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Introduction 1 Objective of this thesis

We are interested in the global dynamics of compressible fluid models, which are nonlinear hyperbolic balance laws on a curved geometry. Such systems arise in many applications: for example, the shallow water equations of geophysical fluid dynamics and the Einstein-Euler equations of general relativity. Recall that the well-posedness theory for scalar nonlinear hyperbolic conservation laws on a curved geometry has been established by LeFloch and his collaborators [START_REF] Ben | Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds[END_REF][START_REF] Lefloch | Hyperbolic conservation laws on spacetimes[END_REF][START_REF] Lefloch | Hyperbolic conservation laws on manifolds with limited regularity[END_REF][START_REF] Lefloch | Hyperbolic conservation laws on spacetimes. A finite volume scheme based on di↵erential forms[END_REF]. On the other hand, the design and numerical implementation of finite volume methods based on a geometric formulation for these models were presented [START_REF] Amorim | Finite volume schemes on Lorentzian manifolds[END_REF][START_REF] Beljadid | A central-upwind geometrypreserving method for hyperbolic conservation laws on the sphere[END_REF][START_REF] Ceylan | A finite volume method for the relativistic Burgers equation on a FLRW background spacetime[END_REF][START_REF] Lefloch | A numerical study of the relativistic Burgers and Euler equations on a Schwarzschild black hole exterior[END_REF]. We plan here to build upon this body of work and advance the subject of the discretization of the relativistic Euler equations.

One of our results in this thesis is an existence theory of global-in-time weak solutions for an Euler model with gravitation e↵ects when the initial data has bounded total variation. The model under consideration here is posed on a Schwarzchild spacetime background and has a source term depending on the sound speed and the black hole mass. In our study, we generalize LeFloch and Xiang's theorem [START_REF] Lefloch | Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime[END_REF], which treated the relativistic version of our Euler model on such a curved geometry. The proof of existence result is based on the Glimm method and constructs a sequence of the approximate solutions to the initial value problem which is then proven to converge in a suitably strong sense.

Another main contribution is a thorough investigation, by the mean of a numerical algorithm, of the global dynamics of compressible fluids containing shock waves and evolving on a curved cosmological background of expanding or contracting type. The fluid evolution is determined by the (relativistic) Euler equations and, in the expression of the energy-momentum tensor for perfect fluids, we impose that the speed of sound is constant. Our models (presented below) are directly motivated by the Euler system posed on the so-called FLRW background geometry (after Friedmann-Lemaître-Robertson-Walker), which is the simplest, yet challenging, model for a homogeneous and isotropic cosmological spacetime. Our aim is to develop a numerical algorithm that is su ciently robust and accurate in order to investigate the prop-7 2 . C o m p r e s s i b l e fl u i d m o d e l s o f i n t e r e s t agation and nonlinear interaction of shock waves in presence of a curved geometry. We are interested in the saddle competition taking place between the shocks and the background geometry.

The nonlinear hyperbolic equations under consideration are stated in a geometric form and it is natural to discretize them via the finite volume methodology by keeping the covariant structure of the equations. The proposed numerical methods are geometry-preserving and rely on a high-order Runge-Kutta discretization in the time variable. In particular, the numerical methods allow us to tackle the challenging problem of the late-time asymptotic behavior of solutions both in the expanding and contracting cases. We expect that the shocks will be able to interact until only a simple pattern is left. Due to the geometrical e↵ects, the late-time asymptotic behavior of flow will turn out to be more complex.

Furthermore, in addition to the Euler equations, we also introduce below the socalled cosmological Burgers model, which is derived from the Euler equations, and formally assuming that the fluid is pressureless. The Burgers model has a simple form of nonlinear hyperbolic balance law, which has played a central role in the development of shock-capturing schemes in non-relativistic fluid dynamics. More recently, a generalization of the standard Burgers equation has been posed and studied on a curved spacetime in [START_REF] Amorim | Finite volume schemes on Lorentzian manifolds[END_REF][START_REF] Lefloch | Structure-preserving shock-capturing methods: late-time asymptotics, curved geometry, small-scale dissipation, and nonconservative products[END_REF][START_REF] Lefloch | A geometry-preserving finite volume method for compressible fluids on Schwarzschild spacetime[END_REF][START_REF] Lefloch | Relativistic Burgers equations on curved spacetimes. Derivation and finite volume approximation[END_REF][START_REF] Lefloch | Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes[END_REF][START_REF] Lefloch | Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime[END_REF][START_REF] Lefloch | A numerical study of the relativistic Burgers and Euler equations on a Schwarzschild black hole exterior[END_REF][START_REF] Lefloch | Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime[END_REF] where various geometrical e↵ects and equations are considered, including the relativistic Burgers equation on a Schwarzschild spacetime. It is known that the asymptotic behavior of the standard Burgers equation is an N-wave. We are interested in designing a shock-capturing, high-order finite volume scheme to study the asymptotic behavior of the cosmological Burgers model, which evolves the geometrical e↵ects of expanding or contracting type.

as the Schwarzschild black hole mass m 2 (0, +1) and the constant sound speed k 2 (0, +1). Observe that even if the Euler model (2.1) is non-relativistic in the sense that the velocity v is far from the light speed, the mass of the black hole m is still reflected by the source term. We derive the pair of eigenvalues reading

(⇢, v) = v k, µ(⇢, v) = v + k, (2.2) 
and the corresponding Riemann invariants:

w(⇢, v) = v + k ln ⇢, z(⇢, v) = v k ln ⇢. (2.3)

Euler model on a cosmological backgroud

The Euler equations posed on a cosmological background read as follows:

@ t ⇣ ⇢(1 + " 4 k 2 V 2 ) ⌘ + @ x ⇣ ⇢u(1 + " 2 k 2 ) ⌘ + @ y ⇣ ⇢v(1 + " 2 k 2 ) ⌘ = S 0 , @ t ⇣ ⇢u(1 + " 2 k 2 ) ⌘ + @ x ⇣ (1 + " 2 k 2 )⇢u 2 + k 2 ⇢(1 " 2 V 2 ) ⌘ + @ y ⇣ (1 + " 2 k 2 )⇢uv ⌘ = S 1 , @ t ⇣ ⇢v(1 + " 2 k 2 ) ⌘ + @ x ⇣ (1 + " 2 k 2 )⇢uv ⌘ + @ y ⇣ (1 + " 2 k 2 )⇢v 2 + k 2 ⇢(1 " 2 V 2 ) ⌘ = S 2 , (2.4a) with S 0 = @ t a a ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 V 2 ⌘ , S 1 = 2⇢ ⇣ k 2 @ x b b (1 " 2 V 2 ) @ t a a (1 + " 2 k 2 )u ⌘ , S 2 = 2⇢ ⇣ k 2 @ y b b (1 " 2 V 2 ) @ t a a (1 + " 2 k 2 )v ⌘ , (2.4b) 
which are defined in two spatial variables x, y 2 [0, 1]. Here, the main unknowns are the (suitably normalized and rescaled) density ⇢ = ⇢(t, x, y) 0 and the velocity components (u, v) = (u, v)(t, x, y) with V 2 = u 2 + v 2 < 1/" 2 . The coe cient k 2 (0, 1/") represents the sound speed, while the light speed is 1/". We impose here periodic boundary conditions for this compressible fluid, that is, (⇢, u, v)(t, 0) = (⇢, u, v)(t, 1).

(2.5)

Moreover, the functions a = a(t) > 0 and b = b(x, y) > 0 are prescribed and describe the background geometry (see below).

We also consider the Euler equations in one space dimension reading 

@ t ⇣ ⇢(1 + " 4 k 2 u 2 ) ⌘ + @ x ⇣ ⇢u(1 + " 2 k 2 ) ⌘ = S 0 , @ t ⇣ ⇢u(1 + " 2 k 2 ) ⌘ + @ x ⇣ ⇢(u 2 + k 2 ) ⌘ = S 1 , (2.6a) 
S 0 = @ t a a ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 u 2 ⌘ , S 1 = 2⇢ ⇣ k 2 @ x b b (1 " 2 u 2 ) @ t a a (1 + " 2 k 2 )u ⌘ .
(2.6b)

In the limit k ! 0, the pressure vanishes identically and the system (2.6) becomes @ t ⇢ + @ x (⇢u) = @ t a a ⇢(1 + "u 2 ), @ t (⇢u) + @ x ⇢u 2 = 2 @ t a a ⇢u,

which is called pressureless Euler-FLRW model.

In the limit " ! 0, the system (2.6) simplifies drastically and becomes

@ t ⇢ + @ x (⇢u) = @ t a a ⇢, @ t (⇢u) + @ x ⇣ ⇢(v 2 + k 2 ) ⌘ = 2⇢ ⇣ k 2 @ x b b @ t a a u ⌘ , (2.8) 
which we refer to as the non-relativistic Euler-FRLW model.

Furthermore, we assume that a(t) ⌘ 1 in (2.8). The system (2.8) is rewritten as @ t ⇢ + @ x (⇢u) = 0,

@ t (⇢v) + @ t ⇣ ⇢(u 2 + k 2 ) ⌘ = 2⇢ ⇣ k 2 @ x b b ⌘ .
(2.9)

Relativistic Euler model

In general relativity, the relativistic Euler equations for perfect fluids on a curved background read

r ↵ T ↵ = 0, T ↵ = (µc 2 + p)u ↵ u + p(µ) g ↵ , (2.10) 
where g ↵ is the metric tensor of specific spacetime and T ↵ is called the energymomentum tensor for perfect fluids and r denotes the Levi-Civita connection associated with the given metric and c is the light speed. Here, µ 0 denotes the massenergy density of the fluid and p denotes the pressure of the fluid, while u = (u ↵ ) with ↵, = 0, 1, 2, 3 is a future-oriented, unit timelike vector field and represents the velocity of the fluid flow, satisfying by definition the normalization g ↵ u ↵ u = 1 and u 0 > 0. Moreover, an equation of state for the pressure p = p(µ) must be given for the Euler equations. In our work, we consider the case when the equation of state is given by p = k 2 µ, where 0 < k < c is the sound speed taken to be constant.

We then consider the relativistic Euler system r ↵ (T ↵ ) = 0, (2.11) which can be rewritten as the form in coordinates @ ↵ T ↵ + ↵ ↵ T + ↵ T ↵ = 0, where µ ↵ is the Christo↵el symbols. The Christo↵el symbols for a given metric are defined by

µ ↵ = 1 2
g µ⌫ ( @ ⌫ g ↵ + @ g ↵⌫ + @ ↵ g ⌫ ),

where ↵, , µ, ⌫ 2 {0, 1, 2, 3}, g µ⌫ is the inverse of metric g µ⌫ . Taking = 0 and = 1 respectively and substituting the expressions of the Christo↵el symbols, we can get the Euler equations on a curved geometry, for instance the Euler model (2.6) on the FLRW spacetime in one space dimension.

Relativistic Burgers model on a FLRW spacetime

We now turn to introducing a scalar model of compressible fluid posed on an expanding or contracting background, that is

v t + f (v) x + g(v) y = a t a h(v), (x, y) 2 [0, L] 2 , (2.12) 
which we refer to as the cosmological Burgers model.

In (2.12), the unknown is a function v = v(t, x, y) 2 ( 1/", 1/") representing the main velocity component of a fluid vector field, and 1/" represents the speed of light. The fluxes f = f (v) and g = g(v) and the source function h = h(v) are given smooth functions. We formulate the evolution on the domain [0, L] 2 with vanishing boundary conditions. A typical choice of flux and source functions is

f (v) = g(v) = 1 2 v 2 , h(v) = v(1 " 2 v 2 ), (2.13) 
which allows us to recover the standard Burgers equation by taking the limit a ! 1 and " ! 0. The function a = a(t) > 0 describes a geometric background of expanding or contracting type.

3 Basic definitions and finite volume methodology for hyperbolic systems

Basic definitions for hyperbolic systems

We first briefly review some basic definitions and concepts for hyperbolic system. Consider the systems of N conservation laws in one space dimension:

@ t U + @ x F (U ) = 0, U(x, t) 2 U, t > 0, (3.1) 
where U is an open and convex subset of R N and F : U 7 ! R is a smooth mapping called the flux function associated with (3.1). The variable U is called the conservative variable and x, t correspond to space and time coordinates, respectively. To formulate the Cauchy problem for (3.1) one prescribes an initial condition at t = 0:

U (x, 0) = U 0 (x), x 2 R, (3.2) 
where the function U 0 : R 7 ! U is given. Integrating (3.1) on some rectangle (x 1 , x 2 ) ⇥ (t 1 , t 2 ), (3.1) is written in divergence (or conservative) form:

Z x 2 x 1 U (x, t 2 ) dx = Z x 2 x 1 U (x, t 1 ) dx Z t 2 t 1 F (U (x 2 , t)) dt + Z t 2 t 1 F (U (x 1 , t)) dt. (3.
3)

The system (3.1) is a first order, hyperbolic system of partial di↵erential equations if the Jacobian matrix A(U ) := DF (U ) admits N real eigenvalues

1 (U )  2 (U )  • • •  N (U ), U 2 U,
together with a basis of right-eigenvectors {r j (U )} 1jN . The eigenvalues are also called the wave speeds or characteristic speeds associated with (3.1). The system is said to be strictly hyperbolic if its eigenvalues are distinct:

where U is an open and convex subset of R N and F : U 7 ! R is a smooth mapping called the flux function. S(U, x, t) is the source term induced by the geometrical or physical e↵ects. In this work, we will consider a class of nonlinear hyperbolic system of balance laws on a curved geometry.

It is well known that smooth solutions to (3.1) do not always exist. For a large time the solutions can become discontinuous even when the initial data is smooth. For this reason, one is forced to admit weak solutions that satisfy the system (3.1) in the sense of distribution theory. In the rest of this section, we will give some properties of weak solutions for the system of conservation laws.

The function U (x, t) 2 L 1 (R ⇥ R + , U) is called a weak solution to the Cauchy problem (3.1) and (3.2), if

Z +1 0 Z R (U@ t ✓ + F (U )@ x ✓) dxdt + Z R ✓(0)U 0 dx = 0, (3.5) 
for all functions ✓ 2 C 1 c (R ⇥ [0, +1)), with the initial data U 0 (x) 2 L 1 (R, U), where C 1 c is the vector space of functions that are real-valued, compactly supported and infinitely di↵erentiable.

To construct weak solutions explicitly, we give the following conclusion. Consider a piecewise smooth function U : R ⇥ R + ! U of the form U (x, t) = ( U (x, t), x< (t), U + (x, t), x> (t), (3.6) where the functions U ± and are continuously di↵erentiable. Then U is a weak solution if and only if it is a solution in the usual sense in both regions where it is smooth and, furthermore, the following Rankine-Hugoniot jump relation holds along the curve :

F (U + ) F (U ) = 0 (t)(U + U ), (3.7) 
where U + and U are the limits of U approaching (x, t) from right-hand side and left-hand side respectively.

For instance, when U + and U are constants and is linear, that is (t) = st,

U (x, t) = ( U , x<st, U + , x>st, (3.8) 
we conclude that (3.8) is a weak solution of (3.1) if and only if the vectors U ± and the scalar s satisfy the Rankine-Hugoniot jump relation

F (U + ) F (U ) = s(U + U ). 14 
3. Basic definitions and finite volume methodology for hyperbolic systems When U + 6 = U , the function in (3.8) is called the shock wave connecting U to U + , and s the corresponding shock speed.

We also consider the Riemann problem which is a special Cauchy problem of (3.1) and (3.2) corresponding to piecewise constant initial data given by

U (x, 0) = U 0 (x) = ( U L , x<0, U R , x>0, (3.9) 
where U L , U R 2 U are constants. The Riemann solutions will be used to construct approximation schemes to generate solutions of the general Cauchy problem.

Finite volume methodology for hyperbolic systems

In this section, we turn to the numerical approximation of the solution to the hyperbolic system (3.1) by using the finite volume method. The finite volume method is derived from the divergence (or conservative) form (3.3), which allows us to approximate weak solutions (containing shock waves) to nonlinear hyperbolic system of conservation laws. We give some basic notations of finite volume method in one space dimension.

We first discretize the spatial domain R into intervals. The discretization in time and space is based on two mesh lengths t and x and relies on the cells (x i 1/2 , x i+1/2 ) ⇢ R for i = 0, 1, • • • , with

x i = i x, x i+1/2 = (i + 1/2) x, (3.10) 
and t n+1 = t n + t. (3.11) Let C i = (x i 1/2 , x i+1/2 ) denote the ith grid cell and the constant value U n i denote the approximation of solution U (x, t n ) over the grid cell C i at time t n :

U n i = 1 x Z C i U (x, t n )dx, (3.12) 
and for the initial data we set

U 0 i = 1 x Z C gence form: Z C i U (x, t n+1 ) dx = Z C i U (x, t n ) dx Z t n+1 t n F (U (x i+1/2 , t)) dt Z t n+1 t n F (U (x i 1/2 , t)) dt ! .
(3.14) Dividing (3.14) by x, which yields

U n+1 i = U n i t x 1 t Z t n+1 t n F (U (x i+1/2 , t)) dt 1 t Z t n+1 t n F (U (x i 1/2 , t)) dt ! . (3.15) 
We then introduce the numerical flux, which is an approximation of the time integral of the physical flux, as follows:

F n i+1/2 = 1 t Z t n+1 t n F (U (x i+1/2 , t)) dt. (3.16) 
Therefore, we obtain the following finite volume scheme:

U n+1 i = U n i t x ⇣ F n i+1/2 F n i 1/2 ⌘ . (3.17) 
The value of the numerical flux F n i+1/2 depends on the value of the physical flux F at the interface x i+1/2 . For example, we can choose the Godunov [START_REF] Konstantinovich | A di↵erence scheme for numerical solution of discontinuous solution of hydrodynamic equations[END_REF] flux which is determined by solving the Riemann problem at each interface x i+1/2 , which is the most natural conservative and consistent finite volume scheme to approximate solutions of the hyperbolic problems. In this thesis, we extend the Godunov scheme or Godunovtype scheme to our nonlinear hyperbolic models posed on a curved geometry.

The curved background geometry

We consider here the nonlinear hyperbolic models describing the evolution of relativistic fluids on a curved background spacetime. Let us review some particular cases of curved spacetime, that are Minkowski, Schwarzschild and FLRW backgrounds.

Minkowski spacetime

Minkowski spacetime is a 4-dimensional real vector space equipped with a nondegenerate, symmetric bilinear form on the tangent space at each point in spacetime, which applies in special relativity.

The curved background geometry

Schwarzschild spacetime

Schwarzschild spacetime is the solution to the Einstein field equations of general relativity, which describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and the universal cosmological constant are all zero.

FLRW spacetime

The FLRW geometry (discovered by Friedmann, Lemaître, Robertson, Walker in several related works) corresponds to a special solution of the Einstein equations of general relativity when a cosmological constant ⇤ > 0 is assumed. The metric describes a spatially homogeneous and isotropic universe expanding (or otherwise, contracting) from a singular state in the past. Observations about the redshift of galaxies and the temperature of the cosmic microwave background indicate that our universe is indeed expanding (and, in fact, this expansion has been found to be accelerating). This model is sometimes called the Standard Model of modern cosmology. Finally, note that the co-moving coordinates (expanding or contracting with the universe) are used.

The most general form of the three dimensional space with constant curvature (in spherical polars) is: g = c 2 dt 2 + a(t) 2 ⇣ dr 2 1 Kr 2 + r 2 d✓ 2 + sin 2 ✓d' 2 ⌘ , (

where r is radial coordinate, ✓, ' are coordinates in the co-moving frame, and K denotes the curvature of space. If K > 0 then the space is spherical, if K = 0 then the space is flat, and if K < 0 then the space is hyperbolic. It is common to normalize such that K = ±1, 0.

The spatial section can sometimes be inconvenient, we thus redefine the radial coordinate by introducing a new radius y:

dy 2 = dr 2 1 Kr 2 . (4.2)
We express the metric (in cosmological proper time, so that t is measured by an observer seeing a uniform expansion in the spacetime) in the other form g = c 2 dt 2 + a(t) 2 ⇣ dy 2 + ⌘ 2 (y) d✓ 2 + sin 2 ✓d' 2

Here, we denote by c > 0 the light speed, while the function a = a(t) > 0 is a prescribed function, which is called the cosmic expansion factor.

The function ⌘ = ⌘(y) is given by one of the following expressions:

⌘(y) = 8 > < > :
sin y, sphere (of positive curvature), y,

Euclidean space (of vanishing curvature), sinh y, hyperboloidal space (of negative curvature).

(4.4)

For our investigations, it is needed to consider the range of y:

• When the spatial geometry is a Minkowski spacetime (flat spacetime), in spherical coordinates on each hypersurface t = const, y denotes the distance from the origin, so the range y 2 (0, +1). It can be observed that ⌘(y) vanishes at the point y = 0.

• When the space geometry is a 3-sphere, y denotes a new angular coordinate of the sphere, whose range is y 2 (0, ⇡), and sin y is new radius coordinate of the sphere. We observe that the function ⌘(y) vanishes at the endpoint of this interval.

• When the spatial geometry is a hyperbolic spacetime, the range y 2 (0, +1). We observe that ⌘(y) vanishes at the point y = 0.

Expanding, or contracting geometries

Next, we are interested in the physically relevant form of the function of a(t), which takes the form

a(t) = a 0 (t/t 0 ) ↵ , (4.5) 
where the function a(t) is often normalized, such that a 0 = 1 refers to today, t 0 is the age of the universe, and where ↵ 2 (0, 1) denotes the scale exponent representing the rate of contraction or expansion. More specifically, for the FLRW metric, ↵ has a form ↵ = 2/3. Two ranges of the time variable will be treated, as now explained. Since shock wave solutions to nonlinear hyperbolic equations are only defined in forward time directions and since the equation is singular at t = 0, we should distinguish between two regimes:

• In the range t 2 [t 0 , +1), the background is assumed to be expanding toward the future in the sense that a(t) increases monotonically to +1 and initial data are prescribed at some t 0 > 0.

Outline of the results

• In the range t 2 [t 0 , 0), the background is assumed to be contracting toward the future in the sense that a(t) decreases monotonically to 0 and initial data are prescribed at some t 0 < 0.

Outline of the results

We give a brief overview of the thesis. In Chapter 1, we study the initial value problem for a non-relativistic Euler equation with a source term. The main result is the global existence of the weak solution for the given Euler model. In Chapter 2, we construct a finite volume scheme which is fourth-order in time and second-order in space for the 1 + 1 and 1 + 2 cosmological Burgers model. By using this scheme, we investigate the asymptotic behavior of solutions of the cosmological Burgers model. And a numerical study of the asymptotic structure for the full cosmological Euler system of compressible fluids in Chapter 3. In Chapter 4, we consider the relativistic Euler system for a perfect compressible fluid on the FLRW background. We introduce a shock-capturing, high-order finite volume method for computing solutions to a class of nonlinear hyperbolic models describing the evolution of relativistic Euler equations on a curved background spacetime.

In the following, we state the contents of each chapter.

Chapter 1: Global existence for a one-dimensional nonrelativistic Euler model with relaxation

Homogenous system and properties In this chapter, we consider the nonrelativistic version of the Euler model (2.1) posed on the Schwarzschild spacetime. We begin this chapter by considering the Euler model without source term, which has the following form:

@ t U + @ r F (U ) = 0, (5.1) 
where U = (⇢, ⇢v) T and

F (U ) = ⇢v, ⇢(v 2 + k 2 )
T . We give some properties of rarefaction waves and shock waves and then obtain the solution of the Riemann problem for the homogenous system with given piecewise constant initial data:

U 0 (r) = ( U L 0 < r < r 0 , U R r > r 0 .
(5.2)

We have the following result. For the Riemann problem (5.1) and (5.2), there exists a unique weak solution, which is connected by rarefaction waves, shock waves, or contact discontinuities.

Steady state solution

We then consider families of smooth steady state solutions ⇢ = ⇢(r), v = v(r), which satisfy the ordinary di↵erential system:

d dr (r 2 ⇢v) = 0, d dr ⇣ r 2 (v 2 + k 2 )⇢ ⌘ 2k 2 ⇢r + m⇢ = 0, (5.3) 
with the initial condition ⇢ 0 > 0, v 0 posed at a given radius r = r 0 > 0. We obtain a algebraic relation with respect to the velocity v, as follows:

1 2 v 2 k 2 ln r 2 sgn(v 0 )v m 1 r = 1 2 v 2 0 k 2 ln(r 2 0 |v 0 |) m 1 r 0 .
The existence result of the steady state solution of the Euler model is obtained by the analysis of the relation. It is one of the main contributions of this chapter.

Generalized Riemann problem

The generalized Riemann problem of the Euler model (2.1) is a Cauchy problem with given initial data

U 0 (r) = ( U L (r) r < r < r 0 , U R (r) r 0 < r < r, for a fixed radius r 0 > 0, where U L = (⇢ L , v L ) and U R = (⇢ R , v R
) are two steady state solutions instead of the constant state. We construct an exact solution of the model containing three steady state solutions, which is connected by two di↵erent families of generalized elementary waves. Thus, we conclude that the existence of the solution of the generalized Riemann problem, and the solution satisfies the Rankie-Hugoniot jump condition and the Lax entropy condition. Since the smooth steady state solution may not be defined in the whole domain, we introduce the so-called triple Riemann problem, in which the initial data is given by three steady state solutions separated by two fixed radius. The solution for such problem is constructed.

Initial value problem

We give the main result of this chapter, that is the existence theory of the initial value problem of Euler model (2.1) with an initial data U 0 (r). We prove it by using the Glimm method based on the generalized Riemann problem. We construct a convergent sequence of approximate solutions to the initial value problem and then prove that the approximate solutions converge to the exact solution of the model.

Chapter 2: Asymptotic structure of cosmological Burgers flows

In Chapter 2, we treat a very simplified model obtained by assuming that the fluid is pressureless and by formally combining the two balance laws in order to derive a single equation satisfied by the velocity, that is cosmological Burgers model introduced in (2.12). Working in the cosmological time denoted by ⌧ , the model of interest in this chapter is:

v ⌧ + f (v) x + g(v) y = m(⌧ )h(v), ⌧ 6 = 0, x,y 2 [0, L]. (5.4) 
We discretize (5.4) by using a finite volume methodology, which is fourth-order in time and second-order in space. The scheme allows us to compute the weak solution and investigate the propagation and nonlinear interaction of shock waves with the geometrical e↵ects. The main contribution in this chapter is the study of the asymptotic behavior of the solutions as the time variable approaches infinity or approaches zero.

Spatially homogeneous solution and properties. For this model, we have the following result and properties. The spatially homogeneous solution to the cosmological Burgers model (5.4) is described explicitly by

v(⌧ ) = v 0 q v 2 0 + (1 v 2 0 )e 2 R ⌧ ⌧ 0 m(s)ds
.

(5.5)

• The spatially homogeneous solution always satisfies |v| < 1, which is required for the solution of the relativistic Burgers equation.

• In the expanding direction ⌧ ! +1, v(⌧ ) ' ±⌧  (up to a positive multiplicative constant), thus, the solution converges to 0.

• In the contracting direction ⌧ ! 0, ±1 + v(⌧ ) ' ±( ⌧ ) 2 (up to a positive multiplicative constant), therefore, the solution converges to ±1.

Finite volume scheme for (1 + 1)-cosmological Burgers model. Since the Burgers model is a nonlinear hyperbolic balance law, it is natural to use a finite volume methodology to discretize the model. The discretization in time is based on a time-length ⌧ together with a discrete time ⌧ n = ⌧ 0 + n ⌧ for n = 0, 1, . . ., as well as a space-length y and discrete spatial points y j = j y 2 [0, L] and y j+1/2 = (j + 1/2) y 2 [0, L]. Moreover ⌧ and y to be determined satisfy the stability conditions.

We use the notation

v n j ' 1 y Z y j+1/2 y j 1/2 v(⌧ n , y)dy, s n j ' 1 y ⌧ Z y j+1/2 y j 1/2 Z ⌧ n+1 ⌧n m(⌧ ) h(v) dyd⌧ (5.6)
and obtain the following finite volume scheme for the Burgers model:

v n+1 j = v n j ⌧ y ⇣ f n j+1/2 f n j 1/2 ⌘ + ⌧ s n j .
(5.7)

For the numerical flux we set

f n j+1/2 = f (v n j , v n j+1 ), (5.8) 
in which for the two-point flux f = f (v, w) we can choose. For instance, the Godunov flux f G is determined by solving the Riemann problem as follows:

• Case v l > v r : f G (v n l , v n r ) = 8 > < > : f (v n l ), f(v n r ) f (v n l )  0, f (v n r ), f(v n r ) f (v n l ) 0, 0, otherwise. 
(5.9)

• Case v n l  v n r : f G (v n l , v n r ) = 8 > < > : f (v n l ), f 0 (v n l ) > 0, f (v n r ), f 0 (v n r ) < 0, f (0), otherwise.
(5.10)

To improve the accuracy of the algorithm, we design a second-order version of this scheme based on a piecewise linear reconstruction in each cell and a fourth-order Runge-Kutta discretization in time. We also extend the scheme to the Burgers model in two spatial dimensions.

Asymptotic behavior of solutions. We next rely on this method to investigate the global dynamics of the velocity for future-expanding and future-contracting spacetimes. For the asymptotic behavior of solutions of the cosmological Burgers model, we have the following conclusion.

