
HAL Id: tel-03150908
https://hal.science/tel-03150908

Submitted on 24 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sound Propagation and Quantum-Limited Damping in
an Ultracold Two-Dimensional Fermi Gas

Markus Bohlen

To cite this version:
Markus Bohlen. Sound Propagation and Quantum-Limited Damping in an Ultracold Two-Dimensional
Fermi Gas. Physics [physics]. PSL Research University; École Normale Supérieure, 2020. English.
�NNT : �. �tel-03150908�

https://hal.science/tel-03150908
https://hal.archives-ouvertes.fr


Préparée à l’École Normale Supérieure Paris
et à l’Université de Hambourg

Sound Propagation and Quantum-Limited Damping in an
Ultracold Two-Dimensional Fermi Gas

Soutenue par

Markus BOHLEN
Le 27/11/2020

École doctorale no564

Physique en Île-de-France

Spécialité
Physique Quantique

Composition du jury :

Mme Hélène PERRIN
CNRS Présidente du jury

M Stefano GIORGINI
Università di Trento Rapporteur

M Chris VALE
Swinburne University of Technology Rapporteur

M Jean-Philippe BRANTUT
EPFL Examinateur

M Matteo ZACCANTI
CNR-INO, LENS Examinateur

M Henning MORITZ
Universität Hamburg Co-encadrant

M Frédéric CHEVY
ENS Directeur de thèse





Résumé

Les systèmes bi-dimensionnels fortement corrélés sont captivants. À cause de la dimensionnalité ré-
duite, des fluctuations thermiques empêchent un vrai ordre à longue portée et devraient donc entraver
des phénomènes comme la condensation Bose-Einstein ou la superfluidité. Malgré cela, la superfluditié
et la supraconductivité semblent particulièrement robustes en 2D : Dans presque tous les supracon-
ducteurs à haute température critique les structures 2D ainsi que le couplage en onde d semblent jouer
un rôle central. Dans cette thèse, nous utilisons des gaz de lithium 6 ultrafroids et homogènes avec
des interactions ajustables pour effectuer des simulations quantiques explorant certaines propriétés de
ces systèmes fascinants.
Comme résultat principal, je présente les premières mesures de la vitesse et de l’atténuation du son
dans un gaz de Fermi 2D ultrafroid, que nous utilisons pour étudier des propriétés thermodynamiques
et les coefficients de transport du gaz. La vitesse du son nous permet d’extraire la compressibilité du
gaz et nous obtenons un accord raisonnable avec la valeur mesurée indépendamment dans un système
statique ou calculée à partir de simulations Monte-Carlo quantiques. L’atténuation des ondes sonores
est déterminée par la viscosité et la conductivité thermique du gaz, et approche un minimum dans
le régime fortement corrélé. Ce minimum correspond à une limite quantique universelle ~/m pour la
diffusivité du son. Le gaz de Fermi 2D fortement corrélé représente donc un fluide quasi-parfait.
En outre, je rends compte de deux autres expériences qui ont été réalisées dans le cadre de cette
thèse, menées principalement par mes collègues N. Luick et L. Sobirey. Premièrement, nous réalisons
une jonction de Josephson en séparant le gaz en deux réservoirs à l’aide d’un laser induisant une fine
barrière de potentiel répulsive. Nous observons des oscillations de Josephson entre les deux réservoirs
démontrant la cohérence de phase du gaz de Fermi 2D. En réduisant la hauteur de la barrière, ces
oscillations sont progressivement transformées en ondes sonores. Dans la deuxième expérience, nous
déplaçons un réseau optique à travers le gaz à des vitesses ajustables. Nous observons une vitesse
critique pour la création d’excitations, prouvant que le gaz de Fermi 2D est superfluide. La vitesse
critique est déterminée par la vitesse du son sur un grand domaine d’interactions.
Finalement, je présente la caractérisation d’une nouvelle résonance Feshbach en onde d dans du potas-
sium 40 ultrafroid, un projet qui a été mené principalement par mon collègue T. Reimann. Nous
mesurons le taux de pertes inélastiques L(2) et l’évolution des populations de spins et nous les com-
parons à des prédictions théoriques. Nous trouvons un bon accord entre théorie et expérience pour le
taux de pertes. L’évolution des populations des spins est compatible avec le comportement prédit par
la théorie.





Abstract

Strongly correlated two-dimensional (2D) systems are a fascinating field of study. The reduced dimen-
sionality should in principle impede phenomena such as Bose-Einstein condensation or superfluidity.
Yet, evidence suggests that superfluidity and superconductivity are especially robust in 2D: In almost
all known high Tc-supercondcutors, strongly correlated 2D structures and higher-partial-wave cou-
pling seem to play a crucial role. In this thesis, we use ultracold homogeneous gases of lithium 6 with
tunable interactions to perform analog quantum simulation of these captivating systems.
As the main result of this thesis, I present the first measurements of the speed and attenuation of
sound waves in ultracold 2D Fermi gases, which we use to probe the thermodynamic and transport
properties of the gas. From the speed of sound, we extract the compressibility equation of state and
compare it both to an independent static measurement and to quantum Monte Carlo calculations and
find reasonable agreement between the three. The damping of the sound waves, which is determined
by the shear and bulk viscosities as well as the thermal conductivity of the gas, exhibits a minimum
in the strongly correlated regime. Here, the sound diffusivity approaches a universal quantum bound
~/m and the strongly correlated 2D Fermi gas thus realizes a nearly perfect fluid.
In addition, I report on further related measurements performed in the course of this thesis, which
were led by my coworkers N. Luick and L. Sobirey. We show that the 2D Fermi gas is phase coher-
ent by realizing a Josephson junction in the homogeneous gas and observing Josephson oscillations
between two reservoirs separated by a thin barrier. When the barrier height is reduced to zero, these
oscillations transform smoothly into sound waves. By dragging a lattice though the homogeneous
system at variable velocities, we observe a critical velocity for the creation of excitations, proving that
the system is superfluid. Here, the sound velocity determines the critical velocity for a large range of
interaction strengths.
Finally, I present the characterization of a novel d-wave Feshbach resonance in ultracold potassium
40 via measurements of the inelastic loss rate L(2) and via the dynamics of spin populations, led by
my coworker T. Reimann. The experimental results are compared to theoretical predictions and we
observe good agreement between the theoretical and experimental loss rates. The evolution of the
spin populations is found to be consistent with the expected behavior for the theoretically predicted
exit channel.
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1. Introduction

Strongly correlated two-dimensional systems are a captivating field of
study. The reduced dimensionality of these systems alters their physical
properties in exciting ways compared to materials in three-dimensional
configurations. For instance, thermal fluctuations in a two-dimensional
system are enhanced with respect to a three-dimensional system. Indeed
the Mermin-Wagner-Hohenberg theorem [1, 2] prohibits phenomena like
Bose-Einstein condensation and superfluidity in two-dimensional mate-
rials in principle1. On the other hand, novel phenomena such as the 1To be precise, the Mermin-Wagner-

Hohenberg theorem states that
there can be no spontaneously bro-
ken continuous symmetry in a sys-
tem with less than three dimen-
sions and short-range interactions
at nonzero temperature.

Berezinskii-Kosterlitz-Thouless (BKT) transition [3–5] allow a weaker
type of ordering, so-called quasi-long-range order, to be established. Be-
low a critical temperature, previously unbound vortices form pairs, caus-
ing the order parameter to decay algebraically instead of exponentially
fast. The BKT-transition is heralded by a universal jump in the super-
fluid phase space density nsλ2

dB from 0 to 4 and enables phenomena like
superfluidity to exist in two-dimensional systems of finite size.
The weaker type of ordering found in 2D systems suggests that phe-

nomena relying on phase coherence, in particular superfluidity, super-
conductivity or Bose-Einstein condensation, should be suppressed in
low-dimensional materials with respect to three-dimensional materials.
Yet in fact, superfluidity and superconductivity seem to be most robust
in 2D. Evidence shows that the ratio between the critical temperature
and the Fermi temperature Tc/TF is systematically highest in materi-
als with two-dimensional structures, from cuprates [6] over iron-based
superconductors [7] to magic-angle bilayer graphene [8]. A second in-
gredient that seems to play a major role is unconventional (non-s-wave)
pairing, i.e. pairing between particles with an anisotropic order param-
eter [6–9].
Achieving a better understanding of strongly correlated 2D systems is

of high interest on a fundamental and technological level2. However, de- 2The ’holy grail’ of 2D-physics would
be to uncover the mechanism for
high-Tc superconductivity and its
connection to the dimensionality of
the material. Such an achievement
could open the door to revolution-
ary technologies with far-reaching
consequences.

spite extensive research efforts, strongly correlated systems remain one
of the most challenging problems in the field of quantum many-body
physics. The interactions between the particles are strong and cannot be
treated perturbatively, which complicates theoretical approaches. The
enhanced fluctuations make mean-field approaches less reliable and in
addition, the numerical analysis of fermionic systems, for instance us-
ing quantum Monte-Carlo methods, encounters difficulties from the so-
called fermion sign problem [10–12], which originates in the necessary
anti-symmetrization of the wave function.
To approach these fascinating systems in an experimental way, we

here perform analog quantum simulations of strongly correlated two-
dimensional BKT superfluids. More concretely, we create atomic gases
of 6Li in homogeneous two-dimensional potentials with variable interac-

1



1. Introduction

tions and study their response to a short perturbation by measuring the
propagation and the damping of sound waves in the gas.

Quantum simulation with ultracold atoms

The general concept of quantum simulation is to build a system that
is analog to the problem at hand, i.e. an apparatus which can emulate
the Hamiltonian underlying the problem in a clean and controlled way,
such that the answer to the question at hand can be measured instead
of calculated3. This idea has been popularized among others by R.3This approach is not an entirely

new idea: Classical systems have
been modeled with automata for
long times. One may think for in-
stance about astrolabes, built since
the classical era, or medieval as-
tronomical clocks, which are able
to simulate the motion of celestial
bodies [13].

Feynman. To borrow his words:

"[. . . ] it does seem to be true that all the various field
theories have the same kind of behavior, and can be sim-
ulated in every way, apparently, with little latticeworks
of spins and other things. [. . . ] I therefore believe it’s
true that with a suitable class of quantum machines you
could imitate any quantum system, including the physical
world."a

aR. P. Feynman: Simulating Physics with Computers [14]

Ultracold atoms are an ideal platform for such experiments, since they
allow us to create a wide range of nearly defect-free model systems and
to tune parameters that are often inaccessible in real-world materials,
such as the interaction strength between the particles. After the devel-
opment of optical laser cooling and trapping techniques [15–19], the use
of evaporative cooling techniques has quickly led to the realization of
the first Bose-Einstein condensates in 1995 [20, 21] as well as the first
degenerate Fermi gases in 1999 [22]. Since then, the field of ultracold
atoms has developed explosively and with it an entire toolkit of tech-
niques for the controlled manipulation of the quantum states of atoms in
various settings [13, 23–26]. Today, ultracold atoms are used to simulate
and study a broad range of diverse fields: A non-exhaustive list of exam-
ples includes atoms in optical lattices [27] and topological systems with
artificial gauge fields [28]. Homogeneous [29, 30] as well as strongly dis-
ordered systems [31] have been created. Tailored optical potentials are
used for studying quantum transport phenomena [32]. Finally, systems
incorporating impurities such as polarons [33, 34], ions [35] or Rydberg
atoms [36] are investigated as well.
For the last decade, ultracold atomic gases have also been used to

study the fascinating physics of 2D Fermi gases. A particularly close
analog to solid state systems is realized by simulators implementing the
repulsive Fermi-Hubbard model [37–40]. Two-dimensional bulk gases
with balanced and imbalanced spin populations have been produced [41–
44]. Experiments on fermionic pairing [45–48] have been performed and
both pair condensation and the Berezinskii-Kosterlitz-Thouless transi-
tion have been observed [49, 50]. Furthermore, Fermi polarons [51, 52]
and Fermi liquids [53] have been investigated. In close relation to the
work carried out in this thesis are the measurements of the equation of

2



state of fermionic gases [54–56] as well as measurements of viscosity [57]
and spin diffusion in bulk 2D Fermi gases [58, 59].

Sound waves in a homogeneous 2D Fermi gas

A common feature in the experiments performed on two-dimensional
Fermi gases in the past is the use of harmonic trapping potentials. While
such traps are well understood, the resulting inhomogeneous density
profiles "hinder the observation of critical phenomena with a diverging
correlation length and exotic phases such as the Fulde-Ferell-Larkin-
Ovchinnikov (FFLO) state" [60]. Furthermore, the nonlocal quantities,
such as correlation functions or momentum distributions can only be
extracted as trap-averaged quantities [60]. In our group, a homogeneous
box potential has been realized by my predecessors K. Hueck et al. [60],
providing a perfect platform for the study of phase coherence and super-
fluidity in a two-dimensional system. In this thesis, I present joint work
with N. Luick and L. Sobirey as lead authors, which demonstrates phase
coherence and superfluidity in the system via the observation of Joseph-
son oscillations and a critical velocity for the creation of excitations in
the system.

Another fundamental question that we address in this thesis is how a
homogeneous two-dimensional superfluid reacts when it is brought out
of equilibrium and how perturbations propagate through the system.
More precisely, we investigate the fundamental excitations of the gas
and their decay back towards the ground state by performing the first
measurements of the propagation and damping of sound waves in a ho-
mogeneous two-dimensional Fermi gas. Sound waves are simultaneous
oscillations in several thermodynamic quantities, which are related to
each other via the equation of state of the gas. From the sound velocity,
we thus extract the compressibility equation of state of the gas. The
damping rate of the sound waves is related to the transport coefficients
of the gas, in particular to the heat conductivity and viscosity.
In these measurements, we make use of the important ’tool’ of Fes-

hbach resonances [61, 62]. These enable us to access regimes of dif-
ferent interaction strengths and to vary the character of the gas from
weakly interacting fermions via a strongly correlated gas to strongly
bound bosonic dimers across the so-called BEC-BCS crossover [63, 64].
This continuous transition links Bardeen-Cooper-Schrieffer type super-
fluids to Bose-Einstein condensates. We observe that the viscosity of
the gas is minimal in the regime where the particles interact most with
each other. This is surprising, since one would naïvely expect strong
interactions between the particles to lead to fast equilibration and con-
sequently to a fast decay of oscillations. However, we can understand
this behavior as a minimum of momentum and energy transport in the
gas. This minimum is caused by a corresponding minimum in the mean
free path between the particles, which limits the diffusion of the energy
in the sound waves to a lower limit set by fundamental quantum me-
chanical quantities. The viscosity of the gas similarly approaches a lower
bound and hence, the strongly interacting 2D Fermi gas constitutes a

3



1. Introduction

’nearly perfect’ fluid [65].
These findings constitute the main results of this thesis. The exper-

imental data we provide characterize a system that is challenging to
approach theoretically and may serve as benchmarks for future theories.

Organization of this thesis

This manuscript is organized as follows:

• In chapter 2, I introduce ultracold quantum gases and some key
parameters that can be used to control their properties. I discuss
the spectra of their fundamental excitations in the weakly interact-
ing limits and introduce the concepts of Feshbach resonances and
scattering length. Finally, I will touch on the role of the dimension-
ality and on the differences between the physics of two-dimensional
gases and their experimental realizations.

• This thesis was executed in a collaboration between the Ultra-
cold Fermi Gases group of ENS Paris under the supervision of
Frédéric Chevy and Christophe Salomon and the Quantum Mat-
ter group of Hamburg University under the supervision of Henning
Moritz. During the first years of my thesis, I therefore worked on
the Fermix experiment at ENS Paris. Chapter 3 introduces this
experiment and chapter 4 presents the characterization of a d-
wave Feshbach resonance between two hyperfine states of fermionic
potassium. These measurements were led by Thomas Reimann as
senior PhD student.

• We then transition to two-dimensional gases. Chapter 5 gives a
short introduction to the 2D-lithium experiment in Hamburg and
touches on the experimental realization of two-dimensional Fermi
gases.

• Chapter 6 presents the main results of this thesis. After an intro-
duction to the theory of sound waves in the hydrodynamic frame-
work, our measurements on sound propagation and damping across
the BEC-BCS crossover are presented. The compressibility equa-
tion of state and the sound diffusivity are extracted in the different
interaction regimes.

• Finally, chapter 7 shows further results obtained in the course of
this thesis. I report on the realization of a Josephson junction
in a 2D geometry and on the observation of Josephson oscilla-
tions, which were carried out with Niclas Luick as lead author,
clearly demonstrating phase coherence in the gas. Finally I give
an overview over the first measurements of the critical velocity in
2D Fermi gases, obtained with Lennart Sobirey as lead author,
which unambiguously prove superfluidity in the two-dimensional
gas.

4



2. Ultracold Quantum Gases

This chapter introduces ultracold quantum gases and their main fea-
tures and drawbacks in order to give an overview over the system un-
der investigation. We present the key parameters used to characterize
and control ultracold Fermi gases and discuss Feshbach resonances
as the main experimental tool to access the BEC-BCS crossover, in
which the character of the gas can be continuously tuned from a sys-
tem of weakly bound Cooper pairs to an ensemble of tightly bound
molecules. We also touch upon the role of the dimensionality in the
system and upon the key differences between three-dimensional, two-
dimensional and quasi-two-dimensional gases.

2.1. Ultracold dilute gases

Since the realization of the first atomic Bose-Einstein condensate in 1995
[20, 21] and the first degenerate Fermi gas in 1999 [22], ultracold quan-
tum gases have provided a versatile platform for studying many-body
physics with a high degree of control over many system parameters. To-
day, a large toolkit of techniques is routinely used to engineer quantum
gas systems and exploit their sensitivity on atomic scales for precision
measurements, or to emulate complex condensed-matter systems in or-
der to investigate their behavior in a clean and well-controlled model
environment [23, 24, 26, 66].

Many of these applications require degenerate quantum gases. In
a degenerate gas, the particles exhibit their character as fermions or
bosons instead of showing a classical behavior. This regime is reached
when the interparticle distance is comparable to the extent of the par-
ticle wavefunctions, which is given by the thermal deBroglie wavelength
λdB =

√
2π~2/mkBT . λdB : Thermal deBroglie wavelength

~ : Reduced Planck constant
m : Particle mass
kB : Boltzmann constant
T : Temperature

Starting out from a classical ensemble of atoms,
one can thus either increase the density of the system or strongly re-
duce the temperature. When cooled down at high densities, most ele-
ments and molecules would form a solid before quantum degeneracy is
reached. The density of the sample must therefore be kept low in or-
der to limit the likelihood for particles to be in close proximity to each
other and to suppress the formation of deeply bound dimers or trimers.
Hence for quantum gases of alkali atoms, typical interparticle distances
of d ∼ 0.1−1 µm are used. d : Interparticle distanceCompared to solid state systems, with typical
atomic distances of the order of 1Å, ultracold quantum gases are very
dilute. At such low densities, the temperatures required to reach the
degenerate regime are of the order of tens of nK to a few µK, depending
on the species, which requires extreme cooling methods. Since atoms
at room temperature carry thermal energies orders of magnitude larger
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2. Ultracold Quantum Gases

than the typical energy of an atom in the ultracold gas, single collisions
with thermal atoms are enough to expel particles from the gas. In order
to ensure long lifetimes compared to the atomic timescales, the number
of collisions with background atoms needs to be reduced as much as pos-
sible. Atomic quantum gases are thus produced within ultrahigh vacua
at pressures below 10−11 mbar, yielding typical lifetimes of up to a few
minutes.
The high sensitivity to the environment makes ultracold atoms a per-

fect candidate for precision measurements, yet it is also a drawback.
Many experimental parameters must be controlled to a very high de-
gree. In addition, all measurement processes used in the experiments
presented in this thesis are destructive processes. In order to generate
enough statistics, the capability to reliably generate many samples with
similar properties is necessary.
Ultracold atomic gases have been produced with various species [67],

including alkali atoms as some of the first due to their relatively simple
atomic structure. But also alkaline earth metals [68, 69] and several more
complex elements, such as chromium [70] or lanthanides like erbium [71]
or ytterbium [72], have been brought to quantum degeneracy. Depending
on the element (or the isotope), the ultracold gas exhibits fundamentally
different properties, due to the different masses or magnetic momenta,
the level structure or due to the different quantum statistics.

E

E

E

Figure 2.1. – The distribution of
fermions (top) and bosons (mid-
dle) at zero temperature. Two
identical fermions never occupy
the same quantum state, while
bosons condense to a BEC in
the ground state of the poten-
tial. At high temperature (bot-
tom), both bosons and fermions
behave as classical particles and
are described by the Maxwell-
Boltzmann distribution. (see
also section 2.3.)

This thesis reports on experiments on ultracold two-dimensional gases
of lithium 6 and on three-dimensional gases of potassium 40. Both
species are fermionic, which means that the wave function of two atoms
must acquire a negative sign under exchange of the two particles. A pro-
found consequence of this property is the Pauli exclusion principle, which
states that two identical fermions can never occupy the same quantum
state. Bosons conversely have an enhanced probability to be found in the
same state. Bose gases thus exhibit phenomena such as Bose-Einstein
condensation, where a macroscopic number of particles assemble in the
ground state of the system at low temperatures, whereas the fermions
of a non-interacting Fermi gas neatly occupy every accessible state, fill-
ing up a Fermi sea (compare Fig. 2.1). With increasing temperature,
the likelihood of finding two particles in the same single-particle state
decreases and the distinction between bosons and fermions becomes less
pronounced until both species can be treated as classical particles.

2.2. Key parameters of ultracold Fermi gases

The main properties and features of degenerate Fermi gases can be de-
scribed with only a few key parameters. In an ideal Fermi gas at zero
temperature, a Fermi sea is formed as a consequence of the Pauli ex-
clusion principle. The available single-particle states of the system are
occupied up to a given energy, the Fermi energy EF. Since the states are
filled up one by one from the lowest-lying state, the Fermi energy is only
dependent on the density of states, which is determined by the system
geometry, and on the density of particles n.

EF : Fermi energy
n : Particle density Similarly, the kinetic and
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2.2. Key parameters of ultracold Fermi gases

BEC BCS

|B|

Figure 2.2. – Illustration of the BEC-BCS crossover. In the BEC regime, the
strong attraction between the fermions allows them to pair up to tightly bound
bosonic molecules which interact weakly with each other. In the BCS regime, the
weakly attractive fermions pair up in momentum space to form a BCS-gas. In
between the two regimes, the particles interact strongly and the gas is strongly
correlated. Red and blue colors correspond to particles with opposite spin.

potential energies in a non-interacting gas depend only on the particle
density and the system geometry. A number of related quantities can be
defined from the Fermi energy.

pF : Fermi momentum
kF : Fermi wave vector
TF : Fermi temperature
τF : Fermi time
(~)h : (Reduced) Planck constant
vF : Fermi velocity

The momentum which corresponds to
the Fermi energy is called the Fermi momentum pF = ~kF =

√
2mEF.

The Fermi temperature TF = EF/kB is the temperature scale associated
with the Fermi energy and the Fermi time τF = h/EF is the typical time
scale at which the dynamics occurs in a Fermi gas. In this thesis, the
Fermi velocity vF = pF/m will be important, representing the velocity
scale at which a disturbance can propagate through the Fermi gas1. 1Our experiments with 6Li 2D gases

are performed at about n ≈
1 µm−2. Then EF ≈ h·10 kHz,
corresponding to TF ≈ 0.5 µK and
vF ≈ 40mms−1. The typical re-
sulting timescales for the dynamics
are therefore on the order of mi-
croseconds and lifetimes of minutes
are largely enough to carry out the
experiments.

In an interacting gas, the interaction strength between the particles
and the density determine the interaction energy. Neutral atoms inter-
act with each other via a van-der-Waals potential, which can often be
approximated by a short-range or even a contact interaction potential2.

2Systems with long-range interac-
tions can be created as well by us-
ing the electric or magnetic dipole
interaction, for instance using gases
of polar molecules [73], Rydberg
atoms [74] or atoms with high mag-
netic momenta such as erbium or
dysprosium [75].

At ultralow temperatures, the interaction properties can in this case be
parameterized using one single parameter, the scattering length (com-
pare section 2.4.3). If the gas features a so-called Feshbach resonance,
this scattering length is experimentally tunable by adjusting a magnetic
bias field. Feshbach resonances thus give the possibility to vary the in-
teraction strength to access weakly and strongly attractive regimes and
are a valuable tool for quantum simulation experiments.
In the case of a fermionic gas such as lithium 6 or potassium 40,

the transition between weak and strong attractions can even be used
to effectively change the character of the gas from fermionic to bosonic,
which has enabled the observation of pair condensation of fermions in
2004 [76, 77]. This transition between bosonic and fermionic regimes
is called the BEC-BCS crossover, since it smoothly transforms Bose-
Einstein condensates (BEC) into gases of Cooper pairs described by
BCS theory [78] (after Bardeen, Cooper and Shrieffer). A schematic
picture of the BEC-BCS crossover is shown in Figure 2.2. At weakly
attractive interactions, Cooper pairs are formed in momentum space
and the gas behaves like a gas of fermions. At strong attractions, the
particles can form tightly bound pairs which are bosonic in nature. Now,
the system is described by a weakly interacting gas of bosonic dimers, as
long as the energy scales involved are low enough that the pairs are not
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2. Ultracold Quantum Gases

broken apart. These two regimes are connected by a strongly correlated
regime, in which a theoretical description is challenging and where the
lack of small parameters prevent the use of perturbative techniques.
Here, experiments can provide valuable insight into the physics of such
a strongly correlated regime. Directly on the resonance, the scattering
length diverges. In this so-called unitary regime, the thermodynamic
properties of 3D systems do not depend on the specific form of the
interaction, but are determined only by the density and the deBroglie
wavelength [79]. At diverging scattering length, systems that appear
radically different, such as ultracold fermionic gases, electrons in a metal
or even neutron stars, should therefore behave in a similar way.
In reduced dimensions, the physical properties of the gas change dra-

matically. In a one-dimensional Fermi gas, any excitation must affect
the entirety of the particles, creating a Tomonaga-Luttinger-type system
[80–82]. Furthermore, it is strictly speaking not possible to describe the
scattering physics of a two-dimensional gas with a single parameter, in
contrast to 3D, where the scattering length is sufficient, as we will see.
The number of dimensions also determines whether a Bose gas can un-
dergo Bose-Einstein condensation [83]. Quantum fluctuations play an
important role in 2D, making uniform 2D gases the marginal case for
the existence of a BEC.
Experimentally, true two-dimensional systems, in which there exists

no third dimension, cannot be achieved. Instead, one can realize a so-
called quasi-2D geometry [84], in which the motion of the particles along
the third direction is frozen out by a strongly confining potential. Al-
though the motion of the particles is restricted to 2D, scattering pro-
cesses and bound states can still be sensitive to the third dimension,
since the characteristic length scales involved here are much smaller
than the typical length scale of an experimentally achievable confine-
ment. This leads to some subtleties which we will explore later in this
chapter (sections 2.4.3, 2.4.4).
To summarize, the three main experimental knobs to adjust the prop-

erties of the Fermi gas are the particle density, the interaction strength
and the dimensionality. In solid state physics, it can be difficult to
change these parameters over a broad range. Ultracold atoms in con-
trast offer the possibility to precisely control these parameters over large
ranges. This freedom allows physicists to engineer Hamiltonians that are
difficult to study with ’real’ materials, or to simulate known systems and
investigate their physics in a clean and controlled environment. Finally
the easy access to the geometry and interaction of the systems and the
relatively slow intrinsic time scales also enable experiments on systems
in which these parameters vary over time.

2.3. From Bose-Einstein condensates to BCS
superfluids

In this thesis, we will investigate the low-energy excitations of strongly
correlated Fermi gases. Since the BEC-BCS crossover smoothly connects
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this regime to both weakly interacting Bose and Fermi gases, let us
spend a few lines here on the ground state and the excitation spectra of
degenerate Bose and Fermi gases.

2.3.1. Non-interacting gases
The key difference between bosons and fermions is that fermionic wave
functions are antisymmetric under particle exchange, whereas bosonic
wave functions must be symmetric. This leads to the Fermi-Dirac and
Bose-Einstein distributions for the probability to find a non-interacting
fermion or a boson in a state with a given energy ε:

fFD/BE(ε) = 1
e(ε−µ)/kBT ± 1

, (2.1)

where µ is the chemical potential, which determines the energy cost of
adding a single particle to the system.

ε : Energy of the
single-particle state

µ : Chemical potential
fFD(ε) : Fermi-Dirac dist.
fBE(ε) : Bose-Einstein dist.
fMB(ε) : Maxwell-Boltzmann dist.The +/− signs are valid in the

case of fermions and bosons, respectively. At high temperature, both
distributions reduce to the Maxwell-Boltzmann distribution

fMB(ε) = 1
e(ε−µ)/kBT

, (2.2)

and the particles behave classically.
In bosonic gases, there exists an upper limit for the chemical poten-

tial, namely µ < ε0, where ε0 is the energy of the ground state. ε0 : Ground state energyThis
can be seen in the Bose-Einstein distribution, which would diverge if
the chemical potential is not smaller than the ground state energy of
the system. In 3D, this fact limits the number of atoms allowed in the
excited states of the potential [83]. At any nonzero temperature, there
is therefore a critical number of atoms above which all additional atoms
have to occupy the ground state, leading to a macroscopic occupation
of the ground-state wavefunction and to the formation a Bose-Einstein
condensate (BEC).

TBEC : Critical temperature
for Bose-Einstein cond.

Conversely, for a system with a given number of par-
ticles, there exists a critical temperature TBEC, below which the system
will start to condense a macroscopic amount of atoms into the ground
state. This Bose-Einstein condensate is characterized by a common wave
function whose phase can be regarded as a long-range order parameter
[85].
The number of atoms that can be accommodated in the excited states

depends on the density of states, which in turn depends on the trap-
ping potential and the dimensionality. In 2D, bosonic systems in har-
monic traps show Bose-Einstein condensation, whereas a homogeneous
2D Bose gas cannot condense at any nonzero temperature [83]. The
absence of condensation can also be understood in terms of the thermal
fluctuations, which prevent the establishment of a long-range ordered
phase such as a Bose-Einstein condensate. Indeed, the Mermin-Wagner-
Hohenberg theorem [1, 2] forbids long-range order in any dimensions
smaller than three. In 2D, quasi-long-range order is established instead,
as shown by Berezinskii, Kosterlitz and Thouless (BKT) [3–5]. In this
weaker type of order, the order parameter decays algebraically with dis-
tance. Despite the decay of the order parameter in the BKT state, the
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2. Ultracold Quantum Gases

spatial extents of the systems produced in cold atom experiments are
typically small enough that significant phase coherence can still be es-
tablished. For an extensive review of the physics of bosonic 2D gases,
in particular of BKT physics, I refer the reader to [83].
For non-interacting fermions, the restriction on the number of occu-

pied excited states does not exist and the Pauli principle forbids conden-
sation of multiple atoms into one single state. The physical properties
of the gas are then determined by the energy of the highest occupied
level. In spin-polarized homogeneous 2D gases for instance, the Fermi
energy and Fermi momentum are given by the expressions:

EF = ~2k2
F

2m and kF =
√

4πn. (2.3)

Since the density of states is constant in 2D, the total energy EFGEFG : Total energy of a
homogeneous Fermi gas.

of the
homogeneous ideal Fermi gas is given by

EFG = N

2 EF. (2.4)

In a 2D gas, each particle hence carries in average half of the Fermi
energy3.3At T = 0, EF and EFG can be cal-

culated by considering the number
of states with a momentum smaller
than k. It is given by the area
of the circle with radius k divided
by the area occupied by one quan-
tum state: Nstates = πk2/(2π/L)2,
where L2 is the system area.
This leads to a constant density of
states of D(ε) = mL2/2π~2.
EF and EFG then follow from
NT=0 =

∫ EF
0 D(ε) dε and EFG =∫ EF

0 εD(ε) dε.

2.3.2. Weakly interacting gases
In order to proceed beyond the non-interacting case, we now allow for
the presence of interactions. In the following, I will present the main
aspects of the low-temperature excitation spectra of weakly interacting
bosonic and fermionic gases in the BEC- and BCS limits. To anticipate
the results, Fig. 2.3 shows a summary of the excitation spectra of a Fermi
gas in the weakly interacting extremes of the BEC-BCS crossover. Since
the BEC-limit of a Fermi gas is a gas of bosonic dimers, the spectrum
of a weakly interacting bosonic gas can be seen in 2.3 (a) as well (blue
curve).
Both in bosonic and in fermionic gases, collective modes arise as low-

energy excitations of the interacting system. These collective excitations
have a linear onset for small wavenumbers, whose slope determines the
propagation velocity of the excitation. This velocity can also be de-
rived as the speed of sound in the system using thermodynamic relations
and the modes can therefore be identified with sound waves propagat-
ing through the gas. At higher energies, the dispersion relation of the
collective mode in the bosonic regime transitions into a quadratic single-
particle-like dispersion.
In addition, there exist single-particle excitations at higher energies.

To create these excitations, a fermion pair has to be broken, which
opens a gap in the spectrum for these modes. Both single-particle and
collective modes exist in the crossover region as well, since the properties
of the gas change smoothly from the fermionic to the bosonic regime.
However, a theoretical description is even more challenging in this case.
Since the collective mode can be identified as the sound mode of the gas,
the experimental study of sound excitations allows one to gain insight
into the many-body excitations of a strongly correlated quantum gas.
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Figure 2.3. – Dispersion of a Fermi gas in the weakly interacting BEC and BCS
limits. Blue curves show collective modes, red curves display single-particle exci-
tations. (a): The collective spectrum in the BEC limit consists of a Bogoliubov
mode with a linear onset for k � ξ−1 and a parabolic shape at high momenta.
The initial slope is proportional to the sound velocity c =

√
gn/m. The offset

of gn = µ of the parabola shows that the free particles are interacting with the
condensate. The single-particle excitations have the parabolic dispersion of a free
particle, which is offset by the binding energy EB/2. (b): In the BCS limit, the
dispersion of the single particles is given by BCS theory. An energy cost of ∆
can be associated to breaking a Cooper pair, which opens a gap in the spectrum.
For momenta below kF, the excitation is hole-like. For momenta above kF, it is
particle-like. The collective mode is the Bogoliubov-Anderson mode, which has a
linear onset at low k. This sound-like excitation propagates at a speed of vF/

√
3.

Weakly interacting Bose gases

Let us consider a gas of N bosons in a potential V (r), interacting via
a contact potential gδ(r1 − r2) of strength g.

N : Particle number
p̂ : momentum operator
V (~r) : External potential
g : Interaction strength
ψ(r, t) : Ground state

wave function

The Hamiltonian of this
system is given by

Ĥ =
N∑
i=1

p̂2
i

2m + V (r̂i) + 1
2
∑
i,j 6=i

gδ(r̂i − r̂j). (2.5)

The ground state obeys the Gross-Pitaevskii equation [86, 87]4 4This equation can be derived
from eq. 2.5 using a variational
method by minimizing the quan-
tity 〈ψ|Ĥ|ψ〉 under the condition
| 〈ψ|ψ〉 |2 = N , or alternatively by
writing the Heisenberg equation of
motion for the field operator ψ̂(r, t)
and approximating the field opera-
tor as a c-number ψ(r, t).

i~
∂

∂t
ψ(r, t) =

(
− ~2

2m∆ + V (r) + g|ψ(r, t)|2
)
ψ(r, t). (2.6)

In 2D systems, dimensional arguments suggest that the interaction strength
g may be written as g = g̃~2/m with a dimensionless parameter g̃ [83].

g̃ : Dimensionless interaction
parameter in 2D

In a uniform system, V (r) = 0, the solution to the Gross-Pitaevskii
equation reads ψ0(t) =

√
n exp(−iµt/~), where the chemical potential is

given by

µ = ∂E

∂N
= gn. (2.7)

To obtain the excitation spectrum of the Hamiltonian 2.5, one con-
siders small deviations from the equilibrium wave function of the form
ψ(r, t) = ψ0(t) + exp(−iµt/~)δψ(r, t). Inserting ψ(r, t) and ψ∗(r, t) into
the Gross-Pitaevskii equation5 yields coupled equations for δψ(r, t) and 5Note that one could also derive the

dispersion relation using the den-
sity variations and phase variations
as conjugate variables as done in
[83], or by expanding the field op-
erator in the Heisenberg picture
up to linear order in a small non-
condensed part.
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its complex conjugate δψ∗(r, t). This system is diagonalized using a Bo-
goliubov transformation [88], and one obtains the elementary excitations
of the system. These are Bogoliubov quasiparticles whose dispersion re-
lation is given by

E(k) =
√

~2k2

2m

(~2k2

2m + 2gn
)
. (2.8)

This spectrum is shown as the blue curve in figure 2.3 (a). The char-
acter of the Bogoliubov quasiparticles is determined by the relation be-
tween their wavelength and the length scale ξ = ~/√mgn defined by the
interaction strength of the system.ξ : Healing length ξ is called the healing length, since it
is the typical distance over which perturbations in the order parameter
smooth out. Long-range perturbations (i.e. at low k) that are large
with respect to the healing length, can be smoothed out by the gas. In
this case, the excitation is a collective excitation, and the dispersion re-
lation has a linear onset E(k) ≈ ~ck with c =

√
gn/m. The low-energy

quasiparticles therefore correspond to phonon-like excitations propagat-
ing at a group velocity of c, which can be seen as the speed of sound of
the system. In the case of perturbations at large k or on small scales
with respect to the healing length, the gas cannot resolve the size of
the perturbation. Only few particles are affected and the excitations are
particle-like in nature with a quadratic dispersion relation.
The lifetime of the low-momentum phononic quasiparticles is limited

by the interaction between the quasiparticles [89]. At finite tempera-
tures, a phonon can interact with thermal excitations, a process known
as Landau damping. The Landau damping rate tends to zero with the
temperature and at very low temperatures, the dominant mechanism is
Beliaev damping, in which a phonon of momentum q decays into two
energetically lower phonons. In the case of a concave dispersion rela-
tion, both processes are forbidden and the dominant process is so-called
Landau-Khalatnikov damping, which involves interactions between four
phonons [90].

Weakly interacting Fermi gases

For the description of weakly interacting fermionic gases, we follow the
arguments given by Meera Parish in [64]. The standard framework for
the treatment of such systems is BCS theory, which was developed by
Bardeen, Cooper and Shrieffer in 1957 [78]. The key point underlying
their theory is that the Fermi surface is unstable in the presence of
a weak attractive interaction between the particles. In a small region
around the Fermi surface, fermions of opposite spin and momentum can
pair up to Cooper pairs, which are bosonic in nature and can condense
into a new ground state which lies energetically lower than the Fermi
sea.
The Hamiltonian of this system is given by [64]

ĤBCS =
∑
kσ
εkĉ
†
kσ ĉkσ + U

V

∑
k,k′,q

ĉ†k↑ĉ
†
k′↓ĉk′+q↓ĉk−q↑, (2.9)
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where U < 0 is the strength of the attractive contact interaction, V the
system volume and εk = ~2k2/2m the kinetic energy of a free fermion
with momentum ~k.

U : Interaction strength
V : Volume
εk : Kinetic energy of a

particle with
momentum ~k

σ : Spin
ĉ
(†)
kσ : Fermion annihilation

(creation) operator
|ψBCS〉 : BCS ground state
|0〉 : Vacuum state

The operators ĉkσ and ĉ†kσ annihilate and create a
fermion with spin σ in the momentum state |k〉.

One assumes that the ground state has the form

|ψBCS〉 = Πk(uk + vkĉ
†
k↑ĉ
†
−k↓) |0〉 , (2.10)

where |0〉 is the vacuum state and |uk|2 and |vk|2 determine the proba-
bilities of finding a particle or hole state unoccupied or occupied, respec-
tively. Minimizing the quantity 〈ψBCS|ĤBCS|ψBCS〉 under the condition
|uk|2 + |vk|2 = 1 yields the following system of equations [64]:

∆ := U

V

∑
k
uk = −U

V

∑
k

∆
2Ek

, (2.11)

N =
∑

k
v2

k = 1
2
∑

k

(
1− εk − µ

Ek

)
(2.12)

Ek =
√

(εk − µ)2 + ∆2. (2.13)

Equations 2.11 and 2.12 are called the gap and number equations. Equa-
tion 2.13 gives the energy needed to add a single particle excitation in
a state |k〉.

∆ : BCS pair-breaking gap

In the BCS limit, it corresponds to the dispersion relation
shown in red in Fig. 2.3(b), with a minimum roughly around the Fermi
wave vector kF and with an energy gap ∆, which can be interpreted as
the energy cost of dissociating a Cooper pair and bringing the excited
fermion back to the Fermi surface.
In contrast to the Bogoliubov excitations in a bosonic gas, these exci-

tations are single-particle excitations in nature. As can be shown with
considerable effort, the system also supports a collective mode, the so-
called Bogoliubov-Anderson mode, which was first derived by Anderson
within the random phase approximation [91]. This mode is a sound-like
collective center-of-mass oscillation of the fermion pairs and exhibits a
linear dispersion for low momenta of the form E(k) = ~kvF/

√
3 in 3D

and of E(k) = ~kvF/
√

2 in 2D. It is displayed as the blue line in Fig.
2.3 (b).

Strongly attractive Fermi gases

If the attractive interactions in a Fermi gas are increased, for instance
using a Feshbach resonance, the particles in a Fermi gas can pair up to
form strongly bound molecules whose size becomes much smaller than
the interparticle distance. Far enough in the BEC regime, the bound
dimers can be treated as weakly interacting pointlike bosonic particles.
Nevertheless, this system can also be modeled with the BCS Ansatz
[25], as can be seen by the following arguments, also presented in [64].

|Ψ〉 : Ground state of a
strongly attractive
Fermi gas

N : Normalization constant
b̂†0 : Boson creation operator
λ : Condensate order

parameter
nc : Condensate density
ϕk : Two-body wave function

The ground state wave function of the gas of weakly interacting dimers
can be written as a coherent state |Ψ〉 = N exp(λb̂†0) |0〉, where b̂†0 cre-
ates a boson in the state |k = 0〉, N is a normalization constant and
λ = 〈Ψ|b0|Ψ〉 the condensate order parameter, given by the condensate
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density nc = |λ|2/V . This coherent state does not conserve particle
number but corresponds instead to a condensate state with a well de-
fined phase [64]. Since every boson is made up of two fermions, we write
b̂†q =

∑
k ϕkĉ

†
k↑ĉ
†
q−k↓, where ϕk is the relative two-body wave function in

momentum space. After inserting this into the expression for the ground
state and using vk/uk = λϕk and N = Πkuk, one can show [64] that:

|Ψ〉 = N exp(λb̂†0) |0〉 = Πk(uk + vkĉ
†
k↑ĉ
†
−k↓) |0〉 . (2.14)

This is the same state as the BCS ground state 2.10, which highlights
the close link between the two systems.
We thus see that a Fermi gas far in the BEC regime can indeed be

described by a weakly interacting bosonic theory and thus the same
low-energy Bogoliubov excitation spectrum is found for a gas of fermion
dimers. Due to the composite nature of the particles, however, we also
expect that the single-particle excitation branch present in BCS theory
exists in the bosonic regime as well. Indeed it is possible to create
single fermionic excitations by breaking the strongly bound dimers, when
an energy of half of the binding energy is available per particle. The
single-particle dispersion thus has an offset of EB/2 and continues on
quadratically.

2.4. Controlling the key parameters of ultracold
gases

After having given an impression how changing the interaction strength
in a Fermi gas might change the physical properties of the gas, we will
now take a closer look on how the density, dimensionality and interaction
parameters are adjusted in an experiment.

2.4.1. Controlling the density
Tuning the density of a quantum gas is relatively straightforward and can
be achieved either by adjusting the particle number N at fixed system
geometry or by changing the dimensions of the trapping potentials at
constant particle number. The maximum achievable density is limited
by inelastic three-body losses, whereas the detection sensitivity of the
imaging cameras set the minimum densities which can reasonably be
worked with.
The most common traps used in the final stages of a cold atom ex-

periment are optical dipole traps [92] generated by focused laser beams,
which can be interfered to form optical lattices, or shaped to form homo-
geneous box-shaped traps created using axicons, light sheets or digital
micromirror devices (DMDs). The final stages of cooling are typically
performed in these traps using evaporative cooling techniques, in which
the particles with the highest energy are expelled from the trap, while
the remaining particles then thermalize to a lower temperature. The po-
tential height at the end of the final evaporation can be used to adjust
the number of atoms left in the system. In the case of dipole traps or
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optical lattices, the trap can be recompressed after evaporation to adjust
the density at constant atom number. Since the density and tempera-
ture of the gas are coupled in a harmonic trap, however, it is sometimes
preferable to use a DMD or axicon setup to create a homogeneous trap.
In this case, the shape of the trapping potential can additionally be var-
ied by displaying different sets of images or by moving a lens within the
optical setup.

2.4.2. Controlling the dimensionality

1/2 ħωz

3/2 ħωz

5/2 ħωz

EF

kBT

Figure 2.4. – Energy diagram of
a two-dimensional gas. A gas is
in a quasi-two-dimensional con-
figuration if the level spacing
of the strongly confining po-
tential is larger than all other
relevant energy scales, such as
the thermal energy kBT or the
Fermi energy EF. In this case,
the atoms occupy the motional
ground state in the direction of
strong confinement.

The trapping potentials also determine the dimensionality of the sys-
tem. Two-dimensional geometries are usually experimentally created by
freezing out one motional degree of freedom. In order to achieve this,
the atoms are trapped in a very tight harmonic potential along one di-
rection, such that all relevant energy scales are smaller than the level
spacing of the confining potential, i.e., µ,EF, kBT, ... � ~ωz. This con-
fines the atoms to the motional ground state of the confining potential.
Although the motion of the atoms may be restricted to 2D, there can
nevertheless be other length scales, which remain smaller than the har-
monic oscillator length lz. These could be the size of the tightly bound
fermion pairs in the BEC-limit of the BEC-BCS crossover or the en-
ergy of intermediate states during scattering events. These additional
scales lead to deviations from the pure 2D physics. We will come back
to this point after introducing the scattering amplitude and Feshbach
resonances in a three-dimensional geometry.

2.4.3. Controlling interactions

In order to describe interactions in ultracold gases, we first have to in-
troduce the scattering length and Feshbach resonances in greater detail.
We will first introduce these concepts in a three-dimensional setting and
then focus on the intricacies that a two-dimensional setting introduces
into the problem. In the following, we assume a short-range interac-
tion, such that the particles far away from the scattering potential are
described as free particles.

The 3D scattering length

As in classical physics the scattering problem between two particles is
solved by using center-of-mass and relative coordinates. The Schrödinger
equation for the relative coordinates is given by[

− ~2

2mr
∆r + V (r)

]
Ψ(r) = EΨ(r). (2.15)

Here, mr = m1m2/(m1 + m2) is the reduced mass of the system, r =
(m1r1−m2r2)/mr the relative coordinate, ∆r the Laplace operator with
respect to the relative coordinate and V (r) the interaction potential
between the particles.

∆r : Laplace operator with
respect to the relative
coordinate

mr : Reduced mass
V (r) : Interaction potential
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2. Ultracold Quantum Gases

The solution to the Schrödinger equation has the form of an incoming
plane wave eikr and an outgoing scattered spherical wave eikr [24]

Ψ(r) ' eikr + f(k′,k)e
ikr

r
, (2.16)

where f(k′,k) is the scattering amplitudef(k′,k): Scattering amplitude for scattering the incoming
plane wave into the direction given by k′ = kr/r.
One can now decompose the incoming and outgoing waves into spher-

ical harmonics using the Legendre polynomials Pl(cos θ) and the Bessel
functions jl(x). Here θ denotes the angle between incoming wave and
the direction of scattering. We assume a radially symmetric potential
V (r). Using the expansions

f(k′,k) =
∞∑
l=0

(2l + 1)al(k)Pl(cos θ), and (2.17)

eikz =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ), (2.18)

where the al(k) are complex expansion coefficients, as well as the asymp-
totic behavior of the Bessel functions, jl(kr) → (1/2kr)(i−(l+1)eikr +
il+1e−ikr) for kr � 1, one obtains the scattering wave function as the
sum of incoming and outgoing spherical waves:

Ψ(r) ' 1
2ikr

∞∑
l=0

(2l + 1)Pl(cos θ)×

×
[
(2ikal(k) + 1)eikr + (−1)l+1e−ikr

]
. (2.19)

Since the total particle number has to be conserved, the coefficients of
incident and scattered waves must obey |2ikal(k) + 1|2 = |(−1)l+1|2 =
1, which is fulfilled under the condition that 2ikal(k) + 1 = e2iδl(k).

δl(k): Scattering phase shifts This relation introduces the so-called scattering phase shifts δl(k), which
are the phase differences between incoming and outgoing partial waves,
acquired during the interaction between the particles.
At ultralow temperatures, scattering at high angular momenta l > 0

is suppressed due to the occurrence of centrifugal potential barriers in
those channels and only the s-wave channel contributes to the scattering
process. For this channel, the scattering amplitude is

f0(k): S-wave
scattering amplitude

f0(k) = 1
2ik (e2iδ0(k) − 1) = 1

k cot δ0(k)− ik . (2.20)

Time reversal symmetry implies that k cot δ0 is an even function of mo-
mentum [24], and we can thus expand it to second order around k = 0,
which yields k cot δ0 ≈ −1/a+O(k2). This results in

f0(k) ≈ 1
− 1
a − ik +O(k2)

. (2.21)

One finds that the scattering amplitude becomes independent of θ and
depends only on k and a parameter a with dimension length. This
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defines the 3D scattering length

a3D: Scattering length
abg : Background

scattering length
∆B : Resonance width
B0 : Resonance position
Ĥint : Interaction Hamiltonian

of the colliding atoms

a3D := a = − lim
k→0

f0(k). (2.22)

To give the scattering length more intuitive significance, we can note
that at ultralow energies, i.e., for ka � 1, the full cross section of the
ultracold scattering process is given by

σtot =
∫
dΩ|f(θ)|2 = 4πa2

3D, (2.23)

which is the same cross section as for scattering of classical hard spheres
with a radius a3D.

Feshbach resonances

Bound states

Continuum

open channel

closed channel

closed channel

Figure 2.5. – Schematic rep-
resentation of a Feshbach reso-
nance. Two atoms are collid-
ing in the continuum of an open
channel (dark blue). The in-
teraction between the spins ad-
mixes contributions of different
spin wavefunctions. These are
subject to different interaction
potentials (light blue, red). Due
to the different magnetic mo-
menta of these different spin
configurations, the energy dif-
ference between the potentials
can be tuned. When the en-
ergy of abound state becomes
resonant with the energy of the
colliding atoms, the scattering
amplitude becomes strongly en-
hanced. Since the atoms could
not escape to infinite distance
in the light blue and red poten-
tials, these channels are said to
be closed.

