
HAL Id: tel-03153209
https://hal.science/tel-03153209v2

Submitted on 3 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameterized and Algebro-geometric Advances in
Static Program Analysis

Amir Goharshady

To cite this version:
Amir Goharshady. Parameterized and Algebro-geometric Advances in Static Program Analysis. Pro-
gramming Languages [cs.PL]. Institute of Science and Technology Austria, 2020. English. �NNT : �.
�tel-03153209v2�

https://hal.science/tel-03153209v2
https://hal.archives-ouvertes.fr

Parameterized and Algebro-geometric
Advances in Static Program Analysis

by

Amir Kafshdar Goharshady

A thesis presented to the Graduate School of the
Institute of Science and Technology Austria, Klosterneuburg, Austria

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Theoretical Computer Science

Date of Defense: 27-11-2020

Parameterized and Algebro-geometric
Advances in Static Program Analysis

by

Amir Kafshdar Goharshady

November 2020

A thesis presented to the Graduate School of the
Institute of Science and Technology Austria, Klosterneuburg, Austria

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Theoretical Computer Science

The thesis of Amir Kafshdar Goharshady, titled “Parameterized and Algebro-geometric

Advances in Static Program Analysis”, is approved by:

Supervisor: Krishnendu Chatterjee, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Thomas Henzinger, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Jean-François Raskin, Université Libre de Bruxelles, Belgium

Signature:

Defense Chair: Christoph Lampert, IST Austria, Klosterneuburg, Austria

Signature:

signed page is on file

Authored by Amir Kafshdar Goharshady in November 2020.

No Rights Reserved.

This thesis and its contents are in the public domain.

The author hereby waives all his current and future rights, including the rights of his heirs

and successors, to this document and its contents, under copyright or intellectual property

laws in every jurisdiction for perpetuity.

IST Austria Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other people’s

work without this being so stated; this thesis does not contain my previous work without

this being stated, and the bibliography contains all the literature that I used in writing the

dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved by

my thesis committee, and that this thesis has not been submitted for a higher degree to any

other university or institution.

I certify that any republication of materials presented in this thesis has been approved by

the relevant publishers and co-authors.

Signature:

Amir Kafshdar Goharshady

November 2020

signed page is on file

i

Abstract

In this thesis, we consider several of the most classical and fundamental problems in static

analysis and formal verification, including invariant generation, reachability analysis, termi-

nation analysis of probabilistic programs, data-flow analysis, quantitative analysis of Markov

chains and Markov decision processes, and the problem of data packing in cache management.

We use techniques from parameterized complexity theory, polyhedral geometry, and real

algebraic geometry to significantly improve the state-of-the-art, in terms of both scalability

and completeness guarantees, for the mentioned problems. In some cases, our results are the

first theoretical improvements for the respective problems in two or three decades.

ii

Dedication

To Hosein Fatemi and Salman Taseer.

iii

Acknowledgments

First and foremost, I am extremely grateful to my advisor, Krishnendu Chatterjee. As

I often say in all sorts of occasions, I feel very lucky to be advised by him. He offered

me unparalleled opportunities during the past five years and constantly helped me in every

endeavor, not only in exploring various fields and ideas and quenching my scientific curiosity,

but also in career choices, supervising interns, grant applications, conference presentations,

job interviews, and every other aspect of my scientific and professional life. I owe a similar

debt of gratitude to Calin Guet, Thomas Henzinger, Laura Kovács, Jean-François Raskin and

Uli Wagner, who provided great inspiration and support during my whole PhD. I am also

thankful to Julian Fischer and Christoph Lampert who kindly agreed to chair my qualifying

exam and thesis defense sessions.

In the past years, two of my primary co-authors were Andreas Pavlogiannis and Hongfei

Fu. We spent countless hours together figuring out algorithms, writing papers, catching

deadlines, and responding to reviews in conference rebuttals. Our discussions shaped much

of my research and their influence is clear in every chapter of this thesis. On the same

note, I would be remiss not to mention Mohsen Alambardar, Minghzhang Huang, Rasmus

Ibsen-Jensen, Ali Shakiba, and Yaron Velner.

Another category of people who should rightfully be mentioned here are those with whom I

had in-depth technical discussions over the years to which I owe much of my research capabil-

ity, even though our discussions were mostly on topics unrelated to this thesis. This includes

Guy Avni, Sergiy Bogomolov, Mirco Giacobbe, Christian Hilbe, Josef “Pepa” Tkadlec, Viktor

Toman, Raimundo Saona Urmeneta, and Ðorđe Žikelić.

I had the much-appreciated opportunity to do two research internships during my PhD.

The first was hosted in 2017 by César Sánchez at the IMDEA Software Institute, and the

iv

second in 2019 by Sam Blackshear and David Dill at Facebook. I wholeheartedly thank them

for the pleasure of working together and hope that the resulting papers get published soon

(or at least eventually). On the other hand, I also supervised a number of interns at IST

Austria, who ended up contributing significantly to my research: Nastaran Okati, Arash Pour-

damghani, Ali Asadi, Parsa Mirtaheri, Kiarash Mohammadi and Mehrdad Karrabi (named

in the order of joining IST).

I would also like to give special thanks to Mohammadreza Hooshmandasl, who was the

very first person who involved me in CS research back in 2014, and who has been a fab-

ulous mentor and source of great wisdom in the years since. A few other people also had

a very significant role in my mathematical development during high school and early years

of higher education, including Saeid Alikhani, Qasem Barid Loqmani, Mohammad Farshi,

Hosein Khorshidi, Madjid Mirzavaziri, Mohammad Moshtaqioun, Mansour Qadiri Herati and

Abolfazl Shahzadeh-Fazeli. I am grateful to them all.

A warm thank you goes to my parents, Maryam Hajizadeh Saffar and Mohammadreza

Goharshady, and to my brother, Ehsan. The latter insisted vigorously on having a dedicated

sentence for himself in this acknowledgments section, so here it is.

Several of the experts and administrative people at IST Austria deserve special thanks

and recognition for going way above and beyond their responsibilities to help me settle in

Austria, attend conferences, go on internships, and obtain grants. This includes Paul Cech,

May Chan, Vlad Cozac, Elisabeth Hacker, Louise Jottrand, Niall O’Brien, Maria-Oana Rosu,

Sarah Seider and Uli Seiss.

Finally, I am grateful to Facebook, IBM, and the Austrian Academy of Sciences (ÖAW)

who financially supported my PhD through their respective PhD Fellowship programs and

to the Royal Commission for the Exhibition of 1851 who offered me a very generous research

fellowship.

v

About the Author

Amir Goharshady completed a BSc in Computer Science and a BSc in Mathematics, both

at the Yazd University of Iran, and obtained a Graduate Diploma in Mathematics from the

University of London and an MSc in Computer Science (Systems) from the Georgia Institute

of Technology. Prior to his PhD, Amir was deeply involved in Mathematics and Programming

Olympiads and won a total of 14 medals in national and international competitions. He joined

IST Austria in 2015.

Amir’s main research interests include Parameterized Complexity, Formal Methods, Ver-

ification, and Graph Algorithms. His research has been published in the top venues of the

field, such as CAV, POPL, PLDI, TOPLAS, IJCAI, ESOP, CONCUR and OOPSLA, and

recognized by the Khwarizmi Prize (Iran’s highest state award for young researchers), two

IEEE Computer Society Best Student Paper Awards (2019 and 2020), and PhD Fellowships

from Facebook, IBM, and the Austrian Academy of Sciences (ÖAW).

vi

List of Publications

The following is a list of all publications during the PhD period. In accordance with

the cultural norms in mathematics and theoretical computer science, author names appear

in alphabetical order, except that co-authors who are located in countries where the order

matters in evaluation/graduation decisions are put first.

[1] Asadi, A., Chatterjee, K., Goharshady, A. K., Mohammadi, K., and Pavlogiannis, A.

Faster Algorithms for Quantitative Analysis of MCs and MDPs with Small

Treewidth. In 18th International Symposium on Automated Technology for Verification

and Analysis (ATVA), 2020.

[2] Chatterjee, K., Fu, H., Goharshady, A. K., and Goharshady, E. K. Polynomial

Invariant Generation for Non-deterministic Recursive Programs. In 41st ACM

Conference on Programming Language Design and Implementation (PLDI), 2020.

[3] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Pavlogiannis, A. Optimal

and Perfectly Parallel Algorithms for On-demand Data-flow Analysis. In 29th

European Symposium on Programming (ESOP), 2020.

[4] Goharshady, A. K. and Mohammadi, F. An Efficient Algorithm for Computing

Network Reliability in Small Treewidth. Reliability Engineering and System Safety,

2020.

[5] Chatterjee, K., Goharshady, A. K., Goyal, P., Ibsen-Jensen, R., and Pavlogiannis,

A. Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with

Constant Treewidth. ACM Transactions on Programming Languages and Systems

(TOPLAS), 2019.

vii

[6] Chatterjee, K., Fu, H., and Goharshady, A. K. Non-polynomial Worst-case

Analysis of Recursive Programs. ACM Transactions on Programming Languages

and Systems (TOPLAS), 2019.

[7] Huang, M., Fu, H., Chatterjee, K., and Goharshady, A. K. Modular Verification

for Almost-Sure Termination of Probabilistic Programs. In 34th ACM Interna-

tional Conference on Object-Oriented Programming, Systems, Languages, and Applica-

tions (OOPSLA), 2019.

[8] Wang, P., Fu, H., Goharshady, A. K., Chatterjee, K., Qin, X., and Shi, W. Cost

Analysis of Nondeterministic Probabilistic Programs. In 40th ACM Conference

on Programming Language Design and Implementation (PLDI), 2019.

[9] Chatterjee, K., Goharshady, A. K., and Pourdamghani, A. Probabilistic Smart

Contracts: Secure Randomness on the Blockchain. In IEEE International Con-

ference on Blockchain and Cryptocurrency (ICBC), 2019.

[10] Chatterjee, K., Goharshady, A. K., and Pourdamghani, A. Hybrid Mining:

Exploiting Blockchain’s Computational Power for Distributed Problem

Solving. In 34th ACM Symposium on Applied Computing (SAC), 2019.

[11] Chatterjee, K., Goharshady, A. K., and Goharshady, E. K. The Treewidth of

Smart Contracts. In 34th ACM Symposium on Applied Computing (SAC), 2019.

[12] Chatterjee, K., Goharshady, A. K., Okati, N., and Pavlogiannis, A. Efficient

Parameterized Algorithms for Data Packing. In 46th ACM Symposium on Princi-

ples of Programming Languages (POPL), 2019.

[13] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Velner, Y. Ergodic

Mean-payoff Games for the Analysis of Attacks in Cryptocurrencies. In 29th

International Conference on Concurrency Theory (CONCUR), 2018.

[14] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Pavlogiannis, A.

Algorithms for Algebraic Path Properties in Concurrent Systems of Constant

viii

Treewidth Components. ACM Transactions on Programming Languages and Systems

(TOPLAS), 2018.

[15] Goharshady, A. K., Behrouz, A., and Chatterjee, K. Secure Credit Reporting on

the Blockchain. In IEEE International Symposium on Blockchain and its Applications,

2018.

[16] Chatterjee, K., Fu, H., Goharshady, A. K., and Okati, N. Computational

Approaches for Stochastic Shortest Path on Succinct MDPs. In 27th Inter-

national Joint Conference on Artificial Intelligence (IJCAI), 2018.

[17] Chatterjee, K., Goharshady, A. K., and Velner, Y. Quantitative Analysis of

Smart Contracts. In 27th European Symposium on Programming (ESOP), 2018.

[18] Chatterjee, K., Goharshady, A. K., and Pavlogiannis, A. JTDec: A Tool for Tree

Decompositions in Soot. In 15th International Symposium on Automated Technology

for Verification and Analysis (ATVA), 2017.

[19] Chatterjee, K., Fu, H., and Goharshady, A. K. Non-polynomial Worst-case

Analysis of Recursive Programs. In 29th International Conference on Computer

Aided Verification (CAV), 2017.

[20] Chatterjee, K., Fu, H., and Goharshady, A. K. Termination Analysis of

Probabilistic Programs through Positivstellensatz’s. In 28th International Con-

ference on Computer Aided Verification (CAV), 2016.

[21] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Pavlogiannis, A.

Algorithms for Algebraic Path Properties in Concurrent Systems of Constant

Treewidth Components. In 43rd ACM Symposium on Principles of Programming

Languages (POPL), 2016.

ix

Table of Contents

Abstract i

Dedication ii

Acknowledgments iii

About the Author v

List of Publications vi

List of Abbreviations xii

1 Introduction 1

1.1 Prologue . 2

1.2 Outline . 4

1.3 Summary of Contributions . 6

1.4 Awards . 10

2 Preliminaries 11

2.1 Notation . 11

2.2 Parameterized Complexity and FPT . 12

2.3 Tree Decompositions and Treewidth . 14

2.4 Stochastic Processes and Martingales . 20

x

2.5 Transition Systems . 24

2.6 Sätze for Positivity and Nonnegativity of Polynomials 27

2.7 Encoding Sum-of-Squares Polynomials in QP 38

3 Faster Algorithms for Data-Flow Analysis 41

3.1 Introduction . 42

3.2 The IFDS Framework . 47

3.3 Treewidth-based Algorithms . 55

3.4 Experimental Results . 68

4 Faster Algorithms for Quantitative Analysis of MCs and MDPs 73

4.1 Introduction . 74

4.2 Preliminary Definitions and Notation . 76

4.3 Quantitative Problems . 78

4.4 Treewidth-based Quantitative Analysis Algorithms 81

4.5 Experimental Results . 96

5 Faster Algorithms for Data Packing 101

5.1 Introduction . 102

5.2 Paging and Packing . 103

5.3 Summary of Our Results . 112

5.4 Algorithms and Hardness Results based on Treewidth of Access Graphs . . . 115

5.5 Algorithms and Hardness Results based on Treewidth of Access Hypergraphs 129

5.6 Experimental Results . 142

6 Invariant Generation for Polynomial Programs 147

6.1 Introduction . 148

6.2 Related works . 152

xi

6.3 Invariants and Inductive Assertion Maps . 155

6.4 Our Positivstellensatz-based Approach . 159

6.5 Experimental Results . 170

7 Reachability Analysis for Polynomial Programs 173

7.1 Introduction . 174

7.2 Inductive Reachability Witnesses . 179

7.3 Basic Results and Linear/Polynomial Witnesses 185

7.4 Synthesis of Inductive Reachability Witnesses 188

7.5 Experimental Results . 210

8 Termination Analysis for Polynomial Programs 215

8.1 Introduction . 216

8.2 Termination of Probabilistic Programs . 219

8.3 Ranking Supermartingales . 221

8.4 Synthesizing Polynomial Ranking Supermartingales 228

8.5 Experimental Results . 230

References 235

xii

List of Abbreviations

a.s. Almost-sure / Almost-surely

BSCC Bottom Strongly Connected Component

CC Connected Component

CFG Control Flow Graph

FPT Fixed-Parameter Tractable / Fixed-Parameter Tractability

IRW Inductive Reachability Witness

LP Linear Programming

LRSM Linear Ranking Supermartingale

MC Markov Chain

MDP Markov Decision Process

PRSM Polynomial Ranking Supermartingale

RSM Ranking Supermartingale

SCC Strongly Connected Component

SDP Semi-definite Programming

SI Strategy Iteration

QP Quadratic Programming

UIRW Universal Inductive Reachability Witness

VI Value Iteration

1

1

Introduction

2

1.1 Prologue

Formal Verification and Safety-criticality. This thesis focuses on various aspects of

formal verification. On a high level, an ultimate goal of the field of verification is to obtain

efficient and automated algorithms that can formally/mathematically prove the correctness

or incorrectness of a program with respect to a well-defined specification. This is especially

vital given that many modern software systems perform safety-critical operations, i.e. their

malfunction can cause irreparable harm, either in the form of catastrophic financial losses or

even in the form of life loss. Recent examples of such malfunctions include tragedies such

as the Boeing crashes in 2018-2019, in which hundreds of people were killed by a software

bug, and high-profile heists such as the DAO hack of 2016, in which attackers exploited

a programming error to steal more than $60,000,000 from an Ethereum smart contract.

When dealing with safety-critical software, it is of utmost importance that we can formally

and mathematically verify its correctness and show that no such errors can happen in any

execution of the program under any circumstance. This is easier said than done. There are

significant challenges in verifying real-world software, and this thesis is an attempt to handle

some of these challenges. Specifically, we focus on static program analysis, i.e. approaches

that aim to verify the correctness of a program by analyzing its source code without actually

executing it.

The Challenge of Big Code. A primary challenge in verifying modern programs is their

sheer size. Many of our modern software systems are huge. They contain millions or even

billions of lines of code. For example, Facebook has a mono-repository with more than 10

million lines of inter-connected code that is written by virtually every engineer who has ever

worked for the company. Google, Twitter, Microsoft, and Uber have a similar approach,

in which huge amounts of code are put into a single version-controlled repository with a

significant volume of code change every hour, and an almost real-time continuous integration.

In case of Google, the repository is more than a billion lines long. At this scale, some of the

most basic correctness checks, such as checking for absence of null pointer dereferencing, have

become intractable and problems that were assumed to be “solved” for many years have to

be revisited.

3

The Challenge of Undecidability. Another challenge, which is very familiar to all com-

puter scientists, is the inherent undecidability of many verification problems. As early as

1936, Turing proved that halting, i.e. the problem of automatedly checking whether an input

program terminates, is undecidable. This means that there are no automated algorithms

that can solve this problem in finite time. Rice famously extended this undecidability result

to virtually every other useful verification task, including safety and reachability.

Given the two challenges above, automated formal verification might seem hopeless, but

nothing can be further from the truth. The field is actually one of the most active, useful

and promising areas of theoretical computer science. In this thesis, building on the previous

achievements of our field, of which a long list is available in the References section, we will

study two approaches for facing the above challenges.

Parameterization. The first approach is to use tools and techniques from parameterized

complexity theory. The primary idea is to consider a verification task which may be quite

expensive, i.e. either NP-hard, or hard-to-approximate or even solvable in high-degree poly-

nomial time, and then identify underlying structural properties in the input instance that

can help ameliorate the high complexity, and exploit these structures for faster algorithms.

This might sound like using heuristics, but the main difference is that we actually show

the existence of these structural properties in real-world instances. For example, the main

property exploited in this thesis is the low-treewidth property of the control-flow graphs. It

is mathematically proven by Thorup that every structured program has this property. As

such, faster algorithms that are obtained by assuming this property are actually proven to

be applicable to our real-world programs. We use such algorithms in Chapters 3–5 to scale

up analyses ranging from data-flow to cache management. The primary utility of this ap-

proach is that it leads to scalable linear-time algorithms that can easily handle systems with

millions or even billions of nodes/lines of code. See Section 2.2 for a more formal treatment

of parameterized algorithms.

Algebro-geometric Methods. Our second approach is to handle the undecidability chal-

lenge by focusing on specific families of programs. Choosing such families is an art and needs

a careful balancing act. There is a clear trade-off between the generality and expressiveness

4

of the chosen family on the one hand, and the complexity of verifying programs in the family

on the other. In this thesis, we focus on polynomial imperative programs with real variables

and non-determinism. In other words, we consider programs in which all assignments and

guards consist of polynomial expressions. See Section 2.5 for a formal definition. This family

covers many programs used in diverse applications ranging from AI to scientific computa-

tion to network routing. Moreover, its expressiveness is further supported by the well-known

Weierstrass theorem which establishes that every continuous function can be approximated as

closely as desired by a polynomial. We use tools and theorems from polyhedral and algebraic

geometry (Section 2.6) in order to obtain sound and (semi-)complete algorithms for three

classical problems, namely Invariant Generation (Chapter 6), Reachability (Chapter 7), and

Probabilistic Termination (Chapter 8) over polynomial programs. Our algorithms reduce

these classical problems to quadratic programming in case of invariants and reachability, and

to semi-definite programming in case of termination. These are both well-studied optimiza-

tion problems with many efficient industrial solvers. Moreover, semi-definite programming is

solvable in polynomial time. As such, our approaches provide the first applicable methods

with completeness guarantees for these classical problems over polynomial programs.

1.2 Outline

Chapter 2 provides preliminary tools and mathematical theorems which form the theoretical

basis of our algorithms in next parts of the thesis. Specifically, it presents previously-known

results in parameterized complexity, real algebraic geometry, and martingale theory. It also

provides new theorems with the aim of making these results applicable in our verification use-

cases. Despite its name, this chapter is probably one of the most mathematically dense parts

of this thesis. The goal has been to create a clear-cut separation between the mathematical

results on the one hand, and algorithmic results on the other. As such, most mathematical

results are put in this chapter.

Generally speaking, the results in this thesis can be divided in two parts:

5

• Parameterized Approaches: Chapters 3–5 each provide faster parameterized algorithms

for a classical problem or a family of closely-related problems in static analysis. This

includes Data-flow Analyses (Chapter 3), Quantitative Analyses of Markov Chains and

Markov Decision Processes (Chapter 4) and Faster Algorithms for Optimal Cache Man-

agement through Data Packing (Chapter 5). The exciting point about these chapters

is that they provide fast (linear-time) parameterized algorithms that can scale up to

handle huge real-world programs/instances with billions of lines/nodes.

• Algebro-geometric Approaches: Chapters 6–8 consider polynomial programs and focus

on the following classical verification problems:

– Safety: Chapter 6 considers invariant generation. Our goal in this chapter is to

provide automated approaches that find over-approximations of the set of states

that can be reached in executions of an input program. The simple intuition is

that given a set B of buggy (undesirable) states, if we can find fine-enough over-

approximations of reachable states and show that they do not intersect B, we have

effectively proven the correctness of our program with respect to B, i.e. we have

proven that none of the errors in B can happen in the executions of the program.

– Reachability: In Chapter 7, we consider the natural dual of safety and focus on

the problem of proving the incorrectness of a given program. Specifically, given a

set B of buggy states, we focus on synthesizing formal proofs that B can indeed

be reached in a given program.

– Termination: Finally, in Chapter 8, we consider what is inarguably one of the

most classical problems in all of computer science, namely termination. Given a

possibly-probabilistic program as input, we focus on automatically synthesizing

formal proofs that the program eventually halts, i.e. it does not run forever.

The common thread among these three chapters is that they all use theorems from poly-

hedral geometry and real algebraic geometry such as positivstellensätze (positive locus

theorems). This has significant benefits compared to previous methods: (i) they pro-

vide completely automated push-button solutions, (ii) they provide strong completeness

6

guarantees, in each case showing that if a polynomial safety/reachability/termination

proof exists, then our algorithms are guaranteed to find it, and finally (iii) they lead

to significant speed-ups over classical solutions. For safety and reachability, we provide

polynomial-time reductions to quadratic programming, which is a well-studied problem

in optimization with many efficient solvers. In case of termination, we go even further

and provide reductions to linear and semi-definite programming, leading to an end-to-

end approach that takes polynomial-time. In contrast, previous approaches for these

problems reduced them to the existential theory of reals and applied extremely expen-

sive quantifier elimination methods. As such, when it comes to polynomial programs,

for all three classical problems we are providing the first ever applicable methods with

completeness guarantees.

For the sake of elegance, we present our reachability and safety results in terms of

non-probabilistic programs (transition systems) with non-determinism. These results

can be trivially extended to probabilistic programs, as well. However, when it comes to

the problem of termination, probabilistic programs are significantly trickier and hence

Chapter 8 puts them front and center. Naturally, any result obtained over the more

general probabilistic framework is automatically applicable to non-probabilistic cases,

as well.

The goal has been to ensure that each chapter is self-contained as much as possible. The

only exception is that we avoid repeating algorithmic insights. As such, Chapter 8 is better

read after Chapter 7.

1.3 Summary of Contributions

In short, the contributions in each chapter of this thesis can be summarized as follows:

• In Chapter 3, we consider the general problem of same-context interprocedural data-

flow analysis. This contains well-known analyses such as null pointer, reaching defini-

tions, live variables and dead code as special cases.

7

– Theoretical Contribution. Using parameterization by treewidth, we provide an

algorithm that can answer data-flow queries in O(1) after pre-processing the pro-

gram in O(n), where n is the number of lines of code. In contrast, the best

previously-known runtime bound on the approaches for solving this problem was

O(n2). Moreover, we show that our algorithms are optimal in terms of both space

and time and are also perfectly parallelizable. This is the first theoretical improve-

ment in the runtime of this widely-studied problem in more than two decades.

– Practical Contribution. In practice, this is the first algorithm for interprocedu-

ral data-flow analysis that can scale to handle huge code-bases with millions or

billions of lines of code. Our extensive experimental results show that our algo-

rithm consistently beats the runtimes of previous methods by several orders of

magnitude.

• In Chapter 4, we consider several classical quantitative analysis problems, namely Hit-

ting Probabilities, Discounted Sum, and Mean Payoff, over Markov Chains (MCs)

and Markov Decision Processes (MDPs). We parameterize the problems based on

the treewidth of the MC/MDP.

– Theoretical Contribution. We provide linear-time algorithms for solving the three

mentioned quantitative analyses over MCs with bounded treewidth. This is in

contrast to the general case of the problem which currently takes Ω(n2.37), where

n is the number of states in the MC. Hence, we are providing an improvement

factor of Ω(n1.37). Using strategy iteration, we obtain the same improvement for

MDPs.

– Practical Contribution. We show that our approaches beat the runtimes of state-

of-the-art verification and optimization tools by at least one order of magnitude

over MCs/MDPs with small treewidth.

• In Chapter 5, we consider Data Packing, which is a central problem in cache manage-

ment and of utmost importance in compiler optimization. The problem was notoriously

difficult and known to be NP-hard and hard-to-approximate within any non-trivial fac-

tor unless P=NP.

8

– Theoretical Contribution. We take a parameterized approach, based on the treewidth

of the so-called “access hypergraphs”. We show that there exists a constant q,

depending on cache parameters, such that Data Packing admits a linear-time pa-

rameterized algorithm if the access hypergraph of order q has constant treewidth.

Despite the fact that Data Packing was studied since the 1980s, this is the first

ever positive theoretical result and exact algorithm for Data Packing. All previous

results were either hardness results or heuristics. Moreover, we significantly enrich

the fine-grained complexity landscape of Data Packing by providing even stronger

hardness results. See Figure 5.4.

– Practical Contribution. We provide extensive experimental results, showing that

over benchmarks from a variety of commonly-used algorithms, our approach leads

to between 15 to 31 percent fewer cache misses. This is a huge improvement

and extremely important given the considerable role of cache misses in runtime

overheads of all programs.

• In Chapter 6, we consider the classical problem of Invariant Generation over polyno-

mial programs. We focus on generating inductive invariants that are conjunctions of

polynomial inequalities.

– Theoretical Contribution. We provide a polynomial-time sound and semi-complete

reduction from the invariant generation problem to quadratic programming. The

reduction uses tools from real algebraic geometry, specifically Putinar’s Positivstel-

lensatz, and leads to a completely automated push-button approach for invariant

generation. Notably, it provides completeness guarantees without resorting to the

existential theory of the reals or quantifier elimination. Moreover, the overall run-

time of our approach is subexponential, beating not only the previous complete

methods for polynomial programs, but also those of the much more special case

of linear/affine programs.

– Practical Contribution. We provide experimental results on a variety of bench-

marks from the literature demonstrating that our approach is the first applicable

method with completeness guarantees. Specifically, there are instances that could

9

not be handled by any previous incomplete approach. Moreover, the only previous

complete approach for this problem cannot even handle toy programs such as our

running example.

• In Chapter 7, we turn our focus to the problem of Reachability, which is classical in

verification and the dual of invariant generation.

– Theoretical Contribution. We define the novel notion of Inductive Reachability

Witnesses (IRWs) which serve as succinct inductive proofs of reachability. We

then focus on synthesizing linear and polynomial IRWs and obtain polynomial-

time reductions to quadratic programming. Our main mathematical tools in these

reductions are Farkas’ Lemma, Positivstellensätze, and Hilbert’s Strong Nullstel-

lensatz. Just as in the previous case, our approaches provide completeness guar-

antees without using quantifier elimination.

– Practical Contribution. We provide experimental results over standard bench-

marks and show that, due to our completeness guarantees, our approach can

handle programs and prove reachability properties that were beyond the reach of

all previous methods. Specifically, it is noteworthy that our approach can easily

prove reachability by long paths and identify deep bugs.

• Finally, in Chapter 8, we consider the fundamental problem of proving termination. In

this chapter, we focus on polynomial programs with both probabilistic behavior and

non-determinism.

– Theoretical Contribution. We define the notion of Polynomial Ranking Super-

martingale (PRSM) and show that it serves as a sound proof method for both

almost-sure and finite termination. We also show that difference-bounded PRSMs

can be used for obtaining concentration bounds on the termination time of a pro-

gram. Finally, we provide sound and semi-complete approaches for synthesizing

PRSMs using the positivstellensätze of Putinar and Schmüdgen. Unlike the previ-

ous cases, we provide a polynomial-time reduction to semi-definite programming.

10

This leads to a completely automated push-button approach for termination anal-

ysis that runs in polynomial time.

– Practical Contribution. We provide experimental results demonstrating that our

approach is able to prove termination and synthesize bounds on the expected run-

times of various probabilistic programs with different types of non-linear behavior.

1.4 Awards

The research presented in this thesis has won a number of awards, including an IBM PhD

Fellowship, a Facebook PhD Fellowship, and a DOC Fellowship of the Austrian Academy of

Sciences (ÖAW). The works on polynomial programs have led to a Khwarizmi research prize,

which is Iran’s highest state honor for young researchers. Chapters 5 and 8 have each won an

IEEE Computer Society Best Student Paper Award (Lance Stafford Larson Prize) in 2019

and 2020, respectively. Chapter 3 has led to a Research Fellowship of the Royal Society for

the Exhibition of 1851 and has been nominated for an EATCS∗ Best Paper Award at ESOP.

∗European Association for Theoretical Computer Science

11

2

Preliminaries

2.1 Notation

Throughout this document, we use the following notation:

Sets. We use Z,N,Z≥0,Q,R,R≥0 to denote the sets of integers, positive integers, non-

negative integers, rational numbers, real numbers, and non-negative real numbers respec-

tively.

Graphs. A graph is a pair G = (V,E) in which V is a set of vertices and E is a multi-set

of edges. Each edge is either undirected in which case it is a set {u, v} ⊆ V, or directed, in

which case it is a pair (u, v) ∈ V ×V of vertices. Unless otherwise stated, we allow self-loops

and multiple edges between the same pair of vertices. A graph is undirected (resp. directed)

if all of its edges are undirected (resp. directed). Given a graph G = (V,E), its underlying

undirected graph is defined as G = (V,E), in which

E := {{u, v} ∈ V × V | {u, v} ∈ E ∨ (u, v) ∈ E}.

For each vertex u ∈ V, we define the neighbors, successors and predecessors of u as follows:

N(u) := {v ∈ V | {u, v} ∈ E},

Succ(u) := {v ∈ V | (u, v) ∈ E},

12

Pred(u) := {v ∈ V | (v, u) ∈ E}.

A path of length n in G is a sequence 〈v0, v1, . . . , vn〉 ∈ V ∗ in which we have {vi, vj} ∈ E for

every 0 ≤ i < n. A directed path is a sequence 〈v0, v1, . . . , vn〉 ∈ V ∗ such that (vi, vj) ∈ E for

every 0 ≤ i < n. A simple (directed) path is a (directed) path in which each vertex appears

at most once. We write v0πvn to denote the existence of a path from v0 to vn and v0 vn

to denote the existence of a directed path. The distance between u and v (resp. from u to

v) is the length of the shortest path (resp. directed path) starting at u and ending at v. We

denote it by dG(u, v) (resp. ~dG(u, v)). We drop the subscript G when it is clear from the

context. In an undirected graph G = (V,E), we define the connected component of a vertex

u ∈ V as CC(u) := {v ∈ V | uπv}. Similarly, in a directed graph G, we define the strongly

connected component of u ∈ V as SCC(u) := {v ∈ V | u v ∧ v u}. A graph is (strongly)

connected if it has exactly one (strongly) connected component.

Trees and Directed Trees. A tree is a connected undirected graph T = (VT , ET) in which

there is a unique simple path between every pair of vertices. A directed tree is a directed

graph T = (VT , ET) together with a distinguished root vertex r ∈ Vt such that:

• Its underlying graph T is a tree, and

• For every (u, v) ∈ ET we have dT (r, u) = 1 + dT (r, v).

If (u, v) ∈ ET , we say that v is the parent of u and u is a child of v. Moreover, u is an

ancestor of v if v u. In this case, v is a descendant of u. Note that each vertex is an

ancestor and descendant of itself. We say that a vertex l ∈ VT is a leaf if it has no children.

Polynomials. Given a set X of variables, we denote by R[X] the set of polynomials over X

with real coefficients. For a polynomial p ∈ R[X], we use deg(p) to denote its degree.

2.2 Parameterized Complexity and FPT

Several of the algorithms presented in this thesis are parameterized and exploit the underlying

structural properties of their input instances to obtain the solution faster. As such, we now

13

provide a short overview of parameterized problems and Fixed-Parameter Tractability (FPT).

For a more detailed treatment, see [Downey and Fellows, 2012].

The idea behind parameterized complexity is to study the runtime of algorithms not only

based on the size of their input, but also based on an additional parameter k. The parameter

k can basically be anything. It might be part of the input, the output, or some structural

property of the instance under study. We now provide a formal definition:

Parameterized Problems [Downey and Fellows, 2012]. Given a finite alphabet Σ,

a parameterized instance is a pair (s, k) ∈ Σ∗ × Z≥0 consisting of an input string s and

a non-negative integer k, which is called the “parameter”. A parameterized language or

parameterized problem is simply a set L ⊆ Σ∗ × Z≥0 of parameterized instances. As in

classical complexity theory, a terminating parameterized algorithm A decides L iff it gets as

input a parameterized instance (s, k) and accepts if and only if (s, k) ∈ L.

XP [Downey and Fellows, 2012]. A parameterized problem L is in XP (is slicewise-

polynomial) if there exists a parameterized algorithm that decides L in time O(nf(k)), where

n is the length of the input string, k is the parameter, and f is any computable function.

Intuitively, if L is in XP, then it can be solved efficiently, i.e. in polynomial time, over

instances that have a small parameter.

Example 2.1. Consider the problem L of deciding whether a graph G = (V,E) with n vertices

and m edges has a vertex cover of size at most k. A vertex cover is a set S of vertices, such

that each edge has at least one of its endpoints in S. This is a classical NP-complete problem.

However, if we consider k as the parameter, we can simply obtain an algorithm that goes

through all possible
(
n
k

)
combinations of vertices and checks whether they are vertex covers.

This takes O(m · nk) time and is hence an XP algorithm. Therefore, instances in which the

parameter k is small can be solved in polynomial time. However, note that the degree of the

polynomial depends on k. Hence, the scalability of our algorithm is seriously hindered even

with small increases in k. This discussion directly leads to the following notion:

FPT [Downey and Fellows, 2012]. A parameterized problem L is Fixed-Parameter Tractable

(FPT) if there exists a parameterized algorithm that decides L in time O(nc · f(k)), where n

14

is the size of the input, k is the parameter, f is an arbitrary computable function, and c is a

constant not depending on either n or k.

Example 2.2. Consider the same problem L as in Example 2.1. Note that for every edge

{u, v} ∈ E, at least one of its endpoints u or v must be included in the vertex cover S.

Moreover, if we know that a vertex is included in S, we can remove all of its adjacent edges.

In other words, for any edge {u, v} ∈ E, we have

(G, k) ∈ L⇔ (G[V \ {u}], k − 1) ∈ L ∨ (G[V \ {v}], k − 1) ∈ L.

Moreover, we know that (G, 0) ∈ L iff G has no edges. This directly leads to a recursive

algorithm that at each step chooses an arbitrary edge of the graph and recurses on removing

either of its endpoints. As base cases, it accepts if the graph runs out of edges, and rejects

if the parameter k becomes 0 but there are more edges remaining. It is easy to see that our

algorithm has a runtime of O((n + m) · 2k) and is hence an FPT algorithm. Note that for

every fixed value of the parameter k, this algorithm solves the problem in linear time.

2.3 Tree Decompositions and Treewidth

In parameterized complexity, Treewidth [Robertson and Seymour, 1984] is one of the most

widely-used parameters for graph problems. It is a measure of tree-likeness. Only trees

and forests have a treewidth of 1. Moreover, if a graph G has treewidth t, then it can be

“decomposed” into “bags” of vertices, each of size at most t+1, such that the bags themselves

are connected in a tree-like manner. If t is small, this enables us to perform bottom-up

dynamic programming on G in a similar way to trees. Given this insight, the importance

of treewidth comes from the fact that many NP-hard graph problems are fixed-parameter

tractable with respect to the treewidth of their input instance [Bodlaender, 1994]. In other

words, they are solvable in polynomial, even linear, time when the input is restricted to

graphs with bounded treewidth. Moreover, bounded-treewidth graphs contain many well-

studied families as special cases [Bodlaender, 1998]. This includes cacti, series-parallel graphs,

15

outer-planar graphs, and, crucial to our results in the next chapter, control-flow graphs of

structured programs [Thorup, 1998].

In this section, we provide a quick overview of tree decompositions and treewidth. For an

in-depth treatment see [Cygan et al., 2015]. In the definitions below, we assume that all of

our graphs are undirected. For directed/mixed graphs G = (V,E), we use their underlying

graph G = (V,E) instead.

Tree Decompositions. Given a graph G = (V,E), a tree decomposition of G is a tree

T = (VT , ET) together with a sequence 〈Bi〉i∈VT of subsets of vertices of G associated with

each node i ∈ VT of the tree, such that the following conditions are met:

(i) Every vertex appears in some Bi, i.e.
⋃
i∈VT Bi = V ;

(ii) Every edge appears in some Bi, i.e. ∀e ∈ E ∃i ∈ VT e ⊆ Bi. Equivalently, for every

edge, there exists a Bi that contains both its endpoints.

(iii) For every vertex v ∈ V , the set Tv = {i ∈ VT | v ∈ Bi} of all nodes i of the tree T

that contain v in their corresponding Bi, forms a connected subtree of T. Equivalently,

if i, j, k ∈ VT and i is on the unique path between j and k in T, then Bj ∩Bk ⊆ Bi.

To avoid confusion, we reserve the word “vertex” for vertices of G and use the word “node”

for vertices of T . Moreover, we call each Bi a “bag”.

Treewidth. The width of a tree decomposition (T, 〈Bi〉) is the size of its largest bag minus

one, i.e. maxi∈VT |Bi| − 1. The treewidth of a graph G is the smallest width among all tree

decompositions of G and is denoted tw(G).

Example 2.3. Figure 2.1 shows a graph G and a tree decomposition of G. This tree decom-

position has a width of 2 and is optimal. Hence, the treewidth of G is 2.

16

a

b

c

d

e

f {a, b, c}

{b, c, d} {b, f}

{c, d, e}

Figure 2.1: A graph G and one of its optimal tree decompositions (T, 〈Bi〉).

Separation. The key structural property that we exploit in low-treewidth graphs is a sep-

aration property. Let G = (V,E) and V1, V2 ⊆ V . The pair (V1, V2) is called a separation

of G if (i) V1 ∪ V2 = V, and (ii) no edge connects a vertex in V1 \ V2 to a vertex in V2 \ V1

or vice versa. If (V1, V2) is a separation, the set V1 ∩ V2 is called a separator. The intuition

behind this definition is that any path between V1 and V2 has to go through at least one of

the vertices in the separator V1 ∩ V2.

Example 2.4. Figure 2.2 shows a separation of a graph G into (V1, V2). Note that any path

from V1 to V2 has to go through their separator/intersection.

V1 V2

Figure 2.2: A separation of a graph G into two parts: V1 and V2.

The following lemma states the fundamental separation property of tree decompositions.

Lemma 2.1 (Separation Property [Cygan et al., 2015]). Let (T, 〈Bi〉) be a tree decomposition

of G = (V,E) and e = (i, j) ∈ ET . If we remove e, the tree T breaks into two connected com-

ponents, T i and T j, respectively containing i and j. Let Vi =
⋃
i′∈T i Bi′ and Vj =

⋃
j′∈T j Bj′ .

Then (Vi, Vj) is a separation of G and its corresponding separator is Vi ∩ Vj = Bi ∩Bj.

17

Informally, the lemma above means that any path in the graph G can be traced in the

tree decomposition T by two types of moves: (i) going to an adjacent vertex in the same bag,

or (ii) going to the same vertex in an adjacent bag.

Example 2.5. Consider the same graph and tree decomposition as in Figure 2.1. We can

trace the path 〈f, b, c, e〉 of G in the tree decomposition. This is illustrated in Figure 2.3 in

which the subscripts show the trace, i.e. 〈f1, b2, b3, c4, c5, c6, e7〉. Note that each move is either

to an adjacent vertex in the same bag, e.g. b3 to c4, or to the same vertex in an adjacent bag,

e.g. c4 to c5.

a

b

c

d

e

f {a, b3, c4}

{b, c5, d} {b2, f1}

{c6, d, e7}

Figure 2.3: A path in a graph G and its trace in the tree decomposition.

To simplify the algorithms that exploit tree decompositions, we now define the notions of

labeling and nice tree decomposition.

Vertex-Nice Tree Decompositions. A vertex-nice (or simply nice) tree decomposition

of a graph G is a directed tree decomposition (T, 〈Bi〉) in which a specific node r ∈ VT is

designated at root and every node i ∈ VT is “labeled” by a subgraph Gi of G such that the

following rules are obeyed:

1. If i is a leaf in T, then Bi = ∅ and Gi = (∅, ∅).

2. Otherwise, i satisfies one of the following cases:

• Join Node. The node i has two children, i1 and i2, Bi = Bi1 = Bi2 and Gi =

Gi1 ∪Gi2 .

• Introduce Node. The node i has a single child i1 and Bi = Bi1 ∪ {v} for some

vertex v 6∈ Bi1 . In this case, we say that i introduces v. Moreover, we have

18

Gi = Gi1 ∪ {v} ∪ {e ∈ E | e ⊆ Bi}. In other words, the label graph Gi is obtained

from Gi1 by adding the vertex v and all the edges that go between v and vertices

in the bag Bi.

• Forget Vertex Node. The node i has a single child i1 and Bi = Bi1 \ {v} for some

vertex v ∈ Bi1 . We say that i forgets v. Moreover, Gi = Gi1 .

Intuitively, the label graph Gi is the subgraph of G consisting of all the vertices that are

introduced in the subtree of T rooted at i and all edges between these vertices.

Example 2.6. Figure 2.4 shows a nice tree decomposition of the graph G in Figure 2.1. This

tree decomposition was obtained by simply adding intermediate transition nodes to the tree

decomposition of Figure 2.1. The leftmost node is the root. Leaf bags are shown in dotted

lines. Introduce bags are shown in blue, forget bags in red, and join bags in black.

{a, b, c} {b, c}

{b, c} {b, c, d} {c, d} {c, d, e} {d, e} {e} ∅

{b, c} {b} {b, f} {f} ∅

Figure 2.4: A nice tree decomposition of the graph in Figure 2.1.

Intuitively, in a nice tree decomposition, each bag differs from its neighbors in at most one

vertex. This enables dynamic programming routines to re-use much of the values computed

in children of a bag when computing new values in that bag. However, sometimes even a

nice tree decomposition changes the label graph too fast. This is especially the case when

considering introduce nodes, that suddenly add a vertex and possibly many edges. In these

cases, we need the more refined notion of edge-nice decompositions, that introduce vertices

and edges separately:

Edge-Nice Tree Decompositions. An edge-nice tree decomposition of a graph G is a

directed tree decomposition (T, 〈Bi〉) in which a specific node r ∈ VT is designated as the

root and every node i ∈ VT is labeled by a subgraph Gi of G, such that the following rules

are obeyed:

19

1. If i is a leaf in T , then Bi = ∅ and Gi = (∅, ∅).

2. Otherwise, i satisfies one of the following cases:

• Join Node. The node i has two children, i1 and i2, Bi = Bi1 = Bi2 and Gi =

Gi1 ∪Gi2 .

• Introduce Vertex Node. The node i has a single child i1 and Bi = Bi1∪{v} for some

vertex v 6∈ Bi1 . In this case, we say that i introduces v. Moreover, Gi = Gi1 ∪{v},
i.e. Gi is the graph resulting from adding v as an isolated vertex to Gi1 .

• Introduce Edge Node. Similar to the previous case, i has a single child i1. This

time, Bi = Bi1 , but Gi is defined as the graph resulting from adding a new edge

e to Gi1 . All endpoints of e must be present in Bi. We say that i introduces e.

• Forget Vertex Node. The node i has a single child i1 and Bi = Bi1 \ {v} for some

vertex v ∈ Bi1 . We say that i forgets v. Moreover, Gi = Gi1 .

3. Each edge is introduced exactly once.

Intuitively, the label graph Gi is the subgraph of G consisting of all the vertices and edges

that are introduced in the subtree of T rooted at i.

Remark 2.1. The notion of label subgraphs Gi is solely defined for theoretical purposes and

used in our proofs of correctness. In practice, our implementations always avoid the overhead

of constructing Gi’s.

Example 2.7. Figure 2.5 shows an edge-nice tree decomposition of the graph G of Figure 2.1.

The leftmost node is the root. In each node i of the tree, its label subgraph Gi is illustrated

and the vertices of the bag Bi are shown in red. Intuitively, an edge-nice tree decomposi-

tion constructs the graph in small increments and the bag Bi contains the vertices that can

participate in the incremental change.

20

Figure 2.5: An edge-nice tree decomposition of the graph in Figure 2.1.

Computing the Treewidth. For general graphs, the problem of computing the treewidth

is NP-hard [Arnborg et al., 1987]. Nevertheless, it is fixed-parameter tractable based on the

treewidth itself. Indeed, [Bodlaender, 1996] provides a linear-time FPT algorithm for this

problem. One of our major use-cases for treewidth is as a parameter of the control-flow graphs

of structured programs. In this case, a linear-time algorithm was provided in [Thorup, 1998],

which produces a tree decomposition of width at most 7 by a single pass over the program

parse tree. As both of these algorithms run in linear time, they naturally lead to tree

decompositions with linearly many bags. Finally, it is well-known that any tree decomposition

can be made (edge-)nice in linear time. This is achieved by adding intermediate bags as in

Figure 2.4. See [Cygan et al., 2015] for more details. Based on these points, whenever we

consider treewidth-based parameterized algorithms, we also assume that a linearly-sized nice

or edge-nice tree decomposition is given as part of the input.

2.4 Stochastic Processes and Martingales

In this section, we provide an overview of some basic tools from probability theory that will

be used in the next chapters. Please refer to [Williams, 1991] for a more formal and detailed

treatment of the material in this section.

Probability Distributions. A discrete probability distribution over a countable set U

is a function p : U → [0, 1] such that
∑

u∈U p(u) = 1. The support of p is defined as

supp(p) := {u ∈ U | p(u) > 0}.

21

Probability Spaces. A probability space is a triple (Ω,F ,P), where Ω is a non-empty set

(called the sample space), F is a σ-algebra over Ω (i.e. a collection of subsets of Ω that

contains the empty set ∅ and is closed under complementation and countable union) and P

is a probability measure on F , i.e. a function P : F → [0, 1] such that (i) P(Ω) = 1 and (ii) for

all set-sequences A1, A2, · · · ∈ F that are pairwise-disjoint (i.e. Ai ∩ Aj = ∅ whenever i 6= j)

it holds that
∑∞

i=1 P(Ai) = P (
⋃∞
i=1Ai). Elements of F are called events. An event A ∈ F

holds almost-surely (a.s.) if P(A) = 1.

Random Variables. A random variable X from a probability space (Ω,F ,P) is an F -
measurable function X : Ω → R ∪ {−∞,+∞}, i.e. a function such that for all d ∈ R ∪
{−∞,+∞}, the set {ω ∈ Ω | X(ω) < d} belongs to F . X is bounded if there exists a real

number M > 0 such that for all ω ∈ Ω, we have X(ω) ∈ R and |X(ω)| ≤M .

Expectation. The expected value of a random variable X from a probability space (Ω,F ,P),

denoted by E(X), is defined as the Lebesgue integral of X with respect to P, i.e. E(X) :=∫
X dP. The precise definition of Lebesgue integral is somewhat technical and is omitted

here (See [Williams, 1991, Chapter 5] for a formal definition). If range X = {d0, d1, . . .} is

countable, then we have E(X) =
∑∞

k=0 dk · P(X = dk).

Filtrations and Stopping Times. A filtration of a probability space (Ω,F ,P) is an

infinite sequence {Fn}n∈Z≥0 of σ-algebras over Ω such that Fn ⊆ Fn+1 ⊆ F for all n ∈ Z≥0.

Intuitively, a filtration models the information available at any given point of time. A stopping

time with respect to {Fn}n∈Z≥0 is a random variable R : Ω → Z≥0 ∪ {+∞} such that for

every n ∈ Z≥0, the event R ≤ n belongs to Fn.

Conditional Expectation. LetX be any random variable from a probability space (Ω,F ,P)

such that E(|X|) < +∞. Then, given any σ-algebra G ⊆ F , there exists a random variable

(from (Ω,F ,P)), denoted by E(X|G), such that:

(E1) E(X|G) is G-measurable, and

(E2) E (|E(X|G)|) < +∞, and

(E3) for all A ∈ G, we have
∫
A
E(X|G) dP =

∫
A
X dP.

22

The random variable E(X|G) is called the conditional expectation of X given G. The random
variable E(X|G) is a.s. unique in the sense that if Y is another random variable satisfying

(E1)–(E3), then P(Y = E(X|G)) = 1. We refer to [Williams, 1991, Chapter 9] for details.

Intuitively, E(X|G) is the expectation of X, when assuming the information in G.

Discrete-Time Stochastic Processes. A discrete-time stochastic process is a sequence

Γ = {Xn}n∈Z≥0 of random variables where Xn’s are all from some probability space (Ω,F ,P).

The process Γ is adapted to a filtration {Fn}n∈Z≥0 if for all n ∈ Z≥0, Xn is Fn-measurable.

Intuitively, the random variable Xi models some value at the i-th step of the process.

Difference-Boundedness. A discrete-time stochastic process Γ = {Xn}n∈Z≥0 adapted to

a filtration {Fn}n∈Z≥0 is difference-bounded if there exists a c ∈ (0,+∞) such that for all

n ∈ Z≥0, |Xn+1 −Xn| ≤ c almost-surely.

Martingales and Supermartingales. A discrete-time stochastic process Γ = {Xn}n∈Z≥0

adapted to a filtration {Fn}n∈Z≥0 is a martingale (resp. supermartingale) if for every n ∈ Z≥0,

E(|Xn|) < +∞ and it holds a.s. that E(Xn+1|Fn) = Xn (resp. E(Xn+1|Fn) ≤ Xn).

Intuitively, a martingale (resp. supermartingale) is a discrete-time stochastic process in

which for an observer who has seen the values of X0, . . . , Xn, the expected value at the

next step, i.e. E(Xn+1|Fn), is equal to (resp. no more than) the last observed value Xn.

Also, note that in a martingale the observed values for X0, . . . , Xn−1 do not matter given

that E(Xn+1|Fn) = Xn. In contrast, in a supermartingale, the only requirement is that

E(Xn+1|Fn) ≤ Xn and hence E(Xn+1|Fn) may depend on X0, . . . , Xn−1. Also, note that Fn
might contain more information than just the observations of Xi’s.

Example 2.8. Consider an unbiased and discrete random walk, in which we start at a

position X0, and at each second walk one step to either left or right with equal probability.

Let Xn denote our position after n seconds. It is easy to verify that E[Xn+1|X0, . . . , Xn] =

1
2
· (Xn − 1) + 1

2
· (Xn + 1) = Xn. Hence, this random walk is a martingale. Note that by

definition, every martingale is also a supermartingale. As another example, consider the

classical gambler’s ruin: a gambler starts with Y0 dollars of money and bets continuously

until he loses all of his money. If the bets are unfair, i.e. the expected value of his money

23

after a bet is less than its expected value before the bet, then the sequence {Yn}n∈Z≥0 is a

supermartingale. In this case, Yn is the gambler’s total money after n bets. On the other

hand, if the bets are fair, then {Yn} is a martingale.

Example 2.9 (Pólya’s Urn [Mahmoud, 2008]). As a more interesting example, consider an

urn that initially contains R0 red and B0 blue marbles (R0 +B0 > 0). At each step, we take

one marble from the urn, chosen uniformly at random, look at its color and then add two

marbles of that color to the urn. Let Bn, Rn and Mn respectively be the number of red, blue

and all marbles after n steps. Also, let βn = Bn
Mn

and ρn = Rn
Mn

be the proportion of marbles

that are blue (resp. red) after n steps. Let Fn model the observations until the n-th step. The

process described above leads to the following equations:

Mn+1 = 1 +Mn,

E(Bn+1|Fn) = E(Bn+1|B1, . . . , Bn) =
Bn

Mn

· (Bn + 1) +
Rn

Mn

·Bn,

E(Rn+1|Fn) = E(Rn+1|B1, . . . , Bn) =
Rn

Mn

· (Rn + 1) +
Bn

Mn

·Rn.

Note that we did not need to care about observing Ri’s, Mi’s, βi’s or ρi’s, because they can be

uniquely computed in terms of Bi’s. More generally, an observer can observe only Bi’s, or

only Ri’s, or only βi’s or ρi’s and can then compute the rest using this information. Based

on the equations above, we have:

E(βn+1|Fn) =
Bn

Mn

· Bn + 1

Mn + 1
+
Mn −Bn

Mn

· Bn

Mn + 1
=
Bn

Mn

= βn,

E(ρn+1|Fn) =
Rn

Mn

· Rn + 1

Mn + 1
+
Mn −Rn

Mn

· Rn

Mn + 1
=
Rn

Mn

= ρn.

Hence, both {βn}n∈Z≥0 and {ρn}n∈Z≥0 are martingales. Informally, this means that the ex-

pected proportion of blue marbles in the next step is exactly equal to their observed proportion

in the current step. This might be counter-intuitive. For example, consider a state where 99%

of the marbles are blue. Then, it is more likely that we will add a blue marble in the next

state. However, this is mitigated by the fact that adding a blue marble changes the proportions

much less dramatically than adding a red marble.

24

2.5 Transition Systems

The second half of this thesis focuses on safety, reachability and termination analyses over

polynomial programs. In this section, we provide detailed definitions for programs and fix

our notation. We model our programs as transition systems.

Valuations. Let V be a finite set of variables. A valuation over V is a function ν : V→ R

that assigns a real value to every variable. We denote the set of all valuations over V by RV.

We sometimes use a valuation ν over a set V′ ⊂ V of variables as a valuation over V. In

such cases, we assume that ν(v) = 0 for every v ∈ V \V′. Given a valuation ν, a variable

v and x ∈ R, we write ν[v ← x] to denote a valuation ν′ such that ν′(v) = x and ν′ agrees

with ν for every other variable.

Polynomial Arithmetic Expressions. A polynomial arithmetic expression e over V is

an expression built from the variables in V, real constants, and the arithmetic operations of

addition, subtraction and multiplication.

Propositional Polynomial Predicates. A propositional polynomial predicate is a propo-

sitional formula built from (i) atomic assertions of the form e1 ./ e2, where e1 and e2 are

polynomial arithmetic expressions, and ./ ∈ {<,≤,≥, >} and (ii) propositional connectives

∨, ∧ and ¬. The satisfaction relation |= between a valuation ν and a propositional polyno-

mial predicate φ is defined in the natural way, i.e. by substituting the variables with their

values in ν and evaluating the resulting boolean expression.

Transition Systems. A transition system (or simply system) is a tuple S = (V,L, `0, I,Θ),

in which V is a finite set of variables, L is a finite set of locations or labels, `0 ∈ L is the initial

or starting location, I is an assertion over V which defines the set of possible initial valuations,

and Θ is a finite set of transitions. Each transition θ ∈ Θ is of the form θ = (`, `′, ϕ, µ) where

`, `′ ∈ L are the pre and post locations, ϕ is an assertion over V that serves as the transition

condition, and µ : RV → RV is an update function. For brevity, in the sequel, we assume

that we have fixed a system S = (V,L, `0, I,Θ) which is under study. For a location ` ∈ L,

we write Θ` to denote the set of transitions out of `. We say that a system is β-branching if

|Θ`| ≤ β for every location `.

25

I : x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0

a : while x ≥ y :
b : � (x, y) := (x+ 1, y + 2)
c : � (x, y, z) := (x+ z, y + z, z − 1)
d :

a d

cb

(x,
	y,
	z)
 ↦	
(x+
1,	
y+
2,	
z)

(x,	y,	z) ↦	(x+z,	y+z,	z-1)

x	<	y

x	≥ y x	≥ y

θ1 θ2θ4 θ5

θ3

θ6

Figure 2.6: A Simple Program (left) and its Representation as a Transition System (right)

Example 2.10. Consider the program in Figure 2.6 (left), in which � denotes non-determinism

choice between transitioning to b or c. The transition system in Figure 2.6 (right) represents

this program. Note that we have `0 = a and assume the initial valuations satisfy x, y, z ≥ 0.

Each transition is labeled by its name, condition and update function. For brevity, we drop

the condition whenever it is true and also drop the update function when it is the identity

function.

States. A state in S is a pair σ = (`,ν) ∈ L× RV, consisting of a location and a valuation

for the variables. We denote the set of all states by Σ. A subset Σ′ ⊆ Σ of states is called

bounded if the set of valuations that appear in the elements of Σ′ is bounded.

Successors. A state σ′ = (`′,ν′) is called a successor of a state σ = (`,ν) if there exists a

transition θ = (`, `′, ϕ, µ) ∈ Θ such that ν |= ϕ and ν′ = µ(ν). For theoretical elegance, we

assume that every state has at least one successor. In practice, when modeling a program as

a transition system, there might be states in which the program terminates. In such cases,

the corresponding transition system will remain in the final state, i.e. we assume that there

is a transition from the final state to itself that does not change the value of any variable.

Example 2.11. In Figure 2.6 (right), the state (b, 1, 1, 2), i.e. the state at location b for

which the values of x and y are 1 and the value of z is 2, is a successor of (a, 1, 1, 2) through

θ1. Similarly, (a, 2, 3, 2) is a successor of (b, 1, 1, 2) through θ4. Also note that there is a

transition θ6 from d to itself, handling the case where the program terminates as described

above.

26

Runs. A run of the system S = (V,L, `0, I,Θ) is an infinite sequence r = 〈σi, θi〉∞i=0 =

〈(`i,νi), θi〉∞i=0, where each σi ∈ Σ is a state consisting of a location `i ∈ L and a valuation

νi ∈ RV, and each θi = (`i, `i+1, ϕi, µi) ∈ Θ is a transition from `i to `i+1, such that:

• r starts in the initial location `0;

• ν0 |= I, i.e. the initial valuation satisfies the assertion I;

• For every i, we have νi |= ϕi and νi+1 = µi(νi), i.e. σi+1 is a successor of σi through θi.

Semi-runs. A semi-run is defined similarly to a run, except that it does not have to start

at `0 or satisfy I. A path of length n is a finite prefix π = σ0, θ0, . . . , σn−1, θn−1, σn of a run.

Note that a path must always end at a state. Similarly, a semi-path is a finite prefix of a

semi-run that ends at a state.

Non-determinism. The system S is called deterministic if there is exactly one possible

transition at every state. Formally, S is deterministic if for every σ = (`,ν) ∈ Σ, there exists

exactly one θ ∈ Θ such that θ = (`, `′, ϕ, µ) and ν |= ϕ. Otherwise, S is non-deterministic.

To model probabilistic programs (Chapter 8), we extend the notion of transition systems:

Probabilistic Transition Systems. A probabilistic transition system is a tuple S =

(V,L,Lp, `0, I, θ) where every part is the same as in transition systems, except that L is

partitioned into two sets Lp ⊆ L and L \Lp, and Θ is a finite set of probabilistic transitions.

Each transition θ ∈ Θ is of the form θ = (`, `′, p, ϕ, µ) in which

• `, `′ ∈ L are the pre and post locations;

• If ` ∈ Lp, then p ∈ [0, 1] is the probability of the transition, otherwise p = ?, denoting

non-determinism;

• ϕ is an assertion over V that serves as the transition condition. If ` ∈ Lp, then

ϕ = true.

• µ : RV → ∆(RV) assigns to each valuation ν ∈ RV in ` a (discrete or continuous)

distribution over the valuations in `′.

27

Additionally, for all ` ∈ Lp, we have
∑

θ∈Θ`
θ.p = 1.

Informally, we are extending transition systems in two ways: First, we are allowing the

update function to probabilistically choose the next valuation, i.e. provide a distribution over

the next valuation. Second, we are considering probabilistic locations Lp in which the next

transition is chosen probabilistically instead of non-deterministically.

Runs. A run of the probabilistic transition system S = (V,L,Lp, `0, I, θ) is an infinite

sequence r = 〈σi, θi〉∞i=0 = 〈(`i,νi), θi〉∞i=0 where each σi ∈ Σ is a state consisting of a location

`i ∈ L and a valuation νi ∈ RV, and each θi = (`i, `i+1, pi, ϕi, µi) ∈ Θ is a transition from `i

to `i+1 such that:

• r starts at the initial location `0;

• ν0 |= I;

• For every i, we have νi |= ϕi and νi+1 ∈ supp(µi(νi)). In other words, σi+1 is a

probabilistic successor of σi through θi.

Semi-runs, paths and semi-paths are defined in the same way as in the non-probabilistic case.

Schedulers. Let !P be the set of paths of a probabilistic transition system S = (V,L,Lp, `0, I, θ).

A scheduler is a function s that assigns to every path π ∈ !P ending in state at a loca-

tion ` 6∈ Lp, a transition s(π) ∈ Θ`. A run r = 〈(`i,νi), θi〉∞i=0 is compatible with s if

for every n ∈ Z≥0, we have `n 6∈ Lp ⇒ θn = s(〈`0,ν0, θ0, . . . , `n,νn〉). It is well-known

that a scheduler s naturally induces a unique probability measure Ps over the runs of S.

See [Chakarov and Sankaranarayanan, 2013] for details. We use the notation Es to denote

expected values of random variables under Ps.

2.6 Sätze for Positivity and Nonnegativity of Polynomials

In this section, we provide an overview of several classical theorems in linear programming

and real algebraic geometry and obtain corollaries which make them useful in the static

analysis of polynomial programs. Generally speaking, the use-case of these corollaries in

28

our problems is that they help reduce entailment conditions over polynomial inequalities to

solving systems of quadratic constraints (quadratic programming).

