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Cohomologie des brés holomorphes et classes de
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This thesis consists of two parts. In the rst part, we study the cohomology of a compact Kähler manifold with values in a pseudo-eective line bundle. This part also describes various results concerning pseudo-eective vector bundles. Since several of our denitions do not require the use of a Kähler metric, the corresponding results also apply to general compact complex manifolds. The second part of the thesis concentrates on nding adequate denitions of Chern classes (or equivalently, of Chern characteristic classes) in Bott-Chern cohomology with rational coecients. A related intersection theory is developed for that purpose in the context of integral Bott-Chern cohomology.

The organisation of the thesis is as follows. In Chapter 2, we improve the hard Lefschetz theorem obtained by Demailly, Peternell and Schneider, and discuss the optimality of the resulting statement. We show in particular that the holomorphic sections constructed in this result are in fact parallel with respect to the given positive singular metrics. A consequence of this property is the existence of naturally related holomorphics foliations.

In Chapter 3, we study the numerical dimension of a pseudo-eective line bundle over a compact Kähler manifold, and, in the framework of L 2 estimates, we obtain vanishing theorems analogous to those of Fedor Bogomolov and Junyan Cao, expressed in terms of numerical dimension.

In Chapter 4, we introduce the denition of nefness in higher codimension, a concept that interpolates between usual nefness and pseudo-eectivity. In this setting, we give a simplied proof of a result of Nakayama on the non-existence of Zariski decompositions in dimension at least 3. We also state a variant of the Bogomolov theorem and study the surjectivity of the Albanese map of a compact Kähler manifold when the anticanonical line bundle is pseudo-eective.

Chapter 5 discusses the concept of strongly pseudo-eective vector bundle or torsion-free sheaf, and proves the result that a strongly pseudo-eective reexive sheaf with vanishing rst Chern class over a compact Kähler manifold is in fact a numerically at vector bundle.

In Chapter 6, following some ideas of Julien Grivaux, we construct an intersection theory for the integral Bott-Chern cohomology that had been dened in 2007 by Michel Schweitzer. A combination of these works allows us to dene Chern classes and to obtain a Riemann-Roch-Grothendieck formula in rational Bott-Chern cohomology. v Résumé Cette thèse comporte deux parties. Dans la première partie, nous étudions la cohomologie des variétés kähleriennes compactes à valeurs dans un bré en droites pseudo-eectif, et également diérents résultats concernant les brés vectoriels pseudo-eectifs. Comme certaines de nos dénitions ne nécessitent pas l'existence de métriques kähleriennes, les résultats correspondents s'appliquent aussi aux variétés complexes compactes arbitraires. Dans la seconde partie, nous nous attachons à trouver une dénition appropriée des classes de Chern (ou, de façon équivalente, des classes de Chern caractéristiques) pour la cohomologie de Bott-Chern à coecients rationnels. Nous développons parallèlement une théorie de l'intersection dans le contexte de la cohomologie de Bott-Chern entière. L'organisation de la thèse est la suivante. Dans le Chapitre 2, nous améliorons le théorème de Lefschetz dicile à valeurs dans un bré en droites démontré par Demailly, Peternell et Schneider, et discutons l'optimalité de l'énoncé qui en découle. Nous montrons en particulier que les sections holomorphes construites dans ce résultat sont en fait parallèles par rapport à la métrique singulière donnée. Une conséquence de cette propriété est l'existence de feuilletages holomorphes naturellement reliés. Dans le Chapitre 3, nous étudions la dimension numérique d'un bré en droites pseudo-eectif sur une variété kählerienne compacte, et, dans le cadre des estimations L 2 , nous obtenons des théorèmes d'annulation analogues à ceux de Fedor Bogomolov et de Junyan Cao, exprimés en termes de la dimension numérique. Dans le Chapitre 4, nous introduisons la dénition du concept de bré en droites nef en dimension supérieure, qui interpole entre la propriété nef usuelle et la pseudo-eectivité. Dans ce contexte, nous donnons une preuve simpliée d'un résultat de Nakayama sur la non-existence de décompositions de Zariski en dimension au moins 3. Nous énonçons aussi une variante du théorème d'annulation de Bogomolov et étudions la surjectivité du morphisme d'Albanese d'une variété kählerienne compacte dont le diviseur anticanonique est pseudo-eectif. Le Chapitre 5 propose une discussion de la notion de bré vectoriel ou de faisceau sans torsion pseudoeectif (au sens fort). Nous montrons qu'un faisceau réexif pseudo-eectif au sens fort sur une variété kählerienne compacte ayant une première classe de Chern triviale est en fait numériquement plat. Dans le Chapitre 6, en nous inspirant d'idées de Julien Grivaux, nous construisons une théorie de l'intersection pour la cohomologie de Bott-Chern entière, qui avait été introduite en 2007 par Michel Schweitzer. Une combinaison de ces travaux nous permet de dénir les classes de Chern et d'obtenir une formule de Riemann-Roch-Grothendieck en cohomologie de Bott-Chern rationnelle. vii Remerciements Tout d'abord, je tiens à exprimer ma gratitude à mon directeur de thèse, Jean-Pierre Demailly. C'est un grand honneur pour moi d'avoir pu progresser dans le domaine de la géométrie analytique sous la direction d'un tel expert. Je ne saurais que sous-estimer son inuence sur mon apprentissage des mathématiques depuis mon projet de M2. L'achèvement de cette thèse doit largement à sa grande disponibilité, son ample générosité, à son énorme savoir mathématique et aussi sa tolérance pour mes vues parfois un peu naïves et mes fautes mathématiques durant ces années de préparation. Les discussions que nous avons eues m'ont beaucoup nourri d'intuitions mathématiques. D'avoir été son étudiant, cela a été pour moi une expérience très fructiante et très agréable. Je dois aussi un grand merci à Andreas Höring et Mihai P un d'avoir accepté d'être rapporteurs de cette thèse. C'est en outre un grand honneur pour moi que Sébastien Boucksom, Junyan Cao, Philippe Eyssidieux, Julien Grivaux et Catriona Maclean aient accepté de faire partie de mon jury. Pendant mon travail de thèse, j'ai beaucoup tiré prot de leurs travaux et suggestions. L'inuence de leurs idées sur cette thèse se mesure déjà en regardant la liste des références

Une classe de cohomologie α P H 1,1 BC pX, Cq est dite pseudo-eective ppsef q si elle contient un courant positif.

Une façon usuelle de construire une métrique singulière est d'utiliser des sections globales du bré en droites. Par exemple, on a la formule de Lelong-Poincaré suivante : soit f P H 0 pX, O X q une fonction holomorphe non nulle, Z f " ř m j Z j , m j P N, le diviseur zéro de f et rZ f s " ř m j rZ j s le courant d'intégration associé au diviseur zéro. Alors i π BBlog|f | " rZ f s.

Si f est une section globale non nulle à valeurs dans un bré en droites L, la même formule donne un courant positif représentant la première classe de Chern c 1 pLq.

Une autre méthode puissante permettant de construire des métriques singulières à la limite repose sur l'utilisation de l'équation de Monge-Ampère. On peut ainsi construire une suite de métriques dont la masse se concentre de plus en plus au voisinage d'un ensemble analytique donné, par une application du théorème de Calabi-Yau [START_REF] Yau | On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I[END_REF] (le cas Kähler-Einstein avec c 1 pXq ă 0 étant dû à Aubin).

Théorème 0.1.4. (Yau) Soit pX, ωq une variété kählerienne compacte de dimension n. Alors pour toute forme volume lisse f ą 0 satisfaisant ş X f " ş X ω n , il existe une métrique kählerienne ω " ω `iBBϕ telle que ωn " f . On peut citer [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov[END_REF], [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF], [START_REF] Demailly | Numerical characterization of the Kähler cone of a compactKähler manifold[END_REF] parmi les travaux utilisant ce cercle d'idées. Une autre technique utile consiste à utiliser des métriques Hermite-Einstein pour les brés vectoriels stables E sur une variété Kählerienne compacte pX, ωq. Rappelons qu'une métrique Hermite-Einstein est une métrique telle que ΛiΘpEq " c Id E où Λ est l'adjoint de ω ^', et où c est une constante. L'existence de telles métriques a été prouvée par [START_REF] Donaldson | Anti self-dual Yang-Mills connections over complexalgebraic surfaces and stable vector bundles[END_REF], [START_REF] Uhlenbeck | On the existence of Hermitean Yang-Mills-connections on stable bundles over Kähler manifolds[END_REF], [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF].

Un autre cône important est le cône nef. La dénition relative au cas non algébrique a été introduite dans [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF]. Définition 0.1.5. (bré en droites nef ) Un bré en droites L sur une variété complexe compacte X est dit nef si pour tout ε ą 0, il existe une métrique hermitienne lisse h ε sur L telle que iΘ L,hε ě ´εω où ω est une métrique hermitienne lisse.

Une classe de cohomologie α P H 1,1 BC pX, Cq est dite nef si pour toute ε ą 0, il existe un représentant lisse α ε P α tel que α ε ě ´εω, où ω est une métrique hermitienne lisse.

De manière générale, il est intéressant d'étudier les cônes positifs associés à des variétés complexes compactes et de les relier à la géométrie de la variété. Leur importance se réète déjà dans les diverses reformulations ou généralisations du théorème de plongement de Kodaira. Pour le cas non algébrique, un tel énoncé est donné dans [START_REF] Demailly | Numerical characterization of the Kähler cone of a compactKähler manifold[END_REF] : une variété complexe compacte X contient un courant kählerien (à savoir un courant T P H 1,1 pX, Rq tel que T ě ω pour une certaine forme hermitienne lisse ω), si et seulement si elle est biméromorphe à une variété kählerienne. Dans la situation algébrique, on a le théorème d'annulation de Kawamata-Viehweg. Théorème 0.1.5. (Théorème d'annulation de Kawamata-Viehweg) Soit X une variété algébrique projective lisse et soit F un bré en droites sur X tel que F possède un multiple mF s' écrivant sous la forme mF " L `D où L est un bré en droites nef, et D un diviseur eectif. Alors H q pX, OpK X `F q b Ipm ´1Dqq " 0 multiplicateurs ad hoc. Dans ce cas, la formule de Riemann-Roch-Hirzebruch prédit la croissance des sections globales du produit tensoriel d'un bré en droites. En particulier, si le bré en droites L est nef et gros, on a une croissance maximale des sections globales de L bm par rapport à m, et des groupes de cohomologie supérieurs triviaux pour m susamment grand.

En géométrie complexe, les classes de Chern peuvent être dénies et déclinées suivant diérentes théories cohomologiques : cohomologie singulière, cohomologie de De Rham, cohomologie de Dolbeault, cohomologie de Deligne, cohomologie de Bott-Chern complexe, etc. D'après les travaux de Michel Schweitzer [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF], il existe une théorie cohomologique plus précise que toutes les théories précédemment citées, à savoir la cohomologie de Bott-Chern à coecients entiers. On veut dire par là qu'il existe des morphismes naturels de la cohomologie de Bott-Chern entière vers toutes ces autres théories cohomologiques.

C'est donc une question naturelle de savoir si l'on peut généraliser la formule de Riemann-Roch-Hirzebruch et dénir les classes de Chern pour un faisceau cohérent sur une variété complexe compacte en cohomologie de Bott-Chern rationnelle.

Une diculté, mise en évidence par un résultat frappant de C. Voisin [START_REF] Voisin | A counterexample to the Hodge conjecture extended to Kähler varieties[END_REF], réside dans le fait que sur une variété complexe compacte arbitraire (même supposée kählerienne), une résolution d'un faisceau cohérent par des brés vectoriels n'existe pas nécessairement. Autrement dit, sur une variété complexe compacte quelconque, le groupe de Grothendieck des brés vectoriels n'est pas isomorphe au groupe de Grothendieck des faisceaux cohérents, même si c'est le cas pour une variété projective. Il nous faudra cependant donner un sens à la classe de Chern des images directes des faisceaux cohérents dans la formule de Riemann-Roch-Grothendieck. Il s'ensuit que la dénition des classes Chern des faisceaux cohérents sur des variétés complexes compactes est beaucoup plus intriquée que dans le cas algébrique. Les résultats que nous avons pu obtenir dans cette direction sont exposés dans la dernière partie de cette thèse.

Un résumé des principaux résultats

Le théorème d'annulation de Demailly-Nadel implique que dans le cadre des métriques singulières, la positivité d'un bré en droites entraîne des contraintes importantes sur les groupes de cohomologie.

La majeure partie de cette thèse portera sur les conséquences de l'existence de métriques positives singulières sur les groupes de cohomologie des brés vectoriels ou la structure géométriques des variétés mises en jeu.

Dans la dernière partie de la thèse, nous discutons de la construction des classes de Chern et de l'énoncé de la formule de Riemann-Roch-Grothendieck en cohomologie de Bott-Chern rationnelle (telle que dénie par Michel Schweitzer). 0.2.1. Théorème de Lefschetz dicile pour un bré en droites psef. D'après la formule de Riemann-Roch-Grothendieck et le théorème d'annulation de Kawamata-Viehweg, les sections globales des grandes puissances tensorielles d'un bré en droites nef et gros ont une croissance asymptotique maximale (de l'ordre de l'exposant élevé à une puissance égale à la dimension complexe). Dans le cas algébrique, one peut obtenir ces résultats en prenant une intersection par un hyperplan générique pour faire une récurrence sur la dimension.

En général, et dans le cas semi-positif, en particulier lorsque pL, hq est un bré en droites pseudo-eectif (psef ) possédant un faisceau d'idéaux multiplicateurs Iphq, les groupes de cohomologie de degrés supérieurs calculés sur une variété kählerienne compacte pX, ωq à valeurs dans K X bLbIphq ne sont pas nécessairement triviaux.

Cette situation est étudiée dans [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF], où Demailly, Peternell et Schneider construisent des préimages dans H 0 pX, Ω n´q X b L b Iphqq pour le morphisme de Lefschetz, c'est-à-dire le morphisme induit par ω q ^' à valeurs dans H q pX, K X b L b Iphqq. Lorsque le bré en droites L est trivial équipé de la métrique triviale, ce résultat redonne le théorème classique de Lefschetz dicile dans ce cas, comme il est bien connu, le morphisme de Lefschetz est un isomorphisme. Théorème 0.2.1. [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF]) Soit pL, hq un bré en droites pseudo-eectif sur une variété kählerienne compacte pX, ωq de dimension n. Soit Θ L,h ě 0 son courant de courbure et Iphq le faisceau d'idéaux multiplicateurs associé.

Alors, l'opérateur de produit extérieur ω q ^' induit un morphisme surjectif Φ q ω,h :

H 0 pX, Ω n´q X b L b Iphqq ÝÑ H q pX, Ω n X b L b Iphqq.
Le cas spécial où L est nef est dû à Takegoshi [START_REF] Takegoshi | On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds[END_REF]. Un cas encore plus spécial est lorsque L est semi-positif, c'est-à-dire que L possède une métrique lisse ayant une courbure semi-positive. Dans ce cas, le faisceau d'idéaux multiplicateurs Iphq coïncide avec O X et on obtient la conséquence suivante déjà observée par Enoki [START_REF] Enoki | Strong-Lefschetz-type theorem for semi-positive line bundles over compact Kähler manifolds[END_REF] et Mourougane [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov-Sommese[END_REF], à savoir que le morphisme H 0 pX, Ω n´q X b Lq Ñ H q pX, Ω n X b Lq est surjectif.

La stratégie de la preuve est la suivante. On approche la métrique singulière par une suite de métriques lisses en dehors d'ensembles analytiques propres, de sorte que le faisceau d'idéaux multiplicateurs soit préservé. Au cours du processus, on perd de manière inévitable un peu de positivité de courbure. Comme observé dans [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un bré vectoriel holomorphe semi-positif au dessus d'une variété kählérienne complète[END_REF], on peut modier la métrique de Kähler de façon à obtenir des métriques complètes sur les ouverts complémentaires de chacun des ensembles analytiques. Pour une classe de cohomologie de degré q donnée, on peut ainsi appliquer l'inégalité de Bochner (valable dans le cas kählerien complet) aux représentants harmoniques de cette classe par rapport aux métriques approchées du bré et aux métriques de Kähler complètes construites précédemment. Ceci permet de trouver une suite de préimages via l'isomorphisme de Lefschetz ponctuel. Grâce aux estimations L 2 obtenues, les préimages ont une limite faible qui sera holomorphe, quitte à passer à une sous-suite bien choisie. La limite faible de cette sous-suite est la section holomorphe souhaitée dans H 0 pX, Ω n´q X b L b Iphqq.

Dans le cas semi-positif, les choses sont beaucoup plus faciles car il n'est pas besoin de prendre une suite d'approximation des métriques singulières.

Dans le cas classique L " O X , on peut observer que toute section u P H 0 pX, Ω n´q X q satisfait la condition supplémentaire du " d h0 u " 0. Ceci se voit facilement à l'aide de la formule de Stokes, qui implique ż X idu ^du ^ωq´1 " ż X tdu, duu h0 ^ωq´1 " 0, où h 0 est la métrique lisse triviale sur O X .

La preuve du théorème de Lefschetz dicile donnée dans [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF] est obtenue en construisant les préimages comme limites de formes données par l'isomorphisme ponctuel de Lefschetz. On utilise ensuite une suite de représentants harmoniques d'une classe donnée dans H q pX, K X b L b Iphqq, par rapport aux métriques hermitiennes approximatives h ε , encore singulières, mais lisses sur des ouverts de Zariski. Il est alors naturel de se demander si la limite est harmonique par rapport à la métrique singulière originale h. Dans le cadre singulier, l'opérateur B h est encore un opérateur densément déni, mais il est a priori non évident d'évaluer le domaine de l'adjoint hilbertien B h . Néanmoins, cela a encore un sens de se demander si la limite est parallèle par rapport à la métrique singulière originale h.

Le calcul eectué ci-dessus correspond au cas d'un bré trivial muni d'une métrique triviale. Notre premier résultat détaillé dans [START_REF] Wu | On the hard Lefschetz theorem for pseudo-eective line bundles[END_REF] fournit une réponse armative à la question générale en étudiant des estimations supplémentaires dans le processus d'approximation de [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF]. Théorème 0.2.2. Toutes les sections holomorphes produites par le théorème de Lefschetz dicile à valeurs dans un bré en droites psef sont parallèles par rapport à la connexion de Chern associée à la métrique hermitienne singulière donnée h sur L, dès lors que celle-ci possède un courant de courbure semi-positif.

Le point essentiel de la preuve consiste à montrer que l'opérateur de dérivée covariante est toujours bien dénis dans le cadre singulier, et se comporte bien dans le processus d'approximation.

Plus précisément, soit ϕ la fonction de poids locale de la métrique singulière. Alors la dérivée Bϕ est une fonction L q loc pour tous q ă 2 (mais pas nécessairement pour q " 2, comme c'est le cas par exemple pour ϕ " log|z| sur C). Localement, la dérivée covariante d'une section u par rapport à la métrique singulière h peut s'écrire sous la forme B h u " Bu `Bϕ ^u.

Si u est une section holomorphe (donc en particulier localement bornée), le deuxième terme est le produit d'une forme L q loc par une section L 8 loc , ce terme est donc L q loc pour tout q ă 2. Dans le processus d'approximation, nous prenons en fait une section à valeurs dans L 2 loc pe ´ϕq. Pour montrer que le second terme est au moins bien déni dans L 1 loc par rapport à la mesure de Lebesgue, il sut également d'observer que Bϕ P L 2 loc pe ϕ q, ce qui est toujours le cas pour une fonction psh. Regardons à titre d'exemple le cas typique où ϕ " log|z| sur C. Alors la section u doit s'annuler en 0 et il sut d'observer que Bϕe ϕ " dz z ˆ|z| 2 " zdz.

Dans le cas pseudo-eectif, le morphisme de Lefschetz n'est en général plus injectif comme dans le cas classique du théorème de Lefschetz dicile. Un contre-exemple évident peut être obtenu en prenant L " mA où A est un diviseur ample, de sorte que h 0 pX, Ω n´q X bLq " Cm n pour m assez grand, mais h q pX, Ω n X bLq " 0 si q ą 0. Néanmoins, nous allons montrer qu'il y a un isomorphisme entre l'espace des sections qui sont parallèles par rapport à la métrique singulière et le groupe de cohomologie de degré supérieur considéré. Théorème 0.2.3. Soit pL, hq un bré en droites pseudo-eectif sur une variété kählerienne compacte pX, ωq. Alors, le produit extérieur avec la forme de Kähler induit un isomorphisme

Φ q ω,h : H 0 pX, Ω n´q X b L b Iphqq X KerpB h q ÝÑ H q pX, Ω n X b L b Iphqq.
En particulier si la métrique est semi-positive, on a un isomorphisme Φ q ω,h : H 0 pX, Ω n´q X b Lq X Kerp∆ B h q ÝÑ H q pX, Ω n X b Lq.

Cet énoncé entraîne en particulier la surjectivité stipulée par le théorème précédent. En application de ces résultats, nous montrons que chaque section holomorphe obtenue comme préimage dénit en fait une feuilletage sur X.

Théorème 0.2.4. Supposons que v P H 0 pX, Ω n´q X b L b Iphqq, q ě 1, soit une section parallèle par rapport à la métrique singulière h. En particulier, une section construite comme préimage par le théorème de Lefschetz dicile est parallèle. Le produit intérieur par v donne un O X -morphisme pdéni sur X tout entierq

F v : T X Ñ Ω n´q´1 X b L, ξ Þ Ñ ι ξ v.
Le noyau de F v dénit un sous-faisceau cohérent intégrable de OpT X q, et donc un feuilletage holomorphe.

Ici, nous entendons par feuilletage holomorphe un feuilletage éventuellement singulier, c'est-à-dire qu'il existe un ensemble analytique irréductible V de l'espace total T X tel que pour tout x P X, V x :" V X T X soit un espace vectoriel complexe et le faisceau de sections OpV q Ă OpT X q soit stable par crochets de Lie. Il est équivalent de dire que l'on a un sous faisceau cohérent OpV q qui est stable par crochets de Lie et saturé, c-à-d. OpT X q{OpV q est sans torsion. Observons qu'en général une section de H 0 pX, Ω n´q X bLbIphqq n'induit pas nécessairement un feuilletage singulier sur X. En fait, notre dénition du noyau de F v dénit une feuilletage si et seulement si d h v ^v " 0 qui est le cas quand la section mise en jeu est parallèle par rapport à la métrique singulière. Une question naturelle est de savoir si ce feuilletage est algébrique, au sens où il induit un espace quotient avec une structure d'espace complexe.

Il existe des exemples concrets présentant ce phénomène qui ont été initialement donnés par Beauville [START_REF] Beauville | Complex manifolds with split tangent bundle. Complex analysis and algebraic geometry[END_REF]; ils nous ont été indiqués par Andreas Höring. Un calcul complet se trouve dans la section 4 de notre travail [START_REF] Wu | On the hard Lefschetz theorem for pseudo-eective line bundles[END_REF].

Une autre possibilité pour généraliser le théorème de Lefschetz dicile est de se demander si l'on peut Les singularités d'une métrique se reètent notamment dans leurs idéaux multiplicateurs associés. Une situation géométrique fréquente est que la courbure d'une métrique singulière dégénère dans certaines directions. Ce phénomène conduit au concept de dimension numérique, qui, en gros, mesure le nombre de directions de courbure positives en un point générique. Un problème ouvert important de la géométrie complexe est la conjecture dite d'abondance. Cette dernière peut être vue comme une vaste généralisation des résultats actuellement connus sur la dimension de Kodaira κpXq " κpK X q, qui compte la croissance des sections pluricanoniques, c'est-à-dire les sections des multiples mK X où K X est le bré en droites canonique. Par dénition, pour tout bré en droites L, la dimension de Kodaira-Iitaka est κpLq " lim sup mÑ`8 logh 0 pX, mLq logm .

Un théorème bien connu de Siegel entraîne que κpLq P t´8, 0, 1, . . . , nu où n " dimX, et qu'en dehors du cas ´8, κpLq est le maximum des dimensions des images pluricanoniques Φ mL pXq Ă PpH 0 pX, mK X qq.

La conjecture d'abondance prédit que le bré canonique K X atteint toujours sa croissance asymptotique maximale possible comme m Ñ `8, et que κpK X q coïncide avec la dimension numérique (redénie plus loin).

Conjecture 0.2.1. (Conjecture d'abondance généralisée dans le cas kählérien, cf. [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF]). Pour une variété kählerienne compacte arbitraire X, la dimension de Kodaira coïncide avec la dimension numérique: κpK X q " ndpc 1 pK X qq.

Une version kählerienne de la dénition de la dimension numérique est donnée dans [START_REF] Demailly | On the cohomology of pseudoeective line bundles[END_REF] ou [START_REF] Boucksom | On the volume of a line bundle[END_REF].

Définition 0.2.1. (Dimension numérique)

Pour un bré en droites psef L sur une variété kählerienne compacte pX, ωq, la dimension numérique de L est dénie comme ndpLq :" max " p P r0, ns; Dc ą 0, @ε ą 0, Dh ε , iΘ L,hε ě ´εω, telle que ż X Zε piΘ L,hε `εωq p ^ωn´p ě c * .

Ici, les métriques h ε sont supposées avoir des singularités analytiques, et on désigne par Z ε l'ensemble singulier de la métrique.

Pour un bré en droites nef, cette dénition coincide avec la dénition donnée dans la section précédente. Une dénition équivalente peut être donnée en termes du produit (d'intersection) positif déni dans [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF]. Le Une dénition plus intuitive du produit positif est donnée dans [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF], comme suit. Supposons que α soit une classe grosse sur une variété kählerienne compacte pX, ωq (c'est-à-dire que α contient un courant T tel que T ě Cω pour une certaine constante C ą 0). Pour déterminer la valeur du produit, il sut de connaître son accouplement avec n'importe quelle forme test de bidegré pn ´p, n ´pq, et, en fait avec une famille dénombrable dense de formes dans l'espace des formes lisses.

Puisque toute forme u de bidegré pn ´p, n ´pq peut s'écrire u " Cω n´p ´pCω n´p ´uq avec deux formes Cω n´p et Cω n´p ´u fortement positives sur la variété compacte X si C ą 0 est assez grand, il sut de prendre en compte les accouplements avec une famille dénombrable dense de formes fortement positives.

Fixons une forme fermée fortement positive du type pn ´p, n ´pq u sur X. On sélectionne des courants de Kähler T P α avec singularités analytiques et une résolution logarithmique µ : X Ñ X telle que µ ˚T " rEs `β où rEs est le courant associé à un R´diviseur et β est une forme semi-positive. Nous considérons le courant image directe µ ˚pβ ^. . . ^βq. Étant donné deux courants p1, 1q positifs fermés T 1 , T 2 P α, nous pouvons écrire T j " θ `iBBϕ j (j " 1, 2) pour certains forme lisse θ P α. Dénissons T :" θ `iBB maxpϕ 1 , ϕ 2 q. On obtient ainsi un courant à singularités analytiques moins singulier que les deux courants T 1 , T 2 . De cette façon, si on change le représentant T en un autre courant T 1 , on peut toujours prendre une log-résolution simultanée telle que µ ˚T 1 " rE 1 s `β1 , et supposer que E 1 ď E. Par un calcul direct, on trouve ż X β 1 ^. . . ^β1 ^µ˚u ě ż X β ^. . . ^β ^µ˚u . On peut montrer que les courants positifs fermés µ ˚pβ ^. . . ^βq sont uniformément bornés en masse. Pour chacune des intégrales associées à une famille dénombrable dense de formes u, le supremum de l'intégrale ş X β . . . ^β ^µ˚u est réalisé par une suite de courants pµ m q ˚pβ m ^. . . ^βm q obtenus comme images directes, pour une suite appropriée de modications µ m : Xm Ñ X et pour des formes β m appropriées. En extrayant une sous-suite, on peut supposer que cette suite est faiblement convergente et on dénit xxα p yy :" lim Ò mÑ`8 tpµ m q ˚pβ m ^. . . ^βm qu.

Si α est seulement psef, on dénit xxα p yy :" lim Ó δÓ0 xxpα `δtωuq p yy.

On peut vérier que h 2 pX, K X b Lq " 0. En fait, la situation envisagée ici est plus facile que celle étudiée par Junyan Cao, puisque nous ne gardons pas de faisceau d'idéaux multiplicateurs dans l'image.

Le dernier résultat que nous énonçons dans cette partie est un théorème d'annulation de type Kodaira-Nakano-Akizuki ( [Wu19c]), exprimé en termes de lieux base augmentés.

Théorème 0.2.7. Soit X une variété projective de dimension n et L un bré en droites holomorphes nef sur X. Alors on a H p pX, Ω q X b Lq " 0 pour tout p `q ą n `maxpdimpB `pLqq, 0q. Ici B `pLq désigne le lieu base augmenté pou lieu non ampleq de L. Lorsque B `pLq " H, on pose par convention que la dimension est ´1. 0.2.3. Fibré en droite nef en dimension supérieure.

Comme on l'a rappelé dans l'historique du début, la projectivité d'une variété compacte est caratérisée par l'existence d'une classe rationnelle dans le cône de Kähler. De manière générale, il est intéressant d'étudier les cônes positifs attachés aux variétés complexes compactes et de les relier à la géométrie de ces variétés. En géométrie algébrique classique ou complexe, l'accent est mis sur deux types de cônes positifs: les cônes nef et psef, qui sont dénis comme étant les cônes convexes fermés engendrés par les classes nef et les classes psef, respectivement. Le cône nef est bien entendu contenu dans le cône psef.

Remarquons qu'en géométrie algébrique, les propriétés de dualité des cônes apparaissent dans de nombreux contextes, et que les cônes fermés sont souvent plus aisés à décrire que les cône ouverts.

Les travaux de Boucksom [START_REF] Boucksom | On the volume of a line bundle[END_REF] dénissent et étudient un cône déni comme étant le cône nef modié, pour une variété complexe compacte arbitraire. En utilisant ce concept, Boucksom a pu montrer l'existence d'une décomposition de Zariski divisorielle pour toute classe psef (c'est-à-dire toute classe de cohomologie contenant un courant positif ). Le cône modié se trouve être compris entre les cônes nef et psef.

En nous inspirant de la dénition de Boucksom, nous introduisons dans [START_REF] Wu | Considerations on nefness in higher codimension[END_REF], pour toute variété complexe compacte, un concept de cône nef en codimension arbitraire ; les cônes associés aux diverses codimensions possibles fournissent une interpolation entre les cônes positifs psef et nef. Définition 0.2.2. (Multiplicités minimales) ( [Bou02a]) La multiplicité minimale en un point x P X d'une classe pseudo-eective α P H 1,1 BC pX, Rq est dénie par νpα, xq :" sup εą0 νpT min,ε , xq où T min,ε est un représentant de la classe d'équivalence des courants T P α à singularités minimales tels que T ě ´εω, et où νpT min,ε , xq désigne le nombre de Lelong de T min,ε en x. Lorsque Z est un sous-ensemble analytique irréductible, on dénit la multiplicité minimale générique de α le long de Z par νpα, Zq :" inftνpα, xq, x P Zu. Définition 0.2.3. Soit α P H 1,1 BC pX, Rq une classe psef. Nous dirons que α est nef en codimension k, si pour tout sous-ensemble analytique irréductible Z Ă X de codimension au plus égal à k, on a νpα, Zq " 0.

Avec cette terminologie, le cône nef est le cône nef en codimension n, où n est la dimension complexe de la variété, tandis que le cône psef est le cône nef en codimension 0, et le cône nef modié est le cône nef en codimension 1. Dans le même article, nous montrons au moyen d'exemples explicites que ces cônes sont en général diérents.

Comme application, nous obtenons la généralisation suivante ( [START_REF] Wu | Considerations on nefness in higher codimension[END_REF]), du cas nef au cas psef, d'un résultat voisin énoncé dans [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF]. Théorème 0.2.8. Soit pX, ωq une variété kählerienne compacte de dimension n et L un bré en droites sur X qui est nef en codimension 1. Supposons que xL 2 y ‰ 0 où x'y est le produit positif déni dans [START_REF] Boucksom | On the volume of a line bundle[END_REF]. Supposons qu'il existe un diviseur entier eectif D tel que c 1 pLq " c 1 pDq . Alors H q pX, K X `Lq " 0 pour q ě n ´1.

La preuve du théorème repose sur une récurrence sur la dimension, en utilisant le théorème 0.2.6 du chapitre précédent. Une diérence par rapport au cas nef étudié dans [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF] réside dans le fait que le produit positif (ou nombre d'intersection mobile) n'est plus linéaire dans le cas psef. Cependant, sous la condition que L soit nef en codimension supérieure, nous avons l'estimation suivante. Proposition 0.2.3. Soit α une classe nef en codimension p sur une variété kählerienne compacte pX, ωq. Alors pour tout k ď p et toute pn ´k, n ´kq-forme Θ positive fermée, on a pα k , Θq ě xα k , Θy.

Grâce à cette inégalité, le calcul du nombre d'intersection eectué dans [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF] se trouve être toujours valide, de même que les calculs de cohomologie qui en résultent. Remarquons que le courant à singularités minimales n'est pas toujours à singularités analytiques, comme cela a été observé par Matsumura [START_REF] Matsumura | A Nadel vanishing theorem for metrics with minimal singularities on big line bundles[END_REF] pour la classe α construite par [START_REF] Nakayama | Zariski decomposition and abundance[END_REF], qui est grosse et nef en codimension 1 mais non en codimension 2.

Une conséquence directe de l'observation de Matsumura est que l'hypothèse supplémentaire de notre version du théorème d'annulation de Kawamata-Viehweg énoncée ci-dessus, suivant laquelle le bré en droites est numériquement équivalent à un diviseur entier eectif, est bien nécessaire.

Dans le cas nef étudié dans [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF], il se trouve que les auteurs parviennent à déduire de l'hypothèse que le bré en droites L est nef avec pL 2 q ‰ 0 que L est bien numériquement équivalent à un diviseur entier eectif D, de sorte qu'il existe une métrique singulière positive h sur L telle que Iphq " Op´Dq. Cependant, pour un bré en droites L sur une variété kählerienne compacte pX, ωq, qui est gros et nef en codimension 1 mais non nef en codimension 2 et tel que xL 2 y ‰ 0, le courant i 2π ΘpL, h min q n'est pas associé à un diviseur entier eectif.

Une autre conséquence est un exemple (probablement déjà connu) d'une variété projective X telle que ´KX soit psef, pour laquelle le morphisme d'Albanese n'est pas surjectif. Il a été démontré dans [Cao13],

[Pau17] (et [START_REF] Zhang | Rational connectedness of log Q-Fano varieties[END_REF] pour le cas projectif ) que le morphisme d'Albanese d'une variété kählerienne compacte avec ´KX nef est toujours surjectif. Remplacer la propriété nef par la pseudo-eectivité dans l'étude du morphisme d'Albanese semble donc être un problème non trivial. Un résultat positif partiel est celui de notre article déjà cité, armant que le morphisme d'Albanese d'une variété compacte Kählerienne qui a un bré en droites anticanoniques ´KX psef et satisfaisant une condition d'intégralité est encore surjectif. Théorème 0.2.9. Soit pX, ωq une variété kählerienne compacte de dimension n telle que ´KX soit psef. Supposons qu'il existe une suite ε ν ą 0 telle que lim νÑ8 ε ν " 0 et Iph εν q " O X pour une suite de métriques h εν sur ´KX à singularités analytiques et telles que iΘp´K X , h εν q ě ´εν ω. Alors le morphisme d'Albanese α X est surjectif à bres connexes. Plus précisément, le morphisme d'Albanese est une submersion en dehors d'un ensemble analytique de codimension au moins égale à 2.

Notons que lorsque ´KX est nef, l'hypothèse du théorème ci-dessus est satisfaite. La stratégie de la preuve est analogue à celle de Junyan Cao dans [START_REF] Cao | A remark on compact Kähler manifolds with nef anticanonical bundles and applicaions[END_REF]. On considère la ltration de Harder-Narasimhan de T X 0 Ă E 0 Ă E 1 Ă ¨¨¨Ă E s " T X .

Le point essentiel est de prouver que les pentes de E i`1 {E i sont semi-positives. Supposons pour simplier que tous les E i`1 {E i soient des brés vectoriels. D'après [START_REF] Uhlenbeck | On the existence of Hermitean Yang-Mills-connections on stable bundles over Kähler manifolds[END_REF], l'équation de Hermite-Einstein admet toujours une solution pour des brés vectoriels stables.

En consédérant le signe des pentes, on voit que la trace de la courbure de E i`1 {E i est semi-positive, ce qui permet de construire une métrique sur T X dont la partie négative de la courbure de Ricci peut être prise arbitrairement petite. Grâce à la technique de Bochner, on vérie que les sections non nulles de H 0 pX, Ω 1 X q ne s'annulent en aucun point, ce qui conclut la surjectivité du morphisme d'Albanese.

Une question centrale de géométrie analytique est de classier les variétés complexes vériant diverses conditions. En ce qui concerne la structure des variétés projectives ayant un bré en droites anticanonique nef, un ingrédient clé utilisé par Junyan Cao [START_REF] Cao | Albanese maps of projective manifolds with nef anticanonical bundles[END_REF] pour la preuve de l'isotrivialité du morphisme d'Albanese est la trivialité numérique de certains brés vectoriels.

La notion de bré vectoriel numériquement plat peut être dénie de manière purement algébrique, mais sur une variété complexe quelconque on peut observer qu'un tel bré vectoriel est soumis à de fortes contraintes métriques quant à sa courbure. Dans [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF], Demailly, Peternell et Schneider ont prouvé qu'un bré vectoriel numériquement plat E sur une variété kählerienne compacte X admet une ltration par des brés vectoriels dont le gradué est somme directe de brés hermitiens plats. En ce sens, la platitude métrique est le correspendant analytique de la notion algébrique de platitude numérique.

Dans les travaux [START_REF] Campana | Projective klt pairs with nef anti-canonical divisor[END_REF] et [START_REF] Hosono | On projective manifolds with pseudo-eective tangent bundle[END_REF], les auteurs considèrent la question suivante. Si on a (dans un sens adéquat) un bré vectoriel pseudo-eectif sur une variété projective ayant une première classe de Chern triviale, ce bré vectoriel est-il numériquement plat? Puisqu'un bré vectoriel E est numériquement plat si et seulement si E et detpEq ´1 sont nefs (ou encore, si et seulement si E et E ˚sont nefs), la question revient à se demander si un tel bré vectoriel est en fait nef.

Intuitivement, une métrique singulière à courbure semi-positive sur le bré vectoriel E devrait induire une métrique singulière à courbure semi-positive sur le déterminant detpEq. Comme la première classe Chern de E (c'est-à-dire la classe Chern de detpEq) est supposée triviale, une métrique à courbure semi-positive est nécessirement plate et elle ne peut donc posséder aucune singularité. Ceci implique que toute métrique singulière à courbure semi-positive sur E est nécessairement lisse. On s'attend à ce qu'une telle propriété ait lieu de manière générale pour une variété kählerienne compacte arbitraire, puisque les propriétés mises en jeu font encore sens dans cette situation. Nous montrerons que c'est bien le cas dans le chapitre 5 : Théorème 0.2.10. Soit E un bré vectoriel fortement pseudo-eectif tel que c 1 pEq " 0. Alors E est un bré vectoriel nef.

On peut en fait s'attendre à un certain nombre de propriétés plus générales des brés fortement psef impliquant le résultat précédent comme cas particulier. Si E est fortement psef, la classe de cohomologie c 1 pO PpEq p1qq est psef et contient une métrique pas trop singulière (la dénition implique grosso modo que la projection du lieu singulier sur X est contenue dans un ensemble analytique de codimension au moins 1). Ceci entraîne que les puissances extérieures pas trop élevées de la classe Chern c 1 pO PpEq p1qq sont positives, et donc que leur images directes sous la projection π : PpEq Ñ X le sont aussi. En particulier, on peut espérer que la deuxième classe de Segré π ˚pc 1 pO PpEq p1qqq r`1 soit semi-positive (c'est-à-dire, qu'elle contienne un courant positif ) où r est le rang de E. Rappelons que c'est aussi la classe c 1 pEq 2 ´c2 pEq. D'après l'inégalité de Bogomolov, lorsque c 1 pEq " 0 et que E est semi-stable, l'intégrale de c 2 pEq ^ωn´2 sur X est positive pour toute forme de Kähler ω sur X, où n est la dimension de X. En comparant les deux inégalités, on conclut que c 2 pEq " 0, donc l'inégalité de Bogomolov sera en fait une égalité.

Remarquons que pour un faisceau reexif F, les classes de Chern peuvent être dénies comme suit. Soit σ : p X Ñ X une modication telle que σ ˚F {Tors soit un bré vectoriel. Alors pour tout i " 1, 2, c i pFq :" σ ˚ci pσ ˚F q est indépendant du choix de la modication σ. Moralement, nous espérons que les mêmes calculs que ci-dessus s'appliquent en passant à un modèle birationnel, et en prenant des images directes, que l'égalité dans l'inégalité de Bogomolov soit atteinte.

Notons le résultat important suivant de [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF] : pour un faisceau réexif polystable F de rang r sur une variété kählerienne compacte pX, ωq de dimension n, on a l'inégalité de Bogomolov ż X p2rc 2 pFq ´pr ´1qc 1 pFq 2 q ^ωn´2 ě 0.

De plus, l'égalité a lieu si et seulement si F est localement libre (c'est-à-dire si F est un bré vectoriel), et si sa métrique Hermite-Einstein donne une connexion projectivement plate. Les notions de faisceau réexif nef ou psef sont dénies ici comme suit. Définition 0.2.4. Un faisceau sans torsion F sur une variété complexe compacte (resp. compacte kählerienne) est dit nef presp. fortement psef q s'il existe une modication σ : X Ñ X telle que σ ˚F modulo torsion soit un bré vectoriel nef presp. fortement psef q.

Comme conséquence de ce qui précède, il est naturel d'espérer le fait plus fort suivant : un faisceau réexif fortement psef sur une variété kählerienne compacte pX, ωq ayant une première classe de Chern triviale est en fait un bré vectoriel nef. Au chapitre 5, nous prouvons que c'est vraiment le cas. Une diculté de l'approche précédente réside dans la fait qu'en général un produit extérieur de courants positifs n'est pas nécessairement bien déni. Pour contourner cette diculté, nous commençons par prouver le résultat suivant. Théorème 0.2.11. Soit F un faisceau réexif nef sur une variété kählerienne compacte pX, ωq tel que c 1 pFq " 0. Alors F est un bré vectoriel nef.

En combinant maintenant les deux théorèmes ci-dessus, on parvient alors à l'énoncé suivant. Théorème 0.2.12. Soit F un faisceau fortement psef réexif sur une variété ählerienne compacte pX, ωq avec c 1 pFq " 0. Alors F est un bré vectoriel nef.

On observe que dans l'approche ci-dessus, tous les produits extérieurs sont bien dénis sans restriction sur la codimension du lieu singulier de la métrique. En d'autres termes, pour un bré vectoriel fortement psef E, on peut trouver un courant positif représentant la classe de cohomologie c 1 pEq (mais ce n'est pas nécessairement le cas pour c 2 pEq). Dans le chapitre 5, nous donnons une dénition d'un bré vectoriel psef essentiellement équivalente à la version kählerienne proposée dans [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF]. Définition 0.2.5. Soit pX, ωq une variété kählerienne compacte et E un bré vectoriel holomorphe sur X. On dit que E est fortement pseudo-eectif pen abrégé, fortement psef q si le bré en droites O PpEq p1q est pseudo-eectif sur le projectivisé PpEq des hyperplans de E, et si pour tout ε ą 0, on peut trouver une métrique singulière h ε sur O PpEq p1q ayant une courbure iΘph ε q ě ´επ ˚ω poù π : PpEq Ñ X est la projection naturelleq, à singularités analytiques, telle que la projection πpSingph ε qqq du lieu singulier ne recouvre pas X tout entier.

De manière équivalente, E est fortement psef si et seulement si le bré en droites O PpEq p1q est pseudoeectif sur la variété projectivisée PpEq des hyperplans de E, et si la projection πpL nnef pO PpEq p1qqq du lieu non nef de O PpEq p1q ne recouvre pas X tout entier.

Rappelons qu'une métrique hermitienne sur O PpEq p1q correspond à une métrique de Finsler dans le sens suivant ( [START_REF] Kobayashi | Negative vector bundles and complex Finsler structures[END_REF], [START_REF] Demailly | Pseudoconvex-concave duality and regularization of currents, Several Complex Variables[END_REF]). Définition 0.2.6. Une métrique de Finsler pdénie positive q sur un bré vectoriel holomorphe E est une fonction homogène complexe positive ξ Ñ }ξ} x dénie sur chaque bre E x , c'est-à-dire telle que }λξ} x " |λ|}ξ} x pour chaque λ P C, et telle que }ξ} x ą 0 pour ξ ‰ 0.

On peut montrer que les métriques de Finsler sur un bré vectoriel fortement psef E peuvent être approximées par des métriques induites par des métriques hermitiennes sur de grandes puissances symétriques S m E ˚.

Proposition 0.2.4. Soit E Ñ X un bré vectoriel et p : S m E ˚Ñ X la projection naturelle. Les propriétés suivantes sont équivalentes:

(1) E est fortement psef.

(2) Il existe une suite de fonctions quasi-psh w m px, ξq " logp|ξ| hm q à singularités analytiques, induites par des métriques hermitiennes h m sur S m E ˚, telles que le lieu des singularités se projette dans un ensemble Zariski fermé propre Z m Ă X, avec iBBw m ě ´mε m p ˚ω au sens des courants et lim ε m " 0.

(3) Il existe une suite de fonctions quasi-psh w m px, ξq " logp|ξ| hm q à singularités analytiques, induites par des métriques hermitiennes h m sur S m E ˚, telles que le lieu des singularités se projette dans un ensemble Zariski fermé propre Z m Ă X, avec iΘ S m E ˚,hm ď mε m ω b Id sur X Z m dans le sens de Griths et lim ε m " 0.

Grâce à cette condition équivalente, nous pouvons montrer que certaines opérations algébriques habituelles peuvent toujours être faites pour des brés vectoriels fortement psefs. Par exemple, la somme directe ou le produit tensoriel des brés vectoriels fortement psefs est toujours fortement psef.

Comme conséquence, on peut dénir des formes de Segre (ou courants de Segre) associés, c'est-à-dire des courants positifs fermés de bidegré pk, kq, obtenus par image directe des puissances extérieures du courant de courbure de O PpEq p1q, sous une hypothèse sur la codimension de lieu singulier.

Théorème 0.2.13. Soit E un bré vectoriel fortement psef de rang r sur une variété kählerenne compacte pX, ωq. Soit h ε une métrique singulière sur pO PpEq p1q, ayant des singularités analytiques et telle que iΘpO PpEq p1q, h ε q ě ´επ ˚ω, la codimension de πpSingph ε qq dans X étant au moins égale à k. Alors, il existe un courant positif de bidegré pk, kq représentant la classe π ˚pc 1 pO PpEq p1qq `επ ˚tωuq r`k´1 . En particulier, detpEq est un bré en droites psef.

Une construction similaire a été faite dans [START_REF] Lärkäng | Chern forms of singular metrics on vector bundles[END_REF].

À la n du chapitre, en tant qu'application géométrique, nous classions les surfaces kähleriennes compactes et les variétés de dimension 3 ayant un bré tangent fortement psef et une première classe de Chern triviale. Par notre théorème principal, ce sont les mêmes que les surfaces kähleriennes compactes et les variétés de dimension 3 ayant un bré tangent nef et une première classe de Chern triviale, qui ont été classées en particulier dans [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF]. Une conséquence est que le bré tangent d'une surface K3 kählerienne ne peut pas être fortement psef. Ce résultat généralise ceux de [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF] et de [START_REF] Nakayama | Zariski decomposition and abundance[END_REF] dans le cas projectif. Plus généralement, les variétés symplectiques irréductibles ou de Calabi-Yau ont des brés tangents et cotangents qui ne sont pas fortement psefs. Dans le cas singulier et projectif, un résultat plus fort est prouvé dans le théorème 1.6 de [START_REF] Höring | Algebraic integrability of foliations with numerically trivial canonical bundle[END_REF], et dans le corollaire 6.5 de [START_REF] Druel | A decomposition theorem for singular spaces with trivial canonical class of dimension at most ve[END_REF], pour le cas de la dimension 3. En fait, pour le cas projectif, O PpT X q p1q ou O PpΩ 1 X q p1q n'est pas un bré en droites psef sur une variété symplectique irréductible ou de Calabi-Yau X.

Nous généralisons également au cas compact kählerien les principaux résultats de [START_REF] Liu | Xiaokui Yang Projective manifolds whose tangent bundle contains a strictly nef subsheaf[END_REF] sur les brés tordus par des Q-diviseurs. 0.2.5. Théorie de l'intersection et classes de Chern en cohomologie de Bott-Chern.

Il est attendu que la formule de Riemann-Roch-Grothendieck soit vériée pour toutes les théories de cohomologie naturelles associées aux variétés algébriques ou analytiques. En particulier, une question intéressante est de savoir si la formule de Riemann-Roch-Grothendieck est vériée pour la cohomologie de Bott-Chern à coecients rationnels. Pour donner un sens précis à la formule, nous devons dénir les classes de Chern associées à l'image directe d'un bré vectoriel (et même à toutes les images directes supérieures).

Lorsqu'un morphisme entre deux variétés est propre, le théorème des images directes de Grauert énonce que ces images directes sont des faisceaux cohérents. En conséquence, il serait intéressant de pouvoir construire une théorie des classes de Chern en cohomologie de Bott-Chern entière (ou au moins rationnelle), pour des faisceaux cohérents arbitraires.

Lorsque la variété est projective, cela découle d'un travail inédit de Junyan Cao dans lequel il dénit d'abord les classes Chern de brés vectoriels pour la cohomologie de Bott-Chern à coecients entiers. Comme on l'a expliqué dans la section précédente, le cas général des faisceaux cohérents est beaucoup plus compliqué.

Pour traiter la situation similaire de la cohomologie de Deligne rationnelle, Julien Grivaux propose dans son travail [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF] une approche générale pour dénir les classes caractéristiques de Chern dans une théorie axiomatique de la cohomologie rationnelle. Ceci se fait en spéciant que la théorie de la cohomologie doit satisfaire certains axiomes de la théorie de l'intersection.

La ligne générale de la construction est la suivante. On force le théorème de Grothendieck-Riemann-Roch à être valable pour une immersion fermée d'hypersurfaces lisses. Ensuite, par dévissage, on peut déduire des axiomes de la théorie de l'intersection proposés par Grivaux que le théorème de Grothendieck-Riemann-Roch est valable pour toute immersion fermée. Puisque chaque morphisme projectif peut par dénition être factorisé en la composition d'une projection et d'une immersion fermée, le théorème de Grothendieck-Riemann-Roch est valable pour tout morphisme projectif, comme observé par Grothendieck. (Bien sûr, nous utilisons également les axiomes de la théorie de l'intersection pour traiter le cas d'une projection.) En particulier, en suivant l'approche de Grivaux, nous sommes en mesure de dénir les classes de Chern comme des classes de cohomologie de Bott-Chern rationnelles. En principe, l'image réciproque d'une classe de cohomologie est induit par l'image réciproque d'une forme lisse, tandis que le poussé en avance de la classe de cohomologie est mieux vu en prenant des images directes de courants. La principale diculté est alors de contrôler le comportement des classes de cohomologie sous la composition de l'image réciproque et d'une image directe.

Plus précisément, le complexe de Bott-Chern à coecients entiers est quasi-isomorphe à diérents types de complexes, à savoir le complexe formé par le faisceau localement constant Z complété par un complexe de formes diérentielles lisses, soit comme Z remplacé par un complexe de courants construit à l'aide des courants localement intégraux. Pour dénir l'image réciproque ou le poussé en avance dans l'hypercohomologie du complexe de Bott-Chern entier, nous sommes alors amenés à utiliser ces diérents complexes quasi-isomorphes. Lorsqu'on traite de la composition de l'image réciproque et du poussé en avance de la cohomologie, il est commode de passer à la catégorie dérivée pour montrer que les morphismes sont bien dénis et commutent dans la catégorie dérivée des complexe de groupes abéliens, puis de prendre l'hypercohomologie.

Il se trouve que l'image réciproque des courants n'est pas toujours bien dénie en général, bien qu'elle le soit pour des courants satsifaisant des hypothèses spéciales adéquates. Par exemple, supposons que Y, Z soient deux cycles lisses se coupant transversalement le long de W . L'images réciproque du courant rZs sous l'immersion fermée de i Y de Y dans X est bien déni comme étant égal à rW s. Nous devons montrer que via certains quasi-isomorphismes, ces types particuliers de morphismes entre représentants spéciaux conduisent à des morphismes de cohomologie bien dénis.

La principale diculté par rapport au cas de la cohomologie de Deligne entière est que la structure multiplicative de la cohomologie de Bott-Chern entière est beaucoup plus compliquée. Nous choisissons une dénition de la multiplication telle que le morphisme naturel de la cohomologie de Bott-Chern entière vers la cohomologie de Bott-Chern complexe soit un morphisme d'anneau, et pas seulement un morphisme de groupe. On remarque pour cela que la cohomologie de Bott-Chern complexe peut être représentée par des formes lisses globales. Le produit extérieur des formes lisses passe en hypercohomologie, lorsqu'on eectue une multiplication de classes de cohomologie de Bott-Chern complexes. Théorème 0.2.14. Soit p : X Ñ S un morphisme projectif de variétés complexes compactes et F un faisceau cohérent sur X. Alors, nous avons la formule de Riemann-Roch-Grothendieck dans la cohomologie de Bott-Chern rationnelle et la cohomologie de Bott-Chern complexe chpR ' p ˚F qT dpT S q " p ˚pChpF qTdpT X qq où R ' p ˚F " ř i R i p ˚F . Théorème 0.2.15. Si X est compacte et si K 0 X est l'anneau de Grothendieck des faisceaux cohérents sur X, on peut dénir un morphisme caractère de Chern Ch :

K 0 X Ñ ' k H k,k
BC pX, Qq tel que

(1) le morphisme caractère de Chern est fonctoriel pour l'image réciproque par un morphisme holomorphe.

(2) le morphisme caractère de Chern est une extension du morphisme habituel déni pour les brés vectoriels.

(3) Le théorème de Riemann-Roch-Grothendieck est valable pour les morphismes projectifs entre variétés compactes complexes lisses.

Introduction and elementary denitions

1.1. Introduction

The modern language of complex geometry relies for a large part on cohomology theory, e.g. in the context of coherent sheaves. One of the earliest general results is the Kodaira embedding theorem. The original proof by Kodaira is based on the so-called Kodaira vanishing theorem: under a strict positivity assumption for the Chern curvature of a given smooth hermitian line bundle, one shows the existence of suciently many sections to embed the manifold into a projective space. One way to generalize the work of Kodaira is to study vanishing theorems in the context of singular positive metrics, such as the Demailly-Nadel vanishing theorem (cf. [START_REF] Nadel | Hyperbolic surfaces in CP 3[END_REF], [START_REF] Demailly | A numerical criterion for very ample line bundles[END_REF]).

Theorem 1.1. Let pX, ω X q be a Kähler weakly pseudo-convex manifold with a Kähler metric ω X and let L be a line bundle on X with a singular metric h. Assume that iΘ h pLq ě εω X in the sense of currents for some ε ą 0. Then H q pX, OpK X `Lq b Iphqq " 0 for all q ě 1, where Iphq " Ipϕq is the multiplier ideal sheaf associated to ϕ for the local weight ϕ with h " e ´ϕ.

The Demailly-Nadel vanishing theorem reects that in the singular metric setting, the positivity of a line bundle may have strong obstruction on the cohomology group. The major part of this thesis is concerned by the implications of the hypothesis of the existence of positively curved singular metrics on the geometric structure of a manifold, or on cohomology groups with values in a vector bundle. In the last part of the thesis, we discuss the construction of Chern classes and give the Riemann-Roch-Grothendieck formula in the rational Bott-Chern cohomology (dened by Michael Schweitzer).

1.1.1. Hard Lefschetz theorem for pseudoeective line bundles.

A fundamental tool in complex geometry is the Riemann-Roch-Hirzebruch formula. It predicts the growth of the Euler number of the tensor product of a line bundle in terms of the intersection numbers of the Chern classes of the line bundle and the tangent bundle T X . If a given line bundle is assumed to possess a metric of strictly positive curvature (for example, if the line bundle is nef and big), the Kawamata-Viehweg vanishing theorem states that the higher degree cohomology groups with values in high tensor powers of the line bundle twisted by the canonical bundle K X (maybe after taking the tensor product with an ad hoc multiplier ideal sheaf ) are trivial. In particular, asymptotically (which means we consider sucient high tensor powers of the line bundle), the global sections have a maximal asymptotic growth (with exponent equal to the complex dimension). In the algebraic case, we can take a generic hyperplane intersection to perform the induction on dimension.

In general, in the semi-positive case, especially when pL, hq is a pseudoeective (psef ) line bundle with multiplier ideal sheaf Iphq, the higher degree cohomology groups of a compact Kähler manifold pX, ωq with values in K X b L b Iphq are not necessarily trivial. This situation is studied in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF], where the authors construct a non-trivial preimage in H 0 pX, Ω n´q X b L b Iphqq of the Lefschetz morphism, i.e. the morphism induced by ω q ^', for any non-trivial class in H q pX, K X b L b Iphqq. When the line bundle L is chosen to be the trivial line bundle equipped with the trivial metric, this result recovers the classical hard Lefschetz theorem. In this case, it is well-known that the Lefschetz morphism is in fact an isomorphism. Theorem 1.2. (see [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF]). Let pL, hq be a pseudo-eective line bundle on a compact Kähler manifold pX, ωq of dimension n, ? ´1Θ L,h ě 0 its curvature current and Iphq the associated multiplier ideal sheaf. Then, the wedge multiplication operator ω q ^' induces a surjective morphism

Φ q ω,h : H 0 pX, Ω n´q X b L b Iphqq ÝÑ H q pX, Ω n X b L b Iphqq.
The special case when L is nef is due to Takegoshi [START_REF] Takegoshi | On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds[END_REF]. An even more special case is when L is semi-positive, i.e. L possesses a smooth metric with semi-positive curvature. In that case, the multiplier ideal sheaf Iphq coincides with O X and we get the following consequence already observed by Enoki [START_REF] Enoki | Strong-Lefschetz-type theorem for semi-positive line bundles over compact Kähler manifolds[END_REF] and Mourougane [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov-Sommese[END_REF].
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The strategy of the proof is the following. We approximate the singular metric by a sequence of metrics which are smooth outside a proper analytic set and preserve the multiplier ideal sheaf. During this process, one inevitably loses some positivity of the curvature. As observed in [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un bré vectoriel holomorphe semi-positif au dessus d'une variété kählérienne complète[END_REF], one can modify the Kähler metric in such a way that the complement of any proper analytic set becomes complete with respect to the modied Kähler metric. For a xed degree q cohomology class, one can apply a Bochner type inequality (which still works for a complete Kähler manifold) to the harmonic representatives of the approximated metrics and to the approximated Kähler metrics. In this manner, one nds a sequence of preimages via the pointwise Lefschetz isomorphism. By the L 2 ´estimates, the preimages have a holomorphic weak limit up to taking some subsequence. The weak limit is the desired section in H 0 pX, Ω n´q X b L b Iphqq.

In the smooth semi-positive case, the arguments are much easier since there is no need to take an approximating sequence for a given singular metric.

In the classical case L " O X , one can observe that any section u P H 0 pX, Ω n´q X q satises the additional condition du " d h0 u " 0. This is easily seen by the Stokes formula, which implies ż

X idu ^du ^ωq´1 " ż X tdu, duu h0 ^ωq´1 " 0,
where h 0 is the trivial smooth metric on O X .

The proof of the hard Lefschetz theorem in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF] is obtained by constructing preimages as limits of forms given by the pointwise Lefschetz isomorphism. One then deals with a sequence of harmonic representatives of a given class in H q pX, K X b L b Iphqq, with respect to the approximated hermitian metrics h ε , which are still singular but smooth on a Zariski open set. It is natural to ask whether the limit is harmonic with respect to the original singular metric h.

In the singular setting, the operator B h is still a densely dened operator, but it is a priori not evident to nd explicitly the domain of denition of the Hilbert adjoint of B h . However, it is still meaningful to consider whether the limit is parallel with respect to the original singular metric h; the above classical calculation corresponds to the case of a trivial bundle with its trivial metric. Our rst result in [START_REF] Wu | On the hard Lefschetz theorem for pseudo-eective line bundles[END_REF] conrms a positive answer to this question in the general case, by providing further estimates in the approximation process of [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF].

Theorem 1.3. All holomorphic sections produced by the bundle valued hard Lefschetz theorem are parallel with respect to the Chern connection associated with any given singular hermitian metric h on L, possessing a semi-positive curvature current.

The main point of the proof is to show that the covariant derivative operator is still well-dened in the singular setting, and behaves well in the approximation process.

More precisely, let ϕ be the local weight function of the singular metric. Then the derivative Bϕ is a L q loc function for all q ă 2, but not necessarily q " 2. This is the case for example for ϕ " log|z| on C. The covariant derivative of a section u with respect to the singular metric h locally can be written under the form B h u " Bu `Bϕ ^u.

If u is a holomorphic (and in particular locally bounded) section, the second term is the product of a L q loc function with a section in L 8 loc , hence is a L q loc for all q ă 2. In the approximation process, we deal with sections with values in L 2 loc pe ´ϕq. To show that the second term is at least well dened in L 1 loc with respect to the Lebesgue measure, it is enough to observe that Bϕ P L 2 loc pe ϕ q. But this is always the case for a psh function. To give an idea of what is going on in a typical case, let us just look at ϕ " log|z| on C. Then the section u has to vanish at 0 and it is enough to observe that Bϕe ϕ " dz z ˆ|z| 2 " zdz.

In the pseudoeective case, the Lefschetz morphism is in general no longer injective as in the classical hard Lefschetz theorem. An obvious counterexample can be obtained by taking L " mA where A is an ample divisor, so that h 0 pX, Ω n´q X b Lq " Cm n for m large enough, but h q pX, Ω n X b Lq " 0 if q ą 0. However, one can show that there is a linear isomorphism between the space of parallel sections with respect to the singular metric and the corresponding higher degree cohomology groups.

Theorem 1.4. Let pL, hq be a psef line bundle over a compact Kähler manifold pX, ωq. Then the Lefschetz morphism obtained by taking the wedge product with a power of the Kähler form induces a linear isomorphism

Φ q ω,h : H 0 pX, Ω n´q X b L b Iphqq X KerpB h q ÝÑ H q pX, Ω n X b L b Iphqq.
In particular, when the metric is semi-positive, there is a linear isomorphism

Φ q ω,h : H 0 pX, Ω n´q X b Lq X Kerp∆ B h q ÝÑ H q pX, Ω n X b Lq.
Observe that the surjectivity property is a consequence of the previous theorem.

As an application, we show that each preimage actually denes a foliation on the given Kähler manifold.

Theorem 1.5. Assume that v P H 0 pX, Ω n´q X b L b Iphqq, q ě 1 is a parallel section with respect to the singular metric h psuch as any section constructed by the hard Lefschetz theoremq. The interior product with v gives an O X -morphism (which is well dened on the whole of X)

F v : T X Ñ Ω n´q´1 X b L U Þ Ñ ι U v.
The kernel of F v denes an integrable saturated coherent subsheaf of OpT X q, and thus a ppossibly singularq holomorphic foliation.

Here the concept of ppossibly singularq holomorphic foliation is dened as follows: assuming X to be connected, one means that there exists an irreducible analytic set V of the total space T X such that for any x P X, V x :" V X T X,x is a complex vector space and the sheaf of sections OpV q Ă OpT X q is closed under the Lie bracket. It is equivalent to take a coherent analytic subsheaf OpV q Ă OpT X q that is closed under Lie bracket and saturated, i.e. such that OpT X q{OpV q is torsion free.

Let us observe that in general a section in H 0 pX, Ω n´q X b L b Iphqq does not necessarily induce a singular foliation on X. In fact, our denition for the kernel of F v denes a foliation if and only if d h v ^v " 0 which is the case when the section is parallel with respect to the singular metric. Thus, to any element in

H q pX, Ω n X b L b
Iphqq is associated in a canonical way of a holomorphic foliation dened by the section produced via the hard Lefschetz theorem. A natural question is whether this foliation is always algebraic in the sense that the leaf space has the structure of a complex space quotient. This is however not the case: there are concrete examples initially given by Beauville [START_REF] Beauville | Complex manifolds with split tangent bundle. Complex analysis and algebraic geometry[END_REF] exhibiting this phenomenon; they were indicated to us by Andreas Höring. A complete calculation can be found in Section 4 of our work [START_REF] Wu | On the hard Lefschetz theorem for pseudo-eective line bundles[END_REF].

Another possibility to extend or improve the hard Lefschetz theorem would be to see whether one can replace the multiplier ideal sheaf by some bigger, less singular, ideal sheaf. Demailly, Peternell and Schneider have already shown in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF] that one cannot entirely omit the ideal sheaf, even when L is taken to be nef, and they gave a counterexample when L " ´mK X is a multiple of the anticanonical bundle.

However, it might still be possible in some cases to improve the ideal sheaf, for instance to replace it with the limit lim δÑ0`I pp1 ´δqϕq, which is an innite intersection containing Ipϕq. When ϕ has analytic singularities, it may happen that one gets a strictly larger sheaf, and in general the limit need not even be a coherent sheaf:

Proposition 1.1.1. There exists an example of a psh function ϕ such that lim δÑ0`I pp1 ´δqϕq :"

č δą0 Ipp1 ´δqϕq is not coherent. 1.1.2. L 2 vanishing theorems.
The singularities of a metric are reected in particular in their associated multiplier ideal sheaves. A frequent geometric situation is that the curvature of a singular metric can degenerate in some directions.

This leads to the concept of numerical dimension, that, loosely speaking, counts the number of positive directions of curvature at a generic point. One important open problem in complex geometry is the Abundance conjecture. The latter can be seen as a very broad generalisation of the results known so far on the Kodaira dimension κpXq " κpK X q, which counts the growth of pluricanonical sections, i.e. sections of mK X where K X is the canonical line bundle. By denition, for any line bundle L, the Kodaira-Iitaka dimension is κpLq " lim sup mÑ`8 logh 0 pX, mLq logm .

It is a consequence of Siegel's well known theorem that κpLq P t´8, 0, 1, . . . , nu where n " dimX, and that it is either ´8 or the maximum of the dimensions of the pluricanonical images Φ mL pXq Ă P pH 0 pX, mK X q ˚q. The Abundance conjecture predicts that the canonical bundle K X always achieves its maximum possible asymptotic growth as m Ñ `8, and that κpK X q coincides with the numerical dimension (redened further below).
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Conjecture 1.1.1. (Generalized abundance conjecture in the Kähler case, see [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF])

For an arbitrary compact Kähler manifold X, the Kodaira dimension should be equal to the numerical dimension :

κpK X q " ndpc 1 pK X qq.

A Kähler version of the denition of numerical dimension can be found in [START_REF] Demailly | On the cohomology of pseudoeective line bundles[END_REF] or [START_REF] Boucksom | On the volume of a line bundle[END_REF].

Definition 1.6. (numerical dimension)

For L a psef line bundle on a compact Kähler manifold pX, ωq, one denes ndpLq :" maxtp P r0, ns; Dc ą 0, @ε ą 0, Dh ε , iΘ L,hε ě ´εω, such that ż XzZε piΘ L,hε `εωq p ^ωn´p ě cu.

Here the metrics h ε are supposed to have analytic singularities and Z ε is the singular set of the metric.

When the line bundle L is nef, a simpler denition can be given: ndpLq " maxtp; c 1 pLq p ‰ 0u.

An equivalent denition can be given in terms of the positive product dened in [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF]. The positive product is the real pp, pq cohomology class xα p y of the limit xα p y :" lim δÑ0 txT p min,δω yu where T min,δω is the positive current with minimal singularity in the class α `δtωu and xT p min,δω y is the non-pluripolar product. With this notion, the numerical dimension of α is dened as ndpαq :" maxtp|xα p y ‰ 0u

which is also equal to maxtp| ş X xα p y ^ωn´p ą 0u. A more intuitive denition of positive product is dened in [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF] as follows. Assume that α is a big class on a compact Kähler manifold pX, ωq. To determine the product, it is enough to know the value of the product pairing with any pn ´p, n ´pq-form, in fact it is enough to know its value with a countable dense family of forms in the space of smooth forms. Since for any pn ´p, n ´pq-form u, u " Cω n´p ´pCω n´p ´uq and both Cω n´p and Cω n´p ´u are strongly positive forms on the compact manifold X if C ą 0 is big enough, it is enough to consider only a countable dense family of strongly positive forms.

Fix a smooth closed pn ´p, n ´pq strongly-positive form u on X. We select Kähler currents T P α with analytic singularities, and a log-resolution µ : X Ñ X such that µ ˚T " rEs `β

where rEs is the current associated to an eective R-divisor and β is a semi-positive form. We consider the direct image current µ ˚pβ ^. . . ^βq. Given two closed positive p1, 1q currents T 1 , T 2 P α, we write T j " θ `iBBϕ j (j " 1, 2) for some smooth form θ P α. Dene T :" θ `iBB maxpϕ 1 , ϕ 2 q. We get a current with analytic singularities that is less singular than these two currents. In this way, if we change the representative T with another current T 1 , we may always take a simultaneous log-resolution such that µ ˚T 1 " rE 1 s `β1 , and we can always assume that E 1 ď E. By a calculation, we nd ż

X β 1 ^. . . ^β1 ^µ˚u ě ż X β ^. . . ^β ^µ˚u .
It can be shown that the closed positive current µ ˚pβ ^. . . ^βq is uniformly bounded in mass. For each of the integrals associated with a countable dense family of forms u, the supremum of ş X β ^. . . ^β ^µ˚u is achieved by a sequence of currents pµ m q ˚pβ m ^. . . ^βm q obtained as direct images by a suitable sequence of modications µ m : Xm Ñ X and suitable β m 's. By extracting a subsequence, we can achieve that this sequence is weakly convergent and we set xxα p yy :" lim Ò mÑ`8 tpµ m q ˚pβ m ^. . . ^βm qu If α is only psef, we dene xxα p yy :" lim Ó δÓ0 xxpα `δtωuq p yy.

One can check:

Proposition 1.1.2. The two positive products dened in [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF] and [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF] coincide for every psef class.

Definition 1.7. For a psef line bundle L over a compact Kähler manifold, one denes ndpLq " ndpc 1 pLqq.

In the special case of a projective manifold X, the above numerical dimension can be seen to coincide with the following more algebraic denition:

ndpLq " sup A ample on X lim sup mÑ`8 logh 0 pX, mL `Aq logm (and one can also easily see that this denition only depends on the numerical class c 1 pLq).

In our papers [START_REF] Wu | Note on Junyan Cao's vanishing theorem[END_REF] and [Wu19b], we prove some new L 2 vanishing theorems in terms of the numerical dimension of a psef line bundle.

The Bogomolov vanishing theorem [Bog] asserts that H 0 pX, Ω p X b L ´1q " 0 for p ă κpLq. It is interesting to ask whether we can replace the Kodaira dimension κpLq by the numerical dimension ndpLq. In [START_REF] Demailly | On the Frobenius integrability of certain holomorphic p-forms, math.AG/0004067, Complex Geometry, Collection of Papers dedicated to Hans Grauert[END_REF], it is proven that for any pseudo-eective line bundle L on X a compact Kähler manifold, and any nonzero holomorphic section θ P H 0 pX, Ω p b L ´1q, where 0 ď p ď n " dimX, then θ induces a foliation in the same terms as for Theorem 1.5. The Bogomolov vanishing theorem forbids the existence of such non zero section for p ě κpLq. (By our result, the same happens for p ě ndpLq.)

In [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov[END_REF], the following version of the Bogomolov vanishing theorem is stated: if L is a nef line bundle over a compact Kähler manifold X, then

H 0 pX, Ω p X b L ´1q " 0
for p ă ndpLq. In our work [Wu19b], we get a generalization from the nef case to the psef case by rening Mourougane's estimates from [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov[END_REF]. A similar proof had been given in [START_REF] Boucksom | On the volume of a line bundle[END_REF] by using a singular Monge-Ampère equation. Here, we give another proof that only requires solving classical Monge-Ampère equations.

Theorem 1.8. Let L be a psef line bundle over a compact Kähler manifold X. Then

H 0 pX, Ω p X b L ´1q " 0 for p ă ndpLq.
Inspired by the work of Junyan Cao [START_REF] Cao | Numerical dimension and a Kawamata-Viehweg-Nadel type vanishing theorem on compact Kähler manifolds[END_REF], we get the following Kawamata-Viehweg type vanishing theorem in [START_REF] Wu | Note on Junyan Cao's vanishing theorem[END_REF]. The proof follows closely Cao's proof:

Theorem 1.9. Let L be a pseudoeective line bundle on a n-dimensional compact Kähler manifold X. Then the morphism induced by the inclusion

K X b L b Iph min q Ñ K X b L H q pX, K X b L b Iph min qq Ñ H q pX, K X b Lq
vanishes for every q ě n ´ndpLq `1. The same holds for any positive singular metric h instead of h min .

The theorem of Junyan Cao is as follows: Let pL, hq be a pseudoeective line bundle on a compact Kähler n-dimensional manifold X. Then H q pX, K X b L b Iphqq " 0 for every q ě n ´ndpL, hq `1.

Let us observe that the result of Junyan Cao is expressed in terms of the numerical dimension of a singular metric ndpL, hq, which is dened as the numerical dimension of the current Θ L,h , instead of the numerical dimension ndpLq of the line bundle L itself. In general, these notions are dierent. A typical example is the example 1.7 in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF]. There exists a nef line bundle L over a ruled surface X Ñ C over an elliptic curve C, possessing a unique positively curved singular metric. In fact, the current Θ L,h associated with this unique singular metric h turns out to be the current of integration r Cs over a section of X Ñ C. Since this current is zero on a Zariski open set, the numerical dimension of the singular metric is easily seen to be 0. However, the construction of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF] shows that the numerical dimension of the line bundle is 1.

Observe also that in general one cannot hope to obtain the vanishing of the cohomology groups with values in Iph min q instead of simply obtaining a zero image into the cohomology with values in L. In fact by the same example of the last paragraph, h 2 pX, K X b L b Iph min qq " 1 while h 2 pX, K X b Lq " 0. In fact, the situation we consider is easier than the one studied by Junyan Cao since we do not keep the multiplier ideal sheaf.

Our last vanishing result is a Kodaira-Nakano-Akizuki type vanishing theorem ( [Wu19c]), stated in term of augmented base loci.
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Theorem 1.10. Let X be an n-dimensional projective manifold and L a nef holomorphic line bundle over X. Then we have H p pX, Ω q X b Lq " 0 for any p `q ą n `maxpdimpB `pLqq, 0q. Here B `pLq denotes the augmented base locus(or non-ample locus) of L. When B `pLq " H, we dene by convention that its dimension is ´1.

Nefness in higher codimension.

One of the reformulation of the Kodaira embedding theorem is that a compact complex manifold is projective if and only if the Kähler cone, i.e. the convex cone spanned by Kähler forms in H 2 pX, Rq, contains a rational point (i.e., an element in H 2 pX, Qq).

As a general matter of fact, it is obviously interesting to study positive cones attached to compact complex manifolds and to relate them with the geometry of the manifold. In classical algebraic or complex geometry, the emphasis is on two types of positive cones: the nef and psef cones, which are dened to be the closed convex cones spanned by nef classes and psef classes, respectively. The nef cone is of course contained in the psef cone.

The work of Boucksom [START_REF] Boucksom | On the volume of a line bundle[END_REF] denes and studies the so-called modied nef cone, for an arbitrary compact complex manifold. Thanks to this denition, Boucksom was able to show the existence of a divisorial Zariski decomposition for any psef class (i.e., any cohomology class containing a positive current). The modied cone just sits between the nef and psef cones.

Inspired by Boucksom's denition, we introduce in [START_REF] Wu | Considerations on nefness in higher codimension[END_REF], for any compact complex manifold, the concept of a nef cone in arbitrary codimension, which is an interpolation between the above positive cones. Definition 1.11. (Minimal multiplicities) ( [Bou02a])

The minimal multiplicity at x P X of the pseudo-eective class α P H 1,1 BC pX, Rq is dened as νpα, xq :" sup εą0 νpT min,ε , xq where T min,ε is the minimal element T P α such that T ě ´εω and νpT min,ε , xq is the Lelong number of T min,ε at x. When Z is an irreducible analytic subset, we dene the generic minimal multiplicity of α along Z as νpα, Zq :" inftνpα, xq, x P Zu.

Definition 1.12. Let α P H 1,1 BC pX, Rq be a psef class. We say α is nef in codimension k, if for any irreducible analytic subset Z Ă X of codimension at most equal to k, we have νpα, Zq " 0.

With this terminology, the nef cone is the nef cone in codimension n, where n is the complex dimension of the manifold, while the psef cone is the nef cone in codimension 0, and the modied nef cone is the nef cone in codimension 1. In the same paper, we show that these cones are in general dierent, and construct explicit examples where these cones are dierent.

As an application, we obtain the following generalisation from the nef case to the psef case of a similar result stated in [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF] (see [START_REF] Wu | Considerations on nefness in higher codimension[END_REF]).

Theorem 1.13. Let pX, ωq be a compact Kähler manifold of dimension n and L a line bundle on X that is nef in codimension 1. Assume that xL 2 y ‰ 0 where x'y is the positive product dened in [START_REF] Boucksom | On the volume of a line bundle[END_REF]. Assume that there exists an eective integral divisor D such that c 1 pLq " c 1 pDq. Then H q pX, K X `Lq " 0 for q ě n ´1.

The proof of the above theorem is an induction on dimension, using theorem 1.8 of the previous chapter.

A dierence compared with the nef case treated in [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF] is that we need passing from an intersection number to a positive product (or movable intersection number), which is a non linear operation. Nevertheless, under a condition of nefness in higher codimension, we get the following estimate.

Lemma 1.14. Let α be a nef class in codimension p on a compact Kähler manifold pX, ωq, then for any k ď p and Θ any positive closed pn ´k, n ´kq´form we have pα k , Θq ě xα k , Θy.

With this inequality, the intersection number calculation in [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF] is still valid and thus the cohomology calculations can be recycled.

Observe that a current with minimal singularities need not have analytic singularities for every big class α that is nef in codimension 1 but not nef in codimension 2; such an example was given by [START_REF] Nakayama | Zariski decomposition and abundance[END_REF], and also observed by Matsumura [START_REF] Matsumura | A Nadel vanishing theorem for metrics with minimal singularities on big line bundles[END_REF].

As a consequence of Matsumura's observation, the assumption of our Kawamata-Viehweg vanishing theorem that the line bundle is numerically equivalent to a eective integral divisor is actually required. In the nef case considered in [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF], the authors deduce from their assumption that the line bundle L is nef with pL 2 q ‰ 0 that L is numerically equivalent to an eective integral divisor D, and that there exists a positive singular metric h on L such that Iphq " Op´Dq.

However, for a big line bundle L that is nef in codimension 1 but not nef in codimension 2 over an arbitrary compact Kähler manifold pX, ωq, we have xL 2 y ‰ 0 and i 2π ΘpL, h min q need not be a current associated with an eective integral divisor.

Another by-product is a (probably already known) example of a projective manifold X with ´KX psef, for which the Albanese morphism is not surjective. It was proven in [START_REF] Cao | A remark on compact Kähler manifolds with nef anticanonical bundles and applicaions[END_REF], [START_REF] Pǎun | Relative adjoint transcendental classes and Albanese maps of compact Kähler manifolds with nef Ricci curvature[END_REF] (and [START_REF] Zhang | Rational connectedness of log Q-Fano varieties[END_REF] for the projective case) that the Albanese morphism of a compact Kähler manifold with ´KX nef is always surjective. Thus replacing nefness by pseudoeectivity in the study of the Albanese morphism seems to be a non-trivial problem. In the same paper, we show that the Albanese morphism of a compact Kähler manifold which has its anticanonical line bundle ´KX psef and satisfying some integrability condition is still surjective.

Theorem 1.15. Let pX, ωq be an n-dimensional compact Kähler manifold such that ´KX is psef. As- sume that there exists a sequence ε ν ą 0 such that lim νÑ8 ε ν " 0 and Iph εν q " O X for a sequence of singular metrics with analytic singularities h εν on ´KX such that iΘp´K X , h εν q ě ´εν ω. Then the Albanese morphism α X is surjective with connected bres. In fact, the Albanese map is a submersion outside an analytic set of codimension bigger than 2.

Notice that when ´KX is nef, the extra multiplier ideal sheaf assumption made in the above theorem is satised. The condition is also satised when there exists a singular positive metric h on ´KX such that Iphq " O X , in which case the surjectivity of the Albanese map is shown in [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF] and [START_REF] Pǎun | Relative adjoint transcendental classes and Albanese maps of compact Kähler manifolds with nef Ricci curvature[END_REF] (Remark 2.3, in the projective case).

The strategy of the proof follows closely the arguments of Junyan Cao in [START_REF] Cao | A remark on compact Kähler manifolds with nef anticanonical bundles and applicaions[END_REF]. We consider the

Harder-Narasimhan ltration of T X 0 Ă E 0 Ă E 1 Ă ¨¨¨Ă E s " T X .
The essential point is to prove that the slopes of E i`1 {E i is positive. Assume for simplication, that all the E i`1 {E i are vector bundles. By [START_REF] Uhlenbeck | On the existence of Hermitean Yang-Mills-connections on stable bundles over Kähler manifolds[END_REF], the solution of Hermitian-Einstein equations for stable vector bundles always exists. By considering the sign of the slopes, the trace of the curvature is positive on each quotient E i`1 {E i . By this property, we can construct a metric on T X whose Ricci curvature has an arbitrarily small negative part. Then the Bochner formula shows any non zero section of H 0 pX, Ω 1 X q does not vanish anywhere, and this implies the surjectivity of the Albanese morphism.

The idea to prove the positivity of the slopes is the following. By the stability condition, it is enough to prove that the slopes of T X {E i is positive. Grosso modo, we want to construct from a Kähler-Einstein equation a Kähler metric on T X with arbitrary small Ricci curvature lower bound. Such a metric will induce a quotient metric on T X {E i . The problem is that although we can solve a singular Kähler-Einstein equation by the work of [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], the quotient metric need not have a precise meaning. However, by the work of [START_REF] Campana | Metrics with cone singularities along normal crossing divisors and holomorphic tensor elds[END_REF] and [START_REF] Guenancia | Conic singularities metrics with prescribed Ricci curvature: General cone angles along normal crossing divisors[END_REF], we know the regularity and the behaviour of solutions for a Monge-Ampère equation with conic singularity along a divisor. In that case, the solution is known in particular to be smooth on a Zariski open set.

By taking the solution of a singular Monge-Ampère equation over some bimeromorphic model, we can obtain a solution that is smooth outside the singular set and that induces a smooth metric on T X {E i outside on that same singular set. We show by the regularity result for the Kähler-Einstein equation on a birational model of the manifold (on which all the divisors are simple normal crossing) that the mass of the curvature of the induced metric on the pull back of detpT X {E i q with respect to the solution of the Kähler-Einstein equation is bounded near the singular set. By the Skoka-El Mir theorem, the quasi-positive curvature current extends across the singular set on the chosen bimeromorphic model. In this manner, we can obtain the required slope estimate for the extended current.

1.1.4. Pseudo-eective reexive sheaves.

A central question of geometry is to obtain a classication of complex manifolds satisfying various natural positivity or negativity conditions. In order to elucidate the structure of a projective variety with nef anticanonical line bundle, a key ingredient is the proof by Junyan Cao [START_REF] Cao | Albanese maps of projective manifolds with nef anticanonical bundles[END_REF] of the isotriviality of the Albanese morphism, which is based in turn on the numerical atness of some related vector bundles.

In fact, the numerical atness property of a vector bundle is a completely algebraic concept that brings in analytic terms a strong obstruction for the curvature of any psef metric. In [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF], Demailly, Peternell and Schneider proved that a numerically at bundle E on the compact Kähler manifold X admits a ltration 1. INTRODUCTION by vector bundles whose graded pieces are hermitian at. In some sense, numerical atness is the algebraic counterpart of the concept of metric atness.

In the work of [START_REF] Campana | Projective klt pairs with nef anti-canonical divisor[END_REF] and [START_REF] Hosono | On projective manifolds with pseudo-eective tangent bundle[END_REF], the authors consider the following question. If one has a pseudo-eective vector bundle over a projective manifold with vanishing rst Chern class, is this vector bundle necessarily numerically at? An easy reformulation of the denition is that a vector bundle E is numerically at if and only if both E and detpEq ´1 are nef. As a consequence, the above question amounts to ask whether the given pseudo-eective vector bundle with vanishing rst Chern class is in fact nef.

Intuitively, a positive singular metric on the vector bundle E would induce a positive singular metric on the determinant detpEq. But since the rst Chern class of E (i.e. the Chern class of detpEq) is trivial, one checks that it cannot support any singularity anywhere. Therefore the given positively curved singular metric has to be smooth.

From this point of view, the same should hold on an arbitrary compact Kähler manifold, and not only on a projective manifold, since all hypotheses and conclusions are independent of the projectivity condition and still make sense in the Kähler situation. In Chapter 5 ( [Wu20]), we show that this is the case. Namely we prove that Theorem 1.16. Let E be a strongly psef vector bundle over a compact Kähler manifold pX, ωq with c 1 pEq " 0. Then E is a nef vector bundle.

In reality, one can expect something even stronger. Since E is strongly psef, the class c 1 pO PpEq p1qq is psef. Intuitively, c 1 pO PpEq p1qq contains a current that is not too singular (this means that the projection of the singular part onto X is contained in some analytic set of codimension at least 1). Thus the wedge power of the rst Chern class to a not so high exponent is well dened and positive, and so is its direct image under π : PpEq Ñ X. In particular, if r is the rank of E, one can hope that the second Segre class π ˚pc 1 pO PpEq p1qqq r`1 is positive (in the sense that its cohomology class contains a positive current).

