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A totes les “topitas” i al Mar
À toutes les “topitas” et à la Mer.

To all “topitas” and to the Sea.
A todas las “topitas” y al Mar.





Abstract
Sea Surface Height (SSH) observations describing scales in the range 10 - 100 km are crucial to better
understand energy transfers across scales in the open ocean and to quantify vertical exchanges of heat
and biogeochemical tracers. The Surface Water Ocean Topography (SWOT) mission is a new wide-swath
altimetric satellite which is planned to be launched in 2022. SWOT will provide information on SSH at a
kilometric resolution, but uncertainties due to various sources of errors will challenge our capacity to extract
the physical signal of structures below a few tens of kilometers. Filtering SWOT noise and errors is a key
step towards an optimal interpretation of the data.

The aim of this study is to explore image de-noising techniques to assess the capabilities of the future SWOT
data to resolve the oceanic fine scales. Pseudo-SWOT data are generated with the SWOT simulator for
Ocean Science, which uses as input the SSH outputs from high-resolution Ocean General Circulation Models
(OGCMs). Several de-noising techniques are tested, to find the one that renders the most accurate SSH
and its derivatives fields while preserving the magnitude and shape of the oceanic features present. The
techniques are evaluated based on the root mean square error, spectra and other diagnostics.

In Chapter 3, the pseudo-SWOT data for the Science phase is analyzed to assess the capabilities of SWOT to
resolve the meso- and submesoscale in the western Mediterranean. A Laplacian diffusion de-noising technique
is implemented allowing to recover SSH, geostrophic velocity and relative vorticity down to 40 - 60 km. This
first step allowed to adequately observe the mesoscale, but space is left for improvement at the submesoscale,
specially in better preserving the intensity of the SSH signal.

In Chapter 4, another de-noising technique is explored and implemented in the same region for the satellite’s
fast-sampling phase. This technique is motivated by recent advances in data assimilation techniques to remove
spatially correlated errors based on SSH and its derivatives. It aims at retrieving accurate SSH derivatives,
by recovering their structure and preserving their magnitude. A variational method is implemented which
can penalize the SSH derivatives of first, second, third order or a combination of them. We find that the
best parameterization is based on a second order penalization, and find the optimal parameters of this setup.
Thanks to this technique the wavelengths resolved by SWOT in this region are reduced by a factor of 2,
whilst preserving the magnitude of the SSH fields and its derivatives.

In Chapter 5, we investigate the finest spatial scale that SWOT could resolve after de-noising in several
regions, seasons and using different OGCMs. Although a method is found to mitigate the impact of SWOT
instrumental noise and errors, large uncertainties remain due to the incomplete understanding of the impact
of fast unbalanced motions (e.g. internal gravity waves) on SSH signals, and therefore the impact on the
performance of the de-noising algorithm. Our study focuses on different regions and seasons in order to
document the variety of regimes that SWOT will sample. The de-noising algorithm performs well even in
the presence of intense unbalanced motions, and it systematically reduces the smallest resolvable wavelength.
Advanced de-noising algorithms also allow to reliably reconstruct SSH gradients (related to geostrophic
velocities) and second order derivatives (related to geostrophic vorticity). Our results also show that a
significant uncertainty remains about SWOT’s finest resolved scale in a given region and season because of
the large spread in the level of variance predicted among our high-resolution ocean model simulations.

The de-noising technique developed, implemented and tested in this doctoral thesis allows to recover, in
some cases, SWOT spatial scales as low as 15 km. This method is a very useful contribution to achieving the
objectives of the SWOT mission. The results found will help better understand the ocean’s dynamics and
oceanic features and their role in the climate system.

Keywords: wide-swath altimetry, image de-noising, ocean circulation, fine-scale dynamics, SWOT satellite
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Résumé
Les observations de la hauteur de la surface de la mer (SSH) décrivant des échelles entre 10 et 100 km sont
cruciales pour mieux comprendre les transferts d’énergie à travers les différentes échelles en plein océan et
pour quantifier les échanges verticaux de chaleur et de traceurs biogéochimiques. La mission Surface Water
Ocean Topography (SWOT) est un nouveau satellite altimétrique à large fauchée dont le lancement est prévu
en 2022. SWOT fournira des informations sur la SSH à une résolution kilométrique, mais des incertitudes dues
à diverses sources d’erreurs mettront à l’épreuve notre capacité à extraire le signal physique des structures
inférieures à quelques dizaines de kilomètres. Le filtrage du bruit et des erreurs SWOT est une étape clé vers
une interprétation optimale des données.

L’objectif de cette étude est d’explorer des techniques de débruitage d’image afin d’évaluer les capacités des
futures données SWOT à résoudre les fines échelles océaniques. Les données pseudo-SWOT sont générées avec
le simulateur SWOT pour l’océanographie, qui utilise comme données d’entrée les sorties SSH des modèles de
circulation générale océanique (OGCMs) à haute résolution. Plusieurs techniques de débruitage sont testées,
afin de trouver celle qui rend le plus précisément les champs de SSH et de ses dérivées tout en préservant
l’amplitude et la forme des structures océaniques présentes. Les techniques sont évaluées sur la base de la
racine carrée de l’erreur quadratique moyenne, des spectres et d’autres diagnostiques.

Au Chapitre 3, les données pseudo-SWOT pour la phase scientifique sont analysées pour évaluer les capacités
de résolution de la méso et la sousmésoéchelle en Méditerranée occidentale. Une technique de débruitage par
diffusion laplacienne est mise en œuvre permettant de récupérer la SSH, la vitesse géostrophique et la vorticité
relative jusqu’à 40 - 60 km. Cette première étape a permis d’observer correctement la mésoéchelle, mais il
reste de la place pour des améliorations à la sousmesoéchelle, notamment pour mieux préserver l’intensité du
signal SSH.

Au Chapitre 4, une autre technique de débruitage est explorée et mise en œuvre dans la même région
pour la phase d’échantillonnage rapide du satellite. Cette technique est motivée par les progrès récents des
techniques d’assimilation de données pour supprimer les erreurs spatialement corrélées basées sur la SSH et
ses dérivées. Elle vise à retrouver adéquatement des dérivées de SSH, en récupérant leur structure et en
préservant leur ampleur. Une méthode variationnelle est mise en œuvre qui peut pénaliser les dérivées de la
SSH de premier, deuxième, troisième ordre ou une combinaison de ceux-ci. Nous constatons que le meilleur
paramétrage est basé sur une pénalisation de second ordre, et nous avons trouvé les paramètres optimaux de
cette configuration. Grâce à cette technique, les longueurs d’onde résolues par SWOT dans cette région sont
réduites d’un facteur 2, tout en préservant l’ampleur des champs de SSH et de ses dérivées.

Au Chapitre 5, nous étudions l’échelle spatiale la plus fine que SWOT pourrait résoudre après avoir débruité
dans plusieurs régions, saisons et en utilisant différents OGCMs. Bien qu’une méthode est trouvée pour
atténuer l’impact du bruit et des erreurs instrumentales SWOT, de grandes incertitudes subsistent en rai-
son de la compréhension incomplète de l’impact des mouvements rapides non équilibrés (par exemple, les
ondes internes gravitationnelles) sur les signaux SSH, et donc l’impact sur la performance de l’algorithme
de débruitage. Notre étude se concentre sur différentes régions et afin de documenter la variété des régimes
que SWOT échantillonnera. L’algorithme de débruitage fonctionne bien même en présence de mouvements
rapides non équilibrés intenses, et permet de réduire systématiquement la plus petite longueur d’onde résolue.
Algorithmes de débruitage avancés permettent également de reconstruire de manière fiable les gradients SSH
(liés aux vitesses géostrophiques) et les dérivées de second ordre (liées à la vorticité géostrophique). Nos
résultats montrent également qu’une incertitude importante subsiste quant à l’échelle la plus fine résolue par
SWOT dans une région et saison données en raison de la grande dispersion du niveau de variance estimé par
nos simulations des modèles océaniques à haute résolution.

La technique de débruitage développée, mise en œuvre et testée dans cette thèse doctorale permet de
récupérer, dans certains cas, des échelles spatiales SWOT jusqu’à 15 km. Cette méthode est une contri-
bution très utile pour atteindre les objectifs de la mission SWOT. Les résultats trouvé aideront à mieux
comprendre la dynamique et les structures océaniques et leur rôle dans le système climatique.

Mots clés: altimétrie large-fauchée, débruitage d’image, circulation océanique, dynamique fine-échelle,
satellite SWOT
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Resum
Les observacions d’altura de superfície del mar (SSH) que descriuen escales espacials de 10 - 100 km són
crucials per millor entendre la transferència d’energia a través les diferents escales en l’oceà obert i per
quantificar intercanvis verticals de calor i traçadors biogeoquímics. La missió Surface Water Oceen Topography
(SWOT) és un nou satèl·lit altimètric de feix ample que és previst de ser llançat en 2022. SWOT proporcionarà
informació de la SSH a una resolució quilomètrica, però incerteses a causa de diverses fonts d’errors desafiaran
la nostra capacitat d’extreure el senyal físic d’estructures de menys d’unes quantes desenes de quilòmetres.
El filtratge del soroll i els errors SWOT és un pas clau cap a una interpretació òptima de les dades.

L’objectiu d’aquest estudi és explorar tècniques de reducció de soroll d’imatge per avaluar les capacitats de
les futures dades SWOT per resoldre la petita escala oceànica. Les dades pseudo-SWOT són generades amb
el simulador SWOT per a les ciències oceàniques, el qual utilitza com entrada les sortides SSH de models
oceànics de circulació general (OGCMs) d’alta resolució. Diverses tècniques de reducció de soroll són provades
per a trobar la que més fidelment representa els camps de SSH i les seves derivades, preservant al mateix
temps la magnitud i la forma de les estructures oceàniques presents. Les tècniques són avaluades amb l’error
de l’arrel quadrada de la mitjana, espectres i altres diagnòstics.

En el Capítol 3, les dades pseudo-SWOT per a la fase científica són analitzades per avaluar les capacitats de
SWOT per resoldre la meso i submesoescala al Mediterrani Occidental. Una tècnica de reducció de soroll per
difusió laplaciana és implementada la qual permet recuperar la SSH, velocitat geostròfica i vorticitat relativa
fins a 40 - 60 km. Aquest primer pas va permetre observar adequadament la mesoescala, però encara queda
marge de millora en la submesoescala, especialment per a preservar millor la intensitat del senyal SSH.

En el Capítol 4, una altra tècnica de reducció de soroll és explorada i implementada en la mateixa regió per la
fase de mostreig-ràpid del satèl·lit. Aquesta tècnica és motivada per avanços recents en tècniques d’assimilació
de dades, per reduir els errors correlacionats espacialment, basades en la SSH i les seves derivades. Aquesta
tècnica té com a objectiu l’obtenció precisa de les derivades de SSH, en recuperant la seva estructura i
preservant la seva magnitud. Un mètode variacional és implementat el qual pot penalitzar les derivades de
SSH de primer, segon, tercer ordre o una combinació d’elles. Trobem que la millor parametrització es basa
en una penalització de segon ordre, i trobem també els paràmetres òptims d’aquesta configuració. Gràcies a
aquesta tècnica les longituds d’ona resoltes per SWOT en aquesta regió són reduïdes per un factor de 2, en
preservant la magnitud dels camps de SSH i de les seves derivades.

En el Capítol 5, investiguem l’escala espacial més petita que SWOT podria resoldre després de la reducció
del soroll en diverses regions, estacions i utilitzant diferents OGCMs. Encara que s’hagi trobat un mètode
per a mitigar l’impacte del soroll i els errors instrumentals de SWOT, continuen existint grans incerteses a
causa de la comprensió incompleta de l’impacte dels processos d’alta freqüència no geostròfics (per exemple,
les ones internes de gravetat) en el senyal de SSH i, per tant, l’impacte en el rendiment de l’algoritme de
reducció de soroll. El nostre estudi se centra en diferents regions i estacions per documentar la varietat de
règims que SWOT mostrejarà. L’algoritme de reducció de soroll funciona fins i tot en presència de processos
d’alta freqüència no geostròfics intensos i redueix sistemàticament la més petita longitud d’ona resoluble.
Els algoritmes avançats de reducció de soroll també permeten reconstruir de manera fiable els gradients
de SSH (relacionats amb les velocitats geostròfiques) i les derivades de segon ordre (relacionades amb la
vorticitat geostròfica). Els nostres resultats també mostren que continua existint una incertesa significativa
sobre l’escala més petita resolta per SWOT en una regió i estació donades, a causa de la gran dispersió en el
nivell de variància predit entre les simulacions de models oceànics d’alta resolució.

La tècnica de reducció de soroll desenvolupada, implementada i provada en aquesta tesi doctoral permet
recuperar, en alguns casos, les escales espacials de SWOT fins a 15 km. Aquest mètode és una contribució
molt útil per a aconseguir els objectius de la missió SWOT. Els resultats obtinguts ajudaran a comprendre
millor la dinàmica i les estructures oceàniques i la seva funció en el sistema climàtic.

Paraules clau: altimetria de feix ample, reducció de soroll d’imatge, circulació oceànica, dinàmica de
petita-escala, satèl.lit SWOT
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Resumen
Las observaciones de la altura de la superficie del mar (SSH) que describen las escalas entre 10 y 100 km
son cruciales para comprender mejor las transferencias de energía a través las diferentes escalas en el océano
abierto y para cuantificar los intercambios verticales de calor y de trazadores biogeoquímicos. La misión
Surface Water Ocean Topography (SWOT) es un nuevo satélite altimétrico de banda ancha cuyo lanzamiento
está previsto para 2022. SWOT proporcionará información sobre la SSH a una resolución kilométrica, pero
las incertidumbres debidas a las diversas fuentes de error pondrán a prueba nuestra capacidad de extraer la
señal física de estructuras de menos de unas pocas decenas de kilómetros. Filtrar el ruido y los errores de
SWOT es un paso clave para una interpretación óptima de los datos.

El objetivo de este estudio es explorar técnicas de reducción de ruido de imagen para evaluar las capacidades
de los futuros datos SWOT para resolver las escalas finas oceánicas. Los datos pseudo-SWOT son generados
con el simulador SWOT para las ciencias oceánicas, que utiliza como entrada las salidas de SSH de modelos de
circulación general oceánica (OGCMs) de alta resolución. Varias técnicas de reducción de ruido son probadas
para encontrar la que más fielmente representa los campos de SSH y sus derivadas, preservando al mismo
tiempo la magnitud y la forma de las estructuras oceánicas presentes. Las técnicas son evaluadas en base a
la raíz del error cuadrático medio, espectros y otros diagnósticos.

En el Capítulo 3, se analizan los datos pseudo-SWOT de la fase científica para evaluar las capacidades de
SWOT para resolver la meso y submesoescala en el Mediterráneo occidental. Se implementa una técnica de
difusión laplaciana que permite recuperar la SSH, la velocidad geostrófica y la vorticidad geostrófica relativa
hasta 40 - 60 km. Este primer paso permitió observar adecuadamente la mesoescala, pero aún queda margen
de mejora en la submesoescala, especialmente para preservar mejor la intensidad de la señal de SSH.

En el Capítulo 4, se explora e implementa otra técnica de reducción de ruido en la misma región para la
fase de muestreo rápido del satélite. Esta técnica está motivada por los avances recientes en las técnicas
de asimilación de datos para eliminar los errores de correlación espacial basándose en SSH y sus campos
derivados. El objetivo es recuperar de manera precisa las derivadas de SSH, recuperando su estructura y
preservando su magnitud. Se implementa un método variacional que puede penalizar las derivadas de SSH
de primer, segundo, tercer orden o una combinación de estas. Encontramos que la mejor parametrización
se basa en una penalización de segundo orden, y encontramos los parámetros óptimos de esta configuración.
Gracias a esta técnica las longitudes de onda resueltas por SWOT en esta región se reducen por un factor 2,
preservando a su vez la magnitud de los campos de SSH y sus derivadas.

En el Capítulo 5, investigamos la escala espacial más fina que SWOT podría resolver después de la reduc-
ción del ruido en varias regiones, estaciones y usando diferentes OGCMs. Aunque se haya encontrado un
método para mitigar el impacto del ruido y los errores instrumentales de SWOT, siguen existiendo grandes
incertidumbres debido a la comprensión incompleta del impacto de los procesos de alta frecuencia no geostró-
ficos (por ejemplo, las ondas de gravedad internas) en las señales de SSH y, por lo tanto, el impacto en el
rendimiento del algoritmo de reducción de ruido. Nuestro estudio se centra en diferentes regiones y estaciones
para documentar la variedad de regímenes que SWOT muestreará. El algoritmo de reducción de ruido fun-
ciona incluso en presencia de procesos de alta frecuencia no geostróficos intensos, y reduce sistemáticamente
la más pequeña longitud de onda resoluble. Los algoritmos avanzados de eliminación de ruidos también per-
miten reconstruir de manera fiable los gradientes de SSH (relacionados con las velocidades geostróficas) y las
derivadas de segundo orden (relacionadas con la vorticidad geostrófica). Nuestros resultados también mues-
tran que sigue existiendo una incertidumbre significativa sobre la escala más pequeña resuelta por SWOT en
una región y estación dadas, debido a la gran dispersión en el nivel de varianza predicho entre las simulaciones
de modelos oceánicos de alta resolución.

La técnica de reducción de ruido desarrollada, implementada i probada en esta tesis doctoral permite recu-
perar, en algunos casos, las escalas espaciales de SWOT hasta 15 km. Este método es una contribución muy
útil para lograr los objetivos de la misión SWOT. Los resultados obtenidos ayudarán a comprender mejor la
dinámica y las estructuras oceánicas y su función en el sistema climático.

Palabras clave: altimetría de banda ancha, reducción de ruido de imagen, circulación oceánica, dinámica
de pequeña-escala, satélite SWOT
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Chapter 1

The ocean is a key component of the Earth’s climate system. About 70% of the Earth’s surface is covered by
it and acts as its primary reservoir of heat and carbon. Sustained ocean observations are vital to establish
the ocean state and variability, to understand the ocean’s role in climate variability. This is necessary for
climate prediction and scenario development and to test and improve climate models. Fine-scale dynamics
play a critical role in the exchanges of heat, fresh water and biogeochemical tracers of the ocean surface with
the atmosphere and the ocean interior. Integrating our understanding of these processes to a climate scale, is
one of the key challenges that faces Earth observation, limited by the high resolution of ocean data required.

With the increased preocupation on global change, oceanic climatic studies have gained relevance. Following
Pörtner et al. (2019), in recent years the ocean has: absorbed the heat in excess in the climate system,
absorbed more CO2 (and thus a surface ocean acidification), suffered more and more intense marine heatwaves
and lost oxygen in the surface waters. Although most of these impacts remain quite restrained to surface
waters, changes have also been observed in the deeper ocean. For example Arbic and Brechner Owens (2001)
found a warming in Atlantic intermediate waters, and a stronger effect has been found in the Southern Ocean
intermediate waters (Banks et al., 2000). Since the 90s a warming of deep waters has also been observed
in the western Mediterranean (Bethoux et al., 1990; Rixen et al., 2005), and has been further confirmed by
recent studies (Schroeder et al., 2017; Barceló-Llull et al., 2019).

The study of the oceanic circulation has many applications. Maritime transport is one of these, as not only
the ocean and weather forecast are of their interest, but also accurate information on marine currents. Sea
rescue operations can sometimes highly rely on the latter, where accurate information on currents can imply
a successful rescue or not. Environmental hazards such as oil spills, need this information to know where to
put the effort into reducing the impact and cleaning. Oceanographic research efforts have been established
posterior to big oil spill events e.g. Smith et al. (2014); Ruiz-Villarreal et al. (2006).

Understanding specific oceanic features that have an impact on nutrients is of great interest for the different
fields of biology and ecology. The horizontal and vertical ocean dynamics establish the distribution of nutrients
in the global ocean. The availability of these nutrients at a certain depth, for example, can be a limiting factor
for the proliferation of a particular species. Horizontally, eddies and filaments redistribute different nutrients
via lateral advection. The effect of the presence of eddies on chlorophyll has been thoroughly studied, for
example in the Southern Ocean (Frenger et al., 2018). The vertical velocities associated to eddies and fronts
mix nutrients vertically. Ruiz et al. (2019) show how the vertical velocities associated to oceanic fronts help
explain the vertical chlorophyll distribution.

The impact of ocean dynamics on biogeochemistry is consequently important for fisheries. As explained
above, the ocean dynamics have an impact on nutrients which then influence fish populations. Mainly, it is
the upwelling systems which have a high impact in the fishing industry. At a smaller scale, the mesoscale,
can affect the spawning ecology of some species, like bluefin tuna (Alvarez-Berastegui et al., 2016). At even
smaller spatial scales, turbulent mixing exposure can be determining for spawning (Lima and Castello, 1995).

The study of the ocean is also necessary due to its environmental, climatic, economical and society impact.
All of these are related to one another, but the first two impacts could be simplified to that about 2/3 of the
Earth’s planet is covered by water. An important fact impacting society and the economy is that a great
percentage of the Earth’s population lives at the coast, and in addition to its dependence on sea level change,
many economical and social activities related to the oceans and Seas, affect most of the population. Some
of these are for example activities concerning the fisheries industries, touristic sectors and a range of leisure
activities and sports occurring there.
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1.1. OCEANIC SCALES AND DYNAMICS Chapter 1

1.1 Oceanic scales and dynamics

The ocean is a complex system characterized by a large range of temporal and spatial scales that has to be
studied integrating observations and modeling. At each scale there can be one or several features present,
as shown in fig. 1.1. This usually implies a use of a particular or modified theory (e.g., geostrophy or quasi-
geostrophy) and measuring tool (e.g. satellite or mooring). Then, we also study the interaction of these
different scales by for example trying to understand the energy cascade.

Figure 1.1: Schematic diagram with temporal and spatial scales of oceanic processes. (From M. Ramirez;
2017). Horizontal dashed black line represents the large / fine scales separation at 100 km.

All these different scales can be grouped into large and fine scales. These are defined in different ways. The
fine scales are defined here following d’Ovidio et al. (2019) as oceanic features with a spatial scale between 1
and 100 km. The large-scales then describe the oceanic features with scales above 100 km. It is important
to separate these oceanic phenomena in terms of scale because, as we will see below, the theories they follow
and the instruments and tools necessary for their observation differ. For example, fig. 1.1 shows that the
large-scales have different temporal scales associated than fine scales, and this can imply a different sampling
strategy when taking measurements. The synopticity necessary to measure a large or fine-scale feature will
not be the same. Also, important differences exist when modeling these features. For large-scales’ modeling,
like climate models, coarser horizontal resolutions are needed than fine-scale resolving models because the
simulation runs need time spans from decades to centuries. (Stewart et al., 2008)

The large-scale provides the broad picture of the ocean. This includes phenomena such as climate change,
basin-scale variability, El Niño / La Niña Southern Oscillation, Rossby waves, seasonal cycles (such as that of
the MLD), barotropic variability, surface tides, decadal oscillations and large-scale eddies and fronts. This is
also sometimes referred to as planetary scales, which describe too the mean oceanic circulation (McWilliams,
2016; Zhang and Qiu, 2018). These large-scale features allow us to have knowledge on the heat transport in
the ocean, like knowing the main locations of heat sources and sinks. The same happens with other variables
such as carbon dioxide. This has a huge impact on the climate system.

An ocean dynamics description restricted to the large scales will have some limitations, like not accurately
quantifying some processes with global impact such as air-sea energy fluxes or vertical exchanges of nutrients.
The pathways described by the large scales are not enough to have a full 4D (x, y, z, t) description. In
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particular, the description of vertical pathways remains quite limited. Their completion can be achieved by
a better understanding of the fine scales, as some of these features have strong vertical velocities associated.
Submesoscale features such as fronts, have been found to account for the vertical exchanges missing from just
the eddy pumping fluxes, to complete the nutrient fluxes required in subtropical gyres’ observed productivity
(Mahadevan and Tandon, 2006). Moreover, Ruiz et al. (2019) found that to explain the observed vertical
chlorophyll features with widths between 1 to 10 km, mesoscale ageostrophic vertical velocities were not
enough without taking into account submesoscale features. A complete understanding of these vertical
motions is important, specially in the surface ocean layers, where phytoplankton can greatly benefit from a
nutrient supply from deeper layers. It is also important for the salt, heat, momentum and gas fluxes with
the atmosphere and deeper layers. (Mahadevan and Tandon, 2006)

Figure 1.2: Spatial scales illustrated in NATL60 model SST (◦C) snapshot.

The fine scales can provide us the missing details which makes our "broad picture" complete. As can be
observed in fig. 1.1, these scales include fine-scale eddies and fronts, filaments, coastal upwellings, coastly
trapped waves, synoptic storms, river outflows and sediment resuspension, internal tides, internal waves and
motions, bio-physical interactions, phytoplankton blooms, plankton migration, surface gravity waves, vertical
turbulent mixing, Langmuir cells and capillary waves. Of all of these features, we are mainly interested in
those with a spatial scale above 1 km and we will pay special attention to features with a closer connection
to the SWOT mission. These are eddies, fronts, filaments and internal tides and waves. These oceanographic
features are also of great importance due to their impact on climate and biodiversity. In a lesser extent, I
will also discuss the effect of surface gravity waves on SWOT, but will focus on the other features in what
follows.

Here we englobe the fine scales as the meso- and submesoscale, as the spatial scales that define them slightly
vary in the literature. For example Thomas et al. (2008) define the submesoscale as having horizontal spatial
scales of order ∼1 km, and Molemaker et al. (2015) as ∼10 km. Another way to differentiate them is
via a-dimensional numbers such as the Rossby (Ro) and Richardson (Ri) numbers. For mesoscale eddies
Ro <‌< 1 and Ri >‌>1, whilst for the submesoscale both are of order 1. (Thomas et al., 2008) Specially
when we approach the meso/submesoscale limit, seasonality can imply a change of size of some features
like eddies and fronts that can make them be in the mesoscale instead of the submesoscale (Winter versus
Summer) or vice-versa. The meso- and submesoscale have different aspect ratios and thus impacts on oceanic
motions. The mesoscale has a greater aspect ratio than the submesoscale, i.e., the horizontal scale of the
mesoscale is greater than its vertical, and so has a big impact on horizontal transports, such as stirring of
tracers. The submesoscale in contrast, entrains important vertical motions. Another big difference between
the two is the understanding of their generation. Mesoscale eddies have been much more widely observed
than submesoscale, due to the observational limitations of the latter’s small spatial and temporal scales.
Consequently, the understanding of submesoscale eddies generation is not as understood. Several studies
have been recently done to try and understand this better like Gula et al. (2016), and also their associated
energy pathways (Capó et al., 2019).

Eddies, perhaps one of the most important oceanic structures, can be defined as flows which are spinning or
turbulent at scales from a few to hundred of kilometres. They have a temporal scale of weeks (McWilliams,
2016) and a relatively large range of spatial scales. Thus, both meso- and submesoscale eddies exist. Eddies
can be either anticyclonic (AEs) or cyclonic (CEs). We can know their rotation direction by applying
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Margules’ method, which in the northern hemisphere would be: AEs spin clockwise and CEs anti-clockwise.
In the southern hemisphere it is the opposite. (Stewart et al., 2008) This implies that AEs (CEs) have a
negative (positive) vorticity and an associated downward (upward) vertical velocity. As a consequence, AEs
(CEs) are usually warm (cold)-cored due to the lowering (rise) of isopycnals.

They can also be defined regarding their formation process, as perturbations of the mean flow (Colling and
Oceanography Course Team Open University , 2001). This happens for example in western boundary currents
like the Gulf Stream, where when it becomes unstable, it sheds warm-cored eddies northward, and cold-
cored southward. They can also be formed when the mean flow interacts with topography, either bottom
topography or islands. Smaller scale eddies can be formed in the Winter season, when deep mixed layers
generate and energetic instabilities occur (Morrow et al., 2018). This formation dependence on dynamic
phenomena with a high seasonality, makes the oceanic eddy field be very seasonal too.

An important role of eddies is their associated horizontal and vertical transport. Large-scale eddies are key
for ocean stirring due to their lateral advection, whilst smaller scale eddies have a greater role in vertical
motions. There are also vertical motions associated to the mesoscale eddies’ border (Capet et al., 2008b;
Beron-vera et al., 2019), where the eddy boundary presents wiggles and is not straight convex. The direction
propagation tendency and warm (cold)-core characteristic of AEs (CEs) are of great importance for the
ocean’s heat distribution, helping to move the greater heat received at low-latitudes, towards high-latitudes
(Morrow et al., 2004). Consequently, they have a crucial role not only in the transfer of energy in the ocean
(Colling and Oceanography Course Team Open University , 2001) through their impact on the global heat
budget, but also on salt and tracer budgets (Morrow et al., 2004). Lastly, energetic-wise, eddies (specifically
mesoscale) have an in important role as the main oceanic Kinetic Energy (KE) reservoir (McWilliams, 2016).

Oceanic fronts can be defined as strong temperature and/or salinity variations at a particular location. Its
location varies around a mean at temporal scales from weeks to months (seasonally or longer). They can also
define the boundary of different water masses. When these variations occur, meandering can take place at the
front, which can end up shedding eddies. (Talley , 2011) Fronts are often found too in upwelling regions. They
have important implications for marine ecosystems. For example, they determine the spawning of certain
species, like for example bluefin tuna in the western Mediterranean Sea or the albacore tuna distribution in
their feeding migratory stages. (Alvarez-Berastegui et al., 2014)

Filaments present strong horizontal gradients like fronts, but the latter have an uni-directional density gradi-
ent across their axis, whilst filaments have a central density extreme. (McWilliams and Fox-Kemper , 2013)
Different kinds of filaments exist depending on their formation process. Vortex filaments can occur due
to the interaction of eddies. These elongated filaments are considered submesoscale structures and a very
common in between eddies. (Lapeyre and Klein, 2006) Upwelling filaments appear when the upwelled waters
interact for example with the coastline or islands (Batteen, 1997; Castelao et al., 2006). In addition to their
biogeochemical impact, the study of these structures is of relevance as in areas where filaments and fronts
are dominant, some theoretical hypotheses can longer be assumed, and alternatives to the commonly used
geostrophic theory like surface quasi-geostrophy or frontogenesis theory should be implemented.

Submesoscale motions can be divided into balanced (BMs) and unbalanced motions (UMs). BMs are de-
fined as such because their main balance is obtained through the Coriolis and pressure force balance, i.e.,
geostrophy. Consequently, they have frequencies smaller or equal to the Coriolis frequency. (Torres et al.,
2019) The scales of the submesoscale (balanced) overlap with that of IGWs (unbalanced), and following
McWilliams (2016) they can be separated by their evolutionary behaviours, specially due to the oscillation
and propagation of IGWs. It is important to distinguish them to better understand the KE budgets in the
ocean, as for example illustrated in fig. 1.3, but also because BMs and UMs strongly interact and this has
an impact on KE budgets (Torres et al., 2019).
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Figure 1.3: The flow of energy and information in the oceanic general circulation. Stages in the oceanic general
circulation from planetary-scale forcing to micro-scale dissipation and mixing. The dynamical parameters
Ro and Fr pass through order 1 values within the submesoscale regime. (McWilliams, 2016)

The transition scale (Lt) is defined as the spatial scale at which there is a change from a geostrophic BMs
dominated regime to a wave UMs one (Qiu et al., 2018). Lt can also be defined as the transition from
“geostrophic motions to inertia-gravity waves” (Qiu et al., 2017), or from rotational to divergent and unbal-
anced flows (see fig. 1.3 (McWilliams, 2016)). This again can help us know which theoretical framework we
should follow. Lt can be estimated in several ways. One of these is by using spatial spectra, by looking at
where there is a change of slope. As we move to large wavenumbers (small wavelengths), if IGWs (UMs)
are present, they will flatten the spectral slope. Alternatively, we can separate our signal in low (BMs)
and high (UMs) frequency motions, by for example applying a 3-day high/low-pass filter, and then estimate
at which wavelength the low and high-pass filtered data’s spatial spectra intersect. Other approaches are
Helmholtz and wave-vortex decompositions (Qiu et al., 2017). Lt varies strongly geographically ranging from
values below 40 km (at the Antarctic Circumpolar Current and western boundary current regions) to 200
km (tropical oceans), and also seasonally (Qiu et al., 2018).

Internal gravity waves are unbalanced motions as they do not follow the geostrophic balance.We can find
them at the interphase between oceanic layers, and their restoring force is gravity. (Arbic et al., 2018) From
the depth at which their occur, their signal decreases towards the surface. Nevertheless, they can still be
detected at the ocean surface, e.g. Apel et al. (1975); Fu and Holt (1984); Da Silva et al. (1998); Ramos
et al. (2009). Another important characteristic of IGWs is that they are not geostrophic, but super-inertial.
Their frequency is between the buoyancy and the inertial/Coriolis frequency (as can be seen in fig. 1.1,
between O(1 min.) and O(1 day)). Within IGWs we find near-inertial waves and internal tides. They are
“driven by rapidly changing winds” and with frequencies near f, and driven by barotropic tides flowing over
topography and tidal frequencies, respectively. Other than from changes in sea level/pressure, these waves
can be detected by changes in sea temperature (Luecke et al., 2020). These waves are important because they
drive the internal (below MLD) mixing of the ocean. They also have an impact on oceanic energy dissipation,
specially from tidal waves over topography (Egbert and Ray , 2000).

The interaction of BMs and UMs, as well as their separation, is currently an important scientific discussion.
The interaction of IGWs with mesoscale eddies is nowadays well understood, for example the interaction of
the mesoscale with topography is one of the generation mechanisms of IGWs (Nikurashin and Ferrari , 2010).
On the other hand the interaction with the submesoscale still remains quite unknown, probably due to their
often hybrid BMs/UMs behaviour. (McWilliams, 2016)

6



1.2. FINE-SCALE MODELING AND OBSERVATION Chapter 1

1.2 Fine-scale modeling and observation

Fine-scale ocean observations and models resolving them are key to understanding the fine-scale dynamics
and their interactions with the large scales. This has been limited by the high resolution required, but has
improved during this last decade. High quality observations are also needed for operational oceanographic
systems to be useful (Davidson et al., 2019). This has lead to the development and use of new instruments
(e.g. saildrones), more deployments of existing instruments (e.g. Argo array), launching of new satellite
missions and the continuation of existing ones (e.g the Sentinel altimeters), and the development of new
OGCM configurations.

