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Abstract

This thesis consists of two parts. In the �rst part, we study the cohomology of a compact Kähler
manifold with values in a pseudo-e�ective line bundle. This part also describes various results concerning
pseudo-e�ective vector bundles. Since several of our de�nitions do not require the use of a Kähler metric,
the corresponding results also apply to general compact complex manifolds. The second part of the thesis
concentrates on �nding adequate de�nitions of Chern classes (or equivalently, of Chern characteristic classes)
in Bott-Chern cohomology with rational coe�cients. A related intersection theory is developed for that
purpose in the context of integral Bott-Chern cohomology.

The organisation of the thesis is as follows. In Chapter 2, we improve the hard Lefschetz theorem
obtained by Demailly, Peternell and Schneider, and discuss the optimality of the resulting statement. We
show in particular that the holomorphic sections constructed in this result are in fact parallel with respect
to the given positive singular metrics. A consequence of this property is the existence of naturally related
holomorphics foliations.

In Chapter 3, we study the numerical dimension of a pseudo-e�ective line bundle over a compact Kähler
manifold, and, in the framework of L2 estimates, we obtain vanishing theorems analogous to those of Fedor
Bogomolov and Junyan Cao, expressed in terms of numerical dimension.

In Chapter 4, we introduce the de�nition of nefness in higher codimension, a concept that interpolates
between usual nefness and pseudo-e�ectivity. In this setting, we give a simpli�ed proof of a result of
Nakayama on the non-existence of Zariski decompositions in dimension at least 3. We also state a variant of
the Bogomolov theorem and study the surjectivity of the Albanese map of a compact Kähler manifold when
the anticanonical line bundle is pseudo-e�ective.

Chapter 5 discusses the concept of strongly pseudo-e�ective vector bundle or torsion-free sheaf, and
proves the result that a strongly pseudo-e�ective re�exive sheaf with vanishing �rst Chern class over a
compact Kähler manifold is in fact a numerically �at vector bundle.

In Chapter 6, following some ideas of Julien Grivaux, we construct an intersection theory for the integral
Bott-Chern cohomology that had been de�ned in 2007 by Michel Schweitzer. A combination of these works
allows us to de�ne Chern classes and to obtain a Riemann-Roch-Grothendieck formula in rational Bott-Chern
cohomology.
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Résumé

Cette thèse comporte deux parties. Dans la première partie, nous étudions la cohomologie des variétés
kähleriennes compactes à valeurs dans un �bré en droites pseudo-e�ectif, et également di�érents résultats con-
cernant les �brés vectoriels pseudo-e�ectifs. Comme certaines de nos dé�nitions ne nécessitent pas l'existence
de métriques kähleriennes, les résultats correspondents s'appliquent aussi aux variétés complexes compactes
arbitraires. Dans la seconde partie, nous nous attachons à trouver une dé�nition appropriée des classes de
Chern (ou, de façon équivalente, des classes de Chern caractéristiques) pour la cohomologie de Bott-Chern
à coe�cients rationnels. Nous développons parallèlement une théorie de l'intersection dans le contexte de la
cohomologie de Bott-Chern entière.

L'organisation de la thèse est la suivante. Dans le Chapitre 2, nous améliorons le théorème de Lefschetz
di�cile à valeurs dans un �bré en droites démontré par Demailly, Peternell et Schneider, et discutons
l'optimalité de l'énoncé qui en découle. Nous montrons en particulier que les sections holomorphes construites
dans ce résultat sont en fait parallèles par rapport à la métrique singulière donnée. Une conséquence de cette
propriété est l'existence de feuilletages holomorphes naturellement reliés.

Dans le Chapitre 3, nous étudions la dimension numérique d'un �bré en droites pseudo-e�ectif sur une
variété kählerienne compacte, et, dans le cadre des estimations L2, nous obtenons des théorèmes d'annulation
analogues à ceux de Fedor Bogomolov et de Junyan Cao, exprimés en termes de la dimension numérique.

Dans le Chapitre 4, nous introduisons la dé�nition du concept de �bré en droites �nef en dimension
supérieure�, qui interpole entre la propriété nef usuelle et la pseudo-e�ectivité. Dans ce contexte, nous
donnons une preuve simpliée d'un résultat de Nakayama sur la non-existence de décompositions de Zariski
en dimension au moins 3. Nous énonçons aussi une variante du théorème d'annulation de Bogomolov
et étudions la surjectivité du morphisme d'Albanese d'une variété kählerienne compacte dont le diviseur
anticanonique est pseudo-e�ectif.

Le Chapitre 5 propose une discussion de la notion de �bré vectoriel ou de faisceau sans torsion pseudo-
e�ectif (au sens fort). Nous montrons qu'un faisceau ré�exif pseudo-e�ectif au sens fort sur une variété
kählerienne compacte ayant une première classe de Chern triviale est en fait numériquement plat.

Dans le Chapitre 6, en nous inspirant d'idées de Julien Grivaux, nous construisons une théorie de
l'intersection pour la cohomologie de Bott-Chern entière, qui avait été introduite en 2007 par Michel
Schweitzer. Une combinaison de ces travaux nous permet de dé�nir les classes de Chern et d'obtenir une
formule de Riemann-Roch-Grothendieck en cohomologie de Bott-Chern rationnelle.
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Introduction (Français)



0.1. Un peu d'histoire

Un siècle après les travaux révolutionnaires de Riemann sur les surfaces de Riemann, les progrès généraux
en géométrie di�érentielle et en analyse globale sur les variétés ont abouti à des avancées majeures dans la
théorie des variétés algébriques et analytiques de dimension arbitraire. Dans ce contexte, l'un des résultats
les plus fondamentaux obtenu dans les années 1950 est le théorème d'annulation de Kodaira pour les �bré
en droites positifs, qui est une conséquence profonde de la technique de Bochner et de la théorie des formes
harmoniques initiée par Hodge dans les années 1940. Cette approche a permis à Kodaira d'obtenir son
fameux théorème de plongement, qui est une vaste généralisation du critère de Riemann caractérisant les
variétés abéliennes.

Pour expliquer comment les techniques analytiques modernes sont mises en jeu, nous rappelons ici
brièvement l'argument de Kodaira. Le théorème de plongement caractérise les variétés projectives comme
suit.

Théorème 0.1.1. (Critère de Kodaira)
Soit X une variété kählerienne compacte. Alors X est projective si et seulement s'il existe une métrique

kählerienne ω dont la classe de cohomologie est image d'une classe entière par le morphisme d'inclusion
H2pX,Zq Ñ H2pX,Rq.

D'une façon équivalente, une variété complexe compacte est projective si et seulement si dans l'espace
H2pX,Rq, le cône de Kähler, c'est-à-dire le cône convexe ouvert engendré par les formes kähleriennes,
contient un point rationnel pun élément de H2pX,Qqq.

Si une variété est projective, la restriction de la métrique de Fubini-Study est une forme kählerienne
de classe entière dans le cône de Kähler. Le point essentiel est de montrer la réciproque. La méthode de
Kodaira pour la démontrer est basée sur le théorème d'annulation suivant.

Théorème 0.1.2. (Théorème d'annulation de Kodaira)
Si L est un �bré en droites positif sur une variété complexe compacte X pc'est-à-dire, s'il existe une

métrique lisse h sur L telle que iΘpL, hq ą 0q, alors pour q ě 1,

HqpX,KX b Lq “ 0.

L'argument utilisé par Kodaira pour déduire le théorème de plongement du théorème d'annulation est
le suivant : on montre l'existence de su�samment de sections pour plonger la variété dans l'espace projectif.
Plus précisément, on considère l'application de Kodaira pour m su�samment grand

X Ñ PpH0pX,Lbmqq

x ÞÑ ts P H0pX,Lbmq|spxq “ 0u.

On montre que pour m su�samment grand, l'application de Kodaira donne le plongement. Pour donner
une idée de la preuve, montrons que l'application de Kodaira est un morphisme pour m su�samment grand,
ce qui est équivalent à montrer que pour tout x P X, la restriction H0pX,Lbmq Ñ Lbm b OX,x{mx est
surjective, où l'on a noté mx l'idéal maximal de OX,x en x. Considérons l'éclatement π : X̃ Ñ X de X en x,
et désignons par E le diviseur exceptionnel. La suite exacte courte

0 Ñ Op´Eq b π˚Lbm Ñ π˚Lbm Ñ π˚Lbm|E Ñ 0

induit la suite exacte longue

H0pX̃, π˚Lbmq – H0pX,Lbmq Ñ H0pE, π˚Lbm|Eq – Lbm bOX,x{mx Ñ H1pX̃,Op´Eq b π˚Lbmq.
D'après le théorème d'annulation de Kodaira, on a

H1pX̃,Op´Eq b π˚Lbmq “ 0

pour m su�samment grand. Ceci démontre la surjectivité. Ceci correspond à la preuve que Lbm est sans
point base pour m su�samment grand. On voit ainsi apparaître un de problèmes centraux de la géométrie
complexe : construire des sections holomorphes véri�ant des propriétés supplémentaires particulières.

De nouveaux développements de la technique de Bochner, notamment entre les mains de Kohn, Andreotti-
Vesentini et Hörmander, ont conduit dix ans après Kodaira à la théorie des estimations de L2 pour l'opérateur
de Cauchy-Riemann. Ces généralisations permettent non seulement d'améliorer ou de généraliser les théorèmes
d'annulation, mais, et c'est peut-être plus important encore, fournissent des informations nature quantitative
pour les solutions des équations du type Bu “ v. Par exemple, on peut �forcer� les zéros d'une solution d'une
équation Bu “ v par le choix d'un poids plurisousharmonique singulier.

Une façon de généraliser les résultats de Kodaira est ainsi d'étudier des théorèmes d'annulation dans
le contexte des métriques singulières positives, par exemple dans la direction du théorème d'annulation de
Demailly-Nadel. Rappelons quelques dé�nitions élémentaires sur les métriques singulières positives.
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Définition 0.1.1. (Courants positifs)
D'après [Lel57], un courant Θ de bidimension pp, pq est dit (faiblement) positif si pour chaque choix de

p1, 0q-formes lisses α1, ¨ ¨ ¨ , αp sur X, la distribution

Θ^ iα1 ^ α1 ^ ¨ ¨ ¨ ^ iαp ^ αp

est une mesure positive.
Pour tout p1, 1q-courant T et toute p1, 1q-forme lisse α, nous disons T ě α au sens des courants si T ´α

est un courant positif.

Définition 0.1.2. (Fonction plurisousharmonique = psh / quasi-psh)
Soit X une variété complexe (pas nécessairement compacte). On dit que ϕ est une fonction psh (resp.

une fonction quasi-psh) sur X, si on a iBBϕ ě 0 au sens des courants (resp. iBBϕ ě α), où α est une forme
lisse sur X. On dit qu'une fonction quasi-psh ϕ a des singularités analytiques, si localement ϕ est de la
forme

ϕpzq “ c log
´

ÿ

i

|gi|
2
¯

`Op1q

où c ą 0 et pgiq sont des fonctions holomorphes locales, et où Op1q signi�e un terme localement borné.

Le singularité d'une métrique peut être appréhendée au moyen du faisceau d'idéaux multiplicateurs
introduit par Nadel [Nad89]. En particulier, si la métrique est lisse, le faisceau d'idéaux multiplicateurs est
trivial (c'est-à-dire, égal à OX).

Définition 0.1.3. (Faisceau d'idéaux multiplicateurs)
Soit ϕ une fonction quasi-psh. Le faisceau d'idéaux multiplicateurs Ipϕq est dé�ni par

Ipϕqx “
"

f P OX,x|DUx,

ż

Ux

|f |2e´2ϕ ă 8

*

où Ux désigne un voisinage ouvert de x dans X.
Pour une métrique singulière h (c'est-à-dire dont le poids local ϕ est dans L1

loc), on dé�nit localement
le faisceau d'idéaux multiplicateurs Iphq comme le faisceau d'idéaux multiplicateurs de ϕ.

Le faisceau d'idéaux multiplicateurs intervient dans le théorème d'annulation fondamental suivant :

Théorème 0.1.3. (Théorème d'annulation de Demailly-Nadel)( [Nad89], [Dem93])
Soit pX,ωq une variété kählérienne faiblement pseudoconvexe, et E un �bré en droites holomorphe sur

X muni d'une métrique hermitienne h singulière de poids ϕ. Supposons qu'il existe une fonction continue
positive ε sur X telle que la courbure satisfasse l'inégalité

iΘpE, hq ě εω

au sens des courants (on dit que L est gros). Alors

HqpX,OpKX b Eq b Iphqq “ 0

pour tout q ě 1.

C'est une situation géométrique fréquente que la courbure d'une métrique singulière puisse � dégénérer �
dans certaines directions. Cela conduit au concept de dimension numérique, qui, grosso modo, compte le
nombre de � directions positives � au point générique. Un problème ouvert important en géométrie com-
plexe, qui va largement au delà des résultats de Kodaira, est la conjecture d'abondance. Celle-ci prédit la
croissance de la dimension des sections pluricanoniques (c'est-à-dire les sections de mKX où KX est le �bré
en droites canonique) par rapport à l'exposant m, asymptotiquement en termes de la dimension numérique.
En particulier, dans cette conjecture, toute hypothèse de positivité stricte est abandonnée. Ceci amène à
considérer plutôt les cônes fermés de classes positives et les classes se situant à la frontière. Deux cône
positifs fermés importants interviennent ici : les cônes nef et pseudo-e�ectif (psef).

Pour plus de généralité, notamment lorsque les variétés considérées ne sont pas kähleriennes, nous
travaillerons dans cette thèse avec des classes prises au sens de la cohomologie de Bott-Chern complexe.
Rappelons que la cohomologie Bott-Chern complexe de X est dé�nie par

Hp,q
BCpX,Cq “ tpp, qq-formes d-ferméesu{tpp, qq-formes BB-exactes u.

Définition 0.1.4. (Fibré en droites psef)
Soit L un �bré en droites holomorphe sur une variété complexe compacte X. On dit que L est pseudo-

e�ective (en abrégé, psef) si c1pLq P H
1,1
BCpX,Cq est la classe de cohomologie d'un courant positif fermé T , ou,

de façon équivalente, si L peut être équipé d'une métrique hermitienne singulière h telle que T “ 1
2πΘL,h ě 0

au sens des courants.
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Une classe de cohomologie α P H1,1
BCpX,Cq est dite pseudo-e�ective ppsef q si elle contient un courant

positif.

Une façon usuelle de construire une métrique singulière est d'utiliser des sections globales du �bré en
droites. Par exemple, on a la formule de Lelong-Poincaré suivante : soit f P H0pX,OXq une fonction holo-
morphe non nulle, Zf “

ř

mjZj ,mj P N, le diviseur zéro de f et rZf s “
ř

mjrZjs le courant d'intégration
associé au diviseur zéro. Alors

i

π
BBlog|f | “ rZf s.

Si f est une section globale non nulle à valeurs dans un �bré en droites L, la même formule donne un courant
positif représentant la première classe de Chern c1pLq.

Une autre méthode puissante permettant de construire des métriques singulières à la limite repose sur
l'utilisation de l'équation de Monge-Ampère. On peut ainsi construire une suite de métriques dont la masse
se concentre de plus en plus au voisinage d'un ensemble analytique donné, par une application du théorème
de Calabi-Yau [Yau78] (le cas Kähler-Einstein avec c1pXq ă 0 étant dû à Aubin).

Théorème 0.1.4. (Yau) Soit pX,ωq une variété kählerienne compacte de dimension n. Alors pour toute
forme volume lisse f ą 0 satisfaisant

ş

X
f “

ş

X
ωn, il existe une métrique kählerienne ω̃ “ ω ` iBBϕ telle

que ω̃n “ f .

On peut citer [Mou98], [DP03], [DP04] parmi les travaux utilisant ce cercle d'idées. Une autre
technique utile consiste à utiliser des métriques Hermite-Einstein pour les �brés vectoriels stables E sur une
variété Kählerienne compacte pX,ωq. Rappelons qu'une métrique Hermite-Einstein est une métrique telle
que ΛiΘpEq “ c IdE où Λ est l'adjoint de ω ^ ‚, et où c est une constante. L'existence de telles métriques a
été prouvée par [Don85], [UY86], [BS94].

Un autre cône important est le cône nef. La dé�nition relative au cas non algébrique a été introduite
dans [DPS94].

Définition 0.1.5. (�bré en droites nef)
Un �bré en droites L sur une variété complexe compacte X est dit nef si pour tout ε ą 0, il existe une

métrique hermitienne lisse hε sur L telle que iΘL,hε ě ´εω où ω est une métrique hermitienne lisse.
Une classe de cohomologie α P H1,1

BCpX,Cq est dite nef si pour toute ε ą 0, il existe un représentant lisse
αε P α tel que αε ě ´εω, où ω est une métrique hermitienne lisse.

De manière générale, il est intéressant d'étudier les cônes positifs associés à des variétés complexes
compactes et de les relier à la géométrie de la variété. Leur importance se ré�ète déjà dans les diverses
reformulations ou généralisations du théorème de plongement de Kodaira. Pour le cas non algébrique, un tel
énoncé est donné dans [DP04] : une variété complexe compacte X contient un courant kählerien (à savoir
un courant T P H1,1pX,Rq tel que T ě ω pour une certaine forme hermitienne lisse ω), si et seulement si
elle est biméromorphe à une variété kählerienne. Dans la situation algébrique, on a le théorème d'annulation
de Kawamata-Viehweg.

Théorème 0.1.5. (Théorème d'annulation de Kawamata-Viehweg)
Soit X une variété algébrique projective lisse et soit F un �bré en droites sur X tel que F possède un

multiple mF s' écrivant sous la forme mF “ L`D où L est un �bré en droites nef, et D un diviseur e�ectif.
Alors

HqpX,OpKX ` F q b Ipm´1Dqq “ 0

pour q ě n´ ndpLq ` 1.

Un cas particulier du théorème d'annulation de Kawamata-Viehweg est le suivant. Si F est un �bré en
droites nef, alors

HqpX,OpKX ` F qq “ 0

pour q ě n ´ ndpF q ` 1. Dans le théorème, ndpLq désigne la dimension numérique du �bré en droites nef.
Dans ce cas, elle est dé�nie par

ndpLq “ maxtp P r0, ns; pc1pLqq
p ‰ 0u.

Un autre outil fondamental de la géométrie complexe est la formule de Riemann-Roch-Hirzebruch. Elle
calcule entre autres la caractéristique d'Euler du produit tensoriel d'un �bré en droites en termes de nombres
d'intersection mettant en jeu les classes de Chern du �bré en droites et du �bré tangent de la variété. Si un
�bré en droites donné est supposé posséder une métrique de courbure strictement positive (par exemple, si le
�bré en droites est nef et gros), le théorème d'annulation de Kawamata-Viehweg implique que les groupes de
cohomologie de degré supérieur à valeurs dans les puissances tensorielles élevées du �bré en droites tordu par
le �bré en droites canonique seront triviaux � après avoir pris le produit tensoriel avec le faisceau d'idéaux
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multiplicateurs ad hoc. Dans ce cas, la formule de Riemann-Roch-Hirzebruch prédit la croissance des sections
globales du produit tensoriel d'un �bré en droites. En particulier, si le �bré en droites L est nef et gros, on
a une croissance maximale des sections globales de Lbm par rapport à m, et des groupes de cohomologie
supérieurs triviaux pour m su�samment grand.

En géométrie complexe, les classes de Chern peuvent être dé�nies et déclinées suivant di�érentes théories
cohomologiques : cohomologie singulière, cohomologie de De Rham, cohomologie de Dolbeault, cohomologie
de Deligne, cohomologie de Bott-Chern complexe, etc. D'après les travaux de Michel Schweitzer [Sch07],
il existe une théorie cohomologique plus précise que toutes les théories précédemment citées, à savoir la
cohomologie de Bott-Chern à coe�cients entiers. On veut dire par là qu'il existe des morphismes naturels
de la cohomologie de Bott-Chern entière vers toutes ces autres théories cohomologiques.

C'est donc une question naturelle de savoir si l'on peut généraliser la formule de Riemann-Roch-
Hirzebruch et dé�nir les classes de Chern pour un faisceau cohérent sur une variété complexe compacte
en cohomologie de Bott-Chern rationnelle.

Une di�culté, mise en évidence par un résultat frappant de C. Voisin [Voi02a], réside dans le fait que
sur une variété complexe compacte arbitraire (même supposée kählerienne), une résolution d'un faisceau
cohérent par des �brés vectoriels n'existe pas nécessairement. Autrement dit, sur une variété complexe
compacte quelconque, le groupe de Grothendieck des �brés vectoriels n'est pas isomorphe au groupe de
Grothendieck des faisceaux cohérents, même si c'est le cas pour une variété projective. Il nous faudra
cependant donner un sens à la classe de Chern des images directes des faisceaux cohérents dans la formule
de Riemann-Roch-Grothendieck. Il s'ensuit que la dé�nition des classes Chern des faisceaux cohérents sur
des variétés complexes compactes est beaucoup plus intriquée que dans le cas algébrique. Les résultats que
nous avons pu obtenir dans cette direction sont exposés dans la dernière partie de cette thèse.

0.2. Un résumé des principaux résultats

Le théorème d'annulation de Demailly-Nadel implique que dans le cadre des métriques singulières, la
positivité d'un �bré en droites entraîne des contraintes importantes sur les groupes de cohomologie.

La majeure partie de cette thèse portera sur les conséquences de l'existence de métriques positives
singulières sur les groupes de cohomologie des �brés vectoriels ou la structure géométriques des variétés
mises en jeu.

Dans la dernière partie de la thèse, nous discutons de la construction des classes de Chern et de l'énoncé
de la formule de Riemann-Roch-Grothendieck en cohomologie de Bott-Chern rationnelle (telle que dé�nie
par Michel Schweitzer).

0.2.1. Théorème de Lefschetz di�cile pour un �bré en droites psef.
D'après la formule de Riemann-Roch-Grothendieck et le théorème d'annulation de Kawamata-Viehweg,

les sections globales des grandes puissances tensorielles d'un �bré en droites nef et gros ont une croissance
asymptotique maximale (de l'ordre de l'exposant élevé à une puissance égale à la dimension complexe). Dans
le cas algébrique, one peut obtenir ces résultats en prenant une intersection par un hyperplan générique pour
faire une récurrence sur la dimension.

En général, et dans le cas semi-positif, en particulier lorsque pL, hq est un �bré en droites pseudo-e�ectif
(psef) possédant un faisceau d'idéaux multiplicateurs Iphq, les groupes de cohomologie de degrés supérieurs
calculés sur une variété kählerienne compacte pX,ωq à valeurs dans KXbLbIphq ne sont pas nécessairement
triviaux.

Cette situation est étudiée dans [DPS01], où Demailly, Peternell et Schneider construisent des pré-
images dans H0pX,Ωn´qX bLb Iphqq pour le morphisme de Lefschetz, c'est-à-dire le morphisme induit par
ωq ^ ‚ à valeurs dans HqpX,KX bLb Iphqq. Lorsque le �bré en droites L est trivial équipé de la métrique
triviale, ce résultat redonne le théorème classique de Lefschetz di�cile � dans ce cas, comme il est bien
connu, le morphisme de Lefschetz est un isomorphisme.

Théorème 0.2.1. ( [DPS01])
Soit pL, hq un �bré en droites pseudo-e�ectif sur une variété kählerienne compacte pX,ωq de dimen-

sion n. Soit ΘL,h ě 0 son courant de courbure et Iphq le faisceau d'idéaux multiplicateurs associé.
Alors, l'opérateur de produit extérieur ωq ^ ‚ induit un morphisme surjectif

Φqω,h : H0pX,Ωn´qX b Lb Iphqq ÝÑ HqpX,ΩnX b Lb Iphqq.

Le cas spécial où L est nef est dû à Takegoshi [Tak97]. Un cas encore plus spécial est lorsque L est
semi-positif, c'est-à-dire que L possède une métrique lisse ayant une courbure semi-positive. Dans ce cas, le
faisceau d'idéaux multiplicateurs Iphq coïncide avec OX et on obtient la conséquence suivante déjà observée
par Enoki [Eno93] et Mourougane [Mou95], à savoir que le morphisme H0pX,Ωn´qX bLq Ñ HqpX,ΩnXbLq
est surjectif.
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La stratégie de la preuve est la suivante. On approche la métrique singulière par une suite de métriques
lisses en dehors d'ensembles analytiques propres, de sorte que le faisceau d'idéaux multiplicateurs soit
préservé. Au cours du processus, on perd de manière inévitable un peu de positivité de courbure. Comme ob-
servé dans [Dem82], on peut modi�er la métrique de Kähler de façon à obtenir des métriques complètes sur
les ouverts complémentaires de chacun des ensembles analytiques. Pour une classe de cohomologie de degré
q donnée, on peut ainsi appliquer l'inégalité de Bochner (valable dans le cas kählerien complet) aux représen-
tants harmoniques de cette classe par rapport aux métriques approchées du �bré et aux métriques de Kähler
complètes construites précédemment. Ceci permet de trouver une suite de préimages via l'isomorphisme
de Lefschetz ponctuel. Grâce aux estimations L2 obtenues, les préimages ont une limite faible qui sera
holomorphe, quitte à passer à une sous-suite bien choisie. La limite faible de cette sous-suite est la section
holomorphe souhaitée dans H0pX,Ωn´qX b Lb Iphqq.

Dans le cas semi-positif, les choses sont beaucoup plus faciles car il n'est pas besoin de prendre une suite
d'approximation des métriques singulières.

Dans le cas classique L “ OX , on peut observer que toute section u P H0pX,Ωn´qX q satisfait la condition
supplémentaire du “ dh0u “ 0. Ceci se voit facilement à l'aide de la formule de Stokes, qui implique

ż

X

idu^ du^ ωq´1 “

ż

X

tdu, duuh0
^ ωq´1 “ 0,

où h0 est la métrique lisse triviale sur OX .
La preuve du théorème de Lefschetz di�cile donnée dans [DPS01] est obtenue en construisant les

préimages comme limites de formes données par l'isomorphisme ponctuel de Lefschetz. On utilise ensuite
une suite de représentants harmoniques d'une classe donnée dans HqpX,KX b L b Iphqq, par rapport aux
métriques hermitiennes approximatives hε, encore singulières, mais lisses sur des ouverts de Zariski. Il est
alors naturel de se demander si la limite est harmonique par rapport à la métrique singulière originale h.

Dans le cadre singulier, l'opérateur Bh est encore un opérateur densément dé�ni, mais il est a priori non
évident d'évaluer le domaine de l'adjoint hilbertien B˚h . Néanmoins, cela a encore un sens de se demander si
la limite est parallèle par rapport à la métrique singulière originale h.

Le calcul e�ectué ci-dessus correspond au cas d'un �bré trivial muni d'une métrique triviale. Notre
premier résultat détaillé dans [Wu18] fournit une réponse a�rmative à la question générale en étudiant des
estimations supplémentaires dans le processus d'approximation de [DPS01].

Théorème 0.2.2. Toutes les sections holomorphes produites par le théorème de Lefschetz di�cile à
valeurs dans un �bré en droites psef sont parallèles par rapport à la connexion de Chern associée à la métrique
hermitienne singulière donnée h sur L, dès lors que celle-ci possède un courant de courbure semi-positif.

Le point essentiel de la preuve consiste à montrer que l'opérateur de dérivée covariante est toujours bien
dé�nis dans le cadre singulier, et se comporte bien dans le processus d'approximation.

Plus précisément, soit ϕ la fonction de poids locale de la métrique singulière. Alors la dérivée Bϕ est une
fonction Lqloc pour tous q ă 2 (mais pas nécessairement pour q “ 2, comme c'est le cas par exemple pour
ϕ “ log|z| sur C). Localement, la dérivée covariante d'une section u par rapport à la métrique singulière h
peut s'écrire sous la forme

Bhu “ Bu` Bϕ^ u.

Si u est une section holomorphe (donc en particulier localement bornée), le deuxième terme est le pro-
duit d'une forme Lqloc par une section L8loc, ce terme est donc Lqloc pour tout q ă 2. Dans le processus
d'approximation, nous prenons en fait une section à valeurs dans L2

locpe
´ϕq. Pour montrer que le second

terme est au moins bien dé�ni dans L1
loc par rapport à la mesure de Lebesgue, il su�t également d'observer

que Bϕ P L2
locpe

ϕq, ce qui est toujours le cas pour une fonction psh. Regardons à titre d'exemple le cas
typique où ϕ “ log|z| sur C. Alors la section u doit s'annuler en 0 et il su�t d'observer que

Bϕeϕ “
dz

z
ˆ |z|2 “ z̄dz.

Dans le cas pseudo-e�ectif, le morphisme de Lefschetz n'est en général plus injectif comme dans le cas
classique du théorème de Lefschetz di�cile. Un contre-exemple évident peut être obtenu en prenant L “ mA
où A est un diviseur ample, de sorte que h0pX,Ωn´qX bLq „ Cmn pourm assez grand, mais hqpX,ΩnXbLq “ 0
si q ą 0. Néanmoins, nous allons montrer qu'il y a un isomorphisme entre l'espace des sections qui sont
parallèles par rapport à la métrique singulière et le groupe de cohomologie de degré supérieur considéré.

Théorème 0.2.3. Soit pL, hq un �bré en droites pseudo-e�ectif sur une variété kählerienne compacte
pX,ωq. Alors, le produit extérieur avec la forme de Kähler induit un isomorphisme

Φqω,h : H0pX,Ωn´qX b Lb Iphqq XKerpBhq ÝÑ HqpX,ΩnX b Lb Iphqq.
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En particulier si la métrique est semi-positive, on a un isomorphisme

Φqω,h : H0pX,Ωn´qX b Lq XKerp∆Bhq ÝÑ HqpX,ΩnX b Lq.

Cet énoncé entraîne en particulier la surjectivité stipulée par le théorème précédent. En application de
ces résultats, nous montrons que chaque section holomorphe obtenue comme préimage dé�nit en fait une
feuilletage sur X.

Théorème 0.2.4. Supposons que v P H0pX,Ωn´qX b L b Iphqq, q ě 1, soit une section parallèle par
rapport à la métrique singulière h. En particulier, une section construite comme préimage par le théorème
de Lefschetz di�cile est parallèle. Le produit intérieur par v donne un OX-morphisme pdé�ni sur X tout
entierq

Fv : TX Ñ Ωn´q´1
X b L, ξ ÞÑ ιξv.

Le noyau de Fv dé�nit un sous-faisceau cohérent intégrable de OpTXq, et donc un feuilletage holomorphe.

Ici, nous entendons par feuilletage holomorphe un feuilletage éventuellement singulier, c'est-à-dire qu'il
existe un ensemble analytique irréductible V de l'espace total TX tel que pour tout x P X, Vx :“ V X TX
soit un espace vectoriel complexe et le faisceau de sections OpV q Ă OpTXq soit stable par crochets de Lie. Il
est équivalent de dire que l'on a un sous faisceau cohérent OpV q qui est stable par crochets de Lie et saturé,
c-à-d. OpTXq{OpV q est sans torsion.

Observons qu'en général une section deH0pX,Ωn´qX bLbIphqq n'induit pas nécessairement un feuilletage
singulier sur X. En fait, notre dé�nition du noyau de Fv dé�nit une feuilletage si et seulement si

dhv ^ v “ 0

qui est le cas quand la section mise en jeu est parallèle par rapport à la métrique singulière. Une question
naturelle est de savoir si ce feuilletage est �algébrique�, au sens où il induit un espace quotient avec une
structure d'espace complexe.

Il existe des exemples concrets présentant ce phénomène qui ont été initialement donnés par Beauville
[Bea00]; ils nous ont été indiqués par Andreas Höring. Un calcul complet se trouve dans la section 4 de
notre travail [Wu18].

Une autre possibilité pour généraliser le théorème de Lefschetz di�cile est de se demander si l'on peut
remplacer le faisceau d'idéaux multiplicateurs par un faisceau d'idéaux plus grand, �moins singulier�. De-
mailly, Peternell et Schneider ont montré dans [DPS01] qu'on ne peut pas en tout cas omettre le faisceau
d'idéal, même lorsque le �bré L est supposé nef, et ils ont donné un contre exemple lorsque L “ ´mKX est un
multiple du �bré en droites anticanonique. Cependant, il pourrait encore être possible dans certaines situa-
tions �d'améliorer� le faisceau d'idéaux multiplicateur, par exemple en le remplaçant par limδÑ0` Ipp1´δqϕq
qui peut être vu comme une intersection in�nie de faisceaux cohérents contenant Ipϕq. Même lorsque ϕ
a des singularités analytiques, il peut arriver que l'on obtienne ainsi un faisceau d'idéaux strictement plus
grand que Ipϕq, et même que la limite ne soit pas nécessairement un faisceau cohérent:

Proposition 0.2.1. Il existe un exemple de fonction psh ϕ telle que

lim
δÑ0`

Ipp1´ δqϕq “
č

δą0

Ipp1´ δqϕq

ne soit pas cohérent.

0.2.2. Théorème d'annulation dans L2.
Les singularités d'une métrique se re�ètent notamment dans leurs idéaux multiplicateurs associés. Une

situation géométrique fréquente est que la courbure d'une métrique singulière �dégénère� dans certaines
directions. Ce phénomène conduit au concept de dimension numérique, qui, en gros, mesure le nombre de
�directions de courbure positives� en un point générique. Un problème ouvert important de la géométrie
complexe est la conjecture dite d'abondance. Cette dernière peut être vue comme une vaste généralisation
des résultats actuellement connus sur la dimension de Kodaira κpXq “ κpKXq, qui compte la croissance des
sections pluricanoniques, c'est-à-dire les sections des multiples mKX où KX est le �bré en droites canonique.
Par dé�nition, pour tout �bré en droites L, la dimension de Kodaira-Iitaka est

κpLq “ lim sup
mÑ`8

logh0pX,mLq

logm
.

Un théorème bien connu de Siegel entraîne que κpLq P t´8, 0, 1, . . . , nu où n “ dimX, et qu'en dehors
du cas ´8, κpLq est le maximum des dimensions des images pluricanoniques ΦmLpXq Ă PpH0pX,mKXqq.
La conjecture d'abondance prédit que le �bré canonique KX atteint toujours sa croissance asymptotique
maximale possible comme m Ñ `8, et que κpKXq coïncide avec la dimension numérique (redé�nie plus
loin).
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Conjecture 0.2.1. (Conjecture d'abondance généralisée dans le cas kählérien, cf. [BDPP13]). Pour
une variété kählerienne compacte arbitraire X, la dimension de Kodaira coïncide avec la dimension numérique:

κpKXq “ ndpc1pKXqq.

Une version kählerienne de la dé�nition de la dimension numérique est donnée dans [Dem14] ou
[Bou02a].

Définition 0.2.1. (Dimension numérique)
Pour un �bré en droites psef L sur une variété kählerienne compacte pX,ωq, la dimension numérique de

L est dé�nie comme

ndpLq :“ max

"

p P r0, ns; Dc ą 0,@ε ą 0, Dhε, iΘL,hε ě ´εω, telle que

ż

XrZε
piΘL,hε ` εωq

p ^ ωn´p ě c

*

.

Ici, les métriques hε sont supposées avoir des singularités analytiques, et on désigne par Zε l'ensemble
singulier de la métrique.

Pour un �bré en droites nef, cette dé�nition coincide avec la dé�nition donnée dans la section précé-
dente. Une dé�nition équivalente peut être donnée en termes du produit (d'intersection) positif dé�ni
dans [BEGZ10]. Le produit positif est la classe de cohomologie réelle xαpy de bidegré pp, pq de la limite

xαpy :“ lim
δÑ0

 

xT pmin,δωy
(

,

où Tmin,δω est le courant positif à singularité minimale contenu dans la classe α` δtωu, et où xT pmin,δωy est
le produit non pluripolaire.

Avec cette notion, la dimension numérique de α est dé�nie comme

ndpαq :“ max
 

p|xαpy ‰ 0
(

qui est aussi égale à

max

"

p |

ż

X

xαpy ^ ωn´p ą 0

*

.

Une dé�nition plus intuitive du produit positif est donnée dans [BDPP13], comme suit. Supposons que α
soit une classe grosse sur une variété kählerienne compacte pX,ωq (c'est-à-dire que α contient un courant
T tel que T ě Cω pour une certaine constante C ą 0). Pour déterminer la valeur du produit, il su�t de
connaître son accouplement avec n'importe quelle forme test de bidegré pn ´ p, n ´ pq, et, en fait avec une
famille dénombrable dense de formes dans l'espace des formes lisses.

Puisque toute forme u de bidegré pn´p, n´pq peut s'écrire u “ Cωn´p´pCωn´p´uq avec deux formes
Cωn´p et Cωn´p ´ u fortement positives sur la variété compacte X si C ą 0 est assez grand, il su�t de
prendre en compte les accouplements avec une famille dénombrable dense de formes fortement positives.

Fixons une forme fermée fortement positive du type pn´ p, n´ pq u sur X. On sélectionne des courants
de Kähler T P α avec singularités analytiques et une résolution logarithmique µ : X̃ Ñ X telle que

µ˚T “ rEs ` β

où rEs est le courant associé à un R´diviseur et β est une forme semi-positive. Nous considérons le courant
image directe µ˚pβ ^ . . . ^ βq. Étant donné deux courants p1, 1q positifs fermés T1, T2 P α, nous pouvons
écrire Tj “ θ ` iBBϕj (j “ 1, 2) pour certains forme lisse θ P α. Dé�nissons T :“ θ ` iBBmaxpϕ1, ϕ2q. On
obtient ainsi un courant à singularités analytiques moins singulier que les deux courants T1, T2. De cette
façon, si on change le représentant T en un autre courant T 1, on peut toujours prendre une log-résolution
simultanée telle que µ˚T 1 “ rE1s ` β1, et supposer que E1 ď E. Par un calcul direct, on trouve

ż

X̃

β1 ^ . . .^ β1 ^ µ˚u ě

ż

X̃

β ^ . . .^ β ^ µ˚u.

On peut montrer que les courants positifs fermés µ˚pβ ^ . . .^ βq sont uniformément bornés en masse. Pour
chacune des intégrales associées à une famille dénombrable dense de formes u, le supremum de l'intégrale
ş

X̃
β . . .^β^µ˚u est réalisé par une suite de courants pµmq˚pβm^ . . .^βmq obtenus comme images directes,

pour une suite appropriée de modi�cations µm : X̃m Ñ X et pour des formes βm appropriées. En extrayant
une sous-suite, on peut supposer que cette suite est faiblement convergente et on dé�nit

xxαpyy :“ lim Ò
mÑ`8

tpµmq˚pβm ^ . . .^ βmqu.

Si α est seulement psef, on dé�nit
xxαpyy :“ lim Ó

δÓ0
xxpα` δtωuqpyy.

On peut véri�er que



0.2. UN RÉSUMÉ DES PRINCIPAUX RÉSULTATS 9

Proposition 0.2.2. Les deux produits positifs dé�nis dans [BEGZ10] et [BDPP13] coïncident pour
toute classe psef.

Definition 0.1. Pour tout �bré en droites psef L sur une variété Kählerienne compacte, on pose

ndpLq “ ndpc1pLqq.

Dans le cas particulier d'une variété projective X, la dé�nition précédente de la dimension numérique
coïncide avec la dé�nition algébrique suivante :

ndpLq “ sup
A ample sur X

lim sup
mÑ`8

logh0pX,mL`Aq

logm

(et on peut voir aisément qu'elle ne dépend elle aussi que de la classe numérique c1pLq).
Dans nos articles [Wu19a] et [Wu19b], nous démontrons quelques théorèmes d'annulation L2 s'appuyant

sur la notion de dimension numérique d'un �bré en droites psef. Rappelons qu'un théorème d'annulation
classique de Bogomolov dit que pour tout �bré L sur une variété projective lisse X on a

H0pX,ΩpX b L
´1q “ 0

pour p ă κpLq. Il est intéressant de savoir si on peut remplacer la dimension de Kodaira κpLq par la
dimension numérique ndpLq. Dans [Dem02], il est prouvé que pour tout �bré en droites pseudo-e�ectif L
sur une variété kählerienne compacte X, et toute section holomorphe non nulle θ P H0pX,Ωp b L´1q, où
0 ď p ď n “ dimX, alors θ induit un feuilletage sous le même sens que dans le théorème 0.2.4. Le théorème
d'annulation de Bogomolov interdit l'existence d'une telle section non nulle pour p ě κpLq. (D'après notre
résultat, la même conclusion est vraie pour p ě ndpLq.)

L'article [Mou98] démontre la version suivante du théorème d'annulation de Bogomolov : si L est un
�bré en droites nef sur une variété kählerienne compacte X, alors

H0pX,ΩpX b L
´1q “ 0

pour p ă ndpLq. Dans notre travail [Wu19b], nous obtenons une généralisation du cas nef au cas psef en
a�nant les estimations de Mourougane dans [Mou98]. Une preuve similaire avait été donnée dans [Bou02a]
au moyen d'une version singulière de l'équation Monge-Ampère ; nous donnons ici une autre preuve qui ne
nécessite que la résolution d'équations de Monge-Ampère �classiques �.

Théorème 0.2.5. Si L est un �bré en droites psef sur une variété kählerienne compacte X, alors

H0pX,ΩpX b L
´1q “ 0

pour p ă ndpLq.

En nous inspirant des travaux de [Cao14], nous obtenons le théorème d'annulation suivant de type
Kawamata-Viehweg dans [Wu19a]. La preuve est une modi�cation celle donnée par Junyan Cao:

Théorème 0.2.6. Soit L est un �bré en droites psef sur une variété kählerienne compacte X de dimen-
sion n. Alors le morphisme induit en cohomologie par l'inclusion KX b Lb Iphminq Ñ KX b L, soit

HqpX,KX b Lb Iphminqq Ñ HqpX,KX b Lq,

s'annule pour tous q ě n ´ ndpLq ` 1. La même conclusion est valable pour toute métrique singulière à
courbure semi-positive au lieu de hmin.

Le théorème de Junyan Cao est le suivant : soit pL, hq un �bré en droites psef sur une variété kählerienne
compacte X de dimension n. Alors

HqpX,KX b Lb Iphqq “ 0

pour tous q ě n´ ndpL, hq ` 1.
Remarquons que le résultat de Junyan Cao s'exprime en termes de la dimension numérique de la métrique

singulière considérée, plutôt que de celle du �bré en droites. En général, ces notions sont di�érentes, comme
le montre l'exemple 1.7 dans [DPS94] : il existe un �bré en droites nef L sur une surface réglée X Ñ C au
dessus d'une courbe elliptique, de telle sorte qu'il existe une unique métrique singulière à courbure positive
sur L, donc le courant de courbure est le courant d'intégration r rCs sur une section de X Ñ C. Cette métrique
est à singularités analytiques et sa courbure est nulle sur un ouvert de Zariski, donc la dimension numérique
vaut 0. Mais la construction de [DPS94] montre que la dimension numérique du �bré en droites L est égale
à 1.

Remarquons aussi qu'en général on ne peut pas espérer l'annulation du groupe de cohomologie à valeurs
Iphminq, mais seulement l'annulation de l'image dans la cohomologie à valeurs dans L. En e�et, d'après
le même exemple que celui donné dans le dernier paragraphe, h2pX,KX b L b Iphminqq “ 1 tandis que



10

h2pX,KX b Lq “ 0. En fait, la situation envisagée ici est plus facile que celle étudiée par Junyan Cao,
puisque nous ne gardons pas de faisceau d'idéaux multiplicateurs dans l'image.

Le dernier résultat que nous énonçons dans cette partie est un théorème d'annulation de type Kodaira-
Nakano-Akizuki ( [Wu19c]), exprimé en termes de lieux base augmentés.

Théorème 0.2.7. Soit X une variété projective de dimension n et L un �bré en droites holomorphes
nef sur X. Alors on a

HppX,ΩqX b Lq “ 0

pour tout p` q ą n`maxpdimpB`pLqq, 0q. Ici B`pLq désigne le lieu base augmenté pou lieu non ampleq de
L. Lorsque B`pLq “ H, on pose par convention que la dimension est ´1.

0.2.3. Fibré en droite nef en dimension supérieure.
Comme on l'a rappelé dans l'historique du début, la projectivité d'une variété compacte est caratérisée

par l'existence d'une classe rationnelle dans le cône de Kähler. De manière générale, il est intéressant
d'étudier les cônes positifs attachés aux variétés complexes compactes et de les relier à la géométrie de ces
variétés. En géométrie algébrique classique ou complexe, l'accent est mis sur deux types de cônes positifs:
les cônes nef et psef, qui sont dé�nis comme étant les cônes convexes fermés engendrés par les classes nef et
les classes psef, respectivement. Le cône nef est bien entendu contenu dans le cône psef.

Remarquons qu'en géométrie algébrique, les propriétés de dualité des cônes apparaissent dans de nom-
breux contextes, et que les cônes fermés sont souvent plus aisés à décrire que les cône ouverts.

Les travaux de Boucksom [Bou02a] dé�nissent et étudient un cône dé�ni comme étant le �cône nef
modi�é�, pour une variété complexe compacte arbitraire. En utilisant ce concept, Boucksom a pu montrer
l'existence d'une décomposition de Zariski divisorielle pour toute classe psef (c'est-à-dire toute classe de
cohomologie contenant un courant positif). Le cône modi�é se trouve être compris entre les cônes nef et
psef.

En nous inspirant de la dé�nition de Boucksom, nous introduisons dans [Wu19d], pour toute variété
complexe compacte, un concept de cône nef en codimension arbitraire ; les cônes associés aux diverses
codimensions possibles fournissent une interpolation entre les cônes positifs psef et nef.

Définition 0.2.2. (Multiplicités minimales) ( [Bou02a])
La multiplicité minimale en un point x P X d'une classe pseudo-e�ective α P H1,1

BCpX,Rq est dé�nie par

νpα, xq :“ sup
εą0

νpTmin,ε, xq

où Tmin,ε est un représentant de la classe d'équivalence des courants T P α à singularités minimales tels que
T ě ´εω, et où νpTmin,ε, xq désigne le nombre de Lelong de Tmin,ε en x. Lorsque Z est un sous-ensemble
analytique irréductible, on dé�nit la multiplicité minimale générique de α le long de Z par

νpα,Zq :“ inftνpα, xq, x P Zu.

Définition 0.2.3. Soit α P H1,1
BCpX,Rq une classe psef. Nous dirons que α est nef en codimension k, si

pour tout sous-ensemble analytique irréductible Z Ă X de codimension au plus égal à k, on a

νpα,Zq “ 0.

Avec cette terminologie, le cône nef est le cône nef en codimension n, où n est la dimension complexe de
la variété, tandis que le cône psef est le cône nef en codimension 0, et le cône nef modi�é est le cône nef en
codimension 1. Dans le même article, nous montrons au moyen d'exemples explicites que ces cônes sont en
général di�érents.

Comme application, nous obtenons la généralisation suivante ( [Wu19d]), du cas nef au cas psef, d'un
résultat voisin énoncé dans [DP03].

Théorème 0.2.8. Soit pX,ωq une variété kählerienne compacte de dimension n et L un �bré en droites
sur X qui est nef en codimension 1. Supposons que xL2y ‰ 0 où x‚y est le produit positif dé�ni dans
[Bou02a]. Supposons qu'il existe un diviseur entier e�ectif D tel que c1pLq “ c1pDq . Alors

HqpX,KX ` Lq “ 0

pour q ě n´ 1.

La preuve du théorème repose sur une récurrence sur la dimension, en utilisant le théorème 0.2.6 du
chapitre précédent. Une di�érence par rapport au cas nef étudié dans [DP03] réside dans le fait que le
produit positif (ou nombre d'intersection mobile) n'est plus linéaire dans le cas psef. Cependant, sous la
condition que L soit nef en codimension supérieure, nous avons l'estimation suivante.
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Proposition 0.2.3. Soit α une classe nef en codimension p sur une variété kählerienne compacte pX,ωq.
Alors pour tout k ď p et toute pn´ k, n´ kq-forme Θ positive fermée, on a

pαk,Θq ě xαk,Θy.

Grâce à cette inégalité, le calcul du nombre d'intersection e�ectué dans [DP03] se trouve être toujours
valide, de même que les calculs de cohomologie qui en résultent. Remarquons que le courant à singularités
minimales n'est pas toujours à singularités analytiques, comme cela a été observé par Matsumura [Mat13]
pour la classe α construite par [Nak04], qui est grosse et nef en codimension 1 mais non en codimension 2.
Une conséquence directe de l'observation de Matsumura est que l'hypothèse supplémentaire de notre version
du théorème d'annulation de Kawamata-Viehweg énoncée ci-dessus, suivant laquelle le �bré en droites est
numériquement équivalent à un diviseur entier e�ectif, est bien nécessaire.

Dans le cas nef étudié dans [DP03], il se trouve que les auteurs parviennent à déduire de l'hypothèse
que le �bré en droites L est nef avec pL2q ‰ 0 que L est bien numériquement équivalent à un diviseur entier
e�ectif D, de sorte qu'il existe une métrique singulière positive h sur L telle que Iphq “ Op´Dq. Cependant,
pour un �bré en droites L sur une variété kählerienne compacte pX,ωq, qui est gros et nef en codimension 1
mais non nef en codimension 2 et tel que xL2y ‰ 0, le courant i

2πΘpL, hminq n'est pas associé à un diviseur
entier e�ectif.

Une autre conséquence est un exemple (probablement déjà connu) d'une variété projective X telle que
´KX soit psef, pour laquelle le morphisme d'Albanese n'est pas surjectif. Il a été démontré dans [Cao13],
[Pau17] (et [Zha06] pour le cas projectif) que le morphisme d'Albanese d'une variété kählerienne compacte
avec ´KX nef est toujours surjectif. Remplacer la propriété nef par la pseudo-e�ectivité dans l'étude du
morphisme d'Albanese semble donc être un problème non trivial. Un résultat positif partiel est celui de
notre article déjà cité, a�rmant que le morphisme d'Albanese d'une variété compacte Kählerienne qui a un
�bré en droites anticanoniques ´KX psef et satisfaisant une condition d'intégralité est encore surjectif.

Théorème 0.2.9. Soit pX,ωq une variété kählerienne compacte de dimension n telle que ´KX soit psef.
Supposons qu'il existe une suite εν ą 0 telle que limνÑ8 εν “ 0 et Iphεν q “ OX pour une suite de métriques
hεν sur ´KX à singularités analytiques et telles que iΘp´KX , hεν q ě ´ενω. Alors le morphisme d'Albanese
αX est surjectif à �bres connexes. Plus précisément, le morphisme d'Albanese est une submersion en dehors
d'un ensemble analytique de codimension au moins égale à 2.

Notons que lorsque ´KX est nef, l'hypothèse du théorème ci-dessus est satisfaite. La stratégie de la
preuve est analogue à celle de Junyan Cao dans [Cao13]. On considère la �ltration de Harder-Narasimhan
de TX

0 Ă E0 Ă E1 Ă ¨ ¨ ¨ Ă Es “ TX .

Le point essentiel est de prouver que les pentes de Ei`1{Ei sont semi-positives. Supposons pour simpli�er que
tous les Ei`1{Ei soient des �brés vectoriels. D'après [UY86], l'équation de Hermite-Einstein admet toujours
une solution pour des �brés vectoriels stables.

En consédérant le signe des pentes, on voit que la trace de la courbure de Ei`1{Ei est semi-positive, ce
qui permet de construire une métrique sur TX dont la partie négative de la courbure de Ricci peut être prise
arbitrairement petite. Grâce à la technique de Bochner, on véri�e que les sections non nulles de H0pX,Ω1

Xq

ne s'annulent en aucun point, ce qui conclut la surjectivité du morphisme d'Albanese.
L'idée pour prouver la semi-positivité des pentes est la suivante. Grâce à la condition de stabilité, il

su�t de prouver que les pentes de TX{Ei sont semi-positives. Grosso modo, on veut utiliser une équation
de Kähler-Einstein pour construire une métrique de Kähler sur le �bré tangent d'un modèle biméromorphe
ayant une borne inférieure de courbure de Ricci arbitrairement petite, et prendre la métrique quotient de
celle-ci sur TX{Ei.

Le problème est que bien que l'on puisse résoudre une équation de Kähler-Einstein singulière grâce au
travail de [BEGZ10], la métrique quotient n'a pas toujours de sens précis. Cependant, d'après les travaux
de [CGP13] et [GP16], le potentiel a un comportement connu pour une équation de Monge-Ampère à
singularité conique, à la fois le long du diviseur de singularités, et on sait aussi que la solution est lisse sur
l'ouvert de Zariski complémentaire. Grâce à cette dernière solution, on peut obtenir une solution lisse dans
le complémentaire du lieu singulier, qui induit donc une métrique lisse sur TX{Ei sur cet ouvert de Zariski.
D'après ce résultat de régularité de l'équation de Kähler-Einstein appliqué sur un modèle biméromorphe
de la variété où tous les diviseurs deviennent simples à croisements normaux, on conclut que la masse de
c1pTX{Eiq est bornée près du lieu singulier. D'après le théorème de Skoda-El Mir, le courant de courbure
quasi positif s'étend à travers le lieu singulier avec lequel on estime la pente.

0.2.4. Faisceaux re�exifs fortement pseudo-e�ectifs.
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Une question centrale de géométrie analytique est de classi�er les variétés complexes véri�ant diverses
conditions. En ce qui concerne la structure des variétés projectives ayant un �bré en droites anticanonique nef,
un ingrédient clé utilisé par Junyan Cao [Cao19] pour la preuve de l'isotrivialité du morphisme d'Albanese
est la trivialité numérique de certains �brés vectoriels.

La notion de �bré vectoriel numériquement plat peut être dé�nie de manière purement algébrique,
mais sur une variété complexe quelconque on peut observer qu'un tel �bré vectoriel est soumis à de fortes
contraintes métriques quant à sa courbure. Dans [DPS94], Demailly, Peternell et Schneider ont prouvé
qu'un �bré vectoriel numériquement plat E sur une variété kählerienne compacte X admet une �ltration
par des �brés vectoriels dont le gradué est somme directe de �brés hermitiens plats. En ce sens, la platitude
métrique est le correspendant analytique de la notion algébrique de platitude numérique.

Dans les travaux [CCM19] et [HIM19], les auteurs considèrent la question suivante. Si on a (dans un
sens adéquat) un �bré vectoriel pseudo-e�ectif sur une variété projective ayant une première classe de Chern
triviale, ce �bré vectoriel est-il numériquement plat? Puisqu'un �bré vectoriel E est numériquement plat si
et seulement si E et detpEq´1 sont nefs (ou encore, si et seulement si E et E˚ sont nefs), la question revient
à se demander si un tel �bré vectoriel est en fait nef.

Intuitivement, une métrique singulière à courbure semi-positive sur le �bré vectoriel E devrait induire
une métrique singulière à courbure semi-positive sur le déterminant detpEq. Comme la première classe Chern
de E (c'est-à-dire la classe Chern de detpEq) est supposée triviale, une métrique à courbure semi-positive
est nécessirement plate et elle ne peut donc posséder aucune singularité. Ceci implique que toute métrique
singulière à courbure semi-positive sur E est nécessairement lisse. On s'attend à ce qu'une telle propriété
ait lieu de manière générale pour une variété kählerienne compacte arbitraire, puisque les propriétés mises
en jeu font encore sens dans cette situation. Nous montrerons que c'est bien le cas dans le chapitre 5 :

Théorème 0.2.10. Soit E un �bré vectoriel fortement pseudo-e�ectif tel que c1pEq “ 0. Alors E est un
�bré vectoriel nef.

On peut en fait s'attendre à un certain nombre de propriétés plus générales des �brés fortement psef
impliquant le résultat précédent comme cas particulier. Si E est fortement psef, la classe de cohomologie
c1pOPpEqp1qq est psef et contient une métrique pas trop singulière (la dé�nition implique grosso modo que
la projection du lieu singulier sur X est contenue dans un ensemble analytique de codimension au moins 1).
Ceci entraîne que les puissances extérieures pas trop élevées de la classe Chern c1pOPpEqp1qq sont positives, et
donc que leur images directes sous la projection π : PpEq Ñ X le sont aussi. En particulier, on peut espérer
que la deuxième classe de Segré π˚pc1pOPpEqp1qqq

r`1 soit semi-positive (c'est-à-dire, qu'elle contienne un
courant positif) où r est le rang de E. Rappelons que c'est aussi la classe c1pEq2´ c2pEq. D'après l'inégalité
de Bogomolov, lorsque c1pEq “ 0 et que E est semi-stable, l'intégrale de c2pEq ^ ωn´2 sur X est positive
pour toute forme de Kähler ω sur X, où n est la dimension de X. En comparant les deux inégalités, on
conclut que c2pEq “ 0, donc l'inégalité de Bogomolov sera en fait une égalité.

Remarquons que pour un faisceau re�exif F , les classes de Chern peuvent être dé�nies comme suit.
Soit σ : pX Ñ X une modi�cation telle que σ˚F{Tors soit un �bré vectoriel. Alors pour tout i “ 1, 2,
cipFq :“ σ˚cipσ

˚Fq est indépendant du choix de la modi�cation σ. Moralement, nous espérons que les
mêmes calculs que ci-dessus s'appliquent en passant à un modèle birationnel, et en prenant des images
directes, que l'égalité dans l'inégalité de Bogomolov soit atteinte.

Notons le résultat important suivant de [BS94] : pour un faisceau ré�exif polystable F de rang r sur
une variété kählerienne compacte pX,ωq de dimension n, on a l'inégalité de Bogomolov

ż

X

p2rc2pFq ´ pr ´ 1qc1pFq2q ^ ωn´2 ě 0.

De plus, l'égalité a lieu si et seulement si F est localement libre (c'est-à-dire si F est un �bré vectoriel), et
si sa métrique Hermite-Einstein donne une connexion projectivement plate. Les notions de faisceau ré�exif
nef ou psef sont dé�nies ici comme suit.

Définition 0.2.4. Un faisceau sans torsion F sur une variété complexe compacte (resp. compacte
kählerienne) est dit nef presp. fortement psef q s'il existe une modi�cation σ : X̃ Ñ X telle que σ˚F modulo
torsion soit un �bré vectoriel nef presp. fortement psef q.

Comme conséquence de ce qui précède, il est naturel d'espérer le fait plus fort suivant : un faisceau ré�exif
fortement psef sur une variété kählerienne compacte pX,ωq ayant une première classe de Chern triviale est en
fait un �bré vectoriel nef. Au chapitre 5, nous prouvons que c'est vraiment le cas. Une di�culté de l'approche
précédente réside dans la fait qu'en général un produit extérieur de courants positifs n'est pas nécessairement
bien dé�ni. Pour contourner cette di�culté, nous commençons par prouver le résultat suivant.

Théorème 0.2.11. Soit F un faisceau ré�exif nef sur une variété kählerienne compacte pX,ωq tel que
c1pFq “ 0. Alors F est un �bré vectoriel nef.
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En combinant maintenant les deux théorèmes ci-dessus, on parvient alors à l'énoncé suivant.

Théorème 0.2.12. Soit F un faisceau fortement psef ré�exif sur une variété ählerienne compacte pX,ωq
avec c1pFq “ 0. Alors F est un �bré vectoriel nef.

On observe que dans l'approche ci-dessus, tous les produits extérieurs sont bien dé�nis sans restriction
sur la codimension du lieu singulier de la métrique. En d'autres termes, pour un �bré vectoriel fortement
psef E, on peut trouver un courant positif représentant la classe de cohomologie c1pEq (mais ce n'est pas
nécessairement le cas pour c2pEq). Dans le chapitre 5, nous donnons une dé�nition d'un �bré vectoriel psef
essentiellement équivalente à la version kählerienne proposée dans [BDPP13].

Définition 0.2.5. Soit pX,ωq une variété kählerienne compacte et E un �bré vectoriel holomorphe
sur X. On dit que E est fortement pseudo-e�ectif pen abrégé, fortement psef q si le �bré en droites OPpEqp1q
est pseudo-e�ectif sur le projectivisé PpEq des hyperplans de E, et si pour tout ε ą 0, on peut trouver une
métrique singulière hε sur OPpEqp1q ayant une courbure iΘphεq ě ´επ˚ω poù π : PpEq Ñ X est la projection
naturelleq, à singularités analytiques, telle que la projection πpSingphεqqq du lieu singulier ne recouvre pas X
tout entier.

De manière équivalente, E est fortement psef si et seulement si le �bré en droites OPpEqp1q est pseudo-
e�ectif sur la variété projectivisée PpEq des hyperplans de E, et si la projection πpLnnefpOPpEqp1qqq du lieu
non nef de OPpEqp1q ne recouvre pas X tout entier.

Rappelons qu'une métrique hermitienne sur OPpEqp1q correspond à une métrique de Finsler dans le sens
suivant ( [Kob75], [Dem99]).

Définition 0.2.6. Une métrique de Finsler pdé�nie positive q sur un �bré vectoriel holomorphe E est
une fonction homogène complexe positive

ξ Ñ }ξ}x

dé�nie sur chaque �bre Ex, c'est-à-dire telle que }λξ}x “ |λ|}ξ}x pour chaque λ P C, et telle que }ξ}x ą 0
pour ξ ‰ 0.

On peut montrer que les métriques de Finsler sur un �bré vectoriel fortement psef E peuvent être
approximées par des métriques induites par des métriques hermitiennes sur de grandes puissances symétriques
SmE˚.

Proposition 0.2.4. Soit E Ñ X un �bré vectoriel et p : SmE˚ Ñ X la projection naturelle. Les
propriétés suivantes sont équivalentes:

(1) E est fortement psef.
(2) Il existe une suite de fonctions quasi-psh wmpx, ξq “ logp|ξ|hmq à singularités analytiques, induites

par des métriques hermitiennes hm sur SmE˚, telles que le lieu des singularités se projette dans un ensemble
Zariski fermé propre Zm Ă X, avec

iBBwm ě ´mεmp
˚ω

au sens des courants et lim εm “ 0.
(3) Il existe une suite de fonctions quasi-psh wmpx, ξq “ logp|ξ|hmq à singularités analytiques, induites

par des métriques hermitiennes hm sur SmE˚, telles que le lieu des singularités se projette dans un ensemble
Zariski fermé propre Zm Ă X, avec

iΘSmE˚,hm ď mεmω b Id

sur X r Zm dans le sens de Gri�ths et lim εm “ 0.

Grâce à cette condition équivalente, nous pouvons montrer que certaines opérations algébriques habituelles
peuvent toujours être faites pour des �brés vectoriels fortement psefs. Par exemple, la somme directe ou le
produit tensoriel des �brés vectoriels fortement psefs est toujours fortement psef.

Comme conséquence, on peut dé�nir des formes de Segre (ou courants de Segre) associés, c'est-à-dire des
courants positifs fermés de bidegré pk, kq, obtenus par image directe des puissances extérieures du courant
de courbure de OPpEqp1q, sous une hypothèse sur la codimension de lieu singulier.

Théorème 0.2.13. Soit E un �bré vectoriel fortement psef de rang r sur une variété kählerenne compacte
pX,ωq. Soit hε une métrique singulière sur pOPpEqp1q, ayant des singularités analytiques et telle que

iΘpOPpEqp1q, hεq ě ´επ
˚ω,

la codimension de πpSingphεqq dans X étant au moins égale à k. Alors, il existe un courant positif de bidegré
pk, kq représentant la classe π˚pc1pOPpEqp1qq ` επ

˚tωuqr`k´1. En particulier, detpEq est un �bré en droites
psef.
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Une construction similaire a été faite dans [LRRS18].
À la �n du chapitre, en tant qu'application géométrique, nous classi�ons les surfaces kähleriennes com-

pactes et les variétés de dimension 3 ayant un �bré tangent fortement psef et une première classe de Chern
triviale. Par notre théorème principal, ce sont les mêmes que les surfaces kähleriennes compactes et les var-
iétés de dimension 3 ayant un �bré tangent nef et une première classe de Chern triviale, qui ont été classées
en particulier dans [DPS94]. Une conséquence est que le �bré tangent d'une surface K3 kählerienne ne peut
pas être fortement psef. Ce résultat généralise ceux de [DPS94] et de [Nak04] dans le cas projectif. Plus
généralement, les variétés symplectiques irréductibles ou de Calabi-Yau ont des �brés tangents et cotangents
qui ne sont pas fortement psefs. Dans le cas singulier et projectif, un résultat plus fort est prouvé dans
le théorème 1.6 de [HP19], et dans le corollaire 6.5 de [Dru18], pour le cas de la dimension 3. En fait,
pour le cas projectif, OPpTXqp1q ou OPpΩ1

Xq
p1q n'est pas un �bré en droites psef sur une variété symplectique

irréductible ou de Calabi-Yau X.
Nous généralisons également au cas compact kählerien les principaux résultats de [LOY20] sur les �brés

tordus par des Q-diviseurs.

0.2.5. Théorie de l'intersection et classes de Chern en cohomologie de Bott-Chern.
Il est attendu que la formule de Riemann-Roch-Grothendieck soit véri�ée pour toutes les théories

de cohomologie naturelles associées aux variétés algébriques ou analytiques. En particulier, une question
intéressante est de savoir si la formule de Riemann-Roch-Grothendieck est véri�ée pour la cohomologie de
Bott-Chern à coe�cients rationnels. Pour donner un sens précis à la formule, nous devons dé�nir les classes
de Chern associées à l'image directe d'un �bré vectoriel (et même à toutes les images directes supérieures).
Lorsqu'un morphisme entre deux variétés est propre, le théorème des images directes de Grauert énonce que
ces images directes sont des faisceaux cohérents. En conséquence, il serait intéressant de pouvoir construire
une théorie des classes de Chern en cohomologie de Bott-Chern entière (ou au moins rationnelle), pour des
faisceaux cohérents arbitraires.

Lorsque la variété est projective, cela découle d'un travail inédit de Junyan Cao dans lequel il dé�nit
d'abord les classes Chern de �brés vectoriels pour la cohomologie de Bott-Chern à coe�cients entiers. Comme
on l'a expliqué dans la section précédente, le cas général des faisceaux cohérents est beaucoup plus compliqué.

Pour traiter la situation similaire de la cohomologie de Deligne rationnelle, Julien Grivaux propose dans
son travail [Gri10] une approche générale pour dé�nir les classes caractéristiques de Chern dans une théorie
axiomatique de la cohomologie rationnelle. Ceci se fait en spéci�ant que la théorie de la cohomologie doit
satisfaire certains axiomes de la théorie de l'intersection.

La ligne générale de la construction est la suivante. On �force� le théorème de Grothendieck-Riemann-
Roch à être valable pour une immersion fermée d'hypersurfaces lisses. Ensuite, par dévissage, on peut déduire
des axiomes de la théorie de l'intersection proposés par Grivaux que le théorème de Grothendieck-Riemann-
Roch est valable pour toute immersion fermée. Puisque chaque morphisme projectif peut par dé�nition
être factorisé en la composition d'une projection et d'une immersion fermée, le théorème de Grothendieck-
Riemann-Roch est valable pour tout morphisme projectif, comme observé par Grothendieck. (Bien sûr, nous
utilisons également les axiomes de la théorie de l'intersection pour traiter le cas d'une projection.)

En particulier, en suivant l'approche de Grivaux, nous sommes en mesure de dé�nir les classes de Chern
comme des classes de cohomologie de Bott-Chern rationnelles. En principe, l'image réciproque d'une classe
de cohomologie est induit par l'image réciproque d'une forme lisse, tandis que le poussé en avance de la
classe de cohomologie est mieux vu en prenant des images directes de courants. La principale di�culté est
alors de contrôler le comportement des classes de cohomologie sous la composition de l'image réciproque et
d'une image directe.

Plus précisément, le complexe de Bott-Chern à coe�cients entiers est quasi-isomorphe à di�érents
types de complexes, à savoir le complexe formé par le faisceau localement constant Z complété par un
complexe de formes di�érentielles lisses, soit comme Z remplacé par un complexe de courants construit
à l'aide des courants localement intégraux. Pour dé�nir l'image réciproque ou le poussé en avance dans
l'hypercohomologie du complexe de Bott-Chern entier, nous sommes alors amenés à utiliser ces di�érents
complexes quasi-isomorphes. Lorsqu'on traite de la composition de l'image réciproque et du poussé en
avance de la cohomologie, il est commode de passer à la catégorie dérivée pour montrer que les morphismes
sont bien dé�nis et commutent dans la catégorie dérivée des complexe de groupes abéliens, puis de prendre
l'hypercohomologie.

Il se trouve que l'image réciproque des courants n'est pas toujours bien dé�nie en général, bien qu'elle
le soit pour des courants satsifaisant des hypothèses spéciales adéquates. Par exemple, supposons que Y,Z
soient deux cycles lisses se coupant transversalement le long de W . L'images réciproque du courant rZs
sous l'immersion fermée de iY de Y dans X est bien dé�ni comme étant égal à rW s. Nous devons montrer
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que via certains quasi-isomorphismes, ces types particuliers de morphismes entre représentants �spéciaux�
conduisent à des morphismes de cohomologie bien dé�nis.

La principale di�culté par rapport au cas de la cohomologie de Deligne entière est que la structure
multiplicative de la cohomologie de Bott-Chern entière est beaucoup plus compliquée. Nous choisissons une
dé�nition de la multiplication telle que le morphisme naturel de la cohomologie de Bott-Chern entière vers
la cohomologie de Bott-Chern complexe soit un morphisme d'anneau, et pas seulement un morphisme de
groupe. On remarque pour cela que la cohomologie de Bott-Chern complexe peut être représentée par des
formes lisses globales. Le produit extérieur des formes lisses passe en hypercohomologie, lorsqu'on e�ectue
une multiplication de classes de cohomologie de Bott-Chern complexes.

Théorème 0.2.14. Soit p : X Ñ S un morphisme projectif de variétés complexes compactes et F un
faisceau cohérent sur X. Alors, nous avons la formule de Riemann-Roch-Grothendieck dans la cohomologie
de Bott-Chern rationnelle et la cohomologie de Bott-Chern complexe

chpR‚p˚FqTdpTSq “ p˚pChpFqTdpTXqq

où R‚p˚F “
ř

iR
ip˚F .

Théorème 0.2.15. Si X est compacte et si K0X est l'anneau de Grothendieck des faisceaux cohérents
sur X, on peut dé�nir un morphisme �caractère de Chern� Ch : K0X Ñ ‘kH

k,k
BCpX,Qq tel que

(1) le morphisme caractère de Chern est fonctoriel pour l'image réciproque par un morphisme holomorphe.
(2) le morphisme caractère de Chern est une extension du morphisme habituel dé�ni pour les �brés vectoriels.
(3) Le théorème de Riemann-Roch-Grothendieck est valable pour les morphismes projectifs entre variétés
compactes complexes lisses.

Grâce à la dualité entre la cohomologie de Bott-Chern complexe et la cohomologie d'Aeppli, nous mon-
trons également que la cohomologie de plus haut degré d'une variété complexe connexe compacte peut être
calculée en cohomologie de Bott-Chern entière, contrairement à ce qui se passe pour la cohomologie de
Deligne.

Proposition 0.2.5. Pour une variété complexe connexe compacte X, on a une suite exacte courte

0 Ñ H2n´1pX,Cq{H2n´1pX,Zq Ñ Hn,n
BC pX,Zq Ñ ZÑ 0.





CHAPTER 1

Introduction and elementary de�nitions

1.1. Introduction

The modern language of complex geometry relies for a large part on cohomology theory, e.g. in the
context of coherent sheaves. One of the earliest general results is the Kodaira embedding theorem. The
original proof by Kodaira is based on the so-called Kodaira vanishing theorem: under a strict positivity
assumption for the Chern curvature of a given smooth hermitian line bundle, one shows the existence of
su�ciently many sections to embed the manifold into a projective space. One way to generalize the work of
Kodaira is to study vanishing theorems in the context of singular positive metrics, such as the Demailly-Nadel
vanishing theorem (cf. [Nad89], [Dem93]).

Theorem 1.1. Let pX,ωXq be a Kähler weakly pseudo-convex manifold with a Kähler metric ωX and
let L be a line bundle on X with a singular metric h. Assume that iΘhpLq ě εωX in the sense of currents
for some ε ą 0. Then

HqpX,OpKX ` Lq b Iphqq “ 0

for all q ě 1, where Iphq “ Ipϕq is the multiplier ideal sheaf associated to ϕ for the local weight ϕ with
h “ e´ϕ.

The Demailly-Nadel vanishing theorem re�ects that in the singular metric setting, the positivity of a line
bundle may have strong obstruction on the cohomology group. The major part of this thesis is concerned
by the implications of the hypothesis of the existence of positively curved singular metrics on the geometric
structure of a manifold, or on cohomology groups with values in a vector bundle. In the last part of the
thesis, we discuss the construction of Chern classes and give the Riemann-Roch-Grothendieck formula in the
rational Bott-Chern cohomology (de�ned by Michael Schweitzer).

1.1.1. Hard Lefschetz theorem for pseudoe�ective line bundles.
A fundamental tool in complex geometry is the Riemann-Roch-Hirzebruch formula. It predicts the

growth of the Euler number of the tensor product of a line bundle in terms of the intersection numbers of the
Chern classes of the line bundle and the tangent bundle TX . If a given line bundle is assumed to possess a
metric of strictly positive curvature (for example, if the line bundle is nef and big), the Kawamata-Viehweg
vanishing theorem states that the higher degree cohomology groups with values in high tensor powers of
the line bundle twisted by the canonical bundle KX (maybe after taking the tensor product with an ad hoc
multiplier ideal sheaf) are trivial. In particular, asymptotically (which means we consider su�cient high
tensor powers of the line bundle), the global sections have a maximal asymptotic growth (with exponent
equal to the complex dimension). In the algebraic case, we can take a generic hyperplane intersection to
perform the induction on dimension.

In general, in the semi-positive case, especially when pL, hq is a pseudoe�ective (psef) line bundle with
multiplier ideal sheaf Iphq, the higher degree cohomology groups of a compact Kähler manifold pX,ωq with
values in KX bLbIphq are not necessarily trivial. This situation is studied in [DPS01], where the authors
construct a non-trivial preimage in H0pX,Ωn´qX b L b Iphqq of the Lefschetz morphism, i.e. the morphism
induced by ωq ^ ‚, for any non-trivial class in HqpX,KX b Lb Iphqq. When the line bundle L is chosen to
be the trivial line bundle equipped with the trivial metric, this result recovers the classical hard Lefschetz
theorem. In this case, it is well-known that the Lefschetz morphism is in fact an isomorphism.

Theorem 1.2. (see [DPS01]). Let pL, hq be a pseudo-e�ective line bundle on a compact Kähler manifold
pX,ωq of dimension n,

?
´1ΘL,h ě 0 its curvature current and Iphq the associated multiplier ideal sheaf.

Then, the wedge multiplication operator ωq ^ ‚ induces a surjective morphism

Φqω,h : H0pX,Ωn´qX b Lb Iphqq ÝÑ HqpX,ΩnX b Lb Iphqq.

The special case when L is nef is due to Takegoshi [Tak97]. An even more special case is when L is
semi-positive, i.e. L possesses a smooth metric with semi-positive curvature. In that case, the multiplier ideal
sheaf Iphq coincides with OX and we get the following consequence already observed by Enoki [Eno93] and
Mourougane [Mou95].

17
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The strategy of the proof is the following. We approximate the singular metric by a sequence of metrics
which are smooth outside a proper analytic set and preserve the multiplier ideal sheaf. During this process,
one inevitably loses some positivity of the curvature. As observed in [Dem82], one can modify the Kähler
metric in such a way that the complement of any proper analytic set becomes complete with respect to the
modi�ed Kähler metric. For a �xed degree q cohomology class, one can apply a Bochner type inequality
(which still works for a complete Kähler manifold) to the harmonic representatives of the approximated
metrics and to the approximated Kähler metrics. In this manner, one �nds a sequence of preimages via the
pointwise Lefschetz isomorphism. By the L2´estimates, the preimages have a holomorphic weak limit up to
taking some subsequence. The weak limit is the desired section in H0pX,Ωn´qX b Lb Iphqq.

In the smooth semi-positive case, the arguments are much easier since there is no need to take an
approximating sequence for a given singular metric.

In the classical case L “ OX , one can observe that any section u P H0pX,Ωn´qX q satis�es the additional
condition du “ dh0

u “ 0. This is easily seen by the Stokes formula, which implies
ż

X

idu^ du^ ωq´1 “

ż

X

tdu, duuh0 ^ ω
q´1 “ 0,

where h0 is the trivial smooth metric on OX .
The proof of the hard Lefschetz theorem in [DPS01] is obtained by constructing preimages as limits of

forms given by the pointwise Lefschetz isomorphism. One then deals with a sequence of harmonic represen-
tatives of a given class in HqpX,KX b L b Iphqq, with respect to the approximated hermitian metrics hε,
which are still singular but smooth on a Zariski open set. It is natural to ask whether the limit is harmonic
with respect to the original singular metric h.

In the singular setting, the operator Bh is still a densely de�ned operator, but it is a priori not evident to
�nd explicitly the domain of de�nition of the Hilbert adjoint of Bh. However, it is still meaningful to consider
whether the limit is parallel with respect to the original singular metric h; the above �classical� calculation
corresponds to the case of a trivial bundle with its trivial metric. Our �rst result in [Wu18] con�rms a
positive answer to this question in the general case, by providing further estimates in the approximation
process of [DPS01].

Theorem 1.3. All holomorphic sections produced by the bundle valued hard Lefschetz theorem are parallel
with respect to the Chern connection associated with any given singular hermitian metric h on L, possessing
a semi-positive curvature current.

The main point of the proof is to show that the covariant derivative operator is still well-de�ned in the
singular setting, and behaves well in the approximation process.

More precisely, let ϕ be the local weight function of the singular metric. Then the derivative Bϕ is a
Lqloc function for all q ă 2, but not necessarily q “ 2. This is the case for example for ϕ “ log|z| on C. The
covariant derivative of a section u with respect to the singular metric h locally can be written under the
form

Bhu “ Bu` Bϕ^ u.

If u is a holomorphic (and in particular locally bounded) section, the second term is the product of a Lqloc

function with a section in L8loc, hence is a Lqloc for all q ă 2. In the approximation process, we deal with
sections with values in L2

locpe
´ϕq. To show that the second term is at least well de�ned in L1

loc with respect
to the Lebesgue measure, it is enough to observe that Bϕ P L2

locpe
ϕq. But this is always the case for a psh

function. To give an idea of what is going on in a typical case, let us just look at ϕ “ log|z| on C. Then the
section u has to vanish at 0 and it is enough to observe that

Bϕeϕ “
dz

z
ˆ |z|2 “ z̄dz.

In the pseudoe�ective case, the Lefschetz morphism is in general no longer injective as in the classical
hard Lefschetz theorem. An obvious counterexample can be obtained by taking L “ mA where A is an ample
divisor, so that h0pX,Ωn´qX b Lq „ Cmn for m large enough, but hqpX,ΩnX b Lq “ 0 if q ą 0. However,
one can show that there is a linear isomorphism between the space of parallel sections with respect to the
singular metric and the corresponding higher degree cohomology groups.

Theorem 1.4. Let pL, hq be a psef line bundle over a compact Kähler manifold pX,ωq. Then the
Lefschetz morphism obtained by taking the wedge product with a power of the Kähler form induces a linear
isomorphism

Φqω,h : H0pX,Ωn´qX b Lb Iphqq XKerpBhq ÝÑ HqpX,ΩnX b Lb Iphqq.
In particular, when the metric is semi-positive, there is a linear isomorphism

Φqω,h : H0pX,Ωn´qX b Lq XKerp∆Bhq ÝÑ HqpX,ΩnX b Lq.
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Observe that the surjectivity property is a consequence of the previous theorem.
As an application, we show that each preimage actually de�nes a foliation on the given Kähler manifold.

Theorem 1.5. Assume that v P H0pX,Ωn´qX b Lb Iphqq, q ě 1 is a parallel section with respect to the
singular metric h psuch as any section constructed by the hard Lefschetz theoremq. The interior product with
v gives an OX-morphism (which is well de�ned on the whole of X)

Fv : TX Ñ Ωn´q´1
X b L

U ÞÑ ιUv.

The kernel of Fv de�nes an integrable saturated coherent subsheaf of OpTXq, and thus a ppossibly singularq
holomorphic foliation.

Here the concept of ppossibly singularq holomorphic foliation is de�ned as follows: assuming X to be
connected, one means that there exists an irreducible analytic set V of the total space TX such that for any
x P X, Vx :“ V X TX,x is a complex vector space and the sheaf of sections OpV q Ă OpTXq is closed under
the Lie bracket. It is equivalent to take a coherent analytic subsheaf OpV q Ă OpTXq that is closed under
Lie bracket and saturated, i.e. such that OpTXq{OpV q is torsion free.

Let us observe that in general a section in H0pX,Ωn´qX bLbIphqq does not necessarily induce a singular
foliation on X. In fact, our de�nition for the kernel of Fv de�nes a foliation if and only if

dhv ^ v “ 0

which is the case when the section is parallel with respect to the singular metric. Thus, to any element in
HqpX,ΩnX b L b Iphqq is associated in a canonical way of a holomorphic foliation de�ned by the section
produced via the hard Lefschetz theorem. A natural question is whether this foliation is always �algebraic�
in the sense that the leaf space has the structure of a complex space quotient.

This is however not the case: there are concrete examples initially given by Beauville [Bea00] exhibiting
this phenomenon; they were indicated to us by Andreas Höring. A complete calculation can be found in
Section 4 of our work [Wu18].

Another possibility to extend or improve the hard Lefschetz theorem would be to see whether one
can replace the multiplier ideal sheaf by some bigger, �less singular�, ideal sheaf. Demailly, Peternell and
Schneider have already shown in [DPS01] that one cannot entirely omit the ideal sheaf, even when L is
taken to be nef, and they gave a counterexample when L “ ´mKX is a multiple of the anticanonical bundle.
However, it might still be possible in some cases to �improve� the ideal sheaf, for instance to replace it
with the limit limδÑ0` Ipp1 ´ δqϕq, which is an in�nite intersection containing Ipϕq. When ϕ has analytic
singularities, it may happen that one gets a strictly larger sheaf, and in general the limit need not even be
a coherent sheaf:

Proposition 1.1.1. There exists an example of a psh function ϕ such that

lim
δÑ0`

Ipp1´ δqϕq :“
č

δą0

Ipp1´ δqϕq

is not coherent.

1.1.2. L2 vanishing theorems.
The singularities of a metric are re�ected in particular in their associated multiplier ideal sheaves. A

frequent geometric situation is that the curvature of a singular metric can �degenerate� in some directions.
This leads to the concept of numerical dimension, that, loosely speaking, counts the number of �positive
directions of curvature� at a generic point. One important open problem in complex geometry is the Abun-
dance conjecture. The latter can be seen as a very broad generalisation of the results known so far on the
Kodaira dimension κpXq “ κpKXq, which counts the growth of pluricanonical sections, i.e. sections of mKX

where KX is the canonical line bundle. By de�nition, for any line bundle L, the Kodaira-Iitaka dimension is

κpLq “ lim sup
mÑ`8

logh0pX,mLq

logm
.

It is a consequence of Siegel's well known theorem that κpLq P t´8, 0, 1, . . . , nu where n “ dimX, and that it
is either ´8 or the maximum of the dimensions of the pluricanonical images ΦmLpXq Ă P pH0pX,mKXq

˚q.
The Abundance conjecture predicts that the canonical bundle KX always achieves its maximum possible
asymptotic growth as mÑ `8, and that κpKXq coincides with the numerical dimension (rede�ned further
below).
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Conjecture 1.1.1. (Generalized abundance conjecture in the Kähler case, see [BDPP13])
For an arbitrary compact Kähler manifold X, the Kodaira dimension should be equal to the numerical

dimension :
κpKXq “ ndpc1pKXqq.

A Kähler version of the de�nition of numerical dimension can be found in [Dem14] or [Bou02a].

Definition 1.6. (numerical dimension)
For L a psef line bundle on a compact Kähler manifold pX,ωq, one de�nes

ndpLq :“ maxtp P r0, ns; Dc ą 0,@ε ą 0, Dhε, iΘL,hε ě ´εω, such that

ż

XzZε

piΘL,hε ` εωq
p ^ ωn´p ě cu.

Here the metrics hε are supposed to have analytic singularities and Zε is the singular set of the metric.

When the line bundle L is nef, a simpler de�nition can be given:

ndpLq “ maxtp; c1pLq
p ‰ 0u.

An equivalent de�nition can be given in terms of the positive product de�ned in [BEGZ10]. The positive
product is the real pp, pq cohomology class xαpy of the limit

xαpy :“ lim
δÑ0

txT pmin,δωyu

where Tmin,δω is the positive current with minimal singularity in the class α ` δtωu and xT pmin,δωy is the
non-pluripolar product. With this notion, the numerical dimension of α is de�ned as

ndpαq :“ maxtp|xαpy ‰ 0u

which is also equal to maxtp|
ş

X
xαpy ^ ωn´p ą 0u.

A more intuitive de�nition of positive product is de�ned in [BDPP13] as follows. Assume that α is a
big class on a compact Kähler manifold pX,ωq. To determine the product, it is enough to know the value of
the product pairing with any pn´p, n´pq-form, in fact it is enough to know its value with a countable dense
family of forms in the space of smooth forms. Since for any pn´ p, n´ pq-form u, u “ Cωn´p´pCωn´p´uq
and both Cωn´p and Cωn´p ´ u are strongly positive forms on the compact manifold X if C ą 0 is big
enough, it is enough to consider only a countable dense family of strongly positive forms.

Fix a smooth closed pn´ p, n´ pq strongly-positive form u on X. We select Kähler currents T P α with
analytic singularities, and a log-resolution µ : X̃ Ñ X such that

µ˚T “ rEs ` β

where rEs is the current associated to an e�ective R-divisor and β is a semi-positive form. We consider
the direct image current µ˚pβ ^ . . . ^ βq. Given two closed positive p1, 1q currents T1, T2 P α, we write
Tj “ θ ` iBBϕj (j “ 1, 2) for some smooth form θ P α. De�ne T :“ θ ` iBBmaxpϕ1, ϕ2q. We get a
current with analytic singularities that is less singular than these two currents. In this way, if we change
the representative T with another current T 1, we may always take a simultaneous log-resolution such that
µ˚T 1 “ rE1s ` β1, and we can always assume that E1 ď E. By a calculation, we �nd

ż

X̃

β1 ^ . . .^ β1 ^ µ˚u ě

ż

X̃

β ^ . . .^ β ^ µ˚u.

It can be shown that the closed positive current µ˚pβ ^ . . .^ βq is uniformly bounded in mass. For each of
the integrals associated with a countable dense family of forms u, the supremum of

ş

X̃
β ^ . . .^ β ^ µ˚u is

achieved by a sequence of currents pµmq˚pβm ^ . . . ^ βmq obtained as direct images by a suitable sequence
of modi�cations µm : X̃m Ñ X and suitable βm's. By extracting a subsequence, we can achieve that this
sequence is weakly convergent and we set

xxαpyy :“ lim Ò
mÑ`8

tpµmq˚pβm ^ . . .^ βmqu

If α is only psef, we de�ne
xxαpyy :“ lim Ó

δÓ0
xxpα` δtωuqpyy.

One can check:

Proposition 1.1.2. The two positive products de�ned in [BEGZ10] and [BDPP13] coincide for every
psef class.

Definition 1.7. For a psef line bundle L over a compact Kähler manifold, one de�nes

ndpLq “ ndpc1pLqq.
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In the special case of a projective manifold X, the above numerical dimension can be seen to coincide
with the following more algebraic de�nition:

ndpLq “ sup
A ample on X

lim sup
mÑ`8

logh0pX,mL`Aq

logm

(and one can also easily see that this de�nition only depends on the numerical class c1pLq).
In our papers [Wu19a] and [Wu19b], we prove some new L2 vanishing theorems in terms of the

numerical dimension of a psef line bundle.
The Bogomolov vanishing theorem [Bog] asserts that

H0pX,ΩpX b L
´1q “ 0

for p ă κpLq. It is interesting to ask whether we can replace the Kodaira dimension κpLq by the numerical
dimension ndpLq. In [Dem02], it is proven that for any pseudo-e�ective line bundle L on X a compact
Kähler manifold, and any nonzero holomorphic section θ P H0pX,Ωp b L´1q, where 0 ď p ď n “ dimX,
then θ induces a foliation in the same terms as for Theorem 1.5. The Bogomolov vanishing theorem forbids
the existence of such non zero section for p ě κpLq. (By our result, the same happens for p ě ndpLq.)
In [Mou98], the following version of the Bogomolov vanishing theorem is stated: if L is a nef line bundle
over a compact Kähler manifold X, then

H0pX,ΩpX b L
´1q “ 0

for p ă ndpLq. In our work [Wu19b], we get a generalization from the nef case to the psef case by re�ning
Mourougane's estimates from [Mou98]. A similar proof had been given in [Bou02a] by using a singular
Monge-Ampère equation. Here, we give another proof that only requires solving �classical� Monge-Ampère
equations.

Theorem 1.8. Let L be a psef line bundle over a compact Kähler manifold X. Then

H0pX,ΩpX b L
´1q “ 0

for p ă ndpLq.