Remind that the second Segre class it is also the class c 1 pEq 2 ´c2 pEq. By the Bogomolov inequality on any Kähler n-fold, when c 1 pEq " 0, the integration of c 2 pEq ^ωn´2 on X is positive for every Kähler form ω on X. By comparing these two facts, one concludes that c 2 pEq " 0 and that the Bogomolov inequality is in fact an equality.

We observe that for a reexive sheaf F, its Chern class can be dened as follows. Let σ be any modication such that σ ˚F {Tors is a vector bundle. Then for any i " 1, 2, c i pFq " σ ˚ci pσ ˚F {Torsq which is independent of the choice of modication σ. Morally, we hope that the same calculations hold on some birational model. By taking direct images, the equality in the Bogomolov inequality is attained.

On the other hand, we have the following important result of Bando-Siu [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF]. For a poly-stable reexive sheaf F of generic rank r over a compact n-dimensional Kähler manifold pX, ωq, we have the following Bogomolov inequality: ż X p2rc 2 pFq ´pr ´1qc 1 pFq 2 q ^ωn´2 ě 0.

Moreover, the equality holds if and only if F is local free and its Hermitian-Einstein metric gives a projective at connection. We will dene a nef (or strongly psef ) torsion free coherent sheaf as follows.

Definition 1.17. A torsion free coherent sheaf F over a compact complex manifold (resp. compact Kähler manifold) is called nef (resp. strongly psef ) if there exists some modication σ : X Ñ X such that σ ˚F modulo torsion is a nef (resp. strongly psef ) vector bundle.

In conclusion, we hope the stronger fact that a strongly psef reexive sheaf over a compact Kähler manifold pX, ωq with trivial rst Chern class is in fact a nef vector bundle.

In Chapter 5, we prove that this is again actually the case. A diculty of the above approach is that in general a wedge product of positive currents is not necessarily well dened. Instead of proving our contention directly, we rst prove the following result.

Theorem 1.18. Let F be a nef reexive sheaf over a compact Kähler manifold pX, ωq with c 1 pFq " 0. Then F is a nef vector bundle. Now combining the above two theorems, we conclude Theorem 1.19. Let F be a strongly psef reexive sheaf over a compact Kähler manifold pX, ωq with c 1 pFq " 0. Then F is a nef vector bundle.

Observe that in the above approach, the wedge products involved are well dened without having to make a restriction on the codimension of the singular set of the metric. In other words, we can then nd a positive current in c 1 pEq for any psef vector bundle E, but this will not be necessarily the case for c 2 pEq.

In the chapter, we give a denition of strongly psef vector bundles in the Kähler situation that is essentially equivalent to the one proposed in [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF]. Definition 1.20. Let pX, ωq be a compact Kähler manifold and E a holomorphic vector bundle on X. Then E is said to be strongly pseudo-eective (by short, strongly psef ) if the line bundle O PpEq p1q is pseudo-eective on the projectivized bundle PpEq of hyperplanes of E, and if the projection πpSingph ε qqq of the singular part of some singular metric with analytic singularities on pO PpEq p1q, h ε q with curvature iΘph ε q ě ´επ ˚ω does not cover all of X for any ε ą 0 where π : PpEq Ñ X.

Equivalently, E is strongly psef if and only if the line bundle O PpEq p1q is pseudo-eective on the projectivized bundle PpEq, and if the projection πpL nnef pO PpEq p1qqq of the non-nef locus of O PpEq p1q onto X does not cover all of X.

Remind that a Hermitian metric on O PpEq p1q corresponds to a Finsler metric in the following sense [START_REF] Kobayashi | Negative vector bundles and complex Finsler structures[END_REF], [START_REF] Demailly | Pseudoconvex-concave duality and regularization of currents, Several Complex Variables[END_REF]). Definition 1.21. A (positive denite) Finsler metric on a holomorphic vector bundle E is a positive complex homogeneous function ξ Ñ }ξ} x dened on each bre E x , that is, such that }λξ} x " |λ|}ξ} x for each λ P C and ξ P E x , and }ξ} x ą 0 for ξ ‰ 0.

It is shown in [START_REF] Wu | Strongly pseudo-eective and numerically at reexive sheaves[END_REF] that a Finsler metric with positive curvature current on a strongly psef vector bundle E can be approximated and induced in the limit by a sequence of Hermitian metrics on large symmetric powers S m E ˚.

Proposition 1.1.3. The following properties are equivalent:

(1) E is strongly psef (2) There exists a sequence of quasi-psh functions w m px, ξq " logp|ξ| hm q with analytic singularity induced from hermitian metrics h m on S m E ˚such that the singularity locus projects into a proper Zariski closed set Z m in X, and iBBw m ě ´mε m p ˚ω in the sense of current with lim ε m " 0. Here p : S m E ˚Ñ X is the projection.

(3) There exists a sequence of quasi-psh functions w m px, ξq " logp|ξ| hm q with analytic singularities induced from hermitian metrics h m on S m E ˚such that the singularity locus projects into a proper Zariski closed set Z m of X, and iΘ S m E ˚,hm ď mε m ω b Id on XzZ m in the sense of Griths with lim ε m " 0.

By the equivalence of the above conditions, one can show that the psef property is preserved by a number of usual algebraic operations. For example, a direct sum or tensor product of strongly psef vector bundles is still strongly psef.

As consequence, we can dene Segre forms (or Segre currents) i.e. a pk, kq´closed positive current dened as the direct image of the wedge product of a curvature current of O PpEq p1q, under a suitable codimension condition on the singular locus.

Theorem 1.22. Let E be a strongly psef vector bundle of rank r over a compact Kähler manifold pX, ωq. Let pO PpEq p1q, h ε q be singular metric with analytic singularities such that iΘpO PpEq p1q, h ε q ě ´επ ˚ω and the codimension of πpSingph ε qq is at least k in X. Then there exists a pk, kq´positive current in the class π ˚pc 1 pO PpEq p1qq `επ ˚tωuq r`k´1 .

In particular, detpEq is a psef line bundle.

A similar construction has been done in [START_REF] Lärkäng | Chern forms of singular metrics on vector bundles[END_REF].

At the end of the chapter, as a geometric application, we classify compact Kähler surfaces and 3-folds with strongly psef tangent bundles and with vanishing rst Chern class. By our Main theorem, they are the same as compact Kähler surfaces or 3-folds with nef tangent bundles and with zero rst Chern class, that were classied in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF]. As a consequence, the tangent bundle of a Kähler K3 surface is not strongly psef. This generalises the work of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF] and [START_REF] Nakayama | Zariski decomposition and abundance[END_REF] from the projective setting. More generally, an irreducible symplectic or Calabi-Yau manifold does not have strongly psef tangenet bundle or cotangent bundle. In the singular and projective setting, a stronger result has been proven in Theorem 1.6 of [START_REF] Höring | Algebraic integrability of foliations with numerically trivial canonical bundle[END_REF],

and in the case of threefolds, in Corollary 6.5 of [START_REF] Druel | A decomposition theorem for singular spaces with trivial canonical class of dimension at most ve[END_REF]. (They prove that in this case O PpEq p1q is not a psef line bundle where E is the tangent bundle or the cotangent bundle.)
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In the compact Kähler setting, we also generalise our main results to the Q-twisted case considered in [START_REF] Liu | Xiaokui Yang Projective manifolds whose tangent bundle contains a strictly nef subsheaf[END_REF].

1.1.5. Intersection theory and Chern classes in Bott-Chern cohomology.

Important cohomology invariants of complex manifolds are provided by their Chern classes. In complex geometry, Chern classes can be dened in various cohomology theories: singular cohomology, De Rham cohomology, Dolbeault cohomology, Deligne cohomology, complex Bott-Chern cohomology, etc. By the work of [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF], there exists a more precise cohomology theory than all the above cohomology theories, namely integral Bott-Chern cohomology, in the sense that there exists a natural morphism from integral Bott-Chern cohomology into all other cohomology theories.

It is proven that the Riemann-Roch-Grothendieck formula is veried for all the above cohomology theories. A natural question is thus the Riemann-Roch-Grothendieck formula is veried for rational Bott-Chern cohomology. To give a precise meaning to the formula, we have to dene the Chern classes of the direct image of a vector bundle (even all higher degree direct images). When the map between two manifolds is proper, by Grauert direct image theorem, the direct image along with higher degree direct images of a vector bundle is coherent. As a consequence, it would be interesting to be able to build a theory of Chern classes in the integral Bott-Chern cohomology for arbitrary coherent sheaves.

When the manifold is projective, this follows from an unpublished work of Junyan Cao in which he denes the Chern classes of vector bundles in the integral Bott-Chern cohomology. Since any coherent bundle can be resolved by a nite sequence of vector bundles on a projective manifold, we can as well dene Chern classes for coherent sheaves via such resolutions. However, according to a striking result of Voisin [START_REF] Voisin | A counterexample to the Hodge conjecture extended to Kähler varieties[END_REF], for an arbitrary compact complex manifold (even assumed to be Kähler), the resolution of a coherent sheaf by vector bundles does not necessarily exist. It follows that the denition of Chern classes of coherent sheaves on compact complex manifolds is much more involved.

To treat the similar situation for the rational Deligne cohomology, in the work [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF], Julien Grivaux proposes more generally an approach to dene the Chern characteristic classes in a rational axiomatic cohomology theory. This has been done by specifying that the cohomology theory must satisfy some intersection theory axioms.

The general line of the construction is as follows. One forces the GrothendieckRiemannRoch theorem to be valid for a closed immersion of smooth hypersurfaces. Then by devissage, one can derive from the intersection theory axioms that the GrothendieckRiemannRoch theorem is valid for any closed immersion.

Since every projective morphism is by denition factorising into the composition of a projection and a closed immersion, the GrothendieckRiemannRoch theorem is valid for any projective morphism, as observed by

Grothendieck. (Of course, we also use the axioms of the intersection theory to treat the projection case.)

In particular, following the approach of Grivaux, we are able in [START_REF] Wu | Intersection theory and Chern classes in Bott-Chern cohomology[END_REF] to dene Chern classes as rational Bott-Chern cohomology classes. In principle, the pull back of a cohomology class is induced by the pull-back of a smooth form, while the push-forward of cohomology class is better seen by pushing forward currents. The main diculty is then to control the behaviour of cohomology classes under the composition of pull-back and push-forward. More precisely, the integral Bott-Chern complex is quasi-isomorphic to dierent types of complexes. To dene pull-back or push-forward for the hypercohomology (the integral Bott-Chern cohomology), we have to use dierent quasi-isomorphic complexes. When we deal with the eect of taking pull-backs and push-forwards in cohomology, we pass to the derived category to show that the morphisms are still well-dened and that they commute in the derived category of complexes of abelian groups, after passing to hypercohomology.

In certain situations, the pull-back of currents can still exist, although it is not always well-dened in general. For example, let Y, Z be two smooth cycles intersecting transversally along W . The pull-back of the current rZs under the closed immersion i Y is well dened as rW s. We have to show that via some quasi-isomorphisms, these special types of morphisms between special representatives lead to well dened cohomology morphisms.

The main diculty compared to the integral Deligne case is that the multiplication structure of the integral Bott-Chern cohomology is much more complicated. We choose this multiplication denition such that the natural morphism from the integral Bott-Chern cohomology to the complex Bott-Chern cohomology is a ring morphism not only a group morphism. Remark that the complex Bott-Chern cohomology can be represented by global smooth forms. The wedge product of smooth forms pass to hypercohomology the multiplication of the complex Bott-Chern cohomology.

Theorem 1.23. Let p : X Ñ S be a projective morphism of compact complex manifolds and F a coherent sheaf over X. Then we have the Riemann-Roch-Grothendieck formula in the rational and complex Bott-Chern cohomology chpR ' p ˚F q tdpT S q " p ˚pchpF q tdpT X qq where R ' p ˚F " ř i R i p ˚F .

Theorem 1.24. If X is compact and K 0 X is the Grothendieck ring of coherent sheaves on X, one can dene a Chern character morphism ch :

K 0 X Ñ À k H k,k BC pX, Qq such that
(1) the Chern character morphism is functorial by pull back of holomorphic maps;

(2) the Chern character morphism is an extension of the usual Chern character morphism for vector bundles;

(3) the RiemannRoch-Grothendieck theorem holds for projective morphisms between smooth complex compact manifolds.

Thanks to the duality between complex Bott-Chern cohomology and Aeppli cohomology, we also show that the top degree cohomology of a compact connected complex manifold can be calculated in integral Bott-Chern cohomology, unlike what happens for Deligne cohomology.

Proposition 1.25. For a compact connected complex manifold X, we have a short exact sequence

0 Ñ H 2n´1 pX, Cq{H 2n´1 pX, Zq Ñ H n,n BC pX, Zq Ñ Z Ñ 0.

Elementary denitions and results

In this section, we recall some elementary denitions and x the notations which will appear in all the thesis. In all the thesis, without specifying we assume the manifold to be compact complex. For more details, we refer to the books Analytic Methods in Algebraic Geometry [START_REF] Demailly | Analytic methods in algebraic geometry[END_REF] and Complex analytic and dierential geometry [START_REF] Demailly | Complex analytic and dierential geometry[END_REF].

We start by recalling the denition of positive currents and of plurisubharmonic / quasi-plurisubharmonic functions (psh / quasi-psh for brevity).

Definition 1.26. (Positive currents)

According to [START_REF] Lelong | Intégration sur un ensemble analytique complexe[END_REF], a current Θ of bidimension pp, pq is said to be (weakly) positive if for every choice of smooth p1, 0q´forms α 1 , ¨¨¨, α p on X, the distribution Θ ^iα 1 ^α1 ^¨¨¨^iα p ^αp is a positive measure.

For any p1, 1q´current T and any smooth p1, 1q´form α, we say T ě α in the sense of currents if T ´α is a positive current.

Definition 1.27. (Psh / quasi-psh functions)

Let X be a complex manifold (not necessary compact). We say that ϕ is a psh function (resp. a quasi-psh function) on X, if iBBϕ ě 0,(resp. iBBϕ ě α) in the sense of currents where α is some smooth form on X.

We say that a quasi-psh function ϕ has analytic singularities, if locally ϕ is of the form ϕpzq " clogp

ÿ i |g i | 2 q `Op1q
with c ą 0 and pg i q some local holomorphic functions. Here Op1q means a locally bounded term.

An important example of closed positive current is the current associated to an eective cycle due to

Lelong [START_REF] Lelong | Intégration sur un ensemble analytique complexe[END_REF]. Every closed analytic set A Ă X of pure dimension p is associated a current of integration rAs dened as follows:

xrAs, αy " ż Areg α, α P D p,p pXq, obtained by integrating over the regular points of A.

To show that the current rAs is closed and to extend a current across an analytic set, we have the following fundamental theorem.

Theorem 1.28. (Skoda [Sko82], El Mir [START_REF] Mir | Sur le prolongement des courants positifs fermés[END_REF], Sibony [START_REF] Sibony | Quelques problèmes de prolongement de courants en analyse complexe[END_REF])

Let E be a closed complete pluripolar set in X (i.e. there is an open covering pΩ j q of X and psh functions u j on Ω j with E X Ω j " u ´1 j p´8q), and let Θ be a closed positive current on XzE such that the coecients Θ I,J of Θ are measures with locally nite mass near E. Then the trivial extension Θ obtained by extending the measures Θ I,J by 0 on E is still a closed positive current on X.

Let us observe that Lelong's result asserting that drAs " 0 for any (closed) analytic set A can be obtained by applying the Skoda-El Mir theorem to Θ " rA reg s on XzA sing .

Another important property of closed positive currents is the following support theorem (see e.g. Demailly [START_REF] Demailly | Complex analytic and dierential geometry[END_REF] Chap. III (2.10)). Recall that a support of a current is the complement of the maximal open set on which the restriction of the current is 0.
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Theorem 1.29. Let Θ be a current of degree q on a real manifold M , such that both Θ and dΘ have measure coecients pi.e. are normal currentsq. Suppose that the support Θ is contained in a real submanifold A with codim R A ą q. Then Θ " 0.

Let A be a complex analytic subset of X a complex manifold with global irreducible components A j of pure dimension p. Then any closed current Θ P D 1p,p pXq of order 0 with support in A is of the form Θ " ÿ λ j rA j s where λ j P C. Moreover,if Θ is positive, then all coecients λ j are ě 0.

An important application of the support theorem is the Lelong-Poincaré formula.

Let f P H 0 pX, O X q be a non zero holomorphic function, Z f " ř m j Z j , m j P N, the zero divisor of f and rZ f s " ř m j rZ j s the current associated to the zero divisor. Then i π BBlog|f | " rZ f s. A few basic properties of Lelong number are summarised below.

Theorem 1.30.

(1) ( [Lel57]) For every positive current Θ, the ratio νpΘ, x, rq is a non-negative increasing function of r, in particular the limit νpΘ, xq as r Ñ 0`always exists.

(2) ( [Lel57]) If Θ " iBBϕ is the bidegree (1,1)-current associated with a psh function ϕ, then νpΘ, xq " νpϕ, xq " suptγ ą 0; ϕpzq ď γlog|z ´x| `Op1q at xu.

(3) ( [START_REF] Siu | Analyticity of sets associated to Lelong numbers and the extension of closed positive currents[END_REF]) For every c ą 0, the set E c pΘq :" tx P X; νpΘ, xq ą cu is a closed analytic subset of X of dimension at most p.

A related notion is the concept of multiplier ideal sheaf.

Definition 1.31. (Multiplier ideal sheaf ). Let ϕ be a quasi-psh function. The multiplier ideal sheaves Ipϕq is dened as

Ipϕq x " tf P O X,x |DU x , ż Ux |f | 2 e ´2ϕ ă 8u
where U x is some open neighbourhood of x in X.

A basic property of the multiplier ideal sheaf due to [START_REF] Nadel | Hyperbolic surfaces in CP 3[END_REF] is that it is always a coherent ideal sheaf. Now we recall what are the main concepts of positive cones in complex geometry. In general, we work in the complex Bott-Chern cohomology, which is dene as follows:

H p,q BC pX, Cq " td-closed pp, qq-formsu{tBB-exact pp, qq-formsu. Let L be a holomorphic line bundle on a compact complex manifold X. L is pseudo-eective (by short, psef ) if c 1 pLq P H 1,1 BC pX, Cq is the cohomology class of some closed positive current T , i.e. if L can be equipped with a singular Hermitian metric h (which means the local weight function is L 1 loc ) with T " i 2π Θ L,h ě 0 as a current.

A cohomology class α P H 1,1 BC pX, Cq is said to be psef if it contains some positive current. A cohomology class α P H k,k BC pX, Cq for some k P N is said to be positive if it contains some strongly positive current in the sense of Lelong. For a p1, 1q´class, a class is psef if and only if it is positive.

Currents with minimal singularities in a given psef class are dened below. Definition 1.33. (See [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF]). Let ϕ 1 , ϕ 2 be two quasi-psh functions on X (i.e. iBBϕ i ě ´Cω in the sense of currents for some C ě 0). Then, ϕ 1 is said to be less singular than ϕ 2 (and we write ϕ 1 ĺ ϕ 2 ) if we have ϕ 2 ď ϕ 1 `C1 for some constant C 1 . Let α be a psef class in H 1,1 BC pX, Rq, and γ be a smooth real p1, 1q´form. Let T 1 , T 2 , θ P α with θ smooth and T i " θ `iBBϕ i pi " 1, 2q. The potential ϕ i is well dened up to an additive constant since X is compact. We say that T 1 ĺ T 2 if ϕ 1 ĺ ϕ 2 .

A minimal element T min,γ with respect to the pre-order relation ĺ can be shown to exist by taking the upper semi-continuous regularization of all ϕ i such that θ `iBBϕ i ě γ and sup X ϕ i " 0.

Another important cone is the nef cone. The following denition has been introduced in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF] in the non necessarily algebraic case. Definition 1.34. (Nef line bundles)

A line bundle L on a compact complex manifold X is said to be nef if for every ε ą 0, there is a smooth Hermitian metric h ε on L such that iΘ L,hε ě ´εω where ω is some smooth Hermitian metric.

A cohomology class α P H 1,1 BC pX, Cq is said to be nef if for every ε ą 0, there is a smooth element α ε P α such that α ε ě ´εω where ω is some smooth Hermitian metric.

By denition, the nef cone is contained in the psef cone. A basic measure for a psef class to be nef is The non-nef locus of a pseudo-eective class α P H 1,1 BC pX, Rq is dened by E nn pαq :"

ď εą0 ď cą0 E c pT min,´εω q
where ω is any Hermitian metric.

The notion of nefness can be generalized to the vector bundle case (cf. [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF]). Definition 1.36. A vector bundle E is said to be numerically eective (nef ) if the canonical bundle O PpEq p1q is nef on PpEq, the projective bundle of hyperplanes in the bres of E.

A holomorphic vector bundle E over X is said to be numerically at if both E and E ˚are nef por equivalently if and only if E and pdet Eq ´1 are nefq.

Finally, we recall the following regularization theorem due to Demailly. Definition 1.37. A p1, 1q-current T is said to be quasi-positive if T ě α where α is a smooth form, in other words if T is positive modulo smooth forms. pIn particular, according to the denitions, a function ϕ is quasi-psh if iBBϕ is quasi-positiveq.

Theorem 1.38. Let T be a quasi-positive closed p1, 1q-current on a compact complex manifold X of dimension n such that T ě γ for some continuous p1, 1q-form γ. Then there exists a sequence of currents T m whose local potentials have the form 1 m logp

ÿ i |g i,m | 2 q `Op1q
with Op1q a locally bounded term and pg i,m q some local holomorphic functions, and a decreasing sequence ε m ą 0 converging to 0 such that (1) T m converges weakly to T ;

(2) νpT, xq ´n m ď νpT m , xq ď νpT, xq for every x P X;

(3) T m ě γ ´εm ω in the sense of currents.

CHAPTER 2

On the hard Lefschetz theorem for pseudoeective line bundles Abstract. In this note, we obtain a number of results related to the hard Lefschetz theorem for pseudoeffective line bundles, due to Demailly, Peternell and Schneider. Our rst result states that the holomorphic sections produced by the theorem are in fact parallel, when viewed as currents with respect to the singular Chern connection associated with the metric. Our proof is based on a control of the covariant derivative in the approximation process used in the construction of the section. Then we show that we have an isomorphism between such parallel sections and higher degree cohomology. As an application, we show that the closedness of such sections induces a linear subspace structure on the tangent bundle. Finally, we discuss some questions related to the optimality of the hard Lefschetz theorem.

Introduction

In this note, we establish a closedness and harmonicity result that complements the hard Lefschetz theorem for pseudoeective line bundles proved in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF]. By following the arguments of the above paper, we show that the sections provided by the proof are in fact parallel, when viewed as currents with respect to the singular Chern connection of the metric. The rst diculty is to dene the covariant derivative for such singular metrics, since in general the wedge product of two currents is not always well-dened. Another diculty is to control the covariant derivative in the approximation process employed in the original proof.

Let X be a compact Kähler n-dimensional manifold, equipped with a Kähler metric, i.e. a positive denite Hermitian p1, 1q-form ω " i ř 1ďj,kďn ω jk pzq dz j ^dz k such that dω " 0. By denition a holomorphic line bundle L on X is said to be pseudoeective if there exists a singular hermitian metric h on L, given by hpzq " e ´ϕpzq with respect to a local trivialization L |U » U ˆC, such that the curvature form iΘ L,h :" iBBϕ is (semi)positive in the sense of currents, i.e. ϕ is locally integrable and iΘ L,h ě 0 : in other words, the weight function ϕ is plurisubharmonic (psh) on the corresponding trivializing open set U . In this trivialization, if the metric is in fact smooth, the (1,0) part of the covariant derivative with respect to the associated Chern connection is given in the form:

B h " B `Bϕ ^',
and the total connection is d h " B h `B. An important fact is that B h and d h still make sense for an arbitrary singular metric h as above. Another basic concept relative to a singular metric is the notion of multiplier ideal sheaf, introduced in [Nad90].

Definition 2.1. To any psh function ϕ on an open subset U of a complex manifold X, one associates the multiplier ideal sheaf Ipϕq Ă O X|U of germs of holomorphic functions f P O X,x , x P U , such that |f | 2 e ´ϕ is integrable with respect to the Lebesgue measure in some local coordinates near x. We also dene the global multiplier ideal sheaf Iphq Ă O X of a hermitian metric h on L P PicpXq to be equal to Ipϕq on any open subset U where L |U is trivial and h " e ´ϕ. In such a denition, we may in fact assume iΘ L,h ě ´Cω, i.e. locally ϕ " psh `C8 , we say in that case that ϕ is quasi-psh.

The interest of considering quasi-psh functions is that on a compact manifold global psh functions are constant, while the space of quasi-psh functions is innite dimensional. Among them, functions with analytic singularity will be of special concern for us. With this notation, the following bundle valued generalization of the hard Lefschetz theorem has been established in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF]. The proof uses the natural L 2 -resolution of the sheaf Ω n X b L b Iphq.

Theorem 2.2. ( [DPS01]) Let pL, hq be a pseudo-eective line bundle on a compact Kähler manifold pX, ωq of dimension n, let Θ L,h ě 0 be its curvature current and Iphq the associated multiplier ideal sheaf. Then, the wedge multiplication operator ω q ^' induces a surjective morphism

Φ q ω,h : H 0 pX, Ω n´q X b L b Iphqq ÝÑ H q pX, Ω n X b L b Iphqq.
The special case when L is nef is due to Takegoshi [START_REF] Takegoshi | On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds[END_REF] (for the denition of nef in the analytic setting, cf. [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF]). An even more special case is when L is semi-positive, i.e. L possesses a smooth metric with semi-positive curvature. In that case, the multiplier ideal sheaf Iphq coincides with O X and we get the following consequence already observed by Enoki [START_REF] Enoki | Strong-Lefschetz-type theorem for semi-positive line bundles over compact Kähler manifolds[END_REF] and Mourougane [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov-Sommese[END_REF].

Corollary 2.3. Let pL, hq be a semi-positive line bundle on a compact Kähler manifold pX, ωq of dimension n. Then, the wedge multiplication operator ω q ^' induces a surjective morphism

Φ q ω : H 0 pX, Ω n´q X b Lq ÝÑ H q pX, Ω n X b Lq.
It should be observed that although all objects involved in Theorem 2.2 are algebraic when X is a projective manifold, there is no known algebraic proof of the statement; it is not even clear how to dene algebraically Iphq in the case when h " h min is a metric with minimal singularity. The classical hard Lefschetz theorem is the case when L is trivial or unitary at; then L has a (real analytic) metric h of curvature equal to 0, whence Iphq " O X .

In the pseudoeective case, the Lefschetz morphism is in general no longer injective as in the classical hard Lefschetz theorem. An obvious counterexample can be obtained by taking L " mA where A is an ample divisor, so that h 0 pX, Ω n´q X b Lq " Cm n for m big enough, but h q pX, Ω n X b Lq " 0 if q ą 0. We will show that to have an isomorphism, we should change the left hand side by the parallel sections with respect to the singular metric.

Notice that the proof of the hard Lefschetz theorem is given by constructing directly a pre-image for any element in H q pX, Ω n X bLbIphqq. This is done by taking weak limit of some subsequence in a bounded family of some Hilbert space. Since for a bounded family of some Hilbert space, there exists some subsequence with a weak limit in the Hilbert space. However, there is no trivial reason that the weak limit is unique. Thus viewing the proof of the hard Lefschetz theorem as construction of an inverse operator

H q pX, Ω n X b L b Iphqq ÝÑ H 0 pX, Ω n´q X b L b Iphqq,
a priori, this operator is not necessarily linear. Thus it is a natural question to demand whether the inverse operator is linear. More general, does there exist a sublinear space of H 0 pX, Ω n´q X b L b Iphqq such that the inverse operator is an isomorphism of linear spaces?

In the classical case L " O X , one can observe that any section u P H 0 pX, Ω n´q X q satises the additional condition du " d h0 u " 0. This is easily seen by Stokes formula, which implies ż X idu ^du ^ωq´1 " ż X tdu, duu h0 ^ωq´1 " 0, where h 0 is the trivial smooth metric on O X ; in that formula (as well as in the rest of this paper), given a hermitian metric h, we denote by tu, vu h the natural sesquilinear pairing

C 8 pM, ^pT X b Lq ˆC8 pM, ^qT X b Lq Ñ C 8 pM, ^p`q T X q pu, vq Þ Ñ tu, vu h given by tu, vu h " ÿ λ,µ iu λ ^v µ xe λ , e µ y h where u " ř u λ b e λ , v " ř v µ b e µ .
Another proof relies on the observation that Bu " B ˚u " 0 (the second equality holds since u is of bidegree pn ´q, 0q), whence ∆ B u " 0 " ∆ B u by the Kähler identities. As a consequence, we have Bu " B ˚u " 0, and so du " 0.

More generally, the proof of the hard Lefschetz theorem in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF] is obtained by constructing preimages as limits of forms given by the pointwise Lefschetz isomorphism. One then deals with a sequence of harmonic representatives of a given class in H q pX, K X b L b Iphqq, with respect to approximated, less singular, hermitian metrics h ε . It is thus natural to wonder whether the holomorphic sections provided by Theorem 2.2 also satisfy some sort of closedness property in the case of arbitrary pseudoeective line bundles. In fact, we are going to prove that these sections are parallel with respect to the (possibly singular) Chern connection associated with the metric h; the proof employs similar arguments, but with the additional diculty that one has to deal with non smooth metrics. Theorem 2.4. All holomorphic sections produced by Theorem 2.2 are parallel with respect to the Chern connection associated with the singular hermitian metric h on L.

More precisely, as h can be singular, this means that in local coordinates, any such holomorphic section s P H 0 pX, Ω n´q X b L b Iphqq satises B h s " Bs `Bϕ ^s " 0 in the sense of currents. Since Bs " 0, we conclude that d h s " B h s `Bs " 0. This property can be expressed by saying that the section s is parallel with respect to d h . Now, let us consider the harmonicity. Assume rst that the metric is semi-positive (i.e. a smooth metric with positive Chern curvature). By computing BpB h sq " 0, we get BBϕ ^s " 0, hence iΘ L,h ^s " 0.

As ∆ B s " 0 (s is a holomorphic section and B ˚s " 0 by a bidegree consideration), the Kodaira-Nakano identity implies ∆ B s ´∆B h s " riΘ L,h , Λss " iΘ L,h Λs ´ΛiΘ L,h s " ´ΛiΘ L,h s " 0, by the fact that Λs " 0. Therefore ∆ B h s " 0. Since the metric is smooth, this is equivalent to the fact that B h s " 0 and B h s " 0. If the metric is singular, we still have iΘ L,h ^s " 0 by the same arguments. However, in the latter case, although the operator B h is still a densely dened operator on L 2 pX, Ω n´q X b L, hq (cf. Remark 1), it is dicult to give an explicit expression of his Hilbert adjoint B h . There may exist the boundary condition on the domain of B h caused by integration by parts, while the singular part of a general positive singular metric could have very dicult topology. Thus it is dicult to discuss the Hilbert adjoint B h in general. Nevertheless, the fact that the section is parallel with respect to the singular metric is sucient to characterize the pre-image of the wedge multiplication operator in the hard Lefschetz theorem.

Theorem 2.5. Let pL, hq be a pseudo-eective line bundle on a compact Kähler manifold pX, ωq of dimension n, let Θ L,h ě 0 be its curvature current and Iphq the associated multiplier ideal sheaf. Then, the wedge multiplication operator ω q ¨' induces a linear isomorphism

Φ q ω : H 0 pX, Ω n´q X b Lq X KerpB h q ÝÑ H q pX, Ω n X b Lq.
In section 4, as a geometric application, we use the closedness property of the holomorphic sections produced by the hard Lefschetz theorem to derive the existence of a singular foliation of X (in fact a linear subspace structure of T X ).

Theorem 2.6. Assume that v P H 0 pX, Ω n´q X b L b Iphqq, q ě 1 is a parallel section with respect to the singular metric h. In particular a section constructed by the hard Lefschetz theorem is such a section. The interior product with v gives an O X -morphism (which is well dened throughout X)

F v : T X Ñ Ω n´q´1 X b L X Þ Ñ ι X v.
The kernel of F v denes an integrable coherent subsheaf of OpT X q, i.e. a holomorphic foliation.

At the end of section 4, we show by a concrete example indicated to the author by Professor Andreas Höring that for a general pre-image, instead of the one constructed by the hard Lefschetz theorem, the above process does not necessarily induce a foliation. In fact, the kernel of F v dened in the theorem 2.6 denes a foliation if and only if v is a parallel section.

Finally, in the last sections of this work, we discuss the optimality of the multiplier ideal sheaf Iphq " Ipϕq involved in the hard Lefschetz theorem. Demailly, Peternell and Schneider already showed in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF] that one cannot omit the ideal sheaf even when L is taken to be nef, and gave a counterexample when L " ´KX is the anticanonical bundle. However, it might still be possible in some cases to improve the ideal sheaf, for instance to replace it with lim δÑ0`I pp1 ´δqϕq Ą Ipϕq. When ϕ has analytic singularities, it may happen that the inclusion be strict, but in general the limit need not even be a coherent sheaf (see section 5). The abundance conjecture and the nefness of L " K X would imply the semiampleness of L, so in that case, the ideal sheaf is denitely not needed. For the general case, this seems to be a dicult problem. Some discussions of these issues are conducted in section 6. 
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Denition of the covariant derivative

In this section, we consider a pseudoeective line bundle pL, hq on a Kähler (non necessarily compact) manifold pY, ωq where hpzq " e ´ϕpzq with respect to a local trivialization L |U » U ˆC and ω is smooth. We denote by | | " | | ω,h the pointwise hermitian norm on Λ p,q T ‹ Y b L associated with ω and h, and by

} } " } } ω,h the global L 2 norm }u} 2 " ż Y |u| 2 dV ω
where dV ω " ω n n! .

Recall that since ϕ is a quasi-psh function on U , its derivative dϕ belongs to L p loc pU q with respect to Lebesgue measure for every p ă 2 (cf. e.g. Theorem 1.48 in [START_REF] Guedj | Degenerate Complex MongeAmpère Equations[END_REF]). This regularity is optimal since on C, the psh function log|z| has a derivative not in L 2 loc pCq. We x a smooth reference metric h 0 on L (not necessarily semi-positive) from which we can view any other singular metric as given by h " h 0 e ´ϕ where ϕ is a quasipsh function dened on Y . In general, for u P L 2 loc pU, Λ p,q T ‹ Y b L, ω, h 0 q, Bϕ ^u is not a priori well dened as a form with coecients in L 1 loc pU, Λ p`1,q T ‹ Y b L, ω, h 0 q (with respect to the Lebesgue measure), at least if we make a naive use of the Cauchy-Schwarz inequality to get a current on U . (Note that in this case, Bϕ P L 1 loc pU, Λ p`1,q T ‹ Y b L, ω, h 0 q is however a current on U .)

We can overcome this problem in our proof, because in the construction of sections in the proof of the bundle valued hard Lefschetz theorem, this type of product can always be dened. In fact we always have additional assumptions on either u or ϕ, as we will see next, and this will be enough to prove our main theorem. At the end of this section, we prove that the wedge product Bϕ ^u is closed with respect to the L 2 topology when ϕ is any psh function and u is in L 2 loc pe ´ϕq ; this will be used in the following section. In the sequel, we will make use two types of such wedge products. The rst type is when u is holomorphic, so that the coecients of u are in fact bounded on any compact set, hence in L 8 loc , thus Bϕ^u has coecients in

L 1 loc pU, Λ p,q T ‹ Y b L, ω, h 0 q ˆL8 loc pU, Λ 1,0 T ‹ Y b L, ω, h 0 q Ă L 1 loc pU, Λ p`1,q T ‹ Y b L, ω, h 0 q. Moreover, if ϕ i a sequence of quasi-psh functions such that ϕ i Ñ ϕ in L 1 loc pU, ω, h 0 q, we have Bϕ i Ñ Bϕ in L 1 loc pU, Λ 1,0 T ‹ Y b L, ω, h 0 q hence Bϕ i ^u Ñ Bϕ ^u in L 1 loc pU, Λ p`1,q T ‹ Y b L, ω, h 0 q, which implies in particular
the weak convergence as currents (cf. e.g. theorem 1.48 in [START_REF] Guedj | Degenerate Complex MongeAmpère Equations[END_REF]).

The second type is when ϕ is an arbitrary psh function, taken as a local weight function of h, and u P L 2 loc pU, Λ p,q T ‹ Y b L, ω, hq. To understand what happens, we start by the case when ϕ has analytic singularities, although this consideration is not necessary for the proof of general case. Suppose that ϕ has analytic singularities along a simple normal crossing divisor, i.e. in some coordinates, ϕ " c log|z a1 1 ...z an n | `C8 .

We only need to check the current is well dened near a point in Sing(h), a situation which happens only in case c ą 0. When u P L 2 loc pU, Λ p,q T ‹ Y b L, ω, hq, we have to show that Bϕ ^u is locally integrable with respect to the Lebesgue measure, and without loss of generality, we can suppose that the section is integrable on U , and not only on every compact in U , i.e. ż U |Bϕ ^u| ω,h0 dV ω ă 8.

It is true since ď Cp ż U |z a1 1 ...z an n | c | ÿ a i 2 dz i z i | 2 ω,h0 dV ω q 1 2 p ż U |u| 2 ω,h dV ω q 1 2 ď Cp ż U |z a1 1 ...z an n | c ÿ a 2 i 4|z i | 2 ź idz i ^dz i q 1 2 p ż U |u| 2 ω,h dV ω q 1 2 .
Since U is a local coordinate chart, we can suppose U to be a poly-disc ś Dp0, r j q. The integrability of the rst term in the integral is given by for any j such that a j ą 0,

ż U |z a1 1 ...z an n | c a 2 j 4|z j | 2 ź idz i ^dz i ď C j ż rj 0 r 2aj c´1 ă 8 since ca j ´1 ą ´1.
By assumption the second term in the integral is nite, so the product is nite.

If ϕ has analytic singularities, there exists a modication of µ : Ỹ Ñ Y such that µ ˚pI phqq is an invertible sheaf associated to a simple normal crossing divisor, thanks to Hironaka's desingularization theorem [START_REF] Hironaka | Resolution of singularities of an algebraic variety over a eld of characteristic zero. I[END_REF].

Since we consider only local integrability of functions up to modication (by denition, a modication is a biholomorphism outside of proper analytic sets) and since analytic subsets are of Lebesgue measure zero, singularities are irrelevant with respect to integration. Therefore, we can reduce the general case by using a modication that converts the singular sets involved into simple normal crossing divisors.

For the general case where ϕ is arbitrary psh function. It is enough to prove that

ş K |e ϕ 2 Bϕ| 2 ω,h0
dV ω is nite for any compact set K Ť U . After shrinking U into a smaller relatively compact open subset, we can suppose that ϕ ď C for some C ą 0, and also that there exists a non increasing sequence of smooth psh functions ϕ εν converging to ϕ in L 1 pU q as ε ν Ñ 0. The smooth psh function sequence can be obtained by taking a convolution with radially symmetric approximations of the Dirac measure. The upper bound is obtained by the maximum principle. The same is true for ϕ ε1 . In particular, e ϕ P L 1 pU q. We prove that e ϕ P P SHpU q. Up to a subsequence, e ϕε ν Ñ e ϕ almost everywhere. The functions are uniformly bounded. By the dominated convergence theorem, e ϕε ν Ñ e ϕ in L 1 pU q. Since the space of the psh functions is closed in L 1 loc pU q, e ϕ P P SHpU q. Hence iBBe ϕ " e ϕ piBBϕ `iBϕ ^Bϕq ě 0 as a current. For any compact set K Ă U , the mass of iBϕ ^Bϕe ϕ ^ωn´1 on K is the mass of iBBpe ϕ q ^ωn´1 on K minus the mass of iBBϕe ϕ ^ωn´1 on K which is nite. This means

ş K |e ϕ 2 Bϕ| 2 ω,h0
dV ω is nite. And it is closed with respect to the L 2 topology in the sense that considering a sequence u j , u P L 2 loc pU, Λ p,q T ‹ Y bL, ω, hq such that u j Ñ u, we have by the inequality ż

U |Bϕ ^u| ω,h0 dV ω " ż U |Bϕe ϕ 2 | ω,h0 |u| ω,h dV ω ď p ż U |e ϕ 2 Bϕ| 2 ω,h0 dV ω q 1 2 p ż U |u| 2 ω,h dV ω q 1 2
which shows that Bϕ ^uj Ñ Bϕ ^u in L 1 loc pU, Λ p`1,q T ‹ Y b L, ω, h 0 q, in particular as currents.

We should mention that some similar discussion of the denition of covariant derivative with respect to a singular metric can also be found in [START_REF] Demailly | On the Frobenius integrability of certain holomorphic p-forms, math.AG/0004067, Complex Geometry, Collection of Papers dedicated to Hans Grauert[END_REF]. (The author thanks Professor A. Höring for mentioning the reference.)

Remark 2.7. We check here that the operator

B h : L 2 pX, ^n´q T X b L, hq Ñ L 2 pX, ^n´q`1 T X b L, hq
is a closed densely dened operator.

By a partition of unity argument, it is enough to check this on a local coordinate chart U . Assume that we have h " e ´ϕ on U for some psh function ϕ. We claim that functions of the type e p1{2`εqϕ f with any ε ą 0 and f smooth with compact support are in the domain of denition of B h and are dense in L 2 pU, ^n´q T X b L, hq. In fact, we have B h pe p1{2`εqϕ f q " p3{2 `εqBϕ ^ep1{2`εqϕ f `ep1{2`εqϕ Bf.

Without loss of generality, we can assume that ϕ is bounded from above. Since f, Bf are bounded and |Bϕ| 2 e 2εϕ dV ω ď 1 4ε 2 iBBpe 2εϕ q^ω n´1 is integrable, we have ş U |Bϕ^e p1{2`εqϕ f | 2 e ´ϕdV ω ă 8 and ş U |e p1{2`εqϕ Bf | 2 e ´ϕdV ω ă 8. Thus e p1{2`εqϕ f is in the domain of denition.

To prove the density, it is equivalent to show that smooth functions with compact support are dense in L 2 pU, e 2εϕ dV q where dV is the Lebesgue measure. Notice that we have an isomorphism of topological linear space between L 2 pU, e 2εϕ dV q and L 2 pU, e ´ϕdV q by sending f to e p1{2`εqϕ f . Since e 2εϕ is locally bounded, thus e 2εϕ dV ω is a locally nite measure. Any real function u P L 2 pU, e 2εϕ dV q can be approximated in norm by a bounded function ũν " maxpminpu, νq, ´νq, and then ũν can be approximated by smooth compactly supported functions u ν by taking the product of ũν with a cut-o function and taking a convolution by dominated convergence theorem.

By the last paragraphs before the remark, if u ν Ñ u in L 2 pe ´ϕq topology, then B h u ν Ñ B h u in the weak topology of currents. This shows that B h is a closed operator by denition.

Assuming for the moment that theorem 2.4 is valid, we infer theorem 2.5. A consequence is that the inverse operator in the proof of the hard Lefschetz theorem is linear, a fact that is a priori non trivial.

Proof of theorem 2.5. By theorem 2.4, we know that the morphism is surjective. Since the morphism is the restriction of the wedge multiplication operator on some subspace, it is linear. Thus to show that it is a linear isomorphism, it is enough to show that it is injective.

Assume that u P H 0 pX, Ω n´q X b L b Iphqq such that B h u " 0 and u ^ωq " 0 in H q pX, K X b L b Iphqq. It means that there exists v P L 2 pX, ^n,q´1 T X b L, hq such that u ^ωq " Bv.

To prove that u " 0, it is equivalent to prove that u ^ωq " 0 by the pointwise Lefschetz isomorphism. To prove that u ^ωq " 0, it is enough to prove that Bv " 0.

We have that Bv 2 " ż X xBv, u ^ωq ydV ω " ż X tBv, uu.

On the other hand, we have that Btv, uu " tBv, uu `p´1q n`q´1 tv, B h uu since v is a pn, q ´1q form. By the assumption that B h u " 0, we get Btv, uu " tBv, uu. Since u is a pn ´q, 0q form and v is a pn, q ´1q form, by a degree consideration, we nd Btv, uu " 0.

Observe that tv, uu is a well dened current (in fact L 1 loc with respect to any smooth metric on L) since both v, u are L 2 with respect to the singular metric h.

Thus by Stokes theorem (for a statement of the result in terms of currents, cf. e.g. [deR60]), we obtain Bv 2 " ż X dtv, uu " 0.

Proof of theorem 2.4

This section follows closely [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF] with some additional estimates for the integral norms of the terms involved at each step. First, we reproduce the variant of the Bochner formula used in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF].

Proposition 2.8. Let pY, ωq be a complete Kähler manifold and pL, hq a smooth Hermitian line bundle such that the curvature current possesses a uniform lower bound Θ L,h ě ´Cω. For every measurable pn ´q, 0q-form v with L 2 coecients and values in L such that u " ω q ^v has dierentials Bu, B ˚u also in L 2 , we have }Bu} 2 `}B hu} 2 " }Bv} 2 `żY ÿ I,J ´ÿ jPJ λ j ¯|u IJ | 2 phere, all dierentials are computed in the sense of distributionsq and where λ 1 ď ¨¨¨ď λ n are the curvature eigenvalues of iΘ L,h expressed in an orthonormal frame pB{Bz 1 , . . . , B{Bz n q (at some xed point x 0 P Y ), in such a way that ω x0 " i ÿ 1ďjďn dz j ^dz j , piΘ L,h q x0 " dd c ϕ x0 " i ÿ 1ďjďn λ j dz j ^dz j .

Now, X denotes a compact Kähler manifold equipped with a Kähler metric ω, and pL, hq a pseudoeective line bundle on X. To x the ideas, we rst indicate the proof in the much simpler case when pL, hq has a smooth metric h (so that Iphq " O X ), and then treat the general case (although it is not really used in the proof of the general case).

Let tβu P H q pX, Ω n X b Lq be an arbitrary cohomology class. By standard Hodge theory, tβu can be represented by a smooth harmonic p0, qq-form β with values in Ω n X b L. We can also view β as a pn, qqform with values in L. The pointwise Lefschetz isomorphism produces a unique pn ´q, 0q-form α such that β " ω q ^α. Proposition 2.8 then yields }Bα} 2 `żX ÿ I,J ´ÿ jPJ λ j ¯|α IJ | 2 " }Bβ} 2 `}B hβ} 2 " 0, and the curvature eigenvalues λ j are non-negative by our assumption. Hence Bα " 0 and tαu P H 0 pX, Ω n´q X b Lq is mapped to tβu by Φ q ω,h " ω q ^'.

In this case, the proof of the closedness property of sections involves the identity

ż X tB h v, B h vu h ^ωq´1 " ż X pBtv, B h vu h ´p´1q deg v tv, BB h vu h q ^ωq´1 .
Using the holomorphicity of v, the fact that pX, ωq is Kähler and the Stokes formula, we get

RHS " p´1q deg v`1 ż X tv, ´Bh Bv `iΘ L,h vu h ^ωq´1 " p´1q deg v`1 ż X tv, iΘ L,h vu h ^ωq´1 " ´żX iΘ L,h ^tv, vu h ^ωq´1 ď 0.
In the above calculation, we have used the formula

B h B `BB h " iΘ L,h ^'.
The last inequality uses the curvature assumption. Therefore we have ż X tB h v, B h vu h ^ωq´1 " 0, and this implies B h v " 0.

Let us return to the case of an arbitrary plurisubharmonic weight ϕ. We will need the following equisingular approximation of psh functions; here, equisingularity is to be understood in the sense that the multiplier ideal sheaves are preserved. A proof can be found in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF] or [START_REF] Demailly | On the cohomology of pseudoeective line bundles[END_REF].

Theorem 2.9. Let T " α `dd c ϕ be a closed p1, 1q-current on a compact Hermitian manifold pX, ωq, where α is a smooth closed p1, 1q-form and ϕ a quasi-psh function. Let γ be a continuous real p1, 1q-form such that T ě γ. Then one can write ϕ " lim mÑ`8 r ϕ m where (a) r ϕ m is smooth in the complement XzZ m of an analytic set Z m Ă X ;

(b) t r ϕ m u is a non-increasing sequence, and Z m Ă Z m`1 for all m ;

(c) ş X pe ´ϕ ´e´r ϕm qdV ω is nite for every m and converges to 0 as m Ñ `8 ; (d) pequisingularityq Ip r ϕ m q " Ipϕq for all m ;

(e) T m " α `dd c r ϕ m satises T m ě γ ´εm ω, where lim mÑ`8 ε m " 0.

Fix ε " ε ν and let h ε " h εν be an approximation of h, such that h ε is smooth on XzZ ε (Z ε being an analytic subset of X), Θ L,hε ě ´εω, h ε ď h and Iph ε q " Iphq. As above we x a reference smooth metric h 0 on L. We denote by β the curvature form of h 0 and h ε " h 0 e ´ϕε (ϕ ε is hence a global quasi-psh function on X). The existence of a such metric is guaranteed by Theorem 2.9. Now, we can nd a family ω ε,δ " ω `δpiBBψ ε `ωq, δ ą 0 of complete Kähler metrics on XzZ ε , where ψ ε is a quasi-psh function on X with analytic singularity with ψ ε " ´8 on Z ε , ψ ε smooth on XzZ ε and iBBψ ε `ω ě 0 (see e.g. [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un bré vectoriel holomorphe semi-positif au dessus d'une variété kählérienne complète[END_REF], Théorème 1.5). By construction, ω ε,δ ě ω and lim δÑ0 ω ε,δ " ω. We look at the L 2 Dolbeault complex K ' ε,δ of pn, 'q-forms on XzZ ε , where the L 2 norms are induced by ω ε,δ on dierential forms and by h ε on elements in L. Specically K q ε,δ "

! u:XzZ ε ÑΛ n,q T X b L; ż XzZε p|u| 2 Λ n,q ω ε,δ bhε `|Bu| 2 Λ n,q`1 ω ε,δ bhε qdV ω ε,δ ă 8
) .

Let K q ε,δ be the corresponding sheaf of germs of locally L 2 sections on X (the local L 2 condition should hold on X, not only on XzZ ε !). Then, for all ε ą 0 and δ ě 0, pK q ε,δ , Bq is a resolution of the sheaf

Ω n X b L b Iph ε q " Ω n X b L b Iphq.
This is because L 2 estimates hold locally on small Stein open sets, and the L 2 condition on XzZ ε forces holomorphic sections to extend across Z ε ( [Dem82], Lemma 6.9).

Let tβu P H q pX, Ω n X b L b Iphqq be a cohomology class represented by a smooth form with values in

Ω n X b L b Iphq. Then }β} 2 ε,δ ď }β} 2 " ż X |β| 2 Λ n,q ωbh dV ω ă `8.
The reason is that |β| 2 Λ n,q ωbh dV ω decreases as ω increases, see e.g. [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un bré vectoriel holomorphe semi-positif au dessus d'une variété kählérienne complète[END_REF], Lemma 3.2. Now, β is a B-closed form in the Hilbert space dened by ω ε,δ on XzZ ε and for δ ą 0, the Kähler metric is complete on XzZ ε , so there is a ω ε,δ -harmonic form u ε,δ in the same cohomology class as β, such that }u ε,δ } ε,δ ď }β} ε,δ .

Let v ε,δ be the unique pn ´q, 0q-form such that u ε,δ " v ε,δ ^ωq ε,δ (v ε,δ exists by the pointwise Lefschetz isomorphism). Then }v ε,δ } ε,δ " }u ε,δ } ε,δ ď }β} ε,δ ď }β}.

As ř jPJ λ j ě ´qε by the assumption on Θ L,hε , the Bochner formula for XzZ ε yields }Bv ε,δ } 2 ε,δ ď qε}u ε,δ } 2 ε,δ ď qε}β} 2 . But since Z ε is an analytic set, the integral can also be seen taken on X; In the following, we use it abusively. These uniform bounds imply that there are subsequences u ε,δν and v ε,δν with δ ν Ñ 0, possessing weak-L 2 limits u ε " lim νÑ`8 u ε,δν and v ε " lim νÑ`8 v ε,δν . The limit v ε " lim νÑ`8 v ε,δν is with respect to L 2 pωq " L 2 pω ε,0 q. To check this, notice that in bidegree pn ´q, 0q, the space L 2 pωq has the weakest topology of all spaces L 2 pω ε,δ q; indeed, an easy calculation made in [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un bré vectoriel holomorphe semi-positif au dessus d'une variété kählérienne complète[END_REF], Lemma 3.2 yields

|f | 2 Λ n´q,0 ωbh dV ω ď |f | 2 Λ n´q,0 ω ε,δ bh dV ω ε,δ if f is of type pn ´q, 0q.
On the other hand, the limit u ε " lim νÑ`8 u ε,δν takes place in all spaces L 2 pω ε,δ q, δ ą 0, since the topology gets stronger and stronger as δ Ó 0 [ possibly not in L 2 pωq, though, because in bidegree pn, qq the topology of L 2 pωq might be strictly stronger than that of all spaces L 2 pω ε,δ q ]. For xed δ ą 0, for any δ 1 ă δ,we have

}u ε,δ 1 } ε,δ ď }u ε,δ 1 } ε,δ 1 ď }β} }u ε } ε,δ ď liminf δ 1 Ñ0 }u ε,δ 1 } ε,δ ď }β} By Lebesgue's monotone convergence theorem, u ε is L 2 pω ε,δ b h ε q bounded. The above estimates yield }v ε } 2 ε,0 " ż X |v ε | 2 Λ n´q,0 ωbhε dV ω ď }β} 2 , }Bv ε } 2 ε,0 ď qε}β} 2 ε,0 " qε}β} 2 , u ε " ω q ^vε " β in H q pX, Ω n X b L b Iph ε qq.
The last equality can be checked via the De Rham-Weil isomorphism, by using the fact that the map α Þ Ñ tαu from the cocycle space Z q pK ' ε,δ q equipped with its L 2 topology, into H q pX, Ω n X b L b Iphqq equipped with its nite vector space topology, is continuous.

For the closedness property, we want to control the L 1 loc norm of the covariant derivative with respect to the Lebesgue measure, which is well dened on X since the metric is smooth outside an analytic set and the section is locally L 2 with respect to the metric. For any smooth pn ´q, 0q-form v with compact support in XzZ ε , we can apply the Stokes formula to get ż

X tB hε v, B hε vu hε ^ωq´1 ε,δ " p´1q deg v`1 ż X tv, ´Bhε Bv `iΘ L,hε vu hε ^ωq´1 ε,δ " ż X pBtv, Bvu hε ´tBv, Bvu hε ´iΘ L,hε ^tv, vu hε q ^ωq´1 ε,δ " ż X p´tBv, Bvu hε ´iΘ L,hε ^tv, vu hε q ^ωq´1 ε,δ .
We want to apply this identity to v " v δ,ε that does not necessarily have compact support in XzZ ε . However, the metric ω ε,δ bh ε is smooth and complete on XzZ ε , and this will allow us to extend the identity to v " v ε,δ . In fact, there exists a sequence of smooth forms v ε,δ,ν with compact support on XzZ ε obtained by truncating v ε,δ and by taking the convolution with a regularizing kernel, in such a way that v ε,δ,ν Ñ v ε,δ in L 2 pω ε,δ b h ε q (and therefore in L 2 pω b h 0 q as well). For simplicity of notation, we put B ε " B hε and denote by B ε,δ its dual with respect to the metric ω ε,δ b h ε (the latter operator depends on δ, since the Hodge ˚operator depends on the Kähler metric). By taking v " v ε,δ,ν in the above identity, neglecting the non positive term involving Bv and using the curvature condition, we obtain

}B ε v ε,δ,ν } 2 ε,δ ď qε}v ε,δ,ν } 2 ε,δ .
Let us put C " e max X pϕε 1 q (we have C ă 8 as X is compact). Then by using ω ε,δ ě ω, h ε ě 1 C h 0 , we get

}B ε v ε,δ,ν } 2 L 2 pωbh0q ď C}B ε v ε,δ,ν } 2 ε,δ
, By the Cauchy-Schwarz inequality and the fact that X is compact and that the metrics ω, h 0 are smooth, we nd

}B ε v ε,δ,ν } L 1 pωbh0q ď C 1 }B ε v ε,δ,ν } L 2 pωbh0q , Since the covariant derivative is a closed operator and v ε,δ,ν Ñ v ε,δ , v ε,δ Ñ v ε in L 2 pω ε,0 b h ε q, we conclude that }B ε v ε,δ } L 1 pωbh0q ď C 2 ? qε}β}, }B ε v ε } L 1 pωbh0q ď C 2 ? qε}β}.
Again, by arguing in a xed Hilbert space L 2 ph ε0 q (since ω ε " ω, the notation L 2 ph ε0 q will be used for xed ε 0 ą 0), we nd L 2 convergent subsequences u ε Ñ u, v ε Ñ v as ε Ñ 0, and in this way get Bv " 0 and }v} 2 ď }β} 2 , u " ω q ^v " β in H q pX, Ω n X b L b Iphqq. By closedness of the covariant derivative and by continuity of the injection L 2 pω b h 0 q ãÑ L 1 pω b h 0 q on the compact manifold X, we obtain }B ε0 v} 2 L 1 pωbh0q ď Cqε 0 }β} 2 . As ϕ " lim εÑ0 ϕ ε and Bϕ " lim εÑ0 Bϕ ε in L 1 loc ph 0 q, and as we haven proven that v is in fact holomorphic, by the continuity of the covariant derivative operator, we infer that Bϕ ^v " lim εÑ0 Bϕ ε ^v in the sense of distributions, and we have }B h v} 2 L 1 pωbh0q " 0, which means that B h v " 0. The closedness property is proved along the same lines.

Foliation induced by sections

We show that the closedness property of the holomorphic section provided by the hard Lefschetz theorem induces a foliation on X. Here foliation means that there exists an irreducible analytic set V of the total space T X such that for any x P X, V x :" V X T X is a complex vector space and the section sheaf OpV q Ă OpT X q is closed under the Lie bracket. It is equivalent to say that OpV q is closed under Lie bracket and that OpT X q{OpV q is torsion free. We consider v P H 0 pX, Ω n´q X b L b Iphqq, q ě 1 a parallel section with respect to the singular metric h. In particular a section constructed by the hard Lefschetz theorem is such a section. The interior product with v gives an O X -morphism (which is well dened on the whole of X )

F v : T X Ñ Ω n´q´1 X b L X Þ Ñ ι X v.
First we observe that the kernel KerpF v q is coherent and locally free over a Zariski open set this merely relies on the fact that v is holomorphic, and although the proof is purely formal, we repeat here the standard argument for the reader's convenience. For any z P X, take an open neighbourhood V of z such that L| V is trivial and on this open set vpzq " ř |I|"n´q v I pzqdz I where v I P ΓpV, O X q. Consider ξ " ř ξ j pzq B Bzj a local tangent vector eld on V . For any multiindex I and any j P I, we write it in the form I " pj, I 1 j q. Then ξ P KerpF v q if and only if ř j,I,|I|"n´q´1 ξ j u pj,Iq dz I " 0, i.e. if and only if for any I, |I| " n ´q ´1, ř j ξ j pzqu pj,Iq pzq " 0. This gives a local system of analytic equations dening KerpF v q. In particular, we see that KerpF v q is locally free over the Zariski open set where the holomorphic linear system ř j ξ j pzqu pj,Iq pzq " 0 (|I | " n ´q ´1) achieves its generic rank.

Next, we show that the spaces of sections of KerpF v q are closed under Lie brackets; this uses of course the closedness property of v. Since the closedness under Lie brackets is a local property, we can take an open set U such that there exists a nowhere vanishing local generator s L of the line bundle L on U , and we verify the closedness of the Lie bracket on U . On U , v " u b s L for some u P H 0 pU, Ω n´q X q. Denote by X, Y two local tangent vector elds in KerF v Ă OpT X q dened on U . Observe that d h pu b s L q is only almost everywhere dened (instead of pointwise dened). The above equalities are calculated in the sense of currents. We have The above dots ... mean terms of the form ˘upX, Y, 'qd h s L p'q. The last equality uses of course the fact that X, Y P KerF v . For any X 0 , ..., X n´q tangent vector elds of U such that X 0 " X, X 1 " Y , we have 0 " dupX 0 , ..., X n´q q " n´q ÿ i"0 p´1q i X i rupX 0 , ..., Xi , ..., X k qs `ÿ 0ďiăjďn´q p´1q i`j uprX i , X j s, X 0 , ..., Xi , ..., Xj , ..., X n´q q " ´uprX, Y s, X 2 , ..., X n´q q, which means that rX, Y s P KerpF v q.

By the Frobenius theorem, the subsheaf KerpF v q Ă T X denes a regular holomorphic foliation on a Zariski open set. Notice additionally that KerpF v q is saturated in T X , i.e. T X {KerpF v q » ImpF v q is torsion free, as a subsheaf of the locally free sheaf Ω n´q´1 X b L. We can also reformulate our conclusions in the following form: denote by r the generic rank of KerpF v q.

Then, looking at F v as a morphism of bundles rather than as a morphism of sheaves, we get a meromorphic morphism

X

GrpT X , rq z Þ Ñ KerpF v,z q where GrpT X, rq is the Grassmannian bundle of r-dimensional subspaces of T X , and the corresponding distribution of subspaces is integrable on the Zariski open set where the above map is holomorphic.

Let us observe that the foliation property only holds for the parallel sections. In general, a non trivial section v P H 0 pX, Ω n´q X b Lq, q ě 1, does not necessarily induce a foliation. We give below a concrete example of the non-integrability of KerpF v q for such a section v, and thank Professor A. Höring for pointing out the example. It is interesting at this point to compare the situation with the following result proved in [START_REF] Demailly | On the Frobenius integrability of certain holomorphic p-forms, math.AG/0004067, Complex Geometry, Collection of Papers dedicated to Hans Grauert[END_REF]: if L is a psef line bundle over a compact Kähler manifold X and 0 ď q ď n " dimX, then for every non-zero holomorphic section v P H 0 pX, Ω q X b L ´1q, the kernel KerpF v q automatically denes a foliation on X.

The example pointed out by A. Höring rst appeared in the paper of Beauville [START_REF] Beauville | Complex manifolds with split tangent bundle. Complex analysis and algebraic geometry[END_REF]. Let A be an abelian surface and X " A ˆP1 . Let pU, V q be a basis of H 0 pA, T A q , and let S, T be two vector elds on P 1 which do not commute. For example, in the homogeneous coordinates rw 1 : w 2 s of P 1 , we can take

S " w 2 B Bw 1 , T " w 1 B Bw 2 .
Then the vector elds U `S and V `T span a rank 2 subbundle Σ of T X . Since U `S, V `T have no common root, Σ -O '2 X . In particular, Σ is not integrable, i.e. Σ is not closed under the Lie bracket of vector elds. Consider the short exact sequence of vector bundles 0 Ñ Σ Ñ T X Ñ T X {Σ Ñ 0.

We deduce that T X {Σ -´KX . The quotient map T X Ñ T X {Σ -´KX induces by duality a vector bundle morphism K X Ñ Ω 1 X . Thus we have a non trivial section η S,T P H 0 pX, Ω 1 X b p´K X qq. To use the hard Lefschetz theorem, we take the following smooth metric on ´KX . Denote by π 1 : X Ñ A, π 2 : X Ñ P 1 the natural projections. ´KX " π 2 O P 1 p2q. Thus ´KX is a semiample divisor. By taking the smooth metric h induced by a basis of global sections π 2 H 0 pP 1 , O P 1 p2qq (or a base point free system of global sections), we get a smooth positive metric on ´KX . In particular, the multiplier ideal sheaf associated to this metric is trivial. Moreover, by construction, the metric is real analytic. In other words, we have a section v P H 0 pX, Ω 1 X b p´K X qq such that KerpF v q is not integrable, while the metric is positive and real analytic.

Fix any Kähler metric ω on X. By the hard Lefschetz theorem, we have a surjective map

H 0 pX, Ω 1 X b p´K X qq Ñ H 2 pX, O X q.
The image ω 2 ^ηS,T has a pre-image η S,T which does not dene a foliation on X with the above choice of S, T .

Next, we derive by an explicit calculation what is the pre-image given by the hard Lefschetz theorem, and show that this pre-image indeed denes a foliation on X. To simplify our exposition, we keep the same notation as above without assuming any longer that S, T do not commute. Fix ω A a at metric on A such that U, V form an orthonormal basis at each point. Fix ω P 1 a Kähler metric on P 1 induced by the Fubini-Study metric and x ω " π 1 ω A `π˚ω P 1 a Kähler metric on X. In particular, with this choice of metric, the induced metric ^3ω b h on K X `p´K X q is trivial.

We begin by showing that for any choice of S, T , the image ω 2 ^ηS,T is the same. To verify this claim, we use the following isomorphism of C-vector spaces. Notice that H 2 pX, O X q -π 1 H 2 pA, O A q -C. Fix some x P P 1 . Consider the morphism ι :

H 2 pX, O X q Ñ C tuu Þ Ñ ż Aˆtxu u ^iU ˚^V ˚.
Here u is a C 8 p0,2q pXq representative of tuu P H 2 pX, O X q. It is surjective since a generator of H 2 pX, O X q can be represented by π 1 pU ˚^V ˚q whose image is equal to ş A ω 2 A . Since both sides are isomorphic to C,

we have an isomorphism.

For any x P P 1 , let W be a local generator T P 1 with norm 1 with respect to ω P 1 . In particular, locally U, V, W form an orthonormal basis with respect to ω pointwise. Assume that locally S " f W and T " gW . There exists a C 8 splitting of the short exact sequence 0 Ñ Σ Ñ T X Ñ T X {Σ Ñ 0 by T X -Σ ' T X {Σ which is induced by ω. Locally, T X is spanned by orthogonal basis f U `gV ´W , U `f W and V `gW . With this identication, η can be locally given by for any ξ P T X ηpξq " xξ, f U `gV ´W y |f U `gV ´W | 2 pf U `gV ´W q.

Thus η is given by

p f 1 `f 2 `g2 U ˚`g 1 `f 2 `g2 V ˚´1 1 `f 2 `g2 W ˚q b pf U `gV ´W q.
The anticanonical line bundle ´KX is locally generated by pf U `gV ´W q ^pU `f W q ^pV `gW q " ´p1 `f 2 `g2 qU ^V ^W.

In other words, the identication of Σ K -T X {Σ -´KX means the identication of f U `gV ´W with ´p1 `f 2 `g2 qU ^V ^W . Thus ω 2 ^η seen as a C 8 p0,2q form is given by f V ˚^W ˚`gU ˚^W ˚`U ˚^V ˚.

Using this expression, ιpω 2 ^ηS,T q is the same for any S, T . Since ι is an isomorphism of vector spaces, ω 2 ^ηS,T is independent of the choice of S, T .

In the following, we show that the section constructed in the hard Lefschetz theorem for ω 2 ^ηS,T is η S,T associated with S " T " 0. We remark that since the metric is smooth, we can directly use the result of [START_REF] Enoki | Strong-Lefschetz-type theorem for semi-positive line bundles over compact Kähler manifolds[END_REF] without employing the equisingular approximation of [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF]. In other words, the pre-image is given by the pointwise Lefschetz isomorphism of the harmonic representative of an element in H 2 pX, O X q.

We claim that a generator of H 2 pX, O X q can be represented by the harmonic p0, 2q-form U ˚^V ˚. The reason is as follows. Since the metric is trivial on O X , the covariant derivative coincides with the exterior derivative. Since U, V are global parallel holomorphic sections, dU ˚" dV ˚" 0. This implies in particular that BpU ˚^V ˚q " 0. On the other hand, U ˚^V ˚is independent of the choice of coordinate on P 1 . To prove that B ˚pU ˚^V ˚q " 0, it is enough to make a calculation in a normal coordinate chart centred at x. In other words, locally ω " iU ˚^U ˚`iV ˚^V ˚`iW ˚^W ˚with dW pxq " 0. (The existence of the normal coordinate chart is ensured by the assumption that ω is Kähler.) Since B ˚" ´˚B˚, we have B ˚pU ˚^V ˚qpxq " 0, as this form involves only the value dW pxq at x. By the pointwise Lefschetz isomorphism, the pre-image of U ˚^V in the hard Lefschetz theorem is given by U ^V P H 0 pX, Ω 1 X b ´KX q -H 0 pX, ^2T X q -H 0 pA, K A q. It denes a foliation of T X generated by U, V , which has leaves A ˆtxu (x P P 1 ).

Counterexample to coherence

In this section, we wonder whether it is possible to replace the multiplier ideal sheaf by its lower semi-continuous regularization, i.e. I ´pϕq :"

č δą0
Ipp1 ´δqϕq, which could be thought of as some sort of limit lim δÑ0`I pp1 ´δqϕq. A priori, as an innite intersection of ideal sheaves, this lower semi-continuous regularization might not be coherent. It contains certainly Ipϕq and can be dierent from it if 1 is a jumping coecient of the multiplier ideal sheaf. In this section, we show by a counterexample that the above innite intersection Ş δą0 Ipp1 ´δqϕq need not be coherent for arbitrary psh functions; hence some further conditions should be added to ensure coherence and possible applications to algebraic geometry, thanks to Serre's GAGA theorem [START_REF] Serre | Géométrie algébrique et géométrie analytique[END_REF].

Proposition 2.10. Let B be the ball of radius 1 2 centred at 0 in C 2 , and consider the plurisubharmonic function ϕpz, wq " log|z|

`ÿ kě1 ε k logp|z| `|w ´ak | N k q
where a k is any sequence converging to 0 smaller than 1 2 and ε k ą 0 and N k P N ˚are suitable numbers p to be determined laterq. Then ϕ denes multiplier sheaves such that the intersection ideal Ş δą0 Ipp1 ´δqϕq is not coherent.

The potential used above is a modication of the one given in [START_REF] Qi'an Guan | Cluster points of jumping coecients and equisingularties of plurisubharmonic functions[END_REF] (and was suggested to the author by Demailly). Assume that the a k 's are distinct and not equal to zero. We recall the following elementary calculation of [START_REF] Siu | Very ampleness part of Fujita's conjecture and multiplier ideal sheaves of Kohn and Nadel[END_REF].

Lemma 2.11. Let a, b, and c be some positive numbers such that a and cp1 ´ras´a b q are not integers and ras ´a ă b ă 1. Let p 0 " ra ´1s and q 0 " tcp1 ´ras´a b qu. Then on C 2 , the multiplier ideal sheaf for the weight function a log|z| `logp|z| b `|w| c q is generated by z p0`1 and z p0 w q0 . Here t¨u denotes the round-down and r¨s denotes the round-up.

Using this lemma, we can calculate the multiplier ideal sheaf at p0, a k q since near p0, a k q the function is equisingular to log|z| `εk logp|z| `|w ´ak | N k q. Using the trivial inequality 1 2 pα γ `βγ q ď pα `βq γ ď 2 γ pα γ `βγ q for α, β, γ non negative, one can easily reduce the required check to the lemma. In order to compute the multiplier ideal sheaf associated to p1 ´δqϕ at p0, a k q, 0 ă δ ă 1, we apply the lemma to a " 1 ´δ, b " 1 ´δ and c " p1 ´δqN k ε k . Once ε k , N k are xed, the number cp1 ´ras´a b q is an integer only for countably many values of δ, a situation that does not aect I ´pϕq. When ε k converge to 0 fast enough, ϕ well dene a psh function on B. In particular, we can choose ε k positive such that ř ε k ă 8. By this assumption, ϕ ě p1 `ř ε k qlog|z|. Hence it is not identically innite. In particular, ϕ is the limit of a decreasing sequence of psh functions log|z| `řk0ěkě1 ε k logp|z| `|w ´ak | N k q. Hence it is a psh function on B for any choice of N k . Now x C ą 1 and choose N k so that N k ε k ě C and N k ε k is not an integer. Consider a given index k. For such a choice and δ small enough, q k,δ " tN k ε k p1 ´2δqu ě 1. By the lemma, Ipp1 ´δqϕq is generated at p0, a k q by z, pw ´ak q q k,δ . In particular, pz, pw ´ak q tN k ε k u q Ă pI ´pϕq, a k q. Now we prove that I ´pϕq is not coherent by contradiction. If I ´pϕq is coherent, since B is a Stein manifold, by Cartan theorem A for any p0, a k q the map H 0 pB, I ´pϕqq Ñ I ´pϕq p0,a k q is surjective. For any f P H 0 pB, I ´pϕqq, f p0, a k q " 0 for any k. Since p0, a k q has a cluster point 0 on the complex line tz " 0u, we have f | tz"0u " 0. In other words, f can be divided by z. But pw ´ak q tN k ε k u should then be the restriction of such a function f , and this contradiction yields the proposition.

We check below that the coherence may however hold for psh functions that are not too badly behaved.

By denition, it is enough to treat the case when 1 is actually a jumping value of the multiplier ideal sheaves t Þ Ñ Iptϕq. First, we observe that when ϕ has analytic singularity, we have I ´pϕq " Ipp1 ´δqϕq for δ ą 0 small enough, in particular, I ´pϕq is coherent. In fact, if ϕ has the form ϕ "

ř α j log|g j | where D j " g ´1 j p0q are non-singular irreducible divisors with normal crossings, then Ipϕq is the sheaf of functions f on open sets U Ă X such that ş U |f | 2 ś |g j | ´2αj dV ă 8.
Since locally the g j can be taken to be coordinate functions from a local coordinate system pz 1 , . . . , z n q, the integrability condition is that f be divisible by ś g mj j where m j ą tα j u. Hence Ipϕq " Op´tDuq " Op´řtα j uD j q. Saying that 1 is a jumping coecient in this case means that there exist some index subset J such that for any j 0 P J we have α j0 " tα j0 u. In this case for δ small enough we have that Ipp1 ´δqϕq " Op´ÿ jPJ pα j `1qD j ´ÿ jRJ tα j uD j q and the conclusion follows. More generally, if ϕ has arbitrary analytic singularity, there exists a smooth modication ν : X Ñ X of X such that ν ˚I pϕq is an invertible sheaf Op´Dq associated with a normal crossing divisor D " ř λ j D j , where pD j q are the components of the exceptional divisor of ν. Now, we have K X " ν ˚KX `R where R " ř ρ j D j is the zero divisor of the Jacobian determinant of the blow-up map.

By the direct image formula, we get

Ipϕq " ν ˚pOpRq b Ipϕ ˝νqq, and the proof is reduced to the divisorial case.

Even more generally, for any psh function ϕ and any psh function ψ with zero Lelong numbers (i.e., for every x, νpψ, xq " 0), we have Ipϕq " Ipϕ `ψq (cf. Proposition 2.3 [START_REF] Kim | Equivalence of plurisubharmonic singularities and Siu-type metrics[END_REF]). By the above discussion we thus get I ´pϕ `ψq " Ipp1 ´δqpϕ `ψqq for δ ą 0 small if ϕ has analytic singularities.

In particular, when X is 1-dimensional, Siu's decomposition theorem [START_REF] Siu | Analyticity of sets associated to Lelong numbers and the extension of closed positive currents[END_REF] can be used, to decompose dd c ϕ into the sum of a convergent series of Dirac masses and of a current with zero Lelong numbers; only the locally nite set of points where the Lelong number number is at least 1 plays a role; we then see that I ´pϕq " Ipp1 ´δqϕq for δ small enough, hence I ´pϕq is coherent. More generally, the following variant of Nadel's proof on the coherence of multiplier ideal sheaf [START_REF] Michael | Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature[END_REF] can be exploited. Lemma 2.12. For any psh function ϕ on Ω Ă X such that E 1 pϕq :" tx; νpϕ, xq ě 1u consists of isolated points, the sheaf I ´pϕq is a coherent sheaf of ideals over Ω.

Proof. We follow the proof of Nadel. Without loss of generality, we can assume that Ω is the unit ball.

By the strong noetherian property of coherent sheaves, the family of sheaves generated by nite subsets of H 2 ´pΩ, ϕq :" tf P O Ω pΩq;

ş Ω |f | 2 e ´2p1´δqϕ ă 8, @δ P s0, 1ru has a maximal element on each compact subset of Ω, hence H 2 ´pΩ, ϕq generates a coherent ideal sheaf J in O Ω . By denition we have J Ă I ´pϕq. We will prove that in fact J " I ´pϕq, which shows in particular that I ´pϕq is coherent.

For the other direction, it is enough to prove that J x `I´p ϕq x X m s`1

x " I ´pϕq x for every integer s, by the Krull lemma. Let f P I ´pϕq x be dened in a neighbourhood V of x and let θ be a cut-o function with support in V such that θ " 1 in some neighbourhood of x. We solve the B equation Bu " Bpθf q by Hörmander's L 2 estimates ,with respect to the strictly psh weight φpzq :" ϕpzq `pn `sqlog|z ´x| `|z| 2 .

The integrability is ensured by the fact that Bpθf q vanishes near x and the Skoda integrability theorem [START_REF] Skoda | Sous-ensembles analytiques d'ordre ni ou inni dans C n[END_REF]. We remark that the Lelong number outside a small open neighbourhood of 0 is strictly less than 1 pointwise by the assumption that E 1 pϕq is isolated at x.

Hence we get a solution u such that ş Ω |u| 2 e ´2ϕ |z ´x| ´2pn`sq dλ ă 8, thus F " θf ´u is holomorphic. F P H 2 ´pΩ, ϕq as a sum of a function in L 2 pΩ, ϕq and a function in H 2 ´pΩ, ϕq. Moreover, f x ´Fx " u x P I ´pϕq x X m s`1

x . This nishes the proof.

On the optimality of multiplier ideal sheaves

We study here whether the ideal sheaves Ipϕq involved in the hard Lefschetz theorem can be replaced by ideals Ipp1 ´δqϕq Ą Ipϕq. In other words, if pL, hq is a pseudo-eective line bundle on a compact Kähler manifold pX, ωq of dimension n, iΘ L,h ě 0 its curvature current and Iphq the associated multiplier ideal sheaf, we study whether for any δ P r0, 1s small enough the wedge multiplication operator ω q ^' induces a surjective morphism

Φ q ω,h : H 0 pX, Ω n´q X b L b Ipp1 ´δqhqq ÝÑ H q pX, Ω n X b L b Ipp1 ´δqhqq.
First, we recall the following special case of the hard Lefschetz theorem. Assume that L admits a smooth metric h 0 such that its curvature form α is semi-positive. Then, the wedge multiplication operator ω q ^' induces a surjective morphism for any δ P r0, 1s

Φ q ω,h : H 0 pX, Ω n´q X b L b Ipp1 ´δqhqq ÝÑ H q pX, Ω n X b L b Ipp1 ´δqhqq.
The proof of this case just consists of applying the hard Lefschetz theorem to the Hermitian line bundle pL, h δ 0 h 1´δ q. If the line bundle admits a positive singular metric h 0 such that the corresponding Lelong numbers are equal to 0 at every point, by Proposition 2.3 in [START_REF] Kim | Equivalence of plurisubharmonic singularities and Siu-type metrics[END_REF], for any δ P r0, 1s, the metric pL, h δ 0 h 1´δ q has a multiplier ideal sheaf equal to Ipp1 ´δqhq. Then the bundle valued hard Lefschetz theorem also implies the surjectivity property.

The condition that the line bundle admits a positive singular metric such that the Lelong number of this metric is pointwise 0 implies in particular by regularization (see e.g. Theorem 14.12 in [START_REF] Demailly | Analytic methods in algebraic geometry[END_REF]) that the line bundle is nef. However, the converse is false by example 1.7 in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF], in which the only positive singular metric on the nef line bundle is the singular one induced by a section. An alternative example is given in [START_REF] Koike | Ueda theory for compact curves with nodes[END_REF]: there, Koike considers the anticanonical line bundle ´KX of the blow-up of P 2 at 9 points, and shows that there exists some conguration of the nine points such that ´KX is nef, while the singular metric with minimal singularities is induced by a section s P H 0 pX, ´KX qzt0u. In particular, there exists no singular metric on ´KX with curvature ě 0, such that the Lelong number of the singular metric is equal to 0 at each point. This condition is also non equivalent to the semipositivity of the line bundle, although it is obviously implied by semipositivity. A counter example for the converse direction is provided by [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], example 5.4 and [Kim07], example 2.14. Take a non-trivial rank 2 extension V of the trivial line bundle by itself, over an elliptic curve C, and an ample line bundle A over C. Then consider X " PpV ' Aq and the associated line bundle Op1q. It is big and nef, and this is enough to conclude that it admits a semi-positive singular metric with Lelong numbers equal to 0. In fact, it is enough to argue for the semi-positive metric with minimal singularity. By the Kodaira lemma, there exists m 0 P N such that Opm 0 q " à `E where à is an ample line bundle over X and E is an eective line bundle over X. For any m ě m 0 , a metric on Opmq is induced by a smooth strictly positive metric on the ample line bundle à `Oppm ´m0 qq and by a singular metric induced by a non zero section on the eective line bundle E. This metric itself induces a metric on Op1q which is by denition more singular than the metric with minimal singularity. It has pointwise Lelong numbers at most equal to 1 m . Hence the metric with minimal singularity has Lelong numbers equal to 0 pointwise. However, Op1q cannot admit a smooth semi-positive metric: for this, note that X has a submanifold Y -PpV q given by the surjective bundle morphism V ' A Ñ V ; a smooth semipositive metric on Op1q would induce a smooth semipositive metric on O Y p1q by restriction, which is impossible by [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF].

As we have seen, the extension is possible if the minimal metric is not too bad. This is also true in the purely exceptional case, as we will now see.

Let X be the blow up a point of some smooth complex manifold Y of dimension n. Denote by E the exceptional divisor. Let L be a semi-positive line bundle on X such that L| E is not trivial on E. Consider the line bundle L `E. Take h to be metric on L `E induced by the canonical section of the eective divisor E, tensor product with the given semi-positive metric on L. We start by remarking that for any δ P s0, 1s we have Ipp1 ´δqhq " O X . Hence the lower semi-continuous regularization of the multiplier ideal sheaf is trivial. We claim that the map

H 0 pX, Ω n´q X b L b Eq Ñ H q pX, K X b L b Eq
is surjective for every q ě 1. First, by the hard Lefschetz theorem, we nd that

H 0 pX, Ω n´q X b Lq Ñ H q pX, K X b Lq
is surjective for every q ě 1. On the other hand, we have the following commutative diagram

H 0 pX, Ω n´q X b Lq ÝÑ H 0 pX, Ω n´q X b L b Eq § § đ § § đ H q pX, K X b Lq ÝÑ H q pX, K X b L b Eq.
To show that the right arrow is surjective, it is enough to show that the bottom arrow is surjective. By Serre duality, this is equivalent to proving that H n´q pX, ´L ´Eq Ñ H n´q pX, ´Lq is injective. By considering the long exact sequence associated to the short exact sequence

0 Ñ O X p´L ´Eq Ñ O X p´Lq Ñ Op´Lq| E Ñ 0,
it is enough to show that for any q ě 1 H n´q´1 pE, ´L| E q " 0.

Remind that E -P n´1 . For any q P Z, for 0 ă i ă n ´1, we have that H i pP n´1 , Opqqq " 0. Remind also that the Picard group of P n´1 is Z. This nishes the case q ď n ´2, and the case q " n ´1 also holds, since our assumptions L ě 0 and L| E non trivial imply H 0 pE, ´L| E q " 0. The same arguments also work for L " O X . We have an exact sequence

H 0 pX, O X q Ñ H 0 pE, O E q Ñ H 1 pX, Op´Eqq Ñ H 1 pX, O X q.
The rst morphism is an isomorphism it is just a restriction morphism applied to constant functions hence H 1 pX, Op´Eqq Ñ H 1 pX, O X q is injective.

In general, as discussed in [START_REF] Demailly | Compact Kähler manifolds with hermitian semipositive anticanonical bundle[END_REF], the minimal singular metric of a psef line bundle can still be very singular, and this fact might lead to a non coherent lower semi-continuous regularization of the multiplier ideal sheaf. It thus seems to be a dicult problem to improve the hard Lefschetz theorem by replacing the given multiplier ideal sheaf by its lower semi-continuous regularization, if at all possible.

CHAPTER 3

Numerical dimension and vanishing theorems

In the rst part of this chapter, we compare dierent denitions of numerical dimension of a psef class or a psef line bundle. Although it is perhaps well-known for experts, we still give the complete proofs here.

In the second part of this chapter, some L 2 vanishing theorems in terms of numerical dimension are given.

The variant of Junyan Cao's vanishing will be also used in the next chapter to give a Kawamata-Viehweg type vanishing theorem without multiplier ideal sheaf.

Numerical dimension

We rst recall the Kähler version of the denition of numerical dimension as stated in [START_REF] Demailly | On the cohomology of pseudoeective line bundles[END_REF]. For L a psef line bundle on a compact Kähler manifold pX, ωq, we dene ndpLq :" maxtp P r0, ns; Dc ą 0, @ε ą 0, Dh ε , iΘ L,hε ě ´εω, such that ż XzZε piΘ L,hε `εωq p ^ωn´p ě cu.

Here the metrics h ε are supposed to have analytic singularities and Z ε is the singular set of the metric. Fix a family of metric h ε as stated in the denition. For such metrics, for p ą ndpLq, by denition, lim εÑ0 ż XzZε piΘ L,hε `εωq p ^ωn´p " 0.

If the line bundle L is nef, we can take h ε to be smooth and Z ε " H, (cf. the proof of point (i) in [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF], or [START_REF] Boucksom | On the volume of a line bundle[END_REF]) and we have for any p

lim εÑ0 ż XzZε piΘ L,hε `εωq p ^ωn´p " lim εÑ0 ż X pc 1 pLq `εωq p ^ωn´p " ż X c 1 pLq p ^ωn´p .
The integral condition in the denition of the numerical dimension in the nef case means that p " ndpLq is the largest integer such that ż X c 1 pLq p ^ωn´p ‰ 0.

Since for each p, c 1 pLq p can be represented by a positive closed pp, pq-current, the triviality of the mass is equivalent to the triviality of the current. In other words, ndpLq " maxtp; c 1 pLq p ‰ 0u, which corresponds to the denition of the numerical dimension for a nef line bundle.

