y(0) ∈ Y0 ⊆ R

n

and x(0) ∈ X0 ⊆ R
m. In other words, differential-algebraic equations (DAE) are

considered, and in the case ofm = 0, this differential equation simplifies to an ordinary
differential equation (ODE). Note that usually, the initial values of algebraic variable
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x are computed by numerical algorithms used to solve DAE but we consider it fixed
here for simplicity. Variable p ∈ P ⊆ R

r stands for parameters of dimension r and
variable u ∈ U ⊆ R

s stands for a control vector of dimension s. We assume standard
hypotheses on F and G to guarantee the existence and uniqueness of the solution to
such a problem.

A validated simulation of a differential equation consists of a discretization of
time, such that t0 6 · · · 6 tend, and a computation of enclosures of the set of states
of the system y0, . . . , yend, by the help of a validated integration scheme. In details,
a validated integration scheme is made of

• an integration method Φ(F,G,yj, tj, h), starting from an initial value yj at
time tj and a finite time horizon h (the step-size), producing an approximation
yj+1 at time tj+1 = tj + h, of the exact solution y(tj+1;yj), i.e., y(tj+1;yj) ≈
Φ(F,G,yj, tj, h);

• a truncation error function lteΦ(F,G,yj, tj, h), such that

y(tj+1;yj) = Φ(F,G,yj, tj, h) + lteΦ(F,G,yj, tj, h).

Basically, a validated numerical integration method is based on a numerical inte-
gration scheme such as Taylor series [Nedialkov et al., 1999] or Runge-Kutta meth-
ods [Sandretto and Chapoutot, 2016, Dit Sandretto and Chapoutot, 2016] which is
extended with interval analysis tools to bound the local truncation error, i.e., the
distance between the exact and the numerical solutions. Such methods work in two
stages at each integration step, starting from an enclosure [yj] ∋ y(tj;y0) at time tj
of the exact solution, we proceed by:

i. a computation of an a priori enclosure [ỹj+1] of the solution y(t;y0) for all t in
the time interval [tj, tj+1]. This stage allows one to prove the existence and the
uniqueness of the solution.

ii. a computation of a tightening of state variable [yj+1] ∋ y(tj+1;y0) at time tj+1

using [ỹj+1] to bound the local truncation error term lteΦ(F,G,yj, tj, h).

A validated simulation starts with the interval enclosures [y(0)], [x(0)], [p] and
[u] of respectively, Y0, X0, P , and U . It produces two lists of boxes:

• the list of discretization time steps: {t0, . . . , tend};

• the list of state enclosures at the discretization time steps: {[y0], . . . , [yend]};

• the list of a priori enclosures: {[ỹ0], . . . , [ỹend]}.
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Figure 4.5: Results of the validated simulation for the system described in (4.10)
with parameters (4.11). The system trajectories are overapproximated by the union of
intervals [ỹk] (in grey). Two trajectories are represented (in red): one with y0 = 0.4
and w(t) = cos(t); and another one with y0 = 2 and w(t) = 1.

4.3 System with integral constraint over the state

We presented the classical framework of interval arithmetic and the framework of
validated numerical integration. Such a framework handle systems that are subject to
disturbances bounded by the∞-norm (i.e. nonlinear systems subject to a disturbance
w such that ‖w(t)‖ ≤ 1 for example). However, the case where the disturbance is
subject to an integral constraint has never been addressed until now.

The next sections propose a method to overapproximate the set of reachable states
of a nonlinear system subject to a disturbance bounded by an integral constraint. We
assume the disturbance and its time derivative to be bounded in ∞-norm (i.e. to be
bounded at any time). These bounds are used to get a first overapproximation of
the reachable tube. This coarse overapproximation might contain a set of trajectories
not satisfying the integral constraint. We use a contractor operator (as introduced in
Section 4.1.1) in order to reduce the initial prior overapproximation of the disturbance
set. This new disturbance is then reused to get a new (smaller) overapproximation of
the reachable tube. These two operations are iterated until a fixed point is reached.
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Figure 4.6: Results of the validated simulation for the system described in (4.10)
with parameters (4.11). The system has a unique trajectory (in red) that is overap-
proximated by the union of intervals [ỹk] (in grey).

Consider the system: {
ẋ = f(t, x, w)

x(0) ∈ x0

(4.13)

where w is an unknown disturbance in L2,loc(R+;R
m) that satisfies the integral con-

straint, for any τ ≥ 0:

∫ τ

0

‖w(s)‖2 ds ≤
∫ τ

0

g(s, x(s))ds (4.14)

where g : R+ × R
n is a given function.

Remark 4.1. IQC bounds

The integral constraint does not give any bound on the disturbance as it can be
easily understood from the unit energy disturbed system





ẋ = −x+ w

x(0) = 0

1 ≥
∫ 1

0

w2(τ)dτ

. (4.15)
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4.4. Validated numerical integration for dynamical systems subject to integral
constraints

Let w be defined for any ǫ > 0 by




w(τ) =

1

ǫ
when τ ∈ [0, ǫ]

w(τ) = 0 otherwise.

Since
∫ 1

0
w2(τ)dτ = 1, the inequality in (4.15) is satisfied for every ǫ > 0, how-

ever, no bounds can be determined for w since w (0) → ∞ when ǫ → 0. Please
note that the system defined in (4.15) has a bounded reachable set even if the
disturbance cannot be bounded at any given time (see [Boyd et al., 1994, Chap-
ter 8.1.2]).

4.4 Validated numerical integration for dynamical

systems subject to integral constraints

This section presents the main contribution of this chapter. For a system described
by (4.13) and subjects to the integral constraint defined by (4.14), we compute an
overapproximation of its reachable tube over the time domain [0, T ], where the time
horizon T > 0 is given. A first overapproximation of the reachable tube is computed
using pessimistic bounds over the disturbances. The integral constraint in (4.14) is
used to derive a contractor. This contractor and a propagation step are applied in
a fixed point algorithm until a contraction factor is reached. We run the algorithm
over a simple example.

4.4.1 Extended system

We extend the state of the system with the integral value corresponding to the integral
constraint in (4.14): {

ż(t) = g(t, x(t))− ‖w(t)‖2

z(0) = 0
(4.16)

Then, (4.14) can be equivalently expressed for z:

∀t ∈ R+, z(t) ≥ 0. (4.17)

As mentioned in Remark 4.1, no L∞ bounds can be derived for L2 bounded signals.
To study such systems, we make further assumptions about the disturbance:

Assumption 4.1. Continuous disturbance signal

w is continuous, differentiable, and of continuous derivative over R+.
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This assumption seems reasonable in the case of real systems modeling since dis-
turbances modeled by integral constraints correspond to physical quantities. Since
the continuity of a function over a closed interval implies its boundedness, Assump-
tion 4.1 implies that the signal w is bounded and of bounded variation over [0, T ].
Therefore, there exists [w] ∈ IR

m and [w′] ∈ IR
m such that for all t ∈ [0, T ]:

{
w(t) ∈ [w]

ẇ(t) ∈ [w′]
(4.18)

Using Assumption 4.1 and (4.16), the following system will be studied:

S :





ẋ(t) = f(t, x(t), w(t))

ż(t) = g(t, x(t), w(t))− ‖w(t)‖2

ẇ(t) ∈ [w′]

x(0) ∈ [x0]

z(0) = 0

0 ≤ z(t)

w(t) ∈ [w]

(4.19)

where [x0] ∈ IR
n is the set of initial states. We use the following notation (x, z, w) ∈ S

iff (x, w) ∈ L2,loc([0, T ];R
n)×L2,loc([0, T ];R)×L2,loc([0, T ];R

m) is a trajectory of S.
(4.18) gives prior bounds on the disturbance w. They can be used to propagate the

trajectories using standard validated numerical integration frameworks. Thanks to
this, we get a first a priori overapproximation of the reachable set. In the next section,
we use this first overapproximation and a contractor (defined out of the integral
inequality) in a fixed point algorithm in order to get a tighter overapproximation of
the reachable set.

4.4.2 Bounds over the disturbance

In this section, (4.18) and the integral constraint in (4.17) are used to derive bounds
over the disturbance w. These bounds are then used to define a contractor over the
a priori enclosure of the trajectories.

We present a preliminary result before deriving bounds over the disturbance w:

Proposition 4.1. Overapproximate intersection

For [v] ∈ IR
p, p ∈ N and r > 0, if JvK ≤ r then [v] ⊂ [−r, r]p.

Proof. In an Euclidean space, the norm 1 and norm 2 satisfy
√
v21 + · · ·+ v2p ≤ |v1|+

· · ·+ |vp| for any (v1, . . . , vp) ∈ R
p. ♦

Paul Rousse Set-based Cosimulation



109 4.4. Dynamical systems subject to integral constraints

When w satisfies (4.18) and a given integral constraint, hard bounds (i.e. in
∞-norm) can be derived over w:

Proposition 4.2. Disturbance bounds

For a w ∈ L2,loc([0, h];R
m) defined over an interval of length h > 0. If w satisfies

(4.18) (with given bounds [w], [w′] ∈ IR
m), then for any r > 0:

∫ h

0

‖w(τ)‖2 dτ ≤ r ⇒ ∀τ ∈ [0, h], w(τ) ∈ [Wr],

where [Wr] = [−k, k]n with k =
√

r
h
+ h

2
Jw′K (where Jw′K is the maximum

Euclidean norm over the elements of [w′]).

Proof. By applying the Cauchy-Schwartz inequality between the signal w and t 7→ 1
for the inner product of square-integrable function, we have:

∥∥∥∥
∫ h

0

w(τ)dτ

∥∥∥∥
2

≤ h

∫ h

0

‖w(τ)‖2 dτ ≤ hr.

By (4.18), w(τ) = w0+
∫ τ

0
w1(κ)dκ with w0 ∈ [w] and w1(·) ∈ [w′]. Using the reverse

triangular inequality, we have:
∥∥∥∥
∫ h

0

w0dτ

∥∥∥∥ ≤
√
rh+

∥∥∥∥
∫ h

0

∫ τ

0

w1(κ)dκ

∥∥∥∥ .

Then, we get:

‖hw0‖ ≤
√
hr +

h2

2
Jw′K. (4.20)

This relationship is derived over [0, h] but is also valid for any time interval [t, t+ h]
of width h, t > 0. Therefore, by using Proposition 4.1 and (4.20), we have: ∀τ ∈
[0, h], w(τ) ∈ [Wr]. ♦

We then use Proposition 4.2 to derive bounds in the specific case of (4.16). Con-
sider a system trajectory (x, z, w) ∈ S, such that at a given t ∈ [0, T ] and h > 0 s.t.
t+ h ∈ [0, T ], and for all τ ∈ [t, t+ h]:

{
(x(t), z(t), w(t)) ∈ [yt]

(x(τ), z(τ), w(τ)) ∈ [ỹt]
where

{
[yt] = [xt]× [zt]× [wt]

[ỹt] = [x̃t]× [z̃t]× [w̃t]
. (4.21)

The trajectories belong to [yt] at t and are in [ỹt] between [t, t + h]. At t + h, for a
given t ≥ 0 and a given h ≥ 0, (4.19) implies that z satisfies:

z(t+ h) = z(t) +

∫ t+h

t

g(t, x(t))dτ −
∫ t+h

t

‖w(τ)‖2 dτ.
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By applying (4.17) at t+h implies that z(t+h) ≥ 0, we have the following relationship:

∫ t+h

t

‖w(τ)‖2 dτ ≤ z(t) +

∫ t+h

t

g(τ, x(τ))dτ. (4.22)

Let a function

q(z, x) = z +

∫ t+h

t

g(τ, x(τ))dτ. (4.23)

By using an interval evaluation [q] of q, the upperbound of q(z, x) can be evaluated
for z ∈ [zt] and x ∈ [x̃t]. We denote by [q]([zt], [x̃t]) this upperbound. For any
w ∈ L2,loc([t, t+ h], [w̃t]), 4.22 implies:

∫ t+h

t

‖w(τ)‖2 dτ ≤ [q]([zt], [x̃t]).

Then, Proposition 4.2 can be used to derive bounds over the disturbance w:

Proposition 4.3. Disturbance overapproximation

For a w ∈ L2,loc([t, t+ h];Rm) defined over an interval of length h > 0, t > 0. If
w satisfies (4.18) (with given bounds [w], [w′] ∈ IR

m), then for any τ ∈ [t, t+h]:

w(τ) ∈ [Wq], (4.24)

where [Wq]([x̃t], [zt]) = [−r, r]m with r =

√
[q]([zt],[x̃t])

h
and q defined in (4.23).