2.6.1 Farkas’ Lemma and Handelman’s Theorem

Farkas’ Lemma is a classical tool in polyhedral geometry and linear programming. Below,

we provide a presentation of this lemma that follows [Colón et al., 2003].

Lemma 2.2 (Farkas’ Lemma [Farkas, 1902, Matousek and Gärtner, 2007]). Consider a set

V = {v1, . . . , vr} of real-valued variables and the following system of m linear inequalities

over V:

Φ :


a1,0 + a1,1 · v1 + . . .+ a1,r · vr ≥ 0

...

am,0 + am,1 · v1 + . . .+ am,r · vr ≥ 0

When Φ is satisfiable, it entails a given linear inequality

ψ : c0 + c1v1 + . . .+ crvr ≥ 0

if and only if ψ can be written as a non-negative linear combination of 1 ≥ 0 and the

inequalities in Φ, i.e. if and only if there exist non-negative real numbers y0, y1, . . . , ym, such

that:

c0 = y0 +
m∑
i=1

yi · ai,0 , c1 =
m∑
i=1

yi · ai,1 , . . . , cr =
m∑
i=1

yi · ai,r.

Moreover, Φ is unsatisfiable if and only if −1 ≥ 0 can be derived as above.

Notation. Given a set X ⊆ RV, we write X to denote the closure of X, i.e. the smallest

closed subset of RV that contains X. Similarly, for Φ defined as below, we use the notation

Φ to denote the system of linear inequalities obtained by replacing every oni in Φ with ≥ .

We often find ourselves in situations where Φ consists of both strict and non-strict linear

inequalities. We should hence use the following variant/corollary of Lemma 2.2:

29

Corollary 2.1. Consider a set V = {v1, . . . , vr} of real-valued variables and the following

system of m linear inequalities over V:

Φ :


a1,0 + a1,1 · v1 + . . .+ a1,r · vr on1 0

...

am,0 + am,1 · v1 + . . .+ am,r · vr onm 0

in which oni∈ {>,≥}. When Φ is satisfiable, it entails a given non-strict linear inequality

ψ : c0 + c1v1 + . . .+ crvr ≥ 0

if and only if ψ can be written as a non-negative linear combination of 1 ≥ 0 and the

inequalities in Φ, i.e. if and only if there exist non-negative real numbers y0, y1, . . . , ym, such

that:

c0 = y0 +
m∑
i=1

yi · ai,0 , c1 =
m∑
i=1

yi · ai,1 , . . . , cr =
m∑
i=1

yi · ai,r.

Moreover, Φ is unsatisfiable if and only if either −1 ≥ 0 can be derived as above, or 0 > 0

can be derived as above with the extra requirement that
∑

oni∈{>} yi > 0 (i.e. in order to derive

a strict inequality, we should use at least one of the strict inequalities in Φ with non-zero

coefficient).

Proof. For the first part, suppose that ψ is entailed by Φ, hence {x ∈ RV | c0 + c1 ·x1 + . . .+

cr ·xr ≥ 0} ⊇ {x ∈ RV | x |= Φ}. The former is a closed set, hence it also includes the closure

of the latter, which is the set of points that satisfy Φ. Hence, we can apply Lemma 2.2 to Φ

and ψ to obtain the desired result.

For the second part, if Φ is satisfiable, then obviously no non-negative combination of

inequalities in Φ can sum up to a contradiction such as 0 > 0 or −1 ≥ 0. If Φ is not satisfiable,

then by Lemma 2.2, we can obtain −1 ≥ 0. The only remaining case is if Φ is satisfiable but

Φ is not. Reorder the inequalities in Φ so that the non-strict inequalities appear first. Then,

consider the smallest i for which the first i inequalities in Φ are unsatisfiable. Let Φ[1 . . . i]

denote the first i inequalities. Based on our ordering, we know that the i−th inequality is

strict and of the form ai,0 + ai,1 · v1 + . . .+ ai,r · vr > 0. Given that Φ[1 . . . i] is unsatisfiable,

30

we know that {x ∈ RV | x |= Φ[1 . . . i− 1]} ⊆ {x ∈ RV | ai,0 + ai,1 · v1 + . . . + ai,r · vr ≤ 0}.
Therefore, by the first part above, we can write

ai,0 + ai,1 · v1 + . . .+ ai,r · vr ≤ 0

as a non-negative combination of the first i − 1 inequalities. Moreover, the i−th inequality

is:

ai,0 + ai,1 · v1 + . . .+ ai,r · vr > 0

Summing up these two, we get 0 > 0.

We now turn to Handelman’s theorem, which characterizes positive polynomials over

polytopes. Before presenting the theorem, we first need the notion of monoids:

Monoid. Consider a set V = {v1, . . . , vr} of real-valued variables and the following system

of m linear inequalities over V:

Φ :


a1,0 + a1,1 · v1 + . . .+ a1,r · vr on1 0

...

am,0 + am,1 · v1 + . . .+ am,r · vr onm 0

in which oni∈ {>,≥}. Let gi be the LHS of the i-th inequality, i.e. gi(v1, . . . , vr) := ai,0 +ai,1 ·
v1 + . . .+ ai,r · vr. The monoid of Φ is defined as:

Monoid(Φ) :=

{
m∏
i=1

gκii

∣∣∣∣∣ ∀1 ≤ i ≤ m, κi ∈ N ∪ {0}
}
.

Basically, Monoid(Φ) is the set of all polynomials that can be obtained by multiplying the

linear expressions on the LHS of Φ together. Note that each such expression can appear zero

or multiple times in the multiplication. Specifically, it is noteworthy that 1 ∈Monoid(Φ).

31

Theorem 2.1 ([Handelman, 1988]). Consider a set V = {v1, . . . , vr} of real-valued variables

and the following system of m linear inequalities over V:

Φ :


a1,0 + a1,1 · v1 + . . .+ a1,r · vr ≥ 0

...

am,0 + am,1 · v1 + . . .+ am,r · vr ≥ 0

If Φ is satisfiable, Sat(Φ) is compact, and Φ entails a given polynomial inequality g(v1, . . . , vr) >

0, then there exist y1, y2, . . . , yu ∈ [0,∞) and h1, h2, . . . , hu ∈Monoid(Φ) such that:

g =
u∑
i=1

yi · hi.

As was the case with Farkas’ Lemma, it is useful to have a variant of Handelman’s

theorem that can handle strict inequalities in Φ. We present such a variant, which is a direct

corollary of Theorem 2.1 and characterizes strongly positive polynomials over bounded, but

not necessarily closed, polyhedra. Before doing so, we need the notion of strong positivity:

Strong Positivity. Let X ⊆ RV be a set of valuations and g ∈ R[V] a polynomial over V.

We say that g is strongly positive over X, and write X |= g � 0 (or simply g � 0 when X is

clear from context), if infx∈X g(x) > 0. The real value δ := infx∈X g(x) is called the positivity

gap or positivity witness of g over X. Moreover, g is strongly greater than h, denoted g � h,

iff g − h� 0.

Corollary 2.2. Consider a set V = {v1, . . . , vr} of real-valued variables and the following

system of m linear inequalities over V:

Φ :


a1,0 + a1,1 · v1 + . . .+ a1,r · vr on1 0

...

am,0 + am,1 · v1 + . . .+ am,r · vr onm 0

in which oni∈ {>,≥}. If Φ is satisfiable and Sat(Φ) is bounded, then Φ entails a given strong

polynomial inequality g(v1, . . . , vr) � 0, or in other words Sat(Φ) |= g(v1, . . . , vr) � 0, if

and only if there exist constants y0 ∈ (0,∞) and y1, y2, . . . , yu ∈ [0,∞), and polynomials

32

h1, h2, . . . , hu ∈Monoid(Φ) such that:

g = y0 +
u∑
i=1

yi · hi. (2.1)

Proof. It is obvious that every g in the form of (2.1) is strongly positive over Sat(Φ), given

that Φ trivially entails g ≥ y0 > 0.

We now prove the other side. Suppose Φ entails g � 0. Let δ > 0 be the positivity gap

of g over Sat(Φ) and choose δ′, y0 such that 0 < y0 < δ′ < δ. So, Sat(Φ) ⊆ Sat(g > δ′) and

hence Sat(Φ) = Sat(Φ) ⊆ Sat(g > δ′) = Sat(g ≥ δ′). Therefore, Φ entails g − δ′ ≥ 0. So,

it also entails g − y0 > 0. Applying Theorem 2.1 to Φ and g − y0, we have:

g − y0 =
u∑
i=1

yi · hi

which is equivalent to Equation (2.1).

2.6.2 Positivstellensätze

A Positivstellensatz (German for “positive locus theorem”, plural: Positivstellensätze) is a

theorem in real algebraic geometry that characterizes positive polynomials over semi-algebraic

sets. The most commonly-used satz in this thesis is Putinar’s positivstellensatz.

Theorem 2.2 (Putinar’s Positivstellensatz [Putinar, 1993]). Consider a set V = {v1, . . . , vr}
of real-valued variables and the following system of m polynomial inequalities over V:

Φ :


g1(v1, . . . , vr) ≥ 0,

...

gm(v1, . . . , vr) ≥ 0

where g1, . . . , gm ∈ R[V] are polynomials. If there exists a gi such that the set Sat(gi ≥ 0)

is compact, and Φ entails a given polynomial inequality g(v1, . . . , vr) > 0 then there exist

33

polynomials h0, h1, . . . , hm ∈ R[V] such that

g = h0 +
m∑
i=1

hi · gi

and every hi is a sum of squares, i.e. hi =
∑
h2
i,j for some polynomials hi,j ∈ R[V].

Putinar’s positivstellensatz provides a characterization of all polynomials g that are pos-

itive over the closed and bounded set Sat(Φ). As a corollary, given a set of atomic non-

negativity assumptions gi(x) ≥ 0, in order to find all polynomials g that are positive under

these assumptions, we only need to look into polynomials of form (2.2):

Corollary 2.3. Let V, g, g1, . . . , gm and Φ be as above. Then g(x) > 0 for all x |= Φ

if and only if:

g = ε+ h0 +
m∑
i=1

hi · gi (2.2)

where ε > 0 is a real number and each polynomial hi is the sum of squares of some polynomials

in R[V].

Proof. It is obvious that if (2.2) holds, then g(x) > 0 for all x |= Φ. We prove the other side.

Let g(x) > 0 for all x |= Φ. Given that Sat(Φ) is compact and g continuous, g(Sat(Φ))

must also be compact and hence closed. Therefore, δ := infx|=Φ g(x) > 0. Let ε = δ/2, then

g(x)− ε > 0 for all x |= Φ. Applying Putinar’s Positivstellensatz to g− ε leads to the desired

result.

Note that Putinar’s positivstellensatz automatically provides a criterion for satisfiability

of Φ. Consider the polynomial inequality −1 > 0. This inequality is false, and is hence

entailed by Φ if and only if Φ is unsatisfiable. As in the previous cases, we need a variant of

this theorem that can handle strict inequalities in Φ. We now obtain such a variant.

34

Corollary 2.4. Consider a set V = {v1, . . . , vr} of real-valued variables and the following

system of m polynomial inequalities over V:

Φ :


g1(v1, . . . , vr) on1 0,

...

gm(v1, . . . , vr) onm 0

in which every gi ∈ R[V] is a polynomial and every oni∈ {>,≥}. Also, assume that there is

some i such that the set Sat(gi ≥ 0) is compact, or equivalently Sat(gi oni 0) is bounded. If

Φ is satisfiable, then it entails a strong polynomial inequality g(v1, . . . , vr) � 0, if and only

if there exist a constant y0 ∈ (0,∞) and polynomials h0, . . . , hm ∈ R[V] such that

g = y0 + h0 +
m∑
i=1

hi · gi (2.3)

and every hi is a sum of squares, i.e. hi =
∑
h2
i,j for some polynomials hi,j ∈ R[V].

Proof. It is obvious that any polynomial g that can be represented as in Equation (2.3) is

strongly positive over Sat(Φ) and has a positivity gap of at least y0 > 0.

We now prove the other side. Suppose Φ is satisfiable and entails g � 0 with positivity

gap δ, and choose 0 < y0 < δ′ < δ. We have Sat(Φ) ⊆ Sat(g > δ′) so Sat(Φ) = Sat(Φ) ⊆
Sat(g > δ′) = Sat(g ≥ δ′) ⊆ Sat(g > y0). Hence, Φ entails g−y0 > 0. Applying Theorem 2.2

to Φ and g − y0 leads to the desired result.

A more general positivstellensatz, which we will use in Chapter 8 is the one due to

Schmüdgen. To present this satz, we should first define the concept of preordering.

Preordering. Consider a set V = {v1, . . . , vr} of real-valued variables and the following

system of m polynomial inequalities over V:

Φ :


g1(v1, . . . , vr) ≥ 0,

...

gm(v1, . . . , vr) ≥ 0

35

where g1, . . . , gm ∈ R[V] are polynomials. The preordering PO(Φ) is defined as follows:

PO(Φ) :=

 ∑
w∈{0,1}m

hw ·
m∏
i=1

gwii | every hw ∈ R[V] is a sum of squares

 .

Here, wi denotes the i-th component of the word w. Intuitively, the preordering of Φ is the

set of all polynomials in R[V] that can be written as a combination of products of gi’s, in

which the multiplier of each product is a sum-of-squares polynomial.

Theorem 2.3 (Schmüdgen’s Positivstellensatz [Schmüdgen, 1991]). Consider a set V =

{v1, . . . , vr} of real-valued variables and the following system of m polynomial inequalities

over V:

Φ :


g1(v1, . . . , vr) ≥ 0,

...

gm(v1, . . . , vr) ≥ 0

where g1, . . . , gm ∈ R[V] are polynomials. If Sat(Φ) is compact and Φ entails a given poly-

nomial inequality g(v1, . . . , vr) > 0, then g ∈ PO(Φ).

Note that the compactness requirement in Schmüdgen’s positivstellensatz is weaker than

the one in Putinar’s positivstellensatz.

2.6.3 Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz (German for “zero locus theorem”) is a profound theorem that estab-

lishes a fundamental relationship between geometry and algebra, and is arguably the basis

of the entire field of algebraic geometry. We use this satz for solving our satisfiability prob-

lems. Specifically, corollary 2.4 provides a characterization of strongly positive polynomials

over a semi-algebraic set Sat(Φ) if it is non-empty. However, we also need a criterion for

unsatisfiability of Φ. Given that Φ may contain both strict and non-strict inequalities, the

situation is trickier than Theorem 2.2. To obtain such a characterization, we use Hilbert’s

Strong Nullstellensatz for reals:

36

Theorem 2.4 (Strong Nullstellensatz [Atiyah and Macdonald, 1969]). Consider a set V =

{v1, . . . , vr} of real-valued variables and let g1, . . . , gm, g ∈ R[V] be polynomials over V. Then

exactly one of the following statements holds:

• There exists a valuation ν ∈ RV, such that g1(ν) = g2(ν) = . . . = gm(ν) = 0, but

g(ν) 6= 0.

• There exist a non-negative integer α and polynomials h1, . . . , hm ∈ R[V] such that

m∑
i=1

hi · gi = gα.

We now have the required tools for characterizing unsatisfiable Φ’s.

Theorem 2.5. Consider a set V = {v1, . . . , vr} of real-valued variables and the following

system of m polynomial inequalities over V:

Φ :
{
g1(v1, . . . , vr) on1 0, . . . , gm(v1, . . . , vr) onm 0

in which every gi ∈ R[V] is a polynomial and every oni∈ {>,≥}. Φ is unsatisfiable, if and

only if at least one of the following statements holds:

(i) There exist a constant y0 ∈ (0,∞) and sum-of-square polynomials h0, . . . , hm ∈ R[V]

such that

−1 = y0 + h0 +
m∑
i=1

hi · gi.

(ii) There exist a non-negative integer α and polynomials h1, . . . , hm ∈ R[V∗] for V∗ =

V ∪ {w1, . . . , wm}, such that for some 1 ≤ j ≤ m with onj∈ {>}, we have

w2·α
j =

m∑
i=1

hi · (gi − w2
i)

Proof. If Φ is satisfiable, then it cannot entail −1 > 0, so (i) is impossible. We now show that

(ii) implies unsatisfiability of Φ as well. Define g̃i(v1, . . . , vr, w1, . . . , wm) := gi(v1, . . . , vr)−w2
i .

37

So, we have

w2·α
j =

m∑
i=1

hi · g̃i.

Moreover, gαj =
(
g̃j + w2

j

)α
=
∑α

i=0

(
α
i

)
g̃ij · w2·(α−i)

j = w2·α
j + h′j · g̃j for some h′j ∈ R[V∗]. So,

letting h′′i = hi for i 6= j and h′′j = hj + h′j, we have

gαj =
m∑
i=1

h′′i · (gi − w2
i)

Let ν ∈ RV∩Sat(Φ).We extend ν to ν∗ ∈ RV∗ as follows: for every wi, let ν∗(wi) =
√
ν(gi).

So, we have ν∗(gi − w2
i) = 0, and hence the RHS of the equation above is 0 at ν∗. On the

other hand, we have ν∗(gαj) = ν(gαj) = (ν(gj))
α > 0. This contradiction shows that Φ is

unsatisfiable.

We now prove the other side. Suppose that Φ is unsatisfiable. If Φ is unsatisfiable, then

it entails −1.5 > 0 and hence we can apply Theorem 2.2 to write −1.5 = h0 +
∑m

i=1 hi · gi
for some sum-of-squares polynomials hi, which is equivalent to −1 = 0.5 + h0 +

∑m
i=1 hi · gi,

hence leading to case (i) above. The only remaining case is if Φ is satisfiable but Φ is not.

Reorder the inequalities in Φ so that the non-strict inequalities appear first. Let j be the

smallest index for which Φ[1 . . . j], i.e. the set of first j inequalities in Φ, is unsatisfiable.

By definition, Φ[1 . . . j − 1] is satisfiable and hence Sat(Φ[1 . . . j − 1]) = Sat(Φ[1 . . . j − 1]).

Moreover, since Φ[1 . . . j] = Φ[1 . . . j−1]∧(gj > 0) is unsatisfiable, we know that Φ[1 . . . j−1]

entails gj ≤ 0. In other words, Sat(Φ[1 . . . j − 1]) ⊆ Sat(gj ≤ 0). Taking closures from

both sides shows that Φ[1 . . . j − 1] entails gj ≤ 0. So, Φ[1 . . . j] entails gj = 0. Define

g̃i(v1, . . . , vr, w1, . . . , wm) := gi(v1, . . . , vr) − w2
i . We claim there is no valuation ν∗ ∈ RV∗

such that for all 1 ≤ i ≤ j, g̃i(ν∗) = 0, but gj(ν∗) 6= 0. To prove this, suppose that such a

valuation exists, and let ν be its restriction to V. For each 1 ≤ i ≤ j, since g̃i(ν∗) = 0, we

have gi(ν) ≥ 0. Moreover, gj(ν) = gj(ν
∗) 6= 0. This is a contradiction with the previously

proven fact that Φ[1 . . . j] entails gj = 0. Applying the strong nullstellensatz (Theorem 2.5)

to the g̃i’s and gj, we conclude that there exist a non-negative integer α and polynomials

38

h̃1, . . . , h̃j ∈ R[V∗] such that

gαj =

j∑
i=1

h̃i · g̃i

Note that gαj =
(
g̃j + w2

j

)α
=
∑α

i=0

(
α
i

)
g̃ij · w2·(α−i)

j = w2·α
j + h′j · g̃j for some h′j ∈ R[V∗].

Defining hi = h̃i for all i 6= j, and hj = h̃j − h′j, we get

w2·α
j =

j∑
i=1

hi · g̃i =

j∑
i=1

hi · (gi − w2
i).

2.7 Encoding Sum-of-Squares Polynomials in QP

Given that several of the sätze in the previous section require sum-of-square polynomials,

in our algorithms we also need to encode the property “h ∈ R[X] is a sum-of-squares” as

a system of quadratic constraints (a quadratic programming instance). In this section, we

show how this can be achieved using classical mathematical techniques.

Lemma 2.3. Given a polynomial h ∈ R[X] as input, the problem of deciding whether h is a

sum of squares, i.e. whether h can be written as
∑

i f
2
i for some polynomials fi ∈ R[X], can

be reduced in polynomial time to solving a system of quadratic equalities.

We provide a reduction using the following two classical theorems:

Theorem 2.6 (Corollary 7.2.9 in [Horn and Johnson, 1990]). A polynomial h ∈ R[X] of even

degree d is a sum-of-squares if and only if there exists a k-dimensional symmetric positive

semi-definite matrix Q such that h = yTQy, where k is the number of monomials of degree

no greater than d/2 and y is a column vector consisting of every such monomial.

Theorem 2.7 ([Higham, 2009, Golub and Van Loan, 1996]). A symmetric square matrix Q

is positive semi-definite if and only if it has a Cholesky decomposition of the form Q = LLT

where L is a lower-triangular matrix with non-negative diagonal entries.

39

Given the two theorems above, our reduction uses the following procedure for generating

quadratic equations that are equivalent to the assertion that h is a sum-of-squares:

The Reduction. The algorithm generates the set Mbd/2c of monomials of degree at most

bd/2c over X. It then orders these monomials arbitrarily into a vector y and symbolically

computes the equality

h = yTLLTy (2.4)

where L is a lower-triangular matrix whose every non-zero entry is a new variable in the

system. We call these variables l-variables. For every li,i, i.e. every l-variable that appears on

the diagonal of L, the algorithm adds the constraint li,i ≥ 0 to the quadratic system. Then,

it translates Equation (2.4) into quadratic equations over l-variables and the coefficients of

h and by equating the coefficients of corresponding terms on the two sides of (2.4). The

resulting system encodes the property that h is a sum-of-squares.

Example 2.12. Let X = {a, b} be the set of variables and h ∈ R[X] a quadratic polynomial,

i.e. h(a, b) = t1 + t2 · a + t3 · b + t4 · a2 + t5 · a · b + t6 · b2. We aim to encode the property

that h is a sum-of-squares as a system of quadratic equalities and inequalities. To do so, we

first generate all monomials of degree at most bd/2c = 1, which are 1, a and b. Hence, we let

y =
[
1 a b

]T
. We then generate a lower-triangular matrix L whose every non-zero entry

is a new variable:

L =


l1 0 0

l2 l3 0

l4 l5 l6

 .
We also add the inequalities l1 ≥ 0, l3 ≥ 0 and l6 ≥ 0 to our system. Now, we write the

equation h = yTLLTy and compute it symbolically:

h =
[
1 a b

]
l1 0 0

l2 l3 0

l4 l5 l6



l1 l2 l4

0 l3 l5

0 0 l6




1

a

b

 ,

which leads to: t1 + t2 · a+ t3 · b+ t4 · a2 + t5 · a · b+ t6 · b2 = l21 + 2 · l1 · l2 · a+ 2 · l1 · l4 · b+

(l22 + l23) · a2 + (2 · l2 · l4 + 2 · l3 · l5) · a · b+ (l24 + l25 + l26) · b2.

40

Note that both sides of the equation above are polynomials over {a, b}, hence they are equal

iff their corresponding coefficients are equal. So, we get the following quadratic equalities over

the t-variables and l-variables: t1 = l21, t2 = 2 · l1 · l2, . . . , t6 = l24 + l25 + l26. This concludes the

construction of our quadratic system.

Remark 2.2. Note that the QP instance in the reduction above is by definition a semi-definite

programming instance given that Q is a symmetric positive semi-definite matrix.

41

3

Faster Algorithms for Data-Flow

Analysis

This chapter originally appeared in the following publications:

[•] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Pavlogiannis, A. Optimal

and Perfectly Parallel Algorithms for On-demand Data-flow Analysis. In 29th

European Symposium on Programming (ESOP), 2020.

[•] Chatterjee, K., Goharshady, A. K., Goyal, P., Ibsen-Jensen, R., and Pavlogiannis,

A. Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with

Constant Treewidth. ACM Transactions on Programming Languages and Systems

(TOPLAS), 2019.

[•] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Pavlogiannis, A.

Algorithms for Algebraic Path Properties in Concurrent Systems of Constant

Treewidth Components. ACM Transactions on Programming Languages and Systems

(TOPLAS), 2018.

[•] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Pavlogiannis, A.

Algorithms for Algebraic Path Properties in Concurrent Systems of Constant

Treewidth Components. In 43rd ACM Symposium on Principles of Programming Lan-

guages (POPL), 2016.

42

3.1 Introduction

Data-flow Analysis. Interprocedural data-flow analyses, such as live variables analysis,

alias analysis and null pointers analysis, are ubiquitous in verification and compiler opti-

mization. The most widely-used framework for interprocedural data-flow analysis is IFDS,

which considers distributive data-flow functions over a finite domain of data facts. On-demand

data-flow analyses restrict the focus of the analysis on specific program locations and data

facts. This setting provides a natural split between (i) an offline (or preprocessing) phase,

where the program is partially analyzed and analysis summaries are created, and (ii) an on-

line (or query) phase, where analysis queries arrive on demand and the summaries are used

to speed up answering queries.

Summary of Our Results. We exploit the fact that flow graphs of programs have low

treewidth to develop faster algorithms that are space and time optimal for many common

same-context data-flow analyses, in both the preprocessing and the query phase. We also use

treewidth to develop query solutions that are perfectly parallelizable, i.e. the total work for

answering each query can be split to a number of threads such that each thread performs only

a constant amount of work. Finally, we report on an implementation of our algorithms and

perform a series of on-demand analysis experiments on standard benchmarks. Our experi-

mental results show a drastic speed-up of the queries after only a lightweight preprocessing

phase, which significantly outperforms existing techniques.

Applications. Static program analysis is a fundamental approach for both analyzing pro-

gram correctness and performing compiler optimizations. Static data-flow analyses associate

with each program location a set of data-flow facts which must (may) hold under all (some)

program executions. These facts are then used to reason about program correctness, report

erroneous behavior, and optimize program execution. Static data-flow analyses have numer-

ous applications, such as in detection of null pointer dereferencing [Nanda and Sinha, 2009,

Shang et al., 2012], in detecting privacy and security issues (e.g. taint analysis and SQL in-

jection analysis) [Arzt et al., 2014, Gould et al., 2004], as well as in compiler optimizations

(e.g. constant propagation, reaching definitions, and register allocation) [Reps et al., 1995,

Grove and Torczon, 1993, Sagiv et al., 1996, Appel and Palsberg, 2003].

43

Interprocedural Analysis and the IFDS framework. Data-flow analyses fall in two

classes: intraprocedural and interprocedural. In the former, each procedure of the program is

analyzed in isolation, ignoring the interaction between procedures which occurs due to param-

eter passing/return. In the latter, all procedures of the program are analyzed together, ac-

counting for such interactions, which leads to results of increased precision, and hence is often

preferable to intraprocedural analysis [Reps, 2000, Rountev et al., 2006, Späth et al., 2019].

To filter out false results, interprocedural analyses typically employ call-context sensitivity,

which ensures that the underlying execution paths respect the calling context of procedure in-

vocations, i.e. if an execution path follows a procedure call from f to g, when g terminates, the

execution path will continue to the corresponding call site of f. One of the most widely-used

frameworks for interprocedural data-flow analysis is the framework of Interprocedural Finite

Distributive Subset (IFDS) problems [Reps et al., 1995], which offers a unified formulation

of a wide class of interprocedural data-flow analyses as a reachability problem. This elegant

algorithmic formulation of data-flow analysis has been a topic of active study, leading to sub-

sequent practical improvements [Horwitz et al., 1995, Naeem et al., 2010, Arzt et al., 2014,

Rapoport et al., 2015, Schubert et al., 2019].

On-demand analysis. Exhaustive data-flow analysis is computationally expensive and of-

ten unnecessary. Hence, a topic of great interest in the community is that of on-demand data-

flow analysis [Horwitz et al., 1995, Reps, 1995, Reps, 1998, Naeem et al., 2010]. On-demand

analyses have several applications, such as (quoting from [Horwitz et al., 1995, Reps, 1998])

(i) narrowing down the focus to specific points of interest, (ii) narrowing down the focus to

specific data-flow facts of interest, (iii) reducing work in preliminary phases, (iv) side-stepping

incremental updating problems, and (v) offering demand analysis as a user-level operation.

Example 3.1. As a toy motivating example, consider the partial program shown in Fig-

ure 3.1, compiled with a just-in-time compiler that uses speculative optimizations. Whether

the compiler must compile the expensive function h depends on whether x is null in line 6.

Performing a null-pointer analysis from the entry of f reveals that x might be null in line 6.

Hence, if the decision to compile h relies only on an offline static analysis, h is always com-

piled, even when not needed.

44

1 void f(int b){
2 int *x = NULL , *y = NULL;
3 if(b > 1)
4 y = &b;
5 g(x,y);
6 if(x==NULL)
7 h();
8 }

9 void g(int *&x, int *y){
10 x=y;
11 }

12 void h(){
13 //An expensive
14 // function
15 }

Figure 3.1: A partial C++ program.

Now consider the case where the execution of the program is in line 4, and at this point

the compiler decides on whether to compile h. It is clear that given this information, x

cannot be null in line 6 and thus h does not have to be compiled. As we have seen above,

this decision can not be made based on offline analysis. On the other hand, an on-demand

analysis starting from the current program location will correctly conclude that x is not null

in line 6. Note however, that this decision is made by the compiler during runtime. Hence,

such an on-demand analysis is useful only if it can be performed extremely fast. It is also

highly desirable that the time for running this analysis is predictable, so that the compiler can

decide whether to run the analysis or simply compile h proactively.

Our techniques in this chapter answer the above challenges rigorously. Our approach

exploits the treewidth of control flow graphs as the parameter in order to obtain vastly more

efficient parameterized algorithms for data-flow analysis.

Treewidth of Programs. As shown in [Thorup, 1998], control flow graphs of goto-free

structured programs in many classic programming languages have a treewidth of at most 7.

The low treewidth of CFGs has also been confirmed experimentally for programs written in

Java [Gustedt et al., 2002], C [Klaus Krause et al., 2019], Ada [Burgstaller et al., 2004] and

Solidity [Chatterjee et al., 2019b].

Problem statement. We focus on on-demand data-flow analysis in IFDS [Reps et al., 1995,

Horwitz et al., 1995, Reps, 1998]. The input consists of a supergraph G of n vertices, a data-

fact domain D and a data-flow transformer function M . Edges of G capture control-flow

within each procedure, as well as procedure invocations and returns. The set D defines

45

the domain of the analysis, and contains the data facts to be discovered by the analysis for

each program location. The function M associates with every edge (u, v) of G a data-flow

transformer M(u, v) : 2D → 2D. In words, M(u, v) defines the set of data facts that hold at

v in some execution that transitions from u to v, given the set of data facts that hold at u.

On-demand analysis brings a natural separation between (i) an offline (or preprocessing)

phase, where the program is partially analyzed, and (ii) an online (or query) phase, where

on-demand queries are handled. The task is to preprocess the input in the offline phase, so

that in the online phase, the following types of on-demand queries are answered efficiently:

1. A pair query has the form (u, d1, v, d2), where u, v are vertices of G in the same proce-

dure, and d1, d2 are data facts. The goal is to decide if there exists a same-context execu-

tion that starts in u and ends in v, and given that the data fact d1 held at the beginning

of the execution, the data fact d2 holds at the end. These are known as same-context

queries and are very common in data-flow analysis [Chaudhuri, 2008, Reps et al., 1995].

2. A single-source query has the form (u, d1), where u is a vertex of G and d1 is a data

fact. The goal is to compute for every vertex v that belongs to the same procedure as

u, all the data facts that might hold in v as witnessed by same-context executions that

start in u and assuming that d1 holds at the beginning of each such execution.

Previous Results. The on-demand analysis problem admits a number of solutions that

lie in the preprocessing/query spectrum. On the one end, the preprocessing phase can be

disregarded, and every on-demand query be treated anew. Since each query starts a sepa-

rate instance of IFDS, the time to answer it is O(n · |D|3), for both pair and single-source

queries [Reps et al., 1995]. On the other end, all possible queries can be pre-computed and

cached in the preprocessing phase in time O(n2 · |D|3), after which each query costs time

proportional to the size of the output (i.e., O(1)) for pair queries and O(n · |D|) for single-

source queries). Note that this full preprocessing also incurs a cost O(n2 · |D|2) in space for

storing the cache table, which is often prohibitive. On-demand analysis was more thoroughly

studied in [Horwitz et al., 1995]. The main idea is that, instead of pre-computing the answer

to all possible queries, the analysis results obtained by handling each query are memoized

46

to a cache table, and are used for speeding up the computation of subsequent queries. This

is a heuristic-based approach that often works well in practice, however, the only guarantee

provided is that of same-worst-case-complexity, which states that in the worst case, the algo-

rithm uses O(n2 · |D|3) time and O(n2 · |D|2) space, similarly to the complete preprocessing

case. This guarantee is inadequate for runtime applications such as the example of Figure 3.1,

as it would require either (i) to run a full analysis, or (ii) to run a partial analysis which

might wrongly conclude that h is reachable, and thus compile it. Both cases incur a large

runtime overhead, either because we run a full analysis, or because we compile an expensive

function.

Our Contributions. We provide algorithms for on-demand IFDS analyses that have strong

worst-case time complexity guarantees and thus lead to more predictable performance than

mere heuristics. Our contributions in this chapter are as follows:

1. We develop an algorithm that, given a program represented as a supergraph of size n

and a data fact domain D, solves the on-demand same-context IFDS problem while

spending (i) O(n · |D|3) time in the preprocessing phase, and (ii) O(d|D|/ log ne) time

for a pair query and O(n · |D|2/ log n) time for a single-source query in the query phase.

Observe that when |D| = O(1), the preprocessing and query times are proportional

to the size of the input and outputs, respectively, and are thus optimal∗. In addition,

our algorithm uses O(n · |D|2) space at all times, which is proportional to the size of

the input, and is thus space optimal. Hence, our algorithm not only improves upon

previous state-of-the-art solutions, but also ensures optimality in both time and space.

2. We also show that after our one-time preprocessing, each query is perfectly parallelizable,

i.e., every bit of the output can be produced by a single thread in O(1) time. This makes

our techniques particularly useful to speculative optimizations, since the analysis is

guaranteed to take constant time and thus incur little runtime overhead. Although the

parallelization of data-flow analysis has been considered before [Lee and Ryder, 1992,

Rodriguez and Lhoták, 2011], this is the first time to obtain solutions that span beyond

∗Note that we count the input itself as part of the space usage.

47

heuristics and offer theoretical guarantees. Moreover, this is a rather surprising result,

given that general IFDS is known to be P-complete.

3. We provide experimental results showing that after only a lightweight preprocessing,

we obtain a significant speedup in the query phase compared to standard on-demand

techniques in the literature. Also, our parallel implementation achieves a speedup

close to the theoretical optimal, which illustrates that the perfect parallelization of the

problem is realized by our approach in practice.

3.2 The IFDS Framework

IFDS [Reps et al., 1995] is a ubiquitous and general framework for interprocedural data-

flow analyses that have finite domains and distributive flow functions. It encompasses a

wide variety of analyses, including truly-live variables, copy constant propagation, possibly-

uninitialized variables, secure information-flow, and gen/kill or bitvector problems such as

reaching definitions, available expressions and live variables [Reps et al., 1995, Bodden, 2012].

IFDS obtains interprocedurally precise solutions. In contrast to intraprocedural analysis, in

which precise denotes “meet-over-all-paths”, interprocedurally precise solutions only consider

valid paths, i.e. paths in which when a function reaches its end, control returns back to the site

of the most recent call [Sharir and Pnueli, 1981]. In this section, we provide a comprehensive

overview of the IFDS framework.

Model of computation. In this chapter, we consider the standard RAM model with word

size W = Θ(log n), where n is the size of our input. In this model, one can store W bits in

one word (aka “word tricks”) and arithmetic and bitwise operations between pairs of words

can be performed in O(1) time. In practice, word size is a property of the machine and not

the analysis. Modern machines have words of size at least 64. Since the size of real-world

input instances never exceeds 264, the assumption of word size W = Θ(log n) is well-realized

in practice and no additional effort is required by the implementer to account for W in the

context of data flow analysis.

48

Flow Graphs and Supergraphs. In IFDS, a program with k procedures is specified by

a supergraph, i.e. a graph G = (V,E) consisting of k flow graphs G1, . . . , Gk, one for each

procedure, and extra edges modeling procedure-calls. Flow graphs represent procedures in

the usual way, i.e. they contain one vertex vi for each statement i and there is an edge from

vi to vj if the statement j may immediately follow the statement i in an execution of the

procedure. The only exception is that a procedure-call statement i is represented by two

vertices, a call vertex ci and a return-site vertex ri. The vertex ci only has incoming edges,

and the vertex ri only has outgoing edges. There is also a call-to-return-site edge from ci to

ri. The call-to-return-site edges are included for passing intraprocedural information, such as

information about local variables, from ci to ri. Moreover, each flow graph Gl has a unique

start vertex sl and a unique exit vertex el.

The supergraph G also contains the following edges for each procedure-call i with call

vertex ci and return-site vertex ri that calls a procedure l: (i) an interprocedural call-to-start

edge from ci to the start vertex of the called procedure, i.e. sl, and (ii) an interprocedural

exit-to-return-site edge from the exit vertex of the called procedure, i.e. el, to ri.

Example 3.2. Figure 3.2 shows a simple C++ program on the left and its supergraph on

the right. Each statement i of the program has a corresponding vertex vi in the supergraph,

except for statement 7, which is a procedure-call statement and hence has a corresponding

call vertex c7 and return-site vertex r7.

Interprocedurally valid paths. Not every path in the supergraph G can potentially be

realized by an execution of the program. Consider a path P in G and let P ′ be the sequence

of vertices obtained by removing every vi from P , i.e. P ′ only consists of ci’s and ri’s. Then,

P is called a same-context valid path if P ′ can be generated from S in this grammar:

S →ci S ri S for a procedure-call statement i

| ε

.

Moreover, P is called an interprocedurally valid path or simply valid if P ′ can be generated

from the nonterminal S ′ in the following grammar:

49

1 void f(int *&x, int *y){
2 y = new int (1);
3 y = new int (2);
4 }

5 int main (){
6 int *x, *y;
7 f(x,y);
8 *x += *y;
9 }

v5

v6

c7

r7

v8

v9

v1

v2

v3

v4

sf

ef

smain

emain

call-to-return-site

call-to-start

ex
it-
to-

ret
urn

-si
te

Figure 3.2: A C++ program and its supergraph.

S ′ →S ′ ci S for a procedure-call statement i

| S

.

For any two vertices u, v of the supergraph G, we denote the set of all interprocedurally valid

paths from u to v by IVP(u, v) and the set of all same-context valid paths from u to v by

SCVP(u, v). Informally, a valid path starts from a statement in a procedure p of the program

and goes through a number of procedure-calls while respecting the rule that whenever a

procedure ends, control should return to the return-site in its parent procedure. A same-

context valid path is a valid path in which every procedure-call ends and hence control returns

back to the initial procedure p in the same context.

IFDS [Reps et al., 1995]. An IFDS problem instance is a tuple I = (G,D, F,M,u) where:

• G = (V,E) is a supergraph as above.

• D is a finite set, called the domain, and each d ∈ D is called a data flow fact.

• The meet operator u is either intersection or union.

• F ⊆ 2D → 2D is a set of distributive flow functions over u, i.e. for each function f ∈ F
and every two sets of facts D1, D2 ⊆ D, we have f(D1 uD2) = f(D1) u f(D2).

50

• M : E → F is a map that assigns a distributive flow function to each edge of the

supergraph.

Let P = (wi)
k
i=0 be a path in G, ei = (wi−1, wi) and mi = M(ei). In other words, the ei’s are

the edges appearing in P and the mi’s are their corresponding distributive flow functions.

The path function of P is defined as: pfP := mk ◦ · · · ◦ m2 ◦ m1 where ◦ denotes function

composition. The solution of I is the collection of values {MVPv}v∈V :

MVPv :=
l

P∈IVP(smain,v)

pfP (>).

Intuitively, the solution is defined by taking meet-over-all-valid-paths. If the meet operator

is union, then MVPv is the set of data flow facts that may hold at v, when v is reached

in some execution of the program. Conversely, if the meet operator is intersection, then

MVPv consists of data flow facts that must hold at v in every execution of the program

that reaches v. Similarly, we define the same-context solution of I as the collection of values

{MSCPv}v∈Vmain defined as follows:

MSCPv :=
l

P∈SCVP(smain,v)

pfP (>). (3.1)

The intuition behind MSCP is similar to that of MVP, except that in MSCPv we consider

meet-over-same-context-paths (corresponding to runs that return to the same stack state).

Remark 3.1. We note two points about the IFDS framework:

• As in [Reps et al., 1995], we only consider IFDS instances in which the meet operator

is union. Instances with intersection can be reduced to union instances by dualiza-

tion [Reps et al., 1995].

• For brevity, we are considering a global domain D, while in many applications the

domain is procedure-specific. This does not affect the generality of our approach and

our algorithms remain correct for the general case where each procedure has its own

dedicated domain. Indeed, our implementation supports the general case.

51

Succinct Representations. A distributive function f : 2D → 2D can be succinctly repre-

sented by a relation Rf ⊆ (D ∪ {0})× (D ∪ {0}) defined as:

Rf := {(0,0)}
∪ {(0, b) | b ∈ f(∅)}
∪ {(a, b) | b ∈ f({a})− f(∅)}.

Given that f is distributive over union, we have f({d1, . . . , dk}) = f({d1}) ∪ · · · ∪ f({dk}).
Hence, to specify f it is sufficient to specify f(∅) and f({d}) for each d ∈ D. This is exactly

what Rf does. In short, we have: f(∅) = {b ∈ D | (0, b) ∈ Rf} and f({d}) = f(∅) ∪ {b ∈
D | (d, b) ∈ Rf}. Moreover, we can represent the relation Rf as a bipartite graph Hf in

which each part consists of the vertices D ∪ {0} and Rf is the set of edges. For brevity, we

define D∗ := D ∪ {0}.

Example 3.3. Let D = {a, b}. Figure 3.3 provides several examples of bipartite graphs

representing distributive functions.

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

λx.{a, b} λx.(x− {a}) ∪ {b} λx.x λx.x ∪ {a} λx.

{
{a} x 6= ∅
∅ x = ∅

Figure 3.3: Succinct representation of several distributive functions.

Bounded Bandwidth Assumption. Following [Reps et al., 1995], we assume that the

bandwidth in function calls and returns is bounded by a constant. In other words, there

is a small constant b, such that for every edge e that is a call-to-start or exit-to-return-

site edge, every vertex in the graph representation HM(e) has degree b or less. This is a

classical assumption in IFDS [Reps et al., 1995, Bodden, 2012] and models the fact that

52

every parameter in a called function is only dependent on a few variables in the callee (and

conversely, every returned value is only dependent on a few variables in the called function).

Composition of Distributive Functions. Let f and g be distributive functions and Rf

and Rg their succinct representations. It is easy to verify that g ◦ f is also distributive,

hence it has a succinct representation Rg◦f . Moreover, we have Rg◦f = Rf ;Rg = {(a, b) |
∃c (a, c) ∈ Rf ∧ (c, b) ∈ Rg}.

Example 3.4. In terms of graphs, to compute Hg◦f , we first take Hf and Hg, then contract

corresponding vertices in the lower part of Hf and the upper part of Hg, and finally compute

reachability from the topmost part to the bottommost part of the resulting graph. Consider

f(x) = x ∪ {a}, g(x) = {a} for x 6= ∅ and g(∅) = ∅, then g ◦ f(x) = {a} for all x ⊆
D. Figure 3.4 shows contracting of corresponding vertices in Hf and Hg (left) and using

reachability to obtain Hg◦f (right).

0 a b

0 a b

0 a b

0 a b

λx.{a}
λx.x ∪ {a}

λx.

{
{a} x 6= ∅
∅ x = ∅

Figure 3.4: Obtaining Hg◦f (right) from Hf and Hg (left)

Exploded Supergraph. Given an IFDS instance I = (G,D, F,M,∪) with supergraph

G = (V,E), its exploded supergraph G is obtained by taking |D∗| copies of each vertex in

V , one corresponding to each element of D∗, and replacing each edge e with the graph

representation HM(e) of the flow function M(e). Formally, G = (V ,E) where V = V × D∗

and

E =
{

((u, d1), (v, d2)) | e = (u, v) ∈ E ∧ (d1, d2) ∈ RM(e)

}
.

53

A path P in G is (same-context) valid, if the path P in G, obtained by ignoring the second

component of every vertex in P , is (same-context) valid. As shown in [Reps et al., 1995],

for a data flow fact d ∈ D and a vertex v ∈ V, we have d ∈ MVPv iff there is a valid path

in G from (smain, d
′) to (v, d) for some d′ ∈ > ∪ {0}. Hence, the IFDS problem is reduced

to reachability by valid paths in G. Similarly, the same-context IFDS problem is reduced to

reachability by same-context valid paths in G.

Example 3.5. Consider a null pointer analysis on the program in Figure 3.2. At each

program point, we want to know which pointers can potentially be null. We first model this

problem as an IFDS instance. Let D = {x̄, ȳ}, where x̄ is the data flow fact that x might

be null and ȳ is defined similarly. Figure 3.5 shows the same program and its exploded

supergraph.

At point 8, the values of both pointers x and y are used. Hence, if either of x or y is null

at 8, a null pointer error will be raised. However, as evidenced by the two valid paths shown

in red, both x and y might be null at 8. The pointer y might be null because it is passed to

the function f by value (instead of by reference) and keeps its local value in the transition

from c7 to r7, hence the edge ((c7, ȳ), (r7, ȳ)) is in G. On the other hand, the function f only

initializes y, which is its own local variable, and does not change x (which is shared with

main).

Formal Problem Definition. We consider same-context IFDS problems in which the flow

graphs Gi have a treewidth of at most t for a fixed constant t. We extend the classical

notion of same-context IFDS solution in two ways: (i) we allow arbitrary start points for the

analysis, i.e. we do not limit our analyses to same-context valid paths that start at smain; and

(ii) instead of a one-shot algorithm, we consider a two-phase process in which the algorithm

first preprocesses the input instance and is then provided with a series of queries to answer.

We formalize these points below. We fix an IFDS instance I = (G,D, F,M,∪) with exploded

supergraph G = (V ,E).

Meet over Same-context Valid Paths. We extend the definition of MSCP by specifying

a start vertex u and an initial set ∆ of data flow facts that hold at u. Formally, for any

54

1 void f(int *&x, int *y) {
2 y = new int (1);
3 y = new int (2);
4 }

5 int main() {
6 int *x, *y;
7 f(x,y);
8 *x += *y;
9 }

v5

v6

c7

r7

v8

v9

v1

v2

v3

v4

ȳx̄0

ȳx̄0

Figure 3.5: A Program (left) and its Exploded Supergraph (right).

vertex v that is in the same flow graph as u, we define:

MSCPu,∆,v :=
l

P∈SCVP(u,v)

pfP (∆). (3.2)

The only difference between (3.2) and (3.1) is that in (3.1), the start vertex u is fixed as smain

and the initial data-fact set ∆ is fixed as >, while in (3.2), they are free to be any vertex/set.

Reduction to Reachability. As explained above, computing MSCP is reduced to reacha-

bility via same-context valid paths in the exploded supergraph G. This reduction does not

depend on the start vertex and initial data flow facts. Hence, for a data flow fact d ∈ D,

we have d ∈ MSCPu,∆,v iff in the exploded supergraph G the vertex (v, d) is reachable via

same-context valid paths from a vertex (u, δ) for some δ ∈ ∆ ∪ {0}. Hence, we define the

following types of queries:

Pair Query. A pair query provides two vertices (u, d1) and (v, d2) of the exploded supergraph

G and asks whether they are reachable by a same-context valid path. Hence, the answer to

55

a pair query is a single bit. Intuitively, if d2 = 0, then the query is simply asking if v is

reachable from u by a same-context valid path in G. Otherwise, d2 is a data flow fact and

the query is asking whether d2 ∈ MSCPu,{d1}∩D,v.

Single-source Query. A single-source query provides a vertex (u, d1) and asks for all

vertices (v, d2) that are reachable from (u, d1) by a same-context valid path. Assuming that

u is in the flow graph Gi = (Vi, Ei), the answer to the single source query is a sequence of

|Vi|·|D∗| bits, one for each (v, d2) ∈ Vi×D∗, signifying whether it is reachable by same-context

valid paths from (u, d1). Intuitively, a single-source query asks for all pairs (v, d2) such that

(i) v is reachable from u by a same-context valid path and (ii) d2 ∈ MSCPu,{d1}∩D,v ∪ {0}.

Intuition. We note the intuition behind such queries. We observe that since the functions

in F are distributive over ∪, we have MSCPu,∆,v = ∪δ∈∆MSCPu,{δ},v, hence MSCPu,∆,v can

be computed by O(|∆|) single-source queries.

Classical Solution. The classical IFDS algorithm [Reps et al., 1995] is a work-list algo-

rithm that computes reachability via valid paths in an iterative way. It maintains a table

of reachability and updates it until convergence to the solution. As mentioned before, this

leads to a runtime of O(n · |D|3) per query. In the remainder of this chapter, we show how

parameterization by treewidth can help for more efficient algorithms.

3.3 Treewidth-based Algorithms

3.3.1 Notation and Preliminary Lemmas

Notation. Consider a rooted tree T = (VT , ET) with root vertex r. For an arbitrary vertex

v ∈ VT , the depth of v, denoted by dv, is defined as the length of the unique path from v to

r. The depth or height of T is the maximum depth among its vertices. We denote the set

of ancestors of v by A↑v and its descendants by D↓v. It is straightforward to see that for every

0 ≤ d ≤ dv, the vertex v has a unique ancestor with depth d. We denote this ancestor by adv.

The subtree T ↓v corresponding to v is defined as T [D↓v] = (D↓v, ET ∩ D↓v × D↓v), i.e. the part of

T that consists of v and its descendants. Given two vertices u, v ∈ VT , the lowest common

56

ancestor lca(u, v) of u and v is defined as argmaxw∈A↑u∩A↑v
dw. In other words, lca(u, v) is the

common ancestor of u and v with maximum depth, i.e. which is farthest from the root.

In our algorithm for treewidth-based IFDS analysis, we need to have a balanced tree

decomposition. Moreover, we perform lowest common ancestor queries on the tree decompo-

sition every time we need to answer an IFDS query. As such, we will rely on the following

two classical lemmas:

Lemma 3.1 ([Bodlaender and Hagerup, 1998]). Given a graph G with constant treewidth t,

a binary tree decomposition with O(n) bags, height O(log n) and width O(t) can be computed

in linear time.

Lemma 3.2 ([Harel and Tarjan, 1984]). Given a rooted tree T with n vertices, there is an

algorithm that preprocesses T in O(n) and can then answer lowest common ancestor queries,

i.e. queries that provide two vertices u and v and ask for lca(u, v), in O(1).

3.3.2 Preprocessing

The original solution to the IFDS problem, as first presented in [Reps et al., 1995], reduces

the problem to reachability over a newly constructed graph. We follow a similar approach,

except that we exploit the low-treewidth property of our flow graphs at every step. Our

preprocessing is described below. It starts with computing constant-width tree decomposi-

tions for each of the flow graphs. We then use standard techniques to make sure that our

tree decompositions have a nice form, i.e. that they are balanced and binary. Then comes

a reduction to reachability, which is similar to [Reps et al., 1995]. Finally, we precompute

specific useful reachability information between vertices in each bag and its ancestors. As it

turns out in the next section, this information is sufficient for computing reachability between

any pair of vertices, and hence for answering IFDS queries.

Overview. Our preprocessing consists of the following steps:

(1) Finding Tree Decompositions. In this step, we compute a tree decomposition (Ti, 〈Bi,j〉)
of constant width t for each flow graph Gi. This can either be done by applying the

57

algorithm of [Bodlaender, 1996] directly on Gi, or by using an algorithm due to Tho-

rup [Thorup, 1998] and parsing the program.

(2) Balancing and Binarizing. In this step, we balance the tree decompositions Ti us-

ing the algorithm of Lemma 3.1 and make them binary using the standard process

of [Chaudhuri and Zaroliagis, 2000].

(3) LCA Preprocessing. We preprocess the Ti’s for answering lowest common ancestor

queries using Lemma 3.2.

(4) Reduction to Reachability. In this step, we modify the exploded supergraph G =

(V ,E) to obtain a new graph Ĝ = (V , Ê), such that for every pair of vertices (u, d1)

and (v, d2), there is a path from (u, d1) to (v, d2) in Ĝ iff there is a same-context valid

path from (u, d1) to (v, d2) in G. So, this step reduces the problem of reachability via

same-context valid paths in G to simple reachability in Ĝ.

(5) Local Preprocessing. In this step, for each pair of vertices (u, d1) and (v, d2) for which

there exists a bag Bj such that both u and v appear in Bj, we compute and cache whether

(u, d1) (v, d2) in Ĝ. We write (u, d1) local (v, d2) to denote a reachability established

in this step.

(6) Ancestors Reachability Preprocessing. In this step, we compute reachability in-

formation between each vertex in a bag and vertices appearing in its ancestors in the

tree decomposition. Concretely, for each pair of vertices (u, d1) and (v, d2) such that u

appears in a bag Bj and v appears in a bag Bk and k is an ancestor of j, we establish and

remember whether (u, d1) (v, d2) in Ĝ and whether (v, d2) (u, d1) in Ĝ. As above,

we use the notations (u, d1) anc (v, d2) and (v, d2) anc (u, d1).

Steps (1)–(3) above are standard and well-known processes. We now provide details of

steps (4)–(6). To skip the details and read about the query phase, see Section 3.3.4 below.

58

Step (4): Reduction to Reachability

In this step, our goal is to compute a new graph Ĝ from the exploded supergraph G such that

there is a path from (u, d1) to (v, d2) in Ĝ iff there is a same-context valid path from (u, d1)

to (v, d2) in G. The idea behind this step is the same as that of the tabulation algorithm

in [Reps et al., 1995].

Summary Edges. Consider a call vertex cl in G and its corresponding return-site vertex rl.

For d1, d2 ∈ D∗, the edge ((cl, d1), (rl, d2)) is called a summary edge if there is a same-context

valid path from (cl, d1) to (rl, d2) in the exploded supergraph G. Intuitively, a summary

edge summarizes the effects of procedure calls (same-context interprocedural paths) on the

reachability between cl and rl. From the definition of summary edges, it is straightforward

to verify that the graph Ĝ obtained from G by adding every summary edge and removing

every interprocedural edge has the desired property, i.e. a pair of vertices are reachable in Ĝ

iff they are reachable by a same-context valid path in G. Hence, we first find all summary

edges and then compute Ĝ. This is shown in Algorithm 3.1.

We now describe what Algorithm 3.1 does. Let sp be the start point of a procedure p. A

shortcut edge is an edge ((sp, d1), (v, d2)) such that v is in the same procedure p and there

is a same-context valid path from (sp, d1) to (v, d2) in G. The algorithm creates an empty

graph H = (V ,E ′). Note that H is implicitly represented by only saving E ′. It also creates a

queue Q of edges to be added to H (initially Q = E) and an empty set S which will store the

summary edges. The goal is to construct H such that it contains (i) intraprocedural edges of

G, (ii) summary edges, and (iii) shortcut edges.

It constructs H one edge at a time. While there is an unprocessed intraprocedural edge

e = ((u, d1), (v, d2)) in Q, it chooses one such e and adds it to H (lines 5–10). Then, if

(u, d1) is reachable from (sp, d3) via a same-context valid path, then by adding the edge e,

the vertex (v, d2) also becomes accessible from (sp, d3). Hence, it adds the shortcut edge

((sp, d3), (v, d2)) to Q, so that it is later added to the graph H. Also if the new edge is itself

a shortcut edge (lines 14–17), then new shortcut edges should be added to the successors of

(v, d2). Moreover, if u is the start sp of the procedure p and v is its end ep, then for every

call vertex cl calling the procedure p and its respective return-site rl, we can add summary

59

Algorithm 3.1: Computing Ĝ in Step (4)
1 Q← E;
2 S ← ∅;
3 E ′ ← ∅;
4 while Q 6= ∅ do
5 Choose e = ((u, d1), (v, d2)) ∈ Q;
6 Q← Q− {e};
7 if (u, v) is an interprocedural edge, i.e. a call-to-start or exit-to-return-site edge

then
8 continue;
9 p← the procedure s.t. u, v ∈ Vp;

10 E ′ ← E ′ ∪ {e};
11 foreach d3 s.t. ((sp, d3), (u, d1)) ∈ E ′ or (sp, d3) = (u, d1) do
12 if ((sp, d3), (v, d2)) 6∈ E ′ ∪Q then
13 Q← Q ∪ {((sp, d3), (v, d2))};
14 if u = sp then
15 foreach (w, d3) s.t. ((v, d2), (w, d3)) ∈ E ′ do
16 if ((u, d1), (w, d3)) 6∈ E ′ ∪Q then
17 Q← Q ∪ {((u, d1), (w, d3))};
18 if u = sp and v = ep then
19 foreach (cl, d3) s.t. ((cl, d3), (u, d1)) ∈ E do
20 foreach d4 s.t. ((v, d2), (rl, d4)) ∈ E do
21 if ((cl, d3), (rl, d4)) 6∈ E ′ ∪Q then
22 S ← S ∪ {((cl, d3), (rl, d4))};
23 Q← Q ∪ {((cl, d3), (rl, d4))};
24 Ĝ← G;
25 foreach e = ((u, d1), (v, d2)) ∈ E do
26 if u and v are not in the same procedure then
27 Ĝ = Ĝ− {e};
28 Ĝ← Ĝ ∪ S;

edges that summarize the effect of calling p (lines 18–23). Finally, lines 24–28 compute Ĝ as

discussed above.

Correctness. As argued above, every edge that is added to H is either intraprocedural,

a summary edge or a shortcut edge. Moreover, all such edges are added to H, because H

is constructed one edge at a time and every time an edge e is added to H, all the summa-

ry/shortcut edges that might occur as a result of adding e to H are added to the queue Q

and hence later to H. Therefore, Algorithm 3.1 correctly computes summary edges and the

graph Ĝ.

60

Complexity. Note that the graph H has at most O(|E| · |D∗|2) edges. Addition of each

edge corresponds to one iteration of the while loop at line 4 of Algorithm 3.1. Moreover,

each iteration takes O(|D∗|) time, because the loops at lines 11 and 15 iterate over at most

|D∗| possible values for d3 (and constantly many values for w) and the loops at lines 19 and

20 have constantly many iterations due to the bounded bandwidth assumption (Section 3.2).

Since |D∗| = O(|D|) and |E| = O(n), the total runtime of Algorithm 3.1 is O(|n| · |D|3). For

a more detailed analysis, see [Reps et al., 1995, Appendix].

Step (5): Local Preprocessing

In this step, we compute the set Rlocal of local reachability edges, i.e. edges of the form

((u, d1), (v, d2)) such that u and v appear in the same bag b of a tree decomposition Ti

and (u, d1) (v, d2) in Ĝ. We write (u, d1) local (v, d2) to denote ((u, d1), (v, d2)) ∈
Rlocal. Note that Ĝ has no interprocedural edges. Hence, we can process each Ti sepa-

rately. We use a divide-and-conquer technique similar to the kernelization method used

in [Chaudhuri and Zaroliagis, 2000] (Algorithm 3.2).

Algorithm 3.2: Local Preprocessing in Step (5)
1 Rlocal ← ∅;
2 foreach (Ti, 〈Bi,j〉) do
3 computeLocalReachability(Ti, 〈Bi,j〉);
4 Function computeLocalReachability(T, 〈Bi〉)
5 Choose a leaf node l of T ;
6 p← parent of l;
7 foreach u, v ∈ Bl, d1, d2 ∈ D∗ s.t. (u, d1) (v, d2) in Ĝ[Bl ×D∗] do
8 Ĝ = Ĝ ∪ {((u, d1), (v, d2))};
9 Rlocal = Rlocal ∪ {((u, d1), (v, d2))};

10 if p 6= null then
11 computeLocalReachability(T − l);
12 foreach u, v ∈ Bl, d1, d2 ∈ D∗ s.t. (u, d1) (v, d2) in Ĝ[Bl ×D∗] do
13 Ĝ = Ĝ ∪ {((u, d1), (v, d2))};
14 Rlocal = Rlocal ∪ {((u, d1), (v, d2))};

Algorithm 3.2 processes each tree decomposition Ti separately. When processing T , it

chooses a leaf node l of T and computes all-pairs reachability on the induced subgraph

61

1 5

4

2

37

6

{1, 2, 5}

{2, 3, 5}

{3, 4, 5} {2, 6, 7}

B1

B2

B3 B4

Figure 3.6: A Graph G and one of its Tree Decompositions T .

Hl = Ĝ[Bl × D∗], consisting of vertices that appear in Bl. Then, for each pair of vertices

(u, d1) and (v, d2) s.t. u and v appear in Bl and (u, d1) (v, d2) in Hl, the algorithm adds

the edge ((u, d1), (v, d2)) to both Rlocal and Ĝ (lines 7–9). Note that this does not change

reachability relations in Ĝ, given that the vertices connected by the new edge were reachable

by a path before adding it. Then, if l is not the only node in T , the algorithm recursively calls

itself over the tree decomposition T − l, i.e. the tree decomposition obtained by removing l

and Bl (lines 10–11). Finally, it repeats the reachability computation on Hl (lines 12–14).

The running time of the algorithm is O(n · |D∗|3).

Example 3.6. Consider the graph G and tree decomposition T given in Figure 3.6 and let

D∗ = {0}, i.e. let Ĝ and Ḡ be isomorphic to G. Figure 3.7 illustrates the steps taken by

Algorithm 3.2. In each step, a bag is chosen and a local all-pairs reachability computation is

performed over the bag. Local reachability edges are added to Rlocal and to Ĝ (if they are not

already in Ĝ).

We now prove the correctness and establish the complexity of Algorithm 3.2.