In fact denoting α :" c 1 pLq, the numerical dimension for the psef line bundle L is the numerical dimension of the class of α dened in [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF].

To see it, we need the denition of moving intersection product for any psef p1, 1q-class α for any 1 ď p ď n. We start by recalling the following denition. Definition 3.1. (See [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF]). Let ϕ 1 , ϕ 2 be two quasi-psh functions on X (i.e. iBBϕ i ě ´Cω in the sense of currents for some C ě 0). Then, ϕ 1 is less singular than ϕ 2 (and write ϕ 1 ĺ ϕ 2 ) if we have ϕ 2 ď ϕ 1 `C1 for some constant C 1 . Let α be a psef class in H 1,1 BC pX, Rq and γ be a smooth real p1, 1q-form. Let T 1 , T 2 , θ P α with θ smooth and such that T i " θ `iBBϕ i pi " 1, 2q. ϕ i is well dened up to constant since X is compact. We say T 1 ĺ T 2 if and only if ϕ 1 ĺ ϕ 2 .

The minimal element T min,γ with the pre-order relation ĺ exists by taking the upper semi-continuous envelope of all ϕ i such that θ `γ `iBBϕ i ě 0 and sup X ϕ i " 0.

The positive product dened in [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF] is the real pp, pq cohomology class xα p y of the limit xα p y :" lim δÑ0 txT p min,δω yu where T min,δω is the positive current with minimal singularity in the class α `δtωu and xT p min,δω y is the non-pluripolar product. The numerical dimension of α is dened as ndpαq :" maxtp|xα p y ‰ 0u which is also equal to maxtp| ş X xα p y ^ωn´p ą 0u. The equivalence of two numerical dimensions given here is an adapted version of arguments in [Tos]. We will also need the denition of non-Kähler locus dened in [START_REF] Boucksom | Cônes positifs des variétés complexes compactes[END_REF]. Definition 3.2. Let α be a big class in H 1,1 pX, Rq. The non-Kähler locus is dened to be

E nK pαq :" č T Pα E `pT q
where T ranges all Kähler currents in α and E `pT q :" Ť cą0 E c pT q.

We will also need the following lemma in [START_REF] Boucksom | Cônes positifs des variétés complexes compactes[END_REF] which implies in particular that the non-Kähler locus is in fact an analytic set.

Lemma 3.3. Let α be a big class. There exists a Kähler current T with analytic singularities such that E nK pαq " E `p T q.

Proof. By regularization, we have equivalently that E nK pαq "

Ş

T Pα E `pT q where T ranges all Kähler currents with analytic singularities. Since T has analytic singularities, E `pT q is a proper analytic set. By the strong Noether property, there exist T i pi P Iq nite Kähler currents with analytic singularities such that E nK pT q " Ş iPI E `pT i q. Take a regularization T of min iPI T i . Then we have νp T , xq ď min iPI νpT i , xq

for any x P X. In particular, this implies that

E `p T q Ă č iPI E `pT i q.
Since T itself is a Kähler current with analytic singularities, we get in fact an equality in the statement.

We will need the following result stated in [BEGZ10, Prop. 1.16].

Proposition 3.4. For j " 1, ¨¨¨, p, let T j and T 1 j be two closed positive p1, 1q-currents with small unbounded locus (i.e. there exists a (locally) complete pluripolar closed subset A of X outside which the potential is locally bounded) in the same cohomology class, and assume also that T j is less singular than T 1 j .

Then the cohomology classes of their non-pluripolar products satisfy txT 1 ^¨¨¨^T p yu ě txT 1 1 ^¨¨¨^T 1 p yu in H p,p pX, Rq, where ě means that the dierence is pseudo-eective, i.e. representable by a closed positive pp, pq-current. Now we are prepared to prove that Proposition 3.5. For L a psef line bundle, we have that ndpc 1 pLqq " ndpLq.

Proof. Let h ε be a family of metric with analytic singularities as stated in the denition of ndpLq. Denote A ε :" E nK pα `εtωuq. Since T min,εω ĺ iΘ L,hε `εω, we have by proposition 3.4 that for any

1 ď p ď n ż XzZε piΘ L,hε `εωq p ^ωn´p " ż XzpZεYAεq xpiΘ L,hε `εωq p y ^ωn´p ď ż XzpZεYAεq xT p min,εω y ^ωn´p .
The right hand term is the same as ş X xT p min,εω y ^ωn´p , since the non-pluripolar product has no mass on any analytic set. It has limit equal to ş X xc 1 pLq p y ^ωn´p . In particular, this implies that ndpc 1 pLqq ě ndpLq. We remark that A ε is an analytic set hence is a small unbounded locus.

For the other direction, we construct a family of metrics with analytic singularities with control of the Monge-Ampère mass from below. Denote p :" ndpc 1 pLqq. Since xc 1 pLq p y ‰ 0, for ε small enough, xT p min,εω y ‰ 0 and ż X xT p min,εω y ^ωn´p ě c

for some constant c ą 0 uniform for ε small enough. Let T ε,δ be a sequence of regularisation of T min,εω with analytic singularities such that T ε,δ ě ´δω and the potentials of T ε,δ decrease to the potential of T min,εω . Hence T min,εω `εω and T ε,δ `εω are closed positive currents in the cohomology class α `2εtωu if δ ď ε. By lemma 3.3, A ε " E `pT ε q for some Kähler current with analytic singularities. Thus T min,εω ĺ T ε , whose potential is locally bounded outside A ε , as the potential of T ε is. So the potentials of T ε,δ are also locally bounded outside A ε . By weak continuity of the Bedford-Taylor Monge-Ampère operators with respect to decreasing sequences of functions, we have on XzA ε that, pT ε,δ `εωq l Ñ pT min,εω `εωq l for any l. By the Fatou lemma, we have that ż

XzAε pT min,εω `εωq p ^ωn´p ď liminf δÑ0 ż XzAε pT ε,δ `εωq p ^ωn´p .

Take any sequence δpεq such that δpεq ď ε and lim εÑ0 δpεq " 0. Let h ε be the metric on L with analytic singularities such that iΘ L,hε " T ε,δpεq ´εω. The metric h ε is uniquely dened up to a multiple. To normalise it, we can assume for example, that the maximum of the potentials on X equals to 0. Hence we have that iΘ L,hε ě ´pε `δpεqqω ě ´2εω.

Then the sequence of metric satises the condition demanded in the denition of ndpLq.

Remark 3.6. T min,ε 1 ω ĺ T min,εω `pε 1 ´εqω for any ε ď ε 1 . Denote T min,εω " θ `εω `iBBϕ min,εω . We can arrange that ϕ min,0 ď ϕ min,εω ď ϕ min,ε 1 ω .

The Bergman kernel regularisation perserves the ordering of potentials (cf. [START_REF] Demailly | On the cohomology of pseudoeective line bundles[END_REF]), so we have

ϕ 0,δ ď ϕ ε,δ ď ϕ ε 1 ,δ .
for any δ ą 0. If δpεq is increasing with respect to ε, by the proof of the proposition, we can choose the metric h ε to be decreasing with respect to ε. The limit of ϕ ε,δpεq as ε Ñ 0 is equal to ϕ min,0 corresponding to the metric with minimal singularities on L.

Remark 3.7. Similar to the denition of [START_REF] Demailly | On the cohomology of pseudoeective line bundles[END_REF] for the numerical dimension of a psef line bundle, we can dene in a similar way the numerical dimension of a psef cohomology class. The above proof in fact

shows that the two denitions of numerical dimension of a psef cohomology class coincide.

In the rest of the section, we show that the movable intersection of cohomology classes dened in [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF] coincides with the positive product dened in [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF] which might be well-known for experts.

In particular, using movable intersection instead of positive intersection, we can give a third equivalent denition of numerical dimension of a psef cohomology class.

To distinguish the notations, we will denote by x, y for the positive product and xx, yy for the movable intersection. In other words, it shows that the numerical denition of the psef class α can either dened to be the largest number such that xα p y ‰ 0 or such that xxα p yy ‰ 0.

We start by recalling the denition of the movable intersection given in Theorem 3.5 of [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF]. Let pX, ωq be a compact Kähler manifold and α be a psef class on X. To simplify the notations, we only dene xxα p yy where the general case is similar. First assume that α is big. To know the value of the product pairing with any pn ´p, n ´pq-smooth form, it is enough to know its value with a countable dense family of smooth forms. Since for any pn ´p, n ´pq-smooth form u, u " Cω n´p ´pCω n´p ´uq. For C ą 0 big enough, both Cω n´p and Cω n´p ´u is strongly positive forms (since X is compact). Thus it is enough to consider only a countable dense family of strongly positive forms.

Fix a smooth closed pn ´p, n ´pq strongly-positive form u on X. We select Kähler currents T P α with analytic singularities, and a log-resolution µ : X Ñ X such that µ ˚T " rEs `β

where rEs is the current associated to a R-divisor and β a semi-positive form. We consider the direct image current µ ˚pβ ^. . .^βq. Given two closed positive p1, 1q-currents T 1 , T 2 P α, we write T j " θ `iBBϕ i (j " 1, 2) for some smooth form θ P α. Dene T :" θ `iBB maxpϕ 1 , ϕ 2 q. We get a current with analytic singularities less singular than these two currents. By this way, if we change the representative T with another current T 1 , we may always take a simultaneous log-resolution µ such that µ ˚T 1 " rE 1 s `β1 , and we can always assume that E 1 ď E. By calculation, we nd ż

X β 1 ^. . . ^β1 ^µ˚u ě ż X β . . . ^β ^µ˚u .
In fact, we have It can be shown that the closed positive currents µ ˚pβ ^. . . ^βq are uniformly bounded in mass. In fact, for any Kähler metric ω in X, there exists a constant C ą 0 such that Ctωu ´α is a Kähler class. In other words, there exists some Kähler form γ on X in the cohomology class Ctωu ´α. By pulling back with µ, we nd Cµ ˚ω ´prEs `βq " µ ˚γ, hence β " Cµ ˚ω ´prEs `µ˚γ q where " means in the same cohomology class. By performing again a substitution in the integrals, we nd

ż X β k ^µ˚ωn´k ď C k ż X µ ˚ωn " C k ż X ω n .
For each of the integrals associated with a countable dense family of forms u, the supremum of ş X β . . . β ^µ˚u is achieved by a sequence of currents pµ m q ˚pβ m ^. . . ^βm q obtained as direct images by a suitable sequence of modications µ m : Xm Ñ X and suitable β m 's. By extracting a subsequence, we can achieve that this sequence is weakly convergent and we set

xxα p yy :" lim Ò mÑ`8 tpµ m q ˚pβ m ^. . .

^βm qu

In the general case when α is only psef, we dene xxα p yy :" lim Ó δÓ0 xxpα `δtωuq p yy.

We now prove that these two products coincide for psef classes. Since in the two cases, the products are the limit of the products of big classes in H p,p pX, Rq, without loss of generality, we can assume α to be big.

We state it in the following lemma. Lemma 3.8. For α a big class, for any 1 ď p ď n, we have xα p y " xxα p yy.

Proof. It is enough to prove by duality that for any smooth closed pn ´p, n ´pq-strongly positive form u on X, we have ż

X xα p y ^u " ż X xxα p yy ^u.
Denote by A the non-Kähler locus of α which is the pole of some Kähler current T in α with analytic singularities. Denote by T min P α, the current with minimal singularities in α. By denition, it is less singular than the Kähler current T . In particular, the potential of T min is locally bounded outside A. Let T ε be a regularisation of T min such that T ε ě ´εω. Their potentials are locally bounded outside A as T min 's is. By weak continuity of the Bedford-Taylor Monge-Ampère operator along decreasing sequences we have on XzA for any δ ą 0 and ε ď δ pT min `δωq p Ñ pT ε `δωq p as current. By Fatou lemma we have

ż XzA pT min `δωq p ^u ď liminf εÑ0 ż XzA pT ε `δωq p ^u.
Since the non-pluripolar product of currents has no mass along any analytic set, the left hand term has limit equal to ş X xα p y ^u. We remark that both xα p y and xxα p yy depend continuously on α in the big cone. Since T ε has analytic singularities, there exists a modication µ : X Ñ X such that µ ˚Tε " rEs `β

with E associated to a R-divisor and µ a biholomorphism on XzA. We remark that T ε `δω is a Kähler current with analytic singularities for ε ă δ. When δ Ñ 0, we have

liminf εÑ0 ż XzA pT ε `δωq p ^u ď ż X xxα p yy ^u.
For the other direction, for any T P α a Kähler current with analytic singularities, there exists a modication µ : X Ñ X such that µ ˚T " rEs `β as above. By the denition of non Kähler locus, T is locally bounded outside A. The modication can be achieved by a composition of blow-ups with smooth centres in A, so µ is a biholomorphism on XzA. 

Vanishing theorems

In this section, we generalise some L 2 vanishing theorems in terms of numerical dimension of a psef line bundle. At the end of this section, we give a variant of Nakano vanishing theorem. The relation of the Nakano vanishing theorem with the others is as follows. Recall the classical Kawamata-Viehweg vanishing theorem states that for a nef line bundle L over a projective manifold X, for any q ą n ´ndpLq we have that H q pX, K X b Lq " 0.

It is natural to ask whether the canonical line bundle can be changed by Ω p X to get a Nakano type vanishing theorem without strict positivity curvature condition. By the example of Ramanujam, it is not always possible. The last section gives some laboratory discussions.

Bogomolov vanishing theorem.

Let L be a holomorphic line bundle over a compact Kähler manifold X, the Bogomolov vanishing theorem [Bog] asserts that

H 0 pX, Ω p X b L ´1q " 0 for p ă κpLq.
In [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov[END_REF], the following two versions of Bogomolov vanishing theorem are given. Theorem 3.9. If L is a nef line bundle over a compact Kähler manifold X, then H 0 pX, Ω p X b L ´1q " 0 for p ă ndpLq.

Theorem 3.10. If L is a psef line bundle over a compact Kähler manifold X, then H 0 pX, Ω p X b L ´1q " 0 for p ă epLq, where epLq is the biggest natural number k such that there exists T P c 1 pLq a positive p1, 1qcurrent whose absolute part has rank k on a strictly positive Lebesgue measure set on X. (The absolute part exists and is unique by the Lebesgue decomposition theorem.)

In this note, we give the following improved version of the Bogomolov vanishing theorem, following the ideas of [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov[END_REF].

Theorem 3.11. Let L be a psef line bundle over a compact Kähler manifold X. Then we have

H 0 pX, Ω p X b L ´1q " 0 if p ă ndpLq.
In this section, we prove a numerical dimension version of the Bogomolov vanishing theorem. Now, let us denote l :" ndpLq. Then we have λ ε :"

ş XzZε piΘ L,hε `εωq n ş X ω n ě cε n´l .
The rst step of the proof consists in the use of Yau's theorem [START_REF] Yau | On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I[END_REF], so as to show that one can turn the above integral inequality into a pointwise lower bound, more precisely, the inequality p˚q given below. Up to a re-parametrisation of ε, we can assume that iΘ L,hε `εω ě ε 2 ω.

Let ν ε : X ε Ñ X be a log resolution of the analytic singularities of h ε . We then have ν ε piΘ L,hε `εωq " rD ε s `βε where β ε ě ε 2 ν ε ω ě 0 is a smooth positive closed p1, 1q-form on X ε . It is strictly positive on the complement X ε zE of the exceptional divisor E (we denote its irreducible components as E l ). rD ε s is the closed positive current associated to a R-divisor. By the theorem of Hironaka [START_REF] Hironaka | Resolution of singularities of an algebraic variety over a eld of characteristic zero. I[END_REF] we can assume that the exceptional divisor is simple normal crossing divisors and the morphism is obtained as a composition of a sequence of blow up with smooth centres. In this situation, there exist arbitrary small numbers η l ą 0 such that the cohomological class of β ε ´ř η l rE l s is a Kähler class (which means that there exists a Kähler form in this class).

Hence we can nd a quasi psh function θε on X ε such that βε :" β ε ´ÿ η l rE l s `iBB θε is a Kähler metric on X ε . By taking η l small enough, we can assume that ż

Xε

p βε q n ě 1 2 ż X β n ε .
The assumption on the numerical dimension implies there exists c ą 0 such that with Z ε :" ν ε pEq Ă X,

we have ż Xε β n ε " ż XzZε piΘ L,hε `εωq n ě ˆn l ˙p ε 2 q n´l ż XzZε piΘ L,hε `ε 2 ωq l ^ωn´l ě cε n´l ż X ω n .
Hence we have

ż Xε p βε q n ě c 2 ε n´l ż X ω n .
By Yau's theorem [START_REF] Yau | On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I[END_REF], there exists a quasi-psh potential τε on X ε such that βε `iBBτ ε is a Kähler metric on X ε with any prescribed volume form f such that ş Xε f " ş Xε p βε q n . By the integral condition, we can choose a smooth volume form on X ε such that

p˚q f ą c 3 ε n´l ν ε ω n
everywhere on X ε . Fix h a smooth metric on L and let ϕ ε be the weight function of h ε (i.e. h ε " he ´2ϕε ). We impose the additional normalization condition that sup Xε pν ε ϕ ε `θ ε `τ ε q " 0.

We now work again on X (e.g. by taking direct images to construct a sequence of singular metrics on X). Consider θ ε :" ν ε˚θε and τ ε :" ν ε˚τε P L 1 loc pXq. Dene Φ ε :" ϕ ε `θε `τε . This is a quasi psh potential on X since it satises the condition ν ε piΘ L,h `εω `iBBΦ ε q " rD ε s `ÿ η l rE l s `β ε `iBB τε ě 0.

Dene Zε :" ν ε pD ε q which includes Z ε since the support of the divisor D ε includes all components of the exceptional divisor by Hironaka theorem [START_REF] Hironaka | Resolution of singularities of an algebraic variety over a eld of characteristic zero. I[END_REF]. By construction, Φ ε is smooth on Xz Zε . By the normalised condition we have that sup X Φ ε " 0. Since iΘ L,h `εω `iBBΦ ε is a family of p1, 1q-forms in a bounded family of cohomology classes, with the above normalisation, we have, up to taking a subsequence, that the family of quasi-psh potentials Φ ε converges almost everywhere to Φ P L 1 pXq by weak compactness.

It satises that iΘ L,h `iBBΦ ě 0.

We also have that

ν ε 1 Xz Zε piΘ L,h `iBBΦ ε `εωq n ě βε n ě c 3 ε n´l ν ε ω n .
In other words, on Xz Zε

piΘ L,h `iBBΦ ε `εωq n ě c 3 ε n´l ω n .
To use the Bochner-Kodaira-Nakano inequality, we need to change the Kähler metric in such a way that Xz Zε becomes a complete manifold. We dene a family of Kähler metrics ω ε,δ :" ω `δpiBBψ ε `ωq, for δ ą 0 which is complete metrics on Xz Zε , where ψ ε is a quasi-psh function on X with ψ ε " ´8 on Zε , ψ ε smooth on Xz Zε and iBBψ ε `ω ě 0 (see e.g. [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un bré vectoriel holomorphe semi-positif au dessus d'une variété kählérienne complète[END_REF], Théorème 1.5).

Here we choose ψ ε more explicit for better control. Since we will use the Bochner-Kodaira-Nakano inequality on Xz Zε , to simplify the notations, we identify it with X ε zSupppD ε q. We dene

ψ ε :" ´a´ν ε ϕ ε ´C with C P R such that sup Xε ν ε ϕ ε `C " ´1. Now ψ ε satises the condition of [Dem82], Théorème 1.5
following its calculation.

We want to prove that e Φε dV ω ε,δ is a current on X ε . Since X ε is compact, it has nite mass on X ε . In particular, it has nite mass on X ε zSupppD ε q. It is enough to prove that e Φε piBBψ ε q p denes a current on X ε for any p ą 0. More precisely, we prove that e ν ε ϕε piBBψ ε q p denes a current on X ε for any p ą 0. Since

iBBψ ε " iBBν ε ϕ 2ψ ε `iBν ε ϕ ^Bν ε ϕ 4ψ ε ,
it is equivalent to prove that e ν ε ϕ piBBν ε ϕq p ^piBν ε ϕ ^Bν ε ϕq q (p, q ě 0) denes a current. By anticommutativity, we can assume q is either 0 or 1.

e ν ε ϕε n iBBν ε ϕ ε " e ν ε ϕε n prD ε s `smooth termsq " e ν ε ϕε n smooth terms since ν ε ϕ ε vanishes along D ε . Thus it is smooth on X ε vanishing along D ε .
On the other hand, in local coordinates,

ν ε ϕ ε " ÿ α i logp|z i | 2 q with α i ą 0. So e ν ε ϕε n iBν ε ϕ ε ^Bν ε ϕ ε " ź |z k | 2α k n i ÿ α i dz i z i ^ÿ α j dz j z j
has all coecients in L 1 loc . (This is because α k ą 0 for any k, although a priori, the derivative of a quasi-psh function is not necessarily in L 2 loc .) Hence the current is well dened as a wedge product of locally integrable functions and smooth forms.

In conclusion, we have that ş XzZε e Φε dV ω ε,δ is nite and uniformly bounded for δ small enough. Remark 3.12. Let us indicate an alternative argument in a more general situation, following a suggestion by Demailly. It is not necessary for our proof, but may be interesting for other uses. Let pX, ωq be a compact Hermitian manifold and D a SNC divisor in X. Let u P H 0 pX, C 0 p,q,X b Lq be a pp, qq continuous forms with value in some line bundle pL, hq endowed with some continuous metric h. In this remark, we construct a family of complete metrics ω δ on XzD such that ω δ decreasing to ω as δ Ñ 0 and ż

XzD |u| 2 h dV ω δ ď C
where C is a universal constant independent of δ.

To begin with, we recall some facts about the local model: the Poincaré metric on the punctured disk.

The Poincaré metric on H :" tz P C| Impzq ą 0u is given by idz^dz | Im z| 2 . There exists an innite cover from H to D ˚" tz P C||z| ă 1u given by z Þ Ñ e iz . The Poincaré metric on H is the pull back of the Poincaré metric on D ˚given by idz ^dz |z| 2 |logp|z|q| 2 . Since the Poincaré metric on H is complete and the cover is locally dieomorphism, the Poincaré metric on D ˚is also geodesic complete. It is well known that the Poincaré metric is of volume nite near the origin:

ż 0ă|z|ă 1 2 idz ^dz |z| 2 ||logp|z|q| 2 " ż 2π 0 dθ ż 1 2 0 dr rplogprqq 2 " 2π log2 ă 8.
Now we return to the construction of our metrics. Let U α be a nite system of coordinate charts of X(X is compact) such that for any U α such that U α X D ‰ H, (we denote the set of all such indices as I) we have in this coordinate chart

U α X D " tz 1 " ¨¨¨" z r " 0u, U α Ă t|z i | ă 1, @iu.
This is possible since D is a SNC divisor. Let χ α be a partition of unity adapted to this cover. Dene the family of metric ω δ on XzD as follows:

g α :" r ÿ i"1 idz i ^dz i |z i | 2 |logp|z i |q| 2 `n ÿ i"r`1 idz i ^dz i ω δ :" ω `δ ÿ αPI χ α g α .
The sum converges since we take nite sums. We have by construction ω δ ě ω decreasing to ω. By a similar calculation to the one made above, we have

ż XzD |u| 2 h dV ω δ ď C.
We remark that |u| 2 h a priori depends on ω δ . However in a local chart U α pα P Iq, we can write u " ÿ J,K,|J|"p,|K|"q u J,K dz J ^dz K using J(resp. K) for multi index of length p (resp. q). Denote for 1 ď i ď n and a multi index I, δ iI " 1 if i P I and δ iI "

0 if i R I. Then we have |u| 2 gα,h " ÿ J,K n ź i"1 p|z i | |log|z i ||q δ iJ n ź i"1 p|z i | |log|z i ||q δ iK |u JK | 2 e ´2ϕα
where ϕ α is the weight function of h on U α (i.e. h " e ´2ϕα on U α ). Hence |u| 2 gα,h is uniformly bounded since |z i ||log|z i || is bounded for |z i | ă 1 and all terms are continuous. It remains to prove that ω δ is complete. We prove it by contradiction. Let γptq be a geodesic of ω δ with natural parametrization for δ ą 0 whose maximal dening interval is st 0 , t 1 r with t 1 ă 8. By property of ordinary dierential equation (the solution goes outside any compact subset), the adherent point(s) must be contained in D with respect to the background topology of X. Since X is compact, there exists a sequence γpt ν q Ñ x P D with t ν Ñ t 1 , t ν ă t 1 . Up to taking a subsequence we can assume that such a sequence is contained in some chart U α0 . Then |γ 1 ptq| gα 0 ď δ|γ 1 ptq| ω δ " δ where the second equality is from the fact that γptq be a geodesic of ω δ . Hence γpt ν q is a Cauchy sequence with respect to g α . Since the Poincaré type metric g α is complete, the limit x P U α0 zD exists, which gives a contradiction.

We recall the Bochner-Kodaira-Nakano inequality in the non compact case. Theorem 3.13. Let h be a smooth hermitian metric on L over pX, ωq a complete Kähler manifold. We assume that the curvature possesses a uniform lower bound iΘ L,h ě ´Cω.

Then for an arbitrary pp, qq-form u P C 8 pX, ^p,q T X b Lq which is L 2 integrable, the following basic a priori inequality holds

Bu 2 ` B ˚u 2 ě ż X xriΘ L,h , Λsu, uydV ω .
Proof. For u with compact support, the inequality is just the classical one. When u is just L 2integrable case, since pX, ωq is assumed to be complete, there exists a sequence of smooth forms u ν with compact support in X (obtained for example by truncating u and taking the convolution with a regularizing kernel) such that u ν Ñ u in L 2 and such that Bu ν Ñ Bu, B ˚uν Ñ B ˚u in L 2 .

By our curvature assumption the term on the right is controlled by C|u| 2 which is L 2 . We thus get the inequality by passing to the limit, using Lebesgue's dominated convergence theorem.

We now return to the proof of the Bogomolov vanishing theorem.

Let u be a holomorphic p-form with value in L ´1. We take the metric induced from pL, he ´Φε q. The Bochner-Kodaira-Nakano inequality on the complete manifold pXz Zε , ω ε,δ q gives 0 ě ż XzZε xriΘ L,h , Λsu, uye Φε dV ω ε,δ , by using the degree condition and the fact that the form is holomorphic. We remark that the form is L 2integrable by the above discussion and the fact that u has globally bounded coecients on X (hence on Xz Zε ).

Let us observe that by [Dem82] Lemma 3.2, pp, 0q-forms get larger L 2 norms as the metric increases. In other words, in bidegree pp, 0q, the space L 2 pωq has the weakest topology of all spaces L 2 pω ε,δ q. Indeed, an easy calculation made in the above lemma yields

|f | 2 ^p,0 ωbh dV ω ď |f | 2 ^p,0 ω ε,δ bh dV ω ε,δ if f is of type pp, 0q. By Lebesgue's dominated convergence theorem, we have 0 ě ż XzZε xriΘ L,h , Λsu, uye Φε dV ω by taking δ Ñ 0.
The rest part of the proof follows in general the proof of [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov[END_REF].

Let ´ε ď λ ε 1 ď ¨¨¨ď λ ε n the eigenvalues of iΘ L,hε with respect to ω on Xz Zε .

Then we have

ż Xz Zε pλ ε n `εqdV ω ď ż Xz Zε ppλ ε 1 `εq `¨¨¨`pλ ε n `εqqdV ω ď ż Xz Zε piΘ L,hε `εωq ^ωn´1 pn ´1q! ď ż X piΘ L,hε `εωq ^ωn´1 pn ´1q! " ż X pc 1 pLq `εωq ^ωn´1 pn ´1q! ď ż X pc 1 pLq `ωq ^ωn´1 pn ´1q! ": A. Let δ ą 0 such that ν :" n ´l n ´l `1 `δ l ´1 n ´l `1 ă 1.
Hence V ε :" tx P Xz Zε |λ ε n `ε ě Aε ´δ u has volume smaller that ε δ ş X ω n . On the other hand, by the Monge-Ampère equation, on Xz Zε we have

n ź i"1 pλ ε i `εq ě c 3 ε n´l .
Hence on XzpV ε Y Zε q we have

λ ε n´l`1 `ε ě ppλ ε n´l`1 `εq ¨¨¨pλ ε 1 `εqq 1 n´l`1 ě cε n´l n´l`1 pλ ε n `εq l´1 n´l`1 ě cε ν .
Combining this with the Bochner-Kodaira-Nakano inequality, we nd

0 ě ż Xz Zε pλ ε 1 `¨¨¨`λ ε n´l`1 `¨¨¨`λ ε n´p q|u| 2 L ´1,h ´1 e Φε dV ω ě ż Xzp ZεYVεq pcε ν ´pn ´pqεq|u| 2 L ´1 ,h ´1 e Φε dV ω `żVε ´pn ´pqε|u| 2 L ´1,h ´1 e Φε dV ω .
In other words,

ż Xz Zε |u| 2 L ´1,h ´1 e Φε dV ω ď p1 `n ´p cε ν ´pn ´pq q ż Vε |u| 2 L ´1,h ´1 e Φε dV ω ď C ż Vε ω n ď Cε ν ,
where we use that Φ ε is uniformly bounded from above. Since Zε is of Lebesgue measure 0, ż Xz Zε

|u| 2 L ´1,h ´1 e Φε dV ω " ż X |u| 2 L ´1,h ´1 e Φε dV ω .
Again by Lebesgue's dominated convergence theorem (there is an upper bound by constant), we have

ż X |u| 2 L ´1,h ´1 e Φ dV ω ď 0
by taking ε Ñ 0. This implies that u " 0 and nishes the proof of the Bogomolov vanishing theorem.

Remark 3.14. In example 1.7 of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF], we consider a nef line bundle Op1q over the projectivisation of the unique non-trivial rank 2 vector bundle as extension of two trivial line bundle over an elliptic curve.

An explicit calculation shows that there exists a unique singular positive metric on Op1q whose curvature is the current associated to a smooth curve. Hence in this example epOp1qq " 0. But the numerical dimension is ndpOp1qq " 1 since the line bundle is non trivial and not big. In fact, pOp1qq 2 " 0.

Remark 3.15. Our Bogomolov vanishing theorem can be reformulated as follows:

The sheaf of holomorphic p-forms over X has no subsheaf of rank one associated to a psef line bundle of numerical dimension strictly larger than p.

According to the fundamental work of Campana [START_REF] Campana | Orbifolds, special varieties and classication theory[END_REF] [Cam11] on special manifolds, the above results suggest to give the following variant of Campana's denition. Definition 3.16. Let L Ă Ω p X be a saturated, coherent and rank one subsheaf. We call it a numerical Bogomolov sheaf of X if ndpX, Lq " p ą 0.

We say that X is numerically special if it has no Bogomolov sheaf. A compact complex analytic space is said to be numerically special if some (or any) of its resolutions is numerically special.

Remark 3.17. It is conjectured by Campana that specialness is equivalent to the numerical specialness dened here.

One possibility to address Campana's conjecture would be study the following statement of the Bogomolov vanishing theorem incorporating the numerical dimension instead of the Kodaira-Iitaka dimension:

For a numerical Bogomolov subsheaf, does there exist a bration f : X Ñ Y such that L " f ˚pK Y q over the generic point of Y (i.e., L and f ˚pK Y q have the same saturation in Ω p X ) ?

In case the Kodaira dimension case is used, the existence of the bration comes directly from the Kodaira-Iitaka morphism. However, in case one uses the numerical dimension instead, the existence of the bration is not guaranteed, i.e. there are examples of non abundant numerical Bogomolov sheaves. One can take for instead X to be a Hilbert modular surface obtained as a smooth quotient D ˆD{Γ with an irreducible subgroup Γ Ă AutpDq ˆAutpDq (in such a way that no subgroup of nite index of Γ splits). It is equipped with two natural foliations F, G coming from the two factors D, and T X " F ' G. Then one can check that F ˚, G ˚Ă Ω 1 X satisfy ndpF ˚q " ndpG ˚q " 1, but κpF ˚q " κpG ˚q " ´8 (see e.g. [START_REF] Brunella | Dynamical systems. Part II. Topological, geometrical and ergodic properties of dynamics[END_REF]).

Remark 3.18. It should be remarked the above Bogomolov vanishing theorem was rst proven in [START_REF] Boucksom | On the volume of a line bundle[END_REF]. The strategy of the both proofs is based on the nef case proven in [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov[END_REF]. The diculty is the control by Monge-Ampère equation in the pseudo-eective case. The diculty is overcome in [START_REF] Boucksom | On the volume of a line bundle[END_REF] by a singular version of Monge-Ampère equation, and we give here another proof that only requires solving classical Monge-Ampère equations.

Junyan Cao's vanishing theorem.

In [START_REF] Cao | Numerical dimension and a Kawamata-Viehweg-Nadel type vanishing theorem on compact Kähler manifolds[END_REF], Junyan Cao has proven the following Kawamata-Viehweg-Nadel type vanishing theorem.

Theorem 3.19. Let pL, hq be a pseudo-eective line bundle on a compact Kähler n-dimensional manifold X. Then H q pX, K X b L b Iphqq " 0 for every q ě n ´ndpL, hq `1.

The numerical dimension ndpL, hq used in Cao's theorem is the numerical dimension of the closed positive p1, 1q-current iΘ L,h dened in his paper. Since we will not need this denition, we refer to his paper for further information. We just recall the remark on page 22 of [START_REF] Cao | Numerical dimension and a Kawamata-Viehweg-Nadel type vanishing theorem on compact Kähler manifolds[END_REF]. In the example 1.7 of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF], they consider the nef line bundle Op1q over the projectivisation of a rank 2 vector bundle over the elliptic curve C which is the only non-trivial extension of O C . They prove that there exists a unique positive singular metric h on Op1q. For this metric, ndpOp1q, hq " 0. But the numerical dimension of Op1q is equal to 1. We recall that for a nef line bundle L the numerical dimension is dened as ndpLq :" maxtp; c 1 pLq p ‰ 0u.

We also remark that Cao's technique of proof actually yields the result for the upper semi-continuous regularization of multiplier ideal sheaf dened as [START_REF] Qi'an Guan | Eectiveness of demailly's strong openness conjecture and relatedproblems[END_REF] to see that the equality I `phq " Iphq always holds. In particular, by the Noetherian property of ideal sheaves, we have I `phq " Iph λ0 q " Iphq for some λ 0 ą 1. This fact will also be used in our result.

I `phq :" lim εÑ0 Iph 1`ε q instead of Iphq, but we can apply Guan-Zhou's Theorem [GZ15c] [GZ14a]
In this part, we prove the following version of Junyan Cao's vanishing theorem, following closely the ideas of Junyan Cao [START_REF] Cao | Numerical dimension and a Kawamata-Viehweg-Nadel type vanishing theorem on compact Kähler manifolds[END_REF] and the version that was a bit simplied in [START_REF] Demailly | On the cohomology of pseudoeective line bundles[END_REF].

Theorem 3.20. Let L be a pseudo-eective line bundle on a compact Kähler n-dimensional manifold X. Then the morphism induced by inclusion

K X b L b Iph min q Ñ K X b L H q pX, K X b L b Iph min qq Ñ H q pX, K X b Lq is 0 map for every q ě n ´ndpLq `1.
Remark 3.21. In the example 1.7 of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF], since the rank 2 vector bundle is the only non-trivial extension of O C , there exists a surjective morphism from this vector bundle to O C which induces a closed immersion C into the ruled surface. The only positive metric on Op1q has curvature rCs the current associated to C. On the other hand, Op1q " OpCq. So we have H 2 pX, K X bOp1qq " H 0 pX, Op´1qq " H 0 pX, Op´Cqq "

0 and H 2 pX, K X b Op1q b Iph min qq " H 2 pX, K X b Op1q b Op´Cqq " H 0 pX, O X q " C
. This shows that to get a numerical dimension version of theorem the best that we can hope for is that the morphism is 0 map instead of that H q pX, K X b L b Iph min qq " 0. We notice that in general one would expect the vanishing result H q pX, K X b Lq " 0 for q ě n ´ndpLq `1, whenever L is a nef line bundle. Here the diculty is to prove a general Kähler version, since the results follows easily from an inductive hyperplane section argument when X is projective (cf. eg. Corollary (6.26) of [START_REF] Demailly | Analytic methods in algebraic geometry[END_REF]).

By remark 3.6 in the previous section, we can even assume that h ε as stated in the denition of the numerical dimension is increasing to h min as ε Ñ 0. What we need here is that the weight functions ϕ ε has limit ϕ min and is pointwise at least equal to ϕ min with a universal upper bound on X.

Before giving the proof of the vanishing theorem, we give the general lines of the ideas and compare it with Cao's theorem. The idea is using the L 2 resolution of the multiplier ideal sheaf and proving that every B-closed L 2 ph min q global section can be approximated by B-exact L 2 ph 8 q global sections with h 8 some smooth reference metric on L. To prove it, we solve the B-equation using a Bochner technique with error term (as in [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF]), and we prove that the error term tends to 0.

For this propose, we need to estimate the curvature asymptotically by some special approximating hermitian metrics constructed by means of the Calabi-Yau theorem. Cao tried to prove that the error term tends to 0 in the topology induced by the L 2 -norm, with respect to the given singular metric. In this way, he tried to keep the multiplier ideal sheaf unchanged when approximating the singular metric, by means of suitable equisingular approximation. For our propose, we try to prove that the error term tends to 0 in the topology induced by L 2 -norm with respect to some (hence any) smooth metric. It would be enough for us that the multiplier ideal sheaf of h min is included in the multiplier ideal sheaf of the approximating hermitian metric. In some sense, Cao's theorem is more precise in studying the singularity of the metric which somehow explains why his approach works for any singular metric while our approach applies only for the image of the natural inclusion.

We start the proof of the vanishing theorem by the following technical curvature and singularity estimate. Proposition 3.22. Let pL, h min q be a pseudo-eective line bundle on a compact Kähler manifold pX, ωq. Let us write T min " i 2π Θ L,hmin " α `i 2π BBϕ min where α is the curvature of some smooth metric h 8 on L and ϕ min is a quasi-psh potential. Let p " ndpLq be the numerical dimension of L. Then, for every γ P s0, 1s and δ P s0, 1s, there exists a quasi-psh potential Φ γ,δ on X satisfying the following properties : (a) Φ γ,δ is smooth in the complement XzZ δ of an analytic set Z δ Ă X. (b) α `δω `i 2π BBΦ γ,δ ě δ 2 p1 ´γqω on X. (c) pα `δω `i 2π BBΦ γ,δ q n ě a γ n δ n´p ω n on XzZ δ . (d) sup X Φ 1,δ " 0, and for all γ P s0, 1s there are estimates Φ γ,δ ď A and exp `´Φ γ,δ ˘ď e ´p1`bδqϕmin exp `A ´γΦ 1,δ

For γ 0 , δ 0 ą 0 small, γ P s0, γ 0 s, δ P s0, δ 0 s, we have I `pϕ min q " Ipϕ min q Ă IpΦ γ,δ q.

Here a, b, A, γ 0 , δ 0 are suitable constants independent of γ, δ.

Proof. Denote by ψ ε the (non-increasing) sequence of weight functions as stated in the denition of numerical dimension. We have ψ ε ě ϕ min for all ε ą 0, the ψ ε have analytic singularities and

α `i 2π BBψ ε ě ´εω. Then for ε ď δ 4 , we have α `δω `i 2π BB `p1 `bδqψ ε ˘ě α `δω ´p1 `bδqpα `εωq ě δω ´p1 `bδqεω ´bδα ě δ 2 ω for b Ps0, 1 5 s small enough such that ω ´bα ě 0. Let µ : p X Ñ X be a log-resolution of ψ ε , so that µ ˚`α `δω `i 2π BBpp1 `bδqψ ε q ˘" rD ε s `βε
where β ε ě δ 2 µ ˚ω ě 0 is a smooth closed p1, 1q-form on p X that is strictly positive in the complement p XzE of the exceptional divisor, and D ε is an eective R-divisor that includes all components E of E. The map µ can be obtained by Hironaka [START_REF] Hironaka | Resolution of singularities of an algebraic variety over a eld of characteristic zero. I[END_REF] as a composition of a sequence of blow-ups with smooth centres, and we can even achieve that D ε and E are normal crossing divisors. For arbitrary small enough numbers η ą 0, β ε ´ř η rE s is a Kähler class on p X. Hence we can nd a quasi-psh potential p θ ε on p X such that p β ε :" β ε ´ř η rE s `i 2π BB p θ ε is a Kähler metric on p X. By taking the η small enough, we may assume that

ż x X p p β ε q n ě 1 2 ż x X β n ε .
We will use Yau's theorem [START_REF] Yau | On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I[END_REF] to construct a form in the cohomology class of p β ε with better volume estimate. We have

α `δω `i 2π BB `p1 `bδqψ ε ˘ě α `εω `i 2π BBψ ε `pδ ´εqω ´bδpα `εωq ě pα `εω `i 2π BBψ ε q `δ 2 ω.
The assumption on the numerical dimension of L implies the existence of a constant c ą 0 such that, with Z " µpEq Ă X, we have

ż x X β n ε " ż XzZ `α `δω `i 2π BBpp1 `bδqψ ε q ˘n ě ˆn p ˙´δ 2 ¯n´p ż XzZ `α `εω `i 2π ψ ε ˘p ^ωn´p ě cδ n´p ż X ω n .
Therefore, we may assume

ż x X p p β ε q n ě c 2 δ n´p ż X ω n .
We take p f a volume form on p X such that p f ą c 3 δ n´p µ ˚ωn everywhere on p X and such that ş

x X p f " ş x X p β n ε .
By Yau's theorem [START_REF] Yau | On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I[END_REF], there exists a quasi-psh potential p τ ε on p X such that p β ε `i 2π BBp τ ε is a Kähler metric on p X with the prescribed volume form p f ą 0. Now push our focus back to X. Set θ ε " µ ˚p θ ε and τ ε " µ ˚p τ ε P L 1 loc pXq. We dene Φ γ,δ :" p1 `bδqψ ε `γpθ ε `τε q.

By construction it is smooth in the complement XzZ δ i.e. property (a). It satises

µ ˚`α `δω `i 2π BBpp1 `bδqψ ε `γpθ ε `τε qq ˘" rD ε s `p1 ´γqβ ε `γ´ÿ η rE s `p β ε `i 2π BBp τ ε ě p1 ´γqβ ε ě δ 2 p1 ´γq µ ˚ω since p β ε `i 2π BBp τ ε is a Kähler metric on p X. Thus the property (b) is satised. Putting Z δ " µp|D ε |q Ą µpEq " Z, we have on XzZ δ µ ˚`α `δω `i 2π BBΦ γ,δ ˘n ě `βε `γ i 2π BBp p θ ε `p τ ε q ˘n ě γ n p p β ε `i 2π BBp τ ε q n ě c 3 γ n δ n´p µ ˚ωn . Since µ : p XzD ε Ñ XzZ δ is a biholomorphism, the condition (c) is satised if we set a " c 3 .
We adjust constants in p θ ε `p τ ε so that sup X Φ 1,δ " 0. Since ϕ min ď ψ ε ď ψ ε0 ď A 0 :" sup X ψ ε0 for ε ď ε 0 and Φ γ,δ " p1 `bδqψ ε `γ`Φ 1,δ ´ψε ˘ě p1 `bδqϕ min `γΦ 1,δ ´γA 0 and we have Φ γ,δ ď p1 ´γ `bδqA 0 . Thus the property (d) is satised if we set A :" p1 `bqA 0 .

We observe that Φ 1,δ satises α `ω `dd c Φ 1,δ ě 0 and sup X Φ 1,δ " 0, hence Φ 1,δ belongs to a compact family of quasi-psh functions. By theorem 2.50 a uniform version of Skoda's integrability theorem in [START_REF] Guedj | Degenerate Complex MongeAmpère Equations[END_REF],

there exists a uniform small constant c 0 ą 0 such that ş X expp´c 0 Φ 1,δ qdV ω ă `8 for all δ P s0, 1s. If f P O X,x is a germ of holomorphic function and U a small neighbourhood of x, the Hölder inequality combined with estimate (d) implies

ż U |f | 2 expp´Φ γ,δ qdV ω ď e A ´żU |f | 2 e ´pp1`bδqϕmin dV ω ¯1 p ´żU |f | 2 e ´qγΦ 1,δ dV ω ¯1 q .
Take p P s1, λ 0 r (say p " p1 `λ0 q{2), and take

γ ď γ 0 :" c 0 q " c 0 λ 0 ´1 λ 0
`1 and δ ď δ 0 P s0, 1s so small that pp1 `bδ 0 q ď λ 0 .

Then f P I `pϕ min q " Ipλ 0 ϕ min q implies f P IpΦ γ,δ q which proves the condition (e).

The rest of the proof follows from the proof of [START_REF] Cao | Numerical dimension and a Kawamata-Viehweg-Nadel type vanishing theorem on compact Kähler manifolds[END_REF] (cf. also [START_REF] Demailly | On the cohomology of pseudoeective line bundles[END_REF], [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF], [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov[END_REF]). We will just give an outline of the proof for completeness.

Let tf u be a cohomology class in the group H q pX, K X b L b Iph min qq, q ě n ´ndpLq `1. The sheaf OpK X b Lq b Iph min q can be resolved by the complex pK ' , Bq where K i is the sheaf of pn, iq-forms u such that both u and Bu are locally L 2 with respect to the weight ϕ min . So tf u can be represented by a pn, qq-form f such that both f and Bf are L 2 with respect to the weight ϕ min , i.e. ş X |f | 2 expp´ϕ min qdV ω ă `8 and ş X |Bf | 2 expp´ϕ min qdV ω ă `8.

We can also equip L by the hermitian metric h δ dened by the quasi-psh weight Φ δ " Φ γ0,δ obtained in Proposition 1, with δ P s0, δ 0 s. Since Φ δ is smooth on XzZ δ , the Bochner-Kodaira inequality shows that for every smooth pn, qq-form u with values in K X b L that is compactly supported on XzZ δ , we have

}Bu} 2 δ `}B ˚u} 2 δ ě 2π ż X pλ 1,δ `. . . `λq,δ ´qδq|u| 2 e ´Φδ dV ω ,
where }u} 2 δ :"

ş X |u| 2 ω,h δ dV ω " ş X |u| 2 ω,h8 e ´Φδ dV ω . The condition (b) of Proposition 3.22 shows that 0 ă δ 2 p1 ´γ0 q ď λ 1,δ pxq ď . . . ď λ n,δ pxq
where λ i,δ are at each point x P X, the eigenvalues of α `δω `i 2π BBΦ δ with respect to the base Kähler metric ω. In other words, we have up to a multiple 2π

}Bu} 2 δ `}B ˚u} 2 δ `δ}u} 2 δ ě ż X pλ 1,δ `. . . `λq,δ q|u| 2 ω,h8 e ´Φδ dV ω .
By the proof of theorem 3.3 in [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF], we have the following lemma:

Lemma 3.23. For every L 2 section of Λ n,q T X b L such that }f } δ ă `8 and Bf " 0 in the sense of distributions, there exists a We will show that the right hand term tends to 0 as δ Ñ 0. To do it, we need to estimate the ratio function ρ δ :"

L 2 section v " v δ of Λ n,q´1 T X b L and a L 2 section w " w δ of Λ n,q T X b L such that f " Bv `w with }v} 2 δ `1 δ }w} 2 δ ď ż X 1 λ 1,δ `. . . `λq,δ |f | 2 e ´Φδ
δ λ 1,δ `...`λ q,δ
. The ratio function is rst estimated in [START_REF] Mourougane | Versions kählériennes du théorème d'annulation de Bogomolov[END_REF].

By estimates (b,c) in Proposition 3.22, we have λ j,δ pxq ě δ 2 p1 ´γ0 q and λ 1,δ pxq . . . λ n,δ pxq ě aγ n 0 δ n´p . Therefore we already nd ρ δ pxq ď 2{qp1 ´γ0 q. On the other hand, we have ż

XzZ δ λ n,δ pxqdV ω ď ż X pα `δω `dd c Φ δ q ^ωn´1 " ż X pα `δωq ^ωn´1 ď Const,
therefore the bad set S ε Ă XzZ δ of points x where λ n,δ pxq ą δ ´ε has a volume with respect to ω VolpS ε q ď Cδ ε converging to 0 as δ Ñ 0. Outside of S ε , λ q,δ pxq q δ ´εpn´qq ě λ q,δ pxq q λ n,δ pxq n´q ě aγ n 0 δ n´p .

Thus we have ρ δ pxq ď Cδ 1´n ´p`pn´qqε q . If we take q ě n ´ndpLq `1 and ε ą 0 small enough, the exponent of δ in the nal estimate is strictly positive. Thus there exists a subsequence pρ δ q, δ Ñ 0, that tends almost everywhere to 0 on X.

Estimate (e) in Proposition 3.22 implies the Hölder inequality

ż X ρ δ |f | 2 ω,h8 expp´Φ δ qdV ω ď e A ´żX ρ p δ |f | 2 ω,h8 e ´pp1`bδqϕmin dV ω ¯1 p ´żX |f | 2 ω,h8 e ´qγ0Φ 1,δ dV ω ¯1 q
for suitable p, q ą 1 as in the proposition. |f | 2 ω,h8 ď C for some constant C ą 0 since X is compact. Taking δ Ñ 0 yields that w δ Ñ 0 in L 2 ph 8 q by Lebesgue dominating theorem.

H q pX, K X b Lq is a nite dimensional Hausdor vector space whose topology is induced by the L 2

Hilbert space topology on the space of forms. In particular the subspace of coboundaries is closed in the space of cocycles. Hence f is a coboundary which completes the proof.

For any singular positive metric h on L, by denition, h is more singular that h min which implies that Iphq Ă Iph min q. A direct corollary of theorem 3.19 is the following. Corollary 3.24. Let pL, hq be a pseudo-eective line bundle on a compact Kähler n-dimensional manifold X. Then the morphism induced by inclusion

K X b L b Iphq Ñ K X b L H q pX, K X b L b Iphqq Ñ H q pX, K X b Lq
is 0 map for every q ě n ´ndpLq `1.

Nakano vanishing theorem.

In this part, we give the following generalized version of the Nakano vanishing theorem.

Theorem 3.25. Let X be a n-dimensional projective manifold and L a nef holomorphic line bundle over X. Then we have H p pX, Ω q X b Lq " 0 for any p `q ą n `maxpdimpB `pLqq, 0q. Here B `pLq denotes the augmented base locus(or non-ample locus) of L. When B `pLq " H, we dene by convention that its dimension is ´1.

Here we recall the denition of B `pLq. Given an ample line bundle A over X. the augmented base locus is dened by B `pLq :" X mą0 BspmL ´Aq where Bs means the base locus of a line bundle.

We recall classically (cf. [START_REF]Uniruledness of stable base loci of adjoint linear systems via Mori Theory (with A. Broustet and G. Pacienza[END_REF]) that B `pLq " H if and only if L is ample and B `pLq ‰ X if and only if L is big. Thus we have the Nakano vanishing theorem in the case that B `pLq " H.

We notice that by the example of [Ram], we can not change the augmented base locus by the base locus. In his example, we take X the blow up of P 3 at one point and L the pull back of O P 3 p1q under the blow up. Thus L is a big and nef line bundle with X mą0 BspmLq " H. But by calculation of cohomology class we can show that H 2 pX, Ω 2 X b Lq ‰ 0. We observe that in this example B `pLq " E where E is the exceptional divisor. Now, we return to the proof of the theorem. We argue by induction on the dimension of B `pLq and apply of the Nakamaye theorem. First note that we can assume L big, otherwise B `pLq " X and the theorem is void.

Let l :" dimpB `pLqq. When l " ´1, the theorem is true by the Nakano vanishing theorem. When l ď 0, we show that in fact L is ample. In this case, there exists some m ą 0 and s 0 , ¨¨¨, s k P H 0 pX, mL ´Aq such that Bsps 0 , ¨¨¨, s k q " tx 0 , ¨¨¨, x l u.

These sections induce a singular metric h 0 on mL ´A with analytic singularity at the discrete points tx 0 , ¨¨¨, x l u. Its curvature is a closed positive (1,1)-current which is smooth outside tx 0 , ¨¨¨, x l u. By [Dem92a] Lemma 6.3 mL ´A is nef. Hence L is ample. Now let l ą 0 and suppose by induction that the theorem has be veried for dimpB `pLqq ď l ´1. We recall the concepts involved in the theorem of Nakamaye on base loci [START_REF] Nakayama | Zariski decomposition and abundance[END_REF].

Definition 3.26. Given a nef and big divisor L on X, the null locus NullpLq of L is the union of all positive dimensional subvarieties V Ă X with pL dimV ¨V q " 0.

We observe that for any smooth divisor D of X and such a line bundle, NullpL| D q Ă NullpLq.

Theorem 3.27. (Nakamaye). If L is an arbitrary nef and big divisor on X, then B `pLq " NullpLq.

Fix A 2 a very ample divisor on X. By Bertini theorem with a general choice we can assume that D P |A 2 | is smooth. Since A 2 is very ample we can assume that D X B `pLq Ĺ B `pLq. More precisely, for a general choice of D, no l´dimensional component of B `pLq is contained in D. Since L is nef and big, we have by Nakayame theorem NullpLq " B `pLq. By the denition of NullpLq we have pL n´1 ¨Dq ą 0.

In other words, L| D is big. Using another time the Nakamaye theorem, we nd that B `pL| D q " NullpL| D q Ă NullpLq X D Ĺ B `pLq.

In particular, dimB `pL| D q ď dimB `pLq ´1.

Recall the following elementary lemma (3.24) in [SS].

Lemma 3.28. Let L be a holomorphic line bundle over X, let D be a smooth hyper-surface in X, and let p, q ě 0 be xed. If paqH p pX, Ω q X b rDs b Lq " 0, pbqH p´1 pD, Ω q´1 D b L| D q " 0, pcqH p´1 pD, Ω q D b prDs b Lq| D q " 0, then we have

H p pX, Ω q X b Lq " 0.
Since rDs b L is ample (L is nef ), the hypotheses (a) (c) of the lemma is veried by the Nakano vanishing theorem. Since pp ´1q `pq ´1q ą dimD `l ´1, the condition (b) is satised by the inductive hypothesis.

This nishes the proof.

Remark 3.29. It would be interesting to know whether the theorem is still valid without assuming L to be nef. Here principally, we use the nef condition in two places: in the Nakamaye theorem and in the fact that the sum of an ample divisor and a nef divisor is ample.

Here, following some ideas of Demailly, we give the following more general version of the Nakano vanishing theorem.

Theorem 3.30. Let X be a n-dimensional projective manifold, L a holomorphic line bundle and A an ample line bundle over X. Assume for sucient grand m P N and general hyper-surfaces in the linear system H 1 , ¨¨¨, H k P |mA|, we have that L| H1X¨¨¨XH k is ample. Then for p `q ą n,we have H q pX, Ω p X b Lq " 0.

Proof. By duality, it is equivalent to show that for p `q ă n ´k,we have H q pX, Ω p X b L ´1q " 0. Since the hyper-surface H i is supposed to be general, we can assume that any intersection of type H 1 X¨¨¨XH l is smooth for any l and of dimension n ´l for any l ď k.

For m big enough such that mA `L is ample, hence by Nakano vanishing theorem we have the vanishing p `q ă n ´k H q pX, Ω p X b L ´1 b Op´H 1 qq " 0.

From the short exact sequence

0 Ñ Ω p X b L ´1 b Op´H 1 q Ñ Ω p X b L ´1 Ñ pΩ p X b L ´1q| H1
Ñ 0 we know that to prove the desired vanishing it is enough to show that for p `q ă n ´k H q pX, pΩ p X b L ´1q| H1 q " 0.

From the short exact sequence

0 Ñ T H1 Ñ T X | H1 Ñ OpH 1 q| H1 Ñ 0
we have the exact sequence (using the fact that OpH 1 q is of rank one)

0 Ñ Op´H 1 q| H1 b Ω p´1 H1 Ñ Ω p X | H1 Ñ Ω p H1 Ñ 0.
We take the tensor product with L ´1| H1 and the long exact sequence associated to the coreesponding short exact sequence. By the Nakano vanishing theorem, we nd

H i pH 1 , Ω j
H1 b pL ´1 b Op´H 1 qq| H1 q " 0 for any i `j ă n ´1. It is enough to prove that H q pH 1 , pΩ p H1 b L ´1| H1 q " 0 for p `q ă n ´k.

We continue this process and change X with H 1 , then H 1 with H 1 X H 2 etc. Taking from the beginning m so big that mA `L is ample, we get for every l that mA `L| H1X¨¨¨XH l is ample on H 1 X ¨¨¨X H l . Hence in each step, we can use the Nakano vanishing theorem. Finally, we are reduced to proving that

H q pH 1 X ¨¨¨X H k , Ω p
H1X¨¨¨XH k b L ´1| H1X¨¨¨XH k q " 0 for p `q ă n ´k. But this is true by the Nakano vanishing theorem and our assumption.

Remark 3.31. By the proof of the theorem, it is enough to take m so large that mA `L is ample, and H i P |mA| so that H 1 X ¨¨¨X H l is smooth and of dimension n ´l for any l ď k, and L| H1X¨¨¨XH k is ample.

As pointed out by A. Höring, it is interesting to compare this result to the following theorem 2 of [START_REF] Küronya | Positivity on subvarieties and vanishing of higher cohomology[END_REF]:

Let X be a smooth projective variety, L a divisor, A a very ample divisor on X. If L| E1X¨¨¨XE k is big and nef for a general choice of E 1 , ¨¨¨, E k , then H i pX, O X pK X `Lqq " 0 for i ą k.

Remark 3.32. Our rst theorem is a special case of this general version. Since L is nef, it is nef on the complete intersection of the hyper-surfaces H 1 , ¨¨¨, H l where l :" dimpB `pLqq. On the other hand, for such general hyper-surfaces, we can assume that the intersection B `pLq X H 1 X ¨¨¨X H l is nite points. By the denition of stable base locus, L| H1X¨¨¨XH l is ample outside these nite points. Hence in fact, L| H1X¨¨¨XH l is ample.

The k-ampleness condition dened by Sommese [Som] is also a sucient condition for the condition stated in Theorem 3.30. We start by recalling the denition. Definition 3.33. A holomorphic line bundle L on a compact complex manifold X is said to be k-ample p0 ď k ď n ´1q if there exists a positive integer N such that N L spans at each point of X and the Kodaira morphism associated to N L has at most k-dimensional bres.

Changing N in the denition by a possible large multiple of N we can assume that the Kodaira morphism associated to N L is the Iitaka bration. Denote Φ : X Ñ Z the bration where Z is a projective variety. Denote A z,j (z P Z, j P N) the irreducible components of the bre of z (i.e. Φ ´1pzq). By a general choice of H 1 , we can assume that for any z, j the hyper-surface H 1 intersecting A z,j denes a divisor of A z,j by the lemma stated below. Similarly, with a general choice of H 1 , ¨¨¨, H k we can assume that for any z, j H 1 X ¨¨¨X H k X A z,j is a nite set, by the assumption that dimA z,j ď k. In other words, the restriction of the Kodaira morphism

Φ : H 1 X ¨¨¨X H k Ñ Z is a nite morphism. Since L| H1X¨¨¨XH k is pull back of Op1q via Φ, L| H1X¨¨¨XH k is ample on H 1 X ¨¨¨X H k .
(Recall that the pull back of an ample line bundle under a nite morphism is ample.) Lemma 3.34. Let Φ : X Ñ Z be the bration such that all the bers have dimension ď k. Assume X is projective. Then there exists H Ă X a general very ample divisor such that the restriction Φ H : H Ñ Z of Φ on H has all bers of dimension ď pk ´1q.

Proof. Denote A z,j (z P Z, j P N) the irreducible components of the bre of z (i.e. Φ ´1pzq). It is equivalent to demand the restriction to each A z,j of the dening section σ of H is non trivial. Let A be an ample divisor on X. Denote V z,j the linear subspace of H 0 pX, mAq such that σ| Az,j " 0. We want to choose σ such that σ P H 0 pX, mAq Ť z,j V z,j . Notice that the family A z,j parametrized by z, j forms a bounded family in the Hilbert scheme of X. A sucient condition to nd σ as above is that for m large enough dimZ `dimV z,j ă h 0 pX, mAq.

Without loss of generality, we can assume that A is very ample on X. Hence, by boundedness, we have for m large enough independent of z, j a surjective restriction morphism H 0 pX, mAq Ñ H 0 pA z,j , mAq.

As V z,j is the kernel of this morphism, it is enough to take m so large that dimZ ă h 0 pA z,j , mAq.

For A z,j with positive dimension, the regular part of A z,j is a smooth submanifold of X. Since A is very ample, it generates 1-jets of the regular part of A z,j at any point. Hence H 0 pA z,j , N Aq generates any m-fold symmetric product of 1-jets of A z,j at some regular point. In other words, h 0 pA z,j , mAq ą ˆm dimA z,j ˙ě m.

CHAPTER 4

Considerations on nefness in higher codimension

Abstract. In this note, following the fundamental work of Boucksom we construct the nef cone of a compact complex manifold in higher codimension and give explicit examples where these cones are dierent.

In the third section, we give two versions of Kawamata-Viehweg vanishing theorems in terms of nefness in higher codimension and numerical dimensions. We also show by examples the optimality of the divisoral Zariski decomposition given in [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF]. In the last section, we discuss the surjectivity of the Albanese morphism for a compact Kähler manifold with ´KX psef and some additional assumptions on the regularity of approximated metrics.

Nefness in higher codimension

We rst recall some technical preliminaries introduced in [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF]. Throughout this paper, X is assumed to be a compact complex manifold equipped with some reference Hermitian metric ω (i.e. a smooth positive denite p1, 1q-form); we usually take ω to be Kähler if X possesses such metrics. The Bott-Chern cohomology group H 1,1 BC pX, Rq is the space of d-closed smooth (1,1)-forms modulo iBB-exact ones. By the quasi-isomorphism induced by the inclusion of smooth forms into currents, H 1,1 BC pX, Rq can also be seen as the space of d-closed p1, 1q-currents modulo iBB-exact ones. A cohomology class α P H 1,1 BC pX, Rq is said to be pseudo-eective i it contains a positive current; α is nef i, for each ε ą 0, α contains a smooth form α ε such that α ε ě ´εω; α is big i it contains a Kähler current, i.e. a closed p1, 1q-current T such that T ě εω for ε ą 0 small enough. Definition 4.1. ( [DPS01]) Let ϕ 1 , ϕ 2 be two quasi-psh functions on X pi.e. iBBϕ i ě ´Cω in the sense of currents for some C ě 0q. The function ϕ 1 is said to be less singular than ϕ 2 pone then writes ϕ 1 ĺ ϕ 2 q if ϕ 2 ď ϕ 1 `C1 for some constant C 1 . Let α be a xed psef class in H 1,1 BC pX, Rq. Given T 1 , T 2 , θ P α with θ smooth, and T i " θ `iBBϕ i with ϕ i quasi-psh pi " 1, 2q, we write T 1 ĺ T 2 i ϕ 1 ĺ ϕ 2 pnotice that for any choice of θ, the potentials ϕ i are dened up to smooth bounded functions, since X is compactq. If γ is a smooth real p1, 1q-form on X, the collection of all potentials ϕ such that θ `iBBϕ ě γ admits a minimal element T min,γ for the pre-order relation ĺ, constructed as the semi-continuous upper envelope of the subfamily of potentials ϕ ď 0 in the collection. where T min,ε is the minimal element T min,´εω in the above denition and νpT min,ε , xq is the Lelong number of T min,ε at x. When Z is an irreducible analytic subset, we dene the generic minimal multiplicity of α along Zas νpα, Zq :" inftνpα, xq, x P Zu.

When Z is positive dimensional, there exists for each P N ˚a countable union of proper analytic subsets of Z denoted by Z " Ť p Z ,p such that νpT min, 1 , Zq :" inf xPZ νpT min, 1 , xq " νpT min, 1 , xq for x P Z Z . By construction, when ε 1 ă ε 2 , T min,ε1 ľ T min,ε2 . Hence for a very general point x P Z Ť PN ˚Z , νpα, Zq ď νpα, xq " sup νpT min, 1 , Zq.

On the other hand, for any y P Z, sup νpT min, 1 , Zq ď sup νpT min, 1 , yq " νpα, yq.

In conclusion, νpα, Zq " νpα, xq for a very general point x P Z Ť PN ˚Z and νpα, Zq " sup ε νpT min,ε , Zq.

Now we can dene the concept of nefness in higher codimension implicitly used in [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF]. It is the generalisation of the concept of modied nefness to the higher codimensional case.

Definition 4.3. Let α P H 1,1 BC pX, Rq be a psef class. We say that α is nef in codimension k, if for every irreducible analytic subset Z Ă X of codimension at most equal to k, we have νpα, Zq " 0.

We denote by N k the cone generated by nef classes in codimension k. By Proposition 3.2 in [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF], a psef class α is nef i for any x P X, νpα, xq " 0. By our denition, psef is equivalent to nef in codimension 0, and nef is equivalent to nef in codimension n :" dim C X. In this way, we get a bunch of positive cones on X, satisfying the inclusion relations

N " N n Ă ¨¨¨Ă N 1 Ă N 0 " E.
By a proof similar to those of propositions 3.5, 3.6 in [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF], we get Proposition 4.1.1. p1q For every x P X and every irreducible analytic subset Z, the map E Ñ R dened on the cone E of psef classes by α Þ Ñ νpα, Zq is convex and homogeneous. It is continuous on the interior E ˝, and lower semi-continuous on the whole of E. p2q If T min P α is a positive current with minimal singularities, we have νpα, Zq ď νpT min , Zq.

p3q If α is moreover big, we have νpα, Zq " νpT min , Zq.

The following lemma is a direct application of the proposition. Lemma 4.4. Let Y Ă X be a smooth submanifold of X and π : X Ñ X be the blow-up of X along Y . We denote by E the exceptional divisor. If α P H 1,1 BC pX, Rq is a big class, we have νpα, Y q " νpπ ˚α, Eq.

For Z any irreducible analytic set not included in Y , we denote by Z the strict transform of Z. Then νpα, Zq " νpπ ˚α, Zq.

For W any irreducible analytic set in Y , we have νpα, W q " νpπ ˚α, PpN Y {X | W qq.

Proof. Since α is big, we know that by taking a suitable regularisation, there exists a Kähler current T P α with analytic singularities. The pull back π ˚T of this current is a smooth Kähler current on some dense open set U where π is a biholomorphism. Hence the volume of π ˚α dened as ş T Pπ ˚α,T ě0, T n ac (ac means the absolute part of the current) is larger than the mass of π ˚T on U which is strictly positive. By [START_REF] Boucksom | On the volume of a line bundle[END_REF] π ˚α is thus big.

By the proposition, we have νpα, Y q " inf T Pα νpT, Y q, νpπ ˚α, Eq " inf SPπ ˚α νpS, Eq. On the other hand, the push forward and pull back operators acting on positive p1, 1q currents induce bijections between positive currents in the class α and positive currents in the class π ˚α. Let θ P α be a smooth form such that T " θ `iBBϕ. We recall that for any irreducible analytic set W with local generators pg 1 , ¨¨¨, g r q near a regular point w P W , the generic Lelong number along W is the largest γ such that ϕ ď γlogp ř |g i | 2 q `Op1q near w. Since π ˚pg 1 , ¨¨¨, g r q ¨O X " I E , we have νpT, Y q " νpπ ˚T , Eq. In particular, this implies that νpα, Y q " νpπ ˚α, Eq.

For W any irreducible analytic set in the centre Y , since the exceptional divisor is isomorphic to PpN Y {X q, the preimage of W under the blow-up is isomorphic to PpN Y {X | W q. In suitable local coordinates pz 1 , ¨¨¨, z n q on X and pw 1 , ¨¨¨, w n q on X, the blow-up map is given by πpw 1 , ¨¨¨, w n q " pw 1 , w 1 w 2 , ¨¨¨, w 1 w s ; w s`1 , ¨¨¨, w n q.

In these coordinates, the centre Y is given by the zero variety V pz s`1 , ¨¨¨, z n q. Assume that in this chart, W " V pz s`1 , ¨¨¨, z n ; f 1 , ¨¨¨, f r q where f i is a function of z 1 , ¨¨¨, z s (as we can assume without loss of generality). Then π ˚pI W q ¨O X " pw 1 , f 1 pw 1 , ¨¨¨, w s q, ¨¨¨, f r pw 1 , ¨¨¨, w s qq " I PpN Y {X | W q . In particular, this implies that νpα, W q " νpπ ˚α, PpN Y {X | W qq.

For the second statement, we just observe that the generic Lelong number along Z (resp. Z) is equal to the Lelong number at some very general point. Since Z is not contained in Y we can assume without loss of generality that the very general point is not in Y (resp. E). Since the Lelong number is a coordinate invariant local property, for such very general point x P Z near which π is a local biholomorphism and any T P α, T ě 0, νpT, Zq " νpT, πpxqq " νpπ ˚T , xq " νpπ ˚T , Zq. Hence we have νpα, Zq " νpπ ˚α, Zq.

As a corollary, we nd Corollary 4.5. Let µ : X Ñ X be a composition of nitely many blow-up with smooth centres in X.

If α P H 1,1
BC pX, Rq is a big class on X such that µ ˚α is nef in codimension k, then α is a nef class in codimension k.

Proof. Without loss of generality, we can reduce ourselves to the case where µ is a blow-up of smooth centre Y in X. By Lemma 4.4, the generic minimal multiplicity of α along any irreducible analytic set of X of codimension at most equal to k is equal to the generic minimal multiplicity of µ ˚α along certain irreducible analytic set of X of codimension at most equal to k. So by the denition of nefness in codimension k, the fact µ ˚α is nef in codimension k implies that α is nef in codimension k.

Remark 4.6. Let X be a compact complex manifold X whose big cone is non empty. Recall that by Proposition 2.3 of [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF], a class α is modied Kähler (i.e. α is in the interior of nef cone in codimension 1) i there exists a modication µ : X Ñ X and a Kähler class α on X such that α " µ ˚α. As a consequence, for µ : X Ñ X a modication between compact Kähler manifolds and α P H 1,1 BC p X, Rq a big and nef class on X in codimension k, it is false in general that µ ˚α is a nef class in codimension k.

To give an equivalent denition of nefness in higher codimension, we will need the following denition. The non-nef locus of a pseudo-eective class α P H 1,1 BC pX, Rq is dened by E nn pαq :" tx P X, νpα, xq ą 0u.

Proposition 4.1.2. A psef class α is nef in codimension k i for any ε ą 0, any c ą 0, the codimension of any irreducible component of E c pT min,ε q is larger than k `1.

Proof. By the denition of non-nef locus, we have

E nn pαq " ď εą0 ď cą0 E c pT min,ε q " ď mPN ˚ď nPN ˚E 1 n pT min, 1 m q.
We know by Siu's theorem [START_REF] Siu | Analyticity of sets associated to Lelong numbers and the extension of closed positive currents[END_REF] that E 1 n pT min, 1 m q is an analytic set. Hence the non-nef locus is a countable union of irreducible analytic set. If for any ε ą 0, any c ą 0, the codimension of any irreducible component of E c pT min,ε q is larger than k `1, then for any irreducible analytic set Z of codimension k, E nn pαq X Z is strictly contained in Z. Hence νpα, Zq " 0.

On the other direction, assume there exists an irreducible component Z of E 1 n pT min, 1 m q has codimension at most equal to k. On each point x of this irreducible component, νpα, xq ě νpT min, 1 m , xq ě 1 n . In particular, νpα, Zq ě 1 n , which contradicts the fact that α is nef in codimension k.

Remark 4.8. If the manifold X is projective, it is enough to test the minimal multiplicity along irreducible analytic subsets of codimension k to prove that the class is nef in codimension k. The argument is as follows:

For any irreducible analytic set Z of codimension strictly smaller than k, for any z P Z, since X is projective, there exists some hypersurfaces H i such that z P H i and the irreducible component of Z X Ş i H i containing z has codimension k. In other words, Z is covered by the irreducible analytic subsets of codimension exactly k. By assumption, the generic minimal multiplicity along any of these irreducible analytic subsets is 0. This implies that the generic minimal multiplicity along Z at most equal to the generic minimal multiplicity along any these irreducible analytic set is 0.

Remark 4.9. In the general setting of compact complex manifolds, it is important to test the generic minimal multiplicity along any analytic set of codimension at most equal to k, instead of any analytic set of codimension k, to obtain the inclusion of the various positive cones. The problem is that there may exist too few analytic subsets in an arbitrary compact complex manifold.

A typical example can be taken as follows. For example let X 1 be a compact manifold such that the nef cone is strictly contained in the psef cone (for example we can take the projectivisation of an unstable rank two vector bundle over a curve of genus larger than 2, whose cones are explicited calculated on page 70 [START_REF] Lazarsfeld | Positivity in Algebraic Geometry[END_REF]) and X 2 be a very general torus such that the only analytic sets in X 2 are either union of points or X 2 . Let β be a psef but not nef class on X 1 . Let X :" X 1 ˆX2 with natural projections π 1 , π 2 and α :" π 1 β. Assume that dimpX 1 q ă dimpX 2 q. Fix ω 1 , ω 2 two reference Hermitian metrics on X 1 , X 2 . Now α is a psef but not nef class on X. The only analytic subsets of codimension dimpX 1 q is the bre of π 2 . α has generic minimal multiplicity 0 along any bre of π 2 . The reason is as follows: The minimal current in α larger than ´εpπ 1 ω 1 `π˚ω 2 q denoting mintT P α, T ě ´εpπ 1 ω 1 `π˚ω 2 qu is less singular than the pull back of the minimal current in β larger than ´εω 1 denoting mintS P β, S ě ´εω 1 u and the restriction of these minimal currents on the bre of π 2 is trivial. In other words, the generic Lelong number of mintT P α, T ě ´εpπ 1 ω 1 `π˚ω 2 qu along the bres is smaller than the generic Lelong number of the pull back of mintS P β, S ě ´εω 1 u which is 0. Hence it is itself 0.

On the other hand, for any positive integers m, n, take Z a positive dimensional irreducible component of E 1 n pT min, 1 m q in the non-nef locus of β. The existence of such an irreducible component will be shown in the lemma 4.11, which implies that α has to be nef in codimension at most equal to n ´2. Now Z ˆX2 is an irreducible analytic set of codimension strictly smaller than dimpX 1 q. But the generic minimal multiplicity along Z ˆX2 is larger than 1 n . In particular this shows that α is not nef in codimension dimpX 1 q ´dimpZq.

Remark 4.10. Let us mention that our denition of nefness in codimension 1 is equivalent to the denition of modied nefness. By denition, a psef class is modied nef i its generic minimal multiplicity is 0 along any prime divisor. To prove the equivalence, it is enough to show that for any psef class α on X we automatically have νpα, Xq " 0.

It is because that νpα, Xq ď νpT min , Xq where the latter is 0. We notice that by Siu's decomposition theorem [START_REF] Siu | Analyticity of sets associated to Lelong numbers and the extension of closed positive currents[END_REF], the set E cą0 pT min q "

Ť nPN ˚E 1
n pT min q is countable union of proper analytic sets.

By this observation, we can also say that the nef in codimension 0 cone is exactly the psef cone.

In analogy to the case of surfaces for which the nef cone coincides with the modied nef cone, the nef cone in codimension n ´1 coincides with the nef cone.

Lemma 4.11. Let α be a psef class, then α is nef in codimension n ´1 i α is nef.

Proof. If α is nef, by inclusion of dierent positive cones, it is nef in codimension n ´1. On the other direction, we will need the following proposition 3.4 in [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF] which is a reformulation of a result of P un [START_REF] Pǎun | Fibrés en droites numériquement eectifs et variétés kählériennes compactes a courbure de Ricci nef[END_REF].

A pseudo-eective class α is nef i α| Y is pseudo-eective for every irreducible analytic subset Y Ă E nn pαq.

Given a class α that is nef in codimension n ´1, proposition 4.1.2 implies that for any ε ą 0 and any c ą 0 the analytic set E c pT min,ε q is a nite set. Therefore, the non-nef locus which is a countable union of nite sets has at most countably many points. In particular, this implies that the restriction of α on any Y Ă E nn pαq is 0, hence psef. By the above proposition, α is nef. Remark 4.12. Recall that a line bundle L over a projective manifold is nef i its intersection number with any curve satises pL ¨Cq ě 0. By the important work of [BDPP13], a class is psef i its pairing with any movable curve is positive. Here a curve C is said to be movable if C " C t0 is a member of an analytic family pC t q tPS such that Ť tPS C t " X and, as such, C is a reduced irreducible 1-cycle. Remark also that nef is equivalent to nef in codimension n ´1 and psef is equivalent to nef in codimension 0.

Then it is natural to conjecture that a class over a projective manifold is nef in codimension k if and only if its pairing with any movable curve in codimension k is positive. Here a curve C is said to be movable in codimension k if C " C t0 is a member of an analytic family pC t q tPS such that Ť tPS C t is an analytic subset of X of codimension k and, as such, C is a reduced irreducible 1-cycle. Remark 4.13. Inspired by the result of P un, it seems to be natural to conjecture that a psef class tT u with T a positive current on X is nef in codimension k if and only if that for any irreducible component of codimension at most k in Ť cą0 E c pT q tT u| Z is nef in codimension k ´codimpZ, Xq. When k " n, this is exactly the result of P un. When k " 0, it is trivial. The only if part is quite similar. The restriction of the potentials of T min,ε on any irreducible analytic set of codimension at most k decreases to a potential on the submanifold. If we x the maximum of the potentials on X to be 0, they form a compact family. The limit potential would be quasi-psh and thus the restriction of the class on the analytic set is psef. The if part is of course true if the manifold is a Kähler surface by P un's result.

The if part is also true for the case k " 1 if the manifold is hyperkähler. By lemma 4.9 [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF] (see also [START_REF] Huybrechts | The Kähler cone of a compact hyperkähler manifold[END_REF]) a psef class α on a hyperkähler manifold is modied nef if and only if for any prime divisor D one has qpα, Dq ě 0. Here, we let σ be a symplectic holomorphic form on X, and dene qpα, βq :"

ż X α ^β ^pσ ^σq n 2

´1

to be the BeauvilleBogomolov quadratic form for any p1, 1q-classes α, β. For a psef p1, 1q-class α such that α|D is psef for any prime divisor D, we have qpα, trDsuq "

ż X α ^trDsu ^pσ ^σq n 2 ´1 " ż D α ^pσ ^σq n 2 ´1 ě 0. Thus α is nef in codimension 1.
A natural idea to attack this question in general consists in trying to extend the current on this subvariety Z to X. If this is possible, the current with minimal singularity would have a potential larger than that of the extended current. In particular, the current with minimal singularity would have generic Lelong number 0 along Z.

In this direction, Collins and Tosatti proved the following results in [START_REF] Collins | Kähler currents and null loci[END_REF] and [START_REF] Collins | An extension theorem for Kähler currents[END_REF], which we now recall.

Theorem 4.14. (Theorem 3.2 in [START_REF] Collins | An extension theorem for Kähler currents[END_REF]). Let X be a compact Fujiki manifold and α a closed smooth real (1,1)-form on X with tαu nef and

ş X α n ą 0. Let E " V Y Ť I
i"1 Y i be an analytic subvariety of X, with V, Y i its irreducible components, and V a positive dimensional compact complex submanifold of X. Let R " α `iBBF be a Kähler current in the class tαu on X with analytic singularities precisely along E and let T " α| V `iBBϕ be a Kähler current in the class tα| V u on V with analytic singularities. Then there exists a Kähler current T " α `iBBΦ in the class tαu on X with T | V smooth in a neighbourhood of the very general point of V . Theorem 4.15. (Theorem 1.1 in [START_REF] Collins | Kähler currents and null loci[END_REF]). Let pX, ωq be a compact Kähler manifold and let V Ă X be a positive-dimensional compact complex submanifold. Let T be a Kähler current with analytic singularities along V in the Kähler class tω| V u. Then there exists a Kähler current T on X in the class tωu with T " T | V .

Using their results, in a given Kähler class, one can extend Kähler currents with analytic singularities dened in a smooth subvariety. If the class is just nef and big on the Kähler manifold, one can only show the existence of a Kähler current whose potential is not identically innity along the submanifold. Following example 5.4 in [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], one can show that in a nef and big class on a Kähler manifold X, one cannot always extend a positive current along a submanifold into a positive current on X. In their example, the positive current on the submanifold can even be chosen to be smooth. More precisely there exists C, a submanifold of a certain compact Kähler manifold X, tαu a nef and big class on X with a smooth representative α and ϕ P L 1 loc pCq with α| C `iBBϕ ě 0, such that there does not exist a ψ P L 1 loc pXq satisfying α `iBBψ ě 0 and ψ| C " ϕ.

Let us start the construction of the example. Let C be an elliptic curve and let A be an ample divisor on C. Let V be the rank 2 vector bundle over C the unique non-trivial extension of O C . Dene X :" PpV ' Aq and tαu :" c 1 pO X p1qq with smooth representative α. Then O X p1q is a big and nef line bundle over X. The quotient map V ' A Ñ O C induces a closed immersion C Ñ X. In particular, we have O X p1q| C " O C . Since c 1 pO X p1q| C q " 0, there exists a smooth function ϕ on C such that α| C `iBBϕ " 0. We prove by contradiction that there does not exist ψ P L 1 loc pXq such that α `iBBψ ě 0 and ψ| C " ϕ. The quotient map V ' A Ñ V induces a closed immersion PpV q Ñ X. On the contrary, we would have α| PpV q `iBBψ| PpV q ě 0 in the class c 1 pO PpV q p1qq. By the calculation made in example 1.7 of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF], we know that α| PpV q `iBBψ| PpV q " rCs where rCs is the current associated with C. In particular, this shows that ψ| C " ´8, a contradiction.

In other words, theorem 1.1 of [START_REF] Collins | Kähler currents and null loci[END_REF] cannot be strengthened to obtain an extension of an arbitrary closed positive current in a class that is merely nef and big. Similarly, one cannot drop the Kähler current condition in the theorem of [START_REF] Collins | An extension theorem for Kähler currents[END_REF].

Let us return to our previous question. To get an analogue of P un's result, the above discussion shows that we need to generalise theorem 3.2 of [START_REF] Collins | An extension theorem for Kähler currents[END_REF] to the class of a big class that is nef in codimension k by adding a small Kähler form to the class and by using the semi-continuity of the generic minimal multiplicity.

Unfortunately, we do not know how to do it at this point.

Kawamata-Viehweg vanishing theorem

We rst give a numerical dimension version of the Kawamata-Viehweg vanishing theorem in the projective case. In the following, we study various properties of nef classes in higher codimension. Then we end the section by a numerical version of the Kawamata-Viehweg vanishing theorem in the Kähler case.

To start with, we need the relation between movable intersection dened in [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF], [START_REF] Boucksom | Cônes positifs des variétés complexes compactes[END_REF] and intersection number. Lemma 4.16. Let α be a nef class in codimension p on a compact Kähler manifold pX, ωq. Then for any k ď p and Θ any positive closed pn ´k, n ´kq-form we have pα k , Θq ě xα k , Θy.

CONSIDERATIONS ON NEFNESS IN HIGHER CODIMENSION

Here we use the denition of movable intersection dened in [START_REF] Boucksom | Cônes positifs des variétés complexes compactes[END_REF] and [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF]. The movable intersection number xα k , Θy in [START_REF] Boucksom | Cônes positifs des variétés complexes compactes[END_REF] is dened as the limit for ε ą 0 converging to 0 of the quantity:

sup Ti ż X F pT 1 `εωq ^¨¨¨pT k `εωq ^Θ
where T i ranges all closed current with analytic singularities in the class α such that T i ě ´εω and F is the union of all singular part of T i . (In [START_REF] Boucksom | Cônes positifs des variétés complexes compactes[END_REF], the movable intersection number is dened for any closed positive current Θ. In the following, we will take Θ to be ω n´k . Thus we consider only the case when Θ is a positive closed form.)

The proof of the boundedness of the quantity is a consequence of regularisation and the theory of Monge-Ampère operator. In the general case, we approximate the current T i decreasingly by the smooth forms by [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un bré vectoriel holomorphe semi-positif au dessus d'une variété kählérienne complète[END_REF] with a uniform lower bound ´Cω depending on pX, ωq and tT i u. Now on X F the current pT 1 `Cωq ^¨¨¨pT k `Cωq ^Θ is the limit of corresponding terms changing T i by its smooth approximation, using the continuity of Monge-Ampère operator with respect to decreasing sequence. But the integral on X F obtained for the smooth approximation is bounded by its integral on X, which is the intersection number of cohomology classes tT i `Cωu and tΘu.

Proof. Our observation is that with better regularity on the cohomology class α, we can dene directly the Monge-Ampère operator on X. So comparing to the general case, we can skip the approximation process and get rid of the dependence of C which only depends on pX, ωq and α but not explicitly.

We recall the following theorem (4.6) on the Monge-Ampère operators in chapter 3 of [START_REF] Demailly | Complex analytic and dierential geometry[END_REF].

Let u 1 , ¨¨¨, u q be quasi-plurisubharmonic functions on X and T be a closed positive current of bidimension pp, pq. The currents u 1 iBBu 2 ^¨¨¨^iBBu q ^T and iBBu 1 ^iBBu 2 ^¨¨¨^iBBu q ^T are well dened and have locally nite mass in X as soon as q ď p and H 2p´2m`1 pLpu j1 q X ¨¨¨X Lpu jm q X SupppT qq " 0 for all choices of indices j 1 ă ¨¨¨ă j m in t1, ¨¨¨, qu.

Here H 2p´2m`1 means the p2p ´2m `1q-dimensional Hausdor content of the subset of X seen as a metric space induced by the Kähler metric. The unbounded locus Lpuq is dened to be the set of points x P X such that u is unbounded in every neighbourhood of x. When u has analytic singularities, it is the singular part of u (i.e. tu " ´8u).