• The asymptotic behavior of solutions to the cosmological Burgers model in the future expanding background is such that the solutions y 7 ! v = v(⌧, y) decay to zero uniformly in space. Furthermore, the rescaled function w = ⌧  v approaches a (in general) non-trivial limit as ⌧ ! +1, which is a piecewise a ne function with finitely many jumps, see Figure 5.1. • The asymptotic behavior of solutions to the cosmological Burgers model in the future-contracting case is such that the solutions v = v(⌧, y) approach the light speed value ±1. Furthermore, the rescaled solution w = sgn(v)( ⌧ )  / p 1 v 2 approaches a non-trivial limit as ⌧ ! 0, which is a piecewise continuous function with finitely many jumps, see Figure 5.2. 

Outline of the results

Chapter 3:

A numerical study of the asymptotic structure of cosmological fluid flows system in one space dimension, whose conservative form reads:

@ t U + @ x F (U ) = S(U, t, x), (5.11a) 
with

U = ✓ U 0 U 1 ◆ = ✓ ⇢(1 + " 4 k 2 u 2 ) ⇢u(1 + " 2 k 2 ) ◆ , F (U ) = ✓ F 0 (U ) F 1 (U ) ◆ = ✓ ⇢u(1 + " 2 k 2 ) ⇢(u 2 + k 2 ) ◆ , (5.11b) 
and the source term

S 0 = @ t a a ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 u 2 ⌘ , S 1 = 2⇢ ⇣ k 2 @ x b b (1 " 2 u 2 ) @ t a a (1 + " 2 k 2 )u ⌘ .
(5.11c) We check that these equations are strictly hyperbolic and admit the following two (distinct) wave speeds:

1 (u) = u k 1 " 2 ku , 2 (u) = u + k 1 + " 2 ku .
(5.12)

Finite volume methodology for 1 + 1-cosmological Euler model. We discretize the Euler model (5.11) via a finite volume methodology. Let x and t denote the mesh lengths in space and in time, respectively. Furthermore, x and t satisfy the CFL condition.

With the notation

U n i = 1 x Z x i+1/2 x i 1/2 U (t n , x)dx, x 2 (x i 1/2 , x i+1/2 ), i= 0, 1, • • • , (5.13) 
we obtain the following finite volume scheme:

U n+1 i = U n i t x F n i+1/2 F n i 1/2 + tS n i , (5.14) 
where F n i+1/2 is the numerical flux at the interface x i+1/2 to be defined. The numerical flux is determined by solving a Riemann problem at every cell boundary. However, the exact Riemann solver for our Euler model is not easy to obtain, we use the approximate Riemann solver to solve such problem, which is introduced by Harten, Lax, and van Leer [START_REF] Harten | On upstream di↵erencing and godunov-type schemes for hyperbolic conservation laws[END_REF] (but in a generalized form).

A general scheme We define a general scheme (5.14), in which the numerical flux is defined as follows:

F(U L , U R ) = R F (U L ) L F (U R ) R L + R L (U R U L ) R L , (5.15) 
5. Outline of the results and the approximate source term is given by

S n i = @ta(tn) a(tn) ⇢ n i ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 (u n i ) 2 ⌘ 2⇢ ⇣ k 2 ln b i+1/2 b i 1/2 (1 " 2 (u n i ) 2 ) @ta(tn) a(tn) (1 + " 2 k 2 )u n i ⌘ ! .
(5.16)

A well-balanced scheme When a(t) ⌘ 1, we require a well-balanced property(i.e. preserve and capture the smooth steady state solutions of the Euler model) for the scheme (5.14). For our well-balanced scheme, we choose the numerical flux

F(U L , U R ) = 1 2 ⇣ F (U L ) + F (U R ) + L U M U L + R U + M U R ⌘ .
(5.17)

Here, U ± M are intermediate states of the approximate Riemann solver, which to be constructed should satisfy the well-balanced property. The source term S n i to be chosen should also satisfy such property.

Asymptotic behavior of solutions of the cosmological Euler model Based on the numerical experiments, we have the following conclusion and conjecture.

The asymptotic behavior of the solutions to the fluid model (3.2.1) posed on a future-expanding cosmological background is described as follows:

• The solution (⇢, u) = (⇢, u)(t, x) (with t > 0) decays to zero as t ! +1.

• Spatially homogeneous background. When the function b is a constant, the asymptotic rescaled solution defined in (3.2.14) is a constant with vanishing velocity: (⇢, u) = (⇢, 0). For su ciently large times, the solution is not stationary but is approximately time-periodic.

-One space dimension. The solution propagates at the sound wave speed ±k. The rescaled density defined in (3.2.10) looks like two constant density states, both converging to the constant density ⇢, while the velocity e u looks like two linear parts separated by two discontinuities and both linear pieces are converging to u = 0.

-Two space dimensions. Convergence to a constant state is also observed.

• General background. On a spatially inhomogeneous background the rescaled solution (e ⇢, e u) defined in (3.2.14) approaches a non-trivial limit as t ! +1 of the form

⇢(x) = lim t!+1 e ⇢(t, x) = C 1 b 2 (x), u(x) = lim t!+1 e u(t, x) = 0, x 2 [0, 1],
where C 1 > 0 is a constant.

The asymptotic behavior of solutions to the cosmological fluid model on a futurecontracting background is as follows:

• The density ⇢ = ⇢(t, x) blows up as t ! 0 while the velocity approaches zero or the light speed:

lim t!0 ⇢(t, x) = +0, lim t!0 u(t, x) 2 1, 0, +1 , x 2 [0, 1].
(5.18)

• On a spatially homogeneous and inhomogeneous background. The rescaled density e ⇢ defined in (3.2.15) approaches a bounded and stationary limit.

Chapter 4: Compressible fluid flows on a FLRW cosmological background

In this chapter, we deduce the formula of the Euler system for a perfect compressible fluid on the FLRW background by calculating the Christo↵el symbols and energy-momentum tensors. We then give some basic properties of the model. One of the main contributions of this chapter is the study of the existence of smooth steady state solutions when the fluid flows evolve on some spatial geometry. We next apply the geometry-preserving scheme proposed in Chapter 3 to our Euler-FLRW model. Several numerical experiments show that the scheme is well-balanced (preserve the smooth steady state solutions). We then investigate the asymptotic behavior of the solutions of the Euler model on the expanding and contracting background.

Steady state solutions When a(t) ⌘ 1, a solution ⇢, v of the Euler-FLRW model is a steady state solution if it satisfies the following identities:

⇣ ⇢v(1 + " 2 k 2 ) ⌘ y = 0, ⇣ ⇢(v 2 + k 2 ) ⌘ y = 2k 2 ⇢ (1 " 2 v 2 ) ⌘ y ⌘ , (5.19) 
where ⌘(y) is a given function. We have the following results.

The specific smooth steady solutions denoted by ⇢ = ⇢(y) and v = v(y) to the Euler system on a FLRW background with a given radius y 0 > 0, ⇢ 0 > 0 and velocity v 0 = 0 are given by v = v(y) ⌘ 0, ⇢= ⇢(y) = C⌘ 2 (y), (5.20) where C is a constant.

Outline of the results

The smooth steady solutions denoted by ⇢ = ⇢(y) and v = v(y) to the Euler system on a FLRW background with a given radius y 0 > 0, ⇢ 0 > 0 and velocity

|v 0 | < 1/" are given by ⇢v = M 0 , ln ⌘ 2 + ln |v| + 1 " 2 k 2 2" 2 k 2 ln(1 " 2 v 2 ) = N 0 , (5.21) 
where

M 0 = ⇢ 0 v 0 , N 0 = ln ⌘ 2 0 + ln |v 0 | + 1 " 2 k 2 2" 2 k 2 ln(1 " 2 v 2 0 ). (5.22)
Given any radius y 0 > 0 and any initial value ⇢ 0 > 0 and v 0 6 = k, the steady solution denoted by ⇢ = ⇢(y, y 0 ), v = v(y, y 0 ) to the equations (4.3.13) is described as follows.

• Euclidean geometry. There exists a unique sonic point y ⇤ 2 (0, +1), the steady solutions v(y, y 0 ) can be defined on the interval [y ⇤ , +1), and there is no steady state solution on (0, y ⇤ ), see Figure 5.3.

• Spherical geometry. There exist two sonic points 0 < y ⇤ < ⇡/2 < ȳ⇤ < ⇡, the steady solutions v(y, y 0 ) can be defined on the interval [y ⇤ , ȳ⇤ ], and there is no steady state solution on (0, y ⇤ ) S (ȳ ⇤ , ⇡), see Figure 5.4.

• Hyperboloidal geometry. There exists a unique sonic point y ⇤ 2 (0, +1), the steady solutions v(y, y 0 ) can be defined on the interval [y ⇤ , +1), and there is no steady state solution on (0, y ⇤ ), see Figure 5.5. 

Outline of the results

• The asymptotic behavior of the solution to the compressible Euler model on an expanding background is such that: lim

⌧ !+1 ⇢(⌧, y) = 0, lim ⌧ !+1 v(⌧, y) = 0. (5.23)
Moreover, the rescaled velocity e v goes to 0, while the rescaled density e ⇢ goes to a multiple of the geometry function ⌘ 2 .

• The asymptotic behavior of the solution to the compressible Euler model on a contracting background is such that:

lim ⌧ !0 ⇢(⌧, y) = +1, lim ⌧ !0 v(⌧, y) = ±1. (5.24)
Moreover, the rescaled solution e ⇢ goes to a bounded and stationary limit.

Chapter 1

Global existence for a one-dimensional non-relativistic Euler model with relaxation 

@ t ⇢ + @ r (⇢v) + 2 r ⇢v = 0, @ t (⇢v) + @ r ⇣ ⇢(v 2 + k 2 ) ⌘ + 2 r ⇢v 2 + 1 r 2 m⇢ = 0, (1.1.1)
defined for all r > 0 where the main unknowns are the density ⇢ > 0 and the velocity v of a fluid flow in consideration. The model (1.1.1) is indeed the "nonrelativistic version" of the Euler equation on a Schwarzschild spacetime background studied by LeFloch and Xiang [START_REF] Lefloch | Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime[END_REF] where a well-posedness theory was given for the relativist model. Here, the parameters are given as the Schwarzschild black hole mass m 2 (0, +1) and the constant sound speed k 2 (0, +1). An interesting observation is that remark that even if the Euler model (1.1.1) is non-relativistic in the sense that the velocity v is far from the light speed, the mass of the black hole m is still reflected by the source term.

Our model has the form of a well-balanced hyperbolic system with the righthand side source terms because of the geometry of the Schwarszhchild space. Such well-balanced system was first investigated by Dafermos and Hsiao [START_REF] Dafermos | Hyperbolic systems and balance laws with inhomogeneity and dissipation[END_REF], Liu [START_REF] Tai | Quasilinear hyperbolic systems[END_REF], for di↵erent applications. In our investigation, we closely follow LeFloch and Xiang [START_REF] Lefloch | Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime[END_REF], which treated the relativistic version of the Euler model by allowing the fluid speed comparable to the speed of light. However, in our non-relativistic case, we were able to get rid of the influence of the light speed and had some stronger results.

Our main contributions of the Euler model with a source terms (1.1.1) are listed as follows:

• A systematic study of the existence of the steady state solutions.

• The global-in-time existence of the (triple) generalized Riemann problem, which is an initial problem of (1.1.1) with a given piecewise steady state. Moreover, we gave also an analytical formulation of the exact solution.

• The existence of the Euler model (1.1.1) with an arbitrary initial data with bounded total variation.
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The organization of this paper is as follows. In Section 1.2 we give some basic properties of the homogenous Euler model without source term, including the hyperbolicity and the nonlinear properties which lead us to give the result of the standard Riemann problem whose wave interactions are analyzed as well.

We take into consideration the steady state solutions in Section 1.3, where we first study di↵erent families of smooth steady state solutions to the Euler model, serving as one of the main results of the present paper. The study coming after is the generalized Riemann problem of the Euler model with the initial data consisting of two steady state solutions separated by a discontinuity of jump. An exact solution is constructed in Section 1.4, with three steady states connected by two di↵erent families of generalized elementary waves and we have verified that the Rankie-Hugoniot jump condition and the Lax entropy condition are satisfied. We also give the evolution of the total variation of the solution of the Riemann problem.

Referring to Section 1.3, smooth steady states may not be extended on the whole space region (0, +1). To give a complete construction of an initial value problem, it is necessary to consider a so-called triple Riemann problem, which is an initial problem with its initial data given as three steady state solutions separated by two given radius. Such problem was first studied by Lefloch and Xiang [START_REF] Lefloch | Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime[END_REF] for a Burgers model on the Schwarzschild spacetime. We provide a global-in-time solution of such problem for our model in Section 1.5.

In Section 1.6, we are then able to give an existence theory of our Euler model. Inspired by the classic Glimm method [START_REF] Glimm | Solutions in the large for nonlinear hyperbolic systems of equations[END_REF] and the application of such method in the case of fluid flows in a flat space [START_REF] Nishida | Global solution for an initial boundary value problem of a quasilinear hyperbolic system[END_REF][START_REF] Smoller | Shock waves and reaction-di↵usion equations[END_REF], we generalize the method based on the (triple) generalized Riemann problem, developed earlier in [START_REF] Grubic | Weakly regular Einstein-Euler spacetimes with Gowdy symmetry: the global areal foliation[END_REF][START_REF] Lefloch | Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime[END_REF] in a di↵erent geometric setup and provides us with the desired global-in-time result. For the fluids of the Euler model in consideration in the present paper, the geometry may leads to the growth of the total variation of the solution, but we prove that it is uniformly controlled on any compact interval of time and consequently, sequence is proved to converge to the exact global-in-time solution of the Euler model (1.1.1).

Homogenous system 1.2.1 Elementary waves

According to (1.1.1), we write the Euler system as

@ t U + @ r F (U ) = S(r, U ), (1.2.1)
1.2. Homogenous system where

U = ✓ ⇢ ⇢v ◆ , F(U ) = ✓ ⇢v ⇢(v 2 + k 2 ) ◆ , S(r, U ) = ✓ 2 r ⇢v 2 r ⇢v 2 1 r 2 m⇢ ◆ .
We derive the pair of eigenvalues reading

(⇢, v) = v k, µ(⇢, v) = v + k. (1.2.2)
We give also the pair of corresponding Riemann invariants: 

w(⇢, v) = v + k ln ⇢, z(⇢, v) = v k ln ⇢. ( 1 
@ t U + @ r F (U ) = 0, (1.2.4) 
where we recall that U = (⇢, ⇢v) T and F (U ) = ⇢v, ⇢(v 2 + k 2 ) T according to (1.2.1).

Notice that (⇢, v) ! (⇢, ⇢v) is a one-to-one map and we thus don't distinguish U and (⇢, v) in the following for the sake of simplicity.

We consider first the rarefaction curves along which the corresponding Riemann invariants remain constant. Lemma 1.2.2. Consider the homogenous Euler model given by (1.2.4). The 1rarefaction curve issuing from constant U L = (⇢ L , v L ) and the 2-rarefaction wave from the constant U R = (⇢ R , v R ) are given by

R ! 1 (U L ) : ⇢ v v L = ln ⇣ ⇢ ⇢ L ⌘ k , v < v L , R 2 (U R ) : ⇢ v v R = ln ⇣ ⇢ ⇢ R ⌘ k , v < v R .
(1.2.5)

Proof. The 1-family Riemann invariant is a constant along the 1-rarefaction curve passing the point U L and we have

R ! 1 (U L ) : w(⇢, v) = w(⇢ L , v L ), z(⇢, v) < z(⇢ L , v L )
, which gives the form of the 1-rarefaction wave. Similarly, we have the 2-rarefaction wave.
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We can also give the form of 1-shock and 2-shock associated with the constant states U L and U R respectively. Lemma 1.2.3. The 1-shock wave and 2-shock wave of the Euler model without source term (1.2.4) associated with the constant states U L and U R respectively have the following forms:

S ! 1 (U L ) : ⇢ v v L = k ⇣ r ⇢ ⇢ L r ⇢ L ⇢ ⌘ , v > v L , S 2 (U R ) : ⇢ v v R = k ⇣ r ⇢ ⇢ R r ⇢ R ⇢ ⌘ , v > v R .
(1.2.6)

And the 1-shock speed 1 and the 2-speed 2 are:

1 (⇢ L , v L ), (⇢, v) = v k r ⇢ L ⇢ , 2 (⇢, v), (⇢ R , v R ) = v + k r ⇢ R ⇢ . (1.2.7)
Proof. The Rankine-Hugoniot jump condition gives

⇥ ⇢ ⇤ = ⇥ ⇢v ⇤ , ⇥ ⇢v ⇤ = ⇥ ⇢(v 2 + k 2 ) ⇤ , (1.2.8) 
where denotes the speed of the discontinuity. Consider first the 1-shock which should satisfy the Lax entropy inequality in the sense that

(⇢ L , v L ) > > (⇢, v),
for the 1-shock wave. Eliminating the speed , we obtain:

v v L = k ⇣ r ⇢ ⇢ L r ⇢ L ⇢ ⌘ , v > v L .
The form of the 2-shock wave follows from a similar calculation. The shock speeds can be obtained directly from (1.2.6), (1.2.8).

Standard Riemann problem

We now consider the solution of the standard Riemann problem of the homogenous Euler system (1.2.4) associated with given initial data:

U 0 (r) = ( U L 0 < r < r 0 , U R r > r 0 , (1.2.9) 
1.2. Homogenous system where r 0 > 0 is a fixed radius and U L = (⇢ L , v L ), U R = (⇢ R , ⇢ R ) are constant states. To give the solution of the standard Riemann problem, we define now the 1-familywave and the 2-family wave: 

W ! 1 (U L ) = S ! 1 (U L ) [ R ! 1 (U L ), W 2 (U R ) = S 2 (U R ) [ R 2 (U R ), ( 1 
( ) := 1 + ✓ 1 ± r 1 + 2 ◆ . (1.2.11) Taking = (v, v L ) = (v v L ) 2 2k 2
along the 1-shock, we have

w w L = v v L + k ln ⇢ ⇢ L = p 2 k 2 + k ln ( ), z z L = v v L k ln ⇢ ⇢ L = p 2 k 2 k ln ( ).
The tangent of the shock wave curve S ! 1 (U L ) in the w z plane is given by

dw dz = d(w w L ) d(z z L ) = d(w w L ) d d d(z z L )
.

Hence, we have 0  dw dz < 1. A similar calculation gives the result of the 2-shock.

Together with Lemma 1.2.4 and the form of elementary waves given in Lemmas 1.2.5, 1.2.6, some direct observations are given in order, concerning the standard Riemann problem of the homogenous Euler model (1.2.4):

• For di↵erent given states U L , U 0 L , the two 1-family wave curves

W ! 1 (U L ) \ W ! 1 (U 0 L ) = ;. Similarly, for U R 6 = U 0 R , the 2-family wave curve W 2 (U R ) has no intersection point with W 2 (U 0 R ).
• The two families of wave curves cover the whole upper half ⇢ v plane as a result of Lemma 1.2.4.
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• For given constant states U L , U R , the waves W ! 1 (U L ) and W 2 (U R ) intersect once and only once at a point U M .

We thus have the proposition: Proposition 1.2.5 (Solution of the standard Riemann problem). Given two constant states U L = (⇢ L , v L ) and U R = (⇢ R , v R ), the standard Riemann problem (1.2.4), (1.2.9) admits a unique entropic solution which only depends on r r 0 t . More precisely, the solution is realized by the left state U L , the right state U R and a uniquely defined intermediate state U M , where U L and U M are connected by a 1-wave while U M and U R are connected by a 2-wave.

Wave interactions

For the standard Riemann problem of the Euler model without source term (1.2.4) with left-hand side constant state U L and right-hand side constant state U R , define the wave strength of the Riemann problem S = S(U L , U R ) :

S(U L , U R ) := | ln ⇢ L ln ⇢ M | + | ln ⇢ R ln ⇢ M |, where U M is the unique intermediate state U M 2 W ! 1 (U L ) \ W 2 (U R ).
We have the following lemma concerning S: Lemma 1.2.6. Let U L , U P , U R be three given constant states. The wave strengths associated with the Riemann problem (U L , U P ), (U P , U R ) and (U L , U R ) satisfy the following inequality S(U L , U R )  S(U L , U P ) + S(U P , U R ).

(1.2.12)

To prove Lemma 1.2.6, we first need the following calculation.

Lemma 1.2.7. Given an arbitrary state U 0 , the 1 and 2-shock wave curves S ! 1 (U 0 ) and S 2 (U 0 ) are reflectional symmetric with respect to the straight line parallel to w = z passing the point U 0 on the w z plane where w, z are the Riemann invariants of the Euler model introduced by (1.2.3).

Proof. Denote by (w 0 , z 0 ) the point U 0 on the w z plane. For a given point (w, z) along the 1-shock, we have

w 1 := w w 0 = p 2 k 2 + k ln + ( ), z 1 := z z 0 = p 2 k 2 k ln + (
), while for a point along the 2-shock (w, z):

w 2 := w w 0 = p 2 k 2 + k ln ( ), z 2 := z z 0 = p 2 k 2 k ln ( ),
where the function ± is defined by (1.2.11), which gives + ( ) ( ) = 1. We have got the result by noticing that w

1 = z 2 , z 1 = w 2 .

Fluid equilibria

We can thus continue the proof of Lemma 1.2.6.

Proof of Lemma 1.2.6. Again, we stay on w z plane. From Lemmas 1.2.4, 1.2.7, we can see that the shock wavs S ! 1 , S 2 passing the same point U 0 are symmetric with respect to the straight line parallel to w = z passing the point U 0 . According to the definition of the wave strength (1.2.12) which is actually measured along the line w = z, the symmetry of waves gives immediately the result.

Fluid equilibria 1.3.1 Critical smooth steady state solutions

We now turn our attention to steady state solutions ⇢ = ⇢(r), v = v(r), which satisfy the ordinary di↵erential system:

d dr (r 2 ⇢v) = 0, d dr ⇣ r 2 (v 2 + k 2 )⇢ ⌘ 2k 2 ⇢r + m⇢ = 0, (1.3.1) 
with the initial condition ⇢ 0 > 0, v 0 posed at a given radius r = r 0 > 0, ⇢(r

0 ) = ⇢ 0 > 0, v(r 0 ) = v 0 . (1.3.2)
We call (1.3.1) the static Euler model. For a steady state solution ⇢ = ⇢(r), v = v(r), it is straightforward to find a pair of algebraic relations:

r 2 ⇢v = r 2 0 ⇢ 0 v 0 , 1 2 v 2 + k 2 ln ⇢ m 1 r = 1 2 v 2 0 + k 2 ln ⇢ 0 m 1 r 0 ,
from which we recover the equation for v by eliminating ⇢:

1 2 v 2 k 2 ln r 2 sgn(v 0 )v m 1 r = 1 2 v 2 0 k 2 ln(r 2 0 |v 0 |) m 1 r 0 . (1.3.3)
Notice that once we get the value of v, we can have the value ⇢ directly from the first equation of (1.3.1). Therefore, we focus on the analysis of the steady state velocity v.

Introduce the function G = G(r, v):

G(r, v) := 1 2 v 2 k 2 ln(r 2 sgn(v 0 )v) m 1 r , (1.3.4) 
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and we see if v = v(r) is a solution of (1.3.1) with the condition v(r 0 ) = v 0 , then G(r, v(r)) ⌘ G(r 0 , v 0 ) always holds. Di↵erentiating G with respect to v and r, we obtain

@ v G = v k 2 v , @ r G = 1 r 2 (m 2k 2 r). (1.3.5)
We can immediately deduce the first-order derivative of the steady state velocity v = v(r):

dv dr = v r 2 2k 2 r m v 2 k 2 . (1.3.6)
It is obvious to see that @ v G=0 if and only if v = ±k while @ r G = 0 if and only if r = m 2k 2 from (1.3.5). This observation motivates us to find the steady state curves passing the points ( m 2k 2 , ±k) on the r v plane (0, +1) ⇥ ( 1, +1). We call the solution v = v(r) on the subset of r v plane (0, +1) ⇥ ( 1, +1) the critical steady state solution of the static Euler model (1.3.1) if and only if satisfies S(r, v(r)) ⌘ 0 where S = S(r, v) is given by

S(r, v) := 1 2 v 2 k 2 ln r 2 |v| m 1 r + 3 2 k 2 + k 2 ln m 2 4k 3 . (1.3.7)
It is direct to check that S( m 2k 2 , ±k) = 0. We now have the following lemma concerning the critical steady state curve. ⇤ . Moreover, we have the following properties:

• The sign of each solution does not change on the space domain (0, +1).

• On the interval (0, m 2k 2 ), we have

v N,] ⇤ < k < v N,[ ⇤ < 0 < v P,[ ⇤ < k < v P,] ⇤ , while on the interval ( m 2k 2 , +1), we have v N,[ ⇤ < k < v N,] ⇤ < 0 < v P,] ⇤ < k < v P,[ ⇤ .
• The solutions v N,] ⇤ , v Proof. We would like to show that for every fixed radius r > 0 and r 6 = m 2k 2 , there exists four di↵erent values v satisfying (1.3.7). Observing S(r, v) = S(r, v), we first consider the case where v > 0. According to (1.3.5), for every fixed r > 0, S(r, •) reaches its minimum at v = k and the value is given as

S k (r) := 2k 2 k 2 ln r 2 k 2 m r + k 2 ln m 2 4k 3 . Since @ r S k = 1 r 2 (m 2k 2 r), we have S k (r) < S k ( m 2k 2 ) = 0. Moreover, we have lim v!0 S(r, v) = +1 and lim v!+1
S(r, v) = +1. Therefore, for every fixed r 6 = m 2k 2 , S(r, v) admits two di↵erent positive roots v 1  k  v 2 on (0, +1) where the equality holds only once at the point r = m 2k 2 . The symmetry of S(r, •) with respect to v = 0 gives two other negative roots v 3  k  v 4 . Since S v 6 = 0 when v 6 = ±k, there exist four smooth di↵erent solutions on the interval (0, m 2k 2 ) and ( m 2k 2 , +1) respectively. To extend the steady solution on the whole domain (0, +1), we have to treat the very points ( m 2k 2 , ±k). Indeed, we have, by the L'Hôpital's rule, dv dr m

2k 2 = k (m/2k 2 ) 2 k 2 .⇣ k dv dr m 2k 2 ⌘ , which gives dv dr ⇣ m 2k 2 ⌘ = ± 2k 3 m , (1.3.9) 
whose sign depends on the choice of the branch of curves. According to (1.3.9), we are able to keep the solution smooth on the whole domain (0, +1) by keeping the sign of the derivative of v at r = m 2k 2 . We thus define the four di↵erent solutions on (0, +1):

v P,[ ⇤ (r) = ( v 1 (r) r 2 (0, m 2k 2 ), v 2 (r) r 2 ( m 2k 2 , +1), v P,] ⇤ (r) = ( v 2 (r) r 2 (0, m 2k 2 ), v 1 (r) r 2 ( m 2k 2 , +1), v N,[ ⇤ (r) = ( v 3 (r) r 2 (0, m 2k 2 ), v 4 (r) r 2 ( m 2k 2 , +1), v N,] ⇤ (r) = ( v 4 (r) r 2 (0, m 2k 2 ), v 3 (r) r 2 ( m 2k 2 , +1). (1.3.10)
The derivative of the velocities in (1.3.8) follows directly from (1.3.9) and (1.3.10).

Families of steady state solutions

The former construction gives that the relation S(r, v) ⌘ 0 admits four di↵erent solutions on the whole domain (0, +1). We would like now to give all families of solutions according to the sign of S(r, v) defined in (1.3.7). We now study general cases of the steady state solutions.

We then have the following lemma.
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Lemma 1.3.2. Let S = S(r, v) be the function defined by (1.3.9), then:

• If S = const. > 0, then there exists four solutions v = v(r) satisfying the algebraic equation (1.3.3) on the whole space interval out of the black hole (0, +1).

• If S = const. < 0, then there exist two radius 0 < r S < m 2k 2 < rS such that there exist four solutions v = v(r) satisfying the algebraic equation (1.3.3) on the interval (0, r S ) and four solutions satisfying (1.3.1) on the interval (r S , +1).

Proof. We now focus on the case where S = const. > 0. Again, S(r, v) = S(r, v) allows us to consider the case where v > 0. Now we notice that

G(r, v) G( m 2k 2 , k) = S(r, v)
where G is defined by (1.3.4). By the formula of (1.3.5), for all the fixed r 2 (0, +1), the equation

G(r, v) G( m 2k 2 , k) = const. > 0 admits two positive roots v P,] S > k > v P,[ s if and only if G(r, k) < G( m 2k 2 , k).
Moreover, (1.3.5) gives the fact that G(r, k) reaches its maximum at the point r = m 2k 2 and we thus have

G(r, k) < G( m 2k 2 , k).
We have another two negative roots v N,] < k < v N,[ following from the same analysis. Now if S = const. < 0, there exist two points 0 < r S < m 2k 2 < rS such that S(r S , k) = S(r S , k) = 0 and S(r, k) < 0 for all r 2 (r S , rS ). We have four roots satisfying (1.3.3) among which two are defined only on (0, r S ) while two on (r S , +1) respectively.

We can now give the existence result of the steady state solution of the Euler model (1.1.1).

Theorem 1.3.3 (Families of steady state solutions). Consider the family of steady state solutions of the Euler model (1.3.1). Then, for any given radius r 0 > 0, the density ⇢ 0 > 0 and the velocity v 0 , we have: there exists a unique smooth steady state solution ⇢ = ⇢(r), v = (r) satisfying (1.3.1) together with the initial condition

⇢ 0 = ⇢(r 0 ), v(r 0 ) = v 0 such that the velocity satisfies sgn(v) = sgn(v 0 ) and sgn(|v| k) = sgn(|v 0 | k)
on the corresponding domains of definition. Furthermore, we have di↵erent families of solutions:

• If G(r 0 , v 0 ) > 3 2 k 2 k 2 ln m 2 4k 3 in which the parameter G = G(r, v
) was introduced in (1.3.4), then the steady state solution is defined on the whole space interval (0, +1).