Modeling and observational tools need each other. On the one hand, oceanic models need observations for
validation and for data assimilation in forecasts and re-analysis. On the other, observations need oceanic
models to for example fill their spatial and/or temporal gaps, and to help decide when and where it is best to
deploy different instruments. Consequently, Observing System Simulation Experiments (OSSEs) have gained
importance in recent years to plan different projects, for example Wang et al. (2018) in the context of the
SWOT mission. Another concept that has therefore grown is that of a multi-platform approach. Not only
between in situ instruments, but also with satellite and model data. For example, several multi-platform
experiments have been carried in the western Mediterranean Sea, allowing to study fine-scale features (Juza
et al., 2016; Pascual et al., 2017; Ruiz et al., 2019; Tintoré et al., 2019).

With recent technological advances, a large range of instruments exist nowadays measuring a wide range of
ocean variables at different spatial and temporal resolution. Nevertheless, a lack of observations still exists to
correctly monitor fine-scale features. Below some of the most relevant tools and observations for the present
and future fine scales’ observation are described.

1.2.1 OGCMs

The ocean is simulated using numerical models to reproduce its physical mechanisms defining its properties
(such as temperature, salinity and, horizontal and vertical velocities) and their temporal and spatial evolu-
tion. To do this models solve an approximation of the Navier-Stokes equations. (Le Sommer et al., 2018)
More idealistic, theoretical ocean models exist that study specific processes like for example vortex merging
(e.g. Carton et al., 2017) or eddy life-cycles (e.g. Morvan et al., 2019). Oceanic General Circulation Models
(OGCMs) are more realistic in the sense that different configurations exist in which different approaches are
used to try to replicate the ocean circulation. Within other, examples of these are: Nucleus for European
Modeling of the Ocean (NEMO), HYbrid COordinate Model (HYCOM), Massachusetts Institute of Tech-
nology general circulation model (MITgcm). More details on these OGCMs will be given in the following
Chapter. These are global or basin-scale ocean models, but there are regional oceanic models like for example
Regional Oceanic Modeling System (ROMS). Regional configurations exist too from NEMO, HYCOM and
MITgcm.

Recent OGCMs have better spatial resolutions, allowing to better understand the fine scales. This is of
importance because depending on the region, different horizontal resolution are needed to resolve the first
baroclinic deformation radius (Hallberg , 2013). This is shown in fig. 1.4. In general, the resolution required is
constant at the same latitude, but variations exist of oceans versus seas, or in the presence of strong currents
like the Gulf Stream or close to the Antarctic Circumpolar Current.
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Figure 1.4: First baroclinic deformation radius (km) from a numerical simulation (Copernicus Marine Ser-
vice). (Courtesy of Angélique Melet (Mercator-Ocean))

Another major improvement of recent OGCMs is the incorporation of tidal forcing. This allows not only for
the representation of tidal currents, but also for example a higher and more realistic presence of IGWs. This
is of importance because as said above, OGCMs have now higher spatial and temporal resolutions. Therefore,
they reach scales at which in certain regions and periods of time, IGWs can be dominant at the fine scales.
Nevertheless, the adequate representation of these features is strongly affected by the model’s bathymetry
and internal wave drag set.

OGCMs are of great importance specially when preparing for the future observation networks. For example,
for the SWOT mission, as we do not have any other dataset (to day) similar to the future SWOT data. The
advances in oceanic modeling described above, provide the temporal and spatial resolution necessary to be
able to simulate pseudo-SWOT data. Moreover, they can help to know how new datasets will help improve
present ocean forecasting and analyses products (Bonaduce et al., 2018). This allows to better plan and
prepare for new ocean observing systems.

The effective resolution of an OGCM, i.e. the length-scale of the structures the model actually resolves, differs
from its spatial resolution. For example, Soufflet et al. (2016) defined effective resolution as approximately
equal to 10 time the grid size. The shoaling of the spatial spectra of kinetic energy can help also estimate this
scale (Ajayi et al., 2020). The effective resolution of a model strongly depends on scale-selective dissipation,
which at the submesoscale is numerically, not physically solved. For example, the way that vertical diffusion
is parametrized in the model, can have big effects on the submesoscale representation. (Soufflet et al., 2016)
This is thus, an important characteristic of OGCMs modeling the fine-scales.

1.2.2 In situ

The technology regarding in situ measurements has also greatly improved over these last decades. A great
range of instruments exist, Eulerian and Lagrangian, autonomous and steered. This allows to obtain data
series of different natures, with high resolution in space and/or time, making possible the observation of
the different oceanic structures and phenomena. Ship-based measurements have been present since the first
oceanographic expeditions that were aimed to study large scale ocean variability. More recently, dedicated
field experiments have been carried out to sample fine-scale structures and improve our understanding of
the underlying processes (e.g. Pascual et al. (2017); Barceló-Llull et al. (2018)). Their drawback is that the
spatial and temporal coverage is low. Oceanographic cruises also serve as a platform to deploy, calibrate and
maintain instruments like Argo floats, drifters, gliders and moorings.
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Argo floats are profiling floats which typically measure pressure, temperature and salinity from a certain depth
(usually 2000 m) to the surface. They provide high spatial resolution vertically, but not in the horizontal
(given they provide vertical profiles every 10 days approximately). Their spatial coverage is global (relatively,
as some limitations exist), and random, as they are left to drift with the currents. (Testor et al., 2010) This
is a big limitation for the study of the fine-scales as the global spatial resolution of the Argo array is aimed
at 300 km on average at ice-free oceans deeper than 2000 m (Gould et al., 2013; Thomson and Emery , 2014).
This spatial resolution is not even mesoscale resolving. Drifters are freely drifting, Lagrangian buoys which
are remotely tracked by satellite (Richardson, 1983). They provide information on surface currents without
wind-drift effects (drogued) or on the total surface current (undrogued), with a high temporal resolution. Like
Argo floats, their main limitation for observation of the fine-scale is their spatial coverage (not many scientific
campaigns allow for a large number of drifters). Moorings consist of a support cable where different sensors
are attached, for example CTDs (Conductivity-Temperature-Depth) and current-meters, providing Eulerian
measurements at different depths. They provide high temporal resolution and coverage data, rendering long
time series of data to study the fine-scales at certain locations. Mooring arrays can sample a small region
at a high frequency, for example the OSMOSIS (Ocean Surface Mixing, Ocean Submesoscale Interaction
Study) array which allowed to sample submesoscale structures (Buckingham et al., 2016; Thompson et al.,
2016; Yu et al., 2019). This dataset’s main drawback for fine-scale measurements is that it is very localized
in space. Gliders are underwater remotely steered instruments. They measure different ocean variables
continuously at high temporal and spatial resolutions by performing a transect by making a “saw-tooth”
movement from the surface to a certain depth. (Testor et al., 2010) The disadvantage of gliders is that they
provide 1D information in the horizontal, and several gliders are needed at the same time to correctly sample
the fine-scales.

In addition to technological improvements to the above-mentioned in situ instruments, other technologies
are being now applied to oceanographic measurements and new ones developed. High-frequency (HF) radar
network is growing worldwide (Rubio et al., 2017), and this dataset is important for the study of the fine
scales (e.g. bio-physical interactions (Hernández-Carrasco et al., 2018)) as it provides valuable information
on the total surface currents at high temporal and spatial resolution. Its observations of the fine-scales are
quite limited to coastal waters, but they can still be very useful in improving their representation when
assimilated into other datasets like oceanic models (for e.g. Paduan and Shulman (2004)). Animal bourne
telemetry data is now more and more exploited in physical oceanography (Harcourt et al., 2019) and observes
valuable information on the fine-scales too. It provides high-resolution data profiles in space and time, and
in some regions, can fill the data gaps that for example Argo floats do not provide (March et al., 2019).
Depending on the animal species, just with the individual’s position information, one can obtain interesting
information on the small-scale ocean surface dynamics like for example shown by Miyazawa et al. (2015);
Sánchez-Román et al. (2019). The main limit of this dataset is that it is very localized (very low spatial and
temporal coverage). Lastly, saildrones is an emerging observation platform, that from the upper-ocean and
surface fluxes data it provides (Todd et al., 2019), can sample fine-scale structures, like sharp fronts (Voosen,
2018). This is thanks to its high resolution data both in space (< 1 km) and time (1 min.) (Vazquez-Cuervo
et al., 2019). They can be at sea for long periods (up to 12 months) and travel long distances (Mordy et al.,
2017; Vazquez-Cuervo et al., 2019), but in general they have a low temporal and spatial coverage (specially
in comparison to satellite data).

Although great advances have been made with in situ instruments, and their observational array is growing
(e.g. Argo), they remain quite local observations. Their cost and environmental impact (specially in the case
of non-recoverable instruments) are still some of the main issues preventing them from becoming more global
arrays. Nevertheless, Ocean Observing Systems (OOS) are joining different instrument types and country
efforts. Future observing systems will manage to have better and more complete data of the upper ocean by
combining observations from different platforms (Foltz et al., 2019). This is also described as a multi-platform
approach, put in practice in several experiments like Brannigan et al. (2017); Pascual et al. (2017); Pietri and
Karstensen (2018); Aguiar et al. (2019); Ruiz et al. (2019); Mahadevan et al. (2020). Consequently, for now,
in situ alone are not enough to study the fine-scales completely in space and time. Satellite observations are
therefore key to have complete observations of the fine-scales. Moreover, it is important to combine them
both, as in situ data are important too for satellite data as they provide complementary information like
on stratification and ageostrophic velocities. For example, the T/S profiles provided by in situ observations,
like Argo, are necessary to estimate the steric SSH (e.g. Roemmich and Owens (2000)) and the 3D ocean
circulation (e.g. Ponte and Klein (2013); Qiu et al. (2016)).
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1.2.3 Satellite images

In comparison to the above in situ measurements, satellite images provide a higher spatial coverage horizon-
tally at the surface, (and sometimes temporal) but not in the vertical. Their resolution has been increasing
for the last years, thanks to technological advances both in the satellite instruments used and in the image
processing methods. To obtain them, different technologies are being used, and some of the most relevant
allowing the observation of fine-scale features are described below:

• Sea Surface Temperature (SST): These are infrared images which provide high-spatial resolution fields.
These products can even reach a 1 km resolution, allowing for the observation of the submesoscale.
Unfortunately, this data is limited by the presence of clouds which masks the signal. (Drushka et al.,
2019) Imaging microwave radiometers can also provide SST fields, and are limited to by geophysical
phenomena such as precipitation, wind speed, and sea ice (Minnett et al., 2019).

• Sea Surface Salinity (SSS): Salinity measurements can be obtained from satellite-based microwave ra-
diometers. This data is much more recent than for example SST images. Although these measurements
have been very relevant for the oceanographic community (Font et al., 2009; Reul et al., 2014), their
present spatial resolution is not high enough for submesoscale observation. Spatial resolution varies
from satellite to satellite, being for example 80 - 100 km for Aquarius and ∼45 km for SMOS (Soil
Moisture and Ocean Salinity). (Drushka et al., 2019)

• Ocean colour: It monitors chlorophyll globally, via measurements in the visible frequency. (Le Traon,
2018) It is not measured directly, but estimated via the Remote Sensing Reflectance ratio (Dutkiewicz et
al, 2019). Like SST, high resolution spatial products exist, down to 1 km. These images provide useful
information on open ocean mesoscale processes such as Rossby waves and eddies (McClain, Charles R,
2009), and also on the submesoscale (e.g. Lévy et al. (2012a); Delandmeter et al. (2017)).

Satellite images render complementary information on surface currents, and also on surface buoyancy. The
latter is an important parameter when wanting to process SSH data to, for example, apply the surface
quasigeostrophic theory to estimate a part of the deep circulation. Combining this data with altimetry helps
to obtain better observations at the fine-scales, and this will be further explained in the following section.

These satellite images need to be processed (with for example advanced de-noising techniques) to be able to
exploit the information they render on the surface ocean. Each satellite image requires specific processing
algorithms. For example, in the case of SMOS, de-noising the salinity data was important not only to reduce
the spectral noise floor, but to retrieve an improved spectral slope. Correctly, de-noising allows to better
retrieve the image’s gradients, in this case the SSS gradients. Moreover, one of the processing steps to reduce
the noise used for the SMOS salinity products exploits the information within another type of satellite image
(SST) (Olmedo et al., 2016).
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1.2.4 Altimetry

1.2.4.1 Concepts

Altimetry is the measurement of sea surface height variability via satellite (Talley , 2011). This surface height
variability is sometimes referred to as ocean topography. The observed ocean topography measured by a radar
altimeter is a combination of (i) the geoid and (ii) ocean dynamics. The geoid is related to the internal mass
of the Earth and is the height the ocean would have if at rest, and so it is a constant geopotential surface (i.e.,
varies due to differences of gravity). The geoid has been estimated thanks to the GRACE (Gravity Recovery
and Climate Experiment) satellite mission launched in 2002 providing data with a horizontal resolution of
approximately 500 km, and the GOCE (Gravity Field and steady-state Ocean Circulation Explorer) mission
launched in 2009 providing data with a horizontal resolution of approximately 100 km (Escudier , 2014).
Then, due to dynamical processes such as currents, tides and atmospheric pressure effects, a topography
generates. Its typical amplitude at the sea surface is of +/- 1 m (Stewart et al., 2008).

Several steps are necessary to retrieve the information on the ocean dynamics from the SSH measurement.
Firstly, the satellite position (and hence the SSH measurement) can be obtained with respect to a theoretical
ellipsoid of reference (see fig. 1.5) given that the satellite altimeter flies at a constant orbit, repeating the
same ground tracks every several days (depends on each satellite). The distance between the satellite and
the ocean surface, known as the range, can be calculated thanks to the radar impulses sent by the altimeter
onboard the satellite straight down to the surface (Benveniste, 2011). From the time it takes the impulses
to echoe back to the satellite, and the known speed of the electromagnetic wave sent, the distance (range)
can be calculated. Then, SSH is measured as the difference between the altitude and the range.

Secondly, to be able to retrieve information on the ocean dynamics, the mean of previous sea surface mea-
surements (MSSH) is subtracted from the SSH, obtaining the Sea Level Anomaly (SLA). This is necessary
due to that the geoid is still not known with high precision, and it does not resolve well scales below 100
km (fine-scales). The geoid needs to be very precisely estimated as its order magnitude is greater than that
of the ADT (Carret , 2019), and so its errors can have a large effect on the ocean dynamics inferred. By
subtracting the MSSH from the SSH, the geoid and its errors are removed (as well as the average errors of
the SSH measurement and of its corrections e.g. sea state bias). This is done given that the same ground
tracks are repeated and that the temporal variations of the geoid are slow compared to the relatively fast
oceanic variations. (Tchilibou, 2018). Before, a 10-year MSSH was removed (Marshall and Plumb, 2008;
Stewart et al., 2008), and now a 20-year mean reference period is used (Pujol et al., 2016). MSS gridded
products exist, which resolve spatial scales reaching 100 km, and even lower with the improvements obtained
with altimetric data (Schaeffer et al., 2012). At these smaller spatial scales, for example one of the products,
MSS CNES-CLS15, has a mean estimated global MSS error of 0.35 cm along SARAL/AltiKa tracks for
wavelengths ranging from 30 to 100 km (Pujol et al., 2018).

Lastly, once the SLA is known, to have information on the currents, and thus the ocean circulation, the
Absolute Dynamic Topography is calculated (ADT) by adding the Mean Dynamic Topography (MDT) to
the SLA. This step is necessary as in removing the MSSH to reduce the errors, the average oceanic circulation
is also removed. This process is illustrated in fig. 1.5, where it shows that SLA can be defined as shown in
eq. 1.1. The MDT represents the permanent circulation (e.g. major currents like the Algerian current in the
Mediterranean Sea). The MDT products are obtained as the difference between the MSSH and a geoid model
at the spatial scales where the geoid is accurately known (100 - 150 km). At these scales the ocean MDT is
at present resolved with centimetre accuracy (Le Traon, 2018). So that the ocean MDT resolves scales below
100 - 150 km, this gravimetry data is combined with altimetry and in situ data (e.g. from Argo floats). A
final MDT product is then obtained, like for example the CNES-CLS13 MDT by Rio et al. (2014a), with
a 1/4° global resolution. Other regional MDT products exist, like the SMDT-MED-2014 (Synthetic Mean
Dynamic Topography of the MEDiterranean sea) (Rio et al., 2014b). These regional products are necessary
as enclosed or semi-enclosed seas are usually characterized by basins with complex geometries (e.g. many
islands and narrow straits), and the Mediterranean has a relatively low Rossby radius of deformation of the
order of 10 km. Consequently, a higher geoid resolution is needed here and so its improvement below scales
of 100 - 150 km is even more crucial than for the global ocean MDT products. It is important to note that
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ADT is sometimes referred to as SSH (for example in ocean modeling), but with respect to the geoid instead
of the reference ellipsoid as shown in fig. 1.5.

SLA = SSH −MSSH = SSH − geoid−MDT = ADT −MDT (1.1)

Figure 1.5: Altimetry principle (adapted from Rio and the CLS altimetry team. (2013)).

SSH can be separated into steric and non-steric, dominated by low-frequency mesoscale eddies and high-
frequency internal tides, and barotropic tides, respectively (Arbic et al., 2010). The steric effect describes
the changes in sea level due to the volumetric expansion or contraction induced by variations in temperature
and salinity in seawater (Criado-Aldeanueva et al., 2008). An approach to remove this steric effect is by
subtracting the spatial mean to a SSH snapshot. Note however that this also removes non-steric signals
larger than the snapshot distance. More complex methods involve using information on the water column’s
sea temperature and salinity to calculate the steric SSH, e.g. Savage et al. (2017b).

In a further technical sense, different altimetric technologies can be used to measure SSH (Morrow et al.,
2018; Rogé, 2018):

• Nadir: This one is the most commonly used until now. Nadir refers to the local vertical direction
pointing in the direction of the force of gravity at that location. For an orbiting satellite it is simply
the downward view. The conventional nadir altimetry is referred to as Low Resolution Mode (LRM).
The radar pulses are continuously sent at intervals long enough to avoid the correlation with return
echoes .

• SAR nadir: Synthetic Aperture Radar (SAR) nadir differentiates from the above in that its footprint
is reduced. This is thanks to that the emission of pulses is done in successive wave packets by Doppler
effect, and this allows to have more observations at each point. It implies a gain in the along-track
spatial resolution compared to LRM.

• SAR Interferometry (SARIn): This one instead of using only one radar signal combines the signal of
two. The combination of two SAR images of the same place (taken at two successive overflights by the
same radar or at the same time by the same satellite with two antennae) allows fine-resolution mapping.
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The data measured from altimeters is presented in different formats/levels, thus rendering different products.1

• L0 is the raw radar data.

• L1 has some instrumental errors corrected, but mainly has the radar waveform parameters.

• L2 has the geophysical quantities calculated (SSH, SWH, sigma-0) and the full list of geophysical
corrections to be applied, and the data is posted at their original position.

• L3 has the corrected SSH values, interpolated onto a nominal fixed along-track grid.

• L4 is interpolated onto a regular 2D grid.

The most common L4 altimetric products are generated via Optimal Interpolation (OI). OI (also referred
to as objective analysis) combines different altimeter 1D SSH data producing daily, regular gridded maps
by parameterizing the spatial and temporal oceanic correlation length scales. The spatial resolution of
the products varies depending on the product, for example the global one has a resolution of 1/4◦ and
the mediterranean one 1/8◦ (Amores et al., 2019). DUACS (Data Unification and Altimeter Combination
System) produces L4 altimetric products (as well as L3) since 1997, by using the altimetric data from
the available satellites. It mainly focuses on the reconstruction of the mesoscale. The parameterization
of OI used for the mapping of this L4 product depends both on the physical field’s properties and the
available altimeter constellation data’s sampling capability. (Pujol et al., 2016) These products have greatly
advanced our understanding of the mesoscale, but some limitations exist due to the dependence of the
method on the altimeters’ sampling. Amores et al. (2019) find that the OI parameterization can affect the
eddy properties in the generated L4 product, specially in regions with a small Rossby deformation radius.
This implies a misrepresentation of the mesoscale and below in these regions (e.g. the Mediterranean Sea)
(Fablet et al., 2018). The location of oceanic currents is also affected by the number of altimeters present in
the constellation used to derive the L4 maps, and the distance between these altimeter tracks (González-Haro
and Isern-Fontanet , 2014). Nevertheless, the DUACS products are being constantly improved. The most
recent product, DUACS DT2018, uses 25 years of altimetric data, and within other, improved the geophysical
corrections and the OI parameterization. It specially managed to reduce the error in coastal regions, which
are quite problematic with the present altimeters. (Pujol and Larnicol , 2005; Pascual et al., 2007; Ballarotta
et al., 2019; Taburet et al., 2019)

Gridded maps can also be obtained by combining the L3 products with other data sources i.e., oceanic
tracers. Fablet et al. (2018) use multi-tracer convolutional processing by using high-resolution SST data to
obtain L4 altimetric products. Other tracers can be Finite Size Lyapunov Exponents (FSLEs) (Gaultier
et al., 2013) or singularity exponents (Sudre et al., 2015). New studies like Ciani et al. (2019) also use tracers
(high-resolution SST in this case too) with altimetric data to obtain daily gridded maps. In this study they
actually obtain gridded maps of sea surface currents by using altimetry-derived geostrophic velocities.

To obtain altimetric L4 products, data assimilation techniques are also used. These may take advantage of
other datasets like SST and hydrographic profiles. For example, the Global Ocean ReanalYsis and Simulation
(GLORYS) assimilates SST, temperature and salinity profiles, and altimetric data via a Kalman filter (Ferry
et al., 2012). To take advantage of future wide-swath satellite data, data assimilation techniques will be even
more necessary to deal with the even bigger temporal gaps compared to nowadays altimetric constellation.
This will be further discussed in Section 2.2. Data assimilation techniques are also important in order to
assimilate altimetric data in models for operational oceanography (Ubelmann et al., 2009; Verron et al., 2018).
No matter the technique used, whether OI or data assimilation, in regions where the gap between altimeter
tracks is bigger than the Rossby radius of deformation, the eddy field representation will be compromised
(Amores et al., 2019).

1https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-altimetry/processing-levels; https://sentinel.esa.int/web/sentinel/technical-
guides/sentinel-3-altimetry/products-algorithms
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1.2.4.2 History

The first altimetric satellite missions started in the 1980s with GEOS-3, followed by Geosat in 1985 which
had very good mesoscale resolving capabilities. Geosat and the ERS satellites aimed to observe the cur-
rents’ weekly variability (Stewart et al., 2008). Later, the Topex-Poseidon mission meant a major altimetric
breakthrough in precision (and a high altitude orbit), which allowed an accurate measure of the large-scale
signals that evolved over scales greater than 20 days. Mesoscale sampling capabilities were improved by
careful calibration of a minimum of 2 satellite missions flying together, starting from the early 1990s (e.g.
Topex-Poseidon and ERS, Jason and Envisat, and others). The latter satellite of this past missions’ group,
Jason-1, managed to resolve wavelengths down to 100 km as shown in fig. 1.7. Below the list of all past
altimetric missions and their main characteristics summarized in table 1.1 (Durán-Moro, 2017):

Figure 1.6: Past, current and future altimetry-related satellite missions. (https://www.aviso.altimetry.
fr/en/missions.html)

• GEOS-3

• Geosat

• ERS-1

• Topex-Poseidon

• GFO

• ERS-2

• Envisat

• Jason-1
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Figure 1.7: Spectrum of sea surface height anomaly from Jason altimeter data (curve). The two slanted
dashed lines represent two spectral power laws with k as wavenumber. The horizontal dashed line represents
the threshold of measurement noise at a 1-kilometer sampling rate. The slanted solid straight line represents
a linear fit of the spectrum between 0.002 and 0.01 cycles per kilometer. (Fu and Ferrari , 2008)

The present altimetric satellite missions (i.e., still ongoing) are the following, and their main characteristics
summarized in table 1.1 (Durán-Moro, 2017):

• Jason-2, -3

• SARAL/Altika

• Cryosat-2

• HY-2A

• Sentinel-3A, 3B
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Satellite
mission Period Radar mode Band Repeat

cycle (days)
Accuracy
(cm)

Seasat 1978 LRM Ku 17 10

Geosat 1985-1990 LRM Ku 17 5

ERS-1 1991-2000 LRM Ku 35 3

Topex/Poseidon 1992-2006 LRM Ku and C 10 2

ERS-2 1995-2011 LRM Ku 35 3

GFO 1998-2008 LRM Ku 17 5

Jason-1 2001-2013 LRM Ku and C 10 2

ENVISAT 2002-2012 LRM Ku and S 35 2-3

Jason-2 2008-2016 LRM Ku and C 10 2

Cryosat-2 2010- SARIn Ku 369 1

HY-2A 2011- LRM Ku and C 14 and 168* 2-3

SARAL/Altika 2013- LRM Ka 35 2

Jason-3 2016- LRM Ku and C 10 2

Sentinel-3A 2016- LRM and SAR Ku and C 27 2-3

Table 1.1: Summary of the main characteristics of past and present oceanographic altimetry missions. From
left to right the columns show the altimetric satellite mission name, mission period, radar altimeter mode
(see section 1.2.4.1 for details), its frequency band, the orbit’s repeat cycle (in days) and the accuracy of the
SSH measurement (in cm). Table is adapted from Durán-Moro (2017). * has two phases.

These altimetric observations have been found to very useful in the observation of mesoscale eddies (Fu and
Zlotnicki , 1989; Morrow and Le Traon, 2012; d’Addezio et al., 2019). On the other hand, in regions where
there is a high mesoscale eddy signal, there is aliasing in the along track altimetric data. (Shriver et al., 2012)
A major improvement of altimetric observations was made partly due to that since the launch of Jason-2,
there has always been at least two orbiting altimeters at the same time with their merged observations,
rendering 2D gridded maps of SSH that can resolve wavelengths down to 150 km (d’Addezio et al., 2019).
Pascual et al. (2006) found a 25% improvement when estimating sea level with four altimeters, compared to
the results obtained with only two. This contributed to the improvement of the mesoscale observation, but
it is important to note that in the gridding process of nowadays altimetric products, part of the mesoscale
signal is lost (Wang et al., 2019b).The recent altimeters Sentinel-3 and SARAL/Altika provide data with a
better precision, better performance at the coast and less noise. The latter allows to resolve smaller scales.
(Heslop et al., 2017; Verron et al., 2020)

Unfortunately, the submesoscale cannot be observed by current altimeters (d’Addezio et al., 2019). The along-
track altimeters, resolve wavelengths of 70 -100 km (in the case of Jason-2), and for SAR mode altimeters
(like Saral and Sentinel-3), it can go down to 30 - 50 km (Morrow et al., 2018). One could argue whether the
latter falls within the submesoscale or not, but the resolved wavelength becomes greater for the SSH gridded
products, which resolve wavelengths of approximately 150 km (Ducet et al., 2000). Another limitation of
nowadays altimetric data is that the radar echoe is polluted by ice and land surfaces, thus reducing the
accuracy of the data in coastal and polar areas. (Rio and the CLS altimetry team., 2013)
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Future altimetric satellite missions aim to improve these current altimetric limitations. The upcoming mis-
sions, confirmed or not (specified with (?)) are:

• Jason-CS

• SWOT

• SKIM (?)

• SEASTAR (?)

• WaCM (?)

It is important to note, that with these new missions, new challenges will arise, specially as we move to smaller
spatial scales. On of these is the presence of IGWs, and thus separating balanced and unbalanced motions
(including IGWs, but also maybe unbalanced submesoscale motions). Moreover, better data assimilation
techniques for gridded products of SSH will be necessary as OI will probably not be enough anymore. The
presence of non-stationary semi-diurnal tides will be difficult to remove, for example from the future SWOT
observations. The removal of coherent/stationary internal tides will be a new challenge too, but simpler.
(Arbic et al., 2018)

1.3 The SWOT mission

The Surface Water and Ocean Topography (SWOT) satellite mission is a joint mission of the National
Aeronautics and Space Administration (NASA) and the Centre National d’Études Spatiales (CNES) with
contributions of the UK and Canadian Space Agencies (Wang et al., 2019a). Presently, the satellite’s launch
is planned for 2022. The life time of the mission is of at least 3 years (Morrow et al., 2019), and it is expected
to provide water elevation maps for oceanographic and hydrological purposes (Fu and Ubelmann, 2014). The
novelty of this satellite is that it will provide 2D SSH fields on a wide-swath, 120 km wide in total. The
horizontal resolution and the global coverage that SWOT will provide, will help to open the way for new
studies (Fu and Ferrari , 2008; Morrow et al., 2018).

The SWOT satellite will provide information of the Sea Surface Height (SSH) (Ubelmann et al., 2015), with
measurements reaching wavelengths of 15 km in most of the ocean (which implies the observation of structures
with a diameter of 7.5 km). This will be thanks to that it is a wide-swath altimeter, in particular a Ka-band
Radar Interferometer (KaRIn), which measures at a frequency of 200 MHz. In addition to 2 interferometer
antennae at each side, it has a nadir altimeter at the center (fig. 1.8).
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Figure 1.8: SWOT satellite configuration. The pink (blue) dashed lines show the main interferometer left
(right) swath. The green dashed lines show the nadir interferometer channel (Fu and Ubelmann, 2014).

The satellite will have 2 orbits. Firstly, after the instrument’s check out phase during approximately the first
3 months after the satellite’s launch, there will be a fast-sampling orbit, lasting ∼ 3 months too. It is also
called the Calibration/Validation (Cal/Val) phase, as it will allow to assess the instruments’ performance and
to validate the SWOT observations with other oceanic data (Morrow et al., 2019). This will be done thanks
to frequent revisits (given its 1-day repeat cycle) at the calibration sites (see d’Ovidio et al. (2019)). This
will also allow, within other, to investigate high-frequency geophysical processes during this phase (d’Ovidio
et al., 2019). Then it will be the nominal orbit or Science phase, with a high spatial coverage of about 90%
between 78ºS and 78ºN (Morrow et al., 2019). On the other hand, its temporal resolution will not be very
good. The temporal resolution of satellite data is the time between satellite revisits, which in the case of
the nominal phase, will be approximately 10 days, given its 21-day repeat cycle . The 10-day revisit time
is actually a good approximation for higher latitudes whilst for lower latitudes it is about 2 days (Mouffe
et al., 2011). Therefore, its overall capability will be limited by its low temporal resolution. This difference
in time resolution with latitude can be seen in fig. 1.9 (right). This figure shows the maximum gap (in days)
with latitude, between two observations. Near the Equator there is a maximum gap between 16 and 20 days
which implies one or two observations in one repeat cycle as observed in the left panel. This gap reduces as
latitude increases, implying a greater number of observations per repeat cycle. This also implies a spatial
coverage variation with latitude.
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Figure 1.9: Sampling pattern of the 21-day orbit for the Science Phase (Fu and Morrow , 2016).

As described in Section 1.2.4.2, conventional altimetry measures Sea Surface Height (SSH) along-track in 1D,
and SWOT will be the first wide-swath altimeter to measure the ocean SSH field in 2D over two 50 km wide
swaths. The same SSH signal calculation of equation 1.1 and the atmospheric, geophysical and instrument
corrections that are applied to along-track altimetry, will also be applied to SWOT, but extra corrections
and errors associated with the interferometric calculation will be necessary. Moreover, as SWOT will provide
a higher spatial resolution, it is expected that not only will it be possible to follow mesoscale eddies (about
100 km in diameter) like currently (e.g. Escudier et al. (2016b)), but also submesoscale eddies (about 10 km
in diameter). Nevertheless, this spatial and temporal resolution mismatch (fig. 1.9), might complicate the
creation of SSH maps, specially if the intention is to use them to observe submesoscale structures. This is
because of their short timescales and consequently, it might actually not be possible to follow very easily the
evolution of submesoscale eddies. Some data treatment techniques like for example, dynamic interpolation,
have been started to be investigated to help solve this problem as discussed by Ubelmann et al. (2015).

The measurement noise will vary in each oceanic region. Globally, SWOT is required to have a noise level at
2.74 cm RMS on a 1x1 km grid, and 1.37 cm RMS for the 2x2 km standard products. (Esteban-Fernandez ,
2017; Chelton, 2019) This varies regionally as it changes with sea-state conditions (surface waves), and it
has been estimated by Wang et al. (2019a). The main issues are random errors and geophysical phenomena,
for example internal waves. Internal gravity waves and internal tides are a SSH dynamical signal, not
measurement error. However, depending on the use of the SWOT data within the ocean community, it could
be necessary to separate the balanced motions from the unbalanced internal waves, to for example calculate
geostrophic velocities. This separation may be particularly difficult in regions like the Gulf Stream where,
at wavelengths shorter than 50 km (what SWOT intends to reach), internal tides and wave energy levels are
comparable to that of low-frequency motions (Callies et al., 2015). Therefore, the resolution of the balanced
motions resolved by SWOT data, will also vary from region to region depending on the internal waves signal.
Even if this is the case, it is important to remember that internal waves are not measurement noise.

Moreover, the effect of the noise may differ depending on the region. Not only will the presence of internal
waves vary geographically, but also the size of the structures present (like eddies). For example if we look at
fig. 1.4, structures with smaller spatial scales are present in the Mediterranean Sea than in other parts of the
ocean at the same latitude. The first baroclinic Rossby radius of deformation values are lower in the western
Mediterranean Sea, approximately between 2 and 16 km (Escudier et al., 2016b; Barceló-Llull et al., 2019),
in comparison to the 20 - 30 km values found at mid-latitudes of the Atlantic Ocean (Chelton et al., 1998).
The values found by Escudier et al. (2016b); Barceló-Llull et al. (2019) are actually closer to the values found
in the Arctic Ocean (Nurser and Bacon, 2013). Therefore, even the regions are at the same latitude, the
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noise will have a different effect, given different structure sizes and energetics. The processing of the SWOT
data has to been done accordingly, with respect to the latitudinal ocean dynamics variation, but also regional
variation.