Proof. This is a direct application of Proposition 4.2. ♦

We then define the operator over [yt] and [ỹt]

C([yt], [ỹt]) = ([yt] ∩ [Yg]([x̃t], [zt]), [ỹt] ∩ [Yg]([x̃t], [zt])) (4.25)

where [yt] and [ỹt] are defined in (4.21),

[Yg] = [−∞,∞]n × [0,∞]× [Wq],

with [Wq] defined in Proposition 4.3.

Proposition 1. C defined in (4.25) is a contractor.

Proof. By Proposition 4.3, we have, for τ ∈ [t, t+ h],

w(τ) ∈ [Wq],
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i.e., all the disturbance signals of S belong to [Wq], so the contractor is conservative.
Since the contractor is defined as an intersection with [yt] and [ỹt] respectively, we
have

([yt], [ỹt]) ⊆ C([yt], [ỹt]),

C is contractive. For any ([y′t], [ỹ
′
t]) such that [y′t] ⊆ [yt] and [ỹ′t] ⊆ [ỹt],

C([y′t], [ỹ′t]) ⊆ C([yt], [ỹt]),

i.e. C is monotone. ♦

4.4.3 Integral constraint propagation

The contractor defined by (4.25) is used in a fixed point algorithm as in [Alexandre
dit Sandretto and Chapoutot, 2016]. A priori enclosure of the trajectory is computed
using bounds (4.18) over w. The integration algorithm gives

• the discretization time steps: {t0, . . . , tend};

• the state enclosure at the discretization time steps: Y0 = {[y0
0], . . . , [y

0
end]};

• the a priori enclosures: Ỹ0 = {[ỹ0
0], . . . , [ỹ

0
end]}.

We then apply the contractor over each couple of discretized time-step boxes [y0
i ] ∈ Y0

and their associated a priori enclosures [ỹ0
i ] ∈ Ỹ0. These two steps are repeated in a

fixed point algorithm until the contraction factor is lower than a given value. In this
approach, time steps are computed at the first iteration of the algorithm and are not
updated.

Example 4.5.

We study the following linear time-invariant system disturbed by an unknown
signal w constrained by a 2-norm inequality:





ẋ(t) = −x(t) + w(t)
∫ t

0

w(τ)2dτ ≤
∫ t

0

0.01x(τ)2dτ

x(0) ∈ [−1, 1]

(4.26)

with [w] = [−1, 1] and [w′] = [−1, 1] in (4.18) for t ∈ [0, 2.5]. Figure 4.7 shows
the reachable set of this dynamical system computed with the method described in
this section.
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Figure 4.7: Computation of the overapproximation of the reachable set of Exam-
ple 4.5 using the algorithm presented in Section 4.4. Blue boxes correspond to the a
priori enclosures at the first iteration of the algorithm Ỹ0, green boxes are the a priori
enclosure at the 3rd iteration Ỹ3 of the algorithm.

4.5 Example

In this part, we present an application of the method described in Section 4.4 to a
system with a time delay.

For u, v ∈ L2,loc(R+;R), the delay operator Dh over an input signal u is defined
by the following relationship:

v = Dh(u)⇔
{
v(t) = u(t− h) for all t ≥ h

v(t) = 0 otherwise.
(4.27)

Validated numerical integration of differential equations with delays is challenging.
Since they act as a memory of the past input signal over an interval of width h, the
state of the delay belongs to L2,loc([0, h],R). The dimension of the system state space
is therefore non-finite.

The stability of linear time-invariant (LTI) systems with internal delays is studied
in [Seuret and Gouaisbaut, 2015]. The state of the delay is projected over a finite
Legendre polynomial basis. These projections are time-dependent values since the
state of the delay is also time-varying. The time derivative of these projections
only depends on the input of the delay operator. Then the norm of the state is
overapproximated using a Bessel inequality. By integrating this inequality, we get an
Integral Quadratic Constraint (IQC) between the output of the delay operator, its
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input, the derivative of its inputs, the projections over the truncated basis of Legendre
polynomial and an error signal. The IQC models the energy of the remaining of the
Legendre expansion (i.e. the error signal). In [Seuret and Gouaisbaut, 2015], the
stability of the delayed LTI system is assessed for all possible error signals satisfying
the derived IQC. We use this IQC to overapproximate the reachable set of such
systems.

In what follows, we use the first order of the IQC relationship described in [Seuret
and Gouaisbaut, 2015, Theorem 5]. The state ξ corresponds to the average value of
the state of the delay. The remaining energy of the state is bounded by an integral
quadratic constraint.




ξ̇(t) = −15ξ(t) + 1.5v(t)− w(t) with ξ(0) = 0

under the IQC

∫ t

0

w(s)2ds ≤
∫ t

0

[
0.0025v̇(s)2 − 0.75 (v (s)− ξ (s))2

]
ds

(4.28)

The IQC system (4.28) is used to overapproximate the delay in the following
system: {

ẋ = −x− kcDh(x) + u

x(0) = 0
(4.29)

where kc = 4, h = 0.01 and u(t) = 1 − t. (4.27,4.28,4.29) are then combined in a
unique linear time-invariant system with an integral quadratic constraint.





Ẋ(t) = AX +Bww(t) + Buu(t)

X(0) =

[
0
0

]

∫ t

0

w(τ)2dτ ≤
∫ t

0

[
X(τ)
u(τ)

]⊤
M

[
X(τ)
u(τ)

]
(4.30)

where the matrices are defined by

A =

[
1.0417 15.6250
−6.0417 −15.6250

]
, Bw =

[
1.0000
−1.0000

]
, Bu =

[
1.0417
−0.0417

]

and

M =



−12.4566 −30.5990 0.0434
−30.5990 −68.3594 0.6510

0.0434 0.6510 0.0434


 .

The bounds in Eq.(4.24) are [w] = [−10, 10] and [w′] = [−1, 1]. The initial distur-
bance set is defined such that [w0] = [w].

Figure 4.8 corresponds to the reachable tube of the delayed system modeled with
the integral quadratic constraint. YIQC is the reachable tube of the corresponding
system.
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Figure 4.8: Computation of the reachable tube of the system (4.30) using the
validated numerical integration framework described in the previous section and the
contractor C introduced in Section 4.4. y (the blue line) corresponds to the response
of the delayed system. YIQC is the exact reachable tube of system computed using the
paraboloid method presented in Chapter 3.

Discussion One motivation of this work is to use Integral quadratic constraint
(IQC) models in a validated numerical integration framework. IQC models are widely
used in the robust control community for stability analysis of dynamical systems.
When the IQC system is stable, there exists an invariant over the set of states (x, z),
and the maximal reachable z value (i.e. the maximal integral value reachable) is
bounded for any trajectory.

In our approach, such an invariant does not exist. The overapproximation of the
maximal reachable z is constantly increasing in size. Consequently, bounds provided
by the fixed point algorithm are also strictly increasing in size. When these bounds
reach the prior bounds given by (4.18) over the disturbance, the reachable set tends
to the reachable set computed without the integral constraint. Figure 4.9 corresponds
to the reachable set of Example 4.5 for a larger horizon of integration. The integral
constraints provide bounds over w. However, when the energy level is too high, these
bounds are strictly included in the bounds given by (4.18). At t = 15s, the reachable
set converges to the reachable set of the system with no integral constraint between
the disturbance and the state.

The bounds of the input disturbance depend on the result of the used guaran-
teed set integration method. Therefore, if the later is too pessimistic, the proposed
contraction method will only rely on the bounds [w] and [w′] of Eq.(4.18).

In our approach, a larger class of systems is considered compared to the linear
case treated in Chapter 3. Contrary to IQC models, only the dependence in the
disturbance needs to be quadratic for the integral constraint.

In terms of scalability, our approach needs the state of the original dynamical
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Figure 4.9: Computation of the reachable tube of the system (4.15) in Example 4.5
over [0, 20] using the validated numerical integration framework described in Chapter 4
and the contractor C introduced in Section 4.4. In blue, the reachable set when only
(4.18) is used (i.e., when the integral constraint is not used). In green, the reachable
set of the system when the integral constraint is taken into account.

system to be extended from n variables to p = n +m + 1 variables (m states for w,
1 state for z). Since the disturbance signal spans in a subspace of Rn, m is always
smaller than n. Since m is often close to 1 (the delay modeled as an integral quadratic
constraint introduces a 1-dimensional disturbance signal), p is close to n (or 2n in
the worst case). However, only the integration part can suffer from the dimension
of the system. Based on the advantage of our approach, a less expansive integration
method can be used for large systems for a similar result.

4.6 Conclusion

We presented a method to compute an overapproximation of the reachable tube for
dynamical systems with integral constraints over the input set. To overapproximate
the reachable set, we use a Runge-Kutta validated numerical integration scheme with
pessimistic bounds over the input. It provides a first conservative bound over the
reachable tube. Then, the integral constraint is used to define a contractor over
the reachable tube. This contractor and a propagation step are successively applied
to the overapproximation until a fixed point is reached. We evaluated our algorithm
with DynIbex library to simulate a delayed system, i.e., an infinite-dimensional system
that can be modeled as a linear time-invariant system subject to an integral quadratic
constraint.
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Future works The method developed in this chapter is guaranteed (we compute
an overapproximation of the reachable tube). However, our overapproximations tend
to constantly grow in size, even when the reachable set is known to be bounded (see
Section 4.5). Such an issue originates from the use of intervals to overapproximate
the reachable set. Intervals are too conservative and the use of affine forms to overap-
proximate the reachable set should provide better-conditioned overapproximations.
One purpose of this work was to investigate how models introduced by the robust
control community can be used in the field of validated numerical integration. We
proposed the use of an IQC model that bounds the input to output L2 gain of a
system with an internal constant-delay. Many complex systems can be modeled in
a similar approach. More specifically, the error of approximation in a reduced sys-
tem can be expressed with an input to output L2 gain constraint. Simplification of
models is very appealing for validated numerical integration since the computational
time is mainly dependent on the system dimension. Being able to reduce the order of
the system and to bound the error with a 2-norm gain would lead to a more efficient
algorithm.
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Part I presents a set-based simulation method that uses time-varying ellipsoids to
compute overapproximations of the reachable set of a system. The systems of interest
are continuous-time linear time-varying systems subject to disturbances bounded by
quadratic constraints in a Hilbert space. Two subclasses of models have been more
specifically developed, the (point-wise) quadratic constraint model and the Integral
Quadratic Constraint (IQC) case. These classes of systems are of particular interest
since they are widely studied in the field of robust control theory. In particular, these
models can be used as abstractions to complex models that do not fall into the initial
scope of considered systems (e.g. nonlinear systems, systems with internal delays).

Many other reachability analysis frameworks are available. They differ by the
family of systems they can analyze, the geometrical sets used to overapproximate the
reachable set, and the available tools to compute these overapproximations. Com-
plex systems might involve different family of dynamical systems (discrete-time and
continuous-time, nonlinear and linear behaviors for example). In this case, one might
need to use several reachability analysis frameworks to compute the overapproxima-
tion of the reachable set.

In this part, we propose to analyze an interconnection of systems. Each subsys-
tem in the interconnection corresponds to a system that can be analyzed with its
associated reachability analysis framework (such as the ones developed in Part I and
Part II). This interconnection of systems can be described with two basic operations,
a composition of systems and a feedback operator. One theoretical and practical dif-
ficulty in the analysis of such an interconnection is to “close the loop”, i.e. to study
the following system

y′ = G(y, u)U u
y′

y = y′

y

Figure 4.10: Block diagram of a closed-loop system

For such systems, one should overapproximate the set of solution Y of the fixed
point equation

y = G(y, u) (4.31)

for every input u in a set of inputs U .
Chapter 5 describes the classical framework of abstract interpretation and its

application to study an interconnection of systems.
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This chapter presents the abstract interpretation framework applied to the anal-
ysis of an interconnection of systems. Such interconnection frequently appears in
system modeling and usually involves systems of heterogeneous nature. For example,
a continuous plant controlled by a discrete-time controller is an interconnection of
two systems. Hereby, the behavior of the continuous plant might be described as so-
lutions to an ordinary differential equation and the behavior controller by a computer
program. Even if there exists tools to individually analyze each system, analyzing
their interconnection is still challenging. In this chapter, we show that the abstract
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interpretation framework is suited to address such issues.

