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Introduction

Neuroscience and neuropsychology study decision-making using experimental and theoreti-
cal methods that are usually based on simple paradigms. Decision-making can consist in
either a choice between many alternatives, a decoding process, or a choice to perform a
motor action. Perceptual decision-making, the most experimentally studied (with humans
and animals) type of decision-making, is the subject of my PhD. Perceptual decision-making
studies the mechanisms through which one is able to process more or less ambiguous stimuli
to reach a decision.

Last decades have shown a surge in neurophysiological study of decision-making, par-
ticularly in the behavior of monkeys in various decision tasks. These different experiments
have shed some light into the general mechanism of decision making. The stimuli, coming
from the sensory receptors, are coded in a specific neuronal area. Let us consider the task
of associating a stimulus to a discrete choice, for example showing a picture to a subject
and asking him to categorize it as either the picture of a cat or a dog. Experiments have
shown that information collected from the stimulus is encoded in a neuronal layer.

Different models have been proposed to reproduce the decision-making process. They
all have in common the fact that they try to account for the three key features of decision-
making: accuracy, decision time, and confidence. During my PhD, I have studied a
dynamical model of decision-making that is thought to model cortical activity. The
manuscript is divided in three parts. In the first part I introduce a dynamical model of
decision-making. The model is used to explain different effects that I have observed in
a decision-making experiment I have performed during my PhD. The second part focus
on a learning problem: how can a network learn to decode the information that has been
encoded by the sensory receptors? Finally, the last part consists in my M2 project carried
out under supervision of Gianluigi Mongillo and completed during my PhD. I explain how
one can use statistical physics method to study neuronal networks.

• Chapter 2: I introduce the concept of decision-making and the neuronal underpinning.
I describe different models that have been used to study decision-making.

• Chapter 3: I present the model that I have used during my PhD. I show that it can
explain many effects that are observed in human decision-making.

• Chapter 4: I describe the experiment I have developped, in collaboration with Jean-
Rémy Martin and Jérôme Sackur; The experiment was designed to study confidence
in decision-making.

• Chapter 5: I show that an attractor neural network can be fitted to behavioral data,
and that it reproduces most of the behavioral results of humans in a decision-making
task.

• Chapter 6: I introduce the notion of categorical perception: which impact do cate-
gories have on decision-making?

• Chapter 7: I focus on the question of learning in a decision-making model. More
specifically, I study the effect of categorical perception on the learning process in
neuronal neworks.
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• Chapter 8: I study a specific type of neuronal networks for which classical analytical
methods, such as mean-field, cannot be used. I show that more advanced statistical
physics techniques, such as the cavity method, can be used in order to analyze the
network.

• Chapter 9: I conclude the manuscript with this chapter. I summarize everything
that I have presented and I give some perspectives on what the next step could be
for these different thematics.
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1
Résumé substantiel en français

1.1. Introduction
1.1.1 La prise de décision en sciences cognitives et neurosciences.

Le mécanisme d’intégration temporelle constitue une idée centrale dans l’étude de la prise
de décision. Cette idée d’accumulation temporelle d’évidence possède une longue histoire
en psychologie cognitive. Typiquement, lorsqu’il s’agit de prendre une décision plus difficile,
nous prenons plus de temps (Hick, 1952; Vickers, 1970). De plus, il y a un équilibre entre
vitesse et précision; les performances sont meilleures lorsque les temps de décision sont plus
longs (Wickelgren, 1977). Cependant, il n’est pas évident de déterminer l’échelle temporelle
à laquelle ce mécanisme d’accumulation d’évidence a lieu.

Une des tâches perceptuelles de prise de décision la plus étudiée consiste en la random
dot motion task (RDM). Les participants, le plus souvent des humains ou des singes,
regardent un écran sur lequel certains points se déplacent aléatoirement et d’autres de
manière cohérente dans une des deux directions possibles. Les participants doivent indiquer
la direction nette du mouvement des points en effectuant une saccade visuelle dans cette
direction. Lorsque la fraction de points se déplaçant de manière cohérente est réduite, la
décision devient plus difficile. La difficulté de cette tâche peut être décrite par une quantité
c appelée niveau de cohérence. Cette variable appartient à l’intervalle [0,1] et correspond
à une représentation à une dimension de la difficulté de la tâche. Par exemple, dans le
cas de la tâche RDM, le niveau de cohérence c correspond directement à la fraction des
points se déplaçant de manière cohérente. Dans cette tâche, lorsque la difficulté varie, les
temps de réactions peuvent aller de 300 ms jusqu’à la seconde (Britten et al., 1992, 1993;
Roitman and Shadlen, 2002). La tâche two-alternative-forced choices (2AFC) a également
été étudiée avec des rongeurs, dans le cas d’une discrimination olfactive (Lak et al., 2014).
Dans ces tâches, les rats doivent décider de la composante majoritaire dans un mélange
binaire d’odeurs. Ces décisions sont rapides, de l’ordre de 300 ms. Les performances varient
entre 50% et 100% de bonnes réponses suivant la difficulté de la tâche. Cependant, la
différence en temps de réaction entre les stimuli les plus simples et les plus difficiles est plus
faible pour les rats que pour les humains, de l’ordre de 35 ms pour Uchida and Mainen
(2003) et 80 ms pour Abraham et al. (2004). Ces différents résultats témoignent de la
diversité de l’intégration temporelle à travers les tâches et espèces.

Des études électrophysiologiques sur des singes ont eu lieu dans le but de comprendre
les mécanismes neuronaux sous-jacents à la prise de décision perceptuelle (Roitman and
Shadlen, 2002; Gold and Shadlen, 2007). Les recherches ont été concentrées sur les neurones
corticaux qui encodent les signaux sensoriels dans différentes tâches de prise de décision,
comme la tâche RDM ou des tâches sensorimotrices (Figure 1.1 ).

Les neurones sensoriels de l’aire visuelle MT encodent la direction du mouvement du
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Figure 1.1: Tâche RDM dans le cas où le singe choisit quand il répond. (A) Le
singe observe un ensemble de points qui se déplacent sur un écran et doit décider du
mouvement global des points. La décision est indiquée par un mouvement saccadique
visuel vers l’une des deux cibles périphériques. Le champ en bleu ciel correspond au champ
réceptif d’un des neurones LIP enregistrés. (B) Réponse moyenne des neurones du LIP
durant la décision. Les données viennent de Roitman and Shadlen (2002) et sont disponibles
publiquement. Le taux de décharge moyen des 57 neurones du LIP est représenté pour 6
difficultés de décisions. Les taux de décharge sont regroupés par difficulté du mouvement
des points et par direction du choix (les courbes en pointillés correspondent au choix de
la direction opposée au champ réceptif du neurone). Le panneau de gauche représente
l’activité moyenne durant la formation de la décision et le panneau de droite l’activité
centrée sur le mouvement visuel.

stimulus (Newsome et al., 1989; Britten et al., 1992, 1993), mais la prise de décision n’a
pas lieu dans cette aire neuronale. Shadlen and Newsome (1996) ont montré que l’activité
des neurones dans le cortex latéral intrapariétal (LIP) est corrélée au choix perceptuel
du singe. De plus, dans une version de la tâche où les temps de réactions sont contrôlés
par les singes, un bon nombre de résultats suggère que les neurones du LIP régulent les
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décisions entre saccades visuelles rivales (Roitman and Shadlen, 2002; Huk and Shadlen,
2005; Gold and Shadlen, 2007; Huk and Meister, 2012). L’activité moyenne des neurones
du LIP sélectifs pour la cible visuelle de la saccade augmente du début de la présentation
du stimulus jusqu’à la décision (Figure 1.1). Ce taux de croissance dépend de la qualité
de l’information sensorielle; les stimuli plus forts sont associés à des pentes plus élevées
d’intégration de l’information. Finalement, la décision est prise lorsque le taux d’activité
des neurones du LIP (correspondant à ce choix) atteint un seuil qui est indépendant de
la qualité du signal et du temps de réponse. De plus, les microstimulations des neurones
des zones MT et LIP ont un effet sur les performances et les temps de réaction. Ceci
concorde avec l’idée que les neurones du LIP intègrent l’information sensorielle (Ditterich
et al., 2003; Hanks et al., 2006). Ces différentes études appuient l’idée que les neurones du
LIP agissent comme des intégrateurs neuronaux. Malgré la variabilité stochastique de ces
neurones entre les essais, ces neurones montrent en moyenne une croissance de leur activité
durant la prise de décision.

Nouvelles approches pour l’étude de la prise de décision perceptuelle
Les études présentées montrent que le LIP et plus généralement le cortex préfrontal font
partie d’un circuit qui est impliqué dans l’élaboration de tâches simples de prise de décision.
Cependant, il y a toujours débat pour savoir où a lieu le processus d’accumulation. Les
neurones du LIP montrent différents motifs de réponse aux entrées sensorielles; ces motifs
peuvent être modulés par les variables sensorielles et motrices (Bennur and Gold, 2011; Park
et al., 2014). Il est donc possible que les réponses neuronales du LIP ne ressemblent à un
processus d’accumulation d’évidence que lorsqu’elles sont moyennées ensemble. Récemment,
Katz et al. (2016) ont montré que des inactivations pharmacologiques unilatérales du LIP
possèdent des effets négligeables sur le comportement. Cependant, l’inactivation de la
zone du LIP affecte fortement l’analyse sensorielle durant la prise de décision, plus que les
aspects moteurs (Zhou and Freedman, 2019).

Pour répondre à ces différentes questions, les chercheurs ont étudié la prise de décision
chez les rongeurs. En effet, les rongeurs exhibent différents éléments de la prise de décision
perceptuelle telle que l’accumulation d’évidence (Brunton et al., 2013). Il est possible
de considérer de nombreuses modalités sensorielles comme des stimuli visuels (Brunton
et al., 2013), tactiles (Guo et al., 2014), olfactifs (Uchida et al., 2006), en utilisant des
instruments à la pointe de la technologie (Guo et al., 2014; Znamenskiy and Zador, 2013).
Ces nouvelles méthodes ont permis l’étude de plusieurs aires neuronales en simultané lors
de la prise de décision et de caractériser de quelle manière les cellules réagissent aux entrées
sensorielles et les transforment en variable de décisions (Brody and Hanks, 2016). Les
expériences futures vont permettre de préciser de manière plus spécifique les interactions
entre les différentes régions du cerveau (Siegel et al., 2015).

1.1.2 Modèles de prise de décisions
De nombreux modèles ont été proposés pour expliquer la prise de décision chez les humains
et les animaux. Il y a deux catégories de modèles: les modèles dynamiques et les modèles
non-dynamiques. Je me concentre ici sur les modèles dynamiques car ils sont plus adéquats
pour modéliser la dynamique neuronale lors de la prise de décision. Les modèles non-
dynamiques seront abordés dans le chapitre 5.

Drift diffusion model
Des tests mathématiques abstraits ont été développés afin de choisir entre deux hypothèses
probabilistes, comme le test de probabilité séquentielle (Wald and Wolfowitz, 1948). Ce test
est optimal dans le sens où il permet d’obtenir un taux d’erreur voulu avec un temps moyen
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de décision minimal. Selon ce test, les décisions sont instanciées lorsque la cumulative d’une
variable aléatoire d’évidence atteint un seuil spécifique (Ratcliff, 1978; Bogacz et al., 2006;
Gold and Shadlen, 2007). Le modèle le plus utilisé parmi les modèles dits de course est le
drift-diffusion model (DDM). Ce modèle consiste en un intégrateur unique qui accumule la
différence entre les évidences pour les deux alternatives. Le choix est fait lorsque le niveau
d’activité de l’intégrateur dépasse un certain seuil, positif ou négatif suivant l’alternative
(Figure 1.2).

Figure 1.2: Drift diffusion model. Exemple de la dynamique du DDM. Les deux lignes
noires représentent le seuil z et −z correspondant aux deux alternatives. La course se
termine lorsque la dynamique atteint l’une des deux bornes. Dans cet exemple, la décision
prise correspond à un essai correct car le taux de dérive ν a été choisi positivement.

Le succès des DDMs réside dans le fait qu’ils permettent de décomposer un choix
observé en un processus cognitif. Comme il s’agit d’un modèle dynamique, il prend en
compte performance et temps de réponses et permet donc d’étudier le phénomène de
balance entre vitesse et précision. Les DDMs intègrent l’information durant un temps plus
court si l’évidence envers l’alternative gagnante est forte par rapport à celle de l’alternative
perdante. Respectivement, il faudra plus de temps pour prendre la décision si la différence
entre les évidences est faible. Le modèle est basé sur les paramètres suivants. Le point de
départ a de l’accumulation d’évidence représente un potentiel biais en faveur d’une des
deux alternatives. Cette accumulation est effectuée avec une certaine dérive ν et dépend de
la qualité de l’information présente dans le stimulus. Typiquement, dans l’expérience RDM,
ce paramètre va varier suivant l’intensité du mouvement des points. La frontière représente
le niveau de prudence : plus la frontière est haute moins le système est sensible au bruit
et moins le modèle effectuera le mauvais choix. Finalement, le temps de non-décision qui
représente un délai additif constitue le dernier paramètre, par exemple dû au système
moteur, chez les participants (Luce et al., 1986).

Les DDMs rendent compte des résultats comportementaux pour de nombreux paradigmes
de prise de décision (Ratcliff and Rouder, 2000; Ratcliff et al., 2003; Ratcliff and Smith,
2004). Il est important de noter que les DDMs ne reproduisent pas uniquement les taux
d’erreurs et temps de réponse (RT) mais également la forme de la distribution des temps
de réponse (Ratcliff, 1978). Cependant,il est nécessaire d’ajouter de la variabilité dans les
paramètres entre les différents essais afin de modéliser correctement la distribution des RTs
dans le cas des essais qui ont conduit à une erreur. Dans le cas contraire, la linéarité du



1.1 Introduction 13

modèle donne des distributions strictement identiques pour les essais corrects et incorrects;
ce qui ne correspond à ce qui est observé expérimentalement (Ratcliff and Tuerlinckx,
2002).

Réseau cortical récurrent
Deux critiques majeures peuvent être faites à propos des DDMs lorsque le but est de
modéliser l’activité neuronale durant la prise de décision. En premier lieu, l’activité
neuronale est non-linéaire mais le DDM est strictement linéaire. Deuxièment, les DDMs
n’ont pas de fondations biophysiques et ne permettent pas d’expliquer de quelle manière ce
mécanisme d’intégration est effectué dans le cerveau. Différents modèles ont été proposés
pour expliquer les processus corticaux lors de la prise de décision: Shadlen and Newsome
(2001); Usher and McClelland (2001); Wang (2002). J’exposerai plus particulièrement
l’approche de Wang (2002) car les deux autres sont plus proches d’une extension d’un
DDM.

Réseau attracteur
Les neurones dans le LIP et le cortex préfrontal exhibent une activité qui est spécifique
à l’orientation (Gnadt and Andersen, 1988; Funahashi et al., 1989). Ceci suggère qu’un
mécanisme commun pourrait relier mémoire de travail et prise de décision. Un mécanisme
qui génère une activité persistante similaire à celle de la mémoire de travail est celui d’une
excitation récurrente forte dans circuit cortical local. Ce mécanisme donne lieu à des
états attracteurs spécifiques du stimulus (Freeman, 1995; Goldman-Rakic, 1995; Brunel
and Wang, 2001). Wang (2002) a construit un modèle inspiré de la biophysique pour
étudier la tâche de discrimination RDM. Dans ce modèle, l’intégration est effectuée à
l’aide d’un mélange entre une excitation feedback (canaux N-methyl-D-aspartate (NDMA)
avec une constante de temps relativement longue) et un mécanisme d’inhibition. Ce
modèle a ensuite été réduit en une version à champ moyen qui est beaucoup plus rapide
à simuler numériquement (Wong and Wang, 2006). Le modèle est constitué de deux
populations neuronales dont une partie des neurones sont sélectifs pour un des deux
choix, C1 et C2 (Figure 1.3). Les deux populations neuronales sont en compétition par
l’intermédiaire d’interneurones inhibiteurs. Les deux populations sélectives reçoivent des
entrées sensorielles conflictuelles, avec l’intensité du mouvement caractérisée par le niveau
de cohérence c.

Figure 1.3 représente un exemple de la dynamique de ce modèle. Au démarrage du
stimulus, les taux de décharges des deux populations sont proches et croissent jusqu’à
ce qu’ils divergent l’un de l’autre. Cette divergence est due à une dynamique de type
winner-take-all qui a lieu dans ce réseau par l’intermédiaire de l’excitation récurrente et
l’inhibition. Le choix est basé sur la population qui gagne cette compétition. Dans la
version de la tâche avec les temps de réaction, ceci est indiqué par le fait qu’une des deux
populations dépasse un certain seuil (Figure 1.3.B).

Modélisation des données comportementales
Les réseaux attracteurs neuronaux reproduisent un bon nombre de résultats comporte-
mentaux. La figure 1.4 montre la variation de la performance et des temps de réponses
en fonction de l’intensité du mouvement. Plus le stimulus est fort, plus la décision est
rapide et correcte dans le modèle. Ceci est dû au fait qu’un stimulus fort va entraîner une
croissance plus rapide de l’activité. Comme mentionné précédemment, pour obtenir les
distributions des RTs pour les essais corrects et incorrects avec les DDMs, il faut introduire
une variabilité entre chaque essai. La différence des distributions entre les deux types
d’essais est un élément clef du réseau d’attracteurs car elle est naturellement présente dans
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C1 C2

Décision

Figure 1.3: Réseau neuronal attracteur de Wong and Wang (2006). (A) Version
schématique du circuit local de prise de décision. Deux populations neuronales (C1 et
C2) sont en compétition par l’intemédiaire d’une inhibition latérale et sont sujettes à une
excitation récurrente. Ce modèle correspond à une version champ moyen de Wang (2002).
(B) Dynamique du réseau durant le processus de prise de décision. Chaque population
neuronale montre une croissance de l’activité jusqu’à ce que l’une des deux atteigne le seuil.
Dans ce cas, la population gagnante est C2 et correspond au choix fait par le système.
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Figure 1.4: Performances comportementales du réseau attracteur neuronal. (A)
Temps de réaction du circuit suivant le niveau de cohérence. Le niveau de cohérence est
noté c et représente la différence de courant arrivant à chaque unité (Ii ∝ (1± c)). (B)
Performances du système selon le niveau de cohérence.

La figure 1.5 représente le processus de décision dans le plan de phase (activité synaptique
de la population 1 contre celle de la population 2). Lorsque la décision est en faveur de 1, le
bassin d’attraction correspondant à cet attracteur est plus grand (représenté par la variété
instable). Le système commence naturellement dans le bassin de 1 dans ce cas. Pour
prendre la mauvaise décision, il faudrait que la dynamique traverse la frontière entre les deux
bassins d’attraction. Traverser une frontière dans un système dynamique est un processus
lent; ceci explique la raison pour laquelle les temps de réactions sont plus longs dans le cas
des erreurs (Wong and Wang, 2006). Au contraire, une implémentation neuronale du DDM
entraînerait un effet opposé (Mazurek et al., 2003b). Une autre différence majeure entre le
DDM et le modèle à attracteur porte sur le comportement du système lorsque le stimulus
est présenté durant une longue durée. Kiani et al. (2008) ont effectué une tâche RDM avec
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des singes mais en faisant varier la durée des stimuli. Ils ont observé que les performances
atteignent un plateau lorsque la durée du stimulus augmente. Ce phénomène n’est pas
en accord avec les modèles de DDM, car dans ces modèles, les performances augmentent
indéfiniment avec la durée du stimulus. Au contraire, les performances sont bornées pour
les stimuli longs dans le modèle de réseau attracteur (Wang, 2002) car l’activité finit par
atteindre un état attracteur.

Figure 1.5: Analyse dans le plan de phase du réseau attracteur pour un niveau
de cohérence de 10% en faveur de la catégorie 1. Les axes représentent les activités
synaptiques dans le modèle. Les lignes verte et orange représentent les nullclines. Leur
intersection au milieu correspond au point fixe instable. Les lignes noires représentent les
variétés stables et instables. En bleu et rouge j’ai représenté les activités de deux essais
différents.

Succès des modèles de circuits corticaux
Un avantage à utiliser les modèles de réseaux attracteurs pour modéliser les prises de
décision est qu’il est possible d’étudier plus en détail les processus neuronaux de la prise
de décision. Premièrement, on peut observer une chute de l’activité des neurones du LIP
avant la croissance de l’activité. Le même comportement est observé dans les réseaux
attracteurs (Wong et al., 2007). Dans cette étude, les auteurs étudient l’influence d’un
afflux d’évidence sur le processus de décision. Ils ont montré que cette influence diminue
avec le temps. Il s’agit d’un effet qui a été observé dans des expériences avec des singes (Huk
and Shadlen, 2005; Wong et al., 2007).

Dans les modèles à attracteur, l’excitation récurrente doit être compensée par de
l’inhibition. Ceci est effectué par l’inhibition synaptique latérale entre les populations
neuronales. Hanks et al. (2006) ont effectué des microstimulations, chez les singes, des
neurones du LIP sélectifs aux directions. Ils ont observé que, non seulement la décision
vers la direction préférée des neurones était plus rapide mais la décision dans la direction
opposée est plus lente également. Cette observation est congruente avec un modèle de
réseau neuronal récurrent avec inhibition. Les modèles à attracteurs n’ont pas seulement
été développés pour la tâche RDM mais également pour des tâches de discrimination
somatosensorielle (Machens et al., 2005). De tels modèles peuvent reproduire l’activité
persistante observée dans les neurones préfrontaux (Romo et al., 2004). De plus, ce type
de circuit peut effectuer le calcul de discrimination, comme f1 > f2, pendant la période de
comparaison (Machens et al., 2005).

Une limite aux modèles de diffusion et au modèle attracteur que j’ai présentés relève de
la base biologique du seuil de la décision. Avant qu’une saccade visuelle ne soit effectuée
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(dans le cas d’une tâche oculomotrice), les neurones du champ visuel frontal (FEF) et
du superior colliculus (SC) émettent un burst de spikes (Hanes and Schall, 1996; Munoz
et al., 2002). Ces neurones sont sélectifs de l’amplitude et de la direction de la saccade. En
utilisant le cadre initial des attracteurs neuronaux, Lo and Wang (2006) ont étudié une
version étendue de ce circuit qui utilise un système cortico-basal ganglia pour terminer
le processus de décision. L’idée provient du fait que le passage du seuil par l’activité
neuronale peut être détecté par des neurones dans le centre moteur. Dans le cas des
mouvements saccadiques visuels, il s’agit principalement du superior colliculus et de la
basal ganglia (Munoz and Schall, 2003). Dans ce modèle, le mécanisme de seuil est obtenu
par l’intermédiaire d’une inhibition vers les aires corticales. Ce modèle suggère que la
régulation du mécanisme de seuil constitue un mécanisme computationnel spécifique qui
peut être obtenu dans un réseau qui connecte le cortex, la basal ganglia et le supérior
colliculus. De plus, ce seuil peut être modulé par de la plasticité synaptique cortico-striatal.
Ainsi, il peut être optimisé pour minimiser le temps de décision et le taux d’erreur.

1.2. Effets séquentiels et réseaux attracteurs
Les expériences typiques pour l’étude de la prise de décision consistent en une série d’essais
successifs qui sont séparés par un court intervalle de temps. De nombreuses études ont mis
en évidence la dépendance séquentielle dans les décisions perceptuelles. Dans cette section,
je m’intéresserai à ces différents effets en proposant une modélisation à l’aide d’attracteurs
neuronaux.

Dynamique de relaxation
Je considère un réseau neuronal récurrent qui simule un processus de décision grâce à de
l’excitation récurrente et de l’inhibition. Le modèle est constitué de deux populations
excitatrices qui sont sélectives pour une des deux catégories (correspondant au mouvement
des points du RDM). Les deux populations s’inhibent l’une l’autre et sont soumises à une
excitation récurrente. La dynamique consiste en une dynamique non-linéaire entre deux
attracteurs (Wong and Wang, 2006; Berlemont and Nadal, 2019). Lors des tâches de prise
de décision les neurones montrent une décroissance rapide de leur activité après que les
sujets aient répondu(Roitman and Shadlen, 2002; Ganguli et al., 2008). Pour obtenir ce
comportement dans le réseau à attracteur, il est nécessaire d’introduire une courte période
de relaxation entre chaque essai. Je propose de modéliser cette période à l’aide d’un bref
courant inhibiteur qui permet la décroissance de l’activité.

La figure 1.6 décrit le comportement du modèle attracteur lorsqu’il est soumis à un
courant inhibiteur. Dans le cas d’un courant constant dans le temps (Figure 1.6 A-B-C-D),
si le courant est trop faible, le système est inchangé. Si le courant est suffisamment fort,
une bifurcation a lieu et seul un point fixe existe à présent. Pour un tel courant inhibiteur,
le système est donc réinitialisé dans un état neutre en ayant perdu la mémoire de son
état précédent. Dans le cas d’un courant dépendant du temps (Figure 1.6 E-F-G-H), le
réseau voit sa dynamique de relaxation ralentie au cours du temps. La première partie
de relaxation, rapide, permet de quitter l’état attracteur puis la seconde partie permet de
garder une sorte de mémoire de l’état précédent.

Effets séquentiels
Avec cette relaxation, il est donc possible d’étudier les effets séquentiels observés lors de
la prise de décision reproduits par les réseaux attracteurs. J’ai commencé par l’analyse
des effets dits de biais séquentiels: les décisions sont biaisées vers la décision précédente
lorsque les choix sont effectués en séquence. Lors de l’analyse de ce type d’effets dans le
modèle, j’ai observé la présence de ces effets avec une variation selon le temps de relaxation
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Figure 1.6: Diagramme de bifurcation pour la prise de décision séquentielle
pour deux types de courant inhibiteur. (A) Scénario avec une valeur constante du
courant inhibiteur (panneaux B, C et D). (B) Représentation plan de phase pour des
faibles courants inhibiteurs. (C) Représentation plan de phase pour des forts courants
inhibiteurs. (D) Etats attracteurs (différence d’activités, RL−RR) en fonction du courant
inhibiteur. La ligne grise correspond à la ligne de bifurcation. (E) Scénario avec une valeur
décroissante exponentiellement avec le temps du courant inhibiteur (panneaux F, G et H).
(F) Représentation plan de phase pour des faibles courants inhibiteurs. (G) Représentation
plan de phase pour des forts courants inhibiteurs. (H) Etats attracteurs du système à la fin
de la relaxation. A gauche de la ligne grise, le système est bloqué dans sa décision initiale.
A droite, le système est capable d’effectuer les décisions les unes à la suite des autres.

entre chaque essai et l’intensité du courant inhibiteur lors de la relaxation. Ceci m’a amené
à étudier un autre type d’effet observé lors des expériences psychophysiques: les effets
après-erreur (Danielmeier et al., 2011).

Les effets après-erreurs sont nombreux et consistent en des différences entre les temps de
réponse et les performances des participants si leurs essais sont regroupés en deux groupes:
les essais qui suivent des erreurs et les essais qui suivent des décisions correctes. L’effet le
plus étudié expérimentalement consiste en le ralentissement après-erreur (PES). Les temps
de réponse après une erreur sont plus longs que les temps de réponse après une décision
correcte. De manière surprenante, cet effet est présent dans les tâches de décision où le
participant n’est pas informé de l’exactitude de sa réponse.

Le modèle de réseau attracteur reproduit les effets après-erreur (Figure 1.7). Il met
également en évidence une certaine région de paramètres où, au lieu d’un ralentissement
après-erreur, le réseau montre une accélération après erreur. Il est important de noter que
cet effet a également été observé chez les participants, qu’il s’agisse de singes ou d’humains.
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Figure 1.7: Ralentissement après-erreur dans le modèle pour un intervalle entre
stimuli de 500 ms. (A) Diagramme de phase de l’effet PES. La zone inférieure blanche
correspond aux paramètres pour lesquels la prise de décision en séquences n’est pas possible.
Les carrés rouges correspondent à l’effet PES et en bleus à l’effet opposé. Les zones noires
correspondent aux zones où les panneaux (B) et (C) zooment.

Jusqu’à présent il semblait contradictoire avec l’effet PES. Dans ce travail, j’ai montré que
bien que ces deux effets soient opposés, ils peuvent être obtenus par le même système de
prise de décision.

1.2.1 Dynamique non-linéaire
Pour reproduire les conditions expérimentales, le réseau neuronal ne reçoit aucune informa-
tion sur sa réponse. Ainsi, l’effet après-erreur observé ne peut pas provenir d’interférences
d’éléments externes. Il est surprenant qu’un tel système puisse exhiber, dans ces conditions,
tous ces différents effets après-erreur. Cependant, ceci peut s’expliquer par la dynamique
non-linéaire du modèle (Figure 1.8).

Si la décision est répétée (Figure 1.8.A et B), à la fin de la relaxation du système,
les deux dynamiques après-erreur et après-correct se situent à l’intérieur du bon bassin
d’attraction. Ainsi les taux d’erreurs de ces essais sont similaires. Cependant, les états
atteints à la fin de la relaxation sont différents. Comparé à l’essai après-erreur, l’essai
après-correct se situe plus proche de la frontière du nouvel attracteur associé à la décision
suivante; ainsi cette nouvelle décision sera plus rapide. Dans le cas d’une alternance de
réponse (Figure 1.8 C et D), les états atteints à la fin de la relaxation ne sont pas dans le
bon bassin d’attraction. Pour l’essai après-correct, la dynamique est assez directe pour
passer à travers la frontière; la décision est donc rapide. Pour le cas après-erreur, il s’agit du
comportement opposé. Ainsi, c’est bien la dynamique non-linéaire du modèle qui explique
les différents effets après-erreur qu’il reproduit.

Au-delà de reproduire les effets séquentiels lors de la prise de décision, le modèle effectue
également certaines prédictions sur leurs conditions d’apparence : quand observe-t-on le
ralentissement après-erreur ou bien l’accélération après-erreur ? Mais également certaines
prédictions du point de vue neuronal, comme la corrélation entre la différence d’activité
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Figure 1.8: Analyse des trajectoires après-erreur dans le cas PES. Trajectoire dans
le plan de phase des essais après-erreur (en rouge) et après-correct (en bleu).

entre les populations au moment de la décision et la force de l’effet observé lors de l’essai
suivant. Ces différents résultats pourraient être testés expérimentalement dans le but de
valider ou bien d’invalider le modèle.

1.3. Modélisation de la confiance
Dans une deuxième partie, je me suis intéressé à la notion de confiance des participants
ont lorsqu’ils effectuent des décisions. Pour cela, j’ai mis en place, en collaboration avec
Jean-Rémy Martin et Jérôme Sackur, une expérience psychophysique. Les participants
sont face à un écran sur lequel s’affiche un cercle strié de nuances de gris (Figure 1.9).
Les participants doivent décider si l’orientation des traits est dans le sens horaire ou
anti-horaire. Dans certains des essais, il leur est également demandé d’indiquer leur degré
de confiance en leur décision. La confiance reportée est corrélée avec les temps de réaction
et les performances. Les décisions au niveau de confiance élevé sont en moyenne plus
rapides.