Now return to the proof of the lemma. By denition T i,min,´εω is less singular than T i . Since for any c ą 0, E c pT i,min,´εω q has codimension larger than p`1, the singular set of T i which has analytic singularities is also of codimension larger than p`1. By the theorem (4.6) cited above, the current pT 1 `εωq^¨¨¨pT k `εωq^Θ is well-dened on X. Thus we have ż

X F pT 1 `εωq ^¨¨¨pT k `εωq ^Θ ď ż X pT 1 `εωq ^¨¨¨pT k `εωq ^Θ
" pα `εtωuq ¨¨¨¨pα `εtωuq ¨tΘu.

Taking ε Ñ 0, we get pα k , Θq ě xα k , Θy.

We can now give in the projective case the following version of the Kawamata-Viehweg theorem in terms of nefness in higher codimension. The simple proof given below has been suggested to us by Demailly.

Theorem 4.17. Let X be a projective manifold and L a nef line bundle in codimension p ´1. If xc 1 pLq p y ‰ 0, then for any q ě n ´p `1 we have H q pX, K X b Lq " 0.

Proof. The proof is an induction on the dimension of X. Let A be an ample divisor on X and ω P c 1 pAq be a Kähler form. Let Y P |kA| be a generic smooth hypersurface. With the choice of k big enough, we can assume that H q pX, L ´1 b Op´Y qq " 0 for any q ă n by Kodaira vanishing theorem. By Serre duality, the statement of the theorem is equivalent to prove that for any q ď p ´1 we have H q pX, L ´1q " 0.

Consider the long exact sequence associated to the short exact sequence

0 Ñ L ´1 b Op´Y q Ñ L ´1 Ñ L ´1| Y Ñ 0.
It turns out that it is enough to prove that H q pY, L ´1q " 0 for any q ď p ´1.

We check that conditions are preserved under the intersection with a generic hypersurface. Since α is nef in codimension p ´1, we nd that any irreducible component of

E nn pαq " ď mPN ˚ď nPN ˚E 1 n pT min, 1 m q.
has codimension larger than p. By regularisation of T min, 1 m , there exists currents T m with analytic singularities in α larger that ´2 m ω. Any irreducible component of the singular set of these currents have codimension larger than p. For generic Y the restriction of these currents on Y is well dened for any m. Since the inclusion of analytic sets is a Zariski closed condition, for generic Y we can also assume that the singular set of T m is not contained in Y for any m.

On the other hand, in the class α| Y , the current with minimal singularities that admits a lower bound ´2 m ω| Y is certainly less singular than T m | Y . The upper-level set of the Lelong number of these minimal currents is included in the singular set of T m | Y , so it has codimension larger than p. This means that α| Y is nef in codimension p ´1.

The condition xα p y ‰ 0 implies that ż X xα p y ^ωn´p ą 0.

In other words, there exist a sequence of currents with analytic singularities

T m P α such that T m ě ´1 m ω and ż X Fm pT m `1 m ωq p ^ωn´p ą c
for some c ą 0 independent of m where F m is the singular set of T m . With a generic choice of Y , we can still assume that the restriction of T m is a current with analytic singularities. They satisfy the conditions

T m | Y ě ´1 m ω| Y and ż Y Fm pT m | Y `1 m ω| Y q p ^ωn´p´1 ą c k .
In other words, xα| p Y y ‰ 0. By induction on the dimension, we are reduced to proving the case where X has dimension p and L is nef in codimension p ´1, in which case L is (plainly) nef by lemma 4.11. The condition of the movable intersection reduces to xc 1 pLq p y ‰ 0. By lemma 4.14, this implies that pL p q ą 0. In particular, L is a nef and big line bundle. Now the vanishing of cohomology classes follows from the classical Kawamata-Viehweg theorem.

As pointed out to us by A. Höring, this can also be proven using the result of [START_REF] Küronya | Positivity on subvarieties and vanishing of higher cohomology[END_REF].

Remark 4.18. When p " n, the above theorem is the classical Kawamata-Viehweg vanishing theorem for a nef and big line bundle. We notice that xc 1 pLq n y " VolpLq by theorem 3.5 of [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF]. When p " 1, the theorem states that if L is a psef line bundle with xc 1 pLqy ‰ 0, then H n pX, K X b Lq " 0. This case is trivial by the following easy lemma. The rst interesting case is when L is nef in codimension 1 and xc 1 pLq 2 y ‰ 0. In the following example, we show that we can not weaken the condition to the case that L is only psef and xc 1 pLq 2 y ‰ 0. On the other hand, by the divisorial Zariski decomposition, we can write any psef line bundle numerically as a sum of a nef class in codimension 1 and of an eective class. This shows that in some sense, this kind of theorem is the best we can hope for. Now we begin our example. Let V be the unique non-trivial rank 2 extension of O C over an elliptic curve C. Let X be the blow-up of a point of PpV q ˆP1 and L be the pull back of O PpV q p1q b O P 1 p1q. O PpV q p1q is a nef line bundle. We also notice that c 1 pO PpV q p1qq 2 " 0 and c 1 pO PpV q p1qq ‰ 0. So L is a nef line bundle over X and ndpLq " 2. By the above theorem we have that H 2 pX, K X `Lq " 0. Let E be the exceptional divisor of the blow-up. The short exact sequence

0 Ñ K X `L Ñ K X `L `E Ñ K X `L `E| E Ñ 0 induces the long exact sequence H 2 pX, K X `Lq Ñ H 2 pX, K X `L `Eq Ñ H 2 pE, K X `L `E| E q " H 0 pE, ´Lq Ñ H 3 pX, K X `Lq.
By Serre duality and the following lemma, H 3 pX, K X `Lq " H 0 pX, ´Lq " 0. Since L| E " O E , H 0 pE, ´Lq -C. Thus we have that H 2 pX, K X `L `Eq -C.

Now L `E is a psef line bundle over X and ndpL `Eq ě 2 but H 2 pX, K X `L `Eq ‰ 0. The reason of the numerical dimension is as follows. By the super-additivity of movable intersection, we have that xpL `Eq 2 y ě xL 2 y `xE 2 y `2xL ¨Ey ě xL 2 y.

Lemma 4.19. Let pL, hq be a non-trivial pi.e. L ‰ O X q psef line bundle over a compact complex manifold X. Then we have H 0 pX, L ´1q " 0.

Proof. We argue by contradiction. Let s be a non-zero section in H 0 pX, L ´1q. Consider the function log|s| 2 L ´1,h ´1 . Let ϕ be the local weight of h such that h " e ´ϕ locally. Thus the above function can be locally written as log|s| 2 `ϕ. In particular, it is a psh function on X. Since X is compact, the only psh functions are the constant functions. On the other hand, iBBlog|s| 2 L ´1 ,h ´1 " rs " 0s `iΘ L,h " 0

where rs " 0s is the current associated to the (possible trivial) divisor s " 0 and iΘ L,h is the curvature of pL, hq. Since both rs " 0s and iΘ L,h are positive currents, they are 0. In particular, s never vanishes on X which contradicts the fact that L is a non-trivial line bundle.

A classical result on nef line bundles is the following. Let A `B be a nef line bundle over a compact manifold X where A, B are eective R-divisors without intersection. Then A, B are both nef divisors. In the case of nefness in lower codimension, we have the following generalised version. Lemma 4.20. Let A`B be a line bundle that is nef in codimension k over a compact manifold X pby this, we mean that c 1 pA `Bq is nef in codimension kq, where A, B are eective R-divisors without intersection. Then the divisors A, B are both nef in codimension k.

More generally, let α `c1 pEq be a class that is nef in codimension k over a compact manifold X, where E is an eective R-divisor and E nn pαq X E " H. Then α is nef in codimension k.

Proof. Fix α 0 P α, β 0 P c 1 pEq two smooth representatives. By assumption, for any ε ą 0, there exists a quasi-psh function ϕ ε on X with analytic singularities such that α 0 `iBBϕ ε ě ´εω where ω is some Hermitian metric on X (not necessarily Kähler). (For example, we can take a regularisation of the minimal potential ϕ min,´ε 2 .) We can assume that the singular set of ϕ ε has empty intersection with V E . Here V E is some small tubular neighbourhood of E.

Let ψ ε be a family of quasi-psh functions on X with analytic singularities such that α 0 `β0 `iBBψ ε ě ´εω.

We can assume that the singular set of ψ ε has codimension at least k `1.

Let ϕ E be a quasi-psh function on X such that β 0 `iBBϕ E " rEs where rEs is the current associated to E. But denition, the pole of ϕ E is exactly the support of E. In particular we have that ψ ε ´ϕE is a well-dened quasi-psh function outside E such that α 0 `iBBpψ ε ´ϕE q ě ´εω on X E.

Now we glue the potentials to get a quasi-psh function Φ ε with analytic singularities on X, such that α 0 `iBBΦ ε ě ´εω.

We also demand that the singular set of Φ ε be included in the singular set of ψ ε . This will nish the proof of the lemma.

On X V E we dene Φ ε " maxpψ ε ´ϕE , ϕ ε `Cε q where C ε is a constant which will be determined latter. In particular, on X V E we have α 0 `iBBΦ ε ě ´εω.

On V E , we dene Φ ε " ϕ ε `Cε . On X V E , ϕ E is bounded and ψ ε is bounded from above. Near the boundary of V E , ϕ ε is also bounded since the singular set of ϕ ε has empty intersection with V E . Thus for C ε large enough near the boundary of V E ψ ε ´ϕE ă ϕ ε `Cε . In particular, Φ ε is a global well dened quasi-psh function such that α 0 `iBBΦ ε ě ´εω. The singular set of Φ ε in X V E is included in the singular set of ψ ε . On V E , Φ ε is smooth. This nishes our construction.

Remark 4.21. The condition that the intersection is empty is necessary for the lemma. Otherwise, we have the following counter-example.

The construction uses Cutkosky's construction detailed in the next section. Let Y be a projective manifold such that N Y " E Y . Let β P H 1,1 pY, Rq be a non psef class. Let A 1 , A 2 be very ample divisors on Y . Dene t 0 :" mintt|β `tc 1 pA 1 q nefu.

We can assume that β `t0 c 1 pA 2 q is nef. Dene X :" PpA 1 ' A 2 q and denote by π : PpA 1 ' A 2 q Ñ Y the natural projection. By proposition 4.3.1 below, π ˚β `t0 c 1 pOp1qq and c 1 pOp1qq are nef. Notice that Op1q is an eective divisor since H 0 pX, Op1qq " H 0 pY, A 1 ' A 2 q ‰ 0.

By proposition 4.3.2, for any t ă t 0 , νpπ ˚β `tc 1 pOp1qq, PpA 2 qq ą 0 and E nn pπ ˚β `tc 1 pOp1qq " PpA 2 q. This shows that for any t ă t 0 , π ˚β `tc 1 pOp1qq is not nef in codimension 1. In other words, the nef class π ˚β `t0 c 1 pOp1qq is a sum of not nef in codimension 1 class π ˚β `tc 1 pOp1qq and an eective divisor pt 0 ´tqOp1q. Let ps 1 , s 2 q P H 0 pY, A 1 q ' H 0 pY, A 2 q " H 0 pX, Op1qq be a non-trivial section. Then we have V ps 1 , s 2 q " tpx, ξ ˚q|ξ ˚P pA 1 ' A 2 q ˚, ξ ˚ps 1 , s 2 q " 0u.

Identify PpA 2 q as Y ,then we have V ps 1 , s 2 q X PpA 2 q " V ps 2 q ‰ H. Similar calculation shows that for any E P |Opmq| for any m P N ˚Enn pπ ˚β `tc 1 pOp1qq X E ‰ H.

Following the ideas of [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF], we get the following Kähler version of the Kawamata-Viehweg vanishing theorem.

Theorem 4.22. Let pX, ωq be a compact Kähler manifold of dimension n and L a nef in codimension 1 line bundle on X. Assume that xL 2 y ‰ 0. Assume that there exists an eective N-divisor D such that c 1 pLq " c 1 pDq. Then H q pX, K X `Lq " 0 for q ě n ´1.

Proof. In the case q " n, we have H n pX, K X `Lq " H 0 pX, ´Lq ˚by Serre duality. For L psef, ´L has no section unless L is trivial by lemma 4.17. Since xL 2 y ‰ 0, L is not trivial. Therefore the only interesting case is q " n ´1. We divide the proof into two cases.

Case 1 : We assume that L " D. Since the canonical section of D induces a positive singular metric on pL, hq with multiplier ideal sheaf Iphq Ă Op´Dq. In fact we have equality outside an analytic set whose all irreducible components have codimension larger than 2. Write D "

ř i n i D i where n i ě 0 and D i are the irreducible components of D. Dene Y " pD red q Sing " ď i‰j pD i X D j q Y ď i D i,Sing
where D i,Sing means the singular part of D i . It is easy to see that we have an equality outside Y and that each irreducible components of Y is of codimension larger than 2.

In particular, the short exact sequence

0 Ñ Iphq Ñ Op´Dq Ñ Op´Dq{Iphq Ñ 0 induces that H n´1 pX, K X `L b Iphqq Ñ H n´1 pX, K X `L ´Dq Ñ H n´1 pX, Op´Dq{Iphqq " 0 since the support of Op´Dq{Iphq is included in Y .
Denote by h min the minimal metric on L where we have a natural inclusion of Iphq Ă Iph min q. Thus we have the following commuting diagram

H n´1 pX, K X `L b Iphqq H n´1 pX, K X `L b Iph min qq H n´1 pX, K X `L ´Dq H n´1 pX, K X `Lq.
By Theorem 1.9 proved in chapter 3 and the condition that ndpLq ě 2, we know that the morphism

H n´1 pX, K X `L b Iph min qq Ñ H n´1 pX, K X `Lq
is the 0 map. Since the left vertical arrow is surjective in the above diagram, we conclude that the morphism H n´1 pX, K X `L ´Dq Ñ H n´1 pX, K X `Lq is also the 0 map. Thus the short exact sequence

0 Ñ K X `L ´D Ñ K X `L Ñ K X `L| D " K D Ñ 0 gives in cohomology H n´1 pX, K X `L ´Dq Ñ H n´1 pX, K X `Lq Ñ H n´1 pD, K D q » H 0 pD, O D q Ñ H n pX, K X `L ´Dq Ñ 0.
On the other hand, H n pX, K X `L ´Dq » H 0 pX, O X q » C. Therefore we need only show that h 0 pD, O D q " 1.

More precisely, D is a eective Cartier divisor in the manifold X. Therefore D is a (possibly non reduced) Gorenstein variety. In this case the dualizing sheaf K D is given by adjunction as pK X `Dq| D . Moreover

Serre duality holds in the same form as in the smooth case.

To calculate the dimension of global sections of D, rst we show that D is connected. In fact, otherwise we would have D " A `B with A and B eective non-trivial divisors such that A X B " H. In particular we have pA ¨B ¨ωn´2 q " 0. But A and B are necessarily nef in codimension 1 by lemma 4.20.

We recall the Hodge Index Theorem on a compact Kähler manifold pX, ωq as theorem 6.33 and 6.34 in [START_REF] Voisin | A counterexample to the Hodge conjecture extended to Kähler varieties[END_REF]. By the Hard Lefschetz theorem, we have

H 2 pX, Cq " Ctωu ' H 2 pX, Cq prim
where H 2 pX, Cq prim means primitive classes. The intersection form pα, βq Þ Ñ pα ¨β ¨ωn´2 q has signature p1, h 1,1 pXq ´1q on H 1,1 pXq since H 2 pX, Cq prim is orthogonal to ω and the intersection form is negative denite on H 2 pX, Cq prim .

On the other hand, by lemma 4.14, we have that pA ¨A ¨ωn´2 q ě xA ¨A ¨ωn´2 y ě 0 and similar inequality for B. We also notice that pL ¨L ¨ωn´2 q ě xL ¨L ¨ωn´2 y ą 0.

Since the intersection form (unlike the movable intersection) is bilinear, we have either pA ¨A ¨ωn´2 q ą 0 or pB ¨B ¨ωn´2 q ą 0. Without loss of generality, assume that pA ¨A ¨ωn´2 q ą 0. Thus B P A K and pB ¨B ¨ωn´2 q ě 0. The Hodge index theorem implies that B " 0 which is a contradiction to our assumption. Hence D is connected, and if h 0 pD, O D q ě 2, then O D contains a nilpotent section t ‰ 0. In other words, the pull back of t under the natural morphism D red Ñ D is 0 but lies as a non trivial section in H 0 pD red , Op´ř jPI µ j D j qq for some 1 ď µ j ď n j for all j. Let J :" tj P J| n j µ j maximalu and let c " nj µj be the maximal value. Notice that divptq| Di " ´řjPI µ j D j | Di is eective (possibly 0) for all i. We claim that it is impossible that c " nj µj for all j P I. Otherwise, L| Di " c

ř µ j D j | Di is psef. (L is nef
in codimension 1, so its restriction to any prime divisor is psef.) Its dual is eective, hence L| Di " 0 for all i. This implies that pL ¨L ¨ωn´2 q " 0, contradiction. Thus we nd some j such that c ą n j µ j .

By connectedness of D we can choose i 0 P J in such a way that there exists j 1 P I J with D i0 X D j1 ‰ H. Now ÿ jPI pn j ´cµ j qD j | Di 0 is pseudo-eective as a sum of a psef and an eective line bundle (this has nothing to do with the choice of i 0 ). Since the sum, taken over I, is the same as the sum taken over I ti 0 u, we conclude that ÿ j‰i0 pn j ´cµ j qD j | Di 0 is pseudo-eective, too. Now all n j ´cµ j ď 0 and n j1 ´cµ j1 ă 0 with D j1 X D i0 ‰ H, hence the dual of ÿ j‰i0 pn j ´cµ j qD j |D i0 is eective and non-zero, a contradiction. This nishes the proof of case 1.

Case 2 : general case. We can write

L " D `L0

where L m 0 P Pic 0 pXq (The exponent m is there because there might be torsion in H 2 pX, Zq; we take m to kill the denominator of the torsion part). We may in fact assume that m " 1; otherwise we pass to a nite étale cover X of X and argue there (the vanishing on X clearly implies the vanishing on X by Leray spectral sequence). In other words, we write L as a sum of D and a at line bundle pL 0 , h 0 q. Here h 0 is the at metric. Thus there exists a bijection between singular positive metrics on L and those on D, via the tensor product by h 0 . In particular, the minimal metric on L is the minimal metric on D, tensored by h 0 .

The short exact sequence used above is modied into

0 Ñ K X `L ´D Ñ K X `L Ñ pK X `Lq| D " pK D `L0 q| D Ñ 0.
Taking cohomology as before and using a similar discussion, the arguments come down to proving

H 0 pD, ´L0 | D q " 0 since H n pX, K X `L ´Dq » H 0 pX, ´L0 q " 0.
The argument on the connectedness of D still works since the arguments only involve the rst Chern class, and since L 0 has no contribution in the rst Chern class. If ´L0 | D ‰ 0, then we see as above that ´L0 | D cannot have a nilpotent section. Since L 0 is at, adding a multiple of L 0 does not change the pseudoeectiveness. By adding a suitable such multiple, the arguments on the non-existence of nilpotent section are still valid.

So if H 0 pD, ´L0 | D q " 0 fails, then ´L0 | D has a section s such that s| D red has no zeroes. In other words ´L0 | D red is trivial. But then ´L0 | D is trivial, since the nowhere vanishing section of H 0 pX, ´L0 b O X O X {I D red q is mapped to a nowhere vanishing section in H 0 pX, ´L0 b O X O X {I D q by passing to the quotient. Now let α : X Ñ AlbpXq be the Albanese map with image Y . Then L 0 " α ˚pL 1 0 q with some line bundle L 1 0 on AlbpXq. (We observe that Pic 0 pXq -Pic 0 pAlbpXqq.) Notice that L 1 0 is a non trivial line bundle with c 1 pL 1 0 q " 0. Since L 0 | D is trivial and L 0 is non trivial, we conclude that αpDq ‰ Y . We claim that αpDq is contained in some proper subtorus B of AlbpXq.

The reason is as follows. Let ν : X Ñ X be a modication such that ν ˚pDq is a SNC divisor. Denote by E j the irreducible components of ν ˚pDq. Dene S Ă

ś i Pic 0 pE i q the connected component containing pν ˚L0 | Ei q of tpL i q P ź i Pic 0 pE i q|L i | EiXEj " L j | EiXEj u.
By proposition 1.5 of [START_REF] Birkenhake | Complex Abelian Varieties[END_REF], S is a subtorus since S is a translation of the kernel of

ź i Pic 0 pE i q Ñ ź i,j,i‰j Pic 0 pE i X E j q pL i q Þ Ñ pL i | EiXEj ´Lj | EiXEj q.
Notice that Pic 0 pE i q is a torus by Hodge theory since E i is smooth. The natural group morphism of Pic 0 pXq Ñ S given by L Þ Ñ pν ˚L| Ei q induces by duality the following commuting diagram

ś i Pic 0 pE i q ˚Sp
Pic 0 pXqq ˚-AlbpXq.

Since L 0 P S is non trivial, the image of S ˚as a complex torus is a proper subtorus in AlbpXq. We denote its image as B. (Let us observe that by proposition 1.5 of [START_REF] Birkenhake | Complex Abelian Varieties[END_REF], the image of a homomorphism of complex tori is a subtorus.)

Consider the induced map β : X Ñ AlbpXq{B and denote its image by Z. (Z can be singular!) The image βpDq is a point p by construction. Let U be a Stein neighbourhood of p in Z(or some coordinate chart of p). Denote by m p the maximal ideal of p in Z.

In particular, for any k P N ˚, m k p is globally generated on U (by Cartan theorem A). Let D " ř i n i D i and dene n max :" maxpn i q. Then we have the inclusion β ˚H 0 pU, m nmax p q Ă H 0 pD, Op´n max D red q| D q Ă H 0 pD, Op´Dq| D q where the second inclusion uses the fact that n max D red ´D is an eective divisor in X. In particular, for any i, H 0 pD i , Op´Dq| Di q ‰ 0. On the other hand, OpDq| Di is psef since D is nef in codimension 1. (Observe that nefness is a numerical property. Since c 1 pL 0 q " 0, D is nef in codimension 1 as L is.) By lemma 4.17, D| Di is trivial.

Thus we have for any i pD ¨Di ¨ωn´2 q " ż Di c 1 pD| Di q ^ωn´2 " 0.

This implies that pL 2 ¨ωn´2 q " pD 2 ¨ωn´2 q " 0. On the other hand, since L is nef in codimension 1, pL 2 ¨ωn´2 q ě xL 2 ¨ωn´2 y. But this is a contradiction with our assumption.

Remark 4.23. If D is a smooth reduced divisor, we can also argue as follows at the end of case 2. We observe that L 0 is a non-trivial element in a translate of the kernel of Pic 0 pXq Ñ Pic 0 pDq. On the other hand, we have

H n´1 pX, K X `Dq " H 1 pX, ´Dq " 0 Ñ H 1 pX, O X q Ñ H 1 pD, O D q
since by case 1, H n´1 pX, K X `Dq " 0. However, H 1 pX, O X q Ñ H 1 pD, O D q is the tangent map of Pic 0 pXq Ñ Pic 0 pDq. By proposition 1.5 of [START_REF] Birkenhake | Complex Abelian Varieties[END_REF], the kernel is discrete. Moreover, the connected component containing the zero point of the kernel is of nite index in the kernel. In particular, L 0 is a torsion element. This yields a contradiction.

Examples and counter-examples

In this section, we rst give for each k P N ˚an example of a psef class α k on some manifold X k , such that α k is nef in codimension k but not nef in codimension k `1. This shows in particular that the inclusion of the various types of nef cones can be strict.

For the convenience of the reader, we recall Cutkosky's construction described in [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF], as well as all needed material for our use.

Let E be a vector bundle of rank r over a manifold Y and L be a line bundle over Y . Since there exists a surjective bundle morphism given by projection E ' L Ñ E, we can view D :" PpEq as a closed submanifold of PpE ' Lq. Note that the restriction of O PpE'Lq p1q on PpEq is the tautological line bundle O PpEq p1q. We notice that the canonical line bundle of the projectivization of a vector bundle PpEq is given by K PpEq " O PpEq p´pr `1qq `π˚p K Y `detEq where π : PpEq Ñ Y is the projection. From the short exact sequence

0 Ñ T PpEq Ñ T PpE'Lq | PpEq Ñ N PpEq{PpE'Lq " OpDq| PpEq Ñ 0 we have K PpE'Lq | PpEq " K PpEq b Op´Dq| PpEq .
Using the formula for the canonical line bundle, we have

Op1q| PpEq " pOpDq b π ˚Lq| PpEq .

We observe that by the Leray-Hirsh theorem for Bott-Chern cohomology,

H 1,1 BC pPpE ' Lq, Rq " Rc 1 pOp1qq ' π ˚H 1,1
BC pY, Rq. In particular, this implies that the inclusion i : PpEq Ñ PpE ' Lq induces an isomorphism on H 1,1 BC . Hence we nd that on PpE ' Lq c 1 pOp1qq " c 1 pOpDqq `π˚c 1 pLq. Now let Y be a compact complex manifold of dimension m and L 0 , ¨¨¨, L r the line bundles over Y . We dene X :" PpL 0 ' ¨¨¨' L r q.

We denote H :" Op1q the tautological line bundle over the projectivization and h :" c 1 pHq. For any i, the projection L 0 ' ¨¨¨L r Ñ L 0 ' ¨¨¨L i ' ¨¨¨' L r induces inclusions of hypersurfaces D i :" PpL 0 ' ¨¨¨' Li ' ¨¨¨' L r q.

By the above discussion d i `li " h where d i :" c i pOpD i qq and l i :" c 1 pL i q. In fact, by calculating the transition function, we can show that Op1q is linear equivalent to L i `Di . But the relation of Chern classes is enough for our use here.

We have the following explicit description of nef cone and psef cone in this case. We denote by C the cone generated by the l i . Proposition 4.3.1. Let α P H 1,1 BC pX, Rq be a class that is decomposed as α " π ˚β `λh. Then (1) α is nef i λ ě 0 and β `λC is contained in N Y .

(2) α is psef i λ ě 0 and pβ `λCq X E Y ‰ H.

Proof. We notice that if α contains a positive current T " θ `iBBϕ with θ smooth, then the pluripolar set P pϕq " tϕ " ´8u is of Lebesgue measure 0. Hence, by the Fubini theorem, the set ty P Y, π ´1pyq Ă P pϕqu is of Lebesgue measure 0. For y outside the measure 0 set, α| π ´1 pzq is the class of T | π ´1pzq . It is also equal to the class of λc 1 pO P r p1qq, and this implies that λ ě 0. We always assume in the following that λ ě 0.

(1) If α is nef, the restriction of α to PpL i q for any i is also nef where PpL i q is biholomorphic to Y given by π. Note that α| PpLiq " λl i `β is nef as a restriction of nef class. So β `λC is contained in N Y .

On the other hand, α " π ˚β `h " π ˚pβ `λl i q `λd i for any i where β `λl i is nef by assumption. Hence the non-nef locus of α is contained in D i . Since the intersection of all D i is empty, we conclude that α is nef.

(2) Let t i P r0, 1s such that ř t i " 1 and β `řr i"0 t i l i P E Y . Hence h "

ř t i h " ř t i π ˚li `ř t i d i and α " π ˚pβ `λ ř t i l i q `λ ř t i d i . d
i is psef since it contains the positive current associated to D i . As a sum of psef classes, α is psef.

For the other direction, we argue by induction. When r " 0, X " Y and α " β `λl 0 . By the assumption that α is psef, we have α P pβ `λCq X E Y .

Continue the induction on r. Let T be a closed positive current in α. we have that α ´νpT, D 0 qd 0 is psef containing the current T ´νpT, D 0 qrD 0 s. And pα ´νpT, D 0 qd 0 q| D0 is psef since the restriction of the current T ´νpT, D 0 qrD 0 s on D 0 is well dened. Now D 0 is the projectivisation of a vector bundle of rank r over Y .

As a cohomology class α ´νpT, D 0 qd 0 " π ˚pβ `λl 0 q `pλ ´νpT, D 0 qqd 0 Restrict α on some bre of π as above. We have that λ ě νpT, D 0 q. By induction, we see that the psef class pα ´νpT, D 0 qd 0 q| D0 , which is also equal to π ˚pβ `νpT, D 0 ql 0 q `pλ ´νpT, D 0 qqh, satises pβ `νpT, D 0 ql 0 `pλ ´νpT, D 0 qqC 0 q X E Y ‰ H

where C 0 is the cone generated by l 1 , ¨¨¨, l r . In other words, pβ `λCq X E Y ‰ H.

We will also need the following explicit calculation of the generic minimal multiplicity in this example.

From now on, we choose Y such that the nef cone N Y and the psef cone E Y coincide (for example we can take Y to be a Riemann surface).

We denote I a subset of t0, ¨¨¨, ru with complement J. We denote V I :" Ş iPI D i " Pp' jPJ L j q and C I the convex envelope of l i pi P Iq.

We observe that the non-nef locus of any psef class is contained in the union of D i . The reason is as follows: since α " π ˚β `λh is psef, by proposition 4.3.1 we know that there exist t i P r0, 1s with

ř t i " 1 such that β `λp ř t i l i q P E Y " N Y . Hence α " π ˚pβ `λp ÿ t i l i qq `λp ÿ t i d i q
is a sum of nef divisor and eective divisor. (Since α is psef, λ ě 0.) So the non-nef locus of α is contained in the union of D i .

Proposition 4.3.2. Let α be a big class such that α " π ˚β `λh. The generic minimal multiplicity of α along V I is equal to νpα, V I q " mintt ě 0, pβ `tC I `pλ ´tqC J q X N Y ‰ Hu.

More precisely, we have νpα, V I q " νpα, xq for any x P V I Ť jPJ D j .

Proof. Let µ : X I Ñ X the blow-up of X along V I with exceptional divisor E I . Hence we have E I " PpN VI {X q with N VI {X " ' iPI O Vi p´D i q. By lemma 4.4, we get νpα, V I q " νpµ ˚α, E I q.

Denote by H I the tautological line bundle over E I where we have O E I p´E I q " H I .

For t ě 0, the restriction of µ ˚α ´tc 1 pOpE I qq to E I is psef is hence equivalent to that µ ˚α `tc 1 pH I q is psef. By proposition 4.3.1, the latter is equivalent to the fact that α `tCpπ ˚li ´hq " α ´th `tπ ˚Cpl i q intersects E V I where Cpl i q is the convex envelop of l i (i P I). Note also that α ´th `tπ ˚Cpl i q " π ˚pβ `tCpl i qq `pλ ´tqh where we denote by the same notation π to be the projection from V I to Y and h to be the rst Chern class of the tautological line bundle over V I . By proposition 4.3.1, it is psef if and only if β `tC I `pλ ´tqC J intersects the psef cone E Y .

Since the class µ ˚α ´νpα, V I qc 1 pOpE I qq has positive current µ ˚Tmin ´νpT min , V I qrE I s whose restriction to E I is well dened by Siu's decomposition theorem. By the last paragraph we have νpα, V I q " νpT min , V I q ě mintt ě 0, pβ `tC I `pλ ´tqC J q X N Y ‰ Hu.

On the other direction, let γ :" β `t ř iPI a i l i `pλ ´tq ř jPJ b j l j be a psef (equivalently nef by assumption) class on Y with

ř a i " ř b j " 1. Hence α " π ˚γ `t ř a i d i `pλ ´tq ř b j d j . For x P V I Ť jPJ D j , νpα, xq ď t ÿ a i νprD i s, xq `pλ ´tq ÿ b j νprD j s, xq ď t ÿ a i " t.
In particular, this shows that νpα, V I q ď mintt ě 0, pβ `tC I `pλ ´tqC J q X N Y ‰ Hu.

By the proof, the equality is attained for x P V I Ť jPJ D j .

We notice that if we use the algebraic analogue in the projective case as in [START_REF] Nakayama | Zariski decomposition and abundance[END_REF], we can weaken the assumption to the case that α is just a psef class.

In particular, the proposition 4.3.2 shows that YD i is stratied by the sets V I Ť jPJ D j with respect to the generic minimal multiplicity. Now we are prepared to give our construction. Let Y as above be a projective manifold such that the nef cone coincides with the psef cone. Dene X k " PpO Y ' O Y pA 1 q ' ¨¨¨' O Y pA k`1 qq where A i are the ample line bundles over Y . Let β P H 1,1 BC pY, Rq be a not-nef class. Denote H be the tautological line bundle over X k and denote h its rst Chern class. Dene α " π ˚β `h. We assume that:

For any i, β `c1 pA i q is nef and big.

As above,

PpO Y q » Y is a closed submanifold of X k of codimension k `1 via the projection of O Y ' O Y pA 1 q ' ¨¨¨' O Y pA k`1 q Ñ O Y .
α is psef but not nef on X k by proposition 4.3.1. In fact, if α is nef, its restriction to the submanifold Y (i.e. β) will be nef. For any subset I ‰ t1, ¨¨¨ru (taking L 0 :" O Y ), by proposition 4.3.2, νpα, V I q " 0 since β `řjPJ c 1 pA j q is nef which means we can take t " 0 on the right hand of the equation. By proposition 4.3.2, νpα, xq is constant on PpO Y q. The non-nef locus can not be empty otherwise α would be nef. But non-nef locus have to be contained in PpO Y q. Hence the constant cannot be zero.

In conclusion, we have νpα, PpO Y qq ą 0, which in particular shows that α is not nef in codimension k `1. On the other hand, the non-nef locus is also PpOpY qq which in particular shows that α is nef in codimension k.

With the explicit calculation of generic minimal multiplicity, we discuss the optimality of the divisorial Zariski decomposition. Take k " 1 in the above construction. Take β to be the rst Chern class of some line bundle. Hence by the above calculation α is nef in codimension 1 but not nef in codimension 2. Its non-nef locus is PpO Y q. For α, there doesn't exist a unique decomposition of this psef class α " c 1 pLq into a nef in codimension 2 R-divisor P and an eective R-divisor N such that the canonical inclusion H 0 ptkP uq Ñ H 0 pkLq is an isomorphism for each k ą 0. Here the round-down of an R-divisor is dened coecient-wise. On the contrary, this decomposition will also be the divisorial Zariski decomposition. But α is nef in codmension 1, the uniqueness of the divisorial Zariski decomposition shows that the nef in codimension 2 part have to be α itself. This is a contradiction. In particular, when Y is a Riemann surface, it gives an example in dimension 3 where the classical Zariski decomposition does not exist (although it is always possible in dimension 2).

Given a psef class α on some compact manifold X, in general there does not always exist a composition of nite blow-up(s) of smooth centres µ : X Ñ X such that the nef in codimension 1 part of µ ˚α is in fact nef. This example is rst shown in [START_REF] Nakayama | Zariski decomposition and abundance[END_REF].

Let α be a big class on a compact Kähler manifold X. Assume that there exists no nite composition of blow-up(s) with smooth centres. such that the the nef in codimension 1 part of µ ˚α is in fact nef. For example, we can take the pull back of the classed constructed by Nakayama on X by p : X ˆT Ñ X where T a complex torus. We have following lemma to conclude that in fact there exists no modication such that the the nef in codimension 1 part of µ ˚α is in fact nef. In general, a modication is not necessarily a composition of blow-up(s) with smooth centres. However, by Hironaka's results, any modication is dominated by a nite composition of blow-up(s) with smooth centres. In other words, for ν : X Ñ X a modication, there exists

a commutative diagram Y X X g f ν
where g is a nite composition of blow-up(s) with smooth centres and f is holomorphic. To prove that there exists no modication such that the nef in codimension 1 part of the pull back of some cohomology class is nef by the above argument, we have to prove that if Zpν ˚αq is nef, Zpg ˚αq is also nef. This is done by the following proposition. It shows in particular that in the above example, if Zpν ˚αq is nef, Zpg ˚αq " f ˚Z pν ˚αq is also nef.

Notice that the initial argument of Nakayama already proves the non-existence of Zariski decomposition for any modication.

Proposition 4.3.3. (1) Let f : Y Ñ X be a holomorphic map between two compact complex manifolds and α be a psef class on X. Assume that Zpαq is nef. Then f ˚N pαq ě N pf ˚αq where the inequality relation ě means the dierence is a psef class.

(2) Let f : Y Ñ X be a modication between two compact complex manifolds and α a big class on X. Then N pf ˚αq ě f ˚N pαq.

Proof. (1) By the convexity of minimal multiplicity along the subvarieties, N pf ˚αq ď N pf ˚N pαqq `N pf ˚Z pαqq.

Since Zpαq is nef, f ˚Z pαq is also nef, and thus N pf ˚Z pαqq " 0. The conclusion follows observing that N pf ˚N pαqq ď f ˚N pαq.

(2) We claim that for any positive current T P f ˚α, there exists a positive current S P α such that T " f ˚S. It is proven in Propositon 1.2.7 [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF] in more general setting. For the convenience of the reader, we give a proof in this special case.

Fix a smooth representative α 8 in α. There exists a quasi-psh function ϕ such that T " f ˚α8 `iBBϕ. Let U be a open set of X such that α 8 " iBBv on U . The function v ˝f `ϕ is psh on f ´1pU q. All the bres are compact and connected (the limit of general connected bre, the points, is still connected), thus v ˝f `ϕ is constant along the bres. Thus there exists a function ψ on U such that ϕ " ψ ˝f . Since ϕ is L 1 loc and f is biholomorphic on a dense Zariski open set, ψ is also L 1 loc . It is easy to see that ψ is independent of the choice of v and is dened on X. Dene S " α 8 `iBBψ and we have T " f ˚S.

In particular, the minimal current in f ˚α is the pull back of the minimal current in α T min . Thus

N pf ˚αq " t ÿ νpf ˚Tmin , EqrEsu ě t ÿ codimpf pEqq"1 νpf ˚Tmin , EqrEsu " t ÿ codimpf pEqq"1 νpT min , f pEqqrEsu " f ˚N pαq
where the sum is taken over all irreducible hypersurfaces of Y .

Let us point out that a current with minimal singularities does not necessarily have analytic singularities for such a big class α that is nef in codimension 1 but not nef in codimension 2; this has been observed by Matsumura [START_REF] Matsumura | A Nadel vanishing theorem for metrics with minimal singularities on big line bundles[END_REF]. The reason is as follows. In such a situation, there exists a modication ν : X Ñ X such that the pull back of α has a minimal current of the form β `rEs where β is a semi-positive smooth form and rEs is the current associated to an eective divisor supported in the exceptional divisor. In particular, the sum tβu `trEsu as cohomology class gives the divisorial Zariski decomposition of the class ν ˚α. Remind that for a big class, the Zariski projection of α is given by α ´ÿ D νpT min , DqtrDsu

where D runs over all the irreducible divisors on X and T min is the current with minimal singularity in the class α (cf. Proposition 3.6 of [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF]). On the other hand, the push forward ν ˚and pull-pack ν ˚induces isomorphism between ν ˚α8 -psh functions on X and α 8 -psh functions on X where α 8 is a smooth element in α. In particular, the pull back of the minimal current of α is the minimal current in ν ˚α which is also a big class. Hence ν ˚α admits a divisorial Zariski decomposition where the Zariski projection is semi-positive (hence nef ). This contradicts the last paragraph.

Remark 4.24. As a direct consequence of Matsumura's observation, it can be shown by an example that the strategy of proof of the Kawamata-Viehweg vanishing theorem used in [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF] fails in the setting of theorem 4.22. In the nef case considered in [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF], let h be any positive singular metric on L. Let i 2π ΘpL, hq " ř j λ j D j `G be the Siu's decomposition of the curvature current, where λ j ě 0, D j are irreducible divisors, and G is a positive current such that G has Lelong numbers in codimension ě 2. Dene D " ř j rλ j sD j , which is an integral eective divisor. As in the beginning of the proof of theorem 4.22, H n´1 pX, K X b Lq ‰ 0 is equivalent to H 0 pX, pD ´Lq| D q ‰ 0. To prove the vanishing theorem by contradiction, Demailly and Peternell made the following rst reduction, based on the non-vanishing assumption H 0 pX, pD ´Lq| D q ‰ 0 and the hypothesis that the line bundle L is nef with pL 2 q ‰ 0 ; namely, they showed that the curvature of h on L is the current of integration associated with an eective integral divisor, so that, in particular, L is numerically equivalent to an eective integral divisor.

Here we show that for a big line bundle L which is nef in codimension 1 but not nef in codimension 2 over a compact Kähler manifold pX, ωq, the positive intersection product xL 2 y ‰ 0 and i 2π ΘpL, hq is not a current associated to an eective integral divisor for any singular metric h. In particular, the above situation occurs by nakayama's example, and the strategy of [START_REF] Demailly | A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds[END_REF] no longer works. (Up to taking some multiple of L, since L is big, it can be represented by an eective divisor. By theorem 4.22, we still have vanishing cohomology groups for some multiple of L.)

By the observation of Matsumura, the curvature current of the minimal metric cannot even be a current associated to a real divisor. Since L is big, xL n y " VolpLq ‰ 0. By the Teissier-Hovanskii inequalities, we get xL 2 ¨ωn´2 y " xL 2 y ¨ωn´2 ě VolpLq 2{n Volpωq pn´2q{n ą 0.

This shows in particular that xL 2 y ‰ 0.

Remark 4.25. Let us observe that this kind of construction can also be used to give an example of manifold with psef anticanonical line bundle, for which the Albanese morphism is not surjective.

According to the knowledge of the author, this kind of question has been rst proposed in [START_REF] Demailly | Kähler manifolds with nu-merically eective Ricci class[END_REF] where the authors ask whether the Albanese map of a compact Kähler manifold is surjective under the assumption that the anticanonical line bundle is nef. The statement has been proven rst by Pǎun [START_REF] Pǎun | Relative adjoint transcendental classes and Albanese maps of compact Kähler manifolds with nef Ricci curvature[END_REF] using the positivity of direct image and then by Junyan Cao [START_REF] Cao | A remark on compact Kähler manifolds with nef anticanonical bundles and applicaions[END_REF] via a dierent and simpler method.

In case the manifold is projective and the anticanonical divisor is nef, this had been proven earlier by Qi Zhang [START_REF] Zhang | Rational connectedness of log Q-Fano varieties[END_REF].

Let us use the same notation as above. Take Y to be a complex curve of genus larger than 2. By a classical result, the Albanese map of Y is the embedding of the curve into its Jacobian variety JacpY q. In particular, the Albanese map is not surjective. Fix A an ample divisor on Y . Dene E " A bp ' A b´q where p, q P N will be determined latter. Denote X " PpEq with π : X Ñ Y .

We claim that the Albanese morphism of X is the composition of the natural projection π and the Albanese morphism of Y . The reason is as follows: (cf. Proposition 3.12 in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF])

Since the bres of π are P 1 which is connected and since π is dierentially a locally trivial bre bundle, we have R 0 π ˚RX " R Y , while R 1 π ˚RX " 0. We remark that H 1 pP 1 , Rq " 0. The Leray spectral sequence of the constant sheaf R X over X satises E s,t 2 " H s pY, R t π ˚RX q, E s,t r ñ H s`t pX, Rq. Since R 1 π ˚RX " 0, the Leray spectral sequence always degenerates in E 2 . (In fact, by [START_REF] Blanchard | Sur les variétés analytiques complexes[END_REF], the Leray spectral sequence always degenerates in E 2 for Kähler brations.) Hence we have

H 1 pX, R X q -H 1 pY, R Y q.
Since Y and X is compact Kähler, we have by Hodge decomposition theorem that

H 0 pX, Ω 1 X q -H 0 pY, Ω 1 Y q. Since π ˚: H 0 pY, Ω 1 Y q -H 0 pX, Ω 1
X q is an injective morphism, it induces an isomorphism. Passing to the quotient, it induces an isomorphism π ˚: AlbpXq -AlbpY q. The claim is proven by the universality of the Albanese morphism:

X Y AlbpXq AlbpY q. π α X α Y π
We also claim that for well chosen p, q, the anticanonical line bundle ´KX is big but not nef in codimension 1. In particular, this shows that there exists the compact Kähler manifold X such that ´KX is psef but the Albanese morphism is not surjective. Recall that

K X " π ˚pK Y b det Eq b O X p´2q.
In particular for q " p, ´pK Y b det Eq " pq ´pqA ´KY is ample. On the other hand, O X p1q is big since one of the component in the direct sum bundle E is big. Thus ´KX is big for q ąą p. On the other hand, the surjective morphism E Ñ A bp induces the closed immersion PpA bp q -Y Ñ X. We have that ´KX | PpA bp q " ´KY ´pA. For p big enough, we can assume that ´KY ´pA is not psef. As consequence, ´KX is not nef in codimension 1.

In fact, we can calculate the generic minimal multiplicity as νpc 1 p´K X q, PpA bp qq " mintt, ´KY `pq ´pqA `tpA ´p2 ´tqqA is nefu.

Since K Y is ample, we know that the generic minimal multiplicity along PpA bp q is strictly larger than 1. In particular, consider any singular metric h ε on ´KX such that its curvature satises iΘp´K X , h ε q ě ´εω where ω is some Kähler form on X. Then the multiplier ideal sheaf is not trivial. Near a point of PpA bp q, choose some local coordinate such that PpA bp q " tz 1 " 0u. By Siu's decomposition, the local weight of h ε is more singular than logp|z 1 | 2 q. This implies that Iph ε q Ă I PpA bp q where I PpA bp q is the ideal sheaf associated to PpA bp q.

Therefore, some additional condition is certainly needed to ensure the surjectivity of Albanese morphism.

In the next section, we will show that if there exist approximated singular metrics such that the associated multiplier ideal sheaves are trivial, then the Albanese morphism is surjective. Remark 4.26. Using Nakayama's algebraic denition of minimal multiplicities [START_REF] Nakayama | Zariski decomposition and abundance[END_REF], Lemma 4.4 holds for a psef class on a projective manifold. Our arguments based on the non existence of Zariski decomposition over a birational model obtained as composition of blow-up(s) of smooth centres also work for the example of John Lesieutre [START_REF] Lesieutre | The diminished base locus is not always closed[END_REF]. Consider the blow up of P 3 at 9 points in very general position. There exist a class α that is nef in codimension 1 and a curve C such that pα, Cq ă 0 constructed in [START_REF] Lesieutre | The diminished base locus is not always closed[END_REF]. In particular, α is not nef. Of course, we can construct a family of similar classes by considering α `εc 1 pAq with ε ą 0 and A an ample divisor. For ε small enough, the intersection number is still strictly negative.

Surjectivity of the Albanese map

In this section, we discuss the surjectivity of the Albanese morphism of a compact Kähler manifold X, under the assumption that ´KX psef and some additional integrability condition for its singular metrics.

We will need the following existence and regularity results of [START_REF] Campana | Metrics with cone singularities along normal crossing divisors and holomorphic tensor elds[END_REF] and [START_REF] Guenancia | Conic singularities metrics with prescribed Ricci curvature: General cone angles along normal crossing divisors[END_REF] for solutions of singular Monge-Ampère equations.

Theorem 4.27. (Main theorem in [START_REF] Campana | Metrics with cone singularities along normal crossing divisors and holomorphic tensor elds[END_REF] and theorem A in [START_REF] Guenancia | Conic singularities metrics with prescribed Ricci curvature: General cone angles along normal crossing divisors[END_REF])

Let X be a n-dimensional compact Kähler manifold, and let D " ř i a i D i be an eective R-divisor with simple normal crossing support, such that for all 1 ď i ď r, the coecients satisfy 0 ă a i ă 1. Let ω be a Kähler metric on X, let dV be a smooth volume form, and let ε ą 0. Then the weak solution of the Monge-Ampère equation

pω `i 2π BBϕq n " e εϕ dV ś |s i | 2ai
exists and has conic singularities along D, with regularity C 2,α,β for any 1 ą α ą 0 and any angles β " p1 ´a1 , ¨¨¨, 1 ´ar q. Here s i is the canonical section of OpD i q and |s i | 2 is the norm of s i with respect to some smooth metric.

We notice that since the solution is bounded, the Monge-Ampère operator is well-dened in the sense of currents by Bedford-Taylor [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF]. The operator coincides with the positive product dened in [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF].

By the theorem, in particular, the weak solution is a bounded ω-psh function which is smooth on X Ť i D i . We also nd that ω `i 2π BBϕ has coecients in L 1 loc by the above regularity result.

We now recall the denition of a singular metric on a vector bundle according to [START_REF] Pǎun | Singular Hermitian metrics and positivity of direct images of pluricanonical bundles[END_REF].

Definition 4.28. A singular Hermitian metric h on E is given locally by a measurable possibly unbounded map with values in the set of semi-positive Hermitian matrices, such that 0 ă det h ă 8 almost everywhere.

By denition, a solution in the above theorem denes a singular metric on T X . In particular, the solution also induces a singular metric on any quotient bundle of T X . We observe that by the Monge-Ampère equation, the Ricci curvature of the singular metric is well dened as a current. However, one can notice that the curvature tensor of T X is not necessarily well-dened as a current with values in semi-positive, possibly unbounded Hermitian matrices.

In fact, the work of [START_REF] Guenancia | Kähler-Einstein metrics with cone singularities on klt pairs[END_REF] and [START_REF] Campana | Metrics with cone singularities along normal crossing divisors and holomorphic tensor elds[END_REF] gives the following weak estimate for the following type of Monge-Ampère equation. Theorem 4.29. Let X be a n-dimensional compact Kähler manifold, and let D "

ř i a i D i , E "
ř j b j E j be two eective R-divisors with simple normal crossing support, such that for all 1 ď i ď r, 0 ă a i ă 1. Assume that D and E have no common irreducible component. Let ω be a Kähler metric on X, dV a smooth volume form, and let ε ą 0. Then the weak solution of the Monge-Ampère equation

xpω `i 2π BBϕq n y " e εϕ ś |t j | 2bj dV ś |s i | 2ai
exists which is smooth on X pD Y Eq and has upper bound by a metric with conic singularity along D. Here x'y is the positive intersection product dened in [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF]. Here s i (resp. t j ) is the canonical section of OpD i q (resp. OpE j q) and |s i | 2 (resp. |t j | 2 ) is the norm of s i (resp. t j ) with respect to some smooth metric.

We observe that the existence of a solution is proved in [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF]. As a consequence of their theorem, there exists C ą 0 such that the solution has on X pD Y Eq an upper bound

ω `i 2π BBϕ ď Cω ś i |s i | 2ai .
By the Monge-Ampère equation, we nd on X pD Y Eq a lower bound

ω `i 2π BBϕ ě e εϕ ś |t j | 2bj ω ś |s i | 2ai p C ś i |s i | 2ai q ´pn´1q .
Notice that since the solution is smooth on X pD Y Eq, the above inequalities are satised pointwise. By the result of [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], |ϕ| is uniformly bounded on X. In particular, we have

ω `i 2π BBϕ ě C ś |t j | 2bj ω ś |s i | 2ai p C ś i |s i | 2ai q ´pn´1q .
In conclusion outside DYE, the solution ω`i 2π BBϕ viewed as a Hermitian form over T X with respect to ω has positive eigenvalues bounded from above by C ś i |si| 2a i and bounded from below by

C ś |tj | 2b j ś |si| 2a i p C ś i |si| 2a i q ´pn´1q .
Let us observe that for the singular metric on the determinant line bundle of the quotient bundle Q given by a short exact sequence of vector bundles 0 Ñ S Ñ T X Ñ Q Ñ 0, the curvature form is well-dened as a current. We detail the argument below.

Suppose that we are in the situation of Theorem 4.27, with the same notation as above. Since the metric is smooth outside D Y E, we only need to study the neighbourhood of D Y E. By a C 8 splitting of the exact sequence we can view Q as a subbundle of T X . ω `i 2π BBϕ thus induces a Hermitian form over Q which we will denote by ω `i 2π BBϕ| Q . By the minimax principle, for the induced Hermitian form on Q, the eigenvalues are bounded from above by C ś i |si| 2a i and bounded from below by

C ś |tj | 2b j ś |si| 2a i p C ś i |si| 2a i q ´pn´1q .
To prove that the curvature of detpQq is well-dened as a current (not necessarily positive), it is enough to prove that logpdetpω `i 2π BBϕ| Q qq P L 1 loc . detpω `i 2π BBϕ| Q q is the product of all eigenvalues of the Hermitian form ω `i 2π BBϕ| Q . Thus we get for the potentials the estimate

|logpdetpω `i 2π BBϕ| Q qq| ď ÿ i C i log|s i | 2 `ÿ j C j log|t j | 2 `C
for some C i ą 0, C j ą 0 and C ą 0. In the following, we will refer to this type of control as potentials possessing at most logarithmic poles along D Y E. Notice also that for any i log|z i | is locally integrable with respect to the euclidean metric. In particular, the curvature of the induced metric on detpQq is well dened as a current, since it is the iBB of some L 1 loc function.

Let U be a neighbourhood of some point in D Y E as above and let π : Ũ Ñ U be some ramied cover which can be written in local coordinate as pz 1 , z 2 , ¨¨¨, z n q Þ Ñ pz p1 1 , z p2 2 , ¨¨¨, z pn n q

for some pp 1 , ¨¨¨, p n q P pN ˚qn . Notice that the pull back under π of the potential of our curvature current, namely π ˚logpdetpω `i 2π BBϕ| Q qq, is still L 1 loc with at most logarithmic poles along D Y E. In the following, instead of solving a Monge-Ampère type equation on X, we will solve a Monge-Ampère type equation on some bimeromorphic model of σ : X Ñ X. The bimeromorphic model is obtained by the work of Hironaka. We can thus assume that the modication σ is obtained as a nite composition of blows-up of smooth submanifold. Let us rst study the case of blow-up of smooth submanifold π : Ỹ Ñ Y .

The dierential dπ induces a bundle morphism over Ỹ T Ỹ Ñ π ˚TY . Assume we have biholomorphism between Ỹ E and Y S where E is the exceptional divisor and S is the smooth submanifold to be blown-up. Over Ỹ E, dπ is a pointwise linear isomorphism. Let us estimate the variation of the norm of the pointwise isomorphism. It will be enough for us to study the behaviour near the exceptional divisor. Otherwise the norm will be locally bounded by a constant. Lemma 4.30. Let π : Ỹ Ñ Y be the blow-up of a smooth submanifold S. Let p be a point in the exceptional divisor. Choose coordinate of Ỹ and Y such that in local coordinates near p π is given by πpw 1 , ¨¨¨, w n q " pw 1 w s , ¨¨¨, w s´1 w s , w s , w s`1 , ¨¨¨, w n q.

Then the norm of dπ and pdπq ´1 with respect to xed smooth metric on T Ỹ and π ˚TY has estimate

log}dπpw 1 , ¨¨¨, w n q} ď C 1 log|w s | 2 `C2 log}pdπq ´1pw 1 , ¨¨¨, w n q} ď C 1 log|w s | 2 `C2 for some C 1 , C 2 ą 0.
Proof. The dierential of π at pw 1 , ¨¨¨, w n q is given by the matrix where Id n´s is the identity matrix of rank n ´s.

The norm of }dπ} at pw 1 , ¨¨¨, w n q is bounded from above by the largest eigenvalue of the matrix dπ : dπ. While the norm }pdπq ´1} at pw 1 , ¨¨¨, w n q is bounded from above by the inverse of the smallest eigenvalue. The product dπ : dπ can be calculated in this local coordinate chart as In other words, the sum of the eigenvalues is |w s | 2ps´2q ps ´1 `řjďs |w j | 2 q `n ´s.

» - - - - - - - - |w s | 2 0 . . . 0 
Since dπ : dπ is positive and Hermitian, all the eigenvalues are real and positive. In particular its largest eigenvalue is controlled from above by |w s | 2ps´2q ps ´1 `řjďs |w j | 2 q `n ´s and its smallest eigenvalue is controlled from below by detpdπ : dπq `|w s | 2ps´2q ps ´1 `řjďs |w j | 2 q `n ´s˘´p n´1q

. This implies the estimate of the norms }dπ} and }pdπq ´1}.

Proposition 4.4.1. Let σ : X Ñ X be a nite composition of blows-up of smooth submanifolds. Denote by E the exceptional divisor. We have an estimate for the norm of dπ with respect to a xed smooth metric on T Ỹ and π ˚TY that reads

log}dσ} ď C 1 log|s E | 2 `C2
where C 1 , C 2 ą 0 and s E is the canonical section of the exceptional divisor. We also have a similar estimate for pdσq ´1.

Proof. Let σ " π d ˝¨¨¨˝π 1 where π i are blows-up of smooth submanifolds. Since dσ " dπ d ˝¨¨¨˝dπ 1 , we nd }dσ} ď }dπ d } ¨¨¨¨¨}dπ 1 }.

On the other hand, for each π i , by the above lemma, the norm of dπ i has upper bound with logarithmic pole along the exceptional divisor of this blow up. This singularity is independent of the choice of coordinate. The pull back of logarithmic pole along a divisor D under a modication is still logarithmic with pole supported in the exceptional divisor of the modication union the strict transform of D. This concludes the estimate of the upper bound of }dσ}. The estimate for pdσq ´1 is similar.

We will also need the following topological lemma. The denition of the rst Chern class of a coherent sheaf F over a connected complex manifold can be found for example in section 6, Chap. V of [START_REF] Kobayashi | Negative vector bundles and complex Finsler structures[END_REF]. We dene c 1 pFq :" c 1 ppΛ r Fq ˚˚q where r is generic rank of F.

Lemma 4.31. Let F be a torsion free sheaf over a compact complex manifold X. Let σ : X Ñ X be a modication of X such that there exists a SNC divisor E in X such that σ : X E Ñ X πpEq is biholomorphism with E a SNC divisor and the codimension of πpEq at least 2 and σ ˚F {Tors is locally free. Then we have c 1 pFq " σ ˚pc 1 pσ ˚F {Torsqq.

Proof. First observe that such a modication always exists by the fundamental work of [START_REF] Rossi | Picard variety of an isolated singular point[END_REF],

[GR70], [START_REF] Riemenschneider | Characterizing Moishezon Spaces by Almost Positive Coherent Analytic Sheaves[END_REF] (cf. eg. Theorem 3.5 of [START_REF] Rossi | Picard variety of an isolated singular point[END_REF]).

Without loss of generality we can assume that the dimension of X is at least 2. Otherwise, F is locally free and the result is straightforward. By Poincaré duality, it is equivalent to prove for any cohomology class

α one has ż X c 1 pFq ^α " ż X pc 1 pσ ˚F {Torsqq ^σ˚α .
Recall that σ ˚chpF q " ř i p´1q i chpL i σ ˚F q where L i σ ˚is the i-th left exact functor of σ ˚(cf. eg. [START_REF] Borel | Le théorème de Riemann-Roch (d'après Grothendieck)[END_REF]). Without loss of generality, we can assume that F is locally free over X πpEq. In particular, L i σ ˚F for any i ą 0 is supported in the exceptional divisor. On the other hand, the torsion part of σ ˚F is also supported in the exceptional divisor. Recall that for a torsion sheaf, its rst Chern class is an eective divisor supported in the support of the sheaf. Thus we have ż X pc 1 pσ ˚F {Torsqq ^σ˚α " ż X σ ˚pc 1 pFqq ^σ˚α since for any irreducible component of the exceptional divisor E i , σ ˚α| Ei " 0. This implies that c 1 pFq " σ ˚pc 1 pσ ˚F {Torsqq.

To prove the surjectivity of the Albanese map, we start by an analgue of the main result of [START_REF] Cao | A remark on compact Kähler manifolds with nef anticanonical bundles and applicaions[END_REF]. Now pX, ωq be a n-dimensional compact Kähler manifold such that ´KX is psef. Notice that without loss of generality, we can assume that n ě 2. Otherwise, ´KX psef implies that ´KX is nef in which case we know the surjectivity. By regularisation of the minimal metric larger than ´εν ω, for any ε ν , there exists a current T εν " Ricpωq `iBBf εν P c 1 pXq with analytic singularities such that T εν ě ´2ε ν ω. Let X be a modication of X π : X Ñ X such that π ˚Tεν " β εν `rF εν s where F εν is a simple normal crossing R-divisor. We denote rF εν s " ř i b i rD i s. We can also assume that the exceptional divisor is a SNC divisor.

Classically, we have ´K X " π ˚p´K X q ´cD

where cD "

ř i c i D i with c i ě 0.
The condition that the singular metric h εν :" detpωqe ´fεν has multiplier ideal sheaf Iph εν q " O X means that c i ´bi ă 1 for any i. We will denote the irreducible components in D contained in the exceptional divisor as E i . With this abuse of notation, ´K X " π ˚p´K X q ´cE. Theorem 4.32. Let pX, ωq be a n-dimensional compact Kähler manifold such that ´KX is psef. Assume that there exists a sequence ε ν ą 0 such that lim νÑ8 ε ν " 0 and Iph εν q " O X with the notation explained above. Let

0 " E 0 Ă E 1 Ă ¨¨¨Ă E s " T X
be a ltration of torsion-free subsheaves such that E i`1 {E i is an ω-stable torsion-free subsheaf of T X {E i of maximal slope. Then for any i, the slope of E i`1 {E i with respect to ω n´1 , namely

µpE i`1 {E i q :" ż X c 1 pE i`1 {E i q ^ωn´1 , is positive.
Proof. We rst consider a simple case.

Case 1 : assume that the ltration is regular, i.e., that all E i , E i`1 {E i are vector bundles. By the stability condition, to prove the theorem, it is sucient to prove that for any i ż X c 1 pT X {E i q ^ωn´1 ě 0.

The key step is the existence of positive closed p1, 1qcurrent in a Kähler class on some birational model of X which is smooth outside a SNC divisor and whose Ricci curvature can be taken arbitrary small" outside the divisor.

With the same notations as in the discussion before the theorem, for δ ą 0 sucient small, π ˚ω ´δtEu is a Kähler class on X. We want to construct a positive closed current in the class π ˚ω ´δtEu with Ricci curvature lower bound using the theorems in [START_REF] Guenancia | Conic singularities metrics with prescribed Ricci curvature: General cone angles along normal crossing divisors[END_REF] and [START_REF] Campana | Metrics with cone singularities along normal crossing divisors and holomorphic tensor elds[END_REF].

To get the lower bound, we want to solve the following Kähler-Einstein type of equation Ricpω δ,ϕ q " ´εν ω δ,ϕ `εν ω δ `π˚T εν ´crEs

where ω δ,ϕ :" ω δ `iBBϕ is the unknown in the class π ˚ω ´δtEu and ω δ is a smooth Kähler representative.

Notice that both sides belong to the class c 1 p´K X q.

In order to solve the Kähler-Einstein type of equation, we thus solve the following Monge-Ampère equation. Let γ εν be a smooth representative of the class tF εν ´cEu which is induced from the curvature forms of some smooth metrics pOpD i q, h i q. By the BB-lemma, there exists f εν P C 8 p Xq such that β εν `γεν " Ricpω δ q `i 2π BBf εν ,δ . The Monge-Ampère equation equivalent to the Kähler-Einstein type of equation can be written as

ω n δ,ϕ " ω n δ e εν ϕ´f εν ,δ |s i | 2pci´biq hi
.

By the assumption, we have

c i ă b i `1
which is exactly the integrability condition in the Theorem 4.27. Thus by theorem 4.27, the solutions exist and are smooth outside the support of D. In particular, we have the Kähler-Einstein type of equation pointwise outside D and Ricpω δ,ϕ q ě ´εν ω δ,ϕ in the sense of current. By lemma 2.7 in [START_REF] Cao | A remark on compact Kähler manifolds with nef anticanonical bundles and applicaions[END_REF] (which works even on non compact manifold since it is a local calculation), we have on X D that iΘpT X , ω δ,ϕ q ^ωn´1 δ,ϕ {ω n δ,ϕ ě ´εν Id T X pointwise.

The singular metric on T X from the solution of the Monge-Ampère equation induces a singular metric on π ˚TX by dπ : T X Ñ π ˚TX . Taking the quotient metric, it induces a singular metric on π ˚TX {E i (we also denote it by ω δ,ϕ ). We get on X D iΘpπ ˚pT X {E i q, ω δ,ϕ q ^ωn´1 δ,ϕ {ω n δ,ϕ ě ´εν Id π ˚pT X {Eiq pointwise. In particular, we have that piΘpπ ˚detpT X {E i q, ω δ,ϕ q `εν rankpπ ˚pT X {E i qqω δ,ϕ q ^ωn´1 δ,ϕ denes a closed positive pn, nq-current on X πpDq -X D.

Let us show that iΘpπ ˚detpT X {E i q, ω δ,ϕ q has L 1 loc weight. In fact the local weight has at most logarithmic pole along the divisor D. Notice that iΘpπ ˚detpT X {E i q, ω δ,ϕ q is in the rst Chern class of π ˚c1 pT X {E i q.

Locally over X D, identify the metric ω δ,ϕ as a Hermitian matrix H δ,ϕ . The induced metric on π ˚pT X q can be identied as the Hermitian matrix over X D rpdπq ´1s : H δ,ϕ pdπq ´1.

By the minimax principle, the induced metric on π ˚pT X {E i q, as a Hermitian form, has eigenvalues that are controlled both from above and from below by the eigenvalues of the above matrix. More precisely, the maximal eigenvalue of the induced metric on π ˚pT X {E i q over X D is bounded from above by the maximal eigenvalue of H δ,ϕ times }pdπq ´1} 2 . By the discussion after Theorem 4.27 and Proposition 4.4.1, the logarithm of the maximal eigenvalue of induced metric on π ˚pT X {E i q has at most logarithmic pole along the divisor D. Similarly, the inverse of the minimal eigenvalue of induced metric on π ˚pT X {E i q is bounded from above by the inverse of the minimal eigenvalue of H δ,ϕ times }pdπq} 2 . The absolute value of the logarithm of the minimal eigenvalue of induced metric on π ˚pT X {E i q has also at most logarithmic pole along the divisor D.

The induced metric on π ˚detpT X {E i q has thus weight controlled both from above and from below by functions with at most logarithmic pole along the divisor D. In particular, the local weight is locally integrable.

We claim that piΘpπ ˚detpT X {E i q, ω δ,ϕ q `εν rankpπ ˚pT X {E i qqω δ,ϕ q ^ωn´1 δ,ϕ extends by zero to be a closed positive pn, nq-current on X. Moreover, piΘpπ ˚detpT X {E i q, ω δ,ϕ qq ^ωn´1 δ,ϕ well denes a pn, nq-current on X

and it has zero mass along D.

To prove the claim, we start by showing that piΘpπ ˚detpT X {E i q, ω δ,ϕ qq^ω n´1 δ,ϕ can be dened as a pn, nqcurrent on X. By a partition of unity, it is enough to show it in a nite open cover of X such that D is the zero set of the coordinate functions in these charts. Let p P N be a natural number large enough such that ppc i ´bi q ą 1 for any i such that c i ´bi ą 0. Let ψ be the local potential of iΘpπ ˚detpT X {E i q, ω δ,ϕ q on U a local chart. Assume that F εν ´cE " E 1 ´E2 with E 1 , E 2 two eective divisors without common irreducible components. Assume that E 1 " ř r i"1 a i rz i " 0s. Let p : Ũ Ñ U be a local nite ramied cover given by ppz 1 , ¨¨¨, z r , z r`1 , ¨¨¨, z n q " pz p 1 , ¨¨¨, z p r , z r`1 , ¨¨¨, z n q. By the discussion before Lemma 4.28, p ˚ψ is still L 1 loc since ψ can possess at most logarithmic pole along the divisor E 1 Y E 2 . On the other hand, p ˚ωδ,ϕ is bounded from above by

C r ÿ i"1 idpz pai i q ^dpz pai i q `C n ÿ i"r`1 idpz i q ^dpz i q
by the upper bound with conic singularity given by the theorem 4.27. Thus p ˚ψ ^p˚ωn´1 δ,ϕ is well dened as current on Ũ with L 1 loc coecients. We dene piΘpπ ˚detpT X {E i q, ω δ,ϕ qq ^ωn´1 δ,ϕ on U to be 1 p r p ˚piBBpp ˚ψ ^p˚ωn´1 δ,ϕ qq.

This current coincides with the usual denition on X D.

Next, we show that piΘpπ ˚detpT X {E i q, ω δ,ϕ qq ^ωn´1 δ,ϕ dened above has zero mass along D. Let θpzq P C 8 c pC n q with compact support in U . Then θ ε :" θpεz 1 , ¨¨¨, εz r , z r`1 , ¨¨¨, z n q is supported in a tubular neighbourhood of D of diameter ε in the coordinate chart. Then it remains to prove that for ε ą 0 small enough the pair of the current piΘpπ ˚detpT X {E i q, ω δ,ϕ qq ^ωn´1 δ,ϕ with θ ε is nite and has limit 0 as ε Ñ 0.

We have ż U θ ε piΘpπ ˚detpT X {E i q, ω δ,ϕ qq ^ωn´1 δ,ϕ "

1 p r ż Ũ π ˚ppiΘpπ ˚detpT X {E i q, ω δ,ϕ qq ^ωn´1 δ,ϕ q " 1 p r ż Ũ π ˚pψ ^ωn´1 δ,ϕ ^iBBθ ε q.
Here, |iBBθ ε | is bounded from above, with some constant C ą 0, by

C r ÿ i"1 1 ε 2 idpz i q ^dpz i q `C n ÿ i"r`1
idpz i q ^dpz i q.

On the other hand, ş Ũ π ˚pψ ^ωn´1 δ,ϕ ^iBBθ ε q is bounded from above for some r 0 ą 0 independent of ε by

C r ź i"1 ż ε 0 1 ε 2 log|z i ||z i | 2pai´2 idz i ^dz i n ź i"r`1 ż r0 0 idz i ^dz i .
The upper bound is uniformly bounded and has limit 0 as ε Ñ 0 since ż ε 0 1 ε 2 logprqr 2pai´1 dr "

1 2pa i ε 2 logpεqε 2pai ´1 4p 2 a 2 i ε 2 ε 2pai .
Notice that by the choice of p, for any i, pa i ą 1.

In conclusion, piΘpπ ˚detpT X {E i q, ω δ,ϕ q `εν rankpπ ˚pT X {E i qqω δ,ϕ q ^ωn´1 δ,ϕ is a closed pn, nqcurrent with 0 mass along D. piΘpπ ˚detpT X {E i q, ω δ,ϕ q `εν rankpπ ˚pT X {E i qqω δ,ϕ q ^ωn´1 δ,ϕ is a closed positive current on X D. By Skoda-El Mir theorem, it extends by 0 across E to be a positive closed current on X which is piΘpπ ˚detpT X {E i q, ω δ,ϕ q `εν rankpπ ˚pT X {E i qqω δ,ϕ q ^ωn´1 δ,ϕ dened above. The mass on X is equal to the mass on X E. This can be seen from the following decomposition: ż

U piΘpπ ˚detpT X {E i q, ω δ,ϕ q `εν rankpπ ˚pT X {E i qqω δ,ϕ q ^ωn´1 δ,ϕ " ż U θ ε piΘpπ ˚detpT X {E i q, ω δ,ϕ q `εν rankpπ ˚pT X {E i qqω δ,ϕ q ^ωn´1 δ,ϕ
`żU p1 ´θε qpiΘpπ ˚detpT X {E i q, ω δ,ϕ q `εν rankpπ ˚pT X {E i qqω δ,ϕ q ^ωn´1 δ,ϕ .

By the dominated convergence theorem, the limit of the second term is ż U E piΘpπ ˚detpT X {E i q, ω δ,ϕ q `εν rankpπ ˚pT X {E i qqω δ,ϕ q ^ωn´1 δ,ϕ .

The limit of the rst term is 0 by above discussion. Now piΘpπ ˚detpT X {E i q, ω δ,ϕ q `εν rankpπ ˚pT X {E i qqω δ,ϕ q ^ωn´1 δ,ϕ is a positive closed pn, nqcurrent on X. It belongs to the cohomology class pπ ˚c1 pT X {E i q `εν rankpT X {E i qπ ˚tωu ´εν rankpT X {E i qδtEuq ^pπ ˚tωu ´δtEuq n´1 .

In particular, we have pπ ˚c1 pT X {E i q `εν rankpT X {E i qπ ˚tωu ´εν rankpT X {E i qδtEuq ^pπ ˚tωu ´δtEuq n´1 ě 0.

If we let δ tend to 0, we nd pπ ˚c1 pT X {E i q `εν rankpT X {E i qπ ˚tωuq ^pπ ˚tωuq n´1 ě 0 which is also equal to pc 1 pT X {E i q `εν rankpT X {E i qtωuq ^ptωuq n´1 . By taking ν Ñ 8, one achieves the proof of case 1.

Case 2 : general case.

To prove the theorem in the case when the ltration is given by subsheaves whose quotient sheaves are torsion free, we follow the arguments given in case 1.

In this situation, we rst take a nite composition of blows-up of smooth submanifolds σ : X Ñ X such that σ ˚pT X {E i q{Tors is a vector bundle over X. Then we take a further nite composition of blows-up of smooth submanifolds π to reduce the analytic singularity of h εν to the simple normal case. The proof given in case 1 changing X by X and T X {E i by σ ˚pT X {E i q{Tors shows that pc 1 pπ ˚pσ ˚pT X {E i q{Torsqq `εν rankpT X {E i qπ ˚σ˚t ωu ´εν rankpT X {E i qδtEuq ^pπ ˚σ˚t ωu ´δtEuq n´1 ě 0.

Notice that the metric is always well-dened on a Zariski open set and that its curvature denes a current in the rst Chern class. The wedge product of the currents extends across the exceptional divisor over the bimeromorphic model for the same reasons. Letting δ tend 0 implies that pc 1 pσ ˚pT X {E i q{Torsq `εν rankpT X {E i qσ ˚tωuq ^pσ ˚tωuq n´1 ě 0.

Notice that π depends on ν, however σ is independent of ν. Letting ν tend to innity and using Lemma 4.29 concludes the proof. Now the arguments of Proposition 5.1 of [START_REF] Cao | A remark on compact Kähler manifolds with nef anticanonical bundles and applicaions[END_REF] give the following corollary. Corollary 4.33. Let pX, ωq be a n-dimensional compact Kähler manifold such that ´KX is psef. Assume that there exists a sequence ε ν ą 0 such that lim νÑ8 ε ν " 0 and Iph εν q " O X for a sequence of singular metrics with analytic singularities h εν on ´KX such that iΘp´K X , h εν q ě ´εν ω Then the Albanese morphism α X is surjective with connected bres. In fact, the Albanese map is submersion outside an analytic set of codimension larger than 2.

Proof. The proof in [START_REF] Cao | A remark on compact Kähler manifolds with nef anticanonical bundles and applicaions[END_REF] only uses the fact that the slopes with respect to ω n´1 of the sheaves obtained as graded pieces of the Harder-Narasimhan ltration are positive. Hence using theorem 4.30, the result is a direct consequence of his arguments. For the convenience of the readers, we just give here the proof of the fact that the bres of the Albanese map are connected. We follow the arguments in the Proposition 3.9 of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF].

Let X Ñ Y Ñ AlbpXq be the Stein decomposition of the Albanese map with Y " Spec α X˚OX . Since X is smooth, Y is normal. We claim that the map f : Y Ñ AlbpXq is étale. The reason is as follows. By the arguments in [START_REF] Cao | A remark on compact Kähler manifolds with nef anticanonical bundles and applicaions[END_REF], there exists Z an analytic subset in AlbpXq with codimension at least 2 such that X α ´1 X pZq Ñ AlbpXq Z is submersion (thus a bration). Thus Y f ´1pZ q Ñ AlbpXq Z is étale. We denote by F the bre of the bration f | Y f ´1pZq which is nite. By the long exact sequence associated to a bration, we have π 1 pF q Ñ π 1 pY f ´1pZ qq Ñ π 1 pAlbpXq Zq Ñ π 0 pF q where π 1 pF q " 0 and π 0 pF q is nite. In particular, π 1 pY f ´1pZ qq is a free Abelian group of rank 2q :" 2dim C AlbpXq. Notice that by the codimension condition, we have π 1 pAlbpXq Zqπ 1 pAlbpXqq. AlbpXq is isomorphic to the quotient of the universal cover C q of AlbpXq under the group action π 1 pAlbpXqq. Dene T to be the quotient of C q under the group action π 1 pY f ´1pZ qq with the natural cover p : T Ñ AlbpXq.

By the homotopy lifting property, there exists a map g : Y f ´1pZ q Ñ T such that p ˝g " f | Y f ´1 pZq . Remark that g is holomorphic since it is given by the composition of f with the holomorphic local inverse of p. Since Y f ´1pZ q Ñ AlbpXq Z is nite, f ´1pZ q is of codimension at least 2. Since Y is normal, g extends to a morphism g : Y Ñ T . Now g is a generically injective morphism between Y and T . Since T is smooth, the inverse map of T p ´1pZ q Ñ Y also extends across p ´1pZ q which gives the inverse morphism of g. In conclusion g is a biholomorphism between T and Y which proves that f is étale.

In particular, Y is a nite étale cover of the torus AlbpXq, so Y itself is a torus. By the universality of the Albanese morphism, there exists a morphism h : AlbpXq Ñ Y such that the morphism X Ñ Y factorises through h. Since the morphisms X Ñ Y and α X are surjective, we have h ˝f " id Y and f ˝h " id AlbpXq . Thus f is a biholomorphism and the Albanese morphism has connected bres.

Notice that the assumption in the theorem 4.30 is satised when ´KX is nef. In this case, all metrics are smooth and we do not need to take the blow up. Thus the above theorem can be seen as a generalisation of the result of [START_REF] Cao | A remark on compact Kähler manifolds with nef anticanonical bundles and applicaions[END_REF].

We remark that when ´KX is psef and there exists a singular metric h on ´KX such that Iphq " O X , the surjectivity of the Albanese map is a direct consequence (Proposition 2.7.1 in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF]) of the line bundle valued hard Lefschetz theorem in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF]. For the convenience of the reader, we briey recall the proof.

Lemma 4.34. Let pX, ωq be a compact Kähler manifold such that ´KX is psef. Assume that there exists a singular metric h on ´KX such that Iphq " O X . Then the Albanese map is surjective.

Proof. By the hard Lefschetz theorem (main theorem in [START_REF] Demailly | Pseudo-eective line bundles on compact Kähler manifolds[END_REF]), we know that the morphism induced by taking the wedge product with ω H 0 pX, Ω n´1 X b ´KX q -H 0 pX, T X q Ñ H 1 pX, O X q is surjective. Moreover, by the Hodge decomposition theorem, we have H 1 pX, O X q " H 0 pX, Ω 1 X q. For any u P H 0 pX, Ω 1 X q, there exists a holomorphic vector eld ξ P H 0 pX, T X q such that the image of ξ under the morphism induced by wedge product with ω is u.

In particular, the inner product i ξ puq P H 0 pX, O X q is a global holomorphic function. Thus i ξ puq is constant. On the other hand i ξ puq " |u| 2 ω pointwise. Thus if u ‰ 0, there exists some point x such that |u| 2 ω pxq ‰ 0. In other words, i ξ puq ‰ 0. This implies that for any x, upxq ‰ 0, which implies in its turn that the Albanese morphism is surjective.

The arguments of [START_REF] Cao | A remark on compact Kähler manifolds with nef anticanonical bundles and applicaions[END_REF] combined with theorem 4.30 also give the following armation of a conjecture of Mumford. The general conjecture of Mumford states that a projective or compact Kähler manifold X is rationally connected if and only if H 0 pX, pT X q bm q " 0 for any m ě 1.

Corollary 4.35. Let pX, ωq be a n-dimensional compact Kähler manifold such that ´KX is psef. Assume that there exists a sequence ε ν ą 0 such that lim νÑ8 ε ν " 0 and Iph εν q " O X for a sequence of singular metrics with analytic singularities h εν on ´KX such that iΘp´K X , h εν q ě ´εν ω. Then the following properties are equivalent:

(1) X is projective and rationally connected.

(2)H 0 pX, pT X q bm q " 0 for any m ě 1.

(3) For every m ě 1 and every nite étale cover X of X, one has H 0 p X, Ω m X q " 0.

CHAPTER 5

Pseudo-eective and numerically at reexive sheaves Abstract. In this note, we discuss the concept of strongly pseudoeective vector bundle and also introduce strongly pseudoeective torsion-free sheaves over compact Kähler manifolds. We show that a strongly pseudoeective reexive sheaf over a compact Kähler manifold with vanishing rst Chern class is in fact a numerically at vector bundle. A proof is obtained through a natural construction of positive currents representing the Segre classes of strongly pseudoeective vector bundles.

Introduction

The Recall that a holomorphic vector bundle E is called numerically at if both E and E ˚are nef (equivalently if E and pdet Eq ´1 are nef ). In fact, the condition of being numerically at yields strong restrictions for the curvature of the corresponding vector bundle. Actually, in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF], Demailly, Peternell and Schneider proved that a numerically at bundle E on a compact Kähler manifold X admits a ltration by vector bundles whose graded pieces are Hermitian at. In some sense, numerical atness is the algebraic analogue of metric atness.

In [START_REF] Campana | Projective klt pairs with nef anti-canonical divisor[END_REF] and [START_REF] Hosono | On projective manifolds with pseudo-eective tangent bundle[END_REF], the authors consider the following question. If a strongly pseudo-eective vector bundle over a projective manifold has a vanishing rst Chern class, is this vector bundle numerically at? Since a vector bundle E is numerically at if and only if E and detpEq ´1 are nef, the question amounts to ask whether the vector bundle is in fact nef.

Intuitively, a positive singular metric on the vector bundle E would induce a positive singular metric on the determinant detpEq. But since the rst Chern class of E (i.e. the Chern class of detpEq) is trivial, any metric with (semi)positive curvature must be at and thus cannot possess any singularity. This implies that the given positive singular metric on E has to be smooth as well.

From this point of view, the same property should hold on an arbitrary compact Kähler manifold, and not just on projective manifolds, since all properties under consideration are independent of the projectivity condition. One of the goals of this work is to conrm this philosophy. Namely, we prove the following Main Theorem. Let E be a strongly psef vector bundle over a compact Kähler manifold pX, ωq with c 1 pEq " 0. Then E is a nef vector bundle.

The main technical tool is the construction of Segre currents. More precisely, we dene a Segre pk, kqclosed positive current as the direct image of the wedge product of the curvature current of O PpEq p1q, as soon as we have an appropriate codimension condition on the singular locus of the metric.

Main technical lemma. Let E be a strongly psef vector bundle of rank r over a compact Kähler manifold pX, ωq. Let pO PpEq p1q, h ε q be singular metric with analytic singularities such that iΘpO PpEq p1q, h ε q ě ´επ ˚ω and the codimension of πpSingph ε qq is at least k in X. Then there exists a pk, kq-positive current in the class π ˚pc 1 pO PpEq p1qq `επ ˚tωuq r`k´1 .

The strategy of the proof of the Main theorem is as follows. We show that the Lelong numbers of the corresponding Segre current control the Lelong numbers of the weight functions of the singular metrics prescribed in the denition of a strongly pseudoeective vector bundle. Then, we observe that the Lelong numbers of Segre currents must tend to 0 in the limit, as the unique (semi)positive current in c 1 pEq is the zero current. Thus the Lelong numbers of the weight functions uniformally tend to 0 as the Lelong numbers of the Segre currents. By Demailly's regularisation theorem, the weight functions of the metrics can be regularised, thus the vector bundle is actually nef.

In fact, we can expect an even stronger property. Since E is strongly psef, the class c 1 pO PpEq p1qq is psef. Intuitively, c 1 pO PpEq p1qq contains a not too singular current (in the sense that the projection of the singular part onto X is contained in some analytic subset of codimension at least 1). Thus the wedge powers of appropriate exponents of this current in the rst Chern class are dened and positive, as well as their direct images under π : PpEq Ñ X. In particular, if r is the rank of E, we can hope that the second Segre class π ˚pc 1 pO PpEq p1qqq r`1 is positive (by this, we mean that its cohomology class contains a positive current)

Remind that the second Segre class is equal to c 1 pEq 2 ´c2 pEq. By the Bogomolov inequality if E is semistable, when c 1 pEq " 0, the integration of c 2 pEq ^ωn´2 on X is positive where ω is a Kähler form on X and n is the dimension of X. Comparing these two facts, one knows that c 2 pEq " 0 and the Bogomolov inequality is in fact an equality.

For a reexive sheaf F, the Chern classes can be dened as follows. Let σ be any modication such that σ ˚F {Tors is a vector bundle. The existence of such modication is provided by the fundamental work of [START_REF] Rossi | Picard variety of an isolated singular point[END_REF], [START_REF] Grauert | Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen[END_REF] and [START_REF] Riemenschneider | Characterizing Moishezon Spaces by Almost Positive Coherent Analytic Sheaves[END_REF]. Then for i " 1, 2, c i pFq " σ ˚ci pσ ˚F {Torsq which is independent of the choice of modication σ. The rough idea is that the above calculations should hold on some birational model of X, and by taking direct images, the equality in the Bogomolov inequality is also attained on X.

On the other hand, we have the following important result of [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF]. For a polystable reexive sheaf F of generic rank r over a compact n-dimensional Kähler manifold pX, ωq, we have the Bogomolov inequality ż X p2rc 2 pFq ´pr ´1qc 1 pFq 2 q ^ωn´2 ě 0.

Moreover, the equality holds if and only if F is locally free and its Hermitian-Einstein metric yields a projectively at connection.

In order to study the positivity of torsion free coherent sheaves, it is useful to dene in full generality the nef (or strongly psef ) property for such sheaves.

Denition. A torsion free coherent sheaf F over a compact complex manifold is called nef (resp. strongly psef ) if there exists some modication σ : X Ñ X such that σ ˚F {Tors is a nef (resp. strongly psef ) vector bundle.

The above considerations, combined with the result of [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF], let us hope the stronger fact that over every compact Kähler manifold pX, ωq, a strongly psef reexive sheaf with trivial rst Chern class is in fact a nef vector bundle. In section 5, we prove that this is actually the case. A diculty of the above approach is that in general a wedge product of positive currents is not necessarily well dened. Instead of proceeding directly, we rst prove the following result.

Lemma. Let F be a nef reexive sheaf over a compact Kähler manifold pX, ωq with c 1 pFq " 0. Then F is a nef vector bundle. Now combining the main theorem, we can conclude that Corollary. Let F be a strongly psef reexive sheaf over a compact Kähler manifold pX, ωq with c 1 pFq " 0.