• If G(r 0 , v 0 ) = 3 2 k 2 k 2 ln m 2 4k
3 , then we have the critical steady state solution on the whole interval (0, +1) whose formula is given by (1.3.10). 

• If G(r 0 , v 0 ) < 3 2 k 2 k 2 ln m 2 4k 3 , then the solution is defined on (0, r S ) if r 0 < m 2k 2 or (r S , +1) if r 0 > m 2k 2 where r S , rS satisfy G(r S , k) = G(r S , k) = G(r 0 , v 0 ).

Steady shock

We now consider the steady shock which is also a solution of the static Euler equation (1.3.1) but contains one discontinuity satisfying also the entropy condition. We give the following lemma. 

(⇢ R , v R ) must satisfy ⇢ R ⇢ L = v 2 L k 2 . v L v R = k 2 , v L 2 ( k, 0) [ (k, +1).
Proof. From the steady Rankine-Hugoniot relations

⇥ ⇢v ⇤ = 0, ⇥ ⇢(k 2 + v 2 ) ⇤ = 0,
where the bracket [•] denotes the value of the jump and we deduce that

⇢ R v R = ⇢ L v L , ⇢ R (v 2 R + k 2 ) = ⇢ L (v 2 L + k 2 ),
which gives the relation of the left-hand side and the right-hand side limit of the jump. Then the Lax entropy condition requires that 

(⇢ L , v L ) > 0 > (⇢ R , v R ), µ(⇢ L , v L ) > 0 > µ(⇢ R , v R )
(⇢ L , v L ) = (⇢ L , v L )(r), (⇢ R , v R ) = (⇢ R , v R )(r)
v R (r 0 ) = k 2 v L (r 0 ) , ⇢ R (r 0 ) = v L (r 0 ) 2 k 2 ⇢ L (r 0 ), (1.3.11) with v L (r 0 ) 2 v L 2 ( k, 0) [ (k, +1). (1.3.12)
1.4 The generalized Riemann problem

1.4.

The rarefaction regions

The generalized Riemann problem of the Euler model is a Cauchy problem of (1.1.1) with an initial data given as

U 0 (r) = ( U L (r) r < r < r 0 , U R (r) r 0 < r < r, (1.4.1) 
for a fixed radius r 0 > 0 and two steady state solutions U L = (⇢ L , v L ) and U R = (⇢ R , v R ) such that the static Euler equation (1.3.1) holds.

For simplicity, we write

(⇢ L , v L )(r 0 ) = (⇢ 0 L , v 0 L ) = U 0 L and (⇢ R , v R )(r 0 ) = (⇢ 0 R , v 0 R ) = U 0 R .
To solve the generalized Riemann problem, we need first to fix the point r = r 0 and solve the standard Riemann problem (1.2.4) with initial data

U 0 (r) = ( U 0 L r < r < r 0 , U 0 R r 0 < r < r.
The standard Riemann problem at a fixed radius is solved by three constant states

U 0 L = (⇢ 0 L , v 0 L ), U 0 M = (⇢ 0 M , v 0 M ) and U 0 R = (⇢ 0 R , v 0 R
) connected to each other with 1-wave and 2-wave respectively where the intermediate constant state is given by

U 0 M 2 W ! 1 (U 0 L ) \ W 2 (U 0 R ). (1.4.2)
Coming back to the Euler equation with source term (1.1.1), we would like to construct a solution of the generalized Riemann problem (1.1.1), (1.4.1) with three steady state solutions connected by generalized elementary curves. We give the intermediate steady state solution denoted by

(⇢ M , v M ) = (⇢ M , v M )(r) of the static Euler equation (1.3.1) with initial data (⇢ 0 M , v 0 M ) at the point r = r 0 , that is (⇢ M , v M )(r 0 ) = (⇢ 0 M , v 0 M ). (1.4.3) 1.4

. The generalized Riemann problem

To work on di↵erent types of elementary waves, we consider the following di↵erential equations:

dr M L + dt = ( ⇢ M (r M L + ), v M (r M L + ) , v 0 L < v 0 M , 1 ⇣ ⇢ L (r M L + ), v L (r M L + ) , ⇢ M (r M L + ), v M (r M L + ) ⌘ , v 0 L > v 0 M , dr M L dt = ( ⇢ L (r M L , v L (r M L ) , v 0 L < v 0 M , 1 ⇣ ⇢ L (r M L ), v L (r M L ) , ⇢ M (r M L ), v M (r M L ) ⌘ , v 0 L > v 0 M , r M L ± (0) = r 0 , (1.4.4) 
as well as

dr R M + dt = ( µ ⇢ M (r R M + ), v M (r R M + ) , v 0 M < v 0 R , 2 ⇣ ⇢ L (r R M + ), v L (r R M + ) , ⇢ M (r R M + ), v M (r R M + ) ⌘ , v 0 M > v 0 R , dr R M dt = ( µ ⇢ L (r R M , v L (r R M ) , v 0 M < v 0 R , 2 ⇣ ⇢ L (r R M ), v L (r R M ) , ⇢ M (r R M ), v M (r R M ) ⌘ , v 0 M > v 0 R , r R M ± (0) = r 0 , (1.4.5) 
where 1 , 2 are the speeds of 1 and 2-shocks respectively and , µ are the eigenvalues given by (1.2.2). Proof. We first consider the 1-wave. If (⇢ 0 L , v 0 L ) and (⇢ 0 M , v 0 M ) are connected by a 1-rarefaction, then we have

Lemma 1.4.1. Let (⇢ L , v L ) = (⇢ L , v L )(r), (⇢ R , v R ) = (⇢ R , v R )(
dr M L + dt = ⇢ M (r M L + ), v M (r M L + ) , dr M L dt = ⇢ L (r M L , v L (r M L ) .
Following from the existence theory of ordinary di↵erential equations, there exists a time T > 0 such that the curves are well-defined on 0 < t < T . To prove that these curves are indeed defined globally in time, we have to show that steady state solutions can not be sonic along the wave curves, referring to Theorem 1.3.3. We take into account two cases:

• When r 0 < m 2k 2 , v L = v L (r
) cannot be sonic for all r < r < r 0 . Then we only have to consider the case where r M L (t) > r 0 , which gives

dr M L (t) dt > 0, providing v L k. If there exists a finite time t 1 such that v L r M L (t) = k,
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then dr M L (t) dt | t=t 1 = v L r M L (t 1 )
k, which provides a contradiction.

• When r 0 m 2k 2 , the following equality holds r ⇤ L < r < r 0 where r ⇤ L is the sonic point of (⇢ L , v L ), then we have at once the result.

Now if (⇢ 0 L , v 0 L ) and (⇢ 0 M , v 0 M
) is connected by a 1-shock, the result will hold if (⇢ L , v L ) will not reach to the sonic point on r, r M L (t) for 0 < t < T . We consider the two cases as follows.

• When r 0 < m 2k 2 , we only have to consider the case where

1 > 0. The entropy condition gives (⇢ L , v L ) > 1 > (⇢ M , v M ), leading to v L > k.
Then we have the result.

• When r 0 m 2k 2 , we have r ⇤ L < r < r 0 and the result holds.

A similar calculation gives all the curves listed in the lemma.

It follows directly from the definition that r

M L (t)  r M L + (t)  r R M (t)  r R M + (t)
, which permits us to define five disjoint regions below for all fixed t > 0: 

r, r M L (t) , r M L (t), r M L + (t) , r M L + (t), r R M (t) , r R M (t), r R M + (t) , r R M + (t),

Exact solution to Riemann problem

We now give the solution U = (⇢, v) = (⇢, v)(t, r) for the generalized Riemann problem. Write Here,

U (r) = 8 > > > > > > < > > > > > > : U L (r) r < r < r M L (t), Ũ1 (t, r) r M L (t) < r < r M L + (t), U M (r) r M L + (t) < r < r R M (t), Ũ2 (t, r) r R M (t) < r < r R M + (t), U R (r) r R M + (t) < r < r, ( 1 
U L = (⇢ L , v L ), U M = (⇢ M , v M ), U R = (⇢ R , v R
) are three steady state solutions and Ũ1 and Ũ2 are generalized rarefaction waves to be given by the integro-di↵erential problem following from Liu [START_REF] Tai | Quasilinear hyperbolic systems[END_REF]. Indeed, we give the function Ũj (t, ✓ j ) = (⇢ j , ṽj )(t, ✓ j ), j = 1, 2 and the new variable r = r(t, ✓ j ). To seek for the form of Ũj and r, we consider 1.4. The generalized Riemann problem the following problem:

@ ✓ j r@ t Ũj + ✓ @ U F ( Ũj ) ( Ũj ) ◆ @ ✓ j Ũj = S( Ũj )@ ✓ j r, @ t r = ( Ũj (t, ✓ j )), (1.4.7)
with boundary and initial conditions reading

Ũj (t, ✓ 0 j ) = U 0 k (r(t, ✓ 0 j )), Ũj (0, ✓ j ) = h 1 (✓ j ), @ t r(t, ✓ 0 j ) = (U 0 k (r)), r(0, ✓ j ) = r 0 , (1.4.8) 
where we give ✓ 0 j = (U 0 k ), j = 1, 2, k = L, R and the function h j defined by

⇠ = j (h j (⇠)) = r r 0 t , (1.4.9) 
where 1 = , 2 = µ are the eigenvalues of the 1 and 2 families. Lemma 1.4.2. The integro-di↵erential problem (1.4.7), (1.4.8) admits a unique Ũj smooth for all fixed time t > 0.

Proof. To prove the lemma, we use a standard fixed point argument. Without loss of generality, we consider the 1-rarefaction wave. Denote by l 1 , l 2 two linearly independent vectors corresponding to , µ respectively. Multiplying (1.4.7) by l 2 , we have

DV 2 = @ ✓ 2 r µ l 2 • S + Dl 2 • V 1 , @ t V 1 = l 2 • S + @ t l 2 • V 1 , where we have defined V 1 = l 1 • Ũ1 , V 2 = l 2 • Ũ1
, and the operator reads D = @ ✓ 2 r µ @ t +@ ✓ 2 whose integral curves starting from (⌧, (U 0 )) is denoted by ⇣. We thus have

V 2 (t, ✓ 1 ) = V 2 (⌧, (U 0 )) + Z ⇣ ✓ @ ✓ 2 r µ l 2 • S + Dl 2 • V 1 ◆ d✓ 1 , V 1 (t, ✓ 1 ) = V 1 (0, ⇠) + Z t 0 ✓ l 2 • S + @ t l 2 • V 1 ◆ d✓ 1 .
(1.4.10)

Now let F be the operator of the right-hand side of (1.4.10) and we study the iteration method Ũ (l)

1 = F (l) Ũ 0 1 , l 1 where Ũ 0 1 is an arbitrary smooth function satisfying the initial-boundary condition Ũ 0 1 (t, ✓ 0 j ) = Ũ1 (t, ✓ j ), Ũ 0 1 (0, ✓ j ) = Ũ1 (0, ✓ j ).
It is direct to check that for su ciently small t 1 , F is contractive in the max norm of Ũ 0 j . By iterating the operator F, we prove that there exists a unique solution Ũ1 for all 0 < t  t

1 . Then we repeat the process by taking Ũ1 (t According to the construction above, we conclude the following theorem. 

.1).

There exists a weak solution to the generalized problem on t > 0 whose exact form is given by (1.4.6), satisfying the Rankie-Hugoniot jump condition and the Lax entropy condition.

Evolution of total variation

It is obvious that the total variation of ln ⇢ of the solution of the standard Riemann problem (1.2.4), (1.2.9) stays as a constant when time passes. However, it is a di↵erent story for the generalized Riemann problem (1.1.1), (1.4.1). We have the following lemma. 

0 = (⇢ 0 , v 0 ) = (⇢ 0 , v 0 )(r) has the form (1.4.1). Then we have T V [r,r] ln ⇢(t, •) < T V [r,r] ln ⇢(0+, •) 1 + O(t) , (1.4.11) 
for all t > 0.

Proof. Let U M = U M (r) be the intermediate steady state solution associated with the left state U L and the right state U R given in the initial data. According to (1.4.4), we have

U L (r M L (t)) U M (r M L (t)) =U L (r 0 ) U M (r 0 ) + |U L (r 0 ) U M (r 0 )|O(r M L (t) r 0 ) =U L (r 0 ) U M (r 0 ) + |U L (r 0 ) U M (r 0 )|O(t)
. Moreover, according to the construction of the generalized Riemann problem, we give

T V [r,r] ln ⇢(t+, •) T V [r,r] ln ⇢(0+, •)  ln ⇢ L (r 0 ) ⇢ M (r 0 )| + ln ⇢ L (r 0 ) ⇢ M (r 0 )| O(t) = T V [r,r] ln ⇢(0+, •) O(t)
, where we have used the continuous dependence property

|U L (r 0 ) U M (r 0 )| = O(1)|(ln ⇢ L (r 0 ) ⇢ M (r 0 )|.
This ends the proof of the lemma. Considering the fact that a steady state solution of the steady Euler model (1.3.1) may not be defined globally as the result of Theorem 1.3.3 and we are obliged to introduce the triple Riemann problem in order to complete the Glimm method in the coming section, that is, a Cauchy problem associated with an initial data composed of three steady state solutions:

U 0 (r) = 8 > < > : U ↵ (r) r < r < r s , U (r) r s < r < r b , U (r) r b < r < r, (1.5.1) 
for fixed radius 0 < r < r 1 < r 2 < r and steady states

U ↵ = (⇢ ↵ , v ↵ ), U = (⇢ , v ), U = (⇢ , v ). We denote by U ↵ (r s ) = U s ↵ = (⇢ s ↵ , v s ↵ ), U (r s ) = U s = (⇢ s , v s ), U (r b ) = U b = (⇢ b , v b ), U (r b ) = U b = (⇢ b , v b ).
We first give the main conclusion of this section: Theorem 1.5.1. Consider a given initial data composed of three steady state solution U ↵ , U , U . Then for all t > 0, the triple Riemann problem of the Euler model (1.1.1), (1.5.1) admits a weak solution U = (⇢, v) = (⇢, v)(t, r) such that for all t > 0, we have:

T V [r,r] ln ⇢(t, •) < T V [r,r] ln ⇢(0+, •) 1 + O(r r) . (1.5.2)
We define the left-hand problem as a generalized Riemann problem with initial data

U 0 (r) = ( U ↵ (r) r < r 1 , U (r) r > r
1 , and the right-hand problem as a generalized Riemann problem with initial data

U 0 (r) = ( U (r) r < r 2 , U (r) r > r 2 .
Since the Euler model (1.1.1) is strictly hyperbolic following from Proposition 1.2.1, for a small enough time t > 0, both the left-hand and the right hand problem admit a solution denoted by U L = U L (t, r) and U R = U R (t, r) respectively and the wave curves of the solutions do not interact. We denote by r

M L ± L , r R M ±
L the rarefaction regions boundaries of the left-hand side problem and r

M L ± R , r R M ±
R of the right-hand side problem (1.4.4), (1.4.5). We then define the moment of the first interaction denoted by T f :

T f := sup{t > 0|r R M + L (t)  r M L R (t)}. (1.5.3)
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Clearly, if T f = +1, the triple Riemann problem (1.1.1), (1.5.1) exists a solution reading

U f (t, r) = ( U L (t, r) r < r < r 2 , U R (t, r) r 2 < r < r.
(1.5.4)

Possible interactions

If the moment of the first interaction T f < +1, then the waves of the left and the right-hand Riemann problem did have interactions. Possible interactions are given in order:

• 2-shock of the left-hand problem and 1-shock of the right-hand problem,

• 2-shock of the left-hand problem and 1-rarefaction of the right-hand problem,

• 2-rarefaction of the left-hand problem and 1-shock of the right-hand problem, which are denoted by Problems P ss, P sr, P rs respectively. For later use, we denote by U ↵, M , U , M the intermediate states of the left and right-hand problems respectively. We consider di↵erent kinds of interactions separately. Lemma 1.5.2. If T f < +1 where T f is defined by (1.5.3) and we have the 2-shock of the left-hand problem and the 1-shock of the right-hand problem of the Euler model (1.1.1), then there exists a time T ss such that Problem P ss admits a solution on 0 < t < T ss .

Proof. We only have to consider the solution after t > T f . We denote by U ss M = U ss M (t, r) the solution of the generalized problem with initial states

U ↵, M , U , M sepa- rated by r = r M L + L (T f ) = r R M R (T f ) at t = T f . Then for T f < t < T ss , we give U ss (t, r) = 8 > < > : U L (t, r) r < r < r M L + L (t), U ss M (t, r) r M L + L (t) < r < r R M R (t), U R (t, r) r R M R (t) < r < r, (1.5.5) 
where

T ss = min ⇣ sup{t > T f |r M L M (t) > r M L + L (t)}, sup{t > T f |r R M R (t) > r R M + M (t)} ⌘ , (1.5.6)
where r M L ± M are boundaries of the rarefaction regions of the state U ss M given by (1.4.4), (1.4.5). Thus Problem P-ss admits a solution for all t < T ss .

We now consider Problem P rs. 

U rs 0 (t, r) = ( U L (t, r) r < r < r L M + L (t), U rs M (t, r) r L M + L (t) < r < r R M R (t), (1.5.7) 
where the function U rs M (t, r) is given by

U rs,0 M (t, r) = 8 > > > > > > > > < > > > > > > > > : e U ↵, 2 (t, r) r L M + L (t) < r < f r L M rs (t), Ũ rs 1 (t, r) f r L M rs (t) < r < f r L M + rs (t), U rs,0 MM (r) f r L M + rs (t) < r < f r R M rs (t), Ũ rs 2 (t, r) f r R M rs (t) < r < f r R M + rs (t), U (r) f r R M + rs (t) < r < r R M R (t).
(

Here, U rs MM = U rs MM (r) is a steady state with

U rs M M (r L M + L (T f )) 2 W ! 1 e U ↵, 2 (T f , r L M + L (T f )) \ W 2 U (r R M R (T f ))
and we recall that W ! 1 and W 2 are elementary waves given by (1.2.10). The wave curves 

f r L M ± rs , f r R M ± rs (t)
T 0 rs = sup{t > T f | f r L M rs (t) < r L M L (t)}, (1.5.9)
and we see immediately that (1.5.7) provides an exact solution for Problem P rs for all 0 < t  T 0 rs . Now for t > T 0 rs , we give 

U rs M (t, r) = 8 > > > > < > > > > : U L (t, r) r < r < r L M + L (t), U rs,1 M r L M + L (t) < r < f r R M rs (t), U rs,0 M (r) f r R M rs (t) < r < r R M R (t), U (r) r R M R (t) < r < r,
T rs = min ✓ sup{t > T 0 rs |r M L rs (t) > r M L + L (t)}, sup{t > T 0 rs |r R M R (t) > f r R M rs (t)} ◆ ,
(1.5.11) where r M L rs (t) is the lower bound of the 1-wave of the solution U rs,1 M = U rs,1 M (t, r). Together with (1.5.4), (1.5.7), (1.5.10), we have a solution of Problem P rs for all 0 < t < T rs .

A similar analysis gives the result of Problem P rs. Lemma 1.5.4. If the first moment of interaction T f < +1 and the Euler model (1.1.1) admits 1-rarefaction of the left-hand problem and the 2-shock of the righthand problem. That we have a solution of Problem P sr for all 0 < t < T rs for a given moment T sr .

We now consider interactions after these moments T ss , T rs , T sr . Indeed, following from the constructions in Lemmas 1.5.2, 1.5.3, 1.5.4, it is clear that possible interactions after these moments are also interplays of shock waves and rarefaction waves as is listed at the beginning of this section. Thus, for any fixed moment t > 0, we have the solution of the triple Riemann problem. The estimation of the total variation given by (1.5.2) follows directly from Lemmas 1.2.6, 1.4.4. We thus obtain the main conclusion of this section, that is, Theorem 1.5.1.

The initial value problem 1.6.1 The Glimm method

We construct an approximate solution of the Euler model (1.1.1) with initial data

U (t, r) = U 0 (r) = (⇢ 0 , v 0 )(r), r > 0, (1.6.1)
by using a random choice method or equivalently, the Glimm method based on the generalized problem. Let r and t denote the mesh lengths in space and in time respectively, and let (r j , t n ) denote the mesh point of the grid, where r j = j r, t n = 0 + n t. We assume the so-called CFL condition:

r t > max(| |, |µ|), (1.6.2) 
insuring that elementary waves other than those in the triple Riemann problem do not interact within one time interval.

The initial value problem

To construct the approximate solution U r = U r (t, r), we would like first to approximate the initial data by a piecewise steady state solution of the Euler model given by (1.3.1). However, note that some steady state solutions cannot be defined globally on r > 0, we need more constructions. Recall first that there exists four critical steady state solutions which pass the point ( m 2k 2 , ±k) denoted by

U P,[ ⇤ , U P,] ⇤ , U N,[ ⇤ , U N,]
⇤ according to (1.3.10). Another important remark is given in Theorem 1.3.3, that is, for given r 0 , U 0 , there exists always a steady solution

U = U (r) with U (r 0 ) = U 0 defined on (0, r 0 ) if r 0 < m 2k 2 or (r 0 , +1) if r 0 > m 2k 2 . Now we denote by U j+1 r,0 = U j+1
r,0 (r) = (⇢ j+1 r,0 , v j+1 r,0 )(r) the steady state solution of the Euler model satisfying (1.3.1) such that U j+1 r,0 (r j+1 ) = U 0 (r j+1 ) and we define:

r s j+1 := sup{r > 0|v j+1 r,0 (r) 6 = ±k} {r j+1 < m 2k 2 } (r)+inf{r > 0|v j+1 r,0 (r) 6 = ±k} {r j+1 > m 2k 2 } (r). (1.6.3)
Note that if r s j+1 6 = 0 or r s j+1 6 = +1, r s j+1 is the sonic point of the steady state U j+1 r,0 . We now denote by U j+1 0,⇤ = (⇢ j+1 0,⇤ , v j+1 0,⇤ ) the unique critical steady state solution satisfying

sgn(v j+1 0,⇤ ) = sgn(v j+1 r,0 ), sgn(|v j+1 0,⇤ | k) = sgn(|v j+1 r,0 | k). (1.6.4) 
On the interval (r j , r j+2 ), we have the following possible constructions.

• If U j+1 r,0 is well-defined on (r j , r j+2 ), we approximate the initial data U 0 by U j+1 r,0 on the interval.

• If U j+1 r,0 vanishes at r s j+1 and r j+1 < m 2k 2 , then we approximate the initial data on (r s j+1 , r j+2 ) by

-U j+3 r,0 if r s j+3 / 2 (r s j+1 , r j+2 ); -U j+1 0,⇤ if r s j+3 2 (r s j+1 , r j+2
) for U j+1 0,⇤ given by (1.6.4). Note that this case happens at most once if r j+1 < m 2k 2 < r j+3 and r s j+3 > r j+2 .

• If U j+1 r,0 vanishes at r s j+1 and r j+1 > m 2k 2 , then we approximate the initial data on (r j , r s j+1 ) by

-U j 1 r,0 if r s j 1 / 2 (r j , r s j+1 ); -U j+1 0,⇤ if r s j 1 2 (r j , r s j+1
). Also, this case happens at most one time if r j 1 < m 2k 2 < r j+1 and r s j 1 < r j .

Following the ideas above, we can now approximate the initial data on (r j , r j+2 )
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for j even:

U r,0 (r) = 8 > > < > > : Ū j+1 2sgn(r j+1 m 2k 2 ) r,0 (r) r j < r < M(r j , r s j+1 ), U j+1 r,0 (r) M(r j , r s j+1 ) < r < M(r s j+1 , r j+2 ), Ū j+1 2sgn(r j+1 m 2k 2 ) r,0 (r) M(r s j+1 , r j+2 ) < r < r j+2 , (1.6.5) 
where we give the operator M by

M(x, y) = ( min(x, y) r < m 2k 2 , max(x, y) r > m 2k 2 , (1.6.6) 
and

Ū j+1 2sgn(r j+1 m 2k 2 ) r,0 (r) = ( U j+1 2sgn(r j+1 m 2k 2 ) r,0 (r) r s j+1 2sgn(r j+1 m 2k 2 ) / 2 (r j , r s j+1 ) [ (r s j+1 , r j+2 ), U j+1 0,⇤ (r) e l s e ,
with the sonic point r s j+1 given by (1.6.3) and the critical steady state solution U j+1 0,⇤ satisfying (1.6.4). Assume now that the approximate solution has been defined for t n 1  t < t n . To complete the definition of U r , it su ces to define the solution on t n  t < t n+1 . Let ✓ n be a given equidistributed sequence on the interval ( 1, 1) and introduce the point related to the randomly chosen values:

r n,j+1 := (✓ n + j) r, j > 0.

(1.6.7)

Following the idea before, we denote by U j+1 r,n = U j+1 r,n (r) the steady state solutions passing the point (r n,j+1 , U r (nt , r n,j+1 )) and the sonic point

r s n,j+1 := sup{r > 0|v j+1 r,n (r) 6 = ±k} {r n,j+1 < m 2k 2 } (r)+inf{r > 0|v j+1 r,n (r) 6 = ±k} {r n,j+1 > m 2k 2 } (r),
together the critical steady state solution

U j+1 n,⇤ = (⇢ j+1 n,⇤ , v j+1 n,⇤ ) such that sgn(v j+1 n,⇤ ) = sgn(v j+1 r,n ), sgn(|v j+1 n,⇤ | k) = sgn(|v j+1 r,n | k). (1.6.8)
Now suppose that U r is constructed for all t < t n . The construction of the approximate solution on the time interval t n  t < t n+1 is similar to the approximation of the initial data:

• The steady state solution step. At t = t n and on the interval (r j , r j+2 ) 52 1.6. The initial value problem with n + j even, we define:

U r,n (r) = 8 > > < > > : Ū j+1 2sgn(r n,j+1 m 2k 2 ) r,n (r) r j  r < M(r j , r s n,j+1 ), U j+1 r,n (r) M(r j , r s n,j+1 ) < r < M(r s n,j+1 , r j+2 ), Ū j+1 2sgn(r j+1 m 2k 2 ) r,n (r) M(r s n,j+1 , r j+2 ) < r < r j+2 , (1 
.6.9) where M(•, •) is the operator given by (1.6.6) and

Ū j+1 2sgn(r n,j+1 m 2k 2 ) r,n (r) = ( U j+1 2sgn(r n,j+1 m 2k 2 ) r,n (r) r s j+1 2sgn(r n,j+1 m 2k 2 ) / 2 (r j , r s n,j+1 ) [ (r s n,j+1 , r j+2 ), U j+1
n,⇤ (r) e l s e , (1.6.10) with U j+1 n,⇤ given by (1.6.8). It is direct to observe that if a steady state solution reaches its sonic point in a cell, then the nearest discontinuity is replaced by this sonic point, then this construction guarantees that there exists at most one point of discontinuity in (r j 1 , r j+1 ), j + n even.

• The generalized Riemann problem step. Denote by r d j the point of discontinuity in r j 1 < r < r j+1 and we then define the approximate solution U r on the rectangle {t n < t < t n+1 , r j 1 < r < r j+1 }, n + j even:

U r (t, r) = 8 > < > : U (j 1,j+1) R (t, r), r d j r d j 2 = 2 r and r d j+2 r d j = 2 r , U (j 3,j+1) T R (t, r), r d j r d j 2 < 2 r, U (j 1,j+3) T R (t, r), r d j+2 r d j < 2 r, (1.6.11) where U (j 1,j+1) R
is the solution of the generalized Riemann problem at the time level t = t n on (r j 1 , r j+1 ) with two steady states separated by a discontinuity at r d j and U

(j 3,j+1) T R
the solution of the triple Riemann problem at the time level t = t n on the interval (r j 3 , r j+1 ) with the three steady states separated by discontinuities at r d j 2 , r d j .

This completes the construction of the approximate solution U r = U r (t, r) on [0, +1) ⇥ (0, +1) by the Glimm scheme.

Existence of Cauchy problem

The Glimm scheme provides us an approximate solution which indeed converges to an exact weak solution. velocity v 0 such that T V ln ⇢ 0 + T V (v 0 ) < +1, and any given time interval (possibly infinite) (0, T ) ⇢ (0, +1), there exists a weak solution ⇢ = ⇢(t, r), v = v(t, r) defined on (0, T ) such that the initial condition holds in the sense that ⇢(0,

•) = ⇢ 0 , v(0, •) = v 0 ) and for any fixed moment T 0 2 (0, T ) sup t2[0,T 0 ] ⇣ T V ln ⇢(t, •) + T V (v) < +1.
To prove Theorem 1.6.1, we first need an estimation of the total variation. See the following lemma.

Lemma 1.6.2. Let U r = (⇢ r , v r ) be the approximate solution of the Euler model (1.1.1) constructed by the Glimm method, then for any two neighboring time interval t n , t n+1 , we have a constant C > 0 such that

T V ln ⇢ r (t n+1 +, •) T V ln ⇢ r (t n +, •)  C t.
From Lemma 1.6.2, we have, for any given 0 < t < +1,

T V ln ⇢ r (t, •)  T V ln ⇢ r (0, •) e C 1 t , (1.6.12) 
where C 1 is a constant.