Abstract interpretation is a common tool in the verification of computer programs.
To prove that a program satisfies a set of properties, abstract interpretation starts
from these two following observations: a computer program can be exactly described
by its concrete semantic, i.e. the set of its executions; and the specification to verify
is, as well, a subset in the domain of the concrete semantic. If the concrete semantic
is a subset of this property, then the program is valid. However, this concrete seman-
tic is usually not computable. Abstract interpretation aims at computing an abstract
semantic, a superset of this concrete semantic. The abstract semantic is also called
sound approximation (or over-approximation) of the concrete semantic. Contrary to
the concrete semantic, the abstract semantic is designed to be a simpler and hope-
fully a computable mathematical object. If the abstract semantic is a subset of the
property, then the concrete semantic, i.e. the program, verifies the property.

Abstract interpretation has been mainly used in program analysis where the con-
crete semantic domain corresponds to the set of finite or infinite sequences of symbols.
However, this notion of semantic is versatile enough and can be used in other fields.
In the case of dynamical systems, the semantic domain corresponds to a signal space
(such as the set of finite or infinite horizon, discrete or continuous-time, real-valued
vectored signals).

This chapter is organized as follows. In Section 5.1, we define a language for an
interconnection of systems. In Section 5.2, we define the concrete semantic of an
interconnection of systems. Section 5.2, Section 5.3 and Section 5.4 present the usual
framework and classical results of Abstract Interpretation. Most of their content is
available in [Cousot and Cousot, 1979] and is restated hereby for completeness. In
Section 5.2, we define the concrete semantic that is equivalent to the semantic of
the interconnection of systems. In Section 5.3, we define abstract domains. In Sec-
tion 5.4, we define the abstract semantic. In Section 5.5, Section 5.6, and Section 5.7,
we present abstracts domains that we use to describe signals. In Section 5.8, we
apply the framework to find a sound approximation of the reachable tube of several
interconnections of systems. In Section 5.9 and Section 5.10, we present the works
related to the presented framework and conclude.

Notations are not classical and are chosen to be consistent with the rest of the doc-
ument. Instead of the classical ·# for abstract elements and · ♭ for concrete elements,
we use a starred notation for abstract elements (x∗, X∗, . . . ) and no superscript
notation (x, X, . . . ) for the concrete elements.

Paul Rousse Set-based Cosimulation



123 5.1. Syntax and semantic of an interconnection of systems

5.1 Syntax and semantic of an interconnection of

systems

We study an interconnection of systems that can be expressed with two constructions
between subsystems: a serial connection and a feedback connection. Each connection
is associated with a signal and an equation satisfied by this signal. The problem of
interest is then to identify the set of signals of the interconnection that satisfies this
set of equations.

In this part, we present the syntax, or language, used to describe our intercon-
nection of systems. This syntax is introduced for two reasons. First, it identifies the
class of systems we can analyze. Second, it gives a structure to the set of equations
described by the interconnection of systems. This structure is, later on, reused to
analyze the interconnection of systems. Once the syntax is defined, the actual math-
ematical meaning of the syntax is expressed by its semantic. We associate to each
construct in our syntax an equation that should be satisfied by the signals of the
interconnection.

An interconnection of systems is described with an ISys expressed within the
syntax detailed in Table 5.1.

ISys := Src u Snk u ∈ V (Interconnection of systems)

Src := U U ⊆ Domu where u ∈ V (Source)

| Src u Sys u ∈ V (Serial connection)

Snk := ◦ a sink symbol (Sink)

| Sys u Snk u ∈ V (Serial connection)

Sys := S S : Domu → Domy with u, y ∈ V (System)

| Sys v Sys (Serial connection)

| µx {Sys} (Feedback connection)

| (Src, Sys) (Concatenation of signals)

V a set of labels. (Labels)

Domx set of signals associated with x ∈ V and equal to the Cartesian
product X1 × X2 × . . . where Xi are a finite real-valued vecto-
rial space Rn, a discrete-time signal space l({0, . . . , T};Rn), or a
continuous-time signal space L([0, t];Rn), n ∈ N, T ∈ N, t ∈ R.

(Domain)

Table 5.1: Syntax of an interconnection of systems ISys.
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We assume that any ISys expressed in the syntax described by Table 5.1 identify
each connection (a serial connection or a feedback connection) with a unique label in
the set of labels V (in other words, a label does not appear two times in the formula).
An interconnection of systems ISys is then described with a set of systems, a set of
sources, and connections in-between each of them.

Signal The syntax describing an interconnection of systems is used to define the
connections in-between each system. A connection is labeled with a u ∈ V and associ-
ated with a signal u that is an element of a domain Domu. These signals are chosen as
a concatenation of constant (e.g. a parameter, an initial state), continuous-time (e.g.
the output or input of a continuous-time dynamical system), and/or discrete-time sig-
nals (e.g. a signal generated by a computer program). Signals might be defined over
a finite or infinite time-horizon. Then, Domu corresponds to the Cartesian product
of each domain of each type that composes u. All the signals of the interconnec-
tion of systems are then described with a single variable ρ, called an environment,
ρ = (u, x, y, . . . ), V = {u, x, y, . . . }, that belongs to the Cartesian product of all the
domains

Dom =
∏

v∈V
Domv.

For an environment ρ ∈ Dom, a set of labels V, and a label u ∈ V, let ρu be the
projection of ρ over Domu.

Source A source U ⊆ Domu is a subset associated with a signal u ∈ Domu, and a label
u ∈ V. A source describes an exogenous input such as an initial state of a dynamical
system (or of a program), or an unknown bounded input signal (e.g. U might be the
set of signals from R+ to R bounded at any time by [−1, 1]).

Sink The sink ◦ is a terminal point used such that every signal in the interconnection
is connected to another element.

System The systems are defined as operators between an input domain and an
output domain. For example, the system S in “ . . . u S y . . . ”, where u, y ∈ V,
defines a mapping

S : Domu → Domy

from Domu (the domain of the signal u associated with the label u ∈ V) and Domy
(the domain of the signal y associated with the label y ∈ V). An interconnection
of systems is then described with serial connections S1 v S2, feedback connections
µx {S} and exogenous inputs in U . The connections between systems are assumed
to be correctly defined such that every types are compatible. A serial connection

Paul Rousse Set-based Cosimulation



125 5.1. Syntax and semantic of an interconnection of systems

“ . . . u S1 v S2 w . . . ” involves two systems S1 : Domu → Domv and S2 : Domv →
Domw (i.e. the output set Domv of S1 corresponds to the input set of S2). A feedback
connection “ . . . u µx {S} y . . . ” involves an open-loop system S : Domu×Domx →
Domy× Domx where the input and output signals both contain the same state signal x
associated with the label x ∈ V.

Su y

x x′

The resulting closed-loop system “ . . . u µx {S} y . . . ” defines a system map-
ping Domu to Domy,

Interconnection of systems An interconnection of systems S of type ISys is
then described as a source Src connected to a sink Snk.

Semantic of the interconnection of systems For an interconnection of systems
ISys denoted by S and expressed in the syntax defined in Table 5.1, the semantic
of S corresponds to the set of environments [S ] ⊆ Dom defined by

[S ] = {ρ ∈ Dom | [S ](ρ; ∅, ∅) is True}

where ρ 7→ [S ](ρ; ∅, ∅) is defined by Table 5.2. For each expression S of the syntax,
Table 5.2 defines a function

[S] : Dom× V× V→ {True, False}.

by structural induction over the syntax of S. The set V is defined by

V = {∅} ∪ V ∪ V
2, (5.1)

V contains a symbol ∅, the labels in V, and the pairs of labels in V
2. For a ρ ∈ Dom,

each operator [S](ρ; u, y) defined in Table 5.2 evaluates the truth value that the signal
ρy is an output of the system S for the input ρu. The symbol ∅ is associated with
expression in the syntax which ends with a sink symbol or begin with a source. A
Src denoted by U has only an output connection and is therefore associated with
the function [U ](ρ; ∅, u). A Snk denoted by Y has only an input connection and
is therefore associated with the function [Y ](ρ; y, ∅). A system Sys denoted by S
has an input and an output connection and is therefore associated with the function
[S](ρ; u, y). The pair of labels are used in the concatenation “ (U ,S)” of a source U
and a system S.
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[◦](ρ; y, ∅) := True

[Ub](ρ; ∅, u) := ρu ∈ Ub
[Sb](ρ; v, w) := ρw = Sb(ρv)

[S1 v S2](ρ; u, w) := [S1](ρ; u, v) ∧ [S2](ρ; v, w)
[µx {S}](ρ; u, y) := [S](ρ; (u, x), (y, x))

[(U ,S)](ρ; u, (v, y)) := [S](ρ; v, y) ∧ [U ](ρ; ∅, u)

Table 5.2: An environment ρ belongs to the semantic [S ] of an interconnection
of systems S whenever [S ](ρ; ∅, ∅) is true. [S ](ρ; ∅, ∅) is computed by structural
induction over the syntax of S . Ub ⊆ Domu, Sb : Domv → Domw, S1 and S2 are either
a Src and a Sys, two Sys, or a Sys and a Snk, S is a Sys, and u, v, w, x, and y are
labels in V ∪ {∅}.

In practice, the semantic on the interconnection of systems defines a set of equa-
tions over the signals. These equations are of three kinds: the inclusion (defined by
the sources “Ub u . . . ”, i.e. u ∈ Ub), the mapping (defined by the system operator,
“ . . . u Sb y . . . ”, i.e. y = Sol(u)), and a fixed-point equation (defined by the
feedback connection, “ . . . u µx {S} y . . . ” i.e. (y, x) = S(u, x)). For any given
expression, it is possible to compose the systems, and concatenate the signals such
that the semantic is defined by “U u µx {Sol} y ◦ ” (see Example 5.1), which is
equivalent to the following set of equations





u ∈ U
x = Sol,x(u, x)
y = Sol,y(u, x)

(5.2a)

(5.2b)

(5.2c)

and the following block diagram

Solu ∈ U y

x

where Sol,x and Sol,y are projections of the system Sol over x and y (resp.). In such a
case, the semantic of the system is defined as the set of environments ρ = (u, x, y) ∈
Dom such that (5.2a,5.2b,5.2c) are satisfied. The goal of this chapter is therefore to
find the set of solutions to the fixed-point equation (5.2b) for all the inputs u in
U . However, the fixed-point equation (5.2b) is difficult to solve in practice. This
is especially true when Domx is a combination of signals of heterogeneous types (e.g.

Paul Rousse Set-based Cosimulation



127 5.1. Syntax and semantic of an interconnection of systems

when x is a combination of discrete-time and continuous-time signals). The following
section expresses the system semantic with operators lifted to sets. This semantic
results as well in a fixed-point equation in a particular structured set: a partially
ordered set. In such a structure, there exist practical ways to solve this fixed-point
equation.

Example 5.1.

The formula
“U u µx {A e µx {B} v C} z ◦ ” (5.3)

describes the interconnection of systems represented in Figure 5.1. The set of

U A B Cu e v

x

z

y

Figure 5.1: Block diagram of the system described by the formula (5.3).

signals of the interconnection can be described by the solutions (u, e, x, y, v, z) ∈
Dom of 




u ∈ U
e = A(u, y)

(v, x) = B(e, x)
(z, y) = C(z)

The system can be equivalently described by “U u µr {Sol} z ◦ ” where
the block diagram of the open-loop system Sol is represented in Figure 5.2.

Remark 5.1. Construction of the semantic

For interconnections of systems as well as for computer programs, the formal-
ization of the semantic of a syntax is not unique. [Bouissou and Martel, 2008]
considers an interconnection of a computer program and a dynamical system.
The semantic of the computer program part is constructed by extending each
trace with the next possible reachable state (by using the transition function). In
between two transitions of the program, the dynamical system is an autonomous
system and can just run toward the future until a new event happens. Then, the
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A B Cu e v

r r′

x′x

z

y′y

Figure 5.2: Open-loop system Sol of (5.3).

dynamical system can just be modeled as a discrete-time system, and the seman-
tic of the interconnection is expressed in a similar way than for the computer
program.

Such an approach is possible because the continuous-time system (the dy-
namical system) and the discrete-time system (the computer program) defines
equations that can be “decoupled” in time. In our case, we do not only consider
interconnections of one discrete-time system with one continuous-time system
but also interconnections of multiple instances of each type. Therefore, signals
can interact with each other, and it is not possible to define a semantic that uses
a forward propagation scheme for each systems. We define the semantic of the
interconnection of systems as the set of signals that satisfies a set of equations.