Then F is a nef vector bundle.

Note that in the above approach we have to take wedge products that are well dened without imposing any restriction on the codimension of singular part of the metric. In this situation, for a strongly psef vector bundle E, we can nd a positive current in c 1 pEq but not necessarily in c 2 pEq.

At the end of the paper, as a geometric application, we classify compact Kähler surfaces and 3-folds with strongly psef tangent bundles and with vanishing rst Chern class. By our Main theorem, they are the same as compact Kähler surfaces or 3-folds with nef tangent bundles and with zero rst Chern class, that were classied in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF]. As a consequence, the tangent bundle of a Kähler K3 surface is not strongly psef. This generalise the work of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF] and [START_REF] Nakayama | Zariski decomposition and abundance[END_REF] in the projective setting. More generally, an irreducible symplectic, or Calabi-Yau manifold does not possess a strongly psef tangent bundle or cotangent bundle.

In the singular and projective setting, the strongly psef version is proven in Theorem 1.6 of [HP19] and Corollary 6.5 [START_REF] Druel | A decomposition theorem for singular spaces with trivial canonical class of dimension at most ve[END_REF] for threefolds. (They even prove in this case that the bundle is not weakly psef, i.e.

that O PpEq p1q is not a psef line bundle whenever E is the tangent or cotangent bundle.)

We also generalise the main results to the Q´twisted case analogous to the result of [START_REF] Liu | Xiaokui Yang Projective manifolds whose tangent bundle contains a strictly nef subsheaf[END_REF] in the compact Kähler setting.

The organisation of this paper is as follows. In section 2, the concept of strongly psef vector bundles is discussed. We give a denition of strongly psef vector bundle of the Kähler version essentially equivalent to the one proposed in [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF]. By this equivalent condition, we can show that some usual algebraic operations can still be taken for strongly psef vector bundles. For example, the direct sum or tensor product of strongly psef vector bundles is still strongly psef. In section 3, we investigate the concept of nef/strongly psef torsion free coherent sheaves and algebraic operations of these sheaves. Then we show that a numerically at reexive sheaf on an arbitrary compact Kähler manifold is in fact a vector bundle. This result can also be generalised to strongly pseudoeective (strongly psef ) reexive sheaves F such that c 1 pdet Fq " 0 in section 5. In section 4, we make a digression to introduce the denition of Segre forms (or Segre currents), as a tool to treat the strongly psef case. It should be observed that a similar construction has been done in [START_REF] Lärkäng | Chern forms of singular metrics on vector bundles[END_REF].

In this note, all manifolds are supposed to be compact without any explicit mention.

Strongly pseudoeective vector bundles

The following denition of a strongly psef vector bundle is a reformulation of the denition of [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF] (Denition 7.1).

Definition 5.1. Let pX, ωq be a compact Kähler manifold and E a holomorphic vector bundle on X. Then E is said to be strongly pseudo-eective (strongly psef for short) if the line bundle O PpEq p1q is pseudoeective on the projectivized bundle PpEq of hyperplanes of E, i.e. if for every ε ą 0 there exists a singular metric h ε with analytic singularities on O PpEq p1q and a curvature current iΘph ε q ě ´επ ˚ω, and if the projection πpSingph ε qq of the singular set of h ε is not equal to X.

One can observe that in [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF] the denition is expressed rather in terms of the non-nef locus. Definition 5.2. ( [DPS01]) Let ϕ 1 , ϕ 2 be two quasi-psh functions on X pi.e. iBBϕ i ě ´Cω in the sense of currents for some C ě 0q. Then, ϕ 1 is said to be less singular than ϕ 2 pwe write ϕ 1 ĺ ϕ 2 q if we have ϕ 2 ď ϕ 1 `C1 for some constant C 1 . Let α be a psef class in H 1,1 BC pX, Rq and γ be a smooth real p1, 1q-form. Let T 1 , T 2 , θ P α with θ smooth and T i " θ `iBBϕ i pi " 1, 2q, the potential ϕ i being dened up to a constant since X is compact. We say that T 1 ĺ T 2 , resp. singularity equivalent T 1 " T 2 , if ϕ 1 ĺ ϕ 2 , resp. if ϕ 1 ĺ ϕ 2 and ϕ 2 ĺ ϕ 1 .

A minimal element T min,γ with respect to the pre-order relation ĺ always exists. Such an element can be obtained by taking the upper semi-continuous upper envelope of all ϕ i such that θ `iBBϕ i ě γ and sup X ϕ i " 0. It is unique up to equivalence of singularities. The non-nef locus of a pseudo-eective class α P H 1,1 BC pX, Rq is dened to be E nn pαq :"

ď εą0 ď cą0 E c pT min,´εω q
where ω is any Hermitian metric.

Let us observe that we can replace π ˚ω by any smooth Kähler form ω on PpEq in the denition of a strongly psef vector bundle. The reason is as follows. On the one hand, π ˚ω ď C ω for some C ą 0 since X is compact. Thus, iΘph ε q ě ´επ ˚ω implies that iΘph ε q ě ´Cεω. On the other hand, since O PpEq p1q is relatively π-ample, we have ε 0 iΘ h0 pO PpEq p1qq `π˚ω ě ε 1 ω for any given smooth Hermitian metric h 0 on E, if 0 ă ε 1 ! ε 0 ! 1 are small enough. Assuming that there exists a singular metric h ε on O PpEq p1q such that iΘ hε pO PpEq p1qq ě ´εω, we infer that the metric h 1 ε " h

ε{ε1 0 h 1´ε{ε1 ε has a curvature lower bound iΘ h 1 ε pO PpEq p1qq ě ε ε 1 `ε1 ω ´π˚ω ˘´´1 ´ε ε 1 ¯εω ě ´ε ε 1 π ˚ω.
In [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF], a holomorphic vector bundle E was dened to be strongly pseudo-eective if the line bundle O PpEq p1q is pseudo-eective on the projectivized bundle PpEq of hyperplanes of E, and if the projection πpE nn pO PpEq p1qqq of the non-nef locus of O PpEq p1q onto X does not cover all of X. By denition,

E nn pc 1 pO PpEq p1qqq Ă ď εą0 SingpT min,´εω q Ă ď εą0 Singph ε q.
Hence a strongly psef vector bundle dened in Denition 5.1 is strongly psef under the denition of [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF].

On the other hand, by the regularization theorem, we can construct from T min,´εω a metric h 2ε on O PpEq p1q with iΘph 2ε q ě ´2εω. By denition, Singph 2ε q Ă Ť cą0 E c pT min,´2εω q thus it does not project onto X.

Hence our denition is equivalent to the denition of [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF].

We remark that the denition of strongly psef vector bundle we used is stronger than the widely used weak denition. A vector bundle E is called psef in the weak sense if O PpEq p1q is a psef line bundle over PpEq. Of course, our denition of strongly psef vector bundle coincide with the widely used weak denition in the case of line bundle. However, this weak denition is too weak to give a classication even if we pose some strong topological obstruction like with vanishing rst Chern class. For example, if X is a projective manifold and A is an ample line bundle over X, for any p ‰ 0, A p ' pA p q ˚is a psef vector bundle in the weak sense with vanishing rst Chern class. Intuitively, a psef vector bundle can have negative curvature in some direction which is not enough for our propose to construct some positive current in the rst Chern class of the determinant bundle.

It should be noticed that pseudo-eectiveness in the weak sense is a Zariski closed condition while strong pseudo-eectiveness is not Zariski closed. More precisely, let p : X Ñ ∆ be a proper holomorphic submersion which denes a family of compact Kähler manifolds over the unit disc ∆ and E be a holomorphic vector bundle over X. Then the set t P ∆ such that the restriction E| Xt is a psef vector bundle over X t in the weak sense is a Zariski closed set where X t :" p ´1ptq. A complete proof can be found e.g. in the appendix of [START_REF] Fabrizio Anella | Twisted cotangent bundles of Hyperkähler manifolds[END_REF] by Simone Diverio. However, the same does not hold for strong pseudo-eectiveness. For example, we can take the following example indicated to the author by Jean-Pierre Demailly.

Example 5.4. (Theorem 2.2.5 [OSS80])

Let x 1 , ¨¨¨, x m be the points of the projective plane P 2 . There is a holomorphic rank 2 bundle E over P 2 whose restriction to any line L, on which exactly a points of the set tx 1 , ¨¨¨, x m u lie, splits in the form

E| L " O L paq ' O L p´aq.
The generic splitting type of this bundle is p0, 0q.

The construction of the vector bundle is as follows. Let σ : Y Ñ P 2 be the blow up of P 2 over tx 1 , ¨¨¨, x m u with exceptional divisor C " ř m i"1 C i . Let E 1 be a rank two vector bundle over Y such that it satises the extension

0 Ñ O Y pCq Ñ E 1 Ñ O Y p´Cq Ñ 0
and its restriction to each C i satises the Euler sequence

0 Ñ O Ci p´1q Ñ E 1 | Ci -O '2 Ci Ñ O Ci p1q Ñ 0.
It can be proved that E 1 is the pull back of some vector bundle E over P 2 . We have the short exact sequence

0 Ñ O Lpaq Ñ E 1 | L Ñ O Lp´aq Ñ 0.
where a is the number of tx 1 , ¨¨¨, x m u which lie in L. The short exact sequence splits since H 1 p L, O Lp2aqq " 0. The blow up induces a biholomorphism between the strict transform of a line L to L which gives the conclusion.

Thus we can construct a family of vector bundles whose restriction to some special bers is not strongly psef although the restriction to the general ber is strongly psef (in fact trivial). The lines in the projective plane form a family of P 1 over the Grassmannian Grp2, 3q. The total space X is a closed submanifold of P 2 ˆGrp2, 3q. Consider the vector bundle which is the restriction over X of the pull back of the previous constructed bundle under p 1 : P 2 ˆGrp2, 3q Ñ P 2 .

A related denitions in the projective case is also widely used in the literature, which is weak positivity in the sense of Nakayama (cf. eg. [Nak04] Denition 3.20). A torsion free coherent sheaf F is weakly positive at x P X a projective manifold if, for any a P N ˚and for any ample line bundle A on X, there exists b P N ˚such that pSym ab Fq __ b A b is globally generated at x, where pSym ab Fq __ is the double dual of ab-th symmetric power of F. A torsion free coherent sheaf is called weak positive in the sense of Nakayama if it is weak positive at some point. It is proven in Proposition 7.2 [BDPP13] that for a vector bundle E over a projective manifold X, E is psef in our strong sense if and only if E is weak positive in the sense of Nakayama.

Now we give still another equivalent denition of a strongly psef vector bundle. The argument is analogous to the one of [Dem92a, theorem 4.1] in the singular setting. Intuitively, being strongly psef is equivalent to the existence of algebraic" approximation currents. Here algebraic" means that the approximation can be obtained from the sections of higher degree tensor product of the vector bundle. (Of course the sections are local since the global sections on X does not necessarily exist.) We construct approximating metrics by use of a Bergman kernel technique and use a Hörmander type L 2 estimate to get the required curvature estimates. For the convenience of the reader, we recall the basic L 2 estimate that we need. Let pX, ωq be a Kähler manifold, dim X " n. Assume that X is weakly pseudo-convex (in particular it is the case for any compact Kähler manifold). Let F be a holomorphic line bundle equipped with a degenerate metric whose local weights are denoted ϕ P L 1 loc , i.e. H " e ´ϕ. Suppose that iΘ F,h " i π BBϕ ě εω in the sense of currents for some ε ą 0. Then for any form g P L 2 pX, Λ n,q T X b F q satisfying Bg " 0, there exists f P L 2 pX, Λ n´1,q T X b F q such that Bf " g and ż

X |f | 2 e ´ϕdV ω ď 1 qε ż X
|g| 2 e ´ϕdV ω .

We will also need the following lemma stated by Demailly to glue the local weights into a global one, via a partition of unity.

Lemma 5.6. (Lemma 13.11 in [START_REF] Demailly | Analytic methods in algebraic geometry[END_REF])

Let U 1 j ĂĂ U 2 j be locally nite open coverings of a (not necessarily compact) complex manifold X by relatively compact open sets, and let θ j be smooth non-negative functions with support in U 2 j , such that θ j ď 1 on U 2 j and θ j " 1 on U 1 j . Let A j ě 0 be such that ipθ j BBθ j ´Bθ j ^Bθ j q ě ´Aj ω on U 2 j U 1 j for some positive (1,1)-form ω. Finally, let w j be almost psh functions on U j with the property that iBBw j ě γ for some real(1,1)-form γ on M , and let C j be constants such that

w j pxq ď C j `sup k‰j,xPU 1 k w k pxq on U 2 j U 1 j .
Then the function w :" logp ř θ 2 j e wj q is almost psh and satises iBBw ě γ ´2p

ÿ j 1 U 2 j U 1 j A j e Cj qω.
Proposition 5.2.1. The following properties are equivalent:

(1) E is strongly psef (2) There exists a sequence of quasi-psh functions w m px, ξq " logp|ξ| hm q with analytic singularities induced from Hermitian metrics h m on S m E ˚such that the singularity locus projects into a proper Zariski closed set Z m , and iBBw m ě ´mε m p ˚ω in the sense of currents with lim ε m " 0. Here p : S m E ˚Ñ X is the projection.

(3) There exists a sequence of quasi-psh functions w m px, ξq " logp|ξ| hm q with analytic singularities induced from Hermitian metrics h m on S m E ˚, such that the singularity locus projects into a proper Zariski closed set Z m , and iΘ S m E ˚,hm ď mε m ω b Id on X Z m in the sense of Griths with lim ε m " 0.

Proof. Note that when a metric over F a vector bundle over X is smooth near a point x, we have the following equivalence (cf. Lemma 4.4 in [START_REF] Demailly | Singular Hermitian metrics on positive line bundles[END_REF]): for any real p1, 1q form γ near x, over a neighbourhood U near x

(1) iΘpF q ě γ b Id F in the sense of Griths;

(2) ´iΘpF ˚q ě γ b Id F in the sense of Griths;

(3) i 2π BBlog|ξ| 2 ě p ˚γ, ξ P F ˚, where log|ξ| 2 is seen as a function on p ´1pU q and p : F ˚Ñ X is the projection.

In particular, (2) implies (3) by this observation.

The more substantial part of the proof consists of showing that (1) implies (2). The proof follows closely the proof of theorem 4.1 in [START_REF] Demailly | Singular Hermitian metrics on positive line bundles[END_REF].

It is enough to show that for any ε ą 0, there exists a sequence of quasi-psh functions w m px, ξq " logp|ξ| hm q with analytic singularities induced from Hermitian metrics h m on S m E ˚, such that the singularity locus projects into a proper Zariski closed set Z m , and iBBw m ě ´mεp ˚ω in the sense of currents. Here p : S m E ˚Ñ X is the projection.

We construct the metrics on the symmetric powers of vector bundles, starting from a singular metric h ε on O PpEq p1q given in the denition of strongly psef vector bundle. Namely, we start with a singular metric such that the singularity locus projects into a proper Zariski closed set Z, and i 2π Θ O PpEq p1q ě ´επ ˚ω.

Since X is compact, we can select a nite covering pW ν q of X with open coordinate charts. For any δ ą 0, we take in each W ν a maximal family of points with (coordinate) distance to the boundary ą 3δ and mutual distance ą δ{2. In this way, we get for any δ ą 0 small enough a nite covering of X by open balls U 1 j of radius δ (actually every point is even at distance ď δ{2 of one of the centres, otherwise the family of points would not be maximal), such that the concentric ball U j of radius 2δ is relatively compact in the corresponding chart W ν .

Let τ j : U j Ñ Bpa j , 2δq be the isomorphism given by the coordinates of W ν . Let εpδq be a modulus of continuity for γ :" ´εω on the sets U j , such that lim δÑ0 εpδq " 0 and ω x ´ωx 1 ď εpδqω x for all x, x 1 P U j . We denote by γ j the (1,1)-form with constant coecients on Bpa j , 2δq such that τ j γ j coincides with γ ´εpδqω at τ ´1 j pa j q. Then we have p1q 0 ď γ ´τ j γ j ď 2εpδqω on U 1 j for δ ą 0 small enough. Let ṽj pz j q be the associated quadratic function such that γ j " i π BBṽ j . Now, we consider the Hilbert space H j pmq of holomorphic sections f P H 0 pπ ´1pU j q, O PpEq pmqq with the L 2 norm }f } 2 j :"

ż π ´1pUj q |f | 2 e 2mṽj pzj q dV,
where dV is a volume element on PpEq (xed once for all) and |f | 2 is the pointwise norm on O PpEq pmq induced by the given (singular) Hermitian metric h ε on O PpEq p1q. It can be viewed as a metric on O PpEq p1q, twisted by the local weight ṽj . Thus the corresponding curvature form is i 2π Θ O PpEq p1q ´i π BBṽ j ě π ˚pγ ´τ j γ j q ě 0 by (1). Let U 1 j Ť U 2 j Ť U j be concentric balls such that pU 1 j q still cover X and let θ j be smooth functions with support in U 2 j , such that 0 ď θ j ď 1 on U 2 j and θ j " 1 on U 1 j .

We dene a Bergman kernel type metric on S m E ˚as follows: for all x P X and ξ P S m E x we set p2q }ξ} 2 pmq :" ÿ j θ 2 j pxq expp2mṽ j pz j q `?mpr 12 j ´|z j | 2 qq ÿ l |σ j,l pxq ¨ξ| 2 , where r 1 j is the radius of U 1 j and pσ j,l q lě1 is an orthonormal basis of H j pmq. The local sections σ j,l can be viewed as sections in H 0 pU j , S m Eq, and here σ j,l pxq ¨ξ is computed via the natural pairing between S m E and S m E ˚. The metric is Hermitian since it is a sum of square of linear forms in S m E ˚. Since the metric on O PpEq p1q can be singular, the Hermitian metric can also be degenerate. It is degenerate at a point x if σ j,l pxq " 0 for all j, l.

However, the innite sum ř l |σ j,l pxq ¨ξ| 2 is smooth. In fact, the sum converges locally uniformly above every compact subset of U j . This sum is the square of evaluation linear form f Þ Ñ f pxq ¨ξ which is continuous on H j pmq. The reason is as follows. Given σ an element of H 0 pU j , S m Eq. It can be identied as an element of H 0 pπ ´1pU j q, O PpEq pmqq -H 0 pU j , S m Eq by considering the quotient of π ˚σ P H 0 pπ ´1pU j q, π ˚Sm Eq under the tautological map π ˚Sm E Ñ O PpEq pmq. (Remark that in the trivialization, by mean value inequality, the value of the holomoprhic function at the center of a ball is bounded from above by the L 2 norm of the function on the ball which is bounded from above by the L 2 norm of the section on PpEq with the singular weight.) Thus f Þ Ñ f pxq ¨ξ is a continuous linear function. The square of its norm is ř l |σ j,l pxq ¨ξ| 2 since σ j,l pxq ¨ξ is the l-th coordinate in the orthonormal basis σ j,l of H j pmq. By Montel's theorem, ř l,k σ j,l pxq ¨ξ σ j,l pwq ¨η is a holomorphic function for px, w, ξ, ηq P U j ˆUj ˆE ˆE. Thus its restriction ř l |σ j,l pxq ¨ξ| 2 to the diagonal U j ˆE is a real analytic function.

As a consequence, the metric } ¨}pmq is a smooth metric, except for the fact that it might degenerate at some points. To show that this metric has analytic singularities and obtain the curvature estimate, we use lemma 5.6 for wpx, ξq :" log}ξ} 2 pmq and p3q w j px, ξq " 2mṽ j pz j q `?mpr 12 ´|z j | 2 q `log ÿ l |σ j,l pxq ¨ξ| 2 on the total space S m E ˚covered by p ´1pU 1 j q where p : S m E ˚Ñ X is the projection. To proceed further, we need the following lemma 5.7 to compare the behaviour of w j on dierent open sets. As a consequence of lemma 5.7, the functions w j px, ξq satisfy w j px, ξq ď w k px, ξq for any x P pU 2 j U 1 j q X U 1 k for m large enough. (Remark that r 12 j ´|z j | 2 ď 0 and r 12 k ´|z k | 2 ą 0 for such x.) in the sense of currents, since γ j ě γ ´2εω for m ě m 1 0 ě m 0 large enough (independent of x). Then lemma 5.6 implies that i 2π BBw ě mp ˚pγ ´3εωq ´p˚ˆ2

ÿ j 1 U 2 j U 1 j A j ω ˙.
The right side hand is bigger than mp ˚pγ ´4εωq for m ě m 2 0 ě m 1 0 .

We observe that the metric has analytic singularities. By the following lemma 5.7, there exist constants C j,k , C 1 j,k such that w j ´C1 j,k ď w k ď w j `Cj,k . Note that w j can be ´8 at some point. Thus we have log ˆÿ j θ 2 j e C 1 j,k e w k ˙ď w " log ˆÿ j θ 2 j e wj ˙ď log ˆÿ j θ 2 j e C j,k e w k ˙.

Without loss of generality, we can assume that θ j is a partition of unity, and in particular that ř j θ 2 j is strictly positive on any relative compact set. Thus w " w k `Op1q which implies w has analytic singularities along with w k . Now we show that (2) implies (1). The sequence of metrics in (2) induces a sequence of Hermitian metrics on Op1q over PpS m Eq. Observe that we have the following commutative diagram given by the Veronese embedding

Opmq ÝÑ Op1q § § đ § § đ PpEq i ÝÑ PpS m Eq.
Since the metric is smooth over the pre-image of a dense Zariski open set of X. The restriction of singular metrics is well dened and still has analytic singularities. Dene a sequence of metrics on O PpEq p1q induced from the restricted metrics. This sequence of metrics is the one required in the denition of a strongly psef vector bundle.

The arguments needed to show that (3) implies (2) are similar. By the observation made at the beginning of the proposition, the inequality holds on a dense Zariski open set V where the metric is smooth. The Skoda-El Mir extension theorem implies that 1 V iBBw m ě ´mε m p ˚ω. Since w m has analytic singularities, the current iBBw m is normal, and by the support theorem 1 S m E ˚ V iBBw m is a sum of closed positive currents obtained by integration on analytic sets with positive coecients. Thus the same inequality holds

for iBBw m " 1 V iBBw m `1S m E ˚ V iBBw m .
Lemma 5.7. There exist constants C j,k independent of m such that the almost psh functions wj px, ξq :" 2mv j pz j q `log ÿ l |σ j,l pxq ¨ξ| 2 , px, ξq P p ´1pU 2 j q Ă S m E satisfy on p ´1pU 2 j X U 2 k q a bound wj ď wk `p2n `2qlogm `Cj,k .

Proof. By construction E| Uj -U j ˆCr is trivial over U j . Dene a Hermitian metric h 8 on E| Uj with strict positive curvature by taking

|ξ| 2 :" ÿ λ |ξ λ | 2 e ´řj |z j | 2 .
The associated curvature form on pO PpE| U j q p1q, h 8 q is strictly positive and thus denes a Kähler metric ω j on π ´1pU j q. In fact, Θ E " ω eucl b Id E where ω eucl is the standard (at) Hermitian metric on U j . By a standard formula (cf. formula (15.15) in Chap V of [START_REF] Demailly | Complex analytic and dierential geometry[END_REF]), the curvature of pO PpE| U j q p1q, h 8 q is equal to the direct sum of the Euclidean metric of U j and of the Fubini-Study metric of P r´1 . In particular, the Ricci curvature of ω j is non-negative. Dene τ pzq :" nlog|z j ´zj pxq| depending only on the base variables and possessing a logarithmic pole at x. This is a psh function on a neighbourhood of π ´1pU j q. Dene a singular metric on O PpE| U j q pmq as follows. Twist the metric h bpm´1q ε b h 8 by pm ´1qṽ j pz j q `τ pz j q. The resulting curvature form on O PpE| U j q pmq is given by pm ´1q ´i 2π Θ O PpEq p1q ph ε q ´i π BBṽ j ¯`ω j `i π BBτ ě ω j by (1). We consider the Hilbert space F 0,q j pmq of p0, qq-forms (q " 0, 1) f on π ´1pU j q with values in O PpEq pmq, equipped with the L 2 norm }f } 2 j,q " ş π ´1pUj q |f | 2 j dV j , where dV j " ω n`r´1 j {pn `r ´1q! and where the pointwise norm |f | j is induced by ω j and of the metric dened above on O PpEq pmq. Now, we apply Hörmander's L 2 estimates for the bundle ´KX `OPpEq pmq and an arbitrary p0, 1q form g in F 0,1 j pmq with Bg " 0, (i.e. a B-closed L 2 pn, 1q-form valued in ´KX `OPpEq pmq). We conclude that there exists a p0, 0q-form in F 0,0 j pmq such that Bf " g and }f } j,0 ď }g} j,1 . (Note that Ricpω j q ě 0.) It remains to choose a suitable section g to prove the inequality. Fix a point x P U 2 j X U 2 k and ξ P S m E x . There exists h P H k pmq with }h} k " 1 such that

|hpxq ¨ξ| 2 " ÿ l |σ k,l pxq ¨ξ| 2 .
If the right rank side is 0, we can take h to be any element in the orthonormal basis. Otherwise, the linear functional f Þ Ñ f pxq ¨ξ is a non zero functional whose kernel denes a closed hypersurface in H k pmq. Thus there exists h P H k pmq with }h} k " 1 which is orthogonal to the kernel. It is easy to see that such a point h is a maximum of the function

H k pmq 0 Ñ R: v Þ Ñ |v ¨ξ| }v} 2 ,
and hence we have the equality. Let χ be a cut-o function with support in the (coordinate) ball Bpx, 1{mq, equal to 1 on Bpx, 1{2mq and with |Bχ| ď m. For m ě m 0 large enough (independent of x P U 2 j X U 2 k ) we have Bpx, 1{mq Ă U j X U k . We consider the solution of the equation Bf " hBpχ ˝πq on π ´1pU j q. We then get a holomorphic section h 1 :" hpχ ˝πq ´f P H 0 pπ ´1pU j q, O PpEq pmqq.

The section h 1 coincide with h over π ´1pxq, since the Lelong number of the local weight at a point in π ´1pxq is at least that of the local weight of τ which is n. The fact that the section f is in L 2 implies that it has to vanish along π ´1pxq. On the other hand, we have

}hBpχ ˝πq} 2 j,1 ď m 2 ż π ´1pBpx,1{mq Bpx,1{2mqq |h| 2 h bpm´1q ε bh8 e 2pm´1qṽj pz j q |z j ´zj pxq| 2n dV j ď Cm 2n`2 ż π ´1pBpx,1{mq Bpx,1{2mqq |h| 2 h bpm´1q ε bh8 e 2pm´1qṽj pz j q dV j ď Cm 2n`2 ż π ´1pBpx,1{mqq |h| 2 h bpm´1q ε bh8 e 2pm´1qṽj pz j q dV j ď Cm 2n`2 ż π ´1 pBpx,1{mqq
|h| 2 h bm ε e 2pm´1qṽj pz j q dV j ď Cm 2n`2 e 2mpṽj pz j pxqq´ṽ k pz k pxqqq ż π ´1pBpx,1{mqq

|h| 2 h bm ε e 2mṽ k pz k pz k qq dV k ď Cm 2n`2 e 2mpṽj pz j pxqq´ṽ k pz k pxqqq }h} 2 k All the constants are independent of x and m. For the fourth inequality we use the fact that h ε ě Ch 8 for some C on PpE| Uj q, since h ε has analytic singularities, h 8 is smooth and the U j 's are relatively compact. For the fth inequality, we use the fact that the oscillation of ṽj and ṽk on Bpx, 1{mq is Op1{mq. By Hörmander's L 2 estimates we obtain }f } 2 j,0 ď Cm 2n`2 e 2mpṽj pz j pxqq´ṽ k pz k pxqqq }h} 2 k . Since τ ď 0 and h ε ě Ch 8 , we have for some C }f } 2 j ď C}f } 2 j,0 . The norm }hpχ ˝πq} j satises a similar estimate }hpχ ˝πq} j ď Cm 2 e 2mpṽj pz j pxqq´ṽ k pz k pxqqq }h} 2 k where C comes from the change of volume form from dV j to dV k and the oscillation of ṽj and ṽk on Bpx, 1{mq.

Thus we have }h 1 } j ď Cm 2n`2 e 2mpṽj pz j pxqq´ṽ k pz k pxqqq , ÿ l |σ j,l pxq ¨ξ| 2 ě C ´1m ´2n´2 e ´2mpṽj pz j pxqq´ṽ k pz k pxqqq |h 1 pxq ¨ξ| 2 ě C ´1m ´2n´2 e ´2mpṽj pz j pxqq´ṽ k pz k pxqqq ÿ l |σ k,l pxq ¨ξ| 2 since h 1 pxq " hpxq and ř l |σ k,l pxq ¨ξ| 2 " |hpxq ¨ξ| 2 . By taking logarithms, we infer the desired inequality.

Remark 5.8. We have formulated the proposition in terms of E ˚instead of E for the following reason.

According to [START_REF] Berndtsson | Bergman kernels and the pseudoeectivity of relative canonical bundles[END_REF] and section 16 of [START_REF] Hacon | Algebraic ber spaces over abelian varieties: around a recent theorem by Cao and Paun[END_REF], the dual metric of a singular metric of vector bundle is always pointwise well dened. However the dual metric is not necessarily continuous if the original metric is continuous. Let us consider a case where the metric has analytic singularities. Assume that log|ξ| h has analytic singularities as a function on the total space V for some vector bundle pV, hq and is the form of log ř |f i pxq ¨ξ| 2 `ψpxq with f i are holomorphic vector bundle sections and ψ is bounded. This is for instance the case for the approximating metrics used in Proposition 5.2.1. The function log|ξ ˚|h ˚on the total space V is the dierence of two real analytic functions modulo bounded terms, on the dense Zariski open set where the metric is smooth. At points where the metric is smooth, we have log|ξ| 2 h " logpξ : Hpxqξq for some Hermitian matrix Hpxq where : means the Hermitian transpose. Thus one has log|ξ ˚|h ˚" logpξ ˚:pH ´1pxqqξ ˚q which can be calculated from the determinant and the adjugate matrix of Hpxq. Each component of the adjoint matrix and of the determinant is the product of a bounded function times a real analytic series in the z j 's (coordinates of x) and in ξ. Near the singular locus of the metric h, both functions can tend to innity for xed ξ ˚. These facts would result in more diculties to be dealt with.

Here is a concrete example taken from Rau [START_REF] Rau | Singular Hermitian metrics on holomorphic vector bundles[END_REF]. Let E be the trivial rank 2 vector bundle over C where the metric at z P C is represented by the matrix

H :" ˆ1 `|z| 2 z z |z| 2
˙.

On C ˚, the dual metric can be represented by the matrix

pH ´1q : " 1 |z| 4 ˆ|z| 2 ´z ´z 1 `|z| 2 ˙.
Thus log|ξ ˚|h ˚" logp|zξ 2 | 2 `|zξ 1 `ξ2 | 2 q ´log|z| 4 . At ξ ˚" p1, 0q, log|ξ ˚|h ˚is a dierence of two functions both tending to innity when z tends to 0. Remark 5.9. We can also interpret the inequality iΘ S m E ˚,hm ď mε m ω b Id in the sense of currents as follows: for any non-trivial local section s of S m E ˚, mε m ω `iBBlog|s| 2 hm is a positive current. The local section can be seen as a map i from an open subset of X to the total space S m E ˚.

If we pull back the current (2) to U via i, we see that mε m ω `iBBlog|s| 2 hm is a positive current. Here |s| hm is not identically zero since it is non vanishing outside of the zero locus of s and of singular locus of h m . Further discussions of these points can be found in [START_REF] Pǎun | Singular Hermitian metrics and positivity of direct images of pluricanonical bundles[END_REF]. The above proposition also answers partially to a question proposed in remark 2.11 of [START_REF] Pǎun | Singular Hermitian metrics and positivity of direct images of pluricanonical bundles[END_REF]. Given a singular Finsler metric with analytic singularities on a vector bundle, one can produce singular Hermitian metrics on high order symmetric tensor products of the given vector bundle, with arbitrary small loss of positivity.

As a direct consequence of the approximation statement, we have the following corollary.

Corollary 5.10. If E is a strongly psef vector bundle of rank r over a compact Kähler manifold pX, ωq, then detpEq is a psef line bundle. Therefore, the induced metric on detpEq satises on X Z m the curvature inequality iΘ detpEq ě ´rε m ω.

Let us point out that the metric h m is smooth on X (although it might vanish at some points). The induced metric on ´detpEq is locally bounded. In other words, the local weight of the dual metric on detpEq is locally bounded from above. By the Riemann extension theorem, the curvature inequality holds in the sense of currents throughout X, and not only on X Z m . By weak compactness, up to taking some subsequence, we get in the limit a closed positive current belonging to the class c 1 pdet Eq. This shows that detpEq is psef.

Another direct application of the approximation is the following corollary.

Corollary 5.11. Let E be a vector bundle over a compact Kähler manifold pX, ωq. The following properties are equivalent.

(1) E is strongly psef.

(2) For any m P N ˚, S m E is strongly psef.

(3) There exists m P N ˚such that S m E is strongly psef.

Proof.

(2) implies (3) trivially.

(3) implies (1) as in the proof of (2) implying (1) in Proposition 5.2.1.

(1) implies ( 2) is a direct consequence of Proposition 5.2.1. All symmetric products S mp E of E (p P N ˚)

are quotients of symmetric products of S p pS m Eq. On the other hand, the induced metric on the quotient bundle of a vector bundle will satisfy similar curvature condition as the original metric as in point (1) the following corollary.

As a consequence, one can also dene "Q´twisted" strongly psef vector bundles as follows.

Definition 5.12. Let pX, ωq be a compact Kähler manifold and E a holomorphic vector bundle on X and D be a Q´line bundle. Then ExDy is said to be Q´twisted strongly pseudo-eective pQ´strongly psef for shortq if S m E b O X pmDq is strongly psef for some (hence any by Corollary 5.11) m ą 0 such that O X pmDq is a line bundle.

As in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF], one can derive some natural algebraic properties of strongly psef vector bundles. Corollary 5.13 (Algebraic properties of strongly psef vector bundles).

(1) A quotient bundle of a strongly psef vector bundle is strongly psef.

(2) A direct summand of strongly psef vector bundles is strongly psef.

(3) A direct sum of strongly psef vector bundles is strongly psef.

(4) A tensor product por Schur functor of positive weight q of strongly psef vector bundles is strongly psef.

Proof. One can obtain lower bounds of the curvature through calculations very similar to those of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF]. We rst show that the induced singular metric has analytic singularities. Assume E to be strongly psef. The surjective bundle morphism E Ñ Q induces a closed immersion of PpQq into PpEq, and the restriction of O PpEq p1q to PpQq is O PpQq p1q. The singular metrics on O PpEq p1q prescribed in the denition of a strongly psef vector bundle induce by restriction singular metrics with analytic singularities on O PpQq p1q. If we observe that all metrics involved are smooth over inverse images of non-empty Zariski open sets, we infer that the restricted metrics are not identically innite. This concludes the proof of (1).

(1) implies (2) since a direct summand can be seen as a quotient bundle. Now, let E, F be two strongly psef vector bundles. The Hermitian metrics on O PpEq p1q and O PpF q p1q correspond to Finsler metrics on E ånd F ˚denoted by h E , h F . Then h E `hF denes a Finsler metric with analytic singularities on E ˚' F ˚.

It corresponds to a Hermitian metric on O PpE'F q p1q, and the properties required in the denition can easily be checked for h E `hF if they are satised for h E and h F . This concludes the proof of (3).

By Corollary 5.11 and (3), S 2 pE ' F q is strongly psef as soon as E, F are. Since S 2 pE ' F q -S 2 E ' pE b F q b S 2 F, we infer by ( 2) that E b F is strongly psef. Finally, the fact that a Schur tensor power is a direct summand of a tensor product implies (4).

Corollary 5.14. Let

0 Ñ S Ñ E Ñ Q Ñ 0
be an exact sequence of holomorphic vector bundles. If E and pdetpQqq ´1 are strongly psef, then S is strongly psef.

Proof. We have S " Λ s´1 S ˚b det S where s is the rank of S. By dualizing and taking the s ´1

exterior product, we get a surjective bundle morphism

Λ s´1 E ˚Ñ Λ s´1 S ˚" S b pdet Sq ´1.
On the other hand, we have det Edet S b det Q, thus we have a surjective bundle morphism

Λ r´s´1 E b pdet Qq ´1 Ñ S
where r is the rank of E by tensoring det E. By (4) of Corollary 5.13, Λ r´s´1 E b pdet Qq ´1 is strongly psef. By (1) of Corollary 5.13, S is strongly psef.

Reexive sheaves

In this section, we show that a numerically at reexive sheaf on a compact Kähler manifold is in fact a vector bundle. We need the following topological lemmata.

Lemma 5.15. Let X be an arbitrary complex manifold pnon necessarily compactq and E be a vector bundle on X. Let X 0 be a Zariski open set in X with codimpX X 0 q ě 3. Then the morphism induced by the restriction morphism H 1 pX, Eq Ñ H 1 pX 0 , Eq is surjective.

Proof. We start by proving that H 1 pC 3 tp0, 0, 0qu, O C 3 tp0,0,0qu q " 0.

It is done by direct calculation. Cover C 3 tp0, 0, 0qu by three Stein open sets isomorphic to C ˚ˆC 2 , say U i " tz i ‰ 0u, with coordinates pz 0 , z 1 , z 2 q. A 1-cochain can be identied with a triple of convergent power series pf 01 , f 02 , f 12 q with f 12 (say) of type ÿ pα,β,γqPZ 2 ˆN c αβγ z α

0 z β 1 z γ 2 over C ˚2 ˆC (the intersection of two Stein open sets).
Similarly, f 02 is a sum over pα, β, γq P Z ˆN ˆZ and f 01 is a sum over pα, β, γq P N ˆZ2 . The condition that pf 01 , f 02 , f 12 q is closed means that f 01 ´f02 `f12 " 0 on the intersection of the three Stein open sets U 0 X U 1 X U 2 , biholomorphic to C ˚3. We can write f 01 as a sum of three convergent power series g 0 01 , g 1 01 , g 01 such that g 01 has only positive power terms, g 0 01 has only negative power terms in z 0 and g 1 01 has only negative power terms in z 1 . Similarly, we decompose f 02 , f 12 . Now the closeness condition is equivalent to g 01 ´g02 `g12 " 0, g 0 01 " g 0 02 , g 2 12 " g 2 02 , g 1 01 `g1 12 " 0. We dene a 0-cochain in such a way that its dierential is pf 01 , f 02 , f 12 q. On U 0 , resp. U 1 , U 2 , we take the convergent power series g 01 `g0 01 , resp. g 1 12 , ´g12 ´g2

02 . This implies that every 1-cocycle is exact, hence H 1 pC 3 tp0, 0, 0qu, O C 3 tp0,0,0qu q " 0. Now, on every polydisc D in C 3 , a holomorphic function is uniquely determined by its Taylor expansion at origin, and the same calculation shows that H 1 pD tp0, 0, 0qu, O D tp0,0,0qu q " 0.

By a similar calculation, we can show that for any polydisc D of dimension at least 3, H 1 pD t0u, O D t0u q " 0.

By the Künneth formula, for B 1 ˆpB 2 t0uq where B 1 , B 2 are polydiscs with dimension of B 2 at least 3, we have H 1 pB 1 ˆpB 2 t0uq, O B 1 ˆpB 2 t0uq q " 0.

We now return to the general case. By the standard lemma below ensuring the existence of stratications of analytic sets, we can reduce ourselves to the situation where X X 0 is a closed manifold. Cover X by the Stein open sets U α and B β :

" B 1 β ˆB2 β such that X 0 is covered by U α and B 1 β ˆpB 2 β t0uq where B 1 β , B 2 β are polydiscs with dimension of B 2 β at least 3. Assume that E is trivial on U α and B β . Cover B 1 β ˆpB 2 β t0uq by B γ β (1 ď γ ď dimB 2 β ) such that each B γ
β is isomorphic to a polydisc minus a hyperplane dened as zero set of one coordinate. Since U α , B γ β are Stein, the cohomology on X 0 can be calculated as the ech cohomology with respect to this open covering of X 0 , which we denote by V. We also denote by U the open covering of X consisting of the sets U α , B β . Any element s of H 1 pX 0 , Eq can be represented by a family of sections ps α1,α2 , s γ αβ , s γ1,γ2 β , s γ1,γ2 β1,β2 q P ź ΓpU α1 X U α2 , Eq ˆź ΓpU α X B γ β , Eq ˆź ΓpB γ1 β X B γ2 β , Eq ˆź ΓpB γ1 β1 X B γ2 β2 , Eq.

Since H 1 pB 1 β ˆB2 β , Eq " 0 by the previous case, there exists ps γ β q P ź ΓpB γ β , Eq such that for any β xed s γ1,γ2 β " p´1q γ1`1 s γ1 β `p´1q γ2`1 s γ2 β .

Dene a 0-cochain ps γ β , 0q P ź ΓpB γ β , Eq ˆź ΓpU α , Eq.

Then we have ps α1,α2 , s γ αβ , s γ1,γ2 β , s γ1,γ2 β1,β2 q `δp´s γ β , 0q as another representative of the same cohomology class on X 0 . The components in ΓpB γ1 β X B γ2 β , Eq are 0 by construction. Thus we can assume that the components in ΓpB γ1 β X B γ2 β , Eq are 0 from the beginning. Since the representative is closed, the components in ΓpB γ β X U α , Eq glue to a section s α,β P ΓpB β pB 1 β ˆt0uq X U α , Eq when γ varies. By the Hartogs theorem, this section extends across the submanifold B 1 β ˆt0u, as its codimension is at least 3. The components in ΓpB γ1 β1 X B γ2 β2 , Eq can be glued into a section of ΓpB γ1 β1 X B β2 , Eq when γ 2 varies, and into a section of ΓpB β1 X B γ2 β2 , Eq when γ 1 varies. By the unique continuation theorem for holomorphic functions, in fact they dene a holomorphic section s β1,β2 of E on B β1 X B β2 .

We claim that after performing this glueing, the sections ps α1,α2 , s α,β , s β1,β2 q P ź ΓpU α1 X U α2 , Eq ˆź ΓpU α X B β , Eq ˆź ΓpB β1 X B β2 , Eq dene a 1-cocycle of X with respect to the open covering U α , B β , and that its class in H 1 pX 0 , Eq is exactly s.

The reason is as follows. The image of ps α1,α2 , s α,β , s β1,β2 q from H 1 pU, Eq to H 1 pU X X 0 , Eq is just the restriction of sections. The covering V is a renement of U X X 0 given by the inclusion of open sets: Let Z Ă X be an analytic subset of dimension n. Then Z admits a stratication H "

U α Ă U α , B γ β Ă B β .
Z n`1 Ă ¨¨¨Ă Z 0 " Z by closed analytic sets Z k of dimension n k ą n k`1 such that Z k Z k`1 is a closed complex submanifold of dimension n k of X Z k`1 .
Let us point out that the result is false if the codimension is equal to 2. For example, the group H 1 pC 2 tp0, 0qu, O C 2 tp0,0qu q is innite dimensional, while H 1 pC 2 , O C 2 q " 0 by Cartan's theorem B.

Lemma 5.17. (analogue of lemma 11.13 in [START_REF] Voisin | A counterexample to the Hodge conjecture extended to Kähler varieties[END_REF])

Let X be a complex manifold (not necessary compact) and Y be a closed submanifold of codimension at least r `1. Then the restriction map H l pX, Rq Ñ H l pX Y, Rq is an isomorphism for l ď 2r.

Proof. We have the long exact sequence of relative cohomology ¨¨¨H l pX, X Y, Rq Ñ H l pX, Rq Ñ H l pX Y, Rq Ñ H l`1 pX, X Y, Rq ¨¨¨.

On the other hand, we have by the excision lemma that for U a tubular neighborhood of Y H l pX, X Y, Rq -H l pU, U Y, Rq.

By Thom isomorphism theorem, we have H l´2r pY, Rq -H l pU, U Y, Rq.

We remark that X as a complex manifold is orientable, so does U . Hence the Thom class in coecient Z exists by Theorem 4.D.10. in [START_REF] Hatcher | Algebraic Topology[END_REF]. The natural inclusion Z Ñ R sends the Thom class in coecient Z to the Thom class in coecient R. Thus we have the Thom isomorphism by the Corollary 4.D.9 in [START_REF] Hatcher | Algebraic Topology[END_REF]. It follows that for j ă codim Y , H j pX, X Y, Rq " 0. This nishes the proof of the lemma using the exact sequence.

Lemma 5.18. Let X be a complex manifold (not necessary compact) and Y be a closed analytic subset of codimension at least r `1. Then the restriction map H l pX, Rq Ñ H l pX Y, Rq is an isomorphism for l ď 2r.

Proof. It is a direct consequence of lemmata 5.16 and 5.17.

We recall briey the construction of Chern classes of a coherent sheaf F in the de Rham cohomology. We refer to [START_REF] Grauert | On Levi's problem and the imbedding of real-analytic manifolds[END_REF] for more details. If X is connected complex compact manifold (or more generally a Zariski open set U of in X), by [START_REF] Voisin | A counterexample to the Hodge conjecture extended to Kähler varieties[END_REF], F does not necessarily admit a resolution by holomorphic vector bundles. On the other hand, a real analytic coherent sheaf possesses a resolution by real analytic vector bundles. Let

0 Ñ E 2n Ñ ¨¨¨E 0 Ñ F b O X O R´an X Ñ 0 be a resolution of F b O X O R´an X
by real analytic vector bundles E i where O R´an X is sheaf of real analytic function on X and n is the complex dimension of X. Dene the total Chern class of F by c ' pFq :"

ź i c ' pE i q p´1q i .
By restriction on U , same formula denes c ' pF| U q. It can be check that this is independent the choice of resolution.

Lemma 5.19. Let F be a coherent torsion sheaf over a compact complex manifold X (not necessarily Kähler) of dimension n. Assume that F is supported in a SNC divisor E " Y i E i where E i are the irreducible components. Let α be a smooth closed form over X such that α| Ei " 0 for any i. Then for any i ă n, ż X c i pFq ^αn´i " 0.

More generally we have for any i ă n and any cohomology class β of X, ż X chpFq ^β ^αn´i " 0.

Proof. Denote for any divisor D (not necessarily irreducible) G D pXq the Grothendieck group of coherent sheaves over X supported in D. We have exact sequence

' i G Ei pXq Ñ G E pXq Ñ 0.
Let pF i q P ' i G Di pXq be a preimage of F. Then we have by construction of Chern character class (cf.

[Gri10]), chpFq "

ÿ i i Ei˚p chpF i q tdpN Ei{X q ´1q
where i Ei is the closed immersion and tdpN Ei{X q is the Todd class of the normal bundle of E i . For any cohomology class β on X, ż X chpFq ^β ^αn´i "

ÿ i ż Ei chpF i q tdpN Ei{X q ´1 ^iE i β ^iE i α n´i " 0 since i Ei α " 0.
As an application of this lemma, we have the following result.

Lemma 5.20. Let F be a reexive sheaf over a compact complex manifold X. Let σ : X Ñ X be a modication of X such that there exists a SNC divisor E in X such that σ : X E Ñ X πpEq is biholomorphism with E a SNC divisor and the codimension of πpEq at least 3 and σ ˚F {Tors is locally free. Then we have that for i " 1, 2 c i pFq " σ ˚pc i pσ ˚F {Torsqq.

Proof. First observe that such a modication always exists by the fundamental work of [START_REF] Rossi | Picard variety of an isolated singular point[END_REF],

[GR70], [START_REF] Riemenschneider | Characterizing Moishezon Spaces by Almost Positive Coherent Analytic Sheaves[END_REF].

Without loss of generality we can assume that the dimension of X is at least 3. Otherwise, F is locally free and the result is direct. By Poincaré duality, it is the same to prove that for i " 1, 2 and any cohomology class α we have that ż X c i pFq ^α " ż X pc i pσ ˚F {Torsqq ^σ˚α . Recall that σ ˚chpF q " ř i p´1q i chpL i σ ˚F q where L i σ ˚is the i-th left derived functor of σ ˚. Without loss of generality, we can assume that F is locally free over X πpEq. In particular, L i σ ˚F for any i ą 0 is supported in the exceptional divisor. On the other hand, the torsion part of σ ˚is also supported in the exceptional divisor. By the above lemma, we have that ż X pc i pσ ˚F {Torsqq ^σ˚α " ż X σ ˚pc i pFqq ^σ˚α which concludes the proof.

We now introduce the denition of nef and strongly psef torsion-free sheaves. Definition 5.21 (Nef/ Strongly psef torsion-free sheaf ).

Assume that F is a torsion free sheaf over a compact complex manifold X. We say that F is nef presp. strongly psef q if there exists some modication π : X Ñ X such that π ˚F {Tors is a nef presp. strongly psef q vector bundle where Tors means the torsion part.

Notice that for any further modication π 1 : X1 Ñ X, π 1˚p π ˚F {Torsq " pπ ˝π1 q ˚F {Tors (in particular, further pull back is still a nef or strongly psef vector bundle). In fact, for any morphism π 1 , π, there exist natural surjective morphisms pπ ˝π1 q ˚F " π 1˚π˚F Ñ π 1˚p π ˚F {Torsq Ñ pπ 1˚p π ˚F {Torsqq{Tors which induces a surjection pπ 1 ˝πq ˚F {Tors Ñ pπ 1˚p π ˚F {Torsqq{Tors. It is generic isomorphism on which F is locally free. Thus the kernel of the induced morphism is a torsion sheaf. Since pπ 1 ˝πq ˚F {Tors is torsion free, the morphism is also injective.

More generally, we show in the next remark that the denition is independent of the choice of the pull back.

Remark 5.22. By the work of [START_REF] Rossi | Picard variety of an isolated singular point[END_REF], [START_REF] Grauert | Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen[END_REF], [START_REF] Riemenschneider | Characterizing Moishezon Spaces by Almost Positive Coherent Analytic Sheaves[END_REF], for any torsion-free sheaf F over a compact complex manifold, there exists a modication π : X Ñ X such that π ˚F {Tors is a locally free sheaf (i.e. a vector bundle). In the above denition, we say that F is nef or strongly psef if π ˚F {Tors is nef or strongly psef.

Let us recall here theorem 1.B.1 of [START_REF] Pǎun | Fibrés en droites numériquement eectifs et variétés kählériennes compactes a courbure de Ricci nef[END_REF]. Let f : Y Ñ X be a surjective holomorphic map between compact complex manifolds. Let α be a cohomology class in the Bott-Chern cohomology class H 1,1 BC pX, Cq. Then α is nef if and only if f ˚α is nef.

For the vector bundle case, a modication σ : X Ñ X induces a surjection σ : Ppσ ˚Eq Ñ PpEq where E is a vector bundle over X. Thus in the above denition, it is same to say that F is nef if and only if for every modication σ : X Ñ X such that σ ˚F {Tors is a vector bundle, σ ˚F {Tors is nef.

Similarly, let f : Y Ñ X be a surjective holomorphic map between compact complex manifolds. Let α be a cohomology class in the Bott-Chern cohomology class H 1,1 BC pX, Cq. Then α is psef if and only if f ˚α is psef. The pull back of a strongly psef vector bundle E under a modication σ is psef if and only if E itself is psef. Once a smooth metric has been xed on E, the singular metrics on O Ppσ ˚Eq p1q (resp. on O PpEq p1q) are identied with quasi-psh functions. Let us observe that the push forward of a psh function with analytic singularities under a proper modication is still a psh function with analytic singularities. The singular set of the pushed forward weight on O PpEq p1q is the image of the singular set of the weight function on O Ppσ ˚Eq p1q.

More precisely, denote by π : Ppσ ˚Eq Ñ X and π : PpEq Ñ X the projections. We have π ˝σ " σ ˝π. For a simple blow-up with a smooth irreducible centre, the opposite of the cohomology class of the exceptional divisor has a smooth representative that is positive along the bers of the projectivised normal bundle. From this, it is easy to see that exists a smooth form ω E on X such that σ ˚ωX `ωE is a Kähler form on X, and tω E u " ´trEsu for a suitable combination E " ř δ j E j , δ j P R ą0 of the irreducible components E j of the exceptional divisor. Notice that tσ ˚ωE u is the zero cohomology class. Denote by ϕ a quasi psh function on X such that ω E " ´rEs `iBBϕ.

Assume that σ ˚E is strongly psef and let us use a reference metric σ ˚h8 induced by a smooth metric h 8 on E. Then there exist quasi-psh functions ψ ε with analytic singularities such that iΘpO Ppσ ˚Eq p1q, σ ˚h8 e ´ψε q ě ´επ ˚pσ ˚ωX `ωE q, and σ ˚h8 e ´ψε´π ˚ϕ are singular metrics with analytic singularities on O Ppσ ˚Eq p1q. By taking the pushforward of the quasi-psh functions ψ ε `επ ˚ϕ under the modication σ, we get singular metrics h ε :" h 8 e ´σ˚pψε`επ ˚ϕq on O PpEq p1q possessing analytic singularities and satisfying the condition iΘpO PpEq p1q, h ε q ě ´επ ˚ωX .

In the above denition, it is thus the same to say that F is strongly psef if and only if for every modication σ : X Ñ X such that σ ˚F {Tors is a vector bundle, σ ˚F {Tors is strongly psef.

In fact, following the arguments in [START_REF] Pǎun | Fibrés en droites numériquement eectifs et variétés kählériennes compactes a courbure de Ricci nef[END_REF] and [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF], we can prove a more general result.

Theorem 5.23. Let f : Y Ñ X be a surjective holomorphic map between compact Kähler manifolds. Let E be a vector bundle over X. Then f ˚E is strongly psef if and only if E is strongly psef.

Proof. It is easy to see that E is strongly psef implies that f ˚E is strongly psef. To prove the inverse direction, we use the Hironaka attening theorem which shows the existence of a commutative diagram

Z π2 ÝÑ X π1 § § đ § § đσ Y f ÝÑ X
where Z is a compact Kähler complex space, π 2 a at morphism (i.e. with equidimensional bres) and σ a composition of blow-ups of smooth centres. In the previous remark, we prove that the pull back of a vector bundle under a blow-up of smooth center is strongly psef if and only if it is itself strongly psef. The result will follow if we prove that the pull back of a vector bundle under a at morphism is strongly psef if and only if it is itself strongly psef. Intuitively, we would want to take the quasi-psh weight at any point to be the supremum of the quasi-psh weight on the pre-image of that point. But this operation does not necessarily give the desired lower bound of curvature. In order to overcome this diculty, we use a modied version of the argument given in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF] proposition 1.8, as follows.

Proposition 5.3.1. Let f : Y Ñ X be a surjective holomorphic map with equidimensional bres where X is a compact Kähler manifold and Y is a compact Kähler complex space. Let E be a vector bundle over X. Then f ˚E is strongly psef if and only if E is strongly psef.

Proof. The proof is essentially the same as for Théorème 1.B.1 in [START_REF] Pǎun | Fibrés en droites numériquement eectifs et variétés kählériennes compactes a courbure de Ricci nef[END_REF] and Proposition 1.8 in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF]. We just outline the arguments with the necessary modications.

We denote by the same symbol f the induced map Ppf ˚Eq Ñ PpEq. Let α be the curvature form in the cohomology class c 1 pO PpEq p1qq induced by some smooth metric on E. Let ψ ε be quasi psh functions with analytic singularities on Ppf ˚Eq such that

f ˚α `i 2π BBψ ε ě ´εω 1 , ε ą 0,
for some Kähler form ω 1 on Ppf ˚Eq. The existence follows from the denition of a strongly psef vector bundle (the denition of a strongly psef vector bundle is still valid for a compact Kähler complex space).

Denote by p the dimension of bres. For every y P Ppf ˚Eq there exist local holomorphic functions w 1 , ¨¨¨, w p in a neighbourhood U of y such that z Þ Ñ pf pzq, w 1 pzq, ¨¨¨, w p pzqq is a proper nite morphism from U to a neighbourhood of tf pyqu ˆt0u in PpEq ˆCp . Thus there exist local coordinates centered at f pyq on PpEq such that |F pzq ´F pyq| 2 `ÿ 1ďjďp |w j pzq| 2 ą 0 on BU , where F " pF 1 , ¨¨¨, F n q denote the local coordinate components of f . Since Ppf ˚Eq is compact, we can cover Ppf ˚Eq by nitely many such sets U k centered at y k P Ppf ˚Eq, and nd corresponding holomorphic functions pw We can even suppose that the open sets

V k :" tz P U k ; |F pkq pzq ´F pkq py k q| 2 `ÿ 1ďjďp |w pkq j pzq| 2 ă δ k u cover Ppf ˚Eq. Dene for z P U k λ pkq ε pzq :" ε 3 ÿ 1ďiďN k |w pkq i | 2 ´ε2 p|F pkq pzq ´F pkq py k q| 2 `ÿ 1ďjďp |w pkq j pzq| 2 ´δk q,
and for x P PpEq, ϕ ε :" sup

yPf ´1pxqXU k pψ ε 4 pyq `λpkq ε pyqq
where the supremum is also taken with respect to k. The curvature condition is checked in the same way as in [START_REF] Pǎun | Fibrés en droites numériquement eectifs et variétés kählériennes compactes a courbure de Ricci nef[END_REF] and [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF].

Let us observe that by using a regularization, one can assume that the quasi psh weight ψ ε is continuous (i.e. locally the weight is of the form clog ř |g j | 2 `f where f is continuous, and not just bounded). By choosing ε small enough, we get ϕ ε continuous with values in r´8, 8r. In fact, for ε small enough, λ pkq ε is strictly negative on the boundary of U k and positive on V k . Thus the function Ψ ε pyq :" ψ ε 4 pyq sup yPU k λ pkq ε pyq is continuous on Y . Since ϕ ε pxq " sup yPf ´1pxq Ψ ε pyq, ϕ ε is continuous on X. We now turn ourselves to the proof that ϕ ε has analytic singularities. Observe that ϕ ε has the same singularities as the function sup yPf ´1 pxq ψ ε 4 pyq on X, since the functions λ pkq ε are bounded. We claim the following more general fact: let f : Y Ñ X be a proper morphism between complex spaces, and ϕ ε be a quasi psh function with analytic singularities on Y , then the function f ˚ϕpxq :" sup yPf ´1pxq ϕpyq has analytic singularities on X. Here ϕ is a quasi-psh function over a complex space means that ϕ can be locally extended as a quasi-psh function to any open set of C N in which Y can be embedded as a closed analytic set; that ϕ has analytic singularities means for every y P Y , there exists an open set on which ϕ " clogp ř |g i | 2 q `f , with holomorphic functions g i and a bounded function f . By Hironaka, there exists a modication σ : Ỹ Ñ Y such that Ỹ is smooth. By considering f ˝σ and ϕ ˝σ, we are reduced to the case where Y is smooth. 

V of x such that f ´1pV q Ă Y k U k . For every x P V , f ˚ϕpxq " sup k sup yPf ´1pxqXU k ϕpyq.
Since a nite supremum of quasi-psh functions with analytic singularities still has analytic singularities, it is enough to show that sup yPf ´1 pxqXU k ϕpyq has analytic singularities for every k. Since we take a nite supremum, the bounded terms will remain bounded after taking the supremum, therefore we are only concerned with the logarithmic term in what follows.

Let J k be the maximal germ of ideal sheaf at x such that f ˚Jk | U k Ă pg pkq i q with respect to the inclusion relation. (Here one may have to shrink the open set U k , i.e. the inclusion is to be understood in the sense of germs at any point of f ´1pxq.) Then the ideal pg pkq i q is generated by nitely many holomorphic functions that are either of the form f ˚hpkq α for some holomorphic function germ at x, or of the form f pkq β for some holomorphic function on U k . We claim that the zero set V pf pkq β q is not of the form f ´1pf pV pf which also has analytic singularities.

Remark 5.24. Observe that when the manifold X is projective, there exists the subtlety in the denition of strongly psef torsion free sheaf. Recall that a torsion free sheaf F over a projective manifold X with an ample line bundle A is called weakly positive in the sense of Nakayama (cf. [START_REF] Nakayama | Zariski decomposition and abundance[END_REF]) if for any a P N, there exists b P N ˚such that pS ab Fq __ b A b is globally generated at some point (hence generically globally generated). Our denition of strongly psef torsion free sheaf implies that it is the weak positive torsion free sheaf in the sense of Nakayama, but not inversely in general.

First we show that if F is a strongly psef torsion free sheaf, then it is weakly positive in the sense of Nakayama. Let σ : X Ñ X be a composition of blow-ups of the smooth centers such that the pull back of torsion free coherent sheaf σ ˚F {Tors is a strongly psef vector bundle. Let A be an ample line bundle over X. For b large enough, σ ˚Ab ´E is an ample line bundle over X where E is the exceptional divisor. S ab pσ ˚F {Torsq b σ ˚Ab b Op´Eq is generically globally generated over X by possible larger b and by changing Op´Eq by its multiple. It is from the assumption that σ ˚F {Tors is a strongly psef vector bundle over X. By tensoring the canonical section of the line bundle OpEq, S ab pσ ˚F {Torsq b σ ˚Ab is generically globally generated over X. Thus the same holds for pSym ab Fq __ b A b over X by the natural isomorphism pSym ab Fq __ b A b Ñ rσ ˚pSym ab pσ ˚F {Torsq b σ ˚Ab qs __ .

To indicate the subtlety, we use the same notations as above. For the inverse direction, we hope to show that pS ab pσ ˚F {Torsqq __ b σ ˚Ab is generically globally generated over X for large b from the fact that pS ab Fq __ b A b is generically globally generated over X for large b. Let S be the analytic set of codimension at least 2 in X such that σ : X E Ñ X S is biholomorphic. But the global sections H 0 pX, pS ab Fq __ b A b q -H 0 pX S, pS ab Fq __ b A b q -H 0 p X E, S ab pσ ˚F {Torsq b σ ˚Ab q do not necessarily extend over X even seen as a section of S ab pσ ˚F {Torsq b σ ˚Ab b à where à is an arbitrary ample line bundle over X. The reason is that the sections may have essentially singularity along E.

A typical example is the following. Let S be an analytic set of codimension at least two over a projective manifold X and let I S be the ideal sheaf associated to S. The bidual of I S is O X as well as all the symmetric power. Let U be any open set of X. We have that for any m and any vector bundle E H 0 pU, pS m I S q __ b Eq -H 0 pU S, pS m I S q __ b Eq " H 0 pU S, Eq -H 0 pU, Eq where the last equality follows from the Hartogs theorem. As a consequence, for any ample divisor A and any a P N ˚, pS ab I S q __ b A b is globally generated for b large enough. In particular, I S is weakly positive in the sense of Nakayama.

However, observe that I S has some negativity" along S, even if it is weakly positive in the sense of Nakayama. It can be seen as follows. Let σ : X Ñ X be a composition of blow-ups with smooth centers such that σ ˚IS {Tors " O X p´Eq where E is an eective divisor supported in the exceptional divisor. By the denition of strongly psef torsion free sheaf, if I S is strongly psef, σ ˚IS {Tors should be a psef vector bundle since it is a line bundle. But it is not the case which means that I S is not strongly psef. In other words, our denition of strong psef torsion free sheaf is reasonable which forbids the above kind of negativity which will appear in some birational models.

Like the bundle case, the strongly psef torsion-free sheaf is stable under the usual algebraic operations, with the consideration of taking torsion free part.

Example 5.25. (The pull back of a torsion free sheaf is not necessarily torsion free)

According to the knowledge of the author, this example can be found in [START_REF] Grauert | Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen[END_REF]. Let X be the blow up of the origin of C 2 with π : X Ñ C 2 . Let px, yq be the coordinate of C 2 . The maximal ideal at the origin can be resolved by the Koszul complex

O C 2 p´y,xq Ý ÝÝÝ Ñ O '2
C 2 Ñ m 0 Ñ 0 where the second arrow sends pf, gq to xf `yg. The pull back is right exact which induces the exact sequence

O X p´v,uvq Ý ÝÝÝÝ Ñ O '2 X Ñ π ˚m0 " m 0 b O C 2 O X Ñ 0
where in local coordinates πpu, vq " puv, vq and the the second arrow sends pf, gq to f b x `g b y. We denote the second arrow as ε. We claim that εp´1, uq is not a zero element in π ˚m0 . Otherwise, p´1, uq is in the kernel of ε which by exactitude is of the form p´vf, uvf q for some f . Contradiction. On the other hand p´1, uq is torsion in π ˚m0 since vεp´1, uq " ´vbx`vuby " p´vπ ˚x`vuπ ˚yqb1 " 0. Consider the composition O '2 X {Kerpεq Ñ π ˚m0 Ñ O X . The image is I E where I E is the ideal sheaf associated to the exceptional divisor E. The rst morphism is in fact isomorphism. In local coordinates the composition sends pf, gq to uvf `vg. The kernel is O X p´1, uq which is torsion. We have isomorphism between O '2 X {Kerpεq modulo this kernel and I E . Thus the image under ε (i.e. O X εp´1, uq) gives all the torsion elements. In other words, π ˚m0 {Tors -O X p´Eq.

In fact, the morphism u :

O C 2 Ñ O '2
C 2 induces a meromorphic map from C 2 to Grp1, 2q which sends z to the image of upzq. The meromorphic map induces a holomorphic map from the blow up of the origin to Grp1, 2q which resolves the indeterminacy set of the meromorphic morphism. The total space of O P 2 p´1q is also the blow-up of C 2 at the origin with the natural projection τ : X Ñ P 2 . The pull back of the tautological line bundle over Grp1, 2q admits exact sequence

O '2 X " τ ˚O'2 P 2 Ñ τ ˚OP 2 p1q Ñ 0. The image of the kernel of ε in τ ˚OP 2 p1q is 0. Thus we have factorisation O '2 X {Kerpεq -π ˚m0 Ñ τ ˚OP 2 p1q Ñ 0.
The kernel of the factorisation is supported in the exceptional divisor which is thus torsion. In conclusion, we have isomorphism π ˚m0 {Tors -τ ˚OP 2 p1q. This shows in this special case how to nd a modication such that the pull back of a torsion free sheaf is locally free modulo torsion. This construction was generalised in [START_REF] Rossi | Picard variety of an isolated singular point[END_REF], [START_REF] Grauert | Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen[END_REF], [START_REF] Riemenschneider | Characterizing Moishezon Spaces by Almost Positive Coherent Analytic Sheaves[END_REF]. (We recall it briey in Lemma 5.30.) Example 5.26. (The symmetric and wedge power of torsion free sheaves are not necessarily torsion free)

Consider the maximal ideal sheaf m 0 in X " C 2 . The wedge power Λ 2 m 0 is supported at the origin, however z 1 ^z2 is a non zero element of germ of Λ 2 m 0 at the origin.

For the symmetric powers, let us rst recall the following important theorem in [START_REF] Micali | Sur les algèbres universelles[END_REF] (cf. also theorem 3 of [START_REF] La | On the symmetric algebra of graded modules and torsion freeness[END_REF]). Let A be a domain, M be a nitely generated A-module. Then ' iě0 S i M is a domain if and only if S i M is torsion free, for all i ě 0. To give a concrete example, consider a surjection from a holomorphic vector bundle E to a torsion free sheaf F over a compact manifold X. Then PpFq is a closed analytic set of PpEq. If PpFq is not irreducible, by the above theorem there exists i ą 0 such that S i F is not torsion free.

We summarise the algebraic properties of strongly psef torsion free sheaf in the following propositions.

Proposition 5.3.2. Let F be a torsion free sheaf over a compact Kähler manifold pX, ωq. The following properties are equivalent.

(1) F is strongly psef.

(2) For any m P N ˚, S m F modulo its torsion part is strongly psef.

(3) There exists m P N ˚such that S m F modulo its torsion part is strongly psef.

Proof. (1) implies (2) as follows. Let σ be a modication of X such that σ ˚F {Tors and σ ˚pS m F{Torsq{Tors are vector bundles where Tors means the torsion part. We have a surjection σ ˚Sm F -S m σ ˚F Ñ σ ˚pS m F{Torsq.

It induces a surjection

S m pσ ˚F {Torsq Ñ σ ˚pS m F{Torsq{Tors.

This is justied as follows. Recall that there exists an exact sequence

Tors b S m´1 σ ˚F Ñ S m pσ ˚F q Ñ S m pσ ˚F {Torsq Ñ 0 induced by 0 Ñ Tors Ñ σ ˚F Ñ σ ˚{Tors Ñ 0.
The image of Tors b S m´1 σ ˚F consists of torsion elements, and induces the morphism S m pσ ˚F {Torsq Ñ σ ˚pS m F{Torsq{Tors. Thus Corollary 5.11 and (1) of Corollary 5.13 implies that σ ˚pS m F{Torsq{Tors is a strongly psef vector bundle.

We nally check that (3) implies (1). With the same notation, the above surjection is in fact an isomorphism since both sides have the same rank. Thus Corollary 5.11 implies that σ ˚F {Tors is a strongly psef vector bundle.

Definition 5.27. Let pX, ωq be a compact Kähler manifold, F be a torsion free sheaf on X and D be a Q´Cartier divisor. Then FxDy is said to be Q´twisted strongly pseudo-eective p Q´twisted strongly psef for shortq if S m F{Tors b O X pmDq is strongly psef for some phence any by Proposition 5.3.2q m ą 0 such that O X pmDq is a line bundle. (1) A torsion free quotient sheaf of a strongly psef torsion free sheaf is strongly psef.

(2) A direct summand of strongly psef torsion free sheaf is strongly psef.

(3) A direct sum of strongly psef torsion free sheaves is strongly psef.

(4) A tensor product por Schur functor of positive weight q modulo its torsion part of strongly psef torsion free sheaves is strongly psef.

Proof. Let F Ñ Q be a surjective morphism of torsion free sheaves with F strongly psef over X. Let σ : X Ñ X be a modication such that σ ˚F {Tors,σ ˚Q{Tors are vector bundles. By assumption σ ˚F {Tors is a strongly psef vector bundle. σ ˚is right exact which induces surjection σ ˚F {Tors Ñ σ ˚Q{Tors passing to quotient. Thus σ ˚Q{Tors is a quotient bundle of σ ˚F {Tors Using Proposition 5.2.1 we can conclude that σ ˚Q{Tors is strongly psef. The other conclusions are similar and can be obtained in a formal manner.

A natural operation for torsion free sheaves consists of taking the bidual. The relationships between a torsion free sheaf and its bidual will be stated in the next propositions. The following example indicates some of the occurring phenomena.

Example 5.28. Let D be a smooth eective divisor over a compact Kähler manifold X with canonical section s D . We have generic surjective sheaf morphism α : O '2 X Ñ O X pDq ' O X p2Dq induced by global section ps D , s 2 D q. Then detpαq -O X p3Dq has a global section s 3 D . The division by this global section induces a bimeromorphic map between the total spaces of pO X pDq '

O X p2Dqq ˚and O '2 X b detpαq ˚. Since O '2
X is strongly psef, there exists a global (quasi-)psh function on the total space of its dual. Pairing with s 3 D induces a global (quasi-)psh function on the total space of O '2 X b detpαq ˚which induces a (quasi-)psh function on the total space of pO X pDq ' O X p2Dqq ˚outside a smooth divisor. We claim that this (quasi-)psh function extends across the divisor by boundedness from above. In particular, pO X pDq ' O X p2Dqq is strongly psef.

For example, locally consider the psh function on the total space of O '2 X b detpαq φpz,

ξ 1 , ξ 2 q :" logp|z| 6 p|ξ 1 | 2 `|ξ 2 | 2 qq
where αpz, ξ 1 , ξ 2 q " pz, zξ 1 , z 2 ξ 2 q. The induced psh function outside the divisor tz " 0u is given by ϕpz, ξ 1 , ξ 2 q :" logp|z| 6 p|ξ 1 {z| 2 `|ξ 2 {z 2 | 2 qq, which is bounded from above near the divisor and can thus be extended across the divisor.

Proposition 5.3.4. Let E, F be two torsion free sheaves over a compact Kähler manifold pX, ωq. Let α : E Ñ F be a morphism of sheaves which is an isomorphism over a Zariski open set X A. Assume that E is strongly psef. Then F is strongly psef.

Proof. Let σ be a modication of X such that σ ˚E {Tors and σ ˚F {Tors are locally free and σ ˚E {Tors is strongly psef. We can assume that σ ˚α is an isomorphism outside a divisor E. Then detpσ ˚αq is an eective divisor supported in E. Division by this global section induces bimeromorphic map between the total spaces of pσ ˚F {Torsq ˚and pσ ˚E {Torsq ˚b detpσ ˚αq ˚. By Proposition 5.2.1, the fact that σ ˚E {Tors is strongly psef implies the existence of quasi-psh functions with analytic singularities on the total space of the symmetric powers of pσ ˚E {Torsq ˚. Pairing with the canonical section of detpσ ˚αq induces global (quasi-)psh functions on the total space of S m pσ ˚E {Tors b detpαqq ˚. We denote these quasi-psh functions by w m . The functions w m induce quasi-psh function on the total space of pS m σ ˚F {Torsq ˚outside the divisor E. We claim that these quasi-psh functions extend across all the irreducible components of the divisor E by boundedness from above. In particular, by Proposition 5.2.1, σ ˚F {Tors is a strongly psef vector bundle.

The claim is proven by a local coordinate calculation. In local coordinate σ ˚αpz, ξq " pz, Apzqξq where Apzq a matrix of holomorphic functions. Locally w m pz, ξq " logp ÿ j |B j pzqξ| 2 q `Op1q `logp| detpApzqq| 2 q where B j pzq are matrices of holomorphic functions. The induced quasi-psh functions outside the divisor E over pS m σ ˚F {Torsq ˚are of the form wm pz, ξq " logp ÿ j |B j pzqA ´1pzqξ| 2 q `Op1q `logp| detpApzqq| 2 q.

Since the inverse is given by the co-adjoint of the matrix divided by its determinant, wm is locally bounded from above near the divisor.

The inverse direction is in general false. To get a counter-example, we consider an inclusion I A Ñ O X where A is an analytic set of codimension at least 2. Then I A is not strongly psef, while O X is. However, the inclusion is an isomorphism over X A.

Proposition 5.3.5. Let 0 Ñ S Ñ F Ñ Q Ñ 0 be an exact sequence of torsion free sheaves. If F, pdetpQqq ´1 are strongly psef and S is reexive, then S is strongly psef.

Proof. We have S " Λ s´1 S ˚b det S where s is the rank of S outside an analytic set A of codimension at least 2. Assume that all three sheaves are locally free outside A. We have a surjective bundle morphism over X A Λ r´s´1 F{Tors b pdet Qq ´1 Ñ S where r is the rank of F. Since S is reexive (hence normal), the morphism extends as a morphism of sheaves over X. By (4) of Proposition 5.3.3, Λ r´s´1 F{Tors b pdet Qq ´1 is strongly psef. By (1) of Proposition 5.3.3, the image of this sheaf morphism is strongly psef. Since the image ans S are isomorphism over X A, by Proposition 5.3.4, S is strongly psef.

Proposition 5.3.6. Let F be a strongly psef torsion free sheaf of rank r. Then detpFq is a psef line bundle.

Proof. By (4) of Proposition 5.3.3, Λ r F{Tors is strongly psef. Since Λ r F{Tors and detpFq is generic isomorphism, by Proposition 5.3.4, detpFq is a psef line bundle. Proposition 5.3.7. Let F be a strongly psef torsion free sheaf with c 1 pFq " 0. Then F ˚is a strongly psef reexive sheaf.

Proof. The fact that F ˚is reexive is purely algebraic. Outside an analytic set of codimension at least 2, F is locally free. Over this open set, we have an isomorphism

Λ r´1 F{Tors b pdetpFqq ´1 Ñ F ˚.
Since F ˚is reexive, this morphism extends across the analytic set. By (4) of Proposition 5.3.3, the left hand term is strongly psef. Thus the image is strongly psef. Moreover, the fact that we have a generic isomorphism implies that F ˚is strongly psef.

Lemma 5.29. Let F be a strongly psef torsion free sheaf with c 1 pFq " 0 over X. Let σ : X Ñ X be a modication such that both σ ˚F {Tors and σ ˚F ˚{Tors are locally free. Then c 1 pσ ˚F {Torsq " 0.

Proof. There exists a natural morphism σ ˚F ˚{Tors Ñ pσ ˚F {Torsq ẘhich is a generic isomorphism. Note that pσ ˚F {Torsq ˚pσ ˚F q ˚by Corollary 4.9 Chap. V [START_REF] Kobayashi | Negative vector bundles and complex Finsler structures[END_REF]. The above morphism is induced by σ ˚F ˚Ñ pσ ˚F {Torsq ˚pσ ˚F q ˚under which the torsion part is in the kernel since pσ ˚F q ˚is torsion free. By proposition 5.3.4, pσ ˚F {Torsq ˚is strongly psef. In other words, both σ ˚F {Tors and its dual are strongly psef vector bundle which infers that its rst Chern class is 0.

We can now prove the main result of this section assuming the main theorem (whose proof is independent of the main result of this section). For the convenience of readers, we recall here the construction of reduction of torsion free sheaf to the vector bundle case modulo torsion. For a complete proof, we recommend the paper of [START_REF] Rossi | Picard variety of an isolated singular point[END_REF].

Lemma 5.30. Let F be a torsion free sheaf of generic rank r over X a complex manifold. There exists some modication σ : X Ñ X such that σ ˚F {Tors is locally free. Then for every i " 1, 2, the Chern class c i pFq is well dened in the Bott-Chern cohomology group H i,i BC pX, Cq. If X is compact Kähler and F is a reexive sheaf, these two Chern classes can be represented by normal currents pin fact dierences of two closed positive currents q. 

f α : U α Grpr, N α q. The maps O 'Mα Uα Ñ O 'Nα
Uα are locally given as holomorphic matrices A α pzq which are of constant rank over Zariski open sets, and f α sends z to the image of A α pzq. Let Ûα be the graph of this map fα : Ûα Ñ Grpr, N α q be the corresponding morphism (given by the second projection of the graph). The Ûα glue into a complex space X sitting over X, and by Hironaka, we can nd a modication σ : X Ñ X Ñ X such that X is smooth and σ ˚F {Tors is a vector bundle (the pull-back to X comes locally from the tautological quotient bundle Q α of Grpr, N α q generically, hence is already a vector bundle generically). It can be shown that the surjection σ ˚F Ñ Q α which is in fact generic isomorphism. This infers in particular that the kernel is torsion and isomorphism σ ˚F {Tors Ñ Q α . We equip Q α with a smooth metric (e.g. the standard one coming from a Hermitian structure on C Nα ) and use a partition of unity to endow σ ˚F {Tors with a smooth metric h. Then the Chern forms c i pσ ˚F {Tors, hq associated with the curvature tensor represent the Chern classes c i pσ ˚F {Torsq in Bott-Chern cohomology on X. We dene the Chern classes c i pF{Torsq in Bott-Chern cohomology on X to be the direct images σ ˚ci pσ ˚F , hq for i " 1, 2 as in Lemma 5.20. (Notice that in lemma 5.20, we work with the de Rham cohomology. By the work of [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF] and the result in Chapter 6, the same formula holds in the complex Bott-Chern cohomology.) It is well known that these classes are independent of the choice of the metric h.

Assume now that X is a compact Kähler manifold. Then X is also a compact Kähler manifold. Let ω be a smooth Kähler form on X. Then for C large enough, c i pσ ˚F {Tors, hq can be written as dierence of two positive forms c i pσ ˚F {Tors, hq `Cω i and Cω i . The second statement holds by taking direct images of these positive forms. Proposition 5.3.8. Let F be a nef reexive sheaf over a compact Kähler manifold pX, ωq with c 1 pFq " 0. Then F is a nef vector bundle.

Proof. The proof is analogous to those of [START_REF] Campana | Projective klt pairs with nef anti-canonical divisor[END_REF] and [START_REF] Hosono | On projective manifolds with pseudo-eective tangent bundle[END_REF]. The essential point is the following result of [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF]: for a polystable reexive sheaf F of rank r over a compact n-dimensional Kähler manifold pX, ωq, one has the Bogomolov inequality ż X p2rc 2 pFq ´pr ´1qc 1 pFq 2 q ^ωn´2 ě 0, and the equality holds if and only if F is locally free and its Hermitian-Einstein metric gives a projective at connection.

The proof is obtained by an induction on the rank of F. The general strategy of the induction is the same as in [START_REF] Hosono | On projective manifolds with pseudo-eective tangent bundle[END_REF]. For the convenience of the reader, we outline here the arguments with the necessary modications. In the rank one case, reexive sheaves are locally free, hence line bundles, and the conclusion is immediate. Let us observe however that the reexivity condition is necessary even in that case; for example, the ideal sheaf associated with an analytic set of codimension at least 2 is of generic rank one, torsion free, but not locally free.

In the higher rank case, we consider the Harder-Narasimhan ltration of F with respect to ω, say

F 0 " 0 Ñ F 1 Ñ F 2 Ñ ¨¨¨Ñ F m :" F
where F i {F i´1 is ω-stable for every i and µ 1 ě µ 2 ě ¨¨¨ě µ m , and where µ j " µ ω pF j {F j´1 q is the slope of F j {F j´1 with respect to ω. Now, consider the coherent subsheaf S " F m´1 . Notice that by construction S can be chosen to be reexive by taking the double dual if necessary, as this preserves the rank, rst Chern class and slope. Then we get a short exact sequence

0 Ñ S Ñ F Ñ Q Ñ 0,
and Q is a torsion-free coherent sheaf. Pick a modication σ such that σ ˚F {Tors and σ ˚pQq{Tors are vector bundles, with σ ˚F {Tors being nef. The pull back functor is right exact, so we have surjective bundle morphism σ ˚F {Tors Ñ σ ˚pQq{Tors. Thus σ ˚pQq{Tors is a nef vector bundle. By denition, we conclude that Q is nef.

In particular, its rst Chern class c 1 pQq is pseudo-eective by Proposition 5.3.6. On the other hand, we have 0 " c 1 pFq " c 1 pSq `c1 pQq by the assumption. Thus ż X c 1 pQq ^ωn´1 " ´żX c 1 pSq ^ωn´1 ď 0, and c 1 pQq " c 1 pSq " 0. Let X 0 be the largest open set on which F is locally free. We claim that S is a vector subbundle of F on X 0 , and that the morphism S Ñ F is a bundle morphism on X 0 ; for this, we apply corollary 1.20 of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF] and prove that detpQ ˚q Ñ Λ p F ˚is an injective bundle morphism on X 0 , where p is the rank of Q. This corresponds to a global section τ P H 0 pX, pΛ p F ˚q˚˚b detpQ ˚˚qq since X X 0 is of codimension at least 3.

There exists a modication σ : X Ñ X such that σ ˚F {Tors and σ ˚F ˚{Tors are vector bundles. We can assume that σ is obtained as a composition of smooth centres in X X 0 . We can view σ ˚τ as an element in H 0 p X, σ ˚rpΛ p F ˚q˚˚b detpQ ˚˚qsq as well as an element in H 0 p X, Λ p pσ ˚F {Torsq ˚b σ ˚detpQ ˚˚qq under natural morphism σ ˚rpΛ p F ˚q˚˚s Ñ rσ ˚pΛ p F ˚qs ˚˚Ñ Λ p pσ ˚F {Torsq ˚.

More precisely, the natural morphism σ ˚F ˚Ñ pσ ˚F q ˚induces σ ˚pΛ p F ˚q " Λ p σ ˚pF ˚q Ñ Λ p σ ˚pF q ˚" Λ p pσ ˚F {Torsq ˚.

By taking the bidual, we obtain the second morphism.

Let us observe that Λ p σ ˚F {Tors is nef, and also that detpQ ˚q is nef since c 1 pQq " 0. Thus σ ˚τ cannot vanish at any point of X by Prop. 1.16 of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF]. Thus τ does not vanish on X 0 . This concludes the proof of the claim. In particular, Q is a vector bundle over X 0 .

Let s be the rank of S, which must be strictly smaller than the rank r of F. We consider the surjective bundle morphism

Λ r´s`1 F b det Q ˚Ñ S
on X 0 . Since F is nef and det Q ˚is numerical trivial, we infer that S is a strongly psef reexive sheaf by Proposition 5.3.5. Thus over some bimeromorphic model of X, the pull back of S is a strongly psef vector bundle modulo torsion with vanishing rst Chern class by Lemma 5.29. By Theorem 5.48, over the bimeromorphic model, the vector bundle is in fact nef. By the induction hypothesis, S is in fact a nef vector bundle over X. Q is a priori not necessarily a reexive sheaf, but the double dual Q ˚˚is. To conclude that Q ˚˚is in fact a vector bundle by the result of Bando-Siu recalled at the beginning, it is enough to prove that c 2 pQ ˚˚q " 0. Since Q is locally free on X 0 and the codimension of X X 0 is at least 3, Q coincides with Q ˚˚on X 0 . Let i be the inclusion X 0 Ñ X. Since the restriction map i ˚: H 4 pX, Rq Ñ H 4 pX 0 , Rq is an isomorphism by Lemma 5.18 and i ˚c2 pQq " c 2 pQ| X0 q " c 2 pQ ˚˚| X0 q " i ˚c2 pQ ˚˚q, we infer that c 2 pQq " c 2 pQ ˚˚q. Let π : Ppσ ˚Q{Torsq Ñ X be the projectivization of the nef vector bundle σ ˚Q{Tors, viewed as a quotient of the nef vector bundle σ ˚F {Tors. By the denition of Segre classes, we have π ˚pc 1 pO Ppσ ˚Q {Torsq p1qq r´s`1 q " s 2 pσ ˚Q{Torsq " c 2 1 pσ ˚Q{Torsq ´c2 pσ ˚Q{Torsq.

In particular, ż X s 2 pσ ˚Q{Torsq ^ω n´2 " ż Ppσ ˚Q {Torsq c 1 pO Ppσ ˚Q {Torsq p1qq r´s`1 ^ω n´2 ě 0, as σ ˚Q{Tors is a nef vector bundle and thus s 2 pσ ˚Q{Torsq " ´c2 pσ ˚Q{Torsq is a positive class, containing a closed positive p2, 2q-current. Here ω is any Kähler form on X. Since c 1 pσ ˚Q{Torsq " 0 by Lemma 5.29, we deduce that ż X c 2 pσ ˚Q{Torsq ^ω n´2 ď 0. The inequality is valid for any Kähler form on X. In particular, we can take a sequence of Kähler metrics on X converging to π ˚ω, and this implies ż X c 2 pQq ^ωn´2 " ż X c 2 pσ ˚Q{Torsq ^π˚ωn´2 ď 0.