At ultralow temperatures, the interactions in an ultracold Fermi gas can
be described by a single parameter, the scattering length a3D. Feshbach
resonances allow us to tune the scattering length of the gas by adjusting
the value of a magnetic bias field. The typical dependency of the 3D
s-wave scattering length on the magnetic field can be modeled as [25, 62]

a3D(B) = abg

(
1− ∆B

B −B0

)
, (2.24)

where abg is the background scattering length and ∆B and B0 the width
and position of the resonance.
For information on the mathematical treatment of Feshbach reso-

nances, I would like to refer the reader to [62]. Here, I will only outline
the qualitative discussion presented in this reference. In short, a Fesh-
bach resonance leads to a resonant enhancement of the scattering cross
section between two particles due to the presence of bound states at an
energy close to that of the scattering partners. At a fixed magnetic field,
the two-body Hamiltonian takes the form

Ĥint = p̂2

2m +
2∑
j=1

(V̂ hf
j + V̂ Z

j ) + V̂ cen + V̂ dd. (2.25)

Here the first term describes the relative kinetic energy between the par-
ticles. The next two terms are the single-particle hyperfine interaction
V̂ hf
j = (ahfj /~2)ŝj·̂ıj and the Zeeman energy V̂ Z

j = (γeŝj − γN ı̂j)·B,
where ahfj is the hyperfine splitting, s and ı the electron and nuclear
spins and γe and γN the corresponding gyromagnetic ratios. V̂ cen is
the central interaction which is given as the sum of van-der-Waals and
exchange interactions V̂ cen(r) = V̂vdW(r)− (−1)SV̂ex(r). This contribu-
tion gives rise to different potentials depending on the atoms occupying
a singlet (S = 0) or triplet (S = 1) state. Finally the spins of the atoms
interact with each other via the dipole-dipole interaction

V̂ dd = µ2

4πµ−1
0 r3·[σ̂1·σ̂2 − 3(σ̂1·̂r)(σ̂2·̂r)], (2.26)
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2. Ultracold Quantum Gases

where µ is the electronic magnetic dipole moment, σi the Pauli matrix
corresponding to the spin of atom i and µ0 the magnetic permeabil-
ity.

V̂ dd : Magnetic dipole-dipole
interaction

µ : Electron magnetic
dipole moment

σi : Pauli matrix
of spin i

µ0 : Vacuum permeability

Two colliding atoms are therefore subject to different interaction
potentials depending on the spin configurations and their relative angu-
lar momentum. Schematic examples for these potentials are shown in
Figure 2.5.
The collision process can now be visualized as follows. Initially, the

two scattering atoms are far apart and feel a negligible interaction poten-
tial. The atoms occupy a state with energy E in the continuum of this
interaction potential defined by the unperturbed atomic states |F,mF 〉.
Such a state is referred to as an ’open channel’, since the atoms can
escape to infinite distance. Upon approaching each other, additional
hyperfine states are mixed in by the interactions. This admixture gives
rise to coupling to different interaction potentials, which can be either
open or closed channels with respect to the scattering atoms. Since the
different hyperfine states have different magnetic momenta, the interac-
tion potentials can be shifted with respect to each other via the Zeeman
effect. Varying the magnetic field, one can therefore tune a closed chan-
nel bound state in close proximity to the energy of the incoming particles,
which causes the a resonant enhancement of the scattering amplitude in
the open channel.

The 3D scattering length across the BEC-BCS crossover

For small negative values of the scattering length, −1/kFa3D → ∞,
the interaction between the atoms is weak and attractive. Here, the
fermions form Cooper pairs and a BCS-type system is realized. When
the interaction strength is increased, the scattering length becomes more
and more negative. Beyond a threshold interaction strength, a true
bound state of two atoms becomes possible. The appearance of this
bound state is marked with a divergence of the scattering length, which
turns positive. The energy of this bound state can be calculated from
the poles of the scattering amplitude. These occur at 1/a3D = −ik.
Squaring and multiplying both sides by ~2/2mr, where mr = m/2 is the
reduced mass of the system, yields

E
(3D)
B = − ~2

ma2
3D
. (2.27)E

(3D)
B : Bound state energy

Upon further increase of the attraction, the newly formed dimers be-
come more deeply bound, the scattering length decreases again towards
small but positive values and the system crosses over in the BEC-regime
for −1/kFa3D → −∞. The fact that the scattering length becomes pos-
itive although the interaction between the atoms remains attractive is
counter-intuitive. To see this, we note that a short-range interaction can
also be modeled as a contact interaction by setting g = 4π~2a3D/m. A
positive scattering length would correspond to a repulsive contact inter-
action, which would contradict the existence of a bound state. The sign
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2.4. Controlling the key parameters of ultracold gases

of the scattering length is therefore not in direct correspondence with
the sign of the interaction.

In the case of a Fermi gas, one might instead see the positive scatter-
ing length on the BEC-side of the resonance as describing an effective
repulsive interaction between the dimers. Indeed there is a simple rela-
tion between the 3D-scattering length and the effective scattering length
of the dimers add ≈ 0.6a3D [93]. add : Dimer-dimer

scattering length
However, this intuitive picture fails in

different settings (for example for a bosonic gas).

2.4.4. The role of the dimensionality

2D case

For scattering at ultralow energies in two dimensions, the role of the
scattering length is taken on by the quantity [84]

ln(ka2D). (2.28)

In principle, the derivation of the scattering length in 2D follows a similar
path as in the 3D case. It is detailed for instance in [25] and [94]. The
solution to the Schrödinger equation is again written as a sum of an
incoming plane wave and an outgoing circular wave,

ψ(r) = eikx − f(k)

√
i

8πkre
ikr, (2.29)

where k is the wavevector of the incident wave and k = kr/r is defined
by the direction of the scattered wave. The scattering amplitude can be
expanded in the partial waves

f(k) =
∞∑
l=0

(2− δl0) cos(lθ)al(k), (2.30)

where δl0 is the Kronecker symbol and the al(k) are again complex coef-
ficients (different from those in the 3D case). The relation between the
scattering amplitude and the scattering phase shifts now take the form
al(k) = −4/(cot δl(k)− i).
The low-energy s-wave phase shift can be written as cot δ0(k) =
−(2/π) ln(1/ka2D) + O(k2) [94, 95], with a2D > 0 a parameter with
dimension of length, from which we get

f0(k) = a0(k) = −2π
ln(ka2D)− iπ2

. (2.31)

The form of this equation seems similar to equation 2.22, however the
logarithm diverges at k → 0 for any nonzero scattering length. This in
turn signifies that the scattering amplitude tends to zero for ultralow
energies, which is different from the 3D result, where the zero-energy
scattering amplitude was determined by a constant f0 → −a3D. Clearly,
the scattering amplitude at ultralow energies depends on momentum
and we cannot use a2D as a single parameter to describe the ultracold
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2. Ultracold Quantum Gases

scattering properties in 2D. Instead, the composite parameter ln(ka2D)
must be used.

E
(2D)
B : 2D Bound state energy

In a two-dimensional setting, we can again look at the poles of eq.
2.31 to find the energy of the bound state and we find

E
(2D)
B = − ~2

ma2
2D
. (2.32)

Quasi-2D regime

In real experiments, it is not possible to eliminate the third direction al-
together. Low-dimensional systems are instead produced by restricting
the particles to the motional ground state of a strongly confining po-
tential Comparing the length scales, the harmonic oscillator length lz is
then smaller than both the interparticle spacing n−1/2 and the thermal
wavelength of the particles λdB. However, the range of the interaction
between the particles is still smaller than the oscillator length, such that
the physics of the collisions are relatively unaffected by the confinement
[94]. The scattering itself is still a 3D process and the confining potential
only influences the incoming and outgoing wave functions. This affects
both the scattering length and the bound state energy, which we will
discuss now.

Scattering length

0 0.2 0.4 0.6 0.8 1 1.2
-1

0

1
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Figure 2.6. – Real and imagi-
nary parts of the function w(x)
defined by 2.34. The range of
validity x < 0.1 of the approx-
imation wlim(x) (light blue) de-
fines the quasi-2D regime.

Petrov and Shlyapnikov [84] have been able to relate the 2D scattering
amplitude a2D to the 3D parameter a3D in the limit that the energy of
the scattering particles is much smaller than the spacing of the energy
levels due to the confinement potential E � ~ωz. This regime is called
the quasi-2D regime. According to [84], the s-wave contribution to the
scattering amplitude is given by

f0(k) = 2
√

2π
lz
a3D

+ 1√
2πw

(
ε

~ωz

) , (2.33)

where w(x) is a rather complex function given by

w(x) = lim
J→∞

√4J
π

ln J

e2 −
J∑
j=0

(2j − 1)!!
(2j)!! ln(j − x− i0)

 . (2.34)

It is wlim(x) = limx→0w(x) = − ln(2πx/A)+iπ, where A = 0.905 is a nu-
merical constant. This approximation holds up to energies ε/~ωz ≈ 0.1
(compare Fig. 2.6).

a
(0)
q2D : quasi-2D

scattering length

Consequently in the low energy limit, the scattering
amplitude can be cast into the form of the pure 2D scattering formula
by identifying a2D with the quasi-2D scattering length [84]

a
(0)
q2D =

√
π

A
lz exp

(
−
√
π

2
lz
a3D

)
. (2.35)

This quasi-2D scattering length is dependent on the 3D scattering
length and on the strength of the harmonic confinement, which under-
lines again that scattering in 2D cannot be described with the help of
one single parameter.
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Figure 2.7. – Scattering lengths
across the BEC-BCS crossover.
The BEC-regime is located on
the left hand side, the BCS-
regime is reached on the right
hand side of the graph. The
3D-scattering length (dark red)
diverges on resonance, whereas
the 2D-scattering length (light
red) is positive across the en-
tire range. Across the reso-
nance, the chemical potential of
the gas increases from gn on
the Bose side to essentially EF
on the Fermi side. The correc-
tion to the scattering length for
higher chemical potential there-
fore becomes more and more
pronounced when going towards
the fermionic side.

Equation 2.35 has been derived for the low-energy limit E � ~ωz.
We expect this relation to hold in the BEC regime, where the particles
form a condensate and the kinetic energy of most particles is low. In the
BCS regime however, the mean energy of the atoms is larger, since the
Pauli principle leads to the formation of a Fermi sea. Since the Fermi
energy is usually a substantial fraction of ~ωz, both low- and high energy
collisions should occur. In the analysis of the measurements presented
in thesis, we will make one central assumption and suppose that the
typical collision energy is given by the chemical potential. Following
[56] we may then apply a ’correction’ factor to the scattering length to
extend the range of validity of a(0)

q2D towards higher collision energies.
This yields a modified quasi-2D scattering length

aq2D = a
(0)
q2D exp

(
−1

2∆w
(
µ

~ωz

))
, (2.36)

where the function ∆w(x) is defined as ∆w(x) = w(x)− wlim(x) [56].
Figure 2.7 shows the 3D scattering length (red) as a function of the

parameter −lz/a3D, as well as a comparison between the bare quasi-2D
scattering length a

(0)
q2D (dark blue) and the modified scattering length

aq2D for µ/~ωz = 0.4. In the Bose regime, the bare and modified quasi-
2D scattering lengths approach each other. In the BCS regime, however,
the deviations become important, since the average momentum of the
scattering particles increases.

∆w(µ/~ωz) : Function extending
aq2D toward higher
scattering energies

aq2D : quasi-2D scattering
length, modified
for ε > 0.1~ωz

In the remainder of this thesis, we will use aq2D and the typical mo-
mentum of the scatterers k ≈ kF to parametrize the interaction axis of
the quasi-2D Fermi gas with ln(kFaq2D), in analogy to the parameter
existing for the true 2D gas. In addition, following the naming habits
in the experimental community, we will often omit the prefix ’quasi-’
and speak in short of 2D gases. Whenever we treat an experimental
system, however, that true two-dimensional systems do not exist in the
laboratory.

Bound state

In Figure 2.7, we can see that the quasi-two-dimensional scattering
length is always positive, signaling the existence of a bound state over
the entire BEC-BCS crossover, which competes with the BCS pairing
mechanism on the BCS side of the resonance [96].
The character of this bound state and its energy E(q2D)

B are strongly
influenced by the size of the bound state relative to the scale set by the
tight confinement.

E
(q2D)
B : Energy of the bound state

in the quasi-2D geometry.
In the fermionic regime, the attractive interaction

between the atoms is weak. Consequently, the pairs are weakly bound
and the pair size is large compared to the oscillator length. We thus have
pairs which live in the 2D plane and whose binding energy will tend to
that of a true 2D pair: E(2D)

B = −~2/ma2
q2D

6. For increasing interac- 6Note that we still have to use the
quasi-2D scattering length to calcu-
late the binding energy in the BCS-
limit.

tions, the dimer size is reduced. Once the dimers become much smaller
than the oscillator length, they can be seen as are almost unperturbed
with respect to the 3D scenario and their binding energy must approach
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the binding energy set by the 3D scattering length E(3D)
B = −~2/ma2

3D.
Directly on the resonance of the 3D scattering length, the energy of the
quasi-2D bound state reaches a universal value only dependent on the
harmonic confinement EB = −0.244~ωz [94].
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Figure 2.8. – Binding energies
across the BEC-BCS crossover.
In 3D there is a bound state
only for positive values of a3D,
in the BEC regime (red). In
2D, a bound state exists over
the entire range, whose energy
smoothly transitions from an
energy given by the quasi-2D
scattering length in the BCS
regime to an energy given by
the 3D scattering length in the
BEC regime. Equation 2.37 [94]
(blue) interpolates the binding
energies across the crossover. In
the BCS regime, the expression
~2/ma

(0)2
q2D yields a good approx-

imation (orange), which starts
to deviate around lz/a3D ≈ 0.

We therefore cannot use the formula EB = −~2/ma2
q2D to express

the energy of the bound state over the entire crossover in terms of a
single scattering length. Instead the bound state energy in the quasi-2D
geometry must be calculated numerically as the solution of the integral
equation [94]

lz
a3D

=
∫ ∞

0

du√
4πu3

(
1− exp(−E(q2D)

B u/~ωz)√
(1− exp(−2u))/(2u)

)
. (2.37)

We see that like the quasi-2D scattering length, it depends on the ratio
between the confinement and the three-dimensional scattering length.
Figure 2.8 shows the numerical solution of this formula (blue) as well as
the limits E(3D)

B = ~2/ma3D valid in the BEC-regime and E(2D)
B (aq2D) =

~2/maq2D, valid in the BCS-regime.
As a final point, I would like to note that we will compare the mea-

surements taken with our system to predictions for true 2D systems,
ignoring the dependency on the oscillator length of the confining po-
tential. While this is in principle a comparison between two different
systems, it is of high interest, since it shows how close a quasi-2D sys-
tem can come to a true 2D system. In addition, eventual discrepancies
between the two highlight, that the third dimension cannot be ignored
in all parameter ranges. In order to completely understand fascinat-
ing phenomena related to two-dimensional geometries, these intricacies
must then be taken into account.
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Part I.

Characterizing a D-wave
Feshbach Resonance in

Ultracold 40K
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3. Creating Ultracold Potassium:
The Fermix Experiment

Before treating the phenomenon of sound in ultracold two-
dimensional Fermi gases, I would like to take time to present part
of the work done in the Ultracold Fermi Gases group of Laboratoire
Kastler Brossel, during the first half of my PhD. The project con-
sisted in the characterization of a new d-wave Feshbach resonance
in fermionic potassium. I will first introduce the Fermix experiment.
For this, a quite general overview over the general scheme to produce
ultracold Fermi gases in the experiment will be given. I will then fo-
cus on some key steps of the experimental sequence that are particular
to the Fermix experiment in the following sections. Finally, I will
present the setup around the science cell in particular. The exper-
imental setup was built by my PhD predecessors Armin Ridinger,
Thomas Salez, Franz Sievers, Diogo Rio Fernandes and Norman
Kretzschmar, Daniel Suchet, Mihail Rabinovic, Thomas Reimann
and Cédric Enesa, in whose theses more details on the setup can be
found [97–105].

Roadmap for creating an ultracold atomic gas

Many cold atom experiments follow similar schemes to create ultracold
Fermi gases in the laboratory. Cooling down atomic gases to temper-
atures of several tens of nK above absolute zero requires background
pressures of the order of 10−11 mbar or below in order to minimize back-
ground collisions with thermal atoms and reach sample lifetimes of the
order of minutes. The experiment is therefore carried out in an ultrahigh
vacuum system. At the same time, generating the atomic gas from a
solid sample of lithium or potassium requires to heat the source region of
the vacuum chamber to high temperatures, which incurs elevated vapor
pressures and increased outgassing from the walls of the steel chamber.
To separate regions of high and low pressure, the vacuum systems of
most experiments consist of multiple functional parts, which are con-
nected to each other with differential pumping stages. The vacuum is
maintained by an ensemble of vacuum pumps1. As an example of such 1These can be ion pumps, getter

pumps or Titanium sublimation
pumps for instance.

an apparatus, the vacuum system of the Fermix experiment is shown
in Figure 3.1. The experiment has been designed as a dual-species ex-
periment, with the goal of producing quantum degenerate mixtures of
6Li and 40K, both fermionic alkali elements. It therefore allows me to
introduce the typical implementations for both species at the same time.

An atomic source, consisting of a macroscopic block of the respective
material located in a dedicated source region of the vacuum system, is
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Li oven

Zeeman 
slower

Main chamber:
MOT

K 2D MOT,
Cold point

New K reservoir

Magnetic transport

Science cell,
Feshbach and 
Compensation coils

Figure 3.1. – CAD drawing of the Fermix vacuum system. The apparatus consists
of two source regions, a lithium oven and a potassium 2D MOT which connect to
an octagonal central cell (via a Zeeman slower in the case of lithium). Here the
atoms are captured and cooled optically. In order to transfer the atoms into a
region of high vacuum quality and large optical access, a magnetic transport links
the main chamber to the science cell. For clarity, the top coils of the transport
and the science cell region are not shown. Figure adapted from [104].

heated up in order to create a high vapor pressure. In the case of lithium,
the necessary temperatures are roughly 450 ◦C, at which the element is in
its liquid state, with a vapor pressure of roughly 8·10−4 mbar [106]. For
potassium, more reasonable temperatures of T ≈ 45 ◦C are sufficient,
since the use of an enriched sample can ensure high partial pressures
of 40K already at lower pressures. The gases escape the oven sections
through thin tubes towards the main chamber of the vacuum system,
where the atoms are trapped in a magneto-optical trap (MOT) [19]. For
lithium, the high oven temperature ensures a high particle flux, however
the atoms exit the oven section at mean velocities of about 1500m s−1.
An intermediate slowing step is therefore necessary, which is typically
carried out with the help of a Zeeman slower [17]. For potassium, a
combination of a two-dimensional magneto-optical trap (2D-MOT) and
a push beam is used at Fermix (see section 3.1.1) to accelerate the atoms
towards the main chamber. The resulting velocities are low enough to
allow the atoms to be trapped without additional slowing steps.
The MOT is typically located in a second vacuum chamber, which is

separated from the source regions by a differential pumping stage. Its
working principle relies on the repeated absorption and reemission of
photons, which limits the lowest attainable temperatures in the trapped
gas. For a standard MOT, this limit is given by the Doppler temperature

TD : Doppler temperature
Γ : Transition linewidth
Erec : Recoil energy
kL : Laser wave number TD = ~Γ/2kB ≈ 140 µK [107], where Γ ≈ 2π × 6MHz is the natural

linewidth of the D2-line [106, 108]. While there exist optical sub-Doppler
cooling schemes2, any scheme involving absorption and reemission is2One could mention Sisyphus cool-

ing [109], Velocity-selective coher-
ent population trapping [110], Ra-
man cooling [111] or gray molasses
cooling on the D2- or D1-lines [112,
113] to give but a few examples.

limited by the release of the one-photon recoil energy Erec = ~2k2
L/2m,

which is still too large to reach quantum degeneracy. Here kL is the
wave number of the laser radiation.
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To be able to cool the gas further down, it must be loaded into conser-
vative trapping potentials, which do not rely on absorption or emission
of photons. These can be optical dipole traps (ODTs) [92] created with
infrared lasers, whose large detuning with respect to the atomic tran-
sitions prevents such unwanted absorption and emission processes from
occurring. Another possibility is to load the gas into magnetic traps,
where the conservative trapping potential is generated by the Zeeman
effect. In a succession of ODTs and magnetic traps of different geome-
tries, the gas can be cooled down further using evaporative cooling tech-
niques [107, 114]. These rely on the (active or passive) removal of atoms
in the high-energy tail of the momentum distribution from the trap and
rethermalization of the remaining particles by means of collisions. The
energy carried away by the escaping atom is higher than the average
particle energy and the rest of the ensemble will therefore thermalize
to a lower energy and thus a lower temperature. By ramping down the
potential height on a timescale slower than the thermalization time, the
temperature of the trapped ensemble can be drastically reduced on the
expense of the atom number (compare [107]).

In order to carry out experiments on the gas, the main chamber host-
ing the MOT is typically not well suited, both in terms of vacuum quality
and optical access. The gas is therefore transferred from the main cham-
ber of the vacuum system to the science cell, another dedicated part of
the system with high optical access and improved vacuum. Here, the gas
is brought into the desired geometry and final evaporative cooling steps
bring the gas into the degenerate regime. After these preparatory steps,
the experiment-specific steps of the sequence are carried out. Finally, the
atoms are imaged in order to extract the density profile. The imaging
method used in this thesis is absorption imaging, in which a short pulse
of resonant light is shot onto the atoms and the shadow is imaged onto
a camera. Since the transmission of light through the cloud is governed
by the Lambert-Beer law3, the density distribution integrated along the 3This is strictly only true at low in-

tensities of the imaging light. At
high intensities, the Lambert-Beer
law acquires correction terms (com-
pare [115, 116] and section 5.1.3

imaging axis can be reconstructed from a relative measurement of the
light intensity with and without atoms [115].

After having introduced the main idea of the experimental sequence,
let us now look at the experimental sequence in greater detail. I will
concentrate on the aspects pertaining to the Fermix experiment in par-
ticular. While the experiment has been designed as a dual-species exper-
iment, major renovation works had taken place in the building housing
the experiment directly before my arrival in the group and the machine
had been resting for about a year. After the construction works were
finished, a decision was taken to restart the potassium parts of the ex-
periment before reactivating the lithium parts in a later stage. I will
therefore only treat the potassium part of the machine. For information
of the operation of the Fermix experiment with lithium, I would refer
the reader to the theses of my PhD predecessors [97–104].
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3. Creating Ultracold Potassium: The Fermix Experiment

3.1. Experimental sequence of the Fermix
experiment

3.1.1. Potassium 2D-MOT

As mentioned previously, the potassium source of the Fermix experi-
ment consists of a 2D-MOT with additional longitudinal molasses and
pushing beam. While it is possible to use an oven in conjunction with a
Zeeman slower to generate atomic gases of 40K4, this setup would require4Such a setup is used for instance in

the group of M. Zwierlein at MIT. very high vapor pressures to create a sufficient flux of the correct iso-
tope, since the natural abundance of potassium 40 is only 0.012% [117].
These high pressures in turn would cause the vacuum pumps to degrade
very quickly. Although considerably more expensive5, it is therefore ad-5The price at the time of my work

at Fermix was about 10,000€ per
100mg.

vantageous to use an enriched sample of potassium, containing 4% of
40K and to use a 2D-MOT to produce the atomic beam. This setup
is considerably less space-consuming and more efficient than a Zeeman
slower in terms of the depletion rate of the atom source. At the same
time, it offers a sufficiently high flux (up to 109 s−1) to efficiently load
the MOT at moderate temperatures of only 45 ◦C.
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Figure 3.2. – Level scheme of
fermionic potassium and of the
optical transitions used at Fer-
mix. The energy splittings are
not to scale. The D1- and D2-
lines between the 42S1/2 ground
state and the 42P1/2 and 42P3/2
excited states are both used
in the Fermix element. The
lasers are locked onto the re-
spective crossover lines of 39K,
which are offset by only about
125MHz with respect to the
lines of 40K. For the MOT and
the D1-molasses, bichromatic
beams consisting of a cooling
and repumping frequency are
used, in order to prevent an un-
wanted accumulation of atoms
in the |F = 7/2〉 ground state.

The working principle of a 2D-MOT derives from the principle of a
standard three-dimensional magneto-optical trap [19]. In the 3D case,
three pairs of counter-propagating laser beams are shot into the MOT
chamber from orthogonal directions to intersect in the saddle point of
a magnetic quadrupole field, forming the magneto-optical trap. In the
center of the trap, the laser beams are red detuned with respect to an op-
tical transition of the atoms. Once an atom leaves the center of the trap,
the Zeeman effect originating from the increasing magnetic field shifts
a given magnetic sublevel of the excited state into resonance with the
laser beams. The six laser beams are circularly polarized and the polar-
ization direction is chosen such that the escaping atoms absorb photons
preferentially from the counter-propagating beam, which creates a net
restoring force. The beams are bichromatic, consisting of a cooling and
a repumping frequency, operating on the transitions of the two ground-
state levels of the D2-line in order to prevent parasitic population of the
|mF = 7/2〉 ground state (compare Fig. 3.2).

The schematic setup of the 2D-MOT is shown in Figure 3.3. Here,
only two of the three directions are implemented as described above,
cooling and confining the hot potassium gas in the transversal directions.
In the third direction, the beams are linearly polarized, creating the
configuration of an optical molasses instead of a MOT-configuration.
This setup increases the time the atoms spend in the transversal cooling
region and thus augments the efficiency of the 2D cooling [118]. In the
longitudinal direction, an aperture tube allows the central column of the
gas to be coupled out in the direction of the 3D-MOT. An additional
resonant push beam accelerates the transversely pre-cooled potassium
atoms towards the main chamber.
The atom source itself is located in a CF-16 tube in the vicinity of

the 2D-MOT chamber. This reservoir however is not used to provide
the background pressure of potassium in the day-to-day operation of
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3.1. Experimental sequence of the Fermix experiment

Figure 3.3. – Schematic setup of the 2D MOT. Transversal cooling of the atomic
gas is ensured by two pairs of retro-reflected beams. An additional longitudinal
molasses increases the efficiency. The flux of atoms escaping through the outcou-
pling hole in the direction of the 3D-MOT is increased considerably by the small
pushing beam. The cold point (not shown here) is located directly behind the
45 ◦ mirror. Figure adapted from [118]

the machine. Both the metal parts in this section of the experiment as
well as the glass cell of the 2D-MOT are heated to higher temperatures
(∼ 100 ◦C and 60 ◦C respectively) in order to avoid deposition of potas-
sium on the outside walls of the vacuum system. Directly behind the
outcoupling mirror of the 2D-MOT cell, a plastic tube (not shown in Fig.
3.3) is wrapped around the glass tube connecting the cell to the main
system. Using a chiller6, this small section of the tube is water-cooled 6ThermoTek T247P-30 210W, Oper-

ating range: −5 ◦C− 45 ◦C.to considerably lower temperatures than its surroundings, which serves
as an efficient recycling mechanism and effectively prevents the loss of
potassium atoms to different areas of the setup. When the system is not
in use, the so-called ’cold point’ is set to a temperature of 0 ◦C. In order
to operate the machine, the temperature is set to 45 ◦C.
During my time at Fermix, the old potassium source was depleted,

such that the operation of the 2D-MOT became unreliable. It therefore
has been exchanged in cooperation with Thomas Reimann. Unfortu-
nately, the old source was connected behind to a vacuum valve which
had developed a small leak, preventing us from opening and closing
the valve without degrading the vacuum of the system. This required a
redesign of the source reservoir to fit behind the bottom valve of the 2D-
MOT region. Since the construction of reservoir and cold point worked
well in the past, it was kept in order to have a potassium reservoir in
direct proximity to the 2D-MOT cell. Details on the new design and on
the migration scheme to move the potassium atoms from the reservoir
onto the cold point can be found in the thesis of Thomas Reimann [104].

3.1.2. Grey molasses on the D1 line

At the end of the MOT phase, a typical number of 1.5·109 atoms
is trapped at temperatures of roughly 300 µK. Before proceeding to-
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3. Creating Ultracold Potassium: The Fermix Experiment

wards the evaporative cooling stages, the gas has to be loaded from the
magneto-optical trap into a far-detuned optical dipole trap or into a
magnetic trap in order to avoid photon absorption and reemission pro-
cesses, since these ultimately limit the final temperature of the gas due
to the photon recoil. At the final temperatures reached in the MOT how-
ever, the gas is still too dilute to ensure the high collision rates necessary
for evaporative cooling. One must therefore either strongly increase the
density of the gas or further decrease the temperature. To do this, there
are several options available in cold atom experiments. One option is
to use a different optical transition with a narrower linewidth, which re-
duces the Doppler temperatures considerably. Since these transitions lie
in the ultraviolet frequency range for Alkali atoms, this unfortunately
implies technical difficulties (and increased health risks for the exper-
imenters). Another option is to create very deep optical dipole traps
using infrared lasers with powers in the range of some 100W or using
an optical resonator, as it is done in the lithium experiment in Hamburg
(compare section 5.1). Finally, one can use sub-Doppler cooling meth-
ods to reduce the temperature of the gas further and then transfer the
cloud into a more conservative optical or magnetic trap. This is done at
the Fermix experiment using a so-called Λ-enhanced gray molasses on
the D1-line.

Figure 3.4. – Principle of a
gray molasses. (a) Level scheme
for the D1-transition of 40K and
transitions used for the D1 mo-
lasses. (b) Energy diagram of
the resulting dark and bright
eigenstates. Due to the positive
detuning of the Raman beams,
the energy of the bright state
lies above the energy of the dark
state. Atoms lose kinetic energy
by moving up a potential hill.
They are subsequently pumped
into the dark state, whereby en-
ergy is lost to the light field.
The cycle is repeated as long as
the atoms have sufficient kinetic
energy. The slowest atoms accu-
mulate in the dark state. Figure
adapted from [113].

The gray molasses scheme has been proposed in [119] and has been
implemented on the D1 line of potassium for the first time at Fermix
[113]. If an optical transition |F 〉 → |F ′ = F 〉 or |F 〉 → |F ′ = F − 1〉
is driven, as is the case for the D1-line of Alkali metals, the eigenstates
of the Hamiltonian include states that do not couple to the light field.
These so-called dark states are superpositions of the ground state sub-
levels. When an atom occupies such a dark state, it cannot absorb or
emit photons and is therefore not affected by acceleration via photon
recoil. For atoms in the bright state, a polarization gradient in the laser
beams gives rise to a spatially varying Zeeman shift, which translates
into a periodic potential landscape for the atoms. If the detunings of
the laser beams are chosen correctly, i.e., at blue detuning with respect
to the Raman transition, the energy of the bright state lies above the
energy of the dark state. Atoms in the dark state can transition to
the bright state via motional coupling. The probability for this effect is
highest for large kinetic energies and for small energy difference between
the two states, i.e. at potential valleys of the bright state.
The cooling principle can be understood as a combination of Sisyphus

cooling and velocity-selective population trapping: Atoms in the bright
state with high (kinetic) energy move up the potential hills thereby losing
kinetic energy, and are pumped back into the dark state. The energy
difference between the two states is radiated away and as a result, the
energy of the atoms is reduced. If the kinetic energy of the atoms is
still high, the coupling to the dark state is large and they return to the
bright state after some time. When their velocity becomes lower, the
coupling to the bright state decreases and the lifetimes in the dark state
becomes large. The cold population is therefore ’trapped’ in the dark
state and is unaffected by the molasses light.
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3.1. Experimental sequence of the Fermix experiment

Figure 3.5. – Principle of the magnetic transport. From left to right: The center
of the magnetic quadrupole field is displaced by switching the electric currents
in overlapping coil pairs. At every moment, three pairs are operated to ensure
smooth movement and a constant aspect ratio. The resulting magnetic field is the
sum of the individual fields. Figure adapted from [98].

The use of the D1 line over the D2 line is founded in the level structure,
which implements the |F 〉 → |F ′ = F 〉 / |F 〉 → |F ′ = F − 1〉 transitions.
In addition, the hyperfine levels of the excited state are further separated
than the sublevels of the 2P3/2 state and can be individually addressed
more easily, which reduces off-resonant excitation of the atoms and im-
proves cooling efficiency. Finally, the additional Λ−type level structure
of the |F = 9/2〉 and |F = 7/2〉 ground states, addressed by the cooling
and repumping beams, leads to additional cooling effects due to long-
lived coherences between hyperfine states [120]. In the end, the D1-gray
molasses reduces the temperature of over 109 atoms from ∼ 200 µK to
20 µK in about 5ms.

3.1.3. Magnetic transport and microwave evaporation

After the D1-molasses step, the atomic cloud is cold enough to be loaded
into a magnetic quadrupole trap and transferred to the science cell. De-
pending on the hyperfine state, potassium atoms are either high- or
low-field seekers. Since Maxwell’s equations forbid isolated maxima of
the magnetic field, high-field seeking states can only be trapped mag-
netically in at most two spatial direction, whereas the potential must be
anti-trapping in the third direction. This makes these states unsuitable
for transport in a magnetic trap. We therefore transfer the atoms into
the low-field seeking state |mF = 9/2〉 using a short pulse of circularly
polarized light that is shot through the cloud along the magnetic field
direction.
After the quadrupole potential is ramped up using the MOT coils, the

trap is adiabatically displaced from the MOT chamber to the science cell
in about 4 s. Similar to the optical transport in the lithium experiment
in Hamburg, such a transport can in principle be done by moving a
single coil on a precise translation stage (see for instance [121, 122]).
The Fermix setup however employs a setup of 12 overlapping pairs of
static coils in anti-Helmholtz configuration whose currents are switched
on and off successively using four power supplies and a complex switching
circuit of insulated gate bipolar transistors (IGBTs) (a scheme developed
in [123]). For a detailed description of the design and optimization
process, I would like to refer the reader to the thesis of Thomas Salez [98].
At each moment in time during the transport, three pairs of coils are
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supplied with currents (compare fig. 3.5). The currents are optimized
such as to ensure adiabatic displacement of the trap under avoidance
of discontinuities in the derivatives of the trajectory. The aspect ratio
of the trap is kept as constant as possible. These requirements are
necessary to keep the heating of the atomic cloud during the transport
to a minimum.
The main advantage of this transport setup is its physical robustness

which incurs low costs in terms of maintenance time. Once optimized,
it merely requires an atomic cloud fulfilling good starting conditions in
terms of temperature and atom number. A second advantage is that it
allows for transport along relatively complicated paths including angles,
without requiring to reload the atoms into a different trap that would
need to be aligned with the first. The transport path at Fermix features
a 90 ◦-corner in order to move the atoms out of an eventual influence of
eventual remaining potassium atoms exiting the 2D MOT and to offer
improved optical access to the atoms in the science cell. The setup on
the other hand also comes with a set of disadvantages: A minor one is
that the magnetic quadrupole field has a zero crossing during the entire
transport time. Here, the spin of the atoms cannot adiabatically follow
the direction of the magnetic field, causing Majorana losses, i.e. some
atoms flip into untrapped states. This however rarely happens since the
atoms are not cold enough to spend much time close to the trap center.
The main disadvantage for the day to day use at Fermix consists in
the high currents used to operate the coil pairs. The dissipation of the
heat load induced by these currents requires water cooled coils, which
are embedded in a large metallic plate. Switching the strong magnetic
fields leads to eddy currents which disturb the atoms during transport
as well as at the final position inside the science cell. Another source of
heating is the injection from the MOT position into the transport which
has to happen fast due to the high background pressure and which is
therefore not fully adiabatic. In the end, about 75% of the atoms arrive
in the science cell at a temperature of ∼ 350 µK, roughly a factor 2
hotter than in the magnetic trap in the MOT chamber.
Before the atoms are finally loaded into an optical dipole trap, the

temperature is lowered again using microwave evaporation. In contrast
to evaporative cooling in an optical trap, where the trap depth is slowly
lowered to allow the energetically highest atoms to leave the trap, mi-
crowave (or radio-frequency) evaporation relies on a static magnetic trap
depth and active removal of atoms from the trap. This has the advan-
tage that the trap geometry is unaffected by the evaporation process.
The atom removal is achieved by flipping the spin of the most ener-
getic particles into an anti-trapped state, such that the magnetic field
is repulsive for these atoms. Due to the spatially varying Zeeman-shift,
the frequency of the microwave radiation shone into the trapped cloud
can be chosen to be resonant to an outer shell of the trap only. Atoms
found in this region mostly populate states of high energies. By selec-
tively removing these atoms, the mean energy of the atom distribution
is reduced and the sample thermalizes to a lower temperature. The radi-
ation frequency is now slowly ramped towards values resonant at inner,
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colder shells of the trap, realizing a forced evaporation. At the end of
this evaporation, the sample consists of 4 − 8 × 108 atoms at typical
temperatures of 60 µK. Finally, the gas is loaded into ODTs and further
evaporation steps take place, taking the cloud towards the degenerate
regime.

3.1.4. Detection of spin populations

After the experimental steps, which we will discuss in the next chap-
ter, the atoms are imaged using absorption imaging. The different spin
states of the ground state manifold of 40K hereby do not have the same
detection probabilities with respect to the imaging light, since the scat-
tering cross-sections are different. To circumvent this issue, a short
optical pumping pulse along the magnetic field direction can be used to
transfer the atoms into the stretched state |mF = 9/2〉 prior to imaging.
For the study of the spin population dynamics in section 4.2, two spin-

selective imaging methods have been developed. Firstly, a Stern-Gerlach
step can be carried out to separate the different spin components. Here,
a strong magnetic gradient is applied for a short time, accelerating the
atoms according to their magnetic momenta, which is different for the
different spin states. The different spin populations therefore separate
spatially and are then pumped into the stretched state and imaged with
the same detectivity.
The applicability of the Stern-Gerlach imaging procedure is limited by

two constraints. Since the atoms can only separate when the trapping
potentials are switched off, the atomic clouds expand during the Stern-
Gerlach step, causing the separated clouds to overlap after a given time
time of flight. This leads to an upper temperature limit for the use of the
Stern-Gerlach procedure. Additionally, the clouds expand sufficiently at
long flight times for the cameras to reach their detection limit. To reduce
the separation times, stronger magnetic gradients can be used. These on
the other hand are limited by factors such as the inductivities of the coils
or the power supplies which are used. In addition, strong field changes
lead to the rise of relatively long lived eddy currents in the metallic
mounting plates of the magnetic transport, which lead to an undesired
change of the imaging resonance frequencies. This change is different
for the different spin populations, since the corresponding atoms are
located at different positions in the chamber during the imaging pulse.
Therefore the imaging frequency needs to be calibrated in dependence
of the parameters of the Stern-Gerlach step. The actual sequence is a
compromise between these effects. It involves currents of up to 60A,
applied during 2ms. The resulting cloud separations limit the use of the
Stern-Gerlach imaging scheme to cloud temperatures below 10 µK.

In order to implement spin-selective imaging at higher temperatures,
a second scheme has been developed, relying on removing the spin pop-
ulation of interest from the cloud with the help of a microwave Landau-
Zener sweep. The atoms are transferred from the |F = 9/2〉 manifold
to the |F = 7/2〉 manifold, thereby ’hiding’ them from the imaging light
which is detuned by 1.285GHz. The spin ratio is inferred from the
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reduction of the imaged atom number. Since the linewidth of the hyper-
fine transition is smaller than the Zeeman level splitting at these small
fields, the spin states can be individually addressed with good accu-
racy. However, care must be taken for several reasons. First, some of
the possible transition frequencies lie close together and radiation of a
given frequency might affect more than one spin populations simulta-
neously. Second, the transition probability of the hiding sweep is not
necessarily unity and needs to be calibrated in order to infer the correct
atom numbers. Third, the different spin states are not imaged with the
same detection efficiency, which can again be circumvented by an optical
pumping pulse prior to imaging. In order to calibrate the efficiency of the
hiding pulse, samples at low temperature have been produced. After the
populations of a given different spin states has been transferred to the
|F = 7/2〉 manifold, the remaining atom numbers have been measured
using the Stern-Gerlach imaging procedure described above.
For further details on the imaging process, I would like to refer the

reader to [104].

3.1.5. Typical performance of the machine

After having discussed the particular steps of the Fermix sequence, I will
give a final overview over the performance of the machine. A total exper-
imental sequence at Fermix takes about 60 s. First, the magneto-optical
trap is loaded from the atomic beam escaping the 2D-MOT chamber.
The loading rate saturates after about 30 s. At this time, a typical num-
ber of 1.5·109 atoms are trapped in the MOT. To prepare the atoms for
the magnetic transport into the science cell and for the ensuing evapo-
rative cooling stages, a few steps are carried out which have the goal to
strongly reduce the temperature of the cloud and increase its density.
The trap is first compressed during 5ms by increasing the magnetic
field gradients and decreasing the intensities of the cooler and repumper
beams. To counteract the resulting heating of the cloud, it is then
strongly cooled in a D1-gray molasses, which takes approximately 5ms
and results in a temperature of 20 µK. Finally, the atoms are optically
pumped into the magnetically trappable Zeeman states |F = 9/2〉 and
|F = 7/2〉 and transferred into the magnetic quadrupole trap. In order
to transport the atoms the MOT chamber into the science cell, the trap
is displaced over a distance of 65 cm in about 4 s, by switching currents
in an ensemble of overlapping coils in anti-Helmholtz configuration.
Due to the limited efficiency of the magnetic transport, a typical

number of ∼ 109 atoms arrive at the science cell at temperatures of
≈ 360 µK7. In the following seconds, a succession of evaporative cooling7While this may seem like a large

loss compared to the temperatures
after the gray molasses, a large part
of the temperature increase is due
to strong compression of the trap
during transport.

steps is used to bring the gas toward degeneracy. First, a microwave
evaporation is used to remove the hottest atoms from the magnetic trap
in about 4 s. In an ensuing step, the atoms are loaded into an optical
dipole trap, in which further evaporative cooling is carried out. The
spin composition of the sample can be adjusted using radio-frequency
sweeps. At the end of this step, typically ∼ 106 atoms are left at tem-
peratures of about ∼ 0.7 µK, which corresponds to T/TF ≈ 2.5. This is
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the starting point of the experiments presented in this thesis.
If so desired, it is possible to reduce the temperature of the sample

further. To do so, the atoms are also transferred in the energetically
lowest Zeeman states |mF = −9/2〉 and |mF = −7/2〉 using an adia-
batic Landau-Zener radio-frequency sweep. This transfer also allows
us to access the Feshbach resonance of potassium at 202G. In addi-
tion, a second, crossed dipole trap is added, increasing the density and
the collision rates between the particles. The magnetic field is ramped
successively closer to the Feshbach resonance and two slow final evapo-
ration are carried out during ∼ 10 s. The lowest temperatures that were
achieved with this sequence were T/TF ≈ 0.1 with 104 atoms.

After the preparation of the sample, the experimental steps are carried
out and finally, the gas can be imaged using standard absorption imaging
using CCD cameras8 or using a high-magnification path with a highly 8PCO Pixelfly QE 270XD
sensitive low-noise CCD camera9. 9Andor iKon-M 934

3.2. The setup around the science cell

After having discussed the experimental sequence followed at the Fermix
experiment in order to create a cold sample of potassium 40, I will
now introduce the setup around the science cell. The science cell at
Fermix consists of an uncoated vycor cell10 in a cuboid shape, with 10Hellma GmbH
outer dimensions of 23mm × 23mm × 10mm and a wall thickness of
4mm. This rectangular shape allows for a relatively large angle of access
in the horizontal plane, with a small range of angles being blocked by
the coil mounts for the end section of the magnetic transport and for
the magnetic coils around the science cell itself. Around the science cell,
there are several sets of coils in order to create the magnetic fields needed
in the experimental steps and to offset eventual DC fields in the vicinity
of the science cell, two RF/MW-Antennae to control the populations of
the spin states of the atoms and several optical setups to manipulate and
image the atoms. These parts are described in the following paragraphs.
In order to avoid confusion, I will denote the vertical direction as the
z-axis, the transport axis as the y-axis and the remaining horizontal axis
as x.

The magnetic setup

The magnetic setup around the science cell is shown in Figure 3.6. Above
and below the glass cell, there are two sets of magnetic coils, slightly
offset from the center of the glass cell on the transport axis, with a cir-
cular hole giving optical access along the vertical direction. The inner
coils produce a strong magnetic bias field of 8.00GA−1 with a curva-
ture of 0.31G cm−2A−1 when operated in Helmholtz configuration, or a
magnetic gradient of 2.50G cm−1A−1 when operated in anti-Helmholtz
configuration. The curvature of the inner coils’ field can be compen-
sated by operating the inner coils in conjunction with the outer coils,
whose geometry is closer to an ideal Helmholtz configuration and which
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Figure 3.6. – Cut through the setup around the science cell perpendicular to the
transport axis. Figure adapted from [104]. Two pairs of large coils (inner/outer)
are located above and below the science cell, producing high bias fields with
variable curvature or strong magnetic gradients. Additional pairs of compensation
coils (Comp X,Z) are located horizontally and vertically around the science cell.
Microwave and Radio-frequency antennas (MWA, RFA) are installed on either
side of the science cell. A vertical imaging beam can also be used to pump the
atoms into the stretched state of the Zeeman manifold. In the horizontal plane,
several optical beams are used to address the atoms (compare fig. 3.7). These are
the two ODTs, two imaging beams (y-imaging not shown) as well as additional
beams (DMD+PhPl, HF OP) which have been installed for a future project. Not
shown are the compensation coil on the transport axis and the optics needed for
the lattice project.

provide an opposite curvature of −0.026G cm−2A−1 at a bias field of
0.24GA−1.
During the experiment, the inner coils can be supplied by two different

power supplies. After the magnetic transport steps, the coils are oper-
ated in anti-Helmholtz configuration, providing the magnetic quadrupole
field for the microwave evaporation. This configuration is also used for
Stern-Gerlach imaging of the atomic cloud. For these two purposes, the
coils are supplied by a power supply11 which can deliver currents up to11Delta Electronica SM45-140
140A, but whose large output range leads to a coarse resolution that
is insufficient to do high-precision experiments at low magnetic fields or
to precisely address the relatively narrow Feshbach resonance of potas-
sium at 202G12. After the sample is transferred to optical dipole traps,12The specified stability is 10−4 in CC

operation, which yields 0.2G. This
corresponds already to 2.5% of the
width of the Feshbach resonance.

IGBT switches therefore allow a second, highly-stable power supply13

13High Finesse UC 30/15

to be connected to the inner coils, delivering up to 30A at a specified
stability of ∼ 10−5.

In order to compensate stray magnetic offset fields at the position of
the atoms, a set of small coils is located close around the science cell,
which were designed in the course of this thesis. Two circular coils with
65 windings are placed on top and below the cooling plate of the mag-
netic transport, centered around the circular cutouts of the coils. Two
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3.2. The setup around the science cell

rectangular coils with 23 windings are located next to the coil holders
in order to take care of fields along the x-direction. Finally in the y-
direction, a single rectangular coil with 60 windings is used at the end
of the coil holders. Here, a single coil had to be used, since the magnetic
transport setup occupies most of the space opposite of this coil. For all
of these coils, sets of aluminium supports have been designed such that
the coils fit closely to the already existing coil supports and no additional
optical access is lost. The supports are cut open and have been fixed
to the breadboards and to the metallic cooling plate of the transport
under avoidance of metallic contact in order to prevent perturbing eddy
currents.

RF-Antennae

Around the science cell, there are two antennae used to manipulate the
spin state of the atoms, covering two distinct frequency ranges. One
antenna consists of a single large loop located on top of the science
cell. It is used to address transitions at energies corresponding to the
hyperfine splitting of 40K around 1.285MHz. The second antenna has a
smaller radius and multiple windings and is approached to the science
cell from the side under a diagonal angle. It is used to radiate radio-
frequencies up to a few tens of MHz, in order to address transitions
within a given hyperfine manifold. This antenna is for instance used for
the Landau-Zener sweep to the negative hyperfine states or for balancing
of spin populations. Additional information on the MW/RF system can
be found in [104].

The optical setup

The final components to the setup around the Fermix science cell are the
optical traps and the imaging optics. A top view of the setup is shown in
Fig. 3.7. In order to cool the potassium sample down to degeneracy, two
1064 nm dipole traps are available, entering the science cell from both
sides at an angle of 20 ◦ with respect to the x-axis and intersecting at
the magnetic center. Both beams are provided by high-power photonic
crystal fibers supplied by a high power Nd:YAG laser14. The first beam 14Innolight Mephisto MOPA 16W
(’ODT1’) has a maximum power of up to 7W and is focused down to
a 1/e2-waist of 39 µm, which yields a trap depth of maximum 290 µK.
The crossed trap (’ODT2’) is significantly weaker than the first ODT,
featuring a waist of 110 µm, which yields a maximum trap depth of
16 µK15. 15For future projects, a second high

power laser (IPG Photonics YLR-
300-LP-WC) has been installed
next to the science cell, which can
replace the ODT2 arm at high pow-
ers of up to 150W at the position
of the atoms. In addition, a two-
dimensional optical lattice has re-
cently also been constructed which
creates a lattice geometry consist-
ing of vertical tubes and is pro-
jected to be used for studies of the
1D-3D dimensional crossover with
potassium atoms. Both setups have
not been used in the course of
this thesis. They are described in
greater detail in [104, 105].

In order to image the density distribution of the atoms in the sci-
ence cell, three different imaging directions are available. The different
imaging axes have different magnifications and serve different functions
in the experiment. Along two axes, the cloud is imaged by the Pixelfly
CCD cameras, operated in double-shutter mode, with low magnifica-
tions: Along gravity (z-axis) the crossed dipole trap can be imaged with
a magnification of M = 4. A second (auxiliary) imaging direction runs
along the optical path of the ODT1. It has a magnification of M = 1
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3. Creating Ultracold Potassium: The Fermix Experiment

Figure 3.7. – Top view schematic of the optical setup around the science cell at
the Fermix experiment. Figure adapted from [105] The science cell sits slightly
off-center with respect to the inner and outer coils. Red: Two optical dipole traps
intersect at the magnetic center under an angle of 20 ◦. Blue: Two imaging paths
are available in the transport plane. The so-called x-imaging follows the same
path as the ODT1, whereas the y-imaging is collinear to the transport axis. The
x-imaging has a magnification of M = 1. For the y-imaging, two different paths
allow for a magnification of M = 4 or M ≈ 19. Finally, an optical pumping
beam (OP-HF, Mask) is shown, which is used for a future project [104, 105].
Not shown is the z-imaging beam which passes vertically through the chamber.
SK1/SK2: Schäffter-Kirchhoff outcouplers. MWA/RWA: Microwave and radio-
frequency antennas.

and can be used to measure the trapping frequencies of the optical dipole
traps. The sensitivity of the cameras used here is typically sufficient to
image clouds with down to 105 atoms, which is typically reached at the
end of the optical evaporation steps. A big advantage of this imaging
setup is that the x-imaging beam is overlapped with the path of the
ODT1 and thus integrates the atomic density along its axial direction,
allowing for the detection of very dilute gases trapped in the optical
dipole trap. In addition, it leaves room for additional optics perpendic-
ular to the transport axis. On the other hand, one has to note that the
second ODT is imaged under an angle when this imaging direction is
used.
Finally there is another imaging beam along the transport axis. In

order to detect the atoms at the small signal-to-noise ratios, a highly
sensitive CMOS camera (Andor Ikon M) is used at a high magnification
of M = 19. The imaging resolution reached in this path is ∼ 1.6 µm,
which is smaller than the lattice constant of ∼ 2.5 µm. Mirrors mounted
on magnetic stages allow however to use a different optical path with
a smaller magnification of M = 5 for less critical applications. Both
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3.3. Further upgrades to the experimental setup

imaging paths along the y- and z-axis have been redesigned in the course
of this thesis.