Ces différents résultats ont été observés dans de nombreuses expériences de prise de
décision. Cependant, ils n’ont jamais été étudiés dans le contexte des réseaux attracteurs.
Dans ce travail, je propose une méthode pour calibrer les paramètres du modèle sur
certaines données comportementales des participants: les temps de réponse moyens et les
performances moyennes. Ceci permet, pour la première fois, de comparer quantitativement
les résultats d’une expérience de prise de décision avec des humains et un modèle de réseaux
attracteurs (Figure 1.10). La figure 1.10 montre que le modèle à attracteur reproduit
quantitativement les différents comportement des participants, que ce soient leurs temps
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Figure 1.9: Procédure de la tâche de catégorisation. (A) Structure d’un essai: Après
une période de fixation, le stimulus apparaît et les participants doivent effectuer une
décision. Dans les essais avec confiance, après un délai, les participants indiquent leur
confiance sur une échelle discrète à 10 niveaux. (B) Schéma temporel des blocs purs. (C)
Schéma temporel des blocs confiance. (D) Schéma temporel des blocs feedback.

de réponse ou bien leurs performances. De plus, bien qu’assez proche les uns des autres,
les paramètres du modèle pour chaque participant permettent de reproduire la diversité
des comportements.
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Figure 1.10: Temps de réponse moyen (A,C) et performances (B,D) selon
l’orientation absolue du stimulus, dans le bloc pure (A and B) er confiance (C and D)
blocks. Pour chaque participant, les données comportementales sont en rouge et le modèle
calibré en bleu.

Deux résultats principaux ressortent de cette analyse. Premièrement, la confiance peut
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être modélisée comme une fonction de la différence entre les activité neuronales. Je montre
ceci en utilisant une méthode de détermination implicite de la relation entre confiance et
activité neuronale, en me basant directement sur les données comportementales. Avec cette
modélisation, le modèle reproduit les variations des temps de réaction et des performances
selon le niveau de confiance des participants (Figure 1.11).
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Figure 1.11: Temps de réponse et performances en fonction de la confiance. (A)
Temps de réponses, (B) Performances. Chaque panneau représente un participant différent.
Les lignes représentent les simulations numériques du modèle.

Le deuxième résultat concerne les effets séquentiels. En effet, la confiance à l’essai n−1
impacte l’essai n. Si l’essai correspond à un essai à forte confiance, alors l’essai suivant sera
plus rapide (et vice-versa dans le cas d’un essai à faible confiance). De manière surprenante,
le modèle reproduit également ces effets, alors qu’il n’a pas été calibré sur les séquences
d’essais des participants mais sur les valeurs moyennes. Ceci met en évidence le fait que la
dynamique non-linéaire du système permet de modéliser non seulement la confiance des
participants mais également divers effets séquentiels.

1.4. Apprentissage d’un tâche de catégorisation et confiance
Dans les deux sections précédentes, j’ai présenté des résultats qui considéraient un mod-
èle à attracteurs qui recevait une entrée sensorielle déjà caractéristique de la catégorie
d’appartenance (de part le niveau de cohérence). La suite de mes travaux a consisté à
analyser un système où le codage de la catégorie est effectué par une couche de codage
neuronale (Figure 1.12). Dans un tel système, deux questions peuvent se poser. Quelles
doivent-être les caractéristiques de la couche de codage ? Comment le système peut-il
apprendre la tâche de décision ?

Pour la couche de codage, je me suis intéressé à deux distributions des neurones
différentes: une distribution uniforme ou bien une distribution optimisée dans le but
d’effectuer une tâche de catégorisation. Pour effectuer l’apprentissage, je considère un
apprentissage Hebbien modulé par la récompense. Cependant, ce type d’apprentissage ne
permet pas au système composé d’une couche de codage optimisé d’apprendre la tâche
correctement car il obtient des performances moins bonnes que dans le cas d’une couche
de codage uniforme. Je me suis donc intéressé à l’impact de la confiance sur le processus
d’apprentissage. Lorsque la confiance est utilisée comme modulation de l’apprentissage
Hebbien les performances du réseau sont grandement améliorées. La confiance module
l’apprentissage de la façon suivante: si la confiance à l’essai n est plus grande qu’une
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Neurones du codage

Neurones de la décision

C1 C2

Figure 1.12: Modèle du circuit neuronal. (A) Schéma du modèle. Le réseau est
composé de deux couches. Les neurones dans la couche de codage reçoivent directement
l’entrée sensorielle. La couche de décision reçoit l’activité des neurones de codage grâce
aux connections synaptiques. La catégorie de la décision est obtenue à l’aide d’une
dynamique d’attracteurs en compétition. Les connections synaptiques subissent une
plasticité synaptique Hebbienne modulée par un signal de récompense.

certaine valeur, alors le système n’effectue aucune mise à jour des poids synaptiques. Si
l’essai correspond à une décision à faible confiance, la mise à jour des poids synaptiques a
lieu.

Dans ces conditions, un réseau neuronal avec une couche de codage optimisée est plus
performant qu’un réseau avec une couche de codage uniforme. Ainsi, la modulation par la
confiance permet d’utiliser l’information qui a été optimisée lors du codage pour améliorer
les performances. Il est également important de noter que ce type d’apprentissage ne
nécessite pas de garder en mémoire les récompenses des essais précédents. En effet, la
confiance se construit au fur et à mesure et cette quantité locale tient le rôle d’arrêt de
l’apprentissage si les performances sont déjà maximales pour ce stimulus.

1.5. Méthode de la cavité pour les réseaux neuronaux
La dernière partie de mon manuscrit concerne un sujet différent de ce que j’ai présenté
jusqu’ici. Il s’agit de l’étude de réseaux neuronaux à l’équilibre dynamique et partiellement
connectés. Les réseaux neuronaux à l’équilibre dynamique ont fait l’objet de nombreuses
études. Cependant dans la plupart des travaux, les connexions entre neurones sont
aléatoires. Bien que ceci permette une simplification des calculs analytiques, ce n’est pas
ce qui est observé expérimentalement. J’ai utilisé une méthode inspirée de la physique
statistique, la méthode de la cavité, pour étudier de tels réseaux. Ceci m’a permis d’obtenir
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le comportement de ces réseaux suivant les différents paramètres utilisés. J’ai mis en
évidence deux zones du diagramme de bifurcation. Dans la première zone, il existe un point
fixe stable vers lequel converge le système. Dans la seconde zone, une rupture d’ergodicité
a lieu. Cette rupture existe à des niveaux de symétrie comparables avec ceux des régions
corticales. De plus, dans cette zone, le système exhibe une dynamique de type verre en
ayant, notamment, une très longue constante de temps d’oubli des conditions initiales.
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Part summary

At the beginning of the project, this part was only supposed to last for a few months. The
goal was to study how an attractor network could perform sequences of decisions. In the
end, this project lasted one year and half.

During a preliminary study of my PhD project I found some unexpected results. I
had planned to study, during a few months, the relaxation dynamics of attractor neural
networks in order to perform sequences of decisions. However, I found that attractor
neural networks reproduce many non-trivial sequential effects that other models do not
successfully account for. This led me to investigate these unexpected effects in more details.

During the first six months, I have studied the dynamical properties of an attractor
network when it was subject to a relaxation between two decision trials. When humans
perform decisions in sequences, many effects are observed, such as the fact that participants
are slower after they have made an error. I have shown that an attractor neural network
reproduces most of the observed sequential effects. In particular, for the first time, a model
makes testable prediction on the different observation conditions of different post-error
effects.

The next step of this work was to developp a decision-making paradigm in order to
study confidence in decision-making. For the first time, I have shown that it is possible to
fit an attractor neural network on human behavioral data in order to make quantitative
comparisons. Attractor networks reproduce the behavioral measures of the participants:
accuracies, response times and confidence. Moreover, I show that it explains the sequential
effects due to confidence too: participants have a tendency to be faster after high-confidence
trials.

The different results that I present in this part are published in:
• (Chapter 2) Berlemont, K., & Nadal, J. P. (2019). Perceptual decision-making:

Biases in post-error reaction times explained by attractor network dynamics. Journal
of Neuroscience, 39(5), 833-853.

• (Chapter 3 and 4) Kevin, B., Jean-Rémy, M., Jérôme, S., & Jean-Pierre, N. (2020).
Nonlinear neural network dynamics accounts for human confidence in a sequence of
perceptual decisions. Scientific Reports (Nature Publisher Group), 10(1).



2
Introduction to decision-making

2.1. Decision-making in cognitive science and neuroscience
A central idea to decision-making is time integration. The idea of temporal accumulation
of evidence has a long history in cognitive psychology. Decision-makers typically take
longer time to perform more difficult decisions (Hick, 1952; Vickers, 1970), and there is
a tradeoff between speed and accuracy, i.e performances improve with slower response
times (Wickelgren, 1977). However, it is not obvious to determine the timescale on which
this accumulation of evidence occurs (Uchida et al., 2006).

One of the most-studied perceptual decision task is the random dot motion task (RDM).
Participants (humans or monkeys) look at a screen where some dots are moving randomly
and the others coherently into one of the two possible directions. The participants must
report the net direction of motion by making a saccade in this direction. When the fraction
of dots moving coherently is reduced, the decision becomes more difficult. The difficulty
level of these tasks can be characterized by the coherence level c. This variable lies between
0 and 1 and corresponds to a 1D mapping of the task difficulty. For example, in the case
of the RDM task, the coherence level would correspond directly to the fraction of dots
moving coherently. In this task, when the difficulty is varied, reaction times can go from
300 ms to the order of the second (Britten et al., 1992, 1993; Roitman and Shadlen, 2002).
The two-alternative-forced-choice (2AFC) task has been studied in rodents too, in the
case of an olfactory discrimination (Lak et al., 2014). In such tasks, the rats needed to
respond to the dominant component in binary odour mixtures. The first observation is
that these decisions are fast, around 300 ms. The performances varied from chance level
to almost 100% correct with the stimulus difficulty. However, the difference in reaction
times between the easiest and the hardest stimuli is smaller for rats than for humans and
monkeys, around 35 ms in Uchida and Mainen (2003) and 80 ms in Abraham et al. (2004).
These different results highlight the diversity of time integration across tasks and species.

Electrophysiological studies in behaving monkeys have been performed in order to
understand the neural mechanisms underlying perceptual decision-making (Roitman and
Shadlen, 2002; Gold and Shadlen, 2007). Research has focused on cortical neurons that
encode task-relevant sensory signals in different perceptual decision-making tasks, such as
the random dot motion task or sensorimotor tasks (Figure 2.1.A and Figure 2.2.A).

Sensory neurons in the visual area MT encode the motion direction of the stimulus (New-
some et al., 1989; Britten et al., 1992, 1993), but the decision process does not occur in
this area. Shadlen and Newsome (1996) found that the activity of neurons in the lateral
intraparietal cortex (LIP) was correlated with the monkey’s perceptual choice. Moreover,
in reaction time version of the task (when response times are controlled by the monkeys),
a number of findings suggest that LIP neurons mediate decisions between rival saccadic
decisions (Roitman and Shadlen, 2002; Huk and Shadlen, 2005; Gold and Shadlen, 2007;
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Figure 2.1: Reaction time version of the random dot motion discrimination task.
(A) The monkey views a set of dots moving across the screen and decides the net direction
of movement. The decision is indicated by a saccadic eye movement to one of the two
peripheral target. The light blue field corresponds to the receptive field of one of the
recorded LIP neurons. (B) Average response of LIP neurons during decision. The data
are from Roitman and Shadlen (2002) and are publicly available. The average firing rate
of 54 LIP neurons is shown for 6 degrees of difficulty. The firing rates are grouped by
motion difficulty and direction of choice (the dashed lines corresponding to the choices
out of the receptive field of the neuron). The left panel represents the average firing rate
during decision formation starting from motion onset. The right panel shows the average
firing rate centered at the time of the eye movement.

Huk and Meister, 2012). The average activity of the LIP neurons selective for the saccadic
target increased from the stimulus onset until the saccadic eye movement (Figure 2.1.B).
This buildup rate depends on the quality of the sensory information, with stronger evidence
associated to steeper slopes of information integration. Finally, the decision choice is
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made when the firing rate of the LIP neurons (corresponding to this choice) reaches a
threshold that is independent of the signal quality and of the response time. In addition,
microstimulations on MT and LIP neurons have an effect on accuracies and reaction times
which is consistent with the idea that LIP neurons integrate sensory information (Ditterich
et al., 2003; Hanks et al., 2006). These different studies support the notion that LIP
neurons act as a neuronal integrator. Despite the stochastic variability of LIP neurons
between trials, in average it displays a ramping of activity during decision-making.

Visual perception is not the only type of sensory modality that has been studied in
decision-making tasks. Another task consists in a vibrotactile frequency (VTF) discrim-
ination task (Hernández et al., 2002; Romo et al., 2004). In this task (Figure 2.2.A),
the monkeys need to report a decision based on two different vibrations f1 and f2. The
vibrations are received sequentially and the monkeys must indicate whether the frequency
f1 was greater than f2 or not. In order to correctly perform such a task, the monkeys are
required to hold in working memory the frequency of the first stimulus during the delay
period. In these studies the researchears found that prefrontal cortex neurons showed per-
sistent activity during the delay. A plus cell will have its firing rate monotically increasing
with stimulus frequency during delay, and a minus cell will show a decrease in activity
(Figure 2.2.B). This behavior changes during the decision as the neural activity becomes
binary: some neurons will show high firing rates if f1 > f2 and low firing rates otherwise,
and some neurons will show the opposite trend. It highlights the fact that the same circuit
is involved in both working memory and decision-making (Lemus et al., 2007).

New approaches to study perceptual decision-making
The presented studies show that LIP, and more generaly prefrontal cortex form part of a
circuit that is involved in implementating simple decision-making tasks. However there is
still debate about where this accumulation process takes place. LIP neurons exhibit various
response motives to sensory inputs, patterns that can be modulated by sensory and motor-
related variables (Bennur and Gold, 2011; Park et al., 2014). It is thus possible that LIP
neural responses only ressemble an evidence accumulation process when averaged together.
Recently, Katz et al. (2016) have shown that unilateral pharmacological inactivation of
the LIP has negligible effect on behavior. However, inactivation of the LIP area strongly
impacted sensory processing during decision-making, more than motor aspects (Zhou and
Freedman, 2019).

To adress these different questions, researchers have started to study perceptual decision-
making in rodents. Indeed, rodents exhibit various elements of perceptual decision-making
such as evidence accumulation (Brunton et al., 2013). It is possible to consider many differ-
ent sensory modalities such as visual stimuli, auditory (Brunton et al., 2013), tactile (Guo
et al., 2014) and olfactory (Uchida et al., 2006) using state of the art technologies (Guo et al.,
2014; Znamenskiy and Zador, 2013). These new methods have allowed to study multi-area
during decision-making and to characterize how single-cells react to sensory inputs and
transform them in decision variables (Brody and Hanks, 2016). Future experiments will
allow to characterize more specifically the interactions between multiple brain regions
during decision-making (Siegel et al., 2015).

2.2. Models of decision-making
Many models have been proposed to explain decision-making in humans and animals.
There are two categories of models: dynamical models and non-dynamical models. Here, I
will focus on dynamical models as they are more adequate to model the neuronal dynamics
during decision-making. Non-dynamical models will be discussed in Chapter 5.
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Figure 2.2: Vibrotactile discrimination task. (A) Schematic diagram of the task. Two
vibrations with frequencies f1 and f2 are presented one after the other with a delay between
them. The monkeys have to decide which one is faster than the other. (B) Simulated
activity of a plus neuron (model from (Machens et al., 2005)). Red trials correspond
to trials where the network decided f1 < f2, and blue trials to the opposite. Each color
of firing rates corresponds to a different value of f1. The model reproduces the result
from Romo et al. (2004) (see Figure 1 of Machens et al. (2005)).

2.2.1 Drift-diffusion model

Abstract mathematical tests have been developped to decide between two probabilistic
hypotheses, such as the sequential probability test (Wald and Wolfowitz, 1948). This
test is optimal in the sense that it achieves a desired error rate with the minimum mean
decision time. According to this test, decisions are initiated when cumulative estimates of
noisy evidence variables reach a specific threshold (Ratcliff, 1978; Bogacz et al., 2006; Gold
and Shadlen, 2007). The most-used model within the race framework is the drift-diffusion
model (DDM). It consists in an unique integrator that accumulates the difference between
the evidences for the two alternatives. The choice is made when the level of activity of the
integrator exceeds a specific threshold, positive or negative depending on the alternative
(Figure 2.3).

The success of the DDM framework is that it can decompose observed choice behaviors
into a cognitive process. As a dynamical model, it takes into account decision accuracies
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Figure 2.3: Drift diffusion model. Example of the dynamics of the DDM. The two
black lines denote the threshold z and −z corresponding to the two alternatives. The race
is ended when it reaches one of the two boundaries. In this example, the decision made
corresponds to a correct trials as the drift rate ν was chosen positive.

and response times and can address the speed-accuracy tradeoff. DDM will integrate for a
shorter time if the evidence for the winning alternative is strong with respect to the losing
alternatives. Respectively, it will take longer time to reach a decision if the difference of
evidence is small. The model is based on the following parameters. The starting point
a of the evidence accumulation represents a possible bias for one of the two alternative.
This accumulation is performed at a certain drift rate ν and is related to the quality of
information present within the stimulus. Typically, in the RDM experiment, this parameter
would differ depending on the strength of the dots motion. The boundary represents the
level of caution, the more this parameter is high, the less the model is sensitive to noise
and the less the model makes the wrong choice. Finally, the last parameter consists in the
non-decision times that are an additive lag representing the motor lag of the participants
for example (Luce et al., 1986).

DDMs have been succesfully used to account for behavioral data in a wide-range of
decision-making paradigms (Ratcliff and Rouder, 2000; Ratcliff et al., 2003, 2004). One
should note that DDM does not only reproduce the error rates and response times, but
the shape of the response times (RTs) too (Ratcliff, 1978). However, it is necessary to add
across-trial variability for the different parameters in order to correctly model the RTs
distributions of correct and error trials. Otherwise, due to the linearity of the model, the
shapes of these distributions are strictly identical which is not what experimental studies
have found (Ratcliff and Tuerlinckx, 2002).

2.2.2 Recurrent cortical circuit
There are two major criticisms that can be made about the DDM framework, when the
goal is to model neural activity during decision-making. First, neural activity is non-
linear (Figure 2.1.B) but the DDM is strictly linear. Secondly, DDMs have no biophysical
foundations and do not explain how this integration mechanism is implemented in the
brain. Different models have been proposed to account for the cortical processes of decision-
making: Shadlen and Newsome (2001); Usher and McClelland (2001); Wang (2002). I
will focus on the approach of Wang (2002), as the two other models consist more in an
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extension of the DDM framework.

Attractor network
Neurons in LIP and prefrontal cortex have shown to display directionally tuned activ-
ity (Gnadt and Andersen, 1988; Funahashi et al., 1989). This suggests that a common
mechanism could underlie working memory and decision-making. One mechanism to gener-
ate persistent activity similar to working memory is the one of strong recurrent excitation
that will give rise to stimulus-selective attractor states in a local cortical circuit (Freeman,
1995; Goldman-Rakic, 1995; Brunel and Wang, 2001). Wang (2002) applied a biophysically
based model to simulate the random dot motion discrimination task. In this model, the
integration is achieved through a mix between feedback excitation (N-methyl-D-aspartate
(NMDA) channels with relatively long time constants) and inhibitory mechanism. Each
neuron consists in a leaky integrate-and-fire neuron. There are three neural populations:
two excitatory ones and one inhibitory. In the two excitatory populations, some of the
neurons are selective to one direction of the random dot motion. The competition between
the populations is achieved through the synaptic connections with the inhibitory population.
This architecture leads to a mechanism of information integration during the stimulus
presentation. The working memory effect is achieved by having the network activity
trapped into an attractor state when the stimulus is removed.

Later, this model has been reduced to a mean-field version that is much faster to
simulate (Wong and Wang, 2006). The model consists of two neuronal pools with subpopu-
lations of spiking neurons selective for the two choices, denoted by C1 and C2 (Figure 2.4.A).
The two neural populations compete with each other through feedback inhibition from
interneurons. Both selective neural populations receive conflicting sensory inputs, with the
motion strength characterized by the quantity c (called coherence level).

C1 C2

Decision

Figure 2.4: Attractor neural network of Wong and Wang (2006). (A) Schematic
version of the local circuit of decision-making. Two neural pools (C1 and C2) compete
with each other through lateral inhbition and are subject to recurrent excitation. This
model corresponds to the mean-field version of Wang (2002). (B) Dynamics of the network
during decision-making process. Each neural population shows a ramping up of activity
until one of the two wins the competition and reaches a decision threshold. In this case,
the winnning population is C2 and corresponds to the choice made by the network.

Figure 2.4.B represents an example of the dynamics of this model. At the stimulus
onset, the firing rates of the two populations lie together and ramp up until they diverge
from each other. The divergence is due to the winner-take-all dynamics that occurs in this
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network through recurrent excitation and feedback inhibition. The choice is based on which
population wins the competition. In the reaction time version of the task, this is indicated
by the fact that one of the two populations crosses a fixed threshold (Figure 2.4.B).

Modelling behavioral data
Attractor neural networks have been shown to account for many of the behavioral results.
Figure 2.5 shows the variation of accuracies and reaction times with respect to motion
strength. As expected, the stronger is the stimulus, the faster is the decision time of the
model. This is due to the fact that stronger stimuli lead to a stronger ramp up of activity.
As mentionned previously, to obtain the different shapes of RT distributions for correct
and error trials within the DDM framework, one needs to implement a variability of the
parameters across trials. One key feature of attractor network is that this difference in
distribution is naturally present.
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Figure 2.5: Behavioral performances of the attractor neural network. (A) Reaction
times of the circuit with respect to coherence levels. The coherence level is the variable c
and represents the difference in motion strength that arrives at both units (Ii ∝ (1± c)).
(B) Performance of the model with respect to the coherence level.

Figure 2.6 represents the decision process in the phase-plane space (firing rates of
population 1 against population 2). When the decision is in favor of 1, the basin of
attraction corresponding to this attractor is larger, denoted by the unstable manifold.
The system starts naturally in the basin of attraction of 1. To make the wrong decision,
it would need to cross the boundary between the basins. Crossing a boundary between
basins of attraction is a slow process, and that explains why the reaction times are slower
in error trials compared to correct trials (Wong and Wang, 2006). In contrast, a neural
implementation of the diffusion model would yield the opposite effect (Mazurek et al.,
2003b). Another major difference between diffusion model and attractor neural network
consists in the behavior at long duration of stimulus. Kiani et al. (2008) performed a motion
discrimination task in monkeys but with variable stimulus duration. They found that
performances reach a plateau when the duration of stimulus increase. This phenomenon
is not consistent with the DDM framework as performance can improve indefinitely with
stimulus time. In contrast, performances are bounded for long stimulus durations in the
attractor neural network (Wang, 2002) as the ramping activity finally reaches an attractor
state.

Successes of cortical circuits models
One advantage of using attractor neural network to model decision-making is that it can be
used to look more closely at the neuronal process of decision-making. First, in Figure 2.1.B
one can observe a drop in the firing rate of the LIP neurons before the ramping up of
activity. The same behavior can be observed in attractor networks (Wong et al., 2007). In
this study, the authors studied the influence of new arriving evidence during a decision
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Figure 2.6: Phase-plane analysis of the attractor network for a coherence level
of 10% in favor of category 1. The axes represent the synaptic activities in the model.
The green and orange line are the nullclines. Their intersection at the middle corresponds
to the unstable fixed point. The black lines show the stable and the unstable manifolds. In
blue and red I have plotted the activities for two different trials.

process. They found that the influence diminishes over time, an effect that has been
observed in monkey experiments too (Huk and Shadlen, 2005; Wong et al., 2007). This
time-shift invariance can not be accounted for by diffusion models, as such models predict
in fact the opposite effect (Wong et al., 2007).

In the attractor neural network, recurrent excitation must be balanced by feedback
inhibition. This is mediated by lateral synaptic inhibition between the neural pools. In
a monkey experiment, Hanks et al. (2006) performed microstimulation of LIP neurons
selective to direction. They found that not only the decision towards the preferred direction
was faster, but it slowed down the decision in the opposite direction too. This observation
is consistent with a recurrent neural network with feedback inhibition. Attractor neural
networks have not just been developped for the random dot motion discrimination task
but for the somatosensory discrimination too (Machens et al., 2005). It has been shown
that reciprocal inhibition between two neural pools could exhibit persistent activity as
observed in prefrontal neurons (Romo et al., 2004). Moreover, this circuit can perform the
discrimination computation, e.g f1 > f2, during the comparison period (Machens et al.,
2005) (Figure.2.2.B).

One limit to both diffusion models and the attractor neural network I presented is
the biological substrate of decision threshold. Before a saccade is made (in the case of an
occolumotor task), neurons in the frontal eye field (FEF) and superior colliculus (SC) fire
a burst of spikes (Hanes and Schall, 1996; Munoz et al., 2002). These neurons are selective
of saccade amplitude and direction. Using the initial framework of the attractor neural
network, Lo and Wang (2006) have studied an extended version of this circuit that involves
the termination of the decision process through a cortico-basal ganglia system (Figure 2.7).
The idea is that threshold crossing of ramping activity may be detected by neurons in a
downstream motor command center, which is presumably the superior colliculus and the
basal ganglia in the case of saccadic eye movements (Munoz and Schall, 2003). In this
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Figure 2.7: Model architecture of Lo and Wang (2006). Neural pools in variation of
blue represent excitatory pools and in variation of red they represent inhibitory populations.
Neural pools in the cortical area receive a sensory input and compete through lateral
inhibition due to interneurons. They project to caudate nucleus (CD) in the basal ganglia
and superior colliculus (SC). The saccade and termination of the decision-making is
performed by the superior colliculus that projects back to cortical networks through
inhibitory connections.

model, a threshold mechanism is achieved through an inhibitory feedback on the cortical
areas. This model suggests that the regulation of a decision threshold constitutes in a
specific computational mechanism that can be achieved in a network of interconnected
cortex, basal ganglia and superior colliculus. Moreover, this threshold can be modulated
by cortico-striatal synaptic plasticity. Therefore it can be tuned in order to minimize the
decision time and the error rate.

In this first part, I address different aspects of decision-making using an attractor neural
network. Many studies have argued that attractor networks were equivalent to diffusion
models, see e.g. Bogacz (2007). However, this result is based on a assumption that is often
forgotten: the system needs to lie at the bifurcation. Hence, it would result in a very fine
tuning of the different parameters. I address key differences between attractor networks
and diffusion models by studying principaly sequential effects (effects that are observed
during decisions that are made in sequences). More specifically, I focus on the effect of
post-error slowing (Danielmeier and Ullsperger, 2011) and confidence.





3
Sequential effects and attractor neural networks

Typical experiments on perceptual decision-making consist of series of successive trials
separated by a short time interval, in which performance in identification and reaction times
are measured. Several studies have demonstrated strong serial dependence in perceptual
decisions between temporally close stimuli. This chapter is composed of two parts. In
the first part, I adress the sequential effects that are called choice history biases. After
a brief introduction of the different experimental observations, I show that an attractor
network can perform decision-making in sequence through a relaxation dynamics and that
it can explain these sequential effects. The second part consists in the study of effects
called post-error effects. I would like to mention that the results in this part have been
very surprising. When I studied the sequential effects within the attractor network I did
not expect to observe post-error effects. What started as an initial step in the project in
order to verify that attractor neural networks could perform sequences of decisions - turned
out to last one year in order to fully understand the non-linear dynamics of the system.
The more surprising result was that, without any additional or tuning of parameters, the
model reproduces post-error effects with the correct order of magnitude.

3.1. Repetition biases
3.1.1 Cognitive aspect

The most studied protocol is the one of reaction time version of the two-alternative forced-
choice (2AFC) task (Ratcliff, 1978; Laming, 1979; Shadlen and Newsome, 1996; Ratcliff
and Smith, 2004). When subjects are instructed that the stimuli sequences are random,
their reaction times (RTs) and error rates (ERs) still depend on the previous trials in a
systematic way (Laming, 1968). The trials are influenced by whether or not previous choices
led to positive outcomes (Rabbitt and Rodgers, 1977; Dutilh et al., 2012), the confidence
in them (Desender et al., 2018a), as well as the stimulus category that was previously
selected (Fründ et al., 2014; Urai et al., 2019). The influence of the previous category is
called choice history biases. Choice history biases during perceptual decision-making are
found in humans (Urai et al., 2019), monkeys (Gold et al., 2008) and rodents (Odoemene
et al., 2018).

These effects can be categorized in two categories: first-order if it is caused by the
previous trial, higher-order if it is due to trials earlier in the sequence. These sequential
effects vary systematically with the response-stimulus interval (RSI) (Kirby, 1972; Soetens
et al., 1985). For example, for shorts RSIs, repetitions of choices are faster than alternations
(Figure 3.1.A). As RSI increases, this effect diminishes (Figure 3.1.B) and can sometimes
leads to the opposite effect: first-order alternations become faster (Laming, 1968; Kirby,
1976).

This transition between faster repetitions and faster alternations has been observed in
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Figure 3.1: Sequential effects in 2AFC tasks. (A) Data from Berlemont et al. (2020).
The x-axis denotes the number of previous trials where the choice have been repeated.
The y-axis represents the mean reaction times of the participants after n repetitions. (B)
Data from Bonaiuto et al. (2016). This panel compares the mean reaction times between
alternated trials (the subject makes the opposite choice to the previous trial) and all the
trials for two different inter-trial intervals. As expected, the sequential effect decreases
when the time between two trials increases.

many experiments (Soetens et al., 1985; Cho et al., 2002; Jentzsch and Sommer, 2002).
However, the critical response-to-stimulus interval at which it occurs is not well defined.
Some studies reported an RSI around 1 second, and other shorter RSIs. Yet, for such
long RSIs, higher order are more complicated. For example, after a sequence of choice
A-B-A-B-A, the response of the participants is faster to B and slower to A (Bertelson, 1961;
Cho et al., 2002). It seems that reaction times become faster if the presented stimulus
confirms the subjects expectancy. Therefore, the difference between short RSIs and long
RSIs could be due to a difference in how the task is analyzed by the subject.

3.1.2 Neural correlates of sequential effects
3.1.3 Models of sequential effects

The sequential effects have been mostly studied within the framework of statistical models
of accumulation of evidence (Farrell and Ludwig, 2008; Goldfarb et al., 2012; Dutilh et al.,
2012; Urai et al., 2019). However, such models do not work sequentially as the network
is reset between each trials. In order to analyze the sequential effects, a drift-diffusion
model is fitted independtly of the different conditions (for example between repetitions
and alternations). Behavioral data can be fitted by different choices of starting points,
and possibly of different thresholds (Goldfarb et al., 2012). This does not explain how the
different modifications of parameters between the models could be implemented within the
brain. In this section, I will present a modification of the attractor neural network that
allows the model to perform sequences of decisions. I will analyze the sequential effects
that are observed in the model.

A reduced recurrent network model for decision-making.
I consider a decision-making recurrent network of spiking neurons governed by local
excitation and feedback inhibition (Figure 2.4), as introduced and studied in Compte
et al. (2000) and Wang (2002). Since mathematical analysis is harder to perform for such
complex networks, without a high level of abstraction (Miller and Katz, 2013), one must
rely on simulations which, themselves, can be computationally heavy. For the analysis, I
will make use of the reduced firing-rate model of Wong and Wang (2006) obtained by a
systematic reduction of the detailed biophysical attractor network model. The reduction
aimed at faithfully reproducing not only the behavioral behavior of the full model, but
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also neural firing rate dynamics and the output synaptic gating variables. This is done
within a mean-field approach, with calibrated simplified F-I curves for the neural units,
and in the limit of slow NMDA gating variables motivated by neurophysiological data.