Correctness. We prove that when computeLocalReachability(T) ends, the set Rlocal contains

all the local reachability edges between vertices that appear in the same bag in T. The proof

is by induction on the size of T. If T consists of a single bag, then the local reachability

computation on Hl (lines 7–9) fills Rlocal correctly. Now assume that T has n bags. Let

H−l = Ĝ[∪i 6=lBi×D∗]. Intuitively, H−l is the part of Ĝ that corresponds to other bags in T ,

i.e. every bag except the leaf bag Bl. After the local reachability computation at lines 7–9,

(v, d2) is reachable from (u, d1) in H−l only if it is reachable in Ĝ. This is because (i) the

62

v1 v5

v4

v2

v3v7

v6

v1 v5

v4

v2

v3v7

v6

v1 v5

v4

v2

v3v7

v6

v1 v5

v4

v2

v3v7

v6

v1 v5

v4

v2

v3v7

v6

v1 v5

v4

v2

v3v7

v6

v1 v5

v4

v2

v3v7

v6

v1 v5

v4

v2

v3v7

v6

B4

{v2, v6, v7}
B3

{v3, v4, v5}

B2

{v2, v3, v5}
B1

{v1, v2, v5}

B2

{v2, v3, v5}
B3

{v3, v4, v5}

B4

{v2, v6, v7}

Figure 3.7: Local Preprocessing (Step 5) on the graph and decomposition of Figure 3.6

63

vertices of Hl and H−l form a separation of Ĝ with separator (Bl ∩ Bp) ×D∗ (Lemma 2.1)

and (ii) all reachability information in Hl is now replaced by direct edges (line 8). Hence, by

induction hypothesis, line 11 finds all the local reachability edges for T − l and adds them to

both Rlocal and Ĝ. Therefore, after line 11, for every u, v ∈ Bl, we have (u, d1) (v, d2) in

Hl iff (u, d1) (v, d2) in Ĝ. Hence, the final all-pairs reachability computation of lines 12–14

adds all the local edges in Bl to Rlocal.

Complexity. Algorithm 3.2 performs at most two local all-pair reachability computations

over the vertices appearing in each bag, i.e. O(t · |D∗|) vertices. Each such computation can

be performed in O(t3 · |D∗|3) using standard reachability algorithms. Given that the Ti’s have

O(n) bags overall, the total runtime of Algorithm 3.2 is O(n · t3 · |D∗|3) = O(n · |D∗|3). Note

that the treewidth t is a constant and hence the factor t3 can be removed.

Step (6): Ancestors Reachability Preprocessing

This step aims to find reachability relations between each vertex of a bag and vertices that

appear in the ancestors of that bag. As in the previous case, we compute a set Ranc and write

(u, d1) anc (v, d2) if ((u, d1), (v, d2)) ∈ Ranc.

This step is performed by Algorithm 3.3. For each node η with corresponding bag Bη and

vertex (u, d) such that u ∈ Bη and each 0 ≤ j < dη, we maintain two sets: F (u, d, η, j) and

F ′(u, d, η, j) each containing a set of vertices whose first coordinate is in the ancestor of η at

depth j. Intuitively, the vertices in F (u, d, η, j) are reachable from (u, d). Conversely, (u, d)

is reachable from the vertices in F ′(u, d, η, j). At first all F and F ′ sets are initialized as ∅.
We process each tree decomposition Ti in a top-down manner and do the following actions

at each bag:

• If a vertex u appears in both η and its parent p, then the reachability data computed

for (u, d) at p can also be used in η. So, the algorithm copies this data (lines 4–7).

• If (u, d1) local (v, d2), then this reachability relation is saved in F and F ′ (lines 10–

11). Also, any vertex that is reachable from (v, d2) is reachable from (u, d1), too. So,

64

the algorithm adds F (v, d2, η, j) to F (u, d1, η, j) (line 13). The converse happens to F ′

(line 14).

Algorithm 3.3: Ancestors Preprocessing in Step (6)
1 foreach Ti, 〈Bi,j〉 do
2 foreach η ∈ VTi in top-down order do
3 p← parent of η;
4 foreach u ∈ Bη ∩Bp, d ∈ D∗ do
5 foreach 0 ≤ j < dη do
6 F (u, d, η, j)← F (u, d, p, j);
7 F ′(u, d, η, j)← F ′(u, d, p, j);
8 foreach u, v ∈ Bη, d1, d2 ∈ D∗ do
9 if (u, d1) local (v, d2) then

10 F (u, d1, η, dη)← F (u, d1, η, dη) ∪ {(v, d2)};
11 F ′(v, d2, η, dη)← F ′(v, d2, η, dη) ∪ {(u, d1)};
12 foreach 0 ≤ j < dη do
13 F (u, d1, η, j)← F (u, d1, η, j) ∪ F (v, d2, η, j);
14 F ′(v, d2, η, j)← F ′(v, d2, η, j) ∪ F ′(u, d1, η, j)

Correctness. After the execution of Algorithm 3.3, (v, d2) ∈ F (u, d1, η, j) iff (i) (v, d2) is

reachable from (u, d1) and (ii) u ∈ Bη and v ∈ Bajη
, i.e. v appears in the ancestor of η at depth

j. Similarly, (u, d1) ∈ F ′(v, d2, η, j) iff (i) (v, d2) is reachable from (u, d1) and (ii) v ∈ Bη

and u ∈ Bajη
. We provide a proof for correctness of F , the case with F ′ can be handled

similarly. Assume that conditions (i) and (ii) hold and let P : (u, d1) (v, d2) be a path in

the graph. We use induction on the number l of bags between η and ajη. Formally, l := dη−j.
If l = 0, then (u, d1) local (v, d2) and hence (v, d2) is added to F (u, d1, η, j) at line 10.

Otherwise, there is a vertex (w, d3) ∈ P such that w ∈ Bη ∩ Bp (Lemma 2.1). Therefore,

(u, d1) local (w, d3) and by induction hypothesis (v, d2) ∈ F (w, d3, p, j). Therefore, (v, d2) is

added to F (w, d3, η, j) at line 6 and then to F (u, d1, η, j) at line 13. The other side is easy

to check.

Complexity. The algorithm considers O(n) bags in line 2. For each bag, it considers

O(t · |D∗|) different combinations of u, d in line 4. For each combination, it updates O(dη)

values in lines 5–7. Note that each F or F ′ set has a size of at most t · |D∗| = O(|D∗|).
Moreover, given that the tree decompositions Ti are balanced, we have dη = O(log n). Hence,

65

the total runtime of this part of the algorithm is O(n · |D∗|2 · log n). Similarly, in line 8, the

algorithm considers O(t2) = O(1) combinations of u, v and O(|D∗|2) combinations of d1, d2

and performs O(log n) updates for each of them (lines 12–14). Hence, the total runtime of

this part and the whole algorithm is O(n · |D∗|3 · log n).

3.3.3 Word Tricks

We now show how to reduce the time complexity of Algorithm 3.3 from O(n · |D∗|3 · log n) to

O(n · |D∗|3) using word tricks. The idea is to pack the F and F ′ sets of Algorithm 3.3 into

words, i.e. represent them by a binary sequence.

Given a node η ∈ VTi , we define δη as the sum of sizes of bags corresponding to all

ancestors of η. The tree decompositions are balanced, so η has O(log n) ancestors. Moreover,

the width is t, hence δη = O(t · log n) = O(log n) for every node η. We perform a top-down

pass of each tree decomposition Ti and compute δη for each η.

For every node η, u ∈ Bη and d1 ∈ D∗, we store F (u, d1, η,−) as a binary sequence of

length δη · |D∗|. The first |Bη| · |D∗| bits of this sequence correspond to F (u, d1, η, dη). The

next |Bp| · |D∗| correspond to F (u, d1, η, db− 1), and so on. We use a similar encoding for F ′.

Using this encoding, Algorithm 3.3 can be rewritten by word tricks and bitwise operations

as follows:

• Lines 5–6 copy F (u, d, p,−) into F (u, d, η,−). However, we have to shift and align the

bits, so these lines can be replaced by

F (u, d, η,−)← F (u, d, p,−)� |Bη| · |D∗|;

• Line 10 sets a single bit to 1.

• Lines 12–13 perform a union, which can be replaced by the bitwise OR operation.

Hence, these lines can be replaced by

F (u, d1, η,−)← F (u, d1, η,−) OR F (v, d2, η,−);

66

• Computations on F ′ can be handled similarly.

Note that we do not need to compute Ranc explicitly given that our queries can be written

in terms of the F and F ′ sets. It is easy to verify that using these word tricks, every W

operations in lines 6, 7, 13 and 14 are replaced by one or two bitwise operations on words.

Hence, the overall runtime of Algorithm 3.3 is reduced to O
(
n·|D∗|3·logn

W

)
= O(n · |D∗|3).

3.3.4 Answering Queries

We now describe how to answer pair and single-source queries using the data saved in the

preprocessing phase.

Answering a Pair Query. Our algorithm answers a pair query from a vertex (u, d1) to a

vertex (v, d2) as follows:

(i) If u and v are not in the same flow graph, return 0 (no).

(ii) Otherwise, let Gi be the flow graph containing both u and v. Let ηu be the root node of

u in Ti, i.e. the highest node such that u ∈ Bηu , and ηv be the root node of v. Compute

η := lca(ηu, ηv).

(iii) If there exists a vertex w ∈ Bη and d3 ∈ D∗ such that (u, d1) anc (w, d3) and

(w, d3) anc (v, d2), return 1 (yes), otherwise return 0 (no).

Correctness. If there is a path P : (u, d1) (v, d2), then we claim P must pass through

a vertex (w, d3) with w ∈ Bη. If η = ηu or η = ηv, the claim is obviously true. Otherwise,

consider the path P ′ : ηu ηv in the tree decomposition Ti. This path passes through η

(by definition of η). Let e = {η, η′} be an edge of P ′. Applying the separation property

(Lemma 2.1) to e, proves that P must pass through a vertex (w, d3) with w ∈ Bη ∩ Bη′ ⊆
Bη. Moreover, η is an ancestor of both ηu and ηv, hence we have (u, d1) anc (w, d3) and

(w, d3) anc (v, d2).

Complexity. Computing the lowest common ancestor takes O(1) time. Checking all possible

vertices (w, d3) takes O(t · |D∗|) = O(|D|). This runtime can be decreased to O
(⌈

|D|
logn

⌉)
by

word tricks.

67

Answering a Single-source Query. Consider a single-source query from a vertex (u, d1)

with u ∈ Vi. We can answer this query by performing |Vi|×|D∗| pair queries, i.e. by perform-

ing one pair query from (u, d1) to (v, d2) for each v ∈ Vi and d2 ∈ D∗. Since |D∗| = O(|D|),
the total complexity is O

(
|Vi| · |D| ·

⌈
|D|

logn

⌉)
for answering a single-source query. Using

a more involved preprocessing method, we can slightly improve this time to O
(
|Vi|·|D|2

logn

)
.

See [Chatterjee et al., 2020c] for more details. Based on the results above, we now present

our main theorem:

Theorem 3.1. Given an IFDS instance I = (G,D, F,M,∪), our algorithm preprocesses I

in time O(n · |D|3) and can then answer each pair query and single-source query in time

O

(⌈ |D|
log n

⌉)
and O

(
n · |D|2
log n

)
, respectively.

3.3.5 Parallelizability and Optimality

We now turn our attention to parallel versions of our query algorithms, as well as cases where

the algorithms are optimal.

Parallelizability. Assume we have k threads in our disposal.

1. Given a pair query of the form (u, d1, v, d2), let ηu (resp. ηv) be the root node of u

(resp. v), and η = lca(ηu, ηv) the lowest common ancestor of ηu and ηv. We partition

the set Bη×D∗ into k subsets {Ai}1≤i≤k. Then, thread i handles the set Ai, as follows:

for every pair (w, d3) ∈ Ai, the thread sets the output to 1 (yes) iff (u, d1) anc (w, d3)

and (w, d3) anc (v, d2).

2. Recall that a single source query (u, d1) is answered by breaking it down to |Vi| × |D∗|
pair queries, where Gi = (Vi, Ei) is the flow graph containing u. Since all such pair

queries are independent, we parallelize them among k threads, and further parallelize

each pair query as described above.

68

With word tricks, parallel pair and single-source queries requireO
(⌈

|D|
k·logn

⌉)
andO

(⌈
n·|D|
k·logn

⌉)
time, respectively. Hence, for large enough k, each query requires only O(1) time, and we

achieve perfect parallelism.

Optimality. Observe that when |D| = O(1), i.e. when the domain is small, our algorithm is

optimal : the preprocessing runs in O(n), which is proportional to the size of the input, and

the pair query and single-source query run in times O(1) and O(n/ log n), respectively, each

case being proportional to the size of the output. Small domains arise often in practice, e.g.

in dead-code elimination or null-pointer analysis.

3.4 Experimental Results

We report on an experimental evaluation of our techniques and compare their performance

to standard alternatives in the literature.

Benchmarks. We used 5 classical data-flow analyses in our experiments, including reachabil-

ity (for dead-code elimination), possibly-uninitialized variables analysis, simple uninitialized

variables analysis, liveness analysis of the variables, and reaching-definitions analysis. We

followed the specifications in [Horwitz et al., 1995] for modeling the analyses in IFDS. We

used real-world Java programs from the DaCapo benchmark suite [Blackburn et al., 2006],

obtained their flow graphs using Soot [Vallée-Rai et al., 2010] and applied our JTDec tool

[Chatterjee et al., 2017b] for computing balanced tree decompositions. Given that some

of these benchmarks are prohibitively large, we only considered their main Java packages,

i.e. packages containing the starting point of the programs. We experimented with a total of

22 benchmarks, which, together with the 5 analyses above, led to a total of 110 instances.

Our instance sizes, i.e. number of vertices and edges in the exploded supergraph, range from

22 to 190, 591. See [Chatterjee et al., 2020c] for details.

Implementation and comparison. We implemented both variants of our approach, i.e. se-

quential and parallel, in C++. We also implemented the parts of the classical IFDS al-

gorithm [Reps et al., 1995] and its on-demand variant [Horwitz et al., 1995] responsible for

69

same-context queries. All of our implementations closely follow the pseudocodes of our algo-

rithms and the ones in [Reps et al., 1995, Horwitz et al., 1995], and no additional optimiza-

tions are applied. We compared the performance of the following algorithms for randomly-

generated queries:

• SEQ. The sequential variant of our algorithm.

• PAR. A variant of our algorithm in which the queries are answered using perfect par-

allelization and 12 threads.

• NOPP. The classical same-context IFDS algorithm of [Reps et al., 1995], with no pre-

processing. NOPP performs a complete run of the classic IFDS algorithm for each

query.

• CPP. The classical same-context IFDS algorithm of [Reps et al., 1995], with complete

preprocessing. In this algorithm, all summary edges and reachability information are

precomputed and the queries simply report the values computed in the preprocessing

phase.

• OD. The on-demand same-context IFDS algorithm of [Horwitz et al., 1995]. This algo-

rithm does not preprocess the input. However, it remembers the information obtained

in each query and uses it to speed-up the following queries. In [Horwitz et al., 1995],

this algorithm was shown to be much more effective than the classical IFDS algorithm

of [Reps et al., 1995].

For each instance, we randomly generated 10,000 pair queries and 100 single-source queries.

In case of single-source queries, source vertices were chosen uniformly at random. For pair

queries, we first chose a source vertex uniformly at random, and then chose a target vertex

in the same procedure, again uniformly at random.

Experimental Setting. The results were obtained on Debian using an Intel Xeon E5-1650

processor (3.2 GHz, 6 cores, 12 threads) with 128GB of RAM. The parallel results used all

12 threads.

70

0 25000 50000 75000 100000 125000 150000 175000 200000
Instance size

0

50

100

150

200

250

300
Pr

ep
ro

ce
ss

in
g

ru
nt

im
e

(s
)

CPP
SEQ/PAR

Figure 3.8: Preprocessing times of CPP and SEQ/PAR (over all instances). A dot above the
300s line denotes a timeout.

Time limit. We enforced a preprocessing time limit of 5 minutes per instance. This is in line

with the preprocessing times of state-of-the-art tools on benchmarks of this size, e.g. Soot

takes 2-3 minutes to generate all flow graphs for each benchmark.

Results. We found that, except for the smallest instances, our algorithm consistently out-

performs all previous approaches. Our results were as follows:

• Treewidth. The maximum width amongst the obtained tree decompositions was 9,

while the minimum was 1. Hence, our experiments confirm the results of [Gustedt et al., 2002]

and show that real-world Java programs have small treewidth. See [Chatterjee et al., 2020c]

for more details.

• Preprocessing Time. As in Figure 3.8, our preprocessing is more lightweight and

scalable than CPP. Note that CPP preprocessing times out at 25 of the 110 instances,

starting with instances of size < 50, 000, whereas our approach can comfortably han-

dle instances of size 200, 000. Although the theoretical worst-case complexity of CPP

preprocessing is O(n2 · |D|3), we observed that its runtime over our benchmarks grows

more slowly. We believe this is because our benchmark programs generally consist

71

of a large number of small procedures. Hence, the worst-case behavior of CPP pre-

processing, which happens on instances with large procedures, is not captured by the

DaCapo benchmarks. In contrast, our preprocessing time is O(n · |D|3) and having

small or large procedures does not matter to our algorithms. Hence, we expect that

our approach would outperform CPP preprocessing more significantly on instances con-

taining large functions. However, as Figure 3.8 demonstrates, our approach is faster

even on instances with small procedures.

• Query Time. As expected, in terms of pair query time, NOPP is the worst performer

by a large margin, followed by OD, which is in turn extremely less efficient than CPP,

PAR and SEQ (Figure 3.9, top). This illustrates the underlying trade-off between

preprocessing and query-time performance. Note that both CPP and our algorithms

(SEQ and PAR), answer each pair query in O(1). They all have pair-query times of

less than a millisecond and are indistinguishable in this case. The same trade-off

appears in single-source queries as well (Figure 3.9, bottom). Again, NOPP is the worst

performer, followed by OD. SEQ and CPP have very similar runtimes, except that SEQ

outperforms CPP in some cases, due to word tricks. However, PAR is extremely faster,

which leads to the next point.

• Parallelization. In Figure 3.9 (bottom right), we also observe that single-source

queries are handled considerably faster by PAR in comparison with SEQ. Specifically,

using 12 threads, the average single-source query time is reduced by a factor of 11.3.

Hence, our experimental results achieve near-perfect parallelism and confirm that our

algorithm is well-suited for parallel architectures.

Note that Figure 3.9 combines the results of all five mentioned data-flow analyses. How-

ever, the observations above hold independently for every single analysis, as well. For

analysis-specific figures see our technical report at [Chatterjee et al., 2020c].

72

0
50000

100000
150000

200000
Instance size

0 2 4 6 8 10 12 14 16
Average pair query time (s)

NOPP
ODSEQ/PAR/CPP

0
50000

100000
150000

200000
Instance size

0.00

0.05

0.10

0.15

0.20

Average pair query time (s)

ODSEQ/PAR/CPP

0
50000

100000
150000

200000
Instance size

0 5 10 15 20 25

Average single source query time (s)

NOPP
ODCPP
SEQ
PAR

0
50000

100000
150000

200000
Instance size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Average single source query time (s)

CPP
SEQ
PAR

F
igure

3.9:
C
om

parison
of

pair
query

tim
e
(top

row
)
and

single
source

query
tim

e
(bottom

row
)
of

the
algorithm

s.
E
ach

dot
represents

one
of

the
110

instances.
E
ach

row
starts

w
ith

a
global

picture
(left)

and
zoom

s
into

sm
aller

tim
e
units

(right)
to

differentiate
betw

een
the

algorithm
s.

T
he

plots
above

contain
results

over
all

five
analyses.

H
ow

ever,
our

observations
hold

independently
for

every
single

analysis,as
w
ell(See

[C
hatterjee

et
al.,2020c]).

73

4

Faster Algorithms for Quantitative

Analysis of MCs and MDPs

This chapter originally appeared in the following publication:

[•] Asadi, A., Chatterjee, K., Goharshady, A. K., Mohammadi, K., and Pavlogiannis, A.

Faster Algorithms for Quantitative Analysis of MCs and MDPs with Small

Treewidth. In 18th International Symposium on Automated Technology for Verification

and Analysis (ATVA), 2020.

74

4.1 Introduction

Quantitative Analysis of MCs and MDPs. Discrete-time Markov Chains (MCs) and

Markov Decision Processes (MDPs) are two standard formalisms in system analysis. Their

main associated quantitative objectives are hitting probabilities, discounted sum, and mean

payoff. Although there are many techniques for computing these objectives in general MC-

s/MDPs, they have not been thoroughly studied in terms of parameterized algorithms, espe-

cially when the parameter is the treewidth of the MC/MDP. This is in contrast to qualitative

objectives for MCs, MDPs and graph games, for which treewidth-based algorithms yield

significant complexity improvements.

Our Results. In this chapter, we consider the problem of computing the quantitative

objectives above, parameterized by the treewidth. We obtain linear-time FPT algorithms for

MCs. Specifically, for an MC with n vertices and treewidth t, our algorithm computes these

quantitative objectives at every vertex in total time O(n · t2). This is a huge improvement

over the general case, where the best algorithms are based on Gaussian elimination and

the bound on their runtime is O(nω). Here, ω is the matrix multiplication constant. The

best known upper-bound on ω is 2.3728639 [Le Gall, 2014]. Combining our methods with

classical Strategy Iteration (SI) leads to faster algorithms for solving small-treewidth MDPs.

Specifically, for an MDP with n vertices and treewidth t, we obtain algorithms with a runtime

of O(κ · n · t2) where κ is the number of required iterations in SI. Our experimental results

(Section 4.5) show that on graphs of small treewidth, our algorithms beat the runtime of

state-of-the-art model checkers and optimization suites by one order of magnitude.

MCs. One of the most standard formalisms for modeling randomness in discrete-time

systems is that of discrete-time Markov Chains (MCs). MCs have immense applications

in verification, and are used to express randomness both in the system and in the en-

vironment [Chatterjee et al., 2010]. The modeling power of MCs has also led to various

extensions, such as parametric [Daws, 2004, Lanotte et al., 2007, Hahn et al., 2009], inter-

val [Jonsson and Larsen, 1991, Benedikt et al., 2013] and augmented interval [Chonev, 2019]

MCs. Besides the theoretical appeal, the analysis of MCs is also a core component in several

model checkers [Dehnert et al., 2017, Kwiatkowska et al., 2011].

75

MDPs. When the system exhibits both stochastic and non-deterministic behavior, the

standard model is that of Markov Decision Processes (MDPs). For example, MDPs are used

to model stochastic controllers, where non-determinism models the freedom of the controller

and randomness models the behavior of the system. MDPs are also a topic of active study

in verification [Tappler et al., 2019, Chatterjee et al., 2018e].

Quantitative Analysis. Three of the most standard analysis objectives for MCs are the

following: (a) The hitting probabilities objective takes as input a set of target vertices T of

the MC, and asks to compute for each vertex u, the probability that a random walk from u

eventually hits T. The discounted sum objective takes as input a discount factor λ ∈ (0, 1)

and a reward function R that assigns a reward to each edge of the MC. The task is to compute

for each vertex u the expected reward value of a random walk starting from u, where the

value of the walk is the sum of the rewards along its edges, discounted by the factor λ at

each step. Finally, the mean payoff objective is similar to discounted sum, except that the

value of a walk is the long-run average of the rewards along its edges. In MDPs, the analyses

ask for a strategy that maximizes the respective quantity.

Previous Methods. Given the importance of quantitative objectives for MCs and MDPs,

there have been various techniques for solving them efficiently. For MCs, the hitting probabili-

ties and discounted sum objectives reduce to solving a system of linear equations [Norris, 1998].

For MDPs, all three objectives reduce to solving a linear program [Norris, 1998]. Be-

sides the LP formulation, two popular approaches for solving quantitative objectives on

MDPs are value iteration [Bellman, 1957] and strategy iteration [Howard, 1960]. Value

iteration is the most commonly used method in verification and operates by computing

optimal policies for successive finite horizons. However, this process leads only to ap-

proximations of the optimal values, and for some objectives no stopping criterion for the

optimal strategy is known [Ashok et al., 2017]. In cases where such criteria are known

(e.g. [Quatmann and Katoen, 2018]), the number of iterations necessary before the numbers

can be rounded to provide an optimal solution can be extremely high [Chatterjee and Henzinger, 2008].

Nevertheless, value iteration has proved to be very successful in practice and is included in

many probabilistic model checkers, such as [Kwiatkowska et al., 2011, Dehnert et al., 2017].

76

On the other hand, strategy iteration lies on the observation that given a fixed strategy,

the MDP reduces to an MC, and hence one can compute the value of each vertex using

existing techniques on MCs. Then, the strategy can be refined to a new strategy that

improves the value of each vertex. The running time of strategy iteration can be writ-

ten as O(κ · f), where κ is the number of strategy refinements and f is the time for

evaluating the strategy. Although κ can be exponentially large [Fearnley, 2010], it be-

haves as a small constant in practice, which makes strategy iteration work well in prac-

tice [Křetínský and Meggendorfer, 2017]. Hence, both for MCs and for MDPs using strategy

iteration, the performance of the algorithm largely depends on the speed of solving the re-

spective linear system [Křetínský and Meggendorfer, 2017].

Related Works. There are many works that exploit treewidth in non-probabilistic settings,

e.g., in graphs and matrices [Fomin et al., 2018, Ferrara et al., 2005]; and for qualitative

analysis in probabilistic setting [Chatterjee and Łącki, 2013]. In contrast, in this work we

exploit treewidth for quantitative analysis of probabilistic systems. The closest previous

work is [Chatterjee and Łącki, 2013]. It considers the maximal end-component decomposition

and the almost-sure reachability set computation in low-treewidth MDPs. Note that these

are both qualitative objectives, and thus very different from the quantitative objectives we

consider here, which cannot be solved by [Chatterjee and Łącki, 2013]. Specifically, the main

problem solved by [Chatterjee and Łącki, 2013] is almost-sure reachability, i.e. reachability

with probability 1, which is a very special qualitative case of computing hitting probabilities.

4.2 Preliminary Definitions and Notation

We now provide basic definitions and fix our notation for the rest of this chapter.

Discrete Probability Distributions. Given a finite set X, a probability distribution over

X is a function d : X → [0, 1] such that
∑

x∈X d(x) = 1. We denote the set of all probability

distributions over X by D(X).

Primal Graphs. Let S be a system of linear equations with m equations and n unknowns

(variables). The primal graph G(S) of S is an undirected graph with n vertices, each corre-

77

sponding to one unknown in S, in which there is an edge between two unknowns x and y iff

there exists an equation in S that contains both x and y with non-zero coefficients.

Markov Chains (MCs). A Markov chain C = (V,E, δ) consists of a finite directed graph

(V,E) and a probabilistic transition function δ : V → D(V), such that for any pair u, v of

vertices, we have δ(u)(v) > 0 if and only if (u, v) ∈ E. In an MC C, we start a random walk

from a vertex v0 ∈ V and at each step, being in a vertex v, we probabilistically choose one of

the successors of v and go there. The probability with which a successor w is chosen is given

by δ(v)(w). Let O ⊆ V ω be a measurable set of infinite paths on V , we use the notation

Prv0(O) to denote the probability that our infinite random walk starting from v0 is a member

of O. See [Gagniuc, 2017, Kemeny et al., 2012] for more detailed treatment.

Markov Decision Processes (MDPs). A Markov decision process P = (V,E, V1, VP , δ)

consists of a finite directed graph (V,E), a partitioning of V into two sets V1 and VP , and a

probabilistic transition function δ : VP → D(V), such that for any (u, v) ∈ VP × V, we have

δ(u)(v) > 0 if and only if (u, v) ∈ E. We assume that all vertices of an MDP have at least

one outgoing edge. Intuitively, an MDP is a one-player game in which we have two types of

vertices: those controlled by Player 1, i.e. V1, and those that behave probabilistically, i.e. VP .

Strategies. In an MDP P , a strategy is a function σ : V1 → V , such that for every v ∈ V1 we

have (v, σ(v)) ∈ E. Informally, a strategy is a recipe for Player 1 that tells her which successor

to choose based on the current state∗. Given an MDP P with a strategy σ, we start a random

walk from a vertex v0 ∈ V and at each step, being in a vertex v, choose the successor as

follows: (i) if v ∈ V1, then we go to σ(v), and (ii) if v ∈ VP we act as in the case of MCs,

i.e. we go to each successor w with probability δ(v)(w). As before, given a measurable set

O ⊆ V ω of infinite paths on V , we define Prσv0(O) as the probability that our infinite random

walk becomes a member of O. Note that an MDP with a fixed strategy σ is basically an MC,

in which for every v ∈ V1 we have δ(v)(σ(v)) = 1. See [Filar and Vrieze, 1996, Howard, 1960]

for more detailed treatment.

∗We only consider pure memoryless strategies because they are sufficient for our use-cases, i.e. there
always exists an optimal strategy that is pure and memoryless [Křetínský and Meggendorfer, 2017].

78

4.3 Quantitative Problems

4.3.1 Definition of the Problems

We consider three classical quantitative problems: Hitting Probabilities, Discounted Sums of

Rewards, and Mean Payoff. We now formalize these problems over MCs and MDPs.

Hitting Probabilities [Norris, 1998]. Let C = (V,E, δ) be an MC and T ⊆ V a designated

set of target vertices. We define Hit(T) ⊆ V ω as the set of all infinite sequences of vertices

that intersect T. The Hitting probability HitPr(u,T) is defined as Pru(Hit(T)). In other

words, HitPr(u,T) is the probability of eventually reaching T, assuming that we start our

random walk at u. In case of MDPs, we assume that the player aims to maximize the

hitting probability by choosing the best possible strategy. Therefore, we define HitPr(u,T)

as maxσ Prσu(Hit(T)).

Discounted Sums of Rewards [Puterman, 2014]. Let C = (V,E, δ) be an MC and R :

E → R a reward function that assigns a real value to each edge. Also, let λ ∈ (0, 1) be a

discount factor. Given an infinite path π = v0, v1, . . . over (V,E), we define the total reward

R(π) of π as follows:

R(π) =
∞∑
i=0

λi ·R(vi, vi+1) = R(v0, v1) + λ ·R(v1, v2) + λ2 ·R(v2, v3) +

Let u ∈ V be a vertex, we define ExpDisSum(u) as the expected value of the reward of our

random walk if we begin it at u, i.e. ExpDisSum(u) := Eu[R(π)]. As in the previous case,

when considering MDPs, we assume that the player aims to maximize the discounted sum,

hence given an MDP P = (V,E, V1, VP , δ), a reward function R and a discount factor λ, we

define ExpDisSum(u) := maxσ Eσu[R(π)].

Mean Payoff [Puterman, 2014, Křetínský and Meggendorfer, 2017]. Let C be an MC and

R a reward function. Given an infinite path π = v0, v1, . . . over C, we define the n-step

79

average reward of π as follows:

R(π[0..n]) :=
1

n

n∑
i=1

R(vi−1, vi).

Given a start vertex u ∈ V, the expected long-time average or mean payoff value from

u is defined as ExpMP(u) := limn→∞ Eu[R(π[0..n])]. In other words, ExpMP(u) captures

the expected reward per step in a random walk starting at u. For an MDP P , we define

ExpMP(u) := maxσ limn→∞ Eσu[R(π[0..n])]. The limits in the former definitions are guaran-

teed to exist [Puterman, 2014, Křetínský and Meggendorfer, 2017].

Quantitative Analysis Problems. We consider the following classical problems for both

MCs and MDPs:

• Computing Hitting Probabilities: Given a target set T compute HitPr(u,T) for every

vertex u.

• Computing Expected Discounted Sums: Given a reward function R and a discount factor

λ ∈ (0, 1), compute ExpDisSum(u) for every vertex u.

• Computing Mean Payoffs: Given a reward function R, compute ExpMP(u) for every

vertex u.

4.3.2 Classical Algorithms

We now review some of the most well-known algorithms for handling the quantitative analysis

problems above over MCs and MDPs.

Solving MCs [Norris, 1998]. A classical approach to the above problems for MCs is to

reduce them to solving systems of linear equations. In case of hitting probabilities, we define

one variable xu for each vertex u, whose value in the solution to the system would be equal

to HitPr(u,T). The system is constructed as follows:

• We add the equation xt = 1 for every t ∈ T, and

80

• For every vertex u 6∈ T with successors u1, . . . , uk, we add the following equation:

xu =
k∑
i=1

δ(u)(ui) · xui .

If every vertex can reach a target, then it is well-known that the resulting system has a unique

solution in which the value assigned to each xu is equal to HitPr(u,T). A similar approach

can be used in the case of discounted sums. We define one variable yu per vertex u and if

the successors of u are u1, . . . , uk, then we add the following equation:

yu =
k∑
i=1

δ(u)(ui) · (R(u, ui) + λ · yui) .

There are several different ways of reducing the mean payoff problem to solving systems of

linear equations. One technique is presented in Section 4.4.5 below. See [Puterman, 2014]

for more details.

Solving MDPs. There are two classical approaches to solving the above problems for

MDPs. One is to reduce the problem to Linear Programming (LP) in a manner similar

to the reduction from MC to linear systems [Feinberg, 2012]. The other approach is to

use dynamic programming [Bellman, 1957]. We consider a widely-used variety of dynamic

programming, called strategy iteration or policy iteration [Howard, 1960].

Strategy Iteration (SI) [Bellman, 1957]. In SI, we start with an arbitrary initial strategy

σ0 and attempt to find a better strategy in each step. Formally, assume that our strategy

after i iterations is σi. Then, we compute vali(u) = HitPrσi(u,T) for every vertex u. This

is equivalent to computing hitting probabilities in the MC that is obtained by considering

our MDP together with the strategy σi. We use the values vali(u) to obtain a better strategy

σi+1 as follows: for every vertex v ∈ V1 with successors v1, v2, . . . , vk, we set σi+1(v) =

arg maxvj vali(vj). In case of discounted sum, we let vali(u) = ExpDisSumσi(u) and σi+1(v) =

arg maxvj R(v, vj)+λ·vali(vj). We repeat these steps until we reach a point where our strategy

converges.

81

It is well-known that strategy iteration always converges to the optimal strategy, and at

that point the values vali will be the desired hitting probabilities/discounted sums [Howard, 1960,

Feinberg, 2012]. Given that SI solves the classic problems above on MDPs by several calls

to a procedure for solving the same problems on MCs, our runtime improvements for MCs

are naturally extended to MDPs. So, in the sequel we only focus on MCs.

4.4 Treewidth-based Quantitative Analysis Algorithms

We now consider quantitative problems on MCs. As mentioned before, our improvements

carry over to MDPs using SI. We build on classical state-elimination algorithms such as

those used in [Daws, 2004, Hahn et al., 2010]. The main novelty of our approach is that

we use the tree decompositions to obtain a suitable order for eliminating vertices. This

specific ordering significantly reduces the runtime complexity of classical state-elimination

algorithms from cubic to linear. Aside from the ordering, which is the main basis for our

algorithmic improvements, the rest of this section is mostly well-known transformations on

MCs. However, a new subtlety arises: while in general MCs there are several variants of

elimination rules, in small-treewidth MCs we must also make sure the elimination step does

not increase the treewidth or invalidate the underlying tree decomposition.

We first review state-elimination for computing hitting probabilities (Section 4.4.1). Then,

in Section 4.4.2, we show how to exploit the treewidth to speed up this process and obtain a

linear-time algorithm. Section 4.4.3 provides a similar speed-up for computing expected dis-

counted sums. In Section 4.4.4, we show our most general result, i.e. solving small-treewidth

systems of linear equations in linear time. While this algorithm is more general than those

of Sections 4.4.2 and 4.4.3, it repeatedly applies the costly Gram-Schmidt orthogonalization

process, and is hence not preferable in practice. Finally, Section 4.4.5 combines these ideas

to compute expected mean payoffs in linear time.

82

4.4.1 State Elimination for Computing Hitting Probabilities

We begin by looking into the problem of computing hitting probabilities for general MCs

without exploiting the treewidth.

Singleton Target Sets. Without loss of generality, we can assume that our target set

contains a single vertex. Otherwise, we add a new vertex t and add edges with probability 1

from every target vertex to t. This will keep the hitting probabilities intact.

u′ u u′′

u′ u′′

C

C

p1 p2

p1 · p2

u′ u u′′

u′ u′′

p1 p2

p1 · p2 + p3

p3

Figure 4.1: Removing a vertex u when computing hitting probabilities in MCs.

Vertex Elimination. Consider our MC C = (V,E, δ) and our target vertex t ∈ V. If

there is only one vertex in the MC then there is not much to solve. We just return that

HitPr(t, t) = 1. Otherwise, we take an arbitrary vertex u 6= t and try to remove it from the

MC to obtain a smaller MC that can in turn be solved using the same method. We should

do this in a manner that does not change HitPr(v, t) for any vertex v 6= u. Figure 4.1 shows

how to remove a vertex u from C in order to obtain a smaller MC C = (V \ {u}, E, δ)†. In

this figure, the vertex u′ is a predecessor of u and u′′ is one of its successors. The left side

shows the changes when there is no edge from u′ to u′′ and the right side shows the other

case, where (u′, u′′) ∈ E. Edge labels are δ values. Basically, we remove u and all of its edges,

and instead add new edges from every predecessor u′ to every successor u′′. We also update

the transition function δ by setting δ(u′)(u′′) = δ(u′)(u′′) + δ(u′)(u) · δ(u)(u′′).

†We always use C to denote an MC that is obtained from C by removing one vertex. We apply this rule
across our notation, e.g. δ is the respective transition function.

83

It is easy to verify that for every v 6= u, we have HitPr(v, t) = HitPr(v, t). Hence, we can

compute hitting probabilities for every vertex v 6= u in C instead of C. Finally, if u1, u2, . . . , uk

are the successors of u in C, we know that HitPr(u, t) =
∑k

i=1 δ(u)(ui) · HitPr(ui, t) =∑k
i=1 δ(u)(ui) ·HitPr(ui, t). Hence, we can easily compute the hitting probability for u using

this formula. A pseudocode of this approach is given in Algorithm 4.1.

Special Cases. A special case arises when there is a self-loop transition from u to u.

If δ(u)(u) = 1, i.e. u is an absorbing trap, then we can simply remove u, noting that

HitPr(u, t) = 0. On the other hand if 0 < δ(u)(u) < 1, then we should distribute δ(u)(u)

proportionately among the other successors of u because staying for a finite number of steps

in the same vertex u does not change the hitting property of a path, and the probability of

staying at u forever is 0.

Complexity Analysis. Removing each vertex can take at most O(n2) time, given that it

has O(n) predecessors and successors. We should remove n − 1 vertices, leading to a total

runtime of O(n3), which is worse than the reduction to system of linear equations and then

applying Gaussian elimination, leading to a runtime of O(nω). However, the runtime can be

significantly improved if we remove vertices in an order that guarantees every vertex has a

low degree upon removal. In the next section we show how to exploit a tree decomposition

to obtain such an order.

4.4.2 Hitting Probabilities Parameterized by Treewidth

The main idea behind our algorithm is simple: we take the algorithm from the previous

section and use tree decompositions to obtain an ordering for the removal of vertices. Given

that we can choose any bag in T as the root, without loss of generality, we assume that the

target vertex t is in the root bag‡. We base our approach on the following lemmas:

Lemma 4.1. Let l ∈ VT be a leaf node of the tree decomposition (T, 〈Bi〉) of our MC C, and

let l̄ be the parent of l. If Bl ⊆ Bl̄, then (VT \ {l}, ET \ {(l, l̄)}), together with the same bags

〈Bi〉i∈VT \{l}, also form a valid tree decomposition for C.
‡If |T| ≥ 2, we use the same technique as in the previous section to have only one target t. To keep the

tree decomposition valid, we add t to every bag.

84

Algorithm 4.1: A Simple State Elimination Algorithm for Computing Hitting
Probabilities in MCs.
1 Function ComputeHitProbs(C = (V,E, δ), t):
2 if V = {t} then
3 HitPr(t, t)← 1
4 else
5 Choose an arbitrary u ∈ V \ {t}
6 if δ(u)(u) = 1 then
7 HitPr(u, t)← 0
8 ComputeHitProbs ((V \ {u}, E, δ), t)
9 else

10 f ← 1
1−δ(u)(u)

11 δ(u)(u)← 0
12 E ← E \ {(u, u)}
13 foreach u′′ ∈ V : (u, u′′) ∈ E do
14 δ(u)(u′′)← δ(u)(u′′) · f
15 foreach u′ ∈ V : (u′, u) ∈ E do
16 foreach u′′ ∈ V : (u, u′′) ∈ E do
17 δ(u′)(u′′)← δ(u′)(u′′) + δ(u′)(u) · δ(u, u′′)
18 E ← E ∪ {(u′, u′′)}
19 ComputeHitProbs ((V \ {u}, E, δ), t)
20 HitPr(u, t)← 0
21 foreach u′′ ∈ V : (u, u′′) ∈ E do
22 HitPr(u, t)← HitPr(u, t) + δ(u, u′′) · HitPr(u′′, t)

85

Proof. We just need to check that all the required properties of a tree decomposition hold

after removal of l. Given that Bl ⊆ Bl̄, any vertex that appears in Bl is also in Bl̄ and hence

removal of l does not cause any vertex to be unrepresented in the tree decomposition. The

same applies to edges. Moreover, removing a leaf node cannot disconnect the previously-

connected set of nodes whose bag contained a specific vertex.

Lemma 4.2. Let l ∈ VT be a node of the tree decomposition (T, 〈Bi〉) and assume that the

vertex u ∈ V only appears in Bl, i.e. it does not appear in any other bag. Then, the vertex u

has at most |Bl| predecessors/successors in C.

Proof. If u′ is a predecessor/successor of u, then there is an edge between them. By definition,

a tree decomposition should cover every edge. Hence, there should be a bag Bi such that

u, u′ ∈ Bi. By assumption, u only appears in Bl. Hence, every predecessor/successor u′ must

also appear in Bl.

The Algorithm. The above lemmas provide a convenient order for removing vertices. At

each step, we choose an arbitrary leaf node l. If there is a vertex u that appears only in

Bl, then we eliminate u as in Figure 4.1. In this case, Lemma 4.2 guarantees that u has

O(t) predecessors and successors. Otherwise, Bl ⊆ Bl̄ (recall that each vertex appears in a

connected subtree) and we can remove l from our tree decomposition according to Lemma 4.1.

A pseudocode of this approach is given in Algorithm 4.2.

Example 4.1. Consider the graph and tree decomposition in Figure 4.2 (top right) with an

arbitrary transition probability function δ and target vertex t = 6. The target vertex is shown

in green. At each step the vertex/bag that is being removed is shown in red. An active bag

whose vertices, but not itself, are considered for removal is shown in blue. On this example,

our algorithm would first choose an arbitrary leaf bag, say {7, 9} and then realize that 9 has

only appeared in this bag. Hence it removes vertex 9 from the MC using the same procedure as

in the previous section. In the next iteration, it chooses the bag {7} and realizes that the set

of vertices in this bag is a subset of vertices that appear in its parent. Hence, it removes this

unnecessary bag. The algorithm continues similarly, until only the target vertex 6 remains,

at which point the problem is trivial. Figure 4.2 shows all the steps of our algorithm. Note

86

Algorithm 4.2: Computing Hitting Probabilities in an MC using a Tree Decompo-
sition.
1 Function ComputeHitProbs(C = (V,E, δ), t, (VT , ET), 〈Bi〉):
2 if V = {t} then
3 HitPr(t, t)← 1
4 else
5 repeat
6 Choose an arbitrary leaf node l ∈ VT
7 l̄← parent of l
8 if Bl ⊆ Bl̄ then
9 VT ← VT \ {l}

10 ET ← ET \ {(l, l̄)}
11 else
12 Choose an arbitrary u ∈ Bl \Bl̄

13 Bl ← Bl \ {u}
14 break
15 if δ(u)(u) = 1 then
16 HitPr(u, t)← 0
17 ComputeHitProbs ((V \ {u}, E, δ), t, (VT , ET), 〈Bi〉)
18 else
19 f ← 1

1−δ(u)(u)

20 δ(u)(u)← 0
21 E ← E \ {(u, u)}
22 foreach u′′ ∈ Bl : (u, u′′) ∈ E do
23 δ(u)(u′′)← δ(u)(u′′) · f
24 foreach u′ ∈ Bl : (u′, u) ∈ E do
25 foreach u′′ ∈ Bl : (u, u′′) ∈ E do
26 δ(u′)(u′′)← δ(u′)(u′′) + δ(u′)(u) · δ(u, u′′)
27 E ← E ∪ {(u′, u′′)}
28 ComputeHitProbs ((V \ {u}, E, δ), t, (VT , ET), 〈Bi〉)
29 HitPr(u, t)← 0
30 foreach u′′ ∈ Bl : (u, u′′) ∈ E do
31 HitPr(u, t)← HitPr(u, t) + δ(u, u′′) · HitPr(u′′, t)

87

1

2 3 4

5 6 7

8 9

{2, 3, 6}

{3, 4, 6} {2, 5, 6}{1, 2, 3}

{5, 6, 8}{4, 6, 7}

{7, 9}

1

2 3 4

5 6 7

8

{2, 3, 6}

{3, 4, 6} {2, 5, 6}{1, 2, 3}

{5, 6, 8}{4, 6, 7}

{7}

1

2 3 4

5 6 7

8

{2, 3, 6}

{3, 4, 6} {2, 5, 6}{1, 2, 3}

{5, 6, 8}{4, 6, 7}

1

2 3 4

5 6 7

{2, 3, 6}

{3, 4, 6} {2, 5, 6}{1, 2, 3}

{5, 6}{4, 6, 7}

1

1

2 3 4

5 6 7

{2, 3, 6}

{3, 4, 6} {2, 5, 6}{1, 2, 3}

{4, 6, 7}

1

2 3 4

6 7

{2, 3, 6}

{3, 4, 6} {2, 6}{1, 2, 3}

{4, 6, 7}

1

2 3 4

6 7

{2, 3, 6}

{3, 4, 6}{1, 2, 3}

{4, 6, 7}

1

2 3 4

6

{2, 3, 6}

{3, 4, 6}{1, 2, 3}

{4, 6}

1

2 3 4

6

{2, 3, 6}

{3, 4, 6}{1, 2, 3}

1

2 3

6

{2, 3, 6}

{3, 6}{1, 2, 3}

1

2 3

6

{2, 3, 6}

{1, 2, 3} 2 3

6

{2, 3, 6}

{2, 3}

2 3

6

{2, 3, 6} 2

6

{2, 3, 6}

Figure 4.2: An Example Run of our Algorithm for Computing Hitting Probabilities using a
Tree Decomposition.

88

that because the width of our tree decomposition is 2, at each step when we are removing a

vertex u, it has at most 3 neighbors (counting itself).

Validity of the Tree Decomposition. Note that throughout this algorithm the tree

decomposition remains valid, because we are only adding edges between vertices that are

already in the same leaf bag Bl. Given that we remove at most O(n) bags and n− 1 vertices

and that removing each vertex takes only O(t2), the total runtime is O(n · t2). Hence, we

have the following theorem:

Theorem 4.1. Given an MC with n vertices and treewidth t and an optimal tree decom-

position of the MC with O(n) bags, Algorithm 4.2 computes hitting probabilities from every

vertex to a designated target set in O(n · t2).

4.4.3 Expected Discounted Sums Parameterized by Treewidth

We use a similar approach for handling the discounted sum problem. The only difference is

in how a vertex is removed.

The 1̂ Gadget. Given an MC C = (V,E, δ), a tree decomposition (T, 〈Bi〉) of C, a reward

function R : E → R and a discount factor λ ∈ (0, 1), we first add a new vertex called 1̂ to

the MC. The vertex 1̂ is disjoint from all other vertices and only has a single self-loop with

probability 1 and reward 1− λ. In other words, we define δ(1̂)(1̂) = 1 and R(1̂, 1̂) = 1− λ.
We also add 1̂ to the vertex set of every bag. The reason behind this gadget is that we have

ExpDisSum(1̂) = (1− λ) · (1 + λ+ λ2 + . . .) = 1.

Generalizing the Probabilities. In our algorithm, the requirement that for all u, v we

should have 0 ≤ δ(u)(v) ≤ 1 is unnecessary and becomes untenable, too. Therefore, we

allow δ(u)(v) to have any real value, and use the linear system interpretation of C as in

Section 4.3.2, i.e. instead of considering C as an MC, we consider it to be a representation

of the linear system SC defined as follows:

• For every vertex u ∈ V , the system SC contains one unknown yu, and

89

• For every vertex u ∈ V , whose successors are u1, u2, . . . , uk, the system SC contains an

equation eu := yu =
∑k

i=1 δ(u)(ui) · (R(u, ui) + λ · yui) .

As mentioned in Section 4.3.2, in the solution to SC , the value assigned to the unknown yu

is equal to ExpDisSum(u) in the MC C. However, the definition above does not depend on

the fact that C is an MC and can also be applied if δ has arbitrary real values.

Vertex Elimination. Now suppose that we want to remove a vertex u 6= 1̂ with successors

u1, . . . , uk from C. This is equivalent to removing yu from SC without changing the values of

other unknowns in the solution. Given that we have yu =
∑k

i=1 δ(u)(ui) · (R(u, ui) + λ · yui) ,
we can simply replace every occurrence of yu in other equations with the right-hand-side

expression of this equation. If u′ 6= u is a predecessor of u, then we have yu′ = A+ δ(u′)(u) ·
(R(u′, u) + λ · yu) , where A is an expression that depends on other successors of u′. We

can rewrite this equation as yu′ = A + δ(u′)(u) · R(u′, u) +
∑k

i=1 δ(u
′)(u) · δ(u)(ui) · λ ·

(R(u, ui) + λ · yui). This is equivalent to obtaining a new C from C by removing the vertex

u and adding the following edges from every predecessor u′ of u:

• An edge (u′, 1̂), such that R(u′, 1̂) = 0 and δ(u′)(1) = 1
λ
· (δ(u′)(u) ·R(u′, u)),

• An edge (u′, ui) to every successor ui of u, such that R(u′, ui) = R(u, ui) and δ(u′)(ui) =

δ(u′)(u) · δ(u)(ui) · λ.

This construction is shown in Figure 4.3, where each edge is labelled with its δ and R values.

As shown above, using this construction the value of yv remains the same in solutions of SC

and SC .

Special Cases. There are two special cases that can cause our construction to fail. However,

we can avoid both of these cases using simple transformations in the graph before applying

this construction. We now describe how we handle each of them:

• Parallel Edges. If two edges with the same direction are created between the same

pair (u, v) of vertices, then we replace them with a single edge. If the δ values of

initial edges were δ1, δ2 and their R values were r1, r2, we set δ(u)(v) = δ1 + δ2 and

90

u′ u · · ·

u1

uk

u′ u · · ·

u1

uk1̂

δ0, r0

δ1, r1

δk, rk

δ0 · δ1 · λ, r1

δ0 · δk · λ, rk
δ0·r0
λ
, 0

Figure 4.3: Removing a vertex u when computing discounted sums in MCs.

R(u, v) = δ1·r1+δ2·r2
δ1+δ2

. It is straigthforward to verify that this transformation is sound,

i.e. it does not change the solution of the corresponding system.

• Self-loops. If a self-loop (u, u) appears in our graph, this is equivalent to having an

equation eu := yu = R in the linear system, in which R is a linear expression that

contains a non-zero multiple of yu. In this case, we simplify this equation to yu = R′ by

moving the summand containing yu to the left hand side and multiplying both sides by

a suitable factor. We then update the outgoing edges of u in our graph to model the

new system. Note that this update does not add any new edges to the graph, except

possibly the edge (u, 1̂) for handling leftover constant factors.

Correctness and Complexity. As in the previous section, we can solve the problem on

the smaller C and then use the equation eu to compute the value of yu in the solution to

SC . This algorithm’s runtime can be analyzed exactly as before. We have to remove n

vertices and each removal takes O(n2) for a total runtime of O(n3). To obtain a better

algorithm that exploits tree decompositions, we can use the exact same removal order as in

the previous section, leading to the same runtime, i.e. O(n · t2). Note that we have added

1̂ to the associated vertex set of every bag, so the tree decomposition always remains valid

throughout our algorithm. Given this discussion, we have the following theorem:

91

Theorem 4.2. Given an MC with n vertices and treewidth t and an optimal tree decompo-

sition of the MC with O(n) bags, the algorithm described in this section computes expected

discounted sums from every vertex of the MC in O(n · t2).

4.4.4 Solving Systems of Equations Parameterized by the Treewidth

of their Primal Graphs

The ideas used in the previous section can be extended to obtain faster algorithms for solving

any linear system whose primal graph has a small treewidth. However, new subtleties arise,

given that general linear systems might have no solution or infinitely many solutions. In

contrast, the systems SC discussed in the previous section were guaranteed to have a unique

solution.

Setting. We consider a system S of m linear equations over n real unknowns as input, and

assume that its primal graph G(S) has treewidth t.

Variable Elimination. Our algorithm for solving S is similar to our previous algorithms,

and is actually what most students are taught in junior high school. We take an arbitrary

unknown x and choose an arbitrary equation e in which x appears with a non-zero coeffi-

cient. We then rewrite e as x = Rx, where Rx is a linear expression based on other unknowns.

Finally, we replace every occurrence of x in other equations with Rx and solve the result-

ing smaller system S. If S has no solutions or inifinitely many solutions, then so does S.

Otherwise, we evaluate Rx in the solution of S to get the solution value for x.

Complexity of Variable Elimination. Using this algorithm, we have to remove O(n)

unknowns. When removing x, we might have to replace an expression of size O(n), i.e. Rx,

in O(m) potential other equations where x has appeared. Hence, the overall runtime is

O(n2 ·m).

Exploiting Treewidth. Given a tree decomposition (T, 〈Bi〉) of the primal graph G(S), we

choose the unknows in the usual order, i.e. we always choose an unknown x that appears only

in a leaf bag. If x does not appear in any equations, then we can simply remove it and then

S is satisfiable iff S is satisfiable. Moreover, if S is satisfiable, then it has infinitely many

92

solutions, given that x is not restricted. Otherwise, there is an equation e in which x appears

with non-zero coefficient, and hence we can rewrite this equation as x = Rx. Note that x

has O(t) neighbors in G(S), given that it only appears in a leaf bag and all of its neighbors

should also appear in the same bag, hence the length of Rx is O(t), too. The problem is that

x might have appeared in any of the other O(m) equations. Hence, replacing it with Rx in

every equation will lead to a runtime of O(m · t). We repeat this for every unknown, so our

total runtime is O(n ·m · t), which is not linear.

Applying Gram-Schmidt. The crucial observation is that while x might have appeared

in as many as m equations, not all of them are linearly independent. Let Ex be the set

of equations containing x and Bl be the leaf bag in which x appears and assume that Bl =

{x, y1, . . . , yk−1}. Then the only unknowns that can appear together with x in an equation are

y1, . . . , yk−1. In other words, all equations in Ex are over Bl. Hence, we can apply the Gram-

Schmidt process on Ex to remove the unnecessary equations and only keep at most k equations

that form an orthogonal basis (or alternatively realize that the system is unsatisfiable). A

pseudocode of our approach is given in Algorithm 4.3.

Correctness and Complexity. Given that we are operating in dimension k = O(t), each

application of Gram-Schmidt will take O(t2 · |Ex|) time. Thus, our runtime is O((n+m) · t2),

which is linear in the size of the system. As in previous algorithms, our approach always

keeps the tree decomposition valid. Hence, we have the following theorem:

Theorem 4.3. Given a system of m linear equations over n unknowns, its primal graph,

and a tree decomposition of the primal graph with width t and O(n+m) bags, our algorithm

solves the system in time O((n+m) · t2).

The algorithm can easily be extended to find a basis for the solution set.

4.4.5 Mean Payoff Parameterized by Treewidth

The mean payoff problem is a bit trickier than previous cases. To solve it, we first need to

define several basic notions.

93

Algorithm 4.3: Solving a system S of linear equations, given its primal graph
G = (V,E) and exploiting a tree decomposition (T, 〈Bi〉) of G. Note that G is
undirected. Lines 16–17 ensure that G always remains a supergraph of the primal
graph of S and that (T, 〈Bi〉) always remains a valid tree decomposition of G.

1 Function SolveLinearSystem(S,G = (V,E), (T, 〈Bi〉)):
2 if V = {∅} then
3 solution← ∅
4 return solution
5 else
6 repeat
7 Choose an arbitrary leaf node l ∈ VT
8 l̄← parent of l
9 if Bl ⊆ Bl̄ then

10 VT ← VT \ {l}
11 ET ← ET \ {(l, l̄)}
12 else
13 Choose an arbitrary x ∈ Bl \Bl̄

14 Bl ← Bl \ {x}
15 break
16 foreach y1, y2 ∈ Bl : y1 6= y2 do
17 E ← E ∪ {(y1, y2)}
18 E← equations in S that contain x with non-zero coefficient
19 S ← S \ E
20 if Gramm-Schmidt(E) = Unsatisfiable then
21 return Unsatisfiable
22 E← Gramm-Schmidt(E)
23 if E = ∅ then
24 if SolveLinearSystem(S,G \ {x}, (T, 〈Bi〉)) = Unsatisfiable then
25 return Unsatisfiable
26 else
27 return Underdetermined
28 else
29 Choose an arbitrary e ∈ E and write it as x = Rx

30 E← E \ {e}
31 foreach e′ ∈ E do
32 e′ ← e′[Rx/x] //replace every occurrence of x with Rx

33 S ← S ∪ E
34 if SolveLinearSystem(S,G \ {x}, (T, 〈Bi〉)) ∈

{Unsatisfiable,Underdetermined} then
35 return SolveLinearSystem(S,G \ {x}, (T, 〈Bi〉))
36 else
37 solution← SolveLinearSystem(S,G \ {x}, (T, 〈Bi〉))
38 solution← solution[x 7→ [Rx]solution]
39 return solution

94

Strongly Connected Components. Given an MC C = (V,E, δ), a Strongly Connected

Component (SCC) is a maximal subset α ⊆ V , such that for every pair of vertices u, v ∈ α,
there is a path from u to v in C. An SCC β is called a Bottom Strongly Connected Component

(BSCC) if no other SCC is reachable from β. It is well-known that every vertex belongs to a

unique SCC and that there is a linear-time algorithm that computes the SCCs and BSCCs

of any given MC. An MC is called ergodic if its vertex set consists of only a single BSCC.

Limiting Distribution [Norris, 1998]. Given an ergodic MC C = (β,E, δ) with a single

BSCC β and an arbitrary vertex u ∈ β, we define the limiting distribution δlim over β

as follows: δlim(v) := limn→∞ Eu
[

1
n
· |{i | 0 ≤ i < n ∧ πi = v}|

]
, where π is a random walk

beginning at u. Informally, δlim(v) is the fraction of time that we are expected to spend in

vertex v, when we start a random walk in C. Note that due to ergodicity, the starting vertex

of the random walk does not matter. We can similarly define a limiting distribution δElim over

the edges of C by letting δElim(u, v) := δlim(u) · δ(u)(v).

Mean Payoff based on Limiting Distribution. From the definition above, it is easy to

see that the mean payoff value ExpMP(u) is the same for every vertex u ∈ β of the ergodic

MC. More specifically, we have ExpMP(u) =
∑

(v1,v2)∈E R(v1, v2) · δElim(v1, v2). Therefore,

computing the ExpMP values is reduced to computing the limiting distribution.

Mean Payoff in Non-ergodic MCs. Now consider a general MC C = (V,E, δ) and

a vertex u ∈ V. If u is in a BSCC β, then any path starting from u will never leave β.

Therefore, ExpMPV (u) = ExpMPB(u). On the other hand, if u is in a non-bottom SCC α,

then the random walk beginning from u will eventually reach a BSCC almost-surely (with

probability 1). Let β1, β2, . . . be the BSCCs of C and bi ∈ βi. Hence, given that we can ignore

a finite prefix when computing mean payoffs, the expected mean payoff from u is

ExpMP(u) =
∑
i

HitPr(u, βi) · ExpMP(bi) =
∑
i

HitPr(u, bi) · ExpMP(bi).

Every vertex in βi has the same expected mean payoff and will be reached almost-surely

from every other vertex in βi, i.e. hitting probabilities between pairs of vertices in the same

BSCC βi are always 1, hence the choice of bi is arbitrary.

95

The Algorithm. We use the two observations above to compute expected mean payoffs in

a given MC C. Algorithm 4.4 summarizes our approach. As explained above, the problem

is now reduced to computing δlim (Line 5) and hitting probabilities (Lines 11–12). We now

explain how we handle each of these two subproblems.

Algorithm 4.4: Computing Expected Mean Payoffs in a given MC C.
1 Function ComputeExpMP(C = (V,E, δ)):
2 β1, β2, . . .← BSCCs of C
3 Choose an arbitrary vertex bi from each βi
4 foreach βi do
5 Compute δlim for (βi, E ∩ (βi × βi), δ)
6 foreach (v1, v2) ∈ E ∩ (βi × βi) do
7 δElim(v1, v2)← δlim(v1) · δ(v1)(v2)
8 x←∑

(v1,v2)∈E∩(βi·βi)R(v1, v2) · δElim(v1, v2)

9 foreach u ∈ βi do
10 ExpMP(u)← x

11 foreach u ∈ V \⋃ βi do
12 ExpMP(u)←∑

i HitPr(u, bi) · ExpMP(bi)

Computing Limiting Distribution of an Ergodic MC. Let C = (B,E, δ) be an ergodic

MC. We define the linear system SC as follows:

• We add a variable xu for each vertex u ∈ B.

• For each vertex u ∈ B with predecessors u1, u2, . . . , uk, we add a constraint xu =∑k
i=1 xui · δ(ui)(u).

• We add the constraint
∑

u∈B xu = 1.

The system SC has a unique solution in which the value of each xu is equal to δlim(u) [Norris, 1998].

Unfortunately, the last constraint includes all of the variables in the system and hence the

primal graph of our system does not have constant treewidth. However, this is a minor

restriction. We can consider the system S ′C obtained by ignoring the last constraint. This

system is homogeneous and its primal graph is the isomorphic to (V,E) and has treewidth

t. Hence, we can use the algorithm of Section 4.4.4 to find an arbitrary solution to S ′C . We

can then scale all the values in our solution to satisfy the constraint
∑

u∈B xu = 1, hence

96

obtaining the unique solution of SC . Therefore, Line 5 of Algorithm 4.4 takes O(|βi| · t2) time

according to Theorem 4.3.

Computing Expected Mean Payoff for non-BSCC vertices. We can compute all the

values of ExpMP(u) for u ∈ V \ ⋃ βi (Lines 11–12) with a single call to our algorithm for

hitting probabilities (Algorithm 4.2, Section 4.4.2). Note that Algorithm 4.2 does not rely on

the premise that the function δ can only have values between 0 and 1. Hence, we can set all

the bi’s as targets, but when merging them to a single target t, we set δ(bi)(t) = ExpMP(bi),

which was computed in Line 10. This ensures that the value computed for ExpMP(u) is

exactly the RHS of Line 12 in Algorithm 4.4. Using this trick, the runtime of Lines 11–12 of

our algorithm is O(n · t2) as per Theorem 4.1.

Given the discussion above, we have the following theorem:

Theorem 4.4. Given an MC with n vertices and treewidth t and an optimal tree decompo-

sition with O(n) bags, Algorithm 4.4 computes expected mean payoffs from every vertex in

O(n · t2).