3.3. Further upgrades to the experimental setup

3.3.1. Experiment control

The experiment is controlled via TTL, analog (0-10V) as well as GPIB
signals generated by a rack of National Instruments PXI-cards16. These 16NI PXI-6533, NI PXI-6535, NI

PXI-6713, NI PXI-GPIBsignals are fed through optocouplers in order to isolate the sensitive PXI
racks from ground loops or high voltages flowing back from the circuitry
around the experimental table. The sequences are programmed and
sent to the PXI-cards by a computer running Cicero Word Generator in
combination with Atticus Server, a software kit developed at MIT17. The 17More information available at

http://akeshet.github.io/
Cicero-Word-Generator

timing of the sequence is provided by an external FPGA clock, which
allows each time step to run at a different time resolution, reducing
the size of the buffers significantly, particularly in the long evaporative
cooling steps or during lifetime measurements.
In the course of this thesis, the experiment control software was up-

dated in order to provide the possibility to synchronize the experimen-
tal sequence with the 50Hz-frequency of the main power network. The
version of Cicero/Atticus which was in use before did not offer this func-
tionality, and had additionally been modified in-house to allow for an
integration of the Pixelfly cameras with the experiment control software.
Unfortunately, these modifications were not compatible with newer ver-
sion of Cicero/Atticus, which required the development of new imaging
software based on python. In contrast to the prior implementation, this
new program is independent of the experiment control software, per-
forming the sole task of receiving and storing the images taken in the
course of the experimental sequence. This limited scope has the advan-
tage that the program is easier to maintain and update for use with
different camera models (for instance the Andor Ikon) or future versions
of Cicero/Atticus. A disadvantage on the other hand is that it there is
no direct way to recover the sequence parameters from the images or
to automatically group the images of a given sequence together. While
this correspondence between sequences and images had always been done
manually in the group (by recording the image IDs for each sequence
in the lab book), these capabilities would be very useful additions for
future versions of the imaging software.

3.3.2. Laser frequency generation

During the course of this thesis, the optical system for the D2-line has
been expanded and upgraded in several points. Its full scheme is shown
in figure 3.818. 18The D1 setup is built after a similar

scheme. Details to this setup can be
found in [100, 102, 104].

A master laser is locked onto the crossover line of 39K with a fixed
offset created with the help of an AOM, using modulation transfer spec-
troscopy [124]. The use of 39K for this purpose originates in the low
natural abundance of 40K at only 0.012%, which renders direct locking
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Figure 3.8. – The full laser setup for the generation of the frequencies on the
potassium 2D-line. There are four functional parts: A spectroscopy section is
used to stabilize the laser frequency using the D2-crossover line of 39K. For the
operation of the 2D- and 3D-MOT, the beam is split into multiple paths after
amplification of the laser power in a TA and the frequencies are shifted in a
series of AOMs. The principal and repumper paths of the 2D and 3D-MOTs are
combined and seed a second stage of TAs before being transported to the optical
table in polarization-maintaining single-mode optical fibers. In addition, there are
two separate imaging systems for the science cell and the MOT chamber.
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3.3. Further upgrades to the experimental setup

on this isotope experimentally unpractical. The crossover frequencies of
39K fortunately lies close enough to the D2 frequencies of 40K to enable
locking on the other isotope. The light originating from the laser is then
fed into a homebuilt tapered amplifier system [97]. After mode cleaning
with the help of a single-mode optical fiber, the light is split into the
different paths and the frequencies are generated with the help of succes-
sive AOMs. The cooler and repumper beams of the 2D and 3D MOTs
are superimposed, yielding two bichromatic pairs and amplified again in
a second TA stage before finally being transported onto the main table
with polarization-maintaining single-mode fibers. AOMs in front of the
fibers allow to switch the different beams on and off on µs-timescales.
Slower mechanical shutters further reduce stray light when the light is
not needed for a longer period of time.
On this setup, I carried out the addition of a small optical system that

enables optical pumping and fast subsequent imaging of the atoms from
different directions. As mentioned before, it is important to avoid open
transitions during the imaging process, which could cause the atoms to
fall into states that are not addressed by the imaging light, in order to
measure the populations of the different hyperfine states of potassium
accurately (or at least in order to calibrate the detection probability
for the different states). Hence, prior to the imaging pulse, the atoms
are transferred into the stretched state |mF = 9/2〉, which features a
closed transition tot he |F ′ = 11/2〉 state. This transfer is done with
circularly polarized resonant light along the direction of the magnetic
field. In the past, the imaging axes of the setup could unfortunately
not be independently addressed. Shutters and waveplates had to be
adjusted manually in order to feed light into the different paths, which
prevented us from imaging along a horizontal direction directly after
optical pumping. In order to allow for optical pumping both at low
magnetic fields and at fields close to the Feshbach resonance at 202G
and fast subsequent imaging from different axis, a new imaging setup
was built, featuring fast electronic control over the intensities in all three
imaging axes with the help of dedicated AOMs. The old imaging setup
has been kept in a modified way for imaging inside the MOT chamber.
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4. Characterization of a D-Wave
Feshbach Resonance

In this chapter, I report on the characterization of a d-wave Feshbach
resonance in a cold gas of 40K and on measurements of the dynamics
of the hyperfine spin-state populations in its vicinity. The results of
this project are published in the thesis of Thomas Reimann

Thomas Reimann. Resonant spin dynamics and 3D-1D di-
mensional crossovers in ultracold Fermi gases. PhD thesis,
École Normale Supérieure Paris, Université PSL - PSL Re-
search University, 2018.

This project was carried out in the beginning of my time as a PhD
student, and the results were obtained mainly through the efforts of
the senior PhD students Thomas Reimann and Cédric Enesa.

As we have already discussed in earlier parts of this manuscript, Fes-
hbach resonances are a very important tool in the field of cold atoms,
providing the possibility of adjusting the interactions between the parti-
cles. Large interaction strengths are important on one hand to increase
the efficiency of evaporative cooling, enabling the gas to reach quantum
degeneracy. On the other hand, Feshbach resonances give the experi-
menter a tool to create bound molecules from free atomic particles. In
the case of a Fermi gas, they even allow to change the character of the
sample from a gas of weakly bound Cooper pairs to a gas of tightly
bound dimers in the so-called BEC-BCS crossover.

In our previous discussion, we have introduced s-wave Feshbach reso-
nances which enhance scattering between particles in the s-wave chan-
nel with zero angular momentum. Feshbach resonances can however
enhance scattering in higher angular momentum channels as well. This
effect is particularly intriguing since high-Tc superconductivity seems to
rely on unconventional pairing between electrons, most notably pairing
in the d-wave channel [6–9]. Studying Feshbach resonances involving
higher angular momenta might uncover some details of this mechanism,
or could provide an access to simulate such interactions in a targeted
manner. The Feshbach resonance which we will discuss in this chapter
involves such states with d-wave symmetry.
Although extensive research on Feshbach resonances in potassium 40

had been carried out [125–128], the resonance that will be discussed
in this chapter was previously unreported. It has been found by M.
Rabinovic during the characterization of the evaporation efficiency of a
mixture of the positive hyperfine states of potassium for different mag-
netic fields [103]. Hereby, an imbalanced mixture of atoms in the states
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4. Characterization of a D-Wave Feshbach Resonance

|F = 9/2,mF = 9/2〉 and |F = 9/2,mF = 7/2〉 was evaporated in an op-
tical dipole trap during a fixed time at varying magnetic field. The final
atom number in the trap showed two clear dips around 8G and around
160G (see [103] p. 106).

(a)

(b)

Figure 4.1. – (a) First observa-
tion of the Feshbach resonances
at 8G and 160G via enhanced
losses during evaporation. (b)
A more precise scan of the lower
resonance reveals three separate
peaks. The continuous line is a
Lorentzian fit to the data, serv-
ing as a guide to the eye. Figure
adapted from [104].

A second more precise measurement of the
field-dependence of the remaining atom number at low magnetic field
confirmed the enhanced losses and showed three distinct peaks between
8G and 12G [104] (compare fig. 4.1).
We can qualitatively understand the origin of these enhanced losses by

considering the energy balance during a collision event. There are three
main cases to distinguish at this point. Firstly, the collisions between the
particles can be elastic, which is the case if there are only two scattering
partners and the incoming and outgoing particles remain in the same
spin states. In this case, no energy is transferred from the particle
motion into other degrees of freedom, and the enhanced collision rate
leads mostly to a fast thermalization rate and to efficient evaporation
of particles from the trap. Secondly, there is the possibility of inelastic
two-particle collisions. Inelastic losses can occur if one of the scattering
partners changes its internal state, for instance its spin. In the case of
this thesis, the potassium atoms start out in a mixture of the positive
hyperfine states |mF = 9/2〉 and |mF = 7/2〉 of the F = 9/2 manifold
and can flip towards states with lowermF . In the presence of a magnetic
field, this spin flip frees energy of the order of the Zeeman splitting,
which needs to be accounted for by the motion of the two scattering
partners in the outgoing channel. In this case, the kinetic energy of the
outgoing scattering partners is higher than the energy of the incoming
partners, leading to a loss of particles from the trap or for small energies
to an effective heating of the cloud. Angular momentum conservation
requires in addition that the difference in spin must be compensated by
the angular momentum of the outgoing partial wave.
Finally there is the possibility that more than two scattering partners

are involved during an interaction. This happens mostly in the case of
dense samples and large interaction strengths. In this case, the forma-
tion of deeply bound molecular states is possible, since the additional
particles can carry away the energy difference. These n-body collisions
lead to high losses due to the large energies being freed in the scattering
process.
In this thesis, we will focus on the lowest of the three resonances

shown in fig. 4.1. For any new resonance, it is of interest to fully char-
acterize it in order to be able to use it for manipulating the properties
of atomic ensembles or even to avoid its unwanted influence in other
applications. Formula 2.24 which we have introduced before, describes
only the behavior of the s-wave scattering length. If higher angular mo-
menta are involved, the full characterization of a Feshbach resonance
requires obtaining knowledge about its position B0 and about the shape
of its resonance peak. The involved spin states in the incoming, bound
and outgoing channels have to be known as well as the partial wave in
which the collision occurs. Two measurements have been carried out to
characterize the resonance and to obtain additional information on the
dynamics at magnetic fields around the peak of the atom losses. The
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4.1. Measurement of the two-body loss rate

first of these measurements extracts the two-body loss rate from the par-
ticle losses occurring in a shallow optical dipole trap for relatively long
hold times. The second measurement looks at the spin composition and
the heating of the gas in a deep optical dipole trap at short hold times.

4.1. Measurement of the two-body loss rate

The telling sign of the Feshbach resonance in our experiment are en-
hanced atom losses leading to lower particle lifetimes. These losses are
due to the change of the internal state of the scattering partners during
the collisions. This state change can be associated with the liberation
of energy of the scale of the Zeeman or hyperfine splittings. Enhanced
losses could also occur due to the liberation of the binding energy of a
bound molecular state in the case of three-body collisions.

In order to characterize the Feshbach resonance, we have thus per-
formed a series of measurements of the particle loss rate at various
magnetic fields around the resonance. For this, an imbalanced sample
of different spin states of potassium has been prepared in the crossed
dipole trap at a small magnetic background field away from the Fesh-
bach resonance. The spin composition of typically ∼ 60% |mF = 9/2〉,
28% |mF = 7/2〉 and 12% |mF = 5/2〉 corresponds to the natural spin
population after the evaporative steps. The temperature of the sample
is set to four different values by adjusting the end point of the final op-
tical evaporation step and recompressing the trap to a constant value of
U0/kBT ≈ 8.4, leading U0 : Trapping potential heightto initial cloud temperatures between 2 µK and
30 µK. Here, U0 is the height of the optical dipole trap.

The magnetic field is then jumped to the target value and the atoms
are held in the trap for variable times. The particle numbers are then
measured using absorption imaging and the temperatures of the cloud
after a given hold time are extracted from the expansion velocity of the
cloud during time of flight. These measurements had been taken before
the spin-selective imaging sequences were set up. We therefore only have
access to the total atom number after a given hold time as well as to the
typical initial spin composition after evaporation, which was calibrated
during later measurements. The particle numbers are subject to a quite
high systematic uncertainty which we will assume here to amount to
±50%.
In order to continue to the extraction of the two-body loss coefficient

L(2) from this data, L(2) : Two-body loss ratelet us first set up the theoretical framework to
describe the dynamics in this situation.

4.1.1. Derivation of the rate equation for particle losses

We start out with the description of i-body losses in a single component
gas. According to [61], these losses can be described by terms of the
form

Ṅ (i)(t) = −
∫
d3r L(i)ni(r, t), (4.1)
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4. Characterization of a D-Wave Feshbach Resonance

where L(i) is the i-body loss coefficient, N(t) the total particle number
and n(r, t) the atomic density.

L(i) : i-body loss rate
N : Particle number
n : Density

For one-body losses, i.e., collisions with
background particles, there is a simple expression for the loss coefficient
L(1) = 1/τ , leading to the usual exponential decay of the atom number
over time: Ṅ(t) = −N(t)/τ . We can now write down similar expressions
for a multi-component gas, consisting for instance of atoms in the three
different spin states |mF = 9/2〉, |mF = 7/2〉 and |mF = 5/2〉. The atom
losses in the spin state |mF = 9/2〉 can for instance be written as:

Ṅ9(t) =− L(1)
9 N9(t)

−
∫
d3r [L(2)

99 n9(r, t)2 + L
(2)
97 n9(r, t)n7(r, t)

+ L
(2)
95 n9(r, t)n5(r, t)]

−
∫
d3r [L(3)

999n9(r, t)3 + . . . ]− . . . (4.2)

Here, the subscripts 9,7 and 5 denote the three spin states |mF = 9/2〉,
|mF = 7/2〉 and |mF = 5/2〉. Lij are the coefficients associated with
collisions between two atoms in mF = i/2 and mF = j/2, and similarly
for Lijk in the case of three-body collisions. The first line thus describes
one-body losses, the second line the two-body terms, and the third line
contains three-body terms and higher processes. We have also assumed
that the trap is shallow enough that all involved particles are lost af-
ter a collision event. Similar expressions hold for the populations of
|mF = 7/2〉 and |mF = 5/2〉. These expressions are coupled rate equa-
tions for the different spin channels. In the next paragraphs, we try to
simplify and decouple these equations as much as possible.
To do so, we first note that the one-body losses have the same loss

constant for all species, since the background collisions do not depend
on the spin state. We therefore set L(1)

9 = L
(1)
7 = L

(1)
5 = L(1).

Second, we can use theoretical input by E. Tiesinga1, who kindly1Communication with T. Reimann,
compare [104] provided us with numerical simulations of the expected two-body loss

rate in different entrance channels at various magnetic fields around
the resonance. From his input, we know that the resonance enhances
the scattering between the spin states |mF = 9/2〉 and |mF = 7/2〉 only,
and that it is d-wave in nature, i.e. the molecular state has an angular
momentum of lb = 2. The interaction between the incoming particles
is to first order due to the magnetic dipole interaction (cf. eq. 2.26)
between the two spins, which was given as [62]

V̂ dd ∝ − 1
r3 [3(r̂·σ̂1)(r̂·σ̂2)− σ̂1·σ̂2], (4.3)

This interaction couples states with different angular momenta l and l′.
The selection rules for these transitions are ∆l = 0, 2 and l = 0→ l′ = 0
forbidden. In addition, the projection of the total angular momentum
mt is conserved. We can therefore use the fact that at sufficiently low
temperatures, the Pauli principle suppresses collisions between atoms of
the same spin state, since the spatial wave function is even. We obtain
L

(2)
99 = L

(2)
77 = L

(2)
55 = 0.
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4.1. Measurement of the two-body loss rate

Third, the atoms in |mF = 5/2〉 do not undergo enhanced inelastic
losses and the corresponding two-body terms can be neglected, leaving
only L(2)

97 and L(2)
79 . These two numbers must be the same since they de-

scribe identical scattering events. We abbreviate them as L(2)
97 = L

(2)
79 =

L(2).
Finally, we neglect three-body losses, since we are working in the dilute

limit, where two-body losses should occur at significantly higher rates
than three-body losses, provided, there is no additional enhancement of
such processes. As an a-posteriori justification, it turns out that the
evolution of the particle numbers and temperatures in the shallow trap
can already be well described by two-body losses. In total, the particle
losses in the three spin states can then be written in the form

Ṅ9(t) = −L(1)N9(t)− L(2)
∫
d3r n9(r, t)n7(r, t)

Ṅ7(t) = −L(1)N7(t)− L(2)
∫
d3r n9(r, t)n7(r, t)

Ṅ5(t) = −L(1)N5(t). (4.4)

Already at this point, we have gained a bit of overview. Since the
losses of atoms in |mF = 5/2〉 are entirely due to single body losses and
since collisions between atoms in the other spin states lead to direct
losses, the evolution of the population in |mF = 5/2〉 will simply decay
exponentially:

N5(t) = N5(0) exp(−L(1)t). (4.5)

For the next step, we remind ourselves that the atoms are held in
an optical dipole trap, which provides a harmonic confinement along all
directions U(xi) = mω2

i x
2
i /2. U(r) : Trapping potential

ωi : Trapping frequencies
m : Particle mass
n0 : Central density
Ve : Effective trap volume
ω : Effective trap frequency

Introducing the effective trap volume

Ve =
∫
d3r e−U(r)/kBT =

√
2πkBT
mω2

3

, (4.6)

where ω = (ωxωyωz)1/3 is the geometric mean of the trapping frequencies
along the different directions, the density distribution of a trapped gas
can then be written as n(r) = n0 exp(−U(r)/kBT ), where n0 = N/Ve.
We thus find the expression∫

d3r n9(r, t)n7(r, t) = N9N7

2
√

2Ve
,

which yields

Ṅ9(t) = −L(1)N9(t)− L(2)N9(t)N7(t)
2
√

2Ve(t)

Ṅ7(t) = −L(1)N7(t)− L(2)N9(t)N7(t)
2
√

2Ve(t)

for the 9/2 and 7/2 states.
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4. Characterization of a D-Wave Feshbach Resonance

To reduce notational ballast, we will leave out the explicit time depen-
dence of the atom numbers from now on. We would now like to remove
the product N9N7 from these equations.

Nm : Majority atom number
N9 +N7

∆N : Imbalance N9 −N7

To do so, we change the vari-
ables to the majority atom number Nm = N9 + N7 and the imbalance
∆N = N9−N7 between the populations of |mF = 9/2〉 and |mF = 7/2〉.
The population imbalance is not affected by two-body losses, since both
atoms are lost equally. Hence, the contributions of the two-body losses
cancel and we find ˙∆N = Ṅ9 − Ṅ7 = −L(1)(N9 − N7) = −L(1)∆N ,
from which we obtain another exponential decay governed again by the
single-body loss rate.

∆N(t) = ∆N(0) exp(−L(1)t). (4.7)

To obtain the rate equation for the majority population, we start from
the rate equation for the total atom number Nt = N9 + N7 + N5.Nt : Total atom number It
reads

Ṅt = Ṅ9 + Ṅ7 + Ṅ5 = −L(1)Nt − L(2)N9N7√
2Ve

.

In this equation, we now replace N9 = 1
2(Nt − N5 + ∆N) and N7 =

1
2(Nt −N5 −∆N) to obtain

Ṅt = −L(1)Nt −
L(2)

4
√

2Ve
((Nt −N5)2 −∆N2).

We subtract Ṅ5 = −L(1)N5 from both sides and obtain the rate equation
for the losses in the majority populations:

Ṅm(t) = −L(1)Nm(t)− L(2)

4
√

2Ve(t)
(Nm(t)2 −∆N(t)2). (4.8)

4.1.2. Extracting the two-body loss rate
To extract the two-body loss rate L(2) from our data, we first reduce
the number of unknown quantities in equation 4.8.

τ : single particle lifetime

The one-body loss
rate L(1) can for instance be measured via lifetime measurements off-
resonance and has been determined to L(1) = 1/τ = 1/(47 s) at a
background field of 18G. The population of |mF = 5/2〉 decays ex-
ponentially with the a decay rate set by L(1). We therefore extract
Nm(t) = Nt(t) − N5(t) from the imaged total atom number under the
assumption that the initial fractional population in |mF = 5/2〉 is 12% of
the total population, which corresponds to the natural population after
the final evaporation. Thus, we have N5(t) = 0.12Nt(0) exp(−t/47 s).
In addition, we use the fact that the imbalance ∆N between the ma-
jority spin components also decays exponentially and write ∆N(t)2 =
δN2Nt(0)2 exp(−2t/τ), with δN = ∆N(0)/Nt(0).δN : fractional initial

imbalance ∆N(0)/Nt(0) Finally, the effective trapping volume Ve also follows from the experi-
mental parameters but contains a dependence on temperature (compare
eq. 4.6). Since the temperature of the gas increases in the course of the
collision events, however, the trapping volume cannot be assumed to be
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4.1. Measurement of the two-body loss rate

constant. The reason for this effect is anti-evaporation heating. Since
two-body losses are dependent on the density, these processes happen
most likely where the density of the sample is largest, i.e. in the trap
center. Here, the typical energy of the particles is lower than the typ-
ical energy of the particles in the wings of the cloud. After a loss of
two atoms from this trap region, the remaining atoms have on average
more energy than before, which leads to a temperature increase after
thermalization. To deal with this temperature change, two options have
been found.

Following [129], the temperature and particle variation in thermal
equilibrium owing to i-body losses are related by

Ṫ

T
= − i− 1

2i L(i) Ṅ

N
.

Assuming that the one-body processes occur on a much slower time scale
than the two-body losses, one obtains

Ṅm

Nm
≈ −4 Ṫ

T
. (4.9)

Equations 4.8 and 4.9 can be parametrically fitted to the atom number
and temperature data, with the initial imbalance δN and the two-body
loss rate as parameters, an approach taken in [104]. Unfortunately the
fit to the data remains quite sensitive to the initial conditions and con-
straints. In this thesis, we therefore use a slightly different approach to
cross-check the results of [104].
For this, we do not use the temperature equation 4.9, but instead use

a simple linear interpolation of the temperature data to directly insert
the temperature into the effective volume Ve in eq. 4.8. We end up with
the following fitting expression:

Ṅm = −Nm

47 s −
a

T 3/2

[
N2
m − δN2Nt(0)2 exp

(
− t
τ

)]
, (4.10)

with δN and a as fitting parameters. The two-body loss rate then results
from a as

L(2) = 4
√

2a
(2πkB
mω2

) 3
2
.

Even though we are left with only two fitting parameters, the robust-
ness of the fit is still suboptimal. Especially on resonance, the initial
imbalance has a relatively large influence on the fit result. To mitigate
this, we have first performed the fit with a free initial imbalance and
then used the median of the resulting values for a second fitting step.
Figure 4.2 shows the results of this measurement. We measure a peak

of the two-body loss rate at a magnetic field of B0 = 7.3G. The peak
value of the loss rate is measured to be L(2)

max = 1.95(11)·10−12 cm3 s−1
and is reached for the coldest dataset at T (0) = 2.8 µK. This value is
about a factor 1.7 lower than the value of 3.25(10)·10−12 cm3 s−1 given in
[104], which is probably due to the different fitting algorithm and a factor
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Figure 4.2. – Measurement of the two-body loss rate. (a) Measurement of the
majority atom number Nm(t) and the temperature over time for two different
magnetic fields. Off resonance (6.3G, square symbols), the atom number decays
on a timescale of tens of seconds and the temperature increases correspondingly
slowly. On resonance (6.3G, circles), the dynamics are much faster, on the time
scale of a second. The lines correspond to the fit according to equation 4.10 and
to the linear interpolation of the temperature data. (b) Extracted two-body loss
rates for different initial temperatures between 2 µK and 30 µK. The orange line is
a theoretical prediction from E. Tiesinga for a collision energy of E = kB·60nK.
The peak height decreases at larger initial temperatures, which originates in re-
capture at stronger recompression of the ODT. The shifted resonance position is
within the uncertainty of the theoretical prediction (compare [104]).

2.3 lower than the theoretical prediction of 4.48·10−12 cm3 s−1. This dis-
crepancy could be due to the spacing of the data points around the reso-
nance and due to the different fitting algorithm. It should be noted that
the given error is only the statistical error given by solving the fitting
model.

Figure 4.3. – Resonance peak of
the 2-body loss rate for the two
coldest datasets. The orange
line is the theoretical prediction
shifted to the left by 0.42G.
This offset has been obtained by
minimizing the quadratic devia-
tion between the data at T =
2 µK and the theoretical values.
The overall shape of the reso-
nance peak and the loss coef-
ficients corresponds very well.
The shaded area corresponds to
the systematic uncertainty of
±50% in the particle numbers.

The assumed systematic errors of ±50% in the particle numbers
allow for values of 1.30·10−12 cm3 s−1 ≤ L

(2)
max ≤ 3.89·10−12 cm3 s−1,

which is a range compatible with the previous analysis. The data also
displays a shift of with respect to the theoretical prediction towards lower
magnetic fields. This shift is also present in the previous data evalua-
tion and is within the uncertainty of the theoretical prediction [104].
The overall shape of the two coldest resonance curves corresponds very
well to the theoretical prediction (compare Fig. 4.3). For higher tem-
peratures, the height of the loss peak decreases, which we can explain by
increasing recapture of atoms as we will see in the following subsection,
and its width seems to increase.
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4.1. Measurement of the two-body loss rate

Two vs three-body losses

Let us now return to the question whether we observe two- or three-body
losses. A first argument for two-body losses is given by the fact that the
extracted two-body loss rate coefficients at low temperatures reproduce
the theoretical prediction quite well. The temperature dependence of
the loss rate provides a second argument for two-body losses. For the
datasets at higher temperatures, the constant recompression factor of
U0/kBT ∼ 8 leads to an increase of the trap depth to up to 222 µK for
the hottest samples. The energy which is released during the collision
events however is constant. In the case of two-body collisions, the energy
comes from a change in the spin state of the scattering particles. Here,
energy of the order of the Zeeman splitting EZ can be released or, if
one particle occupies the F = 7/2 manifold, energy of the order of
the hyperfine splitting Ehf can be freed.

EZ : Zeeman splitting
Ehf : Hyperfine splitting

Hyperfine changing collisions
can be excluded, since the atomic population is already in the lowest
hyperfine manifold. The Zeeman splitting amounts to EZ/2kB ∼ 55 µK
per atom at 7.3G, the position of the loss curve peak. Due to the small
energy release, we expect increased recapture rates when the trap depth
becomes comparable to the released Zeeman energy at higher initial
temperatures.

In the case of eventual three-body losses, the released energy is typ-
ically given by the binding energy of a deeply bound dimer, which is
usually much higher than the maximum trap depth and thus does not
lead to increased recapture. While there are several weakly bound states
available which would release significantly less energy, the effective in-
fluences of these states on the measured two-body loss rate are of the
order of low 10−14 cm3s−1, which lies about two orders of magnitude
lower than the observed peaks (see [104] for details).

Entrance and bound channels

Theoretical insight into the loss spectrum around the resonance at 7.3G
has been kindly provided by Eite Tiesinga. Apart from the loss rate
prediction shown in Fig. 4.2, his calculations also yield information on
the entrance channel and the bound state taking part in the enhanced
collision processes.
According to E. Tiesinga, the bound state has an angular momentum

of lb = 2 and a spin of sb = 6, which yields possible total angular mo-
menta of mb = sb + lb = 6, 7, 8. Due to the selection rules, ∆l = 0, 2
and l = 0 → l′ = 0 forbidden for dipole-dipole interactions, the incom-
ing particles can thus have an angular momentum of either li = 0 or
li = 2. In addition, the projection of the total angular momentum mt

is conserved.

lb : Angular momentum and
sB : Spin of the bound state
mb : total angular momentum

projection, bound state
li : Initial angular momentum
si : Spin projection,

initial state.Since the atoms entering the collision process have a spin
projection of si = 9/2 + 7/2 = 8 and the total angular momentum pro-
jection is conserved, bound states with angular momentum projection
mb = 6 or mb = 7 can only be populated if the angular momentum of
the incident particles is li = 2, i.e., if the entrance channel is d-wave.
For an s-wave entrance channel, only lb = 8 can be populated. The
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4. Characterization of a D-Wave Feshbach Resonance

corresponding inelastic collision rates for the d-wave entrance channel
would exhibit three peaks, one for each possible collision channel, which
we do not observe2. Theoretical calculations by E. Tiesinga yield loss2Such multiplet structures have been

observed in various experimental
settings. For example for a p-wave
resonance in potassium [130], or a
d-wave resonance between two iso-
topes of rubidium [131].

rate peaks of ≈ 3 × 10−18 cm3 s−1[104], which is several orders of mag-
nitude smaller than our observed loss rates. We thus conclude that the
particle losses are mainly due to particles colliding in an s-wave entrance
channel.
A consequence of this fact is that there is no centrifugal barrier to

overcome for particles to collide. A centrifugal barrier would introduce
a temperature dependence for the loss rate. It is expected for instance
that the width and height of the loss curve would increase with temper-
ature for a d-wave entrance channel [132], which is clearly not visible in
our data. We can therefore confirm that the particles indeed enter the
collision with an angular momentum of li = 0.

4.2. Spin dynamics close to a d-wave Feshbach
resonance

In this final section, we investigate the outgoing channel of the collision.
According to the selection rules of the interaction between the particles,
the projection of the total angular momentum has to be conserved. The
outgoing channel must therefore have an angular momentum projection
of mout = min = 8. In addition, we know from theoretical simulations
that the bound state has an angular momentum of lb = 2, which must
come from the change in spin of the particles. Depending on the angular
momentum projection, the spin of the colliding particles can therefore
change by at most ∆mF = 2.
Let us quickly discuss the possible cases. For ∆mF = 0, no energy

is released. The collision is elastic and does not lead to any particle
losses. For ∆mF = 1, the spin of the particles evolves like |9/2, 7/2〉 →
|9/2, 5/2〉 and an energy of ∆E = 1EZ ≈ kB·55 µK is released during
the collision. Here, the molecular state however has a spin of sb = 7,
which would contradict E. Tiesinga’s input. For ∆mF = 2, we have
the process |9/2, 7/2〉 → |7/2, 5/2〉, which occurs under the release of an
energy ∆E = 2EZ

3.3One might in principle think about
another channel that could partic-
ipate in the dynamics, given by
|9/2, 7/2〉 → |7/2, 7/2〉. This pro-
cess is forbidden for symmetry rea-
sons: The spatial wave function of
the bound state is symmetric, since
it has an angular momentum of l =
2. Therefore, the spin wave func-
tion has to be antisymmetric, which
is only possible with different spins
for the two atoms.

To summarize, the two possible inelastic processes are

|i〉 = |L = 0,mL = 0〉 ⊗ 1√
2

(|9/2, 7/2〉 − |7/2, 9/2〉)

→

|f1〉 = |2, 1〉 ⊗ 1√
2(|9/2, 5/2〉 − |5/2, 9/2〉),∆E1 = EZ

|f2〉 = |2, 2〉 ⊗ 1√
2(|7/2, 5/2〉 − |5/2, 7/2〉),∆E2 = 2EZ,

where |i〉 denotes the initial and |fi〉 the final states. At this point, we
already have a strong suspicion that the first channel is not allowed. To
experimentally verify which process is occurring at the Feshbach reso-
nance, we perform the following measurement. Similarly as for the loss
rate measurements, we prepare a spin-imbalanced gas of atoms at a mag-
netic field off resonance. We recompress the optical dipole trap strongly
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4.2. Spin dynamics close to a d-wave Feshbach resonance

to its maximum potential height of U0/kBT ≈ 220 µK to suppress losses
and recapture the colliding atoms. The magnetic field is then jumped
to its target value and the atomic populations and cloud temperatures
are measured after various short hold times.

4.2.1. Spin population in the compressed trap limit
To describe the evolution of the spin populations, we set up a set of
rate equations for the atom numbers in the different states. For this we
first note that the total collision rate between atoms in |mF = 9/2〉 and
|mF = 7/2〉 is again given by L(2). However, in the strongly compressed
trap, we now recapture all atoms after their collision and will moreover
neglect one-body losses, so that the total atom number stays constant
during the duration of the experiment. From the expressions of the
final states given above, we see that the number of atoms in |mF = 9/2〉
only decreases through collisions in the channel |i〉 → |f2〉, whereas the
number of atoms in |mF = 7/2〉 is only affected by the collision channel
|i〉 → |f1〉. The atom number in |mF = 5/2〉 increases equally for both
collision channels. We may therefore introduce the branching ratio ρ
and write

Ṅ7 = −Γ(2)
1 = −ρL(2)N7N9√

2Ve
(4.11)

Ṅ9 = −Γ(2)
2 = −(1− ρ)L(2)N7N9√

2Ve
(4.12)

Ṅ5 = Γ(2)
1 + Γ(2)

2 = L(2)N7N9√
2Ve

, (4.13)

where Γ(2)
i is the loss rate in the i-th channel. Γ(2)

i Loss rate in the i-th channel.
ρ : Branching ratio

Since the total atom
number is constant, the change in energy of the gas can be expressed as

Ė = 3NkBṪ = EZΓ(2)
1 + 2EZΓ(2)

2 . (4.14)

These equations can be cast in a dimensionless form. Using the fractional
spin population xk, the dimensionless temperature τ xk : Fractional spin populations

u : Dimensionless time
τ : Dimensionless temperature

and the dimension-
less time u, defined by

xk = Nk

Nt
, τ = kBT

EZ
, and u = L(2)Nt√

2Ve(EZ/kB)
t,

where Ve(EZ/kB) =
√

2πEZ/mω̄23, one obtains the following system of
equations

dx7
du

= −ρx7x9
τ3/2 , (4.15)

dx9
du

= −(1− ρ)x7x9
τ3/2 , (4.16)

dx5
du

= −dx7
du
− dx9

du
, (4.17)

dτ

du
= (2− ρ) x7x9

3τ3/2 . (4.18)
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Figure 4.4. – Spin dynamics close to the Feshbach resonance at B = 7.8 G. Here
L(2) = 1.073·10−13 cm3s−1. (a) Evolutions of the relative spin populations mea-
sured with microwave spectroscopy. We observe a decay of the population of |9/2〉
and a rise of the atom number of the |5/2〉 state. The shaded areas correspond
to the measurement uncertainties (linearly extrapolated in between the points).
Within the accuracy of the measurement, the population in |7/2〉 stays constant
indicating a value of ρ compatible with 0. (b) Strong heating during is observed,
originating in the freeing of energy EZ during the collisions and the subsequent
recapture of atoms in the recompressed trap. For u > 0.0.5, the onset of evapo-
rative losses stops the temperature increase. Even with improved statistics, the
rate equations 4.15 - 4.18 will thus not be able to capture the dynamics beyond
this time.

The evolution of the atomic populations and the temperature is strongly
dependent on the value of the branching ratio. For ρ = 0 and ρ = 1, only
one collision channel exists. In these cases, N7 or N9 are unaffected by
the collision events and the respective population stays constant. The
other collision partner is converted into |mF = 5/2〉 until the original
population is depleted and no more collision events can take place. The
temperature rises during the collision events due to the released Zeeman
energy. The timescale for the temperature increase is faster for the col-
lision channel 2, since more energy is liberated per collision event. A
clear signature of the presence of both collision channels (0 < ρ < 1)
would be given by the depletion of both the populations of |mF = 9/2〉
and |mF = 7/2〉 at the same time.
Figure 4.4 shows exemplarily a result of a spin dynamics measurement

close to the Feshbach resonance. Overall, we observe a depletion of the
population of |mF = 9/2〉 and a corresponding increase of |mF = 5/2〉.
The maximum hold time shown here corresponds to 20 s. During this

54



4.3. Conclusion

time, the population of |mF = 7/2〉 stays constant within the accuracy
of our measurement, which would be consistent with a branching ratio
of ρ = 0. However, there are some caveats to be addressed. As can be
seen in Fig. 4.4 (b), the temperature of the gas increases strongly during
the first 2 s (u < 0.05), then levels off and starts to slowly decrease. The
temperature decrease on long time scales is probably due to evaporation
and spilling losses occurring at higher temperatures. The rate equations
we derived earlier do not account for these effects, but can only describe
our system for short times up to u ≈ 0.05. At these short times, Fig. 4.4
(a) gives the impression as if the main losses occurred in the |mF = 7/2〉
state. However, this impression might be caused by the data point at
u = 0.039, which is the only point showing a relative population in
|mF = 7/2〉 that lies below the initial population. In addition, it is
subject to a rather large uncertainty.
We thus conclude that our measurements are compatible with a branch-

ing ratio of ρ = 0. This implies that the outgoing channel of the Feshbach
resonance is given by

|f2〉 = |L = 2,mL = 2〉 ⊗ 1√
2

(|7/2, 5/2〉 − |5/2, 7/2〉).

Within the accuracy of our measurement, however, a contribution of
the first loss channel cannot be ruled out. The measurement accuracy is
mostly limited by shot to shot fluctuations of∼ 20% of the atom number.
Since the analysis relies on the detection of small changes in particle
number differences, these fluctuations introduce relatively large scatter
on the data and prevented us from performing a precision measurement
of the spin populations. Much more statistics and a higher trap depth
could help to alleviate this issue.

4.3. Conclusion

In this chapter we have characterized a new Feshbach resonance in 40K in
multiple aspects: Using measurements of particle losses in a shallow trap,
we have characterized the overall shape and height of the resonance peak.
The particle losses are well described by a two-body process involving
the initial states |mF = 9/2〉 and |mF = 7/2〉. The peak value of the loss
rate deviates from previous analysis by a factor 1.7 [104], however, the
loss rates at lower initial temperatures are in very good agreement with
the theoretical prediction and the deviation is most likely due to the
data spacing and a slightly different analysis method. Accounting for
systematic errors, the new value is in good agreement with the previous
analysis. From the evolution of the peak shape with temperature, we
could confirm the s-wave nature of the entrance channel.
During the collisions, the atoms undergo a spin flip to an outgoing

state |7/2, 5/2〉, which is consistent with the measured evolution of the
spin populations in a strongly recompressed optical dipole trap. This
outgoing state is a d-wave state with an angular momentum of L = 2,
which is the same angular momentum as exhibited by the bound state.
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Within the accuracy of our measurement, we could however not rule out
a small contribution of a collision channel involving the outgoing state
|9/2, 5/2〉 ⊗ |L = 2,mL = 1〉.
For the future, the accuracy of our measurements could be improved

with a higher intensity dipole trap, allowing the system to heat to higher
temperatures before evaporative losses become dominating. Thus, loss
rates at higher initial temperatures could be extracted and the spin dy-
namics could be observed over longer time scales, obtaining a closer
grip on the value of the branching ratio ρ. Furthermore, it would be
interesting to repeat the loss rate measurements with a spin-resolved
imaging method. Although the extracted loss rates already show good
agreement to the theory prediction, we only estimated the decay of the
population in |5/2〉 during the hold time from the typical population
after the evaporative cooling steps. In addition, the initial imbalance
δf = f9 − f7 has been fitted to the data. Having gained access to this
information with the newly implemented spin-selective imaging meth-
ods, these measurements could in the future be reconfirmed with higher
accuracy.
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Part II.

Ultracold Two-Dimensional
Fermi Gases
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5. Creating Two-Dimensional Fermi
Gases

This chapter shall familiarize the reader with the 2D lithium experi-
ment of the Moritz group at the university of Hamburg. I joined the
experiment at a time when the main building and optimizing phase
was already finished and was mainly a user of the setup built by Wolf
Weimer, Kai Morgener and Klaus Hueck and further optimized by
Jonas Siegl, Niclas Luick and Lennart Sobirey. My work on the ex-
perimental setup focused on the preparation of a new optical setup for
the generation of tailored optical potentials necessary for the creation
of 2D gases, which I will discuss in the end of this chapter. Before
that, an overview over the main functional parts of the machine is
given and the typical experimental sequence is discussed. The en-
tire experimental setup is described in great detail in the theses of
Wolf Weimer [133] and Kai Morgener [134]. For further informa-
tion about the setup around the science cell, in particular in relation
to the creation of 2D gases, I would like to refer the reader to the
thesis of Klaus Hueck [116]. A detailed discussion of the in-vacuo
resonator setup can be found in the theses of Klaus Hueck [116] and
Niclas Luick [135].

After having discussed the characterization of a d-wave Feshbach reso-
nance in potassium 40, let us now transition towards two-dimensional
Fermi gases of lithium. In this chapter, I will present the lithium ex-
periment of the Moritz group in Hamburg. The main ideas followed for
the realization of ultracold lithium gases are very similar to the steps
presented in the previous part. The vacuum system in which the ex-
periment is performed is shown in Figure 5.1. A macroscopic block of
lithium is heated to roughly 450 ◦C in the oven chamber, creating a
vapor which escapes through an aperture, forming a divergent atomic
beam. The atoms are slowed down with the help of a Zeeman slower
[17] and then trapped in a magneto-optical trap (MOT) [19] in the main
chamber of the apparatus.
To cool down below the Doppler limit, the gas is loaded into optical

dipole traps (ODTs) [92] created with infrared lasers and evaporative
cooling steps [114] are carried out. In a succession of ODTs of different
geometries, the gas is cooled down towards quantum degeneracy using
evaporative cooling stages.
To improve lifetimes and optical access, the gas is transported to a sep-

arate science cell. Here, the atoms are transferred into a highly elliptical
infrared dipole trap (the so-called ’squeeze’ trap) which pre-flattens the
atoms, and then loaded into a single node of a repulsive optical lattice,
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Figure 5.1. – CAD drawing of the vacuum system of the Hamburg experiment in-
cluding the magnetic coil setup (copper colored) around the experiment (adapted
from [134]). An atomic jet of lithium is created in the oven, which is slowed down
in the Zeeman slower and captured in a MOT in the center of the main chamber.
To reach sub-Doppler temperatures, the gas is then transferred to a sequence of
optical dipole traps and cooled down to degeneracy using successive evaporative
cooling steps. Before performing experiments, the atoms are moved into the sci-
ence cell, which is offset from the main apparatus by a few tens of cm. Here, a
highly oblate infrared trap (’squeeze’) and a blue-detuned optical lattice are used
to convert the geometry of the system from 3D to quasi-2D. Green: Valves sep-
arate the vacuum system into multiple chambers for easier maintenance. Beige:
Ion pumps. Not labeled are Titanium sublimation pumps, vacuum feedthroughs
and vacuum gauges.

bringing the sample from the 3D into the quasi-2D regime [60]. Addi-
tional repulsive potentials are used to confine the atoms horizontally in
flat-bottom potentials of different shapes.
After these preparatory steps, the experiment-specific steps of the

sequence are carried out. Finally, the atoms are imaged using high-
intensity absorption imaging [115, 136] either in situ or after a short
time of flight in a weak underlying harmonic trap. These two imaging
procedures give access to the spatial density distribution when imaged in
situ or to the momentum distribution when imaged after free evolution
for a quarter period in the underlying harmonic trap using Matter-Wave-
Imaging [137, 138].

5.1. The experimental setup

As for the Fermix experiment, I would now like to give a more detailed
description of some key parts of the experimental setup. Note however,
that this section is not intended to provide a full description of every
aspect of the machine, since this would be beyond the scope of this thesis.
A detailed description of the vacuum system can be found in [133]. The
magnetic field configuration is detailed in [134]. Extensive information
on the cooling resonator setup has been provided by [116, 135].

5.1.1. Vacuum system and magnetic setup

Similar to the Fermix experiment, the vacuum system of the lithium
machine in Hamburg consists of multiple functional parts which are
separated from each other by differential pumping stages, which allow
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maintaining different pressure levels in different parts of the machine.

Oven section and Zeeman slower

Figure 5.2. – Top view into the
oven chamber (adapted from
[134]).

The first of these regions is the oven section. A cut through this section
is shown in Figure 5.2. The lithium reservoir is located on one end of
the section. A series of beam apertures is used to limit the divergence
of the escaping atomic jet. When the MOT is fully loaded, the beam
can be blocked using a mechanical shutter. Two sublimation and getter
pumps are used to maintain a high vacuum of ∼ 10−9 mbar in the heated
oven chamber. A valve can be used to separate the oven chamber from
the main vacuum part, such that the lithium reservoir can be refilled
without destroying the vacuum in the entire machine. The oven section
is connected to the Zeeman slower section via a flexible bellows and
a long and thin (l = 280mm, d = 4mm) vacuum tube, acting as a
differential pumping stage.
The Zeeman slower [134], built in decreasing field configuration, con-

sists of a long and thin steel tube, which is surrounded by magnetic coils
over a length of 52 cm, creating a spatially varying magnetic field. In
addition, a red-detuned laser of circular polarization is shone into the
slower tube in opposite direction of the atomic jet. At the beginning
of the slower, the magnetic field shifts the atomic D2-transition of the
atoms of one given velocity class into resonance with the laser frequency.
The field is designed to keep these atoms in resonance during their travel
through the tube by compensating for the changing Doppler effect dur-
ing the deceleration. Over a series of many absorption and reemission
cycles the atoms are effectively slowed down, since the net transfer of
momentum is opposite their direction of motion. Atoms entering the
slower at a lower velocity are off-resonant at first and thus are decel-
erated at a lower rate, until the faster atoms catch up to them. The
Zeeman slower employed at the experiment allows the majority of the
atoms with an initial velocity inferior to vmax ≈ 1000ms−1 to be slowed
down to a final velocity of approximately 50ms−1 [134].

Main chamber

Figure 5.3. – CAD drawing of
the laser configuration in the
main chamber of the experi-
ment (adapted from [134]). Af-
ter leaving the Zeeman slower
(yellow), the atoms are cap-
tured in the MOT (red) and
cooled to the Doppler limit.
The cloud is loaded into an in-
frared resonator-enhanced op-
tical dipole trap (purple) and
first evaporation steps are car-
ried out. Finally, the atoms are
transferred into a running wave
ODT (green), which transports
the cloud towards the science
cell. There are additional view-
ports for imaging (light blue)
and for connecting an optional
2D MOT for future projects at
the experiment (orange, not la-
beled).

The main vacuum chamber is connected to the other end of the Zeeman
slower. As can be seen in Fig. 5.3, the main chamber provides viewports
for various purposes:
Three pairs of counter-propagating laser beams are shot in from or-

thogonal directions to form the magneto-optical trap in which the atoms
are trapped after exiting the Zeeman slower (compare [134]). After the
MOT phase, the temperature of the gas corresponds to the Doppler
temperature (TD ≈ 140 µK for lithium). Before evaporative cooling
stages can be efficient, the density of the gas has to be strongly in-
creased or its temperature has to be strongly reduced. To achieve this,
as mentioned previously (compare section 3.1.2), one could use narrower
cooling transitions, reducing the Doppler temperature, or employ sub-
Doppler techniques, as is done in Paris at the Fermix experiment using
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5. Creating Two-Dimensional Fermi Gases

the D1-gray molasses technique [113]. In the Hamburg experiment, an
in-vacuo bowtie resonator [116, 133, 135] has been implemented instead,
seeded by two infrared beams at 1064 nm, which are shone into the main
chamber through two other windows.
In addition, a second infrared ODT is projected onto the resonator

under an angle of 90◦ with respect to the Zeeman slower. This trap
is used to transport the atoms from the main chamber into into the
science cell which is attached to the other side of the main chamber.
The transport itself is performed by shifting the focus of the transport
dipole trap over a distance of 326mm. To achieve this, the focusing
lens of the transport trap is located on an air bearing linear translation
stage1, which moves the lens with a high precision over the required1Heason AirGlide, Ultra Precise Air

Bearing System, 350 mm; Con-
troller: Aerotech, Ensemble ML10-
40 digital controller and linear am-
plifier.
More recently, optical transports
have also been realized using focus-
tunable lenses [139].

distance in about 1 s. The pointing of the transport trap is controlled
by measuring the position of the beam on a quadrant photodiode for
the two positions of the focusing lens and can be adjusted with piezo-
actuated mirrors.
On the opposite side of the Zeeman slower, another section of the

vacuum system is attached, holding one more ion getter pump and an-
other Titanium sublimation pump. This section ends with a sapphire
viewport through which the Zeeman laser is shone into the system. A
valve separates this viewport from the main vacuum chamber in order
to allow for cleaning or replacement. Finally, some additional windows
on the main chamber allow the fluorescence of the MOT to be imaged
or serve as backups for eventual expansions of the system.
Several magnetic coils are placed around the main chamber [134]. The

coils for the MOT are located above and below the main chamber, in
recesses within the outer frame of the main chamber, minimizing the
distance between the atoms and the coils. Three more coils, one at the
end of the Zeeman slower, one around the entry window of the transport
trap and one wound directly onto the upper MOT coil, can be used to
shift the magnetic center of the MOT in order to optimize the overlap
between the MOT and the resonator. This capability is necessary for
two reasons: On the one hand, the resonator mirrors are placed inside
the vacuum and cannot easily be adjusted. On the other hand, this
setup provides a smoother transition from the Zeeman slower field into
the field needed for the MOT.

Science cell

Figure 5.4. – The science
cell during installation (Figure
adapted from [135]). Its oc-
tagonal shape gives optical ac-
cess from eight directions. The
windows are coated and slightly
tilted with respect to each other
to minimize reflections. The
top and bottom windows are re-
cessed to allow the imaging op-
tics to come as close as possible
to the atomic sample. Here, a
paper sheet has been put on top
of the cell to align a pilot beam
for the microscope alignment.

The final part of the vacuum system is the science cell. In the science cell,
the final evaporation steps are carried out and the cloud is brought into
the quasi-2D regime by a series of successively tighter optical trapping
potentials [60, 116] (see section 5.2).
The high number of optical potentials and imaging beams that can

be projected onto the atoms requires high optical access from all sides.
In addition, two large microscope objectives2 [133, 140] (diameter d =2Special Optics, New Jersey, USA
44mm) with a high numerical aperture of NA = 0.62 are used to project
the optical potentials needed for the horizontal confinement and for the
experimental steps from the top of the cell and to finally image the
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atoms from below. The working distance of the microscopes of 10.5mm
to the atoms imposes limits on the vertical dimensions of the chamber.
To meet these conditions, a custom glass cell has been produced in the
shape of a flat octagon3. The windows have an anti-reflection coating 3Until 2018, a metal cell had been

installed on the machine. Unfor-
tunately, the pumping rate out of
this cell turned out to be insuf-
ficient to maintain the ultrahigh
vacuum necessary for long lifetimes
and led to increased heating of the
gas [135, 141]. It was therefore re-
placed by a glass cell, increasing the
resulting lifetimes by almost a fac-
tor 20 up to ≈ 120 s [135].

for the important wavelengths used at the experiment (532 nm, 671 nm,
780 nm, 1064 nm) and opposite windows are tilted with respect to each
other by 2◦ to avoid unwanted reflections which could create standing
wave potentials. The total distance between the outer faces of the top
and bottom windows is only 16mm. A front view of the science cell
during installation is shown in Figure 5.4.
To access the Feshbach resonance, which allows us to tune the inter-

actions of the ultracold sample, and to enable different magnetic field
configurations, a sizable collection of coils is placed above and below
the science cell. This setup is shown in Figure 5.5.

