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Influence de la ventilation sur les propriétés de transport dans un
poumon sain et enflammé.

Résumé : La fonction principale du poumon est d’alimenter le sang en oxygène
et d’enlever le dioxyde de carbone du sang. Le poumon s’empare de l’oxygène présent
dans l’air ambiant dans lequel il rejette le dioxyde de carbone prélevé dans le sang.
Cet échange est rendu possible par le processus de ventilation pulmonaire qui fait en-
trer et sortir périodiquement un volume d’air ambiant. D’un point de vue idéalisé, la
ventilation peut être caractérisée par deux paramètres : la vitesse maximale de l’air
dans la trachée (l’amplitude) et la fréquence respiratoire (la période). Le but de cette
thèse est d’étudier et de modéliser le processus de transport et d’échanges d’oxygène
et de dioxyde de carbone dans le poumon. Le transport de gaz est modélisé par des
équations de convection-diffusion-réaction dans un poumon idéalisé. Une analyse
mathématique du modèle a été réalisée afin de prouver l’existence d’une solution
unique ainsi que la périodicité asymptotique en temps. Des simulations numériques
ont été réalisées pour étudier un large éventail de configurations physiologiques.
Dans le cas d’un poumon humain en bonne santé, les quantités de gaz échangées
prédites par notre modèle sont proches de la physiologie. Les énergies visqueuse
et élastique dépensées lors de l’inspiration ont ensuite été minimisées en supposant
que nos besoins en oxygène peuvent être représentés dans notre modèle par une
contrainte du flux d’oxygène échangé avec le sang. Des simulations ont été réalisées
pour l’homme, mais aussi pour tous les mammifères en utilisant les lois allométriques.
Les prédictions de notre modèle montrent que les paramètres de ventilation chez les
mammifères pourraient être optimisés pour dépenser le moins d’énergie possible.
Ensuite, nous nous sommes concentrés sur la ventilation pulmonaire d’un humain
souffrant d’une infection pulmonaire. La propagation d’une infection bronchique a
été modélisée de manière idéalisée et nous avons étudié comment la ventilation est
affectée par la réponse du système immunitaire à travers l’inflammation de la paroi
bronchique. Nos résultats montrent que la localisation de la zone de transition en-
tre convection et diffusion influence principalement la quantité d’oxygène échangée
avec le sang. L’emplacement de cette transition peut être affecté par l’infection et
donc altérer l’efficacité de la ventilation et modifier la configuration optimale. En-
fin, pour mieux comprendre l’efficacité d’un traitement médicamenteux délivré sous
forme d’aérosol, nous avons modélisé le dépôt de particules d’aérosol dans la pre-
mière bifurcation des bronches du poumon humain. Notre modèle prend en compte
l’évolution du rayon des particules due à l’échange de vapeur d’eau et l’évolution de
la température des particules due au changement du milieu environnant. Nos résul-
tats montrent que la modélisation de ces paramètres est importante pour représenter
plus précisément le dépôt des particules sur les parois des bronches. Ces travaux
permettent de mieux comprendre comment le processus de ventilation pulmonaire
est ajusté et comment il est affecté par les pathologies pulmonaires. De plus, il
souligne comment la ventilation peut être utilisée efficacement pour administrer des
médicaments dans le corps humain.

Mots clés : ventilation pulmonaire, transport de gaz, infections pulmonaires,
aérosol, modélisation mathématiques, modélisation computationnelle.
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Influence of the ventilation on the transport properties in the healthy
and inflamed lung.

Abstract: The main function of the lung is to supply the blood with oxygen
and to drain the carbon dioxide from it. The lung captures the oxygen present in the
ambient air where it rejects the carbon dioxide taken from the blood. This exchange
results from the process of the lung’s ventilation that repeatedly makes a volume
of ambient air enter and leave the lung. In an idealized view, the ventilation can
be characterized by two parameters: the maximum air velocity in the trachea (the
amplitude) and the breathing frequency (the period). The goal of this thesis is to
study and model the process of oxygen and carbon dioxide transport and exchanges
in the lung. Gas transport is modeled by convection-diffusion-reaction equations
in an idealized lung. A mathematical analysis of the model has been performed
to prove the existence of a unique solution along with an asymptotic periodicity in
time. Numerical simulations were performed to study a wide range of physiological
configurations. In the healthy human case, the amounts of gas exchanged predicted
by our model are close to physiology. The viscous and elastic energies spent during
inspiration were then minimized assuming that our body needs in oxygen can be
represented in our model by a constraint on the oxygen flow exchanged with the
blood. Simulations were carried out for humans but also for any mammals using
allometric scaling laws. The predictions of our model show that the ventilation
parameters in mammals might be optimized to cost as little energy as possible.
Then, we focused on the lung’s ventilation of a human subject suffering from a
pulmonary infection. The spread of a bronchial infection has been modeled in an
idealized way and we studied how the ventilation is affected by the response of
the immune system through bronchi wall inflammation. Our results show that the
location of the transition zone between convection and diffusion mainly influence
the quantity of oxygen exchanged with the blood. The location of this transition
can be affected by the infection and hence alter the efficiency of the ventilation and
modify its optimal configuration. Finally, to better understand the efficiency of a
drug treatment delivered by aerosol, we modeled the deposit of aerosol particles
in the first bifurcation of the bronchi of the human lung. Our model takes into
account the evolution of the radius of the particles due to the exchange of water
vapor and the evolution of the temperature of the particles due to the change of the
surrounding environment. Our results show that the modeling of these parameters
is important to represent more accurately the deposit of the particles on the walls
of the bronchi. This work allows to better understand how the process of lung’s
ventilation is adjusted and how it is affected by lung’s pathologies. Moreover, it
highlights how ventilation can be used efficiently as a way to deliver drugs in the
body.

Keywords: lung’s ventilation, gas transport, pulmonary infections, aerosol ther-
apy, mathematical modeling, computational modeling.
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Chapter 1

Introduction

Nowadays, there is an urge to better understand pulmonary infections as their
prevalence is increasing. Recently the coronavirus SARS-CoV-2 (COVID-19) has
appeared in China and has spread to become a global pandemic [110]. This virus
has affected over 70 millions of people and has killed over 1.6 millions of people, with
these numbers still rising [92]. Two of its major symptoms are acute lung injury
and acute respiratory distress [61]. Once the distress is too important, patients can
be put on mechanical ventilators in order to maintain adequate levels of oxygen and
carbon dioxide in the blood and to decrease the work of breathing [14, 87]. It is
then essential to better understand how the ventilation is affected by an infection
and how to minimize the work of breathing. This is the goal of the work of this
thesis.

The lung is a complex system that serves as an exchange interface between
the ambient air and the blood. It transports the oxygen present in the ambient
air through its tree-like structure to the blood and removes carbon dioxide from
it. However, because of its direct interface with the external environment, the
lung is prone to develop infections. Once a pathogen starts infecting the lung, the
immune system responds. This response is both mechanical and biological and can
be supported by drug treatments to fight the infection quicker. The goal of the
chapter 2 is to describe the physiology and biology of these complex systems in
order to better understand their structures and their functions.

The study of the mechanisms of gas transport and of the exchanges of oxygen
and carbon dioxide with the blood is a first step in order to understand how the
system behaves. Hence, chapter 3 describes and analyzes a model of gas transport
into an idealized human’s lung. First, we assume that the transport mechanisms
are independant on the time (stationnary equations) and an explicit solution can be
computed. Then, in the non stationary case, the existence of an unique solution can
be proved while assuming that the concentration of the oxygen and of the carbon
dioxide is constant in the blood. Finally, when the gases are in the alveoli, they
are exchanged with the blood, where they are transported under different forms,
modeled in the last part of chapter 3.

The ventilation is characterized by the volume of air that is inspired (tidal vol-
ume) and by the frequency at which it is renewed (breathing frequency). These two

1



2 CHAPTER 1. INTRODUCTION

values are stereotypic in humans and in mammals [117]. This raises the question:
How has the ventilation been adjusted by evolution ? We search in chapter 4 for
the optimal ventilation that minimizes the energy spent for breathing while fulfiling
the body needs in oxygen. The optimal ventilation found is in full agreement with
the physiological values for humans and for all mammals. Allometric scaling laws
link the morphological and functional properties of mammals to their mass with a
power law, and our model is able to predict accurately the allometric laws observed
for breathing rates and inhaled air volumes.

However, during a lifetime, the lung may be confronted to several pulmonary
infections that can affect the ventilation [78]. Hence, we propose in chapter 5 a
model of a lung’s infection to get an insight on how the dynamics of an infection can
affect the ventilation and how its control could adapt to the morphological changes
induced by the resulting inflammation. We model in chapter 5 the response of the
innate biological immune system to a pathogen. We start by studying how the
ventilation as well as the gaseous exchanges are affected in a simple case where the
infection does not spread and remains in one bronchus only. Then, we model the
propagation of the infection to its neighbouring bronchi. The model predicts that,
depending on the localization of the infection in the lung and its stage, the lung’s
ventilation might become very costly in term of energy, up to a point where it is not
able to sustain anymore the body needs in oxygen.

A medication treatment such as aerosol therapy can be supplied to help the
immune system to fight an infection. In order to better understand the efficacy of
this type of treatment, the deposit of aerosol particles in the first bifurcation of the
human’s lung is modeled in chapter 6. We track the behaviour of the droplets in the
lung. We assume that they exchange water vapour with the air in the lung and that
their temperature is affected by the temperature of their environment. We conclude
that these hypotheses are important to model correctly the displacement and the
potential deposit of the particles.

The biophysical problems encountered in this work have been studied using
mathematical tools. We study the equations properties in chapters 3 and 6 thanks
to functionnal analysis, we use optimization theory to minimize the energy in chap-
ter 4 and numerical schemes are used to determine the numerical approximations of
the solutions of the model equations.

All this work allows to better understand the lung’s ventilation in humans and
more generally, in all mammals, whether healthy or with a pulmonary infection.



Chapter 2

Elements of the physiology

In this chapter, we present some elements of the physiology about the respiratory
system, the immune system and the aerosol therapy. A review of the literature
concerning each modeling approaches will be detailed in the introductions of the
corresponding chapters.

2.1 The respiratory system

Oxygen is essential for mammals. It takes part in the cellular respiration that
happens in the cell’s mitochondria. This process transforms glucose with the help of
oxygen into carbon dioxide, water and adenosine trisphophate (ATP). This molecule
stores energy and is used by all our body’s cells. They are the sources of energy of
the muscles and organs. Two structures allow the oxygen to be brought from the
ambient air to the cells and the carbon dioxide from the cells to the ambient air:
the lung that is the interface between the ambient air and the blood, and the blood
network that transports the respiratory gases (oxygen and carbon dioxide) in the
whole body.

2.1.1 The human’s lung

The lung is an organ protected by the rib cage and supported by the diaphragm, a
muscle that separates the thorax from the abdomen. It has a bifurcating tree-like
geometry, almost dichotomic, as shown on Figure 2.1. This is why we can consider
it as a succession of generations (Figure 2.2), where a generation corresponds to
branches with the same number of bifurcations up to the root of the tree. The
trachea is the first generation bronchus. It is the biggest branch and has a radius
of around 0.9 cm [115]. The lung can be divided into two parts, the bronchial tree,
a conductive zone because no exchange with the blood occurs and the acini, the
exchange surface with the blood.

In an idealized view [115], the bronchial tree is composed of the seventeen first
generations of the lung. Its goal is to bring the ambient air with a high concentration
in oxygen and low concentration in carbon dioxide to the exchange surface. Since
no exchange with the blood is made in this part of the lung, it is also called the

3



4 CHAPTER 2. ELEMENTS OF THE PHYSIOLOGY

Figure 2.1: Cast of a human lung made by E.R. Weibel [113]. Bronchi are yellow,
arteries are red and veins are blue.

conductive zone or the anatomic dead space. Its volume varies between individuals
but it is around 150 mL [119].

The bifurcations are subject to some asymmetry. A mother bronchus divides
into two daughters bronchi that are not identical, they may have differences in
length and in diameter. As a matter of fact, the ratio between two sisters bronchi’s
diameter is around 0.8 for humans [105, 36]. This asymmetry can be explained by
the development of the organ and its adaptation to the spacial configuration [21],
by the increase of robustness against the variability of lung’s sizes [37, 73] and by
the adaptation of the lung to the anatomy [68]. The first bronchi have to bypass
the heart, and divide the lung into three right lobes and two left lobes.

The acini are composed of roughly the six, seven last generations and occupy a
volume of around 2.5 - 3 L which represents the majority of the volume of the lung
[119]. On the contrary to the bronchial tree, the size of the alveolar ducts remains
more or less constant throughout the acinus with a diameter of around 0.5 mm [115].
The exchange with the blood occurs in the alveoli that cover the walls of the ducts.
They are more and more present as we go along the generations until they cover the
totality of the walls of the ducts in the last generations. All these alveoli form an
exchange surface of around 70-150 square meters [33, 102].
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Figure 2.2: Structure of the human’s lung. Reproduced from [115]. The bronchial
tree is a conductive zone and the exchange with the blood is made in the acini.
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2.1.2 Respiratory gas transport

Respiratory gases are transported through the lung by different mechanisms. In the
first generations of the lung, the transport of gases is mainly made by convection
thanks to the high velocity of the air flow which is around 1m · s−1 in humans, in
the trachea at rest [113]. Convection is the transport of a quantity by the movement
of its surrounding environment. However, the more we advance in the generations,
the smaller the velocity because of the increase of the total cross sectionals area of
the bronchi. The ambient air is rich in oxygen and poor in carbon dioxide, and
once it reaches the acinus, the velocity is small enough so that the diffusion becomes
dominant. This mechanism is based on the Brownian motion of the molecules and
induces a natural motion of these molecules from high concentration regions to low
concentration regions. Gases are exchanged with the blood by diffusion through a
thin membrane that separates the alveolar air from the blood (the alveolar capillary
membrane). The deoxygenated blood present in the capillaries stocks up on oxygen
and releases the carbon dioxide in the alveoli. In the blood capillaries, oxygen and
carbon dioxide are transported under different forms [33, 68]. Oxygen is mostly
combined to hemoglobin present in the red blood cells (97 %) which can fixed up to
four molecules of oxygen. It can also be found under a dissolved form (3 %) in the
plasma. Carbon dioxide is mainly carried though a combined form as bicarbonate
ions (HCO−3 ) in the plasma after a chemical reaction (60−65 %). It is also combined
to the hemoglobin present in the red blood cells (30 %) and, finally, under a dissolved
form in the plasma (5− 10 %).

2.1.3 Ventilation

Gas transport is performed thanks to the ventilation. During inspiration, the di-
aphragm and intercostal muscles contract and allows an expansion of the thorax
that increases the volume of the lung. An airflow is created thanks to the difference
in pressure between the ambient air and the acini. The volume of the air inhaled,
known as the tidal volume, is approximately 500 mL at rest [119, 113]. Inspira-
tion is an active mechanism because of the energy spent to contract the muscles.
It lasts around 2 seconds at rest in humans. During expiration, the mechanism is
different. There is a relaxation of the muscles that induces an elastic recoil to the
initial volume of the lung and an ejection of the air previously inhaled. Expiration is
considered to be a passive process because there is no energetic cost. It lasts around
3 seconds at rest in humans.

Since inspiration is an active process, it can be controlled and optimized to
minimize the energy expenditure of ventilation. Indeed, it is based on the regulation
of the volume of air that is inhaled (tidal volume) and on the frequency at which this
volume of air is renewed (ventilation frequency) with the aim to satisfy the body’s
needs in oxygen. This analysis of the energy cost of ventilation can be extended to
all mammals thanks to their common morphological and functional properties that
are known to depend on their mass M with non trivial power laws, called allometric
scaling laws [117, 113]. In all mammals, the lung is comprised of two regions: the
bronchial tree which is a conductive zone and the acini where the exchange with the
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blood is made [83]. However, some differences in the geometry and the branching
pattern can occur in the different species [105]. There exists three types of idealized
branching patterns [83]. The first type is the monopodial branching pattern (rat,
mouse...). At a bifurcation, a small bronchus branches from the main bronchus.
The second one is the dichotomus branching pattern (human, monkey...). At a
bifurcation, a mother bronchus divide into two daughters bronchi. Finally, the last
one is the polychotomous branching pattern where a bronchus may divide into more
than two bronchi.

2.2 Fighting pulmonary infections

The lung is prone to the development of infections. Because of the humidity of the
air, the high concentration of oxygen and the lung being a direct interface with the
external environment, viruses and bacteria can easily proliferate. However, there
exists different types of defenses to fight these infections.

2.2.1 Immune response

The immune response is a complex process designed to defend the body against
infection. This response can be divided into two parts, the innate immune response,
that is fast, and the adaptative immune response [68].

The innate immune defense system is the first system to activate on the site of
infection, it responds within minutes. The first defense of this system is the surface
barriers, i.e. skin and mucosae. In the lung this protection consists in the mucus,
a viscoelastic gel, and the ciliated cells on the bronchi’s walls. The mucus, which
catches the pathogens, is moved by the cilia towards the oesopharyngeal region,
where it is either swallowed or expectorated [32]. Once a pathogen breaches this
first defense, the second one comes into action. This internal defense is composed
of chemicals and white blood cells, also called leucocytes, which are produced in the
bone marrow. First, the macrophages already present in the respiratory epithelial
barrier respond. These cells are phagocytes which means that they ingest and
destruct pathogens. They also product citokines that summon other cells to the
site of infection. Dendritic cells, also present in the respiratory epithelial barrier,
capture the antigen of the pathogen and trigger the adaptative immune system.
Next, neutrophils, present in the blood, arrive to the site of infection. They are
the most numerous phagocytes in the body and they represent 60 − 70 % of all
leucocytes. Others leucocytes such as basophiles and eosophiles, are present in the
blood, but in small quantity.

The adaptative immune system, also called the acquired immune system, is com-
posed of white blood cells called lymphocytes. This system is specific to a pathogen
and create immunological memory after an initial infection. These cells are divided
into two categories, the lymphocytes B and the lymphocytes T. The humoral immune
response is the production by lymphocytes B of specific antibodies that corresponds
to the encountered antigen. This system fights against pathogens before their entry
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in the human’s cells. The cell mediated immune response fights against the infected
cells. This response corresponds to an injection by the lymphocytes T of a toxic
substance into the body’s cells to destroy the infected cells.

Inflammation is a reaction from the immune system that appears at the site of
infection once the tissue is injured. First, there is a vasodilation of the blood vessels
due to the presence of chemical mediators released by the macrophages present in
the tissue at the site of infection. It induces an increase of the blood supply and
of the capillaries permeability which allows the passage of some of the plasma from
the blood vessels to the tissue spaces. As a result of this inflow of plasma in the
tissues, an oedema appears and it induces the migration of the leucocytes from the
blood vessels to the site of infection.

2.2.2 Drug response

Medicines is sometimes prescribed to help the immune system to fight infections
faster. Aerosol therapy is one of the major curative way to treat obstructive pul-
monary diseases. It delivers drugs directly into the lung by inhaling solid or liquid
particles that can remain dispersed in the air. It allows to have a high local drug con-
centration in the lung tissue and, because of its local distribution, it limits systemic
toxicity, which is the occurance of toxic effects at multiple sites.

The deposition fraction, which is the fraction of inhaled particles that deposit,
and the localization of this deposit are two of the most important characteristics
of aerosol therapy. They depend on the interaction of three factors [78]. The first
factor is the physical properties of the droplets like its mass or its shape. The second
factor concerns the air flow. Indeed the ventilation frequency and the tidal volume
can influence the deposit of the particles. Finally, the last factor is the anatomy
of the bronchi, whether they are inflamed and hence partially blocked, or healthy.
Usually droplets have a tendency to deposit more in the first generations bronchi.
It is due to the inertial impaction which happens when a particle fails to follow the
streamlines of the air flow. Therefore the particles impact on the obstacle instead
of bypassing it.



Chapter 3

Gas transport model

The main goal of the respiratory system is to supply the body with oxygen and to
remove carbon dioxide from it. During inspiration, fresh air with a high concentra-
tion in oxygen and low concentration in carbon dioxide is brought from the nose and
the mouth through the bronchial tree to the alveolar region. Once in the acinus,
oxygen and carbon dioxide exchanges take place by diffusion through the alveolar
membrane to or from the blood capillaries. At expiration, a higher carbon dioxide
and lower oxygen concentration is expelled from the lung until fresh air comes in
again at the next inspiration [119]. The fulfillment of the required gas exchange is
made possible by the thin alveolar membrane combined with a large alveolar surface.

Two main appproaches have been proposed in the litterature to model gas trans-
port. The first one is based on an effective diffusion in porous media [59, 60, 10].
This type of approach have the benefit of working with an homogeneous material
mimicking the last generations of the lung. The second approach is one based on
tree-like structures [57, 95, 69, 17]. This type of models have the benefit of having
a detailed description of gas transport.

We choose this last approach for our model, with the main hypotheses that the
lung is a symmetric dichotomic bifurcating tree [113, 70] connecting ambient air to
an exchange surface and ventilated thanks to an airflow that varies with time as a
sine function.

3.1 Oxygen and carbon dioxide transport in the
lung

3.1.1 Geometry of the human lung

Our geometrical model mimicking the human lung is based on a symmetric di-
chotomic bifurcating tree [70]. A generation corresponds to branches with the same
number of bifurcations from the root of the tree that mimics the trachea. Our
bronchi are assumed to be cylindrical. The tree is divided into two distinct parts
[113]: the first G generations (G = 17) form the conductive tree and the last H
generations (H = 6) form the acini, where exchanges with blood occur.

To account for the core geometrical properties of the lung, we assume that the
size of the branches in the conductive tree decreases from one generation to the next

9
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with a ratio 0 < h < 1 [113, 70, 56]:

li+1 = lih⇒ li = l0h
i,

ri+1 = rih⇒ ri = r0h
i,

with li the length and ri the radius of a generation i branch (i ∈ J0, G − 1K).
Furthermore, we assume that in the acinus, the size of the bronchi remains constant
[113]. It means that the factor h is equal to one. We can deduce that the radius rA
and the length lA of the branches in the acinus are respectively equal to the radius
and length of the branches of the last generation in the conductive tree.

We can express the lumen area Si of a branch in generation i with the radius,
Si = πr2

i . Consequently, the area of one branch decreases with the generation in the
conductive tree, Si = h2iS0 but remains constant in the acinus, SA = h2(G−1)S0.

The volumetric flow rate in a branch from generation i is the product of the
fluid velocity ui and the lumen area of the branch Si. We assume here that air
is an incompressible fluid because compressibility effects are considered small even
during forced expiration [30]. Consequently, mass conservation between a branch in
generation i and its two daughters in generation i+ 1 leads to a scaling on the mean
air velocity ui in each generation,

ui+1Si+1 =
uiSi

2
⇒ ui =

(
1

2h2

)i
u0.

We can rewrite this equation for the acinus, we obtain for i ∈ JG,NK, where N =
G+H − 1,

ui =
uG−1

2i−G+1
.

3.1.2 Model equations

Now that a model for the lung’s geometry is defined, we can expressed the equations
of the gas transport in each bronchi. We assume the bronchi to be cylindrical. The
transport of oxygen and carbon dioxide in the bronchial tree is driven by three
main phenomena: convection, diffusion and exchange with the walls in the case of
the acini. We will describe the fluid motion along the axis of the bronchus, using
a unidimensional model in space. As the bronchi and the fluid properties are the
same in all the branches from a same generation, the equations of transport are the
same for each branch in a same generation.

Let us evaluate the matter balance (see Figure 3.1) in a cylinder slice localized
in x and with a thickness dx. We denote Ci(x) the mean O2 or CO2 concentration
(mol ·m−3) in the section. The quantity of matter entering the slice by the left side
Ql writes,

Ql =

(
ui(t)Ci(x)−DdCi

dx
(x)

)
πr2

i ,

where D is the diffusion coefficient in air of the species considered (m2 · s−1), ui(t)
is the mean velocity of the fluid (m · s−1) and ri is the radius (m) of the bronchus
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dx

Ql Qr

Qw

Figure 3.1: Matter balance in a slice of a bronchus.

of generation i. Then the quantity of matter leaving the slice by the right side Qr

writes,

Qr = −
(
ui(t)Ci(x+ dx)−DdCi

dx
(x+ dx)

)
πr2

i .

Finally the quantity of matter exchanged with the bronchus walls writes,

Qw = −αi%s (Pi(x)− Pblood) 2πridx,

where Pi is the mean O2 or CO2 partial pressure (mmHg) on the section, and Pblood

is the O2 or CO2 partial pressure (mmHg) in the blood. The amount of exchange
surface per unit of alveolar duct surface, %s ≈ 9.3 is computed as the ratio of the
alveolar surface over the bronchial surface in the acinus [115, 81]. Assuming that each
alveoli is half a sphere, the alveolar surface is computed as follow, SA = 2πr2

A×Nalv ≈
150 m2, where rA is the radius of the bronchi in the acinus and Nalv = 480× 106 is
the number of alveoli in the human lung [81]. αi is the permeability of the alveolar
membrane (mol ·m−2 · s−1 ·mmHg−1), we can express it as follow [34]

αi =

0, for i ∈ J0, G− 1K,

α =
Dgas,H2Oσgas,H2O

τ
, for i ∈ JG,NK,

(3.1)

where Dgas,H2O is the diffusion coefficient of the gas in water (m2 · s−1), σgas,H2O is
the solubility coefficient (mol · m−3 · mmHg−1) of the gas in water and finally τ is
the thickness (m) of the alveolar membrane.

Finally, the variation of the gas concentration over time writes,

πr2
i dx

∂Ci
∂t

= Ql +Qr +Qw.

Making the length of the slice dx go to zero, we obtain for x ∈ [0, li],

∂Ci
∂t

πr2
i −D

∂2Ci
∂x2

πr2
i︸ ︷︷ ︸

diffusion

+ui(t)
∂Ci
∂x

πr2
i︸ ︷︷ ︸

convection

+αi%s (Pi − Pblood) 2πri︸ ︷︷ ︸
exchange with blood

= 0.
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As the concentration and the partial pressure are proportional, we can work
only with partial pressure. We can then define the transport dynamics of the partial
pressure of oxygen and carbon dioxide in a single branch from the previous equation,

∂Pi
∂t
−D∂

2Pi
∂x2︸ ︷︷ ︸

diffusion

+ui(t)
∂Pi
∂x︸ ︷︷ ︸

convection

+ βi (Pi − Pblood)︸ ︷︷ ︸
exchange with blood

= 0 for x ∈ [0, li]. (3.2)

The exchange coefficient βi (s−1) is expressed as follow,

βi =


0, for i ∈ J0, G− 1K,

%s
2k

rA
αi for i ∈ JG,NK,

(3.3)

where k is the ratio relating partial pressure of the gas to its concentration in water
and rA is the radius of the branches in the acinus.

3.1.3 Boundary conditions

The bronchi are connected together with bifurcations. Mass conservation in the
bifurcation leads to

Si

(
ui(t)Pi(t, li)−D

∂Pi(t, li)

∂x

)
= 2Si+1

(
ui+1(t)Pi+1(t, 0)−D∂Pi+1(t, 0)

∂x

)
.

We suppose that we have partial pressure continuity at bifurcations, it writes Pi(t, li) =
Pi+1(t, 0). Mass conservation can then be rewritten,

−DSi
∂Pi(t, li)

∂x
= −2DSi+1

∂Pi+1(t, 0)

∂x
. (3.4)

To close the system of equations, boundary conditions at both ends of the tree
are needed. We assume P0(t, 0) = Pair at the inlet of the root of the tree that models
the trachea where Pair is the partial pressure of the gas considered in the air. And
for the end of the last generation of the acini, we use a flux boundary condition,
based on the exchange laws previously defined,

−D∂PN
∂x

(t, lN) = αk%s (PN(t, lN)− Pblood) .

3.1.4 Oxygen and carbon dioxide flow

Our model allows to easily compute the oxygen and carbon dioxide flows exchanged
with the blood. Indeed, we just need to provide a temporal velocity profile to our
equations to obtain the partial pressure of the gases in all the bronchi of the lung.
To simulate the ventilation, we suppose that the velocity at the entrance of the
trachea follows a periodic pattern written as follow,

u0(t) = A sin

(
2π

T
t

)
,
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where A is the amplitude of the ventilation (m · s−1) and T is the ventilation’s
period (s). Then, both flows depend only on the amplitude and the period of the
ventilation, thanks to the difference of partial pressures between the alveolar region
and the blood,

f(A, T ) =
N∑
i=G

2i

T

∫ tC+T

tC

∫ li

0

γ (Pi(t, x)− Pblood) dx dt, (3.5)

with tC a time at which the system has reached a periodic regime, and

γ = 2πrAα%s. (3.6)

3.1.5 Choice of physiological parameters

Our model is based on a set of anatomical parameters that needs to be quantified
from the physiology. The parameters’ list and values for humans are shown on
Table 3.1. The lung’s geometry is defined from the radius (r0) of the root of the
branch, mimicking the trachea, and from the size reduction factor h that allows to
compute the radius and lengths of all the branches in the tree. The length of the
branches is related to the diameter of branches using the ratio l0

2r0
= 3 [71, 105], and

we use l0 = 6r0. Although this value is not fully accurate for the main bronchi, it is
a good approximation for the other branches. Since, the global behavior is mainly
driven by the most numerous bronchi, extending the length over diameter ratio to
all the branch of the tree is a reasonable approximation. Furthermore to describe
properly the gas exchange between air and blood, we also need the thickness of the
alveolar membrane.

Parameters Values
Radius of the trachea 0.9 · 10−2 m [71]
Homothetic ratio (h) 0.7937 [71]
Thickness of the alveolar membrane 1 · 10−6 m [34]

Table 3.1: Table of parameters for the geometry of the human’s lung.