Remark 4.1. In SI over MDPs with mean payoff objectives, one also needs to compute addi-

tional values, called potentials or biases [Křetínský and Meggendorfer, 2017, Puterman, 2014].

However, this computation is classically reduced to solving a system of linear equations whose

primal graph is the MDP. Hence, the algorithm of Section 4.4.4 can be applied, and our im-

provements for computing mean payoff in MCs extend to MDPs.

4.5 Experimental Results

In this section, we report on a C/C++ implementation of our algorithms and provide a

performance comparison with previous approaches in the literature.

Compared Approaches. We consider the hitting probability and discounted sum problems

for MCs and MDPs. In the case of MCs, we directly use our algorithms from Section 4.4.2 and

Section 4.4.3. For MDPs, we use strategy iteration, where we use the above algorithms for

the strategy evaluation step in each iteration. We compare our approach with the following

alternatives:

97

• Classical Approaches. In case of MCs, we compare against a highly-optimized imple-

mentation of Gaussian elimination (Gauss). For MDPs, we consider our own implemen-

tation of value iteration (VI) and strategy iteration (SI).

• Numerical and Industrial Optimizers. We use Matlab and Gurobi to solve systems

of linear equalities corresponding to MCs. For MDPs, we use Matlab, Gurobi and

lpsolve [Berkelaar et al., 2003] to handle the corresponding LPs.

• Probabilistic Model Checkers. The well-known model checkers Storm [Dehnert et al., 2017]

and Prism [Kwiatkowska et al., 2011] have standard procedures for computing hitting

probabilities, but not for discounted sums. We therefore compare our runtimes on

hitting probability instances with their runtimes.

Despite the fact that treewidth has been extensively studied in verification and model

checking [Obdržálek, 2003, Ferrara et al., 2005], including for the analysis of Markov decision

processes [Chatterjee and Łącki, 2013], to the best of our knowledge there are no benchmark

suites consisting of low-treewidth MCs/MDPs. Previous works such do not provide any

experimental results.

Motivation for Benchmarks. The main motivation to study MCs/MDPs with small

treewidth is that they occur naturally in static program analysis, where a key algorithmic

problem is reachability on the CFGs, e.g. as shown in Chapter 3, data-flow analyses in frame-

works such as IFDS are reduced to reachability. Moreover, probability annotations of the

CFG are useful in many contexts such as (i) in probabilistic programs where the branches are

probabilistic; or (ii) when branch-profiling information is available that assigns probabilities

to branch execution [Smith, 1998]. If we consider CFGs where all branches are deterministic

or probabilistic, then we have MCs; and if there are also non-deterministic branches, then

we have MDPs. In both cases, the reachability analysis in CFGs with probability annotation

corresponds to the computation of hitting probabilities. Therefore, hitting probabilities can

be used to answer questions like “given the branch profiles, compute the probability that a

given pointer is null in some instruction”. Additionally, [De Alfaro et al., 2003] shows how

discounted-sum objectives are relevant in the analysis of systems, e.g. with discounted-sum

98

reachability we can model that a later bug is better than an earlier one. It is well-established

that structured programs have small treewidth, both theoretically [Thorup, 1998] and exper-

imentally [Gustedt et al., 2002].

Benchmarks. Given the points above, we used CFGs of the 40 Java programs from the

DaCapo suite [Blackburn et al., 2006] as our benchmarks. They have between 33 and 103918

vertices and transitions. To obtain MDPs, we randomly (with probability 1/2) turned each

vertex into a Player 1 or a probabilistic one. We assigned random probabilities to each

outgoing edge of a probabilistic vertex. To obtain MCs, we did the same, except that all

vertices are probabilistic. For the hitting probabilities problem, we chose one random vertex

from each connected component of the control flow graphs as a target. In case of discounted

sum, we uniformly chose a discount factor between 0 and 1 for each instance, and also assigned

random integral rewards between −1000 to 1000 to each edge. Finally, we used our own tool,

JTDec [Chatterjee et al., 2017b], to compute tree decompositions. In each case the width

of the obtained decomposition was no more than 9. See [Asadi et al., 2020b] for details of

benchmarks.

Results. The runtimes are shown in Figures 4.4–4.7. Note that the y-axes are in logarithmic

scale. For example, Figure 4.4 shows results for computing hitting probabilities in MCs, where

Prism is the slowest tool by far, while our approach comfortably beats every other method.

The gap is more apparent in MDPs (Figures 4.6–4.7). Overall, we see that our new algorithms

consistently outperform both classical approaches like VI and SI, and highly optimized solvers

and model checkers like Gurobi, Prism and Storm, by one or more orders of magnitude. Hence,

the theoretical improvements are also realized in practice. See [Asadi et al., 2020b] for raw

numbers.

99

xm
l

xm
l-1

.3.
04

d-l
uin

de
x

d-d
ige

st

d-x
ala

n

d-t
om

cat

d-l
use

arc
h

d-l
use

arc
h-f

da
ytr

ad
er

c-d
ae

mon

c-lo
gg

ing
-1.

0.4

tom
cat

-j

con
sta

nti
ne

bo
ots

tra
p
d-h

2
av

alo
n jnr

c-lo
gg

ingjlin
e
asm

-c

c-c
od

ec c-ioasmjun
it

luc
en

e-djax
en jaf

fl

ser
iali

zer
-2.

7.0

cri
msonc-h

ttp

ser
iali

zer
jan

ino

xm
lgr

ap
hic

s

luc
en

e-c
xa

lan
de

rby
c
pm

d
av

ror
a

ecl
ips

e
xe

rce
s

10 5

10 4

10 3

10 2

10 1

100

101

102

Ru
nt

im
e

(s
)

Our approach
Gauss
Matlab
Gurobi
Prism
Storm

Figure 4.4: Experimental Results for Computing Hitting Probabilities in MCs.

xm
l

xm
l-1

.3.
04

d-l
uin

de
x

d-d
ige

st

d-x
ala

n

d-t
om

cat

d-l
use

arc
h

d-l
use

arc
h-f

da
ytr

ad
er

c-d
ae

mon

c-lo
gg

ing
-1.

0.4

tom
cat

-j

con
sta

nti
ne

bo
ots

tra
p
d-h

2
av

alo
n jnr

c-lo
gg

ingjlin
e
asm

-c

c-c
od

ec c-ioasmjun
it

luc
en

e-djax
en jaf

fl

ser
iali

zer
-2.

7.0

cri
msonc-h

ttp

ser
iali

zer
jan

ino

xm
lgr

ap
hic

s

luc
en

e-c
xa

lan
de

rby
c
pm

d
av

ror
a

ecl
ips

e
xe

rce
s

10 5

10 4

10 3

10 2

10 1

100

101

Ru
nt

im
e

(s
)

Our approach
Matlab
Gurobi
Gauss

Figure 4.5: Experimental Results for Computing Expected Discounted Sums in MCs.

100

xm
l

xm
l-1

.3.
04

d-l
uin

de
x

d-d
ige

st

d-x
ala

n

d-t
om

cat

d-l
use

arc
h

d-l
use

arc
h-f

da
ytr

ad
er

c-d
ae

mon

c-lo
gg

ing
-1.

0.4

tom
cat

-j

con
sta

nti
ne

bo
ots

tra
p
d-h

2
av

alo
n jnr

c-lo
gg

ingjlin
e
asm

-c

c-c
od

ec c-ioasmjun
it

luc
en

e-djax
en jaf

fl

ser
iali

zer
-2.

7.0

cri
msonc-h

ttp

ser
iali

zer
jan

ino

xm
lgr

ap
hic

s

luc
en

e-c
xa

lan
de

rby
c
pm

d
av

ror
a

ecl
ips

e
xe

rce
s

10 4

10 3

10 2

10 1

100

101

102

103
Ru

nt
im

e
(s

)

Our approach
lpsolve
Gurobi
Matlab
SI
VI
Storm
Prism

Figure 4.6: Experimental Results for Computing Hitting Probabilities in MDPs.

xm
l

xm
l-1

.3.
04

d-l
uin

de
x

d-d
ige

st

d-x
ala

n

d-t
om

cat

d-l
use

arc
h

d-l
use

arc
h-f

da
ytr

ad
er

c-d
ae

mon

c-lo
gg

ing
-1.

0.4

tom
cat

-j

con
sta

nti
ne

bo
ots

tra
p
d-h

2
av

alo
n jnr

c-lo
gg

ingjlin
e
asm

-c

c-c
od

ec c-ioasmjun
it

luc
en

e-djax
en jaf

fl

ser
iali

zer
-2.

7.0

cri
msonc-h

ttp

ser
iali

zer
jan

ino

xm
lgr

ap
hic

s

luc
en

e-c
xa

lan
de

rby
c
pm

d
av

ror
a

ecl
ips

e
xe

rce
s

10 4

10 3

10 2

10 1

100

101

102

103

Ru
nt

im
e

(s
)

Our approach
lpsolve
Gurobi
Matlab
SI
VI

Figure 4.7: Experimental Results for Computing Expected Discounted Sums in MDPs.

101

5

Faster Algorithms for Data Packing

This chapter originally appeared in the following publication:

[•] Chatterjee, K., Goharshady, A. K., Okati, N., and Pavlogiannis, A. Efficient

Parameterized Algorithms for Data Packing. In 46th ACM Symposium on Prin-

ciples of Programming Languages (POPL), 2019.

102

5.1 Introduction

Background. There is a huge gap between the speeds of modern caches and main mem-

ories, and therefore cache misses account for a considerable loss of efficiency in programs.

The predominant technique to address this issue has been Data Packing : data elements

that are frequently accessed within time proximity are packed into the same cache block,

thereby minimizing accesses to the main memory. In this chapter, we consider the algorith-

mic problem of Data Packing on a two-level memory system. Given a reference sequence R

of accesses to data elements, the task is to partition the elements into cache blocks such that

the number of cache misses on R is minimized. The problem is notoriously difficult: it is

NP-hard even when the cache has size 1, and is hard to approximate for any cache size larger

than 4. Therefore, all existing techniques for Data Packing are based on heuristics and lack

theoretical guarantees.

Our Results. In this chapter, we present the first positive theoretical results for Data

Packing, along with new and stronger negative results. We consider the problem under the

lens of the underlying access hypergraphs, which are hypergraphs of affinities between the

data elements, where the order of an access hypergraph corresponds to the size of the affinity

group. We study the problem parameterized by the treewidth of access hypergraphs. Our

main results are as follows: we show there is a number q∗ depending on the cache parameters

such that (a) if the access hypergraph of order q∗ has constant treewidth, then there is a

linear-time algorithm for Data Packing; and (b) the Data Packing problem remains NP-hard

even if the access hypergraph of order q∗ − 1 has constant treewidth. Thus, we establish a

fine-grained dichotomy depending on a single parameter, namely, the highest order among

access hypegraphs that have constant treewidth; and establish the optimal value q∗ of this

parameter. Finally, we present an experimental evaluation of a prototype implementation

of our algorithm. Our results demonstrate that, in practice, access hypergraphs of many

commonly-used algorithms have small treewidth. We compare our approach with several

state-of-the-art heuristic-based algorithms and show that our algorithm leads to significantly

fewer cache-misses.

103

5.2 Paging and Packing

We consider the problem of Data Packing over a two-level memory system consisting of a

small cache and a large main memory. Given a reference sequence of memory accesses to data

elements, the goal is to organize the data elements into blocks in order to minimize cache

misses. Intuitively, putting contemporaneously-accessed elements in the same block reduces

the number of cache misses, but existing heuristic-based results do not present any theoretical

guarantees. In this chapter, we consider this problem from a theoretical perspective and

establish its complexity by presenting exact algorithms and stronger hardness results. We

start with an overview of previous results and a formal definition of the problem.

5.2.1 Overview of the Problems and Previous Results

Cache Management. Consider a memory system with an associative cache and a main

memory. Data items are stored in the main memory and organized into sets of a small

size, which are called blocks (or pages). All data items have the same size and all blocks

can hold the same number of data items. The cache has a small capacity and can hold

a few blocks at any given time. Whenever a program needs to access a data element, its

corresponding block must be present in the cache before the access can happen. Therefore,

if the block is not already in the cache, it will be copied into the cache from the main

memory, potentially by evicting another block. This copying process is called a cache miss,

and given the considerably slower speed of the main memory, cache misses are very time-

consuming and lead to significant overhead [Wulf and McKee, 1995]. Therefore, the problem

of cache management, i.e. minimizing the number of cache misses, is of great importance

in compilers and operating systems. Cache management can naturally be divided in two

parts [Calder et al., 1998]: (i) deciding on how to replace the blocks in the cache, i.e. which

block to evict when the cache is full and a miss occurs and (ii) deciding on the placement

scheme of the data items inside blocks. These problems are respectively called Paging (or

choosing a replacement policy) [Sleator and Tarjan, 1985] and Data Packing [Thabit, 1982,

Lavaee, 2016].

104

Paging (Replacement Policy). In paging, given a data placement scheme that di-

vides the data items into blocks and a so-called reference sequence of accesses to data

elements, the problem is to choose a block to be evicted each time a cache miss occurs.

The goal is to do this in a way that minimizes the total number of cache misses over the

reference sequence [Panagiotou and Souza, 2006]. An algorithm that chooses the block to

be evicted is called a replacement policy. Common replacement policies include FIFO,

which evicts the oldest block in the cache, and LRU, which evicts the least recently used

block [Borodin et al., 1995, Lavaee, 2016]. Note that both FIFO and LRU can also be ap-

plied in the online setting, i.e. when the algorithm does not know the entire sequence in

advance and can only observe accesses as they are made. In the offline case, where the entire

reference sequence is given in the beginning, the optimal replacement policy is to evict the

block whose first use is furthest in the future [Borodin et al., 1995]. This is called the optimal

offline policy (OOP). We primarily focus on LRU as the replacement policy, because it is

the one that is most commonly used in practice [Zhong et al., 2004]. However, most of our

results extend to FIFO and OOP, too.

Data Packing. The other aspect of cache management, which is the focus of this chapter,

is Data Packing [Thabit, 1982]. Consider a cache with a capacity of m blocks, where each

block can store p data items. Given a reference sequence R of length N of accesses to n

distinct data items and a replacement policy, Data Packing asks for the optimal placement

of data items into blocks in order to minimize the number of cache misses. The parameters

m and p are considered to be small constants, and the complexity is studied wrt n and N

which are large. Data Packing is an extremely hard problem and is known to be hard to

approximate within any non-trivial factor, i.e., any factor significantly less than N , unless

P=NP [Lavaee, 2016].

Heuristics and Affinity. Given the hardness of cache management and Data Packing,

the research in this area has been mostly focused on developing heuristics. The intuition

behind many of these heuristics is to exploit the underlying affinities between data ele-

ments or blocks by trying to place elements that are commonly accessed together in the

same block or evicting the block that is less frequently accessed in conjunction with the rest

105

of the blocks in the cache [Zhong et al., 2004, Ding and Kandemir, 2014, Calder et al., 1998,

Ding and Kennedy, 1999, Han and Tseng, 2006]. Some approaches, such as [Zhang et al., 2006],

provide more sophisticated heuristics and construct a hierarchy of affinities. However, none

of the existing heuristics provide any theoretical guarantees.

Access Graphs. The concept of access graph [Borodin et al., 1995] has been introduced to

model the affinities between data elements or blocks. An access graph is simply a graph in

which there is a vertex corresponding to every data item and two vertices are connected by an

edge if their respective items appear consecutively in the reference sequence. Access graphs

might be weighted to model how many times every pair of elements have appeared consec-

utively. Similar structures and extensions of access graphs to access hypergraphs have been

introduced in [Thabit, 1982, Lavaee, 2016] where they are called proximity (hyper)graphs.

Moreover, most of the heuristic-based approaches also consider variants of the notion of access

graphs.

Cache Misses vs Cache Hits. We consider the Data Packing problem, which asks to

minimize the cache misses. Its natural dual problem is to maximize cache hits. While

the two problems are equivalent in case of exact algorithms, an approximation algorithm

for maximum cache hits does not necessarily lead to an approximation for minimum cache

misses [Lavaee, 2016]. For example, if in an access sequence of length N we have N −
√
N

cache hits and
√
N cache misses, an approximation of N−

√
N hits can lead to an arbitrarily

bad approximation of
√
N cache misses. In practice, cache misses occur much less frequently

than cache hits, but contribute significantly to the runtime overhead of programs. Thus,

approximation of cache misses is more important than approximation of cache hits, and the

Data Packing problem is defined in terms of cache misses.

Previous Results on Cache Management. To the best of our knowledge, all theoretical

results on minimizing cache misses are negative or hardness results. We summarize some of

the main results in this area. Given a reference sequence R of length N and a cache with a

capacity of m blocks, the following results have been shown:

(i) In [Petrank and Rawitz, 2002], the authors considered the general problem of Cache-

conscious Data Placement, consisting of both Paging and Data Packing. They showed

106

the problem is NP-hard and unless P=NP, it cannot even be approximated within a

factor of O(N1/2−ε).

(ii) In the same paper, it was shown that any algorithm that does not process the entire

sequence, but instead relies on pairwise affinity information on data items, such as the

access graph, cannot find a solution within a factor of m − 3 from the optimal, even

with unbounded time.

(iii) In [Lavaee, 2016], it was shown that Data Packing is NP-hard and hard to approximate

within a factor of O(N1−ε) unless P = NP.

Given these hardness results, Data Packing is usually handled by heuristic-based algorithms

that do not provide any theoretical guarantee. The only positive theoretical result deals with

approximating maximum cache hits:

(iv) In [Lavaee, 2016] it was established that the dual problem of Data Packing with the goal

of maximizing cache hits, instead of minimizing cache misses, is approximable within

a constant factor. However, this does not approximate the optimal number of cache

misses.

5.2.2 Formal Definitions

In this section, we formalize the problem of data packing and fix our notation. We also for-

mally present previously-known hardness results. The problem was first studied in [Thabit, 1982].

Here, we present an adaptation of its definition as formalized in [Lavaee, 2016].

Notation. A hypergraph is a pair G = (V,E) consisting of a finite set V of vertices and

a multi-set E of hyperedges. Each hyperedge e ∈ E is a subset of V. Let G = (V,E) be

a (hyper)graph, and X ⊆ V , then we denote by G[X], the induced subgraph of G over X,

i.e. G[X] = (X, {e ∈ E | e ⊆ X}). Given two (hyper)graphs G1 = (V1, E1) and G2 = (V2, E2),

we define their union and intersection in the natural way, i.e. G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2)

and G1 ∩G2 = (V1 ∩V2, E1 ∩E2). If F is a family of sets, we write ∪F (resp. ∩F) to denote

∪A∈FA (resp. ∩A∈FA). Given two functions f, g : A → Z, equality and summation are

107

defined in a pointwise manner, i.e. f ≡ g ⇔ ∀a ∈ A; f(a) = g(a), and for any a ∈ A, we
have (f + g)(a) = f(a) + g(a). Given a function f : A→ B and a subset A′ ⊆ A, we use f|A′

to denote the restriction of f to A′. This restriction is a function of the form f|A′ : A′ → B

that agrees with f on every point in A′. For a set X, we write P (X) to denote the power set

of X, i.e. the set of all subsets of X.

Data Placement Schemes. Given a set D of size n of data items and a positive integer

p, a data placement scheme σ is a partitioning of D into blocks of size at most p. We call

p the packing factor. It is often useful to think of σ as an equivalence relation on D whose

equivalence classes are the blocks. Hence, following the usual notation, we write xσy to

denote that x and y are in the same block, [x]σ to denote the block of σ that contains the

data element x and D/σ to denote the set of blocks or equivalence classes of σ.

Replacement Policies. Given a set D of n data items, a cache of size m, a data placement

scheme σ, and a sequence R ∈ DN of accesses to data items, a replacement policy is a

function that decides which block must be evicted from the cache at each time. Formally,

a replacement policy is a function π : {0, 1, 2, . . . , N} → P (D/σ) that assigns to each time

point i, the set of blocks that are present in the cache right before the access R[i]. Any such

policy must satisfy the following:

• π(0) = ∅, i.e. the cache must be empty at the beginning;

• For all 1 ≤ i ≤ N , |π(i)| ≤ m, i.e. there are at most m blocks in the cache at each time;

• For all 1 ≤ i ≤ N , |π(i) \ π(i− 1)| ≤ 1 and |π(i− 1) \ π(i)| ≤ 1, i.e. at most one block

can be added to the cache and at most one block can be evicted at each step;

• For all 1 ≤ i ≤ N , R[i] ∈ ∪π(i), i.e. the block containing an access R[i] must be in the

cache right before that access.

Remark 5.1. Note that the replacement policy only matters when the cache has a size of at

least 2. When the cache has unit size, there is always a unique choice for the block that must

be evicted.

108

Cache Misses. Given a data placement scheme σ and a replacement policy π as above, the

number of cache misses caused by σ and π over R is defined as the number of times a new block

is loaded into the cache. Formally, misses(σ, π) = | {i | 1 ≤ i ≤ N, π(i) \ π(i− 1) 6= ∅} |.

The LRU Policy. Due to its popularity, we assume throughout this paper that the replace-

ment policy is LRU, i.e. the Least-Recently-Used block is always evicted from the cache.

However, most of our results carry over to First-In-First-Out (FIFO) and the Optimal Of-

fline Policy (OOP), as well. Recall that FIFO evicts the oldest block in the cache and OOP

evicts the block that is going to be used furthest in the future.

Remark 5.2. LRU can cause at most m times as many cache misses as OOP, where m is

the number of blocks that can fit into the cache. In practice, it usually leads to between 2 to

3 times as many cache misses [Panagiotou and Souza, 2006].

We are now ready to define our main problem:

The Data Packing Optimization Problem. Consider a memory subsystem that consists

of n distinct data elements and a fully-associative cache with a capacity of m blocks and

a packing factor of p. Given a sequence R of length N of references to data elements, the

Data Packing problem asks for a data placement scheme σ that minimizes the number of

cache misses incurred by the reference sequence R, using LRU as the replacement policy. We

denote an instance of the Data Packing problem by I = (n,m, p,R).

Parameters. In the sequel, we consider the parameters m and p to be small constants and

try to find polynomial algorithms in terms of N and n.

The Hardness of Data Packing. Note that we are considering the problem of minimizing

cache misses, not that of maximizing cache hits. While the two problems are equivalent

in terms of exact algorithms, approximating the minimal number of cache misses is much

harder than approximating the maximal number of cache hits. The latter problem admits

a polynomial-time constant-factor approximation [Lavaee, 2016]. In contrast, the following

theorem shows that the former problem is hard to even approximate.

Theorem 5.1 ([Lavaee, 2016]). Assuming either LRU, FIFO or OOP as the replacement

policy, we have the following hardness results:

109

• For any m and any p ≥ 3, Data Packing is NP-hard.

• Unless P=NP, for any m ≥ 5, p ≥ 2 and any constant ε > 0, there is no polynomial

algorithm that can approximate the Data Packing problem within a factor of O(N1−ε).

We now define the concepts of access graph and access hypergraph. Various similar

notions have been defined in the past, and are sometimes called affinity graphs or proximity

graphs. These hypergraphs will later serve as a basis for reducing the Data Packing problem

to a graph problem.

Access Graph. Given a sequence R of length N of accesses to data elements from a set D of

size n, the access graph of R is a simple graph GR = (V,E) in which V consists of n vertices,

each corresponding to one of the data elements inD, and there is an edge between two distinct

vertices iff their corresponding data elements appear consecutively somewhere in R. More

formally, {u, v} ∈ E iff u 6= v and there exists an index i, such that {R[i], R[i+ 1]} = {u, v}.

Intuitively, one can think of the graph GR as the structure on data elements that is

respected by the access sequence R, in the sense that R can only go from a vertex in GR

to one of its neighbors. Moreover, GR is the sparsest graph over which R is a (possibly

non-simple) path.

Example 5.1. Consider the access sequence R = 〈a, b, c, a, b, b, d, b, d, e, c, b, f〉. There are 6

data elements in this sequence and its access graph GR is shown in Figure 5.1. Note that R

is a path on this graph and every edge appears somewhere along R, hence no subgraph of GR

has the same property.

a

b

c

d

e

f

Figure 5.1: The access graph GR of R = 〈a, b, c, a, b, b, d, b, d, e, c, b, f〉

We now extend the concept of access graphs to higher order affinity relations between

data items, resulting in access hypergraphs.

110

Hypergraphs and Ordered Hypergraphs. A hypergraph G = (V,E) consists of a set V

of vertices and a multiset E of hyperedges. Each hyperedge e ∈ E is in turn a subset of the

vertices of G. An ordered hypergraph G = (V,E) consists of a set V of vertices and a set

E of ordered hyperedges. Each ordered hyperedge e ∈ E is a sequence of distinct vertices

of G, i.e. a hyperedge together with an order on its vertices. Intuitively, hypergraphs are

natural extensions of graphs, where each edge can connect more than two vertices. Given

a hypergraph G, its primal graph Gp is a graph on the same set V of vertices, where two

vertices u and v are connected by an edge iff there exists a hyperedge e ∈ E containing both

u and v. We shall simply refer to hypergraphs and hyperedges as graphs and edges when

there is no fear of confusion.

Access Hypergraph. Given a natural number q and an access sequence R as above, the

access hypergraph Gq
R = (V,E) is a hypergraph defined as follows:

• There are n vertices in V, each corresponding to one data element;

• For each data access R[i], there is a corresponding hyperedge ei in E. The hyperedge

ei consists of R[i] and the q − 1 distinct data elements that are accessed right before

R[i]. If there are less than q − 1 such elements, ei will include all of them. Concretely,

ei is defined as follows: ei := {R[j] | j ≤ i ∧ |{R[j], R[j + 1], . . . , R[i]}| ≤ q}.

We call q the order of the access hypergraph. It is easy to verify that removing repeated

edges from the access hypergraph G2
R leads to the access graph GR.

Example 5.2. Consider the access sequence R = 〈a, b, c, a, b, b, d, b, d, e, c, b, f〉. Letting q =

3, the corresponding access hypergraph G3
R of order 3 consists of the following hyperedges

(sometimes there are multiple copies of the same hyperedge, as shown below. We consider

these to be distinct hyperedges):

{a}, {a, b}, {a, b, c} × 4, {a, b, d} × 3, {b, d, e}, {c, d, e}, {b, c, e}, {b, c, f}.

Figure 5.2 shows the segments of the sequence that correspond to edges in G3
R.

111

a, b, c, a, b, b, d, b, d, e, c, b, f

Figure 5.2: Segments of R corresponding to edges in the hypergraph G3
R

Ordered Access Hypergraphs. Given an access sequence R as above, the ordered access

hypergraph Ĝq
R is defined similarly toGq

R, except that each hyperedge is ordered in the natural

way, i.e. in the order of appearance of its corresponding data elements in R. Formally, for

every access R[i], there is a corresponding ordered hyperedge ei in Ĝq
R. The ordered hyperedge

ei is a sequence 〈v1, v2, . . . , vl〉 of vertices of Ĝq
R such that vl = R[i], vl−1 is the first distinct

data element accessed before R[i], vl−2 is the second distinct element, etc. Moreover, l is the

maximum between q and the number of distinct elements accessed up until R[i].

Example 5.3. Consider the access sequence R = 〈a, b, c, a, b, b, d, b, d, e, c, b, f〉. The access

hypergraph G3
R was shown in Example 5.2. We now construct the ordered hyperedges of Ĝ3

R.

Intuitively, we start from any access R[i] in R and go back until we see 3 different data

elements. These data elements will form the ordered hyperedge ei corresponding to R[i]. This

is illustrated in Figure 5.3. Note that the elements in an ordered hyperedge ei are ordered by

their last access time before or at R[i], e.g. see the hyeperedge 〈a, d, b〉 in Figure 5.3.

a, b, c, a, b, b, d, b, d, e, c, b, f
<a>

<a, b>
<a, b, c>

<b, c, a>
<c, a, b>
<c, a, b>

<a, b, d>
<a, d, b>

<a, b, d>

<b, d, e>
<d, e, c>

<e, c, b>
<c, b, f>

R:

Figure 5.3: Ordered Hyperedges of G and the segments in R to which they correspond

112

5.3 Summary of Our Results

Treewidth in Data Packing. We will show that Data Packing can be reduced to a graph

problem. In many cases when a graph arises from a structured process, the treewidth of the

graph is not very large [Bodlaender, 1998]. For Data Packing, the access graphs arise from

structured program accessing data from a well-defined data structure. Thus, it is natural to

study the problem of Data Packing in terms of the treewidth property of the arising graphs,

as we do in the sequel.

H
ar
d
to
A
pp
ro
xi
m
at
e

T
he
or
em

5.
6

←
(m
− 5

)p
+
1
→

NP-hard
Theorem 5.5

←
(m
− 1

)p
+
2
→

Linear-time
Theorem 5.4

Hard to Approximate

Theorem 5.1
NP-hard

Theorem 5.1

Linear-time
Theorem 5.2

|
1

|
5

|
6

|2

m

q

Figure 5.4: The complexity of Data Packing for p ≥ 3. Here m is the cache size and q is
the highest order for which the access hypergraph has constant treewidth. Theorem 5.1 was
established in [Lavaee, 2016]. The rest of the picture is filled by this paper and our results
are shown in bold face.

Our Contributions. Our contributions include (a) polynomial algorithms for Data Packing

in constant treewidth access (hyper)graphs, (b) stronger hardness results, and (c) experi-

mental results demonstrating that our approach leads to considerably fewer cache misses in

comparison with previously-known heuristic-based approaches. Concretely, consider that the

cache has size m, every block can hold p data items and the reference sequence is of length N

113

with n distinct items. We consider the access hypergraph of order q. We show that the Data

Packing problem can be reduced to a graph partitioning problem of the access (hyper)graph

and study whether the treewidth parameter can be exploited for polynomial-time algorithms.

Our main results, assuming constant m and p, are as follows:

1. Results on Access Graphs. We first consider q = 2. Note that order-2 access hyper-

graphs are basically access graphs. We establish the following results:

• Linear-time algorithm. We present a linear-time algorithm for Data Packing when

the access graph is of constant treewidth and m = 1 (Theorem 5.2).

• Hardness of the exact problem. The Data Packing problem remains NP-hard

for m ≥ 2 and p ≥ 3 even if the underlying access graph is a tree (which has

treewidth 1) (Theorem 5.3).

• Hardness of approximation. Unless P=NP, for any m ≥ 6, p ≥ 2 and any constant

ε > 0, the Data Packing problem is hard to approximate within a factor of O(N1−ε)

even if the underlying access graph is a tree (Theorem 5.3).

2. Results on Access Hypergraphs. We then consider access hypergraphs of higher order.

Let q∗ = (m− 1) · p+ 2. Note that q∗ depends only on the cache parameters, and not

on n or N . We establish the following results:

• Linear-time algorithm. We present a linear-time algorithm for Data Packing when

the access hypergraph of order q∗ has constant treewidth (Theorem 5.4).

• Hardness of the exact problem. For m ≥ 2 and p ≥ 3, the Data Packing prob-

lem remains NP-hard even if the access hypergraph of order q∗ − 1 has constant

treewidth (Theorem 5.5).

• Hardness of approximation. Unless P=NP, for m ≥ 6 and p ≥ 2 and any con-

stant ε > 0, the Data Packing problem is hard to approximate within a factor of

O(N1−ε) even if the access hypergraph of order q∗−4 ·p−1 has constant treewidth

(Theorem 5.6).

114

Note that while constant treewidth has been exploited to obtain polynomial-time algo-

rithms for NP-complete graph problems such as Vertex Cover and Hamiltonian Cycle,

we show that for Data Packing the constant treewidth property does not always help,

and the problem remains hard even when the access hypergraph of order q∗ − 1 has

constant treewidth. Our hardness result and linear-time algorithm present a sharp

boundary (or fine-grained dichotomy) that shows when the treewidth can be exploited.

Concretely, the hardness of the Data Packing problem can be captured by a single

parameter, namely, the highest order amongst access hypergraphs that have bounded

treewidth. We establish the optimal value q∗ of this parameter which is the necessary

and sufficient condition for existence of efficient parameterized algorithms that exploit

treewidth.

3. Experimental results. We present an experimental evaluation of a prototype imple-

mentation of our algorithm, and experimental results on a variety of benchmarks from

linear algebra, sorting algorithms, dynamic programming, recursive algorithms, string

matching, computational geometry and algorithms on tree data-structures. Our results

show that the access hypergraphs of most of the benchmarks have small treewidth. We

compare our approach with several state-of-the-art heuristic-based algorithms. The

experimental results show that on average our optimal algorithms obtain 15-30% im-

porvement over the previous heuristic-based approaches.

Significance. In summary, we present the first positive theoretical results for Data Packing,

i.e., for cache-miss minimization. We also enrich the complexity landscape as shown in

Figure 5.4. Only the results of Theorem 5.1 were known before, and all other results (which

are shown in bold) are established in the present work.

115

5.4 Algorithms and Hardness Results based on Treewidth

of Access Graphs

We now consider the problem of Data Packing when parameterized by the treewidth of the

underlying access graph. In Section 5.4.1, we provide a linear-time algorithm when m = 1

and the access graph has constant treewidth. Note that this problem is NP-hard for general

access graphs, as demonstrated by Theorem 5.1. Then, in Section 5.4.2 we show that for

m ≥ 2 the problem remains NP-hard and hard-to-approximate even when the access graph

is a tree, i.e. has treewidth 1.

5.4.1 Algorithm for m = 1 and Constant-treewidth Access Graph

We are given a Data Packing instance I = (n, 1, p, R), its access graph GR and an edge-

nice tree decomposition (T, 〈Bi〉) of the access graph with width t and O(n · t) nodes. We

first reduce the problem of Data Packing to a graph problem over GR and then provide a

linear-time fixed-parameter algorithm for solving the graph problem. We start by defining

the Minimum-weight p-partitioning problem.

p-partitionings. Given an integer p > 0 and a graph G = (V,E), a p-partitioning of G is

a partitioning ψ of the set V of vertices such that each partition set has a size of at most p.

In other words, a p-partitioning of G is a data placement scheme where the vertices of G are

the data elements and p is the packing factor.

Cross Edges. Given a p-partitioning ψ of the graph G = (V,E), an edge e = {u, v} ∈ E is

called a cross edge if its two endpoints are in different partition sets, i.e. if [u]ψ 6= [v]ψ.

Minimum-weight p-partitioning. Given a simple graph G = (V,E), a weight function

w : E → N and a positive integer p, the Minimum-weight p-partitioning problem asks for a

p-partitioning of G in which the total weight of cross edges is minimized.

Reduction of Data Packing to Minimum-weight p-partitioning. We now reduce the

Data Packing problem to Minimum-weight p-partitioning. Given an instance I = (n, 1, p, R)

of Data Packing, we consider the access graph GR = (V,E) and define the weight function

116

wR : E → N as wR({u, v}) := |{i | {R[i], R[i + 1]} = {u, v}}|. Informally, the weight of

an edge is the number of times its two endpoints have appeared consecutively in R. The

reduction is now complete.

Lemma 5.1. The optimal number of cache misses in a Data Packing instance I = (n, 1, p, R)

is 1 plus the total weight of cross edges in a Minimum-weight p-partitioning of GR with weight

function wR.

Proof. Every p-partitioning ψ of GR is a data placement scheme for I and vice versa. Given

that m = 1, the replacement policy does not matter (Remark 5.1) and a cache miss occurs

each time R accesses a new block. If we consider R as a path on GR, a cache miss occurs

at the very beginning and then each time this path goes from one equivalence class of ψ to

another. Therefore, the number of cache misses of ψ is 1 plus the total weight of cross edges

in ψ.

Example 5.4. Consider the access sequence R = 〈a, b, c, a, b, b, d, b, d, e, c, b, f〉 of Exam-

ple 5.1 and the Data Packing instance I = (6, 1, 2, R), i.e. each block can store up to 2 data

elements. Figure 5.5 shows the graph GR in which every edge is weighted by the number of

times it is traversed in R. An optimal 2-partitioning of GR is shown in which vertices of the

same color are in the same partition. The total weight of cross edges in this partitioning is 7.

The corresponding data placement scheme is {{a, c}, {b, d}, {e}, {f}} which leads to 8 cache

misses on R. The cache misses are underlined.

a

b

c

d

e

f
2 1

3
1

1
2

1

Figure 5.5: An optimal 2-partitioning

We will provide an algorithm for solving the Minimum-weight p-partitioning problem on

a graph G using an optimal edge-nice tree decomposition of G. Our algorithm employs a

117

bottom-up dynamic programming technique. We first need several basic concepts to define

the algorithm.

States over a Set of Vertices. Given a graph G = (V,E), a natural number p and a subset

A ⊆ V of vertices, a state over A is a pair s = (ϕ, sz) such that (i) ϕ is a partitioning of A in

which every equivalence class has a size of at most p, and (ii) sz is a size enlargement function

sz : A/ϕ→ {0, . . . , p−1} that maps each equivalence class [v]ϕ to a number which is at most

p − |[v]ϕ|. Intuitively, the idea is to take A to be one of the bags in the tree decomposition

and later extend a state over A to a p-partitioning of G by adding the vertices in V \A. So,
a state over A partitions the vertices of A into sets of size at most p and for each partition

[v]ϕ fixes the exact number sz([v]ϕ) of vertices from V \A that should be added to [v]ϕ. We

denote the set of all states over A by SA,p or simply SA when p is clear from the context.

Realization. We say that a p-partitioning ψ realizes the state s = (ϕ, sz) over A, if (i) the

restriction of ψ to A is equal to ϕ, i.e. ψ|A = ϕ and (ii) for all vertices v ∈ A, sz([v]ϕ) =

|[v]ψ|− |[v]ϕ|. Intuitively, ψ realizes s if (i) ψ partitions the vertices in A in the same manner

as ϕ and (ii) if a partition [v]ψ of ψ intersects A, then [v]ψ contains as many vertices from

outside of A as fixed by sz.

Example 5.5. Figure 5.6 shows all 14 possible states over the set A = {a, b, c} of vertices

with p = 2. In each case, each row denotes one partition set and hence the order of rows and

the order of squares in a row does not matter. Empty squares correspond to the possibility of

extension of the set, as defined by sz. The optimal 2-partitioning ψ presented in Figure 5.5

realizes the highlighted state in Figure 5.6, because ψ puts a and c in the same partition and

puts b in a partition of size 2, whose other member, d, comes from outside the set {a, b, c}.

118

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a b

c

a b

c

a c

b

a c

b

b c

a

b c

a

Figure 5.6: All possible states over A = {a, b, c} with p = 2

Compatibility. We say that two states s and s′, respectively over the sets A and A′, are

compatible if there exists a p-partitioning that realizes both of them. We use the notation

s
.
= s′ to show compatibility.

Example 5.6. Intuitively, two states are compatible if they can fit into each other. Figure 5.7

shows the states realized by the 2-partitioning of Figure 5.5 above over the sets A = {a, b, c}
and A′ = {d, e, f} and how they can be fitted together to create the entire 2-partitioning.

a c

b d

e

f

→
a c

b d

e

f

Figure 5.7: Two compatible states over A = {a, b, c} and A′ = {d, e, f}

The Algorithm. We are now ready to describe our algorithm in detail. Given a graph

G, a weight function w and an optimal edge-nice tree decomposition T of G, our algorithm

performs a bottom-up dynamic programming on T . This is broken into three steps, which

are described below. We use the graph of Figure 5.5 and its edge-nice tree decomposition in

Figure 5.8 as examples.

119

Figure 5.8: An edge-nice tree decomposition of the graph in Figure 5.5. The root r is the
leftmost node.

Step 0: Initialization. We define several variables at each node of our tree T . These

variables are meant to be computed in a bottom-up manner. Concretely, for every i ∈ VT
and every state s over the bag Bi, we define a variable dp[i, s] and initialize it to +∞.

Invariant. Formally, our algorithm satisfies the following invariant for every dp variable

right after the end of its computation:

dp[i, s] = The minimum total weight of cross edges over all p-partitionings of Gi that realize s.

Intuitively, we are considering the states over the bag Bi and extending them by adding

vertices that were introduced in the subtree of i in T.

Step 1: Computation of dp. The algorithm starts from the bottom of the tree T and

computes the dp variables bottom up, i.e. with an order such that for every node i ∈ VT the

dp variables at its children are computed before the dp variables of i. For every node i ∈ VT
and state s = (ϕ, sz) ∈ SBi , we show how dp[i, s] is computed based on type of the node i:

(1.1) if i is a Leaf: dp[i, s] = 0;

(1.2) if i is a Join node with children i1 and i2:

dp[i, s] = min
sz1+sz2≡sz

dp[i1, (ϕ, sz1)] + dp[i2, (ϕ, sz2)];

Note that the summation and equality above are pointwise.

120

(1.3) if i is an Introduce Vertex node, introducing v, with a single child i1:

dp[i, s] = dp[i1, (ϕ|Bi1 , sz|Bi1)];

(1.4) if i is an Introduce Edge node, introducing e, with a single child i1:

dp[i, s] = dp[i1, s] + w(e, ϕ),

where w(e, ϕ) is equal to w(e) if e is a cross edge in ϕ and zero otherwise;

(1.5) if i is a Forget Vertex node, forgetting v, with a single child i1:

dp[i, s] = min
s′∈SBi1∧s

′ .=s
dp[i1, s

′].

Recall that .
= denotes compatibility.

Step 2: Computing the Output. The algorithm computes the output, i.e. the optimal

weight of a p-partitioning, using the values stored at dp variables. If r is the root node of T ,

then the algorithm outputs the following value: mins∈SBr dp[r, s].

This concludes our algorithm. A simple pseudocode of our approach is provided in Algo-

rithm 5.1. We now prove the correctness of our algorithm.

Lemma 5.2. Algorithm 5.1 correctly computes the total weight of cross edges in a Minimum-

weight p-partitioning.

Proof. We prove this lemma in two steps. First, we show that the invariant defined above

holds after computing dp[i, s] assuming that it was satisfied for all dp variables in the children

of i (Correctness of Step 1). Then, assuming that the invariant holds for dp variables at the

root, we show that the output is the total weight of an optimal p-partitioning (Correctness

of Step 2).

Intuitively, the invariant says that if we only consider the graph Gi, i.e. the part of G

that was introduced in the subtree of T rooted at i, and those p-partitionings of Gi that

121

Algorithm 5.1: Computing the total weight of cross edges in an optimal p-
partitioning
1 function Main (G, T, 〈Bi〉, w, p);
Input : A graph G = (V,E), an edge-nice tree-decomposition (T, 〈Bi〉) of G, a

weight function w : E → N and a positive integer p.
Output: Total weight of cross-edges in an optimal p-partitioning of G wrt w.

2 initialize dp[,]← +∞;
3 r ← T.root;
4 compute_dp(r);
5 return mins∈SBr dp[r, s];

6 function compute_dp (i);
Input : A node i of T
Result : Fills in dp[i, s] for all s ∈ SBi

7 forall i′ ∈ i.children do
8 compute_dp(i′);
9 if i is a leaf then

10 dp[i, s∅]← 0;
11 else if i is a join node then
12 i1 ← i.children[1];
13 i2 ← i.children[2];
14 forall s = (ϕ, sz) ∈ SBi do
15 dp[i, s]← minsz1+sz2≡sz dp[i1, (ϕ, sz1)] + dp[i2, (ϕ, sz2)];
16 else if i is an introduce vertex node then
17 i1 ← i.children[1];
18 forall s = (ϕ, sz) ∈ SBi do
19 dp[i, s]← dp[i1, (ϕ|Bi1 , sz|Bi1)];
20 else if i is an introduce edge node, introducing e = (u, v) then
21 i1 ← i.children[1];
22 forall s = (ϕ, sz) ∈ SBi do
23 dp[i, s]← dp[i1, s];
24 if [u]ϕ 6= [v]ϕ then
25 dp[i, s]← dp[i, s] + w(e)

26 else if i is a forget vertex node, forgetting v then
27 i1 ← i.children[1];
28 forall s = (ϕ, sz) ∈ SBi do
29 dp[i, s]← +∞;
30 for j ← 0 to p− 1 do
31 ϕ′ = ϕ ∪ {{v}};
32 sz′ = sz ∪ {({v}, j)};
33 dp[i, s] = min{dp[i, s], dp[i1, (ϕ

′, sz′)]};
34 forall Y ∈ ϕ do
35 if |Y | < p ∧ sz(Y) ≥ 1 then
36 ϕ′ = ϕ ∪ {Y ∪ {v}} \ {Y };
37 sz′ = sz ∪ {(Y ∪ {v}, sz(Y)− 1)} \ {(Y, sz(Y)};
38 dp[i, s] = min{dp[i, s], dp[i1, (ϕ

′, sz′)]};

122

realize the state s, then dp[i, s] holds the minimum total weight of cross edges among these

p-partitionings.

Correctness of Step 1. As in the algorithm, we break this part into several cases:

(1.1) Computations at Leaves. The node i is a leaf in T, hence Gi is the empty graph and

Bi is the empty set. Therefore, SBi contains a single trivial state s∅ and we have

dp[i, s∅] = 0 because the total weight of cross edges in an empty graph is zero.

(1.2) Computations at Join Nodes. The node i is a join node with children i1 and i2. We

want to compute dp[i, s] where s = (ϕ, sz). Therefore, we only consider those p-

partitionings that realize s. Given that Bi = Bi1 = Bi2 , ϕ imposes itself on both Bi1

and Bi2 . However, each partition in ϕ must be extended by a number of vertices as

defined by sz. These vertices must come from either Gi1 or Gi2 and must not already

be present in Bi. According to the separation lemma (Lemma 2.1), the only vertices

that are in both Gi1 and Gi2 are precisely those of Bi. Hence, each new vertex comes

either from Gi1 or Gi2 but not from both. Therefore, we should minimize our total

cross edge weights wrt dp variables of the form dp[i1, (ϕ, sz1)] and dp[i2, (ϕ, sz2)] where

sz1 + sz2 ≡ sz. The function sz1 defines the number of vertices that should be added

from Gi1−Bi to each partition of ϕ and sz2 does the same for Gi2−Bi. Formally, if we

let w(ϕ) be the total weight of cross edges caused by ϕ in Gi1 ∩Gi2 = Gi1 [Bi]∩Gi2 [Bi],

then we should let:

dp[i, s] = dp[i, (ϕ, sz)] = min
sz1+sz2≡sz

dp[i1, (ϕ, sz1)] + dp[i2, (ϕ, sz2)]− w(ϕ).

The reason we are subtracting w(ϕ) at the end is that the weights of its corresponding

edges are taken into account twice, i.e. once in each of dp[i1, (ϕ, sz1)] and dp[i2, (ϕ, sz2)].

We now show it is always the case that w(ϕ) = 0. If an edge contributes to w(ϕ),

then it must be present in both Gi1 and Gi2 . However, by property (3) of an edge-nice

tree-decomposition, each edge is introduced exactly once. Hence, Gi1 and Gi2 do not

123

share any edges and w(ϕ) = 0. Therefore, by setting:

dp[i, s] = dp[i, (ϕ, sz)] = min
sz1+sz2≡sz

dp[i1, (ϕ, sz1)] + dp[i2, (ϕ, sz2)],

we satisfy the invariant.

i

i1 i2

Figure 5.9: In a join node i, Gi1 and Gi2 do not share any edges and their shared vertices are
in Bi.

(1.3) Computations at Introduce Vertex Nodes. The node i is an introduce vertex node. So,

it has a single child i1 and Bi = Bi1 ∪{v} for some v 6∈ Bi1 . We know that the vertex v

cannot possibly appear in Gi1 because every vertex appears in a connected subtree of

T and v 6∈ Bi1 . Hence, Gi is obtained by adding v as an isolated vertex to Gi1 . Again,

we want to compute dp[i, s] and should hence only consider the p-partitionings that

realize s. Given that Bi1 ⊂ Bi, s imposes a unique compatible state on Bi1 . Moreover,

Gi has no new edges in comparison with Gi1 , so the total weight of cross edges should

only be computed in Gi1 . Hence, we let

dp[i, s] = dp[i, (ϕ, sz)] = dp[i1, (ϕ|Bi1 , sz|Bi1)].

Intuitively, this is equivalent to removing v from its partition and then computing the

dp in i1.

i

i1

Figure 5.10: In an introduce vertex node i, the newly introduced vertex is isolated and there
are no new edges.

124

(1.4) Computations at Introduce Edge Nodes. The node i has a single child i1 and Bi = Bi1 .

Moreover, the only difference between Gi and Gi1 is in a single edge e. When computing

dp[i, s], the state s forces itself on Bi1 = Bi. Hence we should let:

dp[i, s] = dp[i1, s] + w(e, s)

where w(e, s) is the contribution of the edge e to the total weight of cross edges in s.

It is zero if the two sides of e are put in the same partition set by s and is equal to

w(e) otherwise.

i

i1

Figure 5.11: A new edge is introduced in the node i. The states are only dependent on
vertices and hence are the same over Bi and Bi1 . However, we have to account for the weight
of the new edge.

(1.5) Computations at Forget Vertex Nodes. In this case the node i has a single child i1 and

Bi = Bi1 \ {v} for some v ∈ Bi1 . However, Gi = Gi1 . Hence, when computing dp[i, s],

it is sufficient to take the minimum among the values of dp variables of all states s′

over Bi1 that are compatible with s. More precisely, we let

dp[i, s] = min
s′∈SBi1∧s

′ .=s
dp[i1, s

′].

t

t1

Figure 5.12: When a vertex v is forgotten by i, we have Gi = Gi1 , but Bi = Bi1 \ {v}.

125

Correctness of Step 2. Given that r is the root node of T , we have Gr = G. Since

every p-partitioning of G realizes some state over Br, it follows that the optimal weight of a

p-partitioning is mins∈SBr dp[r, s]. This concludes the proof.

Remark 5.3. Algorithm 5.1 computes the total weight of cross edges in a Minimum-weight p-

partitioning. As is common with dynamic programming algorithms, an optimal p-partitioning

itself can be obtained by keeping track of the choices made during the computation of dp

variables, i.e. keeping track of the cases that led to the minimal values in each computation.

We now establish the complexity of our approach and present the main theorem of this

section.

Number of States. For a fixed p, let Cp
k denote the number of different possible states

over a set of size k, i.e. Cp
k := |S{1,2,...,k}|. We write Ck instead of Cp

k when p can be inferred

from the context. We now establish bounds on the value of Ck. Note that these bounds only

depend on p and k.

Lemma 5.3. Ck ≤ (p+k−1)!
(p−1)!

= O

(
ep−k · kk+0.5 ·

(
p+k
p−1

)p−1
)
.

Proof. Obviously, C1 = p. We prove that Ck ≤ (p+ k − 1) · Ck−1 and the desired inequality

follows by a simple induction.

Consider a state s = (ϕ, sz) over {1, 2, . . . , k}. Either k is in a singleton partition in s or

it is put together with some other elements of {1, 2, . . . , k− 1}. In the former case, removing

k leads to a state s′ over {1, 2, . . . , k − 1} that is compatible with s. In the latter, removing

k and incrementing sz([k]ϕ) leads to a similarly compatible s′. Therefore, each state s over

{1, 2, . . . , k} can be obtained by taking a state s′ over {1, 2, . . . , k − 1} and adding k to it

either (i) as a separate partition with any sz value, or (ii) inside another partition that has

an sz value of at least 1 and decrementing its sz value. Given a state s′, there are p ways of

doing (i), corresponding to the different values that can be assigned to sz({k}), and at most

k − 1 ways of doing (ii), because there are at most k − 1 partitions in s′. Hence,

Ck ≤ (p+ k − 1) · Ck−1 ≤ (p+ k − 1) · (p+ k − 2)!

(p− 1)!
=

(p+ k − 1)!

(p− 1)!
.

126

For the last part, we have (p+k−1)!
(p−1)!

=
(
p+k−1
p−1

)
· k!. It is well-known that

(
n
r

)
≤
(
e·n
r

)r for

all n ≥ r > 0 and hence
(
p+k−1
p−1

)
≤
(
e·(p+k−1)

p−1

)p−1

. By Stirling’s approximation we have

k! ∼
√

2πk ·
(
k
e

)k
. Combining the two and ignoring the constants, we get the desired result:

(p+k−1)!
(p−1)!

= O

(
ep−k · kk+0.5 ·

(
p+k
p−1

)p−1
)
.

Lemma 5.4. Ck ≤
(

0.792·p·k
ln(k+1)

)k
= O

(
(0.792 · p · k)k

)
.

Proof. Let Bk be the k-th Bell number, i.e. the number of different partitions of {1, 2, . . . , k}.
Given a partition ϕ, we can form the enlargement function sz in at most pk ways, i.e. there

are at most k partitions and we have at most p choices for the sz value of each partition.

Hence, Ck ≤ pk · Bk. In [Berend and Tassa, 2010], it is established that Bk ≤
(

0.792·k
ln(k+1)

)k
.

The desired result follows.

Theorem 5.2. Given a Data Packing instance I = (n, 1, p, R) as input, where n is the

number of distinct data elements, p is the packing factor, R is the reference sequence with a

length of N and the cache has unit size, the Data Packing problem, i.e. finding the minimal

number of cache misses, can be solved in linear time, i.e. in time O(N + n · t2 ·Ct · pt), when
the underlying access graph GR has treewidth t− 1.

Proof. Given a Data Packing instance I = (n, 1, p, R), we first apply the reduction of

Lemma 5.1 which takes O(N). We then use Algorithm 5.1 to solve the resulting Minimum-

weight p-partitioning problem. The correctness of this algorithm was established in Lemma 5.2.

The only remaining part is to find the runtime of Algorithm 5.1. Note that the time spent

for computing edge-nice tree decompositions is dominated by the rest of our runtime.

The algorithm needs values of dp variables for all nodes of the tree decomposition which

are at most O(n · t). We obtain upper-bounds for the runtime of our algorithm on each type

of node:

• Leaves. There is a single state at each leaf and its dp is zero. Hence we spend O(1) at

each leaf.

• Join Nodes. At a join node i, there are at most Ct states and for each state s = (ϕ, sz)

we have to look into the states corresponding to every possible size enlargement function

127

sz1 ≤ sz. As in the proof of Lemma 5.4, there are at most pt such functions. Creating

each corresponding state takes O(t). Hence, we spend O(t · Ct · pt) at each join node.

• Introduce Vertex Nodes. At a node i, there are Ct states and we spend O(t) computing

the unique corresponding state over Bi1 . Thus, each introduce vertex node takes O(t ·
Ct).

• Introduce Edge Nodes. This case is similar to the previous one and takes O(t · Ct).

• Forget Vertex Nodes. At a node i, there are Ct states and for each of them we have to

look into all its compatible states over Bi1 . Note that such compatible states can be

obtained either by putting the vertex v in its own partition set, which can have any size

between 1 and p, or by adding it to the partition set of another vertex in Bi. Hence,

there are at most p+ t such states and the total processing time of a forget vertex node

is O(t · (p+ t) · Ct).

Note that the runtime for join nodes dominates the rest. Given that there are O(n · t)
nodes in total, the whole computation takes O(n · t2 · Ct · pt) time. Finally, the algorithm

spends O(Ct) time computing the final result using the dp values at the root.

Corollary 5.1. We have the following upperbounds on the runtime of Algorithm 5.1:

O

(
N + n · tt+2.5 · pt · ep−t ·

(
p+ t

p− 1

)p−1
)
,

and

O
(
N + n · tt+2 · p2·t · (0.792)t

)
.

Proof. The bounds above can be obtained by applying Lemmas 5.3 and 5.4 to Ct in Theo-

rem 5.2.

Remark 5.4. By exploiting treewidth, we provided a linear-time algorithm for finding the

exact solution to the Data Packing problem when m = 1. Note that in the general case,

i.e. without considering parameterization by treewidth, this problem is NP-hard as mentioned

in Theorem 5.1.

128

Remark 5.5. We assumed LRU as the replacement policy. However, given that the replace-

ment policy does not matter when the cache has unit size (Remark 5.1), our algorithm is

applicable to any replacement policy, including FIFO and OOP.

5.4.2 Hardness of Data Packing on Trees

In this section, we provide a reduction from the general problem of Data Packing to the

special case where the access graph is a tree, i.e. has treewidth 1. This reduction leads to

hardness results that enhance those of [Lavaee, 2016] by showing that the problem remains

hard even on trees. This indicates that although considering constant treewidth access graphs

led to efficient algorithms for the case of m = 1, constant treewidth access graphs alone are

not sufficient for m ≥ 2.

Theorem 5.3 (Hardness of Data Packing on Trees). Given a Data Packing instance I =

(n,m, p,R), we have the following hardness results:

• Hardness of the Exact Problem. For any m ≥ 2 and any p ≥ 3, Data Packing is

NP-hard even if the underlying access graph GR is a tree.

• Hardness of Approximation. Unless P=NP, for any m ≥ 6, p ≥ 2 and any constant

ε > 0, there is no polynomial approximation algorithm for the Data Packing problem

with an approximation factor of O(N1−ε) even if the access graph GR is a tree.

Proof. We provide a linear-time reduction that transforms a Data Packing instance I =

(n,m, p,R) to another instance I ′ = (n + (m + 1)p,m + 1, p, R′) such that the access graph

GR′ is a tree. Both hardness results can then be obtained by applying this reduction to the

hardness results of Theorem 5.1.

Given I, we introduce (m + 1) · p new data elements d1, d2, . . . , d(m+1)·p. Let X be the

sequence

d1, d2, . . . , d(m+1)·p, d(m+1)·p−1, . . . , d1.

129

We form the sequence R′ as follows:

d1, R[1], d1, R[2], d1, . . . , d1, R[N], d1, X,X, . . . , X︸ ︷︷ ︸
2·N+m+2 times

,

i.e. we take R and add d1 at its beginning, end and between every two elements of it, then we

concatenate the result with 2 ·N+m+2 copies of X. We let I ′ = (n+(m+1) ·p,m+1, p, R′).

Note that the cache in I ′ has one spot more than the cache of I.

By construction, GR′ is a tree, because it consists of a path d1, . . . , d(m+1)·p and every

other vertex of the graph is only connected to d1. We now show that the optimal number of

cache misses in I ′ is exactly m+ 1 plus the optimal number of cache misses in I.

Let σ be an optimal data placement scheme for I ′, then σ must necessarily put the di’s

in exactly m+ 1 blocks, otherwise each X in the sequence R′ will lead to at least one cache

miss for a total of at least 2 ·N +m+ 2. On the other hand, putting the di’s in m+ 1 blocks

leads to at most 2 · N + m + 1 cache misses, even if all accesses before the X’s are missed.

In particular, σ does not put any element of R in the same block as d1. Therefore, σ first

leads to a cache miss on the first access to d1, then keeps d1 in the cache forever. Hence, σ

fills one spot of the cache with the block of d1 and has m spots left for scheduling R. Finally,

σ loads the other m blocks that contain some di’s but not d1. Hence, the number of cache

misses caused by σ is 1 (for the first d1) plus the optimal number of misses in I plus m (for

the X’s).

Remark 5.6. As mentioned before, we are considering the LRU replacement policy in this

paper. However, the reduction above works for the OOP replacement policy as well. Hence,

the hardness results are established for both policies.

5.5 Algorithms and Hardness Results based on Treewidth

of Access Hypergraphs

In this section, we exploit constant treewidth of higher-order access hypergraphs for solving

Data Packing. Section 5.5.1 extends our linear-time algorithm to every m, when the access

130

hypergraph of order q∗ := (m−1)·p+2 has constant treewidth. As indicated by Theorem 5.1,

this problem is hard to even approximate in the general case. In Section 5.5.2 we argue that

q∗ is the optimal order for exploiting treewidth in the sense that the problem remains NP-

hard even if the access hypergraph of order q∗− 1 has constant treewidth. This also leads to

a new hardness-of-approximation result.

5.5.1 Algorithm for Constant-treewidth Access Hypergraph

In this section, we extend the algorithm of Section 5.4.1 to any cache size m, provided that

the hypergraph Gq∗

R is of constant treewidth, where q∗ = (m−1)·p+2. Note that Theorem 5.3

implies such an extension cannot be made if we only consider constant-treewidth GR. Since

we are considering m > 1, the paging policy should now be taken into account. We assume

that the paging policy is LRU.

Intuition on Cache Misses. The main intuition behind our algorithm is the following:

given an instance I = (n,m, p,R) and a data placement scheme σ for I, we can deduce

whether an access R[i] leads to a cache miss by looking at only the (m− 1) · p+ 1 = q∗ − 1

previous accesses to distinct data elements. We now formalize this intuition.

Previous Access of a Block. Consider a Data Packing instance I = (n,m, p,R), a data

placement scheme σ for I and an access R[i]. Let β := [R[i]]σ be the block of σ containing

R[i]. We define prevσ(i) as the index of the previous access to β or 0 if no such access exists,

i.e. prevσ(i) := max{j < i | j = 0 ∨ [R[j]]σ = [R[i]]σ}.

Lemma 5.5. Given a data placement scheme σ for I, an access R[i] leads to a cache miss

if and only if prevσ(i) = 0 or there are at least m distinct blocks of σ whose elements appear

in the range R[prevσ(i) + 1] . . . R[i− 1].

Proof. We are assuming LRU as the replacement policy and the cache starts empty. If

prevσ(i) = 0, then R[i] is the first access to its block and will definitely lead to a cache

miss. We now consider the case where prevσ(i) 6= 0. Let j := prevσ(i) and assume that

β := [R[i]]σ = [R[j]]σ is the block containing R[i] and R[j]. By definition, none of the

elements R[j+1], . . . , R[i−1] belong to β. If there are at most m−1 blocks between R[j+1]

131

and R[i − 1], then R[i] cannot lead to a cache miss. This is because right after the access

R[j], the block β is present in the cache and is the most recently used block of the cache.

Hence, in order for it to be evicted, at least m other blocks must be accessed. On the other

hand, if there are at least m blocks between R[j + 1] and R[i − 1], then all of these blocks

will be loaded into the cache and hence β will be evicted before the access R[i] leading to an

eventual cache miss on R[i].

Corollary 5.2. Given a data placement scheme σ, an access R[i] and the q∗ − 1 distinct

elements that were accessed before R[i] (or all of the previous distinct elements if there is less

than q∗− 1 of them) in the order of their last access time, one can deduce whether R[i] leads

to a cache miss.

Proof. If R[prevσ(i)] is one of these previous elements, then we can simply check whether

at least m different blocks appear between R[prevσ(i)] and R[i]. Otherwise, either R[i] is

the first access to its block or all the q∗− 1 elements are appearing between R[prevσ(i)] and

R[i]. In the first case R[i] leads to a cache miss. In the second case, by pigeonhole principle,

there are at least m blocks between the two elements R[prevσ(i)] and R[i] and hence there

is a cache miss at R[i].

Remark 5.7. Note that the previous access to the block containing a data element R[i] might

be an access to R[i] itself. Hence, R[i] might itself appear in the q∗− 1 distinct elements that

were accessed before R[i].