Since this model has been built to reproduce as faithfully as possible the neural activity
of the full spiking neural network, it can be used as a proxy for simulating the full spiking
network (Engel and Wang, 2011; Deco et al., 2013; Engel et al., 2015). Here, I mainly make
use of this model to gain better insights into the understanding of the model behavior. In
particular, one can conveniently represent the network dynamics in a 2-d phase plane and
rigorously analyze the network dynamics (Wong and Wang, 2006).

The model consists of two competing units, each one representing an excitatory neuronal
pool, selective to one of the two categories, L or R, corresponding to the dots of the RDM
task going coherently leftward or rightward. The two units inhibit one another, while they
are subject to self-excitation. The dynamics is described by a set of coupled equations for
the synaptic activities SL and SR of the two units L and R:

i ∈ {L,R}, dSi
dt =−Si

τS
+ (1−Si)γf (Ii,tot) (3.1)

The synaptic drive Si for pool i ∈ {L,R} corresponds to the fraction of activated NMDA
conductance, and Ii,tot is the total synaptic input current to unit i. The function f is the
effective single-cell input-output relation (Abbott and Chance, 2005), giving the firing rate
as a function of the input current:

f (Ii,tot) = aIi,tot− b
1− exp[−d(aIi,tot− b)]

(3.2)

where a,b,d are parameters whose values are obtained through numerical fit.
The total synaptic input currents, taking into account the inhibition between popula-

tions, the self-excitation, the background current and the stimulus-selective current can be
written as:

IL,tot = JL,LSL−JL,RSR+ Istim,L+ Inoise,L (3.3)
IR,tot = JR,RSR−JR,LSL+ Istim,R+ Inoise,R (3.4)

with Ji,j the synaptic couplings (i and j being L or R). The minus signs in the equations
make explicit the fact that the inter-units connections are inhibitory (the synaptic param-
eters Ji,j being thus positive or null). The term Istim,i is the stimulus-selective external
input. If µ0 denotes the strength of the signal, the form of this stimulus-selective current
is:

Istim,L = JA,extµ0 (1± c)
Istim,R = JA,extµ0 (1∓ c) (3.5)

The sign, ±, is positive when the stimulus favors population L, negative in the other case.
The quantity c, between 0 and 1, gives the strength of the signal bias. It quantifies the
coherence level of the stimulus. For example, in the random dot motion framework, it
corresponds to the fraction of dots contributing to the coherent motion. This coherence
level will be given in percent. Following Wang (2002), this input forms the pooling of the
activities of middle temporal neurons firing according to their preferred directions. This
input current is only present during the presentation of the stimulus and is shut down once
the decision is made. In the present model, in line with a large literature modeling decision
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making, the input, Equation (3.5), is thus reduced to a signal parametrized by a scalar
quantifying the coherence or degree of ambiguity of the stimulus.

In addition to the stimulus-selective part, each unit receives individually an extra noisy
input, fluctuating around the mean effective external input I0:

τnoise
dInoise,i

dt =−(Inoise,i(t)− I0) +ηi(t)
√
τnoiseσnoise (3.6)

with τnoise a synaptic time constant which filters the (uncorrelated) white-noises, ηi(t), i=
L,R. For the simulations, unless otherwise stated parameters values will be those of
Table 3.1.

Parameter Value Parameter Value
a 270 Hz/nA σnoise 0.02 nA
b 108 Hz τnoise 2 mS
d 0.154 s I0 0.3255 nA
γ 0.641 µ0 30 Hz
τS 100 ms JA,ext 5.2×10−4 nA/Hz
JN,LL = JN,RR 0.2609 nA JN,LR = JN,RL 0.0497 nA
z 20 Hz
ICD,max 0.035 nA τCD 200 ms

Table 3.1: Numerical values of the model parameters: above the dashed line, as taken
from Wong and Wang (2006); The last line corresponds to values of the additional
parameters specific to the present model (see text).

The system has made a decision when the firing rate of one of the two units crosses a
threshold z for the first time, fixed here at 20 Hz.

Corollary discharge
Studies (Roitman and Shadlen, 2002; Ganguli et al., 2008) show that, during decision tasks,
neurons activity experiences a rapid decay following the responses - see e.g. Figures 7 and
9 in Roitman and Shadlen (2002). Simulations of the above model show that even when
the stimulus is withdrawn at the time of decision, the decrease in activity is not sufficiently
strong to account for these empirical findings. Decreasing the recurrent excitatory weights
does allow for a stronger decrease in activity, as shown by Bonaiuto et al. (2016). However,
both the increase and the decay of activities are too slow, and the network cannot perform
sequential decisions with RSIs below 1sec. Hence the decrease in activity requires an
inhibitory input at the time of the decision.

Such inhibitory mechanism has been proposed to originate from the superior colliculus
(SC), controlling saccadic eye movements, and the basal ganglia-thalamic circuit (BG),
which plays a fundamental role in many cognitive functions including perceptual decision-
making. Indeed, the burst neurons of the SC receive inputs from the parietal cortex and
project to midbrain neurons responsible for the generation of saccadic eye movements (Hall
and Moschovakis, 2004; Scudder et al., 2002). Thus the threshold crossing of the cortical
neural activity is believed to be detected by the SC (Saito and Isa, 2003). In turn, the
SC projects feedback connections on cortical neurons (Crapse and Sommer, 2009). At the
time of a saccade, SC neurons emit a corollary discharge (CD) through these feedback
connections (Sommer and Wurtz, 2008). The impact of this CD as an inhibition has been
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discussed in various contexts (Crapse and Sommer, 2008; Sommer and Wurtz, 2008; Yang
et al., 2008). The generation of a corollary discharge resulting in an inhibitory input has
been proposed and discussed in several modelling works, in the case of the modulation
of the decision threshold in reaction time tasks (Lo and Wang, 2006), in the context of
learning (Engel et al., 2015), and in a ring model of visual working memory (Bliss et al.,
2017). In order to analyze these effects with the reduced attractor network model, after
crossing the threshold, the network receives an inhibitory current, mimicking the joint
effect of basal-ganglia and superior colliculus on the two neural populations (Figure 3.2.A).

L R Decision

Corallary Discharge
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Figure 3.2: Extended version of the reduced model with the corollary discharge.
(A) The extension consists in adding the corollary discharge originating from the basal
ganglia, an inhibitory input onto both units occurring just after a decision is made. (B)
Relaxation time constant of the system during the RSI (that is the relaxation dynamics
towards the neutral attractor), with respect to the corollary discharge amplitude. The
values are obtained by computing the largest eigenvalue λ of the fixed point of the dynamical
system, Equation (7.2–3.6), when presenting a constant corollary discharge. The time
constant is given by the inverse of the eigenvalue, τ = −1/λ. (C) The time-sketch of
the simulations can be decomposed into a succession of identical blocks. Each block,
corresponding to one trial, consists of: the presentation of a stimulus with a randomly
chosen coherence (gray box), a decision immediately followed by the removal of the stimulus,
a waiting time of constant duration corresponding to the response-stimulus interval (RSI).

In the case of Engel et al. (2015), the function of the corollary discharge is to reset
the neural activity in order to allow the network to learn during the next trial. For this,
the form of the CD input is chosen as a constant inhibitory current for a duration of
300ms. However, such strong input leads to an abrupt reset to the neural state with no
memory of the previous trial. I thus rather consider here a smooth version of this discharge,
considering that the resulting inhibitory input has a standard exponential form (Finkel
and Redman, 1983). The inhibitory input, ICD(t), is then given by:

ICD(t) =
{

0 during stimulus presentation
− ICD,max exp(−(t− tD)/τCD) after the decision time, tD

(3.7)

The relaxation time constant τCD is chosen in the biological range of synaptic relaxation
times and in accordance with the relaxation-times range of the network dynamics, τCD =
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Figure 3.3: Time course of activities during two consecutive trials. Left panel, A:
Without corollary discharge. A, Top (green plot): Time course of the stimulations. The
first stimulus belongs to category L, the second to category R. A, Middle: firing rates of
the L (blue) and R (red) neural pools. A, Bottom: corresponding synaptic activities. The
neural activity becomes stuck in the attractor corresponding to the first decision. Right
panel, B: With corollary discharge, with ICD,max = 0.035 nA. B, Top: Time course of
the stimulations (green plot, same protocol as for (A)), and time course of the inhibitory
current (black curve, represented inverted for clarity of the presentation). B, Middle and
Bottom: neural and synaptic activities, respectively (L pool: Blue, R pool: Red). In that
case, one observes the decay of activity after a decision has been made, and the winning
population is different for the two trials.

200 ms (see Figure 3.2.B).
Therefore the input currents are modified as follows:

IL,tot(t) = JLLSL(t)−JL,RSR(t) + Istim,L(t) + Inoise,L(t) + ICD(t) (3.8)
IR,tot(t) = JRRSR(t)−JR,LSL(t) + Istim,R(t) + Inoise,R(t) + ICD(t). (3.9)

With this framework it is now possible to study the dynamics of this system in a
sequence of decision trials (protocol illustrated in Figure 3.2.C). I will address two issues:
first, is there a parameter regime for which the network can engage in a series of trials -
that is, for which the state of the dynamical system, at the end of the relaxation period
(end of the RSI), is close to the neutral state (instead of being trapped in the attractor
reached at the first trial) ? Second, is there a domain within this parameter regime for
which one expects to see sequential effects (instead of a complete loss of the memory of the
previous decision state)?

Figure 3.3 illustrates the network dynamics between two consecutive stimuli during a
sequence of trials, comparing the cases with and without the corollary discharge. In the
absence of the CD input, the network is not able to make a new decision different from
the previous one (Figure 3.3.A). Even when the opposite stimulus is presented, the system
cannot leave the attractor previously reached, unless in the presence of an unrealistic strong
input bias. If however the strength ICD,max is strong enough, the corollary discharge makes
the system escape from the previous attractor and relax towards near the neutral resting
state with low firing rates. If too strong or in case of a too long RSI, at the onset of the
next stimulus the neutral state has been reached and memory of past trials is lost. For
an intermediate range of parameters, at the onset of the next stimulus the system has
escaped from the attractor but is still on a trajectory dependent on the previous trial
(Figure 3.3.B).
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I have computed the time constant τ of the network during relaxation (during the
RSI), with respect to the CD amplitude, ICD,max, see Figure 3.2.B. This computation
is done for a corollary discharge with a constant amplitude, ICD(t) = ICD,max. One sees
that, for ICD,max of order 0.03∼ 0.04nA, the network time constant τ is four to five times
smaller than the duration of the RSI. I choose the relaxation constant τCD of the corollary
discharge of the same order of magnitude (as in the above simulation where τCD = 200ms).
With such value, at the onset of the next stimulus, the network state will still be far enough
from the symmetric attractor, so that one can expect to observe sequential effects.

With the inhibitory corollary discharge, after the threshold is crossed by one of the two
neural populations, there is a big drop in the neuronal activity (Figure 3.3.B), corresponding
to the exit from the previous attractor state. This type of time-course is in agreement
with the experimental findings of Roitman and Shadlen (2002); Ganguli et al. (2008), who
measured the activity of LIP neurons during a decision task. They showed that neurons that
accumulate evidence during decision tasks experience rapid decay, or inhibitory suppression,
of activity following responses, similar to Figure 3.3.B (but see Lo and Wang (2006) for a
related modeling study with spiking neurons, or Gao et al. (2009) for rapid decay of neural
activity with an other type of attractor network).

Now, I derive the conditions on ICD under which the network is able to make a sequence
of trials. To this end, I analyze the dynamics after a decision has been made, during
the RSI (hence during the period with no external excitatory inputs). The results are
illustrated in Figure 3.4 on which I represent a sketch of the phase plane dynamics and a
bifurcation diagram.

Consider first what would happen under a scenario of a constant, time independent,
inhibitory input during all the RSI (Figure 3.4.A-B-C-D) (formally, this corresponds to
setting τCD = +∞ in Equation 3.7). At small values of the inhibitory current, the attractor
landscape is qualitatively the same as in the absence of inhibitory current: in the absence
of noise there are three fixed points, one associated with each one of both categories and
the neutral one (Figure 3.3.B). At some critical value, of about 0.0215 nA, there is a
bifurcation (Figure 3.4.D): for larger values of the inhibitory current, only one fixed point
remains, the neutral one (Figure 3.4.D). As a result, applying a constant CD would either
have no effect on the attractor landscape - current amplitude below the critical value - so
that the dynamics remains within the basin of attraction of the attractor reached at the
previous trial; or it would reset the activity at the neutral state (current amplitude above
the critical value), loosing all memory of the previous decision.

Now in the case of a CD with a value decreasing with time (Figure 3.4.E-F-G-H, scenario
of an exponential decay), the network behavior will depend on where the dynamics lies at
the time of the onset of the next stimulus. The dynamics, starting from a decision state
(e.g. near the blue attractor in Figure 3.4.F-G), is more easily understood by considering
the limit of slow relaxation (large time constant τCD). Between times t and t+∆t, with
∆t small compared to τ , the dynamics is similar to what it would be with a constant CD
with amplitude ICD(t). Hence if ICD(t) is larger than the critical value discussed above,
the dynamics ’sees’ a unique attractor, the neutral state, and is driven towards it. When
ICD(t) becomes smaller than the critical value, the system ’sees’ again three attractors,
and finds itself within the basin of attraction of either the initial fixed point (corresponding
to the previous decision, Figure 3.4.F), or of the neutral fixed point (Figure 3.4.G). In the
latter case, the network is able to engage in a new decision task.

In order to have the network performing sequential decision tasks, one needs ICD,max
to be larger than the critical value (about ICD = 0.0215 nA, Figure 3.4.H), and, for a given
value of ICD,max, to have a time constant τCD large enough compared to the RSI for the
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Figure 3.4: Bifurcation diagram of sequential decision making, for two scenario
of ICD. (A) Scenario with a constant value of the inhibitory current for the left part of
the figure, panels B, C and D. (B) Phase plane representation of the attractors at low ICD
(below the critical value). (C) Phase plane representation of the attractor landscape at high
ICD (above the critical value). Only the neutral attractor exists, corresponding to the right
side of panel D. (D) Attractors state (as the difference in firing rates, RL−RR) with respect
to ICD. The gray line, at ICD = 0.0215 nA, represents the bifurcation point. On the left
side three attractors exist, on the right side only the neutral one exists. The case without
inhibitory current corresponds to ICD = 0 nA. (E) Scenario with an inhibitory current
decreasing exponentially with time, for the right part of the figure, panels F, G and H. The
dashed line corresponds to ICD = 0.0215 nA, value at which the bifurcation at constant ICD
occurs (see panel D). The time at which the current amplitude crosses this value is denoted
by the gray star in panels E and F. (F) Schematic phase-plan dynamics corresponding to
the left side of (H). The blue attractor corresponds to the starting point and the black
arrow represents the dynamics. At the time ICD becomes lower than 0.0215 nA (gray star),
the system is still within the basin of attraction of the initial attractor. Hence, it goes back
to the initial attractor. (G) Schematic phase-plan dynamics corresponding to the right
side of panel H. At the time ICD becomes lower than 0.0215 nA, the system lies within the
basin of attraction of the neutral attractor. Hence, the dynamics continues towards the
neutral attractor. Those conditions are the ones needed for sequential decision-making.
(H) Attractors that can be reached when starting from a decision state, for the relaxation
dynamics under the scenario represented on panel E. On the left side of the dashed gray
line, the value of ICD,max is too weak and the network remains locked to the attractor
corresponding to the previous decision state. On the right side the network dynamics lies
within the basin of attraction of the neutral attractor, allowing the network to engage in a
new decision task.
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system to relax close enough to the neutral attractor at the onset of the next stimulus.
However, sequential effects may exist only if the current decreases sufficiently rapidly, so
that the trajectory is still significantly dependent on the state at the previous decision.
This justifies the choice of exponential decrease of the inhibitory current, Equation 3.7,
and the numerical value of τCD = 200ms. Moreover, recording from relay neurons, Sommer
and Wurtz (2002) show that the signal corresponding to the corollary discharge lasts
several hundred of milliseconds. This time scale falls precisely in the range of values of the
relaxation time constant of the model (see Figure 3.2.B), and corresponds to values for
which the model shows sequential effects.

Sequential effects
The dynamical properties described above give that, for the appropriate parameter regime,
the RSI relaxation leads to a state which is between the previous decision state and the
neutral attractor. If it is still within the basin of attraction of the previous decision state
at the onset of the next stimulus, one expects sequential biases. This mechanism is similar
to the one discussed by Bonaiuto et al. (2016). However, the relaxation mechanisms are
different. This results in different quantitative properties, notably and quite importantly
in the time scale of the relaxation, which is here more in agreement with experimental
findings (Cho et al., 2002). After running simulations of the network dynamics with the
protocol of Figure 3.2.C, I analyze the effects of response repetition by separating the
trials into two groups, the Repeated and Alternated cases. The repeated (respectively
alternated) trials are those for which the decision is identical to (resp. different from)
the decision at the previous trial. I do not consider whether the stimulus category is
repeated or alternated: the analysis is based on whether the decision is identical or different
between two consecutive trials (Fleming et al., 2010; Padoa-Schioppa, 2013). Such analysis
is appropriate, since the effects under consideration depend on the levels of activity specific
to the previous decision. I run a simulation of 1000 consecutive trials, each of them with a
coherence value randomly chosen between 20 values in the range [−0.512,0.512]. I do so for
two values of the corollary discharge amplitude, ICD,max = 0.035 nA and ICD,max = 0.08 nA,
with a RSI of 1 s, the other parameters being given on Table 3.1.

The distributions of coherence values are identical for the two groups, for both values of
ICD,max (Anderson-Darling test, p= 0.75 and p= 0.84 respectively). I study the reaction
times separately for the two groups, and present the results in Figure 3.5. Figure 3.5.C
represents the so called energy distance (Székely and Rizzo, 2013; Rizzo and Székely,
2016) between the repeated and alternated reaction times distribution. As one can
observe, the distance decreases, hence the sequential effect diminishes, as the corollary
discharge amplitude ICD,max increases. For the specific case of Figures 3.5.A and B, the
corresponding E-statistic for testing equal distributions leads to the conclusion that in the
case ICD,max = 0.035 nA, the two reaction-time distributions are different (p = 0.0019).
This implies that the behavior of the network is influenced by the previous trial. There is a
faster mean reaction time (around 55 ms) when the choice is repeated (Figure 3.5A), with
identical shape of the reaction times distributions. The difference in means is of the same
order as found by Cho et al. (2002) in experiments on 2AFC tasks. On the contrary, for
ICD,max = 0.08 nA (Figure 3.5.B), the two histograms cannot be distinguished (E-statistic
test, p= 0.25).

I have checked that increasing the RSI has a similar effect to increasing the corollary
discharge amplitude. Sequential effects can be observed for RSI values in the range 0.5
to 5 seconds, in accordance with two-choices decision-making experiments, where such
effects are observed for RSI less than 5 seconds (Rabbitt and Rodgers, 1977; Laming, 1979;
Soetens et al., 1985).
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0.035 nA, and (B): ICD,max = 0.08 nA, with a RSI of 1 second. The green histogram
corresponds to the Alternated case, that is when the decisions made at the nth and nth +1
trials are different. The orange histogram corresponds to the Repeated case, that is when
the decisions made at the nth and nth +1 trials are identical. (C): Energy distance between
the repeated and alternated histograms. The x-axis represents the strength of the corollary
discharge, and the color codes the duration of the RSI in seconds.

Neural correlates: Dynamics analysis
With the relaxation of the activities induced by the corollary discharge, the state of the
network at the onset of the next stimulus lies in-between the attractor state corresponding
to the previous decision, and the neutral attractor state. When averaging separately over
repeated and alternated trials, I find that this relaxation dynamics has different behaviors
depending on whether the next decision is identical or different from the previous one.
This is a statistical effect which can only be seen by averaging over a very large number of
trials.

In Figure 3.6, I compare two examples of network activity, one with an alternated
choice, and one with a repeated choice, by plotting the dynamics during two consecutive
trials. Figure 3.6.A represents the alternated case, and shows that, previous to the onset of
the second stimulus (light blue rectangle), the activities of the two populations are at very
similar levels. In contrast, for the case of a repeated choice, Figure 3.6.C, the activities are
well separated, with higher firing rates.

Figure 3.6.B shows a classical phase-plane representation of the network dynamics
during two consecutive trials, with the axes as the synaptic activities of the wining versus
loosing neuronal populations in the first trial. One sees a trajectory starting from the
neutral state, going to the vicinity of the attractor corresponding to the first decision, and
then relaxing to the vicinity of the neutral state (as illustrated in Figure 3.4.G). Then the
trajectory goes towards the attractor corresponding to the next decision, different from the
first one. This aspect of the dynamics is similar to what is obtained in Gao et al. (2009)
with another type of attractor network. In Figure 3.6.D, I show the phase-plane dynamics
in the case of a repeated choice (trajectory in blue). On this same panel, for comparison I
reproduce in light red the dynamics, shown in Figure 3.6.B, during the first trial in the
alternated case. As can be seen in Figure 3.6.D, the network states at the time of decision
are different depending on whether the network makes a decision identical to or different
from the one made at the previous trial.

In order to check the statistical significance of these observations, I represent in Figure 3.7
the mean activities during the RSI, obtained by averaging the dynamics over all trials,
separately for the alternated and repeated groups. As expected, for small values of ICD,max
(0.035 nA), the two dynamics are clearly different. This difference diminishes during
relaxation. However at the onset of the next stimulus one can still observe some residues,
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Figure 3.6: Network activity during two consecutive trials. Panels (A) and (B)
represent the alternated case where the decision made is R then L, and panels (C) and
(D) represent the case where decision L is made and repeated. Panels (A) and (C) plot
the time course activities of the network. The light blue zone is zoomed in order to better
see the dynamics just before the onset of the second stimulus. The red and blue curves
correspond to the activities of, respectively, the R and L network units. Panels (B) and
(D) represent, respectively, the (A) and (C) dynamics in the phase-plane coordinates. On
panel (B) the dynamics evolves from dark red (first trial) to light blue (2nd trial), and on
panel (D) from dark blue (first trial) toward light blue (2nd trial). The gray – respectively
black – circles identify the same specific point during the dynamics in panels (A) and
(B) – resp. (C) and (D). The circles are not at the exact same value because the decision
threshold is on the firing rates and not for the synaptic activities. In order to compare
the alternated and repeated cases, (A,B) and (C, D), the dark red curve of panel (B), is
reproduced on panel (D) as light orange curve.



50 Chapter 3. Sequential effects and attractor neural networks

0.06 0.09 0.12 0.15 0.18

0.1

0.2

0.3

0.4

Alternated

Repeated

Alternated

Repeated

0.06 0.09 0.12 0.15 0.18

0.1

0.2

0.3

0.4

Figure 3.7: Phase plane dynamics. Dynamics of the decaying activity between
two successive trials, (A) for ICD,max = 0.035 nA, and (B) for ICD,max = 0.08 nA. The
synaptic activity is averaged over all trials separately for each one of the two groups:
alternated (green) and repeated (orange). The axes are Swinning and Slosing (not SR and
SL) corresponding to the mean synaptic activity of, respectively, the winning and the
losing populations for this trial. Note the difference in scale of the two axes. The time
evolution along each curve follows the black arrow. The dashed black line denotes the
symmetric states (SL = SR) of the network, and the gray circle the neutral attractor. The
shadow areas represent the basins of attraction (at low coherence levels) for the repeated
and alternated trials, respectively pink and green.

statistically significant according to an Anderson-Darling test done on the 500 ms prior
to the next stimulus (between winning population, p= 0.0034, between losing population
p= 3.2×10−8).

Looking at Figure 3.7.A, one can note that the ending points of the alternated and
repeated relaxations are biased with respect to the symmetric state. At the beginning of
the next stimulus the network is already in the basin of attraction of the repeated case.
Hence, it will be harder to reach the alternated attractor stated (in the green region).
When increasing ICD,max (Figure 3.7.B), the ending state of the relaxation lies closer to the
attractor state. Hence, the biases in sequential effects disappear because at the beginning of
the next stimuli the network starts from the symmetric (neutral) state. The same analysis
holds for longer RSI, the dynamics are almost identical (Anderson-Darling test: between
winning population, p= 0.25, between losing population p= 0.4), and both relaxations end
near the neutral attractor state. The bias depending on the next stimulus is not observed
anymore, and the sequential effect on reaction time hence disappears.

I would like to precise that the sequential effects only depend on whether or not the
states at the end of the relaxation lie on the basin boundary. However, the effects can also
be observed at the level of the relaxation dynamics, since the trajectories for alternated and
repeated cases are identical when there is no effect, and different in the case of sequential
effects.

The analysis of the dynamics also leads to expectations for what concerns the bias in
accuracy towards the previous decision. Indeed, this can be deduced from Figure 3.7. If
the choice at the previous trial was R (respectively L), then, at the end of the relaxation,
the network lies closer to the basin of attraction of attractor R (respectively L). Thus
when presenting the next stimulus, the decision will be biased towards the previous state,
so that the probability of making the same choice will be greater than the one of making
the opposite choice. Otherwise stated, given the stimulus presented at the current trial,
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the probability to make the choice R will be greater when the previous choice was also
R, than when the previous choice was L. Numerical simulations confirm this analysis,
as illustrated in Figure 3.8. The RSI dependency is statistically significant (Generalized
Linear Model: r=−3.9, p < 0.0001). For small RSI (500 ms), the decision is biased towards
the previous one, and for RSI of several seconds this effect disappears. These results are
in agreement with experimental findings of Bonaiuto et al. (2016). The authors studied
response repetition biases in humans with RSIs of at least 1.5 seconds. In these experiments,
they measured the Left-Right indecision point, that is the level of coherence resulting in
chance selection. Compared to the repeated case, they found out that the indecision point
for the alternated case is at a higher coherence level, and this shift decreases as the RSI
increases.
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Figure 3.8: Repetition biases for several RSI values. Upper panel: percentage of
Right choices, with respect to coherence level, depending on the previous choice (Left or
Right). The blue points represent the mean accuracy (on 24 simulations) and the confidence
interval at 95% (bootstrap method). The blue lines denote the fit (of all simulations) by a
logistic regression of all (plain: previous choice was Right, dashed: previous choice was
Left). Bottom panel: histogram of the Left-Right indecision point (on 24 simulations to
stay in the experimental range). It characterizes the fact that the positive shift in the
indecision point is increased for small RSI. The mean of the indecision point shift decreases
with longer response-stimulus intervals.

To conclude this section, at the time of decision, the winning population has a firing
rate higher than the losing population. After relaxation, at the onset of the next stimulus,
the two neural pools have more similar activities, but are still sufficiently different, that is
the dynamics is still significantly away from the neutral attractor. At the onset of the next
stimulus, the systems finds itself in the basin of attraction of the attractor associated to the
same decision as the previous one. This results in a dynamical bias in favor of the previous
decision. The probability to make the same choice as the previous one is then larger than
the one of the other choice, and the reaction time, for making the same choice (repeated
case), is shorter than for making the opposite choice (alternated case). In accordance with
these results, studies on the LIP, superior colliculus and basal ganglia have found that the
baseline activities before the onset of the stimuli can reflect the probabilities of making the
saccade, under specific conditions (Lauwereyns et al., 2002; Ding and Hikosaka, 2006; Rao
et al., 2012). The model shows that these modulations of the baseline activities can be
understood as resulting from the across-trial dynamics of the decision process.
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3.2. Post-error effects
3.2.1 Experimental evidences

During sequential decision-making people show post-error adaptations. Different types of
behavioral post-error adjustments have been observed such as post-error slowing (PES) and
post-error improvement in accuracy (PIA). The most studied effect consists in PES (Laming,
1979), and see Danielmeier and Ullsperger (2011) for a review. It consists of prolonged
reaction times in trials following an error, compared to reaction times following a correct
trial. This effect has been observed in a variety of tasks: categorization (Jentzsch and
Dudschig, 2009), flanker (Debener et al., 2005), Stroop (Gehring and Fencsik, 2001) tasks.
Jentzsch and Dudschig (2009) and Danielmeier and Ullsperger (2011) found that the PES
effect depends on the response-stimulus interval. The amplitude of this effect, defined as the
difference between the mean reaction times of post-error and post-correct trials, decreases
as one increases the RSI, with values going from several dozens of milliseconds to zero.
For RSI longer than 750−1500 ms, PES is not observed anymore. Moreover, this effect
is automatic and involuntary (Rabbitt and Rodgers, 1977), and is independent of error
detection and correction process which involve other cortical areas (Rodriguez-Fornells
et al., 2002). This suggests a rather low level processing origin in line with the present
model.

Figure 3.9 presents different behavioral results from Danielmeier and Ullsperger (2011)
in a 2AFC task. One can see that different participants show different behaviors of post-
error adjustments. Some of them show PIA and PES, PIA and post-error quickening (PEQ)
or just PIA. Moreover, the PES effect is strongly impacted by the RSI as when the interval
between two trials is of the order of the second, there is no effect anymore (Figure 3.9.B).

Figure 3.9: Post-error adjustments (adapted from Danielmeier and Ullsperger
(2011)). The results are from the experiment of Danielmeier et al. (2011). (A) The
participants showed PES and PIA, or PIA without PES. Some participants showed the
opposite effect of PES, post-error quickening (faster answers after an error). (B) Mean
post-error slowing with respect to the RSI in the experiment of Danielmeier et al. (2009).
When RSI increases, post-error slowing becomes smaller. For more details about the results,
see Danielmeier and Ullsperger (2011).

Remarkably, the PES effect is reported in cases where the subject does not receive
information on the correctness of the decision (Jentzsch and Dudschig, 2009; Danielmeier
et al., 2011; Danielmeier and Ullsperger, 2011). The classical framework used to analyze the
post-error effects is the one of DDMs (Dutilh et al., 2012). These studies have shown that
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Figure 3.10: Post-error slowing in the simulated network at a RSI of 500 ms.
(A) Phase diagram of the PES effect at RSI of 500 ms. The bottom white zone corresponds
to parameters where sequential decision-making is impossible as the network is unable to
leave the attractor state during the RSI. The red square corresponds to regions where PES
is observed, and the blue ones where PEQ is observed (the darker the color, the stronger the
effect). The black dashed squares correspond to specific regions where Panels B and C zoom.
(B) PES effect (ms) with respect to the coherence level at ICD,max = 0.047 nA. The light
blue zone corresponds to the bootstrapped (Efron and Tibshirani, 1994) confidence interval
at 95%. (C) PES effect (ms) with respect to the coherence level at ICD,max = 0.035 nA.
The light blue zone corresponds to the bootstrapped confidence interval at 95%.

post-error and post-correct trials can be fitted by DDMs with different set of parameters
values for post-error and post-correct trials. Dutilh et al. (2012) argue that the modification
of the decision threshold within the DDM framework would correspond to the hypothesis
of increased response caution, the decision becoming more cautious after an error. Yet,
the neural correlates, which would determine the threshold or the starting point, remain
obscure, especially in the absence of feedback on the correctness of the trial.

3.2.2 Post-error adjustments in attractor neural networks
I will present an analysis of the post-error adjustments in the attractor neural network
that has been modified to perform sequences of decisions. In this framework, the network
does not receive any feedback about the correctness of its decision. Therefore it is well
suited to study post-error adjustments in the case where no feedback to the participants is
given (Dutilh et al., 2012).