Once the geometry of the lung is defined, we can define the parameters linked
to the oxygen and the carbon dioxide behaviors, see Table 3.2 and Table 3.3. In
order to solve equation (3.2), we need the oxygen and the carbon dioxide diffusion
coefficients in air, and the partial pressure of the gas in the blood. The diffusion
coefficient of the gas in water, the solubility coefficient of the gas in blood and the
dimensionless Henry solubility allows to describe the gas exchanges between alveolar
gas and blood. The dimensionless Henry solubility is the ratio between the aqueous-
phase concentration of a gas and its gas-phase concentration. It can be computed
as the product of the solubility coefficient in the blood, the gas constant and the
temperature [94]. The temperature in our model is fixed at 310.15 K (37o Celsius).
Finally for the boundary condition at the entry of the trachea, we need the partial
pressure of the gases in the ambient air.
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Parameters Values
Diffusion coefficient in air 0.2 · 10−4 m2 · s−1 [71]
Partial pressure in the blood 40 mmHg [33]
Diffusion coefficient in water 3.3 · 10−9 m2 · s−1 [34]
Solubility coefficient in the blood 1.34 · 10−3 mol ·m−3 ·mmHg−1 [62]
Henry solubility 2.592 · 10−2 [94]
Partial pressure in the air 150 mmHg [33]

Table 3.2: Table of parameters for the oxygen

Parameters Values
Diffusion coefficient in air 0.14 · 10−4 m2 · s−1 [71]
Partial pressure in the blood 47 mmHg [33]
Diffusion coefficient in water 2.505 · 10−9 m2 · s−1 [67]
Solubility coefficient in the blood 3.07 · 10−2 mol ·m−3 ·mmHg−1 [49]
Henry solubility 0.594 [94]
Partial pressure in the air 0.3 mmHg [33]

Table 3.3: Table of parameters for the carbon dioxide

3.2 Analysis of the model
In order to see if our problem is well posed and has a solution, we need to analyze it.
For simplicity, let us first adimensionalize our equation (3.2) in space. We make here
a misuse of langage as we keep the same notations for the dimensionless variables
than for the dimensional ones in equation (3.2). We obtain,

∂Pi
∂t
− D

l2i

∂2Pi
∂x2

+
ui(t)

li

∂Pi
∂x

+ βi (Pi − Pblood) = 0 for x ∈ [0, 1], (3.7)

and we assume in this section that the partial pressure in the blood Pblood is a
constant.

3.2.1 Stationnary case

In our analysis, we start by simplifying our model. Let us study the stationnary
case and observe if it could be a good enough approximation of the non-stationnary
solution.

We want to resolve the equations in the stationnary case. It means that for all
i ∈ J0, NK, we have

∂Pi
∂t

= 0,

and now Pi depends only on the space variable x.
Each equations can be rewritten as follow,

−D
l2i

d2Pi
dx2

+
ui
li

dPi
dx

+ βiPi = βiPblood,
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or,
d2Pi
dx2
− uili

D

dPi
dx
− βil

2
i

D
Pi = −βil

2
i

D
Pblood. (3.8)

Air velocity ui = 0

In this paragraph, we suppose that the air velocity is equal to zero. We know that
in the convective tree (i ∈ J0, G − 1K) the coefficient βi is equal to zero. We just
have to solve,

d2Pi
dx2

= 0.

The solution is a linear function,

Pi(x) = Aix+Bi.

In the acinus (i ∈ JG,NK), we have to solve the following equation,

d2Pi
dx2
− βil

2
i

D
Pi = −βil

2
i

D
Pblood.

We start by solving the homogeneous equations. The solutions are,

Pi(x) = Aie
rx +Bie

−rx,

where r = lN
√
βN/D.

Pblood is a constant, therefore it is a particular solution. We obtain,

Pi(x) = Aie
rx +Bie

−rx + Pblood

Now we want to find the coefficients Ai et Bi. In order to do that we need
boundary conditions and bifurcations conditions. We have,



P0(0) = Pair

−DSi
li

dPi(1)

dx
= −2DSi+1

li+1

dPi+1(0)

dx
Pi(1) = Pi+1(0)

−D
lN

dPN(1)

dx
= αk%s (PN(1)− Pblood)

With the explicit solution we can deduce,

B0 = Pair.

For i ∈ J0, G− 2K, we have {
Ai = 2hAi+1,

Ai +Bi = Bi+1.
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At the bifurcation between the bronchial tree and the acinus, we obtain,{
AG−1 = 2rAG − 2rBG,

AG−1 +BG−1 = AG +BG + Pblood.

For i ∈ JG,N − 1K, we have,{
Aire

r −Bire
−r = 2 (Ai+1r −Bi+1r) ,

Aie
r +Bie

−r = Ai+1 +Bi+1.

Finally we have,

ANe
r

(
D

lN
r + αk%s

)
+BNe

−r
(
−D
lN
r + αk%s

)
= 0.

All these coefficients are easily found by solving a linear system.
Let us make an example by computing the explicit solution for a tree containing

only two generations (N = 1), one in the bronchial tree (G = 1) and one in the
acinus (H = 1). The solution in the first generation is then,

P0(x) = A0x+B0.

The solution in the second generation writes,

P1(x) = A1e
rx +B1e

−rx + Pblood.

In this case, we need four equations to compute the coefficients A0, B0, A1 and
B1. The first one corresponds to the boundary condition at the entrance of the tree.
It writes,

B0 = Pair.

The next two equations are the ones corresponding to the birfurcations conditions
and since there are only two generations in our example, the bifurcation is the one
between the bronchial tree and the acinus. We have,

A0 = 2rA1 − 2rB1,

A0 +B0 = A1 +B1 + Pblood.

Finally the last equation corresponds to the boundary conditions at the outlets
of the tree. It writes,

A1e
r

(
D

l1
r + αk%s

)
+B1e

−r
(
−D
l1
r + αk%s

)
= 0.

This equations can be rewritten as a linear system, defined as follow, MX = V .
We have,

M =


1 0 0 0
0 1 a −a
−1 −1 1 1
0 0 b c

 , with a = 2r, b = e−r
(
−D
l1
r + αk%s

)
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and c = er
(
D

l1
r + αk%s

)
.

X =


B0

A0

B1

A1

 and V =


Pair

0
−Pblood

0

 .

The coefficients A0, B0, A1 and B1 are easily found by computing the inverse of
the matrix M . Indeed we have X = M−1V . The inverse of the matrix M is equal
to,

M−1 =


1 0 0 0

−ab−ac
dM

c−b
dM

−ab−ac
dM

2a
dM

c
dM

c
dM

c
dM

a−1
dM

−b
dM

−b
dM

−b
dM

a+1
dM

 ,

where dM = b(2r − 1) + c(2r + 1), is the determinant of the matrix M .
We can then deduce the coefficients,

B0 = Pair

A0 =
(Pair − Pblood)(−2rb− 2rc)

dM

B1 =
(Pair − Pblood)c

dM

A1 = −(Pair − Pblood)b

dM
.

Thanks to these coefficients, we have found the explicit solution of the equa-
tion (3.8) in a tree with two generations and when ui = 0.

The explicit solution of the equation (3.8) for oxygen when ui = 0 in a tree
mimicking the human lung with 23 generations including 17 in the bronchial tree
and 6 in the acinus is shown on Figure 3.2). Since ui = 0, the transport of the gases
is only made by diffusion. It explains the steep decrease of the partial pressure in
the first generations of the tree.

Air velocity ui 6= 0

In this section, we suppose that the air velocity is different than zero. We start
by solving the homogeneous equations. In order to do that we need to solve the
characteristic polynomial,

r2
i −

uili
D
ri −

βil
2
i

D
= 0.

We know that in the bronchial tree no exchange is made with the blood which
implies that βi = 0. We then obtain two roots to our equation in the bronchial tree,

ri,1 =
uili
D
,
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Figure 3.2: Explicit solution of the equation (3.8) for oxygen in a tree of 23 genera-
tions with 17 generations in the bronchial tree and 6 generations in the acinus when
ui = 0.

and,
ri,2 = 0.

In the acinus, since exchange is made with the blood, we have βi > 0 and hence
we compute,

∆ =
u2
i l

2
i

D2
+

4βil
2
i

D
=

l2i
D2

(
u2
i + 4βiD

)
> 0.

We also obtain two roots,

ri,1 =
uili
2D

+

√
∆

2
=

li
2D

(
ui +

√
u2
i + 4βiD

)
,

and,

ri,2 =
uili
2D
−
√

∆

2
=

li
2D

(
ui −

√
u2
i + 4βiD

)
.

The solutions of the homogeneous equations are,

Pi(x) = Aie
ri,1x +Bie

ri,2x.

Since Pblood is a constant, it is also a particular solution. The solution of the
equations are then,

Pi(x) = Aie
ri,1x +Bie

ri,2x + Pblood.

In order to find the coefficients Ai and Bi, we need the boundary conditions and
the bifurcation conditions. We have,

P0(0) = Pair

−DSi
li

dPi(1)

dx
= −2DSi+1

li+1

dPi+1(0)

dx
Pi(1) = Pi+1(0)

−D
lN

dPN(1)

dx
= αk%s (PN(1)− Pblood)
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Thanks to the explicit solutions we obtain,

A0 +B0 = Pair − Pblood.

For i ∈ J0, G− 2K, we have,{
Airi,1e

ri,1 +Biri,2e
ri,2 = 2h (Ai+1ri+1,1 +Bi+1ri+1,2) ,

Aie
ri,1 +Bie

ri,2 = Ai+1 +Bi+1.

For i ∈ JG− 1, N − 1K, we have,{
Airi,1e

ri,1 +Biri,2e
ri,2 = 2 (Ai+1ri+1,1 +Bi+1ri+1,2) ,

Aie
ri,1 +Bie

ri,2 = Ai+1 +Bi+1.

Finally we have,

ANe
rN,1

(
D

lN
rN,1 + αk%s

)
+BNe

rN,2

(
D

lN
rN,2 + αk%s

)
= 0.

All these coefficients can be determined by solving a linear system. Thanks to
them we can find the explicit solutions for the equation (3.8) for all generations in
the case ui 6= 0.

Let us also make an example by computing the explicit solution for a tree con-
taining only two generations (N = 1), one in the bronchial tree (G = 1) and one in
the acinus (H = 1). The solution in the first generation is then,

P0(x) = A0e
r0,1x +B0e

r0,2x + Pblood.

We know that in the bronchial tree, we have r0,2 = 0. The solution can then be
rewritten as follow,

P0(x) = A0e
r0,1x +B0 + Pblood.

The solution in the second generation writes,

P1(x) = A1e
r1,1x +B1e

r1,2x + Pblood.

In this case, we need four equations to compute the coefficients A0, B0, A1 and
B1. The first one corresponds to the boundary condition at the entrance of the tree.
It writes,

A0 +B0 = Pair − Pblood.

The next two equations are the ones corresponding to the birfurcations conditions
between the bronchial tree and the acinus. We have since r0,2 = 0,

A0r0,1e
r0,1 = 2 (A1r1,1 +B1r1,2) ,

A0e
r0,1 +B0 = A1 +B1.
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Finally the last equation corresponds to the boundary conditions at the outlets
of the tree. It writes,

A1e
r1,1

(
D

l1
r1,1 + αk%s

)
+B1e

r1,2

(
D

l1
r1,2 + αk%s

)
= 0.

This four equations can be rewritten as a linear system, written as follow,MX =
V , where,

M =


1 1 0 0
0 a b c
−1 d 1 1
0 0 f g

 , with a = r0,1e
r0,1 , b = −2r1,2, c = −2r1,1

d = −er0,1 , f = er1,2
(
D

l1
r1,2 + αk%s

)
and g = er1,1

(
D

l1
r1,1 + αk%s

)
.

X =


B0

A0

B1

A1

 and V =


Pair − Pblood

0
0
0

 .

The coefficients four coefficients of the vector X are easily found by computing
the inverse of the matrixM . Indeed we have X = M−1V . The inverse of this matrix
M is written as follow,

M−1 =
1

dM


−af + cdf + ag − bdg f − g bg − cf c− b

cf − bg g − f cf − bg b− c
ag −dg − g ag −a+ c+ cd
−af df + f −af a− b− bd


where the dM is the determinant of the matrix M . It is equal to,

dM =f(−a+ c+ cd) + g(a− b− bd)

=f (−r0,1e
r0,1 − 2r1,1 + 2r1,1e

r0,1) + g (r0,1e
r0,1 + 2r1,2 − 2r1,2e

r0,1) .

The coefficients can then be easily deduced. We obtain,

B0 =
(Pair − Pblood)(−r0,1e

r0,1f + 2r1,1e
r0,1f + r0,1e

r0,1g − 2r1,2e
r0,1g)

dM

A0 =
(Pair − Pblood)(−2r1,1f + 2r1,2g)

dM

B1 =
(Pair − Pblood)r0,1e

r0,1g

dM

A1 =
(Pair − Pblood)(−r0,1e

r0,1f)

dM

Thanks to these coefficients, we have found the explicit solution of the equa-
tion (3.8) in a tree with two generations and when ui 6= 0.
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Figure 3.3: Explicit solution of the equation (3.8) in a tree of 23 generations with
17 generations in the bronchial tree and 6 generations in the acinus for different
velocities ui 6= 0.

The explicit solution of the equation (3.8) in the case of oxygen for different non
null velocities in a tree mimicking the human lung with 23 generations (17 in the
bronchial tree and 6 in the acinus) is shown on Figure 3.3. With a high velocity, the
convection is important and hence, induces the air flow to go deep into the lung.
However, when the velocity is negative the oxygen partial pressure goes from its
value in the ambient air to the one in the blood instantaneously. This phenomenon
is due to the boundary condition at the entrance of the tree. Indeed, we impose the
same partial pressure in the ambient air and at the entrance of the trachea, alrhough
the exhaled air flow is poor in oxygen.

Continuity of the solution in time

We obtained two solutions, one when ui = 0 and one when ui 6= 0. We now want
to prove that the overall solution is continuous relatively to ui in ui = 0. It means
that we want to see if the solution when ui → 0 tends to the solution when ui = 0.

Proposition 3.2.1 (Continuity of the non stationnary solution). The solution of
the following equation,

d2Pi
dx2
− uili

D

dPi
dx
− βil

2
i

D
Pi = −βil

2
i

D
Pblood,

is continuous relatively to ui in ui = 0

Proof. For simplicity let us prove the continuity of the solution relatively to ui in
a reduced tree. We suppose that our tree only have two generations, one in the
convective tree and one in the acinus.

First let us recall the explicit solutions of the equation (3.8) computed in the
previous section. Let us denote with an exponent 0 the solutions when ui = 0 and
with an exponent 1 the solutions when ui 6= 0.

When ui = 0, the solutions are the following functions,

P 0
0 (x) = A0

0x+B0
0 ,
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P 0
1 (x) = A0

1e
rx +B0

1e
−rx + Pblood.

We have r = lN
√
βN/D, and

B0
0 = Pair,

A0
0 =

(Pair − Pblood)
(
−2re−r

(
−D
l1
r + αk%s

)
− 2rer

(
D
l1
r + αk%s

))
dM0

B0
1 =

(Pair − Pblood)er
(
D
l1
r + αk%s

)
dM0

A0
1 = −

(Pair − Pblood)e−r
(
−D
l1
r + αk%s

)
dM0

,

and dM0 = e−r
(
−D
l1
r + αk%s

)
(2r − 1) + er

(
D
l1
r + αk%s

)
(2r + 1).

When ui 6= 0 the solutions are the following functions,

P 1
0 (x) = A1

0e
r0,1x +B1

0 + Pblood,

P 1
1 (x) = A1

1e
r1,1x +B1

1e
r1,2x + Pblood.

We have r0,1 = u0l0
D

, r1,1 = l1
2D

(
u1 +

√
u2

1 + 4β1D
)
and

r1,2 = l1
2D

(
u2

1 −
√
u1 + 4β1D

)
.

The coefficients are



B1
0 =

(Pair − Pblood)(−r0,1e
r0,1f + 2r1,1e

r0,1f + r0,1e
r0,1g − 2r1,2e

r0,1g)

dM

A1
0 =

(Pair − Pblood)(−2r1,1f + 2r1,2g)

dM

B1
1 =

(Pair − Pblood)r0,1e
r0,1g

dM

A1
1 =

(Pair − Pblood)(−r0,1e
r0,1f)

dM

with
f = er1,2

(
D

l1
r1,2 + αk%s

)
, g = er1,1

(
D

l1
r1,1 + αk%s

)
,

and

dM1 = f (−r0,1e
r0,1 − 2r1,1 + 2r1,1e

r0,1) + g (r0,1e
r0,1 + 2r1,2 − 2r1,2e

r0,1) .

Let us now focus on the continuity relatively to ui in ui = 0. We know that the
solution in the first generation when ui 6= 0 is,

P 1
0 (x) = A1

0e
r0,1x +B1

0 + Pblood.

We want to observe this solution when ui → 0. We then have r0,1 → 0 when
ui → 0 and since x ∈ [0, 1] we have

|r0,1x| < |r0,1| −→
ui→0

0
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. The development in series of the exponential is then possible. We obtain

P 1
0 (x) ≈ A1

0(1 + r0,1x) +B1
0 + Pblood = A1

0 +B1
0 + Pblood + A1

0r0,1x.

Let us prove that this solution tends when ui → 0 to the following solution ,

P 0
0 (x) = A0

0x+B0
0 .

We have

A1
0 +B1

0 + Pblood =Pblood + (Pair − Pblood)×
er0,1 (2r1,1f − r0,1f + r0,1g − 2r1,2g)− 2r1,1f + 2r1,2g

dM1

=Pair − Pblood + Pblood = Pair = B0
0 .

Let us now compute

A1
0r0,1 =

(Pair − Pblood)(−2r1,1f + 2r1,2g)r0,1

dM1
.

We have

dM1

r0,1

= −er0,1f − 2r1,1

r0,1

f +
2r1,1e

r0,1f

r0,1

+ er0,1g +
2r1,2

r0,1

g − 2r1,2e
r0,1g

r0,1

= −f
(
er0,1 − 2r1,1

(
er0,1 − 1

r0,1

))
+ g

(
er0,1 − 2r1,2

(
er0,1 − 1

r0,1

))
.

We know that r0,1 −→
ui→0

0, it implies that we have er0,1 −→
ui→0

1 + r0,1. We can

deduce that
er0,1 − 1

r0,1

−→
ui→0

1 . Finally we obtain,

A1
0r0,1 −→

ui→0

(Pair − Pblood)(−2r1,1f + 2r1,2g)

−f (er0,1 − 2r1,1) + g (er0,1 − 2r1,2)
.

Futhermore we know that f −→
ui→0

e−r
(
−D
l1
r + αk%s

)
, g −→

ui→0
er
(
D
l1
r + αk%s

)
,

r1,1 −→
ui→0

r and r1,2 −→
ui→0

−r. We obtain,

A1
0r0,1 −→

ui→0

(Pair − Pblood)
(
−2re−r

(
−D
l1
r + αk%s

)
− 2rer

(
D
l1
r + αk%s

))
dM0

= A0
0.

We proved that the solution in the bronchial tree is continuous relatively to ui
in ui = 0. Let us now prove it in the acinus.

When ui 6= 0, we have the following solution,

P 1
1 (x) = A1

1e
r1,1x +B1

1e
r1,2x + Pblood.

And when ui = 0, we have,

P 0
1 (x) = A0

1e
rx +B0

1e
−rx + Pblood.
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Figure 3.4: Partial pressure of the oxygen in the lung for different velocity.

Since we know that r1,1 −→
ui→0

r and r1,2 −→
ui→0

−r We then want to prove that A1
1 −→
ui→0

A0
1 and that B1

1 −→
ui→0

B0
1 .

Let us first focus on A1
1, we have,

A1
1 =

(Pair − Pblood)(−r0,1e
r0,1f)

dM1
.

We computed previously,
dM1

r0,1

−→
ui→0

dM0.

We then have,

A1
1 −→
ui→0

−
(Pair − Pblood)e−r

(
−D
l1
r + αk%s

)
dM0

= A0
1.

Likewise, we have

B1
1 =

(Pair − Pblood)r0,1e
r0,1g

dM1

B1
1 −→
ui→0

(Pair − Pblood)er
(
D
l1
r + αk%s

)
dM0

= B0
1 .

We proved for two generations the continuity of the solution relatively to ui.
This continuity can be extended to more generations. We can observe the continuity
relatively to ui in ui = 0 numerically on Figure 3.2.1 for 23 generations.

We proved the uniform continuity relatively to ui of the explicit solution, i.e. for
all x ∈ [0, 1], we have

P 1
i (x) −→

ui→0
P 0
i (x).
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3.2.2 Physical analysis of the transport

Now that we have obtained our stationnary explicit solutions, let us observe if it is
a good enough approximation of the general solution in the case of the lung. Let’s
start by adimensionaling the equation (3.7). The space was already adimensionalized
previously for simplicity. However we still have to adimensionalize the time. Let us
define the dimensionless time as s = t

T̃
where we chose T̃ = 0.1 s. We obtain,

1

T̃

∂P̃i
∂s
− D

l2i

∂2P̃i
∂x2

+
ui(sT̃ )

li

∂P̃i
∂x

+ βi(P̃i − Pblood) = 0,

or also,

λi
∂P̃i
∂s
− ∂2P̃i

∂x2
+ Pei

∂P̃i
∂x

+ ζi(P̃i − Pblood) = 0,

where,

λi =
l2i
DT̃

Pei =
liui
D

ζi =
βil

2
i

D
.

λi represents the relative amplitude of the transitory effects and of the diffusion;
the Peclet number Pei represents the relative amplitude of the convection by air and
of the diffusion; and ζi represents the relative amplitude of the gas capture by blood
and of diffusion and is meaningful only in the acini. These numbers are plotted on
Figure 3.5.

Figure 3.5: Dimensionless numbers at rest (left) and exercise (right). Results for
oxygen. The case of carbon dioxide is very similar as diffusion coefficients of oxygen
and carbon dioxide are similar. λ is the relative amplitude of the transitory effects
and of the diffusion; Peclet number Pe is the relative amplitude of the convection
and of the diffusion; ζ is the relative amplitude of the gas capture by blood and of
diffusion. The variable T̃ is chosen to be 0.1 s.

These numbers gives us interesting insights on the behavior of gas transport.
We can observe on Figure 3.5 that at rest, convection is dominant in the whole
conductive tree. However transitory effects are only slightly smaller than convection
effects, they are of the same order. Interestingly, in the acini, transport by diffusion,
transitory effects and absorption by blood are of similar. It results the geometrical
properties of the acini. At exercise, convection is dominant on every other phenom-
ena down to the last quarter of the acini, where diffusion, transitory effects and
absorption by blood become dominant, with similar amplitude.
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We can deduce that at rest the stationnary solution is not a good approximation
in the case of the lung because the two coefficient λ and Pe are of the same order.
But during exercise, we could approximate the general solution by its stationnary
one in the convective tree, when the air velocity is sufficiently large, for example
when it is at its highest in a respiratory cycle which corresponds to the inspiration
peak.

3.2.3 General Case

In the following, we will work with the non stationnary equation. Let us study some
of its properties such as the existence of an unique solution.

Equations in the complete space domain

The equations (3.7) are defined for each generations i ∈ J0, NK, where N + 1 is the
number of generations in the lung. We want to rewrite it so we have an unique
equation for the whole tree.

The first step is to change the space variable in order to have each equation for
each generation on a different space domain (see Figure 3.6).

i = 0

0 1 2

i = 1Generations

N − 1 N N + 1

i = N − 1 i = N

Figure 3.6: Organization of the new space domains.

The new space variable is defined for each generation i as follow,

x̂ = x+ i.

Then we have P̂i(t, x̂) = Pi(t, x) that verifies,

∂P̂i
∂t
− D

l2i

∂2P̂i
∂x̂2

+
ui(t)

li

∂P̂i
∂x̂

+ βi

(
P̂i − Pblood

)
= 0 for x̂ ∈ [i, i+ 1]. (3.9)

Now let us make a second change in the space variable, but only in the acinus.
We want to extend our space domain in order to remove the non boundary terms
coming from the conditions at the bifurcations in the variational formulation of the
equation on the space domain for the whole lung. Indeed, to prove the existence
of a solution we require to only have boundary conditions at the inlet and at the
outlets of the tree. We know that in the acinus the length of the bronchi are the
same in all generations and that the velocity decreases as follow,

ui+1 =
ui
2
.

To compensate this decrease in velocity, we look for functions si(x̂) such that,

s′i(x̂)ui = s′i+1(x̂)ui+1,
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Figure 3.7: Function si representing the change in space variable in the acinus
(i ∈ JG,NK)

which implies for x̂ ∈ [i, i+ 1],

2s′i(x̂) = s′i+1(x̂).

We also want the space domains to be connected, which implies for i ∈ JG,NK where
G is the number of generations in the bronchial tree,{

sG(G) = G,

si+1(i+ 1) = si(i+ 1).

So for all i ∈ JG,NK, and for j = i − G + 1, the function si (see Figure 3.7)
writes,

y = si(x̂) = 2jx̂+ (1− 2j)G+

j∑
k=1

2k − 2jj, for x̂ ∈ [i, i+ 1]. (3.10)

Then we have P̃i(t, y) = P̂i(t, x̂) and dy = 2jdx̂. Finally we can rewrite the
equation (3.9) in the acinus for the generations i ∈ JG,NK,

∂P̃i
∂t
− 22jD

l2i

∂2P̃i
∂y2

+
2jui(t)

li

∂P̃i
∂y

+ βiP̃i = βiPblood, ∀y ∈ [ki,1, ki,2],

where the bounds of our domains are,

ki,1 = 2ji+ (1− 2j)G+

j∑
k=1

2k − 2jj,

and

ki,2 = 2j(i+ 1) + (1− 2j)G+

j∑
k=1

2k − 2jj.
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Let us now define our complete space domain Ω,

Ω =
N⋃
i=0

[ki,1, ki,2] = [0, kN,2].

where we have in the convective tree (i ∈ J0, G− 1K),

[ki,1, ki,2] = [i, i+ 1].

Then, the function P̃ defined on Ω verifies the following equation,

∂P̃

∂t
− θ1(y)

∂2P̃

∂y2
+ θ2(t, y)

∂P̃

∂y
+ θ3(y)P̃ = f̃(y), ∀y ∈ Ω, (3.11)

where,

θ1(y) =
G−1∑
i=0

D

l2i
1[ki,1,ki,2[(y) +

N∑
i=G

22(i−G+1)D

l2i
1[ki,1,ki,2[(y),

θ2(t, y) =
G−1∑
i=0

ui(t)

li
1[ki,1,ki,2[(y) +

N∑
i=G

2i−G+1ui(t)

li
1[ki,1,ki,2[(y),

θ3(y) =
N∑
i=0

βi1[ki,1,ki,2[(y),

and,

f̃(y) =
N∑
i=0

βiPblood1[ki,1,ki,2[(y).

This equation is completed with the following boundary conditions,

P̃ (t, 0) = Pair,

−2N−G+1D

lN

∂P̃

∂y
(t, kN,2) = αk%s(P̃ (t, kN,2)− Pblood),

and with the following bifurcations conditions in the convective tree,

− D

li

∂P̃ (t, ki,2)

∂y
= −2Dh2

li+1

∂P̃ (t, ki+1,1)

∂y
, (3.12)

and in the acinus,

− D

li

∂P̃ (t, ki,2)

∂y
= − 4D

li+1

∂P̃ (t, ki+1,1)

∂y
. (3.13)



3.2. ANALYSIS OF THE MODEL 29

Homogeneous boundary condition in y = 0

Let us define a function r(y) in order for our boundary condition at the entrance of
the tree to be homogenous. It is defined such that the function

Q(t, y) = P̃ (t, y)− r(y),

verifies the following conditions at the inlet and at the outlets of the tree,
Q(t, 0) = 0,

−2N−G+1D

lN

∂Q(t, kN,2)

∂y
= αk%sQ(t, kN,2).

(3.14)

The function r is defined as a sum of affine functions,

r(y) =
N∑
i=0

ri(y)1[ki,1,ki,2],

where ri(y) = Aiy+Bi for each generation i ∈ J0, NK. We suppose that the functions
ri satisfy the same properties as the function P̃ at the boundaries of the domain
and at the bifurcations. Then, the function r satisfies at the inlet and at the outlets
of the tree, 

r(0) = Pair

−2N−G+1D

lN

∂r(kN,2)

∂y
= αk%s(r(kN,2)− Pblood).

The functions ri satisfy the following equations at the bifurcations in the con-
vective tree, 

ri(ki,2) = ri+1(ki+1,1)

−D
li

∂ri(ki,2)

∂y
= −2Dh2

li+1

∂ri+1(ki+1,1)

∂y
,

and in the acinus, 
ri(ki,2) = ri+1(ki+1,1)

−D
li

∂ri(ki,2)

∂y
= − 4D

li+1

∂ri+1(ki+1,1)

∂y
.

Thanks to the existence of this function r, we can now rewrite the equation (3.11),

∂Q

∂t
− θ1(y)

∂2Q

∂y2
+ θ2(t, y)

∂Q

∂y
+ θ3(y)Q = f(t, y), (3.15)

where f(t, y) = f̃(y) + θ1(y) ∂
2r
∂y2
− θ2(t, y) ∂r

∂y
− θ3(y)r(y) ∈ H−1(Ω).

The bifurcation conditions remains the same, but the boundary conditions are
now those in equation (3.14).
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Variationnal formulation

We start our analysis by computing the variational formulation of the equation (3.15).

Proposition 3.2.2 (Variationnal formulation). Let us define V0 = {v ∈ H1(Ω), v(0) =
0}. The variationnal formulation of our model writes,

∀Ψ ∈ V0,

∫
Ω

∂Q

∂t
Ψ dy + a(Q,Ψ) =

∫
Ω

f(t, x)Ψ dy, (3.16)

where,

a(Q,Ψ) =

∫
Ω

θ1(y)
∂Q

∂y

∂Ψ

∂y
dy + θ2(t)

∫
Ω

∂Q

∂y
Ψ dy +

∫
Ω

θ3(y)QΨ dy

+
2N−G+1αk%s

lN
Q(t, kN,2)Ψ(kN,2),

.

Proof. We multiply our equation (3.15) by a test function Ψ ∈ V0 and we integrate
over the domain Ω,∫

Ω

∂Q

∂t
Ψdy −

∫
Ω

θ1(y)
∂2Q

∂y2
Ψdy + θ2(t, y)

∫
Ω

∂Q

∂y
Ψdy +

∫
Ω

θ3(y)QΨdy

=

∫
Ω

fΨdy.

First, let us take a look at the function θ2(t, y).

Analysis of the function θ2(t, y).
We know that,

ui+1(t)

li+1

=
ui(t)

li

1

2h3
.

In the convective tree, we have h = 2−1/3, we can deduce that,

ui+1(t)

li+1

=
ui(t)

li
.

And in the acinus, we have h = 1, so we obtain,

ui+1(t)

li+1

=
ui(t)

2li
.

It means that for i ∈ JG,NK, we have

2i−G+2ui+1(t)

li+1

=
2i−G+1ui(t)

li
.

The function θ2 is then a constant regarding space, it writes

θ2(t, y) = θ2(t) =
u0(t)

l0
.
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We now want to compute the following part,

I = −
∫

Ω

θ1(y)
∂2Q

∂y2
Ψdy.