As in Section 5.4.1, we are going to reduce Data Packing to a graph problem and then

exploit treewidth to obtain a linear-time algorithm. Corollary 5.2 suggests that in order

to detect cache misses, one only needs to consider the ordered access hypergraph of order

q∗ = (m − 1) · p + 2, i.e. Ĝq∗

R . However, in order to address the corner case mentioned in

Remark 5.7, we define an ordered hypergraph G by a slight change to the edges of Ĝq∗

R and

then reduce Data Packing to a graph problem over G.

The Ordered Hypergraph G. We define the ordered hypergraph G as having the same

vertices and edges as the ordered access hypergraph Ĝq∗

R , except in the following case:

132

• Given an access R[i] to a data element d, let R[j] be the last access before R[i] to the

same data element d. If there are at most q∗ distinct data elements accessed in the

range R[j+ 1] . . . R[i− 1], then the edge ei corresponding to R[i], will also contain R[j]

(in its natural position according to the order of vertices in ei).

Example 5.7. Consider the access sequence R = 〈d, c, a, b, c〉 and let m = p = 2. Hence, we

have q∗ = (m − 1) · p + 2 = 4. In the graph Ĝq∗

R the edge corresponding to the second c is

e5 = 〈d, a, b, c〉. However, there are less than q∗ distinct data elements appearing between the

two accesses to c, i.e. there are only two such elements, namely, a and b. Hence, in G, the

previous access to c appears in this edge as well. Therefore, in G, the edge e5 is of the form

e5 = 〈d, c, a, b, c〉.

The intuition behind the way G is defined comes from Corollary 5.2 and Remark 5.7. The

idea is to have the edge ei contain all the data necessary to decide whether a cache-miss will

happen at the access R[i]. We now formalize this concept.

Missed Edges. Given an ordered hyperedge ei of G and a data placement scheme σ, we

can deduce whether a cache miss happens at R[i] using Corollary 5.2, because the edge ei

contains an ordered list of at least (m − 1) · p + 1 = q∗ − 1 distinct data elements that

were accessed right before R[i]. We say that an ordered hyperedge ei is missed in σ, if the

corresponding R[i] is a cache miss.

Identifying Missed Edges. Consider the data placement scheme σ as a p-partitioning of

vertices of G. Based on Lemma 5.5 and Corollary 5.2, an ordered hyperedge ei = 〈v1, . . . , vl〉
is missed iff the sequence of vertices 〈vl, vl−1, . . . , v1〉 in G visits at least m distinct partitions

before getting back to the partition [vl]σ or if it never comes back. A short pseudocode

to determine whether a hyperedge is missed is provided in Algorithm 5.2. Note that this

determination can be done in O(m ·p) and only depends on the p-partitioning of {v1, . . . , vl}.

We now define our graph problem as follows:

Minimum-miss p-partitioning. Given a hypergraph G = (V,E) with ordered hyperedges,

partition V into sets of size at most p in a manner that minimizes the number of missed

edges.

133

Algorithm 5.2: Checking if an ordered hyperedge is missed
1 function missed_edge (e, σ);
Input : An ordered hyperedge e = 〈v1, . . . , vq〉 and a p-partitioning σ
Output: Whether e is missed in σ

2 β ← [vq]σ;
3 V isitedBlocks← ∅;
4 for j ← q − 1 downto 1 do
5 if |V isitedBlocks| < m ∧ [vj]σ = β then
6 return false;
7 else
8 V isitedBlocks← V isitedBlocks ∪ {[vj]σ};
9 return true;

As a direct result of the previous discussion, we have the following lemma:

Lemma 5.6. The optimal number of cache misses in a Data Packing instance I = (n,m, p,R)

is equal to the optimal number of missed edges in a p-partitioning of G.

Proof. Any data placement scheme σ for I is also a p-partitioning of G. As shown above, σ

misses an edge ei in G iff it causes a cache miss at R[i] in I. Hence, the number of cache

misses caused by σ in I is equal to the number of missed edges caused by σ in G.

States over a Set of Vertices. We define states in the exact same manner as in Sec-

tion 5.4.1, i.e. a state over a set A of vertices is a pair s = (ϕ, sz) consisting of an equivalence

relation ϕ and a size enlargement function sz. The concepts of realization and compatibility

are also defined similarly.

The Algorithm. We now provide a linear-time algorithm for solving the Minimum-miss

p-partitioning problem, assuming that the hypergraph G has constant treewidth. The algo-

rithm is an extension of the one provided in Section 5.4.1. In the following, we let (T, 〈Bi〉i∈VT)

be an optimal edge-nice tree decomposition of G. Our algorithm performs a bottom-up dy-

namic programming on T .

Step 0: Initialization. We define several variables at each node of the tree T . Concretely,

for every node i ∈ VT and every state s over Bi, we define a variable dp[i, t], initially holding

a value of +∞.

134

Invariant. The most different aspect of our algorithm compared to Section 5.4.1 is the

invariant. Formally, we require our algorithm to satisfy the following invariant for every dp

variable right after the end of its computation:

dp[i, s] := The minimum number of missed edges over all p-partitionings of Gi that realize s.

Step 1: Computation of dp. The dp variables are computed in a bottom-up manner.

Given a node i ∈ VT and a state s = (ϕ, sz) ∈ SBi , we show how dp[i, s] is computed in terms

of the dp variables at the children of i. This computation depends on the type of the node i.

(1.1) if i is a Leaf: dp[i, s] = 0;

(1.2) if i is a Join node with children i1 and i2:

dp[i, s] = min
sz1+sz2≡sz

dp[i1, (ϕ, sz1)] + dp[i2, (ϕ, sz2)];

(1.3) if i is an Introduce Vertex node, introducing v, with a single child i1:

dp[i, s] = dp[i1, (ϕ|Bi1 , sz|Bi1)];

(1.4) if i is an Introduce Edge node, introducing e, with a single child i1:

dp[i, s] = dp[i1, s] +

1 missed_edge(e, ϕ)

0 otherwise
;

(1.5) if i is a Forget Vertex node, forgetting v, with a single child i1:

dp[i, s] = min
s1∈SBi1∧s1

.
=s

dp[i1, s1].

Recall that .
= denotes compatibility of states.

135

Step 2: Computing the Output. The algorithm computes the output, i.e. the minimum

number of missed edges in a p-partitioning of G, using the values of dp variables at the root

node r of T . Formally, the output is mins∈SBr dp[r, s].

This concludes our algorithm. While most of its computations are similar to Algo-

rithm 5.1, the argument for correctness and its runtime are rather different. A pseudocode

of the approach is given in Algorithm 5.3. We first prove the correctness of our approach and

then establish its time complexity.

Lemma 5.7. Algorithm 5.3 correctly computes the total number of missed edges in a Minimum-

miss p-partitioning.

Proof. Our proof heavily depends on the invariant defined above. Intuitively, the invariant

says that dp[i, s] must be filled with the minimum number of edges that are missed in a

p-partitiong realizing s, over the subgraph Gi of G, which consists of all the vertices and

hyperedges that are introduced below i in T . We prove the lemma in two steps. First, we

prove that the invariant is satisfied after computing dp[i, s], assuming that it were satisfied

for all dp variables in the children of i (Correctness of Step 1). Then, we prove that assuming

the invariant holds for dp variables at the root node r of T , the algorithm computes the right

output (Correcntess of Step 2).

Correctness of Step 1. We break the proof into several cases:

(1.1) Computations at Leaves. The node i is a leaf in T . So Gi is the empty graph and hence

there are no missed edges in Gi. Moreover, there is exactly one state over Bi, i.e. the

trivial state s∅. Hence, we should let dp[i, s∅] = 0.

(1.2) Computations at Join Nodes. A join node i has two children i1 and i2 with Bi =

Bi1 = Bi2 . When computing the value of dp[i, s] for a state s = (ϕ, sz), we only

have to consider those states over Bi1 and Bi2 that are compatible with s. However,

Bi1 = Bi2 = Bi, hence the partitioning ϕ is also imposed on Bi1 and Bi2 . The function

sz specifies how many new vertices must be added to each partition of ϕ from Gi1 and

Gi2 . Note that by the separation lemma (Lemma 2.1), the only vertices that belongs

136

Algorithm 5.3: Computing the number of missed edges in an optimal p-partitioning
1 function Main (G, T, 〈Bi〉, p);
Input : A hypergraph G = (V,E) with ordered hyperedges, an edge-nice

tree-decomposition (T, 〈Bi〉) of G and a positive integer p.
Output: The minimum number of missed hyperedges in a p-partitioning of G

2 initialize dp[,]← +∞;
3 r ← T.root;
4 compute_dp(r);
5 return mins∈SBr dp[r, s];

6 function compute_dp (i);
Input : A node i of T
Result : Fills in dp[i, s] for all s ∈ SBi

7 forall i′ ∈ i.children do
8 compute_dp(i′);
9 if i is a leaf then

10 dp[i, s∅]← 0;
11 else if i is a join node then
12 i1 ← i.children[1];
13 i2 ← i.children[2];
14 forall s = (ϕ, sz) ∈ SBi do
15 dp[i, s]← minsz1+sz2≡sz dp[i1, (ϕ, sz1)] + dp[i2, (ϕ, sz2)];
16 else if i is an introduce vertex node then
17 i1 ← i.children[1];
18 forall s = (ϕ, sz) ∈ SBi do
19 dp[i, s]← dp[i1, (ϕ|Bi1 , sz|Bi1)];
20 else if i is an introduce edge node, introducing e = (u, v) then
21 i1 ← i.children[1];
22 forall s = (ϕ, sz) ∈ SBi do
23 dp[i, s]← dp[i1, s];
24 if missed_edge(e, ϕ) then
25 dp[i, s]← dp[i, s] + 1

26 else if i is a forget vertex node, forgetting v then
27 i1 ← i.children[1];
28 forall s = (ϕ, sz) ∈ SBi do
29 dp[i, s]← +∞;
30 for j ← 0 to p− 1 do
31 ϕ′ = ϕ ∪ {{v}};
32 sz′ = sz ∪ {({v}, j)};
33 dp[i, s] = min{dp[i, s], dp[i1, (ϕ

′, sz′)]};
34 forall Y ∈ ϕ do
35 if |Y | < p ∧ sz(Y) ≥ 1 then
36 ϕ′ = ϕ ∪ {Y ∪ {v}} \ {Y };
37 sz′ = sz ∪ {(Y ∪ {v}, sz(Y)− 1)} \ {(Y, sz(Y)};
38 dp[i, s] = min{dp[i, s], dp[i1, (ϕ

′, sz′)]};

137

to both Gi1 and Gi2 are already included in Bi, hence no new vertex can be in both.

Therefore, we have to look into dp variables of the form dp[i1, (ϕ, sz1)], dp[i2, (ϕ, sz2)]

where sz1 + sz2 ≡ sz. Concretely, we should let:

dp[i, s] = dp[i, (ϕ, sz)] = min
sz1+sz2≡sz

dp[i1, (ϕ, sz1)] + dp[i2, (ϕ, sz2)].

Note that the two graphs Gi1 and Gi2 do not share any edges as argued in Lemma 5.2.

(1.3) Computations at Introduce Vertex Nodes. In this case, i is a node, with a single child

i1, and introduces the vertex v. Then v 6∈ Gi1 and Gi = Gi1∪{v}, i.e. Gi is obtained by

adding v to Gi1 as an isolated vertex. Given that Gi has no new edges in comparison

with Gi1 , it follows that the missed edges in Gi are precisely those that were missed

in Gi1 . Also, Bi = Bi1 ∪ {v} and so given a state s = (ϕ, sz) over Bi, there is

only one compatible state over Bi1 , i.e. s1 = (ϕ|Bi1 , sz|Bi1). Therefore, we must let

dp[i, s] = dp[i1, s1].

(1.4) Computations at Introduce Edge Nodes. The node i has one child i1, Bi = Bi1 and

Gi = Gi1 ∪ {e}, where e is the newly introduced hyperedge. Note that, by property

(2) of edge-nice tree decompositions, all vertices of e must appear in Bi. So ϕ gives us

enough information to know whether e is a missed edge. Also, given that Bi1 = Bi, the

state s forces itself on Bi1 and therefore, letting

dp[i, s] = dp[i1, s] +

1 missed_edge(e, ϕ)

0 otherwise

preserves the invariant.

(1.5) Computations at Forget Vertex Nodes. This case is handled in the exact same manner

as in Section 5.4.1. Given that Gi = Gi1 and Bi ⊆ Bi1 , the value of dp[i, s] should

be set to the minimum value of dp[i1, s1] over all states s1 that are compatible with s.

Formally,

dp[i, s] = min
s1∈SBi1∧s1

.
=s

dp[i1, s1].

138

Correctness of Step 2. Let r be the root node of T , then Gr = G and every p-partitioning

of G realizes exactly one state over Br. Hence, the minimum number of missed edges in the

entire graph G is mins∈SBr dp[r, s].

Remark 5.8. Algorithm 5.3 computes the optimal number of missed edges in a p-partitioning

of G. As is common in dynamic programming approaches, an optimal p-partitioning itself can

be obtained by keeping track of the choices that led to minimum values during the computation

of dp variables.

We conclude this section by establishing the complexity of Algorithm 5.3.

Theorem 5.4. Given a Data Packing instance I = (n,m, p,R) as input, where n is the

number of distinct data items, p is the packing factor, R is the reference sequence with a

length of N and the cache has a capacity of m blocks, the Data Packing problem, i.e. finding

the minimal number of cache misses, can be solved in linear time, i.e. in time O(n · t2 · Ct ·
pt +N · Ct · (t+m · p)), when the underlying access hypergraph Gq∗

R has treewidth t− 1.

Proof. Creating the ordered hypergraphG and the reduction from Data Packing to Minimum-

miss p-partitioning using Lemma 5.6 take linear time, i.e. O(N ·m·p). Note that G is obtained

by ordering the vertices of Gq∗

R and then adding duplicated vertices to some of the edges, hence

tw(G) = tw(Gq∗

R). As before, the optimal tree decomposition (T, 〈Bi〉) can be computed in

linear time. Since there are N hyperedges in G, the tree T will have O(n · k + N) nodes,

where N of them are introduce edge nodes and O(n · t) of them are of the other types.

The times spent at leaves, join nodes, introduce vertex nodes and forget vertex nodes

are exactly the same as those established in Theorem 5.2. In an introduce edge node, the

algorithm has to compute Ct different dp values, each taking time O(t + m · p) due to the

call to the missed_edge subprocedure. Hence, processing each introduce edge node takes

O(Ct · (t + m · p)). Therefore, the total time spent on computing dp values is O(n · t2 · Ct ·
pt · +N · Ct · (t + m · p)). Finally, it takes O(Ct) time to compute the final answer using dp

variables at the root node.

139

Remark 5.9. The runtime above is linear in n and N , given that Ct is bounded by a function

of p and t. Hence, by exploiting the treewidth of G, we were able to obtain an exact linear-

time algorithm for Data Packing. Note that by Theorem 5.1, the general problem, i.e. without

parameterization by treewidth, is hard to even approximate.

5.5.2 Hardness of Data Packing on Constant-treewidth Access Hy-

pergraphs

In Section 5.4.2, we showed that Data Packing is hard even if the access graph GR is a

tree, i.e. even if G2
R has treewidth 1. Section 5.5.1 provided a linear-time algorithm for Data

Packing when Gq∗

R has constant treewidth. This naturally leads to the question whether

q∗ = (m − 1) · p + 2 is the optimal order for exploiting treewidth. Note that this is a well-

posed problem because for every i, the primal graph of Gi
R is a subgraph of the primal graph

of Gi+1
R and hence tw(Gi

R) ≤ tw(Gi+1
R). Formally, the question is whether there exists a

polynomial algorithm for Data Packing assuming that the hypergraph Gq∗−1
R has constant

treewidth. In this section, we show that this problem is NP-hard and hence, unless P=NP,

there is no such algorithm and q∗ is the optimal order. We then show that for a slightly

smaller order, i.e. q∗− 4 · p− 1 = (m− 5) · p+ 1, the problem becomes hard to approximate.

Theorem 5.5 (Hardness of Data Packing in Constant Treewidth). Given a Data Packing

instance I = (n,m, p,R), for any cache size m ≥ 2 and any packing factor p ≥ 3, Data

Packing is NP-hard even if the underlying access hypergraph Gq∗−1
R has constant treewidth.

Proof. By Theorem 5.1, we know that Data Packing is NP-hard for any p ≥ 3 and m = 1.

We use this problem to obtain our reduction. Formally, for every m, we provide a linear-

time reduction that transforms the Data Packing instance I = (n, 1, p, R) to a new instance

I ′ = (n′,m, p, R′) such that the access hypergraph Gq∗−1
R′ is of constant treewidth.

Given a positive integer m and an instance I as above, we introduce (m+ 1) · p new data

elements d1, d2, . . . , d(m+1)·p. We then define three sequences X, Y and Z as follows:

X := d1, d2, . . . , d(m−1)·p, Y := d(m−1)·p+1, d(m−1)·p+2, . . . , dm·p, Z := dm·p+1, dm·p+2, . . . , d(m+1)·p,

140

and construct the reference sequence R′ as:

R′ := X,R[1], X,R[2], X, . . . , X,R[N], X, Y,X, Y, . . . , X, Y︸ ︷︷ ︸
a times

, X, Z,X, Z, . . . , X, Z︸ ︷︷ ︸
b times

,

i.e. R′ is obtained by adding X before every element of R and then appending the result with

a copies of X, Y and b copies of X,Z. The instance I is then reduced to I ′ = (n+ (m+ 1) ·
p,m, p,R′).

Our goal is to set the right values for a and b in a way that forces any optimal data

packing scheme σ to put X in exactly m−1 blocks. We set a := N · (m−1) ·p+N +2 ·m+1

and b := N · (m− 1) · p+N + a ·m · p+m+ 1. Using these parameters, every optimal data

packing scheme σ has to put X ∪Z in exactly m blocks. This is because using more than m

blocks for them leads to at least b misses in the last part of the sequence R′, while putting

them in exactly m blocks can cause a maximum of N · (m− 1) · p+N + a ·m · p+m = b− 1

misses overall, i.e. even if every access up until the end of the last Y leads to a miss. Given

that σ puts X ∪ Z in exactly m blocks, we also infer that σ causes at most m misses over

the b repetitions of X,Z.

We now prove that σ has to put X ∪ Y in exactly m blocks. The reasoning is similar. If

σ puts X ∪ Y in more than m blocks, it causes at least a cache misses, but if it puts them in

exactly m blocks the number of cache misses is at most N · (m− 1) · p+N + 2 ·m = a− 1,

i.e. even if every access up until R[N] is missed and σ misses m times over the repetitions of

X,Z. Given that X ∪ Z and X ∪ Y are both put into m blocks, it follows that σ puts X in

exactly m− 1 blocks.

We claim that the optimal number of cache misses in I ′ is m+ 1 plus the optimal number

of cache misses in I. To see this, we track the behavior of σ over the access sequence R′.

First, the m − 1 blocks of X are loaded into the cache causing m − 1 cache misses. These

remain in the cache forever because of the way X is repeated in R′. Therefore, σ has filled

m − 1 spots of the cache with X and has only 1 spot for handling the R[i]’s. This leads to

exactly as many cache misses as in the optimal solution to I. Finally, σ causes two more cache

misses, one on the first access to Y and the other one on the first access to Z. Therefore,

141

the optimal number of cache misses in I ′ is equal to the optimal number of cache misses in

I plus m+ 1. The reduction is now complete.

It remains to show that Gq∗−1
R′ = G

(m−1)·p+1
R′ has constant treewidth. Figure 5.13 shows a

tree decomposition of this graph with widthm·p−1. Therefore, tw(Gq∗−1
R′) ≤ m·p−1 = O(1).

X

X ∪ Y X ∪ Z X ∪ {R[1]} X ∪ {R[2]} . . . X ∪ {R[N]}

Figure 5.13: A tree decomposition of Gq∗−1
R′ with constant width m · p− 1.

We now turn to the hardness of approximation. We provide a reduction that follows the

same intuition as in the previous theorem.

Theorem 5.6 (Hardness of Approximating Data Packing in Constant Treewidth). Given a

Data Packing instance I = (n,m, p,R), for any cache size m ≥ 6, any packing factor p ≥ 2

and any constant ε > 0, unless P=NP, Data Packing cannot be approximated within a factor

of O(N1−ε) even if the underlying access hypergraph Gq∗−4·p−1
R = G

(m−5)·p+1
R has constant

treewidth. Here, N is the length of the reference sequence R.

Proof. We know from Theorem 5.1 that for m = 5, and p ≥ 2, it is hard to approximate

Data Packing within a factor of O(N1−ε). We reduce this problem to Data Packing on a

constant-treewidth G(m−5)·p+1
R . Formally, for every m ≥ 6, we provide a linear-time reduction

from every instance I = (n, 5, p, R) to an instance I ′ = (n′,m, p, R′) such that G(m−5)·p+1
R′ has

constant treewidth.

The reduction and the argument for its correctness are similar to those of Theorem 5.5.

Given an instance I as above, we introduce (m+ 5) · p new data elements d1, d2, . . . , d(m+5)·p.

We then define the following four sequences in a manner similar to Theorem 5.5:

X := d1, d2, . . . , d(m−5)·p, Y := d(m−5)·p+1, d(m−5)·p+2, . . . , dm·p, Z := dm·p+1, dm·p+2, . . . , d(m+5)·p;

142

R′ := X,R[1], X,R[2], . . . , X,R[N], X, Y,X, Y, . . . , X, Y︸ ︷︷ ︸
a times

, X, Z,X,Z, . . . , X, Z︸ ︷︷ ︸
b times

,

where a = N · (m− 5) · p+N + 2 ·m+ 1 and b = N · (m− 5) · p+N + a ·m · p+m+ 1. The

reduction is then from I = (n, 5, p, R) to I ′ = (n+ (m+ 5) · p,m, p,R′). It is straightforward
to check that every optimal data placement scheme σ has to put each of X ∪ Y and X ∪ Z
in exactly m blocks. Hence, it has to put X in exactly m− 5 blocks. Therefore, the optimal

number of cache misses in I ′ is m − 5 (for loading the first X) plus the optimal number of

cache misses in I plus 10 (5 misses for loading the first Y and 5 for the first Z). Finally, the

same tree decomposition as in Figure 5.13, shows that tw(G
(m−5)·p+1
R′) ≤ m ·p−1 = O(1).

5.6 Experimental Results

In this section, we report on a prototype implementation of our algorithms.

Implementation andMachine. We implemented our approach (i.e. Algorithms 5.1 and 5.3)

in C++. We used LibTW [van Dijk et al., 2006] to obtain the tree decompositions. All re-

sults are obtained using an Intel Xeon E5-1650v3 3.5GHz processor running Debian 8.

Benchmarks. We used a variety of classical algorithms to generate the access sequences

R for the Data Packing problem. For each classical algorithm, we generated random in-

puts of various sizes, which in turn led to random access sequences of varying lengths. We

included algorithms from the following categories in our benchmark set: (i) linear algebra

algorithms, (ii) sorting algorithms, (iii) dynamic programming, (iv) recursive algorithms,

(v) string matching algorithms, (vi) computational geometry algorithms, (vii) algorithms on

trees and (viii) algorithms on sorted arrays. For a complete list of the classical algorithms we

used to generate benchmarks, see our technical report [Chatterjee et al., 2019d]. Moreover,

each generated reference sequence R was executed for all 1 ≤ m ≤ 5 and 2 ≤ p ≤ 5. We did

not include p = 1, because Data Packing is trivial in this case, i.e. each data element must

form its own block.

Treewidth of Benchmarks. We observed that in many cases, by increasing the length

of the access sequence R, the treewidth of the access graph GR and the access hypergraph

143

0 5 10 15 20 25 30
N

1

2

3

4

Tr
ee

wi
dt

h

m=1, p=2
m=1, p=3
m=1, p=4
m=1, p=5
m=2, p=2
m=2, p=3

Inner-product of two vectors

0 10 20 30 40 50
N

1

2

3

4

Tr
ee

wi
dt

h

m=1, p=2
m=1, p=3
m=1, p=4
m=1, p=5
m=2, p=2
m=2, p=3

Computation of Fibonacci Numbers

0 20 40 60 80 100 120
N

1

2

3

4

5

Tr
ee

wi
dt

h

m=1, p=2
m=1, p=3
m=1, p=4
m=1, p=5
m=2, p=2
m=2, p=3

Insertion Sort

0 20 40 60 80
N

1

2

3

4

5

Tr
ee

wi
dt

h

m=1, p=2
m=1, p=3
m=1, p=4
m=1, p=5
m=2, p=2
m=3, p=2

Random Insertions in a Heap

0 25 50 75 100 125 150
N

1

2

3

4

5

6

7

Tr
ee

wi
dt

h

m=1, p=2
m=1, p=3
m=1, p=4
m=1, p=5
m=2, p=2
m=2, p=3

Random Binary Searches on a Sorted Array

0 50 100 150 200 250 300
N

1
2
3
4
5
6
7
8

Tr
ee

wi
dt

h

m=1, p=2
m=1, p=3
m=1, p=4
m=1, p=5
m=2, p=2
m=2, p=3

Finding Closest Pair of Points in 2D

Figure 5.14: Treewidth of the hypergraph Gq∗

R wrt the length N of the access sequence R
generated from several classical algorithms. Note that the treewidth is always an integer.
We have added small noises to the figures in order to make sure all the lines remain visible.

Gq∗

R first slowly increase and then stabilize at a small value. Generally, we observe this

phenomenon when the underlying data structure has small treewidth, which is the case in

many real-world programs and most of our benchmarks. Figure 5.14 shows some of our

benchmark algorithms, together with the treewidth of the resulting access (hyper)graphs of

order q∗. The benchmark at the bottom-right corner of Figure 5.14, i.e. finding the Closest

Pair among a given set of points in the plane, is an example of a real-world algorithm that

does not have small treewidth.

Previous Approaches. We implemented several different state-of-the-art heuristic-based

algorithms for data placement. These include CCDP [Calder et al., 1998], CPACK [Ding and Kennedy, 1999],

CPACK+, GPART+, CApRI+∗ [Ding and Kandemir, 2014] and two methods based on affin-

ity hierarchies, namely the k-Distance method of [Zhong et al., 2004] and the Sampling

∗The + in the names of these algorithms comes from applying the CApRI method which takes a data
placement scheme created by a previous heuristic as its input and attempts to optimize it and produce a
better data placement scheme. CApRI+ is the result of applying CApRI to an initial data placement scheme
with unary blocks. For more information, see [Ding and Kandemir, 2014].

144

method of [Zhang et al., 2006]. We apply the latter algorithm with a sampling rate of 1,

i.e. the highest possible sampling rate, to obtain the minimal number of cache misses it can

produce.

Running Time. Note that the Data Packing formulation as considered in the litera-

ture [Thabit, 1982, Lavaee, 2016] is an offline problem, and these algorithms run once, but

the output data placement schemes can lead to a reduction of cache-miss overheads every

time the instance is run. Thus the main goal is to obtain optimal results within reasonable

time limit. We set a runtime limit of 5 minutes per instance for each of the algorithms. In

cases where only a single heuristic fails to terminate within 5 minutes, we report the result

of the best-performing heuristic instead. This ensures we do not unfairly report too many

misses for a heuristic. With the time limit above, our algorithm produces results on 2726 in-

stances, and in most of these cases, the previous known optimal algorithm, i.e. an exhaustive

search, does not terminate even in a day.

Experimental Results. Our experimental results over all instances are illustrated in Fig-

ure 5.15. Each row of Figure 5.15 shows a comparison between our algorithm and a number

of heuristics. The x-axis denotes the optimal number of cache misses and the y-axis the num-

ber of cache misses incurred by the heuristic algorithm. Therefore, our algorithms’ results

correspond to the y = x line, and, as expected, all heuristic-based results are above or on this

line, i.e., they lead to more cache misses than optimal. To give a better view of the results,

each row starts with a full plot of all the instances (on the left) and then zooms into the

areas with a high density of points (which correspond to the instances that led to relatively

few cache misses). In this figure, we did not include the points corresponding to heuristics

that timed out, e.g. Sampling timed out on several larger instances, therefore there are few

visible blue points in the leftmost plot of the second row of Figure 5.15.

We found that in total, our algorithm reduces the number of cache misses by between

15% (over Sampling) to 31% (over k-Distance). We also found that our algorithm is effective

on every category of benchmarks. These results are illustrated in Figure 5.16.

145

Figure 5.15: Experimental Results over all instances. In each plot, the x-axis is the optimal
number of cache misses, i.e. the number of cache misses incurred by our algorithm, and the
y-axis is the number of cache misses incurred by the heuristic-based algorithm. Each dot
corresponds to a single instance. Each row begins with a plot of all instances at the left and
then zooms into areas with a high density of points (center and right).

146

Lin
e

ar A
lge

b
ra

So
rtin

g
D

yn
am

ic
P

ro
gram

m
in

g
R

ecu
rsio

n
Strin

g
M

atch
in

g
C

o
m

p
u

tatio
n

al
G

e
o

m
etry

Trees
So

rte
d

 A
rrays

To
tal

O
u

rs
1

0
0

1
0

0
1

0
0

1
0

0
1

0
0

1
0

0
1

0
0

1
0

0
1

0
0

C
C

D
P

1
2

9
.1

2
1

1
4

.6
5

1
1

3
.2

4
1

2
8

.5
7

1
1

5
.0

4
1

3
5

.2
7

1
3

6
.1

6
1

3
6

.8
1

2
2

.1

C
P

A
C

K
1

3
8

.7
7

1
0

6
.9

5
1

1
0

.6
2

1
2

4
.0

2
1

1
4

.4
1

4
0

.3
1

1
2

3
.0

4
1

2
7

.7
5

1
2

4
.6

1

C
P

A
C

K
+/G

P
A

R
T+

/C
A

p
R

I+
1

3
9

.0
7

1
4

8
.7

8
1

2
1

.9
1

3
9

.1
3

1
0

1
.8

7
1

3
5

.0
1

1
1

7
.3

8
1

3
6

.0
8

1
1

9
.7

8

Sam
p

lin
g

1
0

6
.2

8
1

5
2

.7
1

1
1

8
.9

5
1

7
5

.7
8

1
1

5
.4

1
2

8
.0

6
1

4
2

1
5

4
.6

9
1

1
5

.2

k-D
istan

ce
1

4
6

.3
2

1
7

0
.5

4
1

2
2

.8
8

1
6

7
.4

9
1

1
4

.5
5

1
3

1
.1

2
1

4
3

.1
5

1
6

1
.1

8
1

3
1

.2
3

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

F
igure

5.16:
Sum

m
ary

of
R
esults

by
B
enchm

ark
C
ategory.

In
each

case
w
e
report

the
num

ber
of

cache
m
isses

incurred
by

an
algorithm

as
a
percentage

ofthe
optim

alnum
ber

ofcache
m
isses.

T
he

optim
altotalnum

ber
ofcache

m
isses

over
allthe

instances
w
as

145,544.
See

[C
hatterjee

et
al.,2019d]

for
all

the
num

bers.
W
e
observe

that
there

is
no

best
heuristic

that
w
orks

better
than

others
in

allcases.
E
ach

heuristic-based
algorithm

w
orks

best
on

som
e
specific

categories
of

benchm
arks.

O
ur

algorithm
significantly

outperform
s
the

heuristics
in

all
cases,

and
especially

m
ore

so
in

benchm
arks

from
R
ecursion,

C
om

putational
G
eom

etry
and

Sorted
A
rrays.

147

6

Invariant Generation for Polynomial

Programs

This chapter originally appeared in the following publication:

[•] Chatterjee, K., Fu, H., Goharshady, A. K., and Goharshady, E. K. Polynomial

Invariant Generation for Non-deterministic Recursive Programs. In 41st ACM

Conference on Programming Language Design and Implementation (PLDI), 2020.

148

6.1 Introduction

In this chapter, we consider the classical problem of invariant generation for programs with

polynomial guards and assignments and focus on synthesizing invariants that are a conjunc-

tion of strict polynomial inequalities. We present a sound and semi-complete method based

on positivstellensätze.

Our Theoretical Results. On the theoretical side, the worst-case complexity of our ap-

proach is subexponential, whereas the worst-case complexity of the previous complete method

[Kapur, 2006] is doubly-exponential. Even when restricted to linear invariants, the best pre-

vious complexity for complete invariant generation is exponential [Colón et al., 2003].

Our Practical Results. On the practical side, we reduce the invariant generation problem

to quadratic programming (QP), which is a classical optimization problem with many indus-

trial solvers. We demonstrate the applicability of our approach by providing experimental

results on several academic benchmarks. To the best of our knowledge, the only previous

invariant generation method that provides completeness guarantees for invariants consisting

of polynomial inequalities is [Kapur, 2006], which relies on quantifier elimination and cannot

even handle toy programs such as our running example.

Invariants. An assertion at a program location that is always satisfied by the variables when-

ever the location is reached is called an invariant. Invariants are essential for many formal

and quantitative analyses [Halbwachs et al., 1997, Henzinger and Ho, 1994, Ngo et al., 2018].

Invariant generation is a classical problem in verification and programming languages, and

has been studied for decades, e.g. for safety and liveness analysis [Manna and Pnueli, 1995,

Cousot and Halbwachs, 1978, Cousot and Cousot, 1977].

Inductive Invariants. An inductive assertion is an assertion that holds at a location for

the first visit to it and is preserved under every cyclic execution path from and to the

location. Inductive assertions are guaranteed to be invariants, and the well-established

method to prove an assertion is an invariant is to find an inductive invariant that strengthens

it [Colón et al., 2003, Manna and Pnueli, 1995].

149

Previous Approaches. Given the importance of invariant generation, the problem has re-

ceived significant attention. One technique is abstract interpretation [Cousot and Halbwachs, 1978],

which is primarily a theory of semantic approximations. It has been used for invariant gen-

eration by computing least fixed points of abstractions of the collecting semantics, but it

guarantees completeness only for rare special cases [Giacobazzi and Ranzato, 1997].

Linear vs Polynomial Invariants. For linear invariant generation over programs with

linear updates, a sound and complete methodology was obtained by [Colón et al., 2003]. We

consider programs with polynomial updates and the problem of generating polynomial invari-

ants, i.e. invariants that are a conjunction of polynomial inequalities over program variables.

Hence, our setting is more general than [Colón et al., 2003] in terms of the programs we ana-

lyze, and also the desired invariants. The only previous approach that provides completeness

for this problem is [Kapur, 2006]. However, it has doubly-exponential complexity and is not

practically applicable even to toy programs. Efficient incomplete methods were proposed

in [Kincaid et al., 2018, Farzan and Kincaid, 2015, Kincaid et al., 2017].

Motivation for Polynomial Invariants. Invariants are used as inputs in a wide variety

of program analyses, and their accuracy can directly impact the effectiveness of those anal-

yses. Given that polynomial invariants provide a higher degree of accuracy in comparison

with linear invariants, using them improves existing solutions to many classical problems in

programming languages, such as the following:

• Safety Verification. This is one of the most well-studied model checking problems:

Given a program and a set of safety assertions that must hold at specific points of the

program, prove that the assertions hold or report that they might be violated by the

program. Many existing approaches for safety verification rely on invariants to prove the

desired assertions (see [Manna and Pnueli, 1995, Alur et al., 2006, Padon et al., 2016,

Albarghouthi et al., 2012b]). In these cases, weak invariants can lead to an increase

in false positives, i.e. if the supplied invariants are inaccurate and grossly overestimate

the program’s behavior, then the verifier might falsely infer that a true assertion can

be violated.

150

• Termination Analysis. A principal approach in proving termination of programs is to

synthesize ranking functions, i.e. well-founded functions whose value decreases at every

step of the program [Floyd, 1993]. Virtually all synthesis algorithms for ranking func-

tions, including our approach in Chapter 8, depend on invariants, e.g. [Colón and Sipma, 2001,

Bradley et al., 2005a, Chen et al., 2007]. Having inaccurate invariants, such as linear

instead of polynomial, can lead to a failure in the synthesis and hence inability to

prove termination. The same point also applies to termination analysis of probabilistic

programs [Chakarov and Sankaranarayanan, 2013].

• Inferring Complexity Bounds. Another fundamental problem is to find automated

algorithms that infer asymptotic complexity bounds on the runtime of (recursive) pro-

grams. Current algorithms for tackling this problem, such as [Chatterjee et al., 2017a],

rely heavily on invariants and their accuracy. Inaccurate invariants can lead to an

over-approximation of complexity or even failure to synthesize any complexity bound.

Completeness Guarantees. The points above not only justify the use of polynomial in-

variants due to their higher accuracy, but also demonstrate the need for approaches with

completeness guarantees. State-of-the-art approaches in polynomial invariant generation ei-

ther lack completeness guarantees or have doubly-exponential runtime and cannot be applied

even to toy programs. In this chapter, we address this gap.

Our Contribution. We consider two variants of the invariant generation problem. In-

formally, the weak variant asks for an optimal invariant with respect to a given objective

function, while the strong variant asks for a representative set of all invariants. Our contri-

butions are as follows:

• Soundness and Semi-completeness. We present a sound and semi-complete method

to generate polynomial invariants for programs with polynomial updates and solve

the strong invariant generation problem. Our completeness requires a compactness

condition that is satisfied by all real-world programs (Remark 6.4). Using the standard

notions of pre and post-conditions, our method can be extended to handle recursion as

well. See [Chatterjee et al., 2020a] for details.

151

• Theoretical Complexity. We show that the worst-case complexity of our procedure

is subexponential if we consider polynomial invariants with rational coefficients. In

comparison, complexity of the procedure in [Kapur, 2006] is doubly-exponential and

the approach of [Colón et al., 2003], which is sound and complete for linear invariants,

has exponential complexity, whereas we show how to generate polynomial invariants in

subexponential time.

• Practical Approach. We present a polynomial-time reduction from the weak invariant

generation problem to solving a quadratically-constrained linear program (QCLP)∗.

Solving QCLPs is an active area of research in optimization. Moreover, there are many

industrial solvers for handling real-world instances of quadratic programming and, using

our algorithm, practical improvements to such solvers carry over to polynomial invariant

generation.

Hence, our main contribution is theoretical, i.e. presenting a subexponential sound and semi-

complete method for generating polynomial invariants. Moreover, we also demonstrate the

applicability of our approach by providing experimental results on several academic exam-

ples from [Rodríguez-Carbonell, 2018] that require polynomial invariants. Unsurprisingly, we

observe that our approach is slower than previous sound but incomplete methods, so there is

a trade-off between completeness and efficiency. However, we expect practical improvements

in solving QCLPs to narrow the efficiency gap in the future. On the other hand, the only

previous complete method, proposed in [Kapur, 2006], is extremely impractical and cannot

handle any of our benchmarks, not even our toy running example.

Techniques. While the approaches of [Colón et al., 2003, Kapur, 2006] use Farkas’ lemma

and quantifier elimination to generate invariants, our technique is based on a positivstel-

lensatz. Our method replaces the quantifier elimination step with either (i) an algorithm

of [Grigor’ev and Vorobjov, 1988] for characterizing solutions of systems of polynomial in-

equalities or (ii) a reduction to QCLP.

∗Some of our reductions are to quadratically-constrained quadratic programs (QCQP). However, QCQP
is itself reducible to QCLP by adding a new variable that is constrained to be equal to the objective function.

152

6.2 Related works

Invariant Generation. Automated invariant generation is an important research topic that

has received much attention in the past years, and various classes of approaches have been

proposed, including the following:

• Recurrence analysis [Kincaid et al., 2018, Farzan and Kincaid, 2015, Humenberger et al., 2017,

Kincaid et al., 2017],

• Abstract interpretation [Bagnara et al., 2005, Chakarov and Sankaranarayanan, 2014,

Rodríguez-Carbonell and Kapur, 2007, Cousot et al., 2005, Müller-Olm and Seidl, 2004],

• Constraint solving [Kapur, 2006, Katoen et al., 2010, Chen et al., 2015, Feng et al., 2017,

Colón et al., 2003, Sankaranarayanan et al., 2004, Rodríguez-Carbonell and Kapur, 2004,

de Oliveira et al., 2016, Chatterjee et al., 2017c, Yang et al., 2010, Cousot, 2005, Lin et al., 2014],

• Inference [Gulwani et al., 2009, Dillig et al., 2013, Sharma and Aiken, 2016],

• Interpolation [McMillan, 2008],

• Symbolic execution [Csallner et al., 2008],

• Dynamic analysis [Nguyen et al., 2012], and

• Learning [Garg et al., 2016].

Summary. A summary of the results of the literature with respect to types of assignments,

types of generated invariants (polynomial, linear, etc.), programming language features that

can be handled (i.e. non-determinism, probability and recursion), soundness, completeness,

and whether the approach can handle weak/strong invariant generation is presented in Ta-

ble 6.1. For approaches that are applicable to weak/strong invariant generation, the respec-

tive runtimes are also reported. Most of the previous approaches, which are included in

Table 6.1 for the sake of completeness, are indeed incomparable with our approach, given

that they handle different problems, e.g. different types of programs.

153

Approach Assignments
and Guards Invariants N

on
d
et

R
ec

P
ro

b

S
ou

n
d

C
om

p
le

te
.

W
ea

k

S
tr

on
g

This Work Polynomial Polynomial X X × X X� X
QCLP

X
Subexp

[Colón et al., 2003]
CAV’03

Linearc Linear X × × X X
X

Exp†
X

Exp†

[Kapur, 2006]
ACA’04

Polynomial Polynomial X X × X X
X

2Exp
X

2Exp
[Dillig et al., 2013]

OOPSLA’13
General Linear

(Presburger)
X X × X × × ×

[Feng et al., 2017]
ATVA’17

Polynomial Polynomial × × X X Xa X
Poly ×

[Hrushovski et al., 2018]
LICS’18

Linear‡ Polynomial
Equalities

X × × X‡ X‡ × X‡,b

[Kincaid et al., 2018]
POPL’18

Polynomial,
Exponential,
Logarithmic

Polynomial,
Exponential,
Logarithmic

X X × X × × ×

[Rodríguez-Carbonell and Kapur, 2004]*
ISSAC’04

Polynomial,
Exponential

Polynomial
Equalities

X × × X X Xb Xb

[Sankaranarayanan et al., 2004]
POPL’04

Polynomialc Polynomial
Equalities

X × × X Xb Xb Xb

[Farzan and Kincaid, 2015]
FMCAD’15

Generald Generald X ×e × X × × ×

[Kincaid et al., 2017]
PLDI’17

General General X X × X × × ×

[de Oliveira et al., 2016]
ATVA’16

Polynomial,
Without

Conditional
Branching

Polynomial
Equalities

X × × X X
X

Poly
X

Poly

[Humenberger et al., 2017]*
ISSAC’17

Polynomial‡ Polynomial
Equalities

X × × X X‡ X‡,b X‡,b

[Adjé et al., 2015]∗
SAS’15

Polynomial Polynomial × × × X × × ×

� Semi-complete, assuming compactness (see Remark 6.4 and Lemma 6.2)
† Generates a system of quadratic inequalities, but then applies quantifier elimination, leading to
exponential runtime.
‡ Treats branching conditions as non-determinism.
∗ Does not support nested loops.
a Semi-complete
b Uses Gröbner basis computations (super-exponential worst-case runtime in theory).
c Considers general transition systems instead of programs.
d Handles non-linearity using linearization heuristics.
e Can be extended to handle recursion (see [Kincaid et al., 2017]).

Table 6.1: Summary of approaches for invariant generation.

154

Compared to previous works, we present the first applicable sound and semi-complete ap-

proach for polynomial invariant generation. Our complexity (subexponential) is not only bet-

ter than the previous doubly-exponential complexity for polynomial invariants [Kapur, 2006],

it even beats the exponential complexity of complete methods for linear invariants [Colón et al., 2003].

Recurrence Analysis. While approaches based on recurrence analysis can derive exact

invariants, they are applicable to a restricted class of programs where closed-form solutions

exist. Our approach does not require closed-form solutions.

Abstract Interpretation. This is the oldest and most classical approach to invariant

generation [Cousot and Halbwachs, 1978, Cousot and Cousot, 1977] and has also been used

for generating quadratic invariants [Adjé et al., 2010]. However, unlike our approach, it

cannot provide completeness, except in very special cases [Giacobazzi and Ranzato, 1997].

There are efficient tools and algorithms for invariant generation using abstract interpreta-

tion [Singh et al., 2017, Singh et al., 2015], but they focus on generating linear invariants.

Approaches in Dynamical Systems. Similar techniques have also been applied in the con-

text of continuous and hybrid dynamical systems [Oustry et al., 2019, Ben Sassi et al., 2015,

Sankaranarayanan, 2011]. However, they ensure neither completeness nor subexponential

complexity. A related well-known method is that of “barrier certificates” for safety verifica-

tion of hybrid systems [Prajna and Jadbabaie, 2004]. A barrier certificate is a function whose

initial value is non-positive and each loop iteration will never increase its value. In this sense,

barrier certificates are a special type of invariants, while our approach targets invariants in

general form.

Constraint Solving. Our approach falls in this category. First, we handle polynomial in-

variants, thus extending approaches based on linear arithmetics, such as [Katoen et al., 2010,

Colón et al., 2003, de Oliveira et al., 2016, Chatterjee et al., 2017c]. Second, we generate in-

variants consisting of polynomial inequalities, whereas several previous approaches synthesize

polynomial equalities [Sankaranarayanan et al., 2004, Rodríguez-Carbonell and Kapur, 2004].

Third, our approach is semi-complete, thus it is more accurate than approaches with re-

laxations (e.g. [Cousot, 2005, Lin et al., 2014]). Fourth, compared to previous complete

approaches that solve formulas in the first-order theory of reals (e.g. [Chen et al., 2015,

155

Yang et al., 2010, Kapur, 2006]) to generate invariants (often for a more limited set of pro-

grams), our approach has lower complexity, i.e. our approach is subexponential, whereas

methods based on quantifier elimination and solving first-order formulas take exponential or

doubly-exponential time. Another notable approach in this category is [Zhu et al., 2019] that

synthesizes barrier certificates for the verification of reinforcement learning methods. Com-

pared to [Zhu et al., 2019], our approach is not restricted to barrier certificates and can han-

dle non-convex invariants, whereas [Zhu et al., 2019] relies on [Andersen and Andersen, 2018]

and can only handle convex inequalities.

Comparison with [Feng et al., 2017]. Finally, we compare our approach with the most

related work, i.e. [Feng et al., 2017]. A main difference is that our approach can find a rep-

resentative set of all solutions, but [Feng et al., 2017] might miss some solutions, i.e. it only

guarantees to find at least one solution as long as the problem is feasible. In terms of tech-

niques, [Feng et al., 2017] uses Stengle’s positivstellensatz, while we use Putinar’s positivstel-

lensatz and the algorithm of [Grigor’ev and Vorobjov, 1988]. Moreover, [Feng et al., 2017]

considers the class of probabilistic programs without non-determinism and only focuses

on single probabilistic while loops, while we consider programs in general form, with non-

determinism and recursion, but without probability.

6.3 Invariants and Inductive Assertion Maps

In this section, we formally define the problems considered in this chapter and fix our notation.

Polynomial Programs. In the sequel, we consider polynomial transition systems, i.e. sys-

tems S = (V,L, `0, I, θ) in which for every transition θ = (`, `′, ϕ, µ) ∈ Θ, ϕ is a conjunction

of polynomial inequalities over V and µ assigns a polynomial over V to each variable.

Example 6.1. Consider the simple program in Figure 6.1. We will use this program as our

running example. It contains a single function sum that takes a parameter n and then non-

deterministically sums up some of the numbers between 1 and n and returns the summation.

We assume that we initially have n ≥ 1. Our goal is to prove that the final value of s is

always less than 0.5 · n2 + 0.5 · n+ 1.

156

sum(n) {
1 : i := 1 ;
2 : s := 0 ;
3 : while i ≤ n do
4 : � s := s+ i
5 : � skip ;
6 : i := i+ 1

od ;
7 : }

1

2

3

4 5

6

7

θ1 (i,	n,	s) ↦	(1,	n,	s)

(i,	n,	s) ↦	(i,	n,	0)θ2

θ3 θ4
n ≥ i n ≥ i

i ≥ n+1
θ5

(i,	n,	s) ↦	(i,	n,	s+
i)

θ6 θ7

θ8

(i,
	n
,	s
) ↦

	(i
+
1,
	n
,	s
)

θ9

Figure 6.1: A non-deterministic summation program (left) and its representation as a tran-
sition system (right).

157

Pre-conditions. A pre-condition is a function Premapping each label ` ∈ L of the transition

system to a conjunctive propositional formula Pre(`) :=
∧m
i=0 (ei ≥ 0), where each ei is an

arithmetic expression over the set V of variables† Intuitively, a pre-condition specifies a set

of requirements for the runs of the program, i.e. a run that does not satisfy the pre-condition

is considered to be invalid or impossible.

Valid Runs. A run r = 〈(`i,νi), θi〉∞i=0 is valid with respect to a pre-condition Pre if for

every i, we have νi |= Pre(`i). A state is reachable if it appears in a valid run.

Model of Computation. We consider programs in which variables can have arbitrary

real values. However, some of our results only hold if the variable values are bounded.

In such cases we explicitly mention that the result holds on “bounded reals”. The formal

interpretation of this point is that there exists a constant value c ∈ R≥0 such that for every

label ` ∈ L and every variable v ∈ V, the pre-condition Pre(`) contains the inequalities

−c ≤ v ≤ c. In other words, in the bounded reals model of computation, a variable overflows

if its value becomes more than c (resp. underflows if its value becomes less than −c), and any

run containing an overflow or underflow is considered invalid. As a direct consequence, for

every reachable state σ = (`,ν), we have ‖ν‖2 ≤ c ·
√
|V|. Hence, when discussing bounded

reals, we assume every pre-condition contains the inequality ‖V‖2
2 ≤ c2 · |V|, too.‡ Note that

this inequality is entailed by the bounds on values of individual variables. However, we will

later need it to satisfy the requirements of our positivstellensatz (Theorem 2.2).

Invariants. Given a transition system S = (V,L, `0, I,Θ) and a pre-condition Pre with

Pre(`0) = I, an invariant is a function Inv mapping each label ` ∈ L of the program to a con-

junctive propositional formula Inv(`) :=
∧m
i=0 (ei > 0) over V, such that for every reachable

state σ = (`,ν), it holds that ν |= Inv(`).

†Classically, pre-conditions are only defined for the first labels. Indeed, our definition of transition systems
contains I = Pre(`0). In this chapter, we allow pre-conditions for every label. This setting is strictly more
general, given that one can let Pre(`) = true for every other label.

‡More concretely, if V = {v1, v2, . . . , vn}, then the pre-condition contains the inequality

v21 + v22 + . . .+ v2n ≤ c2 · n.

158

Positivity Witnesses. Let e be an arithmetic expression on V and φ =
∧m
i=0(ei ./i 0) for

./i ∈ {>,≥}, such that for every valuation ν, we have ν |= φ ⇒ e(ν) > 0. We say that

a constant ε > 0 is a positivity witness for e with respect to φ if for every valuation ν, we

have ν |= φ⇒ e(ν) > ε. In the sequel, we limit our focus to inequalities that have positivity

witnesses. Intuitively, this means that we consider invariants of the form
∧m
j=1(ej > 0) where

the values of ej’s in the valid runs of the program cannot get arbitrarily close to 0§.

Inductive Assertion Maps. Given a transition system S = (V,L, `0, I,Θ) and a pre-

condition Pre with Pre(`0) = I, an inductive assertion map is a function Ind mapping each

label ` ∈ L of the program to a conjunctive propositional formula Ind(`) :=
∧m
i=0 (ei > 0)

over V, such that the following two conditions hold:

• Initiation. For every state σ = (`0,ν0), we have ν0 |= Pre(`0) ⇒ ν0 |= Ind(`0).

Intuitively, Ind(`0) should be entailed by the pre-condition Pre(`0) = I.

• Consecution. Let σ′ = (`′,ν′) be a successor state of σ = (`,ν). We must have

(ν |= Ind(`) ∧ ν |= Pre(`) ∧ ν′ |= Pre(`′))⇒ ν′ |= Ind(`′).

Intuitively, this condition means that the inductive assertion map cannot be falsified

by running a valid step of the execution of the program.

It is well-known that every inductive assertion map is an invariant. So, inductive assertion

maps are often called inductive invariants, too.

Example 6.2. Consider the program in Figure 6.1. Assuming that we have the pre-condition

n ≥ 0 at label 1, it is easy to show that for any ε > 0, Ind(`) := (n+ε > 0 ∧ i+ε > 0 ∧ s+ε >

0) for all ` ∈ {1, . . . , 7} is an inductive assertion map, i.e. it holds at the beginning of the

program and no valid execution step falsifies it. Hence, it is also an invariant.

§Note that this is a very minor restriction, in the sense that if e > 0 is an invariant, then so is e+ ε > 0.
We are unable to find invariants e > 0 where e can get arbitrarily close to 0 over all valid runs of the program.
However, in such cases, we can synthesize e+ ε > 0 for any positive ε.

159

We define our synthesis problem in terms of inductive invariants, because the classical

method for finding or verifying invariants is to consider inductive invariants that strengthen

them [Colón et al., 2003, Manna and Pnueli, 1995].

The Invariant Synthesis Problem. Given a transition system S = (V,L, `0, I, θ), to-

gether with a pre-condition Pre with Pre(`0) = I, the invariant synthesis problem asks for

inductive invariants of a given form and size (e.g. linear or polynomial of a given degree).

The problem can be divided into two variants:

• The Strong Invariant Synthesis Problem asks for a characterization or a representative

set of all possible invariants.

• The Weak Invariant Synthesis Problem provides an objective function over the invari-

ants (e.g. a function over the coefficients of polynomial invariants) and asks for an

invariant that maximizes the objective function.

Polynomial Invariants. In the sequel, we consider the synthesis problems for polynomial

invariants and pre-conditions, i.e. we assume that all arithmetic expressions used in the

atomic assertions are polynomials with real coefficients.

Remark 6.1. In this chapter, we focus on transition systems. However, our approaches are

easily extensible to recursive programs, as well. See [Chatterjee et al., 2020a] for details.

Notation. To avoid defining spurious notation, we use the polynomial g ∈ R[V] and the

boolean predicate g ≥ 0 interchangeably. Similarly, we interchange a set {g1, . . . , gn} of

polynomials and the formula
∧n
i=1 gi ≥ 0.

6.4 Our Positivstellensatz-based Approach

We first provide a sound and semi-complete reduction from inductive invariants to solutions

of a system of quadratic constraints. Our main tool is Putinar’s positivstellensatz (Theo-

rem 2.2). Using this reduction, we show that the Strong Invariant Synthesis problem can be

solved in subexponential time. We also show that the Weak Invariant Synthesis problem can

be reduced to QCLP.

160

6.4.1 Overview of the Approach

In this section, we provide an overview of our algorithms. The next sections go through all

the details. Our algorithms for Strong and Weak Invariant Synthesis are very similar. They

each consist of four main steps and differ only in the last step. The steps are as follows:

• Step 1. First, the algorithm creates a template for the inductive invariant at each

label. More specifically, it creates polynomial templates of the desired size and degree,

but with unknown coefficients. The goal is to synthesize values for these unknown

coefficients so that the template becomes a valid inductive invariant.

• Step 2. The algorithm generates a set of constraints that should be satisfied by the

template so as to ensure that it becomes an inductive invariant. These constraints

encode the initiation and consecution requirements as in the definition of inductive

invariants. Moreover, they have a very specific form: each constraint consists of poly-

nomials g1, . . . , gm and g over V and encodes the requirement that for every valuation

ν, if we have g1(ν) ≥ 0, g2(ν) ≥ 0, . . . , gm(ν) ≥ 0, then we must also have g(ν) > 0.

• Step 3. Exploiting the structure of the constraints generated in the previous step, the

algorithm applies Putinar’s positivstellensatz to translate the constraints into quadratic

constraints over the unknown coefficients.

• Step 4. The algorithm uses an external solver for handling the system of quadratic

constraints generated in the previous step. In case of Strong Invariant Synthesis, the

external solver would use the algorithm of [Grigor’ev and Vorobjov, 1988] to provide

a representative set of all invariants. In contrast, for Weak Invariant Synthesis, the

external solver is an optimization suite for quadratic programming (QCLP).

6.4.2 Strong Invariant Synthesis

We now provide a formal description of the input to our algorithm for Strong Invariant

Synthesis and then present details of every step.

161

The StrongInvSynth Algorithm. We present an algorithm StrongInvSynth that gets the

following items as its input:

• A polynomial transition system S = (V,L, `0, I,Θ) with finitely many variables and

locations,

• A polynomial pre-condition Pre, such that Pre(`0) = I,

• Positive integers d, n and Υ, where d is the degree of polynomials in the desired inductive

invariants, n is the desired size of the invariant generated at each label, i.e. number of

atomic assertions, and Υ is a technical parameter to ensure semi-completeness, which

will be discussed later;

and produces a representative set of all inductive invariants Ind of the transition system S,

such that for all ` ∈ L, the set Ind(`) consists of n atomic assertions of degree at most d. Our

algorithm consists of the following four steps:

Step 1) Setting up templates. Let V = {v1, v2, . . . , vt} and define Md = {m1,m2, . . . ,mr}
as the set of all monomials of degree at most d over V, i.e. Md := {∏t

i=1 v
αi
i | ∀i αi ∈

Z≥0 ∧ ∑t
i=1 αi ≤ d}. At each label ` ∈ L of the program S, the algorithm generates a

template η(`) :=
∧n
i=1 ϕ`,i where each ϕ`,i is of the form ϕ`,i :=

(∑r
j=1 s`,i,j ·mj > 0

)
. Here,

the s`,i,j’s are new unknown variables. For brevity, we call them s-variables. Intuitively, our

goal is to synthesize values for s-variables such that η becomes an inductive invariant.

Example 6.3. Consider the summation program in Figure 6.1. We have V = {n, i, s}.
Suppose that we want to synthesize a single quadratic assertion as the invariant at each label.

In Step 1, the algorithm creates the following template for each label ` ∈ {1, 2, . . . , 7}:

η(`) := s`,1,1 + s`,1,2 · n+ s`,1,3 · i+ s`,1,4 · s+ s`,1,5 · n2 + s`,1,6 · n · i+

s`,1,7 · n · s+ s`,1,8 · i2 + s`,1,9 · i · s+ s`,1,10 · s2

Step 2) Setting up constraint pairs. For each transition θ = (`, `′, ϕ, µ) ∈ Θ, the algo-

rithm constructs a set Λθ of constraint pairs of the form λ = (Γ, g) where Γ =
∧m
i=1 (gi ≥ 0)

162

and g, g1, . . . , gm are polynomials in R[V] with unknown coefficients based on the s-variables.

Intuitively, a constraint pair (Γ, g) encodes the following condition:

∀ν ∈ RV ν |= Γ⇒ g(ν) > 0 ≡ ∀ν ∈ RV (∀gi ∈ Γ gi(ν) ≥ 0)⇒ g(ν) > 0.

The construction is as follows¶:

• For every polynomial g such that g > 0 appears in η(`′), the algorithm adds the

constraint pair

(η(`) ∧ Pre(`) ∧ ϕ ∧ Pre(`′) ◦ µ , g ◦ µ)

to Λθ. Here, ◦ denotes composition.

Additionally, the algorithm constructs the following set Λ0:

• For every polynomial g for which g > 0 appears in η(`0), the algorithm adds the

constraint pair (Pre(`0), g) to Λ0.

Finally, the algorithm computes Λ =
⋃
θ∈Θ Λθ ∪ Λ0.

Example 6.4. In the summation program of Figure 6.1, suppose that I = Pre(1) := (n ≥ 0)

and Pre(`) := (1 ≥ 0) ≡ true for every ` 6= 1. We provide some examples of constraint pairs

generated in Step 2 of the algorithm:

• We have the transition θ1 = (1, 2, true, (i, n, s) 7→ (1, n, s)) in Θ. So, the algorithm

considers the pair

(η(1) ∧ Pre(1) ∧ true ∧ Pre(2)[i← 1], η(2)[i← 1])

which is symbolically computed ass1,1,1 + s1,1,2 · n+ . . .+ s1,1,10 · s2 ≥ 0 ∧
n ≥ 0

,

s2,1,1 + s2,1,2 · n+ s2,1,3 + s2,1,4 · s+
s2,1,5 · n2 + s2,1,6 · n+ s2,1,7 · n · s+

s2,1,8 + s2,1,9 · s+ s2,1,10 · s2


¶Note that all computations are done symbolically.

163

and added to Λθ1. Note that Pre(2) is true and is hence ignored.

• We have the transition θ3 = (3, 4, n− i ≥ 0, (i, n, s) 7→ (i, n, s)) in Θ. So, the algorithm

considers the pair

(η(3) ∧ Pre(3) ∧ n− i ≥ 0 ∧ Pre(4), η(4))

Note that in this case there is no update, i.e. the update function µ is the identity

function. Moreover, Pre(3) and Pre(4) are both true. Hence, this constraint pair is

symbolically computed as followss3,1,1 + s3,1,2 · n+ . . .+ s3,1,10 · s2 ≥ 0 ∧
n− i ≥ 0

, s4,1,1 + s4,1,2 · n+ . . .+ s4,1,10 · s2

 .

and added to Λθ3 .

• We have I = Pre(1) := (n ≥ 0) so the algorithm computes the following constraint pair

and adds it to Λ0 :

(
n ≥ 0 , s1,1,1 + s1,1,2 · n+ . . .+ s1,1,10 · s2

)
.

Step 3) Translating constraint pairs to quadratic equalities. Let Λ be the set of all

constraint pairs from the previous step. For each λ = (
∧m
i=1 (gi ≥ 0) , g) ∈ Λ, the algorithm

takes the following actions:

(i) Let V′ = {v1, . . . , vt′} ⊆ V be the set of all program variables that appear in g or

the gi’s. The algorithm computes the set MΥ = {m′1,m′2, . . . ,m′r′} of all monomials of

degree at most Υ over V′. Note that Υ is a technical parameter that was supplied as

part of the input.

(ii) It symbolically computes an equation of the form (2.2):

g = ε+ h0 +
∑m

i=1 hi · gi (†)

164

where ε is a new unknown and positive real variable and each polynomial hi is of the

form
∑r

j=1 ti,j ·m′j. Here, the ti,j’s are also new unknown variables. Intuitively, we aim to

synthesize values for both t-variables and s-variables in order to ensure the polynomial

equality (†). Note that both sides of (†) are polynomials in R[V′] whose coefficients are

quadratic expressions over the newly-introduced s-, t- and ε-variables.