Remark 5.2. Initial value problem as fixed-point equation

For V = {x, u, y}, Domx = L2(I;R
nx), Domu = L2(I;R

nu), Domy = L2(I;R
ny),

and I = [0, T ] with T > 0. Let Sol be the system that associates to a time-varying
input (u, x) ∈ Domu × Domy, the output (y, x) ∈ Domy × Domx where





y(t) = h(x(t), u(t))

x(t) = x0 +

∫ t

0

f(x(s), u(s))ds for all t ≥ 0

for a given initial state x0 ∈ R
nx, a given observation function h : Rnu × R

nx →
R

ny , and a given dynamical function f : Rnx × R
nu → R

nx. Then, the signal x
of the feedback connection of “ . . . u µx {Sol} y . . . ” satisfies the fixed-point
equation

x(t) = x0 +

∫ t

0

f(x(s), u(s))ds

for any t ∈ I. When the solution x is differentiable, this fixed-point equation is
equivalent to the initial value problem

{
ẋ(t) = f(x(t), u(t)), for all t ∈ I
x(0) = x0.
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5.2 Concrete domain and semantic

Now that we have defined the syntax for an interconnection of systems and its as-
sociated semantic, we introduce the concrete domain and concrete semantic. The
concrete semantic is defined to be equivalent to the system semantic except that its
construction involves operators over sets of signals. The next section defines sufficient
conditions to derive a sound approximation of this concrete semantic: the abstract
semantic.

Extended interconnection of systems In order to solve the fixed-point equation
with a set-based approach, we study an extended version of the interconnection of
systems (see Remark 5.3). To do so, for each signal u in Domu associated with the
label u ∈ V, we introduce a new signal u′ in Domu′ = Domu associated with the new
label u′ ∈ V

′ = {v′ | v ∈ V}. This extended version of the interconnection of systems
redirects any output y associated with y ∈ V of each system to the new signal y′

associated with y′ ∈ V. Then, the solutions to the fixed-point equation are searched
in the set of environments ρ satisfying ρy = ρy′ for any label y ∈ V. This extended

system has a set of labels Ṽ = V ∪ V
′, and a domain D̃om = Dom× Dom.

In the rest of this document, the interconnection of systems implicitly refers to this
extended interconnection of systems. We keep the notation V and Dom to respectively
refer to the set of labels (i.e. to Ṽ) and to the domain (i.e. to D̃om).

Remark 5.3. Lift to sets of a fixed-point equation

Consider the fixed-point equation

x = f(x) (5.4)

and its set of solutions X̃ ⊆ Dom, where f : Dom → Dom. Such a fixed-point
equation can be studied in a set-based approach. Let the lift to sets F of f be
defined by

F (X) = {f(x) | x ∈ X}. (5.5)

The solutions to the fixed-point equation

X = F (X) (5.6)

are closely related to the fixed-points of f . Every subset X ⊆ X̃ of fixed-points to
(5.4) is a fixed-point of F . For every pair of fixed-points X, Y of F , X ∪ Y is as

well a fixed-point of F . And therefore, if Z is a fixed-point of F , then Y = Z ∪ X̃
is as well a fixed-point of F , i.e. there is a fixed-point Y to F larger (or equal)

than X̃. Thus, (5.6) might introduce elements of Dom that are not solutions to
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the fixed-point equation (see Example 5.2). To avoid this, we reformulate (5.4)
with

λ = g(λ) (5.7)

where λ = (x, x′) ∈ Dom2 and g is an extended version of f defined by

g(λ) = (x′, f(x)).

In fact, λ = (x, x′) is a fixed-point of g iff x is a fixed-point of f (the proof

is direct from (5.7) as x = x′ = f(x)). Let Λ̃ be the set of fixed-points of g.

Similarly than for f , the lift to sets G of g can be used to characterize Λ̃. Let
Σx = {(x, x′) ∈ Dom2|x = x′} and Λ be a fixed-point of G such that Λ ⊆ Σx.
For λ1 = (x1, x

′
1) ∈ Λ, since Λ is a fixed-point of G, there is a λ2 ∈ Λ such that

λ1 = g(λ2), i.e. {
x1 = x′2
x′1 = f(x2)

Since λ1 and λ2 belong to Λ ⊆ Σx, it holds x1 = x′1 and x2 = x′2 and therefore,

x′1 = f(x1).

To summarize, when G(Λ) = Λ and Λ ⊆ Σx, every x, such that λ = (x, x′) ∈ Λ,

is a fixed-point of f . The projection Λ|x of Λ is a subset of X̃, i.e. Λ|x ⊆ X̃. For

this reason, Λ̃ (and Λ̃) can be characterized by searching for the largest fixed-point
of G lower than Σx.

Example 5.2.

Let f be the polynomial defined by f(x) = x2 − 1. The fixed-points of f are
the roots of the second degree equation f(x) − x = 0. Thus, f has two fixed-

points X̃ = {x1, x2}, where x1 = −1+
√
5

2
and x2 = −1−

√
5

2
. Similarly, the fixed-

points of f ◦ f are the roots of the fourth degree equation f ◦ f(x) − x = 0.
f ◦ f has four fixed-points which are X = {−1, 0, x1, x2} (see Figure 5.3). Let
the lift to sets of f be F (as defined in Remark 5.3). X is a fixed-point of F
since F (X) = {0,−1, x1, x2} = X. In a more general way, all the sets defined
by X = {x1, x2, . . . , xm} that are composed of elements of a periodic sequence
{xn}n∈N (of period m ∈ N) defined by xn+1 = f(xn) are fixed-points of F (indeed
F (X) = {f(x1), f(x2), . . . , f(xm)} = {x2, x3, . . . , x1} = X).

5.2.1 Concrete domain

The concrete domain A is defined as the powerset of environments, i.e. A = ℘(Dom).
We equip this concrete domain with a complete lattice structure.
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Figure 5.3: Fixed-points of f and f ◦ f in Example 5.2.

Definition 5.1. Partially ordered set

A partially ordered set (poset) is a tuple (A,⊑) where A is a set and ⊑ is a
partial order relationship, i.e.

∀x ∈ A, x ⊑ x (reflectivity)
∀x, y ∈ A, x ⊑ y ∧ y ⊑ x⇒ x = y (antisymmetry)
∀x, y, z ∈ A, x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z (transitivity)

Definition 5.2. Lattice

A lattice is a tuple (A,⊑,⊔,⊓) with
(A,⊑) a poset,
⊔ a binary upperbound, i.e.

∀x, y ∈ A, x ⊑ x ⊔ y ∧ y ⊑ x ⊔ y
∀x, y, z ∈ A, x ⊑ z ∧ y ⊑ z ⇒ x ⊔ y ⊑ z

⊓ a binary lowerbound, i.e.
∀x, y ∈ A, x ⊓ y ⊑ x ∧ x ⊓ y ⊑ y
∀x, y, z ∈ A, z ⊑ x ∧ z ⊑ y ⇒ z ⊑ x ⊔ y

Definition 5.3. Complete lattice

A complete lattice is a tuple (A,⊑,⊔) where
A a set,
⊑ a partial order relationship (reflective, antisymmetric and transitive),
⊔ a lowerbound, i.e., for all subset S of A,

∀a ∈ S, a ⊆ ⊔S
∀b ∈ S, (∀a ∈ S, a ⊑ b)⇒ ⊔S ⊑ b

The concrete domain (P(Dom),⊆,∪,∩, Dom, ∅) is a complete lattice.
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5.2.2 Concrete semantic

Each construction in the syntax (defined in Section 5.1) can be associated with an op-
erator over the concrete domain. The concrete semantic is then defined by structural
induction over the syntax. We will see that this concrete semantic can be expressed
as the greatest fixed-point of a monotonic operator in the concrete domain. In the
first paragraph, we present known results for the computation of such a greatest fixed-
point. In the second paragraph, we define the concrete semantic of the interconnection
of systems.

Operators and fixed-points in a complete lattice Let a complete lattice (A,⊑
,⊓,⊤,⊥) and an operator F : A → A. F is monotonic when F preserves the ordering
relationship, i.e. X ⊑ Y ⇒ F (X) ⊑ F (Y ) for every X, Y ∈ A. A fixpoint Y of F is
an element that satisfies Y = F (Y ). Let gfpX {F} be the greatest fixpoint of F that
is lower than X. Y is a pre-fixpoint of F if Y ⊑ F (Y ), and Y is a post-fixpoint of F
if F (Y ) ⊑ Y . The following theorem provides the existence of such a fixed-point.

Theorem 5.1. Knaster-Tarski

The set of fixed-points of a monotonic operator F in a complete lattice is a
complete lattice. Moreover, the greatest fixed-point of F that is lower than X is

gfpX {F} =
⊔
{Y |Y ⊑ X and Y ⊑ F (Y )}.

Proof. See [Tarski, 1955]. ♦

By Theorem 5.1, the set of fixed-points of F lower than X ∈ A is a complete
lattice, there is a lowest and a greatest fixed-point. The monotonicity of the operator
F can be used to define a decreasing sequence of Yk in A starting from a post-fixpoint
of F . When the initial element Y0 is greater than X, then each element is greater
than gfpX {F}.

Proposition 5.1. Descending chains

If F is a monotonic operator and X is a post-fixpoint of F , then

gfpX {F} ⊑ F k+1(X) ⊑ F k(X) ⊑ · · · ⊑ F (X) ⊑ X

.

Proof. It is a direct consequence of the monotonicity of F applied to the post-fixpoint
X of F . ♦
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Concrete semantic The concrete semantic is defined in Definition 5.4 as the great-
est fixed-point of the concrete operator X 7→ JS K(X; ∅, ∅) defined by Table 5.3 by
structural induction over the syntax of an interconnection of systems S (as intro-
duced in Table 5.1). Similarly than for the semantic of the interconnection of systems,
for every expression S of the syntax of Table 5.1, we define an operator JSK(R; u, y)
in the concrete semantic that associates to a set of environments R ⊆ Dom, an input
label u, and an output label y, another set of environments in Dom:

JSK : ℘(Dom)× V× V→ ℘(Dom)

where V is defined by V = {∅} ∪ V ∪ V
2.

J◦K(R; y, ∅) := R

JUbK(R; ∅, u) := {ρ ∈ R | ρu′ ∈ U}
JSbK(R; v, w) := {ρ[w′ ← Sb(ρv), v← ρv′ ] | ρ ∈ R}

JS1 v S2K(R; u, w) := JS2K
(
JS1K(R; u, v); v, w

)

Jµx {S}K(R; u, y) := JSK(R; (u, x), (y, x))
J(U ,S)K(R; u, (v, y)) := JSK(R; v, y) ∩ JUK(R; ∅, u)

Table 5.3: Concrete operator for an interconnection of systems. Ub ⊆ Domu, Sb :
Domv → Domw, S1 and S2 are either a Src and a Sys, two Sys, or a Sys and a Snk,
S is a Sys, and U is a Src. u, v, w, x, and y are labels in V ∪ {∅}.

We now study the fixed-points lower that Σ ⊆ Dom of the concrete operator X 7→
JS K(X) where Σ is defined as the set of environments where each signal is equal to
its prime signal (see Remark 5.3), i.e.

Σ = {ρ ∈ Dom | ∀v ∈ V, ρv = ρv′} . (5.8)

Each environment ρ of the semantic is a fixed-point of any concrete operator since,
by construction, ρ ∈ Σ, and since each proposition satisfied in Table 5.1 implies that
{ρ} is a fixed-point of its corresponding operator in Table 5.2. More generally, any
subset of the semantic of the interconnection is a fixed-point of the concrete semantic.

Proposition 5.2. Sets of trajectories are fixed-points of the semantic

Every R ⊆ [S] is a fixed-point of X 7→ JS K(X).