Figure 5.5. – Isometric view and
cut of the coil setup around the
science cell (figure adapted from
[134]).

The ’Feshbach’
coil pair (red) is used to generate strong magnetic fields which can be
tuned over several 100G around the Feshbach resonance, however the
field produced by these coils exhibits a weak curvature which results
in a weak harmonic confinement of ≈ 27.6Hz. A second coil pair, the
’Helmholtz’ coils (blue) are used to produce a highly homogeneous field
at the position of the atoms. Additional ’cloverleaf’ coil pairs allow to
produce magnetic gradients. The ’jump’ coils feature a small inductance
and help to quickly switch the magnetic fields. Finally, the ’levitation’
coils are used to generate a small vertical gradient to compensate for
gravitation.

5.1.2. The laser setup

The laser setup follows a different scheme than the laser setup used at
Fermix. It is shown in Fig. 5.6. Instead of one master laser whose
light is split and amplified, several commercial lasers are available which
produce light for one or two tasks each, at four main frequencies. Using
separate laser sources for the different beams has the advantage that
eventual degradations in the lasers or the beam paths are less likely
to affect the performance of multiple experimental stages at the same
time. In addition, the frequencies of the lasers can be adjusted using
their separate locking electronics, which incurs less intensity loss and
better beam profiles with respect to a chained AOM setup. On the
other hand, such a setup is more costly.

Near-resonant frequencies

For the operation of the MOT and the Zeeman slower as well as for
absorption imaging step in the end of the experimental sequence, (near-
)resonant light at 671 nm is used. The transition chosen for these pur-
poses is the D2-transition, which connects the 2S1/2 ground state to the
2P3/2 excited state and which is shown in Fig. 5.7. More precisely, the
Zeeman slower and MOT operate on the transition F = 3/2 →2 P3/2,
labeled here as ’cooler’. To prevent atoms from populating the F = 1/2
state, the MOT features a ’repumper’ beam operating on the transition
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Figure 5.6. – Diagram of the laser setup on the lithium experiment. Beam shaping
and routing optics as well as shutters are not shown. Most lasers are located on a
separate laser table and their light is transferred to the main experiment table via
single-mode polarization maintaining optical fibers in order to limit stray light on
the experiment table. Due to limited space availability, some lasers are placed on
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F = 1/2→2 P3/2. The ’repumper’ transition is also used for absorption
imaging at the end of the sequence.
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Figure 5.7. – Level scheme of
6Li. The energy splittings are
not to scale. The lithium exper-
iment operates on the D2-Line
between the 2S1/2 ground states
and the 2P3/2 states. Since
the hyperfine splitting of this
state is smaller than the natural
linewidth of Γ ≈ 6MHz, the ex-
cited states cannot be addressed
individually using optical tran-
sition. They therefore decay
in both hyperfine ground states,
making a repumping laser nec-
essary.

To create these frequencies, a total of four lasers is used. A reference
laser4 is locked onto the crossover line of the D2 transition of lithium 64Toptica DL Pro 670 nm
using the Pound-Drever-Hall locking scheme [142, 143]. The other three
lasers, two Toptica DL Pro 670 nm for Zeeman slower and imaging light
and one homebuilt model utilizing an Eagleyard RWE-670-00703 diode
for the MOT, are frequency-locked onto this laser using an offset-locking
technique [144]. The use of offset locks has the main advantage that the
frequency of the light can easily and independently be shifted over large
ranges without affecting the laser intensity. The capability to tune the
laser frequency over a large range is especially important for the imaging
laser, which has to operate at large detuning differences due to the fact
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5.1. The experimental setup

that the imaging can take place at different magnetic field values around
the Feshbach resonance.

In the case of the MOT and Zeeman lasers, the light is first ampli-
fied with tapered amplifiers (TA) and then split into the different beam
paths. For imaging purposes, low powers are sufficient. The beam of
the imaging laser is therefore directly split into the three paths for the
different imaging directions. The light transported from the laser table
to the main table using polarization maintaining single-mode fibers.
In order to control the intensity of the beams and prevent stray light on

the main table, combinations of AOMs and shutters are used before the
light is coupled into the optical fibers and transported to the experiment
table. The intensities are measured behind the fibers with photodiodes
and stabilized with PI controllers. For the imaging light, the photon
counts of the cameras during the imaging shot are used as an intensity
measurement.

Far-detuned lasers

The setup also features two lasers5 at 1064 nm, one of which is used 5Mephisto MOPA 25
to create light for the transport ODT, the other producing the light
for the resonator and the ’squeeze’ trap. The light is split into the
different paths and transported to the experiment using photonic crystal
fibers. For the transport trap and the squeeze, the exact frequency of
the light is unimportant and the lasers are operated without frequency
stabilization. To operate the cooling resonator however, the wavelength
of the laser has to be locked to match the resonator mode. Moreover,
the intensity of the resonator light needs to be ramped down over several
orders of magnitude during the first evaporative cooling step, without
influencing the frequency stability. To precisely control both intensity
and frequency of the two resonator beams, an involved stabilization
scheme has been developed, which requires a large number of additional
optical and electronic components. The details of this setup can be
found in [116] and [135].
In addition to the infrared beams, a frequency-doubled 1064 nm laser6 6AzurLight Systems 1064/532 dual

outputproduces 10W of green light at 532 nm, which are used to provide the
vertical and horizontal confinement to bring the atoms into the desired
geometry and to produce excitation pulses. The light of this laser is split
into three paths, which are each independently fed through AOMs and
coupled into a high-power optical fiber. One of these paths is used to
produce the repulsive optical lattice which is used to confine the atoms
into a 2D plane. Two of the other paths illuminate two separate digital
micromirror devices (DMDs), which are then imaged onto the atomic
plane through the upper microscope objective. With this setup, it is
possible to create two different repulsive potentials of arbitrary shape in
the 2D plane. Finally, an optical setup creating a repulsive ring potential
in an axicon cascade is also available and can be used instead of one of
the DMDs (see supplementary materials to [60]).
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5. Creating Two-Dimensional Fermi Gases

5.1.3. High intensity imaging
After the experimental steps have been performed, the atom distribu-
tion is imaged using absorption imaging, either in situ or after a short
time of flight to obtain information about the phase of the gas. There
are several options available for this process. The main imaging system,
which is used for most measurements taken on the experiment, projects
the atomic plane in the vertical direction through the lower microscope
objective and a telephoto lens onto the chip of a sensitive EMCCD cam-
era7, at a high magnification of M = 40. For alignment and diagnostic7Andor Ixon3
purposes, two auxiliary low-magnification imaging setups can be used
to image the atoms in the horizontal plane, which use standard CCD
cameras8. Of particular use hereby is the ’BEC-X’ imaging, which is8PointGrey Chameleon 13S2M
used to verify that the atoms are loaded in only a single plane of the
repulsive lattice. The ’BEC-Y’ imaging monitors the experiment along
the transport axis and permits us to image the optical resonator in the
main chamber.
As mentioned previously, the microscope of the main imaging system

has a numerical aperture of 0.62 and a field of view of about 150 µm.
The high NA allows for a diffraction limited resolution of 700 nm at a
wavelength of 671 nm, which is slightly lower than the typical interpar-
ticle spacing in the two-dimensional gas, however it also incurs a limited
depth of field of only 2 µm. To reduce the motion of the atoms during
the imaging, short (5 µs) imaging pulses at intensities comparable to the
saturation intensity of the imaging transition are used. Although the
imaging pulse is kept short, the low mass of the lithium atoms causes
them to acquire a substantial velocity during the imaging pulse, which
results in a Doppler shift comparable to the natural linewidth. To com-
pensate for this effect, the imaging pulse is chirped at a rate of typically
1.5MHz/µs with the help of the final AOM on the laser table, which is
positioned in double-pass configuration.
At high imaging intensities, the optical density of the atomic sample

is given by [115, 136]

od(x, y) = n2D(x, y)σeff = − ln
(
Iout(x, y)
Iin(x, y)

)
+ Iin(x, y)− Iout(x, y)

Ieffsat
,

(5.1)

od : Optical density
σeff : effective absorption

cross section
λ Imaging wavelength
α Correction factor
Ieff : Effective saturation

intensity
c: Speed of light
C: Photoelectron counts

where Iin and Iout is the intensity of the light before and after passing the
atomic sample, σeff = α3λ2/2π is the absorption cross section (corrected
for imperfect polarization or magnetic field orientation by the factor
α > 1) and Ieffsat = απhcΓ/3λ3 is the saturation intensity.

The light intensity and the number of photo-electrons counted by the
camera are linearly related [115]. Therefore, the atomic density can
directly be calculated from the photon counts on the camera according
to

σeffn2D(i, j) = − ln
(
Cout(i, j)
Cin(i, j)

)
+ Cin(i, j)− Cout(i, j)

Ceff
sat

, (5.2)

where i, j denote the pixel coordinate of the camera sensor, Cin and Cout
are the number of photo-electrons counted during the imaging pulse in
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the absence or presence of atoms, respectively and Ceff is the number
of photo-electrons counted for I = Ieff. To obtain the atomic density,
it is thus in principle sufficient to take only two images, provided σ,
α and Csat are known. However, in addition to the absorption and
reference images, two additional images are taken without imaging light
in order to correct the photon counts by the number of dark counts
of the camera. Additional information on the imaging system and the
calibration procedure can be found in [115, 116, 135].

5.1.4. Experiment and camera control
The experimental hardware itself is controlled via a system of digital
and analog output cards provided by National Instruments9 and Jäger 9National Instruments PCI-6723 /

PCI-6733Messtechnik10. The correct timing of the experimental sequence is in-
10ADwin-Pro II AOUT8/16 / DIO32
TiCo

sured by an external clock, which provides a continuous clock rate of
10MHz. The ’Experiment Wizard’11 software controlling the experi-

11The ’Experiment Wizard’ software
is developed and maintained by
groups in Zurich (T. Esslinger),
Hamburg (H. Moritz) and
Barcelona (L. Tarruell).

ment consists of three main functional parts that communicate with
each other during the sequence:
For each output channel, the outputs during each time step are pro-

grammed prior to the sequence in a spreadsheet-like graphical user in-
terface called ’experiment control’. The channel outputs can depend on
user defined variables, which can be scanned systematically over lists of
values in a randomized or non-randomized way.
The ’experiment runner’ creates buffers of output values from the val-

ues defined in ’experiment control’ and sends these buffers to the NI
cards. It also features a queue to manage the succession of sequences
to be run. In a recent update, it has become possible to schedule an
entire block of different sequences, while systematically changing pa-
rameters over the different repetitions of the entire sets. This capability
has proven very useful during longer measurements, since it provides us
with the capability to run diagnostic sequences interspersed with the
measurement sequences at regular time intervals to verify the functional
state of the machine.
Finally a third part, ’camera control’, manages the image acquisition

during the sequences. The cameras are implemented as objects in ex-
periment control, which allows the parameters of the sequence and the
camera to be stored together with the images. The user defines a list of
images which are to be taken with given cameras during the sequence, to-
gether with a list of preprocessing commands. Camera control collects
the images taken by the cameras and applies the preprocessing com-
mands, thus automatically generating atomic density images together
with a set of derived quantities. These quantities can be used to do
quick on-the-fly analysis. The main data analysis is done in Matlab at
a later time using the unprocessed images from the cameras.

5.2. Creating a homogeneous 2D Fermi gas
During my time in the group, the experimental setup has been highly
robust. It was generally possible to run the machine for several weeks
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Figure 5.8. – The optical setup for the creation of two-dimensional single layer
gases (view into the transport axis, figure adapted from [141]). The highly oblate
squeeze trap (red) precompresses the atoms. Then, the sample is loaded into a
single node of a repulsive optical lattice (green), which is formed via interference of
two beams intersecting under a shallow angle of 10.4 ◦. The horizontal confinement
is created by projecting repulsive potentials through the upper microscope. This
can be done using two DMDs to create potentials of arbitrary shape or with the
help of an axicon setup to create a circular trap with high and sharp walls. The
science cell is not shown here for better visibility.

without having to reoptimize fiber couplings or alignments between dif-
ferent optical traps. Part of the reasons for this high stability are the
presence of multiple interlock systems [134], the remote accessibility of
the experiment control and of course its queuing function, which allowed
us to keep the the machine running over night and over the weekends,
avoiding dethermalization of the setup. Up to the arrival of the atoms
in the science cell, the experimental sequence was tried and tested and
thus the part of the system at which most optimizations and adjust-
ments took place is the part around the science cell. Here, the atoms
are converted from 3D to 2D in a process that is quite sensitive to power
deficits or misalignments between the optical and magnetic potentials
which are involved. In the following, I present the existing setup and
procedure to create and influence the 2D gas as well as the steps which
are planned to improve the setup in an update in the close future.

5.2.1. Preparing a single layer gas

The concept of the setup is shown in Figure 5.8. Once the atoms arrive
in the science cell, they are trapped in the transport trap, which is a
standard running wave 1064 nm optical dipole trap with an elongated
three-dimensional shape. In order to reduce the dimensionality of the
sample towards 2D, the cloud is transferred into two successively tighter
traps until finally all relevant energy scales are smaller than the level
spacing in the tightly confined direction [84]. To achieve this, the cloud is
first transferred into the ’squeeze’ trap [116], a highly oblate dipole trap
with waists of ωx ≈ ωy ≈ 350 µm and ωz ≈ 10 µm. In this trap, a final
evaporation is carried out, which reduces the temperature and leaves
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5.2. Creating a homogeneous 2D Fermi gas

us with a small enough atom number to ensure a low enough chemical
potential in the later steps. By increasing the power of the squeeze
beam, the cloud is adiabatically compressed and flattened to a vertical
size of only about 1 µm in preparation for the transfer to the optical
lattice, which has a lattice constant of dlat = 2.9 µm. Afterwards, the
blue-detuned lattice is ramped up and the squeeze is ramped down and
switched off. The typical trap frequencies used during the experiments
are on the order of ωz ≈ 8−9 kHz, which exceeds the chemical potential,
the Fermi energy and the thermal energy of the atoms across most of
the BEC-BCS crossover at the typical 2D-densities of 1 µm−2.

Verification of single-layer loading

z

Vlat

dlat/2

z

dlat/2

Vlat

(a)

(b)

Figure 5.9. – The single-layer
loading scheme (adapted
from [116]). (a) The squeeze
trap and the lattice are
aligned correctly and the
cloud loads into a single
minimum of the lattice po-
tential. After the squeeze is
flashed on, the cloud remains
together. (b) The squeeze
is misaligned with respect
to the lattice such that its
center coincides with a maxi-
mum of the lattice potential.
Once the atoms are released
from the squeeze, they fill
both adjacent layers. After
the flash of the squeeze, the
two clouds are accelerated
towards each other, forming
two distinct clouds after time
of flight.

To obtain valid results on our 2D gas, it is crucial that the loading of the
optical lattice occurs in such a way that only a single layer in the lattice
is occupied. The dynamics in neighboring occupied layers might differ,
for instance due to different densities, slightly different potentials and
the camera cannot discern between the atoms located in the different
potential wells. Finally, weak coupling between the pancakes might in-
fluence the atoms in neighboring layers, destroying the two-dimensional
character of the system. In order to successfully load the atoms from
the squeeze trap into the optical lattice, the alignment between the two
potentials has to be precise on the micrometer level.
To verify that only a single layer of the optical lattice is populated,

a simple scheme has been developed [60, 116] that removes the need of
a high-resolution imaging or a precise RF spectroscopy setup. It relies
instead on spatially separating the atoms in neighboring sites to resolve
the lattice wells from the side using the standard auxiliary imaging. The
confining lattice is switched off suddenly and the atoms are allowed to
expand for a short time (≈ 50 µs), which creates an atomic pancake in
each occupied well. Then, the squeeze trap is shortly flashed on, which
results in different attractive potentials for the neighboring sites, thus
accelerating the atomic pancakes towards each other. After a short time
of free flight, the atoms are imaged and we can see double occupancy in
the presence of two distinct clouds (compare fig. 5.9).
An active feedback mechanism has been implemented to automatically

minimize the number of atoms in the side maxima by moving the verti-
cal position of the squeeze trap using small increments on a piezo mirror
located in the beam path of the squeeze trap. During normal operation
of the machine, the verification of single-layer loading was typically per-
formed every few hours in between the measurement sequences. Manual
alignment have to be done only on the timescale of a few days, which
permitted us to run the measurements presented in chapters 6.3, 7.1 and
7.4 continuously on the timescale of a week.

5.2.2. Horizontal confinement

Past experiments with two-dimensional Fermi gases have always been
realized with harmonic trapping potentials. While these potentials are
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Figure 5.10. – Schematic view of a DMD setup (adapted from [116]). The DMD
is illuminated and displays an image of the desired trapping geometry. Its mirror
plane is imaged onto the atoms via the upper microscope objective. The DMD
and the imaging beams are overlapped in polarizing beam splitter cubes ahead of
the microscope. The second microscope is used to image the atomic plane onto
the EMCCD camera.

well understood, they result in an inhomogeneous gas, which means
that nonlocal quantities can only be extracted as trap averages [60] and
which "hinders the observation of critical phenomena with a diverging
correlation length and exotic phases such as the Fulde-Ferell-Larkin-
Ovchinnikov (FFLO) state" [60]. In our experiment, we trap the atoms
in homogeneous potentials created by blue-detuned light, which results
in a constant density over the entire extent of the sample. Thus, the
chemical potential and many resulting thermodynamic properties do
not vary throughout the gas. The potential walls trapping the atoms
horizontally inside the 2D plane are projected onto the atoms from the
top through the upper high-resolution microscope objective. There are
three light sources available on the experiment, which are all illuminated
by the 532 nm ALS laser.

During the experiments presented in section 6.3 and 7.1, two digital
micromirror devices (DMDs) have been used12. DMDs contain an array12Texas Instruments DLP

LightCrafter 6500 of micrometer-sized mirrors that can be switched individually between
an ’off’ and an ’on’ position. They provide the unique ability to project
arbitrary two-dimensional potentials onto the atoms. To do so, the
mirror plane is imaged onto the plane of the atoms while displaying an
image of the desired intensity distribution. The scheme of such a setup
is shown in Figure 5.10. In our experiment, the setup is designed such
that the image of a mirror of the DMD is smaller than the resolution of
the imaging system. Flipping only a part of the mirrors thus results in
grayscale values of the imprinted potential, allowing to create potential
gradients. Potentials featuring small structures can be used as an easy
way to adjust the focus of the upper and lower microscope objectives on
the atomic plane.
While DMDs provide the advantage of arbitrary potential shapes13,13...and ease of use for that matter,

one can for instance create potential
shapes in Microsoft Paint...

they have two main disadvantages. Firstly, the entire area of the DMD
chip has to be illuminated, even if most of the light is not reflected
onto the atomic plane but into unused reflection orders. Since the entire
mirror plane is imaged onto the atomic plane, the walls of the system
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also correspond to only a few of the illuminated DMD pixels. These
two reasons limit the efficiency of a DMD, such that relatively high
powers are necessary to confine quite dilute gases of atoms, especially
in the fermionic regime, where the chemical potential of the gas is high.
Secondly, dynamic potentials are difficult to realize using a DMD. The
repetition rate of our DMDs is 105 µs, a timescale that corresponds to
the timescale set by the Fermi energy of the gas. In addition, updating
an image on the DMD leads to a short flicker of the entire image of the
order of a µs, which can lead to heating of the cloud. Due to these two
reasons, the DMDs can only be used in a static way.
The third source of horizontal potentials remedies one of these two

disadvantages. An optical cascade setup [60, 135] of three conical lenses
(axicons) can be used instead of one of the DMDs to split a laser beam
along its axis, creating a circular ring of light with steep inner walls
and variable diameter. For this setup, the entire laser power remains in
the potential walls confining the atoms, which enables the creation of
much higher walls with relative ease. The axicon setup was used for the
measurements of section 7.4.

5.3. Total performance

To conclude the presentation of the existing experimental setup, let us
look at the experimental sequence in closer detail and the typical per-
formance of the experiment. The typical cycle is depicted once more in
Figure 5.11.
The machine creates an ultracold two-dimensional gas about every

15 s. Starting from a hot block of lithium in the oven, the atoms are
first decelerated in the Zeeman slower and are trapped in the magneto-
optical trap. The MOT is loaded in 5 s and holds a typical number of
approximately 6× 107 atoms at a temperature of ∼ 140 µK, limited by
photon absorption and reemission processes. Once the MOT is loaded,
the Zeeman slower is switched off, in order not to disturb the ensuing
optical cooling process. In order to load the atoms from the MOT into
the resonator, the MOT is compressed by reducing the detunings of the
MOT cooler and repumper as well as their intensities. At the same time,
the magnetic gradient is increased and the offset fields are changed such
that the MOT is moved towards the loading position of the resonator,
a few cm off-waist of the bowtie cavity to optimize overlap between the
MOT and the resonator. This process takes about 250ms.
At the new position, the MOT beams are switched off, while the

power of the beams seeding the resonator are stabilized to 1W. The
atoms are now trapped in a resonator-enhanced infrared standing wave,
entering the evaporative cooling stages of the experiment. The particles
are transferred to the waist of the resonator by detuning one resonator
arm with respect to the other, creating a moving standing wave. The
MOT coils are switched from anti-Helmholtz to Helmholtz configuration
and a magnetic bias field of 300G is applied to increase the collision
rate of the atoms and to increase the thermalization efficiency during
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Figure 5.11. – Summary of the experimental procedure for the preparation of
a 2D Fermi gas (adapted from [134]). (Red arrow) The atomic beam exits
the oven and is decelerated in the Zeeman slower. The atoms are trapped in
a MOT which is loaded in about 5s. After saturation of the atom number,
the MOT is shifted to the resonator loading position and the atoms are
transfered into a deep standing wave potential inside an in-vacuo resonator
(purple). A first evaporative cooling step takes place and the atoms are
subsequently loaded into a running wave optical dipole trap. Over 1.4 s,
the focus of this trap is moved forward (green arrow) and the atoms are
transported into the science cell. Here, the gas is loaded into the highly
elliptic squeeze trap (inset pic. 1,2), which flattens the cloud to a vertical
size of ∼ 1 µm. Finally the gas is loaded into the repulsive optical lattice
(inset pic. 3), which confines the gas to the quasi-2D regime.

evaporation. The power of the resonator is ramped down to a final
value of about 10mW in a first evaporation step. The entire resonator
evaporation takes additional 1.6 s, after which the evaporated resonator
holds a typical ∼ 106 atoms.

At the end stage of the resonator evaporation, one of the two resonator
arms is entirely switched off, which changes the trap from a standing
wave to a running wave dipole trap. Simultaneously, the transport trap
is ramped up. To prepare the atoms for the transport into the science
cell, a second evaporative cooling step is carried out followed by a re-
compression of the transport trap. In 1.4 s, the translation stage moves
the trap’s focusing lens over a distance of 350mm, thereby transporting
about 3·105 atoms into the science cell.
Upon arrival in the science cell, the Feshbach coils are switched on to

produce a magnetic field close to the Feshbach resonance between the
two lowest lying hyperfine states |F,mF = 1/2,±1/2〉 at 832G. A series
of RF-sweeps balances the population of these two states in order to
maximize thermalization efficiency. The transport trap is then ramped
down to 100mW in 500ms and the squeeze trap is ramped on to a
power of ∼ 300mW before the transport trap is finally switched off. In
the squeeze, a final evaporation takes place determining the number and
the temperature of the atoms at the beginning of the experimental steps.
At this point, the gas is typically deeply degenerate with temperature
of T/TF ∼ 0.03.
Now, the squeeze trap is adiabatically ramped back up to powers of
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the order of 1W to flatten the gas and to prepare it for loading into the
optical lattice. The horizontally confining potentials are switched on and
atoms remaining trapped outside of the potential walls can be removed
if necessary by a pulse of repulsive light by one of the DMDs. Then the
lattice is switched on, transferring the gas into the quasi-2D regime in
another 400ms. Finally the squeeze trap is switched off adiabatically
and the preparation of the sample is finished. Typical atom numbers
are on the order of low 1000 for the experiments presented in this thesis.
Then, the experimental steps are performed and the gas is finally imaged
in another few milliseconds.
As previously mentioned, the machine is very robust up to the arrival

in the science cell. Even after power cuts, it has often been sufficient to
restart the continuously running sequence and let the room thermalize
in order to recover good performance up to the loading of the squeeze.
Most adjustments had to be made in the setup around the science cell,
most notably refocusing the imaging setup and properly overlapping the
transport trap, squeeze and lattice potentials. Even then, thanks to the
automatic feedback on single layer loading, at top performance, manual
corrections were only necessary on the order of once per week.

5.4. An updated optical setup for the generation of
2D potentials

After having introduced the experimental setup and the sequence fol-
lowed to produce a quasi-two-dimensional Fermi gas in the lab, I would
like to give a short description of an upgrade to the optical setup around
the science cell, which was initially supposed to be installed in late spring
2020. This upgrade is primarily aimed at improving the day-to-day us-
ability of the optical setup while still maintaining a good utilization of
the limited space around the science cell. This section is mostly meant
as a documentation of the setup and is not relevant to the results dis-
cussed in the remainder of this thesis. A reader primarily interested in
the experiments performed on the setup described above may therefore
skip this section and continue with chapter 6.
In the current setup around the science cell, the optical elements

needed for the horizontal trapping potentials and for the high-resolution
imaging are located above and below the atomic plane. However, a large
number of optical elements have to be arranged in-plane around the sci-
ence cell. These are the optics and cameras for the auxiliary imaging
setups, the optics for the squeeze trap and the 2D-lattice and the quad-
rant photodiode for the transport trap. The main constraint to this part
of the setup is given by the limited amount of available space around
the science cell. In order to approach optical elements close to the cell,
a special setup had been realized on a thin non-magnetic breadboard,
which could be pushed in between the coil ensembles above and below
the cell. Due to the proximity and large size of the coils, the use of
standard-sized optical components was rendered impossible and many
of the mechanical mounts had to be custom-built. An impression of the
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Figure 5.12. – Impression of the existing 2D breadboard before insertion into
the experiment (image from [134]). The atoms are located at the intersection
point of the laser beams, which have been made visible using dry ice. In
the foreground, one can very well see the high density and small size of the
optical elements used for this setup.

currently installed 2D-breadboard is shown in Figure 5.12. To improve
the stability of the setup, a minimum of movable parts has been used.
While this setup uses the available space to its maximum capacity it
also comes with some limitations: The thinness of the breadboard lim-
its the rigidity of the entire setup and the omission of some not strictly
necessary adjustment possibilities makes day-to-day adjustments rather
cumbersome and time-consuming. Over the course of time, some of
the piezo mechanics on the breadboard have irreversibly broken, which
makes a number of necessary degrees of freedom inaccessible. Therefore,
an update to the experiment has become desirable.

Figure 5.13. – CAD drawing
of the new 2D breadboard and
the coil setup. The breadboard
is placed around the lower coil
ensemble, at a level of 60mm
below the atomic plane, allow-
ing to place optics on standard
mounts close to the science cell
up to a distance of 100mm to
the atoms. The breadboard is
produced in two halves of ap-
proximately 400mm by 400mm
by 20mm and can be slid out of
the ensemble easily.

For the new setup around the science cell, a new coil setup and new
breadboards have been planned and manufactured by Lennart Sobirey
and Bernd Lienau. The key idea was to design smaller coil assemblies
(with a diameter d < 170mm) that allow us to place a breadboard
close to the science cell at a level of 60mm below the atomic plane and
thus use standard optics up to a distance of 100mm from the atoms.
If it should become necessary to place optics even closer to the cell,
the distance of > 50mm between the coil assemblies permits the use of
standard 1” optics in lens tubes. This eliminates the need to slide a thin
breadboard in between the coil assemblies. My part in this new setup
consisted in planning and testing the optical setup for the generation of
2D potentials, i.e. for the new squeeze trap and lattice potentials, as
well as a new auxiliary imaging setup, which I will now discuss in more
detail.

5.4.1. Constraints and requirements

Figure 5.13 shows the design of the new coils and the new breadboards.
The breadboards have an area of roughly 400mm by 400mm each and
a thickness of 20mm, with a circular cutout of radius r = 87mm. The
breadboards are placed around the lower coil ensemble and are designed
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in two halves to enable sliding them out around the coil holders in order
to easily modify the setup in later stages. The projected beam height
above the breadboard is 60mm. The requirements for the new setup
are:

• The trapping frequencies of the squeeze trap and the horizontal
frequencies of the lattice should come as close as possible to the
values of the previous setup, since the performance was very good
in the past. The vertical lattice frequency can be increased to
allow for higher chemical potentials in the BCS-regime without
populating higher motional states. For the squeeze trap, the trap-
ping frequencies are determined by the beam waists, which were
wy ≈ 380 µm and wz ≈ 8 µm. In case of the lattice potential, they
are also given by the beam waists wy ≈ 370 µm and wz ≈ 35 µm,
however the trapping frequency in the vertical direction is mostly
determined by the intersection angle which was 10.4 ◦ (full angle
between the beams).

• In order to keep the interference pattern of the lattice beams as
stable as possible, the separation of the lattice beam into two paths
should be done as late as possible in the setup. After the sepa-
ration, the beams must follow a symmetric path and cross as few
different optical elements as possible such that the optical path dif-
ference between the two beams is weakly affected by mechanical
or thermal fluctuations in the system.

• As few parts as possible should be movable, however the new setup
should decouple the degrees of freedom of the traps to allow for
independent adjusting.

• The setup should be as small as reasonably possible to save place
on the breadboard for future additions. For the same reason, the
beams for the squeeze, the lattice and auxiliary imaging should
enter the science cell through the same viewport, at 90◦ with re-
spect to the transport axis. The transport featuring the power
and position stabilization for the transport trap as well as another
auxiliary imaging, this leaves the four diagonal viewports free for
future upgrades.

• The magnification for the x-imaging should be at least a factor of
5 in order to resolve the vertical extent of the squeeze trap. The
imaging beam should be roughly collimated at the location of the
atoms at a waist of about 1mm, however this requirement is not
crucial since this imaging has an auxiliary role.

• Catalog optics should be used for now. The final lens may be
replaced later by a specially designed achromatic multiplet work-
ing at the three most important wavelengths (532 nm, 671 nm and
1064 nm).
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Figure 5.14. – Parameters of the optical setups on the new breadboard. The
lattice beam is split into the two paths after the first collimating lens, which is
not shown here. The second lens in the lattice and squeeze setups are cylindrical
lenses, creating the elliptic beam profiles. The imaging and squeeze are overlapped
on a back-polished mirror and share the two final lenses. The two beams are then
overlapped with the lattice beams on a dichroic mirror. All beams share the same
final high precision doublet lens fl (Melles Griot LAI-100.0-30.0). The beam
waists and distances of the three diagrams are not drawn to the same scale. For
the squeeze schematics, the scale vertical beam axis is reduced by a factor 5 with
respect to the horizontal axis to draw them in the same diagram.

5.4.2. Realization

The final optical setups and the resulting beam parameters are depicted
in Fig. 5.14. Since the three beams are supposed to enter the cell
through the same viewport, they have to pass the same final lens. We
chose a high-precision doublet lens (LAI-100.0-30.0) with a focal length
of f = 100mm and a diameter of 30mm. This lens is optimized to
compensate spherical aberration but uncorrected for chromatic aberra-
tion, which requires a slight compensation of the focal shift between
the squeeze and lattice beams. It is placed on top of a non-magnetic
titanium translation stage with a travel range of 3mm.

Lattice

To create the lattice beams we start from a beam that is collimated
by a standard aspheric lens14 after the fiber outcoupler. The different14Thorlabs C110TMD-A
beam waists of the lattice beams are created by a cylindrical lens1515Thorlabs LJ1640L1-A
which focuses the beams along the horizontal direction, while keeping the
vertical direction collimated. The cylindrical lens is placed in telescope
configuration with the final lens, creating beams that are horizontally
collimated but which exhibit a focus in the vertical axis at the location
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of the atoms.

Figure 5.15. – Open view of the
beam splitter optics. The beam
enters the box through the front
wall (not shown) and is reflected
up and then downward using
two fixed mirrors into the po-
larizing beam splitter (yellow).
The two resulting beams are re-
flected out of the right hand
side of the box via two mirrors,
which can be adjusted via holes
in the back plate of the box.
The lower beam passes a wave
plate which rotates its polariza-
tion to match the polarization
of the other beam. After the
wave plate the remaining opti-
cal path length is the same for
both beams.

In order to split the lattice beam into the two paths, a lens-free beam
splitter setup (see fig. 5.15 for an impression) can be used anywhere
in the collimated part of the beam in front of the cylindrical lens. The
optics for splitting the lattice beam into the two paths consist of four
mirrors and a polarizing beam splitter which are mounted vertically
inside a metal enclosure of dimensions 90mm × 90mm × 120mm that
can be clamped onto the breadboard. The top and bottom plates of the
enclosure can be exchanged, such that the beam splitter can be used in
a right-handed or left-handed configuration (i.e. exiting beams to the
right/left with respect to the incoming beam). The mounting plate of the
enclosure has been dimensioned with a thickness of 20mm as to reduce
mechanical motion and thermal drifts. The first two mirror mounts are
immovable, whereas small holes behind the final mirror mounts give
access to their adjustment screws, enabling control of each of the lattice
beams independently. After the beam splitting setup, the two beams
pass the same optical elements up to a λ/2-waveplate which aligns the
two polarizations for interference. After exiting the beam splitter, the
two beams have a distance to each other of 21.9mm, which results in an
angle of incidence of 12.5 ◦ between the two beams and yields a lattice
constant of ≈ 2.4 µm. The measured waists are wy = 375 µm and wz =
37 µm.
For day-to-day use, the focus position is adjusted using the transla-

tion stage of the final focusing lens (lattice focus along the beam axis)
and a non-magnetic piezo-driven mirror mount in front of the dichroic
mirror (focus correction in vertical/transport axis). Since the beam is
collimated in the horizontal direction, it is not crucial to have adjusta-
bility on the micrometer level for the cylindrical lens, which is therefore
fixed on the breadboard. The vertical size of the waist can be corrected
using the collimation lens behind the fiber, which is placed in a one-axis
translation mount. If the two beams misalign with respect to each other,
the mirror mounts inside the beam splitter can be adjusted.

Squeeze

In the case of the squeeze trap, the strong ellipticity of the desired beam
profile (8 µm : 350 µm) did not allow us to create a design starting with
a collimated beam while maintaining a short optical path. Instead, we
moved the collimation lens16 out of focus to create a strongly converging 16Thorlabs C230TME-1064
beam in which the cylindrical lens17 is placed. This creates two different 17Thorlabs LJ1810L1-B
divergence rates for the different axis. The placement of the cylindrical
lens is such that the beam is horizontally collimated after the final lens.
Vertically, the squeeze beam is collimated by an f = 200mm achromatic
doublet18 at a beam waist of 4.75mm before being focused by the final 18Thorlabs AC254-200-B
lens. The horizontal convergence of the beam is only weakly affected
by this f = 200mm lens. The squeeze beam is superimposed with the
lattice beams on a dichroic mirror19, placed in front of the focusing lens. 19Laser Components 1.5”, Coating:

HR532HT1064/45/ARThis dichroic mirror transmits the infrared squeeze beam but reflects
the lattice beams. This configuration reduces the number of boundary
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layers that could incur unwanted phase errors between the two lattice
beams.
With this setup, waists of ωy = 370 µm and ωz = 7.1 µm have been

achieved. While it ensures a short optical path of only 471mm, it has
the disadvantage that the lenses are not decoupled from each other.
Since the horizontal axis is never collimated in front of the final lens,
the positions of the lenses are fixed with respect to each other. Adjust-
ing this setup is therefore still an iterative process. The fact that the
lattice and squeeze setup share the movable focusing lens also couples
the adjustment process of the two setups. By placing the second-to-last
lens of the squeeze onto a translation stage, however we are now able to
compensate for changes in the position of the focusing lens.
In day-to-day work, the second-to-last lens can be used to shift the

focus point along the beam axis (also after the lattice focus is moved).
The vertical and horizontal focus point can be adjusted using a non-
magnetic piezo mirror in front of the dichroic mirror and the outcoupling
lens can be used to correct the waist sizes.

Imaging

The third beam which is supposed to be part of this setup is the imag-
ing beam at 671 nm, in plane with the atoms and perpendicular to the
transport axis. This imaging is planned to be a diagnostic imaging, for
which it is not necessary to follow standards as high as for the other two
setups. The basic requirements for the imaging beam have been that it
should be roughly collimated at the location of the atoms, with a waist
of about 1mm.
The imaging is overlapped with the squeeze beam on a back-polished

mirror mirror that is transparent at visible wavelengths but reflects in-
frared light. The two beams then pass the same two final lenses. In order
to meet the required waist, the beam is first collimated and widened with
a telescope. A suitable focusing lens has then been inserted at a position
such that it approximately produces a telescope with the final lens. The
second-to-last lens has little effect on the divergence of the beam.
A final waist of 945 µm has been achieved. Behind the science cell, a

telescope of two lenses with focal lengths of 80mm and 400mm images
the atomic cloud or the optical lattice under a magnification of about 5.
A picture drawing of the complete setup is shown in Figure 5.16.

Outlook

In conclusion, the optical potentials created on the new 2D breadboard
setup reproduce the geometrical parameters of the old setup and should
in principle allow us to generate two-dimensional Fermi gases with a
similar performance, but improved stability and more adjustment pos-
sibilities. The upgrade of the machine was originally planned for late
spring 2020, however, due to COVID-19 restrictions, the integration of
the new coil assembly and the new breadboard into the experiment has
been postponed for the moment.
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1: Fiber outcoupler with f=6.24mm asphere
2: PBS (polarization cleaning)
3: Beam splitter box
4: f=130mm cyl. lens
5: Piezo mirror (to be mounted)
6: Focusing lens

Squeeze optics:

7: Fiber outcoupler with f=4.51mm asphere
8: f=25mm cyl. lens
9: PBS (polarization cleaning)
10: Piezo mirror (to be mounted)
11: f=200mm lens

Imaging optics:
12: Fiber outcoupler with f=11mm asphere
13, 14: f=-75mm, f=150mm telescope
15: PBS (polarization cleaning)
16: f=250mm lens

17: Mirror to overlap imaging and squeeze
18: Dichroic mirror to overlap imaging,
      squeeze and lattice

Figure 5.16. – Photograph of the new 2D breadboard during the building process,
including the beam shaping optics. The three setups have been placed on the
far left corner of the breadboard to leave as much space as possible for eventual
upgrades. The beams are inserted into the picture using Inkscape: Green: Lattice,
Red: Imaging, Yellow: Squeeze.

In addition to the parts that have already been built on the new
breadboard, our group is pursuing two projects for the future. We are
currently setting up a new way of producing two-dimensional gases using
an optical accordeon. Shooting a beam into a 50/50-beamsplitter cube
parallel to its symmetry axis, we can split the beam into two parallel
beams that can then be overlapped to build an optical lattice. By chang-
ing the distance between the symmetry plane and the incoming beam,
the distance between the outgoing beams can be tuned continuously,
which allows to change the angle between the interfering lattice beams
and thus the lattice constant. This may offer a new and more flexible
way to load the atoms from the squeeze into a true 2D geometry.

79





6. Sound Propagation and
Attenuation in 2D Fermi Gases

In this chapter I first give an introduction to hydrodynamic theory
and sound waves both in a normal fluid and within Landau’s two-
fluid model.
I then present measurements of sound propagation in a homoge-
neous quasi-two-dimensional Fermi gas. We measure the sound ve-
locity and show that it smoothly transitions from the velocity of a
weakly interacting Bose gas in the BEC regime to the velocity of the
Bogoliubov-Anderson mode in the BCS regime. We extract the com-
pressibility equation of state of the material and compare it to an
independent static measurement as well as to quantum Monte-Carlo
predictions, finding good agreement between the three.
Finally, we measure the damping of the sound mode. This allows
us to extract the sound diffusivity of the ultracold gas across the en-
tire crossover. We show that it approaches a lower bound of order
D ∼ ~/m in the strongly correlated regime, a value compatible with
quantum-limited transport. The strongly correlated 2D Fermi gas is
therefore a nearly perfect fluid.
These results are published in

Markus Bohlen, Lennart Sobirey, Niclas Luick, Hauke Biss,
Tilman Enss, Thomas Lompe and Henning Moritz. Sound
Propagation and Quantum-Limited Damping in a Two-
Dimensional Fermi Gas. Phys. Rev. Lett. 124, 240403
(2020).

and parts of this chapter are reproduced from this publication with
modifications.
The findings presented in this chapter represent the main result of
this thesis.

We have seen that the character of an ultracold Fermi gas can be tuned
to access drastically different regimes, ranging from a weakly interact-
ing bosonic gas of dimers across a strongly correlated gas to a weakly
interacting fermionic ensemble. While the BEC and BCS regimes are
theoretically well understood, the description of the strongly correlated
gas remains challenging. Nevertheless, this regime is of particular inter-
est, since strongly correlated systems appear in many different areas of
physics, covering radically different objects such as neutron stars, atomic
nuclei, high-temperature superconductors and ultracold atomic gases. A
powerful experimental method to gain access to the thermodynamic and
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transport properties of these systems is to study their collective excita-
tions, such as sound modes.
In this chapter, I present measurements of sound propagation and at-

tenuation in an ultracold 2D Fermi gas across the BEC-BCS crossover.
The sound velocity of the gas transitions smoothly from the sound ve-
locity obtained for a weakly interacting Bose fluid in the BEC regime
to the velocity of the Bogoliubov-Anderson mode in the BCS regime.
The attenuation of the sound mode, however, exhibits a clear minimum
in the strongly correlated regime, where the particles are most strongly
interacting. At first glance, the minimum of attenuation in the strongly
correlated regime seems counter-intuitive. For strong interactions and
high collision rates between the particles, one would naïvely expect in-
creased sound damping with respect to the weakly interacting limit.
However, this is not the case for sound waves, as we shall motivate with
the following arguments.

6.1. Collisionless and hydrodynamic regimes

The character of the excitations depends on the strength of interactions
between the particles in the gas. There are two limits to be distin-
guished, the collisionless regime for weak interactions and the hydro-
dynamic regime in the case of strong interactions. In the collisionless
regime, the particles of the gas can be assumed to interact instanta-
neously and move ballistically in between the collisions. Even in strongly
interacting systems, it is often possible to describe the system in terms
of weakly interacting quasiparticles or elementary excitations. The typ-
ical example for this is the Landau Fermi liquid [145], which provides
a good description of most normal metals at low temperatures as well
as liquid Helium 3 [146]. The Landau Fermi liquid is obtained from
a non-interacting Fermi gas by switching on the interactions between
the particles adiabatically slowly. In this case, the ground state of the
non-interacting system smoothly evolves into the new ground state of
the interacting system. There also exists a one-to-one correspondence
between the elementary excitations of the non-interacting Fermi gas
(adding/removing a particle) and the interacting gas (adding/removing
a ’quasiparticle’), although the true nature of the excitations might be
very different from adding or removing a particle. The dynamics of the
gas in the collisionless regime is described by kinetic theory, in particular
by the Boltzmann equation, which is a continuity equation for the so-
called quasiparticle distribution function, describing the likelihood for
the occupation of quasiparticle states.
For strongly correlated systems, the quasiparticle description can break

down. In this case, a hydrodynamic description of the system is appro-
priate1. Hydrodynamics is based on the assumption that the interactions1We note that the hydrodynamic

equations can also be derived from
the moments of the Boltzmann
equation. See for instance [147]

between the particles happen on very short time scales, such that the
particles are in local equilibrium with the surrounding gas at all times.
For several conserved quantities, such as density, momentum and en-
ergy, one can set up continuity equations, which govern the dynamics
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of the gas. These equations have the form Q̇ = −∇·jQ, where Q is the
thermodynamic quantity and jQ the current density related to this quan-
tity.

Q : Thermodynamic quantity
jQ : Current density related to Q
DQ : Diffusion coefficient

for diffusion of quantity Q.
Since the system is supposed to be in local equilibrium, excitations

appear in the form of large-range variations in the thermodynamic vari-
ables. These variations lead to diffusive currents, to first order described
by jQ = −DQ∇Q, which tend to smoothen out the initial variations.
One can see this by inserting jQ into the continuity equation, which
yields Q̇ = DQ∆Q, which is a diffusion equation for the quantity Q.
The coefficient DQ is called the diffusion coefficient.

As we will derive in the following sections, the damping of collective
modes such as sound waves depends on the transport coefficients of the
gas, notably on its viscosity and heat conductivity. These coefficients
describe how well a certain quantity (momentum and temperature in
this case) can be transported through the material, and can be shown to
be proportional to the diffusivity in the respective attenuation channel.
We can now motivate the minimum in sound damping in the strongly
correlated regime.
According to kinetic theory, the transport coefficients and thus the

damping of collective modes are proportional to the quasiparticle life-
times2. In other words, the diffusion coefficient is related to the mean 2See for instance the respective cal-

culations for gases or electron gases
in [148].

free path of the (quasi-)particles and their mean velocity according to
D ∼ 〈v〉 lmfp.

〈v〉 : Mean particle velocity
lmfp : Mean free path

Strong interactions between the (quasi-)particles lead
to short quasiparticle lifetimes or short mean free paths, and the en-
ergy contained in an excitation cannot be transported away effectively.
Thus, we obtain weak sound damping for stronger interactions. Since
the mean free path cannot be smaller than the interparticle spacing, this
sets a lower limit to the diffusivity of the strongly correlated gas.

Applicability of Hydrodynamics

Classically, hydrodynamics apply, when the system shows fast local equi-
libration times τ and short mean free paths lmfp compared to the fre-
quency ω and wavenumber k of the excitation: ωτ � 1, klmfp � 1.
However, as we will see in the next section, the concept of mean free
path is in fact not needed to derive the equations of hydrodynamics.
If we assume the particles to be in constant contact and equilibrium
with their surroundings, the mean free path is in fact always zero. In
this case, hydrodynamics is derived purely as a macroscopic theory de-
scribing long-range dynamics and low-energy excitations of the gas. The
transport and diffusion coefficients appear in the hydrodynamic equa-
tions only in the form of proportionality factors whose values cannot
be derived from within using hydrodynamic principles, but must be
obtained using other theories. In linear response theory for instance,
the transport coefficients are connected to correlation functions via the
Kubo formulas. These correlation functions can in turn be calculated
from field theoretical methods, which can become very cumbersome in
the case of strong interactions. Often, an easier way to obtain the val-
ues of the transport coefficients in specific materials is to extract them
experimentally.
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Around the Feshbach resonance, the enhanced collision rates ensure
in our case that the gas can be described using hydrodynamics3. The3We will give a quantitative estima-

tion of the mean free path later. condition of short collision times is however not the only condition which
ensures hydrodynamic conditions. A degenerate Bose gas for instance
is only weakly interacting, however hydrodynamic equations can be de-
rived from the Gross-Pitaevskii equation (see for instance chapter 7 in
[85]). Similarly to the classical case, hydrodynamics apply when the
wavelength of the excitations is large compared to the length scale on
which the gas equilibrates with its surroundings. In a degenerate Bose
gas, this scale is given by the healing length ξ.

6.2. Hydrodynamics and the theory of sound waves
In the following sections, I will review the theory of sound waves in the
hydrodynamic framework. I will start out by establishing the equations
of motion following Landau and Lifshitz [149]. In a second step, I will
follow the approach of Smith and Jensen [148] to solve these equations for
a classical gas and for a superfluid and obtain the low-energy excitations
of the gas. As we will see, these excitations have a dispersion relation of
the form ω2 = c2q2 + iωDsq

2, where q and ω are the wave number and
frequency of the excitationω : Excitation frequency

q : Excitation momentum
c : (Adiabatic) sound velocity
Ds : Sound diffusivity

, c is the adiabatic sound velocity and Ds the
sound diffusivity. The real part is linear in momentum and describes
sound waves, whose velocity c is related to the compressibility of the
medium. Hence a measurement of the sound velocity gives us access
to its equation of state. The imaginary part corresponds to diffusive
damping, which occurs due to viscous flow and thermal conduction.

6.2.1. The hydrodynamic equations

Sound waves in a gas consist of simultaneous spatial variations in sev-
eral thermodynamic quantities, namely the pressure p, temperature T ,
mass density %, entropy density s and the local particle velocity v.

p : Pressure
T : Temperature
% : Mass density
v : Particle velocity
s : Entropy density per unit

mass: s = S/Nm

As
mentioned earlier, the equations of hydrodynamics follow from the con-
servation of particle density, momentum and energy, providing us with
three equations relating the five unknown quantities.
The continuity equation describes the conservation of particles.

∂%

∂t
+ ∇·(%v) = 0, (6.1)

The momentum balance equation describes the change in momentum
of a mass particle of the gas. It is given in component notation by

∂(%vi)
∂t

+ ∂Πik

∂xk
= 0, (6.2)

where ΠikΠik : Momentum current tensor is the momentum current tensor, which will be explained
in more detail later on. In this chapter, we will use Einstein’s sum
convention: Any index i, j, k . . . runs from 1 to 3 enumerating the x, y, z-
directions and repeated indices are to be summed over.
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The third equation we will derive in this part of the text is the heat
or entropy equation, which follows from the conservation of energy. It
is

%T
ds

dt
= σ′ik

∂vi
∂xk

+ ∇·(κ∇T ) . (6.3)

Here, σ′ik the viscous part of the stress tensor and κ the thermal con-
ductivity.

σ′ik : Viscous stress tensor
κ : Thermal conductivityThe viscous stress tensor σ′ik and the thermal conductivity κ

describe dissipative processes as terms in which velocity or temperature
gradients are transformed irreversibly into thermal energy due to fric-
tion or heat conduction. If we neglect these processes, we see that the
entropy in the system is conserved and we recover adiabatic conditions.
For the derivations of all three equations, we follow the steps detailed

in [149]. We will start by reviewing the quite short derivation of the first
of the continuity equation.

The continuity equation

The change in mass inside a given volume is given by the density current
that flows through the boundaries of this volume:

∂M

∂t
= − ∂

∂t

∫
% dV =

∮
%v·da, (6.4)

where M is the total mass inside the volume and da the oriented area
element of the boundary of the volume.