Proof. At the time level t = t n+1 , we consider the interval (r n+1,j 1 , r n+1,j+1 ) with n + j even. According to (1.6.7), r n±1,j+1 is the point determined by a chosen random value. Following from the construction of the Glimm method, (r n+1,j 1 , r n+1,j+1 ) only contains one point of discontinuity which we write as r d j,n . According to Lemma 1.4.4, we have

T V ln ⇢(t n+1 +, •) = X j | ln ⇢(t n+1 +, r d j+1,n ) ln ⇢(t n+1 +, r d j,n )| 1 + C( t) .
Now we notice that there are portions of three possible waves generated by either the generalized Riemann problem or the triple Riemann problem lying in the interval (r n+1,j 1 , r n+1,j+1 ). We write these waves as ! l,m,r from left to right, staring from points of discontinuity (reading r d l,n , r d m,n , r d r,n respectively) in (r j 2 , r j ], (r j , r j+2 ], (r j+2 , r j+4 ] at the time level t = t n respectively.

We observe that the wave ! l is either a zero strength wave in (r n+1,j 1 , r n+1,j+1 ) or the wave generated by a steady state U L such that U L (r n+1,j 1 ) = U r (t n+1 , r n+1,j 1 ) and another steady state U M such that U M = U r (t n+1 , r n+1,j+1 ) depending on if the position of the the randomly chosen point r n+1,j 1 is closer to r d n,j or closer to ! 1 . Similarly, ! 3 is either a zero strength wave in (r n+1,j 1 , r n+1,j+1 ) or a wave given by the state U M such that U M (r n+1,j+1 ) = U r (t n+1 , r n+1,j+1 ) and another state U R 1.7. Conclusion such that U R = U r (t n+1 , r n+1,j+3 ). Turning to the wave ! 2 , it is generated by U L and U M or U M or U R . According to to Lemma 1.2.6, we have the result by adding j at the time level t = t n .

We also observe that the approximate solutions are uniformly Lipschitz continuous in the L 1 norm in the sense that for all times t 1 , t

2 kU r (t 1 , •) U r (t 2 , •)k L 1 (0,+1)  C|t 1 t 2 |
, in which the constant C > 0 can be chosen to be independent of r. Namely, such a bound is derived by comparing the approximate solution at two nearby times and taking the piecewise smooth structure of the solution U r into account.

We now complete the proof of Theorem 1.6.1. Since the uniform BV bound on a given time interval (0, T ) is known together with the Lipschitz continuity in time of the approximate solution, Helly's theorem gives immediately the fact that there exists a subsequence of r ! 0 such that we have a limit function U = U (t, r) and U r (t, r) ! U (t, r) pointwise a.e. and in L 1 loc at each fixed time t. Moreover, the limit function U = U (t, r) is a weak solution of the Euler model (1.1.1), (1.6.1). This ends the proof of Theorem 1.6.1.

Conclusion

In the article, we considered a kind of Euler equation with a particular source term depending on the sound speed and the body mass. We first presented the hyperbolicity and the nonlinear genuinity of the equation. We gave then an analysis of the steady state solutions of this model and give a classification of these steady states with respect to the behavior of the sonic points. We then considered the generalized Riemann problem whose initial data are two constant steady state solutions and proved their existence by giving an analytical formula of the solution. We also proved the existence for the so-called triple Riemann problem with three di↵erent steady state solutions. We were then able to use the Glimm method to construct a sequence of the solutions to the initial value problem of the Euler equation and prove its existence with a control of the total variation.

Introduction

The balance law of interest. We investigate numerically the global dynamics of a compressible fluid containing shock waves and evolving on a curved background spacetime of a contracting or expanding type. Motivated by the (inviscid) Burgers equation that has played such a central role in standard fluid dynamics, we consider here its relativistic version

a v t + f (v) x + g(v) y = a t h(v), (x, y) 2 [0, L] 2 , (2.1.1)
which we refer to as the cosmological Burgers model. This equation provides a simple setup for designing and testing shock-capturing schemes in a curved spacetime background and investigating the asymptotic behavior of weak solutions; see [START_REF] Lefloch | An introduction to gravitation-induced fluid flows with symmetry[END_REF] for a derivation and review of such models.

In (2.1.1), the unknown is a function v = v(t, x, y) 2 ( 1/", 1/") representing the main velocity component of a fluid vector field, and 1/" represents the speed of light. The fluxes f = f (v) and g = g(v) and the source function h = h(v) are given smooth functions. We formulate the evolution on the domain [0, L] 2 with vanishing boundary conditions. A typical choice of flux and source functions is

f (v) = g(v) = 1 2 v 2 , h(v) = v(1 " 2 v 2 ), (2.1.2) 
which allows us to recover the standard Burgers equation by taking the limit a ! 1 and " ! 0.

The geometric background of interest. The function a = a(t) > 0 describes a geometric background of contracting or expanding type. Shock wave solutions to nonlinear hyperbolic equations such as (2.1.1) are only defined in the forward time direction and, since the equation is singular at t = 0, it is natural to distinguish between two initial value problems corresponding to the following range of the time variable:

• In the range t 2 [t 0 , +1), the background is assumed to be expanding toward the future in the sense that a(t) increases monotonically to +1 and initial data are prescribed at some t 0 > 0. • In the range t 2 [t 0 , 0), the background is assumed to be contracting toward the future in the sense that a(t) decreases monotonically to 0 and initial data are prescribed at some t 0 < 0.

A typical choice is the function a(t) = a 0 (t/t 0 ) ↵ , which we can normalize by taking a 0 = 1 and t 0 = ±1, in which ↵ 2 (0, 1) represents the rate of contraction or Chapter 2: A numerical study of the asymptotic structure of cosmological Burgers flows 57 expansions of the background:

a(t) = |t| ↵ . (2.1.3)
Our model is motivated from the full Euler system posed on the so-called FLRW background (after Friedmann-Lemaître-Robertson-Walker) describing a homogeneous and isotropic cosmology, for which a typical exponent is ↵ = 2/3.

The strategy of this paper. We introduce a shock-capturing, high-order finite volume method for computing the weak solutions to (2.1.1). Our numerical algorithm is su ciently robust and accurate in order to investigate the propagation and nonlinear interaction of shock waves in presence of the curved geometry of interest. Our main challenge is then to determine the asymptotic behavior of the flow which will turn out to be highly complex, both in the expanding and the contracting regimes.

We recall that the inviscid Burgers equation has played a central role in the development of shock-capturing schemes in non-relativistic fluid dynamics. More recently, a generalization of the standard Burgers equation has been introduced and investigated on curved spacetimes by LeFloch and collaborators [START_REF] Amorim | Finite volume schemes on Lorentzian manifolds[END_REF][START_REF] Lefloch | Structure-preserving shock-capturing methods: late-time asymptotics, curved geometry, small-scale dissipation, and nonconservative products[END_REF][START_REF] Lefloch | A geometry-preserving finite volume method for compressible fluids on Schwarzschild spacetime[END_REF][START_REF] Lefloch | Relativistic Burgers equations on curved spacetimes. Derivation and finite volume approximation[END_REF] who took into account various geometrical e↵ects.

We are going to discretize (2.1.1) via the finite volume methodology by keeping the structure of the equation at the discrete level. The numerical algorithm proposed below enjoys the following features:

• Consistency with the divergence part. Our scheme is consistent with the divergence part of the balance law and, therefore according to the Lax-Wendro↵ theorem, correctly computes weak solutions containing shock waves.

• Second-order accuracy in space. This is achieved by introducing a piecewise linear approximation and a min-mod limiter in order to prevent oscillations (similar to the Gibbs phenomena) in the vicinity of discontinuities of the solutions. This is an essential property for an accurate computation of shock waves in fluid flows.

• Fourth-order accuracy in time. A very high accuracy in time turned out to be important in the present context, since the background geometry may become singular as time evolves and we are interested in accurately computing the longtime asymptotics of the solutions. We rely here on a fourth-order Runge-Kutta discretization in order to achieve the desired accuracy.

Outline of this paper and main results. Our main contribution is a study of the asymptotic behavior of the solution as the time variable approaches infinity (in the expanding case) or approaches zero (in the contracting case). We discover that a competition is taking place which involves, on one hand, the geometrical e↵ects of expanding or contracting nature and, on the other hand, the nonlinear interactions between shock waves.

This paper is organized as follows. In Section 2.2, we describe some properties of the cosmological Burgers model and describe the class of spatially homogeneous solutions. In Section 2.3, working in the so-called cosmological time (denoted by ⌧ below), we design a finite volume scheme for the (1 + 1)-cosmological Burgers equation which has the desired accuracy in space and in time. Next, in Section 2.4 we investigate the global dynamics of (1 + 1)-cosmological Burgers flows: in the expanding case, the fluid is coming to a rest in the late-time limit ⌧ ! +1 and, interesting, our scheme is su ciently robust in order to capture a rescaled version of the solution which describes the small-scale features in this flow: we discover that the solution approaches an N-wave profile containing finitely many jumps that no longer interact together in this late-time limit. This is reminiscent of phase transition phenomena. Analogous conclusions are then reached for the (1 + 1)-equation in the contracting case, and next in Section 2.5 for the same problems but now posed two spatial dimensions. A generalization of our method and numerical experiments to the full Euler systems of compressible fluids is presented in the companion paper [START_REF] Cao | Asymptotic structure of cosmological fluid flows[END_REF].

Cosmological Burgers flows

A rescaled time variable. In this section, we describe various properties of the (2 + 1) cosmological Burgers model given (2.1.1). It is interesting to introduce a new time variable, denoted by ⌧ so that, after setting,

a t (t) = m(⌧ ) with a(t)d⌧ = dt, (2.2.1) 
the balance law (2.1.1) in terms of the unknown v = v(⌧, x, y) 2 ( 1, 1) reads

v ⌧ + f (v) x + g(v) y = m(⌧ )h(v), ⌧ 6 = 0, x,y 2 [0, L], (2.2.2) 
and in the following it will be convenient to formulate our numerical scheme in this time variable. Recall that we distinguish between two cases:

• In the expanding case, we have t 2 [1, +1), and our typical function is a(t) = t ↵ (with ↵ 2 (0, 1)). With 

⌧ = t 1 ↵ 1 ↵ , m(⌧ ) =  ⌧ ,  = ↵ 1 ↵ 2 (0, +1), ( 2 
v ⌧ + 1 2 (v 2 ) x + 1 2 (v 2 ) y =  ⌧ v(1 v 2 ), ⌧ 2 [ + 1, +1). (2.2.4)
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• In the contracting case, we have t 2 [ 1, 0) and our typical function is a(t) = ( t) ↵ (↵ 2 (0, 1)). With 

⌧ = ( t) 1 ↵ 1 ↵ , m(⌧ ) =  ⌧ ,  = ↵ 1 ↵ 2 (0, +1), ( 2 
v ⌧ + 1 2 (v 2 ) x + 1 2 (v 2 ) y =  ⌧ v(1 v 2 ), ⌧ 2 [  1, 0). ( 2 

.2.6)

The non-relativistic limit. In the limit " ! 0 when (2.1.2) is assumed, the balance law becomes a v t + 1 2 (v 2 ) x + 1 2 (v 2 ) y + va t = 0 and, therefore,

a v t + 1 2 (v 2 ) x + 1 2 (v 2 ) y = 0. (2.2.7)
This is a conservation law and, in fact, a weighted version of the standard Burgers equation.

Conservation form for regular solutions. For su ciently regular solutions, our balance law can be transformed to a conservation law, namely:

✓ ⌧  v (1 v 2 ) 1/2 ◆ ⌧ + ✓ ⌧  (1 v 2 ) 1/2 ◆ x + ✓ ⌧  (1 v 2 ) 1/2 ◆ y = 0.
(2.2.8)

However, this transformation is not valid for weak solutions and, therefore, we will not use it in the following.

Spatially homogeneous solutions. Spatially homogeneous solutions are solutions v = v(⌧ ) depending on the time variable only. Such solutions are relevant in describing the long time behavior of solutions, and are characterized by the ordinary di↵erential equation

v ⌧ = m(⌧ ) v(1 v 2 ), (2.2.9) equivalent to 1 v + v 1 v 2 v ⌧ = m(⌧ ). Given any v 0 2 ( 1, 1), the solution v = v(⌧ ) satisfying the initial condition v(⌧ 0 ) = v 0 is given explicitly by e M (⌧ ) v(⌧ ) (1 v(⌧ ) 2 ) 1/2 = e M (⌧ 0 ) v 0 (1 v 2 0 ) 1/2 , M(⌧ ) = Z ⌧ m(s)ds or, equivalently, v(⌧ ) = v 0 q v 2 0 + (1 v 2 0 )e 2 R ⌧ ⌧ 0 m(s)ds
.

(2.2.10)

Cosmological Burgers flows

We can specialize our conclusion above to the case m(⌧ ) =  ⌧ on an expanding background and we find M (⌧ ) = log ⌧  , so that

v(⌧ ) = v 0 p v 2 0 + ⌧ 2 (1 v 2 0 ) (expanding case). (2.2.11)
On a contracting background with the function m(⌧ ) =  ⌧ we find M (⌧ ) = log( ⌧ )  , and the spatially homogeneous solutions are

v(⌧ ) = v 0 p v 2 0 + ( ⌧ ) 2 (1 v 2 0 ) (contracting case).
(2.2.12)

Figure 2.2.1 contains a plot of the spatially homogeneous solutions, which clearly enjoy the following properties:

• All spatially homogeneous solutions satisfy |v| < 1, as required.

• On an expanding background ⌧ ! +1, v(⌧ ) ' ±⌧  (up to a positive multiplicative constant); thus, the solution converges to 0:

lim ⌧ !+1
v(⌧ ) = 0 (homogeneous solutions on an expanding background).

(2.2.13)

• On a contracting background ⌧ ! 0, ±1 + v(⌧ ) ' ±( ⌧ ) 2 (up to a positive multiplicative constant). Therefore, lim ⌧ !0 ⌧<0 v(⌧ ) = ±1 (homogeneous solutions on a contracting background).

(2.2.14) We begin with (1 + 1)-dimensional equations and present a discretization of the cosmological Burgers model

(a) (b)
v ⌧ + f (v) y = m(⌧ ) h(v), y 2 [0, L], (2.3.1) 
when an initial value is specified at some time

⌧ = ⌧ 0 v 0 (y) = v(⌧ 0 , y), y 2 [0, L]. (2.3.2)
For definiteness, we write our scheme for the expanding case where ⌧ 0 > 0. We follow the finite volume methodology and a time-length ⌧ is introduced together with the discrete times ⌧ n = ⌧ 0 + n ⌧ for n = 0, 1, . . ., as well as a space-length y and discrete spatial points y j = j y 2 [0, L] and y j+1/2 = (j + 1/2) y 2 [0, L] (for a suitable range of integers j).

Using the notation

v n j ' 1 y Z y j+1/2 y j 1/2 v(⌧ n , y)dy, s n j ' 1 y ⌧ Z y j+1/2 y j 1/2 Z ⌧ n+1 ⌧n m(⌧ ) h(v) dyd⌧, (2.3 
.3) we intergate the balance law (2.3.1) on the slab [⌧ n , ⌧ n+1 ] ⇥ [y j 1/2 , y j+1/2 ] and obtain

v n+1 j = v n j ⌧ y ⇣ f n j+1/2 f n j 1/2 ⌘ + ⌧ s n j . (2.3.4) 
For a first-order approximation (at this stage) we define the source s n j to be

s n j = m(⌧ n ) h(v n j ), (2.3.5) 
and for the numerical flux we set 

f n j+1/2 = f (v n j , v n j+1 ), ( 2 
• Case v l > v r : f G (v n l , v n r ) = 8 > < > : f (v n l ), f(v n r ) f (v n l )  0, f (v n r ), f(v n r ) f (v n l ) 0, 0,
otherwise.

(2.3.8)

• Case v n l  v n r : f G (v n l , v n r ) = 8 > < > : f (v n l ), f 0 (v n l ) > 0, f (v n r ), f 0 (v n r ) < 0, f (0),
otherwise.

(2.3.9)

The following restriction on the time step is also imposed (which we express directly for our quadratic flux):

• As far as the nonlinear propagation is concerned, we require that ⌧ satisfies the so-called CFL (Courant-Friedrichs-Lewy) condition at any given n:

⌧ y max j |v n j | < 1, (2.3.10) 
together with further conditions in the expanding or contracting cases.

• Expanding background. In this case, we expect that v n j ! 0 as ⌧ ! +1, so that ⌧ is not restricted by (2.3.10) for su ciently large times. A second stability condition is required which is motivated by the following discretization

v n+1 = v n ⇣ 1 ( ⌧ )(/⌧ n ) (1 (v n ) 2 )
⌘ of the ODE (2.2.9):

max j 1  ⌧ n ⌧ (1 (v n j ) 2 ) < 1, that is, ⌧  2⌧ n (1 (v n j ) 2 )
.

To summarize, the following stability condition is chosen on an expanding background:

⌧  min y max j v n j , 2⌧ n (1 (v n j ) 2 )
! .

(2.3.11)

• Contracting background. In this case, we expect that v n j ! ±1 as ⌧ ! 0, so that ⌧ would approach a constant if we would impose (2.3.10), whereas the time ⌧ 2 [ 1, 0) is bounded above by 0. It is natural to select time-increments that are approaching zero so that . . . < ⌧ n < ⌧ n+1 < . . . < 0 only reach zero Chapter 2: A numerical study of the asymptotic structure of cosmological Burgers flows 63 asymptotically as n ! +1. In the following paper, we propose to do so on a linear way with respect to ⌧ n and, in addition, to use time-increment that are proportional to 1/ since a larger  means a sti↵er ODE problem:

⌧  min 1, 1  |⌧ n |.
Therefore, the following stability condition is required for a contracting background:

⌧  min y max j v n j , min 1, 1  |⌧ n | ! .
(2.3.12)

Temporal discretization

After integrating the equation (2.3.1) over the interval [y j 1/2 , y j+1/2 ] we arrive at the semi-discrete finite volume scheme

d d⌧ v j = 1 y f j+1/2 f j 1/2 + m(⌧ ) h(v j ), (2.3.13) 
where

f j 1/2 = f G (v j 1 , v j ), f j+1/2 = f G (v j , v j+1 ),
and the Godunov flux is given by (2.3.8) and (2.3.9).

To shorten the notation, we introduce

G(v, ⌧ ) j = 1 y f j+1/2 f j 1/2 + m(⌧ ) h(v j ), (2.3.14) 
and we rewrite (2.3.13) as

d d⌧ v j = G(v, ⌧ ) j . ( 2 

.3.15)

A fourth-order Runge-Kutta discretization from the initial data v(⌧ 0 ) = v 0 is now applied. We denote by v n j the numerical solution given by (2.3.15) at some time 

⌧ n , hence d d⌧ v n j = G(v, ⌧ n ) j , (2.3 
v 0,n j = v n j , K 1,n j = G v 0,n , ⌧ n j , v 1,n j = v 0,n j + ⌧ 2 K 1,n j , K 2,n j = G v 1,n , ⌧ n + ⌧ 2 j , v 2,n j = v 0,n j + ⌧ 2 K 2,n j , K 3,n j = G v 2,n , ⌧ n + ⌧ 2 j , v 3,n j = v 0,n j + ⌧ K 3,n j , K 4,n j = G v 3,n , ⌧ n + ⌧ j , v n+1 j = v 0,n j + ⌧ 6 K 1,n j + 2K 2,n j + 2K 3,n j + K 4,n j .
(2.3.17)

Furthermore, the same stability conditions (2.3.11) and (2.3.12) are assumed.

Second-order spatial discretization

In order to improve the accuracy of the algorithm, we design a second-order version of our scheme, based on a piecewise linear reconstruction. We introduce the piecewise linear reconstruction

v n j (y) = v n j + (y y j ) n j , (2.3.18) 
where n j represents the local slope of the numerical solution in each cell. To prevent a Gibbs-type phenomena where oscillations would arise near discontinuities, the following limiter is applied:

n j y = ( sgn(v n j+1 v n j 1 ) min ⇣ 2|v n j v n j 1 |, 2|v n j+1 v n j |, 1 2 v n j+1 v n j 1 ⌘ , ⌘ n j > 0, 0, otherwise, (2.3.19) in which we have set ⌘ n j = (v n j+1 v n j )(v n j v n j 1 ). (2.3.20)
The values of the reconstruction at the interfaces are denoted by v n j,L and v n j,R , that is,

v n j,L = v n j y 2 n j , v n j,R = v n j + y 2 n j . (2.3.21)
At each interface y j+1/2 , we apply our first-order scheme with the states replaced by the left-hand and right-hand values v n j,R and v n j+1,L . This ensures that the algorithm provides a second-order approximation. We now perform several numerical experiments with the relativistic Burgers equation, expressed in the ⌧ -variable, that is,

v ⌧ + f (v) y = m(⌧ )h(v), y 2 [0, ⇡], (2.4.1) 
with flux

f (v) = 1 2 v 2 and source term h(v) = v(1 v 2 ), while the geometric function is m(⌧ ) =  ⌧ with  > 0.
We begin with an initial data containing a single jump discontinuity, say,

v 0 (y) = ( 0.8, 0.666  y < 1.5, 0, otherwise. (2.4.2)
We denote by J the total number of grid cells in space, and J = 5000 is chosen in order to have a very fine grid. The numerical solution will serve as a"reference solution", since on such a grid is presumably very close to the exact solution. The numerical results are presented in Figures 2.4.1, 2.4.2, 2.4.3, 2.4.4, and 2.4.5, and are given at several order of accuracy: first-order in space and first-order in time; first-order in space and fourth-order in time; second-order in space and second-order in time; second-order in space and fourth-order in time. We observe that the second-order in space and fourth-order in time discretization significantly provides the best possible accuracy for the solution. These results fully justify the involved construction we have proposed in the previous section. We now consider the solutions to the cosmological Burgers model from a constant initial condition, denoted by v 0 , obtained with the second-order in space and fourthorder in time discretization. We choose  = 2 and the initial value v 0 = 0.8. In the numerical tests, the CFL number is taken to be 0.7. In the expanding case, 2.4. Global dynamics of (1 + 1)-cosmological Burgers flows ⌧ 0 = 1 is chosen. In Figure 2.4.7, the solutions y 7 ! v(⌧, y) if presented at the time ⌧ = 5 and for J = 100, 500, 1000, 5000, respectively. Clearly, the results demonstrate that the approximate solution approaches our reference solution as J increases, see Figure 2.4.8, where the evolution of the reference solution is included as ⌧ increases. 

Asymptotic behavior on an expanding background

We now study the asymptotic behavior of the solutions using the proposed scheme at second-order in space and fourth-order in time. The solution is expected to approach zero as time increases, and we propose to work with the following rescaled solution w(⌧, y) = ⌧  v(⌧, y).

(2.4.

3)

The asymptotic behavior of this function is thus computed in the expanding case when ⌧ ! +1. We take here J = 1024 and the CFL number to be 0.7. At the initial time, ⌧ 0 = 1 the initial data is set to be v 0 (y) = 0.8 sin(5y) cos( ⇡y 3 solutions, y 7 ! w(⌧, u) eventually reache a limit at a su ciently large time ⌧ > ⌧ 0 . Our numerical investigations lead us to state the following conclusion and conjecture.

Claim 1 (Cosmological Burgers flows on a future expanding background). The asymptotic behavior of a solution to the cosmological Burgers model in the future expanding background is such that the solution y 7 ! v = v(⌧, y) decays to zero uniformly in space: lim

⌧ !+1 v(⌧, y) = 0.
Furthermore, the rescaled function w = ⌧  v approaches a (in general) non-trivial limit as ⌧ ! +1, which is a piecewise a ne function with finitely many jumps. 

Asymptotic behavior on contracting background

The behavior of the solution in the future-contracting case as ⌧ ! 0 is next investigated. We take J = 10000 and the CFL number to be 0.7 and the initial value is prescribed at the initial time ⌧ 0 = 1 to be v 0 (y) = 0.8 sin(5y) cos( ⇡y 3 ⌧ = 0.1024, 0.0128, 0.0016, 0.0002, respectively. We observe that the solutions converge to our reference solution as ⌧ increases and the geometry is contracting.

It is convenient also to introduce the rescaled solution w defined, on a contracting background, by

w(⌧, y) = sgn(v) ( ⌧ )  p 1 v 2 . (2.4.4)
The evolution of this rescaled function w(⌧, y) is presented in Figure 2.4.14, and our numerical investigations lead us to state the following conclusion and conjecture.

Claim 2 (Cosmological Burgers flows on a future-contracting background). The asymptotic behavior of solutions to the cosmological Burgers model in the futurecontracting case is such that the solutions v = v(⌧, y) approach the light speed value ±1, that is, lim

⌧ !0 v(⌧, y) = ±1.
Furthermore, the rescaled solution w = sgn(v)( ⌧ )  / p 1 v 2 approaches a non-trivial limit as ⌧ ! 0, which is a piecewise continuous function with finitely many jumps. 

Further tests in (1 + 1) dimensions are presented in

⌧ 0 = |⌧ n |  , when  > 1.
(2.4.5)

Figure 2.4.16 also compares di↵erent solutions with the same grids and di↵erent ⌧ .

Similarly to the contracting background, another test is presented in Figure 2.4.17 in (1 + 1) dimensions where  = 2. For this test ⌧ 0 is given by ⌧ 0 = 0.9 min

j y |v j | , ⌧  1 v 2 j ! , (2.4.6) 
where the time indices are omitted. The standard Burgers equation (i.e. with a(t) = 1) is solved with the same initial conditions (2.5.12) in (1 + 1) dimensions. The solutions in Figure 2.4.18 show the number of shocks are significantly less than the number of shocks in the solutions of the expanding case. 2.5 Global dynamics of (2 + 1)-cosmological Burgers flows

The algorithm in (2 + 1)-dimensions

First-order finite volume discretization. We now turn our attention to the model in (2 + 1)-dimensions. We use our finite volume Godunov-type scheme with second-order accuracy in space, fourth-order (expanding background) or a third-order (contracting background) accuracy in time, and we solve the cosmological Burgers model (2.2.2), that is, written as

v ⌧ + f (v) x + g(v) y = m(⌧ ) h(v), (2.5.1) 
with flux-functions f (v) = g(v) = v 2 /2 and source given by m(⌧ ) = /⌧ and h(v) = v(1 v 2 ). The scheme is based on a uniform grid of intervals [x j 1/2 , x j+1/2 ] and [y k 1/2 , y k+1/2 ]. Here, j and k are integers describing the x and y directions, respectively, and we use the same notation x, y as in 1D. The cell averages of the main variable and the source are

vj,k (⌧ ) ⇡ 1 x y x j+1/2 Z x j 1/2 y k+1/2 Z y k 1/2 v(⌧, x, y)dxdy, S j,k (⌧ ) ⇡ 1 x y x j+1/2 Z x j 1/2 y k+1/2 Z y k 1/2 m(⌧ ) h(v) dxdy.
(2.5.

2) The semi-discrete version of the first-order Godunov-type scheme then reads

d dt vj,k (⌧ ) = H j+1/2,k (⌧ ) H j 1/2,k (⌧ ) x H j,k+1/2 (⌧ ) H j,k 1/2 (⌧ ) y + S j,k (⌧ ).
(2.5.3)

Introducing a time step on the interval [⌧ n , ⌧ n+1 ], we arrive at the fully-discrete first-order finite volume scheme:

v n+1 j,k = v n j,k ⌧ x H n j+1/2,k H n j 1/2,k ⌧ y H n j,k+1/2
H n j,k 1/2 + ⌧ S n j,k . (2.5.4) It remains to specify the numerical discretization of the flux and source, and we set

S n j,k = m(⌧ n )h(v n j,k ), (2.5.5) 
H j 1/2,k = f G (v j 1/2,k , v + j 1/2,k ), H j+1/2,k = f G (v j+1/2,k , v + j+1/2,k ), H n j,k 1/2 = f G (v j,k 1/2 , v + j,k 1/2 ), H n j,k+1/2 = f G (v j,k+1/2 , v + j,k+1/2 ).
(2.5.6)

Here, f G (v n l , v n r ) and f G (v n b , v n t ) in the x-direction are nothing but the standard Godunov fluxes and are obtained by solving a local Riemann problem, as explained earlier. The term f G (v n b , v n t ) is defined similarly in the y-direction.

Second-order finite volume discretization. Next, in order to improve the accuracy, the numerical solution is now based on stated reconstructed using a piecewise linear approximation, as follows:

v + j 1/2,k = v j,k x 2 x j,k , v j+1/2,k = v j,k + x 2 x j,k , (2.5.7) 
v + j,k 1/2 = v j,k y 2 y j,k , v j,k+1/2 = v j,k + y 2 y j,k , (2.5.8) 
where the following limiters are used:

x j,k x = ( sgn (v j+1,k v j 1,k ) min ⇣ 2|v j,k v j 1,k |, 2|v j+1,k v j,k |, |v j+1,k v j 1,k | /2
⌘ , 0, otherwise, (2.5.9)

y j,k y = ( sgn (v j,k+1 v j,k 1 ) min ⇣ 2|v j,k v j,k 1 |, 2|v j,k+1 v j,k |, |v j,k+1 v j,k 1 | /2
⌘ , 0, otherwise.

(2.5.10) Furthermore, the time-dependent ODE implied by (2.5.1) is integrated in time, by using a stable and accurate ODE solver. We use a fourth-order Runge-Kutta solver for the expanding case, and a third-order strong stability preserving (SSP) Runge-Kutta solver for the contracting case. The time step restriction is constrained by the CFL condition ( x = y):

⌧ x max j,k |v ± j± 1 2 ,k |  1 2 .
(2.5.11)

Asymptotic behavior on an expanding background

In this section and the following one, we present numerical tests in which the dynamics of asymptotic solutions for the expanding and contracting cases. [800 ⇥ 800] are chosen to be able to compare the error of di↵erent solutions (Section 2.5.4). We observe that for relatively large ⌧ the source term of the cosmological Burgers becomes unstable, as v(⌧, x, y) ! 0. This increases ⌧ and ⌧ significantly. Hence, we introduce our second stability condition as follows:

⌧ n  1  min j,k ⇣ ⌧ n (1 (v n j,k ) 2 ) ⌘ .
(2.5.13)

The solutions decay to zero uniformly at the rate of ⌧  and, therefore, the rescaled solution w = v⌧  approaches a non-trivial limit as ⌧ goes +1. This can be seen in Based on the 1-D tests, we choose a second-order spatial and fourth-order temporal discretization (2S4T). In addition, in order to analyze the e↵ect on the solution we run this example with the following discretizations: first-order space and first-order time (1S1T), first-order space and fourth-order time (1S4T), and second-order space and first-order time (2S1T). Figure 2.5.3 shows the solutions of this test with the above-mentioned schemes. Furthermore, we compute the L 1 norm for these schemes based on the best scheme (2S4T). The results show that the L 1 norms are small. Increasing the order of temporal discretization is more e↵ective than increasing the spatial order. Moreover, it can be concluded that the lower-order spatial schemes can be used to be able to reduce computational cost.