Post-error slowing
I studied the occurrence of the PES effect in the model with respect to the coherence
level and ICD,max, at an intermediate RSI value of 500 ms, leading to the phase diagram
in Figure 3.10.A. I find that a large domain in parameter space shows PES effect (in
red in the figure). Figure 3.10.B zooms on a value of ICD,max for which PES occurs
(ICD,max = 0.035 nA). The magnitude of the PES effect goes from zero to ten milliseconds
at c= 10%, hence remaining within the range of behavioral data (Jentzsch and Dudschig,
2009; Danielmeier and Ullsperger, 2011) (10−15 ms for a RSI of 0.5−1 second). In these
experiments (a flanker task with stimuli belonging to one of two opposite categories, Left
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or Right directions), the ambiguity level is not quantified. However, the observed error
rates are found around 10% which, within our model, corresponds to a coherence level of
about c= 10%. On the phase diagram, one can observe the variation of the PES effect
with respect to the coherence level. In the region where I observe a PES effect, I find
that it is enhanced under conditions when errors are infrequent. However, for large values
of the coherence level, this effect cannot be observed anymore due to the absence of any
error in the successive trials (almost 100% of correct trials). This occurrence of PES,
principally at low error rates, has been found in experiments of Notebaert et al. (2009);
núňez Castellar et al. (2010), for which the authors observe PES when errors are infrequent,
but not when errors are frequent. These experiments are with 4-AFC tasks, but the same
type of properties is expected for 2AFC tasks – and the model could easily be adapted to
such cases with a neural pool specific to each one of the four categories.

The phase diagram, Figure 3.10.A, also shows parameter values with no effect at all (in
gray), and a domain with the opposite effect, that is with reaction times faster after an
error than after a correct trial (in blue). I propose to call this effect post-error quickening
(PEQ), as opposed to post-error slowing. As shown in Figure 3.10.C, for a given value of
ICD,max, one can have PES at low coherence level, and PEQ at high coherence level.

This PEQ effect, although much less studied, has been observed in various AFC
experiments, either without feedback (Rabbitt and Rodgers, 1977; Notebaert et al., 2009;
King et al., 2010) or with feedback (Purcell and Kiani, 2016), notably for fast-response
regimes (Notebaert et al., 2009; King et al., 2010). The conditions for observing PEQ
remain however not well established, with some contradictory results. With Go/no-go
protocols (which are similar to AFC protocols in many respects), Hester et al. (2005)
reported post-error decrease in reaction times for aware errors, but not for unaware errors,
whereas Cohen et al. (2009) on the contrary reported no PEQ effect, but a larger PES effect
for aware errors than for unaware errors. The fact that the model predicts PEQ in TAFC
tasks at high coherence levels is more in line with the results of the fMRI experiments of
Hester et al. (2005). Indeed, at high coherence levels, responses are fast and most often
correct. In the rare case of an error, the subject is likely to become aware that an error has
been made (Yeung and Summerfield, 2012). This thus may lead to a correlation (without
causal links) between aware errors and PEQ.

I also studied the RSI dependency of the PES effects by plotting the phase diagram at
ICD,max = 0.045 nA with respect to the RSI (Figure 3.11). In behavioral experiments the
PES effect depends strongly on the RSI. For RSI longer than 1000−1500 ms the observation
or not of PES depends specifically on the decision task (Jentzsch and Dudschig, 2009; King
et al., 2010). However, a common observation is that, whenever PES is observed, if one keeps
increasing the RSI, the PES effect eventually disappears. In Figure 3.11, for parameters
where PES is observed at a RSI of 500 ms, increasing the RSI leads to the weakening of
the post-error slowing effect until its disappearance. At a RSI of 1000−1500 ms this effect
is not present anymore, in agreement with experimental results (Jentzsch and Dudschig,
2009).

The variation of PEQ with respect to RSI has not been experimentally studied, as
this effect is more controversial. However, the model shows that the dependence on RSI is
similar to the one of PES, and predicts that, when both effects exist at a same RSI value
(for different coherence levels), increasing the RSI leads to the disappearance of both of
them.

The set of phase diagrams that I present in this work on the various effects for post-error
trials, Figures 3.10 to 3.13, provides testable behavioral predictions. As just discussed in
the particular case of PES and PEQ , they predict how the effects on reaction times are or
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Figure 3.11: Post-error slowing depending on RSI. Phase diagram of the PES effect
at ICD,max = 0.045 nA. The red squares correspond to regions where PES is observed, and
the blue ones where PEQ is observed (the darker the color, the stronger the effect). I
used a bootstrapped confidence interval in order to decide whether or not PES/PEQ is
observed.

are not correlated, and in particular how they qualitatively depend on and co-vary with
the coherence level or the duration of the RSI.

Post-error improvement in accuracy
Post-error improvement in accuracy (PIA) is another sequential effect reported in experi-
ments (Laming, 1979; Marco-Pallarés et al., 2008; Danielmeier and Ullsperger, 2011). PIA
has been observed on different time-scales: long-term learning effects following error (Hester
et al., 2005) and trial-to-trial adjustments directly after commission of error responses. I
will only consider this latter type of PIA. The specific conditions under which PIA can be
observed in behavioral experiments have not been totally understood. I investigate this
effect in the specific context of the attractor neural network, considering that the strength
of the effect is linked to the difference in error rates between post-error and post-correct
trials.

Figure 3.12 represents the phase diagram of the PIA effect with respect to coherence
levels (x-axis) and corollary discharge amplitude (y-axis). One can observe a large region of
parameters for which PIA is present. I find a magnitude of the PIA effect of about 2−4%,
which is of the same order of magnitude as in the experiments where, for RSIs in the
range 500−1000 ms, it is found that post-error accuracy is improved by approximatively
3% (Jentzsch and Dudschig, 2009).

Looking at Figure 3.12, one sees that the PIA and PES effects append in the same
region of parameters. However, zooming in on specific regions (Figure 3.12.B and C), one
can notice some differences in the variation of these effects. The black dashed rectangular
regions correspond to the same parameters as in Figure 3.10. PIA is also observed in these
regions. However, there was a decrease of PES at very large coherence (Figure 3.10.B), but
not of PIA (Figure 3.12.B). Moreover the decrease of the PIA effect in Figure 3.10.C does
not occur at the same values of parameters as for the PES one. It would be tempting to
interpret PIA as a better accuracy resulting from taking more time for making the decision.
This is not the case, since PIA does not appear uniquely in the PES region, but in the
PEQ one too. In agreement with these model predictions, Danielmeier et al. (2011), in a
TAFC task with color-based categories, observeed that PIA can occur in the absence of
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Figure 3.12: Post-error improvement in accuracy at a RSI of 500 ms. (A) Phase
diagram of the PIA effect at RSI of 500 ms. The bottom white zone corresponds to
parameters where sequential decision-making is impossible. The red squares correspond to
regions where PIA is observed, whereas the black dashed squares correspond to specific
regions where panels B and C zoom. (B) PIA effect with respect to the coherence level
at ICD,max = 0.047 nA. The light blue zone corresponds to the bootstrapped confidence
interval at 95%. (C) PIA effect with respect to the coherence level at ICD,max = 0.035 nA.
The light blue zone corresponds to the bootstrapped confidence interval at 95%.

PES, but that the occurrence of PES is always associated with PIA (except for one subject
among 20, results reported in Figure 3.9 (Danielmeier and Ullsperger, 2011)).

In EEG experiments, Marco-Pallarés et al. (2008) found that time courses of PES and
PIA seem to be dissociable as they observed post-error improvements in accuracy with
longer inter-trial intervals (up to 2250 ms) than post-error slowing. The authors considered
protocols with and without stop-signals. I investigate the variation with respect to the RSI
of PIA in our model (Figure 3.13). For long RSIs, the PIA effect is not observed anymore.
However as observed in Marco-Pallarés et al. (2008), the PIA effect occurs for longer RSIs
than the PES effect (Figure 3.12.A). In the same way, PIA is more robust with respect to
the intensity of the corollary discharge. This is corroborated by Figure 3.14-A-B, which
represents PES and PIA effect for a larger relaxation time, τCD = 500 ms, hence with a
stronger corollary discharge. However, all the regimes previously observed are present, for
slightly different parameter ranges. This shows that the global picture illustrated by the
phase diagrams, Figures 3.10, 3.12, is not specific to a narrow range of ICD,max and τCD
values.

Verguts et al. (2011) found that PIA and PES seem to happen independently, suggesting
that at least two post-error processes take place in parallel. An important outcome of my
analysis is to show that PIA and PES effects can both result from the same underlying
dynamics. In addition, in the parameters domain where they both occur, the variations
of these effects with respect to the coherence levels are indeed uncorrelated (Pearson
correlation test: RSI of 500 ms and ICD = 0.035 nA, p= 0.58, ICD = 0.05, p= 0.79 and
ICD = 0.1 nA, p= 0.25; RSI of 2000 ms and ICD = 0.035 nA, p= 0.37). This non-correlation
highlights the complexity of such post-error adjustments, as explored in Verguts et al.
(2011).
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Figure 3.13: Post-error improvement in accuracy depending on RSI. (A) Phase
diagram of the PIA effect at ICD,max = 0.045 nA. The red squares correspond to regions
where PIA is observed. (B)-(C)-(D) Distribution of the discrimination threshold for three
values of RSI (500,1000,1500 ms respectively). In yellow I represent the histogram of the
post-correct trials, and in blue the post-error ones. The dashed curves of the corresponding
color correspond to the cumulative functions of these distributions. The corollary discharge
is ICD,max = 0.035 nA.

In order to gain more insights into the PIA effect, I study the discrimination threshold
following an error or a success, with respect to the RSI (Figure 3.13.B-D). Figure 3.13.B
represents the distribution of the discrimination threshold for ICD,max = 0.035 nA and a
RSI of 500 ms. For these parameters, the distributions for the post-error and post-success
cases are highly different (Smirnov-Kolmogorov test: p < 10−20). If one increases the RSI
(1000 ms for Figure 3.13.C and 1500 ms for Figure 3.13.D), this difference disappears
(Smirnov-Kolmogorov test: p= 0.038 and p= 0.4 respectively). However, the model predicts
a wider distribution of the discrimination threshold after an error than after a correct
trial, independently of the presence of the PIA effect. This might result from the wider
distribution in the neural (or synaptic) activities after an error, which I discuss in the next
section. To my knowledge, this effect has not been studied in behavioral experiments.

3.2.3 Non-linear dynamics
In this section I analyze the PES and PEQ effects in terms of neural dynamics. First of
all, I will represent and discuss the dynamics on individual trials for the three regions of
parameters: with neither PES nor PEQ effects, with PES effect, and with PEQ effect
(Figure 3.15). One can observe the dynamics for post-error and post-correct trials during
the relaxation period following a decision and during the presentation of the next stimulus.
One can already notice differences between the regions on individual trials. Figure 3.15.A
represents a trial in the region without PES or PEQ. The post-error/correct dynamics
are indistinguishable. Hence one does not observe any differences in the reaction times.
Looking at a trial in the PEQ region (Figure 3.15.B), the population L (the winning one
for the second stimulus) for the post-error case seems a bit higher in activity than for
the post-correct case. This leads to the post-error quickening effect, as the post-error
(orange) curve will reach the threshold sooner than the post-correct (blue) one. Finally,
Figure 3.15.C represents individual trials for parameters in the PES region. In the phase
diagram (Figure 3.10) the effect was more pronounced than PEQ, thus it is more pronounced
on the dynamics too. During the relaxation, and the presentation of the next stimulus,
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Figure 3.14: Post-error adjustments at τCD = 500 ms (panels A and B), and
second order post-error adjustments (panels C and D). (A) Phase diagram of the
PES effect. I used a bootstrapped confidence interval in order to decide whether or not
PES (or PEQ) is observed. (B) Phase diagram of the PIA effect. The observation of
post-error adjustments is highly impacted with the value of τCD, as I do not observe PES
for the same range of parameters. (C) Phase diagram of the PES effect at the n+2 trial.
(D) Phase diagram of the PIA effect at the n+ 2 trial. One sees rare isolated red squares,
indicating the absence of any systematic effect. For all panels: Simulations with a RSI of
500 ms, other parameters as in Table 1. Color code as in Figure 9.

the post-correct dynamics (blue curve) for population L (the winning one for the second
stimulus) is higher than the post-error one. This leads to a faster decision time for the
post-correct trial than for the post-error one.

I will now show that the dynamics explains the three effects PES, PEQ and PIA.
Figures 3.17, 3.18 and 3.19 provide a semi qualitative and semi quantitative analysis of the
dynamics of the synaptic activities in the phase plane of the system, for several parameters
regimes. Here again, the analysis is easier working on the synaptic activities. This can be
seen by considering Figure 3.16 on which the mean firing rate and synaptic activity of the
winning population in the PES case are represented. Due to the range of variation of the
firing rates, and the intrinsic noise of the system, it is hard to observe a difference between
the neural activities. However, the difference (sub-panel of Figure 3.16) can still give some
insight about what happens. At the beginning of the next trial, the difference between
the post-error and post-correct firing rates is significantly below zero, hence the reaction
time will be shorter for post-correct than for post-error trials. The same behavior for the
synaptic activities (Figure 3.16.B) is observed, but much less noisy.



3.2 Post-error effects 59

0 200 400 600 800 1000

3

6

9

12

15

0 300 600 900

5

10

15

20

Time (ms)

F
ir

in
g

 r
at

es
 (

H
z)

Region without effects Region with PEQ Region with PESA B C

0 200 400 600 800 1000

5

10

15

20

Time (ms)

Stimulus intensity for post-correct case

Post-Error firing rates (population L)

Post-Correct firing rates (population L)

Stimulus intensity for post-error case

Time (ms)

RSI RSI RSI
10

-10

0

20

-20

0

10

-10

0

Figure 3.15: Neural activities of individual trials. (A) Dynamics for individual trials
for the winning populations of the next trial: in blue the post-correct case and in red the
post-error one. The dashed lines represent the coherence of the stimuli with respect to time.
In blue I represent the post-correct case, and in red the post-error one. The parameters
are set to a region without PES or PEQ effects (ICD = 0.047 nA and c = ±10%). (B)
This panel represents the dynamics in the region of PEQ (ICD = 0.047 nA and c=±20%).
On this trial I can notice that the post-error dynamics is faster than the post-correct
one. (C) The parameters are set to the PES region (ICD = 0.035 nA and c=±10%). The
post-correct dynamics (in blue) reaches the threshold sooner than the post-error one (in
red).

PES effect.
Now, I will detail the analysis of the PES effect (and of the concomitant PIA effect) based in
Figure 3.17. Each panel is done the following way. Without loss of generality, I assume that
the last decision made is R. Repeated and Alternated cases thus correspond respectively
to next trial decisions R and L. The x and y axis are the synaptic activities SL and SR,
respectively – hence, the losing and wining populations for the first trial.

On the left panels, I represent with dashed lines the average dynamics during the
relaxation period, that is from the decision time for the previous stimulus to the onset of
the next stimulus. This allows to identify clearly the typical neural states at the end of
the relaxation period. The average is done over post-error (resp. post-correct) trajectories
sharing a same state at the time of the last decision. The choice of these two initial states
is based on the following remark. A typical trial with a correct decision will lead, at the
time of decision, to losing and wining populations with highly different activity rates, hence
a neural activity, and thus a synaptic activity SL, far from the threshold value. On the
contrary, a typical error trial will show a losing activity not far from the threshold – this
can also be observed in Figure 4B in Wong et al. (2007). I can thus represent post-correct
trials, respectively post-error trials, by dynamics with initial states having a rather small,
respectively large, value of SL (and in both cases the first trial winning population SR at
threshold value).
Then I represent with a continuous line the average trajectory following the onset of
the next stimulus. This dynamics is observed during the same time for post-error and
post-correct cases – as if there were no decision threshold – in order to compare the
dynamics of post-error and post-correct cases for the same duration of time. Decision
actually occurs when the trajectory crosses the decision line (dashed gray line) – this is
approximate: because of the noise, there is no one to one correspondence between a neural
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Figure 3.16: Mean firing rates of the winning population. (A) Mean firing rates for
the winning populations of the next trial: in blue the post-correct case and in orange the post-
error one. The ribbons represent the 95% confidence interval on 25 simulations(bootstrap
method). The left-axis represents the relaxation of the dynamics. The right-axis is for
the beginning of the next stimulus. The parameters are set to a region with PES effects
(ICD = 0.035 nA and c=±10). The sub-panel with the light blue curve is the difference
between the post-error firing rates and the post-correct with respect to time (in percent).
The ribbon stands for the 95% confidence interval. As expected, this difference is negative.
Hence the post-correct dynamics is faster and crosses sooner the threshold. This leads
to the PES effect. (B) Mean synaptic activities for the winning populations of the next
trial: in blue the post-correct case and in orange the post-error one. The sub-panel with
the light blue curve is the difference between the post-error synaptic activities and the
post-correct with respect to time (in percent).

activity reaching the decision threshold and a particular value of the associated synaptic
activity. Having all the trajectories plotted for the same duration (and not only until the
decision time) allows to visually compare the associated reaction times.

On the right panels, I represent typical trajectories during the presentation of the next
stimulus. The black dot on every panel gives the location of the neutral attractor that
exists during the relaxation dynamics. The basins of attractions that are represented are
the one associated with the attractors L, R, of the dynamics induced by the onset of
the next stimulus. It shall be reminded that these attractors are different from the ones
associated to the dynamics during the relaxation period.

I can now analyze the dynamics. In the repeated case (Figure 3.17.A and B), at the
end of the relaxation (that is at the onset of the next stimulus), both post-correct and
post-error trials lie into the correct basin of attraction. Hence, the error rates for these
trials are similar. However, the neural states reached at the end of the relaxations are
different. Compared to the post-error trial, the post-correct state is closer to the boundary
of the new attractor associated to decision R, and the corresponding decision will thus
be faster. In the alternated case (Figure 3.17.C and D), the states reached at the end
of the relaxation period do not lie within the correct basin of attraction. During the
decision-making dynamics, the trajectory needs to cross the boundary between the two
basins of attraction. The post-correct trials leading to an alternate decision have a rather
straight dynamics across the boundary, leading to relatively fast decision times. In contrast,
the states at the onset of the stimulus of the post-error trials are closer to the boundary so
that the corresponding trajectories cross with a smaller angle with respect to the basin
boundary. This leads to longer reaction times, hence the PES effect. It would be interesting
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Figure 3.17: Analysis of the post-error trajectories for the PES regime. Phase-
plane trajectories (in log-log plot, for ease of viewing) of the post-correct and post-error
trials. I consider that the previous decision was decision R. The black filled circle shows
the neutral attractor state (during the relaxation period). During the presentation of the
next stimulus, the attractors and basins of attraction change (represented by the gray
area and the green dashed lines). Panels (A) and (B): PES and PIA regime (c= 10% and
ICD,max = 0.035 nA) in the repeated case. The blue color codes for post-correct trials, and
the red one for post-error. Panel (A): average dynamics; Panel (B): single trajectories
during the next trial. Panels (C) and (D): regime with PES and PIA in the alternated case
(c=−10% and ICD,max = 0.035 nA). The dynamics after the relaxation is followed during
400ms for repeated and 800 ms for alternated case, as if there were no decision threshold.
The actual decision occurs at the crossing of the dashed gray line, indicating the threshold.
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to have electro-physiological data with which the model predictions could be directly
compared. However, in a typical experiment on monkeys, a feedback on the correctness of
the decision is given, since the animal learns the task thanks to a reward-based protocol.
Nevertheless, I note that, in the random dot experiments on monkeys of Purcell and Kiani
(2016), the authors find a higher buildup rate of the neural activity for post-correct trials
than for post-error trials (see Figure 6 in Purcell and Kiani (2016)). Within the framework
of attractor neural networks, this can be understood as trajectories that cross the basin
boundary quicker for post-correct trials, in accordance with the model’s predictions. This
suggests that the observed difference in buildup rates may not result from some mechanism
making use of the information on the correctness of the decision, but rather from the
nonlinear dynamics discussed here.

The PIA is understood from the same analysis as for the PES effect. For specific
realizations of the noise that lead to error trials, the post-error trials dynamics is closer
to the boundary. Thus it has a higher probability to fall on the other side of the basin of
attraction. Hence, the error rates are lower for post-error trials than post-correct trials.

PEQ effect.
The PEQ effect can be understood from the same kind of analysis, based here in Figure 3.18
(analogous for the PEQ effect to Figure 3.17 for the PES effect). As seen previously, the
PEQ effect occurs mostly at high level of coherence. I consider first the repeated case
(Figure 3.18.A and B). Since the coherence level is high, at the end of the relaxation period,
both post-correct and post-error trials lie within the correct basin of attraction, far from
the basin boundary. The reaction times and error rates of post-correct and post-error trials
for repeated decisions are thus similar.

In contrast, the alternated case (Figure 3.18.C and D) exhibits both the PIA and the
PEQ effects. The post-error’s end of relaxation now is inside the basin of attraction of the
alternated choice. Hence, the error rate will be lower than when the ending point is outside
this region (post-correct trials begin at the boundary of the basin of attraction). Moreover,
the post-correct trials dynamics have to cross the boundary. Hence they are closer to the
manifold, which leads to slower dynamics, whereas the post-error dynamics can directly
reach the new attractor state. This analysis explains why the decreasing of PES and PIA
does not occur at the same coherence level too. Indeed the decreasing of PIA occurs when
the ending point of the post-error relaxation crosses the boundary, whereas the post-correct
ending point remains into the same basin of attraction. For the PES effect to decrease, the
dynamics for both cases just need to be closer to the boundary and not necessarily on the
opposite side. Hence the decrease of the PES effect occurs at lower coherence than the
PIA one.
Here I have highlighted the fact that the occurrence of the PEQ effect depends on some
very specific and fragile feature, the crossing or not of a basin boundary. The conditions
for observing the effect are thus likely to vary from individual to individual, and from
experiment to experiment. This may explain why the experimental results about the PEQ
effect remain controversial.

In Figure 3.19 A and B I investigate the parameter regime, at low coherence level, for
which there is no effect – neither PES, nor PEQ or PIA. The post-error and post-correct
dynamics are very similar and lead to the same relaxation ending point, far from the
basin boundary. Finally, in Figure 3.19 C and D I consider the parameter regime, at
high coherence level, with only the PIA effect. Here the relaxations of post-error and
post-correct trials are different. However, as for the PEQ effect, at high coherence level
both dynamics will be fast. For alternated trials, none of the two ending points are in the
correct basin of attraction.
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Figure 3.18: Analysis of the post-error trajectories in the PEQ regime. Phase-
plane trajectories (in log-log plot, for ease of viewing) of the post-correct and post-error
trials (same as Figure 3.17 in the PEQ case). I consider that the previous decision was
R. The black filled circle shows the neutral attractor state (during the relaxation period).
During the presentation of the next stimulus, the attractors and basins of attraction change
(represented by the gray area and the green dashed line). Panels (A) and (B): PEQ and
PIA regime (c = 20% and ICD,max = 0.047 nA). The blue color codes for post-correct
trials, and the red one for post-error. The plain lines represent mean dynamics for (A) or
single dynamics (B). Panels (C) and (D): regime with PEQ and PIA in the alternated
case (c = −20% and ICD,max = 0.047 nA).The post-error relaxation already lies within
the alternated basin of attraction. For alternated trials, the dynamics needs to cross the
invariant manifold (green dashed line), which denotes the boundary between the basins of
attraction. The dynamics is followed during 400ms for repeated and 800 ms for alternated
case, as if there were no decision threshold. The actual decision occurs at the crossing of
the dashed gray line, indicating the threshold.
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Figure 3.19: Analysis of the post-error trajectories in the regime with neither
PES nor PEQ effect Phase-plane trajectories (in log-log plot, for ease of viewing) of
the post-correct and post-error trials. I consider that the previous decision was decision
R. The black filled circle shows the neutral attractor state (during the relaxation period).
During the presentation of the next stimulus, the attractors and basins of attraction change
(represented by the gray area and the green dashed lines). Panels (A) (mean dynamics) and
(B) (single dynamics): regime without PES or PIA (c=±2% and ICD,max = 0.035 nA). I
show both the alternated and the repeated case, with the corresponding basins of attraction.
The blue color codes for post-correct trials, and the red one for post-error. For alternated
trials, the dynamics needs to cross the invariant manifold (green dashed line), which denotes
the boundary between the basins of attraction. Panels (C) (mean dynamics) and (D)
(single dynamics): regime with PIA but without PES (c=±20% and ICD,max = 0.035 nA).
The dynamics is followed during 400ms for repeated and 800 ms for alternated case, as if
there were no decision threshold. The actual decision occurs at the crossing of the dashed
gray line, indicating the threshold.

As discussed for the PES effect, electro-physiological data only exist for experiments
with feedback on the correctness of the decision. In experiments on monkeys, Purcell and
Kiani (2016) obtained puzzling results for what concerns the PEQ effect. They observed
an important difference in baseline activities for post-correct and post-error trials, which is
not well accounted for either by their DDM analysis or by the model. However, in terms of
neural dynamics, this observed difference in the level of neural activities obviously implies
that the dynamical states are different at the time of the onset of the stimulus, a fact in
agreement with our model’s predictions. One may wonder if the separation in baseline
activities, and not just in starting points, could be a consequence of the feedback.
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Correlating post-error effects with the activity distributions at the previous decision.
To go beyond the above analysis on the post-error adjustments (PES, PEQ and PIA
effects), I analyze the respective influence of the winning and losing population levels of
activity at the time of the previous decision, onto the decision at the next trial. This will
first confirm the previous analysis, but also provide more insights on the the specificity of
the two opposite effects, PES and PEQ.

The mean activity, at the time of the decision, of the winning population is indistin-
guishable between post-correct and post-error trials (Unequal Variance (Welch) test: Fail
to reject, p= 0.16 at RSI of 500ms and Fail to reject, p= 0.87 at RSI of 2000ms). However,
for short RSIs (corresponding to PES regime) the mean synaptic activities, at the time of
the decision, of the losing population are different for post-correct and post-error trials
(Unequal Variance (Welch) test: Reject, p= 2.7×10−20 at RSI of 500ms and Fail to reject,
p= 0.57 at RSI of 2000ms).

To get more insights, Figure 3.20 represents the amplitude of the PES effect with
respect to the inter-percentile range of the distribution of the synaptic activities of the
winning and losing populations at the time of the previous decision. When PES occurs, the
higher the activity of the losing population at the time of decision, the stronger this effect
will be. The influence of the winning population is observed, although in an opposite way.
When PES occurs these effects are correlated (Dark Blue: Pearson correlation: r =−0.98
and p = 2.6×10−7, Medium Blue: r = −0.98 and p = 9.5×10−7), in the sense that the
variations with respect to the inter-percentile of the winning and losing population are
correlated. These observations are consistent with the analysis of the PES phase-plane
trajectories. Indeed, the higher the losing population activity is, the closer to the invariant
manifold the state at the end of the relaxation period will be. Hence, the effect will be
stronger as it becomes easier (more likely) to cross the boundary.

However, Figure 3.20, panels A and C, shows a different behavior for the PEQ effect:
there is an almost constant value of the PEQ effect with respect to the inter-percentiles of
the distributions of the winning and losing populations activities. This is explained by the
fact that, at the end of the relaxation, if the category of the next stimulus is the opposite
of the previous decision, the network state finds itself within the (correct) associated basin
of attraction, but very close to the boundary. This is true whatever the correctness of
the previous decision. However, the post-correct case will lead to an even closer location
from the basin boundary. The nonlinearity of the dynamics near the basin boundary will
strongly amplify the small difference between post-correct and post-error ending point.
The PEQ effect will thus not be correlated with the size of this difference.

For what concerns the PIA effect, Figure 3.20.C-D shows a similar dependency in the
synaptic activities as for the PES effect, with a stronger effect for high activities of the
losing population. This corroborates the above phase plane analysis of the trajectories
(Figure 3.14). Indeed, the PES and PIA effects both depend on the position of the relaxation
in the phase plane. Being closer to the boundary (high activity of the losing population)
leads to a smaller error rate in the next trial.

From the above analysis, a prediction of the model is that, whenever there are PES or
PIA effects, the mean activity of the losing population is different for correct and error
decisions. Moreover, this level of activity is correlated with the amplitude of the post-error
adjustment effect. This can be seen in Figure 3.20, panels A, B. In this figure, I present the
quantiles of the synaptic activities. The results would be similar, but much more noisy, for
the firing rates. This prediction can be tested in experiments by measuring the correlation
between the amplitude of the PES (or PIA) effect, and the difference in mean activities of
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Figure 3.20: Influence of the losing and winning population on the post-error
adjustments. Panels (A) and (B) represent respectively the reaction time (PES effect)
and accuracy (PIA effect) with respect to inter-percentiles range of the losing population
synaptic activity distribution, at a RSI of 500 ms. The red curve corresponds to c= 18
and ICD,max = 0.047, where I observe PEQ. The dark blue one corresponds to strong
PES effect (c= 10, ICD,max = 0.035), the medium blue one to medium PES effect (c= 5,
ICD,max = 0.05). The light blue one corresponds to no effect at all (c= 10, ICD,max = 0.035),
for a RSI of 2 seconds. Panels (C) and (D) represent the same curves for the winning
population, with the same color code. The shadow area represents the 95% bootstrapped
confidence intervals of the corresponding effect.

the losing neural population (difference between post-error and post-correct trials).



4
A cognitive experiment to study confidence

Confidence judgments in one’s decision are considered a central example of metacognition.
How can we access someone else’s subjective sense of confidence? In this chapter, I review
different behavioral measures that have been developped in order to obtain this sense
of confidence in humans and in animals. In a second part, I present the experiment I
performed, in collaboration with Jean-Rémy Martin and Jérôme Sackur at ENS, during
my PhD.

4.1. How to measure confidence experimentally ?
4.1.1 In humans

Explicit reports of confidence
Reports of confidence in humans can be made explicit through verbal communications for
example. Thus, the most straightforward paradigm to measure confidence is to ask the
subjects to assign at each trial a numerical rating corresponding to how sure they are of
their answer (Zizlsperger et al., 2014; Fleming and Lau, 2014). The participants provide
a subjective probability on the correctness of their response as a confidence judgment.
One important aspect of such reports is that performance accuracy and response times
are well-correlated with self-confidence reports (Baranski and Petrusic, 1994; Pleskac and
Busemeyer, 2010). This phenomena occurs for a variety of tasks such as general knowledge
tests (Perfect et al., 1993), perceptual decisions (Fleming et al., 2010) and reasoning
tasks (Stankov, 2000). In Figure 4.1, I represent an example of such relation between
these behavioral variables. The experiment consisted in a categorization task (with Gabor
patches) followed by a confidence judgment on a four-points scale (Adler and Ma, 2018).
The data are publicly shared through the confidence database project (Rahnev et al., 2020).
The most striking effect that appears from having access to direct reports of confidence
is the under/over-confidence (Lichtenstein and Fischhoff, 1977). These deviations occur
systematically with overconfidence when the decisions are difficult and underconfidence
for easy decisions (Kepecs and Mainen, 2012). For instance, in Figure 4.1, the orange
participant clearly shows under-confidence and the blue ones over-confidence. However, it
is worth noting that these biases in confidence vary greatly with the type of judgments
that are asked, and across participants (Klayman et al., 1999).

Other measures of confidence
In the recent years, some concerns have arised when reporting confidence on a scale.
For example, should the scale be discrete or continuous ? (Lisi et al., 2018) Will some
participants only use one end of the scale? (Morgan et al., 1997) To try to address these
concerns, various paradigms have been proposed. For example, one can give the option to
the participants to opt-out of the trial if they feel too uncertain (Gherman and Philiastides,
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Figure 4.1: Behavioral results (data from Adler and Ma (2018)). Each color
represents a different participant. (A) Decision times of the participants with respect
to their self-reported confidence. (B) Accuracy of the participants with respect to their
self-reported confidence. (C) Accuracy with respect to the stimulus difficulty. (D) Mean
confidence with respect to the stimulus difficulty.