(iii) The algorithm equates the coefficients of corresponding monomials in the left and right

hand sides of (†), leading to a set of quadratic equalities over the unknown variables,

i.e. s-, t- and ε-variables.

(iv) The algorithm computes a set of quadratic equalities which are equivalent to the asser-

tion that the hi’s can be written as sums of squares (Lemma 2.3).

The algorithm conjunctively compiles all the generated quadratic equalities into a single

system of quadratic constraints.

Remark 6.2. Based on above, the technical parameter Υ is the maximum degree of the sum-

of-squares polynomials hi in (†). More specifically, in Step 3, we are applying a special case

of Putinar’s positivstellensatz, in which the sum-of-square polynomials can have a degree of

at most Υ.

Example 6.5. Consider the first constraint pair generated in Example 6.4. The algorithm

writes (†), i.e. g = ε+ h0 +
∑2

i=1 hi · gi where g = s2,1,1 + . . .+ s2,1,10 · s2 is the polynomial in

the second component of the constraint pair, and g1 = s1,1,1 + . . .+ s1,1,10 · s2 and g2 = n are

the polynomials in the first component of the constraint pair. Moreover, each hi is a newly

generated polynomial containing all possible monomials of degree at most Υ, e.g. if Υ = 2,

we have hi = ti,1 + ti,2 · n+ . . .+ ti,10 · s2, where each ti,j is a new unknown variable. It then

equates the coefficients of corresponding monomials on the two sides of (†). For example,

consider the monomial n. Its coefficient in g is s2,1,2 + s2,1,6. In the RHS of (†), there are a

variety of ways to obtain n, hence its coefficient is the sum of the following:

• t0,2, i.e. the coefficient of n in h0,

• s1,1,1 · t1,2 + s1,1,2 · t1,1, i.e. the coefficient of n in h1 · g1,

165

• t2,1, i.e. the coefficient of n in h2 · g2.

Hence, the algorithm generates the quadratic equality

s2,1,2 + s2,1,6 = t0,2 + s1,1,1 · t1,2 + s1,1,2 · t1,1 + t2,1

over the s- and t-variables. The algorithm computes similar equalities for every other mono-

mial, including 1.

Step 4) Finding representative solutions. The previous step has created a system of

quadratic constraints over s-variables and other new variables. In this step, the algorithm

finds a representative set Ξ of solutions to this system by calling an external solver. Then, for

each solution ξ ∈ Ξ, it plugs the values synthesized for the s-variables into the template η to

obtain an inductive invariant ηξ := η[s`,i,j ← ξ(s`,i,j)]. The algorithm outputs {ηξ | ξ ∈ Ξ}.

Remark 6.3 (Representative Solutions). In real algebraic geometry, a standard notion for

a representative set of solutions to a polynomial system of equalities is to include one solu-

tion from each connected component of the set of solutions [Basu et al., 2007]. The classical

algorithm for this problem is called cylindrical algebraic decomposition and has a doubly-

exponential runtime [Basu et al., 2007, Sturmfels, 2002]. However, if the coefficients are

limited to rational numbers instead of real numbers, then a subexponentail algorithm is pro-

vided in [Grigor’ev and Vorobjov, 1988]‖. Hence, Step 4 of StrongInvSynth has subexponential

runtime in theory.

Lemma 6.1 (Soundness). Every output of StrongInvSynth is an inductive invariant. More

generally, for every solution ξ ∈ Ξ obtained in Step 4, the function ηξ := η[s`,i,j ← ξ(s`,i,j)]

is an inductive invariant.

Proof. The valuation ξ satisfies the system of quadratic constraints obtained in Step 3. Hence,

for every constraint pair (Γ, g) ∈ Λ, g[s`,i,j ← ξ(s`,i,j)] can be written in the form (†). Hence,
we have ξ |= (Γ, g). By definition of Step 2, this is equivalent to ηξ having the initiation and

consecution properties and hence being an inductive invariant.

‖No tight runtime analysis is available for this algorithm, but [Grigor’ev and Vorobjov, 1988] proves that
its runtime is subexponential.

166

We now prove our completeness result. Our approach is semi-complete for bounded

reals in the sense of [Chatterjee et al., 2016a]. Concretely, this means that if we assume the

bounded reals model of computation (see Section 6.3), then any valid inductive invariant can

be found by our approach so long as the technical parameter Υ is large enough. Recall that

Υ is a bound on the degree of the sum-of-square polynomials (see Remark 6.2).

Lemma 6.2 (Semi-completeness with Compactness). If the pre-condition Pre satisfies the

compactness condition of Theorem 2.2, i.e. if in every label `, Pre(`) contains an atomic

proposition of the form g ≥ 0 such that the set {ν ∈ RV | g(ν) ≥ 0} is compact, then

for every inductive invariant Ind that has the form of the template η, there exists a natural

number ΥInd, such that for every technical parameter Υ ≥ ΥInd, the invariant Ind corresponds

to a solution of the system of quadratic equalities obtained in Step 3 of StrongInvSynth.

Proof. Let Ind be an inductive invariant in the form of the template η. We denote the value

of s`,i,j in Ind by ξ(s`,i,j). Given that Ind satisfies initiation and consecution, the valuation ξ

satisfies every constraint pair (Γ, g) generated in Step 2. Each such Γ contains an assertion

gi ≥ 0 such that {x ∈ RV | gi(x) ≥ 0} is compact. Hence, by Corollary 2.3, g can be

written in the form (†)∗∗ and for large enough Υ, there exists a solution to the system that

maps each s`,i,j to ξ(s`,i,j).

Remark 6.4 (Bounded Reals, Compactness and Real-world programs). Note that in the

bounded reals model of computation, every pre-condition enforces that the value of every

variable is between −c and c and also contains the polynomial inequality
∥∥Vf

∥∥2

2
≤ c2 · |Vf |

(see Section 6.3). The set of valuations that satisfy the latter polynomial are points in RV

whose distance from the origin is at most a fixed amount c·
√
|V|. Hence, this set is closed and

bounded and therefore compact, and satisfies the requirement of Putinar’s positivstellensatz.

So, our approach is semi-complete for bounded reals.

It is worth mentioning that almost all real-world programs have bounded variables. For

example, programs that use floating-point variables can at most store a finite number of

∗∗Theorem 2.2 requires compactness and so does Corollary 2.3.

167

values in each variable, hence their variables are always bounded††. Also, note that while the

completeness result is dependent on bounded variables, our soundness result holds for general

unbounded real variables.

Remark 6.5 (Non-strict inequalities). Although we considered invariants consisting of in-

equalities with positivity witnesses, our algorithm can easily be extended to generate invariants

with non-strict inequalities, i.e. invariants of the form
∧

(g(x) ≥ 0). To do so, it suffices to

replace Equation (†) in Step 3 of the algorithm with Equation (2.3), i.e. remove the ε-variables

(positivity witnesses). This results in a sound, but not complete, method for generating non-

strict polynomial invariants. An alternative approach, with a more in-depth use of the sätze,

can ensure semi-completeness. See Chapter 7 for details.

Remark 6.6 (Complexity). It is straightforward to verify that Steps 1–3 of StrongInvSynth

have polynomial runtime. Hence, our algorithm provides a polynomial reduction from the

Strong Invariant Synthesis problem to the problem of finding representative solutions of a

system of quadratic equalities. As mentioned earlier, this problem is solvable in subexponential

time [Grigor’ev and Vorobjov, 1988]. Hence, the runtime of our approach is subexponential,

too. Note that we consider d and Υ to be fixed constants.

Theorem 6.1 (Strong Invariant Synthesis). Given a transition system S = (V,L, `0, I, θ)

and a pre-condition Pre that satisfies the compactness condition, the StrongInvSynth algorithm

solves the Strong Invariant Synthesis problem in subexponential time. This solution is sound

and semi-complete with respect to the technical parameter Υ.

Remark 6.7 (Inefficiency). Despite its subexponential runtime, the algorithm of [Grigor’ev and Vorobjov, 1988]

has a poor performance in practice [Hong, 1991]. Hence, Theorem 6.1 can only be considered

as a theoretical contribution and is not applicable to real-world programs.

6.4.3 Weak Invariant Synthesis and Practical Method

Due to the practical inefficiency mentioned in Remark 6.7, in this section we focus on using

a very similar approach to reduce the Weak Invariant Synthesis problem to QCLP. Given

††To obtain a more realistic model of floating-point variables, one should also introduce constraints that
ensure a variable cannot hold an arbitrarily small non-zero value. However, these details are beyond the
scope of the current thesis, which focuses on real variables.

168

that there are many industrial solvers capable of handling real-world instances of QCLP, this

reduction will provide a practical sound and semi-complete method for polynomial invariant

generation. We now provide an algorithm for the Weak Invariant Synthesis problem. This is

very similar to StrongInvSynth, so we only describe the differences.

The WeakInvSynth Algorithm. Our algorithm WeakInvSynth takes the same set of inputs

as StrongInvSynth, as well as an objective function obj over the resulting inductive invariants.

We assume that obj is a linear or quadratic polynomial over the s-variables in the template.

Intuitively, obj serves as a measure of desirability of a synthesized invariant and the goal is

to find the most desirable invariant.

The first three steps of the algorithm are the same as StrongInvSynth. The only difference

is in Step 4, where WeakInvSynth needs to find only one solution for the computed system of

quadratic equalities, i.e. the solution that maximizes obj. Hence, Step 4 is changed as follows:

Step 4) Finding the optimal solution. Step 3 has generated a system of quadratic

equalities. In this step, the algorithm uses a QCLP-solver to find a solution ξ of this system

that maximizes the objective function obj. It then outputs the inductive invariant ηξ :=

η[s`,i,j ← ξ(s`,i,j)].

Example 6.6. In Example 6.1, we mentioned that our goal is to prove that the value of s at

the end of the function is less than 0.5 · n2 + 0.5 · n+ 1, i.e. we want to obtain

0.5 · n2 + 0.5 · n+ 1− r > 0 (∗)

at the endpoint label 7 of sum. To do so, our algorithm calls a QCLP-solver over the system of

quadratic constraints obtained in Example 7.9, with the objective of minimizing the Euclidean

distance between the coefficients synthesized for η(7) and those of (∗). The QCLP-solver

obtains a solution ξ (i.e. a valuation to the new unknown s−, t− and ε−variables), such that

η(7)[s7,i,j ← ξ(s7,i,j)] = 0.5 ·n2 + 0.5 ·n+ 1− r > 0, hence proving the desired invariant. The

complete solution is provided in [Chatterjee et al., 2020a].

Remark 6.8 (Form of the Objective Function). At first sight, the objective functions consid-

ered above might seem rather bizarre, given that they are functions of the unknown s-variables,

169

i.e. the coefficients of the invariant which should be synthesized by the algorithm. We remark

two points:

• In our view, this is the most useful formulation. Note that in many cases, such as the

example above and our experimental results in Section 6.5, the goal of a verification

process is to prove that a certain desired invariant Inv(`) holds at a specific point ` of

the program. This goal can be specified as an objective function over the s-variables.

However, it does not simplify the invariant generation problem, because although Inv(`)

is given, in order to prove that it is really an invariant, the algorithm has to generate

an inductive invariant at every other point of the program, too.

• Our approach does not depend on the form of objective functions, hence the objective

can be any other linear or quadratic function (possibly depending on other variables)

and our results will remain intact. It can even be a non-quadratic function, in which

case the reduction would be to general quadratically-constrained optimization.

Remark 6.9 (QCLP). QCLP is a well-studied optimization problem [Chen et al., 2017,

Linderoth, 2005]. It is NP-hard, but there are many efficient solvers for handling its real-

world instances [Andersen and Andersen, 2018, Rothberg et al., 2018, IBM, 2019, Vanderbei, 2006].

These scalable solvers have been successfully applied to real-world verification problems, such

as solving large POMDPs [Amato et al., 2007].

Note that Lemmas 6.1 and 6.2 (Soundness and Completeness) carry over to this case

without any modification, so we have the following theorem:

Theorem 6.2 (Weak Invariant Synthesis). Given a transition system S = (V,L, `0, I,Θ),

a pre-condition Pre that satisfies the compactness condition and a linear/quadratic objective

function obj, the WeakInvSynth algorithm reduces the Weak Invariant Synthesis problem to

QCLP in polynomial time. This reduction is sound and semi-complete with respect to the

technical parameter Υ.

170

Benchmark n d |V| |Sys| Runtime
cohendiv 1 1 6 622 15.236s
divbin 1 1 5 738 5.399s
hard 1 2 6 8324 27.952s

mannadiv 1 2 5 2561 18.222s
wensely 1 2 7 9422 20.051s
sqrt 1 2 4 2030 5.808s

dijkstra 1 2 5 5072 12.776s
z3sqrt 1 2 6 4692 12.944s
freire1 1 2 3 1210 26.474s
freire2 1 2 4 1016 10.670s

euclidex1 1 2 11 11191 1m37.493s
euclidex2 1 2 8 11156 39.323s
euclidex3 1 2 13 36228 3m23.110s
lcm1 1 2 6 6589 17.851s
lcm2 1 2 6 6176 18.714s

prodbin 1 2 5 5038 12.125s
prod4br 1 2 6 10522 43.205s
cohencu 1 2 5 3424 11.778s
petter 1 2 3 1080 20.390s

Table 6.2: Experimental results over the benchmarks of [Rodríguez-Carbonell, 2018]. |V| is
the number of program variables and |Sys| is the size of the quadratic system, i.e. number
of (in)equalities.

6.5 Experimental Results

Implementation. We implemented our algorithms for weak invariant generation in Java

and used the LOQO optimizer [Vanderbei, 2006] for solving the QCLPs. All results were

obtained on an Intel Core i5-7200U machine with 6 GB of RAM, running Ubuntu 18.04. See

our technical report [Chatterjee et al., 2020a] for more details.

Results. We used the benchmarks in [Rodríguez-Carbonell, 2018], which contain programs,

pre-conditions, and the desired partial invariants (invariants at a few points of the program)

that are needed for their verification. We ignored benchmarks that contained non-polynomial

assignments/pre-conditions. The results are summarized in Table 6.2. Our algorithm is not

complete for non-strict invariants (Remark 6.5), but it could successfully and accurately

generate all the desired invariants for these benchmarks.

171

Runtimes. Our runtimes over these benchmarks are typically under a minute, while the

maximum runtime is close to 3.5 minutes. This shows that our approach is applicable in

practice and does not suffer from the same impracticalities as [Grigor’ev and Vorobjov, 1988],

which would take years on problems of this size [Hong, 1991].

Comparison with Complete Approaches. Almost none of the previous complete ap-

proaches are applicable to our benchmarks due to the existence of non-linear assignments

and also because the desired invariants are polynomial inequalities (See Table 6.1). The

only previous complete approach that handles polynomial programs and polynomial in-

equalities in invariants is [Kapur, 2006]. However, it relies on quantifier elimination and

is extremely inefficient. We confirmed this point experimentally. We manually created the

constraints of [Kapur, 2006] for our benchmarks ‡‡ and used state-of-the-art quantifier elimi-

nation / SMT solver tools (Mathematica [Wolfram Research, 2020], QEPCAD [Brown, 2010]

and Z3 [De Moura and Bjørner, 2008]) to solve them. In all cases, the solver either did not

terminate in 12 hours or returned with failure. This was the case even for our simple running

example (Figure 6.1).

Comparison with Incomplete Approaches. Our approach is much slower than previous

sound approaches that do not provide any completeness guarantee, e.g. [Farzan and Kincaid, 2015].

Hence, there is currently a trade-off between accuracy (completeness guarantees) and effi-

ciency. While the semi-completeness guarantee is a key novelty of our approach, we expect

that advancements in quadratic programming, which is an active research topic in optimiza-

tion, will narrow the runtime gap.

Given that our approach has semi-completeness guarantees (over bounded reals), it is

no surprise that it can generate desired polynomial invariants for inputs which no previous

incomplete approach could handle. In our technical report [Chatterjee et al., 2020a], we

present a classical example of a program that approximates
√

2 using its continued fraction

representation. Our implementation generates required invariants of degree 5, which, to the

best of our knowledge, is beyond the reach of all previous methods. Specifically, we tried all

the incomplete approaches in Table 6.1. They are either not applicable to this example or

‡‡Following [Kapur, 2006], we only created templates at cutpoints and endpoints.

172

fail to synthesize the desired invariant. Our approach can also handle recursive benchmarks

that are beyond the reach of all previous methods. See [Chatterjee et al., 2020a] for more

details and examples.

173

7

Reachability Analysis for Polynomial

Programs

This chapter is based on the following unpublished work:

[•] Asadi, A., Chatterjee, K., Fu, H., Goharshady, A. K., and Mahdavi, M. Inductive

Reachability Witnesses. arXiv preprint arXiv:2007.14259, 2020.

174

7.1 Introduction

Outline. In this chapter, we consider the fundamental problem of reachability analysis over

polynomial imperative programs with real variables. The reachability property requires that

a program can reach certain target states during its execution. Previous works that tackle

reachability analysis are either unable to handle programs consisting of general loops (e.g.

symbolic execution), or lack completeness guarantees (e.g. abstract interpretation), or are

not automated (e.g. incorrectness logic/reverse Hoare logic). In contrast, we propose a novel

approach for reachability analysis that can handle general programs, is (semi-)complete,

and can be entirely automated for a wide family of programs. Our approach extends tech-

niques from both invariant generation and ranking-function synthesis to reachability analysis

through the notion of (Universal) Inductive Reachability Witnesses (IRWs/UIRWs). While

traditional invariant generation uses over-approximations of reachable states, we consider

the natural dual problem of under-approximating the set of program states that can reach

a target state. We then apply an argument similar to ranking functions to ensure that all

states in our under-approximation can indeed reach the target set in finitely many steps.

Our Results. On the theoretical level, we first show that our IRW/UIRW-based approach

is sound and complete for reachability analysis of imperative programs. Then, we focus on

linear and polynomial programs and develop automated methods for synthesizing linear and

polynomial IRWs/UIRWs. In the linear case, our techniques are based on Farkas’ lemma. For

the polynomial case, our approach utilizes Handelman’s Theorem, Hilbert’s Nullstellensatz

and Putinar’s Positivstellensatz. To the best of our knowledge, such a combination of these

theorems to obtain algorithms for program analysis is a novel contribution. On the practical

side, our experimental results show that our automated approaches can efficiently prove

complex reachability objectives over standard benchmarks.

Reachability. Reachability analysis is a basic and fundamental problem in computer science,

starting from the halting problem of Turing machines [Turing, 1936]. It is a core problem

in program verification as it aims at checking whether states with certain properties can be

reached during the execution of a program. It also constitutes the most basic liveness property

175

and has been widely studied as a fundamental problem in program analysis and model check-

ing [Pnueli, 1977, Manna and Pnueli, 2012, Floyd, 1993, Hoare, 1969, Clarke et al., 2018].

The target states considered in reachablity analysis can be either desirable so that reach-

ability to these states should be guaranteed, or undesirable so that the goal is to find an

execution path leading to an unwanted behavior, hence proving incorrectness of the sys-

tem. As mentioned, reachability to desirable states encodes the most basic type of live-

ness property. Reachability to undesirable states is also ubiquitous in verification prob-

lems and useful when one needs to identify realistic bugs in software implementations (see

e.g. [O’Hearn, 2020]). Indeed, in real-world software development, most bugs are iden-

tified by finding an execution path that leads to a specific error [Distefano et al., 2019,

Godefroid, 2007, Majumdar and Sen, 2007]. This is the idea that led to developments such

as incorrectness logic [O’Hearn, 2020].

Previous Works on Formal Models. A large body of research on reachability analysis is

conducted over formal models [Clarke et al., 2018], such as finite-state systems [Baier and Katoen, 2008,

Chapter 3–6], pushdown automata [Walukiewicz, 2001], Petri nets [Mayr, 1981, Czerwinski et al., 2019,

Atig and Ganty, 2011, Darondeau et al., 2012] and timed automata [Alur and Dill, 1990]. For

these models, precise decidability and complexity results are attained. Moreover, numerous

efficient algorithms have been developed to automate reachability analysis over these models

(See [Baier and Katoen, 2008] for a comprehensive overview). Although the formal models

above serve as an important abstraction mechanism for realistic systems, the techniques for

reachability analysis over thems cannot be applied directly to imperative programs, in par-

ticular with real-valued variables. This is because the values taken by the variables in a

program typically come from an infinite, even uncountable, domain and the underlying pro-

gram structure might be irregular, i.e. in many cases a given piece of program code cannot

be directly translated into any of the formal models above.

Reachability in Software Model Checkers. Many of the most successful software model

checkers rely heavily on reachability analysis [Beyer and Keremoglu, 2011, Beyer et al., 2007,

Ball and Rajamani, 2002, Holzmann, 1997]. Notably, the BLAST project [Beyer et al., 2007]

describes itself as “a verification tool for the C language that solves the reachability problem”.

176

Moreover, even when considering the verification of safety properties, all approaches and tools

based on Counterexample-Guided Abstraction Refinement (CEGAR) [Clarke et al., 2000,

Alur et al., 1995, Balarin and Sangiovanni-Vincentelli, 1993, Gurfinkel et al., 2006], includ-

ing SLAM [Ball et al., 2011, Ball and Rajamani, 2002] and BLAST [Beyer et al., 2007], need

to constantly perform reachability analyses to obtain their counterexamples. These model

checkers rely on predicate abstraction refinement and, assuming that we require the anal-

ysis to terminate in finite time, can guarantee completeness when the variables have finite

domains [Henzinger et al., 2002], but do not provide such guarantees for programs with real-

valued variables.

Previous Works on (Imperative) Programs. When considering imperative programs,

the reachability problem, and in particular the special case of termination analysis, has been

widely studied over the past decades. There are several relevant categories of previous work,

including symbolic execution [Cadar and Sen, 2013], termination analysis [Floyd, 1993], ab-

stract interpretation [Cousot and Cousot, 1977] and recent results on incorrectness logic/re-

verse Hoare logic [O’Hearn, 2020, de Vries and Koutavas, 2011].

• Symbolic execution runs program codes statically in a symbolic fashion, and is thus effec-

tive for programs without general unbounded loops. For programs with loops, symbolic

execution can only unfold the loop up to a bounded depth, and hence cannot handle

general loops with an unbounded number of iterations. This point is also applicable to

other approaches that rely on loop unrolling, such as [Albarghouthi et al., 2012a].

• Termination analysis is a special kind of reachability that requires the program to

reach the terminal program counter, which is usually guaranteed by well-foundedness

reasoning such as (lexicographic) ranking functions (See Chapter 8 for an overview).

Termination analyses do not consider reachability to target program states defined

through numerical constraints over program variables.

• Abstract interpretation is mainly used to generate over-approximations of reachable

states (i.e. certain states may be reached), but there are also several abstraction-based

approaches that compute under-approximations [Giacobazzi et al., 2000, Ranzato, 2013,

177

Rival, 2005, Albarghouthi et al., 2012a]. However, they cannot provide guarantees of

completeness except in specific special cases [Giacobazzi and Ranzato, 1997].

• Finally, incorrectness logic [O’Hearn, 2020] is a sound and complete logic that is similar

to Hoare logic but performs under-approximation for reachable program states. A dis-

advantage of incorrectness logic, much like Hoare logic, is that it requires a considerable

amount of manual effort for writing assertions, and cannot be directly automated.

Previous Works on Invariants. It is noteworthy that an invariant is, in a sense, a

dual notion of reachability, and invariant generation is also prominent in the PL literature.

Informally, an invariant is an over-approximation of the set of reachable states that can

be used to prove safety properties over programs. Invariant generation has been a central

research area in program analysis and verification, and many efficient approaches are present.

See Chapter 6 for a more in-depth treatment of invariant generation.

Our Focus. In this chapter, we consider reachability analysis over imperative programs.

We study the problem of automatically verifying that a set of target program states can be

reached in program execution. While invariants provide an over-approximation of the set

of reachable states, we consider their natural dual, i.e. under-approximations of the set of

states that can reach a target. We consider programs with non-determinism and distinguish

between existential and universal reachability. Existential reachability is the more classical

and useful notion and, intuitively speaking, requires that target states are reachable under

some resolution of the non-deterministic choices in the program. In contrast, universal reach-

ability requries the program to reach the target states no matter how the non-determinism

is resolved. Our main focus is on existential reachability, but our results generalize to the

universal case, as well.

Our approach. Our methods are based on constraint solving, and extend ideas from both

ranking functions and inductive invariant generation to cover the reachability problem. In-

formally, we use techniques from inductive invariant generation to capture a subset T♦ of

program states from which the execution steps of the program will either reach our target

states or stay in T♦ itself. Simultaneously, we use arguments similar to ranking functions to

178

ensure that every state in T♦ can reach a target state in finitely many steps. As mentioned

above, the key distinction between our method and invariant generation approaches is that

our set T♦ is an under-approximation of the set of states that can eventually reach a target

state, whereas invariants are, by definition, over-approximations of reachable states.

Our Contributions. We propose a novel approach for reachability analysis over programs.

In detail, we have the following contributions:

• We propose the novel notion of Inductive Reachability Witnesses (IRWs) for existential

reachability, which consists of a state set T♦ of program states and a ranking function

f over T♦. The state set T♦ satisfies certain invariant-like conditions. The ranking

function f serves as a proof that every state in T♦ can indeed reach a target. We

also propose the notion of Universal Inductive Reachability Witnesses (UIRWs), the

counterpart of IRWs for the universal case.

• From a theoretical point-of-view, we show that IRWs and UIRWs are sound and com-

plete for proving existential and universal reachability, respectively.

• We follow use Farkas’ Lemma, Putinar’s Positivstellensatz, and Handelman’s Theorem

for automatically synthesizing linear and polynomial IRWs/UIRWs. However, we face

new challenges regarding satisfiability in the polynomial case and address them with

methods based on Hilbert’s Strong Nullstellensatz. To the best of our knowledge,

this combination (especially Section 7.4.3 and Theorem 2.5) is a novel contribution to

constraint-based analysis of polynomial programs. Moreover, it is noteworthy that our

synthesis method is complete in the linear case and semi-complete in the polynomial

case.

• We show that our completeness results also pay off in practice. We provide experi-

mental results over standard linear benchmarks from SV-COMP 2020 [Beyer, 2020].

The results show that in reachability analysis of linear programs, our approach beats

every model checker that participated in the competition. Moreover, we present several

examples of polynomial programs for which the champions of SV-COMP 2020 fail to

prove reachability. In contrast, our approach can successfully handle these programs.

179

Novelty. Our technical novelty is two-fold. First, we define the sound and complete no-

tions of IRW/UIRW for proving reachability. Second, to capture a large class of imperative

programs, we build an automated approach over linear/polynomial transition systems, or

equivalently flowchart programs [Alias et al., 2010], where transitions between states with

affine/polynomial updates are allowed. We provide (semi-)complete synthesis algorithms

based on Farkas’ Lemma, Putinar’s Positivstellensatz, Handelman’s Theorem and Hilbert’s

Strong Nullstellensatz. While these theorems have previously been used for termination anal-

ysis and invariant generation [Colón et al., 2003], their application in the context of reacha-

bility analysis is novel. Moreover, our combination of Nullstellensätze and Positivstellensätze

to obtain program analysis algorithms (see Section 7.4.3 and Theorem 2.5) is entirely novel

and had not previously been considered even in termination analysis or invariant generation.

7.2 Inductive Reachability Witnesses

In this section, we provide the basic definitions needed for reachability analysis, formalize

our problems, and introduce the concept of Inductive Reachability Witnesses (IRWs/UIRWs).

Finally, we show that IRWs/UIRWs are sound and complete for proving reachability. In the

sequel, we use transition systems with real variables, as defined in Section 2.5 to model the

programs we are studying. Let S = (V,L, `0, I,Θ) be a transition system and Σ its set of

states. We consider two types of reachability: existential and universal.

Existential Reachability. A set T ⊆ Σ is called existentially reachable or simply reachable

if there exists an integer n and a run r = {σi, θi}∞i=0 such that σn ∈ T. In other words, T is

reachable if there exists a run that visits T.

Informally, assuming that T is a set of undesirable states, e.g. states that lead to a certain

error that we would like to avoid, the definition above models the cases when the non-

determinism is demonic [Back and Wright, 2012], i.e. whenever it is possible to choose among

multiple transitions, the choice is made in favor of reaching the undesirable set T. However,

we can also consider reachability in presence of angelic non-determinism [Bodik et al., 2010],

i.e. when the choices are made in favor of not reaching the undesirable set T. The words

180

“angelic” and “demonic” can have the opposite meaning when considering cases in which T is

a set of desirable states. Therefore, to prevent confusion, we use the terms “existential” and

“universal”.

Universal Reachability. A set T ⊆ Σ is called universally reachable if there exists a

valuation ν0 ∈ RV and an integer n, such that (i) ν0 |= I, and (ii) every run r = {(`i,νi), θi}∞i=0

visits T in its first n steps. In other words, for each such r, there exists an index i ≤ n such

that (`i,νi) ∈ T.

Intuitively, the definition above requires that we can fix an initial valuation for the pro-

gram such that no matter how the non-determinism is resolved, the execution is forced to

visit T after at most n steps. In this work, our primary focus is on existential reachability.

However, our results extend to universal reachability as well.

Example 7.1. Consider the system in Figure 2.6 (right), and let T = {(d,ν) | ν ∈ RV}.
In this case, reaching T is equivalent to the termination of the program in Figure 2.6 (left).

Note that T is existentially reachable, i.e. there are runs of the system that reach label d, for

example the following:

(a, 0, 0, 0)
θ1−→ (b, 0, 0, 0)

θ4−→ (a, 1, 2, 0)
θ3−→ (d, 1, 2, 0)→

It is also universally reachable, because every execution starting from (a, 1, 2, 3) will reach d

in a single step. As another example, consider the target set T′ = {(d,ν) | ν(x) < 0}. This
corresponds to reaching d (ending the program) with a negative value for x. This time, the

set T′ is existentially reachable, for example through the following run:

(a, 0, 0, 0)
θ2−→ (c, 0, 0, 0)

θ5−→ (a, 0, 0,−1)
θ2−→ (c, 0, 0,−1)

θ5−→ (a,−1,−1,−2)
θ2−→ (c,−1,−1,−2)

θ5−→
(a,−3,−3,−3)

θ1−→ (b,−3,−3,−3)
θ4−→ (a,−2,−1,−3)

θ3−→ (d,−2,−1,−3)→ . . . ,

but it is not universally reachable. To see this, note that if an initial value satisfies x < y,

then it does not enter the while loop at all, and hence when it reaches d it satisfies x ≥ 0 (the

initial condition). On the other hand, if an initial value satisfies x ≥ y, there is a run that

always chooses the transition θ2 when at a, and hence never reaches T′.

181

We now look into proof concepts for universal and existential reachability. The con-

structs we define for proving reachability are a mixture of inductive sets, which are often

used for proving invariants [Colón et al., 2003, Manna and Pnueli, 2012], and ranking func-

tions [Floyd, 1993], which are the classical method for proving termination.

T-inductive Sets. Given a set T ⊆ Σ of target states, a set T♦ ⊆ Σ is called T-inductive if

for every σ ∈ T♦ \ T, there exists a successor σ′ of σ such that σ′ ∈ T♦.

Intuitively, if T♦ is T-inductive, then if we start the execution of the program from a state

in T♦, there exists a way for resolving the non-determinism so that we either reach T or can

inductively prove that we will never leave T♦.

Example 7.2. Consider the system in Figure 2.6 and let T = {(d,ν) | ν(x) < 0}, i.e. the
target is reaching d with x having a negative value. Let T♦ := {(`,ν) | ` ∈ L,ν ∈ RV,ν |= A`}
be the set of states satisfying the following assertions:

` A`

a x, y, z ≤ 0 ∧ (x− y) · (x− y + 1) = 0

b x ≤ −2 ∧ y, z ≤ 0 ∧ x = y

c x, y, z ≤ 0 ∧ x = y

d x < 0

Then, we can verify that T♦ is a T-inductive set. Concretely, consider a state (a,νa) ∈ T♦.

In other words, νa |= Aa. In such a state, we have (x − y) · (x − y + 1) = 0. Therefore,

either νa(x) = νa(y) or νa(x) = νa(y) − 1. In the former case, we can take transition θ2,

and it is easy to verify that the new state satisfies Ac, hence there is a successor that is

also in T♦. In the latter case, we can take θ3 and reach d with a valuation that satisfies

x < 0, because νa |= (y ≤ 0 ∧ x = y − 1). Similarly, if (b,νb) ∈ T♦, we know that

νb |= (x ≤ −2 ∧ y, z ≤ 0 ∧ x = y). Therefore, taking the transition θ4, corresponding to the

update (x, y) := (x+1, y+2), leads to a state in a that satisfies (x, y, z ≤ 0∧x = y−1). Note

that x = y − 1⇒ (x− y) · (x− y + 1) = 0, therefore Aa is satisfied and we have a successor

in T♦. It is easy to verify the same property at c. Finally, if we have a state (d,νd) ∈ T♦,

by definition of T and Ad, we know that (d,νd) ∈ T, and hence we do not need to find any

successor for this state.

182

In this example, if we start at an initial state that satisfies Aa, we can find a run of the

system that either reaches T or stays inside T♦. However, this is not enough for reachability

to T. Such a run might stay inside T♦ forever without visiting T. For example, we can keep

taking the transition θ2 when at a, and hence never reach d. To avoid such a scenario, we

need a T-ranking function.

T-ranking Functions. Given a T-inductive set T♦, a function f : T♦ → [0,∞) is called a

T-ranking function with parameter ε > 0, if for every σ ∈ T♦ \ T, there exists a successor

σ′ ∈ T♦ of σ, for which we have f(σ′) ≤ f(σ)− ε.

Inductive Reachability Witnesses (IRWs). Given a set T of target states in a system

S = (V,L, `0, I,Θ), an Inductive Reachability Witness for T is a tuple (T♦, f, ε) such that:

• T♦ is a T-inductive set;

• ε ∈ (0,∞);

• f : T♦ → [0,∞) is a T-ranking function with parameter ε;

• There exists a valuation ν ∈ RV such that (`0,ν) ∈ T♦ and ν |= I.

Informally, an IRW serves as a proof of existential reachability for a target set T. The

inductivity of T♦ ensures that starting from the initial state (`0,ν) ∈ T♦, we will never be

forced to leave T♦ unless we reach T, while the existence of the T-ranking function f proves

that we cannot avoid T forever. It is also noteworthy that the T-inductive set T♦ is similar

to an inductive invariant, but the main difference is that while an invariant is by definition

a superset of all reachable states, a T-inductive set T♦ is a subset of those states from which

we can reach the target set T. An IRW (T♦, f, ε) is called bounded if T♦ is bounded.

Example 7.3. Consider the system in Figure 2.6, with the same target set as in Example 7.2,

i.e. T = {(d,ν) | ν(x) < 0}. Let T♦ := {(`,ν) | ν |= A`} and f(`,ν) := f`(ν) be defined as

follows:

183

` A` f`

a −10 ≤ x, y, z ≤ 0 ∧
(
x = y − 1 ∨ x = y = −z·(z+1)

2

)
100 + x− y + z

b −10 ≤ x ≤ −2 ∧ z ≤ 0 ∧ x = y = −z·(z+1)
2 99.5 + z

c −2 ≤ x ≤ 0 ∧ z ≤ 0 ∧ x = y = −z·(z+1)
2 99.5 + z

d x ≤ −0.5 0

Note that the A`’s are more restrictive than in Example 7.2. We can verify that T♦ is

a T-inductive set in the same manner as in Example 7.2. We should also verify that f is a

valid T-ranking function. Whenever we take either transition θ1 or θ2 (from a to b or c), we

are assured that x = y, hence the value of f goes from 100+z to 99.5+z and decreases by 0.5.

Also, because in Aa we have −10 ≤ x, y, z ≤ 0, the value of f at a is at least 80, and hence

transition θ3 (from a to d) decreases f by more than 0.5. Now consider transition θ4 (from b

to a). This transition does not change the value of z, but makes it so that y = x + 1. So it

changes the value of f from 99.5+z to 99+z. Note that transition θ5 (from c to a), decreases

z by 1 while keeping x = y. Hence, it decreases f by 0.5. Also, θ6 (the self-transition from

d to d) is irrelevant in this case, because our Ad entails inclusion in T. Finally, (a, 0, 0, 0) is

a state that satisfies both the initial condition I and Aa. Hence, we conclude that (T♦, f, 0.5)

is an IRW for T.

We now define the counterpart of IRWs for universal reachability.

Universal T-inductive Sets. Given a set T ⊆ Σ of target states, a set T♦ ⊆ Σ is called

universally T-inductive if for every σ ∈ T♦ \ T and every successor σ′ of σ, we also have

σ′ ∈ T♦.

The idea behind universal T-inductive sets is that any execution of the program that

starts in such a set T♦ will either reach T or one can prove using induction that it will never

leave T♦, no matter how the non-determinism is resolved.

Universal T-ranking Functions. Given a universal T-inductive set T♦, a function f :

T♦ → [0,∞) is called a universal T-ranking function with parameter ε > 0, if for every

σ ∈ T♦ \ T and every successor σ′ of σ, we have f(σ′) ≤ f(σ)− ε.

184

Universal Inductive Reachability Witnesses (UIRWs). Given a set T of target states

in a system S = (V,L, `0, I,Θ), a Universal Inductive Reachability Witness for T is a tuple

(T♦, f, ε) such that:

• T♦ is a universal T-inductive set;

• ε ∈ (0,∞);

• f : T♦ → [0,∞) is a universal T-ranking function with parameter ε;

• There exists a valuation ν ∈ RV such that (`0,ν) ∈ T♦ and ν |= I.

I : i = s = 0 ∧ n ≥ 0

a : while i ≤ n :
b : (s, i) := (s+ 1, i+ 1)
c : � (s, i) := (s+ 2, i+ 1)
d :

a d

cb

(s,
	i)
↦	(
s+
1,	
i+1
) (s,	i) ↦	(s+2,	i+1)

i	>	n

i ≤ n i ≤ n

θ1 θ2θ4 θ5

θ3

θ6

Figure 7.1: A Non-deterministic Program (left) and its Representation as a Transition System
(right)

Example 7.4. Figure 7.1 shows a simple program together with its representation as a tran-

sition system. Let T = {(d,ν) | ν(s) ≥ 20}, i.e. the target is reaching point d with an s value

of more than 20. Let T♦ := {(`,ν) | ν |= A`} and f(`,ν) := f`(ν) be defined as follows:

` A` f`

a n ≥ 50 ∧ s ≥ i ≥ 0 ∧ n+ 1 ≥ i n+ 1.5− i
b n ≥ 50 ∧ s, n ≥ i ≥ 0 n+ 1− i
c n ≥ 50 ∧ s, n ≥ i ≥ 0 n+ 1− i
d s ≥ 50 0

It is easy to check that (T♦, f, 0.5) is a UIRW for T. Intuitively, this guarantees that if a run

starts with an initial valuation that satisfies Aa, it will definitely reach a target state.

185

Remark 7.1. Note that, as mentioned in Section 7.1, the inductive set T♦ in Example 7.3

is an under-approximation of the desired states. In existential IRWs (such as Example 7.3),

the set T♦ is an under-approximation of the states from which there exists a way of resolv-

ing the non-determinism so that we eventually reach T. Similarly, in UIRWs, T♦ under-

approximates the set of states from which every execution of the program is forced to visit

T. Hence, our T-inductive sets T♦ are essentially natural duals of the notion of inductive

invariants (Chapter 6).

7.3 Basic Results and Linear/Polynomial Witnesses

Our approach for proving existential (resp. universal) reachability is based on synthesizing

an IRW (resp. a UIRW). The reduction from reachability to witness synthesis is both sound

and complete.

Theorem 7.1 (Soundness). Let T ⊆ Σ be a set of states in the system S.

(i) If there exists an IRW (T♦, f, ε) for T, then T is existentially reachable.

(ii) If there exists a UIRW (T♦, f, ε) for T, then T is universally reachable.

Proof. We handle each case separately.

(i) We construct a run of S that visits T. By definition of IRW, there exists a state σ0 =

(`0,ν0) ∈ T♦ such that ν0 |= I. We start our run with σ0 and inductively find the next

transitions and states as follows: when we are in a state σi ∈ T♦, either (a) σi ∈ T in

which case the path until this point has already reached T and we can extend it to an

arbitrary run, or (b) σi ∈ T♦ \T, in which case there exists a successor σi+1 ∈ T♦ of σi

such that f(σi+1) ≤ f(σi)− ε, and we transition to σi+1. Using this procedure, it is not

possible to avoid case (a) forever, because each application of (b) decreases the value of

f by at least ε and f is bounded from below. Hence, the constructed run will reach T.

(ii) We choose σ0 = (`0,ν0) as in the previous case. We now prove that every path of length

n := 1 + df(σ0)/εe starting from σ0 will reach T. Let r = σ0, θ0, σ1, θ1, . . . , σn be such

186

a path. If no σi is in T, then by definition of universal T-inductiveness, every σi is in

T♦ \ T. So, for each i, we have f(σi+1) ≤ f(σi)− ε. Therefore, f(σn) ≤ f(σ0)− n · ε =

f(σ0)−ε−df(σ0)/εe·ε < 0 which is a contradiction because f can only take non-negative

values.

Theorem 7.2 (Completeness). Let T ⊆ Σ be a set of states in the system S.

(i) If T is existentially reachable, then there exists an IRW (T♦, f, ε) for T.

(ii) If T is universally reachable, then there exists a UIRW (T♦, f, ε) for T.

Proof. In each case, we construct the required IRW/UIRW.

(i) Given that T is reachable, by definition there exists a path π = (`0,ν0), θ0, . . . , (`n,νn)

such that (`n,νn) ∈ T and ν0 |= I.Without loss of generality, we choose such a π that is

prefix-minimal, i.e. that no prefix of π has the same properties. Let T♦ = {(`i,νi)|0 ≤
i ≤ n}, then T♦ is T-inductive, because (`n,νn) ∈ T and for every i 6= n, the state

(`i,νi) can be succeeded by (`i+1,νi+1). Let f : T♦ → [0,∞) be defined as follows:

f(`i,νi) := n− i. It is easy to verify that (T♦, f, 1) is an IRW for T.

(ii) We define Σk ⊆ Σ as the set of all states such that every semi-path of length k starting

in these states is guaranteed to visit T. Note that Σ0 = T and if σ ∈ Σk \ T, then by

definition every successor σ′ of σ must be in Σk−1. Let T♦ =
⋃∞
i=0 Σk, and for every

σ ∈ T♦, define f(σ) := min{k | σ ∈ Σk}. It is easy to prove by definition-chasing that

(T♦, f, 1) is a UIRW.

Undecidability. Based on the two theorems above, synthesis of IRWs (UIRWs) is equivalent

to proving existential (universal) reachability, which are undecidable problems according to

Rice’s theorem. Hence, whether an arbitrary input system S and target set T have an IRW

or a UIRW are undecidable problems, too. As such, in this chapter we consider linear or

187

polynomial systems, with target sets that are defined by linear or polynomial inequalities,

and focus on the problem of synthesizing linear or polynomial IRWs and UIRWs∗.

Linear/Polynomial Systems. A transition system S = (V,L, `0, I,Θ) is called (d, k)-

polynomial if

• I is a conjunction of at most k polynomial inequalities of degree at most d over V, and

• for every θ = (`, `′, ϕ, µ) ∈ Θ, the transition condition ϕ is a conjunction of at most k

polynomial inequalities of degree at most d over V, and

• for every θ = (`, `′, ϕ, µ) ∈ Θ and variable v ∈ V, we have µ(v) ∈ R[V] and deg(µ(v)) ≤
d, i.e. µ(v) is a polynomial of degree at most d over V.

A (1, k)−polynomial system is also called k−linear.

Linear IRWs/UIRWs. An IRW/UIRW (T♦, f, ε) is called k−linear if for every location

` ∈ L :

• The set T♦` := T♦ ∩ ({`} × RV) is a closed polyhedron which is an intersection of at

most k half-spaces. In other words, there exists a set A` of at most k non-strict linear

inequalities over V such that a valuation ν satisfies A` iff (`,ν) ∈ T♦.

• The function f` : Sat(A`)→ [0,∞), defined as f`(ν) = f(`,ν), is a linear function over

V. Here, Sat(A`) is the set of all valuations that satisfy A`.

Polynomial IRWs/UIRWs. An IRW/UIRW (T♦, f, ε) is called (d, k)−polynomial if for

every ` ∈ L :

• The set T♦` := T♦ ∩ ({`} × RV) is a closed semi-algebraic set defined by at most k

non-strict polynomial inequalities of degree d or less. Equivalently, there exists a set

A` of at most k non-strict polynomial inequalities of degree at most d over V such that

ν |= A` iff (`,ν) ∈ T♦.

∗All these restrictions are necessary, e.g. termination is undecidable for polynomial pro-
grams [Bradley et al., 2005b].

188

• The function f`, defined as f`(ν) = f(`,ν), is a polynomial of degree at most d over V.

A (d, k)−polynomial IRW/UIRW is explicitly bounded if each set A` contains a polynomial

inequality g ≥ 0 such that Sat(g ≥ 0) is bounded.

7.4 Synthesis of Inductive Reachability Witnesses

We now provide sound and (semi-)complete algorithms for synthesizing linear or polynomial

IRWs and UIRWs for linear and polynomial systems. We consider three variants of this

problem: (i) when the system, the target set, and the desired IRW/UIRW are all k−linear
(Section 7.4.1), (ii) when the system and the desired IRW/UIRW are k−linear, but the

target set is (d, k)−polynomial (Section 7.4.2), and finally the most general case: (iii) when

the system, the target set, and the IRW/UIRW to be synthesized are (d, k)−polynomial.

7.4.1 Linear IRWs/UIRWs for Linear Systems with Linear Target

Sets

Problem Definition. In this section, we consider the following problem: Given a k−linear
system S = (V,L, `0, I,Θ), together with a set τ` of at most k non-strict linear inequalities

at every location ` ∈ L, synthesize a k−linear IRW/UIRW for the target set T := ∪`∈L{`}×
Sat(τ`) or report that no such IRW/UIRW exists. In the sequel, we assume V = {v1, . . . , vr},
and L = {`0, . . . , `n}.

Mathematical Tool. Our approach in this section is based on Farkas’ Lemma (Lemma 2.2).

Overview of the Approach. Before presenting our algorithm in detail, we provide a

high-level overview of its steps. Our algorithm consists of five steps:

• Step 1. The algorithm creates a template for the desired IRW/UIRW. Basically, it

considers every expression that should be synthesized as part of an IRW/UIRW, i.e. the

descriptions of T♦ and f , and creates a template for it in which the coefficients are

unknown variables whose value should be synthesized.

189

• Step 2. The algorithm generates a series of so-called “constraint pairs”. These con-

straint pairs are of a specific form that is amenable to Farkas’ Lemma. They encode

the requirements that T♦ should be a T−inductive set and that f should be a valid

T-ranking function.

• Step 3. In this step, the algorithm applies Farkas’ lemma to the constraints generated

in Step 2 and translates them to an equivalent system of quadratic (in)equalities over

the unknown template variables. It is noteworthy that after this step, no program

variable appears in the quadratic constraints.

• Step 4. The algorithm adds a few additional constraints that ensure the existence of

a valid initial valuation for the IRW/UIRW.

• Step 5. Finally, the algorithm solves the constraints by calling an off-the-shelf Quadratic

Programming (QP) solver. It then plugs back the solution values reported for template

variables into the templates generated in Step 1 to obtain the desired IRW/UIRW.

We now dive into the details of each step.

The Synthesis Algorithm. Our algorithm consists of the following five steps:

Step 1. Setting up a template. Consider a k−linear IRW/UIRW for reaching T in S. It

consists of a k−linear set T♦, defined by a set A` of k linear inequalities at every location `,

and a linear function f , similarly defined by a linear expression f` at every location `.

In this step, the algorithm sets up a symbolic template for each A` and f`. Concretely, it

symbolically computes the following expressions, in which the ĉ`,i,j’s and d̂`,j’s are unknown

reals†:

Â` :


ĉ`,1,0 + ĉ`,1,1 · v1 + . . .+ ĉ`,1,r · vr ≥ 0

...

ĉ`,k,0 + ĉ`,k,1 · v1 + . . .+ ĉ`,k,r · vr ≥ 0

†Throughout this chapter, we use the notation ·̂ to denote variables/expressions whose values should
be synthesized by the algorithm.

190

f̂` = d̂`,0 + d̂`,1 · v1 + . . .+ d̂`,r · vr

Intuitively, the goal of the algorithm is to find suitable real values for the unknown coefficients

(i.e. ĉ`,i,j’s and d̂`,j’s) so that when we plug them into f̂`’s and Â`’s, they yield a valid

IRW/UIRW. Moreover, the algorithm defines a new unknown ε̂, whose synthesized value will

serve as the decrease parameter for f .

Example 7.5. Consider the system in Figure 7.2. We will use this system as our running

example and aim to synthesize a 2-linear IRW and a 2-linear UIRW for it. For the IRW

case, suppose that the target set is T = {(4,ν) | ν |= (x ≥ y + 8)}. For the UIRW case, we

let T′ = {(4,ν) | ν |= (x ≥ y + 4)}. In this step, the algorithm generates a variable ε̂ and the

following templates:

Â1 :

ĉ0 + ĉ1 · x+ ĉ2 · y ≥ 0

ĉ3 + ĉ4 · x+ ĉ5 · y ≥ 0
Â2 :

 ĉ6 + ĉ7 · x+ ĉ8 · y ≥ 0

ĉ9 + ĉ10 · x+ ĉ11 · y ≥ 0
Â3 :

ĉ12 + ĉ13 · x+ ĉ14 · y ≥ 0

ĉ15 + ĉ16 · x+ ĉ17 · y ≥ 0

Â4 :

ĉ18 + ĉ19 · x+ ĉ20 · y ≥ 0

ĉ21 + ĉ22 · x+ ĉ23 · y ≥ 0

f̂1 = d̂0 + d̂1 · x+ d̂2 · y
f̂2 = d̂3 + d̂4 · x+ d̂5 · y

f̂3 = d̂6 + d̂7 · x+ d̂8 · y
f̂4 = d̂9 + d̂10 · x+ d̂11 · y

The goal is to synthesize real values for each of the variables ε̂, ĉ0, . . . , ĉ23 and d̂0, . . . , d̂11, so

that when we plug them back into the templates above, we get a valid IRW/UIRW.

I : x, y ≥ 10

1 : i f x < y :
2 : � x := x+ 10
3 : � x := x+ 5
4 :

1

4

32

(x,	y)	↦	(x+10,	y) (x,
	y)
	↦	
(x+
5,	
y)

x ≥	y

x	<	y x < y
θ1 θ2

θ4 θ5θ3

θ6

Figure 7.2: Our Running Example as a Program (left) and a Transition System (right)

Step 2a. Computing IRW Constraint Pairs. This step is only performed when we

want to synthesize an IRW. In an IRW, the existential inductive set T♦ should satisfy the

condition that for every state σ ∈ T♦ \ T, there exists a successor σ′ ∈ T♦ of σ. Moreover,

there should be at least one such successor for which we have f(σ′) ≤ f(σ)− ε.

191

Let ` ∈ L be a location and Θ` be the set of transitions out of `, i.e. transitions whose

pre-location is `. The IRW properties at ` are equivalent to:

∀ν ∈ RV, ν |= Â` ⇒
(
ν |= τ` ∨

∨
θ=(`,`′,ϕ,µ)∈Θ`

ξ(θ)
)

(7.1)

where ξ(θ) = ξ(`, `′, ϕ, µ) is defined as:

ξ(θ) :=
(
ν |= ϕ ∧ µ(ν) |= Â`′ ∧ f̂`′(µ(ν)) ≤ f̂`(ν)− ε̂

)
(7.2)

Intuitively, the constraint in (7.1) says that if ν |= A` or equivalently (`,ν) ∈ T♦, then either

(`,ν) ∈ T which is equivalent to ν |= τ`, or there exists a transition θ ∈ Θ`, using which

we can obtain a successor (`′, µ(ν)) ∈ T♦ such that f(`′, µ(ν)) ≤ f(`,ν) − ε. The latter is

formalized by ξ(θ). In this step, the algorithm symbolically computes (7.1) and writes it in

the following equivalent format:

∀ν ∈ RV,
(
ν |= Â` ∧

∧
θ=(`,`′,ϕ,µ) ¬ξ(θ)

)
⇒ ν |= τ` (7.3)

Let P` be the LHS assertion in (7.3) above. Then P` is constructed from logical operations

and atomic strict/non-strict linear inequalities over V. Note that the coefficients in these

linear inequalities contain the unknown variables ĉ`,i,j’s and d̂`,j’s defined in the previous step.

The algorithm writes P` in disjunctive normal form, obtaining P` = P`,1 ∨ P`,2 ∨ . . . ∨
P`,p, where each P`,i is a conjunction of strict/non-strict linear inequalities over V. It then

symbolically computes the following “constraint pair” for every P`,i :

γ`,i := (P`,i, τ`) (7.4)

The algorithm computes these constraint pairs for every ` ∈ L and stores them in a set Γ.

Note that all computations are symbolic. Every constraint pair γ = (λ, %) ∈ Γ consists of two

parts. λ is a set of strict/non-strict linear inequalities, while % is a set of only non-strict linear

inequalities. Informally, γ encodes the requirement that every inequality in % be entailed by

inequalities in λ.

192

Example 7.6. Consider the system in Figure 7.2 together with the templates generated in

Example 7.5. In this step, the algorithm considers location 1 ∈ L, and writes the constraint

in (7.3):

Â1 ∧ ¬ξ(θ1) ∧ ¬ξ(θ2) ∧ ¬ξ(θ3)⇒ τ1 (7.5)

Intuitively, the constraint above says that if we are at a T♦ state in location 1 (satisfy A1), and

cannot transition to another T♦ with smaller f̂ -value using any of the available transitions,

in other words ¬ξ(θ1) ∧ ¬ξ(θ2) ∧ ¬ξ(θ3), then we must already be in a target state (satisfy

τ1). There is no target state at location 1, so we can assume τ1 ≡ (−1 ≥ 0). The algorithm

computes (7.5) symbolically:

ĉ0 + ĉ1 · x+ ĉ2 · y ≥ 0 ∧ ĉ3 + ĉ4 · x+ ĉ5 · y ≥ 0 ∧

¬
(
x < y ∧ ĉ6 + ĉ7 · x+ ĉ8 · y ≥ 0 ∧ ĉ9 + ĉ10 · x+ ĉ11 · y ≥ 0 ∧ d̂3 + d̂4 · x+ d̂5 · y ≤ d̂0 + d̂1 · x+ d̂2 · y − ε̂

)
∧

¬
(
x < y ∧ ĉ12 + ĉ13 · x+ ĉ14 · y ≥ 0 ∧ ĉ15 + ĉ16 · x+ ĉ17 · y ≥ 0 ∧ d̂6 + d̂7 · x+ d̂8 · y ≤ d̂0 + d̂1 · x+ d̂2 · y − ε̂

)
∧

¬
(
x ≥ y ∧ ĉ18 + ĉ19 · x+ ĉ20 · y ≥ 0 ∧ ĉ21 + ĉ22 · x+ ĉ23 · y ≥ 0 ∧ d̂9 + d̂10 · x+ d̂11 · y ≤ d̂0 + d̂1 · x+ d̂2 · y − ε̂

)
⇒ (−1 ≥ 0)

Intuitively, the first line of the constraint above models a state in T♦ at location 1, i.e. it

is the same as Â1. The second line models the fact that it is not possible to take transition

θ1 and reach another state in T♦ at location 2 such that the f̂ -value decreases by at least ε̂.

The next two lines model similar constraints for θ2 and θ3. Finally, the last line says that

if no suitable transition is possible, then the current state must itself be a target, which is

impossible in this case because there are no target states at location 1. Next, the algorithm

writes the constraint above in disjunctive normal form as:

P1,1 ∨ P1,2 ∨ . . . ∨ P1,p ⇒ (−1 ≥ 0)

Just as before, the algorithm computes each of P1,1, . . . , P1,p concretely in terms of x, y, ε̂, ĉi’s

and d̂i’s, but to save space, we omit the full expansion here. For example, we can assume

193

P1,1 is:

ĉ0 + ĉ1 ·x+ ĉ2 ·y ≥ 0 ∧ ĉ3 + ĉ4 ·x+ ĉ5 ·y ≥ 0 ∧ x ≥ y ∧ d̂9 + d̂10 ·x+ d̂11 ·y > d̂0 + d̂1 ·x+ d̂2 ·y− ε̂

This corresponds to the case where we cannot use either transition θ1 or θ2 because x ≥ y,

and also taking transition θ3 will lead to a state whose f̂ -value is not small enough. For each

such P1,i the algorithm generates a constraint pair (P1,i, τ1) = (P1,i,−1 ≥ 0).The algorithm

handles other locations similarly, and adds all the resulting constraint pairs to a set Γ.

Step 2b. Computing UIRW Constraint Pairs. This step is only performed when

synthesizing a UIRW and is similar to its IRW variant in Step 2a above. In a UIRW, the

universal T-inductive set T♦ should satisfy the condition that for every state σ ∈ T♦\T, every
successor σ′ of σ is also in T♦. Moreover, given that f is a universal T−ranking function, we

must have f(σ′) ≤ f(σ)− ε for every such σ′.

Let ` ∈ L be a location. The UIRW properties at ` are equivalent to:

∀ν ∈ RV, ν |= Â` ⇒
(
ν |= τ` ∨

∧
θ=(`,`′,ϕ,µ) ζ(θ)

)
(7.6)

where ζ(θ) = ζ(`, `′, ϕ, µ) is defined as:

ζ(θ) :=
(
ν |= ϕ⇒

(
µ(ν) |= Â`′ ∧ f̂`′(µ(ν)) ≤ f̂`(ν)− ε̂

))
(7.7)

Informally, the constraint in (7.6) says that if ν |= A` or equivalently (`,ν) ∈ T♦, then either

(`,ν) ∈ T, i.e. ν |= τ`, or for every transition θ from ` the assertion ξ(θ) holds, i.e. if the

transition is possible (ν |= ϕ), then the successor state (`′, µ(ν)) is also in T♦, and the f value

decreases by at least ε when going to this successor. As in the previous case, the algorithm

computes (7.6) symbolically and writes it in the following equivalent format:

∀ν ∈ RV,
(
ν |= Â` ∧

∨
θ=(`,`′,ϕ,µ) ¬ζ(θ)

)
⇒ ν |= τ` (7.8)

Let Q` be the LHS assertion above. Similar to Step 2a, Q` is constructed form logical

operations and atomic strict/non-strict linear inequalities over V, and its coefficients include

194

the unknown template variables ĉ`,i,j’s and d̂`,j’s defined in Step 1. The algorithm writes Q`

in disjunctive normal form, hence obtaining Q` = Q`,1 ∨Q`,2 ∨ . . .∨Q`,q in which each Q`,i is

a conjunction of strict/non-strict linear inequalities over V. It then computes the following

constraint pair symbolically:

γ′`,i := (Q`,i, τ`)

The algorithm performs these operations for every location ` ∈ L and stores all the resulting

γ′`,i constraint pairs in a set Γ.

Example 7.7. In our running example (Figure 7.2), we are looking for a linear UIRW for

the target set T′ = {(4,ν) | ν |= (x ≥ y + 4)}. In this step, the algorithm creates constraints

at every location. We now demonstrate how the process works for location 3. At location 3,

the algorithm considers

Â3 ∧ ¬ζ(θ5)⇒ τ3

and symbolically computes it as:

ĉ12 + ĉ13 · x+ ĉ14 · y ≥ 0 ∧ ĉ15 + ĉ16 · x+ ĉ17 · y ≥ 0 ∧

¬(1 ≥ 0⇒ (ĉ18 + 5 · ĉ19 + ĉ19 · x+ ĉ20 · y ≥ 0 ∧ ĉ21 + 5 · ĉ22 + ĉ22 · x+ ĉ23 · y ≥ 0 ∧

d̂9 + 5 · d̂10 + d̂10 · x+ d̂11 · y ≤ d̂6 + d̂7 · x+ d̂8 · y − ε̂))

⇒ (−1 ≥ 0)

Note that the transition θ5 is unconditional, as such we can assume that its condition is simply

1 ≥ 0. Similarly, because there is no target state at location 3, we assume τ3 ≡ (−1 ≥ 0).

Moreover, the transition θ5 updates the value of x to x+ 5. This is taken into account when

generating the constraint above. The algorithm writes the LHS of the constraint in DNF and

handles it exactly as in Example 7.6.

Step 2c. Computing Non-negativity Constraints. Note than in an IRW/UIRW, the

ranking function f should have non-negative value over T♦. Let ` ∈ L be a location and Θ`

195

the set of transitions out of `. The non-negativity condition at ` is equivalent to:

∀ν ∈ RV, ν |= Â` ⇒ f̂`(ν) ≥ 0

To ensure this constraint, for every ` ∈ L, the algorithm adds the constraint pair (Â`, f̂` ≥ 0)

to Γ.

Example 7.8. In the running example, based the templates generated at Example 7.5, the

algorithm creates the following non-negativity constraint pair γ = (λ, %), encoding λ⇒ %, at

location 1 ∈ L:

λ :

ĉ0 + ĉ1 · x+ ĉ2 · y ≥ 0

ĉ3 + ĉ4 · x+ ĉ5 · y ≥ 0
% : (d̂0 + d̂1 · x+ d̂2 · y ≥ 0)

Step 3. Applying Farkas’ Lemma. The algorithm applies Corollary 2.1 to every con-

straint pair generated in the previous step to obtain a non-linear constraint system based

on the template variables (i.e. ĉ`,i,j’s and d̂`,j’s), the ranking parameter ε̂, and new variables

defined in this step. Crucially, this non-linear constraint system does not include any of the

variables in V. We now explain the operations in this step more concretely.

For every constraint pair γ = (λ, %) ∈ Γ, we know that λ is a set of strict/non-strict linear

inequalities {λi,0 +
#»

λi ·
#»

V oni 0}mi=1, in which oni∈ {>,≥}. Moreover, % is a set of non-strict

inequalities and every inequality in % should be entailed by λ. Let α0 +α1 · v1 + . . .+αr · vr ≥
0 ≡ α0 + #»α · #»

V ≥ 0 be an inequality in %. According to Corollary 2.1, there are three cases

in which {λi,0 + λi ·V oni 0}mi=1 entails α0 + α ·V ≥ 0 :

(i) α0 + α ·V ≥ 0 is a non-negative combination of 1 ≥ 0 and {λi,0 + λi ·V oni 0}mi=1, or

(ii) −1 ≥ 0 can be derived as above, or

(iii) 0 > 0 can be derived as above.