Inspired by the work of Junyan Cao [Cao14], we get the following Kawamata-Viehweg type vanishing
theorem in [Wu19a]. The proof follows closely Cao's proof:

Theorem 1.9. Let L be a pseudoe�ective line bundle on a n-dimensional compact Kähler manifold X.
Then the morphism induced by the inclusion KX b Lb Iphminq Ñ KX b L

HqpX,KX b Lb Iphminqq Ñ HqpX,KX b Lq

vanishes for every q ě n´ ndpLq ` 1. The same holds for any positive singular metric h instead of hmin.

The theorem of Junyan Cao is as follows: Let pL, hq be a pseudoe�ective line bundle on a compact
Kähler n-dimensional manifold X. Then

HqpX,KX b Lb Iphqq “ 0

for every q ě n´ ndpL, hq ` 1.
Let us observe that the result of Junyan Cao is expressed in terms of the numerical dimension of a

singular metric ndpL, hq, which is de�ned as the numerical dimension of the current ΘL,h, instead of the
numerical dimension ndpLq of the line bundle L itself. In general, these notions are di�erent. A typical
example is the example 1.7 in [DPS94]. There exists a nef line bundle L over a ruled surface X Ñ C
over an elliptic curve C, possessing a unique positively curved singular metric. In fact, the current ΘL,h

associated with this unique singular metric h turns out to be the current of integration rC̃s over a section of
X Ñ C. Since this current is zero on a Zariski open set, the numerical dimension of the singular metric is
easily seen to be 0. However, the construction of [DPS94] shows that the numerical dimension of the line
bundle is 1.

Observe also that in general one cannot hope to obtain the vanishing of the cohomology groups with
values in Iphminq instead of simply obtaining a zero image into the cohomology with values in L. In fact by
the same example of the last paragraph, h2pX,KX b L b Iphminqq “ 1 while h2pX,KX b Lq “ 0. In fact,
the situation we consider is easier than the one studied by Junyan Cao since we do not keep the multiplier
ideal sheaf.

Our last vanishing result is a Kodaira-Nakano-Akizuki type vanishing theorem ( [Wu19c]), stated in
term of augmented base loci.
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Theorem 1.10. Let X be an n-dimensional projective manifold and L a nef holomorphic line bundle
over X. Then we have

HppX,ΩqX b Lq “ 0

for any p`q ą n`maxpdimpB`pLqq, 0q. Here B`pLq denotes the augmented base locus(or non-ample locus)
of L. When B`pLq “ H, we de�ne by convention that its dimension is ´1.

1.1.3. Nefness in higher codimension.
One of the reformulation of the Kodaira embedding theorem is that a compact complex manifold is

projective if and only if the Kähler cone, i.e. the convex cone spanned by Kähler forms in H2pX,Rq, contains
a rational point (i.e., an element in H2pX,Qq).

As a general matter of fact, it is obviously interesting to study positive cones attached to compact
complex manifolds and to relate them with the geometry of the manifold. In classical algebraic or complex
geometry, the emphasis is on two types of positive cones: the nef and psef cones, which are de�ned to be the
closed convex cones spanned by nef classes and psef classes, respectively. The nef cone is of course contained
in the psef cone.

The work of Boucksom [Bou02a] de�nes and studies the so-called modi�ed nef cone, for an arbitrary
compact complex manifold. Thanks to this de�nition, Boucksom was able to show the existence of a divisorial
Zariski decomposition for any psef class (i.e., any cohomology class containing a positive current). The
modi�ed cone just sits between the nef and psef cones.

Inspired by Boucksom's de�nition, we introduce in [Wu19d], for any compact complex manifold, the
concept of a nef cone in arbitrary codimension, which is an interpolation between the above positive cones.

Definition 1.11. (Minimal multiplicities) ( [Bou02a])
The minimal multiplicity at x P X of the pseudo-e�ective class α P H1,1

BCpX,Rq is de�ned as

νpα, xq :“ sup
εą0

νpTmin,ε, xq

where Tmin,ε is the minimal element T P α such that T ě ´εω and νpTmin,ε, xq is the Lelong number of
Tmin,ε at x. When Z is an irreducible analytic subset, we de�ne the generic minimal multiplicity of α along
Z as

νpα,Zq :“ inftνpα, xq, x P Zu.

Definition 1.12. Let α P H1,1
BCpX,Rq be a psef class. We say α is nef in codimension k, if for any

irreducible analytic subset Z Ă X of codimension at most equal to k, we have

νpα,Zq “ 0.

With this terminology, the nef cone is the nef cone in codimension n, where n is the complex dimension
of the manifold, while the psef cone is the nef cone in codimension 0, and the modi�ed nef cone is the nef
cone in codimension 1. In the same paper, we show that these cones are in general di�erent, and construct
explicit examples where these cones are di�erent.

As an application, we obtain the following generalisation from the nef case to the psef case of a similar
result stated in [DP03] (see [Wu19d]).

Theorem 1.13. Let pX,ωq be a compact Kähler manifold of dimension n and L a line bundle on X
that is nef in codimension 1. Assume that xL2y ‰ 0 where x‚y is the positive product de�ned in [Bou02a].
Assume that there exists an e�ective integral divisor D such that c1pLq “ c1pDq. Then

HqpX,KX ` Lq “ 0

for q ě n´ 1.

The proof of the above theorem is an induction on dimension, using theorem 1.8 of the previous chapter.
A di�erence compared with the nef case treated in [DP03] is that we need passing from an intersection
number to a positive product (or movable intersection number), which is a non linear operation. Nevertheless,
under a condition of nefness in higher codimension, we get the following estimate.

Lemma 1.14. Let α be a nef class in codimension p on a compact Kähler manifold pX,ωq, then for any
k ď p and Θ any positive closed pn´ k, n´ kq´form we have

pαk,Θq ě xαk,Θy.

With this inequality, the intersection number calculation in [DP03] is still valid and thus the cohomology
calculations can be recycled.

Observe that a current with minimal singularities need not have analytic singularities for every big class
α that is nef in codimension 1 but not nef in codimension 2; such an example was given by [Nak04], and
also observed by Matsumura [Mat13].
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As a consequence of Matsumura's observation, the assumption of our Kawamata-Viehweg vanishing
theorem that the line bundle is numerically equivalent to a e�ective integral divisor is actually required. In
the nef case considered in [DP03], the authors deduce from their assumption that the line bundle L is nef
with pL2q ‰ 0 that L is numerically equivalent to an e�ective integral divisor D, and that there exists a
positive singular metric h on L such that Iphq “ Op´Dq.

However, for a big line bundle L that is nef in codimension 1 but not nef in codimension 2 over an
arbitrary compact Kähler manifold pX,ωq, we have xL2y ‰ 0 and i

2πΘpL, hminq need not be a current
associated with an e�ective integral divisor.

Another by-product is a (probably already known) example of a projective manifold X with ´KX psef,
for which the Albanese morphism is not surjective. It was proven in [Cao13], [Pau17] (and [Zha06] for
the projective case) that the Albanese morphism of a compact Kähler manifold with ´KX nef is always
surjective. Thus replacing nefness by pseudoe�ectivity in the study of the Albanese morphism seems to
be a non-trivial problem. In the same paper, we show that the Albanese morphism of a compact Kähler
manifold which has its anticanonical line bundle ´KX psef and satisfying some integrability condition is still
surjective.

Theorem 1.15. Let pX,ωq be an n-dimensional compact Kähler manifold such that ´KX is psef. As-
sume that there exists a sequence εν ą 0 such that limνÑ8 εν “ 0 and Iphεν q “ OX for a sequence of
singular metrics with analytic singularities hεν on ´KX such that iΘp´KX , hεν q ě ´ενω. Then the Al-
banese morphism αX is surjective with connected �bres. In fact, the Albanese map is a submersion outside
an analytic set of codimension bigger than 2.

Notice that when ´KX is nef, the extra multiplier ideal sheaf assumption made in the above theorem
is satis�ed. The condition is also satis�ed when there exists a singular positive metric h on ´KX such
that Iphq “ OX , in which case the surjectivity of the Albanese map is shown in [BDPP13] and [Pau17]
(Remark 2.3, in the projective case).

The strategy of the proof follows closely the arguments of Junyan Cao in [Cao13]. We consider the
Harder-Narasimhan �ltration of TX

0 Ă E0 Ă E1 Ă ¨ ¨ ¨ Ă Es “ TX .

The essential point is to prove that the slopes of Ei`1{Ei is positive. Assume for simpli�cation, that all
the Ei`1{Ei are vector bundles. By [UY86], the solution of Hermitian-Einstein equations for stable vector
bundles always exists. By considering the sign of the slopes, the trace of the curvature is positive on each
quotient Ei`1{Ei. By this property, we can construct a metric on TX whose Ricci curvature has an arbitrarily
small negative part. Then the Bochner formula shows any non zero section of H0pX,Ω1

Xq does not vanish
anywhere, and this implies the surjectivity of the Albanese morphism.

The idea to prove the positivity of the slopes is the following. By the stability condition, it is enough
to prove that the slopes of TX{Ei is positive. Grosso modo, we want to construct from a Kähler-Einstein
equation a Kähler metric on TX with arbitrary small Ricci curvature lower bound. Such a metric will
induce a quotient metric on TX{Ei. The problem is that although we can solve a singular Kähler-Einstein
equation by the work of [BEGZ10], the quotient metric need not have a precise meaning. However, by the
work of [CGP13] and [GP16], we know the regularity and the behaviour of solutions for a Monge-Ampère
equation with conic singularity along a divisor. In that case, the solution is known in particular to be smooth
on a Zariski open set.

By taking the solution of a singular Monge-Ampère equation over some bimeromorphic model, we can
obtain a solution that is smooth outside the singular set and that induces a smooth metric on TX{Ei outside
on that same singular set. We show by the regularity result for the Kähler-Einstein equation on a birational
model of the manifold (on which all the divisors are simple normal crossing) that the mass of the curvature of
the induced metric on the pull back of detpTX{Eiq with respect to the solution of the Kähler-Einstein equation
is bounded near the singular set. By the Skoka-El Mir theorem, the quasi-positive curvature current extends
across the singular set on the chosen bimeromorphic model. In this manner, we can obtain the required
slope estimate for the extended current.

1.1.4. Pseudo-e�ective re�exive sheaves.
A central question of geometry is to obtain a classi�cation of complex manifolds satisfying various

natural positivity or negativity conditions. In order to elucidate the structure of a projective variety with
nef anticanonical line bundle, a key ingredient is the proof by Junyan Cao [Cao19] of the isotriviality of the
Albanese morphism, which is based in turn on the numerical �atness of some related vector bundles.

In fact, the numerical �atness property of a vector bundle is a completely algebraic concept that brings
in analytic terms a strong obstruction for the curvature of any psef metric. In [DPS94], Demailly, Peternell
and Schneider proved that a numerically �at bundle E on the compact Kähler manifold X admits a �ltration
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by vector bundles whose graded pieces are hermitian �at. In some sense, numerical �atness is the algebraic
counterpart of the concept of metric �atness.

In the work of [CCM19] and [HIM19], the authors consider the following question. If one has a
pseudo-e�ective vector bundle over a projective manifold with vanishing �rst Chern class, is this vector
bundle necessarily numerically �at? An easy reformulation of the de�nition is that a vector bundle E is
numerically �at if and only if both E and detpEq´1 are nef. As a consequence, the above question amounts
to ask whether the given pseudo-e�ective vector bundle with vanishing �rst Chern class is in fact nef.

Intuitively, a positive singular metric on the vector bundle E would induce a positive singular metric
on the determinant detpEq. But since the �rst Chern class of E (i.e. the Chern class of detpEq) is trivial,
one checks that it cannot support any singularity anywhere. Therefore the given positively curved singular
metric has to be smooth.

From this point of view, the same should hold on an arbitrary compact Kähler manifold, and not only
on a projective manifold, since all hypotheses and conclusions are independent of the projectivity condition
and still make sense in the Kähler situation. In Chapter 5 ( [Wu20]), we show that this is the case. Namely
we prove that

Theorem 1.16. Let E be a strongly psef vector bundle over a compact Kähler manifold pX,ωq with
c1pEq “ 0. Then E is a nef vector bundle.

In reality, one can expect something even stronger. Since E is strongly psef, the class c1pOPpEqp1qq is
psef. Intuitively, c1pOPpEqp1qq contains a current that is not too singular (this means that the projection
of the singular part onto X is contained in some analytic set of codimension at least 1). Thus the wedge
power of the �rst Chern class to a not so high exponent is well de�ned and positive, and so is its direct
image under π : PpEq Ñ X. In particular, if r is the rank of E, one can hope that the second Segre class
π˚pc1pOPpEqp1qqq

r`1 is positive (in the sense that its cohomology class contains a positive current).
Remind that the second Segre class it is also the class c1pEq2 ´ c2pEq. By the Bogomolov inequality on

any Kähler n-fold, when c1pEq “ 0, the integration of c2pEq ^ ωn´2 on X is positive for every Kähler form
ω on X. By comparing these two facts, one concludes that c2pEq “ 0 and that the Bogomolov inequality is
in fact an equality.

We observe that for a re�exive sheaf F , its Chern class can be de�ned as follows. Let σ be any
modi�cation such that σ˚F{Tors is a vector bundle. Then for any i “ 1, 2, cipFq “ σ˚cipσ

˚F{Torsq which
is independent of the choice of modi�cation σ. Morally, we hope that the same calculations hold on some
birational model. By taking direct images, the equality in the Bogomolov inequality is attained.

On the other hand, we have the following important result of Bando-Siu [BS94]. For a poly-stable
re�exive sheaf F of generic rank r over a compact n-dimensional Kähler manifold pX,ωq, we have the
following Bogomolov inequality:

ż

X

p2rc2pFq ´ pr ´ 1qc1pFq2q ^ ωn´2 ě 0.

Moreover, the equality holds if and only if F is local free and its Hermitian-Einstein metric gives a projective
�at connection.

We will de�ne a nef (or strongly psef) torsion free coherent sheaf as follows.

Definition 1.17. A torsion free coherent sheaf F over a compact complex manifold (resp. compact
Kähler manifold) is called nef (resp. strongly psef) if there exists some modi�cation σ : X̃ Ñ X such that
σ˚F modulo torsion is a nef (resp. strongly psef) vector bundle.

In conclusion, we hope the stronger fact that a strongly psef re�exive sheaf over a compact Kähler
manifold pX,ωq with trivial �rst Chern class is in fact a nef vector bundle.

In Chapter 5, we prove that this is again actually the case. A di�culty of the above approach is that in
general a wedge product of positive currents is not necessarily well de�ned. Instead of proving our contention
directly, we �rst prove the following result.

Theorem 1.18. Let F be a nef re�exive sheaf over a compact Kähler manifold pX,ωq with c1pFq “ 0.
Then F is a nef vector bundle.

Now combining the above two theorems, we conclude

Theorem 1.19. Let F be a strongly psef re�exive sheaf over a compact Kähler manifold pX,ωq with
c1pFq “ 0. Then F is a nef vector bundle.

Observe that in the above approach, the wedge products involved are well de�ned without having to
make a restriction on the codimension of the singular set of the metric. In other words, we can then �nd a
positive current in c1pEq for any psef vector bundle E, but this will not be necessarily the case for c2pEq.
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In the chapter, we give a de�nition of strongly psef vector bundles in the Kähler situation that is
essentially equivalent to the one proposed in [BDPP13].

Definition 1.20. Let pX,ωq be a compact Kähler manifold and E a holomorphic vector bundle on
X. Then E is said to be strongly pseudo-e�ective (by short, strongly psef) if the line bundle OPpEqp1q is
pseudo-e�ective on the projectivized bundle PpEq of hyperplanes of E, and if the projection πpSingphεqqq
of the singular part of some singular metric with analytic singularities on pOPpEqp1q, hεq with curvature
iΘphεq ě ´επ

˚ω does not cover all of X for any ε ą 0 where π : PpEq Ñ X.
Equivalently, E is strongly psef if and only if the line bundle OPpEqp1q is pseudo-e�ective on the projec-

tivized bundle PpEq, and if the projection πpLnnef pOPpEqp1qqq of the non-nef locus of OPpEqp1q onto X does
not cover all of X.

Remind that a Hermitian metric on OPpEqp1q corresponds to a Finsler metric in the following sense
( [Kob75], [Dem99]).

Definition 1.21. A (positive de�nite) Finsler metric on a holomorphic vector bundle E is a positive
complex homogeneous function

ξ Ñ }ξ}x

de�ned on each �bre Ex, that is, such that }λξ}x “ |λ|}ξ}x for each λ P C and ξ P Ex, and }ξ}x ą 0 for
ξ ‰ 0.

It is shown in [Wu20] that a Finsler metric with positive curvature current on a strongly psef vector
bundle E can be approximated and induced in the limit by a sequence of Hermitian metrics on large
symmetric powers SmE˚.

Proposition 1.1.3. The following properties are equivalent:
(1) E is strongly psef
(2) There exists a sequence of quasi-psh functions wmpx, ξq “ logp|ξ|hmq with analytic singularity induced

from hermitian metrics hm on SmE˚ such that the singularity locus projects into a proper Zariski closed set
Zm in X, and

iBBwm ě ´mεmp
˚ω

in the sense of current with lim εm “ 0. Here p : SmE˚ Ñ X is the projection.
(3) There exists a sequence of quasi-psh functions wmpx, ξq “ logp|ξ|hmq with analytic singularities

induced from hermitian metrics hm on SmE˚ such that the singularity locus projects into a proper Zariski
closed set Zm of X, and

iΘSmE˚,hm ď mεmω b Id

on XzZm in the sense of Gri�ths with lim εm “ 0.

By the equivalence of the above conditions, one can show that the psef property is preserved by a number
of usual algebraic operations. For example, a direct sum or tensor product of strongly psef vector bundles is
still strongly psef.

As consequence, we can de�ne Segre forms (or Segre currents) i.e. a pk, kq´ closed positive current de�ned
as the direct image of the wedge product of a curvature current of OPpEqp1q, under a suitable codimension
condition on the singular locus.

Theorem 1.22. Let E be a strongly psef vector bundle of rank r over a compact Kähler manifold pX,ωq.
Let pOPpEqp1q, hεq be singular metric with analytic singularities such that

iΘpOPpEqp1q, hεq ě ´επ
˚ω

and the codimension of πpSingphεqq is at least k in X. Then there exists a pk, kq´positive current in the
class π˚pc1pOPpEqp1qq ` επ

˚tωuqr`k´1.
In particular, detpEq is a psef line bundle.

A similar construction has been done in [LRRS18].
At the end of the chapter, as a geometric application, we classify compact Kähler surfaces and 3-folds

with strongly psef tangent bundles and with vanishing �rst Chern class. By our Main theorem, they are the
same as compact Kähler surfaces or 3-folds with nef tangent bundles and with zero �rst Chern class, that
were classi�ed in [DPS94]. As a consequence, the tangent bundle of a Kähler K3 surface is not strongly
psef. This generalises the work of [DPS94] and [Nak04] from the projective setting. More generally, an
irreducible symplectic or Calabi-Yau manifold does not have strongly psef tangenet bundle or cotangent
bundle. In the singular and projective setting, a stronger result has been proven in Theorem 1.6 of [HP19],
and in the case of threefolds, in Corollary 6.5 of [Dru18]. (They prove that in this case OPpEqp1q is not a
psef line bundle where E is the tangent bundle or the cotangent bundle.)
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In the compact Kähler setting, we also generalise our main results to the Q-twisted case considered
in [LOY20].

1.1.5. Intersection theory and Chern classes in Bott-Chern cohomology.
Important cohomology invariants of complex manifolds are provided by their Chern classes. In complex

geometry, Chern classes can be de�ned in various cohomology theories: singular cohomology, De Rham
cohomology, Dolbeault cohomology, Deligne cohomology, complex Bott-Chern cohomology, etc. By the
work of [Sch07], there exists a more precise cohomology theory than all the above cohomology theories,
namely integral Bott-Chern cohomology, in the sense that there exists a natural morphism from integral
Bott-Chern cohomology into all other cohomology theories.

It is proven that the Riemann-Roch-Grothendieck formula is veri�ed for all the above cohomology
theories. A natural question is thus the Riemann-Roch-Grothendieck formula is veri�ed for rational Bott-
Chern cohomology. To give a precise meaning to the formula, we have to de�ne the Chern classes of the
direct image of a vector bundle (even all higher degree direct images). When the map between two manifolds
is proper, by Grauert direct image theorem, the direct image along with higher degree direct images of a
vector bundle is coherent. As a consequence, it would be interesting to be able to build a theory of Chern
classes in the integral Bott-Chern cohomology for arbitrary coherent sheaves.

When the manifold is projective, this follows from an unpublished work of Junyan Cao in which he de�nes
the Chern classes of vector bundles in the integral Bott-Chern cohomology. Since any coherent bundle can be
resolved by a �nite sequence of vector bundles on a projective manifold, we can as well de�ne Chern classes
for coherent sheaves via such resolutions. However, according to a striking result of Voisin [Voi02a], for
an arbitrary compact complex manifold (even assumed to be Kähler), the resolution of a coherent sheaf by
vector bundles does not necessarily exist. It follows that the de�nition of Chern classes of coherent sheaves
on compact complex manifolds is much more involved.

To treat the similar situation for the rational Deligne cohomology, in the work [Gri10], Julien Grivaux
proposes more generally an approach to de�ne the Chern characteristic classes in a rational axiomatic coho-
mology theory. This has been done by specifying that the cohomology theory must satisfy some intersection
theory axioms.

The general line of the construction is as follows. One �forces� the Grothendieck�Riemann�Roch theorem
to be valid for a closed immersion of smooth hypersurfaces. Then by �devissage�, one can derive from the
intersection theory axioms that the Grothendieck�Riemann�Roch theorem is valid for any closed immersion.
Since every projective morphism is by de�nition factorising into the composition of a projection and a closed
immersion, the Grothendieck�Riemann�Roch theorem is valid for any projective morphism, as observed by
Grothendieck. (Of course, we also use the axioms of the intersection theory to treat the projection case.)

In particular, following the approach of Grivaux, we are able in [Wu19e] to de�ne Chern classes as
rational Bott-Chern cohomology classes. In principle, the pull back of a cohomology class is induced by the
pull-back of a smooth form, while the push-forward of cohomology class is better seen by pushing forward
currents. The main di�culty is then to control the behaviour of cohomology classes under the composition of
pull-back and push-forward. More precisely, the integral Bott-Chern complex is quasi-isomorphic to di�erent
types of complexes. To de�ne pull-back or push-forward for the hypercohomology (the integral Bott-Chern
cohomology), we have to use di�erent quasi-isomorphic complexes. When we deal with the e�ect of taking
pull-backs and push-forwards in cohomology, we pass to the derived category to show that the morphisms
are still well-de�ned and that they commute in the derived category of complexes of abelian groups, after
passing to hypercohomology.

In certain situations, the pull-back of currents can still exist, although it is not always well-de�ned in
general. For example, let Y, Z be two smooth cycles intersecting transversally along W . The pull-back of
the current rZs under the closed immersion iY is well de�ned as rW s. We have to show that via some
quasi-isomorphisms, these special types of morphisms between special representatives lead to well de�ned
cohomology morphisms.

The main di�culty compared to the integral Deligne case is that the multiplication structure of the
integral Bott-Chern cohomology is much more complicated. We choose this multiplication de�nition such
that the natural morphism from the integral Bott-Chern cohomology to the complex Bott-Chern cohomology
is a ring morphism not only a group morphism. Remark that the complex Bott-Chern cohomology can be
represented by global smooth forms. The wedge product of smooth forms pass to hypercohomology the
multiplication of the complex Bott-Chern cohomology.

Theorem 1.23. Let p : X Ñ S be a projective morphism of compact complex manifolds and F a
coherent sheaf over X. Then we have the Riemann-Roch-Grothendieck formula in the rational and complex
Bott-Chern cohomology

chpR‚p˚Fq tdpTSq “ p˚pchpFq tdpTXqq



1.2. ELEMENTARY DEFINITIONS AND RESULTS 27

where R‚p˚F “
ř

iR
ip˚F .

Theorem 1.24. If X is compact and K0X is the Grothendieck ring of coherent sheaves on X, one can
de�ne a Chern character morphism ch : K0X Ñ

À

kH
k,k
BCpX,Qq such that

(1) the Chern character morphism is functorial by pull back of holomorphic maps;
(2) the Chern character morphism is an extension of the usual Chern character morphism for vector bundles;
(3) the Riemann�Roch-Grothendieck theorem holds for projective morphisms between smooth complex com-
pact manifolds.

Thanks to the duality between complex Bott-Chern cohomology and Aeppli cohomology, we also show
that the top degree cohomology of a compact connected complex manifold can be calculated in integral
Bott-Chern cohomology, unlike what happens for Deligne cohomology.

Proposition 1.25. For a compact connected complex manifold X, we have a short exact sequence

0 Ñ H2n´1pX,Cq{H2n´1pX,Zq Ñ Hn,n
BC pX,Zq Ñ ZÑ 0.

1.2. Elementary de�nitions and results

In this section, we recall some elementary de�nitions and �x the notations which will appear in all the
thesis. In all the thesis, without specifying we assume the manifold to be compact complex. For more
details, we refer to the books Analytic Methods in Algebraic Geometry [Dem12a] and Complex analytic
and di�erential geometry [Dem12b].

We start by recalling the de�nition of positive currents and of plurisubharmonic / quasi-plurisubharmonic
functions (psh / quasi-psh for brevity).

Definition 1.26. (Positive currents)
According to [Lel57], a current Θ of bidimension pp, pq is said to be (weakly) positive if for every choice

of smooth p1, 0q´ forms α1, ¨ ¨ ¨ , αp on X, the distribution

Θ^ iα1 ^ α1 ^ ¨ ¨ ¨ ^ iαp ^ αp

is a positive measure.
For any p1, 1q´current T and any smooth p1, 1q´form α, we say T ě α in the sense of currents if T ´α

is a positive current.

Definition 1.27. (Psh / quasi-psh functions)
Let X be a complex manifold (not necessary compact). We say that ϕ is a psh function (resp. a quasi-psh

function) on X, if iBBϕ ě 0,(resp. iBBϕ ě α) in the sense of currents where α is some smooth form on X.
We say that a quasi-psh function ϕ has analytic singularities, if locally ϕ is of the form

ϕpzq “ clogp
ÿ

i

|gi|
2q `Op1q

with c ą 0 and pgiq some local holomorphic functions. Here Op1q means a locally bounded term.

An important example of closed positive current is the current associated to an e�ective cycle due to
Lelong [Lel57]. Every closed analytic set A Ă X of pure dimension p is associated a current of integration
rAs de�ned as follows:

xrAs, αy “

ż

Areg

α, α P Dp,ppXq,

obtained by integrating over the regular points of A.
To show that the current rAs is closed and to extend a current across an analytic set, we have the

following fundamental theorem.

Theorem 1.28. (Skoda [Sko82], El Mir [EM84], Sibony [Sib85])
Let E be a closed complete pluripolar set in X (i.e. there is an open covering pΩjq of X and psh functions

uj on Ωj with E XΩj “ u´1
j p´8q), and let Θ be a closed positive current on XzE such that the coe�cients

ΘI,J of Θ are measures with locally �nite mass near E. Then the trivial extension Θ̃ obtained by extending
the measures ΘI,J by 0 on E is still a closed positive current on X.

Let us observe that Lelong's result asserting that drAs “ 0 for any (closed) analytic set A can be obtained
by applying the Skoda-El Mir theorem to Θ “ rAregs on XzAsing.

Another important property of closed positive currents is the following support theorem (see e.g. Demailly
[Dem12b] Chap. III (2.10)). Recall that a support of a current is the complement of the maximal open set
on which the restriction of the current is 0.
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Theorem 1.29. Let Θ be a current of degree q on a real manifold M , such that both Θ and dΘ have
measure coe�cients pi.e. are normal currentsq. Suppose that the support Θ is contained in a real submanifold
A with codimRA ą q. Then Θ “ 0.

Let A be a complex analytic subset of X a complex manifold with global irreducible components Aj of
pure dimension p. Then any closed current Θ P D1p,ppXq of order 0 with support in A is of the form

Θ “
ÿ

λjrAjs

where λj P C. Moreover,if Θ is positive, then all coe�cients λj are ě 0.

An important application of the support theorem is the Lelong-Poincaré formula.
Let f P H0pX,OXq be a non zero holomorphic function, Zf “

ř

mjZj ,mj P N, the zero divisor of f
and rZf s “

ř

mjrZjs the current associated to the zero divisor. Then

i

π
BBlog|f | “ rZf s.

An important measure of singularity is the Lelong number introduced by Lelong [Lel57]. Let Θ be a
closed positive current of bidimension pp, pq on a coordinate open set Ω Ă Cn. The Lelong number of Θ at
a point x P Ω is de�ned to be the limit

νpΘ, xq “ lim
rÑ0`

νpΘ, x, rq

with νpΘ, x, rq “ 1
r2p

ş

Bpx,rq
Θpzq ^ p i2πBB|z|

2qp.

A few basic properties of Lelong number are summarised below.

Theorem 1.30. (1) ( [Lel57]) For every positive current Θ, the ratio νpΘ, x, rq is a non-negative
increasing function of r, in particular the limit νpΘ, xq as r Ñ 0` always exists.

(2) ( [Lel57]) If Θ “ iBBϕ is the bidegree (1,1)-current associated with a psh function ϕ, then

νpΘ, xq “ νpϕ, xq “ suptγ ą 0;ϕpzq ď γlog|z ´ x| `Op1q at xu.

(3) ( [Siu74]) For every c ą 0, the set EcpΘq :“ tx P X; νpΘ, xq ą cu is a closed analytic subset of X
of dimension at most p.

A related notion is the concept of multiplier ideal sheaf.

Definition 1.31. (Multiplier ideal sheaf). Let ϕ be a quasi-psh function. The multiplier ideal sheaves
Ipϕq is de�ned as

Ipϕqx “ tf P OX,x|DUx,

ż

Ux

|f |2e´2ϕ ă 8u

where Ux is some open neighbourhood of x in X.

A basic property of the multiplier ideal sheaf due to [Nad89] is that it is always a coherent ideal sheaf.
Now we recall what are the main concepts of positive cones in complex geometry. In general, we work

in the complex Bott-Chern cohomology, which is de�ne as follows:

Hp,q
BCpX,Cq “ td-closed pp, qq-formsu{tBB-exact pp, qq-formsu.

Definition 1.32. (Psef line bundles)
Let L be a holomorphic line bundle on a compact complex manifold X. L is pseudo-e�ective (by short,

psef) if c1pLq P H
1,1
BCpX,Cq is the cohomology class of some closed positive current T , i.e. if L can be equipped

with a singular Hermitian metric h (which means the local weight function is L1
loc) with T “

i
2πΘL,h ě 0 as

a current.
A cohomology class α P H1,1

BCpX,Cq is said to be psef if it contains some positive current. A cohomology
class α P Hk,k

BCpX,Cq for some k P N is said to be positive if it contains some strongly positive current in the
sense of Lelong. For a p1, 1q´class, a class is psef if and only if it is positive.

Currents with minimal singularities in a given psef class are de�ned below.

Definition 1.33. (See [DPS01]). Let ϕ1, ϕ2 be two quasi-psh functions on X (i.e. iBBϕi ě ´Cω in
the sense of currents for some C ě 0). Then, ϕ1 is said to be less singular than ϕ2 (and we write ϕ1 ĺ ϕ2)
if we have ϕ2 ď ϕ1 `C1 for some constant C1. Let α be a psef class in H1,1

BCpX,Rq, and γ be a smooth real
p1, 1q´form. Let T1, T2, θ P α with θ smooth and Ti “ θ ` iBBϕipi “ 1, 2q. The potential ϕi is well de�ned
up to an additive constant since X is compact. We say that T1 ĺ T2 if ϕ1 ĺ ϕ2.

A minimal element Tmin,γ with respect to the pre-order relation ĺ can be shown to exist by taking the
upper semi-continuous regularization of all ϕi such that θ ` iBBϕi ě γ and supX ϕi “ 0.
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Another important cone is the nef cone. The following de�nition has been introduced in [DPS94] in
the non necessarily algebraic case.

Definition 1.34. (Nef line bundles)
A line bundle L on a compact complex manifold X is said to be nef if for every ε ą 0, there is a smooth

Hermitian metric hε on L such that iΘL,hε ě ´εω where ω is some smooth Hermitian metric.
A cohomology class α P H1,1

BCpX,Cq is said to be nef if for every ε ą 0, there is a smooth element αε P α
such that αε ě ´εω where ω is some smooth Hermitian metric.

By de�nition, the nef cone is contained in the psef cone. A basic measure for a psef class to be nef is
the non-nef locus introduced in [Bou04].

Definition 1.35. (Non-nef locus)
The non-nef locus of a pseudo-e�ective class α P H1,1

BCpX,Rq is de�ned by

Ennpαq :“
ď

εą0

ď

cą0

EcpTmin,´εωq

where ω is any Hermitian metric.

The notion of nefness can be generalized to the vector bundle case (cf. [DPS94]).

Definition 1.36. A vector bundle E is said to be numerically e�ective (nef) if the canonical bundle
OPpEqp1q is nef on PpEq, the projective bundle of hyperplanes in the �bres of E.

A holomorphic vector bundle E over X is said to be numerically �at if both E and E˚ are nef por
equivalently if and only if E and pdetEq´1 are nefq.

Finally, we recall the following regularization theorem due to Demailly.

Definition 1.37. A p1, 1q-current T is said to be quasi-positive if T ě α where α is a smooth form, in
other words if T is positive modulo smooth forms. pIn particular, according to the de�nitions, a function ϕ
is quasi-psh i�f iBBϕ is quasi-positiveq.

Theorem 1.38. Let T be a quasi-positive closed p1, 1q-current on a compact complex manifold X of
dimension n such that T ě γ for some continuous p1, 1q-form γ. Then there exists a sequence of currents
Tm whose local potentials have the form

1

m
logp

ÿ

i

|gi,m|
2q `Op1q

with Op1q a locally bounded term and pgi,mq some local holomorphic functions, and a decreasing sequence
εm ą 0 converging to 0 such that

(1) Tm converges weakly to T ;
(2) νpT, xq ´ n

m ď νpTm, xq ď νpT, xq for every x P X;
(3) Tm ě γ ´ εmω in the sense of currents.





CHAPTER 2

On the hard Lefschetz theorem

for pseudoe�ective line bundles

Abstract. In this note, we obtain a number of results related to the hard Lefschetz theorem for pseudoef-
fective line bundles, due to Demailly, Peternell and Schneider. Our �rst result states that the holomorphic
sections produced by the theorem are in fact parallel, when viewed as currents with respect to the singular
Chern connection associated with the metric. Our proof is based on a control of the covariant derivative in
the approximation process used in the construction of the section. Then we show that we have an isomor-
phism between such parallel sections and higher degree cohomology. As an application, we show that the
closedness of such sections induces a linear subspace structure on the tangent bundle. Finally, we discuss
some questions related to the optimality of the hard Lefschetz theorem.

2.1. Introduction

In this note, we establish a closedness and harmonicity result that complements the hard Lefschetz
theorem for pseudoe�ective line bundles proved in [DPS01]. By following the arguments of the above paper,
we show that the sections provided by the proof are in fact parallel, when viewed as currents with respect
to the singular Chern connection of the metric. The �rst di�culty is to de�ne the covariant derivative for
such singular metrics, since in general the wedge product of two currents is not always well-de�ned. Another
di�culty is to control the covariant derivative in the approximation process employed in the original proof.

Let X be a compact Kähler n-dimensional manifold, equipped with a Kähler metric, i.e. a positive
de�nite Hermitian p1, 1q-form ω “ i

ř

1ďj,kďn ωjkpzq dzj^dzk such that dω “ 0. By de�nition a holomorphic
line bundle L on X is said to be pseudoe�ective if there exists a singular hermitian metric h on L, given by
hpzq “ e´ϕpzq with respect to a local trivialization L|U » U ˆ C, such that the curvature form

iΘL,h :“ iBBϕ

is (semi)positive in the sense of currents, i.e. ϕ is locally integrable and iΘL,h ě 0 : in other words, the weight
function ϕ is plurisubharmonic (psh) on the corresponding trivializing open set U . In this trivialization, if
the metric is in fact smooth, the (1,0) part of the covariant derivative with respect to the associated Chern
connection is given in the form:

Bh “ B ` Bϕ^ ‚,

and the total connection is dh “ Bh`B. An important fact is that Bh and dh still make sense for an arbitrary
singular metric h as above. Another basic concept relative to a singular metric is the notion of multiplier
ideal sheaf, introduced in [Nad90].

Definition 2.1. To any psh function ϕ on an open subset U of a complex manifold X, one associates
the �multiplier ideal sheaf� Ipϕq Ă OX|U of germs of holomorphic functions f P OX,x, x P U , such that
|f |2e´ϕ is integrable with respect to the Lebesgue measure in some local coordinates near x. We also de�ne
the global multiplier ideal sheaf Iphq Ă OX of a hermitian metric h on L P PicpXq to be equal to Ipϕq on any
open subset U where L|U is trivial and h “ e´ϕ. In such a de�nition, we may in fact assume iΘL,h ě ´Cω,
i.e. locally ϕ “ psh` C8, we say in that case that ϕ is quasi-psh.

The interest of considering quasi-psh functions is that on a compact manifold global psh functions are
constant, while the space of quasi-psh functions is in�nite dimensional. Among them, functions with analytic
singularity will be of special concern for us. With this notation, the following bundle valued generalization
of the hard Lefschetz theorem has been established in [DPS01]. The proof uses the natural L2-resolution
of the sheaf ΩnX b Lb Iphq.

Theorem 2.2. ( [DPS01]) Let pL, hq be a pseudo-e�ective line bundle on a compact Kähler manifold
pX,ωq of dimension n, let ΘL,h ě 0 be its curvature current and Iphq the associated multiplier ideal sheaf.
Then, the wedge multiplication operator ωq ^ ‚ induces a surjective morphism

Φqω,h : H0pX,Ωn´qX b Lb Iphqq ÝÑ HqpX,ΩnX b Lb Iphqq.

31
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The special case when L is nef is due to Takegoshi [Tak97] (for the de�nition of nef in the analytic
setting, cf. [DPS94]). An even more special case is when L is semi-positive, i.e. L possesses a smooth metric
with semi-positive curvature. In that case, the multiplier ideal sheaf Iphq coincides with OX and we get the
following consequence already observed by Enoki [Eno93] and Mourougane [Mou95].

Corollary 2.3. Let pL, hq be a semi-positive line bundle on a compact Kähler manifold pX,ωq of
dimension n. Then, the wedge multiplication operator ωq ^ ‚ induces a surjective morphism

Φqω : H0pX,Ωn´qX b Lq ÝÑ HqpX,ΩnX b Lq.

It should be observed that although all objects involved in Theorem 2.2 are algebraic when X is a
projective manifold, there is no known algebraic proof of the statement; it is not even clear how to de�ne
algebraically Iphq in the case when h “ hmin is a metric with minimal singularity. The classical hard
Lefschetz theorem is the case when L is trivial or unitary �at; then L has a (real analytic) metric h of
curvature equal to 0, whence Iphq “ OX .

In the pseudoe�ective case, the Lefschetz morphism is in general no longer injective as in the classical
hard Lefschetz theorem. An obvious counterexample can be obtained by taking L “ mA where A is an
ample divisor, so that h0pX,Ωn´qX b Lq „ Cmn for m big enough, but hqpX,ΩnX b Lq “ 0 if q ą 0. We will
show that to have an isomorphism, we should change the left hand side by the parallel sections with respect
to the singular metric.

Notice that the proof of the hard Lefschetz theorem is given by constructing directly a pre-image for any
element in HqpX,ΩnXbLbIphqq. This is done by taking weak limit of some subsequence in a bounded family
of some Hilbert space. Since for a bounded family of some Hilbert space, there exists some subsequence with
a weak limit in the Hilbert space. However, there is no trivial reason that the weak limit is unique. Thus
viewing the proof of the hard Lefschetz theorem as construction of an inverse operator

HqpX,ΩnX b Lb Iphqq ÝÑ H0pX,Ωn´qX b Lb Iphqq,

a priori, this operator is not necessarily linear. Thus it is a natural question to demand whether the inverse
operator is linear. More general, does there exist a sublinear space of H0pX,Ωn´qX bLb Iphqq such that the
inverse operator is an isomorphism of linear spaces?

In the classical case L “ OX , one can observe that any section u P H0pX,Ωn´qX q satis�es the additional
condition du “ dh0u “ 0. This is easily seen by Stokes formula, which implies

ż

X

idu^ du^ ωq´1 “

ż

X

tdu, duuh0 ^ ω
q´1 “ 0,

where h0 is the trivial smooth metric on OX ; in that formula (as well as in the rest of this paper), given a
hermitian metric h, we denote by tu, vuh the natural sesquilinear pairing

C8pM,^pT˚X b Lq ˆ C8pM,^qT˚X b Lq Ñ C8pM,^p`qT˚Xq

pu, vq ÞÑ tu, vuh

given by
tu, vuh “

ÿ

λ,µ

iuλ ^ v̄µxeλ, eµyh

where u “
ř

uλb eλ, v “
ř

vµb eµ. Another proof relies on the observation that Bu “ B
˚
u “ 0 (the second

equality holds since u is of bidegree pn ´ q, 0q), whence ∆
B
u “ 0 “ ∆Bu by the Kähler identities. As a

consequence, we have Bu “ B˚u “ 0, and so du “ 0.
More generally, the proof of the hard Lefschetz theorem in [DPS01] is obtained by constructing pre-

images as limits of forms given by the pointwise Lefschetz isomorphism. One then deals with a sequence
of harmonic representatives of a given class in HqpX,KX b L b Iphqq, with respect to approximated, less
singular, hermitian metrics hε. It is thus natural to wonder whether the holomorphic sections provided
by Theorem 2.2 also satisfy some sort of closedness property in the case of arbitrary pseudoe�ective line
bundles. In fact, we are going to prove that these sections are parallel with respect to the (possibly singular)
Chern connection associated with the metric h; the proof employs similar arguments, but with the additional
di�culty that one has to deal with non smooth metrics.

Theorem 2.4. All holomorphic sections produced by Theorem 2.2 are parallel with respect to the Chern
connection associated with the singular hermitian metric h on L.

More precisely, as h can be singular, this means that in local coordinates, any such holomorphic section
s P H0pX,Ωn´qX b Lb Iphqq satis�es

Bhs “ Bs` Bϕ^ s “ 0
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in the sense of currents. Since Bs “ 0, we conclude that dhs “ Bhs`Bs “ 0. This property can be expressed
by saying that the section s is parallel with respect to dh.

Now, let us consider the harmonicity. Assume �rst that the metric is semi-positive (i.e. a smooth metric
with positive Chern curvature). By computing BpBhsq “ 0, we get BBϕ^ s “ 0, hence

iΘL,h ^ s “ 0.

As ∆
B
s “ 0 (s is a holomorphic section and B

˚
s “ 0 by a bidegree consideration), the Kodaira-Nakano

identity implies

∆
B
s´∆Bhs “ riΘL,h,Λss “ iΘL,hΛs´ ΛiΘL,hs “ ´ΛiΘL,hs “ 0,

by the fact that Λs “ 0. Therefore ∆Bhs “ 0. Since the metric is smooth, this is equivalent to the fact that
Bhs “ 0 and B˚hs “ 0. If the metric is singular, we still have

iΘL,h ^ s “ 0

by the same arguments. However, in the latter case, although the operator Bh is still a densely de�ned
operator on L2pX,Ωn´qX b L, hq (cf. Remark 1), it is di�cult to give an explicit expression of his Hilbert
adjoint B˚h . There may exist the boundary condition on the domain of B˚h caused by integration by parts,
while the singular part of a general positive singular metric could have very di�cult topology. Thus it is
di�cult to discuss the Hilbert adjoint B˚h in general. Nevertheless, the fact that the section is parallel with
respect to the singular metric is su�cient to characterize the pre-image of the wedge multiplication operator
in the hard Lefschetz theorem.

Theorem 2.5. Let pL, hq be a pseudo-e�ective line bundle on a compact Kähler manifold pX,ωq of
dimension n, let ΘL,h ě 0 be its curvature current and Iphq the associated multiplier ideal sheaf. Then, the
wedge multiplication operator ωq ¨ ‚ induces a linear isomorphism

Φqω : H0pX,Ωn´qX b Lq XKerpBhq ÝÑ HqpX,ΩnX b Lq.

In section 4, as a geometric application, we use the closedness property of the holomorphic sections
produced by the hard Lefschetz theorem to derive the existence of a �singular foliation� of X (in fact a linear
subspace structure of TX).

Theorem 2.6. Assume that v P H0pX,Ωn´qX b Lb Iphqq, q ě 1 is a parallel section with respect to the
singular metric h. In particular a section constructed by the hard Lefschetz theorem is such a section. The
interior product with v gives an OX- morphism (which is well de�ned throughout X)

Fv : TX Ñ Ωn´q´1
X b L

X ÞÑ ιXv.

The kernel of Fv de�nes an integrable coherent subsheaf of OpTXq, i.e. a holomorphic foliation.

At the end of section 4, we show by a concrete example indicated to the author by Professor Andreas
Höring that for a general pre-image, instead of the one constructed by the hard Lefschetz theorem, the above
process does not necessarily induce a foliation. In fact, the kernel of Fv de�ned in the theorem 2.6 de�nes a
foliation if and only if v is a parallel section.

Finally, in the last sections of this work, we discuss the optimality of the multiplier ideal sheaf Iphq “
Ipϕq involved in the hard Lefschetz theorem. Demailly, Peternell and Schneider already showed in [DPS01]
that one cannot omit the ideal sheaf even when L is taken to be nef, and gave a counterexample when
L “ ´KX is the anticanonical bundle. However, it might still be possible in some cases to �improve� the
ideal sheaf, for instance to replace it with limδÑ0` Ipp1 ´ δqϕq Ą Ipϕq. When ϕ has analytic singularities,
it may happen that the inclusion be strict, but in general the limit need not even be a coherent sheaf (see
section 5). The abundance conjecture and the nefness of L “ KX would imply the semiampleness of L, so in
that case, the ideal sheaf is de�nitely not needed. For the general case, this seems to be a di�cult problem.
Some discussions of these issues are conducted in section 6.
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2.2. De�nition of the covariant derivative

In this section, we consider a pseudoe�ective line bundle pL, hq on a Kähler (non necessarily compact)
manifold pY, ωq where hpzq “ e´ϕpzq with respect to a local trivialization L|U » U ˆ C and ω is smooth.
We denote by | | “ | |ω,h the pointwise hermitian norm on Λp,qT ‹Y b L associated with ω and h, and by
} } “ } }ω,h the global L2 norm

}u}2 “

ż

Y

|u|2dVω where dVω “
ωn

n!
.

Recall that since ϕ is a quasi-psh function on U , its derivative dϕ belongs to LplocpUq with respect to Lebesgue
measure for every p ă 2 (cf. e.g. Theorem 1.48 in [GZ17]). This regularity is optimal since on C, the psh
function log|z| has a derivative not in L2

locpCq. We �x a smooth reference metric h0 on L (not necessarily
semi-positive) from which we can view any other singular metric as given by h “ h0e

´ϕ where ϕ is a quasi-
psh function de�ned on Y . In general, for u P L2

locpU,Λ
p,qT ‹Y b L, ω, h0q, Bϕ^ u is not a priori well de�ned

as a form with coe�cients in L1
locpU,Λ

p`1,qT ‹Y b L, ω, h0q (with respect to the Lebesgue measure), at least
if we make a naive use of the Cauchy-Schwarz inequality to get a current on U . (Note that in this case,
Bϕ P L1

locpU,Λ
p`1,qT ‹Y b L, ω, h0q is however a current on U .)

We can overcome this problem in our proof, because in the construction of sections in the proof of the
bundle valued hard Lefschetz theorem, this type of product can always be de�ned. In fact we always have
additional assumptions on either u or ϕ, as we will see next, and this will be enough to prove our main
theorem. At the end of this section, we prove that the wedge product Bϕ ^ u is closed with respect to the
L2 topology when ϕ is any psh function and u is in L2

locpe
´ϕq ; this will be used in the following section.

In the sequel, we will make use two types of such wedge products. The �rst type is when u is holomorphic,
so that the coe�cients of u are in fact bounded on any compact set, hence in L8loc, thus Bϕ^u has coe�cients
in

L1
locpU,Λ

p,qT ‹Y b L, ω, h0q ˆ L
8
locpU,Λ

1,0T ‹Y b L, ω, h0q Ă L1
locpU,Λ

p`1,qT ‹Y b L, ω, h0q.

Moreover, if ϕi a sequence of quasi-psh functions such that ϕi Ñ ϕ in L1
locpU, ω, h0q, we have Bϕi Ñ Bϕ in

L1
locpU,Λ

1,0T ‹Y bL, ω, h0q hence Bϕi^uÑ Bϕ^u in L1
locpU,Λ

p`1,qT ‹Y bL, ω, h0q, which implies in particular
the weak convergence as currents (cf. e.g. theorem 1.48 in [GZ17]).

The second type is when ϕ is an arbitrary psh function, taken as a local weight function of h, and
u P L2

locpU,Λ
p,qT ‹Y b L, ω, hq.

To understand what happens, we start by the case when ϕ has analytic singularities, although this
consideration is not necessary for the proof of general case. Suppose that ϕ has analytic singularities along
a simple normal crossing divisor, i.e. in some coordinates,

ϕ “ c log|za11 ...zann | ` C8.

We only need to check the current is well de�ned near a point in Sing(h), a situation which happens only in
case c ą 0. When u P L2

locpU,Λ
p,qT ‹Y bL, ω, hq, we have to show that Bϕ^u is locally integrable with respect

to the Lebesgue measure, and without loss of generality, we can suppose that the section is integrable on U ,
and not only on every compact in U , i.e.

ż

U

|Bϕ^ u|ω,h0
dVω ă 8.

It is true since

ď Cp

ż

U

|za11 ...zann |
c|
ÿ ai

2

dzi
zi
|2ω,h0

dVωq
1
2 p

ż

U

|u|2ω,hdVωq
1
2

ď Cp

ż

U

|za11 ...zann |
c
ÿ a2

i

4|zi|2

ź

idzi ^ dziq
1
2 p

ż

U

|u|2ω,hdVωq
1
2 .

Since U is a local coordinate chart, we can suppose U to be a poly-disc
ś

Dp0, rjq. The integrability of the
�rst term in the integral is given by for any j such that aj ą 0,

ż

U

|za11 ...zann |
c
a2
j

4|zj |2

ź

idzi ^ dzi ď Cj

ż rj

0

r2ajc´1 ă 8

since caj ´ 1 ą ´1. By assumption the second term in the integral is �nite, so the product is �nite.
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If ϕ has analytic singularities, there exists a modi�cation of µ : Ỹ Ñ Y such that µ˚pIphqq is an invertible
sheaf associated to a simple normal crossing divisor, thanks to Hironaka's desingularization theorem [Hir64].
Since we consider only local integrability of functions up to modi�cation (by de�nition, a modi�cation is a
biholomorphism outside of proper analytic sets) and since analytic subsets are of Lebesgue measure zero,
singularities are irrelevant with respect to integration. Therefore, we can reduce the general case by using a
modi�cation that converts the singular sets involved into simple normal crossing divisors.

For the general case where ϕ is arbitrary psh function. It is enough to prove that
ş

K
|e
ϕ
2 Bϕ|2ω,h0

dVω is
�nite for any compact set K Ť U . After shrinking U into a smaller relatively compact open subset, we can
suppose that ϕ ď C for some C ą 0, and also that there exists a non increasing sequence of smooth psh
functions ϕεν converging to ϕ in L1pUq as εν Ñ 0. The smooth psh function sequence can be obtained by
taking a convolution with radially symmetric approximations of the Dirac measure. The upper bound is
obtained by the maximum principle. The same is true for ϕε1 . In particular, eϕ P L1pUq. We prove that
eϕ P PSHpUq. Up to a subsequence, eϕεν Ñ eϕ almost everywhere. The functions are uniformly bounded.
By the dominated convergence theorem, eϕεν Ñ eϕ in L1pUq. Since the space of the psh functions is closed
in L1

locpUq, e
ϕ P PSHpUq. Hence

iBBeϕ “ eϕpiBBϕ` iBϕ^ Bϕq ě 0

as a current. For any compact set K Ă U , the mass of iBϕ^Bϕeϕ^ωn´1 on K is the mass of iBBpeϕq^ωn´1

on K minus the mass of iBBϕeϕ^ωn´1 on K which is �nite. This means
ş

K
|e
ϕ
2 Bϕ|2ω,h0

dVω is �nite. And it is
closed with respect to the L2 topology in the sense that considering a sequence uj , u P L2

locpU,Λ
p,qT ‹Y bL, ω, hq

such that uj Ñ u, we have by the inequality
ż

U

|Bϕ^ u|ω,h0dVω “

ż

U

|Bϕe
ϕ
2 |ω,h0 |u|ω,hdVω

ď p

ż

U

|e
ϕ
2 Bϕ|2ω,h0

dVωq
1
2 p

ż

U

|u|2ω,hdVωq
1
2

which shows that Bϕ^ uj Ñ Bϕ^ u in L1
locpU,Λ

p`1,qT ‹Y b L, ω, h0q, in particular as currents.
We should mention that some similar discussion of the de�nition of covariant derivative with respect to

a singular metric can also be found in [Dem02]. (The author thanks Professor A. Höring for mentioning
the reference.)

Remark 2.7. We check here that the operator

Bh : L2pX,^n´qT˚X b L, hq Ñ L2pX,^n´q`1T˚X b L, hq

is a closed densely de�ned operator.
By a partition of unity argument, it is enough to check this on a local coordinate chart U . Assume

that we have h “ e´ϕ on U for some psh function ϕ. We claim that functions of the type ep1{2`εqϕf with
any ε ą 0 and f smooth with compact support are in the domain of de�nition of Bh and are dense in
L2pU,^n´qT˚X b L, hq. In fact, we have

Bhpe
p1{2`εqϕfq “ p3{2` εqBϕ^ ep1{2`εqϕf ` ep1{2`εqϕBf.

Without loss of generality, we can assume that ϕ is bounded from above. Since f, Bf are bounded and
|Bϕ|2e2εϕdVω ď

1
4ε2 iBBpe

2εϕq^ωn´1 is integrable, we have
ş

U
|Bϕ^ep1{2`εqϕf |2e´ϕdVω ă 8 and

ş

U
|ep1{2`εqϕBf |2e´ϕdVω ă

8. Thus ep1{2`εqϕf is in the domain of de�nition.
To prove the density, it is equivalent to show that smooth functions with compact support are dense in

L2pU, e2εϕdV q where dV is the Lebesgue measure. Notice that we have an isomorphism of topological linear
space between L2pU, e2εϕdV q and L2pU, e´ϕdV q by sending f to ep1{2`εqϕf . Since e2εϕ is locally bounded,
thus e2εϕdVω is a locally �nite measure. Any real function u P L2pU, e2εϕdV q can be approximated in norm
by a bounded function ũν “ maxpminpu, νq,´νq, and then ũν can be approximated by smooth compactly
supported functions uν by taking the product of ũν with a cut-o� function and taking a convolution by
dominated convergence theorem.

By the last paragraphs before the remark, if uν Ñ u in L2pe´ϕq topology, then Bhuν Ñ Bhu in the weak
topology of currents. This shows that Bh is a closed operator by de�nition.

Assuming for the moment that theorem 2.4 is valid, we infer theorem 2.5. A consequence is that the
inverse operator in the proof of the hard Lefschetz theorem is linear, a fact that is a priori non trivial.

Proof of theorem 2.5. By theorem 2.4, we know that the morphism is surjective. Since the mor-
phism is the restriction of the wedge multiplication operator on some subspace, it is linear. Thus to show
that it is a linear isomorphism, it is enough to show that it is injective.
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Assume that u P H0pX,Ωn´qX bLb Iphqq such that Bhu “ 0 and u^ ωq ” 0 in HqpX,KX bLb Iphqq.
It means that there exists v P L2pX,^n,q´1T˚X b L, hq such that

u^ ωq “ Bv.

To prove that u “ 0, it is equivalent to prove that u ^ ωq “ 0 by the pointwise Lefschetz isomorphism. To
prove that u^ ωq “ 0, it is enough to prove that ‖ Bv ‖“ 0.

We have that
‖ Bv ‖2“

ż

X

xBv, u^ ωqydVω “

ż

X

tBv, uu.

On the other hand, we have that

Btv, uu “ tBv, uu ` p´1qn`q´1tv, Bhuu

since v is a pn, q´ 1q form. By the assumption that Bhu “ 0, we get Btv, uu “ tBv, uu. Since u is a pn´ q, 0q
form and v is a pn, q ´ 1q form, by a degree consideration, we �nd Btv, uu “ 0.

Observe that tv, uu is a well de�ned current (in fact L1
loc with respect to any smooth metric on L) since

both v, u are L2 with respect to the singular metric h.
Thus by Stokes theorem (for a statement of the result in terms of currents, cf. e.g. [deR60]), we obtain

‖ Bv ‖2“

ż

X

dtv, uu “ 0.

�

2.3. Proof of theorem 2.4

This section follows closely [DPS01] with some additional estimates for the integral norms of the terms
involved at each step. First, we reproduce the variant of the Bochner formula used in [DPS01].

Proposition 2.8. Let pY, ωq be a complete Kähler manifold and pL, hq a smooth Hermitian line bundle
such that the curvature current possesses a uniform lower bound ΘL,h ě ´Cω. For every measurable
pn´ q, 0q-form v with L2 coe�cients and values in L such that u “ ωq ^ v has di�erentials Bu, B

˚
u also in

L2, we have

}Bu}2 ` }B
˚

hu}
2 “ }Bv}2 `

ż

Y

ÿ

I,J

´

ÿ

jPJ

λj

¯

|uIJ |
2

phere, all di�erentials are computed in the sense of distributionsq and where λ1 ď ¨ ¨ ¨ ď λn are the curvature
eigenvalues of iΘL,h expressed in an orthonormal frame pB{Bz1, . . . , B{Bznq (at some �xed point x0 P Y ), in
such a way that

ωx0
“ i

ÿ

1ďjďn

dzj ^ dzj , piΘL,hqx0
“ ddcϕx0

“ i
ÿ

1ďjďn

λjdzj ^ dzj .

Now,X denotes a compact Kähler manifold equipped with a Kähler metric ω, and pL, hq a pseudoe�ective
line bundle on X. To �x the ideas, we �rst indicate the proof in the much simpler case when pL, hq has a
smooth metric h (so that Iphq “ OX), and then treat the general case (although it is not really used in the
proof of the general case).

Let tβu P HqpX,ΩnX b Lq be an arbitrary cohomology class. By standard Hodge theory, tβu can be
represented by a smooth harmonic p0, qq-form β with values in ΩnX b L. We can also view β as a pn, qq-
form with values in L. The pointwise Lefschetz isomorphism produces a unique pn´ q, 0q-form α such that
β “ ωq ^ α. Proposition 2.8 then yields

}Bα}2 `

ż

X

ÿ

I,J

´

ÿ

jPJ

λj

¯

|αIJ |
2 “ }Bβ}2 ` }B

˚

hβ}
2 “ 0,

and the curvature eigenvalues λj are non-negative by our assumption. Hence Bα “ 0 and tαu P H0pX,Ωn´qX b

Lq is mapped to tβu by Φqω,h “ ωq ^ ‚.
In this case, the proof of the closedness property of sections involves the identity

ż

X

tBhv, Bhvuh ^ ω
q´1 “

ż

X

pBtv, Bhvuh ´ p´1qdeg vtv, BBhvuhq ^ ω
q´1.

Using the holomorphicity of v, the fact that pX,ωq is Kähler and the Stokes formula, we get

RHS “ p´1qdeg v`1

ż

X

tv,´BhBv ` iΘL,hvuh ^ ω
q´1 “ p´1qdeg v`1

ż

X

tv, iΘL,hvuh ^ ω
q´1

“ ´

ż

X

iΘL,h ^ tv, vuh ^ ω
q´1 ď 0.
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In the above calculation, we have used the formula

BhB ` BBh “ iΘL,h ^ ‚.

The last inequality uses the curvature assumption. Therefore we have
ż

X

tBhv, Bhvuh ^ ω
q´1 “ 0,

and this implies Bhv “ 0.
Let us return to the case of an arbitrary plurisubharmonic weight ϕ. We will need the following

�equisingular� approximation of psh functions; here, equisingularity is to be understood in the sense that the
multiplier ideal sheaves are preserved. A proof can be found in [DPS01] or [Dem14].

Theorem 2.9. Let T “ α ` ddcϕ be a closed p1, 1q-current on a compact Hermitian manifold pX,ωq,
where α is a smooth closed p1, 1q-form and ϕ a quasi-psh function. Let γ be a continuous real p1, 1q-form
such that T ě γ. Then one can write ϕ “ limmÑ`8 rϕm where

(a) rϕm is smooth in the complement XzZm of an analytic set Zm Ă X ;

(b) trϕmu is a non-increasing sequence, and Zm Ă Zm`1 for all m ;

(c)
ş

X
pe´ϕ ´ e´ rϕmqdVω is �nite for every m and converges to 0 as mÑ `8 ;

(d) p�equisingularity�q Iprϕmq “ Ipϕq for all m ;

(e) Tm “ α` ddc rϕm satis�es Tm ě γ ´ εmω, where limmÑ`8 εm “ 0.

Fix ε “ εν and let hε “ hεν be an approximation of h, such that hε is smooth on XzZε (Zε being an
analytic subset of X), ΘL,hε ě ´εω, hε ď h and Iphεq “ Iphq. As above we �x a reference smooth metric
h0 on L. We denote by β the curvature form of h0 and hε “ h0e

´ϕε (ϕε is hence a global quasi-psh function
on X). The existence of a such metric is guaranteed by Theorem 2.9. Now, we can �nd a family

ωε,δ “ ω ` δpiBBψε ` ωq, δ ą 0

of complete Kähler metrics on XzZε, where ψε is a quasi-psh function on X with analytic singularity with
ψε “ ´8 on Zε, ψε smooth on XzZε and iBBψε`ω ě 0 (see e.g. [Dem82], Théorème 1.5). By construction,
ωε,δ ě ω and limδÑ0 ωε,δ “ ω. We look at the L2 Dolbeault complex K‚ε,δ of pn, ‚q-forms on XzZε, where
the L2 norms are induced by ωε,δ on di�erential forms and by hε on elements in L. Speci�cally

Kq
ε,δ “

!

u:XzZεÑΛn,qT˚X b L;

ż

XzZε

p|u|2Λn,qωε,δbhε ` |Bu|
2
Λn,q`1ωε,δbhε

qdVωε,δ ă 8
)

.

Let Kqε,δ be the corresponding sheaf of germs of locally L2 sections on X (the local L2 condition should
hold on X, not only on XzZε !). Then, for all ε ą 0 and δ ě 0, pKqε,δ, Bq is a resolution of the sheaf
ΩnX b Lb Iphεq “ ΩnX b Lb Iphq. This is because L2 estimates hold locally on small Stein open sets, and
the L2 condition on XzZε forces holomorphic sections to extend across Zε ( [Dem82], Lemma 6.9).

Let tβu P HqpX,ΩnX b L b Iphqq be a cohomology class represented by a smooth form with values in
ΩnX b Lb Iphq. Then

}β}2ε,δ ď }β}
2 “

ż

X

|β|2Λn,qωbhdVω ă `8.

The reason is that |β|2Λn,qωbhdVω decreases as ω increases, see e.g. [Dem82], Lemma 3.2. Now, β is a
B-closed form in the Hilbert space de�ned by ωε,δ on XzZε and for δ ą 0, the Kähler metric is complete on
XzZε, so there is a ωε,δ-harmonic form uε,δ in the same cohomology class as β, such that

}uε,δ}ε,δ ď }β}ε,δ.

Let vε,δ be the unique pn ´ q, 0q-form such that uε,δ “ vε,δ ^ ωqε,δ (vε,δ exists by the pointwise Lefschetz
isomorphism). Then

}vε,δ}ε,δ “ }uε,δ}ε,δ ď }β}ε,δ ď }β}.

As
ř

jPJ λj ě ´qε by the assumption on ΘL,hε , the Bochner formula for XzZε yields

}Bvε,δ}
2
ε,δ ď qε}uε,δ}

2
ε,δ ď qε}β}2.

But since Zε is an analytic set, the integral can also be seen taken on X; In the following, we use it
abusively. These uniform bounds imply that there are subsequences uε,δν and vε,δν with δν Ñ 0, possessing
weak-L2 limits uε “ limνÑ`8 uε,δν and vε “ limνÑ`8 vε,δν . The limit vε “ limνÑ`8 vε,δν is with respect to
L2pωq “ L2pωε,0q. To check this, notice that in bidegree pn´q, 0q, the space L2pωq has the weakest topology
of all spaces L2pωε,δq; indeed, an easy calculation made in [Dem82], Lemma 3.2 yields

|f |2Λn´q,0ωbhdVω ď |f |
2
Λn´q,0ωε,δbh

dVωε,δ if f is of type pn´ q, 0q.
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On the other hand, the limit uε “ limνÑ`8 uε,δν takes place in all spaces L2pωε,δq, δ ą 0, since the topology
gets stronger and stronger as δ Ó 0 [ possibly not in L2pωq, though, because in bidegree pn, qq the topology
of L2pωq might be strictly stronger than that of all spaces L2pωε,δq ]. For �xed δ ą 0, for any δ1 ă δ,we have

}uε,δ1}ε,δ ď }uε,δ1}ε,δ1 ď }β}

}uε}ε,δ ď liminfδ1Ñ0}uε,δ1}ε,δ ď }β}

By Lebesgue's monotone convergence theorem, uε is L2pωε,δ b hεq bounded. The above estimates yield

}vε}
2
ε,0 “

ż

X

|vε|
2
Λn´q,0ωbhε

dVω ď }β}
2,

}Bvε}
2
ε,0 ď qε}β}2ε,0 “ qε}β}2,

uε “ ωq ^ vε ” β in HqpX,ΩnX b Lb Iphεqq.
The last equality can be checked via the De Rham-Weil isomorphism, by using the fact that the map α ÞÑ tαu
from the cocycle space ZqpK‚ε,δq equipped with its L2 topology, into HqpX,ΩnX b L b Iphqq equipped with
its �nite vector space topology, is continuous.

For the closedness property, we want to control the L1
loc norm of the covariant derivative with respect

to the Lebesgue measure, which is well de�ned on X since the metric is smooth outside an analytic set and
the section is locally L2 with respect to the metric. For any smooth pn´ q, 0q-form v with compact support
in XzZε, we can apply the Stokes formula to get

ż

X

tBhεv, Bhεvuhε ^ ω
q´1
ε,δ “ p´1qdeg v`1

ż

X

tv,´BhεBv ` iΘL,hεvuhε ^ ω
q´1
ε,δ

“

ż

X

pBtv, Bvuhε ´ tBv, Bvuhε ´ iΘL,hε ^ tv, vuhεq ^ ω
q´1
ε,δ

“

ż

X

p´tBv, Bvuhε ´ iΘL,hε ^ tv, vuhεq ^ ω
q´1
ε,δ .

We want to apply this identity to v “ vδ,ε that does not necessarily have compact support in XzZε. However,
the metric ωε,δbhε is smooth and complete on XzZε, and this will allow us to extend the identity to v “ vε,δ.
In fact, there exists a sequence of smooth forms vε,δ,ν with compact support on XzZε obtained by truncating
vε,δ and by taking the convolution with a regularizing kernel, in such a way that vε,δ,ν Ñ vε,δ in L2pωε,δbhεq
(and therefore in L2pωbh0q as well). For simplicity of notation, we put Bε “ Bhε and denote by B˚ε,δ its dual
with respect to the metric ωε,δ b hε (the latter operator depends on δ, since the Hodge ˚ operator depends
on the Kähler metric). By taking v “ vε,δ,ν in the above identity, neglecting the non positive term involving
Bv and using the curvature condition, we obtain

}Bεvε,δ,ν}
2
ε,δ ď qε}vε,δ,ν}

2
ε,δ.

Let us put C “ emaxXpϕε1 q (we have C ă 8 as X is compact). Then by using ωε,δ ě ω, hε ě 1
Ch0, we get

}Bεvε,δ,ν}
2
L2pωbh0q

ď C}Bεvε,δ,ν}
2
ε,δ,

By the Cauchy-Schwarz inequality and the fact that X is compact and that the metrics ω, h0 are smooth,
we �nd

}Bεvε,δ,ν}L1pωbh0q ď C 1}Bεvε,δ,ν}L2pωbh0q
,

Since the covariant derivative is a closed operator and vε,δ,ν Ñ vε,δ, vε,δ Ñ vε in L2pωε,0 b hεq, we conclude
that

}Bεvε,δ}L1pωbh0q ď C2
?
qε}β},

}Bεvε}L1pωbh0q ď C2
?
qε}β}.

Again, by arguing in a �xed Hilbert space L2phε0q (since ωε “ ω, the notation L2phε0q will be used for
�xed ε0 ą 0), we �nd L2 convergent subsequences uε Ñ u, vε Ñ v as εÑ 0, and in this way get Bv “ 0 and

}v}2 ď }β}2,

u “ ωq ^ v ” β in HqpX,ΩnX b Lb Iphqq.
By closedness of the covariant derivative and by continuity of the injection L2pωb h0q ãÑ L1pωb h0q on the
compact manifold X, we obtain

}Bε0v}
2
L1pωbh0q

ď Cqε0}β}
2.

As ϕ “ limεÑ0 ϕε and Bϕ “ limεÑ0 Bϕε in L1
locph0q, and as we haven proven that v is in fact holomorphic,

by the continuity of the covariant derivative operator, we infer that Bϕ^ v “ limεÑ0 Bϕε ^ v in the sense of
distributions, and we have }Bhv}2L1pωbh0q

“ 0, which means that Bhv “ 0. The closedness property is proved
along the same lines.
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2.4. Foliation induced by sections

We show that the closedness property of the holomorphic section provided by the hard Lefschetz theorem
induces a foliation onX. Here foliation means that there exists an irreducible analytic set V of the total space
TX such that for any x P X, Vx :“ V X TX is a complex vector space and the section sheaf OpV q Ă OpTXq
is closed under the Lie bracket. It is equivalent to say that OpV q is closed under Lie bracket and that
OpTXq{OpV q is torsion free.

We consider v P H0pX,Ωn´qX b L b Iphqq, q ě 1 a parallel section with respect to the singular metric
h. In particular a section constructed by the hard Lefschetz theorem is such a section. The interior product
with v gives an OX -morphism (which is well de�ned on the whole of X )

Fv : TX Ñ Ωn´q´1
X b L

X ÞÑ ιXv.

First we observe that the kernel KerpFvq is coherent and locally free over a Zariski open set � this
merely relies on the fact that v is holomorphic, and although the proof is purely formal, we repeat here
the standard argument for the reader's convenience. For any z P X, take an open neighbourhood V of
z such that L|V is trivial and on this open set vpzq “

ř

|I|“n´q vIpzqdzI where vI P ΓpV,OXq. Consider
ξ “

ř

ξjpzq
B
Bzj

a local tangent vector �eld on V . For any multiindex I and any j P I, we write it in the
form I “ pj, I 1jq. Then ξ P KerpFvq if and only if

ř

j,I,|I|“n´q´1 ξjupj,IqdzI “ 0, i.e. if and only if for any
I, |I| “ n´ q´ 1,

ř

j ξjpzqupj,Iqpzq “ 0. This gives a local system of analytic equations de�ning KerpFvq. In
particular, we see that KerpFvq is locally free over the Zariski open set where the holomorphic linear system
ř

j ξjpzqupj,Iqpzq “ 0 (|I| “ n´ q ´ 1) achieves its generic rank.
Next, we show that the spaces of sections of KerpFvq are closed under Lie brackets; this uses of course

the closedness property of v. Since the closedness under Lie brackets is a local property, we can take an
open set U such that there exists a nowhere vanishing local generator sL of the line bundle L on U , and
we verify the closedness of the Lie bracket on U . On U , v “ u b sL for some u P H0pU,Ωn´qX q. Denote
by X,Y two local tangent vector �elds in KerFv Ă OpTXq de�ned on U . Observe that dhpu b sLq is only
almost everywhere de�ned (instead of pointwise de�ned). The above equalities are calculated in the sense
of currents. We have

0 “ dhpub sLqpX,Y, ‚q

“ pdub sL ` p´1qdeg uu^ dhsLqpX,Y, ‚q

“ dupX,Y, ‚q b sL ` p´1qdeg uu^ dhsLpX,Y, ‚q

“ dupX,Y, ‚q b sL ` p´1qdeg urupX, ‚qdhsLpY q ´ upY, ‚qdhsLpXq ` ...s

“ dupX,Y, ‚q b sL

The above dots ... mean terms of the form ˘upX,Y, ‚qdhsLp‚q. The last equality uses of course the fact
that X,Y P KerFv.

For any X0, ..., Xn´q tangent vector �elds of U such that X0 “ X,X1 “ Y , we have

0 “ dupX0, ..., Xn´qq “

n´q
ÿ

i“0

p´1qiXirupX0, ..., X̂i, ..., Xkqs

`
ÿ

0ďiăjďn´q

p´1qi`juprXi, Xjs, X0, ..., X̂i, ..., X̂j , ..., Xn´qq

“ ´uprX,Y s, X2, ..., Xn´qq,

which means that rX,Y s P KerpFvq.
By the Frobenius theorem, the subsheaf KerpFvq Ă TX de�nes a regular holomorphic foliation on a

Zariski open set. Notice additionally that KerpFvq is saturated in TX , i.e. TX{KerpFvq » ImpFvq is torsion
free, as a subsheaf of the locally free sheaf Ωn´q´1

X b L.
We can also reformulate our conclusions in the following form: denote by r the generic rank of KerpFvq.

Then, looking at Fv as a morphism of bundles rather than as a morphism of sheaves, we get a meromorphic
morphism

X 99K GrpTX , rq

z ÞÑ KerpFv,zq

where GrpTX, rq is the Grassmannian bundle of r-dimensional subspaces of TX , and the corresponding
distribution of subspaces is integrable on the Zariski open set where the above map is holomorphic.

Let us observe that the foliation property only holds for the parallel sections. In general, a non trivial
section v P H0pX,Ωn´qX b Lq, q ě 1, does not necessarily induce a foliation. We give below a concrete
example of the non-integrability of KerpFvq for such a section v, and thank Professor A. Höring for pointing
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out the example. It is interesting at this point to compare the situation with the following result proved
in [Dem02]: if L is a psef line bundle over a compact Kähler manifold X and 0 ď q ď n “ dimX, then
for every non-zero holomorphic section v P H0pX,ΩqX b L´1q, the kernel KerpFvq automatically de�nes a
foliation on X.

The example pointed out by A. Höring �rst appeared in the paper of Beauville [Bea00]. Let A be an
abelian surface and X “ A ˆ P1. Let pU, V q be a basis of H0pA, TAq , and let S, T be two vector �elds on
P1 which do not commute. For example, in the homogeneous coordinates rw1 : w2s of P1, we can take

S “ w2
B

Bw1
, T “ w1

B

Bw2
.

Then the vector �elds U ` S and V ` T span a rank 2 subbundle Σ of TX . Since U ` S, V ` T have no
common root, Σ – O‘2

X . In particular, Σ is not integrable, i.e. Σ is not closed under the Lie bracket of
vector �elds. Consider the short exact sequence of vector bundles

0 Ñ Σ Ñ TX Ñ TX{Σ Ñ 0.

We deduce that TX{Σ – ´KX . The quotient map TX Ñ TX{Σ – ´KX induces by duality a vector bundle
morphism KX Ñ Ω1

X . Thus we have a non trivial section ηS,T P H0pX,Ω1
X b p´KXqq.

To use the hard Lefschetz theorem, we take the following smooth metric on ´KX . Denote by π1 : X Ñ A,
π2 : X Ñ P1 the natural projections. ´KX “ π˚2OP1p2q. Thus ´KX is a semiample divisor. By taking
the smooth metric h induced by a basis of global sections π˚2H

0pP1,OP1p2qq (or a base point free system of
global sections), we get a smooth positive metric on ´KX . In particular, the multiplier ideal sheaf associated
to this metric is trivial. Moreover, by construction, the metric is real analytic. In other words, we have a
section v P H0pX,Ω1

X b p´KXqq such that KerpFvq is not integrable, while the metric is positive and real
analytic.

Fix any Kähler metric ω on X. By the hard Lefschetz theorem, we have a surjective map

H0pX,Ω1
X b p´KXqq Ñ H2pX,OXq.

The image ω2 ^ ηS,T has a pre-image ηS,T which does not de�ne a foliation on X with the above choice of
S, T .

Next, we derive by an explicit calculation what is the pre-image given by the hard Lefschetz theorem,
and show that this pre-image indeed de�nes a foliation on X. To simplify our exposition, we keep the same
notation as above without assuming any longer that S, T do not commute. Fix ωA a �at metric on A such
that U, V form an orthonormal basis at each point. Fix ωP1 a Kähler metric on P1 induced by the Fubini-
Study metric and �x ω “ π˚1ωA`π

˚ωP1 a Kähler metric on X. In particular, with this choice of metric, the
induced metric ^3ω b h on KX ` p´KXq is trivial.

We begin by showing that for any choice of S, T , the image ω2 ^ ηS,T is the same. To verify this claim,
we use the following isomorphism of C-vector spaces. Notice that H2pX,OXq – π˚1H

2pA,OAq – C. Fix
some x P P1. Consider the morphism

ι : H2pX,OXq Ñ C

tuu ÞÑ

ż

Aˆtxu

u^ iU˚ ^ V ˚.

Here u is a C8
p0,2qpXq representative of tuu P H2pX,OXq. It is surjective since a generator of H2pX,OXq

can be represented by π˚1 pU
˚
^ V

˚
q whose image is equal to

ş

A
ω2
A. Since both sides are isomorphic to C,

we have an isomorphism.
For any x P P1, let W be a local generator TP1 with norm 1 with respect to ωP1 . In particular, locally

U, V,W form an orthonormal basis with respect to ω pointwise. Assume that locally S “ fW and T “ gW .
There exists a C8 splitting of the short exact sequence 0 Ñ Σ Ñ TX Ñ TX{Σ Ñ 0 by TX – Σ ‘ TX{Σ
which is induced by ω. Locally, TX is spanned by orthogonal basis fU ` gV ´W , U ` fW and V ` gW .
With this identi�cation, η can be locally given by for any ξ P TX

ηpξq “
xξ, fU ` gV ´W y

|fU ` gV ´W |2
pfU ` gV ´W q.

Thus η is given by

p
f

1` f2 ` g2
U˚ `

g

1` f2 ` g2
V ˚ ´

1

1` f2 ` g2
W˚q b pfU ` gV ´W q.

The anticanonical line bundle ´KX is locally generated by

pfU ` gV ´W q ^ pU ` fW q ^ pV ` gW q “ ´p1` f2 ` g2qU ^ V ^W.
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In other words, the identi�cation of ΣK – TX{Σ – ´KX means the identi�cation of fU ` gV ´W with
´p1` f2 ` g2qU ^ V ^W . Thus ω2 ^ η seen as a C8

p0,2q form is given by

fV
˚
^W

˚
` gU

˚
^W

˚
` U

˚
^ V

˚
.

Using this expression, ιpω2 ^ ηS,T q is the same for any S, T . Since ι is an isomorphism of vector spaces,
ω2 ^ ηS,T is independent of the choice of S, T .

In the following, we show that the section constructed in the hard Lefschetz theorem for ω2 ^ ηS,T is
ηS,T associated with S “ T “ 0. We remark that since the metric is smooth, we can directly use the result
of [Eno93] without employing the equisingular approximation of [DPS01]. In other words, the pre-image is
given by the pointwise Lefschetz isomorphism of the harmonic representative of an element in H2pX,OXq.

We claim that a generator of H2pX,OXq can be represented by the harmonic p0, 2q-form U
˚
^ V

˚
. The

reason is as follows. Since the metric is trivial on OX , the covariant derivative coincides with the exterior
derivative. Since U, V are global parallel holomorphic sections, dU˚ “ dV ˚ “ 0. This implies in particular
that BpU

˚
^V

˚
q “ 0. On the other hand, U

˚
^V

˚
is independent of the choice of coordinate on P1. To prove

that B
˚
pU
˚
^V

˚
q “ 0, it is enough to make a calculation in a normal coordinate chart centred at x. In other

words, locally ω “ iU˚^U
˚
`iV ˚^V

˚
`iW˚^W

˚
with dW pxq “ 0. (The existence of the normal coordinate

chart is ensured by the assumption that ω is Kähler.) Since B
˚
“ ´˚B˚, we have B

˚
pU
˚
^V

˚
qpxq “ 0, as this

form involves only the value dW pxq at x. By the pointwise Lefschetz isomorphism, the pre-image of U
˚
^V

˚

in the hard Lefschetz theorem is given by U ^ V P H0pX,Ω1
X b ´KXq – H0pX,^2TXq – H0pA,KAq. It

de�nes a foliation of TX generated by U, V , which has leaves Aˆ txu (x P P1).

2.5. Counterexample to coherence

In this section, we wonder whether it is possible to replace the multiplier ideal sheaf by its �lower
semi-continuous regularization�, i.e.

I´pϕq :“
č

δą0

Ipp1´ δqϕq,

which could be thought of as some sort of limit limδÑ0` Ipp1´ δqϕq. A priori, as an in�nite intersection of
ideal sheaves, this lower semi-continuous regularization might not be coherent. It contains certainly Ipϕq
and can be di�erent from it if 1 is a jumping coe�cient of the multiplier ideal sheaf. In this section, we show
by a counterexample that the above in�nite intersection

Ş

δą0 Ipp1´ δqϕq need not be coherent for arbitrary
psh functions; hence some further conditions should be added to ensure coherence and possible applications
to algebraic geometry, thanks to Serre's GAGA theorem [Ser56].

Proposition 2.10. Let B be the ball of radius 1
2 centred at 0 in C2, and consider the plurisubharmonic

function
ϕpz, wq “ log|z| `

ÿ

kě1

εklogp|z| ` |w ´ ak|
Nkq

where ak is any sequence converging to 0 smaller than 1
2 and εk ą 0 and Nk P N˚ are suitable numbers p to

be determined laterq. Then ϕ de�nes multiplier sheaves such that the intersection ideal
Ş

δą0 Ipp1´ δqϕq is
not coherent.

The potential used above is a modi�cation of the one given in [GL16] (and was suggested to the author
by Demailly). Assume that the ak's are distinct and not equal to zero. We recall the following elementary
calculation of [Siu01].

Lemma 2.11. Let a, b, and c be some positive numbers such that a and cp1´ ras´a
b q are not integers and

ras ´ a ă b ă 1. Let p0 “ ra ´ 1s and q0 “ tcp1 ´ ras´a
b qu. Then on C2, the multiplier ideal sheaf for the

weight function
a log|z| ` logp|z|b ` |w|cq

is generated by zp0`1 and zp0wq0 . Here t¨u denotes the round-down and r¨s denotes the round-up.

Using this lemma, we can calculate the multiplier ideal sheaf at p0, akq since near p0, akq the function is
equisingular to log|z| ` εklogp|z| ` |w ´ ak|

Nkq. Using the trivial inequality
1

2
pαγ ` βγq ď pα` βqγ ď 2γpαγ ` βγq

for α, β, γ non negative, one can easily reduce the required check to the lemma. In order to compute the
multiplier ideal sheaf associated to p1´ δqϕ at p0, akq, 0 ă δ ă 1, we apply the lemma to a “ 1´ δ, b “ 1´ δ

and c “ p1´ δqNkεk. Once εk, Nk are �xed, the number cp1´ ras´a
b q is an integer only for countably many

values of δ, a situation that does not a�ect I´pϕq. When εk converge to 0 fast enough, ϕ well de�ne a
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psh function on B. In particular, we can choose εk positive such that
ř

εk ă 8. By this assumption,
ϕ ě p1`

ř

εkqlog|z|. Hence it is not identically in�nite. In particular, ϕ is the limit of a decreasing sequence
of psh functions log|z| `

ř

k0ěkě1 εklogp|z| ` |w ´ ak|
Nkq. Hence it is a psh function on B for any choice of

Nk.
Now �x C ą 1 and choose Nk so that Nkεk ě C and Nkεk is not an integer. Consider a given index k.

For such a choice and δ small enough, qk,δ “ tNkεkp1´ 2δqu ě 1. By the lemma, Ipp1´ δqϕq is generated at
p0, akq by z, pw ´ akq

qk,δ . In particular, pz, pw ´ akq
tNkεkuq Ă pI´pϕq, akq. Now we prove that I´pϕq is not

coherent by contradiction. If I´pϕq is coherent, since B is a Stein manifold, by Cartan theorem A for any
p0, akq the map H0pB, I´pϕqq Ñ I´pϕqp0,akq is surjective. For any f P H0pB, I´pϕqq, fp0, akq “ 0 for any k.
Since p0, akq has a cluster point 0 on the complex line tz “ 0u, we have f |tz“0u ” 0. In other words, f can be
divided by z. But pw ´ akqtNkεku should then be the restriction of such a function f , and this contradiction
yields the proposition.

We check below that the coherence may however hold for psh functions that are not too badly behaved.
By de�nition, it is enough to treat the case when 1 is actually a jumping value of the multiplier ideal sheaves
t ÞÑ Iptϕq. First, we observe that when ϕ has analytic singularity, we have I´pϕq “ Ipp1 ´ δqϕq for δ ą 0
small enough, in particular, I´pϕq is coherent. In fact, if ϕ has the form ϕ “

ř

αj log|gj | where Dj “ g´1
j p0q

are non-singular irreducible divisors with normal crossings, then Ipϕq is the sheaf of functions f on open sets
U Ă X such that

ş

U
|f |2

ś

|gj |
´2αjdV ă 8. Since locally the gj can be taken to be coordinate functions

from a local coordinate system pz1, . . . , znq, the integrability condition is that f be divisible by
ś

g
mj
j where

mj ą tαju. Hence Ipϕq “ Op´tDuq “ Op´
ř

tαjuDjq. Saying that 1 is a jumping coe�cient in this case
means that there exist some index subset J such that for any j0 P J we have αj0 “ tαj0u. In this case for δ
small enough we have that

Ipp1´ δqϕq “ Op´
ÿ

jPJ

pαj ` 1qDj ´
ÿ

jRJ

tαjuDjq

and the conclusion follows. More generally, if ϕ has arbitrary analytic singularity, there exists a smooth
modi�cation ν : X̃ Ñ X of X such that ν˚Ipϕq is an invertible sheaf Op´Dq associated with a normal
crossing divisor D “

ř

λjDj , where pDjq are the components of the exceptional divisor of ν. Now, we have
KX̃ “ ν˚KX ` R where R “

ř

ρjDj is the zero divisor of the Jacobian determinant of the blow-up map.
By the direct image formula, we get

Ipϕq “ ν˚pOpRq b Ipϕ ˝ νqq,

and the proof is reduced to the divisorial case.
Even more generally, for any psh function ϕ and any psh function ψ with zero Lelong numbers (i.e., for

every x, νpψ, xq “ 0), we have Ipϕq “ Ipϕ` ψq (cf. Proposition 2.3 [Kim15]). By the above discussion we
thus get I´pϕ` ψq “ Ipp1´ δqpϕ` ψqq for δ ą 0 small if ϕ has analytic singularities.

In particular, when X is 1-dimensional, Siu's decomposition theorem [Siu74] can be used, to decompose
ddcϕ into the sum of a convergent series of Dirac masses and of a current with zero Lelong numbers; only
the locally �nite set of points where the Lelong number number is at least 1 plays a role; we then see that
I´pϕq “ Ipp1 ´ δqϕq for δ small enough, hence I´pϕq is coherent. More generally, the following variant of
Nadel's proof on the coherence of multiplier ideal sheaf [Nad90] can be exploited.

Lemma 2.12. For any psh function ϕ on Ω Ă X such that E1pϕq :“ tx; νpϕ, xq ě 1u consists of isolated
points, the sheaf I´pϕq is a coherent sheaf of ideals over Ω.

Proof. We follow the proof of Nadel. Without loss of generality, we can assume that Ω is the unit ball.
By the strong noetherian property of coherent sheaves, the family of sheaves generated by �nite subsets of
H2
´pΩ, ϕq :“ tf P OΩpΩq;

ş

Ω
|f |2e´2p1´δqϕ ă 8,@δ P s0, 1ru has a maximal element on each compact subset

of Ω, hence H2
´pΩ, ϕq generates a coherent ideal sheaf J in OΩ. By de�nition we have J Ă I´pϕq. We will

prove that in fact J “ I´pϕq, which shows in particular that I´pϕq is coherent.
For the other direction, it is enough to prove that Jx ` I´pϕqx Xms`1

x “ I´pϕqx for every integer s,
by the Krull lemma. Let f P I´pϕqx be de�ned in a neighbourhood V of x and let θ be a cut-o� function
with support in V such that θ “ 1 in some neighbourhood of x. We solve the B equation Bu “ Bpθfq by
Hörmander's L2 estimates ,with respect to the strictly psh weight

ϕ̃pzq :“ ϕpzq ` pn` sqlog|z ´ x| ` |z|2.