In order to compute it, we split it on the intermediate domains and obtain,

I =−
N∑
i=0

∫ ki,2

ki,1

θ1(y)
∂2Q

∂y2
Ψdy

=−
G−1∑
i=0

D

l2i

∫ ki,2

ki,1

∂2Q

∂y2
Ψdy −

N∑
i=G

22(i−G+1)D

l2i

∫ ki,2

ki,1

∂2Q

∂y2
Ψdy

=
G−1∑
i=0

D

l2i

∫ ki,2

ki,1

∂Q

∂y

∂Ψ

∂y
dy +

N∑
i=G

22(i−G+1)D

l2i

∫ ki,2

ki,1

∂Q

∂y

∂Ψ

∂y
dy

−
G−1∑
i=0

[
D

l2i

∂Q

∂y
Ψ

]ki,2
ki,1

−
N∑
i=G

[
22(i−G+1)D

l2i

∂Q

∂y
Ψ

]ki,2
ki,1

=

∫
Ω

θ1(y)
∂Q

∂y

∂Ψ

∂y
dy + θ4,

where θ4 is defined as follow,

θ4 = −
G−1∑
i=0

[
D

l2i

∂Q

∂y
Ψ

]ki,2
ki,1︸ ︷︷ ︸

θ4,1

−
N∑
i=G

[
22(i−G+1)D

l2i

∂Q

∂y
Ψ

]ki,2
ki,1︸ ︷︷ ︸

θ4,2

.

To compute it, let’s start by studying the first term.

Analysis of θ4,1.
We have,

θ4,1 = −
G−1∑
i=0

[
D

l2i

∂Q

∂y
Ψ

]ki,2
ki,1

.

θ4,1 =
G−1∑
i=0

D

l2i

(
∂Q(t, ki,1)

∂y
Ψ(ki,1)− ∂Q(t, ki,2)

∂y
Ψ(ki,2)

)

=
D

l20

∂Q(t, 0)

∂y
Ψ(0) +

G−2∑
i=0

(
D

l2i+1

∂Q(t, ki+1,1)

∂y
− D

l2i

∂Q(t, ki,2)

∂y

)
Ψ(ki,2)

− D

l2G−1

∂Q(t, kG−1,2)

∂y
Ψ(kG−1,2).

We know that Ψ(0) = 0 because Ψ ∈ V0. Furthermore we know that,

−D
li

∂Q(t, ki,2)

∂y
= −2Dh2

li+1

∂Q(t, ki+1,1)

∂y
.
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If we divide the last equation by li which is equals to li+1

h
, we obtain,

2Dh3

l2i+1

∂Q(t, ki+1,1)

∂y
− D

l2i

∂Q(t, ki,2)

∂y
= 0.

Yet in the bronchial tree when i ∈ J0, G− 1K, we know that h =
(

1
2

)1/3. We obtain,

D

l2i+1

∂Q(t, ki+1,1)

∂y
− D

l2i

∂Q(t, ki,2)

∂y
= 0.

It implies that,

θ4,1 = − D

l2G−1

∂Q(t, kG−1,2)

∂y
Ψ(kG−1,2).

Now, let us focus on the second term of θ4.

Analysis of θ4,2.
We obtain,

θ4,2 =−
N∑
i=G

[
22(i−G+1)D

l2i

∂Q

∂y
Ψ

]ki,2
ki,1

=
N∑
i=G

22(i−G+1)D

l2i

(
∂Q(t, ki,1)

∂y
Ψ(ki,1)− ∂Q(t, ki,2)

∂y
Ψ(ki,2)

)

=
N−1∑
i=G

(
22(i−G+2)D

l2i+1

∂Q(t, ki+1,1)

∂y
− 22(i−G+1)D

l2i

∂Q(t, ki,2)

∂y

)
Ψ(ki,2)

+
4D

l2G

∂Q

∂y
(t, kG,1)Ψ(kG,1)− 22(N−G+1)D

l2N

∂Q

∂y
(t, kN,2)Ψ(kN,2).

But we know that,

−D
li

∂Q(t, ki,2)

∂y
= − 4D

li+1

∂Q(t, ki+1,1)

∂y
.

Since li = li+1, we have,

22(i−G+2)D

l2i+1

∂Q(t, ki+1,1)

∂y
− 22(i−G+1)D

l2i

∂Q(t, ki,2)

∂y

=
22(i−G+1)D

l2i+1

(
4
∂Q(t, ki+1,1)

∂y
− ∂Q(t, ki,2)

∂y

)
= 0.

We can deduce that,

θ4,2 =
4D

l2G

∂Q

∂y
(t, kG,1)Ψ(kG,1)− D22(N−G+1)

l2N

∂Q

∂y
(t, kN,2)Ψ(kN,2)
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Finally, thanks to the computations of θ4,1 and θ4,2 we can deduce the value for
θ4.

Analysis of θ4.
We obtain,

θ4 = θ4,1 + θ4,2

=− D

l2G−1

∂Q

∂y
(t, kG−1,2)Ψ(kG−1,2) +

4D

l2G

∂Q

∂y
(t, kG,1)Ψ(kG,1)

− D22(N−G+1)

l2N

∂Q

∂y
(t, kN,2)Ψ(kN,2)

We know that,

− D

lG−1

∂Q(t, kG−1,2)

∂y
= −4D

lG

∂Q(t, kG,1)

∂y
,

and that lG = lG−1. It results in

θ4 = −D22(N−G+1)

l2N

∂Q

∂y
(t, kN,2)Ψ(kN,2).

Or, thanks to the boundary condition,

θ4 =
2N−G+1αk%s

lN
Q(t, kN,2)Ψ(kN,2).

We finally obtain the following variationnal formulation, ∀Ψ ∈ V0,∫
Ω

∂Q

∂t
Ψ dy +

∫
Ω

θ1(y)
∂Q

∂y

∂Ψ

∂y
dy + θ2(t)

∫
Ω

∂Q

∂y
Ψ dy +

∫
Ω

θ3(y)QΨ dy

+
2N−G+1αk%s

lN
Q(t, kN,2)Ψ(kN,2) =

∫
Ω

fΨ dy.

Gårding Coercivity

Now, we will focus on the bilinear form a(Q,Ψ). We will prove that it is Gårding
coercive. It will be useful in the following in order to prove the existence of a unique
solution to our equation (3.15).

Theorem 3.2.3. The bilinear form,

a(Q,Ψ) =

∫
Ω

θ1(y)
∂Q

∂y

∂Ψ

∂y
dy + θ2(t)

∫
Ω

∂Q

∂y
Ψ dy +

∫
Ω

θ3(y)QΨ dy

+
2N−G+1αk%s

lN
Q(t, kN,2)Ψ(kN,2),

is Gårding coercive. It means that ∀Q ∈ V0,

a(Q,Q) > C1 ‖Q‖2
H1(Ω) − C2 ‖Q‖2

L2(Ω) ,

where C1 > 0 and C2 are constants.
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Proof. To start let us split our bilinear form a in two parts. Let us define ∀Q,Ψ ∈ V0

:

a1(Q,Ψ) =

∫
Ω

θ1(y)
∂Q

∂y

∂Ψ

∂y
dy +

∫
Ω

θ3(y)QΨ dx+
2N−G+1αk%s

lN
Q(kN,2)Ψ(kN,2),

and,

a2(Q,Ψ) = θ2(t)

∫
Ω

∂Q

∂y
Ψ dy.

We have,
a(Q,Ψ) = a1(Q,Ψ) + a2(Q,Ψ).

Let us start by analyzing the symmetric bilinear form a1.

Analysis of a1(Q,Q).
We want to prove that the symmetric bilinear form a1 is H1 coercive. We know

that αk%s > 0, then,

a1(Q,Q) >
∫

Ω

θ1(y)

(
∂Q

∂y

)2

dy +

∫
Ω

θ3(y)Q2 dy.

Furthermore we know that the functions θ1 > 0 and θ3 > 0 are bounded.
We can write that,

a1(Q,Q) > min(θ1)

∥∥∥∥∂Q∂y
∥∥∥∥2

L2(Ω)

+ min(θ3) ‖Q‖2
L2(Ω) .

We know that the minimum of the function θ3 is 0, then,

a1(Q,Q) > min(θ1)

∥∥∥∥∂Q∂y
∥∥∥∥2

L2(Ω)

=
min(θ1)

2

(∥∥∥∥∂Q∂y
∥∥∥∥2

L2(Ω)

+

∥∥∥∥∂Q∂y
∥∥∥∥2

L2(Ω)

)

Let us use the Poincaré inequality since we have Q(0) = 0. We obtain,

a1(Q,Q) >
min(θ1)

2

(∥∥∥∥∂Q∂y
∥∥∥∥2

L2(Ω)

+ C ‖Q‖2
L2(Ω)

)
,

where C > 0 is a constant. Thus we have,

a1(Q,Q) >
min(θ1C, θ1)

2

(∥∥∥∥∂Q∂y
∥∥∥∥2

L2(Ω)

+ ‖Q‖2
L2(Ω)

)

>
min(θ1C, θ1)

2
‖Q‖2

H1(Ω)

The coefficient η1 = min(θ1C,θ1)
2

> 0 is a constant. We proved that a1 is H1-
coercive.

Let us now focus on a2(Q,Q).
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Analysis of a2(Q,Q).
The function θ2(t) is bounded, hence,

−‖θ2‖L∞(R+) 6 θ2(t) 6 ‖θ2‖L∞(R+) .

We can deduce thanks to the Cauchy-Schwarz inequality,

a2(Q,Ψ) > −‖θ2‖L∞(R+)

∥∥∥∥∂Q∂y
∥∥∥∥
L2(Ω)

‖Q‖L2(Ω) .

Finally, let us focus of the bilinear form a(Q,Q).

Analysis of a(Q,Q).
We obtain from the analyses of a1 and a2,

a(Q,Q) > η1 ‖Q‖2
H1(Ω) − ‖θ2‖L∞(R+)

∥∥∥∥∂Q∂y
∥∥∥∥
L2(Ω)

‖Q‖L2(Ω)

Let us define η2 = ‖θ2‖L∞(R+). We know that for all A, B, and κ > 0, we have(√
κ
2
A− B√

2κ

)2

> 0. By expanding this expression, we obtain

−AB > −κ
2
A2 − B2

2κ
.

Let us choose A =
∥∥∥∂Q∂y ∥∥∥

L2(Ω)
and B = η2‖Q‖L2(Ω). It results that,

a(Q,Q) > η1 ‖Q‖2
H1(Ω) −

κ

2

∥∥∥∥∂Q∂y
∥∥∥∥2

L2(Ω)

− η2
2

2κ
‖Q‖2

L2(Ω)

>
(
η1 −

κ

2

)
‖Q‖2

H1(Ω) −
η2

2

2κ
‖Q‖2

L2(Ω)

We can finally choose κ = η1 > 0, and we obtain,

a(Q,Q) >
η1

2
‖Q‖2

H1(Ω) −
η2

2

2η1

‖Q‖2
L2(Ω)

We proved that the quadratic form a is Gårding coercive, since C1 = η1
2
> 0 and

C2 =
η22
2η1

are constants.

Let us note that if our boundary conditions at the outlets of the tree were
Dirichlet conditions, the quadratic form a(Q,Ψ) would be coercive, i.e. it would
satisfy the following property,

a(Q,Q) > C ‖Q‖2
H1(Ω) ,

where C > 0 is a constant.
Furthermore, if we assume that for all t > 0 we have α%sk + uN (t)

2
> 0, then our

quadratic form a(Q,Ψ) would also be coercive [28] .
However, in our case the Gårding coercivity is sufficient to prove the existence

and uniqueness of a solution.
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Existence and uniqueness

In order to prove the existence and the uniqueness of a solution for our model, we
need the theorem 3.2.4 de J.L. Lions. The proof of this theorem is detailed in [63].

Theorem 3.2.4 (J.L. Lions). Let H and V be two Hilbert spaces. We suppose
that V ⊂ H with a dense and continuous injection and with V ⊂ H ⊂ V ′. Let
us have a fixed Ψ > 0; for almost every t ∈ [0, T ], let us have a bilinear form
a(t;u, v) : V × V → R that verify the following properties :

1. the function t 7→ a(t;u, v) is measurable ∀u, v ∈ V ,

2. |a(t;u, v)| 6M‖u‖V ‖v‖V a.e. t ∈ [0, T ], ∀u, v ∈ V

3. a(t;u, u) > C1‖u‖2
V − C2‖u‖2

H a.e. t ∈ [0, T ]∀u ∈ V,

where M,C1 > 0 and C2 are constants. If we have f ∈ L2(0, T ;V ′) and u0 ∈ H,
then there exists an unique function u such that

u ∈ L2(0, T ;V ) ∩ C([0, T ];H) et
du
dt
∈ L2(0, T ;V ′)〈

du

dt
(t), v〉+ a(t;u(t), v) = 〈f(t), v〉, ∀v ∈ V

u(0) = u0.

Theorem 3.2.5. Let us define T > 0 fixed, Ω = [0, kN,2] where N > 1 is an integer.
Let us have V0 = {v ∈ H1(Ω), v(0) = 0}. If we have f ∈ H−1(Ω) and Q0 ∈ L2(Ω),
then there exists an unique function Q such that,

Q ∈ L2(0, T ;V0) ∩ C([0, T ];L2(Ω)),
dQ

dt
∈ L2(0, T ;H−1(Ω)).

and, 
∫

Ω

∂Q

∂t
Ψ dy + a(Q,Ψ) =

∫
Ω

f(t, y)Ψ dy,

Q(0, y) = Q0(y).

(3.17)

Futhermore since we are in one dimension, the solution is also continuous in
space.

Proof. First, let us prove that the injection of V0 in L2(Ω) is continuous and dense.
We know that ∀v ∈ H1(Ω), we have by definition :

‖v‖2
H1 = ‖v‖2

L2 + ‖v′‖2
L2 .

Then we have,

‖v‖2
H1 > ‖v‖2

L2 ,

or also,

‖v‖H1 > ‖v‖L2 .
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It proves that the injection is continuous.

Now, let us prove that the injection is dense. We know from Adams [1] that the
space C∞0 (Ω) is dense in the space L2(Ω). Furthermore

C∞0 (Ω) ⊂ V0 ⊂ H1(Ω),

we can deduce that V0 and H1(Ω) are dense in L2(Ω).

Now we want to verify the properties of the quadraticform a(Q,Ψ) :

1. The function t 7→ a(Q,Ψ) is measurable for all Q,Ψ ∈ V0 since the function
θ2(t) is continuous in time, hence measurable.

2. Let us define κ1 = ‖θ1‖L∞(Ω), κ2 = ‖θ2‖L∞([0,Ψ]), κ3 = ‖θ3‖L∞(Ω) and κ4 =
2N−G+1αk%s

lN
.

Let Q ∈ V0 and Ψ ∈ V0, we have,

|a(Q,Ψ)| 6 κ1

∣∣∣∣∫
Ω

∂Q

∂y

∂Ψ

∂y
dy
∣∣∣∣+ κ2

∣∣∣∣∫
Ω

∂Q

∂y
Ψ dy

∣∣∣∣
+ κ3

∣∣∣∣∫
Ω

QΨ dy
∣∣∣∣+ κ4Q(kN,2)Ψ(kN,2)

We obtain thanks to the Cauchy-Schwarz inequality,

|a(Q,Ψ)| 6 κ1

∥∥∥∥∂Q∂y
∥∥∥∥
L2(Ω)

∥∥∥∥∂Ψ

∂y

∥∥∥∥
L2(Ω)

+ κ2

∥∥∥∥∂Q∂y
∥∥∥∥
L2(Ω)

‖Ψ‖L2(Ω)

+ κ3 ‖Q‖L2(Ω) ‖Ψ‖L2(Ω) + κ4Q(kN,2)Ψ(kN,2)

We can deduce by continuity of the trace,

|a(Q,Ψ)| 6 (κ1 + κ2 + κ3 + κ4C) ‖Q‖H1(Ω) ‖Ψ‖H1(Ω)

where C is a constant. We proved the continuity of the quadraticform a(Q,Ψ)
since κ1 + κ2 + κ3 + κ4C is a constant.

3. Previously we proved that the quadraticform a is Gårding coercive.

We verified the three properties in order to apply the theorem 3.2.4. We proved
the existence and uniqueness of the function Q. We proved that the solution is in
H1(Ω) and since we are in 1D in space we know that H1(Ω) ⊂ C0(Ω). We can
deduce that the solution is continuous in space.

We have proved the continuity of the solution in space, but we can go further
on each bronchus. Indeed on each open domain ]ki,1, ki,2[, we can prove that the
solution is C1. We know that we have,∫ ki,2

ki,1

D

l2i

∂2Qi

∂y2
Ψdy =

∫ ki,2

ki,1

(
∂Qi

∂t
+
ui(t)

li

∂Qi

∂y
+ βiQi − fi

)
Ψdy.
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Since Qi ∈ H1(Ωi), ∂Qi

∂t
∈ L2([0, T ]) and fi ∈ L2(]ki,1, ki,2[), we can deduce that

∂Qi

∂y
∈ H1(]ki,1, ki,2[). Since we are in 1D we can deduce that ∂Qi

∂y
is continuous.

It means that Qi ∈ C1(]ki,1, ki,2[). The function Qi is not derivable at ki,1 and
ki,2. Indeed our condition at the bifurcations imply that at each bifurcation (see
equations (3.12) and (3.13)), the derivative on the right and the one on the left are
different.

Periodicity

We suppose that the function ui(t) is periodic with a period T , i.e.

ui(T + t) = ui(t).

We know that a solution to our model exists and is continuous in time. We now
want to know if our solution is asymptotically periodic of period T .

Theorem 3.2.6 (Periodicity). Let us assume that,

αk%s +
uN(t)

2
> 0.

The solution of our equations (3.15) is then asymptotically periodic in time for the
L2 norm with a period T , i.e. we have,

‖Q(T + t, y)−Q(t, y)‖L2(Ω) −→t→+∞
0. (3.18)

Proof. Let us have,
Q̃(t, y) = Q(T + t, y)−Q(t, y).

It verifies the following equation,

∂Q̃

∂t
− θ1(y)

∂2Q̃

∂y2
+ θ2(t)

∂Q̃

∂y
+ θ3(y)Q̃ = 0.

and the following boundary conditions,
Q̃(t, 0) = 0

−2N−G+1D

lN

∂Q̃(t, kN,2)

∂y
= αk%sQ̃(t, kN,2).

The conditions at the bifurcations remain the same. And finally the initial
condition writes,

Q̃(0, y) = Q̃0(y) = Q(T, y)−Q(0, y).

The variationnal formulation writes for Ψ ∈ V0,∫
Ω

∂Q̃

∂t
Ψ dy + a(Q̃,Ψ) = 0,

where
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a(Q̃,Ψ) =

∫
Ω

θ1(y)
∂Q̃

∂y

∂Ψ

∂y
dy + θ2(t)

∫
Ω

∂Q̃

∂y
Ψ dy +

∫
Ω

θ3(y)Q̃Ψ dy

+
2N−G+1αk%s

lN
Q̃(t, kN,2)Ψ(kN,2),

Let us choose Ψ = Q̃, we then have,

1

2

d

dt
‖Q̃‖2

L2(Ω) = −a(Q̃, Q̃).

Let us compute the following integral,

J = θ2(t)

∫
Ω

∂Q̃

∂y
Q̃ dy = θ2(t)

[
1

2
Q̃2

]kN,2

0

=
θ2(t)

2
Q̃2(t, kN,2).

Finally we obtain the following quadratic form

a(Q̃, Q̃) =

∫
Ω

θ1(y)

(
∂Q̃

∂y

)2

dy +

∫
Ω

θ3(y)Q̃2 dy

+
2N−G+1

lN

(
αk%s +

uN(t)

2

)
Q̃2(t, kN,2).

Previously we proved that,

a1(Q̃, Q̃) =

∫
Ω

θ1(y)

(
∂Q̃

∂y

)2

dy +

∫
Ω

θ3(y)Q̃2 dy

> η1

∥∥∥Q̃∥∥∥2

H1(Ω)
> η1

∥∥∥Q̃∥∥∥2

L2(Ω)
.

We know that αk%s + uN(t)/2 > 0, we then can deduce that,

2N−G+1

lN

(
αk%s +

uN(t)

2

)
Q̃2(t, kN,2) > 0.

We obtain,

a(Q̃, Q̃) > η1

∥∥∥Q̃∥∥∥2

L2(Ω)
.

Finally we have,
d

dt

∥∥∥Q̃∥∥∥2

L2(Ω)
6 −2η1

∥∥∥Q̃∥∥∥2

L2(Ω)
.

Thanks to the Gronwall lemma, we obtain,∥∥∥Q̃∥∥∥2

L2(Ω)
6
∥∥∥Q̃0

∥∥∥2

L2(Ω)
exp(−2η1t).

Then,

lim
t→∞

∥∥∥Q̃∥∥∥2

L2(Ω)
= 0,

hence the solution is asymptotically periodic at t→∞.
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We proved the asymptotic periodicity for

αk%s +
uN(t)

2
> 0.

This condition is satisfied in our model for an amplitude of ventilation inferior to
4 m · s−1. Let us remark that we could choose to have two different boundary
conditions at the outlets of the tree depending on the velocity,

−2N−G+1D

lN

∂Q(t, kN,2)

∂y
= αk%sQ(t, kN,2), for uN > 0,

uN
lN
Q(t, kN,2)− 2N−G+1D

lN

∂Q(t, kN,2)

∂y
= αk%sQ(t, kN,2), for uN < 0.

With these two conditions, we could obtain the asymptotic periodicity for all veloc-
ities. However, we did not make this assumption in our model since we observed a
numerical periodicity even for high amplitude of ventilation.

Comparison of the stationnary and non stationnary solutions

We proved in the last sections that the solution of the equation (3.2) exists and is
unique. We can now compare the two solutions and confirm our assumption exposed
previously that, in the case of the lung at rest the stationnary solution is not a good
approximation of the general solution. Indeed, we can observe that at rest, when
the air velocity is at its peak (Figure 3.8 (a)), the two solutions differ around the
middle of the lung (11th − 12th generation) in the convective tree. Whereas during
maximal exercise, we can observe that when the velocity is as its peak (Figure 3.8
(b)) the stationnary solution is a good approximation in the convective tree. The
difference appears around the 19th generation of the lung, in the acinus. It confirms
our analysis based on the adimensionalisation of our equations in section 3.2.2.

Figure 3.8: Comparison between stationnary and non stationnary solution at rest
(left) and during intense exercise (right) at the inspiration peak.

Finally we can compare the two solutions when the velocity is null (Figure 3.9).
The two solutions differ everywhere in the lung. This analysis shows that the time
dynamics have to be included in the equations in order to reach satisfactory pre-
dictions for different metabolic regimes. In the following, we will use the non sta-
tionnary approximation of the solution computed by an implicit finite difference
numerical scheme, described in appendix A, using the language Julia [11].
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Figure 3.9: Comparison between the stationnary and the non stationnary solutions
when the velocity of the air is equal to 0 m/s.

3.3 Blood partial pressures

3.3.1 Modelling the exchanges between alveolar gas and blood

In the previous section we assumed that the partial pressure of the gas in the blood
(Pblood) was a constant, but it is actually dependent on time, space and gas species.

Oxygen

Oxygen can be found in blood dissolved in the plasma and linked to hemoglobin.
To compute Pblood,O2 for oxygen, we use the formulation from [34]. We can relate
Pblood,O2 to the partial pressure of oxygen in the acini, PAO2 , with several physiolog-
ical quantities by establishing a matter balance,

flow going through the membrane︷ ︸︸ ︷
α(PAO2 − Pblood,O2) =

4Z0 (f(Pblood,O2)− f(PaO2)) vs + σvs(Pblood,O2 − PaO2)︸ ︷︷ ︸
flow transported by the blood

.

The first term on the right hand side represents the link to hemoglobin. The
factor 4 corresponds to the fact that a molecule of hemoglobin can link 4 molecules of
oxygen. Z0 represents the concentration of hemoglobin in the blood (9.93 mol ·m−3

[24]). The function f is the oxygen saturation of hemoglobin in the blood. This
function is usually modelled using the following Hill equation (Figure 3.10) [50],

f(x) =
x2.6

x2.6 + 262.6
.

The second term on the right hand side of the equation represents the oxygen
solubility in the plasma. σ is the solubility coefficient (mol·m−3 ·mmHg−1) of oxygen
in blood and PaO2 is the partial pressure of oxygen in pulmonary arterial blood.

Finally, present in the two parts of the equation, we have vs the blood velocity
(m · s−1). It can be computed as the ratio of the length of the capillary (lc) over
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Figure 3.10: Percentage of total hemoglobin that is saturated with oxygen in the
blood modeled by an Hill function (blue curve). The red curve represents the
value P50 which is the oxygen partial pressure for which the oxygen saturation of
hemoglobin is 50%. For humans, we have P50 = 26 mmHg.

the transit time in the capillary (tc). In our model the length lc is supposed to be
constant and equals to 1mm [113]. The transit time is defined as the time the red
blood cells spend in the capillary. At rest, the value is around 1 second for humans
[47].

The partial pressure of the oxygen in the blood Pblood,O2 is computed numerically
as a function of the alveolar oxygen partial pressure PAO2 (see Figure 3.11).

Figure 3.11: Oxygen partial pressure in the blood as a function of the alveolar
oxygen partial pressure.

Carbon dioxide

In the blood, carbon dioxide can be dissolved in plasma, linked to hemoglobin or
linked to bicarbonate ions. The matter balance equation for the carbon dioxide is
computed using [104],

flow through the membrane︷ ︸︸ ︷
α(PACO2 − Pblood,CO2) = (Pblood,CO2 − PaCO2) σ vs

(
1 + 10(pH−pK)

)
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×
(

1− 0.0289Z0

(3.352− 0.456SO2)× (8.142− pH)

)
︸ ︷︷ ︸

flow transported by the blood

,

with vs the blood velocity (m·s−1), σ the solubility coefficient (mol·m−3·mmHg−1)
of carbon dioxide in blood, pH the blood pH that is equal to 7.4 [104], pK = 6.09072
the dissociation coefficient of the chemical system CO2 − HCO3− [104], Z0 the
hemoglobin concentration (g · dL−1) and SO2 the oxygen-hemoglobin saturation
(percents).

The partial pressure of the carbon dioxide in the blood Pblood,CO2 is shown as a
function of the alveolar oxygen partial pressure PAO2 in Figure 3.11.

Figure 3.12: Carbon dioxide partial pressure in the blood as a function of the alveolar
carbon dioxide partial pressure.

3.3.2 Effective partial pressure estimation

Practically, the arterial partial pressure of oxygen PaO2 and carbon dioxide PaCO2

seen by the acini might be different to that of the pulmonary arterial circulation,
as the history of the blood flowing in the acini wall is unknown. Blood could have
already been in contact with acini air upstream. Consequently, we compute and use,
instead of PaO2 and PaCO2 , effective partial pressures in oxygen P̃aO2 and in carbon
dioxide P̃aCO2 using rest regime as a reference state and fitting the physiological
parameters known for that reference state.

To compute the exchanges between alveolar air and blood, we need to esti-
mate the effective gas partial pressure in the pulmonary arterial and veinous blood
[33]. For low oxygenated blood (pulmonary arterial blood), PaO2 = 40 mmHg and
PaCO2 = 47 mmHg. For oxygenated blood (pulmonary veinous blood), we have
PvO2 = 100 mmHg and PvCO2 = 40 mmHg.

In our case, tidal volume (VT ), mean air flow velocity in trachea (u0,mean) and
trachea cross-sections (S0) are related thanks to this expression,

VT =

∫ T/2

0

u0,mean S0 dt,
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since u0 is assumed to be a sine function equals to,

u0(t) = A sin

(
2π

T
t

)
.

A represents the amplitude (m · s−1) and T (s) the period of the idealised venti-
lation.

The mean airflow velocity then writes :

u0,mean =
2

T

∫ T/2

0

A sin(
2π

T
t) dt =

2A

π
.

During rest ventilation, a human breathes around 12 times a minute, which
corresponds to a period of T = 5 s; the tidal volume is about 0.5L [33]. If we inject
this expression into the tidal volume expression, we obtain A = 1.2 m · s−1.

With all these parameters, our transport model allows to compute the amount
of oxygen captured by the blood (V O2) : 3.13 × 10−4 mol · s−1 and the amount of
carbon dioxide expelled from the blood (V CO2): 1.35× 10−4 mol · s−1. These values
are in the range of physiological data which is 1− 2× 10−4 mol · s−1 [54].

Another coefficient, the respiratory exchange ratio, has to be taken into account
to model more accurately the gases exchanges with the blood. This coefficient is the
ratio of the amount of oxygen captured by the blood and of the amount of carbon
dioxide expelled from the blood. The respiratory exchange ratio (RER) is defined
as follow:

RER =
V CO2

V O2

.

The physiological range of the RER is 0.7 to 1. Using in our model typical arterial
and veinous partial pressures in blood, this coefficient is predicted to be about 0.43.
The physiological value at rest is however about 0.8 [33]. In order to reach a correct
value of the RER, we have to account in our model for the fact that blood could
have captured oxygen at its previous visited locations: we need to use an effective
partial pressure for arterial blood. As shown on Figure 3.13, the value P̃art = 90.5

Figure 3.13: Respiratory exchange ratio in function of the partial pressure of the
respiratory arterial blood.
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mmHg allows to reach a correct RER. With this value, our model predicts at rest
V O2 = 1.69× 10−4 mol · s−1 and V CO2 = 1.35× 10−4 mol · s−1 with a RER of 0.8.

In order to validate the choice for effective partial pressure, we did a perturbation
analysis on the RER at rest, see Table 3.4.

HHH
HHHA

T 4 5 6

1.1 0.80 0.80 0.80
1.2 0.80 0.80 0.80
1.3 0.80 0.80 0.80

Table 3.4: Respiratory Exchange Ratio at rest with A the amplitude and T the
period of the respiration.

We have satisfactory little variation on the RER when rest ventilation amplitude
and frequency are perturbed and we remain in the physiological range.

Let us extend our analysis to maximal exercise. During more intense activities,
our heart rate increases and blood circulates faster to supply in oxygen all of our
cells correctly. The transit time tc then decreases from 1 second at rest to 0.51
second at maximal exercise [47]. We can also observe a decrease of the following
ratio, Vdead/VT , where Vdead represents the dead volume, the volume of the lung that
does not participate in the exchange with the blood. We can compute this volume
as the sum of each bronchi’s volume in the conductive tree,

Vdead =
G−1∑
i=0

2ir2
i liπ

= r2
0l0π

G−1∑
i=0

2ih3.

Since in the convective tree we suppose that h = 2−1/3, we obtain,

Vdead = r2
0l0πG.

We can now relate the radius of the trachea to the ratio Vdead/VT . It gives us tracheal
radius of 1.27 cm during maximal exercise whereas at rest we have a radius of 0.9
cm. It is in accordance with physiology since it has been observed that airways
dilatation is related to work load [111].