V : Volume
M : Total mass inside V
da : Surface element bounding V

Using the divergence theorem,
this equation can be transformed into∫ [

∂%

∂t
+ ∇·(%v)

]
dV = 0. (6.5)

Since mass conservation has to hold true for any arbitrary volume of
the fluid, the integrand itself must be zero, which leaves us with the
continuity equation 6.1. This reasoning is valid not only for mass but
for any quantity that is conserved in the system. In particular, we will
later make use of the conservation of entropy, which yields

∂s

∂t
+ ∇·(vs) = 0. (6.6)

Euler’s equation

In order to derive the momentum balance equation, we first have to intro-
duce Euler’s equation, which is the hydrodynamic analogue of Newton’s
second law. Neglecting gravity, the force acting on the fluid is given by
the gradient of the pressure p:

%
dv
dt

= −∇p. (6.7)

The total or substantial derivative
dv
dt

= ∂v
∂t

+ ∂xi
∂t

∂v
∂xi

= ∂v
∂t

+ (v·∇)v, (6.8)
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expresses the fact that the velocity of a particle can change over time in
one given point (∂v/∂t), but also due to the movement of the particle
with the flow of the fluid, which carries it into regions with higher or
lower velocity, expressed by the term (v·∇)v. Euler’s equation is thus

∂v
∂t

+ (v·∇) v = −1
%

∇p. (6.9)

The momentum balance equation

We now want to derive an expression for the change of momentum in
a small volume dV . The momentum change in a given time interval is
given by ∂(%v)/∂t. For the i-th component, this yields

∂

∂t
(%vi) = ∂%

∂t
vi + %

∂vi
∂t
, (6.10)

which is transformed using the continuity and Euler equations:

6.1→ ∂%

∂t
= −∂(%vk)

∂xk
, (6.11)

6.9→ ∂vi
∂t

= −vk
∂vi
∂xk
− 1
%

∂p

∂xi
. (6.12)

And thus

∂

∂t
(%vi) = −vi

∂

∂xk
(%vk)− %vk

∂vi
∂xk
− ∂p

∂xi

= − ∂

∂xk
(%vivk)−

∂p

∂xi
= −∂Πik

∂xk
, (6.13)

where the momentum current tensor Πik is defined as Πik := pδik+%vivk.
This equation has the form of a continuity equation. On the left side,

we see the i-th component of the momentum. Its change in time is
determined by the sum of the derivatives of three components of Πik.
Πik can therefore be interpreted as the flow of the i-th component of the
momentum through a surface perpendicular to the xk-axis per unit time.
A vector quantity is changing in time, and since all three components
of the vector can flow away in all three directions, its current density is
a tensor of rank two.
To understand the momentum current tensor more deeply, we write

the momentum balance equation in its integral form by integrating and
using the divergence theorem. Since Πik is the momentum flowing
through a surface perpendicular to the xk-axis, we obtain

∂

∂t

∫
%vi dV = −

∮
Πik dak = −

∮
Πiknk da, (6.14)

where da = nda is the oriented surface element of the boundary of the
volume, and n the unit normal to the surface element. The quantity
Πiknk = pni + %vivknk can be written in vector form as

pn + %v(v·n). (6.15)
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This vector is the current of momentum flowing out of the volume in
the direction of the unit vector n. n : Unit vector, normal

on surface element da
In the direction perpendicular to the

flow of the fluid (n ⊥ v), the momentum current density is given by the
pressure. A net pressure difference between two regions will result in
a transfer of momentum to the particles of the fluid. In the direction
parallel to the flow of the fluid (n||v), the fluid transfers the additional
momentum %v2, given by the kinetic energy density.

Momentum current density of a viscous fluid

Up until this point, the momentum balance equation incorporates forces
and mechanical movement of the particles, thus reversible changes in
momentum. In a viscous medium however, energy and momentum are
lost irreversibly due to friction. These processes are added manually
into Πik by adding a term −σ′ik, which incorporates all friction effects.
We write

Πik = pδik + %vivk − σ′ik = −σik + %vivk. (6.16)

The form of the unknown tensor σ′ik is subject to a few constraints.
Viscous effects depend only on the relative velocities of different parts of
the fluids, therefore σ′ik must depend on the derivatives ∂vi/∂xk of the
velocities with respect to the coordinates. Moreover, there also should
be no viscous effects when the system performs a uniform rotation v =
Ω×r. Ω : Angular velocityThese two conditions are fulfilled for the symmetric combinations
of the partial derivatives

∂vi
∂xk

+ ∂vk
∂xi

. (6.17)

We assume that the velocities vary slowly in space, such that we can
neglect all higher order derivatives as well as quadratic terms in the
derivatives. This yields a tensor of the form

σ′ik = a

(
∂vi
∂xk

+ ∂vk
∂xi

)
+ b

∂vl
∂xl

δik, (6.18)

with two constants a and b. Conventionally, this tensor is written in a
slightly different form which separates the symmetric tensor σ′ik into a
trace free part and a diagonal part:

σ′ik = η

(
∂vi
∂xk

+ ∂vk
∂xi
− 2
d
δik

∂vl
∂xl

)
+ ζδik

∂vl
∂xl

, (6.19)

where d is the number of spatial dimensions. d : Number of dimensionsThe diagonal part describes
friction effects that occur in the dilation or compression of the fluid,
whereas the trace-free part describes shear friction. At this point we
see the first occurrence of the transport coefficients ζ and η, which are
called the bulk and shear viscosities.

η : Shear viscosity
ζ : Bulk viscosityThey appear as coefficients whose

value needs to be determined through measurement or other theoretical
methods.
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The Navier-Stokes equation

Incorporating the effects of the viscous stress tensor into Euler’s equation
(eq. 6.9), one obtains the Navier-Stokes equation, which is the equation
of motion of a viscous incompressible fluid. One starts out by extending
Euler’s equation with σ′ik.

%

(
∂v
∂t

+ (v·∇)v
)

= −∇p+ ∂σ′ik
∂xk

, (6.20)

or in component notation and full length:

%

(
∂vi
∂t

+ vk
∂vi
∂xk

)
= − ∂p

∂xi
+ ∂

∂xk

[
η

(
∂vi
∂xk

+ ∂vk
∂xi
− 2
d
δik

∂vl
∂xl

)]
+ ∂

∂xi

(
ζ
∂vl
∂xl

)
. (6.21)

Taking the viscosities to be constant throughout the system, they can
be moved in front of the derivatives. The equation transforms to

%

(
∂vi
∂t

+ vk
∂vi
∂xk

)
= − ∂p

∂xi
+ η

∂2vi
∂x2

k

+ ζ
∂

∂xi

∂vl
∂xl

(6.22)

in two dimensions (d = 2). In an incompressible liquid, ∇·v = 0, such
that the last term vanishes. We are then left with the Navier-Stokes
equation, which takes the following form in vector notation:

∂v
∂t

+ (v·∇)v = −1
%

∇p+ η

%
∆v. (6.23)

We see that the bulk viscosity ζ drops out in an incompressible liquid.
This is of course to be expected, since the bulk viscosity describes fric-
tion when the fluid is compressed or dilated, processes which cannot
occur in an incompressible fluid. Interpreting this equation as the con-
tinuum form of Newton’s second law, we find that the forces acting on a
fluid particle in an incompressible viscous fluid are given by the pressure
and by a viscous force which tends to equalize the velocities of neigh-
boring particles. The ultracold gases considered in this thesis however
are compressible and thus the bulk viscosity stays relevant.

The heat equation

We now tackle the derivation of the heat equation. For this, we need to
work a bit more than for the first two equations. First, an expression for
the change of energy in a small volume dV can be derived under adiabatic
conditions. In a second step, dissipative processes are allowed. This
leads to two different equations for the energy change in the system. By
comparing the two expressions, we will then see that the heat equation
has to hold true. I will not reproduce the entire calculation here, since I
find this a rather technical point that does not aid in understanding the
physical mechanisms at hand. If the reader is interested, the calculation
can be found in Appendix B.
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The energy density in a small volume is given by the sum of the
contributions of kinetic energy %v2/2 and internal energy %ε, where ε
is the internal energy per unit mass.

ε : Energy density
w : Enthalpy density

(both per unit mass)
Under adiabatic conditions, the

change of energy can be written as (see appendix B for the details of the
calculation):

∂

∂t

(
%v2

2 + %ε

)
= −∇·

[
%v
(
v2

2 + w

)]
. (6.24)

Here, w = ε + p/% is the enthalpy density in the system. The energy
balance equation has the form of yet another continuity equation. The
change in energy in a given volume over time is given by the amount
of energy density that flows through the boundaries of this volume. We
can identify the quantity %v(v2/2 +w) with the energy current density.
This energy is carried in and out of the volume by a displacement of the
fluid.
In a viscous fluid, this is however not the only process which can trans-

port energy. As we have seen, the viscosity of the fluid allows momentum
to flow from one location to another if there are momentum gradients in
the fluid. This momentum transfer carries an energy v·σ′ = viσ

′
ik. Sim-

ilarly, gradients of temperature ∇T allow for heat currents q = −κ∇T
to flow through the material, transporting energy in the process. These
heat currents are proportional to the thermal conductivity κ. Both pro-
cesses have to be incorporated into the energy balance equation. In
analogy to the introduction of the viscous stress tensor into the momen-
tum balance equation, we therefore modify equation 6.24 by hand to
read

∂

∂t

(
%v2

2 + %ε

)
= −∇·

[
%v
(
v2

2 + w

)
− (v·σ′)− κ∇T

]
. (6.25)

This is the first equation we need for the derivation of the heat equation.
Performing several more steps detailed in appendix B, one can also

derive the following equation:

∂

∂t

(
%v2

2 + %ε

)
=−∇·

[
%v
(
v2

2 + w

)
− (v·σ′)− κ∇T

]

+ %T

(
∂s

∂t
+ v·∇s

)
− σ′ik

∂vi
∂xk
−∇·(κ∇T ).

(6.26)

By comparing these two equations, it becomes clear that the sum of the
last three terms have to equal zero. We are left with the heat equation:

%T

(
∂s

∂t
+ v·∇s

)
= σ′ik

∂vi
∂xk

+ ∇·(κ∇T ). (6.27)

The left hand side of this equation is the total time derivative of the
heat density.

%T
ds

dt
= σ′ik

∂vi
∂xk

+ ∇·(κ∇T ). (6.28)
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Under adiabatic conditions, it is equal to zero. Entropy and heat are
then conserved in the system, but may flow between different parts of
the system. Under the effects of friction and heat conduction, there are
additional source terms on the right hand side of the equation, which
represent the amount of heat that a unit mass acquires per unit time.
Due to friction, kinetic energy can be transformed to heat. Addition-
ally, heat conduction will dissipate temperature differences across the
material, thereby increasing entropy.

6.2.2. The dispersion relation of sound waves in a normal fluid
The next step in our discussion of sound waves is to derive the dispersion
relation of sound waves, i.e. derive expressions for the speed and the
attenuation of sound. I will derive these first in the case of a normal
fluid and then show the results that one obtains for a superfluid as well.
For this discussion, I follow the approach of Smith and Jensen [148],
since I find it to be more concise than the approach detailed by Landau
and Lifshitz [149].
We assume that the particles of the fluid are oscillating harmonically

with a frequency ω along a certain direction given by a wave vector q,
i.e. the velocity is given by v(r, t) = v exp[i(q·r−ωt)].

ω : Oscillation frequency
q : Oscillation wave vector This movement

causes small fluctuations of the form x(r, t) = x0 + x′ exp(i(q·r − ωt))
in the thermodynamic variables %, p, T and s.
For small oscillations, the hydrodynamic equations 6.1 - 6.3 can be

linearized in the small oscillating quantities v, %′, p′, T ′ and s′, yielding

6.1→ ω%′ − %q·v = 0, (6.29)

6.2→ ω%v− qp′ + iηq2v + i

(
d− 2
d

η + ζ

)
q(q·v) = 0, and

(6.30)
6.3→ %ωTs′ + iκq2T ′ = 0. (6.31)

The linearized momentum balance equation can only be fulfilled if q
and v are collinear, i.e. if the movement of the particles occurs in the
same direction as the wave is propagating. Therefore, sound waves must
be longitudinal waves. To proceed, one makes use of the fact that the
thermodynamic variables are not independent, but are related by the
equation of state of the material, such that the variations in density and
entropy can be expressed by the variations in pressure and temperature.

%′ =
(
∂%

∂p

)
T

p′ +
(
∂%

∂T

)
p
T ′ and s′ =

(
∂s

∂p

)
T

p′ +
(
∂s

∂T

)
p
T ′.

(6.32)

Eliminating %′ and s′ in this way leaves one with a set of three equa-
tions linear in the unknown quantities p′, T ′,v:

ω
(
∂%
∂T

)
p

−%q ω
(
∂%
∂p

)
T

0 ω%+ i
(

2d−2
d η + ζ

)
q2 −q

ω%T
(
∂s
∂T

)
p

+ iκq2 0 ω%T
(
∂s
∂p

)
T

·

T ′v
p′

 =

0
0
0

 .
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(6.33)

The solutions to this system can be found by setting the determinant
of the coefficient matrix to zero. Using thermodynamic relations, the
resulting equation can be cast into the form

ω3 + i
ω2q2

%

(
η + ζ + κ%

Cp − Cv
CpCv

)
−ωq2c2− ωq

4κ
%Cv

(η + ζ) = 0 (6.34)

in two dimensions. The interested reader can find the calculation in
Appendix B. Here, c is the adiabatic sound velocity and Cp and Cv are
the heat capacities at constant pressure and volume,

c : Adiabatic sound velocity
Cp : Heat capacity at

constant pressure
Cv : Heat capacity at

constant volume

given by

c2 =
(
∂p

∂%

)
s

= Cp
Cv

(
∂p

∂%

)
T

and Cp,v = %T

(
∂s

∂T

)
p,v
. (6.35)

The final term is dropped, since we are interested in long-wavelength
and low frequency excitations, for which the other terms will dominate.
Then, one obtains

ω2 = c2q2 − iωq2
(
η

%
+ ζ

%
+ Cp − Cv

CpCv
κ
)
. (6.36)

For a dissipationless system, η = ζ = κ = 0, and this equation reduces
to ω = cq. In this case, sound is recovered as plane waves, oscillating
with a frequency ω0 = cq, and propagating with the adiabatic sound
velocity c =

√
(∂p/∂%)s.

ω0 : Bare (undamped)
sound frequency

In the case of a dissipative system, solving the quadratic equation is
still straightforward and yields the dispersion relation

ω = −iΓ2 +

√
c2q2 − Γ2

4 , with Γ = q2
(
η

%
+ ζ

%
+ Cp − Cv

CpCv
κ
)
.

(6.37)

This relation is the dispersion relation of a damped harmonic oscillator.

Γ : Sound damping rate
For Γ/(2ω0) < 1, the sound waves are weakly damped and decay expo-
nentially in time with a rate of Γ/2. The frequency of the oscillations is
reduced with respect to the undamped situation and given by the real
part of ω as

ω = cq

√
1−

( Γ
2cq

)2 Γ�2ω0≈ ω0

(
1− Γ2

8ω0

)
. (6.38)

For Γ > 2ω0, the oscillator is overdamped and there are no oscillating
solutions.
The propagation speed of the sound waves is obtained from the real

part as

cs = ω

q
=
(
∂p

∂%

)
s

√
1−

( Γ
2ω0

)2
. (6.39)
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6.2.3. Two-fluid hydrodynamics
After having derived the equations for sound excitations in normal fluids,
we now turn to the hydrodynamic description of sound in superfluids in
the two-fluid model. In a superfluid, the presence of both a normal and
a superfluid component allows more than just one sound mode to prop-
agate. The two modes propagate at different speeds and are commonly
denoted as first and second sound. The speed of the two modes will be
determined by the sound velocity c, which we have introduced already
and by a second quantity c2, which involves the ratio between the su-
perfluid density and the normal density, and which can be interpreted
as the velocity of temperature waves (compare chapter 10 in [85]). In
the derivation of the sound velocities, we will follow the derivations pre-
sented in [148] and [85] and we will only consider the dissipationless case.
Similar to the procedure we followed before, we will now first derive two
wave equations for the entropy and the density. We will linearize the
system and eliminate a few thermodynamic variables using the equation
of state. Finally, we will solve the linearized system via the determinant
of the coefficient matrix.
In the two-fluid model, the density of the fluid is given by % = %n+%s,

where the subscripts denote the superfluid and normal components. Cor-
respondingly, the current density is j = %nvn + %svs.

%s : Superfluid density
%n : Normal density
vs/n : Velocity of the superfluid

normal components
j : Current density

The acceleration
of the superfluid component v̇s can be related to the gradient of the
chemical potential ∇µ: In 1941, Kapitza found that the pressure dif-
ference across a superleak is related to the temperature according to
∆p = %s∆T in the steady state [150]. These variables are also related
by the Gibbs-Duhem relation Ndµ = V dp − SdT , which we can write
as %dµ/m = dp − %sdT . Using both relations, we obtain dµ = 0 across
a superleak in the steady state, which suggests that the acceleration of
the superfluid component depends only on the gradient of the chemical
potential, mv̇s = −∇µ [148]. One then obtains

∂vs
∂t

= − 1
m

∇µ = −1
%

∇p+ s∇T. (6.40)

Inserting this relation into ∂j/∂t = %n∂vn/∂t+ %s∂vs/∂t and solving
for ∂vn/∂t yields

∂

∂t
vn = 1

%n

(
∂

∂t
j− %s

∂

∂t
vs
)
. (6.41)

Subtracting eqs. 6.40 and 6.41, we obtain a relation between the accel-
erations of the normal and superfluid parts of the system:

∂

∂t
(vn − vs) = − %

%n
s∇T. (6.42)

In a superfluid, entropy is conserved, but carried only by the normal
density. In the entropy continuity equation 6.6, we thus have to replace
v by vn, which gives

∂

∂t
(%s) + ∇·(%svn) = 0. (6.43)
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This equation can be linearized in the varying quantities, which gives

s
∂%

∂t
+ %

∂s

∂t
+ s%∇·vn = 0. (6.44)

Using the continuity equation ∂%/∂t = −∇·j, one can rewrite this equa-
tion as

∂s

∂t
= s

%s
%

∇·(vs − vn), (6.45)

and with eq. 6.42, we obtain

∂2s

∂t2
= s2 %s

%n
∆T. (6.46)

This is the first of the two differential equations we will need.
The second equation follows from the continuity and Euler equations.

Combining ∂%/∂t = −∇·j with ∂j/∂t = −∇p, we obtain

∂2%

∂t2
−∆p = 0. (6.47)

We now choose the density and temperature as independent variables.
Allowing for small fluctuations of the form ∼ exp (iq·r− iωt), we lin-
earize 6.47 and 6.46 to yield

6.47→ ω2%′ − q2
[(

∂p

∂%

)
T

%′ +
(
∂p

∂T

)
%
T ′
]

= 0 (6.48)

6.46→ ω2
[(

∂s

∂%

)
T

%′ +
(
∂s

∂T

)
%
T ′
]
− q2 %s

%n
s2T ′ = 0. (6.49)

After introducing the adiabatic and isothermal sound velocities c, cT ,
the heat capacity Cv, as well as the additional quantity

c2
2 = %s

%n
s2 %T

Cv
, (6.50)

one can use thermodynamic relations to rewrite these equations as

(u2 − c2
T )%′ −

(
∂p

∂T

)
%
T ′ = 0 (6.51)

u2(c2
T − c2)

(
∂p

∂T

)−1

%
%′ + (u2 − c2

2)T ′ = 0, (6.52)

where u = ω/q. This calculation is lengthy and can be found in appendix
B. This system of equations has solutions for

(u2 − c2
T )(u2 − c2

2) + u2(c2
T − c2) = 0

This is a quadratic equation in u2, which can easily be solved to yield
the sound velocities of first and second sound:

u1/2 : Velocities of first
and second sound

u2
1/2 = c2

s + c2
2

2 ±

√√√√(c2
s + c2

2
2

)2

− c2
T c

2
2. (6.53)
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In a superfluid, there are two sound modes propagating at different
speeds. At the critical temperature, the superfluid density vanishes,
%s = 0, such that c2 = 0. In this case, only the normal sound mode
remains, which propagates at the adiabatic speed of sound cs. The
presence of two sound modes has been predicted by L. Tisza [151] and
fully derived by L. Landau [152]4. Second sound was first observed by4The two-fluid model is often fully

credited to Landau. For a more in-
depth analysis about the discovery
of superfluidity and its theoretical
description, see for instance [153].

V. Peshkov in superfluid 4He [154]. In ultracold Fermi gases, second
sound was first measured by L. A. Sidorenkov et al. in the group of R.
Grimm[155].
The damping rate of second sound is also modified by the presence of

both a normal and a superfluid component. The heat equation obtains
additional source terms involving not only the velocity of the normal
component, but also terms involving the superfluid component as well
as terms mixing both component. According to [148], the result is

%T

(
∂s

∂t
+ ∂

∂xi
(vnis)

)
= σ′ik

∂vni
∂xk

+ ζ3(∇(j− %vn))2

+ ζ4∇vn∇(j− %vn) + ∇(κ∇T ),
(6.54)

with

σ′ik = η

(
∂vni
∂xk

+ ∂vnk
∂xi

− 2
d
δik
∂vnj
∂xj

)
+ δikζ

∂vnj
∂xj

+ δikζ1
∂(j − %vn)j

∂xj
.

(6.55)

ζ1, ζ3 and ζ4 are additional viscosity coefficients.

ζ1/3/4 : Viscosity coefficients
involving superfluid
component

Γ2 : Attenuation rate
of second sound Under the condition

(Cp−Cv)/Cv � 1, one finds the following expression for the attenuation
rate of second sound5.5This condition ensures that the con-

tribution of the thermal conduc-
tivity to the attenuation is small.
This is the case for instance for liq-
uid 4He and other degenerate gases
[148], however it is not the case in
non-degenerate gases.

Γ2 = q2
(
η

%
+ ζ

%
+ %ζ3 − 2ζ1 + %nκ

%sC

)
, (6.56)

where C = %T ds
dT is the general heat capacity of the material.

6.2.4. Diffusion coefficients and quantum limited transport
Diffusion coefficients

The damping rate Γ ∝ q2 of the sound waves is not universal, but is
dependent on the wave vector. This dependency is the typical sign of
a diffusive process. In the beginning of this chapter, we have already
motivated that the damping of sound modes occurs via diffusive trans-
port. After having derived the damping rate of the sound waves and its
connection to the transport coefficients η, ζ and κ, let us now make the
link between these and the diffusion coefficients Dη, Dζ and Dκ.

One fundamental assumption underlying hydrodynamics is that the
dynamics on a microscopic level happen on a time scale that ensures local
thermal equilibrium at any point in time. Gradients in the thermody-
namic variables lead to diffusive currents, which tend to equilibrate the
imbalance over time. A temperature gradient across the thermodynamic
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volume for instance leads to a heat current according to q = −κ∇T .
Assuming the fluid at rest, the heat that is transferred through a given
volume by this current changes the temperature in the volume according
to

dT

dt
= − 1

Cp
∇·q = κ

Cp
∆T = Dκ∆T. (6.57)

This equation is the diffusion equation with the heat diffusion constant
Dκ. Dκ : Heat diffusion coefficient

Dη : Shear diffusion coefficient
Dζ : Bulk diffusivity
Ds : Sound diffusion constant

In this chapter, we have also seen another occurrence of a diffusion
equation in the form of the Navier-Stokes equation 6.23. For vanish-
ing density variations, it states the diffusion of velocity gradients in an
incompressible fluid:

dv
dt

= η

%
∆v = Dη∆v. (6.58)

We thus identify Dη = η/% as the shear diffusivity. Identifying Dζ = ζ/%
as the bulk diffusivity in an analogous way, the sound diffusion constant
can be defined by

Ds = Γ
q2 = η

%
+ ζ

%
+ κ

Cp − Cv
CpCv

= Dη +Dζ +Dκ
Cp − Cv
Cv

. (6.59)

Quantum limited transport

The shear viscosity can be used to quantify whether a material is a
’good’ or ’bad’ fluid. In materials with a small shear viscosity, particles
at rest in the vicinity of moving particles remain relatively unaffected,
whereas a high shear viscosity couples the motion of neighboring parts
of the liquid and transforms the kinetic energy of the shear motion into
heat. This raises the question which materials make for ’good’ fluids
and under which conditions one can expect ’good’ or ’bad’ fluidity.
A very simple argument can be found by going back to weakly inter-

acting systems. In kinetic theory, the diffusion constant is related to the
mean velocity and the mean free path of the particles via the relation
D ∼ 〈v〉lmfp. At weak interactions, long-lived quasiparticles can trans-
port heat or momentum over long distances and therefore smooth out
density and pressure variations very efficiently, leading to high diffusiv-
ities and strong attenuation of sound waves. In this case, the fluid has
a relatively high viscosity. For stronger interactions, the mean free path
shortens and the diffusivity is reduced. Increasing the interactions fur-
ther into the strongly correlated regime, well-defined quasiparticles cease
to exist and the concept of mean free path loses its validity. Extending
the line of reasoning even further nevertheless, one finds particles scat-
tering with a mean free path comparable to the average interparticle
spacing. Hence, diffusive processes transporting away heat or momen-
tum should become strongly suppressed. Since the interparticle spacing
imposes a lower bound on the mean free path, this raises the question
whether there are lower bounds on the diffusivity and on the viscosity.

95



6. Sound Propagation and Attenuation in 2D Fermi Gases

In other words, we can ask the question whether there are ’perfect’ flu-
ids in the sense that they approach a fundamental lower bound on the
viscosity. In such a fluid, hydrodynamics could provide a valid descrip-
tion of the dynamics even on distances comparable to the interparticle
spacing [65].
A lower bound for the ratio of shear viscosity and entropy density of

η/%s ≥ ~/(4πkB) was first conjectured to exist by P. Kovtun, D. Son
and A. O. Starinets (KSS) in the context of quantum field theories with
holographic duals "for all relativistic quantum field theories at finite tem-
perature and zero chemical potential" [156]6. Since then, almost ideal6Note that the KSS bound is usu-

ally written in the form η/s ≥
~/(4πkB). The difference originates
in the definition of entropy density
s per units of mass instead of vol-
ume in this text.

hydrodynamic flow has been measured in various systems. Although it is
in principle possible to construct counter-examples, the KSS conjecture
turns out to hold for all real fluids [157]. Lower bounds for the viscosity
of order η/%s ∼ ~/kB and η/n ∼ ~ have for instance been observed for
a wide range of fluids [65], ranging from water over liquid Helium to
ultracold quantum gases and even quark gluon plasmas. For a review of
these results, I would like to refer the reader to [65].
In the context of ultracold Fermi gases, lower bounds for the diffusiv-

ities D & ~/m and thus quantum limited transport have been predicted
and observed in several transport channels. For ultracold 2D geometries,
a minimum in shear viscosity in dependence on temperature has been
reported by E. Vogt et al. [57] and described theoretically by G. M.
Bruun, T. Schäfer and T. Enss et al. [158–160] using a kinetic theory
picture. In three dimensions, the shear viscosity has been calculated to
exhibit a minimum by P. Massignan et al. [161] in the context of kinetic
theory and by T. Enss et al. using a diagrammatic approach to the stress
tensor in the Kubo formula [157]. C. Cao et al. [162] observed experi-
mentally that the viscosity to entropy ratio of the 3D Fermi gas indeed
obeys the string theory limit. Similar results were obtained by various
groups for the spin diffusion coefficient in 2D [58, 59, 158, 160] and 3D
Fermi gases [163–167]. The sound propagation of three-dimensional uni-
tary Fermi gases was also observed to approach a lower limit by P. Patel
et al. in the group of M. Zwierlein [168].
Several hypotheses have been brought forward to provide an explana-

tion for quantum limited transport [169]: One, motivated by holographic
duality [156], is that it occurs near scale invariant points in the phase
diagram. The unitary 3D Fermi gas is an example that seems to support
this hypothesis since it is strongly interacting as well as scale invariant
and exhibits quantum limited shear and spin diffusion. In contrast, 2D
Fermi gases exhibit a quantum scale anomaly that breaks scale invari-
ance [170–173].
In our experiment, we investigate the propagation and damping of

sound in a strongly interacting 2D Fermi gas and thereby probe a crucial
test case for this hypothesis. We observe that the damping approaches
the quantum limit D ≈ ~/m in the strongly interacting regime, where
scale invariance is most dramatically violated, showing that scale invari-
ance or quantum criticality is in fact not required for quantum limited
transport. Similar observations were made for transverse spin diffusion
in [59]. Our results confirm a scenario of incoherent transport that has
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emerged in recent years from the study of anomalous transport in high-
temperature superconductors and other ’bad metals’ [174–176] and links
quantum limited transport to strong correlations.

6.3. Measuring sound in ultracold 2D Fermi gases
We perform our studies of sound propagation with an ultracold gas of
6Li atoms in a spin-balanced mixture of the lowest two hyperfine states,
trapped in a two-dimensional box potential [60, 177] as detailed in sec-
tion 5.2. The gas is vertically confined in a single node of the repulsive
optical lattice with a trap frequency of ωz/2π = 8.4(3) kHz. At our den-
sities of about n↑/↓ ≡ n ≈ 1 µm−2 per spin state, the chemical potential
µ is smaller than the vertical level spacing ~ωz, which ensures that our
gas is in the kinematic 2D regime. Using a DMD illuminated with blue
detuned light (λDMD = 532 nm), we trap the gas in the horizontal plane
in a two-dimensional box with a typical size of lx × ly = 30 µm× 40 µm.

ωz : Vertical trapping frequency
n : Density per spin state
µ : Chemical potential
lx/y : Horizontal box dimensions

Temperature determination

Usually, the temperature in cold atom systems is determined from the
occupation of high-energy states by the thermal part of the cloud. Since
our gas is confined in a box potential, there is no region of low density
or high potential, where such a measurement could be performed easily.
While we currently do not have a quantitative temperature determina-
tion in our homogeneous trap (compare [177]), previous measurements
in a similar system [177] (see section 7.3) show clear evidence of phase
coherence and thus suggest that the temperature in our system is below
the critical temperature for superfluidity Tc for a large parameter range
from the BEC limit up to the strongly correlated regime.

Tc : Critical temperature
for superfluidity

Calculating a theoretical value for the critical temperature in the
strongly correlated regime is not straightforward. Classical-field Monte-
Carlo calculations of a weakly interacting 2D Bose gas yield a BKT
transition temperature of [94, 178]:

Tc
TF

= 1
2

1
nλ2

dB
= 1

2

[
ln
(380

4π ln
( 4π

(kFa2D)2

))]−1
. (6.60)

In the Fermi limit, the critical temperature can be obtained by deter-
mining the point at which the superfluid gap ∆ vanishes. Linearizing
the gap equation yields [94]:

Tc
TF

= 2eγ

πkFa2D
. (6.61)

Here, γ ≈ 0.577 is the Euler constant. γ : Euler constantThese two equations yield critical
temperatures Tc ≥ 0.08TF in the bosonic regime and Tc ≥ 0.06TF in
the fermionic regime.
For our previous measurements, we estimated the temperature of the

gas in two ways (see supplementary materials of [177]). As mentioned in
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section 5.3, a pulse of repulsive light is normally used to remove the ther-
mal atoms that are trapped on the outside of our repulsive potentials, in
the weak harmonic confinement produced by the Feshbach coils. Leav-
ing these atoms in place, we can perform time-of-flight measurements
and extract a temperature under the assumption that these atoms are
in thermal equilibrium with the atoms inside the box, which however
is not necessarily obvious. This measurement yielded a temperature of
T/TF ≈ 0.03 [177].

The temperature can also be extracted by measuring the equation
of state of the gas. To do this, we imprint a potential step ∆Vs and
measure the density response ∆n(∆Vs) of the gas. Following [56], we can
extract the chemical potential from the slope of ∆n(∆Vs) in a bosonic
gas, and compare it to simulated curves for different temperatures (see
supplementary material to [177]). The best fit between simulation and
data is again obtained for T/TF ≈ 0.03. Both estimates coincide and
put our sample in the superfluid regime.
While this temperature determination was done in a slightly different

system than the one used for the sound measurements (the box potential
used in [177] was split in the middle by a thin barrier), we assume that
the absence of the barrier does not strongly affect the temperature of the
gas. For the sound measurements presented here, we thus assume that
the gas is in the low-temperature regime with T/TF < 0.1. For most of
our data, we also expect to have T < Tc, with the possible exception of
the extreme BCS regime.

6.3.1. Experimental procedure

For our experiments, we build on the experimental procedure developed
in [180], where sound propagation was studied in weakly interacting 2D
Bose gases. To excite a sound mode in the box we follow the approach
of [177] and illuminate one side of the box with a spatially homogeneous
optical potential Vpulse for a short duration τ < τF = h/EF.Vpulse : Excitation potential This time
scale is short enough that the particles do not have time to adapt to the
additional potential. The density in the box therefore stays constant,
but a relative phase of φ0 = exp(−iVpulseτ/~) is imprinted between
two halves of the system,

φ0 : (Initial) phase difference
between the box halves which imprints a velocity on the particles in

the boundary region and induces density oscillations in the box. We
then observe these oscillations by imaging the density distribution after
different hold times using in-situ absorption imaging. An example of
such an oscillation is shown in Fig. 6.1. A sound wave traveling back
and forth between the two sides of the box is clearly visible in the density
profile. A second, weaker wave propagating in the opposite direction can
be seen as well. This second oscillation is phase shifted with respect to
the first oscillation, but since it has the same oscillation period as the
first wave, it can be attributed to an imperfect excitation.
To extract the oscillation frequency f = ω/2π and the damping rate Γ

of the sound wave, we calculate the relative particle imbalance ∆n/n =
2(nt−nb)/(nt +nb) from the densities nt and nb in the top and bottom
halves of the box and fit it with a damped sinusoidal of the form A(t) =
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Figure 6.1. – Propagation of a sound wave in a box potential: (a) Density profiles
n(x, t)/n(t) averaged along the direction perpendicular to the sound propagation
and normalized to the average density n(t) within the box. A density wave prop-
agating through the box is visible. Each profile n(x, t)/n(t) is the average of 120
individual realizations. Note that the color scale has been chosen to enhance the
visibility of the sound wave. (b) Relative density imbalance between the two sides
of the box for the same data set. The solid line shows a damped sinusoidal fit to
the data. The statistical errors are typically smaller than the marker size. Figure
reproduced from [179].

A0 cos (ωt+ φ) exp (−Γt/2) + b (see Fig. 6.1 (b)). The factor 1/2 in the
exponential of the fit function takes into account that Γ is the damping
rate of the oscillation energy, which is proportional to the square of the
oscillation amplitude.
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Figure 6.2. – Frequency of the
density oscillations as a func-
tion of the inverse box length.
The slope of the linear fit (solid
line) corresponds to the speed of
sound. Each data point is the
average of 23 realizations.

As a first check that this approach is valid, we measure the oscillation
frequency for different boxes with lengths between lx = 15µm and lx =
40µm and find that it is in good approximation proportional to the
inverse of the box length (see Fig. 6.2). This confirms that we observe a
sound wave traveling at a constant velocity c = 2lxf . While we cannot
rule out edge effects from our data, the conclusions we draw from our
measurements should not be altered significantly.

nt,b : Densities in the top/
bottom half of the box

To probe sound as a function of interaction strength, we perform
measurements in a box with lx = 30µm at magnetic fields around the
Feshbach resonance. Examples of the resulting oscillations as well as
the evolution of the oscillation frequency as a function of magnetic field
are shown in Figure 6.3. As the field is varied from the BEC side to
the BCS side of the crossover, the oscillation frequency increases, which
is expected since the compressibility of a Fermi gas is much lower than
that of a weakly repulsive Bose gas. On the Fermi side, the gas is thus
stiffer with respect to density fluctuations and sound waves propagate
faster than on the Bose side.
The damping of the oscillations normalized to their frequency shows

a broad minimum around the Feshbach resonance at 832G and a strong
increase of damping towards the BEC and BCS regimes, i.e., towards
more weakly interacting systems. As can be seen in Fig. 6.3 (a), the
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Figure 6.3. – Results of the sound measurements across the BEC-BCS crossover.
(a): Oscillations in the density imbalance at B = 758 G, B = 883 G and B =
1009 G. Solid lines represent damped sinusoidal fits. (b): Frequency (blue circles)
and damping (red squares) of sound oscillations as a function of magnetic field.
The frequency increases smoothly from the BEC to the BCS side and starts to
saturate at high magnetic fields. The damping shows a clear minimum in the
strongly interacting regime and increases strongly towards either side. Each data
point is the average of 39 realizations. The difference between the sizes of the
error bars on the BEC and BCS regimes may seem striking at first. The relative
errors on both sides however are of same order of magnitude (19% for the leftmost
point, the rest below 15%). Around the resonance, the relative errors are below
5%. The main contribution to the uncertainty is the uncertainty in the frequency
determination. This trend can also be seen in the following figures.

oscillations are quite strongly damped, increasing the fitting uncertainty
of our data in these regimes.
At this point, we should stop to further motivate the description of our

oscillations in the hydrodynamic framework. We will give two arguments
here, which are both valid in the framework of kinetic theory and are
not strictly applicable in a purely hydrodynamic picture, since both
employ the concept of a mean free path. Nevertheless, these arguments
tell us that kinetic theory is not valid for our system and therefore
provide us with a rough guideline when hydrodynamics should be the
more appropriate framework to use.
As mentioned earlier, hydrodynamics assumes fast local equilibration

of the thermodynamic quantities, which leads to diffusive attenuation
of variations in these variables. The typical length scale for these vari-
ations therefore must be much larger than the typical mean free path
between particles: klmfp � 1. In a kinetic picture, the mean free path is
related to the total scattering cross section σ and the density according
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to lmfp = 1/(nσ). For a typical scattering momentum given by the Fermi
momentum, the total cross section is given by [94]

σ = 2πdσ
dθ

= 4π2

kF

1
4 ln2(kFa2D) + π2 , (6.62)

yielding

lmfp = 1
nσ
' 1

2

√
π

n

(
1 + 4 ln2(kFa2D)

π2

)
. (6.63)

Evaluating this at our densities of typically n ∼ 1 /µm2, the mean free
path remains smaller than the wavevector of the oscillations 1/k = lx/π
for most of our experimental range, except for the data points in the far
BEC regime7. 7While this estimation neglects ef-

fects arising from Pauli blocking,
which might reduce the scattering
cross section and therefore increase
the mean free path in a degener-
ate Fermi gas, we note that be-
low Tc, superfluid hydrodynamics
should apply nevertheless.

The second argument follows from the relations of the diffusivity
coefficient with the damping and the mean free path. In hydrody-
namics the damping is related to the diffusivity as Γ ∼ Dk2. On
the other hand kinetic theory links the diffusivity to the mean free
path and the typical velocity as D ∼ lmfp〈v〉. Together, this implies
klmfp ∼ kD/〈v〉 ∼ k2D/ck ∼ Γ/ω � 1. Hydrodynamic conditions thus
are valid as long as the sound oscillations are weakly damped, which is
certainly the case in the strongly correlated regime around the Feshbach
resonance.
In conclusion, these two points suggest that the hydrodynamic de-

scription is better suited for our data than a description in terms of
weakly interacting particles for our data range. Away from the strongly
correlated regime, the mean free path becomes longer, but the low damp-
ing rate and the small mean free path provide a strong argument for the
use of a hydrodynamic description.

6.3.2. Speed of sound and compressibility across the
BEC-BCS crossover

Speed of sound

Next, we use the measurement of the oscillation frequency in the box to
extract the speed of sound and the compressibility equation of state of
the gas across the BEC-BCS crossover. The speed of sound is calculated
using c = 2lxf and plotted as a function of the 2D interaction parameter
ln (kFa2D) in Figure 6.4.

As we have derived earlier, in a superfluid, two-fluid hydrodynamics
predict the occurrence of two sound modes which propagate at different
velocities, as observed in [155]. These modes generally mix density and
entropy degrees of freedom. For strongly interacting 2D-superfluids,
however, and Fermi gases in particular, density and entropy excitations
have been predicted to be well decoupled [181–183], and hence the sound
mode we observe should correspond to an almost pure density wave. In
this case, the velocity of a sound wave is in first order given by

c =
√
n

m

∂µ

∂n

∣∣∣∣
s

(6.64)
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Figure 6.4. – Speed of sound across the BEC-BCS crossover. Gray lines represent
the two theoretical limits: In the BEC regime, Bogoliubov theory predicts µ = gn
and hence cB = (gn/2m)1/2, where g is the interaction parameter between bound
dimers defined as in [96, 177]. On the BCS side, µ→ EF yields a constant sound
velocity cF = vF/

√
2 where vF = ~kF/m is the Fermi velocity.

and is directly related to the isentropic compressibility κ = 1
n2

(
∂n
∂µ

)
s
.κ : Isentropic compressibility

Here we assumed adiabatic conditions since the oscillation frequency is
large compared to the damping (ω ≥ Γ).

Very recent simulations of the sound velocity in a 2D Bose gas [184] in-
dicate however, that the density and entropy modes remain coupled even
for relatively strongly interacting Bose gases, leading to sound velocities
which differ from the Bogoliubov prediction. This should be observable
as a difference between the static and dynamic measurements of the
compressibility. If such a difference exists in our system, it is smaller
than the uncertainty of our measurement, as seen below in fig. 6.6, in
which we compare the compressibilities extracted from the dynamic and
static measurements. We therefore proceed with the assumption that
we can use formula 6.64 to describe the speed of sound in our system to
a good accuracy.
This relation then gives us simple zero-temperature expressions for the

speed of sound in the BEC and BCS limits of the crossover. In a weakly
interacting bosonic gas, the Bogoliubov quasiparticles at low momentum
have a linear dispersion relation E(k) ≈ ~ck, with c =

√
gn/m. In the

BEC limit, the sound velocity is therefore given by

cB : Sound velocity of the
Bogoliubov quasiparticles
in the BEC limit

cF : Sound velocity in an
ideal Fermi gas

cB =
√

~2n

m2
d

√
8πadd

lz
, (6.65)

where md = 2m is the mass of a dimer, add = 0.6 a3D the scattering
length between dimers [93, 185], and ~2

md

√
8π addlz = ~2

md
g̃ = g the in-

teraction strength between the dimers [83]. For an ideal Fermi gas at
T = 0, the chemical potential coincides with the Fermi energy. From
equation 6.64, one obtains cF = vF/

√
2, which coincides with the veloc-

ity of the Bogoliubov-Anderson mode in two dimensions [186]. Our data
approaches these limits in the BEC and BCS regimes and interpolates
smoothly across the BEC-BCS crossover, as shown in Figure 6.4.
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Compressibility scaling function

For a more general analysis we use eq. 6.64 to extract the inverse com-
pressibility scaling function fκ = 1/nEFκ of a two-dimensional Fermi
gas.

fκ : Inverse compressibility
scaling functionThis dimensionless function is proportional to the inverse of the

compressibility and increases smoothly from 0 to 1 across the BEC-BCS
crossover, which follows directly from the expressions for the chemical
potential in the BEC and BCS regimes. Since the compressibility re-
lates different thermodynamic variables, the measurement of the speed
of sound thus gives access to the equation of state (EOS) of the gas from
dynamic properties of the system. In addition to this dynamic measure-
ment of the equation of state, we also perform a static measurement
of the compressibility EOS by determining the density response of our
system to a static repulsive potential, similar to the work performed in
[54–56, 60]. We imprint a weak homogeneous potential ∆Vs onto one
half of the cloud and wait for the system to equilibrate.

∆Vs : Height of the imprinted
potential step

This results in
a density difference ∆n between the two halves of the system as seen in
Figure 6.5.

Figure 6.5. – Static mea-
surement of the compressibil-
ity. A repulsive potential V
is imprinted onto one half of
the box resulting in a density
imbalance ∆n/n (blue points).
We extract the compressibil-
ity from the initial slope of
the data points according to
1/n2κ = lim∆n→0 ∆Vs/∆n in
a local density approximation.
Each data point and the inset
are averages of 20 realizations.

According to the local density approximation, this density difference
corresponds to a difference in chemical potentials between the two sides,
which is in turn equal to the height of the imprinted potential ∆Vs =
∆µ = µ(n+ ∆n/2)−µ(n−∆n/2). The compressibility can then be ex-
tracted from the slope of the density difference with respect to potential
height according to

1
n2κ

= ∂µ

∂n
= lim

∆n→0

µ(n+ ∆n/2)− µ(n−∆n/2)
∆n = lim

∆Vs→0

∆Vs
∆n . (6.66)

For large potential steps, care must be taken in order to avoid nonlinear
effects in the density response. Since this measurement of the compress-
ibility is performed with a static system, dynamic effects during the
reflection of the sound wave do not come into play here.
The two independent measurements of fκ show good agreement with

each other (see Fig. 6.6). In the BCS regime, the two curves coincide
within the margin of error. In the BEC limit, the dynamic measurement
results lie slightly above the static data points. Interpolating between
the data points yield relative deviations below 30% in the range B ≥
−6G.

Finally we compare our data to theory for a true two-dimensional gas
by extracting fκ from Quantum Monte Carlo (QMC) calculations of the
ground state energy E0 of a homogeneous 2D Fermi gas [187].

E0 : Ground state energy [187] of a
zero-temperature Fermi gas

f(ξ) : Energy scaling function
ξ : Interaction parameter

ξ = ln(kFa2D)

We define
an energy scaling function f(ξ) by

f(ξ) = E0
EFG

+ 2e−2ξ, (6.67)

where ξ = ln(kFa2D). Remembering that the 2D-binding energy is given
by E(2D)

B = ~2/ma2
2D and the total energy of a Fermi gas EFG = NEF/2,

we find that

f(ξ) = 1
EFG

(
E0 + N

2 EB

)
. (6.68)

103



6. Sound Propagation and Attenuation in 2D Fermi Gases

Figure 6.6. – Comparison between the compressibility scaling functions fκ obtained
from the speed of sound (blue circles), the density response to an imprinted static
potential (red squares) and QMC calculations [187].

This function therefore describes the total energy of a Fermi gas across
the BEC-BCS crossover as the ground state energy E0, from which we
subtract the binding energy of N/2 dimers NE(2D)

B /2. It is normalized
to the total energy EFG = EF/2 of an ideal Fermi gas and thus should
vary between f(ξ → −∞) = 0 in the BEC regime to f(ξ → ∞) = 1 in
the BCS regime. Via differentiation, one can then calculate the chemical
potential. We note that

∂EFG
∂N

= 1
2EF + N

2
∂EF
∂N

= EF, and (6.69)

∂ξ

∂N
= ∂

∂N
ln(kFa2D) = 1

kFa2D

kFa2D
2N = 1

2N , (6.70)

and obtain

µ = ∂E

∂N
= ∂

∂N
(EFGf(ξ))

= ∂EFG
∂N

f(ξ) + EFG
∂f(ξ)
∂ξ

∂ξ

∂N
= EFf(ξ) + EFG

2N f ′(ξ)

= EF

[
f(ξ) + 1

4f
′(ξ)

]
. (6.71)

The compressibility scaling function follows similarly via the relation

fκ = 1
nEFκ

= n

EF

∂µ

∂n

= ∂EFG
∂N

[
f(ξ) + 1

4f
′(ξ)

]
+ EFG

∂

∂ξ

[
f(ξ) + 1

4f
′(ξ)

]
·∂ξ
∂n

= f(ξ) + 3
4f
′(ξ) + 1

8f
′′(ξ). (6.72)

On the BCS side, the experimental results agree well with the theo-
retical prediction (see Fig. 6.6). On the BEC side, both the static and
the dynamic measurements lie above the zero-temperature prediction.
This difference is consistent with the predicted increase of the sound
velocity at finite temperature [188] and with a corresponding decrease
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of the compressibility at finite temperature observed in [56], which in-
creases the value of fκ. In addition, we should not be too surprised
by deviations between the experimental and theoretical results in the
BEC regime, since the theoretical compressibility scaling function fκ is
derived using the formula for the binding energy in a true 2D system,
whereas the experimental results are obtained in a quasi-2D system.
It would therefore be interesting to see whether quasi-2D theories (for
instance recently developed theories incorporating effective range correc-
tions to the scattering length [189]) are able to reproduce and explain
these deviations.

6.3.3. Quantum limited damping
We now turn our attention to the damping of the sound waves. As we
have argued above, in our strongly correlated system, the mean free path
lmfp of the particles is much smaller than the oscillation wavelength and
their collision rate is high with respect to the oscillation frequency ω.
Hence the system is in the hydrodynamic regime and the damping occurs
via diffusive transport of longitudinal momentum, transverse momentum
and heat, whose magnitudes are proportional to the bulk and shear
viscosities ζ and η and to the heat conductivity κ [148, 149]. This
diffusive damping can be described with the sound diffusion constant

Ds = η

ρ
+ ζ

ρ
+ κ

Cp − Cv
CpCv

= Γ/k2
0, (6.73)

where k0 = π/lx is the wave vector of the sound wave and Cp and Cv
are the heat capacities at constant pressure and volume.

k0 : Wave vector of the
sound waveThe evolution

of Ds across the BEC-BCS crossover is shown in Figure 6.7. It exhibits
a broad minimum in the crossover regime −1 < ln (kFa2D) < 2 and
increases steeply towards the BEC and BCS limits.
Before comparing our data to theory, we note that making quanti-

tative predictions for transport coefficients of strongly interacting 2D
Fermi gases in the low-temperature regime is still a major theoretical
challenge. Approaches such as Fermi liquid theory and BCS theory
[148] are only accurate at weak coupling. In the superfluid regime, the
interplay between the normal and superfluid fractions of the gas lead
to additional complexity. Results obtained for the high-temperature
regime (T ≥ TF) indicate that the shear viscosity and heat conductivity
have a minimum in the strongly correlated regime [158–160] whereas
the bulk viscosity is maximal near resonance yet contributes much less
to the damping [190–192]. In total, high-temperature theory predicts
a minimum of the sound diffusion in the crossover regime. Although
our measurements are performed in the low-temperature regime, the
observed behavior is in qualitative agreement with an extrapolation of
the high-temperature results to the low-temperature regime, performed
by Tilman Enss.
A prediction for a lower bound ofDs in the strongly interacting regime

can be obtained via a simple scaling argument: The diffusion coefficient
is given by the mean free path and the velocity via Ds ∼ 〈v〉 lmfp. For
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Figure 6.7. – Sound diffusion coefficient across the BEC-BCS crossover. In the
strongly correlated regime, the diffusion coefficient reaches a minimum which
agrees well with the universal quantum bound for diffusion at ~/m (dashed line).
The strong increases of the diffusivity at ln(kFa2D) ≈ −1 and ln(kFa2D) ≈ 2 are
striking. The step towards the fermionic side might be due to a transition from
the superfluid towards the normal regime, however our temperature should still
be lower than the critical temperature Tc ≈ 0.15TF at this point.

a strongly interacting degenerate gas the mean free path lmfp is on the
order of the interparticle separation n−1/2 and the velocity on the or-
der of the Fermi velocity 〈v〉 ∼ vF ∼ ~n1/2/m, resulting in a diffusion
coefficient Ds ∼ ~/m. Since the interparticle separation is a lower limit
for the mean free path, this yields a generic lower bound for the damp-
ing, which is in agreement with our measured diffusion coefficient of
Ds ≈ 1.8(2)~/m in the strongly correlated regime. The sound diffusion
is given by the sum of three contributions, therefore this value at the
same time gives an upper bound for the diffusivities due to shear and
bulk viscosity and for heat diffusion. Thus our strongly interacting 2D
Fermi gas is a nearly perfect fluid despite the fact that scale invariance
is broken and that the system is not at a quantum critical point.

6.4. Conclusion
In this chapter we have presented measurements of sound propagation
and attenuation in a strongly interacting homogeneous 2D Fermi gas
across the BEC-BCS crossover. Since the gas is strongly interacting, a
hydrodynamic description has been used to relate the speed of sound
to the equation of state of the gas and to relate the damping of the
sound waves to diffusion constants. The sound velocity was found to
extrapolate well between the limiting cases of weakly interacting Bose
gases for ln(kFa2D) � −1 and ideal Fermi gases for ln(kFa2D) � 1.
These limits are given by the phonon part of the Bogoliubov dispersion
relation with µ = gn and by the speed of sound of the Bogoliubov-
Anderson mode, respectively. Although we expect the gas to be in the
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superfluid regime for a large range of interaction strengths, we could not
discriminate between first and second sound in our experiment. This can
be explained by the fact that both sound modes are only weakly coupled
in strongly interacting Fermi gases. Our measurement of a density wave
therefore corresponded to a measurement of almost pure first sound.