Proposition 5.3. Fixed-point of the concrete semantic

Every fixed-point R of X 7→ JS K(X) is a subset of [S ].
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Proof. Let ρ ∈ R = JS K(R), we want to show that ρ is a system trajectory, i.e.
[S ](ρ; ∅, ∅) is true. Since R is a fixed-point of X 7→ JS K(X) and each operator
only modifies a projection of R, and R is as well a fixed-point for each operator.
Moreover, for every label u ∈ V, R ⊆ Σ, i.e. ρu = ρu′ . We prove that ρ is a
trajectory by induction. For each operator, we prove that R = JSK(R; u, y) implies
that [S](ρ; u, y) is true:
• R = JUbK(R; u) implies that ρu′ ∈ Ub, since ρ ∈ Σ, it holds ρu = ρu′ ∈ Ub,
therefore, [Ub](ρ; u) is true;
• R = JSbK(R; v, w) implies that there is a ρ′ such thats ρw′ = Sb(ρ′v) and ρv = ρ′v′ ,
since ρ, ρ′ ∈ Σ, ρv′ = ρv and ρ′v′ = ρ′v, therefore, ρw = Sb(ρv), i.e. [Sb](ρ; v, w) is
true and moreover ρ′l = ρl for l ∈ {v, v′, w, w′};
• R = JS1 v S2K(R; u, w), since R is also a fixed a point of JS1K(·; u, v), it holds
R = JS1K(R; u, v) and R = JS2K(R; v, w), for ρ ∈ R, by induction, if [S1](ρ; u, v)
and [S2](ρ; v, w) are true, then [S1 v S2](ρ; u, w) is true;
• the last operators have a similar proof than the one for the serial connection. ♦

Proposition 5.2 and Proposition 5.3 imply that [S ] is a fixed-point of X 7→
JS K(X) and that every fixed-point R ⊆ Σ of X 7→ JS K(X) is a subset of [S ],
i.e. R ⊆ [S ]. Therefore, the semantic of the interconnection of systems is equal to
the greatest fixed-point of X 7→ JS K(X).

Definition 5.4. Concrete semantic as the greatest fixed-point of a mono-

tonic operator

Let Σ ⊆ Dom defined as in (5.8). The concrete semantic JS K is defined by

JS K = gfpΣ {X 7→ JS K(X; ∅, ∅)}

where the monotonic operator X 7→ JS K(X; ∅, ∅) is defined in Table 5.3 by struc-
tural induction over the syntax of the interconnection of systems S .

Proposition 5.4. Concrete semantic

The semantic of the interconnection of systems S is equal to the concrete se-
mantic, i.e.

[S ] = JS K.

Remark 5.4. Concrete semantic as the greatest fixed-point of a mono-

tonic operator

The approach to express the system trajectories (or the computer program traces)
as a fixed-point of a monotonic operator in a complete lattice structure is clas-
sical. However, the fixed-point of interest is usually the lowest fixed-point of a
monotonic operator.
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Expressing the semantic as the fixed-point has been initially introduced to
study computer program [Cousot and Cousot, 1979]. In these works, the con-
crete domain is represented with the sets of finite and/or infinite traces, the
fixed-point is iteratively constructed by extending each trace through time. Then,
the fixed-point of interest is the lowest fixed-point that contains these trajecto-
ries. [Bouissou and Martel, 2008] has extended this approach to the case of an
interconnection of a controller (modeled as a computer program) and dynamical
systems. The trajectories of the dynamical system are simulated over a small
time-horizon.

As we pointed out in Remark 5.1, such an approach is possible because sys-
tems are be decoupled in time. In our case, the system trajectories are expressed
as the solution to a fixed-point equation that depends over an input. For each
input, there might be one (or more) solution to this fixed-point equation. The
semantic of the system is then defined as the union of all these fixed-point solu-
tions for every possible input. The system semantic can be equivalently defined
with operators over sets. For these monotonic operators, the union of fixed-points
corresponds to the greatest fixed-point (by the Theorem 5.1).

5.3 Abstract domains

The previous section defines the concrete semantic as the greatest fixed-point of an
operator in the concrete domain. It is then possible to use an iterative method to
overapproximate this fixed-point (see Proposition 5.1). However, elements of the con-
crete domain are too complex to be computer-represented and therefore, the concrete
semantic cannot be calculated. In this section, we soundly approximate it with ele-
ments chosen in a subset of the concrete domain. This sound approximation of the
concrete domain is called the abstract domain. The abstract domain is supplied with
a complete lattice structure where elements and operators (resp.) can be represented
and calculated (resp.) on a computer program. The abstract semantic is then de-
duced from the concrete semantic. Each operator of the abstract semantic mimics its
associated operator in the concrete semantic.

The concrete domain and abstract domain are linked with a so-called Galois con-
nection. This Galois connection enforces the soundness property. Each element of the
concrete domain is associated with an abstract element that is a sound approximation
(i.e. an overapproximation). The abstract semantic is derived such that the Galois
connection is preserved through each evaluation in the concrete semantic.

To simplify notations, the complete lattice structure associated with the concrete
domain (℘(Dom),⊆,∪,∩) is denoted with (A,⊑,⊔,⊓). Each element in A corre-
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sponds to a set of signals of the interconnection. Abstracting the concrete semantic
corresponds to describing this set of signals with elements in a A ⊆ A. In practice,
elements of A are chosen to be computer representable (such as time-varying intervals
or time-varying ellipsoids for example). By using an isomorphism from Ā to a set A∗,
each element P̄ ∈ Ā is associated with an abstract element P̄ ∗ of an abstract domain
A∗.

Definition 5.5. Galois connection

Let (A,⊑,⊔,⊓) and (A∗,⊑∗,⊔∗,⊓∗) be two complete lattices. A pair of functions
(α, γ), with α : A → A∗ and γ : A∗ → A, is a Galois connection if it holds

∀x ∈ A, ∀x∗ ∈ A∗, α(x) ⊑∗ x∗ ⇔ x ⊑ γ(x∗)

We can enumerate a few properties of the Galois connection.

Theorem 5.2. Galois connection

Let (A,⊑,⊔,⊓) and (A∗,⊑∗,⊔∗,⊓∗) be two complete lattices and (α, γ) be a
Galois connection between A and A∗

(A,⊑,⊔,⊓)
γ←−−−−→
α

(A∗,⊑∗,⊔∗,⊓∗).

Then, the following properties are satisfied

α is a monotonic function,
γ is a monotonic function,
∀x∗ ∈ A∗, α ◦ γ(x∗) ⊑∗ x∗, and
∀x ∈ A, x ⊑ γ ◦ α(x).

The abstraction function α associates to any concrete element x ∈ A an abstract
element x∗ = α(x). The concretisation function γ associates to any abstract element
x∗ ∈ A∗ a concrete element x = γ(x∗).

Sometimes the existence of a Galois connection between two complete lattices is
too strong of a requirement as the abstraction function α might not exist. For such
cases, [Cousot and Cousot, 1992] proposes to relax the Galois connection framework
to work only with the concretisation function γ.

Definition 5.6. Concretisation function

Let (A,⊑,⊔,⊓) and (A∗,⊑∗,⊔∗,⊓∗) be two complete lattices. A concretisation
function is monotonic function γ : A∗ → A. X∗ is an abstraction of X when
X ⊆ γ(X∗).
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5.4 Abstract semantic

The previous section showed that the concrete domain and abstract domain can be
both provided with a mathematical structure of complete lattices. In what follows,
we assume to have a Galois connection between the concrete domain (A,⊑,⊔,⊓) and
an abstract domain (A∗,⊑∗,⊔∗,⊓∗)

(A,⊑,⊔,⊓)
γ←−−−−→
α

(A∗,⊑∗,⊔∗,⊓∗).

Now that abstract domains are defined, we should define the abstract semantic.
We will see that the abstract semantic mimics the concrete semantic: each function
evaluation in the concrete domain gives rise to a function evaluation in the abstract
domain, each fixed-point computation in the concrete domain gives rise to a fixed-
point computation in the abstract domain. For a given concrete semantic JS K, we
can compute an abstract semantic JS K∗. This abstract semantic is built by structural
induction over the syntax of the system interconnection. This semantic is sound when
α(JS K) ⊑∗ JS K∗, or equivalently when JS K ⊑ γ(JS K∗). The soundness property
is obtained by using sound operator evaluation and fixed-point computation over
abstract elements.

In Section 5.4.1, we detail the abstract counterpart of the concrete functions. In
Section 5.4.2, we detail the abstract fixed-point computation.

5.4.1 Abstract evaluation

For a function F : A → A in the concrete domain, it is sometimes possible to define
F ∗ : A∗ → A∗ an “abstract evaluation” of F . To ensure the soundness of the abstract
semantic, the soundness of F ∗ with respect to the Galois connection and F should be
ensured.

Definition 5.7. Sound approximation of a function

For a function F : A → A, F ∗ : A∗ → A∗ is a sound approximation of F
whenever

∀X∗ ∈ A∗, F ◦ γ(X∗) ⊑ γ ◦ F ∗(X∗)

5.4.2 Abstract fixed-points

The previous section details how the abstract counterpart of concrete functions can
be defined. We now detail the computation of the greatest fixed-point that appears
in the concrete semantic. Since the greatest fixed-point in the concrete domain exists
but is not necessarily computable, we aim at computing a sound approximation of the
greatest fixed-point in the abstract domain by using a fixed-point transfer theorem:
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Theorem 5.3. Fixed-point transfer

Given a Galois connection

(A,⊑,⊔,⊓)
γ←−−−−→
α

(A∗,⊑∗,⊔∗,⊓∗),

for F ∗ : A∗ → A∗ a monotonic function and F : A → A a monotonic function.
When F ∗ is a sound approximation of F then

gfpγ(X∗) {F} ⊑ γ
(
gfpX∗ {F ∗}

)

for every X∗ ∈ A∗.

Proof. See Theorem 2 in [Cousot, 2002] ♦

When each operator is sound, the greatest fixed-point in the concrete domain is
soundly approximated by the abstract greatest fixed-point in the abstract domain.

Practical computation of fixed-point

Theorem 5.3 gives a way to soundly approximate the fixed-point of the concrete do-
main by computing a greatest fixed-point in the abstract domain. Contrary to the
concrete domain, the abstract domain is computer-representable and abstract evalu-
ations are computable. This greatest fixed-point can be computed using an iterative
approach as in Property 5.1: let assume that for a D∗ ∈ A∗, γ(D∗) overapproximates
gfpX {F}, i.e.

gfpX {F} ⊑ γ(D∗),

that D∗ is a post-fixpoint of F ∗, i.e.

F ∗(D∗) ⊑∗ D∗,

and that F ∗ is a monotonic operator, then the sequence {Y ∗k } of iterates, defined by

{
Y ∗k+1 = F ∗(Y ∗k )

Y ∗0 = D∗
(5.9)

is monotonically decreasing, i.e. Y ∗k+1 ⊑∗ Y ∗k for every k ≥ 0, and each iterate is a
sound approximation of gfpX {F}, i.e.

gfpX {F} ⊑ · · · ⊑ γ(Y ∗k ) ⊑ γ(Y ∗k−1) ⊑ · · · ⊑ γ(D∗),

they correspond to a refinement of γ(D∗).
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Partial narrowing operator In practice, when Y ∗0 is an abstraction of gfpX {F},
it is always possible to refine Y ∗0 with a sound approximation of Y 7→ F (Y )⊓Y . The
produced sequence decreases more rapidly than the sequence derived by (5.9) and is
still a sound approximation of gfpX {F}. An abstract operator △∗ is a narrowing
operator if it is a sound approximation of the operator ⊓∗ and such that for any
X∗, Y ∗ ∈ A∗ it holds X∗△∗ Y ∗ ⊑∗ Y ∗. Classical definitions of the narrowing operator
usually require that the sequence {Y ∗k } generated by

{
Y ∗k+1 = F ∗(Y ∗k )△∗ Y ∗k
Y ∗0 = D∗

is ultimately stationary in finite-time (see Definition 2.2.4 in [Miné, 2004]), such
property ensure the termination of iterates. In this work, we use a relaxed form of
the narrowing operator where the ultimately stationary property is not required and
where the property X∗△∗ Y ∗ ⊑∗ Y ∗ for every X∗ and Y ∗ in A∗ holds for a different
partial order ⊏∼. Then, iterates Y ∗k decreases with respect to the partial ordering ⊏∼.

Definition 5.8. Partial narrowing operator

An abstract binary operator △∗ is a narrowing with respect to the partial order
⊏∼
∗ if and only if, for all X∗, Y ∗ ∈ A∗, it holds
(Y ∗ ⊓∗ X∗) ⊑∗ (Y ∗△∗X∗), and
(Y ∗△∗X∗)⊏∼∗X∗.

5.4.3 Abstract semantic

In Section 5.4.1 and Section 5.4.2, we defined the abstract counterparts of each op-
erator of the concrete semantic (as defined in Section 5.2). The abstract semantic is
then defined by structural induction overt the syntax (defined in Section 5.1). When
there is a Galois connection between the concrete domain and when each operator
used within the abstract semantic is sound, then the abstract semantic is sound with
respect to the concrete semantic.