Several studies have been carried out to deal with SWOT noise and errors and the creation of gridded maps.
One of these studies that tackles these two challenges at a time is Qiu et al. (2016). They use objective
interpolation to combine the passes and reduce the SWOT noise and errors. The resulting gridded maps
represent the structures present in the field, but their amplitude is reduced; and fine-scale structures over-
smoothed. Gaultier et al. (2016) use optimal interpolation to reduce the SWOT swath noise, and so recover
the observation of structures when velocity is derived from the SWOT SSH. We can observe their results
in fig. 1.10. Although the big structure are recovered, we can observe the limitations of the method in
observing smaller velocity magnitudes in the right versus the left subplots of fig. 1.10. Chelton et al. (2019)
study the reduction of the noise variance by smoothing the SWOT data, and they look at pseudo-WaCM
(Winds and Currents Mission) data too. A 2D Parzen smoother is applied to data simulated in the California
Current System, and they find 30 km and 55 km resolved wavelengths for velocity and vorticity, respectively,
calculated on the SWOT swath. They find that in this region, due to the sampling characteristics of SWOT
in space and time, and due to its narrow swath (compared to WaCM), velocity and vorticity geostrophically
constructed maps have too high sampling errors. It is important to note that these studies used ocean models
with no internal tides signal, so its a simpler estimate than what it would be in reality.

(a) From SWOT-like observations
without noise (b) From SWOT-like observations (c) From SWOT-like filtered observations

Figure 1.10: Absolute geostrophic velocity (L2 norm, ms−1) derived from (a) the true SSH, (b) the SWOT-
like SSH and (c) the SWOT-like SSH filtered using optimal interpolation. (Gaultier et al., 2016)

Ruggiero et al. (2016) studied the assimilation of SWOT data by taking into account the presence of SWOT
correlated errors. The covariance matrix used in their method includes the information on SSH, but also
its first and second order derivatives. They removed the uncorrelated KaRIn error by averaging the SWOT
grid to 9 km pixels. One of their main conclusions is the need to use advanced image restoration techniques
to filter the KaRIn error, so that they can exploit the information on the SSH derivatives which is usually
masked by this error. This would allow for the technique to be applied at the expected 2 km grid resolution
without having to coarsen it to 9 km.

Other studies focused on the removal of the swath’s correlated errors (Dibarboure and Ubelmann, 2014; Metref
et al., 2019). Dibarboure and Ubelmann (2014) focus on one of the main correlated errors: the roll error.
They study different methods to minimize it, using just the swath itself or the overlap of different passes,
trying to minimize as much as possible any oceanic variability leakages. They find that their method is
especially effective at mid and high latitudes, and at wavelengths greater than 100 km. Consequently, some
roll error might be left at scales smaller than this, not directly helping to better observe the fine scales via
SWOT, although its impact at larger scales will reflect in the fine scales observed. The approach of Metref
et al. (2019) to reduce the SWOT correlated errors is to firstly obtain a detrended SSH, and then use an
ensemble data assimilation analysis (ensemble Kalman filter). A reduction of the large scale SWOT errors is
achieved, together with reducing small scale errors. In terms of spatial power spectra, they recover the signal
down to scales of 25 km.
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Several studies have also been done related to the obtention of SWOT SSH gridded maps. Most of these
studies use noise-free pseudo-SWOT data. Standard interpolation techniques used in altimetry until now to
produce gridded maps, like optimal interpolation, will not be appropriate for SWOT data given its spatial
and temporal gaps. One of the proposed new techniques is dynamic interpolation by Ubelmann et al. (2015).
This technique uses the conservation of potential vorticity to account for the temporal gaps between the
SWOT passes. In their study they show they can recover small mesoscale eddies when the time gaps are
maximum of 20 days. Although the results are promising some limitations exist. It is an idealized case where
the specific sampling characteristics are not taken into account, no instrumental noise is considered and no
unbalanced motions are present in the SSH signal.

Adequately de-noising the SWOT data and posteriorly mapping it, will have important operational applica-
tions. Bonaduce et al. (2018) found that the error of ocean analyses and forecasts could be reduced by more
than 50% if instead of a three nadir constellation, a two wide-swath altimeter constellation was used for SSH
observations. They point out though, that this improvement is only possible if the wide-swath data has a
small instrumental error. This study also finds that this improvement in the surface ocean is propagated
at depth, and thus improves the oceanic vertical structure representation. Having a good approximation of
SWOT SSH derivatives on the swath, specially second order, will allow to apply data assimilation techniques
that can efficiently constrain a quasi-geostrophic model to derive 2D SSH products from SWOT. Other stud-
ies that investigate the mapping of SWOT SSH fields are Fablet et al. (2018); Ma and Han (2019); Le Guillou
et al. (2020); Metref et al. (2020).

1.4 Motivations, challenges and objectives

The general motivation of this study is to improve the observation of the fine scales (oceanic turbulence).
This will allow to better understand the oceanic motions both in the horizontal and the vertical. SWOT will
improve the upper ocean’s observations spatial resolution and coverage. The latter, is of great importance as
horizontal data gaps exist in present altimeter data, which in some cases cause an inadequate eddy tracking
and quantification (e.g. Amores et al. (2018)). Vertical motions are very small, and thus difficult to measure.
They need very high resolution data (Pascual et al., 2017), like the one provided by SWOT’s 2D swath. This
information can then be used for biogeochemistry by better understanding the pathways of nutrients such as
oxygen, CO2, nitrates and chlorophyll, and thus phytoplankton. This can be applied concurrently to upper
and upper across the food chain.

The challenges involved in the fine scales’ observation are several, but in summary it is limited by the
nowadays capacity of the OGCMs, satellite and in situ data. McWilliams (2016) describes how for example
submesoscale currents are difficult to observe due their spatial and temporal scales, which limit the different
observational tools (e.g. too small for nowadays satellites’ footprints). Consequently, in this thesis we focus
on their observation by SWOT. Specific SWOT challenges then arise, specially given it’s specific sampling
and new altimetric 2D data. Concerning the orbit, actually the challenge doubles as there will be the Cal/Val
and Science orbits, with different spatial and temporal samplings. There is a need to understand how these
might affect the fine scales’ observation. Then, regarding the 2D swath, new algorithms to process the SSH
data are necessary to process the data on swath as a first step, and then combine the passes to obtain 2D
gridded maps of SSH and its derivatives. The goal is to find the most adequate methods that will accurately
conserve the small scale signals as much as possible. The swath is not continuously 120 km, but has a 20 km
gap. Taking advantage of the nadir data at the centre, the whole swath can be reconstructed across-track. As
pseudo-SWOT data needs to be simulated, a more specific challenge is to use the best data sources (OGCMs)
to do so. In addition, to using an OGCM that accurately represents the fine scales, the ocean dynamics that
could account for important SSH variances is important too. This makes reference to for example tides, and
the internal waves they generate, which become important at small spatial scales. Accounting for the sea
state is also important as it will affect the SWOT SSH signal too. This together with a varying temporal and
spatial sampling geographically, implies that these different challenges might be present or not depending
on the region, and if present, be of different complexities. To this we have to add the general geographical
variability of the ocean’s dynamics.

One of the first challenges that has to be approached is obtaining SWOT SSH gradients (and thus current
velocities), and its appropriate small-scale gradients. This is difficult due to SWOT SSH data being affected
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by geophysical and instrumental errors. When SSH spatial derivatives are calculated by finite differences,
SWOT noise and errors are amplified (Chelton et al., 2019). A first approach to remove this errors was
carried out by Ruggiero et al. (2016), who managed to remove the large-scale, correlated errors, but found
an inconvenient: The small-scale, uncorrelated KaRIn error removal is necessary in order for their approach
to be efficient. This provided a major motivation for this study, as it was found that it was necessary to
appropriately remove this KaRIn error, before applying other error removal techniques.

Following the above mentioned, these two main questions are meant to be answered in this thesis:

1. What is the best method to remove this small-scale noise, whilst conserving the SSH signal and struc-
tures?

2. What will be the spatial resolution of the de-noised SWOT swath data in different dynamic regimes?

A preliminary objective is the analysis of OGCM outputs (used to generate pseudo-SWOT data) to evaluate
their representation of the fine scales. With this evaluated the objective of adequately simulating pseudo-
SWOT data can be approached. Then, due to the novelty of this data, another preliminary objective is to
explore the SWOT SSH data’s spatial and temporal coverage, and noise level at different oceanic regions.
Knowing this allows to be able to start developing algorithms and protocols to treat the future SWOT
data. The objective here is to find the best de-noising method that removes the small scale noise present
in the SWOT swath, whilst conserving the SSH signal intensity and structures present. The following
objective is to obtain a on swath SWOT observed wavelength, for different seasons. Lastly, extrapolate this
to different oceanic regions and OGCM SSH data sources to account for the existing uncertainty on the
fine-scale variability. Also, to provide an improved SWOT swath to which other larger scale error removing
techniques can be applied, and then apply other techniques to combine the swaths to obtain improved 2D
SSH gridded maps.

This thesis tries to attain these objectives by first focusing on a particular region: the western Mediterranean,
and then expanding the study to other regions. Chapter 2 describes the main data and tools used in this
study. Chapter 3 presents a first analysis of SWOT data in the western Mediterranean during the Science
phase. The spatial scales resolved in this scenario are explored and a filtering algorithm is implemented to
better them. To further improve the resolved scales and SWOT retrieved fields, a new de-noising method is
developed and implemented. The western Mediterranean region is kept, but the fast-sampling phase is used
instead in preparation for the Cal/Val experiments. The results are shown in Chapter 4. Chapter 5 is the last
results Chapter which investigates the SWOT resolved scales in different dynamical regimes, after applying
the de-noising method presented in the previous Chapter. Finally, the general conclusions and perspectives
of this thesis are presented in Chapter 6.
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Data sources and methods
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Chapter 2 2.1. OCEAN GENERAL CIRCULATION MODELS

2.1 Ocean general circulation models

In preparation for the SWOT satellite launch different datasets and tools are developed. Firstly, high-
resolution OGCMs are necessary to generate pseudo-SWOT data. The ones used in this study to obtain
pseudo-SWOT data via the SWOT simulator (explained in Section 2.2) are described below:

• WMOP

The Western Mediterranean OPerational forecasting system (WMOP) is a hindcast obtained for the 2009 -
2015 period, with a spatial coverage from the Strait of Gibraltar to the Sardinia Channel. It is a regional
configuration of the Regional Oceanic Model System (ROMS) nested in the Mediterranean Ocean Forecasting
System (MFS) (Lopez-Radcenco et al., 2019). It has a spatial resolution of approximately 2 km (varies from
1.8 to 2.2 km), and thus satisfies the horizontal resolution suggested in fig. 1.4 and described by Hallberg
(2013). It is forced with a high resolution weather forecast forcing with a temporal resolution of 3 hours and
a spatial resolution of 5 km. This introduces more energy to the system and allows to resolve the mesoscale
and permits the submesoscale. This can be observed in the relative vorticity (normalized by f) snapshot
below (fig. 2.1). (Juza et al., 2016)

Figure 2.1: WMOP relative vorticity normalized by f on 23/01/2009 (left) and 03/02/2009 (right). (Gómez-
Navarro et al., 2018)

This WMOP hindcast simulation has been validated in several studies, given its importance for the fore-
casting system in this region. Juza et al. (2016) found that the WMOP forecasts based on this hind-
cast present a general accuracy with respect to ocean variability, large-scale circulation and water masses.
Aguiar et al. (2019) found that the WMOP hindcast, in comparison to the CMEMS Med Rea (MED-
SEA_REANALYSIS_PHYS_006_004 (Simoncelli et al., 2014)) and altimetry, produces more small-scale
eddies and approximately the same number of larger eddies. In terms of variability, they found that data
assimilation is necessary for WMOP to correctly reproduce the mesoscale structures’ phases and thus the
variability of the surface currents that affected them.

• (e)NATL60

The North Atlantic at 1
60

◦ (from hereinafter referred to as NATL60) simulation run is based on the NEMO3.6
ocean model, coupled to LIM2 ice model and forced by the Drakkar Forcing Set (DFS5.2) atmospheric inputs.
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2.1. OCEAN GENERAL CIRCULATION MODELS Chapter 2

The spatial domain covers the North Atlantic basin : from 26.5°N to 66°N and from 80°W to 9.5°E (fig. 2.2).
The simulation time-span is from mid-June 2012 to October 2013 (simulation years, no data assimilation
included). The period covered by this run encompasses the OSMOSIS observational campaign: from June
2012 to October 2013. Regarding the atmospheric forcing, the initial and open boundary conditions are built
from the GLORYS2-V3 reanalysis provided by Mercator Ocean (re-analysis at 1

25

◦ and with 75 levels, so had
to be adapted to 1

60

◦ and to 300 levels, as well as adapting it to the bathymetry). Boundary conditions at
the ocean-atmosphere interface use DFS5.2, based on ERA-interim reanalysis. For the sub-grid closures of
momentum and tracers in the horizontal and vertical, the closure scheme used is TKE (Turbulent Kinetic
Energy) and the advection and dynamical scheme is UBS (Upstream-Biased Scheme).

This simulation run has been used in previous studies. Fresnay et al. (2018) use the NATL60 data in the Gulf
Stream region, and found the simulation represents well the oceanic variability and stratification in this region.
Amores et al. (2018) study the NATL60’s eddy field to study the oceanic eddies characterization capacity by
present-day gridded altimetric products. They find that the eddies captured in nowadays altimetric products
is very low in both the North Atlantic Ocean and Mediterranean Sea. Ajayi et al. (2019) use this simulation
to study ocean energetics, and compare it to HYCOM50 outputs. More precisely, they use the simulations’
outputs to diagnose cross-scale kinetic energy exchanges. Overall, they found that this simulation reproduces
well the North Atlantic oceanic dynamics. Thanks to its ∼1 km resolution, it allows to resolve fine-scale
structures as low as 10 km. The western Mediterranean is an important study region here, which has not
been previously studied with this simulation. To assess and validate this simulation in this region, an analysis
and data comparison of the simulation’s outputs was done and is shown in Section 2.3.

An extended version of the NATL60 run exists (eNATL60) in which a larger spatial domain is covered and
with two runs: a twin experiment with and without tidal forcing. The new spatial domain includes the whole
Mediterranean Sea and Black Sea and the domains goes farther south, down to 6°N, including too the Gulf of
Mexico (fig. 2.2). It has the same spatial resolution as NATL60, so it is a submesoscale permitting simulation
(Verron et al., 2020). The simulation time-span is also the same as for NATL60. The simulation outputs
were generated very recently (available since 2019), and so few published studies exist for now. Verron et al.
(2020) compare the simulation outputs to the altimeter SARAL/Altika, focusing on a spectral comparison
with the simulation’s surface data. They find that the SSH spatial spectra of the model is very close to that
of SARAL/Altika down to 80 km. The high frequency motions of the eNATL60 have been compared to
altimetry by Ansong et al. (in prep.; Ansong et al. (2020)), showing a slight overestimation of SSH variance
due to no explicit wave drag in the run.

Figure 2.2: Spatial domain of NATL60 (yellow box) and eNATL60 (L. Brodeau)

• HYCOM

The HYbrid COordinate Model (HYCOM) (Chassignet et al., 2009) is a global oceanic model. In this study
we use a global simulation at 1

25

◦ (HYCOM25) with tidal forcing (see fig. 2.3). This corresponds to a
horizontal grid spacing of ∼4 km. Hybrid coordinate makes reference to its vertical layers as it combines:
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Chapter 2 2.1. OCEAN GENERAL CIRCULATION MODELS

1. z-layer coordinates: depth-defined and used in the upper ocean,

2. isopycnal coordinates: density-defined and used in the open interior ocean,

3. sigma coordinates: bottom topography-defined and used coastal and deep ocean.

In total it has 41 hybrid vertical levels and it is a one year-long simulation, from January to December 2014.
The tidal forcing used consists of 5 tidal constituents (K1, O1,M2, S2 and N2), accounting for approximately
97% of the global variance of the main tidal constituents (Savage, 2017). To reduce the barotropic tidal
errors a wave drag field is introduced (Buijsman et al., 2015), which is important both for the barotropic and
baroclinic tides representation (Ansong et al., 2015; Buijsman et al., 2016). It is forced too with atmospheric
fields, allowing to represent SSH variance globally for temporal periods of hours to years, and both at the
open ocean and the coast. (Savage et al., 2017b)

Müller et al. (2015) use this simulation and another HYCOM simulation at 1
12

◦ to study the internal gravity
wave spectra. Internal tide peaks are found in wavenumber-frequency spectra in agreement with linear internal
wave theory. In this study the HYCOM25 simulation is validated with moored current meter observations.
Savage et al. (2017b) compared the simulation outputs with tide gauges and McLane profilers (in situ depth-
profiling observations), and found that “the model captures well-known phenomena such as mesoscale eddies
and western boundary currents (steric sub-tidal), the barotropic tides (non-steric diurnal and semidiurnal),
internal tides (steric diurnal and semidiurnal), and both low- and high-frequency barotropic motions driven
by atmospheric pressure loading and winds (non-steric sub-tidal and super-tidal)” (Savage et al., 2017b). The
simulation’s outputs were validated with moorings globally, focusing mainly on the semi-diurnal tide signal,
by Ansong et al. (2017).

Figure 2.3: Global SSH variance (cm2) from HYCOM25 in the semidiurnal band (frequencies 1.86–2.05 cpd)
after stationary tides have been removed via harmonic analysis. The 95% confidence intervals range from
92% to 109% of shown value.(Savage et al., 2017b)

• MITgcm

The Massachusetts Institute of Technology general circulation model (MITgcm) is a primitive equation global
ocean model (Marshall et al., 1997). In this study we use the LLC4320 simulation. LLC refers to Latitude–
Longitude–polar Cap and 4320 is the number points across the common face dimension (Forget et al., 2015).
It is an approximately one-year long simulation, from September 2011 to 30 November 2012 (Flexas et al.,
2019). It has a horizontal spatial resolution of 1

48

◦, which means ∼2 km at mid-latitudes. It has 90 vertical
levels that go from a 1 m at the surface to 300 m at depth grid spacing. This allows the simulation to
represent physically meaningful signals down to 10 km. (Wang et al., 2019a) This means this numerical run
can resolve important oceanic processes down to approximately 5 km in diameter, such as mesoscale eddies,
internal tides and other hydrostatic processes (Ubelmann et al., 2018).
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2.1. OCEAN GENERAL CIRCULATION MODELS Chapter 2

This simulation has been used and validated in many studies. On the one hand, Rocha et al. (2016); Savage
et al. (2017a); Viglione et al. (2018) found that the low-frequency dynamics to be accurate. On the other
hand in Savage et al. (2017a) they found the run to be slightly over-energetic at the high frequencies, which
was later confirmed by a mis-parameterization (Arbic, personal communication). The model has also been
validated with respect to balanced motions by Rocha et al. (2016); Wang et al. (2018) with ADCP (Acoustic
Doppler Current Profiler) data. (Torres et al., 2018) Flexas et al. (2019) looked at the model’s kinetic
energy (see fig. 2.4), specially focusing on the wind’s energy transfer to the Ocean. These kind of studies
were previously limited by the spatial and temporal resolution, but thanks to this high resolution simulation
(as well as the others mentioned above) have made them possible. The tidal forcing introduced in these
simulations has also been very important information on the role of internal gravity waves in the ocean
dynamics studied until now. For example, Flexas et al. (2019) find that in general the kinetic energy fluxes
due to IGWs is stronger in summer.

Figure 2.4: Annual-average map of surface kinetic energy from LLC 1/48◦. (Flexas et al., 2019)

These range of model simulations provide us a range of scenarios. The first two, WMOP and NATL60,
were used for the first more regional studies in the western Mediterranean. For the posterior studies the
last three OGCMs with tidal forcing have been chosen because they represent a range of oceanic dynamics.
These 3 models have hourly data outputs available allowing the study of high-frequency motions. (e)NATL60
although it is not global, it has the highest spatial resolution. HYCOM25 and MITgcm48 both are global
and include tidal forcing, but one does better at lower frequencies (HYCOM25) and the other at higher
frequencies (MITgcm48). MITgcm48 has a better super-tidal signal than HYCOM25, but has too much
energy at low frequencies (Savage et al., 2017a). Lastly, none of the OGCMs include data assimilation. Table
2.1 summarizes and compares the OGCMs’ main characteristics. The OGCMs comparison will be further
discussed in Chapter V.
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Model WMOP NATL60 eNATL60 HYCOM25 MITgcm48

Domain W.
Mediterranean

N. Atlantic
(26.5N - 65N)

extended N.
Atlantic

Global Global

Time-span January 2009 to
December 2015

mid-June 2012 to October 2013 January to
December 2014

September 2011
to November

2012
Numerical code ROMS NEMO v.3.6 NEMO v.3.6 +

xios-2.0
HYCOM MITgcm

Horizontal grid 1
50

◦ :
∼2 km

1
60

◦ : ∼1 km 1
25

◦ :
∼4 km

1
48

◦ :
∼2 km

Vertical grid 32 levels 300 levels 41 levels 90 levels
Vertical coord. Stretched sigma Z partial cells Hybrid

(Z, isopycnal
and sigma)

Z-levels

Tidal forcing No No Yes Yes Yes
BCs CMEMS

Mediterranean
model

GLORYS2v3 GLORYS12 v1 GDEM ERA-Interim

Atm. forcing HIRLAM model DFS5.2 DFS5.2
ERA-Interim
(ECMWF)

ERA-40 ERA-Interim
atmospheric
reanalysis

Table 2.1: OGCMs description

2.2 SWOT simulator and simulated SWOT errors

Prior to the satellite’s launch, the SWOT simulator for Ocean Science has been developed by Gaultier et al.
(2015, 2016). It allows to generate pseudo-SWOT data in preparation for the SWOT mission. Firstly, it
generates grid files following the time domain and orbit specified and region. Then, it interpolates (by a
linear or nearest interpolation at choice) the model data onto the regular SWOT grid in time and space
(the grid size can be set as parameter). The variable generated is SSH_model. It then generates a random
realization of SWOT errors and noise on the same grid, and adds them to SSH_model. This generates the
SSH_obs variable. We can see this simulation process in figure 2.5.

Figure 2.5: From left to right NATL60 SSH, SSH_model and SSH_obs [m] for pass 9 of the fast-sampling
phase, corresponding to simulation date 01/07/2012.
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2.2. SWOT SIMULATOR AND SIMULATED SWOT ERRORS Chapter 2

There are two main groups of SWOT noises and errors: instrumental and geophysical. The first ones are due
to the satellite’s characteristics, and the latter because of the environment. It is important to note that the
SWOT simulator error is generated randomly from spectral estimates (Esteban-Fernandez , 2017), and so it
does not vary realistically in space and time (Gaultier et al., 2016).

The instrumental errors include:

• KaRIn: Ka-band Radar Interferometer (KaRIn) noise is defined by independent Gaussian realizations
of zero mean and with a standard deviation inversely proportional to the square root of the cell surface
(Gaultier et al., 2016; Ubelmann et al., 2018). This noise is random from cell to cell (or pixel within
the SWOT swath). It has a strong random component due to the height measurement’s variance and
the interferometer’s intrinsic noise (Esteban-Fernandez , 2017).

• The KaRIn noise level varies in function of the across-track distance to the nadir (Gaultier et al., 2016)
as shown in figure 2.6 (Wang et al., 2018). As further described below, the KaRIn noise level also varies
with the wave steepness.

• Roll: The roll error signal has 2 components, one due to the KaRIn mechanical system which causes
roll control errors and the gyro error caused by mistakes in the spacecraft roll angle. (Gaultier et al.,
2016)

• Phase: This error is caused by each of the satellite’s antennae independently. (Gaultier et al., 2016)

• Timing: It is a common group delay error of the system. It is the only error constant across track.
(Gaultier et al., 2016)

• Baseline dilation: This error is caused by distortions of the baseline mast (Gaultier et al., 2016),
changing its length and thus creating a height error (Morrow et al., 2018).

Figure 2.6: KaRIn random error, instrument plus wave effects (surfboard effects), as a function of cross-track
ground range for various significant wave height values ranging from 0 to 8m plotted with a 0.5 m increment.
(Wang et al., 2018)

The geophysical errors intended to be represented by the SWOT simulator are after total geophysical error
corrections have been applied. These residual geophysical errors include:

• Wet troposphere: This is an error due to the wet troposphere, and it is due to the signal alternation by
atmospheric humidity. This translates into a 2-beam path delay error. It is a major source of geophysical
error and the only geophysical one included for now in the SWOT simulator. As mentioned above, the
errors simulated are after total geophysical corrections, in this case the simulator represents the residual
error due to the wet troposphere after applying the on-board radiometer correction. (Gaultier et al.,
2016) This error is locally correlated in space.
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• Sea state bias: This error is also known as electromagnetic bias, and is yet not implemented in current
versions of the SWOT simulator. Height biases are introduced due to the spatial variability of the wave
and wind fields. (Esteban-Fernandez , 2017) This variability can cause changes in the satellite’s signal
return waveform shape, affecting the height estimation (Rodriguez et al., 2017). This error is expected
to mainly have an impact on the large scales (Gaultier et al., 2016).

• Dry troposphere and ionosphere: These errors, like the one due to the wet troposphere, translate into
a path delay error (Rodriguez et al., 2017). They are not included in the SWOT simulator, as at
the Ka-band of SWOT, their impact at the meso-scale and below is very small (Gaultier et al., 2015;
Esteban-Fernandez , 2017).

An important discrimination of the errors is in their correlation in space. The KaRIn error is uncorrelated
both along and across-track, and the rest have at least one direction which is correlated in space. This has
important consequences on the fields of SSH derivatives, and the consequent processing of the SWOT swath
(Ruggiero et al., 2016). It completely masks in most regions of the Ocean the SSH derivatives’ signal. It is
the biggest source of SWOT error, specially at wavelengths lower than 100 cycles/km (Morrow et al., 2018),
and it is the one responsible for its spectral noise floor. Compared to a conventional nadir altimeter, its white
noise spectral floor is lower, being approximately 100cm2(cpkm)−1 for the latter and 2cm2(cpkm)−1 for a
2m SWH KaRIn instrument noise (Wang et al., 2019a). Moreover, the KaRIn instrument noise actually is
not constant in time nor space given that it is affected by the wave steepness.

The KaRIn noise level will depend on the Sea Wave Height (SWH). The higher the SWH, the higher the noise
level due to the increase in the wave steepness. As SWH varies in space and time, so will the KaRIn noise
level. This has been estimated by Wang et al. (2019a). The wave period will also affect the wave steepness,
but this is globally expected to vary less than SWH.
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(a) Atlantic

(b) Mediterranean

Figure 2.7: Dispersion relation of wave period (Tp (s)) and significant wave height (Hs (m), referred to also
as SWH) in the Atlantic (a) and Mediterranean (b). Figures courtesy of Alejandra Rodríguez.

Nevertheless, in regions like the western Mediterranean, where the SWH is lower, the wave period variations
may gain importance. This was briefly explored in collaboration with Alejandra Rodríguez and Marta
Marcos. The data used consists on a 58-year wave reanalysis generated with the WAM model (WAMDI
GROUP, 1988) that provides 3-hourly wave data up to 2014 and hourly data since then. The model data
has already been evaluated against observations. The wave period (Tp) distribution of one point near the
Balearic Islands is compared with another point in the North Atlantic (offshore the north western Spanish
coast). Each point is assumed to be representative of its area. The plots are obtained from monthly data of
all the years available (1958-2000). They show that, in contrast to the Atlantic results, in the Mediterranean
the highest Tp dispersion is found at smaller Hs (SWH) values. This can be observed in the example figure
for the month of January (fig. 2.7). This could make us think that the effect of Tp could be more relevant
in the Mediterranean than Hs regarding its effect on the KaRIn noise level. On the other hand, both in the
Atlantic and in the Mediterranean the maximum dispersion of Tp is approximately 8s. This adds another
level of complexity to the processing of the SWOT data.
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2.3 Validation in the western Mediterranean

To obtain pseudo-SWOT data, OGCM outputs are necessary. Although there are a few studies where the
NATL60 outputs are analyzed, at the moment of the study, the NATL60 outputs in the western Mediterranean
had not yet been studied. Even though model validation is not the objective of this thesis, a minimum
validation was done to explore the simulation’s outputs in this region before simulating SWOT data.

2.3.1 Analysis

Firstly, NATL60 outputs were analyzed to check if the model represented the dynamics of the western
Mediterranean region accurately for our purpose. In fig 2.8, which is a SSH snapshot, we can observe some
of the main features of the circulation in this area: Algerian Current, the mesoscale eddies shedded by this
current, the Northern and Balearic currents, and the low SSH signal in the Gulf of Lions due to deep water
formation.

Figure 2.8: NATL60 SSH (m) snapshot on the 09/01/2012.

Then, some physical variables of the OGCM were calculated. Particularly, the focus is on SSH derived
variables, due to the interest on surface velocities and vorticity. One of the main objectives of this study is
to reconstruct SSH derivatives, and special attention will paid on the gradient and Laplacian in Chapters 3,
4 and 5. The following variables are calculated:

• Absolute geostrophic velocity:

It was calculated as follows:

ug = − g
f

∂SSH

∂y
(2.1)

vg =
g

f

∂SSH

∂x
(2.2)

; where ug is the zonal geostrophic velocity, vg is the meridional geostrophic velocity, g is the gravitational
acceleration and f is the Coriolis parameter. In fig. 2.9, the resultant absolute geostrophic velocity, Ug:

Ug =
√
u2g + v2g (2.3)
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, is illustrated.

Figure 2.9: NATL60 absolute geostrophic velocity (m/s) snapshot on the 01/09/12.

• Kinetic energy: If u and v are respectively the zonal and meridional geostrophic velocity components,
and are defined as:

u = u′ + u (2.4)

v = v′ + v (2.5)

; where:

u, v; the bar represents the mean in time rendering u(y, x), v(y, x)

u′, v′; the ’ represents the velocity anomaly in time rendering u′(t, y, x), v′(t, y, x)

Then we can define:

• Total Kinetic Energy, TKE:

TKE(t, y, x) =
1

2
(u2g + v2g) (2.6)

– Mean Kinetic Energy, MKE:

MKE(y, x) =
1

2
(u2 + v2) (2.7)

– Eddy Kinetic Energy, EKE:

EKE(t, y, x) =
1

2
(u′2 + v′2) (2.8)

If we take the time average of the above, we can also define one in function of the other:

TKE = MKE + EKE (2.9)
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Figure 2.10: TKE (m2/s2) snapshot on the 01/09/12.

Figure 2.11: Yearly mean (starting from the day of fig. 2.10) TKE, MKE and EKE (m2/s2).

In these geostrophic velocity and kinetic energy figures we can also observe the signal of the main oceano-
graphic features of the region.

• Relative vorticity, ζz:

ζz =
∂vg
∂x
− ∂ug

∂y
=
g

f
∇2SSH − gβ

f2
∂SSH

∂y
(2.10)

; where β = ∂f
∂y

• Rossby number, Ro:

Ro =
U

fL
=
ζz

f
(2.11)
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As described in Chapter 1, we can define the ocean dynamics in function of the Rossby number (Thomas
et al., 2008):

• Ro O(1) => submesoscale dynamics (1 - 10 km)

• Ro <‌< 1 => mesoscale dynamics (10 - 100 km)

Figure 2.12: Rossby number on the 09/01/2012.

In the above figure one can observe the presence of fine-scale structures, of interest for our simulation of
pseudo-SWOT data. Rossby numbers close to absolute values of 1 can be observed too indicating the
presence of submesoscale dynamics.

Then, if we look at the time evolution of some spatial statistical parameters (of the box region shown in the
above figures) of the other output surface variables (fig. 2.13):

• Sea Surface Temperature (SST)

• Sea Surface Salinity (SSS)

• Mixed Layer Depth (MLD)

, we can see that all three variables follow the seasonal cycle. The maximum-minimum refer to percentiles 99
and 1, and the robust maximum-minimum to percentiles 90 and 10, respectively. By looking at these values,
there does not seem to be a region which has an anomalous value in the surface layer.
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Figure 2.13: Time evolution of spatial statistical parameters of SST, SSS and MLD (from top to bottom)
during the whole simulation time period.

2.3.2 Comparison to satellite data

Above, only a SSH snapshot was shown, and now we compare different yearly diagnostics to the same period
for different years of the CMEMS altimetric dataset. Firstly, the mean SSH in time was calculated (by first
removing the spatial mean to each snapshot to remove the steric effect). The comparison to different years
CMEMS data is shown in fig 2.14. To improve the comparison of the NATL60 data to the CMEMS AVISO
product, we used a NATL60 dataset, optimally interpolated in the same way as to obtain the AVISO gridded
product (dataset courtesy of Angel Amores) which is shown in fig. 2.14. The NATL60 shows higher mean
SSH values than the CMEMS AVISO product, but when the NATL60 SSH data is optimally interpolated,
the mean SSH values are very similar to CMEMS AVISO’s, specially for the 2009 - 2010, 2011 - 2012 and
the 2013 - 2014 subplots.
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Figure 2.14: Annual mean SSH (m) of NATL60 (top left) and of optimally interpolated (OI) NATL60 (top
right, courtesy of A. Amores) compared to the annual mean SSH CMEMS fields.

The same procedure was applied to calculate the Root Mean Square (RMS) and the results are shown in fig.
2.15. The RMS of NATL60 SSH is higher than for most of the CMEMS AVISO’s subplots. Moreover, the
location of the highest values is not the same, and this could be due to the altimeters used for the CMEMS
AVISO product not capturing correctly the dynamics in that region, due to the gaps between altimeter tracks.

Figure 2.15: RMS of SSH of NATL60 compared to CMEMS.

The same parameters as in fig. 2.13 are calculated for the SSH of these 2 data sources and shown in fig. 2.16.
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They are obtained from 01/09/12 to 30/09/13 for the same box region.

Figure 2.16: Time evolution of spatial statistical parameters of SSH of NATL60 compared to CMEMS.

In fig. 2.16 one can observe that NATL60 follows the same pattern as the CMEMS SSH with the exception of
the period of time before October 2012. The intensity of the tendencies, for e.g., the value of a peak in SSH
values, are not always the same, but it seems to be in accordance wit the inter-annual variability observed
in figures 2.14 and 2.15.

2.3.3 Comparison to in situ data

Lastly, a comparison with in situ measurements was done to validate the vertical structure of the simulation.
This part is relevant in relation for the reconstruction vertical velocities from SWOT data.