The damping of sound shows a clear minimum in the strongly corre-
lated regime. This minimum is compatible with quantum limited damp-
ing of orderD ∼ ~/m, originally predicted in the context of field theories
with gravity duals and motivated here by lower limits on the mean free
path in a kinetic picture. Simultaneously, we demonstrated that the
diffusivities of each individual channel cannot be much larger than this
lower value, indicating that the strongly interacting 2D Fermi gas is a
nearly perfect fluid. Since the 2D Fermi gas is a system with broken
scale invariance, this particular property is not needed for perfect fluid-
ity. Instead we confirm that perfect fluidity is due to strong correlations.
Our results are in line with a range of theoretical predictions [157–

161, 164, 165] as well as several experimental results performed in the
groups of Michael Köhl [57, 58], John Thomas [162], Martin Zwierlein
[163], Joseph Thywissen [59, 166] and Giacomo Roati [167], which found
quantum limited shear viscosity and spin diffusion in ultracold 3D and
2D Fermi gases.
Finally, our results may provide a benchmark for the development of

theories for the strongly interacting gas. Very recently, calculations using
a Gaussian pair fluctuations approach have been able to reproduce the
first sound velocity in the strongly correlated gas across the BEC-BCS
crossover [193].

Outlook

There are a few open questions which can be addressed in future mea-
surements. A first interesting measurement could be the study of sound
attenuation in dependence of the wave vector of the wave and the tran-
sition from diffusive to Landau-type attenuation as seen in [168] in uni-
tary 3D Fermi gases. Another interesting extension of our measurements
would be to study the temperature dependence of Ds as done in [168].
In the fermionic regime, this would allow us to observe whether there
is a maximum of Ds at the critical temperature of superfluidity, similar
to measurements in 3He [194]. In the deep BEC regime, control over
the temperature of the gas would enable studies of second sound in a
strongly interacting Bose gas [183, 184].
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7. Phase Coherence and
Superfluidity in 2D Fermi Gases

The reduced dimensionality of a two-dimensional gas has strong effects
on its physical properties. We have seen in the last chapter that the
strong confinement influences the collisional properties of the interact-
ing gas. Another striking difference to the three-dimensional case is the
fact that in reduced dimensions, thermal fluctuations are enhanced, de-
stroying long-range order for any nonzero temperature in the thermody-
namic limit. As first observed by Peierls ([195], cited by [196]), one- and
two-dimensional systems cannot exhibit crystal structures, since thermal
fluctuations grow linearly with system size in 1D and logarithmically in
2D. The argument has been formalized by N. Mermin and H. Wagner
[1] and by P. Hohenberg [2] and is known today as the Mermin-Wagner-
Hohenberg theorem. It states that in a system with short-range interac-
tions and dimensionality less then three, there can be no spontaneously
broken continuous symmetry at nonzero temperature. This forbids for
instance an ordered phase of the wave function and therefore, phenom-
ena such as Bose-Einstein condensation or superfluidity should not be
possible in 2D. The two-dimensional case is in fact special: The decay
of coherence in space is logarithmically slow. While this technically pro-
hibits long-range order for large systems, typical experimental systems
are small enough that a significant level of coherence can survive over
the scale of the sample. Still, thermal fluctuations are enhanced with
respect to the 3D case and one would naively expect phenomena relying
on phase coherence to play a minor role in reduced dimensions.

The physical reality however paints a very different picture: While the
exact mechanism at play are still unclear, two-dimensional structures
seem to play a critical role in almost all materials exhibiting supercon-
ductivity at high temperatures (i.e. reachable with liquid Nitrogen).
This is well visible when one plots the critical temperature for of a
superconductor over its Fermi temperature in a so-called Uemura-Plot
(after Yasutomo Uemura [197, 198]). In Figure 7.1 an Uemura plot is
shown that was recently created by N. Luick [135] with data from [8]
and [49]. It is striking to see that the strongly correlated 2D materi-
als, i.e. the cuprates, iron-pnictides, the magic angle bilayer graphene
and the two-dimensional atomic Fermi gas, are consistently very close to
Tc/TF = 0.1, which is expected to be an upper limit in the 2D BEC-BCS
crossover [199].
In order to shed light on this complex topic, some experiments to test

phase coherence and measure superfluidity in a two-dimensional Fermi
gas have been carried out in the course of this thesis. The results have
been obtained mainly by my colleagues Niclas Luick and Lennart So-
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Figure 7.1. – Critical temperature Tc of several supercondcutors as a function of
their Fermi temperature TF. The plot is reproduced from [135] with data from
[8] and [49]. The highest values of Tc/TF are reached in materials featuring two-
dimensional structures. Conventional materials conversely appear on the bottom
right hand side of the graph, at low Tc/TF . Atomic 2D-Fermi gases are found at
Tc ∼ 0.1TF with Fermi temperatures of the order of µK.

birey and are presented in greater detail in their respective theses [135]1.1The thesis of L. Sobirey is to be
published in the coming months. I will here present some of the results, since they relate closely to the

measurements of sound propagation shown in the previous chapter. The
next few sections will deal with the realization of a Josephson junction
in a 2D Fermi gas. Josephson junctions and their applications are prime
examples of technologies relying on quantum mechanics and in particu-
lar on the phase coherence between two superconductors or superfluids
in our case. Both the experimental system and the methods utilized
are very similar to the methods shown earlier. In fact, our sound mea-
surements can be seen as a limiting case of the measurements with a
Josephson junction geometry without barrier. In later sections, I will
show measurements of the critical velocity in a 2D gas. Here, sound
waves present one of the fundamental excitations limiting superfluidity
in a two-dimensional gas.
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7.1. The Josephson effect

7.1. The Josephson effect

In the following sections, I report on the experimental realization
of a Josephson junction in an ultracold 2D Fermi gas, which has
been achieved during the first year of my participation in the Moritz
group. These results have mainly been obtained by Niclas Luick and
are presented in great detail in his thesis [135]

Niclas Luick. An ideal Josephson junction in an ultracold two-
dimensional Fermi gas, PhD thesis, Universität Hamburg,
2020.

as well as in the following publication [177]:

Niclas Luick, Lennart Sobirey, Markus Bohlen, Vijay Pal
Singh, Ludwig Mathey, Thomas Lompe and Henning Moritz.
An ideal Josephson junction in an ultracold two-dimensional
Fermi gas. Science 369(6499), 89-91 (2020).

Parts of this chapter are reproduced from this publication. My
contribution to this project consisted mainly in machine maintenance
as well as in the verification of data analysis and mathematical
models.

One of the reasons quantum mechanics is counter-intuitive in many
ways is the fact that its phenomena are only manifest at small scales.
Our everyday world is unaffected by quantum mechanical effects due to
decoherence in large systems or at long time scales and we are simply
not exposed to it. The Josephson effect is one of the hallmark examples
of a quantum effect that affects macroscopic structures. First predicted
by Brian Josephson in 1962 [200] and later observed by Anderson and
Rowell [201], this effect allows an electric current to flow between two
superconductors that are separated by a small insulating barrier, a so-
called Josephson junction, even without an externally applied voltage.
Instead the current is driven by the quantum-mechanical phase differ-
ence between the wave functions of the two superconductors. Since the
discovery of the Josephson effect, it has been put to use in a variety
of different applications, providing for instance the basis for SQUIDs
(superconducting quantum interference devices), for a new voltage stan-
dard or for the realization of qubits. The primary advantage of Joseph-
son junctions is their high sensitivity to quantum mechanical effects
while offering the possibility to incorporate them in classical electrical
circuits. These devices therefore bridge the gap between quantum me-
chanics and classical physics, which strongly suggests their use in high
sensitivity metrology applications, in the field of quantum information,
or as probes for quantum mechanical states of matter.
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7.1.1. Principle of the Josephson effect
The mechanism behind the Josephson effect is the tunneling of Cooper
pairs through the tunneling junction between the two superconductors.
In contrast to the classical case, this tunneling is not driven by a voltage
drop across the junction, but rather by a difference between the phases
of the so-called order parameters of the two sides. The main relation
defining a Josephson junction is the sinusoidal current-phase relation

I(ϕ) = Ic sinϕ, (7.1)
which relates the current I to the phase difference ϕ = ϕB − ϕA.I : Current through the

junction
ϕA/B : Phase of the

wavefunction of
superconductor A/B

ϕ : Phase difference
ϕ = ϕB − ϕA

Ic : Critical current
V : Voltage applied

across the junction
e : Electron charge

Ic
is called the critical current of the junction and depends both on the
coupling strength between the two superconductors and on the super-
conducting densities. When a voltage V is applied across the junction,
the phase difference between the two sides will evolve in time according
to

∂

∂t
ϕ = 2eV

~
. (7.2)

Derivation of the main relations of a Josephson junction

Let us give a quick derivation of the main relations governing the physics
of Josephson junctions. In Ginzburg-Landau theory, the superconduct-
ing state of a metal close to the phase transition to the superconducting
state can be characterized by a complex number ψ, the order parame-
ter. It can be interpreted as the wave function of the superconducting
component, i.e. the Cooper pairs. Then the order parameter is given by
ψ(r, t) =

√
ns(r, t)eiϕs(r,t), where ϕs(r, t) is the phase of the wave func-

tion.
ψ(r, t) : Order parameter of

the superconductor
(SC)

ns(r, t) : Density of the
order parameter

ϕs(r, t) : Phase of the
order parameter

K : Coupling strength
between SC A and B

∆E : Energy shift
SC A and B

We assume that two supercondcutors A and B are brought close
to each other so that there is a small coupling of strength K between
the two wave functions. A voltage V is applied between the two sides,
leading to an energy shift of ∆E = ±2eV for a Cooper pair tunneling
between the sides. This results in a Schrödinger equation of the form

i~
∂

∂t

(
ψA
ψB

)
=
(
eV K
K −eV

)(
ψA
ψB

)
.

With ∂
∂t
ψA/B =

(
ṅA/B

2√nA/B
+ iϕ̇A/B

√
nA/B

)
eiϕA/B , this yields the follow-

ing two equations:
ṅA

2√nA
+ iϕ̇A

√
nA = 1

i~

(
eV
√
nA +K

√
nBe

iϕ
)

ṅB
2√nB

+ iϕ̇B
√
nB = 1

i~

(
−eV

√
nB +K

√
nAe

−iϕ
)
,

where ϕ = ϕB − ϕA is the phase difference between the two order pa-
rameters. The equations for ṅA/B and ϕ̇A/B are given by the real and
imaginary parts of the two equations:

ṅA = 2K
~
√
nAnB sinϕ, ϕ̇A = −1

~

(
eV +K

√
nB
nA

cosϕ
)

ṅB = −ṅA, ϕ̇B = 1
~

(
eV −K

√
nA
nB

cosϕ
)
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The current flowing across the junction is given by I = eṅA. Assuming
in addition that the superfluid density is roughly equal on both sides of
the junction, nA ≈ nB, we then obtain the two fundamental equations
of a Josephson junction:

I(ϕ) = Ic sinϕ
∂

∂t
ϕ = 2eV

~
.

The critical current Ic is given by Ic = 2eK
~
√
nAnB

7.1.2. The AC - and DC - Josephson effects

There are three effects that are typically distinguished which can occur
in a simple Josephson junction which have found important technical
and scientific applications.

The DC - Josephson effect

This is the effect described above, in which a continuous (DC) tunneling
current occurs without an external applied voltage. It is the key principle
behind SQUIDs (superconducting quantum interference device), devices
which allow to measure magnetic fields to very high precision2. The basic 2Typical SQUIDS have a sensitivity

which is sufficient to measure the
stray field of a single atomic layer
with a lateral size of a few mm2 of
magnetic material [202]

idea behind a SQUID is to translate changes in magnetic field to changes
of the resistive behavior of the device.

Φ
I

Is
I/2+Is

I/2-Is

Figure 7.2. – Scheme of a DC-
SQUID magnetometer. A su-
perconducting loop is split into
two halves by two Josephson
junctions. When the device is
supplied with a bias current I,
a current of I/2 flows through
each arm. A magnetic flux Φ
induces a screening current Is.
If the current in one of the two
arms increases above Ic, a volt-
age drop across the device oc-
curs. This principle is used to
measure small changes in mag-
netic field.

Consider a superconducting loop in a magnetic field that incorporates
two Josephson junctions, each supporting a voltage-free current of Ic, as
shown in Figure 7.2. Without external magnetic field, the flux enclosed
by the loop is zero and the device supports a bias current of 2Ic without
voltage drop. Since the phase of the order parameter must be unique
at each point of the superconductor, the change in phase along the loop
must add up to a multiple of 2π and the magnetic flux enclosed by
the superconducting loop must therefore be a multiple of the magnetic
flux quantum Φ = h/2e.

Φ: Magnetic flux quantum
I : Applied DC current
Is : Screening current

If a small magnetic field is switched on, a
screening current Is will start flow through the superconducting loop,
such as to cancel the additional flux through the loop. This screening
current flows in addition to the externally applied current I, increasing
the current in one of the two arms, thus reducing the maximum possible
bias current which can be applied without voltage drop across the device.
Once the flux enclosed by the loop reaches Φ/2, it becomes energetically
favorable to enclose one more flux quantum and the current inside the
loop reverses. From this point onwards, the maximum current supported
by the SQUID increases again until it reaches the original value of 2Ic
at an external flux of Φ. When driving the SQUID with a constant bias
current close to the maximum value 2Ic, there is a voltage drop across the
device, because the critical current is exceeded along one arm. However,
this voltage drop oscillates periodically with the strength of the applied
magnetic field and the corresponding screening current. This oscillation
can can be used to determine the strength of unknown magnetic fields.
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The AC - Josephson effects

The two AC - Josephson effects relate continuous voltages to frequencies.
This correspondence allows for a very precise determination of voltages
and is the basis for the usage of Josephson junctions as a voltage stan-
dard. The standard AC - Josephson effect occurs when applying a fixed
voltage VDC across the junction. In this case, the phase difference be-
tween the sides evolves linearly in time, leading to an alternating current
with a frequency f = eVDC/π~.

Figure 7.3. – Shapiro’s obser-
vation of steps of constant volt-
age in the V(I) curve of a super-
conducting tunneling junction
for two different microwave fre-
quencies VAC . (Figure adapted
from [203]). The upper curve
is obtained for a microwave fre-
quency of νA = 9300MHz.
The steps occur at multiples of
hνA/2e = 19.2 µV. The lower
curve is obtained for a higher
frequency of νB = 24850MHz,
corresponding to hνB/2e =
51.4 µV. For A, the vertical
scale is 58.8 µV/cm and the hor-
izontal scale is 67 nA/cm, for
B, the scales are 50 µV/cm and
50 µA/cm.

The inverse AC - Josephson effect occurs when the junction is driven
with a voltage of the form V (t) = VDC + VAC cos(ωt), which can be
realized for instance by irradiating the Josephson junction with a radio-
frequency signal. The resulting current is typically an alternating cur-
rent, however for VDC = n~ω/2e, i.e., when the energy drop across the
junction matches multiples of the energy of the AC frequency, the cur-
rent becomes a DC current (for a derivation, see Appendix B.3). While
this formula suggests that this happens only at very specific values of
the voltage, the Josephson junction in reality tends to phase-lock with
respect to the oscillation frequency and the voltage-current curve of a
Josephson junction exhibits a series of plateaus (compare fig. 7.3). This
effect has been first observed by Shapiro in 1963 [203] and the steps in
the voltage-current curve are often called Shapiro-steps.
The inverse AC - Josephson effect can be used to define a reference

voltage standard. The high precision of frequency generation and mea-
surement techniques allowed already in 1997 to generate these voltage
steps with a high accuracy better than 3 parts in 1019 [204]. With the re-
definition of the SI units in 2019, the numerical values of the elementary
charge and Planck’s constant have been set as fundamental constants
used for the definitions of the SI units. Josephson junctions therefore
provide a robust standard of the Volt as well as a relatively accessible
way to create a reference Volt in the lab3.3The proportionality constant of

h/2e = 2.068mV/THz being rather
small, a single Josephson junction
only allows to create voltage steps
of the order of ∼ 0.2mV with typ-
ical RF frequencies. Since the late
1980 however, arrays of Josephson
junctions allowed for the creation
of highly accurate voltages up to
∼ 10V [205].

The nonlinear current phase relation

The characteristic feature of a Josephson junction is the nonlinear (sinu-
soidal) relation between current and phase difference across the junction.
It lies at the heart of the three effects described above and enables the
use of Josephson junctions in SQUIDs or to define voltage standards.
It is also the fundamental property which enables the use of Joseph-
son junctions as one of the most promising candidates for qubits, the
building block for quantum computing circuits.
The prototypical realization of a Josephson qubit is the charge qubit

(also called the Cooper pair box). Here, a small superconducting is-
land is coupled to a superconducting reservoir via a Josephson junction44In order to reduce noise and deco-

herence, other Josephson qubit de-
signs have been developed, most no-
tably the transmon [206], which was
recently used in [207] for a proof
of concept algorithm reaching quan-
tum supremacy. These devices in-
crease the relaxation times into the
ms range and increase the dephas-
ing times by a factor ∼ 400 over the
simple charge qubit [206]. Their de-
scription can be reduced to the de-
scription of a single charge qubit.

(compare fig. 7.4). The quantum states |n〉 of the qubit is given by the
number n of excess Cooper pairs on the superconducting island. In prin-
ciple, such a circuit implements an LC-circuit and can thus be described
by a harmonic oscillator with equidistant energy levels. As discussed
in [208], the sinusoidal current phase relation of the Josephson junction
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however introduces an anharmonicity LJ in the inductance, which shifts
the energy levels.

LJ : Nonlinear Josephson
inductanceDue to this shift, a specific transition can be indi-

vidually addressed, generating the effective two-level system of a qubit
(compare fig. 7.5).

Figure 7.4. – Schematics of a
charge qubit. A superconduct-
ing island is in contact with a
superconductor via a weak link,
forming a Josephson junction.
Excess Cooper pairs can flow
onto the island when the chem-
ical potential of the island is
modified using a gate voltage
U . The capacitance of the gate
electrode controlling the occu-
pation of the states |n〉, and of
the Josephson junction are de-
noted by Cg and CJ , respec-
tively. (Figure adapted from
[209]).

To see the origin of this nonlinearity, it is helpful to remember that
an inductance L relates the voltage across the inductor to the variation
of the current. For the Josephson junction, this yields V = LJ İ. From
the current-phase relation 7.1 of a Josephson junction, we obtain İ =
Icϕ̇ cos(ϕ) via differentiation. We can now replace ϕ̇ in equation 7.2 and
obtain the relation V = ~

2e
İ

Ic cosϕ . Thus the quantity ~
2e

İ
Ic cosϕ can be

interpreted as a nonlinear inductance.

Figure 7.5. – Energy levels of
a transmon qubit. A transmon
(or a Cooper-pair-box) can be
seen as an LC-circuit with a
nonlinear inductance, which in-
troduces an anharmonicity into
the system. The energy eigen-
states are not equidistant any-
more, ω12 < ω01, and can be ad-
dressed individually. The com-
putational subspace is reduced
to two levels of this anharmonic
oscillator. (Figure adapted from
[208].)

7.2. The Josephson effect in ultracold atomic
systems

The wide interest for Josephson junctions and their different applications
have been a strong incentive to build Josephson junctions in ultracold
atom systems and to make use of their high sensitivity in the toolkit
of quantum simulation. The idea of using Bose-Einstein condensates in
optical traps to create Josephson junctions has been proposed in 1986
[210], even before the creation of the first atomic BEC in 1995 [20, 21].
The first ultracold atom Josephson junctions were realized with BECs
of 87Rb, as an array of junctions created via an optical lattice poten-
tial [211], and soon after as isolated junctions in a double well potential
[212, 213]. More recently, ultracold atomic Josephson junctions have
also been created in reduced dimensions [214] or with variable interac-
tions in bosonic and fermionic gases [215, 216]. They have been used
to create an atomic SQUID [217]. Furthermore, dissipation of Joseph-
son dynamics has been examined [218, 219] and it has been shown that
atomic Josephson junctions can be used to probe the order parameter
of the superfluids themselves [177, 220].

7.2.1. Josephson oscillations and self-trapping

The main difference between Josephson junctions realized in ultracold
atom systems and in solid state systems lies in the fact that different vari-
ables are held constant. In an electronic system, applied voltages hold
the chemical potential of the electrodes at a constant level. In ultracold
atom experiments however, the total particle number is conserved and
upon tunneling of particles, the relative particle number and hence the
chemical potential difference will vary. After creating a density or phase
difference between the wells, this will lead to periodic oscillations of the
particles between the two sides of the junction. In order to truly recre-
ate the DC - Josephson effect, a more complicated setup with a moving
barrier is needed, as it has been utilized in [220].

The occurrence of oscillations can be understood in a simple 1D case:
Consider a BEC trapped in a symmetric double well potential, with a
small particle z = (N1 − N2)/(N1 + N2) imbalance between the wells
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1 and 2.z : Relative particle
imbalance

Due to the particle imbalance, the chemical potential on one
side of the barrier will be higher than on the other side, which advances
the phase of the wave function of one condensate with respect to the
other condensate. This in turn induces a tunneling current between the
two condensates according to ż ≈ − sin(ϕ), which reduces the particle
imbalance. Since there is still a phase difference between the two sides,
the current ’overshoots’ and the particle imbalance is reversed, leading
to a periodic back and forth between the two wells. For small initial
imbalances, the phase difference evolves slow enough that the current
has time to invert the entire imbalance. Yet for high enough imbalances
however, the phase difference advances so quickly that the particles do
not have enough time to tunnel into the other potential well, trapping
the system in a state of imbalance which shows only small and fast
oscillations, the so-called self-trapping regime. Both regimes have been
observed for the first time in [212].

Figure 7.6. – Observation
of the two regimes of cold
atom Josephson junction. Fig-
ure from [212]. a) Josephson
regime: The initial imbalance is
small enough that the phase dif-
ference rotates only slowly. The
condensate has time to tunnel
through the barrier. b) Self-
trapping regime: The imbalance
is higher and the phase rotates
so quickly that the condensate
does not have enough time to
tunnel. The imbalance is frozen.

The two-mode model

The two regimes can be understood more quantitatively in the so-called
two-mode model, developed in [221]: The behavior of a weakly interact-
ing BEC is described by the Gross-Pitaevskii equation

i~
∂Ψ
∂t

= − ~2

2m∆Ψ + (Vext(r) + g|Ψ|2)Ψ,

where g is the interaction parameter of the gas. By making the Ansatz
Ψ(r, t) = ψ1(t)Φ1(r)+ψ2(t)Φ2(r) for the wave function of the condensate
in the two wells, this leads to two coupled equations for the amplitudes
ψi in each well:

i~
∂ψ1
∂t

= (E1 + U1N1)ψ1 −Kψ2

i~
∂ψ2
∂t

= (E2 + U2N2)ψ2 −Kψ1

N1 and N2 are the particle numbers in each well and the parameters Ei,
Ui and K are given by

Ψ(r, t) : Condensate
wave function

Ei : Energy eigenstate of
the i-th potential well

Ui : Interaction energy
K : Coupling strength

between the wells

Ei =
∫ [ ~2

2m |∇Φi|2 + |Φi|2Vext

]
dr

Ui = g

∫
|Φi|4 dr

K ≈ −
∫ [ ~2

2m(∇Φ1·∇Φ2) + Φ1VextΦ2

]
dr.

These coupled equations are similar to the equations introduced in the
derivation of the main equations of Josephson junctions. The Ei are the
energies of the occupied state in each well and K is again the coupling
strength between the wells. The interaction terms UiNi are new however,
which leads to a nonlinearity in the following steps. The equations can
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be brought into the form

ż = −
√

1− z2 sin(ϕ) (7.3)

ϕ̇ = Λz + z√
1− z2

cos(ϕ) + ∆E, (7.4)

in terms of the phase difference ϕ and the population imbalance between
the two sides, where ∆E = (E1−E2 +N(U1−U2))/4K and Λ = N(U1 +
U2)/(4K) with N = N1 +N2 are interaction-dependent parameters.
For a symmetric system, the energies of the condensates in both wells

are the same and ∆E = 0. Linearizing the equations in z, one obtains

ż ≈ − sin(ϕ) (7.5)
ϕ̇ ≈ (Λ + cos(ϕ))z, (7.6)

which leads to a sinusoidal relation between current and phase: I =
żN/2 = I0 sin(ϕ). Linearizing the equations in ϕ as well and setting
U1 ≈ U2 ≈ U , we recover harmonic oscillations with a frequency ω =√

2UNK + 4K2. For a review of the different regimes described by the
two-mode model, I would like to refer the reader to [222].

Limitations of the two-mode model

For our purposes, the two-mode model cannot easily be used. The two-
mode model implicitly assumes that the wave function of the condensates
can be described by a single wave function in each well. The parameters
Ei, Ui andK determining the dynamics of the system are determined mi-
croscopically by the overlaps between the wave functions in the different
wells. In our experiment, Josephson junctions are created by imprinting
a thin barrier in the middle of the box potential we have already intro-
duced in the previous chapters. This results in a system which allows
for additional dynamics (i.e. sound modes) due to its relatively large
extent. These dynamics involve wave functions that are superpositions
of different basis wave functions, which makes the calculations of the
parameters rather involved. The description in terms of a condensate
occupying only two modes is therefore not apt to describe our system.

In addition, the system is subject to dissipation, which is not included
in the two-mode description. In addition to the diffusive attenuation
mechanism we have studied before, the coherent dynamics can decay
via the creation of vortices at the barrier (compare [135, 177, 219, 223]).
In the following, we will ignore the effects of damping and describe the
multi-mode system with an LC-circuit model.

7.3. A Josephson junction in an ultracold 2D Fermi
gas

Some examples of Josephson junctions in systems of different sizes are
shown in Fig. 7.7. As mentioned before, the experimental setup is very
similar to the one used for the sound measurements. A spin-balanced
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Figure 7.7. – Examples of Josephson junctions in 2D gases with different geome-
tries. As before, we denote with lx the direction of the oscillations, and with ly
the direction perpendicular to lx, determining the length of the barrier.

mixture of 6Li atoms in the lowest two hyperfine states is trapped in a
box potential as described previously. Again, the densities are chosen
such that the sample is in the quasi-2D regime, with a temperature of
T ≈ 0.03TF. The horizontal confinement is created with a DMD. In
addition to the box itself, the DMD also projects a thin barrier in the
middle of the box, separating the gas into two parts, which form the
two sides of the Josephson junction. The barrier can be described by
a Gaussian profile of waist w = (0.81 ± 0.06) µm, which is limited by
the optical resolution of the imaging system (∼ 700 nm). In the imaging
plane, each DMD pixel has a width of roughly 0.1 µm. The height of
a narrow potential barrier can therefore be adjusted by changing the
width of the barrier on the DMD.

The experimental procedure is essentially the same as before: One half
of the system is illuminated for a short time (≤ 20 µs) using the second
DMD. This advances the phase on this side by an amount ϕ0 with respect
to the other side and induces dynamics.

ϕ0 : Imprinted initial
phase difference Then, the system evolves freely

for a time t and is finally imaged either in-situ or after a short time
of flight in a weak underlying magnetic trap after all optical trapping
potentials have been switched off. The in-situ imaging gives us access to
the density distribution in the system. As with the sound measurements,
we take the mean of the densities in the left and right box halves to
extract the particle imbalance ∆N = NL −NR, and hence average out
the dynamics inside the boxes.

∆N : Particle imbalance
By releasing the 2D confinement and

letting the cloud evolve for a quarter period in the underlying harmonic
potential due to the remaining magnetic field curvature before imaging,
we perform matter wave focusing [138] and gain access to the momentum
distribution of the gas [60]. The condensate shows a characteristic peak
at zero momentum. When the phase difference between the two sides
is nonzero, the position of the peak shifts slightly, which gives us access
to the phase difference ϕ(t) between the sides of the box. The phase
measurement is calibrated from the repeating displacement pattern for
different phase excitation times (compare Fig. 7.8).
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Figure 7.9. – Frequencies of the Josephson oscillations at different barrier heights
for box sizes of 15 µm (blue squares), lx = 20 µm (blue circles), 25 µm (orange
diamonds) and 30 µm (red stars). At vanishing barrier height, the frequencies are
determined by the speed of sound and are proportional to 1/lx. The frequencies
decrease for increasing barrier height. Oscillations are visible up to barrier heights
of V0 > 2µ.

7.3.1. From sound waves to Josephson oscillations

(a)

(b)

Figure 7.8. – Imaging the phase
difference of the 2D gas in the
box: The momentum distribu-
tion is accessed by letting the
atoms evolve freely for a quar-
ter period in an underlying weak
harmonic potential, which in
equilibrium yields a peak at k =
0. (a) During this evolution,
the atoms quickly expand along
the vertical direction, forming
a cigar-shaped cloud whose up-
per and lower parts are out of
focus of our microscope objec-
tives. By tilting the imaging
beam slightly with respect to
the vertical, the unfocused up-
per and lower parts of the col-
umn are shifted to the left or
right on the image, whereas the
focused central part is now vis-
ible in the center of the im-
age. We use the central slice
(red box) to fit the position of
the central peak. (b) Calibrat-
ing the phase measurement: By
imprinting the repulsive poten-
tial for different times, we im-
print different phase differences
onto the two sides of the box.
The image shows the central
slices of the momentum distri-
bution measured as described
above for the different phase im-
prints ∆Vpulset. For increasing
imprinting time, the position
of the pair condensation peak
shifts in space linearly, showing
a periodic pattern with a period
of ϕ0 = 2π ≈ 7ms. This dis-
placement pattern is used to cal-
ibrate the initial phase imprint
for the experimental sequence.
The displacement of the peak is
also used to measure the phase
difference during the Josephson
oscillations.

In our geometry, the Josephson oscillations are visible both in par-
ticle imbalance ∆N(t) and in phase difference ϕ(t). They feature a
characteristic phase shift of π/2 between imbalance and phase and are
weakly damped due to phononic excitations and the nucleation of vortex-
antivortex pairs in the junction (see supplementary material of [177] and
[223]). The frequencies of the phase and particle oscillations are shown in
Figure 7.9 for different barrier heights, using the four different reservoir
geometries shown in Fig. 7.7.
At zero barrier height, the dynamics consist of the sound waves we

have seen before. The oscillation frequency is thus determined by the
speed of sound and inversely proportional to the box length lx. For
increasing barrier height, we see a decrease in the oscillation frequency,
but oscillations remain visible until the barrier potential is significantly
higher than the chemical potential V0 > 2µ. Since the amplitude of the
density oscillations is only a few percent (∆N/N < 0.05), the chemical
potential remains lower than the barrier during the oscillations and the
dynamics we see can only be due to tunneling through the barrier. With
increasing barrier height, the dynamics smoothly cross over from the
sound-dominated to the Josephson-dominated regimes.

The LC-model

To understand these Josephson oscillations, we use a circuit model com-
monly used to describe superconducting Josephson junctions [218, 224,
225]. The system without barrier is described as a simple LC-circuit,
which oscillates at a frequency determined the speed of sound ωs =
2πc/(lx/2) = πc/lx. The current in this circuit is the particle current
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I = 1
2
∂∆N
∂t between the two sides of the junction. The capacitance

C = 1
4

∆N
∆µ = V

8
∆n
∆µ is closely related to the compressibility of the system.

It relates the energy gained by ’charging’ the system with ∆N/2 parti-
cles to a difference in ’voltage’ 2∆µ5. Here, V is the total volume of the5The factor 2 here is due to the

fact that the tunneling particles are
Fermion pairs whose chemical po-
tential is twice as high as the chem-
ical potential µ of a single atom.
The additional factor 1/2 comes
from the fact that we consider the
particle numbers in the different
halves of the system: ∆nR/L =
∆NR/L/(V/2).

box.
The equation of motion of the LC-circuit is therefore given by

UC + UB = UC + LB
∂I

∂t
= ∆N

2C + LB
2
∂2(∆N)
∂t2

= 0, (7.7)

where UC and UB are the voltages across the capacitance and bulk in-
ductance, respectively. This yields an oscillation frequency ωs = πc/lx =
1/
√
LBC. With the speed of sound given by c2 = n

m
∂µ
∂n (cf. eq. 6.64), we

find the bulk inductance to be LB = 8ml2x/π2N = 8mlx/π2nly, which is
proportional to the mass of the particles and to the size of the system lx
perpendicular to the junction, and inversely proportional to the length
of the junction ly. It can be interpreted as a measure of the inertia of
the gas, opposing a change in current.

ωs : Bare oscillation frequency
(without barrier)

I : Particle current
C : Capacitance

of the system
LB : Bulk inductance
LJ : Josephson inductance

As we have already motivated above, the effects of the barrier are
described by an additional inductance LJ, which is connected in series
to these two elements. This can be understood in the frame of our model
in the following way: The phase difference between the two reservoirs of
a Josephson junction develops in time as ∂ϕ/∂t = ∆µpair/~ = 2∆µ/~.
A Josephson junction follows a current phase relation I(ϕ). We can
differentiate this relation with respect to time and replace ∂ϕ/∂t in the
equation above to find 2∆µ = ~/(∂I/∂ϕ)·(dI/dt). Since the chemical
potential difference plays the role of the voltage in our model, we see
that the Josephson junction relates the voltage to the time derivative of
the current, as does an inductance. We may thus identify

LJ = ~
∂I(ϕ)/∂ϕ (7.8)

as the Josephson inductance and the resulting equation of motion now
reads

∆N
2C + (LB + LJ)

∂2(∆N)
2∂t2 = 0. (7.9)

The additional inductance reduces the oscillation frequency of the
system to ω = 1/

√
(LB + LJ)C. Since the bulk inductance only depends

on known parameters, the Josephson inductance can be easily extracted
from the ratio of the oscillation frequencies with and without barrier
according to

LJ = LB

(
ω2
s

ω2 − 1
)
. (7.10)

While the oscillation frequency is dependent on the size of the box owing
to the change in bulk inductance and capacitance, the Josephson induc-
tance should only depend on the properties of the barrier itself. Indeed,
as shown in Figure 7.10, all measurements of LJ versus barrier height
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Figure 7.10. – Extraction of the Josephson inductance versus barrier height for the
different box sizes of figure 7.7. While the oscillation frequencies are dependent
on the system size, the Josephson inductances collapse onto one line and depend
only on the barrier height. We obtain the calibration of the barrier height V0 by
matching the data to a numerical simulation (light red line) [177].

collapse onto one curve, independent of box size, which shows that the
inductance of the junction depends only on the barrier height. We can
therefore use this model to separate the physical effects originating in
the barrier from the dynamics due to the bulk of the material, without
knowledge of the microscopic quantities such as wave function overlaps
for instance.

7.3.2. Extracting the nonlinear current-phase relation

Let us finish this part by discussing the nonlinearity of the current-phase
relation. As we have motivated, this is the origin of the nonlinearity of
the inductance and thus fundamental for some applications of Josephson
junctions, in particular for their use as qubits. In contrast to the solid
state case, it is not possible in a cold atom system to apply a fixed phase
difference to the junction and measure the current. While it is possible
in principle to measure the instantaneous particle current I(ϕ) during
the oscillations to obtain the current-phase relation, it is experimentally
challenging to do so. The small oscillation amplitude of about 30 parti-
cles implies large relative errors, and the noise in the particle numbers
will be increased substantially during differentiation. This route would
therefore require an exceedingly large amount of data.
In order to probe the current-phase relation of our Josephson junction,

we use the fact that a nonlinearity changes the period of an oscillation
for large excursions. Similar to the increase of the oscillation period
of a rigid pendulum for large initial excursions, the anharmonicity of
a Josephson junction leads to a decrease of the oscillation frequency
for large initially imprinted phase differences. This behavior is also
predicted by the two-mode model [222] and has been observed in cold
atom Josephson junctions for instance in [216]. We use the information
contained in this frequency shift to probe the nonlinear current phase
relation.
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Figure 7.11. – Effective current I0 through the junction. The data points are
obtained by integrating the values of LJ,0 obtained from the reduced oscillation
frequencies according to ∂I/∂ϕ = ~/LJ . Our data is in excellent agreement with
the theoretical prediction I0(ϕ0) = 2Ic sin(ϕ0/2) for an ideal Josephson junction
(red line), where the initial slope is determined from the first three data points.

To do this, we determine an effective inductance LJ,0(ϕ0) according to
equation 7.10 for various initial phase imprints ϕ0.

LJ,0(ϕ0) : effective Josephson
inductance

I0(ϕ0) : effective current
Rearranging relation

7.8, we then calculate an effective current

I0(ϕ0) =
∫ ϕ0

0

~
LJ,0(ϕ′0)

dϕ
′
0 (7.11)

by performing a Riemann sum over all experimentally determined values
of ~/LJ,0(ϕ′0) with ϕ

′
0 < ϕ0. Note that both LJ,0 and I0 are different

from the instantaneous inductance and current during the oscillations,
and rather represent effective quantities which relate the initial phase
imprint ϕ0 to quantities of dimensions of an inductance or a current.
Nevertheless, we can still connect this effective current phase relation
I0(ϕ0) back to the instantaneous current phase relation I(ϕ). For a
system that follows the ideal current phase relation I(ϕ) = Ic sin(ϕ), we
find that the resulting effective relation should read [177]

I0(ϕ0) ≈ 2Ic sin ϕ0
2 . (7.12)

The derivation of this relation can be found in appendix B.4.
The comparison between the data and the expected effective current-

phase relation is shown in Fig. 7.11. Our data is in excellent agreement
with this theoretical prediction, indicating that our junction is an ideal
Josephson junction. This strongly implies that the current across the
junction is indeed a supercurrent, driven by the phase difference between
the two superfluids.
This junction provides a useful tool to investigate superfluid proper-

ties of the gas in the strongly correlated regime, owing to its sensitivity
with respect to the phase of the superfluid. In further measurements
[177], which are not discussed in this thesis, we have ramped the gas
to various points in the BEC-BCS crossover and imprinted a phase dif-
ference between the two sides. We could observe Josephson oscillations
in the entire experimentally accessible interaction range, indicating that
the gas is phase coherent and providing strong evidence for superfluid-
ity in the two-dimensional geometry. For a detailed description of the
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experiments shown above and of the further measurements carried out
in the system, I would like to refer the reader again to the PhD thesis
of Niclas Luick [135].

7.4. Superfluidity in an ultracold 2D Fermi gas

In the following section, I report on the measurement of the critical
velocity in an ultracold 2D Fermi gas across the BEC-BCS crossover.
These results have mainly been obtained by Lennart Sobirey and are
published in [226]:

Lennart Sobirey, Niclas Luick, Markus Bohlen, Hauke Biss,
Henning Moritz and Thomas Lompe. Observation of super-
fluidity in a strongly correlated two-dimensional Fermi gas.
Preprint: arXiv:2005.07607v1 (2020), under review in Science.

The results will also be presented in greater detail in the thesis of
Lennart Sobirey which will be published in the close future.
My contribution to this project consisted in building parts of the
experimental setup, notably the adjustable optical lattice with is
moved through the gas to create excitations.

Our experiments performed on a Josephson junction provide clear ev-
idence for phase coherence in our two-dimensional quantum gas. While
these results also strongly suggest that the system is superfluid, they
do not provide irrefutable proof for the superfluid state of the low-
dimensional system. We have recently performed measurements that
show unambiguously that the system is superfluid below a critical tem-
perature Tc. When dragging a lattice through the system we observe no
heating and hence frictionless flow below a critical velocity vc.

Tc : Critical temperature
vc : Critical velocity

for superfluidity
The sys-

tem hence fulfills Landau’s criterion of superfluidity across nearly the
entire accessible BEC-BCS crossover from tightly bound molecules to
weakly bound Cooper pairs.

7.4.1. Landau’s criterion of superfluidity

According to Landau’s criterion of superfluidity, a system is superfluid
if a perturbation moving through the system cannot dissipate energy at
velocities smaller than a finite critical velocity vc.
To see this, imagine a perturbation moving through a fluid with a

velocity v. It will be useful to describe this situation in the comoving
frame of the perturbation. Generally, a state with momentum p and
energy E(p) = p2/2M in the rest frame will have an energy E′ = (p −
Mv)2/2M = E(p) − p·v + 1

2Mv2 in the comoving frame, where M is
the total mass of the system. For the ground state without excitations,
the energy in the comoving frame is simply the sum of the ground state
energy E0 and the kinetic energy: E′ = E0 + 1

2Mv2. If an excitation
of momentum p and energy E(p) is created by the perturbation, we
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therefore have a total energy of E′ = E0 + E(p) − p·v + 1
2Mv2 in

the comoving frame.

Figure 7.12. – Illustration of
Landau’s criterion for superflu-
idity: The critical velocity is set
by the minimum slope of the
line connecting the origin to any
point of the dispersion relation
E(p). In a non-interacting gas
(a), the minimum slope is zero
and the gas is a normal fluid.
In the case of weakly interacting
Bose-Einstein condensates and
BCS-type gases, the minimum
slope is nonzero and the gas is
superfluid. In the BEC regime
(b), the minimal slope of the
Bogoliubov dispersion relation
occurs at small momenta. For
the BCS gas (c), the minimal
slope occurs at a wave vector of
kF, where the excitation spec-
trum is minimally gapped.

An excitation therefore changes the energy of the
system by an amount ∆E = E(p) − p·v. An excitation can only be
stable if the energy of the system is reduced in the comoving frame, i.e.
if E(p) < p·v. Conversely, they are unstable if E(p) > p·v, which is
certainly the case if E(p) > |p||v| ≥ p·v. This reasoning holds for any
momentum p. The critical velocity is thus determined by the minimum
velocity for which all possible excitations at lower velocities are unstable.
We therefore see that a perturbation moving at a velocity v is unable to
dissipate energy into the fluid as long as

v < vc = min E(p)
|p|

, (7.13)

which is Landau’s criterion for superfluidity.
The critical velocity can be read from the dispersion relation of the

system in a plot of excitation energy versus momentum (compare fig.
7.12). The quantity E(p)/|p| corresponds to the slope of the straight
line that goes through a given point of the excitation spectrum E(p) and
the origin. The critical velocity is the minimal possible slope of these
lines for all possible excitations. From this, one can easily conclude that
a non-interacting gas cannot be superfluid, since at p = 0, the slope
of the line vanishes. The weakly interacting Bose gas and the BCS-gas
are superfluid however, since the minimum slopes in these systems are
nonzero.

Superfluidity in cold atom gases

In the past, critical velocities have been measured in cold atomic sys-
tems. In Bose gases, critical velocities have been observed by various
groups in 3D [227–230] as well as in 2D [231]. In the case of 3D Fermi
gases, frictionless flow below a critical velocity has been observed us-
ing different excitation schemes, by dragging a lattice through the gas
[232] or stirring it with a repulsive laser beam [233]. Additionally, the
experiments of Kwon et al. [220] reproduce the DC-Josephson effect in
a 3D Fermi gas and can thus be seen as strong evidence of superfluidity.
While our observation of Josephson oscillations provides such evidence
in the two-dimensional case, a clear observation of the critical velocity
in 2D Fermi gases were yet outstanding. These measurements have been
performed in our group [226] and I will present some of our results in
the following.

7.4.2. Measuring the critical velocity

The system used in these experiments consists of a Fermi gas in a cylin-
drical homogeneous 2D box potential, containing a balanced mixture
of about N ≈ 6000 atoms in the lowest two hyperfine states. The
vertical confinement in a single layer is provided by the repulsive lat-
tice, whereas the horizontal confinement is realized by a ring-shaped
potential created with the axicon setup (cf. supplementary materials in
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Figure 7.14. – Response function r(k0, v) of the gas in the BEC (A) and BCS(B)
regimes. In the bosonic gas, the Bogoliubov dispersion relation is visible: The
moving lattice excites phononic modes at small wavevectors, traveling at a con-
stant velocity vs. At higher wavevectors, the peak of the heating rate moves lin-
early to higher velocities, indicating a quadratic dispersion. The response shows
a clear peak for all wavevectors and decays back to zero for high velocities. In the
fermionic gas, the minimal velocity at which the gas can be excited occurs at a
wavevector of k0 = 2kF. For higher excitation velocities, there is a continuum of
possible excitations. This spectrum corresponds to pair-breaking excitations. For
both regimes, the excitation rate is minimal below a critical velocity vc. Figure
taken from [226]

[60]).

Figure 7.13. – Sketch of the per-
turbation scheme of the 2D gas.
A lattice potential (red) is im-
printed from the top into the
homogeneous gas. By detuning
the two lattice beams, the lat-
tice moves at an adjustable ve-
locity v. The lattice constant
can be tuned by adjusting the
crossing angle of the two inci-
dent beams. Figure adapted
from [226]

Compared to the horizontal confinement generated with a DMD
as used in the experiments described previously, this approach allows
for a higher confinement potential, enabling the trapping of hotter sam-
ples without evaporation even in the BCS regime, where the chemical
potential increases. In order to measure the critical velocity in the sys-
tem, we project an impurity in the form of a periodic lattice potential
onto the gas through the top microscope and move it through the gas
at varying velocities. A schematic picture of this setup is shown in Fig-
ure 7.13. The impurity is created by interfering two red-detuned laser
beams (λ = 780 nm) in the center of the trap. The crossing angle of the
two beams is adjustable, resulting in a sinusoidal potential whose wave-
length can be tuned. By detuning the frequencies of the two beams with
respect to each other by a few MHz, the lattice can be moved through
the gas at a velocity v = L∆ν, where L is the spacing between two
maxima of the optical potential.

∆ν : Detuning of the
lattice beams

L : Lattice spacing
v : Lattice velocity
k0 : Lattice wavevector
r(v) : Response function

The periodic potential is moved through the system at different ve-
locities v. During this movement, the lattice spacing determines the
momentum ~k0 = 2π~/L at which the gas can be excited, and the ve-
locity the energy that is transferred to an excitation. The response of
the system can be measured by performing matter-wave focusing as in-
troduced in section 7.3 and monitoring the pair condensation peak of
the momentum distribution after adiabatically ramping the magnetic
field to the BEC-side of the Feshbach resonance. We define the quantity
r(v) = (n(k = 0, v = 0)/n(k = 0, v)) − 1, i.e., the relative suppression
of the condensate peak, as a measure of the response of the gas. If ex-
citations are possible at a given combination of momentum and energy,
the gas will heat up. The occupation of the lowest momentum modes
decreases when the temperature of the gas is increased, which reduces
the height of the peak at zero momentum and the response r(v).
Since the lattice imposes a fixed momentum k0 at which the response
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Figure 7.15. – Critical velocities across the BEC-BCS crossover. (A) Response of
the gas to an excitation at k0 ≈ 0.3kF. (B) Response of the gas to an excitation
at k0 ≈ 2kF. (C) Critical velocities extracted from the spectra of (A) and (B).
In the BEC-regime the critical velocity is determined by the Bogoliubov sound
mode (blue data points), whereas pair breaking excitations. On the BCS-side,
the spectrum broadens to a continuum as pair-breaking excitations become the
dominant excitation type, which determine the critical velocity (red data points).
The sound velocity (gray data points) measured in [179] (see chapter 6.3) is shown
for comparison. Figure from [226].

of the gas is probed, measurements were taken at different spacings L
of the periodic potential and at different lattice velocities. The excita-
tion spectra on the BEC- and BCS sides of the resonance are shown
in fig. 7.14. The two spectra show striking differences. In the bosonic
regime, the response of the gas shows a clear peak for any given lattice
momentum, indicating a well-defined excitation mode. The excitations
for low momenta occur at a constant velocity. For higher momenta, the
peak in the excitation spectrum moves linearly toward higher velocities,
indicating a quadratic dispersion, since E(v) ∝ k0v. The excited mode
therefore corresponds to the Bogoliubov sound mode. In the fermionic
regime, there is no clear mode apart from at very low momenta, but
instead a continuum of excitations with a minimum velocity around
k0 = 2kF . These excitations correspond to pair-breaking excitations of
Cooper pairs. In both cases there is a minimal velocity below which the
excitation rate is negligible. Therefore, the gas clearly obeys Landau’s
criterion for superfluidity in the two limits of a BEC- and BCS-type gas.
In order to measure the critical velocity over the entire BEC-BCS

crossover, we have measured the response of the gas at the two wavevec-
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tors corresponding to the minima in the BEC- and BCS regimes, i.e. at
k0 ≈ 0.3kF and k0 ≈ 2kF, obtaining two onset velocities for dissipation
at each magnetic field. The critical velocity has then be defined as the
lower of these two velocities. Figure 7.15 shows the resulting critical
velocities together with the excitation responses of the gas at low (A)
and high (B) momenta as well as the sound velocity in the gas obtained
in the measurements presented in section 6.3 [179]. On the bosonic side,
we see a clearly defined sound mode which determines the critical ve-
locity. The behavior of the critical velocity follows the behavior of the
speed of sound, rising toward the strongly correlated regime. Further
toward the BCS-side, the sound mode broadens smoothly and turns into
the fermionic pair-breaking continuum. Here, the critical velocity is de-
termined by single-particle excitations around k0 ≈ 2kF and decreases
again toward the weakly interacting Fermi gas. The system is clearly
superfluid across the entire BEC-BCS crossover, since it obeys Landau’s
criterion for a superfluid for all interaction strengths around the reso-
nance. These measurements thus represent the first definitive evidence
for superfluidity in a strongly correlated 2D Fermi gas. The maximum of
the critical velocity around ln(kFa2D) ≈ 0 indicates that the superfluid
is most stable in the strongly correlated regime.

7.4.3. Conclusion

In this chapter, I have presented the first realization of a Josephson
junction in an ultracold two-dimensional Fermi gas. After creating a
phase difference between the two reservoirs, that are separated by a
thin barrier, we could observe clear Josephson oscillations, even when
the barrier is significantly higher than the chemical potential of the
gas. The oscillations persist over a large range of interactions across
the experimentally accessible BEC-BCS crossover. Using the frequency
shift of the oscillations with increasing imprinted phase, we could show
that our system follows the current phase relation of an ideal Josephson
junction. Our measurements represent clear proof of phase coherence
and establish Josephson junctions as a tool which could be used in the
future for investigations of the order parameter in the two-dimensional
gas.
In addition, I have presented the first measurements of the critical

velocity in a two-dimensional Fermi gas. We have shown that the Fermi
gas is superfluid across the entire crossover and that its superfluidity
is most stable in the strongly correlated regime. In the Bose regime,
superfluidity is limited by the excitation of sound waves in the gas. The
critical velocity according to Landau’s criterion is here given by the
speed of sound. In the Fermi regime, pair breaking excitations are the
limiting excitation mechanism.
Using the same excitation mechanism, we have also observed the su-

perfluid phase transition of the gas by heating the system up above the
critical temperature Tc. For further details on these additional mea-
surements, I would like to refer the reader to [226]. The same exper-
imental technique is now used in our group to measure the superfluid
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gap across the BEC-BCS crossover (a publication is in preparation).
Performing similar experiments in a three-dimensional box potential in
the near future (and eventually with an accordeon lattice after replac-
ing the 2D-breadboard), we would like to obtain similar data for the
three-dimensional Fermi gas and thus hope to shed light onto the role of
dimensionality for the establishment and the stability of superfluidity.
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In this thesis we have presented experiments with ultracold two- and
three-dimensional Fermi gases that advance both the understanding of
strongly correlated two-dimensional Fermi gases as well as their capa-
bility for the simulation of analogous solid state systems.