Proposition 5.5. Soundness of the abstract semantic

Provided the abstract operator are sound, the abstract semantic is sound with
respect to the concrete one:

JS K ⊑ γ
(
JS K∗

)
.
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5.5 Abstractions for vectorial space of finite di-

mension

The previous sections detailed the classical framework of abstract interpretation and
the concrete semantic of an interconnection of dynamical systems. The following two
sections describe abstract domains used to abstract elements of the concrete domains.
This section details abstractions for constant signals such as system parameters or
an initial state of a system. The next section uses a point-wise lift of these abstract
domains to represents time-varying signals.

5.5.1 Ellipsoidal domain

In this section, we define the domain of convex sets, this domain can be supplied with
a complete lattice structure. Since every convex set can be described as an intersection
of ellipsoids, we then define the abstract domain of ellipsoidal sets. Finally, we define
a narrowing operator that allows to describe a sound approximation of convex sets
with fewer ellipsoidal sets.

Let Convn be the set of convex subsets of Rn. (Convn,⊆) is a partially ordered set.
Since an intersection of convex sets is convex, c1, c2 ∈ Convn implies that c1 ∩ c2 ∈
Convn. A union c1 ∪ c2 of convex sets c1 and c2 is not convex in the general case.
However, its convex hull hull(c1 ∪ c2) (where hull(X) is defined as the intersection
of all the convex sets greater than X, hull(X) =

⋂
X⊆C C) is convex and it soundly

approximates the union ∪. Let ∪c be the convex hull-union operator, i.e. c1 ∪c c2 =
hull(c1 ∪ c2). To this respect

Proposition 5.6. Convex set domain

(Convn,⊆,∪c,∩, ∅,Rn) is a complete lattice.

Proposition 5.7. Galois connection of the convex set domain

The pair of functions αC = hull and γC = id is a Galois connection between the
two complete lattices (℘(Rn),⊆,∪,∩, ∅,Rn) and (Convn,⊆,∪c,∩, ∅,Rn).

Proof. Since hull(X) is defined as the intersection of all the convex sets greater than
X, the equivalence hull(X) ⊆ C ⇔ X ⊆ C holds for all X ⊆ R

n and C ∈ Convn. ♦

Any convex set C ∈ Convn can be described as an intersection of ellipsoids, i.e.
C =

⋂
E∈E E for E ⊆ Ellin. But contrary to Convn, ellipsoids in Ellin can be

represented with a symmetric matrix in S
(n+1)×(n+1). Since matrices can be repre-

sented and manipulated in a computer program, the manipulation of convex sets as
an intersection of ellipsoidal sets is easier.
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Figure 5.4: The set X ⊆ R
2 is soundly approximated by its convex envelop C =

αC(X) = hull(X). The set C is equivalently described with C = γE(E) the intersection
of all ellipsoids overapproximating C (such as E1, E2 ∈ E).

The power set of ellipsoids ℘(Ellin) can be provided with a complete lattice
structure. For E1, E∈ ∈ ℘(Ellin), we define the following relationships E1 ⊑E E2 iff
E2 ⊆ E1, E1 ⊔E E2 = E1 ∩ E2, and E1 ⊓E E2 = E1 ∪ E2.

Proposition 5.8. Ellipsoidal domain

(℘(Ellin),⊑E,⊔E,⊓E, ∅,Rn) is a complete lattice.

Proposition 5.9. Galois connection of ellipsoidal domain

The pair of functions αE(C) = {E ∈ Ellin |C ⊆ E} and γE(E) =
⋂

E∈E E is a
Galois connection between the two complete lattices (Convn,⊆,∪c,∩, ∅,Rn) and
(℘(Ellin),⊑E,⊔E,⊓E, ∅,Rn).

The Galois connections can be composed, and therefore, there is a Galois connec-
tion between the complete lattice (℘(Rn),⊆,∪,∩, ∅,Rn) and (℘(Ellin),⊑E,⊔E,⊓E, ∅,Rn)
(see Figure 5.4).

Narrowing operator The intersection ⊓E introduces many new terms. Each time,
we compute the intersection between two elements E1 and E2 of ℘(Ellin), E1 ∩ E2
requires as many ellipsoids as the one describing E1 plus the ones that describe E2. To
avoid having abstract elements that accumulate terms because of the intersection ⊓E,
we introduce a narrowing operator that soundly approximates the intersection ∩. This
narrowing operator associates an intersection of ellipsoids with a sound approximating
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ellipsoid. Since there is an infinite number of ellipsoids that overapproximates an
intersection of ellipsoids, and since the set of ellipsoids greater than this intersection
(with respect to ⊆) is not a pointed ordered set (i.e. there is no least element), we
choose the least element with respect to another partial order (such as the volume of
the ellipsoid for example).

We will talk more specifically about the case where ellipsoids are ordered by a
cost function J : Ellin → R. For example, J might be the volume of the ellipsoids.
Then, we define the narrowing operator △∗J by

Y ∗△∗J X∗ = arg inf J(Z∗)
s.t. Y ∗ ∩X∗ ⊆ Z∗

for Y ∗, X∗, Z∗ ∈ ℘(Ellin). By construction, Y ∗ ∩ X∗ ⊆ Y ∗△∗J X∗, moreover, since
X∗ belongs to the feasible set of this optimization problem, J(Y ∗△∗J X∗) ≤ J(X∗).
△∗J is a narrowing operator with respect to the order ⊏∼

∗
J
defined by Z∗⊏∼

∗
J
X∗ iff

J(Z∗) ≤ J(X∗).

5.6 Abstractions for time-varying signals

In this section, we detail an abstract domain used to describe continuous-time or
discrete-time signals.

Let Domx be the concrete domain of a time-varying signal x (continuous- or discrete-
time) of the interconnection of systems. The signal x is a function that associates
to a time-domain T (that is a subset of R+) a value in R

n. We can abstract such
signals with the domain of time-varying sets which corresponds to a point-wise lift of
the complete lattice (℘(Rn),⊆,∪,∩, ∅,Rn) over the time-domain T .

Definition 5.9. Point-wise lifting

If (A,⊑,⊔,⊓,⊥,⊤) is a complete lattice and T is a set, then (T → A, ⊑̇, ⊔̇, ⊓̇, ⊥̇, ⊤̇)
is also a complete lattice if we define the dotted operator by point-wise lifting:(T → A, ⊑̇, ⊔̇, ⊓̇, ⊥̇, ⊤̇),

X⊑̇Y is defined by ∀t ∈ T , X(t) ⊑ Y (t),

(
⊔̇X )(t) is defined by

⊔ {X(t) |X ∈ X}, ⊤̇(t) = ⊤,
(
ḋX )(t) is defined by

d {X(t) |X ∈ X}, ⊥̇(t) = ⊥.

Then, we define the Time-varying set domain as the complete lattice (T →
A, ⊑̇, ⊔̇, ⊓̇, ⊥̇, ⊤̇). that corresponds to the point-wise lift of the complete lattice
(A,⊑,⊔,⊓,⊥,⊤). Time-varying set domains are an abstraction of time-varying sig-
nals domains.
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Proposition 5.10. Galois connection of the domain of time-varying sets

If the pair (α, γ) defines a Galois connection between the two complete lattices
(℘(Rn),⊆,∪,∩,⊥,⊤) and (A∗,⊑∗,⊔∗,⊓∗,⊥∗,⊤∗), then (αTV, γTV), defined by

X∗ = αTV(X), where X∗ : t 7→ α(X(t))
X = γTV(X

∗), where X = {x ∈ Domx | x(t) ∈ γ(X∗(t))}

defines a Galois connection between the domain of time-varying signals (℘(T →
R

n),⊆,∪,∩,⊥,⊤) and (T → A∗, ⊆̇∗, ∪̇∗, ∩̇∗, ⊥̇∗, ⊤̇∗).

Proof. ♦

Time-varying signals can be approximated with time-varying ellipsoids which is a
point-wise lift of the ellipsoidal domain introduced in Section 5.5.1.

Example 5.3.

The set of signals X ⊆ (R+ 7→ R)

X = {t 7→ sin(t+ ψ)e
t
10 |ψ ∈ [0, 2π] } (5.10)

can be soundly approximated with the time-varying ellipsoid X∗ = αTV(X) (see
Figure 5.5) defined by

X∗(t) = E(t)

where E is the time-varying ellipsoid defined by its time-varying center c(t) = 0
and its time-varying radius r(t) = e

t
10 , for ever t ≥ 0. The set γTV(X

∗) contains
all the signals x : R+ → R belonging to (x(t)− c(t))2 ≤ r(t)2 at every t ∈ R+.

5.7 Piecewise linear abstraction

Let us assume that the interconnection of systems involves a source signal “P p ”
where p is of finite dimension (e.g. p is a real-valued vector) and where P is bounded
(e.g. p could be an unknown initial state or an uncertain parameter of the system).
The concrete domain Dom corresponds to the Cartesian product of Domp and of the
domain Domx of other signals x labeled by x in the interconnection. Each value p ∈ P
is associated with a subset of the semantic, i.e. a subset of Domx. In this section,
we propose to define a piecewise linear abstraction that expresses this relationship
between p (over a partition of P) and x in the concrete semantic. Section 5.8.2 uses
such abstraction to derive tight approximation.

We first define the partition of P , then we introduce the piecewise linear abstrac-
tion, and finally, we detail the Galois connection of this abstraction with the concrete
domain.
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Figure 5.5: The set of signals X defined by (5.10) (few signals are drawn in black)
with a time-varying ellipsoidal set (in red).

Partition Let a partition of P be described by a finite set of cells Pi ⊆ P , i ∈ I,
with I a set of labels associated with each cell, such that:
• cells are convex polytopes, to this respect, each cell Pi can be described as the
convex hull of a finite set of points;
• cells are disjoint, i.e. i 6= j ⇒ P o

i ∩P o
j = ∅ (where P o is the open set associated

with the set P );
• cells cover the entire set P , i.e. P =

⋃
i∈I Pi.

Let {pk}k∈K be the vertices of the partition with K a set of labels identifying the
vertices. For a cell Pi, let Ki ⊆ K the labels of the vertices of Pi. For each vertex pk,
let the cell neighborhood of pk, denoted by P̃k, be the union of cells touching pk (see
Figure 5.6).

Piecewise linear abstraction Let the three complete lattices (Ap,⊆,∪,∩,⊥,⊤),
(Ax,⊆,∪,∩,⊥,⊤), and (A,⊆,∪,∩,⊥,⊤) where Ap = ℘(Domp), Ax = ℘(Domx), and
A = ℘(Domp × Domx) such that Domp and Domx are vector spaces. Let the piecewise
linear (PWL) domain be defined as the point-wise lift (introduced in Definition 5.9)
of Ax over the set of vertices K, i.e.

(APWL, ⊆̇, ∪̇, ∩̇, ⊥̇, ⊤̇).

where APWL is a subset of K → A, the set of functions that associates to each K an
element of A. Elements ZPWL ∈ APWL associates to a k ∈ K an element {pk} × Xk
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Figure 5.6: A partition of P = [−1, 1]2. Pi is a cell, P̃j is the neighbor cells of the
vertex pk.

where Xk ∈ Ax. By Definition 5.9, the PWL domain inherits from the complete
lattice structure of (A,⊆,∪,∩,⊥,⊤). We define a concretization function γPWL. This
concretization function associates to ZPWL ∈ APWL, an element of A, and is defined

γPWL(ZPWL) =
⋃

j∈I
γPWL(ZPWL, j) (5.11)

where

γPWL(ZPWL, j) =
⋃



∑

k∈Kj

λj,k · ZPWL(k)

∣∣∣∣∣∣
∀k ∈ Kj, λj,k ≥ 0 and

∑

k∈Kj

λj,k = 1





where
∑

k∈Kj
λj,k ·ZPWL(k) is a weighted Minkowski sum1. In other words, let (p, x) ∈

Dom such that p belongs to the cell Pj, j ∈ I. The point (p, x) belongs to γPWL(ZPWL)
whenever (p, x) can be expressed as a convex combination of the points (pk, xk), with
k ∈ Kj, where pk is a vertex of Pj and where (pk, xk) ∈ ZPWL(k) (see Example 5.4).

Example 5.4.