2015). However, this kind of task could be interpreted as a three-choices tasks instead
of a confidence report. Postdecision wagering has been proposed to improve confidence
rating (Persaud et al., 2007). In this paradigm participants must bet on the outcome of
their decisions. The participants will have a tendency to bet more for trials with an higher
feeling of confidence. Finally, I would like to mention a last paradigm used to measure
confidence in humans. Two stimuli are shown to the participants on each trial. They
must report for which one they feel they are more likely to be correct. By comparing the
performances between the trials chosen and the ones that were not, one can identify if
the sense of confidence of the participant is correct (de Gardelle and Mamassian, 2014).
This method does not rely on an explicit report of confidence by the participants and is
therefore not affected by the participants’ bias of under/over-confidence.

4.1.2 In animals
For animals, one can not simply ask them to explicitly report their confidence. Therefore,
more sophisticated tasks have been employed to elicit a report of confidence in animals.

Uncertain option task
One of the most common task used for this purpose is the uncertain option task. It extends
the classical two-choices paradigm that has been mentioned in this thesis. In addition to
the two available responses, the animal is offered a third choice, that will correspond to a
small but certain reward. This framework has been used in many species such as monkeys,
dolphins and rats (Smith et al., 1995, 1997; Hampton, 2001; Kiani and Shadlen, 2009).
Interestingly, when compared to human performances on this type of task, dolphins and
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monkeys showed qualitative similar strategies and response distributions. However, one
can address the following criticism to this kind of task: there is the possibility that this
task is considered as a three-choices task by the animal. The animal could be learning the
association between the uncertain reward and a difficult task.

Opt-out task
To address this problematic, Hampton (2001) developed a modified version of the uncertain
option task. It consists in a memory task in which monkeys perform a delayed-maching-to-
sample task. At the end of the delay period, monkeys were presented with the option of
declining or accepting the discrimination test. Moreover, Hampton (2001) imposed that
on some trials the monkeys have no choice but to make the discrimination test. This is
to ensure that the monkey is not learning to associate longer delay with opt-out option.
They found that the performances of the monkeys on freely chosen trials are greater than
the ones in forced choice trials. This opt-out task has been used in macaque monkeys
too (Kiani and Shadlen, 2009; Komura et al., 2013), but for a binary categorization of visual
motion task. They found that the frequency of choosing the opt-out option increased with
stimulus difficulty, as well as greater performances on freely chosen trials. Interestingly,
this task has been tested in pigeons and rats but the researchers did not find a change in
performances between forced-choices and free-choices. These results raised the question of
whether these animals could perform confidence judgments or not.

Decision restart and leaving decision tasks
In order to address the criticisms of two previous paradigms, such as the fact that, for these
paradigms, either a confidence report or a decision report is collected at each trial, Kepecs
et al. (2008) proposed a new paradigm in rodents. The rats were trained to perform a
2AFC olfactory discrimination task. Depending on the dominant part of the odour mixture,
the rats needed to choose the left or the right. A variable delay was imposed after a correct
trial and the animal could restart the trial at will (Figure 5.8). There was no feedback
on error trials which allowed to measure the rats confidence in these trials. For some of
the correct trials, the reward was omitted which allowed to measure confidence for correct
trials too. It has been found that the waiting time increased with respect to odour contrast
for correct trials, but decreased for error trials. Moreover, accuracy was an increasing
function of the waiting time. This suggests that the waiting time of each trial consists in a
robust proxy for confidence.

Together these different paradigms have shown that humans, primates and rodents
have access to a sense of confidence and can use it to optimize the rewards.

4.2. A 2AFC task in humans
In this section I will describe the cognitive experiment that I have performed to study
decision-making and confidence in humans. Previously to the design of this experiment,
I briefly analyzed the results of an experiment of Jean-Rémy Martin and Jérôme Saclur
within the framework of attractor neural network. The preliminary results led to the design
of an experiment whose goal was to study the impact of confidence on decision-making
and various sequential effects.

4.2.1 Experimental set-up
The experiment was performed at the Laboratoire de Psychologie cognitive et de Psy-
cholinguistique’s database (LSCP, DEC, ENS-EHESS-CNRS, PSL, Paris, France). The
experiment followed the ethics requirements of the Declaration of Helsinki (2008) and has
been approved by the local Ethics Committee. It consists in a direction categorization
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Figure 4.2: Waiting task in rodents. (A) The animal makes a perceptual decision and
then needs to wait for the reward (on most correct trials). The rat can choose to wait
for the reward or to start a new trial. (B) Figure adapted from Kepecs et al. (2008).
Probability of reinitiation for a single rat plotted as a function of odour stimulus and trial
outcome.

task, where participants classify Gabor patches as clockwise or anti-clockwise. In some of
the trials, the decision was followed by an auditory feedback or a confidence evaluation.

The stimuli were generated using Matlab along with the Psychophysics toolbox (Brainard,
1997). They were displayed on a monitor at 57.3 cm in front of the participants’ head.
The participants performed the experiment in a quiet and darkened experimental room.
Their heads were stabilized thanks to a chin-rest. The instructions given to the partici-
pants (translated from french) were the following (the emphazised sentences correspond to
additional information not provided to the participants):
• In each trial, you will see very briefly (200 ms) a black dot at the center of the screen

that you will need to look at (Figure 4.3.A). Right after the dot disappears (200 ms),
you will see a circular grating at the center of the screen like the one in Figure 4.3.B.
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The parameters of the circular grating are diameter = 4◦, Tukey window, 2 cycles
per degree, Michelson contrast = 89%, duration = 100 ms, phase randomly selected
at each trial.

(a) Fixation dot (b) Example of the circular grating.

Figure 4.3

• In each trial you will need to indicate if the grating was oriented clockwise or
anti-clockwise (Figure 4.4).
• As soon as the disk disappears, if you think it was anti-clockwise oriented you will

press the left directionnal arrow. If it was clockwise oriented you will press the right
directionnal arrow.

(a) Anti-clockwise circular grating.
(b) Clockwise circular grating.

Figure 4.4

• In the case where you do not know at all which direction it was, you will still press
one of the two keys by following your intuition. When this happens, do not always
press the same key.
• You need to answer fast but not at the expense of accuracy. After 1.5 second, you
will see a message at the screen: "Please, answer". Ideally, you will answer before
this text appears at the screen.
• You will have 3 bocks of trials:
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– In the first block, once you have answered to a trial, the software will automati-
cally run the next trial.

– In a second block, you will receive a feedback on your answer at each trial. If
the answer was correct, you will hear a pitched tone. If your answer was wrong
you will hear a deep tone.

– In a third block, you will need to evaluate your confidence level in your answer
using the scale that will appear on the screen (Figure 4.5). You will move
the black slider towards right or left using the left and right stickers on the
keyboard (q and e keys). The scale is composed of 10 levels. The case at the left
corresponds to the "Pure guessing" case: you choose randomly the orientation
of the grating. At the right, you have the "Certain to be sure" case: you are
absolutely certain to be right, there is no possible doubt. Between these two
cases, you have access to intermediate levels of confidence. The choice of the
confidence level is performed using the space bar.

Figure 4.5: Confidence-scale.

• Be aware that, in the confidence block, the black slider will appear randomly on the
scale. Do not be biased by the initial position of the cursor and move it to the level
that reflects your level of confidence.
• During the confidence block, in the case you wanted to choose the right arrow but
you chose the left one (or inversely), do not answer to the confidence scale. Just
press the keyboard key with a red sticker on it, it will go to the next trial.
• The software will choose the order of the block and you will know at the beginning of

each block which one it is. Before the main experiment starts, you will have a small
training.

Nine participants (7 Females, Mean Age = 27.3, SD = 5.14) have been recruited
from the Laboratoire de Psychologie cognitive et de Psycholinguistique’s database (LSCP,
DEC, ENS-EHESS-CNRS, PSL, Paris, France). Every subject had normal or corrected-
to-normal vision. The participants performed three sessions on three distinct days in the
same week for a total duration of about 2h15. Three participants were excluded. Two of
the excluded participants did not complete correctly the experiment and one exhibited
substantially asymmetric performance (98% of correct responses for an angle of 0.2◦, but
18% at -0.2◦degree). As a result, I analyzed data from 6 participants. I obtained written
informed consent from every participant who received a compensation of 15 euros for their
participation. Participants performed three sessions on three distinct days. Each session
(45 min) consisted in three runs, each run being composed of one exemplar of each of the
three types of block, in a random order.

4.2.2 Behavioral measures

The experimental procedure is shown in Figure 4.6. The waiting time between each trial
was deliberately chosen to be short and similar between blocks, in order to study the
sequential effects.
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Figure 4.6: Procedure of the discrimination task, for the three blocks. (A)
Structure of a trial: Following a fixation period, the circular grating (Gabor patch, oriented
clockwise, C, or counterclockwise, AC) appears and participants make the decision (C or
AC). In confidence blocks, after a delay, participants report their confidence with respect
to their choice, on a discrete scale with 10 levels. (B) Time course of a pure block trial.
(C) Time course of a confidence block trial. (D) Time course of a feedback block trial.

Pure block
In this block, participants waited 300 ms after each decision, before the black fixation
point appeared. The stimulus appeared 200 ms after this fixation point. The eight possible
orientations for the circular grating were [-1.6◦, -0.8◦, -0.5◦, -0.2◦, 0.2◦, 0.5◦, 0.8◦, 1.6◦]
and a stimulus was chosen randomly among them with the following weights: [0.05, 0.1,
0.15, 0.2, 0.2, 0.15, 0.1, 0.05].

Feedback block
In this block, 200 ms after the decision, the participants received an auditory feedback
(during 200 ms) about the correctness of the decision they just made. The black fixation
dot appeared 100 ms after this feedback and then a new trial began. The orientations of
the circular gratings were chosen randomly from [-1.6◦, -0.8◦, -0.2◦, 0.2◦, 0.8◦, 1.6◦] with
the following weights [ 0.12, 0.18, 0.2, 0.2, 0.18, 0.12 ].

Confidence block
In the confidence block, participants had to evaluate the confidence on the orientation
task 200 ms after the decision. After the choice of confidence, the participants had to wait
300 ms before the black fixation dot appeared. The stimulus appeared 200 ms after the
fixation dot. The orientations of the circular gratings were the same as in the feedback
block.

I will present different results from this experiment, without the framework of attractor
network that will be discussed in the next chapter of this manuscript. First, one can see
that the participants show increase of accuracy and decrease in response times with respect
to the stimuli difficulty (Figure 4.7). Despite the variability across participants, the trends
are globally the same. The goal of the experiment was to study sequential effects due
to confidence and post-error adjustments. It came as a surprise that, when comparing
the performances using a linear mixed model in the pure block and in the feedback block,
there was no difference (Figure 4.7). However, it is worth noting that the participants
were highly trained in the orientation discrimination which could explain the absence of
differences between the two blocks. On the contrary, Figures 4.7.C and D show the data of
the pure block and of the confidence block. The fact that the participants had to give their
confidence on their decisions had an impact on the behavioral performances: accuracy was
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higher and response times slower. This effect was already observed by Jean-Rémy and
Jérôme in a previous experiment.
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Figure 4.7: Behavioral results of the experiment. Eah subpanel represents a different
participant. (A) and (C) represent the accuracy of the participants in the different blocks
with respect to the orientaiton of the stimuli. (B) and (D) show the response times of each
participant.

To test this effect more specifically I ran a binomial regression of responses with fixed
factors of orientation, type of block (pure or confidence), the interaction between these
factors and a random participant intercept. The orientation coefficient was 2.15 (SD = 0.17,
z = 12.44 and p < 10−16); there was no effect of block type (p = 0.385). There was a
significant orientation by block type interaction (value of 0.55, SD = 0.08, z = 6.97 and
p= 3 ·10−12), indicating that participants were more accurate in confidence blocks than
in no-confidence blocks. In a similar way, I tested the effect on response times by using
a mixed effect regression with the same factors and intercept as for the accuracy (only
on the absolute value of the orientation). The orientation coefficient (value of −0.08, SD
= 0.013 and p= 0.0006) and the block type coefficient (value of 0.095, SD = 0.028 and
p= 0.011) were significant, meaning that participants are slower in the confidence block.
Moreover, the slope by block type interaction with orientation was also significant (value
of −0.028, SD = 0.010 and p= 0.031), meaning that the difference between the two types
of blocks is more important at low orientation.



5
Confidence in perceptual decision-making

In daily life, we usually ask ourselves whether it was the right or the wrong decision, after
we make one. For example, someone wants to cross the road at a busy intersection. They
will need to assess the speed of the vehicles as well as the size of the gaps between them. To
judge whether it is safe to cross the road or not, one should also estimate how trustworthy
one’s inferences are about speed and distance. Thus, this ability to estimate the accuracy
of a decision is critical in everyday life. In this chapter, I first adress different models of
confidence in decision-making. In a second part, I focus on the impact of confidence on
sequential effects during perceptual decision-making.

5.1. Models of confidence in perceptual decision-making
Since the early work on decision-making, confidence judgments have been recorded alongside
with decisions. In Peirce and Jastrow (1884), participants were asked to report their
confidence in the perceptual decision they just made. In this work, the task was to
discriminate between pressures applied to their fingers and to report their confidence on a
four-ratings scale analog to the one described in the preceeding chapter. Surprisingly, the
confidence ratings of the participants could be described by the following formula:

w = c log p

1−p (5.1)

with w the degree of confidence, p the probability of being right and c a constant called
the index of confidence. However, this type of measure is sensible to many undesirable
effects such as the fact that participants interpret differently the confidence scale thus
displaying over- or under-confident behavior (Fleming and Lau, 2014). For this reason,
current confidence ratings’ analysis requires more detailed analyses and I will describe the
main contempory frameworks of confidence.

5.1.1 Signal detection theory (SDT) framework
In SDT, the observer receives an observation of evidence e (Green et al., 1966). This
observation is caused by a stimulus and differs depending on the category the stimulus
belongs to. However, the evidence e is corrupted by noise, thus the likehoods for the
stimulus to belong to one category or the other are overlapping. For example, let us consider
two categories C1 and C2 that follow normal distribution with means (µC1 = −0.5 and
µC2 = 0.5) and equal variance (σ2

C1
= σ2

C2
= 1) (Figure 5.1.A). The task of the observer is

to infer the posterior probability P (C =C1|e). Using Bayes’ rule, this posterior probability
can be rewritten as:

P (C = C1|e) = αP (e|C1) ·P (C = C1) (5.2)
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with α a normalization factor computed through the relation P (e|C1) = P (e|C2) = 1. In
the following, I will suppose that P (C = C1) = P (C = C2) = 0.5 (Figure 5.1.B).
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Figure 5.1: Signal detection theory framework. (A) Density of probability of the two
categories C1 and C2 as defined in the text. The line at 0 denotes the value of the optimal
criterion. The dashed line at θex corresponds to a criterion slightly biased towards category
C1. (B) Posterior probability of the categories with respect to the sensory evidence e. (C)
Density of probability of the confidence evidence for correct (green) and incorrect (red)
trials. The dashed line at zex corresponds to an example of a confidence criterion that
is slightly underconfident. (D) Posterior probability of the correctness of the trial with
respect to the confidence evidence.

To achieve such estimation, the observer places a criterion θ along the sensory evidence
axis (Figure 5.1.A). The chosen category will then be C2 if the sensory evidence e exceeds
this criterion, and C1 otherwise. In the setup of Figure 5.1, the symmetry of the problem
indicates that the optimal criterion is θ = 0 (Figure 5.1.A), but the observer could choose
another value, for example to model biases in decisions.

The observer’s evidence about the correctness of their decisions varies along a confidence
axis (w). There are many possibilities to model the confidence evidence within the signal
detection theory framework. For instance, one could assume that the confidence evidence is
the distance between the sensory evidence and the criterion θ (Clarke et al., 1959) or that
it is the likelihood ratio of the sensory evidence given that the perceptual evidence was
correct or incorrect (Galvin et al., 2003). In the example I am considering, I will assume
that the confidence evidence is directly the distance between the sensory evidence and the
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criterion θ:
w = |e−θ| (5.3)

It is important to distinguish between the confidence evidence for correct and incorrect
decisions. Indeed, in this analysis of confidence evaluation, the categories "I am correct"
and "I am wrong" will play the role of the categories C1 and C2. The likehood of confidence
evidence for correct decisions is:

P (w|Correct) = P (|e−θ||Correct) = P (e−θ|C2) +P (θ−e|C1) (5.4)

This likelihood is illustrated in Figure 5.1.C in the case of an optimal criterion θ = 0.
Finally using the Bayes’ rule, one can obtain the posterior probability of being correct (or
incorrect) with respect to the confidence evidence (Figure 5.1.D).

P (Correct|w) = k ·P (w|Correct) ·P (Correct) (5.5)

P (Incorrect|w) = k ·P (w|Incorrect) · (1−P (Correct)) (5.6)

with k a normalization constant.
To decide between high and low confidence trials, the observer places a second criterion

z along the confidence evidence axis (Figure 5.1.C). If the evidence w is higher than z,
the trial is favored towards the high confidence hypothesis. However, it is important to
note that, in this case, there is an optimal location for the criterion z too. This location
corresponds to the intersection of the likelihood of confidence evidence (Figure 5.1.C). If the
criterion is placed after this value, the observer will show risk-aversion. In contrast if the
criterion is placed closer to the origin, it will increase the risk of assigning high confidence
to incorrect trials thus being overconfident. To conclude, this framework can show different
behaviors observed in the experiments such as risk-aversion and overconfidence. However,
SDT models assume that the decision is made with a fixed amount of time due to the
fact that the sensory evidence is drawn from an unique sample. Thus, this model cannot
describe the relationships between confidence, response time and stimulus difficulty in the
case of the two-alternatives forced choice task.

5.1.2 Accumulation of evidence framework
To model the dynamics of the decision process as well as the confidence in one’s decision,
one solution is to use evidence-accumulation models. I focus here on decision models where
the decision is made when the accumulation process reaches a specific bound z. Multiples
variations of accumulations can be found in the literature, such as the drift-diffusion
model (Ratcliff, 1978; Bogacz et al., 2006) or the independent race model (Raab, 1962;
Vickers, 1970; Merkle and Van Zandt, 2006). The IRM being slightly more general than
the DDM, I will be using the IRM framework to present the modelisation of confidence, in
the case of a two-alternative forced choice task.

When an observer O is presented with a stimulus S, it initiates two simultaneous
races representing the evidence of favor of both options (Figure 5.2.A). In order to model
confidence with this model, Vickers (2014) proposed to define the confidence as the balance
of evidence (Figure 5.2.A) at the time of the decision. One should note that this definition
means that the losing race plays a role in confidence evaluation, even if it does not play a
role in the decision. When the two races are close at the time of the decision, the balance
of evidence is small. This means that the confidence in this decision is going to be low, as
a small perturbation in the races would have led to the opposite decision. On the contrary,
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if the races are far apart, the balance of evidence is high and the confidence will be high
too. The equations for the IRM are the following:

ẋ1 = µ1 +ση1(t) (5.7)
ẋ2 = µ2 +ση2(t) (5.8)

with x1, x2 the decision variables, η1, η2 the white noises corresponding to each alternative
and µ1, µ2 the mean drift of each races.

I recall that the decision is made once one of the races has reached a fixed threshold.
This means that the balance of evidence can be characterized just by the state of the losing
race at the time of the decision. Without loss of generality, the winning race corresponds to
x1, and I define ∆x= z−x2 the balance of evidence at the time of decision. The decision
is correct if, indeed, µ1 > µ2. Using Fokker-Planck equation, one can find that:

P (µi |xi, t) = 1√
2πσ2/t

exp
(
−(µi−xi/t)2

2σ2t

)
(5.9)

The confidence in the decision corresponding to race 1 is defined by P (µ1 > µ2 |x2, t,x1 =
θ) (Moreno-Bote, 2010). The probability of having chosen the right race corresponds to
the probability that a Brownian motion finishes at state ∆x or lower, meaning that the
noise was not strong enough to elicit the wrong decision. This leads to:

P (µ1 > µ2 |x2, t,x1 = θ) = 1√
2π

∫ ∆x/(σ
√
t)

−∞
exp

(
−z2/2

)
dz (5.10)
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Figure 5.2: Independent Race Model. (A): Example of the dynamics for two inde-
pendent races (denoted by each color). The parameters are θ = 1, σ = 1.0, µ1 = 0.07 and
µ2 = 0.05. The balance of evidence corresponds to the arrow ∆x at the time of the decision.
(B): Confidence with respect to the decision time (Equation 5.10). The parameters are
σ = 3, θ = 1 and x2 = 0.5 (the state of the losing race at the time of the decision).

This framework gives a relation between response times and confidence that is repre-
sented in Figure 5.2.B. Confidence is a monotonic function of decision time, that decays
from 1 to 0.5. This decay is explained by the fact that fast trials are more likely to
correspond to higher drift rates, thus higher performances. Experimental measurements
have found such decay of confidence with respect to decision times (Vickers, 2014).

Other models have been proposed to model confidence within an evidence-accumulation
framework. Indeed, in the case of DDMs there is no losing race. To use the notion of
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balance of evidence, it has been proposed that the accumulation process continues after
the decision has been reached (Pleskac and Busemeyer, 2010; Navajas et al., 2016) and the
final location of the process is used as a proxy for confidence. Other models propose to
use different DDMs, each of them corresponding to a specific confidence level, the winning
DDM determines the confidence level of the trial (Ratcliff and Starns, 2013). In any
case, all these models have in common the fact that they attempt to characterize decision
times, accuracy and confidence, within a perceptual task, using a mechanism based on the
accumulation of evidence.

5.1.3 Neural substrates of decision confidence
Recent experimental studies have focused on understanding the representation of confidence,
seen as the subjective probability the decision chosen is correct, within the brain. The
first study addressing this question was the one of Kiani and Shadlen (2009). The
authors recorded neurons in the lateral intraparietal cortex (LIP) of behaving monkeys.
The animals were performing a specific version of the random dot motion task (RDM)
specifically designed to study confidence (opt-out task). In addition to the two choices
corresponding to the dots moving towards left or right, the monkeys could choose a third
target corresponding to a small but certain reward. Interestingly, the monkeys chose the
sure option in a way that is correlated with the chance of making the correct decision. They
chose the sure target more frequently when the probability of making the correct decision
was small (weaker motion strengths and smaller decision times). By analyzing the single-cell
recordings of the LIP neurons, Kiani and Shadlen (2009) showed that intermediate firing
rates at the time of the presentation of the sure target correspond to a higher probability
of choosing this target. This experiment linked the mechanisms of decision formation with
the establishment of a degree of confidence.

In the previous study, the link between the LIP neurons and confidence was implicit.
Experimental studies have found neurons that represent confidence explicitly: orbitofrontal
cortex in rats (Kepecs et al., 2008) and pulvinar neurons in monkeys (Komura et al., 2013).
In these studies, a single firing rate trace is informative of the confidence level. In the opt-
out task with the monkeys, the pulvinar neurons predict successfully the upcoming behavior
of the monkey. Moreover, inactivation of the pulvinar neurons did not lead to modification
of the performances in the categorization task but rather increased the probability of
choosing the sure target. These results indicate that confidence does not necessarily need
metacognition but can be computed using the decision variables (Figure 5.3).

If these results are in accordance with the balance of evidence framework in evidence-
accumulation model, one effect should be noted. It has been shown that confidence in
correct choices is stronger than confidence in incorrect choices, even when the choice
difficulty is controlled (Fetsch et al., 2014). In linear models such as DDM or IRM, this
effect can not be produced as the diffusion model parameters are invariant across correct
and incorrect trials. One solution to solve this problem is to consider diffusion models that
use post-decision evidence to estimate confidence. Another solution is to consider attractor
neural networks to model the decision-making process (Wang, 2002).

Various models have been proposed to model subjective confidence using attractor
neural networks (Rolls et al., 2010; Wei and Wang, 2015; Paz et al., 2016; Berlemont et al.,
2020). The most successful one consists in defining a relation between the confidence and
the difference of neural activity of the two neural populations at the time of the decision
(equivalent to the balance of evidence) (Wei and Wang, 2015; Berlemont et al., 2020). Wei
and Wang (2015) simulated the opt-out paradigm of Kiani and Shadlen (2009) using a
continuous attractor neural network. They showed that such network can reproduce the
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Figure 5.3: Oup-out task and pulvinar activites (adapted from Komura et al.
(2013)) . (A) Opt-out task performances as a function of the stimulus. (B) Normalized
firing rate as a function of the stimulus and the monkeys’ choice.

behavioral results and the single-neuron activity data from the experiment in Kiani and
Shadlen (2009). Moreover, the probability of choosing the sure target for the network is
closely linked to the balance of evidence between the neural activities in this model. More
recently, Jaramillo et al. (2019) have proposed a model of pulvino-cortical interactions that
can compute the absolute difference between two excitatory populations. They showed
that pulvinar responses in the model reflect decision confidence, and that a lesion to the
pulvinar leads to an increase number of escape trial, as in the experiment of Komura et al.
(2013). In the following section I will investigate closely the relation between behavioral
expression of confidence and a model of confidence using attractor neural networks.

5.2. Confidence reports and attractor neural networks
Among the different models of perceptual decision-making, attractor neural networks are
the ones which are not quantitatively, but only qualitatively, compared to behavioral data.
This is due to the complexity of fitting noisy non-linear systems with various parameters.
However, this is necessary if one wants to analyze specific behavioral effects and to compare
them with diffusion models. In this section, I present a method to fit an attractor neural
network on the behavioral task of the previous chapter and I analyze the representation of
confidence in the network. The equations of the mean-field version of the network are the
ones from Chapter 3.

5.2.1 Fitting an attractor network to behavioral data
When making a decision, the response times between the presentation of the stimulus
and the decision can be decomposed into two terms: a decision and a non-decision time.
The non-decision time is considered to be due to encoding and motor execution (Luce
et al., 1986). The first step to model behavioral data is to model this non-decision time as
it is not present in standard decision-making models such as attractor neural networks.
Diffusion models assume that the non-decision time is a constant across trials that can
be adjusted during the fit of the parameters. This assumption is based on the fact that
human studies of decision-making commonly report right-skewed response times (Ratcliff,
1978; Luce et al., 1986), and that the long right tails are well captured by drift-diffusion
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models (Ratcliff and Rouder, 1998).
However, with trained subjects, the right-skewed is less pronounced and the response

times can be accurately reproduced by a Gaussian distribution (Peirce, 1873). Moreover,
experiments in monkeys do not show such long right tails in response times histograms (Dit-
terich, 2006). Verdonck and Tuerlinckx (2016) proposed a mathematical method to fit a
non-parametrical non-decision time distribution. Analyzing various humans experimental
data with this method within the framework of drift-diffusion models, they find that
strongly right skewed non-decision time distributions are common. These findings suggest
that the assumption of a constant non-decision time is quite arbitrary and that, on the
contrary, the non-decision times are indeed a right-skewed distribution.

In contrast to diffusion models, when assuming a constant value for the non-decision
time, attractor neural network models cannot account for the right-skewed distributions,
but accurately reproduce the shape of the distributions in monkeys experiments (Wang,
2008). For the range of parameters I will consider, the decision-time distribution can be
approximated by a Gaussian distribution. To estimate the non-decision time distribution
in attractor neural networks I propose the following procedure.

As discussed previously, I consider that the non-decision time (NDT) distribution is an
exponentially modified Gaussian (EMG) distribution:

ρNDT (t) = λNDT
2 exp

(
λNDT

2 (2µ+λNDT σ
2
NDT −2t)

)
erfc

(
µNDT +λNDT σ

2
NDT − t√

2σNDT

)
(5.11)

with erfc the complementary error function. The NDT distribution is thus fully described
by the three parameters λNDT , µNDT and σNDT . Assuming that there are no correlations
between the decision and the non-decision time distribution:

ρmodel(t) = ρdecision(t)∗ρNDT (t) =
∫ t

0
ρdecision(t−u)ρNDT (u)du (5.12)

with ρmodel the response time distribution of the full model and ∗ standing for the convolu-
tion operation. Under the assumption that the decision time distribution is a Gaussian
distribution, ρmodel is an EMG distribution. Taking the characteristic function of the
distributions, Equation 5.12 can be rewritten in:(
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(5.13)

The goal is to fit the behavioral data of the experiment, hence one can identify the different
parameters in the previous equation:

λNDT = λdata, (5.14)

〈NDT 〉= µNDT + 1
λNDT

= 〈RT 〉data−〈RT 〉decision (5.15)

and
σ2
NDT = σ2

data − σ2
decision . (5.16)

The parameters of the NDT distribution are thus defined using the parameters of the
decision time distribution. The calibration of the attractor network is performed separately
for each participant and each block (see Appendix 1). The cost function is based on the
mean response times and accuracy of the participants for each stimulus difficulty.
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The model reproduces faithfully the mean response times and accuracy of the par-
ticipants across the different blocks (Figure 5.4). Secondly, the values of the parameters
obtained for the pure and confidence blocks are different. Participants have higher decision
threshold (Signed Rank test Wilcoxon (1945) p= 0.03), higher stimulus strength level by
angle (Signed Rank test, p = 0.031) and higher mean non-decision times (Signed Rank
test p = 0.03). As mentioned earlier, the fitting procedure allows to estimate the NDT
distribution.
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Figure 5.4: Mean response times (A,C) and accuracies (B,D) as a function of
the absolute value of stimulus orientation, in the pure (A and B) and confidence
(C and D) blocks. For each subject I represent the behavioral data (red dots) and the
associated fitted model (blue line). Error bars are 95% confidence interval using the
bootstrap method.

In Figure 5.5, I show the histogram of the response times across participants for the
pure and confidence blocks. The red curve shows the distribution of non-decision times in
the model, and the black curve the response times distribution of the model. One should
note that, with a fit only based on the mean response times and accuracies, the model
also accurately accounts for the distributions of response times. I find that the minimum
value of non-decision time is 75 ms for the pure block, and 100 ms for the confidence
block, and the average non-decision times are within the order of magnitude of saccadic
latency (Luce et al., 1986; Mazurek et al., 2003a). Finally, the NDT distributions clearly
show a right skew for several participants, in agreement with Verdonck and Tuerlinckx
(2016). This justifies the modelling of non-decision times with an exponentially modified
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Gaussian distribution (EMG), instead of simply adding a constant non-decision time to
every decision time.

a b

Reaction time (s) Reaction time (s)

Participant 1 Participant 2 Participant 3 Participant 1 Participant 2 Participant 3

Participant 4 Participant 5 Participant 6 Participant 4 Participant 5 Participant 6

Figure 5.5: Distributions of RTs for each subject (A) Pure block data, (B) confidence
block data. For both panels: In blue, participants’ histograms of the response times; Black
curve: density of response times of the simulated network model; Red curve: the associated
non decision response times distribution.

5.2.2 Confidence model
To model confidence within the attractor neural network, I made the hypothesis that
the confidence in the decision is based on the difference ∆r between the neural activities
of the winning and losing neural pools, measured at the time of the decision (balance
of evidence) (see Figure 5.6 and Figure 5.7). In the experiment from chapter 4, the
measure of confidence is the one reported by the subjects on a discrete scale, and it is
this reported confidence level that I want to model. I used the parameters obtained by
the fitting procedure of the previous section, and the simulation protocol is similar to
the experimental procedure. Within this framework, I quantitatively link this empirical
confidence to the neural difference ∆r by matching the distribution of the neural evidence
balance with the empirical histogram of the confidence levels. This is done by using a
procedure called histogram matching (Gonzalez et al., 2002) between the distribution of
the neural balance of evidence and the discrete distribution of the reported confidence.