The algorithm writes constraints that model each of the three cases above and then combines

them disjunctively. Given that the three cases are similar, we only explain how (i) is handled:

196

The algorithm creates m+1 new variables ŷ0, ŷ1, . . . , ŷm and generates the constraints ŷi ≥ 0

for each one of them. As in Corollary 2.1, the algorithm computes the following equality

symbolically:

α0 + α ·V = ŷ0 +
∑m

i=1 ŷi · (λi,0 + λi ·V) (7.9)

Note that the two sides of the equation above are linear expressions over V. As such, they

are equal if and only if they agree on the coefficient of every term. The algorithm equates

the corresponding coefficients, and adds the following equalities to the constraint system:

α0 = ŷ0 +
∑m

i=1 ŷi · λi,0 i.e. the constant factor should be equal on both sides

∀j 6= 0 αj =
∑m

i=1 ŷi · λi,j i.e. coefficient of every vj ∈ V should be equal on both sides

The algorithm handles (ii) and (iii) similarly, except that in (iii) we should ensure that at

least one strict inequality is used when trying to obtain 0 > 0. Hence, in this case, the

algorithm also adds the extra constraint
∑

oni∈{>} ŷi > 0 to the non-linear constraint system.

The algorithm performs the same operations for every constraint pair γ = (λ, %) and every

linear inequality in % and combines the resulting non-linear constraint systems conjunctively.

Example 7.9. Consider the constraint pair γ = (λ, %) below, which was obtained in Exam-

ple 7.6:

λ :



ĉ0 + ĉ1 · x+ ĉ2 · y ≥ 0

ĉ3 + ĉ4 · x+ ĉ5 · y ≥ 0

x− y ≥ 0

d̂9 + d̂10 · x+ d̂11 · y − d̂0 − d̂1 · x− d̂2 · y + ε̂ > 0

% : (−1 ≥ 0)

We want to make sure that λ entails %. Based on Corollary 2.1, either % or −1 ≥ 0 or 0 > 0

should be a non-negative combination of inequalities in λ. Here, % is itself −1 ≥ 0, so we only

consider two cases:

197

• −1 ≥ 0 is obtainable from λ: The algorithm creates 5 new variables ŷ0, ŷ1, . . . , ŷ4 and

adds the constraints ŷ0, . . . , ŷ4 ≥ 0. It then computes the following equality:

ŷ0 + ŷ1 · (ĉ0 + ĉ1 · x+ ĉ2 · y) + ŷ2 · (ĉ3 + ĉ4 · x+ ĉ5 · y) + ŷ3 · (x− y)+

ŷ4 · (d̂9 + d̂10 · x+ d̂11 · y − d̂0 − d̂1 · x− d̂2 · y + ε̂) = −1.

Our program variables are x and y. All other variables are created by the algorithm

and we need to synthesize a value for them. The above is an equality between two

polynomials in R[x, y] that has to hold for all values of x and y. Hence, the algorithm

equates its corresponding coefficients:

– ŷ1 · ĉ1 + ŷ2 · ĉ4 + ŷ3 + ŷ4 · d̂10− ŷ4 · d̂1 = 0 (the coefficient of x is equal on both sides),

– ŷ1 · ĉ2 + ŷ2 · ĉ5− ŷ3 + ŷ4 · d̂11− ŷ4 · d̂2 = 0 (the coefficient of y is equal on both sides),

– ŷ0 + ŷ1 · ĉ0 + ŷ2 · ĉ3 + ŷ4 · d̂9 − ŷ4 · d̂0 + ŷ4 · ε̂ = −1 (the constant factor is equal on

both sides).

• 0 > 0 is obtainable from λ: The algorithm creates 5 new variables ŷ5, . . . , ŷ9 and

proceeds to obtain equalities over non-program variables in the exact same manner as

in the previous case, except that it also adds the condition ŷ9 > 0.

Step 4. Computing Initialization Constraints. By definition, in addition to the in-

ductivity, non-negativity and ranking conditions, an IRW/UIRW should also contain at least

one initial state (`0,ν) such that ν |= I. In other words,

∃ν0 = (ν0,1, . . . ,ν0,r) ∈ RV,ν |= Â`0 ∧ I. (7.10)

By k−linearity of the system S, we know that the initial assertion I is a conjunction of at

most k linear inequalities. Thus, the assertion above is a conjunction of at most 2k linear

inequalities, and is equivalent to Sat(Â`0 ∧ I) 6= ∅.

In this step, the algorithm creates r new variables ν̂0,1, . . . , ν̂0,r, and symbolically com-

putes the linear inequalities in (7.10), and adds them (conjunctively) to the non-linear con-

straint system.

198

Example 7.10. For our running example (Figure 7.2), the algorithm creates two new vari-

ables ν̂0,x and ν̂0,y and computes the following:

ĉ0 + ĉ1 · ν̂0,x + ĉ2 · ν̂0,y ≥ 0 ν̂0,x ≥ 10

ĉ3 + ĉ4 · ν̂0,x + ĉ5 · ν̂0,y ≥ 0 ν̂0,y ≥ 10

The first two constraints ensure that the valuation ν̂0 = (ν̂0,x, ν̂0,y) satisfies Â1 and the last

two constraints ensure that it satisfies the initial condition I. The algorithm conjunctively

adds these constraints to those generated in previous steps.

Step 5. Solving the Resulting Constraint System. Finally, the algorithm uses an

off-the-shelf solver to solve the resulting non-linear constraint system. If the system is un-

satisfiable, it reports that no k−linear IRW/UIRW exists. Otherwise, it obtains a solution s

of the non-linear constraint system. Let s(x̂) denote the value assigned by s to variable x̂,

and extend this definition in the natural way so to any expression e. The algorithm outputs

A` := s(Â`) and f` := s(f̂`), for all ` ∈ L, as the IRW/UIRW. Moreover, s(ν̂0,1, . . . , ν̂0,r) is

the corresponding initial state, and s(ε̂) is the decrease parameter for f .

Example 7.11. When the algorithm solves the non-linear (in)equalities obtainted in the

previous steps, it successfully synthesizes the following IRW‡ (left table) for T = {(4,ν) | ν |=
(x ≥ y + 8)} and the following UIRW (right table) for T′ = {(4,ν) | ν |= (x ≥ y + 4)}:

` A` f`

1 y − 2 ≤ x ≤ y − 1 2

2 y − 2 ≤ x ≤ y − 1 1

3 −1 ≥ 0 −1
4 x ≥ y + 8 0

ε = 1, ν0 = (11, 12)

` A` f`

1 y − 0.6 ≤ x ≤ y − 0.5 2

2 y − 0.6 ≤ x ≤ y − 0.5 1

3 y − 0.6 ≤ x ≤ y − 0.5 1

4 x ≥ y + 4.4 0

ε = 1, ν0 = (11, 11.55)

Theorem 7.3 (Soundness). Given a k−linear system S = (V,L, `0, I,Θ), and a k−linear
set T of target states, every solution of the non-linear constraint system solved in Step 5 of

the algorithm above produces a valid k−linear IRW/UIRW for T in S.
‡Every solution of the system of non-linear (in)equalities corresponds to a valid IRW. The concrete

solution obtained in practice depends on the solver.

199

Proof. Every solution s satisfies the constraints generated in Step 3. Therefore, for every

constraint pair γ = (λ, %) ∈ Γ generated in Step 2 and inequality α0 + α · V ≥ 0 in %,

either s(λ) is unsatisfiable, i.e. a non-negative linear combination of its inequalities sums up

to 0 ≥ 1 or 0 > 0, or there is such a linear combination that sums up to α0 + α · V ≥ 0.

In each case, the coefficients of the combination are given by s(ŷi) for the corresponding ŷi

variables. Moreover, no matter which case happens, the inequalities in % are entailed by λ. By

definition, the constraint pairs generated in Step 2 modeled inductivity, non-negativity and

ranking conditions and hence s satisfies these properties. Finally, s satisfies the constraints

generated in Step 4. Therefore, we have s(ν̂0,1, . . . , ν̂0,r) |= s(Â`0)∧I. So, all the requirements

for IRW/UIRW are met.

Theorem 7.4 (Completeness). Given a k−linear system S = (V,L, `0, I,Θ), and a k−linear
set T of target states, every k−linear IRW/UIRW for T in S is produced by some solution to

the non-linear constraint system solved in Step 5 of the algorithm above.

Proof. We construct the required solution. Let (T♦, f, ε) be a k−linear IRW/UIRW for T

in S. Let A` be the set of inequalities defining T♦ ∩
(
`× RV

)
, and f` the linear expression

defining f at `.We use the coefficients in A`’s and f`’s as the corresponding values for s(ĉ`,i,j)’s

and s(d̂`,j)’s. Moreover, we let s(ε̂) = ε.

By definition, T♦ is an existential/universal T−inductive set, and f is an existential/uni-

versal T−ranking function with parameter ε. Therefore, A`’s and f`’s satisfy the constraint

pairs generated at Step 2 of the algorithm. By Corollary 2.1, there are suitable values for

each variable ŷi such that the constraints in Step 3 are satisfied. We use these values as

s(ŷi). Finally, by definition of IRW/UIRW, there exists a valuation ν ∈ RV such that

ν |= A`0 ∧ I = s(Â`0) ∧ I. We let s(ν̂0,i) = νi. It is easy to verify that s is a solution to the

system of non-linear constraints solved in Step 5.

Theorem 7.5 (Complexity). For fixed constants k and β, given a k−linear β−branching
system S = (V,L, `0, I,Θ), and a k−linear set T of target states, Steps 1–4 of the algo-

rithm above lead to a polynomial-time reduction from the problem of generating a k−linear
IRW/UIRW to solving a Quadratic Programming (QP) instance.

200

Proof. It is easy to verify that all steps of the algorithm run in polynomial time§, and that

all the generated (in)equalities over non-program variables are quadratic. However, these

(in)equalities are not always combined conjunctively. Specifically, in Step 3, the constraints

corresponding to cases (i)–(iii) are combined disjunctively. This being said, we can perform

the following actions to obtain a QP instance in polynomial time:

• We first convert every inequality of the form e on 0 to e− x̂e = 0 by introducing a new

variable x̂e on 0.

• We rewrite every disjunction e1 = 0 ∨ e2 = 0 as e1 · e2 = 0. Note that this might create

polynomial equalities of higher degree.

• We eliminate terms of degree more than 2 by defining new variables that are equal to

their proper divisors, e.g. we rewrite ĉ1 · ĉ2 · ĉ3
2 as υ̂1 · υ̂2 where υ̂1, υ̂2 are new variables,

and add the equalities υ̂1 = ĉ1 · ĉ2 and υ̂2 = ĉ3
2.

The steps above lead to a polynomial blow-up in the size of the system, given that in Step 3

of the algorithm we have disjunctions of at most 3 different boolean formulas.

7.4.2 Linear IRWs/UIRWs for Linear Systems with Polynomial Tar-

get Sets

In this section, we take the first step towards generalizing our results from the linear case to

the polynomial. For technical reasons, we need the concept of strong positivity as defined in

Section 2.6.1. We recall this definition:

Strong Positivity. Let X ⊆ RV be a set of valuations and g ∈ R[V] a polynomial over V.

We say that g is strongly positive over X, and write X |= g � 0 (or simply g � 0 when X is

clear from context), if infx∈X g(x) > 0. The real value δ := infx∈X g(x) is called the positivity

gap or positivity witness of g over X. Moreover, g is strongly greater than h, denoted g � h,

iff g − h� 0.

§The reason for fixing k and β is to avoid exponential blow-up when rewriting boolean expressions in
DNF.

201

Problem Definition. In this section, we consider the following problem: Given a k−linear
system S = (V,L, `0, I,Θ) together with a set τ` of at most k strong polynomial inequalities

of degree at most d at every location ` ∈ L, synthesize a k−linear IRW/UIRW for a target

set T that satisfies τ` at every ` ∈ L, or report that no such IRW/UIRW exists.

Mathematical Tool. Our main mathematical tool in this section is Handelman’s Theorem

(Theorem 2.1) but we also rely on Farkas’ Lemma (Lemma 2.2).

The Synthesis Algorithm. Our synthesis algorithm is similar to the one in Section 7.4.1

and consists of five steps. The main difference is in Step 3, in which constraint pairs are

translated to non-linear constraints over template variables. In the previous section, our main

tool for this translation was Farkas’ Lemma. In this section, due to the more complicated

nature of our target sets, we now supplement Farkas’ Lemma with Handelman’s theorem.

For brevity, we do not repeat the presentation of other steps, which are the same as our

previous algorithm.

Recall that Step 2 (either Steps 2a and 2c for IRWs, or Steps 2b and 2c for UIRWs) has

already generated a set Γ of constraint pairs. Each constraint pair γ ∈ Γ is of the form

γ = (λ, %) and encodes the requirement that every inequality in % should be entailed by λ.

Moreover, λ is a set of strict/non-strict linear inequalities over V, whereas % is a set of strong

polynomial inequalities of degree at most d. Let g � 0 be a strong inequality in %. Either λ

is satisfiable and g should be represented in the form of Equation 2.1 (cf. Corollary 2.2) or λ

is unsatisfiable, in which case −1 ≥ 0 or 0 > 0 can be derived as non-negative combinations

of inequalities in λ and 1 ≥ 0 (cf. Corollary 2.1).

Step 3. Applying Handelman’s Theorem and Farkas’ Lemma. For every γ =

(λ, %) ∈ Γ and strong polynomial inequality g � 0 in %, the algorithm performs the following

operations:

• Let Monoidd(λ) = {h1, h2, . . . , hu} be the set of all polynomials in Monoid(λ) whose

degree is at most d. The algorithm symbolically computes Monoidd(λ) and all of it

elements.

202

• The algorithm considers the following three cases, writes constraints that model each

of them, and then combines them disjunctively:

(i) Writing g as in Equation 2.1. The algorithm creates u+1 new variables ŷ0, ŷ1, . . . , ŷu

with the constraints ŷ0 > 0 and ŷ1, . . . , ŷu ≥ 0, and symbolically computes the

equation

g = ŷ0 +
∑u

i=1 ŷi · hi.

Note that both sides of this equation are polynomials of degree d over V. Hence,

they are equal iff they agree on the coefficient of every monomial. The algorithm

equates the coefficients of corresponding monomials in the LHS and RHS of the

equation above, hence obtaining a set of equalities over template variables.

(ii) Obtaining −1 ≥ 0 as a non-negative combination of λ and 1 ≥ 0.

(iii) Obtaining 0 > 0 as a non-negative combination of λ and 1 ≥ 0.

Cases (ii) and (iii) are handled using Farkas’ Lemma in the exact same manner as in

our previous algorithm (Section 7.4.1).

• The algorithm adds the resulting constraints to the non-linear constraint system

Example 7.12. Consider our running example (Figure 7.2) together with the templates

generated in Example 7.5. Moreover, assume that we aim to synthesize an IRW for τ3 :=

(x2 − x− 100� 0) , and no target sets in other locations. When Step 2 of the algorithm

is applied to location 3 (in exactly the same manner as in Section 7.4.1) it creates several

constraint pairs, including the following:

λ :


ĉ12 + ĉ13 · x+ ĉ14 · y ≥ 0

ĉ15 + ĉ16 · x+ ĉ17 · y ≥ 0

−ĉ3 − 5 · ĉ4 − ĉ4 · x− ĉ5 · y > 0

% : (x2 − x− 100� 0)

In Step 3 of the algorithm, the constraint pair γ = (λ, %) is handled as follows:

• The algorithm computes Monoid2(λ) which consists of all products of polynomials in λ

up to degree 2. Explicitly, it computes an expanded version of the following polynomials:

203

h1 := 1 h2 := ĉ12 + ĉ13 · x+ ĉ14 · y
h3 := ĉ15 + ĉ16 · x+ ĉ17 · y h4 := −ĉ3 − 5 · ĉ4 − ĉ4 · x− ĉ5 · y
h5 := h2

2 h6 := h2 · h3

h7 := h2 · h4 h8 := h2
3

h9 := h3 · h4 h10 := h2
4

• The algorithm considers cases (i)-(iii) as above. Cases (ii) and (iii) are similar to

Section 7.4.1, so we focus on (i). The algorithm introduces 11 new variables ŷ0, . . . , ŷ10,

adds the constraints ŷ0 > 0 and ŷ1 . . . ŷ10 ≥ 0 and symbolically computes the following

equality:

x2 − x− 100 = ŷ0 +
∑10

i=1 ŷi · hi

As before, this is a polynomial equality in R[x, y], and must hold for all values of x, y. So,

the corresponding coefficients of the two sides should be equal. The algorithm generates

these equalities. For example, given that the constant factor must be the same in the

LHS and RHS, the algorithm generates this equality:

−100 = ŷ0 + ŷ1 + ŷ2 · ĉ12 + ŷ3 · ĉ15− ŷ4 · ĉ3−5 · ŷ4 · ĉ4 + ŷ5 · ĉ12
2 + ŷ6 · ĉ12 · ĉ15− ŷ7 · ĉ12 · ĉ3−

5 · ŷ7 · ĉ12 · ĉ4 + ŷ8 · ĉ15
2− ŷ9 · ĉ15 · ĉ3−5 · ŷ9 · ĉ15 · ĉ4 + ŷ10 · ĉ3

2 + 10 · ŷ10 · ĉ3 · ĉ4 + 25 · ŷ10 · ĉ4
2.

The algorithm generates similar equalities for the coefficients of x, y, x2, x · y, and y2.

Note that Steps 4 and 5 are also exactly the same as in our previous algorithm and are

omitted here. This being said, we have the following theorems, whose proofs are similar to

Section 7.4.1:

Theorem 7.6 (Soundness). Given a k−linear system S = (V,L, `0, I,Θ), and a set τ` of

at most k polynomial inequalities of degree d or less at every ` ∈ L, every solution of the

non-linear constraint system solved in Step 5 of the algorithm above produces a valid k−linear
IRW/UIRW for a target set T that satisfies τ` at every ` ∈ L.

Theorem 7.7 (Completeness). Given a k−linear system S = (V,L, `0, I,Θ), and a set τ`

of at most k strong polynomial inequalities of degree d or less at every ` ∈ L, every bounded

k−linear IRW/UIRW for a target set T that satisfies τ` at every ` ∈ L, is produced by some

solution of the non-linear constraint system solved in Step 5 of the algorithm above.

204

Theorem 7.8 (Complexity). For fixed constants k, d and β, given a k−linear β-branching
system S = (V,L, `0, I,Θ), and a set τ` of at most k polynomial inequalities of degree d or

less at every ` ∈ L, Steps 1–4 of the algorithm above lead to a polynomial-time reduction

from the problem of generating a k-linear IRW/UIRW to solving a QP instance.

Remark 7.2. Unlike the linear case, our completeness result in Theorem 7.7 requires strong

inequalities and boundedness. This is because Handelman’s theorem is only applicable when

Sat(Φ) is compact, and hence Corollary 2.2 can only handle strong inequalities over bounded

polyhedra. These requirements do not apply to our soundness result, and although they are

theoretically necessary, they have very little impact in practice. If there is an IRW/UIRW

for a target set T that ensures reachability within n steps, it is easy to verify that there is

also a bounded IRW/UIRW with the same property, i.e. the semi-runs starting at ν0 and

taking n transitions cannot visit an unbounded set of valuations. Moreover, if the target set

contains a non-strong inequality such as g ≥ 0 or g > 0, one can replace this inequality with

g + ε � 0 for a new variable ε ≥ 0 and solve a quadratic programming instance with the

goal of minimizing ε. This trick will slightly change the problem, but it rarely has practical

significance.

7.4.3 Polynomial IRWs/UIRWs for Polynomial Systems with Poly-

nomial Target Sets

We now provide the most general extension of our algorithm to the case where the system,

the target set, and the IRW/UIRW are all polynomial.

Problem Definition. We consider the following problem: Given four technical constants

Υ1, . . . ,Υ4 ∈ N, a (d, k)−polynomial system S = (V,L, `0, I,Θ), together with a set τ`

of at most k strong polynomial inequalities of degree at most d at every location ` ∈ L,

synthesize a (d, k)−polynomial IRW/UIRW for a target set T that satisfies τ` at every ` ∈ L,

i.e. T∩
(
{`} × RV

)
|= τ`, or report that no such IRW/UIRW exists. The technical constants

Υi are bounds on the degrees of various polynomials we construct as part of our algorithm.

We will soon discuss them more concretely.

205

Mathematical Tools. We rely on Putinar’s Positivstellensatz (Theorem 2.2) and Hilbert’s

Strong Nullstellensatz (Theorem 2.4).

The Synthesis Algorithm. We are now ready to provide our most general synthesis algo-

rithm for polynomial IRWs/UIRWs over polynomial transition systems. As in the previous

cases, our algorithm consists of 5 steps. The main differences are in Steps 1 and 3. In Step 1,

our algorithm should now generate a polynomial template. Moreover, in Step 3, it employs

Corollary 2.4 and Theorem 2.5 for characterizing entailment. The other steps are exactly

like our previous algorithms.

Step 1. Setting up a template. The algorithm symbolically computes the set of mono-

mials of degree at most d over the variables in V:

Md(V) := {m1,m2, . . . ,mu} := {vα1
1 ·vα2

2 · . . . ·vαrr | α1, . . . , αr ∈ N∪{0} ∧ α1 + . . .+αr ≤ d}.

It then sets up the following templates for A` and f` at every location ` ∈ L :

Â` :


ĉ`,1,1 ·m1 + . . .+ ĉ`,1,u ·mu ≥ 0

...

ĉ`,k,1 ·m1 + . . .+ ĉ`,k,u ·mu ≥ 0

f̂` = d̂`,1 ·m1 + . . .+ d̂`,u ·mu

As usual, the ĉ`,i,j’s and d̂`,j’s are unknown variables for which we should synthesize a value

such that the Â`’s and f̂`’s form an IRW or a UIRW. Note that we do not need to add a

separate constant factor to our templates because 1 ∈Md(V).

Step 2. Computing Constraint Pairs. Steps 2a–2c are the same as in Section 7.4.1.

However, note that the resulting constraint pairs γ = (λ, %) ∈ Γ are now polynomial. Con-

cretely, λ is a set of strict or non-strict polynomial inequalities over V and % is a set of strong

polynomial inequalities over V.

Step 3. Applying Putinar’s Positivstellensatz and Hilbert’s Nullstellensatz. The

algorithm applies Corollary 2.4 and Theorem 2.5 to every constraint pair generated in the

206

previous step to obtain a non-linear constraint system based on the template variables, ε̂,

and new variables defined in this step. Let γ = (λ, %) ∈ Γ be a constraint pair. λ is a set of

polynomial inequalities of the form {gi oni 0}mi=1. Let g � 0 be a strong polynomial inequality

in %. We have to make sure that λ entails g � 0. The algorithm considers three cases:

(i) λ is unsatisfiable due to case (i) in Theorem 2.5: The algorithm considers the set

MΥ1(V) := {m1,m2, . . . ,mn} of all monomials of degree at most Υ1 over V. Recall

that Υ1 is the first technical parameter given in input. It then generates the following

templates ĥi for 0 ≤ i ≤ m:

ĥi := η̂i,1 ·m1 + . . .+ η̂i,n ·mn

by introducing new variables η̂i,j. It also adds certain constraints on η̂i,j’s that ensure

every ĥi is a sum-of-squares. See Section 2.7 for more details. Then, the algorithm

introduces a new variable ŷ0 constrained with ŷ0 > 0 and symbolically computes the

following equality:

−1 = ŷ0 + ĥ0 +
∑m

i=1 ĥi · gi

Finally, the algorithm equates the corresponding coefficients on the two sides of the

equality above, and obtains quadratic equalities over the unknown variables. As before,

no program variable appears in these quadratic equalities.

(ii) λ is unsatisfiable due to case (ii) in Theorem 2.5: The algorithm considers the set

M∗
Υ2

:= {m∗1, . . . ,m∗n∗} of all monomials of degree at most Υ2 (our second technical

parameter) over the extended variable set V∗ = V ∪ {w1, . . . , wm}. It generates the

following templates ĥi for 1 ≤ i ≤ m :

ĥi := η̂i,1 ·m∗1 + . . .+ η̂i,n ·m∗n∗

and symbolically computes the following equality for every index j that corresponds to

a strict inequality gj > 0 in λ:

w2·Υ3
j =

∑m
i=1 ĥi · (gi − w2

i).

207

Here Υ3 is our third technical parameter and both sides are polynomials in R[V∗]. As

in the previous case, the algorithm equates the corresponding coefficients on the LHS

and RHS and obtains quadratic equalities over unknown variables, i.e. no element of

V∗ appears in these equalities. The systems of quadratic equalities generated for each

index j are then combined together disjunctively.

(iii) g is a combination of gi’s as in Corollary 2.4: The algorithm considers the set MΥ4 :=

{m1, . . . ,mn} of monomials of degree at most Υ4 over V, and generates the following

templates ĥi for 0 ≤ i ≤ m:

ĥi := ĥi := η̂i,1 ·m1 + . . .+ η̂i,n ·mn

by introducing new variables η̂i,j and adding constraints that ensure every ĥi is a sum-

of-squares polynomial (Section 2.7). It then introduces a new variable ŷ0 constrained

with ŷ0 > 0 and symbolically computes this equality:

g = ŷ0 + ĥ0 +
∑m

i=1 ĥi · gi.

Finally, the algorithm translates this equality to quadratic equalities over template

variables in exactly the same manner as in previous cases.

The systems of quadratic equalities generated in (i)–(iii) above are combined disjunctively.

Steps 4 and 5. These steps are exactly the same as those in Section 7.4.1.

Example 7.13. Suppose that Υ1 = Υ2 = Υ3 = Υ4 = 1, and the algorithm is in Step 3,

handling the following constraint pair:

λ :

ĉ1 · x > 0

ĉ2 · y ≥ 0
% : (ĉ3 · x · y + c4 � 0)

The algorithm considers the following cases:

208

(i) It generates three new template polynomials

ĥ0 = η̂0,1 + η̂0,2 · x+ η̂0,3 · y
ĥ1 = η̂1,1 + η̂1,2 · x+ η̂1,3 · y
ĥ2 = η̂2,1 + η̂2,2 · x+ η̂2,3 · y

and computes a quadratic system of (in)equalities over the η̂i,j’s that ensures every ĥi

is a sum-of-squares (See Section 2.7 for details). The algorithm then computes the

following equality symbolically (with ŷ0 > 0):

−1 = ŷ0 + ĥ0 + ĥ1 · ĉ1 · x+ ĥ2 · ĉ2 · y

and rewrites it as quadratic equalities between the unknown variables in the usual way,

i.e. by equating the coefficients of corresponding terms on the two sides of the polynomial

equality. Intuitively, if there is a valuation for the unknown variables that satisfies these

constraints, then −1 is a combination of ĉ1 · x, ĉ2 · y and sum-of-square polynomials.

Hence, λ is unsatisfiable.

(ii) The algorithm creates two new program variables w1, w2 and sets up the following tem-

plates:
ĥ3 = η̂3,1 + η̂3,2 · x+ η̂3,3 · y + η̂3,4 · w1 + η̂3,5 · w2

ĥ4 = η̂4,1 + η̂4,2 · x+ η̂4,3 · y + η̂4,4 · w1 + η̂4,5 · w2

.

Unlike the previous case, ĥ3 and ĥ4 need not be sum-of-squares. It then writes the

equality:

w2
1 = ĥ3 · (ĉ1 · x− w2

1) + ĥ4 · (ĉ2 · y − w2
2),

and converts this polynomial equality to quadratic equalities over the unknown variables

by equating the corresponding coefficients. However, note that the LHS and RHS of the

polynomial equality above are in R[x, y, w1, w2]. According to Theorem 2.5, any solution

to the constraints generated here can serve as a proof for unsatisfiability of λ.

209

(iii) The algorithm generates the following template polynomials¶:

ĥ5 = η̂5,1 + η̂5,2 · x+ η̂5,3 · y
ĥ6 = η̂6,1 + η̂6,2 · x+ η̂6,3 · y
ĥ7 = η̂7,1 + η̂7,2 · x+ η̂7,3 · y

,

enforces them to be sum-of-squares just as in case (i) above (Section 2.7) and writes

the polynomial equality:

ĉ3 · x · y + ĉ4 = ŷ1 + ĥ5 + ĥ6 · ĉ1 · x+ ĥ7 · ĉ2 · y

in which ŷ1 > 0. It handles it similarly to the previous cases. Note that this is again a

polynomial equality in R[x, y].

The algorithm combines the systems of quadratic inequality in (i)–(iii) above disjunctively.

It is now easy to obtain the following theorems, whose proofs are similar to previous cases:

Theorem 7.9 (Soundness). Given a (d, k)−polynomial system S = (V,L, `0, I,Θ), and a

set τ` of at most k polynomial inequalities of degree d or less at every ` ∈ L, every solution

of the non-linear constraint system solved in Step 5 of the algorithm above produces a valid

(d, k)-polynomial IRW/UIRW for a target set T that satisfies τ` at every ` ∈ L.

Theorem 7.10 (Semi-completeness). Consider a (d, k)−polynomial system S = (V,L, `0, I,Θ)

and a set τ` of at most k strong polynomial inequalities of degree d or less at every ` ∈ L.

Let W = (T♦, f, ε) be an explicitly bounded (d, k)−polynomial IRW/UIRW for a target set

T that satisfies τ` at every ` ∈ L. If large enough values are assigned to technical constants

Υ1, . . . ,Υ4, the witness W is produced by some solution of the non-linear constraint system

solved in Step 5 of the algorithm above.

Theorem 7.11 (Complexity). For fixed constants k, d and β, and technical constants Υ1, . . . ,Υ4,

given a (k, d)−polynomial β−branching system S = (V,L, `0, I,Θ), and a set τ` of at most

¶In practice, the templates in part (i) can be re-used for part (iii). This is a simple heuristic that we
applied in our implementation and helped decrease the size of the resulting QP.

210

k polynomial inequalities of degree d or less at every ` ∈ L, Steps 1–4 of the algorithm above

lead to a polynomial-time reduction from the problem of generating a (k, d)−polynomial IR-

W/UIRW to solving a QP instance.

Remark 7.3. Note that Theorem 7.10 provides semi-completeness, i.e. completeness when

the chosen technical constants are large enough. This is because Putinar’s Positivstellensatz

and Hilbert’s Nullstellensatz do not establish a bound on the degree of polynomials that appear

in their respective characterizations. Nevertheless, we have to fix a degree in our algorithm

when we are generating templates for such polynomials. We use the technical constants

Υ1, . . . ,Υ4 for this purpose. Such semi-completeness results arise routinely in constraint-

based termination analysis (e.g. Chapter 8) and invariant generation (e.g. [Feng et al., 2017]

and Chapter 6). In practice, solutions are often found with small technical constants (see

Section 7.5 for examples).

7.5 Experimental Results

Implementation. We implemented our algorithms for IRW synthesis in Python using

SymPy [Meurer et al., 2017] for symbolic computations. The implementation also contains

several heuristics for improving performance. Notably, we used Z3 [De Moura and Bjørner, 2008]

to identify and discard unsatisfiable or tautological constraint pairs, hence reducing the sizes

of our QP instances. The QPs were solved by LOQO [Vanderbei, 2006]. All results were

obtained on an Intel Core i5-2540M (2.6 GHz) machine with 8 GB of RAM running Ubuntu

20.04 LTS. We enforced a time limit of 1800 seconds per verification task.

Benchmarks. For the linear case, we used benchmarks from SV-COMP 2020 [Beyer, 2020].

We considered all the tasks in the “Reachability/Safety” category of the competition and

removed any benchmarks that asked for safety instead of reachability, or that could not be

modeled as transition systems (e.g. due to the presence of pointers or arrays). This left us

with 25 benchmarks. For the polynomial case, all standard benchmarks focused on safety.

Hence, we created 6 simple programs with complex reachability structure to showcase the

strengths of our approach. See our technical report [Asadi et al., 2020a] for details of these

211

benchmarks. Specifically, it is noteworthy that these benchmarks demonstrate the fact that

our algorithm’s success is not dependent on the length or proportion of paths that reach the

target set T.

Previous Tools. We compare our approach against the two best-performing tools in the

Reachability/Safety category of SV-COMP 2020, namely VeriAbs [Afzal et al., 2020] and

CPAchecker [Beyer and Keremoglu, 2011].

Linear Results. The results over linear benchmarks are summarized in Table 7.1. Our

approach could handle every linear reachability benchmark in SV-COMP 2020. It is note-

worthy that according to the SV-COMP results, none of the participating model checkers

could handle all 25 benchmarks of Table 7.1. CPAchecker times out on 9 of the instances,

whereas VeriAbs fails on only 1 instance.

After a manual inspection of the benchmarks, we realized that CPAChecker and VeriAbs

are faster than our approach when reachability can be attained using liberal abstractions and

a relatively short path (benchmarks towards the top of Table 7.1). This is not surprising,

given that in these situations, abstract interpretation and symbolic execution are considerably

faster than quadratic constraint solving. However, as the paths to target states become

longer and sparser (benchmarks towards the the bottom of Table 7.1), the advantages of

our approach begin to show. When the paths are long, e.g. thousands of steps of program

execution, CPAchecker always fails to verify the instance. VeriAbs manages to handle these

instances by a clever combination of ideas from loop pruning, loop summarization, abstract

interpretation and bounded model checking. However, this comes with a considerable runtime

overhead, leading to a much worse performance in comparison with our approach.

212

Benchmark |L| |Θ| |V| k |QP| Gen Solve Ours CPAchecker VeriAbs
gcnr2008 8 14 4 2 1838 14.8 81.4 96.2 1.8 17.6
count_up_down-2 3 4 3 2 244 1.6 1.9 3.5 4.4 5.9
while_infinite_loop_4 10 14 1 2 1223 5.1 7.9 13.0 4.1 15.3
nec11 4 8 3 2 2871 13.2 45.7 58.9 4.2 10.8
terminator_02-1 5 8 3 3 1962 12.0 19.4 31.4 4.2 17.2
trex02-2 5 7 1 2 260 1.8 3.4 5.3 4.3 16.6
multivar_1-2 3 6 2 2 900 5.8 19.8 25.6 4.4 9.0
trex01-1 14 27 6 3 9491 69.7 228.2 297.8 4.5 17.3
sum04-1 6 10 2 2 1082 5.4 8.0 13.4 5.1 17.0
terminator_03-1 6 11 2 3 1740 10.0 25.7 35.6 5.1 9.7
trex03-1 4 12 6 2 8500 49.2 197.9 247.0 5.2 9.1
for_bounded_loop1 10 13 5 2 1579 9.8 30.1 39.9 5.6 16.8
Mono1_1-1 3 5 1 2 262 1.3 4.4 5.7 T/O 377.2
sum01_bug02_base 7 13 3 2 7972 38.0 133.4 171.4 6.0 17.3
sum03-1 9 14 2 2 20963 77.9 413.1 491.0 6.1 16.3
id_trans 5 11 5 2 11192 68.7 171.2 239.8 6.4 19.8
sum01_bug02 7 12 4 3 17632 60.0 218.6 278.6 6.5 17.3
sum01-1 7 12 3 2 7316 36.9 55.1 92.0 7.6 16.7
nested_1-2 4 6 2 2 329 2.9 8.0 10.9 T/O 86.0
const_1-2 3 6 2 2 901 4.6 17.6 22.2 T/O 49.6
Mono3_1 6 8 2 3 660 4.0 20.0 24.0 T/O 369.9
Mono4_1 5 7 2 4 949 5.3 22.1 27.3 T/O 635.8
Mono5_1 5 7 3 4 1048 8.1 31.8 39.8 T/O 332.4
Mono6_1 5 7 3 5 1502 11.6 48.5 60.1 T/O 382.2
deep_nested 7 17 5 5 3686 28.6 69.6 98.2 T/O T/O

Table 7.1: Experimental Results over Linear Reachability Benchmarks from SV-COMP. All
times are reported in seconds. “|QP|” is the size of the generated QP instance. “Gen” is
the time spent for generating the QP instance and “Solve” is the time spent for solving it.
“Ours” is the total runtime of our approach over the instance. The last two columns are the
runtimes of CPAchecker and VeriAbs. “T/O” denotes a timeout. The time limit was 1800
seconds per instance. Instances are ordered by the minimum time it took for an approach to
solve them.

Benchmark |L| |Θ| |V| k d |QP| Gen Solve Ours CPAchecker VeriAbs
sqrt2 5 7 2 5 2 2494 24.1 22.4 46.4 10.5 19.7
sqrt1 3 4 2 4 2 920 10.7 30.1 40.8 T/O 207.3
sum 3 4 3 5 2 1826 20.4 59.7 80.1 T/O F
sum2 3 4 3 5 3 2476 36.8 167.5 204.2 T/O T/O
robot2 5 8 4 5 2 5537 71.1 681.7 752.9 T/O F
robot1 5 8 4 5 2 5537 69.8 724.2 794.0 T/O F

Table 7.2: Experimental Results over Polynomial Programs. ‘F’ denotes that the tool termi-
nated but failed to prove reachability. In all cases, we set our Υ variables equal to d.

213

for (a := 0 ; a < M − 1 ; a := a+ 1) :
for (b := 0 ; b < M − 1 ; b := b+ 1) :

for (c := 0 ; c < M − 1 ; c := c+ 1) :
for (d := 0 ; d < M − 1 ; d := d+ 1) :

for (e := 0 ; e < M − 1 ; e := e+ 1) :
i f M − 2 ≤ a, b, c, d, e :

print("target reached")

Figure 7.3: A simplified version of the deep-nested benchmark. M > 109 is a very large
integer.

Nested Loop Benchmark. Figure 7.3 shows a simple illustration of the main part of

deep-nested, the only linear reachability benchmark that could be handled by neither Ve-

riAbs nor CPAchecker. We also ran these tools over this benchmark with an extended time

limit of 12 hours, but they timed out. Moreover, according to SV-COMP results, no other

participating model checker could handle this example, either. We believe this is because

the target state can only be reached after an enormously-long path. Moreover, the target

set is quite thin and even the smallest loss of precision in abstraction can cause a failure

to prove reachability. However, this particular benchmark is not at all challenging for our

method. The runtime of our method does not depend on the length of the paths, and we do

not perform abstraction. Moreover, our approach is complete for linear IRWs. As such, it

can easily prove reachability in Figure 7.3.

Polynomial Results. Table 7.2 shows our experimental results over 6 polynomial instances.

Informally, sqrt1 is a simple program that given an input integer n ≥ 1 computes s = b√nc
by trying every possible integer starting from 1. The goal is to (choose a value for n so as

to) reach a state with n− s > 105. sqrt2 is a more clever variant of the same program that

doubles the current value in a single step when the doubled value does not exceed b√nc. sum
is a program that sums up all the integers from 1 to n. The goal is to synthesize a value

for n such that the sum falls in a specific interval. sum2 is a similar benchmark in which

the program sums squares of all integers from 1 to n. In robot1, two robots are put in the

same position in a 2d plane. At each step, each robot non-deterministically chooses to move

one unit either upwards or to the right. The goal is to reach a state where the square of the

distance between the two robots is more than 105. In robot2, the same two robots are placed

214

on the lower-right and upper-left corners of a square of side length 104. The goal is to show

that they can reach a distance of less than 10 from each other. See [Asadi et al., 2020a] for

details.

Similarly to the linear case, we observe that CPAchecker and VeriAbs can handle cases

where the path reaching the targets is quite short, and when there is no combinatorial explo-

sion in the number of paths due to repeated non-deterministic choice. Notably, CPAchecker

can handle sqrt2 but not sqrt1. The only difference between these two programs is that

sqrt2 is more efficient and hence the path to targets is shorter. Moreover, we observe that

the various other techniques used by VeriAbs, which made it more successful in the linear

case, do not extend well to the polynomial case. In several of the instances, VeriAbs ter-

minates without producing an answer, i.e. reporting unknown as the output. In contrast,

our approach is able to handle these examples, given its semi-completeness over polynomial

IRWs.

215

8

Termination Analysis for Polynomial

Programs

This chapter originally appeared in the following publications:

[•] Chatterjee, K., Fu, H., and Goharshady, A. K. Termination Analysis of

Probabilistic Programs through Positivstellensatz’s. In 28th International Con-

ference on Computer Aided Verification (CAV), 2016.

[•] Huang, M., Fu, H., Chatterjee, K., and Goharshady, A. K. Modular Verification

for Almost-Sure Termination of Probabilistic Programs. In 34th ACM Interna-

tional Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), 2019.

216

8.1 Introduction

Outline. In this chapter, we consider polynomial probabilistic transition systems with the

most basic liveness property of termination. We present efficient methods that reduce the

termination analysis to linear or semi-definite programming. This is in contrast to Chapters 6

and 7 in which the analysis was reduced to the much more general and costlier problem of

quadratic programming. Our approach synthesizes polynomial ranking supermartingales

(PRSMs). On one hand, PRSMs significantly generalize linear ranking supermartingales

(LRSMs) and on the other hand, they are a counterpart of polynomial ranking functions for

proving termination of non-probabilistic programs. Our approach synthesizes PRSMs using

the positivstellensätze of Schmüdgen and Putinar, yielding an efficient method which is not

only sound, but also semi-complete. We show experimental results to demonstrate that our

approach can efficiently handle several classical programs with complex polynomial guards

and assignments.

Probabilistic Programs. Classic imperative programs extended with random-value gen-

erators gives rise to probabilistic programs. Probabilistic programs provide the appropriate

framework to model applications ranging from randomized algorithms [Motwani and Raghavan, 1995,

Dubhashi and Panconesi, 2009], to stochastic network protocols [Baier and Katoen, 2008,

Kwiatkowska et al., 2011], to robot planning [Kress-Gazit et al., 2009, Kaelbling et al., 1998].

Non-determinism plays a crucial role in modeling, for example to model behaviors over which

there is no control, or for abstraction. Thus non-deterministic probabilistic programs are cru-

cial in a huge range of problems, and hence their formal analysis has been studied across dis-

ciplines, such as probability theory and statistics [Durrett, 2019, Howard, 1960], formal meth-

ods [Baier and Katoen, 2008, Kwiatkowska et al., 2011], artificial intelligence [Kaelbling et al., 1996,

Kaelbling et al., 1998], and programming languages [Colón et al., 2003, Fioriti and Hermanns, 2015,

Sankaranarayanan et al., 2013, Esparza et al., 2012].

Fundamental Termination Problems. In absence of probability, i.e. for non-probabilistic

programs, the synthesis of ranking functions and proof of termination are equivalent [Floyd, 1993].

Numerous approaches exist for synthesizing linear ranking functions in non-probabilistic

programs [Bradley et al., 2005a, Colón and Sipma, 2001, Podelski and Rybalchenko, 2004].

217

These approaches use a Farkas-based method similar to Chapter 7 to synthesize linear rank-

ing functions. The most basic extension of the termination question for probabilistic pro-

grams is the almost-sure termination question which asks whether a program terminates with

probability 1. Another fundamental question is finite termination (also known as positive

almost-sure termination [Fioriti and Hermanns, 2015]) which asks whether the expected ter-

mination time of the program is finite. Yet another interesting question is the concentration

bound computation problem that asks to compute a bound M such that the probability that

the termination time is below M is concentrated, or in other words, the probability that the

termination time exceeds M + n decreases exponentially with respect to n.

Previous Results. We now discuss several previous results:

• Probabilistic Programs. Quantitative invariants were introduced to establish termina-

tion of discrete probabilistic programs with demonic non-determinism [McIver and Morgan, 2004,

McIver et al., 2005]. This was extended in [Chakarov and Sankaranarayanan, 2013] to

ranking supermartingales resulting in a sound, but not complete, approach to prove

almost-sure termination of probabilistic programs without non-determinism. For prob-

abilistic programs with countable state space and without non-determinism, the Lya-

punov ranking functions provide a sound and complete method for proving finite ter-

mination [Bournez and Garnier, 2005, Foster et al., 1953]. Another sound method is to

explore bounded termination with exponential decrease of probabilities [Monniaux, 2001]

through abstract interpretation [Cousot and Cousot, 1977]. For probabilistic programs

with non-determinism, a sound and complete characterization for finite termination

through ranking supermartingales is obtained in [Fioriti and Hermanns, 2015]. Rank-

ing supermartingales thus provide a very powerful approach for termination analysis of

probabilistic programs.

• Synthesizing Ranking Functions/Supermartingales. Synthesis of linear ranking func-

tions/supermartingales has been studied extensively in [Podelski and Rybalchenko, 2004,

Chakarov and Sankaranarayanan, 2013]. In the context of probabilistic programs, al-

gorithmic study of synthesis of linear ranking supermartingales for probabilistic pro-

grams [Chakarov and Sankaranarayanan, 2013] and probabilistic programs has been

218

studied. The major technique adopted in these results is Farkas’ Lemma (Lemma 2.2)

which serves as a complete reasoning method for linear inequalities. Beyond linear

ranking functions, polynomial ranking functions have also been considered. Heuristic

synthesis method of polynomial ranking functions is studied in the following works:

– [Babić et al., 2013] checked termination of deterministic polynomial programs by

detecting divergence on program variables.

– [Bradley et al., 2005a] extended to non-deterministic programs through an analy-

sis on finite differences over transitions.

– [Cousot, 2005] uses Lagrangian Relaxation.

– [Shen et al., 2013] uses Putinar’s Positivstellensatz (Theorem 2.2).

– Complete methods of synthesizing polynomial ranking functions for non-deterministic

programs are studied in [Yang et al., 2010], where a complete method through root

classification/real root isolation of semi-algbebraic systems and quantifier elimi-

nation is proposed.

To summarize, while many different approaches have been studied, the algorithmic study of

the synthesis of ranking supermartingales for probabilistic programs has only been limited

to linear ranking supermartingales. For example, [Chakarov and Sankaranarayanan, 2013]

presents a method of synthesis of linear ranking supermartingales for probabilistic programs

without non-determinism, and identifies synthesis of more general nonlinear supermartin-

gales, or extension to probabilistic programs with non-determinism as important challenges.

While the approach of [Chakarov and Sankaranarayanan, 2013] has been extended to prob-

abilistic programs with non-determinism in [Chatterjee et al., 2016c], it is still restricted

to linear ranking supermartingales. Hence, there is no previous algorithmic approach to

handle non-linear ranking supermartingales even for probabilistic programs without non-

determinism.

Our Contributions. Our contributions are as follows:

• Polynomial Ranking Supermartingales. We extend the notion of linear ranking su-

permartingales (LRSM) to polynomial ranking supermartingales (PRSM). We show

219

by a straightforward extension of LRSM that the existence of a PRSM implies both

almost-sure and finite termination.

• Positivstellensätze. We apply the positivstellensätze of Putinar (Theorem 2.2) and

Schmüdgen (Theorem 2.3) to synthesize PRSMs. In case of linear programs, we also

make use of Handelman’s Theorem (Theorem 2.1).

• New Approach for Non-probabilistic Programs. Our results also extend existing results

for non-probabilistic programs. We present the first result that uses Schmüdgen’s Pos-

itivstellensatz and Handelman’s Theorem to synthesize polynomial ranking functions

for non-probabilistic programs.

• Efficiency. The previous complete method [Yang et al., 2010] suffers from high compu-

tational complexity due to the use of quantifier elimination. In contrast, our sound and

semi-complete approach is efficient because the synthesis is reduced to linear or semi-

definite programming, which are solvable in polynomial time [Grötschel et al., 2012].

In particular, our approach does not require quantifier elimination, and works for non-

deterministic probabilistic programs.

• Experimental Results. We demonstrate the effectiveness of our approach on several

classical examples. We show that on classical examples, such as Gambler’s Ruin and

Random Walk, our approach can synthesize a PRSM efficiently. For these examples,

LRSMs do not exist, and they cannot be analyzed efficiently by previous approaches.

8.2 Termination of Probabilistic Programs

In this section, we first formally define the notions of finite and almost-sure termination,

then formalize the problems considered in this chapter. We fix a probabilistic transition

system S = (V,L,Lp, `0, I, θ), and assume that a location ⊥∈ L is set as the end location.

Moreover, we assume that ⊥ is a non-probabilistic location and the only transition out of ⊥
is the trivial transition (with no condition or update) to itself.

220

Termination [Bournez and Garnier, 2005, Fioriti and Hermanns, 2015]. A run r = 〈(`i,νi), θi〉∞i=0

is terminating if `n =⊥ for some n ∈ Z≥0. The termination time of S is a random variable

TS such that for every terminating run r, TS(r) is the smallest n with `n =⊥ . If r is non-

terminating, then TS(r) = +∞. The transition system S is said to be almost-surely termi-

nating (resp. finitely terminating) if for every initial valuation ν0 |= I and every scheduler

s, we have Ps
ν0

(TS <∞) = 1 (resp. Es
ν0

(TS) <∞). Here, Ps
ν0

is the unique probability mea-

sure induced by s over runs that start at (`0,ν0) and Es
ν0

is the corresponding expectation.

Additionally, we define ET(S,ν0) := sups Es
ν0

(TS).

Note that almost-sure termination implies finite termination, but the converse does not

necessarily hold.

Concentration on Termination Time [Monniaux, 2001]. A concentration bound for S

given an initial valuation ν0 is a non-negative integer M such that there exist real constants

c1 ≥ 0 and c2 > 0 so that for all N ≥M and all schedulers s, we have

Ps
ν0

(TS > N) ≤ c1 · e−c2·N .

Informally, a concentration bound shows exponential decrease of probabilities of non-

termination beyond the bound. On the one hand, it can be used to give an upper bound on

probability of non-termination beyond a large step; and on the other hand, it can be used to

approximate ET(S,ν0) [Chatterjee et al., 2016c].

Problem Definition. We consider the following termination analysis problem:

• Input: A polynomial probabilistic transition system S = (V,L,Lp, `0, I, θ), an initial

valuation ν0 |= I, and a polynomial invariant Inv for S.

• Output 1 (Termination): “yes” if the algorithm finds that S almost-surely/finitely ter-

minates using any scheduler and starting from (`0,ν0), or “fail” otherwise.

• Output 2 (Concentration on Termination): A concentration bound as above if the

algorithm finds one and “fail” otherwise.

221

Note that we are assuming a polynomial invariant is provided as part of the input. Such

an invariant can be generated using our approach in Chapter 6.

8.3 Ranking Supermartingales

In this section, we introduce Polynomial Ranking Supermartingales (PRSMs). PRSMs are

a natural but significant generalization of the notion of Linear Ranking Supermartingales

(LRSMs) as studied in [Chakarov and Sankaranarayanan, 2013, Chatterjee et al., 2016c]. We

first define the general notion of Ranking Supermartingales (RSMs).

RSMs [Fioriti and Hermanns, 2015]. A discrete-time stochastic process {Xn}∞n=0 with re-

spect to a filtration {Fn}∞n=0 is a Ranking Supermartingale (RSM) if there exists K < 0 and

ε > 0 such that for all n ∈ Z≥0 : (i) we have E(|Xn|) < ∞, (ii) it holds almost surely that

Xn ≥ K, and (iii) E(Xn+1|Fn) ≤ Xn − ε if Xn ≥ 0, otherwise E(Xn+1|Fn) ≤ Xn.

Lemma 8.1 ([Fioriti and Hermanns, 2015, Chatterjee et al., 2016c]). Let {Xn}∞n=0 be an

RSM adapted to a filtration {Fn}∞n=0 and parameters K, ε as above. Let Z be the random

variable defined by Z := min{n ∈ Z≥0 | Xn < 0} with min ∅ :=∞, denoting the first time n

that the RSM drops below 0. Then, we have P(Z <∞) = 1 and E(Z) ≤ E(X0)−K
ε

.

Based on the lemma above, an RSM terminates, i.e. reaches a negative value, almost-

surely and in finite expected time. The main idea behind using RSMs in termination analysis

is to embed an RSM inside the probabilistic transition system S such that whenever the value

of the RSM becomes zero or negative, we are ensured that S has also terminated (reached

⊥). To do this, we first need to define the classical concept of pre-expectation.

Pre-expectation [Chakarov and Sankaranarayanan, 2013, Chatterjee et al., 2016c]. Con-

sider a probabilistic transition system S = (V,L,Lp, `0, I,Θ). Recall that Σ is the set of

states of S. Let η : Σ → R be a function. The pre-expectation preη : Σ → R is defined as

222

` η(`, x) preη(`, x) ` η(`, x) preη(`, x)

1 g(x) + 10
11≤x≤10 · (g(x) + 9.8)

5 g(x) + 2x− 1.8 g(x) + 2x− 2
+ 1x<1∨x>10 · (−0.2)

2 g(x) + 9.8 g(x) + 9.6 6 g(x)− 2x+ 20.2 g(x)− 2x+ 20
3 g(x) + 9.6 g(x) + 9 ⊥ −0.2 −0.2
4 g(x) + 9.6 g(x) + 0.04x+ 8.98

Table 8.1: An Example η and preη for the Program in Figure 8.1.

follows:

preη(`,ν) :=


η(`,ν) ` =⊥∑

θ=(`,`′,p,true,µ)∈Θ E [η(`′, µ(ν))] · p ` ∈ Lp ∧ ` 6=⊥
maxθ=(`,`′,?,ϕ,µ)∈Θ,ν|=ϕ E [η(`′, µ(ν))] ` ∈ L \ Lp ∧ ` 6=⊥

In the sequel, we focus on polynomial η’s, i.e. η’s for which each η(`, ·) for ` ∈ L is

a polynomial over V. We also assume that the update functions µ are such that preη is

polynomial and can be computed symbolically. The following lemma can be proven by a

simple definition-chasing:

Lemma 8.2. Let σi = (`i,νi) denote the state of S that is reached after i steps of execution

from σ0 = (`0,ν0), and define the stochastic process {Xn}∞n=0 adapted to {Fn}∞n=0 as Xn :=

η(σn) = η(`n,νn). For every scheduler s, we have:

Es(Xn+1 | Fn) ≤ preη(`n,νn).

Example 8.1. Consider the program in Figure 8.1. We will use this program as our running

example. Let η be the function specified in Table 8.1, where g(x) := (x − 1) · (10 − x). The

values of preη are also given in Table 8.1. Note that the case for i = 2 is obtained from

preη(2, x) = max{η(3, x), η(4, x)} = max{g(x) + 9.6, g(x) + 9.6}, and for i = 3 we have

preη(3, x) = 0.5 · η(1, x+ 1) + 0.5 · η(1, x− 1).

We now define the notion of Polynomial Ranking Supermartingale (PRSM). The intuition

is that we encode the RSM difference condition as a logical formula, treat zero as the threshold

223

1 : while 1 ≤ x ≤ 10 :
2 : i f ? :
3 : x := x+ r

else :
4 : i f prob(0.51) :
5 : x := x− 1

else :
6 : x := x+ 1
⊥ :

1

⟂

2 3

45

6

1	≤	x	≤	10

x	<	1

x	
>	
10

★

★

x	↦	x+r

0.51

0.49

x	↦	x-1

x	↦	x+1

θ1

θ2θ3

θ4

θ5

θ6

θ7
θ8

θ9

θ10

Figure 8.1: A Simple Program (Gambler’s Ruin) and its Representation as a Probabilistic
Transition System. In this figure, ? denotes non-determinism and r is a random variable with
P[r = 1] = P[r = −1] = 0.5.

between terminal and non-terminal states, and use the invariant Inv to over-approximate the

set of reachable valuations at each label.

Polynomial Ranking Supermartingales. A Polynomial Ranking Supermartingale (PRSM)

of degree d is a function η : Σ→ R for which there exist ε > 0 and K ≤ −ε such that for all

σ = (`,ν) ∈ Σ, the following conditions hold:

(C1): The function η(`, ·) : RV → R is a polynomial of degree at most d over V;

(C2): If ` 6=⊥ and ν |= Inv(`), then η(`,ν) ≥ 0;

(C3): If ` =⊥, then η(`,ν) = K;

(C4): If ` 6=⊥ and ν |= Inv(`), then preη(`,ν) ≤ η(`,ν)− ε.

Note that (C2) and (C3) together separate non-termination and termination by the

threshold 0, and (C4) is the RSM difference condition which is intuitively related to the

ε difference in the definition of an RSM.

Theorem 8.1. Given a probabilistic transition system S = (V,L,Lp, `0, I,Θ) and an in-

variant Inv, if there is a PRSM η of degree d for S with parameters ε and K, then S is

almost-surely terminating for every initial valuation ν0 |= I ∧ Inv(`0) and every scheduler

s. Moreover, we have ET(S,ν0) ≤ η(`0,ν0)−K
ε

.

224

Proof. Define UB(S,ν0) := η(`0,ν0)−K
ε

and let {Xn}∞n=0 be the stochastic process defined in

Lemma 8.2. By Lemma 8.2, (C4) and the fact that K ≤ −ε, {Xn}∞n=0 is an RSM adapted to

{Fn}∞n=0. Then by (C2), (C3) and Lemma 8.1 we have:

ET(S,ν0) = sup
s

Es
ν0

(TS) ≤ η(`0,ν0)−K
ε

.

Example 8.2. Consider our running example (Figure 8.1) and the function η given in Ex-

ample 8.1. Assuming that the initial valuation satisfies 1 ≤ x ≤ 10, we use the trivial

invariant Inv such that Inv(1) = 0 ≤ x ∧ x ≤ 11, Inv(j) = 1 ≤ x ∧ x ≤ 10 for 2 ≤ j ≤ 6 and

Inv(⊥) = x < 1 ∨ x > 10. It is straightforward to verify that η is a PRSM of degree 2 with

ε = 0.2 and K = −0.2. Hence, by Theorem 8.1, the program terminates almost-surely under

any scheduler and its expected termination time is at most 5 · (x0 − 1) · (10− x0) + 51, given

the initial value x0.

Remark 8.1. Our running example (Figure 8.1) does not admit a linear RSM (a PRSM of

degree 1). This indicates that LRSMs may not exist even over simple affine programs and

thus motivates the study of PRSMs even for affine programs.

Remark 8.2. The non-strict inequalities of (C2) and (C4) can be replaced by their strict

counterparts. This does not change the notion of PRSM as we can simply add constant

factors to η or scale it. On the same note, we can assume K = −1 and ε = 1 without losing

generality.

Theorem 8.1 provides a tool for answering the problems of almost-sure and finite termi-

nation in a unified fashion. Generalizing the approach of [Chatterjee et al., 2016c], we now

show that by restricting a PRSM to have bounded difference, it can also serve as a witness

for concentration in termination.

Difference-bounded PRSM. A PRSM η : Σ→ R is difference-bounded if there exists real

constants a, b ∈ R such that for every pair (σ, σ′) of states in which σ′ is a successor of σ, we

have a ≤ η(σ′)− η(σ) ≤ b.

225

To prove our main theorem (Theorem 8.3) regarding the use of difference-bounded PRSMs

for concentration bounds on termination time of programs, we should first present the well-

known Hoeffding’s Inequality.

Theorem 8.2 (Hoeffding’s Inequality [Hoeffding, 1994]). Let {Xn}∞n=1 be a supermartingale

with respect to a filtration {Fn}∞n=1 and {[an, bn]}∞n=1 be a sequence of intervals of positive

length in R. If X1 is a constant random variable and Xn −Xn−1 ∈ [an, bn] almost-surely for

all n ∈ N, then

P(Xn −X1 ≥ λ) ≤ e
− 2·λ2∑n

k=2
(bk−ak)2

for all n ∈ N and λ > 0.

Consider a difference-bounded PRSM η with parameters a, b. Recall that Xn := η(`n,νn).

Define the stochastic process {Yn}∞n=1 by:

Yn = Xn + ε · (min{TS, n} − 1).

The following lemma shows that {Yn}∞n=1 is a supermartingale and satisfies the requirements

of Hoeffding’s Inequaltiy.

Lemma 8.3. {Yn}n∈N is a supermartingale and Yn+1 − Yn ∈ [a + ε, b + ε] almost surely for

all n ∈ N.

Proof. Consider the following random variable:

Un := min{TS, n+ 1} −min{TS, n},

and observe that this is equal to 1 if TS > n and 0 otherwise. Given that (i) the event TS > n

is measurable in Fn; and (ii) Xn ≥ 0 iff TS > n (See conditions C2 and C3), we have

226

E(Yn+1 | Fn)− Yn = E(Xn+1 | Fn)−Xn + ε · E(Un | Fn)

= E(Xn+1 | Fn)−Xn + ε · E(1TS>n | Fn)

= E(Xn+1 | Fn)−Xn + ε · 1TS>n
≤ −ε · 1Xn≥0 + ε · 1TS>n
= 0 .

Note that the inequality above is due to the fact that Xn is a ranking supermartingale.

Moreover, since TS ≤ n implies `n =⊥ and Xn+1 = Xn we have that (Xn+1 − Xn) =

1TS>n · (Xn+1 −Xn). Hence we have

Yn+1 − Yn = Xn+1 −Xn + ε · Un
= (Xn+1 −Xn) + ε · 1TS>n
= 1TS>n · (Xn+1 −Xn + ε) .

Hence Yn+1 − Yn ∈ [a+ ε, b+ ε].

We are now ready for our main theorem regarding concentration bounds:

Theorem 8.3. Let S be a probabilistic transition system and η a difference-bounded PRSM of

degree d with parameters a, b, ε,K as above. Then, for every scheduler s and initial valuation

ν0 and for all n ∈ N, if ε · (n− 1) > η(`0,ν0), we have

Ps
ν0

(TS > n) ≤ e
− 2·(ε·(n−1)−η(`0,ν0))

2

(n−1)·(b−a)2 .

Based on this theorem, a difference-bounded PRSM η implies a concentration bound of
η(`0,ν0)

ε
+ 2. We now prove the theorem:

Proof. Let W0 := Y1 = η(`0,ν0). Fix any scheduler s. By Hoeffing’s Inequality, for all λ > 0,

we have Ps
ν0

(Yn −W0 ≥ λ) ≤ e
− 2·λ2

(n−1)·(b−a)2 . Note that TS > n iff Xn ≥ 0 by conditions C2

227

and C3 of PRSM. Let α = ε · (n − 1) −W0 and α̂ = ε · (min{n, TS} − 1) −W0. Note that

when TS > n, α and α̂ coincide. Thus, for P(TS > n) = P(Xn ≥ 0 ∧ TS > n) we have

P(Xn ≥ 0 ∧ TS > n) = P((Xn + α ≥ α) ∧ (TS > n))

= P((Xn + α̂ ≥ α) ∧ (TS > n))

≤ P((Xn + α̂ ≥ α))

= P(Yn − Y1 ≥ ε · (n− 1)−W0)

≤ e
− 2·(ε·(n−1)−W0)

2

(n−1)·(b−a)2

for all n > W0

ε
+ 1. The first equality is obtained by simply adding α on both sides, and the

second equality holds because when TS > n we have min{n, TS} = n which ensures α = α̂.