Notice that the rst equality is by Lemma 5.20. The Bogomolov inequality shows that ż X c 2 pQ ˚˚q ^ωn´2 " 0.

Q ˚˚is thus in fact a vector bundle by the result of Bando-Siu.

The extension class obtained from the exact sequence on X 0 can be extended to the extension class (dened on X) of S and Q ˚˚by lemma 5.15. The extended class by construction determines a vector bundle whose restriction to X 0 is isomorphic to F. Since F is a reexive sheaf, in fact we have an isomorphism on X. This proves that F is in fact a vector bundle. By remark 5.22, it is a nef vector bundle.

Remark 5.31. It has been observed by Demailly, that the previous proposition can be derived from Theorem 1.18 of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF] (cf. also [START_REF] Deng | Simpson correspondence for semistable Higgs bundles over Kähler manifolds. hal-02391629[END_REF]). Let us recall the statement of this theorem. Let E be a numerically at vector bundle over a compact Kähler manifold pX, ωq. Then there exists a ltration of E

0

" E 0 Ă E 1 Ă ¨¨¨Ă E p " E
by vector subbundles such that the quotients E k {E k´1 are hermitian at, i.e. given by unitary representations π 1 pXq Ñ U pr k q.

Since F is a nef reexive sheaf with c 1 pFq " 0, there exists a modication such that σ : X Ñ X such that σ ˚F {Tors is a nef vector bundle with vanishing rst Chern class by lemma 5.29. By the above theorem, there exists a ltration of σ ˚F {Tors 0 " Ẽ0 Ă Ẽ1 Ă ¨¨¨Ă Ẽp " σ ˚F {Tors by vector bundles over X such that Ẽk { Ẽk´1 are hermitian at.

We claim that Ẽk { Ẽk´1 " σ ˚pE k {E k´1 q for some vector bundle E k {E k´1 over X for each k. (For the moment, E k {E k´1 is just a notion, not the quotient of two vector bundles over X. But it is the case which is proven in the next paragraph.) The reason is as follows. σ ˚: π 1 p Xq Ñ π 1 pXq is an isomorphism since we can assume that σ is composition of a sequence of blows-up of smooth centres and as a CW complex a blow-up of smooth center changes skeleton of (real) codimension at least 2 which preserves the fundamental group. Thus we have unitary representations π 1 pXq Ñ U pr k q which proves the claim.

Let A be the analytic set such that F is locally free over X A. Since F is reexive, A is of codimension at least 3 in X. Without loss of generality, we can assume that σ induces an isomorphism between σ ´1pX Aq and X A. Thus we have extension of vector bundles over X A 0

Ñ E k´1 | X A Ñ E k | X A Ñ E k´1 {E k´1 | X A Ñ 0
where E k are a priori vector bundles dened over X A. By lemma 5.15, the extensions extend across A.

Thus there exist vector bundles E k over X which are the extensions of E k´1 and E k {E k´1 . By construction, we have isomorphism F| X A -E p | X A . Since F is reexive, we have isomorphism F -E p over X. In particular, F is a vector bundle.

Remark 5.32. In the proof, we have shown that c 2 pFq " c 2 pF ˚˚q P H 4 pX, Rq from the fact that F " F ˚˚outside an analytic set of codimension at least 3. In fact, the equality also holds in Bott-Chern cohomology, and the latter equality induces the previous one by the natural morphism from the Bott-Chern cohomology to the de Rham cohomology.

The proof is an easy consequence of the following diagram, using the same notation as in the proof.

H 2,2 BC pX, Cq ÝÑ H 2,2 BC pX A, Cq § § đ § § đ H 4 pX, Cq - ÝÑ H 4 pX A, Cq.
By the Hodge decomposition theorem, the left vertical arrow is an injection, and this implies that the map

H 2,2
BC pX, Cq Ñ H 2,2 BC pX A, Cq is also injective.

Remark 5.33. The diculty to extend the above proof to the case where F is a strongly psef reexive sheaf is to prove that ż Ppσ ˚F {Torsq c 1 pO Ppσ ˚F {Torsq p1qq r`1 ^ω n´2 ě 0 on some bimeromorphic model of X. In the nef case, with small loss of positivity, the cohomology class can be represented by smooth forms. Thus the above inequality is trivial when taking the small loss tending to 0. In the strongly psef case, the cohomology class can be represented by a current with analytic singularities only at the expense of some loss of positivity. However a wedge product of arbitrary currents is not always well dened. In the next section, we make a digression and discuss what we call Segre currents to investigate the strongly psef case.

Segre forms

In this section, we are interested in the following problem. Assume that E is a holomorphic vector bundle of rank r over a compact Kähler manifold pX, ωq. Can one nd a pk, kq-closed positive current in the Segre class s k pEq :" π ˚pc 1 pO PpEq p1qq k`r´1 q? We have to point out that a similar construction is made in [START_REF] Lärkäng | Chern forms of singular metrics on vector bundles[END_REF], based on Demailly's improvement ( [Dem92a]) of the Bedford-Taylor theory ( [BT82]) of Monge-Ampère operators. The authors dene the corresponding current as a limit of smooth forms induced from local smooth regularizations of the metric given in [START_REF] Rau | Singular Hermitian metrics on holomorphic vector bundles[END_REF]. Compared to theirs, our construction has the advantage that we dene the relevant current as a limit of currents dened by Monge-Ampère operators without necessarily employing a regularizing sequence. In that way, we are still in a position to estimate the Lelong number of the limiting Segre current in terms by the Lelong number of the approximating sequence of weights. On the other hand, in the case of [START_REF] Lärkäng | Chern forms of singular metrics on vector bundles[END_REF], the approximation is given by smooth forms, hence the Lelong number of the approximation forms is identically zero, and one does not a priori obtain any information on the Lelong number of the limiting current. The Lelong number estimate will be necessary in the next section.

In particular, starting from a singular metric with analytic singularities on O PpEq p1q, the construction yields a singular metric on detpEq which is unique up to a constant and, as a consequence, the curvature of the induced metric of detpEq is uniquely determined by the curvature of the metric on O PpEq p1q.

To start with, we state some results of pluripotential theory. Some of this material is not essentially needed in the construction, but it provides intuition for a few arguments. The following statement is an improvement by Demailly of the Bedford-Taylor theory ( [BT82]) of Monge-Ampère operators.

Lemma 5.34 (Proposition 10.2 [START_REF] Demailly | A numerical criterion for very ample line bundles[END_REF]).

Let ψ be a plurisubharmonic function on a pnon necessarily compact q complex manifold X such that ψ is locally bounded on X A, where A is an analytic subset of X of codimension ě p `1 at each point. Let θ be a closed positive current of bidimension pp, pq.

Then θ ^iBBψ can be dened in such a way that θ ^iBBψ " lim νÑ8 θ ^iBBψ ν in the weak topology of currents, for any decreasing sequence pψ ν q νě1 of plurisubharmonic functions converging to ψ. Moreover, at every point x P X we have ν ´θ ^i π BBψ, x ¯ě νpθ, xqνpψ, xq.

Proposition 5.4.1. Let T be a pk, kq-closed positive current in the cohomology class α, over a compact Kähler manifold pX, ωq. Let U be a coordinate open set of X such that on U ,

C ´1ω ď i 2π BB|z| 2 ď Cω.
Then for any r 0 ą 0 and for any x P U with dpx, BU q ě r 0 with respect to the Euclidean metric in the coordinate chart, we have for r ď r 0

1 r 2n´2k ż Bpx,rq T ^ωn´k ď C 2n´2k r 2n´2k 0 pα ¨tωu n´r q.
Here pα ¨tωu n´r q is the intersection product of cohomology classes.

Proof. It is enough to prove that

1 r 2n´2k ż Bpx,rq T ^´i 2π BB|z| 2 ¯n´k ď C n´k r 2n´2k 0 pα ¨tωu n´r q.
By a basic observation of Lelong in [START_REF] Lelong | Fonctions plurisousharmoniques et formes diérentielles positives[END_REF], the left hand term is a increasing function with respect to r.

Thus we have

1 r 2n´2k ż Bpx,rq T ^´i 2π BB|z| 2 ¯n´k ď 1 r 2n´2k 0 ż Bpx,r0q T ^´i 2π BB|z| 2 ¯n´k .
However, the right hand term is at most

1 r 2n´2k 0 ż Bpx,r0q T ^pCωq n´k ď C 2n´2k r 2n´2k 0 pα ¨tωu n´r q
since T is a positive current.

We will need the following standard local parametrization theorem for analytic sets. Let I be an ideal in O n , let A " V pIq and A j be the irreducible components of A whose dimension is equal to the dimension of A. For every j and d " d j " dimA j , there exists a generic choice of coordinates

pz 1 , z 2 q " pz 1 , ¨¨¨, z d ; z d`1 , ¨¨¨, z n q P ∆ 1 ˆ∆2
such that the restriction of the canonical projection to the rst component π j : A j X p∆ 1 ˆ∆2 q Ñ ∆ 1 is a nite and proper ramied cover, which moreover yields an étale cover A j X π ´1p∆ 1 Sq Ñ ∆ 1 S, where S is an analytic subset in ∆ 1 .

Lemma 5.36. Let A be a compact analytic subset of a complex manifold M . Assume that dim C A " d and dim C M " n. Let pW ν q be relatively compact coordinate charts which form a nite open covering of A. Without loss of generality, assume that W ν is taken to be relatively compact in some larger coordinate chart, and is the coordinate chart provided by the local parametrization theorem. Then there exists C ą 0 such that for r ą 0 small enough, the open neighbourhood Ť ν tx P W ν , dpA, xq ă ru of A can be covered by at most C r 2d balls of radius r. Here the distance is calculated by the coordinate distance in each coordinate chart.

Proof. It is enough to prove this for each W ν . We verify that the volume of the open set tx P W ν , dpA, xq ă ru has an upper bound Cr 2n´2d for r small enough. We take in each local tubular neighbourhood a maximal family of points with mutual coordinate distance ě r. For r small enough, every point is at distance ď r to at least one of the centres, otherwise the family of points would not be maximal. In particular, balls of radius 2r centered at these points cover the tubular neighbourhood. On the other hand, balls of radius r{2 centered at these points are disjoint. Therefore, the number of such balls N ν satises the relation

c n N ν ´r 2 ¯2n ď Volptx P W ν , dpA, xq ă ruq ď Cr 2n´2d .
Here c n is the volume of the unit ball in C n . The lemma follows from the inequality.

The proof of the volume estimate for the tubular neighbourhood is obtained by induction on the dimension of the analytic set A. When d " 0, i.e. when A consists of a nite set, the estimate is trivial. Assume that we have already proven the result for all analytic sets of dimension d ď dim C pAq ´1. Then, we use the local parametrization theorem and the fact that A X π ´1pSq is a proper analytic set of A X W ν . By the induction hypothesis, we have

Volptx P W ν , dpA X π ´1pSq, xq ă ruq ď Cr 2n´2d`2 ,
and a similar estimate holds for the open set of points with distance ă r to the irreducible components of A of dimension ď d ´1. On the other hand, A X π ´1p∆ 1 Sq is contained in the union of A j `řn i"d`1 Dp0, rqe i where e i is the standard basis of C n and Dp0, rq is the disc in C centered at 0 of radius r. Here A j are the irreducible components of dimension d of A intersecting π ´1p∆ 1 Sq. Each open set A j `řn i"d`1 Dp0, rqe i has volume equal to cpn, dqVolpA j qr 2n´2d where cpn, dq is the volume of the unit disc in C n´d . This is because that π induces a biholomorphism between A j `řn i"d`1 Dp0, rqe i and ∆ 1 ˆ0`ř n i"d`1 Dp0, rqe i which preserves the Lebesgue volume form. On the other hand the tubular neighbourhood of A tdpx, Aq ă ru is included in the union of the union of A j `řn i"d`1 Dp0, rqe i , the open set of points whose distance to the dimension ď d ´1 irreducible components of A ă r and tx P W ν , dpA X π ´1pSq, xq ă ru from which the estimate follows.

Proposition 5.4.2. Let T be a pk, kq-closed positive current in the cohomology class α, over a compact Kähler manifold pX, ωq. Let A be an analytic subset of X of dimension d. There exists a sequence of open neighbourhoods U prq of A pindependent of T q such that Ş rą0 U prq " A and the volume of U prq is at most Cr 2n´2d , with a constant C independent of T . Moreover there exists C 1 independent of T such that ż

U prq T ^ωn´k ď C 1 r 2n´2k´2d .
Here C 1 depends on α, pX, ωq and A.

Proof. This is a direct consequence of Proposition 5.4.1 and Lemma 5.36.

Remark that in particular, if A is codimension at least k `1, the contribution of mass of T on U prq vanishes asymptotically as r Ñ 0, and the above Proposition holds uniformly for all positive currents T in the cohomology class α. The codimension condition is optimal since that the mass of the current rAs associated with a k-dimensional analytic set A does not vanish in the limit. Now we return to the construction of positive currents in the Segre classes. Observe that a codimension condition is needed to ensure the existence of such closed positive currents; this is shown by the following easy example.

Example 5.37. Let X be the blow up of P 2 at some point and let D be the exceptional divisor. Consider the vector bundle E :" OpDq 'r of rank r ě 2 over X. Corollary 5.13 shows that E is a strongly psef vector bundle as a direct sum of strongly psef line bundles.

An equivalent denition of total Segre class (i.e. ř k s k pEq) is the inverse of the total Chern class. Remark that for any vector bundles E, F , the total Chern class satises the axiom cpE ' F q " cpEqcpF q.

Thus the same relation holds for the total Segre class since the cohomological ring is commutative. In particular, spEq " spOpDqq r with s 2 pEq " `r 2 ˘pc 1 pOpDqq 2 q " ´`r 2 ˘. Thus there exists no closed positive current in the class s 2 pEq.

For the convenience of the reader, we recall the denition of a Finsler metric on a vector bundle, as introduced in [Kob75] (cf. also [START_REF] Demailly | Pseudoconvex-concave duality and regularization of currents, Several Complex Variables[END_REF]). Definition 5.38. A (positive denite) Finsler metric on a holomorphic vector bundle E is a positive complex homogeneous function ξ Ñ }ξ} x dened on each bre E x , that is, such that }λξ} x " |λ|}ξ} x for each λ P C and ξ P E x , and }ξ} x ą 0 for ξ ‰ 0.

We say that the metric is smooth if it is smooth outside of the zero section on the total space of E. Observe that a Finsler metric on a line bundle L is the same as a Hermitian metric on L. A Finsler metric on E ˚can also be viewed as a Hermitian metric h ˚on the line bundle O PpEq p´1q (as the total space of O PpEq p´1q coincides with the blow-up of E ˚along the zero section). In particular, O PpEq p1q carries a smooth Hermitian metric of positive Chern curvature form if and only if E carries a smooth Finsler metric whose logarithmic indicatrix dened by χpx, ξq :" log}ξ} x is plurisubharmonic on the total space. Let us observe that the logarithmic indicatrix has a pole along the zero section and can be extended as a global psh function on the total space, even though it is a priori psh only outside of the zero section.

Assume that we have a smooth Hermitian metric on pE, hq rather than just a Finsler metric on E, and let us consider the corresponding Hermitian metric on O PpEq p1q. We have the following calculation, which can be seen as a direct consequence of intersection theory, and is still valid on the level of forms without passing to cohomology classes: for every k P N

π ˚ˆi 2π ΘpO PpEq p1q, hq ˙r`k " s k pE, hq.
Note that the Segre classes can be written in terms of Chern classes and the Chern classes can be represented by the Chern forms derived from the curvature tensor. For our application, we only detail the calculation for the case k " 1 that we need. For the general case, we refer for example to the papers [START_REF] Diverio | Segre forms and Kobayashi-Lübke inequality[END_REF], [START_REF] Guler | On Segre forms of positive vector bundles[END_REF] and [START_REF] Mourougane | Computations of Bott-Chern classes on P(E)[END_REF]. The author thanks Simone Diverio for the references.

Lemma 5.39. Let E be a holomorphic vector bundle of rank r on a pnon necessarily compact q complex manifold X. Let π be the canonical projection PpEq Ñ X. Assume that E is endowed with a smooth Hermitian metric h, and consider the induced metrics on O PpEq p1q and detpEq pwhich we still denote by hq. where Θ means the curvature tensor.

Proof. To start with, we recall formula (15.15) of Chap. V in [START_REF] Demailly | Complex analytic and dierential geometry[END_REF], expressing the curvature of Op1q for the projectivisation of a vector bundle. Let pe λ q be a normal coordinate frame of E at x 0 P X and let iΘpEq x0 " ÿ c jkλν idz j ^dz k b e λ b e ν be the curvature tensor of E. At any point a P PpEq represented by a vector

ř λ a λ e λ P E x0 of norm 1, the curvature of O PpEq p1q is ΘpO PpEq p1qq a " ÿ c jkνλ a λ a ν dz j ^dz k `ÿ 1ďλďr´1 dξ λ ^dξ λ ,
where pξ λ q are the coordinates near a on PpEq, induced by unitary coordinates of the hyperplane a K Ă E x0 . In other words, if PpE| U q is locally isomorphic to U ˆPr´1 with coordinates pz, rξsq, we have a canonical projection pr 2 : PpEq Ñ P r´1 and the curvature at pz, rξsq is given by

i 2π ΘpO PpEq p1qqpz, rξsq " ´x i 2π Θ E ˚ξ, ξy h xξ, ξy h `pr 2 ω F S
where ω F S is the Fubini-Study metric on P r´1 . Therefore we have π ˚ˆi 2π ΘpO PpEq p1q, hq ˙r " ´r ż

P r´1 x i 2π Θ E ˚ξ, ξy h xξ, ξy h ^ωr´1 F S .
Observe that P r´1 -S 2r´1 {S 1 by the Hopf bration. The Fubini-Study metric is the metric induced on the quotient P r´1 by the restriction of the standard Euclidean metric to the unit hypersphere. We denote by dσ the volume form of the standard Euclidean metric restricted to that sphere. Then we have

π ˚ˆi 2π ΘpO PpEq p1q, hq ˙r " ´r ż S r´1 x i 2π Θ E ˚ξ, ξy h ^dσ.
Note that for a Hermitian form Qpξ, ξq "

ř λ i |ξ i | 2 we have ż S r´1 Qpξ, ξqdσpξq " 1 r trpQq " 1 r ÿ λ i , since ş S r´1 |ξ i | 2 dσpξq " 1
r by symmetry. Thus we get π ˚ˆi 2π ΘpO PpEq p1q, hq ˙r " ´tr ξ x i 2π Θ E ˚ξ, ξy h " i 2π ΘpdetpEq, hq.

As a direct consequence of the above formula, if h is a smooth semi-positive metric on O PpEq p1q, the induced metric on detpEq is also semi-positive. This is the positive form what we want. More generally, the forms π ˚`i 2π ΘpO PpEq p1q, hq ˘r`k " s k pE, hq are smooth positive currents in the k´th Segre class. Hence if h is a smooth semi-positive metric on O PpEq p1q, we can nd positive forms in the Segre classes, which we will call Segre forms (or Segre currents) in the sequel.

In the case where the metric is singular, the construction is more complicated. The diculty is that Monge-Ampère operators are not always well-dened for arbitrary closed positive currents.

In general, for a strongly psef vector bundle, in order to get a singular metric with analytic singularities, we have to allow a bounded negative part. Accordingly, we have to work in a more general setting. Let E be a vector bundle of rank r on a compact Kähler manifold pX, ωq, and let T be a closed positive p1, 1q-current on PpEq, in the cohomology class of a xed closed smooth form α. Notice that that the restriction of the cohomology class tαu is constant on any bre of π : PpEq Ñ X. A typical case is tαu " c 1 pO PpEq p1qq `Cπ ˚ω for some C ě 0. Write T " α `iBBϕ.

Assume that ϕ is smooth over PpEq A where A is an analytic set in PpEq such that A " π ´1pπpAqq and πpAq is of codimension at least k in X. We wish to dene a current π ˚T r´1`k . A priori, this Monge-Ampère operator is not well dened by just invoking the codimension condition, since the exponent r ´1 `k is larger than the codimension k. This problem can be overcome by dening the desired current as a weak limit of a sequence of less singular currents, in such a way that the limit is still unique.

Let ψ be a quasi-psh function on PpEq that is smooth outside an analytic set A 1 such that A 1 is of dimension at most n´k ´1. In other words, the codimension of A 1 in PpEq is at least k `r. This implies that the codimension of πpA 1 q in X is at least k`1. Then the Monge-Ampère operator pα`iBBlogpe ϕ `δe ψ qq r´1`k is well dened for every δ ą 0, as a consequence of Demailly's techniques [START_REF] Demailly | Singular Hermitian metrics on positive line bundles[END_REF]. Thus, by a weak compactness argument, the sequence of currents π ˚pα `iBBlogpe ϕ `δν e ψ qq r´1`k which all belong to the cohomology class π ˚αr´1`k , has a weak limit as δ ν Ñ 0 for some subsequence. Observe that if we take ψ " 0, for any δ ą 0, the function logpe ϕ `δq is a bounded quasi-psh function. In that case the wedge product π ˚pα `iBBlogpe ϕ `δqq r´1`k is already well dened as a current by the work of [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF]. However, we want the exibility of choosing a non constant potential ψ in order to get quasi-psh functions with isolated singularities that can be used to get Lelong number estimates. Note that since all currents involved are closed, the limit current is still closed. Now, we show that the limit is uniquely dened. The intuition is as follows. As we have observed at the end of Proposition 5.4.2, the family of currents indexed by δ has a contribution of mass 0 along the singular part of πpA 1 q, and we can therefore guess that the limit should be independent of the choice of ψ.

(Nevertheless, without passing to the limit, each current may still have a positive Lelong number at some point of πpA 1 q.) Lemma 5.40. The limit current is independent of the choice of the smooth representative α, as well as of the choice of ψ.

Proof. Fix a sequence δ ν tending to 0 such that the weak limit corresponding to α and ψ " 0 exists. Up to taking a subsequence which preserves the weak limit, we can assume in the following that the same sequence δ ν gives a weak limit for dierent choice of α and ψ. We will prove that the weak limits are the same, although a priori they might be dierent.

Let α, α be two representatives in the same cohomology class. Then there exists a smooth function f on PpEq such that α " α `iBBf.

Let φ be the quasi-psh function such that T " α `iBB φ. Without loss of generality, we can assume that φ " ϕ ´f . Thus we have π ˚p α `iBBlogpe φ `δν e ψ qq r´1`k " π ˚pα `iBBlogpe ϕ `δν e ψ`f qq r´1`k .

Thus to prove that the limit is independent of the choice of α, it is enough to prove that the limit is independent of ψ, and this is what the proof will be devoted to from now on. On the regular part X pπpAq Y πpA 1 qq, the limit current is equal to π ˚pα `iBBϕq r´1`k by the continuity of Monge-Ampère operators with respect to bounded decreasing sequences and the fact that the currents are smooth on the pre-image of X pπpAq Y πpA 1 qq. Thus the limit currents corresponding to dierent choices of ψ coincide on the regular part. Now, consider a Kähler form ω on PpEq satisfying the conditions α ě ´ω{2, iBBψ ě ´ω{2.

We can assume that the restriction of ω over all the bres P r´1 is a xed cohomology class. For example, we can take ω " Cπ ˚ω `c1 pO PpEq p1q, h 8 q for some C " 0 and for a smooth metric h 8 on O PpEq p1q induced by a Hermitian metric on E. For any δ ą 0 we have p˚q α `iBBlogpe ϕ `δe ψ q ě α `eϕ e ϕ `δe ψ piBBϕq `δe ψ e ϕ `δe ψ piBBψq `δe ϕ`ψ pe ϕ `δe ψ q 2 iBpψ ´ϕq ^Bpψ ´ϕq ě ´ω in the sense of currents, and the lower bound is independent of δ.

By adding and subtracting ω and using the Newton binomial formula, we see that the current pα ìBBlogpe ϕ `δe ψ qq r`k´1 can be written as a dierence of two closed positive currents equal to summations of terms pα `iBBlogpe ϕ `δe ψ q `ωq i ^ω j with i `j " r `k ´1. Since the direct image functor transforms closed positive currents into closed positive currents, π ˚pα `iBBlogpe ϕ `δe ψ qq r`k´1 can also be written as a dierence. If we compute the limit as δ tends to 0 (up to taking some convergent subsequence), the limit current will be a dierence of two closed positive currents, in particular, lim νÑ8 π ˚pα `iBBlogpe ϕ `δν e ψ qq r`k´1 is a normal current.

Denote by T 1 , T 2 the limit currents obtained with dierent choices of ψ, namely ψ 1 and ψ 2 . Assume that A 1 is the union of the singular loci of ψ 1 and ψ 2 . By assumption, πpA 1 q is of codimension at least k `1 in X. Then T 1 ´T2 is a normal pk, kq-current supported in πpAq Y πpA 1 q. If the codimension of πpAq in X is at least k `1, standard support theorems imply that T 1 " T 2 . If the codimension of πpAq in X is k, the support theorem yields

T 1 ´T2 " ÿ ν c ν rZ ν s
where Z ν are the codimension k irreducible components of πpAq and c ν P R, and there exists no components of πpA 1 q as its codimension is higher. We now check that the limit current is independent of the choice of ψ by a Lelong number calculation, i.e. by showing that c ν " 0.

For any x P Z ν0,reg p Ť ν‰ν0 Z ν Y πpA 1 qq, there exists a coordinate chart V such that x " 0, V Ť X πpA 1 q, and Z ν0 " tz 1 " ¨¨¨" z k " 0u locally. Take a cut-o function θ supported in V and dene T 1,δ " α `iBBlogpe ϕ `δe ψ1 q, T 2,δ " α `iBBlogpe ϕ `δe ψ2 q.

It is enough to prove that

lim δÑ0 ż X ´π˚T k`r´1 1,δ ´π˚T k`r´1 2,δ
¯^θω n´k " 0 which will imply that ż X pT 1 ´T2 q ^θω n´k " 0.

By a direct calculation, we have that

T k`r´1 1,δ ´T k`r´1 2,δ " ˜k`r´1 ÿ j"0 T j 1,δ ^T r`k´1´j 2,δ ¸^pT 1,δ ´T2,δ q " ˜k`r´1 ÿ j"0 T j 1,δ ^T r`k´1´j 2,δ ¸^iBBlog ˆeϕ `δe ψ1 e ϕ `δe ψ2
˙.

An integration by parts gives

ż X `π˚T k`r´1 1,δ ´π˚T k`r´1 2,δ ˘^θω n´k " ż PpEq iBBθ ^ωn´k ^˜r`k´1 ÿ j"0 T j 1,δ ^T r`k´1´j 2,δ ¸log ˆeϕ `δe ψ1 e ϕ `δe ψ2 ˙. Dene F δ :" log ˆeϕ `δe ψ1 e ϕ `δe ψ2 ˙,
which is a uniformly bounded function on V since V is outside of the image of the singular locus of ψ 1 , ψ 2 under π. Note also that the bound is independent of δ. Moreover, F δ tends to 0 almost everywhere as δ Ñ 0.

The convergence is locally uniform outside of the pole set A of ϕ. Dene Z η :" tz P V, dpz, πpAqq ď ηu with respect to the Kähler metric ω. The volume of Z η with respect to ω tends to 0 as η Ñ 0 by the assumption that V X πpAq is a smooth submanifold in V . Now we separate the estimate in dierent terms

ż X ´π˚T k`r´1 1,δ ´π˚T k`r´1 2,δ ¯^θω n´k " ż π ´1pZη q iBBθ ^ωn´k ^˜r`k´1 ÿ j"0 T j 1,δ ^T r`k´1´j 2,δ ¸Fδ `żπ ´1pV Zηq iBBθ ^ωn´k ^˜r`k´1 ÿ j"0 T j 1,δ ^T r`k´1´j 2,δ
¸Fδ , and we use the Fubini theorem to perform a double integration with respect to the base direction V Z η (resp. Z η ) and the bration direction P r´1 , for V suciently small. The rst term in the integration is bounded by

Cω n´k`1 ^˜r`k´1 ÿ j"0 pT 1,δ `ωq j ^pT 2,δ `ωq r`k´1´j with C independent of δ since F δ is uniformly bounded on V and iBBθ is bounded by Cω for C large enough. The currents T 1,δ and T 2,δ are not smooth on Z η , thus some attention has to be paid to apply the Fubini theorem. Let U pηq (resp. U 1 pηq) be the open neighbourhoods of A (resp. A 1 ) in PpEq given by Proposition 5.4.2. Note that T 1,δ and T 2,δ are smooth near the boundary of U pηq Y U 1 pηq. Without loss of generality, we can assume that π ´1pZ η q is contained in U pηq U 1 pηq. Take smooth currents Ti,δ on U pηq Y U 1 pηq cohomologous to T i,δ , which coincide with T i,δ (i " 1, 2) near the boundary of U pηq Y U 1 pηq. By Stokes' theorem, ż U pηqYU 1 pηq ω n´k`1 ^˜r`k´1 ÿ j"0 pT 1,δ `ωq j ^pT 2,δ `ωq r`k´1´j " ż U pηqYU 1 pηq ω n´k`1 ^˜r`k´1 ÿ j"0 p T1,δ `ωq j ^p T2,δ `ωq r`k´1´j ¸.

Therefore we can apply the Fubini theorem in the right hand side since all terms are smooth. The integral on π ´1pZ η q is bounded from above by the integral of the same term on U pηq Y U 1 pηq by the inclusion relation π ´1pZ η q Ă U pηq Y U 1 pηq.

We rst perform the integration along the bres P r´1 . The integration of ř r`k´1 j"0 p T1,δ `ωq j ^p T2,δ ὼq r`k´1´j along the bre direction is a cohomological constant since we assume that the restriction of cohomology class of α along each bres is a xed cohomology class on P r´1 . Thus the integral on U pηqYU 1 pηq is bounded from above by C ş U pηqYU 1 pηq ω n , for some C independent of δ. Observe that the constant is the same as the supremum of |F δ | on V (independent of δ), since for η small enough V X U 1 pηq " H.

The second term appearing in the integral is bounded by

sup π ´1pX Zηq |F δ | sup X |iBBθ| ω ω n´k`1 ^˜r`k´1 ÿ j"0 pT 1,δ `ωq j ^pT 2,δ `ωq r`k´1´j
¸.

On V Z η , the currents T 1,δ and T 2,δ are smooth, thus the Fubini theorem applies. We rst integrate along P r´1 . The integration of ř r`k´1 j"0 ppT 1,δ `ωq j ^pT 2,δ `ωq r`k´1´j q along the bre direction is a cohomological constant as above. Thus the second term obtained after integrating is bounded from above by C sup π ´1pX Zηq |F δ |, for some C independent of δ.

For every ε 1 ą 0, there exist η such that C

ş U pηqXU 1 pηq ω n ă ε 1 2 . There also exists δ 0 such that C sup X Zη |F δ | ă ε 1
2 for every δ ď δ 0 . Thus the two parts of estimate (integration on U pηq Y U 1 pηq and on π ´1pV Z η q) are both bounded from above by ε 1 2 for δ ď δ 0 . This concludes the proof that the limit current is independent the choice of ψ.

In what follows we show that the weak limit is also independent of the subsequence δ ν if the weight function ϕ has analytic singularities. It seems that the independence of the weak limit does not hold in general if we only require that ϕ is smooth outside an analytic set of sucient high codimension. However some special cases can be easily checked.

Example 5.41. Assume that there exists some

C 2 ě C 1 ą 0 such that C 1 δ 1 ν ď δ ν ď C 2 δ 1
ν up to taking some subsequence but with the same limit currents. Then the function log ˆeϕ `δν e ψ e ϕ `δ1 ν e ψ is uniform bounded on PpEq (independently of ν). It is locally uniformly convergent to 0 on π ´1pX Z η q.

The same arguments as above can be used to achieve the proof.

Another easy case is when the projection of the singular part of ϕ is of codimension at least k `1. In this case, dierent choices of subsequence δ ν will have the same closed positive limit outside an analytic set of codimension at least k `1. By standard support theorems, they have to coincide over X.

The case of potentials with analytic singularities comes from the following observation of Demailly.

Proposition 5.4.3. Let ϕ be a quasi-psh function with analytic singularities over on a pconnectedq complex n-dimensional manifold X, and u P C 8 pXq. Then for any exponent p p1 ď p ď nq, the asymptotic limit of Monge-Ampère operator lim δÑ0 piBBlogpe ϕ `δe u qq p is always well dened as a current pbut not necessarily positive, even when iBBϕ ě 0, and the limit may depend on uq.

Proof. By writing logpe ϕ `δe u q " logpe ϕ´u `δq `u and using a binomial expansion, it is sucient to consider the case u " 0, after replacing ϕ with ϕ ´u. Let us now consider the divisorial case, i.e., assume that X " C n and that ϕ is of the form ϕ " log|f | 2 `ψ for some holomorphic function f " ś m i"1 z mi i P OpXq and ψ P C 8 pXq. We can dene h " e ψ a smooth Hermitian metric on L :" O X . We denote by ∇ h the associated Chern connection.

Then, for every δ ą 0, we have iBBlogpe ϕ `δq " iBBlogp|f | 2 h `δq which converge to iBBϕ as δ Ñ 0`. We will dene the Monge-Ampère operator piBBϕq p as the limit of `iBBlogp|f | 2 h `δq ˘p as δ Ñ 0`. For every δ ą 0, we have

iBBlogp|f | 2 h `δq " iB xf, ∇ h f y |f | 2 h `δ " ix∇ h f, ∇ h f y |f | 2 h `δ ´i x∇ h f, f y |f | 2 h `δ ^xf, ∇ h f y |f | 2 h `δ `i xf, ∇ 0,1 h ∇ 1,0 h f y |f | 2 h `δ " δ p|f | 2 h `δq 2 ix∇ h f, ∇ h f y ´|f | 2 h |f | 2 h `δ i Θ L,h . Now, ix∇ h f, ∇ h f y is a p1, 1q-form of rank 1.
In particular, its wedge powers of exponents ą 1 are equal to 0.

If we raise to power p, the Newton binomial formula implies

´i 2π BBlogp|f | 2 h `δq ¯p " pδ p|f | 2 h `δq 2 ´|f | 2 h |f | 2 h `δ ¯p´1 i 2π x∇ h f, ∇ h f y ^´´i 2π Θ L,h ¯p´1 `´|f | 2 h |f | 2 h `δ ¯p´´i 2π Θ L,h ¯p.
The last term converges almost everywhere to p´i 2π Θ L,h q p , thus it converges weakly to the same limit by the bounded convergence theorem as δ Ñ 0`. We claim that

p˚q pδ |f | 2p´2 h p|f | 2 h `δq p`1 i 2π x∇ h f, ∇ h f y Ñ rZ f s
weakly, where rZ f s is the current of integration on the zero divisor of f . Terms that depend on h in ∇ h f are equal to f Bϕ, and they can be seen to yield zero limits, using the Cauchy-Schwarz formula and the fact that

pδ |f | 2p´2 h p|f | 2 h `δq p`1 ¨|f | 2 h ď p
converges to zero almost everywhere. In fact the limit (if it exists) is a positive current as a limit of positive currents. It will also be closed, since

B ˆpδ |f | 2p´2 h p|f | 2 h `δq p`1 i 2π x∇ h f, ∇ h f y ˙" pδ |f | 2p´2 h p|f | 2 h `δq p`1 1 2π xf, ∇ h f y ^ΘL,h
and we can again apply a Cauchy-Schwarz argument to see that the right hand side converges to 0. A priori the limit current (if it exists) should be supported on |Z f |. However, at any regular point of Z f we can nd local holomorphic coordinates in which f pzq " z m 1 , where m is the multiplicity of the irreducible component.

An easy calculation yields p˚˚q

ż z1PC pδ |z m 1 | 2p´2 p|z m 1 | 2 `δq p`1 idz m 1 ^dz m 1 2π " m.
Equality p˚˚q can be checked e.g. by putting w " z m 1 , using polar coordinates w " re iθ and making a change of variables t " r 2 r 2 `δ . More generally, if f pzq " ś z mi i , we have to consider the integration

ż t|zi|ď1u pδ | ś m i"1 z mi i | 2p´2 p| ś m i"1 z mi i | 2 `δq p`1 idp ś m i"1 z mi i q ^dp ś m i"1 z mi i q p2πq n ^ωn´1
eucl where ω eucl is the standard p1, 1q-form associated with the euclidean metric on C n . It is bounded by sums of integrals of the type

ż t0ă|zi|ď1,2ďiďnu pδ || ś m i"2 z mi i |z m1 1 | 2p´2 p|| ś m i"2 z mi i |z m1 1 | 2 `δq p`1 i| ś m i"2 z mi i |dpz m1 1 q ^| ś m i"2 z mi i |dz m1 1 p2πq n ^ωn´1 eucl .
The integral is nite by the Fubini theorem and a calculation similar to p˚˚q, putting e.g. w " | ś m i"2 z mi i |z m1

1 .

In particular, up to taking a subsequence, the limit in formula p˚q exists as δ Ñ 0`. By the support theorem any limit current is associated to a divisor supported in |Z f |. To show that the weak limit is unique, it is sucient to check formula p˚q at a regular point of |Z f | and to show that the coecient is unique. This actually follows from equality p˚˚q.

As a consequence of the above calculations, we nd

´i 2π BBlogp|f | 2 h `δq ¯p Ñ p´1q p´1 rZ f s ^´i 2π Θ L,h ¯p´1 `p´1q p ´i 2π Θ L,h ¯p.
For the general case, we apply Hironaka's theorem. There exists a certain modication σ : X Ñ X of X such that σ ˚ϕ is locally of the form considered in the previous case, where f has a simple normal crossing divisor. Thus the limit lim δÑ0``i BBlogpe ϕ `δq ˘p " σ ˚´lim δÑ0``i BBlogpe σ ˚ϕ `δq ˘pē xists by the weak continuity of the direct image operator σ ˚. By the ltering property of modications, one can also see that the above limit is independent of the choice of the modication σ.

It follows directly from the proposition that the limit current is independent of the subsequence δ ν if the weight function ϕ has analytic singularities. It is communicated has communicated to the us by Richard Lärkäng that a similar calculation has been done in [START_REF] Mats Andersson | On a Monge-Ampère operator for plurisubharmonic functions with analytic singularities[END_REF] and [START_REF] Bªocki | On the Monge-Ampère operator for quasi-plurisubharmonic functions with analytic singularities[END_REF]. The advantage of the construction made in lemma 5.40 is that under the assumption that the weight function is smooth outside of an analytic set of sucient high codimension, one can show that the limit current is positive. This is shown in theorem 5.43 below.

Example 5.42. We describe below a special case of the previous construction. Let E be a strongly psef vector bundle over a compact Kähler manifold pX, ωq. Let h 8 be an arbitrary metric on E. Since O PpEq p1q is relatively ample with respect to the projection π : PpEq Ñ X, there exists C ą 0 big enough such that iΘpO PpEq p1q, h 8 q `Cπ ˚ω ą 0.

We take the above form as a smooth representative in the class c 1 pO PpEq p1qq `Cπ ˚tωu. By denition of a strongly psef vector bundle, there exists a singular metric h ε with analytic singularities on O PpEq p1q such that iΘpO PpEq p1q, h ε q ě ´επ ˚ω.

By the above construction, π ˚`i 2π ΘpO PpEq p1q, h ε q `Cπ ˚ω˘r is well dened for ε small enough by taking that ψ " 0. In the construction, all currents are positive currents. In particular, π ˚`i 2π ΘpO PpEq p1q, h ε q `Cπ ˚ω˘r is a closed positive current on X for ε small enough. On the other hand,

π ˚ˆi 2π ΘpO PpEq p1q, h ε q `Cπ ˚ω˙r " π ˚ˆi 2π ΘpO PpEq p1q, h ε q ˙r `rπ ˚ˆC π ˚ω ^p i 2π ΘpO PpEq p1q, h ε qq r´1 ˙`¨¨¨.
In the ¨¨¨summation, there are terms of the form π ˚ˆπ ˚ωi ^p i 2π ΘpO PpEq p1q, h ε qq r´i ḟor i ě 2. By the projection formula, we have

π ˚ˆπ ˚ωi ^p i 2π ΘpO PpEq p1q, h ε qq r´i ˙" π ˚ˆi 2π ΘpO PpEq p1q, h ε q ˙r´i ^ωi .
By a degree consideration, for i ě 2, the right hand side is 0 and for i " 1 it is equal to ω. In conclusion,

π ˚ˆi 2π ΘpO PpEq p1q, h ε q `Cπ ˚ω˙r " π ˚ˆi 2π
ΘpO PpEq p1q, h ε q ˙r `Crω ě 0 in the sense of currents. In particular, π ˚`i 2π ΘpO PpEq p1q, h ε q ˘r is a quasi-positive current (i.e. a current bounded below by a smooth form), belonging to the cohomology class c 1 pdetpEqq by lemma 5.39.

More generally, we have the following Segre current construction.

Theorem 5.43. (Main technical lemma) Let E be a vector bundle of rank r over a compact Kähler manifold pX, ωq, and let T be a closed positive p1, 1q-current on PpEq, belonging to the same cohomology class as a smooth form α. Write T " α `iBBϕ.

Assume that ϕ is smooth over PpEq A, where π : PpEq Ñ X is the projection and A is an analytic set in PpEq such that A " π ´1pπpAqq and πpAq is of codimension at least k in X. Then there exists a pk, kq-positive current in the class π ˚tαu r`k´1 .

Proof. The desired current π ˚pT r`k´1 q has been constructed, and its uniqueness has been shown in the previous lemma. It remains to show that π ˚pT r`k´1 q is positive. It is enough to prove this near an arbitrary point x P X, since positivity is a local property. There exists a smooth function ψ on PpEq such that α `iBBψ ě 0 on an open neighbourhood U of x. Thus over U , for every δ ą 0, we have α `iBBlogpe ϕ `δe ψ q ě 0 using p˚q in the previous lemma. Therefore, over U again, we see that π ˚T r`k´1 " lim δÑ0 π ˚pα `iBBlogpe ϕ `δe ψ qq r`k´1 is positive as a limit of positive currents. Let us note that the restriction of the cohomology class tαu is constant on the bres of π this property being automatically true for any smooth proper morphism.

Remark 5.44. In fact, the above construction would work for any submersion π : X Ñ Y of relative dimension r ´1 and any psef cohomology class tαu P H 1,1 pX, Rq, when X, Y are compact Kähler manifolds.

The construction works for currents with analytic singularities of an adequate codimension, and in this way, one gets gives a closed positive current in the direct image of wedge powers of tαu.

In the special case of Segre currents, we get Corollary 5.45. Let E be a strongly psef vector bundle of rank r over a compact Kähler manifold pX, ωq. Let pO PpEq p1q, h ε q be a singular metric with analytic singularities such that iΘpO PpEq p1q, h ε q ě ´επ ˚ω and the codimension of πpSingph ε qq is at least k in X. Then there exists a pk, kq-positive current in the cohomology class π ˚pc 1 pO PpEq p1qq `επ ˚tωuq r`k´1 . In particular, detpEq is a psef line bundle.

Proof. The rst part is a direct consequence of theorem 5.43. The second part is consequence of the fact that when k " 1 one has π ˚pc 1 pO PpEq p1qq `επ ˚tωuq r " c 1 pdetpEqq `εω.

Remark 5.46. Let h be a smooth metric on O PpEq p1q (not necessarily coming from a Hermitian metric on E). We can dene an induced singular metric on detpEq in the following non canonical way. Fix an arbitrary smooth Hermitian metric h 8 on PpEq. Then there exists ψ P C 8 pPpEqq such that h " h 8 e ´ψ .

Therefore we have i 2π

ΘpO PpEq p1q, hq ´i 2π ΘpO PpEq p1q, h 8 q " i 2π BBψ.

Dene a metric on detpEq by detph 8 qe ´ϕ with ϕ :" π ˚˜ψ r´1 ÿ j"0 ´i 2π ΘpO PpEq p1q, hq ¯j ^´i 2π ΘpO PpEq p1q, h 8 q ¯r´1´j ¸.

We have that

i 2π BBϕ " π ˚ˆ´i 2π ΘpO PpEq p1q, hq ¯r ´´i 2π ΘpO PpEq p1q, h 8 q ¯r˙.
In other words, i 2π ΘpdetpEq, detph 8 qe ´ϕq " π ˚´i 2π ΘpO PpEq p1q, hq ¯r.

If h comes from a Hermitian metric of E, we get precisely the same curvature formula as in lemma 5.39.

Remark 5.47. The denition in the previous remark is non canonical in the sense that it depends on the choice of the reference metric h 8 . This can be seen as follows. In analogy with the Monge-Ampère functional, we consider the functional

M h8 : C 8 pPpEqq Ñ C 8 pXq ψ Þ Ñ π ˚˜ψ r´1 ÿ j"0 ´i 2π ΘpO PpEq p1q, h 8 q `i 2π BBψ ¯j ^´i 2π ΘpO PpEq p1q, h 8 q ¯r´1´j ¸.
Let ψ t be a smooth path in C 8 pPpEqq. We compute the Fréchet dierential

dM h8 pψ t q dt " π ˚˜9 ψ t r´1 ÿ j"0 ´i 2π ΘpO PpEq p1q, h 8 q `i 2π BBψ t ¯j ^´i 2π ΘpO PpEq p1q, h 8 q ¯r´1´j ¸` π ˚˜ψ t r´1 ÿ j"0 j i 2π BB 9 ψ t ^´i 2π ΘpO PpEq p1q, h 8 q `i 2π BBψ t ¯j´1 ^´i 2π ΘpO PpEq p1q, h 8 q ¯r´1´j which,
by an integration by parts, is equal to

π ˚ˆ9 ψ t ´i 2π ΘpO PpEq p1q, h 8 q ¯r´1 ˙.
Now let h 8 , h8 be two smooth metrics on E and denote the induced metrics on O PpEq p1q by the same notation. Let ψ t be a smooth path connecting h 8 and h8 . For example we can take ψ t such that h 8 e ´ψt " h t 8 h1´t 8 . As a consequence of the calculation of Fréchet dierential, our functional satises for any ϕ P C 8 pPpEqq the cocycle relation M h8 pϕ `ψ1 q " M h8 pϕq `Mh8 pψ 1 q.

Let us note that M h8 pϕ `ψ1 q (resp. M h8 pϕq) is the weight function of the induced metric on detpEq with respect to the reference metric h 8 (resp. h8 ), associated with the weight function ϕ `ψ1 (resp. ϕ) on PpEq.

In particular, they correspond to metrics on detpEq that are induced by the same metric on O PpEq p1q, but with dierent reference metrics h8 and h 8 . Since iBBM h8 pϕq is independent of the choice of the reference metric h 8 , we have iBBM h8 pψ 1 q " 0, and this means that M h8 pψ 1 q is a constant. Therefore the metric dened in the previous remark is uniquely dened up to a constant.

Strongly pseudoeective and numerically trivial bundles

In this section, we use the Lelong number estimate to show that a strongly psef vector bundle with trivial rst Chern class is in fact numerically at. In particular, this implies that a strongly psef reexive sheaf with trivial rst Chern class is in fact a numerically at vector bundle. As an application of the previous section, we get the following result.

Theorem 5.48. (Main theorem) Let E be a strongly psef vector bundle on a compact Kähler manifold pX, ωq, such that c 1 pEq " 0. Then E is a nef pand thus numerically at q vector bundle.

Proof. We show through Lelong number estimates and regularization, that the vector bundle E is in fact nef. Let h ε be a singular metric with analytic singularities on O PpEq p1q, such that iΘpO PpEq p1q, h ε q ě ´επ ˚ω.

Let us write h ε " h 8 e ´ϕε with respect to some smooth reference metric h 8 on O PpEq p1q. Dene T ε :" π ˚´i 2π ΘpO PpEqp1q , h 8 q `i 2π BBϕ ε ¯r by means of Theorem 5.43. We have T ε ě ´εω. More precisely, we are going to prove the Lelong number estimate νpT ε , zq ě ˆsup w,πpwq"z νpϕ ε , wq ˙r.

The proof of this estimate is similar to the proof of theorem 10.2 of [START_REF] Demailly | A numerical criterion for very ample line bundles[END_REF]. For the convenience of the reader, we briey outline the proof here. Fix w 0 P π ´1pxq and γ " νpϕ ε , w 0 q. The inequality is trivial when γ " 0. Otherwise, for any ε 1 ă γ, let us dene ψ :" pγ ´ε1 qθpwqlog|w ´w0 |

where w is the coordinate near w 0 and θ is a cut o function near w 0 . By lemma 5.40, we have

T ε " lim δÑ0 π ˚ˆi 2π ΘpO PpEqp1q , h 8 q `i 2π
BBlogpe ϕε `δe ψ q ˙r in the sense of currents. For every η so small that t|z| ď ηu is contained in a coordinate chart with πpw 0 q " 0, we have

ż |z|ďη T ε ^´i 2π BBlog|z| 2 ¯n´1 ě lim sup δÑ0 ż |z|ďη π ˚ˆi 2π ΘpO PpEqp1q , h 8 q `i 2π BBlogpe ϕε `δe ψ q ˙r ^´i 2π BBlog|z| 2 ¯n´1
by the semi continuity of Monge-Ampère operators with respect to decreasing sequences. By construction, we have ϕ ε pwq ď γlog|w ´w0 | `C near w 0 , so i 2π BBlogpe ϕε `δe ψ q coincides with i 2π BBψ on a small ball Bpw 0 , η δ q Ă π ´1pBp0, ηqq. Thus we have

ż |z|ďη π ˚ˆi 2π ΘpO PpEqp1q , h 8 q `i 2π BBlogpe ϕε `δe ψ q ˙r ^p i 2π BBlog|z| 2 q n´1 ě ż |w´w0|ďη δ p i 2π ΘpO PpEqp1q , h 8 q `i 2π
BBlogpe ϕε `δe ψ qq r ^p i 2π BBlog|z| 2 q n´1 ě pγ ´ε1 q r .

Taking η Ñ 0 and ε 1 Ñ 0 gives the Lelong number estimate. We have proven in Corollary 5.45 that T ε ě ´εω, and T ε `εω is in the class c 1 pdetpEqq `εtωu. By weak compactness, there exists a convergent subsequence T εν with limit T in the class c 1 pdetpEqq. Since T ě 0 and c 1 pdetpEqq " 0, the only possibility is that T " 0. Now, we recall the following version of the regularization theorem given in [START_REF] Demailly | Estimations L 2 pour l'opérateur B d'un bré vectoriel holomorphe semi-positif au dessus d'une variété kählérienne complète[END_REF]: let T " θ `iBBϕ be a closed p1, 1q-current, where θ is a smooth form. Suppose that a smooth p1, 1q-form γ is given such that T ě γ. Then there exists a decreasing sequence of smooth functions ϕ k converging to ϕ such that, if we set T k :" θ `iBBϕ k , we have p1q T k Ñ T weakly, p2q T k ě γ ´Cλ k ω, where C ą 0 is a constant depending on pX, ωq only, and λ k is a decreasing sequence of continuous functions such that λ k pxq Ñ νpT, xq for all x P X. where ω is some Kähler form on PpEq. In other words, the line bundle O PpEqp1q is nef.

Lemma 5.49. Let X be a compact complex manifold. Let T δ pδ ą 0q be a sequence of closed positive pk, kq-currents. Assume that T δ Ñ 0 weakly as δ Ñ 0. Then lim δÑ0 sup X νpT δ , xq " 0.

Proof. Since X is compact, we can cover X by nite coordinate open charts V i pĂ U i Ă Ũi q such that V i is relatively compact in U i and U i is relatively compact in Ũi . Thus we reduce the proof to the case of coordinate chart V i .

Let ρ i be cut o functions supported in Ũi such that ρ i " 1 on U i and 0 ď ρ i ď 1. Since T δ Ñ 0 weakly, there exists a uniform C ą 0 such that ż ˙n´k .

Then νpT δ , x, rq is an increasing function with respect to r and we have that νpT δ , xq " lim rÑ0 νpT δ , x, rq.

For small r ą 0 such that 2r ă dpV i , BU i q, there exists a cut-o function θ x supported in Bpx, 2rq such that θ x " 1 on Bpx, rq and 0 ď θ x ď 1. ˙n´k .

Since θ x can be obtained by translation of the same function, pθ x q xPVi for small r is a compact family with respect to C 8 topology. Thus for xed small r, for every x, y P V i , r ´2pn´kq ż Ui T δ ^pθ x ´θy q ˆi 2π BB|z| 2 ˙n´1 ď Cr ´2pn´kq θ x ´θy L 8 pUiq .

Thus r ´2pn´kq ş Ui T δ ^θx `i 2π BB|z| 2 ˘n´k tends to 0 as δ Ñ 0 uniformly with respect to x P V i . In particular, νpT δ , x, rq tends to 0 as δ Ñ 0 uniformly with respect to x P V i , hence the same property holds for νpT δ , xq.

Remark 5.50. For a family of p1, 1q-closed positive currents, the proof is much simpler, using the observation of Proposition 5.4.1.

Let γ be a Gauduchon metric over X (i.e. a smooth metric such that iBBpγ n´1 q " 0). With the same notation as in the proof, we have for r 0 small enough νpT δ , x, rq ě νpT δ , x, r 0 q ď C r 2n´2 0 ż X T δ ^γn´1 .

Since the right-hand side term (which is cohomological) tends to 0 along with δ, the Lelong number tends to zero locally uniformly. Since X is compact, the convergence is uniform.

Corollary 5.51. Let pX, ωq be a compact Kähler manifold. Let T δ pδ ą 0q be a sequence of closed p1, 1q-currents such that T δ ě ´δω in the sense of currents. Assume that T δ Ñ 0 weakly as δ Ñ 0. Then lim δÑ0 sup X νpT δ , xq " 0.

Proof. This is a direct consequence of the previous lemma if we consider T δ `δω instead of T δ .

Now we can easily conclude our result.

Corollary 5.52. Let F be a strongly psef reexive sheaf over a compact Kähler manifold pX, ωq with c 1 pFq " 0. Then F is a nef pand numerically at q vector bundle.

Proof. By our assumption, there exists a modication such that the pull back of F modulo torsion is a strongly psef vector bundle with vanishing rst Chern class by lemma 5.29. By theorem 5.48, this vector bundle is in fact nef. Thus by Proposition 5.3.8, we conclude the corollary.

As a geometric application, we obtain the following generalisation of Theorem 7.7 in [START_REF] Boucksom | The pseudo-eective cone of a compact Kähler manifold and varieties of negative Kodaira dimension[END_REF].

Corollary 5.53. Let X be a (non necessarily projective) K3-surface or a Calabi-Yau 3-fold. Then the tangent bundle T X is not strongly psef. In other words, for a compact Kähler surface or 3-fold if c 1 pXq " 0 and T X is strongly psef, then a nite étale cover of X is a torus.

Proof. Assume X is a compact Kähler surface such that c 1 pXq " 0 and T X is strongly psef. Then by Theorem 5.48, T X is in fact numerically at. In particular, the second Chern class of X is 0. By classication of compact surface with nef tangent bundle (Theorem 6.1 and 6.2) in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF], a nite étale cover of X must be a torus. Remind that the dierence between the projective case and the compact complex case is whether the torus is abelian or Kodaira surface or Hopf surface. The later two surfaces are nevertheless non Kähler.

Then proof of the dimension 3 case is similar. Instead of the Theorem 6.1 and 6.2, we use the classication of compact 3-folds with nef tangent bundle (Theorem 7.1 and 7.2) in [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF].

In fact, we can show the following more general fact. A stronger result in the projective singular setting can be found in Theorem 1.6 of [START_REF] Höring | Algebraic integrability of foliations with numerically trivial canonical bundle[END_REF] (Instead of proving non strong psefness, they prove non weak psefness.) Corollary 5.54. For a compact Kähler manifold if c 1 pXq " 0 and T X is strongly psef, then a nite étale cover of X is a torus. In particular, an irreducible symplectic, or Calabi-Yau manifold does not have strongly psef tangenet bundle or cotangent bundle.

Proof. By the Beauville-Bogomolov theorem, up to a nite étale cover π : X Ñ X, X is a product of ś T i ˆś S j ˆś Y k where T i are complex tori, S j are Calabi-Yau manifolds and Y k are irreducible symplectic manifolds. Since the tangent bundle of X is numerical at under the assumption and by Theorem 5.48, the tangent bundle of all the components in the direct sum is numerical at. In particular, all the components have vanishing second Chern class by Corollary 1.19 of [START_REF] Demailly | Compact complex manifolds with numerically eective tangent bundles[END_REF]. (A stronger result in the projective and singular setting can be found in Theorem 1.8 of [START_REF] Höring | Algebraic integrability of foliations with numerically trivial canonical bundle[END_REF].) By representation theory, the tangent bundle of the Calabi-Yau or irreducible symplectic components is stable. Thus we have the equality case in the Bogomolov inequality which implies that the tangent bundle of the Calabi-Yau or irreducible symplectic components is projectively at. Since the rst Chern class of the Calabi-Yau or irreducible symplectic components vanishes, the tangent bundle is in fact unitary at. In particular, the restricted holonomy groups of the Calabi-Yau or irreducible symplectic components are trivial. In other words, only the complex tori components appear in the decomposition.

Inspired by the work of [START_REF] Liu | Xiaokui Yang Projective manifolds whose tangent bundle contains a strictly nef subsheaf[END_REF], we can slightly generalise Corollary 5.52 in the following form.

Lemma 5.55. (analogue of Lemma 4.5 [START_REF] Liu | Xiaokui Yang Projective manifolds whose tangent bundle contains a strictly nef subsheaf[END_REF]) Let pX, ωq be a compact Kähler manifold of dimension n ą 2, and let F be a reexive coherent sheaf of rank r ą 2 on X. Then, for any positive integer m ą 2, we have c 2 pS rms Fq " Ac 2 1 pFq `Bc 2 pFq, where A and B are non-zero rational numbers depending only on m and r, and satisfy the relation

A `r ´1 r B ´pR ´1qRm 2 2r 2 " 0
where R " `r`m´1 r ˘is the rank of S rms F.

Proof. The proof is almost identical to Lemma 4.5 in [START_REF] Liu | Xiaokui Yang Projective manifolds whose tangent bundle contains a strictly nef subsheaf[END_REF]. The only dierence is the abandonment of the use of the auxiliary ample line bundle. For this reason, we only sketch the proof. We have trivially the form of the equality over the open set where the sheaf is locally free. By Lemma 5.18, the same equality should hold on X. By splitting principle, it is enough to prove the formula for F " ' r L where L is a hermitian (complex) line bundle (not necessarily holomorphic).

In this case, F is a polystable and projectively at vector bundle, thus we have the equality case in the Bogomolov-Lübke inequality, pc 2 pFq ´r ´1 r c 1 pFq 2 q ¨ωn´2 " 0.

Develop c 2 pS m F b L ˚bm q " 0 in terms of c 1 pLq. Combining with the above equality, we have pA `r ´1 r B ´pR ´1qRm 2 2r 2 qc 1 pLq 2 ¨ωn´2 " 0.

It suces to show that there exists a hermitian (complex) line bundle such that c 1 pLq q ¨ωn´q ‰ 0 for any q. Recall that Théorème 4.3 of [Lae02] proved using Kronecker lemma that for any closed real p1, 1q´form α on a compact complex manifold, for innite k, kα can be approximated in C 8 norm by the curvature of some hermitian (complex) line bundle L k with respect to some hermitian connection. In particular, for such k large enough, c 1 pL k q q ¨ωn´q ‰ 0 for any q.

By choosing F as some combination of L k , L k and O X , it can be shown that A, B are non-zero.

For the convenience of the reader, we give here the proof of the compact Kähler version of proposition 4.6 Chap. IV of [START_REF] Nakayama | Zariski decomposition and abundance[END_REF].

Proposition 5.5.1. Let pX, ωq be a compact Kähler manifold and F be an ω-semi-stable reexive sheaf with pc 2 pFq ´r ´1 r c 1 pFq 2 q ¨ωn´2 " 0.

Then F is locally free.

Proof. We shall prove by induction on the rank of F. If F is polystable, it is direct consequence of corollary 3 of [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF]. We may assume F is not polystable. Then there is an exact sequence

0 Ñ S Ñ F Ñ Q Ñ 0,
where S and Q are non-zero torsion-free sheaves satisfying the relation of slope µpSq " µpFq " µpQq. The sheaves S and Q ˚˚are semi-stable.

Recall the formula (II.9) Chap. II [START_REF] Nakayama | Zariski decomposition and abundance[END_REF] ∆2 pFq " ∆2 pSq `∆ 2 pQq ´rank S ¨rank Q rank F pµpSq ´µpQqq 2 where ∆2 pFq :" pc 2 pFq ´r´1 2r c 1 pFq 2 q ¨ωn´2 . The Bogomolov inequality gives ∆2 pSq ě 0 and ∆2 pQ ˚˚q ě 0. On the other hand, c 2 pQ ˚˚{Qq is represented by an eective cycle supported in the support of the torsion sheaf Q ˚˚{Q. Thus we have that ∆2 pQ ˚˚q " ∆2 pQq " ∆2 pS q " 0.

By induction, S and Q ˚˚are locally free which by lemma 5.15 denes an extension of vector bundles over X. Since F coincides with a vector bundle outside an analytic set of codimension at least 3, F is locally free.

As consequence of the lemma and the proposition, we have the following generalisation of Corollary 5.52. Let pX, ωq be a compact Kähler manifold of dimension n, and let F be a reexive coherent sheaf on X. Assume there exists a line bundle L and m ą 0 such that S rms F b L is strongly psef with c 1 pS rms F b Lq " 0. Then F is a vector bundle such that Fx´1 m Ly is a Q´twisted nef vector bundle.

In particular, let E be a vector bundle of rank r such that Ex´1 r detpEqy is Q´twisted strongly psef vector bundle, then Ex´1 r detpEqy is Q´twisted nef vector bundle.

Proof. By corollary 5.52, S rms F bL is a numerically at vector bundle. In particular, c 2 pS rms F bLq " 0 and S rms F b L is semistable. In fact, S rms F b L admits a ltration of vector bundles

0 " E 0 Ă E 1 Ă ¨¨¨Ă E p " S rms F b L such that for each i, E i {E i´1 is at and polystable. For any subsheaf S of S rms F bL, let i 0 :" maxti, E i Ă Su.

Then if S " E i0 , µpSq " 0. Otherwise F{E i0 is a non zero subsheaf of E i0`1 {E i0 , thus µpSq " µpS{E i0 q μpE i0 q ď µpE i0`1 {E i0 q " 0.

By the above lemma, direct calculations yield pc 2 pFq ´r ´1 2r c 1 pFq 2 q ¨ωn´2 " 0.

We claim that F is also semistable. In fact, for any torsion free quotient sheaf Q of F, we have generic surjective morphism

α : S rms F b L Ñ S rms Q b L.
The image of α coincide with S rms Q b L outside an analytic set of codimension at least 2, thus these two sheaves have the same slope. The inequality µpS rms F b Lq ď µpS rms Q b Lq implies that µpFq ď µpQq.

In fact, S rms F and F are locally free outside a closed analytic set A of codimension at least 2. Since H 2 pX, Cq -H 2 pX A, Fq,

c 1 pS rms Fq " 1 r ˆm `r ´1 m ˙c1 pFq
from the corresponding formula by restriction on X A on which the coherent sheaves are locally free. Here r is the rank of F. We have of course similar formula for Q.

For the general case, it is a direct consequence of the above proposition. Thus we can prove the following equivalent conclusion. F is locally free and there is a ltration of vector subbundles 0 " F 0 Ă F 1 Ă ¨¨¨Ă F p " F such that F i {F i`1 are projectively at vector bundles and µpF i {F i`1 q " µpFq for any i.

As pointed out to us by A. Höring, Corollary 5.54 can be established in the following easier way. As above, one shows that a compact Kähler manifold pX, ωq with strongly psef tangent bundle or cotangent bundle and c 1 pXq " 0 is a nite étale quotient of a complex torus. By our main theorem, T X is a numerically at vector bundle. In particular, it is well-known that T X is ω-semi-stable and that c 2 pXq " 0. (This is the special case considered at the beginning of the proof of Corollary 5.56.) Thus we have the equality case in the Bogomolov inequality, and therefore the tangent bundle T X is projectively at. Since c 1 pXq " 0, T X is at, which, by the Bieberbach theorem, implies that X is a torus, up to a nite étale cover.

CHAPTER 6

Intersection theory and Chern classes in Bott-Chern cohomology Abstract. In this article, we study the axiomatic approach of Grivaux in [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF] for rational Bott-Chern cohomology, and use it in particular to dene Chern classes of coherent sheaves in rational Bott-Chern cohomology. This method also allows us to derive a Riemann-Roch-Grothendieck formula for a projective morphism between smooth complex compact manifolds. The appendix presents a calculation of integral Bott-Chern cohomology in top degree for a connected compact manifold.

In the general case of complex spaces, the Poincaré and Dolbeault-Grothendieck lemmas are not valid in general. For this reason, and to simplify the exposition, we only consider non singular complex spaces in the sequel, and let X denote throughout a complex manifold.

Introduction

Chern classes and Chern characteristic classes are very important topological invariants of complex vector bundles. In order to better reect the complex structure of manifolds, we rene Chern classes and Chern characteristic classes, and dene them in rational Bott-Chern cohomology. This is done by introducing suitable complexes of sheaves of holomorphic and anti-holomorphic forms. There exists a canonical morphism from the complex of rational Bott-Chern cohomology into the locally constant sheaf Q, seen as a complex with a single term located in degree 0. Under this morphism, the image of Chern classes and Chern characteristic classes in rational Bott-Chern cohomology are the usual ones dened in singular cohomology.

In the fundamental article [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF], Grivaux showed that for suitable rational cohomology theories of compact complex manifolds, one can construct Chern characteristic classes of arbitrary coherent sheaves, and in particular of torsion sheaves, by induction on the dimension. This can be done provided one has a reasonable intersection theory, and provided Chern classes can be dened for vector bundles. One important argument consists of ensuring the validity of the Riemann-Roch-Grothendieck formula for closed immersions of smooth hypersurfaces.

We begin by recalling some background for this type of problems. For any complex manifold X, we denote by K 0 X the Grothendieck group of vector bundles on X. For a vector bundle E, we denote by rEs the class represented by E. By denition, K 0 X is the quotient of the free abelian group on the set of isomorphism classes of vector bundles, modulo the relations rEs " rE 1 s `rE 2 s for all exact sequences 0 Ñ E 1 Ñ E Ñ E 2 Ñ 0. It can be endowed with a ring structure by taking tensor products of vector bundles.

In a similar way, we denote by K 0 X the Grothendieck group of coherent sheaves on X, simply by replacing vector bundles in the denition of K 0 X by coherent sheaves, and one has a natural morphism K 0 X Ñ K 0 X by viewing vector bundles as coherent sheaves. This morphism is an isomorphism in the projective case. However, by the fundamental work of Voisin [START_REF] Voisin | A counterexample to the Hodge conjecture extended to Kähler varieties[END_REF], K 0 X can be strictly smaller than K 0 X when X is a compact Kähler manifold. This phenomenon is caused by the lack of global resolutions of coherent sheaves by locally free sheaves.

Over Q, Chern characteristic class can be seen through the Q-linear morphism ch :

K 0 pXq b Z Q Ñ ApXq,
where ApXq means the cohomology ring in the cohomology theory under consideration. A priori, on arbitrary compact complex manifolds, it is not trivial that this morphism can extended into a morphism from K 0 pXqb Z Q. Grivaux showed that this is possible once the cohomology theory satises suitable axioms of intersection theory. The aim of this note is to develop a similar intersection theory for integral (or rational) Bott-Chern cohomology.

Such theories have been considered in the work [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF] of M. Schweitzer, and have also been developed in a more recent unpublished work of Junyan Cao. They are more precise than Deligne cohomology or than complex Bott-Chern cohomology, in the sense that there always exist natural morphisms from the integral (or rational) Bott-Chern cohomology into the other ones. We use here Grivaux's axiomatic approach to construct Chern classes in rational Bott-Chern cohomology, for coherent sheaves on arbitrary compact complex manifolds.

In fact, it would be interesting to give a construction of Chern classes of coherent sheaves in the integral Bott-Chern cohomology rather than the rational one, but substantial diculties remain. Let F be a coherent sheaf on a smooth hypersurface D of X. We denote by i : D Ñ X the inclusion. One of the main diculties is to express the total Chern class cpi ˚F q in function of i ˚c' pFq and i ˚c' pN D{X q, where N D{X is the normal bundle of D in X. There exists a formulation of the Riemann-Roch-Grothendieck formula that does not involve denominators, but it does not seem to be easily applicable since Chern classes of coherent sheaves, unlike in the vector bundle case, may involve data in higher degrees than the generic rank.

Using the methods developped in this note combined with the work of [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF], we give as an application a more algebraic proof of the following theorem of Bismut [START_REF] Bismut | Laplacien hypoelliptique et cohomologie de Bott-Chern[END_REF], [START_REF] Bismut | Hypoelliptic Laplacian and Bott-Chern cohomology[END_REF] under the additional assumption that the morphism is projective. However, we do not need the condition that the sheaf and all of its direct images are locally free, nor the condition that the morphism is a submersion. Theorem 6.1. Let p : X Ñ S a projective morphism of compact complex manifolds and F be a coherent sheaf over X. Then we have the Riemann-Roch-Grothendieck formula in the rational and complex Bott-Chern cohomology chpR ' p ˚F qTdpT S q " p ˚pchpF qTdpT X qq where R ' p ˚F "

ř i R i p ˚F .
The rational case is a direct consequence of the work of [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF], which uses classical arguments of Serre to reduce the prooof to the fact that the Riemann-Roch-Grothendieck formula holds for a closed immersion.

It is proven by a construction of Chern characteristic classes (or equivalently of Chern classes in the rational coecient case), using the prescribed axioms of intersection theory. The complex case can be derived by the natural morphism from the rational Bott-Chern cohomology to the complex Bott-Chern cohomology.

For the convenience of the reader, we summarize here the axioms needed in the axiomatic cohomology theory developped in [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF]. We assume that for any compact complex manifold X we can associate to X a graded commutative cohomology ring ApXq which is also a QpĂ A 0 pXqq-algebra.

Axiom A (Chern classes for vector bundles)

(1) For each holomorphic map f : X Ñ Y , there exists a functorial pull-back morphism f ˚: ApY q Ñ ApXq which is compatible with the products and the gradings.

(2) One has a group morphism c 1 : PicpXq Ñ A 1 pXq which is compatible with pull-backs.

(3) (Splitting principle) If E is a holomorphic vector bundle of rank r on X, then ApPpEqq is a free graded module over ApXq with basis 1, c 1 pO E p1qq, ¨¨¨, pc 1 pO E p1qq r´1 . (4) (homotopy principle) For every t in P 1 , let i t be the inclusion X ˆttu ãÑ X ˆP1 . Then the induced pull-back morphism i t : ApX ˆP1 q Ñ ApXq -ApX ˆttuq is independent of t.

(5) (Whitney formula) Let 0 Ñ E Ñ F Ñ G Ñ 0 be an exact sequence of vector bundles, then one has cpF q " cpEq ¨cpF q and chpF q " chpEq `chpGq where cpEq means the total Chern class of E and chpEq means the Chern characteristic class of E.

The construction of the pull-back will be given in the second section and the other parts are important results of Junyan Cao which will be given the fourth section.

Axiom B (Intersection theory)

If f : X Ñ Y is a proper holomorphic map of relative dimension d, there is a functorial Gysin morphism f ˚: A ' pXq Ñ A '´d pY q satisfying the following properties:

(1) (Projection formula) For any x P ApXq and any y P ApY q one has f ˚px ¨f ˚yq " f ˚pxq ¨y.

(2) Consider the following commutative diagram with p, q the projections on the rst factors

Y ˆZ i Y ˆZ / / p X ˆZ q Y i Y / / X
Assume Z to be compact and i Y proper. Then one has q ˚iY ˚" i Y ˆZ˚p ˚.

(3) Let f : X Ñ Y be a surjective proper map between compact manifolds, and let D be a smooth divisor of Y . We denote f ˚D " m 1 D1 `¨¨¨`m N DN with Di simply normal crossing. Let fi : Di Ñ D (1 ď i ď N ) be the restriction of f to Di . Then one has f ˚iD˚"

N ÿ i"1 m i i Di˚f i .
(4)Consider the commutative diagram, where Y and Z are compact and intersect transversally with W " Y X Z:

W i W {Y / / _ i W {Z Y _ i Y Z i Z / / X.
Then one has i Y i Z˚" i W {Y ˚iW {Z .

(5)(Excess formula) If Y is a smooth hypersurface of a compact complex manifold X, then for any cohomological class α we have i Y i Y ˚α " α ¨c1 pN Y {X q.

(6) The HirzebruchRiemannRoch theorem holds for pP n , Opiqq (@i).

(7) Let X be a compact complex manifold with dim C X " n and Y Ă X be a closed complex submanifold of complex codimension r ě 2. Suppose that p : X Ñ X is the blow-up of X along Y . We denote by E the exception divisor and i : Y Ñ X, j : E Ñ X the inclusions, and q : E Ñ Y the restriction of p on E. Then p ˚is injective and there is an isomorphism induced by j j˚:

A ' p Xq{p ˚A' pXq -A ' pEq{q ˚A' pY q.

In other words, a class α P A ' p Xq is in the image of p ˚if and only if the class j ˚α is in the image of q ˚.

The verication of axiom B will constitute the main substance of the fth and sixth sections. In principle, pull-backs can be induced by taking the pull-back of smooth forms, and push-forwards can be induced by taking the push-forward of currents under proper morphisms. The proof of the rst two axioms is then reduced to considering the natural pairing between smooth forms and currents. The third and fourth axioms are more complicated, since they demand taking pull-backs of currents. As in the case of Deligne cohomology, we rst reduce the situation to the case of cycle classes. Then we reduce cycle classes to integral Bott-Chern (or Deligne) cohomology by means of Bloch cycle classes, which can be represented by holomorphic forms.

Checking the remaining axioms is more standard. This will be done in the sixth section.

In conclusion, it can be shown that the cohomology ring ' k H k,k BC pX, Qq satises axiom A, B. In fact, the cohomology ring ' k H k,k BC pX, Zq satises axiom A, B except the sixth one of list B which demands rational coecients to dene Chern characteristic classes and the Todd class. As a consequence, by the work of [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF], for the rational Bott-Chern cohomology we get the following result.

Theorem 6.2. If X is compact and K 0 X is the Grothendieck ring of coherent sheaves on X , one can dene a Chern character morphism ch : K 0 X Ñ ' k H k,k BC pX, Qq such that

(1) the Chern character morphism is functorial by pull-backs of holomorphic maps.

(2) the Chern character morphism is an extension of the usual Chern character morphism for locally free sheaves given in axiom A.

(3) The RiemannRoch-Grothendieck theorem holds for projective morphisms between smooth complex compact manifolds.

The organisation of the paper is the following. Section two recalls basic denitions and introduces pull back and push forward morphisms. Section three introduces a ring structure on the integral Bott-Chern cohomology, in such a way that it is compatible with the ring structure of the complex Bott-Chern cohomology via the canonical map. Section four gives the construction of Chern classes associated with a vector bundle and veries the list of axioms A. Section ve introduces cycle classes in integral Bott-Chern cohomology and veries the intersection theory part of axioms B. Section six studies the transformation of Chern classes under blow ups. This completes the verication of axioms B. At the end, we present an appendix in which we calculate the integral Bott-Chern cohomology of a connected compact manifold in top degree. The analogous result for integral Deligne cohomology do not seem to be as direct.

Denition of integral Bott-Chern cohomology classes

In this section, we recall the basic denitions associated with integral Bott-Chern cohomology. A reference for this part is [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF]. Notice that changing Zppq by C in the integral Bott-Chern complex gives a quasi-isomorphic complex which denes the complex Bott-Chern cohomology. Hence one gets a canonical map from the integral Bott-Chern cohomology to the complex Bott-Chern cohomology. Next, we dene pull backs and push forwards in integral Bott-Chern cohomology. We verify the axioms without involving the ring structure of the integral Bott-Chern cohomology (namely Axiom B (2), part of ( 7)).

Definition 6.3. The integral Bott-Chern cohomology group is dened as the hypercohomology group H p,q BC pX, Zq " H p`q pX, B p,q,Z q of the integral Bott-Chern complex

B ' p,q,Z : Zppq ∆ Ý Ñ O ' O Ñ Ω 1 ' Ω 1 Ñ ¨¨¨Ñ Ω p´1 ' Ω p´1 Ñ Ω p Ñ ¨¨¨Ñ Ω q´1 Ñ 0
where Zppq " p2πiq p Z at 0 degree and ∆ is multiplication by 1 for the rst component and multiplication by -1 for the second component. We call rational (or complex) Bott-Chern cohomology the hypercohomology of the complex obtained by changing Zppq respectively into Q, C.

Notice that the choice of the sign in ∆ is to ensure that the natural map from the integral Bott-Chern cohomology to the complex Bott-Chern cohomology is a ring morphism. This will be discussed in Section 3.

The choice of Zppq instead of Zpqq is more or less articial, but since the Chern class always lies in H p,p BC pX, Zq for some p, this choice poses no problem.

We begin by the denition of pull-backs of cohomology classes. Let f : X Ñ Y be a holomorphic map, it induces a natural morphism of complexes of abelian group on any open set U of Y , B ' p,q,Z,Y pU q

f Ý Ý Ñ
B ' p,q,Z,X pf ´1pU qq which induces the cohomological class morphism H p,q BC pY, Zq

f Ý Ý Ñ H p,q
BC pX, Zq. More precisely, the pull-back of forms induces a morphism of complexes f ˚B' p,q,Z,Y f Ý Ý Ñ B ' p,q,Z,X on X which induces a cohomological morphism H ' pX, f ˚B' p,q,Z,Y q Ý Ñ H ' pX, B ' p,q,Z,X q. On the other hand, there exists a natural morphism H ' pY, B ' p,q,Z,Y q Ý Ñ H ' pX, f ˚B' p,q,Z,Y q since the pre-image of any open covering of Y gives an open covering of X. The composition of two morphisms gives the pull back morphism H p,q BC pY, Zq

f Ý Ý Ñ H p,q
BC pX, Zq.

The second morphism can be interpreted more formally as follows.

There exists a natural morphism B ' p,q,Z,Y Ñ Rf ˚f ˚B' p,q,Z,Y . Taking RΓpY, ´q on both sides gives H ' pY, B ' p,q,Z,Y q Ý Ñ H ' pX, f ˚B' p,q,Z,Y q. For a proper holomorphic map f : X Ñ Y of relative dimension d, we next construct a functorial Gysin morphism f ˚: H p,q BC pX, Zq Ñ H p´d,q´d BC pY, Zq. The construction is a modication of the similar construction for Deligne cohomological class given in [START_REF] El Zein | Extendability of normal functions associated to algebraic cycles[END_REF]. The condition of properness is necessary even if we just consider cycle classes, since the image of an analytic set is not necessarily an analytic set when the properness condition is omitted.

Let K ' be a complex of sheaves on the space X. One denotes by tF p K ' u the stupid ltration which does not preserve the cohomology at degree p i.e. if q ě p, F p K q " K q , otherwise F p K q " 0. For the corresponding quotient complex, we denote it as σ p K ' " K ' {F p K ' . We denote by Ω ' the complex of sheaves of holomorphic forms on X. Let i : Zppq Ñ σ p Ω ' ' σ q Ω ' be the complex map dened by the diagonal map sending Zppq into O X ' O X at degree 0 with a sign ´1 at the second component and viewing Zppq as a complex centred at degree 0. With the above notations, the integral Bott-Chern complex is the mapping cone of i which we denote as Cone ' piqr´1s. The idea to dene the push-forward of the cohomology class is to choose compatible resolutions of the complexes Zppq, σ p Ω ' ' σ q Ω ' such that the both complexes are formed by some kind of currents for which the push-forward is well-dened.

For the convenience of the readers, we recall here some basic denitions and properties concerning currents and geometric measure theory. We will use them to dene a resolution of Zppq. For more details and proofs, we refer to the article of [START_REF] King | The currents dened by analytic varieties[END_REF]. Definition 6.4. Let A, B be two metric spaces and f : A Ñ B be a map. We say that f is Lipschitz if there exists C ą 0 such that for any a, b P A, we have dpf paq, f pbqq ď Cdpa, bq.

We now recall the denition of the mass of a current. Definition 6.5. For any continuous form on a Riemannian manifold N and any x P N , we dene a function }u}pxq " supt|upλq| : λ is a decomposable r-vector at x with |λ| x ď 1u.

For any set K Ă N , the comass of u on K is ν K puq " supt}u}pxq, x P Ku.

The mass of a current T is M pT q " t|T puq| : u P A r c pN q, ν N puq ď 1u where A r c pN q is the space of the smooth r-forms with compact support.

Let U Ă R s be an open set of euclidean space and N a Riemannian manifold. Let P be a current dened by a nite sum of oriented linear simplices and f : U Ñ N a Lipschitz map. We can approximate f by f i : U Ñ N which is C 1 and we dene f ˚P to be the limit of f i˚P in the sense of currents. Using this construction, one can dene rectiable currents. Definition 6.6. For any compact set K Ť N , one denes the space R r,K pN q of rectiable r-currents in K as follows: T P R r,K pN q if and only if T P E 1 r pN q (the dual space of smooth forms) and for any ε ą 0, there exists U Ă R s for some s, f : U Ñ N a Lipschitz map and P a current dened by nite sum of oriented linear simplices such that M pT ´f˚p P qq ă ε.

One denes the space R r pN q of rectiable r-currents by R r pN q :" Ť KŤN R r,K pN q and the space R loc r pN q of locally rectiable r-currents by R loc r pN q " tT P D 1 r pN q|@x P N, DT x P R r pN q s.t. x P N supppT ´Tx qu.

Now, one denes locally integral currents.

Definition 6.7. The space of locally integral currents is dened by I loc r pN q :" tT P R loc r pN q|dT P R loc r pN qu.

We have the following version of the Federer support theorem.

Theorem 6.8. Let i : M Ñ N be an embedding of the submanifold M into N . One has i ˚I loc r pM q " tT P I loc r pN q|supppT q Ă M u.

As a corollary, the sheaf of locally integral currents is a soft sheaf, and is in particular acyclic.

Corollary 6.9. Let N be any Riemannian manifold. Then the sheaf of locally integral currents I loc ' is a soft sheaf.

Proof. Let F be a closed set of N with respect to the metric topology. Let s P I loc r pF q " lim Ý ÑF ĂU I loc r pU q be a section on F . By denition, there exists s U a section dened on U an open set of N such that s U | F " s. Consider i : U Ñ N the inclusion. The Federer support theorem gives a section s P I loc r pN q such that i ˚sU " s. Hence s extends s, and this proves that the sheaf of locally integral currents is soft.

Notice that for any smooth morphism f : M Ñ N , f ˚maps locally integral currents to locally integral currents even without the properness condition on f . To see that the complex of locally integral currents gives a resolution of the locally constant sheaf Z, we need the fact that for T P I loc m pR n q such that dT " 0 there exists a S P I loc m`1 pR n q such that dS " T (cf. [START_REF] Federer | Geometric Measure Theory[END_REF] 4.2.10 as a consequence of the deformation theorem) and the following proposition in [START_REF] King | The currents dened by analytic varieties[END_REF] proposition 2.1.9 for the case of top degree.

Theorem 6.10. Let M be a Riemannian manifold of dimension n. If T P D 1 0 pM q such that dT " 0 then T is the current dened by locally constant functions. If T P I loc n pM q then this function is integral valued. We now return to the construction of the push forward for hypercohomology. We denote by D 1 X p,q the sheaf of currents of type pp, qq on X. For each p, pD 1 X p,' , Bq is a ne resolution of Ω p X . By taking the conjugation, pD 1 X ',q , Bq is a ne resolution of Ω q X . The conjugate of dierential forms induces the conjugate of currents. In particular, σ p,' D 1

X ',' (resp. σ ',q D 1 X ',' ) is a Cartan-Eilenberg resolution of σ p Ω ' X (resp. σ q Ω ' X ).
Taking the total complex of the double complex, we deduce that σ p D 1 X ' is a resolution of σ p Ω ' X . Here, we use an abuse of notation, and actually mean that we take direct sums of spaces of currents of bidegree pk, lq with k ď p. Similarly, σ q D 1 X ' is a resolution of σ q Ω ' X . By taking complex coecients, locally integral currents extend into a complex of C-vector spaces of currents instead of Z-modules.

Let I i X be the complex valued extended sheaf of locally integral currents of real codimension i on X, as dened above. The complex I ' X is a soft resolution of Z. The integral Bott-Chern complex is quasi-isomorphic to the following complex obtained by composing the natural inclusion of forms into currents:

Zppq ∆ Ý Ñ σ p D 1 X ' ' σ q D 1 X ' .
This morphism of complexes factorises into

Zppq Ñ I ' X ∆ Ý Ñ σ p D 1 X ' ' σ q D 1 X ' .
The morphism of complexes ∆ factorises itself into the composition of two maps : the rst is the diagonal map with positive sign on the rst component and negative sign on the second component with image in

D 1 X ' ' D 1 X '
; the second map is the decomposition of locally integral currents into their components of adequate bidegrees.

Since the rst inclusion is a quasi-isomorphism in the derived category in DpShpXqq, the integral Bott-Chern complex is quasi-isomorphic to Cone ' p∆qr´1s :

I ' X ∆ Ý Ñ σ p D 1 X ' ' σ q D 1 X ' .
Note that the push-forward of currents and of the locally integral currents are both well-dened for a proper morphism. We also remark that the rule df ˚" f ˚d holds for currents. Hence there exists a natural morphism of complexes on Y

f ˚I ' X Ñ I '´d Y , f ˚pσ p D 1 X ' ' σ q D 1 X ' q Ñ σ p´d D 1 Y ' ' σ q´d D 1 Y '
which, as will be explained below, induces a cohomological group morphism f ˚: H p,q BC pX, Zq Ñ H p´d,q´d BC pY, Zq.