The expanding background test is also solved with  = 4. The results show that velocity v approaches to zero. Figure 2.5.4 illustrates the rescaled velocity w in four di↵erent schemes. Once again the L 1 norm for these solutions is very small and the order temporal discretization is more e↵ective than the order of spatial one. We also study another choice of flux functions in (2.5.1) as follows:

f (v) = 1 2 v 2 , g(v) = 1 2 v 3 , (2.5.14) 
and

f (v) = 1 2 v 2 , g(v) = (1 ) 2 v 2 + 3 v 3 , (2.5.15) 
where 2 (0, 1). = 1/2 is chosen for the numerical tests. Observe that the Godunov fluxes in the y direction change which is not presented for the sake of brevity. The e↵ect of di↵erent fluxes can be seen in Figures 2.5.5 and 2.5.6. Observe also that shock waves are formed in the x direction.

Asymptotic behavior on a contracting background

This example shows the dynamics of the (2 + 1) dimensional cosmological Burgers in a contracting spacetime with the same initial condition (2.5.12). Three di↵erent grid refinements [200 ⇥ 200], [400 ⇥ 400], [800 ⇥ 800] are chosen. Similarly to the previous example, stability is chosen based on the CFL condition; however, we notice that when ⌧ ! 0 the time step ⌧ becomes close to a constant number due to the fact that v(⌧, x, y) ! ±1; hence, ⌧ cannot asymptotically approach zero. Therefore, the following stability condition is used to compute smaller ⌧ as ⌧ advances to 0:

⌧ n < ⌧ n ⌧ n 1 ⌧ n 1 . (2.5.16)
The model is solved with many di↵erent conditions and schemes (di↵erent spatial and temporal discretization); however, it is noticed that at a very small ⌧ , the solution v j,k goes slightly (order of 10 5 , 10 6 , or smaller, depending on the grid refinement and scheme) above 1 and below 1 where shocks exist. The solution approach to ±1 as the sign of the source term changes subsequently. Since stability condition (2.4.6) 2.5. Global dynamics of (2 + 1)-cosmological Burgers flows is too strong, we propose the following ones for this test ( x = y):

When   1, ⌧ n  1 2 y max j |v n j | , 2|⌧ n | ! .
(2.5.17)

When  > 1 ⌧ n  1 2 y max j |v n j | , 2|⌧ n | ! .
(2.5.18)

The solutions v(⌧, x, y) converge to ±1, as is seen in Figures 2.5 The cosmological Burgers equation is solved with a second-order spatial and thirdorder temporal discretization (2S3T). Observe that a third-order SSP Runge-Kutta scheme for the temporal discretization is selected. In addition, we compute this example with several schemes: first-order space and third-order time (1S3T), 1S1T, and 2S1T. Figure 2.5.9 shows the solutions for the above-mentioned schemes. The L 1 norm for these schemes based on the best scheme (2S3T) is also calculated. Similar to the expanding tests, the L 1 norm is very small. Higher-order temporal schemes are more accurate than higher-order spatial ones. Low-order schemes can be used to be able to reduce computational cost.

Similarly as in the previous tests, the contracting test is solved with  = 4. The results show that velocity approaches to ±1. Figure 2.5.10 provides the velocity with four di↵erent schemes. The L 1 norm for these solutions is very small and the order of temporal discretization is more e↵ective than the order of spatial one. Moreover, the cosmological Burgers equation with fluxes in (2.5.14) and (2.5.15) for a contracting background are solved. v(⌧, x, y) advances to ±1 (Figures 2.5.11 and 2.5.12) and shocks are created towards the x direction.

Comparison between the (1 + 1) and (2 + 1) models

To study the convergence of the solutions, we compute the L 1 norm with di↵erent grid refinements at ⌧ = 16, 32, 64, 128, 256, 512, 1024 for the expanding background tests, and ⌧ = 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 , and 10 8 for the contracting background. Figure 2.5.13 shows that the error decreases as grid refines in both tests. The solution v(⌧, x, y) where x = y in (2 + 1) dimensions ([800 ⇥ 800]) are compared with the corresponding solutions v(⌧, x) in (1+1) dimensions with  = 2 and 4. The rescaled solutions for the expanding case presented in Figure 2.5.14 show some di↵erences between the (1 + 1)-and (2 + 1)-solutions due to the fact that the initial condition is not quite symmetric with respect to the diagonal of the domain x = y. However, both solutions follow a similar evolution. Finally, the numerical 

Introduction and objectives

We are interested in the global dynamics of compressible relativistic fluids evolving on a curved cosmological background of expanding or contracting type. Our model below is motivated from the Euler system posed on the so-called FLRW background (after Friedmann-Lemaître-Robertson-Walker) describing a homogeneous and isotropic cosmology. By recalling that shock wave solutions to nonlinear hyperbolic equations such as the Euler equations are only defined in the forward time direction and, since the geometry under consideration is singular at some time normalized to be t = 0, it is natural to distinguish between two initial value problems, corresponding to the following range of the time variable.

In the range t 2 (0, +1), the background is assumed to be expanding toward the future and a function a = a(t) introduced below increases monotonically to +1 whereas initial data are prescribed at some t 0 > 0. On the other hand, in the range t 2 ( 1, 0), the background is assumed to be contracting toward the future and the defining function a = a(t) decreases monotonically until it reaches a(0) = 0. In this case, it is natural to prescribe the initial data at some t 0 < 0. A typical choice is given by the function a(t) = a 0 (t/t 0 ) ↵ , often normalized below by taking a 0 = 1 and t 0 = ±1. Here, ↵ 2 (0, 1) represents the rate of contraction or expansion. Importantly, we are also interested in allowing the background to be spatially inhomogeneous, and one of the challenges we address is the design of a geometry-preserving method that accurate compute fluid flows in presence of inhomogeneous geometrical e↵ects. Chapter 3: A numerical study of the asymptotic structure of cosmological fluid flows 95 Our aim is thus to design a numerical algorithm adapted to this problem and based on the finite volume methodology, and next to investigate the late-time asymptotics of solutions in the expanding direction as well as the behavior of the flow as one approaches a cosmological singularity. The model of interest here is given by the Euler equations for a relativistic, isothermal, compressible fluid and, for the sake of simplicity, its sound speed is assumed to be a constant. By distinguishing between two cases, whether the background is expanding or contracting toward the future, we find that a fine structure arises which consists of non-interacting shock waves that move periodically in time. Importantly, our scheme is su ciently robust so that this fine structure is correctly captured by our algorithm at a reasonable computational cost. The proposed method relies on a high-order Runge-Kutta discretization in the time variable and a structure-preserving technique for the spatial discretization.

Our aim is to investigate the fine structure of the solutions in the expanding direction t ! +1 as well as in the contracting direction t ! 0. We expect that the flow structure will somehow "simplifies" asymptotically, and we are interested in the competition taking place between the shock propagation and the background geometry. By working with periodic boundary conditions, we expect that the shocks will be able to interact until only a simple pattern is left, typically the so-called Nwave profile that is well-known for nonlinear systems of conservation laws. However, due to the non-homogeneous terms, the global dynamics of the flow turns out to be more complex.

An outline of this paper is as follows. In Section 3.2, we present the model we study in this paper and introduces some formal asymptotics by distinguishing between the expanding and contracting cases. In Section 3.3, the finite volume methodology is explained before presenting the construction of our numerical algorithm in Section 3.4. The numerical results are organized in two sections, that is, Section 3.5 and 3.6 which ends with some definite conclusions concerning the asymptotics of the solutions.

A model of cosmological fluid flow 3.2.1 The model of interest

The Euler equations in two spatial variables x, y 2 [0, 1] (i.e. the torus with periodic boundary conditions) read as follows:

@ t ⇣ ⇢(1 + " 4 k 2 V 2 ) ⌘ + @ x ⇣ ⇢u(1 + " 2 k 2 ) ⌘ + @ y ⇣ ⇢v(1 + " 2 k 2 ) ⌘ = S 0 , @ t ⇣ ⇢u(1 + " 2 k 2 ) ⌘ + @ x ⇣ (1 + " 2 k 2 )⇢u 2 + k 2 ⇢(1 " 2 V 2 ) ⌘ + @ y ⇣ (1 + " 2 k 2 )⇢uv ⌘ = S 1 , @ t ⇣ ⇢v(1 + " 2 k 2 ) ⌘ + @ x ⇣ (1 + " 2 k 2 )⇢uv ⌘ + @ y ⇣ (1 + " 2 k 2 )⇢v 2 + k 2 ⇢(1 " 2 V 2 ) ⌘ = S 2 , (3.2.1a) 96 3.2. A model of cosmological fluid flow with S 0 = @ t a a ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 V 2 ⌘ , S 1 = 2⇢ ⇣ k 2 @ x b b (1 " 2 V 2 ) @ t a a (1 + " 2 k 2 )u ⌘ , S 2 = 2⇢ ⇣ k 2 @ y b b (1 " 2 V 2 ) @ t a a (1 + " 2 k 2 )v ⌘ . (3.2.1b)
Here, the main unknowns are the (suitably normalized) density ⇢ = ⇢(t, x, y) 0 and the velocity components (u, v) = (u, v)(t, x, y) with V 2 = u 2 + v 2 < 1/" 2 . The coe cient k 2 (0, 1/") represents the sound speed, while the light speed is 1/". Periodic boundary conditions are imposed, that is,

(⇢, u, v)(t, 0) = (⇢, u, v)(t, 1). (3.2.2)
Moreover, the functions a = a(t) > 0 and b = b(x, y) > 0 are prescribed and describe the background geometry. Two regimes for the time variable are considered:

t 2 ( [1, +1), future-expanding, [ 1, 0), future-contracting, (3.2.3) 
a typical function to be considered below being

a(t) = |t|  , (3.2.4)
where  > 0 is a parameter. With obvious notation, we rewrite (3.2.1) in the form of a system of balance laws:

@ t U + @ x F (U ) + @ y G(U ) = S(U, t, x, y). (3.2.5)
This system is non-homogeneous and involves a nonlinear source depending on all of the independent variables (t, x, y). We are interested in solving the initial value problem numerically, when an initial condition denoted by U 0 is prescribed at some time t 0 6 = 0:

U (t 0 , •) = U 0 . (3.2.6)
Due to the presence of shocks in the problem we can solve in the forward-time direction and we impose periodic spatial boundary conditions.

We will consider first the system in one space dimension, which reads as follows: 

@ t ⇣ ⇢(1 + " 4 k 2 u 2 ) ⌘ + @ x ⇣ ⇢u(1 + " 2 k 2 ) ⌘ = S 0 , @ t ⇣ ⇢u(1 + " 2 k 2 ) ⌘ + @ x ⇣ ⇢(u 2 + k 2 ) ⌘ = S 1 , (3. 
S 0 = @ t a a ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 u 2 ⌘ , S 1 = 2⇢ ⇣ k 2 @ x b b (1 " 2 u 2 ) @ t a a (1 + " 2 k 2 )u ⌘ .
(3.2.7b) It is tedious but straightforward to check that these equations are strictly hyperbolic and admit the following two (distinct) wave speeds:

1 (u) = u k 1 " 2 ku , 2 (u) = u + k 1 + " 2 ku . (3.2.8)
We also emphasize that the principal part of the system is expressed in normalized density and velocity components, as follows. From the standard expression T µ⌫ = (1 + k 2 )⇢u µ u ⌫ + k 2 ⇢ µ⌫ of the stress-energy tensor for isothermal fluids with physical density ⇢ and unit, future-oriented velocity vector u µ with µ, ⌫ = 0, 1, 2 for a flow in two space dimensions, we write @ µ T µ⌫ = 0. We express the Euler equations in terms of the two velocity components u, v 2 R, as follows:

u 0 = "(1 " 2 V 2 ) 1/2 , u 1 = "u(1 " 2 V 2 ) 1/2 , u 2 = "v(1 " 2 V 2 ) 1/2 , in which V = (u 2 + v 2 ) 1/2 . It is then clear that " 2 (u 0 ) 2 (u 1 ) 2 (u 2 ) 2 = (1 " 2 V 2 ) 1 " 2 u 2 (1 " 2 V 2 ) 1 " 2 v 2 (1 " 2 V 2 ) 1 = 1,
as expected. We also rescale the density by setting ⇢ =: ⇢(1 " 2 V 2 ) and, in turn, we have arrived at the following homogeneous version of the Euler equations:

@ t ⇣ ⇢(1 + " 4 k 2 V 2 ) ⌘ + @ x ⇣ ⇢u(1 + " 2 k 2 ) ⌘ + @ y ⇣ ⇢v(1 + " 2 k 2 ) ⌘ = S 0 , @ t ⇣ ⇢u(1 + " 2 k 2 ) ⌘ + @ x ⇣ (1 + " 2 k 2 )⇢u 2 + k 2 ⇢(1 " 2 V 2 ) ⌘ + @ y ⇣ (1 + " 2 k 2 )⇢uv ⌘ = 0, @ t ⇣ ⇢v(1 + " 2 k 2 ) ⌘ + @ x ⇣ (1 + " 2 k 2 )⇢uv ⌘ + @ y ⇣ (1 + " 2 k 2 )⇢v 2 + k 2 ⇢(1 " 2 V 2 ) ⌘ = 0. ( 3 
.2.9) Note also in passing that taking " = 0 leads us to the standard Euler equations for non-relativistic flows, as expected.

Heuristics on an expanding background

The asymptotics will be found to be ⇢ ! 0 and u ! 0, and consequently it is natural to search for suitably rescaled unknowns of the form

⇢ =: t ↵ e ⇢, u =: t e u, (3.2 

.10)

such that the new unknown have finite limits on the singularity when t ! +1. The exponents ↵, > 0 are determined formally from (3.2.1), by writing with the choice a(t) = t  and b = b(x) being a general coe cient,

@ t ⇣ t ↵ e ⇢(1 + " 4 k 2 t 2 e u 2 ) ⌘ + @ x ⇣ t ↵ e ⇢t e u(1 + " 2 k 2 ) ⌘ ' S 0 , @ t ⇣ t ↵ e ⇢t e u(1 + " 2 k 2 ) ⌘ + @ x ⇣ (1 + " 2 k 2 )t ↵ e ⇢t 2 e u 2 + k 2 t ↵ e ⇢(1 " 2 t 2 e u 2 ) ⌘ ' S 1 , (3.2.11a) with S 0 '  t t ↵ e ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 t 2 e u 2 ⌘ , S 1 ' 2t ↵ e ⇢ ⇣ k 2 @ x b b (1 " 2 t 2 e u 2 )  t (1 + " 2 k 2 )t e u ⌘ , (3.2.11b) therefore @ t t ↵ e ⇢ + k 2 " 4 @ t ⇣ t ↵ 2 e ⇢e u 2 ⌘ + t ↵ (1 + " 2 k 2 )@ x e ⇢e u ' t ↵ 1  1 + 3" 2 k 2 e ⇢ t ↵ 1 2  (1 " 2 k 2 )" 2 e ⇢e u 2 ,
and

(1 + " 2 k 2 )@ t t ↵ e ⇢e u + t ↵ @ x ⇣ k 2 e ⇢ + t 2 e ⇢e u 2 ⌘ ' 2t ↵ e ⇢ ⇣ k 2 @ x b b t 2 k 2 @ x b b " 2 e u 2 t 1 (1 + " 2 k 2 )e u ⌘ .
The first equation leads us to the asymptotic equation t ↵ @ t e ⇢ = 0 for the density, thus e ⇢ depends on x only, as expected. The second equation gives us 2 , which relates the asymptotic density profile to the underlying geometry.

t ↵ @ x ⇣ k 2 e ⇢ ⌘ = 2t ↵ e ⇢ k 2 @xb b , therefore e ⇢(x) = C 1 b(x)
Postulating also that e u depends upon x only, we can then rewrite our system in the form

↵t ↵ 1 b 2 (↵ + 2 )k 2 " 4 t ↵ 2 1 b 2 e u 2 + t ↵ (1 + " 2 k 2 )@ x b 2 e u ' t ↵ 1  1 + 3" 2 k 2 b 2 t ↵ 1 2  (1 " 2 k 2 )" 2 b 2 e u 2 , (3.2.12a) (↵ + )(1 + " 2 k 2 )t ↵ 1 b 2 e u + t ↵ 2 @ x ⇣ b 2 e u 2 ⌘ ' 2t ↵ b 2 ⇣ t 2 k 2 @ x b b " 2 e u 2 t 1 (1 + " 2 k 2 )e u ⌘ .
(3.2.12b)

It follows that e ⇢ and e u must satisfy We analyze this system as follows: if 2 (0, 1) then from the first equation we deduce that t ↵ (1 + " 2 k 2 )@ x b 2 e u = 0, thus for some constant C 2 we have e u(x) = C 2 b 2 (x), x 2 [0, 1]. On the other hand, if = 1 then from the first equation we deduce that

↵t ↵ 1 b 2 + t ↵ (1 + " 2 k 2 )@ x b 2 e u ' t ↵ 1  1 + 3" 2 k 2 b 2 , (↵ + )(1 + " 2 k 2 )t ↵ 1 b 2 e u + t ↵ 2 @ x b 2 e u 2 ' 2t ↵ b 2 ⇣ t 2 k 2 @ x b b " 2 e u 2 t 1 (1 + " 2 k 2 )e u ⌘ .
↵t ↵ 1 b 2 + t ↵ 1 (1 + " 2 k 2 )@ x b 2 e u = t ↵ 1  1 + 3" 2 k 2 b 2 , thus b 2 (x)e u(x) = b 2 (0)e u(0) + ⇣ ↵  1 + 3" 2 k 2 ⌘ /(1 + " 2 k 2 ) Z x 0 b 2 (y)dy,
which however is not a period function, as required. Finally, if > 1 then from the first equation we deduce that ↵t

↵ 1 b 2 = t ↵ 1  1 + 3" 2 k 2 b 2
, which leads us to the condition ↵ =  1 + 3" 2 k 2 , which appears to be the only consistent choice and, therefore, provides us with one of the two exponents we are searching for.

From the second equation we obtain

(↵ + )(1 + " 2 k 2 )t 1 b 2 e u + t @ x b 2 e u 2 ' 2b 2 ⇣ t k 2 @ x b b " 2 e u 2 t 1 (1 + " 2 k 2 )e u ⌘ .
If > 1 then we obtain (↵ + ) = 2 , thus = (1 3" 2 k 2 ). In conclusion, the asymptotic limit (3.2.10) on an expanding background satisfies

⇢(x) = lim t!+1 e ⇢(t, x) = C 1 b(x) 2 , u(t, x) = lim t!+1 e u(x) = C 2 b 2 (x), x 2 [0, 1]
(3.2.14a) where C

1 > 0 and C 2 are constants and the exponents are

↵ =  1 + 3" 2 k 2 , = (1 3" 2 k 2 ). (3.2.14b)
Since we want to be positive we assume that the sound speed is not too large, in the sense that k < 1 " p 3 .

(3.2.14c)

Heuristics on a contracting background

When t ! 0, we have observed that ⇢ ! +1 while the velocity component u ! ±1/" or u ! 0, depending upon the solution under consideration. Considering first the case u ! 1/", we postulate the ansatz ⇢ and e u should have a finite limit on the singularity. We obtain

⇢ =: |t| ↵ e ⇢, u =: 1/" |t| e u, (3. 
@ t ⇣ |t| ↵ e ⇢ 1 + " 4 k 2 (1/" 2 2|t| e u/") ⌘ + |t| ↵ @ x ⇣ e ⇢(1/" |t| e u)(1 + " 2 k 2 ) ⌘ ' S 0 , @ t ⇣ |t| ↵ e ⇢(1/" |t| e u)(1 + " 2 k 2 ) ⌘ + |t| ↵ @ x ⇣ e ⇢(k 2 + 1/" 2 2|t| e u/") ⌘ ' S 1 , (3.2.16a) with (recalling that t < 0) S 0 ' |t| ↵ 1 e ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 (1/" 2 2|t| e u/") ⌘ , S 1 ' 2|t| ↵ e ⇢ ⇣ k 2 @ x b b 1 " 2 (1/" 2 2t e u/")  t (1 + " 2 k 2 )(1/" |t| e u)
⌘ .

(3.2.16b) We rewrite these equations as

@ t ⇣ |t| ↵ e ⇢ 1 + " 2 k 2 2" 3 k 2 |t| e u) ⌘ + |t| ↵ (1 + " 2 k 2 )@ x ⇣ e ⇢ 1/" |t| e u ⌘ ' S 0 , @ t ⇣ |t| ↵ e ⇢(1/" |t| e u)(1 + " 2 k 2 ) ⌘ + |t| ↵ @ x ⇣ e ⇢ k 2 + 1/" 2 2|t| e u/" ⌘ ' S 1 , (3.2.17a) with S 0 ' |t| ↵ 1 e ⇢ ⇣ 2 + 2" 2 k 2 2"(1 " 2 k 2 )|t| e u ⌘ , S 1 ' 2|t| ↵ e ⇢ ⇣ 2"k 2 @ x b b t e u  t (1 + " 2 k 2 )(1/" |t| e u)
⌘ .

(3.2.17b)

We content here with the analysis at the order |t| ↵ 1 and we arrive at the conclusion that ↵|t| ↵ 1 e ⇢(1

+ " 2 k 2 ) ' |t| ↵ 1 e ⇢ ⇣ 2 + 2" 2 k 2 ⌘ ,
which shows that the exponent for the density variable is ↵(1

+ " 2 k 2 ) =  ⇣ 2+2" 2 k 2 ⌘ , leading us to the coe cient ↵ = 2 . (3.2.18)

The finite volume methodology 3.3.1 Discretization of the homogeneous system

A four-state Riemann solver Throughout this section, we assume a(t) ⌘ 1 and we present a well-balanced scheme that takes the spatial e↵ects of the geometry into account. We begin by designing a finite volume method for the homogeneous version of the model (3.2.5), based on a four-state approximate Riemann solver defined as follows. We use the HLL methodology introduced by Harten, Lax, and van Leer [START_REF] Harten | On upstream di↵erencing and godunov-type schemes for hyperbolic conservation laws[END_REF] Chapter 3: A numerical study of the asymptotic structure of cosmological fluid flows 101 (but in a generalized form) in order to approximate the solution of

@ t U + @ x F (U ) = 0, t >0, x 2 R, U (0, x) = U 0 (x) = ( U L , x < 0, U R , x > 0, (3.3.1)
where U L and U R are constant states. The exact solution of (3.3.1) denoted by

R 1 = R 1 (⇠; U L , U R
) only depends on the self-similar variable ⇠ := x/t, and U L and U R .

We introduce an approximate four-state Riemann solver defined as

R 4 = R 4 (⇠; U L , U R ) = 8 > > > < > > > : U L , ⇠< L , U M , L < ⇠ < 0, U + M , 0 < ⇠ < R , U R , R < ⇠, (3.3.2)
where the two state vectors U M and U + M , as well as the approximate speeds L and R need to be defined. By assumption, L is chosen to be negative, and R to be positive.

For the (homogeneous) Euler system it is natural to choose the following expressions for the wave speeds:

R = max ⇣ 0, u L + k 1 + " 2 ku L , u R + k 1 + " 2 ku R ⌘ , L = min ⇣ 0, u L k 1 " 2 ku L , u R k 1 " 2 ku R ⌘ . (3.3.3)
The values of the intermediate states U M and U + M (4 scalar unknowns) must be found in order to solve the approximate Riemann solver (3.3.2). Hence, we address some properties of the approximate Riemann solver in the following section.

Consistency with the divergence part The approximate Riemann solver R 4 (⇠; U L , U R ) defined in (3.3.2) should satisfy the consistency condition in divergence form that was proposed by Harten, Lax, and van Leer in [START_REF] Harten | On upstream di↵erencing and godunov-type schemes for hyperbolic conservation laws[END_REF]. The average of the approximate Riemann solver over a cell coincides with the average of the exact solution R 1 (⇠; U L , U R ) of the Riemann problem (3.3.1) over the same cell.

We consider the Riemann problem (3.

3.1) posed in a control volume [x L , x R ] ⇥ [0, ⌧], which satisfies x L  ⌧ L , x R  ⌧ R , (3.3.4) 
where L and R are wave speeds given by (3.3.3), ⌧ is a chosen time. Therefore, the 3.3. The finite volume methodology consistency condition can be written in the following form:

Z x R x L R 4 (⇠; U L , U R )dx = Z x R x L R 1 (⇠; U L , U R )dx. (3.3.5) 
After integrating (3.3.1) over the control volume [x L , x R ] ⇥ [0, ⌧], the exact Riemann solution satisfies

Z x R x L R 1 (⇠; U L , U R )dx = x R U R x L U L ⌧ (F (U R ) F (U L )). (3.3.6) 
We then use the expression (3.3.2) of the approximate Riemann solver R 4 (⇠; U L , U R ), and integrate it over the cell [x L , x R ]: 

Z x R x L R 4 (⇠; U L , U R )dx = Z ⌧ L x L U L dx + Z 0 ⌧ L U M dx + Z ⌧ R 0 U + M dx + Z x R ⌧ R U R dx = (⌧ L x L )U L ⌧ L U M + ⌧ R U + M + (x R ⌧ R )U R . (3.3.7) Substituting (3. 
R U + M L U M = R U R L U L ⇣ F (U R ) F (U L ) ⌘ . (3.3.8) 
R U + M L U M = R U R L U L ⇣ F (U R ) F (U L ) ⌘ , (3.3.9) 
where R and L are given by (3.3.3).

Thus far, two scalar conditions for four scalar unknowns are obtained. Additional conditions for the approximate Riemann solver are needed. For the homogeneous model (3.3.1), if we impose the continuity at the interface so that we only use one intermediate state, that is

U + M = U M , (3.3.10) 
which yields

U + M = U M = R U R L U L ⇣ F (U R ) F (U L ) ⌘ R L . (3.3.11)
Hence, the approximate Riemann solver (3.3.2) is fully defined. We will construct a Godunov-type scheme for the homogeneous system based on the approximate Riemann solver (3.3.2).

Chapter 3: A numerical study of the asymptotic structure of cosmological fluid flows 103 A Godunov-type scheme We now provide a finite volume discretization of the the homogeneous system (3.3.1). The discretization in time and space is based on two mesh lengths t and x and relies on the cells (

x i 1/2 , x i+1/2 ) for i = 0, 1, • • • , with x i = i x, x i+1/2 = (i + 1/2) x. (3.3.12) 
Furthermore, t and x satisfy the CFL condition

t x max(| L |, | R |) < 1 2 . (3.3.13)
We approximate the exact solution U (t, x) of (3.3.1) by a constant value U n i at time t n . The average value of U (t, x) over the cell (x i 1/2 , x i+1/2 ) is

U n i = 1 x Z x i+1/2 x i 1/2 U (t n , x)dx, x 2 (x i 1/2 , x i+1/2 ). (3.3.14) 
In particular, for the initial data, we set

U 0 i = 1 x Z x i+1/2 x i 1/2 U 0 (y)dx. (3.3.15) 
To approximate the solution of the homogeneous system (3.3.1), we consider the Riemann problem at each interface y = y i+1/2 . By using the approximate Riemann solver (3.3.2) to the Riemann problem (3.3.1), the updated solution at t n+1 reads as: 

U n+1 i = 1 x Z x i x i 1/2 R 4 ⇣ x x i 1/2 t ; U n i 1 , U n i ⌘ dx + 1 x Z x i+1/2 x i R 4 ⇣ x x i+1/2 t ; U n i , U n i+1 ⌘ dx. = U n i + t x ⇣ n R,i 1/2 U n,+ M,i 1/2 U n i n L,i+1/2 U n, M,i+1/2 U n i ⌘ , (3.3 
U n+1 i = U n i t x ⇣ F(U n i , U n i+1 ) F(U n i 1 , U n i ) ⌘ , (3.3.17) 
where F(U L , U R ) is the numerical flux. If we impose the condition given by (3.3.10), the corresponding Riemann flux can be obtained as

F(U L , U R ) = R F (U L ) L F (U R ) R L + R L (U R U L ) R L . (3.3.18)

A finite volume discretization of the non-homogeneous system

A four-state Riemann solver We return to the four-state approximate Riemann solver in (3.3.2) to approximate the solution of the non-homogeneous system (3.2.5).

Recall that a ⌘ 1, therefore, the source term in (3.2.5) is independent of t. To evolve the solution in time, we consider the following Riemann problem

@ t U + @ x F (U ) = S(U, x), t >0, x 2 R, U (0, x) = U 0 (x) = ( U L , x < 0, U R , x > 0, (3.3.19) 
with two constant states U L and U R . Unlike the homogeneous case (S(U, x) = 0), the exact solution of (3.3.19) is no longer self-similar, which is denoted by

R 1 = R 1 (t, x, U L , U R ).
For the approximate Riemann solver of the non-homogeneous system, we choose the same expression as (3.3.2). The e↵ects of the source term will appear in the construction of the intermediate states U ± M . The approximate speeds L and R have been chosen in (3.3.3). The two intermediate states U M and U + M remain to be determined.