Let the set Z be
Z = {(p, x) ∈ R

2 | x = sin(1.5p)2}, (5.12)

1For two subsets A and B of a vectorial space, x ∈ λ ·A+ µ ·B whenever x = λa+ µb for some
a ∈ A and b ∈ B, λ, µ ≥ 0 and λ+ µ = 1.
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Figure 5.7: The PWL abstraction ZPWL in (5.13) defines a sound approximation
γPWL(ZPWL) of the set Z in (5.12).

with p ∈ P = [−1, 1]. P is partitioned with a regular mesh {pk}k∈K = {−1.0,
−0.6,−0.2, 0.2, 0.6, 1.0}, where K = 1, . . . , 6. The set Z can be soundly approxi-
mated by γPWL(ZPWL) where ZPWL is defined by

ZPWL(k) 7→ {pk} ×Xk (5.13)

with
X1 = X6 = [1.09, 0.96]

X2 = X5 = [0.71, 0.55]

X3 = X4 = [0.12,−0.03]
where Xk ⊆ R (see Figure 5.7).

Operator evaluation Let a function F : A → A. When F satisfies

F

(
∑

k

λkYk

)
⊆
∑

k

λkF (Yk) (5.14)

then the function FPWL defined by

WPWL = FPWL(ZPWL)
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with

WPWL(k) = F ◦ ZPWL(k)

is a sound approximation of F . The condition (5.14) is held for a particular class
of functions. Let f : Dom 7→ Dom be an affine function over the vectorial space
Dom = Domp × Domx. Let F the lift to sets of f , i.e. F (A) = {f(a) | a ∈ A}. Since f
is affine, f(λa + µb) = λf(a) + µf(b). For λ, µ ≥ 0 s.t. λ + µ = 1, the Minkowski
sum λA+ µB is well defined. For x ∈ F (λA+ µB), there is a a ∈ A and b ∈ B such
that x = f(λa+ µb) = λf(a) + µf(b) ∈ λF (A) + µF (B). Therefore, F (λA+ µB) =
λF (A) + µF (B).

5.8 Examples

In this section, we present two examples that explains the concepts introduced in
the previous sections. In Section 5.8.1, we present a simple closed-loop LTI discrete-
time system analyzed through Interval Arithmetic (presented in Chapter 4), In Sec-
tion 5.8.2, we present an application of the piecewise linear abstract domain.

5.8.1 Closed-loop of a discrete-time system

We study the interconnection of systems S (see its block diagram in Figure 5.8) over
the discrete-time interval Td = {1, . . . , T} ⊆ N for T > 0

G
Xi yk

xi

w′

k
wk

Sol
S

Figure 5.8: Block diagram of the closed-loop discrete-time LTI system.

S : “Xi
xi µw {G} y ◦ ” (5.15)

where G : R× l(Td;R)→
(
l(Td;R)

)2
is the discrete-time system that maps an initial

state xi ∈ R, and a discrete-time input signal w ∈ l(Td;R), to the two output signals
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y ∈ l(Td;R) and w′ ∈ l(Td;R). G is defined by

G :





xt+1 = axt + bwt

x1 = xi

yt = xt

w′t = xt

(5.16)

with a = 0.9 and b = 0.02. The set of initial states belongs to X1 = [−1, 1].

Thanks to its simple form (G is 1 state dimension discrete-time linear system),
its associated lifted operator JGK can be exactly computed using the interval arith-
metic abstract domain as introduced in Chapter 4. Its exact computation is given in
Remark 5.5.

Remark 5.5. Exact fixed-point expression

For this specific system, the S represents a discrete-time system





xt+1 = (a+ b)xt

x1 = xi ∈ Xi

yt = xt

(5.17)

Dom can be described as a 1 + 2T vectorial space where each element can be
represented by a vector (xi, w1, w2, . . . , wT , y1, y2, . . . , yT ). Each trajectory {xt}
of S is a sequence that linearly depends on the initial value x1 = xi ∈ Xi. For
every k = 1, . . . , T , it holds xt = xic

k−1, where c = a+ b, and thus, the semantic
of the interconnection of systems [S ] ⊆ Dom is then exactly equal to

[S ] = {xi · (1, 1, c, . . . , cT−1, 1, c, . . . , cT−1) | xi ∈ Xi}.

In what follows, we detail the computation of the concrete semantic JS K of the
interconnection of systems S . The set of labels of S is V = {xi, w, y, x′i, w′, y′}, each
label is associated with its respective domain Domxi = Domx′i = R, Doml = l(Td;R) for
l ∈ {w, y, w′, y′}. The concrete domain A = ℘(Dom) corresponds to the power set of
the domain of all internal signals. The concrete semantic JS K ⊆ Dom is then deduced
by syntactic decomposition of the expression (5.15). It corresponds to the greatest
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fixed-point of a monotonic operator X 7→ JS K(X; ∅, ∅). Its detailed computation is

JS K = gfpΣ {X 7→ JS K(X; ∅, ∅)}

JS K(X; ∅, ∅) = J◦K(∗; y, ∅) ◦ Jµw {G}K(∗; xi, y) ◦ JXiK(X; ∅, xi)

JXiK(X; ∅, xi) = {ρ ∈ X | ρx′i ∈ Xi}
JGK(X; (xi, w), (y, w))= {ρ[(x′i, w′)← G(ρy, ρw), (xi, w)← (ρx′i , ρw′)] | ρ ∈ X}
J◦K(X; y, ∅) = X

Jµw {G}K(X; xi, y) = JGolK(X; (xi, w), (y, w))

where Σ = {ρ | σl = σl′ , l ∈ {xi, w, y}}.
The concrete domain A is abstracted with the time-varying abstraction (as intro-

duced in Section 5.6) where sets are intervals and the time domain is Td

A∗ = (Td → Int).

Since the interval domain is a complete lattice structure, this instance of the time-
varying set abstraction has a complete lattice structure as well. The two domains A
and A∗ are linked by the concretisation function

γ(X∗) = (γInt(X
∗(1))× (γ(Td→Int)(X

∗))2)2

As the definition of the concretisation function γ suggests, for ρ = (xi, w, y, x
′
i, w

′, y′) ∈
Dom, the signals xi and x

′
i are represented with the interval γInt(X

∗(1)) ⊆ R, and the
signals w,w′, y, and y′ are represented with the interval set γ(Td→Int)(X

∗).
Let S be an expression appearing in the syntactic decomposition of S (S is

expressed in the syntax given in Table 5.1). Since we are searching for a fixed-point
lower than Σ, each operatorX → JSK(X; ∅, ∅) in the concrete semantic can be soundly
approximated by

JSKΣ(X; u, y) = JSK(X; u, y) ∩ Σ. (5.18)

where u, y ∈ V (where V is defined by (5.1)). A sound approximation JSK∗Σ of
JSKΣ can be evaluated within the abstract domain of interval arithmetic as defined
in Section 4.1 of Chapter 4. The greatest fixed-point is computed using descending
chains as defined in Proposition 5.1. Starting with a post-fixpoint X∗0 (k) = [−10, 10]
for all t ∈ Td, we compute the sequence X∗k defined by

X∗k+1 = JS K∗Σ(X∗k ; ∅, ∅)

for few iterations. Figure 5.9 shows plots of the abstract iterates projected over the
domain of the signals w = w′ = y = y′ (these signals coincide in this specific case
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Figure 5.9: Decreasing sequence {Yk} of overapproximations of the reachable tube
Ycl of the signal y of the interconnection of systems Scl.

due to the form of G), these iterates are Yk = γTd→Int(X
∗
k), for k = 0, 1, 2, . . . and we

compare them to Ycl that corresponds to the exact semantic of the interconnection of
systems (projected over w = w′ = y = y′). Since every function evaluation is sound,
by Proposition 5.5, and if X∗0 is a post-fixpoint of gfpΣ∗ {X 7→ JS K∗Σ(X; ∅, ∅)}, then
γTd→Int(X

∗
k) are a sound approximation of [S ]. Also, the time-varying interval Yk

is a sound approximation of y = y′ and w = w′ where ρ = (xi, w, y, xi, w, y) ∈
[S ]. Figure 5.10 compares the volume of the overapproximation with the volume of
the exact reachable set of S (see Remark 5.5) for the 6 first iterates. After three
iterations, the volume error is less than 1%. The error exponentially decreases with
iterations and converges to a value close to the numerical precision of the floating-
point arithmetic.
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Figure 5.10: The average volume error at each iteration exponentially decreases
and converges to 0.

Set-based Cosimulation Paul Rousse



Chapter 5. Set-based Cosimulation 152

G fnl
Xinit x0

y u′

u

Sol
S

Figure 5.11: Block diagram representation of the interconnection of systems S

described by (5.19). Sol is the open-loop system described by (5.22).

5.8.2 Piecewise linear models

In this section, we study a nonlinear system described as the interconnection of a
linear time-invariant system with a nonlinear feedback. The response of the linear
system is overapproximated with results of Part I, and the one of the nonlinear feed-
back is overapproximated with the interval arithmetic framework (as presented in
Section 4.1 of Chapter 4). The concrete domain of this system is abstracted with a
PWL abstraction as presented in Section 5.7.

Description of the interconnection of systems We study the interconnection of
systems S described by the expression (5.19) (see Figure 5.11) over the time-interval
T = [0, T ], T > 0.

S : “Xinit
x0 µu {G y fnl} z ◦ ” (5.19)

where V = {x0, u, y} are labels of S . The system G : R2 × L(T ;R) 7→ L(T ;R) is a
linear time-invariant system defined by y = G(x0, u) where





ẋ(t) = Ax(t) + Bu(t)

x(0) = x0

y(t) = Cx(t)

for an initial state x0 ∈ R
2, an input u ∈ L(T ;R), and an output y ∈ L(T ;R).

Parameters A, B, and C are defined by

A =

[
−2 3
2 −2

]
, B =

[
1
0

]
, and C =

[
1 0

]
.

The system fnl : L(T ;R) 7→ L(T ;R)2 is the nonlinear function defined by (z, u) =
fnl(y) where

z(t) = u(t) = sin(3y(t))3. (5.20)
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The set Xinit of initial states is defined by

Xinit = {(x1,init, 0) | x1,init ∈ [−1, 1]}. (5.21)

Let the open-loop system Sol be
Sol : “ (Xinit, idu)

(x0,u) G y fnl ”. (5.22)

The system S can equivalently be expressed with “µu {Sol} ”. Its domain is Dom =
Domx0×Domu×Domy, where Domx0 = R

2, and Domu = Domy = L(T ;R). An environment

ρ = (x0, u, y) belongs to the semantic of the system [S ] (i.e. [S ](ρ; ∅, ∅) is true)
whenever the following relations are satisfied





x0 ∈ Xinit

y = G(x0, u)
u = fnl(y)

Concrete semantic The concrete domain A is the power set of Dom, i.e. A =
℘(Dom). Each element ρ ∈ X in a concrete element X ∈ A is an environment
ρ = (x0, u, y, x

′
0, u
′, y′) (i.e. an environment of the system extended with the “primes

variables”). The concrete semantic is then defined by induction over the syntax.

Abstract semantic We study two possible abstractions of the interconnection of
systems S .

The first abstraction (Y0,U0) makes use of the time-varying ellipsoidal domain.
Since y and u are 1-dimensional signals, the time-varying ellipsoidal domain coincides
with the interval domain. The operator G is a linear time-invariant system and can be
abstracted using the ellipsoidal method presented in Chapter 1. The operator fnl is
a nonlinear system, we abstract it with U0 as the set of signals with values belonging
to [−1, 1].

The second abstraction (Yi,Ui) (for i in {5, 10, 20}) makes use of the piecewise
linear template allowing to describe the relationship between the initial condition x0
and the signals (u, y). The set of initial condition is partitioned using a uniform grid
{xk0}k∈Ki

where I have i elements. To each initial condition, we associate a trajectory
(yk, uk). Then, the signals u and y are abstracted using the ellipsoidal domain, and,
as above, the operator G is abstracted using the ellipsoidal method as presented in
Chapter 1. The operator fnl is abstracted using a linear piecewise model between
each centered trajectories (yk, uk).

Figure 5.13 and Figure 5.14 show the overapproximation of signals y and u (resp.)
with the ellipsoidal domain (resp. Y0 and U0) and with the piecewise linear abstrac-
tion (resp. Yi and Ui for i in {5, 10, 20}). Figure 5.12 compares the volume of the
overapproximations with the volume of the exact reachable set of Y .
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Figure 5.12: Comparison of the precision when using a PWL abstraction. Yi for i
in {5, 10, 20} corresponds to overapproximations of Y using the PWL abstraction (i
corresponds to the number of points in the mesh of the initial state), Y0 corresponds
to the ellipsoidal domain.