As the main result of the thesis, we have performed the first measure-
ments of the sound velocity and its attenuation in a two-dimensional
Fermi gas at varying interaction strengths across the BEC-BCS crossover.
We have qualitatively explained the behavior of the sound velocity from
the bosonic to the fermionic regime and we have found a lower bound
for the sound attenuation in the strongly correlated regime, which is
linked to a fundamental lower bound for the transport coefficients. The
viscosity of the gas was found to be of the order of ∼ ~/m in this
regime, indicating that the strongly correlated Fermi gas is a nearly
perfect fluid. Our results stands in line with previous findings of lower
bounds for viscosity and spin diffusivity as well as sound diffusivity in a
three-dimensional Fermi gas.
In the future our findings might serve as a benchmark for the de-

velopment of theories for the strongly interacting gas. Very recently,
calculations using a Gaussian pair fluctuations approach have been able
to reproduce the first sound velocity across the crossover [193]. After
the development of controlled heating methods in subsequent experi-
ments, our experimental scheme could now also be used to investigate
the dependence of the sound velocity and attenuation with temperature,
which would be particularly intriguing around the critical temperature
for superfluidity.
We have also presented exciting experimental results concerning phase

coherence and superfluidity in the two-dimensional Fermi gas, which
were obtained during the course of this thesis, with Niclas Luick and
Lennart Sobirey as the lead PhD students. We realized the first Joseph-
son junction in a two-dimensional Fermi gas and showed that it obeys
the current-phase relation I(ϕ) = Ic sin(ϕ) of an ideal Josephson junc-
tion. The critical current has been measured over a wide range of in-
teractions across the BEC-BCS crossover. As shown in [135, 177], the
junction could be used to measure the condensate fraction of the two-
dimensional gas and could therefore serve as a novel probe for the order
parameter in the strongly correlated two-dimensional gas. Furthermore,
we have performed the first measurement of the critical velocity in a
two-dimensional Fermi gas across the BEC-BCS crossover, thereby ob-
taining the first proof of superfluidity in such a system. In the bosonic
regime, the critical velocity scales with the sound velocity, since the Bo-
goliubov quasiparticles are the lowest-lying fundamental excitations in
the system. Of particular interest is the observation that the critical ve-
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locity is highest in the strongly correlated regime, which indicates that
2D-superfluidity is most stable in this regime.
Finally, we have presented work concerning the characterization of a

d-wave Feshbach resonance via loss rate spectroscopy and measurements
of the spin dynamics close to the resonance. The extracted two-body loss
rates are in good agreement with predictions by E. Tiesinga. The evolu-
tion of the spin populations in a strongly recompressed trap was consis-
tent with the expected final state, however strong fluctuations prevented
us from doing a quantitative analysis. Additional future measurements
might fill this gap and allow this d-wave resonance to become a tool for
the experimental realization of non-standard pairing, which is one of the
important ingredients for superfluidity at high critical temperatures.

Outlook: The superfluid gap in strongly correlated Fermi gases

In order to measure the critical velocity in our 2D gas, we have observed
the heating response of the gas to a moving lattice potential in order to
determine the onset of dissipation in the gas. Changing the vocabulary
slightly, this excitation scheme may also be understood as a two-photon
Bragg scattering process, occurring under a given momentum and energy
transfer ~q and ~ω, determined by the angle between the beams and their
detuning. If the heating response of the gas for an excitation (q, ω) is
proportional to the probability of creating such an excitation, this will
give us access to the dynamic structure factor S(q, ω), a quantity which
describes the excitation spectrum and which can be used to derive for
instance the response functions of the material.
Whilst this thesis was written, we have extended our measurements to

map out the dynamic structure factor of the two-dimensional Fermi gas
for different interaction strength and observe how the bosonic excitation
spectrum of the dimers transitions into the excitation spectrum of a
fermionic gas. Of particular interest here is the onset of the continuum
of pair-breaking excitations that can occur at energies larger than the
pairing gap ∆. The magnitude of the pairing gap depends both on the
binding energy of two isolated fermions (which we have discussed in this
thesis) and on a part originating in the interaction of a particle with the
rest of the strongly correlated system. We extract the many-body part
of ∆ from the measurements dynamic structure factor and compare it
to theory and previous experimental data.
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QUANTUM GASES

An ideal Josephson junction in an ultracold
two-dimensional Fermi gas
Niclas Luick1,2, Lennart Sobirey1,2, Markus Bohlen1,2,3, Vijay Pal Singh4,2, Ludwig Mathey4,2,
Thomas Lompe1,2*, Henning Moritz1,2

The role of reduced dimensionality in high-temperature superconductors is still under debate. Recently,
ultracold atoms have emerged as an ideal model system to study such strongly correlated two-dimensional
(2D) systems. Here, we report on the realization of a Josephson junction in an ultracold 2D Fermi gas.
We measure the frequency of Josephson oscillations as a function of the phase difference across the junction
and find excellent agreement with the sinusoidal current phase relation of an ideal Josephson junction.
Furthermore, we determine the critical current of our junction in the crossover from tightly bound molecules
to weakly bound Cooper pairs. Our measurements clearly demonstrate phase coherence and provide
strong evidence for superfluidity in a strongly interacting 2D Fermi gas.

O
neof themost notablemacroscopicman-
ifestations of quantum mechanics is the
dc Josephson effect (1, 2), where a phase
difference f between two superconduc-
tors separated by a weak link drives a

current IðfÞwithout any applied voltage. For an
ideal Josephson junction, this current phase re-
lation takes a sinusoidal form IðfÞ ¼ ICsinðfÞ
(3), whereIC is themaximumsupercurrent that
can flow through the junction. This direct con-
nection between the superfluid current and the
phase of the macroscopic wave function makes

Josephson junctions a powerful tool for probing
properties of superconductors, providing, for ex-
ample, clear evidence for the d-wave symmetry
of the order parameter in cuprate superconduc-
tors (4).
Recently, ultracold quantum gases have been

established as ideal model systems to study
such strongly correlated two-dimensional (2D)
fermionic systems (5–12). However, although
pair condensation of fermions has been re-
ported (13), fermionic superfluidity in two di-
mensions has not been directly observed. Here,

we use a Josephson junction to unambiguously
show phase coherence and provide strong
evidence for superfluidity in an ultracold 2D
Fermi gas. Josephson junctions have already
been extensively studied in ultracold quantum
gases (14–22), but the ideal sinusoidal current
phase relation that directly links the phase dif-
ference to the supercurrent across the junction
(23–25) has not been observed (26). In this
work, we first confirm that our junction follows
an ideal current phase relation. This implies
that the current across the junction is a su-
percurrent that is driven by the phase dif-
ference between two superfluids. We then
proceed to measure the evolution of the crit-
ical current of the junction as a function of
interaction strength and thereby realize a
probe for 2D superfluidity in the crossover
from tightly bound molecules to weakly bound
Cooper pairs.
For our experiments, we use a homogeneous

Fermi gas of 6Li atoms in a spin-balancedmix-
ture of the lowest two hyperfine states, trapped
in a box potential (27, 28). A strong vertical
confinement with trap frequency wz=2p ¼
8:8ð2Þ kHz ensures that the gas is kinemat-
ically 2D with the chemical potential m and
temperature T being smaller than the level
spacing ℏwz, where ℏ is the reduced Planck
constant. We create a Josephson junction by
using a narrow repulsive potential barrier with
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Fig. 1. Josephson oscillations in a
homogeneous 2D Fermi gas.
(A) Sketch of a Josephson junction
consisting of two Fermi gases with
chemical potential m, particle numbers NL

and NR, and phases fL and fR
separated by a tunneling barrier with
height V0. (B) Absorption images of cold
atom Josephson junctions. The width of
the barrier is held fixed at a waist of
w ¼ 0:81ð6Þmm while the size l⊥ of the
system is increased. (C and D) Time
evolution of the phase difference Df (C)
and relative particle number difference
DN=N (D) between the left and right side
of the box after imprinting a relative
phase difference of f0 ≈ p=4. The red
lines represent a damped sinusoidal fit. (E) Oscillation frequency as a function
of barrier height V0 for different system sizes [symbols as in (B)], where the
error bars denote the 1s fit error. The inductance LB and capacitance C
of the bulk system are proportional to the length l⊥ of the box, and therefore
the oscillation frequency decreases with increasing system size for V0 ¼ 0.
For nonzero values of V0, the barrier adds a nonlinear Josephson inductance LJ
to the system and the oscillation frequency decreases as a function of
barrier height. (F) Josephson inductance LJ;0ðV0Þ extracted from the

frequency measurements using an LC circuit model. The Josephson
inductances for all system sizes collapse onto a single curve, which
shows that the inductance of the junction depends only on the height
of the barrier and validates our LC circuit model. We obtain the
calibration of the barrier height V0 by matching the data to a full
numerical simulation (light red line with circles) (27). The data are
obtained by averaging 20 (B), 42 (C), 130 (D), and 7 [(E) and (F)]
individual measurements.
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a Gaussian beam waist of w ¼ 0:81ð6Þ mm to
split the system into two homogeneous 2D pair
condensates connected by a weak link (Fig. 1,
A and B). We imprint a relative phase f0 be-
tween the two sides of the junction by illumi-
nating one-half of the systemwith a spatially
homogeneous optical potential for a variable
time between 0 and 20 ms (27). We then let
the system evolve for a time t and extract the
population imbalance DN ¼ ðNL� NRÞ and
the phase difference f between the two sides
using either in situ or time-of-flight imaging.
A typical Josephson oscillation of a molecular
condensate at a magnetic field of B ¼ 731 G
(29) and a barrier height of V0=m ¼ 1:08ð5Þ
featuring the characteristic p=2 phase shift
between imbalance and phase is shown in
Fig. 1, C and D. The oscillations are weakly
dampedwith a relative damping ofG=w ¼ 0:07,
which, according to a full numerical simula-
tionof our system, canbe explainedbyphononic
excitations in the bulk and the nucleation
of vortex-antivortex pairs in the junction
(fig. S3) (30).
To understand these Josephson oscillations,

we use a simple circuit model commonly used
to describe superconducting Josephson junc-
tions (21, 31, 32). In this model, we describe
our junction as a nonlinear Josephson induc-
tance LJ , which is connected in series to a
linear bulk inductance LB and a capacitance C
(Fig. 1F), where the bulk inductance LB char-
acterizes the inertia of the gas and the capac-
itance C its compressibility. For vanishing
Josephson inductance, the model reduces to a
linear resonator with frequency ws ¼ 1=

ffiffiffiffiffiffiffiffiffi
LBC

p ¼
2pvs=2l⊥, which corresponds to the frequency
of a sound mode propagating with the speed
of sound vs across the length l⊥ of the system.
Introducing a barrier with height V0 adds a
nonlinear inductance LJ to the system and
reduces the oscillation frequency w. Owing to
the nonlinearity of the current phase relation,
this LJ depends on the phase difference fðtÞ
across the junction, but for small phase excita-
tions, there is a linear regime where LJ½fðtÞ�
can be approximated by a time-independent
Josephson inductance LJ;0 and the oscillation
frequency is given by w ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðLB þ LJ;0ÞC
p

.
To confirm that our physical system is de-

scribed by this model, we prepare a gas of
deeply bound dimers, perform measurements
of the oscillation frequency in the linear re-
gime as a function of the barrier height for
different system sizes (Fig. 1E), and extract the
Josephson inductance LJ;0 (Fig. 1F). Because
our system has a uniform density, the bulk in-
ductance is given by the simple expression
LB ¼ 8ml⊥=p2nljj, where n is the density per
spin state,m is the mass of a 6Li atom, and
l⊥ (ljj) is the diameter of the box perpendicular
(parallel) to the barrier (27). Consequently,
the Josephson inductance LJ;0ðwÞ ¼ LBðw2

s=
w2 � 1Þ can be extracted from the frequency

difference between the Josephson oscillations
and the sound mode. Whereas the oscillation
frequency is strongly dependent on the size of
the box owing to the change in the bulk in-
ductance LB and the capacitance C , the mea-
sured Josephson inductanceLJ;0 should depend
only on the coupling between the two reser-
voirs. As can be seen from Fig. 1 F, all measure-
ments ofLJ;0 versus barrier height collapse onto
a single curve regardless of the system size,
which confirms that our Josephson junction
can be described by an inductor-capacitor (LC)
circuit model. For the barrier heights used
in our experiments, we also find very good
agreement with a full numerical simulation
of our system (27).
Next, we probe the fundamental property

of Josephson junctions: the nonlinearity of the
current phase relation (3, 26). For large phase
excitations, the nonlinear current phase rela-
tion leads to anharmonic oscillations with an
increased oscillation period. Our ability to im-
print arbitrary phase differences f0 across the
barrier enables us tomeasure this reduction of
the fundamental frequencywðf0Þ as a probe of
the nonlinearity (Fig. 2). To extract the non-
linear responseof the current fromourmeasure-
ments of wðf0Þ , we first calculate LJ;0½wðf0Þ�
and then apply the relation @I=@f ¼ ℏ=LJ to
LJ;0ðf0Þ to obtain an effective current I0ðf0Þ.
For an ideal Josephson junction, I0 follows a
rescaled current phase relation I0ðf0Þ ≈ 2IC
sinðf0=2Þ (27). We find that our measurement
is in excellent agreement with this current
phase relation, indicating that our junction is
an ideal Josephson junction (3, 26, 33). This
implies that the current across the junction is

indeed a supercurrent, driven by the phase
difference between two superfluids.
Following this result, we can now use our

Josephson junction as a probe for 2D super-
fluidity in the strongly correlated regime. We
observe Josephson oscillations over a wide
range of interaction strengths, indicating
the presence of superfluidity in the entire
crossover from tightly bound molecules to
weakly bound Cooper pairs (Fig. 3). To quan-
tify the effect of interactions on our system,
we extract the critical current IC from the fre-
quency of the Josephson oscillations. Because
for a fixed barrier heightV0 the change in the
critical current would be dominated by the
interaction dependence of the chemical po-
tential, we insteadmaintain a constantV0=m ¼
1:4ð2Þ by adjusting the barrier height V0 for
each interaction strength according to a ref-
erence measurement of the equation of state
(fig. S4). We observe that, within the uncer-
tainty of ourmeasurement, the critical current
stays nearly constant, with a tendency toward
smaller values of IC when approaching the
Bardeen-Cooper-Schrieffer (BCS) side of the
resonance. Although there is currently no
theory available that quantitatively describes
a 2D Josephson junction in the whole Bose-
Einstein condensate (BEC)–BCS crossover, in
the bosonic limit we can calculate the critical
current from the condensate density nc and
the overlap of the condensate wave functions
(27, 34). We use this theory to determine the
condensate fraction from themeasured critical
current for interaction strengths lnðkFa2DÞ≤
�0:9 and obtain nc=n ¼ 0:72ð8Þstat:ðþ0:1

�0:2Þsys: ,
where stat. denotes the statistical error and the
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Fig. 2. Current phase relation. (A to
C) Josephson oscillations through a tunneling
barrier with height V0=m ¼ 1:51ð8Þ at initial
phase imprints of f0 ¼ 0:14p (A), 0:42p
(B), and 0:62p (C). The amplitude of the
oscillations increases for stronger phase
imprints, whereas the frequency is reduced.
(D) Oscillation frequency as a function of
imprinted phase, where the error bars denote the
1s fit error. The gray labels A, B, and C denote
the frequencies obtained from the oscillations
shown in (A) to (C). (E) Inductance of the
junction calculated from the measured oscilla-
tion frequencies. (F) Effective current I0
through the junction obtained by performing a
Riemann sum over the measured values of LJ;0
shown in (E) according to @I=@f ¼ ℏ=LJ (27).
Our data are in excellent agreement with the
rescaled current phase relation I0 ¼ 2ICsinðf0=2Þ
expected for an ideal Josephson junction
(red lines), where the initial slope IC is
determined from the first three data points.
Each data point in (A) to (C) is obtained by
averaging 20 individual measurements.
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systematic error (sys.) arises from the 15% un-
certainty in V0=m . For our homogeneous 2D
system, Berezinskii-Kosterlitz-Thouless theory
relates the condensate fraction nc=nºL�h to
the algebraic decay of phase coherence over
the finite sizeLof the box, wherehºT=ns is the
algebraic scaling exponent (35, 36). A measure-
ment of the critical current as a function of
system size can therefore be used to extract the
algebraic scaling exponent and the superfluid
density ns, as recently suggested in (37).
Our homogeneous 2D Fermi gas provides

an excellent starting point to study the in-
fluence of reduced dimensionality on strongly
correlated superfluids in the crossover between
two and three dimensions. The distinctive com-
bination of reduced dimensionality, uniform
density, low entropy, and high-resolution imag-
ing makes our system a perfect platform to
observe exotic phases such as the elusive Fulde-
Ferrell-Larkin-Ovchinnikov state (38). Final-
ly, our system is ideally suited to investigate
whether periodic driving of Josephson junc-
tions can strongly enhance coherent transport,
as suggested by experiments with THz-driven
cuprate superconductors (39, 40).
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Fig. 3. Interaction dependence of the criti-
cal current. (A to C) Josephson oscillations
for interaction strengths of lnðkFa2DÞ ¼ �2:4 (A),
lnðkFa2DÞ ¼ 0:7 (B), and lnðkFa2DÞ ¼ 1:9 (C),
where kF is the Fermi wave vector and a2D is the
2D scattering length as defined in (13, 27). The
measurements are performed in the linear
regime with constant density n ¼ 1:21ð9Þmm�2

and relative barrier height V0=m ¼ 1:4ð2Þ.
(D) Oscillation frequency for sound (red
diamonds) and Josephson (blue dots) oscilla-
tions as a function of the 2D interaction
parameter lnðkFa2DÞ. The frequency increase of
the bare sound mode when going from the
molecular to the BCS regime reflects the
interaction dependence of the chemical
potential. The gray labels A, B, and C denote the
frequencies obtained from the oscillations
shown in (A) to (C). (E) Critical current of the
junction extracted from the frequency
difference between the sound mode and the
Josephson oscillations. The error bars denote the 1s fit error. The blue line is the critical current ICºnctk¼0

calculated for a condensate fraction of nc=n ¼ 0:72 and a tunneling amplitude tk¼0 obtained from a mean
field calculation of the transmission through the barrier (27). To calculate the tunneling amplitude, we
approximate our junction with a rectangular barrier with a width b ¼ 0:81 mm, which is a reasonable
approximation for the Gaussian barrier used in the experiment. The shaded region denotes the
systematic uncertainty resulting from the 15% uncertainty in V0=m. The dashed gray lines indicate
the upper ðT ¼ 0Þ and lower ðT ¼ TcÞ bound for the critical current obtained from our theory. Although
it is unclear how far into the strongly correlated regime our bosonic theory is quantitatively accurate
(27), it reproduces the qualitative behavior of our data across the entire BEC-BCS crossover. Each data
point in (A) to (C) is obtained by averaging 42 individual measurements.
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Supplementary materials

Preparation of homogeneous 2D Fermi gases

We prepare our homogeneous 2D Fermi gas following the scheme described in (28). We

start by evaporatively cooling a spin mixture of 6Li atoms in the |F = 1/2,mF = 1/2〉 and

|F = 1/2,mF = −1/2〉 hyperfine states in a highly elliptical optical dipole trap at a magnetic

field close to the 832 G Feshbach resonance of 6Li. We then ramp to a magnetic field of 730 G

and project our box potential onto the atoms using a digital micromirror device (DMD1) illu-

minated with blue-detuned (λ = 532 nm) light, which we refer to as DMD 1. Additionally,

we briefly ramp up a second DMD (DMD 2), also illuminated with 532 nm light, that covers

a larger area to push away residual atoms still trapped outside of the box. Finally, we load the

atoms into a single node of an optical standing wave potential with a lattice spacing of approx-

imately 3µm and a trap frequency of ωz = 2π · 8.8(2) kHz and thereby bring the atoms into

the 2D-regime. For all measurements, the chemical potential is well below the trap frequency

(µ < 0.7 ~ωz) and we can therefore parametrise the interaction strength by an effective 2D

scattering length a2D = lz
√
π/0.905 exp(−

√
π/2 · lz/a3D) (44), where lz =

√
~/mωz is the

harmonic oscillator length and a3D is the 3D scattering length.

We note that performing thermometry of our homogeneous Fermi gas is challenging, since,

in contrast to harmonic traps, there is no low density region where the gas is thermal. This

makes it very difficult to observe and fit the thermal fraction of the cloud. We obtain an esti-

mate of the temperature of the system by performing a time of flight measurement after DMD

1 has been ramped on and the atoms have been loaded into the lattice, but without pushing

away the atoms outside the box with DMD 2. This measurement yields a temperature of

T/TF ≈ 0.03, where TF = EF/kB is the Fermi temperature of a system with Fermi energy

1Texas Instruments DLP6500FYE
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FEF = ~2k2 /2m = ~24πn/2m using the density n inside the box potential. However, it is a 

priori unclear whether the atoms inside and outside the box potential are fully thermalised, so 

a better method to perform thermometry is to measure the density equation of state µ(n, T ) of 

a molecular condensate and compare it to a full numerical simulation (Fig. S4). This method 

yields the same temperature of T/TF ≈ 0.03 as the time of flight measurement.

Generation of arbitrary potentials

To create the box potential and the tunnelling barrier, we image DMD 1 directly onto the atoms 

using a high resolution microscope. The DMD has a pixel size of 7.56 µm and is demagnified by 

a factor of 75 by the imaging system, so that each DMD pixel has a width of 0.1 µm in the image 

plane, which is much smaller than the resolution of the imaging system. For narrow barriers

with a width W . 10 pixel, we can therefore adjust the height of the barrier by increasing the 

width of the barrier on the DMD image. We characterise the tunnelling barrier by using a second 

high resolution microscope to image the intensity distribution in the plane of the atoms (Fig. S 

1) for all barrier widths W used in our experiments. From these images, we obtain a calibration 

of the relative change of the barrier height as a function of W as well as a determination of 

the barrier width w = 0.81(6) µm, which is independent of W for W ≤ 11 pixel (deviation 

< 10%).

Phase control

To imprint a relative phase between the two sides of our Josephson junction, we briefly apply 

an optical potential ∆V0 to the condensate in one of the reservoirs, which advances its phase 

by ∆V0t/~. The time t is much shorter than the Fermi time h/EF, which ensures an almost 

pure phase excitation. The spatially homogeneous optical potential is created by DMD 2 and 

imaged onto the atom plane. We perform matter wave imaging (28,45) and observe the relative
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Fig. S 1: Calibration of the barrier. Line sum through an image of a box potential with a
barrier in the center. The box has a width of 300 pixels on the DMD, which corresponds to a box
size of 30µm in the plane of the atoms. The barrier has a width of 4 pixels, which is broadened
by the finite resolution of the imaging system used to project the image onto the atoms. From a
Gaussian fit to the barrier (red line), we determine a 1/e2 waist of w = 0.81(6)µm.

phase difference between the reservoirs in the displacement of the pair condensation peak. We

calibrate this procedure by measuring the periodic displacement of the momentum peak as a

function of the time for which the imprinting potential is switched on. From the measurement

shown in Fig. S 2, we obtain ∆V0 = h ·16.0(5) kHz for the potential height2 and a displacement

∆x = 5.5(3)µm/π.

Fig. S 2: Calibration of phase imprinting We vary the time for which the imprinting potential
is switched on and measure the shift in the position of the central momentum peak. From its
periodic displacement, we obtain the height of the optical potential ∆V0 = h · 16.0(5) kHz.
Each column represents a slice through the momentum distribution. The data shown is obtained
by averaging over 38 realisations.

2We define ∆V0 as the potential experienced by a pair of atoms, which has two times the polarisability and
therefore experiences twice the optical dipole potential as a single atom.
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LC Circuit Model

We use an electrical circuit model similar to the one used in (21, 31, 32) to model the dynamics

of our Josephson junction. We describe our system as a capacitance C and a bulk inductance LB

connected in series to a Josephson junction, which is modelled as a nonlinear inductance LJ(φ),

see Fig. 1F. In this circuit, the current I = 1
2
d(∆N)
dt

is the instantaneous particle current across

the junction determined by the change in the particle number imbalance ∆N = NL − NR.

The voltage over the capacitor is given by UC = ∆N/2C, where ∆N/2 corresponds to the

charge of the capacitor. The voltage across the junction UJ = LJ
dI
dt

is related to the phase

difference φ via the Josephson-Anderson relation UJ = ~dφ
dt

and hence the junction has an

inductance of LJ(φ) = ~/dI(φ)
dφ

. According to Kirchhoff’s law, the voltages across the capacitor,

the bulk inductance and the junction add to zero and therefore the LC circuit is described by the

differential equation
∆N

C
+ (LB + LJ(φ))

∂2(∆N)

∂t2
= 0. (S1)

Linear Regime

For small phase excitations, LJ(φ) can be approximated by a constant, phase independent in-

ductance LJ,0 and Eq. S1 yields harmonic oscillations with frequency ω = 1√
(LB+LJ,0)C

. For a

vanishing barrier, the oscillations correspond to a phononic excitation propagating between the

boundaries of the box at the speed of sound vs. In the circuit model, this corresponds to LJ = 0

and the frequency is given by ωs = 1√
LBC

= 2π vs
2l⊥

. Hence, we can calculate LJ,0 from the ratio

of the oscillation frequencies

LJ,0 = LB

(
ω2
s

ω2
− 1

)
. (S2)

For our homogeneous box system, the speed of sound vs =
√

n
m
∂µ
∂n

and the capacitance C =

1
2
∂N
∂µB

= 1
4
∂N
∂µ

= 1
8
l⊥l||

∂n
∂µ

are related to each other by the compressibility κ = ∂µ
∂n

, where

µB = 2µ is the chemical potential of a gas of bosonic dimers. Therefore, we can simply 
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calculate the bulk inductance LB = 1/ω2
sC = 8ml⊥/π2n l|| and thereby obtain the Josephson

inductance LJ,0 without using the equation of state µ(n).

Current Phase Relation

For a phase excitation that is not small, the nonlinearity of the Josephson inductance leads

to anharmonic oscillations. This nonlinear oscillation consists of a down-shifted fundamen-

tal frequency ω(φ0) and higher harmonics of this frequency. One possibility to extract the

current phase relation from this anharmonic oscillation would be to obtain the instantaneous

current I(φ(t)) and relating it to the corresponding φ(t). However, this approach has the signif-

icant drawback that obtaining I(φ(t)) requires numerical differentiation of ∆N(t), which is ex-

tremely sensitive to noise. Hence, we use the information contained in the shift of the fundamen-

tal frequency ω(φ0) to probe the current phase relation. We do this by extracting LJ,0(φ0) from

ω(φ0) according to Eq. S2 and then calculating an effective current I0(φ0) =
∫ φ0

0
~

LJ,0(φ′0)
dφ′0

by performing a Riemann sum over all experimentally determined values of ~
LJ,0(φ′0)

for which

φ′0 ≤ φ0. While this effective current is different from the instantaneous current, we can still re-

late the effective current phase relation I0(φ0) and the instantaneous current phase relation I(φ)

by inserting the ideal current phase relation I(φ) = IC sin(φ) into Eq. S1. In principle, I0(φ0)

can be found by solving Eq. S1 numerically, but it is instructive to consider a simplified case

which can be solved analytically. If we assume that the dynamics of the system is dominated

by the barrier (LJ � LB), we can neglect the bulk inductance LB in the LC circuit and write

~φ̇+ ∆N
2C

= 0. Differentiating this equation, we get

φ̈+
IC

~C
sin(φ) = 0 , (S3)

which is equivalent to the equation of motion of a mathematical pendulum. To first order, the

oscillation frequency is given by ω(φ0)2 ≈ IC
~C (1 − φ2

0/8) ≈ IC
~C cos φ0

2
and we can extract the
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corresponding inductance

LJ,0(φ0) ≈ LJ,0,φ0→0

(
ωφ0→0

ω(φ0)

)2

≈ ~
IC cos (φ0/2)

. (S4)

After integration, we get a simple rescaled expression for the effective current

I0(φ0) ≈ 2IC sin
φ0

2
. (S5)

We compare this result with the current I0(φ0) extracted from the numerical solution of Eq. S1

for a system with LJ,0/LB = 1.3, which is the value of LJ,0/LB for the system that was used

for the measurements in Fig. 2. We find that for initial phase excitations φ0 . 0.7π, Eq. S5 and

the numerical solution agree within 2%. Hence, we compare our data to Eq. S5.

Numerical simulations

We simulate the dynamics of a two-dimensional (2D) bosonic Josephson junction with the c-

field simulation method that was used in Ref. (46). Our homogeneous 2D system is described

by the Hamiltonian

Ĥ0 =

∫
dr

[
~2

2M
∇ψ̂†(r) · ∇ψ̂(r) +

g

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]
, (S6)

where ψ̂ and ψ̂† are the bosonic annihilation and creation operators, respectively. The interac-

tion g is given by g = g̃~2/M , where g̃ is the dimensionless interaction andM the mass of a 6Li2

molecule. Here, g̃ is determined by g̃ = g̃0/
(
1 − g̃0

2π
ln(2.09kF`d)

)
, with g̃0 =

√
8πas/`d (47),

where as is the molecular s-wave scattering length, `d =
√
~/(Mωz) is the harmonic oscillator

length in the transverse direction, and kF is the Fermi wave vector. Analogous to the experi-

ments, we consider 2D clouds of 6Li2 molecules confined in a box of dimensions Lx × Ly. We 

discretise the space with a lattice of size Nx ×Ny and a discretisation length l = 0.5 µm. Within 

our c-field representation, we describe the operators ψˆ in Eq. S6 and the equations of motion by 

complex numbers ψ. We sample the initial states in a grand canonical ensemble with chemical
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potential µ and temperature T via a classical Metropolis algorithm. The system parameters,

such as the density n, g̃, and T are chosen in accordance with the experiments. To simulate

the Josephson junction we add the term Hex =
∫

drV (r)n(r), where n(r) is the density at the

location r = (x, y). The barrier potential V (r) is given by

V (r) = V0 exp
(
−2(x− x0)2/w2

)
, (S7)

where V0 is the barrier height and w the width. The potential is centered at the location x0 = 

Lx/2. We choose w = 0.85 µm and V0/µ in the range 0 − 2, where we use µ = gn. This 

splits the system in x-direction into two equal 2D clouds, which we refer to as the left and 

right reservoir. We then imprint a fixed value o f t he p hase o n o ne o f t he r eservoirs, which 

creates a phase difference ∆φ = φL − φR, where φL (φR) is the mean value of the phase of 

the left (right) reservoir. The sudden imprint of phase results in oscillations of ∆φ and the 

density imbalance ∆N = NL − NR, where NL (NR) is the number of molecules in the left 

(right) reservoir. We analyse the time evolution of ∆N and ∆φ for system parameters close to 

the ones used in the experiments. Fig. S 3 A-C shows simulations of ∆φ(t) at three different 

temperatures of T/TF ≈ 0.01, 0.03, and 0.06 for n = 2.25 µm−2, g̃ = 1.8 and a system size 

of Lx × Ly = 20 × 40 µm2. The damping of the oscillations increases with temperature. To 

quantify this observation, we fit ∆φ(t) with a damped sine function f (t) = A0e
−Γt sin(ωt + θ), 

where A0 is the amplitude, ω is the oscillation frequency, Γ is the damping, and θ is the phase 

shift. The determined ratio of Γ/ω is 0.05, 0.09, and 0.45 for T/TF ≈ 0.01, 0.03, and 0.06, 

respectively. As the experimentally observed damping is on the order of Γ/ω ≈ 0.07, this

suggests an experimental temperature on the order of T/TF . 0.03, which is consistent with the 

results from measurements of the momentum distribution and the equation of state shown in Fig. 

S 4. To obtain a calibration of the experimental barrier height, we simulate the system for a wide 

range of barrier heights V0 and match the simulated and extracted Josephson inductances by
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fitting the calibration factor between the width W of the barrier on the DMD and the simulated

barrier height V0.

Fig. S 3: Temperature dependence of Josephson oscillations. (A-C) Time evolution of the 
simulated ∆φ for V0/µ ≈ 1.0 and a phase imprint of π/4 at three different temperatures. (D) 
Simulated phase evolution of one sample of the ensemble, 3.9 ms after a phase imprint of π/4, 
for n = 2.25 µm−2 and T/TF ≈ 0.03. The barrier height is V0/µ ≈ 2 and its width of 0.85 µm 
is denoted by the two vertical dotted lines. The dots and the crosses represent vortices and 
antivortices, respectively. The box dimensions are 20 × 40 µm2.

To understand the mechanism for the thermal damping of the oscillations, we examine the

phase evolution of a single sample of our ensemble. Figure S 3D shows the phase φ(x, y) at

a point in time which is 3.9 ms after a phase imprint of π/4 for the same n, g̃ and box size as

above, and T/TF ≈ 0.03. At this time the system exhibits distinct values of the mean phase
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for the left and right reservoir and a strong phase gradient across the barrier. As expected for

a 2D system, the phase is weakly fluctuating within the reservoirs due to thermal phonons. In

addition to the phonons, we identify the nucleation of vortex-antivortex pairs as an additional

mechanism of dissipation. We calculate the phase winding around a lattice plaquette of size l×l
∑

using � δφ(x, y) = δxφ(x, y) + δyφ(x + l, y) + δxφ(x + l, y + l) + δyφ(x, y + l), where the 

phase differences between sites is taken to be δx/yφ(x, y) ∈ (−π, π]. We show the calculated 

phase winding in Fig. S 3D. A vortex and an antivortex are identified by a phase winding of 2π 

and −2π, respectively. The vortex pairs are nucleated mainly inside the barrier in the regions of 

low densities. Both the phonons and vortices lead to the damping of oscillations shown in Fig. 

S 3 A-C.

Equation of state

To keep our relative barrier height V0/µ constant during measurements over the crossover, we 

need to measure the chemical potential µ as a function of interaction strength. We do this by 

following the approach established by Ref. (48). We therefore define our chemical potential as 

µ = µ0 + εB/2, where µ is the chemical potential per atom and the contribution of the two-

body binding energy εB is subtracted from the bare chemical potential µ0. We use DMD 2 to 

introduce a potential offset ∆V between the two sides of the box and measure the resulting 

density difference ∆n. For sufficiently small temperatures, the Thomas-Fermi approximation 

predicts EF = c · µ, and we can obtain µ/EF = 1/c from the linear slope of ∆n(∆V ). The 

relative change in the measured chemical potential for different magnetic fields is shown in Fig. 

S 4 C.

To determine the temperature of our system we compare the measured ∆n(∆V ) of the 

bosonic system with interaction strength ln(kFa2D) = −2.9 with simulated curves for different 

temperatures obtained using the c-field method outlined above. The discrepancy between the
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measurement and the numerical simulations is minimised for a temperature of T ≈ 0.03TF

(Fig. S 4A,B).

Fig. S 4: Equation of state. (A) Density difference ∆n (dark blue dots) created by a poten-
tial step ∆V , compared to numerical simulations performed at T/TF = 0.019 (dashed blue 
line), T/TF = 0.033 (solid red line) and T/TF = 0.047 (dotted dark red line). (B) Residual 
sum of squares between the numerical simulations performed at different temperatures and the 
measured EOS. The dashed blue line is a guide to the eye. The best agreement between our 
measured equation of state and the simulation is achieved at a temperature of T/TF = 0.03.
(C) Relative change of the chemical potential of our system for different magnetic fields, nor-
malized to the chemical potential at a field of 730 G . The chemical potential is extracted from 
the initial slope of the EOS measurements shown in (A). The red line is a heuristic fit we use to 
keep V0/µ constant during our measurement across the crossover (Fig. 3). The data shown is 
obtained by averaging over 7 (A) and 3 (C) realisations.

Calculation of the critical current

In the following we derive an analytic expression for the critical current IC of our 2D Josephson

junction in the bosonic limit including phase fluctuations, m otivated b y r ecent w ork f or 3D

systems (34). Generally, we can express the current between the left and right reservoir
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I = − i
~

(∑

k

tk(a†l (k)ar(k)− a†r(k)al(k))
)

(S8)

via the tunnelling amplitudes tk and the bosonic creation and annihilation operators acting on

the left and right reservoir. In the phase-density representation, neglecting density fluctuations,

the annihilation operators are given by

al/r(k) =

∫
d2r√
A

exp(−ikr)√nl/r exp(iφl/r + iδφl/r(r)) , (S9)

where A = L2 is the area of a box of size L, nl (nr) is the density, φl (φr) is the phase, and

δφl (δφr) is the fluctuation of the phase in the left (right) reservoir. To calculate the expectation

value 〈I〉, we insert Eq. S9 in Eq. S8 and assume independent Gaussian fluctuations of the phase

in both reservoirs 〈eiδφl/r(r)〉 = e−
1
2
〈δφ2

l/r
(r)〉. For a 2D system, we can further approximate the

phase fluctuations to lowest order as 〈δφ2
l/r(r)〉 = η log(L/r0), where η = MkBT

2π~2ns
= 2 n

ns

T
TF

is

the algebraic scaling exponent and r0 ≈ ξ is a short range cutoff on the order of the system’s

healing length ξ. To lowest order in k, we obtain

〈I〉 =
2nAtk=0

~

(
L

r0

)−η
sinφ , (S10)

where φ = φr − φl is the phase difference across the barrier. This result reproduces the ideal

current phase relation I(φ) = IC sin(φ), where the critical current IC is reduced by a factor

of
(
L
r0

)−η
. Therefore, the critical current IC is directly related to the algebraic decay of phase

coherence in a 2D superfluid. Using the the condensate density

nc ≈ n(L/r0)−η (S11)

of a finite size 2D gas as defined in ref. (35) we finally get the critical current

IC ≈
2ncAtk=0

~
. (S12)
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We calculate the tunnelling amplitude tk=0 for a rectangular potential barrier of width d and

height VB, centered around x = 0, with the following mean field ansatz

ψ(x) =

{
− 1√

L
tanh((x+ δ)/(

√
2ξ)) x < −d/2

B exp(−κ(x+ d/2)) x > −d/2 ,
(S13)

with

δ =
d

2
− ξ√

2
arcsinh

(√2

κξ

)
(S14)

B =
1√
L

tanh
(1

2
arcsinh

(√2

κξ

))
(S15)

where ξ = ~/
√

2MµB is the healing length for a gas of bosons with mass M and chemical

potential µB. Outside the barrier (x < −d/2), ψ(x) is the exact solution to the Gross-Pitaevskii

equation. Inside the barrier (x > −d/2), we obtain the approximative solution by minimising

the energy

E =
B2

2κ

(~2κ2

2M
+ VB − µB

)
+
g

2

B4

4κ
(S16)

which yields the characteristic decay exponent κ =
√
k2

0 + k2
B with k2

0 = 2M(VB − µB)/~2

and k2
B = MgB2/2~2. Using the continuity of the wave function and its derivative at z = −d/2

we further get

κ2 = k2
0 +

MgB2

2~2
=

n

2ξ2

(
1− B2

n

)2 1

B2
(S17)

and obtain

B2 =
n

1 + k2
0ξ

2 +
√

1/2 + 2k2
0ξ

2 + (k2
0ξ

2)2
(S18)

= n
µB

V +
√
V 2
B − µ2

B/2
. (S19)

Therefore, we finally obtain the tunnelling energy

tk=0 =
1

L

~2κ

m

µB

VB +
√
V 2
B − µ2

B/2
exp(−κd) , (S20)
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which we insert into Eq. S12 to obtain the critical current IC.

We note that Eq. S12 which relates the critical current to the condensate density has previ-

ously been derived for a 3D system (49) and was found to quantitatively describe the behaviour

across the 3D BEC-BCS crossover for high barriers (V � µ) (34). Our derivation of the critical

current extends the validity of this relation in the bosonic limit to V & µ by including the mean

field contribution to the tunnelling amplitude inside the barrier. Following the same reasoning

and assumptions given in (34), it seems plausible that Eq. S12 is quantitatively accurate beyond

the bosonic case discussed above, but verifying this is beyond the scope of this paper. A more

detailed discussion of Eq. S12 and its derivation is given in Ref. (37).
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Strongly interacting two-dimensional Fermi systems are one of the great remaining challenges in many-
body physics due to the interplay of strong local correlations and enhanced long-range fluctuations. Here,
we probe the thermodynamic and transport properties of a 2D Fermi gas across the BEC-BCS crossover by
studying the propagation and damping of sound modes. We excite particle currents by imprinting a phase
step onto homogeneous Fermi gases trapped in a box potential and extract the speed of sound from the
frequency of the resulting density oscillations. We measure the speed of sound across the BEC-BCS
crossover and compare the resulting dynamic measurement of the equation of state both to a static
measurement based on recording density profiles and to quantum Monte Carlo calculations and find
reasonable agreement between all three. We also measure the damping of the sound mode, which is
determined by the shear and bulk viscosities as well as the thermal conductivity of the gas. We find that the
damping is minimal in the strongly interacting regime and the diffusivity approaches the universal quantum
bound ℏ=m of a perfect fluid.

DOI: 10.1103/PhysRevLett.124.240403

Strongly interacting fermionic systems appear in many
different areas of physics, yet understanding their behavior
remains challenging. A powerful experimental method to
gain access to their thermodynamic and transport properties
is to study collective excitations such as sound modes. The
speed of sound is determined by the compressibility of the
medium, giving access to its equation of state. The damping
of sound modes in the hydrodynamic regime is caused by
the diffusion of heat as well as longitudinal and transverse
momentum, and thus depends on the transport coefficients
of the medium, i.e., thermal conductivity, bulk, and shear
viscosity. In hydrodynamic systems which support well-
defined quasiparticle excitations such as fermionic quasi-
particles in a normal Fermi liquid or phonon excitations in
a superfluid, kinetic theory predicts that the damping rate
is proportional to the quasiparticle lifetimes. Long-lived
quasiparticles can transport heat or momentum over long
distances and therefore smooth out density and pressure
variations very efficiently, leading to strong attenuation of
sound waves. In contrast, no well-defined quasiparticles

exist in the strongly correlated regime. Here, particles
scatter with a mean free path comparable to the average
interparticle spacing, leading to lower diffusivities and
hence lower damping rates. A lower bound for the
diffusivities D≳ ℏ=m and thus quantum-limited transport
has been predicted and observed in several transport
channels, including shear viscosity in ultracold 2D [1–4]
and 3D [5–7] Fermi gases as well as spin diffusion in 2D
[2,4,8,9] and 3D Fermi gases [10–14]. In measurements of
sound propagation, this limit was observed in the sound
diffusion of a unitary 3D Fermi gas [15].
Several hypotheses have been brought forward to provide

an explanation for quantum-limited transport [16]: one,
motivated by holographic duality [17], is that it occurs near
scale invariant points in the phase diagram. The unitary 3D
Fermi gas is an example that seems to support this hypothesis
since it is strongly interacting as well as scale invariant and
exhibits quantum-limited shear and spin diffusion. In con-
trast, 2D Fermi gases exhibit a quantum scale anomaly that
breaks scale invariance [18–21]. Here, we investigate the
propagation and damping of sound in a strongly interacting
2D Fermi gas and thereby probe a crucial test case for this
hypothesis. We observe that the damping approaches the
quantum limit D ≈ ℏ=m in the strongly interacting regime,
where scale invariance is most dramatically violated, show-
ing that scale invariance or quantum criticality is in fact not
required for quantum-limited transport. Similar observations
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were made for transverse spin diffusion in [9]. Our results
confirm a scenario of incoherent transport that has emerged
in recent years from the study of anomalous transport
in high-temperature superconductors and other “badmetals”
[22–24] and links quantum-limited transport to strong
correlations.
We perform our studies of sound propagation with an

ultracold gas of 6Li atoms in a spin-balanced mixture of the
lowest two hyperfine states, trapped in a two-dimensional
box potential [25,26]. The gas is vertically confined in a
single node of a repulsive optical lattice with trap frequency
ωz=2π ¼ 8.4ð3Þ kHz. At our densities of about n↑=↓ ≡ n ≈
1 μm−2 per spin state, the chemical potential μ is smaller
than the vertical level spacing ℏωz, which ensures that our
gas is in the quasi-2D regime. The confinement in the
horizontal plane is created using a digital micromirror
device illuminated with blue detuned light (λ ¼ 532 nm),
trapping the gas in a two-dimensional box with a
typical size of lx × ly ¼ 30 × 40 μm2. According to the
temperature determination performed in [26], our system is

in the low-temperature regime with kBT=EF ≤ 0.1, where
EF ¼ ℏ2k2F=2m is the Fermi energy, kF ¼ ð4πnÞ1=2 the
Fermi momentum and m the atomic mass of 6Li.
For our experiments, we build on the experimental

procedure developed in [27], where sound propagation
was studied in weakly interacting 2D Bose gases. To excite
a sound mode in the box we follow the approach of [26]
and imprint a relative phase between two halves of the
system by illuminating one side with a spatially homo-
geneous optical potential for a short duration τ < h=EF.
We then observe the resulting density oscillations by
imaging the density distribution after different hold times
using in situ absorption imaging. An example of such an
oscillation is shown in Fig. 1(a). A sound wave traveling
back and forth between the two sides of the box is
clearly visible in the density profile. To extract the
oscillation frequency f ¼ ω=2π and the damping rate Γ
of this sound wave, we calculate the relative particle
imbalance Δn=n ¼ 2ðnt − nbÞ=ðnt þ nbÞ from the den-
sities nt and nb in the top and bottom halves of the box
and fit it with a damped sinusoidal of the form AðtÞ ¼
A0 cos ðωtþ ϕÞ exp ð−Γt=2Þ þ b [see Fig. 1(b)] [28]. We
measure the oscillation frequency for different boxes with
lengths between lx ¼ 15 μm and lx ¼ 40 μm and find
that it is proportional to the inverse of the box length
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FIG. 1. Propagation of a sound wave in a box potential:
(a) Density profiles nðx; tÞ=nðtÞ averaged along the direction
perpendicular to the sound propagation and normalized to the
average density nðtÞ within the box. A density wave propagating
through the box is visible. Each profile nðx; tÞ=nðtÞ is the average
of 120 individual realizations. Note that the color scale has been
chosen to enhance the visibility of the sound wave. (b) Relative
density imbalance between the two sides of the box for the same
data set. The solid line shows a damped sinusoidal fit to the data.
(c) Frequency of the density oscillation as a function of the
inverse box length. The slope of the linear fit (solid line)
corresponds to the speed of sound. In (b) and (c), the statistical
errors are smaller than the marker size. Each data point in (c) is
the average of 23 realizations.