The integrability is ensured by the fact that Bpθfq vanishes near x and the Skoda integrability theorem
[Sko72]. We remark that the Lelong number outside a small open neighbourhood of 0 is strictly less than
1 pointwise by the assumption that E1pϕq is isolated at x.



2.6. ON THE OPTIMALITY OF MULTIPLIER IDEAL SHEAVES 43

Hence we get a solution u such that
ş

Ω
|u|2e´2ϕ|z ´ x|´2pn`sqdλ ă 8, thus F “ θf ´ u is holomorphic.

F P H2
´pΩ, ϕq as a sum of a function in L2pΩ, ϕq and a function in H2

´pΩ, ϕq. Moreover, fx ´ Fx “ ux P
I´pϕqx Xms`1

x . This �nishes the proof. �

2.6. On the optimality of multiplier ideal sheaves

We study here whether the ideal sheaves Ipϕq involved in the hard Lefschetz theorem can be replaced
by ideals Ipp1´ δqϕq Ą Ipϕq. In other words, if pL, hq is a pseudo-e�ective line bundle on a compact Kähler
manifold pX,ωq of dimension n, iΘL,h ě 0 its curvature current and Iphq the associated multiplier ideal
sheaf, we study whether for any δ P r0, 1s small enough the wedge multiplication operator ωq ^ ‚ induces a
surjective morphism

Φqω,h : H0pX,Ωn´qX b Lb Ipp1´ δqhqq ÝÑ HqpX,ΩnX b Lb Ipp1´ δqhqq.

First, we recall the following special case of the hard Lefschetz theorem. Assume that L admits a smooth
metric h0 such that its curvature form α is semi-positive. Then, the wedge multiplication operator ωq ^ ‚
induces a surjective morphism for any δ P r0, 1s

Φqω,h : H0pX,Ωn´qX b Lb Ipp1´ δqhqq ÝÑ HqpX,ΩnX b Lb Ipp1´ δqhqq.

The proof of this case just consists of applying the hard Lefschetz theorem to the Hermitian line bundle
pL, hδ0h

1´δq. If the line bundle admits a positive singular metric h0 such that the corresponding Lelong
numbers are equal to 0 at every point, by Proposition 2.3 in [Kim15], for any δ P r0, 1s, the metric pL, hδ0h

1´δq

has a multiplier ideal sheaf equal to Ipp1´δqhq. Then the bundle valued hard Lefschetz theorem also implies
the surjectivity property.

The condition that the line bundle admits a positive singular metric such that the Lelong number of
this metric is pointwise 0 implies in particular by regularization (see e.g. Theorem 14.12 in [Dem12a]) that
the line bundle is nef. However, the converse is false by example 1.7 in [DPS94], in which the only positive
singular metric on the nef line bundle is the singular one induced by a section. An alternative example is
given in [Koi17]: there, Koike considers the anticanonical line bundle ´KX of the blow-up of P2 at 9 points,
and shows that there exists some con�guration of the nine points such that ´KX is nef, while the singular
metric with minimal singularities is induced by a section s P H0pX,´KXqzt0u. In particular, there exists
no singular metric on ´KX with curvature ě 0, such that the Lelong number of the singular metric is equal
to 0 at each point.

This condition is also non equivalent to the semipositivity of the line bundle, although it is obviously
implied by semipositivity. A counter example for the converse direction is provided by [BEGZ10], example
5.4 and [Kim07], example 2.14. Take a non-trivial rank 2 extension V of the trivial line bundle by itself, over
an elliptic curve C, and an ample line bundle A over C. Then consider X “ PpV ‘Aq and the associated line
bundle Op1q. It is big and nef, and this is enough to conclude that it admits a semi-positive singular metric
with Lelong numbers equal to 0. In fact, it is enough to argue for the semi-positive metric with minimal
singularity. By the Kodaira lemma, there exists m0 P N such that Opm0q “ Ã`E where Ã is an ample line
bundle over X and E is an e�ective line bundle over X. For any m ě m0, a metric on Opmq is induced by a
smooth strictly positive metric on the ample line bundle Ã`Oppm´m0qq and by a singular metric induced
by a non zero section on the e�ective line bundle E. This metric itself induces a metric on Op1q which is by
de�nition more singular than the metric with minimal singularity. It has pointwise Lelong numbers at most
equal to 1

m . Hence the metric with minimal singularity has Lelong numbers equal to 0 pointwise. However,
Op1q cannot admit a smooth semi-positive metric: for this, note that X has a submanifold Y – PpV q given
by the surjective bundle morphism V ‘ A Ñ V ; a smooth semipositive metric on Op1q would induce a
smooth semipositive metric on OY p1q by restriction, which is impossible by [DPS94].

As we have seen, the extension is possible if the minimal metric is not �too bad�. This is also true in the
purely exceptional case, as we will now see.

Let X be the blow up a point of some smooth complex manifold Y of dimension n. Denote by E the
exceptional divisor. Let L be a semi-positive line bundle on X such that L|E is not trivial on E. Consider
the line bundle L`E. Take h to be metric on L`E induced by the canonical section of the e�ective divisor
E, tensor product with the given semi-positive metric on L. We start by remarking that for any δ P s0, 1s
we have Ipp1 ´ δqhq “ OX . Hence the lower semi-continuous regularization of the multiplier ideal sheaf is
trivial. We claim that the map

H0pX,Ωn´qX b Lb Eq Ñ HqpX,KX b Lb Eq

is surjective for every q ě 1. First, by the hard Lefschetz theorem, we �nd that

H0pX,Ωn´qX b Lq Ñ HqpX,KX b Lq
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is surjective for every q ě 1. On the other hand, we have the following commutative diagram

H0pX,Ωn´qX b Lq ÝÑ H0pX,Ωn´qX b Lb Eq
§

§

đ

§

§

đ

HqpX,KX b Lq ÝÑ HqpX,KX b Lb Eq.

To show that the right arrow is surjective, it is enough to show that the bottom arrow is surjective. By Serre
duality, this is equivalent to proving that

Hn´qpX,´L´ Eq Ñ Hn´qpX,´Lq

is injective. By considering the long exact sequence associated to the short exact sequence

0 Ñ OXp´L´ Eq Ñ OXp´Lq Ñ Op´Lq|E Ñ 0,

it is enough to show that for any q ě 1

Hn´q´1pE,´L|Eq “ 0.

Remind that E – Pn´1. For any q P Z, for 0 ă i ă n ´ 1, we have that HipPn´1,Opqqq “ 0. Remind also
that the Picard group of Pn´1 is Z. This �nishes the case q ď n ´ 2, and the case q “ n ´ 1 also holds,
since our assumptions L ě 0 and L|E non trivial imply H0pE,´L|Eq “ 0. The same arguments also work
for L “ OX . We have an exact sequence

H0pX,OXq Ñ H0pE,OEq Ñ H1pX,Op´Eqq Ñ H1pX,OXq.

The �rst morphism is an isomorphism � it is just a restriction morphism applied to constant functions �
hence H1pX,Op´Eqq Ñ H1pX,OXq is injective.

In general, as discussed in [DPS96], the minimal singular metric of a psef line bundle can still be very
singular, and this fact might lead to a non coherent lower semi-continuous regularization of the multiplier
ideal sheaf. It thus seems to be a di�cult problem to improve the hard Lefschetz theorem by replacing the
given multiplier ideal sheaf by its lower semi-continuous regularization, if at all possible.



CHAPTER 3

Numerical dimension and vanishing theorems

In the �rst part of this chapter, we compare di�erent de�nitions of numerical dimension of a psef class
or a psef line bundle. Although it is perhaps well-known for experts, we still give the complete proofs here.
In the second part of this chapter, some L2 vanishing theorems in terms of numerical dimension are given.
The variant of Junyan Cao's vanishing will be also used in the next chapter to give a Kawamata-Viehweg
type vanishing theorem without multiplier ideal sheaf.

3.1. Numerical dimension

We �rst recall the Kähler version of the de�nition of numerical dimension as stated in [Dem14]. For L
a psef line bundle on a compact Kähler manifold pX,ωq, we de�ne

ndpLq :“ maxtp P r0, ns; Dc ą 0,@ε ą 0, Dhε, iΘL,hε ě ´εω, such that

ż

XzZε

piΘL,hε ` εωq
p ^ ωn´p ě cu.

Here the metrics hε are supposed to have analytic singularities and Zε is the singular set of the metric. Fix
a family of metric hε as stated in the de�nition. For such metrics, for p ą ndpLq, by de�nition,

lim
εÑ0

ż

XzZε

piΘL,hε ` εωq
p ^ ωn´p “ 0.

If the line bundle L is nef, we can take hε to be smooth and Zε “ H, (cf. the proof of point (i) in [BDPP13],
or [Bou02a]) and we have for any p

lim
εÑ0

ż

XzZε

piΘL,hε ` εωq
p ^ ωn´p “ lim

εÑ0

ż

X

pc1pLq ` εωq
p ^ ωn´p “

ż

X

c1pLq
p ^ ωn´p.

The integral condition in the de�nition of the numerical dimension in the nef case means that p “ ndpLq is
the largest integer such that

ż

X

c1pLq
p ^ ωn´p ‰ 0.

Since for each p, c1pLqp can be represented by a positive closed pp, pq-current, the triviality of the mass is
equivalent to the triviality of the current. In other words,

ndpLq “ maxtp; c1pLq
p ‰ 0u,

which corresponds to the de�nition of the numerical dimension for a nef line bundle.
In fact denoting α :“ c1pLq, the numerical dimension for the psef line bundle L is the numerical dimension

of the class of α de�ned in [BEGZ10].
To see it, we need the de�nition of moving intersection product for any psef p1, 1q-class α for any

1 ď p ď n. We start by recalling the following de�nition.

Definition 3.1. (See [DPS01]). Let ϕ1, ϕ2 be two quasi-psh functions on X (i.e. iBBϕi ě ´Cω in
the sense of currents for some C ě 0). Then, ϕ1 is less singular than ϕ2 (and write ϕ1 ĺ ϕ2) if we have
ϕ2 ď ϕ1 `C1 for some constant C1. Let α be a psef class in H1,1

BCpX,Rq and γ be a smooth real p1, 1q-form.
Let T1, T2, θ P α with θ smooth and such that Ti “ θ` iBBϕipi “ 1, 2q. ϕi is well de�ned up to constant since
X is compact. We say T1 ĺ T2 if and only if ϕ1 ĺ ϕ2.

The minimal element Tmin,γ with the pre-order relation ĺ exists by taking the upper semi-continuous
envelope of all ϕi such that θ ` γ ` iBBϕi ě 0 and supX ϕi “ 0.

The positive product de�ned in [BEGZ10] is the real pp, pq cohomology class xαpy of the limit

xαpy :“ lim
δÑ0

txT pmin,δωyu

where Tmin,δω is the positive current with minimal singularity in the class α ` δtωu and xT pmin,δωy is the
non-pluripolar product. The numerical dimension of α is de�ned as

ndpαq :“ maxtp|xαpy ‰ 0u

45
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which is also equal to maxtp|
ş

X
xαpy ^ ωn´p ą 0u. The equivalence of two numerical dimensions given here

is an adapted version of arguments in [Tos]. We will also need the de�nition of non-Kähler locus de�ned
in [Bou02b].

Definition 3.2. Let α be a big class in H1,1pX,Rq. The non-Kähler locus is de�ned to be

EnKpαq :“
č

TPα

E`pT q

where T ranges all Kähler currents in α and E`pT q :“
Ť

cą0EcpT q.

We will also need the following lemma in [Bou02b] which implies in particular that the non-Kähler
locus is in fact an analytic set.

Lemma 3.3. Let α be a big class. There exists a Kähler current T̃ with analytic singularities such that
EnKpαq “ E`pT̃ q.

Proof. By regularization, we have equivalently that EnKpαq “
Ş

TPαE`pT q where T ranges all Kähler
currents with analytic singularities. Since T has analytic singularities, E`pT q is a proper analytic set. By
the strong Noether property, there exist Tipi P Iq �nite Kähler currents with analytic singularities such that
EnKpT q “

Ş

iPI E`pTiq. Take a regularization T̃ of miniPI Ti. Then we have

νpT̃ , xq ď min
iPI

νpTi, xq

for any x P X. In particular, this implies that

E`pT̃ q Ă
č

iPI

E`pTiq.

Since T̃ itself is a Kähler current with analytic singularities, we get in fact an equality in the statement. �

We will need the following result stated in [BEGZ10, Prop. 1.16].

Proposition 3.4. For j “ 1, ¨ ¨ ¨ , p, let Tj and T 1j be two closed positive p1, 1q-currents with small
unbounded locus (i.e. there exists a (locally) complete pluripolar closed subset A of X outside which the
potential is locally bounded) in the same cohomology class, and assume also that Tj is less singular than T 1j.
Then the cohomology classes of their non-pluripolar products satisfy txT1 ^ ¨ ¨ ¨ ^ Tpyu ě txT

1
1 ^ ¨ ¨ ¨ ^ T 1pyu

in Hp,ppX,Rq, where ě means that the di�erence is pseudo-e�ective, i.e. representable by a closed positive
pp, pq-current.

Now we are prepared to prove that

Proposition 3.5. For L a psef line bundle, we have that

ndpc1pLqq “ ndpLq.

Proof. Let hε be a family of metric with analytic singularities as stated in the de�nition of ndpLq.
Denote Aε :“ EnKpα ` εtωuq. Since Tmin,εω ĺ iΘL,hε ` εω, we have by proposition 3.4 that for any
1 ď p ď n

ż

XzZε

piΘL,hε ` εωq
p ^ ωn´p “

ż

XzpZεYAεq

xpiΘL,hε ` εωq
py ^ ωn´p ď

ż

XzpZεYAεq

xT pmin,εωy ^ ω
n´p.

The right hand term is the same as
ş

X
xT pmin,εωy ^ ωn´p, since the non-pluripolar product has no mass on

any analytic set. It has limit equal to
ş

X
xc1pLq

py^ωn´p. In particular, this implies that ndpc1pLqq ě ndpLq.
We remark that Aε is an analytic set hence is a small unbounded locus.

For the other direction, we construct a family of metrics with analytic singularities with control of
the Monge-Ampère mass from below. Denote p :“ ndpc1pLqq. Since xc1pLqpy ‰ 0, for ε small enough,
xT pmin,εωy ‰ 0 and

ż

X

xT pmin,εωy ^ ω
n´p ě c

for some constant c ą 0 uniform for ε small enough. Let Tε,δ be a sequence of regularisation of Tmin,εω with
analytic singularities such that

Tε,δ ě ´δω

and the potentials of Tε,δ decrease to the potential of Tmin,εω. Hence Tmin,εω ` εω and Tε,δ ` εω are closed
positive currents in the cohomology class α ` 2εtωu if δ ď ε. By lemma 3.3, Aε “ E`pTεq for some Kähler
current with analytic singularities. Thus Tmin,εω ĺ Tε, whose potential is locally bounded outside Aε, as
the potential of Tε is. So the potentials of Tε,δ are also locally bounded outside Aε. By weak continuity of
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the Bedford-Taylor Monge-Ampère operators with respect to decreasing sequences of functions, we have on
XzAε that,

pTε,δ ` εωq
l Ñ pTmin,εω ` εωq

l

for any l. By the Fatou lemma, we have that
ż

XzAε

pTmin,εω ` εωq
p ^ ωn´p ď liminfδÑ0

ż

XzAε

pTε,δ ` εωq
p ^ ωn´p.

Take any sequence δpεq such that δpεq ď ε and limεÑ0 δpεq “ 0. Let hε be the metric on L with analytic
singularities such that iΘL,hε “ Tε,δpεq´εω. The metric hε is uniquely de�ned up to a multiple. To normalise
it, we can assume for example, that the maximum of the potentials on X equals to 0. Hence we have that

iΘL,hε ě ´pε` δpεqqω ě ´2εω.

Then the sequence of metric satis�es the condition demanded in the de�nition of ndpLq. �

Remark 3.6. Tmin,ε1ω ĺ Tmin,εω ` pε
1 ´ εqω for any ε ď ε1. Denote Tmin,εω “ θ ` εω ` iBBϕmin,εω. We

can arrange that
ϕmin,0 ď ϕmin,εω ď ϕmin,ε1ω.

The Bergman kernel regularisation perserves the ordering of potentials (cf. [Dem14]), so we have

ϕ0,δ ď ϕε,δ ď ϕε1,δ.

for any δ ą 0. If δpεq is increasing with respect to ε, by the proof of the proposition, we can choose the
metric hε to be decreasing with respect to ε. The limit of ϕε,δpεq as εÑ 0 is equal to ϕmin,0 corresponding
to the metric with minimal singularities on L.

Remark 3.7. Similar to the de�nition of [Dem14] for the numerical dimension of a psef line bundle,
we can de�ne in a similar way the numerical dimension of a psef cohomology class. The above proof in fact
shows that the two de�nitions of numerical dimension of a psef cohomology class coincide.

In the rest of the section, we show that the movable intersection of cohomology classes de�ned in
[BDPP13] coincides with the positive product de�ned in [BEGZ10] which might be well-known for experts.
In particular, using movable intersection instead of positive intersection, we can give a third equivalent
de�nition of numerical dimension of a psef cohomology class.

To distinguish the notations, we will denote by x, y for the positive product and xx, yy for the movable
intersection. In other words, it shows that the numerical de�nition of the psef class α can either de�ned to
be the largest number such that xαpy ‰ 0 or such that xxαpyy ‰ 0.

We start by recalling the de�nition of the movable intersection given in Theorem 3.5 of [BDPP13]. Let
pX,ωq be a compact Kähler manifold and α be a psef class on X. To simplify the notations, we only de�ne
xxαpyy where the general case is similar. First assume that α is big. To know the value of the product pairing
with any pn´ p, n´ pq-smooth form, it is enough to know its value with a countable dense family of smooth
forms. Since for any pn´ p, n´ pq-smooth form u, u “ Cωn´p ´ pCωn´p ´ uq. For C ą 0 big enough, both
Cωn´p and Cωn´p ´ u is strongly positive forms (since X is compact). Thus it is enough to consider only
a countable dense family of strongly positive forms.

Fix a smooth closed pn´ p, n´ pq strongly-positive form u on X. We select Kähler currents T P α with
analytic singularities, and a log-resolution µ : X̃ Ñ X such that

µ˚T “ rEs ` β

where rEs is the current associated to a R-divisor and β a semi-positive form. We consider the direct image
current µ˚pβ^. . .^βq. Given two closed positive p1, 1q-currents T1, T2 P α, we write Tj “ θ`iBBϕi (j “ 1, 2)
for some smooth form θ P α. De�ne T :“ θ ` iBBmaxpϕ1, ϕ2q. We get a current with analytic singularities
less singular than these two currents. By this way, if we change the representative T with another current T 1,
we may always take a simultaneous log-resolution µ such that µ˚T 1 “ rE1s ` β1, and we can always assume
that E1 ď E. By calculation, we �nd

ż

X̃

β1 ^ . . .^ β1 ^ µ˚u ě

ż

X̃

β . . .^ β ^ µ˚u.

In fact, we have
ż

X̃

β1 ^ β ^ . . .^ β ^ µ˚u “

ż

X̃

pβ ` rEs ´ rE1sq ^ β ^ . . .^ β ^ µ˚u

ě

ż

X̃

β . . .^ β ^ µ˚u.

A similar substitution applies to change all β1 by β.
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It can be shown that the closed positive currents µ˚pβ ^ . . . ^ βq are uniformly bounded in mass. In
fact, for any Kähler metric ω in X, there exists a constant C ą 0 such that Ctωu ´ α is a Kähler class. In
other words, there exists some Kähler form γ on X in the cohomology class Ctωu´α. By pulling back with
µ, we �nd

Cµ˚ω ´ prEs ` βq ” µ˚γ,

hence β ” Cµ˚ω ´ prEs ` µ˚γq where ” means in the same cohomology class. By performing again a
substitution in the integrals, we �nd

ż

X̃

βk ^ µ˚ωn´k ď Ck
ż

X̃

µ˚ωn “ Ck
ż

X

ωn.

For each of the integrals associated with a countable dense family of forms u, the supremum of
ş

X̃
β . . .^

β ^ µ˚u is achieved by a sequence of currents pµmq˚pβm ^ . . .^ βmq obtained as direct images by a suitable
sequence of modi�cations µm : X̃m Ñ X and suitable βm's. By extracting a subsequence, we can achieve
that this sequence is weakly convergent and we set

xxαpyy :“ lim Ò
mÑ`8

tpµmq˚pβm ^ . . .^ βmqu

In the general case when α is only psef, we de�ne

xxαpyy :“ lim Ó
δÓ0

xxpα` δtωuqpyy.

We now prove that these two products coincide for psef classes. Since in the two cases, the products are
the limit of the products of big classes in Hp,ppX,Rq, without loss of generality, we can assume α to be big.
We state it in the following lemma.

Lemma 3.8. For α a big class, for any 1 ď p ď n, we have

xαpy “ xxαpyy.

Proof. It is enough to prove by duality that for any smooth closed pn´p, n´pq-strongly positive form
u on X, we have

ż

X

xαpy ^ u “

ż

X

xxαpyy ^ u.

Denote by A the non-Kähler locus of α which is the pole of some Kähler current T in α with analytic
singularities. Denote by Tmin P α, the current with minimal singularities in α. By de�nition, it is less
singular than the Kähler current T . In particular, the potential of Tmin is locally bounded outside A. Let
Tε be a regularisation of Tmin such that Tε ě ´εω. Their potentials are locally bounded outside A as Tmin's
is. By weak continuity of the Bedford-Taylor Monge-Ampère operator along decreasing sequences we have
on XzA for any δ ą 0 and ε ď δ

pTmin ` δωq
p Ñ pTε ` δωq

p

as current. By Fatou lemma we have
ż

XzA

pTmin ` δωq
p ^ u ď liminfεÑ0

ż

XzA

pTε ` δωq
p ^ u.

Since the non-pluripolar product of currents has no mass along any analytic set, the left hand term has limit
equal to

ş

X
xαpy ^ u. We remark that both xαpy and xxαpyy depend continuously on α in the big cone. Since

Tε has analytic singularities, there exists a modi�cation µ : X̃ Ñ X such that

µ˚Tε “ rEs ` β

with E associated to a R-divisor and µ a biholomorphism on XzA. So we have
ż

XzA

pTε ` δωq
p ^ u “

ż

XzA

µ˚pβ ` δµ
˚ωqp ^ u ď

ż

X

xxpα` δωqpyy ^ u.

We remark that Tε ` δω is a Kähler current with analytic singularities for ε ă δ. When δ Ñ 0, we have

liminfεÑ0

ż

XzA

pTε ` δωq
p ^ u ď

ż

X

xxαpyy ^ u.

For the other direction, for any T P α a Kähler current with analytic singularities, there exists a modi�cation
µ : X̃ Ñ X such that

µ˚T “ rEs ` β
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as above. By the de�nition of non Kähler locus, T is locally bounded outside A. The modi�cation can be
achieved by a composition of blow-ups with smooth centres in A, so µ is a biholomorphism on XzA. So we
have

ż

XzA

T p ^ u “

ż

XzA

µ˚pβ
pq ^ u “

ż

X̃

βp ^ µ˚u ď

ż

XzA

xT pminy ^ u “

ż

X

xT pminy ^ u.

The inequality use proposition 1.16 in [BEGZ10] cited above and the fact that Tmin is less singular than
T . By taking supremum among all Kähler currents with analytic singularities in the cohomology class α, we
have

ż

X

xαpy ^ u ě

ż

X

xxαpyy ^ u.

�

3.2. Vanishing theorems

In this section, we generalise some L2 vanishing theorems in terms of numerical dimension of a psef line
bundle. At the end of this section, we give a variant of Nakano vanishing theorem. The relation of the
Nakano vanishing theorem with the others is as follows. Recall the classical Kawamata-Viehweg vanishing
theorem states that for a nef line bundle L over a projective manifold X, for any q ą n´ndpLq we have that

HqpX,KX b Lq “ 0.

It is natural to ask whether the canonical line bundle can be changed by ΩpX to get a Nakano type vanishing
theorem without strict positivity curvature condition. By the example of Ramanujam, it is not always
possible. The last section gives some laboratory discussions.

3.2.1. Bogomolov vanishing theorem.
Let L be a holomorphic line bundle over a compact Kähler manifold X, the Bogomolov vanishing

theorem [Bog] asserts that
H0pX,ΩpX b L

´1q “ 0

for p ă κpLq.
In [Mou98], the following two versions of Bogomolov vanishing theorem are given.

Theorem 3.9. If L is a nef line bundle over a compact Kähler manifold X, then

H0pX,ΩpX b L
´1q “ 0

for p ă ndpLq.

Theorem 3.10. If L is a psef line bundle over a compact Kähler manifold X, then

H0pX,ΩpX b L
´1q “ 0

for p ă epLq, where epLq is the biggest natural number k such that there exists T P c1pLq a positive p1, 1q-
current whose absolute part has rank k on a strictly positive Lebesgue measure set on X. (The absolute part
exists and is unique by the Lebesgue decomposition theorem.)

In this note, we give the following improved version of the Bogomolov vanishing theorem, following the
ideas of [Mou98].

Theorem 3.11. Let L be a psef line bundle over a compact Kähler manifold X. Then we have

H0pX,ΩpX b L
´1q “ 0

if p ă ndpLq.

In this section, we prove a numerical dimension version of the Bogomolov vanishing theorem. Now, let
us denote l :“ ndpLq. Then we have

λε :“

ş

XzZε
piΘL,hε ` εωq

n

ş

X
ωn

ě cεn´l.

The �rst step of the proof consists in the use of Yau's theorem [Yau78], so as to show that one can turn
the above integral inequality into a pointwise lower bound, more precisely, the inequality p˚q given below.
Up to a re-parametrisation of ε, we can assume that

iΘL,hε ` εω ě
ε

2
ω.

Let νε : Xε Ñ X be a log resolution of the analytic singularities of hε. We then have

ν˚ε piΘL,hε ` εωq “ rDεs ` βε
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where βε ě ε
2ν
˚
ε ω ě 0 is a smooth positive closed p1, 1q-form on Xε. It is strictly positive on the complement

XεzE of the exceptional divisor E (we denote its irreducible components as El). rDεs is the closed positive
current associated to a R-divisor. By the theorem of Hironaka [Hir64] we can assume that the exceptional
divisor is simple normal crossing divisors and the morphism is obtained as a composition of a sequence of
blow up with smooth centres. In this situation, there exist arbitrary small numbers ηl ą 0 such that the
cohomological class of βε ´

ř

ηlrEls is a Kähler class (which means that there exists a Kähler form in this
class).

Hence we can �nd a quasi psh function θ̂ε on Xε such that

β̂ε :“ βε ´
ÿ

ηlrEls ` iBBθ̂ε

is a Kähler metric on Xε. By taking ηl small enough, we can assume that
ż

Xε

pβ̂εq
n ě

1

2

ż

X

βnε .

The assumption on the numerical dimension implies there exists c ą 0 such that with Zε :“ νεpEq Ă X,
we have

ż

Xε

βnε “

ż

XzZε

piΘL,hε ` εωq
n

ě

ˆ

n

l

˙

p
ε

2
qn´l

ż

XzZε

piΘL,hε `
ε

2
ωql ^ ωn´l ě cεn´l

ż

X

ωn.

Hence we have
ż

Xε

pβ̂εq
n ě

c

2
εn´l

ż

X

ωn.

By Yau's theorem [Yau78], there exists a quasi-psh potential τ̂ε on Xε such that β̂ε ` iBBτ̂ε is a Kähler
metric on Xε with any prescribed volume form f̂ such that

ş

Xε
f̂ “

ş

Xε
pβ̂εq

n. By the integral condition, we
can choose a smooth volume form on Xε such that

p˚q f̂ ą
c

3
εn´lν˚ε ω

n

everywhere on Xε. Fix h a smooth metric on L and let ϕε be the weight function of hε (i.e. hε “ he´2ϕε).
We impose the additional normalization condition that supXεpν

˚
ε ϕε ` θ̂ε ` τ̂εq “ 0.

We now work again on X (e.g. by taking direct images to construct a sequence of singular metrics on
X). Consider θε :“ νε˚θ̂ε and τε :“ νε˚τ̂ε P L

1
locpXq. De�ne Φε :“ ϕε` θε` τε. This is a quasi psh potential

on X since it satis�es the condition

ν˚ε piΘL,h ` εω ` iBBΦεq “ rDεs `
ÿ

ηlrEls ` β̂ε ` iBBτ̂ε ě 0.

De�ne Z̃ε :“ νεpDεq which includes Zε since the support of the divisor Dε includes all components of
the exceptional divisor by Hironaka theorem [Hir64]. By construction, Φε is smooth on XzZ̃ε. By the
normalised condition we have that supX Φε “ 0. Since iΘL,h ` εω ` iBBΦε is a family of p1, 1q-forms in a
bounded family of cohomology classes, with the above normalisation, we have, up to taking a subsequence,
that the family of quasi-psh potentials Φε converges almost everywhere to Φ P L1pXq by weak compactness.
It satis�es that

iΘL,h ` iBBΦ ě 0.

We also have that
ν˚ε 1XzZ̃εpiΘL,h ` iBBΦε ` εωq

n ě β̂ε
n
ě
c

3
εn´lν˚ε ω

n.

In other words, on XzZ̃ε
piΘL,h ` iBBΦε ` εωq

n ě
c

3
εn´lωn.

To use the Bochner-Kodaira-Nakano inequality, we need to change the Kähler metric in such a way that
XzZ̃ε becomes a complete manifold. We de�ne a family of Kähler metrics ωε,δ :“ ω ` δpiBBψε ` ωq, for
δ ą 0 which is complete metrics on XzZ̃ε, where ψε is a quasi-psh function on X with ψε “ ´8 on Z̃ε, ψε
smooth on XzZ̃ε and iBBψε ` ω ě 0 (see e.g. [Dem82], Théorème 1.5).

Here we choose ψε more explicit for better control. Since we will use the Bochner-Kodaira-Nakano
inequality on XzZ̃ε, to simplify the notations, we identify it with XεzSupppDεq. We de�ne

ψε :“ ´
a

´ν˚ε ϕε ´ C

with C P R such that supXε ν
˚
ε ϕε ` C “ ´1. Now ψε satis�es the condition of [Dem82], Théorème 1.5

following its calculation.
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We want to prove that eΦεdVωε,δ is a current on Xε. Since Xε is compact, it has �nite mass on Xε. In
particular, it has �nite mass on XεzSupppDεq. It is enough to prove that eΦεpiBBψεq

p de�nes a current on
Xε for any p ą 0. More precisely, we prove that eν

˚
ε ϕεpiBBψεq

p de�nes a current on Xε for any p ą 0. Since

iBBψε “
iBBν˚ε ϕ

2ψε
`
iBν˚ε ϕ^ Bν

˚
ε ϕ

4ψε
,

it is equivalent to prove that eν
˚
ε ϕpiBBν˚ε ϕq

p ^ piBν˚ε ϕ ^ Bν
˚
ε ϕq

q (p, q ě 0) de�nes a current. By anti-
commutativity, we can assume q is either 0 or 1.

e
ν˚ε ϕε
n iBBν˚ε ϕε “ e

ν˚ε ϕε
n prDεs ` smooth termsq “ e

ν˚ε ϕε
n smooth terms

since ν˚ε ϕε vanishes along Dε. Thus it is smooth on Xε vanishing along Dε.
On the other hand, in local coordinates,

ν˚ε ϕε “
ÿ

αilogp|zi|
2q

with αi ą 0. So

e
ν˚ε ϕε
n iBν˚ε ϕε ^ Bν

˚
ε ϕε “

ź

|zk|
2αk
n i

ÿ αidzi
zi

^
ÿ αjdzj

zj

has all coe�cients in L1
loc. (This is because αk ą 0 for any k, although a priori, the derivative of a quasi-psh

function is not necessarily in L2
loc.) Hence the current is well de�ned as a wedge product of locally integrable

functions and smooth forms.
In conclusion, we have that

ş

XzZε
eΦεdVωε,δ is �nite and uniformly bounded for δ small enough.

Remark 3.12. Let us indicate an alternative argument in a more general situation, following a suggestion
by Demailly. It is not necessary for our proof, but may be interesting for other uses. Let pX,ωq be a compact
Hermitian manifold and D a SNC divisor in X. Let u P H0pX, C0

p,q,X bLq be a pp, qq continuous forms with
value in some line bundle pL, hq endowed with some continuous metric h. In this remark, we construct a
family of complete metrics ωδ on XzD such that ωδ decreasing to ω as δ Ñ 0 and

ż

XzD

|u|2hdVωδ ď C

where C is a universal constant independent of δ.
To begin with, we recall some facts about the local model: the Poincaré metric on the punctured disk.

The Poincaré metric on H :“ tz P C| Impzq ą 0u is given by idz^dz
| Im z|2 . There exists an in�nite cover from H

to D˚ “ tz P C||z| ă 1u given by z ÞÑ eiz. The Poincaré metric on H is the pull back of the Poincaré metric
on D˚ given by

idz ^ dz

|z|2 |logp|z|q|2
.

Since the Poincaré metric on H is complete and the cover is locally di�eomorphism, the Poincaré metric on
D˚ is also geodesic complete. It is well known that the Poincaré metric is of volume �nite near the origin:

ż

0ă|z|ă 1
2

idz ^ dz

|z|2||logp|z|q|2
“

ż 2π

0

dθ

ż 1
2

0

dr

rplogprqq2
“

2π

log2
ă 8.

Now we return to the construction of our metrics. Let Uα be a �nite system of coordinate charts of X(X is
compact) such that for any Uα such that Uα XD ‰ H, (we denote the set of all such indices as I) we have
in this coordinate chart

Uα XD “ tz1 “ ¨ ¨ ¨ “ zr “ 0u,

Uα Ă t|zi| ă 1,@iu.

This is possible since D is a SNC divisor. Let χα be a partition of unity adapted to this cover. De�ne the
family of metric ωδ on XzD as follows:

gα :“
r
ÿ

i“1

idzi ^ dzi
|zi|2 |logp|zi|q|2

`

n
ÿ

i“r`1

idzi ^ dzi

ωδ :“ ω ` δ
ÿ

αPI

χαgα.

The sum converges since we take �nite sums. We have by construction ωδ ě ω decreasing to ω. By a similar
calculation to the one made above, we have

ż

XzD

|u|2hdVωδ ď C.
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We remark that |u|2h a priori depends on ωδ. However in a local chart Uαpα P Iq, we can write

u “
ÿ

J,K,|J|“p,|K|“q

uJ,Kdz
J ^ dzK

using J(resp. K) for multi index of length p (resp. q). Denote for 1 ď i ď n and a multi index I, δiI “ 1 if
i P I and δiI “ 0 if i R I. Then we have

|u|2gα,h “
ÿ

J,K

n
ź

i“1

p|zi| |log|zi||q
δiJ

n
ź

i“1

p|zi| |log|zi||q
δiK |uJK |

2e´2ϕα

where ϕα is the weight function of h on Uα (i.e. h “ e´2ϕα on Uα). Hence |u|2gα,h is uniformly bounded
since |zi||log|zi|| is bounded for |zi| ă 1 and all terms are continuous.

It remains to prove that ωδ is complete. We prove it by contradiction. Let γptq be a geodesic of ωδ with
natural parametrization for δ ą 0 whose maximal de�ning interval is st0, t1r with t1 ă 8. By property of
ordinary di�erential equation (the solution goes outside any compact subset), the adherent point(s) must be
contained in D with respect to the background topology of X. Since X is compact, there exists a sequence
γptνq Ñ x P D with tν Ñ t1, tν ă t1. Up to taking a subsequence we can assume that such a sequence is
contained in some chart Uα0

. Then |γ1ptq|gα0
ď δ|γ1ptq|ωδ “ δ where the second equality is from the fact

that γptq be a geodesic of ωδ. Hence γptνq is a Cauchy sequence with respect to gα. Since the Poincaré type
metric gα is complete, the limit x P Uα0zD exists, which gives a contradiction.

We recall the Bochner-Kodaira-Nakano inequality in the non compact case.

Theorem 3.13. Let h be a smooth hermitian metric on L over pX,ωq a complete Kähler manifold. We
assume that the curvature possesses a uniform lower bound

iΘL,h ě ´Cω.

Then for an arbitrary pp, qq-form u P C8pX,^p,qT˚X bLq which is L2 integrable, the following basic a priori
inequality holds

‖ Bu ‖2 ` ‖ B˚u ‖2ě

ż

X

xriΘL,h,Λsu, uydVω.

Proof. For u with compact support, the inequality is just the classical one. When u is just L2-
integrable case, since pX,ωq is assumed to be complete, there exists a sequence of smooth forms uν with
compact support in X (obtained for example by truncating u and taking the convolution with a regularizing
kernel) such that uν Ñ u in L2 and such that Buν Ñ Bu, B

˚
uν Ñ B

˚
u in L2.

By our curvature assumption the term on the right is controlled by C|u|2 which is L2. We thus get the
inequality by passing to the limit, using Lebesgue's dominated convergence theorem. �

We now return to the proof of the Bogomolov vanishing theorem.
Let u be a holomorphic p-form with value in L´1. We take the metric induced from pL, he´Φεq. The

Bochner-Kodaira-Nakano inequality on the complete manifold pXzZ̃ε, ωε,δq gives

0 ě

ż

XzZε

xriΘL,h,Λsu, uye
ΦεdVωε,δ ,

by using the degree condition and the fact that the form is holomorphic. We remark that the form is L2-
integrable by the above discussion and the fact that u has globally bounded coe�cients on X (hence on
XzZ̃ε).

Let us observe that by [Dem82] Lemma 3.2, pp, 0q-forms get larger L2 norms as the metric increases.
In other words, in bidegree pp, 0q, the space L2pωq has the weakest topology of all spaces L2pωε,δq. Indeed,
an easy calculation made in the above lemma yields

|f |2^p,0ωbhdVω ď |f |
2
^p,0ωε,δbh

dVωε,δ

if f is of type pp, 0q. By Lebesgue's dominated convergence theorem, we have

0 ě

ż

XzZε

xriΘL,h,Λsu, uye
ΦεdVω

by taking δ Ñ 0.
The rest part of the proof follows in general the proof of [Mou98].
Let ´ε ď λε1 ď ¨ ¨ ¨ ď λεn the eigenvalues of iΘL,hε with respect to ω on XzZ̃ε.
Then we have

ż

XzZ̃ε

pλεn ` εqdVω ď

ż

XzZ̃ε

ppλε1 ` εq ` ¨ ¨ ¨ ` pλ
ε
n ` εqqdVω
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ď

ż

XzZ̃ε

piΘL,hε ` εωq ^
ωn´1

pn´ 1q!

ď

ż

X

piΘL,hε ` εωq ^
ωn´1

pn´ 1q!
“

ż

X

pc1pLq ` εωq ^
ωn´1

pn´ 1q!

ď

ż

X

pc1pLq ` ωq ^
ωn´1

pn´ 1q!
“: A.

Let δ ą 0 such that

ν :“
n´ l

n´ l ` 1
` δ

l ´ 1

n´ l ` 1
ă 1.

Hence Vε :“ tx P XzZ̃ε|λ
ε
n ` ε ě Aε´δu has volume smaller that εδ

ş

X
ωn.

On the other hand, by the Monge-Ampère equation, on XzZ̃ε we have
n
ź

i“1

pλεi ` εq ě
c

3
εn´l.

Hence on XzpVε Y Z̃εq we have

λεn´l`1 ` ε ě ppλ
ε
n´l`1 ` εq ¨ ¨ ¨ pλ

ε
1 ` εqq

1
n´l`1

ě cε
n´l
n´l`1 pλεn ` εq

l´1
n´l`1

ě cεν .

Combining this with the Bochner-Kodaira-Nakano inequality, we �nd

0 ě

ż

XzZ̃ε

pλε1 ` ¨ ¨ ¨ ` λ
ε
n´l`1 ` ¨ ¨ ¨ ` λ

ε
n´pq|u|

2
L´1,h´1eΦεdVω

ě

ż

XzpZ̃εYVεq

pcεν ´ pn´ pqεq|u|2L´1,h´1eΦεdVω `

ż

Vε

´pn´ pqε|u|2L´1,h´1eΦεdVω.

In other words,
ż

XzZ̃ε

|u|2L´1,h´1eΦεdVω ď p1`
n´ p

cεν ´ pn´ pq
q

ż

Vε

|u|2L´1,h´1eΦεdVω

ď C

ż

Vε

ωn ď Cεν ,

where we use that Φε is uniformly bounded from above. Since Z̃ε is of Lebesgue measure 0,
ż

XzZ̃ε

|u|2L´1,h´1eΦεdVω “

ż

X

|u|2L´1,h´1eΦεdVω.

Again by Lebesgue's dominated convergence theorem (there is an upper bound by constant), we have
ż

X

|u|2L´1,h´1eΦdVω ď 0

by taking εÑ 0. This implies that u “ 0 and �nishes the proof of the Bogomolov vanishing theorem.

Remark 3.14. In example 1.7 of [DPS94], we consider a nef line bundle Op1q over the projectivisation
of the unique non-trivial rank 2 vector bundle as extension of two trivial line bundle over an elliptic curve.
An explicit calculation shows that there exists a unique singular positive metric on Op1q whose curvature is
the current associated to a smooth curve. Hence in this example epOp1qq “ 0. But the numerical dimension
is ndpOp1qq “ 1 since the line bundle is non trivial and not big. In fact, pOp1qq2 “ 0.

Remark 3.15. Our Bogomolov vanishing theorem can be reformulated as follows:
The sheaf of holomorphic p-forms over X has no subsheaf of rank one associated to a psef line bundle

of numerical dimension strictly larger than p.

According to the fundamental work of Campana [Cam04] [Cam11] on special manifolds, the above
results suggest to give the following variant of Campana's de�nition.

Definition 3.16. Let L Ă ΩpX be a saturated, coherent and rank one subsheaf. We call it a �numerical
Bogomolov sheaf� of X if ndpX,Lq “ p ą 0.

We say that X is �numerically special� if it has no Bogomolov sheaf. A compact complex analytic space
is said to be �numerically special� if some (or any) of its resolutions is �numerically special�.
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Remark 3.17. It is conjectured by Campana that specialness is equivalent to the numerical specialness
de�ned here.

One possibility to address Campana's conjecture would be study the following statement of the Bogo-
molov vanishing theorem incorporating the numerical dimension instead of the Kodaira-Iitaka dimension:

For a numerical Bogomolov subsheaf, does there exist a �bration f : X Ñ Y such that L “ f˚pKY q over
the generic point of Y (i.e., L and f˚pKY q have the same saturation in ΩpX) ?

In case the Kodaira dimension case is used, the existence of the �bration comes directly from the Kodaira-
Iitaka morphism. However, in case one uses the numerical dimension instead, the existence of the �bration
is not guaranteed, i.e. there are examples of non abundant numerical Bogomolov sheaves. One can take
for instead X to be a Hilbert modular surface obtained as a smooth quotient D ˆ D{Γ with an irreducible
subgroup Γ Ă AutpDq ˆ AutpDq (in such a way that no subgroup of �nite index of Γ splits). It is equipped
with two natural foliations F , G coming from the two factors D, and TX “ F ‘ G. Then one can check that
F˚,G˚ Ă Ω1

X satisfy ndpF˚q “ ndpG˚q “ 1, but κpF˚q “ κpG˚q “ ´8 (see e.g. [Br03]).

Remark 3.18. It should be remarked the above Bogomolov vanishing theorem was �rst proven in
[Bou02a]. The strategy of the both proofs is based on the nef case proven in [Mou98]. The di�culty is
the control by Monge-Ampère equation in the pseudo-e�ective case. The di�culty is overcome in [Bou02a]
by a singular version of Monge-Ampère equation, and we give here another proof that only requires solving
�classical� Monge-Ampère equations.

3.2.2. Junyan Cao's vanishing theorem.
In [Cao14], Junyan Cao has proven the following Kawamata-Viehweg-Nadel type vanishing theorem.

Theorem 3.19. Let pL, hq be a pseudo-e�ective line bundle on a compact Kähler n-dimensional manifold
X. Then

HqpX,KX b Lb Iphqq “ 0

for every q ě n´ ndpL, hq ` 1.

The numerical dimension ndpL, hq used in Cao's theorem is the numerical dimension of the closed positive
p1, 1q-current iΘL,h de�ned in his paper. Since we will not need this de�nition, we refer to his paper for
further information. We just recall the remark on page 22 of [Cao14]. In the example 1.7 of [DPS94], they
consider the nef line bundle Op1q over the projectivisation of a rank 2 vector bundle over the elliptic curve
C which is the only non-trivial extension of OC . They prove that there exists a unique positive singular
metric h on Op1q. For this metric, ndpOp1q, hq “ 0. But the numerical dimension of Op1q is equal to 1. We
recall that for a nef line bundle L the numerical dimension is de�ned as

ndpLq :“ maxtp; c1pLq
p ‰ 0u.

We also remark that Cao's technique of proof actually yields the result for the upper semi-continuous
regularization of multiplier ideal sheaf de�ned as

I`phq :“ lim
εÑ0

Iph1`εq

instead of Iphq, but we can apply Guan-Zhou's Theorem [GZ15c] [GZ14a] [GZ15a] to see that the equality
I`phq “ Iphq always holds. In particular, by the Noetherian property of ideal sheaves, we have

I`phq “ Iphλ0q “ Iphq

for some λ0 ą 1. This fact will also be used in our result.
In this part, we prove the following version of Junyan Cao's vanishing theorem, following closely the

ideas of Junyan Cao [Cao14] and the version that was a bit simpli�ed in [Dem14].

Theorem 3.20. Let L be a pseudo-e�ective line bundle on a compact Kähler n-dimensional manifold
X. Then the morphism induced by inclusion KX b Lb Iphminq Ñ KX b L

HqpX,KX b Lb Iphminqq Ñ HqpX,KX b Lq

is 0 map for every q ě n´ ndpLq ` 1.

Remark 3.21. In the example 1.7 of [DPS94], since the rank 2 vector bundle is the only non-trivial
extension of OC , there exists a surjective morphism from this vector bundle to OC which induces a closed
immersion C into the ruled surface. The only positive metric onOp1q has curvature rCs the current associated
to C. On the other hand, Op1q “ OpCq. So we haveH2pX,KXbOp1qq “ H0pX,Op´1qq “ H0pX,Op´Cqq “
0 and H2pX,KX bOp1q b Iphminqq “ H2pX,KX bOp1q bOp´Cqq “ H0pX,OXq “ C. This shows that to
get a numerical dimension version of theorem the best that we can hope for is that the morphism is 0 map
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instead of that HqpX,KX b L b Iphminqq “ 0. We notice that in general one would expect the vanishing
result

HqpX,KX b Lq “ 0

for q ě n ´ ndpLq ` 1, whenever L is a nef line bundle. Here the di�culty is to prove a general Kähler
version, since the results follows easily from an inductive hyperplane section argument when X is projective
(cf. eg. Corollary (6.26) of [Dem12a]).

By remark 3.6 in the previous section, we can even assume that hε as stated in the de�nition of the
numerical dimension is increasing to hmin as εÑ 0. What we need here is that the weight functions ϕε has
limit ϕmin and is pointwise at least equal to ϕmin with a universal upper bound on X.

Before giving the proof of the vanishing theorem, we give the general lines of the ideas and compare
it with Cao's theorem. The idea is using the L2 resolution of the multiplier ideal sheaf and proving that
every B-closed L2phminq global section can be approximated by B-exact L2ph8q global sections with h8 some
smooth reference metric on L. To prove it, we solve the B-equation using a Bochner technique with error
term (as in [DP03]), and we prove that the error term tends to 0.

For this propose, we need to estimate the curvature asymptotically by some special approximating
hermitian metrics constructed by means of the Calabi-Yau theorem. Cao tried to prove that the error term
tends to 0 in the topology induced by the L2-norm, with respect to the given singular metric. In this way,
he tried to keep the multiplier ideal sheaf unchanged when approximating the singular metric, by means
of suitable �equisingular approximation�. For our propose, we try to prove that the error term tends to 0
in the topology induced by L2-norm with respect to some (hence any) smooth metric. It would be enough
for us that the multiplier ideal sheaf of hminis included in the multiplier ideal sheaf of the approximating
hermitian metric. In some sense, Cao's theorem is more precise in studying the singularity of the metric
which somehow explains why his approach works for any singular metric while our approach applies only for
the image of the natural inclusion.

We start the proof of the vanishing theorem by the following technical curvature and singularity estimate.

Proposition 3.22. Let pL, hminq be a pseudo-e�ective line bundle on a compact Kähler manifold pX,ωq.
Let us write Tmin “

i
2πΘL,hmin

“ α ` i
2πBBϕmin where α is the curvature of some smooth metric h8 on L

and ϕmin is a quasi-psh potential. Let p “ ndpLq be the numerical dimension of L. Then, for every γ P s0, 1s
and δ P s0, 1s, there exists a quasi-psh potential Φγ,δ on X satisfying the following properties :
(a) Φγ,δ is smooth in the complement XzZδ of an analytic set Zδ Ă X.

(b) α` δω ` i
2πBBΦγ,δ ě

δ
2 p1´ γqω on X.

(c) pα` δω ` i
2πBBΦγ,δq

n ě a γnδn´pωn on XzZδ.
(d) supX Φ1,δ “ 0, and for all γ P s0, 1s there are estimates Φγ,δ ď A and

exp
`

´ Φγ,δ
˘

ď e´p1`bδqϕmin exp
`

A´ γΦ1,δ

˘

(e) For γ0, δ0 ą 0 small, γ P s0, γ0s, δ P s0, δ0s, we have

I`pϕminq “ Ipϕminq Ă IpΦγ,δq.
Here a, b, A, γ0, δ0 are suitable constants independent of γ, δ.

Proof. Denote by ψε the (non-increasing) sequence of weight functions as stated in the de�nition of
numerical dimension. We have ψε ě ϕmin for all ε ą 0, the ψε have analytic singularities and

α`
i

2π
BBψε ě ´εω.

Then for ε ď δ
4 , we have

α` δω `
i

2π
BB
`

p1` bδqψε
˘

ě α` δω ´ p1` bδqpα` εωq

ě δω ´ p1` bδqεω ´ bδα ě δ
2ω

for b Ps0, 1
5 s small enough such that ω ´ bα ě 0.

Let µ : pX Ñ X be a log-resolution of ψε, so that

µ˚
`

α` δω `
i

2π
BBpp1` bδqψεq

˘

“ rDεs ` βε

where βε ě δ
2µ
˚ω ě 0 is a smooth closed p1, 1q-form on pX that is strictly positive in the complement pXzE

of the exceptional divisor, and Dε is an e�ective R-divisor that includes all components E` of E. The map
µ can be obtained by Hironaka [Hir64] as a composition of a sequence of blow-ups with smooth centres,
and we can even achieve that Dε and E are normal crossing divisors. For arbitrary small enough numbers
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η` ą 0, βε ´
ř

η`rE`s is a Kähler class on pX. Hence we can �nd a quasi-psh potential pθε on pX such that
pβε :“ βε ´

ř

η`rE`s `
i

2πBB
pθε is a Kähler metric on pX. By taking the η` small enough, we may assume that

ż

xX

ppβεq
n ě

1

2

ż

xX

βnε .

We will use Yau's theorem [Yau78] to construct a form in the cohomology class of pβε with better volume
estimate. We have

α` δω `
i

2π
BB
`

p1` bδqψε
˘

ě α` εω `
i

2π
BBψε ` pδ ´ εqω ´ bδpα` εωq

ě pα` εω `
i

2π
BBψεq `

δ

2
ω.

The assumption on the numerical dimension of L implies the existence of a constant c ą 0 such that, with
Z “ µpEq Ă X, we have

ż

xX

βnε “

ż

XzZ

`

α` δω `
i

2π
BBpp1` bδqψεq

˘n

ě

ˆ

n

p

˙

´δ

2

¯n´p
ż

XzZ

`

α` εω `
i

2π
ψε

˘p
^ ωn´p ě cδn´p

ż

X

ωn.

Therefore, we may assume
ż

xX

ppβεq
n ě

c

2
δn´p

ż

X

ωn.

We take pf a volume form on pX such that pf ą c
3δ
n´pµ˚ωn everywhere on pX and such that

ş

xX
pf “

ş

xX
pβnε .

By Yau's theorem [Yau78], there exists a quasi-psh potential pτε on pX such that pβε `
i

2πBBpτε is a Kähler
metric on pX with the prescribed volume form pf ą 0.

Now push our focus back to X. Set θε “ µ˚pθε and τε “ µ˚pτε P L
1
locpXq. We de�ne

Φγ,δ :“ p1` bδqψε ` γpθε ` τεq.

By construction it is smooth in the complement XzZδ i.e. property (a). It satis�es

µ˚
`

α` δω `
i

2π
BBpp1` bδqψε ` γpθε ` τεqq

˘

“ rDεs ` p1´ γqβε ` γ
´

ÿ

`

η`rE`s ` pβε `
i

2π
BBpτε

¯

ě p1´ γqβε ě
δ

2
p1´ γqµ˚ω

since pβε `
i

2πBBpτε is a Kähler metric on pX. Thus the property (b) is satis�ed. Putting Zδ “ µp|Dε|q Ą

µpEq “ Z, we have on XzZδ

µ˚
`

α` δω `
i

2π
BBΦγ,δ

˘n
ě
`

βε ` γ
i

2π
BBppθε ` pτεq

˘n

ě γn ppβε `
i

2π
BBpτεq

n ě
c

3
γnδn´pµ˚ωn.

Since µ : pXzDε Ñ XzZδ is a biholomorphism, the condition (c) is satis�ed if we set a “ c
3 .

We adjust constants in pθε ` pτε so that supX Φ1,δ “ 0. Since ϕmin ď ψε ď ψε0 ď A0 :“ supX ψε0 for
ε ď ε0 and

Φγ,δ “ p1` bδqψε ` γ
`

Φ1,δ ´ ψε
˘

ě p1` bδqϕmin ` γΦ1,δ ´ γA0

and we have Φγ,δ ď p1´ γ ` bδqA0. Thus the property (d) is satis�ed if we set A :“ p1` bqA0.
We observe that Φ1,δ satis�es α` ω ` ddcΦ1,δ ě 0 and supX Φ1,δ “ 0, hence Φ1,δ belongs to a compact

family of quasi-psh functions. By theorem 2.50 a uniform version of Skoda's integrability theorem in [GZ17],
there exists a uniform small constant c0 ą 0 such that

ş

X
expp´c0Φ1,δqdVω ă `8 for all δ P s0, 1s. If f P OX,x

is a germ of holomorphic function and U a small neighbourhood of x, the Hölder inequality combined with
estimate (d) implies

ż

U

|f |2 expp´Φγ,δqdVω ď eA
´

ż

U

|f |2e´pp1`bδqϕmindVω

¯
1
p
´

ż

U

|f |2e´qγΦ1,δdVω

¯
1
q

.

Take p P s1, λ0r (say p “ p1` λ0q{2), and take

γ ď γ0 :“
c0
q
“ c0

λ0 ´ 1

λ0 ` 1
and δ ď δ0 P s0, 1s so small that pp1` bδ0q ď λ0.

Then f P I`pϕminq “ Ipλ0ϕminq implies f P IpΦγ,δq which proves the condition (e). �
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The rest of the proof follows from the proof of [Cao14] (cf. also [Dem14], [DP03], [Mou98]). We will
just give an outline of the proof for completeness.

Let tfu be a cohomology class in the group HqpX,KX b L b Iphminqq, q ě n ´ ndpLq ` 1. The sheaf
OpKX b Lq b Iphminq can be resolved by the complex pK‚, Bq where Ki is the sheaf of pn, iq-forms u such
that both u and Bu are locally L2 with respect to the weight ϕmin. So tfu can be represented by a pn, qq-form
f such that both f and Bf are L2 with respect to the weight ϕmin, i.e.

ş

X
|f |2 expp´ϕminqdVω ă `8 and

ş

X
|Bf |2 expp´ϕminqdVω ă `8.
We can also equip L by the hermitian metric hδ de�ned by the quasi-psh weight Φδ “ Φγ0,δ obtained in

Proposition 1, with δ P s0, δ0s. Since Φδ is smooth on XzZδ, the Bochner-Kodaira inequality shows that for
every smooth pn, qq-form u with values in KX b L that is compactly supported on XzZδ, we have

}Bu}2δ ` }B
˚
u}2δ ě 2π

ż

X

pλ1,δ ` . . .` λq,δ ´ qδq|u|
2e´ΦδdVω,

where }u}2δ :“
ş

X
|u|2ω,hδdVω “

ş

X
|u|2ω,h8e

´ΦδdVω. The condition (b) of Proposition 3.22 shows that

0 ă
δ

2
p1´ γ0q ď λ1,δpxq ď . . . ď λn,δpxq

where λi,δ are at each point x P X, the eigenvalues of α ` δω ` i
2πBBΦδ with respect to the base Kähler

metric ω. In other words, we have up to a multiple 2π

}Bu}2δ ` }B
˚
u}2δ ` δ}u}

2
δ ě

ż

X

pλ1,δ ` . . .` λq,δq|u|
2
ω,h8e

´ΦδdVω.

By the proof of theorem 3.3 in [DP03], we have the following lemma:

Lemma 3.23. For every L2 section of Λn,qT˚X b L such that }f}δ ă `8 and Bf “ 0 in the sense of
distributions, there exists a L2 section v “ vδ of Λn,q´1T˚X bL and a L2 section w “ wδ of Λn,qT˚X bL such
that f “ Bv ` w with

}v}2δ `
1

δ
}w}2δ ď

ż

X

1

λ1,δ ` . . .` λq,δ
|f |2e´ΦδdVω.

By lemma 3.23 and condition (d) of proposition 3.22, the error term w satis�es the L2 bound,
ż

X

|w|2ω,h8e
´AdVω ď

ż

X

|w|2ω,h8e
´ΦδdVω ď

ż

X

δ

λ1,δ ` . . .` λq,δ
|f |2ω,h8e

´ΦδdVω.

We will show that the right hand term tends to 0 as δ Ñ 0. To do it, we need to estimate the ratio function
ρδ :“ δ

λ1,δ`...`λq,δ
. The ratio function is �rst estimated in [Mou98].

By estimates (b,c) in Proposition 3.22, we have λj,δpxq ě δ
2 p1 ´ γ0q and λ1,δpxq . . . λn,δpxq ě aγn0 δ

n´p.
Therefore we already �nd ρδpxq ď 2{qp1´ γ0q. On the other hand, we have

ż

XzZδ

λn,δpxqdVω ď

ż

X

pα` δω ` ddcΦδq ^ ω
n´1 “

ż

X

pα` δωq ^ ωn´1 ď Const,

therefore the �bad set� Sε Ă XzZδ of points x where λn,δpxq ą δ´ε has a volume with respect to ω
VolpSεq ď Cδε converging to 0 as δ Ñ 0. Outside of Sε,

λq,δpxq
qδ´εpn´qq ě λq,δpxq

qλn,δpxq
n´q ě aγn0 δ

n´p.

Thus we have ρδpxq ď Cδ1´
n´p`pn´qqε

q . If we take q ě n´ndpLq`1 and ε ą 0 small enough, the exponent of
δ in the �nal estimate is strictly positive. Thus there exists a subsequence pρδ`q, δ` Ñ 0, that tends almost
everywhere to 0 on X.

Estimate (e) in Proposition 3.22 implies the Hölder inequality
ż

X

ρδ|f |
2
ω,h8 expp´ΦδqdVω ď eA

´

ż

X

ρpδ |f |
2
ω,h8e

´pp1`bδqϕmindVω

¯
1
p
´

ż

X

|f |2ω,h8e
´qγ0Φ1,δdVω

¯
1
q

for suitable p, q ą 1 as in the proposition. |f |2ω,h8 ď C for some constant C ą 0 since X is compact. Taking
δ Ñ 0 yields that wδ Ñ 0 in L2ph8q by Lebesgue dominating theorem.

HqpX,KX b Lq is a �nite dimensional Hausdor� vector space whose topology is induced by the L2

Hilbert space topology on the space of forms. In particular the subspace of coboundaries is closed in the
space of cocycles. Hence f is a coboundary which completes the proof.

For any singular positive metric h on L, by de�nition, h is more singular that hmin which implies that
Iphq Ă Iphminq. A direct corollary of theorem 3.19 is the following.
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Corollary 3.24. Let pL, hq be a pseudo-e�ective line bundle on a compact Kähler n-dimensional
manifold X. Then the morphism induced by inclusion KX b Lb Iphq Ñ KX b L

HqpX,KX b Lb Iphqq Ñ HqpX,KX b Lq

is 0 map for every q ě n´ ndpLq ` 1.

3.2.3. Nakano vanishing theorem.
In this part, we give the following generalized version of the Nakano vanishing theorem.

Theorem 3.25. Let X be a n-dimensional projective manifold and L a nef holomorphic line bundle over
X. Then we have

HppX,ΩqX b Lq “ 0

for any p`q ą n`maxpdimpB`pLqq, 0q. Here B`pLq denotes the augmented base locus(or non-ample locus)
of L. When B`pLq “ H, we de�ne by convention that its dimension is ´1.

Here we recall the de�nition of B`pLq. Given an ample line bundle A over X. the augmented base locus
is de�ned by

B`pLq :“ Xmą0BspmL´Aq

where Bs means the base locus of a line bundle.
We recall classically (cf. [BBP13]) that B`pLq “ H if and only if L is ample and B`pLq ‰ X if and

only if L is big. Thus we have the Nakano vanishing theorem in the case that B`pLq “ H.
We notice that by the example of [Ram], we can not change the augmented base locus by the base

locus. In his example, we take X the blow up of P3 at one point and L the pull back of OP3p1q under the
blow up. Thus L is a big and nef line bundle with Xmą0BspmLq “ H. But by calculation of cohomology
class we can show that

H2pX,Ω2
X b Lq ‰ 0.

We observe that in this example B`pLq “ E where E is the exceptional divisor.
Now, we return to the proof of the theorem. We argue by induction on the dimension of B`pLq and

apply of the Nakamaye theorem. First note that we can assume L big, otherwise B`pLq “ X and the
theorem is void.

Let l :“ dimpB`pLqq. When l “ ´1, the theorem is true by the Nakano vanishing theorem. When l ď 0,
we show that in fact L is ample. In this case, there exists some m ą 0 and s0, ¨ ¨ ¨ , sk P H

0pX,mL´Aq such
that

Bsps0, ¨ ¨ ¨ , skq “ tx0, ¨ ¨ ¨ , xlu.

These sections induce a singular metric h0 on mL ´ A with analytic singularity at the discrete points
tx0, ¨ ¨ ¨ , xlu. Its curvature is a closed positive (1,1)-current which is smooth outside tx0, ¨ ¨ ¨ , xlu. By
[Dem92a] Lemma 6.3 mL´A is nef. Hence L is ample.

Now let l ą 0 and suppose by induction that the theorem has be veri�ed for dimpB`pLqq ď l ´ 1. We
recall the concepts involved in the theorem of Nakamaye on base loci [Nak04].

Definition 3.26. Given a nef and big divisor L on X, the null locus NullpLq of L is the union of all
positive dimensional subvarieties V Ă X with

pLdimV ¨ V q “ 0.

We observe that for any smooth divisor D of X and such a line bundle,

NullpL|Dq Ă NullpLq.

Theorem 3.27. (Nakamaye). If L is an arbitrary nef and big divisor on X, then

B`pLq “ NullpLq.

Fix A2 a very ample divisor on X. By Bertini theorem with a general choice we can assume that D P |A2|

is smooth. Since A2 is very ample we can assume that D X B`pLq Ĺ B`pLq. More precisely, for a general
choice of D, no l´dimensional component of B`pLq is contained in D. Since L is nef and big, we have by
Nakayame theorem NullpLq “ B`pLq. By the de�nition of NullpLq we have

pLn´1 ¨Dq ą 0.

In other words, L|D is big. Using another time the Nakamaye theorem, we �nd that

B`pL|Dq “ NullpL|Dq Ă NullpLq XD Ĺ B`pLq.

In particular, dimB`pL|Dq ď dimB`pLq ´ 1.
Recall the following elementary lemma (3.24) in [SS].
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Lemma 3.28. Let L be a holomorphic line bundle over X, let D be a smooth hyper-surface in X, and
let p, q ě 0 be �xed. If

paqHppX,ΩqX b rDs b Lq “ 0,

pbqHp´1pD,Ωq´1
D b L|Dq “ 0,

pcqHp´1pD,ΩqD b prDs b Lq|Dq “ 0,

then we have
HppX,ΩqX b Lq “ 0.

Since rDsbL is ample (L is nef), the hypotheses (a) (c) of the lemma is veri�ed by the Nakano vanishing
theorem. Since

pp´ 1q ` pq ´ 1q ą dimD ` l ´ 1,

the condition (b) is satis�ed by the inductive hypothesis.
This �nishes the proof.

Remark 3.29. It would be interesting to know whether the theorem is still valid without assuming L
to be nef. Here principally, we use the nef condition in two places: in the Nakamaye theorem and in the fact
that the sum of an ample divisor and a nef divisor is ample.

Here, following some ideas of Demailly, we give the following more general version of the Nakano vanishing
theorem.

Theorem 3.30. Let X be a n-dimensional projective manifold, L a holomorphic line bundle and A an
ample line bundle over X. Assume for su�cient grand m P N and general hyper-surfaces in the linear system
H1, ¨ ¨ ¨ , Hk P |mA|, we have that L|H1X¨¨¨XHk is ample. Then for p` q ą n,we have

HqpX,ΩpX b Lq “ 0.

Proof. By duality, it is equivalent to show that for p` q ă n´ k,we have

HqpX,ΩpX b L
´1q “ 0.

Since the hyper-surfaceHi is supposed to be general, we can assume that any intersection of typeH1X¨ ¨ ¨XHl

is smooth for any l and of dimension n´ l for any l ď k.
For m big enough such that mA`L is ample, hence by Nakano vanishing theorem we have the vanishing

p` q ă n´ k
HqpX,ΩpX b L

´1 bOp´H1qq “ 0.

From the short exact sequence

0 Ñ ΩpX b L
´1 bOp´H1q Ñ ΩpX b L

´1 Ñ pΩpX b L
´1q|H1 Ñ 0

we know that to prove the desired vanishing it is enough to show that for p` q ă n´ k

HqpX, pΩpX b L
´1q|H1q “ 0.

From the short exact sequence
0 Ñ TH1

Ñ TX |H1
Ñ OpH1q|H1

Ñ 0

we have the exact sequence (using the fact that OpH1q is of rank one)

0 Ñ Op´H1q|H1
b Ωp´1

H1
Ñ ΩpX |H1

Ñ ΩpH1
Ñ 0.

We take the tensor product with L´1|H1
and the long exact sequence associated to the coreesponding short

exact sequence. By the Nakano vanishing theorem, we �nd

HipH1,Ω
j
H1
b pL´1 bOp´H1qq|H1

q “ 0

for any i` j ă n´ 1. It is enough to prove that

HqpH1, pΩ
p
H1
b L´1|H1

q “ 0

for p` q ă n´ k.
We continue this process and change X with H1, then H1 with H1XH2 etc. Taking from the beginning

m so big that mA`L is ample, we get for every l that mA`L|H1X¨¨¨XHl is ample on H1 X ¨ ¨ ¨ XHl. Hence
in each step, we can use the Nakano vanishing theorem. Finally, we are reduced to proving that

HqpH1 X ¨ ¨ ¨ XHk,Ω
p
H1X¨¨¨XHk

b L´1|H1X¨¨¨XHkq “ 0

for p` q ă n´ k. But this is true by the Nakano vanishing theorem and our assumption. �

Remark 3.31. By the proof of the theorem, it is enough to take m so large that mA`L is ample, and
Hi P |mA| so that H1 X ¨ ¨ ¨ XHl is smooth and of dimension n´ l for any l ď k, and L|H1X¨¨¨XHk is ample.
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As pointed out by A. Höring, it is interesting to compare this result to the following theorem 2 of [Kur13]:
Let X be a smooth projective variety, L a divisor, A a very ample divisor on X. If L|E1X¨¨¨XEk is big

and nef for a general choice of E1, ¨ ¨ ¨ , Ek, then HipX,OXpKX ` Lqq “ 0 for i ą k.

Remark 3.32. Our �rst theorem is a special case of this general version. Since L is nef, it is nef on the
complete intersection of the hyper-surfaces H1, ¨ ¨ ¨ , Hl where l :“ dimpB`pLqq. On the other hand, for such
general hyper-surfaces, we can assume that the intersection B`pLq XH1 X ¨ ¨ ¨ XHl is �nite points. By the
de�nition of stable base locus, L|H1X¨¨¨XHl is ample outside these �nite points. Hence in fact, L|H1X¨¨¨XHl is
ample.

The k-ampleness condition de�ned by Sommese [Som] is also a su�cient condition for the condition
stated in Theorem 3.30. We start by recalling the de�nition.

Definition 3.33. A holomorphic line bundle L on a compact complex manifold X is said to be k-ample
p0 ď k ď n´ 1q if there exists a positive integer N such that NL spans at each point of X and the Kodaira
morphism associated to NL has at most k-dimensional �bres.

Changing N in the de�nition by a possible large multiple of N we can assume that the Kodaira morphism
associated to NL is the Iitaka �bration. Denote Φ : X Ñ Z the �bration where Z is a projective variety.
Denote Az,j (z P Z, j P N) the irreducible components of the �bre of z (i.e. Φ´1pzq). By a general choice
of H1, we can assume that for any z, j the hyper-surface H1 intersecting Az,j de�nes a divisor of Az,j by
the lemma stated below. Similarly, with a general choice of H1, ¨ ¨ ¨ , Hk we can assume that for any z, j
H1 X ¨ ¨ ¨ XHk X Az,j is a �nite set, by the assumption that dimAz,j ď k. In other words, the restriction of
the Kodaira morphism

Φ : H1 X ¨ ¨ ¨ XHk Ñ Z

is a �nite morphism. Since L|H1X¨¨¨XHk is pull back of Op1q via Φ, L|H1X¨¨¨XHk is ample on H1 X ¨ ¨ ¨ XHk.
(Recall that the pull back of an ample line bundle under a �nite morphism is ample.)

Lemma 3.34. Let Φ : X Ñ Z be the �bration such that all the �bers have dimension ď k. Assume X is
projective. Then there exists H Ă X a general very ample divisor such that the restriction ΦH : H Ñ Z of
Φ on H has all �bers of dimension ď pk ´ 1q.

Proof. Denote Az,j (z P Z, j P N) the irreducible components of the �bre of z (i.e. Φ´1pzq). It is
equivalent to demand the restriction to each Az,j of the de�ning section σ of H is non trivial. Let A be an
ample divisor on X. Denote Vz,j the linear subspace of H0pX,mAq such that σ|Az,j ” 0. We want to choose
σ such that σ P H0pX,mAqr

Ť

z,j Vz,j . Notice that the family Az,j parametrized by z, j forms a bounded
family in the Hilbert scheme of X. A su�cient condition to �nd σ as above is that for m large enough

dimZ ` dimVz,j ă h0pX,mAq.

Without loss of generality, we can assume that A is very ample on X. Hence, by boundedness, we have for
m large enough independent of z, j a surjective restriction morphism

H0pX,mAq Ñ H0pAz,j ,mAq.

As Vz,j is the kernel of this morphism, it is enough to take m so large that

dimZ ă h0pAz,j ,mAq.

For Az,j with positive dimension, the regular part of Az,j is a smooth submanifold of X. Since A is very
ample, it generates 1-jets of the regular part of Az,j at any point. Hence H0pAz,j , NAq generates any m-fold
symmetric product of 1-jets of Az,j at some regular point. In other words,

h0pAz,j ,mAq ą

ˆ

m

dimAz,j

˙

ě m.

�



CHAPTER 4

Considerations on nefness in higher codimension

Abstract. In this note, following the fundamental work of Boucksom we construct the nef cone of a
compact complex manifold in higher codimension and give explicit examples where these cones are di�erent.
In the third section, we give two versions of Kawamata-Viehweg vanishing theorems in terms of nefness in
higher codimension and numerical dimensions. We also show by examples the optimality of the divisoral
Zariski decomposition given in [Bou04]. In the last section, we discuss the surjectivity of the Albanese
morphism for a compact Kähler manifold with ´KX psef and some additional assumptions on the regularity
of approximated metrics.

4.1. Nefness in higher codimension

We �rst recall some technical preliminaries introduced in [Bou04]. Throughout this paper, X is as-
sumed to be a compact complex manifold equipped with some reference Hermitian metric ω (i.e. a smooth
positive de�nite p1, 1q-form); we usually take ω to be Kähler if X possesses such metrics. The Bott-Chern
cohomology group H1,1

BCpX,Rq is the space of d-closed smooth (1,1)-forms modulo iBB-exact ones. By the
quasi-isomorphism induced by the inclusion of smooth forms into currents, H1,1

BCpX,Rq can also be seen as
the space of d-closed p1, 1q-currents modulo iBB-exact ones. A cohomology class α P H1,1

BCpX,Rq is said to
be pseudo-e�ective i� it contains a positive current; α is nef i�, for each ε ą 0, α contains a smooth form αε
such that αε ě ´εω; α is big i� it contains a Kähler current, i.e. a closed p1, 1q-current T such that T ě εω
for ε ą 0 small enough.

Definition 4.1. ( [DPS01]) Let ϕ1, ϕ2 be two quasi-psh functions on X pi.e. iBBϕi ě ´Cω in the sense
of currents for some C ě 0q. The function ϕ1 is said to be less singular than ϕ2 pone then writes ϕ1 ĺ ϕ2q

if ϕ2 ď ϕ1 ` C1 for some constant C1. Let α be a �xed psef class in H1,1
BCpX,Rq. Given T1, T2, θ P α

with θ smooth, and Ti “ θ ` iBBϕi with ϕi quasi-psh pi “ 1, 2q, we write T1 ĺ T2 i� ϕ1 ĺ ϕ2 pnotice
that for any choice of θ, the potentials ϕi are de�ned up to smooth bounded functions, since X is compactq.
If γ is a smooth real p1, 1q-form on X, the collection of all potentials ϕ such that θ ` iBBϕ ě γ admits a
minimal element Tmin,γ for the pre-order relation ĺ, constructed as the semi-continuous upper envelope of
the subfamily of potentials ϕ ď 0 in the collection.

Definition 4.2. (Minimal multiplicities). The minimal multiplicity at x P X of the pseudo-e�ective
class α P H1,1

BCpX,Rq is de�ned as
νpα, xq :“ sup

εą0
νpTmin,ε, xq

where Tmin,ε is the minimal element Tmin,´εω in the above de�nition and νpTmin,ε, xq is the Lelong number
of Tmin,ε at x. When Z is an irreducible analytic subset, we de�ne the generic minimal multiplicity of α
along Zas

νpα,Zq :“ inftνpα, xq, x P Zu.

When Z is positive dimensional, there exists for each ` P N˚ a countable union of proper analytic subsets
of Z denoted by Z` “

Ť

p Z`,p such that νpTmin, 1`
, Zq :“ infxPZ νpTmin, 1`

, xq “ νpTmin, 1`
, xq for x P Z r Z`.

By construction, when ε1 ă ε2, Tmin,ε1 ľ Tmin,ε2 . Hence for a very general point x P Z r
Ť

`PN˚ Z`,

νpα,Zq ď νpα, xq “ sup
`
νpTmin, 1`

, Zq.

On the other hand, for any y P Z,

sup
`
νpTmin, 1`

, Zq ď sup
`
νpTmin, 1`

, yq “ νpα, yq.

In conclusion, νpα,Zq “ νpα, xq for a very general point x P Z r
Ť

`PN˚ Z` and νpα,Zq “ supε νpTmin,ε, Zq.
Now we can de�ne the concept of nefness in higher codimension implicitly used in [Bou04]. It is the

generalisation of the concept of �modi�ed nefness� to the higher codimensional case.

Definition 4.3. Let α P H1,1
BCpX,Rq be a psef class. We say that α is nef in codimension k, if for every

irreducible analytic subset Z Ă X of codimension at most equal to k, we have

νpα,Zq “ 0.

61
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We denote by Nk the cone generated by nef classes in codimension k. By Proposition 3.2 in [Bou04], a
psef class α is nef i� for any x P X, νpα, xq “ 0. By our de�nition, psef is equivalent to nef in codimension
0, and nef is equivalent to nef in codimension n :“ dimCX. In this way, we get a bunch of positive cones on
X, satisfying the inclusion relations

N “ Nn Ă ¨ ¨ ¨ Ă N1 Ă N0 “ E .
By a proof similar to those of propositions 3.5, 3.6 in [Bou04], we get

Proposition 4.1.1. p1q For every x P X and every irreducible analytic subset Z, the map E Ñ R`
de�ned on the cone E of psef classes by α ÞÑ νpα,Zq is convex and homogeneous. It is continuous on the
interior E˝, and lower semi-continuous on the whole of E .
p2q If Tmin P α is a positive current with minimal singularities, we have νpα,Zq ď νpTmin, Zq.

p3q If α is moreover big, we have νpα,Zq “ νpTmin, Zq.

The following lemma is a direct application of the proposition.

Lemma 4.4. Let Y Ă X be a smooth submanifold of X and π : X̃ Ñ X be the blow-up of X along Y .
We denote by E the exceptional divisor. If α P H1,1

BCpX,Rq is a big class, we have

νpα, Y q “ νpπ˚α,Eq.

For Z any irreducible analytic set not included in Y , we denote by Z̃ the strict transform of Z. Then

νpα,Zq “ νpπ˚α, Z̃q.

For W any irreducible analytic set in Y , we have

νpα,W q “ νpπ˚α,PpNY {X |W qq.

Proof. Since α is big, we know that by taking a suitable regularisation, there exists a Kähler current
T P α with analytic singularities. The pull back π˚T of this current is a smooth Kähler current on some
dense open set U where π is a biholomorphism. Hence the volume of π˚α de�ned as

ş

TPπ˚α,Tě0,
Tnac (ac

means the absolute part of the current) is larger than the mass of π˚T on U which is strictly positive.
By [Bou02a] π˚α is thus big.

By the proposition, we have

νpα, Y q “ inf
TPα

νpT, Y q, νpπ˚α,Eq “ inf
SPπ˚α

νpS,Eq.

On the other hand, the push forward and pull back operators acting on positive p1, 1q currents induce
bijections between positive currents in the class α and positive currents in the class π˚α. Let θ P α be a
smooth form such that T “ θ` iBBϕ. We recall that for any irreducible analytic set W with local generators
pg1, ¨ ¨ ¨ , grq near a regular point w P W , the generic Lelong number along W is the largest γ such that
ϕ ď γlogp

ř

|gi|
2q ` Op1q near w. Since π˚pg1, ¨ ¨ ¨ , grq ¨ OX̃ “ IE , we have νpT, Y q “ νpπ˚T,Eq. In

particular, this implies that
νpα, Y q “ νpπ˚α,Eq.

For W any irreducible analytic set in the centre Y , since the exceptional divisor is isomorphic to PpNY {Xq,
the preimage ofW under the blow-up is isomorphic to PpNY {X |W q. In suitable local coordinates pz1, ¨ ¨ ¨ , znq

on X and pw1, ¨ ¨ ¨ , wnq on X̃, the blow-up map is given by

πpw1, ¨ ¨ ¨ , wnq “ pw1, w1w2, ¨ ¨ ¨ , w1ws;ws`1, ¨ ¨ ¨ , wnq.

In these coordinates, the centre Y is given by the zero variety V pzs`1, ¨ ¨ ¨ , znq. Assume that in this chart,
W “ V pzs`1, ¨ ¨ ¨ , zn; f1, ¨ ¨ ¨ , frq where fi is a function of z1, ¨ ¨ ¨ , zs (as we can assume without loss of
generality). Then π˚pIW q ¨OX̃ “ pw1, f1pw1, ¨ ¨ ¨ , wsq, ¨ ¨ ¨ , frpw1, ¨ ¨ ¨ , wsqq “ IPpNY {X |W q. In particular, this
implies that

νpα,W q “ νpπ˚α,PpNY {X |W qq.
For the second statement, we just observe that the generic Lelong number along Z (resp. Z̃) is equal

to the Lelong number at some very general point. Since Z is not contained in Y we can assume without
loss of generality that the very general point is not in Y (resp. E). Since the Lelong number is a coordinate
invariant local property, for such very general point x P Z̃ near which π is a local biholomorphism and any
T P α, T ě 0, νpT,Zq “ νpT, πpxqq “ νpπ˚T, xq “ νpπ˚T, Z̃q. Hence we have

νpα,Zq “ νpπ˚α, Z̃q.

�

As a corollary, we �nd
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Corollary 4.5. Let µ : X̃ Ñ X be a composition of �nitely many blow-up with smooth centres in X.
If α P H1,1

BCpX,Rq is a big class on X such that µ˚α is nef in codimension k, then α is a nef class in
codimension k.

Proof. Without loss of generality, we can reduce ourselves to the case where µ is a blow-up of smooth
centre Y in X. By Lemma 4.4, the generic minimal multiplicity of α along any irreducible analytic set of X
of codimension at most equal to k is equal to the generic minimal multiplicity of µ˚α along certain irreducible
analytic set of X̃ of codimension at most equal to k. So by the de�nition of nefness in codimension k, the
fact µ˚α is nef in codimension k implies that α is nef in codimension k. �

Remark 4.6. Let X be a compact complex manifold X whose big cone is non empty. Recall that by
Proposition 2.3 of [Bou04], a class α is modi�ed Kähler (i.e. α is in the interior of nef cone in codimension 1)
i� there exists a modi�cation µ : X̃ Ñ X and a Kähler class α̃ on X̃ such that α “ µ˚α̃. As a consequence,
for µ : X̃ Ñ X a modi�cation between compact Kähler manifolds and α̃ P H1,1

BCpX̃,Rq a big and nef class
on X̃ in codimension k, it is false in general that µ˚α̃ is a nef class in codimension k.

To give an equivalent de�nition of nefness in higher codimension, we will need the following de�nition.

Definition 4.7. (Non-nef locus)
The non-nef locus of a pseudo-e�ective class α P H1,1

BCpX,Rq is de�ned by

Ennpαq :“ tx P X, νpα, xq ą 0u.

Proposition 4.1.2. A psef class α is nef in codimension k i� for any ε ą 0, any c ą 0, the codimension
of any irreducible component of EcpTmin,εq is larger than k ` 1.

Proof. By the de�nition of non-nef locus, we have

Ennpαq “
ď

εą0

ď

cą0

EcpTmin,εq “
ď

mPN˚

ď

nPN˚
E 1
n
pTmin, 1

m
q.

We know by Siu's theorem [Siu74] that E 1
n
pTmin, 1

m
q is an analytic set. Hence the non-nef locus is a countable

union of irreducible analytic set. If for any ε ą 0, any c ą 0, the codimension of any irreducible component
of EcpTmin,εq is larger than k ` 1, then for any irreducible analytic set Z of codimension k, Ennpαq X Z is
strictly contained in Z. Hence νpα,Zq “ 0.

On the other direction, assume there exists an irreducible component Z of E 1
n
pTmin, 1

m
q has codimension

at most equal to k. On each point x of this irreducible component, νpα, xq ě νpTmin, 1
m
, xq ě 1

n . In particular,
νpα,Zq ě 1

n , which contradicts the fact that α is nef in codimension k. �

Remark 4.8. If the manifold X is projective, it is enough to test the minimal multiplicity along irre-
ducible analytic subsets of codimension k to prove that the class is nef in codimension k. The argument is
as follows:

For any irreducible analytic set Z of codimension strictly smaller than k, for any z P Z, since X is
projective, there exists some hypersurfaces Hi such that z P Hi and the irreducible component of Z X
Ş

iHi containing z has codimension k. In other words, Z is covered by the irreducible analytic subsets
of codimension exactly k. By assumption, the generic minimal multiplicity along any of these irreducible
analytic subsets is 0. This implies that the generic minimal multiplicity along Z at most equal to the generic
minimal multiplicity along any these irreducible analytic set is 0.

Remark 4.9. In the general setting of compact complex manifolds, it is important to test the generic
minimal multiplicity along any analytic set of codimension at most equal to k, instead of any analytic set
of codimension k, to obtain the inclusion of the various positive cones. The problem is that there may exist
too few analytic subsets in an arbitrary compact complex manifold.

A typical example can be taken as follows. For example let X1 be a compact manifold such that the
nef cone is strictly contained in the psef cone (for example we can take the projectivisation of an unstable
rank two vector bundle over a curve of genus larger than 2, whose cones are explicited calculated on page
70 [Laz04]) and X2 be a very general torus such that the only analytic sets in X2 are either union of points
or X2. Let β be a psef but not nef class on X1. Let X :“ X1 ˆ X2 with natural projections π1, π2 and
α :“ π˚1 β. Assume that dimpX1q ă dimpX2q. Fix ω1, ω2 two reference Hermitian metrics on X1, X2.

Now α is a psef but not nef class on X. The only analytic subsets of codimension dimpX1q is the �bre
of π2. α has generic minimal multiplicity 0 along any �bre of π2. The reason is as follows: The minimal
current in α larger than ´εpπ˚1ω1 ` π˚ω2q denoting mintT P α, T ě ´εpπ˚1ω1 ` π˚ω2qu is less singular
than the pull back of the minimal current in β larger than ´εω1 denoting mintS P β, S ě ´εω1u and the
restriction of these minimal currents on the �bre of π2 is trivial. In other words, the generic Lelong number
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of mintT P α, T ě ´εpπ˚1ω1 ` π
˚ω2qu along the �bres is smaller than the generic Lelong number of the pull

back of mintS P β, S ě ´εω1u which is 0. Hence it is itself 0.
On the other hand, for any positive integers m,n, take Z a positive dimensional irreducible component

of E 1
n
pTmin, 1

m
q in the non-nef locus of β. The existence of such an irreducible component will be shown in

the lemma 4.11, which implies that α has to be nef in codimension at most equal to n´2. Now ZˆX2 is an
irreducible analytic set of codimension strictly smaller than dimpX1q. But the generic minimal multiplicity
along Z ˆX2 is larger than 1

n . In particular this shows that α is not nef in codimension dimpX1q ´ dimpZq.

Remark 4.10. Let us mention that our de�nition of nefness in codimension 1 is equivalent to the
de�nition of modi�ed nefness. By de�nition, a psef class is modi�ed nef i� its generic minimal multiplicity
is 0 along any prime divisor. To prove the equivalence, it is enough to show that for any psef class α on X
we automatically have

νpα,Xq “ 0.

It is because that νpα,Xq ď νpTmin, Xq where the latter is 0. We notice that by Siu's decomposition
theorem [Siu74], the set Ecą0pTminq “

Ť

nPN˚ E 1
n
pTminq is countable union of proper analytic sets.

By this observation, we can also say that the �nef in codimension 0� cone is exactly the psef cone.

In analogy to the case of surfaces for which the nef cone coincides with the modi�ed nef cone, the nef
cone in codimension n´ 1 coincides with the nef cone.

Lemma 4.11. Let α be a psef class, then α is nef in codimension n´ 1 i� α is nef.

Proof. If α is nef, by inclusion of di�erent positive cones, it is nef in codimension n ´ 1. On the
other direction, we will need the following proposition 3.4 in [Bou04] which is a reformulation of a result of
P un [Paun98].

A pseudo-e�ective class α is nef i� α|Y is pseudo-e�ective for every irreducible analytic subset Y Ă

Ennpαq.
Given a class α that is nef in codimension n ´ 1, proposition 4.1.2 implies that for any ε ą 0 and any

c ą 0 the analytic set EcpTmin,εq is a �nite set. Therefore, the non-nef locus which is a countable union of
�nite sets has at most countably many points. In particular, this implies that the restriction of α on any
Y Ă Ennpαq is 0, hence psef. By the above proposition, α is nef. �

Remark 4.12. Recall that a line bundle L over a projective manifold is nef i� its intersection number
with any curve satis�es pL ¨Cq ě 0. By the important work of [BDPP13], a class is psef i� its pairing with
any movable curve is positive. Here a curve C is said to be movable if C “ Ct0 is a member of an analytic
family pCtqtPS such that

Ť

tPS Ct “ X and, as such, C is a reduced irreducible 1-cycle. Remark also that nef
is equivalent to nef in codimension n´ 1 and psef is equivalent to nef in codimension 0.

Then it is natural to conjecture that a class over a projective manifold is nef in codimension k if and
only if its pairing with any movable curve in codimension k is positive. Here a curve C is said to be movable
in codimension k if C “ Ct0 is a member of an analytic family pCtqtPS such that

Ť

tPS Ct is an analytic
subset of X of codimension k and, as such, C is a reduced irreducible 1-cycle.

Remark 4.13. Inspired by the result of P un, it seems to be natural to conjecture that a psef class tT u
with T a positive current on X is nef in codimension k if and only if that for any irreducible component of
codimension at most k in

Ť

cą0EcpT q tT u|Z is nef in codimension k ´ codimpZ,Xq. When k “ n, this is
exactly the result of P un. When k “ 0, it is trivial. The �only if� part is quite similar. The restriction of
the potentials of Tmin,ε on any irreducible analytic set of codimension at most k decreases to a potential on
the submanifold. If we �x the maximum of the potentials on X to be 0, they form a compact family. The
limit potential would be quasi-psh and thus the restriction of the class on the analytic set is psef. The �if�
part is of course true if the manifold is a Kähler surface by P un's result.