The consistency condition

To derive the values of intermediate states U M and U + M , we first consider the consistency condition for the approximate solver. We still consider the Riemann problem (3.3.19) posed in the control volume [x L , x R ] ⇥ [0, ⌧] as in Section 3.3.1. Recall that the consistency condition has the following form introduced in Section 3.3.1:

Z x R x L R 4 (⇠; U L , U R )dx = Z x R x L R 1 (t, x; U L , U R )dx, (3.3.20) 
where R 4 (⇠; U L , U R ) denotes the approximate Riemann solver of (3.3.19), which has the form given by (3.3.2), and R 1 (t, x; U L , U R ) denotes the exact solution.

By integrating (3.3.19) 

over the rectangle [x L , x R ] ⇥ [0, ⌧], the exact Riemann solver satisfies Z x R x L R 1 (t, x; U L , U R )dx = x R U R x L U L ⌧ (F (U R ) F (U L )) + Z x R x L Z ⌧ 0 S ⇣ R 1 (t, x; U L , U R ), x ⌘ dtdx, (3.3.21) 
which is very similar to the case of the homogeneous system, see (3.3.6).

To simplify the notation, we let e S( , ⌧ ; U L , U R ) stand for the approximation of the Chapter 3: A numerical study of the asymptotic structure of cosmological fluid flows 105 source term, which is defined as follows:

e S(⌧, ; U L , U R ) = 1 t 1 x Z x R x L Z ⌧ 0 S ⇣ R 1 (t, x; U L , U R ), x ⌘ dtdx, (3.3.22) 
where we introduced the notation

:= x R x L . (3.3.23) 
An easy calculation shows us that the approximate solver satisfies

Z x R x L R 4 (⇠; U L , U R )dx = (⌧ L x L )U L ⌧ L U M + ⌧ R U + M + (x R ⌧ R )U R . (3.3.24) 
Therefore, (3.3.20) can be rewritten as follows:

R U + M L U M = R U R L U L F (U R ) F (U L ) + e S(⌧, ; U L , U R ). (3.3.25)
Recall that the original HLL scheme is based on an approximate Riemann solver containing only one intermediate state, say denoted by U M , which is obtained by solving the above equations when the source term is identically vanishing. For the following, it will be convenient to introduce 

U M = R U R L U L ⇣ F (U R ) F (U L ) ⌘ R L . ( 3 
[x L , x R ] ⇥ [0, ⌧], if R U + M L U M = ( R L )U M + e S(⌧, ; U L , U R ), (3.3.27) 
where U M is given by (3.3.26), R and L are given by (3.3.3), is defined by (3.3.23). e S(⌧, ; U L , U R ) is the approximation of the source term average.

We refer to this as the consistency conditions for the non-homogeneous system, where U + M and U M are two intermediate state vectors of the HLL solver. To summarize, we have obtained two scalar conditions (3.3.27) for four scalar unknowns. Thus, we need to look for another two conditions to determine the intermediate states. We next construct a Godunov-type scheme based on the approximate Riemann solver defined in (3.3.2). 106 3.3. The finite volume methodology A Godunov-type scheme With the finite volume discretization in Section 3.3.1, we update the approximate solution at time t = t n+1 , as follows:

U n+1 i = 1 x Z x i+1/2 x i 1/2 U (t n+1 , y)dx = 1 x Z x i x i 1/2 R 4 ⇣ x x i 1/2 t ; U n i 1 , U n i ⌘ dx + 1 x Z x i+1/2 x i R 4 ⇣ x x i+1/2 t ; U n i , U n i+1 ⌘ dx.
(3.3.28) By using the approximation of the Riemann solver R 4 (⇠; U L , U R ) given by (3.3.2) at each interface, we obtain

U n+1 i = 1 x Z x i 1/2 + n R,i 1/2 t x i 1/2 U n,+ M,i 1/2 dx + 1 x Z x i+1/2 + n L,i+1/2 t x i 1/2 + n R,i 1/2 t U n i dx + Z x i+1/2 x i+1/2 + n L,i+1/2 t U n, M,i+1/2 dx, (3.3.29) 
which leads us to the following scheme:

U n+1 i = U n i + t x ⇣ n R,i 1/2 U n,+ M,i 1/2 U n i n L,i+1/2 U n, M,i+1/2 U n i ⌘ , (3.3.30) 
where n L,i+1/2 and n R,i 1/2 are the approximate wave speeds at each interface, which have been chosen in (3.3.3), U n,+ M,i 1/2 and U n, M,i+1/2 are the intermediate states to be defined.

Combining the integral consistency condition expressed in (3.3.27), we rewrite (3.3.30) in the following conservative form:

U n+1 i = U n i t x F n i+1/2 F n i 1/2 + t 2 e S n i+1/2 + e S n i 1/2 , (3.3.31) 
where F n i+1/2 is the numerical flux at the interface y i+1/2 , defined by 

F n i+1/2 = F(U n i , U n i+1 ) = 1 2 ⇣ F (U n i ) + F (U n i+1 ) + n L,i+1/2 U n, M,i+1/2 U n i + n R,i+1/2 U n,+ M,i+1/2 U n i+1 ⌘ , (3.3 
Ŝn i+1/2 ( t, x; U n i , U n i+1 ) = ✓ 0 ⇢ n i +⇢ n i+1 x k 2 ln b i+1 b i ⇣ 1 " 2 u n i +u n i+1 2 2 ⌘ ◆ . (3.3.34) 
Moreover, we impose the continuity at the interface so that we only use one intermediate state, that is

U M = U + M .
Together with (3.3.27), the intermediate states can be defined as follows:

U M = U + M = U M + Ŝ( t, x; U L , U R ) x R L , (3.3.35) 
where U M is given by (3.3.26). Now, U n,± M,i+1/2 and Ŝn i+1/2 have been chosen. Thus, (3.3.31) defines a general scheme.

3.4 A well-balanced finite volume scheme for cosmological fluid flows

The well-balanced property

We require a well-balanced property for the scheme (i.e., smooth steady state solutions of the Euler mode should be preserved). The designing of the well-balanced scheme is motivated by [START_REF] Michel-Dansac | A well-balanced scheme for the shallow-water equations with topography[END_REF] and [START_REF] Michel-Dansac | A well-balanced scheme for the shallow-water equations with topography or manning friction[END_REF]. The steady state solutions satisfy the following system of ordinary di↵erential equations :

@ x F (U ) = S(U, x), (3.4.1a) 
where

U = ✓ U 0 U 1 ◆ = ✓ ⇢(1 + " 4 k 2 u 2 ) ⇢u(1 + " 2 k 2 ) ◆ , F (U ) = ✓ F 0 (U ) F 1 (U ) ◆ = ✓ ⇢u(1 + " 2 k 2 ) ⇢(u 2 + k 2 ) ◆ , (3.4.1b) 
and the source term is

S(U, x) = ✓ S 0 (U, x) S 1 (U, x) ◆ = 0 2⇢ k 2 @xb b (1 " 2 u 2 ) ! . (3.4.1c) 
We first assume that the rescaled density is positive such that ⇢ n i > 0 and ⇢ n i+1 > 0. From the scheme (3.3.30), we observe that the solution is stationary, that is U n+1 i = 108 3.4. A well-balanced finite volume scheme for cosmological fluid flows

U n i , if we have U n, M,i+1/2 = U n i , U n,+ M,i 1/2 = U n i . (3.4.2) 
Therefore, after shifting i ! i + 1 in the second condition, we look for the intermediate states U n, M,i+1/2 and U n,+ M,i+1/2 in the approximate Riemann solver satisfying

U n, M,i+1/2 = U n i , U n,+ M,i+1/2 = U n i+1 , (3.4.3) 
whenever U n i and U n i+1 can be connected by a (continuous) steady state solution. After removing superscript n and subscript i ± 1/2 and shifting i ! L, i + 1 ! R, we have the following property. M are chosen to be

U M = U L , U + M = U R , (3.4.4) 
whenever U L and U R can be connected by a (continuous) steady state solution to the system (

.

Construction of U 1,M and U + 1,M
We now look for the two intermediate state vectors denoted by

U M = ✓ U 0,M U 1,M ◆ , U + M = ✓ U + 0,M U + 1,M ◆ , (3.4.5) 
which should satisfy the well-balanced property expressed in Definition 3.4.1.

We begin by determining U 1,M and U + 1,M . Note that the first component of the source term is 0, and F 0 (U ) = U 1 for the non-homogeneous system. It is natural to impose the following condition:

U 1,M = U + 1,M
, and we denote this value by U ± 1,M . Thus, with the consistency condition (3.3.27) we obtain

U ± 1,M = U 1,M = U + 1,M = U 1,M + e S 1 ( t, x; U L , U R ) x R L , (3.4.6) 
where U 1,M is second component of U M given by (3.3.26), R and L are given by (3.3.3), the notation for the approximation of the source term e S 1 ( t, x; U L , U R ) is given by (3.3.22). Therefore, the second component of intermediate state U

1,M and U + 1,M can be defined, once the approximation of the source term has been chosen. We next turn to determining U 0,M and U + 0,M . We assume that U L = U (⇢ L , u L ) and U R = U (⇢ R , u R ) can be connected by a steady state solution, with ⇢ L > 0 and ⇢ R > 0. Under this assumption we derive the missing conditions of the scheme. We thus impose the following relations:

⇢ R u R (1 + " 2 k 2 ) ⇢ L u L (1 + " 2 k 2 ) = 0, ⇢ R u 2 R + k 2 ⇢ L u 2 L + k 2 = e S 1 ( t, x; U L , U R ) x. (3.4.7) 
Based on (3.4.7), we introduce the following state

U 1,LR = ⇢ R u R (1 + " 2 k 2 ) = ⇢ L u L (1 + " 2 k 2 ). (3.4.8) 
By combining (3.4.8) and the second equation in (3.4.7), we obtain

k 2 ⇣ U 1,LR 1 + " 2 k 2 ⌘ 2 1 ⇢ R ⇢ L ! (⇢ R ⇢ L ) = e S 1 ( t, x; U L , U R ) x, (3.4.9) 
which is equivalent to

⇣ k 2 u L u R ⌘⇣ ⇢ R ⇢ L ⌘ = e S 1 ( t, x; U L , U R ) x. (3.4.10) 
To determine U 0,M and U + 0,M , we need to look for the relation between U 0,L and U 0,R which can be obtained by utilizing (3.4.1b) and (3.4.8) where

U 0,R U 0,L = ⇢ R (1 + " 4 k 2 u 2 R ) ⇢ L (1 + " 4 k 2 u 2 L ) = 1 " 4 k 2 ⇣ U 1,LR 1 + " 2 k 2 ⌘ 2 1 ⇢ R ⇢ L ! (⇢ R ⇢ L ) = ⇣ 1 " 4 k 2 u L u R ⌘⇣ ⇢ R ⇢ L ⌘ . (3.4.11) 
Since k 2 (0, 1/"), therefore, u L , u R 2 ( 1/", 1/"), and 1 " 4 k 2 u L u R > 0. Thus, the relation between ⇢ R and ⇢ L can be written as

⇢ R ⇢ L = 1 1 " 4 k 2 u L u R ⇣ U 0,R U 0,L ⌘ . (3.4.12) 
Substituting (3.4.12) into (3.4.10) yields a relation between U 0,L and U

0,R , k 2 u L u R 1 " 4 k 2 u L u R ⇣ U 0,R U 0,L ⌘ = e S 1 ( t, x; U L , U R ) x. (3.4.13) 
We then introduce a new function To ensure the well-balanced property, let us enforce the following condition for the approximate Riemann solver U 0,M and U + 0,M :

⇤(u L , u R ) = k 2 u L u R 1 " 4 k 2 u L u R . ( 3 
U + 0,M U 0,M = U 0,R U 0,L . (3.4.15) 
We thus can extend (3.4.13) to the intermediate states U 0,M and U + 0,M , which gives:

⇤(u L , u R )(U + 0,M U 0,M ) = e S 1 ( t, x; U L , U R ) x. (3.4.16) 
The states U 0,M and U + 0,M are constructed as follows. 

• If ⇤(u L , u R ) 6 = 0. From (3.
U + 0,M = U 0,M L R L e S 1 ( t, x; U L , U R ) x ⇤(u L , u R ) , U 0,M = U 0,M R R L e S 1 ( t, x; U L , U R ) x ⇤(u L , u R ) , (3.4.17) 
where R and L have been chosen in (3.3.3).

• If ⇤(u L , u R ) = 0, that is k 2 = u L u R .
According to (3.4.10), we observe that e S 1 ( t, x; U L , U R ) = 0 in this case. Instead of using (3.4.16), we utilize (3.4.12) and (3.4.15), which gives

U + 0,M U 0,M = (1 " 4 k 4 )(⇢ R ⇢ L
). Together with (3.3.27), we obtain

U + 0,M = U 0,M L R L (1 " 4 k 4 )(⇢ R ⇢ L ), U 0,M = U 0,M R R L (1 " 4 k 4 )(⇢ R ⇢ L ). (3.4.18) 
In summary, we have now chosen the expressions for our intermediate states U M and U + M , and we are only left with defining the discretization of the (second) source term which has already been expressed in term of an auxiliary variable U LR .

Property of the intermediate state

We recall that the first component given in (4.3.1b) is non-negative if the weighed density ⇢ 0. However, the expressions of the intermediate state (3.4.17) and (3.4.18) may lead to non-positive U 0,M and U + 0,M . We thus need a modification to ensure that the positivity of U 0,M and U + 0,M . Chapter 3: A numerical study of the asymptotic structure of cosmological fluid flows 111

We introduce a small parameter ✓ 0, which will be fixed in the numerical experiments later. We modify the intermediate state as follows:

• If U + 0,M  ✓, we take U + 0,M = ✓ and, from (3.3.27), we get

U 0,M = ⇣ 1 R L ⌘ U 0,M + R L ✓. (3.4.19a) 
• If U 0,M  ✓, we take U 0,M = ✓. We get

U + 0,M = ⇣ 1 L R ⌘ U 0,M + L R ✓. (3.4.19b) 
• Otherwise, we do not apply this positivity procedure. • Well-balanced property. If U L and U R are connected by a continuous steady state solution avoiding the sonic point, then

U M = U L , U + M = U R . (3.4.20) 
• Positivity property. If U 0,L and U 0,R are non-negative, the intermediate states U + 0,M and U 0,M given by (3.4.18)-(3.4.19) are non-negative.

Choice of the discretization of the source

In this section, we give a suitable expression for the function e S 1 ( t, x; U L , U R ), when the exact source term S 1 is given as follows:

S 1 (U, x) = 2⇢k 2 b x b (1 " 2 u 2 ) when a(t) ⌘ 1. (3.4.21)
We derive our expression by restricting attention first to data U L = U (⇢ L , u L ) and U R = U (⇢ R , u R ) that can be connected by smooth steady state solutions. Recall that the steady state solution satisfy the ODE (3.4.1a), we have 

⇣ U 1,LR 1 + " 2 k 2 ⌘ 2 ⇣ 1 ⇢ ⌘ x + k 2 ⇢ x = 2⇢k 2 b x b (1 " 2 u 2 ), ( 3 
U 1,LR = ⇢ R u R (1 + " 2 k 2 ) = ⇢ L u L (1 + " 2 k 2
). After a division by ⇢, (3.4.22) becomes to: 

1 2 ⇣ U 1,LR 1 + " 2 k 2 ⌘ 2 ⇣ 1 ⇢ 2 ⌘ x + k 2 (ln ⇢) x = 2k 2 b x b (1 " 2 u 2 ). ( 3 
⇣ U 1,LR 1 + " 2 k 2 ⌘ 2 ⇣ 1 ⇢ R 1 ⇢ L ⌘ + k 2 (⇢ R ⇢ L ) = e S 1 (U L , U R , x L , x R ) x, 1 2 ⇣ U 1,LR 1 + " 2 k 2 ⌘ 2 ⇣ 1 ⇢ 2 R 1 ⇢ 2 L ⌘ + k 2 ln ⇢ R ⇢ L = 2k 2 (1 " 2 u 2 LR ) ln b(x R ) b(x L ) , (3.4.24) 
where the parameter u LR denotes the approximation of the mean value of u, which is consistent with u. We choose the parameter u LR as 

u LR = u L + u R 2 . ( 3 
, U R ) x = 2k 2 ⇣ 1 " 2 u 2 LR ⌘ 2⇢ L ⇢ R ⇢ L + ⇢ R ln b(x R ) b(x L ) k 2 2⇢ L ⇢ R ⇢ L + ⇢ R ln ⇢ R ⇢ L +k 2 (⇢ R ⇢ L ),
(3.4.26) which provides us with one algebraic relation for the function e S 1 (U L , U R , x L , x R ). To shorten the notations, we introduce the following new functions:

w = w(⇢) = 1 ⇢ , B = B(x) = ln b(x). (3.4.27) 
Therefore, (3.4.26) can be rewritten as follows:

e S 1 ( t, x; U L , U R ) x = 2k 2 w LR ⇣ 1 " 2 u 2 LR ⌘ (B R B L ) k 2 W LR , (3.4.28) 
where

w LR = w L + w R 2 , (3.4.29) 
and 

A LR = A(w L , w R ) = 1 w LR ln w L w R ⇣ 1 w R 1 w L ⌘ . ( 3 
, U R ) x = 2k 2 w LR 1 " 2 u 2 LR (B R B L ) k 2 A LR (3.
w R = w + @ x w x + O( x 2 ), u R = u + @ x u x + O( x 2 ), B R = B + @ x B x + O( x 2 ).
(3.4.32)

In (3.4.31), we have

w LR = 2w + O( x) 2 , u LR = 2u + O( x) 2 ,
and

B R B L = B x x + O( x 2 ).
Moreover, for the second part A LR of (3.4.31),

A LR = 1 w LR ln w L w R ⇣ 1 w R 1 w L ⌘ = 2 2w + O( x) ⇣ w x w O( x) + O( x 2 ) ⌘ ⇣ w x w 2 O( x) + O( x 2 ) ⌘ = O( x 2 ).
(3.4.33) Above all, we have

e S 1 ( t, x; U L , U R ) = 2k 2 ⇢ b x (x) b(x) (1 " 2 u 2 ) + O( x), (3.4.34) 
which is consistent with S 1 (U, x).

From the proof of Lemma 3.4.4, we note that the approximate source term given by (3.4.31) is just consistent with the source term for the smooth solution. Indeed, for discontinuous solutions, the second term A LR could not be consistent with 0. To handle such an inconsistent term, we modify (3.4.31) as follows:

• If e S 1 ( t, x;U L ,U R ) x 2k 2 w LR 1 " 2 u 2 LR (B R B L )
< ↵, we use the relation (3.4.31), where ↵ is a positive constant to be fixed in the numerical experiments.

• Otherwise, we set

e S 1 ( t, x; U L , U R ) x = 2k 2 w LR 1 " 2 u 2 LR (B R B L ). (3.4.35)
Such modification ensures that the consistency of the approximate source term.

We note that the definition for the approximation of source term (3.4.31) will not work if ⇢ L = 0 and ⇢ R = 0. Thus we take e S 1 ( t, x; U L , U R ) x = 0 if ⇢ L = 0 and ⇢ R = 0. In this case, the intermediate states will be 0. This completes the description of the algorithm (summarized in the next section).

A summary of our construction

When a(t) ⌘ 1, the finite volume scheme for the Euler model takes the following form:

U n+1 i = U n i t x F n i+1/2 F n i 1/2 + t 2 e S n i+1/2 + e S n i 1/2 , (3.4.36) 
where F n i+1/2 is the numerical flux at the interface y i+1/2 , defined by We also assume that the wave speeds satisfy the CFL condition:

F n i+1/2 = F(U n i , U n i+1 ) = 1 2 ⇣ F (U n i ) + F (U n i+1 ) + n L,i+1/2 U n, M,i+1/2 U n i + n R,i+1/2 U n,+ M,i+1/2 U n i+1 ⌘ . ( 3 
u n i + k 1 + " 2 ku n i , u n i+1 + k 1 + " 2 ku n i+1 ! , n L,i+1/2 = min 0, u n i k 1 " 2 ku n i , u n i+1 k 1 " 2 ku n i+1 ! . ( 3 
t x max ⇣ | n L,i+1/2 |, | n R,i+1/2 | ⌘ < 1 2 , (3.4.40) 
insuring that no wave interaction takes place within one time interval. The algorithm is thus based on the following steps:

• Firstly, given any initial data (⇢ n i , u n i ), we compute the conservative and physical flux variables as follows:

U n 0,i = ⇢ n i (1 + " 4 k 2 (u n i ) 2 ), U n 1,i = ⇢ n i u n i (1 + " 2 k 2 ), F n 0,i = ⇢ n i u n i (1 + " 2 k 2 ), F n 1,i = ⇢ n i ((u n i ) 2 + k 2 ).
(3.4.41)

• Secondly, by using the scheme (3.4.36), the values U n+1 0,i and U n+1 1,i can be calculated.

• Finally, we should get the primitive variables ⇢ n+1 i and u n+1 i from the conservative variables U n+1 0,i and U n+1 1,i . We have the following cases: -If U n+1 0,i = 0, we take ⇢ n+1 i = 0 and u n+1 i = 0.

-If U n+1 0,i 6 = 0 and U n+1 1,i = 0, we take ⇢ n+1 i = U n+1 0,i and u n+1 i = 0.

-If U n+1 0,i 6 = 0 and U n+1 1,i 6 = 0, we have

u n+1 i = 1 + " 2 k 2 q (1 + " 2 k 2 ) 2 4" 4 k 2 (U n+1 1,i /U n+1 0,i ) 2 2" 4 k 2 (U n+1 1,i /U n+1 0,i ) , ⇢ n+1 i = U n+1 0,i 1 + " 4 k 2 (u n+1 i ) 2 .
(3.4.42)

Second-order accuracy in space

In order to increase the accuracy in the numerical experiments, we construct a second-order scheme based on the above first-order scheme. We use a piecewise linear approximation of the solution instead of the piecewise constant approximation of the solution.

To shorten the notation, we denote by q the state vector of primitive variables, i.e. q = (⇢, u) T . For given primitive variables q n i = (⇢ n i , u n i ) T at the center of the cells [x i 1/2 , x i+1/2 ], we construct a piecewise linear approximation of the solution q n i (x), that is where n i is a local slope of the solution q n i (x) in each cell. We choose the minmod slope limiter under the following form:

q n i (x) = q n i + (x x i ) n i , (3. 
n i = ( sgn(q n i+1 q n i 1 ) min ⇣ |q n i q n i 1 | x , |q n i+1 q n i | x ⌘ , ⌘ n i > 0, 0, otherwise, (3.4.44) 
where ⌘ n j is defined by

⌘ n i = (q n i+1 q n i )(q n i q n i 1 ). (3.4.45)
Thus, the left and right values q n,LR i+1/2 at each interface x = x i+1/2 can be obtained, as follows:

q n,L i+1/2 = q n i + x 2 n i , q n,R i+1/2 = q n i+1 x 2 n i+1 . (3.4.46)
Finally, we use the following scheme to update the approximate solutions:

U n+1 i = U n i t x F n i+1/2 F n i 1/2 + t 2 e S n i+1/2 + e S n i 1/2 . (3.4.47) 
The numerical flux and source term are defined as:

F n i+1/2 = F(U n,L i+1/2 , U n,R i+1/2 ), (3.4.48) 
and e S n i+1/2 = e S( t, x; U n,L i+1/2 , U n,R i+1/2 ), (3.4.49) where U n,L i+1/2 and U n,R i+1/2 are the reconstructed values of the conservative variables, which are derived from (3.4.42) and (3.4.46). The reconstructed scheme will not be able to preserve all steady state solutions. We need to use the following reconstruction:

q n,L i+1/2 = q n i + x 2 n i n i , q n,R i+1/2 = q n i+1 x 2 n i+1 n i+1 , (3.4.50) 
where 0 6 n i 6 1 is a parameter of the reconstruction. We note that when n i = 0, the scheme is the first-order, which preserves all the steady state solution, while n i = 1 the scheme is standard second-order scheme. To define the parameter n i , we need to use the following parameter:

n i+1/2 = ⇢ n i+1 (u n i+1 + k 2 ) ⇢ n i (u n i + k 2 ) e S n 1,i+1/2 x. (3.4.51)
We observe that if q n i+1 , q n i are connected by the steady state solutions, n i+1/2 will vanish.
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' n i = ✓ ⇢ n i+1 u n i+1 ⇢ n i u n i n i+1/2 ◆ 2 + ✓ ⇢ n i u n i ⇢ n i 1 u n i 1 n i 1/2 ◆ 2 .
(3.4.52)

The parameter n i can now be defined as follows:

n i = 8 > < > : 0, ' n i < m x, ' n i m x M x m x , m x < ' n i < M x, 1, ' n i > M x, (3.4.53) 
where 0 < m < M are numerical parameters to be given later. If q n i+1 , q n i , q n i 1

are connected by a steady state solution, ' n i will be very small, in this case the well-balanced scheme is used. If ' n i is large enough, we use the second-order scheme.

Taking the expanding or contracting e↵ects a(t) into account

We now consider the system with a = a(t) and we begin by providing a summary of the algorithm presented in the previous section. We construct the HLL scheme for the full model (3.2.5), which reads @ t U + @ x F (U ) = S(U, x, t).

(3.4.54)

We also recall the expressions of the conservative and flux variables:

U = ✓ U 0 U 1 ◆ = ✓ ⇢(1 + " 4 k 2 u 2 ) ⇢u(1 + " 2 k 2 ) ◆ , F(U ) = ✓ F 0 (U ) F 1 (U ) ◆ = ✓ ⇢u(1 + " 2 k 2 ) ⇢(u 2 + k 2 ) ◆ , (3.4 
.55) while the source has the form

S(U, x, t) = ✓ S 0 (U, x, t) S 1 (U, x, t) ◆ = @ta a ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 u 2 ⌘ 2⇢ ⇣ k 2 @xb b (1 " 2 u 2 ) @ta a (1 + " 2 k 2 )u ⌘ ! . (3.4.56)
We split the source term into two parts as follows:

S(U, x, t) = P (U, x) + Q(U, x, t), (3.4.57) where 

P (U, x) = ✓ 0 P 1 (U, x) ◆ = 0 2⇢k 2 @xb b (1 " 2 u 2 ) ! , (3. 
Q(U, x, t) = ✓ Q 0 (U, x, t) Q 1 (U, x, t) ◆ = @ta a ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 u 2 ⌘ 2 @ta a ⇢ (1 + " 2 k 2 )u ! . (3.4.59)
We use the finite volume methodology to discretize the model (3.4.54). We denote by U i and S i the cell average of the solution U (x, t) and the source term S(U, x, t) over a cell [x i 1/2 , x i+1/2 ] at some time t:

U i = 1 x Z x x+1/2 x i 1/2 U (x, t)dx, S i = 1 x Z x i+1/2 x i 1/2
S(U, x, t)dx.

(3.4.60)

We also introduce the average of the source term P (U, x) and Q(U, x, t) denoted by P i and Q i over the cell [x i 1/2 , x i+1/2 ] at some time t 

P i = 1 x Z x i+1/2 x i 1/2 P (U, x)dx, Q j = 1 x Z x i+1/2 x i 1/2 Q(U,
dU i dt = 1 x ⇣ F i+1/2 F i 1/2 ⌘ + P i + Q i . (3.4.62)
For the choices of the numerical flux F i+1/2 and the source term P i , we use the well-balanced discretization presented in the previous section. And we choose the midpoint for Q i as follows:

Q i = Q(U i , x i , t) = @ta a ⇢ j ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 (u i ) 2 ⌘ 2k 2 ⇢ j @ta a (1 + " 2 k 2 )u i ! . ( 3 

.4.63)

To increase the accuracy in the numerical experiments, we use the piecewise linear reconstructions in space and a fourth-order Runge-Kutta solver in time. We present several numerical examples for the cosmological fluid equations (3.2.7) in one space dimension. We assume a(t) = t  and we begin with a uniform geometry b(x) ⌘ 1, so that the source term reads

S 0 =  t ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 u 2 ⌘ , S 1 = 2⇢  t (1 + " 2 k 2 )u. (3.5.1)
Test 1: Initial density with two constant states. We choose the following initial data posed at t 0 = 1 and defined in the domain [0, 1]:

⇢ 0 (x), u 0 (x) = ( (1, 0), 0  x  0.5, (0.9, 0), 0.5 < x  1. (3.5.2)
This is a single jump discontinuity and we solve the initial value problem numerically with a periodic boundary condition.

We choose here the exponent  = 2, and t 2 [1, +1), and the sound speed k = 0.7, and the light speed to be unit. We denote by N the total number of grid cells in space. In the first numerical result, N = 5000 is chosen in order to have a very fine grid. We view this solution as our "reference solution". We compute the solution using N = 100 uniformly placed grid cells and CFL = 0.3 and compare it with the reference solution. The numerical solutions obtained by using the standard HLL scheme at several order of accuracy: first-order in time and first-order in space (1T 1S), fourth-order in time and second-order in space (4T 2S) at t = 1.1, which are presented in Figures 3.5.1. We observe that fourth-order in time and second-order in space discretization significantly provides better accuracy for the solution.

In Figure 3.5.2, we plot the solutions for N = 50, 100, 200, 400 at t = 1.1, respectively. The results demonstrate that the approximate solutions approach the reference solution as N increases.