One important point of this analysis is that the shape of the mapping is not chosen a
priori but is non-parametrically inferred from the experimental data. This is in contrast
with previous studies in which the sigmoidal shape is imposed (Beck et al., 2008a; Kepecs
et al., 2008; Kepecs and Mainen, 2012; Wei and Wang, 2015). However, I find that, for
each participant, the mapping is well-approximated by a sigmoidal function of the type
1/(1 + exp(−β (∆r−κ))), with participants specific parameters κ and β. The similarity
of my findings thus suggests that the human reported confidence can be understood as a
discretization of a probabilistic function.

Studies have shown that confidence ratings are closely linked to response times (Baranski
and Petrusic, 1994; Desender et al., 2018a) and choice accuracy (Peirce and Jastrow, 1884;
Baranski and Petrusic, 1994; Sanders et al., 2016; Desender et al., 2018a). Response
times decrease and accuracy increases with confidence. In what follows, I study whether
the neural balance of evidence can account for the link between the behavioral data:
response times, accuracies and confidence reports. Figure 5.8 represents the response times
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(C) (D)
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Figure 5.6: Confidence matching procedure (A) Example of the dynamics of a decision.
(B) Function f that performs the matching between ∆r and the confidence (C) Schematic
version of the histogram of ∆r (D) Histogram of the confidence of the participants.

(Figure 5.8.A) and choice accuracy (Figure 5.8.B) with respect to the reported confidence
level for each participant. The data points show the experimental results (with the error
bars as the bootstrapped 95 % confidence interval), and the colored line the result of the
simulation (with the light colored area the bootstrapped 95 % confidence interval). I find
a monotonic dependency between response times and confidence, and between accuracy
and confidence, but with specific shapes for each participant. One should note that some
values of confidence are only observed for a few trials, resulting then in large error bars
especially for accuracy as it consists in the mean of a binary variable. For the numerical
simulations, the relatively large size of the confidence interval is due to the limited number
of trials, since the simulation protocol is the same as the experimental one (same number
of trials). These results show that an attractor neural network can correctly reproduce the
psychometric and chronometric functions with respect to confidence for each participant,
despite the important difference of response times between participants.

5.2.3 Sequential effects and confidence

In chapter 3, I showed that an attractor neural network, using a simple relaxation dy-
namics, could reproduce various sequential effects observed in perceptual decision-making
experiments such as history biases and post-error slowing. Very recently, the effects of
confidence on the history biases have been experimentally investigated (Braun et al., 2018;
Samaha et al., 2018; Desender et al., 2018b). One main finding is that decisions with high
confidence confer stronger biases upon the following trials. Here, I investigate the influence
of confidence upon the next trial in the empirical data, and I will show that the results are
well reproduced by the behavior of the dynamical neural model.

First, I performed a statistical analysis of the effect of history biases on response times
in the experimental data. To perform this analysis, I transformed the response times of
each participant using the z-score (Kreyszig, 1979). This allows us to study all participants
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Figure 5.7: Matching network confidence measure to empirical behavioral con-
fidence. (A) Confidence histograms. The x-axis gives the value of the confidence on a
discrete scale from 0 to 9. Each sub-panel corresponds to a different participant with, in
blue, the histogram of the reported confidence, and in orange, the one from the model.
For clarity I plot the blue and orange bars side by side, but the bins of the histograms
are, by construction, identical. (B) Transfer function F for each participant. The x-axis
denotes the difference in neural pools activities ∆r at the time of the decision, and the
y-axis the cumulative distribution of ∆r. Each point represents the levels of ∆r delimiting
the level of confidence (from left to right, confidence level 0 to confidence level 9). The
dashed colored curve is the cumulative distribution function (CDF) and the light blue
dashed curve is the fit of the CDF by a sigmoid.

together as the response times are now normalized. I used RStudio (RStudio Team, 2015)
with the package lme4 (Bates et al., 2015) to perform a linear mixed effects analysis Gelman
and Hill (2007) of the history biases of the reaction times. The linear mixed effects model
(LMM) I consider assumes that the logarithm of the response time at trial n, RTn, is a
linear combination of factors as follows:

ln(RTn) = a0,p+a1,p|θ|+a2xrepetition +a3,p ln(RTn−1) +a4Confn−1 (5.17)
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Figure 5.8: Response times and Accuracy as a function of confidence. (A) Re-
sponse times, (B) Accuracy. For both panels: each sub-panel represents a different
participant. Dots are experimental data with 95% bootstrapped confidence interval as
error bars. Lines are averages over 20 simulations of the attractor neural network model.
The shaded area represents the 95% bootstrapped confidence interval on the mean.

with xrepetition a binary variable taking the value 1 if the correct choice for the current trial
is a repetition of the previous choice (and 0 otherwise), θ the orientation of the Gabor
(in degree), RTn−1 the response times of the previous trials, and Confn−1 the confidence
of the previous trial coded as 0 for low and 1 for high. The subscript p in a coefficient
(e.g a0,p) indicates that for this parameter a random slope per participant is allowed. For
each participant, a trial is considered low confidence (resp. high confidence) if the reported
confidence is below (resp. above) the participant’s median.

To ensure that the chosen model is the preferable one I compared it to other ones that
do not include all the combinations of factors. This comparison is done using the ANOVA
function (with the lme4 package Bates et al. (2015)) that performs model comparison
based on the Akaike and Bayesian Information Criteria (AIC and BIC) (Bates et al., 2014).
Table 5.1 presents the results of this comparison and shows that our LMM is preferable in
all cases.

Df AIC BIC LogLik. p value
a0,p+a1,p|θ|+a2xrepetition +a3,p ln(RTn−1) +a4Confn−1 12 -335 -254 180
a0,p+a1,p|θ|+a2xrepetition +a3,p ln(RTn−1) 11 -324 -249 173 0.0003
a0,p+a1,p|θ|+a2xrepetition 7 -4 -42 9 <2e-16
a0 +a1|θ|+a2xrepetition +a3 ln(RTn−1) +a4 ln(Confn−1) 7 -225 -177 119 <2e-16
a0 3 -475 -495 -234 <2e-16

Table 5.1: LMM tests on experimental data, models comparison. The first row
gives the tests for the LMM from Eq. 5.17. The p-values are for the tests based on BIC and
AIC (Bates et al., 2014) between the LMM from Eq. 5.17 and the one of the corresponding
row.

The results of the analysis of the experimental data are presented in Table 5.2. In line
with previous work, higher orientations lead to faster response times and the repetition
biases on response times (Cho et al., 2002). Moreover, high confidence has the effect of
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speeding up the following trial. Finally, I find that the previous response time has an effect
on the subsequent one, meaning that the participants have the tendency to show sequences
of fast (or slow) response times.

Estimate Std. Error df t-value Pr
a0,p 5.428 1.466e-01 9.0 37.038 6.92 ·10−11 ***
a1,p −0.1027 0.02390 9.0 −4.296 0.002001 **
a2 −3.402 ·10−2 2.840 ·10−3 8.472 ·103 −11.978 < 2 ·10−16 ***
a3,p 1.517 ·10−1 1.651 ·10−2 7.0 9.187 3.23 ·10−5 ***
a4 −2.063 ·10−2 5.969 ·10−3 5.537 ·103 −3.456 0.000553 ***

Table 5.2: Results of the application of the LMM from Eq. 5.17 on the experi-
mental data. ∗∗ stands for p < 0.005 and ∗∗∗ for p < 0.001.

The next step is to investigate whether the model can reproduce these various sequential
effects or not, even being calibrated only on the mean response times, without the serial
dependencies. The results are shown in Table 5.3 and I will summarize them below.
The model captures the variation of response times with respect to angle orientation, as
expected from Wong and Wang (2006) and observed in the experiment. The repetition
bias is correctly reproduced too. Quite remarkably, the model shows an effect of confidence
on response times, with a negative slope, as in the experiment.

Estimate Std. Error df t value Pr
a0,p 5.999 0.08032 4.229 74.690 9.22 ·10−8 ***
a1,p −0.01744 5.551 ·10−4 2.886 −31.420 9.47 ·10−5 ***
a2 −0.1814 8.133 ·10−3 4.822 ·103 −22.301 < 2 ·10−16 ***
a3,p −0.02075 1.545 ·10−2 4.628 −1.343 0.24139
a4 −0.02324 8.336 ·10−3 4.847 ·103 −2.788 0.00533 **

Table 5.3: Results of the application of the LMM from Eq. 5.17 on the data
from the neural network simulations. ∗∗ stands for p < 0.005 and ∗∗∗ for p < 0.001.

Underlying neural dynamics.
The analysis of the dynamics performed to understand how the neural dynamics leads
to these confidence-specific effects is similar to the one done in chapter 3. Figure 5.9
presents the result of this analysis. On each panel, I compare the mean neural dynamics
for post-low and post-high confidence trials (respectively red and blue lines). Without
loss of generality, one can assume that the previous decision was a C grating (clockwise).
The relaxation dynamics between two consecutive trials are different, resulting in different
starting points for the next trial, from post-low and post-high confidence trials. Panel (A)
corresponds to the case where the new stimulus is also C oriented ("repeated" case), at low
strength level. The ending points of the relaxations fall into the correct basin of attraction.
Because the post-high confidence relaxation lies deeper into the basin of attraction than
the one of post-low trials, the subsequent dynamics will be faster for post-high confidence
trials in this case. Panel (B) represents the case, still at low stimulus strength, where the
stimulus orientation of the new stimulus is the opposite ("alternated" case) to the one
corresponding to the previous decision (hence an AC grating). Both dynamics lie close
to the basin boundary of the two attractors, thus the dynamics are slow and there is no
significant difference between post-low and post-high confidence trials. In panels (C) and
(D) I represent the same situations as panels (A) and (B), respectively, but for high strength
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levels (easy trials). The ending points of the relaxations are far from the boundary of the
basins of attraction, whatever the grating presented. The response times for post-high and
post-low confidence trials are thus similar. This analysis shows that the non-linearity of
the network dynamics is responsible for the considered sequential effect. Indeed, in the
absence of non-linearity, the repeated and alternated cases would compensate each other
and there would be no specific effect related to the basin boundaries.

Mean post high confidence relaxation

Figure 5.9: Non linear dynamics in post-low and post-high confidence trials.
Phase-plane trajectories (in log-log plot, for ease of viewing) of the post low and high
confidence trials. I assume that the previous decision was decision C. The axes represent
the losing neural pool SL and the winning neural pool SW at the previous trial. The blue
color codes for post-high confidence trials, and the red one for post-low confidence. Panels
(A) and (B): Repeated and alternated case for low orientation stimuli; Panels (C) and (D):
Repeated and alternated case for high orientation stimuli. In order to compare the decision
times, the dynamics starting at the onset of the next stimulus is followed during 200ms,
as if there were no decision threshold. The actual decision occurs at the crossing of the
dashed gray line, indicating the threshold.

The next step is to compare this analysis of the dynamics of the model with the
experimental data. To do so, I regrouped the response times of the experiment into the
same categories: high and low stimulus strength, repeated or alterned trials. Within each of
these four categories, I compare the post-high and low confidence trials, using a t-test (Fay
and Proschan, 2010). The results are the following: mean response times between post-low
and high confidence trials are different in the low orientation and repeated case (t-test,
p= 0.044), but are identical in the three other cases. This is an important point, as the
dynamics of the model does not only reproduce the global effect of confidence on the next
trial, but also difference between high and low orientations trials.
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5.2.4 Attractor neural networks vs. other models
As discussed previously, various models have been proposed in order to model confidence
during decision-making. Here, I will compare our model with other models that have
been proposed. Previous studies found that, during a perceptual task, reported confidence
increases with stimulus strength for correct trials, but decreases for incorrect trials (Kepecs
et al., 2008; Sanders et al., 2016; Desender et al., 2018b). This effect is in accordance with
a prediction of statistical confidence, defined as the Bayesian posterior probability that the
decision-maker is correct (Griffin and Tversky, 1992; Sanders et al., 2016; Navajas et al.,
2017). I investigated this effect within my framework. Figure 5.10 represents the mean
confidence as a function of stimulus strength, for correct and error trials. One can note
that, indeed, the participants exhibit this behavior but that the attractor neural network
is able to capture this tendency. Thus, an attractor network model of decision-making
reproduces a key feature of statistical confidence.

Figure 5.10: Confidence as a function of stimulus strength. I represent the mean
confidence as a function of stimulus orientation in correct trials (green), and in error
trials (red), for the experimental data (points) and the model simulations (lines). With
parameters resulting from the fit on the confidence block, the numerical protocol mimics
the experimental one (same number of trials, and same angle values). Due to the discrete
levels of confidence, and the high performance in the task, I combined the data of all
subjects to get enough statistics. The shaded areas (resp. error bars) denote the 95%
bootstrapped confidence interval on the mean for the simulation (resp. data)

Another question one could ask is how the attractor network model performs with
respect to other dynamical models. To address this question I will consider another
non-linear model that has been used to model decision-making, the Usher-McClelland
model (Usher and McClelland, 2001). The equations of this model are the following:

τdx1 =−kx1dt−βf(x2)dt+ I1 +σµ1(t) (5.18)
τdx2 =−kx2dt−βf(x1)dt+ I2 +σµ2(t) (5.19)

with µi(t) a white noise process and Ii the input current to the system. The external input
is defined as Ii = 0.5±cθ, with cθ the strength per angle as in the attractor neural network.
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σ = 0.4 denotes the strength of the noise, k the relaxation strength, τ = 0.1 the relaxation
time and β the inhibitory term. Finally, the function f is a sigmoidal function of gain
G = 0.4 and half-activity offset d = 0.5, f(xi) = 1/ [1 +exp(−G(xi−d)]. The dynamics
occurs until a threshold z is reached for one of the two units. It should be noted that,
despite the non-linearity, the Usher-McClelland model is closer to drift-diffusion models
than to biophysical attractor models. This is principally due to the fact that the only
non-linearity is in the interaction between both units. Thus, reductions to one-dimensional
drift diffusion models can be made in various ranges of parameters (Bogacz et al., 2006).

I fit this model to the experimental data using the same procedure as for the attractor
neural network (see Appendix A for more details). The resulting parameters are the
following:

The next step is to define confidence in a similar way as with the attractor model using
the balance of evidence and the histogram matching procedure.
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Figure 5.11: Mean response times (A,C) and accuracies (B,D) as a function of
the absolute value of stimulus orientation for the Usher-McClelland model, in
the pure (A and B) and confidence (C and D) blocks. For each subject I represent the
behavioral data (red dots) and the associated fitted Usher-McClelland model (blue line).
Error bars are 95% confidence interval using the bootstrap method.

Figure 5.11 presents the relation between reaction times, accuracies and confidence for
this model. At first sight the fit between numerical simulations and experimental data
looks accurate. However, it is only true for intermediate value of confidence. For some
of the participants (Participant 1, 4 and 5), there is a strong divergence of the model
at high confidence. This can be understood by the fact that, in this model, firing rate
variables can take negative values (the steady state corresponds to a symmetric state with
negative values). This leads to extreme values of confidence for long trials. Moreover, for
some participants (such as 1 and 4), the trend in accuracy, despite being always increasing,
is not correct. This highlights the fact that, even with the same model for confidence,
discrepancies between models of decision-making exist. It is then possible to distinguish
different models by comparing them on different aspects of decision-making.

Finally, the last model I will compare to the attractor model is the independent race
model (IRM). I chose this model because it is possible to define confidence using the
balance of evidence. Such models have been successfully used to model decision-making
experiments. I will investigate the notion of sequential effects with the IRM. As already
mentioned in a previous chapter, when studying sequential effects with models such as the
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Figure 5.12: Schematic dynamics of a race model with a relaxation mechanism.
The upper and bottom dash lines correspond to the two opposite decision thresholds. The
blue trajectory is a typical winning race. The black rectangle on the x-axis denotes the
onset of the next stimulus, hence the end of the relaxation period. The green and orange
trajectories are the loosing races in two trials with different confidence outcomes. The
green and orange dashed lines represent the mean dynamics of these two races during the
presentation of the next stimulus.

IRM, the parameters are allowed to change between each condition. This characteristic
does not seem to be biophysically plausible and, to compare with the attractor network, it
is necessary to extend the IRM with a relaxation dynamics. After a decision is made, both
units receive a non-specific inhibitory input leading to a relaxation until the next stimulus
is presented (Figure 5.12). Within this extended IRM framework, one can study how the
sequential effects would be correlated with confidence in an IRM model with a fixed set of
parameters.

Since in the IRM there is no interaction between the two races, the relaxation of the
winning race is the same in both low and high confidence trials. However, the ending point
of the relaxation following a decision is closer to the base-line (0 line) for a high confidence
trial than when it comes to a trial with low confidence trial (Figureé5.12). For the next trial,
if the winning race is the same as previously, then the mean response times are identical
in low and high confidence cases. However, if the opposite decision is made, the response
time in the post-low confidence case is faster than the one in the post-high confidence case
(Figure 5.12).This behavior is in contradiction with the experimental data for which the
opposite effect is observed. This conclusion applies more generally to any race-type model
without interactions between units. It highlights the fact that the non-linearity of the
attractor neural networks is a key property in order to reproduce the sequential effects due
to confidence in perceptual decision-making.
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In this part I describe the work I have performed during the second half of my PhD. It
concerns the initial project of my PhD that was the study of a dynamical network that
would perform both part of a categorization task: the coding of the stimulus and the
decoding in order to perform the decision. Categorization tasks have many perceptual
effects that are observed at different levels: from psychophysics to neurophysics.

My work has focused on understanding the effect of the neural coding on the learning
process of the categorization task, when the decision layer is composed of an attractor
neural network. I show that a classic Hebbian learning does not allow the network to learn
efficiently the categorization task. I make use of the previous part to study the effect that
confidence can have on the learning process. I show that a modulation of the Hebbian
learning by the confidence allows the network to learn efficiently the categorization task.

The different results that I present in this part will be published in an article currently
in preparation:
• Berlemont, K. and Nadal, J. P. (2020). Confidence-modulated Hebbian learning effi-

ciently extracts category membership from stimuli encoded in view of a categorization
task.



6
An overview of categorical perception

6.1. Categorical perception
Our perception of the world is divided in many different categories. One typical example
is the perception of colors. Colors differ only in their wavelengths, which are continuously
distributed among the spectrum of visible colors. However, we perceive the changes in
colors gradually, from red to yellow to green for example. This is an example of how
perceptual boundaries have arisen on a continuum to divide it into discrete categories. In
this chapter I review the different perceptual findings that have been observed in categorical
perception, and the different models that have been proposed to mimic them.

6.1.1 Categorical perception
The effect of categorization on perception can be studied thanks to psychophysics exper-
iment. The phenomenon is called categorical perception (CP) and denotes the fact that
differences between objects that belong to different categories are exaggerated, and objects
within the same category look more similar. These differences can be quantitatively tested
experimentally by comparing the performances in the discrimination and the categorization
task. The discrimination task requires to tell apart stimuli presented in pairs (if they are
different or not), and the categorization task to tell if the two stimuli belong to the same
category.

Categorical perception has been observed in many different frameworks such as in
color perception (Roberson and Davidoff, 2000), phonemic perception in speech (Liberman
et al., 1957), perception of facial expressions (Etcoff and Magee, 1992). Figure 6.1 shows
an exemple of phoneme discrimination (Liberman et al., 1957). Panel A represents the
identification between different phonemes boundaries such as /be/ and /de/. The person’s
perception varies rapidly as the stimulus crosses the boundary between the categories. The
perceiver’s ability to discriminate between two sounds peaks near the boundary separating
phonemic categories (Panel B).

6.1.2 Neuronal evidence
Despite the various psychophysics studies on categorical perception, very few studies focus
on the underlying neuronal mechanisms (Sigala et al., 2002). During the training of a visual
categorization task, improvements of performances are accompanied by a small change
of tuning in the early visual cortex (Yang and Maunsell, 2004). However, the changes in
inferior temporal and posterior parietal cortex are more significant. Neurons in the LIP learn
to represent the category membership of the stimuli, almost in a binary manner (Freedman
et al., 2001; Freedman and Assad, 2006). Moreover, this encoding can shift when the
monkeys learn to associate new categories to the stimuli. In constrast, neurons in the MT
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Figure 6.1: Discrimination between phonemes in a discrimination task with human partici-
pants. Figure adapted from Liberman et al. (1957).

area do not present this selectivity with respect to the categories (Freedman and Assad,
2006).

Very recently, researchers have investigated the stimulus categorization task in ro-
dents (Xin et al., 2019). They study the reshaping of the tuning maps of neurons in the
auditory cortex during the categorization task and the passive condition. They found
that neurons in the auditory cortex are modulated by the task. They exhibit dynamic
reorganization of population response, with neurons exhibiting emergent selectivity to
stimuli near the category boundary. These neurophysiological experiments highlight the
fact that learning a categorization task not only modifies the perceptual response but the
neuronal response too.

6.2. Population coding
Population coding has been deeply studied, principaly in the context where the task is to
infer a stimulus from the neural code. As described in the previous section, categorization
has many effects on neural coding and on the behavior. However, very few studies focused
on population coding in the context of a categorization task. Here, I will present the
different results and hypotheses that have been proposed.

6.2.1 Fisher information
Neural coding of categories can be studied in the context of the information theory
framework (Cover and Thomas, 2012). The goal is to code a discrete set of categories,
µ= 1, · · ·M . To do so, a layer of N neurons receives a stimulus x ∈RK and produces a
response r = (r1, · · · , rN ). Each neuron is a Poisson neuron characterized by a tuning curve
under the form of a bell-shaped function (Tolhurst et al., 1983):

fi(x) = exp
(
−(x−µi)2/

(
2σ2

i

))
(6.1)

with µi the center of the tuning curve and σi its width. The number of spikes ri that
neuron i emits during an interval τ is:

Pi(ri|x) = fi(x)ri

ri!
exp(−fi(x)) (6.2)
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Under the assumption thatN >> 1 and that the input dimensionK<<N , one has (Bonnasse-
Gahot and Nadal, 2008):

I(µ,x)− I(µ,r) = 1
2

∫
dxp(x)Fcat(x)

Fcode
(6.3)

with µ the category membership, x the stimulus,r the neural response of the coding layer
and I the mutual information. The Fisher information that compose the formula are the
following:

Fcode(x) =−
∫
dNrP (r|x)∂

2 logP (r|x)
∂x2 (6.4)

Fcat(x) =−
∑
µ

P (µ|x)∂
2 logP (µ|x)

∂x2 (6.5)

Fcode denotes the Fisher information characterizing the sensitivity of r with respect to x,
and Fcat the Fisher information characterizing the sensitivity of µ with respect to x.

The optimal code will depend on Fcat. In the case of smoothly overlapping categories,
Fcat is zero in domains where P (µ|x) is flat. Therefore, the optimization will lead to
neurons that have sharp tuning curves at the boundary.

Now I present the analytical computations to obtain the distributions of tuning curves
that I have performed during my PhD. I minimize the quantity of Equation 6.3 using the
Lagrange multiplier method. I make the assumption that all the tuning curves correctly tile
the space which leads to a dependency of the Fisher information of the neural code Ganguli
and Simoncelli (2014) in d2, with d the density of tuning curves. The loss function is the
following:

L= 1
2

∫
p(s) Fcat(s)

Fcode(s)
ds+λ(

∫
d(s)ds−N)

= 1
2

∫
p(s)Fcat(s)

d2(s) ds+λ(
∫
d(s)ds−N) (6.6)

with λ the parameter corresponding to the constraint of a fixed number of neurons. Taking
the derivative with respect to d(s), I obtain that:

d(s)∝ (p(s)Fcat(s))1/3 (6.7)

The width of the tuning curves is obtained with 1/d(s). From this formula one can
first observe that the density of tunig curves follows Fcat. As already mentionned, more
tuning curves with sharper slopes are present near the categories boundary. Moreover,
the distribution of stimulus p(s) has the same effect as Fcat. For highly non-uniform
stimuli distribution, the density of tuning curves will be shaped in order to represent this
non-uniformity and not just the behavior of Fcat. Finally, it is worth noting that the
equation on d(s) can be obtained for different normalization constraints. For example, if
the maximal values of the tuning curves is modulated by a function g(s) with a constraint
on
∫
p(s)gk(s)ds, one can obtain the following result:

g(s)∝ (p(s)Fcat(s))1/(3k+1) (6.8)

d(s)∝ (p(s)Fcat(s))
k

3k+1 (6.9)

One can note that, as k→∞, the result of the optimization is similar to the one ithout
the parameter g(s).
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Figure 6.2: Tuning curves in a coding layer. (A): Results of the optimization of the coding
layer with respect to Fisher information. In black I show the categories used in this
example, and in blue ∆Fcode = Fcode−Fcode(uniform) the difference of Fisher information
between the optimized layer and the uniform distribution of tuning curves. (B): Example
of the tuning curves of a coding layer of 15 neurons in the case of two gaussian categories
of width 0.25 and centered in 0 and 1 respectively. The curves in red correspond to the
tuning curves in the case of an uniform distribution, and in blue after optimization of the
distribution of tuning curves.

6.2.2 Top-down feedback
The other class of models that analyze the neural coding of categories makes use of a
top-down feedback (see Figure 6.3) (Tajima et al., 2016, 2017). The input is sent to the
hue selective neurons that project to the category selective neurons. These neurons send a
feedback projection to the hue selective neurons. This leads to a modulation of the activity
of the hue selective neurons towards the center of the different categories. The model has
shown to replicate clustering of population toward categorical centers, an effect that has
been observed in experimental studies (Brouwer and Heeger, 2013) (Figure 6.3.B).

However, in the model, there are two main problematics. First, the connections between
the hue selective neurons and the category neurons are imposed. It is not clear how the
feedforward and the feedback connections could be learned due to the strong interaction
between the layers. Second, the different frameworks that have been proposed with this
architecture have all one thing in common: there is no noise in the system. This can not
be adressed by just adding noise within the system. For instance, in the model of Tajima
et al. (2017) the category neurons are modelled by an attractor neural network. However,
if there was noise in the dynamics, the top-down feedback would bias the decision towards
the wrong decision if the noise was in this direction. Therefore, it is not clear how to
characterize the effect of top-down feedback in a dynamical model that would characterize
the neural coding of categories.

In the next chapter, I adress the question of how a network can learn a categorization
task and the different effects that are observed.
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Figure 6.3: Top-down feedback model (adapted from Tajima et al. (2016)). (A):
Cycle of the modulated activity of the network. The bottom line of neurons represents
the hue selective neurons and the upper neurons the category selective neurons. (B): The
colored dots indicate the stimulus properties represented by simulated neural population
activities, by “decoding” the population activity. Light-colored dots indicate the input
stimuli while the dark-colored dots represent the neural population representation. The
colors of markers correspond to those of presented stimuli. There were three categories
whose centers were in direction of −π, −π/3, π radians.





7
Learning a categorization task: the impact of confidence

7.1. Coding and Decoding during a categorization task
Task-specific neural representations develop across different cortical areas (Cromer et al.,
2010; Fitzgerald et al., 2011) during the learning of a perceptual task. These representations
are accompanied by a modification in the tuning properties of the neurons. However,
most models of decision-making consider a uniform coding of the stimulus before the
decision part (Drugowitsch et al., 2019; Beck et al., 2008b). In this section, I review two
different frameworks that have studied a model that encodes the stimulus and performs
the categorization task.

7.1.1 Probabilistic framework
Bonnasse-Gahot and Nadal (2012) consider a probabilistic framework that is based on
the population coding that I described in Chapter 6. The model architecture is shown in
Figure 7.1.A and consists in a feedforward neural architecture. A population coding layer
encodes the stimulus and a read-out provides an estimate of the posterior probabilities. In
a second step, the decision process occurs as a diffusion model is applied to the output of
the network. This approach is different from the standard diffusion model that I described
in the Introduction. Indeed, this framework allows to study the effect of neural coding on
behavioral measures. Especially, it links an optimal population coding to quantities that
are measurable in a categorization task.

The two main results are the following:
• One can derive a relationship between the optimal decoding (Bayesian point of view)
and the encoding efficiency under the form of the mutual information between the
neural activity and the categories.
• Due to the optimized population coding, the variance of the input of the diffusion
model is stimulus dependent. The model reproduces the mean reaction time of
the psycholinguistic experiment of Ylinen et al. (2005) and explains the difference
between a group of participants for which one can assume an optimized coding and
one for which this is not the case (Figure 7.1.B).

7.1.2 Recurrent neural network framework
Recently, Engel et al. (2015) have investigated the learning of categories within a recurrent
neural network architecture in the context of a direction categorization task. The network
architecture is described in Figure 7.2.A. Initially, both neural populations (association
and sensory neurons) are described by neurons whose preferred stimuli are equally spaced
within the possible directions. Therefore, at the beginning, the coding that is performed
by the network consists in a uniform one. The synaptic connections that go from the
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Figure 7.1: Figure adapted from Bonnasse-Gahot and Nadal (2012). (A): Model
architecture. (B): Mean reaction times as a function of the stimulus presented, for the
two groups of subjects. The open circles indicate the mean reaction times obtained in the
experiment for each stimulus (Ylinen et al., 2005), whereas the red line corresponds to the
model prediction. On the left, the data corresponding to the native speakers of Finnish,
on the right, those corresponding to the Russian group.

sensory neurons to the association neurons and from the association neurons to the decision
neurons are plastic. The plasticity consists in a reward-modulated Hebbian learning through
top-down modulation (Schultz et al., 1997; Frémaux et al., 2010; Loewenstein and Seung,
2006).

During learning, a transformation of tuning in association neurons occurs and category
selectivity emerges. This change is driven by the plasticity between sensory and association
neurons. For the neurons that initially preferred directions near category centers, tuning
curves broaden. For neurons that initially preferred directions near categories boundaries,
tunig curves shift towards centers of categories (see Figure 7.2.B). Both behaviors lead
to slope of tuning curves that are sharper at the boundary between categories, which is
characteristic of an optimization of Fischer information (see Chapter 6).

These two frameworks have shown that specific effects arise when the coding of a
stimulus is taken into account during the learning of a categorization task. In the next
section I will study the effect of having an optimized coding layer within an attractor
neural network framework.
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Figure 7.2: Figure adapted from Engel et al. (2015). (A): Model architecture. The
network comprises a sensory (MT), an association (LIP) and a decision neural circuits.
(B): Tuning profiles of two example association neurons before (grey dashed line) and after
learning (coloured dots—firing rates, black solid line—best-fitted tuning function).

7.2. Confidence-modulated Hebbian learning
When the environment is changing and uncertain, learning is accompanied by a sense of
confidence about the different predictions (Nassar et al., 2010). This sense of confidence
plays a functional role in learning (Nassar et al., 2010; Meyniel and Dehaene, 2017) as
it sets the balance between predictions and new information. Many studies reported the
existence of surprise signals in the brain, i.e a strong signal in presence of unexpected
stimulus (Hillyard et al., 1971; Summerfield and De Lange, 2014). More recently, it has
been shown, using fMRI (Meyniel and Dehaene, 2017), EEG (Jepma et al., 2016; Nassar
et al., 2019) or MEG (Meyniel, 2019) that this surprise signal is modulated by confidence.
This suggesst that a confidence-weighting in the brain occurs in the brain in order to
calibrate the response in a complex environment. This mechanism could be crucial in order
to implement adjustable learning rate in the brain (Meyniel and Dehaene, 2017), as it has
been shown that human learns with adjustable learning rate (Behrens et al., 2007).