The �if� part is also true for the case k “ 1 if the manifold is hyperkähler. By lemma 4.9 [Bou04] (see
also [Huy03]) a psef class α on a hyperkähler manifold is modi�ed nef if and only if for any prime divisor
D one has qpα,Dq ě 0. Here, we let σ be a symplectic holomorphic form on X, and de�ne

qpα, βq :“

ż

X

α^ β ^ pσ ^ σq
n
2´1

to be the Beauville�Bogomolov quadratic form for any p1, 1q-classes α, β. For a psef p1, 1q-class α such that
α|D is psef for any prime divisor D, we have

qpα, trDsuq “

ż

X

α^ trDsu ^ pσ ^ σq
n
2´1 “

ż

D

α^ pσ ^ σq
n
2´1 ě 0.

Thus α is nef in codimension 1.
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A natural idea to attack this question in general consists in trying to extend the current on this subvariety
Z to X. If this is possible, the current with minimal singularity would have a potential larger than that of
the extended current. In particular, the current with minimal singularity would have generic Lelong number
0 along Z.

In this direction, Collins and Tosatti proved the following results in [CT15] and [CT14], which we now
recall.

Theorem 4.14. (Theorem 3.2 in [CT14]). Let X be a compact Fujiki manifold and α a closed smooth
real (1,1)-form on X with tαu nef and

ş

X
αn ą 0. Let E “ V Y

ŤI
i“1 Yi be an analytic subvariety of X,

with V, Yi its irreducible components, and V a positive dimensional compact complex submanifold of X. Let
R “ α` iBBF be a Kähler current in the class tαu on X with analytic singularities precisely along E and let
T “ α|V ` iBBϕ be a Kähler current in the class tα|V u on V with analytic singularities. Then there exists a
Kähler current T̃ “ α` iBBΦ in the class tαu on X with T̃ |V smooth in a neighbourhood of the very general
point of V .

Theorem 4.15. (Theorem 1.1 in [CT15]). Let pX,ωq be a compact Kähler manifold and let V Ă X be
a positive-dimensional compact complex submanifold. Let T be a Kähler current with analytic singularities
along V in the Kähler class tω|V u. Then there exists a Kähler current T̃ on X in the class tωu with T “ T̃ |V .

Using their results, in a given Kähler class, one can extend Kähler currents with analytic singularities
de�ned in a smooth subvariety. If the class is just nef and big on the Kähler manifold, one can only
show the existence of a Kähler current whose potential is not identically in�nity along the submanifold.
Following example 5.4 in [BEGZ10], one can show that in a nef and big class on a Kähler manifold X,
one cannot always extend a positive current along a submanifold into a positive current on X. In their
example, the positive current on the submanifold can even be chosen to be smooth. More precisely there
exists C, a submanifold of a certain compact Kähler manifold X, tαu a nef and big class on X with a smooth
representative α and ϕ P L1

locpCq with α|C`iBBϕ ě 0, such that there does not exist a ψ P L1
locpXq satisfying

α` iBBψ ě 0 and ψ|C “ ϕ.
Let us start the construction of the example. Let C be an elliptic curve and let A be an ample divisor on

C. Let V be the rank 2 vector bundle over C the unique non-trivial extension of OC . De�ne X :“ PpV ‘Aq
and tαu :“ c1pOXp1qq with smooth representative α. Then OXp1q is a big and nef line bundle over X. The
quotient map V ‘ A Ñ OC induces a closed immersion C Ñ X. In particular, we have OXp1q|C “ OC .
Since c1pOXp1q|Cq “ 0, there exists a smooth function ϕ on C such that α|C ` iBBϕ “ 0. We prove by
contradiction that there does not exist ψ P L1

locpXq such that α` iBBψ ě 0 and ψ|C “ ϕ. The quotient map
V ‘AÑ V induces a closed immersion PpV q Ñ X. On the contrary, we would have α|PpV q ` iBBψ|PpV q ě 0
in the class c1pOPpV qp1qq. By the calculation made in example 1.7 of [DPS94], we know that

α|PpV q ` iBBψ|PpV q “ rCs

where rCs is the current associated with C. In particular, this shows that ψ|C ” ´8, a contradiction.
In other words, theorem 1.1 of [CT15] cannot be strengthened to obtain an extension of an arbitrary

closed positive current in a class that is merely nef and big. Similarly, one cannot drop the Kähler current
condition in the theorem of [CT14].

Let us return to our previous question. To get an analogue of P un's result, the above discussion shows
that we need to generalise theorem 3.2 of [CT14] to the class of a big class that is nef in codimension k by
adding a small Kähler form to the class and by using the semi-continuity of the generic minimal multiplicity.
Unfortunately, we do not know how to do it at this point.

4.2. Kawamata-Viehweg vanishing theorem

We �rst give a �numerical dimension version� of the Kawamata-Viehweg vanishing theorem in the pro-
jective case. In the following, we study various properties of nef classes in higher codimension. Then we end
the section by a numerical version of the Kawamata-Viehweg vanishing theorem in the Kähler case.

To start with, we need the relation between movable intersection de�ned in [BDPP13], [Bou02b] and
intersection number.

Lemma 4.16. Let α be a nef class in codimension p on a compact Kähler manifold pX,ωq. Then for any
k ď p and Θ any positive closed pn´ k, n´ kq-form we have

pαk,Θq ě xαk,Θy.
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Here we use the de�nition of movable intersection de�ned in [Bou02b] and [BDPP13]. The movable
intersection number xαk,Θy in [Bou02b] is de�ned as the limit for ε ą 0 converging to 0 of the quantity:

sup
Ti

ż

XrF
pT1 ` εωq ^ ¨ ¨ ¨ pTk ` εωq ^Θ

where Ti ranges all closed current with analytic singularities in the class α such that Ti ě ´εω and F is the
union of all singular part of Ti. (In [Bou02b], the movable intersection number is de�ned for any closed
positive current Θ. In the following, we will take Θ to be ωn´k. Thus we consider only the case when Θ is
a positive closed form.)

The proof of the boundedness of the quantity is a consequence of regularisation and the theory of
Monge-Ampère operator. In the general case, we approximate the current Ti decreasingly by the smooth
forms by [Dem82] with a uniform lower bound ´Cω depending on pX,ωq and tTiu. Now on X r F
the current pT1 ` Cωq ^ ¨ ¨ ¨ pTk ` Cωq ^ Θ is the limit of corresponding terms changing Ti by its smooth
approximation, using the continuity of Monge-Ampère operator with respect to decreasing sequence. But
the integral on X r F obtained for the smooth approximation is bounded by its integral on X, which is the
intersection number of cohomology classes tTi ` Cωu and tΘu.

Proof. Our observation is that with better regularity on the cohomology class α, we can de�ne directly
the Monge-Ampère operator on X. So comparing to the general case, we can skip the approximation process
and get rid of the dependence of C which only depends on pX,ωq and α but not explicitly.

We recall the following theorem (4.6) on the Monge-Ampère operators in chapter 3 of [Dem12b].
Let u1, ¨ ¨ ¨ , uq be quasi-plurisubharmonic functions on X and T be a closed positive current of bidimen-

sion pp, pq. The currents u1iBBu2^ ¨ ¨ ¨ ^ iBBuq ^ T and iBBu1^ iBBu2^ ¨ ¨ ¨ ^ iBBuq ^ T are well de�ned and
have locally �nite mass in X as soon as q ď p and

H2p´2m`1pLpuj1q X ¨ ¨ ¨ X Lpujmq X SupppT qq “ 0

for all choices of indices j1 ă ¨ ¨ ¨ ă jm in t1, ¨ ¨ ¨ , qu.
Here H2p´2m`1 means the p2p ´ 2m ` 1q-dimensional Hausdor� content of the subset of X seen as a

metric space induced by the Kähler metric. The unbounded locus Lpuq is de�ned to be the set of points
x P X such that u is unbounded in every neighbourhood of x. When u has analytic singularities, it is the
singular part of u (i.e. tu “ ´8u).

Now return to the proof of the lemma. By de�nition Ti,min,´εω is less singular than Ti. Since for any
c ą 0, EcpTi,min,´εωq has codimension larger than p`1, the singular set of Ti which has analytic singularities is
also of codimension larger than p`1. By the theorem (4.6) cited above, the current pT1`εωq^¨ ¨ ¨ pTk`εωq^Θ
is well-de�ned on X. Thus we have

ż

XrF
pT1 ` εωq ^ ¨ ¨ ¨ pTk ` εωq ^Θ ď

ż

X

pT1 ` εωq ^ ¨ ¨ ¨ pTk ` εωq ^Θ

“ pα` εtωuq ¨ ¨ ¨ ¨ pα` εtωuq ¨ tΘu.

Taking εÑ 0, we get pαk,Θq ě xαk,Θy. �

We can now give in the projective case the following version of the Kawamata-Viehweg theorem in terms
of nefness in higher codimension. The simple proof given below has been suggested to us by Demailly.

Theorem 4.17. Let X be a projective manifold and L a nef line bundle in codimension p ´ 1. If
xc1pLq

py ‰ 0, then for any q ě n´ p` 1 we have

HqpX,KX b Lq “ 0.

Proof. The proof is an induction on the dimension of X. Let A be an ample divisor on X and ω P c1pAq
be a Kähler form. Let Y P |kA| be a generic smooth hypersurface. With the choice of k big enough, we can
assume that HqpX,L´1 bOp´Y qq “ 0 for any q ă n by Kodaira vanishing theorem. By Serre duality, the
statement of the theorem is equivalent to prove that for any q ď p´ 1 we have

HqpX,L´1q “ 0.

Consider the long exact sequence associated to the short exact sequence

0 Ñ L´1 bOp´Y q Ñ L´1 Ñ L´1|Y Ñ 0.

It turns out that it is enough to prove that HqpY,L´1q “ 0 for any q ď p´ 1.
We check that conditions are preserved under the intersection with a generic hypersurface. Since α is

nef in codimension p´ 1, we �nd that any irreducible component of

Ennpαq “
ď

mPN˚

ď

nPN˚
E 1
n
pTmin, 1

m
q.
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has codimension larger than p. By regularisation of Tmin, 1
m
, there exists currents Tm with analytic singulari-

ties in α larger that ´ 2
mω. Any irreducible component of the singular set of these currents have codimension

larger than p. For generic Y the restriction of these currents on Y is well de�ned for any m. Since the
inclusion of analytic sets is a Zariski closed condition, for generic Y we can also assume that the singular set
of Tm is not contained in Y for any m.

On the other hand, in the class α|Y , the current with minimal singularities that admits a lower bound
´ 2
mω|Y is certainly less singular than Tm|Y . The upper-level set of the Lelong number of these minimal

currents is included in the singular set of Tm|Y , so it has codimension larger than p. This means that α|Y
is nef in codimension p´ 1.

The condition xαpy ‰ 0 implies that
ż

X

xαpy ^ ωn´p ą 0.

In other words, there exist a sequence of currents with analytic singularities Tm P α such that Tm ě ´ 1
mω

and
ż

XrFm
pTm `

1

m
ωqp ^ ωn´p ą c

for some c ą 0 independent of m where Fm is the singular set of Tm.
With a generic choice of Y , we can still assume that the restriction of Tm is a current with analytic

singularities. They satisfy the conditions Tm|Y ě ´ 1
mω|Y and

ż

YrFm
pTm|Y `

1

m
ω|Y q

p ^ ωn´p´1 ą
c

k
.

In other words, xα|pY y ‰ 0.
By induction on the dimension, we are reduced to proving the case where X has dimension p and L

is nef in codimension p ´ 1, in which case L is (plainly) nef by lemma 4.11. The condition of the movable
intersection reduces to xc1pLqpy ‰ 0. By lemma 4.14, this implies that pLpq ą 0. In particular, L is a nef
and big line bundle. Now the vanishing of cohomology classes follows from the classical Kawamata-Viehweg
theorem. �

As pointed out to us by A. Höring, this can also be proven using the result of [Kur13].

Remark 4.18. When p “ n, the above theorem is the classical Kawamata-Viehweg vanishing theorem
for a nef and big line bundle. We notice that xc1pLqny “ VolpLq by theorem 3.5 of [BDPP13]. When
p “ 1, the theorem states that if L is a psef line bundle with xc1pLqy ‰ 0, then HnpX,KX b Lq “ 0. This
case is trivial by the following easy lemma. The �rst interesting case is when L is nef in codimension 1 and
xc1pLq

2y ‰ 0. In the following example, we show that we can not weaken the condition to the case that L is
only psef and xc1pLq2y ‰ 0. On the other hand, by the divisorial Zariski decomposition, we can write any
psef line bundle numerically as a sum of a nef class in codimension 1 and of an e�ective class. This shows
that in some sense, this kind of theorem is the best we can hope for.

Now we begin our example. Let V be the unique non-trivial rank 2 extension of OC over an elliptic curve
C. Let X be the blow-up of a point of PpV q ˆ P1 and L be the pull back of OPpV qp1q b OP1p1q. OPpV qp1q

is a nef line bundle. We also notice that c1pOPpV qp1qq
2 “ 0 and c1pOPpV qp1qq ‰ 0. So L is a nef line bundle

over X and ndpLq “ 2. By the above theorem we have that H2pX,KX ` Lq “ 0. Let E be the exceptional
divisor of the blow-up. The short exact sequence

0 Ñ KX ` LÑ KX ` L` E Ñ KX ` L` E|E Ñ 0

induces the long exact sequence

H2pX,KX ` Lq Ñ H2pX,KX ` L` Eq Ñ H2pE,KX ` L` E|Eq “ H0pE,´Lq Ñ H3pX,KX ` Lq.

By Serre duality and the following lemma, H3pX,KX`Lq “ H0pX,´Lq “ 0. Since L|E “ OE , H0pE,´Lq –
C. Thus we have that

H2pX,KX ` L` Eq – C.
Now L`E is a psef line bundle over X and ndpL`Eq ě 2 but H2pX,KX `L`Eq ‰ 0. The reason of the
numerical dimension is as follows. By the super-additivity of movable intersection, we have that

xpL` Eq2y ě xL2y ` xE2y ` 2xL ¨ Ey ě xL2y.

Lemma 4.19. Let pL, hq be a non-trivial pi.e. L ‰ OXq psef line bundle over a compact complex
manifold X. Then we have

H0pX,L´1q “ 0.
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Proof. We argue by contradiction. Let s be a non-zero section in H0pX,L´1q. Consider the function
log|s|2L´1,h´1 . Let ϕ be the local weight of h such that h “ e´ϕ locally. Thus the above function can be
locally written as log|s|2 ` ϕ. In particular, it is a psh function on X. Since X is compact, the only psh
functions are the constant functions. On the other hand,

iBBlog|s|2L´1,h´1 “ rs “ 0s ` iΘL,h “ 0

where rs “ 0s is the current associated to the (possible trivial) divisor s “ 0 and iΘL,h is the curvature of
pL, hq. Since both rs “ 0s and iΘL,h are positive currents, they are 0. In particular, s never vanishes on X
which contradicts the fact that L is a non-trivial line bundle. �

A classical result on nef line bundles is the following. Let A ` B be a nef line bundle over a compact
manifold X where A,B are e�ective R-divisors without intersection. Then A,B are both nef divisors. In
the case of nefness in lower codimension, we have the following generalised version.

Lemma 4.20. Let A`B be a line bundle that is nef in codimension k over a compact manifold X pby this,
we mean that c1pA ` Bq is nef in codimension kq, where A,B are e�ective R-divisors without intersection.
Then the divisors A,B are both nef in codimension k.

More generally, let α` c1pEq be a class that is nef in codimension k over a compact manifold X, where
E is an e�ective R-divisor and Ennpαq X E “ H. Then α is nef in codimension k.

Proof. Fix α0 P α, β0 P c1pEq two smooth representatives. By assumption, for any ε ą 0, there exists
a quasi-psh function ϕε on X with analytic singularities such that

α0 ` iBBϕε ě ´εω

where ω is some Hermitian metric on X (not necessarily Kähler). (For example, we can take a regularisation
of the minimal potential ϕmin,´ ε

2
.) We can assume that the singular set of ϕε has empty intersection with

VE . Here VE is some small tubular neighbourhood of E.
Let ψε be a family of quasi-psh functions on X with analytic singularities such that

α0 ` β0 ` iBBψε ě ´εω.

We can assume that the singular set of ψε has codimension at least k ` 1.
Let ϕE be a quasi-psh function on X such that β0 ` iBBϕE “ rEs where rEs is the current associated

to E. But de�nition, the pole of ϕE is exactly the support of E. In particular we have that ψε ´ ϕE is a
well-de�ned quasi-psh function outside E such that

α0 ` iBBpψε ´ ϕEq ě ´εω

on X r E.
Now we glue the potentials to get a quasi-psh function Φε with analytic singularities on X, such that

α0 ` iBBΦε ě ´εω.

We also demand that the singular set of Φε be included in the singular set of ψε. This will �nish the proof
of the lemma.

On X r VE we de�ne Φε “ maxpψε ´ ϕE , ϕε ` Cεq where Cε is a constant which will be determined
latter. In particular, on X r VE we have

α0 ` iBBΦε ě ´εω.

On VE , we de�ne Φε “ ϕε ` Cε. On X r VE , ϕE is bounded and ψε is bounded from above. Near the
boundary of VE , ϕε is also bounded since the singular set of ϕε has empty intersection with VE . Thus for
Cε large enough near the boundary of VE ψε ´ ϕE ă ϕε ` Cε. In particular, Φε is a global well de�ned
quasi-psh function such that α0` iBBΦε ě ´εω. The singular set of Φε in X rVE is included in the singular
set of ψε. On VE , Φε is smooth. This �nishes our construction. �

Remark 4.21. The condition that the intersection is empty is necessary for the lemma. Otherwise, we
have the following counter-example.

The construction uses Cutkosky's construction detailed in the next section. Let Y be a projective
manifold such that NY “ EY . Let β P H1,1pY,Rq be a non psef class. Let A1, A2 be very ample divisors on
Y . De�ne

t0 :“ mintt|β ` tc1pA1q nefu.

We can assume that β ` t0c1pA2q is nef. De�ne X :“ PpA1 ‘ A2q and denote by π : PpA1 ‘ A2q Ñ Y the
natural projection. By proposition 4.3.1 below, π˚β ` t0c1pOp1qq and c1pOp1qq are nef. Notice that Op1q is
an e�ective divisor since H0pX,Op1qq “ H0pY,A1 ‘A2q ‰ 0.
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By proposition 4.3.2, for any t ă t0, νpπ˚β ` tc1pOp1qq,PpA2qq ą 0 and Ennpπ˚β ` tc1pOp1qq “ PpA2q.
This shows that for any t ă t0, π˚β ` tc1pOp1qq is not nef in codimension 1. In other words, the nef
class π˚β ` t0c1pOp1qq is a sum of not nef in codimension 1 class π˚β ` tc1pOp1qq and an e�ective divisor
pt0 ´ tqOp1q. Let ps1, s2q P H

0pY,A1q ‘H
0pY,A2q “ H0pX,Op1qq be a non-trivial section. Then we have

V ps1, s2q “ tpx, ξ
˚q|ξ˚ P pA1 ‘A2q

˚, ξ˚ps1, s2q “ 0u.

Identify PpA2q as Y ,then we have V ps1, s2q X PpA2q “ V ps2q ‰ H. Similar calculation shows that for any
E P |Opmq| for any m P N˚

Ennpπ
˚β ` tc1pOp1qq X E ‰ H.

Following the ideas of [DP03], we get the following Kähler version of the Kawamata-Viehweg vanishing
theorem.

Theorem 4.22. Let pX,ωq be a compact Kähler manifold of dimension n and L a nef in codimension
1 line bundle on X. Assume that xL2y ‰ 0. Assume that there exists an e�ective N-divisor D such that
c1pLq “ c1pDq. Then

HqpX,KX ` Lq “ 0

for q ě n´ 1.

Proof. In the case q “ n, we have HnpX,KX`Lq “ H0pX,´Lq˚ by Serre duality. For L psef, ´L has
no section unless L is trivial by lemma 4.17. Since xL2y ‰ 0, L is not trivial. Therefore the only interesting
case is q “ n´ 1. We divide the proof into two cases.

Case 1 : We assume that L “ D. Since the canonical section of D induces a positive singular metric on
pL, hq with multiplier ideal sheaf Iphq Ă Op´Dq. In fact we have equality outside an analytic set whose all
irreducible components have codimension larger than 2. Write D “

ř

i niDi where ni ě 0 and Di are the
irreducible components of D. De�ne

Y “ pDredqSing “
ď

i‰j

pDi XDjq Y
ď

i

Di,Sing

where Di,Sing means the singular part of Di. It is easy to see that we have an equality outside Y and that
each irreducible components of Y is of codimension larger than 2.

In particular, the short exact sequence

0 Ñ Iphq Ñ Op´Dq Ñ Op´Dq{Iphq Ñ 0

induces that

Hn´1pX,KX ` Lb Iphqq Ñ Hn´1pX,KX ` L´Dq Ñ Hn´1pX,Op´Dq{Iphqq “ 0

since the support of Op´Dq{Iphq is included in Y .
Denote by hmin the minimal metric on L where we have a natural inclusion of Iphq Ă Iphminq. Thus we

have the following commuting diagram

Hn´1pX,KX ` Lb Iphqq Hn´1pX,KX ` Lb Iphminqq

Hn´1pX,KX ` L´Dq Hn´1pX,KX ` Lq.

By Theorem 1.9 proved in chapter 3 and the condition that ndpLq ě 2, we know that the morphism

Hn´1pX,KX ` Lb Iphminqq Ñ Hn´1pX,KX ` Lq

is the 0 map. Since the left vertical arrow is surjective in the above diagram, we conclude that the morphism

Hn´1pX,KX ` L´Dq Ñ Hn´1pX,KX ` Lq

is also the 0 map. Thus the short exact sequence

0 Ñ KX ` L´D Ñ KX ` LÑ KX ` L|D “ KD Ñ 0

gives in cohomology

Hn´1pX,KX ` L´Dq Ñ Hn´1pX,KX ` Lq Ñ Hn´1pD,KDq » H0pD,ODq Ñ HnpX,KX ` L´Dq Ñ 0.

On the other hand, HnpX,KX ` L´Dq » H0pX,OXq » C. Therefore we need only show that

h0pD,ODq “ 1.

More precisely, D is a e�ective Cartier divisor in the manifold X. Therefore D is a (possibly non reduced)
Gorenstein variety. In this case the dualizing sheaf KD is given by adjunction as pKX ` Dq|D. Moreover
Serre duality holds in the same form as in the smooth case.
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To calculate the dimension of global sections of D, �rst we show that D is connected. In fact, otherwise
we would have D “ A` B with A and B e�ective non-trivial divisors such that AX B “ H. In particular
we have pA ¨B ¨ ωn´2q “ 0. But A and B are necessarily nef in codimension 1 by lemma 4.20.

We recall the Hodge Index Theorem on a compact Kähler manifold pX,ωq as theorem 6.33 and 6.34
in [Voi02a]. By the Hard Lefschetz theorem, we have

H2pX,Cq “ Ctωu ‘H2pX,Cqprim

where H2pX,Cqprim means primitive classes. The intersection form pα, βq ÞÑ pα ¨ β ¨ ωn´2q has signature
p1, h1,1pXq ´ 1q on H1,1pXq since H2pX,Cqprim is orthogonal to ω and the intersection form is negative
de�nite on H2pX,Cqprim.

On the other hand, by lemma 4.14, we have that

pA ¨A ¨ ωn´2q ě xA ¨A ¨ ωn´2y ě 0

and similar inequality for B. We also notice that

pL ¨ L ¨ ωn´2q ě xL ¨ L ¨ ωn´2y ą 0.

Since the intersection form (unlike the movable intersection) is bilinear, we have either pA ¨ A ¨ ωn´2q ą 0
or pB ¨ B ¨ ωn´2q ą 0. Without loss of generality, assume that pA ¨ A ¨ ωn´2q ą 0. Thus B P AK and
pB ¨B ¨ωn´2q ě 0. The Hodge index theorem implies that B “ 0 which is a contradiction to our assumption.
Hence D is connected, and if h0pD,ODq ě 2, then OD contains a nilpotent section t ‰ 0. In other
words, the pull back of t under the natural morphism Dred Ñ D is 0 but lies as a non trivial section in
H0pDred,Op´

ř

jPI µjDjqq for some 1 ď µj ď nj for all j. Let

J :“ tj P J |
nj
µj

maximalu

and let c “ nj
µj

be the maximal value. Notice that divptq|Di “ ´
ř

jPI µjDj |Di is e�ective (possibly 0) for all
i. We claim that it is impossible that c “ nj

µj
for all j P I. Otherwise, L|Di “ c

ř

µjDj |Di is psef. (L is nef
in codimension 1, so its restriction to any prime divisor is psef.) Its dual is e�ective, hence L|Di ” 0 for all
i. This implies that pL ¨ L ¨ ωn´2q “ 0, contradiction.

Thus we �nd some j such that
c ą

nj
µj
.

By connectedness of D we can choose i0 P J in such a way that there exists j1 P I r J with Di0 XDj1 ‰ H.
Now

ÿ

jPI

pnj ´ cµjqDj |Di0

is pseudo-e�ective as a sum of a psef and an e�ective line bundle (this has nothing to do with the choice of
i0). Since the sum, taken over I, is the same as the sum taken over I r ti0u, we conclude that

ÿ

j‰i0

pnj ´ cµjqDj |Di0

is pseudo-e�ective, too. Now all nj ´ cµj ď 0 and nj1 ´ cµj1 ă 0 with Dj1 XDi0 ‰ H, hence the dual of
ÿ

j‰i0

pnj ´ cµjqDj |Di0

is e�ective and non-zero, a contradiction. This �nishes the proof of case 1.

Case 2 : general case. We can write
L “ D ` L0

where Lm0 P Pic0
pXq (The exponent m is there because there might be torsion in H2pX,Zq; we take m to

kill the denominator of the torsion part). We may in fact assume that m “ 1; otherwise we pass to a �nite
étale cover X̃ of X and argue there (the vanishing on X̃ clearly implies the vanishing on X by Leray spectral
sequence). In other words, we write L as a sum of D and a �at line bundle pL0, h0q. Here h0 is the �at
metric. Thus there exists a bijection between singular positive metrics on L and those on D, via the tensor
product by h0. In particular, the minimal metric on L is the minimal metric on D, tensored by h0.

The short exact sequence used above is modi�ed into

0 Ñ KX ` L´D Ñ KX ` LÑ pKX ` Lq|D “ pKD ` L0q|D Ñ 0.

Taking cohomology as before and using a similar discussion, the arguments come down to proving

H0pD,´L0|Dq “ 0

since HnpX,KX ` L´Dq » H0pX,´L0q “ 0.
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The argument on the connectedness of D still works since the arguments only involve the �rst Chern
class, and since L0 has no contribution in the �rst Chern class. If ´L0|D ‰ 0, then we see as above that
´L0|D cannot have a nilpotent section. Since L0 is �at, adding a multiple of L0 does not change the pseudo-
e�ectiveness. By adding a suitable such multiple, the arguments on the non-existence of nilpotent section
are still valid.

So if H0pD,´L0|Dq “ 0 fails, then ´L0|D has a section s such that s|Dred
has no zeroes. In other

words ´L0|Dred
is trivial. But then ´L0|D is trivial, since the nowhere vanishing section of H0pX,´L0bOX

OX{IDred
q is mapped to a nowhere vanishing section in H0pX,´L0bOX OX{IDq by passing to the quotient.

Now let α : X Ñ AlbpXq be the Albanese map with image Y . Then L0 “ α˚pL10q with some line bundle
L10 on AlbpXq. (We observe that Pic0

pXq – Pic0
pAlbpXqq.) Notice that L10 is a non trivial line bundle with

c1pL
1
0q “ 0. Since L0|D is trivial and L0 is non trivial, we conclude that αpDq ‰ Y . We claim that αpDq is

contained in some proper subtorus B of AlbpXq.
The reason is as follows. Let ν : X̃ Ñ X be a modi�cation such that ν˚pDq is a SNC divisor. Denote

by Ej the irreducible components of ν˚pDq. De�ne S Ă
ś

i Pic0
pEiq the connected component containing

pν˚L0|Eiq of

tpLiq P
ź

i

Pic0
pEiq|Li|EiXEj “ Lj |EiXEju.

By proposition 1.5 of [BL92], S is a subtorus since S is a translation of the kernel of
ź

i

Pic0
pEiq Ñ

ź

i,j,i‰j

Pic0
pEi X Ejq

pLiq ÞÑ pLi|EiXEj ´ Lj |EiXEj q.

Notice that Pic0
pEiq is a torus by Hodge theory since Ei is smooth. The natural group morphism of

Pic0
pXq Ñ S given by L ÞÑ pν˚L|Eiq induces by duality the following commuting diagram

ś

i Pic0
pEiq

˚ S˚

pPic0
pXqq˚ – AlbpXq.

Since L0 P S is non trivial, the image of S˚ as a complex torus is a proper subtorus in AlbpXq. We denote
its image as B. (Let us observe that by proposition 1.5 of [BL92], the image of a homomorphism of complex
tori is a subtorus.)

Consider the induced map
β : X Ñ AlbpXq{B

and denote its image by Z. (Z can be singular!) The image βpDq is a point p by construction. Let U be a
Stein neighbourhood of p in Z(or some coordinate chart of p). Denote by mp the maximal ideal of p in Z.
In particular, for any k P N˚, mk

p is globally generated on U (by Cartan theorem A).
Let D “

ř

i niDi and de�ne nmax :“ maxpniq. Then we have the inclusion β˚H0pU,mnmax
p q Ă

H0pD,Op´nmaxDredq|Dq Ă H0pD,Op´Dq|Dq where the second inclusion uses the fact that nmaxDred ´D
is an e�ective divisor in X. In particular, for any i, H0pDi,Op´Dq|Diq ‰ 0. On the other hand, OpDq|Di is
psef since D is nef in codimension 1. (Observe that nefness is a numerical property. Since c1pL0q “ 0, D is
nef in codimension 1 as L is.) By lemma 4.17, D|Di is trivial.

Thus we have for any i

pD ¨Di ¨ ω
n´2q “

ż

Di

c1pD|Diq ^ ω
n´2 “ 0.

This implies that pL2 ¨ ωn´2q “ pD2 ¨ ωn´2q “ 0. On the other hand, since L is nef in codimension 1,
pL2 ¨ ωn´2q ě xL2 ¨ ωn´2y. But this is a contradiction with our assumption. �

Remark 4.23. If D is a smooth reduced divisor, we can also argue as follows at the end of case 2. We
observe that L0 is a non-trivial element in a translate of the kernel of Pic0

pXq Ñ Pic0
pDq. On the other

hand, we have
Hn´1pX,KX `Dq “ H1pX,´Dq “ 0 Ñ H1pX,OXq Ñ H1pD,ODq

since by case 1,Hn´1pX,KX`Dq “ 0. However,H1pX,OXq Ñ H1pD,ODq is the tangent map of Pic0
pXq Ñ

Pic0
pDq. By proposition 1.5 of [BL92], the kernel is discrete. Moreover, the connected component containing

the zero point of the kernel is of �nite index in the kernel. In particular, L0 is a torsion element. This yields
a contradiction.
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4.3. Examples and counter-examples

In this section, we �rst give for each k P N˚ an example of a psef class αk on some manifold Xk, such
that αk is nef in codimension k but not nef in codimension k`1. This shows in particular that the inclusion
of the various types of nef cones can be strict.

For the convenience of the reader, we recall Cutkosky's construction described in [Bou04], as well as all
needed material for our use.

Let E be a vector bundle of rank r over a manifold Y and L be a line bundle over Y . Since there exists a
surjective bundle morphism given by projection E ‘LÑ E , we can view D :“ PpEq as a closed submanifold
of PpE ‘ Lq. Note that the restriction of OPpE‘Lqp1q on PpEq is the tautological line bundle OPpEqp1q. We
notice that the canonical line bundle of the projectivization of a vector bundle PpEq is given by

KPpEq “ OPpEqp´pr ` 1qq ` π˚pKY ` detEq
where π : PpEq Ñ Y is the projection. From the short exact sequence

0 Ñ TPpEq Ñ TPpE‘Lq|PpEq Ñ NPpEq{PpE‘Lq “ OpDq|PpEq Ñ 0

we have
KPpE‘Lq|PpEq “ KPpEq bOp´Dq|PpEq.

Using the formula for the canonical line bundle, we have

Op1q|PpEq “ pOpDq b π˚Lq|PpEq.
We observe that by the Leray-Hirsh theorem for Bott-Chern cohomology,

H1,1
BCpPpE ‘ Lq,Rq “ Rc1pOp1qq ‘ π˚H1,1

BCpY,Rq.

In particular, this implies that the inclusion i : PpEq Ñ PpE ‘ Lq induces an isomorphism on H1,1
BC . Hence

we �nd that on PpE ‘ Lq
c1pOp1qq “ c1pOpDqq ` π˚c1pLq.

Now let Y be a compact complex manifold of dimension m and L0, ¨ ¨ ¨ , Lr the line bundles over Y . We
de�ne

X :“ PpL0 ‘ ¨ ¨ ¨ ‘ Lrq.

We denote H :“ Op1q the tautological line bundle over the projectivization and h :“ c1pHq. For any i, the
projection L0 ‘ ¨ ¨ ¨Lr Ñ L0 ‘ ¨ ¨ ¨ L̂i ‘ ¨ ¨ ¨ ‘ Lr induces inclusions of hypersurfaces

Di :“ PpL0 ‘ ¨ ¨ ¨ ‘ L̂i ‘ ¨ ¨ ¨ ‘ Lrq.

By the above discussion
di ` li “ h

where di :“ cipOpDiqq and li :“ c1pLiq. In fact, by calculating the transition function, we can show that
Op1q is linear equivalent to Li `Di. But the relation of Chern classes is enough for our use here.

We have the following explicit description of nef cone and psef cone in this case. We denote by C the
cone generated by the li.

Proposition 4.3.1. Let α P H1,1
BCpX,Rq be a class that is decomposed as α “ π˚β ` λh. Then

(1) α is nef i� λ ě 0 and β ` λC is contained in NY .
(2) α is psef i� λ ě 0 and pβ ` λCq X EY ‰ H.

Proof. We notice that if α contains a positive current T “ θ` iBBϕ with θ smooth, then the pluripolar
set P pϕq “ tϕ “ ´8u is of Lebesgue measure 0. Hence, by the Fubini theorem, the set

ty P Y, π´1pyq Ă P pϕqu

is of Lebesgue measure 0. For y outside the measure 0 set, α|π´1pzq is the class of T |π´1pzq. It is also equal
to the class of λc1pOPr p1qq, and this implies that λ ě 0. We always assume in the following that λ ě 0.

(1) If α is nef, the restriction of α to PpLiq for any i is also nef where PpLiq is biholomorphic to Y given
by π. Note that α|PpLiq “ λli ` β is nef as a restriction of nef class. So β ` λC is contained in NY .

On the other hand, α “ π˚β`h “ π˚pβ`λliq`λdi for any i where β`λli is nef by assumption. Hence
the non-nef locus of α is contained in Di. Since the intersection of all Di is empty, we conclude that α is nef.

(2) Let ti P r0, 1s such that
ř

ti “ 1 and β `
řr
i“0 tili P EY . Hence h “

ř

tih “
ř

tiπ
˚li `

ř

tidi and
α “ π˚pβ ` λ

ř

tiliq ` λ
ř

tidi. di is psef since it contains the positive current associated to Di. As a sum
of psef classes, α is psef.

For the other direction, we argue by induction. When r “ 0, X “ Y and α “ β`λl0. By the assumption
that α is psef, we have

α P pβ ` λCq X EY .
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Continue the induction on r. Let T be a closed positive current in α. we have that α ´ νpT,D0qd0 is psef
containing the current T ´ νpT,D0qrD0s. And pα´ νpT,D0qd0q|D0

is psef since the restriction of the current
T ´ νpT,D0qrD0s on D0 is well de�ned. Now D0 is the projectivisation of a vector bundle of rank r over Y .
As a cohomology class

α´ νpT,D0qd0 “ π˚pβ ` λl0q ` pλ´ νpT,D0qqd0

Restrict α on some �bre of π as above. We have that λ ě νpT,D0q. By induction, we see that the psef class
pα´ νpT,D0qd0q|D0

, which is also equal to π˚pβ ` νpT,D0ql0q ` pλ´ νpT,D0qqh, satis�es

pβ ` νpT,D0ql0 ` pλ´ νpT,D0qqC0q X EY ‰ H

where C0 is the cone generated by l1, ¨ ¨ ¨ , lr. In other words,

pβ ` λCq X EY ‰ H.

�

We will also need the following explicit calculation of the generic minimal multiplicity in this example.
From now on, we choose Y such that the nef cone NY and the psef cone EY coincide (for example we can
take Y to be a Riemann surface).

We denote I a subset of t0, ¨ ¨ ¨ , ru with complement J . We denote VI :“
Ş

iPI Di “ Pp‘jPJLjq and CI
the convex envelope of lipi P Iq.

We observe that the non-nef locus of any psef class is contained in the union of Di. The reason is as
follows: since α “ π˚β ` λh is psef, by proposition 4.3.1 we know that there exist ti P r0, 1s with

ř

ti “ 1
such that β ` λp

ř

tiliq P EY “ NY . Hence

α “ π˚pβ ` λp
ÿ

tiliqq ` λp
ÿ

tidiq

is a sum of nef divisor and e�ective divisor. (Since α is psef, λ ě 0.) So the non-nef locus of α is contained
in the union of Di.

Proposition 4.3.2. Let α be a big class such that α “ π˚β ` λh. The generic minimal multiplicity of
α along VI is equal to

νpα, VIq “ mintt ě 0, pβ ` tCI ` pλ´ tqCJq XNY ‰ Hu.

More precisely, we have νpα, VIq “ νpα, xq for any x P VI r
Ť

jPJ Dj .

Proof. Let µ : XI Ñ X the blow-up of X along VI with exceptional divisor EI . Hence we have
EI “ PpN˚VI{Xq with N

˚
VI{X

“ ‘iPIOVip´Diq. By lemma 4.4, we get

νpα, VIq “ νpµ˚α,EIq.

Denote by HI the tautological line bundle over EI where we have OEI p´EIq “ HI .
For t ě 0, the restriction of µ˚α ´ tc1pOpEIqq to EI is psef is hence equivalent to that µ˚α ` tc1pHIq

is psef. By proposition 4.3.1, the latter is equivalent to the fact that α ` tCpπ˚li ´ hq “ α ´ th ` tπ˚Cpliq
intersects EVI where Cpliq is the convex envelop of li (i P I). Note also that

α´ th` tπ˚Cpliq “ π˚pβ ` tCpliqq ` pλ´ tqh

where we denote by the same notation π to be the projection from VI to Y and h to be the �rst Chern class
of the tautological line bundle over VI . By proposition 4.3.1, it is psef if and only if β ` tCI ` pλ ´ tqCJ
intersects the psef cone EY .

Since the class µ˚α´ νpα, VIqc1pOpEIqq has positive current µ˚Tmin´ νpTmin, VIqrEI s whose restriction
to EI is well de�ned by Siu's decomposition theorem. By the last paragraph we have

νpα, VIq “ νpTmin, VIq ě mintt ě 0, pβ ` tCI ` pλ´ tqCJq XNY ‰ Hu.

On the other direction, let γ :“ β ` t
ř

iPI aili ` pλ´ tq
ř

jPJ bj lj be a psef (equivalently nef by assumption)
class on Y with

ř

ai “
ř

bj “ 1. Hence α “ π˚γ ` t
ř

aidi ` pλ´ tq
ř

bjdj . For x P VI r
Ť

jPJ Dj ,

νpα, xq ď t
ÿ

aiνprDis, xq ` pλ´ tq
ÿ

bjνprDjs, xq ď t
ÿ

ai “ t.

In particular, this shows that

νpα, VIq ď mintt ě 0, pβ ` tCI ` pλ´ tqCJq XNY ‰ Hu.

By the proof, the equality is attained for x P VI r
Ť

jPJ Dj . �
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We notice that if we use the algebraic analogue in the projective case as in [Nak04], we can weaken the
assumption to the case that α is just a psef class.

In particular, the proposition 4.3.2 shows that YDi is strati�ed by the sets VI r
Ť

jPJ Dj with respect
to the generic minimal multiplicity.

Now we are prepared to give our construction. Let Y as above be a projective manifold such that the
nef cone coincides with the psef cone. De�ne Xk “ PpOY ‘ OY pA1q ‘ ¨ ¨ ¨ ‘ OY pAk`1qq where Ai are the
ample line bundles over Y . Let β P H1,1

BCpY,Rq be a not-nef class. Denote H be the tautological line bundle
over Xk and denote h its �rst Chern class. De�ne α “ π˚β ` h. We assume that:

For any i, β ` c1pAiq is nef and big.
As above, PpOY q » Y is a closed submanifold of Xk of codimension k ` 1 via the projection of OY ‘

OY pA1q ‘ ¨ ¨ ¨ ‘OY pAk`1q Ñ OY . α is psef but not nef on Xk by proposition 4.3.1. In fact, if α is nef, its
restriction to the submanifold Y (i.e. β) will be nef. For any subset I ‰ t1, ¨ ¨ ¨ ru (taking L0 :“ OY ), by
proposition 4.3.2, νpα, VIq “ 0 since β`

ř

jPJ c1pAjq is nef which means we can take t “ 0 on the right hand
of the equation. By proposition 4.3.2, νpα, xq is constant on PpOY q. The non-nef locus can not be empty
otherwise α would be nef. But non-nef locus have to be contained in PpOY q. Hence the constant cannot be
zero.

In conclusion, we have νpα,PpOY qq ą 0, which in particular shows that α is not nef in codimension k`1.
On the other hand, the non-nef locus is also PpOpY qq which in particular shows that α is nef in codimension
k.

With the explicit calculation of generic minimal multiplicity, we discuss the optimality of the divisorial
Zariski decomposition. Take k “ 1 in the above construction. Take β to be the �rst Chern class of some
line bundle. Hence by the above calculation α is nef in codimension 1 but not nef in codimension 2. Its
non-nef locus is PpOY q. For α, there doesn't exist a unique decomposition of this psef class α “ c1pLq
into a nef in codimension 2 R-divisor P and an e�ective R-divisor N such that the canonical inclusion
H0ptkP uq Ñ H0pkLq is an isomorphism for each k ą 0. Here the round-down of an R-divisor is de�ned
coe�cient-wise. On the contrary, this decomposition will also be the divisorial Zariski decomposition. But
α is nef in codmension 1, the uniqueness of the divisorial Zariski decomposition shows that the nef in
codimension 2 part have to be α itself. This is a contradiction. In particular, when Y is a Riemann surface,
it gives an example in dimension 3 where the classical Zariski decomposition does not exist (although it is
always possible in dimension 2).

Given a psef class α on some compact manifold X, in general there does not always exist a composition
of �nite blow-up(s) of smooth centres µ : X̃ Ñ X such that the nef in codimension 1 part of µ˚α is in fact
nef. This example is �rst shown in [Nak04].

Let α be a big class on a compact Kähler manifold X. Assume that there exists no �nite composition
of blow-up(s) with smooth centres. such that the the nef in codimension 1 part of µ˚α is in fact nef. For
example, we can take the pull back of the classed constructed by Nakayama on X by p : XˆT Ñ X where T
a complex torus. We have following lemma to conclude that in fact there exists no modi�cation such that the
the nef in codimension 1 part of µ˚α is in fact nef. In general, a modi�cation is not necessarily a composition
of blow-up(s) with smooth centres. However, by Hironaka's results, any modi�cation is dominated by a �nite
composition of blow-up(s) with smooth centres. In other words, for ν : X̃ Ñ X a modi�cation, there exists
a commutative diagram

Y X̃

X

g

f

ν

where g is a �nite composition of blow-up(s) with smooth centres and f is holomorphic. To prove that there
exists no modi�cation such that the nef in codimension 1 part of the pull back of some cohomology class is
nef by the above argument, we have to prove that if Zpν˚αq is nef, Zpg˚αq is also nef. This is done by the
following proposition. It shows in particular that in the above example, if Zpν˚αq is nef, Zpg˚αq “ f˚Zpν˚αq
is also nef.

Notice that the initial argument of Nakayama already proves the non-existence of Zariski decomposition
for any modi�cation.

Proposition 4.3.3. (1) Let f : Y Ñ X be a holomorphic map between two compact complex manifolds
and α be a psef class on X. Assume that Zpαq is nef. Then f˚Npαq ě Npf˚αq where the inequality relation
ě means the di�erence is a psef class.

(2) Let f : Y Ñ X be a modi�cation between two compact complex manifolds and α a big class on X.
Then Npf˚αq ě f˚Npαq.
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Proof. (1) By the convexity of minimal multiplicity along the subvarieties,

Npf˚αq ď Npf˚Npαqq `Npf˚Zpαqq.

Since Zpαq is nef, f˚Zpαq is also nef, and thus Npf˚Zpαqq “ 0. The conclusion follows observing that
Npf˚Npαqq ď f˚Npαq.

(2) We claim that for any positive current T P f˚α, there exists a positive current S P α such that
T “ f˚S. It is proven in Propositon 1.2.7 [Bou04] in more general setting. For the convenience of the
reader, we give a proof in this special case.

Fix a smooth representative α8 in α. There exists a quasi-psh function ϕ such that T “ f˚α8 ` iBBϕ.
Let U be a open set of X such that α8 “ iBBv on U . The function v ˝ f `ϕ is psh on f´1pUq. All the �bres
are compact and connected (the limit of general connected �bre, the points, is still connected), thus v ˝f `ϕ
is constant along the �bres. Thus there exists a function ψ on U such that ϕ “ ψ ˝ f . Since ϕ is L1

loc and
f is biholomorphic on a dense Zariski open set, ψ is also L1

loc. It is easy to see that ψ is independent of the
choice of v and is de�ned on X. De�ne S “ α8 ` iBBψ and we have T “ f˚S.

In particular, the minimal current in f˚α is the pull back of the minimal current in α Tmin. Thus

Npf˚αq “ t
ÿ

νpf˚Tmin, EqrEsu ě t
ÿ

codimpfpEqq“1

νpf˚Tmin, EqrEsu

“ t
ÿ

codimpfpEqq“1

νpTmin, fpEqqrEsu “ f˚Npαq

where the sum is taken over all irreducible hypersurfaces of Y . �

Let us point out that a current with minimal singularities does not necessarily have analytic singularities
for such a big class α that is nef in codimension 1 but not nef in codimension 2; this has been observed by
Matsumura [Mat13]. The reason is as follows. In such a situation, there exists a modi�cation ν : X̃ Ñ X
such that the pull back of α has a minimal current of the form β`rEs where β is a semi-positive smooth form
and rEs is the current associated to an e�ective divisor supported in the exceptional divisor. In particular,
the sum tβu`trEsu as cohomology class gives the divisorial Zariski decomposition of the class ν˚α. Remind
that for a big class, the Zariski projection of α is given by

α´
ÿ

D

νpTmin, DqtrDsu

where D runs over all the irreducible divisors on X and Tmin is the current with minimal singularity in the
class α (cf. Proposition 3.6 of [Bou04]). On the other hand, the push forward ν˚ and pull-pack ν˚ induces
isomorphism between ν˚α8-psh functions on X̃ and α8-psh functions on X where α8 is a smooth element
in α. In particular, the pull back of the minimal current of α is the minimal current in ν˚α which is also a
big class. Hence ν˚α admits a divisorial Zariski decomposition where the Zariski projection is semi-positive
(hence nef). This contradicts the last paragraph.

Remark 4.24. As a direct consequence of Matsumura's observation, it can be shown by an example
that the strategy of proof of the Kawamata-Viehweg vanishing theorem used in [DP03] fails in the setting
of theorem 4.22. In the nef case considered in [DP03], let h be any positive singular metric on L. Let
i

2πΘpL, hq “
ř

j λjDj ` G be the Siu's decomposition of the curvature current, where λj ě 0, Dj are
irreducible divisors, and G is a positive current such that G has Lelong numbers in codimension ě 2.
De�ne D “

ř

jrλjsDj , which is an integral e�ective divisor. As in the beginning of the proof of theorem
4.22, Hn´1pX,KX b Lq ‰ 0 is equivalent to H0pX, pD ´ Lq|Dq ‰ 0. To prove the vanishing theorem
by contradiction, Demailly and Peternell made the following �rst reduction, based on the non-vanishing
assumption H0pX, pD ´ Lq|Dq ‰ 0 and the hypothesis that the line bundle L is nef with pL2q ‰ 0 ; namely,
they showed that the curvature of h on L is the current of integration associated with an e�ective integral
divisor, so that, in particular, L is numerically equivalent to an e�ective integral divisor.

Here we show that for a big line bundle L which is nef in codimension 1 but not nef in codimension 2
over a compact Kähler manifold pX,ωq, the positive intersection product xL2y ‰ 0 and i

2πΘpL, hq is not a
current associated to an e�ective integral divisor for any singular metric h. In particular, the above situation
occurs by nakayama's example, and the strategy of [DP03] no longer works. (Up to taking some multiple
of L, since L is big, it can be represented by an e�ective divisor. By theorem 4.22, we still have vanishing
cohomology groups for some multiple of L.)

By the observation of Matsumura, the curvature current of the minimal metric cannot even be a current
associated to a real divisor. Since L is big, xLny “ VolpLq ‰ 0. By the Teissier-Hovanskii inequalities, we
get

xL2 ¨ ωn´2y “ xL2y ¨ ωn´2 ě VolpLq2{nVolpωqpn´2q{n ą 0.
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This shows in particular that xL2y ‰ 0.

Remark 4.25. Let us observe that this kind of construction can also be used to give an example of
manifold with psef anticanonical line bundle, for which the Albanese morphism is not surjective.

According to the knowledge of the author, this kind of question has been �rst proposed in [DPS93]
where the authors ask whether the Albanese map of a compact Kähler manifold is surjective under the
assumption that the anticanonical line bundle is nef. The statement has been proven �rst by Pǎun [Pau17]
using the positivity of direct image and then by Junyan Cao [Cao13] via a di�erent and simpler method.
In case the manifold is projective and the anticanonical divisor is nef, this had been proven earlier by Qi
Zhang [Zha06].

Let us use the same notation as above. Take Y to be a complex curve of genus larger than 2. By a
classical result, the Albanese map of Y is the embedding of the curve into its Jacobian variety JacpY q. In
particular, the Albanese map is not surjective. Fix A an ample divisor on Y . De�ne E “ Abp‘Ab´q where
p, q P N will be determined latter. Denote X “ PpEq with π : X Ñ Y .

We claim that the Albanese morphism of X is the composition of the natural projection π and the
Albanese morphism of Y . The reason is as follows: (cf. Proposition 3.12 in [DPS94])

Since the �bres of π are P1 which is connected and since π is di�erentially a locally trivial �bre bundle,
we have R0π˚RX “ RY , while R1π˚RX “ 0. We remark that H1pP1,Rq “ 0. The Leray spectral sequence
of the constant sheaf RX over X satis�es

Es,t2 “ HspY,Rtπ˚RXq, Es,tr ñ Hs`tpX,Rq.

Since R1π˚RX “ 0, the Leray spectral sequence always degenerates in E2. (In fact, by [Bl56], the Leray
spectral sequence always degenerates in E2 for Kähler �brations.) Hence we have

H1pX,RXq – H1pY,RY q.

Since Y and X is compact Kähler, we have by Hodge decomposition theorem that

H0pX,Ω1
Xq – H0pY,Ω1

Y q.

Since π˚ : H0pY,Ω1
Y q – H0pX,Ω1

Xq is an injective morphism, it induces an isomorphism. Passing to the
quotient, it induces an isomorphism π˚ : AlbpXq – AlbpY q. The claim is proven by the universality of the
Albanese morphism:

X Y

AlbpXq AlbpY q.

π

αX αY

π˚

We also claim that for well chosen p, q, the anticanonical line bundle ´KX is big but not nef in codimension
1. In particular, this shows that there exists the compact Kähler manifold X such that ´KX is psef but the
Albanese morphism is not surjective. Recall that

KX “ π˚pKY b det Eq bOXp´2q.

In particular for q " p, ´pKY b det Eq “ pq ´ pqA ´KY is ample. On the other hand, OXp1q is big since
one of the component in the direct sum bundle E is big. Thus ´KX is big for q ąą p. On the other
hand, the surjective morphism E Ñ Abp induces the closed immersion PpAbpq – Y Ñ X. We have that
´KX |PpAbpq “ ´KY ´ pA. For p big enough, we can assume that ´KY ´ pA is not psef. As consequence,
´KX is not nef in codimension 1.

In fact, we can calculate the generic minimal multiplicity as

νpc1p´KXq,PpAbpqq “ mintt,´KY ` pq ´ pqA` tpA´ p2´ tqqA is nefu.

Since KY is ample, we know that the generic minimal multiplicity along PpAbpq is strictly larger than 1. In
particular, consider any singular metric hε on ´KX such that its curvature satis�es iΘp´KX , hεq ě ´εω
where ω is some Kähler form on X. Then the multiplier ideal sheaf is not trivial. Near a point of PpAbpq,
choose some local coordinate such that PpAbpq “ tz1 “ 0u. By Siu's decomposition, the local weight of hε is
more singular than logp|z1|

2q. This implies that Iphεq Ă IPpAbpq where IPpAbpq is the ideal sheaf associated
to PpAbpq.

Therefore, some additional condition is certainly needed to ensure the surjectivity of Albanese morphism.
In the next section, we will show that if there exist approximated singular metrics such that the associated
multiplier ideal sheaves are trivial, then the Albanese morphism is surjective.

Remark 4.26. Using Nakayama's algebraic de�nition of minimal multiplicities [Nak04], Lemma 4.4
holds for a psef class on a projective manifold. Our arguments based on the non existence of Zariski
decomposition over a birational model obtained as composition of blow-up(s) of smooth centres also work
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for the example of John Lesieutre [Les12]. Consider the blow up of P3 at 9 points in very general position.
There exist a class α that is nef in codimension 1 and a curve C such that pα,Cq ă 0 constructed in [Les12].
In particular, α is not nef. Of course, we can construct a family of similar classes by considering α` εc1pAq
with ε ą 0 and A an ample divisor. For ε small enough, the intersection number is still strictly negative.

4.4. Surjectivity of the Albanese map

In this section, we discuss the surjectivity of the Albanese morphism of a compact Kähler manifold X,
under the assumption that ´KX psef and some additional integrability condition for its singular metrics.

We will need the following existence and regularity results of [CGP13] and [GP16] for solutions of
singular Monge-Ampère equations.

Theorem 4.27. (Main theorem in [CGP13] and theorem A in [GP16])
Let X be a n-dimensional compact Kähler manifold, and let D “

ř

i aiDi be an e�ective R-divisor with
simple normal crossing support, such that for all 1 ď i ď r, the coe�cients satisfy 0 ă ai ă 1. Let ω be
a Kähler metric on X, let dV be a smooth volume form, and let ε ą 0. Then the weak solution of the
Monge-Ampère equation

pω `
i

2π
BBϕqn “ eεϕ

dV
ś

|si|2ai

exists and has conic singularities along D, with regularity C2,α,β for any 1 ą α ą 0 and any angles β “
p1 ´ a1, ¨ ¨ ¨ , 1 ´ arq. Here si is the canonical section of OpDiq and |si|2 is the norm of si with respect to
some smooth metric.

We notice that since the solution is bounded, the Monge-Ampère operator is well-de�ned in the sense of
currents by Bedford-Taylor [BT82]. The operator coincides with the positive product de�ned in [BEGZ10].
By the theorem, in particular, the weak solution is a bounded ω-psh function which is smooth on Xr

Ť

iDi.
We also �nd that ω ` i

2πBBϕ has coe�cients in L1
loc by the above regularity result.

We now recall the de�nition of a singular metric on a vector bundle according to [Paun16].

Definition 4.28. A singular Hermitian metric h on E is given locally by a measurable possibly un-
bounded map with values in the set of semi-positive Hermitian matrices, such that 0 ă deth ă 8 almost
everywhere.

By de�nition, a solution in the above theorem de�nes a singular metric on TX . In particular, the solution
also induces a singular metric on any quotient bundle of TX . We observe that by the Monge-Ampère equation,
the Ricci curvature of the singular metric is well de�ned as a current. However, one can notice that the
curvature tensor of TX is not necessarily well-de�ned as a current with values in semi-positive, possibly
unbounded Hermitian matrices.

In fact, the work of [Gue13] and [CGP13] gives the following weak estimate for the following type of
Monge-Ampère equation.

Theorem 4.29. Let X be a n-dimensional compact Kähler manifold, and let D “
ř

i aiDi, E “
ř

j bjEj
be two e�ective R-divisors with simple normal crossing support, such that for all 1 ď i ď r, 0 ă ai ă 1.
Assume that D and E have no common irreducible component. Let ω be a Kähler metric on X, dV a smooth
volume form, and let ε ą 0. Then the weak solution of the Monge-Ampère equation

xpω `
i

2π
BBϕqny “ eεϕ

ś

|tj |
2bjdV

ś

|si|2ai

exists which is smooth on XrpDYEq and has upper bound by a metric with conic singularity along D. Here
x‚y is the positive intersection product de�ned in [BEGZ10]. Here si(resp. tj) is the canonical section of
OpDiq (resp. OpEjq) and |si|2 (resp. |tj |2) is the norm of si (resp. tj) with respect to some smooth metric.

We observe that the existence of a solution is proved in [BEGZ10]. As a consequence of their theorem,
there exists C ą 0 such that the solution has on X r pD Y Eq an upper bound

ω `
i

2π
BBϕ ď

Cω
ś

i |si|
2ai

.

By the Monge-Ampère equation, we �nd on X r pD Y Eq a lower bound

ω `
i

2π
BBϕ ě eεϕ

ś

|tj |
2bjω

ś

|si|2ai
p

C
ś

i |si|
2ai
q´pn´1q.



78 4. CONSIDERATIONS ON NEFNESS IN HIGHER CODIMENSION

Notice that since the solution is smooth on X r pD Y Eq, the above inequalities are satis�ed pointwise. By
the result of [BEGZ10], |ϕ| is uniformly bounded on X. In particular, we have

ω `
i

2π
BBϕ ě

C
ś

|tj |
2bjω

ś

|si|2ai
p

C
ś

i |si|
2ai
q´pn´1q.

In conclusion outsideDYE, the solution ω` i
2πBBϕ viewed as a Hermitian form over TX with respect to ω has

positive eigenvalues bounded from above by C
ś

i |si|
2ai

and bounded from below by C
ś

|tj |
2bj

ś

|si|2ai
p C
ś

i |si|
2ai
q´pn´1q.

Let us observe that for the singular metric on the determinant line bundle of the quotient bundle Q
given by a short exact sequence of vector bundles

0 Ñ S Ñ TX Ñ QÑ 0,

the curvature form is well-de�ned as a current. We detail the argument below.
Suppose that we are in the situation of Theorem 4.27, with the same notation as above. Since the metric

is smooth outside D Y E, we only need to study the neighbourhood of D Y E. By a C8 splitting of the
exact sequence we can view Q as a subbundle of TX . ω ` i

2πBBϕ thus induces a Hermitian form over Q
which we will denote by ω ` i

2πBBϕ|Q. By the minimax principle, for the induced Hermitian form on Q,

the eigenvalues are bounded from above by C
ś

i |si|
2ai

and bounded from below by C
ś

|tj |
2bj

ś

|si|2ai
p C
ś

i |si|
2ai
q´pn´1q.

To prove that the curvature of detpQq is well-de�ned as a current (not necessarily positive), it is enough to
prove that logpdetpω` i

2πBBϕ|Qqq P L
1
loc. detpω` i

2πBBϕ|Qq is the product of all eigenvalues of the Hermitian
form ω ` i

2πBBϕ|Q. Thus we get for the potentials the estimate

|logpdetpω `
i

2π
BBϕ|Qqq| ď

ÿ

i

Cilog|si|
2 `

ÿ

j

Cj log|tj |
2 ` C

for some Ci ą 0, Cj ą 0 and C ą 0. In the following, we will refer to this type of control as potentials
possessing at most logarithmic poles along DYE. Notice also that for any i log|zi| is locally integrable with
respect to the euclidean metric. In particular, the curvature of the induced metric on detpQq is well de�ned
as a current, since it is the iBB of some L1

loc function.
Let U be a neighbourhood of some point in D Y E as above and let π : Ũ Ñ U be some rami�ed cover

which can be written in local coordinate as

pz1, z2, ¨ ¨ ¨ , znq ÞÑ pzp11 , zp22 , ¨ ¨ ¨ , zpnn q

for some pp1, ¨ ¨ ¨ , pnq P pN˚qn. Notice that the pull back under π of the potential of our curvature current,
namely π˚logpdetpω ` i

2πBBϕ|Qqq, is still L
1
loc with at most logarithmic poles along D Y E.

In the following, instead of solving a Monge-Ampère type equation on X, we will solve a Monge-Ampère
type equation on some bimeromorphic model of σ : X̃ Ñ X. The bimeromorphic model is obtained by
the work of Hironaka. We can thus assume that the modi�cation σ is obtained as a �nite composition of
blows-up of smooth submanifold. Let us �rst study the case of blow-up of smooth submanifold π : Ỹ Ñ Y .

The di�erential dπ induces a bundle morphism over Ỹ TỸ Ñ π˚TY . Assume we have biholomorphism
between Ỹ rE and Y rS where E is the exceptional divisor and S is the smooth submanifold to be blown-up.
Over Ỹ rE, dπ is a pointwise linear isomorphism. Let us estimate the variation of the norm of the pointwise
isomorphism. It will be enough for us to study the behaviour near the exceptional divisor. Otherwise the
norm will be locally bounded by a constant.

Lemma 4.30. Let π : Ỹ Ñ Y be the blow-up of a smooth submanifold S. Let p be a point in the
exceptional divisor. Choose coordinate of Ỹ and Y such that in local coordinates near p π is given by

πpw1, ¨ ¨ ¨ , wnq “ pw1ws, ¨ ¨ ¨ , ws´1ws, ws, ws`1, ¨ ¨ ¨ , wnq.

Then the norm of dπ and pdπq´1 with respect to �xed smooth metric on TỸ and π˚TY has estimate

log}dπpw1, ¨ ¨ ¨ , wnq} ď C1log|ws|
2 ` C2

log}pdπq´1pw1, ¨ ¨ ¨ , wnq} ď C1log|ws|
2 ` C2

for some C1, C2 ą 0.
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Proof. The di�erential of π at pw1, ¨ ¨ ¨ , wnq is given by the matrix
»

—

—

—

—

—

—

—

–

ws 0 . . . 0 w1 0
0 ws . . . 0 w2 0
...

...
. . .

...
... 0

0 0 . . . ws ws´1 0
0 0 . . . 0 1 0
0 0 . . . 0 0 Idn´s

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where Idn´s is the identity matrix of rank n´ s.
The norm of }dπ} at pw1, ¨ ¨ ¨ , wnq is bounded from above by the largest eigenvalue of the matrix dπ:dπ.

While the norm }pdπq´1} at pw1, ¨ ¨ ¨ , wnq is bounded from above by the inverse of the smallest eigenvalue.
The product dπ:dπ can be calculated in this local coordinate chart as

»

—

—

—

—

—

—

—

–

|ws|
2 0 . . . 0 w1w̄s 0

0 |ws|
2 . . . 0 w2w̄s 0

...
...

. . .
...

... 0
0 0 . . . |ws|

2 ws´1w̄s 0
wsw̄1 wsw̄2 . . . wsw̄s´1 1`

ř

jăs |wj |
2 0

0 0 . . . 0 0 Idn´s

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The eigenvalues are the roots of the polynomial detpdπ:dπ ´ λIdnq, which is p1´ λqn´s times

p1`
ÿ

jăs

|wj |
2 ´ λqp|ws|

2 ´ λqs´1 ´ ws´1w̄swsw̄s´1p|ws|
2 ´ λqs´2

´ws´2w̄swsw̄s´2p|ws|
2 ´ λqs´2 ´ ¨ ¨ ¨

by developing the s-th column. The polynomial can be simpli�ed as

p1`
ÿ

jăs

|wj |
2 ´ λqp|ws|

2 ´ λqs´1 ´ p
ÿ

jăs

|wj |
2q|ws|

2p|ws|
2 ´ λqs´2.

The product of the eigenvalues is

detpdπ:dπq “ |detpdπq|2 “ |ws|
2ps´1q

while the sum of the eigenvalues is

n´ s` |ws|
2ps´1q ´ ps´ 2q|ws|

2ps´2qp
ÿ

jăs

|wj |
2q ` ps´ 1qp

ÿ

jăs

|wj |
2 ` 1q|ws|

2ps´2q.

In other words, the sum of the eigenvalues is |ws|2ps´2qps´ 1`
ř

jďs |wj |
2q ` n´ s.

Since dπ:dπ is positive and Hermitian, all the eigenvalues are real and positive. In particular its largest
eigenvalue is controlled from above by |ws|2ps´2qps ´ 1 `

ř

jďs |wj |
2q ` n ´ s and its smallest eigenvalue is

controlled from below by detpdπ:dπq
`

|ws|
2ps´2qps´1`

ř

jďs |wj |
2q`n´s

˘´pn´1q
. This implies the estimate

of the norms }dπ} and }pdπq´1}. �

Proposition 4.4.1. Let σ : X̃ Ñ X be a �nite composition of blows-up of smooth submanifolds. Denote
by E the exceptional divisor. We have an estimate for the norm of dπ with respect to a �xed smooth metric
on TỸ and π˚TY that reads

log}dσ} ď C1log|sE |
2 ` C2

where C1, C2 ą 0 and sE is the canonical section of the exceptional divisor. We also have a similar estimate
for pdσq´1.

Proof. Let σ “ πd ˝ ¨ ¨ ¨ ˝ π1 where πi are blows-up of smooth submanifolds. Since dσ “ dπd ˝ ¨ ¨ ¨ ˝ dπ1,
we �nd

}dσ} ď }dπd} ¨ ¨ ¨ ¨ ¨ }dπ1}.

On the other hand, for each πi, by the above lemma, the norm of dπi has upper bound with logarithmic pole
along the exceptional divisor of this blow up. This singularity is independent of the choice of coordinate. The
pull back of logarithmic pole along a divisor D under a modi�cation is still logarithmic with pole supported
in the exceptional divisor of the modi�cation union the strict transform of D. This concludes the estimate
of the upper bound of }dσ}. The estimate for pdσq´1 is similar. �
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We will also need the following topological lemma. The de�nition of the �rst Chern class of a coherent
sheaf F over a connected complex manifold can be found for example in section 6, Chap. V of [Kob75]. We
de�ne

c1pFq :“ c1ppΛ
rFq˚˚q

where r is generic rank of F .

Lemma 4.31. Let F be a torsion free sheaf over a compact complex manifold X. Let σ : X̃ Ñ X be a
modi�cation of X such that there exists a SNC divisor E in X̃ such that

σ : X̃ r E Ñ X r πpEq

is biholomorphism with E a SNC divisor and the codimension of πpEq at least 2 and σ˚F{Tors is locally
free. Then we have

c1pFq “ σ˚pc1pσ
˚F{Torsqq.

Proof. First observe that such a modi�cation always exists by the fundamental work of [Ros68],
[GR70], [Rie71] (cf. eg. Theorem 3.5 of [Ros68]).

Without loss of generality we can assume that the dimension of X is at least 2. Otherwise, F is locally
free and the result is straightforward. By Poincaré duality, it is equivalent to prove for any cohomology class
α one has

ż

X

c1pFq ^ α “
ż

X̃

pc1pσ
˚F{Torsqq ^ σ˚α.

Recall that σ˚ chpFq “
ř

ip´1qi chpLiσ˚Fq where Liσ˚ is the i-th left exact functor of σ˚ (cf. eg. [BS56]).
Without loss of generality, we can assume that F is locally free over XrπpEq. In particular, Liσ˚F for any
i ą 0 is supported in the exceptional divisor. On the other hand, the torsion part of σ˚F is also supported in
the exceptional divisor. Recall that for a torsion sheaf, its �rst Chern class is an e�ective divisor supported
in the support of the sheaf. Thus we have

ż

X̃

pc1pσ
˚F{Torsqq ^ σ˚α “

ż

X̃

σ˚pc1pFqq ^ σ˚α

since for any irreducible component of the exceptional divisor Ei, σ˚α|Ei “ 0. This implies that

c1pFq “ σ˚pc1pσ
˚F{Torsqq.

�

To prove the surjectivity of the Albanese map, we start by an analgue of the main result of [Cao13].
Now pX,ωq be a n-dimensional compact Kähler manifold such that ´KX is psef. Notice that without loss of
generality, we can assume that n ě 2. Otherwise, ´KX psef implies that ´KX is nef in which case we know
the surjectivity. By regularisation of the minimal metric larger than ´ενω, for any εν , there exists a current
Tεν “ Ricpωq ` iBBfεν P c1pXq with analytic singularities such that Tεν ě ´2ενω. Let X̃ be a modi�cation
of X π : X̃ Ñ X such that π˚Tεν “ βεν `rFεν s where Fεν is a simple normal crossing R- divisor. We denote
rFεν s “

ř

i birDis. We can also assume that the exceptional divisor is a SNC divisor.
Classically, we have

´KX̃ “ π˚p´KXq ´ cD

where cD “
ř

i ciDi with ci ě 0. The condition that the singular metric hεν :“ detpωqe´fεν has multiplier
ideal sheaf Iphεν q “ OX means that ci ´ bi ă 1 for any i. We will denote the irreducible components in D
contained in the exceptional divisor as Ei. With this abuse of notation,

´KX̃ “ π˚p´KXq ´ cE.

Theorem 4.32. Let pX,ωq be a n-dimensional compact Kähler manifold such that ´KX is psef. Assume
that there exists a sequence εν ą 0 such that limνÑ8 εν “ 0 and Iphεν q “ OX with the notation explained
above. Let

0 “ E0 Ă E1 Ă ¨ ¨ ¨ Ă Es “ TX

be a �ltration of torsion-free subsheaves such that Ei`1{Ei is an ω-stable torsion-free subsheaf of TX{Ei of
maximal slope. Then for any i, the slope of Ei`1{Ei with respect to ωn´1, namely

µpEi`1{Eiq :“

ż

X

c1pEi`1{Eiq ^ ωn´1,

is positive.
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Proof. We �rst consider a simple case.

Case 1 : assume that the �ltration is regular, i.e., that all Ei, Ei`1{Ei are vector bundles. By the stability
condition, to prove the theorem, it is su�cient to prove that for any i

ż

X

c1pTX{Eiq ^ ωn´1 ě 0.

The key step is the existence of positive closed p1, 1q- current in a Kähler class on some birational model of
X which is smooth outside a SNC divisor and whose Ricci curvature can be taken �arbitrary small" outside
the divisor.

With the same notations as in the discussion before the theorem, for δ ą 0 su�cient small, π˚ω ´ δtEu
is a Kähler class on X̃. We want to construct a positive closed current in the class π˚ω ´ δtEu with Ricci
curvature lower bound using the theorems in [GP16] and [CGP13].

To get the lower bound, we want to solve the following Kähler-Einstein type of equation

Ricpωδ,ϕq “ ´ενωδ,ϕ ` ενωδ ` π
˚Tεν ´ crEs

where ωδ,ϕ :“ ωδ ` iBBϕ is the unknown in the class π˚ω ´ δtEu and ωδ is a smooth Kähler representative.
Notice that both sides belong to the class c1p´KX̃q.

In order to solve the Kähler-Einstein type of equation, we thus solve the following Monge-Ampère
equation. Let γεν be a smooth representative of the class tFεν ´ cEu which is induced from the curvature
forms of some smooth metrics pOpDiq, hiq. By the BB-lemma, there exists fεν P C

8pX̃q such that βεν`γεν “
Ricpωδq `

i
2πBBfεν ,δ. The Monge-Ampère equation equivalent to the Kähler-Einstein type of equation can

be written as

ωnδ,ϕ “
ωnδ e

ενϕ´fεν,δ

|si|
2pci´biq
hi

.

By the assumption, we have
ci ă bi ` 1

which is exactly the integrability condition in the Theorem 4.27. Thus by theorem 4.27, the solutions exist
and are smooth outside the support of D. In particular, we have the Kähler-Einstein type of equation
pointwise outside D and

Ricpωδ,ϕq ě ´ενωδ,ϕ

in the sense of current. By lemma 2.7 in [Cao13] (which works even on non compact manifold since it is a
local calculation), we have on X̃ rD that

iΘpTX̃ , ωδ,ϕq ^ ω
n´1
δ,ϕ {ω

n
δ,ϕ ě ´ενIdTX̃

pointwise.
The singular metric on TX̃ from the solution of the Monge-Ampère equation induces a singular metric

on π˚TX by dπ : TX̃ Ñ π˚TX . Taking the quotient metric, it induces a singular metric on π˚TX{Ei (we also
denote it by ωδ,ϕ). We get on X̃ rD

iΘpπ˚pTX{Eiq, ωδ,ϕq ^ ωn´1
δ,ϕ {ω

n
δ,ϕ ě ´ενIdπ˚pTX{Eiq

pointwise. In particular, we have that piΘpπ˚ detpTX{Eiq, ωδ,ϕq ` ενrankpπ˚pTX{Eiqqωδ,ϕq ^ ωn´1
δ,ϕ de�nes a

closed positive pn, nq-current on X r πpDq – X̃ rD.
Let us show that iΘpπ˚ detpTX{Eiq, ωδ,ϕq has L1

loc weight. In fact the local weight has at most logarithmic
pole along the divisor D. Notice that iΘpπ˚ detpTX{Eiq, ωδ,ϕq is in the �rst Chern class of π˚c1pTX{Eiq.

Locally over X̃rD, identify the metric ωδ,ϕ as a Hermitian matrix Hδ,ϕ. The induced metric on π˚pTXq
can be identi�ed as the Hermitian matrix over X̃ rD

rpdπq´1s:Hδ,ϕpdπq
´1.

By the minimax principle, the induced metric on π˚pTX{Eiq, as a Hermitian form, has eigenvalues that
are controlled both from above and from below by the eigenvalues of the above matrix. More precisely,
the maximal eigenvalue of the induced metric on π˚pTX{Eiq over X̃ r D is bounded from above by the
maximal eigenvalue of Hδ,ϕ times }pdπq´1}2. By the discussion after Theorem 4.27 and Proposition 4.4.1,
the logarithm of the maximal eigenvalue of induced metric on π˚pTX{Eiq has at most logarithmic pole along
the divisor D. Similarly, the inverse of the minimal eigenvalue of induced metric on π˚pTX{Eiq is bounded
from above by the inverse of the minimal eigenvalue of Hδ,ϕ times }pdπq}2. The absolute value of the
logarithm of the minimal eigenvalue of induced metric on π˚pTX{Eiq has also at most logarithmic pole along
the divisor D.



82 4. CONSIDERATIONS ON NEFNESS IN HIGHER CODIMENSION

The induced metric on π˚ detpTX{Eiq has thus weight controlled both from above and from below by
functions with at most logarithmic pole along the divisor D. In particular, the local weight is locally
integrable.

We claim that piΘpπ˚ detpTX{Eiq, ωδ,ϕq` ενrankpπ˚pTX{Eiqqωδ,ϕq^ωn´1
δ,ϕ extends by zero to be a closed

positive pn, nq-current on X̃. Moreover, piΘpπ˚ detpTX{Eiq, ωδ,ϕqq ^ ωn´1
δ,ϕ well de�nes a pn, nq-current on X̃

and it has zero mass along D.
To prove the claim, we start by showing that piΘpπ˚ detpTX{Eiq, ωδ,ϕqq^ωn´1

δ,ϕ can be de�ned as a pn, nq-
current on X̃. By a partition of unity, it is enough to show it in a �nite open cover of X̃ such that D is the
zero set of the coordinate functions in these charts. Let p P N be a natural number large enough such that
ppci ´ biq ą 1 for any i such that ci ´ bi ą 0. Let ψ be the local potential of iΘpπ˚ detpTX{Eiq, ωδ,ϕq on U a
local chart. Assume that Fεν ´ cE “ E1´E2 with E1, E2 two e�ective divisors without common irreducible
components. Assume that E1 “

řr
i“1 airzi “ 0s. Let p : Ũ Ñ U be a local �nite rami�ed cover given by

ppz1, ¨ ¨ ¨ , zr, zr`1, ¨ ¨ ¨ , znq “ pz
p
1 , ¨ ¨ ¨ , z

p
r , zr`1, ¨ ¨ ¨ , znq.

By the discussion before Lemma 4.28, p˚ψ is still L1
loc since ψ can possess at most logarithmic pole along

the divisor E1 Y E2. On the other hand, p˚ωδ,ϕ is bounded from above by

C
r
ÿ

i“1

idpzpaii q ^ dpzpaii q ` C
n
ÿ

i“r`1

idpziq ^ dpziq

by the upper bound with conic singularity given by the theorem 4.27. Thus p˚ψ^ p˚ωn´1
δ,ϕ is well de�ned as

current on Ũ with L1
loc coe�cients. We de�ne piΘpπ˚ detpTX{Eiq, ωδ,ϕqq ^ ωn´1

δ,ϕ on U to be

1

pr
p˚piBBpp

˚ψ ^ p˚ωn´1
δ,ϕ qq.

This current coincides with the usual de�nition on X̃ rD.
Next, we show that piΘpπ˚ detpTX{Eiq, ωδ,ϕqq ^ ωn´1

δ,ϕ de�ned above has zero mass along D. Let θpzq P
C8c pCnq with compact support in U . Then θε :“ θpεz1, ¨ ¨ ¨ , εzr, zr`1, ¨ ¨ ¨ , znq is supported in a tubular
neighbourhood of D of diameter ε in the coordinate chart. Then it remains to prove that for ε ą 0 small
enough the pair of the current piΘpπ˚ detpTX{Eiq, ωδ,ϕqq ^ ωn´1

δ,ϕ with θε is �nite and has limit 0 as ε Ñ 0.
We have

ż

U

θεpiΘpπ
˚ detpTX{Eiq, ωδ,ϕqq ^ ωn´1

δ,ϕ “
1

pr

ż

Ũ

π˚ppiΘpπ˚ detpTX{Eiq, ωδ,ϕqq ^ ωn´1
δ,ϕ q

“
1

pr

ż

Ũ

π˚pψ ^ ωn´1
δ,ϕ ^ iBBθεq.

Here, |iBBθε| is bounded from above, with some constant C ą 0, by

C
r
ÿ

i“1

1

ε2
idpziq ^ dpziq ` C

n
ÿ

i“r`1

idpziq ^ dpziq.

On the other hand,
ş

Ũ
π˚pψ ^ ωn´1

δ,ϕ ^ iBBθεq is bounded from above for some r0 ą 0 independent of ε by

C
r
ź

i“1

ż ε

0

1

ε2
log|zi||zi|

2pai´2idzi ^ dzi

n
ź

i“r`1

ż r0

0

idzi ^ dzi.

The upper bound is uniformly bounded and has limit 0 as εÑ 0 since
ż ε

0

1

ε2
logprqr2pai´1dr “

1

2paiε2
logpεqε2pai ´

1

4p2a2
i ε

2
ε2pai .

Notice that by the choice of p, for any i, pai ą 1.
In conclusion, piΘpπ˚ detpTX{Eiq, ωδ,ϕq` ενrankpπ˚pTX{Eiqqωδ,ϕq^ωn´1

δ,ϕ is a closed pn, nq- current with
0 mass along D. piΘpπ˚ detpTX{Eiq, ωδ,ϕq ` ενrankpπ˚pTX{Eiqqωδ,ϕq ^ ωn´1

δ,ϕ is a closed positive current on
X̃ rD. By Skoda-El Mir theorem, it extends by 0 across E to be a positive closed current on X̃ which is
piΘpπ˚ detpTX{Eiq, ωδ,ϕq ` ενrankpπ˚pTX{Eiqqωδ,ϕq ^ ωn´1

δ,ϕ de�ned above. The mass on X̃ is equal to the
mass on X̃ r E. This can be seen from the following decomposition:

ż

U

piΘpπ˚ detpTX{Eiq, ωδ,ϕq ` ενrankpπ˚pTX{Eiqqωδ,ϕq ^ ωn´1
δ,ϕ

“

ż

U

θεpiΘpπ
˚ detpTX{Eiq, ωδ,ϕq ` ενrankpπ˚pTX{Eiqqωδ,ϕq ^ ωn´1

δ,ϕ
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`

ż

U

p1´ θεqpiΘpπ
˚ detpTX{Eiq, ωδ,ϕq ` ενrankpπ˚pTX{Eiqqωδ,ϕq ^ ωn´1

δ,ϕ .

By the dominated convergence theorem, the limit of the second term is
ż

UrE
piΘpπ˚ detpTX{Eiq, ωδ,ϕq ` ενrankpπ˚pTX{Eiqqωδ,ϕq ^ ωn´1

δ,ϕ .

The limit of the �rst term is 0 by above discussion.
Now piΘpπ˚ detpTX{Eiq, ωδ,ϕq ` ενrankpπ˚pTX{Eiqqωδ,ϕq ^ ωn´1

δ,ϕ is a positive closed pn, nq- current on
X̃. It belongs to the cohomology class

pπ˚c1pTX{Eiq ` ενrankpTX{Eiqπ˚tωu ´ ενrankpTX{EiqδtEuq ^ pπ˚tωu ´ δtEuqn´1.

In particular, we have

pπ˚c1pTX{Eiq ` ενrankpTX{Eiqπ˚tωu ´ ενrankpTX{EiqδtEuq ^ pπ˚tωu ´ δtEuqn´1 ě 0.

If we let δ tend to 0, we �nd

pπ˚c1pTX{Eiq ` ενrankpTX{Eiqπ˚tωuq ^ pπ˚tωuqn´1 ě 0

which is also equal to
pc1pTX{Eiq ` ενrankpTX{Eiqtωuq ^ ptωuqn´1.

By taking ν Ñ8, one achieves the proof of case 1.

Case 2 : general case.
To prove the theorem in the case when the �ltration is given by subsheaves whose quotient sheaves are

torsion free, we follow the arguments given in case 1.
In this situation, we �rst take a �nite composition of blows-up of smooth submanifolds σ : X̃ Ñ X such

that σ˚pTX{Eiq{Tors is a vector bundle over X̃. Then we take a further �nite composition of blows-up of
smooth submanifolds π to reduce the analytic singularity of hεν to the simple normal case. The proof given
in case 1 changing X by X̃ and TX{Ei by σ˚pTX{Eiq{Tors shows that

pc1pπ
˚pσ˚pTX{Eiq{Torsqq ` ενrankpTX{Eiqπ˚σ˚tωu ´ ενrankpTX{EiqδtEuq ^ pπ˚σ˚tωu ´ δtEuqn´1 ě 0.

Notice that the metric is always well-de�ned on a Zariski open set and that its curvature de�nes a current
in the �rst Chern class. The wedge product of the currents extends across the exceptional divisor over the
bimeromorphic model for the same reasons. Letting δ tend 0 implies that

pc1pσ
˚pTX{Eiq{Torsq ` ενrankpTX{Eiqσ˚tωuq ^ pσ˚tωuqn´1 ě 0.

Notice that π depends on ν, however σ is independent of ν. Letting ν tend to in�nity and using Lemma
4.29 concludes the proof.

�

Now the arguments of Proposition 5.1 of [Cao13] give the following corollary.

Corollary 4.33. Let pX,ωq be a n-dimensional compact Kähler manifold such that ´KX is psef.
Assume that there exists a sequence εν ą 0 such that limνÑ8 εν “ 0 and Iphεν q “ OX for a sequence of
singular metrics with analytic singularities hεν on ´KX such that iΘp´KX , hεν q ě ´ενω Then the Albanese
morphism αX is surjective with connected �bres. In fact, the Albanese map is submersion outside an analytic
set of codimension larger than 2.

Proof. The proof in [Cao13] only uses the fact that the slopes with respect to ωn´1 of the sheaves
obtained as graded pieces of the Harder-Narasimhan �ltration are positive. Hence using theorem 4.30, the
result is a direct consequence of his arguments. For the convenience of the readers, we just give here the proof
of the fact that the �bres of the Albanese map are connected. We follow the arguments in the Proposition
3.9 of [DPS94].

Let X Ñ Y Ñ AlbpXq be the Stein decomposition of the Albanese map with Y “ Spec αX˚OX . Since
X is smooth, Y is normal. We claim that the map f : Y Ñ AlbpXq is étale. The reason is as follows. By the
arguments in [Cao13], there exists Z an analytic subset in AlbpXq with codimension at least 2 such that
X r α´1

X pZq Ñ AlbpXqr Z is submersion (thus a �bration). Thus Y r f´1pZq Ñ AlbpXqr Z is étale. We
denote by F the �bre of the �bration f |Yrf´1pZq which is �nite. By the long exact sequence associated to a
�bration, we have

π1pF q Ñ π1pY r f´1pZqq Ñ π1pAlbpXqr Zq Ñ π0pF q

where π1pF q “ 0 and π0pF q is �nite. In particular, π1pY r f´1pZqq is a free Abelian group of rank 2q :“
2dimCAlbpXq. Notice that by the codimension condition, we have π1pAlbpXqr Zq – π1pAlbpXqq. AlbpXq
is isomorphic to the quotient of the universal cover Cq of AlbpXq under the group action π1pAlbpXqq. De�ne
T to be the quotient of Cq under the group action π1pY r f´1pZqq with the natural cover p : T Ñ AlbpXq.
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By the homotopy lifting property, there exists a map g : Y r f´1pZq Ñ T such that p ˝ g “ f |Yrf´1pZq.
Remark that g is holomorphic since it is given by the composition of f with the holomorphic local inverse
of p. Since Y r f´1pZq Ñ AlbpXq r Z is �nite, f´1pZq is of codimension at least 2. Since Y is normal, g
extends to a morphism g : Y Ñ T . Now g is a generically injective morphism between Y and T . Since T is
smooth, the inverse map of T r p´1pZq Ñ Y also extends across p´1pZq which gives the inverse morphism
of g. In conclusion g is a biholomorphism between T and Y which proves that f is étale.

In particular, Y is a �nite étale cover of the torus AlbpXq, so Y itself is a torus. By the universality of
the Albanese morphism, there exists a morphism h : AlbpXq Ñ Y such that the morphism X Ñ Y factorises
through h. Since the morphisms X Ñ Y and αX are surjective, we have h ˝ f “ idY and f ˝ h “ idAlbpXq.
Thus f is a biholomorphism and the Albanese morphism has connected �bres. �

Notice that the assumption in the theorem 4.30 is satis�ed when ´KX is nef. In this case, all metrics
are smooth and we do not need to take the blow up. Thus the above theorem can be seen as a generalisation
of the result of [Cao13].

We remark that when ´KX is psef and there exists a singular metric h on ´KX such that Iphq “ OX ,
the surjectivity of the Albanese map is a direct consequence (Proposition 2.7.1 in [DPS01]) of the line
bundle valued hard Lefschetz theorem in [DPS01]. For the convenience of the reader, we brie�y recall the
proof.

Lemma 4.34. Let pX,ωq be a compact Kähler manifold such that ´KX is psef. Assume that there exists
a singular metric h on ´KX such that Iphq “ OX . Then the Albanese map is surjective.

Proof. By the hard Lefschetz theorem (main theorem in [DPS01]), we know that the morphism
induced by taking the wedge product with ω

H0pX,Ωn´1
X b´KXq – H0pX,TXq Ñ H1pX,OXq

is surjective. Moreover, by the Hodge decomposition theorem, we have H1pX,OXq “ H0pX,Ω1
Xq. For any

u P H0pX,Ω1
Xq, there exists a holomorphic vector �eld ξ P H0pX,TXq such that the image of ξ under the

morphism induced by wedge product with ω is u.
In particular, the inner product iξpuq P H0pX,OXq is a global holomorphic function. Thus iξpuq is

constant. On the other hand iξpuq “ |u|2ω pointwise. Thus if u ‰ 0, there exists some point x such that
|u|2ωpxq ‰ 0. In other words, iξpuq ‰ 0. This implies that for any x, upxq ‰ 0, which implies in its turn that
the Albanese morphism is surjective. �

The arguments of [Cao13] combined with theorem 4.30 also give the following a�rmation of a conjecture
of Mumford. The general conjecture of Mumford states that a projective or compact Kähler manifold X is
rationally connected if and only if H0pX, pT˚Xq

bmq “ 0 for any m ě 1.

Corollary 4.35. Let pX,ωq be a n-dimensional compact Kähler manifold such that ´KX is psef.
Assume that there exists a sequence εν ą 0 such that limνÑ8 εν “ 0 and Iphεν q “ OX for a sequence
of singular metrics with analytic singularities hεν on ´KX such that iΘp´KX , hεν q ě ´ενω. Then the
following properties are equivalent:

(1) X is projective and rationally connected.
(2)H0pX, pT˚Xq

bmq “ 0 for any m ě 1.
(3) For every m ě 1 and every �nite étale cover X̃ of X, one has H0pX̃,Ωm

X̃
q “ 0.



CHAPTER 5

Pseudo-e�ective and numerically �at re�exive sheaves

Abstract. In this note, we discuss the concept of strongly pseudoe�ective vector bundle and also introduce
strongly pseudoe�ective torsion-free sheaves over compact Kähler manifolds. We show that a strongly
pseudoe�ective re�exive sheaf over a compact Kähler manifold with vanishing �rst Chern class is in fact
a numerically �at vector bundle. A proof is obtained through a natural construction of positive currents
representing the Segre classes of strongly pseudoe�ective vector bundles.