The EN4 observation dataset of the Met Office Hadley centre for the years 2012 and 2013 was used, which
provides subsurface, quality controlled vertical profiles of temperature and salinity (Good et al., 2013). In
fig. 2.17, we can observe an example observation (EN4 in situ measurement) of potential temperature and
salinity on the 17/03/2013 compared to the profile obtained by NATL60. For NATL60, the corresponding
value in space is found as well as the corresponding day +/- 15 days. This way we have a 30 day window, to
take into account that in one dataset an eddy could be present, and not in another, and so create important
differences in the vertical profile. The red envelope of fig. 2.17 represents the percentile 10 and 90 of this
30 day window. In this example, both datasets follow the same trend with depth, although slight differences
are present in the potential temperature example .
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Figure 2.17: TS vertical profile. Top panel: Green dot shows the location of the observed (in situ) measure-
ment. Bottom panel: Vertical profile of potential temperature (left) and salinity (right), for the observation
(blue) and the model data, NATL60 (red).

If we now do this comparison for every season in the same region, we obtain the results shown in figures 2.18
and 2.19. All available Argo profiles in the region and season are selected (figs. 2.18). The corresponding
NATL60 data is then obtained which is at the position of the Argo profile and an area around, and on the
date of the profile +/- a 15 days window. The mean, percentile 10 and 90 of this is then calculated. All
available profiles are regridded vertically to the same vertical levels to have a unique profile of the region per
season. Finally, in fig. 2.19 the bias of the NATL60 with respected to the observed Argo profiles is plotted.
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Figure 2.18: Green dot shows the location of the observed (in situ) measurement used for the comparison to
model data.

Figure 2.19: Model bias with respect to Argo profiles for each season (columns), for temperature (top panel)
and salinity (bottom panel) (figure courtesy of Aurelie Albert).

A negative bias is observed in the surface waters both in temperature and salinity. This could be explained
by an excess Atlantic water, given that this water mass is found at the surface. It could also be explained
due to vertical diffusivity parametrization or atmospheric coupling.

The NATL60 simulation outputs were explored in the western Mediterranean Sea to assess if the sea surface
fields were adequate to simulate SWOT fields. The main structures and circulation of this region are well
represented, for example the predominance of the eddies shed by the Algerian Current can be observed.
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The energetics and variability are comparable to those obtained from present altimetric products (CMEMS
DUACS here). The seasonal variability of SST, SSS and MLD of NATL60 and the SSH time series compare
well with CMEMS SSH. Although a bias in T-S profiles is found, the other surface fields and their derivatives
are appropriate for the generation of pseudo-SWOT data in this region. Nevertheless, this bias could be
important for the reconstruction of 3D circulation in the region, but is out of the scope of this thesis’
objectives. These analyses provided important information for the preparation of the first experiments
presented in the results chapters, specially Chapter 3.
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SWOT Spatial Scales in the Western
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Chapter 3 3.1. INTRODUCTION

3.1 Introduction

The Surface Water and Ocean Topography (SWOT) satellite mission is a joint mission by the National
Aeronautics and Space Administration (NASA) and the Centre National d’Études Spatiales (CNES), with
contributions from the UK and Canadian Space Agencies (Alsdorf et al., 2011). Presently, the satellite’s
launch is planned for 2021 (Fu and Morrow , 2016). It will provide water elevation maps for oceanographic
and hydrological purposes (Lee et al., 2010; Rodriguez , 2010). The novelty of this satellite is that it carries a
wide-swath altimeter with unprecedented horizontal resolution and global coverage. On the other hand, the
associated irregular temporal sampling will constitute a challenge for the exploitation of the data. SWOT
will have a 21-day repeat cycle and the revisit time will vary from approximately 10 days at the equator
to two days at the poles (Pujol et al., 2012; Rodríguez , 2016). This implies temporal variability in spatial
coverage as the number of observations per repeat cycle will increase with latitude. Moreover, there will
also be a temporal variability within a cycle. During each cycle, there are periods of time with a higher
temporal sampling. This is due to a longer revisit time so that SWOT also fulfills its hydrological objectives
by providing coverage of the bulk of the global land surface (Rogé et al., 2017). In satellite measurements,
there is always a compromise between spatial and temporal resolution. As SWOT aims for global coverage,
i.e., high spatial resolution, we lose in temporal resolution (SWOT’s repeat cycle will be longer than, for
example, the 10-day repeat cycle of the Jason altimeter satellites (Cipollini et al., 2017)).

One of the primary oceanographic objectives of the SWOT mission is to characterize the ocean meso- and
submesoscale circulation (Fu and Ferrari , 2008) determined from ocean surface topography at spatial reso-
lutions of 15 km (spatial resolution is defined to be perturbation wavelength in the oceanographic context).
The resolution capacity of current along-track one-dimensional altimeter data, depending on the altimeter,
has been found to be between 40 and 50 km at western boundary currents and between 70 and 110 km at the
eastern basins (Dufau et al., 2016). Two-dimensional gridded products based on the altimetric constellation
allow for mapping wavelengths down to 200 km (Chelton et al., 2007). The SWOT mission is expected
to allow to capture wavelengths down to 15 km on its two-dimensional swaths (Fu and Ubelmann, 2014),
therefore increasing substantially the resolution capacity of present-day altimeter data. The possibility of
characterizing the submesoscale is a major breakthrough. While the mesoscale has historically received a lot
of attention (Mémery and Olivier , 2003), the submesoscale has previously been out of reach. Theoretical cal-
culations and advanced modeling suggest that submesoscale processes are key to understanding ocean fluxes
(Lévy et al., 2001; Lapeyre and Klein, 2006; Omand et al., 2015). A pertinent example is the occurrence of
mid-ocean plankton blooms (McGillicuddy et al., 2007).

In the Mediterranean Sea, intense mesoscale and submesoscale variability interact across sub-basin and basin
scales (Allen et al., 2001; Ruiz et al., 2009; Pascual et al., 2017). This variability has an indirect impact on
the Atlantic Ocean circulation due to exchange through the Strait of Gibraltar and, subsequently, influence
on the great ocean conveyor belt (Bethoux et al., 1999; Malanotte-Rizzoli et al., 2014; Robinson et al., 2001).
Three scales of motion are therefore overlaid, making an amalgam of intricate processes that require high
resolution and can help assess the potential impact that SWOT will have on the study of processes occurring
at different scales.

Understanding small scale variability in the Mediterranean Sea is important as it is a region with intrinsically
smaller spatial scales than those found in other parts of the world ocean at similar latitudes. Hallberg
(2013) showed that the grid resolution necessary to resolve the first baroclinic deformation radius in the
Mediterranean is around 1/16º, whilst in the Atlantic Ocean at the same latitude it is only 1/6º. This
implies that smaller structures need to be resolved in the Mediterranean Sea compared to the mid-latitudes
of the Atlantic Ocean. This is further demonstrated by Escudier et al. (2016b) who show that lower values of
the first baroclinic Rossby radius of deformation are present in the western Mediterranean Sea. These values
are approximately between 2 and 16 km, in comparison with a 20–30 km range found at mid-latitudes of the
Atlantic Ocean (Chelton et al., 1998). The Mediterranean values are actually closer to the values found in
the Arctic Ocean (Nurser and Bacon, 2013).

The western Mediterranean Sea is one of the areas of the global ocean that will be sampled during the SWOT
fast-sampling phase (Wang et al., 2018). This phase covers the first 60–90 days after launch, during which the
satellite will provide daily high resolution Sea Surface Height (SSH) measurements over a limited repeated
orbit for purposes of calibration/validation of the SWOT sensor/instrument.
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The goal of this study is to assess the capacity of SWOT to resolve the fine scales in the western Mediterranean.
Our first objective is to generate pseudo-SWOT data from numerical model outputs in this region in order
to understand its temporal and spatial sampling pattern in this area. We then apply a noise-reduction
processing technique to pseudo-SWOT data to find out the spatial scales that SWOT may ultimately be able
to resolve. Given SWOT’s irregular time sampling and consequent variable spatial coverage, in this paper,
we focus on the spatial scales resolved within a swath.

3.2 Data and Methods

3.2.1 The SWOT Simulator

With a view to characterizing the potential of SWOT-derived SSH data, we consider a simulation-based
framework using the SWOT Simulator for Ocean Science (version 1). This simulator accounts for both
SWOT space-time sampling patterns and noise processes. Using as input the SSH fields from an Oceanic
General Circulation Model (OGCM), the SWOT simulator generates SWOT-like outputs along a ground
swath and the nadir following the orbit ground tracks (Gaultier et al., 2015). Hereinafter, we refer to these
outputs as SSH outputs. Note that these simulated fields correspond to Absolute Dynamic Topography
(ADT) values in altimetric terminology.

A flowchart of the simulator workflow is provided in Figure 3.1. Two features should be pointed out. Grid
files, generated in the first step of the flowchart, account for the planned orbit of the satellite and the specified
domain. Instrument noise and geophysical errors are added during the last step of the flowchart, following
recent technical characteristics established by the SWOT project team (Gaultier et al., 2015). Instrument
noise is composed of Ka-band Radar Interferometer (KaRIN) noise, roll, phase, baseline dilation and timing
errors (see Gaultier et al. (2016)). In this version of the simulator, the only geophysical error is associated
with the wet troposphere. Therefore, it is important to keep in mind that additional noise patterns, such as
sea state bias (Gaultier et al., 2015) or the effects of internal waves (Fu and Morrow , 2016) are not accounted
for in the generated pseudo-SWOT data.

Figure 3.1: Flowchart of the SWOT simulator procedure.

For more details on the instrument noise and geophysical errors added by the SWOT simulator, see Appendix
3.B.

3.2.2 Input Data: The Western Mediterranean OPerational (WMOP) Model

A high resolution OGCM of the western Mediterranean region provides input data for the SWOT simulator.
We used the WMOP model (Juza et al., 2016) developed at SOCIB (Balearic Islands Coastal Observing and
Forecasting System). More specifically, we consider a 7-year free run simulation of the model spanning the
period 2009 – 2015, with spatial coverage from the Strait of Gibraltar to the Sardinia Channel (Figure 3.2).
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WMOP is a regional configuration of the Regional Oceanic Model System (ROMS) model (Shchepetkin and
McWilliams, 2005) with a spatial resolution of approximately 2 km. WMOP is forced with high resolution
atmospheric forcing (HIRLAM model from the Spanish Meteorological Agency AEMET), with temporal
resolution of 3 h and spatial resolution of 5 km. These features make WMOP a suitable choice to evaluate
the potential of SWOT-derived SSH data to resolve mesoscale processes in the western Mediterranean Sea.
The presence of fine-scale features of a few kilometers is illustrated in Figure 3.2. In Figure 3.2, we show
snapshots of model relative vorticity (normalized by f) for days corresponding to pass 15 (Figure 3.2, left)
and pass 168 (Figure 3.2, right) of cycle 2 of the SWOT orbit (see Figure 3.3).

Figure 3.2: WMOP relative vorticity normalized by f on 23 January 2009 (left) and 3 February 2009 (right).
Black boxes indicate the two regions studied in Section 3.3: box 1, pass 15 (left) and box 2, pass 168 (right).

3.2.3 Analysis and Processing of SWOT-Derived SSH Data

3.2.3.1 Geostrophic Velocity and Vorticity

Zonal (ug) and meridional (vg) (with respect to the SWOT grid) surface geostrophic velocity components
are calculated as:

ug = − g
f

∂η

∂y
, (3.1)

vg =
g

f

∂η

∂x
, (3.2)

where g is the gravitational acceleration, f the Coriolis parameter and η the sea level elevation.
The absolute geostrophic velocity (Vg) is obtained with:

Vg =
√
ug + vg2. (3.3)

Geostrophic relative vorticity, ζ, is calculated from the zonal and meridional velocities:

ζ =
∂vg
∂x
− ∂ug

∂y
. (3.4)
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3.2.3.2 Noise Filtering

As illustrated in Section 3.3, noise greatly affects the computation of the velocities derived from the pseudo-
SWOT data. We therefore investigate filtering procedures for noise removal. The geometry of the SWOT data
prevents us from using classical Fourier and convolution-based low-pass filters (Sonka et al., 2014). Fourier-
based filters impose circularity constraints, which cannot be fulfilled; the masks associated with convolution-
based filters should be significantly smaller than the width of the SWOT swath, which greatly limits low-pass
filtering capabilities. We then considered a Partial Derivative Equation (PDE)-based formulation, such that
the low-pass filtering results from an iterated Laplacian diffusion:

∂ta (t, y, x)−4a (t, y, x) = 0 ⇐⇒ ∂a

∂t
=
∂2a

∂y2
+
∂2a

∂x2
. (3.5)

As the Green’s function for the heat equation is a Gaussian kernel, the implementation of this PDE-based
diffusion is equivalent to a Gaussian convolution and results in an isotropic filtering, that is to say that the
filtering acts equally in all directions (Aubert and Kornprobst , 2006). Using a four-neighbourhood discretiza-
tion of the Laplacian operator, we can deal with missing data (e.g., nadir) or land (e.g., island) pixels. The
Laplacian operator comes to compute a local mean over the four neighbours of a given pixel. Withdrawing
land pixels and missing data from the computation of this local mean, we can iterate the Laplacian dif-
fusion to reach the expected filtering level for all pixels. Each iteration of the Laplacian diffusion can be
regarded as a low-pass filtering with a high cut-off frequency. The selection of the number of iterations of
the Laplacian diffusion then allows us to reach lower cut-off frequencies. By contrast, the direct application
of two-dimensional low-pass filters for cut-off frequencies in the range [30 km, 60 km] would result in filter
supports in the range [60 km, 120 km], meaning that no filtering output could be computed for any pixel
closer than 30 km (rest. 60 km) from the swath boundaries or a missing data or land pixel. Overall, the
filtering level is set by the number of iterations of the Laplacian diffusion and the parameter lambda. This
is shown in the following equation, which shows the implementation that we use:

ak+1 = ak − λ4ak. (3.6)

With this being an iterative method, in contrast to a traditional Gaussian filter, we can apply cut-off wave-
lengths greater than the width of a half-swath. In Appendix 3.A, we apply the filter to white noise to show
how different combinations of the filter’s parameters (lambda and number of iterations) are associated with
different cut-off wavelengths (λcs).

3.2.3.3 Filter Evaluation

To evaluate the performance of the filter and its different parameterizations, the following variables are
calculated:

• The radial power spectral density: This variable was calculated to obtain the SWOT spatial spectra.
The radially averaged power spectral density (power spectrum) of an image (in our case, the SWOT
swath data) is computed.

• The Root Mean Squared Error (RMSE): The RMSE was calculated for the SSH, velocity and vorticity
variables as follows:

RMSE =

√∑
(data− estimate)2

N
, (3.7)

where N is the number of points. Data is taken to be SSHmodel (or its derived variables, i.e., velocity and
vorticity) without filtering. An estimate is taken to be the simulated noisy SSHobs fields (or its derived
variables) without filtering, and filtered with different λcs. RMSE values are therefore calculated for
different estimates.
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3.3 Results

3.3.1 Spatial and Temporal Sampling

Pseudo-SWOT data were generated for the full WMOP time period (1 January 2009 to 11 September 2015).
This was done for the Science orbit and corresponds to a total of 123 cycles. In a complete cycle, 292 passes
are available over the globe, 12 of them crossing our study region (Figure 3.3). Data were ingested and
processed by the SWOT simulator at an across and along track resolution of 2 km. As mentioned in Section
4.1, one of the specificities of future SWOT data will be their irregular temporal sampling. To better illustrate
this, the passes of cycle 2 are plotted in Figure 3.3. During each cycle, there are periods of time with a higher
temporal sampling. This is due to a longer revisit time so that SWOT also fulfills its hydrological objectives
as described in Section 4.1. For instance, the temporal sampling during cycle 2 is as follows: from day 21.3 to
23.9 during which five passes are made; and from day 31.3 to 33.8 during which six passes are made. Then,
from day 23.9 to 31.3 and from day 33.8 to 41.2, there are no measurements. Consequently, during each
day within a cycle in this study region, there can be two, one or no passes at all. Even with this irregular
sampling and without any processing of the data, the final SSHobs map (subplot of day 41.2) allows us to
observe some features such as, for example, the signal of the Algerian Current following the north African
coastline and several cyclonic and anticyclonic mesoscale eddies.

3.3.2 Pre-Filtering Analysis of Simulator Outputs

In this study, we focus on the analysis of spatial scales of individual passes. Due to the irregular time
sampling of the SWOT data, future studies will be devoted to temporal interpolation of passes. Moreover,
prior swath filtering is necessary to determine the quality of the dynamical variables that can be derived
from SWOT data, and how it can be improved before combining different swaths for temporal interpolation.
As an illustration, we focus on the treatment of two 2º × 2º boxes. Box 1 is within pass 15 and was chosen
close to the north African coast as it is a region where anticyclonic eddies are shed from the Algerian Current
(Escudier et al., 2016b,a). For example, in the snapshot shown in Figure 3.4, part of an anticyclonic eddy
is present on the eastern part of the domain. Box 2 is within pass 168, and this subdomain south of the
Balearic island of Menorca was chosen because it contains smaller structures than in box 1 (see Figure 3.2).
In Figure 3.5, filament-like structures and smaller eddies can be observed, especially at the northern part of
the domain.

The effect of the filter is assessed for SSH and its derived dynamical variables: absolute geostrophic velocity
and relative vorticity. These were calculated as explained in Section 3.2.3.1.
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Figure 3.3: SSHobs (m) obtained for cycle 2. Time increasing from left to right, top to bottom. Days from
the beginning of the simulation are shown at the top left corner and the corresponding pass number at the
bottom right corner. Outline of the active pass is shown in black. The red boxes show box 1 (pass 15) and
box 2 (pass 168).
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Figure 3.4: From top to bottom: SSH (m), geostrophic velocity (m/s) and relative vorticity (ζ) normalized
by f, on 23 January 2009 corresponding to pass 15 of cycle 2 (box 1). The first, middle and last columns
show the data obtained directly from the model (WMOP), from the model interpolated onto the SWOT grid
(SSHmodel), and with added noise (SSHobs), respectively.
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Figure 3.5: From top to bottom: SSH (m), geostrophic velocity (m/s) and relative vorticity (ζ) normalized
by f, on 3 February 2009 corresponding to pass 168 of cycle 2 (box 2). The first, middle and last columns
show the data obtained directly from the model (WMOP), from the model interpolated onto the SWOT grid
(SSHmodel), and with added noise (SSHobs), respectively.

As observed in the first and middle columns (model and model interpolated onto SWOT grid data, respec-
tively) of Figures 3.4 and 3.5, SSH and its derived variables reveal fine-scale features, but the noise level
masks the signal of these features when derived variables are obtained from pseudo-SWOT SSH. We can also
see how the effect of the noise is lower in regions with high SSH gradients. If we compare the velocity derived
from pseudo-SWOT data of box 1 and 2, for box 1, the region with high values can still be appreciated as
they reach 0.9 m/s, but not for box 2 as they only reach 0.4 m/s.

To have information on the spatial scales resolved and the effect of the noise, spatial Fourier power spectra
for each filter were calculated as described in Section 3.2.3.2. The spectra were calculated for each individual
cycle, and then averaged over the 122 cycles in which both passes 15 and 168 are available (cycle 123 stops
at pass 132). Figure 3.6 compares the spectra of model data interpolated onto the SWOT grid and the
pseudo-SWOT data. The SWOT noise starts to dominate at wavelengths lower than 60 km. In the top panel
of Figure 3.6, the red and blue curves separate at around 60 km for both boxes. If we look at the zoom inset,
we see that for pass 15 the lines separate at slightly higher wavelengths than for pass 168.
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Figure 3.6: Top: Spectra of the data before filtering, from cycle 1 to 122, corresponding to box 1 (pass 15),
left, and to box 2 (pass 168), right. Error bars denote 95% confidence intervals. Bottom: Corresponding
Signal to Noise Ratio (SNR), with a horizontal black line indicating where the noise is more than 15% of the
signal, and the vertical line the corresponding wavelength.

Nevertheless, there does not seem to be a significant difference between the mean spectra of both passes.
Note also how the power spectral energy level of SSHobs at wavelengths lower than 20 km stabilizes around
3.7 × 10−9 for both passes, whilst the energy level of SSHmodel reduces until it reaches the grid scale. If
we look at the signal to noise ratio (SNR), we find that below 50 km wavelength the energy of the noise is
significant with respect to that of the signal (SNR values below 15 dB at wavelengths smaller than 47.6 km,
i.e., the energy of the noise accounts for more than 15% of the energy of the signal for these scales). Such low
SNR values make particularly challenging the denoising issue for scales below 50 km Gunturk and Li (2012).
Consequently, we expect that the best filter parametrization will be one corresponding to λc between 47.6
and 60 km.

3.3.3 SWOT Data Filtering

The Laplacian diffusion filter was applied to remove the noise and, thus, reduce the difference between the
spectrum obtained from SWOT estimates with and without noise (Figure 3.6). Given the results obtained
from the non-filtered data spectra, λc is first chosen to be 60 km. We then choose smaller λcs (50, 40, 30
and 15 km) to see how much lower we can go with this filter. We go down to 15 km, which is the expected
wavelength at which SWOT will measure SSH. For comparison, we also choose λc = 200 km, which is the
wavelength resolved by present-day altimeter constellation fields Chelton et al. (2007). We lastly choose λc
= 100 km as an intermediate value between 60 and 200 km.

In Figures 3.7 and 3.8, we show the effect of the filter on SSH at different values of λcs. For Figure 3.7, the
effect of the filter is mainly seen in the pseudo-SWOT data, especially in the northern part where smaller
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structures are present. In Figure 3.8, as there are more, smaller structures, we can see more differences
between the filtered outputs with respect to the model interpolated and pseudo-SWOT data. These differences
are not only in the shape of the structures that are present, but also in their intensity. On the top row
of Figures 3.7 and 3.8, the original model is also included to show that differences do also arise from the
interpolation onto the SWOT grid. In Figure 3.7, especially for the 200 km λc, we can observe that the original
structure present is significantly altered. This emphasizes the importance for development of interpolation
techniques to fill the gap between the two swaths with the help of the nadir altimeter data. In Figures 3.7
and 3.8, the SSH images for the different filters look very similar, but the differences are amplified when the
first derivatives (Figures 3.9 and 3.10) and second derivatives (Figures 3.11 and 3.12) are calculated.
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Figure 3.7: SSH (m) on 23 January 2009 corresponding to pass 15 of cycle 2.
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Figure 3.8: SSH (m) on 3 February 2009 corresponding to pass 168 of cycle 2.
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Figure 3.9: Absolute geostrophic velocity (m/s) on 23 January 2009 corresponding to pass 15 of cycle 2.
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Figure 3.10: Absolute geostrophic velocity (m/s) on 3 February 2009 corresponding to pass 168 of cycle 2.
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Figure 3.11: Relative vorticity normalized by f on 23 January 2009 corresponding to pass 15 of cycle 2.
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Figure 3.12: Relative vorticity normalized by f on 3 February 2009 corresponding to pass 168 of cycle 2.
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After applying the Laplacian diffusion filter, we can now retrieve the structures present in the pseudo-SWOT
SSH in the absolute geostrophic velocity plots (Figures 3.9 and 3.10). With a 15 km λc filter, the effect of
the noise can be still clearly observed, especially for box 2 where smaller structures are present. As a result,
although the main structures are recovered after filtering, their shapes are not accurately retrieved. Even if
spurious structures remain, with a 30 km λc there is a large improvement with respect to the 15 km λc. This
improvement seems greater for box 1 than box 2, as the noise seems to have a greater effect within box 2
than box 1. For a 40 km λc, in box 1, we can no longer qualitatively see any remaining noise, but we can see
some in box 2. For λcs greater than or equal to 50 km, the effect of the noise is no longer observed in either
box 1 (Figure 3.9) or box 2 (Figure 3.10). On the other hand, we observe a large decrease of the magnitude
of the velocities from the 15 to the 200 km λc. With this filtering method, the intensity of the structures
present, and thus the signal, decreases with the increase of λc.

In the relative vorticity plots, the loss of signal with the increase of λc is even more evident. With no filtering,
the relative vorticity of box 1 ranges from −1.82f to 1.66f for SSHmodel and from −15.22f to 18.16f for SSHobs

(Figure 3.4). With a 200 km λc, this reduces to −0.23f to 0.14f for both SSHmodel and SSHobs (Figure 3.11).
For box 2, with no filtering, the relative vorticity ranges from −0.71f to 1.50f for SSHmodel and from −17.39f
to 17.71f for SSHobs (Figure 3.5). For 200 km, it reduces to−0.07f to 0.10f for SSHmodel and from −0.09f
to 0.06f for SSHobs (Figure 3.12). There is approximately two orders of magnitude difference between the
vorticity calculated from the original data, and that filtered at λc = 200 km. For box 1, the velocity appears
to contain no further noise with λc = 40 km, but this filtering is not sufficient to properly reconstruct the
relative vorticity. With a 50 km λc, some noise is still present, and with 60 km λc, there appears to be no
remaining noise. For box 2, the velocity appears to have no further noise with a 50 km λc, and, similarly
to box 1, we use a 60 km λc to qualitatively remove remaining noise in the relative vorticity plots. The
relative vorticity fields present unrealistic small-scale structures at larger λcs values than SSH and velocity.
This is expected as the noise effects increase as higher order derivatives are reached. Nevertheless, the larger
structures present in the images are recovered from the non-filtered image with a 60 km λc filter for both
box 1 and 2. Not as much signal is lost with a 60 as with a 200 km λc, but some is still lost. For the
mesoscale, given the relative vorticity and structures observed in Figures 3.11 and 3.12, this does not seem
to have a large impact. However, there may be an impact when wanting to observe finer scales as we retrieve
normalized relative vorticity much lower than 1.

Spectra were computed for λcs of 30, 60 and 200 km to visualize these effects. The corresponding SNR is also
calculated in two different ways by using two references. One is by dividing the filtered model-interpolated
data by the filtered pseudo-SWOT data, and the other by dividing the non-filtered model-interpolated data
by the filtered pseudo-SWOT data. This is shown in Figures 3.13 and 3.14.
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Figure 3.13: Box 1 region (pass 15) mean of cycles 1 to 122. Left: Spectra of SSHmodel (blue) and SSHobs

(red) before filtering and after applying the different cut-off wavelengths shown in the different rows (30, 60
and 200 km) in purple and orange, respectively. Error bars denote 95% confidence intervals. Right: SNR
of SSHmodel and SSHobs, both filtered (solid line) and of SSHmodel non-filtered and filtered SSHobs (dashed
line).
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Figure 3.14: Box 2 region (pass 168) mean of cycles 1 to 122. Left: Spectra of SSHmodel (blue) and SSHobs

(red) before filtering and after applying the different cut-off wavelengths shown in the different rows (30, 60
and 200 km) in purple and orange, respectively. Error bars denote 95% confidence intervals. Right: SNR
of SSHmodel and SSHobs, both filtered (solid line) and of SSHmodel non-filtered and filtered SSHobs (dashed
line).

As a consequence of the application of the filter, the separation of the spectral curves of SSHmodel (model-
interp.) and SSHobs (pseudo-SWOT) is reduced. As seen in Figure 3.6, with no filter, the model-interp.
(blue) and pseudo-SWOT (red) curves separate at a wavelength around 60 km. With a 30 km λc, the noise
level is still high, as observed in Figures 3.7 to 3.12, but the power spectra difference at wavelengths smaller
than 60 km between the pseudo-SWOT filtered (yellow) and the model-interp. (blue) curves is much smaller
than it is between the model-interp (blue) and pseudo-SWOT (red) curves (top left panel of Figures 3.13 and
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3.14). Moreover, the pseudo-SWOT filtered and the model-interp. curves separate at smaller wavelengths. If
we look at the dashed line of the top right panel of Figures 3.13 and 3.14, we can more accurately determine
this wavelength separation value by looking at where the dashed curve starts decreasing. This corresponds
to 30 and 40 km wavelengths for box 1 and 2, respectively. Between wavelengths of 60 and 30 km (40 for
box 2), the SNR (dashed line) is greater than 1, indicating some over-filtering/smoothing, but this value is
very low (1.064 for box 1 and 1.088 for box 2). The pattern of the SNR of the filtered model-interp. over
the filtered pseudo-SWOT data (solid line of top right panel of Figures 3.13 and 3.14) is similar to that of
Figure 3.6. The noise gains importance as the wavelengths reduce from 60 km, but the SNR values of the
30 km λc are lower than the non-filtered ones. On the other hand, this indicates that, given that the filtered
model-interp. and pseudo-SWOT spectra are still quite different, a larger λc is necessary. In both the left
and right panels of the 30 km λc of Figures 3.13 and 3.14, anomalous patterns are observed below the 10 km
wavelength. Not only are these spatial scales very small, but, if we look at the spectra values, they are about
10−12 m2/km or lower. We consider these values to be too low for discussion.

With a 60 km λc, the noise is further reduced, but we lose more signal too. If we look at the continuous line
of the right panel of Figures 3.13 and 3.14, we see that it remains approximately constant at 1. For box 1,
it reaches a minimum SNR of 0.715 and for box 2 of 0.697. Looking at the dashed line, the SNR becomes
larger than 1 at wavelengths lower than 80 km for both boxes. This means that, although we eliminate all
the noise, we are also eliminating part of the signal that was initially present. At wavelengths greater than
10 km, the power spectra of the filtered pseudo-SWOT reach a maximum difference nearly two orders of
magnitude smaller than the original model-interp. spectra.

Lastly, with a 200 km λc filtering, the model-interp. and pseudo-SWOT spectra curves are identical, and the
SNR (solid line) is approximately 1 (Figures 3.13 and 3.14, bottom row): however, as observed in Figures 3.7
to 3.12, we lose a lot of signal. In the 20–80 km wavelength range, we can see how the SNR curves (dashed
line) rapidly increase and the values are greater with a 200 km λc than with a 60 km λc. At wavelengths
lower than 80 km, on average, there is about one order of magnitude difference between the filtered spectra
and the original SSHmodel. It is also interesting to note that the purple and yellow curves separate from the
red and blue at 80 km instead of 60, showing that this cut-off exceeds that necessary to remove the noise.
This also emphasizes how with SWOT a major advancement could be made as lower cut-off wavelengths will
be possible, and thus the observation of smaller scale structures than with contemporary satellites. On the
one hand, this result is expected thanks to the 2D swath instead of only 1D nadir data, but, on the other
hand, it is important to remember that these are simulated from expected errors and that not all errors are
implemented (see Appendix 3.B).

To further quantify the differences observed between the different λcs in Figures 3.7 to 3.12, the RMSE
between the interpolated model and pseudo-SWOT data shown in these Figures were calculated as described
in Section 3.2.3.3.

In Figure 3.15, it is interesting to focus on the minimum points of the RMSE curves. Looking at the λc
corresponding to the different minimum points, for both boxes, the minimum of the curve for SSH and the
absolute geostrophic velocity (Vg) is found for a 30 km (29) λc. It is slightly higher, 40 km (41), for relative
vorticity. This directly relates to the amplification of fine-scale structures, and thus the effect of the noise,
in the computation of second-order derivatives. It is also in accordance with what is found in the SNR in
Figure 3.6, which shows that we cannot recover the signal at wavelengths lower than 40–50 km. With the
qualitative (Figures 3.7 to 3.12) and the spectra (Figures 3.13 and 3.14) plots, we saw that, for box 2, as the
signal is lower than in box 1, the effect of the noise is greater, and larger λcs are necessary. The RMSE plots
show us another point of view. As the signal is not as intense in box 2 as in box 1, the over-smoothing (signal
lost) due to the Laplacian diffusion filter is lower, and thus we observe lower RMSE values in Figure 3.15.
Moreover, the improvement of the RMSE values is greater for box 2 than box 1. For SSH, the RMSE reduces
by 0.05 and 0.07 m from the no filter (0 λc) to the minimum RMSE, for box 1 and box 2, respectively. For
Vg, the RMSE reduces by 0.42 and 0.455 m/s, and for ζ/f by 3.2 and 3.35.
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Figure 3.15: RMSEs of the different variables against the filter’s cut-off wavelengths applied to SSH, for pass
15 (top) and pass 168 (bottom) of cycle 2. Insets show zoom of marked region for better observation of the
curves’ minimum points.

For SSH, we could say that with a 40 km λc it is sufficient, but if we do not want to see the effect of the noise
in vorticity, we need a greater λc of 60 km. Therefore, together with what is observed in Figures 3.4–3.15, we
consider that, with this filtering technique applied to this region, SWOT will be able to resolve wavelengths
down to a 40 – 60 km wavelength range. This is the λc range where we found that there is a compromise
between filtering out the noise of SSH and its derived variables (Vg and ζ/f), and over-smoothing the original
image as little as possible. It is important to note that λc depends on the signal-to-noise ratio between SSH
signals and instrument noise at fine scales. As such, it can be expected to change from region to region (and
from season to season) depending on the energy levels at fine scales and on the noise level.

3.4 Discussion

We find that, by applying our filtering technique to pseudo-SWOT data in the western Mediterranean region,
we cannot reach the 15 km wavelength argued for by Fu and Ubelmann (2014). We are however able to recover
the signal within a swath down to wavelengths of 40 – 60 km. This wavelength range is close to the one found
by Dufau et al. (2016) at the western boundary currents and nearly half the wavelength values found at the
eastern basins by 1D altimeter data. In addition, with the characteristic of SWOT providing 2D SSH data,
this will imply a large improvement on the 200 km wavelength resolved by present-day gridded altimetric
fields (Chelton et al., 2007). The SWOT resolved wavelengths found will make it possible to detect structures
of 20-30 km in diameter (following Klein et al. (2015)) and therefore opens the possibility for observation
of fine scales that are unobservable by contemporary altimetric products. This filter is a useful tool for
studies comparing the capacities of pseudo-SWOT data with the present altimetric satellite constellation
data. As this filter is particularly effective in removing the spatially uncorrelated KaRIn noise, it may allow
the application of already developed techniques that more effectively remove other correlated errors (Ruggiero
et al., 2016).