From a theoretical point of view, the influence of having hard bounds on the learning
rate has been studied in the framework of storing memories within recurrent neural
networks (Alemi et al., 2015). The authors showed that having a modulation of the
learning process by the distance to a specific decision bound allows to obtain a storage
capacity close to the one predicted by analytical computation. Recently, it has been
shown (Drugowitsch et al., 2019), in the context of Bayesian learning, that the optimal
learning rate for categorization tasks should depend on the confidence in one’s decision.
Here, I adress the effect of confidence on the learning process of a categorization task in an
attractor neural network framework.

7.2.1 Two-layers model
Architecture
The neural circuit model is composed of two layers: the coding layer and the decision layer
(Figure 7.3.A). The coding layer is simulated by N Poissons neurons whose firing rates are
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described by a bell-shaped tuning curve (Tolhurst et al., 1983):

fi(x) = exp
(
−(x−µi)2/

(
2σ2

i

))
(7.1)

with µi the centers of the tuning curves, x the stimulus presented and σ2
i the variance.

The coding layer can either be uniform or optimized with respect to the categorization
task (Chapter 6). The decision layer is composed of two populations representing the
categorical choice. It consists in the same attractor network as I have presented through
this manuscript. The decision layer pools the activity from the coding layer through
synaptic connections that undergo plasticity across trials.

Each unit of the decision network is described by the equations in Chapter 3. Unless
otherwise stated, the parameters and equations are the ones of Chapter 3.

i ∈ {1,2}, dSi
dt =−Si

τS
+ (1−Si)γf (Ii,tot) (7.2)

with Si the synaptic activities of the populations. The current Ii,tot that arrives on each
population is now defined by:

Ii,tot = JA,extµ0
∑
j

W i
jr
C
j +Ji,kSk +Ji,iSi+ Inoise,i (7.3)

with rCj the number of spikes emitted during the interval dt by neuron j of the coding layer
and Ji,kSk+Ji,iSi the coupling term between the units in the decision network (see Chapter
3). The term W i

j denotes the synaptic strenght of the connection between neuron j of the
coding layer and population i of the decision network. The noisy input of population i is
defined by:

dIi,tot
dt

=−(Inoise,i(t)− I0) +µi(t)
√
τnoiseσnoise (7.4)

with I0 = 0.3411 nA and µi(t) a white-noise process.

Synaptic plasticity
At the end of each trial, the strength of the synaptic connection between a neuron i of the
coding layer and the winning population (Cj) of the trial (W j

i ) is updated as:

W j
i ←W j

i + qλRri (7.5)

with λ= 0.005 the learning rate, R the reward of the trial (1 if the decision was correct,
−1 otherwise), ri the firing rate of the presynaptic neuron at the time of the decision and
q a parameter modulated by the confidence of the trial.

Confidence is modelled as a function of the difference between the neural activity of
the two populations of the decision layer (∆r), as in Chapter 4. A trial corresponds to a
high confidence (resp. low) trial when the difference in activity at the time of the decision
is greater (resp. lower) than a threshold θc.

To prevent the divergence of the learning algorithm, I include a synaptic normalization
mechanism after the update of the weights (Oja’s rule) (Oja, 1982):

W j
i ←

W j
i√∑

j(W
j
i )2

(7.6)

Otherwise the reward modulation would lead to a divergence of the weights. With this
normalization, I ensure that the length of the weight vector remains constant. I have studied
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Figure 7.3: Neural circuit model. (A): Schematic of the circuit model. The network is
composed of two layers. Neurons in the coding layer are tuned to specific values of the
1-d stimulus. They receive direct input corresponding to the stimulus. The decision layer
pools activity of the coding neurons through feedforward synapses. The category decision
is obtained through competitive attractor dynamics. The synaptic connections between the
two layers undergo Hebbian plasticity modulated by a reward signal. (B): Example of the
dynamics of the decision layer when the network is presented with a stimulus. Each color
represents the activity of the corresponding population. The decision is reached when one
of the population reaches the decision line (threshold z). ∆r is computed as the difference
of firing rates between the two populations at the time of the decision. (C): Synaptic
weights going from the coding layer to the neural population C1. Each color represents a
different epoch in the learning process, starting at 100 trials. The coding layer is composed
of 20 neurons, uniformly distributed and the width of the gaussian categories is 0.25. After
1000 trials, the network is already at steady-state.
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other type of normalization such as a dynamical relaxation of the weights across trials. The
results were similar, thus I decided to focus on the above normalization mechanism (Miller
and MacKay, 1994). The synapses are initialized from an uniform distribution between
[−1,1].

Simulation protocol
Each simulation trial consists in the presentation of a randomly chosen stimulus among two
categories and a 1 s intertrial interval. The categories are Gausian categories centered in 0
and 1, of width α. The stimulus belongs to [0,1]. During the presentation of the stimulus,
the neurons in the coding layer fire a Poisson train (Equation 6.2). The trial lasts until one
of the population of the decision circuit reaches a threshold z of 20 Hz. The choice made
by the network on this trial corresponds to the one associated to the winning population.
Once a decision has been reached, there is no more input from the coding neurons to the
decision neurons and a brief current (corollary discharge) (Engel et al., 2015; Berlemont
et al., 2020; Berlemont and Nadal, 2019) is applied to the decision neurons. This current
resets the activity of the decision layer at the spontaneous level. The corollary discharge is
of the form:

ICD = Imax ∗ exp(−t/τCD) (7.7)

with τCD = 200 ms and Imax = 0.05 nA. The performance of the network for a specific
input is computed as the average over 2000 trials.

7.2.2 Learning the categorization task
Without modulation by confidence
First, I will study the case where confidence does not modulate learning rate (θc > z).
Figure 7.3.C represents the weights of the coding neurons towards the neural population
C1 during learning. The dynamics of the weights stabilize quickly, as 1000 trials seem to be
enough. Figure 7.4.A shows the performances achieved by the network for different coding
layers after 2000 trials. First, the network achieves learning as the synaptic connections
were initialized with random values leading to performance at chance level. Two behaviors
can be observed on this panel. When the distribution of the tuning curves is uniform, the
performances do not seem to vary with N . However, when the coding layer is optimized
with respect to rhe mutual information between the stimulus and the category membership,
accuracy decreass with the number of coding neurons. Secondly, as the number of neurons
increases, a network with an uniform coding layer performs better that a network whose
coding layer has been optimized.

These two effects are both due to the same reasons. In the case of an optimized coding
layer, the tuning curves are sharp at the boundary (see Figure 6.2). A neuron close to the
boundary will only emit spikes for stimuli close to the center of its tuning curve. This
has an effect on the learning dynamics. A neuron close to the boundary will update its
synaptic connection towards the decision layer less than for a neuron far away from the
boundary, whose firing rate is higher in average. Moreover, it is difficult to categorize
a stimulus close to the boundary, thus the mean reward rate for such stimulus will be
lower than for a stimulus far from the boundary. Therefore, the weights decrease near the
boundary (see Figure 7.3). But this goes against the fact that the Fisher information is
maximal at this location. During the learning, the network has lost information as fine
tuned coding neurons are associated with a synaptic connection of strength close to 0. This
leads to worse performances for the optimized case than for the uniform one.
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Figure 7.4: Performance of the network after learning. (A): Probability of choosing
category C1 for the network with respect to the stimulus presented x. The learning
is performed without reward modulation by the confidence and after 2000 trials. The
green curves correspond to a network with uniform coding layer, and the greys ones to
an optimized coding layer. For both colors, the number of neurons in the coding layer
is denoted by going from light to dark colors. The width of the gaussian categories is
0.25. (B): Same as (A) but this time for a learning with modulation by the confidence
(with a threshold z = 15 Hz) (C): Performance of the network after different numbers of
learning trials. The coding layer (20 neurons) has been optimized and the threshold of the
confidence modulation is z = 15 Hz. (D): Average ∆r on 1000 trials with respect to the
stimulus ambiguity. The gaussian categories have a width of 0.25, and there is 20 neurons
in the coding layer (optimized). Each represents a number of learning trials. (E): Effect
of confidence modulation on the performances for a network with an optimized coding
layer after 2000 trials. The y-axis represents the difference between the performances, at
an ambiguity x= 0.45, for a learning with modulation by confidence and for a learning
without. The x-axis represents the percentage of trials where ∆r was lower than the
threshold θc. (F): Same as (E) but for a neural circuit model with a uniformly distributed
coding neurons.
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Impact of confidence on performances.
How to counterbalance the loss of information due to reinforcement learning? The idea is to
only update the synaptic connections when it is useful for the network, when it would gain
information by doing so. In other words, once the categories have been more or less learned,
one would like to fine tune the learning by only considering the hard trials (the ones near
the categories boundary). This can be achieved through a modulation of the learning
rate by the confidence. Figure 7.4.D shows the average ∆r with respect to the stimulus
ambiguity at different stage of learning. One can see that it decreases as it approaches
the category boundary. Moreover, this behavior is even observed after a small number of
trials. The representation of confidence emerges early during the learning and evolves with
the number of trials. Figure 7.4.B represents the performances of the network, after 2000
learning trials with the confidence-modulated Hebbian learning (θc = 15 Hz). One can see
that the performances with the optimized coding layer are improved, especially at large
N . One important point is that confidence modulation does not prevent the network from
learning the task after a few number of trials (Figure 7.4.C).

Figure 7.4.E and F represent with more details the influence of confidence modulation
on the learning process. Each point represents the difference in performances between the
confidence modulated learning at a specific threshold and a learning without the modulation
(for x= 0.45). Panel E shows the results for a network with an optimized coding layer and
Panel F a network with a uniform coding layer. One can note two behaviors:
• Confidence modulation has more impact on the performances of a network with an
optimized coding layer than for an uniform one.
• For low N , confidence modulation has only a small impact.

Therefore, the impact of confidence on the learning process strongly depends on the type
of coding that is considered. This effect does not disappear with more learning trials
(Figure 7.5.A and B)). The tendency of all the curves is the same, with an increase of
performance when the confidence threshold decreases until it reaches a maximum at a
confidence threshold (θc ' 15 Hz) corresponding to ∼ 25% of trials used. If the confidence
threshold continues to decrease, the performances drop as too few trials are used to do
the learning. This plateau in the performances exists after 10000 trials too (Figure 7.5.A
and B). Confidence modulation is successful for improving the performances because the
weights near the boundary are increased. Therefore, neurons with sharp tuning curves are
given more weights and the gain of information due to the optimization of the coding layer
is not lost (Figure 7.5.C).

Confidence-based RL accounts for almost optimal performances
Confidence modulation improves the accuracy of the network for the categorization task,
but differently depending on the parameters of the task. Figure 7.6 presents the difference
in accuracy between a network with an optimized coding layer, and one with an uniform
coding layer, for different N and width of the categories α. Red (resp. blue) regions
correspond to higher (resp. lower) performances for the optimized coding layer with respect
to the uniform one. For intermediate values of categories widths (for example, α= 0.2),
there are two regimes (Figure 7.6.A). For small N , there is an increase of performance
with an optimized coding layer in the case of a non-modulated learning. However as N
increases, the performances become worse at the boundary and a uniform code performs
better. Figure 7.6.C shows that the region where uniform coding performs better increases
with α. However, the difference in accuracies between the two networks decreases if one
keeps increasing α. This is explained by the fact that, when the categories are very wide,
the overlap between the gaussian is big and the optimal code is more and more similar to
n uniform code.
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Figure 7.5: (A): Effect of confidence modulation on the performances for a network with an
optimized coding layer after 10000 trials. The y-axis represents the difference between the
performances, at an ambiguity x= 0.45, for a learning with modulation by confidence and
for a learning without. The x-axis represents the percentage of trials where ∆r was lower
than the threshold θc. (B): Same as (A) but for a neural circuit model with a uniformly
distributed coding neurons. (C): Synaptic weights going from the coding layer to the neural
population C1. Each color represents a different epoch in the learning process, starting at
100 trials. The coding layer is composed of 20 neurons, optimized for the categorization
task and the width of the gaussian categories is 0.25.

Looking at Figure 7.6, one sees the impact of confidence modulation on the learning
process. Figure 3.3.B and D show the same phase diagram as panels A and C but when the
learning is modulated by confidence. In this case, a network with an optimized coding layer
performs better than a uniform one, independently of the number of neurons N . Indeed, by
focusing on trials with low confidence, the network tends to decrease the synaptic weights
far from the boundary and increase the ones close to the boundary. This is in contrast
with what happens in the Hebbian case with weights going to zero when approaching
the boundary. With higher weights close to the boundary, the sharp tuning curves of
the optimal code are used by the network to obtain a better accuracy (Figure 7.5.C). To
conclude, confidence modulation of Hebbian learning allows the network to make use of an
optimized coding layer in order to obtain better performances.

Confidence modulation improves the performances but one can ask whether such
networks can achieve performances that are close to optimal ones. To find the optimal
performances of the network, I use a non-linear convex optimisation procedure. The first
step is to obtain the relation between the probability of choosing the most probable category
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Figure 7.6: Difference of performances after learning (2000 trials) between networks with
a uniform (or optimized) coding layer. Red (resp. Blue) corresponds to a positive (resp.
negative) difference meaning that the network with the optimized coding layer has better
(resp. worse) accuracy than the one with uniform layer. The x-axis corresponds to a
variation of stimulus x, and the y-axis to the number of neurons N . (A) and (C) correspond
to a learning without the modulation due to confidence. The width of the categories is 0.2
for (A), 0.3 for (C). (B) and (D) correspond to a learning with reward modulation by the
confidence, with a threshold z = 15 Hz. The width of the categories is 0.2 for (B), 0.3 for
(D).

and the input stimulus x for the attractor network. I note p this function. To perform the
non-linear optimization, I will replace the attractor network by this function in the model.
The second step is to define a cost function:

L=
∫ 1

0

1−p(
∑
j

W 1
j fj(s))

ds (7.8)

with fj(s) the tuning function of neuron j. The set of weights that minimize this cost
function is found by solving a non-linear convex optimization problem, with the set of
constraints defined as in the neural circuit model (synaptic normalization and symmetry
between the units). The numerical routine was done in Matlab.

Figure 7.7.A and B present the difference of performances between the non-linear
optimization and the confidence-modulated Hebbian learning, for α = 0.2. Near the
boundary, the network with optimized coding layer has better performances than the
optimal model. However, the global performances are lower because it performs worse
when the stimuli are a bit further from the boundary. Surprisingly, increasing the number
of trials (Figure 7.7.C and D) does not lead to an increase of performances for a network
with a uniform coding layer. For the optimized coding layer, the accuracy increases and
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Figure 7.7: Difference of performances between the result of the non-linear
optimization and the model, with α = 0.2. (A) and (C): Difference with a uniform
coding layer for 2000 trials (A) and 10000 trials (C). (B) and (D): Difference with an
optimized coding layer for 2000 trials (B) and 10000 trials (D).

the network becomes very close to the optimal performances it could achieve (especially
in the low N region). This behavior does not depend on specific values of α, as only the
amplitude of this effect is modified.

Conclusion
To conclude this part, I have proposed a learning mechanism to learn categories that
does not rely on a prediction error signal. I studied the efficiency of Hebbian learning
in perceptual categorization tasks in the context of reward-based protocols. I assumed
a coding layer providing a distributed representation of the stimulus, feeding a decision-
making attractor neural network. Authors have modeled the learning of decision-making
with a Reward Modulated Hebbian learning scheme. Considering a coding layer optimized
in view of the categorization task (from an information-theoretic viewpoint), I found that
RMHL fails to take advantage of this goal-directed stimulus encoding. Here I showed
that a confidence-modulated, reward-based, Hebbian learning efficiently extracts category
membership from the optimized coding layer. In the model, confidence is computed from the
attractor network activity, in line with recent studies modeling the neural basis of confidence
in decision-making. I have related this reward-modulation to different experimental findings
that have shown that, in uncertain environments, the learning rate of human participants
is correlated with their confidence. From a computational point of view, there is another
advantage to use the confidence-modulated learning algorithm for a biological system.
The reward-modulated Hebbian learning algorithm makes the assumption that the mean
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rewards corresponding to all the possible stimuli are stored somewhere, and can be recalled
to modulate the learning rate. In contrast, the confidence is only a local quantity and does
not need an external memory storage. Yet, it still leads to better performance than the
RMHL. Different extension of this work will be discussed in the Conclusion chapter.
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This part presents the results of a project that started during my M2 internship under
the supervision of Gianluigi Mongillo, and that I have continued to work on during my PhD.
Despite being a side project during my PhD thesis, I wanted to include in the manuscript as
it is related to the general topic of attractor networks in neuroscience that constitue the first
part of this manuscript. The project consisted in the study of dynamically balanced and
partially connected neural networks. Very few studies have investigate partially connected
neural networks, and more specially dynamically balanced neural networks. Most of the
studies focused on a chaotic regime of activity for these networks. Here, I propose to
investigate the effect of partial connectivity on this regime. I make use of a method entitled
cavity method that has been successfully used in statistical physics.

As a result, I obtain the statistics of the neurons in the steady states and study their
stabilities. There are two regions within the bifurcation diagram. In the first one, there is
a unique stable fixed point for the network. In the second region, a breaking of ergodicity
appends. I study with more details this breaking of ergodicity and show that, partially
symmetric balanced neural networks exhibit glassy-like dynamics. Moreover, this breaking
of ergodicity appends at levels of symmetry comparable to the ones observed in synaptic
connections in neuroscience.

The different results that I present in this part will be published in an article currently
in preparation:
• Berlemont, K. and Mongillo, G. (2020). Glassy-like dynamics of partially symmetric,
dynamically balanced networks.
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Mean-field equations of neural networks

8.1. Temporal dynamics of neural networks

Two main theoretical frameworks have been proposed to study the temporal dynamics in
neuronal networks: rate-based models with Gaussian connections and spiking dynamics of
sparsely connected excitatory-inhibitory networks.

Spiking networks

Networks of spiking neurons have been studied numerically or analytically in the case of
fully symmetric networks (Amit et al., 1990; Abbott and van Vreeswijk, 1993; Hansel et al.,
1995). During the last twenty years, sparsely connected networks have been studied, in the
case of binary neurons or integrate-and-fire neurons (Van Vreeswijk and Sompolinsky, 1996).
In a sparsely connected network, the mean number of connections K is much smaller than
the number of neurons N . Due to the fact that the connections are random, it is possible,
in the thermodynamic limit, to use a mean-field approach in order to self-consistently
obtain the mean and the variance of the inputs of the neurons (Brunel, 2000). Doing so, it
is possible to obtain the phase diagrams of such networks.

Depending on different parameters, such as the balance between excitation and inhibi-
tion, networks of sparsely connected excitatory-inhibitory neurons show different states
(Figure 8.1):
• Synchronous regular state: neurons are almost fully synchronized.
• Asynchronous regular state: stationnary global activity and quasi-regular individual
firing rates.
• Asynchronous irregular state: stationnary global activity but irregular individual
firing rates.
• Synchronous irregular state: oscillatory global activity but strongly irregular individ-
ual firing rates.

Rate models

The second type of networks that has been studied consists in a network in which each unit
is described by a firing-rate dynamics. Each neuron is characterized by a transfer function
that maps the synaptic input into the output firing rate. Various transfer functions have
been used such as tanh(x), rectified linear or sigmoid function (Sompolinsky et al., 1988;
Kadmon and Sompolinsky, 2015). The structure of the connectivity matrix is a Gaussian
distribution with zero mean and a variance g/N . It was shown that the system exhibits a
transition from a stable fixed-point for low g to chaotic state (Sompolinsky et al., 1988).
To illustrate this behavior, I will use the model of Stern et al. (2014). The network is
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Figure 8.1: Simulation of a spiking network (adapted from Brunel (2000)). (A)
Almost fully synchronized network. (B) Fast oscillation of the global activity. (C) Station-
nary global activity. (D) Slow oscillation of the global activity.

composed of N units obeying the equations:
dhi
dt
−hi+stanh(hi) +g

∑
j 6=i

Jij tanh(hj) (8.1)

with Jij the connection from neuron j to neuron i (drawn from a Gaussian distribution
with zero mean and 1/N variance). In this model, the state in which all the neurons have
hi = 0 is always a fixed point. The stability will depend on the synaptic gain g and the
self-coupling s. The zero-fixed point is the matrix defined by:

Mij = (−1 +s)δij +gJij (8.2)

has all of its eigenvalues with negative real part. Thus, the bifurcation line between stability
and unstability is defined by s= 1−g. The bifurcation diagram of the network is shown in
Figure 8.2. There are three regions: a chaotic region, region with a decay to zero, and a
region with non-zero fixed points (Figure 8.2). Networks with random connections can
exhibit various dynamical behaviors depending on the parameters. There can be a decay
to a fixed point, a chaotic activity or even a transient chaotic activity until convergence to
a fixed point.
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Figure 8.2: Example of activity of a rate based model (adapted from Stern et al.
(2014)).

Partially symmetric networks
In the mammalian brain, cortical networks exhibit a complex connectivit that, to a first
approximation, can be regarded as random. As mentionned previously, random neural
networks can exhibit a regime where they satisfy the local chaos hypothesis (Amari, 1972;
Geman and Hwang, 1982). This dynamical regime has been shown as potentially useful for
computations (Bertschinger and Natschläger, 2004).

But, what happens when such networks are neither totally symmetric or randomly
connected? It is known that local connectivity can have a strong effect on network
activity (Litwin-Kumar and Doiron, 2012). Experimental studies on cortical connectivity
have identified many patterns of connectivity that strongly deviate from the independancy
between neurons assumption. Reciprocal connections are overpresent in cortical networks
and are consistent with a partially symmetric structure (Markram et al., 1997; Song et al.,
2005; Harris and Mrsic-Flogel, 2013). Very few studies have tackled the question of the
impact of partial symmetry on the networks dynamics, principally due to the fact that
it renders the mathematical analyses more challenging (Crisanti and Sompolinsky, 1987;
Renart et al., 2010). In the case of a network with zero mean connections, it has been
shown that symmetry in the network slows the dynamics down, which is important to
perform computations with neural networks (Martí et al., 2018). However, in this model,
neurons can have negative activity and can have excitatory and inhibitory projections
which does not satisfy Dale’s law.

Cavity method
A large part of the study of statistical physics of disordered systems has focused on the
physics of spin glasses. Spin glasses are similar to networks of binary neurons as the models
are described by Hamiltonian of the form:

H =−
∑
ij

Jijσiσj (8.3)
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with σi = ±, and Jij the coupling between two spins. The model 8.3 has been studied
for many configurations of the matrix of couplings such as fully connected or partially
connected. Physicists have developped two main methods to study these problems: the
replica method and the cavity method (Mézard et al., 1987; Mézard and Parisi, 2003).
Both methods are equivalent, but the latter is more intuitive in the case of partially
connected networks. The cavity method has been applied to many types of problems: spin
glasses (Mézard and Parisi, 2003), optimization problem (Zdeborová and Krzakala, 2010),
ecological problems (Barbier and Arnoldi, 2017). The cavity method has been used to
study random neural networks and more specifically the effect of the assymetry on the
local chaos hypothesis (Cessac, 1995). The author found that non-assymetric couplings
lead to the failure of the local chaos hypothesis.

More recently, this method has been used to study the distributions of cortical con-
nectivity in order to maximize the storing of a large number of attractor within a neural
network (Brunel, 2016). One interesting result is that the resulting connectivity matrix of
this excitatory network is sparse (large number of zero weights connections) and has an
over-representation of bidirectionally couplings. In the following section, I will use this
method in order to study the steady-states of dynamically balanced partially symmetric
networks of rate inhibitory neurons. I will show that this method gives the bifurcation
diagram of the system. There are several differences I would like to point out with the
previous study I mentionned, that used cavity method to study random neural networks.
First, the network I consider is dynamically balanced. This means that the state all
neurons are silent does not correspond to a steady-state in my model. In addition, I
propose to perform the computations without the introduction of additional hypothesis,
such as the local chaos hypothesis. This allows for a general framework in order to study
the steady-state of such networks. Moreover, Cessac (1995) does not study the behavior
of the random networks when the local chaos hypothesis can not be applied anymore.
Here, I investigate how the network behaves in the regime where it exhibits a breaking of
ergodicity.

8.2. Dense strongly coupled partially symmetric networks
I will consider partially symmetric neural networks that are dense and strongly coupled.
Considering strongly coupled networks means that the synaptic weights are of order 1/

√
N ,

with N the total number of neurons. Each neuron is characterized by its firing rate ri and
receives inputs from its neighbors neurons. The total current that is received is:

hi =
√
Nhext−

1√
N

∑
j

wijνj (8.4)

with hext the external current, and wij the synaptic weight from neuron j to neuron i. The
firing rate is defined as:

νi = φ(hi) (8.5)

with φ the transfer function.
The dynamics of the network is the following:

dhi
dt

=−hi+
√
Nhext−

1√
N

∑
j

wijνj (8.6)

The synaptic efficacies are log-normalyy distributed:

wij = exp(µt+ tijσt) (8.7)
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where tij is Gaussian with mean zero and unitary variance, µt and σt are free parameters
used to set the mean 〈w〉 and the variance σ2

w of the synaptic efficacies. These are given
by:

〈w〉= exp
(
µt+

1
2σ

2
t

)
(8.8)

σ2
w = exp

(
2µt+σ2

t

)(
eσ

2
t −1

)
(8.9)

The level of symmetry of the network, ρw, can be controlled by adjusting the correlation
ρt = 〈tijtji〉 according to:

ρw = 〈wijwji〉−〈w〉
2

σ2
w

(8.10)

The wij are non-negative, which leads to:

ρw ≥
e−σ

2
t −1

eσ
2
t −1

(8.11)

It is worth noting that, in this particular case, a full anti-symmetric network (ρw =−1)
is only achievable in a limiting sense for σ2

t → 0.

8.2.1 Mean-field solution
In this section, I derive a mean-field theory for the model netork previously described,
which is exact (for infinitely large networks) in the region of parameters where the network
exhibits a unique stable fixed point. However, the unicity of the fixed point is not necessary
for the theory to be valid. What is necessary is that the fixed point is asymptotically
stable.

In a stable fixed point, dhi
dt = 0, thus the input to neuron i can be written as:

hi =
√
Nhext−

1√
N

∑
j

wijνj (8.12)

The idea of the cavity-like approach is to decompose the input as:

hi =
√
Nhext−

1√
N

∑
j

wijν
−
j −

1√
N

∑
j

wijδν
−
j (8.13)

The term ν−j corresponds to the activity of neuron j in a network where all the
connections going from neuron i to the other neurons have been removed (Figure 8.3). At
the contrary, δν−j corresponds to the difference in the activity of neuron j that is due to
the fact that neuron i has connections to the other neurons. I will define the cavity input
as:

ui =
√
Nhext−

1√
N

∑
j

wijν
−
j (8.14)

Cavity input
The above decomposition is useful as each term can be studied separately. For the cavity
input, as the network is at a fixed point, there are no long-range correlations in the pattern
of activity. Therefore, the cavity input becomes Gaussian in the large N limit because the
ν−j are independent of the wij ’s (as it corresponds to the activity in a network where wji
has been removed):

ν−j =
√
Nhext−

1√
N

∑
k 6=i

wjkrk (8.15)
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It is worth noting that this notion of independency between the νj and the wij has been
first mentionned in (Amari, 1972; Crisanti et al., 1990) under the local chaos hypothesis, in
the general case. More recently, this hypothesis has been studied within a mathematical
framework (Faugeras and Maclaurin, 2015; Salhi et al., 2018), using large deviations theory.
However, in the present framework, I do not need to make use of the local chaos hypothesis
in order to obtain the independance, as neuron i has been removed from the network at
this step of the computations. Such the specific use of this cavity-inspired method allows
me to directly obtain the independency property between the ν−j and the wij ’s.

Thus, ui can be rewritten as (in the large N limit):

ui = µ+ziσ (8.16)

with zi a Gaussian variable with zero mean and unitary variance. The variables µ and σ
can be computed using standard mean-field computation:

〈u〉=
√
N
(
h(ext)−〈w〉〈ν〉

)
(8.17)

s2 = 〈w2〉〈ν2〉−〈w〉2〈ν〉2 (8.18)

To obtain this formula, I have used the fact that, in the limit N →∞, 〈(ν)n〉= 〈(ν−)n〉.

+

=

Figure 8.3: Schema of the cavity approach. Each circle represents a neuron in the
network. The red neurons are the ones that are in the cavity network. The upper left
network corresponds to the cavity network: without the connections from neuron i to the
other neurons. The upper right network corresponds to the network with the reaction due
to neuron i. By imposing the self-consistency between these two networks, one can obtain
the full network (bottom).
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Reaction term
The presence of neuron i induces a perturbation of order 1/

√
N in the input to neuron j.

To compute the impact of neuron i on the network I will make use of linear response theory.
In the previous section I mentionned some results about the local chaos hypothesis and
the propagation of chaos. In order for the linear response theory to be valid, it is necessary
to take into account the second-order (and more) effect of neuron i on the network. This
has been done using large deviations theory (Moynot and Samuelides, 2002; Faugeras and
Maclaurin, 2015; Salhi et al., 2018), and, in this case, linear response theory can be used
to compute the reaction term.

One quantity that arises naturally in linear response theory is the static susceptibility.
In this network, the static susceptibility is defined as:

χjk = δνj
δhk

(8.19)

It represents the static susceptibility of neuron j to a small change in the input to neuron
k. With this quantity, the total input hi can be written as:

hi = ui−
1√
N

∑
j

wijδνj (8.20)

= ui−
1√
N

∑
j

∑
k

wij
δνj
δhk

δhk (8.21)

= ui−
1√
N

∑
j

∑
k

wij
δνj
δhk

(
− −1√

N
wkiνi

)
(8.22)

This double sum can be decomposed into diagonal terms and off-diagonal terms:

− 1√
N

∑
j

∑
k

wij
δνj
δhk

(
− −1√

N
wkiνi

)
=νi

 1
N

∑
j

wijwjiχjj


+νi

 1
N

∑
k

wki

∑
j 6=k

wijχjk

 (8.23)

In order to compute both sums one should note that
∑
j χjk = 0. This equation can be

obtained by the following argument. A balanced solution of the dynamical equations is so
that only a negligible number of νi is saturated in the limit N →∞. In order to understand
the emergence of such a solution, and the effects of small perturbation on it, it is possible
to write:

νj = 〈ν(0)〉+ δν
(0)
j + 1√

N

(
〈ν(1)〉+ δν

(1)
j

)
+ 1
N

(
〈ν(2)〉+ δν

(2)
j

)
+ · · · (8.24)

wij = 〈w〉+ δwij (8.25)

This expression can be inserted into the expression for the input hi:

hi =
√
N
(
h(ext)−〈w〉〈ν(0)〉

)
+

=− 1√
N

∑
j

δwijδν
(0)
j −〈w〉〈ν

(1)〉+

=− 1
N

∑
j

δwijδν
(1)
j −

1√
N
〈w〉〈ν(2)〉+O

( 1
N

)
(8.26)
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In a balanced solution, hi =O(1) and thus, if such solution exists, it must be:

hext−〈w〉〈ν(0)〉= 0 (8.27)

Similarly, it must be:

1√
N

∑
j

δwijδν
(0)
j =O (1) (8.28)

1
N

∑
j

δwijδν
(1)
j =O

( 1√
N

)
(8.29)

A perturbation of O(1) will change the δν(0)
j ’s but not 〈ν(0)〉. Similarly, a perturbation of

O(1/
√
N) will change the δν(1)

j ’s but not 〈ν(1)〉. This is true for any possible perturbation
(of a given order), and thus it must be

N∑
k=1

χjk = 0; k = 1 · · ·N (8.30)

In the following I will note χ the mean susceptibility of the network:

χ= 1
N

∑
k

χkk (8.31)

Let’s get back to the Equation 8.23. The diagonal term can be derived as follows:

νi
1
N

∑
j

wijwjiχjj =−νi
1
N

∑
j

wijwji
∑
k 6=j

χjk

=−νi
1
N

∑
j

∑
k 6=j

wijwjiχjk

=−νi
∑
k 6=j
〈wijwji〉χjk (8.32)

The last line is deduced from the fact that χjk is independent of wij and wji. Finally, it
leads to:

νi
1
N

∑
j

wijwjiχjj = νi
(
〈w〉2 +ρwσ

2
w

)
χ (8.33)

The off-diagonal term is obtained with the following computations:

νi

 1
N

∑
k

wki

∑
j 6=k

wijχjk

= 1
N

∑
k

wki

〈w〉∑
j 6=k

χjk +
∑
j 6=k

δwijχjk

 (8.34)

=−〈w〉
N

∑
k

wkiχkk +O

( 1√
N

)
(8.35)

=−〈w〉2χ+O

( 1√
N

)
(8.36)

To obtain the last equation, one needs to use the fact that the χjk are independent of both
wij and wki.