5.1. Introduction

The concept of numerical �atness introduced in [DPS94] proved itself to be instrumental in the study
and classi�cation theory of compact Kähler manifolds with nef anticanonical bundles. It has been studied by
many authors and in many works, cf. [Cao18], [Cao19], [CH17], [CH19], [CCM19], [CP17], [HIM19],
[HPS16], [Wang19] among others.

Recall that a holomorphic vector bundle E is called numerically �at if both E and E˚ are nef (equivalently
if E and pdetEq´1 are nef). In fact, the condition of being numerically �at yields strong restrictions for
the curvature of the corresponding vector bundle. Actually, in [DPS94], Demailly, Peternell and Schneider
proved that a numerically �at bundle E on a compact Kähler manifold X admits a �ltration by vector
bundles whose graded pieces are Hermitian �at. In some sense, numerical �atness is the algebraic analogue
of metric �atness.

In [CCM19] and [HIM19], the authors consider the following question. If a strongly pseudo-e�ective
vector bundle over a projective manifold has a vanishing �rst Chern class, is this vector bundle numerically
�at? Since a vector bundle E is numerically �at if and only if E and detpEq´1 are nef, the question amounts
to ask whether the vector bundle is in fact nef.

Intuitively, a positive singular metric on the vector bundle E would induce a positive singular metric on
the determinant detpEq. But since the �rst Chern class of E (i.e. the Chern class of detpEq) is trivial, any
metric with (semi)positive curvature must be �at and thus cannot possess any singularity. This implies that
the given positive singular metric on E has to be smooth as well.

From this point of view, the same property should hold on an arbitrary compact Kähler manifold, and
not just on projective manifolds, since all properties under consideration are independent of the projectivity
condition. One of the goals of this work is to con�rm this philosophy. Namely, we prove the following

Main Theorem. Let E be a strongly psef vector bundle over a compact Kähler manifold pX,ωq with
c1pEq “ 0. Then E is a nef vector bundle.

The main technical tool is the construction of Segre currents. More precisely, we de�ne a Segre pk, kq-
closed positive current as the direct image of the wedge product of the curvature current of OPpEqp1q, as
soon as we have an appropriate codimension condition on the singular locus of the metric.

Main technical lemma. Let E be a strongly psef vector bundle of rank r over a compact Kähler manifold
pX,ωq. Let pOPpEqp1q, hεq be singular metric with analytic singularities such that

iΘpOPpEqp1q, hεq ě ´επ
˚ω

and the codimension of πpSingphεqq is at least k in X. Then there exists a pk, kq-positive current in the class
π˚pc1pOPpEqp1qq ` επ

˚tωuqr`k´1.
The strategy of the proof of the Main theorem is as follows. We show that the Lelong numbers of

the corresponding Segre current control the Lelong numbers of the weight functions of the singular metrics
prescribed in the de�nition of a strongly pseudoe�ective vector bundle. Then, we observe that the Lelong
numbers of Segre currents must tend to 0 in the limit, as the unique (semi)positive current in c1pEq is the
zero current. Thus the Lelong numbers of the weight functions uniformally tend to 0 as the Lelong numbers
of the Segre currents. By Demailly's regularisation theorem, the weight functions of the metrics can be
regularised, thus the vector bundle is actually nef.

In fact, we can expect an even stronger property. Since E is strongly psef, the class c1pOPpEqp1qq is psef.
Intuitively, c1pOPpEqp1qq contains a not too singular current (in the sense that the projection of the singular
part onto X is contained in some analytic subset of codimension at least 1). Thus the wedge powers of
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appropriate exponents of this current in the �rst Chern class are de�ned and positive, as well as their direct
images under π : PpEq Ñ X. In particular, if r is the rank of E, we can hope that the second Segre class
π˚pc1pOPpEqp1qqq

r`1 is positive (by this, we mean that its cohomology class contains a positive current)
Remind that the second Segre class is equal to c1pEq2 ´ c2pEq. By the Bogomolov inequality if E is

semistable, when c1pEq “ 0, the integration of c2pEq ^ ωn´2 on X is positive where ω is a Kähler form on
X and n is the dimension of X. Comparing these two facts, one knows that c2pEq “ 0 and the Bogomolov
inequality is in fact an equality.

For a re�exive sheaf F , the Chern classes can be de�ned as follows. Let σ be any modi�cation such
that σ˚F{Tors is a vector bundle. The existence of such modi�cation is provided by the fundamental work
of [Ros68], [GR70] and [Rie71]. Then for i “ 1, 2, cipFq “ σ˚cipσ

˚F{Torsq which is independent of the
choice of modi�cation σ. The rough idea is that the above calculations should hold on some birational model
of X, and by taking direct images, the equality in the Bogomolov inequality is also attained on X.

On the other hand, we have the following important result of [BS94]. For a polystable re�exive sheaf F
of generic rank r over a compact n-dimensional Kähler manifold pX,ωq, we have the Bogomolov inequality

ż

X

p2rc2pFq ´ pr ´ 1qc1pFq2q ^ ωn´2 ě 0.

Moreover, the equality holds if and only if F is locally free and its Hermitian-Einstein metric yields a
projectively �at connection.

In order to study the positivity of torsion free coherent sheaves, it is useful to de�ne in full generality
the nef (or strongly psef) property for such sheaves.

De�nition. A torsion free coherent sheaf F over a compact complex manifold is called nef (resp. strongly
psef) if there exists some modi�cation σ : X̃ Ñ X such that σ˚F{Tors is a nef (resp. strongly psef) vector
bundle.

The above considerations, combined with the result of [BS94], let us hope the stronger fact that over
every compact Kähler manifold pX,ωq, a strongly psef re�exive sheaf with trivial �rst Chern class is in fact
a nef vector bundle. In section 5, we prove that this is actually the case. A di�culty of the above approach
is that in general a wedge product of positive currents is not necessarily well de�ned. Instead of proceeding
directly, we �rst prove the following result.

Lemma. Let F be a nef re�exive sheaf over a compact Kähler manifold pX,ωq with c1pFq “ 0. Then F is
a nef vector bundle.

Now combining the main theorem, we can conclude that

Corollary. Let F be a strongly psef re�exive sheaf over a compact Kähler manifold pX,ωq with c1pFq “ 0.
Then F is a nef vector bundle.

Note that in the above approach we have to take wedge products that are well de�ned without imposing
any restriction on the codimension of singular part of the metric. In this situation, for a strongly psef vector
bundle E, we can �nd a positive current in c1pEq but not necessarily in c2pEq.

At the end of the paper, as a geometric application, we classify compact Kähler surfaces and 3-folds with
strongly psef tangent bundles and with vanishing �rst Chern class. By our Main theorem, they are the same
as compact Kähler surfaces or 3-folds with nef tangent bundles and with zero �rst Chern class, that were
classi�ed in [DPS94]. As a consequence, the tangent bundle of a Kähler K3 surface is not strongly psef.
This generalise the work of [DPS94] and [Nak04] in the projective setting. More generally, an irreducible
symplectic, or Calabi-Yau manifold does not possess a strongly psef tangent bundle or cotangent bundle.
In the singular and projective setting, the �strongly psef� version is proven in Theorem 1.6 of [HP19] and
Corollary 6.5 [Dru18] for threefolds. (They even prove in this case that the bundle is not weakly psef, i.e.
that OPpEqp1q is not a psef line bundle whenever E is the tangent or cotangent bundle.)

We also generalise the main results to the Q´twisted case analogous to the result of [LOY20] in the
compact Kähler setting.

The organisation of this paper is as follows. In section 2, the concept of strongly psef vector bundles
is discussed. We give a de�nition of strongly psef vector bundle of the Kähler version essentially equivalent
to the one proposed in [BDPP13]. By this equivalent condition, we can show that some usual algebraic
operations can still be taken for strongly psef vector bundles. For example, the direct sum or tensor product
of strongly psef vector bundles is still strongly psef. In section 3, we investigate the concept of nef/strongly
psef torsion free coherent sheaves and algebraic operations of these sheaves. Then we show that a numerically
�at re�exive sheaf on an arbitrary compact Kähler manifold is in fact a vector bundle. This result can also
be generalised to strongly pseudoe�ective (strongly psef) re�exive sheaves F such that c1pdetFq “ 0 in
section 5. In section 4, we make a digression to introduce the de�nition of Segre forms (or Segre currents),
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as a tool to treat the strongly psef case. It should be observed that a similar construction has been done
in [LRRS18].

In this note, all manifolds are supposed to be compact without any explicit mention.

5.2. Strongly pseudoe�ective vector bundles

The following de�nition of a strongly psef vector bundle is a reformulation of the de�nition of [BDPP13]
(De�nition 7.1).

Definition 5.1. Let pX,ωq be a compact Kähler manifold and E a holomorphic vector bundle on X.
Then E is said to be strongly pseudo-e�ective (strongly psef for short) if the line bundle OPpEqp1q is pseudo-
e�ective on the projectivized bundle PpEq of hyperplanes of E, i.e. if for every ε ą 0 there exists a singular
metric hε with analytic singularities on OPpEqp1q and a curvature current iΘphεq ě ´επ˚ω, and if the
projection πpSingphεqq of the singular set of hε is not equal to X.

One can observe that in [BDPP13] the de�nition is expressed rather in terms of the non-nef locus.

Definition 5.2. ( [DPS01]) Let ϕ1, ϕ2 be two quasi-psh functions on X pi.e. iBBϕi ě ´Cω in the
sense of currents for some C ě 0q. Then, ϕ1 is said to be less singular than ϕ2 pwe write ϕ1 ĺ ϕ2q if
we have ϕ2 ď ϕ1 ` C1 for some constant C1. Let α be a psef class in H1,1

BCpX,Rq and γ be a smooth real
p1, 1q-form. Let T1, T2, θ P α with θ smooth and Ti “ θ ` iBBϕi pi “ 1, 2q, the potential ϕi being de�ned up
to a constant since X is compact. We say that T1 ĺ T2, resp. singularity equivalent T1 „ T2, if ϕ1 ĺ ϕ2,
resp. if ϕ1 ĺ ϕ2 and ϕ2 ĺ ϕ1.

A minimal element Tmin,γ with respect to the pre-order relation ĺ always exists. Such an element can
be obtained by taking the upper semi-continuous upper envelope of all ϕi such that θ ` iBBϕi ě γ and
supX ϕi “ 0. It is unique up to equivalence of singularities.

Definition 5.3. (Non-nef locus)
The non-nef locus of a pseudo-e�ective class α P H1,1

BCpX,Rq is de�ned to be

Ennpαq :“
ď

εą0

ď

cą0

EcpTmin,´εωq

where ω is any Hermitian metric.

Let us observe that we can replace π˚ω by any smooth Kähler form ω̃ on PpEq in the de�nition of a
strongly psef vector bundle. The reason is as follows. On the one hand, π˚ω ď Cω̃ for some C ą 0 since
X is compact. Thus, iΘphεq ě ´επ˚ω implies that iΘphεq ě ´Cεω̃. On the other hand, since OPpEqp1q is
relatively π-ample, we have ε0iΘh0

pOPpEqp1qq ` π
˚ω ě ε1ω̃ for any given smooth Hermitian metric h0 on E,

if 0 ă ε1 ! ε0 ! 1 are small enough. Assuming that there exists a singular metric hε on OPpEqp1q such that

iΘhεpOPpEqp1qq ě ´εω̃, we infer that the metric h1ε “ h
ε{ε1
0 h

1´ε{ε1
ε has a curvature lower bound

iΘh1ε
pOPpEqp1qq ě

ε

ε1

`

ε1ω̃ ´ π
˚ω

˘

´

´

1´
ε

ε1

¯

εω̃ ě ´
ε

ε1
π˚ω.

In [BDPP13], a holomorphic vector bundle E was de�ned to be strongly pseudo-e�ective if the line bundle
OPpEqp1q is pseudo-e�ective on the projectivized bundle PpEq of hyperplanes of E, and if the projection
πpEnnpOPpEqp1qqq of the non-nef locus of OPpEqp1q onto X does not cover all of X. By de�nition,

Ennpc1pOPpEqp1qqq Ă
ď

εą0

SingpTmin,´εω̃q Ă
ď

εą0

Singphεq.

Hence a strongly psef vector bundle de�ned in De�nition 5.1 is strongly psef under the de�nition of [BDPP13].
On the other hand, by the regularization theorem, we can construct from Tmin,´εω̃ a metric h2ε on OPpEqp1q
with iΘph2εq ě ´2εω̃. By de�nition, Singph2εq Ă

Ť

cą0EcpTmin,´2εω̃q thus it does not project onto X.
Hence our de�nition is equivalent to the de�nition of [BDPP13].

We remark that the de�nition of strongly psef vector bundle we used is stronger than the widely used
weak de�nition. A vector bundle E is called psef in the weak sense if OPpEqp1q is a psef line bundle over
PpEq. Of course, our de�nition of strongly psef vector bundle coincide with the widely used weak de�nition
in the case of line bundle. However, this weak de�nition is too weak to give a classi�cation even if we pose
some strong topological obstruction like with vanishing �rst Chern class. For example, if X is a projective
manifold and A is an ample line bundle over X, for any p ‰ 0, Ap ‘ pApq˚ is a psef vector bundle in the
weak sense with vanishing �rst Chern class. Intuitively, a psef vector bundle can have negative curvature
in some direction which is not enough for our propose to construct some positive current in the �rst Chern
class of the determinant bundle.
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It should be noticed that pseudo-e�ectiveness in the weak sense is a Zariski closed condition while strong
pseudo-e�ectiveness is not Zariski closed. More precisely, let p : XÑ ∆ be a proper holomorphic submersion
which de�nes a family of compact Kähler manifolds over the unit disc ∆ and E be a holomorphic vector
bundle over X. Then the set t P ∆ such that the restriction E|Xt is a psef vector bundle over Xt in the
weak sense is a Zariski closed set where Xt :“ p´1ptq. A complete proof can be found e.g. in the appendix
of [AH19] by Simone Diverio. However, the same does not hold for strong pseudo-e�ectiveness. For example,
we can take the following example indicated to the author by Jean-Pierre Demailly.

Example 5.4. (Theorem 2.2.5 [OSS80])
Let x1, ¨ ¨ ¨ , xm be the points of the projective plane P2. There is a holomorphic rank 2 bundle E over

P2 whose restriction to any line L, on which exactly a points of the set tx1, ¨ ¨ ¨ , xmu lie, splits in the form

E|L “ OLpaq ‘OLp´aq.

The generic splitting type of this bundle is p0, 0q.
The construction of the vector bundle is as follows. Let σ : Y Ñ P2 be the blow up of P2 over tx1, ¨ ¨ ¨ , xmu

with exceptional divisor C “
řm
i“1 Ci. Let E

1 be a rank two vector bundle over Y such that it satis�es the
extension

0 Ñ OY pCq Ñ E1 Ñ OY p´Cq Ñ 0

and its restriction to each Ci satis�es the Euler sequence

0 Ñ OCip´1q Ñ E1|Ci – O‘2
Ci
Ñ OCip1q Ñ 0.

It can be proved that E1 is the pull back of some vector bundle E over P2. We have the short exact sequence

0 Ñ OL̃paq Ñ E1|L̃ Ñ OL̃p´aq Ñ 0.

where a is the number of tx1, ¨ ¨ ¨ , xmu which lie in L. The short exact sequence splits since H1pL̃,OL̃p2aqq “

0. The blow up induces a biholomorphism between the strict transform of a line L̃ to L which gives the
conclusion.

Thus we can construct a family of vector bundles whose restriction to some special �bers is not strongly
psef although the restriction to the general �ber is strongly psef (in fact trivial). The lines in the projective
plane form a family of P1 over the Grassmannian Grp2, 3q. The total space X is a closed submanifold of
P2 ˆ Grp2, 3q. Consider the vector bundle which is the restriction over X of the pull back of the previous
constructed bundle under p1 : P2 ˆGrp2, 3q Ñ P2.

A related de�nitions in the projective case is also widely used in the literature, which is weak positivity
in the sense of Nakayama (cf. eg. [Nak04] De�nition 3.20). A torsion free coherent sheaf F is weakly
positive at x P X a projective manifold if, for any a P N˚ and for any ample line bundle A on X, there exists
b P N˚ such that pSymabFq__ b Ab is globally generated at x, where pSymabFq__ is the double dual of
ab-th symmetric power of F . A torsion free coherent sheaf is called weak positive in the sense of Nakayama
if it is weak positive at some point. It is proven in Proposition 7.2 [BDPP13] that for a vector bundle E
over a projective manifold X, E is psef in our strong sense if and only if E is weak positive in the sense of
Nakayama.

Now we give still another equivalent de�nition of a strongly psef vector bundle. The argument is analo-
gous to the one of [Dem92a, theorem 4.1] in the singular setting. Intuitively, being strongly psef is equivalent
to the existence of �algebraic" approximation currents. Here �algebraic" means that the approximation can
be obtained from the sections of higher degree tensor product of the vector bundle. (Of course the sections
are local since the global sections on X does not necessarily exist.) We construct approximating metrics
by use of a Bergman kernel technique and use a Hörmander type L2 estimate to get the required curvature
estimates. For the convenience of the reader, we recall the basic L2 estimate that we need.

Lemma 5.5. (Corollary 5.3 in [Dem12a])
Let pX,ωq be a Kähler manifold, dim X “ n. Assume that X is weakly pseudo-convex (in particular it

is the case for any compact Kähler manifold). Let F be a holomorphic line bundle equipped with a degenerate
metric whose local weights are denoted ϕ P L1

loc, i.e. H “ e´ϕ. Suppose that

iΘF,h “
i

π
BBϕ ě εω

in the sense of currents for some ε ą 0. Then for any form g P L2pX,Λn,qT˚X b F q satisfying Bg “ 0, there
exists f P L2pX,Λn´1,qT˚X b F q such that Bf “ g and

ż

X

|f |2e´ϕdVω ď
1

qε

ż

X

|g|2e´ϕdVω.
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We will also need the following lemma stated by Demailly to glue the local weights into a global one,
via a partition of unity.

Lemma 5.6. (Lemma 13.11 in [Dem12a])
Let U 1j ĂĂ U2j be locally �nite open coverings of a (not necessarily compact) complex manifold X by

relatively compact open sets, and let θj be smooth non-negative functions with support in U2j , such that
θj ď 1 on U2j and θj “ 1 on U 1j. Let Aj ě 0 be such that

ipθjBBθj ´ Bθj ^ Bθjq ě ´Ajω

on U2j r U 1j for some positive (1,1)-form ω. Finally, let wj be almost psh functions on Uj with the property
that iBBwj ě γ for some real(1,1)-form γ on M , and let Cj be constants such that

wjpxq ď Cj ` sup
k‰j,xPU 1k

wkpxq

on U2j r U 1j.
Then the function w :“ logp

ř

θ2
j e
wj q is almost psh and satis�es

iBBw ě γ ´ 2p
ÿ

j

1U2j rU 1jAje
Cj qω.

Proposition 5.2.1. The following properties are equivalent:
(1) E is strongly psef
(2) There exists a sequence of quasi-psh functions wmpx, ξq “ logp|ξ|hmq with analytic singularities

induced from Hermitian metrics hm on SmE˚ such that the singularity locus projects into a proper Zariski
closed set Zm, and

iBBwm ě ´mεmp
˚ω

in the sense of currents with lim εm “ 0. Here p : SmE˚ Ñ X is the projection.
(3) There exists a sequence of quasi-psh functions wmpx, ξq “ logp|ξ|hmq with analytic singularities

induced from Hermitian metrics hm on SmE˚, such that the singularity locus projects into a proper Zariski
closed set Zm, and

iΘSmE˚,hm ď mεmω b Id

on X r Zm in the sense of Gri�ths with lim εm “ 0.

Proof. Note that when a metric over F a vector bundle over X is smooth near a point x, we have the
following equivalence (cf. Lemma 4.4 in [Dem92a]): for any real p1, 1q form γ near x, over a neighbourhood
U near x

(1) iΘpF q ě γ b IdF in the sense of Gri�ths;
(2) ´iΘpF˚q ě γ b IdF in the sense of Gri�ths;
(3) i

2πBBlog|ξ|2 ě p˚γ, ξ P F˚, where log|ξ|2 is seen as a function on p´1pUq and p : F˚ Ñ X is the
projection.

In particular, (2) implies (3) by this observation.
The more substantial part of the proof consists of showing that (1) implies (2). The proof follows closely

the proof of theorem 4.1 in [Dem92a].
It is enough to show that for any ε ą 0, there exists a sequence of quasi-psh functions wmpx, ξq “

logp|ξ|hmq with analytic singularities induced from Hermitian metrics hm on SmE˚, such that the singularity
locus projects into a proper Zariski closed set Zm, and

iBBwm ě ´mεp
˚ω

in the sense of currents. Here p : SmE˚ Ñ X is the projection.
We construct the metrics on the symmetric powers of vector bundles, starting from a singular metric hε

on OPpEqp1q given in the de�nition of strongly psef vector bundle. Namely, we start with a singular metric
such that the singularity locus projects into a proper Zariski closed set Z, and

i

2π
ΘOPpEqp1q ě ´επ

˚ω.

Since X is compact, we can select a �nite covering pWνq of X with open coordinate charts. For any δ ą 0,
we take in each Wν a maximal family of points with (coordinate) distance to the boundary ą 3δ and mutual
distance ą δ{2. In this way, we get for any δ ą 0 small enough a �nite covering of X by open balls U 1j
of radius δ (actually every point is even at distance ď δ{2 of one of the centres, otherwise the family of
points would not be maximal), such that the concentric ball Uj of radius 2δ is relatively compact in the
corresponding chart Wν .
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Let τj : Uj Ñ Bpaj , 2δq be the isomorphism given by the coordinates of Wν . Let εpδq be a modulus of
continuity for γ :“ ´εω on the sets Uj , such that limδÑ0 εpδq “ 0 and ωx´ωx1 ď εpδqωx for all x, x1 P Uj . We
denote by γj the (1,1)-form with constant coe�cients on Bpaj , 2δq such that τ˚j γj coincides with γ ´ εpδqω
at τ´1

j pajq. Then we have

p1q 0 ď γ ´ τ˚j γj ď 2εpδqω

on U 1j for δ ą 0 small enough. Let ṽjpzjq be the associated quadratic function such that γj “ i
πBBṽj .

Now, we consider the Hilbert space Hjpmq of holomorphic sections f P H0pπ´1pUjq,OPpEqpmqq with the
L2 norm

}f}2j :“

ż

π´1pUjq

|f |2e2mṽjpzjqdV,

where dV is a volume element on PpEq (�xed once for all) and |f |2 is the pointwise norm on OPpEqpmq
induced by the given (singular) Hermitian metric hε on OPpEqp1q. It can be viewed as a metric on OPpEqp1q,
twisted by the local weight ṽj . Thus the corresponding curvature form is

i

2π
ΘOPpEqp1q ´

i

π
BBṽj ě π˚pγ ´ τ˚j γjq ě 0

by (1). Let U 1j Ť U2j Ť Uj be concentric balls such that pU 1jq still cover X and let θj be smooth functions
with support in U2j , such that 0 ď θj ď 1 on U2j and θj “ 1 on U 1j .

We de�ne a Bergman kernel type metric on SmE˚ as follows: for all x P X and ξ P SmE˚x we set

p2q }ξ}2pmq :“
ÿ

j

θ2
j pxq expp2mṽjpzjq `

?
mpr12j ´ |zj |

2qq
ÿ

l

|σj,lpxq ¨ ξ|
2,

where r1j is the radius of U
1
j and pσj,lqlě1 is an orthonormal basis of Hjpmq. The local sections σj,l can be

viewed as sections in H0pUj , S
mEq, and here σj,lpxq ¨ ξ is computed via the natural pairing between SmE

and SmE˚. The metric is Hermitian since it is a sum of square of linear forms in SmE˚. Since the metric
on OPpEqp1q can be singular, the Hermitian metric can also be degenerate. It is degenerate at a point x if
σj,lpxq “ 0 for all j, l.

However, the in�nite sum
ř

l |σj,lpxq ¨ ξ|
2 is smooth. In fact, the sum converges locally uniformly above

every compact subset of Uj . This sum is the square of evaluation linear form

f ÞÑ fpxq ¨ ξ

which is continuous on Hjpmq. The reason is as follows. Given σ an element of H0pUj , S
mEq. It can be

identi�ed as an element of H0pπ´1pUjq,OPpEqpmqq – H0pUj , S
mEq by considering the quotient of π˚σ P

H0pπ´1pUjq, π
˚SmEq under the tautological map π˚SmE Ñ OPpEqpmq. On the other hand, ξ P SmE˚x can

be pulled back to PpEq as an element of OPpEqp´mqx,rξs Ă π˚SmE˚x,rξs. The natural pairing between SmE˚

and SmE of fpxq and ξ is equal to the natural pairing between OPpEqp´mqx,rξs and OPpEqpmqx,rξs under the
above identi�cation. In particular,

|fpxq ¨ ξ| ď |f |px, rξsq|ξ|px, rξsq

Here we identify OPpEqpmqx,rξs as C under any local trivialization near px, rξsq. The supremum of |f |px, rξsq
for f P Hjpmq, }f} ď 1 is by de�nition the norm of the continuous linear function f ÞÑ fpxq under the chosen
local trivialization near px, rξsq. (Remark that in the trivialization, by mean value inequality, the value of
the holomoprhic function at the center of a ball is bounded from above by the L2 norm of the function on
the ball which is bounded from above by the L2 norm of the section on PpEq with the singular weight.) Thus
f ÞÑ fpxq ¨ ξ is a continuous linear function. The square of its norm is

ř

l |σj,lpxq ¨ ξ|
2 since σj,lpxq ¨ ξ is the

l-th coordinate in the orthonormal basis σj,l of Hjpmq. By Montel's theorem,
ř

l,k σj,lpxq ¨ ξ σj,lpwq ¨ η is a
holomorphic function for px,w, ξ, ηq P Uj ˆ Uj ˆ E ˆ E. Thus its restriction

ř

l |σj,lpxq ¨ ξ|
2 to the diagonal

Uj ˆ E is a real analytic function.
As a consequence, the metric } ¨ }pmq is a smooth metric, except for the fact that it might degenerate at

some points. To show that this metric has analytic singularities and obtain the curvature estimate, we use
lemma 5.6 for wpx, ξq :“ log}ξ}2

pmq and

p3q wjpx, ξq “ 2mṽjpz
jq `

?
mpr12 ´ |zj |2q ` log

ÿ

l

|σj,lpxq ¨ ξ|
2

on the total space SmE˚ covered by p´1pU 1jq where p : SmE˚ Ñ X is the projection.
To proceed further, we need the following lemma 5.7 to compare the behaviour of wj on di�erent

open sets. As a consequence of lemma 5.7, the functions wjpx, ξq satisfy wjpx, ξq ď wkpx, ξq for any x P
pU2j rU 1jq XU

1
k for m large enough. (Remark that r12j ´ |z

j |2 ď 0 and r12k ´ |z
k|2 ą 0 for such x.) The choice
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of m depends on the value r12k ´ |z
k|2 ą 0. But the function on U2j rU 1j , supk‰j,xPU 1k |ak ´ x| has a uniform

strictly positive lower bound since U2j rU 1j is compact. Thus there exists m0 such that for m ě m0 we have

wjpxq ď sup
k‰j,xPU 1k

wkpxq

on U2j r U 1j . We have a curvature estimate

i

2π
BBwj ě mp˚vj ´

?
m

i

2π
BB|zj |2 ě mp˚pγ ´ 3εωq

in the sense of currents, since γj ě γ´ 2εω for m ě m10 ě m0 large enough (independent of x). Then lemma
5.6 implies that

i

2π
BBw ě mp˚pγ ´ 3εωq ´ p˚

ˆ

2
ÿ

j

1U2j rU 1jAjω

˙

.

The right side hand is bigger than mp˚pγ ´ 4εωq for m ě m20 ě m10.
We observe that the metric has analytic singularities. By the following lemma 5.7, there exist constants

Cj,k, C
1
j,k such that

wj ´ C
1
j,k ď wk ď wj ` Cj,k.

Note that wj can be ´8 at some point. Thus we have

log

ˆ

ÿ

j

θ2
j e
C1j,kewk

˙

ď w “ log

ˆ

ÿ

j

θ2
j e
wj

˙

ď log

ˆ

ÿ

j

θ2
j e
Cj,kewk

˙

.

Without loss of generality, we can assume that θj is a partition of unity, and in particular that
ř

j θ
2
j is

strictly positive on any relative compact set. Thus w “ wk`Op1q which implies w has analytic singularities
along with wk.

Now we show that (2) implies (1). The sequence of metrics in (2) induces a sequence of Hermitian
metrics on Op1q over PpSmEq. Observe that we have the following commutative diagram given by the
Veronese embedding

Opmq ÝÑ Op1q
§

§

đ

§

§

đ

PpEq i
ÝÑ PpSmEq.

Since the metric is smooth over the pre-image of a dense Zariski open set of X. The restriction of singular
metrics is well de�ned and still has analytic singularities. De�ne a sequence of metrics on OPpEqp1q induced
from the restricted metrics. This sequence of metrics is the one required in the de�nition of a strongly psef
vector bundle.

The arguments needed to show that (3) implies (2) are similar. By the observation made at the beginning
of the proposition, the inequality holds on a dense Zariski open set V where the metric is smooth. The
Skoda-El Mir extension theorem implies that 1V iBBwm ě ´mεmp˚ω. Since wm has analytic singularities,
the current iBBwm is normal, and by the support theorem 1SmE˚rV iBBwm is a sum of closed positive
currents obtained by integration on analytic sets with positive coe�cients. Thus the same inequality holds
for iBBwm “ 1V iBBwm ` 1SmE˚rV iBBwm. �

Lemma 5.7. There exist constants Cj,k independent of m such that the almost psh functions

w̃jpx, ξq :“ 2mvjpzjq ` log
ÿ

l

|σj,lpxq ¨ ξ|
2, px, ξq P p´1pU2j q Ă SmE˚

satisfy on p´1pU2j X U
2
k q a bound

w̃j ď w̃k ` p2n` 2qlogm` Cj,k.

Proof. By construction E|Uj – Uj ˆCr is trivial over Uj . De�ne a Hermitian metric h8 on E|Uj with
strict positive curvature by taking

|ξ|2 :“
ÿ

λ

|ξλ|
2e´

ř

j |z
j
|
2

.

The associated curvature form on pOPpE|Uj qp1q, h8q is strictly positive and thus de�nes a Kähler metric ωj
on π´1pUjq. In fact, ΘE “ ωeucl b IdE where ωeucl is the standard (�at) Hermitian metric on Uj . By a
standard formula (cf. formula (15.15) in Chap V of [Dem12b]), the curvature of pOPpE|Uj qp1q, h8q is equal
to the direct sum of the Euclidean metric of Uj and of the Fubini-Study metric of Pr´1. In particular, the
Ricci curvature of ωj is non-negative. De�ne τpzq :“ nlog|zj ´ zjpxq| depending only on the base variables
and possessing a logarithmic pole at x. This is a psh function on a neighbourhood of π´1pUjq. De�ne a
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singular metric on OPpE|Uj qpmq as follows. Twist the metric hbpm´1q
ε b h8 by pm ´ 1qṽjpz

jq ` τpzjq. The
resulting curvature form on OPpE|Uj qpmq is given by

pm´ 1q
´ i

2π
ΘOPpEqp1qphεq ´

i

π
BBṽj

¯

` ωj `
i

π
BBτ ě ωj

by (1). We consider the Hilbert space F 0,q
j pmq of p0, qq-forms (q “ 0, 1) f on π´1pUjq with values in

OPpEqpmq, equipped with the L2 norm }f}2j,q “
ş

π´1pUjq
|f |2jdVj , where dVj “ ωn`r´1

j {pn` r´ 1q! and where
the pointwise norm |f |j is induced by ωj and of the metric de�ned above on OPpEqpmq.

Now, we apply Hörmander's L2 estimates for the bundle ´KX `OPpEqpmq and an arbitrary p0, 1q form
g in F 0,1

j pmq with Bg “ 0, (i.e. a B-closed L2 pn, 1q-form valued in ´KX ` OPpEqpmq). We conclude that
there exists a p0, 0q-form in F 0,0

j pmq such that Bf “ g and }f}j,0 ď }g}j,1. (Note that Ricpωjq ě 0.)
It remains to choose a suitable section g to prove the inequality. Fix a point x P U2j XU

2
k and ξ P SmE˚x .

There exists h P Hkpmq with }h}k “ 1 such that

|hpxq ¨ ξ|2 “
ÿ

l

|σk,lpxq ¨ ξ|
2.

If the right rank side is 0, we can take h to be any element in the orthonormal basis. Otherwise, the linear
functional f ÞÑ fpxq ¨ ξ is a non zero functional whose kernel de�nes a closed hypersurface in Hkpmq. Thus
there exists h P Hkpmq with }h}k “ 1 which is orthogonal to the kernel. It is easy to see that such a point
h is a maximum of the function Hkpmqr 0 Ñ R:

v ÞÑ
|v ¨ ξ|

}v}2
,

and hence we have the equality. Let χ be a cut-o� function with support in the (coordinate) ball Bpx, 1{mq,
equal to 1 on Bpx, 1{2mq and with |Bχ| ď m. For m ě m0 large enough (independent of x P U2j X U2k ) we
have Bpx, 1{mq Ă Uj X Uk. We consider the solution of the equation Bf “ hBpχ ˝ πq on π´1pUjq. We then
get a holomorphic section

h1 :“ hpχ ˝ πq ´ f P H0pπ´1pUjq,OPpEqpmqq.

The section h1 coincide with h over π´1pxq, since the Lelong number of the local weight at a point in π´1pxq
is at least that of the local weight of τ which is n. The fact that the section f is in L2 implies that it has to
vanish along π´1pxq. On the other hand, we have

}hBpχ ˝ πq}2j,1 ď m2

ż

π´1pBpx,1{mqrBpx,1{2mqq

|h|2
h
bpm´1q
ε bh8

e2pm´1qṽjpz
j
q

|zj ´ zjpxq|2n
dVj

ď Cm2n`2

ż

π´1pBpx,1{mqrBpx,1{2mqq
|h|2

h
bpm´1q
ε bh8

e2pm´1qṽjpz
j
qdVj

ď Cm2n`2

ż

π´1pBpx,1{mqq

|h|2
h
bpm´1q
ε bh8

e2pm´1qṽjpz
j
qdVj

ď Cm2n`2

ż

π´1pBpx,1{mqq

|h|2
hbmε

e2pm´1qṽjpz
j
qdVj

ď Cm2n`2e2mpṽjpz
j
pxqq´ṽkpz

k
pxqqq

ż

π´1pBpx,1{mqq

|h|2
hbmε

e2mṽkpz
k
pzkqqdVk

ď Cm2n`2e2mpṽjpz
j
pxqq´ṽkpz

k
pxqqq}h}2k

All the constants are independent of x and m. For the fourth inequality we use the fact that hε ě Ch8 for
some C on PpE|Uj q, since hε has analytic singularities, h8 is smooth and the Uj 's are relatively compact. For
the �fth inequality, we use the fact that the oscillation of ṽj and ṽk on Bpx, 1{mq is Op1{mq. By Hörmander's
L2 estimates we obtain

}f}2j,0 ď Cm2n`2e2mpṽjpz
j
pxqq´ṽkpz

k
pxqqq}h}2k.

Since τ ď 0 and hε ě Ch8, we have for some C

}f}2j ď C}f}2j,0.

The norm }hpχ ˝ πq}j satis�es a similar estimate

}hpχ ˝ πq}j ď Cm2e2mpṽjpz
j
pxqq´ṽkpz

k
pxqqq}h}2k

where C comes from the change of volume form from dVj to dVk and the oscillation of ṽj and ṽk on Bpx, 1{mq.
Thus we have

}h1}j ď Cm2n`2e2mpṽjpz
j
pxqq´ṽkpz

k
pxqqq,
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ÿ

l

|σj,lpxq ¨ ξ|
2 ě C´1m´2n´2e´2mpṽjpz

j
pxqq´ṽkpz

k
pxqqq|h1pxq ¨ ξ|2

ě C´1m´2n´2e´2mpṽjpz
j
pxqq´ṽkpz

k
pxqqq

ÿ

l

|σk,lpxq ¨ ξ|
2

since h1pxq “ hpxq and
ř

l |σk,lpxq ¨ξ|
2 “ |hpxq ¨ξ|2. By taking logarithms, we infer the desired inequality. �

Remark 5.8. We have formulated the proposition in terms of E˚ instead of E for the following reason.
According to [BP08] and section 16 of [HPS16], the dual metric of a singular metric of vector bundle is
always pointwise well de�ned. However the dual metric is not necessarily continuous if the original metric
is continuous. Let us consider a case where the metric has analytic singularities. Assume that log|ξ|h has
analytic singularities as a function on the total space V for some vector bundle pV, hq and is the form of
log

ř

|fipxq ¨ξ|
2`ψpxq with fi are holomorphic vector bundle sections and ψ is bounded. This is for instance

the case for the approximating metrics used in Proposition 5.2.1. The function log|ξ˚|h˚ on the total space V ˚

is the di�erence of two real analytic functions modulo bounded terms, on the dense Zariski open set where the
metric is smooth. At points where the metric is smooth, we have log|ξ|2h “ logpξ:Hpxqξq for some Hermitian
matrix Hpxq where : means the Hermitian transpose. Thus one has log|ξ˚|h˚ “ logpξ˚:pH´1pxqqξ˚q which
can be calculated from the determinant and the adjugate matrix of Hpxq. Each component of the adjoint
matrix and of the determinant is the product of a bounded function times a real analytic series in the zj 's
(coordinates of x) and in ξ. Near the singular locus of the metric h, both functions can tend to in�nity for
�xed ξ˚. These facts would result in more di�culties to be dealt with.

Here is a concrete example taken from Rau� [Rau15]. Let E be the trivial rank 2 vector bundle over C
where the metric at z P C is represented by the matrix

H :“

ˆ

1` |z|2 z
z |z|2

˙

.

On C˚, the dual metric can be represented by the matrix

pH´1q: “
1

|z|4

ˆ

|z|2 ´z
´z 1` |z|2

˙

.

Thus log|ξ˚|h˚ “ logp|zξ˚2 |
2 ` |z̄ξ˚1 ` ξ

˚
2 |

2q ´ log|z|4. At ξ˚ “ p1, 0q, log|ξ˚|h˚ is a di�erence of two functions
both tending to in�nity when z tends to 0.

Remark 5.9. We can also interpret the inequality

iΘSmE˚,hm ď mεmω b Id

in the sense of currents as follows: for any non-trivial local section s of SmE˚, mεmω ` iBBlog|s|2hm is a
positive current. The local section can be seen as a map i from an open subset of X to the total space SmE˚.
If we pull back the current (2) to U via i, we see that mεmω ` iBBlog|s|2hm is a positive current. Here |s|hm
is not identically zero since it is non vanishing outside of the zero locus of s and of singular locus of hm.

Further discussions of these points can be found in [Paun16]. The above proposition also answers
partially to a question proposed in remark 2.11 of [Paun16]. Given a singular Finsler metric with analytic
singularities on a vector bundle, one can produce singular Hermitian metrics on high order symmetric tensor
products of the given vector bundle, with arbitrary small loss of positivity.

As a direct consequence of the approximation statement, we have the following corollary.

Corollary 5.10. If E is a strongly psef vector bundle of rank r over a compact Kähler manifold pX,ωq,
then detpEq is a psef line bundle.

Proof. On X r Zm, the curvature inequality

iΘSmE˚,hm ď mεmω b Id

implies that iΘdetSmE,deth˚m
ě ´rankpSmEqmεmω. On the other hand

detSmE “ pdetEqb
mrankpSmEq

r .

Therefore, the induced metric on detpEq satis�es on X r Zm the curvature inequality

iΘdetpEq ě ´rεmω.

Let us point out that the metric hm is smooth on X (although it might vanish at some points). The induced
metric on ´ detpEq is locally bounded. In other words, the local weight of the dual metric on detpEq is
locally bounded from above. By the Riemann extension theorem, the curvature inequality holds in the sense
of currents throughout X, and not only on X rZm. By weak compactness, up to taking some subsequence,
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we get in the limit a closed positive current belonging to the class c1pdetEq. This shows that detpEq is
psef. �

Another direct application of the approximation is the following corollary.

Corollary 5.11. Let E be a vector bundle over a compact Kähler manifold pX,ωq. The following
properties are equivalent.

(1) E is strongly psef.
(2) For any m P N˚, SmE is strongly psef.
(3) There exists m P N˚ such that SmE is strongly psef.

Proof. (2) implies (3) trivially. (3) implies (1) as in the proof of (2) implying (1) in Proposition 5.2.1.
(1) implies (2) is a direct consequence of Proposition 5.2.1. All symmetric products SmpE of E (p P N˚)
are quotients of symmetric products of SppSmEq. On the other hand, the induced metric on the quotient
bundle of a vector bundle will satisfy similar curvature condition as the original metric as in point (1) the
following corollary. �

As a consequence, one can also de�ne "Q´twisted" strongly psef vector bundles as follows.

Definition 5.12. Let pX,ωq be a compact Kähler manifold and E a holomorphic vector bundle on X
and D be a Q´line bundle. Then ExDy is said to be Q´twisted strongly pseudo-e�ective pQ´strongly psef
for shortq if SmE b OXpmDq is strongly psef for some (hence any by Corollary 5.11) m ą 0 such that
OXpmDq is a line bundle.

As in [DPS94], one can derive some natural algebraic properties of strongly psef vector bundles.

Corollary 5.13 (Algebraic properties of strongly psef vector bundles).
(1) A quotient bundle of a strongly psef vector bundle is strongly psef.
(2) A direct summand of strongly psef vector bundles is strongly psef.
(3) A direct sum of strongly psef vector bundles is strongly psef.
(4) A tensor product por Schur functor of positive weight q of strongly psef vector bundles is strongly

psef.

Proof. One can obtain lower bounds of the curvature through calculations very similar to those of
[DPS94]. We �rst show that the induced singular metric has analytic singularities.

Assume E to be strongly psef. The surjective bundle morphism E Ñ Q induces a closed immersion
of PpQq into PpEq, and the restriction of OPpEqp1q to PpQq is OPpQqp1q. The singular metrics on OPpEqp1q
prescribed in the de�nition of a strongly psef vector bundle induce by restriction singular metrics with
analytic singularities on OPpQqp1q. If we observe that all metrics involved are smooth over inverse images of
non-empty Zariski open sets, we infer that the restricted metrics are not identically in�nite. This concludes
the proof of (1).

(1) implies (2) since a direct summand can be seen as a quotient bundle. Now, let E,F be two strongly
psef vector bundles. The Hermitian metrics on OPpEqp1q and OPpF qp1q correspond to Finsler metrics on E˚

and F˚ denoted by hE , hF . Then hE ` hF de�nes a Finsler metric with analytic singularities on E˚ ‘ F˚.
It corresponds to a Hermitian metric on OPpE‘F qp1q, and the properties required in the de�nition can easily
be checked for hE ` hF if they are satis�ed for hE and hF . This concludes the proof of (3).

By Corollary 5.11 and (3), S2pE ‘ F q is strongly psef as soon as E,F are. Since

S2pE ‘ F q – S2E ‘ pE b F q b S2F,

we infer by (2) that E b F is strongly psef. Finally, the fact that a Schur tensor power is a direct summand
of a tensor product implies (4). �

Corollary 5.14. Let
0 Ñ S Ñ E Ñ QÑ 0

be an exact sequence of holomorphic vector bundles. If E and pdetpQqq´1 are strongly psef, then S is strongly
psef.

Proof. We have S “ Λs´1S˚ b detS where s is the rank of S. By dualizing and taking the s ´ 1
exterior product, we get a surjective bundle morphism

Λs´1E˚ Ñ Λs´1S˚ “ S b pdetSq´1.

On the other hand, we have detE – detS b detQ, thus we have a surjective bundle morphism

Λr´s´1E b pdetQq´1 Ñ S

where r is the rank of E by tensoring detE. By (4) of Corollary 5.13, Λr´s´1EbpdetQq´1 is strongly psef.
By (1) of Corollary 5.13, S is strongly psef. �
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5.3. Re�exive sheaves

In this section, we show that a numerically �at re�exive sheaf on a compact Kähler manifold is in fact
a vector bundle. We need the following topological lemmata.

Lemma 5.15. Let X be an arbitrary complex manifold pnon necessarily compactq and E be a vector
bundle on X. Let X0 be a Zariski open set in X with codimpX rX0q ě 3. Then the morphism induced by
the restriction morphism H1pX,Eq Ñ H1pX0, Eq is surjective.

Proof. We start by proving that

H1pC3 r tp0, 0, 0qu,OC3rtp0,0,0quq “ 0.

It is done by direct calculation. Cover C3 r tp0, 0, 0qu by three Stein open sets isomorphic to C˚ ˆ C2, say
Ui “ tzi ‰ 0u, with coordinates pz0, z1, z2q. A 1-cochain can be identi�ed with a triple of convergent power
series pf01, f02, f12q with f12 (say) of type

ÿ

pα,β,γqPZ2ˆN
cαβγz

α
0 z

β
1 z

γ
2

over C˚2ˆC (the intersection of two Stein open sets). Similarly, f02 is a sum over pα, β, γq P ZˆNˆZ and
f01 is a sum over pα, β, γq P Nˆ Z2.

The condition that pf01, f02, f12q is closed means that f01´f02`f12 “ 0 on the intersection of the three
Stein open sets U0 X U1 X U2, biholomorphic to C˚3. We can write f01 as a sum of three convergent power
series g0

01, g
1
01, g01 such that g01 has only positive power terms, g0

01 has only negative power terms in z0 and
g1

01 has only negative power terms in z1. Similarly, we decompose f02, f12. Now the closeness condition is
equivalent to

g01 ´ g02 ` g12 “ 0, g0
01 “ g0

02, g2
12 “ g2

02, g1
01 ` g

1
12 “ 0.

We de�ne a 0-cochain in such a way that its di�erential is pf01, f02, f12q. On U0, resp. U1, U2, we take the
convergent power series g01 ` g

0
01, resp. g

1
12, ´g12 ´ g

2
02. This implies that every 1-cocycle is exact, hence

H1pC3 r tp0, 0, 0qu,OC3rtp0,0,0quq “ 0.

Now, on every polydisc D in C3, a holomorphic function is uniquely determined by its Taylor expansion at
origin, and the same calculation shows that

H1pD r tp0, 0, 0qu,ODrtp0,0,0quq “ 0.

By a similar calculation, we can show that for any polydisc D of dimension at least 3,

H1pD r t0u,ODrt0uq “ 0.

By the Künneth formula, for B1 ˆ pB2 r t0uq where B1, B2 are polydiscs with dimension of B2 at least 3,
we have H1pB1 ˆ pB2 r t0uq,OB1ˆpB2rt0uqq “ 0.

We now return to the general case. By the standard lemma below ensuring the existence of strati�cations
of analytic sets, we can reduce ourselves to the situation where X rX0 is a closed manifold.

Cover X by the Stein open sets Uα and Bβ :“ B1βˆB
2
β such that X0 is covered by Uα and B1βˆpB

2
βrt0uq

where B1β , B
2
β are polydiscs with dimension of B2β at least 3. Assume that E is trivial on Uα and Bβ . Cover

B1β ˆ pB
2
β r t0uq by B

γ
β (1 ď γ ď dimB2β) such that each Bγβ is isomorphic to a polydisc minus a hyperplane

de�ned as zero set of one coordinate. Since Uα, B
γ
β are Stein, the cohomology on X0 can be calculated as

the �ech cohomology with respect to this open covering of X0, which we denote by V. We also denote by U
the open covering of X consisting of the sets Uα, Bβ . Any element s of H1pX0, Eq can be represented by a
family of sections

psα1,α2
, sγαβ , s

γ1,γ2
β , sγ1,γ2β1,β2

q P
ź

ΓpUα1
X Uα2

, Eq ˆ
ź

ΓpUα XB
γ
β , Eq ˆ

ź

ΓpBγ1β XBγ2β , Eq ˆ
ź

ΓpBγ1β1
XBγ2β2

, Eq.

Since H1pB1β ˆB
2
β , Eq “ 0 by the previous case, there exists

psγβq P
ź

ΓpBγβ , Eq

such that for any β �xed
sγ1,γ2β “ p´1qγ1`1sγ1β ` p´1qγ2`1sγ2β .

De�ne a 0-cochain
psγβ , 0q P

ź

ΓpBγβ , Eq ˆ
ź

ΓpUα, Eq.
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Then we have psα1,α2
, sγαβ , s

γ1,γ2
β , sγ1,γ2β1,β2

q ` δp´sγβ , 0q as another representative of the same cohomology class
on X0. The components in ΓpBγ1β XB

γ2
β , Eq are 0 by construction. Thus we can assume that the components

in ΓpBγ1β XBγ2β , Eq are 0 from the beginning.
Since the representative is closed, the components in ΓpBγβ X Uα, Eq glue to a section sα,β P ΓpBβ r

pB1β ˆ t0uq X Uα, Eq when γ varies. By the Hartogs theorem, this section extends across the submanifold
B1β ˆ t0u, as its codimension is at least 3. The components in ΓpBγ1β1

X Bγ2β2
, Eq can be glued into a section

of ΓpBγ1β1
X Bβ2 , Eq when γ2 varies, and into a section of ΓpBβ1 X Bγ2β2

, Eq when γ1 varies. By the unique
continuation theorem for holomorphic functions, in fact they de�ne a holomorphic section sβ1,β2 of E on
Bβ1

XBβ2
.

We claim that after performing this glueing, the sections

psα1,α2
, sα,β , sβ1,β2

q P
ź

ΓpUα1
X Uα2

, Eq ˆ
ź

ΓpUα XBβ , Eq ˆ
ź

ΓpBβ1
XBβ2

, Eq

de�ne a 1-cocycle of X with respect to the open covering Uα, Bβ , and that its class in H1pX0, Eq is exactly
s.

The reason is as follows. The image of psα1,α2 , sα,β , sβ1,β2q from H1pU , Eq to H1pU X X0, Eq is just
the restriction of sections. The covering V is a re�nement of U X X0 given by the inclusion of open sets:
Uα Ă Uα, B

γ
β Ă Bβ . The image under this re�nement of open sets is precisely s. �

Lemma 5.16 (Strati�cation of analytic sets, see e.g. Proposition 5.6 in Chap. II of [Dem12b]).
Let Z Ă X be an analytic subset of dimension n. Then Z admits a strati�cation H “ Zn`1 Ă ¨ ¨ ¨ Ă Z0 “ Z
by closed analytic sets Zk of dimension nk ą nk`1 such that Zk r Zk`1 is a closed complex submanifold of
dimension nk of X r Zk`1.

Let us point out that the result is false if the codimension is equal to 2. For example, the group
H1pC2 r tp0, 0qu,OC2rtp0,0quq is in�nite dimensional, while H1pC2,OC2q “ 0 by Cartan's theorem B.

Lemma 5.17. (analogue of lemma 11.13 in [Voi02a])
Let X be a complex manifold (not necessary compact) and Y be a closed submanifold of codimension at

least r ` 1. Then the restriction map

H lpX,Rq Ñ H lpX r Y,Rq

is an isomorphism for l ď 2r.

Proof. We have the long exact sequence of relative cohomology

¨ ¨ ¨H lpX,X r Y,Rq Ñ H lpX,Rq Ñ H lpX r Y,Rq Ñ H l`1pX,X r Y,Rq ¨ ¨ ¨ .

On the other hand, we have by the excision lemma that for U a tubular neighborhood of Y

H lpX,X r Y,Rq – H lpU,U r Y,Rq.

By Thom isomorphism theorem, we have

H l´2rpY,Rq – H lpU,U r Y,Rq.

We remark that X as a complex manifold is orientable, so does U . Hence the Thom class in coe�cient Z
exists by Theorem 4.D.10. in [Hat02]. The natural inclusion Z Ñ R sends the Thom class in coe�cient Z
to the Thom class in coe�cient R. Thus we have the Thom isomorphism by the Corollary 4.D.9 in [Hat02].
It follows that for j ă codim Y , HjpX,X r Y,Rq “ 0. This �nishes the proof of the lemma using the exact
sequence. �

Lemma 5.18. Let X be a complex manifold (not necessary compact) and Y be a closed analytic subset
of codimension at least r ` 1. Then the restriction map

H lpX,Rq Ñ H lpX r Y,Rq

is an isomorphism for l ď 2r.

Proof. It is a direct consequence of lemmata 5.16 and 5.17. �

We recall brie�y the construction of Chern classes of a coherent sheaf F in the de Rham cohomology.
We refer to [GR58] for more details. If X is connected complex compact manifold (or more generally a
Zariski open set U of in X), by [Voi02a], F does not necessarily admit a resolution by holomorphic vector
bundles. On the other hand, a real analytic coherent sheaf possesses a resolution by real analytic vector
bundles. Let

0 Ñ E2n Ñ ¨ ¨ ¨E0 Ñ F bOX OR´an
X Ñ 0
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be a resolution of F bOX OR´an
X by real analytic vector bundles Ei where OR´an

X is sheaf of real analytic
function on X and n is the complex dimension of X. De�ne the total Chern class of F by

c‚pFq :“
ź

i

c‚pE
iqp´1qi .

By restriction on U , same formula de�nes c‚pF |U q. It can be check that this is independent the choice of
resolution.

Lemma 5.19. Let F be a coherent torsion sheaf over a compact complex manifold X (not necessarily
Kähler) of dimension n. Assume that F is supported in a SNC divisor E “ YiEi where Ei are the irreducible
components. Let α be a smooth closed form over X such that α|Ei “ 0 for any i. Then for any i ă n,

ż

X

cipFq ^ αn´i “ 0.

More generally we have for any i ă n and any cohomology class β of X,
ż

X

chpFq ^ β ^ αn´i “ 0.

Proof. Denote for any divisor D (not necessarily irreducible) GDpXq the Grothendieck group of co-
herent sheaves over X supported in D. We have exact sequence

‘iGEipXq Ñ GEpXq Ñ 0.

Let pFiq P ‘iGDipXq be a preimage of F . Then we have by construction of Chern character class (cf.
[Gri10]),

chpFq “
ÿ

i

iEi˚pchpFiq tdpNEi{Xq
´1q

where iEi is the closed immersion and tdpNEi{Xq is the Todd class of the normal bundle of Ei. For any
cohomology class β on X,

ż

X

chpFq ^ β ^ αn´i “
ÿ

i

ż

Ei

chpFiq tdpNEi{Xq
´1 ^ i˚Eiβ ^ i

˚
Eiα

n´i “ 0

since i˚Eiα “ 0. �

As an application of this lemma, we have the following result.

Lemma 5.20. Let F be a re�exive sheaf over a compact complex manifold X. Let σ : X̃ Ñ X be a
modi�cation of X such that there exists a SNC divisor E in X̃ such that

σ : X̃ r E Ñ X r πpEq

is biholomorphism with E a SNC divisor and the codimension of πpEq at least 3 and σ˚F{Tors is locally
free. Then we have that for i “ 1, 2

cipFq “ σ˚pcipσ
˚F{Torsqq.

Proof. First observe that such a modi�cation always exists by the fundamental work of [Ros68],
[GR70], [Rie71].

Without loss of generality we can assume that the dimension of X is at least 3. Otherwise, F is locally
free and the result is direct. By Poincaré duality, it is the same to prove that for i “ 1, 2 and any cohomology
class α we have that

ż

X

cipFq ^ α “
ż

X̃

pcipσ
˚F{Torsqq ^ σ˚α.

Recall that σ˚ chpFq “
ř

ip´1qi chpLiσ˚Fq where Liσ˚ is the i-th left derived functor of σ˚. Without loss
of generality, we can assume that F is locally free over X r πpEq. In particular, Liσ˚F for any i ą 0 is
supported in the exceptional divisor. On the other hand, the torsion part of σ˚ is also supported in the
exceptional divisor. By the above lemma, we have that

ż

X̃

pcipσ
˚F{Torsqq ^ σ˚α “

ż

X̃

σ˚pcipFqq ^ σ˚α

which concludes the proof. �

We now introduce the de�nition of nef and strongly psef torsion-free sheaves.

Definition 5.21 (Nef/ Strongly psef torsion-free sheaf).
Assume that F is a torsion free sheaf over a compact complex manifold X. We say that F is nef presp.
strongly psef q if there exists some modi�cation π : X̃ Ñ X such that π˚F{Tors is a nef presp. strongly psef q
vector bundle where Tors means the torsion part.
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Notice that for any further modi�cation π1 : X̃ 1 Ñ X̃, π1˚pπ˚F{Torsq “ pπ ˝ π1q˚F{Tors (in particular,
further pull back is still a nef or strongly psef vector bundle). In fact, for any morphism π1, π, there exist
natural surjective morphisms

pπ ˝ π1q˚F “ π1˚π˚F Ñ π1˚pπ˚F{Torsq Ñ pπ1˚pπ˚F{Torsqq{Tors

which induces a surjection pπ1 ˝ πq˚F{Tors Ñ pπ1˚pπ˚F{Torsqq{Tors. It is generic isomorphism on which F
is locally free. Thus the kernel of the induced morphism is a torsion sheaf. Since pπ1 ˝ πq˚F{Tors is torsion
free, the morphism is also injective.

More generally, we show in the next remark that the de�nition is independent of the choice of the pull
back.

Remark 5.22. By the work of [Ros68], [GR70], [Rie71], for any torsion-free sheaf F over a compact
complex manifold, there exists a modi�cation π : X̃ Ñ X such that π˚F{Tors is a locally free sheaf (i.e. a
vector bundle). In the above de�nition, we say that F is nef or strongly psef if π˚F{Tors is nef or strongly
psef.

Let us recall here theorem 1.B.1 of [Paun98]. Let f : Y Ñ X be a surjective holomorphic map between
compact complex manifolds. Let α be a cohomology class in the Bott-Chern cohomology class H1,1

BCpX,Cq.
Then α is nef if and only if f˚α is nef.

For the vector bundle case, a modi�cation σ : X̃ Ñ X induces a surjection σ̃ : Ppσ˚Eq Ñ PpEq where E
is a vector bundle over X. The pull back of OPpEqp1q under σ̃ is OPpσ˚Eqp1q. Thus σ˚E is nef if and only if
OPpσ˚Eqp1q is nef which is equivalent to say that OPpEqp1q is nef, i.e. E is nef.

Thus in the above de�nition, it is same to say that F is nef if and only if for everymodi�cation σ : X̃ Ñ X
such that σ˚F{Tors is a vector bundle, σ˚F{Tors is nef.

Similarly, let f : Y Ñ X be a surjective holomorphic map between compact complex manifolds. Let α
be a cohomology class in the Bott-Chern cohomology class H1,1

BCpX,Cq. Then α is psef if and only if f˚α is
psef. The pull back of a strongly psef vector bundle E under a modi�cation σ is psef if and only if E itself
is psef. Once a smooth metric has been �xed on E, the singular metrics on OPpσ˚Eqp1q (resp. on OPpEqp1q)
are identi�ed with quasi-psh functions. Let us observe that the push forward of a psh function with analytic
singularities under a proper modi�cation is still a psh function with analytic singularities. The singular set of
the pushed forward weight on OPpEqp1q is the image of the singular set of the weight function on OPpσ˚Eqp1q.

More precisely, denote by π̃ : Ppσ˚Eq Ñ X̃ and π : PpEq Ñ X the projections. We have π˝σ̃ “ σ˝π̃. For
a simple blow-up with a smooth irreducible centre, the opposite of the cohomology class of the exceptional
divisor has a smooth representative that is positive along the �bers of the projectivised normal bundle. From
this, it is easy to see that exists a smooth form ωE on X̃ such that σ˚ωX ` ωE is a Kähler form on X̃, and
tωEu “ ´trEsu for a suitable combination E “

ř

δjEj , δj P Rą0 of the irreducible components Ej of the
exceptional divisor. Notice that tσ˚ωEu is the zero cohomology class. Denote by ϕ a quasi psh function on
X̃ such that

ωE “ ´rEs ` iBBϕ.

Assume that σ˚E is strongly psef and let us use a reference metric σ˚h8 induced by a smooth metric h8
on E. Then there exist quasi-psh functions ψε with analytic singularities such that

iΘpOPpσ˚Eqp1q, σ
˚h8e

´ψεq ě ´επ̃˚pσ˚ωX ` ωEq,

and σ˚h8e
´ψε´π̃

˚ϕ are singular metrics with analytic singularities on OPpσ˚Eqp1q. By taking the push-
forward of the quasi-psh functions ψε ` επ̃˚ϕ under the modi�cation σ̃, we get singular metrics hε :“

h8e
´σ̃˚pψε`επ̃

˚ϕq on OPpEqp1q possessing analytic singularities and satisfying the condition

iΘpOPpEqp1q, hεq ě ´επ
˚ωX .

In the above de�nition, it is thus the same to say that F is strongly psef if and only if for every modi�cation
σ : X̃ Ñ X such that σ˚F{Tors is a vector bundle, σ˚F{Tors is strongly psef.

In fact, following the arguments in [Paun98] and [DPS94], we can prove a more general result.

Theorem 5.23. Let f : Y Ñ X be a surjective holomorphic map between compact Kähler manifolds.
Let E be a vector bundle over X. Then f˚E is strongly psef if and only if E is strongly psef.

Proof. It is easy to see that E is strongly psef implies that f˚E is strongly psef. To prove the inverse
direction, we use the Hironaka �attening theorem which shows the existence of a commutative diagram

Z
π2
ÝÑ X̃

π1

§

§

đ

§

§

đ
σ

Y
f
ÝÑ X
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where Z is a compact Kähler complex space, π2 a �at morphism (i.e. with equidimensional �bres) and σ a
composition of blow-ups of smooth centres. In the previous remark, we prove that the pull back of a vector
bundle under a blow-up of smooth center is strongly psef if and only if it is itself strongly psef. The result
will follow if we prove that the pull back of a vector bundle under a �at morphism is strongly psef if and only
if it is itself strongly psef. Intuitively, we would want to take the quasi-psh weight at any point to be the
supremum of the quasi-psh weight on the pre-image of that point. But this operation does not necessarily
give the desired lower bound of curvature. In order to overcome this di�culty, we use a modi�ed version of
the argument given in [DPS94] proposition 1.8, as follows. �

Proposition 5.3.1. Let f : Y Ñ X be a surjective holomorphic map with equidimensional �bres where
X is a compact Kähler manifold and Y is a compact Kähler complex space. Let E be a vector bundle over
X. Then f˚E is strongly psef if and only if E is strongly psef.

Proof. The proof is essentially the same as for Théorème 1.B.1 in [Paun98] and Proposition 1.8
in [DPS94]. We just outline the arguments with the necessary modi�cations.

We denote by the same symbol f the induced map Ppf˚Eq Ñ PpEq. Let α be the curvature form in the
cohomology class c1pOPpEqp1qq induced by some smooth metric on E. Let ψε be quasi psh functions with
analytic singularities on Ppf˚Eq such that

f˚α`
i

2π
BBψε ě ´εω

1, ε ą 0,

for some Kähler form ω1 on Ppf˚Eq. The existence follows from the de�nition of a strongly psef vector
bundle (the de�nition of a strongly psef vector bundle is still valid for a compact Kähler complex space).

Denote by p the dimension of �bres. For every y P Ppf˚Eq there exist local holomorphic functions
w1, ¨ ¨ ¨ , wp in a neighbourhood U of y such that z ÞÑ pfpzq, w1pzq, ¨ ¨ ¨ , wppzqq is a proper �nite morphism
from U to a neighbourhood of tfpyqu ˆ t0u in PpEq ˆ Cp. Thus there exist local coordinates centered at
fpyq on PpEq such that

|F pzq ´ F pyq|2 `
ÿ

1ďjďp

|wjpzq|
2 ą 0

on BU , where F “ pF1, ¨ ¨ ¨ , Fnq denote the local coordinate components of f .
Since Ppf˚Eq is compact, we can cover Ppf˚Eq by �nitely many such sets Uk centered at yk P Ppf˚Eq,

and �nd corresponding holomorphic functions pwpkq1 , ¨ ¨ ¨ , w
pkq
p q on Uk, as well as components F pkq. Each

Uk can be supposed to be embedded as a closed analytic set of some open set in CNk with coordinates
pw
pkq
1 , ¨ ¨ ¨ , w

pkq
p , ¨ ¨ ¨ , w

pkq
Nk
q (i.e., we complete pwpkq1 , ¨ ¨ ¨ , w

pkq
p q into a local coordinate system of CNk). By

construction,

2δk :“ inf
BUk

|F pkqpzq ´ F pkqpykq|
2 `

ÿ

1ďjďp

|w
pkq
j pzq|2 ą 0.

We can even suppose that the open sets

Vk :“ tz P Uk; |F pkqpzq ´ F pkqpykq|
2 `

ÿ

1ďjďp

|w
pkq
j pzq|2 ă δku

cover Ppf˚Eq. De�ne for z P Uk

λpkqε pzq :“ ε3
ÿ

1ďiďNk

|w
pkq
i |2 ´ ε2p|F pkqpzq ´ F pkqpykq|

2 `
ÿ

1ďjďp

|w
pkq
j pzq|2 ´ δkq,

and for x P PpEq,
ϕε :“ sup

yPf´1pxqXUk

pψε4pyq ` λ
pkq
ε pyqq

where the supremum is also taken with respect to k. The curvature condition is checked in the same way as
in [Paun98] and [DPS94].

Let us observe that by using a regularization, one can assume that the quasi psh weight ψε is continuous
(i.e. locally the weight is of the form clog

ř

|gj |
2 ` f where f is continuous, and not just bounded).

By choosing ε small enough, we get ϕε continuous with values in r´8,8r. In fact, for ε small enough,
λ
pkq
ε is strictly negative on the boundary of Uk and positive on Vk. Thus the function Ψεpyq :“ ψε4pyq `

supyPUk λ
pkq
ε pyq is continuous on Y . Since ϕεpxq “ supyPf´1pxqΨεpyq, ϕε is continuous on X.

We now turn ourselves to the proof that ϕε has analytic singularities. Observe that ϕε has the same
singularities as the function supyPf´1pxq ψε4pyq on X, since the functions λpkqε are bounded. We claim the
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following more general fact: let f : Y Ñ X be a proper morphism between complex spaces, and ϕε be a
quasi psh function with analytic singularities on Y , then the function

f˚ϕpxq :“ sup
yPf´1pxq

ϕpyq

has analytic singularities on X. Here �ϕ is a quasi-psh function over a complex space� means that ϕ can
be locally extended as a quasi-psh function to any open set of CN in which Y can be embedded as a closed
analytic set; that ϕ has analytic singularities means for every y P Y , there exists an open set on which
ϕ “ clogp

ř

|gi|
2q ` f , with holomorphic functions gi and a bounded function f .

By Hironaka, there exists a modi�cation σ : Ỹ Ñ Y such that Ỹ is smooth. By considering f ˝ σ and
ϕ ˝ σ, we are reduced to the case where Y is smooth. For every x P X, we can cover f´1pxq by �nite open
sets Uk such that the restriction of ϕ to each open set is of the form clog

ř

|g
pkq
i |2 ` Op1q, where gi are

holomorphic functions on this open set and Op1q is a bounded term. There exists an open neighbourhood
V of x such that f´1pV q Ă YkUk. For every x P V ,

f˚ϕpxq “ sup
k

sup
yPf´1pxqXUk

ϕpyq.

Since a �nite supremum of quasi-psh functions with analytic singularities still has analytic singularities, it
is enough to show that supyPf´1pxqXUk

ϕpyq has analytic singularities for every k. Since we take a �nite
supremum, the bounded terms will remain bounded after taking the supremum, therefore we are only
concerned with the logarithmic term in what follows.

Let Jk be the maximal germ of ideal sheaf at x such that f˚Jk|Uk Ă pg
pkq
i q with respect to the inclusion

relation. (Here one may have to shrink the open set Uk, i.e. the inclusion is to be understood in the
sense of germs at any point of f´1pxq.) Then the ideal pgpkqi q is generated by �nitely many holomorphic
functions that are either of the form f˚h

pkq
α for some holomorphic function germ at x, or of the form f

pkq
β for

some holomorphic function on Uk. We claim that the zero set V pf pkqβ q is not of the form f´1pfpV pf
pkq
β qqq.

Otherwise, by Hilbert's Nullstensatz, f pkqβ is contained in the germ of pull back of the prime ideal sheaf

vanishing on fpV pf pkqβ qq, contradicting the maximality of Jk. Therefore

logp
ÿ

α

|gpkqα |2qpxq “ sup
yPf´1pxqXUk

logp
ÿ

α

|f˚hpkqα |2 `
ÿ

β

|f
pkq
β |2q,

which also has analytic singularities. �

Remark 5.24. Observe that when the manifold X is projective, there exists the subtlety in the de�nition
of strongly psef torsion free sheaf. Recall that a torsion free sheaf F over a projective manifold X with an
ample line bundle A is called weakly positive in the sense of Nakayama (cf. [Nak04]) if for any a P N,
there exists b P N˚ such that pSabFq__ bAb is globally generated at some point (hence generically globally
generated). Our de�nition of strongly psef torsion free sheaf implies that it is the weak positive torsion free
sheaf in the sense of Nakayama, but not inversely in general.

First we show that if F is a strongly psef torsion free sheaf, then it is weakly positive in the sense
of Nakayama. Let σ : X̃ Ñ X be a composition of blow-ups of the smooth centers such that the pull
back of torsion free coherent sheaf σ˚F{Tors is a strongly psef vector bundle. Let A be an ample line
bundle over X. For b large enough, σ˚Ab ´ E is an ample line bundle over X̃ where E is the exceptional
divisor. Sabpσ˚F{Torsqbσ˚AbbOp´Eq is generically globally generated over X̃ by possible larger b and by
changing Op´Eq by its multiple. It is from the assumption that σ˚F{Tors is a strongly psef vector bundle
over X̃. By tensoring the canonical section of the line bundle OpEq, Sabpσ˚F{Torsq b σ˚Ab is generically
globally generated over X̃. Thus the same holds for pSymabFq__ b Ab over X by the natural isomorphism
pSymabFq__ bAb Ñ rσ˚pSymab

pσ˚F{Torsq b σ˚Abqs__.
To indicate the subtlety, we use the same notations as above. For the inverse direction, we hope to

show that pSabpσ˚F{Torsqq__b σ˚Ab is generically globally generated over X̃ for large b from the fact that
pSabFq__bAb is generically globally generated over X for large b. Let S be the analytic set of codimension
at least 2 in X such that σ : X̃ r E Ñ X r S is biholomorphic. But the global sections

H0pX, pSabFq__ bAbq – H0pX r S, pSabFq__ bAbq – H0pX̃ r E,Sabpσ˚F{Torsq b σ˚Abq

do not necessarily extend over X̃ even seen as a section of Sabpσ˚F{Torsqbσ˚AbbÃ where Ã is an arbitrary
ample line bundle over X̃. The reason is that the sections may have essentially singularity along E.

A typical example is the following. Let S be an analytic set of codimension at least two over a projective
manifold X and let IS be the ideal sheaf associated to S. The bidual of IS is OX as well as all the symmetric
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power. Let U be any open set of X. We have that for any m and any vector bundle E

H0pU, pSmISq__ b Eq – H0pU r S, pSmISq__ b Eq “ H0pU r S,Eq – H0pU,Eq

where the last equality follows from the Hartogs theorem. As a consequence, for any ample divisor A and
any a P N˚, pSabISq__ bAb is globally generated for b large enough. In particular, IS is weakly positive in
the sense of Nakayama.

However, observe that IS has some �negativity" along S, even if it is weakly positive in the sense of
Nakayama. It can be seen as follows. Let σ : X̃ Ñ X be a composition of blow-ups with smooth centers
such that σ˚IS{Tors “ OX̃p´Eq where E is an e�ective divisor supported in the exceptional divisor. By the
de�nition of strongly psef torsion free sheaf, if IS is strongly psef, σ˚IS{Tors should be a psef vector bundle
since it is a line bundle. But it is not the case which means that IS is not strongly psef. In other words,
our de�nition of strong psef torsion free sheaf is reasonable which forbids the above kind of negativity which
will appear in some birational models.

Like the bundle case, the strongly psef torsion-free sheaf is stable under the usual algebraic operations,
with the consideration of taking torsion free part.

Example 5.25. (The pull back of a torsion free sheaf is not necessarily torsion free)
According to the knowledge of the author, this example can be found in [GR70]. Let X be the blow

up of the origin of C2 with π : X Ñ C2. Let px, yq be the coordinate of C2. The maximal ideal at the origin
can be resolved by the Koszul complex

OC2
p´y,xq
ÝÝÝÝÑ O‘2

C2 Ñ m0 Ñ 0

where the second arrow sends pf, gq to xf`yg. The pull back is right exact which induces the exact sequence

OX
p´v,uvq
ÝÝÝÝÝÑ O‘2

X Ñ π˚m0 “ m0 bOC2
OX Ñ 0

where in local coordinates πpu, vq “ puv, vq and the the second arrow sends pf, gq to fbx`gby. We denote
the second arrow as ε. We claim that εp´1, uq is not a zero element in π˚m0. Otherwise, p´1, uq is in the
kernel of ε which by exactitude is of the form p´vf, uvfq for some f . Contradiction.

On the other hand p´1, uq is torsion in π˚m0 since vεp´1, uq “ ´vbx`vuby “ p´vπ˚x`vuπ˚yqb1 “ 0.
Consider the composition O‘2

X {Kerpεq Ñ π˚m0 Ñ OX . The image is IE where IE is the ideal sheaf
associated to the exceptional divisor E. The �rst morphism is in fact isomorphism. In local coordinates
the composition sends pf, gq to uvf ` vg. The kernel is OXp´1, uq which is torsion. We have isomorphism
between O‘2

X {Kerpεq modulo this kernel and IE . Thus the image under ε (i.e. OXεp´1, uq) gives all the
torsion elements. In other words, π˚m0{Tors – OXp´Eq.

In fact, the morphism u : OC2 Ñ O‘2
C2 induces a meromorphic map from C2 to Grp1, 2q which sends z

to the image of upzq. The meromorphic map induces a holomorphic map from the blow up of the origin to
Grp1, 2q which resolves the indeterminacy set of the meromorphic morphism. The total space of OP2p´1q is
also the blow-up of C2 at the origin with the natural projection τ : X Ñ P2. The pull back of the tautological
line bundle over Grp1, 2q admits exact sequence

O‘2
X “ τ˚O‘2

P2 Ñ τ˚OP2p1q Ñ 0.

The image of the kernel of ε in τ˚OP2p1q is 0. Thus we have factorisation O‘2
X {Kerpεq – π˚m0 Ñ τ˚OP2p1q Ñ

0. The kernel of the factorisation is supported in the exceptional divisor which is thus torsion. In conclusion,
we have isomorphism π˚m0{Tors – τ˚OP2p1q. This shows in this special case how to �nd a modi�cation such
that the pull back of a torsion free sheaf is locally free modulo torsion. This construction was generalised
in [Ros68], [GR70], [Rie71]. (We recall it brie�y in Lemma 5.30.)

Example 5.26. (The symmetric and wedge power of torsion free sheaves are not necessarily torsion
free)

Consider the maximal ideal sheaf m0 in X “ C2. The wedge power Λ2m0 is supported at the origin,
however z1 ^ z2 is a non zero element of germ of Λ2m0 at the origin.

For the symmetric powers, let us �rst recall the following important theorem in [Mic64] (cf. also theorem
3 of [LaB14]). Let A be a domain, M be a �nitely generated A-module. Then ‘iě0S

iM is a domain if
and only if SiM is torsion free, for all i ě 0. To give a concrete example, consider a surjection from a
holomorphic vector bundle E to a torsion free sheaf F over a compact manifold X. Then PpFq is a closed
analytic set of PpEq. If PpFq is not irreducible, by the above theorem there exists i ą 0 such that SiF is
not torsion free.

We summarise the algebraic properties of strongly psef torsion free sheaf in the following propositions.



102 5. PSEUDO-EFFECTIVE AND NUMERICALLY FLAT REFLEXIVE SHEAVES

Proposition 5.3.2. Let F be a torsion free sheaf over a compact Kähler manifold pX,ωq. The following
properties are equivalent.

(1) F is strongly psef.
(2) For any m P N˚, SmF modulo its torsion part is strongly psef.
(3) There exists m P N˚ such that SmF modulo its torsion part is strongly psef.

Proof. (1) implies (2) as follows. Let σ be a modi�cation ofX such that σ˚F{Tors and σ˚pSmF{Torsq{Tors
are vector bundles where Tors means the torsion part. We have a surjection

σ˚SmF – Smσ˚F Ñ σ˚pSmF{Torsq.

It induces a surjection
Smpσ˚F{Torsq Ñ σ˚pSmF{Torsq{Tors.

This is justi�ed as follows. Recall that there exists an exact sequence

Torsb Sm´1σ˚F Ñ Smpσ˚Fq Ñ Smpσ˚F{Torsq Ñ 0

induced by
0 Ñ Tors Ñ σ˚F Ñ σ˚{Tors Ñ 0.

The image of Tors b Sm´1σ˚F consists of torsion elements, and induces the morphism Smpσ˚F{Torsq Ñ
σ˚pSmF{Torsq{Tors. Thus Corollary 5.11 and (1) of Corollary 5.13 implies that σ˚pSmF{Torsq{Tors is a
strongly psef vector bundle.

We �nally check that (3) implies (1). With the same notation, the above surjection is in fact an
isomorphism since both sides have the same rank. Thus Corollary 5.11 implies that σ˚F{Tors is a strongly
psef vector bundle. �

Definition 5.27. Let pX,ωq be a compact Kähler manifold, F be a torsion free sheaf on X and D be a
Q´Cartier divisor. Then FxDy is said to be Q´twisted strongly pseudo-e�ective p Q´twisted strongly psef
for shortq if SmF{Tors b OXpmDq is strongly psef for some phence any by Proposition 5.3.2q m ą 0 such
that OXpmDq is a line bundle.

Proposition 5.3.3.
(1) A torsion free quotient sheaf of a strongly psef torsion free sheaf is strongly psef.
(2) A direct summand of strongly psef torsion free sheaf is strongly psef.
(3) A direct sum of strongly psef torsion free sheaves is strongly psef.
(4) A tensor product por Schur functor of positive weight q modulo its torsion part of strongly psef

torsion free sheaves is strongly psef.

Proof. Let F Ñ Q be a surjective morphism of torsion free sheaves with F strongly psef over X. Let
σ : X̃ Ñ X be a modi�cation such that σ˚F {Tors,σ˚Q{Tors are vector bundles. By assumption σ˚F {Tors
is a strongly psef vector bundle. σ˚ is right exact which induces surjection σ˚F {Tors Ñ σ˚Q{Tors passing
to quotient. Thus σ˚Q{Tors is a quotient bundle of σ˚F{Tors Using Proposition 5.2.1 we can conclude that
σ˚Q{Tors is strongly psef. The other conclusions are similar and can be obtained in a formal manner. �

A natural operation for torsion free sheaves consists of taking the bidual. The relationships between a
torsion free sheaf and its bidual will be stated in the next propositions. The following example indicates
some of the occurring phenomena.

Example 5.28. Let D be a smooth e�ective divisor over a compact Kähler manifold X with canonical
section sD. We have generic surjective sheaf morphism

α : O‘2
X Ñ OXpDq ‘OXp2Dq

induced by global section psD, s2
Dq. Then detpαq – OXp3Dq has a global section s3

D. The division by
this global section induces a bimeromorphic map between the total spaces of pOXpDq ‘ OXp2Dqq

˚ and
O‘2
X b detpαq˚. Since O‘2

X is strongly psef, there exists a global (quasi-)psh function on the total space of
its dual. Pairing with s3

D induces a global (quasi-)psh function on the total space of O‘2
X b detpαq˚ which

induces a (quasi-)psh function on the total space of pOXpDq ‘ OXp2Dqq
˚ outside a smooth divisor. We

claim that this (quasi-)psh function extends across the divisor by boundedness from above. In particular,
pOXpDq ‘OXp2Dqq is strongly psef.

For example, locally consider the psh function on the total space of O‘2
X b detpαq˚

ϕpz, ξ1, ξ2q :“ logp|z|6p|ξ1|
2 ` |ξ2|

2qq

where αpz, ξ1, ξ2q “ pz, zξ1, z2ξ2q. The induced psh function outside the divisor tz “ 0u is given by

ϕpz, ξ1, ξ2q :“ logp|z|6p|ξ1{z|
2 ` |ξ2{z

2|2qq,
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which is bounded from above near the divisor and can thus be extended across the divisor.

Proposition 5.3.4. Let E ,F be two torsion free sheaves over a compact Kähler manifold pX,ωq. Let
α : E Ñ F be a morphism of sheaves which is an isomorphism over a Zariski open set X rA. Assume that
E is strongly psef. Then F is strongly psef.

Proof. Let σ be a modi�cation of X such that σ˚E{Tors and σ˚F{Tors are locally free and σ˚E{Tors is
strongly psef. We can assume that σ˚α is an isomorphism outside a divisor E. Then detpσ˚αq is an e�ective
divisor supported in E. Division by this global section induces bimeromorphic map between the total spaces
of pσ˚F{Torsq˚ and pσ˚E{Torsq˚bdetpσ˚αq˚. By Proposition 5.2.1, the fact that σ˚E{Tors is strongly psef
implies the existence of quasi-psh functions with analytic singularities on the total space of the symmetric
powers of pσ˚E{Torsq˚. Pairing with the canonical section of detpσ˚αq induces global (quasi-)psh functions
on the total space of Smpσ˚E{Torsb detpαqq˚. We denote these quasi-psh functions by wm. The functions
wm induce quasi-psh function on the total space of pSmσ˚F{Torsq˚ outside the divisor E. We claim that
these quasi-psh functions extend across all the irreducible components of the divisor E by boundedness from
above. In particular, by Proposition 5.2.1, σ˚F{Tors is a strongly psef vector bundle.

The claim is proven by a local coordinate calculation. In local coordinate σ˚αpz, ξq “ pz,Apzqξq where
Apzq a matrix of holomorphic functions. Locally

wmpz, ξq “ logp
ÿ

j

|Bjpzqξ|
2q `Op1q ` logp|detpApzqq|2q

where Bjpzq are matrices of holomorphic functions. The induced quasi-psh functions outside the divisor E
over pSmσ˚F{Torsq˚ are of the form

w̃mpz, ξq “ logp
ÿ

j

|BjpzqA
´1pzqξ|2q `Op1q ` logp| detpApzqq|2q.

Since the inverse is given by the co-adjoint of the matrix divided by its determinant, w̃m is locally bounded
from above near the divisor. �

The inverse direction is in general false. To get a counter-example, we consider an inclusion IA Ñ OX

where A is an analytic set of codimension at least 2. Then IA is not strongly psef, while OX is. However,
the inclusion is an isomorphism over X rA.

Proposition 5.3.5. Let
0 Ñ S Ñ F Ñ QÑ 0

be an exact sequence of torsion free sheaves. If F , pdetpQqq´1 are strongly psef and S is re�exive, then S is
strongly psef.

Proof. We have S “ Λs´1S˚bdetS where s is the rank of S outside an analytic set A of codimension
at least 2. Assume that all three sheaves are locally free outside A. We have a surjective bundle morphism
over X rA

Λr´s´1F{Torsb pdetQq´1 Ñ S

where r is the rank of F . Since S is re�exive (hence normal), the morphism extends as a morphism of sheaves
over X. By (4) of Proposition 5.3.3, Λr´s´1F{TorsbpdetQq´1 is strongly psef. By (1) of Proposition 5.3.3,
the image of this sheaf morphism is strongly psef. Since the image ans S are isomorphism over X r A, by
Proposition 5.3.4, S is strongly psef. �

Proposition 5.3.6. Let F be a strongly psef torsion free sheaf of rank r. Then detpFq is a psef line
bundle.

Proof. By (4) of Proposition 5.3.3, ΛrF{Tors is strongly psef. Since ΛrF{Tors and detpFq is generic
isomorphism, by Proposition 5.3.4, detpFq is a psef line bundle. �

Proposition 5.3.7. Let F be a strongly psef torsion free sheaf with c1pFq “ 0. Then F˚ is a strongly
psef re�exive sheaf.

Proof. The fact that F˚ is re�exive is purely algebraic. Outside an analytic set of codimension at least
2, F is locally free. Over this open set, we have an isomorphism

Λr´1F{Torsb pdetpFqq´1 Ñ F˚.

Since F˚ is re�exive, this morphism extends across the analytic set. By (4) of Proposition 5.3.3, the left
hand term is strongly psef. Thus the image is strongly psef. Moreover, the fact that we have a generic
isomorphism implies that F˚ is strongly psef. �
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Lemma 5.29. Let F be a strongly psef torsion free sheaf with c1pFq “ 0 over X. Let σ : X̃ Ñ X be a
modi�cation such that both σ˚F{Tors and σ˚F˚{Tors are locally free. Then c1pσ˚F{Torsq “ 0.

Proof. There exists a natural morphism

σ˚F˚{Tors Ñ pσ˚F{Torsq˚

which is a generic isomorphism. Note that pσ˚F{Torsq˚ – pσ˚Fq˚ by Corollary 4.9 Chap. V [Kob75].
The above morphism is induced by σ˚F˚ Ñ pσ˚F{Torsq˚ – pσ˚Fq˚ under which the torsion part is in the
kernel since pσ˚Fq˚ is torsion free. By proposition 5.3.4, pσ˚F{Torsq˚ is strongly psef. In other words, both
σ˚F{Tors and its dual are strongly psef vector bundle which infers that its �rst Chern class is 0. �

We can now prove the main result of this section assuming the main theorem (whose proof is independent
of the main result of this section). For the convenience of readers, we recall here the construction of reduction
of torsion free sheaf to the vector bundle case modulo torsion. For a complete proof, we recommend the
paper of [Ros68].

Lemma 5.30. Let F be a torsion free sheaf of generic rank r over X a complex manifold. There exists
some modi�cation σ : X̃ Ñ X such that σ˚F{Tors is locally free. Then for every i “ 1, 2, the Chern class
cipFq is well de�ned in the Bott-Chern cohomology group Hi,i

BCpX,Cq.
If X is compact Kähler and F is a re�exive sheaf, these two Chern classes can be represented by normal

currents pin fact di�erences of two closed positive currents q.

Proof. Cover X by Stein open sets Uα. On each Uα, there exists an exact sequence

O‘Mα

Uα
Ñ O‘NαUα

Ñ F |Uα Ñ 0

which induces a meromorphic map
fα : Uα 99K Grpr,Nαq.

The maps O‘Mα

Uα
Ñ O‘NαUα

are locally given as holomorphic matrices Aαpzq which are of constant rank over
Zariski open sets, and fα sends z to the image of Aαpzq. Let Ûα be the graph of this map f̂α : Ûα Ñ Grpr,Nαq

be the corresponding morphism (given by the second projection of the graph). The Ûα glue into a complex
space X̂ sitting over X, and by Hironaka, we can �nd a modi�cation σ : X̃ Ñ X̂ Ñ X such that X̃ is
smooth and σ˚F{Tors is a vector bundle (the pull-back to X̂ comes locally from the tautological quotient
bundle Qα of Grpr,Nαq generically, hence is already a vector bundle generically). It can be shown that
the surjection σ˚F Ñ Qα which is in fact generic isomorphism. This infers in particular that the kernel
is torsion and isomorphism σ˚F{Tors Ñ Qα. We equip Qα with a smooth metric (e.g. the standard one
coming from a Hermitian structure on CNα) and use a partition of unity to endow σ˚F{Tors with a smooth
metric h. Then the Chern forms cipσ˚F{Tors, hq associated with the curvature tensor represent the Chern
classes cipσ˚F{Torsq in Bott-Chern cohomology on X̃. We de�ne the Chern classes cipF{Torsq in Bott-Chern
cohomology on X to be the direct images σ˚cipσ˚F , hq for i “ 1, 2 as in Lemma 5.20. (Notice that in lemma
5.20, we work with the de Rham cohomology. By the work of [Gri10] and the result in Chapter 6, the same
formula holds in the complex Bott-Chern cohomology.) It is well known that these classes are independent
of the choice of the metric h.

Assume now that X is a compact Kähler manifold. Then X̃ is also a compact Kähler manifold. Let ω
be a smooth Kähler form on X̃. Then for C large enough, cipσ˚F{Tors, hq can be written as di�erence of
two positive forms cipσ˚F{Tors, hq ` Cωi and Cωi. The second statement holds by taking direct images of
these positive forms. �

Proposition 5.3.8. Let F be a nef re�exive sheaf over a compact Kähler manifold pX,ωq with c1pFq “ 0.
Then F is a nef vector bundle.

Proof. The proof is analogous to those of [CCM19] and [HIM19]. The essential point is the following
result of [BS94]: for a polystable re�exive sheaf F of rank r over a compact n-dimensional Kähler manifold
pX,ωq, one has the Bogomolov inequality

ż

X

p2rc2pFq ´ pr ´ 1qc1pFq2q ^ ωn´2 ě 0,

and the equality holds if and only if F is locally free and its Hermitian-Einstein metric gives a projective �at
connection.