We find that the presence of structures of different scales and regimes governing—for example, the mesoscale
(Ro. order(0.1)) or submesoscale (Ro. order(1)) affects our results on the efficiency of the Laplacian diffusion
filter. This filter is therefore sensitive to the presence of different patterns, depending on the region. To reach
even smaller scales, it is important to use filtering techniques that conserve and/or retrieve the gradients and,
thus, the intensity of the signal present in the observed field. Nonetheless, this sensitivity of the Laplacian
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diffusion filter could also be due to the effects of noise, depending on the structure in question and its intensity.
We also note that the differences between box 1 and 2 found in, for example, the qualitative plots (Figures
3.7–3.12) and the minimum RMSE values were not very large; this is not surprising when considering how
close in time the two snapshots are.

With this improvement of individual swaths, gridded and possibly daily SWOT SSH maps could be obtained
through different interpolation and/or reconstruction techniques. Current gridded altimetric products are
obtained using optimal interpolation (OI) (Pujol et al., 2016). OI may not be the best interpolation method.
OI exploits a covariance model of the field to be interpolated. The specification of this covariance model
typically relies on a trade-off between the space-time size of the missing data areas and the space-time
scales of interest. A covariance model with a large correlation length may lead to an over-smoothing of fine-
scale structures, whereas shorter correlation lengths result in filling large missing areas with the background
field. From a computational point of view, OI requires a matrix inversion, whose complexity evolves as the
cube of the number of observation points. The image-like structure of SWOT data may then be highly
computationally-demanding when considering large correlation lengths to fill in large missing areas. Multi-
scale OI may be an alternative. However, we expect dynamical interpolation and other data assimilation
methods (Ubelmann et al., 2015; Lguensat et al., 2019; Fablet et al., 2018) to be more adapted both in terms
of computational complexity and in their ability to embed relevant dynamic priors to reconstruct horizontal
scales down to a few tens of kilometres from SWOT data. On the other hand, SWOT data will greatly
improve the present-day OI altimetric products (Pujol et al., 2012). In addition, SWOT gridded data could
be improved in the 40 – 60 km wavelength range by combining it with the data of a higher temporal resolution.

Dynamic interpolation is an example of a technique that has been investigated by Ubelmann et al. (2015) that
could help to obtain gridded, daily SSH maps from SWOT. When they apply this method to the Gulf Stream
region, they recover the SSH field down to 80 km wavelength. Data-driven schemes recently introduced by
Fablet et al. (2018); Lguensat et al. (2019) are also of interest to better reconstruct horizontal scales below
100 km. Overall, for such approaches, it is important to recover the lowest wavelengths possible as spatial
resolution loss is likely when producing the gridded maps. Moreover, this spatial resolution loss might be
even higher when addressing gridded maps of derived variables. Therefore, the cut-off wavelength should be
adjusted to the variables that are to be studied.

Another reconstruction technique that has been investigated in the context of SWOT is a 3D multivariate
reconstruction of ocean state. Durán-Moro et al. (2017) do this by combining information from SSH and
high resolution image structure observations. Once this is achieved, study of the capacity of SWOT to detect
fine-scale structures could be improved by, for example, better characterizing eddies. As the dataset would
be of a higher spatial and temporal resolution than the L2 product, it would then be possible to apply
eddy-tracking algorithms like the py-eddy tracker (Mason et al., 2014) or the code developed by Conti et al.
(2016), which have already been implemented in this region to characterize the western Mediterranean eddy
field. A comparison could then be made with the eddies characterized in data from the WMOP model, in
the presently available altimetric data and in pseudo-SWOT data.

In future work, the effect of the inter- and intra-annual (or seasonal) variability in the region on the results
obtained could be studied too. Although mean spectra were obtained, we focused on two dates in winter.
d’Ortenzio et al. (2005); Houpert et al. (2015) found that there is a strong winter–summer difference in the
upper ocean dynamics due to the change of stratification, with the mixed layer depth being deeper in winter.
For example, the reconstruction of mesoscale structures in the upper ocean from pseudo-SWOT data in the
Kuroshio Extension region has been studied. They found that the simulated and reconstructed vorticity
correlation coefficients varied both inter- and intra-annually. (Qiu et al., 2016)

The implementation of filtering techniques that take into account the first and second order SSH derivatives
has been started. With this, we hope that in future studies we will be able to recover even smaller wavelengths
and to conserve the intensity of the signal after having applied the filter.

New versions of the SWOT simulator will allow the simulation of pseudo-SWOT data during the fast-sampling
phase. This makes it possible to start preparing for the calibration/validation phase including the comparison
with high resolution in situ data collected during future intensive multi-platform experiments in the western
Mediterranean Sea. On the other hand, the only source of geophysical error implemented in the SWOT
simulator is still just that related to the wet troposphere. New releases of the SWOT simulator may include
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the effects of sea state and internal tides (Lindstrom et al., 2017). Internal tides and waves are important
sources of geophysical errors because, at wavelengths shorter than 50 km, they can affect SWOT data (Fu
and Morrow , 2016). Therefore, in future work, it would also be interesting to compare our results with an
updated version of the SWOT simulator and other OGCMs, especially those that include tides.

3.5 Conclusions

We have generated simulated pseudo-SWOT data for the western Mediterranean Sea using a SWOT simulator
and outputs from an ocean numerical model. To evaluate the output SWOT data, we derived absolute
geostrophic velocities and relative vorticities from the pseudo-SWOT SSH data. We find that, due to the
satellite’s instrumental noise and geophysical errors, the features observed in the pseudo-SWOT SSH are
lost in the derived dynamical variables. Looking at the spatial spectra, we find that noise dominates the
signal at wavelengths smaller than 60 km. We applied a Laplacian diffusion filtering technique to attempt to
remove the noise and hence observe finer scales. We estimated the appropriate cut-off wavelength for each
parametrization. To filter out the noise, we applied a series of ascending cut-off wavelengths: 15, 30, 40, 50,
60, 100 and 200 km. We find that in this study region, using this technique, we cannot resolve the expected
15 km wavelength. On the other hand, we are able to recover the signal within a swath down to a 40 – 60
km wavelength range. This is still an improvement in comparison to wavelengths resolved by present-day
1D altimeters, especially at eastern basins. Robust swath-filtering is an important first step towards meeting
our goals for reconstruction techniques that will enable us to combine SWOT and altimetric data in order to
produce gridded SSH maps of significantly higher resolution than contemporary products. New versions of
the SWOT simulator code include improved representation of instrumental and geophysical errors, and also
give us the option to obtain pseudo-data for the SWOT fast-sampling phase. New pseudo-SWOT data will
allow us to better refine the results of this study and to examine a wider range of scenarios.
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3.A Appendix A

In order to know which number of iterations and lambda to set in the filter’s parametrization, the filter was
applied to a set of 100 randomly generated white noise fields. Spectra were then obtained and the cut-off
wavelength was found by identifying the one that corresponded to where the energy was reduced to a half.
An example is shown in Figure A1.

Figure A1: Illustration of how the parameterization corresponding to a 15 (16.72) km cut-off wavelength (λc)
is estimated. The blue line represents the mean spectra of the 100 non-filtered white noise fields. The black
line is the mean spectra of the 100 filtered white noise fields. The horizontal red line shows the half-power
spectra of the blue line, and the vertical red line the corresponding wavelength value of the black line, and
thus the cut-off wavelength.

In Table 3.1, we show the different λc obtained for a set of lambdas and number of iterations and in Figure
A2 a plot of the values shown in Table 3.1 is presented. As can be observed in Table 3.1, in most cases,
several combinations of lambdas and iterations can give the same cut-off wavelength. We decided to choose
the combination corresponding to the smallest lambda, as the smaller the lambda, the smaller the over-
smoothing.
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Table 3.1: Cut-off wavelengths (λc) values and their corresponding lambda and number of iterations (iter)
combinations. The cut-off wavelengths shown in Figures 3.7–3.12 are in bold.

Cut-off Lambda Iter Cut-off Lambda Iter Cut-off Lambda Iter Cut-off Lambda Iter

16.72 0.05 50 71.88 0.10 450 105.09 0.20 500 141.41 0.35 500

23.95 0.05 100 0.15 300 0.25 400 0.40 450
0.10 50 0.30 150 0.30 350 0.45 400

29.47 0.05 150 0.45 100 0.35 300 0.50 350

0.15 50 74.5 0.10 500 0.40 250 0.55 350

33.85 0.05 200 0.20 250 0.50 200 0.60 300
0.10 100 0.25 200 0.65 150 0.65 300

0.20 50 0.50 100 110.78 0.25 450 0.70 250

37.58 0.05 250 77.31 0.15 350 0.45 250 0.75 250

0.25 50 0.35 150 0.55 200 151.91 0.40 500

41.38 0.05 300 0.55 100 0.70 150 0.45 450

0.10 150 83.63 0.15 400 0.75 150 0.50 400

0.15 100 0.20 300 117.12 0.25 500 0.55 400
0.30 50 0.25 250 0.30 400 0.60 350

45.02 0.05 350 0.30 200 0.35 350 0.70 300
0.35 50 0.40 150 0.40 300 0.80 250

48.19 0.05 400 0.60 100 0.50 250 164.1 0.45 500

0.10 200 87.19 0.15 450 0.60 200 0.50 450
0.20 100 0.45 150 0.65 200 0.50 500
0.40 50 0.65 100 0.80 150 0.55 450

50.58 0.05 450 91.07 0.15 500 124.24 0.30 450 0.60 400
0.15 150 0.20 350 0.30 500 0.65 350
0.45 50 0.25 300 0.35 400 0.65 400

53.2 0.05 500 0.30 250 0.40 350 0.70 350
0.10 250 0.35 200 0.45 300 0.75 300
0.25 100 0.50 150 0.50 300 0.75 350
0.50 50 0.70 100 0.55 250 0.80 300

56.12 0.55 50 0.75 100 0.60 250 178.42 0.55 500

57.7 0.10 300 95.31 0.20 400 0.70 200 0.60 450
0.15 200 0.40 200 0.75 200 0.60 500

0.20 150 0.55 150 132.27 0.35 450 0.65 450
0.30 100 0.80 100 0.40 400 0.70 400

0.60 50 99.96 0.20 450 0.45 350 0.70 450

61.15 0.65 50 0.25 350 0.55 300 0.75 400

63.03 0.1 350 0.3 300 0.65 250 0.8 350
0.35 100 0.35 250 0.80 200 0.80 400

0.70 50 0.45 200 195.49 0.65 500

65.03 0.15 250 0.60 150 0.70 500

0.25 150 0.75 450
0.75 50 0.75 500

67.17 0.1 400 0.8 450
0.20 200 0.8 500

0.40 100
0.80 50
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Figure A2: Laplacian diffusion cut-off wavelengths (km) for different combinations of the number of iterations
and lambdas.

3.B Appendix B

The noise added by the SWOT simulator can be divided into two types:

• Instrument errors: There are the different types of noise that can affect the signal due to the satel-
lite itself:

– Ka-Band Radar Interferometer (KaRIn)

– Roll

– Timing

– Phase

– Baseline dilation

Below are two example cycles of the instrument errors added by the simulator to passes 15 and 168 (Figures
B1 and B2). Please note that the color-scale has been adjusted for each error type.
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Figure B1: The different instrument noise types (m) for passes 15 pass 168 over cycle 2 are shown.

Figure B2: The different instrument noise types (m) for passes 15 and 168 over cycle 30 are shown.

• Geophysical errors: In version 1 of the simulator, only the geophysical error due to the wet troposphere
is implemented. Other geophysical errors include those due to the dry troposphere, the ionosphere and
the sea state bias (electromagnetic bias). However, the wet troposphere is a major source of geophysical
errors and it is implemented via these following two variables:

– Path delay (pd),

– Residual path delay (pd_err_1b).

Below, we show two example cycles of the geophysical errors added by the simulator to passes 15 and 168
(Figures B3 and B4). Please note that the color-scale has been adjusted for each error type.
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Figure B3: The different geophysical errors (m) for passes 15 and 168 over cycle 2 are shown.

Figure B4: The different geophysical errors (m) for passes 15 and 168 over cycle 30 are shown.

For more details on instrument and geophysical errors, see Gaultier et al. (2016) and Esteban-Fernandez
(2017).
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Chapter 4

Development of an image de-noising
method in preparation for the surface
water and ocean topography satellite
mission.

This chapter has been published as: Gómez-Navarro, L., Cosme, E., Sommer, J. L., Papadakis, N., & Pascual,
A. (2020). Development of an Image De-Noising Method in Preparation for the Surface Water and Ocean
Topography Satellite Mission. Remote Sensing, 12(4), 734.
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4.1 Introduction

The Surface Water Ocean Topography (SWOT) (Fu, Lee-Lueng and Alsdorf, Douglas and Morrow, Rosemary
and Rodriguez, Ernesto and Mognard, Nelly , 2012) mission will provide an unprecedented two-dimensional
view of ocean surface topography at a pixel resolution of 2 km. The launch is scheduled for 2021. SWOT’s
wide-swath altimeter, based upon Synthetic Aperture Radar (SAR) interferometry technology, will measure
Sea Surface Height (SSH) over a 120-km wide swath with a 20-km gap at the nadir. The satellite will also
carry a conventional nadir altimeter. SWOT will evolve on two different orbits: the first 3 months of scientific
data production will be dedicated to a fast-sampling phase, where the repeat cycle will be 1 day. Then, the
satellite will be moved to its nominal orbit with a 20.86-day repeat cycle. SWOT is a multidisciplinary
hydrology and oceanography mission, and here, we focus on the latter.

The main oceanographic objective of SWOT is to observe the geostrophic fine-scale circulation at the global
scale (Fu and Ferrari , 2008; Morrow et al., 2019). The measurement system is designed to resolve ocean
circulation patterns at scales down to 15 km, whereas the present-day constellation of conventional altimeters
only resolves scales of 150–200 km and above (Morrow et al., 2019). In addition to potentially unexpected
discoveries, this order-of-magnitude gain in resolution will help quantify several oceanic processes much more
accurately than today. Among those processes are vertical motions, which are key to the vertical exchanges
between the ocean surface and the atmosphere and between the ocean surface and the deep ocean (Thomas
et al., 2008; Taylor and Ferrari , 2011; Lévy et al., 2012b; Mahadevan, 2016; McGillicuddy Jr , 2016; Pascual
et al., 2017), and the dissipation of kinetic energy, which partly determines the climatic role of the global
ocean (Sasaki et al., 2014; Uchida et al., 2017).

The SWOT mission objectives will be reached if we can accurately estimate gridded maps of at least the
first- and second-order horizontal derivatives of SSH. Altimetry describes the upper ocean dynamics through
geostrophy, which involves the horizontal SSH gradients. Geostrophy is a fairly good approximation of
mesoscale dynamics, i.e., at scales larger than the first Rossby deformation radius (about 10–15 km in our
region (Escudier et al., 2016b)), for which Rossby numbers are typically smaller than 1. Kinetic energy
dissipation is driven by the horizontal strain rates of the ocean surface flow (Capet et al., 2008a). Complete,
gridded maps of SSH derivatives are required for climate studies and short-term operational applications.
One way to make gridded maps from incomplete SSH observations (including SWOT, but not only) is to
assimilate those data into dynamical models. The assimilation of SWOT is expected to be challenging because
of the spatially correlated errors, and promising solutions to this rely upon the joint assimilation of SSH and
its derivatives (Ruggiero et al., 2016; Yaremchuk et al., 2018). All these considerations compel the scientific
community to strive for getting accurate estimates of SSH derivatives.

Unfortunately, SWOT data will very likely be contaminated by small-scale noise and errors that prevent the
direct computation of SSH derivatives. The errors expected to contaminate SWOT measurements gather
several components with different spatial coherences and different amplitudes. Details are provided in the
SWOT mission performance and error budget document (Esteban-Fernandez , 2017). To be prepared to
exploit the future SWOT data, the SWOT simulator for ocean science has been developed to simulate
realistic realizations of SWOT uncertainties (Gaultier et al., 2016). Some are illustrated at our study region
(Figure 4.1) in Figure 4.2. Errors due to the satellite roll, the baseline dilation, and the path delay induced
by atmospheric humidity exhibit significant spatial correlations with different characteristic patterns. The
system timing error presents errors invariant across-track but with possible small-scale variations along-track.
The KaRIn (Ka-band Radar Interferometer) noise is spatially uncorrelated, with higher amplitudes at nadir
and near the edges of the swath. The path-delay component also exhibits small-scale variations due to sharp
changes in air humidity. Efforts have already been undertaken to filter out SWOT’s random, small-scale
noise by Gómez-Navarro et al. (2018). The authors show that the implementation of a diffusion-based filter
allows to retrieve the dynamical spectral signature down to 40–60 km scales (20–30 km in terms of dynamical
pattern scales). However, the de-noising approach here is not specifically designed to retrieve SSH derivatives,
and we believe there is room for improvement in the scales to be retrieved.

This paper presents a method designed to remove the random, small-scale noise of the future SWOT data,
which explicitly relies upon the regularity (bounded variations) of the first three orders of SSH derivatives.
Consequently, this approach is of interest as it has a direct impact on not only SSH but also on important
oceanic variables like geostrophic velocity and vorticity. This de-noising method is rooted in image restoration
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techniques of the variational type (Rudin et al., 1992; Chang et al., 2000; Desbrun et al., 2000; Chambolle,
2004). The range of image restoration techniques is extremely wide and diversified. Testing all existing
methods is out of reach and irrelevant here. Our approach is then to acknowledge that our image is a smooth
physical field with relatively smooth derivatives and that the estimation of derivatives is an important issue.
This consideration guides the design of the de-noising method presented in Section 4.2. The method involves
a set of parameters that must be adjusted. An essential task is to identify optimal sets of parameters. This
study suggests a methodology to identify them. The experimental setup is described in Section 4.3. Sections
4.4 and 4.5 present the results, and Section 4.6 summarizes the study, draws the most relevant conclusions,
discusses them, and suggests possible future research paths.

4.2 Variational De-Noising of SWOT Images

4.2.1 Formulation of the Image De-Noising Problem

The purpose of image de-noising here is to allow the computation of first- and second-order SSH spatial
derivatives of SWOT data as accurately as possible. The two reasons already mentioned in the introduction
are (i) that these quantities represent geostrophic velocities and relative vorticity, respectively, of which the
estimation is central to the success of SWOT mission, and (ii) that these quantities could be used to draw
maximum benefits from the assimilation of SWOT data into ocean circulation models (Ruggiero et al., 2016;
Yaremchuk et al., 2018). We therefore propose a method that explicitly constrains these derivatives.

The proposed de-noising model is formulated as a regularized least-square problem with a Tikhonov regular-
ization. The de-noised SWOT image h is searched for by minimizing the following cost function:

J(h) =
1

2
‖m ◦ (h− hobs)‖2 +

λ1
2
‖∇h‖2 +

λ2
2
‖∆h‖2 +

λ3
2
‖∇∆h‖2 (4.1)

where ‖ ‖ represents the L2-norm, hobs is the original noisy image (i.e., our observation, the pseudo-SWOT
data), ∇ = (∂/∂x, ∂/∂y) is the gradient operator, and ∆ = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator.
Letter m and sign ◦ represent a mask and the entrywise matrix product, respectively. They can be ignored
for the present and the next subsection: their role is discussed in Section 4.2.3 below. The regularization
terms impose regularity constraints on geostrophic velocity, vorticity, and vorticity gradient, respectively.
Parameters λ1, λ2, and λ3 must be prescribed. The search for their optimal values is reported in Section
4.3.3.

4.2.2 Resolution of the Variational Problem

The variational problem displayed in Equation (5.2) is solved using a gradient descent method (Biemond
et al., 1990). The gradient of J is written as follows:

∇J(h) = m ◦ (h− hobs)− λ1∆h+ λ2∆∆h− λ3∆∆∆h (4.2)

so that the solution can be reached after convergence of the following iterations:

hk+1 = hk + τ
(
m ◦ (hobs − hk) + λ1∆hk − λ2∆∆hk + λ3∆∆∆hk

)
(4.3)

Stability of iterations is guaranteed if τ ≤ (1 + 8λ1 + 64λ2 + 512λ3)−1. In practice, it is taken equal to
this value. Two improvements on the method’s implementation accelerate the gradient descent: Firstly,
iterations are started with a preconditioned image obtained by applying a Gaussian filter onto the original
image, including inpainting as discussed in Sections 4.2.3 and 4.2.4 (note that hobs remains the original,
unfiltered image). Preconditioning considerably speeds up the algorithm convergence, in particular for the
inpainted regions. Secondly, iterations are actually implemented with an acceleration of Scheme 5.3 based
on the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009), detailed in
Appendix 4.B.The Laplacian operator is discretized with finite differences using the five-point stencils of the
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image pixels. As commonly done in image processing, the division by pixel size is ignored; this also reduces
the probability of truncation errors due to operations with terms different by too many orders of magnitude.
Pixels located at the boundaries, where the stencil is incomplete, must have a Laplacian value attributed;
otherwise, the image would become smaller at each iteration of the gradient descent. The implementation of
the Laplacian operator follows Chambolle (2004) and is detailed in Appendix 4.A.

4.2.3 Dealing with Gaps in the Image

An inpainting method is implemented to deal with islands, continents, and the 20-km wide gap at the SWOT
nadir, which all represent obstacles to the calculation of the second derivatives of images. Inpainting consists
of filling the gaps consistently with the neighbouring water pixels. This is done (i) by extending images hobs
and h with pixels in the gaps and (ii) by filling mask m with ones in the water pixels of the original image and
zeros in the gaps. Differential operators can then be applied to every image pixel, and the gradient descent
iterations are carried out smoothly. Mask m is applied to the resulting image to obtain the final, filtered
image with islands, continents, and the nadir gap.

Inpainting should not only be considered as a complimentary step to facilitate the gradient descent implemen-
tation but also as an opportunity to fill the nadir gap for calibration, validation, and reconstruction purposes.
In the gaps, the image resulting from the iterations is determined only by the neighbouring water pixels and
regularity constraints. The gap width (20 km) appears reasonably small in comparison with spatial scales
of SSH variations in most parts of the mid-latitude, open ocean. The image values obtained at nadir may
thus be comparable to those collected by the nadir instrument carried by SWOT, allowing calibration of the
radar interferometer, validation of data, and reconstruction of SSH in gap-free images. Such opportunities
will be explored in a future work.

4.2.4 Comparison with Convolution-Based Filters

In Section 4.4, the image de-noising technique described above will be compared with standard-type filters,
namely convolution-based filters. In our experiments, we test the two commonly used boxcar and Gaussian
convolution kernels, with a large range of parameters, and we shortly refer to the boxcar filter and the
Gaussian filter. Their parameters are the box size (or footprint) and the standard deviation for the Gaussian
kernel (hereinafter referred to as σ). Gaps in the SWOT swath (lands, islands, and nadir gap) are inpainted to
facilitate filtering and to ensure the smoothness of SSH fields. Then, SSH values created in gaps are removed
for the evaluation of the methods using the mask m. Inpainting is implemented as follows: (i) Image gaps
are filled with zeros; (ii) both the filled image and the mask m are filtered with the same kernel; and (iii) the
filtered filled image is divided entrywise by the filtered mask. Note that, in an earlier study (Gómez-Navarro
et al., 2018), a Laplacian diffusion filter was experimented. It is not reproduced here, since it is equivalent to
the Gaussian filter implemented in this study. For details on the software used to implement these methods
see Appendix 4.E.

4.3 Experimental Setup

4.3.1 Simulated SWOT Dataset

The input of our database is a 15-month North Atlantic simulation at a resolution of 1/60◦. We use the
NEMO3.6 ocean model coupled to LIM2 ice model, with atmospheric forcing from a global ocean reanalysis
at 1/4◦ (GLORYS-v3) and ocean-atmosphere boundary conditions of Drakkar Forcing Set (DFS5.2) based
on European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim).
It has no high frequency forcing and thus does not include tides. The domain covers the North Atlantic from
25◦N to 66◦N. The horizontal resolution is between 0.8 and 1.6 km (depending on latitude), and the grid has
300 vertical levels. This NEMO (Nucleus for a European Model of the Ocean) model configuration is referred
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to as NATL60, and the source files and codes are available in Molines (2018). The particular simulation
used herein has been described in Amores et al. (2018); Fresnay et al. (2018); Ajayi et al. (2019). Lastly, the
simulation time span is from mid-June 2012 to October 2013 (Le Sommer et al., In prep.).

The SWOT simulator for Ocean Science (version 2.21) (Gaultier et al., 2016) is run to generate pseudo-SWOT
scenes from the NATL60 simulation. The SWOT simulator first builds the SWOT observation grid based on
the provided satellite orbit. In this study, SWOT grid resolution is fixed at 1 km. After this work started,
the resolution of the basic SWOT level 2 SSH data products has been fixed to 2 km, but this small mismatch
does not modify the general approach. After building the grid, the simulator reads SSH data from NATL60
and linearly interpolates them from the model to the SWOT grid (rendering the variable SSH_model). In a
last step, it computes random realizations of observation errors and adds them to the interpolated SSH data
(rendering SSH_obs). Observation errors considered at the moment are KaRIn noise errors, roll errors, phase
errors, baseline dilation errors, timing errors, and errors due to signal alternation by atmospheric humidity.
Among these errors, only the KaRIn noise is expected to be spatially uncorrelated. Technically, the SWOT
simulator provides simulations of the noise-free SSH observed by SWOT and of the noisy data that SWOT
will actually yield (sum of the former and the noise: SSH_obs = SSH_model + errors). For the evaluation
of image de-noising methods, it thus provides "true" noise-free images (htrue) along with the realistic SWOT
data (hobs) to process and compare with the truth.

A set of 543, 121 × 200 km2 pseudo-SWOT scenes are generated in the western Mediterranean Sea, covering
one winter and two summer seasons (choice limited by the model’s time span). SWOT scenes are sampled
from the fast-sampling phase satellite orbit, focusing on a cross-over region, i.e., where an ascending pass
crosses a descending pass, therefore providing 2 passes per day. The SWOT data simulation is carried out
over three 3-month periods: July to September 2012 and 2013 (JAS12 and JAS13 hereafter), representing
the summer season, and February to April 2013 (FMA13), representing the winter season. The summer
periods provide 92 (resp. 91) of ascending (resp. descending) passes; the winter period provides 89 (resp.
88) passes. The selected region belongs to the fast-sampling phase crossover in the western Mediterranean
Sea. This is one of the regions selected for calibration/validation (Cal/Val) (d’Ovidio et al., 2019) in which
in situ measurements have been made in the frame of SWOT (Barceló-Llull et al., 2018). To mitigate the
computational complexity of the study and to avoid the presence of continents and islands, limited subregions
of the SWOT swaths are sampled. These subregions are 121-km wide (the width of 2 SWOT swaths plus
the gap) and 200-km long. The region, the SWOT passes, and the subregions are shown in Figure 4.1. It is
worth noting that each scene is affected by a unique realization of the SWOT error.
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Figure 4.1: SSH_model outputs (m) for cycle 1 of pass 9 (left) and 22 (right) of the July to September
2012 (JAS12) dataset: In red is the subregions selected.

In this work, image de-noising techniques are first applied to the pseudo-SWOT scenes affected by the KaRIn
noise only (SSH_obs_K) and then to the scenes containing all errors (SSH_obs). This approach allows to
discriminate the effects and the performance of image de-noising in the presence of the spatially correlated
SWOT errors.

A few realizations of the different components of the SWOT error are shown in Figure 4.2, where we can
observe how most errors exhibit strong and long-range correlations, whilst the KaRIn error does not show
any correlation at all.
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(a)

(b)

Figure 4.2: Examples of errors (m) added by this Surface Water Ocean Topography (SWOT) simulator
version 2.21 to our study region fast-sampling phase for JAS12 pass 9 (a) and 22 (b): Note that these
simulations are performed without the 20-km gap at nadir.

4.3.2 Diagnostics for Evaluation

The quantitative evaluation of de-noising methods is carried out by computing Root Mean Square Errors
(RMSE) and Mean Spectral Ratios (MSR). RMSE for a single de-noised SWOT field h is computed as the
Euclidean distance to the corresponding original, noise-free field htrue:

RMSE(h) =

√√√√ 1

N

N∑
i=1

(hi − htrue
i )

2 (4.4)

where N is the number of pixels and i a pixel index. Single image RMSEs are then averaged out by season
for the 3 seasons considered and are computed for SSH, |∇SSH| and ∆SSH. Thus, the test of a de-noising
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method with a specific set of parameters results in 9 RMSE values. To evaluate the improvement after the
application of the different de-noising techniques and parameters, we also calculate the percentage of the
initial RMSE left. We calculate this RMSE residual (RMSEr) as follows:

RMSEr(h) =
RMSE(h)

RMSE(hobs)
× 100, (4.5)

where h is the de-noised field and hobs is the original noisy field (SSH_obs_K or SSH_obs).

The spatial spectra of the de-noised SWOT SSH are compared with the spectra of the noise-free and the
noisy SWOT SSH. For each pass, we calculate the cross-track averaged and along-track power spectrum.
The spectra are then averaged out over each season, leading to one spectrum per season. Information on the
wavenumber spectrum calculations is given in Appendix 4.C. Again, to evaluate the improvement after the
application of the different de-noising techniques and parameters, we compare the noise-free and de-noised
fields. To do so, the Mean Spectral Ratio (MSR) is computed from the Power Spectral Densities (PSD) of
SSH. For each season, MSR is computed as follows:

MSR =

√√√√ 1∑Nk

j=1 δkj

Nk∑
j=1

((
log10

(
PSDj(htrue)

PSDj(h)

))2

× δkj

)
, (4.6)

where Nk is the number of wavelengths considered and where PSDj(h
true) and PSDj(h) are the power

spectral density values at wavelength j for the original, noise-free SWOT field and the de-noised SWOT field,
respectively.

4.3.3 Exploring Parameters of the De-Noising Methods

For all de-noising methods, a wide range of parameters are tested to identify optimal parameters according
to the diagnostics presented in Section 4.3.2. The convolution-based methods use a single parameter that can
easily be compared with the image dimensions in pixels. For the boxcar kernel, the tested parameter values
go from 3 to 200 km and correspond to the size of the box in pixels (1 km in our case). For the Gaussian
kernel, the tested parameters go from 0.25 to 300 and correspond to the standard deviation, in pixels (we test
up to a big sigma to have a highly oversmoothed image to reach the limit of the method). On the contrary,
the geometric interpretation of the parameters of the variational method is not straightforward, and a wide
exploration of the parameter space must be undertaken. However, due to computation time limitations, this
cannot be performed in a strictly systematic manner. The adopted procedure is detailed below.

4.3.3.1 Orders of Magnitude of the Cost Function Terms

The orders of magnitude of the terms ‖∇h‖2, ‖∆h‖2, and ‖∇∆h‖2 composing the cost function (Equation
(5.2)) are estimated to coarsely scale the parameters λ1, λ2, and λ3. The rationale is that, for one of these
terms (with its weight) to have some impact on the solution, it must be of an order of magnitude not too
different from the background term ‖m◦(h−hobs)‖2. Figure 4.3 shows the seasonal evolution of the derivative
terms, computed from the model in a 2◦ × 2◦ region containing the SWOT passes used in this study. The
relative ratios between ‖∇h‖2, ‖∆h‖2, and ‖∇∆h‖2 are approximately 1000:10:1. Therefore, if we want to
include all three terms in the cost function, the ratios between λ1, λ2, and λ3 should coarsely be 1:100:1000.
Those ratios must be only considered as a guideline to start the investigation, not a strict rule. Note that
the order of magnitude of the background term after minimization of the cost function is thought to be in
the range 1 to 100 in the same region. This has been estimated using the noise-free field.
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Figure 4.3: Seasonal variations of the cost function terms ‖∇h‖2, ‖∆h‖2, and ‖∇∆h‖2, from top to bottom:
Shaded areas indicate the JAS12, February to April 2013 (FMA13), and July to September 2013 (JAS13)
periods from left to right, respectively. The mean and median values are printed for each period and for the
whole year (upper right corners, in bold).

4.3.3.2 Finding Optimal Sets of Parameters

First, we created an exponential series of values to be tested for the three lambdas, consistently with the
previously estimated relative ratios. For λ1, the series is chosen as {4n, n = 0, ..., 7}. For λ2 and λ3, the series
are {10 × 4n, n = 0, ..., 7} and {100 × 4n, n = 0, ..., 7}, respectively. With these, six scenarios of Derivatives
Penalization (DP) de-noising are investigated, including one, two, or three penalization terms in the cost
function of Equation (5.2). Three scenarios out of the six considered include a single penalization term
(mono-parametric) of orders 1, 2 and 3, successively. The other scenarios are made of terms of orders 1 and
2 and of 2 and 3, and the last one includes the three orders. For conciseness, particularly in the next section,
we refer to the variational method with the first-order term only as the λ1 method. We similarly refer to the
λ2 method and to the (λ1 + λ2) method when the first two penalization terms are considered, and so on.

For each scenario, a two-step procedure is implemented to identify an optimal set of parameters. In a
first step, de-noising of the full set of images is performed with all possible combinations of parameters
permitted by the scenario and the parameter series defined previously. RMSEs and MSR are computed for
all the combinations. In a second step, refined series of parameters are created in the neighborhood of the
combination of parameters that yields the minimum RMSE and MSR scores. Image de-noising is then carried
out again with all possible combinations of these series.
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4.4 Optimal De-Noising Method

In this section, the optimal de-noising method is searched for based on the RMSE and MSR scores described
in Section 4.3. We investigate the KaRIn-noise-only scenario and then the all errors scenario and finally
have a closer look at the method identified as optimal. As it becomes clear in what follows, the notion
of optimality does not only refer to quantitative measures. The design of a single index summarizing the
performance of the method for the different RMSEs is indeed subjective. Moreover, we take into account the
ease of implementation and parameterization as a criteria in the final decision.

Minimum values of RSME and MSR for each season, method, and variable are reported in Tables 4.1 and 4.2
for the KaRIn-only and all errors scenarios, respectively. RMSE scores are actually expressed as the per-
centage of the original RMSEs (RMSEr), i.e., those of the original, noisy data. For SSH, |∇SSH|, and
∆SSH RMSE and MSR of each de-noising configuration and parameterization, the scores do not necessarily
correspond to the same optimal parameter (box size, σ, or λ).

82



4.4. OPTIMAL DE-NOISING METHOD Chapter 4

Table 4.1: Scores summary of boxcar, Gaussian and Derivatives Penalization (DP) de-noising methods for
the just KaRIn (Ka-band Radar Interferometer) dataset.