Test 2: Initial density with oscillations. We now choose the initial data to be which has a variable density ⇢ and a vanishing velocity. In this test, the exponent is  = 2, the light speed is chosen to be unit, the sound speed is k = 0.5 with CFL = 0.3.

u 0 (x) = 0, ⇢ 0 (x) = 1 + sin ⇣ 6 7 ⇡x ⌘ cos ⇣ 7 2 ⇡x ⌘ , (3. 
The evolution of the solution u and ⇢ as t increases is shown in Figures 3.5.3 to 3.5.5, where we use N = 500. We observe that the solution ⇢ ! 0 and u ! 0 as t increases. Moreover, the figures show that initially the solution u evolves from the initial data into a sawtooth wave, which is a piecewise linear function. This transition happens in a relatively short scale. Then, the waves interact until there are only two N-waves left, that structure keeps for a very long time.

Rescaling the numerical solution We now display the rescaled solution e

u and e ⇢ defined in (3.2.10); see Figure 3.5.5. We observe that the asymptotic solution only contains two linear pieces with two jumps, and eventually converges to a constant.

Flows on a spatially homogeneous background in two space dimensions

Our algorithm in one space dimension is applied direction by direction on a Cartesian mesh. We checked that our two-dimensional code is "consistent" with the results provided in one dimension, and in the typical test chosen above a very similar asymptotic rescaled density is recovered.

Similar to the one dimensional tests we assume that a(t) = t  and we begin with a uniform geometry b(x, y) ⌘ 1, so that the source term reads We choose this initial data (Figure 3.5.6) to be able to observe that the solution preserves its symmetry. In addition, in all two-dimensional tests from here, the exponent  = 2, the sound speed k = 0.5, CFL = 0.5, the light speed to be a unit, and the grid is [100 ⇥ 100]. For the expanding test cases t 2 [1, +1) is chosen. respectively. We take N = 100, " = 1, k = 0.5 and CF L = 0.6. We plot the solutions by using the modified HLL scheme and standard HLL scheme when t = 10, see Figure 3.5.8-3.5.9. We observe that the modified HLL scheme can exactly preserve the steady state solution, however, the standard HLL scheme can't preserve this solution. Note that the oscillations appear for the velocity solution. Test 2: Perturbed initial data. In this test, we choose the following initial data We observe that even if the initial data is not the steady state solution, the solution converges to the steady state solution at some time, which shows that the scheme can capture this solution.

S 0 =  t ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 V 2 ⌘ , S 1 = 2⇢  t (1 + " 2 k 2 )u, S 2 = 2⇢  t (1 + " 2 k 2 )v. ( 3 
u 0 = 0, ⇢ 0 (x) = ( b 2 (x) + 0.02 cos(30⇡x), 0.2  x  0.7, b 2 (x), otherwise, (3. 
Test 3: Perturbed initial data. We now turn to considering the Euler model when a(t) 6 = 1. We take here  = 2, and we choose the same initial data as (3.5.9). We plot the solution when t = 10 and t = 20, see Figure 3.5.11. We find that the solution ⇢ ! 0 and u ! 0, as t increases.

Rescaling the numerical solution We now display the rescaled solution e u and e ⇢ defined in (3.2.10); see Figure 3.5.12. It is observed that the asymptotic density converges the function b 2 (x), while the rescaled velocity converges to 0. 

Flows on an inhomogeneous background in two space dimensions

Similar to the one-dimensional tests, again we expect that the asymptotics of the solutions at the fine scale level is driven by the underlying background geometry which we now assume to be inhomogeneous in both spatial directions. We then performed genuinely two-dimensional tests, as now presented. ( The two-dimensional system is solved with the standard HLL scheme and our proposed one. In Figures 3.5.14 and 3.5.15, we plot the rescaled solution e ⇢ and velocity magnitude V at t = 8, 16, 50, 60, respectively. The results of both schemes demonstrate that the solution e ⇢ ! Cb 2 (x, y) as t increases. The solutions of the wellbalanced scheme converge to the steady state solution drastically faster and show significant improvements in comparison to the non-well-balanced ones. This shows the importance of using the well-balanced scheme. Test 2: Point symmetrical initial data in an expanding background. In this test we demonstrate the e↵ect of a(t) = t  when t 2 [1, +1) over the background geometry b(x, y) in (3.5.11). We solve the 2-D system similar to the previous test in this section and plot the rescaled solution e ⇢ and velocity magnitude V at t = 8, 16, 50, 60, respectively. The results of both schemes demonstrate that the solution ⇢ ! 0, V ! 0 and the rescaled density converges to Cb 2 (x, y) (where C is a positive constant) as t increases. It can be seen that the solutions of the well-balanced scheme show significant improvements in comparison to the non-well-balanced ones.

Conclusion for an expanding background

Based on the numerical experiments in this section, we have the following observations:

• On a homogeneous geometry, both in one space and two space dimensions the rescaled density e ⇢ converges to a constant, while the rescaled velocity e u converges to zero.

• On an inhomogeneous geometry described by a function b = b(x) in one space dimension and b = b(x, y) in two space dimensions, the asymptotic solution after rescaling coincides with this geometric function up to a multiplicative constant.

We thus reach the following conclusion and conjecture.

Claim 5 (Compressible fluid flows on a future-expanding cosmological background).

The asymptotic behavior of the solutions to the fluid model (3.2.1) posed on a futureexpanding cosmological background is described as follows:

• The solution (⇢, u) = (⇢, u)(t, x) (with t > 0) decays to zero as t ! +1:

lim t!+1 ⇢(t, x) = 0, lim t!+1 u(t, x) = 0, x2 [0, 1]. ( 3 
.5.12)

• Spatially homogeneous background. When the function b is a constant, the asymptotic rescaled solution defined in (3.2.14) is a constant with vanishing velocity: (⇢, u) = (⇢, 0). For su ciently large times, the solution is not stationary but is approximately time-periodic.

-One space dimension. The solution propagates at the sound wave speed ±k. The rescaled density defined in (3.2.10) looks like two constant density states, both converging to the constant density ⇢, while the velocity e u looks like two linear parts separated by two discontinuities and both linear pieces are converging to u = 0. 3.6. Global dynamics on a future-contracting background -Two space dimensions. Converges to constant is also observed.

• General background. On a spatially inhomogeneous background the rescaled solution (e ⇢, e u) defined in (3.2.14) approaches a non-trivial limit as t ! +1 of the form

⇢(x) = lim t!+1 e ⇢(t, x) = C 1 b 2 (x), u(x) = lim t!+1 e u(t, x) = 0, x2 [0, 1],
(3.5.13) where C

1 > 0 is a constant.

3.6 Global dynamics on a future-contracting background

Spatially homogeneous background in one space dimension

In the future-contracting case, we now demonstrate that the density ⇢ ! +1 blows up, while the velocity u approaches the light speed value or zero.

A test with variable density data We choose the same initial data as test 2 of the expanding background to be

u 0 (x) = 0, ⇢ 0 (x) = 1 + sin ⇣ 6 7 ⇡x ⌘ cos ⇣ 7 2 ⇡x ⌘ . (3.6.1)
We take the exponent  = 2, N = 500 with CFL = 0.3, and the light speed to be unit. In Figure 3.6.1 and 3.6.2, we plot the evolution of the solution u and ⇢ as t ! 0 with the sound speed k = 0.5. We find that ⇢ ! +1 and u ! ±1, as t ! 0. We also plot the solution u and ⇢ when the sound speed k = 0.1 in Figure 3.6.3, which also shows that ⇢ ! +1 and u ! ±1, as t ! 0. However, the phenomenon of u ! ±1 when k = 0.1 appears earlier than the case k = 0.5. In Figure 3.6.4, we plot solution u and ⇢ with k = 0.9 at t = 10 6 . Observe that the density ⇢ blows up, while the velocity u converges to 0.

Rescaling the numerical solution We now plot the rescaled solution e ⇢ defined in (3.2.15) with the initial data given by (3.6.1) and k = 0.5; see Figure 3.6.5. We observe that the asymptotic solution e ⇢ approaches a bounded and stationary limit. 

Flows on a spatially homogeneous background in two space dimensions

In the two-dimensional future-contracting case, we now demonstrate that the density ⇢ ! +1 blows up, while the velocity magnitude V approaches the light speed value.

Test 1: Symmetrical initial data. We choose the initial data (3.5.11) posed at t 0 = 1 and defined in the domain [0, 1] ⇥ [0, 1]. Recall that in all two dimensional tests, the exponent  = 2, the sound speed k = 0.5, CFL = 0.5, the light speed to be a unit, and the grid is [100 ⇥ 100].

In Figure 3.6.6, we plot the rescaled solution ⇢ and velocity magnitude t = 0.5, 10 1 , 10 3 , 10 5 , respectively. The results which are obtained by the standard HLL scheme demonstrate that the solution ⇢ ! +1 and V ! 1 as t increases.

Flows on an inhomogeneous background in one space dimension

A test with variable density data We choose the function b(x) as follows:

b(x) = 1 + 0.01 sin(6⇡x) + cos(2⇡x) ,

and the initial data to be

v 0 = 0, ⇢ 0 (x) = b 2 (x), (3.6.3) 
at t 0 = 1. We take  = 2. We can obtain the same result as the homogeneous case on a contracting background, that is ⇢ ! +1 and u ! ±1 or 0, as t ! 0. We plot the solution u and ⇢ at t = 10 7 with k = 0.3, see Figure 3.6.7. Observe that in this case ⇢ ! +1 and u ! ±1, as t ! 0. Moreover, in Figure 3.6.8, we plot the solution at t = 10 7 with k = 0.9. We observe that ⇢ ! +1 and u ! 0.

Rescaling the numerical solution We now plot the rescaled solution e ⇢ defined in (3.2.15) in Figure 3.6.9. Similar to the spatially homogeneous case, we observe the asymptotic solution e ⇢ approaches a bounded and stationary limit. ). The two-dimensional system is solved with the standard HLL scheme and our proposed one. In Figures 3.6.10 and 3.6.11, we plot the rescaled solution ⇢ and velocity magnitude V at t = 10 1 , 10 3 , 10 5 , 10 8 , respectively. The results of both schemes demonstrate that the solution ⇢ ! +1, and velocity magnitude V ! 1 as t increases.

Conclusion for a contracting background

Again we are able to "validate" the exponents that were derived theoretically.

Claim 6 (Compressible fluid flows on a future-contracting cosmological background).

The asymptotic behavior of solutions to the cosmological fluid model on a futurecontracting background is as follows:

• The density ⇢ = ⇢(t, x) blows up as t ! 0 while the velocity approaches zero or the light speed:

lim t!0 ⇢(t, x) = +1, lim t!0 u(t, x) 2 1, 0, +1 , x2 [0, 1]. ( 3 
.6.4)

• On a spatially homogeneous and inhomogeneous background. The rescaled density e ⇢ defined in (3.2.15) approaches a bounded and stationary limit. Chapter 4: A geometry-preserving method for compressible fluid flows on a FLRW cosmological background 149

Introduction

We study a nonlinear hyperbolic model of relativistic compressible fluid evolving on a Friedmann-Lemaître-Robertson-Walker (FLRW) background spacetime. We impose that the sound speed is constant, then we obtain an Euler model of interest here from the energy-momentum tensor for perfect fluids. Throughout this paper, we assume that the fluid flow enjoys some symmetry so that the Euler equations become a (1 + 1)-dimensional nonlinear hyperbolic system of partial di↵erential equations. Our aim is to apply the shock-capturing, high-order finite volume method introduced in chapter 3 to our Euler model under consideration here. The scheme allows us to compute the weak solutions containing shock waves and investigate the propagation and nonlinear interaction of shock waves in presence of such curved geometry. The proposed scheme is su ciently robust and accurate, which preserves and captures the steady state solution.

The FLRW geometry (discovered by Friedmann, Lemaître, Robertson, Walker) is an exact solution of Einstein's field equations of general relativity when a cosmological constant is assumed, which is the simplest, yet challenging, model for a homogeneous and isotropic cosmological spacetime. We express the metric in the form

g = c 2 dt 2 + a(t) 2 ⇣ dy 2 + ⌘ 2 (y) d✓ 2 + sin 2 ✓d' 2 ⌘ , (4.1.1) 
where t denotes the proper time measured by a co-moving observer, and y denotes the co-moving distance and ✓, ' are coordinates defined in the co-moving frame.

Here, we denote by c > 0 the light speed, while the function a = a(t) > 0 is a prescribed function and is referred to as the cosmic expansion factor and may be chosen as a(t) = t ↵ with ↵ = 2/3 or on the de sitter space a(t) = e Ht . Since shock wave solutions to nonlinear hyperbolic equations are only defined in forward time directions and the equation is singular at t = 0, we distinguish between two regimes:

• In the range t 2 [1, +1), the spacetime is expanding toward the future.

• In the range t 2 [ 1, 0), the spacetime is contracting toward the future.

For our investigations, the function ⌘ = ⌘(y) and the range of y are given by one of the following expressions:

• When the curvature is positive, the space geometry is a 3-sphere, y denotes a new angular coordinate of the sphere, whose range is y 2 (0, ⇡), and ⌘(y) = sin y is a new radius coordinate of the sphere. We observe that the function ⌘(y) vanishes at the endpoint of this interval.

• When the curvature is vanishing, the spatial geometry is a Minkowski spacetime (flat spacetime), in spherical coordinates on each hypersurface t = const, and y denotes the distance from the origin, so the range y 2 (0, +1), in which ⌘(y) = y. It can be observed that ⌘(y) vanishes at the point y = 0.

• When the curvature is negative, the spatial geometry is a hyperbolic spacetime, the range y 2 (0, +1), and ⌘(y) = sinh y. We observe that ⌘(y) vanishes at the point y = 0.

This chapter is organized as follows. In Section 4.2, we present the model of interest and its derivation from the divergence tensor for perfect compressible fluid. We then give some properties of the Euler model in Section 4.3. We formulate the initial value problem and describe the spatially homogeneous solutions and smooth steady state solutions for the Euler equations. In Section 4.4, we construct a wellbalanced scheme for the Euler equations based on the finite volume methodology, which is a generalization of the numerical method posed in Chapter 3. For the sake of comparison, we give an elementary scheme in Section 4.5. Several numerical experiments are presented in Section 4.6, which provide a validation of the given scheme. Finally, we study the asymptotic dynamics of the flows on the expanding and contracting background in Section 4.7 and Section 4.8, respectively.

Derivation of the fluid models of interest 4.2.1 The Euler-FLRW models

In this section, we derive the Euler model of interest in this paper and let us summarize here the form we will find the Euler system for a perfect compressible fluid on a FLRW background reads

@ t (µc 4 + pv 2 ) c 2 v 2 a 3 ⌘ 2 ! + @ y (µc 2 + p)c 2 v c 2 v 2 a 2 ⌘ 2 ! = c 2 (v 2 µ + p) c 2 v 2 a 2 (@ t a)⌘ 2 2p a 2 (@ t a)⌘ 2 , @ t (µc 2 + p)v c 2 v 2 a 4 ⌘ 2 ! + @ y c 2 (v 2 µ + p) c 2 v 2 a 3 ⌘ 2 ! = 2p a 3 ⌘@ y ⌘, (4.2 
.1) where µ 0 denotes the mass-energy density of the fluid and v 2 ( c, c) its velocity, while the pressure p = p(µ) is a prescribed function. In the present paper, we focus on the fluids with constant sound speed which are governed by

p = k 2 µ, (4.2.2) 
where k 2 (0, c) denotes sound speed.

It will be useful to introduce the cosmological time ⌧ as our new time function Chapter 4: A geometry-preserving method for compressible fluid flows on a FLRW cosmological background 151 as well as a rescaled mass-energy density ⇢, specifically a(t) @ @t = @ @⌧ , ⇢= µ 1 " 2 v 2 a 2 ⌘ 2 , (4.2.3)

with " = 1/c, thus after re-organizing the terms, the system (4.2.1) becomes

@ ⌧ ⇣ ⇢(1 + " 4 k 2 v 2 ) ⌘ + @ y ⇣ ⇢v(1 + " 2 k 2 ) ⌘ = @ ⌧ a a ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 v 2 ⌘ , @ ⌧ ⇣ ⇢v(1 + " 2 k 2 ) ⌘ + @ y ⇣ ⇢(v 2 + k 2 ) ⌘ = 2⇢ ⇣ k 2 @ y ⌘ ⌘ (1 " 2 v 2 ) @ ⌧ a a (1 + " 2 k 2 )v ⌘ .
(4.2.4) In the limit " ! 0 the system (4.2.4) simplifies drastically and becomes

@ ⌧ ⇢ + @ y (⇢v) = @ ⌧ a a ⇢, @ ⌧ (⇢v) + @ y ⇣ ⇢(v 2 + k 2 ) ⌘ = 2⇢ ⇣ k 2 @ y ⌘ ⌘ @ ⌧ a a v ⌘ , (4.2.5) 
which we refer to as the non-relativistic Euler-FRLW model.

Relativistic Euler equations

Let (M, g) be a smooth, time-oriented, (3 + 1)-dimensional Lorentzian manifold and consider the relativistic Euler equations on the curved background (M, g) r ↵ T ↵ = 0, T ↵ = (µc 2 + p)u ↵ u + p(µ) g ↵ , (

where T ↵ is called the energy-momentum tensor for perfect fluids. Here, µ 0 denotes the mass-energy density of the fluid and p denotes the pressure of the fluid, while u = (u ↵ ) is a future-oriented, unit timelike vector field and represents the velocity of the fluid flow, satisfying by definition the normalization g ↵ u ↵ u = 1 and u 0 > 0. Moreover, an equation of state for the pressure p = p(µ) must be given for the Euler equation. In our work, we consider the case when the equation of state is given by p = k 2 µ, where 0 < k < c is the sound speed taken to be constant, and the other case when the fluid is pressureless, that is p ⌘ 0. So the pressureless fluids of the equations read r ↵ µ u ↵ u = 0.

Let us perform the following formal calculation, which is valid for (Lipschitz) continuous solutions with µ > 0. Observe that g ↵ r u ↵ u = 0, hence µr ↵ u ↵ u + µu ↵ r ↵ u + u ↵ u r ↵ µ = 0.

Derivation of the fluid models of interest

We then consider the Euler system r ↵ (T ↵ ) = 0, (4.2.15)

which can be rewritten as the form in coordinates @ ↵ T ↵ + ↵ ↵ T + ↵ T ↵ = 0. Taking = 0 and = 1 respectively and substituting the expressions of the Christo↵el symbols, we can get @ 0 T 00 + @ 1 T 10 + 3@ t a ca T 00 + a@ t a c T 11 + 2@ y ⌘ ⌘ T 10 + a@ t a⌘ 2 c T 22 + a@ t a⌘ 2 sin 2 ✓ c T 33 = 0, @ 0 T 01 + @ 1 T 11 + 4@ t a ca T 01 + @ t a ca T 10 + 2@ y ⌘ ⌘ T 11 ⌘@ y ⌘T 22 ⌘@ y ⌘ sin 2 ✓T 33 = 0. 2p@ y ⌘ a 2 ⌘ = 0.

(4.2.17)

After calculation and replacing the notation (@ 0 , @ 1 ) by (@ t , @ y ), the system (4.2.17) can be written as follows:

@ t a 3 ⌘ 2 (µc 4 + pv 2 ) c 2 v 2 ! + @ y a 2 ⌘ 2 (µc 2 + p)c 2 v c 2 v 2 ! = c 2 (v 2 µ + p) c 2 v 2 a 2 (@ t a)⌘ 2 2p a 2 (@ t a)⌘ 2 , @ t a 4 ⌘ 2 (µc 2 + p)v c 2 v 2 ! + @ y a 3 ⌘ 2 c 2 (v 2 µ + p) c 2 v 2 ! = 2p a 3 ⌘@ y ⌘, (4.2 
.18) for the case of p = k 2 µ, which reduces to

@ t a 3 ⌘ 2 µ(c 4 + k 2 v 2 ) c 2 v 2 ! + @ y a 2 ⌘ 2 µ(c 2 + k 2 )c 2 v c 2 v 2 ! = c 2 µ(v 2 + k 2 ) c 2 v 2 a 2 (@ t a)⌘ 2 2k 2 µ a 2 (@ t a)⌘ 2 , @ t a 4 ⌘ 2 µ(c 2 + k 2 )v c 2 v 2 ! + @ y a 3 ⌘ 2 c 2 µ(v 2 + k 2 ) c 2 v 2 !
= 2k 2 µ a 3 ⌘@ y ⌘. a into account as follows: a(t) @ @t = @ @⌧ (4.2.20)

and also to rescale the mass-energy density by taking also the geometry into account

⇢ = a 2 ⌘ 2 µ 1 " 2 v 2 .
(4.2.21)

Setting also " = 1 c our Euler-FLRW system (4.2.19) reads @ ⌧ U + @ y F (U ) = S(U, y, ⌧ ).

@ ⌧ ⇣ ⇢(1 + " 4 k 2 v 2 ) ⌘ + @ y ⇣ ⇢v(1 + " 2 k 2 ) ⌘ = @ ⌧ a a ⇢ ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 v 2 ⌘ , @ ⌧ ⇣ ⇢v(1 + " 2 k 2 ) ⌘ + @ y ⇣ ⇢(v 2 + k 2 ) ⌘ = 2⇢ ⇣ k 2 @ y ⌘ ⌘ (1 " 2 v 2 ) @ ⌧ a a (1 + " 2 k 2 )v ⌘ . ( 4 
(4.3.1a)

The expressions of the conservative and flux variables have the form:

U = ✓ U 1 U 2 ◆ = ✓ ⇢(1 + " 4 k 2 v 2 ) ⇢v(1 + " 2 k 2 ) ◆ , F (U ) = ✓ F 1 (U ) F 2 (U ) ◆ = ✓ ⇢v(1 + " 2 k 2 ) ⇢(v 2 + k 2 )
◆ , The approximate solution at time ⌧ n is made of piecewise constant values U n i on each cells. The updated solution at ⌧ n+1 is

U n+1 i = U n i t x F n i+1/2 F n i 1/2 + tS n i , (4.4.5) 
where F n i+1/2 is the numerical flux at the interface y i+1/2 and S n i is the approximate source term to be defined, which are based on the well-balanced scheme constructed in chapter 3.

A four-state Riemann solver

To evolve the approximate solution in time, we consider the following local Riemann problem at each interface y i+1/2 : @ ⌧ U + @ y F (U ) = S(U, y), Since the solution of (4.4.6) can not be determined explicitly, we are going to introduce an approximate Riemann solver to the above problem.

We rewrite the Riemann problem posed in a control volume [y L , y R ] ⇥ [0, ⌧ ] to the following system with the simplified notations: @ ⌧ U + @ y F (U ) = S(U, y), U (0, y) = ( U L , y < 0, U R , y > 0, (4.4.7)

where U L and U R are constant states. The exact solution of (4.4.7) is denoted by R 1 = R 1 (⌧, y; U L , U R ). Recall that the approximate Riemann solver introduced in chapter 3 with a four-state is defined as where ⇠ = y/⌧ is a self-similar variable, and the two state vectors U M and U + M , as well as the approximate speeds L and R need to be defined. By assumption, L is chosen to be negative, and R to be positive. For the Euler system it is natural to choose the following expressions for the wave speeds:

R 4 = R 4 (⇠; U L , U R ) = 8 > > > < > > > : U L , ⇠< L , U M , L < ⇠ < 0, U + M , 0 < ⇠ < R , U R , R < ⇠,
R = max ⇣ 0, v L + k 1 + " 2 kv L , v R + k 1 + " 2 kv R ⌘ , L = min ⇣ 0, v L k 1 " 2 kv L , v R k 1 " 2 kv R ⌘ .
(4.4.9)

The values of the intermediate states U M and U + M (4 scalar unknowns) must be found.

Construction of the Riemann solver

We apply the method introduced in chapter 3 to construct the intermediate states U M and U + M , which should satisfy the consistency property and well-balanced property. We obtain the following formula of the intermediate states. where

⇤(v L , v R ) = k 2 v L v R 1 " 4 k 2 v L v R , U M = R U R L U L ⇣ F (U R ) F (U L ) ⌘ R L
, (4.4.12)

and R , L are given by (4.4.9), e S 2 ( ⌧, y; U L , U R ) is the approximate source term to be chosen later and ✓ 0 is a small parameter to be fixed in the numerical exper-166 4.4. Well-balanced method for the Euler-FLRW system. Case a ⌘ 1 iments.

Choice of the discretization of the source term

We now give a brief review of the approximate source term. The following expression

e S 2 ( ⌧, y; U L , U R ) y = 2k 2 ⇣ 1 " 2 v L + v R 2 2 ⌘ 2⇢ L ⇢ R ⇢ L + ⇢ R ln ⌘(y R ) ⌘(y L ) k 2 2⇢ L ⇢ R ⇢ L + ⇢ R ln ⇢ R ⇢ L +k 2 (⇢ R ⇢ L ) (4.4.13
) is called the well-balanced source for the Euler-FLRW system, which provides us with one algebraic relation for the function e S 2 ( ⌧, y; U L , U R ). Recall that the approximation of source term given by (4.4.13) is just consistent with the exact source term for smooth solution. To ensure the consistency property, we modify (4.4.13) as follows:

• If e S 2 ( ⌧, y; U L , U R )) y/ ⇣ 2k 2 1 " 2 v L +v R 2 2 2⇢ L ⇢ R ⇢ L +⇢ R ln ⌘(y R ) ⌘(y L )
⌘ < ↵, we use the relation (4.4.13), where ↵ is a positive constant to be fixed in the numerical experiments.

• Otherwise,

e S 2 ( ⌧, y; U L , U R ) y = 2k 2 ⇣ 1 " 2 v L + v R 2 2 ⌘ 2⇢ L ⇢ R ⇢ L + ⇢ R ln ⌘(y R ) ⌘(y L ) . (4.4.14)
We note that the definition for the approximation of the source term (3.4.31) will not work if ⇢ L = 0 and ⇢ R = 0. Thus we take e S 2 (U L , U R , y L , y R ) y = 0 if ⇢ L = 0 and ⇢ R = 0. Now, the approximation of the source term has been determined.

A well-balanced scheme

We now provide a well-balanced scheme based on the Riemann solver presented in the previous section when the system a(t) ⌘ 1. We write the finite volume scheme for the Euler-FLRW model as follows:

U n+1 i = U n i ⌧ y F n i+1/2 F n i 1/2 + ⌧ S n i , (4.4.15) 
Chapter 4: A geometry-preserving method for compressible fluid flows on a FLRW cosmological background 167 where F n i+1/2 is the numerical flux at the interface y i+1/2 , defined by: We also assume that the wave speeds satisfy the CFL condition:

F n i+1/2 = F(U n i , U n i+1 ) = 1 2 ⇣ F (U n i ) + F (U n i+1 ) + n L,
⌧ y max ⇣ | n L,i+1/2 |, | n R,i+1/2 | ⌘ < 1 2 , (4.4.20) 
which insures that no wave interaction takes place within one time interval.

An elementary scheme for the sake of comparison

In this section, we use the standard HLL scheme for the Euler-FLRW model (4.3.1). We use the finite volume methodology to discretize this model in space and time as the section 4.4.1. We have the following approximation for this model:

U n+1 i = U n i ⌧ y F n i+1/2
F n i 1/2 + ⌧ S n i , (4.5.1) 168 4.6. Validation of the numerical method where for the numerical flux we choose the HLL flux:

F HLL (U L , U R ) = R F (U L ) L F (U R ) R L + L R (U R U L ) R L . (4.5.2)
And we define the approximation of the source term as follows:

S n i = S(U n i , y i , ⌧ n ) = ✓ S n 1,i S n 2,i ◆ = @⌧ a n a n ⇢ n i ⇣ 1 + 3" 2 k 2 + (1 " 2 k 2 )" 2 (v n i ) 2 ⌘ 2⇢ n i ⇣ k 2 @y⌘(y i ) ⌘(y i ) (1 " 2 (v n i ) 2 ) @⌧ a n a n (1 + " 2 k 2 )v n i ⌘ ! .
(4.5.3)

Validation of the numerical method

We now present some numerical experiments using the modified HLL scheme to the Euler-FLRW model (4.3.1). We first validate the well-balanced property of the scheme, that is, it preserves and captures the smooth steady solutions of the Euler-FLRW model when a(t) ⌘ 1.

Test 1: stationary state. We first assume that a(t) ⌘ 1 and consider the special steady state solutions i.e. the stationary solution described in Lemma 4.3.2, given by v = v(y) ⌘ 0, ⇢= ⇢(y) = C⌘ 2 (y), (4.6.1)

where C is a constant. We use di↵erent schemes to show that the modified HLL scheme is well-balanced which preserves such special smooth steady state solution.

In our numerical test, we consider the spherical geometry, in which ⌘(y) = sin(y), and y 2 (0, ⇡). We let the sound speed k = 0.7, " = 1, and the CFL number be 0.3. The initial data is given by v 0 (y) = 0, ⇢ 0 (y) = sin 2 (y). (4.6.2)

We plot the initial data at ⌧ = 1 and the evolution of this static solution at ⌧ = 2, 10, 100. From the Figure 4.6.1, we observe that the modified HLL scheme can exactly preserve the stationary solution. However, there are large spurious oscillations around the boundary by using the standard HLL scheme, which is non-well-balanced.

Test 2: stationary state with perturbations. We then choose an initial data with perturbations of the above steady state solution. We plot the solution at ⌧ = 100, see Figure 4.6.2. We observe that the numerical solution by using the well-balanced scheme still converges to the steady state solution. We now plot the rescaled solution e v and e ⇢, see Figure 4.7.3. We find that the rescaled velocity goes to 0. We also plot the function e ⇢/⌘ 2 in the right side of the Figure 4.7.3. We observe that such function converges to a constant by using the well-balanced scheme, which shows us the rescaled density e ⇢ ! C⌘ 2 , where C is a constant. However, the solution appears large spurious oscillations, especially around the boundary by using the non-well-balanced scheme.