Thanks to the Galois connection between the concrete and abstract domain, we
know that the abstract semantic is a sound approximation of the concrete seman-
tic. Since Y spans over [−0.7, 0.7] (see Figure 5.12), using (5.20), U spans [−1, 1].
Therefore, the abstraction U0 of U with the ellipsoidal domain cannot be smaller than
U . And to this respect, the smallest fixed-point using an ellipsoidal domain is often
strictly larger than the actual set of trajectories. The ellipsoidal fail to capture the
dependencies between the signals u and y.

When using the PWL, abstractions Yi and Ui better represent the set of trajec-
tories of the system S (see Figure 5.13, Figure 5.14 and Figure 5.12).
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(a) t = T

(b) t ∈ [0, T ]

Figure 5.13: Sound approximation of the relationship y(t) 7→ u(t).
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(a) t = T

(b) t ∈ [0, T ]

Figure 5.14: Sound approximation of the relationship y(t) 7→ u(t) at final time.
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5.9 Related works

[Oulamara and Venet, 2015] introduces the gauge domain to overapproximate the
reachable tube of discrete-time systems (that are computer programs in this case).
The reachable tube is abstracted with ellipsoids and ellipsoidal cones oriented in
the time axis direction. In this work, we consider a larger class of abstractions:
time-varying subsets of the state space, examples treated make use of time-varying
ellipsoids as well as intervals.

An efficient reachability analysis framework is often specialized for a very narrow
family of models. However, modern automotive systems are a mixture of many sys-
tems that are modeled in different frameworks. Trying to find one common model is
often cumbersome. In this work, we propose an approach combining different analysis
frameworks to overapproximate the reachable set of an interconnection of complex
systems. These frameworks are articulated around the abstract interpretation frame-
work.

In our work, the interconnection of systems is expressed with two connections: the
serial connection of systems and the feedback connection. Such constructions have
been studied in the field of reachability analysis under the name of compositional
methods. [Eqtami and Girard, 2019] computes invariants for an interconnection of
two systems. This invariant is expressed as a level set in the state space. Then each
system of the interconnection is used to refine a prior overapproximation (i.e. post-
fixpoint) until a fixed-point is found. [Chen and Sankaranarayanan, 2016] applies the
same reasoning to reachability analysis in the case of multi-robot applications. The
reachable set of each robot is overapproximated using a prior overapproximation of
the reachable set of other robots. The reachable tubes are computed using inter-
vals propagated with Taylor models (using the tool Flow* described in [Chen et al.,
2013]). Previously cited works use compositional methods in order to analyze higher
dimensional systems. Our motivation is different, we use compositional methods to
couple different reachability analysis frameworks.

[Bogomolov et al., 2019] expresses the reachable set of an hybrid system as a fixed-
point equation over sets of system trajectories. The hybrid system is expressed as an
interconnection of a continuous system and a discrete system. Then, trajectories are
abstracted as a union of convex sets and the reachable tube is expressed as the least
fixed-point of a discrete-time operator and the continuous-time operator.

In our approach, we produce a decreasing sequence of sets that overapproximates
the reachable tube of the interconnection of systems. It is possible to think of these
iterates as a set-based version of the Picard iterates that arise in ordinary differential
equation integration (see Remark 5.2). In the field of validated numerical integration,
[Moore et al., 2009] has introduced a set-based Picard operator evaluated by using
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the interval arithmetic framework (as presented in Chapter 4).

5.10 Conclusion

In this chapter, we study an interconnection of systems formulated within an abstract
interpretation approach. The interconnection of systems is described with a syntax
that defines a set of systems (a mapping from an input signal to an output signal), a
set of sources (i.e. a set of signal), and a set of connections between a pair of these two
(a serial connection and a feedback connection). Each connection is associated with:
a signal, that is a constant, or a time-varying, continuous- or discrete-time variable;
and a relationship that this signal satisfies with other signals in the interconnection
of systems. We show that the set of signals of the interconnection of systems is the
greatest fixed-point of a monotonic operator in a complete lattice. Such a problem
is suited to the abstract interpretation framework. We introduce the point-wise lift
abstract domains in order to represent time-varying signals. The method is applied
to two toy examples.

Future works This work can be extended in several ways.
We have abstracted signals with time-varying sets. When studying an intercon-

nection of systems, this approach neglects the correlation between two systems. The
piecewise linear (PWL) abstraction allows to represent this correlation between two
variables. However, we only applied the PWL abstraction between a constant sig-
nal and a time-varying signal. This use is easier since the constant variable belongs
to a space of low dimensions for which it was straightforward to define a partition.
The use of the PWL abstraction between two time-varying signals is more complex
since time-varying signals belong to spaces of higher dimensions (of infinite dimen-
sion continuous-time signals and of large dimension for discrete-time signals). Future
works could focus on an extension of the PWL abstraction for time-varying signals.

The precision of our method has been evaluated for specific systems where the
actual reachable tube was computable. For more complex systems, the precision can
be evaluated between each system by computing the distance between some existing
output signals and the actual overapproximation of the trajectory transformer. Future
work would focus on a more systematic approach to evaluate the precision of produced
overapproximations.
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Conclusion

During this thesis, we developed three methods to overapproximate the reachable set
of an embedded system.

Our first contribution concerns results around overapproximations with time-
varying conics of the reachable set of a Linear Time-Varying (LTV) system subject
to bounded disturbances. The time-varying coefficient of this conic is the solution to
an initial value problem. Contrary to previous works for such a class of systems, we
do not restrict the overapproximations to time-varying ellipsoids (i.e. overapproxi-
mations might be unbounded), and we work with homogeneous coordinates. In this
coordinate system, the initial value problem has an elegant expression which is a
Differential Riccati Equation (DRE). Such expression is interesting as the DRE has
been heavily studied. We more specifically studied two subclasses of systems: LTV
system subjects to Quadratic Constrained (QC) disturbances, and LTV systems sub-
jects to Integral Quadratic Constrained (IQC) disturbances. For these subclasses, we
proved that it exists an overapproximation over any time-horizon. Such a guaranty of
existence has been rarely addressed. Usually, the existence of an overapproximation
is either conditioned by the non-emptiness of a feasible set of a linear optimization
problem or is either conditioned by the existence of a non-diverging solution to a
DRE.

For QC systems, we proposed the use of positive time-varying multipliers. Each
multiplier is associated with a time-varying conic overapproximation. Since the set of
multipliers is infinite, the set of time-varying conics is as well infinite. We provide two
methods to choose a multiplier that produce a tight time-varying conic overapprox-
imation. In the first method, the multiplier is chosen such that the boundary of the
overapproximation touches the reachable set along a so-called touching trajectory. In
the second method, the multiplier is chosen such that the overapproximation has a
minimal volume at a given time. Suboptimal solutions of this minimization problem
are expressed with an application of the Pontryagin’s Maximum Principle and solved
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with a continuation algorithm. These two methods were already developed for the
case of systems with disturbances bounded by an exogenous signal, we extended it
for the more general case of QC disturbances.

For the IQC systems, we introduced the extended system. This extended sys-
tem embeds the integral quadratic into a new state of the system and the IQC is
then expressed as a constraint over this new state. We then compute overapprox-
imations of the reachable set with time-varying paraboloids (which corresponds to
an extension of the previously introduced time-varying conics). For this extended
system, it is possible to define touching time-varying paraboloid overapproximations
and their associated touching trajectories. As for the QC system, the boundary of
the touching time-varying paraboloids stays in contact with the reachable set of the
extended system on the touching trajectory. We prove that the intersection of all the
time-varying paraboloid overapproximations (generated by all the multipliers) exactly
describes the reachable set of the extended system. This result is interesting as it
shows that the set of multipliers is sufficient to exactly describe this reachable set.
The existing literature in IQC systems never addressed the precision of overapprox-
imations in such a way. Usually, since the IQC framework originated from stability
analysis, multipliers where chosen in frequency domains, and touching trajectories
and touching time-varying paraboloids could not be defined. The precision of the
overapproximations was only appreciated on a practical example by comparing the
different obtained overapproximations. By choosing multipliers in a temporal domain,
we can define these touching trajectories and touching time-varying paraboloids. We
developed and implemented an algorithm to compute a tight overapproximation of
this reachable set. The set of multipliers is chosen according to the behavior of the
touching trajectories that violate the state constraint in the future.

Possibles extensions of these works include the use of semidefinite solvers to de-
rive overapproximations (optimal in volume for example). Such methods have been
already developed for multipliers chosen in a frequency basis and can be adapted to
the temporal domain multipliers used in this thesis. Optimal time-varying conics can
as well be improved. We only considered optimal time-varying conic that minimizes
the volume at a given time. A natural extension of our method would be to compute
time-varying overapproximation minimizing the volume at any time. For such a case,
the coefficient of the overapproximation satisfies a partial differential equation that
involves two time-indexes, the regular time-index and the time-index at which the
time-varying conic is of minimal volume.

Our second contribution is an extension of the validated numerical integration
framework based upon interval arithmetic to the analysis of nonlinear systems subject
to a disturbance bounded by an integral constraint. Validated numerical integration
frameworks provide methods to compute a valid tube that contains the solution to an
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initial value problem. These methods can be used as well to compute overapproxima-
tions of the reachable set of a dynamical system subject to an unknown but bounded
input. Previous works in this field studied the case of input with a point-wise bound
(i.e. bounded at any time), we studied the case of an input bounded by an integral
constraint. Such integral models are interesting as they can model complex systems
(such as systems with inner delay). To do so, we use the integral constraint to define
a contractor over the set of system trajectories. The contractor associates with a set
of trajectory, a subset of these trajectories that satisfies the integral constraint. We
then use this contractor in a fixed point algorithm to refine a prior overapproximation
of the reachable tube.

A natural extension would explore the use of other geometrical shapes to overap-
proximate the reachable set. In particular, affine forms can be appropriate to express
the relationship between the integral value and the state of the system (this rela-
tionship is not handled by the arithmetic interval framework and introduces some
conservatism). Furthermore, in our work, we assume that the unknown disturbance
evolves according to a model, such a hypothesis allows us to define the contractor out
of the integral constraint. Future works should consider to remove such an assump-
tion.

Our last contribution is a framework to study interconnections of systems. This
framework is formulated within an abstract interpretation approach.

The interconnection of systems is described by a set of systems (which are map-
pings from a signal space to another signal space), a set of sources (a set of input
signals), and a set of connections between these two. A connection is associated with
a signal that corresponds to a constant, or time-varying (discrete-time or continuous-
time) variable. Each connection defines a relationship between signals of the inter-
connection. The problem of interest is then to overapproximate the set of signals
satisfying these equations. We show that these equations can be expressed as a fixed
point equation over the signal space and that the set of signals of the interconnection
of systems is the greatest fixed point of the lift to sets of this fixed point equation.
Contrary to other approaches in this field, this set of signals is not defined as a se-
quence that evolves according to a transition function (as it is usually done in analysis
of computer programs), a dynamic function (as for dynamical systems), or a com-
bination of these two (as for hybrid systems). The semantic cannot be iteratively
constructed, and furthermore, the concrete semantic is not defined as the least fixed
point of a monotonic operator.

To overapproximate the reachable set of signals, we compute the greatest fixed
point in an abstract domain. We propose to abstract time-varying signals with a
point-wise lifting of an interval domain, or of an ellipsoidal domain, and to abstract
each system with an overapproximating method (such as the two first methods pro-
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posed in this thesis). Then, we overapproximate the greatest fixed point in the ab-
stract domain with a refinement approach, i.e. starting from a prior overapproxi-
mation of the greatest fixed point and by refining it until a fixed point is reached.
To enhance the precision of our overapproximations, we introduce a so-called piece-
wise linear (PWL) abstract domain which corresponds to abstractions defined by a
weighted sum (in the sense of the Minkowski sum) at chosen interpolating points. This
PWL abstraction improved the analysis of systems where signals were correlated.

Extensions of this work could investigate new abstract domains for time-varying
signals. Since abstract interpretation has been introduced to study computer pro-
grams, there are not so many options to abstract continuous-time signals. We used
a point-wise lift of the subsets of the state space. One could think to provide a
frequency-based abstraction where signals are characterized by there frequency spec-
trum. Also, we used the PWL abstraction to represents the relationship between
a scalar and a time-varying signal. A similar approach to model the relationship
between two time-varying signals is necessary to improve the conservatism of overap-
proximations.
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