The first inequality is obtained by simply dropping the conjunct TS > n. The following

equality is by definition, and the final inequality is an application of Theorem 8.2.

Example 8.3. Consider again our running example of Figure 8.1 with the invariant Inv

given in Example 8.2. Let η be the function of Table 8.1. We can verify that the interval

[a, b] = [−10.2, 8.6] satisfies the conditions of difference-bounded PRSM:

• for all x ∈ [1, 10], η(2, x)− η(1, x) = −0.2;

• for all x ∈ [0, 1) ∪ (10, 11], −10.2 ≤ η(⊥, x)− η(1, x) ≤ −0.2;

• for all x ∈ [1, 10] and i ∈ {3, 4}, η(i, x)− η(2, x) = −0.2;

• for all x ∈ [1, 10] and i ∈ {5, 6}, −9.4 ≤ η(i, x)− η(4, x) ≤ 8.6;

• for all x ∈ [1, 10], η(1, x− 1)− η(5, x) = −0.2;

• for all x ∈ [1, 10], η(1, x+ 1)− η(6, x) = −0.2;

• for all x ∈ [1, 10] and r ∈ {−1, 1}, −9.6 ≤ η(1, x+ r)− η(3, x) ≤ 8.4.

Therefore, by Theorem 8.3, assuming that the program is run with the initial value x0 = 5,

we deduce:

P (TS > 50000) ≤ e−
2·(0.2·49999−30)2

49999·18.82 ≈ 1.3016 · 10−5.

228

We end this section with a decidability result for the synthesis of PRSMs and difference-

bounded PRSMs that can simply be obtained by applying quantifier elimination. However,

note that quantifier elimination is extremely inefficient. As such, the next sections of this

chapter focus on more efficient algorithms for synthesizing PRSMs.

Theorem 8.4. Given a polynomial probabilistic transition system S = (V,L,Lp, `0, I,Θ)

and a polynomial invariant Inv for S, for any fixed degree d ∈ N, the problem of decid-

ing whether there exists a (difference-bounded) PRSM of degree d for S is encodable in the

existential theory of the reals and hence decidable.

8.4 Synthesizing Polynomial Ranking Supermartingales

Our synthesis algorithm is quite similar to those of Chapters 6 and 7. As such, we forgo

most details in this section. Our method is based on the positivstellensätze introduced

in Section 2.6. Below, we fix an input polynomial probabilistic transition system S =

(V,L,Lp, `0, I,Θ), an input polynomial invariant Inv and an input initial configuration

(`0,ν0) in which ν0 |= I ∧ Inv(`0). We also assume that the degree d and technical pa-

rameter Υ are given as part of the input.

Our Algorithm. We present a succinct description of the key steps.

1. Template η for a PRSM. The algorithm constructs the set Md of all monomials over

V of degree no greater than d, and sets up a template PRSM η such that η(`, ·) is the

polynomial
∑

h∈Md
ah,` · h where each ah,` is a new unknown variable. Our goal is to

synthesize values for ah,`’s so that η becomes a valid PRSM.

2. Fixed Values for ε and K. Based on Remark 8.2, the algorithm fixes ε to be 1 and K

to be −1.

3. Computing preη. The algorithm symbolically computes preη. See Example 8.1. Note

that all coefficients in preη are linear combinations of ah,`’s.

4. Generating Constraint Pairs. The algorithm generates constraint pairs modeling (C1)–

(C4). If the goal is to synthesize a difference-bounded PRSM, it also creates new

229

unknown variables for the parameters a and b and creates constraint pairs modeling

difference-boundedness. For a more detailed treatment of constraint pairs see Sec-

tion 7.4.1.

5. Translating Constraint Pairs to Constraints over Unknown Variables. The algorithm

uses Putinar’s Positivstellensatz (Theorem 2.2), Schmüdgen’s Positivstellensatz (The-

orem 2.3) or Handelman’s Theorem (Theorem 2.1) to translate the constraint pairs

into quadratic constraints. Moreover, it uses Υ as a bound on the degree of the sum-

of-square polynomials or the number of multiplicands in monoid elements. This is

the exact same process as in Sections 7.4.2 and 7.4.3, except that there is no need to

synthesize positivity witnesses here (Remark 8.2).

6. Solution via Semi-definite or Linear Programming. The algorithm calls a Semi-definite

Programming (SDP) solver for Schmüdgen’s and Putinar’s Positivstellensätze or Linear

Programming (LP) solver for Handelman’s Theorem in order to check the feasibility of

the constraints generated in the previous step and optimize the runtime upper-bound
η(`0,ν0)−K

ε
(see Theorem 8.1). Note that feasibility implies the existence of a (difference-

bounded) PRSM of degree d, which in turn implies finite termination. Similarly, the

existence of a difference-bounded PRSM implies a concentration bound through The-

orem 8.3.

Remark 8.3. Unlike our algorithms in Chapters 6 and 7, we do not need to use general

quadratic programming here and can simply use linear or semi-definite programming instead.

This is because (i) the polynomials on the left-hand sides of constraint pairs generated in

Step 4 above have fixed coefficients, i.e. there are no unknown variables in their coefficients,

and (ii) the QP instance modeling sum-of-square polynomials is solvable using semi-definite

programming (Remark 2.2).

The arguments for soundness, semi-completeness, and complexity of our approach are

similar to Chapters 6 and 7. We have the following theorems:

Theorem 8.5 (Soundness). Given a polynomial probabilistic transition system S = (V,L,Lp, `0, I,Θ)

and a polynomial invariant Inv, every solution obtained in Step 6 of our algorithm leads to a

function η that is a valid (difference-bounded) PRSM of degree d for S with respect to Inv.

230

Theorem 8.6 (Semi-completeness). In the bounded reals model of computation, given a

polynomial probabilistic transition system S = (V,L,Lp, `0, I,Θ) and a polynomial invariant

Inv, let η be a valid PRSM of degree d for S with respect to Inv. Then, there exists a constant

Υη such that for all Υ > Υη the linear/semi-definite programming instance in Step 6 of the

above algorithm has a solution that corresponds to η.

Theorem 8.7 (Efficiency). For a polynomial probabilistic transition system S = (V,L,Lp, `0, I,Θ)

and a polynomial invariant Inv, both of constant degree, our algorithm runs in polynomial

time, assuming that d,Υ are fixed constants.

Proof. Similar to Chapters 6 and 7, our algorithm provides a polynomial-time reduction to

quadratic programming. However, in this case, our QP instances are indeed LP or SDP in-

stances. It is well-known that both LP and SDP are solvable in polynomial time [Grötschel et al., 2012].

8.5 Experimental Results

We now present experimental results for our algorithm over several classical programs.

Solvers. We implemented our approach in C++ and used the semi-definite program-

ming tool SOSTOOLS [Papachristodoulou et al., 2013] (which in turn depends on SeDuMi

[Sturm, 1999]) and the linear programming tool CPLEX [IBM, 2019] for solving the con-

straint systems.

Experimental Examples and Setup. We consider six classical examples of probabilistic

programs exhibiting various types of non-linear behavior. Our examples are as follows:

• Logistic Map (Figure 8.2) is adapted from [Cousot, 2005]. It was previously handled

by Lagrangian relaxation, whereas our approach solves it using linear programming;

• Decay (Figure 8.3) models a sequence of points converging stochastically to the origin;

• Random Walk (Figure 8.4) models a random walk within a bounded region defined

through non-linear curves;

231

Example Method SOSTOOLS error η(`0, ·)
Decay Putinar 0.1248s ≤ 10−9 5282.3435 · x2 + 5282.3435 · y2 + 1

Random Walk Schmüdgen 0.7176s ≤ 10−7 −300 · x2 − 300 · y2 + 601

Example Method CPLEX - η(`0, ·)
Gambler’s Ruin Handelman ≤ 10−2s - 33 · x− 3 · x2

Gambler’s Ruin V. Handelman ≤ 10−2s - −21 + 100 · x− 70 · y − 100 · x2 + 100 · x · y
Logistic Map Handelman ≤ 10−2s - 1000500.7496 · x
Nested Loop Handelman ≤ 2 · 10−2s - 48 + 160 · n+ (m− x) · (800 · n+ 240)

Table 8.2: Our Experimental Results over the Example Programs. The top portion shows
results obtained using SDP and the bottom portion shows LP-based results.

• Gambler’s Ruin (Figure 8.1) is our running example;

• Gambler’s Ruin Variant (Figure 8.5) is a variant of Figure 8.1; and

• Nested Loop (Figure 8.6) is a nested loop with stochastic increments.

In all examples the invariants (shown in brackets) were straightforward and manually gener-

ated. Alternatively, one can use our approach in Chapter 6 to automatically generating the

invariants. See our technical report [Chatterjee et al., 2016b] for more details.

Experimental Results. In Table 8.2, we present the experimental results, where “Method”

shows whether we used Handelman’s Theorem, Putinar’s Positivstellensatz or Schmüdgen’s

Positivstellensatz to synthesize the PRSM, “SOSTOOLS/CPLEX” is the running time for

these tools in seconds, “error” is the maximal numerical error of equality constraints added

into SOSTOOLS, and η(`0, ·) is the polynomial for the initial label in the synthesized PRSM.

All numbers except errors are rounded to 10−4. The experimental results were obtained on

Intel Core i7-2600 3.4 GHz machine with 16GB RAM.

Comparison with Previous Approaches. Except for Logistic Map, no previous ap-

proach can prove almost-sure termination over our example programs. For the Logistic Map

example, our reduction is to linear programming whereas existing approaches [Cousot, 2005,

Shen et al., 2013] reduce to semi-definite programming.

232

[0 ≤ a ≤ 1 ∧ 0 ≤ x ≤ 1]

while 0 ≤ a ≤ 0.999 ∧ 0.001 ≤ x ≤ 1 do

[0 ≤ a ≤ 0.999 ∧ 0.001 ≤ x ≤ 1]

x := a · x · (1− x)

od

Figure 8.2: Logistic Map

[x2 + y2 ≤ 2]

while 0.1 ≤ x2 + y2 ≤ 1 do

[0.1 ≤ x2 + y2 ≤ 1]x
y

 :=

UNIF(0.98, 1) · x+ 0.01 · y
UNIF(0.98, 1) · y − 0.01 · x


od

Figure 8.3: Decay

[x2 + y2 ≤ 2]

while x2 + y ≤ 1 ∧ x2 − y ≤ 1 do

[x2 + y ≤ 1 ∧ x2 − y ≤ 1]x
y

 :=

x+ UNIF(−0.1, 0.1)

y + UNIF(−0.1, 0.1)


od

Figure 8.4: Random Walk

233

[0.7 ≤ x ≤ y + 0.3]

while 1 ≤ x ≤ y do

[1 ≤ x ≤ y]

i f ? do

[1 ≤ x ≤ y]

x := x+ UNIF(−0.3, 0.3)

else

[1 ≤ x ≤ y]

i f prob (0 . 5) do

[1 ≤ x ≤ y]

x := x+ 0.1

else

[1 ≤ x ≤ y]

x := x− 0.1

f i

f i

od

Figure 8.5: Gambler’s Ruin Variant

234

[x ≤ m+ 0.2 ∧ n ≥ 0]

while x ≤ m do

[x ≤ m ∧ n ≥ 0]

y :=0;

[x ≤ m ∧ y ≤ n+ 0.2 ∧ n ≥ 0]

while y ≤ n do

[x ≤ m ∧ y ≤ n ∧ n ≥ 0]

y := y + UNIF(−0.1, 0.2)

od ;

[x ≤ m ∧ y ≥ n ∧ n ≥ 0]

x := x+ UNIF(−0.1, 0.2)

od

Figure 8.6: Nested Loop

235

References

[Adjé et al., 2015] Adjé, A., Garoche, P.-L., and Magron, V. (2015). Property-based poly-

nomial invariant generation using sums-of-squares optimization. In Static Analysis Sym-

posium (SAS), pages 235–251.

[Adjé et al., 2010] Adjé, A., Gaubert, S., and Goubault, E. (2010). Coupling policy iteration

with semi-definite relaxation to compute accurate numerical invariants in static analysis.

In European Symposium on Programming (ESOP), pages 23–42.

[Afzal et al., 2020] Afzal, M., Chakraborty, S., Chauhan, A., Chimdyalwar, B., Darke, P.,

Gupta, A., Kumar, S., M, C. B., Unadkat, D., and Venkatesh, R. (2020). VeriAbs :

Verification by abstraction and test generation (competition contribution). In Conference

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pages

383–387.

[Albarghouthi et al., 2012a] Albarghouthi, A., Gurfinkel, A., and Chechik, M. (2012a). From

under-approximations to over-approximations and back. In Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS), pages 157–172.

[Albarghouthi et al., 2012b] Albarghouthi, A., Li, Y., Gurfinkel, A., and Chechik, M.

(2012b). Ufo: A framework for abstraction-and interpolation-based software verification.

In Conference on Computer-Aided Verification (CAV), pages 672–678.

[Alias et al., 2010] Alias, C., Darte, A., Feautrier, P., and Gonnord, L. (2010). Multi-

dimensional rankings, program termination, and complexity bounds of flowchart programs.

In Static Analysis Symposium (SAS), pages 117–133.

236

[Alur et al., 2006] Alur, R., Dang, T., and Ivančić, F. (2006). Predicate abstraction for

reachability analysis of hybrid systems. ACM transactions on embedded computing systems

(TECS), 5(1):152–199.

[Alur and Dill, 1990] Alur, R. and Dill, D. L. (1990). Automata for modeling real-time sys-

tems. In International Colloquium on Automata, Languages, and Programming (ICALP),

pages 322–335.

[Alur et al., 1995] Alur, R., Itai, A., Kurshan, R. P., and Yannakakis, M. (1995). Timing

verification by successive approximation. Information and Computation, 118(1):142–157.

[Amato et al., 2007] Amato, C., Bernstein, D. S., and Zilberstein, S. (2007). Solving

POMDPs using quadratically constrained linear programs. In International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 2418–2424.

[Andersen and Andersen, 2018] Andersen, E. D. and Andersen, K. D. (2018). MOSEK op-

timization suite.

[Appel and Palsberg, 2003] Appel, A. W. and Palsberg, J. (2003). Modern Compiler Imple-

mentation in Java. Cambridge University Press, 2nd edition.

[Arnborg et al., 1987] Arnborg, S., Corneil, D. G., and Proskurowski, A. (1987). Complexity

of finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–

284.

[Arzt et al., 2014] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J.,

Le Traon, Y., Octeau, D., and McDaniel, P. (2014). FlowDroid: Precise context, flow,

field, object-sensitive and lifecycle-aware taint analysis for android apps. In Conference on

Programming Language Design and Implementation (PLDI), pages 259–269.

[Asadi et al., 2020a] Asadi, A., Chatterjee, K., Fu, H., Goharshady, A. K., and Mahdavi, M.

(2020a). Inductive reachability witnesses. arXiv preprint arXiv:2007.14259.

[Asadi et al., 2020b] Asadi, A., Chatterjee, K., Goharshady, A. K., Mohammadi, K., and

Pavlogiannis, A. (2020b). Faster algorithms for quantitative analysis of Markov chains

and Markov decision processes with small treewidth. arXiv preprint arXiv:2004.08828.

237

[Asadi et al., 2020c] Asadi, A., Chatterjee, K., Goharshady, A. K., Mohammadi, K., and

Pavlogiannis, A. (2020c). Faster algorithms for quantitative analysis of MCs and MDPs

with small treewidth. In International Symposium on Automated Technology for Verifica-

tion and Analysis (ATVA).

[Ashok et al., 2017] Ashok, P., Chatterjee, K., Daca, P., Křetínský, J., and Meggendorfer,

T. (2017). Value iteration for long-run average reward in Markov decision processes. In

Conference on Computer-Aided Verification (CAV), pages 201–221.

[Atig and Ganty, 2011] Atig, M. F. and Ganty, P. (2011). Approximating Petri net reach-

ability along context-free traces. In Foundations of Software Technology and Theoretical

Computer Science (FSTTCS), pages 152–163.

[Atiyah and Macdonald, 1969] Atiyah, M. F. and Macdonald, I. G. (1969). Introduction to

Commutative Algebra. Taylor and Francis.

[Babić et al., 2013] Babić, D., Cook, B., Hu, A. J., and Rakamarić, Z. (2013). Proving

termination of nonlinear command sequences. Formal Aspects of Computing, 25(3):389–

403.

[Back and Wright, 2012] Back, R.-J. and Wright, J. (2012). Refinement calculus: a system-

atic introduction. Springer.

[Bagnara et al., 2005] Bagnara, R., Rodríguez-Carbonell, E., and Zaffanella, E. (2005). Gen-

eration of basic semi-algebraic invariants using convex polyhedra. In Static Analysis Sym-

posium (SAS), pages 19–34.

[Baier and Katoen, 2008] Baier, C. and Katoen, J. (2008). Principles of model checking.

MIT Press.

[Balarin and Sangiovanni-Vincentelli, 1993] Balarin, F. and Sangiovanni-Vincentelli, A. L.

(1993). An iterative approach to language containment. In Conference on Computer-

Aided Verification (CAV), pages 29–40.

[Ball et al., 2011] Ball, T., Levin, V., and Rajamani, S. K. (2011). A decade of software

model checking with SLAM. Communications of the ACM, 54(7):68–76.

238

[Ball and Rajamani, 2002] Ball, T. and Rajamani, S. K. (2002). The SLAM project: de-

bugging system software via static analysis. In Symposium on Principles of Programming

Languages (POPL).

[Basu et al., 2007] Basu, S., Pollack, R., and Coste-Roy, M.-F. (2007). Algorithms in real

algebraic geometry. Springer.

[Bellman, 1957] Bellman, R. (1957). A Markovian decision process. Journal of Mathematics

and Mechanics, pages 679–684.

[Ben Sassi et al., 2015] Ben Sassi, M. A., Sankaranarayanan, S., Chen, X., and Ábrahám,

E. (2015). Linear relaxations of polynomial positivity for polynomial Lyapunov function

synthesis. IMA Journal of Mathematical Control and Information, 33(3):723–756.

[Benedikt et al., 2013] Benedikt, M., Lenhardt, R., and Worrell, J. (2013). LTL model check-

ing of interval Markov chains. In Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS), pages 32–46.

[Berend and Tassa, 2010] Berend, D. and Tassa, T. (2010). Improved bounds on bell numbers

and on moments of sums of random variables. Probability and Mathematical Statistics,

30(2):185–205.

[Berkelaar et al., 2003] Berkelaar, M., Eikland, K., and Notebaert, P. (2003). lpsolve Linear

Programming system.

[Beyer, 2020] Beyer, D. (2020). Advances in automatic software verification: SV-COMP

2020. In Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), pages 347–367.

[Beyer et al., 2007] Beyer, D., Henzinger, T. A., Jhala, R., and Majumdar, R. (2007). The

software model checker Blast. International Journal on Software Tools for Technology

Transfer, 9(5-6):505–525.

[Beyer and Keremoglu, 2011] Beyer, D. and Keremoglu, M. E. (2011). CPAchecker: A

tool for configurable software verification. In Conference on Computer-Aided Verification

(CAV), pages 184–190.

239

[Blackburn et al., 2006] Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M., McKinley,

K. S., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M.,

Hosking, A., Jump, M., Lee, H., Moss, J. E. B., Phansalkar, A., Stefanović, D., VanDrunen,

T., von Dincklage, D., and Wiedermann, B. (2006). The DaCapo benchmarks: Java

benchmarking development and analysis. In Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), pages 169–190.

[Bodden, 2012] Bodden, E. (2012). Inter-procedural data-flow analysis with IFDS/IDE and

Soot. In State of the Art in Java Program Analysis (SOAP), pages 3–8.

[Bodik et al., 2010] Bodik, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N., Barman,

S., and Rodarmor, C. (2010). Programming with angelic nondeterminism. In Symposium

on Principles of Programming Languages (POPL), pages 339–352.

[Bodlaender, 1994] Bodlaender, H. L. (1994). A tourist guide through treewidth. Acta cy-

bernetica, 11.

[Bodlaender, 1996] Bodlaender, H. L. (1996). A linear-time algorithm for finding tree-

decompositions of small treewidth. SIAM Journal on computing, 25(6):1305–1317.

[Bodlaender, 1998] Bodlaender, H. L. (1998). A partial k-arboretum of graphs with bounded

treewidth. Theoretical computer science, 209:1–45.

[Bodlaender and Hagerup, 1998] Bodlaender, H. L. and Hagerup, T. (1998). Parallel al-

gorithms with optimal speedup for bounded treewidth. SIAM Journal on Computing,

27(6):1725–1746.

[Borodin et al., 1995] Borodin, A., Irani, S., Raghavan, P., and Schieber, B. (1995). Com-

petitive paging with locality of reference. Journal of Computer and System Sciences,

50(2):244–258.

[Bournez and Garnier, 2005] Bournez, O. and Garnier, F. (2005). Proving positive almost-

sure termination. In Conference on Rewriting Techniques and Applications (RTA), pages

323–337.

240

[Bradley et al., 2005a] Bradley, A. R., Manna, Z., and Sipma, H. B. (2005a). Linear ranking

with reachability. In Conference on Computer-Aided Verification (CAV), pages 491–504.

[Bradley et al., 2005b] Bradley, A. R., Manna, Z., and Sipma, H. B. (2005b). Termination

of polynomial programs. In Verification, Model Checking, and Abstract Interpretation

(VMCAI), pages 113–129.

[Brown, 2010] Brown, C. W. (2010). QEPCAD - quantifier elimination by partial cylindrical

algebraic decomposition.

[Burgstaller et al., 2004] Burgstaller, B., Blieberger, J., and Scholz, B. (2004). On the tree

width of Ada programs. In Ada-Europe, pages 78–90.

[Cadar and Sen, 2013] Cadar, C. and Sen, K. (2013). Symbolic execution for software testing:

three decades later. Communications of the ACM, 56(2):82–90.

[Calder et al., 1998] Calder, B., Krintz, C., John, S., and Austin, T. (1998). Cache-conscious

data placement. In Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 139–149.

[Chakarov and Sankaranarayanan, 2013] Chakarov, A. and Sankaranarayanan, S. (2013).

Probabilistic program analysis with martingales. In Conference on Computer-Aided Veri-

fication (CAV), pages 511–526.

[Chakarov and Sankaranarayanan, 2014] Chakarov, A. and Sankaranarayanan, S. (2014).

Expectation invariants for probabilistic program loops as fixed points. In Static Anal-

ysis Symposium (SAS), pages 85–100.

[Chatterjee et al., 2016a] Chatterjee, K., Fu, H., and Goharshady, A. K. (2016a). Termi-

nation analysis of probabilistic programs through positivstellensatz’s. In International

Conference on Computer Aided Verification (CAV).

[Chatterjee et al., 2016b] Chatterjee, K., Fu, H., and Goharshady, A. K. (2016b). Ter-

mination analysis of probabilistic programs through positivstellensatz’s. arXiv preprint

arXiv:1604.07169.

241

[Chatterjee et al., 2017a] Chatterjee, K., Fu, H., and Goharshady, A. K. (2017a). Non-

polynomial worst-case analysis of recursive programs. In International Conference on

Computer Aided Verification (CAV).

[Chatterjee et al., 2019a] Chatterjee, K., Fu, H., and Goharshady, A. K. (2019a). Non-

polynomial worst-case analysis of recursive programs. ACM Transactions on Programming

Languages and Systems (TOPLAS).

[Chatterjee et al., 2020a] Chatterjee, K., Fu, H., Goharshady, A. K., and Goharshady, E. K.

(2020a). Polynomial invariant generation for non-deterministic recursive programs. HAL

preprint HAL:02015843.

[Chatterjee et al., 2020b] Chatterjee, K., Fu, H., Goharshady, A. K., and Goharshady, E. K.

(2020b). Polynomial invariant generation for non-deterministic recursive programs. In

ACM Conference on Programming Language Design and Implementation (PLDI).

[Chatterjee et al., 2018a] Chatterjee, K., Fu, H., Goharshady, A. K., and Okati, N. (2018a).

Computational approaches for stochastic shortest path on succinct mdps. In International

Joint Conference on Artificial Intelligence (IJCAI).

[Chatterjee et al., 2016c] Chatterjee, K., Fu, H., Novotný, P., and Hasheminezhad, R.

(2016c). Algorithmic analysis of qualitative and quantitative termination problems for

affine probabilistic programs. In Symposium on Principles of Programming Languages

(POPL), pages 327–342.

[Chatterjee et al., 2019b] Chatterjee, K., Goharshady, A., and Goharshady, E. (2019b). The

treewidth of smart contracts. In Symposium on Applied Computing (SAC).

[Chatterjee et al., 2019c] Chatterjee, K., Goharshady, A. K., Goyal, P., Ibsen-Jensen, R., and

Pavlogiannis, A. (2019c). Faster algorithms for dynamic algebraic queries in basic rsms

with constant treewidth. ACM Transactions on Programming Languages and Systems

(TOPLAS).

[Chatterjee et al., 2016d] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Pavlo-

giannis, A. (2016d). Algorithms for algebraic path properties in concurrent systems of

242

constant treewidth components. In ACM Symposium on Principles of Programming Lan-

guages (POPL).

[Chatterjee et al., 2018b] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Pavlo-

giannis, A. (2018b). Algorithms for algebraic path properties in concurrent systems of

constant treewidth components. ACM Transactions on Programming Languages and Sys-

tems (TOPLAS).

[Chatterjee et al., 2020c] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Pavlo-

giannis, A. (2020c). Optimal and perfectly parallel algorithms for on-demand data-flow

analysis. arXiv preprint arXiv:2001.11070.

[Chatterjee et al., 2020d] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Pavlo-

giannis, A. (2020d). Optimal and perfectly parallel algorithms for on-demand data-flow

analysis. In European Symposium on Programming (ESOP).

[Chatterjee et al., 2018c] Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., and Velner,

Y. (2018c). Ergodic mean-payoff games for the analysis of attacks in cryptocurrencies. In

International Conference on Concurrency Theory (CONCUR).

[Chatterjee et al., 2019d] Chatterjee, K., Goharshady, A. K., Okati, N., and Pavlogian-

nis, A. (2019d). Efficient parameterized algorithms for data packing. HAL preprint

HAL:01897615.

[Chatterjee et al., 2019e] Chatterjee, K., Goharshady, A. K., Okati, N., and Pavlogiannis,

A. (2019e). Efficient parameterized algorithms for data packing. In ACM Symposium on

Principles of Programming Languages (POPL).

[Chatterjee et al., 2017b] Chatterjee, K., Goharshady, A. K., and Pavlogiannis, A. (2017b).

JTDec: A tool for tree decompositions in soot. In Symposium on Automated Technology

for Verification and Analysis (ATVA).

[Chatterjee et al., 2019f] Chatterjee, K., Goharshady, A. K., and Pourdamghani, A. (2019f).

Hybrid mining: Exploiting blockchain’s computational power for distributed problem solv-

ing. In ACM Symposium on Applied Computing (SAC).

243

[Chatterjee et al., 2019g] Chatterjee, K., Goharshady, A. K., and Pourdamghani, A. (2019g).

Probabilistic smart contracts: Secure randomness on the blockchain. In IEEE International

Conference on Blockchain and Cryptocurrency (ICBC).

[Chatterjee et al., 2018d] Chatterjee, K., Goharshady, A. K., and Velner, Y. (2018d). Quan-

titative analysis of smart contracts. In European Symposium on Programming (ESOP).

[Chatterjee et al., 2018e] Chatterjee, K., Henzinger, M., Loitzenbauer, V., Oraee, S., and

Toman, V. (2018e). Symbolic algorithms for graphs and Markov decision processes with

fairness objectives. In Conference on Computer-Aided Verification (CAV).

[Chatterjee and Henzinger, 2008] Chatterjee, K. and Henzinger, T. A. (2008). Value itera-

tion. In Model Checking, pages 107–138.

[Chatterjee et al., 2010] Chatterjee, K., Henzinger, T. A., Jobstmann, B., and Singh, R.

(2010). Measuring and synthesizing systems in probabilistic environments. In Conference

on Computer-Aided Verification (CAV), pages 380–395.

[Chatterjee and Łącki, 2013] Chatterjee, K. and Łącki, J. (2013). Faster algorithms for

Markov decision processes with low treewidth. In Conference on Computer-Aided Ver-

ification (CAV), pages 543–558.

[Chatterjee et al., 2017c] Chatterjee, K., Novotný, P., and Zikelic, D. (2017c). Stochastic

invariants for probabilistic termination. In Symposium on Principles of Programming Lan-

guages (POPL), pages 145–160.

[Chaudhuri, 2008] Chaudhuri, S. (2008). Subcubic algorithms for recursive state machines.

In Symposium on Principles of Programming Languages (POPL).

[Chaudhuri and Zaroliagis, 2000] Chaudhuri, S. and Zaroliagis, C. D. (2000). Shortest paths

in digraphs of small treewidth. part i: Sequential algorithms. Algorithmica, 27(3-4):212–

226.

[Chen et al., 2017] Chen, C., Atamtürk, A., and Oren, S. S. (2017). A spatial branch-and-cut

method for nonconvex QCQP with bounded complex variables. Mathematical Program-

ming, 165(2):549–577.

244

[Chen et al., 2007] Chen, Y., Xia, B., Yang, L., Zhan, N., and Zhou, C. (2007). Discovering

non-linear ranking functions by solving semi-algebraic systems. In International Collo-

quium on Theoretical Aspects of Computing (ICTAC), pages 34–49.

[Chen et al., 2015] Chen, Y.-F., Hong, C.-D., Wang, B.-Y., and Zhang, L. (2015).

Counterexample-guided polynomial loop invariant generation by lagrange interpolation.

In Conference on Computer Aided Verification (CAV), pages 658–674.

[Chonev, 2019] Chonev, V. (2019). Reachability in augmented interval Markov chains. In

Conference on Reachability Problems (RP), pages 79–92.

[Clarke et al., 2000] Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2000).

Counterexample-guided abstraction refinement. In Conference on Computer-Aided Verifi-

cation (CAV), pages 154–169.

[Clarke et al., 2018] Clarke, E. M., Henzinger, T. A., Veith, H., and Bloem, R. (2018). Hand-

book of model checking. Springer.

[Colón et al., 2003] Colón, M., Sankaranarayanan, S., and Sipma, H. (2003). Linear invariant

generation using non-linear constraint solving. In Conference on Computer-Aided Verifi-

cation (CAV), pages 420–432.

[Colón and Sipma, 2001] Colón, M. A. and Sipma, H. B. (2001). Synthesis of linear ranking

functions. In Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), pages 67–81.

[Cousot, 2005] Cousot, P. (2005). Proving program invariance and termination by parametric

abstraction, lagrangian relaxation and semidefinite programming. In Verification, Model

Checking, and Abstract Interpretation (VMCAI), pages 1–24.

[Cousot and Cousot, 1977] Cousot, P. and Cousot, R. (1977). Abstract interpretation: A

unified lattice model for static analysis of programs by construction or approximation of

fixpoints. In Symposium on Principles of Programming Languages (POPL), pages 238–252.

245

[Cousot et al., 2005] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,

D., and Rival, X. (2005). The Astreé analyzer. In European Symposium on Programming

(ESOP), pages 21–30.

[Cousot and Halbwachs, 1978] Cousot, P. and Halbwachs, N. (1978). Automatic discovery of

linear restraints among variables of a program. In Symposium on Principles of Program-

ming Languages (POPL), pages 84–96.

[Csallner et al., 2008] Csallner, C., Tillmann, N., and Smaragdakis, Y. (2008). DySy: dy-

namic symbolic execution for invariant inference. In International Conference on Software

Engineering (ICSE), pages 281–290.

[Cygan et al., 2015] Cygan, M., Fomin, F. V., Kowalik, Ł., Lokshtanov, D., Marx, D.,

Pilipczuk, M., Pilipczuk, M., and Saurabh, S. (2015). Parameterized algorithms. Springer.

[Czerwinski et al., 2019] Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., and Mazowiecki,

F. (2019). The reachability problem for Petri nets is not elementary. In Symposium on

Theory of Computing (STOC), pages 24–33.

[Darondeau et al., 2012] Darondeau, P., Demri, S., Meyer, R., and Morvan, C. (2012). Petri

net reachability graphs: Decidability status of first order properties. Logical Methods in

Computer Science, 8(4).

[Daws, 2004] Daws, C. (2004). Symbolic and parametric model checking of discrete-time

Markov chains. In International Colloquium on Theoretical Aspects of Computing (IC-

TAC), pages 280–294.

[De Alfaro et al., 2003] De Alfaro, L., Henzinger, T. A., and Majumdar, R. (2003). Discount-

ing the future in systems theory. In International Colloquium on Automata, Languages,

and Programming (ICALP), pages 1022–1037.

[De Moura and Bjørner, 2008] De Moura, L. and Bjørner, N. (2008). Z3: An efficient smt

solver. In Conference on Tools and Algorithms for the Construction and Analysis of Sys-

tems (TACAS), pages 337–340.

246

[de Oliveira et al., 2016] de Oliveira, S., Bensalem, S., and Prevosto, V. (2016). Polynomial

invariants by linear algebra. In Symposium on Automated Technology for Verification and

Analysis (ATVA), pages 479–494.

[de Vries and Koutavas, 2011] de Vries, E. and Koutavas, V. (2011). Reverse Hoare logic. In

Software Engineering and Formal Methods (SEFM), pages 155–171.

[Dehnert et al., 2017] Dehnert, C., Junges, S., Katoen, J.-P., and Volk, M. (2017). A storm

is coming: A modern probabilistic model checker. In Conference on Computer-Aided

Verification (CAV), pages 592–600.

[Dillig et al., 2013] Dillig, I., Dillig, T., Li, B., and McMillan, K. L. (2013). Inductive invari-

ant generation via abductive inference. In Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), pages 443–456.

[Ding and Kennedy, 1999] Ding, C. and Kennedy, K. (1999). Improving cache performance

in dynamic applications through data and computation reorganization at run time. In

Conference on Programming Language Design and Implementation (PLDI), pages 229–

241.

[Ding and Kandemir, 2014] Ding, W. and Kandemir, M. (2014). CApRI: Cache-conscious

data reordering for irregular codes. ACM SIGMETRICS Performance Evaluation Review,

42(1):477–489.

[Distefano et al., 2019] Distefano, D., Fähndrich, M., Logozzo, F., and O’Hearn, P. W.

(2019). Scaling static analyses at facebook. Communications of the ACM, 62(8):62–70.

[Downey and Fellows, 2012] Downey, R. G. and Fellows, M. R. (2012). Parameterized com-

plexity. Springer.

[Dubhashi and Panconesi, 2009] Dubhashi, D. P. and Panconesi, A. (2009). Concentration

of measure for the analysis of randomized algorithms. Cambridge University Press.

[Durrett, 2019] Durrett, R. (2019). Probability: theory and examples. Cambridge university

press.

247

[Esparza et al., 2012] Esparza, J., Gaiser, A., and Kiefer, S. (2012). Proving termination

of probabilistic programs using patterns. In Conference on Computer-Aided Verification

(CAV), pages 123–138.

[Farkas, 1902] Farkas, J. (1902). Theorie der einfachen ungleichungen. Journal für die reine

und angewandte Mathematik, (124):1–27.

[Farzan and Kincaid, 2015] Farzan, A. and Kincaid, Z. (2015). Compositional recurrence

analysis. In Formal Methods in Computer-Aided Design (FMCAD), pages 57–64.

[Fearnley, 2010] Fearnley, J. (2010). Exponential lower bounds for policy iteration. In Inter-

national Colloquium on Automata, Languages, and Programming (ICALP), pages 551–562.

[Feinberg, 2012] Feinberg, E. A. (2012). Handbook of Markov decision processes. Springer.

[Feng et al., 2017] Feng, Y., Zhang, L., Jansen, D. N., Zhan, N., and Xia, B. (2017). Find-

ing polynomial loop invariants for probabilistic programs. In Symposium on Automated

Technology for Verification and Analysis (ATVA), pages 400–416.

[Ferrara et al., 2005] Ferrara, A., Pan, G., and Vardi, M. Y. (2005). Treewidth in verifica-

tion: Local vs. global. In Conference on Logic for Programming Artificial Intelligence and

Reasoning (LPAR), pages 489–503.

[Filar and Vrieze, 1996] Filar, J. and Vrieze, K. (1996). Competitive Markov Decision Pro-

cesses. Springer.

[Fioriti and Hermanns, 2015] Fioriti, L. M. F. and Hermanns, H. (2015). Probabilistic ter-

mination: Soundness, completeness, and compositionality. In Symposium on Principles of

Programming Languages (POPL), pages 489–501.

[Floyd, 1993] Floyd, R. W. (1993). Assigning meanings to programs. In Program Verification,

pages 65–81.

[Fomin et al., 2018] Fomin, F. V., Lokshtanov, D., Saurabh, S., Pilipczuk, M., and Wrochna,

M. (2018). Fully polynomial-time parameterized computations for graphs and matrices of

low treewidth. ACM Transactions on Algorithms, 14(3):34.

248

[Foster et al., 1953] Foster, F. G. et al. (1953). On the stochastic matrices associated with

certain queuing processes. The Annals of Mathematical Statistics, 24(3):355–360.

[Gagniuc, 2017] Gagniuc, P. A. (2017). Markov chains: from theory to implementation and

experimentation. Wiley.

[Garg et al., 2016] Garg, P., Neider, D., Madhusudan, P., and Roth, D. (2016). Learning in-

variants using decision trees and implication counterexamples. In Symposium on Principles

of Programming Languages (POPL), pages 499–512.

[Giacobazzi and Ranzato, 1997] Giacobazzi, R. and Ranzato, F. (1997). Completeness in

abstract interpretation: A domain perspective. In Algebraic Methodology and Software

Technology (AMAST), pages 231–245.

[Giacobazzi et al., 2000] Giacobazzi, R., Ranzato, F., and Scozzari, F. (2000). Making ab-

stract interpretations complete. Journal of the ACM, 47(2):361–416.

[Godefroid, 2007] Godefroid, P. (2007). Compositional dynamic test generation. In Sympo-

sium on Principles of Programming Languages (POPL), pages 47–54.

[Goharshady et al., 2018] Goharshady, A. K., Behrouz, A., and Chatterjee, K. (2018). Secure

credit reporting on the blockchain. In IEEE International Symposium on Blockchain and

its Applications.

[Goharshady and Mohammadi, 2020] Goharshady, A. K. and Mohammadi, F. (2020). An

efficient algorithm for computing network reliability in small treewidth. Reliability Engi-

neering and System Safety.

[Golub and Van Loan, 1996] Golub, G. H. and Van Loan, C. F. (1996). Matrix computations.

Johns Hopkins Universtiy Press.

[Gould et al., 2004] Gould, C., Su, Z., and Devanbu, P. (2004). JDBC checker: A static

analysis tool for SQL/JDBC applications. In International Conference on Software Engi-

neering (ICSE), pages 697–698.

249

[Grigor’ev and Vorobjov, 1988] Grigor’ev, D. and Vorobjov, N. (1988). Solving systems

of polynomial inequalities in subexponential time. Journal of Symbolic Computation,

5(1/2):37–64.

[Grötschel et al., 2012] Grötschel, M., Lovász, L., and Schrijver, A. (2012). Geometric algo-

rithms and combinatorial optimization, volume 2.

[Grove and Torczon, 1993] Grove, D. and Torczon, L. (1993). Interprocedural constant prop-

agation: A study of jump function implementation. In Conference on Programming Lan-

guage Design and Implementation (PLDI).

[Gulwani et al., 2009] Gulwani, S., Srivastava, S., and Venkatesan, R. (2009). Constraint-

based invariant inference over predicate abstraction. In Verification, Model Checking, and

Abstract Interpretation (VMCAI), pages 120–135.

[Gurfinkel et al., 2006] Gurfinkel, A., Wei, O., and Chechik, M. (2006). YASM: A software

model-checker for verification and refutation. In Conference on Computer-Aided Verifica-

tion (CAV), pages 170–174.

[Gustedt et al., 2002] Gustedt, J., Mæhle, O. A., and Telle, J. A. (2002). The treewidth

of java programs. In Symposium on Algorithm Engineering and Experiments (ALENEX),

pages 86–97.

[Hahn et al., 2010] Hahn, E. M., Hermanns, H., Wachter, B., and Zhang, L. (2010). Param:

A model checker for parametric Markov models. In Conference on Computer-Aided Veri-

fication (CAV), pages 660–664.

[Hahn et al., 2009] Hahn, E. M., Hermanns, H., and Zhang, L. (2009). Probabilistic reacha-

bility for parametric Markov models. In Model Checking Software, pages 88–106.

[Halbwachs et al., 1997] Halbwachs, N., Proy, Y.-E., and Roumanoff, P. (1997). Verification

of real-time systems using linear relation analysis. Formal Methods in System Design,

11(2):157–185.

[Han and Tseng, 2006] Han, H. and Tseng, C.-W. (2006). Exploiting locality for irregular

scientific codes. IEEE Transactions on Parallel and Distributed Systems, 17(7):606–618.

250

[Handelman, 1988] Handelman, D. (1988). Representing polynomials by positive linear func-

tions on compact convex polyhedra. Pacific Journal of Mathematics, 132(1):35–62.

[Harel and Tarjan, 1984] Harel, D. and Tarjan, R. E. (1984). Fast algorithms for finding

nearest common ancestors. SIAM Journal on Computing, 13(2):338–355.

[Henzinger and Ho, 1994] Henzinger, T. and Ho, P.-H. (1994). Model checking strategies for

linear hybrid systems.

[Henzinger et al., 2002] Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. (2002).

Lazy abstraction. In Symposium on Principles of Programming Languages (POPL), pages

58–70.

[Higham, 2009] Higham, N. J. (2009). Cholesky factorization. Wiley Interdisciplinary Re-

views: Computational Statistics.

[Hoare, 1969] Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Com-

munications of the ACM, 12(10):576–580.

[Hoeffding, 1994] Hoeffding, W. (1994). Probability inequalities for sums of bounded random

variables. In The Collected Works of Wassily Hoeffding, pages 409–426.

[Holzmann, 1997] Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on

Software Engineering, 23(5):279–295.

[Hong, 1991] Hong, H. (1991). Comparison of several decision algorithms for the existential

theory of the reals.

[Horn and Johnson, 1990] Horn, R. A. and Johnson, C. R. (1990). Matrix analysis. Cam-

bridge university press.

[Horwitz et al., 1995] Horwitz, S., Reps, T., and Sagiv, M. (1995). Demand interprocedural

dataflow analysis. ACM SIGSOFT Software Engineering Notes.

[Howard, 1960] Howard, R. A. (1960). Dynamic programming and Markov processes.

251

[Hrushovski et al., 2018] Hrushovski, E., Ouaknine, J., Pouly, A., and Worrell, J. (2018).

Polynomial invariants for affine programs. In Symposium on Logic in Computer Science

(LICS), pages 530–539.

[Huang et al., 2019] Huang, M., Fu, H., Chatterjee, K., and Goharshady, A. K. (2019). Mod-

ular verification for almost-sure termination of probabilistic programs. In ACM Interna-

tional Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA).

[Humenberger et al., 2017] Humenberger, A., Jaroschek, M., and Kovács, L. (2017). Au-

tomated generation of non-linear loop invariants utilizing hypergeometric sequences. In

International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 221–

228.

[IBM, 2019] IBM (2019). CPLEX optimizer: High-performance mathematical programming

solver for linear programming, mixed-integer programming and quadratic programming.

[Jonsson and Larsen, 1991] Jonsson, B. and Larsen, K. G. (1991). Specification and refine-

ment of probabilistic processes. In Symposium on Logic in Computer Science (LICS),

pages 266–277.

[Kaelbling et al., 1998] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Plan-

ning and acting in partially observable stochastic domains. Artificial intelligence, 101(1-

2):99–134.

[Kaelbling et al., 1996] Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Rein-

forcement learning: A survey. Journal of artificial intelligence research, 4:237–285.

[Kapur, 2006] Kapur, D. (2006). Automatically generating loop invariants using quantifier

elimination. In Dagstuhl Seminar Proceedings.

[Katoen et al., 2010] Katoen, J., McIver, A., Meinicke, L., and Morgan, C. C. (2010). Linear-

invariant generation for probabilistic programs: - automated support for proof-based meth-

ods. In Static Analysis Symposium (SAS), pages 390–406.

252

[Kemeny et al., 2012] Kemeny, J. G., Snell, J. L., and Knapp, A. W. (2012). Denumerable

Markov chains: with a chapter of Markov random fields by David Griffeath. Springer.

[Kincaid et al., 2017] Kincaid, Z., Breck, J., Boroujeni, A. F., and Reps, T. W. (2017).

Compositional recurrence analysis revisited. In Conference on Programming Language

Design and Implementation (PLDI), pages 248–262.

[Kincaid et al., 2018] Kincaid, Z., Cyphert, J., Breck, J., and Reps, T. W. (2018). Non-linear

reasoning for invariant synthesis. In Symposium on Principles of Programming Languages

(POPL), pages 54:1–54:33.

[Klaus Krause et al., 2019] Klaus Krause, P., Larisch, L., and Salfelder, F. (2019). The tree-

width of C. Discrete Applied Mathematics.

[Kress-Gazit et al., 2009] Kress-Gazit, H., Fainekos, G. E., and Pappas, G. J. (2009).

Temporal-logic-based reactive mission and motion planning. IEEE transactions on robotics,

25(6):1370–1381.

[Křetínský and Meggendorfer, 2017] Křetínský, J. and Meggendorfer, T. (2017). Efficient

strategy iteration for mean payoff in Markov decision processes. In Symposium on Auto-

mated Technology for Verification and Analysis (ATVA), pages 380–399.

[Kwiatkowska et al., 2011] Kwiatkowska, M., Norman, G., and Parker, D. (2011). PRISM

4.0: Verification of probabilistic real-time systems. In Conference on Computer-Aided

Verification (CAV), pages 585–591.

[Lanotte et al., 2007] Lanotte, R., Maggiolo-Schettini, A., and Troina, A. (2007). Paramet-

ric probabilistic transition systems for system design and analysis. Formal Aspects of

Computing, 19(1):93–109.

[Lavaee, 2016] Lavaee, R. (2016). The hardness of data packing. In Symposium on Principles

of Programming Languages (POPL), pages 232–242.

[Le Gall, 2014] Le Gall, F. (2014). Powers of tensors and fast matrix multiplication. In

International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 296–

303.

253

[Lee and Ryder, 1992] Lee, Y.-F. and Ryder, B. G. (1992). A comprehensive approach to

parallel data flow analysis. In International Conference on Supercomputing (ICS), pages

236–247.

[Lin et al., 2014] Lin, W., Wu, M., Yang, Z., and Zeng, Z. (2014). Proving total correct-

ness and generating preconditions for loop programs via symbolic-numeric computation

methods. Frontiers of Computer Science, 8(2):192–202.

[Linderoth, 2005] Linderoth, J. (2005). A simplicial branch-and-bound algorithm for solving

quadratically constrained quadratic programs. Mathematical Programming, 103(2):251–

282.

[Mahmoud, 2008] Mahmoud, H. (2008). Pólya urn models. Chapman and Hall/CRC.

[Majumdar and Sen, 2007] Majumdar, R. and Sen, K. (2007). Hybrid concolic testing. In

International Conference on Software Engineering (ICSE), pages 416–426.

[Manna and Pnueli, 1995] Manna, Z. and Pnueli, A. (1995). Temporal verification of reactive

systems: Safety. Springer.

[Manna and Pnueli, 2012] Manna, Z. and Pnueli, A. (2012). Temporal verification of reactive

systems: safety. Springer.

[Matousek and Gärtner, 2007] Matousek, J. and Gärtner, B. (2007). Understanding and

using linear programming. Springer.

[Mayr, 1981] Mayr, E. W. (1981). An algorithm for the general Petri net reachability prob-

lem. In Symposium on Theory of Computing (STOC), pages 238–246.

[McIver and Morgan, 2004] McIver, A. and Morgan, C. (2004). Developing and reasoning

about probabilistic programs in pGCL. In Pernambuco Summer School on Software En-

gineering, pages 123–155.

[McIver et al., 2005] McIver, A., Morgan, C., and Morgan, C. C. (2005). Abstraction, refine-

ment and proof for probabilistic systems. Springer.

254

[McMillan, 2008] McMillan, K. L. (2008). Quantified invariant generation using an interpo-

lating saturation prover. In Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), pages 413–427.

[Meurer et al., 2017] Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B.,

Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., et al. (2017). SymPy: symbolic

computing in Python. PeerJ Computer Science, 3:e103.

[Monniaux, 2001] Monniaux, D. (2001). An abstract analysis of the probabilistic termination

of programs. In Static Analysis Symposium (SAS), pages 111–126.

[Motwani and Raghavan, 1995] Motwani, R. and Raghavan, P. (1995). Randomized algo-

rithms. Cambridge university press.

[Müller-Olm and Seidl, 2004] Müller-Olm, M. and Seidl, H. (2004). Computing polynomial

program invariants. Information Processing Letters, 91(5).

[Naeem et al., 2010] Naeem, N. A., Lhoták, O., and Rodriguez, J. (2010). Practical exten-

sions to the IFDS algorithm. Conference on Compiler Construction (CC).

[Nanda and Sinha, 2009] Nanda, M. G. and Sinha, S. (2009). Accurate interprocedural null-

dereference analysis for Java. In International Conference on Software Engineering (ICSE),

pages 133–143.

[Ngo et al., 2018] Ngo, V. C., Carbonneaux, Q., and Hoffmann, J. (2018). Bounded ex-

pectations: resource analysis for probabilistic programs. In Conference on Programming

Language Design and Implementation (PLDI), pages 496–512.

[Nguyen et al., 2012] Nguyen, T., Kapur, D., Weimer, W., and Forrest, S. (2012). Using

dynamic analysis to discover polynomial and array invariants. In International Conference

on Software Engineering (ICSE), pages 683–693.

[Norris, 1998] Norris, J. R. (1998). Markov chains. Cambridge University Press.

[Obdržálek, 2003] Obdržálek, J. (2003). Fast mu-calculus model checking when tree-width

is bounded. In Conference on Computer-Aided Verification (CAV), pages 80–92.

255

[O’Hearn, 2020] O’Hearn, P. W. (2020). Incorrectness logic. In Symposium on Principles of

Programming Languages (POPL), pages 10:1–10:32.

[Oustry et al., 2019] Oustry, A., Tacchi, M., and Henrion, D. (2019). Inner approximations

of the maximal positively invariant set for polynomial dynamical systems. IEEE Control

Systems Letters, 3(3):733–738.

[Padon et al., 2016] Padon, O., McMillan, K. L., Panda, A., Sagiv, M., and Shoham, S.

(2016). Ivy: safety verification by interactive generalization. Conference on Programming

Language Design and Implementation (PLDI), pages 614–630.

[Panagiotou and Souza, 2006] Panagiotou, K. and Souza, A. (2006). On adequate perfor-

mance measures for paging. In Symposium on Theory of Computing (STOC), pages 487–

496.

[Papachristodoulou et al., 2013] Papachristodoulou, A., Anderson, J., Valmorbida, G., Pra-

jna, S., Seiler, P., and Parrilo, P. A. (2013). SOSTOOLS: Sum of squares optimization

toolbox for MATLAB.

[Petrank and Rawitz, 2002] Petrank, E. and Rawitz, D. (2002). The hardness of cache con-

scious data placement. In Symposium on Principles of Programming Languages (POPL),

pages 101–112.

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In Symposium on Foun-

dations of Computer Science (FOCS), pages 46–57.

[Podelski and Rybalchenko, 2004] Podelski, A. and Rybalchenko, A. (2004). A complete

method for the synthesis of linear ranking functions. In Verification, Model Checking, and

Abstract Interpretation (VMCAI), pages 239–251.

[Prajna and Jadbabaie, 2004] Prajna, S. and Jadbabaie, A. (2004). Safety verification of

hybrid systems using barrier certificates. In Conference on Hybrid systems: Computation

and Control (HSCC), pages 477–492.

[Puterman, 2014] Puterman, M. L. (2014). Markov Decision Processes. Wiley.

256

[Putinar, 1993] Putinar, M. (1993). Positive polynomials on compact semi-algebraic sets.

Indiana University Mathematics Journal, 42(3):969–984.

[Quatmann and Katoen, 2018] Quatmann, T. and Katoen, J.-P. (2018). Sound value itera-

tion. In Conference on Computer-Aided Verification (CAV), pages 643–661.

[Ranzato, 2013] Ranzato, F. (2013). Complete abstractions everywhere. In Verification,

Model Checking, and Abstract Interpretation (VMCAI), pages 15–26.

[Rapoport et al., 2015] Rapoport, M., Lhoták, O., and Tip, F. (2015). Precise data flow

analysis in the presence of correlated method calls. In Static Analysis Symposium (SAS),

pages 54–71.

[Reps, 1995] Reps, T. (1995). Demand interprocedural program analysis using logic

databases. In Applications of Logic Databases, volume 296.

[Reps, 1998] Reps, T. (1998). Program analysis via graph reachability. Information and

software technology, 40(11-12):701–726.

[Reps, 2000] Reps, T. (2000). Undecidability of context-sensitive data-dependence analysis.

ACM Transactions on Programming Languages and Systems (TOPLAS), 22(1):162–186.

[Reps et al., 1995] Reps, T., Horwitz, S., and Sagiv, M. (1995). Precise interprocedural

dataflow analysis via graph reachability. In Symposium on Principles of Programming

Languages (POPL), pages 49–61.

[Rival, 2005] Rival, X. (2005). Understanding the origin of alarms in Astrée. In Static

Analysis Symposium (SAS), pages 303–319.

[Robertson and Seymour, 1984] Robertson, N. and Seymour, P. D. (1984). Graph minors.

iii. planar tree-width. Journal of Combinatorial Theory, Series B, 36:49–64.

[Rodriguez and Lhoták, 2011] Rodriguez, J. and Lhoták, O. (2011). Actor-based parallel

dataflow analysis. In Conference on Compiler Construction (CC), pages 179–197.

[Rodríguez-Carbonell, 2018] Rodríguez-Carbonell, E. (2018). Some programs that need poly-

nomial invariants in order to be verified.

257

[Rodríguez-Carbonell and Kapur, 2004] Rodríguez-Carbonell, E. and Kapur, D. (2004). Au-

tomatic generation of polynomial loop invariants: Algebraic foundations. In International

Symposium on Symbolic and Algebraic Computation (ISSAC), pages 266–273.

[Rodríguez-Carbonell and Kapur, 2007] Rodríguez-Carbonell, E. and Kapur, D. (2007). Au-

tomatic generation of polynomial invariants of bounded degree using abstract interpreta-

tion. Science of Computer Programming, 64(1):54–75.

[Rothberg et al., 2018] Rothberg, E. et al. (2018). Gurobi optimizer reference manual. Tech-

nical report, Gurobi Optimization, LLC.

[Rountev et al., 2006] Rountev, A., Kagan, S., and Marlowe, T. (2006). Interprocedural

dataflow analysis in the presence of large libraries. In Conference on Compiler Construction

(CC), pages 2–16.

[Sagiv et al., 1996] Sagiv, M., Reps, T., and Horwitz, S. (1996). Precise interprocedural

dataflow analysis with applications to constant propagation. Theoretical Computer Science.

[Sankaranarayanan, 2011] Sankaranarayanan, S. (2011). Automatic abstraction of non-linear

systems using change of bases transformations. In Conference on Hybrid systems: Com-

putation and Control (HSCC), pages 143–152.

[Sankaranarayanan et al., 2013] Sankaranarayanan, S., Chakarov, A., and Gulwani, S.

(2013). Static analysis for probabilistic programs: inferring whole program properties from

finitely many paths. In Conference on Programming Language Design and Implementation

(PLDI), pages 447–458.

[Sankaranarayanan et al., 2004] Sankaranarayanan, S., Sipma, H., and Manna, Z. (2004).

Non-linear loop invariant generation using Gröbner bases. In Symposium on Principles of

Programming Languages (POPL), pages 318–329.

[Schmüdgen, 1991] Schmüdgen, K. (1991). The k-moment problem for compact semi-

algebraic sets. Mathematische Annalen, 289(1):203–206.

258

[Schubert et al., 2019] Schubert, P. D., Hermann, B., and Bodden, E. (2019). PhASAR:

An inter-procedural static analysis framework for C/C++. In Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), pages 393–410.

[Shang et al., 2012] Shang, L., Xie, X., and Xue, J. (2012). On-demand dynamic summary-

based points-to analysis. In Symposium on Code Generation and Optimization (CGO),

pages 264–274.

[Sharir and Pnueli, 1981] Sharir, M. and Pnueli, A. (1981). Two approaches to interprocedu-

ral data flow analysis. In Program flow analysis: Theory and applications. Prentice-Hall.

[Sharma and Aiken, 2016] Sharma, R. and Aiken, A. (2016). From invariant checking to

invariant inference using randomized search. Formal Methods in System Design, 48(3):235–

256.

[Shen et al., 2013] Shen, L., Wu, M., Yang, Z., and Zeng, Z. (2013). Generating exact non-

linear ranking functions by symbolic-numeric hybrid method. Journal of Systems Science

and Complexity, 26(2):291–301.

[Singh et al., 2015] Singh, G., Püschel, M., and Vechev, M. (2015). Making numerical pro-

gram analysis fast. In Conference on Programming Language Design and Implementation

(PLDI), pages 303–313.

[Singh et al., 2017] Singh, G., Püschel, M., and Vechev, M. (2017). Fast polyhedra abstract

domain. In Symposium on Principles of Programming Languages (POPL), pages 46–59.

[Sleator and Tarjan, 1985] Sleator, D. D. and Tarjan, R. E. (1985). Amortized efficiency of

list update and paging rules. Communications of the ACM, 28(2):202–208.

[Smith, 1998] Smith, J. E. (1998). A study of branch prediction strategies. In International

Symposium on Computer Architecture (ISCA), pages 202–215.

[Späth et al., 2019] Späth, J., Ali, K., and Bodden, E. (2019). Context-, flow-, and field-

sensitive data-flow analysis using synchronized pushdown systems. In Symposium on Prin-

ciples of Programming Languages (POPL), pages 48:1–48:29.

259

[Sturm, 1999] Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization

over symmetric cones. Optimization methods and software, 11(1-4):625–653.

[Sturmfels, 2002] Sturmfels, B. (2002). Solving systems of polynomial equations. American

Mathematical Society.

[Tappler et al., 2019] Tappler, M., Aichernig, B. K., Bacci, G., Eichlseder, M., and Larsen,

K. G. (2019). L∗-based learning of Markov decision processes. In Symposium on Formal

Methods (FM), pages 651–669.

[Thabit, 1982] Thabit, K. O. (1982). Cache management by the compiler. PhD thesis, Rice

University.

[Thorup, 1998] Thorup, M. (1998). All structured programs have small tree width and good

register allocation. Information and Computation, 142:159–181.

[Turing, 1936] Turing, A. (1936). On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society.

[Vallée-Rai et al., 2010] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sun-

daresan, V. (2010). Soot: A Java bytecode optimization framework. In CASCON First

Decade High Impact Papers, pages 214–224.

[van Dijk et al., 2006] van Dijk, T., van den Heuvel, J.-P., and Slob, W. (2006). Computing

treewidth with LibTW. Technical report, University of Utrecht.

[Vanderbei, 2006] Vanderbei, R. J. (2006). LOQO user’s manual - version 4.05. Technical

report, Princeton University.

[Walukiewicz, 2001] Walukiewicz, I. (2001). Pushdown processes: Games and model-

checking. Information and Computation, 164(2):234–263.

[Wang et al., 2019] Wang, P., Fu, H., Goharshady, A. K., Chatterjee, K., Qin, X., and Shi,

W. (2019). Cost analysis of nondeterministic probabilistic programs. In ACM Conference

on Programming Language Design and Implementation (PLDI).

260

[Williams, 1991] Williams, D. (1991). Probability with martingales. Cambridge university

press.

[Wolfram Research, 2020] Wolfram Research (2020). Mathematica, Version 12.0.

[Wulf and McKee, 1995] Wulf, W. A. and McKee, S. A. (1995). Hitting the memory wall:

implications of the obvious. ACM SIGARCH computer architecture news, 23(1):20–24.

[Yang et al., 2010] Yang, L., Zhou, C., Zhan, N., and Xia, B. (2010). Recent advances in

program verification through computer algebra. Frontiers of Computer Science in China,

4(1):1–16.

[Zhang et al., 2006] Zhang, C., Ding, C., Ogihara, M., Zhong, Y., and Wu, Y. (2006). A

hierarchical model of data locality. In Symposium on Principles of Programming Languages

(POPL), pages 16–29.

[Zhong et al., 2004] Zhong, Y., Orlovich, M., Shen, X., and Ding, C. (2004). Array re-

grouping and structure splitting using whole-program reference affinity. In Conference on

Programming Language Design and Implementation (PLDI), pages 255–266.

[Zhu et al., 2019] Zhu, H., Xiong, Z., Magill, S., and Jagannathan, S. (2019). An inductive

synthesis framework for verifiable reinforcement learning. In Conference on Programming

Language Design and Implementation (PLDI), pages 686–701.

	Abstract
	Dedication
	Acknowledgments
	About the Author
	List of Publications
	List of Abbreviations
	Introduction
	Prologue
	Outline
	Summary of Contributions
	Awards

	Preliminaries
	Notation
	Parameterized Complexity and FPT
	Tree Decompositions and Treewidth
	Stochastic Processes and Martingales
	Transition Systems
	Sätze for Positivity and Nonnegativity of Polynomials
	Encoding Sum-of-Squares Polynomials in QP

	Faster Algorithms for Data-Flow Analysis
	Introduction
	The IFDS Framework
	Treewidth-based Algorithms
	Experimental Results

	Faster Algorithms for Quantitative Analysis of MCs and MDPs
	Introduction
	Preliminary Definitions and Notation
	Quantitative Problems
	Treewidth-based Quantitative Analysis Algorithms
	Experimental Results

	Faster Algorithms for Data Packing
	Introduction
	Paging and Packing
	Summary of Our Results
	Algorithms and Hardness Results based on Treewidth of Access Graphs
	Algorithms and Hardness Results based on Treewidth of Access Hypergraphs
	Experimental Results

	Invariant Generation for Polynomial Programs
	Introduction
	Related works
	Invariants and Inductive Assertion Maps
	Our Positivstellensatz-based Approach
	Experimental Results

	Reachability Analysis for Polynomial Programs
	Introduction
	Inductive Reachability Witnesses
	Basic Results and Linear/Polynomial Witnesses
	Synthesis of Inductive Reachability Witnesses
	Experimental Results

	Termination Analysis for Polynomial Programs
	Introduction
	Termination of Probabilistic Programs
	Ranking Supermartingales
	Synthesizing Polynomial Ranking Supermartingales
	Experimental Results

	References