Here, to dene the push-forward for cohomology classes, it is enough to dene it for global section representatives; in fact, the complex I ' X is soft, which means any section over any closed subset can be extended to a global section; a soft sheaf is in particular acyclic, thus the complex σ p D 1 X ' ' σ q D 1 X ' is acyclic. The hypercohomology of the integral Bott-Chern complex is just the cohomology of the global sections of the mapping cone ∆. Now we dene the push-forward of a cohomology class as the push-forward of any of the global currents representing the cohomology class. By construction, the pull-back and push-forward both satisfy the functoriality property.

Notice that the use of a resolution of the locally constant sheaf Zppq seems to be necessary since a priori we have only natural morphism in inverse direction H ' pY, f ˚B' p,q,Z,X q Ý Ñ H ' pX, B ' p,q,Z,X q. The trace morphism tr : f ˚ZX Ñ Z Y and the push forward of currents induces a morphism H ' pY, f ˚B' p,q,Z,X q Ý Ñ H ' pY, B ' p,q,Z,Y q if X, Y have the same dimension. It seems to be not easy to induces from these two morphisms a morphism H ' pX, B ' p,q,Z,X q Ý Ñ H ' pY, B ' p,q,Z,Y q. If we take the quasi-isomorphic acyclic resolution involving the locally integral currents, the hypercohomology of H ' pX, B ' p,q,Z,X q is represented by global sections. Then the restriction of the global section on the open sets induces a morphism H ' pX, B ' p,q,Z,X q Ý Ñ H ' pY, f ˚B' p,q,Z,X q in the desired direction. In this case, we have the following factorisation

H ' pX, B ' p,q,Z,X q H ' pY, f ˚B' p,q,Z,X q H ' pY, B ' p,q,Z,Y r´2dsq
fẘ here d is the relative complex dimension. The vertical arrow is the morphism induced by pushing forward currents, under the assumption that f is proper.

Commutativity can be checked directly. Let T be the global section representing a cohomology class in H ' pX, B ' p,q,Z,X q. Let pV i q i be an open Stein covering of Y such that the hypercohomology class on Y can be calculated by the hypercohomology associated with the open cover. We denote by tT i u the image of T in H ' pY, f ˚B' p,q,Z,X q by restriction on V i . More precisely, T i is the restriction of T on f ´1pV i q. Its image in H ' pY, B ' p,q,Z,Y r´2dsq is tf ˚Ti u, and those sections glue into a global section f ˚T .

The denition of the push-forward of cohomology classes can also be interpreted more formally as follows.

In order to distinguish the dierent morphisms of complexes, we denote by ∆ X the map on X involving Zppq and ∆X the map on X involving locally integral currents. The complex Conep ∆X q involving locally integral currents is a soft complex. Since f is proper, f ˚Conep ∆X q is a soft complex which means f ˚Conep ∆X q " Rf ˚Conep∆ X q in DpShpY qq. We denote by a X (resp. a Y ) the morphism from X (resp. Y ) to a point. The push forward of currents induces a morphism of complexes in CpShpY qq: f ˚Conep ∆X q Ñ Conep ∆Y qr´2ds.

In other words, we have by composition a morphism in the derived category

Rf ˚pConep∆ X qq Ñ Conep∆ Y qr´2ds.

Taking RΓpY, ´q " Ra Y ˚on both sides, and using the fact that Rpa Y ˝f q ˚" Ra X˚" Ra Y ˚˝Rf ˚(since f ˚transforms soft complexes into soft complexes), we get f ˚: H p,q BC pX, Zq Ñ H p´d,q´d BC pY, Zq after taking cohomology.

In the following, once we want to view the push forward of the cohomology groups as a morphism in the cohomology level induced by a morphism of complexes, we use the above interpretation (for example, in the proof of the projection formula).

In the case where f is analytic bration, in the sense that f is a proper surjective morphism and all bres are connected, we can additionally dene a morphism from the push forward of the locally constant sheaf Z X to the locally constant sheaf Z Y , e.g. a morphism f ˚ZX Ñ Z Y . Any modication f such as a composition of blows-up with smooth centers is an example of an analytic bration in the above setting.

We now use this morphism to prove that any modication p yields an injective morphism p ˚between the corresponding integral Bott-Chern cohomology groups.

In this case, for any connected open set V Ă Y , we have f ˚ZX pV q " Z X pf ´1pV qq where f ´1pV q is a connected open set, so it is enough to dene the morphism f ˚ZX Ñ Z Y by asserting that it associates the constant function 1 on f ´1pV q to the constant function 1 on V . In preparation for the next steps, we need the following lemma. Lemma 6.11. For any algebraic bration f : X Ñ Y , there is a commutative diagram

f ˚ZX f ˚I 0 X Z Y I 0 Y .
Proof. This is directly veried on any connected open set V Ă Y . The map Z X pf ´1pV qq Ñ I 0 X pf ´1pV qq is given by associating the constant function 1 to the integral current rf ´1pV qs associated with f ´1pV q. The image of the constant function 1 under Z X pf ´1pV qq Ñ Z Y pV q is the constant function 1 on V . The image of the constant function 1 under Z Y pV q Ñ I 0 Y pV q is the integral current rV s associated with V which is also the image of rf ´1pV qs under f ˚I 0 X pV q Ñ I 0 Y pV q.

Using an identication of the push forward of currents on X as currents on Y , we get the following commutative diagram

f ˚Conep∆ X q f ˚Conep ∆X q Conep∆ Y qr´2ds
Conep ∆Y qr´2ds

with the above notations. Taking Ra Y ˚and cohomology to the commutative diagram gives

H ' pY, f ˚B' p,q,Z,X q H ' pX, B ' p,q,Z,X q H ' pY, B ' p,q,Z,Y r´2dsq H ' pY, B ' p,q,Z,Y r´2dsq. fi d
In the case of a modication, one can prove that f ˚is injective. This can be seen via the following Lemma 6.12. For any modication f : X Ñ Y , one has f ˚f ˚" id : H ',' BC pY, Zq Ñ H ',' BC pY, Zq.

Proof. Using the above commutative diagram, it is enough to show that for any open set V Ă Y and any sheaf in the integral Bott-Chern complex one has the identity f ˚f ˚" id, so that the identity will hold for any hypercocycle representing an integral Bott-Chern cohomology class.

Let A be an analytic set of X, Z be an analytic set of Y such that the map f | X A : X A Ñ Y Z is biholomorphic. For any smooth form ω dened on V , we have f ˚f ˚ω " ω. In fact, for any smooth form ω with compact support in V , we can write xf ˚f ˚ω, ωy " xf ˚ω, f ˚ωy "

ż f ´1V f ˚ω ^f ˚ω " ż f ´1V A f ˚ω ^f ˚ω " ż V Z ω ^ω " ż V ω ^ω " xω, ωy.
Here, the third and fourth equality hold since the integral of a smooth form on an analytic set of lower dimension is 0 (such a set being of Lebesgue measure 0 in the relevant dimension).

For the locally constant sheaf Z, since the analytic bration has connected bres, a straightforward argument yields f ˚f ˚" id.

In conclusion the composition of sheaf morphisms: B ' p,q,Z,Y Ñ f ˚f ˚B' p,q,Z,Y (given by the canonical map), f ˚f ˚B' p,q,Z,Y Ñ f ˚B' p,q,Z,X (induced by pull-back of smooth forms) and f ˚B' p,q,Z,X Ñ B ' p,q,Z,Y (induced by push-forward of currents) is the identity map. Notice that a priori, the image complex of the last morphism should be the quasi-isomorphic complex involving currents instead of smooth forms. However, in the case of a modication, the push forward of a pull-back of a smooth form is still a smooth form. In particular, the composition of sheaf morphisms

B ' p,q,Z,Y Ñ f ˚f ˚B' p,q,Z,Y Ñ f ˚B' p,q,Z,X Ñ B ' p,q,Z,Y
is the identity map. This shows that the canonical map B ' p,q,Z,Y Ñ f ˚f ˚B' p,q,Z,Y is an isomorphism.

Thus we have the following commutative diagram H ' pY, B ' p,q,Z,Y q " H ' pY, f ˚f ˚B' p,q,Z,Y q H ' pY, f ˚B' p,q,Z,X q

H ' pX, f ˚B' p,q,Z,Y q H ' pX, B ' p,q,Z,X q.
The vertical arrows are the canonical maps and the horizontal maps are given by pull-back of smooth forms.

Notice that the composition of H ' pY, B ' p,q,Z,Y q -H ' pY, f ˚f ˚B' p,q,Z,Y q Ñ H ' pY, f ˚B' p,q,Z,X q Ñ H ' pX, B ' p,q,Z,X q is exactly the pull-back of cohomology classes. A comparison of this diagram with the diagram given before the lemma concludes the proof.

The above observation is in particular useful to dene the Chern class of a coherent sheaf on a complex manifold, using the following fundamental lemma (cf. [START_REF] Grauert | Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen[END_REF], [START_REF] Hironaka | Resolution of singularities of an algebraic variety over a eld of characteristic zero. I[END_REF], [START_REF] Riemenschneider | Characterizing Moishezon Spaces by Almost Positive Coherent Analytic Sheaves[END_REF], [START_REF] Rossi | Picard variety of an isolated singular point[END_REF]). Lemma 6.13. Let X be a complex compact manifold and F be a coherent analytic sheaf on X. There exists a bimeromorphic morphism σ : X 1 Ñ X, which is a nite composition of blow-ups with smooth centres, such that σ ˚F is locally free modulo torsion.

Using the same notations as in the lemma, we recall briey the strategy proposed by Grivaux [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF] to dene the Chern classes of arbitrary coherent sheaf F on X. We force the equality σ ˚chpF q :" ÿ i p´1q i chpL i σ ˚F q to be always veried where L i σ ˚is the i-th left derived functor of σ ˚. On the other hand, we also force the equality chpσ ˚F q " chpσ ˚F {Torsq `chpTorsq to be always veried where Tors is the torsion part. We rst dene the Chern classes for all the torsion sheaves L i σ ˚F pi ě 1q and Tors as well as the Chern classes of the vector bundle σ ˚F {Tors. Since σ ˚is injective, we can thus dene chpFq to be the unique element such that these two equalities are veried.

Since the support of a torsion sheaf is a proper analytic subset, we can perform an induction on the dimension of the manifold to dene Chern classes of a torsion sheaf. Intuitively, using an appropriate version of the Riemann-Roch-Grothendieck formula, one can construct Chern classes of a torsion sheaf over X 1 as a direct image under a closed immersion of a certain polynomial in the Chern classes of a positive rank sheaf over the support in X 1 , and the normal bundle of that support.

The diculty in dening Chern classes of an arbitrary coherent sheaf comes from the case where the coherent sheaf is torsion, especially since the support of a torsion sheaf may be an analytic subset with singularities, and not necessarily a submanifold. In order to make the construction, the results of [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF] will be applied thoroughly.

By the fact that the pull back of a current is always well dened in the case of a submersion, one gets the following proposition. Proposition 6.2.1. Consider the commutative diagram below, where p, q are the projections on the rst factors

Y ˆZ i Y ˆZ / / p X ˆZ q Y i Y / / X.
Assume Z to be compact and i Y proper. Then one has q ˚iY ˚" i Y ˆZ˚p ˚.

Proof. The point is that the pull-back of a current is well dened and commutes with the exterior dierential for a submersion, which is the case here. For any connected open set V Ă Y , we have the

following commutative diagram Z Y pV q p ˚/ / Z Y ˆZ pp ´1pV qq I ' Y pV q p ˚/ / I ' Y ˆZ pp ´1pV qq
.

The vertical arrow is given by associating the constant 1 to the integral current associated with rV s (resp. rp ´1pV qs).

Passing to hypercohomology, inclusion of forms and constants B ' into currents and locally integral currents B' induces isomorphism on hypercohomology, so the morphisms of integral Bott-Chern cohomology 

H ˚pY, B ' Y q H ˚pY, B' Y q H ˚pY ˆZ, p ˚B' Y q H ˚pY ˆZ, p ˚B ' Y q H ˚pY ˆZ, B ' Y ˆZ q H ˚pY ˆZ, B' Y ˆZ q.
--

Here the terms containing a tilde indicate complexes involving currents, and the terms without tilde indicate complexes involving locally constant sheaves or forms.

To prove the equality at the level of hypercohomology, it is thus enough to prove the equality at the level of complexes with terms involving currents. In particular, we just take global representative and verify the equality. The proof is reduced to checking that for any current T dened on Y , one has

q ˚iY ˚T " i Y ˆZ˚p ˚T .
By duality, this is equivalent to the fact that for any smooth form ω with compact support in X ˆZ, one has i Y q ˚ω " p ˚iY ˆZ ω. This is indeed trivial, if we observe that p ˚and q ˚are just integration along the second factor. The integrals are nite by the assumption that Z is compact.

The directions of arrows can also be reversed; this is exactly Axiom B (2). For complex Bott-Chern cohomology, the formula is valid, since the cohomology class can be represented by global smooth forms and since the push forward of global forms under the projection is just the integration over the second component, which commutes with the restriction on the corresponding (smooth) submanifold. Lemma 6.14. Consider the commutative diagram below, where p, q are the projections onto the rst factors

Y ˆZ i Y ˆZ / / p X ˆZ q Y i Y / / X.
Assume Z to be compact. Then one has in complex Bott-Chern cohomology an equality i Y q ˚" p ˚iY ˆZ .

To prove the case of integral coecients, we need a relative version of pull back and push forward for cohomology classes. To do this, we recall some denitions of derived categories. For a more complete description, we refer to [START_REF] Kashiwara | Series: Grundlehren der mathematischen Wissenschaften[END_REF]. We start with the denition of a relative soft sheaf. Definition 6.15. Let f : X Ñ Y be a continuous proper morphism between topological spaces and F be a sheaf of abelian groups on X. Then we say that F is f -soft if for any y P Y , F | f ´1pyq is soft.

In general, to dene Rf ˚(or some right derived functor), one can take any f ˚-injective resolution (or any relative injective resolution). In particular, we do not need to take an injective resolution (which is the key point of Axiom B (2)). We verify that a f -soft resolution gives a f ˚-injective resolution. Definition 6.16. (Denition 1.8.2 in [START_REF] Kashiwara | Series: Grundlehren der mathematischen Wissenschaften[END_REF]) Let F : C Ñ C 1 be an additive functor between abelian categories. A full additive subcategory S of C is called injective with respect to F if (1) for any X P ObpCq there exists X 1 P ObpSq and an exact sequence 0 Ñ X Ñ X 1 .

(2) For any exact sequence 0 Ñ X 1 Ñ X Ñ X 2 Ñ 0 in C, if X 1 , X P ObpSq then X 2 P ObpSq.

(3) For any exact sequence 0 Ñ X 1 Ñ X Ñ X 2 Ñ 0 in C, if X 1 , X, X 2 P ObpSq then we have exact sequence 0 Ñ F pX 1 q Ñ F pXq Ñ F pX 2 q Ñ 0.

Lemma 6.17. The subcategory formed by f -soft modules in CpShpXqq is injective with respect to f ˚for f proper.

Proof. It is a variant version of Proposition 2.5.10 in [START_REF] Kashiwara | Series: Grundlehren der mathematischen Wissenschaften[END_REF]. We give the proof in the relative case.

Since any soft module is f -soft by denition and the subcategory formed by soft modules has enough injective element i.e. it satises condition 1, the subcategory formed by f -soft modules in CpShpXqq also satises condition 1. Notice that since f is proper, for any y P Y , f ´1pyq is compact hence closed.

Condition 2 is a direct consequence of exercice II.10 in [START_REF] Kashiwara | Series: Grundlehren der mathematischen Wissenschaften[END_REF]. It says that for any exact sequence of Z X modules 0 Ñ F 1 Ñ F Ñ F 2 Ñ 0 with F, F 1 f -soft and for any y P Y , the hypothesis that 0

Ñ F 1 | f ´1 pyq Ñ F | f ´1 pyq Ñ F 2 | f ´1pyq Ñ 0 is exact implies that F 2 | f ´1 pyq is soft. In particular, F 2 is f -soft.
Now, we prove condition 3, i.e. that if 0 Ñ F 1 Ñ F Ñ F 2 Ñ 0 is an exact sequence of f -soft module, then there is an exact sequence

0 Ñ f ˚F 1 Ñ f ˚F Ñ f ˚F 2 Ñ 0.
Let y P Y , we want to check that for any s 2 P Γpf ´1pyq, F 2 q there exists s P Γpf ´1pyq, F q whose image is s 2 . Notice that since f is proper the functors f ˚and f ! are the same. By the base change theorem (proposition

2.5.2 in [KS02]), we have pf ˚F q y -Γpf ´1pyq, F | f ´1 pyq q.
Let K i be a nite covering of f ´1pyq by compact subsets such that there exists s i P ΓpK i , F q whose image is s 2 | Ki . This is possible from the assumption that F P F 2 is surjective and the fact that f ´1pyq is compact. Let us argue by the induction on the index of the covering to adjust the s i 's such that s i 's glue to a global section. For n ě 2, on p Ť iďn´1 K i q X K n , we have s 1

1 the glued section constructed by induction and s 2 P ΓpK n , F q. Hence s 1 1 ´s2 P Γpp Ť iďn´1 K i q X K n , F 1 q which extends to s 1 P Γpf ´1pyq, F 1 q since F 1 is f -soft. Replacing s 2 by s 2 `s1 we may assume that

s 1 1 | p Ť iďn´1 KiqXKn " s 2 | p Ť iďn´1
KiqXKn . Therefore after nite times induction, there exists s P Γpf ´1pyq, F q such that s| Ki " s i .

(Notice that condition 2 can be deduced from condition 3 by the following commutative diagram. Let K be a closed subset of f ´1pyq. We have Γpf ´1pyq, F q Γpf ´1pyq, F 2 q ΓpK, F q ΓpK, F 2 q.

The fact that the bottom and left arrow are surjective implies that the right arrow is surjective.)

We also need the following lemma (Lemma 3.1.2) in [START_REF] Kashiwara | Series: Grundlehren der mathematischen Wissenschaften[END_REF].

Lemma 6.18. Let f : X Ñ Y be a continuous map of locally compact spaces and K be a at and f -soft

Z X module. For any sheaf G on X, G b Z X K is f -soft.
This lemma entails the following useful corollary. Corollary 6.19. Let X, Z be two complex manifolds with Z compact. Let F ' be a at complex (of sheaves of abelian groups) over X and G ' be a soft and at complex over Z. Then F ' b G ' is at and q-soft with respect to q : X ˆZ Ñ X.

Proof. The atness part is from the fact that for abelian groups atness is equivalent to torsion-freeness.

For any x P X we have

F ' b G ' | txuˆZ " F ' x b Z Z G ' which,
by the lemma, is q-soft. 

Y ˆZ i Y ˆZ / / p X ˆZ q Y i Y / / X
Assume Z to be compact. Then one has in integral Bott-Chern cohomology an equality i Y q ˚" p ˚iY ˆZ .

Proof. The idea is to use a resolution on X ˆZ formed by pulling back a resolution involving smooth forms on X, and tensoring with the pull back of a resolution involving currents on Z. This gives a q-soft resolution, and an explicit method to calculate Rq ˚, via corollary 6.19.

Let U be an open covering of X formed by geodesic balls with small enough radius such that any nite intersection of such balls are dieomorphic to euclidean ball. Therefore, the total complex of the ech complex Č' pU, Z X q gives a resolution of Z X by the Leray theorem. It is a at complex on X since all terms are torsion free. Also, I ' Z is a at and soft resolution of Z Z on Z. By the corollary, Č' pU, Z X q b I ' Z is a q-soft resolution of Z XˆZ " Z X b Z Z on X ˆZ. Now we perform a similar construction for the sheaves of smooth forms. The sheaves C ',' 8 on X ˆZ can be viewed as at Z X modules and Z Z modules. Thus we have

C ',' 8 -C ',' 8 b Z X Č' pU, Z X q -C ',' 8 b L Z X Z X .
Similarly we have

C ',' 8 -C ',' 8 b Z Z I ' Z -C ',' 8 b L Z Z Z Z . Therefore, the integral Bott-Chern complex on X ˆZ in the derived category is quasi-isomorphic to B ' Z,XˆZ -Conep Č' pU, Z X q b I ' Z Ñ σ p,' C ',' 8 b Z X Č' pU, Z X q b Z Z I ' Z ' σ ',q C ',' 8 b Z X Č' pU, Z X q b Z Z I ' Z qr´1s
with the natural inclusion morphism which is q-soft. Notice that the sheaves of smooth forms on X ˆZ are also q-soft. In particular, we have

Rq ˚pB ' Z,XˆZ q -q ˚pConep Č' pU, Z X q b I ' Z Ñ σ p,' C ',' 8 ' σ ',q C ',' 8 qr´1sq where C ',' 8 means in fact C ',' 8 b Z X Č' pU, Z X q b Z Z I ' Z .
In the following of the proof, we always use this simplied notation. We have morphisms in the derived category DpShpXqq Č' pU, Z X q

" Ð Ý Z X " Ý Ñ I ' X . We also have a morphism q ˚pr 2 I ' Z Ñ q ˚I ' XˆZ Ñ I ' X . It induces a morphism q ˚p Č' pU, Z X q b I ' Z q Ñ Č' pU, Z X q. We have commutative diagrams q ˚pZ ' X b I ' Z q q ˚p Č' pU, Z X q b I ' Z q Z ' X Č' pU, Z X q, " q ˚pZ ' X b I ' Z q q ˚pI ' XˆZ q Z ' X I ' X .
"

On the other hand, since q is a submersion, we have a canonical morphism q ˚pC ',' 8 q Ñ C '´n,'´n 8 where n " dim C Z. Thus we get a morphism

q ˚pConep Č' pU, Z X q b I ' Z Ñ σ p,' C ',' 8 ' σ ',q C ',' 8 qr´1sq Ñ Conep Č'´2n pU, Z X q Ñ σ p´n,'´n C ',' 8 ' σ '´n,q´n C ',' 8 qr´1s. 
Passing to hypercohomology, this morphism induces the push forward of integral Bott-Chern cohomology by q. The above commutative diagrams show that the push forward of cohomology classes dened in this way coincides with the previous one. This yields two ways of dening the same map Rq ˚ZXˆZ Ñ Z X .

Since this resolution is at, we can also use it to dene the pull back of cohomology classes. More precisely, one can dene the pull-back of cohomology class for a projection as follows. Since i

Y ˆZ " pi Y , id Z q, one has i Y ˆZ : Conep Č' pU, Z X q b I ' Z Ñ σ p,' C ',' 8 ' σ ',q C ',' 8 qr´1s Ñ Conep Č' pU X Y, Z Y q b I ' Z Ñ σ p,' C ',' 8 ' σ ',q C ',' 8 qr´1s
induced by pulling back forms and pulling back currents. Here id Z is a submersion, so the pull back of currents is well dened (and is in fact the identity!). Passing to hypercohomology, we get another way of dening i Y ˆZ for integral Bott-Chern cohomology. We next check that these two denitions coincide. The inclusion Z

Z Ñ I ' X induces a commutative diagram Z XˆZ " Z X b Z Z Z Y ˆZ " Z Y b Z Z Č' pU, Z X q b I ' Z Č' pU X Y, Z Y q b I ' Z . i Y ˆZ i Y ˆZ
This commutative diagram implies that the two denitions of pull back coincide.

Similar arguments show that the pull back by i Y and the push forward by p ˚can be dened using the corresponding resolutions. Since the resolution is relative soft with respect to p or q, the hypercohomology can be represented by global sections. The sections are formed by currents and forms on the open set of U ˆZ or pU XY qˆZ for some open set U of X which is some intersection of the open sets in the cover U. The equality asserted in the proposition is satised for such forms and currents. This concludes the proof.

Multiplication of the Bott-Chern cohomology ring

In this section, we discuss a natural ring structure of the integral Bott-Chern cohomology and we verify the projection formula (Axiom B(1)). Some calculation of this part is borrowed from an unpublished work of Junyan Cao.

The complex Bott-Chern cohomology is represented by global dierential forms. The exterior product of forms induces the multiplication of cohomology classes. To dene a multiplication of integral Bott-Chern cohomology which preserves the ring structure under the canonical map from the integral Bott-Chern cohomology to the complex Bott-Chern cohomology, we start by dening a modied version of multiplication of Deligne cohomology. Recall that the integral Deligne complex Dppq ' is the complex in CpShpXqq

Zppq Ñ O Ñ Ω 1 Ñ ¨¨¨Ñ Ω p´1 Ñ 0.
The integral Deligne complex admits a multiplication structure as follows.

Y :

Dppq ' b Z X Dpqq ' Ñ Dpp `qq ' x Y y " $ ' & ' %
x ¨y, if deg pxq " 0 x ^dy, if deg pxq ą 0 and degpyq " p 0, otherwise.

Y is a morphism of Z X -module sheaf complexes by a direct verication. A modied version of multiplication is given in the following denition. Definition 6.20. For the integral Deligne complex, we dene

Y : Dppq ' b Z X Dpqq ' Ñ Dpp `qq ' x Y y " $ ' & ' %
x ¨y, if deg pyq " 0 p´1q p dx ^y, if deg pyq ą 0 and degpxq " p 0, otherwise.

We verify that Y yields a well dened morphism of complexes, namely that dpx Y yq " dx Y y `p´1q degpxq x Y dy.

Notice that for x P Dppq i with i ą 0, x is a pi ´1, 0q-form, and not a pi, 0q-form. This is frequently used in the following calculations.

If degpyq " 0, degpxq ă p, dpx Y yq " dpyxq " ydx, dx Y y `p´1q degpxq x Y dy " ydx `0 " ydx. If degpyq " 0, degpxq " p, dpx Y yq " dpyxq " ydx, dx Y y `p´1q degpxq x Y dy " 0 Y y `dx ^y " ydx. If degpyq ą 0, degpxq " p, dpx Y yq " dpp´1q p dx ^yq " dx ^dy, dx Y y `p´1q degpxq x Y dy " 0 Y y `dx ^dy " dx ^dy. (x is a pp ´1, 0q-form here.) If degpyq " 0, degpxq " p ´1, dpx Y yq " 0, dx Y y `p´1q degpxq x Y dy " p´1q p ddx ^y `0 " 0.

In the other cases, both sides are 0. Remark 6.21. For the denition of multiplication in the integral Bott-Chern complex, we need a modied Deligne complex where we change the signs. To be more precise, we consider the complex

Zppq ´1 Ý Ý Ñ O Ñ Ω 1 Ñ ¨¨¨Ñ Ω p´1 Ñ 0.
In this case, we dene the multiplication as follows:

x Y y "

$ ' & ' %
x ¨y, if deg pyq " 0 p´1q p´1 dx ^y, if deg pyq ą 0 and degpxq " p 0, otherwise.

The verication is similar. In the second case x Y dy " p´1q p´1 dx ^dy " p´1q p ydx since dy " ´y in this case. The third and fourth cases consist of changing just a sign on both sides of the equations.

Proposition 6.3.1. The multiplication is associative and homotopy graded-commutative. Thus, it induces a structure of an anti-commutative ring with unit on the integral Deligne cohomology.

The cup product of integral Bott-Chern cohomology is given explicitly by the following diagram. Definition 6.25. Let w, w be two representatives of hypercocycles of the complex B ' p,q b Z B ' p 1 ,q 1 , and let us use the following diagrams to denote the elements w, w w " ˆc, u 0,0 , . . . , u p´1,0 v 0,0 , . . . . . . , v 0,q´1 ˙, w " ˆc, ũ0,0 , . . . . . . . . . , ũp 1 ´1,0 ṽ0,0 , . . . , ṽ0,q 1 ´1 ˙.

For instance, at degree 0, we denote by c an element in Čp`q pB 0 p,q q, at degree 1, we denote by pu 0,0 , v 0,0 q an element in Čp`q´1 pB 1 p,q q etc. With the same notation, the cup product w Y w is represented by the diagram ˆc ^c, 0,˚c ^ũ 0,0 , . . . . . . . . . , p 1 ´1,˚c ^ũ p 1 ´1,0 , p 1 ,˚u0,0 ^Bũ p 1 ´1,0 , . . . , p`p 1 ´1,˚up´1,0 ^Bũ p 1 ´1,0 ˚,0 v 0,0 ^c , . . . , ˚,q´1 v 0,q´1 ^c , ˚,q Bv 0,q´1 ^ṽ 0,0 , . . . . . . , ˚,q`q 1 ´1Bv 0,q´1 ^ṽ 0,q 1 ´1 ˙.

The signs R,˚, ˚,S are given as follows:

R,˚"

# p´1q pp`qqpR`1q , if R ď p 1 ´1 p´1q p 1 pR`p`qq , if R ě p 1 ˚,S " # 1, if S ď q ´1 p´1q pS`pp`1qpq`1q , if S ě q .
Notice that this cup product is just the cup product dened in [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF]. Let us also notice that there exists a more obvious natural product structure on the complex Bott-Chern cohomology induced by the wedge product of forms. The signs in the cup product dened in [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF] are exactly taken in such a way that the two products coincide under the natural morphism. The natural inclusion of the integral Bott-Chern complex into the complex Bott-Chern complex induces a ring morphism in hypercohomology. The morphism of complexes D also induces a ring morphism in hypercohomology.

Proposition 6.3.2. The multiplication is anti-commutative. Thus, it induces a structure of an anticommutative ring with unit on the integral Bott-Chern cohomology.

Proof. As for Deligne cohomology, there is a natural homotopy operator. We identify the degree 0 sheaf in the integral Bott-Chern class Zppq with a subsheaf of Zppq ' Zpqq via the map 1 Þ Ñ p1, p2πiq q´p q. In this way, we can include the integral Bott-Chern complex into the direct sum of the integral Deligne cohomology and the (modied) conjugate integral Deligne complex. We dene H : B ' p,q,Z b Z X B ' p 1 ,q 1 ,Z Ñ B ' p`p 1 ,q`q 1 ,Z by the formula for any element ϕ i " pa i , b i q P B i p,q,Z , ψ j " pa 1j , b 1j q P B j p 1 ,q 1 ,Z , Hpϕ i b ψ j q :" # pp´1q i a i ^bj , p´1q j a 1i ^b1j q, if i ‰ 0, j ‰ 0 0, otherwise. This is well dened since at degree 0, the homotopy operator is 0 map. We have checked that

p´1q ij ψ j Y ϕ i " ϕ i Y ψ j `pdH `Hdqpϕ i b ψ j q.
Therefore, passing to hypercohomology, we have dened an anti-commutative ring structure on the integral Bott-Chern cohomology. For reference, the formulas for the homotopy operator of the integral Deligne complex can be found in [START_REF] Esnault | Deligne-Beilinson cohomology[END_REF].

We write ϕ ¨ψ for the multiplication of cohomology classes. There exists also another description of cup product following [START_REF] Esnault | Deligne-Beilinson cohomology[END_REF] by introducing the Deligne-Beilinson complex. In this way, the projection formula can be expressed more formally.

We start by recalling the Deligne-Beilinson complex in [START_REF] Esnault | Deligne-Beilinson cohomology[END_REF]. The advantage of the Deligne-Beilinson complex is that the multiplication is either 0 or weight product of two forms. When changing the complex involving forms by the complex involving currents, it becomes clearer what the sign should be.

Definition 6.26. The Deligne-Beilinson complex is

Appq ' " ConepZppq ' F p Ω ' X ´ Ý Ý Ñ Ω ' X qr´1s
where , are the natural maps and F p Ω ' X the stupid ltration.

By the following easy lemma in [START_REF] Esnault | Deligne-Beilinson cohomology[END_REF], we know that the Deligne-Beilinson complex is quasi-isomorphic to the Deligne complex. Lemma 6.27. Let u 1 : A ' 1 Ñ B ' and u 2 : A ' 2 Ñ B ' be two morphisms of complexes and C

' " ConepA ' 1 ' A ' 2 u1´u2 Ý ÝÝÝ Ñ B ' qr´1s. Then C ' " ConepA ' 1 u1 ÝÑ ConepA ' 2 ´u2 Ý ÝÝ Ñ B ' qqr´1s.
Proof. Both complexes are equal to A ' 1 ' A ' 2 ' B ' r´1s with the dierential pa 1 , a 2 , bq Þ Ñ ´p´da 1 , ´da 2 , u 1 pa 1 q ´u2 pa 2 q `dbq.

A quasi-isomorphism α : Dppq ' Ñ Appq ' can be given by

Zppq

O X ¨¨¨Ω p´2 Ω p´1 0 Zppq O X ¨¨¨Ω p´2 Ω p ' Ω p´1 Ω p`1 ' Ω p ¨¨α 0 α1 αp´1 αp
´ ´δ1 ´δp´1 ´δp with α p pωq " p´1q p pdω, ωq and α i pωq " p´1q i ω. The symbol δ denotes the dierential of the mapping cone, where in particular δ p´1 pηq " p0, dηq, δ p pψ, ηq " p´dψ, ´ψ `dηq.

The mapping cone has a negative sign, by the convention that for a complex A ' , the complex A ' rds has a dierential in degree n dened by p´1q d d n´d . The cup product of the Deligne-Beilinson complex is dened as follows. We set

Y 0 : Appq ' b Z X Apqq ' Ñ App `qq ' x Y 0 y " $ ' ' ' ' ' ' & ' ' ' ' ' ' %
x ¨y, if x P Zppq, y P Zpqq x ¨y, if x P Zppq, y P Ω ' x ^y, if x P F p Ω ' , y P F q Ω ' x ^y, if x P Ω ' , y P F q Ω ' 0, otherwise.

A direct verication shows that the diagram

Dppq ' b Z X Dpqq ' Dpp `qq ' Appq ' b Z X Apqq ' App `qq ' Y αbα α Y0 
is commmutative and that Y 0 is a morphism of complexes (cf. [START_REF] Esnault | Deligne-Beilinson cohomology[END_REF]). Since α is a quasi-isomorphism, we have a ring isomorphism at the level of hypercohomology.

For the analogue in the Bott-Chern case, we start by the modied cup product of Deligne-Beilinson complex. In this case, the cup product is dened as follows. We set

Y 0 : Appq ' b Z X Apqq ' Ñ App `qq ' x Y 0 y " $ ' ' ' ' ' ' & ' ' ' ' ' ' %
x ¨y, if x P Zppq, y P Zpqq x ¨y, if x P Ω ' , y P Zppq x ^y, if x P F p Ω ' , y P F q Ω ' p´1q degpxq x ^y, if x P F p Ω ' , y P Ω ' 0, otherwise.

The product can be described by the following table

a q f q ω q a p a p ¨aq 0 0 f p 0 f p ^fq p´1q degpfpq f p ^ωq ω p ω p ¨aq 0 0 representing elements of Zpqq F q Ω ' Ω ' Zppq Zpp `qq 0 0 F p Ω ' 0 F p`q Ω ' Ω ' Ω ' Ω ' 0 0
.

We verify that the cup product Y 0 is a morphism of complexes, i.e. that dpx Y 0 yq " dx Y 0 y `p´1q degpxq x Y 0 dy.

Both sides of the equation can be represented by the following table a q f q ω q a p a p ¨aq 0 0 f p 0 p´df p ^fq ´p´1q degpfpq f p ^df q , ´fp ^fq q p´1q degpfpq df p ^ωq `fp ^dω q ω p dω p ¨aq 0 0 .

The second line is calculated as follows:

p´df p , ´fp q Y 0 a q `p´1q degpfpq f p Y 0 a q " ´fp ^aq `p´1q 2 degpfpq f p ^aq " 0, p´df p , ´fp qY 0 f q `p´1q degpfpq f p Y 0 p´df q , ´fq q " p´df p ^fq `p´1q degpfpq f p ^p´f q q, p´1q 2 degpfpq f p ^p´f q qq, p´df p , ´fp q Y 0 ω q `p´1q degpfpq f p Y 0 dω q " p´1q degpfpq`1 p´df p q ^ωq `p´1q 2 degpfpq f p ^dω q .

We now verify that the map from Deligne complex to Delinge-Beilinson complex is also commutative under the modied cup product.

If degpyq " 0, degpxq ă p, αpx Y yq " αpxyq " p´1q degpxq xy, αpxq Y 0 αpyq " p´1q degpxq x Y 0 y " p´1q degpxq xy.

If degpyq " 0, degpxq " p, αpx Y yq " αpxyq " p´1q degpxq xy, αpxq Y 0 αpyq " p´1q degpxq pdx, xq Y 0 y " p´1q degpxq xy.

If 0 ă degpyq ă q, degpxq " p, αpx Y yq " αpp´1q p dx ^yq " p´1q degpxq`degpyq`p dx ^y, αpxq Y 0 αpyq " p´1q degpxq pdx, xq Y 0 p´1q degpyq y " p´1q degpxq`degpyq`p dx ^y.

If degpyq " q, degpxq " p, αpxYyq " αpp´1q p dx^yq " p´1q degpxq`degpyq`p pdpdx^yq, dx^yq " p´1q degpxq`degpyq pdxd y, p´1q p dx^yq, αpxqY 0 αpyq " p´1q degpxq pdx, xqY 0 p´1q degpyq pdy, yq " p´1q degpxq`degpyq pdx^dy, p´1q p dxŷ q. If 0 ă degpyq ă q, degpxq ă p, αpx Y yq " αp0q " 0, αpxq Y 0 αpyq " p´1q degpxq x Y 0 p´1q degpyq y " 0. So in this case, we also have a ring isomorphism of Deligne cohomology and Deligne-Beilinson cohomology for the modied cup product.

The modied Deligne complex is quasi isomorphic to the following modied Deligne-Beilinson complex

Appq ' " ConepZppq ' F p Ω ' X ´ ´
ÝÝÝÑ Ω ' X qr´1s where , are the natural maps. We dene the morphism α by the same formula. We change the denition of Y 0 by the following table to give a modied cup product a q f q ω q a p a p ¨aq 0 0 f p 0 ´fp ^fq p´1q degpfpq´1 f p ^ωq ω p ω p ¨aq 0 0

.

The verication that this is a morphism of complexes can be represented by the table a q f q ω q a p ´ap ¨aq 0 0 f p 0 pdf p ^fq `p´1q degpfpq f p ^df q , f p ^fq q p´1q degpfpq´1 df p ^ωq ´fp ^dω q ω p dω p ¨aq 0 0 .

The second line is calculated as follows:

p´df p , ´fp q Y 0 a q `p´1q degpfpq f p Y 0 p´a q q " ´fp ^aq `p´1q 2 degpfpq´1 f p ^p´a q q " 0, p´df p , ´fp qY 0 f q `p´1q degpfpq f p Y 0 p´df q , ´fq q " pdf p ^fq ´p´1q degpfpq f p ^p´df q q, p´1q 2 degpfpq´1 f p ^p´f q qq, p´df p , ´fp q Y 0 ω q `p´1q degpfpq f p Y 0 dω q " p´1q degpfpq p´df p q ^ωq `p´1q 2 degpfpq´1 f p ^dω q .

We verify that the map from modied Deligne complex to the modied Delinge-Beilinson complex is also commutative under the modied cup product.

If degpyq " 0, degpxq ă p, αpx Y yq " αpxyq " p´1q degpxq xy, αpxq Y 0 αpyq " p´1q degpxq x Y 0 y " p´1q degpxq xy.

If degpyq " 0, degpxq " p, αpx Y yq " αpxyq " p´1q degpxq xy, αpxq Y 0 αpyq " p´1q degpxq pdx, xq Y 0 y " p´1q degpxq xy. If 0 ă degpyq ă q, degpxq " p, αpx Y yq " αpp´1q p´1 dx ^yq " p´1q degpxq`degpyq`p´1 dx ^y, αpxq Y 0 αpyq " p´1q degpxq pdx, xq Y 0 p´1q degpyq y " p´1q degpxq`degpyq`p´1 dx ^y.

If degpyq " q, degpxq " p, αpx Y yq " αpp´1q p´1 dx ^yq " p´1q degpxq`degpyq`p´1 pdpdx ^yq, dx ^yq " p´1q degpxq`degpyq´1 pdx^dy, p´1q p dx^yq, αpxqY 0 αpyq " p´1q degpxq pdx, xqY 0 p´1q degpyq pdy, yq " p´1q degpxq`degpyq´1 pdxd y, p´1q p dx ^yq. If 0 ă degpyq ă q, degpxq ă p, αpx Y yq " αp0q " 0, αpxq Y 0 αpyq " p´1q degpxq x Y 0 p´1q degpyq y " 0.

Hence passing to hypercohomology, we have a ring isomorphism for the modied Deligne cohomology and the modied Deligne-Beilinson cohomology.

One can change the denition of Y 0 for the modied Deligne complex by introducing a dierent sign for the morphism at degree 0, according to the table a q f q ω q a p a p ¨aq 0 0 f p 0 ´fp ^fq p´1q degpfpq´1 f p ^ωq ω p ω p ¨aq 0 0 representing elements of

I ' X spF q,' D 1 ',' X q D 1 ' X Zppq I ' X 0 0 F p Ω ' 0 spF p`q,' D 1 ',' X q D 1 ' X Ω ' D 1 ' X 0 0 .
The verication that this is a morphism of complexes can be represented by the table a q f q ω q a p p´dpa p ¨aq q, ´ap ¨aq q 0 0 f p 0 pdf p ^fq `p´1q degpfpq f p ^df q , f p ^fq q p´1q degpfpq´1 df p ^ωq ´fp ^dω q ω p dpω p ¨aq q 0 0

The dierence with the previous calculation just occurs in the rst column. The rst object is dpa p Y 0 a q q " p´dpa p ¨aq q, ´ap ¨aq q " p´da p , ´ap qY 0 a q `ap Y 0 p´da q , ´aq q " da p Y 0 a q `p´1q degpapq a p Y 0 da q .

The second object is df p Y 0 a q `p´1q degpfpq f p Y 0 da q " p´df p , ´fp q Y 0 a q `p´1q degpfpq f p Y 0 p´da q , ´aq q " ´fp ^aq `p´1q 2 degpfpq´1 f p ^p´a q q " 0.

The third object is dpω p Y 0 a q q " dpω p ^aq q " dω p ^aq `p´1q degpωpq ω p ^da q " dω p Y 0 a q `p´1q degpωpq ω p Y 0 da q .

We have the following commutative diagram of Z X -modules, where, as before, the multiplication of Deligne complex and the modied multiplication of the modied Deligne complex induce the multiplication of the integral Bott-Chern complex

Bpp, q, Zq ' b Z X Bpp 1 , q 1 , Zq ' Bpp `p1 , q `q1 , Zq ' Bpp, q, Zq ' b Z X Bpp 1 , q 1 , Zq ' Bpp `p1 , q `q1 , Zq ' . Y Y0
The vertical arrow is induced by the morphism of complexes Zppq Ñ I ' X . The gluing condition used to dene the multiplication of the integral Bott-Chern complex, starting from the Deligne complex and the conjugate (modied) Deligne complex, is that Zppq b I ' X Ñ I ' X should be the same for both complexes. Now, the second equality comes from the straightforward check

f ˚pf ˚ψ Y 0 ϕq " ψ Y 0 f ˚ϕ.
This equality induces as follows the desired formula on the level of hypercohomology. By the algebraic Künneth formula (cf. Theorem 15.5 in [START_REF] Demailly | Complex analytic and dierential geometry[END_REF]), we have a morphism

H ˚pRa Y ˚Bpp, q, Zqq b H ˚pRa Y ˚Rf ˚Bpp, q, Zqq Ñ H ˚pRa Y ˚Bpp, q, Zq b L Ra Y ˚pRf ˚Bpp, q, Zqqq.
Notice that since Z is a PID, Bpp, q, Zq, Bpp, q, Zq are torsion free and at. Notice also that Bpp, q, Zq is also a soft complex. There is in fact no need to write functors R and L in the above morphism. We have proven that the following diagram commutes:

Bpp, q, Zq b f ˚Bpp 1 , q 1 , Zq f ˚pf ˚Bpp, q, Zq b Bpp 1 , q 1 , Zqq Bpp `p1 , q `q1 , Zqq.

p˚q

Let us observe that a tensor product of a soft complexe by a at complex is soft. By taking Ra Y ˚(equivalently a Y ˚since all complexes are soft) the above commutative diagram induces the following commutative diagram Ra Y ˚Bpp, q, Zqb L Ra X˚B pp 1 , q 1 , Zq ÑRa Y ˚pBpp, q, Zqb L Rf ˚Bpp 1 , q 1 , Zqq ÑRa X˚p f ˚Bpp, q, Zqb L Bpp 1 , q 1 , Zqq Ra Y ˚Bpp `p1 , q `q1 , Zqq.

(Remark that the symbol f ˚used here is denoted f ´1 by some authors.) The left arrow is the natural morphism and the left-down arrow is just the composition. Taking hypercohomology and composing with the morphism in the Künneth formula give the projection formula.

The order for taking the cup product is unimportant when passing to hypercohomology, since the integral Bott-Chern cohomology is anti-commutative. This nishes the proof of the projection formula.

Chern classes of a vector bundle

In this part we give a construction of the Chern class of a vector bundle in the integral Bott-Chern cohomology. It is borrowed from Junyan Cao (personal communication). The general line is Grothendieck's construction of Chern classes of a vector bundle via the splitting principle. In particular, we prove axiom A stated in the introduction. We rst recall the denition of the rst Chern class of a line bundle in integral Bott-Chern cohomology, following [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF].

Let L be a holomorphic line bundle over X and U " pU j q be an open covering of X with connected intersections such that on each U j , L is locally trivial by a nowhere-vanishing section e j . We denote g jk the transition function dened on U j X U k dened by the relation e k pxq " g jk pxqe j pxq. Perhaps with further renement of the open covering, we can suppose that g jk " exppu jk q. The element tg jk u P Ȟ1 pU, O ˚q -H 1 pX, O ˚q determines the isomorphic class of L. Let h be a hermitian metric on L and we denote by D the Chern connection associated with pL, hq and by Θ the curvature of the Chern connection. On U j , the Chern connection is given by the formula Dpξ j pxqe j pxqq " pdξ j pxq ´Bϕ j pxqξ j pxqq b e j pxq where ϕ j is the local weight function of the metric under the trivialisation dened by e ´ϕj pzq " |e j pzq| 2 h , which veries the compatibility condition on U j X U k : ´ϕk `ϕj " u jk `ujk .

We dene the ech 2-cocycle δpu jk q to be p2πic jkl q which means on U jkl 2πic jkl " u jk ´ujl `ukl .

Taking exponential map on the both sides we know exp 2πic jkl " g jk ˚g´1 jl ˚gkl " 1 which in particular shows p2πic jkl q P Č2 pX, Zp1qq a 2´Č ech cocycle with value in Zp1q. We dene the rst Chern class of L in the integral Bott-Chern cohomology to be c 1 pLq BC,Z :" tp2πic jkl q, pu jk q, pu jk qu P H 1,1 BC pX, Zq. We prove in what follows that this hypercocycle also represents the Chern class of L in the complex Bott-Chern cohomology. For the complex Bott-Chern cohomology, the corresponding global representative (1,1)form via the quasi-isomorphic complex L ' p,q r1s which is dened with p " 1, q " 1 L

k p,q " à r`s"k răp,săq E r,s ifk ď p `q ´2, L k´1 p´1,q´1 " à r`s"k rěp,sěq E r,s ifk ě p `q, with dierential L 0 pr L 1 ˝d ÝÝÝÝÑ L 1 pr L 2 ˝d ÝÝÝÝÑ . . . Ñ L k´2 i 2π BB Ý ÝÝ Ñ L k´1 d Ý Ñ L k d Ý Ñ . . .
is just the global form with i 2π BBϕ j on U j . Notice that the complex L ' p,q is acyclic. The proof of the quasi isomorphism between L ' p,q and B ' p,q can be found in section 12 Chap VI of [Dem12b]. (Notice that in [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF], the operator i 2π BB is changed by BB. Here we take this choice so that the rst Chern class of a line bundle in the integral Bott-Chern class has image as the rst Chern class in the complex Bott-Chern class under the canonical morphism.)

With the same notation as in [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF], α 0,0 can be chosen to be pϕ j q, so the global representative is θ 0,0 " i 2π BBα 0,0 . This is exactly the curvature form on U j . Therefore the hypercocycle of B ' 1,1,Z viewed as a hypercocycle of B ' 1,1,C corresponding to Θ is tΘu ÐÑ tp2πic jkl q, pu jk q, pu jk qu .

Observe that the rst Chern class of the complex Bott-Chern cohomology is just represented by the curvature.

We denote by BC the canonical map from the integral Bott-Chern complex to the complex Bott-Chern complex. We have in hypercohomology BC c 1 pLq BC,Z " c 1 pLq BC .

Notice that the Chern classes of a vector bundle in integral Bott-Chern cohomology (which will be dened below) and in complex Bott-Chern cohomology are both dened by means of the splitting principle, in such a way that for any d and any vector bundle E we have BC c d pEq BC,Z " c d pEq BC .

To construct the Chern class of a vector bundle, we use Grothendieck's splitting principle. We begin by proving a Leray-Hirsch type theorem for the integral Bott-Chern cohomology. This theorem is a direct consequence of the Hodge decomposition theorem and of the Leray-Hirsch theorem for De Rham cohomology, in case X is a compact Kähler manifold. Here we give a generalisation to arbitrary compact complex manifolds. Before giving the statement in the integral Bott-Chern cohomology, we prove lemma 6.29 below, which is a proposition of the same nature for Dolbeault cohomology, and which will be used in a further induction process. The proof also uses the following Künneth type theorem for Dolbeault cohomology.

Theorem 6.28. Let X, Y be any two complex manifolds, Y being compact. Then one has the Künneth isomorphism H p,q pX ˆY q " à k`l"p,m`n"q H k,m pXq b H l,n pY q.

Proof. With respect to local coordinates px i q on X and pw j q on Y , the sheaf Ω p,q XˆY is a locally free O XˆY -module with the basis dx I ^dw J (|I | " p, |J| " q). Similarly the Ω p X (resp. Ω q Y ) is locally a free O X -module (resp. O Y -module) with the basis dx I with |I| " p (resp. dw J with |J| " q). With this identication, the vector bundle isomorphism

Ω k XˆY - à p`q"k Ω p X b Ω q Y is just the canonical isomorphism O XˆY -O X b O Y .
The symbol ˆmeans here that we take the topological tensor product of two nuclear spaces (for more details, cf. [START_REF] Demailly | Complex analytic and dierential geometry[END_REF], Section 5 of Chap. IX).

By Remark (5,24) of Chap. IX in [START_REF] Demailly | Complex analytic and dierential geometry[END_REF], when Y is compact we have H p,q pX ˆY q " H q pX ˆY, Ω p XˆY q " à k`l"p

H q pX ˆY, Ω k X b Ω l Y q " à k`l"p à m`n"q H m pX, Ω k X q b H n pY, Ω l Y q " à k`l"p à m`n"q
H k,m pXq b H l,n pY q.

We can now state the relevant Leray-Hirsch type theorem for Dolbeault cohomology. Lemma 6.29. Let X be a compact complex manifold and E be a vector bundle of rank r on X. One has an isomorphism à sďr´1 H p´s,k´p´s pXq ¨cs 1 pOp1qq Ñ H p,k´p pPpEqq.

Proof. We follow in general the proof of Leray-Hirsch theorem as in [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF]. Take a nite open covering pU i q of X. We do an induction on the open cover. In the following, U, V are respectively Ť iďi0 U i and U i0`1 appearing in the open covering.

We have a short exact sequence of complexes of abelian groups: 0 Ñ A q,' pU Y V q Ñ A q,' pU q ' A q,' pV q Ñ A q,' pU X V q Ñ 0.

It induces a long exact sequence ¨¨¨Ñ H p,q pU Y V q Ñ H p,q pU q ' H p,q pV q Ñ H p,q pU X V q Ñ H p`1,q pU Y V q Ñ ¨¨¨.

We verify the following diagram is commutative where both lines are exact À sďr´1 H p´s,k´p´s pU Y V q ¨cs 1 pOp1qq Ñ À sďr´1 pH p´s,k´p´s pU q ' H p´s,k´p´s pV qq ¨cs 1 pOp1qq Ñ À sďr´1 H p´s,k´p´s pU X V q ¨cs 1 pOp1qq Ñ ¨¨Ḧ We denote by ψ the vertical maps. Let ρ U , ρ V be a partition of unity associated with U, V so the functions π ˚ρU , π ˚ρV form a partition of unity associated with π ´1pU q, π ´1pV q. For any ω a global representative of the cohomology class H p´s,k´p´s pU X V q and φ a global representative of the cohomology class c s 1 pOp1qq, we have on π ´1pU q ψpB ˚pω b φqq " π ˚pBpρ U ωqq ^φ.

B ˚ψpω b φq " B ˚pπ ˚ω ^φq " Bpπ ˚ρU ¨π˚ω ^φq " π ˚pBpρ U ωqq ^φ.

The last equality use the fact that the global representative is B-closed.

By the ve lemma, once we know the vertical arrows are isomorphisms for the terms involving U XV, U, V , we know the isomorphism for the terms involving U Y V . We take U, V to be the local trivial open sets chosen above. If we have π ´1pU i q -U i ˆPr´1 for any i, we have π ´1pU i X U j q -pU i X U j q ˆPr´1 . For any U open set on which π is locally trivial we have the following commutative diagram À sďr´1 H p´s,k´p´s pU q ¨cs 1 pO P r´1 p1qq À sďr´1 H p´s,k´p´s pU q ¨cs 1 pO PpEq p1qq

H p,k´p pPpE| U qq idbs - π ˚^i π´1 pU q
where the map s is associating c s 1 pO P r´1 p1qq to c s 1 pO PpEq p1qq and i π ´1 pU q is the inclusion of π ´1pU q in PpEq.

By the above Künneth type theorem for Dolbeault cohomology, we get an isomorphism as shown in the diagram. We next check that the diagram commutes. In fact, one has i π´1 pU q pspc 1 pO P r´1 p1qqqq " i π´1 pU q c 1 pO PpEq p1qq " c 1 pO PpE| U q p1qq " c 1 ppr 2 O P r´1 p1qq " pr 2 c 1 pO P r´1 p1qq.

Here we consider U ˆPr´1 pπ,pr 2 q ÝÝÝÝÑ π ´1pU q. In the calculation we have used many times the functoriality of Chern classes of line bundles, which is a direct consequence of their construction.

The commutativity of the diagram and the fact that the horizontal arrow is a linear isomorphism show that the vertical arrow is also an isomorphism. Using this argument, we have isomorphisms for the terms involving U i X U j , U i , U j .

The induction process can be done in three dierent cases. The case of nite union of open sets is obtained by the induction assumption. The case of a single local trivialising open chart is done as above.

The case of the intersection of a union of open sets and of a local trivialising chart (which also yields a local trivialising chart) is again done as above. Since the covering is nite, the induction is achieved in nitely many steps.

Remark 6.30. The dierence between this proof and the one given in [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF] is that we do not have to take a good covering since here the induction on the open covering start with the Künneth type theorem instead of Poincaré lemma which in fact shows that the De Rham cohomology is homotopy invariant. We are forced to do it because the Dolbeault cohomology is not homotopy invariant. For example H 0,0 of a point is C while H 0,0 of C are the entire functions. Now, we prove the principal proposition of this section, namely a Leray-Hirsch type theorem for the integral Bott-Chern cohomology.

Proposition 6.4.1. Let X be a compact complex manifold, E a vector bundle of rank r over it. Then, we have

H k pPpEq, B ' p,q,Z q " H k pX, B ' p,q,Z q ' H k´2 pX, B ' p´1,q´1,Z q ¨ω ' ¨¨¨' H k´2r`2 pX, B ' p´r`1,q´r`1,Z q ¨ωr´1
where ω is the rst Chern class of the tautological line bundle over PpEq in H 1,1 BC pPpEq, Zq as dened above.

In the proposition we use the following notations.

If p ă 0 (resp. q ă 0), we denote B ' p,q,Z " B ' 0,q,Z (resp. B ' p,0,Z ). The morphism F : à sďr´1 H k´2s pX, B ' p´s,q´s,Z q ¨ωs Ñ H k pPpEq, B p,q q is dened as follows: let π : PpEq Ñ X; If s ď min pp, qq, F pα ¨ωs q " π ˚pαq ¨ωs , If s ě p, F pα ¨ωs q " π ˚pαq ¨ωp ¨pr 0,1 pωq s´p , If s ě q, F pα ¨ωs q " π ˚pαq ¨ωq ¨pr 1,0 pωq s´q , where the projection pr 0,1 is induced by the canonical projection from B ' 1,1,Z to B ' 0,1,Z . Similarly pr 1,0 is induced by the projection to B ' 1,0,Z . Notice that when p " q " r, k " 2r, this is just the normal splitting principle without the complicated notations.

Proof. The idea is to use the exact sequence 0 Ñ Ω p rps Ñ B ' p`1,q,Z Ñ B ' p,q,Z Ñ 0 to reduce the proof to the Dolbeault case. In this proof, we use the usual convention for dierential forms that for p ă 0, Ω p rps " 0. We begin by proving that the following diagram is commutative and that its two lines are exact:

À sďr´1 H k´2s pX, Ω p´s rp ´ssq ¨ωs Ñ À sďr´1 H k´2s pX, B ' p`1´s,q´s,Z q ¨ωs Ñ À sďr´1 H k´2s pX, B ' p´s,q´s,Z q ¨ωs Ñ À sďr´1 H k´2s`1 pX, Ω p´s rp ´ssq ¨ωs H k pPpEq, Ω p rpsq H k pPpEq, B ' p`1,q,Z q H k pPpEq, B ' p,q,Z q H k`1 pPpEq, Ω p rpsq
We rst check the exactness of the two lines. The exactness is just obtained from the long exact sequence associated with the short exact sequence of sheaves. We now check the commutativity of the rst square.

H k´2s pX, Ω p´s rp ´ssq ¨ωs

G i / / H k´2s pX, B ' p`1´s,q´s,Z q ¨ωs F H k pPpEq, Ω p rpsq i / / H k pPpEq, B ' p`1,q,Z q.
The morphism G is induced from the following morphism of complexes Ω p´s rp ´ss b Z X B ' 1,1,Z Ñ Ω p´s`1 rp ś `1s. Denote the germs as α P Ω p´s rp ´ss, ω " `r c, β; β ˘. We dene Gpα b βq " α ^pBβq.

We take it equal to zero otherwise.

We check that this a morphism of complexes. In fact, we have Therefore G denes a morphism at the level of hypercohomology. From now on, we do not pay attention to write α or π ˚α when the context should make the meaning clear. Notice that the morphism F is induced by a morphism of complexes. (It is just the cup product of the integral Bott-Chern cohomology dened in section 3.) To prove the commutativity at the level of hypercohomology, it is enough to show the commutativity at the level of complexes. It is enough to check the commutativity for the case s ď p. We have ipα ^pBβq s q " p0, 0, 0....α p´s ^pBβq s ; 0q, which is equal to the image of F ˝i.

We check the commutativity of the second square. Let α " `c, α 0 , ..., α p´s ; β 0 , ..., β q´s´1 ˘, ω " `r c, β; β ˘be the representatives of hypercocycles. If s ď p, the horizontal morphism just consists of forgetting the term involving α p´s , thus it is commutative. Otherwise, α " `c, β 0 , ..., β q´s´1 ˘and the morphism is induced by the identity map at the level of complexes, so it is commutative.

We check the commutativity of the third square.

À H k´2s pX, B ' p´s,q´s,Z q ¨ωs

F i / / À H k´2s`1 pX, Ω p´s rp ´ssq ¨ωs G H k pPpEq, B ' p,q,Z q i / / H k`1 pPpEq, Ω p rpsq.
If s ď p ´1, take a representative of hypercocycle α " `c, α 0 , ..., α p´s´1 ; β 0 , ..., β q´s´1 ˘, which is the image of hypercocycle of B ' p´s`1,q´s,Z `c, α 0 , ..., α p´s´1 , 0; β 0 , ..., β q´s´1 ˘. By the denition of the connecting morphism, ipαq can be taken as the degree pp´sq element of the hypercocycle δ `c, α 0 , ..., α p´s´1 , 0; β 0 , ..., β q´s´1 which is Bα p´s´1 . Hence Gpipαqq " Bα p´s´1 ^pBβq s .

On the other hand, ipF pαqq " Bpα p´s´1 ^pBβq s q " Bα p´s´1 ^pBβq s . If s " p, we take a representative of the hypercocycle α " `c, β 0 , ..., β q´s´1 ˘, which is the image of the hypercocycle `c, 0; β 0 , ..., β q´s´1 ˘of B ' 1,q´s,Z . By denition of the connecting morphism, ipαq can be taken as the degree 0 element of the hypercocycle δ `c, 0; β 0 , ..., β q´s´1 ˘, which is c.

Therefore ipαq " c and Gpipαqq " c ^pBβq s . The two elements with highest degrees in the hypercocycle F pαq are c ^β ^pBβq s´1 and c ^pBβq s . Now, ipF pαqq is the degree p element of the hypercocycle δpF pαqq, namely ipF pαqq " Bpc ^β ^pBβq s´1 q " Gpipαqq.

If s ă p, the sequence 0 Ñ Ω p´s rps Ñ B ' p`1´s,q,Z " Ý Ñ B ' p´s,q,Z Ñ 0 is an isomorphism between the second and third terms, which therefore induces a zero connecting morphism.

The diagram is also commutative in this case.

At this point, all the asserted commutativity properties have been checked.

Using the ve lemma to perform an induction on p, we have to prove that the following morphism is an isomorphism:

G : à sďr´1 H k´2s pX, Ω p´s rp ´ssq ¨ωs Ñ H k pPpEq, Ω p rpsq.

On the ech cohomology groups Ȟp pX, Ω q q, one can introduce a ring structure by the wedge product Ȟp pX, Ω q q ˆȞ p 1 pX, Ω q 1 q Ñ Ȟp`p 1 pX, Ω q`q 1 q.

On the other hand, using the De Rham-Weil isomorphism, we have a canonical isomorphism φ : Ȟp pX, Ω q q Ñ H q,p pX, Cq.

Lemma 6.31 below shows that the isomorphism is compatible with the ring structure of Dolbeault cohomology, possibly up to a sign. Now we prove that G is an isomorphism. Let ω " pc, β; βq, so that by denition Gpα ¨ωs q is represented by the k-hypercocycle Gpα ¨ωs q " π ˚pαq ^pBβq s . By the construction of the Chern class of the line bundle Op1q, we have β jk `βjk " φ j ´φk which implies Bβ jk " Bpφ j ´φk q.

A diagram chasing procedure similar to the proof of the De Rham-Weil isomorphism gives that the image of Bβ jk in H 1,1 pPpEq, Cq is ´BpBφ j q, where the later form is the curvature. The negative sign comes from the convention that if we denote δ, d the dierentials of a double complex, dδ `δd " 0. Therefore, to dene a double complex from the ech complex and B-complex, we have to add a negative sign following the parity. In conclusion ω represents c 1 pOp1qq, hence by the Leray-Hirsch type theorem for Dolbeault cohomology and by lemma 6.31, the isomorphism G is settled.

To conclude the proof of the proposition, the ve lemma and an induction on p reduce the proof to the case p " 0. It is enough to show that H k pPpEq, B ' 0,q,Z q " H k pX, B ' 0,q,Z q ' H k´2 pX, B ' 0,q´1,Z q ¨ω ' ¨¨¨' H k´2r`2 pX, B ' 0,q´r`1,Z q ¨ωr´1 .

The short exact sequence 0 Ñ Ω q rqs Ñ B ' 0,q`1,Z Ñ B ' 0,q,Z Ñ 0 induces the two lines of the following diagram are exact. H k´2s pX, B 0,q`1´s q ¨ωs Ñ À sďr´1 H k´2s pX, B 0,q´s q ¨ωs Ñ À sďr´1 H k´2s`1 pX, Ω q´s rq ´ssq ¨ωs

H k pPpEq, Ω q rqsq
/ / H k pPpEq, B 0,q`1 q / / H k pPpEq, B 0,q q / / H k`1 pPpEq, Ω q rqsq , Here we change the connecting morphism of the rst line with a sign p´1q s on the relevant terms. This change does not aect the exactness of sequence but ensures the commutativity of the diagram. As before, we check that the diagram is commutative. To simply the sign in the cup product of Bott-Chern cohomology, we use the anti-commutativity of the integral Bott-Chern class. For any class α, α ¨ω " ω ¨α. Notice that since p " 0, ω is in fact pr 0,1 ω. With the same notations as before, this time the morphism G is induced by Definition 6.32. Taking p " q " r, k " 2r, there are unique elements c i P H i,i BC pX, Zq, such that ω r `ÿ p´1q i π ˚pc i q ¨ωr´i " 0 where ω " c 1 pOp1qq by the above proposition 6.4.1. We dene the Chern classes of a vector bundle E in the integral Bott-Chern cohomology to be precisely the c i .

We now prove some elementary properties of Chern classes in the integral Bott-Chern cohomology. In particular, we check that axiom A of the introduction holds. Let us rst observe that such Chern classes are unique, since they satisfy the Grothendieck axioms for Chern classes included in Axiom A. Proposition 6.4.2. (functoriality of Chern classes) Let f : X Ñ Y be a holomorphic morphism between two compact complex manifolds, and E be a holomorphic vector bundle of rank r over Y , Then we have f ˚pc k pEqq " c k pf ˚pEqq.

Proof. We have the following commutative diagram:

Op1q| Ppf ˚pEqq / / Op1q| PpEq Ppf ˚pEqq f / / π PpEq π X f / / Y,
which in particular shows that f ˚pOp1q| PpEq q " Op1q| Ppf ˚pEqq . By the functoriality of the rst Chern class (directly obtained from its construction), we get f ˚pc 1 pOp1q| PpEq qq " c 1 pOp1q| Ppf ˚pEqq q. By the denition of Chern classes, we have an equality ÿ p´1q s c r´s 1 pOp1q| PpEq q ¨π˚p c s pEqq " 0. Hence ř p´1q s f ˚pc 1 pOp1q| PpEq qq r´s ¨f ˚pπ ˚pc s pEqqq " 0, from which the denition of Chern classes yields f ˚pc k pEqq " c k pf ˚pEqq.

The next property is the Whitney formula. Proposition 6.4.3. Let 0 Ñ E Ñ F Ñ G Ñ 0 be a short exact sequence of holomorphic vector bundles. Then we have chpEq `chpGq " chpF q and cpEq ¨cpGq " cpF q.

Proof. On X ˆP1 , there exists a short exact sequence of holomorphic vector bundles 0 Ñ Ẽ Ñ F Ñ G Ñ 0, such that the restriction of exact sequence on the complex submanifold X ˆt0u is 0

Ñ E Ñ F Ñ G Ñ 0 and the restriction on X ˆt8u is 0 Ñ E Ñ E ' G Ñ G Ñ 0.
The existence of such a sequence can be found for example in [START_REF] Soulé | Lectures on Arakelov geometry[END_REF]. In the case of a direct sum, we obviously have the formulas chpGq `chpEq " chpE ' Gq and cpE ' Gq " cpEq ¨cpGq by the splitting principle (cf. section 21 [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF]).

On the other hand, we have the following commutative diagram for every point a P P 1 :

X ˆP1 π / / X X ia O O Id ; ; .
The identity element of the ring ' k,p,q H k pX, B ' p,q,Z q is the element in H 0 pX, B ' 0,0,Z q represented by the constant 1 P Zp0qpXq (more precisely the 0-cocycle 1 P Zp0qpU i q for each U i in the open covering). Via the quasi-isomorphism, it can also be represented by the integral current associated with X. We denote this element by Id X . By the projection formula we have for every α P H ' pX ˆP1 q that π ˚pi a ˚pId X q ¨αq " π ˚pi a ˚pId X ¨iå pαqq " π ˚pi a ˚pi å pαqq " Id ˚pi å pαqq " i å pαq.

By the functoriality of Chern classes, we thus nd π ˚pi 0 ˚pId X q ¨pchp Gq `chp Ẽq ´chp F qqq " pchp Gq `chp Ẽq ´chp F qq| Xˆt0u " chpGq `chpEq ´chpF q, π ˚pi 8 ˚pId X q ¨pchp Gq `chp Ẽq ´chp F qqq " pchp Gq `chp Ẽq ´chp F qq| Xˆt8u " 0.

To prove the Whitney formula, it is enough to prove the following homotopy property: let i a : X ãÑ X ˆP1 be the inclusion into the complex submanifold X ˆtau, then i å pαq is independent of the choice of a.

Since X ˆtau is a codimension 1 analytic set in X ˆP1 , its associated integral current denes a global section of I 2 X . Since rX ˆtaus is of type (1,1), it projects to zero in H

0 pX, σ 1,' D 1 ',' X ' σ ',1 D 1 ','
X q. Hence 2π ? ´1rXˆtaus denes a hypercocycle for the integral Bott-Chern complex B ' 1,1,Z . By the construction of the push-forward, this element represents i a ˚pId X q. In the following we denote i a ˚pId X q as t2π ? ´1rX ˆtausu (which is just the cycle class dened in the next section). With this notation, we have proved the equality chpGq `chpEq ´chpF q " π ˚p2π ? ´1ptrX ˆt0usu ´trX ˆt8usuq ¨pchp Gq `chp Ẽq ´chp F qqq.

We denote by z the parameter in P 1 " C Y t8u and by r0, 8s a (real) line connecting 0 and 8 in P 1 (for example we can take the positive real axis). Then the function ln z is well dened on P 1 r0, 8s. X ˆr0, 8s is a real codimension one real analytic set of X ˆP1 , so it well denes a locally integral current. As a current dprX ˆr0, 8ssq " ´rX ˆ0s `rX ˆ8s. For any smooth form of type pn `1, nq with compact support where n is the complex dimension of X @ B ln z, φ n`1,n D " ´@ln z, Bφ n`1,n D " ´żXˆr0,8s `´X ˆr0,8s ´ln z ¨φ " ´2iπ ż Xˆr0,8s

φ.

The second equality is a consequence of the Stokes formula. It shows that pr 0,1 prX ˆr0, 8ssq " ´1 2πi Blnpzq.

Similarly pr 1,0 prX ˆr0, 8ssq " ´1 2πi Blnpzq. Therefore, in the space of global sections of the mapping cone Conep∆q ' r´1spX ˆP1 q for p " 1, q " 1, we have prX ˆt0us ´rX ˆt8us, 0q " δpX ˆr0, 8s,

1 2π ? ´1 ln z ' ´1 2π ? ´1 ln zq,
where δ is the dierential of the integral Bott-Chern complex. In other words, rX ˆt0us ´rX ˆt8us is exact, and this means that chpGq `chpEq ´chpF q " 0 in the integral Bott-Chern cohomology class. The proof of the total Chern class formula is similar.

(It would be more direct to conclude that the class of ´rX ˆ0s `rX ˆ8s is 0 in the complex Bott-Chern cohomology. Using a resolution by currents, this is equivalent to show that as currents on X ˆP1 , ´rX ˆ0s `rX ˆ8s is BB´exact. However, notice that ´rX ˆ0s `rX ˆ8s " ´iBBprXs ln |z|q where we view z as a meromorphic function on P 1 with a single zero at 0 and a single pole at innity.)

Cohomology class of an analytic set

To prove the other axioms, we have to study the transformation of cohomology groups under what appears to be the wrong direction. For example the pull back of a cohomology class represented by the closed current associated with a cycle should morally be represented by the pull back of this current, but such pull backs are not always well dened. In this section, given an irreducible analytic cycle Z of codimension k in X, we will associate to it a cycle class in the integral Bott-Chern cohomology H k,k BC pX, Zq. Then we will prove a number of elementary properties of this type of cycle classes. In particular, the projection formula, the transformation formula of a cycle class under a morphism will be established (Axiom B (3)). At the end, we will deduce the commutativity property of pull back and push forward by projections and inclusions, according to Axiom B (4). The excess formula (Axiom B(5)) is a direct consequence, using the standard deformation technique of the normal bundle.

To show that, in certain cases, the pull back of a current representing a class induces a well dened map in cohomology, we bypass the diculty by showing a corresponding formula for the Bloch cycle class, which takes values in local cohomology. We make this choice since locally the Bloch cycle class can be given explicitly, and its pull back can also be made explicit.

Cohomology with support is involved since cycle classes can be represented in a natural way by currents associated which the cycle. These are in fact supported in the given analytic sets, whence the appearance of cohomology with support.

With this renement, technically, we can show that before taking the hypercohomology, the complex RΓ Z pX, O X q can be centered at the degree we want. Hence the related spectral sequences degenerate. This allows us to glue local sections into global ones to dene the Bloch cycle class.

Attention should be paid to the fact that the Bloch cycle class lies in the derived category of O X -modules, while the integral Bott-Chern complex lies in the derived category of sheaves of abelian groups DpShpXqq.

In this section, we denote H ' |Z| pX, 'q or H ' Z pX, 'q the local hypercohomology class of some complex on X with support in Z.

6.5.1. Denition of cycle classes. We start by dening a cycle class in the integral Bott-Chern cohomology. This is an analogue of the cycle class in integral Deligne cohomology that has been dened in [START_REF] El Zein | Extendability of normal functions associated to algebraic cycles[END_REF]. As before, we denote by ∆ :

C X Ñ σ p Ω ' X ' σ q Ω X ' .
For any p, q, we have the following commutative diagram with exact lines 0 / / B ' p,q,Z / / B ' p,q,C / / C X {Z X / / 0 0 / / Z X / / C X / / C X {Z X / / 0.

The vertical morphism of complexes consists of forgetting the terms with degree ą 0. It induces the following diagram with exact lines for p " q " k.

H 2k´1 |Z| pX, C X {Z X q / / H 2k |Z| pX, B ' k,k,Z q / / H 2k |Z| pX, B ' k,k,C q / / H 2k |Z| pX, C X {Z X q H 2k´1 |Z| pX, C X {Z X q / / H 2k |Z| pX, Z X q / / H 2k |Z| pX, C X q / / H 2k |Z| pX, C X {Z X q.
The rst and fourth vertical arrow are the identity map. By the Poincaré duality for cohomology with support we know H 2k´1 |Z| pX, C X {Z X q -H 2n´2k`1 pZ, C X {Z X q " 0 where the second equality comes from the fact that the real dimension of Z is 2n ´2k.

By chasing the diagram, we know for any elements a P H 2k |Z| pX, B ' k,k,C q and b P H 2k |Z| pX, Z X q such that their images in H 2k |Z| pX, C X q are the same, then there exists a unique element in H 2k |Z| pX, B ' k,k,Z q such that the image of this element is a, b respectively.

To dene the cycle class, it is thus enough to associate the cycle two elements in H 2k |Z| pX, B ' k,k,C q, H 2k |Z| pX, Z X q such that their image in H 2k |Z| pX, C X q is the same. The cycle Z denes a global section in H 0 pX, I 2k X q so it represents an element in H 2k |Z| pX, Z X q. The inclusion Z X Ñ C X induces in the derived category a morphism I ' X Ñ D1 ' X . These two quasi-isomorphic morphisms induce the same morphism when passing to hypercohomology. The cycle class in H 2k |Z| pX, Z X q associated with Z has an image in H 2k |Z| pX, C X q represented also by the integral current associated with Z.

On the other hand, C X is quasi-isomorphic to the complex D 1 ' X . The complex Bott-Chern complex is quasi isomorphic to the mapping cone Cpqq ' r´1s with the natural map q :

D 1 ' X Ñ σ k,' D 1 ',' X ' σ ',k D 1 ',' X with
a negative sign on the second component. The integral current associated with Z denes a global section of H 0 pX, D

The image under the canonical map H 2k |Z| pX, B ' k,k,Z q Ñ H 2k pX, B ' k,k,Z q denes nally the cycle space associated with Z represented by the same integration current. (This construction is already used in the proof of the Whitney formula.) We denote in the following the cycle class associated with Z as trZsu.

Notice that i Z˚1 " trZsu where 1 P H 0,0 BC pZ, Zq the identity in ' p,q H p,q BC pZ, Zq. The identity in ' p,q H p,q BC pZ, Zq corresponds a global constant section 1 P ΓpZ, Z Z q whose image under i Z˚i n the hypercohomology is dened by locally integral current rZs by the construction of the push forward. This global current represents the cycle space trZsu on X. Now we prove some properties of cycle classes. We start by the following lemma which expresses the push forward of a cohomology class by an arbitrary morphism in terms of the pull back and push forward of its projection, and a multiplication by the cycle class associated with the graph of the morphism. Lemma 6.33. Let f : X Ñ Y be a holomorphic map between complex manifolds. Assume X to be compact. Let α be an integral Bott-Chern cohomology class. Denote by Γ the graph of f in X ˆY and by p 1 , p 2 the two canonical projections. Then one has f ˚α " p 2˚p p 1 α ¨trΓsuq.

Proof. This can be checked directly using the multiplication structure as in the Deligne-Beilinson complex. The compactness condition is just used to ensure that the push-forward is well dened. Taking rΓs as the global representative of the cohomology class, the cup product is induced by the wedge product between the forms and locally integral currents at the level of complexes. We prove at the level of complexes that f ˚pαq " p 2˚p p 1 pαq Y 0 rΓsq.

It suces to check on germs on Y . Let U be an open set of X such that U " f ´1pV q for some connected open set V of Y . There are two kinds of sheaves in the Deligne-Beilinson complex: locally constant sheaf in Z and sheaves of holomorphic forms.

Let α P Ω p Y pU q. Let ω P C 8 pn´p,nq,c pU q be a smooth form with compact support in U . Then we have Notice that p 1 induces a biholomorphism between Γ X p ´1 1 pU q and U . For c P Z X pU q, its image under f ˚via the quasi-isomorphism is the local integral current cf ˚rU s. The equality at the level of complexes is just cf ˚rU s " p 2˚p crΓ X p ´1 2 pU qsq " p 2˚p p 1 pcq Y 0 rΓsq.

Passing to hypercohomology gives the desired equality.

As in [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF], we have the following property. It is a combination of the above lemma and the pull back of the cycle class under a closed immersion (the proof will be postponed to the next subsection).

Proposition 6.5.1. Let f : X Ñ Y be a surjective proper map between compact manifolds, and let D be a divisor of Y . We denote f ˚D " m 1 D1 `¨¨¨`m N DN . Let fi : Di Ñ D (1 ď i ď N ) be the restriction of f to Di . Then we have f ˚iD˚"

N ÿ i"1 m i i Di˚f i .
Proof. The proof is identical to the case of the Deligne complex. For self-containedness, we give briey the details. The idea consists of passing to the graph and using the above lemma. Since all spaces are compact, the push-forward is always well-dened. Let Γ be the graph of i D : D ãÑ Y and let Γ1 i be the graph of i D1 i : D1 i ãÑ X. We denote all terms involving X with a prime symbol 1 and all other terms without that symbol. By denition, rΓ 1 i s :" p fi , idq ˚rΓ 1 i s as current which induces as cycle class trΓ 1 i su " p fi , idq ˚tr Γ1 i su. rΓ 1 i s is supported in the image of p fi , idq. We denote by p j (j " 1, 2) the natural projections of D ˆY , by p 1 j projections of D ˆX, and by p1 j,i projections of Di ˆX. In terms of currents, we have pid, f q ˚rΓs " ř N i"1 m i rΓ 1 i s. We can prove the Bloch cycle class equality pid, f q ˚trΓsu " ř N i"1 m i trΓ 1 i su. The proof will be given in Lemma 6.46. Then we have f ˚iD˚α " f ˚p2˚p p 1 α ¨trΓsuq " p 1 2˚p id, f q ˚pp 1 α ¨trΓsuq " p 1 2˚p pid, f q ˚p1 α ¨pid, f q ˚trΓsuq " N ÿ i"1 

m i p 1 2˚p p 1 1 α
m i i Di˚f i α.
The rst equality uses the lemma 6.33. The second formula uses the proposition 6.2.2 for f ˝p1 2 " p 2 ˝pid, f q.

The third equality uses the fact that pull-back is a ring morphism. The fourth equality uses the fact that p 1 1 " p 1 ˝pid, f q. The fth equality uses the projection formula. The sixth equality uses the fact that p1 2,i " p fi , idq ˝p1 2 and fi ˝p 1 1,i " p 1 1 ˝p fi , idq. The last equality uses another time lemma 6.33. The surjectivity of f is just used to ensure that the pull-back of a divisor is a divisor.

We give an easy generalisation of a lemma in [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF]. It gives the expected relation between the integral Bott-Chern cohomology and the Deligne cohomology. In particular, one can reduce the relevant properties of cycle classes in the integral Bott-Chern cohomology to the Deligne complex case, when they only involve the group structure. Lemma 6.34. For any p ě 1, we have a Z-module isomorphism H p,p BC pX, Zq » H 2p D pX, Zppqq ' H 2p´1 pX, Ω ' ăp q. Moreover, via the isomorphism, for any proper cycle Z in X, the cycle class trZsu BC associated with Z in the integral Bott-Chern cohomology corresponds to ptrZsu D , 0q, where trZsu D is the cycle class associated with Z in the Deligne cohomology. This isomorphism is functorial with respect to pull backs.

Proof. We have the short exact sequence 0 Ñ Ω ' ăp r1s Ñ B ' p,p,Z Ñ Dppq ' Ñ 0.

We can prove as shown in [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF] that the short exact sequence is in fact split, so that we have an abelian group isomorphism H p,p BC pX, Zq » H 2p D pX, Zppqq ' H 2p´1 pX, Ω ' ăp q by taking the hypercohomology. We have to transform the complex involving smooth forms into a cone complex involving currents. These complexes are quasi-isomorphic, so that the splitting induces a morphism of complexes in the derived category. However, we want to modify that splitting to relate the cycle spaces in our dierent cohomology theories (respectively Deligne and integral Bott-Chern).

Let A be the matrix ˆ1 2 ´1 2 1 2 1 2

Ẇe use the construction for A given in the next remark which shows that the integral Bott-Chern complex is quasi-isomorphic to ConepI ' X p1,0q

Ý ÝÝ Ñ σ p,' D ',' X ' σ ',p D ',' X qr´1s. The Deligne complex is quasi-isomorphic to ConepI ' X pr p,' Ý ÝÝ Ñ σ p,' D ',' X qr´1s. There exists a splitting morphism given by for any element pa, bq P I k X ' σ k´1 p,' D ',' X by

F : ConepI ' X pr p,' Ý ÝÝ Ñ σ p,' D ',' X qr´1s Ñ ConepI ' X p1,0q
Ý ÝÝ Ñ σ p,' D ',' X ' σ ',p D ',' X qr´1s pa, bq Þ Ñ pa, b, 0q.

We verify that it is a morphism of complexes:

F pdpa, bqq " F p´da, pr p,' a `Bbq " p´da, pr p,' a `Bb, 0q

" dpF pa, bqq " dpa, b, 0q " p´da, pr p,' a `Bb, B0q.

Via this splitting isomorphism the cycle space associated with an analytic set Z is the cohomology class represented by rZs and prZs, 0q respectively. Thus the image of the cycle class trZsu D under F is trZsu BC .

The functoriality comes from the functoriality of the construction given in the remark.

Remark 6.35. The sign in the denition of the integral Bott-Chern complex is unimportant for the group structure of the integral Bott-Chern cohomology when p " q. In fact, up to an isomorphism of abelian group, we can change the vector p1, ´1q to be any non zero vector in C 2 . To do it, we need the following construction.

Recall that the integral Bott-Chern complex is ConepZ p`,´q Ý ÝÝÝ Ñ Ω ' ăp ' Ω ' ăp qr´1s the mapping cone of the morphism Z p`,´q Ý ÝÝÝ Ñ Ω ' ăp ' Ω ' ăp . Let A P GLp2, Cq be any invertible matrix. We denote by a ij p1 ď i, j ď 2q the elements of A. Then we have the following isomorphism of Z X -complex Ω ' ăp ' Ω ' ăp . For any k, pω 1 , ω 2 q P Ω k ' Ω k sends to pa 11 ω 1 `a12 ω 2 , a 21 ω 1 `a22 ω 2 q. The conjugation transforms the holomorphic forms to the anti-holomorphic forms and vice versa. (In fact it is R X -morphism not C X -morphism.) The inverse morphism is induced by the matrix A ´1. Via this isomorphism of complex of Z X -sheaves, the integral Bott-Chern complex is isomorphic to ConepZ Ap1,´1q t Ý ÝÝÝÝÝ Ñ Ω ' ăp ' Ω ' ăp qr´1s.

For any vector pa, bq P C 2 , if we choose adequately A so that pa, bq t " Ap1, ´1q t , the integral Bott-Chern complex is isomorphic to ConepZ pa,bq Ý ÝÝ Ñ Ω ' ăp ' Ω ' ăp qr´1s, which induces an isomorphism by passing to hypercohomology. This construction is functorial with respect to pull-backs, since the pull-back by a holomorphic map preserves the holomorphic forms and the anti-holomorphic forms.

This construction does not work for complex Bott-Chern cohomology since the isomorphism we have constructed is not complex linear.

we must dene the algebraic local cohomology sheaf supported in Z to be the derived functor of the sheaf Γ rZs pFq :" lim Ý ÑnÑ8 HompO X {I n Z , Fq. Since the direct limit functor is exact, we have R i Γ rZs pFq :" lim Ý Ñ nÑ8

Ext i pO X {I n Z , Fq.

We dene the algebraic local cohomology sheaf complex with the same formula, after replacing the given sheaf F by a complex of sheaves. Given an O X -complex F ' , we still have an injective morphism (but not necessarily an isomorphism) Γ rZs pF ' q Ñ Γ Z pF ' q. The image of an element in Γ rZs pF ' q is given by the image of the constant function 1 under the composition morphism O X Ñ O X {I n Z Ñ F ' for some n large enough such that O X {I n Z Ñ F ' is dened. We have the following local-to-global spectral sequence E p,q 2 " H p pX, R q Γ rZs pFqq ñ H p`q rZs pX, Fq.

Here H i rZs pX, Fq :" lim Ý Ñ Ext i O X pO X {I k Z , Fq is the algebraic local cohomology. We have similar spectral sequence for complex changing the cohomology by the hypercohomology.