During intense exercise, human can exhibit up to 59 breaths a minute, which
represents a respiratory period around T = 1 second and the tidal volume can
increase to 3.1L [47]. With similar computation as we did for the rest regime,
we compute an amplitude of 19m · s−1. The values of the RER during exercise
predicted by our model are shown on Table 3.5. They are fully compatible with the
physiological data, as during exercise the RER increases with the metabolism and
comes close to 1, or even sometimes exceeds it [41].

These last analyses show that our hypothesis to use an effective partial pressure
in oxygen for exchanges in our model leads to predictions in good agreement with
the expected physiological responses.
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HH
HHHHA

T 0.9 1 1.1

18 0.94 0.96 0.97
19 0.96 0.97 0.98
20 0.97 0.99 1.00

Table 3.5: Respiratory Exchange Ratio during exercise with A the amplitude and
T the period of the respiration.

3.4 Conclusion
We described and studied a model of gas transport in the human lung based on
the core physical properties of the human’s lung: a tree-like structure of the lung,
convective and diffusive transports of oxygen and carbon dioxide and physiology-
based exchange surface properties. This model has few parameters and gives us
interesting insights on the gaseous exchanges with the blood. Also, it allows to better
understand the gas distribution inside the human’s lung, along the generations.

The oxygen flows exchanged with the blood computed with our model are close
with the physiology. Futhermore our model is robust regarding the intense exercise
rate. Indeed, it models properly the increase of the respiratory exchange ratio (RER)
during the increase of intensity of exercise.

Some improvements of the model are worth considering. It could be interesting
to model the change of volume of the alveolar region. Indeed, an airflow is created
during inspiration due to the increase of the lung’s volume that allows a pressure
drop between the ambiant air and the acinus. This change in the model could induce
a better modelisation of the exchange surface of the lung, especially during maximal
exercise. Furthermore, we could also improve the determination of the effective
arterial partial pressure of the oxygen. Indeed, since it represents a mean value of
the arterial partial pressure of oxygen in all the blood capillaries connected to the
lung, its value could depend on time and on the metabolic rate.



Chapter 4

Optimal ventilation in mammals

The transport of air in the lung requires a certain amount of energy due to physical
constraints. Indeed, a viscous energy is spent due to friction effects of the air
flow in the bronchi [72]. It is related to the hydrodynamic resistance of the lung.
Furthermore, mechanical energy is needed to expand the thoracic cage and the lung
tissues during inspiration. It is related to the compliance of the lung that represents
the elasticity of the tissues. This energy is lost at expiration due to the viscoelastic
recoil of the tissues. This spending of energy can influence the control of ventilation,
which is based on the regulation of the volume of air that is inspired (tidal volume)
and the frequency at which it is renewed (ventilation frequency) with the aim to
keep oxygen and carbon dioxide partial pressure constant in blood. The lungs of
mammals share morphological and functional properties that depend on their mass
M with non trivial laws, called allometric scaling laws [43, 51, 53, 86, 117]. They
write under the following form,

Y = aM b,

where a is the prefactor, M is the mass of the mammals, b is the exponent and Y is
the property shared by the mammals like for example the maximal metabolic rate
as shown on Figure 4.1. These allometric scaling laws come from physiological and
physical constraints [117].

Since the physics of ventilation is linked to the geometry of the lung, the mor-
phological differences amongst mammals also affect the control of ventilation. It
is confirmed by the allometric scaling laws for the ventilation frequency and tidal
volume observed in physiology. For example, at basal metabolic rate (BMR), ven-
tilation frequency has been estimated to follow the law fBMR

b ≈ 0.58M−0.25 Hz
[121] and tidal volume to follow the law V BMR

T ≈ 7.14× 10−3M1 L [117]. At other
metabolic rates, less data are available in the literature except for the breathing
frequency of mammals at maximal metabolic rate (MMR). It has been estimated to
follow the law fMMR

b ≈ 5.08M−0.14 Hz [122].
Previous studies in the literature have been looking for optimal ventilation using

modeling approaches [82, 75, 55]. In 1950, Otis et al. showed that by constraining
the alveolar ventilation, which is the inspired air flow that enters the alveoli and
participates to gas exchanges, V̇A = (VT−VD)fb with VD the dead volume, an optimal
breathing frequency could be computed analytically by canceling the derivative of

47
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Figure 4.1: Maximal oxygen consumption V̇ max
O2

as a function of the mammals
mass (red dots) and the corresponding allometric scaling law (blue line), V̇ max

O2
=

118.2M0.872 mL ·min−1. Values from [114].

the power relatively to the ventilation frequency fb [82, 55],

fb,pred =
2V̇A/VD

1 +
√

1 + 4π2RCV̇A/VD

.

For all mammals, allometric scaling laws are available in the literature for all the
quantities present in the expression for the frequency at rest. Indeed we have, V̇A ∝
M

3
4 [43], VD ∝M1 [101], R ∝M− 3

4 [101, 117] and C ∝M1 [101]. Consequently, we
can derive an allometric scaling law for the ventilation frequency based on ventilation
data in healthy humans [47], fb,pred ∝ 0.9 M−0.25 Hz. Thanks to this expression
and to the alveolar ventilation expression, the allometric scaling law for the tidal
volume is then, VT,pred = 7.5 M1 mL. At rest, these predictions are not far from
the physiological values. However, this model is not able to predict the correct
allometric laws at other regimes.

More detailed models with links between ventilation, blood gas regulations and
control [42, 97, 19] or even neural controls [9] have been described in the literature.
These models are built on several interacting compartments mimicking the behavior
of the respiratory organs and are based on large sets of parameters. However, even
if it fits precisely physiological responses, these types of models do not allow to
understand easily the physical phenomena linking the lung’s properties and the
ventilation characteristics.

We propose a model that is based on the core physical phenomena involved in
lung’s function and ventilation [113]. Indeed thanks to our gas transport model
defined in the previous chapter, we can link the parameters of the ventilation to the
amount of oxygen exchanged with the blood through the geometry of the lung. Fur-
thermore this model can predict results close to physiological data for all mammals
and at different regimes.
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4.1 Minimization of the power spent for the venti-
lation of the lung

In the previous chapter, we assumed that the air flow velocity in the trachea could
be idealized by a sinusoidal pattern in time, i.e.

u0(t) = A sin

(
2π

T
t

)
.

This expression is an approximation, since for example for humans, the inspiration
(around 2 seconds) lasts less than expiration (around 3 seconds) [71]. The quantity
A is the air velocity amplitude and T is the period of ventilation, inverse of the
breathing frequency fb = 1/T . Denoting S0 = πr2

0 the surface area of the tracheal
cross-section, the tidal volume is

VT =

∫ T
2

0

S0u0(s)ds =
AS0T

π
.

The parameterization of ventilation using (A, T ) or (VT , fb) are equivalent.
The power spent by the lung to bring air in contact with the exchange surface

can be divided in two parts [55]: a mechanical part due to the elasticity of the tissue
and a viscous part due to the hydrodynamic resistance induced by the bronchial
tree on the air flow.

First, the motion of the tissues out of their equilibrium position implies that the
diaphragm has to furnish, during inspiration, an amount of energy that is stored in
the tissues as elastic energy. This energy is then used during expiration for a passive
tissues recoil. It means that there is a relaxation of the muscle to the initial volume
of the lung without spending energy. The power spent Pe(A, T ) is related to the
elastic properties of the thoracic cage and of the lung. These properties depends on
the lung’s compliance C ∼ 5 × 10−7 m3 · Pa−1 (human) [2] which is defined as the
ratio between the change in volume of the lung and the change in transpulmonar
pressure. Compliance depends notably on lung’s volume when deformation is high,
as shown by the pressure-volume curves in [3] but can be considered constant in
"normal lung’s functionning". In this work, the compliance is assumed constant
and we neglect the non linearities arising at large lung’s deformations. We obtain,

Pe(A, T ) =
1

T

∫ T
2

0

1

C
V (t)V ′(t)dt =

1

C

A2S2
0T

2π2
,

where V (t) =
∫ t

0
S0u0(s)ds is the volume of air inhaled as a function of time.

Second, the airflow inside the bronchi induces an energy loss due to viscous effects
that has to be compensated by the motion of the diaphragm during inspiration.
The viscous power dissipated depends on the hydrodynamic resistance of the lung
R ∼ 2× 105 Pa · s ·m−3 (human) [23]. It writes,

Pv(A, T ) =
1

T

∫ T
2

0

Ru2
0(t)S2

0dt = R
A2S2

0

4
.
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Finally, the total power spent is the sum of the power spent for the displacement
of the tissues and for compensating viscous effects due to air motion in the bronchi,

P(A, T ) = Pe(A, T ) + Pv(A, T )

= Pe(A, T )

(
1 +

π2

2T
RC

)
=
A2S2

0T

2π2C

(
1 +

π2

2T
RC

)
. (4.1)

The power can also be expressed using the equivalent ventilation parameters
(VT , fb), where VT is the tidal volume and fb is the ventilation frequency,

P̃(VT , fb) =
V 2
T fb
2C

(
1 +

π2fbRC

2

)
.

The function (A, T ) → P(A, T ) is to be minimized relatively to the ventilation
amplitude A and the period T with the constraint fO2(A, T ) = V̇O2 . fO2(A, T ) is the
oxygen flow resulting from a ventilation with characteristics (A, T ). It is computed
thanks to the gas transport model defined in chapter 3 with the expression 3.5. V̇O2

is the desired oxygen flow, it depends on the metabolic rate as shown on Table 4.1.
First, only the oxygen flow is constrained, the carbon dioxide flow will be constrained
later in the following section.

Figure 4.2: Predicted link between ventilation amplitude and period when the oxy-
gen flow is constrained (rest regime). It is obtained by solving, fO2(A, T )− V̇O2 = 0,
for each period T .

Practically, the ventilation period T and the amplitude A can be linked through
the constraint on the flow of oxygen to the blood, in the form of a non linear function
T → A(T ). The non linear function is the result of the transport model of oxygen.
For a given value of the period, only one value of the amplitude is possible in order
to check the constraint. The amplitude has to be high enough to bring the oxygen
source close to the exchange surface so that diffusion is quick to drive the transport.
This behavior is shown on Figure 4.2 where the function T → A(T ) is plotted. For
each period T , we look for the corresponding amplitude A by solving thanks to the
secant method,

fO2(A, T )− V̇O2 = 0.
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Consequently, with the oxygen flow constraint, the optimization problem is uni-
dimensional and we search for the minimum of the function P or the zero of its
derivative relatively to T ,

∂P
∂T

(A(T ), T ) =

(
A′(T )

(
1

2
+

T

π2RC

)
+

A(T )

2π2RC

)
A(T )RS2

0 = 0.

Since we impose a positive oxygen flow, the value A(T ) must be different than zero.
Consequently we only need to search the zero of the function,

D(T ) = A′(T )

(
1

2
+

T

π2RC

)
+

A(T )

2π2RC
.

The numerical algorithm is detailed in appendix A. Interestingly, the optimal ven-
tilation does not depend independently on the hydrodynamic resistance R and on
the compliance C, as it depends on the product RC only. Hence, we are expecting
the same behaviors for optimal ventilation relatively to changes in hydrodynamic
resistance or changes in compliance.

4.2 Human’s optimal ventilation
Let us compare the predictions of our model with different physiological cases. We
choose to mimic three physiological simulations. The first one is the physical activity,
the second one is the effect of altitude and finally the last one is the change in
hydrodynamic resistance linked to a change in lung’s size.

4.2.1 Physical activity

Our first physiological case aims to mimic the physical activity. Indeed, in the
everyday life, our body experiences metabolism changes: resting, walking, exercising.
Indeed, as explained in the previous chapter, the transit time in the blood capillaries
decreases as the intensity rises since the blood velocity increases. Furthermore, in
order to inhale more oxygen, the bronchi dilate [47]. To model exercise, we need to
adjust the transit time in the blood capillaries, the increase of the bronchi radius
in the bronchial tree and the increased body’s need in oxygen. We run the model
for different amount of oxygen, mimicking the different intensities [26] depending on
the maximal oxygen consumption (V̇ max

O2
). The parameter’s changes are detailed on

Table 4.1.
At rest, the model predicts an optimal ventilation amplitude of 1.25m · s−1 and

a ventilation period of 4.91 seconds (see Table 4.2). Both values are very close to
the acknowledged physiological values [113]. The model exhibits a robustness in
term of period perturbation around the optimal. A 5% shift in the energy brings
the period into a range between 3.25 seconds up to 7.5 seconds. This effect is due to
the fact that, at low regimes, a low amplitude A is sufficient to perform an optimal
ventilation. As the power depends on the period with the quantity A2T , if A is
small then A2T remains small whatever reasonable values for period T . When the
exercise intensity increases, the power profiles as a function of the period become
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Percentage of V̇ max
O2

(Exercise) V̇O2 (L ·min−1) r0 (cm) tc (s)
Rest (Sitting) 0.24 0.90 1
30 % (Walking) 0.9 0.93 0.71
45 % (Ballet) 1.35 1.05 0.65
60 % (Bicycling) 1.8 1.20 0.59
75 % (Handball) 2.25 1.25 0.55
90 % (Basketball) 2.7 1.27 0.52
100 % (Running) 3 1.27 0.51

Table 4.1: The flows of oxygen consumed, the tracheal radius and the transit time
in function of the intensity of exercise. The radius ri of the bronchi in the bronchial
tree (i ∈ J0, G− 1K) are deduced from the tracheal radius as follow, ri = r0h

i, where
h =

(
1
2

)1/3 is the reduction factor between the generations.

Figure 4.3: Power as a function of ventilation period (left) and amplitude (right) for
different intensity of exercise.

steeper and steeper and focus the optimal value within a tighter region. It implies
that a shift from the optimal configuration at high intensities is predicted to be
costly in term of energy spent. This behavior is fully compatible with the fact that
the control of ventilation is stronger at exercise, preventing even talking. At V̇ max

O2
,

we observe a period of 1.22 seconds or a frequency of 49 breaths per minute during
maximal exercise, which is very close to physiology (around 44 breaths per minute
[47]). However, measured data for physiological amplitude [13] range between 7 and
21 m · s−1. The optimal ventilation amplitude computed in our model at maximal
exercise is around 7m · s−1, in the physiological range but on the lower side. A
possible explanation for this underestimation might be that our model does not
account for the wide range of possible human physiology and body needs as our
study is based on one set of parameters only. Indeed, we could rise the value for
V̇ max
O2

and obtain a lower period but a higher amplitude. A second explanation could
be that the resistance and the compliance have non linear effects at high metabolic
rates which are not taken into account here.

In term of oxygen transport (Figures 4.4), as soon as the air flow is deep enough
in the tree, diffusion is able to bring easily the needed oxygen flow to the exchange
surface in the first generations of the acini. The deepest parts of the acini are not
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Exercise Optimal amplitude (m · s) Optimal period (s)
Sitting 1.25 4.91
Walking 4.05 1.91
Ballet 4.73 1.70
Bicycling 4.91 1.64
Handball 5.63 1.47
Basketball 6.53 1.31
Running 7.21 1.22

Table 4.2: Optimal ventilation amplitude and period for different intensities of ex-
ercise.

Figure 4.4: Partial pressure distribution in the human lung at rest (left) and during
maximal exercise (right). Results are plotted for peak flows. The red dotted line
represents the end of the bronchial tree and the start of the acinus.

contributing substantially to the oxygen flow: this effect is called acini screening
[96] and it is the strongest at rest regime. The screening effect leaves some exchange
surface available for exercise, as a reserve. It brings also a robustness to reduced effi-
ciency of the exchange surface. For example, our model can mimic the physiological
effects of a pulmonary oedema by increasing the thickness of the alveolo-capillary
membrane τ defined in the previous chapter in equation (3.1). As shown on Fig-
ure 4.5, the oxygen flow is not really affected up to a point where the screening
disappears which means that no more exchange surface is available [96]. Then, any
subsequent increase of the membrane thickness τ reduces the oxygen flow, crashing
suddenly the patient.

As amplitude increases, the oxygen source goes deeper within the lung, entering
the acini and increasing the exchange efficiency, but by thus draining more quickly
oxygen from air. Renewing of the internalized air becomes more crucial to keep
sufficient oxygen flow. A similar behavior occurs for carbon dioxide, but in the
opposite direction.

The respiratory exchange ratio (RER) follows the expected physiological re-
sponse. Indeed we can observe on Figure 4.6 that this ratio is rising as the intensity
of the exercise increases. However at V̇ max

O2
, the optimal value corresponds to a RER

of 0.85 when it should be closer to 1, or even above it [41].
This underevaluation could be explained by the fact that only oxygen exchanges
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Figure 4.5: Model response in term of oxygen flow to an increase of alveolar mem-
brane thickness at rest to mimic pulmonary oedema.

Figure 4.6: Respiratory Exchange Ratio as a function of intensity of exercise.

are constrained and not carbon dioxide. In order to validate or reject this hypothesis,
let us now compute the optimal ventilation by constraining the carbon dioxide flow.
We ran our model for different values of expired carbon dioxide flow [26], modeling
different intensities of exercise, as shown on table 4.3. The transit time and the
radius of the trachea remains the same as the one taken for the optimization with
the oxygen constraint (see Table 4.1).

At rest, the optimal ventilation is very similar if we use an oxygen or a carbon
dioxide constraint as shown on Figure 4.7. Indeed, the optimal amplitude is the
same 1.25 m · s−1 for the two constraints and the optimal period is very close with
4.91 s for the oxygen constraint and 4.83 s for the carbon dioxide constraint. It
might be explained by the fact that, in the previous chapter (in section 3.3.2), we
imposed for a physiological ventilation with an amplitude of 1.2 m · s−1 and a period
of 5 s, a RER of 0.8. Here, the optimal ventilation found with our model for the
oxygen flow constrained is close to the physiological one and the carbon dioxide flow
constrained have a RER of 0.8 with the oxygen flow.

As the intensity of the exercise increases, the optimal ventilation frequency differs
more and more between the two constraints. Indeed, we impose a carbon dioxide
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Percentage of V̇ max
O2

(Exercise) V̇CO2 (L ·min−1)
Rest (Sitting) 0.19
30 % (Walking) 0.77
45 % (Ballet) 1.21
60 % (Bicycling) 1.71
75 % (Handball) 2.31
90 % (Basketball) 3
100 % (Running) 3.3

Table 4.3: Flow of carbon dioxide exchange in function of the intensity of exercise.

flow higher than the one obtained with the optimal ventilation parameters under
the oxygen constraint. Hence, the frequency has to be higher in order to expelled
the right amount of carbon dioxide.

Figure 4.7: Optimal frequency (left) and tidal volume (right) as a function of the
intensity of exercise when the constraint of the optimization is the O2 flow (red
curve) or the CO2 flow (blue curve).

Interestingly, for both constraints, we obtain very similar results for the tidal
volume. For each intensities, the same volume of air is inhaled but it is renewed at
different frequencies depending on the constraint. At maximal exercise, under the
CO2 constraint we obtain a RER of 0.87 which is really close from the one under
the O2 constraint. We can observe that finally, we have similar results for the RER
and the tidal volume whatever the constraint. Furthermore the results obtained for
the period with the oxygen constraint are more compatible with the physiology. It
might by explained by the fact that we only chose to use an effective arterial partial
pressure for the oxygen and not for the carbon dioxide in order to obtain a RER of
0.8 at rest (see section 3.3.2 in the last chapter). This is why we will mainly use the
oxygen constraint in the following.

In order to have a more physiological RER, we could think about constraining
at the same time the oxygen and the carbon dioxide flow. However with our model,
it is currently not feasible because we do not have enough degrees of liberty. Indeed
we could suppose that the effective partial pressure of oxygen in the blood is not a
constant but a parameter of the gases flow.
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4.2.2 Altitude induced hypoxia

In our everyday life, we do not always remain at sea level, we may go higher in
altitude and hence be confronted to an ambient air poorer in oxygen. That is why
our second physiological case is mimicking hypoxia induced by altitude. Hypoxia
corresponds to an insufficiant supply of oxygen regarding the body needs. It can be
the consequence of an alteration of the gas flows between the alveoli and the blood
or of the absence of the renewal of the air in the alveoli. This is typically one of
the response observed in high altitude [103, 84] where the flows are reduced by the
smaller pressure gradient at the air/blood interface. To mimic altitude in our model,
we alter the variable representing the partial pressure of oxygen in the ambient air
while keeping the needed oxygen flow rate constant, see [118] and Table 4.4. In this
framework, we can compare the predictions of our model with known physiological
responses [8].

Altitude (m) Inspired oxygen partial pressure (mmHg)
0 150
500 140
1000 132
1500 123
2000 117
2500 108
3000 103
3500 94

Table 4.4: Inspired partial pressures in oxygen as a function of altitude. Data from
[118].

Figure 4.8: Optimal ventilation period (left) and amplitude (right) as a function of
altitude.

Our model (Figure 4.8) predicts an increased ventilation in order to compensate
the lower oxygen partial pressure, with lower periods and higher amplitudes. This
allows to put the scarcer oxygen source deeper in the acinus and to benefit from a
higher exchange surface to compensate for the lower oxygen gradient between the
alveolar gas and the blood. The response predicted is fully compatible with the
lung’s physiology [108] and brings on the typical strategy of the lung to increase



4.2. HUMAN’S OPTIMAL VENTILATION 57

ventilation when gas exchanges are too low. When altitude is higher than 3500
meters, the model is not anymore able to fulfil the oxygen flow constraint because
the inspired oxygen partial pressure is lower than our effective partial pressure in
the blood, implying that blood homeostasy is not anymore sustainable in our model.

4.2.3 Response to change in hydrodynamic resistance

Finally, the lung is not identical for all humans. Indeed there are some variabilty
on the size of the lung that can depend on the height, the weight, the gender of
the person. The hydrodynamic resistance is a physical quantity that relates the
amount of energy given to the fluid to the actual flow of the fluid. This quantity
is dependent on the size of the bronchi. A change in hydrodynamic resistance then
goes with a change of lung’s geometry. This is why our final physiological case is the
change of the hydrodynamic resistance. In our model, if we know the size reduction
factor at each bifurcation of the bronchi and the tracheal radius, we can compute
the equivalent hydrodynamic resistance of the whole tree as follow [71],

R = R0

[
1 +

NC−1∑
k=1

1

(2h3)k
+

N∑
k=NC

1

2kh3(NC−1)

]
.

R0 is the resistance of the first generation bronchi, it writes,

R0 =
8µl0
πr4

0

,

where µ = 1.8 × 10−5 Pa · s is the viscosity of the air. This equivalent resistance
neglects the resistance of the bifurcations, the effects of inertia and turbulence, but it
can give us an estimation of the evolution of the resistance regarding the parameters
h and r0. Indeed, in order to compute a value for the resistance with a different h or
r0, we chose to compute the resistance with the formula for the equivalent resistance
and to determine the ratio of increase or decrease relatively to the reference value
h =

(
1
2

)1/3
= 0.7937 and r0 = 0.9 cm. Finally, to obtain a coherent resistance we

multiply this ratio with the physiological value of the resistance.
First, we chose to modify the parameter h. To increase the equivalent resistance

of 30%, the corresponding size reduction factor is h = 0.7859 and for a decrease of
the resistance of 30%, we have h = 0.8058.

The curves of the powers spent for the ventilation of the lung are plotted on
Figure 4.9, where resistance and geometrical changes have been related with the
reduction factor h between two successive generations: the amplitude of the veloc-
ity is almost the same for the three tree morphologies whereas the period decreases
when the resistance increases. The highest factor h tested corresponds to an opti-
mal period of about 6.64 seconds, the reference resistance corresponds to a period
of about 4.91 seconds and the lowest factor h tested corresponds to a period of
about 4.22 seconds. In all these configurations, the power remains flat around the
optimal value. For an increase in resistance, typically for smaller lungs, the optimal
ventilation changes significantly. Indeed if the size reduction ratio is smaller, the
optimal configuration keeps the same amplitude but lowers the period. Because the
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Figure 4.9: Power as a function of the ventilation period (left) and the amplitude
(right) for different size reduction factor h.

exchange surface is also smaller, diffusion explores deeper in the acini, leaving less
reserve for exercise. This behavior is not the one expected from physiology, mainly
because the effect of an increase of resistance is first hypoxia, that induces the ven-
tilation control to use both an higher amplitude and a smaller period. Our results
show that in the optimal strategy found with our model, the resistance increase is
compensated by a volume of internalized air that is smaller (same amplitude but
for a lower period). The mechanical energy gained with a smaller volume to move
allows a decrease of the total energy.

However, we saw that the hydrodynamic resistance depends also on the tracheal
radius. Let us now modify this parameter. For a increase of resistance of about 30%
we obtain a new tracheal radius of 0.82 cm and for a decrease of resistance of about
30% we have a radius of 1.01 cm.

Figure 4.10: Power as a function of the ventilation period (left) and the amplitude
(right) for different tracheal radii r0.

The curves of the powers spent for the ventilation of the lung are plotted on
Figure 4.10, where resistance and geometrical changes have been related to the
tracheal radius r0. Interestingly in this case the optimal ventilation is not exactly
the same as the previous one with the change of the size reduction ratio. Indeed the
ventilation amplitude increases when the resistance increases. The highest tracheal
radius tested corresponds to an optimal amplitude of 1.02m · s−1, the reference
radius gives an amplitude of 1.25m ·s−1 and finally the lowest tracheal radius has an
optimal amplitude of 1.45m · s−1. However the period follows the same trend as in
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the previous case, and the optimal values are of the same order. In this case, for an
increase of resistance, the optimal configuration increases the amplitude and lowers
the period. This behavior is the one expected from physiology since the effect of an
increase of the hydrodynamic resistance is first hypoxia. Our results show that in
the optimal strategy found with our model, the resistance increase is compensated
by a smaller lumen area which allows a decrease of the total energy.

To conclude, the response to a change in hydrodynamic resistance depends on
how the lung’s resistance is modified.

4.3 Mammal’s optimal ventilation

The lungs of mammals share morphological and functional properties, raising the
question on whether the previous results for human can be extended to all mammals.
These shared properties are known to be dependent on the mass M of the animal
following allometric scaling laws [43, 51, 53, 86, 117]. These laws are written as
follow,

Y = aM b,

where Y represents the morphological or functional characteristic, a is denoted as
the prefactor, M is the mass of the mammals (in kg in our work) and b is the
exponent. It is then essential to define the allometric scaling laws of the parameters
used in our model in order to extend our work to all mammals.

4.3.1 Extension of the model to mammals

Let us extend our gas transport model and our hypotheses defined in chapter 3 in
order to be validated for all mammals. First, even if there are some differences
in the geometry of the lung for the mammals [105], it can be considered in a first
approximation as a tree-like structure with bifurcating branches. It decomposes
into two parts: the bronchial tree and the acini. The size of the branches in the
bronchial tree is decreasing at each bifurcation with a ratio in the whole tree close to
h =

(
1
2

)1/3 [113, 70, 56]. In the acini, the size of the branches are considered invariant
at bifurcations [113, 105]. We want to relate explicitly morphological parameters in
our model to the mass of the mammals. We based our hypotheses on the datasets
available in [117], which brought a large set of theoretical allometric scaling laws for
the cardiorespiratory system, compatible with the ecological observations.

The first morphological parameter used in our model is the trachea radius r0. It
follows the law [117],

r0 = aM
3
8 .

The prefactor a can be determined based on human data. Indeed at rest, the mean
trachea radius is 0.9 cm for humans, which leads to a = 1.83× 10−3, when the mass
M of the animal is in kg.

The allometric law for the tracheal length is not explicitly detailed in [117].
However we can derive the exponent from the data available. Indeed the dead
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volume (Vdead ∝ M1) is assumed to be proportionnal to the tracheal volume [106].
Since we have

Vdead ∝ πr2
0l0 ∝M1,

we can easily deduce that
l0 ∝M

1
4 .

The number of generations in the conductive tree (G) and in the acinus (H) are
two essential parameters to define the geometry of the lung. The computation of G
requires to assume that the radius of the alveolar ducts are similar to the radius rA
of the branches in the acini [113], for which an allometric scaling law is known [117],

rA ∝M
1
12 .

The number of generations G in the conductive tree is then obtained from the
following formula,

rA = rG−1 = r0h
G−1.

Indeed, since we suppose that the decreasing ratio h =
(

1
2

)1/3 is constant for all
mammals, we have

2G−1 ∝M
7
8 .

We can finally express the number of generations in the conductive tree,

G =

[
log(rA/r0)

log(h)

]
+ 1 =

[
7

8

log(M)

log(2)
+ cst

]
+ 1.

We can also define the length of the branches in the acinus as follow,

lA = lG−1 = l0h
G−1.

Thanks to this formula, the allometric scaling law for lA is easily computed. Indeed
we know that,

lA
rA

=
l0h

G−1

r0hG−1
=
l0
r0

.

Since the law for l0, r0 and rA are known, we obtain,

lA ∝M− 1
24 .

We suppose in our case that the number of generations in the acinus H is inde-
pendant on the mass of the mammals [93, 45]. The last allometric scaling law for
the morphometric parameters left to define is the law for the amount of exchange
surface per unit of alveolar duct surface %s. First the total lung’s exchange surface
SA can be defined as the product of the number of alveoli nA ∝M3/4 [117] and the
surface of an alveolus sA. We suppose that an alveolus is a half-sphere, hence its
surface is sA = 2πr2

A. Since we know the law for the radius of the alveolus rA, we
have the law for the surface sA ∝ M1/6. The total lung’s exchange surface is then
SA ∝M11/12 [117]. Second, in our model, a branch in an acinus has a surface

sad = 2πrAlA ∝M
1
24 .
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The total surface of the alveolar ducts in the idealised lung is then

Sad = 2G
H−1∑
k=0

2ksad = 2G(2H − 1)sad ∝M
11
12 .

Since H is independant on the mass of the animal, the amount of exchange surface
per unit of alveolar duct surface,

%s = SA/Sad ∝M0.

We defined in chapter 3, the oxygen saturation of hemoglobin in the blood and
we modelled this function using the following Hill equation (see Figure 3.10) [50],

f(x) =
x2.6

x2.6 + 262.6
.

The variable P50 which represents the oxygen partial pressure for which the oxygen
saturation of hemoglobin is 50% is an interesting parameter that express the O2

affinity of the blood. This parameter is dependant on the mass of the mammals
and follows an allometric scaling law with an exponent of − 1

12
[117]. We extend the

oxygen saturation in the blood to all mammals by shifting the function on order to
obtain the correct oxygen partial pressure at 50 % saturation.

Finally, we recall the formula of the power that we want to minimize,

P(A, T ) =
A2S2

0T

2π2C

(
1 +

π2

2T
RC

)
.