8.2 Dense strongly coupled partially symmetric networks 127

Self-consistency
The total input hi can now be written:

hi = ui+Rφ(hi) = ψ(ui) (8.37)

with R = ρwσ
2
wχ. This equation defines a mapping between the cavity input ui and the

input in the full network hi through the function ψ.

νi = φ(ui+Rνi) = φ̂(ui) (8.38)

In the limit N →∞, the average activity in the network is determined by the balance
condition:

〈ν〉= hext
〈w〉

(8.39)

Moreover, one must have:

〈ν〉=
∫
Dzφ(ψ(µ+zσ)) = 〈φ̂〉= hext

〈w〉
(8.40)

with Dz the standard Gaussian measure. The variance can be written as:

σ2 = σ2
w〈ν2〉=

∫
Dzφ2(ψ(µ+zσ)) = σ2

w〈φ̂2〉 (8.41)

The last equation one needs to obtain self-consistency of the system is one on the local
susceptibility:

χ=
∫
Dz

dφ̂

du
(µ+zσ) = 〈φ̂′〉 (8.42)

For each of these equations, the effective mapping φ̂ is defined through Equation 8.38.

8.2.2 Stability
The mean-field theory developped previously is based on the assumption that the fixed
point is stable. To check the validity of this assumption, one needs to study the stability
of the mean-field solution. To do so I will compute the variance of the δνj ’s. Indeed, in a
stable solution N · 〈δν2〉=O(1).

Using the effective f-I curve of the network:

δνj = φ̂(uj)− φ̂(u−j )

=−
φ̂′(h−j )
√
N

(
wjiνi+

∑
k

wjkδνk

)
(8.43)

with u−j the cavity input to neuron j when neuron i is not connected to the rest of the
network. This equation can be rewritten in power of

√
N :

δνj =
δν

(1)
j√
N

+
δν

(2)
j

N
(8.44)

Due to the fact that 〈δν〉=O(1/N), 〈∆ν(1)〉= 0. An identification of the different terms
in Equation 8.43 leads to:

δν
(1)
j =−φ̂′(u−j )×

(
wjiνi+ 〈w〉〈δν(2)〉+ 1√

N

∑
k

δwjkδν
(1)
k

)
(8.45)
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Averaging over j leads to 〈δν(2)〉=−νi. Injecting this relation into Equation 8.45:

δνj =−φ̂′(u−j )
(
δwjiνi+

1√
N

∑
k

δwjkδν
(1)
k

)
(8.46)

Finally, by taking the square and averaging over j one can obtain:

〈δν2〉= σ2
w〈φ̂′2〉

1−σ2
w〈φ̂′2〉

ν2
i =Rnlν

2
i (8.47)

The term Rnl denotes the non-linear reaction term due to neuron i. When this term
diverges, the variances of the δνj ’s diverges and the solution is unstable.

8.3. Rectified linear transfer function
The previous theory does not depend on the specific form of the transfer function. For
numerical purpose, I will be considering rectified linear units in the following section as
it will allow me to derive exact analytical formula and to compare them with numerical
simulations.

8.3.1 Steady-state of the network
In the case of a rectified linear transfer function, one has:

h= u+Rβ[h]+ = ψ(u) (8.48)

This leads to:

ψ(u) =
{
u if u < 0
u

1−βR otherwise
(8.49)

The mapping betwen ν and u, denoted by φ̂ is obtained as:

ν = φ̂(u) = β

1−βR [u]+ (8.50)

The derivative is exprimed as:

dφ̂

du
(u) =

{
0 if u < 0
β

1−βR otherwise
(8.51)

I define the following functions:

G(x) = 1√
2π

exp
(
−x2/2

)
(8.52)

H(x) =
∫ ∞
x

dyG(y) (8.53)

To solve the cavity equations, one can rewrite them as functions of the parameter
x= −µ

σ .

〈ν〉=
∫
Dzφ̂(µ+zσ)

=
∫
Dz

β

1−βR [µ+zσ]+

= βσ

1−βR

∫
Dz[µ

σ
+z]+

= βσ

1−βR [G(x)−xH(x)]
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〈ν2〉=
∫
Dzφ̂2(µ+zσ)

=
∫
Dz( β

1−βR )2[µ+zσ]2+

=
∫ ∞
x

Dz( β

1−βR )2(µ+zσ)2

=
∫ ∞
x

Dz( βσ

1−βR )2(−x+z)2

= ( βσ

1−βR )2
[
−xG(x) + (1 +x2)H(x)

]

χ= 1
1−βRH(x) (8.54)

In order to solve these equations it is necessary to find the value of x in the fixed point.
One can write:

σ2 = σ2
w〈ν2〉= σ2

w( βσ

1−βR )2
[
−xG(x) + (1 +x2)H(x)

]
(8.55)

Dividing both sides by σ2, I obtain:

1−βR= σwβ
√

[−xG(x) + (1 +x2)H(x)] =B(x) (8.56)

But, using Equation 8.54:

R= ρwσ
2
wχ= ρwσ

2
wH(x)
B(x) (8.57)

with ρw = 〈wijwji〉−〈w〉2. In the case of the numerical simulations, β = 1, which leads to
the following equation that is used to determine x in the fixed point:

1−B(x)−ρwσ2
w

H(x)
B(x) = 0 (8.58)

Numerical simulations
Figure 8.4 shows the total and the cavity input in the network. First, one can note that the
cavity input follows a Gaussian distribution as expected. For ρw = 0, the cavity input and
the total input h are similar as the reaction term R is equal to zero. For ρw 6= 0, the theory
matches perfectly the numerical simulations and captures the non-gaussian character of hi.

Figure 8.5 shows the different variables of the steady-state of the network with respect
to the degree of symmetry ρw. The first thing one can note is that theory and numerical
simulations are in accordance. In the previous figure I have shown that the form of the
distribution of the input hi was modified due to ρw. Figure 8.5 highlights the fact that the
symmetry in the network has a strong impact on the steady-state. For instance, if ρw is
increased or decreased the value of µ can be reduced by half or doubled. The mean-field
solution would have led to a solution far from the reality.
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Figure 8.4: Total and cavity input in the network. The first line shows the histogram
of the input h in the network. The black curve represents the theoretical result using the
cavity method. The red curve shows the mean-field solution. The second line of panels
represents the histogram of the cavity input in the network. Finally, the last line shows
the mapping between cavity input and input h. Each column stands for a different value
of ρw, ρw =−0.55 (a), ρw = 0 (B), ρw = 0.55 (c).
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Figure 8.5: Steady state of the network. (A): Mean cavity input with respect to
ρw. The black curve represents the theoretical solution and the blue points the numerical
simulation. The error bars are the boostrapped confidence interval at 95%. (B): Standard
deviation of the cavity input σ. (C): Reaction term R with respect to ρw.
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8.3.2 Stability of the fixed point

At the fixed point the variance of the δνj ’s is of order 1/N . Figure 8.6 represents the
numerical simulations corresponding to this analysis. As described, the mean effect of
neuron i in the network is of order 1/N (Figure 8.6.A), and the variance of the δνj ’s too
(Figure 8.6.B). Figure 8.6.C shows the dependence of Rnl with ρw. It increases until the
divergence that corresponds to the lose of stability. With these parameters it corresponds,
here, to ρw = 1.

activity νi

av
g

 r
es

p
o

n
se

 N
<
δ
ν>

va
r 

re
sp

o
n

se
 N
<
δ
ν
2 >

activity νi

N = 1000

N = 2000

N = 4000

ρw = -0.67

ρw = 0

ρw = 0.45

0 1 2 3 4 50 1 2 3 4 5

0

-1

-2

-3

-4

-5 0

10

20

30

40

(a) (b)

-0.8 -0.4 0 0.4 0.8
0

1

2

3

4

5

n
o

n
-l

in
ea

r 
re

sp
o

n
se

 R
n
l

symmetry ρw

0

50

100

150

0.8 0.9 1

(c)

Figure 8.6: Stability of the fixed point. (A) Mean average response due to neuron
i in the network. Each color represents a different ρw. (B) Variance of δνj with respect
to the activity of neuron i. (C) Non-linear reaction term Rnl with respect to degree of
symmetry ρw.

In a more systematical way, one can obtain the bifurcation diagram of the network with
respect to the two parameters σ and ρw (Figure 8.7). It is composed of two regions: the
grey one denotes a region where only one fixed point exists. In this region, the dynamics is
going to converge to this fixed point. The second region represents a region where there
is not one unique fixed point and the cavity-like approach is not valid anymore. In the
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following I will give insight about what is happening beyond the bifurcation.
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8.3.3 Beyond the bifurcation
Small size networks
To understand what happens beyond the bifurcation I will first study a small size network.
To do so, I consider a network with N = 400 neurons and I will look at the fixed point
that is reached for 100 initial conditions (for parameters outside the fixed point region).
The results are shown in Figure 8.8. Each color represents a different ρw and the circle the
mean on five different realizations of the synaptic connectivity. σ2

w,c represents the critical
σw at which a bifurcation appends for the corresponding value of ρw.

As σ2
w crosses the critical value, the number of different fixed points that are obtained

for 100 different initial conditions starts to increase (Figure 8.8.B). Moreover, the maximal
eigenvalue increases to 1 at the critical value. This behavior occurs even when ρw is
decreased. This means that for these different behaviors the steady states that are reached
by the dynamics are marginally stable. Beyond the bifurcation, it seems that the network
has many different fixed points that are marginally stables.

Breaking of ergodicity
To characterize the behavior of the network, I will introduce a measure of ergodicity. Let’s
consider two different initial conditions a and b. It is possible to define the distance between
these two initial conditions for each neuron:

∆a,bhi(t) = 1
t

[∫ t

0
dshai (s)−

∫ t

0
dshbi(s)

]
(8.59)

The measure for the full network will be:

D2(t) = 1
N

∑
i

(∆a,bhi(t))2 (8.60)
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Why is this measure a good measure of ergodicity ? If the network is ergodic (such as
chaotic or converging to a fixed point), one will have:

lim
t→∞

∆a,bhi(t) = 0 (8.61)

Indeed, in an ergodic system the mean activity of each neuron is going to be the same
(at infinite time) independently of the initial conditions as the structure of the synaptic
connections is fixed. When this distance does not converge to zero, it will mean that the
system is not ergodic.

In Figure 8.7, I show the time variations of this measure for different values of parameters
for a network of 4000 neurons. First, for ρw = 0 (Figure 8.7.B ) it is known that there
are two possible behaviors: either the system converges to a stable fixed point (grey
region), either it is chaotic (Doyon et al., 1993). As expected, in Figure 8.7.B the measure
D(t) always goes to zero as t increases. This is characteristic of an ergodic system. On
the contrary, it is known that at ρw = 1 the system should exhibit multi-stability. In
Figure 8.7.C, D(t) does not go to zero, except for parameters in the region of the fixed
point. For lower values of ρw, an intermediate regime is observed. For values of parameters
that are not within the stable fixed point region D(t) decreases with time. However, this
decrease is very long (the time unit is the time constant of the network). To obtain more
insight about this behavior, I fitted D(t) by a streched exponential function:

f(t) = a · exp
(
−(t/τ)β

)
+ b (8.62)

The parameter b is not equal to zero when I fit this function on D for values of parameters
for which the system is non-ergodic. This means that, at least for networks of this size and
within this time-range, partially symmetric networks can show a breaking of ergodicity
depending on the level of correlation between the weights.





9
Conclusion and Perspectives

This thesis presents results on different aspects of decision-making using attractor neural
networks. This work has focused on two main parts: understanding the implication of
having a non-linear dynamics for the decision-making process and understanding the effects
of the neural coding on the learning process of a categorization task.

Researchers have shown that attractor neural networks reproduce, qualitatively, the
neurophysiological signatures of decision-making. Howeer, they did not fully compare to
behavioral specificities of decision-making, especially with humans. In the first part of
this thesis, I have focused on the sequential effects that are observed during perceptual
decision-making experiments. The effects are various and go from repetition biases to
post-error effects. I have shown that an attractor neural network can be used to study the
sequential effects in perceptual decision-making. Moreover, first-order effects result from
the intrinsic non-linear dynamics of the network. This result adresses a central question
about the sequential effects as they do not reflect an optimal behavior for the participant.
I proposed that they are not voluntary and are in fact a constraint due to the non-linear
dynamics of the decision network.

History biases and post-error effects have been studied within the framework of drift-
diffusion model. With these models the trials are divided into groups, such as repetition
trials or alternation trials for example, and a DDM is fitted separately on each group. It
has been found that the drift parameter is modified between the different conditions (Urai
et al., 2019). This has been proposed as a success of the DDM as the build-up rate of
neuronal activity has been found to differ between post-error and post-correct trials for
example (Purcell and Kiani, 2016). I have shown that the behavioral observations of
sequential effects can be explained by a relaxation mechanism that induces a modification
of the starting point in attractor networks. An interesting feature of non-linear systems is
that the starting point of the dynamics has an impact on the speed too. It could be very
interesting to study this feature and to relate this to the neuronal findings on the build-up
rate.

Without any additional memory module, an attractor neural network cannot reproduce
the transition between automatic facilitation and strategic expectancy (Gao et al., 2009;
Laming, 1968). In the network that I have presented in this manuscript, for too short RSIs
(such as a few dozens of milliseconds) the sequential effects are too strong to be plausible.
Decision conflict mechanisms (Jones et al., 2002) could be implemented to correct this
effect and to investigate other effects of repetitions and alternations. The use of additional
memory module accounts for higher-order sequential effects too. Due to the nature of the
dynamics in my network, I do not expect to reproduce higher-order sequential effects. In
fact, for parameters for which the model exhibits first-order sequential effects, I do not find
neither second-order sequential effects, nor post-error adjustments at second-order. One
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may ask whether a more complex architecture, taking into account other brain areas, could
account for higher-order repetition biases and post-error adjustments effects as resulting
from some intrinsic properties of the dynamics, in the absence of specific memory units.

Attractor neural networks are usually compared qualitatively with behavioral data. In
this work, I have shown that such models can be fitted on partially behavioral data such
as mean reaction times and accuracies. Doing so, I was able to quantitatively compare the
attractor network to various behavioral measures. For instance, the sense of confidence that
participants have in their decisions, and its various effects, can be modelled by an attractor
neural network. Most of the research on confidence during perceptual decision-making
experiments has focused on models of confidence that model it as the probability of having
made the correct decision. This framework has its successes but does not give insights into
the neurophysiological signatures of confidence. In this work, I have shown that a sense of
confidence based on an attractor neural network reproduces many effects that were thought
to be characteristic of a statistical confidence. Moreover, it has been recently found, using
more complex psychophysics tasks, that confidence could not be modelled according to
the Bayesian framework. The next step of my work would be to study the specific effects
that have been found by Adler and Ma (2018) within the framework of attractor neural
networks. This would give insights into specific effects that could be modelled by attractor
networks and not within the Bayesian framework.

Another aspect of my thesis was to study the relations between a neural coding and
a decision-making network. The motivation was that, in most of the research on this
thematic, researchers study the optimality of different systems in a categorization task by
considering a population code which has been constructed to discreminate between stimuli
and not to categorize them. This is kind of contradictory as the network is tested on a
discrimination task but has learned a categorization task. I have presented a study of the
effects of the neural coding on the learning process.

The association between the continuum of sensory stimuli and the discrete stimuli can
be learned with a trial-and-error mechanism (Law and Gold, 2009; Engel et al., 2015).
Different learning algorithms have been proposed to perform this learning, such as reward-
modulated Hebbian learning (Legenstein et al., 2008, 2010; Brea and Gerstner, 2016). This
type of learning has some experimental grounds as dopamine could act as a neuromodulator
and its acticity is correlated with reward signals (Schultz et al., 1997; Schultz, 2002).
However, for such learning algorithms, the mean reward needs to be remembered in order
to adapt the learning. In this work, I have proposed a learning process that does not need
to store the mean reward as the modulation is done through the confidence in each trial.

I have shown that using the sense of confidence during the learning process improves the
performances of the network. Moreover it allows for an online learning as it does not require
to store the previous rewards. These results have to be compared with recent work (Engel
et al., 2015) on categorical learning in an attractor network using top-down feedback. The
authors found that the distribution of effective tuning curves was shifted after learning,
leading to categorical effects. By mixing their framework and mine it could be possible to
theoretically compute the effect of the learning on the coding neurons. Therefore, one could
compare the effects and optimality of different learning processes. This will constitute my
research direction during the next months.

The last part of my thesis did not focus on decision-making but rather on statistical
physics methods to study neural networks. Most of the research has been focusing on
random neural networks as they exhibit behaviors that are useful for neural computations
and can be analyzed using standard statistical physics methods. However, parameters and
structural connectivity are strongly constrained in such networks. Moreover, they do not
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correspond to experimental evidences. Here, I propose a new approach to compute the
steady-states of non-random inhibitory neural networks using the cavity method. I have
shown that a partial degree of symmetry does not necessary lead to a chaotic activity and
that a breaking of ergodicity occurs. This work has focused on a unique neural population
in order to establish the theory. However, many populations of excitatory and inhibitory
neurons interact with each other in the brain. One direct extension to the presented
framework would be to consider different neural pools, mixing excitatory and inhibitoy,
connected with each other and to adapt the theory to obtain the bifurcation diagram.
Such theory has been developped for multi populations random neural networks (Faugeras
et al., 2009). This should be feasible with partially connected networks as it will principally
increase the number of equations but the hypotheses would still be valid.
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A
Fitting an attractor neural network

For each participant the model is calibrated by fitting both the mean response times and
the accuracies for each orientation, this separately for each block. The procedure is shown
in Figure A.1.
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Figure A.1: Schematic cost function of the model. The blue circles correspond to the
experimental data. The red squares are the results of the numerical simulations and in
orange it corresponds to the model in which the NDT as been added. This addition doesn’t
change the accuracy part of the cost function.

The idea is to estimate the non-decision time using the numerical simulations for each
participant and each block. Using this NDT, the cost function is be the difference with the
performances and the response times.

Cost function =λ
1
m

∑
θ

([〈RT 〉network(θ)−〈RT 〉network]− [〈RT 〉data(θ)−〈RT 〉data])2

+ 1
n

∑
θ

(〈accuracy〉network(θ)−〈accuracy〉data(θ))2 (A.1)

where the sums are over the orientation values, θ = {0.2◦,0.5◦,0.8◦,1.6◦}, the brackets
〈...〉 design averages, and the normalization factors n (for response times) and m (for the
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accuracy) are given by

m= max
θ

([〈RT 〉network(θ)−〈RT 〉network]− [〈RT 〉data(θ)−〈RT 〉data])2

n= max
θ

[〈accuracy〉network(θ)−〈accuracy〉data(θ)]2

In this expression, 〈RT 〉data(θ) denotes the mean experimental response time obtained by
averaging over all trials at the orientations ±θ, 〈RT 〉data is the average over all orientations;
〈RT 〉network(θ) and 〈RT 〉network are the corresponding averages obtained from the model
simulations. The coefficient λ denotes the relative weight given to the response time and
accuracy cost terms. The results are obtained when taking λ= 2, but it should be noted
that the choice of this parameter does not impact drastically the fitted parameters.

The fitting procedure consists in a Monte Carlo Markov Chain procedure. At each
step, I choose M sets of parameters randomly within a certain distance of an initial set of
parameters P0. The cost function is evaluated for each of these parameters. The next step
is performed with a new P0 that corresponds to the set of parameters that had the lowest
cost function.

1.1. Fitting the parameters
For most model parameters I take the value used in a previous study (Berlemont and
Nadal, 2019), as reproduced below. For the models calibration I consider ICD,max, τCD, cθ
and z as free parameters. I impose the two parameters ICD,max and τCD to be common to
all participants (joint optimization). I optimize the parameters cθ (one for each orientation
value) and the decision threshold z across subjects and blocks.

The rationale for this choice of free parameters is as follows. To avoid overfit, one
has to restrict as much as possible the number of free parameters. I rely on the model
calibrations done in previous works (Wang, 2002; Wong and Wang, 2006; Berlemont and
Nadal, 2019) which suggest to keep as much as possible the parameters values resulting
from the initial work of Wong and Wang. In particular, the original parameters values
were chosen such as to reproduce empirical data with the mean field model. Now since
the empirical data are only behavioral data, it is difficult to make a calibration of the
synaptic weights. A significant change of these parameters would be required to change
the behavioral outcomes. Importantly, I tried to restrict the calibration to a small set of
reasonably independent parameters. For instance, a change in the weights values may be
compensated by a change in the decision threshold (so that the cost function may be flat
on a large domain of the parameters space). With the weights fixed, I can optimize the
fit with respect to the decision threshold in a safer way. An important quantity is the
signal-to-noise ratio. By keeping the internal noise constant during the fitting procedure,
I explore the whole range of this ratio. The choice of free parameters can be paralleled
with the one made in the DDM framework (drift, threshold and level of noise). This
facilitates the comparison with the DDM approach. Finally, imposing some of the free
parameters to be common to all participants allows to further reduce the number of free
parameters, at a price of a more complex optimization (a partially joint calibration of all
the participant-specific networks).

Parameter Value Parameter Value Fitted parameter Status
a 270 Hz/nA σnoise 0.02 nA ICD,max common to all participants
b 108 Hz τnoise 2 mS τCD common to all participants
d 0.154 s I0 0.3255 nA decision threshold z specific to each participant
γ 0.641 Jext 0.182 nA cθ = α1θ+α2θ

2 specific to each participant
JC,C = JAC,AC 0.2609 nA JC,AC = JAC,C 0.0497 nA
τS 100 ms
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For each subject, I minimize the cost function with respect to the choice of cθ and z,
making use of a Monte Carlo Markov Chain fitting procedure, coupled to a subplex
procedure (Rowan, 1990). This method is particularly adapted to handle simulation based
models with stochastic dynamics. Finally, ICD,max and τCD are fitted using a grid search
algorithm as they have less influence on the cost function. In the model, the parameter c
represents the stimulus ambiguity, which I expect here to be a monotonous function of the
amplitude of the angle, θ. When allowed to be independent parameter values for each value
of the orientation, θ = {0.2◦,0.5◦,0.8◦,1.6◦}, I find that the cθ values can be approximated
by a linear or quadratic function of θ depending on the participant. I performed an AIC
test between the linear and quadratic fit in order to choose which function to use for each
participant. These approximations reduce the number of free parameters.

In order to obtain a confidence interval for the different parameters, I used the likelihood
estimation of confidence interval for Monte-Carlo Markov Chains method. The confidence
interval on the parameters is thus the 70% confidence interval, assuming a Gaussian
distribution of the cost function. This provides an approximation of the reliability of the
parameters values found. In order to assess the reliability of this method I checked that the
threshold z and stimulus strength cθ parameters have an almost non-correlated influence
onto the cost function.
The results of the calibrating procedure are summarized in the following section, with
ICD,max = 0.033 nA and τCD = 150 ms.
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Figure A.2: (A) Each panel represents the log-likelihood of the cost function for each
participant when the parameter z is varied. The blue line shows the confidence interval.
(B) The color code represents the normalized value of the cost function for participant 5
when two parameters are varied. The minimal value of the cost function corresponds to a
line. This means that these two parameters are almost non-correlated.

1.2. Parameters of the model
Block Parameter Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 Participant 6

Pure Block z(Hz) 10.78 12.69 14.07 12.80 10.05 12.89
∆z(Hz) (-0.7,+1.75) (-2.1,+0.175) (-1.92,+1.75) (-0.1,+2.275) (-1.8,2.1) (-1.05,+2.45)

Confidence
Block

z(Hz) 13.08 13.70 14.95 12.96 12.55 14.65
∆z (Hz) (-0.18,+2.28) (-1.93,+0.18) (-2.45,+1.40) (-0.17,+2.1) (-0.35,+2.8) (-2.1,+0.53)
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Type of fit Pure Block Confidence Block
Participant 1 Quadratic cθ = 554.8∗θ−1444∗θ2 cθ = 650∗θ1.3×104 ∗θ2

Participant 2 Quadratic cθ = 729.6∗θ−9819∗θ2 cθ = 1056∗θ−1.4×104 ∗θ2

Participant 3 Linear cθ = 524.4∗θ cθ = 634.6∗θ
Participant 4 Quadratic cθ = 269.8∗θ−577.6∗θ2 cθ = 190∗θ+ 2.17×104 ∗θ2

Participant 5 Quadratic cθ = 387.6∗θ+ 4188∗θ2 cθ = 182.4∗θ+ 4.9×104 ∗θ2

Participant 6 Linear cθ = 551∗θ cθ = 1030∗θ

Usher-McClelland model
Parameter Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6
z 1.0 1.0 1.0 1.4 1.3 1.3
β 0.25 0.10 0.18 0.10 0.15 0.12
k 0.15 0.18 0.18 0.11 0.11 0.14
c0.2 0.02 0.04 0.02 0.02 0.02 0.04
c0.8 0.15 0.12 0.07 0.08 0.14 0.132
c1.6 0.23 0.20 0.17 0.225 0.295 0.235



B
Collapsing bounds models

Figure B.1: IRM collapsing bounds. Each panel represents a different case in the IRM
with collapsing bounds. The blue race corresponds to the winning race and the blue one
to the losing race. (A) This panel corresponds to the case where the decision was fast
and lead to a high confidence trial. (B) Fast decision but low confidence trial. (C) Slow
decision and losing race very close to the decision threshold. (D) Slow decision and losing
race far to the decision threshold.

Figure B.1 shows a schematic representation of the IRM with collapsing bounds. The
same analysis as the one in the main text for the IRM without collapsing bounds leads to
the following conclusions. One can observe two behaviors. Either the decision is fast and
it is possible for the model to be in a high-confidence trial, either the decision is slow and
the confidence will be low.

If the decision was fast, the model will lead to the opposite sequential effect due to
confidence after the relaxation period (similar case as in the main text). However, if the
decision was slow the losing race is going to be close to the decision threshold and the
confidence will be low for all of these trials. After the relaxation, the losing race will
have the same state as in the high-confidence fast trial case. Therefore there will be no
sequential effects. This analysis shows that even an IRM with collapsing bounds and a
relaxation mechanism will not account for the sequential effects due to confidence that I
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can model with an attractor neural network.
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MOTS CLÉS

prise de décision perceptuelle, attracteurs neuronaux, effets séquentiels, confiance, codage neuronal

RÉSUMÉ

De nombreuses expériences neurophysiologiques sur les singes et rongeurs ont mis en évidence certains mécanismes
neuronaux de la prise de décision. Des signaux neuronaux qui sont corrélés avec des éléments spécifiques de la prise
de décision réflètent un processus d’accumulation d’évidence afin de prendre la décision. Dans cette thèse, j’étudie un
modèle de réseau neuronal dynamique qui utilise un phénomène d’équilibre en excitation et inhibition pour rendre compte
du mécanisme d’accumulation d’évidence. Ce modèle rend compte, qualitativement, des données neurophysiologiques
mais a très peu été comparé aux résultats comportementaux d’expériences de prise de décision avec des humains. Lors
de la prise de décision, de nombreux effets comportementaux sont observables comme par exemple le ralentissement de
la décision après une erreur. Reproduire ces effets est crucial pour comprendre le processus de prise de décisions chez
les humains et les animaux. J’explore ces différents effets du point de vue du modèle à attracteur neuronaux. Bien qu’il
ne s’agisse pas du cadre le plus utilisé dans l’étude de la prise de décision et ses effets, il permet l’étude de méchanismes
biophysiques détaillés.
Dans cette thèse je montre que ce niveau de modélisation ne constitue pas uniquement un simple perfectionnement du
cadre standard mais qu’il est essentiel pour certains effets comportementaux. Grâce à un phénomène de relaxation, le
réseau attracteur reproduit de nombreux séquentiels comme les biais de répétitions, le ralentissement après-erreur ou en-
core l’amélioration des performances après-erreur. Dans un second temps j’ai développé une expérience psychophysique
qui permet l’étude de la confiance lors de la prise de décision. J’ai montré qu’un réseau attracteur reproduit la notion de
confiance des participants, ainsi que les effets séquentiels dues à la confiance. Ces différents résultats montre que la
dynamique non-linéaire, caractéristique des réseau attracteurs, est essentielle pour reproduire de nombreux aspcts de la
prise de décision.
La dernière partie de ce manuscrit consiste en l’étude du codage neuronal de l’information dans un réseau de prise de
décisions. Je me concentre sur le processus d’apprentissage d’une tâche de catégorisation. Je montre que la modulation
par la confiance du signal de récompense conduit à un apprentissage plus efficace de la part du système.

ABSTRACT

Neurophysiological experiments on monkeys and rodents have highlighted the neural mechanisms of decision-making.
Neural signals, that are correlated with specific elements of the decision-making process, reflect an accumulation of
evidence until the decision is reached. In this thesis, I study a dynamic neural network model that uses a balance between
excitation and inhibition to account for the mechanism of evidence accumulation. This model qualitatively accounts for
neurophysiological data but has not been compared quantitatively with behavioral results from decision experiments with
humans. During decision-making experiments, many behavioral effects can be observed, such as the slowing down of
the decision after an error. Modeling these effects is critical to reproduce the decision-making process in animals and
humans. I explore these different effects from the point of view of the neural attractor model. Despite the fact that this
framework does not consist in the most common to study decision-making and its effects, it allows for detailed biophysical
mechanisms.
In this thesis, I show that this level of modeling does not just correspond to a refinement of the standard framework but
is essential to reproduce some behavioral measures. Using a relaxation dynamics, the network accounts for many of
the sequential effects such as history biases, post-error slowing and post-error improvement in accuracy. In a second
step I have developped a psychophysics experiment in order to study confidence in decision-making. I have shown that
an attractor network reproduces the sense of confidence of the participants, as well as the sequential effects due to
confidence. These results show that the non-linear dynamics, characteristic of attractor neural networks, is essential to
reproduce various aspects of decision-making.
The last part of this manuscript consists in a study of the neural coding of information in a decision network. I focus on the
learning process of a categorization task by the network. I show that a modulation of the reward signal by the confidence
leads to a more efficient learning of the categorization task.
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