The proof is obtained by an induction on the rank of F . The general strategy of the induction is the
same as in [HIM19]. For the convenience of the reader, we outline here the arguments with the necessary
modi�cations. In the rank one case, re�exive sheaves are locally free, hence line bundles, and the conclusion is
immediate. Let us observe however that the re�exivity condition is necessary even in that case; for example,
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the ideal sheaf associated with an analytic set of codimension at least 2 is of generic rank one, torsion free,
but not locally free.

In the higher rank case, we consider the Harder-Narasimhan �ltration of F with respect to ω, say

F0 “ 0 Ñ F1 Ñ F2 Ñ ¨ ¨ ¨ Ñ Fm :“ F

where Fi{Fi´1 is ω-stable for every i and µ1 ě µ2 ě ¨ ¨ ¨ ě µm, and where µj “ µωpFj{Fj´1q is the slope of
Fj{Fj´1 with respect to ω. Now, consider the coherent subsheaf S “ Fm´1. Notice that by construction S
can be chosen to be re�exive by taking the double dual if necessary, as this preserves the rank, �rst Chern
class and slope. Then we get a short exact sequence

0 Ñ S Ñ F Ñ QÑ 0,

and Q is a torsion-free coherent sheaf. Pick a modi�cation σ such that σ˚F{Tors and σ˚pQq{Tors are
vector bundles, with σ˚F{Tors being nef. The pull back functor is right exact, so we have surjective bundle
morphism σ˚F{Tors Ñ σ˚pQq{Tors. Thus σ˚pQq{Tors is a nef vector bundle. By de�nition, we conclude
that Q is nef.

In particular, its �rst Chern class c1pQq is pseudo-e�ective by Proposition 5.3.6. On the other hand, we
have

0 “ c1pFq “ c1pSq ` c1pQq
by the assumption. Thus

ż

X

c1pQq ^ ωn´1 “ ´

ż

X

c1pSq ^ ωn´1 ď 0,

and c1pQq “ c1pSq “ 0.
Let X0 be the largest open set on which F is locally free. We claim that S is a vector subbundle of

F on X0, and that the morphism S Ñ F is a bundle morphism on X0; for this, we apply corollary 1.20
of [DPS94] and prove that detpQ˚q Ñ ΛpF˚ is an injective bundle morphism on X0, where p is the rank of
Q. This corresponds to a global section τ P H0pX, pΛpF˚q˚˚b detpQ˚˚qq since X rX0 is of codimension at
least 3.

There exists a modi�cation σ : X̃ Ñ X such that σ˚F{Tors and σ˚F˚{Tors are vector bundles. We can
assume that σ is obtained as a composition of smooth centres in X rX0. We can view σ˚τ as an element
in H0pX̃, σ˚rpΛpF˚q˚˚ b detpQ˚˚qsq as well as an element in H0pX̃,Λppσ˚F{Torsq˚ b σ˚ detpQ˚˚qq under
natural morphism

σ˚rpΛpF˚q˚˚s Ñ rσ˚pΛpF˚qs˚˚ Ñ Λppσ˚F{Torsq˚.

More precisely, the natural morphism σ˚F˚ Ñ pσ˚Fq˚ induces

σ˚pΛpF˚q “ Λpσ˚pF˚q Ñ Λpσ˚pFq˚ “ Λppσ˚F{Torsq˚.

By taking the bidual, we obtain the second morphism.
Let us observe that Λpσ˚F{Tors is nef, and also that detpQ˚q is nef since c1pQq “ 0. Thus σ˚τ cannot

vanish at any point of X̃ by Prop. 1.16 of [DPS94]. Thus τ does not vanish on X0. This concludes the
proof of the claim. In particular, Q is a vector bundle over X0.

Let s be the rank of S, which must be strictly smaller than the rank r of F . We consider the surjective
bundle morphism

Λr´s`1F b det Q˚ Ñ S
on X0. Since F is nef and det Q˚ is numerical trivial, we infer that S is a strongly psef re�exive sheaf
by Proposition 5.3.5. Thus over some bimeromorphic model of X, the pull back of S is a strongly psef
vector bundle modulo torsion with vanishing �rst Chern class by Lemma 5.29. By Theorem 5.48, over the
bimeromorphic model, the vector bundle is in fact nef. By the induction hypothesis, S is in fact a nef vector
bundle over X.

Q is a priori not necessarily a re�exive sheaf, but the double dual Q˚˚ is. To conclude that Q˚˚ is in fact
a vector bundle by the result of Bando-Siu recalled at the beginning, it is enough to prove that c2pQ˚˚q “ 0.
Since Q is locally free on X0 and the codimension of X r X0 is at least 3, Q coincides with Q˚˚ on X0.
Let i be the inclusion X0 Ñ X. Since the restriction map i˚ : H4pX,Rq Ñ H4pX0,Rq is an isomorphism by
Lemma 5.18 and

i˚c2pQq “ c2pQ|X0
q “ c2pQ˚˚|X0

q “ i˚c2pQ˚˚q,
we infer that c2pQq “ c2pQ˚˚q. Let π : Ppσ˚Q{Torsq Ñ X be the projectivization of the nef vector bundle
σ˚Q{Tors, viewed as a quotient of the nef vector bundle σ˚F{Tors. By the de�nition of Segre classes, we
have

π˚pc1pOPpσ˚Q{Torsqp1qq
r´s`1q “ s2pσ

˚Q{Torsq “ c21pσ
˚Q{Torsq ´ c2pσ

˚Q{Torsq.
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In particular,
ż

X̃

s2pσ
˚Q{Torsq ^ ω̃n´2 “

ż

Ppσ˚Q{Torsq

c1pOPpσ˚Q{Torsqp1qq
r´s`1 ^ ω̃n´2 ě 0,

as σ˚Q{Tors is a nef vector bundle and thus s2pσ
˚Q{Torsq “ ´c2pσ

˚Q{Torsq is a positive class, containing
a closed positive p2, 2q-current. Here ω̃ is any Kähler form on X̃. Since c1pσ˚Q{Torsq “ 0 by Lemma 5.29,
we deduce that

ż

X̃

c2pσ
˚Q{Torsq ^ ω̃n´2 ď 0.

The inequality is valid for any Kähler form on X̃. In particular, we can take a sequence of Kähler metrics
on X̃ converging to π˚ω, and this implies

ż

X

c2pQq ^ ωn´2 “

ż

X̃

c2pσ
˚Q{Torsq ^ π˚ωn´2 ď 0.

Notice that the �rst equality is by Lemma 5.20. The Bogomolov inequality shows that
ż

X

c2pQ˚˚q ^ ωn´2 “ 0.

Q˚˚ is thus in fact a vector bundle by the result of Bando-Siu.
The extension class obtained from the exact sequence on X0 can be extended to the extension class

(de�ned on X) of S and Q˚˚ by lemma 5.15. The extended class by construction determines a vector bundle
whose restriction to X0 is isomorphic to F . Since F is a re�exive sheaf, in fact we have an isomorphism on
X. This proves that F is in fact a vector bundle. By remark 5.22, it is a nef vector bundle. �

Remark 5.31. It has been observed by Demailly, that the previous proposition can be derived from
Theorem 1.18 of [DPS94] (cf. also [Deng16]). Let us recall the statement of this theorem. Let E be a
numerically �at vector bundle over a compact Kähler manifold pX,ωq. Then there exists a �ltration of E

0 “ E0 Ă E1 Ă ¨ ¨ ¨ Ă Ep “ E

by vector subbundles such that the quotients Ek{Ek´1 are hermitian �at, i.e. given by unitary representations
π1pXq Ñ Uprkq.

Since F is a nef re�exive sheaf with c1pFq “ 0, there exists a modi�cation such that σ : X̃ Ñ X such
that σ˚F{Tors is a nef vector bundle with vanishing �rst Chern class by lemma 5.29. By the above theorem,
there exists a �ltration of σ˚F{Tors

0 “ Ẽ0 Ă Ẽ1 Ă ¨ ¨ ¨ Ă Ẽp “ σ˚F{Tors

by vector bundles over X̃ such that Ẽk{Ẽk´1 are hermitian �at.
We claim that Ẽk{Ẽk´1 “ σ˚pEk{Ek´1q for some vector bundle Ek{Ek´1 over X for each k. (For the

moment, Ek{Ek´1 is just a notion, not the quotient of two vector bundles over X. But it is the case which
is proven in the next paragraph.) The reason is as follows. σ˚ : π1pX̃q Ñ π1pXq is an isomorphism since
we can assume that σ is composition of a sequence of blows-up of smooth centres and as a CW complex a
blow-up of smooth center changes skeleton of (real) codimension at least 2 which preserves the fundamental
group. Thus we have unitary representations π1pXq Ñ Uprkq which proves the claim.

Let A be the analytic set such that F is locally free over XrA. Since F is re�exive, A is of codimension
at least 3 inX. Without loss of generality, we can assume that σ induces an isomorphism between σ´1pXrAq
and X rA. Thus we have extension of vector bundles over X rA

0 Ñ Ek´1|XrA Ñ Ek|XrA Ñ Ek´1{Ek´1|XrA Ñ 0

where Ek are a priori vector bundles de�ned over X r A. By lemma 5.15, the extensions extend across A.
Thus there exist vector bundles Ek over X which are the extensions of Ek´1 and Ek{Ek´1.

By construction, we have isomorphism F |XrA – Ep|XrA. Since F is re�exive, we have isomorphism
F – Ep over X. In particular, F is a vector bundle.

Remark 5.32. In the proof, we have shown that c2pFq “ c2pF˚˚q P H4pX,Rq from the fact that
F “ F˚˚ outside an analytic set of codimension at least 3. In fact, the equality also holds in Bott-Chern
cohomology, and the latter equality induces the previous one by the natural morphism from the Bott-Chern
cohomology to the de Rham cohomology.

The proof is an easy consequence of the following diagram, using the same notation as in the proof.

H2,2
BCpX,Cq ÝÑ H2,2

BCpX rA,Cq
§

§

đ

§

§

đ

H4pX,Cq –
ÝÑH4pX rA,Cq.
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By the Hodge decomposition theorem, the left vertical arrow is an injection, and this implies that the map
H2,2
BCpX,Cq Ñ H2,2

BCpX rA,Cq is also injective.

Remark 5.33. The di�culty to extend the above proof to the case where F is a strongly psef re�exive
sheaf is to prove that

ż

Ppσ˚F{Torsq

c1pOPpσ˚F{Torsqp1qq
r`1 ^ ω̃n´2 ě 0

on some bimeromorphic model ofX. In the nef case, with small loss of positivity, the cohomology class can be
represented by smooth forms. Thus the above inequality is trivial when taking the small loss tending to 0. In
the strongly psef case, the cohomology class can be represented by a current with analytic singularities only
at the expense of some loss of positivity. However a wedge product of arbitrary currents is not always well
de�ned. In the next section, we make a �digression� and discuss what we call Segre currents to investigate
the strongly psef case.

5.4. Segre forms

In this section, we are interested in the following problem. Assume that E is a holomorphic vector
bundle of rank r over a compact Kähler manifold pX,ωq. Can one �nd a pk, kq-closed positive current in
the Segre class skpEq :“ π˚pc1pOPpEqp1qq

k`r´1q? We have to point out that a similar construction is made
in [LRRS18], based on Demailly's improvement ( [Dem92a]) of the Bedford-Taylor theory ( [BT82]) of
Monge-Ampère operators. The authors de�ne the corresponding current as a limit of smooth forms induced
from local smooth regularizations of the metric given in [Rau15]. Compared to theirs, our construction has
the advantage that we de�ne the relevant current as a limit of currents de�ned by Monge-Ampère operators
without necessarily employing a regularizing sequence. In that way, we are still in a position to estimate the
Lelong number of the limiting Segre current in terms by the Lelong number of the approximating sequence
of weights. On the other hand, in the case of [LRRS18], the approximation is given by smooth forms,
hence the Lelong number of the approximation forms is identically zero, and one does not a priori obtain any
information on the Lelong number of the limiting current. The Lelong number estimate will be necessary in
the next section.

In particular, starting from a singular metric with analytic singularities on OPpEqp1q, the construction
yields a singular metric on detpEq which is unique up to a constant and, as a consequence, the curvature of
the induced metric of detpEq is uniquely determined by the curvature of the metric on OPpEqp1q.

To start with, we state some results of pluripotential theory. Some of this material is not essentially
needed in the construction, but it provides intuition for a few arguments. The following statement is an
improvement by Demailly of the Bedford-Taylor theory ( [BT82]) of Monge-Ampère operators.

Lemma 5.34 (Proposition 10.2 [Dem93]).
Let ψ be a plurisubharmonic function on a pnon necessarily compact q complex manifold X such that ψ is
locally bounded on X r A, where A is an analytic subset of X of codimension ě p ` 1 at each point. Let θ
be a closed positive current of bidimension pp, pq.

Then θ ^ iBBψ can be de�ned in such a way that θ ^ iBBψ “ limνÑ8 θ ^ iBBψν in the weak topology of
currents, for any decreasing sequence pψνqνě1 of plurisubharmonic functions converging to ψ. Moreover, at
every point x P X we have

ν
´

θ ^
i

π
BBψ, x

¯

ě νpθ, xqνpψ, xq.

Proposition 5.4.1. Let T be a pk, kq-closed positive current in the cohomology class α, over a compact
Kähler manifold pX,ωq. Let U be a coordinate open set of X such that on U ,

C´1ω ď
i

2π
BB|z|2 ď Cω.

Then for any r0 ą 0 and for any x P U with dpx, BUq ě r0 with respect to the Euclidean metric in the
coordinate chart, we have for r ď r0

1

r2n´2k

ż

Bpx,rq

T ^ ωn´k ď
C2n´2k

r2n´2k
0

pα ¨ tωun´rq.

Here pα ¨ tωun´rq is the intersection product of cohomology classes.

Proof. It is enough to prove that

1

r2n´2k

ż

Bpx,rq

T ^
´ i

2π
BB|z|2

¯n´k

ď
Cn´k

r2n´2k
0

pα ¨ tωun´rq.
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By a basic observation of Lelong in [Lel68], the left hand term is a increasing function with respect to r.
Thus we have

1

r2n´2k

ż

Bpx,rq

T ^
´ i

2π
BB|z|2

¯n´k

ď
1

r2n´2k
0

ż

Bpx,r0q

T ^
´ i

2π
BB|z|2

¯n´k

.

However, the right hand term is at most

1

r2n´2k
0

ż

Bpx,r0q

T ^ pCωqn´k ď
C2n´2k

r2n´2k
0

pα ¨ tωun´rq

since T is a positive current. �

We will need the following standard local parametrization theorem for analytic sets.

Lemma 5.35 (local parametrization theorem, cf. e.g. Theorem 4.19, Chap. II [Dem12b]).
Let I be an ideal in On, let A “ V pIq and Aj be the irreducible components of A whose dimension is equal
to the dimension of A. For every j and d “ dj “ dimAj, there exists a generic choice of coordinates

pz1, z2q “ pz1, ¨ ¨ ¨ , zd; zd`1, ¨ ¨ ¨ , znq P ∆1 ˆ∆2

such that the restriction of the canonical projection to the �rst component πj : Aj X p∆
1 ˆ ∆2q Ñ ∆1 is a

�nite and proper rami�ed cover, which moreover yields an étale cover Aj X π´1p∆1 r Sq Ñ ∆1 r S, where S
is an analytic subset in ∆1.

Lemma 5.36. Let A be a compact analytic subset of a complex manifold M . Assume that dimCA “ d
and dimCM “ n. Let pWνq be relatively compact coordinate charts which form a �nite open covering of A.
Without loss of generality, assume that Wν is taken to be relatively compact in some larger coordinate chart,
and is the coordinate chart provided by the local parametrization theorem. Then there exists C ą 0 such that
for r ą 0 small enough, the open neighbourhood

Ť

νtx PWν , dpA, xq ă ru of A can be covered by at most C
r2d

balls of radius r. Here the distance is calculated by the coordinate distance in each coordinate chart.

Proof. It is enough to prove this for each Wν . We verify that the volume of the open set tx P
Wν , dpA, xq ă ru has an upper bound Cr2n´2d for r small enough. We take in each local tubular neigh-
bourhood a maximal family of points with mutual coordinate distance ě r. For r small enough, every point
is at distance ď r to at least one of the centres, otherwise the family of points would not be maximal. In
particular, balls of radius 2r centered at these points cover the tubular neighbourhood. On the other hand,
balls of radius r{2 centered at these points are disjoint. Therefore, the number of such balls Nν satis�es the
relation

cnNν

´r

2

¯2n

ď Volptx PWν , dpA, xq ă ruq ď Cr2n´2d.

Here cn is the volume of the unit ball in Cn. The lemma follows from the inequality.
The proof of the volume estimate for the tubular neighbourhood is obtained by induction on the dimen-

sion of the analytic set A. When d “ 0, i.e. when A consists of a �nite set, the estimate is trivial. Assume
that we have already proven the result for all analytic sets of dimension d ď dimCpAq ´ 1. Then, we use
the local parametrization theorem and the fact that AX π´1pSq is a proper analytic set of AXWν . By the
induction hypothesis, we have

Volptx PWν , dpAX π
´1pSq, xq ă ruq ď Cr2n´2d`2,

and a similar estimate holds for the open set of points with distance ă r to the irreducible components of A
of dimension ď d´1. On the other hand, AXπ´1p∆1rSq is contained in the union of Aj`

řn
i“d`1 Dp0, rqei

where ei is the standard basis of Cn and Dp0, rq is the disc in C centered at 0 of radius r. Here Aj are the
irreducible components of dimension d of A intersecting π´1p∆1 r Sq. Each open set Aj `

řn
i“d`1 Dp0, rqei

has volume equal to cpn, dqVolpAjqr
2n´2d where cpn, dq is the volume of the unit disc in Cn´d. This is because

that π induces a biholomorphism between Aj`
řn
i“d`1 Dp0, rqei and ∆1ˆ0`

řn
i“d`1 Dp0, rqei which preserves

the Lebesgue volume form. On the other hand the tubular neighbourhood of A tdpx,Aq ă ru is included
in the union of the union of Aj `

řn
i“d`1 Dp0, rqei, the open set of points whose distance to the dimension

ď d ´ 1 irreducible components of A ă r and tx P Wν , dpA X π´1pSq, xq ă ru from which the estimate
follows. �

Proposition 5.4.2. Let T be a pk, kq-closed positive current in the cohomology class α, over a compact
Kähler manifold pX,ωq. Let A be an analytic subset of X of dimension d. There exists a sequence of open
neighbourhoods Uprq of A pindependent of T q such that

Ş

rą0 Uprq “ A and the volume of Uprq is at most
Cr2n´2d, with a constant C independent of T . Moreover there exists C 1 independent of T such that

ż

Uprq

T ^ ωn´k ď C 1r2n´2k´2d.
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Here C 1 depends on α, pX,ωq and A.

Proof. This is a direct consequence of Proposition 5.4.1 and Lemma 5.36. �

Remark that in particular, if A is codimension at least k ` 1, the contribution of mass of T on Uprq
vanishes asymptotically as r Ñ 0, and the above Proposition holds uniformly for all positive currents T
in the cohomology class α. The codimension condition is optimal since that the mass of the current rAs
associated with a k-dimensional analytic set A does not vanish in the limit.

Now we return to the construction of positive currents in the Segre classes. Observe that a codimension
condition is needed to ensure the existence of such closed positive currents; this is shown by the following
easy example.

Example 5.37. Let X be the blow up of P2 at some point and let D be the exceptional divisor. Consider
the vector bundle E :“ OpDq‘r of rank r ě 2 over X. Corollary 5.13 shows that E is a strongly psef vector
bundle as a direct sum of strongly psef line bundles.

An equivalent de�nition of total Segre class (i.e.
ř

k skpEq) is the inverse of the total Chern class.
Remark that for any vector bundles E,F , the total Chern class satis�es the axiom cpE ‘ F q “ cpEqcpF q.
Thus the same relation holds for the total Segre class since the cohomological ring is commutative. In
particular, spEq “ spOpDqqr with s2pEq “

`

r
2

˘

pc1pOpDqq2q “ ´
`

r
2

˘

. Thus there exists no closed positive
current in the class s2pEq.

For the convenience of the reader, we recall the de�nition of a Finsler metric on a vector bundle, as
introduced in [Kob75] (cf. also [Dem99]).

Definition 5.38. A (positive de�nite) Finsler metric on a holomorphic vector bundle E is a positive
complex homogeneous function

ξ Ñ }ξ}x

de�ned on each �bre Ex, that is, such that }λξ}x “ |λ|}ξ}x for each λ P C and ξ P Ex, and }ξ}x ą 0 for
ξ ‰ 0.

We say that the metric is smooth if it is smooth outside of the zero section on the total space of E.
Observe that a Finsler metric on a line bundle L is the same as a Hermitian metric on L. A Finsler metric
on E˚ can also be viewed as a Hermitian metric h˚ on the line bundle OPpEqp´1q (as the total space of
OPpEqp´1q coincides with the blow-up of E˚ along the zero section). In particular, OPpEqp1q carries a smooth
Hermitian metric of positive Chern curvature form if and only if E carries a smooth Finsler metric whose
logarithmic indicatrix de�ned by

χpx, ξq :“ log}ξ}x

is plurisubharmonic on the total space. Let us observe that the logarithmic indicatrix has a pole along the
zero section and can be extended as a global psh function on the total space, even though it is a priori psh
only outside of the zero section.

Assume that we have a smooth Hermitian metric on pE, hq rather than just a Finsler metric on E, and
let us consider the corresponding Hermitian metric on OPpEqp1q. We have the following calculation, which
can be seen as a direct consequence of intersection theory, and is still valid on the level of forms without
passing to cohomology classes: for every k P N

π˚

ˆ

i

2π
ΘpOPpEqp1q, hq

˙r`k

“ skpE, hq.

Note that the Segre classes can be written in terms of Chern classes and the Chern classes can be represented
by the Chern forms derived from the curvature tensor. For our application, we only detail the calculation
for the case k “ 1 that we need. For the general case, we refer for example to the papers [Div16], [Gul12]
and [Mou04]. The author thanks Simone Diverio for the references.

Lemma 5.39. Let E be a holomorphic vector bundle of rank r on a pnon necessarily compact q complex
manifold X. Let π be the canonical projection PpEq Ñ X. Assume that E is endowed with a smooth
Hermitian metric h, and consider the induced metrics on OPpEqp1q and detpEq pwhich we still denote by hq.
Then

π˚

ˆ

i

2π
ΘpOPpEqp1q, hq

˙r

“
i

2π
ΘpdetpEq,detphqq

where Θ means the curvature tensor.
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Proof. To start with, we recall formula (15.15) of Chap. V in [Dem12b], expressing the curvature of
Op1q for the projectivisation of a vector bundle. Let peλq be a normal coordinate frame of E at x0 P X and
let

iΘpEqx0
“
ÿ

cjkλνidzj ^ dzk b e
˚
λ b eν

be the curvature tensor of E. At any point a P PpEq represented by a vector
ř

λ aλe
˚
λ P E

˚
x0

of norm 1, the
curvature of OPpEqp1q is

ΘpOPpEqp1qqa “
ÿ

cjkνλaλaνdzj ^ dzk `
ÿ

1ďλďr´1

dξλ ^ dξλ,

where pξλq are the coordinates near a on PpEq, induced by unitary coordinates of the hyperplane aK Ă E˚x0
.

In other words, if PpE|U q is locally isomorphic to U ˆ Pr´1 with coordinates pz, rξsq, we have a canonical
projection pr2 : PpEq Ñ Pr´1 and the curvature at pz, rξsq is given by

i

2π
ΘpOPpEqp1qqpz, rξsq “ ´

x i2πΘE˚ξ, ξyh

xξ, ξyh
` pr˚2ωFS

where ωFS is the Fubini-Study metric on Pr´1. Therefore we have

π˚

ˆ

i

2π
ΘpOPpEqp1q, hq

˙r

“ ´r

ż

Pr´1

x i2πΘE˚ξ, ξyh

xξ, ξyh
^ ωr´1

FS .

Observe that Pr´1 – S2r´1{S1 by the Hopf �bration. The Fubini-Study metric is the metric induced on the
quotient Pr´1 by the restriction of the standard Euclidean metric to the unit hypersphere. We denote by dσ
the volume form of the standard Euclidean metric restricted to that sphere. Then we have

π˚

ˆ

i

2π
ΘpOPpEqp1q, hq

˙r

“ ´r

ż

Sr´1

x
i

2π
ΘE˚ξ, ξyh ^ dσ.

Note that for a Hermitian form Qpξ, ξq “
ř

λi|ξi|
2 we have

ż

Sr´1

Qpξ, ξqdσpξq “
1

r
trpQq “

1

r

ÿ

λi,

since
ş

Sr´1 |ξi|
2dσpξq “ 1

r by symmetry. Thus we get

π˚

ˆ

i

2π
ΘpOPpEqp1q, hq

˙r

“ ´trξx
i

2π
ΘE˚ξ, ξyh “

i

2π
ΘpdetpEq, hq.

�

As a direct consequence of the above formula, if h is a smooth semi-positive metric on OPpEqp1q, the
induced metric on detpEq is also semi-positive. This is the positive form what we want. More generally, the
forms π˚

`

i
2πΘpOPpEqp1q, hq

˘r`k
“ skpE, hq are smooth positive currents in the k´th Segre class. Hence if h

is a smooth semi-positive metric on OPpEqp1q, we can �nd positive forms in the Segre classes, which we will
call Segre forms (or Segre currents) in the sequel.

In the case where the metric is singular, the construction is more complicated. The di�culty is that
Monge-Ampère operators are not always well-de�ned for arbitrary closed positive currents.

In general, for a strongly psef vector bundle, in order to get a singular metric with analytic singularities,
we have to allow a bounded negative part. Accordingly, we have to work in a more general setting. Let E be
a vector bundle of rank r on a compact Kähler manifold pX,ωq, and let T be a closed positive p1, 1q-current
on PpEq, in the cohomology class of a �xed closed smooth form α. Notice that that the restriction of the
cohomology class tαu is constant on any �bre of π : PpEq Ñ X. A typical case is tαu “ c1pOPpEqp1qq`Cπ

˚ω
for some C ě 0. Write

T “ α` iBBϕ.

Assume that ϕ is smooth over PpEq r A where A is an analytic set in PpEq such that A “ π´1pπpAqq and
πpAq is of codimension at least k in X. We wish to de�ne a current π˚T r´1`k. A priori, this Monge-Ampère
operator is not well de�ned by just invoking the codimension condition, since the exponent r´1`k is larger
than the codimension k. This problem can be overcome by de�ning the desired current as a weak limit of a
sequence of less singular currents, in such a way that the limit is still unique.

Let ψ be a quasi-psh function on PpEq that is smooth outside an analytic set A1 such that A1 is of
dimension at most n´k´1. In other words, the codimension of A1 in PpEq is at least k`r. This implies that
the codimension of πpA1q in X is at least k`1. Then the Monge-Ampère operator pα`iBBlogpeϕ`δeψqqr´1`k

is well de�ned for every δ ą 0, as a consequence of Demailly's techniques [Dem92a]. Thus, by a weak
compactness argument, the sequence of currents

π˚pα` iBBlogpeϕ ` δνe
ψqqr´1`k
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which all belong to the cohomology class π˚αr´1`k, has a weak limit as δν Ñ 0 for some subsequence.
Observe that if we take ψ “ 0, for any δ ą 0, the function logpeϕ ` δq is a bounded quasi-psh function. In
that case the wedge product

π˚pα` iBBlogpeϕ ` δqqr´1`k

is already well de�ned as a current by the work of [BT82]. However, we want the �exibility of choosing a
non constant potential ψ in order to get quasi-psh functions with isolated singularities that can be used to
get Lelong number estimates. Note that since all currents involved are closed, the limit current is still closed.

Now, we show that the limit is uniquely de�ned. The intuition is as follows. As we have observed at
the end of Proposition 5.4.2, the family of currents indexed by δ has a contribution of mass 0 along the
singular part of πpA1q, and we can therefore guess that the limit should be independent of the choice of ψ.
(Nevertheless, without passing to the limit, each current may still have a positive Lelong number at some
point of πpA1q.)

Lemma 5.40. The limit current is independent of the choice of the smooth representative α, as well as
of the choice of ψ.

Proof. Fix a sequence δν tending to 0 such that the weak limit corresponding to α and ψ “ 0 exists.
Up to taking a subsequence which preserves the weak limit, we can assume in the following that the same
sequence δν gives a weak limit for di�erent choice of α and ψ. We will prove that the weak limits are the
same, although a priori they might be di�erent.

Let α̃, α be two representatives in the same cohomology class. Then there exists a smooth function f
on PpEq such that

α̃ “ α` iBBf.

Let ϕ̃ be the quasi-psh function such that T “ α̃ ` iBBϕ̃. Without loss of generality, we can assume that
ϕ̃ “ ϕ´ f . Thus we have

π˚pα̃` iBBlogpeϕ̃ ` δνe
ψqqr´1`k “ π˚pα` iBBlogpeϕ ` δνe

ψ`f qqr´1`k.

Thus to prove that the limit is independent of the choice of α, it is enough to prove that the limit is
independent of ψ, and this is what the proof will be devoted to from now on. On the regular part X r
pπpAq Y πpA1qq, the limit current is equal to

π˚pα` iBBϕq
r´1`k

by the continuity of Monge-Ampère operators with respect to bounded decreasing sequences and the fact
that the currents are smooth on the pre-image of Xr pπpAqYπpA1qq. Thus the limit currents corresponding
to di�erent choices of ψ coincide on the regular part. Now, consider a Kähler form ω̃ on PpEq satisfying the
conditions

α ě ´ω̃{2, iBBψ ě ´ω̃{2.

We can assume that the restriction of ω̃ over all the �bres Pr´1 is a �xed cohomology class. For example,
we can take

ω̃ “ Cπ˚ω ` c1pOPpEqp1q, h8q

for some C " 0 and for a smooth metric h8 on OPpEqp1q induced by a Hermitian metric on E. For any δ ą 0
we have

p˚q

α` iBBlogpeϕ ` δeψq

ě α`
eϕ

eϕ ` δeψ
piBBϕq `

δeψ

eϕ ` δeψ
piBBψq `

δeϕ`ψ

peϕ ` δeψq2
iBpψ ´ ϕq ^ Bpψ ´ ϕq ě ´ω̃

in the sense of currents, and the lower bound is independent of δ.
By adding and subtracting ω̃ and using the Newton binomial formula, we see that the current pα `

iBBlogpeϕ ` δeψqqr`k´1 can be written as a di�erence of two closed positive currents equal to summations
of terms

pα` iBBlogpeϕ ` δeψq ` ω̃qi ^ ω̃j

with i` j “ r` k´ 1. Since the direct image functor transforms closed positive currents into closed positive
currents, π˚pα ` iBBlogpeϕ ` δeψqqr`k´1 can also be written as a di�erence. If we compute the limit as δ
tends to 0 (up to taking some convergent subsequence), the limit current will be a di�erence of two closed
positive currents, in particular, limνÑ8 π˚pα` iBBlogpeϕ ` δνe

ψqqr`k´1 is a normal current.
Denote by T1, T2 the limit currents obtained with di�erent choices of ψ, namely ψ1 and ψ2. Assume

that A1 is the union of the singular loci of ψ1 and ψ2. By assumption, πpA1q is of codimension at least k` 1
in X. Then T1 ´ T2 is a normal pk, kq-current supported in πpAq Y πpA1q. If the codimension of πpAq in X
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is at least k ` 1, standard support theorems imply that T1 “ T2. If the codimension of πpAq in X is k, the
support theorem yields

T1 ´ T2 “
ÿ

ν

cνrZνs

where Zν are the codimension k irreducible components of πpAq and cν P R, and there exists no components
of πpA1q as its codimension is higher. We now check that the limit current is independent of the choice of ψ
by a Lelong number calculation, i.e. by showing that cν “ 0.

For any x P Zν0,reg r p
Ť

ν‰ν0
Zν Y πpA1qq, there exists a coordinate chart V such that x “ 0, V Ť

X r πpA1q, and Zν0 “ tz1 “ ¨ ¨ ¨ “ zk “ 0u locally. Take a cut-o� function θ supported in V and de�ne

T1,δ “ α` iBBlogpeϕ ` δeψ1q,

T2,δ “ α` iBBlogpeϕ ` δeψ2q.

It is enough to prove that

lim
δÑ0

ż

X

´

π˚T
k`r´1
1,δ ´ π˚T

k`r´1
2,δ

¯

^ θωn´k “ 0

which will imply that
ż

X

pT1 ´ T2q ^ θω
n´k “ 0.

By a direct calculation, we have that

T k`r´1
1,δ ´ T k`r´1

2,δ “

˜

k`r´1
ÿ

j“0

T j1,δ ^ T
r`k´1´j
2,δ

¸

^ pT1,δ ´ T2,δq

“

˜

k`r´1
ÿ

j“0

T j1,δ ^ T
r`k´1´j
2,δ

¸

^ iBBlog

ˆ

eϕ ` δeψ1

eϕ ` δeψ2

˙

.

An integration by parts gives
ż

X

`

π˚T
k`r´1
1,δ ´ π˚T

k`r´1
2,δ

˘

^ θωn´k “

ż

PpEq
iBBθ ^ ωn´k ^

˜

r`k´1
ÿ

j“0

T j1,δ ^ T
r`k´1´j
2,δ

¸

log

ˆ

eϕ ` δeψ1

eϕ ` δeψ2

˙

.

De�ne

Fδ :“ log

ˆ

eϕ ` δeψ1

eϕ ` δeψ2

˙

,

which is a uniformly bounded function on V since V̄ is outside of the image of the singular locus of ψ1, ψ2

under π. Note also that the bound is independent of δ. Moreover, Fδ tends to 0 almost everywhere as δ Ñ 0.
The convergence is locally uniform outside of the pole set A of ϕ.

De�ne Zη :“ tz P V, dpz, πpAqq ď ηu with respect to the Kähler metric ω. The volume of Zη with respect
to ω tends to 0 as η Ñ 0 by the assumption that V X πpAq is a smooth submanifold in V . Now we separate
the estimate in di�erent terms

ż

X

´

π˚T
k`r´1
1,δ ´ π˚T

k`r´1
2,δ

¯

^ θωn´k “

ż

π´1pZηq

iBBθ ^ ωn´k ^

˜

r`k´1
ÿ

j“0

T j1,δ ^ T
r`k´1´j
2,δ

¸

Fδ

`

ż

π´1pVrZηq
iBBθ ^ ωn´k ^

˜

r`k´1
ÿ

j“0

T j1,δ ^ T
r`k´1´j
2,δ

¸

Fδ,

and we use the Fubini theorem to perform a double integration with respect to the base direction V r Zη
(resp. Zη) and the �bration direction Pr´1, for V su�ciently small. The �rst term in the integration is
bounded by

Cωn´k`1 ^

˜

r`k´1
ÿ

j“0

pT1,δ ` ω̃q
j ^ pT2,δ ` ω̃q

r`k´1´j

¸

with C independent of δ since Fδ is uniformly bounded on V̄ and iBBθ is bounded by Cω for C large enough.
The currents T1,δ and T2,δ are not smooth on Zη, thus some attention has to be paid to apply the Fubini

theorem. Let Upηq (resp. U 1pηq) be the open neighbourhoods of A (resp. A1) in PpEq given by Proposition
5.4.2. Note that T1,δ and T2,δ are smooth near the boundary of Upηq Y U 1pηq. Without loss of generality,
we can assume that π´1pZηq is contained in Upηq r U 1pηq. Take smooth currents T̃i,δ on Upηq Y U 1pηq
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cohomologous to Ti,δ, which coincide with Ti,δ (i “ 1, 2) near the boundary of Upηq Y U 1pηq. By Stokes'
theorem,

ż

UpηqYU 1pηq

ωn´k`1 ^

˜

r`k´1
ÿ

j“0

pT1,δ ` ω̃q
j ^ pT2,δ ` ω̃q

r`k´1´j

¸

“

ż

UpηqYU 1pηq

ωn´k`1 ^

˜

r`k´1
ÿ

j“0

pT̃1,δ ` ω̃q
j ^ pT̃2,δ ` ω̃q

r`k´1´j

¸

.

Therefore we can apply the Fubini theorem in the right hand side since all terms are smooth. The integral
on π´1pZηq is bounded from above by the integral of the same term on UpηqYU 1pηq by the inclusion relation
π´1pZηq Ă Upηq Y U 1pηq.

We �rst perform the integration along the �bres Pr´1. The integration of
řr`k´1
j“0 pT̃1,δ ` ω̃qj ^ pT̃2,δ `

ω̃qr`k´1´j along the �bre direction is a cohomological constant since we assume that the restriction of
cohomology class of α along each �bres is a �xed cohomology class on Pr´1. Thus the integral on UpηqYU 1pηq
is bounded from above by C

ş

UpηqYU 1pηq
ωn, for some C independent of δ. Observe that the constant is the

same as the supremum of |Fδ| on V (independent of δ), since for η small enough V X U 1pηq “ H.
The second term appearing in the integral is bounded by

sup
π´1pXrZηq

|Fδ| sup
X
|iBBθ|ωω

n´k`1 ^

˜

r`k´1
ÿ

j“0

pT1,δ ` ω̃q
j ^ pT2,δ ` ω̃q

r`k´1´j

¸

.

On V r Zη, the currents T1,δ and T2,δ are smooth, thus the Fubini theorem applies. We �rst integrate
along Pr´1. The integration of

řr`k´1
j“0 ppT1,δ ` ω̃qj ^ pT2,δ ` ω̃qr`k´1´jq along the �bre direction is a

cohomological constant as above. Thus the second term obtained after integrating is bounded from above
by C supπ´1pXrZηq |Fδ|, for some C independent of δ.

For every ε1 ą 0, there exist η such that C
ş

UpηqXU 1pηq
ωn ă ε1

2 . There also exists δ0 such that

C supXrZη |Fδ| ă
ε1

2 for every δ ď δ0. Thus the two parts of estimate (integration on Upηq Y U 1pηq and on

π´1pV rZηq) are both bounded from above by ε1

2 for δ ď δ0. This concludes the proof that the limit current
is independent the choice of ψ.

�

In what follows we show that the weak limit is also independent of the subsequence δν if the weight
function ϕ has analytic singularities. It seems that the independence of the weak limit does not hold in
general if we only require that ϕ is smooth outside an analytic set of su�cient high codimension. However
some special cases can be easily checked.

Example 5.41. Assume that there exists some C2 ě C1 ą 0 such that

C1δ
1
ν ď δν ď C2δ

1
ν

up to taking some subsequence but with the same limit currents. Then the function

log

ˆ

eϕ ` δνe
ψ

eϕ ` δ1νe
ψ

˙

is uniform bounded on PpEq (independently of ν). It is locally uniformly convergent to 0 on π´1pX r Zηq.
The same arguments as above can be used to achieve the proof.

Another easy case is when the projection of the singular part of ϕ is of codimension at least k ` 1. In
this case, di�erent choices of subsequence δν will have the same closed positive limit outside an analytic set
of codimension at least k ` 1. By standard support theorems, they have to coincide over X.

The case of potentials with analytic singularities comes from the following observation of Demailly.

Proposition 5.4.3. Let ϕ be a quasi-psh function with analytic singularities over on a pconnectedq
complex n-dimensional manifold X, and u P C8pXq. Then for any exponent p p1 ď p ď nq, the asymptotic
limit of Monge-Ampère operator limδÑ0piBBlogpeϕ ` δeuqqp is always well de�ned as a current pbut not
necessarily positive, even when iBBϕ ě 0, and the limit may depend on uq.

Proof. By writing logpeϕ` δeuq “ logpeϕ´u` δq ` u and using a binomial expansion, it is su�cient to
consider the case u “ 0, after replacing ϕ with ϕ ´ u. Let us now consider the divisorial case, i.e., assume
that X “ Cn and that ϕ is of the form ϕ “ log|f |2`ψ for some holomorphic function f “

śm
i“1 z

mi
i P OpXq

and ψ P C8pXq. We can de�ne h “ eψ a smooth Hermitian metric on L :“ OX . We denote by ∇h the
associated Chern connection.
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Then, for every δ ą 0, we have iBBlogpeϕ ` δq “ iBBlogp|f |2h ` δq which converge to iBBϕ as δ Ñ 0`.
We will de�ne the Monge-Ampère operator piBBϕqp as the limit of

`

iBBlogp|f |2h ` δq
˘p

as δ Ñ 0`. For every
δ ą 0, we have

iBBlogp|f |2h ` δq “ iB
xf,∇hfy

|f |2h ` δ
“
ix∇hf,∇hfy

|f |2h ` δ
´ i
x∇hf, fy

|f |2h ` δ
^
xf,∇hfy

|f |2h ` δ
` i
xf,∇0,1

h ∇1,0
h fy

|f |2h ` δ

“
δ

p|f |2h ` δq
2
ix∇hf,∇hfy ´

|f |2h
|f |2h ` δ

iΘL,h.

Now, ix∇hf,∇hfy is a p1, 1q-form of rank 1. In particular, its wedge powers of exponents ą 1 are equal to 0.
If we raise to power p, the Newton binomial formula implies

´ i

2π
BBlogp|f |2h ` δq

¯p

“
pδ

p|f |2h ` δq
2

´

|f |2h
|f |2h ` δ

¯p´1 i

2π
x∇hf,∇hfy ^

´

´
i

2π
ΘL,h

¯p´1

`

´

|f |2h
|f |2h ` δ

¯p´

´
i

2π
ΘL,h

¯p

.

The last term converges almost everywhere to p´ i
2πΘL,hq

p, thus it converges weakly to the same limit by
the bounded convergence theorem as δ Ñ 0`. We claim that

p˚q
pδ |f |2p´2

h

p|f |2h ` δq
p`1

i

2π
x∇hf,∇hfy Ñ rZf s

weakly, where rZf s is the current of integration on the zero divisor of f . Terms that depend on h in ∇hf
are equal to fBϕ, and they can be seen to yield zero limits, using the Cauchy-Schwarz formula and the fact
that

pδ |f |2p´2
h

p|f |2h ` δq
p`1

¨ |f |2h ď p

converges to zero almost everywhere. In fact the limit (if it exists) is a positive current as a limit of positive
currents. It will also be closed, since

B

ˆ

pδ |f |2p´2
h

p|f |2h ` δq
p`1

i

2π
x∇hf,∇hfy

˙

“
pδ |f |2p´2

h

p|f |2h ` δq
p`1

1

2π
xf,∇hfy ^ΘL,h

and we can again apply a Cauchy-Schwarz argument to see that the right hand side converges to 0. A priori
the limit current (if it exists) should be supported on |Zf |. However, at any regular point of Zf we can �nd
local holomorphic coordinates in which fpzq “ zm1 , where m is the multiplicity of the irreducible component.
An easy calculation yields

p˚˚q

ż

z1PC

pδ |zm1 |
2p´2

p|zm1 |
2 ` δqp`1

idzm1 ^ dz
m
1

2π
“ m.

Equality p˚˚q can be checked e.g. by putting w “ zm1 , using polar coordinates w “ reiθ and making a change
of variables t “ r2

r2`δ . More generally, if fpzq “
ś

zmii , we have to consider the integration

ż

t|zi|ď1u

pδ |
śm
i“1 z

mi
i |2p´2

p|
śm
i“1 z

mi
i |2 ` δqp`1

idp
śm
i“1 z

mi
i q ^ dp

śm
i“1 z

mi
i q

p2πqn
^ ωn´1

eucl

where ωeucl is the standard p1, 1q-form associated with the euclidean metric on Cn. It is bounded by sums
of integrals of the type

ż

t0ă|zi|ď1,2ďiďnu

pδ ||
śm
i“2 z

mi
i |zm1

1 |2p´2

p||
śm
i“2 z

mi
i |zm1

1 |2 ` δqp`1

i|
śm
i“2 z

mi
i |dpzm1

1 q ^ |
śm
i“2 z

mi
i |dzm1

1

p2πqn
^ ωn´1

eucl .

The integral is �nite by the Fubini theorem and a calculation similar to p˚˚q, putting e.g. w “ |
śm
i“2 z

mi
i |zm1

1 .
In particular, up to taking a subsequence, the limit in formula p˚q exists as δ Ñ 0`. By the support theorem
any limit current is associated to a divisor supported in |Zf |. To show that the weak limit is unique, it is
su�cient to check formula p˚q at a regular point of |Zf | and to show that the coe�cient is unique. This
actually follows from equality p˚˚q.

As a consequence of the above calculations, we �nd
´ i

2π
BBlogp|f |2h ` δq

¯p

Ñ p´1qp´1rZf s ^
´ i

2π
ΘL,h

¯p´1

` p´1qp
´ i

2π
ΘL,h

¯p

.
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For the general case, we apply Hironaka's theorem. There exists a certain modi�cation σ : X̃ Ñ X of X
such that σ˚ϕ is locally of the form considered in the previous case, where f has a simple normal crossing
divisor. Thus the limit

lim
δÑ0`

`

iBBlogpeϕ ` δq
˘p
“ σ˚

´

lim
δÑ0`

`

iBBlogpeσ
˚ϕ ` δq

˘p
¯

exists by the weak continuity of the direct image operator σ˚. By the �ltering property of modi�cations,
one can also see that the above limit is independent of the choice of the modi�cation σ. �

It follows directly from the proposition that the limit current is independent of the subsequence δν if
the weight function ϕ has analytic singularities. It is communicated has communicated to the us by Richard
Lärkäng that a similar calculation has been done in [ABW19] and [Bl19]. The advantage of the construction
made in lemma 5.40 is that under the assumption that the weight function is smooth outside of an analytic
set of su�cient high codimension, one can show that the limit current is positive. This is shown in theorem
5.43 below.

Example 5.42. We describe below a special case of the previous construction. Let E be a strongly psef
vector bundle over a compact Kähler manifold pX,ωq. Let h8 be an arbitrary metric on E. Since OPpEqp1q
is relatively ample with respect to the projection π : PpEq Ñ X, there exists C ą 0 big enough such that

iΘpOPpEqp1q, h8q ` Cπ
˚ω ą 0.

We take the above form as a smooth representative in the class c1pOPpEqp1qq ` Cπ˚tωu. By de�nition of a
strongly psef vector bundle, there exists a singular metric hε with analytic singularities on OPpEqp1q such
that

iΘpOPpEqp1q, hεq ě ´επ
˚ω.

By the above construction, π˚
`

i
2πΘpOPpEqp1q, hεq ` Cπ

˚ω
˘r

is well de�ned for ε small enough by taking that
ψ “ 0. In the construction, all currents are positive currents. In particular, π˚

`

i
2πΘpOPpEqp1q, hεq ` Cπ

˚ω
˘r

is a closed positive current on X for ε small enough. On the other hand,

π˚

ˆ

i

2π
ΘpOPpEqp1q, hεq ` Cπ

˚ω

˙r

“ π˚

ˆ

i

2π
ΘpOPpEqp1q, hεq

˙r

` rπ˚

ˆ

Cπ˚ω ^ p
i

2π
ΘpOPpEqp1q, hεqq

r´1

˙

` ¨ ¨ ¨ .

In the ¨ ¨ ¨ summation, there are terms of the form

π˚

ˆ

π˚ωi ^ p
i

2π
ΘpOPpEqp1q, hεqq

r´i

˙

for i ě 2. By the projection formula, we have

π˚

ˆ

π˚ωi ^ p
i

2π
ΘpOPpEqp1q, hεqq

r´i

˙

“ π˚

ˆ

i

2π
ΘpOPpEqp1q, hεq

˙r´i

^ ωi.

By a degree consideration, for i ě 2, the right hand side is 0 and for i “ 1 it is equal to ω. In conclusion,

π˚

ˆ

i

2π
ΘpOPpEqp1q, hεq ` Cπ

˚ω

˙r

“ π˚

ˆ

i

2π
ΘpOPpEqp1q, hεq

˙r

` Crω ě 0

in the sense of currents. In particular, π˚
`

i
2πΘpOPpEqp1q, hεq

˘r
is a quasi-positive current (i.e. a current

bounded below by a smooth form), belonging to the cohomology class c1pdetpEqq by lemma 5.39.

More generally, we have the following Segre current construction.

Theorem 5.43. (Main technical lemma) Let E be a vector bundle of rank r over a compact Kähler
manifold pX,ωq, and let T be a closed positive p1, 1q-current on PpEq, belonging to the same cohomology
class as a smooth form α. Write

T “ α` iBBϕ.

Assume that ϕ is smooth over PpEqr A, where π : PpEq Ñ X is the projection and A is an analytic set in
PpEq such that A “ π´1pπpAqq and πpAq is of codimension at least k in X. Then there exists a pk, kq-positive
current in the class π˚tαur`k´1.
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Proof. The desired current π˚pT r`k´1q has been constructed, and its uniqueness has been shown in
the previous lemma. It remains to show that π˚pT r`k´1q is positive. It is enough to prove this near an
arbitrary point x P X, since positivity is a local property. There exists a smooth function ψ on PpEq such
that

α` iBBψ ě 0

on an open neighbourhood U of x. Thus over U , for every δ ą 0, we have

α` iBBlogpeϕ ` δeψq ě 0

using p˚q in the previous lemma. Therefore, over U again, we see that

π˚T
r`k´1 “ lim

δÑ0
π˚pα` iBBlogpeϕ ` δeψqqr`k´1

is positive as a limit of positive currents. Let us note that the restriction of the cohomology class tαu is
constant on the �bres of π � this property being automatically true for any smooth proper morphism. �

Remark 5.44. In fact, the above construction would work for any submersion π : X Ñ Y of relative
dimension r´ 1 and any psef cohomology class tαu P H1,1pX,Rq, when X,Y are compact Kähler manifolds.
The construction works for currents with analytic singularities of an adequate codimension, and in this way,
one gets gives a closed positive current in the direct image of wedge powers of tαu.

In the special case of Segre currents, we get

Corollary 5.45. Let E be a strongly psef vector bundle of rank r over a compact Kähler manifold
pX,ωq. Let pOPpEqp1q, hεq be a singular metric with analytic singularities such that

iΘpOPpEqp1q, hεq ě ´επ
˚ω

and the codimension of πpSingphεqq is at least k in X. Then there exists a pk, kq-positive current in the
cohomology class π˚pc1pOPpEqp1qq ` επ

˚tωuqr`k´1. In particular, detpEq is a psef line bundle.

Proof. The �rst part is a direct consequence of theorem 5.43. The second part is consequence of the
fact that when k “ 1 one has

π˚pc1pOPpEqp1qq ` επ
˚tωuqr “ c1pdetpEqq ` εω.

�

Remark 5.46. Let h be a smooth metric on OPpEqp1q (not necessarily coming from a Hermitian metric
on E). We can de�ne an induced singular metric on detpEq in the following non canonical way. Fix an
arbitrary smooth Hermitian metric h8 on PpEq. Then there exists ψ P C8pPpEqq such that h “ h8e

´ψ.
Therefore we have

i

2π
ΘpOPpEqp1q, hq ´

i

2π
ΘpOPpEqp1q, h8q “

i

2π
BBψ.

De�ne a metric on detpEq by detph8qe
´ϕ with

ϕ :“ π˚

˜

ψ
r´1
ÿ

j“0

´ i

2π
ΘpOPpEqp1q, hq

¯j

^

´ i

2π
ΘpOPpEqp1q, h8q

¯r´1´j
¸

.

We have that
i

2π
BBϕ “ π˚

ˆ

´ i

2π
ΘpOPpEqp1q, hq

¯r

´

´ i

2π
ΘpOPpEqp1q, h8q

¯r
˙

.

In other words,
i

2π
ΘpdetpEq,detph8qe

´ϕq “ π˚

´ i

2π
ΘpOPpEqp1q, hq

¯r

.

If h comes from a Hermitian metric of E, we get precisely the same curvature formula as in lemma 5.39.

Remark 5.47. The de�nition in the previous remark is non canonical in the sense that it depends on
the choice of the reference metric h8. This can be seen as follows. In analogy with the Monge-Ampère
functional, we consider the functional

Mh8 : C8pPpEqq Ñ C8pXq

ψ ÞÑ π˚

˜

ψ
r´1
ÿ

j“0

´ i

2π
ΘpOPpEqp1q, h8q `

i

2π
BBψ

¯j

^

´ i

2π
ΘpOPpEqp1q, h8q

¯r´1´j
¸

.

Let ψt be a smooth path in C8pPpEqq. We compute the Fréchet di�erential

dMh8pψtq

dt
“ π˚

˜

9ψt

r´1
ÿ

j“0

´ i

2π
ΘpOPpEqp1q, h8q `

i

2π
BBψt

¯j

^

´ i

2π
ΘpOPpEqp1q, h8q

¯r´1´j
¸

`
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π˚

˜

ψt

r´1
ÿ

j“0

j
i

2π
BB 9ψt ^

´ i

2π
ΘpOPpEqp1q, h8q `

i

2π
BBψt

¯j´1

^

´ i

2π
ΘpOPpEqp1q, h8q

¯r´1´j
¸

which, by an integration by parts, is equal to

π˚

ˆ

9ψt

´ i

2π
ΘpOPpEqp1q, h8q

¯r´1
˙

.

Now let h8, h̃8 be two smooth metrics on E and denote the induced metrics on OPpEqp1q by the same
notation. Let ψt be a smooth path connecting h8 and h̃8. For example we can take ψt such that h8e´ψt “
ht8h̃

1´t
8 . As a consequence of the calculation of Fréchet di�erential, our functional satis�es for any ϕ P

C8pPpEqq the cocycle relation
Mh8pϕ` ψ1q “Mh̃8

pϕq `Mh8pψ1q.

Let us note that Mh8pϕ` ψ1q (resp. Mh̃8
pϕq) is the weight function of the induced metric on detpEq with

respect to the reference metric h8 (resp. h̃8), associated with the weight function ϕ`ψ1 (resp. ϕ) on PpEq.
In particular, they correspond to metrics on detpEq that are induced by the same metric on OPpEqp1q, but
with di�erent reference metrics h̃8 and h8. Since iBBMh8pϕq is independent of the choice of the reference
metric h8, we have iBBMh8pψ1q ” 0, and this means that Mh8pψ1q is a constant. Therefore the metric
de�ned in the previous remark is uniquely de�ned up to a constant.

5.5. Strongly pseudoe�ective and numerically trivial bundles

In this section, we use the Lelong number estimate to show that a strongly psef vector bundle with trivial
�rst Chern class is in fact numerically �at. In particular, this implies that a strongly psef re�exive sheaf
with trivial �rst Chern class is in fact a numerically �at vector bundle. As an application of the previous
section, we get the following result.

Theorem 5.48. (Main theorem) Let E be a strongly psef vector bundle on a compact Kähler manifold
pX,ωq, such that c1pEq “ 0. Then E is a nef pand thus numerically �at q vector bundle.

Proof. We show through Lelong number estimates and regularization, that the vector bundle E is in
fact nef. Let hε be a singular metric with analytic singularities on OPpEqp1q, such that

iΘpOPpEqp1q, hεq ě ´επ
˚ω.

Let us write hε “ h8e
´ϕε with respect to some smooth reference metric h8 on OPpEqp1q. De�ne

Tε :“ π˚

´ i

2π
ΘpOPpEqp1q, h8q `

i

2π
BBϕε

¯r

by means of Theorem 5.43. We have Tε ě ´εω. More precisely, we are going to prove the Lelong number
estimate

νpTε, zq ě

ˆ

sup
w,πpwq“z

νpϕε, wq

˙r

.

The proof of this estimate is similar to the proof of theorem 10.2 of [Dem93]. For the convenience of the
reader, we brie�y outline the proof here. Fix w0 P π

´1pxq and γ “ νpϕε, w0q. The inequality is trivial when
γ “ 0. Otherwise, for any ε1 ă γ, let us de�ne

ψ :“ pγ ´ ε1qθpwqlog|w ´ w0|

where w is the coordinate near w0 and θ is a cut o� function near w0. By lemma 5.40, we have

Tε “ lim
δÑ0

π˚

ˆ

i

2π
ΘpOPpEqp1q, h8q `

i

2π
BBlogpeϕε ` δeψq

˙r

in the sense of currents. For every η so small that t|z| ď ηu is contained in a coordinate chart with πpw0q “ 0,
we have

ż

|z|ďη

Tε ^
´ i

2π
BBlog|z|2

¯n´1

ě

lim sup
δÑ0

ż

|z|ďη

π˚

ˆ

i

2π
ΘpOPpEqp1q, h8q `

i

2π
BBlogpeϕε ` δeψq

˙r

^

´ i

2π
BBlog|z|2

¯n´1

by the semi continuity of Monge-Ampère operators with respect to decreasing sequences. By construction,
we have ϕεpwq ď γlog|w ´ w0| ` C near w0, so i

2πBBlogpeϕε ` δeψq coincides with i
2πBBψ on a small ball

Bpw0, ηδq Ă π´1pBp0, ηqq. Thus we have
ż

|z|ďη

π˚

ˆ

i

2π
ΘpOPpEqp1q, h8q `

i

2π
BBlogpeϕε ` δeψq

˙r

^ p
i

2π
BBlog|z|2qn´1
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ě

ż

|w´w0|ďηδ

p
i

2π
ΘpOPpEqp1q, h8q `

i

2π
BBlogpeϕε ` δeψqqr ^ p

i

2π
BBlog|z|2qn´1 ě pγ ´ ε1qr.

Taking η Ñ 0 and ε1 Ñ 0 gives the Lelong number estimate.
We have proven in Corollary 5.45 that Tε ě ´εω, and Tε`εω is in the class c1pdetpEqq`εtωu. By weak

compactness, there exists a convergent subsequence Tεν with limit T in the class c1pdetpEqq. Since T ě 0
and c1pdetpEqq “ 0, the only possibility is that T “ 0.

Now, we recall the following version of the regularization theorem given in [Dem82]: let T “ θ ` iBBϕ
be a closed p1, 1q-current, where θ is a smooth form. Suppose that a smooth p1, 1q-form γ is given such that
T ě γ. Then there exists a decreasing sequence of smooth functions ϕk converging to ϕ such that, if we set
Tk :“ θ ` iBBϕk, we have

p1q Tk Ñ T weakly,
p2q Tk ě γ ´ Cλkω, where C ą 0 is a constant depending on pX,ωq only, and λk is a decreasing

sequence of continuous functions such that λkpxq Ñ νpT, xq for all x P X.

By Corollary 5.51 below, we get
lim
εÑ0

sup
X
νpTε, xq “ 0,

thus
lim
εÑ0

sup
PpEq

νpϕε, wq “ 0

thanks to the above Lelong number estimate. By the regularization theorem just recalled, there exists
ϕ̃ε P C

8pPpEqq such that
i

2π
ΘpOPpEqp1q, h8q `

i

2π
BBϕ̃ε ě ´2εω̃

where ω̃ is some Kähler form on PpEq. In other words, the line bundle OPpEqp1q is nef. �

Lemma 5.49. Let X be a compact complex manifold. Let Tδ pδ ą 0q be a sequence of closed positive
pk, kq-currents. Assume that Tδ Ñ 0 weakly as δ Ñ 0. Then

lim
δÑ0

sup
X
νpTδ, xq “ 0.

Proof. Since X is compact, we can cover X by �nite coordinate open charts VipĂ Ui Ă Ũiq such that
Vi is relatively compact in Ui and Ui is relatively compact in Ũi. Thus we reduce the proof to the case of
coordinate chart Vi.

Let ρi be cut o� functions supported in Ũi such that ρi ” 1 on Ui and 0 ď ρi ď 1. Since Tδ Ñ 0 weakly,
there exists a uniform C ą 0 such that

ż

Ui

Tδ ^

ˆ

i

2π
BB|z|2

˙n´k

ď

ż

Ũi

Tδ ^ ρi

ˆ

i

2π
BB|z|2

˙n´k

ď C.

De�ne for x P Vi and for small r

νpTδ, x, rq :“ r´2pn´kq

ż

|z´x|ăr

Tδ ^

ˆ

i

2π
BB|z|2

˙n´k

.

Then νpTδ, x, rq is an increasing function with respect to r and we have that

νpTδ, xq “ lim
rÑ0

νpTδ, x, rq.

For small r ą 0 such that 2r ă dpVi, BUiq, there exists a cut-o� function θx supported in Bpx, 2rq such that
θx ” 1 on Bpx, rq and 0 ď θx ď 1. Then we have

νpTδ, x, rq ď r´2pn´kq

ż

Ui

Tδ ^ θx

ˆ

i

2π
BB|z|2

˙n´k

.

Since θx can be obtained by translation of the same function, pθxqxPVi for small r is a compact family with
respect to C8 topology. Thus for �xed small r, for every x, y P Vi,

r´2pn´kq

ż

Ui

Tδ ^ pθx ´ θyq

ˆ

i

2π
BB|z|2

˙n´1

ď Cr´2pn´kq ‖ θx ´ θy ‖L8pUiq .

Thus r´2pn´kq
ş

Ui
Tδ ^ θx

`

i
2πBB|z|

2
˘n´k

tends to 0 as δ Ñ 0 uniformly with respect to x P Vi.
In particular, νpTδ, x, rq tends to 0 as δ Ñ 0 uniformly with respect to x P Vi, hence the same property

holds for νpTδ, xq. �
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Remark 5.50. For a family of p1, 1q-closed positive currents, the proof is much simpler, using the
observation of Proposition 5.4.1.

Let γ be a Gauduchon metric over X (i.e. a smooth metric such that iBBpγn´1q “ 0). With the same
notation as in the proof, we have for r0 small enough

νpTδ, x, rq ě νpTδ, x, r0q ď
C

r2n´2
0

ż

X

Tδ ^ γ
n´1.

Since the right-hand side term (which is cohomological) tends to 0 along with δ, the Lelong number tends
to zero locally uniformly. Since X is compact, the convergence is uniform.

Corollary 5.51. Let pX,ωq be a compact Kähler manifold. Let Tδ pδ ą 0q be a sequence of closed
p1, 1q-currents such that

Tδ ě ´δω

in the sense of currents. Assume that Tδ Ñ 0 weakly as δ Ñ 0. Then

lim
δÑ0

sup
X
νpTδ, xq “ 0.

Proof. This is a direct consequence of the previous lemma if we consider Tδ ` δω instead of Tδ. �

Now we can easily conclude our result.

Corollary 5.52. Let F be a strongly psef re�exive sheaf over a compact Kähler manifold pX,ωq with
c1pFq “ 0. Then F is a nef pand numerically �at q vector bundle.

Proof. By our assumption, there exists a modi�cation such that the pull back of F modulo torsion is
a strongly psef vector bundle with vanishing �rst Chern class by lemma 5.29. By theorem 5.48, this vector
bundle is in fact nef. Thus by Proposition 5.3.8, we conclude the corollary. �

As a geometric application, we obtain the following generalisation of Theorem 7.7 in [BDPP13].

Corollary 5.53. Let X be a (non necessarily projective) K3-surface or a Calabi-Yau 3-fold. Then the
tangent bundle TX is not strongly psef. In other words, for a compact Kähler surface or 3-fold if c1pXq “ 0
and TX is strongly psef, then a �nite étale cover of X is a torus.

Proof. Assume X is a compact Kähler surface such that c1pXq “ 0 and TX is strongly psef. Then by
Theorem 5.48, TX is in fact numerically �at. In particular, the second Chern class of X is 0. By classi�cation
of compact surface with nef tangent bundle (Theorem 6.1 and 6.2) in [DPS94], a �nite étale cover of X
must be a torus. Remind that the di�erence between the projective case and the compact complex case is
whether the torus is abelian or Kodaira surface or Hopf surface. The later two surfaces are nevertheless non
Kähler.

Then proof of the dimension 3 case is similar. Instead of the Theorem 6.1 and 6.2, we use the classi�cation
of compact 3-folds with nef tangent bundle (Theorem 7.1 and 7.2) in [DPS94]. �

In fact, we can show the following more general fact. A stronger result in the projective singular setting
can be found in Theorem 1.6 of [HP19] (Instead of proving �non strong psefness�, they prove �non weak
psefness�.)

Corollary 5.54. For a compact Kähler manifold if c1pXq “ 0 and TX is strongly psef, then a �nite
étale cover of X is a torus. In particular, an irreducible symplectic, or Calabi-Yau manifold does not have
strongly psef tangenet bundle or cotangent bundle.

Proof. By the Beauville-Bogomolov theorem, up to a �nite étale cover π : X̃ Ñ X, X̃ is a product of
ś

Tiˆ
ś

Sjˆ
ś

Yk where Ti are complex tori, Sj are Calabi-Yau manifolds and Yk are irreducible symplectic
manifolds. Since the tangent bundle of X̃ is numerical �at under the assumption and by Theorem 5.48, the
tangent bundle of all the components in the direct sum is numerical �at. In particular, all the components
have vanishing second Chern class by Corollary 1.19 of [DPS94]. (A stronger result in the projective and
singular setting can be found in Theorem 1.8 of [HP19].) By representation theory, the tangent bundle of the
Calabi-Yau or irreducible symplectic components is stable. Thus we have the equality case in the Bogomolov
inequality which implies that the tangent bundle of the Calabi-Yau or irreducible symplectic components is
projectively �at. Since the �rst Chern class of the Calabi-Yau or irreducible symplectic components vanishes,
the tangent bundle is in fact unitary �at. In particular, the restricted holonomy groups of the Calabi-Yau
or irreducible symplectic components are trivial. In other words, only the complex tori components appear
in the decomposition. �

Inspired by the work of [LOY20], we can slightly generalise Corollary 5.52 in the following form.
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Lemma 5.55. (analogue of Lemma 4.5 [LOY20]) Let pX,ωq be a compact Kähler manifold of dimension
n ą 2, and let F be a re�exive coherent sheaf of rank r ą 2 on X. Then, for any positive integer m ą 2, we
have

c2pS
rmsFq “ Ac21pFq `Bc2pFq,

where A and B are non-zero rational numbers depending only on m and r, and satisfy the relation

A`
r ´ 1

r
B ´

pR´ 1qRm2

2r2
“ 0

where R “
`

r`m´1
r

˘

is the rank of SrmsF .

Proof. The proof is almost identical to Lemma 4.5 in [LOY20]. The only di�erence is the abandonment
of the use of the auxiliary ample line bundle. For this reason, we only sketch the proof. We have trivially
the form of the equality over the open set where the sheaf is locally free. By Lemma 5.18, the same equality
should hold on X. By splitting principle, it is enough to prove the formula for F “ ‘rL where L is a
hermitian (complex) line bundle (not necessarily holomorphic).

In this case, F is a polystable and projectively �at vector bundle, thus we have the equality case in the
Bogomolov-Lübke inequality,

pc2pFq ´
r ´ 1

r
c1pFq2q ¨ ωn´2 “ 0.

Develop c2pSmF b L˚bmq “ 0 in terms of c1pLq. Combining with the above equality, we have

pA`
r ´ 1

r
B ´

pR´ 1qRm2

2r2
qc1pLq

2 ¨ ωn´2 “ 0.

It su�ces to show that there exists a hermitian (complex) line bundle such that c1pLqq ¨ ωn´q ‰ 0 for any
q. Recall that Théorème 4.3 of [Lae02] proved using Kronecker lemma that for any closed real p1, 1q´form
α on a compact complex manifold, for in�nite k, kα can be approximated in C8 norm by the curvature of
some hermitian (complex) line bundle Lk with respect to some hermitian connection. In particular, for such
k large enough, c1pLkqq ¨ ωn´q ‰ 0 for any q.

By choosing F as some combination of Lk, L˚k and OX , it can be shown that A,B are non-zero. �

For the convenience of the reader, we give here the proof of the compact Kähler version of proposition
4.6 Chap. IV of [Nak04].

Proposition 5.5.1. Let pX,ωq be a compact Kähler manifold and F be an ω-semi-stable re�exive sheaf
with

pc2pFq ´
r ´ 1

r
c1pFq2q ¨ ωn´2 “ 0.

Then F is locally free.

Proof. We shall prove by induction on the rank of F . If F is polystable, it is direct consequence of
corollary 3 of [BS94]. We may assume F is not polystable. Then there is an exact sequence

0 Ñ S Ñ F Ñ QÑ 0,

where S and Q are non-zero torsion-free sheaves satisfying the relation of slope µpSq “ µpFq “ µpQq. The
sheaves S and Q˚˚ are semi-stable.

Recall the formula (II.9) Chap. II [Nak04]

∆̂2pFq “ ∆̂2pSq ` ∆̂2pQq ´
rank S ¨ rank Q

rank F
pµpSq ´ µpQqq2

where ∆̂2pFq :“ pc2pFq ´ r´1
2r c1pFq

2q ¨ ωn´2. The Bogomolov inequality gives ∆̂2pSq ě 0 and ∆̂2pQ˚˚q ě 0.
On the other hand, c2pQ˚˚{Qq is represented by an e�ective cycle supported in the support of the torsion
sheaf Q˚˚{Q. Thus we have that

∆̂2pQ˚˚q “ ∆̂2pQq “ ∆̂2pS q “ 0.

By induction, S and Q˚˚ are locally free which by lemma 5.15 de�nes an extension of vector bundles over
X. Since F coincides with a vector bundle outside an analytic set of codimension at least 3, F is locally
free. �

As consequence of the lemma and the proposition, we have the following generalisation of Corollary 5.52.
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Corollary 5.56. (analogue of Theorem 1.6 [LOY20])
Let pX,ωq be a compact Kähler manifold of dimension n, and let F be a re�exive coherent sheaf on X.

Assume there exists a line bundle L and m ą 0 such that SrmsF bL is strongly psef with c1pSrmsF bLq “ 0.
Then F is a vector bundle such that Fx´ 1

mLy is a Q´twisted nef vector bundle.
In particular, let E be a vector bundle of rank r such that Ex´ 1

r detpEqy is Q´twisted strongly psef
vector bundle, then Ex´ 1

r detpEqy is Q´twisted nef vector bundle.

Proof. By corollary 5.52, SrmsFbL is a numerically �at vector bundle. In particular, c2pSrmsFbLq “ 0
and SrmsF b L is semistable. In fact, SrmsF b L admits a �ltration of vector bundles

0 “ E0 Ă E1 Ă ¨ ¨ ¨ Ă Ep “ SrmsF b L
such that for each i, Ei{Ei´1 is �at and polystable. For any subsheaf S of SrmsFbL, let i0 :“ maxti, Ei Ă Su.
Then if S “ Ei0 , µpSq “ 0. Otherwise F{Ei0 is a non zero subsheaf of Ei0`1{Ei0 , thus µpSq “ µpS{Ei0q `
µpEi0q ď µpEi0`1{Ei0q “ 0.

By the above lemma, direct calculations yield

pc2pFq ´
r ´ 1

2r
c1pFq2q ¨ ωn´2 “ 0.

We claim that F is also semistable. In fact, for any torsion free quotient sheaf Q of F , we have generic
surjective morphism

α : SrmsF b LÑ SrmsQb L.
The image of α coincide with SrmsQ b L outside an analytic set of codimension at least 2, thus these two
sheaves have the same slope. The inequality µpSrmsF b Lq ď µpSrmsQ b Lq implies that µpFq ď µpQq.
In fact, SrmsF and F are locally free outside a closed analytic set A of codimension at least 2. Since
H2pX,Cq – H2pX rA,Fq,

c1pS
rmsFq “ 1

r

ˆ

m` r ´ 1

m

˙

c1pFq

from the corresponding formula by restriction on XrA on which the coherent sheaves are locally free. Here
r is the rank of F . We have of course similar formula for Q.

For the general case, it is a direct consequence of the above proposition. Thus we can prove the following
equivalent conclusion. F is locally free and there is a �ltration of vector subbundles

0 “ F0 Ă F1 Ă ¨ ¨ ¨ Ă Fp “ F
such that Fi{Fi`1 are projectively �at vector bundles and µpFi{Fi`1q “ µpFq for any i. �

As pointed out to us by A. Höring, Corollary 5.54 can be established in the following easier way. As
above, one shows that a compact Kähler manifold pX,ωq with strongly psef tangent bundle or cotangent
bundle and c1pXq “ 0 is a �nite étale quotient of a complex torus. By our main theorem, TX is a numerically
�at vector bundle. In particular, it is well-known that TX is ω-semi-stable and that c2pXq “ 0. (This is the
special case considered at the beginning of the proof of Corollary 5.56.) Thus we have the equality case in
the Bogomolov inequality, and therefore the tangent bundle TX is projectively �at. Since c1pXq “ 0, TX is
�at, which, by the Bieberbach theorem, implies that X is a torus, up to a �nite étale cover.





CHAPTER 6

Intersection theory and Chern classes in Bott-Chern cohomology

Abstract. In this article, we study the axiomatic approach of Grivaux in [Gri10] for rational Bott-Chern
cohomology, and use it in particular to de�ne Chern classes of coherent sheaves in rational Bott-Chern
cohomology. This method also allows us to derive a Riemann-Roch-Grothendieck formula for a projective
morphism between smooth complex compact manifolds. The appendix presents a calculation of integral
Bott-Chern cohomology in top degree for a connected compact manifold.

In the general case of complex spaces, the Poincaré and Dolbeault-Grothendieck lemmas are not valid
in general. For this reason, and to simplify the exposition, we only consider non singular complex spaces in
the sequel, and let X denote throughout a complex manifold.

6.1. Introduction

Chern classes and Chern characteristic classes are very important topological invariants of complex
vector bundles. In order to better re�ect the complex structure of manifolds, we re�ne Chern classes and
Chern characteristic classes, and de�ne them in rational Bott-Chern cohomology. This is done by introducing
suitable complexes of sheaves of holomorphic and anti-holomorphic forms. There exists a canonical morphism
from the complex of rational Bott-Chern cohomology into the locally constant sheaf Q, seen as a complex with
a single term located in degree 0. Under this morphism, the image of Chern classes and Chern characteristic
classes in rational Bott-Chern cohomology are the usual ones de�ned in singular cohomology.

In the fundamental article [Gri10], Grivaux showed that for suitable rational cohomology theories of
compact complex manifolds, one can construct Chern characteristic classes of arbitrary coherent sheaves,
and in particular of torsion sheaves, by induction on the dimension. This can be done provided one has a
reasonable intersection theory, and provided Chern classes can be de�ned for vector bundles. One important
argument consists of ensuring the validity of the Riemann-Roch-Grothendieck formula for closed immersions
of smooth hypersurfaces.

We begin by recalling some background for this type of problems. For any complex manifold X, we
denote by K0X the Grothendieck group of vector bundles on X. For a vector bundle E, we denote by
rEs the class represented by E. By de�nition, K0X is the quotient of the free abelian group on the set of
isomorphism classes of vector bundles, modulo the relations

rEs “ rE1s ` rE2s

for all exact sequences 0 Ñ E1 Ñ E Ñ E2 Ñ 0. It can be endowed with a ring structure by taking tensor
products of vector bundles.

In a similar way, we denote by K0X the Grothendieck group of coherent sheaves on X, simply by
replacing vector bundles in the de�nition of K0X by coherent sheaves, and one has a natural morphism
K0X Ñ K0X by viewing vector bundles as coherent sheaves. This morphism is an isomorphism in the
projective case. However, by the fundamental work of Voisin [Voi02a], K0X can be strictly smaller than
K0X when X is a compact Kähler manifold. This phenomenon is caused by the lack of global resolutions
of coherent sheaves by locally free sheaves.

Over Q, Chern characteristic class can be seen through the Q-linear morphism

ch : K0pXq bZ QÑ ApXq,

where ApXqmeans the cohomology ring in the cohomology theory under consideration. A priori, on arbitrary
compact complex manifolds, it is not trivial that this morphism can extended into a morphism fromK0pXqbZ
Q. Grivaux showed that this is possible once the cohomology theory satis�es suitable axioms of intersection
theory. The aim of this note is to develop a similar intersection theory for integral (or rational) Bott-Chern
cohomology.

Such theories have been considered in the work [Sch07] of M. Schweitzer, and have also been developed
in a more recent unpublished work of Junyan Cao. They are more precise than Deligne cohomology or
than complex Bott-Chern cohomology, in the sense that there always exist natural morphisms from the
integral (or rational) Bott-Chern cohomology into the other ones. We use here Grivaux's axiomatic approach
to construct Chern classes in rational Bott-Chern cohomology, for coherent sheaves on arbitrary compact
complex manifolds.

123
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In fact, it would be interesting to give a construction of Chern classes of coherent sheaves in the integral
Bott-Chern cohomology rather than the rational one, but substantial di�culties remain. Let F be a coherent
sheaf on a smooth hypersurface D of X. We denote by i : D Ñ X the inclusion. One of the main di�culties
is to express the total Chern class cpi˚Fq in function of i˚c‚pFq and i˚c‚pND{Xq, where ND{X is the normal
bundle of D in X. There exists a formulation of the Riemann-Roch-Grothendieck formula that does not
involve denominators, but it does not seem to be easily applicable since Chern classes of coherent sheaves,
unlike in the vector bundle case, may involve data in higher degrees than the generic rank.

Using the methods developped in this note combined with the work of [Gri10], we give as an application
a more algebraic proof of the following theorem of Bismut [Bis11], [Bis13] under the additional assumption
that the morphism is projective. However, we do not need the condition that the sheaf and all of its direct
images are locally free, nor the condition that the morphism is a submersion.

Theorem 6.1. Let p : X Ñ S a projective morphism of compact complex manifolds and F be a coherent
sheaf over X. Then we have the Riemann-Roch-Grothendieck formula in the rational and complex Bott-Chern
cohomology

chpR‚p˚FqTdpTSq “ p˚pchpFqTdpTXqq

where R‚p˚F “
ř

iR
ip˚F .

The rational case is a direct consequence of the work of [Gri10], which uses classical arguments of Serre
to reduce the prooof to the fact that the Riemann-Roch-Grothendieck formula holds for a closed immersion.
It is proven by a construction of Chern characteristic classes (or equivalently of Chern classes in the rational
coe�cient case), using the prescribed axioms of intersection theory. The complex case can be derived by the
natural morphism from the rational Bott-Chern cohomology to the complex Bott-Chern cohomology.

For the convenience of the reader, we summarize here the axioms needed in the axiomatic cohomology
theory developped in [Gri10]. We assume that for any compact complex manifold X we can associate to X
a graded commutative cohomology ring ApXq which is also a QpĂ A0pXqq-algebra.

Axiom A (Chern classes for vector bundles)
(1) For each holomorphic map f : X Ñ Y , there exists a functorial pull-back morphism f˚ : ApY q Ñ ApXq
which is compatible with the products and the gradings.
(2) One has a group morphism c1 : PicpXq Ñ A1pXq which is compatible with pull-backs.
(3) (Splitting principle) If E is a holomorphic vector bundle of rank r on X, then ApPpEqq is a free graded
module over ApXq with basis 1, c1pOEp1qq, ¨ ¨ ¨ , pc1pOEp1qq

r´1.
(4) (homotopy principle) For every t in P1, let it be the inclusion X ˆ ttu ãÑ X ˆ P1. Then the induced
pull-back morphism i˚t : ApX ˆ P1q Ñ ApXq – ApX ˆ ttuq is independent of t.
(5) (Whitney formula) Let 0 Ñ E Ñ F Ñ G Ñ 0 be an exact sequence of vector bundles, then one has
cpF q “ cpEq ¨ cpF q and chpF q “ chpEq ` chpGq where cpEq means the total Chern class of E and chpEq
means the Chern characteristic class of E.

The construction of the pull-back will be given in the second section and the other parts are important
results of Junyan Cao which will be given the fourth section.

Axiom B (Intersection theory)
If f : X Ñ Y is a proper holomorphic map of relative dimension d, there is a functorial Gysin morphism

f˚ : A‚pXq Ñ A‚´dpY q satisfying the following properties:
(1) (Projection formula) For any x P ApXq and any y P ApY q one has f˚px ¨ f˚yq “ f˚pxq ¨ y.
(2) Consider the following commutative diagram with p, q the projections on the �rst factors

Y ˆ Z �
� iYˆZ //

p

��

X ˆ Z

q

��
Y
� � iY // X

Assume Z to be compact and iY proper. Then one has q˚iY ˚ “ iYˆZ˚p
˚.

(3) Let f : X Ñ Y be a surjective proper map between compact manifolds, and let D be a smooth divisor of
Y . We denote f˚D “ m1D̃1 ` ¨ ¨ ¨ `mN D̃N with D̃i simply normal crossing. Let f̃i : D̃i Ñ D (1 ď i ď N)
be the restriction of f to D̃i. Then one has

f˚iD˚ “
N
ÿ

i“1

mi iD̃i˚f̃
˚
i .

(4)Consider the commutative diagram, where Y and Z are compact and intersect transversally with W “
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Y X Z:

W �
� iW {Y //
_�

iW {Z
��

Y_�

iY
��

Z
� �

iZ
// X.

Then one has i˚Y iZ˚ “ iW {Y ˚i
˚
W {Z .

(5)(Excess formula) If Y is a smooth hypersurface of a compact complex manifold X, then for any cohomo-
logical class α we have

i˚Y iY ˚α “ α ¨ c1pNY {Xq.

(6) The Hirzebruch�Riemann�Roch theorem holds for pPn,Opiqq (@i).
(7) Let X be a compact complex manifold with dimCX “ n and Y Ă X be a closed complex submanifold
of complex codimension r ě 2. Suppose that p : X̃ Ñ X is the blow-up of X along Y . We denote by E the
exception divisor and i : Y Ñ X, j : E Ñ X̃ the inclusions, and q : E Ñ Y the restriction of p on E. Then
p˚ is injective and there is an isomorphism induced by j˚

j˚ : A‚pX̃q{p˚A‚pXq – A‚pEq{q˚A‚pY q.

In other words, a class α P A‚pX̃q is in the image of p˚ if and only if the class j˚α is in the image of q˚.
The veri�cation of axiom B will constitute the main substance of the �fth and sixth sections. In principle,

pull-backs can be induced by taking the pull-back of smooth forms, and push-forwards can be induced by
taking the push-forward of currents under proper morphisms. The proof of the �rst two axioms is then
reduced to considering the natural pairing between smooth forms and currents. The third and fourth axioms
are more complicated, since they demand taking pull-backs of currents. As in the case of Deligne cohomology,
we �rst reduce the situation to the case of cycle classes. Then we reduce cycle classes to integral Bott-Chern
(or Deligne) cohomology by means of Bloch cycle classes, which can be represented by holomorphic forms.
Checking the remaining axioms is more standard. This will be done in the sixth section.

In conclusion, it can be shown that the cohomology ring ‘kH
k,k
BCpX,Qq satis�es axiom A, B. In fact,

the cohomology ring ‘kH
k,k
BCpX,Zq satis�es axiom A, B except the sixth one of list B which demands

rational coe�cients to de�ne Chern characteristic classes and the Todd class. As a consequence, by the work
of [Gri10], for the rational Bott-Chern cohomology we get the following result.

Theorem 6.2. If X is compact and K0X is the Grothendieck ring of coherent sheaves on X , one can
de�ne a Chern character morphism ch : K0X Ñ ‘kH

k,k
BCpX,Qq such that

(1) the Chern character morphism is functorial by pull-backs of holomorphic maps.
(2) the Chern character morphism is an extension of the usual Chern character morphism for locally free
sheaves given in axiom A.
(3) The Riemann�Roch-Grothendieck theorem holds for projective morphisms between smooth complex com-
pact manifolds.

The organisation of the paper is the following. Section two recalls basic de�nitions and introduces
pull back and push forward morphisms. Section three introduces a ring structure on the integral Bott-
Chern cohomology, in such a way that it is compatible with the ring structure of the complex Bott-Chern
cohomology via the canonical map. Section four gives the construction of Chern classes associated with a
vector bundle and veri�es the list of axioms A. Section �ve introduces cycle classes in integral Bott-Chern
cohomology and veri�es the intersection theory part of axioms B. Section six studies the transformation
of Chern classes under blow ups. This completes the veri�cation of axioms B. At the end, we present an
appendix in which we calculate the integral Bott-Chern cohomology of a connected compact manifold in top
degree. The analogous result for integral Deligne cohomology do not seem to be as direct.

6.2. De�nition of integral Bott-Chern cohomology classes

In this section, we recall the basic de�nitions associated with integral Bott-Chern cohomology. A refer-
ence for this part is [Sch07]. Notice that changing Zppq by C in the integral Bott-Chern complex gives a
quasi-isomorphic complex which de�nes the complex Bott-Chern cohomology. Hence one gets a canonical
map from the integral Bott-Chern cohomology to the complex Bott-Chern cohomology. Next, we de�ne pull
backs and push forwards in integral Bott-Chern cohomology. We verify the axioms without involving the
ring structure of the integral Bott-Chern cohomology (namely Axiom B (2), part of (7)).

Definition 6.3. The integral Bott-Chern cohomology group is de�ned as the hypercohomology group

Hp,q
BCpX,Zq “ Hp`qpX,B˚p,q,Zq
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of the integral Bott-Chern complex

B‚p,q,Z : Zppq ∆
ÝÑ O ‘O Ñ Ω1 ‘ Ω1 Ñ ¨ ¨ ¨ Ñ Ωp´1 ‘ Ωp´1 Ñ Ωp Ñ ¨ ¨ ¨ Ñ Ωq´1 Ñ 0

where Zppq “ p2πiqpZ at 0 degree and ∆ is multiplication by 1 for the �rst component and multiplication by
-1 for the second component. We call rational (or complex) Bott-Chern cohomology the hypercohomology of
the complex obtained by changing Zppq respectively into Q,C.

Notice that the choice of the sign in ∆ is to ensure that the natural map from the integral Bott-Chern
cohomology to the complex Bott-Chern cohomology is a ring morphism. This will be discussed in Section 3.
The choice of Zppq instead of Zpqq is more or less arti�cial, but since the Chern class always lies in Hp,p

BCpX,Zq
for some p, this choice poses no problem.

We begin by the de�nition of pull-backs of cohomology classes. Let f : X Ñ Y be a holomorphic

map, it induces a natural morphism of complexes of abelian group on any open set U of Y , B‚p,q,Z,Y pUq
f˚

ÝÝÑ

B‚p,q,Z,Xpf´1pUqq which induces the cohomological class morphism Hp,q
BCpY,Zq

f˚

ÝÝÑ Hp,q
BCpX,Zq. More pre-

cisely, the pull-back of forms induces a morphism of complexes f˚B‚p,q,Z,Y
f˚

ÝÝÑ B‚p,q,Z,X on X which induces
a cohomological morphism H‚pX, f˚B‚p,q,Z,Y q ÝÑ H‚pX,B‚p,q,Z,Xq. On the other hand, there exists a natural
morphism H‚pY,B‚p,q,Z,Y q ÝÑ H‚pX, f˚B‚p,q,Z,Y q since the pre-image of any open covering of Y gives an open

covering of X. The composition of two morphisms gives the pull back morphism Hp,q
BCpY,Zq

f˚

ÝÝÑ Hp,q
BCpX,Zq.

The second morphism can be interpreted more formally as follows. There exists a natural morphism
B‚p,q,Z,Y Ñ Rf˚f

˚B‚p,q,Z,Y . Taking RΓpY,´q on both sides gives H‚pY,B‚p,q,Z,Y q ÝÑ H‚pX, f˚B‚p,q,Z,Y q.
For a proper holomorphic map f : X Ñ Y of relative dimension d, we next construct a functorial Gysin

morphism f˚ : Hp,q
BCpX,Zq Ñ Hp´d,q´d

BC pY,Zq. The construction is a modi�cation of the similar construction
for Deligne cohomological class given in [ZZ84]. The condition of properness is necessary even if we just
consider cycle classes, since the image of an analytic set is not necessarily an analytic set when the properness
condition is omitted.

Let K‚ be a complex of sheaves on the space X. One denotes by tF pK‚u the stupid �ltration which
does not preserve the cohomology at degree p i.e. if q ě p, F pKq “ Kq, otherwise F pKq “ 0. For the
corresponding quotient complex, we denote it as σpK‚ “ K‚{F pK‚. We denote by Ω‚ the complex of sheaves
of holomorphic forms on X. Let i : Zppq Ñ σpΩ

‚ ‘ σqΩ‚ be the complex map de�ned by the diagonal map
sending Zppq into OX ‘ OX at degree 0 with a sign ´1 at the second component and viewing Zppq as a
complex centred at degree 0. With the above notations, the integral Bott-Chern complex is the mapping
cone of i which we denote as Cone‚piqr´1s. The idea to de�ne the push-forward of the cohomology class
is to choose compatible resolutions of the complexes Zppq, σpΩ‚ ‘ σqΩ‚ such that the both complexes are
formed by some kind of currents for which the push-forward is well-de�ned.

For the convenience of the readers, we recall here some basic de�nitions and properties concerning
currents and geometric measure theory. We will use them to de�ne a resolution of Zppq. For more details
and proofs, we refer to the article of [Kin71].

Definition 6.4. Let A,B be two metric spaces and f : AÑ B be a map. We say that f is Lipschitz if
there exists C ą 0 such that for any a, b P A, we have

dpfpaq, fpbqq ď Cdpa, bq.

We now recall the de�nition of the mass of a current.

Definition 6.5. For any continuous form on a Riemannian manifold N and any x P N , we de�ne a
function

}u}pxq “ supt|upλq| : λ is a decomposable r-vector at x with |λ|x ď 1u.

For any set K Ă N , the comass of u on K is

νKpuq “ supt}u}pxq, x P Ku.