The hydrodynamic resistance R and the compliance C are two parameters essential
for our optimization. The allometric scaling law for the resistance is already known,
we have [117],

R ∝M− 3
4 .

The compliance is defined as the ratio between the change in volume of the lung,
i.e. the tidal volume (VT ∝ M1) and the change in transpulmonary pressure which
we approximate with a change in pleural pressure (Ppl ∝ M0 [98]). Then, we can
deduce an allometric scaling law for the compliance,

C ∝M1.

This exponent is in agreement with the physiological data from [101]. All the allo-
metric scaling laws previously described are summarize in Table 4.5.

4.3.2 Optimal allometric scaling laws

Our analysis explores a set of masses ranging from the mouse (20 grams) to the ele-
phant (5 tons) under three regimes: basal metabolic rate (BMR), field metabolic rate
(FMR) and maximal metabolic rate (MMR). The basal metabolic rate corresponds
to a resting rate. The field metabolic rate corresponds to an intermediary rate, it
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Variables Exponent PrefactorPredicted [117] Observed
Lung volume 1 1.06 [101] 53.5 mL [101]
Tracheal radius 3/8 0.39 [106] 1.83 mm∗
Tracheal length 1/4 0.27 [106] 1.87 cm∗
Radius of alveolar ducts 1/12 0.13 [107] 0.16 mm∗
Length of alveolar ducts -1/24 N.D. 1.6 mm∗
Number of alveoli 3/4 N.D. 19 800 000∗
Tidal volume (rest) 1 1.041 [117] 7.69 mL [101]
O2 affinity of blood -1/12 -0.089 [27] 37.05 mmHg∗

Total resistance -3/4 -0.70 [101] 18 mmHg · s · L−1 [101]
Total compliance 1 1.04 [101] 2.12 mL ·mmHg−1 [101]
Interpleural pressure 0 0.004 [44] N.D.

Table 4.5: Predicted and observed/computed values of allometric exponents for
variables of the mammalian respiratory system. ∗: Prefactor computed using human
values (M = 70 kg) at rest. N.D.: No data found.

represents the mean energy spent during our everyday life : walking, foraging ...
Finally the maximal metabolic rate represents the maximal energy spending, V̇ max

O2
.

The amount of carbon dioxide removed from the blood by the lung is not detailed
in the literature for all mammals. This is why we only use in our computations the
oxygen flow exchanged with the blood.

The power P(A, T ) is optimized with the constraint fO2(A, T ) = V̇O2 . We need
to define the desired flow for the three rates. At BMR, we have the following law
[58, 86],

V̇ BMR
O2

= 9.92× 10−3M
3
4 L ·min−1.

The prefactor is computed using the human value at rest.
At FMR, the allometric scaling law [52] is,

V̇ FMR
O2

= 2.4× 10−2M0.64 L ·min−1.

We also found the prefactor using the human value, V̇ FMR
O2

= 0.58L ·min−1 [79]. It
represents an intensity of around 20 % of V̇ max

O2
for humans.

Finally, at MMR the allometric scaling law is [116],

V̇ max
O2

= 1.18× 10−1M
7
8 L ·min−1.

When we modify the intensity of the exercise, we also modify the radius of the
trachea and the velocity of the blood as explained in the previous section. There
are different laws for the three rates. The allometric scaling laws for the tracheal
radius keep the same exponent but the prefactor is modified. It is computed using
human values. We know that for human, the oxygen flow at FMR is about 20% of
V̇ max
O2

, and we interpolate the values taken in [26] to obtain a radius of 0.93 cm.

rBMR
0 = 1.83× 10−3M

3
8 m,
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rFMR
0 = 1.89× 10−3M

3
8 m,

rMMR
0 = 2.58× 10−3M

3
8 m.

The blood velocity is computed as the ratio of the length of the capillary lc over
the transit time in the capillary tc. We assume that the length of the capillary lc
is not dependant on the mass of the mammals and is a constant, as in [117]. It is
chosen to be 1 mm. However the transit time in capillaries depends on the metabolic
regime but also on the mammal’s mass. No data is available in the literature for
the field metabolic rate, so we can compute the prefactor using the human value
tc = 0.78 s computed by interpolation of data from [47]. Since the exponent of the
allometric laws for the field metabolic rate is not known, we chose to take the same
as the one for the basal metabolic rate. We finally obtain,

tBMR
c = 0.35M

1
4 s [47, 117],

tFMR
c = 0.27M

1
4 s,

tMMR
c = 0.25M0.165 s [12, 47].

Allometric scaling laws of breathing rates and tidal volumes

Our model predicts that the optimal ventilation follows allometric scaling laws in
the three regimes, as shown in Figure 4.11.

At V̇ BMR
O2

:
fBMR
b ' 0.71 M−0.29 Hz, V BMR

T ' 5.7 M1.05 mL,
at V̇ FMR

O2
:

fFMR
b ' 1.39 M−0.32 Hz, V FMR

T ' 9.4 M0.98 mL,
at V̇ max

O2
:

fMMR
b ' 2.05 M−0.15 Hz, V MMR

T ' 21 M1.04 mL.

Our predicted laws are close to the ones observed in physiology. Indeed at BMR,
breathing frequency has been estimated in the physiology to follow the law [101],

fBMR
b = 0.89M−0.26 Hz,

and tidal volume to follow the law [101],

V BMR
T = 7.7M1.04 L.

For the other rates, less data are available in the literature. We only have the law
at MMR for the breathing frequency [122],

fMMR
b ' 5.08M−0.14 Hz.

A larger dead volume at exercise [47] makes the oxygen source for diffusion slower
to deplete. This might lead to a decrease in the optimal breathing rate, depending
on how the need of oxygen is increased. As a consequence, for small mammals, our
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Figure 4.11: Predicted breathing frequency (left) and tidal volume (right) as a func-
tion of the mammals’ mass (log-log) for three different rates, the basal metabolic rate
(BMR), the field metabolic rate (FMR) and the maximal metabolic rate (MMR).

model predicts breathing frequencies at MMR smaller than breathing frequencies at
FMR.

These results are only slightly sensitive to the allometric scaling law of the blood
residence time in the pulmonary capillaries. Indeed we performed a sensibility anal-
ysis on this parameter. We increased and decreased of 30% the exponent of the law
at FMR, our predicted laws for the breathing frequency and the tidal volume were
only modified by 0.1%. It supports our trust in our results.

In our work, we suppose that the hydrodynamic resistance is independant on the
ventilation regime. However if we neglect the increased inertia and turbulence in the
bronchi at MMR, the change in dead volume at this regime leads the hydrodynamic
resistance to be decreased by a factor 4. In this case, the corresponding exponent
for breathing rate goes to −0.13. Even with a important change in resistance, the
exponent of the law for breathing frequency does not have a significative change.
Since we do not really know how the increased inertia and turbulence can compensate
the increase in dead volume and since our predicted laws are not extremely sensitive
to resistance, we can assume that taking the hydrodynamic resistance independent
on the ventilation regime is a good enough approximation.

Exhaled oxygen fraction

The oxygen flow captured by the lung is a proportion of the air flow inhaled,

V̇O2 = V̇E (fI − fE),

with V̇E = VTfb the air flow rate, fI the oxygen fraction in ambiant air and fE the
mean exhaled oxygen fraction. Our model can predict the allometric laws for the
drop in oxygen fraction between ambiant and exhaled air denoted ∆f = fI − fE.
We obtain for our three regimes the following laws,

∆fBMR = 3.60 M0.02 %,

∆fFMR = 4.42 M−0.006 %,

∆fMMR = 4.47 M0.008 %.
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The drop in oxygen fraction depends only slightly on the mass and is in the range
3 to 5%, whatever the ventilation regime. Since the inhaled oxygen fraction in air
is about 21 %, the oxygen fraction in the exhaled air is between 16 and 18 %, in full
accordance with the the physiology [113]. Let us define the quantity η = ∆f/fI ,
it represents the efficiency of oxygen extraction by the lung. Our model suggests
that the optimal value is around 20 %. Since the exponent for all regimes are not
exactly zero we obtain some differences between small and large mammals. These
differences could be explained by the simplications made in our model.

Transition between convection and diffusion

The localization of the transition between convective and diffusive transports can
be estimated by the analysis of the variations with the mass of the Péclet number,
through the generations. This number arises by writing the transport equations
in their dimensionless form. Let us recall the adimensionalized equation for our
transport model explained in the previous chapter,

λi
∂Pi
∂s
− ∂2Pi

∂y2
+ Pei

∂Pi
∂y

+ ζi(Pi − Pblood) = 0,

where,

λi =
l2i
DT̃

Pei =
liui
D

ζi =
βil

2
i

D
.

The air flow velocity in generation i ∈ J0, NK, where N + 1 is the number of
generations in the lung, is computed as follow,

ui(t) =

(
1

2h2

)i
u0(t), for i ∈ J0, G− 1K,

ui(t) =
uG−1

2i−G+1
, for i ∈ JG,NK,

where u0(t) is,

u0(t) = A sin

(
2π

T
t

)
.

The mean Péclet number over a half breath is then, for i < G,

P̄ei =
2

T

∫ T/2

0

Pei(t)dt =
2VTfbl0
πr2

0D

(
1

2h

)i
,

and for i > G,

P̄ei =
2

T

∫ T/2

0

Pei(t)dt =
2VTfbl0
πr2

0D

(
1

2h

)G−1(
1

2

)i−G+1

.

The localization of the transition zone is reached when P̄ei becomes smaller
than one over the ventilation cycle. We suppose that the transition occurs at the
generation k, it means that we have,

P̄ek = 1.
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If this generation k is in the conductive tree, we then have,

2k =

(
2VT l0fb
πr2

0D

) 3
2

=

(
2V̇E

l0
πr2

0D

) 3
2

∝ V̇
3
2
E ×M

− 3
4 .

However if the generation k is in the acinus, we obtain,

2k =
2VT l0fb
πr2

0D

(
2G−1

) 1
3 = 2V̇E

l0
πr2

0D

(
2G−1

) 1
3 ∝ V̇E ×M− 5

24 .

We can observe on Figure 4.12 that at rest the localization of the transition
zone between convection and diffusion is in the convective tree for large mammals
(mass superior to 160 kg) and in the acini for smaller mammals. Hence, we obtain
two allometric scaling laws at rest. For large mammals, we have 2kr ∝ M0.39 and
for smaller animals we obtain, 2kr ∝ M0.55. At maximal exercise, the transition
between convection and diffusion happens to be deeper in the lung than at rest.
It is located in the acini for all our selection of mammals. We then have only
one allometric scaling law, 2ke ∝ M0.68. Hence, the transition generation k can be
localized relatively to the generation of the terminal bronchioles G− 1. At rest we
have,

kr = G− 1 + 3.57− 0.49 log(M)/ log(2), for M > 160 kg,
kr = G− 1 + 2.38− 0.3252 log(M)/ log(2), for M 6 160 kg.

At maximal exercise, we obtain,

ke = G− 1 + 4.81− 0.1977 log(M)/ log(2).

Figure 4.12: Localization of the transition between a convective and diffusive trans-
port of the oxygen in the lung as a function of the animal’s mass (logarithmic scale).
This localization is predicted by our model that minimizes the power P(A, T ). The
lines correspond to the localizations of this transition at BMR (rest, blue line) and
MMR (V̇ max

O2
, orange line). The vertical green line corresponds to human’s mass (70

kg). The lower beige region corresponds to the convective zone of the lung, while
the upper blue region corresponds to the exchange surface (acini).

Depending on the localization in the lung of the transition between convection
and diffusion, an exchange surface in the acini can be only partly active. Indeed if
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this transition is made at the entrance of the acini, like for humans at rest, only the
first generations of the acini have an oxygen concentration high enough to create
a significant oxygen flow to the blood. This phenomenon is called the screening
effect [95]. The oxygen diffuses but is quickly absorbed by the bronchi walls so
that there is little oxygen in the last generations of the acinus. Our model predicts
that small mammals use almost all their available exchange surface at rest, with
low screening effect. However the localization of the transition between convection
and diffusion for large mammals at rest happens to be at the end of the bronchial
tree, with strong screening effect. They have a clear difference in term of volume
usage between rest and exercise. The difference can be explained by the fact that
large mammals needs less oxygen relatively to their mass than small mammals, as
the exponent of the allometric law of V̇O2/M is negative for all metabolic regimes.
Indeed we have at BMR, V̇O2/M ∝M−1/4 and at MMR, V̇ max

O2
/M ∝M−1/8.

4.4 Conclusion
We described and studied a model that minimizes the power dissipated during res-
piration and how it depends on the ventilation parameters. This dissipated power
depends on the resistance to the airflow in the bronchi and on the mechanical en-
ergy stored in the tissue. The optimization is made assuming that the oxygen flow
exchanged with the blood has to fit the body needs.

Our results are close to the physiology for humans and for all mammals, for dif-
ferent metabolisms. This suggests that the control of ventilation is highly dependent
on the morphological characteristics of the lung, and helps us to better understand
the allometric scaling of its ventilation in mammals. These results might highlight
how the evolution may have driven the design of the respiratory system.

This model could be improved in many ways, especially during maximal exercise.
Indeed, we know that during intense activity, expiration is no longer a passive action.
The contraction of the muscles might induce a supplementary mechanical energy in
the tissue at expiration that is not taken into account in our model. Furthermore,
we made the assumption that the hydrodynamic resistance is not modified during
exercise even though we increased the dead volume. This new resistance should be
computed by counterbalancing the increase of the bronchial radius by the augmen-
tation of the inertia and the turbulence due to an higher airflow. Finally, we could
improve the model regarding the geometry of the mammals lung. We could take
into account the asymmetry of the bifurcations [105, 36] or the different types of
branching patterns found in mammals (monopodial, dichotomous, polychotomous)
[83].
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Sections 2 and 3 were the subjects of two articles. The results presented in the
papers are slightly different than the one presented here, since some parameters have
been adjusted. However, the conclusions remain the same.

The section 2 of this chapter was the subject of an article published in Frontiers
in Physiology. The references are:

Interplay between optimal ventilation and gas transport in a model of
the human lung.
F.Noël1,2, B. Mauroy1,2,

Frontiers in Physiology, 10:488, 2019.

1 Laboratoire JA Dieudonné, UMR CNRS 7351, Université Côte d’Azur, Nice,
France.
2 VADER Center, Université Côte d’Azur, Nice, France.

The section 3 of this chapter is the subject of an article that is in prepublication.
The references are:

The origin of the allometric scaling of lung’s ventilation in mammals.
F.Noël1,2, C. Karamaoun1,2, B. Mauroy1,2,

hal-02567829v2, 2020.

1 Laboratoire JA Dieudonné, UMR CNRS 7351, Université Côte d’Azur, Nice,
France.
2 VADER Center, Université Côte d’Azur, Nice, France.



Chapter 5

Ventilation of a non-healthy human

In the previous chapters, we considered the human’s lung to be one of a young,
healthy subject. However, in a lifetime several pulmonary infections can occur. For
pathogens, the lung is an organ easy to infiltrate and where to proliferate. Indeed,
it is an humid environment, full of oxygen, connected to the ambient air through
the mouth and the nose. Once in the lung, the development of an infection induces
an inflammation in the bronchi. This reaction allows the tissue to swell in order for
the white blood cells of the immune system to converge at the site of infection and
to start eliminating the pathogens [68]. The inflammation modifies the geometry of
the lung, and hence the distribution of the airflow as well as the ventilation.

Different approaches in the litterature have been used to model the response of
the immune system following a pulmonary infection. A first approach is to model
the macrophage response after an infection using ordinary differential equations [25]
or using models of granulomas development [46, 38, 20] which are macrophage clus-
ters. These types of approaches have the benefit of mimicking the immune response
specific to the lung and allows to explore potential treatments. However, even if
macrophages are the first responders during a pulmonary infection, these models do
not take into account neutrophils present in the blood that are the majority of the
leucocytes. A second approach has been to model the inflammatory response in a
part of the acinus [89]. This model allows to represent the infection in the whole
lung and to model the exchanges with the blood. However, even if this model takes
into consideration the swelling of the tissue, it does not represent the pathogen evo-
lution in the lung which is important in order to be able to model different types
and speeds of infection.

We choose to use a more global immune response model that is not specific to the
lung and that can be used in any organs. This type of models has the benefit of not
being specific to a certain virus or a certain bacteria. Nevertheless, simple models
with only three [74, 85, 120] or four different variables [90, 18, 77, 31] describe
the evolution of tissue damage all along the infection but not the inflammation
of the tissue. Hence, we used a more specific, but also more complex model [91]
that describes the immune response in the tissue and in the blood, but also the
inflammation of the tissue. This last model is then linked to our gas transport model
described in the chapter 3 to simulate the propagation of idealized lung infection and
inflammation bronchi per bronchi. Our model is generic, it does not focus on one

69



70 CHAPTER 5. NON-HEALTHY VENTILATION
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Figure 5.1: Interactions of the immune system and the pathogen. Diffusion is rep-
resented by black arrows, up-regulation of immune interactions by red arrows and
down-regulation of immune interactions by blue arrows. Reproduced from [91].

pathogen only. In this explorative model, we study different stages of the infection
and how the exchanges with the blood are affected by the altered lung’s geometry
arising from the inflammation of its airways.

5.1 Infection model

The surface barriers are the first defenses of the innate immune system. In the lung,
they consist in the mucus and in the ciliated cells [32]. We focus in this chapter on
the second defense of the innate immune system that responds once a pathogen has
breached the barriers. It is composed of chemicals and white blood cells, which are
also called leucocytes [68].

5.1.1 Inflammation of the bronchi

We choose to model an infection in the lung by using an existing model representing
the response of the immune system in a human organ and its interplay with the
blood [91]. It describes the evolution of several variables that represent the response
of the immune system in the tissue and in the blood, as shown in Figure 5.1.

When the body detects a pathogen in the tissues (P ) or in the blood (Pb), the first
reaction of the immune system is to bring white blood cells (here macrophages and
neutrophils) to the site of infection. When resting macrophages (M), already present
in the tissue, come in contact with some pathogens, they become activated (M∗).
Then, they can eliminate the pathogens and produce pro-inflammatory (TNF ) and
anti-inflammatory (IL10) cytokines. Pro-inflammatory cytokines migrate into the
blood (TNFb) and send a signal to resting neutrophils (Nb) already present in the
blood. Once the signal is received by the neutrophils, they become activated (N∗b ).
These activated neutrophils have the ability to go into the tissue (N∗) and to fight
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the pathogens. Furthermore, during this infection, the tissue becomes inflamed (Z)
and the presence of radicals (RAD and RADb) produced by activated macrophages
and neutrophils, can damage the tissue that becomes less functional (TI). This
immune response can be modeled by ordinary differential equations and the values
and the descriptions of all parameters used are detailed in Annexe B. All these
equations and parameters come from [91].

First, let us tackle the pathogens equations:

dP

dt
= kpgP

(
1− P

P∞

)
− sbkpbP

µb + kbpP
− kpmgi(M∗)g(P, xm∗p, hm∗p)

− kpngin(N∗)g(P, xn∗p, hn∗p) + dp(Z)
dpb(Pb)− dpt(P )

VT
dPb
dt

= kpbgPb

(
1− Pb

Pb∞

)
− sbbkpbbPb
µbb + kbbpPb

− kpnbgib(N∗b )g(Pb, xn∗pb, hn∗pb) + dp(Z)
dpt(P )− dpb(Pb)

VB
.

(5.1)

The first term in the equations represent the logistic growth of the pathogens in
the tissue and in the blood. The pathogens are first destroyed by the macrophages
already present on the site of infection which is modeled by the second term in the
equations. The pathogens in the tissue are also eliminated by activated macrophages,
a mechanism which is modeled by the third term in the first equation. However,
the presence of anti-inflammatory cytokines (IL10) affects their ability to deplete
pathogens, which is modeled by the following inhibition function,

gi(x) = x

 1− ci

1 +
(

IL10
IL10∞

)hi + ci

 .

Furthermore, the macrophages can eliminate the pathogens up to a maximal rate,
which is modeled by an Hill function that has a sigmoid variation,

g(v, x, h) =
vh

vh + xh
.

The pathogens can also be eliminated by the activated neutrophils, a mechanism
which is modeled by the second to last term. As for the activated macrophages,
IL10 affects the ability of the activated neutrophils to deplete pathogens, which is
modeled by an inhibition function in the tissue,

gin(x) = x

 1− cin

1 +
(

IL10
IL10n∞

)hin + cin

 ,
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and in the blood,

gib(x) = x

 1− cib

1 +
(

IL10b
IL10b∞

)hib + cib

 ,

Finally the last term of the equations (5.1) represents the diffusion of the pathogens.
The diffusion depends linearly on the inflammation (Z),

dp(Z) = dbp(1 + dfpZ).

Furthermore, the pathogens in the tissues form colonies at high concentration. The
diffusion is then dependent on the surface area of the population. The diffusion of
the pathogens is then modeled by,

dpb(Pb) = abPb, and dpt(P ) =
atP

2/3

1 + btP 1/3
.

Now, let us focus on the macrophages equations,

dM

dt
= sm − µmM − kmpgi(M)g(P, xmp, hmp)

− kmtcellgi(M)g(TNF, xt, ht)− kmrcellgi(M)RAD,

dM∗

dt
= − µm∗M∗ + kmpgi(M)g(P, xmp, hmp)

+ kmtcellgi(M)g(TNF, xt, ht) + kmrcellgi(M)RAD.

(5.2)

The first terms represent the source (sm) and the death (µm) of the macrophages.
Indeed, only resting macrophages (M) are provided by the organism. The next terms
model the activation of the macrophages when in contact with pathogens, with the
pro-inflammatory cytokine (TNF ) and with radicals (RAD).

Likewise, let us define the equations for the neutrophils in the blood,

dNb

dt
= snb − µnbNb + ksnbg(cN∗b + dN∗, xsnb, hsnb)

− knpbcellgib(Nb)g(Pb, xnpb, hnpb)

− kntcellgib(Nb)g(TNFb, xtb, htb)− knrbgib(Nb)RADb,

dN∗b
dt

= − µnb∗N∗b + knpbgib(Nb)g(Pb, xnpb, hnpb)

+ kntcellgib(Nb)g(TNFb, xtb, htb) + knrbgib(Nb)RADb

− (1− rb)kpncellgib(N∗b )g(Pb, xn∗pb, hn∗pb)−
dn(Z)N∗b

VB
.

(5.3)

As for the macrophages, the first terms represent the source (snb) and the death
(µnb) of the neutrophils. However, we also assume that the increase of inflamma-
tion increases the source of neutrophils. This phenomenon is modeled by the third
term of the equation. This term depends on the resting neutrophils (Nb) in the
blood through the non linear function g, which is itself depending on the number
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of activated neutrophils in the blood and in the tissue. As for the macrophages,
the neutrophils are activated when in contact with the pathogens (Pb), with the
pro-inflammatory cytokine (TNFb) and with the radicals (RADb). Furthermore,
activated neutrophils can be depleted during the elimination of pathogens, a mech-
anism which is modeled by the second to last term in the N∗b equation. Finally,
the last term of the N∗b equation represents the fact that activated neutrophils can
diffuse into the tissue. Diffusion is modeled thanks to a linear function with the
inflammation (Z),

dn(Z) = dbn(1 + dfnZ).

The equation for the activated neutrophils in the blood writes,

dN∗

dt
= −µn∗N∗ − (1− r)kpncellgin(N∗)g(P, xn∗p, hn∗p) +

dn(Z)N∗b
VT

. (5.4)

As for the activated neutrophils in the blood, the equation takes into account the
death of the neutrophils, their depletion when eliminating the pathogens and the
diffusion of the cells.

Let us now focus on the pro-inflammatory cytokines (TNF ),

dTNF

dt
= − µtTNF − kmtmolgi(M)g(TNF, xt, ht)

+
dmol(Z)(TNFb − TNF )

VT
+ kmatgit(g(M∗, xm∗t, hm∗t)),

dTNFb
dt

= − µtbTNFb − kntmolgib(Nb)g(TNFb, xtb, htb)

− dmol(Z)(TNF − TNFb)
VB

.

(5.5)

The first term of the equations represents the decay of the cytokines. Then, the
second term models the binding of TNF to resting macrophages that causes the ac-
tivation of the macrophages. The third term represents the diffusion of the cytokines
between the tissue and the blood thanks to a linear function,

dmol(Z) = dbmol(1 + dfmolZ).

The last term in the equation of TNF in the tissue represents the production of
TNF by the activated macrophages. It is modeled thanks to the following inhibition
function,

git(x) = x

 1− cit

1 +
(

IL10
IL10t∞

)hit + cit

 .
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The anti-inflammatory cytokines (IL10) equations write,

dIL10

dt
= (−µimax + (µimax − µimin)g(IL10, xi, hi))IL10

+
dmol(Z)(IL10b − IL10)

VT
+ kmaigi(g(M∗, xm∗i, hm∗i)),

dIL10b
dt

= (−µibmax + (µibmax − µibmin)g(IL10b, xi, hi))IL10b

+
dmol(Z)(IL10− IL10b)

VB
.

(5.6)

The first term of the equations represents the decay rate of the cytokines by assuming
that the decay rate is minimum when the IL10 concentration is at its maximum.
Then, as for the pro-inflammatory cytokines, the equations take into account the
diffusion between the tissue and the blood of the molecules and the production of
IL10 by the activated macrophages.

Now we focus on the radicals (RAD) equations,

dRAD

dt
= − µrRAD +

dmol(Z)(RADb −RAD)

VT
+ knargin(N∗)

+ knatrN
∗ TI + krntpN

∗ P TI + krtmpM
∗ P TI

+ krtrRADTI

dRADb

dt
= − µrbRADb + knarbginb(N

∗
b ) +

dmol(Z)(RAD −RADb)

VB
.

(5.7)

The first two terms of the equations represent the death of the radicals, and their
diffusion between the blood and the tissue. The next terms model the production of
radicals (RAD). First, they are released by the activated neutrophils in the tissue
and in the blood where the inhibition function for the neutrophils in the blood
writes,

ginb(x) = x

 1− cinb

1 +
(

IL10
IL10nb∞

)hinb
+ cinb

 .

The radicals in the tissue are also produced by tissue damage (TI). Indeed, activated
neutrophils cause tissue damage that releases radicals. Then, activated neutrophils
and activated macrophages damage the tissue while eliminating pathogens. Hence,
this also also releases radicals. Finally, radicals themselves are causing damage to
the tissue, i.e. they increase their own concentration.

Now let us describe the evolution of the tissue damage with the following equa-
tion,

dTI

dt
= ktgTI

(
1− TI

T∞

)
(TI − a)− krttRADTI. (5.8)

The tissue damage is assumed to follow a logistic growth, as shown by the first
term of the equation. However, when TI falls below a, the tissue is unable to repair
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itself. Furthermore, the second term represents the fact that TI is depleted once it
encounters a radical.

Finally, let us focus on the last variable Z,

dZ

dt
= ktz (g(TNF, xtz, htz) + kzti(1− TI)) (1− Z)− µzZ. (5.9)

This last variable Z models the evolution of the inflammation. Its growth depends
on the level of TNF and on the amount of tissue damage (TI). The last term of
the equation depicts the decay of the inflammation.

In our work, we focus on one particular variable of this infection model, the
inflammation of the tissue Z. Its values are between 0 (no inflammation) and 1
(maximal inflammation). We suppose that this amount of inflammation can be
linked to the evolution of the bronchial volume (Vbr) during an infection through
the following function [89],

Vbr(Z) =
Vbr, he

1 +mvtaZ
, (5.10)

where Valv, he is the volume of the healthy tissue and mvta is a reduction parameter.
Its value is chosen to be the same as the one presented in [89]. It is equals to 1. We
can link this change of volume to the radius of the bronchus. Indeed, we know that
the volume of a bronchus Vi of generation i can be computed as follow,

Vi = πr2
i li,

with ri and li being respectively the radius and the length of the bronchus. Further-
more, since the length of the bronchus is not modified during an inflammation, we
can replace this last expression in the equation (5.10). It leads to,

ri(Z) =
ri,he√

1 +mvtaZ
,

where ri is the inflamed radius and ri,he is the healthy radius of the bronchus of
generation i. Since the radius of the airways are decreasing during inflammation,
it implies that the thickness of the bronchi walls is increasing. In particular, the
thickness of the alveolar membrane (τ) is computed as follow,

τi(Z) = τi,he + ri,he − ri(Z),

where τi,he = 1 × 10−6 m is the thickness of the alveolar membrane in generation i
in a healthy case [95].

We will work with three different outcomes. The first one is a cured outcome
where the pathogens are eliminated quickly by the immune system and the tissue
recovers after the inflammation and goes back to a healthy state. We obtain this
outcome with an initial number of pathogens between 0 and 840 P -units. In our
case, we choose an initial number of 500 P -units (Figure 5.2) as in [91]. The second
outcome simulated is an aseptic death. In this case, the immune system succeed
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to remove all the pathogens. However, the immune response is so intense that the
tissue does not recover and stays inflamed. This outcome results from an initial
number of pathogens between 840 and 1060 P -units. In our case, we choose an
initial number of 850 P -units (Figure 5.3) as in [91]. Finally our last outcome is
a septic death, where there are too many pathogens for the immune system which
fails to cure the infection. This outcome results from an initial number of pathogens
superior to 1060 P -units. In our case, we choose an initial number of 1200 P -units
(Figure 5.4) as in [91].

5.1.2 Asymmetric transport model

Let us recall that in chapter 3, we defined the transport of oxygen and carbon dioxide
in an idealized symmetric dichotomic bifurcating tree with the following equation
for each generation i ∈ J0, NK, with N + 1 being the number of generations in the
lung, and for each bronchi j ∈ J0, 2iK

∂Pi,j
∂t
−D∂

2Pi,j
∂x2

+ ui,j(t)
∂Pi,j
∂x

+ βi,jPi,j = βi,jPblood, for x ∈ [0, li]. (5.11)

However, when inflammation appears in a bronchus, its radius is modified which
implies that the correspoding bifurcation is no longer symmetric. Indeed, the sis-
ter branch of the inflamed bronchus does not have the same radius anymore (see
Figure 5.5).

This asymmetry appears in the bifurcation equation. Indeed, the volumetric flow
rate does no longer divide into two similar flow rates. We have,

Si,j

(
−D∂Pi,j(li,j, t)

∂x
+ ui,j(t)Pi,j(li,j, t)

)
=

Si+1,2j

(
−D∂Pi+1,2j(0, t)

∂x
+ ui+1,2j(t)Pi+1,2j(0, t)

)
+

Si+1,2j+1

(
−D∂Pi+1,2j+1(0, t)

∂x
+ ui+1,2j+1(t)Pi+1,2j+1(0, t)

)
.