Claim 7 (Asymptotic dynamics on an expanding background). The asymptotic behavior of the solution to the compressible Euler model on an expanding background is such that: lim 

Asymptotic dynamics on a contracting spacetimes

A test with variable density data We turn to the fluid flows on the contracting spacetimes. We consider here the full Euler-FLRW model in spherical geometry. In the test, we use the initial data given by (4.7.1), which is plotted in Figure 4.8.1. We choose here  = 2, the sound speed k = 0.5, " = 1, and the CFL number to be 0.3. We plot the solution at ⌧ = 10e 6, see Figure 4.8.2. We find the solution density ⇢ blows up, and the velocity v goes to the ±1. ⇢ approaches a bounded and stationary limit.

The following conclusion and conjecture is obtained based on the numerical experiments above. Moreover, the rescaled solution e ⇢ goes to a bounded and stationary limit. 

Conclusion

In this chapter, we studied the Euler model of relativistic compressible fluid flows posed on the FLRW background. We first gave the form of the Euler model, and its derivation, as well as several properties of the model. We then considered the smooth steady state solutions of the flows, when evolve on some spatial geometry (spherical, Euclidean or hyperboloidal geometry). Next, we applied the numerical scheme constructed in Chapter 3 to our Euler-FLRW model. The numerical experiment showed that the scheme is well-balanced, which preserved and captured the smooth steady state solutions. We also investigated numerically the asymptotic dynamics of the compressible model on the expanding and contracting spacetimes.
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 134 Jump conditions for steady state solutions). A steady state discontinuity of the Euler model (1.1.1) associated with left/right-hand limits (⇢ L , v L ) and

  separated by a discontinuity Chapter 1: Global existence for a one-dimensional non-relativistic Euler model with relaxation 41 at a fixed point r 0 with the relation

  r) be two steady state solutions given by (1.3.1). The curves r M L ± , r R M ± are uniquely defined by (1.4.4), (1.4.5) for all t > 0 respectively, with bounded derivatives.

  r and we denote by r M L (t), r M L + (t) and r R M (t), r R M + (t) the 1-rarefaction region and the 2-rarefaction region, respectively.

±

  are boundaries of the rarefaction regions defined by(1.4.4),(1.4.5).
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 143 The solution of the generalized Riemann problem). Consider the generalized Riemann problem for the Euler model (1.1.1),(1.4
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 144 Let U = (⇢, v) = (⇢, v)(t, r) be the solution of the generalized Riemann problem of the Euler model (1.1.1) whose initial data U

1. 5 .

 5 Triple Riemann problem Lemma 1.5.3. Let T f be the first moment of interaction and we suppose T f < +1 and the Euler model (1.1.1) has 2-rarefaction of the left-hand problem and the 1-shock of the right-hand problem. Then there exists a time T rs such that we have a solution of Problem P rs for all 0 < t < T rs .Proof. Again, we only have to construct a solution after t > T f . Let us first write e U ↵, 2 = e U ↵, 2 (t, r) the 2-rarefaction wave of the left-hand problem which evolves in the region r M L L (t), r M L + L (t) . Then we give
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 1 5.10) with U rs,0 M given by (1.5.8) and U rs,1 M the solution of the Riemann problem generated by initial data U ↵, M , U rs,0 MM at the radius r = f r L M rs (T 0 rs ) = r L M L (T 0 rs ) from the very Chapter 1: Global existence for a one-dimensional non-relativistic Euler model with relaxation 49 moment t = T 0 rs . Now we denote by

  Theorem 1.6.1 (Global existence theory). Consider the Euler model with source term describing fluid flows (1.1.1). For any given initial density ⇢ 0 = ⇢ 0 (r) > 0 and Chapter 1: Global existence for a one-dimensional non-relativistic Euler model with relaxation 53
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 242243244245 Figure 2.4.2: (a) Numerical solution: first-order in space and Runge-Kutta in time. (b) Magnified solution.
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 246 Figure 2.4.6: (a) Second-order in space second-order in time compared to secondorder in space and fourth-order in time. (b) Magnified solution.
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 2475248 Figure 2.4.7: Comparing solutions for di↵erent grid cells in space at the time ⌧ = 5.
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 249 Figure 2.4.9: Rescaled solution for the model with  = 2.
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 24112412 Figure 2.4.11: Initial data at ⌧ = 1 for a contracting background.
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 2424132414 Figure 2.4.13: Convergence of the solution on a contracting background.
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 2415 Figure 2.4.15: Comparing the rescaled solutions on a contracting background with  = 2. (a) Di↵erent grid resolutions at ⌧ = 10 4 . (b) High-resolution grid for di↵erent ⌧ with ⌧ smaller than the one given by a CFL number 0.25.
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 24162417 Figure 2.4.16: Convergence of solutions at di↵erent ⌧ with a grid of 800 cells.
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 22418 Figure 2.4.18: Standard Burgers equation at the times ⌧ = 32 and 64.
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 2512 Figure 2.5.1: 2-D contours of the rescaled velocity w with an [800 ⇥ 800] grid and  = 2. (a) Initial condition at ⌧ = 1. (b) ⌧ = 16. (c) ⌧ = 128. (d) ⌧ = 512.
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 2 Figure 2.5.2: 3-D contours of rescaled velocity w with an [800 ⇥ 800] grid and  = 2. (a) Initial condition at ⌧ = 1. (b) ⌧ = 512.
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 2532254225 Figure 2.5.3: 2-D contours of rescaled velocity w with an [800 ⇥ 800] grid,  = 2 at ⌧ = 1024 with di↵erent orders of spatial and temporal discretization.
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 2552 Figure 2.5.5: 2-D and 3-D contours of the rescaled solution w with flux g(v) = v 3 /2 at two di↵erent times.
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 256 Figure 2.5.6: 2D and 3D contours of the solution with flux g(v) = (1)v 2 /2+ v 3 /3 and = 1/2 at two di↵erent times.
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 2572 Figure 2.5.7: 2-D contours of the velocity v with an [800 ⇥ 800] grid and  = 2 at di↵erent times. (a) ⌧ = 10 1 , (b) ⌧ = 10 2 . (c) ⌧ = 10 3 . (d) ⌧ = 10 4 .
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 2 Figure 2.5.8: 3-D contours of velocity v with an [800⇥800] grid and  = 2 at di↵erent times. (a) ⌧ = 10 1 . (b) ⌧ = 10 4 .
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 25922525 Figure 2.5.9: 2-D contours of the velocity v with an [800 ⇥ 800] grid,  = 2 at ⌧ = 10 8 with di↵erent orders of spatial and temporal discretization.
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 2511 Figure 2.5.11: 2D and 3D contours of the solution with flux g(v) = v 3 /2 at two di↵erent times.
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 25122513 Figure 2.5.12: 2D and 3D contours of the solution with flux g(v) = (1 )v 2 /2+ v 3 /3 and = 1/2 at two di↵erent times.
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 21533 The finite volume methodology with positive exponents ↵, > 0, in which e

  3.6) and (3.3.7) into (3.3.5) yields two scalar conditions:

Claim 3 .

 3 The approximate Riemann solver with two intermediate state vectors U + M and U M is consistent with the conservation laws (3.3.1) if
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 341 The well-balanced property). The scheme (3.3.30) is well-balanced provided the intermediate states U M and U +
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 3 A numerical study of the asymptotic structure of cosmological fluid flows 109 Construction of U 0,M and U + 0,M

  .4.14) 110 3.4. A well-balanced finite volume scheme for cosmological fluid flows

  3.27) and (3.4.16), we obtain
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 342 Given any two constants U L and U R , the intermediate states U + M and U M given by (3.4.18)-(3.4.19) satisfy the following properties: • Consistency property. The intermediate states U + M and U M satisfy the consistency condition (3.3.27).

  .4.22) 112 3.4. A well-balanced finite volume scheme for cosmological fluid flows where U 1,LR has been introduced in (3.4.8):
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 23 Integrating (3.4.22) and (3.4.23) over [x L , x R ], we obtain the following algebraic relations:
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 431344 is called the well-balanced source for the Euler system, where u LR and w LR are given by (3.4.25) and (3.4.29), A LR is given by (3.4.30), w and B are introduced in (3.4.27). Consistency of the approximation of the source term). For smooth solution ⇢ = ⇢(x) and u = u(x), and given function b = b(x), the expression of e S 1 ( t, x; U L , U R ) given by (3.4.31) is consistent with the source term S 1 (U, x) = 2⇢k 2 bx b (1 " 2 u 2 ).Proof. For the smooth solution ⇢ = ⇢(x), u = u(x) and smooth function b(x), we take⇢ L = ⇢(x) and ⇢ R = ⇢(x + x), u L = u(x) and u R = u(x + x).With the functions w and B introduced in (3.4.27), we know that w and B are smooth functions. Hence, we let w L = w(x), w R = w(x + x), B L = B(x) and B R = B(x + x). We then use the Taylor's expansion
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 5 Figure 3.5.1: First-order in time and first-order in space (1T 1S) compared to fourthorder in time and second-order in space (4T 2S).
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 352 Figure 3.5.2: Fourth-order in time and second-order in space scheme for di↵erent space grid cells.
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 412 Test Symmetrical initial data. We choose the following initial data posed at t 0 = 1 and defined in the domain [0, 1] ⇥ [0, 1]: ⇢ 0 (x, y) = 0.1 + 0.1e20(x 0.5) 
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 5354 Figure 3.5.3: The evolution of solution u and ⇢ as t increases on an expanding background.
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 357 Figure 3.5.7: Solutions of 2-D spatially homogeneous system in the expanding background at t = 8, 16, 50, 60. Right column: The rescaled solution e ⇢. Left column: The velocity magnitude V .
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 358 Figure 3.5.8: Solution on an expanding background at t = 10 with (3.5.8a).
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 359 Figure 3.5.9: Solution on an expanding background at t = 10 with (3.5.8b).
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 53510 Figure 3.5.10: Solution on an expanding background.
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 33511 Figure 3.5.11: Solution on an expanding background with  = 2.
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 351235 Figure 3.5.12: Rescaled solution on an expanding background at t = 10.
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 1 Point symmetrical initial data with a(t) ⌘ 1. We choose the following initial data posed at t 0 = 1 and defined in the domain [0, 1] ⇥ [0, 1]: ⇢ 0 = 1+0.01 sin(2⇡x) cos(2⇡x) sin(2⇡y) cos(2⇡y) , u 0 (x, y) = 0, v 0 (x, y) = 0, (3.5.10) which is shown in Figure 3.5.13. Moreover, the background geometry b(x, y) is chosen as: b(x, y) = 0.1 + 0.01e 20(x 0.5) 2 20(y 0.5) 2 .
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 3513 Figure 3.5.13: Initial data in two space dimensions.
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 3 Figure 3.5.14: Non-well-balanced solutions of the 2-D system with a(t) ⌘ 1 at t = 8, 16, 50, 60. Right column: Solution ⇢. Left column: Velocity magnitude V .
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 5 Figure 3.5.15: Well-balanced solutions of the 2-D system with a(t) ⌘ 1 at t = 8, 16, 50, 60. Right column: Solution ⇢. Left column: Velocity magnitude V .

Figure 3 .

 3 Figure 3.5.16: Non-well-balanced solutions of the 2-D system in an expanding background with the background geometry b(x, y) at t = 8, 16, 50, 60. Right column: Rescaled solution e ⇢. Left column: Velocity magnitude V .
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 336136362363 Figure 3.6.1: The evolution of solution on a contracting background with k = 0.5.
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 364 Figure 3.6.4: Solution on a contracting background at t = 10 6 with k = 0.9.
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 365 Figure 3.6.5: Solution u and rescaled solution e ⇢ on a contracting background with k = 0.5.
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 3366 Figure 3.6.6: Solutions of the 2-D spatially homogeneous system in a contracting background at t = 0.5, 10 1 , 10 3 , 10 5 . Right column: Rescaled solution e ⇢. Left column: Velocity magnitude V .
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 367 Figure 3.6.7: Solution u and ⇢ on a contracting background with k = 0.3.
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 368 Figure 3.6.8: Solution u and ⇢ on a contracting background with k = 0.9.
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 369 Figure 3.6.9: Solution u and rescaled solution e ⇢ on a contracting background with k = 0.3.
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 3 Figure 3.6.10: Non-well-balanced solutions of the 2-D system in a contracting background with the background geometry b(x, y) at t = 10 1 , 10 3 , 10 5 , 10 8 . Right column: Rescaled solution e ⇢. Left column: Velocity magnitude V .
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 4219 It is very useful to rescale the time variable by taking the cosmological functionChapter 4: A geometry-preserving method for compressible fluid flows on a FLRW cosmological background 155
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 2 ⌧ n , ⌧ n+1 ), U (⌧ n , y)
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 441222 Given any two constants U L and U R , and the two intermediate state vectors denoted by which satisfy the the consistency property and well-balanced property, if the intermediate states are chosen by: ⌧, y; UL , U R ) y ⇤(v L , v R ) ⌧, y; U L , U R ) y ⇤(v L , v R ) ⌧, y; U L , U R ) y
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 4 A geometry-preserving method for compressible fluid flows on a FLRW cosmological background 169 (a) Fourth-order in time and second-order in space at ⌧ = 2. Left: velocity component. Right: rescaled density component. (b) Fourth-order in time and second-order in space at ⌧ = 10. Left: velocity component. Right: rescaled density component. (c) Fourth-order in time and second-order in space at ⌧ = 100. Left: velocity component. Right: rescaled density component.
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 461 Figure 4.6.1: Spherical geometry with a ⌘ 1. Comparison of the well-balanced scheme and non-well-balanced scheme.

  , y) = 0, lim⌧ !+1 v(⌧, y) = 0. (4.7.3)Moreover, the rescaled velocity e v goes to 0, while the rescaled density e ⇢ goes to a multiple of the geometry function ⌘ 2 .
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 471 Figure 4.7.1: Initial data at ⌧ = 1 with k = 0.5.
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 4175472 Figure 4.7.2: Solution on an expanding background at ⌧ = 120 with k = 0.5.
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 473 Figure 4.7.3: Rescaled solution on an expanding background at ⌧ = 120 with k = 0.5.
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 48148482 Figure 4.8.1: Initial data at ⌧ = 1 with k = 0.5.
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 8 Asymptotic dynamics on a contracting background). The asymptotic behavior of the solution to the compressible Euler model on a contracting background is such that: lim
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 483 Figure 4.8.3: Solution u and rescaled solution e ⇢ on a contracting background with k = 0.5.
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  are the intermediate states. With the intermediate states (3.3.11), we obtain the following conservative form of the updated solution at t n+1 :

	.16)
	where n L,i+1/2 and n R,i 1/2 are the approximate wave speeds at each interface, and U n,+ M,i 1/2 and U n, M,i+1/2

  .4.30) The approximation of the source term has been determined when U L and U R Chapter 3: A numerical study of the asymptotic structure of cosmological fluid flows 113 are connected by the steady state solutions. Moreover, we note that the expression(3.4.26) only depends on the left and right states, thus we can also apply it to the case when the states can not be connected by the steady state solutions.

	Definition 3.4.3. The following expression
	e S 1 ( t, x; U L

  .2.22) 4.3 Properties of the Euler-FLRW system 4.3.1 Formulation of the initial value problem Now, we consider the initial value problem for the full Euler-FLRW model (4.2.22). We rewrite (4.2.22) as follows:

  Here, the intermediate states U n,± M,i+1/2 are chosen by(4.4.11). The wave speeds are And S n i is the numerical source term at the interface y i+1/2 given by:
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	S n i =	e S n i+1/2 + e S n i 1/2 2	,		(4.4.18)
	and						
	e S n i+1/2 = e S( ⌧, y; U n i , U n i+1 ),		(4.4.19)
	which is defined by (4.4.13) and (4.4.14).				
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3.5. Global dynamics on a future-expanding background Furthermore, we solve the 2-D system with a third-order strong stability preserving (SSP) Runge-Kutta solver.

In Figure 3.5.7, we plot the rescaled solution e ⇢ and velocity magnitude V at t = 8, 16, 50, 60, respectively. The results which are obtained by the standard HLL scheme demonstrate that the solution ⇢ ! 0 and V ! 0 as t increases. The rescaled solution e

⇢ also periodically converges to a constant state.

Flows on an inhomogeneous background in one space dimension

We demonstrate here that the asymptotics of the solutions at the fine scale level is driven by the underlying background geometry.

Test 1: Stationary initial data. We first validate the well-balanced property of the scheme, that is, it can preserve and capture smooth steady solutions of the Euler model when a(t) ⌘ 1. We first consider the special steady state solutions that is u = u(x) ⌘ 0, ⇢= ⇢(x) = Cb 2 (x), (3.5.6) where C is a constant. We use di↵erent schemes to show that the modified HLL scheme is well-balanced.

In this test, we choose the initial data to be

4.2. Derivation of the fluid models of interest By contracting this equation with the convector u , we get u ↵ r ↵ µ = µr ↵ u ↵ , which gives us µu r ↵ u ↵ + µ(u ↵ r ↵ u u r ↵ u ↵ ) = 0.

Provided µ > 0, it thus follows that u ↵ r ↵ u = 0, which we refer to as the relativistic Burgers equation. Note that it is given in a non-divergence form. An equation for the density is then obtained from

In summary, we have the following.

1. The pressureless Euler system reads

2. The relativistic Burgers equation reads

Then, we choose the coordinates (x 0 , x 1 , x 2 , x 3 ) = (ct, y, ✓, '), so the metric on the FLRW background can be given in the matrix form

thus, its non-vanishing covariant components are

, and the corresponding inverse components are

By using the expressions of the Christo↵el symbols µ ↵ = 1 2 g µ⌫ ( @ ⌫ g ↵ + @ g ↵⌫ + Chapter 4: A geometry-preserving method for compressible fluid flows on a FLRW cosmological background 153 @ ↵ g ⌫ ), where ↵, , µ, ⌫ 2 {0, 1, 2, 3}, after the calculation the non-vanishing ones are

(4.2.10)

Derivation of the Euler-FLRW model

We consider a fluid flow evolving on a FLRW background and express the Euler equations of the solutions depending on the time variable t and the co-moving distance y only and such that the non-radial velocity components are vanishing. Hence, we have (u ↵ ) = (u 0 (t, y), u 1 (t, y), 0, 0). The velocity vector being unit, we have u ↵ u ↵ = 1 and thus

and so

We recall the energy-momentum tensor for perfect fluids

so the components of the energy momentum tensor read A special case of the above system will be studied first, that is, when a(t) ⌘ 1, since in this case the source term simplify drastically:

We know that the Euler system is strictly hyperbolic and admits the two wave speeds 

and we impose vanishing boundary condition for some prescribed density ⇢ max 0:

v(y, ⌧ ) = 0, ⇢(y, ⌧ ) = ⇢ max , imposed at both ends y = 0 and y max . (4.3.8) Imposing vanishing velocity is a rather natural condition at a boundary. Moreover, it is important to recall that our density variable is actually a rescaled density based on the factor ⌘(y) which is known to vanish at y = 0 in all three cases (4.3.3) as well as to vanish at y max = ⇡ in the spherical cases, so we will choose ⇢ max = 0 in these cases and otherwise ⇢ max will typically be taken to be an asymptotic value of a steady state solution.
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Spatially homogeneous flows when ⌘ ⌘ 1

In this section, we assume that ⌘ ⌘ 1 and "relax" the requirement that the boundary conditions are satisfied, and we describe the evolution in time of spatially homogeneous data. We thus consider the following system of ordinary di↵erential equations

with spatially homogeneous initial data prescribed at some time ⌧ 0 :

Proof. From (4.3.9), we can immediately get

and elementary calculations give us the desired result.

Steady state solutions when a ⌘ 1

We now assume that a(t) ⌘ 1 and we analysis the steady state solutions to the Euler-FLRW model (4.2.22), such solutions satisfy the following ordinary di↵erential equations with unknowns ⇢ = ⇢(y) and v = v(y), ⌘(y) given by ( 4

with the initial data ⇢ 0 > 0, v 0 , at some given point y = y 0 , such that

Properties of the Euler-FLRW system

We can solve the ODE (4.3.13) in the specific case when v 0 = 0. Lemma 4.3.2. The specific smooth steady solutions denoted by ⇢ = ⇢(y) and v = v(y) to the Euler system on a FLRW background with a given radius y 0 > 0, ⇢ 0 > 0 and velocity v 0 = 0 are given by

where C is a constant.

We then study the smooth steady state solutions when v 0 6 = 0. We have the following result.

Lemma 4.3.3. The smooth steady solutions denoted by ⇢ = ⇢(y) and v = v(y) to the Euler system on a FLRW background with a given radius y 0 > 0, ⇢ 0 > 0 and velocity

where

From the first equation of (4.3.16), we observe that the solution v has the sign of the initial data v 0 . Hence, without loss of the generality, we can now assume that v 0 0. And the second of equation of (4.3.16) can also be written as

To simplify the notations, we introduce a new function

thus, for smooth steady state solutions v(y)

always holds. We would like to seek the variations of the function v(y) 7 ! H(v(y), y, v 0 , y 0 ). We di↵erentiate H with respect to v and y, and we obtain
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We observe that @ v H = 0 if and only if v = k, and H is increasing with respect to v when k < v < 1/" and decreasing when 0  v < k, and H(v) achieves its minimum at v = k. The minimum value is 

In view of the equation (4.3.23), we observe that dv dy will blow up if v = k, when the velocity is called the sonic speed. which also can be rewritten as

We denote by

which is the minimum value of the function H(v(y), y, v 0 , y 0 ).

Lemma 4.3.5 (Existence of the sonic point). Consider a steady state solution v(y) to the equations (4.3.13) with any radius y 0 > 0 and any initial value ⇢ 0 > 0 and 0 < v 0 6 = k, we have the following properties.

• Euclidean geometry. There exists a unique sonic point y ⇤ 2 (0, +1).

• Spherical geometry. There are two sonic points 0 < y ⇤ < ⇡/2 < ȳ⇤ < ⇡.

• Hyperboloidal geometry.There exists a unique sonic point y ⇤ 2 (0, +1). Proof. We now introduce two new functions R(v 0 ) and T (y) denoted by

Di↵erentiating R(v 0 ) and T (y), we have

We consider first the Euclidean geometry, in which the range of y 2 (0, +1). We also find that the function T (y) is increasing with respect to y, moreover, we have lim

Thus, there exists a unique root y ⇤ to the equation (4.3.25). The proof for the cases of spherical geometry and hyperboloidal geometry are similar to the case of Euclidean geometry.

Lemma 4.3.6. Given any radius y 0 > 0 and any initial value ⇢ 0 > 0 and 0 < v 0 6 = k, one has the following results:

• If H(k, y, v 0 , y 0 ) > 0, there is no solution to equation (4.3.20). • If H(k, y, v 0 , y 0 ) = 0, there exists a unique solution to equation (4.3.20), the solution is v = k.

• If H(k, y, v 0 , y 0 ) < 0, there exist two distinct solutions to equation (4.3.20), and we denote these solutions by supercritical solution v sup and subcritical solution v sub , where v sup 2 (k, 1/"), and v sub 2 (0, k).

Proof. We know that the function H(v, y, v 0 , y 0 ) achieves its minimum at v = k, and the minimum value is H ⇤ (y) defined by (4.3.26). Moreover, the function H also has the following limits: lim

Thus, the root of the function H(v, y, v 0 , y 0 ) depends on the sign of its minimum value H ⇤ (y).

We next consider the solution v(y) of the function H(v, y, v 0 , y 0 ). In view of (4.3.13), we have
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According to Lemmas 4.3.5 and 4.3.6, we arrive at the following conclusion.

Theorem 4.3.7 (Steady state solution when a ⌘ 1). Given any radius y 0 > 0 and any initial value ⇢ 0 > 0 and 0 < v 0 6 = k, the steady solution denoted by ⇢ = ⇢(y, y 0 ), v = v(y, y 0 ) to the equations (4.3.13) is described as follows.

• Euclidean geometry. There exists a unique sonic point y ⇤ 2 (0, +1), the steady solutions v(y, y 0 ) can be defined on the interval [y ⇤ , +1), and there is no steady state solution on (0, y ⇤ ).

If k < v < 1/", v is increasing with respect to y, moreover

If v < k, v is decreasing with respect to y, and

• Spherical geometry. There exist two sonic points 0 < y ⇤ < ⇡/2 < ȳ⇤ < ⇡, the steady solutions v(y, y 0 ) can be defined on the interval [y ⇤ , ȳ⇤ ], and there is no steady state solution on (0, y ⇤ ) S (ȳ ⇤ , ⇡).

If k < v < 1/", v is increasing with respect to y on the interval [y ⇤ , ⇡/2], and decreasing on (⇡/2, ȳ⇤ ], moreover

If v < k, v is decreasing with respect to y on the interval [y ⇤ , ⇡/2], and increasing on (⇡/2, ȳ⇤ ], and

• Hyperboloidal geometry. There exists a unique sonic point y ⇤ 2 (0, +1), the steady solutions v(y, y 0 ) can be defined on the interval [y ⇤ , +1), and there is no steady state solution on (0, y ⇤ ). If k < v < 1/", v is increasing with respect to y, moreover where y ⇤ 2 (0, +1) and 0 < y ⇤ < ⇡/2 < ȳ⇤ < ⇡ are sonic points. 4.4 Well-balanced method for the Euler-FLRW system. Case a ⌘ 1

Finite volume discretization

In this section, we assume that a(t) ⌘ 1 and we present our well-balanced scheme in this case for the Euler-FLRW model, which, by construction, preserves all smooth steady state solutions (described in the previous section). We first provide a finite volume discretization of the the Euler-FLRW system. The discretization in time and space is based on two mesh lengths ⌧ and y and relies on the cells (y i 1/2 , y i+1/2 ) ⇢ ⌦ for i = 0, 1, • • • , I with

with the integer I and the mesh lengths chosen so that when ⌦ = (0, y max ) then

where y max is ⇡ or some large space value, depending on the case in (4.3.3) we consider. In practice, we will also add "ghost cells" to the above mesh.

We are going to define for the initial value problem (4.3.1)-(4.3.7) with given initial data U 0 (y). For y 2 (y i 1/2 , y i+1/2 ), we approximate the exact solution U (⌧, y) by a constant value U n i at time ⌧ n defined by Test 3: initial data with a shock. We consider the initial data as follows:

In the numerical test, we consider the spherical geometry, in which ⌘(y) = sin(y) and y 2 (0, ⇡). We take the sound speed k = 0.7, " = 1 and the CFL number to be 0.3. We let N denote the total number of grid cells in space. We say the corresponding to the choice N = 3000 which provides a very fine grid for our numerical scheme and the results very close to the exact solution, so we view it our "reference solution". We also choose the standard HLL scheme for comparisons with our scheme. In Figure 4.6.3, we plot the initial data at ⌧ = 1. In Figure 4.6.4, we plot the numerical solutions at ⌧ = 1.5 by using the well-balanced scheme and non-well-balanced scheme, and both of them are fourth-order in time and second-order in space. We observe that the modified HLL scheme provides a better approximation than the standard HLL scheme.

In Figigure 4.6.5, we use the fourth-order in time and second-order in space wellbalanced scheme for the space grid cells N = 64, 128, 256, 512 respectively at ⌧ = 1.5. The results demonstrate that approximate solutions converge to the reference solution as y decreases.

Test 5: smooth steady state. In this test, we consider the Euclidean geometry, in which ⌘(y) = y and y 2 (0, +1). In view of Theorem 4.3.7, we know that the steady state solutions are defined on the interval [y ⇤ , +1), and there is no steady state solution on (0, y ⇤ ). We work on the space interval (y 1 , y 2 ), where y ⇤ < y 1 < y 2 < +1, Chapter 4: A geometry-preserving method for compressible fluid flows on a FLRW cosmological background 171 4.7. Asymptotic dynamics on an expanding spacetimes and the boundary condition 0 < v(y 2 ) < 1 and ⇢(y 2 ) > 0. In this test, we choose y 1 = 2 and y 2 = 10, k = 0.3, " = 1, and the CFL number to be 0.7. We consider the steady solutions satisfying the algebraic relation (4.3.16) of the Euler-FLRW model with the initial data v(10) = 0.9 and ⇢(10) = 1. We plot the static solution and the evolution of this static solution at ⌧ = 10 in Figure 4.6.6. We observe that the well-balanced scheme can exactly preserve the static solution.

Test 4: smooth steady state with a perturbation. We choose the same initial data as the test 3, but with a perturbation, see the red line in the 

Asymptotic dynamics on an expanding spacetimes

A test with variable density data We choose an initia data with variable density as follows: In the test, we choose  = 2, the sound speed k = 0.5, " = 1, and the CFL number to be 0.3. We apply the two schemes (well-balanced scheme and non-well-balanced scheme) to compute the solution of the full Euler-FLRW model in spherical geometry. The initial data is plotted in Figure 4.7.1 and the solution at ⌧ = 120 is plotted in Figure 4.7.2. We observe that the density and velocity converge to 0, as we are expected.
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Numerical methods for the evolution of compressible fluids on a curved geometry

Abstract :

This thesis is devoted to the study of a class of nonlinear hyperbolic balance laws in one or two space dimensions, which describe the evolution of compressible fluids on a curved geometry. In Chapter 1, we study the initial value problem for an Euler model with source term posed on a Schwarzschild spacetime. We prove the existence of a global-in-time weak solution by using the Glimm method based on generalized Riemann solutions. In Chapter 2, we consider a Burgers model evolving on a cosmological background of expanding or contracting type. We design a numerical algorithm based on finite volume methodology and we compute weak solutions containing shock waves. Our scheme is fourth-order in time and second-order in space. We then study the late-time asymptotic structure of the solutions as the time variable approaches infinity (in the expanding case) or approaches zero (in the contracting case