Season De-noising method RMSEr
Minimum MSR

SSH |∇SSH| ∆SSH

JAS12

Boxcar 12.43 0.094 0.300 0.2010

Gaussian 11.23 0.067 0.250 0.1111

DP

1 12.55 0.084 0.279 0.2028

2 08.71 0.050 0.247 0.0143

3 09.06 0.051 0.247 0.1021

1 + 2 08.72 0.050 0.247 0.0192

2 + 3 08.68 0.049 0.247 0.0205

1 + 2 + 3 08.66 0.049 0.246 0.0259

FMA13

Boxcar 15.04 0.177 0.511 0.1066

Gaussian 12.97 0.133 0.424 0.0746

DP

1 15.41 0.173 0.483 0.1498

2 10.92 0.115 0.420 0.0178

3 10.86 0.113 0.416 0.0682

1 + 2 10.92 0.115 0.420 0.0208

2 + 3 10.79 0.113 0.416 0.0168

1 + 2 + 3 10.82 0.113 0.416 0.0255

JAS13

Boxcar 11.98 0.086 0.326 0.1796

Gaussian 10.99 0.063 0.276 0.0911

DP

1 12.78 0.083 0.309 0.2031

2 08.96 0.053 0.274 0.0216

3 09.11 0.053 0.273 0.1010

1 + 2 08.97 0.053 0.274 0.0394

2 + 3 08.84 0.052 0.272 0.0243

1 + 2 + 3 08.84 0.052 0.272 0.0269

4.4.1 RMSE and MSR Scores with KaRIn Noise Only

For all variables (h, ∇h, and ∆h), all seasons, and all de-noising methods, minimum RMSEs are smaller
in summer than in winter (Table 4.1). This is expected because the oceanic surface features in winter are
smaller than in summer (Escudier , 2014), so their observation is more affected by the KaRIn noise. Also,
smaller structures are more affected by the smoothing due to the de-noising.

For all three seasons and all three variables, RMSEs and MSRs from the convolution-based methods and
from the λ1 method are larger than RMSEs and MSRs from all other variational methods. Also, the λ3
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method provides MSRs significantly higher than the other variational methods. None of these methods is the
optimal de-noising one in this KaRIn-only noise configuration and are not further discussed in the following.

In terms of both RMSEs and MSRs and among the methods still on course, no method outperforms the
others systematically and distinctly. For all three variables, RMSEs are close to each other, with differences
less than a very few percents. MSRs are a bit more scattered but without any clear predominance of a specific
method in all seasons. However, the λ2 method exhibits the lowest MSR values in summer and the second
lowest value in winter, close to the λ2 + λ3 method.

Finally, this analysis persuades us to further examine the λ2 method for the KaRIn-only scenario (see Section
4.4.3). This choice is supported by the RMSE and MSR analysis above, which shows that other methods do
not beat it clearly, and by the fact that it is much easier to parametrize a single-parameter method rather
than a two- or three-parameter method.

4.4.2 RMSE and MSR Scores with All Errors

Normalized minimum RMSEs for h and |∇h| are higher than in the KaRIn-only scenario by factors of 6–12
for h and 1.5–4 for |∇h| (Table 4.2). This is obviously due to the spatially correlated component of the errors
(see Figure 4.2), which is not filtered out by any of the methods used here. Other approaches must be used
to remove the correlated errors in order to obtain more accurate estimates (Metref et al., 2019, 2020).

Contrary to h and ∇h, RMSEs for ∆h are comparable with those obtained in the KaRIn-only case. They are
5% higher only. This slight increase in RMSE is the signature of the nonlinear component of the correlated
error. In the across-track direction, this nonlinear (quadratic, more precisely) component is due to the
baseline dilation (Gaultier et al., 2016; Esteban-Fernandez , 2017). The other components are constant,
linear, or piecewise linear and thus are removed by the second-order derivatives. The spatial errors’ signal
in the along-track direction is supposed to vary less with the satellite attitude (except timing errors) and
the local environmental constraints on the satellite (baseline dilation). This is reflected as small but not null
second-order derivatives of errors that may slightly affect the RMSE. In reality, the spatial decorrelation of
such errors might be short and combined with geophysical variations (waves and atmosphere).

Considering only RMSEs on ∆h, except for the boxcar and the λ1, no method performs significantly better
than the others, and RMSEs are higher in winter than in summer. This is similar to the KaRIn-only scenario.
The Gaussian filter performs comparatively better than in the KaRIn-only scenario.

In terms of MSRs, the methods involving λ2 perform significantly better than the others, including the λ3
and the Gaussian methods. These last two exhibit MSRs larger than the others by factors of 1.5 to 4. In
winter, the λ2 method is a little less effective than the multi-parameter methods, with a MSR twice as large.

The de-noising experiments with all errors, like those with the KaRIn noise only, lead us to favor the λ2
method. The reasons are similar: based on RMSEs and MSRs, the method compares favorably with the
others, and a single-parameter method is much easier to parametrize. The only result speaking against this
choice is the MSR in winter, for which the multi-parameter methods perform better than the λ2 method.
Considering the score value though and after the examination of the wavenumber spectra (see Section 4.5)
this point hardly justifies discarding the λ2 method as the optimal one.

4.4.3 A Focus on the Second-Order Variational Method

This section investigates the sensitivity of the λ2 de-noising to the parameter value. Figure 4.4 shows the
RMSEs for h, |∇h|, and ∆h and the MSR for h as functions of λ2. On each graph, the three seasons are
shown for both KaRIn-only (solid lines) and all errors (dashed lines) scenarios, making a total of 6 curves.

Except for h and |∇h| RMSEs in the all errors scenario, all RMSE and MSR curves exhibit a clear minimum
point, which indicates the existence of an optimal or a range of close-to-optimal λ2 values for the de-noising.
These optimal values are larger in summer than in winter. This is very likely because small-scale dynamics
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are amplified in winter (Sasaki et al., 2014). Large λ2 values tend to over-smooth the SSH field in winter,
leading to higher residual errors. The seasonal difference in optimal λ2 values is particularly evident with
MSR, with values of ∼100 in winter and of ∼400 in summer. In Figure 4.4, the impact of applying the
optimal λ2 value for winter to summer (or viceversa) can be observed. RMSEs are not very sensitive to λ2
near the optimal values, contrary to MSRs. For instance, using the winter value in summer (or vice versa)
barely changes RMSEs but affects MSR more significantly. RMSEs for h and ∇h in the all errors scenario
are dominated by the correlated SWOT errors, which remain present after de-noising. Consistently with
the analysis of the previous section, those RMSEs are much higher in the all errors than in the KaRIn-only
scenario.

Table 4.2: Scores summary of boxcar, Gaussian and Derivatives Penalization (DP) de-noising methods for
the all errors dataset.

Season De-noising method RMSEr Minimum MSR
SSH |∇SSH| ∆SSH

JAS12

Boxcar 90.31 0.171 0.303 0.2024

Gaussian 90.10 0.156 0.264 0.1181

DP

1 87.60 0.159 0.281 0.1922

2 90.57 0.174 0.261 0.0307

3 90.22 0.156 0.265 0.1359

1 + 2 87.61 0.158 0.262 0.0328

2 + 3 90.22 0.156 0.261 0.0391

1 + 2 + 3 87.40 0.156 0.261 0.0395

FMA13

Boxcar 90.88 0.250 0.511 0.1274

Gaussian 90.76 0.221 0.435 0.0515

DP

1 89.89 0.237 0.484 0.1415

2 91.11 0.226 0.432 0.0314

3 90.96 0.226 0.432 0.0868

1 + 2 89.90 0.223 0.435 0.0160

2 + 3 91.00 0.226 0.430 0.0177

1 + 2 + 3 89.82 0.220 0.430 0.0203

JAS13

Boxcar 89.73 0.137 0.328 0.1792

Gaussian 89.18 0.126 0.289 0.1152

DP

1 84.30 0.131 0.310 0.1895

2 90.36 0.142 0.287 0.0254

3 89.66 0.127 0.290 0.1251

1 + 2 84.19 0.131 0.287 0.0237

2 + 3 89.66 0.127 0.286 0.0285

1 + 2 + 3 83.75 0.127 0.286 0.0267
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Finally, the optimal λ can be defined within a range that is a compromise between the RMSE and MSR
results, for each season. In Figure 4.4, horizontal bars indicate the range of λ2 values that provide scores
higher than the minimum by less than 5%. For each season, the overlap of all horizontal bars defines a
range of optimal λ2 values. Not detailed here, the results from the other (single or multiple-parameter)
configurations of variational de-noising also exhibit such overlaps, except for λ1. Based on this information
and on MSR scores, we propose λ2 intervals of [300–400] and [400–500] in summer for the KaRIn-only and
all errors cases, respectively. With λ2 in these intervals, MSR scores remain close to their minima. Note
that the two summer seasons’ results render slightly different optimal values, suggesting that the optimal
λ2 choice is inevitably subject to a part of subjectivity if no additional information on the ocean surface
dynamics is available. In winter, the optimal λ2 interval is [90–120]. Due to more energetic dynamics that
make the signal-to-noise ratio higher, the MSR optimal λ2 values in the KaRIn and all errors scenarios are
much closer to each other than in summer.
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Figure 4.4: Scores of RMSE and MSR of the λ2 method from just KaRIn (solid line) and all errors (dashed
line) for all 3 seasons: Horizontal bars in the RMSE plots show the range of λ2 values that provide scores
higher than the minimum RMSE by less than 5%.
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4.5 Retrieved SWOT Fields and Spatial Spectra

Figures 4.5 and 4.6 illustrate the de-noising with the λ2 method on SWOT passes and are presented in the
same format: h on the top panel, |∇h| on the central panel, and ∆h on the bottom panel. The first panel
shows, from left to right, the original, noise-free h field, h with KaRIn noise only, h with all sources of errors,
the de-noised KaRIn-only h, and the de-noised all errors h. The de-noised data have been obtained with
the λ2 method with parameter values chosen within the intervals identified in Section 4.4.3 and indicated on
each graph. The second and third panels show the corresponding |∇h| and ∆h, respectively. Figures 4.5a,b
exhibit summer time scenes with high and low correlated SWOT errors, respectively. Figures 4.6a,b are the
corresponding winter plots.

In all cases, de-noising leads to correct orders of magnitude for all fields and particularly for |∇h| and ∆h.
This is not the case for the conventional convolution-based methods (see Appendix 4.D). As expected and
already shown by Gómez-Navarro et al. (2018) and Chelton et al. (2019), the original SWOT data affected
by random, small-scale noise does not provide any useful information about SSH derivatives. The de-noising
method corrects this efficiently and makes it possible to identify the main structural characteristics of the
fields.

A strong spatially correlated error shows strong signatures on h, moderate signatures on |∇h|, and low
signatures on ∆h, except at the outer boundaries of the swath. The low signature on ∆h was already
observed in the RMSEs and is due to the specific spatial structure of the errors. Most components are linear
in the across-track direction. In the along-track direction, the impact is lower because for the wavelengths
impacted by the filtering, the error correlation is high (Figure 4.2). Therefore, the correlated errors have a
low effect on the second-order derivatives. The remaining noise at the outer boundaries is due to the finite
difference method used to compute the derivatives described in Appendix 4.A.

Although the resulting fields of ∆h fall in correct orders of magnitude and capture the structure of the
true fields at the scale of the swath, the kilometric-scale fronts and filaments are smoothed out by the de-
noising. Solving this issue would require the development of more sophisticated de-noising techniques or a
post-processing of the present result including, for example, some ocean dynamics through data assimilation
techniques. This will be a natural step forward, since the first motivation for developing a de-noising technique
constraining ∆h is precisely the combined assimilation of h and its first two derivatives, as stated in the
introduction.

Figure 4.7 shows Power Spectral Densities (PSD) of h. The rows distinguish the just KaRIn noise added
and the all errors cases. The columns are for summer 2012, winter 2013, and summer 2013. On each graph,
the spectra are shown for the noise-free data (SSH_model), the noisy data (SSH_obs), the de-noised data
(SSH_obs_f), the pre-de-noising noise (noise), and post-de-noising noise (noise_f). The de-noised data have
been obtained with the same λ2 values as in Figures 4.5 and 4.6. Each spectra has an envelope showing PSD
values between the 5th and 95th percentile, representing the PSD variability. This envelope reduces with the
PSD values and with wavelength. At small scales, SSH_obs_f’s envelope is narrower than SSH_model’s,
very likely because a fine-scale part of the physical signal is removed along with the noise.

From this spectral viewpoint, the de-noised data matches the noise-free data well at all scales down to ∼15
km. In the noisy data, the noise amplitude approaches the signal amplitude at wavelengths of 50 km in
summer and 40 km in winter and dominates the signal at shorter wavelengths. This is efficiently corrected
by the de-noising. The process seems more efficient in winter than in summer, probably because of higher
PSDs in winter related to more intense ocean surface processes.

Following the definition proposed by Wang et al. (2019a) for the spatial scale resolved by SWOT, the de-
noising reduces this scale by a factor of 2, leading to resolved scales between 20 and 30 km approximately.
Wang et al. (2019a) define the spatial scale resolved by SWOT by the wavelength at which the SWOT noise
spectrum intersects the spectrum of the true signal (SSH_model here). Figure 4.7 indicates resolved scales
of 50, 40, and 50 km in the JAS12, FMA13, and JAS13 scenarios, respectively, in both just KaRIn and all
errors cases. After de-noising, the resolved scales are reduced to approximately 25, 20, and 25 km in the
KaRIn-only case and to 30, 20, and 30 km in the all errors case. Even below these scales, the noise left is
very low and within the variability of SSH_model (red envelope in Figure 4.7). At wavelengths near 10 km,
the noise is reduced by 104 in the JAS scenarios and 103 in the FMA scenario.
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(a)

(b)

Figure 4.5: Fields of pass 09, cycle 2 (a) and 6 (b) of the JAS12 dataset compared to the fields filtered with
λ2 = 355 (455) for SSH_obs_K_f (SSH_obs_f). From top to bottom: SSH, gradient of SSH and Laplacian
of SSH. From left to right: model interpolated to SWOT grid (SSH_model), SSH_model + KaRIn noise
(SSH_obs_K), SSH_model + all errors (SSH_obs), filtered SSH_obs_K (SSH_obs_K_f), and filtered
SSH_obs (SSH_obs_f).
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(a)

(b)

Figure 4.6: Fields of pass 09, cycle 2 (a) and 6 (b) of the FMA13 dataset compared to the fields filtered
both with λ2 = 105. From top to bottom: SSH, gradient of SSH and Laplacian of SSH. From left to right:
model interpolated to SWOT grid (SSH_model), SSH_model + KaRIn noise (SSH_obs_K), SSH_model
+ all errors (SSH_obs), filtered SSH_obs_K (SSH_obs_K_f), and filtered SSH_obs (SSH_obs_f).
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Figure 4.7: Spatial spectra of the model interpolated data (SSH_model) are shown in red, and that of
the pseudo-SWOT data (SSH_obs) is in black. Blue lines indicate the filtered pseudo-SWOT spectra
(SSH_obs_f) obtained with the same λ2 as in Figures 4.5 and 4.6. The dashed lines are the noise spectra of
SSH_obs (noise) and SSH_obs_f (noise_f). Shaded areas show values between the 5th and 95th percentiles,
showing the Power Spectral Density (PSD) variability. Top row shows pseudo-SWOT data with just KaRIn
noise added and bottom row shows all errors. Columns represent the different seasonal datasets from left to
right: summer 2012 (JAS12), winter 2013 (FMA13), and summer 2013 (JAS13).

4.6 Discussion and Conclusions

Several objectives of the SWOT mission will be met only if the random, small-scale noise and errors affecting
the data can be efficiently removed. Small-scale noise, in particular the spatially uncorrelated KaRIn instru-
ment noise, prevents the computation of horizontal SSH derivatives. This limits both the direct estimation
of relevant oceanic variables on the SWOT swath and the use of SWOT data to build gridded products of
altimetry.

To remove the small-scale SWOT noise, we propose a de-noising method that performs better than con-
ventional convolution-based methods both in terms of RMSE (physical space diagnostic) and spectra. The
method, which originates from image processing applications, is based on the regularization of the SWOT
SSH data by the penalization of its derivatives of orders 1 to 3 in a variational, optimization framework. This
approach is chosen because it is in close connection with the oceanic variables of interest, namely geostrophic
velocity and vorticity. After a thorough evaluation based on a large number of simulated SWOT scenes, the
variational de-noising method exhibits better performance than standard, boxcar, and Gaussian filters. We
find the method performs best when only the second-order derivative (λ2) is considered in the cost func-
tion. Only one parameter needs to be set, which makes the parameterization of the method as simple as a
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convolution-based method. We find that this parameter can be set smaller or larger in function of the charac-
teristics of our field: the higher the intensity of the signal, the lower the derivatives penalization needed and
thus the value of the parameter (as we find in the FMA13 λ2 values in contrast to JAS12). Also, if the noise
level in our fields is higher (all errors scenario), the more we need to penalize and the larger the parameter
value. In other words, the higher the signal-to-noise ratio (SNR), the less we need to penalize our field, and
so the smaller λ2.

The method will require further investigations before operational applications, since we have focused our
attention to one particular region (the western Mediterranean Sea), with an ocean circulation free of tidal
forcing and a prescribed Significant Wave Height (SWH) of 2 m. The present study shows that, in one single
region, the range of optimal parameters changes with the season due to seasonal changes in the ocean surface
dynamics. Similar conclusions are certainly expected with respect to regional and dynamical regimes. The
NATL60 simulation used here does not include tidal forcing. The behavior and efficiency of the de-noising
method may be questioned in the presence of tidal motions and particularly tide-generated internal waves.
Finally, the SWH prescribed in the SWOT simulator to compute the KaRIn error amplitude is prescribed to 2
m. As the SWH varies geographically and according to the atmospheric regime, KaRIn errors smaller or larger
than those computed for the present study with the SWOT simulator can be expected (Wang et al., 2019a).
The first two aspects (geographic variations of ocean dynamics and internal tides) are presently under study
using data from several high-resolution simulations that include tidal forcing: the HYbrid Coordinate Ocean
Model (HYCOM) (Chassignet et al., 2009), the Massachusetts Institute of Technology general circulation
model (MITgcm) (Marshall et al., 1997), and the recent extended NATL60 (eNATL60) simulation (not yet
published). This greater range of scenarios will help provide a more generic set of λ2s to use in function of
the ocean dynamics.

The method should also benefit from additional developments to reconstruct more realistic fields of rela-
tive vorticity on the SWOT swath and could ultimately lead to the estimation of vertical velocities. The
de-noising process inevitably smooths out the very fine-scale, elongated structures usually visible in surface
relative vorticity fields (Sasaki et al., 2014). Restoring these structures should be investigated, for example
using appropriate image processing techniques (Deledalle et al., 2009; Yan et al., 2013) or methods already de-
veloped in the oceanographic community such as Lagrangian advection (Rogé et al., 2015; Berti and Lapeyre,
2014). Dynamical models could also be used in a data assimilation framework.

To conclude, this de-noising method opens the way to several relevant applications using the SWOT data,
possibly including SWOT data validation, assimilation, and SSH mapping. We mention SWOT data vali-
dation due to the inpainting capability of the variational de-noising method, i.e., the fact that the process
naturally fills the 20-km gap of the SWOT swath (here the gap is inpainted and emptied again after de-noising
to restore SWOT data in the original shape). In other words, the SWOT data are interpolated on the track of
the SWOT nadir altimeter. This is obviously relevant for data comparison and validation. De-noising is also
interesting to preprocess the SWOT data before their assimilation in ocean circulation models. This actually
was a primary motivation for the method development. Computing spatial derivatives of the SWOT data
allows the implementation of data assimilation methods that account for SWOT error correlations (Ruggiero
et al., 2016; Yaremchuk et al., 2018). Alternatively, the relative vorticity derived from the de-noising can be
directly assimilated. This option has not been explored yet to our knowledge. This de-noising method can
also be combined with other techniques to improve the assimilation. We particularly think about combining
it with the technique recently developed by Metref et al. (2019) to significantly reduce the impact of the
geometrically structured, highly correlated SWOT errors (roll, phase, timing, and baseline errors). Finally,
this study has been done using the noise and errors simulated by the SWOT simulator version 2.21, and
these will very likely be different. We anticipate that the method is simple and flexible enough to be easily
adapted to more realistic noise and errors.
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4.A Calculation of the Laplacian

Laplacian are computed using finite differences, following the method proposed by Reference Chambolle
(2004). We note h, the image of size Nx × Ny. In a first step, the two components of the gradient are
computed as follows (i = 1, ..., Nx; j = 1, ..., Ny):

(∇h)xi,j = hi+1,j − hi,j if i < Nx

= 0 if i = Nx

(∇h)yi,j = hi,j+1 − hi,j if j < Ny

= 0 if j = Ny

In a second step, Laplacian is computed as the divergence of the gradient. Divergence of vector a = (ax, ay)
is computed as follows:

div(a) = bxi,j + byi,j

where:

bxi,j =

axi,j − axi−1,j if 1 < i < Nx

axi,j if i = 1

−axi−1,j if i = Nx

and

byi,j =

ayi,j − a
y
i,j−1 if 1 < j < Ny

ayi,j if j = 1

−ayi,j−1 if j = Ny

The scheme implemented at the boundaries preserves the image size, contrary to what a standard five-point
stencil Laplacian operator would do. Preservation of image size is essential in the gradient descent iterations
to end up with a final image of size similar to the initial image.

4.B FISTA

To speed up the gradient descent iterations, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
algorithm (Beck and Teboulle, 2009) is implemented. Setting t0 = 1 and introducing an auxiliary variable y
initialized as y0 = h0, the iterative algorithm of Equation (5.3) becomes the following :

hk+1 = hk + τ
(
m ◦ (hobs − yk) + λ1∆yk − λ2∆∆yk + λ3∆∆∆yk

)
tk+1 = (1 +

√
1 + 4t2k)/2

yk+1 = hk+1 +
tk − 1

tk+1
(hk+1 − hk)

(4.7)
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4.C Calculation of Spatial Spectra

The spatial spectra used as one of the scores for the de-noising parameterizations are calculated as follows:

1. Apply a linear detrending;

2. Remove the spatial mean;

3. Apply a Tukey window with a 0.5 fraction of the window inside the cosine tapered region;

4. Compute the 1D spatial Fourier power spectra along-track for each SSH swath across-track dimension.

4.D Qualitative Figures of Different Methods

To better illustrate the advantage of our de-noising approach, we show in Figures 4.8 and 4.9 the fields
provided by the boxcar and Gaussian methods, corresponding to the λ2 experiments presented in Figures 4.5
and 4.6. We only show the all errors scenario. Boxcar derivatives fields are very noisy, as it is specially visible
for the Laplacian fields. With the Gaussian method, the Laplacian is less noisy than with our method, but
the gradient is over-smoothed.
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(a)

(b)

Figure 4.8: Fields of pass 09, cycle 2 (a) and 6 (b) of the JAS12 all errors dataset. From left to right: compar-
ison between the SSH_model, SSH_obs, SSH_obs filtered with our approach and λ2 = 455 (SSH_obs_f),
with the optimal boxcar (SSH_obs_f_bc), and with the optimal Gaussian (SSH_obs_f_ga) methods. From
top to bottom: SSH, gradient of SSH and Laplacian of SSH.
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(a)

(b)

Figure 4.9: Fields of pass 09, cycle 2 (a) and 6 (b) of the FMA13 all errors dataset. From left to right: com-
parison between the SSH_model, SSH_obs, SSH_obs filtered with our approach and λ2 = 105 (SSH_obs_f),
with the optimal boxcar (SSH_obs_f_bc), and with the optimal Gaussian (SSH_obs_f_ga) methods. From
top to bottom: SSH, gradient of SSH and Laplacian of SSH.
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4.E Softwares

• Standard image techniques: For both boxcar and Gaussian kernel python’s scipy.ndimage module was
used with the following specific functions:

– Boxcar filter: scipy.ndimage.generic_filter()

– Gaussian: scipy.ndimage.gaussian()

• Variational regularization method:

https://github.com/LauraGomezNavarro/SWOTmodule
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What will be the finest resolved scale of
SWOT SSH data under different
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5.1 Introduction

In this chapter, we investigate the finest spatial scale that SWOT could resolve after de-noising, in several
regions, seasons and using different OGCMs. In Chapter 4, a method is found to mitigate the impact of
SWOT instrumental noise and errors, but large uncertainties remain due to the incomplete understanding of
the impact of fast unbalanced motions (e.g. internal gravity waves) on SSH signals, and therefore the impact
on the performance of the de-noising algorithm. The surface signature of these oceanic features appears as
we move down to small spatial wavelengths, at which previous altimeter missions did not resolve with enough
resolution to detect them. Previous chapters show how after applying image de-noising techniques, in some
cases, SWOT can resolve spatial scales down to the expected 15 km wavelength (Fu and Ubelmann, 2014),
whilst preserving the SSH gradients present. This is only tested for the western Mediterranean Sea, so this
chapter focuses on different regions and seasons in order to document the variety of regimes that SWOT
will sample. Like in the previous chapter, pseudo-SWOT observations are studied for the 3-months long
fast-sampling phase in which the satellite’s repeat-cycle will be of one day, but with less passes per cycle.
In those areas where passes are present, Calibration and Validation (Cal/Val) of the SWOT data will take
place (d’Ovidio et al., 2019).

The satellite mission’s objective is to resolve wavelengths down to 15 km. Fu and Ubelmann (2014), obtained
this resolved wavelength by extrapolating a Jason-1 power spectra and seeing where it crossed the baseline
requirement defined by the SWOT project team (see fig. 5.1). At this wavelength, one can say that the SSH
signal is of the same order as the noise signal. The SWOT spatial resolved wavelength (Ls) can be defined as
the wavelength at which the signal and the noise spatial power spectral densities are of the same magnitude
(PSD(SSH) ∼ PSD(noise)). This has been defined as such in previous studies such as Fu and Ubelmann
(2014); Dufau et al. (2016); Wang et al. (2019a).

Figure 5.1: The black curve is the wavenumber spectrum of SSH from a Jason-1 descending pass from the
central North Pacific to the southeastern Pacific based on 7 years’ worth of altimeter data. The black dashed
lines represent two power laws (where f denotes wavenumber). The red line represents the SSH baseline
accuracy requirement for the SWOT mission. The blue line represents the threshold requirement, which
differs from the baseline in the noise performance. The intersection of the accuracy requirement with the
SSH signal spectrum represents the expected wavelength resolution of the SWOT observations. (From Fu
and Ubelmann (2014))
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Ls has been previously explored globally by Dufau et al. (2016) and Wang et al. (2019a). They found that
Ls will vary geographically and seasonally. Ls depends on the SSH spatial spectral level, which as found by
Xu and Fu (2012), has a high regional variability. This reflects then on the geographical variability of Ls
from 15 km at low latitudes to around 30 - 45 km at mid and high latitudes (fig. 5.2 (Wang et al., 2019a)).
As observed in fig. 5.2, its seasonal variability depends on the region, being higher at high latitudes than low
latitudes.

The objective of Dufau et al. (2016) was to investigate the mesoscale resolution capabilities of present altime-
ters and SWOT from SSH spectral slopes. They define this resolution as the intersection of the satellite’s
error level and the mesoscale band spectral slope. To do this, they assume linearity of the spectral slope,
which breaks down in regions where there are high internal tide or other high-frequency signals. For the
SWOT error level they use the values from Peral et al. (2015) and they take into account seasonal variations
like the ones due to the Sea Wave Height (SWH). They derive SWH from Jason-2 over the March to October
2013 period. To obtain the SWOT SSH spectral slope, they assume that current altimeters’ SSH spectral
slopes are realistic, and use Jason-2’s spectra after noise removal. Lastly, they obtain a mean global map
of Ls, which is a mean from March to October. They find that compared to present altimeters, SWOT
will be able to provide better observations of the meso- and submesoscale processes, specially at the western
boundary currents.

Wang et al. (2019a) do take into account the non-linearity of the SWOT spectral SSH slope due to the
presence of IGWs. They generate noise-free SWOT data from the MITgcm48 LLC4320 simulation, and
compare their spectra to the KaRIn noise’s. This is the only SWOT error they consider, but like Dufau et al.
(2016), they do not use a unique noise level, but obtain the KaRIn noise level in function of each region’s
SWH (more realistically derived from a SWH climatology by Queffeulou (2004). They obtain global maps of
Ls values for the Winter and Summer months by looking at where the pseudo-SWOT noise-free data spectra
crosses that of the KaRIn noise. They also look at the monthly and latitudinal variability of Ls (fig. 5.2)
and find that both eddies and IGWs affect Ls.

Figure 5.2: Longitudinal median Ls [km] as a function of latitude (x axis) and month of year (colour). (From
Wang et al. (2019a)).

Previous studies like Torres et al. (2018) have found that Internal Gravity Waves (IGWs) can have a significant
impact on SSH, and that this a major challenge for SWOT. The presence of IGWs can be evaluated using
the transition scale (Lt), defined as the wavelength at which the SSH signal goes from being dominated by
balanced motions to unbalanced wave motions (Qiu et al., 2017). If Lt is larger than Ls, it means SWOT could
observe IGWs (Wang et al., 2019a). This brings insight on which regions the disentanglement of the balanced
and unbalanced motions (Torres et al., 2018) could be necessary. It is important because they have different
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impacts on the ocean KE budget (Klein et al., 2019), and by separating them, the shear production from
SWOT data can be calculated to better understand KE transfers. Qiu et al. (2018) argue that removing the
signal of IGWs, like internal tides, is crucial to better detect and understand submesoscale balanced motions.
Moreover, it is important to know if Lt is greater than Ls as geostrophy is no longer valid below it, which
is relevant when deriving variables from SSH, like velocity. (Torres et al., 2019) More complex formulations
need to be implemented like for example quasi-geostrophy or a wave-averaged geostrophic balance (Kafiabad
et al., 2020). The relationship between Ls and Lt depends not only on the SSH variance, but also on the
SWOT noise and error present, specially at small scales. However, de-noising of SWOT data has not been
considered in previous studies which compare Ls and Lt (Qiu et al. (2017, 2018); Wang et al. (2019a)).

The ocean submesoscale remains quite unknown due to the resolution and sampling limitations of oceano-
graphic data. Recent advances in in situ and satellite measurements have allowed to improve the data’s
resolution, but in many cases the temporal or spatial sampling is not enough. For now, the source of data
that can provide the best submesoscale information both in terms of resolution and sampling are Ocean Gen-
eral Circulation Models (OGCMs). This is key as OGCMs are necessary to generate pseudo-SWOT data,
and because, as found in previous studies (e.g. (Gómez-Navarro et al., 2018; Wang et al., 2019a; Gómez-
Navarro et al., 2020)), the smallest resolved wavelength by SWOT will highly depend on the SNR at scales
below approximately 50 - 60 km. Unfortunately, a large uncertainty in SWOT Ls exists because of OGCMs
discrepancies at these small spatial scales. Savage et al. (2017a); Ajayi et al. (2020) found how different
OGCMs were capable to resolve the submesoscales, but that discrepancies existed between them, specially at
the submesoscale. To account for the uncertainty of the SSH variance at small wavelengths, three different
high-resolution OGCMs including tidal forcing are used here which provide a range of scenarios. The models
are presented in Section 5.3, where a brief comparison is made to characterize them.

In this context, this study’s motivation is to investigate SWOT’s smallest resolved wavelength (Ls). Fu
and Ubelmann (2014); Dufau et al. (2016); Wang et al. (2019a) used extrapolated SSH spectra from current
altimeters or model SSH outputs. Except Wang et al. (2019a), they did not generate pseudo-SWOT data
and none considered any de-noising algorithms. This study revisits the estimation of Ls, focusing on:

• including all the known sources of errors (from SWOT simulator),

• the use of most recent noise-filtering algorithm for SWOT data explored in previous chapters,

• the uncertainty associated to the choice of a specific model.

5.2 Study regions

Four study regions are chosen. The two main criteria for selecting them are:

• Range of oceanic dynamical regimes:

As Ls depends on the SSH spectral level, regions with contrasted dynamical regimes need to be chosen. One
of the dynamics considered is if it is a high or low eddying region. Then, as the presence of IGWs have a
high impact on the SSH spectral energy levels, specially at small scales, regions with a high and low IGWs
signal are selected. To decide which regions present a high IGWs signal, the results found by Ray and Zaron
(2016); Savage et al. (2017b) are used. In fig. 5.3 (adapted from Savage et al. (2017b)), the black boxes show
some of the regions with a high presence of IGWs. These are near the Azores Islands and Cape Verde Islands
in the North Atlantic Ocean, and near the French Polynesian Islands in the South Pacific Ocean.
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Figure 5.3: Global steric SSH variance (cm2) in the semidiurnal band (frequencies 1.86-2.05 cpd). Black
boxes show some of the regions with a high internal waves signal (adapted from Savage et al. (2017b)).

• Fast-sampling (Cal/Val) phase cross-overs:

In this study, the focus is on the fast-sampling phase, so another criterion for the selection of the study
regions is the presence of a fast-sampling phase cross-over. The focus is on this phase as, in addition to
helping prepare for the Cal/Val phase and the in situ campaigns being prepared for it (d’Ovidio et al., 2019),
its 1 day repeat-cycle allows to better capture IGWs’ signal (if present). The phase’s nadir tracks are shown
in fig. 5.4 in black.

Figure 5.4: Black dotted lines show fast-sampling phase nadir tracks. Red boxes are the selected study
regions, from west to east: PAC, GST, AZO and WMED.
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Considering the above stated points, the region shown by red boxes in fig. 5.4 are selected. These regions
are:

• Western Mediterranean (WMED): This region has a low presence of IGWs (fig. 5.3) and low energetics
(in comparison to other regions like the Gulf Stream). It includes the presence of a cross-over site. In
addition, it provides continuity to previous chapters of this PhD.

• Gulf Stream (GST): Although the selected region is a bit east from the Gulf Stream jet itself, the
cross-over region selected (fig. 5.4) is on its high-eddying region. It is region with a medium presence
of IGWs as observed in fig. 5.3.