However, we still have the conservation of the volumetric flow rate. Let us
define qi,j = ui,jSi,j, the volumetric flow rate in the bronchus j of generation i,
qi+1,2j = ui+1,2jSi+1,2j, the volumetric flow rate in one of the branch’s daughter and
qi+1,2j+1 = ui+1,2j+1Si+1,2j+1 the volumetric flow rate in the second branch. Then,
we obtain,

qi,j = qi+1,2j + qi+1,2j+1.

Thanks to this equation and the continuity of Pi between successsive generations,
we can simplify the bifurcation equation. Then, we obtain,

Si,j
∂Pi,j(li,j, t)

∂x
= Si+1,2j

∂Pi+1,2j(0, t)

∂x
+ Si+1,2j+1

∂Pi+1,2j+1(0, t)

∂x
. (5.12)

Furthermore, with the asymmetry of the lung, the airflows do not divide into
two equal values at a bifurcation. In order to compute the airflow velocities in all
bronchi, we can suppose that we have the same pressure at the outlets of the tree,
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Figure 5.2: Pathogens (left) and inflammation (right) evolution for a cured outcome.

Figure 5.3: Pathogens (left) and inflammation (right) evolution for an aseptic death
outcome.

Figure 5.4: Pathogens (left) and inflammation (right) evolution for a septic death
outcome
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i+ 1, 2j i+ 1, 2j + 1

Figure 5.5: Indices of the bronchi in an asymmetric bifurcation.

which implies that the strength provided by the muscles is homogeneous in the whole
lung. Furthermore, we also suppose that the viscous energy dissipated by the fluid
in the tree is minimized [29]. These assumptions lead to the following equation,

q2
i+1,2j

Ei+1,2j

+
q2
i+1,2j+1

Ei+1,2j+1

=
q2
i,j

Ei+1,2j + Ei+1,2j+1

,

where,

Ei+1,2j =
li
li+1

(
ri+1,2j

ri,h

)4

and Ei+1,2j+1 =
li
li+1

(
ri+1,2j+1

ri,j

)4

.

We can deduce the volumetric flow rates in the two branch’s daughters,

qi+1,2j = qi,j
Ei+1,2jEi+1,2j+1 + E2

i+1,2j

(Ei+1,2j + Ei+1,2j+1)2
,

and

qi+1,2j+1 = qi,j
Ei+1,2jEi+1,2j+1 + E2

i+1,2j+1

(Ei+1,2j + Ei+1,2j+1)2
.

We can observe that if the bronchus of generation i divides into two branches of
the same size, i.e. ri+1,2j = ri+1,2j+1, we then have,

qi+1,2j = qi+1,2j+1 =
qi,j
2
.

It is in agreement with our computations in chapter 3. The numerical scheme used
to compute numerically the approximated solution of equation 5.11 is detailed in
appendix A.

Finally, the last aspect changed by the asymmetry is the oxygen and carbon
dioxide flows to the blood. We can define the gas flow exchanged with the blood in
the generation i, with the following equation,

f(A, T ) =
N∑
i=G

1

T

∫ tC+T

tC

2i∑
k=1

∫ li

0

γi,k(Z) (Pi(t, x)− Pblood(t, x)) dx dt,
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Figure 5.6: Tree model of the lung. The red bronchus represents the infected
bronchus and the number on the bronchi represents the generation index.

where A is the amplitude of the ventilation, T is the period of ventilation, G is
the number of generations in the conductive tree, N+1 is the number of generations
in the lung, tC a time at which the system has reached a periodic regime and

γi,k(Z) = 2πri,k(Z)αi,k(Z)%s.

ri,k(Z) is the radius of the number k bronchus of generation i. αi is the permeability
of the alveolar membrane, it writes,

αi,k =
Dgas,H2Oσgas,H2O

τi,k(Z)
,

where Dgas,H2O is the diffusion coefficient of the gas in water (m2 · s−1), σgas,H2O

is the solubility coefficient (mol ·m−3 ·mmHg−1) of the gas in water and τi,k(Z) is
the thickness (m) of the alveolar membrane in the number k bronchus of generation
i. %s is the amount of exchange surface per unit of alveolar duct surface. It was
previously defined in chapter 3.

5.2 One branch infection

Let us start by assuming that we have only one bronchus infected in the lung. We
suppose that we have a cured outcome (Figure 5.2) and that the infection does not
spread to the other bronchi. We suppose that the infected bronchus belongs to the
third generation (index 2). We define four subtrees coming from each bronchi of the
third generation, see Figure 5.6.
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5.2.1 Constant ventilation parameters

First, let us assume that the ventilation is exactly the same as the healthy case.
Then, we impose a ventilation amplitude of 1.2m · s−1 and a ventilation period of
5 s at rest. During maximal exercise, we suppose that the ventilation amplitude is
19m · s−1 and the ventilation period is 1 s.

At rest, an interesting phenomenon appears, when only one bronchus is infected
more oxygen is exchanged with the blood than when the bronchus is healthy, see
Figure 5.7. It can be explained by the distribution of oxygen in the generations.
Indeed, we can observe that, in the subtree 2, the air flow goes deeper into the lung.
It allows the oxygen to meet a larger exchange surface and hence to counterbalance
the low oxygen flow in the subtree coming from the infected bronchus.

We observe a major difference between the resting regime and the maximal exer-
cise regime. During maximal exercise, an expected response happens: the decrease
of the flow when the radius of the bronchus is lower than the healthy radius, see
Figure 5.8. The repartition of the oxygen flow in the blood in each of the four
subtrees (Figure 5.8) gives us an indication on this behaviour. We can observe that
the flow in the subtree 1 decreases with an higher amplitude that the increase of the
flow in the subtree 2. Since in the subtrees 3 and 4, the flow remains constant, this
difference of amplitude explains the global decrease of the flow.

We chose to infect a bronchus in the third generation of the lung because of its
proximity to the trachea. Indeed, when we infect a bronchus in a deeper generation,
there are more and more healthy subtrees that help to counterbalance the lower air
flow going through the inflamed bronchus. The offset and hence, the variation of
the total oxygen flow to the blood is smaller and smaller as the generation of the
inflamed bronchus goes deeper. Consequently, the deeper the generation, the closer
the flow exchanged with the blood is to the healthy flow (Figure 5.9).

5.2.2 Constant air pressure at the outlets of the tree

We assumed in the last section that when a bronchus is infected, we have the same
ventilation than when we are healthy. This hypothesis might be valid for a single
infected bronchus but when the infection spreads and a whole region of the lung is
blocked, the ventilation is probably not anymore adapted to the situation.

We now make the assumption that the difference of pressure between the inlet
and the outlet of the tree remains constant throughout the inflammation of the
bronchi. We know that this difference in pressure ∆P depends on the volumetric
flow rate q0 through the tree and the hydrodynamic resistance R of the tree [29]. It
writes,

∆P (t) = Rq0(t) = RS0u0(t).

The hydrodynamic resistance R which represents the difficulty of a fluid to pass
through the bronchi, is dependent on the radius of the bronchi. Indeed, we know
that the hydrodynamic resistance Ri in a cylinder writes,

Ri =
8µli
πr4

i

,
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Figure 5.7: Infection of a single bronchus in the third generation at rest. Left:
Evolution of the oxygen flow to the blood. Right: Oxygen partial pressure at the
inspiration peak during maximal inflammation in each of the four subtrees.

Figure 5.8: Evolution of the oxygen flow to the blood during the infection of a single
bronchus in the third generation during maximal exercise. Left: in the whole lung.
Right: in each of the four subtrees.

Figure 5.9: Evolution of the oxygen flow to the blood of a single bronchus in several
generations at rest (left) and during maximal exercise (right).
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R0

S1 S2

Figure 5.10: Computation of the equivalent resistance of the lung. The subtrees S1

and S2 have a resistance of R1 and R2 respectively. The total equivalent resistance

of the lung is then computed as follow, R = R0 +
(

1
R1

+ 1
R2

)−1

.

where li is the length of the cylinder, ri its radius and µ is the viscosity of the
fluid. In our case the fluid is the air and its viscoisty is µ = 1.8 × 10−5 Pa · s.
Thanks to the resistance expression and the assumption that the lung is just an
interlocking of cylinders, we can compute the equivalent hydrodynamic resistance
of the whole tree by recurrence, see Figure 5.10. Indeed, the first bronchus of the
tree, the trachea, divide into two subtrees S1 and S2 which each have a resistance
of R1 and R2 respectively. The total resistance R of the lung is then,

R = R0 +

(
1

R1

+
1

R2

)−1

,

with R0 being the resistance of the trachea. The resistance of the two subtrees S1

and S2 is computed the same way and so on. This equivalent resistance neglects the
resistance of the bifurcations and the effects of inertia. However, as in chapter 4, we
chose to compute the resistance with the formula for the equivalent resistance and
to determine the ratio of increase or decrease relatively to the healthy state. Finally,
to obtain a coherent resistance we multiply this ratio with the physiological value
of the resistance.

We defined in chapter 3 the cross section area S0 = πr2
0 and the velocity of the

airflow in the trachea as the following sine function,

u0(t) = A sin

(
2π

T
t

)
,

where A is the ventilation amplitude and T is the ventilation period. Let us denote
our variables with a "he" subscript when the bronchus is healthy and with a "inf"
subscript when the bronchus is inflamed. Furthermore, we assume that the breathing
frequency is the same when healthy or sick.

In this section, we assume that the difference of pressure between the inlet and
the outlet of the tree remains constant throughout the inflamamation of the bronchi,

∆Phe(t) = ∆Pinf(t).
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By substituting the values, we obtain,

Rheπr
2
0,heAhe sin

(
2π

T
t

)
= Rinfπr

2
0,infAinf sin

(
2π

T
t

)
.

Finally, the ventilation amplitude when the lung is infected writes,

Ainf = Ahe
Rhe

Rinf

r2
0,he

r2
0,inf

.

Figure 5.11 depicts the evolution of the ventilation amplitude during the infection
of a third generation bronchus at rest and during exercise. We can observe that this
evolution is the same for the two regimes, it follows the evolution of the inflammation
during the cured outcome (Figure 5.2).

Thanks to this new ventilation amplitude, we can compute the oxygen flow to
the blood at rest and during maximal exercise for a cured outcome, see Figures 5.12
and 5.13.

At rest, on the contrary to the previous section, we observe a lower oxygen flow
to the blood when a bronchus is inflamed. Interestingly, a curious phenomenon
appears between hour 75 and hour 125 of the infection. Indeed, we observe a change
of variation of the oxygen flow during the decrease of the inflammation of the bronchi.
This phenomenon can be explained thanks to the oxygen flow in the subtrees of the
lung. Actually, we can observe on Figure 5.12 that the flow in the subtrees 1 and
2 do not come back to the healthy situation with the same slope. The oxygen
flow in the subtree 2 starts its decrease around hour 75. Since the airflow is more
important in the substree 2, it can go deeper into the lung and hence, reach a larger
exchange surface. However, once the air flow decreases, it will not go as deep in the
lung and hence, the usable exchange surface will be smaller. In the subtree 1 the
oxygen flow remains almost constant until hour 100. Indeed, small air flows do not
reach the exchange surface. It is due to the localization of the transition between
convection and diffusion. In chapter 4, we computed the localization of the transition
with the optimal ventilation. This transition happens at the very beginning of the
acinus. However, if the amplitude is smaller, the transition between convection and
diffusion will occur higher in the generations. Hence, the air flow in subtree 1 has
to be sufficiently large to reach the acinus.

During maximal exercise (Figure 5.13), we do not observe the same phenomenon.
Actually, during intense exercise the airflow is larger and uses the totality of the
exchange surface as predicted by the localization of the transition between convection
and diffusion detailed in chapter 4. Hence, in the subtree 1 attached to the inflamed
bronchus, the lower airflow can still reach the exchange surface. This explains why
the oxygen flows in the subtrees 1 and 2 evolve similarly with time and why we obtain
strickly increasing oxygen flows with time when the inflammation of the bronchus
decreases.

Notice that the same computations were made for the carbon dioxide flow from
the blood. Since the evolutions were very similar to those of oxygen, the results are
not shown and allows to focus only on the oxygen flow in all this chapter.



84 CHAPTER 5. NON-HEALTHY VENTILATION

Figure 5.11: Evolution of the ventilation amplitude during an infection of a single
bronchus in the third generation at rest (left) and during maximal exercise (right)
for a cured outcome.

Figure 5.12: Evolution of the oxygen flow to the blood during an infection of a single
bronchus in the third generation at rest in the whole lung (left) and in each of the
four substrees (right).

Figure 5.13: Evolution of the oxygen flow to the blood during an infection of a single
bronchus in the third generation during maximal exercise in the whole lung (left)
and in each of the four substrees (right).
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5.3 Proximal infection

Most of the time, the infection does not remain on one bronchus only, it spreads to
its neighbors bronchi. In order to be more realistic, it is important to simulate the
propagation of an infection throughout the lung. First, we chose to model only a
proximal infection, i.e. an infection that is limited to the nine first generations of the
lung. Indeed, some diseases are localized in certain part of the lung. For example,
pneumonia affects mainly the alveoli and bronchitis affects the first generations of
the bronchial tree [78]. In our case, the limitation to the nine first generations is
because of a technical limitation as explained in appendix A.

Our infection starts from the the third generation of bronchi and we suppose
that we have a constant pressure drop between the inlet and the outlet of the tree
during the infection, like in the previous section. To model the propagation of the
infection, we suppose that we have a probability to spread the infection every 15
minutes. Once a bronchus is infected it can infect its mother bronchus and its
two daughters bronchi with a probability that depends on the amount of pathogens
present in the brochus. The newly infected bronchi will suffer from an infection with
the same properties as the one from where the infection originates.

We assume that the probability function PF for the propagation of the infection
in the bronchi has the following form,

PF (P, Pfinal) =



1

2

(
2P

Pfinal

)2

, for P <
Pfinal

2
,

1− 1

2

(
2(Pfinal − P )

Pfinal

)2

, for
Pfinal

2
6 P < Pfinal,

1, for P > Pfinal.

(5.13)

P is the number of pathogen present in the bronchus and Pfinal is a parameter
that represents the speed of the propagation. Actually, the lower this variable is,
the faster the propagation. In our simulations, we use four different Pfinal to model
different speeds of infection proliferation, as shown on Figure 5.14.

Figure 5.14: Probability functions for the propagation of infections in the lung.
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Since our model is stochastic, the simulations do not always lead to the same re-
sults. We propose here several computations that are representative of the majority
of the responses observed.

5.3.1 Cured outcome

Our first set of simulations reflects a propagation of an infection where each bronchus
has a cured outcome (Figure 5.2). First, with the propagation speed parameter Pfinal

equal to 4000, the infection tends to remain in the initial bronchus. The results for
this case were already detailed in the previous section. Next, by decreasing the
propagation speed parameter, the infection spreads to other bronchi but not to the
whole lung. Indeed with Pfinal equals to 3000, the infection spreads to its mother
bronchus and its two daughters, with a total of 4 infected bronchi. With Pfinal

equals to 2000, we obtain 24 infected bronchi. Finally, with Pfinal equals to 1000,
the infection propagates to 208 infected bronchi.

In this cured outcome, some interesting phenomenon appears. Indeed, as shown
on Figure 5.15, we observe first that when Pfinal = 1000 and when Pfinal = 2000,
the ventilation amplitude becomes higher than the healthy ventilation amplitude.
This results from the propagation of the infection to the first generation bronchus.
Indeed, the expression for the new amplitude writes,

Ainf = Ahe
Rhe

Rinf

r2
0,he

r2
0,inf

.

The resistance of the inflamed lung is higher than the resistance of the healthy lung
since the radius of some bronchi is reduced. Hence, the ventilation amplitude should
decrease. However, since the bronchus in the first generation is inflamed the ratio
r20,he
r20,inf

is bigger than 1, and hence increase the amplitude of the ventilation. The
variation of the amplitude of the ventilation is then due to a balance between the
inflammation of the tracheal radius and the increase of the hydrodynamic resistance
in the lung. Consequently, we can deduce than for Pfinal = 1000 and for Pfinal = 2000,
the decrease of the tracheal radius due to the inflammation is dominant over the
change in hydrodynamic resistance in the whole lung.

Furthermore, we can also observe that less oxygen is exchanged with the blood
in the case with 208 infected bronchi than in the one with 24 infected bronchi. This
phenemenon can be explained by the difference in ventilation amplitude as seen on
Figure 5.15. Indeed, with an higher amplitude of ventilation, the air flow can go
deeper into the lung. Hence, the air flow reaches a larger exchange surface. This
difference in amplitude is explained by the fact that the hydrodynamic resistance is
higher with a larger number of inflamed bronchi while the tracheal radius is inflamed
at the same intensity. Finally, once the infection propagates to the bronchus in the
first generation, the oxygen flow exchange with the blood is significantly reduced
regardless of the number of infected bronchi.
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Figure 5.15: Evolution of the oxygen flow to the blood (left) and of the ventila-
tion amplitude (right) during the propagation of an infection starting in a third
generation bronchus with an cured outcome.

5.3.2 Aseptic death outcome

Our second set of simulations reflects a propagation of an infection where each
bronchus follows an aseptic death outcome (Figure 5.3). The infection spreads to
more bronchi than in the cured outcome since more pathogens are present. However,
thanks to the elimination of the pathogens by the immune system, it spreads slowly
to throughout the lung. We recall that propagation is limited to the nine first
generations in the bronchial tree. With Pfinal = 4000, the infection spreads to 108
bronchi. With Pfinal = 3000, it spreads to 226 bronchi. With Pfinal = 2000 or lower,
it spreads to the whole proximal lung studied here, i.e. to 511 bronchi.

As expected, the oxygen flow decreases as the number of infected bronchi in-
creases, as shown on Figure 5.16. However, an interesting phenomenon appears re-
garding the ventilation amplitude: we observe two ventilation amplitudes below the
healthy ventilation amplitude (1.2 m · s−1) and one above. In the case Pfinal = 4000,
the amplitude decreases because the first generation bronchus is not infected. In
the two other cases, the infection has spread to a big part of the lung, including the
first generation bronchus. However, with 226 infected bronchi the ventilation am-
plitude is above the healthy ventilation amplitude. But, with 511 infected bronchi
the ventilation amplitude drops below the healthy ventilation amplitude. It raises
the question: at which number of infected bronchi does the ventilation amplitude
crashes ? We can observe on Figure 5.17 that the crash of ventilation amplitude
occurs at around 300-350 infected bronchi. At this threshold, the increase of the hy-
drodynamic resistance in the whole lung becomes dominant over the inflammation of
the tracheal radius. It confirms that in the case where Pfinal = 3000, the ventilation
amplitude stays above the healthy ventilation amplitude. Once the propagation of
an infection reaches a certain amount of infected bronchi, the optimal ventilation
amplitude to keep a constant pressure drop between the ambient air and the alveoli
decreases significantly.
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Figure 5.16: Evolution of the oxygen flow to the blood (left) and of the ventila-
tion amplitude (right) during the propagation of an infection starting in a third
generation bronchus with an aseptic death outcome.

Figure 5.17: Evolution of ventilation amplitude (blue) and number of infected
bronchi (red) during the propagation of an infection starting in a third generation
bronchus with an aseptic death outcome.
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Figure 5.18: Evolution of oxygen flow exchange with the blood (left) and venti-
lation amplitude (right) during the propagation of an infection starting in a third
generation bronchus with a septic death outcome.

5.3.3 Septic death outcome

Our last set of simulations reflects a propagation of an infection where each bronchus
has a septic death outcome (Figure 5.4). Since the number of pathogens skyrocket
almost to its maximal capacity (20,000), the infection propagates very quickly to
the 511 bronchi considered in our simulations, whatever the propagation speed pa-
rameter.

In this case, as expected, there is almost no oxygen exchanged with the blood.
Indeed, the oxygen flow is reduced by a factor 4, going from 1.7× 10−4 mol · s−1 for
the healthy case down to 4× 10−5 mol · s−1. The new oxygen flow cannot fulfill the
body needs in oxygen. The ventilation parameters must be modified in order to hope
to fulfill the body needs in oxygen. To confirm this hypothesis, we computed the
optimal ventilation that minimizes the energy spent for breathing while fulfilling the
oxygen needs in oxygen during maximal inflammation thanks to our model presented
in chapter 4. The response predicted is fully compatible with the lung’s physiology
[78] and brings on the typical strategy of the lung to increase ventilation when gas
exchanges are too low. Indeed, the optimal amplitude varies from 1.25 m · s−1 in the
healthy case to 2.36 m · s−1 during maximal inflammation and the optimal period
varies from 4.9 s in the healthy case to 4 s during maximal inflammation.

5.4 Conclusion

We described and studied a model of the propagation of the infection and of the
inflammation bronchi per bronchi in the human’s lung linked to the gas transport
model described in the chapter 4. This last model has been modified in order to
take into account the asymmetry of the lung induced by the infection. This first
approach gives an insight on the gaseous exchange with the blood during an infection
of the lung and also a better understanding of the distribution of the gases along
the generations of the lung.

Our first results highlight two main informations. First, with the same ventilation
parameters than for a healthy lung, the oxygen flow exchanged with the blood can be
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increased during an infection, depending on its localization and its expansion. This
results from the reserve in exchange surface not used in the healthy case. The second
main phenomenon happens when we impose a constant pressure drop between the
ambiant air and the alveoli. The oxygen flow exchange with the blood does not
always depend on the number of infected bronchi, but more on the localization of
the infection.

A lot of work remains to be done concerning this model. It represents a first step
towards the understanding of the behaviours of the flows exchange with the blood
during an infection. The next logical step would be to minimize the energy spent
during the respiration with an inflamed lung and hence, to compute the optimal
ventilation for each stage of the inflammation. Furthermore, the model of infection
propagation could be improved. Indeed, we assumed that all the infected bronchi
follow the same behaviour (cured, aseptic death or septic death). However, we could
suppose that the initial number of pathogens in a new infected bronchus is not a
constant. For example, it could depend on the amount of inflammation and on the
amount of pathogens present in the bronchus from where the infection is coming.
The dynamics then become much more complex.



Chapter 6

Deposit of particles for aerosol
therapy

Sometimes, the immune system is not efficient enough to fight a pulmonary infection.
Many medication aids can be used to help eliminate pathogens. In our case, we will
only focus in this chapter on the aerosol therapy, which is commonly used to treat
obstructive pulmonary diseases [99]. However, it is extremely difficult to observe in
vivo drug deliveries in the human lungs. This is why it appears crucial to model and
be able to compute numerically the aerosol flow in the bronchi and especially the
deposition fraction which is the fraction of inhaled particles that deposit and their
localization with a good enough accuracy.

Aerosol particles have the ability to exchange water with the water saturated
air present in the lung. Consequently the size of the aerosol droplets varies along
time [66, 64, 65]. Under the assumption that the particles are and stay spherical, we
study the influence of the radius growth on deposition (number of deposited parti-
cles, characteristic times of propagation/deposition inside a given realistic geometry,
deposition areas...).

In the litterature, there exists different types of models that describe the motion
of the aerosol particles in the air. First, in the two-phase models [6, 22], the aerosol
droplets are considered as a fluid mixed with the ambient air in the lung. Then one
focuses on the concentration of the aerosol in the air. However, the drawback of
these models is the difficulty to determine the aerosol deposition area. The second
type of models [80, 123] is the agent based models, which simulate the behavior of
individual particles within an environment. However, the drawback of these models
is the difficulty to track the trajectory of numerous particles, in particular when
there is a strong coupling between the particles and the air flow. Finally, the kinetic
models [7, 40] describe the changes in properties of the system of interest. It is
relevant from the modelling point of view since numerous particles are present in
the aerosol, but their volume is negligible compared to the airways volume.

This is why we choose to use this last approach. In this work, the aerosol
behavior is described through a distribution function that represents the density
of the particles and depends on macroscopic variables (time, space, position) as
well as microscopic ones (velocity, for instance). This function satifies the Vlasov-
type equation and is coupled with the incompressible Navier-Stokes equations that
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rdrug

rex

r

Figure 6.1: Equivalent radii in a droplet

describe the airflow [15]. Our model is an extension of a previous one [76], where
the the air temperature, the mass fraction of the water vapor in the air and the
dependence of the distribution function on both the size and temperature of the
particles are taken into account.

6.1 Model of the deposit of aerosol particles

6.1.1 Particles behavior

An aerosol particle is composed of three different elements: active products (drug),
excipient and water. For simplification, our particles are assumed to remain spher-
ical at all times. We can then define the radius rdrug of the drug component (see
Figure 6.1) such that the value 4

3
πr3

drug%drug is the mass of the active product inside
the particle and where %drug is the constant density of the drug. Likewise the radius
rex of the excipient is defined such that the expression 4

3
π
(
r3

ex − r3
drug

)
%ex is the mass

of the excipient component in the droplet wher %ex is the constant density of the
excipient. The radius rex is also considered as the particle dry radius since there
is no water in a dry droplet. With these definitions, it is now possible to define
the mass and the density of the particle, which both depend on the radius r of the
droplet:

m(r) =
4

3
π
[
r3

drug%drug + (r3
ex − r3

drug)%ex + (r3 − r3
ex)%w

]
,

%d(r) =
1

r3

[
r3

drug%drug + (r3
ex − r3

drug)%ex + (r3 − r3
ex)%w

]
,

where %w is the constant density of water.
The radius of the aerosol particles can change over time. Indeed, since the

droplets are in an humid environnement (lung) and are composed of water, they can
exchange water molecules with the environnement. We can define the function a
that represents the evolution of the radius based on [65]. It depends on the radius
r of the particle, on the temperature T of the particle and on the water vapor mass
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fraction in the air Yv,air(t, x). It writes,

a(r, T, Yv,air(t, x)) = −Nd(r, T, Yv,air(t, x))

%w

, (6.1)

where Nd is the water mass flux at the droplet surface. This function writes [65],

Nd(r, T, Yv,air(t, x)) = %air
ShDv(Tair)Cm

2r

Yv,surf(r, T )− Yv,air(t, x)

1− Yv,surf(r, T )
.

Let us now define the quantities used in this expression. First we have the air density
%air. In our work the air is assumed to be Newtonian and incompressible, hence %air

is constant. Notice that the water vapor density in the air can be computed as
%airYv,air. Sh is the Sherwood number, describing the water transfer between the air
and the droplet. Cm is the mass Knudsen number correction [88]. The function Dv

is the binary diffusion coefficient of water vapor in the air, it writes [65],

Dv(Tair(t, x)) = 0.216

(
Tair(t, x)

273.15

)1.8

.

The temperature of the air Tair is expressed in Kelvin in this expression. Finally,
Yv,surf represents the water vapor mass fraction on the droplet surface. It depends
on the radius and on the temperature of the particle [65]:

Yv,surf(r, T ) =
S(r)K(r, T )Pv,sat(T )

%d(r)RvT
.

The constant Rv is the gas constant of water vapor. The function S(r) represents
the water activity coefficient:

S(r) =

%w(r3 − r3
ex)

Mw

%w(r3 − r3
ex)

Mw

+ idrug

%drugr
3
drug

Mdrug

+ iex

%ex(r3
ex − r3

drug)

Mex

,

where Mw, Mdrug and Mex are respectively the molar masses of the water, the drug
and the excipient. The constants idrug and iex denote the van’t Hoff factors of the
drug and of the excipient. It allows to take into account the molecular dissociation
during dissolution. This expression was derived using the expression detailed in [65]
and by stating that S must be equal to zero when the particle is dry, in other terms
when r = rex.

The function K(r, T ) represents the influence of the Kelvin effect on the droplet
surface concentration of water vapor [65]:

K(r, T ) = exp

(
2σ

r%d(r)RvT

)
,

where σ, the droplet surface tension, is assumed to be constant.
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Finally, we have the water vapor saturation pressure Pv,sat that depends on the
temperature T of the droplet in Kelvin,

Pv,sat(T ) = 10 exp

(
23.196− 3816.44

T − 46.13

)
.

Let us define a lower bound for the particle’s radius. We suppose that, at initial
time, all droplets have a radius superior to rex. In this case, if the radius decreases
and reaches the value rex, we obtain by definition S(rex) = 0 and consequently
Yv,surf = 0. This implies that the function Nd is negative and the function a positive.
Since the function a governs the time evolution of the particle’s radius, the fact that
this function is positive once it reaches r = rex means that the radius will grow once
the particle is dry. That ensures that r cannot go below rex.

The radius of the particle is not the only physical value that changes over time.
The evolution of the temperature can also be taken into account. Indeed, usually
the ambient air is colder than the body temperature (37° C). Hence, the inhaled air
and, consequently, the particles get warmer once in the respiratory system. Since
we want to take into account water vapor condensation on the droplet surface and
water vapor evaporation from the droplet surface, we must define the two heat
fluxes between the air and the droplet: the convective flux Qd and the evaporative
flux LvNd where Lv is the latent heat of water vaporisation. The convective flux Qd

depends on the radius r, on the temperature T of the droplet and on the temperature
of the air Tair [65]:

Qd(r, T, Tair(t, x)) =
NuκairCT

2r
(T − Tair(t, x)),

where Nu is the droplet Nusselt number corresponding to the ratio of convective
to conductive heat transfer between the particle and the air, κair is the thermal
conductivity of the air as a gaseous mixture and CT is the Knudsen correlation.
This last constant is small in our work, it allows us to neglect non-continuum effects
of the fluid. We can then define the function b describing the evolution of the
temperature of the particles,

b(r, T, Yv,air(t, x), Tair(t, x)) =
3

%d(r)cPd
r
×

(−Qd(r, T, Tair(t, x))− LvNd(r, T, Yv,air(t, x))),

(6.2)

where cPd
is the constant specific heat of the droplet.

We can define a lower bound for the droplet’s temperature. If T somehow come
close to 46.13 K (the value in Pv,sat) then Yv,surf tends to zero and Nd is negative.
Furthermore Qd is also non positive since Tair in the lung is around 300 K. The
function b that governs the evolution of the temperature of the droplet, is positive
when the temperature T reaches 46.13 K. It ensures that T cannot go below 46.13
K in our model. Notice that from the physiological viewpoint, it seems relevant to
assume that all the temperatures remain around 300 K and that the water vapor
mass fraction Yv,air stays positive.
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6.1.2 Equations of the model

Domain

First let us define our space domain Ω. It is assumed not to depend on time. Its
boundary Γ = ∂Ω is divided into three subsets, the wall Γwall, the inlet Γin and
the outlet Γout. In our case, since we want to observe the behavior of the aerosol
particles in the lung, the domain represents a bronchus and its bifurcation into two
smaller branches (see Figure 6.2).