The mass of a current T is
MpT q “ t|T puq| : u P ArcpNq, νN puq ď 1u

where ArcpNq is the space of the smooth r-forms with compact support.

Let U Ă Rs be an open set of euclidean space and N a Riemannian manifold. Let P be a current
de�ned by a �nite sum of oriented linear simplices and f : U Ñ N a Lipschitz map. We can approximate f
by fi : U Ñ N which is C1 and we de�ne f˚P to be the limit of fi˚P in the sense of currents. Using this
construction, one can de�ne recti�able currents.
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Definition 6.6. For any compact set K Ť N , one de�nes the space Rr,KpNq of recti�able r-currents
in K as follows: T P Rr,KpNq if and only if T P E 1rpNq (the dual space of smooth forms) and for any ε ą 0,
there exists U Ă Rs for some s, f : U Ñ N a Lipschitz map and P a current de�ned by �nite sum of oriented
linear simplices such that

MpT ´ f˚pP qq ă ε.

One de�nes the space RrpNq of recti�able r-currents by RrpNq :“
Ť

KŤN Rr,KpNq and the space Rloc
r pNq

of locally recti�able r-currents by

Rloc
r pNq “ tT P D1rpNq|@x P N, DTx P RrpNq s.t. x P N r supppT ´ Txqu.

Now, one de�nes locally integral currents.

Definition 6.7. The space of locally integral currents is de�ned by

I loc
r pNq :“ tT P Rloc

r pNq|dT P R
loc
r pNqu.

We have the following version of the Federer support theorem.

Theorem 6.8. Let i : M Ñ N be an embedding of the submanifold M into N . One has

i˚I loc
r pMq “ tT P I loc

r pNq|supppT q ĂMu.

As a corollary, the sheaf of locally integral currents is a soft sheaf, and is in particular acyclic.

Corollary 6.9. Let N be any Riemannian manifold. Then the sheaf of locally integral currents I loc
‚

is a soft sheaf.

Proof. Let F be a closed set ofN with respect to the metric topology. Let s P I loc
r pF q “ lim

ÝÑFĂU
I loc
r pUq

be a section on F . By de�nition, there exists sU a section de�ned on U an open set of N such that sU |F “ s.
Consider i : U Ñ N the inclusion. The Federer support theorem gives a section s̃ P I loc

r pNq such that
i˚sU “ s̃. Hence s̃ extends s, and this proves that the sheaf of locally integral currents is soft. �

Notice that for any smooth morphism f : M Ñ N , f˚ maps locally integral currents to locally integral
currents even without the properness condition on f . To see that the complex of locally integral currents
gives a resolution of the locally constant sheaf Z, we need the fact that for T P I loc

m pRnq such that dT “ 0
there exists a S P I loc

m`1pRnq such that dS “ T (cf. [Fed96] 4.2.10 as a consequence of the deformation
theorem) and the following proposition in [Kin71] proposition 2.1.9 for the case of top degree.

Theorem 6.10. Let M be a Riemannian manifold of dimension n. If T P D10pMq such that dT “ 0 then
T is the current de�ned by locally constant functions. If T P I loc

n pMq then this function is integral valued.

We now return to the construction of the push forward for hypercohomology. We denote by D1X
p,q

the sheaf of currents of type pp, qq on X. For each p, pD1X
p,‚
, Bq is a �ne resolution of ΩpX . By taking the

conjugation, pD1X
‚,q
, Bq is a �ne resolution of ΩqX . The conjugate of di�erential forms induces the conjugate of

currents. In particular, σp,‚D1X
‚,‚ (resp. σ‚,qD1X

‚,‚) is a Cartan-Eilenberg resolution of σpΩ‚X (resp. σqΩ‚X).
Taking the total complex of the double complex, we deduce that σpD1X

‚ is a resolution of σpΩ‚X . Here,
we use an abuse of notation, and actually mean that we take direct sums of spaces of currents of bidegree
pk, lq with k ď p. Similarly, σqD1X

‚ is a resolution of σqΩ‚X . By taking complex coe�cients, locally integral
currents extend into a complex of C-vector spaces of currents instead of Z-modules.

Let IiX be the complex valued extended sheaf of locally integral currents of real codimension i on X, as
de�ned above. The complex I‚X is a soft resolution of Z. The integral Bott-Chern complex is quasi-isomorphic
to the following complex obtained by composing the natural inclusion of forms into currents:

Zppq ∆
ÝÑ σpD1X

‚
‘ σqD1X

‚
.

This morphism of complexes factorises into

Zppq Ñ I‚X
∆
ÝÑ σpD1X

‚
‘ σqD1X

‚
.

The morphism of complexes ∆ factorises itself into the composition of two maps : the �rst is the diagonal
map with positive sign on the �rst component and negative sign on the second component with image in
D1X

‚
‘ D1X

‚; the second map is the decomposition of locally integral currents into their components of
adequate bidegrees.

Since the �rst inclusion is a quasi-isomorphism in the derived category in DpShpXqq, the integral Bott-
Chern complex is quasi-isomorphic to Cone‚p∆qr´1s : I‚X

∆
ÝÑ σpD1X

‚
‘ σqD1X

‚
. Note that the push-forward

of currents and of the locally integral currents are both well-de�ned for a proper morphism. We also remark
that the rule df˚ “ f˚d holds for currents. Hence there exists a natural morphism of complexes on Y

f˚I‚X Ñ I‚´dY , f˚pσpD1X
‚
‘ σqD1X

‚
q Ñ σp´dD1Y

‚
‘ σq´dD1Y

‚
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which, as will be explained below, induces a cohomological group morphism

f˚ : Hp,q
BCpX,Zq Ñ Hp´d,q´d

BC pY,Zq.

Here, to de�ne the push-forward for cohomology classes, it is enough to de�ne it for global section repre-
sentatives; in fact, the complex I‚X is soft, which means any section over any closed subset can be extended
to a global section; a soft sheaf is in particular acyclic, thus the complex σpD1X

‚
‘ σqD1X

‚ is acyclic. The
hypercohomology of the integral Bott-Chern complex is just the cohomology of the global sections of the
mapping cone ∆. Now we de�ne the push-forward of a cohomology class as the push-forward of any of the
global currents representing the cohomology class. By construction, the pull-back and push-forward both
satisfy the functoriality property.

Notice that the use of a resolution of the locally constant sheaf Zppq seems to be necessary since a
priori we have only natural morphism in inverse direction H‚pY, f˚B‚p,q,Z,Xq ÝÑ H‚pX,B‚p,q,Z,Xq. The trace
morphism tr : f˚ZX Ñ ZY and the push forward of currents induces a morphism H‚pY, f˚B‚p,q,Z,Xq ÝÑ
H‚pY,B‚p,q,Z,Y q ifX,Y have the same dimension. It seems to be not easy to induces from these two morphisms
a morphism H‚pX,B‚p,q,Z,Xq ÝÑ H‚pY,B‚p,q,Z,Y q. If we take the quasi-isomorphic acyclic resolution involving
the locally integral currents, the hypercohomology of H‚pX,B‚p,q,Z,Xq is represented by global sections. Then
the restriction of the global section on the open sets induces a morphism H‚pX,B‚p,q,Z,Xq ÝÑ H‚pY, f˚B‚p,q,Z,Xq
in the desired direction. In this case, we have the following factorisation

H‚pX,B‚p,q,Z,Xq H‚pY, f˚B‚p,q,Z,Xq

H‚pY,B‚p,q,Z,Y r´2dsq

f˚

where d is the relative complex dimension. The vertical arrow is the morphism induced by pushing forward
currents, under the assumption that f is proper.

Commutativity can be checked directly. Let T be the global section representing a cohomology class in
H‚pX,B‚p,q,Z,Xq. Let pViqi be an open Stein covering of Y such that the hypercohomology class on Y can
be calculated by the hypercohomology associated with the open cover. We denote by tTiu the image of T
in H‚pY, f˚B‚p,q,Z,Xq by restriction on Vi. More precisely, Ti is the restriction of T on f´1pViq. Its image in
H‚pY,B‚p,q,Z,Y r´2dsq is tf˚Tiu, and those sections glue into a global section f˚T .

The de�nition of the push-forward of cohomology classes can also be interpreted more formally as follows.
In order to distinguish the di�erent morphisms of complexes, we denote by ∆X the map on X involving Zppq
and ∆̃X the map on X involving locally integral currents. The complex Conep∆̃Xq involving locally integral
currents is a soft complex. Since f is proper, f˚Conep∆̃Xq is a soft complex which means f˚Conep∆̃Xq “

Rf˚Conep∆Xq in DpShpY qq. We denote by aX (resp. aY ) the morphism from X (resp. Y ) to a point. The
push forward of currents induces a morphism of complexes in CpShpY qq: f˚Conep∆̃Xq Ñ Conep∆̃Y qr´2ds.
In other words, we have by composition a morphism in the derived category

Rf˚pConep∆Xqq Ñ Conep∆Y qr´2ds.

Taking RΓpY,´q “ RaY ˚ on both sides, and using the fact that RpaY ˝ fq˚ “ RaX˚ “ RaY ˚ ˝ Rf˚ (since
f˚ transforms soft complexes into soft complexes), we get f˚ : Hp,q

BCpX,Zq Ñ Hp´d,q´d
BC pY,Zq after taking

cohomology.
In the following, once we want to view the push forward of the cohomology groups as a morphism in the

cohomology level induced by a morphism of complexes, we use the above interpretation (for example, in the
proof of the projection formula).

In the case where f is analytic �bration, in the sense that f is a proper surjective morphism and all
�bres are connected, we can additionally de�ne a morphism from the push forward of the locally constant
sheaf ZX to the locally constant sheaf ZY , e.g. a morphism f˚ZX Ñ ZY . Any modi�cation f such as a
composition of blows-up with smooth centers is an example of an analytic �bration in the above setting.
We now use this morphism to prove that any modi�cation p yields an injective morphism p˚ between the
corresponding integral Bott-Chern cohomology groups.

In this case, for any connected open set V Ă Y , we have f˚ZXpV q “ ZXpf
´1pV qq where f´1pV q is a

connected open set, so it is enough to de�ne the morphism f˚ZX Ñ ZY by asserting that it associates the
constant function 1 on f´1pV q to the constant function 1 on V . In preparation for the next steps, we need
the following lemma.
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Lemma 6.11. For any algebraic �bration f : X Ñ Y , there is a commutative diagram

f˚ZX f˚I0
X

ZY I0
Y .

Proof. This is directly veri�ed on any connected open set V Ă Y . The map ZXpf´1pV qq Ñ I0
Xpf

´1pV qq
is given by associating the constant function 1 to the integral current rf´1pV qs associated with f´1pV q. The
image of the constant function 1 under ZXpf´1pV qq Ñ ZY pV q is the constant function 1 on V . The image
of the constant function 1 under ZY pV q Ñ I0

Y pV q is the integral current rV s associated with V which is also
the image of rf´1pV qs under f˚I0

XpV q Ñ I0
Y pV q. �

Using an identi�cation of the push forward of currents on X as currents on Y , we get the following
commutative diagram

f˚Conep∆Xq f˚Conep∆̃Xq

Conep∆Y qr´2ds Conep∆̃Y qr´2ds

with the above notations. Taking RaY ˚ and cohomology to the commutative diagram gives

H‚pY, f˚B‚p,q,Z,Xq H‚pX,B‚p,q,Z,Xq

H‚pY,B‚p,q,Z,Y r´2dsq H‚pY,B‚p,q,Z,Y r´2dsq.

f˚

id

In the case of a modi�cation, one can prove that f˚ is injective. This can be seen via the following

Lemma 6.12. For any modi�cation f : X Ñ Y , one has

f˚f
˚ “ id : H‚,‚BCpY,Zq Ñ H‚,‚BCpY,Zq.

Proof. Using the above commutative diagram, it is enough to show that for any open set V Ă Y and
any sheaf in the integral Bott-Chern complex one has the identity f˚f˚ “ id, so that the identity will hold
for any hypercocycle representing an integral Bott-Chern cohomology class.

Let A be an analytic set of X, Z be an analytic set of Y such that the map f |XrA : X rAÑ Y rZ is
biholomorphic. For any smooth form ω de�ned on V , we have f˚f˚ω “ ω. In fact, for any smooth form ω̃
with compact support in V , we can write

xf˚f
˚ω, ω̃y “ xf˚ω, f˚ω̃y “

ż

f´1V

f˚ω ^ f˚ω̃ “

ż

f´1VrA
f˚ω ^ f˚ω̃

“

ż

VrZ
ω ^ ω̃ “

ż

V

ω ^ ω̃ “ xω, ω̃y.

Here, the third and fourth equality hold since the integral of a smooth form on an analytic set of lower
dimension is 0 (such a set being of Lebesgue measure 0 in the relevant dimension).

For the locally constant sheaf Z, since the analytic �bration has connected �bres, a straightforward
argument yields f˚f˚ “ id.

In conclusion the composition of sheaf morphisms: B‚p,q,Z,Y Ñ f˚f
˚B‚p,q,Z,Y (given by the canonical map),

f˚f
˚B‚p,q,Z,Y Ñ f˚B‚p,q,Z,X (induced by pull-back of smooth forms) and f˚B‚p,q,Z,X Ñ B‚p,q,Z,Y (induced by

push-forward of currents) is the identity map. Notice that a priori, the image complex of the last morphism
should be the quasi-isomorphic complex involving currents instead of smooth forms. However, in the case of
a modi�cation, the push forward of a pull-back of a smooth form is still a smooth form. In particular, the
composition of sheaf morphisms

B‚p,q,Z,Y Ñ f˚f
˚B‚p,q,Z,Y Ñ f˚B‚p,q,Z,X Ñ B‚p,q,Z,Y

is the identity map. This shows that the canonical map B‚p,q,Z,Y Ñ f˚f
˚B‚p,q,Z,Y is an isomorphism.

Thus we have the following commutative diagram

H‚pY,B‚p,q,Z,Y q “ H‚pY, f˚f˚B‚p,q,Z,Y q H‚pY, f˚B‚p,q,Z,Xq

H‚pX, f˚B‚p,q,Z,Y q H‚pX,B‚p,q,Z,Xq.
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The vertical arrows are the canonical maps and the horizontal maps are given by pull-back of smooth forms.
Notice that the composition of

H‚pY,B‚p,q,Z,Y q – H‚pY, f˚f˚B‚p,q,Z,Y q Ñ H‚pY, f˚B‚p,q,Z,Xq Ñ H‚pX,B‚p,q,Z,Xq

is exactly the pull-back of cohomology classes. A comparison of this diagram with the diagram given before
the lemma concludes the proof. �

The above observation is in particular useful to de�ne the Chern class of a coherent sheaf on a complex
manifold, using the following fundamental lemma (cf. [GR70], [Hir64], [Rie71], [Ros68]).

Lemma 6.13. Let X be a complex compact manifold and F be a coherent analytic sheaf on X. There
exists a bimeromorphic morphism σ : X 1 Ñ X, which is a �nite composition of blow-ups with smooth centres,
such that σ˚F is locally free modulo torsion.

Using the same notations as in the lemma, we recall brie�y the strategy proposed by Grivaux [Gri10]
to de�ne the Chern classes of arbitrary coherent sheaf F on X. We force the equality

σ˚ chpFq :“
ÿ

i

p´1qi chpLiσ˚Fq

to be always veri�ed where Liσ˚ is the i-th left derived functor of σ˚. On the other hand, we also force the
equality

chpσ˚Fq “ chpσ˚F{Torsq ` chpTorsq

to be always veri�ed where Tors is the torsion part. We �rst de�ne the Chern classes for all the torsion
sheaves Liσ˚Fpi ě 1q and Tors as well as the Chern classes of the vector bundle σ˚F{Tors. Since σ˚ is
injective, we can thus de�ne chpFq to be the unique element such that these two equalities are veri�ed.

Since the support of a torsion sheaf is a proper analytic subset, we can perform an induction on the
dimension of the manifold to de�ne Chern classes of a torsion sheaf. Intuitively, using an appropriate version
of the Riemann-Roch-Grothendieck formula, one can construct Chern classes of a torsion sheaf over X 1 as a
direct image under a closed immersion of a certain polynomial in the Chern classes of a positive rank sheaf
over the support in X 1, and the normal bundle of that support.

The di�culty in de�ning Chern classes of an arbitrary coherent sheaf comes from the case where the
coherent sheaf is torsion, especially since the support of a torsion sheaf may be an analytic subset with
singularities, and not necessarily a submanifold. In order to make the construction, the results of [Gri10]
will be applied thoroughly.

By the fact that the pull back of a current is always well de�ned in the case of a submersion, one gets
the following proposition.

Proposition 6.2.1. Consider the commutative diagram below, where p, q are the projections on the �rst
factors

Y ˆ Z
� � iYˆZ //

p

��

X ˆ Z

q

��
Y �
� iY // X.

Assume Z to be compact and iY proper. Then one has q˚iY ˚ “ iYˆZ˚p
˚.

Proof. The point is that the pull-back of a current is well de�ned and commutes with the exterior
di�erential for a submersion, which is the case here. For any connected open set V Ă Y , we have the
following commutative diagram

ZY pV q
p˚//

��

ZYˆZpp
´1pV qq

��
I‚Y pV q

p˚// I‚YˆZpp´1pV qq

.

The vertical arrow is given by associating the constant 1 to the integral current associated with rV s (resp.
rp´1pV qs).

Passing to hypercohomology, inclusion of forms and constants B‚ into currents and locally integral
currents B̃‚ induces isomorphism on hypercohomology, so the morphisms of integral Bott-Chern cohomology
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groups induced by pulling back forms and pulling back currents are the same. In other words the commutative
diagram

p˚B‚Y p˚B̃‚Y

B‚YˆZ B̃‚YˆZ
induces in hypercohomology the commutative diagram

H˚pY,B‚Y q H˚pY, B̃‚Y q

H˚pY ˆ Z, p˚B‚Y q H˚pY ˆ Z, p˚B̃‚Y q

H˚pY ˆ Z,B‚YˆZq H˚pY ˆ Z, B̃‚YˆZq.

–

–

Here the terms containing a tilde indicate complexes involving currents, and the terms without tilde indicate
complexes involving locally constant sheaves or forms.

To prove the equality at the level of hypercohomology, it is thus enough to prove the equality at the
level of complexes with terms involving currents. In particular, we just take global representative and verify
the equality. The proof is reduced to checking that for any current T de�ned on Y , one has

q˚iY ˚T “ iYˆZ˚p
˚T.

By duality, this is equivalent to the fact that for any smooth form ω with compact support in X ˆ Z, one
has

i˚Y q˚ω “ p˚i
˚
YˆZω.

This is indeed trivial, if we observe that p˚ and q˚ are just integration along the second factor. The integrals
are �nite by the assumption that Z is compact. �

The directions of arrows can also be reversed; this is exactly Axiom B (2). For complex Bott-Chern
cohomology, the formula is valid, since the cohomology class can be represented by global smooth forms and
since the push forward of global forms under the projection is just the integration over the second component,
which commutes with the restriction on the corresponding (smooth) submanifold.

Lemma 6.14. Consider the commutative diagram below, where p, q are the projections onto the �rst
factors

Y ˆ Z
� � iYˆZ //

p

��

X ˆ Z

q

��
Y �
� iY // X.

Assume Z to be compact. Then one has in complex Bott-Chern cohomology an equality i˚Y q˚ “ p˚i
˚
YˆZ .

To prove the case of integral coe�cients, we need a relative version of pull back and push forward
for cohomology classes. To do this, we recall some de�nitions of derived categories. For a more complete
description, we refer to [KS02]. We start with the de�nition of a relative soft sheaf.

Definition 6.15. Let f : X Ñ Y be a continuous proper morphism between topological spaces and F be
a sheaf of abelian groups on X. Then we say that F is f -soft if for any y P Y , F |f´1pyq is soft.

In general, to de�ne Rf˚ (or some right derived functor), one can take any f˚-injective resolution (or
any relative injective resolution). In particular, we do not need to take an injective resolution (which is the
key point of Axiom B (2)). We verify that a f -soft resolution gives a f˚-injective resolution.

Definition 6.16. (De�nition 1.8.2 in [KS02]) Let F : C Ñ C1 be an additive functor between abelian
categories. A full additive subcategory S of C is called injective with respect to F if

(1) for any X P ObpCq there exists X 1 P ObpSq and an exact sequence 0 Ñ X Ñ X 1.
(2) For any exact sequence 0 Ñ X 1 Ñ X Ñ X2 Ñ 0 in C, if X 1, X P ObpSq then X2 P ObpSq.
(3) For any exact sequence 0 Ñ X 1 Ñ X Ñ X2 Ñ 0 in C, if X 1, X,X2 P ObpSq then we have exact

sequence
0 Ñ F pX 1q Ñ F pXq Ñ F pX2q Ñ 0.
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Lemma 6.17. The subcategory formed by f -soft modules in CpShpXqq is injective with respect to f˚ for
f proper.

Proof. It is a variant version of Proposition 2.5.10 in [KS02]. We give the proof in the relative case.
Since any soft module is f -soft by de�nition and the subcategory formed by soft modules has enough

injective element i.e. it satis�es condition 1, the subcategory formed by f -soft modules in CpShpXqq also
satis�es condition 1. Notice that since f is proper, for any y P Y , f´1pyq is compact hence closed.

Condition 2 is a direct consequence of exercice II.10 in [KS02]. It says that for any exact sequence
of ZX modules 0 Ñ F 1 Ñ F Ñ F 2 Ñ 0 with F, F 1 f -soft and for any y P Y , the hypothesis that
0 Ñ F 1|f´1pyq Ñ F |f´1pyq Ñ F 2|f´1pyq Ñ 0 is exact implies that F 2|f´1pyq is soft. In particular, F 2 is
f -soft.

Now, we prove condition 3, i.e. that if 0 Ñ F 1 Ñ F Ñ F 2 Ñ 0 is an exact sequence of f -soft module,
then there is an exact sequence

0 Ñ f˚F
1 Ñ f˚F Ñ f˚F

2 Ñ 0.

Let y P Y , we want to check that for any s2 P Γpf´1pyq, F 2q there exists s P Γpf´1pyq, F q whose image is s2.
Notice that since f is proper the functors f˚ and f! are the same. By the base change theorem (proposition
2.5.2 in [KS02]), we have

pf˚F qy – Γpf´1pyq, F |f´1pyqq.

Let Ki be a �nite covering of f´1pyq by compact subsets such that there exists si P ΓpKi, F q whose image is
s2|Ki . This is possible from the assumption that F P F 2 is surjective and the fact that f´1pyq is compact.
Let us argue by the induction on the index of the covering to adjust the si's such that si's glue to a global
section. For n ě 2, on p

Ť

iďn´1Kiq X Kn, we have s11 the glued section constructed by induction and
s2 P ΓpKn, F q. Hence s11 ´ s2 P Γpp

Ť

iďn´1Kiq X Kn, F
1q which extends to s1 P Γpf´1pyq, F 1q since F 1 is

f -soft. Replacing s2 by s2 ` s
1 we may assume that

s11|p
Ť

iďn´1KiqXKn
“ s2|p

Ť

iďn´1KiqXKn
.

Therefore after �nite times induction, there exists s P Γpf´1pyq, F q such that s|Ki “ si.
(Notice that condition 2 can be deduced from condition 3 by the following commutative diagram. Let

K be a closed subset of f´1pyq. We have

Γpf´1pyq, F q Γpf´1pyq, F 2q

ΓpK,F q ΓpK,F 2q.

The fact that the bottom and left arrow are surjective implies that the right arrow is surjective.) �

We also need the following lemma (Lemma 3.1.2) in [KS02].

Lemma 6.18. Let f : X Ñ Y be a continuous map of locally compact spaces and K be a �at and f -soft
ZX module. For any sheaf G on X, GbZX K is f -soft.

This lemma entails the following useful corollary.

Corollary 6.19. Let X,Z be two complex manifolds with Z compact. Let F ‚ be a �at complex (of
sheaves of abelian groups) over X and G‚ be a soft and �at complex over Z. Then F ‚bG‚ is �at and q-soft
with respect to q : X ˆ Z Ñ X.

Proof. The �atness part is from the fact that for abelian groups �atness is equivalent to torsion-freeness.
For any x P X we have F ‚ bG‚|txuˆZ “ F ‚x bZZ G

‚ which, by the lemma, is q-soft. �

Now, we are prepared for the proof of Axiom B (2).

Proposition 6.2.2. Consider the following commutative diagram where p, q are the projections on the
�rst factors

Y ˆ Z �
� iYˆZ //

p

��

X ˆ Z

q

��
Y �
� iY // X

Assume Z to be compact. Then one has in integral Bott-Chern cohomology an equality i˚Y q˚ “ p˚i
˚
YˆZ .
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Proof. The idea is to use a resolution on X ˆZ formed by pulling back a resolution involving smooth
forms on X, and tensoring with the pull back of a resolution involving currents on Z. This gives a q-soft
resolution, and an explicit method to calculate Rq˚, via corollary 6.19.

Let U be an open covering of X formed by geodesic balls with small enough radius such that any �nite
intersection of such balls are di�eomorphic to euclidean ball. Therefore, the total complex of the �ech
complex Č‚pU ,ZXq gives a resolution of ZX by the Leray theorem. It is a �at complex on X since all terms
are torsion free. Also, I‚Z is a �at and soft resolution of ZZ on Z.

By the corollary, Č‚pU ,ZXqb I‚Z is a q-soft resolution of ZXˆZ “ ZX b ZZ on X ˆ Z.
Now we perform a similar construction for the sheaves of smooth forms. The sheaves C‚,‚8 on XˆZ can

be viewed as �at ZX modules and ZZ modules. Thus we have

C‚,‚8 – C‚,‚8 bZX Č
‚pU ,ZXq – C‚,‚8 bLZX ZX .

Similarly we have
C‚,‚8 – C‚,‚8 bZZ I‚Z – C‚,‚8 bLZZ ZZ .

Therefore, the integral Bott-Chern complex on X ˆ Z in the derived category is quasi-isomorphic to

B‚Z,XˆZ – ConepČ‚pU ,ZXqb I‚Z Ñ σp,‚C
‚,‚
8 bZX Č

‚pU ,ZXq bZZ I‚Z ‘ σ‚,qC‚,‚8 bZX Č
‚pU ,ZXq bZZ I‚Zqr´1s

with the natural inclusion morphism which is q-soft. Notice that the sheaves of smooth forms on X ˆZ are
also q-soft. In particular, we have

Rq˚pB‚Z,XˆZq – q˚pConepČ‚pU ,ZXqb I‚Z Ñ σp,‚C
‚,‚
8 ‘ σ‚,qC

‚,‚
8 qr´1sq

where C‚,‚8 means in fact C‚,‚8 bZX Č‚pU ,ZXq bZZ I‚Z . In the following of the proof, we always use this
simpli�ed notation. We have morphisms in the derived category DpShpXqq

Č‚pU ,ZXq
„
ÐÝ ZX

„
ÝÑ I‚X .

We also have a morphism q˚pr˚2I‚Z Ñ q˚I‚XˆZ Ñ I‚X . It induces a morphism q˚pČ
‚pU ,ZXq b I‚Zq Ñ

Č‚pU ,ZXq. We have commutative diagrams

q˚pZ‚X b I‚Zq q˚pČ
‚pU ,ZXqb I‚Zq

Z‚X Č‚pU ,ZXq,„

q˚pZ‚X b I‚Zq q˚pI‚XˆZq

Z‚X I‚X .
„

On the other hand, since q is a submersion, we have a canonical morphism q˚pC
‚,‚
8 q Ñ C‚´n,‚´n8 where

n “ dimCZ. Thus we get a morphism

q˚pConepČ‚pU ,ZXqb I‚Z Ñ σp,‚C
‚,‚
8 ‘ σ‚,qC

‚,‚
8 qr´1sq Ñ ConepČ‚´2npU ,ZXq

Ñ σp´n,‚´nC
‚,‚
8 ‘ σ‚´n,q´nC

‚,‚
8 qr´1s.

Passing to hypercohomology, this morphism induces the push forward of integral Bott-Chern cohomology
by q. The above commutative diagrams show that the push forward of cohomology classes de�ned in this
way coincides with the previous one. This yields two ways of de�ning the same map Rq˚ZXˆZ Ñ ZX .

Since this resolution is �at, we can also use it to de�ne the pull back of cohomology classes. More precisely,
one can de�ne the pull-back of cohomology class for a projection as follows. Since iYˆZ “ piY , idZq, one has

i˚YˆZ : ConepČ‚pU ,ZXqb I‚Z Ñ σp,‚C
‚,‚
8 ‘ σ‚,qC

‚,‚
8 qr´1s Ñ ConepČ‚pU X Y,ZY qb I‚Z

Ñ σp,‚C
‚,‚
8 ‘ σ‚,qC

‚,‚
8 qr´1s

induced by pulling back forms and pulling back currents. Here idZ is a submersion, so the pull back of
currents is well de�ned (and is in fact the identity!). Passing to hypercohomology, we get another way of
de�ning i˚YˆZ for integral Bott-Chern cohomology. We next check that these two de�nitions coincide. The
inclusion ZZ Ñ I‚X induces a commutative diagram

ZXˆZ “ ZX b ZZ ZYˆZ “ ZY b ZZ

Č‚pU ,ZXqb I‚Z Č‚pU X Y,ZY qb I‚Z .

i˚YˆZ

i˚YˆZ

This commutative diagram implies that the two de�nitions of pull back coincide.
Similar arguments show that the pull back by i˚Y and the push forward by p˚ can be de�ned using the

corresponding resolutions. Since the resolution is relative soft with respect to p or q, the hypercohomology
can be represented by global sections. The sections are formed by currents and forms on the open set of
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UˆZ or pUXY qˆZ for some open set U of X which is some intersection of the open sets in the cover U . The
equality asserted in the proposition is satis�ed for such forms and currents. This concludes the proof. �

6.3. Multiplication of the Bott-Chern cohomology ring

In this section, we discuss a natural ring structure of the integral Bott-Chern cohomology and we verify
the projection formula (Axiom B(1)). Some calculation of this part is borrowed from an unpublished work
of Junyan Cao.

The complex Bott-Chern cohomology is represented by global di�erential forms. The exterior product
of forms induces the multiplication of cohomology classes. To de�ne a multiplication of integral Bott-
Chern cohomology which preserves the ring structure under the canonical map from the integral Bott-Chern
cohomology to the complex Bott-Chern cohomology, we start by de�ning a modi�ed version of multiplication
of Deligne cohomology. Recall that the integral Deligne complex Dppq‚ is the complex in CpShpXqq

Zppq Ñ O Ñ Ω1 Ñ ¨ ¨ ¨ Ñ Ωp´1 Ñ 0.

The integral Deligne complex admits a multiplication structure as follows.

Y : Dppq‚ bZX Dpqq‚ Ñ Dpp` qq‚

xY y “

$

’

&

’

%

x ¨ y, if deg pxq “ 0

x^ dy, if deg pxq ą 0 and degpyq “ p

0, otherwise.

Y is a morphism of ZX -module sheaf complexes by a direct veri�cation. A modi�ed version of multiplication
is given in the following de�nition.

Definition 6.20. For the integral Deligne complex, we de�ne

Y : Dppq‚ bZX Dpqq‚ Ñ Dpp` qq‚

xY y “

$

’

&

’

%

x ¨ y, if deg pyq “ 0

p´1qpdx^ y, if deg pyq ą 0 and degpxq “ p

0, otherwise.

We verify that Y yields a well de�ned morphism of complexes, namely that

dpxY yq “ dxY y ` p´1qdegpxqxY dy.

Notice that for x P Dppqi with i ą 0, x is a pi´ 1, 0q-form, and not a pi, 0q-form. This is frequently used in
the following calculations.
If degpyq “ 0,degpxq ă p, dpxY yq “ dpyxq “ ydx, dxY y ` p´1qdegpxqxY dy “ ydx` 0 “ ydx.
If degpyq “ 0,degpxq “ p, dpxY yq “ dpyxq “ ydx, dxY y ` p´1qdegpxqxY dy “ 0Y y ` dx^ y “ ydx.
If degpyq ą 0,degpxq “ p, dpxYyq “ dpp´1qpdx^yq “ dx^dy, dxYy`p´1qdegpxqxYdy “ 0Yy`dx^dy “
dx^ dy. (x is a pp´ 1, 0q-form here.)
If degpyq “ 0,degpxq “ p´ 1, dpxY yq “ 0, dxY y ` p´1qdegpxqxY dy “ p´1qpddx^ y ` 0 “ 0.
In the other cases, both sides are 0.

Remark 6.21. For the de�nition of multiplication in the integral Bott-Chern complex, we need a mod-
i�ed Deligne complex where we change the signs. To be more precise, we consider the complex

Zppq ´1
ÝÝÑ O Ñ Ω1 Ñ ¨ ¨ ¨ Ñ Ωp´1 Ñ 0.

In this case, we de�ne the multiplication as follows:

xY y “

$

’

&

’

%

x ¨ y, if deg pyq “ 0

p´1qp´1dx^ y, if deg pyq ą 0 and degpxq “ p

0, otherwise.

The veri�cation is similar. In the second case x Y dy “ p´1qp´1dx ^ dy “ p´1qpydx since dy “ ´y in this
case. The third and fourth cases consist of changing just a sign on both sides of the equations.

Proposition 6.3.1. The multiplication is associative and homotopy graded-commutative. Thus, it in-
duces a structure of an anti-commutative ring with unit on the integral Deligne cohomology.
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Proof. Considering α P Dppq‚, α̃ P Dpp1q‚ and deg pαq “ i, deg pα̃q “ j, we prove the formula

p´1qijαY α̃ “ α̃Y α` pdH `Hdqpα̃b αq.

Here d is the di�erential of Dppq‚bDpp1q‚, and dpαbβq is de�ned by dpαbβq “ d αbβ`p´1qdegpαqαbd β.
The modi�ed homotopy operator H is de�ned by: Hpα̃ b αq “ p´1qj´1α̃ ^ α, if i ‰ 0, j ‰ 0. Otherwise,
Hpα̃b αq “ 0. We prove it by a direct veri�cation, case by case:

(1) i “ j “ 0: p´1qijαY α̃ “ αα̃, α̃Y α “ αα̃, pdH `Hdqpα̃b αq “ 0.
(2) i “ 0, j ą 0: α Y α̃ “ 0, α̃ Y α “ α̃ ^ α, pdH `Hdqpα̃ b αq “ d0 `Hpdα̃ b α ` p´1qjα̃ b dαq “

p´1qj`j´1α̃^ dα “ ´α̃^ α. Here we use dα “ α, if degα “ 0.
(3) j “ 0, i ą 0: αYα̃ “ α̃^α, α̃Yα “ 0, pdH`Hdqpα̃bαq “ Hpdα̃bα`α̃bdαq “ dα̃^α`0 “ α̃^α.
(4) p1 ą j ą 0, p ą i ą 0:

αY α̃ “ α̃Y α “ 0,

pdH `Hdqpα̃b αq “ dpp´1qj´1α̃^ αq `Hpp´1qjα̃b dα` dα̃b αq

“ p´1qj´1dα̃^ α` p´1qj´1`j´1α̃^ dα` p´1qj`1´1dα̃^ α` p´1qj`j´1α̃^ dα “ 0.

The second line uses the fact that dα̃ is a pj, 0q-form.
(5) j “ p1, p ą i ą 0:

αY α̃ “ 0, α̃Y α “ p´1qp
1

dα̃^ α,

pdH `Hdqpα̃b αq “ dpp´1qj´1α̃^ αq `Hpdα̃b α` p´1qjα̃b dαq

“ p´1qj´1dα̃^ α` α̃^ dα` p´1qj`j´1α̃^ dα “ p´1qp
1
´1dα̃^ α.

The second line uses the fact that dα̃ is a pj, 0q-form and that dα̃ “ 0 in Dpp1q‚.
(6) i “ p, p1 ą j ą 0: the veri�cation is similar to the previous case.
(7) i “ p, j “ p1:

αY α̃ “ p´1qpdα^ α̃, α̃Y α “ p´1qp
1

dα̃^ α,

pdH `Hdqpα̃b αq “ dpp´1qj´1α̃^ αq `Hp0q “ p´1qj´1dα̃^ α` p´1qj´1`j´1α̃^ dα.

For the equality, it remains to see that

p´1qidα^ α̃ “ p´1qijα̃^ dα.

This is true since i “ ipj ´ 1q ` ijmod 2.

The associativity is also checked by a direct calculation. Let x P Dppq‚, y P Dpp1q‚, z P Dpp2q‚. Then
(1) if deg z “ deg y “ 0, xY py Y zq “ pxY yq Y z “ xyz.
(2) if deg z “ 0, deg y ą 0, deg x “ p, xY py Y zq “ pxY yq Y z “ p´1qpdx^ yz.
(3) if deg z ą 0, deg y “ p1, deg x “ p, x Y py Y zq “ x Y pp´1qp

1

dy ^ zq “ p´1qp`p
1

dx ^ dy ^ z “

px Y yq Y z “ pp´1qpdx ^ yq Y z “ p´1qp`p`p
1

dpdx ^ yq ^ z “ p´1qp`p
1

dx ^ dy ^ z since dx is a
pp, 0q form.

(4) otherwise, the product is 0.

�

Remark 6.22. Similarly, for the integral Bott-Chern cohomology, the modi�ed Deligne complex admits
a homotopy operator de�ned by: Hpα̃ b αq “ p´1qjα̃ ^ α, if i ‰ 0, j ‰ 0. Otherwise, Hpα̃ b αq “ 0. We
also have the equality:

p´1qijαY α̃ “ α̃Y α` pdH `Hdqpα̃b αq.

We prove it again by a direct calculation case by case:

(1) i “ j “ 0: p´1qijαY α̃ “ αα̃, α̃Y α “ αα̃, pdH `Hdqpα̃b αq “ 0.
(2) i “ 0, j ą 0: α Y α̃ “ 0, α̃ Y α “ α̃ ^ α, pdH `Hdqpα̃ b αq “ d0 `Hpdα̃ b α ` p´1qjα̃ b dαq “

p´1qj`jα̃^ dα “ ´α̃^ α. Here we use dα “ ´α, if degα “ 0.
(3) j “ 0, i ą 0: αYα̃ “ α̃^α, α̃Yα “ 0, pdH`Hdqpα̃bαq “ Hpdα̃bα`α̃bdαq “ ´dα̃^α`0 “ α̃^α.

The last equality uses dα “ ´α, if degα “ 0.
(4) p1 ą j ą 0, p ą i ą 0:

αY α̃ “ α̃Y α “ 0,

pdH `Hdqpα̃b αq “ dpp´1qjα̃^ αq `Hpp´1qjα̃b dα` dα̃b αq

“ p´1qjdα̃^ α` p´1qj`j´1α̃^ dα` p´1qj´1dα̃^ α` p´1qj`jα̃^ dα “ 0

The second line uses the fact that dα̃ is pj, 0q-form.
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(5) j “ p1, p ą i ą 0:
αY α̃ “ 0, α̃Y α “ p´1qp

1
´1dα̃^ α,

pdH `Hdqpα̃b αq “ dpp´1qjα̃^ αq `Hpdα̃b α` p´1qjα̃b dαq

“ p´1qjdα̃^ α´ α̃^ dα` p´1qj`jα̃^ dα “ p´1qp
1

dα̃^ α.

The second line uses the fact that dα̃ is pj, 0q-form and that dα̃ “ 0 in Dpp1q‚.
(6) i “ p, p1 ą j ą 0: the veri�cation is similar to the previous case.
(7) i “ p, j “ p1:

αY α̃ “ p´1qp´1dα^ α̃, α̃Y α “ p´1qp
1
´1dα̃^ α,

pdH `Hdqpα̃b αq “ dpp´1qjα̃^ αq `Hp0q “ p´1qp
1

dα̃^ α` p´1qp
1
`p1´1α̃^ dα.

For the equality, it remains to see that

p´1qi´1dα^ α̃ “ p´1qij´1α̃^ dα.

This is true as above since i “ ipj ´ 1q ` ijmod 2.

Once we have de�ned a morphism from a tensor product of two complexes to another complex. It
naturally induces a product on the hypercohomology class. For self-containedness, we recall the construction.

Definition 6.23. Consider two complexes of sheaves A‚,B‚, such that there exists a multiplication
denoted by Y: A‚bZB‚ Ñ C‚, αbβ ÞÑ αYβ satisfying the relation dpαYβq “ pdαqYβ`p´1qdegpαqαYdβ.
Then one can de�ne a product between H‚pA‚q and H‚pB‚q as follows: let β P ČkpAlq and β̃ P Čk

1

pBl1q
(where � means �ech hypercocycle). One de�nes a �ech hypercocycle β ¨ β̃ P Čk`k

1

pCl`l1q by

pβ ¨ β̃qj0...jk`k1 :“ p´1qk¨l
1

βj0...jk Y β̃jk...jk`k1 .

We next check the derivation relation:

δ̌δpβ ¨ β̃q “ pδ̌δβq ¨ β̃ ` p´1qk`lβ ¨ pδ̌δβ̃q

where δ̌δβ “ p´1qlδβ ` dβ, δ is the �ech di�erential. By de�nition we have

δ̌δpβ ¨ β̃q “ p´1qk¨l
1

δ̌δpβ Y β̃q “ p´1qk¨l
1

pp´1ql`l
1

δpβ Y β̃q ` dpβ Y β̃qq

“ p´1qk¨l
1

p´1ql`l
1

pδβ Y β̃ ` p´1qkβ Y δβ̃q ` p´1qk¨l
1

pdβ Y β̃ ` p´1qlβ Y dβ̃q.

pδ̌δβq ¨ β̃ ` p´1qk`lβ ¨ pδ̌δβ̃q “ p´1qpk`1ql1p´1qlpδβq Y β̃ ` p´1qk¨l
1

dβ Y β̃

`p´1qk¨l
1

p´1qk`lβ Y p´1ql
1

δβ̃ ` p´1qkpl
1
`1qp´1qk`lβ Y dβ̃.

The multiplicative structure on the integral Deligne complex induces a multiplicative structure on the integral
Bott-Chern complex as follows. We denote εD the canonical morphism of complexes from the integral Bott-
Chern complex B‚p,q,Z to the integral Deligne complex Dppq‚. We denote εD the canonical morphism of
complexes from the integral Bott-Chern complex B‚p,q,Z to the modi�ed conjugated integral Deligne complex

Dpqq‚ :“ 0 Ñ Zpqq ´1
ÝÝÑ OX Ñ ¨ ¨ ¨ Ñ Ωq´1

X Ñ 0 with a multiplication of p2πiqq´p at degree 0. The modi�ed
multiplication of modi�ed integral Deligne complex in the remark 6.22 induces a multiplication of modi�ed
conjugated integral Deligne complex. These two canonical maps induce a multiplicative structure on the
integral Bott-Chern complex as follows. Let y1, y2 be two elements of Dppqi,Dpqqi over the same open set
for some i. If i “ 0, there exists a unique element x of B0

p,q,Z such that εDpxq “ y1 and εDpxq “ y1 if and
only if they satisfy y2 “ p2πiqq´py1. The existence of the unique element is trivial for all positive degree.
Hence we can de�ne the multiplication xY x1 of two elements x, x1 of Bip,q,Z and Bjp1,q1,Z respectively just to
be the unique element such that εDpxYx1q “ xYx1 and εDpxYx1q “ xYx1 with the cup product of Deligne
complex and the modi�ed cup product of modi�ed conjugated Deligne complex respectively. At degree 0,
the multiplication is just the multiplication of the two integer at degree 0 up to a constant satisfying the
compatible condition. Therefore the multiplication of the integral Bott-Chern complex is well-de�ned. In
conclusion, the cup product of the complex is given explicitly by the following de�nition.

Definition 6.24. Let w, w̃ be two elements of the complex B‚p,q bZ B‚p1,q1 , and let us use the following
diagrams to denote the elements w, w̃ of mixed degrees

w “

ˆ

c,
u0,0, . . . , up´1,0

v0,0, . . . . . . , v0,q´1

˙

, w̃ “

ˆ

c̃,
ũ0,0, . . . . . . . . . , ũp

1
´1,0

ṽ0,0, . . . , ṽ0,q1´1

˙

.

For instance, at degree 0, we denote w by c, at degree 1, we denote w by pu0,0, v0,0q etc. With the same
notation, the cup product w Y w̃ is represented by the diagram

ˆ

c^ c̃,
c^ ũ0,0 , . . . . . . . . . , c^ ũp

1
´1,0 , u0,0 ^ Bũp

1
´1,0 , . . . , up´1,0 ^ Bũp

1
´1,0

v0,0 ^ c̃ , . . . , v0,q´1 ^ c̃ , p´1qq´1Bv0,q´1 ^ ṽ0,0 , . . . . . . , p´1qq´1Bv0,q´1 ^ ṽ0,q1´1

˙

.
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The cup product of integral Bott-Chern cohomology is given explicitly by the following diagram.

Definition 6.25. Let w, w̃ be two representatives of hypercocycles of the complex B‚p,q bZ B‚p1,q1 , and let
us use the following diagrams to denote the elements w, w̃

w “

ˆ

c,
u0,0, . . . , up´1,0

v0,0, . . . . . . , v0,q´1

˙

, w̃ “

ˆ

c̃,
ũ0,0, . . . . . . . . . , ũp

1
´1,0

ṽ0,0, . . . , ṽ0,q1´1

˙

.

For instance, at degree 0, we denote by c an element in Čp`qpB0
p,qq, at degree 1, we denote by pu0,0, v0,0q an

element in Čp`q´1pB1
p,qq etc. With the same notation, the cup product w Y w̃ is represented by the diagram

ˆ

c^ c̃,
ε0,˚c^ ũ0,0 , . . . . . . . . . , εp

1
´1,˚c^ ũp

1
´1,0 , εp

1,˚u0,0 ^ Bũp
1
´1,0 , . . . , εp`p

1
´1,˚up´1,0 ^ Bũp

1
´1,0

ε˚,0v0,0 ^ c̃ , . . . , ε˚,q´1v0,q´1 ^ c̃ , ε˚,qBv0,q´1 ^ ṽ0,0 , . . . . . . , ε˚,q`q
1
´1Bv0,q´1 ^ ṽ0,q1´1

˙

.

The signs εR,˚,ε˚,S are given as follows:

εR,˚ “

#

p´1qpp`qqpR`1q, ifR ď p1 ´ 1

p´1qp
1
pR`p`qq, ifR ě p1

ε˚,S “

#

1, ifS ď q ´ 1

p´1qpS`pp`1qpq`1q, ifS ě q
.

Notice that this cup product is just the cup product de�ned in [Sch07]. Let us also notice that there
exists a more obvious natural product structure on the complex Bott-Chern cohomology induced by the
wedge product of forms. The signs in the cup product de�ned in [Sch07] are exactly taken in such a way
that the two products coincide under the natural morphism. The natural inclusion of the integral Bott-Chern
complex into the complex Bott-Chern complex induces a ring morphism in hypercohomology. The morphism
of complexes εD also induces a ring morphism in hypercohomology.

Proposition 6.3.2. The multiplication is anti-commutative. Thus, it induces a structure of an anti-
commutative ring with unit on the integral Bott-Chern cohomology.

Proof. As for Deligne cohomology, there is a natural homotopy operator. We identify the degree 0 sheaf
in the integral Bott-Chern class Zppq with a subsheaf of Zppq ‘ Zpqq via the map 1 ÞÑ p1, p2πiqq´pq. In this
way, we can include the integral Bott-Chern complex into the direct sum of the integral Deligne cohomology
and the (modi�ed) conjugate integral Deligne complex. We de�ne H : B‚p,q,Z bZX B‚p1,q1,Z Ñ B‚p`p1,q`q1,Z by
the formula for any element ϕi “ pai, biq P Bip,q,Z, ψj “ pa1j , b1jq P B

j
p1,q1,Z,

Hpϕi b ψjq :“

#

pp´1qiai ^ bj , p´1qja1i ^ b1jq, if i ‰ 0, j ‰ 0

0, otherwise.

This is well de�ned since at degree 0, the homotopy operator is 0 map. We have checked that

p´1qijψj Y ϕi “ ϕi Y ψj ` pdH `Hdqpϕi b ψjq.

Therefore, passing to hypercohomology, we have de�ned an anti-commutative ring structure on the integral
Bott-Chern cohomology. For reference, the formulas for the homotopy operator of the integral Deligne
complex can be found in [EV88]. �

We write ϕ ¨ψ for the multiplication of cohomology classes. There exists also another description of cup
product following [EV88] by introducing the Deligne-Beilinson complex. In this way, the projection formula
can be expressed more formally.

We start by recalling the Deligne-Beilinson complex in [EV88]. The advantage of the Deligne-Beilinson
complex is that the multiplication is either 0 or weight product of two forms. When changing the complex
involving forms by the complex involving currents, it becomes clearer what the sign should be.

Definition 6.26. The Deligne-Beilinson complex is

Appq‚ “ ConepZppq ‘ F pΩ‚X
ε´`
ÝÝÑ Ω‚Xqr´1s

where ε, ` are the natural maps and F pΩ‚X the stupid �ltration.

By the following easy lemma in [EV88], we know that the Deligne-Beilinson complex is quasi-isomorphic
to the Deligne complex.

Lemma 6.27. Let u1 : A‚1 Ñ B‚ and u2 : A‚2 Ñ B‚ be two morphisms of complexes and C‚ “ ConepA‚1‘

A‚2
u1´u2
ÝÝÝÝÑ B‚qr´1s. Then

C‚ “ ConepA‚1
u1
ÝÑ ConepA‚2

´u2
ÝÝÝÑ B‚qqr´1s.
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Proof. Both complexes are equal to A‚1 ‘A
‚
2 ‘B

‚r´1s with the di�erential

pa1, a2, bq ÞÑ ´p´da1,´da2, u1pa1q ´ u2pa2q ` dbq.

�

A quasi-isomorphism α : Dppq‚ Ñ Appq‚ can be given by

Zppq OX ¨ ¨ ¨ Ωp´2 Ωp´1 0

Zppq OX ¨ ¨ ¨ Ωp´2 Ωp ‘ Ωp´1 Ωp`1 ‘ Ωp ¨ ¨ ¨

α0 α1
αp´1 αp

´ε ´δ1 ´δp´1 ´δp

with αppωq “ p´1qppdω, ωq and αipωq “ p´1qiω. The symbol δ denotes the di�erential of the mapping cone,
where in particular

δp´1pηq “ p0, dηq, δppψ, ηq “ p´dψ,´ψ ` dηq.

The mapping cone has a negative sign, by the convention that for a complex A‚, the complex A‚rds has a
di�erential in degree n de�ned by p´1qddn´d. The cup product of the Deligne-Beilinson complex is de�ned
as follows. We set

Y0 : Appq‚ bZX Apqq
‚ Ñ App` qq‚

xY0 y “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x ¨ y, if x P Zppq, y P Zpqq
x ¨ y, if x P Zppq, y P Ω‚

x^ y, if x P F pΩ‚, y P F qΩ‚

x^ y, if x P Ω‚, y P F qΩ‚

0, otherwise.

A direct veri�cation shows that the diagram

Dppq‚ bZX Dpqq‚ Dpp` qq‚

Appq‚ bZX Apqq
‚ App` qq‚

Y

αbα α

Y0

is commmutative and that Y0 is a morphism of complexes (cf. [EV88]). Since α is a quasi-isomorphism, we
have a ring isomorphism at the level of hypercohomology.

For the analogue in the Bott-Chern case, we start by the modi�ed cup product of Deligne-Beilinson
complex. In this case, the cup product is de�ned as follows. We set

Y0 : Appq‚ bZX Apqq
‚ Ñ App` qq‚

xY0 y “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x ¨ y, if x P Zppq, y P Zpqq
x ¨ y, if x P Ω‚, y P Zppq
x^ y, if x P F pΩ‚, y P F qΩ‚

p´1qdegpxqx^ y, if x P F pΩ‚, y P Ω‚

0, otherwise.

The product can be described by the following table

aq fq ωq
ap ap ¨ aq 0 0

fp 0 fp ^ fq p´1qdegpfpqfp ^ ωq
ωp ωp ¨ aq 0 0

representing elements of
Zpqq F qΩ‚ Ω‚

Zppq Zpp` qq 0 0
F pΩ‚ 0 F p`qΩ‚ Ω‚

Ω‚ Ω‚ 0 0

.

We verify that the cup product Y0 is a morphism of complexes, i.e. that

dpxY0 yq “ dxY0 y ` p´1qdegpxqxY0 dy.
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Both sides of the equation can be represented by the following table

aq fq ωq
ap ap ¨ aq 0 0

fp 0 p´dfp ^ fq ´ p´1qdegpfpqfp ^ dfq,´fp ^ fqq p´1qdegpfpqdfp ^ ωq ` fp ^ dωq
ωp dωp ¨ aq 0 0

.

The second line is calculated as follows:

p´dfp,´fpq Y0 aq ` p´1qdegpfpqfp Y0 aq “ ´fp ^ aq ` p´1q2 degpfpqfp ^ aq “ 0,

p´dfp,´fpqY0fq`p´1qdegpfpqfpY0 p´dfq,´fqq “ p´dfp^fq`p´1qdegpfpqfp^p´fqq, p´1q2 degpfpqfp^p´fqqq,

p´dfp,´fpq Y0 ωq ` p´1qdegpfpqfp Y0 dωq “ p´1qdegpfpq`1p´dfpq ^ ωq ` p´1q2 degpfpqfp ^ dωq.

We now verify that the map from Deligne complex to Delinge-Beilinson complex is also commutative under
the modi�ed cup product.
If degpyq “ 0,degpxq ă p, αpxYyq “ αpxyq “ p´1qdegpxqxy, αpxqY0αpyq “ p´1qdegpxqxY0 y “ p´1qdegpxqxy.
If degpyq “ 0,degpxq “ p, αpx Y yq “ αpxyq “ p´1qdegpxqxy, αpxq Y0 αpyq “ p´1qdegpxqpdx, xq Y0 y “
p´1qdegpxqxy.
If 0 ă degpyq ă q,degpxq “ p, αpx Y yq “ αpp´1qpdx ^ yq “ p´1qdegpxq`degpyq`pdx ^ y, αpxq Y0 αpyq “
p´1qdegpxqpdx, xq Y0 p´1qdegpyqy “ p´1qdegpxq`degpyq`pdx^ y.
If degpyq “ q,degpxq “ p, αpxYyq “ αpp´1qpdx^yq “ p´1qdegpxq`degpyq`ppdpdx^yq, dx^yq “ p´1qdegpxq`degpyqpdx^
dy, p´1qpdx^yq, αpxqY0αpyq “ p´1qdegpxqpdx, xqY0 p´1qdegpyqpdy, yq “ p´1qdegpxq`degpyqpdx^dy, p´1qpdx^
yq.
If 0 ă degpyq ă q,degpxq ă p, αpx Y yq “ αp0q “ 0, αpxq Y0 αpyq “ p´1qdegpxqx Y0 p´1qdegpyqy “ 0. So in
this case, we also have a ring isomorphism of Deligne cohomology and Deligne-Beilinson cohomology for the
modi�ed cup product.

The modi�ed Deligne complex is quasi isomorphic to the following modi�ed Deligne-Beilinson complex

Appq‚ “ ConepZppq ‘ F pΩ‚X
´ε´`
ÝÝÝÑ Ω‚Xqr´1s

where ε, ` are the natural maps. We de�ne the morphism α by the same formula. We change the de�nition
of Y0 by the following table to give a modi�ed cup product

aq fq ωq
ap ap ¨ aq 0 0

fp 0 ´fp ^ fq p´1qdegpfpq´1fp ^ ωq
ωp ωp ¨ aq 0 0

.

The veri�cation that this is a morphism of complexes can be represented by the table

aq fq ωq
ap ´ap ¨ aq 0 0

fp 0 pdfp ^ fq ` p´1qdegpfpqfp ^ dfq, fp ^ fqq p´1qdegpfpq´1dfp ^ ωq ´ fp ^ dωq
ωp dωp ¨ aq 0 0

.

The second line is calculated as follows:

p´dfp,´fpq Y0 aq ` p´1qdegpfpqfp Y0 p´aqq “ ´fp ^ aq ` p´1q2 degpfpq´1fp ^ p´aqq “ 0,

p´dfp,´fpqY0fq`p´1qdegpfpqfpY0p´dfq,´fqq “ pdfp^fq´p´1qdegpfpqfp^p´dfqq, p´1q2 degpfpq´1fp^p´fqqq,

p´dfp,´fpq Y0 ωq ` p´1qdegpfpqfp Y0 dωq “ p´1qdegpfpqp´dfpq ^ ωq ` p´1q2 degpfpq´1fp ^ dωq.

We verify that the map from modi�ed Deligne complex to the modi�ed Delinge-Beilinson complex is also
commutative under the modi�ed cup product.
If degpyq “ 0,degpxq ă p, αpxYyq “ αpxyq “ p´1qdegpxqxy, αpxqY0αpyq “ p´1qdegpxqxY0 y “ p´1qdegpxqxy.
If degpyq “ 0,degpxq “ p, αpx Y yq “ αpxyq “ p´1qdegpxqxy, αpxq Y0 αpyq “ p´1qdegpxqpdx, xq Y0 y “
p´1qdegpxqxy.
If 0 ă degpyq ă q,degpxq “ p, αpxY yq “ αpp´1qp´1dx^ yq “ p´1qdegpxq`degpyq`p´1dx^ y, αpxq Y0 αpyq “
p´1qdegpxqpdx, xq Y0 p´1qdegpyqy “ p´1qdegpxq`degpyq`p´1dx^ y.
If degpyq “ q,degpxq “ p, αpx Y yq “ αpp´1qp´1dx ^ yq “ p´1qdegpxq`degpyq`p´1pdpdx ^ yq, dx ^ yq “
p´1qdegpxq`degpyq´1pdx^dy, p´1qpdx^yq, αpxqY0αpyq “ p´1qdegpxqpdx, xqY0p´1qdegpyqpdy, yq “ p´1qdegpxq`degpyq´1pdx^
dy, p´1qpdx^ yq.
If 0 ă degpyq ă q,degpxq ă p, αpx Y yq “ αp0q “ 0, αpxq Y0 αpyq “ p´1qdegpxqx Y0 p´1qdegpyqy “ 0.
Hence passing to hypercohomology, we have a ring isomorphism for the modi�ed Deligne cohomology and
the modi�ed Deligne-Beilinson cohomology.
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As above, the cup product of the Deligne-Beilinson complex and the modi�ed cup product of the conju-
gate modi�ed Deligne-Beilinson complex induce a cup product on the integral Bott-Chern complex. Indeed,
the latter is quasi-isomorphic to

B‚p,q,Z “ ConepZppq ‘ F pΩ‚X ‘ F qΩ‚X
pε,´p2πiqq´pεq`p´`,´`q
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Ω‚X ‘ Ω‚Xqr´1s

where ε is the natural map Zppq Ñ Ω‚X and `, ` are the natural maps F pΩ‚X Ñ Ω‚X and F pΩ‚X Ñ Ω‚X . With
this quasi-isomorphism it becomes easier to check the projection formula.

Proposition 6.3.3. (Projection formula) For a proper morphism f , one has

p1q f˚ϕ ¨ f˚ψ “ f˚pϕ ¨ ψq

p2q f˚pϕ ¨ f
˚ψq “ f˚ϕ ¨ ψ.

Proof. For the �rst equality, we can in fact check that on the level of complexes

f˚ϕY f˚ψ “ f˚pϕY ψq.

Below, we concentrate ourselves on the proof of the second equality. The integral Bott-Chern complex is
quasi-isomorphic to the complex

B̃‚p,q,Z :“ ConepI‚X ‘ spF p,‚D
1
‚,‚
X q ‘ spF ‚,qD

1
‚,‚
X q

pε,´εq`p´`,´`q
ÝÝÝÝÝÝÝÝÝÝÑ D

1
‚
X ‘D

1
‚
Xqr´1s

where ε is the natural map I‚X Ñ D1
‚
X , spF

p,‚D
1
‚,‚
X q is the total complex of F p,‚D

1
‚,‚
X , i.e. the direct sum

of spaces of currents of bidegree pk, lq pk ď pq, and `, ` are the natural maps spF p,‚D
1
‚,‚
X q Ñ D1

‚
X and

spF ‚,qD
1
‚,‚
X q Ñ D1

‚
X . We start by de�ning a multiplication between B‚p1,q1,Z and B̃‚p1,q1,Z that is compatible

with the multiplication of the integral Bott-Chern complex. In this way, we avoid the problematic weight
product of two currents. We �rst perform a similar construction for the integral Deligne complex. One can
represent the product

Y0 : Appq‚ b ConepI‚X ‘ spF q,‚D
1
‚,‚
X q

ε´`
ÝÝÑ D

1
‚
Xqr´1s Ñ ConepI‚X ‘ spF p`q,‚D

1
‚,‚
X q

ε´`
ÝÝÑ D

1
‚
Xqr´1s

by the following table
aq fq ωq

ap ap ¨ aq 0 ap ¨ ωq
fp 0 fp ^ fq 0
ωp 0 ωp ^ fq 0

representing elements of
I‚X spF q,‚D

1
‚,‚
X q D1

‚
X

Zppq I‚X 0 D1
‚
X

F pΩ‚ 0 spF p`q,‚D
1
‚,‚
X q 0

Ω‚ 0 D1
‚
X 0

.

Notice that the wedge product of smooth forms and currents is always well-de�ned. We also observe that
since a locally integral current is represented by a generalised measure by the Riesz representation theorem,
it de�nes a current of degree 0. We now check that the multiplication is a morphism of complex, i.e. that

dpxY0 yq “ dxY0 y ` p´1qdegpxqxY0 dy.

Both sides of the equation can be represented by the following table

aq fq ωq
ap ap ¨ aq ` ap ¨ daq 0 ap ¨ dωq ` ap ¨ ωq
fp 0 p´dfp ^ fq ´ p´1qdeg fpfp ^ dfq,´fp ^ fqq 0

ωp 0 dωp ^ fq ` p´1qdegpωpqωp ^ dfq 0

The calculation is di�erent from the previous case. The di�erence just occurs in the �rst column, as a locally
integral current is not necessarily closed, while the exterior di�erential of constant is always 0. The �rst
object is

dpap Y0 aqq “ dpap ¨ aqq “ dap ¨ aq ` p´1qdegpapqap ¨ daq “ dap Y0 aq ` p´1qdegpapqap Y0 daq.

The second object is

dpfpY0 aqq “ dp0q “ 0`0 “ p´dfp, fpqY0 aq`p´1qdegpfpqfpY0 p´daq, aqq “ dfpY0 aq`p´1qdegpfpqfpY0 daq.

The third object is

dpωp Y0 aqq “ dp0q “ 0` 0 “ dωp Y0 aq ` p´1qdegpωpqωp Y0 p´daq, aqq “ dωp Y0 aq ` p´1qdegpωpqωp Y0 daq.
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One can change the de�nition of Y0 for the modi�ed Deligne complex by introducing a di�erent sign for
the morphism at degree 0, according to the table

aq fq ωq
ap ap ¨ aq 0 0

fp 0 ´fp ^ fq p´1qdegpfpq´1fp ^ ωq
ωp ωp ¨ aq 0 0

representing elements of

I‚X spF q,‚D
1
‚,‚
X q D1

‚
X

Zppq I‚X 0 0

F pΩ‚ 0 spF p`q,‚D
1
‚,‚
X q D1

‚
X

Ω‚ D1
‚
X 0 0

.

The veri�cation that this is a morphism of complexes can be represented by the table

aq fq ωq
ap p´dpap ¨ aqq,´ap ¨ aqq 0 0

fp 0 pdfp ^ fq ` p´1qdegpfpqfp ^ dfq, fp ^ fqq p´1qdegpfpq´1dfp ^ ωq ´ fp ^ dωq
ωp dpωp ¨ aqq 0 0

The di�erence with the previous calculation just occurs in the �rst column. The �rst object is

dpapY0aqq “ p´dpap ¨aqq,´ap ¨aqq “ p´dap,´apqY0aq`apY0p´daq,´aqq “ dapY0aq`p´1qdegpapqapY0daq.

The second object is

dfp Y0 aq ` p´1qdegpfpqfp Y0 daq “ p´dfp,´fpq Y0 aq ` p´1qdegpfpqfp Y0 p´daq,´aqq

“ ´fp ^ aq ` p´1q2 degpfpq´1fp ^ p´aqq “ 0.

The third object is

dpωp Y0 aqq “ dpωp ^ aqq “ dωp ^ aq ` p´1qdegpωpqωp ^ daq “ dωp Y0 aq ` p´1qdegpωpqωp Y0 daq.

We have the following commutative diagram of ZX -modules, where, as before, the multiplication of Deligne
complex and the modi�ed multiplication of the modi�ed Deligne complex induce the multiplication of the
integral Bott-Chern complex

Bpp, q,Zq‚ bZX Bpp1, q1,Zq‚ Bpp` p1, q ` q1,Zq‚

Bpp, q,Zq‚ bZX B̃pp1, q1,Zq‚ B̃pp` p1, q ` q1,Zq‚.

Y

Y0

The vertical arrow is induced by the morphism of complexes Zppq Ñ I‚X . The �gluing condition� used to
de�ne the multiplication of the integral Bott-Chern complex, starting from the Deligne complex and the
conjugate (modi�ed) Deligne complex, is that Zppq b I‚X Ñ I‚X should be the same for both complexes.
Now, the second equality comes from the straightforward check

f˚pf
˚ψ Y0 ϕq “ ψ Y0 f˚ϕ.

This equality induces as follows the desired formula on the level of hypercohomology. By the algebraic
Künneth formula (cf. Theorem 15.5 in [Dem12b]), we have a morphism

H˚pRaY ˚Bpp, q,Zqq bH˚pRaY ˚Rf˚B̃pp, q,Zqq Ñ H˚pRaY ˚Bpp, q,Zq bL RaY ˚pRf˚B̃pp, q,Zqqq.

Notice that since Z is a PID, Bpp, q,Zq, B̃pp, q,Zq are torsion free and �at. Notice also that B̃pp, q,Zq is also
a soft complex. There is in fact no need to write functors R and L in the above morphism. We have proven
that the following diagram commutes:

Bpp, q,Zq b f˚B̃pp1, q1,Zq f˚pf
˚Bpp, q,Zq b B̃pp1, q1,Zqq

B̃pp` p1, q ` q1,Zqq.

p˚q
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Let us observe that a tensor product of a soft complexe by a �at complex is soft. By taking RaY ˚ (equivalently
aY ˚ since all complexes are soft) the above commutative diagram induces the following commutative diagram

RaY ˚Bpp, q,ZqbLRaX˚B̃pp1, q1,Zq ÑRaY ˚pBpp, q,ZqbLRf˚B̃pp1, q1,Zqq ÑRaX˚pf
˚Bpp, q,ZqbLB̃pp1, q1,Zqq

RaY ˚B̃pp` p1, q ` q1,Zqq.

(Remark that the symbol f˚ used here is denoted f´1 by some authors.) The left arrow is the natural
morphism and the left-down arrow is just the composition. Taking hypercohomology and composing with
the morphism in the Künneth formula give the projection formula.

The order for taking the cup product is unimportant when passing to hypercohomology, since the integral
Bott-Chern cohomology is anti-commutative. This �nishes the proof of the projection formula. �

6.4. Chern classes of a vector bundle

In this part we give a construction of the Chern class of a vector bundle in the integral Bott-Chern
cohomology. It is borrowed from Junyan Cao (personal communication). The general line is Grothendieck's
construction of Chern classes of a vector bundle via the splitting principle. In particular, we prove axiom A
stated in the introduction. We �rst recall the de�nition of the �rst Chern class of a line bundle in integral
Bott-Chern cohomology, following [Sch07].

Let L be a holomorphic line bundle over X and U “ pUjq be an open covering of X with connected
intersections such that on each Uj , L is locally trivial by a nowhere-vanishing section ej . We denote gjk the
transition function de�ned on Uj X Uk de�ned by the relation ekpxq “ gjkpxqejpxq. Perhaps with further
re�nement of the open covering, we can suppose that gjk “ exppujkq. The element

tgjku P Ȟ
1pU ,O˚q – H1pX,O˚q

determines the isomorphic class of L. Let h be a hermitian metric on L and we denote by D the Chern
connection associated with pL, hq and by Θ the curvature of the Chern connection. On Uj , the Chern
connection is given by the formula

Dpξjpxqejpxqq “ pdξjpxq ´ Bϕjpxqξjpxqq b ejpxq

where ϕj is the local weight function of the metric under the trivialisation de�ned by

e´ϕjpzq “ |ejpzq|
2
h,

which veri�es the compatibility condition on Uj X Uk :

´ϕk ` ϕj “ ujk ` ujk.

We de�ne the �ech 2-cocycle δpujkq to be p2πicjklq which means on Ujkl
2πicjkl “ ujk ´ ujl ` ukl.

Taking exponential map on the both sides we know

exp 2πicjkl “ gjk ˚ g
´1
jl ˚ gkl “ 1

which in particular shows p2πicjklq P Č2pX,Zp1qq a 2´Čech cocycle with value in Zp1q. We de�ne the �rst
Chern class of L in the integral Bott-Chern cohomology to be

c1pLqBC,Z :“ tp2πicjklq, pujkq, pujkqu P H
1,1
BCpX,Zq.

We prove in what follows that this hypercocycle also represents the Chern class of L in the complex Bott-
Chern cohomology. For the complex Bott-Chern cohomology, the corresponding global representative (1,1)-
form via the quasi-isomorphic complex L‚p,qr1s which is de�ned with p “ 1, q “ 1

Lkp,q “
à

r`s“k
răp,săq

Er,s ifk ď p` q ´ 2,

Lk´1
p´1,q´1 “

à

r`s“k
rěp,sěq

Er,s ifk ě p` q,

with di�erential

L0 prL1˝d
ÝÝÝÝÑ L1 prL2˝d

ÝÝÝÝÑ . . .Ñ Lk´2
i

2π BB
ÝÝÝÑ Lk´1 d

ÝÑ Lk d
ÝÑ . . .

is just the global form with i
2πBBϕj on Uj . Notice that the complex L‚p,q is acyclic. The proof of the

quasi isomorphism between L‚p,q and B‚p,q can be found in section 12 Chap VI of [Dem12b]. (Notice that
in [Sch07], the operator i

2πBB is changed by BB. Here we take this choice so that the �rst Chern class of a
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line bundle in the integral Bott-Chern class has image as the �rst Chern class in the complex Bott-Chern
class under the canonical morphism.)

With the same notation as in [Sch07], α0,0 can be chosen to be pϕjq, so the global representative is
θ0,0 “ i

2πBBα
0,0. This is exactly the curvature form on Uj . Therefore the hypercocycle of B‚1,1,Z viewed as a

hypercocycle of B‚1,1,C corresponding to Θ is

tΘu ÐÑ tp2πicjklq, pujkq, pujkqu .

Observe that the �rst Chern class of the complex Bott-Chern cohomology is just represented by the curvature.
We denote by εBC the canonical map from the integral Bott-Chern complex to the complex Bott-Chern
complex. We have in hypercohomology

εBC c1pLqBC,Z “ c1pLqBC .

Notice that the Chern classes of a vector bundle in integral Bott-Chern cohomology (which will be de�ned
below) and in complex Bott-Chern cohomology are both de�ned by means of the splitting principle, in such
a way that for any d and any vector bundle E we have

εBC cdpEqBC,Z “ cdpEqBC .

To construct the Chern class of a vector bundle, we use Grothendieck's splitting principle. We begin by
proving a Leray-Hirsch type theorem for the integral Bott-Chern cohomology. This theorem is a direct
consequence of the Hodge decomposition theorem and of the Leray-Hirsch theorem for De Rham cohomology,
in case X is a compact Kähler manifold. Here we give a generalisation to arbitrary compact complex
manifolds. Before giving the statement in the integral Bott-Chern cohomology, we prove lemma 6.29 below,
which is a proposition of the same nature for Dolbeault cohomology, and which will be used in a further
induction process. The proof also uses the following Künneth type theorem for Dolbeault cohomology.

Theorem 6.28. Let X,Y be any two complex manifolds, Y being compact. Then one has the Künneth
isomorphism

Hp,qpX ˆ Y q “
à

k`l“p,m`n“q

Hk,mpXq bH l,npY q.

Proof. With respect to local coordinates pxiq on X and pwjq on Y , the sheaf Ωp,qXˆY is a locally free
OXˆY -module with the basis dxI ^ dwJ (|I| “ p, |J | “ q). Similarly the ΩpX (resp. ΩqY ) is locally a free
OX -module (resp. OY -module) with the basis dxI with |I| “ p (resp. dwJ with |J | “ q). With this
identi�cation, the vector bundle isomorphism

ΩkXˆY –
à

p`q“k

ΩpX b ΩqY

is just the canonical isomorphism
OXˆY – OX b̂ OY .

The symbol ˆ means here that we take the topological tensor product of two nuclear spaces (for more details,
cf. [Dem12b], Section 5 of Chap. IX).

By Remark (5,24) of Chap. IX in [Dem12b], when Y is compact we have

Hp,qpX ˆ Y q “ HqpX ˆ Y,ΩpXˆY q “
à

k`l“p

HqpX ˆ Y,ΩkX b ΩlY q

“
à

k`l“p

à

m`n“q

HmpX,ΩkXq bH
npY,ΩlY q “

à

k`l“p

à

m`n“q

Hk,mpXq bH l,npY q.

�

We can now state the relevant Leray-Hirsch type theorem for Dolbeault cohomology.

Lemma 6.29. Let X be a compact complex manifold and E be a vector bundle of rank r on X. One has
an isomorphism

à

sďr´1

Hp´s,k´p´spXq ¨ cs1pOp1qq Ñ Hp,k´ppPpEqq.

Proof. We follow in general the proof of Leray-Hirsch theorem as in [BT82]. Take a �nite open
covering pUiq of X. We do an induction on the open cover. In the following, U, V are respectively

Ť

iďi0
Ui

and Ui0`1 appearing in the open covering.
We have a short exact sequence of complexes of abelian groups:

0 Ñ Aq,‚pU Y V q Ñ Aq,‚pUq ‘Aq,‚pV q Ñ Aq,‚pU X V q Ñ 0.

It induces a long exact sequence

¨ ¨ ¨ Ñ Hp,qpU Y V q Ñ Hp,qpUq ‘Hp,qpV q Ñ Hp,qpU X V q Ñ Hp`1,qpU Y V q Ñ ¨ ¨ ¨ .
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We verify the following diagram is commutative where both lines are exact
À

sďr´1
Hp´s,k´p´spU Y V q ¨ cs1pOp1qq Ñ

À

sďr´1
pHp´s,k´p´spUq ‘Hp´s,k´p´spV qq ¨ cs1pOp1qq Ñ

À

sďr´1
Hp´s,k´p´spU X V q ¨ cs1pOp1qq Ñ ¨ ¨ ¨

Hp,k´ppPpE|UYV qq Hp,k´ppPpE|U qq ‘Hp,k´ppPpE|V qq Hp,k´ppPpE|UXV qq ¨ ¨ ¨

The commutativity of the diagram is clear at all places, except at
À

sďr´1
Hp´s,k´p´spU X V q ¨ cs1pOp1qq

À

sďr´1
Hp´s,k´p´spU Y V q ¨ cs1pOp1qq

Hp,k´ppPpE|UXV qq Hp,k´ppPpE|UYV qq

B
˚

B
˚

.

We denote by ψ the vertical maps. Let ρU , ρV be a partition of unity associated with U, V so the functions
π˚ρU , π

˚ρV form a partition of unity associated with π´1pUq, π´1pV q. For any ω a global representative of
the cohomology class Hp´s,k´p´spU X V q and φ a global representative of the cohomology class cs1pOp1qq,
we have on π´1pUq

ψpB
˚
pω b φqq “ π˚pBpρUωqq ^ φ.

B
˚
ψpω b φq “ B

˚
pπ˚ω ^ φq “ Bpπ˚ρU ¨ π

˚ω ^ φq “ π˚pBpρUωqq ^ φ.

The last equality use the fact that the global representative is B-closed.
By the �ve lemma, once we know the vertical arrows are isomorphisms for the terms involving UXV,U, V ,

we know the isomorphism for the terms involving U Y V . We take U, V to be the local trivial open sets
chosen above. If we have π´1pUiq – Ui ˆ Pr´1 for any i, we have π´1pUi XUjq – pUi XUjq ˆ Pr´1. For any
U open set on which π is locally trivial we have the following commutative diagram

À

sďr´1
Hp´s,k´p´spUq ¨ cs1pOPr´1p1qq

À

sďr´1
Hp´s,k´p´spUq ¨ cs1pOPpEqp1qq

Hp,k´ppPpE|U qq

idbs

– π˚^i˚
π´1pUq

where the map s is associating cs1pOPr´1p1qq to cs1pOPpEqp1qq and iπ´1pUq is the inclusion of π´1pUq in PpEq.
By the above Künneth type theorem for Dolbeault cohomology, we get an isomorphism as shown in the
diagram. We next check that the diagram commutes. In fact, one has

i˚π´1pUqpspc1pOPr´1p1qqqq “ i˚π´1pUqc1pOPpEqp1qq “ c1pOPpE|U qp1qq

“ c1ppr˚2OPr´1p1qq “ pr˚2 c1pOPr´1p1qq.

Here we consider U ˆ Pr´1 pπ,pr2q
ÝÝÝÝÑ π´1pUq. In the calculation we have used many times the functoriality of

Chern classes of line bundles, which is a direct consequence of their construction.
The commutativity of the diagram and the fact that the horizontal arrow is a linear isomorphism show

that the vertical arrow is also an isomorphism. Using this argument, we have isomorphisms for the terms
involving Ui X Uj , Ui, Uj .

The induction process can be done in three di�erent cases. The case of �nite union of open sets is
obtained by the induction assumption. The case of a single local trivialising open chart is done as above.
The case of the intersection of a union of open sets and of a local trivialising chart (which also yields a local
trivialising chart) is again done as above. Since the covering is �nite, the induction is achieved in �nitely
many steps. �

Remark 6.30. The di�erence between this proof and the one given in [BT82] is that we do not have
to take a good covering since here the induction on the open covering start with the Künneth type theorem
instead of Poincaré lemma which in fact shows that the De Rham cohomology is homotopy invariant. We
are forced to do it because the Dolbeault cohomology is not homotopy invariant. For example H0,0 of a
point is C while H0,0 of C are the entire functions.

Now, we prove the principal proposition of this section, namely a Leray-Hirsch type theorem for the
integral Bott-Chern cohomology.

Proposition 6.4.1. Let X be a compact complex manifold, E a vector bundle of rank r over it. Then,
we have

HkpPpEq,B‚p,q,Zq “ HkpX,B‚p,q,Zq ‘Hk´2pX,B‚p´1,q´1,Zq ¨ ω ‘ ¨ ¨ ¨ ‘Hk´2r`2pX,B‚p´r`1,q´r`1,Zq ¨ ω
r´1

where ω is the �rst Chern class of the tautological line bundle over PpEq in H1,1
BCpPpEq,Zq as de�ned above.
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In the proposition we use the following notations.
If p ă 0 (resp. q ă 0), we denote B‚p,q,Z “ B‚0,q,Z (resp. B‚p,0,Z). The morphism

F :
à

sďr´1

Hk´2spX,B‚p´s,q´s,Zq ¨ ωs Ñ HkpPpEq,Bp,qq

is de�ned as follows: let π : PpEq Ñ X;
If s ď min pp, qq, F pα ¨ ωsq “ π˚pαq ¨ ωs,
If s ě p, F pα ¨ ωsq “ π˚pαq ¨ ωp ¨ pr0,1pωq

s´p,
If s ě q, F pα ¨ ωsq “ π˚pαq ¨ ωq ¨ pr1,0pωq

s´q,
where the projection pr0,1 is induced by the canonical projection from B‚1,1,Z to B‚0,1,Z. Similarly pr1,0 is

induced by the projection to B‚1,0,Z.
Notice that when p “ q “ r, k “ 2r, this is just the normal splitting principle without the complicated

notations.

Proof. The idea is to use the exact sequence

0 Ñ Ωprps Ñ B‚p`1,q,Z Ñ B‚p,q,Z Ñ 0

to reduce the proof to the Dolbeault case. In this proof, we use the usual convention for di�erential forms
that for p ă 0, Ωprps “ 0. We begin by proving that the following diagram is commutative and that its two
lines are exact:

À

sďr´1
Hk´2spX,Ωp´srp ´ ssq ¨ ωs Ñ

À

sďr´1
Hk´2spX,B‚p`1´s,q´s,Zq ¨ ω

s Ñ
À

sďr´1
Hk´2spX,B‚p´s,q´s,Zq ¨ ω

s Ñ
À

sďr´1
Hk´2s`1pX, Ωp´srp ´ ssq ¨ ωs

HkpPpEq, Ωprpsq HkpPpEq,B‚p`1,q,Zq HkpPpEq,B‚p,q,Zq Hk`1pPpEq,Ωprpsq

We �rst check the exactness of the two lines. The exactness is just obtained from the long exact sequence
associated with the short exact sequence of sheaves. We now check the commutativity of the �rst square.

Hk´2spX,Ωp´srp´ ssq ¨ ωs

G

��

i // Hk´2spX,B‚p`1´s,q´s,Zq ¨ ω
s

F

��
HkpPpEq,Ωprpsq i // HkpPpEq,B‚p`1,q,Zq.

The morphism G is induced from the following morphism of complexes Ωp´srp´ssbZX B‚1,1,Z Ñ Ωp´s`1rp´

s` 1s. Denote the germs as α P Ωp´srp´ ss, ω “
`

rc, β;β
˘

. We de�ne

Gpαb βq “ α^ pBβq.

We take it equal to zero otherwise.
We check that this a morphism of complexes. In fact, we have

0 “ dpGpαb c̃qq “ Gpdαb c̃q ` p´1qp´sGpαb dc̃q “ Gp0b c̃q ` p´1qp´sα^ Bc̃,

0 “ dpGpαb βqq “ Gpdαb βq ` p´1qp´sGpαb dβq “ Gp0b βq ` p´1qp´sGpαb 0q,

0 “ dpGpαb β̄qq “ Gpdαb β̄q ` p´1qp´sGpαb dβ̄q “ Gp0b β̄q ` p´1qp´sGpαb 0q.

Therefore G de�nes a morphism at the level of hypercohomology. From now on, we do not pay attention to
write α or π˚α when the context should make the meaning clear. Notice that the morphism F is induced by a
morphism of complexes. (It is just the cup product of the integral Bott-Chern cohomology de�ned in section
3.) To prove the commutativity at the level of hypercohomology, it is enough to show the commutativity at
the level of complexes. It is enough to check the commutativity for the case s ď p. We have

ipα^ pBβqsq “ p0, 0, 0....αp´s ^ pBβqs; 0q,

which is equal to the image of F ˝ i.
We check the commutativity of the second square. Let α “

`

c, α0, ..., αp´s;β0, ..., βq´s´1

˘

, ω “
`

rc, β;β
˘

be
the representatives of hypercocycles. If s ď p, the horizontal morphism just consists of forgetting the term
involving αp´s, thus it is commutative. Otherwise, α “

`

c, β0, ..., βq´s´1

˘

and the morphism is induced by
the identity map at the level of complexes, so it is commutative.
We check the commutativity of the third square.

À

Hk´2spX,B‚p´s,q´s,Zq ¨ ωs

F

��

i //ÀHk´2s`1pX,Ωp´srp´ ssq ¨ ωs

G

��
HkpPpEq,B‚p,q,Zq

i // Hk`1pPpEq,Ωprpsq.
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If s ď p´ 1, take a representative of hypercocycle α “
`

c, α0, ..., αp´s´1;β0, ..., βq´s´1

˘

, which is the image
of hypercocycle of B‚p´s`1,q´s,Z

`

c, α0, ..., αp´s´1, 0;β0, ..., βq´s´1

˘

. By the de�nition of the connecting mor-
phism, ipαq can be taken as the degree pp´sq element of the hypercocycle δ̌

`

c, α0, ..., αp´s´1, 0;β0, ..., βq´s´1

˘

which is Bαp´s´1. Hence
Gpipαqq “ Bαp´s´1 ^ pBβq

s.

On the other hand, ipF pαqq “ Bpαp´s´1 ^ pBβq
sq “ Bαp´s´1 ^ pBβq

s.

If s “ p, we take a representative of the hypercocycle α “
`

c, β0, ..., βq´s´1

˘

, which is the image of the
hypercocycle

`

c, 0;β0, ..., βq´s´1

˘

of B‚1,q´s,Z. By de�nition of the connecting morphism, ipαq can be taken
as the degree 0 element of the hypercocycle δ̌

`

c, 0;β0, ..., βq´s´1

˘

, which is c.
Therefore ipαq “ c and Gpipαqq “ c ^ pBβqs. The two elements with highest degrees in the hypercocycle
F pαq are c^ β ^ pBβqs´1 and c^ pBβqs. Now, ipF pαqq is the degree p element of the hypercocycle δ̌pF pαqq,
namely

ipF pαqq “ Bpc^ β ^ pBβqs´1q “ Gpipαqq.

If s ă p, the sequence
0 Ñ Ωp´srps Ñ B‚p`1´s,q,Z

„
ÝÑ B‚p´s,q,Z Ñ 0

is an isomorphism between the second and third terms, which therefore induces a zero connecting morphism.
The diagram is also commutative in this case.

At this point, all the asserted commutativity properties have been checked.
Using the �ve lemma to perform an induction on p, we have to prove that the following morphism is an

isomorphism:
G :

à

sďr´1

Hk´2spX,Ωp´srp´ ssq ¨ ωs Ñ HkpPpEq,Ωprpsq.

On the �ech cohomology groups ȞppX,Ωqq, one can introduce a ring structure by the wedge product

ȞppX,Ωqq ˆ Ȟp1pX,Ωq
1

q Ñ Ȟp`p1pX,Ωq`q
1

q.

On the other hand, using the De Rham-Weil isomorphism, we have a canonical isomorphism

φ : ȞppX,Ωqq Ñ Hq,ppX,Cq.

Lemma 6.31 below shows that the isomorphism is compatible with the ring structure of Dolbeault cohomol-
ogy, possibly up to a sign.

Now we prove that G is an isomorphism. Let ω “ pc, β;βq, so that by de�nition Gpα ¨ωsq is represented
by the k-hypercocycle Gpα ¨ ωsq “ π˚pαq ^ pBβqs. By the construction of the Chern class of the line bundle
Op1q, we have βjk ` βjk “ φj ´ φk which implies

Bβjk “ Bpφj ´ φkq.

A diagram chasing procedure similar to the proof of the De Rham-Weil isomorphism gives that the image of
Bβjk in H1,1pPpEq,Cq is ´BpBφjq, where the later form is the curvature. The negative sign comes from the
convention that if we denote δ, d the di�erentials of a double complex, dδ ` δd “ 0. Therefore, to de�ne a
double complex from the �ech complex and B-complex, we have to add a negative sign following the parity.
In conclusion ω represents c1pOp1qq, hence by the Leray-Hirsch type theorem for Dolbeault cohomology and
by lemma 6.31, the isomorphism G is settled.

To conclude the proof of the proposition, the �ve lemma and an induction on p reduce the proof to the
case p “ 0. It is enough to show that

HkpPpEq,B‚0,q,Zq “ HkpX,B‚0,q,Zq ‘Hk´2pX,B‚0,q´1,Zq ¨ ω ‘ ¨ ¨ ¨ ‘Hk´2r`2pX,B‚0,q´r`1,Zq ¨ ω
r´1.

The short exact sequence 0 Ñ Ω
q
rqs Ñ B‚0,q`1,Z Ñ B‚0,q,Z Ñ 0 induces the two lines of the following diagram

are exact.
À

sďr´1
Hk´2spX, Ω

q´s
rq ´ ssq ¨ ωs Ñ

��

À

sďr´1
Hk´2spX,B0,q`1´sq ¨ ω

s Ñ

��

À

sďr´1
Hk´2spX,B0,q´sq ¨ ω

s Ñ

��

À

sďr´1
Hk´2s`1pX,Ωq´srq ´ ssq ¨ ωs

��
HkpPpEq, Ω

q
rqsq // HkpPpEq,B0,q`1q

// HkpPpEq,B0,qq
// Hk`1pPpEq, Ω

q
rqsq

,

Here we change the connecting morphism of the �rst line with a sign p´1qs on the relevant terms. This
change does not a�ect the exactness of sequence but ensures the commutativity of the diagram. As before,
we check that the diagram is commutative. To simply the sign in the cup product of Bott-Chern cohomology,
we use the anti-commutativity of the integral Bott-Chern class. For any class α, α ¨ ω “ ω ¨ α. Notice that
since p “ 0, ω is in fact pr0,1ω. With the same notations as before, this time the morphism G is induced by
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the morphism of complexes B‚1,1,ZbZX Ωq´srp´ss Ñ Ωq´s`1rp´s`1s. Denote the germs by α P Ωq´srp´ss

and ω “
`

rc, β;β
˘

. We de�ne

Gpβ b αq “ pBβq ^ α

and take it equal to zero otherwise.
We check that this is a morphism of complexes. Indeed, we have

0 “ dpGpc̃b αqq “ Gpc̃b dαq `Gpdc̃b αq “ Gpc̃b 0q ` Bc̃^ α,

0 “ dpGpβ b αqq “ ´Gpβ b dαq `Gpdβ b αq “ ´Gpβ b 0q `Gp0b αq,

0 “ dpGpβ̄ b αqq “ ´Gpβ̄ b dαq `Gpdβ̄ b αq “ ´Gpβ̄ b 0q `Gp0b αq.