• Azores (AZO): This region has a lower signal of IGWs than the south Pacific region, but has one of
the highest signals in the North Atlantic. It has lower energetics than the Gulf Stream region (eddy
kinetic energy-wise). Moreover, the Azores region is selected instead of the Cape Verde region shown
in fig. 5.3, as it includes a fast-sampling phase cross-over (fig. 5.4).

• South Pacific (PAC): This is one of the regions shown in fig. 5.3 with the highest signal of IGWs. In
order to capture their signal as much as possible, the selected box is a bit north from the exact SWOT
cross-over (fig. 5.4).

5.3 Pseudo-SWOT data generation from OGCMs

5.3.1 OGCMs description

The dataset of this study consists of hourly SSH outputs of three tide-resolving OGCMs available to the
SWOT Science Team. They are used to generate pseudo-SWOT data (via the SWOT simulator (version
3; Gaultier et al. (2016)). Three different OGCMs are used because they provide a range of scenarios to
account for the uncertainty of the SSH variance at small wavelengths. Two of them are global simulations
(HYCOM25 and MITgcm48) and one basin scale (eNATL60). eNATL60, in addition to providing continuity
to previous studies (NATL60 used in Gómez-Navarro et al. (2020)), it has the highest spatial resolution, but
is not global. HYCOM25 and MITgcm48 both are global and include tidal forcing, but one does better at
lower frequencies (HYCOM25) and the other at higher frequencies (MITgcm48). MITgcm48 simulates more
energetic super-tidal motions than HYCOM25 (Savage et al., 2017a), but can produce too much energy at
low frequencies. Table 5.1 below summarizes some of the main characteristics of these OGCMs (for more
details on these OGCMs see Section 2.1).

Table 5.1: OGCMs main characteristics.

Model eNATL60 HYCOM25 MITgcm48

Domain N. Atlantic Global Gobal

Time-span mid-June 2012 to
October 2013

January to
December 2014

September 2011 to
November 2012

Horizontal grid 1/60◦ :
0.9km - 1.6km

1/25◦ :
∼ 4 km

1/48◦ :
0.75 - 2.3 km

Vertical coord. Z partial cells
Hybrid

(Z, isopycnal
and sigma)

Z-levels

Vertical grid 300 levels :
1m - 50m 41 levels 90 levels :

1m - 480m
Tidal forcing Yes Yes Yes

Table 5.1 shows how the three OGCMs have different numerics, like horizontal and vertical resolutions. They
also have different integration periods and spin-up strategies. Nevertheless, they are all a priori able to
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simulate scales down to 20 km adequately. A variety of plausible levels of SSH variance is then provided with
these 3 OGCMs at the study sites.

5.3.2 OGCMs comparison: RMS and spatial spectra

For each region, the Winter and Summer months are explored. A 3 month period is chosen, the expected
duration of the fast-sampling phase. As in Wang et al. (2019), February, March and April (FMA) months
and August, September and October (ASO) are selected respectively for the northern hemisphere Winter
and Summer. The same 3 months periods were chosen for the 3 simulations, but the year is not the same, as
they all have different time-spans (see table 2.1). Although the simulations do not include data assimilation,
and as so do not really represent the year the simulation is said to run for, it is important to note that the
forcings (e.g. atmospheric forcing) will have been chosen corresponding to that year, and this could affect
the larger mesoscale conditions. After having decided the regions and temporal periods for this study, hourly
SSH data is extracted from each OGCM for the red-bordered boxes shown in fig. 5.4, for the FMA and ASO
months. This in total renders 22 scenarios (recall the PAC region is not available for eNATL60).

Before generating the pseudo-SWOT data, a minimum exploration and comparison of the OGCMs’ outputs
in the different scenarios is done. For this a land-free (for simplicity) subregion of the red boxes shown in
fig. 5.4 is used. For all regions except WMED it is chosen to be 5◦ by 5◦. Limited by the presence of land,
the WMED region is 2◦ by 2◦. The subregions are chosen so that the SWOT fast-sampling phase passes
fall within them as much as possible. Root Mean Square (RMS) and spatial spectra are calculated for each
scenario. This allows to compare the energetics and its variability between regions, seasons and OGCMs.

Then the RMS for N hourly SSH snapshots is calculated as:

RMS =

√√√√ 1

N

N∑
i=1

(SLA− SLA)2 (5.1)

; where SLA (Sea Level Anomaly) is SSH − SSH, being SSH the area-weighted spatial average for each
snapshot.

The RMS FMA and ASO months results are shown in figures 5.5 and 5.6, respectively. They show the
range of dynamics between the four selected regions, and the differences between seasons and OGCMs. The
WMED region presents the lowest RMS values and GST the highest due to intense eddying activity, except
in Summer for PAC HYCOM25 and AZO MITgcm48. In this case, PAC and AZO are the regions with the
highest RMS due to the strong presence of IGWs. The OGCMs RMS differences in terms of magnitude are
low during FMA in all regions except AZO. In terms of structure positions, the AZO region is the only one
with similar RMS between the three OGCMs, being lowest at the centre of the subregion and increasing
towards the borders. In the ASO months, there is higher OGCM differences in each region, both in RMS
magnitude and structure. At WMED ASO, MITgcm48 is the least energetic, and at GST ASO, eNATL60
has the highest RMS values. At AZO ASO, MITgcm48 RMS has a higher magnitude than the other OGCMs.
The difference between MITgcm48 and the other OGCMS is higher in ASO than FMA, which is when the
IGWs signal is expected to be larger. The overenergetics found by Savage et al. (2017a) in MITgcm48 shows
here. Finally, at PAC ASO, HYCOM25 shows higher values than MITgcm48. The overenergetics found
in AZO due to IGWs doesn’t show in this region, although it has a high IGWs signal too (fig. 5.3). The
RMS confirm some OGCMs characteristics stated in Section 5.3.1 and show that in the presence of IGWs,
larger differences amongst OGCMs are observed. The RMS differences give insight on which scenarios we
can expect to have higher or lower Ls. Nevertheless, these differences could be affected by the SWOT spatial
sampling. Red boxes in figures 5.5 and 5.6 show the fast-sampling phase passes, and for example in the FMA
GST scenario, the HYCOM25 SWOT passes fall less within the high RMS areas than for the other OGCMs.
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Figure 5.5: RMS [m] for the FMA months. Red boxes show the fast-sampling phase pass subregions. The
mean RMS is shown at the bottom right of each subplot.
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Figure 5.6: RMS [m] for the ASO months. Red boxes show the fast-sampling phase pass subregions. The
mean RMS is shown at the bottom right of each subplot.

Spatial spectra of the OGCM SSH hourly outputs are calculated for each scenario. Like RMS, this allows to
have a preliminary idea of the dynamics of each scenario and the differences between the OGCMs. Firstly,
2D spatial spectra of the regions shown in fig. 5.4 are obtained and compared to the estimated noise level
as specified by Esteban-Fernandez (2017). The specific noise level used here corresponds to a KaRIn noise
level for a 2 m SWH following Wang et al. (2019a). In fig. 5.7, two scenarios are shown: GST FMA and
AZO ASO. The first one being a scenario with high-energy, eddying dynamics and the second with a high
presence of IGWs. Fig. 5.7 shows that for both scenarios, at large-scales some similarities exist between the
models, showing very similar spectral slopes. Below wavelengths of about 100 km, all show different SSH
variance levels. This reflects the need of using these 3 different OGCMs. The AZO ASO scenario was also
chosen because it is one of the expected regions where the SSH signal diverges between the models. The SSH
field is specially different in MITgcm48 due to the higher IGWs signal (at the supertidal band) as explained
by Savage et al. (2017a). Figure 5.7 shows how at all wavelengths, MITgcm48 shows a higher energy level.
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Moreover, in the AZO ASO spectra, although the energy levels differ between OGCMs, energy peaks are
very well aligned (i.e., found at the same wavelengths). These peaks can be observed at 120 km, 70 and
30 km wavelengths, and are probably due to IGWs. In the GST FMA spectra, at large-scales, MITgcm48
and eNATL60 are similar, then they diverge, specially below 70 km. HYCOM25 shows a lower signal at all
wavelengths probably due to its horizontal resolution, which is about half that of the other two OGCMs. (It
is important to note that the spectral results should only be considered below 300 km). Lastly, fig. 5.7 shows
the uncertainty of the SSH variance at small wavelengths. As one can see, this consequently has an effect on
the wavelength at at which the SWOT noise levels becomes larger than the SSH variance level (PSD). This
justifies the importance of using different OGCMs to evaluate Ls.

Figure 5.7: Comparison of OGCMs’ 2D spatial Power Spectral Densities (PSD) for two scenarios. Left: Gulf
Stream in Winter (GST FMA). Right: Azores in Summer (AZO ASO). The black line shows the SWOT
KaRIn noise level for a Significant Wave Height (SWH) of 2 m from Wang et al. (2019a).

Secondly, the OGCMs’ spatial spectra are compared to nadir altimeter data. OGCMs render different energy
levels, specially at small wavelengths. At present it is difficult to validate spatial SSH spectra at small
wavelengths, but the OGCM spectra can be compared with the satellite altimeter spectra. The models’
spectra are compared to spatial spectra from SARAL-Altika and Sentinel3. Fig. 5.8 shows the results of
SARAL-Altika data compared to eNATL60 SSH interpolated in space and time to the altimeter’s tracks for
the same scenarios as fig. 5.7. Down till where the altimeter noise starts to become significant, i.e., when
the spectra flattens, both spectra are very similar. Lastly, fig. 5.8 AZO ASO eNATL60 spectrum doesn’t
capture the IGWs energy peaks as clearly as in fig. 5.7. This shows how the satellite sampling strategies are
important in adequately capturing these phenomena. Moreover, due to these differences in spatial coverage
of the two-dimensional model outputs and the altimeter tracks’ one-dimensional data, and its effect on the
spectral calculations, it is relevant to show figures 5.7 and 5.8 separately.
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Figure 5.8: Power Spectral Densities (PSD) of SARAL-Altika altimeter (sat.) compared to eNATL60 inter-
polated to the satellite’s tracks (eNATL60 sat.). Left: Gulf Stream (GST) region for Winter (FMA) months.
Right: Azores (AZO) region for Summer (ASO) months.

5.3.3 Pseudo-SWOT data

The SWOT simulator for Ocean Science (version 3; Gaultier et al. (2015)) is used to generate pseudo-SWOT
data in the 22 scenarios. The SWOT swath sections analyzed are shown in red in figures 5.5 and 5.6, and
have a 2 km gridsize. The SWOT simulator renders two SSH output variables: the model data interpolated
onto the SWOT grid (SSH_model) and with added noise (SSH_obs). The residual noise can be obtained by
calculating the difference from these two fields. An initial SWOT resolved spatial scale (Lsi) can be obtained
from these. The 1D spatial spectra (averaged across-track and in time for each scenario) of SSH_model
is compared to the spectra of the residual noise of SSH_obs (noise_o). These spectra are shown in fig.
5.9. (Please note that the western Mediterranean region is 2◦ by 2◦ while the rest are 5◦ by 5◦, due to the
presence of land). The different OGCMs present different SSH_model spectra, with different energy levels,
and sometimes different slopes. Like in fig. 5.7, within each scenario the OGCMs’ spectra specially differ at
small wavelengths. This again shows the importance of using different OGCMs in this study. Indeed, one
particular model may get closer to observations in one specific region, but it is unclear at this stage whether
one model stands out compared to observations in all cases. Although random realizations of the noise are
used to generate SWOT noise and errors in the SWOT simulator, this results in very similar residual noise
spectra at all wavelengths for all OGCMs and scenarios. As between figures 5.7 and 5.8, differences between
fig. 5.7 and the GST FMA and AZO ASO subplots in fig. 5.9 exist. Specially in the AZO ASO scenario,
where the IGWs peaks are less pronounced than in fig. 5.7. The SWOT fast-sampling phase sampling also
has an effect on spectrally capturing the ocean dynamics.

109



Chapter 5 5.3. PSEUDO-SWOT DATA GENERATION FROM OGCMS

Figure 5.9: Spatial spectra comparison of eNATL60 (red), HYCOM25 (blue) and MITgcm48 (black) for each
region and season. In each subplot, the SSH_model (noise and error free pseudo-SWOT data), SSH_obs
(pseudo-SWOT data) and noise_o (SSH_obs residual noise) spectra corresponding to each model are shown.
Spectra shown are the mean of all passes and cycles of each scenario. Top to bottom: western Mediterranean
(WMED) 2◦ by 2◦ subregion size (2x2), Azores (AZO) 5◦ by 5◦ (5x5), Gulf Stream (GST) 5x5 and Pacific
(PAC) 5x5. The regions are shown in fig. 5.5. FMA months are shown on the left column and ASO on the
right.
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5.4 De-noising of pseudo-SWOT data

5.4.1 Derivatives penalization de-noising method

In this study, the derivatives penalization de-noising method presented in Chapter 4 (Gómez-Navarro et al.,
2020) is used. The objective of this method is to remove the small scale, uncorrelated SWOT noise and
error components. Few other techniques have been applied to remove this small scale noise. Chelton et al.
(2019) and Gómez-Navarro et al. (2018) apply a convolutional kernel to smooth the signal and Pujol et al.
(2012); Gaultier et al. (2016); Qiu et al. (2016) use optimal interpolation. These manage to remove the
small scale noise, but remove part of the signal too, which specially affects the retrieved fields of current
velocity and vorticity (derived from SSH). A first implementation of the derivatives penalization method on
fast-sampling phase pseudo-SWOT data in the western Mediterranean (from NATL60 SSH daily outputs) by
Gómez-Navarro et al. (2020), allowed the retrieval of the SSH spectral signal down to the mission’s objective,
15 km. To efficiently remove the SWOT uncorrelated noise and error components and achieve these results,
a second order penalization (a Laplacian regularization) of an image, h (SWOT SSH field here) is applied by
minimizing the cost function. The cost function (J(h)) is expressed as:

J(h) =
1

2
‖h− hobs‖2 +

λ2
2
‖∆h‖2 (5.2)

This is implemented iteratively as:

hk+1 = hk + τ(hobs − hk + λ2∆∆hk) (5.3)

; where τ = 1/(1 + 64λ2) to guarantee the stability of the iterations.

This technique is parameterized by setting λ2 and the number of iterations (by a maximum number of
iterations or a convergence criterion). The latter has been previously parameterized by Gómez-Navarro et al.
(2020), so only λ2 is left to parameterize. Unfortunately, from equation 5.2 only the order of magnitude of
λ2 can be estimated. Moreover, in practice the optimal λ2 parameterization will vary with SWOT’s Signal
to Noise Ratio (SNR). Therefore, the optimal values found in Gómez-Navarro et al. (2020) cannot be used
here, even for the western Mediterranean region, as the signal and noise levels are different. The signal differs
because a simulation with tidal forcing is used here and the noise level differs due to different SWOT grid sizes.
As explained by Chelton (2019), the noise level increases as the SWOT grid decreases in size. Nevertheless,
the optimal λ2 values found in Gómez-Navarro et al. (2020) are used to choose an initial range of λ2 values to
test. The same procedure is then used to find the optimal λ2 value for each scenario. It consists of comparing
the filtered pseudo-SWOT data with the noise-free SWOT data generated by the SWOT simulator by using
Root Mean Squared Error (RMSE) on SSH, its gradient and Laplacian; and SSH spatial spectra. RMSEs
give information on the correct representation of the oceanographic structures present, whilst SSH spatial
spectra give information on the energy conservation and wavelengths resolved. It was found that when all
errors were included in the simulations, only the RMSE on the Laplacian of SSH was of use to parametrize
the optimal λ2, given the small impact of the correlated errors on the Laplacian. Consequently, two scores
can be used to determine the optimal λ2: RMSE on the Laplacian of SSH and the Mean Spectral Ratio
(MSR), based on SSH spatial spectra. As the main interest here is Ls, which is calculated from SSH spatial
spectra, the MSR diagnostic is the score which will be used to find the optimal λ2. RMSEs of the Laplacian
of SSH are shown to assess the performance of the optimal λ2 found from MSR on the SSH signal phase.
Lastly, although not the main motivation of this study, from a methodological perspective, implementing this
method is interesting to test if it is still effective under the presence of IGWs.
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5.4.2 Optimal de-noising parameterization

The de-noising algorithm penalizing the Laplacian of SSH is applied to the pseudo-SWOT data (SSH_obs)
of all scenarios. The de-noised SSH_obs variable obtained is referred to as SSH_obs_f. The same initial
range of λ2s is applied to each scenario. The MSR score is used to then find the optimal λ2 for each scenario.
This parameter, as it depends on the SSH signal, can vary depending on the OGCM, region and season.
A systematic investigation is performed in order to find the optimal λ2, and the results are shown in fig.
5.10. The optimal λ2 is found at the minimum MSR value. The smaller the value of MSR, the closer the
spectra from the filtered field (SSH_obs_f) is to the true spectra (SSH_model). Fig. 5.10 shows that the
minimum MSR score obtained in all scenarios and OGCMs are very good. All values are below 0.075, except
for MITgcm48 WMED ASO where it’s about 0.1 (here an anomalous energy peak is observed at 10 km in
fig. 5.9).

A set of optimal λ2s (one for each OGCM) is obtained for each scenario and shown in table 5.2. The values
go from 1 to 54. This is in accordance with the range of dynamics investigated here, varying between regions,
seasons and OGCMs. As MITgcm48 is the most energetic model, it has the lowest λ2 in all cases, followed
by eNATL60 and then HYCOM25. As the latter is less energetic, the noise has a greater effect on it (small
SNR), and so needs a larger λ2. The values are quite close for all three OGCMs in the WMED region, which
as shown in fig. 5.9, the three models exhibit similar SSH variances. A seasonal difference can be observed
too. In WMED, the optimal λ2 values are smaller in Winter than in Summer, which makes sense with the
higher energy levels observed in the region during Winter. In the AZO region, the opposite happens. Due
to the presence of IGWs, Summer presents higher energetics than Winter. The high IGW signal in AZO in
Summer brings up the energy level at the small scales (flattening the SSH spectra), where the SWOT noise
starts to dominate. At GST, the optimal λ2 is slightly smaller for Summer in eNATL60 and MITgcm48,
but smaller in Winter for HYCOM25. In the GST region, there is also a IGW signal in Summer like in
AZO, but it is much lower. What seems to happen is that the IGW signal is still important in the eNATL60
and MITgcm48 models, but relatively lower in HYCOM25. Nevertheless, the seasonal optimal λ2 difference
is low in this region. Lastly, for PAC, the optimal λ2 is smaller in Winter for HYCOM25 and in Summer
for MITgcm48. The signal of IGWs in the FMA HYCOM25 spectra are below the energy level of the ASO
spectra, whilst in MITgcm48, the flattening of the SSH spectra in FMA by IGWs increases above the ASO
SSH spectra at small scales. This could be explained by the results found by (Savage et al., 2017a), where
HYCOM25 performs better at the low frequencies (large wavelengths) and MITgcm48 at high frequencies
(small wavelengths). Overall, the optimal λ2 values found agree well with the results found in Section 5.3 on
the energetic differences between regions, OGCMs and seasons.
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Figure 5.10: Mean Spectral Ratio (MSR) in function of λ2 comparison for the different scenarios. Top
to bottom: Outputs from MITgcm48, HYCOM25 and eNATL60 simulations. From left to right: western
Mediterranean (WMED 2x2), Açores (AZO 5x5), Gulf Stream (GST 5x5) and Pacific (PAC 5x5) regions.
FMA and ASO months are shown in blue and red, respectively.

Table 5.2: Optimal λ2 for each scenario. Blue for FMA and red for ASO.

OGCM
eNATL60 HYCOM25 MITgcm48

R
eg
io
n
s WMED 7 | 24 12 | 29 6 | 21
AZO 13 | 5 36 | 35 3 | 1
GST 9 | 5 24 | 28 3 | 1
PAC - 54 | 39 2 | 5

All subregions studied are 5◦ by 5◦ except for WMED, which to not include land, it is limited to 2◦ by 2◦. To
check if the results found above on the optimal λ2 depend on the subregion size, the results obtained for the
5◦ by 5◦ subregions are compared to those rendered by a 2◦ by 2◦ size. For eNATL60 and MITgcm48, the
same optimal λ2 is obtained for both subregion sizes. For HYCOM25 the values differ, but are still close. As
an example, in fig. 5.11 the results for the Gulf Stream region are shown. The optimal λ2 values are exactly
the same for both sizes for eNATL60 and MITgcm48. The HYCOM25 values differ by only 1 and 6 for FMA
and ASO, respectively. This is beneficial as it implies λ2 does not have to be re-tuned. Fig. 5.11 shows too
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that MSR values for 2◦ by 2◦ regions are systematically higher than for the 5◦ by 5◦, specially moving away
from the optimal λ2 value. Consequently, although the optimal λ2 values does not seem to be very affected
by the region size, the impact of choosing an non-optimal λ2 on the MSR score, does. If the selected region
is much larger than 5◦ by 5◦, different oceanic structures could be present and thus maybe have an impact
on the optimal λ2 value. Even though it may differ, if it remains the same region, it should not vary much
from the one found with a 5◦ by 5◦ region or smaller. In a more technical sense, this result supports the
robustness of the de-noising method and the MSR score used for its evaluation.

Figure 5.11: MSR comparison for different subregion sizes, 5x5 (bold) and 2x2 (dashed) in the Gulf Stream
region. FMA (blue) and ASO (red) months are plotted for the eNATL60, HYCOM25 and MITgcm48 (left
to right).

The optimal λ2 values from MSR scores are compared to those obtained from the Laplacian of SSH RMSE.
This allows to asses how well the de-noising method does regarding the phase of the signal, or in other words,
how accurately it recovers the oceanic structures present. The results of the RMSE residual of the Laplacian
of SSH (RMSE of SSH_obs_f as a percentage of RMSE of SSH_obs) are shown in fig. 5.12. In all scenarios
the RMSE residual is very low, being less than 10% in most scenarios. No matter the oceanic dynamics of
the scenario, the de-noising algorithm correctly retrieves the Laplacian of SSH. The optimal λ2 found with
the MSR diagnostic is systematically lower than the optimal value found with the Laplacian RMSE. This is
expected as the effect of the noise is amplified in SSH derivatives. Nevertheless, in most cases it is within the
5% range shown in fig. 5.12, so the RMSE residual increment due to using the optimal λ2 from MSR is less
than 5%. In this particular study, as the main focus is on obtaining Ls from SSH spectra, no adjustments in
the λ2 parameterization need to be done. If the use of the SWOT de-noised data was different and needed
better de-noised SSH derivatives, like for example deriving vertical velocities, the λ2 value could be adjusted,
and chosen slightly higher than that obtained with the MSR score.
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Figure 5.12: RMSE residuals for the Laplacian (∆SSH) for FMA (bold) and ASO months (dashed). From
top to bottom: MITgcm48, HYCOM25 and eNATL60 results. From left to right: western Mediterranean 2x2
(WMED), Açores 5x5 (AZO), Gulf Stream 5x5 (GST) and Pacific 5x5 (PAC) regions. Horizontal bars show
the range of λ2 values that provide scores higher than the minimum RMSE by less than 5%. For comparison
the vertical lines show the MSR optimal λ2 for FMA (bold green) and ASO months (dashed magenta).

5.5 SWOT resolved scales

Once the optimal λ2s were found, all the elements to re-evaluate Ls after de-noising (Lsf ) were available.
This is done by obtaining the spatial spectra of the residual noise of SSH_obs_f (noise_f); where SSH_obs_f
is the SSH_obs field filtered with the optimal λ2 obtained from the MSR score. Then, Lsf is found by finding
the wavelength at which the spectra of SSH_model and noise_f intersect. This is implemented for the mean
spectra of each scenario and OGCM. As an example, the results of the GST FMA scenario are shown in fig.
5.13 (the figures of the other scenarios are shown in Appendix 5.A). Fig. 5.13 on the left shows SSH_model
with the PSDs of SSH_obs and SSH_obs_f and on the right SSH_model with the respective noise residuals.
On the left subplots the value of Lsi and Lsf are indicated. The SNR and the Percentage of Noise Removed
(PNR) are evaluated at Lsi and Lsf and shown on the right subplots. These diagnostics help to evaluate the
SSH signal at these 2 wavelengths. The SNR is calculated for SSH_obs (SNR_o) and SSH_obs_f (SNR_f)
as SSH_model over noise_o and noise_f, respectively. The PNR is also calculated as:

PNR =

(
1− noise_f

noise_o

)
∗ 100 (5.4)
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Figure 5.13: Spatial spectra for the Gulf Stream Winter scenario (GST FMA). SSH_model is compared to
SSH_obs and SSH_obs_f (left) and to noise_o and noise_f (right) spectra. The shaded areas show values
between the 5th and 95th percentiles of SSH_model, showing its Power Spectral Density (PSD) variability.
Top to bottom: eNATL60, HYCOM25 and MITgcm48 OGCMs outputs shown. Green dashed (bold) lines
show Lsi (Lsf ). In the left panels the exact Ls values are shown and in the right panel the values of SNR_o,
SNR_f and PNR at Lsi and Lsf .
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Lsi and Lsf values are retrieved from fig. 5.13-like figures (see Appendix 5.A) and summarized in table
5.3 and fig. 5.14. Lsi values predicted by MITgcm48 are systematically the smallest, followed by eNATL60
and HYCOM25, except for WMED ASO. This again is in accordance with the higher energetics observed in
the MITgcm48 outputs in all scenarios except in WMED ASO as observed in figures 5.6 and 5.9. Overall,
there is a good agreement between the OGCMs’ Ls in the WMED region, but there is a large difference
across OGCMs in the other regions. In WMED FMA the same Ls are obtained for all OGCMs, but in
fig. 5.21 it can be observed that actually small differences do exist. These are not captured due to the
discrete wavelengths rendered by the spectral method. Table 5.3 and fig. 5.14 show that there is a systematic
reduction of Lsi thanks to the de-noising algorithm. This reduction goes from 10 km in MITgcm48 WMED
ASO to 30 km in eNATL60 AZ0 FMA. The reduction seems to be affected by the energy level at small-scales.
This can clearly be observed in the AZO FMA scenario, where eNATL60 and HYCOM25 have the same Lsi,
but Lsf is greater for HYCOM25 than eNATL60. Looking at fig. 5.9, eNATL60 has higher PSD values at
small wavelengths than HYCOM25. The same happens in PAC MITgcm48 between FMA and ASO. In FMA
(Summer) IGWs are present, making the energy level at small-scales higher than in ASO (Winter), and thus
a smaller Lsf in FMA than ASO. Lt values derived from Vergara et al. (2020) are also shown in table 5.3
and fig. 5.14 for all scenarios except WMED for which data is not available. Comparing Lsi to Lt, some
HYCOM25 values are above Lt, and some other values are quite close (e.g. eNATL60 GST FMA). After
de-noising, all the OGCMs predict an Ls (Lsf ) clearly below Lt in all regions and seasons.

Table 5.3: SWOT resolved wavelengths pre-filtering (Lsi) and post-filtering (Lsf ) for each scenario in km.
Blue for FMA and red for ASO. Last column shows the transition scale (Lt) in km found by Vergara et al.
(2020).

OGCM
LteNATL60 HYCOM25 MITgcm48

Lsi Lsf Lsi Lsf Lsi Lsf

R
eg
io
n

WMED 37 23 37 23 37 23 -
44 32 44 32 54 44 -

AZO 66 36 66 53 36 18 76
49 26 66 45 34 15 62

GST 45 29 59 39 36 17 48
45 27 59 34 27 12 53

PAC - - 66 53 42 20 128
- - 59 42 42 27 96
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Figure 5.14: SWOT resolved scale (Ls) [km] values pre-filtering (Lsi) (top) and post-filtering (Lsf ) (bottom),
for the FMA (left) and ASO (right) months. Mean transition scale (Lt) of each region for FMA and ASO
months obtained from Vergara et al. (2020) is shown .

The improvements of the de-noising method on the SWOT data are not only reflected on the reduction of
Ls, but also on the high percentage of noise removed. Looking at the PNR values at Lsi, these go from 51%
to 77% (table 5.4); and at Lsf from 66% to 93% (table 5.5). The PNR values at Lsi are lower than at Lsf
probably because the SNR values at Lsi are better (higher) than at Lsf . In other words, there is more noise
to remove at Lsf than Lsi, so more space for improvement. It is important to note, that the PNR values
are calculated at different Ls for each OGCM in each scenario. For example, looking at the scenario GST
FMA shown in fig. 5.13, HYCOM25 has the lowest PNR at Lsi, but it is not because it has the highest SSH
spectra level (as observed in fig. 5.9, but because PNR is calculated at a higher wavelength (HYCOM25 has
a higher Lsi value as shown in fig. 5.14). Therefore, the comparison between OGCMs and scenarios becomes
complex, but the relevant information provided by tables 5.4 and 5.5 is that their values are above 50% in
all cases.

Table 5.4: Percentage of Noise Removed (PNR) at Lsi for each scenario. Blue for FMA and red for ASO
months.

OGCM
eNATL60 HYCOM25 MITgcm48

R
eg
io
n
s WMED 72% | 76% 75% | 77% 73% | 64%

AZO 51% | 59% 57% | 57% 67% | 56%
GST 68% | 63% 60% | 59% 67% | 63%
PAC - 56% | 64% 61% | 65%
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Table 5.5: Percentage of Noise Removed (PNR) at Lsf for each scenario. Blue for FMA and red for ASO
months.

OGCM
eNATL60 HYCOM25 MITgcm48

R
eg
io
n
s WMED 89% | 89% 93% | 90% 88% | 73%

AZO 79% | 80% 66% | 78% 87% | 82%
GST 84% | 78% 79% | 89% 89% | 87%
PAC - 73% | 83% 80% | 81%

5.6 Retrieved SWOT Fields and Spatial Spectra

The high PNR values reflect on the fields of SSH derivatives. Figures 5.15 and 5.16 show an example of
an eNATL60 AZO FMA pass with a high and low presence of correlated errors, respectively. Even in the
example with a high presence of correlated errors (fig. 5.15), the most energetic features observed in the
gradient of SSH_model can be observed in SSH_obs_f. The retrieved field of the Laplacian is quite good
except for the signal of the correlated errors remaining in the right outer border of the swath. This KaRIn
noise is the highest across-track at the swath’s outer borders, but it could also be due to the residual of the
uncorrelated component along-track of the correlated errors. When the presence of correlated errors is low,
like in fig. 5.16, the retrieved results of SSH and its gradients are visually close to the SSH_model fields.
The magnitude and the shape of the oceanic structures are well retrieved with the de-noising method.
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Figure 5.15: Fields of pass 11, cycle 83 of the FMA AZO eNATL60 dataset. From left to right, model
data interpolated to SWOT grid (SSH_model), SSH_model with noise and errors added (SSH_obs) and
SSH_obs filtered with the optimal λ2, 13 (SSH_obs_f). From top to bottom: SSH, gradient of SSH and
Laplacian of SSH.
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Figure 5.16: Fields of pass 24, cycle 83 of the FMA AZO eNATL60 dataset. From left to right, model
data interpolated to SWOT grid (SSH_model), SSH_model with noise and errors added (SSH_obs) and
SSH_obs filtered with the optimal λ2, 13 (SSH_obs_f). From top to bottom: SSH, gradient of SSH and
Laplacian of SSH.

Adding to fig. 5.9 the spectra of each scenario filtered with its optimal λ2 value renders figures 5.17 and 5.18.
Both figures show that even below Lsf , SSH_obs_f is very close to the SSH_model spectra and inside its
envelope of variability. Although Lsf might be higher, for all scenarios the SSH spectral signal is very well
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recovered down to the initial SWOT mission’s objective, 15 km (Fu and Ubelmann, 2014). The presence of
IGWs does not seem to pose a problem in applying the de-noising method. Focusing on scenarios with a high
presence of IGWs, like AZO ASO and PAC FMA, the de-noising method works efficiently there too. There
is room left for improvement in order to better represent the IGWs’ energy peaks post-filtering. Moreover,
work is to be done to further understand if their complete signal is correctly captured after de-noising.

Figure 5.17: Mean of all passes and cycles of spatial spectra for each OGCM and regions in the selected
sub-boxes of each pass (see fig. 5.5) for the Winter season (FMA). Spatial spectra of the model interpolated
data (SSH_model) are shown in red, and that of the pseudo-SWOT data (SSH_obs) is in black. Blue lines
indicate the filtered pseudo-SWOT spectra (SSH_obs_f) obtained with its optimal λ2. The dashed lines
are the residual noise spectra of SSH_obs (residual) and SSH_obs_f (residual_f). The red shaded area
show values between the 5th and 95th percentiles of SSH_model, showing its Power Spectral Density (PSD)
variability.
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Figure 5.18: Mean of all passes and cycles of spatial spectra for each OGCM and regions in the selected
sub-boxes of each pass (see fig. 5.6) for the Summer season (ASO). Spatial spectra of the model interpolated
data (SSH_model) are shown in red, and that of the pseudo-SWOT data (SSH_obs) is in black. Blue lines
indicate the filtered pseudo-SWOT spectra (SSH_obs_f) obtained with its optimal λ2. The dashed lines
are the residual noise spectra of SSH_obs (residual) and SSH_obs_f (residual_f). The red shaded area
show values between the 5th and 95th percentiles of SSH_model, showing its Power Spectral Density (PSD)
variability.

5.7 Calibration of the de-noising method

Here λ2 was calibrated from MSR scores, finding the λ2 which rendered the minimum value for each OGCM
in each scenario. Obtaining these scores is only possible when the “true” SSH (SSH_model here) is known.
Moreover, in practice the optimal λ2 parameterization will vary with the SNR. Preliminary tests were done
to see if a relationship could actually be obtained between the SNR and the optimal λ2. The mean PSD
values of each of the 22 scenarios was used. As in general the noise starts to dominate at wavelengths of 60
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km or below (see table 5.3), the relationship at 60 km is explored, as well as at a smaller wavelength, 30 km.
The relationship between the optimal λ2 obtained in the different scenarios and the PSD value of SSH at
these two wavelengths is shown in fig. 5.19.

Figure 5.19: Relation between optimal λ2 found and the Signal to Noise Ratio (SNR) (top) and just the
signal [m2/cy/km] (PSD(SSH_model)) (bottom). The SNR and Signal values are at a wavelength of 30
km (left) and 60 km (right). Each of the points in every subplot represent the mean spectral value of each
scenario (for example, eNATL60 AZO ASO).