(a)

(b)

FIG. 2. (a) Oscillations in the density imbalance at B ¼ 758 G,
B ¼ 883 G, and B ¼ 1009 G. Solid lines represent damped
sinusoidal fits. (b) Frequency (blue circles) and damping (red
squares) of sound oscillations as a function of magnetic field. The
frequency increases smoothly from the BEC to the BCS side and
starts to saturate at high magnetic fields. The damping shows a
clear minimum in the strongly interacting regime and increases
strongly towards either side. Each data point is the average of 39
realizations.
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[see Fig. 1(c)]. This confirms that we observe a sound wave
traveling at a constant velocity c ¼ 2lxf and that edge
effects are negligible.
To probe the speed of sound as a function of interaction

strength, we perform measurements in a box with lx ¼
30 μm at magnetic fields around the Feshbach resonance.
Examples of the resulting oscillations as well as the
evolution of the oscillation frequency as a function of
magnetic field are shown in Fig. 2. As the field is varied
from the BEC side to the BCS side of the crossover, the
oscillation frequency increases, which is expected since
the compressibility of a Fermi gas is much lower than that
of a weakly repulsive Bose gas. On the Fermi side, the gas
is thus stiffer with respect to density fluctuations and sound
waves propagate faster than on the Bose side.
We plot the speed of sound extracted from the oscillation

frequencies as a function of the 2D interaction parameter
ln ðkFa2DÞ [29] in Fig. 3(a). In a superfluid gas, two-fluid
hydrodynamics predict the occurrence of two sound modes
which propagate at different velocities, as observed in [32].
These modes generally mix density and entropy degrees of
freedom. For strongly interacting 2D superfluids however,
density and entropy excitations have been predicted to be
well decoupled [33,34], and hence the sound mode we
observe should correspond to an almost pure density wave.
In this case, the velocity of a sound wave is given by

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
m
∂μ
∂n

����
s

s

ð1Þ

and is directly related to the isentropic compressibility κ ¼
ð1=n2Þð∂n=∂μÞjs [35]. This relation gives us simple zero-
temperature expressions for the speed of sound in the
BEC and BCS limits of the crossover, which are in good
agreement with our data [dashed and dotted lines in
Fig. 3(a)].
For a quantitative analysis we use Eq. (1) to extract the

compressibility of our gas from our measurement of the
speed of sound. From this, we then determine the dimen-
sionless inverse compressibility scaling function fκ ¼
1=nEFκ of a two-dimensional Fermi gas.
In addition to this dynamic measurement of the equation

of state (EOS), we also perform a static measurement
of the compressibility EOS by determining the density
response of our system to a static repulsive potential,
similar to the work performed in [25,31,39,40] [see
Fig. 3(b)]. This results in two independent measurements
of fκ, which show good agreement with each other [see
Fig. 3(c)].
Finally we compare our data to theory by extracting fκ

from quantum Monte Carlo (QMC) calculations of the
ground state energy E0 of a homogeneous 2D Fermi gas
[37,38]. On the BCS side, the experimental results agree
well with the theoretical prediction. On the BEC side, both
the static and the dynamic measurements lie above the zero-
temperature prediction. This difference is consistent with
the predicted increase of the sound velocity at finite
temperature [41] and with a corresponding decrease of
the compressibility at finite temperature observed in [31],
which increases the value of fκ.
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FIG. 3. (a) Speed of sound across the BEC-BCS crossover. Gray lines represent the two theoretical limits: in the BEC regime,
Bogoliubov theory predicts μ ¼ gn and hence cB ¼ ðgn=2mÞ1=2, where g is the interaction parameter between bound dimers defined as
in [26,36]. On the BCS side, μ → EF yields a constant sound velocity cF ¼ vF=

ffiffiffi
2

p
where vF ¼ ℏkF=m is the Fermi velocity. (b) Static

measurement of the compressibility. A repulsive potential V is imprinted onto one half of the box resulting in a density imbalance Δn=n
(blue points). We extract the compressibility from the initial slope of the data points according to 1=n2κ ¼ limΔn→0 V=Δn in a local
density approximation. Each data point and the inset are averages of 20 realizations. (c) Comparison between the compressibility scaling
functions fκ obtained from the speed of sound (blue circles), the density response to an imprinted static potential (red squares) and QMC
calculations [37,38].
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Very recent simulations of the sound velocity in a 2D
Bose gas [42] indicate that the density and entropy modes
remain coupled even for relatively strongly interacting
Bose gases, leading to sound velocities which differ from
the Bogoliubov prediction. This should be observable as a
difference between the static and dynamic measurements
of the compressibility. However, if such a difference exists
in our system, it is smaller than the uncertainty of our
measurement.
We now turn our attention to the damping of the sound

waves. In our strongly correlated system, the mean free
path lmfp of the particles is much smaller than the oscillation
wavelength and their collision rate is high with respect to
the oscillation frequency [43]. Hence the system is in the
hydrodynamic regime. In this regime, the spatial variations
in density and temperature that constitute a sound wave
lead to diffusive currents of longitudinal momentum,
transverse momentum and heat, whose magnitudes are
proportional to the bulk and shear viscosities ζ and η and to
the heat conductivity β [44,45]. These diffusive currents
smooth out the density and temperature variations and thus
damp the sound wave according to the sound diffusion
constant

Ds ¼
η

ρ
þ ζ

ρ
þ β

cp − cv
cpcv

¼ Γ=k20; ð2Þ

where k0 ¼ π=lx is the wave vector of the sound wave and
cp and cv are the heat capacities at constant pressure and
volume. The evolution of Ds across the BEC-BCS cross-
over is shown in Fig. 4. It exhibits a broad minimum in the
crossover regime −1 < ln ðkFa2DÞ < 2 and increases
steeply towards the BEC and BCS limits.
Before comparing our data to theory, we note that making

quantitative predictions for transport coefficients of strongly
interacting 2D Fermi gases in the low-temperature regime is
still a major theoretical challenge. Approaches such as
Fermi liquid theory and BCS theory [45] are only accurate
at weak coupling. Results obtained for the high-temperature
regime (T ≥ TF) indicate that the shear viscosity and heat
conductivity have a minimum in the strongly correlated
regime [2–4] whereas the bulk viscosity is maximal near
resonance yet contributes much less to the damping [46–48].
In total, high-temperature theory predicts a minimum of
the sound diffusion in the crossover regime. Although our
measurements are performed in the low-temperature regime,
the observed behavior is in qualitative agreement with an
extrapolation of the high-temperature result to the low-
temperature regime.
A prediction for a lower bound of Ds in the strongly

interacting regime can be obtained via a simple scaling
argument: in kinetic theory, the diffusion coefficient is
given by the mean free path and the velocity viaDs ∼ vlmfp.
For a strongly interacting degenerate gas the mean free path
lmfp is on the order of the interparticle separation n−1=2

and the velocity on the order of the Fermi velocity
v ∼ vF ∼ ℏn1=2=m, resulting in a diffusion coefficient
Ds ∼ ℏ=m. Since the interparticle separation is a lower
limit for the mean free path, this yields a generic lower
bound for the damping. This lower limit is in agreement
with our measured diffusion coefficient ofDs ≈ 1.8ð2Þℏ=m
in the strongly correlated regime. Thus our strongly
interacting 2D Fermi gas is a nearly perfect fluid despite
the fact that scale invariance is broken and that the system
is not at a quantum critical point.
In this Letter, we have studied the propagation and

damping of sound waves in a homogeneous 2D Fermi gas
across the BEC-BCS crossover. We have extracted the
compressibility EOS from a measurement of the speed of
sound and find good agreement with T ¼ 0 QMC calcu-
lations. We have measured the sound diffusion constant as a
function of the interaction strength and find universal sound
diffusion Ds ∼ ℏ=m and quantum-limited transport in the
strongly interacting regime. This lower limit is reached at
interactions where scale invariance is violated most
severely [9,21], but where the mean free path is comparable
to the particle spacing. Since sound diffusion is the sum of
momentum and heat diffusion, we thus find upper bounds
of order ℏ=m on each diffusion channel individually in the
crossover regime. This demonstrates that the 2D Fermi gas
realizes a nearly perfect fluid [17,49] and provides a
benchmark against which future theoretical predictions
can be validated.
An interesting extension of our measurements would

be to study the temperature dependence of Ds as done
in unitary 3D Fermi gases [15]. In the fermionic regime,
this would allow us to observe whether there is a maximum
of Ds at the critical temperature of superfluidity, similar to
measurements in 3He [50]. In the deep BEC regime, control

FIG. 4. Sound diffusion coefficient across the BEC-BCS cross-
over. In the strongly correlated regime, the diffusion coefficient
reaches a minimumwhich agrees well with the universal quantum
bound for diffusion at ℏ=m (dashed line).
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over the temperature of the gas would enable studies of
second sound in a strongly interacting Bose gas [34,42].
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Understanding how strongly correlated two-dimensional (2D) systems can give rise to unconven-
tional superconductivity with high critical temperatures is one of the major unsolved problems in
condensed matter physics. Ultracold 2D Fermi gases have emerged as clean and controllable model
systems to study the interplay of strong correlations and reduced dimensionality, but direct evidence
of superfluidity in these systems has been missing. Here, we demonstrate superfluidity in an ultra-
cold 2D Fermi gas by moving a periodic potential through the system and observing no dissipation
below a critical velocity vc. We measure vc as a function of interaction strength and find a maximum
in the crossover regime between bosonic and fermionic superfluidity. Our measurement establishes
ultracold Fermi gases as a powerful tool for studying the influence of reduced dimensionality on
strongly correlated superfluids.

Reducing the dimensionality of a quantum system from
three to two dimensions significantly modifies its physical
properties. One striking difference is the increased role
of fluctuations in low-dimensional systems, which pre-
vents long range phase coherence [1] and makes 2D the
marginal dimension for the existence of superfluidity [2].
Hence it is quite surprising that in all known ambient-
pressure high-Tc materials superconductivity occurs in
two-dimensional structures, such as the copper-oxide lay-
ers in cuprates. Three decades after their discovery, the
mechanism giving rise to superconductivity and the role
of the reduced dimensionality in these systems are still
under debate [3].

Over the last years, ultracold 2D Fermi gases [4–9]
have been established as model systems that can provide
insight into the interplay of strong correlations and re-
duced dimensionality [10–15]. Recent experiments have
observed pair condensation [16] and phase coherence [17]
at low temperatures. While these results suggest the
presence of a superfluid, this has not been directly ob-
served so far.

In this work, we obtain definitive evidence for super-
fluidity in a 2D Fermi gas by observing frictionless flow
below a critical velocity vc. We study the temperature-
dependence of the critical velocity and observe the phase
transition from the superfluid to the normal state at a
critical temperature Tc. Finally, we measure the crit-
ical velocity as a function of interaction strength and
show that the 2D Fermi gas is superfluid throughout the
BEC-BCS crossover from deeply bound dimers to weakly
bound Cooper pairs.

For our experiments, we use a Fermi gas of N ≈ 6000
ultracold 6Li atoms in the lowest two hyperfine states,
trapped in a box potential [18]. The gas is tightly con-
fined along the z-direction with a level spacing ~ωz ≈
h · 9.2 kHz that is larger than the thermal energy kBT
and the chemical potiential µ of the gas, which places
our system in the quasi-2D regime [19].

FIG. 1. Measuring the critical velocity of a two-
dimensional Fermi gas. (A) Sketch of the trapping po-
tential. A 2D Fermi gas is trapped in a box potential (blue)
projected through a high-resolution microscope objective. A
periodic potential (red) can be moved through the gas at a
variable velocity v. (B) Sketch of the Bogoliubov dispersion
of a superfluid Bose gas. At small momentum transfer ~q,
excitations are phononic and the dispersion has a linear slope
given by the speed of sound vs, while for higher momentum
transfers single-particle excitations become dominant and the
dispersion becomes quadratic. (C) Response r(v) of a system
at an interaction strength of ln(kFa2D) = −0.8 to a moving
optical lattice with wavevector k0 ≈ 0.15 kF. While no dissi-
pation occurs at low lattice velocities, there is a sharp increase
in the response of the system above a critical velocity vc. Note
that the moving lattice probes the dispersion relation of the
system along a vertical line, as visualized by the red arrow in
(B). This results in a decrease of the response at high lattice
velocities. The critical velocity is extracted by a fit (red solid
line) according to r(v) = Amax(0, v2 − v2c ) [20].

To show that the system is superfluid, we verify that it
fulfills the Landau criterion [21–26], which states that the
dispersion ε(p) of a superfluid does not allow for the cre-
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ation of excitations at velocities smaller than a nonzero
critical velocity vc = minp(

ε(p)
p ). Thus, an impurity mov-

ing through a superfluid with a velocity v < vc creates
no excitations, and the superfluid flows around it with-
out friction. We create such an impurity by interfering
two red-detuned laser beams in the center of the trap, re-
sulting in a sinusoidal potential whose wavelength can be
tuned by adjusting the crossing angle of the two beams.
A frequency detuning ∆ν between the two laser beams
causes this optical lattice to move at a constant speed
v = L∆ν, where L is the spacing between two maxima
of the periodic potential.

To measure the critical velocity in our system, we move
the optical lattice through the gas at different velocities
and observe the response of the system by measuring its
momentum distribution n(k). To obtain n(k), we ramp
the interaction strength to a value of ln(kFa2D) = −2.8,
where kF =

√
4πn = mvF/~ is the Fermi wavevector of

a gas with density n per spin state and a2D is the 2D
scattering length [27]. At this interaction strength, the
system is deep in the BEC regime, where the gas con-
sists of weakly interacting dimers and it is straightfor-
ward to measure n(k) using matter wave focusing [28].
As the occupation of the lowest momentum modes de-
creases with increasing temperature, we define the re-
sponse r(v) = (n(k = 0, v = 0)/n(k = 0, v)) − 1 as a
robust measure for the amount of energy that was im-
parted to the system by the moving potential [19].

A typical measurement of the response of the system
as a function of lattice velocity is shown in Fig 1 C. We
observe that as the velocity of the optical lattice is in-
creased, the gas is unaffected until a critical velocity is
reached and a sharp onset of dissipation occurs. In con-
trast to previous experiments [22–25], we observe that
the response decreases again at higher velocities. This is
due to the fact that the optical lattice transfers a specific
momentum ~k0 = ~2π/L to the superfluid, whereas the
impurity in Landau’s gedankenexperiment can excite the
system at all momenta. Therefore, a moving optical lat-
tice with varying velocity probes the dispersion relation
of the gas on a vertical line of constant p = ~k0. This is
visualized in Fig. 1 B.

We hence perform measurements at different spacings
L of the periodic potential, and thereby determine the re-
sponse r(v, k0) as a function of both the lattice velocity
v and the lattice wavevector k0. In bosonic superfluids,
the lowest velocity at which excitations can be created is
found at small wavevectors. These long-wavelength ex-
citations are phononic modes that are excited by an ob-
stacle moving at a velocity close to the speed of sound of
the system. In BCS superfluids, phononic excitations at
low k0 can still be created, but the lowest onset velocity
is found at k0 ≈ 2 kF. This is due to pair breaking exci-
tations, which can occur at all momenta but according to
BCS theory can be excited with the lowest velocites at a
wavevector of 2 kF. Our measurements in the BEC (see

FIG. 2. Phononic and pair breaking excitations in a
2D Fermi gas. (A) Response of a gas in the BEC regime
to excitations with lattice wavevector k0 and velocity v. For
small wavevectors, the moving lattice excites phononic modes
at the sound velocity vs. For larger wavevectors, the peak in
the heating rate moves to higher velocities as the dispersion
deviates from the linear phononic branch and single-particle
excitations become dominant. (B) In the BCS regime, we
observe a continuum of pair breaking excitations with a min-
imum of the onset velocity at k0 = 2 kF. In both regimes, the
heating rate is negligible for excitations that move slower than
the critical velocity (red dashed lines, taken from Fig. 4 C).
To enhance the visibility of weaker excitations, each column
has been linearly rescaled to range from 0 to 1.

Fig. 2 A) and BCS (see Fig. 2 B) regimes directly show
this difference in the excitation spectra of bosonic and
fermionic superfluids. For both interaction strengths, we
clearly observe a critical velocity below which no excita-
tions are created, which constitutes conclusive evidence
of superfluidity.

Having established a measurement of the critical ve-
locity, we now go on to determine the critical tempera-
ture Tc of a gas in the BEC regime (ln(kFa2D) = −2.9).
We achieve this by preparing gases at different temper-
atures [19] and measuring the response of the system to
the moving periodic potential. With increasing tempera-
ture, we expect the phononic branch of the dispersion to
broaden, and eventually become broad enough that ex-
citations at arbitrarily small velocities can heat the gas.
This causes the critical velocity to decrease with tem-
perature and vanish at T = Tc. Measurements of the
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FIG. 3. Observing the superfluid phase transition.
(A,B,C) We determine the critical temperature of a gas in the
BEC regime (ln(kFa2D) = −2.9) by measuring the response
of the system to a moving periodic potential at different tem-
peratures. For a cold gas (A), the absence of dissipation at
low velocities is followed by a sharp rise in the response of
the gas at the critical velocity. As the temperature increases,
the critical velocity is reduced (B) until dissipation occurs at
arbitrarily small velocities once the temperature is above Tc

(C). The red solid lines are fits of the response r(v) according
to r(v) = Amax(C, v2 − v2c ). The blue dashed lines show fits
where vc is fixed to 0. (D) Difference ∆R̄2 = R̄2

vc>0−R̄2
vc=0 of

the adjusted coefficients of determination of the two fits. For
low temperature gases, allowing a finite critical velocity sig-
nificantly improves the fit beyond the trivial effect of adding
a free parameter and hence ∆R̄2 > 0. In contrast, this is
not the case for high temperature systems above Tc. We can
therefore estimate Tc by extracting the temperature at which
a nonzero vc no longer improves the fit. For the measurement
shown in this figure, we find that the phase transition to the
normal state occurs at Tc/TF = 0.094 ± 0.004stat ± 0.02sys

[19]. The errorbars show 1σ confidence intervals obtained by
bootstrapping.

response of the system for three different initial temper-
atures are shown in Fig. 3 A-C. While the sharp on-
set of dissipation at the critical velocity is clearly visi-
ble in the colder data, it disappears at higher temper-
atures, signalling the phase transition from a superfluid
to a normal state. We extract a critical temperature of
Tc/TF = 0.094± 0.004stat ± 0.02sys [19], which is in very
good agreement with theoretical predictions [8] and the
observed onset of pair condensation [16][29].

In our final set of measurements, we study the evolu-
tion of the critical velocity in the crossover from a con-
densate of bosonic dimers to a BCS superfluid. As shown
in Fig. 2, the lowest-lying excitations on the BEC side
of the resonance are sound modes at small values of k0,
while for a BCS superfluid the minimum velocity for pair
breaking occurs for excitations around 2 kF. Hence, we
measure the interaction dependence of the response r(v)
at two different lattice wavevectors of k0 ≈ 0.3 kF and
k0 ≈ 2 kF. The results are shown in Fig. 4 A and B.

For a lattice wavevector of k0 ≈ 0.3 kF, we clearly ob-

FIG. 4. Interaction dependence of the critical velocity.
(A,B) Response of a 2D Fermi gas to a moving lattice with
wavevectors k0 ≈ 0.3 kF (A) and k0 ≈ 2 kF (B) at different
interaction strengths. In the BEC regime (ln(kFa2D) < −1),
we observe a well defined excitation that corresponds to a
sound mode for k0 ≈ 0.3 kF and single particle excitations for
k0 ≈ 2 kF. When going to the BCS side of the crossover, the
peak broadens into a continuum of pair breaking excitations.
To enhance the visibility of weaker excitations, each column
has been linearly rescaled to range from 0 to 1. (C) We deter-
mine the critical velocity as a function of interaction strength
as the lower of the two onset velocities obtained from the
data shown in (A,B). In the BEC regime, the critical veloc-
ity is limited by excitations at small wavevectors (blue dots),
while in the crossover the lowest onset velocities occur at 2 kF
(red diamonds). We find that the 2D Fermi gas is superfluid
throughout the 2D BEC-BCS crossover with the highest crit-
ical velocities found in the crossover regime at ln(kFa2D) ≈ 0.
For comparison, we show the speed of sound vs (grey squares)
as measured in [30], the grey line is a guide to the eye. The
error bars denote the 1σ confidence intervals of the fit and are
mostly smaller than the symbol size.

serve the presence of a well defined sound mode with an
onset velocity that increases as a function of interaction
strength. In the crossover region (ln(kFa2D) ≈ 0.5), the
peak smoothly broadens into a continuum as pair break-
ing becomes the dominant excitation in the system. For
k0 ≈ 2 kF, the excitations on the BEC side are single par-
ticle excitations, with pair breaking taking over towards
the BCS side of the resonance. We fit the onset velocities
for both data sets and use the smaller of the two values
as the critical velocity of the system (see Fig. 4 C).
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The measured critical velocities scale with the speed
of sound on the BEC side of the resonance, show a maxi-
mum in the crossover and decrease again as pair breaking
becomes dominant in the BCS regime. The maximum of
vc at an interaction strength of ln(kFa2D) ≈ 0 further-
more indicates that fermionic 2D superfluids are most
stable in the strongly correlated crossover regime, in good
agreement with the maximum of the critical temperature
for pair condensation reported in [16].

Our results establish 2D Fermi gases as ideal model
systems to study how superfluidity is affected by the in-
terplay of strong correlations and reduced dimensional-
ity. In particular, they can be used to study the transition
from a superfluid to a strongly correlated pseudogap state
above Tc in a much simpler and more accessible system
than high-Tc superconductors. Finally, the dimensional-
ity of ultracold Fermi gases can be tuned continuously,
making them uniquely suited to study the remarkable
stability of the superfluid phase in the crossover from
two to three dimensions.
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Supplementary materials

Preparation Scheme and Tuning of Interactions

We perform our experiments with a balanced spin
mixture of 6Li atoms in the |F = 1/2,mF = 1/2〉 and
|F = 1/2,mF = −1/2〉 hyperfine states. The atoms are
trapped in a box potential, resulting in a homogeneous
density distribution as shown in Fig. S1. As the critical
velocity depends on the density of the gas, this homoge-
nous density is critical for observing a sharp onset of
dissipation at vc.

The experimental setup and the procedure used to pre-
pare homogeneous 2D Fermi gases are described in detail
in [18]. In brief, we first prepare an ultracold gas of 6Li
atoms in a highly elliptical optical dipole trap. We then
perform further evaporative cooling and transfer the re-
maining 4000− 8000 atoms into a circular box potential
with a diameter of D ≈ 60µm.

FIG. S1. Imaging a homogeneous 2D Fermi gas (A) In-
situ absorption image of the density distribution in our box
potential [31]. (B) Momentum distribution after performing
matter wave focusing by letting the gas expand into a har-
monic potential for a quarter of the trap period. The tight
confinement in the z-axis leads to a rapid expansion of the
gas in this direction, which causes the gas to expand far out-
side the depth of field of the imaging system. By tilting the
imaging beam relative to the z-axis, the image of the gas at
different z-positions is displaced laterally, with the gas being
in focus in the center and imaging aberrations increasing to
the sides. (C) In-focus part of the momentum distribution
along the dashed grey line in (B). The condensate peak at
low momenta is clearly visible. All images are the result of
averaging over 8 individual measurements. Note that resolv-
ing thermal wings in the momentum distribution (C) requires
averaging over a significantly higher number of images.

To bring the system into the 2D regime, the atoms
are confined in the z-direction in a single antinode of an
optical standing wave potential. This potential is cre-
ated by two blue-detuned (λ = 532 nm) laser beams in-
terfering under a shallow angle, resulting in an optical
lattice with a lattice spacing of approximately 3µm and
a harmonic oscillator spacing of ~ωz ≈ h 9.2 kHz. For

µ/h [kHz] n [µm−2] VLatt/h [kHz]

Fig. 2A 0.96 1.5 0.36

Fig. 2B 5.1 0.80 0.58

Fig. 3 0.66 1.1 0.24

Fig. 4 - 0.80 0.49

TABLE S1. Experimental parameters. Chemical poten-
tial µ, density n and lattice power VLatt used to obtain the
data shown in Figs. 2-4. The value of the chemical potential
was calculated from the measured density using the equation
of state published in [33]. The height of the lattice potential
is determined from the laser power of the lattice beams using
the mean of the two calibration results described in the text.

all measurements shown in this work, both the chemi-
cal potential µ and the thermal energy kBT of the gas
were kept well below the level spacing ~ωz, thus avoiding
population of excited states in the z-direction. There-
fore, we can parametrize the interparticle interactions
by an effective 2D scattering length a2D and treat the
gas as an effective 2D system. The 2D scattering length
depends on the harmonic oscillator length in z-direction
lz =

√
~/mωz and the 3D scattering length a3D according

to a2D = lz
√
π/0.905 exp(−

√
π/2 · lz/a3D) exp(− 1

2∆w)
[27], where ∆w(µ/~ωz) is a momentum-scale correction
that becomes relevant on the BCS side of the crossover.
In our experiments we tune the 2D scattering length a2D
by varying a3D using a broad Feshbach resonance located
at a magnetic field of B = 832 G [32]. This allows us to
continuously tune the system from a gas of deeply bound
dimers to a BCS superfluid.

Lattice Calibration

To observe frictionless flow in our 2D Fermi gas, we
realize Landau’s gedankenexperiment of a mobile impu-
rity moving through the system without dissipation. In
Landau’s scenario, this disturbance is point-like and can
excite the system at all momenta. However, when try-
ing to experimentally realize this with a focused laser
beam, the shape and finite size of the focus introduce a
momentum scale that is difficult to control. Hence, we
use a moving optical lattice as our impurity, since it has
a well-defined and tunable momentum transfer that is
determined by the lattice wavevector k0.

The moving optical lattice is created by interfering
two red-detuned (λ = 780 nm) laser beams with a con-
trollable frequency difference. To obtain these beams,
we use light from an extended-cavity diode laser (Top-
tica DL PRO 780), split it into two paths and route
each beam through an independently controlled acousto-
optical modulator (AOM). This allows us to create an
optical lattice moving at a speed of v = L∆ν by setting
the frequency difference ∆ν between the two AOMs. We
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can also tune the momentum transfer ~k0 ∝ 1/L of the
lattice by varying the distance of the two beams on the
entrance aperture of the high-resolution objective that
focuses them onto the atoms. This changes the cross-
ing angle α of the interfering beams and thus the lattice
spacing L = λ

2 sinα/2 .

To determine the lattice spacing, we image the poten-
tial directly onto a camera using a second high-resolution
objective. The height of the lattice potential is cali-
brated by projecting each beam onto the gas individually
and measuring the change in the density distribution as
a function of laser power. We observe a linear depen-
dence of the change in density on the laser power and
use the known equation of state of the system to extract
the potential height as a function of laser power for both
beams. We find potential heights V/h of 108 Hz/mW
and 122 Hz/mW for the two beams. As the contrast of
the interference pattern can be extracted from the images
of the intensity distribution and is & 0.95, the potential
height is computed to be VLatt/h ≈ 460 Hz/mW.

Alternatively, we can project the optical lattice at the
widest lattice spacing onto the atoms at variable laser
power and directly measure the amplitude of the result-
ing density modulation. Using this method, we obtain
VLatt/h ≈ 510 Hz/mW, showing reasonable agreement
between the two methods. Thus, the lattice heights used
in this work are a small fraction of the chemical potential
of the gas for all but the lowest values of ln(kFa2D) (see
Table S1).

Thermometry and Controlled Heating

Performing thermometry on strongly interacting de-
generate 2D Fermi gases is challenging, as there is only
very limited theory available for these systems. For har-
monically trapped gases, this problem can be circum-
vented since a significant fraction of the atoms is in the
low density region at the edge of the trap where the gas
is non-degenerate and can be reasonably well described
by a Boltzmann distribution. This allows the extraction
of the temperature of the gas from the in situ density
distribution as done for example in [15]. For our homo-
geneous system, however, such low density wings do not
exist.

An alternative approach is to use matter wave focusing,
where a weak harmonic confinement is used to perform a
rotation in phase space [18, 28] to extract the momentum
distribution of the system. In our case, the harmonic
confinement has a trap frequency of ωmag ≈ 2π · 28 Hz
and is provided by the curvature of the magnetic offset
field. Since this technique requires ballistic expansion
of the sample, we can only use it in the BEC regime,
where the interactions are weak enough that the effect of
collisions during the time of flight can be neglected.

As shown in [15], the high-momentum tail of the mo-

mentum distribution is well described by a Boltzmann

equation of state nλ2T = eµd/kT , where λT =
√

2π~2

mdkBT

is the thermal wavelength of dimers with mass md and
µd is the chemical potential of the dimers. Hence
we can extract the temperature of a gas in the BEC
regime by performing matter wave focusing and fitting
the high-momentum part of the momentum distribution.
However, since the signal-to-noise ratio for this high-
momentum part is quite low in our measurements, this
method requires considerable averaging and is not suit-
able as a single-shot thermometer. We therefore use the
change of the height of the condensate peak, which can
be determined with a much higher signal-to-noise ratio,
to quantify the response of the system to the moving pe-
riodic potential.

To increase the temperature of the gas in a controlled
manner, we move the periodic potential through the sys-
tem for a variable heating time τ at a velocity larger than
the critical velocity. The resulting change in the momen-
tum distribution of the system is shown in Fig. S2 A-C,
with the extracted temperatures shown in Fig. S2 D. For
comparison, we show the change in the height of the con-
densate peak, plotted as r(τ) = (n(k = 0, τ = 0)/n(k =
0, τ))− 1 in Fig. S2 E. We use this measurement to cali-
brate the heating procedure and thereby the temperature
axis shown in Fig. 3 D.

FIG. S2. Calibration of the heating procedure. (A-
C) Measurements of the momentum distribution of the gas
after applying the moving lattice to the system for different
heating times τ . The red solid lines show the Boltzmann fits
to the wings of the distribution from which the temperature
is extracted. (D) Temperature T of the gas as a function of
heating time. We observe that the temperature of the gas
increases roughly linearly with the heating time (red dashed
line). (E) Response r(τ) as a function of heating time. The
response shows a very similar behavior to the temperature,
but can be measured with a much higher signal-to-noise ratio.
All data points are obtained from an average of 55 individual
measurements. The error bars in (D) denote the 1σ confidence
interval of the fit.

To obtain an estimate of the systematic uncertainty
of our determination of Tc, we performed a second set
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of measurements with a homogeneous 2D Fermi gas in
a different potential: Using a red-detuned (λ = 770 nm)
flat-bottom potential shaped by a digital micromirror de-
vice (DMD) instead of blue-detuned walls creates a box
trap of the same dimensions as in the previous measure-
ment, but with a weak (ωmag ≈ 2π · 28 Hz) harmonic
confinement outside the trap volume that is populated
by a small number of thermal atoms. While the lowest
temperatures we achieved in this red-detuned potential
were significantly higher than in the blue-detuned trap,
we were able to perform a measurement of the critical
temperature at comparable interaction strength and den-
sity to the data shown in Fig. 3 of the main text. For
this measurement, thermometry was performed using a
Boltzmann fit to the low density part of the in situ den-
sity distribution, from which we obtain a critical tem-
perature of Tc = 0.116(2)TF using the same evaluation
as for the data shown in Fig. 3. A source of error on
the temperatures extracted using these in situ fits are
inhomogeneities of the harmonic potential, for example
due to the optical lattice used for the 2D confinement,
as well as small offsets in the absorption imaging, which
most likely lead to an overestimation of the temperature
of the gas. As a rough approximation for the systematic
error of our determination of Tc we use the difference
between the values obtained using time-of-flight ther-
mometry (Tc/TF = 0.094(4)) and in situ thermometry
(Tc/TF = 0.116(2)). This then yields a critical tempera-
ture of Tc/TF = 0.094± 0.004stat ± 0.02sys for a bosonic
system at an interaction parameter of ln(kFa2D) = −2.9.

Critical Temperature in the BEC-BCS Crossover

To observe the phase transition from a superfluid to
a normal state across the BEC-BCS crossover, we per-
formed measurements similar to the one shown in Fig. 3
for interaction strengths ranging from ln(kFa2D) = −4.1
deep in the molecular regime to ln(kFa2D) = 1.1 on
the BCS side of the resonance (Fig. S3). For these
measurements, we prepare and heat the system at the
same interaction strength of ln(kFa2D) = −2.9 as for the

measurements shown in Fig. 3, ramp to different mag-
netic fields to tune the interaction strength to the desired
value, and perform measurements of vc at these interac-
tion strengths. We observe a clear qualitative difference
in the response to the moving lattice between cold and
hot systems at all measured interaction strengths, show-
ing the presence of a critical temperature. However, as
the temperature of the gas changes during the interaction
ramp and we cannot use matter wave focusing to deter-
mine the temperature at higher interaction strengths, we
are currently unable to quantitatively determine the crit-
ical temperatures of these systems. Nevertheless, these
results present a promising starting point for a future
measurement of the critical temperature for superfluid-
ity in 2D Fermi gases across the BEC-BCS crossover.

FIG. S3. Superfluid phase transition at different in-
teraction strengths. Difference ∆R̄2 of the adjusted coeffi-
cients of determination between fits to r(v, T ) with zero and
non-zero vc as a function of heating time τ for different in-
teraction strengths. Linear fits of ∆R̄2 with a threshold at a
critical heating time (red lines) clearly show the appearance
of a non-zero critical velocity below a critical temperature for
systems across the crossover (A,B,C) and into the BCS regime
(D). However, due to the challenges involved in measuring the
temperature of strongly interacting homogenous Fermi gases
discussed in the text we are currently not able to quantita-
tively determine the relation between the heating time and
the temperature for these systems and hence cannot give a
value for Tc.



B. Calculations

B.1. Heat equation
Derivation of equation 6.24

We want to calculate the change in energy in a given volume, given by

∂

∂t

(
%v2

2 + %ε

)
. (B.1)

We first have a look at the kinetic energy term. The change of kinetic
energy can be rewritten using the continuity and Euler equations (eqs.
6.1 and 6.9):

∂

∂t

(
%v2

2

)
= v2

2
∂%

∂t
+ %

2
∂v2

∂t

= −v
2

2 ∇·(%v)− v·∇p− %v·(v·∇)v

= −v
2

2 ∇·(%v)− v·∇p− %

2v·∇v2. (B.2)

The pressure gradient is then eliminated by introducing the enthalpy
density w = ε + pV/Nm = ε + p/%. The change in enthalpy is given
by changes in entropy and volume: dw = Tds + dp/%. Thus, we have
∇p = %∇w − %T∇s, and then

∂

∂t

(
%v2

2

)
= −v

2

2 ∇·(%v)− %v·∇
(
v2

2 + w

)
+ %Tv·∇s. (B.3)

For the change in internal energy, we use dV = −d%/%2 to write d(%ε) =
εd%+%dε = εd%+%Tds+(p/%)d% = wd%+%Tds. The change in internal
energy in the volume is then given by

∂(%ε)
∂t

= w
∂%

∂t
+ %T

∂s

∂t
= −w∇·(%v)− %Tv·∇s, (B.4)

where we have used the continuity equation for particle (eq. 6.1) and
entropy density (eq. 6.6). The energy balance equation (eq. 6.24) is
obtained by combining equations B.3 and B.4.

∂

∂t

(
%v2

2 + %ε

)
= −v

2

2 ∇·(%v)− %v·∇
(
v2

2 + w

)
+ %Tv·∇s− w∇·(%v)− %Tv·∇s

= −∇·
[
%v
(
v2

2 + w

)]
. (B.5)
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B. Calculations

Derivation of equation 6.26

To derive equation 6.26 we expand the left-hand side of equation 6.24:

∂

∂t

(
%v2

2 + %ε

)
= v2

2
∂%

∂t
+ %v∂v

∂t
+ %

∂ε

∂t
+ ε

∂%

∂t
. (B.6)

The continuity equation is used to eliminate ∂%/∂t and inserting ∂v/∂t
from equation 6.20, one obtains

∂

∂t

(
%v2
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)
= −v

2

2 ∇(%v)−%(v∇)v
2

2 −v∇p+vi
∂σ′ik
∂xk

+%∂ε
∂t
−ε∇(%v).

(B.7)

With dε = Tds+ p/%2d% and the continuity equation (eq. 6.1), we have

∂ε

∂t
= T

∂s

∂t
+ p

%2
∂%

∂t
= T

∂s

∂t
− p

%2 ∇·(%v), (B.8)

and since w = ε+ p/%, this yields:

∂

∂t

(
%v2
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)
= −

(
v2

2 + w

)
∇·(%v)− %(v·∇)v

2

2

− v·∇p+ %T
∂s

∂t
+ vi

∂σ′ik
∂xk

. (B.9)

We then replace ∇p = %∇w − %T∇s and for the rightmost term, one
can write

vi
∂σ′ik
∂xk

= ∂

∂xk
(viσ′ik)− σ′ik

∂vi
∂xk

= ∇·(vσ′)− σ′ik
∂vi
∂xk

. (B.10)

Together, this yields equation 6.26.
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B.2. Calculation of the sound dispersion

B.2. Calculation of the sound dispersion
B.2.1. Classical gas
Setting up the system of equations

In order to derive the sound dispersion, one assumes that the particles
oscillate harmonically around their rest position and that this movement
causes small fluctuations in the thermodynamic quantities

v(r, t) = v exp[i(q·r− ωt)], and (B.11)
%(r, t)
p(r, t)
T (r, t)
s(r, t)

 =


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p0
T0
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+


%′

p′

T ′

s′

× exp[i(q·r− ωt)]. (B.12)

The first step is to linearize the hydrodynamic equations in v the small
variations %′, p′, T ′ and s′.

We start out with the continuity equation 6.1. In component notation,
it reads

0 = ∂%

∂t
+ ∂

∂xi
(%vi) (B.13)

=
[
−iω%′ + %(iqi)vi + ����

vi(iqi)%′
]
exp[i(q·r− ωt)]. (B.14)

The third term is nonlinear and drops out, since vi and %′ are multiplied.
Writing this equation in vector notation, this yields

ω%′ − %q·v = 0. (B.15)

Next, the momentum balance equation is written in component nota-
tion as

0 = ∂
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(%vi) + ∂

∂xk
Πik (B.16)

= ∂
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∂xk
(pδik + ���%vivk − σ′ik). (B.17)

The first two terms yield

∂

∂t
(%vi)+ ∂

∂xk
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′−i%ωvi+iqip′) exp[i(q·r−ωt)] (B.18)

Again, the crossed term drop out since %vivk and vi%
′ are nonlinear

contributions. The term containing the viscous stress tensor results in
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B. Calculations

Putting B.18 and B.21 together, one obtains in vector notation

ω%v + iηq2v + i

(
d− 2
d

η + ζ

)
(q·v)q − p′q = 0. (B.22)

In this equation, vectors proportional to v and q have to add up to zero.
Therefore, v and q have to be collinear. We can thus write (q·v)q = q2v
and obtain[

ω%+ i

(2d− 2
d

η + ζ

)
q2
]

v− p′q = 0. (B.23)

The third equation is the heat equation, which takes on the following
form

%T

(
∂s

∂t
+ v·∇s

)
= σ′ik

∂vi
∂xk

+ ∇·(κ∇T ). (B.24)

Since the viscous stress tensor is already a combination of derivatives of
the velocity, the first term on the right hand side is nonlinear and does
not contribute to the linearized version of this equation. Similarly, v∇s
will be nonlinear, since v and s′ are multiplied. We then are left with

%Tωs′ + iκq2T ′ = 0. (B.25)

Simplifying the expressions

In order to simplify eqs. B.15, B.23 and B.25, we note that the thermo-
dynamic variables are not independent but are related via
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(B.26)

This allows us to eliminate %′ and s′, resulting in the following system
of equations ω (∂%/∂T )p −%q ω (∂%/∂p)T

0 ω%+ iaq2 −q
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(B.27)

where we have written a = 2d−2
d η + ζ for convenience.

We now introduce the adiabatic and isothermal sound velocities
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, (B.28)

which for now are just notational shortcuts, as well as the heat capacities
at constant pressure and volume
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v
. (B.29)
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B.2. Calculation of the sound dispersion

We further simplify the equations by making use of the relation

c2 = Cp
Cv
c2
T (B.30)

between the sound velocities and the heat capacities. With equations
B.28 to B.30, the system of equations readsω (∂%/∂T )p −%q ωCp/(Cvc2)
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ωCp + iκq2 0 ω%T (∂s/∂p)T

·

T ′v
p′

 =

0
0
0

 . (B.31)
The solution to this system is obtained by setting the determinant of
the coefficient matrix to zero. With

%T

(
∂%

∂T

)
p

(
∂s

∂p

)
T

= Cp
c2
Cp − Cv
Cv

, (B.32)

this leads to

0 = ω2Cp
c2
Cp − Cv
Cv

(ω%+ iaq2)

+ %q2(ωCp + iκq2)− ω

c2
Cp
C2
v

(ω%+ iaq2)(ωCp + iκq2),

(B.33)

After reordering in powers of ω, we finally arrive at eq. 6.34:

ω3 + i
ω2q2

%

(
η + ζ + κ%

Cp − Cv
CpCv

)
−ωq2c2− ωq

4κ
%Cv

(η + ζ) = 0 (B.34)

All that is left is to prove equations B.30 and B.32. B.32 can be shown
by setting %′ = 0 in B.26 and replacing p′ in the equation for s′ in order
to obtain an expression for the entropy change s′(T ′, %′)%′=0 at constant
volume. The heat capacity at constant volume is then given by

Cv = %T

(
∂s

∂T

)
v

= %T

(
∂s′

∂T ′

)
%′=0

(B.35)

= Cp − %T
(
∂s

∂p

)
T

(
∂%

∂T

)
p

(
∂p

∂%

)
T

, (B.36)

And therefore

Cv
Cp

= 1− (∂%/∂T )p(∂s/∂p)T
(∂s/∂T )p(∂%/∂p)T

(B.37)

Eq. B.30 can be shown analogously by setting s′ = 0 and replacing T ′
in the formula for %′, resulting in %′(p′). Then

1
c2
s

=
(
∂%

∂p

)
s

= %′

p′
=
(
∂%

∂p

)
T

−
(
∂%

∂T

)
p

(
∂s

∂p

)
T

(
∂T

∂s

)
p

(B.38)

= 1
c2
T

[
1− (∂%/∂T )p(∂s/∂p)T

(∂s/∂T )p(∂%/∂p)T

]
= 1
c2
T

Cv
Cp
.

(B.39)
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B. Calculations

B.2.2. Superfluid
We start out with equations 6.47 and 6.46. These are

∂2%

∂t2
= ∆p (B.40)

∂2s

∂t2
= s2 %s

%n
∆T. (B.41)

We now choose the density and temperature as independent variables
and allow for small fluctuations of the form ∼ exp (iq·r− iωt). Omit-
ting second order terms in the perturbations, this yields

∂2%

∂t2
= −ω2%′ exp (iq·r− iωt) (B.42)

∆p =
(
∂p

∂%

)
T

∆ρ+
(
∂p

∂T

)
%

∆T

= −q2 exp (iq·r− iωt)
[(

∂p

∂%

)
T

%′ +
(
∂p

∂T

)
%
T ′
]

(B.43)

And thus from equation 6.47:

ω2%′ − q2
[(

∂p

∂%

)
T

%′ +
(
∂p

∂T

)
%
T ′
]

= 0 (B.44)

Analogously, we obtain from equation 6.46

ω2
[(

∂s

∂%

)
T

%′ +
(
∂s

∂T

)
%
T ′
]
− q2 ρs

ρn
s2T ′ = 0. (B.45)

Simplifying these equations

We now want to simplify these equations. For this, we first introduce
the following quantities:

c2 =
(
∂p

∂%

)
s

, c2
T =

(
∂p

∂%

)
T

, Cv = %T

(
∂s

∂T

)
%
, and c2

2 = %s
%n
s2 %T

Cv
.

(B.46)

Setting u = ω/q, we immediately find equation 6.51:

(u2 − c2
T )%′ −

(
∂p

∂T

)
%
T ′ = 0. (B.47)

Equation B.45 transforms to

u2 %T

Cv

(
∂s

∂%

)
T

%′ + (u2 − c2
2)T ′ = 0. (B.48)

Using thermodynamic relations, one can derive the following equality:
%T

Cv

(
∂s

∂%

)
T

= −(c2
T − c2) 1

%2

(
∂%

∂s

)
T
. (B.49)

We insert this into equation B.48 and using
(
∂p
∂T

)
%

=
(
∂S
∂V

)
T

= −%2
(
∂s
∂%

)
T
,

we finally arrive at equation 6.52:

u2(c2
T − c2)

(
∂p

∂T

)−1

%
%′ + (u2 − c2

2)T ′ = 0. (B.50)
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B.2. Calculation of the sound dispersion

Derivation of eq. B.49

Here I show how to derive equation B.49. To obtain this result, we have
to do a bit more work and play with thermodynamic partial derivatives.
The variation of the internal energy is given by dU = TdS − pdV . We
can differentiate this with respect to two quantities X and Y :

∂U

∂X
= T

(
∂S

∂X

)
Y
− p

(
∂V

∂X

)
Y

(B.51)

∂U

∂Y
= T

(
∂S

∂Y

)
X
− p

(
∂V

∂Y

)
X

(B.52)

We now differentiate with respect to the other quantities:

∂2U

∂Y ∂X
=
(
∂T

∂Y

)
X

(
∂S

∂X

)
Y
−
(
∂p

∂Y

)
X

(
∂V

∂X

)
Y

(B.53)

∂2U

∂X∂Y
=
(
∂T

∂X

)
Y

(
∂S

∂Y

)
X
−
(
∂p

∂X

)
Y

(
∂V

∂Y

)
X

(B.54)

Both quantities on the left hand sides are equal (Schwarz’s theorem),
which gives us the general form of Maxwell’s relations:(

∂T

∂Y

)
X

(
∂S

∂X

)
Y
−
(
∂p

∂Y

)
X

(
∂V

∂X

)
Y

=
(
∂T

∂X

)
Y

(
∂S

∂Y

)
X
−
(
∂p

∂X

)
Y

(
∂V

∂Y

)
X

(B.55)

Now, X and Y can be any variables out of T , S, p and V . Choosing
X = p and Y = V , we get(

∂S

∂V

)
p

=
(
∂p

∂T

)
V

+
(
∂T

∂V

)
p

(
∂S

∂T

)
V
. (B.56)

This gives us

−
(
∂p

∂V

)
S

=
(
∂p

∂S

)
V

(
∂S

∂V

)
p

=
(
∂p

∂S

)
V

[(
∂T

∂V

)
p

(
∂S

∂T

)
V

+
(
∂p

∂T

)
V

]

=
(
∂p

∂T

)
V

(
∂T

∂V

)
p

+
(
∂T

∂S

)
V

(
∂p

∂T

)2

V

= −
(
∂p

∂V

)
T

+
(
∂T

∂S

)
V

(
∂S

∂V

)2

T
. (B.57)

With ∂/∂% = −Nm∂/%2∂V , we finally arrive at(
∂p

∂%

)
T

−
(
∂p

∂%

)
s

= −%2
(
∂s

∂%

)2

T

(
∂T

∂s

)
V
, (B.58)

which we only need to rearrange as:

%T

Cv

(
∂s

∂%

)
T

= −(c2
T − c2) 1

%2

(
∂%

∂s

)
T
. (B.59)
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B. Calculations

B.3. Derivation of the inverse AC - Josephson
effect

The Josephson junction is driven with a voltage of the form

V (t) = VDC + VAC cos(ωt). (B.60)

The dynamics of the Josephson junction are given by the equations

I(ϕ) = Ic sin(ϕ) and (B.61)
∂

∂t
ϕ = 2eV

~
. (B.62)

The phase difference across the junction thus evolves in time as

ϕ(t) = ϕ0 + 2e
~
VDCt+ 2e

~ω
VACt sin(ωt), (B.63)

which yields a current of

I(t) = Ic sin
(
ϕ0 + 2e

~
VDCt+ 2e

~ω
VACt sin(ωt)

)
. (B.64)

We now use the following identities:

sin(a sin(x)) =
∑
n odd

Jn(a) sin(nx), (B.65)

cos(a sin(x)) =
∑
n even

Jn(a) cos(nx), and (B.66)

J-n(x) = (−1)nJn(x), (B.67)

which involve the Bessel functions Jn(x) of first kind. With these, we
can expand the current in the form

I(t) = Ic

∞∑
n=−∞

(−1)nJn
( 2e
~ω

VAC

)
sin
[
ϕ0 +

(2e
~
VDC − nω

)
t

]
,

which is an infinite sum of oscillating terms, whose amplitude is fixed
by the alternating voltage VAC and whose frequency is fixed by the term
2e
~ VDC − nω.
We see that the time-dependent parts indeed drop out for

VDC = n
~ω
2e . (B.68)

B.4. Derivation of the effective current phase
relation eq. 7.12

To show the effective current phase relation 7.12 of an ideal Josephson
junction, we assume that we are in a regime in which the dynamics are
dominated by the barrier (LJ � LB). We can then neglect the bulk
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B.4. Derivation of the effective current phase relation eq. 7.12

inductance and write Kirchhoff’s law for the voltages in the LC circuit
as

UC + UJ = ∆N
2C + ~ϕ̇ = 0. (B.69)

By differentiating this equation with respect to time, we obtain

I

C
+ ~ϕ̈ = 0, (B.70)

in which we can insert the current phase relation of an ideal Josephson
junction I(ϕ) = Ic sin(ϕ). This yields

ϕ̈+ Ic
~C

sin(ϕ), (B.71)

which is the equation of motion of a mathematical pendulum.
The oscillation frequency of the pendulum in terms of the maximum

excursion ϕ0 is given by the expansion ω(ϕ0)2 ≈ Ic
~C (1 − ϕ2

0/8 + . . . ) ≈
Ic
~C cos(ϕ0

2 ).
Since ω2 = 1/LJC, we can then extract the effective inductance

LJ,0(ϕ0) at large ϕ0 from the frequency shift with respect to very small
oscillations:

LJ,0(ϕ0) ≈ LJ,0(ϕ0 → 0)
(
ω(ϕ0 → 0)
ω(ϕ0)

)2
≈ ~
Ic cos(ϕ0/2) . (B.72)

We now rearrange eq. 7.8 to obtain

I0(ϕ0) ≈
∫ ϕ0

0

~
LJ,0(ϕ′0)dϕ

′
0 =

∫ ϕ0

0
Ic cos(ϕ′0/2)dϕ′0

(B.73)

= 2Ic sin
(
ϕ0
2

)
, (B.74)

which is the simple rescaled expression for the effective current that we
wanted to derive.
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MOTS CLÉS

Gaz de Fermi ultrafroids - Dimensions réduites - Ondes sonores

RÉSUMÉ

Les systèmes bi-dimensionnels fortement corrélés sont captivants. À cause de la dimensionnalité réduite, des fluctuations
thermiques empêchent un vrai ordre à longue portée et devraient donc entraver des phénomènes comme la condensation
Bose-Einstein ou la superfluidité. Malgré cela, la superfluditié et la supraconductivité semblent particulièrement robustes
en 2D : Dans presque tous les supraconducteurs à haute température critique les structures 2D ainsi que le couplage
en onde d semblent jouer un rôle central. Dans cette thèse, nous utilisons des gaz de lithium 6 ultrafroids et homogènes
avec des interactions ajustables pour effectuer des simulations quantiques explorant certaines propriétés de ces systèmes
fascinants.
Comme résultat principal, je présente les premières mesures de la vitesse et de l’atténuation du son dans un gaz de
Fermi 2D ultrafroid, que nous utilisons pour étudier des propriétés thermodynamiques et les coefficients de transport du
gaz. La vitesse du son nous permet d’extraire la compressibilité du gaz et nous obtenons un accord raisonnable avec la
valeur mesurée indépendamment dans un système statique ou calculée à partir de simulations Monte-Carlo quantiques.
L’atténuation des ondes sonores est déterminée par la viscosité et la conductivité thermique du gaz, et approche un
minimum dans le régime fortement corrélé. Ce minimum correspond à une limite quantique universelle ~/m pour la
diffusivité du son. Le gaz de Fermi 2D fortement corrélé représente donc un fluide quasi-parfait.
En outre, je rends compte de deux autres expériences qui ont été réalisées dans le cadre de cette thèse, menées
principalement par mes collègues N. Luick et L. Sobirey. Premièrement, nous réalisons une jonction de Josephson en
séparant le gaz en deux réservoirs à l’aide d’un laser induisant une fine barrière de potentiel répulsive. Nous observons
des oscillations de Josephson entre les deux réservoirs démontrant la cohérence de phase du gaz de Fermi 2D. En
réduisant la hauteur de la barrière, ces oscillations sont progressivement transformées en ondes sonores. Dans la
deuxième expérience, nous déplaçons un réseau optique à travers le gaz à des vitesses ajustables. Nous observons une
vitesse critique pour la création d’excitations, prouvant que le gaz de Fermi 2D est superfluide. La vitesse critique est
déterminée par la vitesse du son sur un grand domaine d’interactions.
Finalement, je présente la caractérisation d’une nouvelle résonance Feshbach en onde d dans du potassium 40 ultrafroid,
un projet qui a été mené principalement par mon collègue T. Reimann. Nous mesurons le taux de pertes inélastiques
L(2) et l’évolution des populations de spins et nous les comparons à des prédictions théoriques. Nous trouvons un bon
accord entre théorie et expérience pour le taux de pertes. L’évolution des populations des spins est compatible avec le
comportement prédit par la théorie.

ABSTRACT

Strongly correlated two-dimensional (2D) systems are a fascinating field of study. The reduced dimensionality should in
principle impede phenomena such as Bose-Einstein condensation or superfluidity. Yet, evidence suggests that superflu-
idity and superconductivity are especially robust in 2D: In almost all known high Tc-supercondcutors, strongly correlated
2D structures and higher-partial-wave coupling seem to play a crucial role. In this thesis, we use ultracold homogeneous
gases of lithium 6 with tunable interactions to perform analog quantum simulation of these captivating systems.
As the main result of this thesis, I present the first measurements of the speed and attenuation of sound waves in ultra-
cold 2D Fermi gases, which we use to probe the thermodynamic and transport properties of the gas. From the speed of
sound, we extract the compressibility equation of state and compare it both to an independent static measurement and to
quantum Monte Carlo calculations and find reasonable agreement between the three. The damping of the sound waves,
which is determined by the shear and bulk viscosities as well as the thermal conductivity of the gas, exhibits a minimum in
the strongly correlated regime. Here, the sound diffusivity approaches a universal quantum bound ~/m and the strongly
correlated 2D Fermi gas thus realizes a nearly perfect fluid.
In addition, I report on further related measurements performed in the course of this thesis, which were led by my cowork-
ers N. Luick and L. Sobirey. We show that the 2D Fermi gas is phase coherent by realizing a Josephson junction in the
homogeneous gas and observing Josephson oscillations between two reservoirs separated by a thin barrier. When the
barrier height is reduced to zero, these oscillations transform smoothly into sound waves. By dragging a lattice though the
homogeneous system at variable velocities, we observe a critical velocity for the creation of excitations, proving that the
system is superfluid. Here, the sound velocity determines the critical velocity for a large range of interaction strengths.
Finally, I present the characterization of a novel d-wave Feshbach resonance in ultracold potassium 40 via measurements
of the inelastic loss rate L(2) and via the dynamics of spin populations, led by my coworker T. Reimann. The experimental
results are compared to theoretical predictions and we observe good agreement between the theoretical and experimental
loss rates. The evolution of the spin populations is found to be consistent with the expected behavior for the theoretically
predicted exit channel.
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