Γin

Γout

Γout

Γwall

Figure 6.2: Domain Ω

Distribution function

We consider now a distribution function f representing the density of particles per
unit volume. This function depends on the time t > 0, on the position x of the
particles in the domain Ω, on the velocity v ∈ R3, on the radius of the particles
r > 0 and on the temperature T > 0. We assume that the particles remain spherical
and do not interact with each other since their number is not significant enough
to take into account their collisions. The density function f satisfies a Vlasov-type
equation [15]:

∂tf + v · ∇xf + divv[(α(u− v) + g)f ] + ∂r(af) + ∂T (bf) = 0, (6.3)

where g is the gravitational field and α(u− v) is the drag acceleration undergone by
the aerosol from the air. u is the velocity of the airflow and the α function writes
[15],

α(r) =
6πηr

m(r)
,

with η the constant air dynamic viscosity.
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We can complete the equation (6.3) with the following boundary and initial
conditions,

f = f in on R+ × Γin × R3 × R∗+ × R∗+,
f(t, ·) = 0 on Γwall × R3 × R∗+ × R∗+, if v · n ≤ 0, a.e. t,
f(0, ·) = finit on Ω× R3 × R∗+ × R∗+,

where f in : R+ × Γin × R3 × R∗+ × R∗+ → R and finit : Ω × R3 × R∗+ × R∗+ → R are
given. The boundary condition on Γwall ensures that any droplet landing on the wall
remains deposited afterwards.

Fluid dynamics of the air

Now let us express the equations of the fluid dynamics of the air. First, we want
to determine the fluid velocity u(t, x) ∈ R3 and its pressure p(t, x) ∈ R3 [15]. They
satisfy the incompressible Navier-Stokes equations on R+,

%air[∂tu+ (u · ∇xu)]− η∆xu+∇xp = F, (6.4)
divx u = 0. (6.5)

The function F is called the aerosol retroaction on the air:

F (t, x) = −
∫∫∫

R3×R+×R
m(r)α(r)(u(t, x)− v)f(t, x, v, r, T ) dv dr dT

= −
∫∫∫

R3×R∗+×R∗+
6πηr(u(t, x)− v)f(t, x, v, r, T ) dv dr dT.

We can complete this equation with the following boundary and initial condi-
tions, 

u = uin on R+ × Γin,
u = 0 on R+ × Γwall,

σ(u, p) · n = 0 on R+ × Γout,
u(0, ·) = uinit on Ω,

with σ(u, p) = ∇xu+ (∇xu)ᵀ− p Id, the stress tensor, n the outgoing normal vector
from Γ. The function uin : R+ × Γin → R3 is the airflow velocity at the entrance
of the bronchus, it is assumed to be a Poiseuille flow in our case. The function
uinit : Ω→ R3 is the initial datum.

Second, we have to describe the evolution of the water vapor mass fraction Yv,air

in the air. It satisfies an advection-diffusion equation on R+ × Ω, it writes,

%air[∂tYv,air + (u · ∇x)Yv,air]− divx(Dv(Tair)∇xYv,air) = SY , (6.6)

where SY is a source term that accounts for the water mass exchanges between
the air and the aerosol. However, other effects could be taken into account in this
expression such as turbulence [64, 66]. The source term SY is defined very similarly
as in [65] by,

SY (t, x) = %w

∫∫∫
R3×R∗+×R∗+

4πr2Nd(r, T, Yv,air(t, x)) f(t, x, v, r, T ) dv dr dT.
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We complete our equation with the following boundary and initial conditions,
Yv,air = Y in

v,air on R+ × Γin,
Yv,air = Yv,wall on R+ × Γwall,

∇xYv,air · n = 0 on R+ × Γout,
Yv,air(0, ·) = Yv,air,init on Ω,

where the functions Y in
v,air, Yv,wall and Yv,air,init > 0 are given. The boundary condition

on Γwall ensures us that the wall continuously provides water vapor to the air.

Finally, let us describe the evolution of the temperature Tair of the air. It also
satisfies an advection-diffussion equation on R+ × Ω:

%aircPair
[∂tTair + (u · ∇x)Tair]− κair∆xTair = ST , (6.7)

with ST a source term that represents the heat transfer between the air and the
particles through the water vapor. It is also defined as in [65] by,

ST (t, x) =

∫∫∫
R3×R∗+×R∗+

4πr2Qd(r, T, Tair(t, x)) f(t, x, v, r, T ) dv dr dT.

We complete this equation with the following boundary and initial conditions,
Tair = T in

air on R+ × Γin,
Tair = Twall on R+ × Γwall,

∇xTair · n = 0 on R+ × Γout,
Tair(0, ·) = Tair,init on Ω.

To summarize let us rewrite all our equations without the boundary and initial
conditions to form our complete model,


∂tf + v · ∇xf + divv[(α(u− v) + g)f ] + ∂r(af) + ∂T (bf) = F,
%air[∂tu+ (u · ∇xu)]− η∆xu+∇xp = 0, divx u = 0,
%air[∂tYv,air + (u · ∇x)Yv,air]− divx(Dv(Tair)∇xYv,air) = SY ,
%aircPair

[∂tTair + (u · ∇x)Tair]− κair∆xTair = ST ,

(6.8)

6.1.3 Physical conservations

Let us check some physical conservations of the two quantities that involve water
vapor. First, let us observe the water vapor mass exchange. Indeed the water vapor
coming from the air is supposed to lead to a radius variation of the aerosol droplets.

Proposition 6.1.1. Assume that u = 0 and ∇xYv,air · n = 0 on ∂Ω, and that f = 0
on ∂Ω× R3 × R∗+ × R∗+. Then we have

d

dt

[∫
Ω

(
%airYv,air(t, x) +

∫∫∫
R3×R∗+×R∗+

m(r)f(t, x, v, r, T ) dv dr dT

)
dx

]
= 0.
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Proof. On the one hand, multiplying equation (6.3) by m(r), integrating it with
respect to all the variables except t, and eliminating the conservative terms through
integrations by parts, we obtain

d

dt

[∫
Ω

∫∫∫
R3×R∗+×R∗+

m(r)f(t, x, v, r, T ) dv dr dT dx

]
=

∫
Ω

∫∫∫
R3×R∗+×R∗+

m′(r) a(r, T, Yv,air(t, x)) f(t, x, v, r, T ) dv dr dT dx.

On the other hand, integrating equation (6.6) on Ω, we get,

d

dt

[∫
Ω

%airYv,air(t, x) dx

]
=

∫
Ω

SY (t, x) dx

=

∫
Ω

∫∫∫
R3×R∗+×R∗+

4πr2%wNd(r, T, Yv,air(t, x)) f(t, x, v, r, T ) dv dr dT dx

= −
∫

Ω

∫∫∫
R3×R∗+×R∗+

m′(r) a(r, T, Yv,air(t, x)) f(t, x, v, r, T ) dv dr dT dx.

That clearly concludes the formal proof.

Second let us observe the exchange of the thermal energy associated to water
transfers between the air and the aerosol droplets.
Proposition 6.1.2. Assume that u = 0 and ∇xTair · n = 0 on ∂Ω, and that f = 0
on ∂Ω× R3 × R∗+ × R∗+. Then we have

d

dt

[∫
Ω

(
%aircPair

Tair(t, x) +

∫∫∫
R3×R∗+×R∗+

m(r)cPd
Tf(t, x, v, r, T ) dv dr dT

)
dx

]
= −

∫
Ω

∫∫∫
R3×R∗+×R∗+

4πr2(Lv+cPd
T )Nd(r, T, Yv,air(t, x)) f(t, x, v, r, T ) dv dr dT dx.

(6.9)

Proof. On the one hand, we integrate (6.7) over Ω to obtain
d

dt

[∫
Ω

%aircPair
Tair(t, x) dx

]
=

∫
Ω

ST (t, x) dx.

Then we multiply (6.3) bym(r)cPd
T and integrate it with respect to all the variables

except t to get

d

dt

[∫
Ω

∫∫∫
R3×R∗+×R∗+

m(r)cPd
T f(t, x, v, r, T ) dv dr dT dx

]
=

∫
Ω

∫∫∫
R3×R∗+×R∗+

[m′(r)cPd
T a(r, T, Yv,air(t, x)) f(t, x, v, r, T )

+m(r) b(r, T, Yv,air(t, x), Tair(t, x)) f(t, x, v, r, T )] dv dr dT dx.

Then we sum both previous equalities to recover equation (6.9), noticing that the
term involving Qd vanishes, keeping two terms involving Nd: one with Lv to take
the change of physical state into account and one with the added thermal energy in
the aerosol due to the mass exchange.
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6.2 Numerical method
Now, let us perform some numerical tests in order to observe the deposit of the
aerosol droplets in a model of a lung’s bifurcation. First, for simplification, we
suppose that the aerosol retroaction F in equation (6.4) can be neglected (F = 0)
because it is negligible regarding the particle size range chosen in our model [15].

Now, let us explain the numerical scheme used for our system (6.8). We proceed
as in [15] by using a time marching scheme and uncoupling the fluid and the particles
equations. All our computations are performed in a two dimensional frame using
FreeFem++ [48]. We run our model on a time interval [0, τ ], where τ > 0 is given.
The time step is defined as ∆t = τ/N > 0, such that N ∈ N∗. We can then denote
tn = n∆t for any n in J0, NK. Regarding the space, the domain Ω is discretized as
a triangular mesh Ωh.

6.2.1 Solving the air equations

We start by solving the three air equations (6.4)-(6.5), (6.6) and (6.7) using a finite
element method. The first step in the finite element method is computing the
weak formulation of the equations. Hence, we have to introduce the following test
functions: χ ∈ L2(Ω) for the equation (6.5), and ν, ψ, φ ∈ H1(Ω), vanishing on
Γin and Γwall, respectively for the equations (6.4), (6.6) and (6.7). The second step
of the method is the discretization of the functions. We use P2 functions for the
velocities u and ν and P1 functions for p, Yv,air, Tair, χ, ψ and φ. To increment
from time tn to time tn+1, we assume that all our functions are known at time tn.
To handle the convective terme in equation (6.4), we introduce the approximated
characteristic flow Xn, which approximates the solution X of the following Cauchy
problem on [tn, tn+1] for any x ∈ Ωh,

Ẋ(s) = un(s,X(s)), X(tn+1) = x.

This approximated Xn is computed using the FreeFem++ command convect. It is
now possible to define un+1 the solution of the discrete weak formulation for the
Navier Stokes equations (6.4)-(6.5):

%air

∫
Ω

un+1 − un ◦Xn

∆t
· ν dx+ η

∫
Ω

∇xu
n+1 : ∇xν dx

−
∫

Ω

pn+1 divx ν dx+

∫
Ω

divx u
n+1 χ dx = 0.

Likewise, Y n+1
v,air and T n+1

air are defined as the solutions of the following discrete
weak formulations,

%air

∫
Ω

Y n+1
v,air − Y n

v,air ◦Xn

∆t
φ dx+Dv

∫
Ω

∇xY
n+1

v,air · ∇xφ dx =

∫
Ω

SnY φ dx,

%aircPair

∫
Ω

T n+1
air − T nair ◦Xn

∆t
ψ dx+ κair

∫
Ω

∇xT
n+1
air · ∇xψ dx =

∫
Ω

SnTψ dx.

As previously explained, the function Dv is assumed to be constant and not
dependent on Tair since its value only has a 2% variation in the considered air
temperature range.
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6.2.2 Solving the Vlasov equation

With the fluid equations resolved at time tn+1, we can now solve the aerosol equa-
tions (6.3). We discretize the distribution function f as a weighted sum of Dirac
masses in the position, the velocity, the radius and the temperature [35]. Since the
total number of physical aerosol particles Naero ∈ N∗ is high for our computations,
we suppose that we have Nnum ∈ N∗ numerical particles, each of them having the
representativity ω ∈ N∗, so that we have Naero = ωNnum. Nnum must be chosen small
enough with respect to Naero to limit the cost of our computations, but large enough
to faithfully represent the distribution of the aerosol particles. The distribution
function is then discretized as follow,

f(t, x, v, r, T ) ' ω
Nnum∑
p=1

δxp(t) ⊗ δvp(t) ⊗ δrp(t) ⊗ δTp(t)(x, v, r, T ),

where xp(t), vp(t), rp(t), Tp(t) are the coordinates of the numerical particle p ∈
{1, . . . , Nnum} at time t, expressed in the phase space of f .

The particles coordinates are modified at each time step. They follow the fol-
lowing differential system,

ẋp(t) = vp(t),
v̇p(t) = α(rp(t))(u(t, xp(t))− vp(t)) + (1− %air

%d
)g,

ṙp(t) = a(rp(t), Tp(t), Yv,air(t, xp(t))),

Ṫp(t) = b(rp(t), Tp(t), Yv,air(t, xp(t)), Tair(t, xp(t))).

(6.10)

To complete this system we add initial data that fit the initial distribution of the
droplets finit. To solve this system at time tn+1, we resolve first the radius equation
using an accurate Runge Kutta 4 scheme. It involves the newly computed value Y n+1

v,air

and the current position xnp . Then, the velocity and the temperature equations are
solved with a semi-implicit Euler scheme involving the newly computed data un+1,
Y n+1

v,air and T n+1
air at the current position of the particle xnp . Finally, we update the

position xn+1
p using the newly computed velocity vn+1

p . If the position of the particle
xn+1
p is outside the domain Ωh or if the distance between the boundary and the

position is smaller that the radius of the particle rn+1
p , then our droplet is considered

deposited or outside our domain, i.e. in the next bronchus. Once the particle is
deposited or out of the domain, it is no longer treated numerically.

Since all our particles coordinates are updated, we can now define the the source
terms in equations (6.6) and (6.7) for the time tn+1. We obtain,

Sn+1
Y = ω%w

Nnum∑
p=1

4π
(
rn+1
p

)2
Nd(rn+1

p , T n+1
air (xn+1

p ), Y n+1
v,air (xn+1

p ))δxn+1
p
,

Sn+1
T = ω

Nnum∑
p=1

4π
(
rn+1
p

)2
Qd(rn+1

p , T n+1
p , T n+1

air (xn+1
p ))δxn+1

p
.

We observed that a time-subcycling was necessary for our aerosol computations.
Indeed, without this subcycling, the particle would be able to go accross multiple
cells of the mesh during a single fluid time step. Furthermore, it allows to better
deal with the very stiff temperature ODE.
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6.3 Numerical simulations

6.3.1 Initial situation

Our domain (see Figure 6.2) represents the trachea and the first bifurcation of the
human’s lung. Our choice in sizes and shapes of this domain are the ones described
in [100, 112], taking into account a 3D-2D correction coefficient for each branch
length. The diameter of the trachea is set to D0 = 1.80 cm and its length to
l0 = 7.52 cm. The right-hand bronchus has an angle of 25° with the tracheal axis,
it is quite short (l10 = 3.75 cm), but its diameter quite large, D10 = 1.50 cm. The
left-hand bronchus has an angle of 45° with the tracheal axis, it is longer than the
first one (l01 = 6.75 cm), but its diameter is smaller, with D01 = 1.00 cm. The
right-hand bronchus is the left branch on Figure 6.2, and conversely: we have the
outsider’s view, not the patient’s. The origin of our domain is set to the middle of
the boundary inlet Γin. Our simulations are run during τ = 1 s.

Let us now provide all our boundary and initial conditions. First, for the fluid
equations, the fluid velocity is initialized at uinit = 0, and, at the inlet, uin follows a
Poiseuille law, i.e. it is vertically oriented from up to bottom and its amplitude is
given, for any x ∈ Γin, by

|uin(x)| = 4u0

D0
2

(
D0

2

4
− x1

2

)
,

where u0 = 50.0 cm · s−1 and x1 the abscissa coordinates of the position x. The
initial and boundary values of Yv,air uses the relative humidities in the airways,

Yv,air,init =
RHlungPv,sat(Tair,init)

%airRvTair,init

, Y in
v,air =

RHlungPv,sat(T
in
air)

%airRvT in
air

,

Yv,wall =
RHwallPv,sat(Twall)

%airRvTwall

.

Here we suppose for homogeneity that the relative humidities in our first bifurcation
are RHlung = 0.99 and RHwall = 1.00. However, we know that the relative humidity
at the entrance of the trachea at inspiration is between 0.8 and 0.95 [56].

Likewise the air temperatures are chosen as follow,

Tair,init = 37°C = 310 K, T in
air = 24°C = 297 K, Twall = 37°C = 310 K.

However, as for the relative humidity, the air temperature at the entrance of the
trachea at inspiration is around 30− 34°C [56].

Let us now focus on the parameters for the aerosol particles. We consider 5
injections of 100 numerical particles each with a representativity ω = 104. These
injections are periodically released between the initial time and t = 0.25 s. Hence, we
deal with Nnum = 500 numerical particles and Naero = 5×106 physical particles. We
suppose that, at the initial time, the particles do not contain excipient nor water,
i.e r = rdrug = rex. All the numerical particles initially have the same vertical
velocity vp,2(0) = −100 cm · s−1, the same radius rp(0) = 2.25 × 10−5 cm, and the
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same temperature Tp(0), equals to the air temperature T in
air at the inlet. They are

released from random positions xp(0) ∈ Γin with its first coordinate in [−D0/4, D0/4]
following a uniform law. We choose this latter interval instead of [−D0/2, D0/2] so
that it allows a larger deposition phenomenon. Since we use a particle method, it is
mandatory, in order to obtain meaningful results, to perform averaging computations
over several initial randomly chosen distributions of droplets. In our case, we worked
with 10 different distributions. We validated our code by checking the computional
mass conservation of water vapor and the thermal energy balance implied by the
thermodynamic state change of water vapor.

Finally, Table 6.1 summarizes all the constants used in our model.

Quantity Value
|g|: Gravitation 980 cm · s−2

%air: Air mass density 1.18 10−3 g·cm−3

cPair
: Air specific heat 1.01 107 cm2 · s−2 ·K−1

κair: Air thermal conductivity 2.60 103 g·cm·s−3 ·K−1

η: Air dynamic viscosity 1.18 10−4 g·cm−1 · s−1

%w: Water mass density 0.997 g·cm−3

%drug: Drug mass density 1.34 g·cm−3

%ex: Excipient mass density 2.17 g·cm−3

Mw: Water molar mass 18.0 g·mol−1

Mdrug: Drug molar mass 577 g·mol−1

Mex: Excipient molar mass 58.4 g·mol−1

idrug: Drug van’t Hoff coefficient 2.10
iex: Excipient van’t Hoff coefficient 2.10
cPd

: Droplet specific heat 4.18 107 cm2 · s−2 ·K−1

Cm: Droplet mass Knudsen number correction 1.00
CT : Droplet temperature Knudsen correlation 1.00
Nu: Droplet Nusselt number 2.00
Sh: Droplet Sherwood number 2.00
Lv: Water vaporization latent heat 2.26 1010 cm2 · s−2

σ: Droplet surface tension 72.0 dyn·cm−1

Rv: Water vapor specific gas constant 4.61 106 cm2 · s−2 ·K−1

Table 6.1: Value of the physical constants.

6.3.2 Exploration of the model

First, we observe the results obtained without aerosol particles in the domain. Fig-
ure 6.3 shows the values of the velocity u, the water vapor mass fraction in the air
Yv,air and the temperature of the air Tair at the final time τ = 1 s where a stationary
state is reached for the fluid.

Let us now inject the aerosol particles in the domain. On Figure 6.4, we can
observe the movement of the various aerosol releases and the behavior of the air
velocity u. On Figure 6.5 we can observe the behavior of the air temperature Tair

at different times. The water vapor mass fraction Yv,air reaches a stationnary state
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(a)

VELOCITY

26.

 0

52

(b)

Yvair

0.028

0.018

0.038

(c)

Tair

304

297

310

Figure 6.3: Distribution of (a) the velocity |u|, (b) the water vapor mass fraction in
the air Yv,air and (c) the temperature Tair at the final time τ = 1 s.

very fast, whereas u and Tair only do so near 0.48 s. The distribution of Yv,air in the
domain is the same as on Figure 6.3.
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It is difficult to observe interesting details about the air temperature after each
aerosol releases on Figure 6.5. Figure 6.6 allows to have a better understanding
of the evolution of the air temperature Tair. We can observe an air temperature
increase at the location of the particles for all aerosol releases except for the first
one. This effect comes from the water vapor mass exchange between the humidified
air and the droplets.

Tair

304

297

311

Tair

304

297

311

Figure 6.6: Local effects of the aerosol on the air temperature at time 0.25 + ∆t
(in seconds), with the plot of the particles (left) and without (right).

Let us now focus on the aerosol particles. The droplets trajectories obtained
with our model are shown on Figure 6.7. In this particular case, the majority of the
droplets (348 over 500) has left the domain by the left branch as expected because of
its diameter. It is the most natural way out for the aerosol. The remaining particles
are distributed as follow: 98 go out through the right branch, 47 deposit on the wall
and the last remaining 7 are still in the domain at the final time.

(a) (b) (c)

Figure 6.7: Particle trajectories (a) towards the left branch, (b) towards the right
branch, (c) deposition.

Finally, we observe the evolution of the radius and of the temperature of the
aerosol particles. In one of our initial distribution (Figure 6.8), the droplets from



6.3. NUMERICAL SIMULATIONS 107

the first release do not behave in the same way as throse from the following releases.
Indeed, the particles radius grows slowler than in most of the other releases. This
behavior is confirmed with the evolution of the temperature. Indeed, even if the
temperature of the injected particles is initially 297 K, they almost instantaneously
reach 310 K due to the temperature of the surrounding air. The other releases
spread in a cooler air (Figure 6.5) and hence are not submitted to the same thermal
shock.

Interestingly, on Figure 6.8, we can observe that for all releases, except for the
first one, there is a temperature jump. For the second release, this jump happens
around 0.25 s, which is approximatively the time when the particles go into the
branches with diameters significantly smaller than the one of the trachea (see Fig-
ure 6.4). There, the influence of the walls is stronger and increase the particles
temperature.

Figure 6.8: Radius (left) and temperature (right) sevolution of all the particles
with respect to time.

6.3.3 Comparison of three models

Three different models are defined to study the role of the evolution of the radius
and of the temperature of the aerosol particles on the deposit of the droplets. The
first model includes all the effects related to aerosol size and temperature variation.
It is the complete model previously defined and will be referred to as the (A) model:

(A)


∂tf + v · ∇xf + divv[(α(u− v) + g)f ] + ∂r(af) + ∂T (bf) = 0,
%air[∂tu+ (u · ∇xu)]− η∆xu+∇xp = 0, divx u = 0,
%air[∂tYv,air + (u · ∇x)Yv,air]− divx(Dv(Tair)∇xYv,air) = SY ,
%aircPair

[∂tTair + (u · ∇x)Tair]− κair∆xTair = ST .

The second model, referred to as the (B) model does not include temperature
evolution (b = 0):

(B)


∂tf + v · ∇xf + divv[(α(u− v) + g)f ] + ∂r(af) = 0,
%air[∂tu+ (u · ∇xu)]− η∆xu+∇xp = 0, divx u = 0,
%air[∂tYv,air + (u · ∇x)Yv,air]− divx(Dv(Tair)∇xYv,air) = SY .
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Finally, the last model, referred to as the (C) model does not include size and
temperature variation (a = 0 and b = 0):

(C)
{

∂tf + v · ∇xf + divv[(α(u− v) + g)f ] = 0,
%air[∂tu+ (u · ∇xu)]− η∆xu+∇xp = 0, divx u = 0.

Let us now compare the radius and the temperature time evolutions of specific
droplets of the second release in the three models. We chose to plot three particles
with different outcomes in model (A), the first leaves the domain through the left
branch (see Figure 6.9), the second leaves the domain through the right branch
(see Figure 6.10) and finally the last one deposits (see Figure 6.11). These three
particles have also different outcomes depending on the model used. Indeed the
second particle, in models (A) and (C), exits the domain by the right branch but
deposits in model (B). The third droplet chosen deposits in models (A) and (B) but
exit the domain through the right branch in model (C). Finally, we obtain the same
outcome for the three models with the first particle leaving the domain through the
left branch.

We focus first on the behavior of the temperature. Since, by definition, there
are no evolution of the temperature in the (B) and (C) model, it remains constant,
whereas in the (A) model, the particle temperature grows until it (approximatively)
reaches Twall. This may seem peculiar since the second release of aerosols enters the
domain at 297 K and evolves in a cooler air. These temperature variations cannot
be explained by the ambiant air temperature. Consequently, it means that they
are triggered by hygroscopic phenomena. This leads us to study more carefully the
evolution of the droplet radius. We can observe that the model (B) induces a larger
size growth than the model (A). This could explain the deposit of the second particle
considered in model (B) instead of leaving through the right branch in model (B).
The hygroscopic effects imply radius variations in the models (A) and (B), but a
part of this variation existing in the model (B) also affects the temperature in the
model (A). This justifies why the radius in the model (A) is smaller than in the
model (B).

We provide some statistics about the evolution of the radius and of the temper-
ature for the three models (see Table 6.2). From ten initial aerosol distributions,
we can compute the mean radius and temperature of the droplets at the final time.
When a particle is deposited or has left the domain, the radius and the temperature
remain constant until the end of the simulation. We also compute the mean percent-
age of deposited particles and droplets reaching the boundaries Γout among the 500
droplets and the corresponding mean event times. As shown on Figures 6.9-6.11,
the particles mean radius for the model (A) is between the ones from the model (B)
and (C). The radius growth in model (A) is significant compared to model (C), it
seems to be the main reason for the larger aerosol deposit in model (A). Moreover
the models (A) and (C) have closer mean behaviors, which may imply that the model
(B) is not relevant here.

Finally, we compute the mean radius for the models (A) and (B) depending on
the position of the particles (deposit, left/right exit) at the final time (see Table 6.3).
The variations of the radius can be linked to the mean event times in Table 6.2. In
the model (A), the particles going out through the right branch stay longer in the
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Figure 6.9: Radius (left) and temperature (right) evolution of a droplet which goes
out through the left branch in models (A), (B) and (C).

Figure 6.10: Radius (left) and temperature (right) evolution of a droplet which goes
out through the right branch in models (A) and (C) and deposits in model (B).

Figure 6.11: Radius (left) and temperature (right) evolution of a droplet which
deposits in models (A) and (B) but goes out through the right branch in model (C).
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Models (A) (B) (C)
Mean radius (cm) 6.55× 10−4 1.67× 10−3 2.25× 10−5

Mean temperature (K) 309 297 297
Deposited particles 7.6 % 35.5 % 0.0 %
Left exiting particles 69.0 % 64.5 % 69.6 %
Right exiting particles 22.4 % 0.0 % 24.7 %
Mean depos. time (s) 0.409 0.270 –
Mean left exit time (s) 0.289 0.261 0.296
Mean right exit time (s) 0.509 – 0.461

Table 6.2: Statistics in the reference case. The temperature in this case are Tair,init =
310 K, T in

air = 297 K, Twall = 310 K. We assume that we have 5 injections of 100
particles each with a representativity ω = 104 periodically released between the
initial time and t = 0.25 s. The initial radius of particles is assumed to be r =
2.25× 10−5 cm.

domain, thus undergoing a larger radius growth. In the model (B), deposit or exit
happen more or less at the same time, leading to very similar radii for the particles.

Mean radius (cm)
Model (A) Model (B) Model (C)

Deposited particles 6.43× 10−4 1.68× 10−3 –
Left exiting particles 6.25× 10−4 1.67× 10−3 2.25× 10−5

Right exiting particles 7.42× 10−4 – 2.25× 10−5

Table 6.3: Statistics for the particles depending on their future (depositing/exiting).

6.4 Conclusion
We described and studied a model that describes the trajectories of aerosol droplets
in the first bifurcation of the lung. It models the evolution of the radius and temper-
ature of the droplets and gives us an appreciation on the deposition of the particles
on the bronchus walls.

Our results allowed to point out the relevance of the model (A) compared to the
other two models (B) and (C) to properly take into account the hygroscopic effects
on aerosols in the airways. However, there are still more situations to investigate.
The first concerns the numerical subcycling. Indeed, let us observe the source term
modelled by the function b equation (6.2). This function drives the evolution of the
temperature of the droplets and is composed of two terms:

b1(r, T, Tair(t, x)) = − 3

%d(r)cPd
r
Qd(r, T, Tair(t, x)),

and
b2(r, T, Yv,air(t, x), Tair(t, x)) = − 3

%d(r)cPd
r
LvNd(r, T, Yv,air(t, x)).
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The two functions b1 and b2 have opposite signs but are of the same order of mag-
nitude, around 2 × 105 K · s−1 at the initial time (see Figure 6.12). The function
b, which is the sum of the two previous functions has a value around 400K · s−1

at the initial time (see Figure 6.12). The model behaves nicely with respect to the
temperature (see Figure 6.13), because we used a very fine subcycling time step to
guarantee numerical accuracy in the description of the thermal effects. However,
from the computational viewpoint, this can probably be improved.

Figure 6.12: Order of magnitude of each thermal effect b (left) and b1 and b2 (right)
for a given particle.

Figure 6.13: Temperature evolution of the chosen particle in Figure 6.12.

The second investigation could be the addition of the excipient. Our numerical
computations were made with the assumption that no excipient were present in the
droplets. However, since standard values of %drug and %ex are similar (see Table 6.1),
the addition of the excipient might not imply major behavior changes on the aerosol.

The next investigation could be the extension of the domain. Our computational
domain represents only the trachea and the first bifurcation in the lung. We could
study our model behavior within other domains, not necessarily with a vertical main
axis since deeper bronchi can have different orientation angles, to understand the
effect of the geometrical variability. Furthermore, we only studied the airflow in this
domain during inspiration. It could be interesting to add the expiration. However,
it is a difficult task because of the unclear boundary conditions on the function f at
Γout.
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Finally, to study more faithfully the model, we should extend our two-dimensionnal
model into a three-dimensional one. We know that two-dimensional simulations tend
to increase the aerosol deposit [16] compared to three-dimensional models [15].
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Chapter 7

Conclusion

The goal of this thesis is to reach a better understanding on how the lung’s ventila-
tion can affect the transport of the respiratory gases in the lung whether healthy or
infected by a pulmonary infection. For that we have used relatively simple mathe-
matical models to mimic the ventilation by modeling the core physical and morpho-
logical properties of the lung.

Our first step was to model the ventilation and the gaseous exchanges with
the blood in a young healthy subject in order to have a benchmark close to the
physiology. We modeled the respiratory gas transport based on the core physical
properties of the human’s lung: a tree-like structure of the lung, convective and
diffusive transports of oxygen and carbon dioxide and physiology-based exchange
surface properties. Then, we described a model that minimizes the power dissipated
during the lung’s ventilation while fulfilling the body needs in oxygen. Our results
showed that the control of ventilation is due to the energy minimization spent during
respiration and hence, highly depends on the morphological characteristics of the
lung. Futhermore, this study showed that that it is not only accurate for the humans
but also for all mammals, for different metabolisms.