In fig. 5.19, no clear relation is observed at 60 km, but a linear relationship (in log-log scale) is observed at
30 km. Although SWOT errors and noise estimates exist from the SWOT project team, their exact values
are not known. A very similar relationship is obtained for the top and bottom plots of fig. 5.19. Therefore,
a calibration method is presented here where the signal, the SSH variance level at 30 km, is used. The
relationship between the optimal λ2 and the PSD value of SSH at 30 km is further explored. The plot is
repeated including all the PSD values within each scenario, i.e., all scenarios’ passes and cycles (fig. 5.20)
which in total renders 4002 points. The probability density function of this cloud of points is calculated via
a gaussian kernel density estimation. Fig. 5.20 shows how the points cluster in a quite structured cloud and
around the mean points.
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Figure 5.20: Relation between optimal λ2 found and PSD(SSH_model) [m2/cy/km] at 30 km. Each point
represnts a single pass, cycle, season, region and OGCM. The points’ probability density function is shown by
a gaussian kernel density estimation. The blue circles are the mean values of the passes and cycles available
for each OGCM, region and season (the bottom left subplot of fig. 5.19). The blue line is a linear fit of the
blue points (in log-log scale).

Fig. 5.20 further confirms that a relation between the optimal λ2 and the PSD(SSH) at 30 km can be drawn
from the experiments presented here. The blue line shows a linear least-squares regression fit (in log-log
scale) of the mean PSD points (blue circles in fig. 5.20). The fit is good as R2 (the correlation coefficient
squared) is above 0.9 and the p-value is less than 0.05. The linear fit on the cloud of points is very similar (see
fig. 5.29). The differences between the optimal λ2 of the two fits is less than 50%. The SSH variance at 30
km wavelengths can be obtained from current nadir altimeters. Their noise is better known than for SWOT,
and methodologies exist to obtain the PSD down to this wavelength. For example the work carried out by
Vergara et al. (2020), allows to retrieve the PSD(SSH) at 30 km from altimeters like Jason-2. Therefore,
all the elements are available to calibrate the de-noising algorithm. Here, only the MSR score is considered
to determine the optimal λ2, as the RMSE score on the Laplacian is the only reliable RMSE. To calibrate
the method with the RMSE of the Laplacian, vorticity observations would be needed. Unfortunately, these
measurements are not as easy to obtain as SSH spatial PSDs. Nevertheless, maybe this could be possible
during the in situ campaigns planned at the fast-sampling phase cross-over regions (d’Ovidio et al., 2019).
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5.8 Discussion and Conclusions

In this study, the smallest spatial scale to be resolved by the future satellite SWOT (Ls) is re-explored.
As found in previous chapters and studies (e.g. Gómez-Navarro et al. (2018); Wang et al. (2019a); Gómez-
Navarro et al. (2020)), the smallest resolved wavelength by SWOT will highly depend on the SNR at scales
below approximately 50 - 60 km. Unfortunately, a large uncertainty in SWOT Ls exists because of OGCMs
discrepancies at these small spatial scales. This is taken into account by using three different, high-resolution
OGCMs including tidal forcing. SSH hourly data is extracted from each. 4 different dynamical regions are
chosen for the Winter and Summer months. Pseudo-SWOT data for the fast-sampling phase are generated
for each scenario via the SWOT simulator. Independent realizations of the SWOT noise and errors are
included. A specific SWOT de-noising technique developed by Gómez-Navarro et al. (2020) is then applied.
This technique is parametrized by setting the optimal λ2, which penalizes the Laplacian of SSH. The optimal
λ2 is found via the MSR score, and applied for each scenario. Applying this de-noising algorithm with its
optimal parameters, leads to a reduction of Ls by approximately 10 - 30 km. This allows to observe spatial
scales below the transition scale in all the scenarios explored. Lastly, a practical solution for calibrating the
de-noising algorithm with existing altimetric data is proposed.

In all scenarios Ls is reduced to below 60 km thanks to the de-noising algorithm. Current 1D along-track
SSH data can resolve wavelengths down to 30 - 50 km (Pujol et al., 2012). Here not only are wavelengths
in some regions below 30 km (fig. 5.14), but the data is 2D instead of 1D. Moreover, this could imply a
huge improvement from the approximately 150 km or above resolved wavelengths of two-dimensional gridded
products from current altimeters (Ducet et al., 2000). The resolved wavelength of SWOT gridded products
might probably be lower than the swath Ls, but its 2D characteristic allows it to sample mesoscale variability
like 2 - 4 nadir altimeters (Pascual et al., 2006; Pujol et al., 2012). A Ls, i.e., a resolved wavelength of 60 km,
implies observing eddies of 30 km in diameter. This implies a great breakthrough for the study of small-scale
eddies, which have been found to be very important in vertical transports (Lapeyre and Klein, 2006) and in
understanding energy transfers and balance in the Ocean (Capet et al., 2008a). (Fu and Ubelmann, 2014)

The results show an improvement of some of the Ls values found in the same regions in other previous
studies. For example, in the Azores region Ls is recovered down to about 20 km, while in Dufau et al. (2016)
the Ls there was found around 35 - 50 km and about 25 - 40 km by Wang et al. (2019a). Nevertheless, it is
important to note that the Ls found by Wang et al. (2019a) takes into account the variability of the KaRIn
noise level with the sea wave height (SWH), while here only a KaRIn noise level in a 2 m SWH scenario
is considered. Similarities are found when comparing tables 5.2 and 5.3 at WMED with the results found
in Gómez-Navarro et al. (2020). Both results show smaller Ls in Winter than Summer, and a higher λ2
necessary in Summer than Winter. The optimal λ2 values here are smaller than in Gómez-Navarro et al.
(2020) due to NATL60 being slightly less energetic at small scales and because a higher SWOT footprint
is used here of 2 km instead of 1 km. A smaller footprint implies a higher noise level as shown by Chelton
(2019). Lsf values are very close to the resolved scales post-filtering found in Gómez-Navarro et al. (2020).
Therefore this study further confirm the conclusions reached in Gómez-Navarro et al. (2020).

In all cases, after de-noising all Ls are lower than Lt. As explained in Section 5.1, this implies that unbalanced
motions could be detectable in the SWOT SSH signal, at least down to Ls and perhaps the spectral slope
in the unbalanced regime. On the one hand, this will allow to derive interesting quantities like the shear
production to better understand KE transfers (Torres et al., 2019). On the other hand, the disentanglement of
balanced and unbalanced motions might be necessary, which is not evident. Furthermore, below Lt it becomes
very questionable to use geostrophy to derive velocities and vorticities, theory which is very commonly used
in present altimetry. Compared with the results found by Wang et al. (2019a), the de-noising method allows
to resolve scales below Lt in regions like the Gulf Stream and Azores during Summer. It is important to note
that the Lt values used in Wang et al. (2019a) are calculated from MITgcm48 simulation outputs (Qiu et al.,
2018), while the estimates of Lt here come from altimetry data (Vergara et al., 2020). Moreover, the regions
where Wang et al. (2019a) find Ls > Lt (and thus IGWs not observed by SWOT), are regions with weak
IGWs or with a high SWH, specially in Winter. In regions where the latter is relevant, this may change the
results found here as the SWH considered is constant and equal to 2 m.

Different high-resolution OGCMs including tides have been analyzed and compared, allowing to minimally
assess the still relatively unknown Ocean fine-scale dynamics. It has been confirmed, via the RMS and spatial
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spectra analyses, that depending on the region and season, large discrepancies between OGCMs can exist,
for example in AZO ASO. This leads to a range of SSH variance levels which lead to a range of optimal λ2s
and Ls values for the same region and season. Ls values reach differences of around 30 km. Nevertheless, all
Ls values coincide in being below the Lt values estimated by Vergara et al. (2020). Having more and better
data to assess OGCMs, and the future SWOT data, at the fine scales is important to reduce the uncertainty
at these scales.

The de-noising algorithm used here, not only allowed to improve Ls, but also the SSH derivatives fields.
These improvements can be observed in figures 5.15 and 5.16. The recovery of the SSH gradients is necessary
to derive other oceanographic variables like vertical velocities (Mahadevan et al., 2020), and to apply data
assimilation methods to remove the correlated errors and/or interpolate the swaths onto a gridded map. Even
in the presence of IGWs, the de-nosing method has rendered promising results towards effective removal of
the uncorrelated, small scale noise and errors on the SWOT swath. Nevertheless, there is probably still
space for optimization of the method, for example taking more into account the IGWs’ dynamics and other
fine-scale dynamics. The latter has been found to be important too in the parameterization of the method.
The Ocean dynamics which have an impact on the small wavelengths of the SSH spatial spectra are more
important than those which have a signal at large wavelengths, as it is where the SNR is lower.

A clear perspective of this study, would be to expand it to other cross-over regions of the fast-sampling
phase. Then, repeating the procedure for the Science phase would be interesting, as the spatial and temporal
sampling would vary and that could have an impact on capturing the SSH variance levels and the signal
of IGWs. To better understand the signal of IGWs captured by SWOT data, the influence of its spatial
and temporal sampling on the strength of the IGWs in SSH spatial spectra could be studied. Moreover, to
investigate the sensitivity of the SWOT SSH spectra to temporal and spatial sampling regionally because as
found by Xu and Fu (2012), spectra present a high variability. For example, in regions with a high presence
of IGWs, these can create a change of slope or peak in the SSH spatial spectra.

In summary, this work helps to bring insight onto the spatial scales SWOT might be able to resolve in the
future. The use of relatively recent high-resolution OGCM simulations including tides, has helped to better
understand the possible SWOT observations of the Ocean fine-scale dynamics. This is partly thanks to the
use of a SWOT swath de-noising method that renders promising results on the uncorrelated, small-scale
noise and errors removal. The SWOT resolved scale found in the 4 regions studied is below Lt, opening
new opportunities to better understand the balanced and unbalanced motions and their interaction. Finally,
together with the SWOT resolved scales results, a solution to calibrate the SWOT de-noising method is
proposed, which may allow to map the optimal λ2 in the global ocean and thus allow the SWOT Ocean
community to practically implement the method.
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5.A Spatial spectra results

Figure 5.21: Spatial spectra for the western Mediterranean Winter scenario (WMED FMA). SSH_model is
compared to SSH_obs and SSH_obs_f (left) and to noise_o and noise_f (right) spectra. Top to bottom:
eNATL60, HYCOM25 and MITgcm48 OGCMs outputs shown. Green dashed (bold) lines show Lsi (Lsf ).
In the left panels the exact Ls values are shown and in the right panel the values of SNR_o, SNR_f and
PNR at Lsi and Lsf .
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Figure 5.22: Spatial spectra for the western Mediterranean Summer scenario (WMED ASO). SSH_model is
compared to SSH_obs and SSH_obs_f (left) and to noise_o and noise_f (right) spectra. Top to bottom:
eNATL60, HYCOM25 and MITgcm48 OGCMs outputs shown. Green dashed (bold) lines show Lsi (Lsf ).
In the left panels the exact Ls values are shown and in the right panel the values of SNR_o, SNR_f and
PNR at Lsi and Lsf .
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Figure 5.23: Spatial spectra for the Azores Winter scenario (AZO FMA). SSH_model is compared to
SSH_obs and SSH_obs_f (left) and to noise_o and noise_f (right) spectra. Top to bottom: eNATL60,
HYCOM25 and MITgcm48 OGCMs outputs shown. Green dashed (bold) lines show Lsi (Lsf ). In the left
panels the exact Ls values are shown and in the right panel the values of SNR_o, SNR_f and PNR at Lsi
and Lsf .
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Figure 5.24: Spatial spectra for the Azores Summer scenario (AZO ASO). SSH_model is compared to
SSH_obs and SSH_obs_f (left) and to noise_o and noise_f (right) spectra. Top to bottom: eNATL60,
HYCOM25 and MITgcm48 OGCMs outputs shown. Green dashed (bold) lines show Lsi (Lsf ). In the left
panels the exact Ls values are shown and in the right panel the values of SNR_o, SNR_f and PNR at Lsi
and Lsf .
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Figure 5.25: Spatial spectra for the Gulf Stream Winter scenario (GST FMA). SSH_model is compared to
SSH_obs and SSH_obs_f (left) and to noise_o and noise_f (right) spectra. Top to bottom: eNATL60,
HYCOM25 and MITgcm48 OGCMs outputs shown. Green dashed (bold) lines show Lsi (Lsf ). In the left
panels the exact Ls values are shown and in the right panel the values of SNR_o, SNR_f and PNR at Lsi
and Lsf .
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Figure 5.26: Spatial spectra for the Gulf Stream Summer scenario (GST ASO). SSH_model is compared
to SSH_obs and SSH_obs_f (left) and to noise_o and noise_f (right) spectra. Top to bottom: eNATL60,
HYCOM25 and MITgcm48 OGCMs outputs shown. Green dashed (bold) lines show Lsi (Lsf ). In the left
panels the exact Ls values are shown and in the right panel the values of SNR_o, SNR_f and PNR at Lsi
and Lsf .
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Figure 5.27: Spatial spectra for the Pacific Winter scenario (PAC FMA). SSH_model is compared to SSH_obs
and SSH_obs_f (left) and to noise_o and noise_f (right) spectra. Top to bottom: eNATL60, HYCOM25
and MITgcm48 OGCMs outputs shown. Green dashed (bold) lines show Lsi (Lsf ). In the left panels the
exact Ls values are shown and in the right panel the values of SNR_o, SNR_f and PNR at Lsi and Lsf .
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Figure 5.28: Spatial spectra for the Pacific Summer scenario (PAC ASO). SSH_model is compared to
SSH_obs and SSH_obs_f (left) and to noise_o and noise_f (right) spectra. Top to bottom: eNATL60,
HYCOM25 and MITgcm48 OGCMs outputs shown. Green dashed (bold) lines show Lsi (Lsf ). In the left
panels the exact Ls values are shown and in the right panel the values of SNR_o, SNR_f and PNR at Lsi
and Lsf .
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5.B Supplementary material on the de-noising method calibration

Fig. 5.29 compares the linear fits on the cloud and mean points.

Figure 5.29: Comparison of the linear fits of the mean points (blue) and the cloud of points (red).
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

The aim of this study was to investigate the observation of the oceanic fine scales by the future SWOT
satellite. The observation of the fine scales has been limited by the spatial and temporal resolution of the
observations and model data available. SWOT is expected to break this barrier, but firstly, SWOT-specific
processing algorithms need to be developed to maximize the benefits of this data. One of the main SWOT
data processing steps is removing the uncorrelated noise and error components. These completely mask the
signal when first (velocity) and second (vorticity) order derivatives of SSH are calculated. The de-noising
is explored in Chapters 3 and 4, and in Chapter 5 the de-noising is applied to investigate the finest spatial
scales to be resolved by SWOT. Below, the details of the main findings of these chapters:

• Chapter 3 explores the SWOT outputs in the western Mediterranean during the Science phase and
their spatial scales. In this region SWOT will provide a very high spatial coverage with up to 2 passes
per day, but there will be big temporal gaps of 7 days. The scales observed in the swath’s SSH fields
are lower than with the present 2D gridded altimetric product which resolves wavelengths of ∼200
km, but the derived geostrophic velocity and relative vorticity are completely masked by the satellite’s
noise and errors. After applying a Laplacian diffusion filter, geostrophic velocity and vorticity fields
can be robustly estimated from SSH data allowing to reconstruct spatial scales down to 40 - 60 km
wavelength. This is equivalent to resolving structures of 20 - 30 km in diameter, but the intensity of
these is smoothed by the filtering.

• A new de-noising algorithm based in penalizing the derivatives of the SSH fields is explored and imple-
mented in Chapter 4. As a test scenario, three seasonal datasets of the western Mediterranean for the
fast-sampling phase are used. Compared to conventional convolution-based de-noising methods, the
derivatives penalization is found to render better results. The best parameterization of the method is
found. This allowed to recover the SSH spectral signals and the fields of SSH and its first and second
order derivatives (velocity and vorticity). Together with this, a methodology to evaluate the de-noising
of the SWOT data has been also developed which can be useful to evaluate our method as well as other.
This de-noising technique reduces the spatial scale resolved by SWOT by a factor of 2, and at 10 km
wavelengths, the noise level is reduced by factors of 104 and 103 for summer and winter, respectively.
The de-noised SWOT SSH fields resolve wavelengths down to 20 - 30 km (structures of 10 - 15 km in
diameter).

• In Chapter 5 the finest resolved scale of SWOT SSH under different dynamical conditions is investigated.
These include four regions of the global ocean (WMED, AZO, GST and PAC), during Winter and
Summer months and three OGCMs. They represent a range of dynamics, with high/low eddying
regime and a high/low presence of IGWs. The SWOT spatial resolved wavelength (Ls) for the fast-
sampling phase is found for each scenario, pre and post-filtering. The de-noising reduces Ls, making it
lower than the transition scale (Lt) in all scenarios. The large uncertainty between OGCMs at small
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scales is observed, and reflects in a range of Ls found in each region and season. This range is smallest
in low IGWs and eddying regimes like the western Mediterranean and highest when there’s a high signal
of IGWs at Azores and the South Pacific region. The de-noising algorithm was found to appropriately
work in all scenarios. A calibration solution for the de-noising method is proposed based on existing
altimetric SSH spectral values, where the optimal λ2 value can be obtained from the SSH spatial Power
Spectral Density (PSD) at a 30 km wavelength from current nadir altimeters.

These results have allowed to answer the two main questions of this PhD study:

1. What is the best method to remove this small-scale noise, whilst conserving the SSH signal
and structures?

The best method refers here to the one which renders the best results out of the limited amount of methods
explored in this study, together with its optimal parameterization. The derivatives penalization de-noising
method proved to be better than convolution-based methods such as, a moving average, Gaussian and
Laplacian Diffusion. The results obtained from the derivatives penalization de-noising allowed to recover the
oceanic structures present in the SWOT swath, whilst conserving the magnitude of the SSH signal and its
first and second order derivatives. This allows to recover not only SWOT SSH, but current velocity and
relative vorticity. Although other methods could be explored, this method was found to efficiently attain our
objectives.

2. What will be the spatial resolution of the de-noised SWOT swath data in different dynamic
regimes?

The spatial resolution of the SWOT swath data (Ls) was obtained for the fast-sampling phase in four different
regions, Winter and Summer and from three different OGCMs. The Ls values found for each region after
applying the derivatives penalization de-noising (Lsf ) are shown in table 6.1. The range of values found
from the different OGCMs are shown and compared to the transition scale (Lt). All Lsf were found to be
below Lt. At this scale the oceanic regime goes from being dominated by geostrophic, balanced motions to
dominated by wave, unbalanced motions. Consequently, with the de-noising algorithm, SWOT observations
are able to resolve, at least partially, wave, unbalanced motions.

Table 6.1: SWOT resolved wavelengths post-filtering (Lsf , km) ranges for each region compared to the
transition scale (Lt, km) found by Vergara et al. (2020). Blue for FMA and red for ASO.

Lsf Lt

R
eg
io
n
s WMED 23 32 - 44 - -

AZO 18 - 53 15 - 45 76 62
GST 17 - 39 12 - 34 48 53
PAC 20 - 53 27 - 42 128 96

Lastly, the results found in this study contribute to attaining the SWOT mission objective: to better under-
stand the meso- and submesoscale ocean circulation down to 15 km wavelengths (Morrow et al., 2018).

6.2 Perspectives

The studies carried out during this PhD have contributed to shed light on the new surface ocean observations
that the SWOT satellite will provide. Thanks to the results found, a door has been opened to different aspects
of the SWOT data processing and analysis. Concerning the processing, the development of an effective
image de-noising technique to remove the small-scale, uncorrelated noise and error components has been
accomplished and made available on Github and soon on the CNES data server (HAL). Nevertheless, there
is space for improvement and possible next steps. These are:
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• Improvements of the de-noising method:

– the results shown render two de-noised half-swaths, but the possibility of in-painting is included
in our algorithm. Taking advantage of the SWOT nadir, the in-painting could be improved to
render a full 120 km-wide, de-noised swath,

– given that the KaRIn noise level varies across-track, an across-track varying λ2 could be explored,

• Making the method more operational by better adapting it to the real data that will be measured by
SWOT by:

– exploring the effect of using a KaRIn noise level non-based on a constant SWH. Furthermore,
based on a changing wave steepness,

– investigating further the relationship between the optimal de-noising parameter and the PSD at
30 km to produce a set of optimal λ2 values based on nadir altimeters’ PSD.

• Combining our method with other SWOT-specific processing algorithms to:

– remove the correlated errors (e.g. Metref et al. (2019); Yaremchuk et al. (2020)),

– further improve the refinement of the oceanic structures present in the swath (for example fila-
ments), especially the SSH second order derivative fields (relative vorticity), by for example using
the techniques presented by Rogé et al. (2015) and Durán-Moro et al. (2017),

– obtain 2D gridded SSH products (e.g. via data assimilation methods (Metref et al., 2020)).

With respect to the analysis of SWOT data, another natural step to this study would be to expand the
study regions presented in Chapter 5. Then, to repeat the study for the Science phase to see the effect of the
different temporal and spatial sampling and if it would make the SWOT resolved spatial scales vary from
the fast-sampling phase’s. As SWOT’s spatial coverage will vary regionally, increasing with latitude, SWOT
data will present strong regional variations, specially during the Science phase.

The image de-noising methods explored in this study are of great importance for the SWOT mission as
they allow to retrieve the SWOT SSH fields and its derivatives at scales significantly smaller than accessible
with the raw data. The de-noising technique presented here makes it possible to retrieve the SSH gradients
originally masked by the noise. These are necessary to derive other oceanographic variables and to apply other
data assimilation methods to remove the correlated errors and/or interpolate the swaths onto a gridded map.
One of these oceanographic variables is the surface current. Many present studies look at what percentage
of the total velocity is represented by geostrophic velocity. The geostrophic velocity derived from current
altimeter constellations is used, and it is found that only in certain parts of the ocean it is above 50%. This a
very important result, but it is highly dependent on how well the current (and past) altimeter constellations
manage to capture geostrophic velocities. Spatial gaps in space for example can greatly affect this. SWOT
data will help shed some light on this issue, but before that, velocities need to be retrieved from the noisy
SWOT SSH data. Moreover, SWOT’s 2D swath motivates the exploration and development of new methods
(or/and the improvement of old ones) to better retrieve ocean surface currents. This knowledge is of great
relevance for the SWOT mission, but also for new satellite missions that aim to directly measure surface
currents using Doppler radar measurements (European Space Agency , 2019).

The information of SSH and its derivatives at a higher spatial resolution than present altimeters, will allow
not only to better study fine-scale oceanic features, but also their interaction. This is one of the challenges
that is expected to be better understood thanks to the future SWOT data (Müller and Melnichenko, 2020).
The estimations of kinetic energy could also be improved with SWOT data, specially if the contribution of
unbalanced motions can be taken into account (Torres et al., 2019). This was found possible in all studied
regions and seasons after de-noising. The derivation of vertical velocities will also benefit from the 2D aspect
of the SWOT data (Qiu et al., 2016), especially after an effective de-noising of the swath which allows to
retrieve the vorticity fields. As shown in Chapter 5, the de-noising allowed to improve the resolved SWOT
spatial scale, but opens the door to other studies and research fields. For example, the effective de-noising of
the SWOT data is also beneficial for the inversion of the marine gravity field (Wan et al., 2020).

An accurate estimate of SWOT SSH derivatives allows to better estimate the oceanic three-dimensional cir-
culation and vertical exchanges. Combining horizontal velocity gradient maps derived from SWOT data with
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climatological data (for example, SST gradient data), vertical velocities could be inferred via the Omega
equation (Klein and Lapeyre, 2009; Fu, Lee-Lueng and Alsdorf, Douglas and Morrow, Rosemary and Ro-
driguez, Ernesto and Mognard, Nelly , 2012). The de-noised SSH fields and its derivatives are thus a valuable
product for physical and also interdisciplinary oceanographic studies (Qiu et al., 2016). This has a big impact
on the biogeochemical applications of the SWOT mission. An improved field of the oceanic flow at the fine
scales helps to improve the study of the exchanges of heat, freshwater, carbon, nutrients and more, between
different oceanic basins and layers. This affects biogeochemical cycles, biomass evolution, plankton diversity,
ice-margin dynamics and socioeconomic applications like pollution monitoring (Morrow et al., 2018; d’Ovidio
et al., 2019; Morrow et al., 2019). Information on vertical velocities are especially strong at oceanic fronts,
where a lot of nutrients can come up to the surface enhancing primary production, which then has an impact
on higher trophic levels (Morrow et al., 2019). Consequently, this three-dimensional ocean dynamics data is
also relevant to better understand marine ecosystems. For example, combining SWOT with animal-bourne
telemetry data can provide important information for marine protected areas’ spatial planning (d’Ovidio
et al., 2019).

Removing the small-scale noise and error components will allow to use the SSH derivatives information to
apply data assimilation techniques that exploit this to remove the correlated errors (Ruggiero et al., 2016;
Metref et al., 2019). Also, to use data assimilation techniques to combine the swaths to obtain 2D gridded
SSH maps. At present optimal interpolation is used to combine altimeter data, but for SWOT data, more
complex techniques are necessary which need filtered SWOT SSH fields. Introducing SWOT data to obtain
the 2D gridded product is expected to improve the product’s resolution and also to reduce the present
coarsening effect in which small eddies are merged together (Amores et al., 2018; Müller and Melnichenko,
2020). Fulfilling all these steps of the SWOT data processing helps to better meet the mission’s objectives,
like understanding the formation, evolution, and dissipation of eddy variability (Morrow et al., 2019). Several
studies have mentioned the advantages of incorporating SWOT data to obtain 2D gridded SSH products,
e.g. Pujol et al. (2012); Amores et al. (2018). The improvements the de-noising algorithm could provide to
the SSH field’s mapping, namely the eddy field, could be explored. More specifically, to see to what extent
the eddy observability and tracking is improved if de-noised SWOT data is used.

This work has highly depended on diagnostics on wavenumber spectra. The SWOT mission error speci-
fications are defined as wavenumber spectra, so this tool has become indispensable for the oceanographic
scientific community. Nevertheless, I believe there is space for improvement and a better consensus of the
wavenumber spectra calculation within the community. For example, seeing how to better consider the pres-
ence of land in the calculations and implementing other methods like auto regressive spectral analysis. The
latter has no windowing effect and needs less segments for averaging (Mailhes et al., 2016). Also, in relation
with wavenumber spectra, a better understanding of spectral slopes would greatly benefit studies related to
the SWOT mission.

To further evaluate SWOT data, new technologies and methodologies are important. At the small spatial
scales SWOT might reach, there are not many observations available. New observational arrays like saildrones
and HF radars can provide fine-scale information on surface currents. Recent methodologies which take
advantage of the drifting information of different observational datasets can also provide fine-scale information
not provided by other instruments. For example, using drifting data of ships and seabirds (Miyazawa et al.,
2015; Sánchez-Román et al., 2019) and of Argo floats and gliders when they are transmitting data at the
surface. An advantage of methodologies that exploit this type of drifting data is that it’s “green”, recycled
data. All these new data sources which can observe the fine scales should be further studied to use them for
validation of SWOT data and to explore how to best combine them.

To conclude, I hope this study provides results and tools that will contribute to obtaining improved SWOT
data and a better understanding of it. Furthermore, that this small sand grain contributes to improving
our knowledge of the ocean dynamics and circulation, helping to better preserve and protect the marine
environment.
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A.3 Seminars given

• Observabilité de la turbulence océanique de surface par la mission SWOT. January 30th 2017, IGE
(Grenoble, France).

• Observability of oceanic turbulence by the SWOT mission. October 24th 2017, IGE (Grenoble, France).

• Observability of oceanic turbulence by the SWOT mission. Seminar given on February 5th 2019,
IMEDEA (Esporles, Spain).

• Observability of oceanic fine-scales by the SWOT mission. Doctoriades: Journée de la jeune recherche,
October 17th-18th 2019, Université de Toulon (Toulon, France).

A.4 Participation in summer schools and courses followed

• OceanHackweek (Seattle (USA), 2019)

• Becoming a Researcher (Grenoble (France), 2019)

• La santé des étudiants : formation diplômante au secourisme, sensibilisation au mal-être étudiant et
au handicap (Grenoble (France), 2019)

• Grenoble Software Carpentry (Grenoble (France), 2018)

• GODAE OceanView International School (Pollença, Mallorca (Spain), 2017)

• Introduction to Data Assimilation (Grenoble (France), 2017)

A.5 Participation in scientific projects

• PRE-SWOT: Mesoscale and sub-mesoscale vertical exchanges from multiplatform experiments and
supporting modeling simulations: anticipating SWOT launch (2016 - 2019). PI: Ananda Pascual.
Principal organization, Spanish National Research Council (CSIC).

https://digital.csic.es/handle/10261/172644

• Ocean Modelling and Data-Assimilation for SWOT mission: preparing the inversion of SWOT ocean
data (2016-2019). PIs: Emmanuel Cosme and Julien Le Sommer. SWOT Science Team (SWOT-ST).

https://meom-group.github.io/projects/swot-st/

• MOMOMS: Merging Ocean Models and Observations at Mesoscale and Submesoscale (2017-2020). PI:
Emmanuel Cosme. Ocean Surface Topography Science Team (OST-ST, CNES-NASA-EUMETSAT-
NOAA).

https://sealevel.jpl.nasa.gov/science/ostscienceteam/scientistlinks/scientificinvestigations2017/
cosme/

• MULTI-SUB: Mesoscale and Sub-mesoscale Vertical Exchanges from Multi-platform Experiments and
Supporting Modeling Simulations (2015 - 2019). PI: Ananda Pascual. SWOT Science Team (SWOT-
ST).

https://swot.jpl.nasa.gov/documents/1529/?list=projects
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• MANATEE: Multi-platform experiments, numerical simulations ANd dATa sciEnce techniques for gen-
eration of new altimEtric products: focus on mesoscale and sub-mesoscale variability in the Western
Mediterranean Sea (2017 - 2020). PI: Ananda Pascual. Ocean Surface Topography Science Team
(OST-ST, CNES).

https://sealevel.jpl.nasa.gov/science/ostscienceteam/scientistlinks/scientificinvestigations2017/
pascual/

• BOOST-SWOT: Building Of Ocean Surface Topography maps from SWOT (2018 - 2021). PI. Em-
manuel Cosme. Project funded by the French National Research Agency (ANR).

https://anr.fr/Project-ANR-17-CE01-0009.

A.6 Participation in oceanographic cruises

• Pre-SWOT cruise: May 2018. The results of this PhD helped plan the oceanographic campaign sam-
pling and contributed to the Pre-SWOT project.

A.7 Outreach activities

During my PhD I have organized and participated in different outreach activities at both institutions:

• IGE

– World Ocean Day event on 8th June 2018, Saint Martin d’Heres (France).

– Tribulations savantes 2018 and 2019 at Université Grenoble Alpes, Saint Martin d’Heres (France).

– Fête des tuiles ocean circulation and plastic pollution stand, June 2019, Grenoble (France).

• IMEDEA

– Organization of an Ocean circulation workshop during Semana de la Ciencia y la Tecnología,
November 2017 and 2018, Esporles (Spain).

– Participation in Balears Fa Ciència radio programme on the 11F platform (https://11fbalears.org/),
February 2019, Palma de Mallorca (Spain).

– Gave a presentation on an ocean circulation workshop at Palma aquarium, February 2019, Palma
de Mallorca (Spain).

A.8 Other activities

• Teaching: I taught in the Ocean-Climate-Atmosphere course of L3 Sciences de la Terre undergraduate
degree at the University Grenoble Alpes in 2018, 2019 and 2020.

• Short research stay at the University of Michigan under the supervision of B. K. Arbic to work on the
effect of internal tides and waves on the SWOT satellite during January 2019.
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Appendix B

List of Abbreviations

ADCP : Acoustic Doppler Current Profiler)

AE : Anticyclonic Eddy

ASO : August September October

AZO : AZOres islands region

BMs : Balanced Motions

CE : Cyclonic Eddy

CMEMS : Copernicus Marine Environment Monitoring Service

CNES : Centre National d’Études Spatiales

CTD : Conductivity–Temperature–Depth

DFS : Drakkar Forcing Set

DUACS : Data Unification and Altimeter Combination System

ECMWF : European Centre for Medium-Range Weather Forecasts

eNATL60 : extended North ATLantic simulation of 1
60

◦ resolution

FISTA : Fast Iterative Shrinkage-Thresholding Algorithm

FMA : February March April

GLORYS : GLobal Ocean ReanalYsiS

GST : Gulf STream region

HF : High Frequency radar

HYCOM25 : HYbrid COordinate Model simulation of 1
25

◦ resolution

IGWs : Internal Gravity Waves

KaRIn : Ka-band Radar Interferometer
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Ls : spatial resolved wavelength

Lt : Transition scale

MITgcm48: Massachusetts Institute of Technology general circulation model simulation of 1
48

◦ resolution

MLD : Mixed Layer Depth

MSR : Mean Spectral Ratio

NASA : National Aeronautics and Space Administration

NATL60 : North ATLantic simulation of 1
60

◦ resolution

NEMO : Nucleus for European Modeling of the Ocean

OGCMs : Ocean General Circulation Models

OI : Optimal Interpolation

OOS : Ocean Observing Systems

OSMOSIS : Ocean Surface Mixing, Ocean Submesoscale Interaction Study

OSSEs : Observing System Simulation Experiments

PAC : south PACific region

PNR : Percentage of Noise Removed

PSD : Power Spectral Density

Ri : Richardson number

RMS : Root Mean Square

RMSE : Root Mean Square Error

Ro : Rossby number

ROMS : Regional Oceanic Modeling System

SAR : Synthetic Aperture Radar

SLA : Sea Level Anomaly

SMOS : Soil Moisture and Ocean Salinity satellite

SNR : Signal to Noise Ratio

SSH : Sea Surface Height

SSS : Sea Surface Salinity

SST : Sea Surface Temperature

SWH or Hs : Significant Wave Height

SWOT : Surface Water Ocean Topography

Tp : wave period

UMs : Unbalanced Motions

WaCM : Winds and Currents Mission

WMED : Western MEDiterranean region
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