To check the commutativity of the �rst square, it is enough to check the commutativity at the level of
complexes for the case s ď q.

ippBβqs ^ αq “ p0, 0; 0....pBβqs ^ αq´sq

which is equal to the image of F ˝ i. The commutativity of the second square is easy.
We now check the commutativity of the third square. Take hypercocycles α “ pc, v0, ..., vq´sq, pr0,1pωq “

pc̃, βq. It is enough to check the case s ď q, otherwise the connecting morphism is zero map. If s ď q ´ 1,
the image of α under the connecting morphism is Bvq´s. The image at the lower right corner of the diagram
is p´Bβqs ^ Bvq´s. (The sign comes from the change of the signs in the �rst line. ) On the other hand, the
image under the connecting morphism of F pαq “ pBβqs ^ vq´s is BppBβqs ^ vq´sq “ p´Bβqs ^ Bvq´s.
If s “ q, the image of α under the connecting morphism is ´c. The image at the lower right corner of the
diagram is p´Bβqs ^´c. On the other hand, the elements with the two highest degrees in the hypercocycle
F pαq are pBβqs´1 ^ β ^ c and pBβqs ^ c. The image of the �rst one under the connecting morphism is
BppBβqs´1 ^ β ^ cq “ p´Bβqs ^´c.

By the �ve lemma, similar arguments as those given above reduce the induction on q to the case q “ 0,
p “ 0. In the case B‚p,q,Z “ Z, the isomorphism is trivial. �

Lemma 6.31. One has the following relation:

φpȞqpX,Ωpqq ^ φpȞq1pX,Ωp
1

qq “ p´1qpq
1

φpȞqpX,Ωpq ¨ Ȟq1pX,Ωp
1

qq.

Proof. We denote by Epp,qq the sheaf of smooth pp, qq-forms on X. We modify the de�nition of the
wedge product so that on A‚ :“ ‘pEp,‚ the B operator de�nes a graded derivation, instead of taking d as
the graded derivation. We de�ne ˜̂ : A‚ bCX A‚ Ñ A‚ as ωp,q ˜̂ ω̃p

1,q1 “ p´1qq
1pωp,q ^ ω̃p

1,q1 .
To verify that B is indeed a graded derivation, we compute

Bpωp,q ˜̂ ω̃p
1,q1q “ p´1qq

1pBpωp,q ^ ω̃p
1,q1q “ p´1qq

1ppBωp,q ^ ω̃p
1,q1 ` p´1qp`qωp,q ^ Bω̃p

1,q1q

“ Bωp,q ˜̂ ω̃p
1,q1 ` p´1qqωp,q ˜̂Bω̃p

1,q1 .

Hence, we obtain a cup product on H‚pX,A‚q bC H‚pX,A‚q Ñ H‚pX,A‚q with respect to the �ech-
di�erential and B, and this endows H‚pX,A‚q with a C-algebra structure.

Let U be an open covering of X such that any �nite intersection is Stein. There exist two natural
morphisms the inclusion of holomorphic forms into smooth forms i : Č‚pU ,‘pΩpq Ñ Č‚pU ,A‚q and the
restriction r : A‚pXq Ñ Č‚pU ,A‚q. Given the ring structure on the hypercohomology induced from the
wedge product on ‘pΩp, the inclusion is a C-algebra morphism. The restriction morphism s ÞÑ ps|Uαqα is
also a C-algebra morphism.

For �xed p, by a spectral sequence calculation in the double complex Č‚pU ,A‚q, we get isomorphisms
induced by i, r respectively

ȞqpX,Ωpq – Hp,qpX,Cq – Hq
DpČ

‚pU , Ep,‚qq,

where D is the total di�erential of the double complex. Hence we �nd a C-algebra isomorphism

‘p,qȞ
qpX,Ωpq – ‘p,qH

p,qpX,Cq – ‘qHq
DpČ

‚pU ,A‚qq.

Here the cup product on ‘p,qHp,qpX,Cq is induced by ˜̂ instead of ^. Therefore we obtain

φpȞqpX,Ωpqq ^ φpȞq1pX,Ωp
1

qq “ p´1qpq
1

φpȞqpX,Ωpq ¨ Ȟq1pX,Ωp
1

qq

if we return to the ordinary wedge product. �

The splitting principle can thus be applied and gives the following de�nition of Chern classes for a vector
bundle.
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Definition 6.32. Taking p “ q “ r, k “ 2r, there are unique elements ci P H
i,i
BCpX,Zq, such that

ωr `
ÿ

p´1qiπ˚pciq ¨ ω
r´i “ 0

where ω “ c1pOp1qq by the above proposition 6.4.1. We de�ne the Chern classes of a vector bundle E in the
integral Bott-Chern cohomology to be precisely the ci.

We now prove some elementary properties of Chern classes in the integral Bott-Chern cohomology. In
particular, we check that axiom A of the introduction holds. Let us �rst observe that such Chern classes are
unique, since they satisfy the Grothendieck axioms for Chern classes included in Axiom A.

Proposition 6.4.2. (functoriality of Chern classes) Let f : X Ñ Y be a holomorphic morphism between
two compact complex manifolds, and E be a holomorphic vector bundle of rank r over Y , Then we have

f˚pckpEqq “ ckpf
˚pEqq.

Proof. We have the following commutative diagram:

Op1q|Ppf˚pEqq //

��

Op1q|PpEq

��
Ppf˚pEqq

f̃ //

π

��

PpEq

π

��
X

f // Y,

which in particular shows that f̃˚pOp1q|PpEqq “ Op1q|Ppf˚pEqq. By the functoriality of the �rst Chern class
(directly obtained from its construction), we get f̃˚pc1pOp1q|PpEqqq “ c1pOp1q|Ppf˚pEqqq. By the de�nition of
Chern classes, we have an equality

ÿ

p´1qscr´s1 pOp1q|PpEqq ¨ π˚pcspEqq “ 0.

Hence
ř

p´1qsf̃˚pc1pOp1q|PpEqqqr´s ¨ f̃˚pπ˚pcspEqqq “ 0, from which the de�nition of Chern classes yields
f˚pckpEqq “ ckpf

˚pEqq. �

The next property is the Whitney formula.

Proposition 6.4.3. Let 0 Ñ E Ñ F Ñ GÑ 0 be a short exact sequence of holomorphic vector bundles.
Then we have chpEq ` chpGq “ chpF q and cpEq ¨ cpGq “ cpF q.

Proof. On X ˆ P1, there exists a short exact sequence of holomorphic vector bundles

0 Ñ Ẽ Ñ F̃ Ñ G̃Ñ 0,

such that the restriction of exact sequence on the complex submanifold Xˆt0u is 0 Ñ E Ñ F Ñ GÑ 0 and
the restriction on X ˆ t8u is 0 Ñ E Ñ E ‘GÑ GÑ 0. The existence of such a sequence can be found for
example in [Sou92]. In the case of a direct sum, we obviously have the formulas chpGq` chpEq “ chpE‘Gq
and cpE ‘Gq “ cpEq ¨ cpGq by the splitting principle (cf. section 21 [BT82]).

On the other hand, we have the following commutative diagram for every point a P P1:

X ˆ P1 π // X

X

ia

OO
Id

;; .

The identity element of the ring ‘k,p,qHkpX,B‚p,q,Zq is the element in H0pX,B‚0,0,Zq represented by the
constant 1 P Zp0qpXq (more precisely the 0-cocycle 1 P Zp0qpUiq for each Ui in the open covering). Via the
quasi-isomorphism, it can also be represented by the integral current associated with X. We denote this
element by IdX . By the projection formula we have for every α P H‚pX ˆ P1q that

π˚pia˚pIdXq ¨ αq “ π˚pia˚pIdX ¨ i
˚
apαqq “ π˚pia˚pi

˚
apαqq “ Id˚pi

˚
apαqq “ i˚apαq.

By the functoriality of Chern classes, we thus �nd

π˚pi0˚pIdXq ¨ pchpG̃q ` chpẼq ´ chpF̃ qqq “ pchpG̃q ` chpẼq ´ chpF̃ qq|Xˆt0u “ chpGq ` chpEq ´ chpF q,

π˚pi8˚pIdXq ¨ pchpG̃q ` chpẼq ´ chpF̃ qqq “ pchpG̃q ` chpẼq ´ chpF̃ qq|Xˆt8u “ 0.

To prove the Whitney formula, it is enough to prove the following homotopy property: let ia : X ãÑ X ˆ P1

be the inclusion into the complex submanifold X ˆ tau, then i˚apαq is independent of the choice of a.
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Since X ˆ tau is a codimension 1 analytic set in X ˆ P1, its associated integral current de�nes a global
section of I2

X . Since rX ˆ taus is of type (1,1), it projects to zero in H0pX,σ1,‚D
1
‚,‚
X ‘ σ‚,1D

1
‚,‚
X q. Hence

2π
?
´1rXˆtaus de�nes a hypercocycle for the integral Bott-Chern complex B‚1,1,Z. By the construction of the

push-forward, this element represents ia˚pIdXq. In the following we denote ia˚pIdXq as t2π
?
´1rX ˆ tausu

(which is just the cycle class de�ned in the next section). With this notation, we have proved the equality

chpGq ` chpEq ´ chpF q “ π˚p2π
?
´1ptrX ˆ t0usu ´ trX ˆ t8usuq ¨ pchpG̃q ` chpẼq ´ chpF̃ qqq.

We denote by z the parameter in P1 “ C Y t8u and by r0,8s a (real) line connecting 0 and 8 in P1 (for
example we can take the positive real axis). Then the function ln z is well de�ned on P1 r r0,8s. X ˆr0,8s
is a real codimension one real analytic set of XˆP1, so it well de�nes a locally integral current. As a current
dprX ˆ r0,8ssq “ ´rX ˆ 0s ` rX ˆ8s. For any smooth form of type pn` 1, nq with compact support where
n is the complex dimension of X

@

B ln z, φn`1,n
D

“ ´
@

ln z, Bφn`1,n
D

“ ´

ż

Xˆr0,8s`´Xˆr0,8s´
ln z ¨ φ “ ´2iπ

ż

Xˆr0,8s

φ.

The second equality is a consequence of the Stokes formula. It shows that pr0,1prX ˆr0,8ssq “ ´
1

2πiBlnpzq.
Similarly pr1,0prX ˆ r0,8ssq “ ´ 1

2πiBlnpz̄q. Therefore, in the space of global sections of the mapping cone
Conep∆q‚r´1spX ˆ P1q for p “ 1, q “ 1, we have

prX ˆ t0us ´ rX ˆ t8us, 0q “ δpX ˆ r0,8s,
1

2π
?
´1

ln z̄ ‘´
1

2π
?
´1

ln zq,

where δ is the di�erential of the integral Bott-Chern complex. In other words, rX ˆ t0us ´ rX ˆ t8us is
exact, and this means that chpGq ` chpEq ´ chpF q “ 0 in the integral Bott-Chern cohomology class. The
proof of the total Chern class formula is similar.

(It would be more direct to conclude that the class of ´rX ˆ 0s ` rX ˆ 8s is 0 in the complex Bott-
Chern cohomology. Using a resolution by currents, this is equivalent to show that as currents on X ˆ P1,
´rX ˆ 0s ` rX ˆ8s is BB´exact. However, notice that

´rX ˆ 0s ` rX ˆ8s “ ´iBBprXs ln |z|q

where we view z as a meromorphic function on P1 with a single zero at 0 and a single pole at in�nity.) �

6.5. Cohomology class of an analytic set

To prove the other axioms, we have to study the transformation of cohomology groups under what
appears to be the �wrong� direction. For example the pull back of a cohomology class represented by the
closed current associated with a cycle should morally be represented by the pull back of this current, but such
pull backs are not always well de�ned. In this section, given an irreducible analytic cycle Z of codimension
k in X, we will associate to it a cycle class in the integral Bott-Chern cohomology Hk,k

BCpX,Zq. Then we will
prove a number of elementary properties of this type of cycle classes. In particular, the projection formula,
the transformation formula of a cycle class under a morphism will be established (Axiom B (3)). At the end,
we will deduce the commutativity property of pull back and push forward by projections and inclusions,
according to Axiom B (4). The excess formula (Axiom B(5)) is a direct consequence, using the standard
deformation technique of the normal bundle.

To show that, in certain cases, the pull back of a current representing a class induces a well de�ned
map in cohomology, we bypass the di�culty by showing a corresponding formula for the Bloch cycle class,
which takes values in local cohomology. We make this choice since locally the Bloch cycle class can be given
explicitly, and its pull back can also be made explicit.

Cohomology with support is involved since cycle classes can be represented in a natural way by currents
associated which the cycle. These are in fact supported in the given analytic sets, whence the appearance
of cohomology with support.

With this re�nement, technically, we can show that before taking the hypercohomology, the complex
RΓZpX,OXq can be centered at the degree we want. Hence the related spectral sequences degenerate. This
allows us to glue local sections into global ones to de�ne the Bloch cycle class.

Attention should be paid to the fact that the Bloch cycle class lies in the derived category of OX -modules,
while the integral Bott-Chern complex lies in the derived category of sheaves of abelian groups DpShpXqq.

In this section, we denote H‚
|Z|pX, ‚q or H

‚
ZpX, ‚q the local hypercohomology class of some complex on

X with support in Z.



150 6. INTERSECTION THEORY AND CHERN CLASSES IN BOTT-CHERN COHOMOLOGY

6.5.1. De�nition of cycle classes. We start by de�ning a cycle class in the integral Bott-Chern
cohomology. This is an analogue of the cycle class in integral Deligne cohomology that has been de�ned
in [ZZ84]. As before, we denote by ∆ : CX Ñ σpΩ

‚
X ‘ σqΩX

‚
.

For any p, q, we have the following commutative diagram with exact lines

0 // B‚p,q,Z //

��

B‚p,q,C //

��

CX{ZX //

��

0

0 // ZX // CX // CX{ZX // 0.

The vertical morphism of complexes consists of forgetting the terms with degree ą 0. It induces the following
diagram with exact lines for p “ q “ k.

H2k´1
|Z| pX,CX{ZXq //

��

H2k
|Z|pX,B

‚
k,k,Zq

//

��

H2k
|Z|pX,B

‚
k,k,Cq

//

��

H2k
|Z|pX,CX{ZXq

��
H2k´1
|Z| pX,CX{ZXq // H2k

|Z|pX,ZXq // H2k
|Z|pX,CXq // H2k

|Z|pX,CX{ZXq.

The �rst and fourth vertical arrow are the identity map. By the Poincaré duality for cohomology with
support we know

H2k´1
|Z| pX,CX{ZXq – H2n´2k`1pZ,CX{ZXq “ 0

where the second equality comes from the fact that the real dimension of Z is 2n´ 2k.
By chasing the diagram, we know for any elements a P H2k

|Z|pX,B
‚
k,k,Cq and b P H2k

|Z|pX,ZXq such that
their images in H2k

|Z|pX,CXq are the same, then there exists a unique element in H2k
|Z|pX,B

‚
k,k,Zq such that

the image of this element is a, b respectively.
To de�ne the cycle class, it is thus enough to associate the cycle two elements in H2k

|Z|pX,B
‚
k,k,Cq,

H2k
|Z|pX,ZXq such that their image in H2k

|Z|pX,CXq is the same. The cycle Z de�nes a global section in
H0pX, I2k

X q so it represents an element in H2k
|Z|pX,ZXq. The inclusion ZX Ñ CX induces in the derived

category a morphism I‚X Ñ D1
‚
X . These two quasi-isomorphic morphisms induce the same morphism when

passing to hypercohomology. The cycle class in H2k
|Z|pX,ZXq associated with Z has an image in H2k

|Z|pX,CXq
represented also by the integral current associated with Z.

On the other hand, CX is quasi-isomorphic to the complex D1
‚
X . The complex Bott-Chern complex is

quasi isomorphic to the mapping cone Cpqq‚r´1s with the natural map q : D1
‚
X Ñ σk,‚D

1
‚,‚
X ‘ σ‚,kD

1
‚,‚
X with

a negative sign on the second component. The integral current associated with Z de�nes a global section of
H0pX,D1

‚
Xq of bidegree pk, kq. And its image in H0pX,σk,‚D

1
‚,‚
X ‘ σ‚,kD

1
‚,‚
X q is 0. This means in particular

that the integration current de�nes a hypercocycle. Here the hypercohomology class can be represented by
this global section since the sheaf of currents is acyclic. Hence the integration current prZs, 0‘ 0q represents
an element in H2k

|Z|pX,B
‚
k,k,Cq. Under the forgetting map B‚k,k,C Ñ CX , its image in H2k

|Z|pX,CXq can also be
represented by the same integration current rZs.

In conclusion, the cycle class associated with Z in H2k
|Z|pX,B

‚
k,k,Zq is exactly the class of the integral

current associated with Z view as an element in H2k
|Z|pX,Conepq̃q‚r´1sq with q̃ : I‚X Ñ σk,‚D

1
‚,‚
X ‘ σ‚,kD

1
‚,‚
X .

The image under the canonical map H2k
|Z|pX,B

‚
k,k,Zq Ñ H2kpX,B‚k,k,Zq de�nes �nally the cycle space associ-

ated with Z represented by the same integration current. (This construction is already used in the proof of
the Whitney formula.) We denote in the following the cycle class associated with Z as trZsu.

Notice that iZ˚1 “ trZsu where 1 P H0,0
BCpZ,Zq the identity in ‘p,qH

p,q
BCpZ,Zq. The identity in

‘p,qH
p,q
BCpZ,Zq corresponds a global constant section 1 P ΓpZ,ZZq whose image under iZ˚ in the hyper-

cohomology is de�ned by locally integral current rZs by the construction of the push forward. This global
current represents the cycle space trZsu on X.

Now we prove some properties of cycle classes. We start by the following lemma which expresses the
push forward of a cohomology class by an arbitrary morphism in terms of the pull back and push forward
of its projection, and a multiplication by the cycle class associated with the graph of the morphism.

Lemma 6.33. Let f : X Ñ Y be a holomorphic map between complex manifolds. Assume X to be
compact. Let α be an integral Bott-Chern cohomology class. Denote by Γ the graph of f in X ˆ Y and by
p1, p2 the two canonical projections. Then one has

f˚α “ p2˚pp
˚
1α ¨ trΓsuq.
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Proof. This can be checked directly using the multiplication structure as in the Deligne-Beilinson
complex. The compactness condition is just used to ensure that the push-forward is well de�ned. Taking
rΓs as the global representative of the cohomology class, the cup product is induced by the wedge product
between the forms and locally integral currents at the level of complexes. We prove at the level of complexes
that

f˚pαq “ p2˚pp
˚
1 pαq Y0 rΓsq.

It su�ces to check on germs on Y . Let U be an open set of X such that U “ f´1pV q for some connected
open set V of Y . There are two kinds of sheaves in the Deligne-Beilinson complex: locally constant sheaf in
Z and sheaves of holomorphic forms.

Let α P ΩpY pUq. Let ω P C
8
pn´p,nq,cpUq be a smooth form with compact support in U . Then we have

xf˚α, ωy “ xα, f
˚ωy “

ż

U

α^ f˚ω “

ż

ΓXp´1
1 pUq

p˚1α^ p
˚
1f
˚ω

“

ż

ΓXp´1
1 pUq

p˚1α^ p
˚
2ω “ xp2˚pp

˚
1 pαq Y0 rΓsq, ωy.

Notice that p1 induces a biholomorphism between ΓX p´1
1 pUq and U .

For c P ZXpUq, its image under f˚ via the quasi-isomorphism is the local integral current cf˚rU s. The
equality at the level of complexes is just

cf˚rU s “ p2˚pcrΓX p
´1
2 pUqsq “ p2˚pp

˚
1 pcq Y0 rΓsq.

Passing to hypercohomology gives the desired equality. �

As in [Gri10], we have the following property. It is a combination of the above lemma and the pull back
of the cycle class under a closed immersion (the proof will be postponed to the next subsection).

Proposition 6.5.1. Let f : X Ñ Y be a surjective proper map between compact manifolds, and let D
be a divisor of Y . We denote f˚D “ m1D̃1 ` ¨ ¨ ¨ `mN D̃N . Let f̃i : D̃i Ñ D (1 ď i ď N) be the restriction
of f to D̃i. Then we have

f˚iD˚ “
N
ÿ

i“1

mi iD̃i˚f̃
˚
i .

Proof. The proof is identical to the case of the Deligne complex. For self-containedness, we give
brie�y the details. The idea consists of passing to the graph and using the above lemma. Since all spaces are
compact, the push-forward is always well-de�ned. Let Γ be the graph of iD : D ãÑ Y and let Γ̃1i be the graph
of iD̃1i : D̃1i ãÑ X. We denote all terms involving X with a prime symbol 1 and all other terms without that
symbol. By de�nition, rΓ1is :“ pf̃i, idq˚rΓ̃

1
is as current which induces as cycle class trΓ1isu “ pf̃i, idq˚trΓ̃

1
isu.

rΓ1is is supported in the image of pf̃i, idq. We denote by pj (j “ 1, 2) the natural projections of Dˆ Y , by p1j
projections of D ˆX, and by p̃1j,i projections of D̃i ˆX.

In terms of currents, we have pid, fq˚rΓs “
řN
i“1mirΓ

1
is. We can prove the Bloch cycle class equality

pid, fq˚trΓsu “
řN
i“1mitrΓ

1
isu. The proof will be given in Lemma 6.46. Then we have

f˚iD˚α “ f˚p2˚pp
˚
1α ¨ trΓsuq “ p12˚pid, fq

˚pp˚1α ¨ trΓsuq

“ p12˚ppid, fq
˚p˚1α ¨ pid, fq

˚trΓsuq “
N
ÿ

i“1

mip
1
2˚pp

1
˚

1 α ¨ trΓ
1
isuq

“

N
ÿ

i“1

mip
1
2˚pf̃i, idq˚ppf̃i, idq

˚p
1
˚

1 α ¨ trΓ̃
1
isuq “

N
ÿ

i“1

mip̃12,i˚pp̃
1
˚

1,if̃i
˚
α ¨ trΓ̃1isuq

“

N
ÿ

i“1

mi iD̃i˚f̃
˚
i α.

The �rst equality uses the lemma 6.33. The second formula uses the proposition 6.2.2 for f ˝p12 “ p2 ˝pid, fq.
The third equality uses the fact that pull-back is a ring morphism. The fourth equality uses the fact that
p11 “ p1 ˝ pid, fq. The �fth equality uses the projection formula. The sixth equality uses the fact that
p̃12,i “ pf̃i, idq ˝ p

1
2 and f̃i ˝ p̃11,i “ p11 ˝ pf̃i, idq. The last equality uses another time lemma 6.33. The

surjectivity of f is just used to ensure that the pull-back of a divisor is a divisor. �

We give an easy generalisation of a lemma in [Sch07]. It gives the expected relation between the integral
Bott-Chern cohomology and the Deligne cohomology. In particular, one can reduce the relevant properties
of cycle classes in the integral Bott-Chern cohomology to the Deligne complex case, when they only involve
the group structure.
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Lemma 6.34. For any p ě 1, we have a Z-module isomorphism

Hp,p
BCpX,Zq » H2p

D pX,Zppqq ‘H2p´1pX,Ω‚ăpq.

Moreover, via the isomorphism, for any proper cycle Z in X, the cycle class trZsuBC associated with Z in
the integral Bott-Chern cohomology corresponds to ptrZsuD, 0q, where trZsuD is the cycle class associated
with Z in the Deligne cohomology.
This isomorphism is functorial with respect to pull backs.

Proof. We have the short exact sequence

0 Ñ Ω
‚

ăpr1s Ñ B‚p,p,Z Ñ Dppq‚ Ñ 0.

We can prove as shown in [Sch07] that the short exact sequence is in fact split, so that we have an abelian
group isomorphism

Hp,p
BCpX,Zq » H2p

D pX,Zppqq ‘H2p´1pX,Ω‚ăpq

by taking the hypercohomology. We have to transform the complex involving smooth forms into a cone
complex involving currents. These complexes are quasi-isomorphic, so that the splitting induces a morphism
of complexes in the derived category. However, we want to modify that splitting to relate the cycle spaces
in our di�erent cohomology theories (respectively Deligne and integral Bott-Chern).
Let A be the matrix

ˆ

1
2 ´ 1

2
1
2

1
2

˙

We use the construction for A given in the next remark which shows that the integral Bott-Chern complex

is quasi-isomorphic to ConepI‚X
p1,0q
ÝÝÝÑ σp,‚D‚,‚X ‘ σ‚,pD‚,‚X qr´1s. The Deligne complex is quasi-isomorphic

to ConepI‚X
prp,‚
ÝÝÝÑ σp,‚D‚,‚X qr´1s. There exists a splitting morphism given by for any element pa, bq P

IkX ‘ σk´1
p,‚ D‚,‚X by

F : ConepI‚X
prp,‚
ÝÝÝÑ σp,‚D‚,‚X qr´1s Ñ ConepI‚X

p1,0q
ÝÝÝÑ σp,‚D‚,‚X ‘ σ‚,pD‚,‚X qr´1s

pa, bq ÞÑ pa, b, 0q.

We verify that it is a morphism of complexes:

F pdpa, bqq “ F p´da, prp,‚a` Bbq “ p´da,prp,‚a` Bb, 0q

“ dpF pa, bqq “ dpa, b, 0q “ p´da,prp,‚a` Bb, B0q.

Via this splitting isomorphism the cycle space associated with an analytic set Z is the cohomology class
represented by rZs and prZs, 0q respectively. Thus the image of the cycle class trZsuD under F is trZsuBC .

The functoriality comes from the functoriality of the construction given in the remark. �

Remark 6.35. The sign in the de�nition of the integral Bott-Chern complex is unimportant for the
group structure of the integral Bott-Chern cohomology when p “ q. In fact, up to an isomorphism of abelian
group, we can change the vector p1,´1q to be any non zero vector in C2. To do it, we need the following
construction.

Recall that the integral Bott-Chern complex is ConepZ p`,´q
ÝÝÝÝÑ Ω‚ăp ‘ Ω

‚

ăpqr´1s the mapping cone of

the morphism Z p`,´q
ÝÝÝÝÑ Ω‚ăp ‘ Ω

‚

ăp. Let A P GLp2,Cq be any invertible matrix. We denote by aijp1 ď

i, j ď 2q the elements of A. Then we have the following isomorphism of ZX -complex Ω‚ăp ‘ Ω
‚

ăp. For any

k, pω1, ω2q P Ωk ‘Ω
k
sends to pa11ω1 ` a12ω2, a21ω1 ` a22ω2q. The conjugation transforms the holomorphic

forms to the anti-holomorphic forms and vice versa. (In fact it is RX -morphism not CX -morphism.) The
inverse morphism is induced by the matrix A´1.
Via this isomorphism of complex of ZX -sheaves, the integral Bott-Chern complex is isomorphic to

ConepZ Ap1,´1qt

ÝÝÝÝÝÝÑ Ω‚ăp ‘ Ω
‚

ăpqr´1s.

For any vector pa, bq P C2, if we choose adequately A so that pa, bqt “ Ap1,´1qt, the integral Bott-Chern

complex is isomorphic to ConepZ pa,bq
ÝÝÝÑ Ω‚ăp‘Ω

‚

ăpqr´1s, which induces an isomorphism by passing to hyper-
cohomology. This construction is functorial with respect to pull-backs, since the pull-back by a holomorphic
map preserves the holomorphic forms and the anti-holomorphic forms.

This construction does not work for complex Bott-Chern cohomology since the isomorphism we have
constructed is not complex linear.
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The integral Bott-Chern complex is quasi-isomorphic to ConepI‚X
∆
ÝÑ σp,‚D‚,‚X ‘ σ‚,pD‚,‚X qr´1s. Via this

quasi-isomorphism, the above construction gives an isomorphism of complexes

F : ConepI‚X
∆
ÝÑ σp,‚D‚,‚X ‘ σ‚,pD‚,‚X qr´1s Ñ ConepI‚X

Ap1,´1qt

ÝÝÝÝÝÝÑ σp,‚D‚,‚X ‘ σ‚,pD‚,‚X qr´1s

sending pa, b, cq to pa, a11b ` a12c, a21b ` a22cq. Here Ap1,´1qt is the composition of ∆ with the morphism
given as in the above construction for σp,‚D‚,‚X ‘ σ‚,pD‚,‚X and A. Concretely for any k, the di�erential of
T P IXk sends to pa11prp,‚T ´a12prp,‚T, a21pr‚,pT ´a22pr‚,pT q with value in σp,‚D‚,kX ‘σ‚,pDk,‚

X . We check
that A induces a morphism of complexes.

F pdpa, b, cqq “ F p´da, prp,‚a` Bb,´pr‚,pa` Bcq

“ p´da, a11prp,‚a` a11Bb´ a12pr‚,pa` a12Bc, a21prp,‚a` a21Bb´ a22pr‚,pa` a22Bcq.

dpF pa, b, cqq “ dpa, a11b` a12c, a21b` a22cq

“ p´da, a11prp,‚a` a11Bb´ a12prp,‚a` a12Bc, a21pr‚,pa` a21Bb´ a22pr‚,pa` a22Bcq.

In particular, since the cycle class associated with an analytic set Z is represented by the global section
prZs, 0 ‘ 0q where rZs is the current associated with Z, its image under the isomorphism is represented by
the same section for any matrix A.

Now we return to the transformation of a cycle class under a morphism in the integral Bott-Chern
cohomology.

Lemma 6.36. Let X be any complex manifold, Y and Z be compact submanifolds of X which intersect
transversally and let W “ Y XZ. Let iY : Y Ñ X be the inclusion. Then we have in the integral Bott-Chern
cohomology the equality

i˚Y trZsu “ trW su.

Proof. In this proof we denote trZsuBC for the cycle class associated with an analytic set Z in the
integral Bott-Chern cohomology and trZsuD for the corresponding class in the Deligne cohomology. Via the
isomorphism given in Lemma 6.34 and the functoriality, the equality i˚Y trZsuBC “ trW suBC is equivalent
to the equality i˚Y trZsuD “ trW suD. The proof in the Deligne complex case is given in the following via the
Bloch cycle spaces. �

6.5.2. Deligne and Bloch cycle class. For self-containedness, we present here the general line of
the proof of the equality in the Deligne complex case, as given in [Gri10]. We also need the local formula
expressing Bloch cycle classes to complete the proof of Proposition 6.5.1. We start by recalling the Bloch
cycle construction made in [Blo72] that was mentioned at the beginning of the section. The detour through
Bloch cycle classes is organised as follows. First we recall the de�nition of the algebraic local cohomology
groups and of the topological local cohomology groups. We show that for a coherent OX -module, these group
are the same up to the forgetting functor. Secondly, we can give locally an explicit resolution of �ech-type
complex of OX in the algebraic local cohomology case. Next we show that associated with a cycle using the
local resolution we can glue some local sections to a global section which is the Bloch cycle class associated
with this cycle. Finally, we prove that under a suitable canonical map, the image of the Deligne cycle class
is the Bloch cycle class associated with the same cycle. The author expresses warm thanks to Stéphane
Guillermou for very interesting discussions on this subject.

Let X be a complex manifold and Z be an irreducible analytic subset of X of codimension d. Let F be a
coherent sheaf on X. There are two notions of local cohomology with support in Z. A topological de�nition
is the derived functor of the function �sheaf of sections with support in Z� given on any open subset U Ă X
by

ΓZpFqpUq :“ ts P FpUq|supppsq Ă Zu.

For every x P X and s P Fx, we have an induced Ox-morphism Ox Ñ Fx given by f ÞÑ f ¨s. The annihilator
Annpsq of s is de�ned to be the kernel of this morphism. The support of s is the zero variety V pAnnpsqq of
Annpsq ; by the Nullstellensatz theorem, saying that the support is contained in Z is equivalent to the fact
that IZ Ă

a

Annpsq. Since the ideal sheaf associated with an analytic set is coherent, this is equivalent to
the fact that InZ Ă Annpsq for n " 0, which amounts to say that InZs “ 0 for n " 0. Next, this is equivalent
to say that Ox

ˆs
ÝÝÑ Fx factorise through Ox{InZ,x

ˆs
ÝÝÑ Fx for some n. In other words,

ΓZpFq “ lim
ÝÑ
nÑ8

HompOX{InZ ,Fq.

The construction does not give the same equality if we replace the coherent sheaf F by a complex of
coherent sheaves (in particular, when the complex is unbounded), or by an arbitrary sheaf. In this case,
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we must de�ne the algebraic local cohomology sheaf supported in Z to be the derived functor of the sheaf
ΓrZspFq :“ lim

ÝÑnÑ8
HompOX{InZ ,Fq. Since the direct limit functor is exact, we have

RiΓrZspFq :“ lim
ÝÑ
nÑ8

ExtipOX{InZ ,Fq.

We de�ne the algebraic local cohomology sheaf complex with the same formula, after replacing the given
sheaf F by a complex of sheaves.

Given an OX -complex F‚, we still have an injective morphism (but not necessarily an isomorphism)
ΓrZspF‚q Ñ ΓZpF‚q. The image of an element in ΓrZspF‚q is given by the image of the constant function 1
under the composition morphism OX Ñ OX{InZ Ñ F‚ for some n large enough such that OX{InZ Ñ F‚ is
de�ned. We have the following local-to-global spectral sequence

Ep,q2 “ HppX,RqΓrZspFqq ñ Hp`q
rZs pX,Fq.

Here Hi
rZspX,Fq :“ lim

ÝÑ
ExtiOX pOX{I

k
Z ,Fq is the algebraic local cohomology. We have similar spectral

sequence for complex changing the cohomology by the hypercohomology.
We prove that RqΓrZspOXq is trivial for any q ‰ d. The easy direction is a consequence of the following

proposition [Kas02, Prop. 2.20].

Proposition 6.5.2. Let X be a non singular variety and F a coherent OX-module. Then for any
k ă codimpsupppFqq, we have ExtkOX pF ,OXq “ 0.

Use the proposition for F “ OX{ImZ for any m. We have RkΓrZspOXq “ 0 for any k ă d passing the
direct limit. The converse direction needs to resolve the sheaf OX{ImZ by Koszul type complex. Assume
that Z is a smooth submanifold or a locally complete intersection (this is the only case we need in the
following) from which we can suppose locally Z “ V pf1, ¨ ¨ ¨ , fdq. To start with, we notice that for any
coherent OX -module F

ΓrZspFq “ lim
ÝÑ
nÑ8

HompOX{pf
n
1 , ¨ ¨ ¨ , f

n
d q,Fq.

This comes from the relation below, that holds for every n

Idpn´1q`1
Z Ă pfn1 , ¨ ¨ ¨ , f

n
d q Ă InZ .

One can resolve locally OX{pf
n
1 , ¨ ¨ ¨ , f

n
d q by the Koszul complex K˚pfn1 , ¨ ¨ ¨ , f

n
d qr´ds. For example, when

d “ 1, OX{pf1q is quasi-isomorphic to the complex 0 Ñ OX
ˆf1
ÝÝÑ OX Ñ 0 concentrated in degrees -1 and 0.

Since lim
ÝÑ

is an exact functor, for any k ą d, we have

RkΓrZspOXq “ lim
ÝÑ
nÑ8

Rk HompOX{pf
n
1 , ¨ ¨ ¨ , f

n
d q,OXq “ 0

where the last equality comes from the fact that each element is 0 even before taking the limit.
We describe the Bloch cycle class associated with Z in Hd

rZspX,Ω
d
Xq. Since Z is a local complete

intersection and Ωd is locally free, RqΓrZspΩdq “ 0 for any q ‰ d. Hence the local-to-global spectral sequence
degenerates, and

Hd
rZspX,Ω

dq – ΓpX,RdΓrZspΩ
dqq.

As a consequence, it is enough to describe the cycle class locally, as the local representatives patch into a
global section.

Let pUiq be a Stein open covering of X such that Z X Ui “ tf
1
piq “ ¨ ¨ ¨ “ fd

piq “ 0u for f j
piq P ΓpUi,OXq.

We need the following result.

Lemma 6.37. The direct limit of the dual of the Koszul complex HomOX pK˚ppf
1
piqq

n, ¨ ¨ ¨ , pfd
piqq

nq,OXq on

Ui is the extended �ech-type complex associated with Stein open covering of UirZ given by V j
piq “ tf

j
piq ‰ 0u.

More precisely the limit is

OX Ñ
ź

j0

OX r
1

f j0
piq

s Ñ
ź

j0ăj1

OX r
1

f j0
piqf

j1
piq

s Ñ ¨ ¨ ¨ Ñ OX r
1

f1
piq ¨ ¨ ¨ f

d
piq

s

with OX at degree 0. In the following we will denote this complex by Č‚pOXq.

Proof. On the one hand, the natural morphism between the duals of the Koszul type complexes, map-
ping HomOX pK˚ppf

1
piqq

n, ¨ ¨ ¨ , pfd
piqq

nq,OXq to HomOX pK˚ppf
1
piqq

n`1, ¨ ¨ ¨ , pfd
piqq

n`1q,OXq, is given by sending
pei1 ^ . . . ^ eipq

˚ to fip`1
. . . fir pei1 ^ . . . ^ eipq

˚ where the indices satisfy t1, . . . , ru “ ti1, . . . , iru. On the
other hand, in general we know that if F‚ is a complex of OU -sheaves for every complex space U and if
f P OU pUq, the direct limit of the complex system ¨ ¨ ¨ Ñ F‚ ˆf

ÝÝÑ F‚ Ñ ¨ ¨ ¨ is F‚r 1
f s. The isomorphism is
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given by sending s a local section in the i-th copy of F‚ to s
fi . This completes the proof by combining the

two facts.
Notice that in the analytic setting OX r

1
f s is not the same as j˚OXrV pfq where j is the open immersion of

XrV pfq into X, since a holomorphic function on XrV pfq can have essential singularities along V pfq. �

Remark 6.38. Denote by ShpXq the category of sheaves of abelian groups on X and by CpShpXqq the
category of complex of sheaves of abelian groups on X. Notice that ΓZ is a left exact functor from CpShpXqq
to CpShpXqq. So it induces a right derived functor from DpShpXqq to DpShpXqq. We denote by G the
forgetting functor from CpModpOXqq the category of complexes of quasi-coherent OX -module (that is the
direct limit of a sequence of coherent OX -module) to CpShpXqq. For any coherent OX -sheaf F , we have

G ˝RΓrZspFq “ RΓZ ˝GpFq.

As we have seen above, the equality
G ˝ ΓrZspFq “ ΓZ ˝GpFq

also holds. We further observe in general that for two functors A,B the relation RpA ˝Bq “ RA ˝RB holds
if for any injective object I we have RiApBpIqq “ 0 for any i ą 0. The forgetting functor is an exact functor,
hence RiG “ 0 for any i ą 0. We have

RpG ˝ ΓrZsqpFq “ RG ˝RΓrZspFq “ G ˝RΓrZspFq.

On the other hand, if I is an injective OX -module, I is �asque and so is GpIq. By [Har77] Chap III exercise
2.3, RiΓZpGpIqq “ 0 for any i ą 0. Hence we have

RpΓZ ˝GqpFq “ RΓZ ˝RGpFq “ RΓZ ˝GpFq.

In particular, RiΓZpFq is also concentrated at degree d for any locally free OX -module.

Now we de�ne a global section corresponding to the Bloch cycle by patching local sections. Locally the
di�erential form

df1
piq ^ ¨ ¨ ¨ ^ f

d
piq

f1
piq ¨ ¨ ¨ f

d
piq

gives rise to a pd ´ 1q-�ech-cocyle with value in Ωd with respect to the open covering V j
piq, so it de�nes a

section of RdΓrZspΩdq on Ui by passing to the quotient. As in [Gro62] exposé 149, we have the following
result.

Lemma 6.39. These sections can be shown to patch to a global section of RdΓrZspΩdq which we will
denote trZsuBl.

Proof. For any z P Z, let pf1, ¨ ¨ ¨ , fdq, pf̃1, ¨ ¨ ¨ , f̃dq be two systems of generators near a neighbourhood
of z. Then there exists A P GLpOzq such that pf̃1, ¨ ¨ ¨ , f̃dq “ pf1, ¨ ¨ ¨ , fdqA. By the Gaussian elimination, the
matrix A can be generated in perhaps a small open set by row-switching transformations, row-multiplying
transformations and row-addition transformations with values in OX . Thus we reduce the check in these
three cases. The sections are invariant under the row-switching transformations by anti-commutativity of
�ech-complex and the anti-commutativity of di�erential forms.

If pf̃1, ¨ ¨ ¨ , f̃dq “ pf1, ¨ ¨ ¨ , ufdq with u P Oˆz , we have

df1 ^ ¨ ¨ ¨ ^ dpufdq

f1 ¨ ¨ ¨ pufdq
“
df1

f1
^ ¨ ¨ ¨ ^ p

dfd
fd
`
du

u
q.

The di�erence corresponds to a �ech coboundary δp0, ¨ ¨ ¨ , p´1qd df1f1 ^ ¨ ¨ ¨ ^
dfd´1

fd´1
^ du

u q since
df1
f1
^ ¨ ¨ ¨ ^

dfd´1

fd´1
^ du

u P ΩdpUqr 1
f1¨¨¨fd´1

s for some open set U .

If pf̃1, ¨ ¨ ¨ , f̃dq “ pf1, ¨ ¨ ¨ , vf1 ` fdq with v P Oz, we have

1

fd ` vf1
“

8
ÿ

k“0

p´1qk
vkfk1
fk`1
d

df1 ^ ¨ ¨ ¨ ^ dpvf1 ` fdq

f1 ¨ ¨ ¨ pvf1 ` fdq
“
df1

f1
^ ¨ ¨ ¨ ^

dfd
fd
`

ÿ

k“1

p´1qkvkfk´1
1

fk`1
d

df1 ^
df2

f2
^ ¨ ¨ ¨ ^

dfd´1

fd´1
^ dfd

`
ÿ

k“0

p´1qkvkfk1
fk`1
d

df1 ^
df2

f2
^ ¨ ¨ ¨ ^

dfd´1

fd´1
^ dv.
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The di�erence corresponds to a �ech coboundary

δp
ÿ

k“1

p´1qkvkfk´1
1

fk`1
d

df1 ^
df2

f2
^ ¨ ¨ ¨ ^

dfd´1

fd´1
^ dfd `

ÿ

k“0

p´1qkvkfk1
fk`1
d

df1 ^
df2

f2
^ ¨ ¨ ¨ ^

dfd´1

fd´1
^ dv, 0, ¨ ¨ ¨ , 0q.

�

Notice that by remark 6.38, the Bloch cycle class takes values in the (topological) local cohomology
under the forgetting functor.

We now give the relation between the Bloch class and the Deligne cycle class. The complex Deligne
complex is the mapping cone of ConepCÑ σpΩ

‚qr´1s. Via the quasi-isomorphism in DpShpXqq, the complex
Deligne complex is also isomorphic to the mapping cone Conepqq‚r´1s of the quotient map q : Ω‚X Ñ σpΩ

‚
X

by Dolbeault-Grothendieck lemma. We also have short exact sequence

0 Ñ F pΩ‚X Ñ Ω‚X Ñ σpΩ
‚
X Ñ 0

which shows in particular F pΩ‚X – Conepqq‚r´1s. Hence we have in the derived category of sheaves of
abelian groups an isomorphism

Dppq‚C – F pΩ‚X .

The exact sequence

0 Ñ F d`1Ω‚ Ñ F dΩ‚ Ñ Ωdr´ds Ñ 0

gives

H2d
Z pX,F

d`1Ω‚q Ñ H2d
Z pX,F

dΩ‚q Ñ Hd
ZpX,Ω

dq Ñ H2d`1
Z pX,F d`1Ω‚q Ñ ¨ ¨ ¨

In the following, we show that the Deligne cycle class sends to the Bloch cycle class in the above long exact
sequence. To prove the degeneration of some spectral sequence, we need the following lemma.

Lemma 6.40. Let E‚ : ¨ ¨ ¨ Ñ 0 Ñ E0 Ñ ¨ ¨ ¨ Ñ Ep Ñ 0 Ñ ¨ ¨ ¨ be a complex of locally free OX-module of
�nite length p` 1 in the category of complexes of abelian groups. Then RΓZpE‚q is quasi-isomorphic to the
complex

p˚q p¨ ¨ ¨ Ñ 0 Ñ RdΓZpE
0q Ñ ¨ ¨ ¨ Ñ RdΓZpE

pq Ñ 0 Ñ ¨ ¨ ¨ qr´ds

In particular, RΓZpF
pΩ‚q is quasi-isomorphic for every p to the complex

p¨ ¨ ¨ Ñ 0 Ñ RdΓZpΩ
pq Ñ ¨ ¨ ¨ Ñ RdΓZpΩ

nq Ñ 0 Ñ ¨ ¨ ¨ qr´ds,

where RdΓZpΩpq is placed at degree p.

Proof. The proof is a consequence of an induction on the length of the complex. When the length is
1, the proof is straightforward by the fact that RqΓZpΩpq is concentrated at q “ d. Assuming the assertion
to hold for i, we denote by E i the concatenation of terms E‚ up to degree i. We have a short exact sequence

0 Ñ Ei`1r´i´ 1s Ñ E i`1 Ñ E i Ñ 0

which induces a distinguished triangle

E i`1 Ñ E i Ñ Ei`1r´is
`1
ÝÝÑ .

Since RΓZ converts distinguished triangles into distinguished triangles, we get a distinguished triangle

RΓZpE i`1q Ñ RΓZpE iq Ñ RΓZpE
i`1r´isq

`1
ÝÝÑ .

By the induction assumption we get a quasi-isomorphism RΓZpE iq – p¨ ¨ ¨ Ñ 0 Ñ RdΓZpE
0q Ñ ¨ ¨ ¨ Ñ

RdΓZpE
iq Ñ 0 Ñ ¨ ¨ ¨ qr´ds. Therefore, we see that RΓZpE i`1q is quasi-isomorphic to the mapping cone of

p¨ ¨ ¨ Ñ 0 Ñ RdΓZpE
0q Ñ ¨ ¨ ¨ Ñ RdΓZpE

iq Ñ 0 Ñ ¨ ¨ ¨ qr´ds to RdΓZpEi`1qr´ds, which proves the result.
The particular case comes from the fact that the di�erential on X has maximal degree n. �

Remark 6.41. In fact, one can show that the di�erential in the complex p˚q is induced by the di�erential
of the complex E‚. Stéphane Guillermou indicated to us the following proof in a more general setting.

Let E‚ P CpShpXqq such that for any i, one has RΓZpE
iq “ Hd

ZpE
iqr´ds in the derived category

DpShpXqq of sheaves of abelian groups. Then we have a quasi-isomorphism

RΓZpE‚q – pHd
ZpE

0q Ñ ¨ ¨ ¨ Ñ Hd
ZpE

pqqr´ds
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where the di�erential map on the right is induced by the di�erential of E‚. Take an injective resolution for
each Ei so as to obtain a double complex I‚

I0,0 I0,1 ¨ ¨ ¨

I1,0 I1,1 ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

B
0,0

B
0,0

B
0,1

B
0,1

B
1,0

B
1,0

B
1,1

B
1,1

Then RΓZpE‚q – ΓZpTotpI‚,‚qq. Take A‚,‚ “ ΓZpI
‚,‚q, B‚,‚ “ τďd,‚A

‚,‚ and C‚,‚ “ τěd,‚B
‚,‚. Here

τďd,‚, τěd,‚A are the concatenation functors. More concretely, B‚,‚ is

ΓZpI
0,0q ΓZpI

0,1q ¨ ¨ ¨

ΓZpI
1,0q ΓZpI

1,1q ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

KerpΓZpB
d,0qq KerpΓZpB

d,1qq ¨ ¨ ¨

0 0 ¨ ¨ ¨

ΓZpB
0,0
q

ΓZpB
0,0
q ΓZpB

0,1
q

ΓZpB
0,1
q

ΓZpB
1,0
q

ΓZpB
1,0
q

ΓZpB
1,1
q

ΓZpB
1,1
q

ΓZpB
d,0
q

0

ΓZpB
d,1
q

0

and C‚,‚ is concentrated on the pd` 1qth-line which is pHd
ZpE

0q Ñ ¨ ¨ ¨ Ñ Hd
ZpE

pqq. Since the concatenation
functor preserves cohomology up to degree d, one can use the following lemma twice, for the pair A‚,‚, B‚,‚

and for the pair B‚,‚, C‚,‚, to conclude the result.

Lemma 6.42. Let A‚,‚, B‚,‚ two double complexes of sheaves of abelian groups. Let u : A‚,‚ Ñ B‚,‚ be
a morphism of double complex which induces an isomorphism of double complex

H
B
HBpA

‚,‚q – H
B
HBpB

‚,‚q

where B, B is the two di�erentials of the corresponding double complexes. (Since the morphism in the double
complexes H

B
HBpA

‚,‚q, H
B
HBpB

‚,‚q is in fact the zero morphism, the isomorphism of the double complex
is the same as isomorphism of each term in the double complex.) Then we have an isomorphism of total
complexes

TotpA‚,‚q – TotpB‚,‚q.

The standard spectral sequence of double complexes gives

HipX,RdΓZppF
d`1Ω‚qjqr´dsq ñ Hi`jpX,RΓZpF

d`1Ω‚qq “ Hi`jZ pX,F d`1Ω‚q.

By reasoning on degrees and using the above lemma 6.40 to calculate the derived functor of the complex,
one sees that the spectral sequence degenerates. Thus we �nd

H2d
Z pX,F

d`1Ω‚q “ 0,

H2d`1
Z pX,F d`1Ω‚q “ ΓpX,RdΓZpΩ

d`1qq.

The image of trZsuBl under the boundary morphism is represented by the cocycles

dp
df1
piq ^ ¨ ¨ ¨ ^ f

d
piq

f1
piq ¨ ¨ ¨ f

d
piq

q “ 0 P ΓpUi, R
dΓZpΩ

d`1qq.

Here we use remark 6.41, which ensures that the boundary morphism is induced by the standard di�erential
of di�erential forms.

By the long exact sequence before Lemma 6.40, we know that the class trZsuBl lifts to a unique class
trZsuD. In conclusion, the image of the Deligne cycle class under the natural morphism is the Bloch cycle
class and the natural morphism is injective. In this way, to evaluate the transformation of a Deligne cycle
class under a morphism, it is enough to evaluate the corresponding transformation of the Bloch cycle class.
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Remark 6.43. One can show that the Bloch cycle can also be represented by the global section p2πiqdrZs
of the current associated with the cycle Z. This is a direct consequence of the Lelong-Poincaré formula.
Consider the extended �ech complex for the open covering pV j

piqq of XrZ as in the lemma 6.37. Notice that
these open sets give an open covering of XrZ but at the degree 0, the component of complex is ‘iΩd|Ui . We

resolve Ωd by complex of currents Dd,‚
X and we consider the total complex TotpČ‚pDd,‚

X qq. tp2πiqdrZ XUisui
de�nes a element in Č0pDd,d

X q. The di�erential is given by δ̌ “ p´1qlp´1qk`1δ ` B on ČkpDd,l
X q where δ is

the �ech-di�erential and δ̌ the total di�erential. The factor p´1qk`1 comes from the commutativity of the
double complex. The factor p´1ql comes from the fact that the extended �ech complex (as the direct limit
of HomOX pK˚ppf

1
piqq

n, ¨ ¨ ¨ , pfd
piqq

nq,Dd,‚
X q) di�ers from the ordinary �ech complex by the same factor.

The boundary of the Čd´1pDd,0
X q-hypercocycle de�ned by

df1
piq^¨¨¨^df

d
piq

f1
piq
¨¨¨fd

piq

on tf2
piq ‰ 0, ¨ ¨ ¨ , fd

piq ‰ 0u 0

otherwise, is the hypercocycle de�ned by p´1qd
df1
piq^¨¨¨^df

d
piq

f1
piq
¨¨¨fd

piq

on tf1
piq ‰ 0, ¨ ¨ ¨ , fd

piq ‰ 0u (as the component of

ČdpDd,0
X q) and 0 otherwise (as the component in Čd´1pDd,1

X q). On the other hand

Bp
df1
piq ^ ¨ ¨ ¨ ^ df

d
piq

f1
piq ¨ ¨ ¨ df

d
piq

q “ p2πiqrf1
piq “ 0s ^

df2
piq ^ ¨ ¨ ¨ ^ df

d
piq

f2
piq ¨ ¨ ¨ f

d
piq

on tf2
piq ‰ 0, ¨ ¨ ¨ , fd

piq ‰ 0u by the Lelong-Poincaré formula. Hence the Bloch cycle is cohomologous to the

hypercocycle de�ned by p´1qd´1p2πiqrf1
piq “ 0s ^

df2
piq^¨¨¨^df

d
piq

f2
piq
¨¨¨fd

piq

on tf2
piq ‰ 0, ¨ ¨ ¨ , fd

piq ‰ 0u and 0 otherwise.

By induction, it is also cohomologous for any k to the hypercocycle de�ned by p´1qd´1p2πiq2k`1rf1
piq “

¨ ¨ ¨ “ f2k`1
piq “ 0s ^

df2k`2
piq

^¨¨¨^dfdpiq

f2k`2
piq

¨¨¨fd
piq

on tf2k`2
piq ‰ 0, ¨ ¨ ¨ , fd

piq ‰ 0u and 0 otherwise. Notice that when doing the

induction we use the fact that the currents involving terms rf j
piq “ 0s are zero on the open subset tf j

piq ‰ 0u.
We also observe that, since Z is a locally complete intersection of X, the wedge product of the currents
rf j
piq “ 0s ^ rfk

piq “ 0s for j ‰ k is well de�ned. The induction is pursued until one reaches k “ d. This
�nishes the proof.

By a similar argument, one shows that the Deligne cycle class can also be represented by the global
current rZs, as in the previous subsection. In particular, the image of the Deligne cycle class under the
natural morphism is the Bloch cycle class. Since the Bloch cycle class is represented by meromorphic forms,
the pull back of Bloch cycle classes is much easier to express. This explains our choice of introducing Bloch
cycle classes to circumvent the di�culties.

Remark 6.44. (Functoriality of local cohomology) As in [Inv84] page 125, we have the following com-
mutative diagram. Let A be a closed subset of a complex manifold X and B a closed subset of Y a complex
manifold. A holomophic map f : X Ñ Y with fpX rAq Ă Y rB will induce for any p, q

Hq
BpY, F

qΩ‚Y q HqpY, F qΩ‚Y q

Hq
ApX, f

˚F qΩ‚Y q HqpX, f˚F qΩ‚Y q

Hq
ApX,F

qΩ‚Xq HqpX,F qΩ‚Xq.

The �rst diagram commutes by taking injective resolutions F qΩ‚Y Ñ J‚ and f˚F qΩ‚Y Ñ I‚ and the com-
mutative morphism of complexes

ΓBpY, J
‚q ΓpY, J‚q

ΓApX, I
‚q ΓpX, I‚q.

The second diagram is given by natural inclusion f˚F qΩ‚Y Ñ F qΩ‚X in CpShpXqq. This shows the functori-
ality of local cohomology under pull-backs.

Now we �nish the �detour� via Bloch cycle classes. In the sequel, we reduce equalities to be proved for
the Deligne (or Bott-Chern) cycle classes to the case of Bloch classes, using functoriality under pull-backs.
This will complete the proof of most of the properties contained in Axiom B.
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Lemma 6.45. Let X be a complex manifold. Let Y and Z be compact submanifolds of X that intersect
transversally into W “ Y X Z. Let iY : Y Ñ X be the inclusion. Then we have in the integral Deligne
cohomology the identity

i˚Y trZsuD “ trW suD.

Proof. Using the exact sequence, 0 Ñ Dpdq‚ Ñ Dpdq‚C Ñ C{ZÑ 0, as in the Bott-Chern case, we can
reduce the integral case to the complex case by the injectivity of local cohomology. By the construction of
Bloch classes, it is enough to prove the equality for Bloch classes, thanks to the injectivity of the Deligne
complex into the Bloch complex after passing to hypercohomology. Since Ωd is a coherent OX or OY sheaf,
the topological local cohomology H‚Z is isomorphic to the algebraic local cohomology H‚

rZs. We can cover X
by Stein open sets Ui such that Ui X Z ‰ H and, in ad hoc local coordinate charts,

Ui X Z “ tzn´k`1 “ ¨ ¨ ¨ “ zn “ 0u for every i.

We can also suppose that in any open set Ui of the covering such that Ui X Y ‰ H, we have

Ui X Y “ tzn´l “ ¨ ¨ ¨ “ z1 “ 0u.

In particular, this gives in local coordinates

Ui XW “ tzn´k`1 “ ¨ ¨ ¨ “ zn “ zn´l “ ¨ ¨ ¨ “ z1 “ 0u.

In this case, the cycle class satis�es

i˚Y t
dzn´k`1 ^ ¨ ¨ ¨ ^ dzn

zn´k`1 ¨ ¨ ¨ zn
u|Ui “ t

dzn´k`1 ^ ¨ ¨ ¨ ^ dzn
zn´k`1 ¨ ¨ ¨ zn

u|UiXY

which implies i˚Y trZsuBl “ trW suBl. �

Lemma 6.46. With the same notation as in Proposition 6.5.1, we have

pid, fq˚trΓsu “
N
ÿ

i“1

mitrΓ
1
isu.

Proof. In ad hoc local coordinates, pz1, ¨ ¨ ¨ , znq P U , we can write D “ tz1 “ 0u. Therefore Γ “

tpw2, ¨ ¨ ¨ , wn, z1, ¨ ¨ ¨ , znq|z1 “ 0, zi “ wi,@i ě 2u Ă D ˆ Y in this coordinate. As in the previous lemma, it
is enough to prove the equality for the Bloch classes. Locally, trDsuBl is represented by

dz1 ^ dpz2 ´ w2q ^ ¨ ¨ ¨ ^ dpzn ´ wnq

z1pz2 ´ wnq ¨ ¨ ¨ pzn ´ wnq
in ΓpU,OU r

1

z1pz2 ´ wnq ¨ ¨ ¨ pzn ´ wnq
sq.

Locally we may write f “ pf1, ¨ ¨ ¨ , fnq for some coordinate chart V of X such that f1 “ xm1
1 ¨ ¨ ¨xmnn . Then

pid, fq˚trΓsuBl on pD X Uq ˆ V is represented by

df1 ^ dpf2 ´ w2q ^ ¨ ¨ ¨ ^ dpfn ´ wnq

f1pf2 ´ wnq ¨ ¨ ¨ pfn ´ wnq
“

N
ÿ

i“1

mi
dxi ^ dpf2 ´ w2q ^ ¨ ¨ ¨ ^ dpfn ´ wnq

xipf2 ´ wnq ¨ ¨ ¨ pfn ´ wnq

in

ΓppD X Uq ˆ V,OpDXUqˆV r
1

f1pf2 ´ wnq ¨ ¨ ¨ pfn ´ wnq
sq.

On the other hand, in pD X Uq ˆ V , Γ1i is given by tpw2, ¨ ¨ ¨ , wn, x1, ¨ ¨ ¨ , xnq|xi “ 0, wj “ fjpxq,@j ě 2u.
This proves the equality. The cohomology groups involved are all calculated by taking support in D̃. Since
all cohomological arguments remain valid when the closed set is a locally complete intersection, we can still
reach the desired conclusion, although D̃ is not necessarily a submanifold. �

In fact lemma 6.36 gives as a special case the following proposition, which translates into the equality
i˚Y iZ˚1 “ iW {Y ˚i

˚
W {Z1.

Proposition 6.5.3. Consider the following commutative diagram, where Y and Z are compact and
intersect transversally with W “ Y X Z:

W �
� iW {Y //
_�

iW {Z
��

Y_�

iY
��

Z �
�

iZ
// X

Then we have i˚Y iZ˚ “ iW {Y ˚i
˚
W {Z .
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Proof. Under the assumptions, W is compact and iY , iZ , iW {Y , iW {Z are all proper. In the following,
we denote by pi,X1{X2

(i “ 1, 2, X1, X2 “ X,Y, Z,W ) the natural projection of X1 ˆ X2 onto the i-th
component. We denote ΓX1{X2

the graph of iX1{X2
with X1, X2 “ W,X, Y, Z, and make substitutions

iY “ iY {X , iZ “ iZ{X . We have

i˚Y iZ˚α “ i˚Y pp2,Z{X˚pp
˚
1,Z{Xα ¨ trΓZ{X suqq

“ p2,Z{Y ˚pidZ , iY q
˚pp˚1,Z{Xα ¨ trΓZ{X suq “ p2,Z{Y ˚ppidZ , iY q

˚p˚1,Z{Xα.pidZ , iY q
˚trΓZ{X suq

“ p2,Z{Y ˚pp
˚
1,Z{Y α ¨ trΓW {Y suq “ iW {Y ˚i

˚
W {Zα.

The �rst equality uses the lemma 6.33. The second equality uses Proposition 6.2.2 for p2,Z{X ˝ pidZ , iY {Xq “
iY {X ˝ p2,Z{Y . The third equality uses the fact that pulling back is a ring morphism. The fourth equality
uses the fact that p1,Z{X ˝ pidZ , iY {Xq “ p1,Z{Y . It also uses the fact that ΓZ{X is transversal in Z ˆX with
Z ˆY and lemma 6.46. To prove the last equality, take ω a smooth form de�ned on U an open set of Z in a
�ech representative of α. Take ω1 any smooth form with compact support on U XY . We have to prove that

xp2,Z{Y ˚pp
˚
1,Z{Y ω ^ rΓW {Y sq, ω

1y “ xiW {Y ˚i
˚
W {Zω, ω

1y.

This holds true since

xp2,Z{Y ˚pp
˚
1,Z{Y ω ^ rΓW {Y sq, ω

1y “ xpp˚1,Z{Y ω ^ rΓW {Y sq, p
˚
2,Z{Y ω

1y

“

ż

ΓW {Y

p˚1,Z{Y ω ^ p
˚
2,Z{Y ω

1 “

ż

ΓW {Y

p˚1,W {Y i
˚
W {Zω ^ p

˚
2,W {Y ω

1

“ xiW {Y ˚i
˚
W {Zω, ω

1y.

Notice that all the projections other than p1,Y {X , p1,Z{X are proper. The terms involving the two morphisms
use only the pull-back, which is well de�ned even for a non proper morphism. So in the assumption, we do
not need to assume that X is compact. �

The transversality condition is necessary in the above proposition. Indeed, if we take Y “ Z “ W , the
morphism i˚Y iY ˚ is not equal to the identity. To calculate it, we need the following excess formula. In the
reverse direction, the formula is far easier. For any smooth submanifold Z of X and any cohomology class
α on X we have

iZ˚i
˚
Zα “ α ¨ trZsu.

This can be derived from the projection formula, which implies

iZ˚i
˚
Zα “ iZ˚pi

˚
Zα ¨ 1q “ α ¨ iZ˚1 “ α ¨ trZsu.

Proposition 6.5.4. If Y is a smooth hypersurface of X with X a compact complex manifold, then for
any α an integral Bott-Chern cohomological class,

i˚Y iY ˚α “ α ¨ c1pNY {Xq.

Proof. We use the deformation of the normal cone (cf. [Ful84] chap V). Let M be the blow up of
X ˆ P1 along Y ˆ t0u, X̃ be the strict transform of X ˆ t0u under the blow up. Let M˝ “ M r X̃. Then
we have an injection F : Y ˆ P1 ãÑ M˝. There exists a �at morphism ρ : M Ñ P1 such that the following
diagram commutes

Y ˆ P1 M˝

P1.

pr1

F

ρ|M˝

The �bre over 8 is NY {X and the �bre over other points is X. We denote the inclusion NY {X ãÑM˝ by j0,
the zero section Y ãÑ NY {X by i, the projections of pY ˆ P1q ˆM˝ (resp. Y ˆ P1, resp. pY ˆ P1q ˆNY {X ,
and resp. Y ˆ NY {X) on the �rst and second factor by pr1 and pr2 (resp. p̃r1, p̃r2, resp. pr11, pr12, resp.
pr21, pr22). We denote by Γ Ă Y ˆ P1 ˆM˝ the graph of F and by Γ1 the graph of i. Finally, we denote the
inclusion of the central �bre i0 : Y Ñ Y ˆ P1 by i0, and de�ne rΓ2s “ pi0, idNY {X q˚rΓ

1s.
Since Y is compact, pr12, pr22 are proper, we �nd pi0, idNY {X q˚trΓ

1su “ trΓ2su, and also pidYˆP1 , j0q
˚trΓsu “

trΓ2su since the image of pidYˆP1 , j0q and Γ are transversal with intersection equal to Γ2. Let γ be the class
on M˝ de�ned by γ “ F˚pp̃r˚1αq. Then we have

j˚0 γ “ j˚0 F˚pp̃r˚1αq “ j˚0 pr2˚ppr˚1 p̃r˚1α ¨ trΓsuq

“ pr12˚pidYˆP1 , j0q
˚ppr˚1 p̃r˚1α ¨ trΓsuq “ pr12˚rpidYˆP1 , j0q

˚pr˚1 p̃r˚1α ¨ trΓ
2sus

“ pr12˚pi0, idNY {X q˚pi0, idNY {X q
˚rpidYˆP1 , j0q

˚pr˚1 p̃r˚1α ¨ trΓ
1sus

“ pr12˚pi0, idNY {X q˚rpi0, idNY {X q
˚pidYˆP1 , j0q

˚pr˚1 p̃r˚1α ¨ trΓ
1sus
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“ pr22˚ppr
2
˚

1 α ¨ trΓ1suq “ i˚α.

The second equality uses lemma 6.33. The third equality uses Proposition 6.2.2 for pr2˝pidYˆP1 , j0q “ j0˝pr11.
The fourth equality uses the fact that pidYˆP1 , j0q

˚ is a ring morphism. The �fth equality uses the projection
formula. The sixth equality uses pr22 “ pr12 ˝ pi0, idNY {X q and p̃r1 ˝pr1 ˝ pidYˆP1 , j0q ˝ pi0, idNY {X q “ pr21. The
last equality uses another time lemma 6.33.

By the homotopy principle which is proven in the Whitney formula, the class pF˚γq|Yˆttu is independent
of the choice of t. For t “ 0, pF˚γq|Yˆt0u “ i˚j˚0 γ “ i˚i˚α. For t ‰ 0,

pF˚γq|Yˆttu “ pF
˚F˚pp̃r˚1αqq|Yˆttu

“ i˚Yˆttu{Xˆttui
˚
Xˆttu{M˝iYˆttu˚pp̃r˚1αq “ i˚Y iYˆttu{Xˆttu˚i

˚
Yˆttu{YˆP1 p̃r˚1α

“ i˚Y iY ˚α.

The third equality the proposition 6.5.3, and the fact that Y ˆP1 and X ˆttu intersect transversally in M˝

with intersection Y ˆttu. (HereM˝ is non compact.) The last equality uses the fact that p̃r1 ˝ iYˆttu{YˆP1 “

id.
Let π be the projection of NY {X onto Y . Then α “ i˚π˚α. We have

i˚i˚α “ i˚i˚i
˚π˚α “ i˚pπ˚α ¨ trY suq

where the second equality uses the remark before this proposition and trY su is the class of Y in NY {X . So
i˚i˚α “ i˚π˚α¨i˚trY su “ α¨i˚trY su. By lemma 6.47 below, i˚trY su “ i˚c1pONY {X pY qq “ c1pONY {X pY q|Y q “

c1pNY {NY {X q “ c1pNY {Xq. �

Lemma 6.47. Let D be a simple normal crossing divisor in a complex manifold X p that need not
necessarily be compactq. Then we have

c1pOpDqq “ trDsu.

Proof. By an obvious additivity argument, we can suppose that the divisor is reduced. The �rst Chern
class in complex Bott-Chern cohomology can be de�ned by singular metric since in the complex L‚1,1r1s the
forms can be changed by currents. These two complexes are quasi-isomorphic. The line bundle of the
e�ective divisor has a canonical section sD which induces a singular metric on X. The image of the �rst
Chern class in complex Bott-Chern cohomology can be represented by global section i

2πBBlog|sD|
2. A priori,

log|sD|
2 is the weight function of the singular metric on some open set on which sD can be trivialized. But in

fact, i
2πBBlog|sD|

2 is independent of the choice of trivialisation. By the Lelong-Poincaré formula, the image
of the �rst Chern class in complex Bott-Chern cohomology can be represented by the current rDs.

By construction, the image of Chern class in integral Bott-Chern class under the canonical map is the
Chern class in integral singular cohomology. Since OpDq is a complex line bundle, its �rst Chern class is
just its Euler class. Classically the Euler class of the Poincaré dual of the zeros of the smooth section sD.
It can also seen from the fact the cycle class in the hypercohomology of B‚1,1,Z sends to the cycle class in
the hypercohomolgy of B‚0,0,Z (which is just the singular cohomology) induced from the natural morphism
of complexes B‚1,1,Z Ñ B‚0,0,Z. Since we have the equality of classes

c1pOpDqq “ trDsu

in the complex Bott-Chern cohomology as well as in the integral singular cohomology, we deduce the equality
for the integral Bott-Chern cohomology. �

6.6. Transformation under blow-up

In this part, we want to show that the integral Bott-Chern class satis�es the rest of the axioms B
in [Gri10] (see Axiom B (5)(6)(7) in Introduction).

To start with, we prove the transformation formula of the integral Bott-Chern cohomology under blow
up. The closed immersions, projections and blow ups are the most elementary morphisms in the description
of Serre's proof of Riemann-Roch-Grothendieck formula. In fact, by considering the graph, any projective
morphism can be written as a composition of a closed immersion and a projection. By devissage, we reduce
the general closed immersion to the case of closed immersion of a smooth hypersurface. To perform this
reduction, we need to blow up submanifolds, and thus a study of the cohomology of blow ups is required.
To do this, we will need the following version for Dolbeault cohomology groups stated in [RYY17].

Theorem 6.48. Let X be a compact complex manifold with dimCX “ n and Y Ă X a closed complex
submanifold of complex codimension r ě 2. Suppose that p : X̃ Ñ X is the blow-up of X along Y . We
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denote by E the exception divisor and by i : Y Ñ X, E Ñ X̃ the inclusions, by q : E Ñ Y the restriction of
p on E. Then for any 0 ď p, q ď n, there is an isomorphism

j˚ : Hp,q

B
pX̃q{p˚Hp,q

B
pXq – Hp,q

B
pEq{q˚Hp,q

B
pY q.

j˚ : Hp,q
B pX̃q{p˚Hp,q

B pXq – Hp,q
B pEq{q˚Hp,q

B pY q.

Proof. The �rst statement is the main theorem of [RYY17]. The second statement uses the fact that

Hp,q
B pXq “ kertB : ΓpX,Cp,q8 q Ñ ΓpX,Cp`1,q

8 qu{ImtB : ΓpX,Cp´1,q
8 q Ñ ΓpX,Cp,q8 qu

“ kertB : ΓpX,Cq,p8 q Ñ ΓpX,Cq,p`1
8 qu{ImtB : ΓpX,Cq,p´1

8 q Ñ ΓpX,Cq,p8 qu “ Hq,p

B
pXq.

Now the second statement comes from the �rst statement. �

We also need the classical analogue for integral coe�cient cohomology (cf. [GH78], page 603) by using
the Mayer-Vietoris sequence involving a tubular neighbourhood of Y .

Lemma 6.49. Let X be a compact complex manifold with dimCX “ n and Y Ă X a closed complex
submanifold of complex codimension r ě 2. Suppose that p : X̃ Ñ X is the blow-up of X along Y . We
denote by E the exception divisor and by i : Y Ñ X, E Ñ X̃ the inclusions, by q : E Ñ Y the restriction of
p on E. Then for any n there is an isomorphism

j˚ : HnpX̃,Zq{p˚HnpX,Zq – HnpE,Zq{q˚HnpY,Zq.

Using these results, we can prove by induction an analogous result for integral Bott-Chern cohomology.

Proposition 6.6.1. Let X be a compact complex manifold with dimCX “ n and Y Ă X a closed complex
submanifold of complex codimension r ě 2. Suppose that p : X̃ Ñ X is the blow-up of X along Y . We denote
by E the exception divisor and by i : Y Ñ X, E Ñ X̃ the inclusions, by q : E Ñ Y the restriction of p on
E. Then for any n, p, q there is an isomorphism

j˚ : HnpX̃,B‚p,q,Zq{p˚HnpX,B‚p,q,Zq – HnpE,B‚p,q,Zq{q˚HnpY,B‚p,q,Zq.

Proof. The short exact sequence

0 Ñ Ωp`1r´p´ 1s Ñ B‚p`1,q,Z Ñ B‚p,q,Z Ñ 0

induces a commutative diagram

H
n´p´1,p`1

B
pX̃q{p˚H

n´p´1,p`1

B
pXq HnpX̃,B‚p`1,q,Zq{p

˚HnpX,B‚p`1,q,Zq HnpX̃,B‚p,q,Zq{p
˚HnpX,B‚p,q,Zq ¨ ¨ ¨

H
n´p´1,p`1

B
pEq{q˚H

n´p´1,p`1

B
pY q HnpE,B‚p`1,q,Zq{q

˚HnpY,B‚p`1,q,Zq HnpE,B‚p,q,Zq{q
˚HnpY,B‚p,q,Zq ¨ ¨ ¨

j˚ j˚ j˚

By the �ve lemma and Theorem 6.48, one can reduce the proof to the case p “ 0 by induction. Then the
short exact sequence

0 Ñ Ωq`1r´q ´ 1s Ñ B‚0,q`1,Z Ñ B‚0,q,Z Ñ 0

induces a commutative diagram

H
q`1,n´q´1
B

pX̃q{p˚H
q`1,n´q´1
B

pXq HnpX̃,B‚0,q`1,Zq{p
˚HnpX,B‚0,q`1,Zq HnpX̃,B‚0,q,Zq{p

˚HnpX,B‚0,q,Zq ¨ ¨ ¨

H
q`1,n´q´1
B

pEq{q˚H
q`1,n´q´1
B

pY q HnpE,B‚0,q`1,Zq{q
˚HnpY,B‚0,q`1,Zq HnpE,B‚0,q,Zq{q

˚HnpY,B‚0,q,Zq ¨ ¨ ¨

j˚ j˚ j˚

By the �ve lemma and Theorem 6.48 again, one can reduce the proof to the case p “ 0, q “ 0 by induction.
This is done directly by Lemma 6.49. �

A direct application of the proposition is the following general excess formula.

Proposition 6.6.2. With the same notation in the above proposition, if F is the excess conormal bundle
on E de�ned by the exact sequence

0 Ñ F Ñ q˚N˚Y {X Ñ N˚
E{X̃

Ñ 0,

one has the following excess formula for any cohomology class α on Y :

p˚i˚α “ j˚pq
˚α ¨ cd´1pF

˚qq.
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Proof. De�ne β “ j˚pq
˚α ¨ cd´1pF

˚qq. By the excess formula for a line bundle, we have

j˚β “ rq˚α ¨ cd´1pF
˚qs ¨ c1pNE{X̃q “ q˚α ¨ q˚pcdpNY {Xqq.

The second equality uses the Whitney formula for Chern class of vector bundles. Hence j˚β P Impq˚q and
by the above Proposition we know β “ p˚γ for some cohomology class on X. So p˚β “ p˚p

˚γ “ γ where
the second equality uses p˚p˚ “ id proven in the second section. Then we have

β “ p˚p˚β “ p˚p˚j˚pq
˚α ¨ cd´1pF

˚qq “ p˚i˚q˚pq
˚α ¨ cd´1pF

˚qq

“ p˚i˚pα ¨ q˚cd´1pF
˚qq “ p˚i˚α.

The �rst equality on the second line uses the projection formula. The last equality uses the fact that
q˚cd´1pF

˚q “ 1, as follows from the next lemma. �

Lemma 6.50. Let GÑ X be a vector bundle of rank r which induces π : PpGq Ñ X. Let H be the vector
bundle de�ned by the exact sequence

0 Ñ H Ñ π˚GÑ OPpGqp1q Ñ 0.

Then we have π˚pcr´1pHqq “ p´1qr´1.

Proof. We start the proof for the complex Bott-Chern cohomology such that the cohomology class can
be represented by global di�erential forms. By the Whitney formula for the total Chern class, cpπ˚Gq “
cpHq ¨ cpOPpGqp1qq. We denote h :“ c1pOPpGqp1qq. Then

cpHq “ cpπ˚Gqp1` hq´1 “ p1` c1pπ
˚Gq ` ¨ ¨ ¨ ` crpπ

˚Gqqp1´ h` h2 ` ¨ ¨ ¨ q.

The element of degree r´1 on two sides is cr´1pHq “ p´1qr´1hr´1`p´1qr´2hr´2c1pπ
˚Gq`¨ ¨ ¨`cr´1pπ

˚Gq.
π˚ is given by integration along the �bre direction. By degree reason, π˚cr´1pHq “ p´1qr´1π˚h

r´1 “

p´1qr´1. The integration can be calculated by a metric on OPpGqp1q induced by a smooth Hermitian metric
on G. This �nishes the proof of the complex case.

Since the equality is taken in H0,0
BCpX,Zq “ H0pX,Zq – Z which is a lattice in H0,0

BCpX,Cq “ H0pX,Cq –
C. We deduces the integral case from the complex one. �

Everything we have done also works for rational Bott-Chern cohomology. In [Gri10], Grivaux shows
that as soon as one has a good intersection theory for some cohomology theory, one can use the Riemann-
Roch-Grothendieck formula to construct the Chern class of a coherent sheaf by an induction on dimension.
The last axiom that remains to be proven is the Hirzebruch�Riemann�Roch theorem. It can be reduced to
the case of the Deligne complex by the following observation made in lemma 7.2 of [Sch07].

Lemma 6.51. Let X be a compact Kähler manifold. Then for any p P N˚ and k P N we have

HkpX,Ω‚ăpq – ‘r`s“k,răpHr,spX,Cq.

Since Pn is Kähler, the lemma gives the complete description of the integral Bott-Chern cohomology for
the projective spaces.

Proposition 6.6.3. The natural morphism ‘kH
k,k
BCpPn,Zq Ñ ‘pH

2p
D pPn,Zppqq induces an isomorphism

of rings. In particular, the Hirzebruch�Riemann�Roch theorem holds for integral Bott-Chern cohomology.

Proof. By the lemma 6.51, we have for any p P N˚

H2ppPn,Ω‚ăpq “ 0 Ñ Hp,p
BCpP

n,Zq Ñ H2p
D pP

n,Zppqq Ñ H2p`1pPn,Ω‚ăpq “ 0.

The second morphism is the natural morphism from Bott-Chern cohomology to Deligne cohomology which
is in fact an isomorphism shown by the exact sequence. For p “ 0, it is also an isomorphism since the
complexes are the same. Since the natural morphism from Bott-Chern cohomology to Deligne cohomology
is a ring morphism, we have the �rst statement. �

Remark 6.52. As far as we know, it seems that Grivaux's method does not work for constructing Chern
classes of a coherent sheaf in the integral Bott-Chern cohomology, as opposed to the rational cohomology.
The main reason is that the Chern characteristic class is additive but the total Chern class is multiplicative,
and switching from one to the other involves denominators. The proof given in [Ful84] for the Riemann-
Roch-Grothendieck formula in the context of coherent sheaves and the Chow ring reduces to proving that the
Riemann-Roch-Grothendieck formula holds for vector bundles. The additivity of the Chern characteristic
class and the nature of the formula ensure that after proving the special case of bundles, the Riemann-Roch-
Grothendieck formula will also be valid for coherent sheaves on projective manifolds. However, one needs
the projectivity condition to ensure that the Grothendieck group of coherent sheaves and the Grothendieck
group of vector bundles are the same.
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There exists an analogue of the �integral� Riemann-Roch-Grothendieck formula given in [Jou70]. In
this work, Jouanolou proved that for a closed embedding f : X Ñ Y of non-singular varieties of codimension
d and for any vector bundle of rank e on X, then the total Chern class in Chow groups satis�es

cpf˚Eq “ 1` f˚pP pc1pNq, ¨ ¨ ¨ , cdpNq, c1pEq, ¨ ¨ ¨ , cepEqqq

where N is the normal bundle and P is some universal polynomial depending only on d, e. This formula
does not work directly for coherent sheaves by simply replacing e with the generic rank of the coherent
sheaf involved, even in the projective case. This is caused by the lack of additivity and the appearance of
polynomials. As a consequence, a di�erent choice of the values of e will give a completely di�erent class. As a
matter of fact, a coherent sheaf can carry in its Chern classes some information that extend to degrees beyond
its generic rank. At this point, there does not seem to exist a similar integral Riemann-Roch-Grothendieck
formula for coherent sheaves.

An easy counter example is obtained by considering f : P2 Ñ P3 and F “ OP2{m0. The left hand
side is equal to cpOP3{m0q “

cpOP3 q

cpm0q
“ 1 ´ c1pOP3p1qq3, but the right hand of the universal polyno-

mial with d “ 1, e “ 1 where 1 is the generic rank of OP3{m0 gives 1 ` f˚P pc1pNq, c1pOP2{m0qq “

1 ` f˚P pc1pOP2p1qq, c1pOP2{m0qq “ 1 ` f˚
`

1
1`c1pOP2 {m0q´c1pOP2 p1qq

´ 1
˘

“ 1 ` c1pOP3p1qq2 ` c1pOP3p1qq3.
The same example shows that the formula is not valid when we taking e to be the largest number such that
the Chern class is not trivial. We do not know whether there are any substitutes of the Riemann-Roch-
Grothendieck formula used in Grivaux's induction argument, that would be capable of de�ning Chern classes
in integral Bott-Chern cohomology.

6.7. Appendix: Top degree integral Bott-Chern cohomology

In this section, using the duality between the complex Bott-Chern cohomology and the Aeppli cohomol-
ogy, we give a description of the integral Bott-Chern cohomology in top degree, on any compact connected
manifold X. We denote by n the complex dimension of X. We start by recalling the de�nition of Aeppli
cohomology.

Definition 6.53. (Aeppli cohomology). For all p, q ď dimX, one de�nes

Hp,q
A pX,Cq :“

kertBB : Cp,q8 pXq Ñ Cp`1,q`1
8 pXqu

pImtB : Cp´1,q
8 pXq Ñ Cp,q8 pXqqu ` pImtB : Cp,q´1

8 pXq Ñ Cp,q8 pXquq
.

As is well known, the natural pairing between Hp,q
A pX,Cq and Hn´p,n´q

BC pX,Cq, de�ned by integrating
wedge products of forms on X, induces a duality between Aeppli cohomology and complex Bott-Chern
cohomology. In particular

Hn,n
BC pX,Cq “ pH

0,0
A pX,Cqq˚ “ tf P C0,0

8 pXq|BBf “ 0u˚ “ C.
We also need the following lemma.

Lemma 6.54.
H2n´1pX,σnΩ‚X ‘ σnΩ

‚

Xq – H2n´1pX,Cq.

Proof. The short exact sequence

0 Ñ σnΩ‚X ‘ σnΩ
‚

X r´1s Ñ B‚n,n,C Ñ CÑ 0

induces the long exact sequence

H2n´1pX,B‚n,n,Cq Ñ H2n´1pX,Cq Ñ H2n´1pX,σnΩ‚X ‘ σnΩ
‚

Xq Ñ Hn,n
BC pX,Cq Ñ H2npX,Cq.

Since the last morphism is a linear isomorphism, we have

H2n´1pX,σnΩ‚X ‘ σnΩ
‚

Xq – H2n´1pX,Cq{H2n´1pX,B‚n,n,Cq.

We claim that H2n´1pX,B‚n,n,Cq – H2n´1pX,B‚1,1,Cq˚ as topological linear spaces. The argument is as follows.
Recall that the complex Bott-Chern complex B‚n,n,C is quasi-isomorphic to the complex pL‚n,nr1s, δr1sq de�ned
by

Lkn,n “
à

p`q“k,păn,qăn

Cp,q8 for k ď 2n´ 2;

Lk´1
n,n “

à

p`q“k,pěn,qěn

Cp,q8 for k ě 2n

(for the proof, see [Sch07]). The di�erential δk is chosen to be the exterior derivative d for k ‰ 2n ´ 2
(in the case k ď 2n´ 3 we neglect the components which fall outside Lk`1

n,n ) and we set

δ2n´2 “ BB : Cn´1,n´1
8 Ñ Cn,n8 .
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We view this complex in the category of sheaves of topological linear space where the di�erential is continuous.
We denote L̃‚1,1 the complex obtained by changing smooth forms by currents which is quasi-isomorphic to
L‚1,1. By a direct calculation, the dual of the component of the complex Bott-Chern complex Lkn,n in degree
k is L̃2n´1´k

1,1 . By the universal coe�cient theorem, we have

H2n´1pX,B‚n,n,Cq – H2n´1pX,B‚1,1,Cq˚

If n ě 2, since B‚1,1,C vanishes for degree bigger than 2, H2n´1pX,B‚1,1,Cq “ 0 which proves the lemma in this
case.

If n “ 1, we claim that the image of H2n´1pX,B‚n,n,Cq in H2n´1pX,Cq is 0. This is equivalent to say
that H1pX,OX ‘OX r´1sq Ñ H1pX,B‚1,1,Cq is surjective. We have a commutative diagram

OX ‘OX

C0,0
8 ‘ C0,0

8 C0,1
8 ‘ C1,0

8

C0,0
8 C1,1

8

pB,Bq

` 1
2 pB˝p1´B˝p2q

BB

with a translation of degree 1. Hence the map H1pX,OX ‘OX r´1sq Ñ H1pX,B‚1,1,Cq is given by

H0pX,C0,0
8 ‘ C0,0

8 Ñ C0,1
8 ‘ C1,0

8 q Ñ H0pX,C0,0
8 Ñ C1,1

8 q.

For any constant function c on X, pc, 0q de�nes an element of H0pX,C0,0
8 ‘C0,0

8 Ñ C0,1
8 ‘C1,0

8 q whose image
is c in H0pX,C0,0

8 Ñ C1,1
8 q. This completes the proof when n “ 1. �

Another way to prove the lemma when n “ 1 is to see that

H1pX,OXq ‘H
1pX,OXq – H1pX,OXq ‘H1pX,OXq

“ H1,0pXq ‘H1,0pXq “ H1pX,Cq.
Here we remark that a Riemann surface is Kähler so we have the Hodge decomposition theorem. Now we
can give the structure of the integral Bott-Chern cohomology in top degree.

Proposition 6.7.1. Under the above assumption, we have a short exact sequence

0 Ñ H2n´1pX,Cq{H2n´1pX,Zq Ñ Hn,n
BC pX,Zq Ñ ZÑ 0.

Proof. The commutative diagram

0 σnΩ‚X ‘ σnΩ
‚

X r´1s B‚n,n,Z Z 0

0 σnΩ‚X ‘ σnΩ
‚

X r´1s B‚n,n,C C 0

induces a commutative diagram

H2n´1pX,Zq H2n´1pX,σnΩ‚X ‘ σnΩ
‚

Xq Hn,n
BC pX,Zq H2npX,Zq – Z

H2n´1pX,Cq H2n´1pX,σnΩ‚X ‘ σnΩ
‚

Xq Hn,n
BC pX,Cq – C H2npX,Cq – C

id

„ „

The rightest morphism on the �rst line is surjective since for any x P X the image of the cycle class associated
with x in the integral Bott-Chern cohomology is the corresponding cycle class in the singular cohomology
H2npX,Zq – Z. The image is a generator in the singular cohomology. Hence we have the surjectivity in the
proposition. The kernel of this morphism is H2n´1pX,Cq{H2n´1pX,Zq by lemma 6.54 and chasing into the
commutative diagram. �

Remark 6.55. This kind of description does not work in general for the integral Deligne cohomology.
By the Poincaré-Grothendieck lemma, we get in the derived category DpShpXqq a quasi-isomorphism

CX – Ω‚X .

Hence the Deligne complex in top degree is quasi-isomorphic to Ωn. However, in general, we do not have
an isomorphism between H2n

D pX,Cq – HnpX,ΩnXq and H
2npX,Cq – C. If the manifold is Kähler, this is

true by the Hodge decomposition theorem. If the manifold is not Kähler, the Frölicher spectral sequence
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does not necessarily degenerate at page 1. In this case, we only have a surjection, but not necessarily an
isomorphism.

Remark 6.56. The short exact sequence in the proposition splits in a non canonical way. Fix a point
x P X. Sending 1 to the cycle class associated with x in the integral Bott-Chern cohomology gives such a
splitting. But a priori such a splitting depends on the choice of x.
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[CGP13] Frédéric Campana, Henri Guenancia, Mihai Pǎun, Metrics with cone singularities along normal crossing divisors and

holomorphic tensor �elds, Annales scienti�ques de l'Ecole Normale Supérieure, Série 4, Tome 46 (2013) no. 6, p. 879-916.
[CH17] Junyan Cao, Andreas Höring, Manifolds with nef anticanonical bundle, J. Reine Angew. Math. 724 (2017), 203�244.
[CH19] Junyan Cao, Andreas Höring, A decomposition theorem for projective manifolds with nef anticanonical bundle, Journal

of Algebraic Geometry 28 (2019), 567-597.
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