In a second part, we extended this study to a non healthy subject. We ask
ourselves how this ventilation could be modified by a pulmonary infection. That is
why we described and studied a model of the propagation of the infection and of
the inflammation bronchi per bronchi in the human’s lung. This model was linked
to the previous gas transport model which has been modified to take into account
the asymmetry of the bifurcations induced by the inflammation of the bronchi. Our
first results showed that the localization in the lung of the transition between the
convection and the diffusion, the localization of the infection and its intensity play
a major part in the amount of oxygen exchanged with the blood.

Finally, to cure this infection, the immune system can be helped with drugs
delivered in the form of aerosol droplets. The study of the amount of deposited
particles allows to have a better understanding in the efficacy of such a treatment.
We modeled the trajectory of the aerosol particles in the first bifurcation of the lung
by taking into account the evolution of their radius and their temperature. Our
results showed that the hygroscopic properties of the droplets and the evolution of
their temperature affect significantly the deposit of the particles.
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In this work, we obtained a complete model that optimizes the ventilation in
humans as well as in all mammals, whether they are healthy or with an infected
lung. In future works, we could couple this model to the aerosol particles deposition
model during the propagation of a pulmonary infection. This would therefore make
it possible to observe the changes in the air distribution as well as their influence on
the deposition of the particles. This approach could be a first step towards a better
understanding of the animal models for aerosols [109, 39, 4]. Indeed, our model
would allow to mimic and understand the change of size between the animal and
the human. The numerical model then could replace the animal model in order to
be more ethical.

This work is part of the projects of the ANR Virtual Chest and of the Vader
Center in UCA which aims to promote the use of mathematics and numerical meth-
ods to better understand how physical and chemical laws allow breathing. Different
projects are developed such as the study of the ventilation at exercise in master ath-
letes, the modeling of the lung’s geometry for biomedicals applications, the study of
the lung’s evolution, the study of the link between music and respiration and finally
the development of a numerical lung for chest physiotherapy.

Finally, this work clearly shows the importance of interdisciplinarity and the
usefulness of a mathematical approach to analyze and understand biophysical phe-
nomena such as the influence of the ventilation on the transport properties in the
lung.



Appendix A

Numerical Schemes

This appendix presents the numerical schemes used for the computation of the nu-
merical solutions for the gas transport model presented in the chapter 3 for a healthy
lung and in the chapter 5 for an inflamed lung. We also present the optimization
algorithm to compute the optimal ventilation in the chapter 4.

A.1 Gas transport in a healthy lung

A.1.1 Gas transport numerical scheme

In chapter 3, we described a model for the gas transport in the lung. In this section,
we will describe the numerical scheme used to compute the numerical approximations
of our model. Let us first recall that we assumed that the partial pressures of the
respiratory gases are described in each generation of the lung i by the equation,

∂Pi
∂t
− D

l2i

∂2Pi
∂x2

+
ui(t)

li

∂Pi
∂x

+ βiPi = βiPblood, ∀x ∈ [0, 1]. (A.1)

Let us recall that D is the diffusion coefficient of the gas in the air, li is the
length of the bronchus in generation i, ui(t) is the air flow velocity in generation i
and βi is an exchange coefficient defined in chapter 3 (equation (3.3))

We complete the equation with the following condition at the bifurcations,
Pi(t, 1) = Pi+1(t, 0),

−DSi
∂Pi(t, 1)

∂x
= −2DSi+1

∂Pi+1(t, 0)

∂x
,

(A.2)

and the following boundaries conditions, P0(t, 0) = Pair

−D∂PN
∂x

(t, 1) = αk%s (PN(t, 1)− Pblood(t, 1)) .
(A.3)

We recall that Si is the lumen area of the bronchus in generation i, Pair is the
partial pressure of the gas in the air, α is an exchange coefficient (see equation (3.1)),
k is the ratio relating partial pressure of the gas to its concentration in water and
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%s is the amount of exchange surface per unit of alveolar duct surface, all previously
defined in the chapter 3.

Let us now define the space domaine for each generation i Ωi = [0, 1]. This
domain is divided in M intervals each of length ∆x = 1

M
. The time span [0, Tfinal],

where Tfinal is the final time, is divided into L intervals each of length ∆t = Tfinal
L

.
Our approximated solution is computed on a mesh where each point of index (j, n)
is marked on the space axis by the position xj = j∆x (j ∈ J0,MK), and on the time
axis by tn = n∆t (n ∈ J0, LK). The approximated solution at each mesh nodes is
denoted,

P n
i,j = Pi(t

n, xj).

To approximate our equation (A.1), we look for an approximation of the first and
second derivative in space and of the first derivative in time. For that, we use the
implicit finite differences scheme. The first derivative in time is then approximated
by,

∂Pi
∂t

(tn, xj) ≈
P n+1
i,j − P n

i,j

∆t
.

The second derivative in space is approximated by,

∂2Pi
∂x2

(tn, xj) ≈
P n+1
i,j+1 − 2P n+1

i,j + P n+1
i,j−1

∆x2
.

The approximation of the first derivative in space depends on the sign of the
parameters in front of this derivative, here ui(t)

li
. We use an upwind scheme and

hence, if ui(t) > 0, the first derivative is approximated by,

∂Pi
∂x

(tn, xj) ≈
P n+1
i,j − P n+1

i,j−1

∆x
,

and if ui(t) < 0, the first derivative is approximated by,

∂Pi
∂x

(tn, xj) ≈
P n+1
i,j+1 − P n+1

i,j

∆x
.

Finally, we obtain the following finite different scheme,

P n+1
i,j − P n

i,j

∆t
− D

l2i

P n+1
i,j+1 − 2P n+1

i,j + P n+1
i,j−1

∆x2

+
ui(t)

li

(
P n+1
i,j − P n+1

i,j−1

∆x
1ui>0 +

P n+1
i,j+1 − P n+1

i,j

∆x
1ui<0

)
+ βiP

n+1
i,j = βiP

n
blood,j.

It can also be written as follow,

P n+1
i,j

(
1 +

2D∆t

l2i∆x
2

+
ui(t)∆t

li∆x
(1ui>0 − 1ui<0) + βi

)
+P n+1

i,j+1

(
− D∆t

l2i∆x
2

+
ui(t)∆t

li∆x
1ui<0

)
+ P n+1

i,j−1

(
− D∆t

l2i∆x
2
− ui(t)∆t

li∆x
1ui>0

)
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= P n
i,j + ∆tβiP

n
blood,j

The computation of the partial pressure of the oxygen in the blood is computed
thanks to a Newton algorithm such that,

cb(P
n
blood,O2,j

) =α(P n
i,j − P n

blood,j)

− 4Z0

(
f(P n

blood,O2,j
)− f(PaO2)

)
vs + σvs(P

n
blood,j − PaO2)

= 0.

The recurrence relation for the Newthon method writes,

xn+1 = xn −
cb(xn)

c′b(xn)
.

This algorithm stops once |cb(xn)| < ε, for ε > 0 small enough.
The computation of the partial pressure of the carbon dioxide in the blood, is

computed easily thanks to this expression,

α(P n
i,j − P n

blood,CO2,j
) =

(
P n
blood,CO2,j

− PaCO2

)
σ vs

(
1 + 10(pH−pK)

)
×
(

1− 0.0289Z0

(3.352− 0.456SO2)× (8.142− pH)

)
.

Then, let us compute the approximation for the bifurcations conditions (A.2),
P n
i,M = P n

i+1,0,

−DSi
P n
i,M − P n

i,M−1

∆x
= −2DSi+1

P n
i+1,1 − P n

i+1,0

∆x
.

Finally, the boundary conditions (A.3) are approximated by,
P n

0,0 = Pair

−D
P n
N,M − P n

N,M−1

∆x
= αk%s

(
P n
N,M − P n

blood,M

)
.

We assumed that the human lung could be idealized by a symmetric dichotomic
bifurcating tree. Thanks to this assumption, we only need to compute the partial
pressure of the respiratory gases for one path from the trachea to an acinus in the
lung. Consequently, we only have to resolve the equation for a single bronchus in
each generation. At each time step, we resolve a linear system. The vectors of this
linear system have a length of K = (N +1)× (M +1), where N +1 is the number of
generations in the lung (N + 1 = 23 for humans). Since we have to inverse a matrix
of size K ×K at each time step, we then have a total complexity of our numerical
scheme of O(K ×K × (L+ 1)).

A.1.2 Oxygen and carbon dioxide flow

In the previous section, we explained how to compute the partial pressure of the
respiratory gases in the lung and in the blood at each mesh point. Now, we can
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compute the gases flows exchange with the blood during a respiratory cycle. Let us
recall that the flow is computed as follow,

f(A, T ) =
N∑
i=G

2i

T

∫ tC+T

tC

∫ li

0

γ (Pi(t, x)− Pblood) dx dt. (A.4)

We recall that T is the period of the ventilation, γ is an exchange coefficient
defined in chapter 3 (see equation 3.6) and G is the number of generation in the
bronchial tree.

We approximate the integral with the rectangle rule where we divide our integral
on each time step and each space step.

We then obtain,

f(A, T ) ≈
N∑
i=G

2i

T

L∑
n=0

M∑
j=0

∆t∆xliγ
(
P n
i,j − P n

blood,j

)
.

A.2 Optimal ventilation

In chapter 4, our goal was to optimize the ventilation in order to minimize the power
spent during breathing while fulfilling the body’s needs in oxygen. In this section,
we will describe our algorithm. First, let us recall the expression of the power spent
during breathing,

P(A, T ) = Pe(A, T ) + Pv(A, T )

= Pe(A, T )

(
1 +

π2

2T
RC

)
=
A2S2

0T

2π2C

(
1 +

π2

2T
RC

)
. (A.5)

The function (A, T ) → P(A, T ) is to be minimized relatively to the ventilation
amplitude A and the period T with the constraint fO2(A, T ) = V̇O2 , where V̇O2 is
the desired oxygen flow to the blood.

Practically, the ventilation period T and the amplitude A can be linked through
the constraint on the flow of oxygen to the blood, in the form of a non linear
function T → A(T ). The non linear function is the result of the transport model of
oxygen. For a given value of the period, only one value of the amplitude is possible
in order to check the constraint (see Figure 4.2). For each period T , we look for the
corresponding amplitude A by solving thanks to the secant method,

c(A) = fO2(A, T )− V̇O2 = 0.

The recurrence relation for the secant method writes,

xn+1 = xn −
xn − xn−1

c(xn)− c(xn−1)
c(xn).

This algorithm stops once |c(xn)| < ε, for ε > 0 small enough.
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Consequently, with the oxygen flow constraint, the optimization problem is uni-
dimensional and we search for the minimum of the function P or the zero of its
derivative relatively to T ,

∂P
∂T

(A(T ), T ) =

(
A′(T )

(
1

2
+

T

π2RC

)
+

A(T )

2π2RC

)
A(T )RS2

0 = 0.

Since we impose a positive oxygen flow, the value A(T ) must be different than zero.
Consequently we only need to search the zero of the function,

D(T ) = A′(T )

(
1

2
+

T

π2RC

)
+

A(T )

2π2RC
.

Since the computation of the function A is numerical, we can approximate its
derivative by,

A′(T ) ≈ A(T +m)− A(T )

m
,

where m > 0 tends to 0.
The optimal ventilation is then computed thanks to the secant method in order

to obtain the zero of the function D(T ).

The secant method converges if the initial points x0 and x1 are sufficiently close
to the root of our function. The order of convergence of this method is the golden
ratio which is approximated by 1.618. Finally, the resolution time will depends on
the initial points, the time step and the space step used for the computation of the
gases flow exchanged with the blood and on the desired precision ε. In pratice, the
order of magnitude of the resolution time is around 15 to 30 minutes with initial
points close to the optimal value and a relative precision of ε = 10−8 on a 3.1 GHz
dual-core CPU.

A.3 Gas transport in an inflamed lung
In the chapter 5, we assumed that the lung was subjected to a pulmonary infection
and to the propagation of the inflammation in the bronchi. This leads to the asym-
metry of some of the bifurcations in the lung. In this section, we will present the
numerical scheme used in order to compute the partial pressure of the respiratory
gases in an inflamed lung.

Since the bifurcations are no longer symmetric, we can not anymore compute the
partial pressure of the gases in only one path of the lung. Our first step is then to
compute the number of the different paths required to compute the partial pressure
of the gases in the whole lung. This step is important as we do not want to compute
the partial pressure of the respiratory gases in each bronchus of the whole lung. We
assume that the bronchi are ordered numerically (see Figure A.1). For example,
we suppose that our tree has four generations and that five bronchi are inflamed.
We can observe on Figure A.1 that in this case, five paths have to be computed to
model the partial pressure in the whole lung. Indeed, three paths result from the
three inflamed bronchi in the fourth generation, one path results from the bronchus
(3, 3) connected to an inflamed bronchus and finally the last path is an healthy one.
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(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

Figure A.1: Tree of 4 generations mimicking a small lung. The numbers represent
the indices of the bronchi. The red bronchi are inflamed.

Now that we know the number of paths required to compute the partial pressure
in the whole lung, we can use the finite differences scheme to compute numerically
the approximated solution of the equation,

∂Pc,i
∂t
− D

l2i

∂2Pc,i
∂x2

+
uc,i(t)

li

∂Pc,i
∂x

+ βc,iPc,i = βc,iPblood, ∀x ∈ [0, 1]. (A.6)

The index c corresponds to the number of the paths and i represents the gener-
ation in the lung. As in section A.1, we use the following scheme,

P n+1
c,i,j

(
1 +

2D∆t

l2i∆x
2

+
uc,i(t)∆t

li∆x
(1uc,i>0 − 1uc,i<0) + βc,i

)
+P n+1

c,i,j+1

(
− D∆t

l2i∆x
2

+
uc,i(t)∆t

li∆x
1uc,i<0

)
+ P n+1

c,i,j−1

(
− D∆t

l2i∆x
2
− uc,i(t)∆t

li∆x
1uc,i>0

)
= P n

c,i,j + ∆tβiP
n
blood,c,j.

The equation (A.6) is completed with the following boundary conditions, Pc,0(t, 0) = Pair

−D∂Pc,N
∂x

(t, 1) = αk%s (Pc,N(t, 1)− Pblood(t, 1)) .
(A.7)

It is approximated as in section A.1 by,
P n
c,0,0 = Pair

−D
P n
c,N,M − P n

c,N,M−1

∆x
= αk%s

(
P n
c,N,M − P n

blood,c,M

)
.
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Number of inflammed bronchi Resolution time
0 9.5 s
1 13 s
6 25 s
12 37 s
62 149 s (∼ 2 min 30)
128 313 s (∼ 5 min)
256 697 s (∼ 12 min)
511 1771 s (∼ 30 min)

Table A.1: Resolution time of the computation of the oxygen partial pressure in an
idealized human’s lung during depending on the number of infected bronchi.

Finally, the equation (A.6) is also completed by the conditions at the bifurcations,
Pc,i(t, 1) = Pc,i+1(t, 0),

Sc,i
∂Pc,i(li, t)

∂x
= Sc,i+1

∂Pc,i+1(0, t)

∂x
+ Sc̃,i+1

∂Pc̃,i+1(0, t)

∂x
,

(A.8)

where c̃ is the path that takes into account the bronchus connected to the one in
path c of generation i + 1. Let us consider again our previous example, we assume
that the path going from the bronchus (0, 0) to (3, 0) has for index 1 and that the
path going from the bronchus (0, 0) to (3, 1) has for index 2. We focus on the
bifurcation where the bronchus (2, 0) divides into bronchus (3, 0) and (3, 1). Here if
c = 1, then we have c̃ = 2 and vice versa.

Finally, this bifurcation conditions can be approximated by,
P n
c,i,M = P n

c,i+1,0,

Sc,i
P n
c,i,M − P n

c,i,M−1

∆x
= Sc,i+1

P n
c,i+1,1 − P n

c,i+1,0

∆x
+ Sc̃,i+1

P n
c̃,i+1,1 − P n

c̃,i+1,0

∆x
.

We have to resolve for each path the equation for a single bronchus in each
generation. As for the healthy lung in section A.1 we have to resolve a linear
system at each time step. The vectors of this linear system have a length of K =
NbP × (N + 1) × (M + 1), where N + 1 is the number of generations in the lung
(N + 1 = 23 for humans) and NbP is the number of paths. Since we have to inverse
a matrix of size K ×K at each time step, we then have a total complexity of our
numerical scheme of O(K × K × (L + 1)). It becomes more and more difficult
to resolve this system as the number of inflamed bronchi increases. Indeed, if each
bronchus of the human lung is inflamed then we have to compute the partial pressure
in all the bronchi of the lung i.e. in 223 bronchi which becomes complicated in terms
of memory and of resolution time. For example, Table A.3 references the resolution
time depending on the number of infected bronchi. This computations were made
on a 3.1 GHz dual-core CPU, with a adimensionalized space step of ∆x = 0.01 and
a time step of ∆t = 0.1 s where the final time is Tfinal = 10 s.



122 APPENDIX A. NUMERICAL SCHEMES



Appendix B

Infection model parameters

The equations and parameters detailed here are the ones needed for the infection
model described in chapter 5. They come from [91]. We know that when the body
detects a pathogen in the tissues (P ) or in the blood (Pb), the first reaction of the
immune system is to bring white blood cells (here macrophages and neutrophils) to
the site of infection. When resting macrophages (M) already present in the tissue
come in contact with some pathogens, they become activated (M∗). They can now
eliminate pathogens and produce pro-inflammatory (TNF ) and anti-inflammatory
(IL10) cytokines. Pro-inflammatory cytokines migrate into the blood (TNFb) and
send a signal to resting neutrophils (Nb) already present in the blood. Once the
signal is received by the neutrophils they become activated (N∗b ). These activated
neutrophils have the ability to go in the tissue (N∗) and to fight the pathogens. Fur-
thermore, during this infection, the tissue becomes inflammed (Z) and the presence
of radicals (RAD and RADb), produced by activated macrophages and neutrophils,
can damage the tissue that becomes less functional (TI). This immune response
can be modeled by ordinary differential equations,

dP

dt
= kpgP

(
1− P

P∞

)
− sbkpbP

µb + kbpP
− kpmgi(M∗)g(P, xm∗p, hm∗p)

− kpngin(N∗)g(P, xn∗p, hn∗p) + dp(Z)
dpb(Pb)− dpt(P )

VT
dM

dt
= sm − µmM − kmtcellgi(M)g(TNF, xt, ht)

− kmrcellgi(M)RAD − kmpgi(M)g(P, xmp, hmp),

dM∗

dt
= − µm∗M∗ + kmtcellgi(M)g(TNF, xt, ht)

+ kmrcellgi(M)RAD + kmpgi(M)g(P, xmp, hmp),

dN∗

dt
= − µn∗N∗ − (1− r)kpncellgin(N∗)g(P, xn∗p, hn∗p) +

dn(Z)N∗b
VT

,

dTNF

dt
= − µtTNF − kmtmolgi(M)g(TNF, xt, ht)

+ kmatgit(g(M∗, xm∗t, hm∗t)) +
dmol(Z)(TNFb − TNF )

VT
,

123



124 APPENDIX B. INFECTION MODEL PARAMETERS

dIL10

dt
= (−µimax + (µimax − µimin)g(IL10, xi, hi))IL10

+
dmol(Z)(IL10b − IL10)

VT
+ kmaigi(g(M∗, xm∗i, hm∗i)),

dRAD

dt
= − µrRAD + krtrRADTI + knargin(N∗) + knatrN

∗ TI

+ krntpN
∗ P TI + krtmpM

∗ P TI +
dmol(Z)(RADb −RAD)

VT
,

dTI

dt
= ktgTI

(
1− TI

T∞

)
(TI − a)− krttRADTI,

dZ

dt
= ktz (g(TNF, xtz, htz) + kzti(1T I)) (1− Z)− µzZ,

dPb
dt

= kpbgPb

(
1− Pb

Pb∞

)
− sbbkpbbPb
µbb + kbbpPb

− kpnbgib(N∗b )g(Pb, xn∗pb, hn∗pb)

+ dp(Z)
dpt(P )− dpb(Pb)

VB
,

dNb

dt
= − µnbNb − kntcellgib(Nb)g(TNFb, xtb, htb)

− knpbcellgib(Nb)g(Pb, xnpb, hnpb)

− knrbgib(Nb)RADb + snb + ksnbg(cN∗b + dN∗, xsnb, hsnb),

dN∗b
dt

= − µnb∗N∗b + kntcellgib(Nb)g(TNFb, xtb, htb)

knpbgib(Nb)g(Pb, xnpb, hnpb) + knrbgib(Nb)RADb

− (1− rb)kpncellgib(N∗b )g(Pb, xn∗pb, hn∗pb)−
dn(Z)N∗b

VB
,

dTNFb
dt

= − µtbTNFb − kntmolgib(Nb)g(TNFb, xtb, htb)

− dmol(Z)(TNF − TNFb)
VB

,

dIL10b
dt

= (−µibmax + (µibmax − µibmin)g(IL10b, xi, hi))IL10b

+
dmol(Z)(IL10− IL10b)

VB
,

dRADb

dt
= − µrbRADb + knarbginb(N

∗
b ) +

dmol(Z)(RAD −RADb)

VB
.

Let us now define the different functions used in these equations. First we have
a Hill function that writes,

g(v, x, h) =
vh

vh + xh
.
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Next, some inhibitions functions are present in the equations, they write,

gi(x) = x

 1− ci

1 +
(

IL10
IL10∞

)hi + ci

 ,

git(x) = x

 1− cit

1 +
(

IL10
IL10t∞

)hit + cit

 ,

gin(x) = x

 1− cin

1 +
(

IL10
IL10n∞

)hin + cin

 ,

ginb(x) = x

 1− cinb

1 +
(

IL10
IL10nb∞

)hinb
+ cinb

 ,

The diffusion functions write,

dn(Z) = dbn(1 + dfnZ), dpb(Pb) = abPb,

dmol(Z) = dbmol(1 + dfmolZ) qquad dpt(P ) =
atP

2/3

1 + btP 1/3
, dp(Z) = dbp(1 + dfpZ).

The parameters used in these equations are detailed in the following tables.

Parameters Values
kpb: Rate at which the local response in

0.461 B units−1 · hr−1tissue B eliminate pathogen (P )
in the tissue
kpbb: Rate at which the local response in

0.461 B units−1 · hr−1blood Bb eliminate pathogen (Pb)
in the blood
kbp: Rate at which B is exhausted by P 0.0001 P units−1 · hr−1

kbbp: Rate at which Bb is exhausted 0.02 P units−1 · hr−1

by Pb
sb: Source of B 0.0075 B units · hr−1

sb: Source of B 0.0075 B units · hr−1

sbb: Source of Bb 0.0075 B units · hr−1

µb: Decay rate for B 0.0023 hr−1

µbb: Decay rate for Bb 0.0023 hr−1

kpg: Growth rate of P and Pb 0.6 hr−1

Table B.1: Parameters of the infection model 1/6
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Parameters Values
P∞: Maximum P population 20 000 P units
Pb∞: Maximum Pb population 20 000 P units
kpm: Rate at which activated 2.8 P units ·M∗ units−1 · hr−1

macrophages (M∗) eliminate P
kmp: Rate at which pathogen activates 40 hr−1

resting macrophage (M)
xm∗p: Determines level of P needed 20 P unitsto bring elimation of P by M∗

xmp: Determines level of P needed
20 P unitsto bring activation of M to half

their maximum
hm∗p: Hill coefficient for the elimination 3and activation terms containing P
sm: Source of M 10 M units · hr−1

sn,b: Source of resting blood 10 Nb units · hr−1

neutrophils (Nb)
µm: Decay rate of M 0.12 hr−1

µnb: Decay rate of Nb 0.12 hr−1

µm∗: Decay rate of activated 0.05 hr−1

macrophages (M∗)
µn∗: Decay rate of activated neutrophils 0.05 hr−1

in the tissue (N∗)
µnb∗: Decay rate of activated neutrophils 0.05 hr−1

in the blood (N∗b )
kmtcell: Rate at which TNF activates M 20 hr−1

kmtmol: Rate at which TNF is consumed
5 TNF units ·M units−1 · hr−1during the activation of M

xt: Determines level of TNF needed
20 TNF unitsto bring activation of M by TNF to

half its maximum
ht: Hill coefficient for the activation 2of M by TNF
kmrcell: Rate at which radicals (RAD) 0.01 RAD units−1 · hr−1

activate M
kpn: Rate at which N∗ eliminates P 5.8 P units · N∗ units−1 · hr−1

Table B.2: Parameters of the infection model 2/6
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Parameters Values
kpncell: Rate at which N∗ is destroyed 5 hr−1

when it eliminates P
r: Population of N∗ that survives 0.98the elimination of P
xn∗p: Determines level of P needed

1500 P unitsto bring elimination of P by N∗
to half its maximum
r: Population of N∗ that survives 0.98the elimination of P
xn∗p: Determines level of P needed

1500 P unitsto bring elimination of P by N∗
to half its maximum
hn∗p: Hill coefficient for the elimination 3term by N∗ containing P
µt: Decay rate for TNF 1.8 hr−1

µtb: Decay rate for TNFb 1.8 hr−1

kmat: Rate of TNF production by M∗ 3 000 TNF units·hr−1

xm∗t: Determines level of M∗ needed
80 M∗ unitsto bring TNF production

to half its maximum
hm∗t: Hill coefficient for the production 2term of TNF by M∗

µimax: Maximum decay rate for IL10 0.34 hr−1

µibmax: Maximum decay rate 0.34 hr−1

for IL10b
µimin: Minimum decay rate for IL10 0.005 hr−1

µibmin: Minimum decay rate 0.005 hr−1

for IL10b
kmai: Rate of IL10 production by M∗ 1 000 IL10 units·hr−1

xm∗i: Determines level of M∗ needed
140 M∗ unitsto bring IL10 production

to half its maximum
hm∗i: Hill coefficient for the 2production term of IL10 by M∗

xi: Determines level of IL10 and
8 IL10 unitsIL10b needed to cause its decay rate

to decrease to half its maximum
hi: Hill coefficient for the production 2term of IL10
µr: Decay rate for RAD 4 hr−1

Table B.3: Parameters of the infection model 3/6
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Parameters Values
µrb: Decay rate for RADb 4 hr−1

krtr: Rate at which RAD is produced 0.1hr−1

when RAD is in the tissue
knar: Rate at which RAD is 0.01 RAD units · hr−1 · N∗ units−1

released by N∗

knarb: Rate at which RADb is 0.01 RAD units · hr−1 · N∗ units−1

released by N∗b
knatr: Rate at which RAD is

0.01 RAD units · hr−1 · N∗ units−1produced when N∗ is in the
tissue causing damage
krtmp: Rate at which RAD is produced

1× 10−5 hr−1

when M∗ eliminates P in the tissue
ktg: Repair rate of the tissue integrity 2 hr−1

T∞: TI maximum 1
a: Below TI = a, tissue is inable to 0.1repair itself
krtt: Rate at which RAD deplete TI 0.01 RAD units−1 · hr−1

ktz: Rate at which TNF and tissue 0.5 hr−1

damage cause inflammation (Z)
xtz: Determines level of TNF needed

20 TNF -unitsto bring production of Z by TNF
to half its maximum
htz: Hill coefficient for the production 2term of Z by TNF
kzti: Relative effectiveness of TNF 0.1versus tissue damage in producing Z
µz: Decay rate of Z 0.01 hr−1

kpnb: Rate at which N∗b 0.04 P units · N∗ units−1 · hr−1

eliminates Pb
kpnbcell: Rate at which N∗b is destroyed 5 hr−1

when it eliminates Pb
rb: Population of N∗b that survives 0.98the elimination of Pb
xn∗pb: Determines level of Pb needed

0.1 P unitsto bring activation of Nb and P
elimination by N∗b
to half their maximum

Table B.4: Parameters of the infection model 4/6
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Parameters Values
hn∗pb: Hill coefficient for Pb elimination 1by N∗b
kntcell : Rate at which TNFb 2 hr−1

activates Nb

kntmol: Rate at which TNFb is 0.8 TNF units · N units−1 · hr−1

consumed during the activation of Nb

xtb: Determines level of TNFb needed
2 TNF unitsto bring activation of Nb by TNFb

to half its maximum
htb: Hill coefficient for the activation 2of Nb by TNFb
knrb: Rate at which RAD activate Nb 0.1 RAD units−1 · hr−1

ksnb: Rate at which the source of 3 N units · hr−1

Nb increases
c: Effectiveness of N∗ at increasing 1the source of Nb (snb)
d: Effectiveness of N∗b at increasing 1the source of Nb

xsnb: Determines level of N∗ and
200 N∗ unitsN∗b needed to bring increase

in snb to half their maximum
hsnb: Hill coefficient for the increase of snb 2
ci: Maximum inhibition level of gi, 0.05inhibition of macrophage functions
cit: Maximum inhibition level of git, 1× 10−6

inhibition of TNF production
cin: Maximum inhibition level of gin, 0.15inhibition of neutrophils in the tissue
cinb: Maximum inhibition level of ginb, 0.15inhibition of blood neutrophils
hi: Hill coefficient for gi 3
hit: Hill coefficient for git 5
hin: Hill coefficient for gin 1
hinb: Hill coefficient for ginb 1
IL10∞: Determines level of IL10 needed

200 IL10 unitsto bring macrophage inhibition
to half its maximum
IL10t∞: Determines level of IL10 needed 60 IL10 unitsto bring the inhibition of TNF production

Table B.5: Parameters of the infection model 5/6
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Parameters Values
IL10n∞: Determines level of IL10 needed

80 IL10 unitsto bring tissue neutrophils inhibition
to half its maximum
IL10nb∞: Determines level of IL10b needed

80 IL10b unitsto bring blood neutrophils inhibition
to half its maximum
dbn: Baseline diffusion of neutrophils 0.005 L·hr−1

dfn: Effectiveness of Z in increasing 50neutrophil diffusion
dbp: Baseline diffusion of pathogen 1
dfp: Effectiveness of Z in increasing 1pathogen diffusion
dbmol: Baseline diffusion of molecules 10 L·hr−1

dfmol: Effectiveness of Z in 1increasing molecule diffusion
at: Constant in the numerator of dpt 50
bt: Constant in the denominator of dpt 0.8 (P units)−1/3

ab: Rate of pathogen diffusion in dpb 2000 hr−1

krntp: Rate at which RAD 0.2 RAD units ·M∗ units−1·
is produced when N∗

P units−1 · hr−1

eliminates P in the tissue

Table B.6: Parameters of the infection model 6/6
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