We prove that R q Γ rZs pO X q is trivial for any q ‰ d. The easy direction is a consequence of the following proposition [Kas02, Prop. 2.20].

Proposition 6.5.2. Let X be a non singular variety and F a coherent O X -module. Then for any k ă codimpsupppFqq, we have Ext k O X pF, O X q " 0.

Use the proposition for F " O X {I m Z for any m. We have R k Γ rZs pO X q " 0 for any k ă d passing the direct limit. The converse direction needs to resolve the sheaf O X {I m Z by Koszul type complex. Assume that Z is a smooth submanifold or a locally complete intersection (this is the only case we need in the following) from which we can suppose locally Z " V pf 1 , ¨¨¨, f d q. To start with, we notice that for any coherent O X -module F Γ rZs pFq " lim Ý Ñ nÑ8 HompO X {pf n 1 , ¨¨¨, f n d q, Fq.

This comes from the relation below, that holds for every n I dpn´1q`1 Z Ă pf n 1 , ¨¨¨, f n d q Ă I n Z . One can resolve locally O X {pf n 1 , ¨¨¨, f n d q by the Koszul complex K ˚pf n 1 , ¨¨¨, f n d qr´ds. For example, when d " 1, O X {pf 1 q is quasi-isomorphic to the complex 0 Ñ O X ˆf1 ÝÝÑ O X Ñ 0 concentrated in degrees -1 and 0. Since lim Ý Ñ is an exact functor, for any k ą d, we have R k Γ rZs pO X q " lim Ý Ñ nÑ8 R k HompO X {pf n 1 , ¨¨¨, f n d q, O X q " 0 where the last equality comes from the fact that each element is 0 even before taking the limit.

We describe the Bloch cycle class associated with Z in H d rZs pX, Ω d X q. Since Z is a local complete intersection and Ω d is locally free, R q Γ rZs pΩ d q " 0 for any q ‰ d. Hence the local-to-global spectral sequence degenerates, and H d rZs pX, Ω d q -ΓpX, R d Γ rZs pΩ d qq.

As a consequence, it is enough to describe the cycle class locally, as the local representatives patch into a global section.

Let pU i q be a Stein open covering of X such that Z X U i " tf 1 piq " ¨¨¨" f d piq " 0u for f j piq P ΓpU i , O X q.

We need the following result.

Lemma 6.37. The direct limit of the dual of the Koszul complex Hom O X pK ˚ppf 1 piq q n , ¨¨¨, pf d piq q n q, O X q on U i is the extended ech-type complex associated with Stein open covering of U i Z given by V j piq " tf j piq ‰ 0u.

More precisely the limit is

O X Ñ ź j0 O X r 1 f j0 piq s Ñ ź j0ăj1 O X r 1 f j0 piq f j1 piq s Ñ ¨¨¨Ñ O X r 1 f 1 piq ¨¨¨f d piq s
with O X at degree 0. In the following we will denote this complex by Č' pO X q.

Proof. On the one hand, the natural morphism between the duals of the Koszul type complexes, mapping Hom O X pK ˚ppf 1 piq q n , ¨¨¨, pf d piq q n q, O X q to Hom O X pK ˚ppf 1 piq q n`1 , ¨¨¨, pf d piq q n`1 q, O X q, is given by sending pe i1 ^. . . ^eip q ˚to f ip`1 . . . f ir pe i1 ^. . . ^eip q ˚where the indices satisfy t1, . . . , ru " ti 1 , . . . , i r u. On the other hand, in general we know that if F ' is a complex of O U -sheaves for every complex space U and if f P O U pU q, the direct limit of the complex system ¨¨¨Ñ F ' ˆf Ý Ý Ñ F ' Ñ ¨¨¨is F ' r 1 f s. The isomorphism is given by sending s a local section in the i-th copy of F ' to s f i . This completes the proof by combining the two facts.

Notice that in the analytic setting O X r 1 f s is not the same as j ˚OX V pf q where j is the open immersion of X V pf q into X, since a holomorphic function on X V pf q can have essential singularities along V pf q. Remark 6.38. Denote by ShpXq the category of sheaves of abelian groups on X and by CpShpXqq the category of complex of sheaves of abelian groups on X. Notice that Γ Z is a left exact functor from CpShpXqq to CpShpXqq. So it induces a right derived functor from DpShpXqq to DpShpXqq. We denote by G the forgetting functor from CpModpO X qq the category of complexes of quasi-coherent O X -module (that is the direct limit of a sequence of coherent O X -module) to CpShpXqq. For any coherent O X -sheaf F, we have G ˝RΓ rZs pFq " RΓ Z ˝GpFq.

As we have seen above, the equality G ˝ΓrZs pFq " Γ Z ˝GpFq also holds. We further observe in general that for two functors A, B the relation RpA ˝Bq " RA ˝RB holds if for any injective object I we have R i ApBpIqq " 0 for any i ą 0. The forgetting functor is an exact functor, hence R i G " 0 for any i ą 0. We have RpG ˝ΓrZs qpFq " RG ˝RΓ rZs pFq " G ˝RΓ rZs pFq.

On the other hand, if I is an injective O X -module, I is asque and so is GpIq. By [START_REF] Hartshorne | Algebraic Geometry[END_REF] Chap III exercise 2.3, R i Γ Z pGpIqq " 0 for any i ą 0. Hence we have RpΓ Z ˝GqpFq " RΓ Z ˝RGpFq " RΓ Z ˝GpFq.

In particular, R i Γ Z pFq is also concentrated at degree d for any locally free O X -module. piq , so it denes a section of R d Γ rZs pΩ d q on U i by passing to the quotient. As in [START_REF] Grothendieck | Fondements de la géométrie algébrique, Extraits du Séminaire Bourbaki[END_REF] exposé 149, we have the following result.

Lemma 6.39. These sections can be shown to patch to a global section of R d Γ rZs pΩ d q which we will denote trZsu Bl .

Proof. For any z P Z, let pf 1 , ¨¨¨, f d q, p f1 , ¨¨¨, fd q be two systems of generators near a neighbourhood of z. Then there exists A P GLpO z q such that p f1 , ¨¨¨, fd q " pf 1 , ¨¨¨, f d qA. By the Gaussian elimination, the matrix A can be generated in perhaps a small open set by row-switching transformations, row-multiplying transformations and row-addition transformations with values in O X . Thus we reduce the check in these three cases. The sections are invariant under the row-switching transformations by anti-commutativity of ech-complex and the anti-commutativity of dierential forms.

If p f1 , ¨¨¨, fd q " pf 1 , ¨¨¨, uf d q with u P O ẑ , we have

df 1 ^¨¨¨^dpuf d q f 1 ¨¨¨puf d q " df 1 f 1 ^¨¨¨^p df d f d `du u q.
The dierence corresponds to a ech coboundary δp0, ¨¨¨, p´1q d df1 f1 ^¨¨¨^d f d´1 f d´1 ^du u q since df1 f1 ^¨¨¨d f d´1 f d´1 ^du u P Ω d pU qr 1 f1¨¨¨f d´1 s for some open set U . If p f1 , ¨¨¨, fd q " pf 1 , ¨¨¨, vf 1 `fd q with v P O z , we have

1 f d `vf 1 " 8 ÿ k"0 p´1q k v k f k 1 f k`1 d df 1 ^¨¨¨^dpvf 1 `fd q f 1 ¨¨¨pvf 1 `fd q " df 1 f 1 ^¨¨¨^d f d f d `ÿ k"1 p´1q k v k f k´1 1 f k`1 d df 1 ^df 2 f 2 ^¨¨¨^d f d´1 f d´1 ^df d `ÿ k"0 p´1q k v k f k 1 f k`1 d df 1 ^df 2 f 2 ^¨¨¨^d f d´1 f d´1 ^dv.
The dierence corresponds to a ech coboundary δp ÿ k"1

p´1q k v k f k´1 1 f k`1 d df 1 ^df 2 f 2 ^¨¨¨^d f d´1 f d´1 ^df d `ÿ k"0 p´1q k v k f k 1 f k`1 d df 1 ^df 2 f 2 ^¨¨¨^d f d´1 f d´1
^dv, 0, ¨¨¨, 0q.

Notice that by remark 6.38, the Bloch cycle class takes values in the (topological) local cohomology under the forgetting functor.

We now give the relation between the Bloch class and the Deligne cycle class. The complex Deligne complex is the mapping cone of ConepC Ñ σ p Ω ' qr´1s. Via the quasi-isomorphism in DpShpXqq, the complex Deligne complex is also isomorphic to the mapping cone Conepqq ' r´1s of the quotient map q : Ω ' X Ñ σ p Ω ' X by Dolbeault-Grothendieck lemma. We also have short exact sequence

0 Ñ F p Ω ' X Ñ Ω ' X Ñ σ p Ω ' X Ñ 0
which shows in particular F p Ω ' X -Conepqq ' r´1s. Hence we have in the derived category of sheaves of abelian groups an isomorphism

Dppq ' C -F p Ω ' X .
The exact sequence

0 Ñ F d`1 Ω ' Ñ F d Ω ' Ñ Ω d r´ds Ñ 0 gives H 2d Z pX, F d`1 Ω ' q Ñ H 2d Z pX, F d Ω ' q Ñ H d Z pX, Ω d q Ñ H 2d`1 Z pX, F d`1 Ω ' q Ñ ¨¨Ï
n the following, we show that the Deligne cycle class sends to the Bloch cycle class in the above long exact sequence. To prove the degeneration of some spectral sequence, we need the following lemma.

Lemma 6.40. Let E ' : ¨¨¨Ñ 0 Ñ E 0 Ñ ¨¨¨Ñ E p Ñ 0 Ñ ¨¨¨be a complex of locally free O X -module of nite length p `1 in the category of complexes of abelian groups. Then RΓ Z pE ' q is quasi-isomorphic to the complex p˚q p¨¨¨Ñ 0 Ñ R d Γ Z pE 0 q Ñ ¨¨¨Ñ R d Γ Z pE p q Ñ 0 Ñ ¨¨¨qr´ds

In particular, RΓ Z pF p Ω ' q is quasi-isomorphic for every p to the complex p¨¨¨Ñ 0 Ñ R d Γ Z pΩ p q Ñ ¨¨¨Ñ R d Γ Z pΩ n q Ñ 0 Ñ ¨¨¨qr´ds, where R d Γ Z pΩ p q is placed at degree p.

Proof. The proof is a consequence of an induction on the length of the complex. When the length is 1, the proof is straightforward by the fact that R q Γ Z pΩ p q is concentrated at q " d. Assuming the assertion to hold for i, we denote by E i the concatenation of terms E ' up to degree i. We have a short exact sequence 0 Ñ E i`1 r´i ´1s Ñ E i`1 Ñ E i Ñ 0 which induces a distinguished triangle

E i`1 Ñ E i Ñ E i`1 r´is `1 Ý Ý Ñ .
Since RΓ Z converts distinguished triangles into distinguished triangles, we get a distinguished triangle RΓ Z pE i`1 q Ñ RΓ Z pE i q Ñ RΓ Z pE i`1 r´isq `1 Ý Ý Ñ .

By the induction assumption we get a quasi-isomorphism RΓ Z pE i q -p¨¨¨Ñ 0 Ñ R d Γ Z pE 0 q Ñ ¨¨¨Ñ R d Γ Z pE i q Ñ 0 Ñ ¨¨¨qr´ds. Therefore, we see that RΓ Z pE i`1 q is quasi-isomorphic to the mapping cone of p¨¨¨Ñ 0 Ñ R d Γ Z pE 0 q Ñ ¨¨¨Ñ R d Γ Z pE i q Ñ 0 Ñ ¨¨¨qr´ds to R d Γ Z pE i`1 qr´ds, which proves the result.

The particular case comes from the fact that the dierential on X has maximal degree n.

Remark 6.41. In fact, one can show that the dierential in the complex p˚q is induced by the dierential of the complex E ' . Stéphane Guillermou indicated to us the following proof in a more general setting.

Let E ' P CpShpXqq such that for any i, one has RΓ Z pE i q " H d Z pE i qr´ds in the derived category DpShpXqq of sheaves of abelian groups. Then we have a quasi-isomorphism

RΓ Z pE ' q -pH d Z pE 0 q Ñ ¨¨¨Ñ H d Z pE p qqr´ds
where the dierential map on the right is induced by the dierential of E ' . Take an injective resolution for each E i so as to obtain a double complex I ' I 0,0 I 0,1 ¨¨Ï 1,0

I 1,1 ¨¨¨B 0,0 B 0,0 B 0,1 B 0,1 B 1,0 B 1,0 B 1,1 B 1,1
Then RΓ Z pE ' q -Γ Z pTotpI ',' qq. Take A ',' " Γ Z pI ',' q, B ',' " τ ďd,' A ',' and C ',' " τ ěd,' B ',' . Here τ ďd,' , τ ěd,' A are the concatenation functors. More concretely, B ',' is Γ Z pI 0,0 q Γ Z pI 0,1 q ¨¨Γ Z pI 1,0 q Γ Z pI 1,1 q ¨¨¨K erpΓ Z pB d,0 qq KerpΓ Z pB d,1 qq ¨¨0 0 ¨¨Γ Z pB 0,0 q Γ Z pB 0,0 q Γ Z pB 0,1 q Γ Z pB 0,1 q Γ Z pB 1,0 q Γ Z pB 1,0 q Γ Z pB 1,1 q Γ Z pB 1,1 q Γ Z pB d,0 q 0 Γ Z pB d,1 q 0 and C ',' is concentrated on the pd `1qth-line which is pH d Z pE 0 q Ñ ¨¨¨Ñ H d Z pE p qq. Since the concatenation functor preserves cohomology up to degree d, one can use the following lemma twice, for the pair A ',' , B ',' and for the pair B ',' , C ',' , to conclude the result. Lemma 6.42. Let A ',' , B ',' two double complexes of sheaves of abelian groups. Let u : A ',' Ñ B ',' be a morphism of double complex which induces an isomorphism of double complex H B H B pA ',' q -H B H B pB ',' q where B, B is the two dierentials of the corresponding double complexes. (Since the morphism in the double complexes H B H B pA ',' q, H B H B pB ',' q is in fact the zero morphism, the isomorphism of the double complex is the same as isomorphism of each term in the double complex.) Then we have an isomorphism of total complexes TotpA ',' q -TotpB ',' q.

The standard spectral sequence of double complexes gives H i pX, R d Γ Z ppF d`1 Ω ' q j qr´dsq ñ H i`j pX, RΓ Z pF d`1 Ω ' qq " H i`j Z pX, F d`1 Ω ' q.

By reasoning on degrees and using the above lemma 6.40 to calculate the derived functor of the complex, one sees that the spectral sequence degenerates. Thus we nd H 2d Z pX, F d`1 Ω ' q " 0,

H 2d`1 Z pX, F d`1 Ω ' q " ΓpX, R d Γ Z pΩ d`1 qq.
The image of trZsu Bl under the boundary morphism is represented by the cocycles dp df 1 piq ^¨¨¨^f d piq f 1 piq ¨¨¨f d piq q " 0 P ΓpU i , R d Γ Z pΩ d`1 qq.

Here we use remark 6.41, which ensures that the boundary morphism is induced by the standard dierential of dierential forms.

By the long exact sequence before Lemma 6.40, we know that the class trZsu Bl lifts to a unique class trZsu D . In conclusion, the image of the Deligne cycle class under the natural morphism is the Bloch cycle class and the natural morphism is injective. In this way, to evaluate the transformation of a Deligne cycle class under a morphism, it is enough to evaluate the corresponding transformation of the Bloch cycle class. Remark 6.43. One can show that the Bloch cycle can also be represented by the global section p2πiq d rZs of the current associated with the cycle Z. This is a direct consequence of the Lelong-Poincaré formula. Consider the extended ech complex for the open covering pV j piq q of X Z as in the lemma 6.37. Notice that these open sets give an open covering of X Z but at the degree 0, the component of complex is ' i Ω d |Ui . We resolve Ω d by complex of currents D d,' X and we consider the total complex Totp Č' pD d,' X qq. tp2πiq d rZ X U i su i denes a element in Č0 pD d,d X q. The dierential is given by δ " p´1q l p´1q k`1 δ `B on Čk pD d,l X q where δ is the ech-dierential and δ the total dierential. The factor p´1q k`1 comes from the commutativity of the double complex. The factor p´1q l comes from the fact that the extended ech complex (as the direct limit of Hom O X pK ˚ppf 1 piq q n , ¨¨¨, pf d piq q n q, D d,' X q) diers from the ordinary ech complex by the same factor.

The boundary of the Čd´1 pD d,0 X q-hypercocycle dened by X q) and 0 otherwise (as the component in Čd´1 pD d,1 X q). On the other hand ‰ 0, ¨¨¨, f d piq ‰ 0u and 0 otherwise. Notice that when doing the induction we use the fact that the currents involving terms rf j piq " 0s are zero on the open subset tf j piq ‰ 0u. We also observe that, since Z is a locally complete intersection of X, the wedge product of the currents rf j piq " 0s ^rf k piq " 0s for j ‰ k is well dened. The induction is pursued until one reaches k " d. This nishes the proof. Remark 6.44. (Functoriality of local cohomology) As in [START_REF] Iversen | Cohomology of Sheaves[END_REF] page 125, we have the following commutative diagram. Let A be a closed subset of a complex manifold X and B a closed subset of Y a complex manifold. A holomophic map f : X Ñ Y with f pX Aq Ă Y B will induce for any p, q H q B pY, F q Ω ' Y q H q pY, F q Ω ' Y q H q A pX, f ˚F q Ω ' Y q H q pX, f ˚F q Ω ' Y q H q A pX, F q Ω ' X q H q pX, F q Ω ' X q.

The rst diagram commutes by taking injective resolutions F q Ω ' Y Ñ J ' and f ˚F q Ω ' Y Ñ I ' and the commutative morphism of complexes Γ B pY, J ' q ΓpY, J ' q Γ A pX, I ' q ΓpX, I ' q.

The second diagram is given by natural inclusion f ˚F q Ω ' Y Ñ F q Ω ' X in CpShpXqq. This shows the functoriality of local cohomology under pull-backs. Now we nish the detour via Bloch cycle classes. In the sequel, we reduce equalities to be proved for the Deligne (or Bott-Chern) cycle classes to the case of Bloch classes, using functoriality under pull-backs.

This will complete the proof of most of the properties contained in Axiom B.

Lemma 6.45. Let X be a complex manifold. Let Y and Z be compact submanifolds of X that intersect transversally into W " Y X Z. Let i Y : Y Ñ X be the inclusion. Then we have in the integral Deligne cohomology the identity i Y trZsu D " trW su D .

Proof. Using the exact sequence, 0 Ñ Dpdq ' Ñ Dpdq ' C Ñ C{Z Ñ 0, as in the Bott-Chern case, we can reduce the integral case to the complex case by the injectivity of local cohomology. By the construction of Bloch classes, it is enough to prove the equality for Bloch classes, thanks to the injectivity of the Deligne complex into the Bloch complex after passing to hypercohomology. Since Ω d is a coherent O X or O Y sheaf, the topological local cohomology H ' Z is isomorphic to the algebraic local cohomology H ' rZs . We can cover X by Stein open sets U i such that U i X Z ‰ H and, in ad hoc local coordinate charts, U i X Z " tz n´k`1 " ¨¨¨" z n " 0u for every i.

We can also suppose that in any open set U i of the covering such that U i X Y ‰ H, we have U i X Y " tz n´l " ¨¨¨" z 1 " 0u.

In particular, this gives in local coordinates U i X W " tz n´k`1 " ¨¨¨" z n " z n´l " ¨¨¨" z 1 " 0u. m i trΓ 1 i su.

Proof. In ad hoc local coordinates, pz 1 , ¨¨¨, z n q P U , we can write D " tz 1 " 0u. Therefore Γ " tpw 2 , ¨¨¨, w n , z 1 , ¨¨¨, z n q|z 1 " 0, z i " w i , @i ě 2u Ă D ˆY in this coordinate. As in the previous lemma, it is enough to prove the equality for the Bloch classes. Locally, trDsu Bl is represented by dz 1 ^dpz 2 ´w2 q ^¨¨¨^dpz n ´wn q z 1 pz 2 ´wn q ¨¨¨pz n ´wn q in ΓpU, O U r 1 z 1 pz 2 ´wn q ¨¨¨pz n ´wn q sq.

Locally we may write f " pf 1 , ¨¨¨, f n q for some coordinate chart V of X such that f 1 " x m1 1 ¨¨¨x mn n . Then pid, f q ˚trΓsu Bl on pD X U q ˆV is represented by df 1 ^dpf 2 ´w2 q ^¨¨¨^dpf n ´wn q f 1 pf 2 ´wn q ¨¨¨pf n ´wn q " N ÿ i"1 m i dx i ^dpf 2 ´w2 q ^¨¨¨^dpf n ´wn q x i pf 2 ´wn q ¨¨¨pf n ´wn q in ΓppD X U q ˆV, O pDXU qˆV r 1 f 1 pf 2 ´wn q ¨¨¨pf n ´wn q sq.

On the other hand, in pD X U q ˆV , Γ 1 i is given by tpw 2 , ¨¨¨, w n , x 1 , ¨¨¨, x n q|x i " 0, w j " f j pxq, @j ě 2u. This proves the equality. The cohomology groups involved are all calculated by taking support in D. Since all cohomological arguments remain valid when the closed set is a locally complete intersection, we can still reach the desired conclusion, although D is not necessarily a submanifold.

In fact lemma 6.36 gives as a special case the following proposition, which translates into the equality i Y i Z˚1 " i W {Y ˚iW {Z 1.

Proposition 6.5.3. Consider the following commutative diagram, where Y and Z are compact and intersect transversally with W " Y X Z:

W i W {Y / / _ i W {Z Y _ i Y Z i Z / / X Then we have i Y i Z˚" i W {Y ˚iW {Z .
Proof. Under the assumptions, W is compact and i Y , i Z , i W {Y , i W {Z are all proper. In the following, we denote by p i,X1{X2 (i " 1, 2, X 1 , X 2 " X, Y, Z, W ) the natural projection of X 1 ˆX2 onto the i-th component. We denote Γ X1{X2 the graph of i X1{X2 with X 1 , X 2 " W, X, Y, Z, and make substitutions i Y " i Y {X , i Z " i Z{X . We have i Y i Z˚α " i Y pp 2,Z{X˚p p 1,Z{X α ¨trΓ Z{X suqq " p 2,Z{Y ˚pid Z , i Y q ˚pp 1,Z{X α ¨trΓ Z{X suq " p 2,Z{Y ˚ppid Z , i Y q ˚p1 ,Z{X α.pid Z , i Y q ˚trΓ Z{X suq " p 2,Z{Y ˚pp 1,Z{Y α ¨trΓ W {Y suq " i W {Y ˚iW {Z α. The rst equality uses the lemma 6.33. The second equality uses Proposition 6.2.2 for p 2,Z{X ˝pid Z , i Y {X q " i Y {X ˝p2,Z{Y . The third equality uses the fact that pulling back is a ring morphism. The fourth equality uses the fact that p 1,Z{X ˝pid Z , i Y {X q " p 1,Z{Y . It also uses the fact that Γ Z{X is transversal in Z ˆX with Z ˆY and lemma 6.46. To prove the last equality, take ω a smooth form dened on U an open set of Z in a ech representative of α. Take ω 1 any smooth form with compact support on U X Y . We have to prove that xp 2,Z{Y ˚pp 1,Z{Y ω ^rΓ W {Y sq, ω 1 y " xi W {Y ˚iW {Z ω, ω 1 y. " xi W {Y ˚iW {Z ω, ω 1 y. Notice that all the projections other than p 1,Y {X , p 1,Z{X are proper. The terms involving the two morphisms use only the pull-back, which is well dened even for a non proper morphism. So in the assumption, we do not need to assume that X is compact.

The transversality condition is necessary in the above proposition. Indeed, if we take Y " Z " W , the morphism i Y i Y ˚is not equal to the identity. To calculate it, we need the following excess formula. In the reverse direction, the formula is far easier. For any smooth submanifold Z of X and any cohomology class α on X we have i Z˚i Z α " α ¨trZsu.

This can be derived from the projection formula, which implies i Z˚i Z α " i Z˚p i Z α ¨1q " α ¨iZ˚1 " α ¨trZsu.

Proposition 6.5.4. If Y is a smooth hypersurface of X with X a compact complex manifold, then for any α an integral Bott-Chern cohomological class, i Y i Y ˚α " α ¨c1 pN Y {X q.

Proof. We use the deformation of the normal cone (cf. [START_REF] Fulton | Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] chap V). Let M be the blow up of X ˆP1 along Y ˆt0u, X be the strict transform of X ˆt0u under the blow up. Let M ˝" M X. Then we have an injection F : Y ˆP1 ãÑ M ˝. There exists a at morphism ρ : M Ñ P 1 such that the following diagram commutes Y ˆP1 M P1 .

pr 1 F ρ| M The bre over 8 is N Y {X and the bre over other points is X. We denote the inclusion N Y {X ãÑ M ˝by j 0 , the zero section Y ãÑ N Y {X by i, the projections of pY ˆP1 q ˆM ˝(resp. Y ˆP1 , resp. pY ˆP1 q ˆNY {X , and resp. Y ˆNY {X ) on the rst and second factor by pr 1 and pr 2 (resp. pr 1 , pr 2 , resp. pr 1 1 , pr 1 2 , resp.

pr 2 1 , pr 2 2 ). We denote by Γ Ă Y ˆP1 ˆM ˝the graph of F and by Γ 1 the graph of i. Finally, we denote the inclusion of the central bre i 0 : Y Ñ Y ˆP1 by i 0 , and dene rΓ 2 s " pi 0 , id N Y {X q ˚rΓ 1 s.

Since Y is compact, pr 1 2 , pr 2 2 are proper, we nd pi 0 , id N Y {X q ˚trΓ 1 su " trΓ 2 su, and also pid Y ˆP1 , j 0 q ˚trΓsu " trΓ 2 su since the image of pid Y ˆP1 , j 0 q and Γ are transversal with intersection equal to Γ 2 . Let γ be the class on M ˝dened by γ " F ˚p pr 1 αq. Then we have j 0 γ " j 0 F ˚p pr 1 αq " j 0 pr 2˚p pr 1 pr 1 α ¨trΓsuq " pr 1 2˚p id Y ˆP1 , j 0 q ˚ppr 1 pr 1 α ¨trΓsuq " pr 1 2˚r pid Y ˆP1 , j 0 q ˚pr 1 pr 1 α ¨trΓ 2 sus " pr 1 2˚p i 0 , id N Y {X q ˚pi 0 , id N Y {X q ˚rpid Y ˆP1 , j 0 q ˚pr 1 pr 1 α ¨trΓ 1 sus " pr 1 2˚p i 0 , id N Y {X q ˚rpi 0 , id N Y {X q ˚pid Y ˆP1 , j 0 q ˚pr 1 pr 1 α ¨trΓ 1 sus " pr 2 2˚p pr 2 1 α ¨trΓ 1 suq " i ˚α.

The second equality uses lemma 6.33. The third equality uses Proposition 6.2.2 for pr 2 ˝pid Y ˆP1 , j 0 q " j 0 ˝pr 1 1 .

The fourth equality uses the fact that pid Y ˆP1 , j 0 q ˚is a ring morphism. The fth equality uses the projection formula. The sixth equality uses pr 2 2 " pr 1 2 ˝pi 0 , id N Y {X q and pr 1 ˝pr 1 ˝pid Y ˆP1 , j 0 q ˝pi 0 , id N Y {X q " pr 2 1 . The last equality uses another time lemma 6.33.

By the homotopy principle which is proven in the Whitney formula, the class pF ˚γq| Y ˆttu is independent of the choice of t. For t " 0, pF ˚γq| Y ˆt0u " i ˚j0 γ " i ˚i˚α . For t ‰ 0, pF ˚γq| Y ˆttu " pF ˚F˚p pr 1 αqq| Y ˆttu " i Y ˆttu{Xˆttu i Xˆttu{M ˝iY ˆttu˚p pr 1 αq " i Y i Y ˆttu{Xˆttu˚i Y ˆttu{Y ˆP1 pr 1 α

" i Y i Y ˚α.
The third equality the proposition 6.5.3, and the fact that Y ˆP1 and X ˆttu intersect transversally in M with intersection Y ˆttu. (Here M ˝is non compact.) The last equality uses the fact that pr 1 ˝iY ˆttu{Y ˆP1 " id.

Let π be the projection of N Y {X onto Y . Then α " i ˚π˚α . We have i ˚i˚α " i ˚i˚i ˚π˚α " i ˚pπ ˚α ¨trY suq

where the second equality uses the remark before this proposition and trY su is the class of Y in N Y {X . So i ˚i˚α " i ˚π˚α ¨i˚t rY su " α¨i ˚trY su. By lemma 6.47 below, i ˚trY su " i ˚c1 pO N Y {X pY qq " c 1 pO N Y {X pY q| Y q " c 1 pN Y {N Y {X q " c 1 pN Y {X q.

Lemma 6.47. Let D be a simple normal crossing divisor in a complex manifold X p that need not necessarily be compactq. Then we have c 1 pOpDqq " trDsu. By construction, the image of Chern class in integral Bott-Chern class under the canonical map is the Chern class in integral singular cohomology. Since OpDq is a complex line bundle, its rst Chern class is just its Euler class. Classically the Euler class of the Poincaré dual of the zeros of the smooth section s D . It can also seen from the fact the cycle class in the hypercohomology of B ' 1,1,Z sends to the cycle class in the hypercohomolgy of B ' 0,0,Z (which is just the singular cohomology) induced from the natural morphism of complexes B ' 1,1,Z Ñ B ' 0,0,Z . Since we have the equality of classes c 1 pOpDqq " trDsu in the complex Bott-Chern cohomology as well as in the integral singular cohomology, we deduce the equality for the integral Bott-Chern cohomology.

Transformation under blow-up

In this part, we want to show that the integral Bott-Chern class satises the rest of the axioms B in [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF] (see Axiom B (5)(6)(7) in Introduction).

To start with, we prove the transformation formula of the integral Bott-Chern cohomology under blow up. The closed immersions, projections and blow ups are the most elementary morphisms in the description of Serre's proof of Riemann-Roch-Grothendieck formula. In fact, by considering the graph, any projective morphism can be written as a composition of a closed immersion and a projection. By devissage, we reduce the general closed immersion to the case of closed immersion of a smooth hypersurface. To perform this reduction, we need to blow up submanifolds, and thus a study of the cohomology of blow ups is required.

To do this, we will need the following version for Dolbeault cohomology groups stated in [START_REF] Sheng | Dolbeault cohomologies of blowing up complex manifolds[END_REF].

Theorem 6.48. Let X be a compact complex manifold with dim C X " n and Y Ă X a closed complex submanifold of complex codimension r ě 2. Suppose that p : X Ñ X is the blow-up of X along Y . We 0 Ñ Ω p`1 r´p ´1s Ñ B ' p`1,q,Z Ñ B ' p,q,Z Ñ 0 induces a commutative diagram H n´p´1,p`1 B p Xq{p ˚Hn´p´1,p`1 B pXq H n p X, B ' p`1,q,Z q{p ˚Hn pX, B ' p`1,q,Z q H n p X, B ' p,q,Z q{p ˚Hn pX, B ' p,q,Z q ¨¨Ḧ n´p´1,p`1 B pEq{q ˚Hn´p´1,p`1 B pY q H n pE, B ' p`1,q,Z q{q ˚Hn pY, B ' p`1,q,Z q H n pE, B ' p,q,Z q{q ˚Hn pY, B ' p,q,Z q ¨¨j ˚j˚jB y the ve lemma and Theorem 6.48, one can reduce the proof to the case p " 0 by induction. Then the short exact sequence 0 Ñ Ω q`1 r´q ´1s Ñ B ' 0,q`1,Z Ñ B ' 0,q,Z Ñ 0 induces a commutative diagram H q`1,n´q´1 B p Xq{p ˚Hq`1,n´q´1 B pXq H n p X, B ' 0,q`1,Z q{p ˚Hn pX, B ' 0,q`1,Z q H n p X, B ' 0,q,Z q{p ˚Hn pX, B ' 0,q,Z q ¨¨Ḧ q`1,n´q´1 B pEq{q ˚Hq`1,n´q´1 B pY q H n pE, B ' 0,q`1,Z q{q ˚Hn pY, B ' 0,q`1,Z q H n pE, B ' 0,q,Z q{q ˚Hn pY, B ' 0,q,Z q ¨¨j ˚j˚jB y the ve lemma and Theorem 6.48 again, one can reduce the proof to the case p " 0, q " 0 by induction. This is done directly by Lemma 6.49.

A direct application of the proposition is the following general excess formula. Proposition 6.6.2. With the same notation in the above proposition, if F is the excess conormal bundle on E dened by the exact sequence 0 Ñ F Ñ q ˚N Y {X Ñ N E{ X Ñ 0, one has the following excess formula for any cohomology class α on Y : p ˚i˚α " j ˚pq ˚α ¨cd´1 pF ˚qq.

There exists an analogue of the integral Riemann-Roch-Grothendieck formula given in [START_REF] Jouanolou | Riemann-Roch sans denominateurs[END_REF]. In this work, Jouanolou proved that for a closed embedding f : X Ñ Y of non-singular varieties of codimension d and for any vector bundle of rank e on X, then the total Chern class in Chow groups satises cpf ˚Eq " 1 `f˚p P pc 1 pN q, ¨¨¨, c d pN q, c 1 pEq, ¨¨¨, c e pEqqq where N is the normal bundle and P is some universal polynomial depending only on d, e. This formula does not work directly for coherent sheaves by simply replacing e with the generic rank of the coherent sheaf involved, even in the projective case. This is caused by the lack of additivity and the appearance of polynomials. As a consequence, a dierent choice of the values of e will give a completely dierent class. As a matter of fact, a coherent sheaf can carry in its Chern classes some information that extend to degrees beyond its generic rank. At this point, there does not seem to exist a similar integral Riemann-Roch-Grothendieck formula for coherent sheaves.

An easy counter example is obtained by considering f : P 2 Ñ P 3 and F " O P 2 {m 0 . The left hand side is equal to cpO P 3 {m 0 q " cpO P 3 q cpm0q " 1 ´c1 pO P 3 p1qq 3 , but the right hand of the universal polynomial with d " 1, e " 1 where 1 is the generic rank of O P 3 {m 0 gives 1 `f˚P pc 1 pN q, c 1 pO P 2 {m 0 qq " 1 `f˚P pc 1 pO P 2 p1qq, c 1 pO P 2 {m 0 qq " 1 `f˚`1 1`c1pO P 2 {m0q´c1pO P 2 p1qq

´1˘" 1 `c1 pO P 3 p1qq 2 `c1 pO P 3 p1qq 3 . The same example shows that the formula is not valid when we taking e to be the largest number such that the Chern class is not trivial. We do not know whether there are any substitutes of the Riemann-Roch-Grothendieck formula used in Grivaux's induction argument, that would be capable of dening Chern classes in integral Bott-Chern cohomology.

Appendix: Top degree integral Bott-Chern cohomology

In this section, using the duality between the complex Bott-Chern cohomology and the Aeppli cohomology, we give a description of the integral Bott-Chern cohomology in top degree, on any compact connected manifold X. We denote by n the complex dimension of X. We start by recalling the denition of Aeppli cohomology. Definition 6.53. (Aeppli cohomology). For all p, q ď dimX, one denes H p,q A pX, Cq :" kertBB : C p,q 8 pXq Ñ C p`1,q`1 8 pXqu pImtB : C p´1,q 8 pXq Ñ C p,q 8 pXqqu `pImtB : C p,q´1 8 pXq Ñ C p,q 8 pXquq .

As is well known, the natural pairing between H p,q A pX, Cq and H n´p,n´q BC pX, Cq, dened by integrating wedge products of forms on X, induces a duality between Aeppli cohomology and complex Bott-Chern cohomology. In particular H n,n BC pX, Cq " pH 0,0 A pX, Cqq ˚" tf P C 0,0 8 pXq|BBf " 0u ˚" C.

We also need the following lemma.

Lemma 6.54.

H 2n´1 pX, σ n Ω ' X ' σ n Ω ' X q -H 2n´1 pX, Cq.

Proof. The short exact sequence

0 Ñ σ n Ω ' X ' σ n Ω ' X r´1s Ñ B ' n,n,C Ñ C Ñ 0 induces the long exact sequence H 2n´1 pX, B ' n,n,C q Ñ H 2n´1 pX, Cq Ñ H 2n´1 pX, σ n Ω ' X ' σ n Ω ' X q Ñ H n,n BC pX, Cq Ñ H 2n pX, Cq.
Since the last morphism is a linear isomorphism, we have H 2n´1 pX, σ n Ω ' X ' σ n Ω ' X q -H 2n´1 pX, Cq{H 2n´1 pX, B ' n,n,C q. We claim that H 2n´1 pX, B ' n,n,C q -H 2n´1 pX, B ' 1,1,C q ˚as topological linear spaces. The argument is as follows. Recall that the complex Bott-Chern complex B ' n,n,C is quasi-isomorphic to the complex pL ' n,n r1s, δr1sq dened by L k n,n " à p`q"k,păn,qăn C p,q 8 for k ď 2n ´2; L k´1 n,n " à p`q"k,pěn,qěn C p,q 8 for k ě 2n

(for the proof, see [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF]). The dierential δ k is chosen to be the exterior derivative d for k ‰ 2n ´2 (in the case k ď 2n ´3 we neglect the components which fall outside L k`1 n,n ) and we set δ 2n´2 " BB : C n´1,n´1 8 Ñ C n,n 8 .

We view this complex in the category of sheaves of topological linear space where the dierential is continuous.

We denote L' 1,1 the complex obtained by changing smooth forms by currents which is quasi-isomorphic to L ' 1,1 . By a direct calculation, the dual of the component of the complex Bott-Chern complex L k n,n in degree k is L2n´1´k

1,1

. By the universal coecient theorem, we have H 2n´1 pX, B ' n,n,C q -H 2n´1 pX, B ' 1,1,C q If n ě 2, since B ' 1,1,C vanishes for degree bigger than 2, H 2n´1 pX, B ' 1,1,C q " 0 which proves the lemma in this case.

If n " 1, we claim that the image of H 2n´1 pX, B ' n,n,C q in H 2n´1 pX, Cq is 0. This is equivalent to say that H 1 pX, O X ' O X r´1sq Ñ H 1 pX, B ' 1,1,C q is surjective. We have a commutative diagram

O X ' O X C 0,0 8 ' C 0,0 8 C 0,1 8 ' C 1,0 8 C 0,0 8 C 1,1 8 pB,Bq `1 2 pB˝p1´B˝p2q
BB with a translation of degree 1. Hence the map H 1 pX, O X ' O X r´1sq Ñ H 1 pX, B ' 1,1,C q is given by H 0 pX, C 0,0 8 ' C 0,0 8 Ñ C 0,1 8 ' C 1,0 8 q Ñ H 0 pX, C 0,0 8 Ñ C 1,1 8 q. For any constant function c on X, pc, 0q denes an element of H 0 pX, C 0,0 8 ' C 0,0 8 Ñ C 0,1 8 ' C 1,0 8 q whose image is c in H 0 pX, C 0,0 8 Ñ C 1,1 8 q. This completes the proof when n " 1.

Another way to prove the lemma when n " 1 is to see that H 1 pX, O X q ' H 1 pX, O X q -H 1 pX, O X q ' H 1 pX, O X q " H 1,0 pXq ' H 1,0 pXq " H 1 pX, Cq.

Here we remark that a Riemann surface is Kähler so we have the Hodge decomposition theorem. Now we can give the structure of the integral Bott-Chern cohomology in top degree.

Proposition 6.7.1. Under the above assumption, we have a short exact sequence 0 Ñ H 2n´1 pX, Cq{H 2n´1 pX, Zq Ñ H n,n BC pX, Zq Ñ Z Ñ 0.

Proof. The commutative diagram

0 σ n Ω ' X ' σ n Ω ' X r´1s B ' n,n,Z Z 0 0 σ n Ω ' X ' σ n Ω ' X r´1s B ' n,n,C C 0 induces a commutative diagram H 2n´1 pX, Zq H 2n´1 pX, σ n Ω ' X ' σ n Ω ' X q H n,n BC pX, Zq H 2n pX, Zq -Z H 2n´1 pX, Cq H 2n´1 pX, σ n Ω ' X ' σ n Ω ' X q H n,n BC pX, Cq -C H 2n pX, Cq -C id " "
The rightest morphism on the rst line is surjective since for any x P X the image of the cycle class associated with x in the integral Bott-Chern cohomology is the corresponding cycle class in the singular cohomology H 2n pX, Zq -Z. The image is a generator in the singular cohomology. Hence we have the surjectivity in the proposition. The kernel of this morphism is H 2n´1 pX, Cq{H 2n´1 pX, Zq by lemma 6.54 and chasing into the commutative diagram.

Remark 6.55. This kind of description does not work in general for the integral Deligne cohomology.

By the Poincaré-Grothendieck lemma, we get in the derived category DpShpXqq a quasi-isomorphism C X -Ω ' X . Hence the Deligne complex in top degree is quasi-isomorphic to Ω n . However, in general, we do not have an isomorphism between H 2n D pX, Cq -H n pX, Ω n X q and H 2n pX, Cq -C. If the manifold is Kähler, this is true by the Hodge decomposition theorem. If the manifold is not Kähler, the Frölicher spectral sequence does not necessarily degenerate at page 1. In this case, we only have a surjection, but not necessarily an isomorphism.

Remark 6.56. The short exact sequence in the proposition splits in a non canonical way. Fix a point

x P X. Sending 1 to the cycle class associated with x in the integral Bott-Chern cohomology gives such a splitting. But a priori such a splitting depends on the choice of x.

  remplacer le faisceau d'idéaux multiplicateurs par un faisceau d'idéaux plus grand, moins singulier. Demailly, Peternell et Schneider ont montré dans [DPS01] qu'on ne peut pas en tout cas omettre le faisceau d'idéal, même lorsque le bré L est supposé nef, et ils ont donné un contre exemple lorsque L " ´mK X est un multiple du bré en droites anticanonique. Cependant, il pourrait encore être possible dans certaines situations d'améliorer le faisceau d'idéaux multiplicateur, par exemple en le remplaçant par lim δÑ0`I pp1 ´δqϕq qui peut être vu comme une intersection innie de faisceaux cohérents contenant Ipϕq. Même lorsque ϕ a des singularités analytiques, il peut arriver que l'on obtienne ainsi un faisceau d'idéaux strictement plus grand que Ipϕq, et même que la limite ne soit pas nécessairement un faisceau cohérent: Proposition 0.2.1. Il existe un exemple de fonction psh ϕ telle que lim 2. Théorème d'annulation dans L 2 .

  the non-nef locus introduced in [Bou04]. Definition 1.35. (Non-nef locus)

  Jean-Pierre Demailly, my PhD supervisor, for his guidance, patience and generosity. I am indebted to Chen-Yu Chi, Andreas Höring and Dano Kim for very helpful suggestions and comments on earlier drafts of this paper. I would also like to express my gratitude to colleagues of Institut Fourier for all the interesting discussions we had. During the course of this research, my work has been supported by a Doctoral Fellowship AMX attributed by École Polytechnique, and I have also beneted from the support of the European Research Consortium grant ALKAGE Nr. 670846 managed by J.-P. Demailly.
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  " d h pu b s L qpX, Y, 'q " pdu b s L `p´1q deg u u ^dh s L qpX, Y, 'q " dupX, Y, 'q b s L `p´1q deg u u ^dh s L pX, Y, 'q " dupX, Y, 'q b s L `p´1q deg u rupX, 'qd h s L pY q ´upY, 'qd h s L pXq `...s " dupX, Y, 'q b s L

ż X β 1

 1 ^β ^. . . ^β ^µ˚u " ż X pβ `rEs ´rE 1 sq ^β ^. . . ^β ^µ˚u ě ż X β . . . ^β ^µ˚u . A similar substitution applies to change all β 1 by β.

  dV ω . By lemma 3.23 and condition (d) of proposition 3.22, the error term w satises the L 2 bound, ż X |w| 2 ω,h8 e ´AdV ω ď ż X |w| 2 ω,h8 e ´Φδ dV ω ď ż X δ λ 1,δ `. . . `λq,δ |f | 2 ω,h8 e ´Φδ dV ω .

  Definition 4.2. (Minimal multiplicities). The minimal multiplicity at x P X of the pseudo-eective class α P H 1,1 BC pX, Rq is dened as νpα, xq :" sup εą0 νpT min,ε , xq

  Definition 4.7. (Non-nef locus)

  Definition 5.3. (Non-nef locus)

  Proof. On X Z m , the curvature inequality iΘ S m E ˚,hm ď mε m ω b Id implies that iΘ det S m E,det h m ě ´rankpS m Eqmε m ω. On the other hand det S m E " pdet Eq b mrankpS m Eq r .

pkq 1 ,

 1 ¨¨¨, w pkq p q on U k , as well as components F pkq . Each U k can be supposed to be embedded as a closed analytic set of some open set in C N k with coordinates pw pkq 1 , ¨¨¨, w pkq p , ¨¨¨, w pkq N k q (i.e., we complete pw pkq 1 , ¨¨¨, w pkq p q into a local coordinate system of C N k ). By construction, 2δ k :" inf BU k |F pkq pzq ´F pkq py k q| 2 `ÿ 1ďjďp |w pkq j pzq| 2 ą 0.

  For every x P X, we can cover f ´1pxq by nite open sets U k such that the restriction of ϕ to each open set is of the form clog ř |g pkq i | 2 `Op1q, where g i are holomorphic functions on this open set and Op1q is a bounded term. There exists an open neighbourhood

  pkq β qqq. Otherwise, by Hilbert's Nullstensatz, f pkq β is contained in the germ of pull back of the prime ideal sheaf vanishing on f pV pf pkq β qq, contradicting the maximality of J k . Therefore logp ÿ

  Proof. Cover X by Stein open sets U α . On each U α , there exists an exact sequence O 'Mα Uα Ñ O 'Nα Uα Ñ F| Uα Ñ 0 which induces a meromorphic map

Lemma 5 .

 5 35 (local parametrization theorem, cf. e.g. Theorem 4.19, Chap. II[START_REF] Demailly | Complex analytic and dierential geometry[END_REF]).

  Then π ˚ˆi 2π ΘpO PpEq p1q, hq ˙r " i 2π ΘpdetpEq, detphqq

  Dene for x P V i and for small r νpT δ , x, rq :" r ´2pn´kq ż |z´x|ăr T δ ^ˆi 2π BB|z| 2

  Corollary 5.56. (analogue of Theorem 1.6 [LOY20])

  groups induced by pulling back forms and pulling back currents are the same. In other words the commutative diagram

0

  " dpGpα b cqq " Gpdα b cq `p´1q p´s Gpα b dcq " Gp0 b cq `p´1q p´s α ^Bc, 0 " dpGpα b βqq " Gpdα b βq `p´1q p´s Gpα b dβq " Gp0 b βq `p´1q p´s Gpα b 0q, 0 " dpGpα b βqq " Gpdα b βq `p´1q p´s Gpα b d βq " Gp0 b βq `p´1q p´s Gpα b 0q.

À sďr´1 H

 sďr´1 k´2s pX, Ω q´s rq ´ssq ¨ωs Ñ À sďr´1

ΓXp ´1 1 pU q p 1 α ^p1 f ˚ω " ż

 " xf ˚α, ωy " xα, f ˚ωy "ż U α ^f ˚ω " ż ΓXp ´1 1 pU q p 1 α ^p2 ω " xp 2˚p p 1 pαq Y 0 rΓsq, ωy.

  Now we dene a global section corresponding to the Bloch cycle by patching local sections. Locally the dierential form df 1 piq ^¨¨¨^f d piq f 1 piq ¨¨¨f d piq gives rise to a pd ´1q-ech-cocyle with value in Ω d with respect to the open covering V j

df 1 piq ^¨¨¨^df d piq f 1 piq ¨¨¨f d piq on tf 2 piq ‰ 0 ,

 0 ¨¨¨, f d piq ‰ 0u 0 otherwise, is the hypercocycle dened by p´1q d df 1 piq ^¨¨¨^df d piq f 1 piq ¨¨¨f d piq on tf 1 piq ‰ 0, ¨¨¨, f d piq ‰ 0u (as the component of Čd pD d,0

  By a similar argument, one shows that the Deligne cycle class can also be represented by the global current rZs, as in the previous subsection. In particular, the image of the Deligne cycle class under the natural morphism is the Bloch cycle class. Since the Bloch cycle class is represented by meromorphic forms, the pull back of Bloch cycle classes is much easier to express. This explains our choice of introducing Bloch cycle classes to circumvent the diculties.

Proof.

  By an obvious additivity argument, we can suppose that the divisor is reduced. The rst Chern class in complex Bott-Chern cohomology can be dened by singular metric since in the complex L ' 1,1 r1s the forms can be changed by currents. These two complexes are quasi-isomorphic. The line bundle of the eective divisor has a canonical section s D which induces a singular metric on X. The image of the rst Chern class in complex Bott-Chern cohomology can be represented by global section i 2π BBlog|s D | 2 . A priori, log|s D | 2 is the weight function of the singular metric on some open set on which s D can be trivialized. But in fact, i 2π BBlog|s D | 2 is independent of the choice of trivialisation. By the Lelong-Poincaré formula, the image of the rst Chern class in complex Bott-Chern cohomology can be represented by the current rDs.

  

  produit positif est la classe de cohomologie réelle xα p y de bidegré pp, pq de la limite xα p y :" lim

	δÑ0	xT p min,δω y ( ,

où T min,δω est le courant positif à singularité minimale contenu dans la classe α `δtωu, et où xT p min,δω y est le produit non pluripolaire. Avec cette notion, la dimension numérique de α est dénie comme ndpαq :" max p|xα p y ‰ 0 ( qui est aussi égale à max " p | ż X xα p y ^ωn´p ą 0 * .

  An important measure of singularity is the Lelong number introduced by Lelong[START_REF] Lelong | Intégration sur un ensemble analytique complexe[END_REF]. Let Θ be a closed positive current of bidimension pp, pq on a coordinate open set Ω Ă C n . The Lelong number of Θ at a point x P Ω is dened to be the limit Bpx,rq Θpzq ^p i 2π BB|z| 2 q p .

		νpΘ, xq " lim rÑ0`ν	pΘ, x, rq
	r 2p with νpΘ, x, rq " 1	ş

  So we have ż

XzA pT ε `δωq p ^u " ż XzA µ ˚pβ `δµ ˚ωq p ^u ď ż X xxpα `δωq p yy ^u.

  The inequality use proposition 1.16 in[START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF] cited above and the fact that T min is less singular than T . By taking supremum among all Kähler currents with analytic singularities in the cohomology class α, we

				So we
	have	ż	ż	ż
		T p ^u "	xT p min y ^u "	xT p min y ^u.
		XzA	XzA	X

XzA µ ˚pβ p q ^u " ż X β p ^µ˚u ď ż have ż X xα p y ^u ě ż X xxα p yy ^u.

  The eigenvalues are the roots of the polynomial detpdπ : dπ ´λId n q, which is p1 ´λq n´s times p1 `ÿ jăs |w j | 2 ´λqp|w s | 2 ´λq s´1 ´ws´1 ws w s ws´1 p|w s | 2 ´λq s´2 ´ws´2 ws w s ws´2 p|w s | 2 ´λq s´2 ´¨¨b

					w 1 ws	0	fi	
	0	|w s | 2 . . .	0	w 2 ws	0	ffi	
	. . . 0	. . . 0	. . . . . .	. . . |w s | 2	. . . w s´1 ws	0 0	ffi ffi ffi ffi ffi	.
	w s w1 w s w2 . . . w s ws´1 1 `řjăs |w j | 2	0	ffi fl	
	0	0	. . .	0	0	Id n´s		

y developing the s-th column. The polynomial can be simplied as

p1 `ÿ jăs |w j | 2 ´λqp|w s | 2 ´λq s´1 ´p ÿ jăs |w j | 2 q|w s | 2 p|w s | 2 ´λq s´2 .

The product of the eigenvalues is

detpdπ : dπq " | detpdπq| 2 " |w s | 2ps´1q

while the sum of the eigenvalues is n ´s `|w s | 2ps´1q ´ps ´2q|w s | 2ps´2q p ÿ jăs |w j | 2 q `ps ´1qp ÿ jăs |w j | 2 `1q|w s | 2ps´2q .

  concept of numerical atness introduced in [DPS94] proved itself to be instrumental in the study and classication theory of compact Kähler manifolds with nef anticanonical bundles. It has been studied by

	many authors and in many works, cf. [Cao18], [Cao19], [CH17], [CH19], [CCM19], [CP17], [HIM19],
	[HPS16], [Wang19] among others.

  The choice of m depends on the value r 12 k ´|z k | 2 ą 0. But the function on U 2 Thus there exists m 0 such that for m ě m 0 we have w j pxq ď sup

	strictly positive lower bound since U 2 j	U 1 j is compact. k‰j,xPU 1 k	j w k pxq	U 1 j , sup k‰j,xPU 1 k |a k ´x| has a uniform
	on U 2 j	U 1 j . We have a curvature estimate
		i 2π	BBw j ě mp ˚vj ´?m	i 2π	BB|z j | 2 ě mp ˚pγ ´3εωq

  The image under this renement of open sets is precisely s.

Lemma 5.16 (Stratication of analytic sets, see e.g. Proposition 5.6 in Chap. II of

[START_REF] Demailly | Complex analytic and dierential geometry[END_REF]

).

  The pull back of O PpEq p1q under σ is O Ppσ ˚Eq p1q. Thus σ ˚E is nef if and only if O Ppσ ˚Eq p1q is nef which is equivalent to say that O PpEq p1q is nef, i.e. E is nef.

  p,k´p pPpE| U YV qq H p,k´p pPpE| U qq ' H p,k´p pPpE| V qq H p,k´p pPpE| U XV qq ¨¨T he commutativity of the diagram is clear at all places, except at

	À sďr´1	H p´s,k´p´s pU X V q ¨cs 1 pOp1qq H p,k´p pPpE| U XV qq	B	À sďr´1 B ˚. H p´s,k´p´s pU Y V q ¨cs 1 pOp1qq H p,k´p pPpE| U YV qq

  ¨¨¨, f d piq ‰ 0u by the Lelong-Poincaré formula. Hence the Bloch cycle is cohomologous to the hypercocycle dened by p´1q d´1 p2πiqrf 1 piq " 0s ^df 2 ¨¨¨, f d piq ‰ 0u and 0 otherwise. By induction, it is also cohomologous for any k to the hypercocycle dened by p´1q d´1 p2πiq 2k`1 rf 1 piq " ¨¨¨" f 2k`1

	Bp	df 1 piq ^¨¨¨^df d piq f 1 piq ¨¨¨df d piq	q " p2πiqrf 1 piq " 0s	piq ^¨¨¨^df d piq ^df 2 f 2 piq ¨¨¨f d piq
	on tf 2 piq ‰ 0, piq ^¨¨¨^df d piq f 2 piq ¨¨¨f d piq piq ‰ 0, piq on tf 2 " 0s ^df 2k`2 piq ^¨¨¨^df d piq f 2k`2 piq ¨¨¨f d piq on tf 2k`2 piq

  In this case, the cycle class satises i Y t dz n´k`1 ^¨¨¨^dz n z n´k`1 ¨¨¨z n u |Ui " t dz n´k`1 ^¨¨¨^dz n z n´k`1 ¨¨¨z n u |UiXY which implies i Y trZsu Bl " trW su Bl .

Lemma 6.46. With the same notation as in Proposition 6.5.1, we have pid, f q ˚trΓsu " N ÿ i"1

  This holds true sincexp 2,Z{Y ˚pp 1,Z{Y ω ^rΓ W {Y sq, ω 1 y " xpp 1,Z{Y ω ^rΓ W {Y sq, p 2,Z{Y ω 1 y

	ż			ż
	"	Γ W {Y	p 1,Z{Y ω ^p2 ,Z{Y ω 1 "	Γ W {Y

p 1,W {Y i W {Z ω ^p2 ,W {Y ω 1

L'idée pour prouver la semi-positivité des pentes est la suivante. Grâce à la condition de stabilité, il sut de prouver que les pentes de T X {E i sont semi-positives. Grosso modo, on veut utiliser une équation de Kähler-Einstein pour construire une métrique de Kähler sur le bré tangent d'un modèle biméromorphe ayant une borne inférieure de courbure de Ricci arbitrairement petite, et prendre la métrique quotient de celle-ci sur T X {E i .Le problème est que bien que l'on puisse résoudre une équation de Kähler-Einstein singulière grâce au travail de[START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], la métrique quotient n'a pas toujours de sens précis. Cependant, d'après les travaux de[START_REF] Campana | Metrics with cone singularities along normal crossing divisors and holomorphic tensor elds[END_REF] et[START_REF] Guenancia | Conic singularities metrics with prescribed Ricci curvature: General cone angles along normal crossing divisors[END_REF], le potentiel a un comportement connu pour une équation de Monge-Ampère à singularité conique, à la fois le long du diviseur de singularités, et on sait aussi que la solution est lisse sur l'ouvert de Zariski complémentaire. Grâce à cette dernière solution, on peut obtenir une solution lisse dans le complémentaire du lieu singulier, qui induit donc une métrique lisse sur T X {E i sur cet ouvert de Zariski. D'après ce résultat de régularité de l'équation de Kähler-Einstein appliqué sur un modèle biméromorphe de la variété où tous les diviseurs deviennent simples à croisements normaux, on conclut que la masse de c 1 pT X {E i q est bornée près du lieu singulier. D'après le théorème de Skoda-El Mir, le courant de courbure quasi positif s'étend à travers le lieu singulier avec lequel on estime la pente. 0.2.4. Faisceaux reexifs fortement pseudo-eectifs.
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'X q of bidegree pk, kq. And its image inH 0 pX, σ k,' D 1 ',' X ' σ ',k D 1 ','X q is 0. This means in particular that the integration current denes a hypercocycle. Here the hypercohomology class can be represented by this global section since the sheaf of currents is acyclic. Hence the integration current prZs, 0 ' 0q represents an element in H

2k |Z| pX, B ' k,k,C q. Under the forgetting map B ' k,k,C Ñ C X , its image in H 2k|Z| pX, C X q can also be represented by the same integration current rZs.In conclusion, the cycle class associated with Z in H 2k |Z| pX, B ' k,k,Z q is exactly the class of the integral current associated with Z view as an element in H 2k |Z| pX, Conepqq ' r´1sq with q :I ' X Ñ σ k,' D 1 ',' X ' σ ',k D 1 ',' X .

The author is supported by a PhD grand AMX from École Polytechnique and Ministère de is also supported by The European Research Council grant ALKAGE 670846 managed by Jean-Pierre Demailly.

Proof. Considering α P Dppq ' , α P Dpp 1 q ' and deg pαq " i, deg pαq " j, we prove the formula p´1q ij α Y α " α Y α `pdH `Hdqpα b αq.

Here d is the dierential of Dppq ' b Dpp 1 q ' , and dpα b βq is dened by dpα b βq " d α b β `p´1q degpαq α b d β.

The modied homotopy operator H is dened by: Hpα b αq " p´1q j´1 α ^α, if i ‰ 0, j ‰ 0. Otherwise, Hpα b αq " 0. We prove it by a direct verication, case by case:

(1) i " j " 0: p´1q ij α Y α " α α, α Y α " α α, pdH `Hdqpα b αq " 0.

(2) i " 0, j ą 0: α Y α " 0, α Y α " α ^α, pdH `Hdqpα b αq " d0 `Hpdα b α `p´1q j α b dαq " p´1q j`j´1 α ^dα " ´α ^α. Here we use dα " α, if deg α " 0.

(3) j " 0, i ą 0: αY α " α^α, αYα " 0, pdH `Hdqpαbαq " Hpdαbα`αbdαq " dα^α`0 " α^α. (4) p 1 ą j ą 0, p ą i ą 0: α Y α " α Y α " 0, pdH `Hdqpα b αq " dpp´1q j´1 α ^αq `Hpp´1q j α b dα `dα b αq " p´1q j´1 dα ^α `p´1q j´1`j´1 α ^dα `p´1q j`1´1 dα ^α `p´1q j`j´1 α ^dα " 0.

The second line uses the fact that dα is a pj, 0q-form.

(5) j " p 1 , p ą i ą 0:

α Y α " 0, α Y α " p´1q p 1 dα ^α, pdH `Hdqpα b αq " dpp´1q j´1 α ^αq `Hpdα b α `p´1q j α b dαq " p´1q j´1 dα ^α `α ^dα `p´1q j`j´1 α ^dα " p´1q p 1 ´1d α ^α.

The second line uses the fact that dα is a pj, 0q-form and that dα " 0 in Dpp 1 q ' . (6) i " p, p 1 ą j ą 0: the verication is similar to the previous case. (7) i " p, j " p 1 : α Y α " p´1q p dα ^α, α Y α " p´1q p 1 dα ^α, pdH `Hdqpα b αq " dpp´1q j´1 α ^αq `Hp0q " p´1q j´1 dα ^α `p´1q j´1`j´1 α ^dα.

For the equality, it remains to see that p´1q i dα ^α " p´1q ij α ^dα.

This is true since i " ipj ´1q `ij mod 2.

The associativity is also checked by a direct calculation. Let x P Dppq ' , y P Dpp 1 q ' , z P Dpp 2 q ' . Then

(1) if deg z " deg y " 0, x Y py Y zq " px Y yq Y z " xyz.

(2) if deg z " 0, deg y ą 0, deg x " p, x Y py Y zq " px Y yq Y z " p´1q p dx ^yz.

(3) if deg z ą 0, deg y " p 1 , deg x " p, x Y py Y zq " x Y pp´1q p 1 dy ^zq " p´1q p`p 1 dx ^dy ^z " px Y yq Y z " pp´1q p dx ^yq Y z " p´1q p`p`p 1 dpdx ^yq ^z " p´1q p`p 1 dx ^dy ^z since dx is a pp, 0q form.

(4) otherwise, the product is 0.

Remark 6.22. Similarly, for the integral Bott-Chern cohomology, the modied Deligne complex admits a homotopy operator dened by: Hpα b αq " p´1q j α ^α, if i ‰ 0, j ‰ 0. Otherwise, Hpα b αq " 0. We also have the equality:

We prove it again by a direct calculation case by case:

(1) i " j " 0:

(2) i " 0, j ą 0: α Y α " 0, α Y α " α ^α, pdH `Hdqpα b αq " d0 `Hpdα b α `p´1q j α b dαq " p´1q j`j α ^dα " ´α ^α. Here we use dα " ´α, if deg α " 0.

(3) j " 0, i ą 0: αY α " α^α, αYα " 0, pdH `Hdqpαbαq " Hpdαbα`αbdαq " ´dα^α`0 " α^α.

The last equality uses dα " ´α, if deg α " 0. (4) p 1 ą j ą 0, p ą i ą 0:

pdH `Hdqpα b αq " dpp´1q j α ^αq `Hpp´1q j α b dα `dα b αq " p´1q j dα ^α `p´1q j`j´1 α ^dα `p´1q j´1 dα ^α `p´1q j`j α ^dα " 0

The second line uses the fact that dα is pj, 0q-form.

(5) j " p 1 , p ą i ą 0: α Y α " 0, α Y α " p´1q p 1 ´1d α ^α, pdH `Hdqpα b αq " dpp´1q j α ^αq `Hpdα b α `p´1q j α b dαq " p´1q j dα ^α ´α ^dα `p´1q j`j α ^dα " p´1q p 1 dα ^α.

The second line uses the fact that dα is pj, 0q-form and that dα " 0 in Dpp 1 q ' . (6) i " p, p 1 ą j ą 0: the verication is similar to the previous case. (7) i " p, j " p 1 : α Y α " p´1q p´1 dα ^α, α Y α " p´1q p 1 ´1d α ^α, pdH `Hdqpα b αq " dpp´1q j α ^αq `Hp0q " p´1q p 1 dα ^α `p´1q p 1 `p1 ´1 α ^dα.

For the equality, it remains to see that p´1q i´1 dα ^α " p´1q ij´1 α ^dα.

This is true as above since i " ipj ´1q `ij mod 2.

Once we have dened a morphism from a tensor product of two complexes to another complex. It naturally induces a product on the hypercohomology class. For self-containedness, we recall the construction. Definition 6.23. Consider two complexes of sheaves A ' , B ' , such that there exists a multiplication denoted by Y:

Then one can dene a product between H ' pA ' q and H ' pB ' q as follows: let β P Čk pA l q and β P Čk 1 pB l 1 q (where means ech hypercocycle). One denes a ech hypercocycle β ¨β P Čk`k 1 pC l`l 1 q by pβ ¨βq j0...j k`k 1 :"

We next check the derivation relation:

δ δpβ ¨βq " pδ δβq ¨β `p´1q k`l β ¨pδ δ βq where δ δβ " p´1q l δβ `dβ, δ is the ech dierential. By denition we have

pδ δβq ¨β `p´1q k`l β ¨pδ δ βq " p´1q pk`1ql

The multiplicative structure on the integral Deligne complex induces a multiplicative structure on the integral Bott-Chern complex as follows. We denote D the canonical morphism of complexes from the integral Bott- Chern complex B ' p,q,Z to the integral Deligne complex Dppq ' . We denote D the canonical morphism of complexes from the integral Bott-Chern complex B ' p,q,Z to the modied conjugated integral Deligne complex

Ñ 0 with a multiplication of p2πiq q´p at degree 0. The modied multiplication of modied integral Deligne complex in the remark 6.22 induces a multiplication of modied conjugated integral Deligne complex. These two canonical maps induce a multiplicative structure on the integral Bott-Chern complex as follows. Let y 1 , y 2 be two elements of Dppq i , Dpqq i over the same open set for some i. If i " 0, there exists a unique element x of B 0 p,q,Z such that D pxq " y 1 and D pxq " y 1 if and only if they satisfy y 2 " p2πiq q´p y 1 . The existence of the unique element is trivial for all positive degree. Hence we can dene the multiplication x Y x 1 of two elements x, x 1 of B i p,q,Z and B j p 1 ,q 1 ,Z respectively just to be the unique element such that D px Y x 1 q " x Y x 1 and D px Y x 1 q " x Y x 1 with the cup product of Deligne complex and the modied cup product of modied conjugated Deligne complex respectively. At degree 0, the multiplication is just the multiplication of the two integer at degree 0 up to a constant satisfying the compatible condition. Therefore the multiplication of the integral Bott-Chern complex is well-dened. In conclusion, the cup product of the complex is given explicitly by the following denition. Definition 6.24. Let w, w be two elements of the complex B ' p,q b Z B ' p 1 ,q 1 , and let us use the following diagrams to denote the elements w, w of mixed degrees w " ˆc, u 0,0 , . . . , u p´1,0 v 0,0 , . . . . . . , v 0,q´1 ˙, w " ˆc, ũ0,0 , . . . . . . . . . , ũp 1 ´1,0 ṽ0,0 , . . . , ṽ0,q 1 ´1 ˙.

For instance, at degree 0, we denote w by c, at degree 1, we denote w by pu 0,0 , v 0,0 q etc. With the same notation, the cup product w Y w is represented by the diagram ˆc ^c, c ^ũ 0,0 , . . . . . . . . . , c ^ũ p 1 ´1,0 , u 0,0 ^Bũ p 1 ´1,0 , . . . , u p´1,0 ^Bũ p 1 ´1,0 v 0,0 ^c , . . . , v 0,q´1 ^c , p´1q q´1 Bv 0,q´1 ^ṽ 0,0 , . . . . . . , p´1q q´1 Bv 0,q´1 ^ṽ 0,q 1 ´1 ˙.

As above, the cup product of the Deligne-Beilinson complex and the modied cup product of the conjugate modied Deligne-Beilinson complex induce a cup product on the integral Bott-Chern complex. Indeed, the latter is quasi-isomorphic to

where is the natural map Zppq Ñ Ω ' X and , are the natural maps

this quasi-isomorphism it becomes easier to check the projection formula.

Proposition 6.3.3. (Projection formula) For a proper morphism f , one has p1q f ˚ϕ ¨f ˚ψ " f ˚pϕ ¨ψq p2q f ˚pϕ ¨f ˚ψq " f ˚ϕ ¨ψ.

Proof. For the rst equality, we can in fact check that on the level of complexes

Below, we concentrate ourselves on the proof of the second equality. The integral Bott-Chern complex is quasi-isomorphic to the complex

where

X q is the total complex of F p,' D 1 ',' X , i.e. the direct sum of spaces of currents of bidegree pk, lq pk ď pq, and , are the natural maps spF p,' D

X . We start by dening a multiplication between B ' p 1 ,q 1 ,Z and B' p 1 ,q 1 ,Z that is compatible with the multiplication of the integral Bott-Chern complex. In this way, we avoid the problematic weight product of two currents. We rst perform a similar construction for the integral Deligne complex. One can represent the product

by the following table

Notice that the wedge product of smooth forms and currents is always well-dened. We also observe that since a locally integral current is represented by a generalised measure by the Riesz representation theorem, it denes a current of degree 0. We now check that the multiplication is a morphism of complex, i.e. that dpx Y 0 yq " dx Y 0 y `p´1q degpxq x Y 0 dy.

Both sides of the equation can be represented by the following table a q f q ω q a p a p ¨aq `ap ¨da q 0 a p ¨dω q `ap ¨ωq f p 0 p´df p ^fq ´p´1q deg fp f p ^df q , ´fp ^fq q 0 ω p 0 dω p ^fq `p´1q degpωpq ω p ^df q 0

The calculation is dierent from the previous case. The dierence just occurs in the rst column, as a locally integral current is not necessarily closed, while the exterior dierential of constant is always 0. The rst object is dpa p Y 0 a q q " dpa p ¨aq q " da p ¨aq `p´1q degpapq a p ¨da q " da p Y 0 a q `p´1q degpapq a p Y 0 da q .

The second object is dpf p Y 0 a q q " dp0q " 0 `0 " p´df p , f p q Y 0 a q `p´1q degpfpq f p Y 0 p´da q , a q q " df p Y 0 a q `p´1q degpfpq f p Y 0 da q .

The third object is dpω p Y 0 a q q " dp0q " 0 `0 " dω p Y 0 a q `p´1q degpωpq ω p Y 0 p´da q , a q q " dω p Y 0 a q `p´1q degpωpq ω p Y 0 da q .

the morphism of complexes B ' 1,1,Z b Z X Ω q´s rp ´ss Ñ Ω q´s`1 rp ´s `1s. Denote the germs by α P Ω q´s rp ´ss and ω " `r c, β; β ˘. We dene Gpβ b αq " pBβq ^α and take it equal to zero otherwise.

We check that this is a morphism of complexes. Indeed, we have To check the commutativity of the rst square, it is enough to check the commutativity at the level of complexes for the case s ď q. ippBβq s ^αq " p0, 0; 0....pBβq s ^αq´s q which is equal to the image of F ˝i. The commutativity of the second square is easy.

We now check the commutativity of the third square. Take hypercocycles α " pc, v 0 , ..., v q´s q, pr 0,1 pωq " pc, βq. It is enough to check the case s ď q, otherwise the connecting morphism is zero map. If s ď q ´1, the image of α under the connecting morphism is Bv q´s . The image at the lower right corner of the diagram is p´Bβq s ^Bv q´s . (The sign comes from the change of the signs in the rst line. ) On the other hand, the image under the connecting morphism of F pαq " pBβq s ^vq´s is BppBβq s ^vq´s q " p´Bβq s ^Bv q´s . If s " q, the image of α under the connecting morphism is ´c. The image at the lower right corner of the diagram is p´Bβq s ^´c. On the other hand, the elements with the two highest degrees in the hypercocycle F pαq are pBβq s´1 ^β ^c and pBβq s ^c. The image of the rst one under the connecting morphism is BppBβq s´1 ^β ^cq " p´Bβq s ^´c.

By the ve lemma, similar arguments as those given above reduce the induction on q to the case q " 0, p " 0. In the case B ' p,q,Z " Z, the isomorphism is trivial.

Lemma 6.31. One has the following relation:

φp Ȟq pX, Ω p qq ^φp Ȟq 1 pX, Ω p 1 qq " p´1q pq 1 φp Ȟq pX, Ω p q ¨Ȟ q 1 pX, Ω p 1 qq.

Proof. We denote by E pp,qq the sheaf of smooth pp, qq-forms on X. We modify the denition of the wedge product so that on A ' :" ' p E p,' the B operator denes a graded derivation, instead of taking d as the graded derivation. We dene ˜: A ' b C X A ' Ñ A ' as ω p,q ˜ω p 1 ,q 1 " p´1q q 1 p ω p,q ^ω p 1 ,q 1 . To verify that B is indeed a graded derivation, we compute Bpω p,q ˜ω p 1 ,q 1 q " p´1q q 1 p Bpω p,q ^ω p 1 ,q 1 q " p´1q q 1 p pBω p,q ^ω p 1 ,q 1 `p´1q p`q ω p,q ^B ωp 1 ,q 1 q " Bω p,q ˜ω p 1 ,q 1 `p´1q q ω p,q ˜B ωp 1 ,q 1 .

Hence, we obtain a cup product on H ' pX, A ' q b C H ' pX, A ' q Ñ H ' pX, A ' q with respect to the echdierential and B, and this endows H ' pX, A ' q with a C-algebra structure.

Let U be an open covering of X such that any nite intersection is Stein. There exist two natural morphisms the inclusion of holomorphic forms into smooth forms i : Č' pU, ' p Ω p q Ñ Č' pU, A ' q and the restriction r : A ' pXq Ñ Č' pU, A ' q. Given the ring structure on the hypercohomology induced from the wedge product on ' p Ω p , the inclusion is a C-algebra morphism. The restriction morphism s Þ Ñ ps| Uα q α is also a C-algebra morphism.

For xed p, by a spectral sequence calculation in the double complex Č' pU, A ' q, we get isomorphisms induced by i, r respectively Ȟq pX, Ω p q -H p,q pX, Cq -H q D p Č' pU, E p,' qq, where D is the total dierential of the double complex. Hence we nd a C-algebra isomorphism ' p,q Ȟq pX, Ω p q -' p,q H p,q pX, Cq -' q H q D p Č' pU, A ' qq. Here the cup product on ' p,q H p,q pX, Cq is induced by ˜instead of ^. Therefore we obtain φp Ȟq pX, Ω p qq ^φp Ȟq 1 pX, Ω p 1 qq " p´1q pq 1 φp Ȟq pX, Ω p q ¨Ȟ q 1 pX, Ω p 1 qq if we return to the ordinary wedge product.

The splitting principle can thus be applied and gives the following denition of Chern classes for a vector bundle.

The integral Bott-Chern complex is quasi-isomorphic to ConepI ' X ∆ Ý Ñ σ p,' D ',' X ' σ ',p D ',' X qr´1s. Via this quasi-isomorphism, the above construction gives an isomorphism of complexes

sending pa, b, cq to pa, a 11 b `a12 c, a 21 b `a22 cq. Here Ap1, ´1q t is the composition of ∆ with the morphism given as in the above construction for σ p,' D ',' X ' σ ',p D ',' X and A. Concretely for any k, the dierential of T P I X k sends to pa 11 pr p,' T ´a12 pr p,' T, a 21 pr ',p T ´a22 pr ',p T q with value in σ p,' D ',k X ' σ ',p D k,' X . We check that A induces a morphism of complexes.

F pdpa, b, cqq " F p´da, pr p,' a `Bb, ´pr ',p a `Bcq " p´da, a 11 pr p,' a `a11 Bb ´a12 pr ',p a `a12 Bc, a 21 pr p,' a `a21 Bb ´a22 pr ',p a `a22 Bcq.

dpF pa, b, cqq " dpa, a 11 b `a12 c, a 21 b `a22 cq " p´da, a 11 pr p,' a `a11 Bb ´a12 pr p,' a `a12 Bc, a 21 pr ',p a `a21 Bb ´a22 pr ',p a `a22 Bcq.

In particular, since the cycle class associated with an analytic set Z is represented by the global section prZs, 0 ' 0q where rZs is the current associated with Z, its image under the isomorphism is represented by the same section for any matrix A.

Now we return to the transformation of a cycle class under a morphism in the integral Bott-Chern cohomology.

Lemma 6.36. Let X be any complex manifold, Y and Z be compact submanifolds of X which intersect transversally and let W " Y X Z. Let i Y : Y Ñ X be the inclusion. Then we have in the integral Bott-Chern cohomology the equality i Y trZsu " trW su.

Proof. In this proof we denote trZsu BC for the cycle class associated with an analytic set Z in the integral Bott-Chern cohomology and trZsu D for the corresponding class in the Deligne cohomology. Via the isomorphism given in Lemma 6.34 and the functoriality, the equality i Y trZsu BC " trW su BC is equivalent to the equality i Y trZsu D " trW su D . The proof in the Deligne complex case is given in the following via the Bloch cycle spaces. 6.5.2. Deligne and Bloch cycle class. For self-containedness, we present here the general line of the proof of the equality in the Deligne complex case, as given in [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF]. We also need the local formula expressing Bloch cycle classes to complete the proof of Proposition 6.5.1. We start by recalling the Bloch cycle construction made in [START_REF] Janney | Semi-regularity and de Rham cohomology[END_REF] that was mentioned at the beginning of the section. The detour through Bloch cycle classes is organised as follows. First we recall the denition of the algebraic local cohomology groups and of the topological local cohomology groups. We show that for a coherent O X -module, these group are the same up to the forgetting functor. Secondly, we can give locally an explicit resolution of ech-type complex of O X in the algebraic local cohomology case. Next we show that associated with a cycle using the local resolution we can glue some local sections to a global section which is the Bloch cycle class associated with this cycle. Finally, we prove that under a suitable canonical map, the image of the Deligne cycle class is the Bloch cycle class associated with the same cycle. The author expresses warm thanks to Stéphane Guillermou for very interesting discussions on this subject.

Let X be a complex manifold and Z be an irreducible analytic subset of X of codimension d. Let F be a coherent sheaf on X. There are two notions of local cohomology with support in Z. A topological denition is the derived functor of the function sheaf of sections with support in Z given on any open subset U Ă X by Γ Z pFqpU q :" ts P FpU q|supppsq Ă Zu.

For every x P X and s P F x , we have an induced O x -morphism O x Ñ F x given by f Þ Ñ f ¨s. The annihilator Annpsq of s is dened to be the kernel of this morphism. The support of s is the zero variety V pAnnpsqq of Annpsq ; by the Nullstellensatz theorem, saying that the support is contained in Z is equivalent to the fact that I Z Ă a Annpsq. Since the ideal sheaf associated with an analytic set is coherent, this is equivalent to the fact that I n Z Ă Annpsq for n " 0, which amounts to say that I n Z s " 0 for n " 0. Next, this is equivalent to say that O x ˆs Ý Ý Ñ F x factorise through O x {I n Z,x ˆs Ý Ý Ñ F x for some n. In other words,

The construction does not give the same equality if we replace the coherent sheaf F by a complex of coherent sheaves (in particular, when the complex is unbounded), or by an arbitrary sheaf. In this case,

denote by E the exception divisor and by i : Y Ñ X, E Ñ X the inclusions, by q : E Ñ Y the restriction of p on E. Then for any 0 ď p, q ď n, there is an isomorphism j ˚: H p,q B p Xq{p ˚H p,q B pXq -H p,q B pEq{q ˚H p,q B pY q.

j ˚: H p,q B p Xq{p ˚H p,q B pXq -H p,q B pEq{q ˚H p,q B pY q.

Proof. The rst statement is the main theorem of [START_REF] Sheng | Dolbeault cohomologies of blowing up complex manifolds[END_REF]. The second statement uses the fact that H p,q B pXq " kertB : ΓpX, C p,q 8 q Ñ ΓpX, C p`1,q 8 qu{ImtB : ΓpX, C p´1,q 8 q Ñ ΓpX, C p,q 8 qu " kertB : ΓpX, C q,p 8 q Ñ ΓpX, C q,p`1 8 qu{ImtB : ΓpX, C q,p´1 8 q Ñ ΓpX, C q,p 8 qu " H q,p B pXq.

Now the second statement comes from the rst statement.

We also need the classical analogue for integral coecient cohomology (cf. [START_REF] Griths | Principles of Algebraic Geometry[END_REF], page 603) by using the Mayer-Vietoris sequence involving a tubular neighbourhood of Y . Lemma 6.49. Let X be a compact complex manifold with dim C X " n and Y Ă X a closed complex submanifold of complex codimension r ě 2. Suppose that p : X Ñ X is the blow-up of X along Y . We denote by E the exception divisor and by i : Y Ñ X, E Ñ X the inclusions, by q : E Ñ Y the restriction of p on E. Then for any n there is an isomorphism j ˚: H n p X, Zq{p ˚H n pX, Zq -H n pE, Zq{q ˚H n pY, Zq.

Using these results, we can prove by induction an analogous result for integral Bott-Chern cohomology. Proposition 6.6.1. Let X be a compact complex manifold with dim C X " n and Y Ă X a closed complex submanifold of complex codimension r ě 2. Suppose that p : X Ñ X is the blow-up of X along Y . We denote by E the exception divisor and by i : Y Ñ X, E Ñ X the inclusions, by q : E Ñ Y the restriction of p on E. Then for any n, p, q there is an isomorphism Proof. Dene β " j ˚pq ˚α ¨cd´1 pF ˚qq. By the excess formula for a line bundle, we have j ˚β " rq ˚α ¨cd´1 pF ˚qs ¨c1 pN E{ X q " q ˚α ¨q˚p c d pN Y {X qq.

The second equality uses the Whitney formula for Chern class of vector bundles. Hence j ˚β P Impq ˚q and by the above Proposition we know β " p ˚γ for some cohomology class on X. So p ˚β " p ˚p˚γ " γ where the second equality uses p ˚p˚" id proven in the second section. Then we have β " p ˚p˚β " p ˚p˚j˚p q ˚α ¨cd´1 pF ˚qq " p ˚i˚q˚p q ˚α ¨cd´1 pF ˚qq " p ˚i˚p α ¨q˚cd´1 pF ˚qq " p ˚i˚α .

The rst equality on the second line uses the projection formula. The last equality uses the fact that q ˚cd´1 pF ˚q " 1, as follows from the next lemma.

Lemma 6.50. Let G Ñ X be a vector bundle of rank r which induces π : PpGq Ñ X. Let H be the vector bundle dened by the exact sequence

Then we have π ˚pc r´1 pHqq " p´1q r´1 .

Proof. We start the proof for the complex Bott-Chern cohomology such that the cohomology class can be represented by global dierential forms. By the Whitney formula for the total Chern class, cpπ ˚Gq " cpHq ¨cpO PpGq p1qq. We denote h :" c 1 pO PpGq p1qq. Then cpHq " cpπ ˚Gqp1 `hq ´1 " p1 `c1 pπ ˚Gq `¨¨¨`c r pπ ˚Gqqp1 ´h `h2 `¨¨¨q.

The element of degree r ´1 on two sides is c r´1 pHq " p´1q r´1 h r´1 `p´1q r´2 h r´2 c 1 pπ ˚Gq `¨¨¨`c r´1 pπ ˚Gq. π ˚is given by integration along the bre direction. By degree reason, π ˚cr´1 pHq " p´1q r´1 π ˚hr´1 " p´1q r´1 . The integration can be calculated by a metric on O PpGq p1q induced by a smooth Hermitian metric on G. This nishes the proof of the complex case. Since the equality is taken in H 0,0 BC pX, Zq " H 0 pX, Zq -Z which is a lattice in H 0,0 BC pX, Cq " H 0 pX, Cq -C. We deduces the integral case from the complex one.

Everything we have done also works for rational Bott-Chern cohomology. In [START_REF] Grivaux | Chern classes in Deligne cohomology for coherent analytic sheaves[END_REF], Grivaux shows that as soon as one has a good intersection theory for some cohomology theory, one can use the Riemann-Roch-Grothendieck formula to construct the Chern class of a coherent sheaf by an induction on dimension.

The last axiom that remains to be proven is the HirzebruchRiemannRoch theorem. It can be reduced to the case of the Deligne complex by the following observation made in lemma 7.2 of [START_REF] Schweitzer | Autour de la cohomologie de Bott-Chern[END_REF]. Lemma 6.51. Let X be a compact Kähler manifold. Then for any p P N ˚and k P N we have H k pX, Ω ' ăp q -' r`s"k,răp H r,s pX, Cq.

Since P n is Kähler, the lemma gives the complete description of the integral Bott-Chern cohomology for the projective spaces.

Proposition 6.6.3. The natural morphism ' k H k,k BC pP n , Zq Ñ ' p H 2p D pP n , Zppqq induces an isomorphism of rings. In particular, the HirzebruchRiemannRoch theorem holds for integral Bott-Chern cohomology.

Proof. By the lemma 6.51, we have for any p P N H2p pP n , Ω ' ăp q " 0 Ñ H p,p BC pP n , Zq Ñ H 2p D pP n , Zppqq Ñ H 2p`1 pP n , Ω ' ăp q " 0.

The second morphism is the natural morphism from Bott-Chern cohomology to Deligne cohomology which is in fact an isomorphism shown by the exact sequence. For p " 0, it is also an isomorphism since the complexes are the same. Since the natural morphism from Bott-Chern cohomology to Deligne cohomology is a ring morphism, we have the rst statement.

Remark 6.52. As far as we know, it seems that Grivaux's method does not work for constructing Chern classes of a coherent sheaf in the integral Bott-Chern cohomology, as opposed to the rational cohomology.

The main reason is that the Chern characteristic class is additive but the total Chern class is multiplicative, and switching from one to the other involves denominators. The proof given in [START_REF] Fulton | Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] for the Riemann-Roch-Grothendieck formula in the context of coherent sheaves and the Chow ring reduces to proving that the Riemann-Roch-Grothendieck formula holds for vector bundles. The additivity of the Chern characteristic class and the nature of the formula ensure that after proving the special case of bundles, the Riemann-Roch-Grothendieck formula will also be valid for coherent sheaves on projective manifolds. However, one needs the projectivity condition to ensure that the Grothendieck group of coherent sheaves and the Grothendieck group of vector bundles are the same.